Vlado Ostovic

The Art and

Science of
Rotating Field
Machines Design:

A Practical Approach

S

N

(>
A\

@ Springer



The Art and Science of Rotating Field Machines
Design: A Practical Approach



The Art and Science

of Rotating Field
Machines Design:
A Practical Approach

by

Vlado Ostovic

Professor of Electrical Engineering and Consultant

Formerly

Chief Engineer for Solving Special Electromagnetic and

Thermal Problems in Large Electric Machines at
ABB Kraftwerke AG, Mannheim, Germany

@ Springer



Vlado Ostovié
Weinheim
Germany

ISBN 978-3-319-39079-6 ISBN 978-3-319-39081-9  (eBook)
DOI 10.1007/978-3-319-39081-9

Library of Congress Control Number: 2016942030

© Springer International Publishing Switzerland 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



To Thea, Thomas, and Marko
without whom this book would not have been
possible



Preface

Rotating field electric machine is one of the most complex devices in the whole
electrical engineering, because physical quantities in it are both a function of space
and time, the medium in which they spread is nonlinear and all three dimensions of
electromagnetic, mechanical, and thermal fields determine its performance. When
fed from AC source(s), rotating field machine windings generate flux density waves
which spread at different velocities through the machine, produce time dependent
forces between stator and rotor, and dissipate losses which increase the temperature
throughout the machine.

Only in an electric machine Faraday’s law of electromagnetic induction can
show its real nature: the tendency of space to oppose any change of magnetic field.
When in a vicinity of a stationary coil the magnetic field is changed, the voltage is
induced in the coil, which drives current through it, the magnetic field of which
compensates for the primary change of the field. If the coil can move, or rotate, and
if it is placed in a space in which the magnetic field rotates, not only the voltage will
be induced in it, as is the case with a stationary coil. The coil will start to rotate in
the direction of the field, trying to oppose the change of the concatenated flux
created by the rotating field. After infinitely long time, neglecting mechanical
losses, the coil will reach the synchronous speed and concatenate the magnetic field
which in that case does not change relative to it.

Besides generating electromagnetic torques, forces in an electric machine create
mechanical stress on its components. Electromagnetic and mechanical losses
increase the machine temperature and must be taken out from it by means of a
gaseous or fluid coolant. The amount of losses and related temperature increase is
crucial when determining the machine rated power, which is a pure thermal
quantity, defined as the power transferred to a load at which the dissipated losses
increase the machine temperature to the value allowed by the winding class of
insulation. Therefore, to design an electric machine is primarily a thermal task
which is successfully completed when the losses accompanying the electrome-
chanical energy conversion do not increase the hot spot temperature above the
given value.

vii
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An exact description of electromagnetic, fluid flow, and thermal effects which
simultaneously take place in an electric machine would require enormous com-
putational power, which would barely justify the accuracy of results and time
consumed. Therefore, it is designer’s job to simplify the bulky mathematical
apparatus when solving a particular problem, building a simple physical model of a
machine, and solving it with regular mathematical tools. In order to make adequate
physical assumptions for a particular problem, the designer has to understand well
the tool he is using, which helps him avoid application errors.

Like in almost no other field of engineering, when designing an electric machine
there is a high need for proper physical interpretation of mathematical solutions,
and especially of conditions under which these are derived. Mathematics is a good
servant, but a poor master. This can be illustrated by the example of the probably
most misinterpreted equation in electrical engineering, which states that electrical
current i through a capacitor is equal to the time derivative of charge Q

,_do
T odr

At the latest since the Millikan—Fletcher experiment in the year 1910 the engi-
neering community is aware of the discrete character of electrical charge: the
amount of electricity can only change in steps of e = 1.6 « 10™'° As, which is the
charge of electron. In terms of mathematical analysis, a derivative of a discrete
function is not defined; therefore, the expression dQ/dt is mathematically unde-
termined. At time instants at which the amount of charge in a closed volume V
changes, its time derivative is not defined; at all other time instants the derivative
of the amount of charge is equal to zero, Fig. 1. Accordingly, an electric current
defined as a time rate of change of the amount of charge is either undetermined, or
equal to zero.

Such definition of electrical current is a result of misinterpretation of Maxwell’s
concept of displacement current in dielectrics. Knowing that the divergence of the
curl of any vector is equal to zero, and applying operator div to the Ampére’s
circuital law, one obtains

- = l_j
div(curlH) =div <F+ a8_t> =0

with H denoting the magnetic field strength, I" the current density, and D the
electric displacement. Setting for

a’ivﬁzp:%:’:1
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with p standing for charge density, and V for volume, one can further write

V-divf+@=0
dt

which leads to a mathematically correct, yet physically false construction

. do
I =—
dt

Fig. 1 Illustrating expression A
dQ/dt: time rate of change Q, dQ/dt
of the amount of ch?rge e in Q()
a closed volume V is not Q+e L - \
defined at time instant at
which the change takes place; Q N ——

at all other time instants the
time rate of change is equal to
Zero

dQ/dt

Q-

Yy,
>
t

—

When correctly interpreted, the displacement current density I'y, defined, e.g.
for a parallel plate capacitor as

. 9D OE 0 & du
F = = —_— = —_—— —_
=afa ta VO = aa
helps one express the current i. through a capacitor by means of voltage drop u
across its plates as

. edu du
e=SiaTCa

where S denotes the area of plates, d the distance between plates, € the permittivity
of the medium and C the capacitance. The current through a capacitor is propor-
tional to the time derivative of voltage drop across its plates. Electric current is
definitely not equal to a time derivative of charge, because the amount of charge Q
is a discrete quantity and therefore it is not a derivable function.

Any discussion about physically proper description of electric current inevitably
leads to the question about its real nature. The answer to this question is aston-
ishingly simple: electric current is a state of continuum characterized by thermal,
light, chemical, and magnetic effects. Whereas thermal, light, and chemical effects
do not always accompany electric current, magnetic field is always generated when
a current flows. Therefore, electric current can be defined as the source of magnetic
field (Fig. 2).
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t=t t=1t

Fig. 2 Illustrating effects of motion of charge +Q, which travels at finite velocity v, as a source of
magnetic field. The charge +Q creates at point P the electric field E,; at time instant t;, and the
electric field E,, at time instant t,. The change of electric field distribution in time interval [t,, t,],
which spreads through space with the speed of light, gives rise to displacement current density

€ %—]f which is a source of magnetic field H

The emphasis in the definition of electric current is on the state of continuum,
which, according to the currently valid physical model of the universe, spreads with
the maximum possible speed through space. For example, when a body with mass
m changes its position, a new distribution of gravitational field is generated which
spreads with the speed of light through the universe. In the same manner when a
charge Q changes its position in space, the effect of the change—a new distribution
of electromagnetic field—spreads with the speed of light throughout the whole
universe.

Since every change of electric field distribution is accompanied by a creation of
magnetic field, a charge which changes its position creates magnetic field in space.
Independent of how slow a charge moves, the electric field distribution created at its
every new position spreads with the speed of light through space. Therefore, one
can state that no matter how fast or slow a charge moves, the state of continuum
described by electric current spreads at the speed of light.

Previously discussed topics illustrate the tenor of the book: thorough under-
standing of physical (electromagnetic, mechanical, and thermal) processes in
rotating field electric machines by using sophisticated computational tools, along
with correct physical interpretation of mathematical results.

A reader who expects to find a compilation of recipes on how to design a
rotating field electric machine in this book will be disappointed, because this is a
book on “why”, rather than on “how”. Alexander Gray, one of the pioneers in the
field of electric machines design, stated more than one hundred years ago “Since the
design of electrical machinery is as much an art as a science, no list of formulae or
collection of data is sufficient to enable one to become a successful designer.” The
art in this statement relates to balanced trade-offs of often contradictory requests.
Technical specifications for a particular machine can be fulfilled in many different
ways, none of them being absolutely the best. There exists no recipe on how to
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design a perfect electric machine—it is more a question of experience and manu-
facturing capabilities, with a strong influence of engineering talent. Nevertheless,
one should always keep in mind the simplicity of the solution, as a dominating
design goal which guarantees longer mean times between failures and decreases the
machine price.

One of the basic ideas followed in this book is a wide use of lumped circuit
approach when solving field problems. Electrical engineers think in terms of cir-
cuits. Ohm’s law, one of the most pronounced laws in the nature, states that the
output is proportional to the input. Just like for electric circuits, similar laws of
proportionality can be written for pressure and mass flow, temperature and heat
flow, as well as for magnetic flux and MMF drop.

Despite various nonlinearities which dominate the physics of electric machines,
an emphasis in the book is given to an analytical solution of a particular problem.
An analytical solution helps designer to get insight into the nature of processes in a
machine and estimate the influence of each parameter on its overall performance.
A numerical solution, on the other hand, is valid only for a particular set of
parameters. A single numerical solution might deliver correct numbers, but it does
not help the designer to understand the relationships between the quantities
involved.

The book is organized in eight chapters. In the first seven chapters, a thorough
analysis of electromagnetic and thermal effects which dominate the operation of
electric machines is given. In the last chapter important steps in the design of
induction and synchronous machines are sketched. In each chapter several case
studies are presented, dealing with a topic relevant to the chapter contents.

Properties of permanent magnet machines are discussed thoroughly in the first
chapter and in the Appendix. Considering inferior performance of a permanent
magnet AC machine as compared to a wound rotor synchronous machine, the
design procedure for the former machine type is not carried out separately in the
book. Nevertheless, permanent magnet machines have been referred to in several
case studies. The interested reader can obtain the performance curves of a perma-
nent magnet machine simply by setting the field current of an equivalent wound
rotor synchronous machine down to its no-load value.

Paraphrasing the statement “Never trust a statistics you didn’t make yourself,”
one might find it a good idea not to use commercial machine design software
packages, the vendors of which consider the applied methods and procedures their
intellectual property. When applying such software packages it could happen that
the user, without being aware of assumptions and limitations made when creating
such a package, obtains physically meaningless results, like current flowing from a
conductor into air, overall power factor larger than one, or even sum of all power
components different from zero, etc. Having this in mind, the intention of this book
is to support those engineers who want to design an electric machine standing on
their own two feet.
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Last but not least, the text of the book was checked, rechecked, and checked
again in order to eliminate possible errors. If despite the careful preparation certain
expression turns out to be incomplete or misleading, one should keep in mind that
this was done on purpose, because those readers, who desperately look for an error
in a work like this, should also be satisfied after having found it.

Weinheim, July 2016 Vlado Ostovié¢
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Fundamental electromagnetic, fluid flow, and thermal laws governing the design
philosophy of rotating field electric machines are discussed, and the importance of
simultaneous consideration of various engineering disciplines thereby is emphasized.
The application of basic laws of electromagnetism in electric machines is illustrated
with examples of iron—air boundary and current imaging. Solutions of the funda-
mental heat transfer equation for various combinations of electric and thermal
parameters are discussed, and electrothermal conductance is introduced. Performance
of permanent magnet excitation is analyzed. It is shown that constant magnetization is
the Achilles heel of a permanent magnet excited synchronous machine and the main
reason for its inferiority to wound rotor synchronous machine. Lumped element
parameters in electric, magnetic, thermal, and fluid flow circuits are introduced.
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2 1 Introduction

1.1 General Considerations

To design an electric machine means to determine the combination of geometric
parameters, winding configuration, and implemented materials, which ensures a
flawless operation of the designed machine throughout the whole period of its
service life. Considering numerous technical and economical criteria which have to
be satisfied in the process of machine design, one comes to a conclusion that there
are many ways to design a good machine. On the other hand, there are even more
ways to design a machine, the performance of which does not fulfill given speci-
fications, the most pronounced of them being thermal overloading of insulation.
The process of electromechanical energy conversion is accompanied with a gen-
eration of electromagnetic and mechanical losses in the machine’s active and
passive components. On their way through machine parts the losses create tem-
perature gradients and hot spots, the latter denoting locally overheated areas.

Considering thermal limits of winding insulation, the main criterion that a
successfully designed electric machine has to fulfill is that the hot spot temperature
in it does not exceed the amount allowed for the given class of insulation. Proper
thermal design is crucial for the operation of an electric machine; a thermally poor
designed machine must either operate derated, delivering less power than foreseen,
or it fails completely because of overheating of its windings.

Losses generated in the whole volume of active part can be transferred to a coolant
only on heat exchange surfaces. Considering constant losses per volume and
denoting by x the machine’s linear dimension, the total losses increase with the
machine volume, i.e., proportional to x3, whereas the heat exchange surface can only
increase proportionally to x*. The ratio of total losses to the heat exchange surface,
being proportional to the temperature drop on the heat exchange surface, increases
proportionally to the machine size, i.e., to the quotient x*/x* = x. For this simple
reason it is easier to cool small than large electric machines. Without changing the
machine cooling type, current density in a small induction motor may reach
10 A/mm?; it has, however, to be reduced to some 24 A/mm? in a large machine
with the same class of insulation. Consequently, the importance of cooling increases
proportionally to the machine size and dominates design of large electric machines.

The simple scaling law for heating not only is typical for machines but also can
be observed in the whole nature. An Antarctic penguin is bigger than an Australian:
Considering identical metabolism, body temperature, and produced energy per
body volume, an Antarctic penguin can cover a higher temperature difference to its
environment than an Australian only by being bigger, i.e., by having a larger
volume to body surface area.
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1.2 Stationary Coils and Rotating Magnetic Field

Constant current creates constant magnetic field at each point in space around a
current-carrying conductor. Time-dependent current creates time-dependent mag-
netic field. Considering linear and homogenous magnetic properties of medium
surrounding the conductor, the direction of magnetic field at any point in space is
determined only by geometry and independent of the amount of current.
Time-dependent current creates at every point in a homogenous medium a magnetic
field with an amplitude dependent on current and with constant direction in space.
In other words, magnetic field around a current-carrying conductor pulsates when
the current alternates. One should note that electric current, as a time-dependent
quantity, can only alternate, i.e., change its amount in time. Magnetic field, as a
spatial quantity, can both change its magnitude and direction in space. As shown in
Fig. 1.1, the direction of a pulsating magnetic field at point P at time instant ¢,
when the current is positive, is collinear with axis a—a'. After one half of period of
current i, at time instant #; + 7/2 when the current has an opposite sign, the
direction of magnetic field changes by 180°.

Sinusoidal current i(f) = I, cos of flowing through the coil in Fig. 1.1 produces
pulsating magnetic field, the direction of which varies from one point in the space to
another. A pulsating physical quantity is a synonym for standing wave. A standing
wave emerges from two traveling waves with equal amplitudes, B, and B_, which
travel (rotate) at the same speed in opposite directions as shown in Fig. 1.2.

B(t)

B(t+T/2)

Fig. 1.1 Illustrating the direction of magnetic field at an arbitrary point P at two time instants
which are one half of period of current shifted to each other
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The axis of pulsating field By, acting at point P in Fig. 1.2 is a—a’, as shown in
Fig. 1.1. For a given sinusoidal coil current the amplitude of field By, changes
periodically from O over B,.x down to —B,.x and back to 0. The axis a—a' of field
Bpuis acting at point P does not change its slope and position in space. The actual
field By, which pulsates along the axis a—a’ can be replaced by a sum of two fields
having constant amplitudes B, and B_ which rotate in opposite directions with
angular velocities +Q and —Q. The relationship between the amplitudes of rotating
and pulsating field is B, = B_ = B,,x/2. The rotating field component denoted by
B, is called positive sequence, and the rotating field component denoted by B_ is
the negative sequence.

/a
Bpuls=B[ﬁax

Bmax/\2
B, B.
VRN
// ) -7 B+ B+
,OI Q B. AN N /\
7/ P B_ Y \\
Y B.
a B2
t=0 1/8 T/4 3T/8
Bax/\2
B.
B. \
\
; B. _ s v
B, / «- B,
/ | s
" puls
B. B B+
-Brax/N2
'Bmax
T/2 5T/8 3T/4 77/8

Fig. 1.2 Representation of a pulsating field created by sinusoidal current with angular frequency
® as a sum of two waves of rotating fields B, and B_
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Fig. 1.3 Generation of rotating field with two perpendicular coils carrying 90° out of phase
alternating currents

As illustrated in Fig. 1.2, a single coil carrying sinusoidal current produces at
each point in space two fields with equal amplitudes, which rotate in opposite
directions. Pure rotating field is obtained when one of the components—either
negative or positive sequence—is fully eliminated. This can only be done by
introducing another coil(s) which carry current(s) phase shifted to the current in the
first coil. The effect of additional coil(s) is illustrated in Fig. 1.3, in which the
magnetic field created by currents in two coils is represented, the lines of flux of
which are perpendicular to each other at point P.

The line a—a’ shown in Fig. 1.3 represents the axis of pulsating field created by
the first coil and the line b—b' analogously for the second coil. For the purpose of
simplicity, it will be further assumed that the two amplitudes of magnetic field at
point P created by the two currents are equal to each other and that the phase shift
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between the two coil currents is equal to 90°. All components of field created by the
current in the first coil are drawn black, and those created by the second coil are
gray. The resulting field B, is represented with thick gray arrow.

One notes in Fig. 1.3 that the resulting field has a constant amplitude and
completes one revolution in space after one period T of the coil currents. The

resulting field rotates at an angular velocity f), which is a vector perpendicular to

the plane of rotation. Spatial quantity Q should not be confused with the scalar of
angular frequency o equal to 27tf, with f denoting the reciprocal of the period T of

coil currents, f = 1/T. In other words, ® is not the magnitude of Q.

Analyzing the generation of rotating field illustrated in Fig. 1.3, one can state
that one of the components of pulsating field created by a single coil—in this case
its negative sequence—was fully eliminated by introducing additional source of
pulsating field, the negative sequence component of which is 180° phase shifted to
the negative sequence component of the first coil. At the same time, the amplitude
of the negative sequence component of the second coil must be equal to the
amplitude of the negative sequence component of the first coil. One can state that
pure rotating field is obtained by superimposing two pulsating fields created by
stationary current-carrying coils if the following conditions are satisfied:

— The axes of coils are perpendicular to each other;
— Coil currents are 90° out of phase.

In a polyphase system, the rules above are adapted in order to consider the
number of phases.

In the process of creating the rotating field shown in Fig. 1.3 each phase con-
tributes with its full positive sequence component to the resulting positive sequence
field, whereas the amplitude of positive sequence component per phase is equal to
50 % of the amplitude of total field created by single phase.

It will be shown in Chap. 2 how the previously discussed basic connection of
coils has to be modified in order to extend the space in which rotating field is
generated from the single point P in Fig. 1.1 to a larger volume, e.g., the air gap of
an electric machine. If suitable objects, such as coils, ferromagnetic components,
and permanent magnets, are brought into this space, the rotating field can interact
with them, and force F [N] and torque M [Nm] can be generated which tend to
move these objects in the direction of rotating field. In order to move objects, the
rotating field has to perform in each revolution the mechanical work W,.., equal to

2n

Wmech:O/M(Y)dyzo/p(t)dt:P'T (11)

Graphical interpretation of Eq. 1.1 is shown in Fig. 1.4. Only the constant torque
component M,,. shown in Fig. 1.4 performs mechanical work, because the average
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value of all other torque components in one revolution, i.e., in angle interval [0, 27],
is equal to zero.

Equation (1.1) has far-reaching effects on design of rotating field electric
machines, one of which being articulated in the statement that permanent elec-
tromechanical energy conversion can only take place if torque-generating compo-
nents of magnetic field rotate at the same speed. Replacing differential dy in Eq. 1.1
with Q dt, and replacing the expression M(y) - Q by instantaneous power p(¢), one
obtains as a result that mechanical energy is proportional to the average torque.
Constant 7 in Eq. 1.1 denotes the time interval within which the rotor completes
one revolution from 0 to 2.

The contribution of a pulsating component of torque to the total energy con-
verted from electrical to mechanical form and vice versa is equal to 0. At a given
speed of rotation, only active power creates mechanical work; higher harmonics of
active power create torques with an average value (mechanical work) equal to zero.

Fig. 1.4 Torque as a function of angle. The area below the curve M(y) is equal to the mechanical
work performed

1.3 Electromagnetic Field Equations and Boundary
Conditions; Field Distribution in Heteropolar
Machines

The source of magnetic field is electric current. Magnetic field lines form closed
curves and concatenate electric field lines. The sourcelessness of magnetic field can
be formulated as [1]
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divB =0 (1.2)

which states that the magnetic flux through a closed surface is equal to zero. This
simple condition and Ampere’s circuital law for a closed contour C

fﬁ-oﬁ:zz‘ (1.3)
C

are the only two physical laws that help one determine the flux distribution in the
complex geometry of electric machines.

Vast majority of rotating field electric machines are built as heteropolar, i.e., all
flux lines in their active part close in a plane perpendicular to the machine shaft.
Thus, the machine’s active part can be analyzed two-dimensionally without losing
accuracy. In the end winding zone, on the other hand, all three spatial components
of magnetic field are equally important when determining analytical solutions of
field distribution, which help find leakage reactances, forces, losses, etc.

As illustrated in [2], Eqs. 1.2 and 1.3 applied to the machine’s iron—air boundary
without current sheet (surface current density) help one determine the ratio of
angles of flux lines to the boundary surface normal line as (Fig. 1.5)

tan oty 1

tanoge W, e

(1.4)

where the iron relative permeability, p,. g, equals typically to 10°-10*. Therefore,
one can state that lines of flux enter the iron surface on the air side of air—iron
boundary almost perpendicularly. The change of direction of the line of flux shown
in Fig. 1.5 on the air—iron boundary is a consequence of different permeabilities of
air and iron.

Equation 1.4 helps one find magnetic field distribution of a current-carrying
conductor in front of an iron half-space, as shown in Fig. 1.6. The problem is
solved by applying the method of current imaging in which the region with high
iron permeance and without current-carrying conductor(s) is replaced by fictitious
current-carrying conductors in air [3]. As a result, Ampére’s circuital law can be
applied on both sides of the air—iron boundary on which the lines of flux do not
break as a consequence of different relative permeabilities.
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Mo Fe

O air

Ol Fe

Fig. 1.5 Refraction of magnetic flux on iron—air border

Boundary conditions for a particular problem are a means to replace the influ-
ence of the rest of the world on electromagnetic state within the problem region by
applying simple physical relationships on the boundary of the problem region.
Typical boundary condition can be defined as a line of flux parallel to the border; in
this case, no flux goes out of the problem region into the rest of the world.

In Fig. 1.6b a flux line created by current / flowing through a conductor at a
distance d from iron half-space is shown. According to Eq. 1.4, the lines of flux in
air on the air—iron boundary are practically perpendicular to iron. On the iron side
the lines of flux choose the shortest way and end up almost parallel to the boundary.

The actual electromagnetic DC excitation and problem geometry shown in
Fig. 1.6a are replaced by boundary conditions as illustrated in Fig. 1.6b, c, in which
the whole problem region has only one permeability, p,. This way the Ampére’s
law can be directly applied in the whole problem region. Field distribution on the
air side shown in Fig. 1.6a is represented in Fig. 1.6b as a sum of the field dis-
tribution created by the original current I and the field distribution created by a
fictitious current /, g flowing through a fictitious conductor placed in iron at the
same distance d from the air—iron boundary as the actual conductor on the air side.
The resulting magnetic field strength H [A/m] on the air side of the air—iron
boundary can be expressed as follows:
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Hye = ﬁ (=@, cos o +ad,sino) + SRF; (@ cos o+ d sina) = 0
= L (re 1) sinot @, (g — 1 '
_ﬁ[ax(rfe—f- ) sino+ay (I e — I) cos o

H(I+Ir,air)

Fig. 1.6 Current-carrying conductor in front of iron half-space (a) and its equivalents (b and ¢) in
case of DC excitation

the normal (x in Fig. 1.6) and tangential (y in Fig. 1.6) components of which can be
written as

Heair = = (Lope +1) sino (1.6)

2Rn

1

Hy,air = ﬂ

(Ir"Fe - I) cos ol (1.7)
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One can express in the same manner the field distribution on the iron side of the
border by the field of fictitious current /, ,;, flowing through the conductor addi-
tionally to the actual current I, as shown in Fig. 1.6c:

= I + I i - N —
Hpe = ZR::H (ax sin ot — dy cos ot) (1.8)

Applying boundary conditions [2] for normal and tangential components of the
magnetic field strength on the air—iron surface without current sheet:

MpeHyxpe = oM air (1.9)
one obtains
bee (I + Trair) = po (I +1rpe) (1.10)
as well as
H,pe = H, 4i; (1.11)
and
I i = — Iy pe (1.12)

Fictitious currents /, g and I, ,;; are now

My Fe — 1
I pe = _Ir.air =—] (113)
' ur,Fe +1

whereas the normal (x in Fig. 1.6) and tangential (v in Fig. 1.6) components of
magnetic field strength in air, Eqs. 1.6 and 1.7, can be written as follows:

I 2 “r,Fe

Hrair A5 T 1
2R W, g+ 1

sinol (1.14)

1

H r=—-———
- ZRTC l’lr‘Fe—’_1

cos (1.15)
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Fig. 1.7 Magnetic field strength H created by a current-carrying conductor (a) in air alone; (b) in
air in front of iron half-space; ¢ comparison of the two distributions in (a and b)

By substituting the expression for fictitious current 7, ,; (Eq. 1.13) into Eq. 1.8,
one can express the normal and tangential components of magnetic field strength in
iron as

1

- L2 1.16
T RTINS R (1.16)

x,Fe
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1

Hype— ——  — =
E 2R W, g + 1

cos ol (1.17)

Except for small values of angle o (both positive and negative), the normal
component of the magnetic field strength in air, defined in Eq. 1.14, gets almost
doubled in the vicinity of iron with p, g >>, as a consequence of practically halving
the length of lines of flux in air. Due to its high relative permeability, the MMF drop
in iron is negligible as compared to the MMF drop in air. The tangential component
of magnetic field strength in air, defined in Eq. 1.15, is radically reduced, since the
lines of flux enter the iron surface almost perpendicularly, see Eq. 1.4. Whereas the
normal component of magnetic field strength in air is pt, g, times larger than in iron,
the tangential components are equal in both media.

Graphical interpretation of results obtained by Eqs. 1.14 and 1.15 for a relative
permeability 1, g. equal to 1000 is shown in Figs. 1.7a—c.

In Fig. 1.7a the amplitude of magnetic field strength of a current-carrying
conductor in a medium with a relative permeability equal to 1 as a function of radial
distance and angle is shown. The amplitude of magnetic field strength at a given
point is inversely proportional to the distance from the center of the conductor to
that point.

In Fig. 1.7b the magnetic field strength distribution in air created by a
current-carrying conductor parallel to a ferromagnetic half-space with p, g, = 1000
is shown. According to Eq. 1.8, the magnetic field strength in iron is almost equal
to zero. Therefore, the magnetic field strength distribution on the air—iron boundary
is discontinuous, which is shown as a vertical cut in Fig. 1.7b.

The amplitudes of the magnetic field strength in air without and with ferro-
magnetic half-space are compared in Fig. 1.7c. Magnetic field created by a con-
ductor in front of the iron half-space is equal to zero along the plane through the
conductor perpendicular to the magnetic half plane. Outside of the very narrow
neighborhood of this perpendicular plane, the magnetic field strength with ferro-
magnetic half-space is almost twice as big as the field strength without it.

As a conclusion, one can state that the vicinity of ferromagnetic media almost
doubles the magnetic field in air created by current-carrying conductors. This is a
very important fact which has to be considered when analyzing forces acting on the
end winding.

1.4 Fluid Flow and Heat Transfer in Electric Machines;
Types of Cooling

Thermal design of an electric machine is governed by fundamental equation
relating the temperature rise A9 [K] of a coolant with volume V [m®], mass density
p [kg/m?], and specific heat ¢ [Ws/(kg K)] at a given pressure p [N/m*] to the
amount of heat AQ [Ws] absorbed
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AQ=P-At=V-p-c-A9 (1.18)

with P denoting the power of losses (heat) [W] and At (s) the length of time interval
in which the heat gets absorbed by the coolant. Introducing volume flow rate

V [m3/s]

. Vv
V=— 1.19
A (1.19)
one can express the temperature rise A3 of the coolant as
P
A= —— (1.20)
c-p-V

In Eq. 1.20 the global physical relationship between coolant thermal properties,
its volume flow rate, and the absorbed heat is described. Typical values for coolant
temperature rise in electrical machines vary between 15 and 40 K. Having these
values in mind, one can determine the necessary coolant volume flow rate 1%
delivered by a fan or some other form of coolant mover. A coolant mover/fan
transports fresh coolant from heat exchanger to the machine, and warm coolant
back to the heat exchanger. In order to perform this function, the coolant mover has
to create certain pressure difference. In terms of electric circuits, pressure difference
corresponds to electrical voltage and volume flow rate to current. Coolant mover is
the source, and hydraulic resistances are the loads.

Fluid flow in loss-free case is described by Bernoulli’s equation which relates
the pressure drop on a hydraulic resistance Ap [N/m”] to the coolant velocity

Ap =

(S ho)
o

v (1.21)

assuming that the term related to geodesic component of energy, p - g - h, may be
neglected. p in equation above denotes mass density [kg/m’] and v the coolant
velocity [m/s]. In reality, the coolant flow in an electric machine is lossy due to two
reasons: turbulence and friction. Every change of cooling channel cross section
and/or direction of coolant flow changes pressure drop across it. On the other hand,
cooling channels in a machine are not perfectly smooth, and the coolant pressure
has to be increased in order to reach the required volume flow rate. How important
the smoothness of the heat exchange surface for the heat flow can be, shows a
simple experiment with an almost perfectly smooth rubber disposable glove: Even
without wind, the temperature of the hand wearing it is sensitively lower than the
temperature of the hand without a rubber glove. Roughness of the heat exchange
surface of the hand is in this case the means to increase the temperature drop on the
hand and reduce the loss of body heat on it.

The increase of pressure drop along a cooling channel is taken into account by
correction factor {, which can be a function of the coolant velocity v:
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Ap =)

N

v (1.22)

Hydraulic resistance, defined as a ratio between pressure drop and volume flow
rate, is nonlinear. The dependence of pressure drop across a coolant mover on the
generated volume flow rate is also nonlinear. Therefore, in order to solve hydraulic
circuit of an electric machine, one of the methods for solution of nonlinear circuits
has to be applied, the result of which is the coolant velocity distribution in the
machine’s hydraulic resistances.

Heat transfer takes place both in electrically active and passive components of
electric machines. Dominating mechanisms of heat transfer in electric machines are
convection and conduction; heat transfer by means of radiation plays a minor role.

Coolant velocity determines the heat transfer coefficient o [W/(m? K)], the
crucial parameter for heat transfer on a boundary surface by means of heat
convection. For a total area Sg [m”] of boundary surface through which heat power
P [W] is transferred from a solid body to a coolant, the difference between the
body and coolant temperature A9 [K] according to the Newton’s law of cooling is
equal to

AY=——— (1.23)

The minimum value of the heat transfer coefficient is equal to 67 W/(m? K) and
corresponds to air buoyancy in the vicinity of a hot body due to difference in air
density.

Heat is transferred through solid portions of electric machines by means of heat
conduction, which is analogous to electric conduction. The amount of heat P [W]
passing through a body with length I [m], cross-sectional area S [m?], and thermal
conductivity Ay [W/(m K)] creates across the body a temperature drop AS [K]
equal to

Pl

AS =
)\'Lh'SC

(1.24)

According to the Wiedemann—Franz law, thermal conductivity Ay, of a metal is
proportional to its electrical conductivity k [1/(€Q2 m)]

My=k-c-T (1.25)

with T denoting the absolute temperature of the body [K] and ¢ a parameter.

When the thermal conductivity is not equal in all three spatial directions, as is the
case in lamination where thermal conductivity in axial direction is substantially
smaller than in radial and tangential, the temperature distribution can be found by
solving Poisson’s partial differential equation of elliptic type
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%9 %9

L 0%9 )y 2
A +}“tha—zz +q(x,y,z)=0 (126>

52 Mha—yz

with g(x, v, z) denoting the spatial distribution of specific losses [W/m3].

Heat radiation follows the Stefan-Boltzmann law according to which a body
with absolute surface temperature T radiates at absolute temperature 7, into its
surroundings the amount of heat P’ per square meter of its surface [W/m?] equal to

P=e [(1?)50)4_<1€)€()>4] (127)

with ¢ equal to 5.8 W/(K* m?) for an absolutely black body and about to 5 W/(K* m?)
for the surface of a conventional electric machine. For the purpose of practical
computations, the equivalent heat transfer coefficient for radiation, o, is introduced,
the value of which varies between 5 and 7 W/(m* K). By using Eq. 1.6, one obtains
the total heat transfer coefficient for an electric machine without cooling in the range
between 11 and 14 W/(m? K).

Cooling type of an electric machine is a compromise between the need to take
the heat out of the machine and available means for implementation of cooling.

Natural cooling requires no fan, and the turning rotor sets the air in the machine
in motion. In addition, radiation takes the heat from the machine casing. This type
of cooling is typical for micro- and small machines, as well as for special purpose
machines.

Self-cooling indicates that there is a fan on the machine shaft, which creates
pressure difference and fluid flow within the machine. Due to its simplicity, this is
the most widely spread cooling method for constant speed small, medium, and large
electric machines.

External cooling means that either an auxiliary motor runs the fan, or that the
machine is cooled by means of another cooling medium instead of air, transported
e.g., by a pump. Again, electric machine of any size can be cooled this way, and not
only air, but also hydrogen, oil, water, etc., can be used as a coolant. The cooling
circuit is more complex than in the case of self-cooling and often requires a heat
exchanger.
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1.5 Electric, Magnetic, and Thermal Properties
of Materials for Electric Machines; Classes
of Insulation

Performance of an electric machine is not only dependent on how well it is
designed, but also on physical properties of materials used for its construction.
Physical properties are, as a rule, dependent on temperature; sometimes, they also
can show effects of aging.

Electrical properties of materials are described by their electrical conductance
(metals) and dielectric strength (insulators). Here the emphasis will be given to the
electrical conductance k [1/(€2 m)] and its reciprocal, the specific electric resistance
per [ m]. The specific electric resistance at a temperature 3, peg, is a linear
function of temperature

Petg = Petoll + B8 — 8o)] (1.28)

with pero denoting the specific electric resistance at the reference temperature 9
and [ the temperature coefficient of electric resistance [1/K].

When current I flows through a conductor with length / [m] and cross-sectional
area Sc [mz], the losses P [W] in the amount of

P=0r.p — (1.29)

are dissipated. Introducing current density I' [A/m”] defined as

r=— 1.30
one can express the losses in Eq. 1.29 as
P=T%.p-1-A¢c (1.31)

and the specific losses, or losses per volume P/V [W/m?]

V:]—Q.p (132)
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Current density of 2.5 MA/m? creates in a copper conductor with
Pcu = 1/56,000,000 Q m at 20 °C the losses per volume in the amount of
111.6 kW/m®. The same constant current density creates in iron with
Pre = 1/7,000,000 Q m the losses per volume in the amount of 893 kW/m®.

In Eq. 1.18 energy balance in a body with volume V is described in case that the
whole generated power P increases its temperature. In a more general case, illustrated
in Fig. 1.8, only the portionm - ¢ - d3 of generated energy P - df remains in the body
and increases its temperature. The rest of generated energy equal to Sg - o - (3 — 9¢) -
dt is transferred through the surface of the body to the surroundings by means of heat
convection:

Pdt:m~cd9+SB~0L-(9—90)dt (133)

If the losses P in Eq. 1.33 are generated by current / at temperature 3, Eq. 1.29
can be further written as

l l
P=r So Py =1 Se Pero[l +B(3 — 3o)] =

=P -R(1—-B-9%)+I*-Ry-B-9

(1.34)

with Ry denoting the conductor resistance at the reference temperature 3.

Fig. 1.8 Current-carrying conductor in which losses P are dissipated, a part of which is
transferred through its boundary surface Sy to surroundings by means of heat convection. The
remaining losses increase the conductor temperature
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Fig. 1.9 Components of the generated Pg., (above) and transferred Pyanse (below) power as
functions of conductor temperature 3; fs [K/W] is the scale factor which makes the argument of
tangent dimensionless

After substituting Eq. 1.34 in Eq. 1.33 one obtains

[P Ro(1—B-99)+Sp-0-9+3- (I Ry-B—Sp-a)]dt=m-cdy (1.35)
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Relationships between quantities in Eq. 1.35 are visualized in Fig. 1.9. By
substituting O for the conductor temperature 9 in Eq. 1.34, one obtains that the first
term in square brackets of Eq. 1.35 is equal to the losses generated at temperature
9= 0, PS:()Z

Py_o =1 - Ro(1 — B - ) (1.36)

and the second term to the losses transferred from the conductor at temperature
9 = Yy to the surroundings at temperature 3 = 0:

Poﬂ,g)0 ZSB '01'80 (137)

The third term in square brackets of Eq. 1.35 is equal to the product of tem-
perature 9 and electrothermal conductance Gy, [W/K], which is defined as:

t —t
Gmh:ﬂ.RO.B_SB.OL:% (1.38)

with tan y, tan 1, and fg defined in Fig. 1.9.

The electrothermal conductance Gy, is a crucial quantity which determines
behavior of an electrothermal system in Fig. 1.8 as a function of electrical and
thermal parameters, as shown in Fig. 1.10. If Gy, is positive, more losses are
generated than can be dissipated and the temperature rate of change increases; if
G 18 negative, less losses are generated than can be dissipated and the temperature
rate of change decreases. In limit case, when Gg, =0, only the
temperature-dependent portion of losses, I* - Ry - f - 9, is transferred to the sur-
roundings; the constant component of losses P Ro (1 — B - 9¢) increases the
temperature of the body at a constant rate of change (adiabatic).

The energy balance relationship described by Eq. 1.33 is a first-order linear
differential equation with constant coefficients, which can be rewritten as

(Pg—o +Po g, +9 - Ge)dr = m - cd9 (1.39)

and the general solution of which can be expressed as

m-c
In

=
Geth

(8 Geh + Py—o + Po—g,) +C (1.40)
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Fig. 1.10 The influence of conductor current / on the amount of electrothermal conductance Geg,
and on the relationship between the generated and transferred power

The constant of integration C in differential Eq. (1.40) can be determined from
initial condition 3 = 9y at t = 0:

m-c
Geth

C=-— In(89 - Gen + Py—o +P0H90) (1.41)

By substituting Eq. 1.41 in 1.40, one obtains

_m-c, 9 - Getn + Py—o + Po—g,

= n 1.42
Gelh 90 : Geth + PS:O + PO—»SU ( )
and after rearranging:
Py_o+ Py, e,  Py—o + Po—
9= (80+73‘0+ - 9“) Lt D00 (1.43)
Geth Geth

The character of solution of Eq. 1.43 depends on the sign of electrothermal
conductance Gy, Three typical responses can be distinguished:

(@) Gem > 0: If the current [ dissipates more losses than that can be transferred
to the surroundings through the conductor surface Sy at a given heat
transfer coefficient «, the temperature will increase faster than linearly,
because the conductor specific electric resistance increases too. The system
behavior is typical for positive feedback: The output (temperature)
increases the input (losses), which again increases the output. At certain
time instant the temperature exceeds the melting point of the conductor
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material, which then melts. This process takes place in thermal fuses, the
triggering time of which shortens rapidly as the current exceeds its rated
value.

Time instant #,,,, at which the body temperature reaches the value of 3,
is obtained by setting 3 = 9, in Eq. 1.42:

A m-c lnIZ-Ro+(9max—90)-(12-Ro-B—SB-oc)
MR Ry-B—Sp - I’ - Ry
(1.44)
500 |
100 -
50 F
[0
£
l_
10 b
5r \
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Current [A]

Fig. 1.11 Characteristic of a 10 A fuse

Insulated bar Insulated bar

B 25631

Drops of melted iron Stator tooth lamination

Fig. 1.12 Melted iron lamination on stator tooth tip of a large electric machine as a consequence
of too high local temperatures (hot spot). From: H. Kugler “Schaeden an Turbogeneratoren,” Der
Maschinenschaden 49 (1976), Issue 6, pp. 221-235, photo courtesy of Allianz Deutschland AG
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(b)

(©)

Equation 1.44 is illustrated by the fuse curve in Fig. 1.11, in which the
characteristic of a 10 A fuse is shown. According to [4], this fuse must
blow not later than 8.5 s (horizontal line) when overloaded with 2.5 times
rated current.

Electrothermal conductance G, can be defined for any physical entity in
which heat is produced, not only for a current-carrying conductor. For
example, losses in iron lamination of large electric machines are in normal
operation taken out from the volume where they are dissipated, and the
iron core temperature remains below its critical value, because Gy, is
negative. If locally dissipated losses increase due to lamination short cir-
cuit in such an extent that for a given volume G.y, becomes positive, a hot
spot is created. The hot spot temperature increases until it reaches the
melting point of iron. As a result of the burning of stator core lamination,
iron becomes liquid, as illustrated in Fig. 1.12. In this figure one recog-
nizes insulated stator bars on both sides of the tooth, along with tooth
lamination in the lower portion of the figure. In the upper portion of this
figure numerous drops of melted iron can be seen. Extremely high tem-
perature of melted iron destroyed stator bar insulation in its vicinity, which
ended in stator winding earth fault. Typical time necessary to develop the
damage shown in Fig. 1.12 can reach couple of months.

Geyy = 0: The limit of expression (1.43) in this case yields

limg,, _o(9) = Wr + 9 (1.45)
which is nothing but the equation of adiabatic heating
Py, -t=m-c-(9—39) (1.46)
where
Py, = Pg—o + Po—9, (1.47)

The temperature difference 3 — 9, in Eq. 1.46 increases linearly over time.

Gy < 0: Electric machines are designed in such a manner that the elec-
trothermal conductance Gy, is always negative. Following Eq. 1.43, the
temperature reaches its steady-state value of

Stﬂoo _ _PS:O+POH90 _ _12-R0(21 — B'SO)+SB'O('80 (148)
Gemn > Ry-B—Sp-o
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Fig. 1.13 Dependence of electrothermal conductance Gy, (Eq. 1.38) and temperature rise 9;_.co—9¢
(Eq. 1.49) on conductor current /. The conductor is coolable only for negative values of Gy,

or, after rearrangement:

I’ - R
Sg-o—1I>-Ry- B

9[—»00 =

+ 3 (1.49)
Temperature rise is characterized by thermal time constant ty,, which is
defined as

m-c m-c
Gen Sp-o.—I>-Ro- B

(1.50)

Tth = —

The larger the current /, the higher the steady-state temperature 3, . and
the steeper the temperature increase, i.e., the shorter the thermal time
constant Ty,.

The dependence of electrothermal conductance Gy, and temperature rise
9/ _.co—J9 on conductor current [ is shown in Fig. 1.13. The conductor is
coolable as long as Gy, is negative.

In Fig. 1.14 typical curve forms 9(7) for negative, zero, and positive values
of electrothermal conductance Gy, are shown. A finite value of tempera-
ture rise 3, ,00—Jg can be reached only with negative electrothermal con-
ductance Gy, i.€., only if more heat can be taken from the surface of a
body than produced inside of it.

Magnetic materials used in active parts of electric machines are characterized by
their magnetizing curve, AC losses, and electrical conductivity. Whereas in elec-
tric circuits a clear boundary line can be drawn between good (metals) and poor
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Fig. 1.14 Temperature increase of a body for various values of G,

(insulators) conductors, the relationships in magnetic field are much more vague.
Good magnetic material has a relative permeability of several thousands, which is
much less than the ratio between the electrical conductivity of an electrical con-
ductor and air. Therefore, magnetic flux cannot be restricted to a magnetic material,
as is the electric current channeled in a conductor. Accordingly, magnetic flux in an
electric machine is not limited to its yoke and teeth only: It spreads parallel to stator
and rotor yoke as well.

Depending on the character of electric source, magnetic circuit of an electric
machine can be either current/MMF or flux driven, as in Fig. 1.15.

When the coil is supplied from a DC source, as shown in Fig. 1.15a, the MMF in
the amount of U_ - w/R, is imposed in the magnetic circuit, and the resulting flux @
is determined by the B—H curve of the iron core. Similar situation prevails in
magnetic circuits with permanent magnets which create an MMF equal to the pro-
duct of coercive force and magnet thickness. If more coils share the same magnetic
circuit, the resulting flux is obtained from the resulting MMF and B—H curve of the
iron core. This situation is typical for an uncompensated DC machine, as well as for a
synchronous machine, in which the load ampere-turns modify the air gap flux
density created by the field winding through the mechanism of armature reaction.

If the coil is connected to an AC source, as shown in Fig. 1.15b, the amplitude of
flux @ is according to the Faraday’s law determined by the amplitude and frequency
of applied voltage. The amount of coil current follows from the B—H curve of iron
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core for a given flux. If another coil is placed in the magnetic circuit and connected
to an impedance, a voltage will be induced between its terminals and a current in
the coil will flow. The ampere-turns of the second coil will create their own flux,
which is superimposed to the previously generated flux; i.e., they will try to modify
the flux created by the applied AC voltage.

(a) — . ® —

Fig. 1.15 Current/MMF (a) and flux (b) driven magnetic circuit

In order to preserve the validity of Faraday’s law, the applied voltage U _ in
Fig. 1.15b supplies additional component of current, the ampere-turns of which
compensate for the ampere-turns of the second coil, and the flux @ remains
unchanged. This behavior is typical for transformers and induction machines, in
which the fundamental component of flux at load is equal as at no load; i.e., there is
no armature reaction.

AC flux generates hysteresis and eddy current losses in a laminated core in the
amount of a couple of W/kg at 50 Hz and 1.5 T [5]. Typical AC lamination losses
of 4 W/kg correspond to a loss density of about 30 kW/m®. Hysteresis losses
dominate at industrial frequencies if the AC flux spreads in direction of lamination.
This is the most common case in heteropolar machines, the active part of which
carries flux density with only radial and tangential components. When the flux from
end winding region axially penetrates into the stator lamination, it does not expe-
rience the laminated structure. Eddy currents generated by the axial component of
flux density flow freely in lamination, uninterrupted by insulation between single
iron sheets. In order to minimize additional eddy current losses caused by the axial
component of flux, front and end edges of stator lamination in large electric
machines are often punched with steadily increasing inner diameter, thus reaching a
stair-like form, as shown in Fig. 1.16. This way the axial component of end
winding flux density faces a kind of laminated iron when penetrating the stator
lamination, which helps reduce eddy current losses and minimize risk of lamination
burning [6].
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Fig. 1.16 Flux lines (gray) distribution in the end winding zone of a large electric machine

)

Due to skin effect, losses in solid iron components are not uniformly distributed
throughout their whole volume. Therefore, the loss density is quantified rather per
surface than per volume. Using analytical tools developed in Chap. 5, one can find
that a tangential component of flux density in the air gap with an amplitude of
15 mT, which corresponds to magnetic field strength of 12 kA/m, creates a current
density on the rotor solid iron surface with an rms value of 13 A/mm?, taking 200 1t
[s™'] for angular frequency, iron relative permeability of 1000, and electrical
conductivity of iron equal to 3,000,000 [1/(€2m)]. The loss surface density in this
case equals to 26 kW/m?. Taking a typical value of 150 W/(m? K) for heat transfer
coefficient o, one obtains a temperature rise of 173 K by applying Eq. 1.23.

Not only the components of active part of a machine are endangered by
excessive local losses, but the supporting structure can also be exposed to high
alternating magnetic fields. The electromagnetic loading of passive components in
electric machines can be illustrated by an example of loss generation in stator yoke
wedges, as in Fig. 1.17.

Neglecting radial components of flux density in the stator yoke in Fig. 1.17, one
can claim that peak values of tangential components of field strength are equal, i.e.,
H,=H, =H, (no current sheet on boundary surfaces). Due to nonlinear B-
H curve of stator lamination, every increase of stator yoke flux causes a faster than
linear increase of field strength. AC field strength H,, generates eddy current losses
in solid steel wedges, which are proportional to the square of H,,. For this reason the
stator yoke flux density in machines with stator yoke wedges is limited to values
typically below 1.8 T, whereas the upper limit for tooth flux densities is determined
only by the quality of magnetic material.
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Fig. 1.17 Flux density inside and outside the stator yoke

Permanent magnets have been always attractive for electric machine manufac-
turers due to their ability to generate magnetic flux without dissipating electric
losses, as is the case with a coil carrying DC. The advantage of loss-free generation
of flux in permanent magnets is, however, accompanied with numerous disadvan-
tages, out of which:

— Limited amount of accumulated energy per volume;

— Performance deterioration with increasing temperatures;

— Unmodifiable coercive force and residual flux density and, therefore, no direct
field-weakening possibility in DC machines for the purpose of speed increase
above the no-load speed, as well as no means to act against armature reaction in
synchronous machines;

— Hazard of field source loss due to demagnetization;

— Eddy current losses;

— Magnet price;

— Negative environmental impact during manufacturing process of rare earth
magnets—production of toxic and radioactive waste [7].

are among the most pronounced.

One of the dominating parameters which determine the performance of an
electric machine is the amount of magnetic energy accumulated in its air gap, the
partial derivative with respect to angle of which is equal to the electromagnetic
torque. In order to illustrate the capability of permanent magnet excitation, the
values of energy density created by various types of surface-mounted magnets and
by current excitation are compared in Table 1.1 and in Fig. 1.18.
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Table 1.1 Comparison of magnetic properties and energy densities of various permanent magnet
types and current excitation [8]

Magnet type Current excitation: Bs =

Ferrite AlNiCo NdFeB 05T 07T 09T
B, @ 20 °C [T] 0.405 1.05 1.24 N/A N/A N/A
H.p @ 20 °C [kA/m] 260 112 940 N/A N/A N/A
kg [%/K] -0.2 —-0.025 —0.1 N/A N/A N/A
ky [%/K] 0.3 —-0.025 -0.6 N/A N/A N/A
B, @ 75 °C [T] 0.36 1.04 1.172 N/A N/A N/A
H.p @ 75 °C [kA/m] 231 110.5 888 N/A N/A N/A
(BH)imax @ 20 °C [kJ/m’] 26.3 72 291.4 100 195 322
(BH)mmax @75 °C [kJ/m?] 20.9 70 260 100 195 322
(BH)34 @75 °C [kJ/m’] 15.6 53 195 100 195 322

Typical data for representatives of surface-mounted ferrite, AINiCo, and NdFeB
magnets are given in columns 2—4 of Table 1.1 for magnet temperatures of 20 and
75 °C [8]. The value of (BH),x corresponds to the point of maximum accumulated
energy in magnets, at which a conventional machine never operates, because at this
operating point the magnet flux density is equal to one half of the residual flux
density B, only.

Bgap-0.9T
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|
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Fig. 1.18 Maximum energy density created by various magnet types and current excitation.
Shaded bars reflect the most realistic operating conditions
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A more realistic operating point is located above % B,, denoted by (BH)3,, at
which, however, the accumulated energy is reduced down to about (0.75 - 0.25)/
0.5% = 0.75 of its maximum value (BH)pax-

By comparing the values of magnetic energy density in the air gap of current
excited electric machines (columns 5-7 of Table 1.1) and in permanent magnets,
one concludes that at usual operating temperatures even so-called high energy
density NdFeB magnets are characterized by modest values of accumulated energy.
Magnetic energy density stored in NdFeB magnets at 75 °C is below average, and it
is not higher than energy density in the air gap of low- to medium-utilized induction
or wound field synchronous machines with Bs < 0.7 T (see Table 1.1). Being
plagued by such a low energy density in magnets, permanent magnet machines
cannot be considered serious competitors to wound field synchronous machines
when comparing torque densities in the two machine types.

The physical reason for inferior performance of permanent magnets is obvious:
as any other autarkic source of energy, e.g., a DC battery, a permanent magnet has a
limited capability of energy storage. Just as a battery, a permanent magnet cannot
make more than 50 % of accumulated energy available to external magnetic
circuit-the rest of it remains stored in magnet internal permeance.

The B—H curve of a conventional permanent magnet in the second quadrant is
linear with slope pou,, connecting points (—H,; 0) and (0, B,).

Piw A
D (©) — @ [Vs]
(\\ - & =B, sPM
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, >

i-w  O; =H;-dpy

Fig. 1.19 Permanent magnet (solid line) and current excitation (dashed-dotted line) in a magnetic
circuit. Whereas the operating point Ppy in a magnetic circuit with permanent magnet is fixed, the
operating point P;,, in a current excited circuit slides along the magnetic circuit characteristic ®(®)

By multiplying the values on H-axis of the magnetization curve with magnet
thickness dpy, and values on B-axis with magnet cross-sectional area Spyy, a line in
the (®, @) coordinate system is obtained, which can be interpreted as a source
characteristic in a magnetic circuit, as in Fig. 1.19.



1.5 Electric, Magnetic, and Thermal Properties of Materials ... 31

Consequently, a permanent magnet can be formally represented as an MMF
source with no-load ampere-turns ®. = H. - dpy, and an in-series-connected
reluctance Rpy = H. - dpm /(B - Spm), or as a flux source with short-circuit flux
®, = B, - Spym and a parallel-connected permeance Gpy = B, - Spv/(H,. - dpy)- In
both cases the linear characteristic of permanent magnet in Fig. 1.19 reflects in the
best manner its limited capability as a source of magnetic flux: The internal magnet
reluctance Rpy; is a bottleneck which restricts the maximum amount of flux the
magnet can deliver.

On the other hand, a current-carrying coil generates ampere-turns i - w without
any internal permeance, so that the maximum amount of flux is limited only by the
rest of the magnetic circuit. Whereas the operating point P;, in a magnetic circuit
excited by current-carrying conductor moves at will along the magnetic circuit
characteristic ®(®) in Fig. 1.19, in case of permanent magnet excitation the
operating point Ppy is fixed because of restrictions imposed by the magnet.

In terms of source and load description, a current-carrying coil is an ideal source in
a magnetic circuit, whereas a permanent magnet with its internal permeance is a real
source, as in Fig. 1.20. Magnet dimensions and B—H curve determine the maximum
magnetic energy which it can deliver to a magnetic circuit; a current-carrying coil
does not suffer under such restrictions and can deliver arbitrary amount of energy to a
magnetic circuit. This property is utilized in superconducting magnets, in which
current in a coil creates flux densities unthinkable for permanent magnets.

©) pp— (1 e—

>

PM w

Fig. 1.20 Permanent magnet acts as a real source in a magnetic circuit (a), whereas a
current-carrying coil is an ideal source, without internal reluctance (b)
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As stated previously, a permanent magnet can formally be represented either as a
MMF source with ®. = H,. - dpy; and in-series-connected reluctance Rpy = H,. -
dpm/(B, - Spwm), or as a flux source @, = B, - Spy connected parallel to a permeance
Gpym = B, - Spm/(H,. - dpyy). Physically correct is, however, the representation in
terms of flux source and parallel-connected permeance, in which magnetic energy
Wpm = % Opy - @py is stored, as in Fig. 1.21a. According to the representation
with an MMF source, as in Fig. 1.21b, magnetic energy can only be stored in a
loaded permanent magnet, which is apart from the physical reality.

(a) (b)
D, Dpy O |+
Gpy | ©Pm =0 Opy = O
Rem

Fig. 1.21 Permanent magnet representation allowing for stored energy (a) and not allowing for
stored energy (b) at no load

(@

Uo

Fig. 1.22 Real voltage source dissipating no losses at no load (a) and its Norton current
equivalent in which short-circuit losses are dissipated at no load (b)

For the sake of completeness, similar considerations in terms of energy con-
sumption can be made for equivalent voltage and current sources in electric circuits,
as in Fig. 1.22. Following Helmholtz’s representation of a complex network with
only two elements between two arbitrary terminals, one can create the physically
founded equivalent circuit as shown in Fig. 1.22a. U, is here the open-circuit
voltage, and R; is the inner resistance of the source. Interestingly, the procedure of
determination of parameters U, and R;, introduced by Helmholtz in [9], is called
Thevenin’s theorem, although Thevenin was not born yet at the time Helmholtz
published the results of his work!
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Following Norton’s theorem, a voltage source with no-load voltage U, and
internal resistance R; shown in Fig. 1.22a can be formally replaced by a current
source Uy/R; and internal conductance Gj = 1/R;, as illustrated in Fig. 1.22b.
Although the conversion from one source form to another in Fig. 1.22 is mathe-
matically correct, the two sources are not identical from the point of view of energy
balance. Whereas a real voltage source at no load does not dissipate energy, since
the current in it is equal to zero, a current source dissipates at no load the losses in
the amount of short-circuit losses of the voltage source U%/Ri. This is another
example of how carefully the results of mathematical operations have to be inter-
preted in order not to lose the physical insight into the problem.

A Ia p.u.

PM

iF p.u.

\4

0 1

Fig. 1.23 Operating regions of wound field and PM DC machine

Operating regions of permanent magnet and wound field DC machines are com-
pared in Fig. 1.23. Whereas there exists no electromagnetic limitation for a wound
field machine to operate at any point within area delimited by (0 < ir < i aeq) and
(0 < I4 < Ip ratea) in Fig. 1.23, the operating point of a permanent magnet machine
can move only within the shaded area in this figure, the width of which is determined
by the magnet temperature. Therefore, the application of permanent magnet excita-
tion is limited to DC motors without flux weakening.

Not only the efficiency of a permanent magnet excited DC motor is better than
that of a wound field machine but also negative effects of armature reaction in a
permanent magnet machine are negligible in the former, as illustrated in Fig. 1.24.
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Permanent
magnets

Fig. 1.24 Flux lines distribution in a permanent magnet DC motor: a at no load; b due to load
ampere-turns, without magnets; ¢ at load

Considering very low relative permeability of permanent magnets (typically
slightly above 1), the flux created by armature reaction ampere-turns is too weak to
leave any considerable trace on machine performance. Aside from uncontrollability
in the speed range above the no-load speed, a DC permanent magnet motor is more
advantageous than its wound rotor counterpart.

As opposed to a permanent magnet excited DC machine, where armature current
has negligible influence on main flux, the armature reaction ampere-turns play a
decisive role in the performance of a synchronous machine. In order to compensate
for the influence of armature reaction, the field winding in a wound rotor syn-
chronous machine has to be dimensioned for about a triple no-load field current.
Since the magnetization of permanent magnets only can change (decrease) due to
temperature, there is no means for it to act against armature reaction in a permanent
magnet excited synchronous machine. As a consequence, the performance of a
permanent magnet synchronous machine is inferior to that of a wound field syn-
chronous machine, as illustrated in Fig. 1.25.

In Fig. 1.25 typical V-curves of a synchronous machine are shown, i.e., the
dependence of armature current on the field current for constant active power as a
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parameter. In addition, constant power factor curves cos ¢ = 1 and cos ¢ =0
(leading and lagging) are drawn in this figure.

Ia p.u.
1 ”””””” i =
Stability
Iimit\/

cosp =0
leading

0 1 3

Fig. 1.25 V-curves of a wound field synchronous machine and the operating region of permanent
magnet excited synchronous machine, denoted =

The operating point of a wound field synchronous machine can be located
anywhere within the gray-colored region in Fig. 1.25. In order to operate at the
rated power defined by the class of insulation, the wound field synchronous
machine has to be overexcited.

A permanent magnet synchronous machine can operate only at no-load field
level, i.e., it cannot be overexcited. Therefore, it reaches the thermal limit posed by
its class of insulation at a power level which is (significantly) lower than the rated
power. Permanent magnet synchronous machine operates underexcited at a poor
power factor and has a poor torque to volume ratio.

Rated power factor cos @, of a permanent magnet synchronous machine is a
function of its synchronous reactance X and magnet temperature 3py; only. The
magnet temperature Jpy; determines the rate of change c3 of the induced voltage.
The value of cos ¢, can be found by means of machine voltage diagram, Fig. 1.26.



36 1 Introduction

Ero =Co U;

Fig. 1.26 Voltage diagram of a permanent magnet synchronous machine at a temperature 9py of the
magnets. U, is the terminal (rated) voltage, I, the rated current, Eg g the induced voltage at a
temperature 3, and cg the coefficient of change of induced voltage due to magnet temperature change

Replacing machine synchronous reactance X, by its p.u. value x, and applying the
law of cosines to components of the voltage diagram in Fig. 1.26, one obtains the rated
power factor cos @, of a permanent magnet excited synchronous machine as

1422 —c2\°
cos @, = 1—(—’_);%) (L.51)
X

The rated power factor of a permanent magnet excited synchronous machine
decreases as the synchronous reactance and/or magnet temperature increases,
Fig. 1.27.

Stator copper losses I°R are equal to

2
Pr= () R __ (1.52)
U) mcos? @,

i.e., they are proportional to the reciprocal of the power factor squared. The
dependence of p.u. stator copper losses pc, ,, defined as

1

— 1.53
cos @, (153)

pCu,s =

on p.u. synchronous reactance x, at rated current I. is shown in Fig. 1.27. One
recognizes rapid increase of stator copper losses as a function of increasing magnet
temperature and machine synchronous reactance. Having in mind that most
permanent magnet machines are fed from an inverter, the deteriorating influence of
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Fig. 1.27 Rated power factor of a permanent magnet synchronous machine cos ¢, (gray) and
relative stator I°R losses Pcus (black) as functions of the machine p.u. synchronous reactance x; at
two magnet temperatures

poor power factor of a permanent magnet machine spreads to the inverter and
increases its rating and losses.

Case Study 1.1: A 2.85 MW, 14.5 rpm, 1.874 MNm PM generator for wind
applications has a no-load voltage of 400 V, rated power factor 0.875, stator copper
losses 147 kW, stator iron losses 13.5 kW, magnet losses 5 kW, rotor iron losses
19 kW, and efficiency of 93.5 %. The torque per air gap volume at rated point
equals to 1874/(4.8% - - 0.865/4) = 119.7 kNm/m’.

A wound rotor synchronous generator with identical active part dimensions has
an open-circuit characteristic as shown in Fig. 1.28. For the purpose of comparison,
the firm point of PM generator excitation which corresponds to 1 p.u. of the field
current is also shown in this figure.

Considering equal losses in the field and armature winding of the wound rotor
machine, the ratio between the rated torque Mwr of the wound rotor generator and
Mpy; of the PM generator is equal to

MWR _ CMq)WRIWR COos PwRr o 1.4

= =16
MPM CM(DPMIPM COS @pm 0.875

for identical machine dimensions (cyg) and the same stator current (lywg = Ipp) in
both machines. The torque density of the wound rotor generator is, accordingly,

(M) :1,6.(M) :191‘5kNim
V] wr V/em m?
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Fig. 1.28 No-load voltage and field losses of the wound rotor generator. Field current, which
generates the same losses as the rated armature current, induces the no-load voltage of 560 V, i.e.,
40 % higher than the induced voltage at 1 p.u. of the field current. Accordingly, the main flux in
the wound rotor machine can be up to 40 % higher than in the PM machine

The PM and wound rotor machine data are summarized in the following table

PM rotor Wound rotor
Rated power [MW] 2.85 4.56
Rated speed [rpm] 14.5 14.5
Rated torque [kNm] 1874 2998
Torque per volume at rated point [kNm/m?] 119.7 191.5
No-load air gap flux [p.u.] 1 14"
Stator copper losses [kW] 147 147
Stator iron losses [KW] 13.5 13.5
Rotor copper losses [kW] - 147
PM losses [kW] 5 -
Rotor iron losses [kW] 19 -
Rated power factor cos ¢ 0.875 leading 1
Efficiency [%] 93.5 93.3
Total copper weight [kg] 5880 11,980
Magnet weight [kg] 1480 -

“For equal field and armature losses

The wound rotor synchronous machine in this case study, designed to have equal
stator and rotor copper losses at rated point, is capable of generating 2.85 -
1.6 = 4.56 MW rated power from the volume from which a PM machine delivers not
more than 2.85 MW at a given speed. Considering the same amount of stator copper
losses in both machines and laminated rotor iron of the wound rotor generator,
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Fig. 1.29 Output power of a wound rotor and permanent magnet generator with equal active
volume as a function of load angle [°] at rated speed of rotation

the total losses in the wound rotor generator are equal to 2 - 147 + 13.5 = 307.5 kW,
which gives the efficiency of the wound rotor generator of 93.3 %.

The output power-load angle curves of both generators are shown in Fig. 1.29.

One should keep in mind that in the given application (wind generator), the
generator active part weight has an impact on the tower construction. Therefore, the
wound rotor generator not only delivers more torque from a given volume, but also
helps reduce the weight and mechanical stresses on the tower significantly when
built for the same power as its PM counterpart. Last but not least, the wound rotor
generator does not require magnets, the price of which lies typically between 1/3
and Y5 of the PM generator price.

Thermal properties of materials in electric machines depend on various physical
parameters. Whereas solid parts in a machine are described by their thermal con-
ductivity Ay [W/(m K)], more information is needed in order to determine thermal
properties of fluids, such as:

Mass density p [kg/m];
Specific heat ¢ [Ws/(kg K)];
Kinematic viscosity v [m2/s].

Thermal properties of a coolant flowing through a cooling channel, in particular
its heat transfer coefficient o, are a function of dimensionless Reynolds number Re,
which is defined as

(1.54)

with v denoting the average flow speed [m/s], v the kinematic viscosity, and d, the
hydraulic diameter of the cooling channel defined as
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Table 1.2 Comparison of thermal properties of various coolants

Property Air H,, 1 H,, 2 Water Oil
ata ata
Mass density 1 1/14.4 1/7.2 860 750
Thermal conductivity 1 7.7 7.1 23 53
Specific heat per unit mass 1 14.1 14.1 4.1 1.9
Specific heat per unit volume 1 1 2 3500 1400
Kinematic viscosity 1 7.3 3.6 1/16 22
Heat transfer coefficient for the same speed 1 1.7 2.75 570 22.2
Heat transfer coefficient for the same mass 1 11.8 11.8 2.35 1/32
flow rate
Speed for the same heat transfer coefficient 1 Vs Ya 1/3100 1/60
Hydraulic resistance for the same heat 1 Ya 1/8 1/6200 1/520
transfer coefficient
4.8
dy =5~ (1.55)

with S standing for the cross sectional area and P for the wetted perimeter of the
channel. Reynolds number determines the character of fluid flow. At a Reynolds
number below a critical value, fluid motion will ultimately be laminar; for large
Reynolds numbers, the flow will be turbulent. Turbulent fluid flow is characterized
by higher heat transfer coefficients than laminar. The critical Reynolds number for
fluid flow through a straight pipe with a smooth wall and a circular cross-sectional
spreads in the range between 1900 and 2700.

In Table 1.2 the benchmarking thermal data for various types of coolant are
given as p.u. values of air at normal pressure [10].

Class of insulation is the crucial technological parameter which determines the
rated power of an electric machine. Comparing two identically manufactured
machines operating under identical electrical, mechanical, and thermal conditions and
having different classes of insulation, the machine built with an insulation material for
higher operating temperature has a higher rated power. Electrical insulation usually
contains organic materials, the aging of which eventually renders it unfit to perform its
electrical and mechanical function. Aging is a function of time and temperature; its
rate increases rapidly as temperature increases [11]. Although it is not possible to
exactly predict the life expectancy of a particular insulation material, a rule of thumb
can be used which tells that a permanent increase of machine temperature for 8§ K
halves the life expectancy of its insulation. However, as any other statistical quantity,
life expectancy is not a precise number, and therefore, it has to be handled with
reserve. Besides, temperature distribution in electric machines is not uniform, with hot
spots denoting areas with maximum temperatures.

Class of insulation restricts the hot spot temperature at steady state. It is
described with a Latin capital letter which gives the maximum permanently allowed
hot spot temperature according to the following scheme:
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Class of insulation Maximum hot spot temperature [°C]
A 105
E 120
B 130
F 155
H 180

Inorganic materials, such as mica, ceramics, glass, and quartz, withstand tem-
peratures above 180 °C and belong to C class of insulation. Large electric machines
are usually built in class F, but operated in B in order to decrease the thermal stress
of insulation.

Given the class of insulation, the rated power of an electric machine is a function
of environmental temperature and the same machine delivers less power in tropical
than in polar conditions. The more efficient cooling of a machine, the more torque it
can deliver at the rated point.

1.6 Lumped Element Presentation of Electric, Magnetic,
Thermal, and Fluid Flow Circuits

In Table 1.3 the lumped element presentation of electromagnetic, thermal and fluid
flow quantities for an element with length ¢ and cross-sectional S is shown.

Besides electric conductivity k¥ and magnetic permeability p, the following
physical parameters and quantities are used in Table 1.3:

- o [W/(m2 K)]: heat transfer coefficient;

— A [W/(m K)]: thermal conductivity;

— p [kg/m’]: mass density;

dy, [m]: hydraulic diameter;

A [—]: coefficient of increase of hydraulic resistance due to friction;

—  [-]: coefficient of increase of hydraulic resistance due to change of cross
section.

Some of these parameters are nonlinear functions of relevant physical quantities,
such as:

— Relative permeability, p,, dependent on flux @ through element;
— Coefficient of increase of hydraulic resistance due to friction, Ag, dependent on
volume flow rate Q [12].

In addition, the PR losses are a function of temperature. For all these reasons, the
use of equivalent magnetic, thermal, and fluid flow circuits leads generally to a
solution procedure for a system of nonlinear algebraic equations.

Considering field quantities in Table 1.3 as input and output to and out of a
circuit element, one can state that except for fluid flow computation, the output is
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Table 1.3 Analog quantities and parameters of lumped element presentation

Electric Magnetic Thermal Fluid flow
Convection Conduction
U [V] O [At] AS [K] AS [K] Ap [N/m?]
1[A] ® [Vs] P [W] P [W] Q [m%/s]
U=1-I(kS) O =0-i/ns) A9 = P/(aS) AS =P - /(g S) Ap =
Q- pQur Uy + )2 S
Rey [Q] = I(kS) | Rug [H 1= 1(nS) | Rey [K/W] = 1/(aS) | Reg [K/W] = ll(Ay S) | Ry, [kg/m’s] =
Q - p O Udy + 02 %)

Table 1.4 Kirchhoff’s current and voltage law in various fields

Electric Magnetic Thermal Fluid flow
Current law 2I1=0 Z0=0 ZP=0 ZAp=0
Voltage law U=0 20=0 29 =0 Q=0

proportional to the input, whereas the coefficient of proportionality is either con-
stant, or a function of input quantity. In this sense, the simple logic of Ohm’s law
for DC helps solving not only electric, but also magnetic and thermal circuits. In
case of fluid flow, the output (pressure drop Ap) is proportional to the square of
input (volume flow @), which in no sense influences the nature of lumped element
presentation of fluid flow circuits. In Table 1.4 the implementation of Kirchhoftf’s
laws on quantities in Table 1.3 is illustrated.
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Diversity of winding topologies in rotating field machines helps them adapt to
arbitrary load characteristic and source properties. Windings of a rotating field
machine determine to the largest extent its electromechanical performance. Spatial
distribution of conductors along the air gap circumference and connection of coils
to particular phases are a clue to the desired machine features. Not less important is
the end winding geometry, as a function of the number of winding layers, its design
(wave, lap, concentric, tooth wound, etc.), number of poles, etc. Spatial distribution
of winding determines its current sheet, MMF, and flux density curves, all of them
being periodical functions of the air gap circumferential coordinate. Spatial Fourier
analysis is therefore employed as a mathematical tool for predicting the winding
performance. Both integer and fractional slot AC, as well as DC field windings are
analyzed. Harmonics generated by toothed air gap and their role in electric
machines and magnetic gearboxes is illustrated. The mechanism of voltage gen-
eration is illustrated on example of rotating field and rotating coil excitation. Spatial
spectra of air gap MMEF created by regular and discontinuous squirrel cage wind-
ings are calculated. Winding failures are analyzed in various types of windings.

2.1 Active Part and End Winding Zone, Air Gap Winding
Versus Coils in Slots, Slot Fill Factor

Electric machines are built in such a manner as to have stator and rotor field
components in the air gap firmly concatenated with each other. The distance
between current-carrying stator and rotor conductors in the end winding region is
substantially larger than in its active part. Therefore, the contribution of portions of
conductors in the end winding region to the total torque is negligible as compared to
the effects in the active part.
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On the other hand, it is not unusual that the leakage reactance of the end winding
portions of coils, and, even more pronounced, their resistance, is of the same order
of magnitude as those of the active part. For this reason the end winding zone is
considered a ballast, and numerous tricks of the trade have been tried out in order to
diminish its influence on machine performance. However, when modifying the end
winding topology in the manner it is done e.g. in tooth-wound machines, one
should always try not to deteriorate too much the parameters of windings in the
machine’s active part and not to worsen its overall characteristics, e.g., by
increasing its Carter factor and air gap leakage inductance.

Following the fundamental relation for force acting on a current-carrying con-
ductor in magnetic field F = B £ I, one would tend to place the machine windings
into air gap with flux density B. This well-known equation for force in magnetic
field is, however, only a special case of a more general relation, which tells that
force is equal to the rate of change of energy stored in magnetic field, 9W,,/
ox. Therefore, a current-carrying conductor does not have to be directly exposed to
magnetic field in order to generate force in it; it is only necessary that the
current-carrying conductor is a part of a turn which concatenates external field with
flux density B on the place of the conductor. Accordingly, a current-carrying
conductor in a slot in which the radial flux density is equal to zero generates the
same force as if it were placed in the air gap above the slot, where the radial flux
density is equal to B [1].

Placing conductors into slots, instead into air gap, brings electromagnetic and
mechanical advantages: Coils in slots require substantially less current in order to
generate certain flux level (shorter air gap!), and force does not act directly on
conductors, but on teeth. On the other hand, inductances in a machine with a shorter
air gap (conductors in slots) are larger than in a machine with a wider gap (con-
ductors in air gap), keeping all other machine parameters unchanged. Besides,
transfer of I°R losses to the cooling air generates less temperature gradient if
conductors are directly exposed to the air, than if they are placed in slots.

Conductors in slots are usually insulated against lamination and against each
other. Their potential to the ground can reach dozens of kV. Uninsulated conductors
(bars) are employed in squirrel cage induction machines and in damper cages of
synchronous machines. Insulated conductors are manufactured either as round, or
rectangular. Coils with rectangular conductors are more labor-intensive to manu-
facture than coils with round conductors.

Slot fill factor is an important parameter which determines the machine’s rated
power. The slot fill factor is equal to the ratio between total conductor area in a slot
and slot area. Obviously, the highest slot fill factor (close to one) is achieved by
using uninsolated conductors, followed by solid rectangular conductors in rectan-
gular slots with form-wound coils (about 0.7, depending on the rated voltage). Slot
fill factor of a coil with random-wound conductors is worse due to two reasons:
There is always a space between round conductors in a slot, even when they are
ideally aligned parallel to each other. Besides, round conductors are very hard to
bring parallel to each other in a slot, as shown in Fig. 2.1a—their position in a slot is
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more or less chaotic, as shown in Fig. 2.1b. These two reasons limit typical slot fill
factor for coils with random-wound conductors to the amounts between 0.4 and 0.5.

Windings of electric machines are usually impregnated with resin, which, among
others, improves heat transfer from conductors in slot to air gap and lamination.

The influence of slot fill factor fc, on the amount of machine’s rated power will
be illustrated by the following example: a slot with area S, should generate the
MME of w - I ampere-turns when fed by current /. The I°R losses in a conductor are
equal to

l
Peona :I2psaxd (21)
con

where S.,nq denotes the cross-sectional area of a single conductor, and /,, its axial
length in the slot. The total IR losses generated by w conductors, P, are w times
larger

l l l
Pt =w-Pp2a=(w-I)p2 = (w- 1) p—2— (2.2)
cond Scoil fCu . Sslot

(@

Fig. 2.1 Position of round conductors in a slot: idealized (a), and actual (b)

where Scoii = W - Scong- Temperature drop A3 across the insulation layer with
thickness d is equal to

_pd

AS =71

(2.3)

with P denoting the heat power, A the thermal conductivity of insulation, and S the
area of surface through which the heat spreads. The average temperature drop
across insulation can be evaluated by using equivalent slot geometry, as shown in
Fig. 2.2.
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The equivalent slot as shown in Fig. 2.2¢ carries a single fictitious conductor, the
area of which is equal to the area of actual coil, S..; = w - h. The equivalent
insulation with thickness d is uniformly distributed around the coil and has the total
area Sj,, of

Sins - Zd(h +W) = Sslot - Scoil = (1 _fCu)Sslol (24)

from which one can write

1 _fCu

d = Sgo
o “2(h+w)

(2.5)

Temperature drop A9 across the insulation layer with thickness d can now be
written as

P.. 1 —
AS — coil ot f Cu 5
A- lax 4(h + W)

(2.6)

After inserting expression (2.2) for coil losses into Eq. (2.6), one obtains

Fig. 2.2 Slot with round

(a) and rectangular

(b) conductors and equivalent
slot geometry for thermal
computations (c)

(b) ()
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|\t >
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/ h
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w

w-1’p 1—feu
AS = Ll
8 fCu )\a4(h+W)2

(2.7)

For a given temperature drop A9 across the insulation the slot ampere-turns are
proportional to

fCu
1 _fCu

w1l

(2.8)

which means that slot ampere-turns created by rectangular conductors with
fcu = 0.7 are by a factor of

0.7 0.5
\/1 - 0.7/\/1 “o5 29)
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larger than slot ampere-turns created by round conductors with fc, = 0.5, consid-
ering identical equivalent slot geometry, as shown in Fig. 2.2.

2.2 Single- and Double-Layer Windings, Coil Pitch,
Skewing, Feasibility

Polyphase windings for rotating field machines are usually built to satisfy phase
symmetry condition, which requires identical winding distribution for each phase,
and pole symmetry condition, which specifies identical winding distribution under
each (fundamental) pole. From the point of view of placement in slots, a winding
can be carried out as a single layer, double layer, or mixed [2].

Integer slot windings create identical air gap flux density distribution under each
pole pair. Fractional slot windings produce air gap flux density distributions the
fundamental interval of which is larger than one pole pair. An integer slot winding
is a special case of fractional slot winding—the coil distribution in an integer slot
winding repeats under every pole, whereas the coil pattern in a fractional slot
winding spreads over a fundamental pole, which comprises an odd number of
machine poles.

Fig. 2.3 Coil of a
single-layer winding

Integer slot windings can be designed to generate the air gap flux density dis-
tribution spectra in which the strongest harmonics are the fundamental and the slot
harmonics of the order N/p % 1. Therefore, integer slot windings can be utilized in
both induction and synchronous machines. Fractional slot windings generate
spectra in which arbitrary harmonics can dominate. As such, they are suitable for
synchronous machines only.

Probably the simplest winding configuration imaginable is the one in which all
conductors in a slot belong to a single coil, or a single-layer winding, as shown in
Fig. 2.3. The total number of coils of a single-layer winding is N/2, N denoting the
number of slots, since each coil occupies two slots.

Depending on the form of coil ends, single-layer windings are manufactured
either as concentric, or distributed. Both topologies can generate identical MMF
distribution as long as the conductor placement in slots is identical.
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Fig. 2.4 Single-layer concentrated three-phase winding with coil ends manufactured in 3 levels
and g = 4 slots per pole and phase. Assuming that all coils are wound in the same way, the arrows
show direction of slot ampere-turns at time instant when the current in one phase is maximal
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Fig. 2.5 Single-layer concentrated three-phase winding with coil ends manufactured in 3 levels
and g = 4 slots per pole and phase. Stator with such winding is separable every 2 poles

The most important parameter of a coil is its pifch, or the circumferential dis-
tance in air gap given in number of teeth between the left-hand side and the
right-hand side of a coil. Winding pitch, on the other hand, depends on several
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parameters and can be equal to the coil pitch for some winding topologies. Coils in
concentric windings have different pitches and can spread either through three
(Figs. 2.4 and 2.5), or two levels (planes) in the end winding zone (Fig. 2.6). The
innermost coil of a concentric winding has the shortest pitch (e.g., y; as shown in
Fig. 2.5), and the outermost coil the largest geometric pitch (y4 as shown in
Fig. 2.5). The winding pitch y of a single-layer concentric winding, defined as the
arithmetic mean of all coil pitches, is less or equal to the pole pitch t,.

The zone width g of a single-layer concentrated winding (Fig. 2.5) is equal to the
number of slots under one pole which belong to the same phase, i.e., which generate
the same ampere-turns. The zone width is expressed either as a number of slots per
pole and phase, g = N/(2 - p - m), or as an electrical angle n/m, m denoting the
number of phases.

If the stator outer diameter is too large, its lamination can be segmented in
circumferential direction and wound with single-layer windings with 3 coil end
levels as shown in Fig. 2.5.

P

N) N — ([ —

7 ) U JI\—"J

Fig. 2.6 Single-layer concentrated three-phase winding with coil ends manufactured in 2 levels
and g = 2 slots per pole and phase

Single-layer windings with coil ends manufactured in 2 levels have shorter end
windings than those with 3-level coils. Besides, they make use of only two different
coil shapes. However, their end coils are concatenated in such a way that they do
not allow for segmentation without cutting a coil group belonging to one phase, as
shown in Fig. 2.6.

Field windings of synchronous machines are manufactured with concentric coils,
as shown in Fig. 2.7. Coil ends are placed next to each other in axial direction and
supported against centrifugal forces. The outermost slots are sometimes manufac-
tured with smaller height in order to reduce the level of saturation in poles.
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Fig. 2.8 Single-layer distributed three-phase lap windings (a), (¢) and their end winding form (b).
Winding shown in (a) has coil pitch y. different from, and in (¢) equal to the winding pitch t,,.
Winding (c) allows for segmentation in circumferential direction

Distributed single-layer windings can be manufactured as wave or lap (Fig. 2.8).
Wave windings require less welding, because one phase group (parallel circuit) can
be manufactured in a single production stage. All coils of a distributed single-layer
lap winding have pitch y., which is not necessarily equal to the pole pitch t,,.

A single-layer distributed winding can be short-pitched (chorded) for the amount
of 0, 1, 3,5, 7, ..., etc., slots if the number of slots per pole and phase g is even, as
shown in Fig. 2.9. If ¢ is odd, as shown in Fig. 2.10, a single-layer distributed
winding can be short-pitched for 0, 2, 4, 6, §, ..., etc., slots. Coil pitch chording for
1 slot has no influence on the winding pitch and, therefore, no influence on the air
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gap MMF distribution. Chording for more than 1 slot results in phase interleaving
(Figs. 2.9 and 2.10). Chorded coils in windings with odd values of q cannot be
symmetrically distributed in a two-pole interval. As a result, even harmonics in the
air gap MMF distribution are generated, as shown in Fig. 2.10.

Coils of a single-layer distributed winding get themselves in the way because a
slot occupied by conductors of one coil cannot be used by conductors of other coils.
Such a rigid structure of single-layer windings limits substantially the field of
possible applications.

A\

| \ \ R 0
‘ S \}ﬁ M‘UFH Iﬂ(

Fig. 2.9 Single-layer distributed three-phase lap windings with ¢ = 4 slots per pole and phase and
different coil pitch y. (leff) and current sheet A at a time instant of maximal current in one phase
(right). The lower two windings are chorded for more than one slot and, therefore, interleaved

Double-layer windings offer much more freedom in creating air gap MMF
distribution than single-layer windings. Each slot of a double-layer winding carries
conductors of two coils, which belong either to separate phases (so-called mixed
slots), or to the same phase (monoslots). One side of a coil of symmetrical
double-layer winding lies in the bottom layer of one slot, and the other coil side in
the top layer of another slot (Fig. 2.11). Thus the number of coils of a double-layer
winding equals to the number of slots in which it is placed.
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Since the two layers in a slot belong to separate coils, the coil pitch can be
selected arbitrarily. Higher harmonics of air gap MMF created by a double-layer
winding can be controlled more precisely than for a single-layer winding, which
makes the double-layer winding the mostly spread winding type at all.

wen !, JHU Um x

Fig. 2.10 Single-layer distributed three-phase lap windings with ¢ = 3 slots per pole and phase
and different coil pitch y. (left) and current sheet A at a time instant of maximal current in one
phase (right). The lower two windings are interleaved and asymmetrically distributed over two
poles. As a result, even harmonics of current sheet and air gap MMF are generated

On the other hand, the slot fill factor of a double-layer winding is not as good as
in case of a single-layer one, because the two layers have to be insulated against
each other. This aspect is especially important in medium voltage machines, which
anyway have thick coil insulation.

A comparison of properties of single and double-layer winding is given in
Table 2.1.

Fig. 2.11 Coil placement in
a double-layer winding
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Table 2.1 Comparison of winding-type properties

Single layer Double layer
Number of coils N/2 for N slots N for N slots
Coil pitch Dependent on type Arbitrary
Coil form Dependent on type Equal for all coils
Slot utilization High Moderate
End winding Dependent on type Compact
Mechanical strength Moderate High
Application Predominantly small and medium machines Unlimited

Mixed-layer windings combine single- and double-layer windings, as shown in
Fig. 2.12. Coils of a mixed-layer winding are inserted into slots in accordance with
their affiliation to a particular phase. In Fig. 2.12 the outermost coils can have twice
the number of turns than the other ones if all slots have the same area. Alternatively,
the slots for outermost coils can be made smaller than others, and all slots can have
the same area. Windings as shown in Fig. 2.12 are suitable for automated pro-
duction because first all coils of the phase A are inserted, after that all coils of the
phase B and at the end all coils of the phase C.
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Fig. 2.12 Coil placement in a mixed-layer winding
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2.3 Current Sheet and Air Gap MMF

The fundamental idea governing physical and engineering sciences is to build
mathematical models of physical phenomena, which reflect all effects of interest for
a particular phenomenon, and which are interpreted as physical laws. The simpler
the model, the wider the area of its applications. Accordingly, an analytical model
gives a significantly deeper insight into a particular phenomenon than its numerical
counterpart. Therefore, a numerical model can at best complete machine analytical
model, but in no case replace it.

Electric machines are complex 3D structures, the operation of which is based on
magnetic circuits with nonlinear magnetic materials, in which electromagnetic
quantities permanently change their values and direction in space. A detailed model
of an electric machine, which would allow for all physical peculiarities at any
time instant and at any point in the machine volume, could only be built as a
numerical approximation. As such, it could deliver a quantitative solution to a
particular problem at a given accuracy, but it would not allow a qualitative insight
into physics of machine operation.

Obviously, the level of complexity has to be reduced if an analytical model of an
electric machine should be built which represents the crucial machine properties.
Effects neglected in such a model have marginal influence on the accuracy of
results.

Analytical model of an electric machine is based on space-time representation of
electromagnetic quantities in it, whereas the spatial coordinate is placed in the
middle of the air gap and spreads in circumferential direction. Consequently, only
the radial component of air gap flux density is considered. It is also assumed that the
machine is infinitely long, which legalizes disregarding of axial components of field
in its active part.

Winding distribution and affiliation of coils to a particular phase are expressed
by means of current sheet A, an auxiliary quantity with a meaning of linear current
density, defined as
i-w

A==2 (2.10)

with b denoting the width of zone in the air gap in which w conductors, each of
which carrying current i, are placed. The sign of current sheet is determined by
the orientation of coil and by the current direction.
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2.4 Spatial Harmonics in Air Gap MMF, Slot-Opening
Factor, Winding Factors

The overwhelming majority of rotating field machines is built as heteropolar, with
active part excited by coils the conductors of which are placed between two fer-
romagnetic structures schematically represented in Fig. 2.13. In general, the current
sheet distribution A(x) along the circumference does not necessarily have to be
symmetrical with respect to the axis of winding.

In Fig. 2.13, the x and ¢ marks within conductors denote products of coil ori-
entation and current sign and, as such, can be interpreted as positive or negative.
Orientation of a coil along with sign of current through it determines the sign of
current sheet, MMF, and flux density. Therefore, not the current I, but the
ampere-turns / - w are the primordial machine spatial quantity, since they carry
both the information on the amount and direction of air gap fields.

If the relative permeability p, of stator and rotor iron is very large, p, >>, the
whole MMF drop O(x) created by coil ampere-turns is spent on air gap and can be
defined as

o) = [ awas @)
Wy >>
=l L =1
} 1 Ly >>
AAO® 3 3
O 1 O(x)
l-w/a /
/ A(X) X
0% X Dr/p
0,
Slew /b

Fig. 2.13 Current sheet distribution A(x) and its integral, the MMF distribution ®(x) of an
arbitrary coil



2.4 Spatial Harmonics in Air Gap MMF, Slot-Opening Factor, Winding Factors 57

with x denoting the air gap circumferential coordinate and A(x) the current sheet
created by current /.
Constant MMFs O, and ©, in Fig. 2.13 are evaluated as
2Dn+p-(a—2y—D) a—2y—>b
— dw: @y=p-—— " .. 2.12
2Dn " 2=P 2Dn " (2.12)

0

Air gap quantities are periodical functions of circumferential coordinate x with
period length 21, 1, being the pole pitch:

Dn
== 2.13
TP 2p ( )
Spatial distribution ®(x) can be expressed in terms of Fourier series as
O(x) = Z@n sinnTEx (2.14)
n=1 p

with ©,, denoting the amplitude of the nth harmonic of the air gap MMF. Fourier
coefficients of MMF distribution in Fig. 2.13 are

ay=0 (2.15)
because there is no homopolar flux (div B = 0), and

a- [cosn%(xl +y) —cosn%(xl +y+b)} +b- [cosn%(xl +a)— cosn%xl]

a, =1, -1-w
mow n2abn

(2.16)

a- [Sinn%(xl +y)— sinnrﬂp(xl +y+b)] +b- [sinntﬂp(xl +a)— sinn%xl}

by=1,-1-
" P Y n2abm

(2.17)

Conventional windings are placed in slots, the width of which in the air gap is
called slot opening d. Single coil per pole pair placed in slots on one side of air gap
as illustrated in Fig. 2.14 generates the MMF distribution which can be expressed in
terms of Fourier series with coefficients a,, and b,;:
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: dmn
2 lwsSmn_-5 T . YW
anz——Ti-cosn—-smn—E (2.18)
mn I’lgi Tp
: dn
2wsSmn_5 @ oyq
b":__T;'Sln"E'Sm”_E (2.19)
T n ngi Tp
y w turns

Fig. 2.14 Current sheet distribution A(x) and its integral, the MMF distribution ®(x) of single coil
per pole pair

Fourier coefficients a,, and b,, are equal to the product of three factors, each of
which is smaller or equal to one:

(a) Slot-opening factor f,,, defined for the nth harmonic as

d

sinn ¢ %
Jon = T" (2.20)
e,

n
2
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(b)

(©)

The slot-opening factor is a function of the ratio between the slot opening d and
pole pitch 1. As long as the slot opening d is much smaller than the pole pitch
T, the slot-opening factor for the fundamental, f ;, is almost equal to one.
Large slot openings, typical for tooth-wound machines, cause low slot-opening
factors, thus diminishing resulting MMF and deteriorating machine
performance.

A trigonometric indicator, defined for cosine terms a,, as cos(n - n/2) and for
sine terms b,, as sin(n - w/2). The indicator for cosine terms, cos(n - w/2), is
equal to zero for odd harmonics, and indicator for sine terms, sin(n - m/2), is
equal to zero for even harmonics. In other words, the phase shift of odd har-
monics relative to the origin is equal to zero, and the phase shift of even
harmonics relative to the origin is +m/2.

Every odd harmonic from Fourier approximation of MMF distribution has at
least one zero crossing point identical with the zero crossing point of the
fundamental. Accordingly, every odd harmonic has an extreme at the same
point on the circumference where the fundamental is extreme. The character of
extreme of adjacent odd harmonics alters permanently between maximum and
minimum, as given by the indicator sin(n - n/2). For this reason, the resultant
effect of (odd) slot harmonics of MMF on the fundamental of air gap flux
density is negligible (see discussion to Fig. 2.37).

Coil pitch factor f,,, defined for the nth harmonic as

fon = sinnlg (2.21)

Tps
where 1, denotes the pole pitch expressed in number of slots

N
=2 (2.22)

Coil pitch factor quantifies the MMF derogation due to pitching of coils. In
extreme case when the product n - y/t, is an even number, the amplitude of the
nth harmonic is equal to zero. The influence of coil pitch on the amplitude of
the nth harmonic of air gap MMF can be illustrated by the example of the fifth
harmonic of MMF created by a coil with pitch of y/t, = 4/5, as shown in
Fig. 2.15.
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Fig. 2.15 MMF distributions Y=
created by a full-pitch coil per (a)
pole, y = 1, (a), and a
short-pitch coil per pole, ® (")\
y = 4/5 1, (b). The fifth / A \
harmonic in the MMF 5/ ) \
distribution of the coil below “ O1(x) \\
vanishes ‘ O(x) \‘
| |
|
\ /
\ Os(x) # 0 / X
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b
(®) y=4/51,
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The full-pitch coil in Fig. 2.15a creates trapezoidal MMF distribution ®(x). One
can imagine that the fifth spatial harmonic of the MMF distribution ®(x) is created
by a fictitious winding, shown gray in Fig. 2.15a, with a coil pitch equal to 7,/5. At
x =0 and x = 1, the direction of current and coil orientation of the real and the
fictitious winding coincide, which means that the left and the right half of the real
coil support each other when creating the fifth harmonic component of the MMF.

The ampere-turns of the left-hand side of the short-pitch coil in Fig. 2.15b with
y = 4/5 1, would create the fifth harmonic of the MMF identical to that drawn with
solid black line, originated from fictitious winding with y = t,/5. The same ficti-
tious winding would, however, require the ampere-turns on the right-hand side of
the coil (at x = 4/5 1) acting in the opposite direction than the real ones created by
the coil right portion.

If the ampere-turns of the fictitious winding with y = 1,/5 should coincide at
x = 4/5 1, with those created by the right-hand side of the real coil, the winding
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distribution drawn gray in Fig. 2.15b would be valid. This means that the fictitious
coil should generate ampere-turns at x = 0 opposite to the real coil! Obviously, the
sum of the black and gray distributions representing fictitious 5th harmonic is equal
to zero when y = 4/5 1,,.

0.75 # [ [l I ——
0.5 —
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0.75 _— . inE -

Fig. 2.16 p.u. values of coil pitch factors for higher spatial harmonics in a machine with 12 slots
per pole and various values of coil pitch

Pitch factors in p.u. of the fundamental for various spatial harmonics in a
machine with 12 slots per pole and various coil pitch values are shown in Fig. 2.16.
Coil pitch shortening is a very powerful means for the minimization, or even
elimination, of particular harmonics from the MMF distribution. The price paid is a
(slight) decrease of the useful fundamental harmonic.

Absolute value of pitch factor for any spatial harmonic n for full-pitch coils
(y = 1) is equal to 1. By applying the coil shortening, the amplitudes of pitch
factors become periodically dependent on harmonic order. One should note that,
independently of the coil pitch to pole pitch ratio y/t,, spatial harmonics with order
Nip £ 1 have always the same pitch factor as the fundamental.

The amplitude ¢, of nth harmonic of air gap MMF created by one coil per pole
pair can be expressed by means of Eqgs. (2.18) and (2.19) as

: dmn
2 pwsinn Ll
o= J@2 b= 2 g 2T (2.23)

n iﬂ
mn nsz Tp2
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Fig. 2.17 p.u. amplitudes of MMF harmonics created by a single coil per pole pair in a machine
with 12 slots per pole. The coil pitch varies between 8 and 12

One coil per pole pair with 'y < 1, generates both even and odd harmonics of air
gap MMF, the amplitudes of which are approximately proportional to the recip-
rocal of their order. This property is illustrated in Fig. 2.17, in which p.u. ampli-
tudes of the first 13 harmonics created by a single coil per pole pair for variable
values of coil pitch and for 1, = 12 are shown.

In Fig. 2.17 one can see that only a full-pitch coil per pole pair generates air gap
MMF spectrum without even harmonics; as long as the coil is chorded, it acts as a
source of both even and odd harmonics. Since a single full-pitch coil per pole pair
creates identical MMF spectrum as a full-pitch coil per pole, one can state that even
harmonics created by two full-pitch coils per pole pair act against each other.

Case Study 2.1: A 20-pole, 3-phase machine has 30 stator slots. Air gap
diameter is 1200 mm and stator slot opening d = 56 mm. Stator winding has y = 1
(tooth-wound). Slot-opening and coil pitch factors of the stator winding along with
% amplitudes of harmonics are listed in Table 2.2.
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Table 2.2 Parameters of winding in Case Study 2.1

n 1 2 3 4 5 6 7 8

Jon .99 94 .87 18 .67 .55 42 .29
Jon .87 .87 0 —.87 —.87 0 .87 .87
o 100 47.8 0 19.8 13.6 0 6.1 3.7

One recognizes in Table 2.2 that the stator winding generates extremely strong
2. and 4. harmonic of the air gap MMF. These harmonics increase substantially the
air gap leakage inductance of the selected winding and create additional compo-
nents of eddy current losses in solid rotor parts, along with pulsating torques on the
shaft.

It is easy to demonstrate that not only two fully pitched, but also two identically
chorded coils per pole pair generate even harmonics the sum of which is always
equal to zero, because

®, sin [nE (x— rp)] = @, sin (n LI nn) =0, sinn— x (2.24)

Tp Tp Tp

for n even, and

®, sin [nﬁ(x— rp)} = @, sinnlx (2.25)
T Tp

for n odd. Since the ampere-turns of coils under one (N) pole, (I - w)n, have an
opposite sign than the ampere-turns under adjacent (S) pole, (I - w)s, odd har-
monics created by coils of one pole support odd harmonics created by coils of
adjacent pole. Even harmonics created by coils of one pole, on the other hand, act
against even harmonics created by coils of adjacent pole.

Vast majority of windings in heteropolar machines is built in such a manner that
the winding distribution pattern repeats on pole basis, see Fig. 2.18. As a result,
only odd harmonics of air gap MMF can be generated, the amplitudes of which are
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Fig. 2.18 Schematic representation (a) of coils in the air gap (b), along with the current sheet A
(x) and MMF O(x) distributions created by positive current / flowing through the coils (c). For
distributions A(x) and ®O(x) it is irrelevant whether the coils are placed in slots, or directly in the air gap
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Fig. 2.19 p.u. amplitudes of MMF harmonics created by one coil per pole in a machine with 12
slots per pole. The coil pitch varies between 8 and 12
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: dmn
4wsmn_—5 g . ym
Ay = —————7-—-sinn--sinnn-sinn=—-=0 (2.26)
nn n4l Tp
T2
because n is odd, and
4sinney g T
by =————F,—sinn- sinn 2~ (2.27)
nn n4l 2 T2
T 2

MMF spectra of one coil per pole with identical data as in Fig. 2.15 are shown in
Fig. 2.19.

Pole symmetry (identical winding distribution under each pole) eliminates even
harmonics in air gap MMF spectrum. Even harmonics in air gap MMF spectrum
are a sign of pole asymmetry, caused typically by winding short turns. If p [p.u.]
turns under one pole are short-circuited, Fourier coefficients of air gap MMF
spectrum can be expressed as

: dn
9 ppSinndz
ay :E%ing%pz' sinn%g- [cosng— (1 —P)cosSng] (2.28)
P
. 21Wsinn%§ . ym [ n (1—p)sin3 Tc} (2.29)
n = —————— - SiInn——- (Sinn—_ — — S1n sn — .
nn nir T2 2 b 2
P

The amplitude ¢, of nth harmonic is equal to

: dmn
2 wsinnst -
= E;nTz'smnrl? \/1 —2-(1=p)-cosnn+ (1 —p)* (2.30)
T, 2 p
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Fig. 2.20 p.u. amplitudes of MMF harmonics created by one coil per pole in a machine with 12
slots per pole for pole asymmetry of p = 0.1 p.u. The coil pitch is varied between 8 and 12
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The influence of pole asymmetry on amplitudes of air gap MMF harmonics in a
machine with 12 slots per pole is shown in Fig. 2.20. The machine is assumed to
have 10 % less turns under one pole (p = 0.1 p.u.) than under another. Besides
general decrease of amplitudes of odd harmonics (less ampere-turns!), one recog-
nizes the appearance of even harmonics in Fig. 2.20, the amplitudes of which are
dependent on coil pitch y.

(@)
1
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(Gn)m 9’1 (x)
X
—_ >
0 ﬁj T

O13(x) + O23(x)

Fig. 2.21 Two coils shifted for xy to each other (a), their MMF distributions (b), and the
fundamental and third components of MMF created by each coil (c)
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Phase windings of electric machines are seldom wound with only one coil per
pole. Putting phase coils into adjacent slots under a pole is a further means to
suppress higher spatial harmonics. In Fig. 2.21 two coils shifted for the amount of
Xo are shown along with their air gap MMF distributions.

The shift x, of the two coils along circumferential coordinate in Fig. 2.21 does
not have the same impact on all spatial harmonics of their MMFs, because the
higher the order of harmonics n, the bigger the spatial shift x,

Xop =N - Xg (2.31)
The amplitude ® ¢ 1 max of the fundamental component of the resulting MMF in
Fig. 2.21c, Oy5.1(x) = Oy 1(x) + O, ;(x) can be evaluated by using the trigonometric

identity

cos(o+ 4513) - sink?

E cosfo+(j—1)-9] = 5 2 (2.32)
sin$
and setting for o = 0, k = 2:
6 .
cos?- sind )
1+ cosd :2.—5: 2 cos’ = (2.33)
sin$ 2

2

which helps one define e 1 max

Ores 1 max = ®l,max\/(1 + cos oco)2 + sin oy = O maxv/2 - (14 cosap) (2.34)
as
)
®res,1,max =2 ®l,max COSE (235)

with xo = R - 0, R denoting the air gap radius.

The ratio between the trigonometric and algebraic sum of amplitudes of MMFs
created by adjacent coils under one pole is called the zone factor, which in case of
two coils per zone can be written for the fundamental harmonic as

®res,1,max o COS%
2. ®l,max 2

and for a spatial harmonic of the order n

®res7n,max — cos n@
2. ®n,max 2
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One recalls that the expression for the zone winding factor of the nth harmonic,

fz,n'

sin 242
_ 2
n = —q Sin 728 (2.36)
turns into cos(n - ay/2) for g = 2.
16 2 5 3 0 4 5 5 6 6 5 7 ¢
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Fig. 2.22 Symmetrical integer slot winding with one coil per pole and phase: coil MMF
distribution @, repeats from pole to pole, making the resulting MMF equal to the algebraic sum of
coil MMFs, both for the fundamental @, and for the fifth harmonic O s

o

In high-polarity electric machines there is often not enough space for more than
one coil per phase under one pole. Both previously discussed countermeasures
against high spatial harmonics—chording the coil pitch, or connecting more coils in
series under each pole—obviously cannot be applied in this case. Therefore, other
means for control of spatial higher harmonics has to be employed: the undesirable
harmonics are not compensated within one pole, but within several poles. The
winding pattern repeats every fundamental pole, the width of which is an odd
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multiple of the pole pitch 1,. One refers to fractional slot winding in which the
number of slots per pole and phase ¢ is not an integer.

In order to illustrate the principle of higher harmonics minimization in a frac-
tional slot winding the air gap MMF distribution in a 84-pole, 3-phase machine with
252 slots and g = 252/(84 - 3) =1 (Fig. 2.22) is compared with air gap MMF
distribution in an 84-pole, 3-phase machine with 288 slots, g = 288/(84 - 3) = 8/7,
as shown in Fig. 2.23. In particular, the influence of winding connection on
the resulting fundamental and fifth harmonic is analyzed.

Fig. 2.23 Symmetrical fractional slot winding with g = 8/7 coil per pole and phase. The
fundamental and 5 harmonic components of all coils are shown

For g = 1, as shown in Fig. 2.22, the resulting MMF is equal to the algebraic
sum of MMFs created by all coils. In the resulting MMF the ratio between the
amplitude of the fifth harmonic and the fundamental term is equal to the ratio
between the amplitude of the fifth harmonic and the fundamental term of a coil.

The MMF distribution in a machine with g = 8/7, shown in Fig. 2.23, is for the
fifth spatial harmonic completely different from that in a machine with g = 1. In a
machine with fractional slot winding the period length of the winding distribution
corresponds to the fundamental pole. A fundamental pole of the winding in
Fig. 2.23 with g = 8/7 includes seven machine poles. Each phase of the analyzed
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winding has eight coils per fundamental pole, denoted by numbers 1-8. The coils
are connected to each other in such a manner as to maximize the resulting fun-
damental, and minimize higher harmonics. The sequence of connection of coils in
Fig. 223 is 1 >4 —>6 >8 > -3 —> -5 — -7 — 2, with negative signs
standing for a reversely connected coils. This sequence of coil connections shifts
fundamentals slightly to each other. On the other hand, the fifth harmonic com-
ponents are significantly shifted to each other. Ultimately, the resulting fundamental
component is slightly lower than the algebraic sum of coil MMFs, whereas the
resulting fifth harmonic is drastically reduced.

2.5 Air Gap Permeance, Carter Factor, Air Gap Flux
Density Distribution

Air gap flux density is the crucial quantity in an electric machine, since it deter-
mines both the induced voltage and the torque, the two most important machine
attributes. Spatial distribution of air gap flux density, including all higher har-
monics, determines time dependencies of induced voltages, torque, and radial
forces. Therefore, special attention has to be paid to the proper shaping of the air
gap flux density distribution.

Neglecting the MMF drop in iron, one can write for the air gap flux density
distribution Bg(x):

Bs(x) = 1o - Ho(x) = po ‘;)(%’ (2.37)

i.e., the amount of flux density at a particular point in air gap is proportional to the
MMF and inversely proportional to the air gap width at that point.

Windings of electric machines are usually placed in slots separated by teeth,
which provide mechanical support. The price for mechanical fixation of windings
by putting them into slots is a loss of flux expressed by the Carter factor.

In a machine with single-slotted air gap and constant excitation over slots and
teeth, the air gap flux density B(x) is minimal along slot centerline (Fig. 2.24). The
flux density distribution B(x) can be represented in terms of its average value and
fundamental harmonic due to slotting as

Bs(x) = By + Bs cosix (2.38)

N

where

— mx _Tmin (2.39)
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B, denotes here the amplitude of the fundamental component of air gap flux
density due to slotting, and By its average value over one slot pitch .
The Carter factor k¢ is defined as

Ts
ke =—— 2.40
=Ty (2.40)
and the effective air gap width O
Fig. 2.24 Dominating
components of air gap flux
density B(x) and
electromagnetic air gap width
Sem(x) at constant MMF
A
Bv ®1 6em @(X)
Bmax\ / B(X)
Bo
Bs
Bmin
Smax
6 6ef‘f 8(X)
> X
Octf = k¢ - O (2.41)
where
41|s s s\2
=—|=zarctan— —In4/ 1+ (—) 2.42
T x lzs 25 25 (242)

Not the geometrical distance 6 between smooth and slotted surface, but the
effective air gap width d.4 = kc - 0 determines the ampere-turns demand for a given
flux density. Carter factor is a function of the ratio between the slot opening s and
slot pitch 1, and the ratio between the air gap width § and slot pitch t,. By keeping
the slot-opening constant for a given slot pitch, the Carter factor decreases as the air
gap width increases. On the other hand, by keeping the air gap width for a given
slot pitch constant, the Carter factor increases as the slot opening increases.
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Fig. 2.25 Dependence of normalized effective air gap width 8.4/Ts on normalized air gap width
8/t with normalized slot opening s/ts as a parameter

The analysis of Carter factor can be simplified by normalizing the air gap width
and the slot opening to the slot pitch of 1 p.u. Introduce first the normalized air gap
width dy:

O = % (2.43)

and the normalized slot width sy:

s
SN = . (2.44)
The Carter factor can be now written as
ke = S (2.45)
I —v-dn
and the auxiliary function y
4 | sN SN SN ?

v== Earctanﬁ —Iny /14 (ﬁ) (2.46)

The dependence of the normalized effective air gap width on normalized air gap
width with normalized slot opening as a parameter is shown in Fig. 2.25. One
recognizes in this figure that the difference between effective and geometrical air
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gap width becomes constant for increasing 6/t;, which means that the Carter factor

in that case slowly decreases.
Introducing the auxiliary quantity u

K s\ 2 SN SN 2
L <_) =N Ly (2 2.47
“En VTGS Ty TV (26N) (2.47)
one can define the ratio B (see Fig. 2.24) as

2
B= % = sin? > (2.48)

which also can be written as

Bi Bmax - Bmin
= - = 2.49
B Biax 2Bmax ( )

Now one can write for flux densities By and B,

Bm X +Bmin Bm X Bmin
By = — ) = (1 = B)Bmax; Bs= . ) = PBmax (2.50)
as well as for their ratio
By B
—_— = 2.51
A
B ke
B()

0.5
8 /15
0 >
0 0.05 0.1 0.15 0.2

Fig. 2.26 Ratio By/B (solid) and Carter factor (dashed) as functions of normalized air gap width
d/t with normalized slot width s/ts as a parameter
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The dependence of Carter factor and the ratio between the amplitudes B, and By
on the normalized air gap width for various values of normalized slot-opening
width is shown in Fig. 2.26. For small values of normalized air gap width and large
values of normalized slot-opening width, the magnitude of the fundamental slot
harmonic B can be almost as large as the magnitude of the constant term By!

Pulsating component of air gap flux density has thermal and mechanical con-
sequences: Eddy current losses in conducting media are proportional to the square
of flux density amplitude, as is the radial (attractive) force between stator and rotor.
Therefore, special attention has to be paid to the design of air gap geometry and to
minimization of slot harmonics in the flux density distribution.

In Fig. 2.24 the electromagnetic air gap width d.,(x) was introduced, which
stands for the length of flux line at a given circumferential coordinate x. The
maximum value 6, of the electromagnetic air gap width corresponds to the
minimum value B, of air gap flux density B(x):

Omax/ & ; a E
I TTRTRHHTRTRTRHRRR p
3 442 Ezza
RSN SSSA S a
s/ts=0.1
25

s/15=0.3

ke
1 , , , , , , >
1 1.05 1.1 1.15 1.2 1.25 1.3

Fig. 2.27 Ratio between maximum electromagnetic air gap width J,,,x and geometric width  as a
function of the Carter factor k¢ for various values of normalized slot width s/t

¢
B min

Smax = Ho (2.52)

By utilizing the parameter B (2.49) one can define the ratio between the maxi-
mum and minimum air gap width as

= (2.53)
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The ratio between maximum electromagnetic air gap width §,,,x and geometric
width & as a function of the Carter factor k. for various values of normalized slot
width s/t is shown in Fig. 2.27.

If the air gap flux density is generated by a 2p-pole winding placed in N slots, the
air gap width 6(x) can be represented with a constant term and a fundamental
harmonic with period length t:

Omax +0  Omax — O 2T Nrn
S(x) = == e Tx=08y+8 —— 2.54
(x) 5 + 5 cos - x = 89 + 9; cos ) Tpx (2.54)

with 1, denoting the slot pitch

Dr  2p
v (2.55)
and D the average air gap diameter. One should note that the terms dy and d; are
both functions of Carter factor and can be of the same order of magnitude.

If the air gap of an electric machine is doubly slotted (Fig. 2.28), the resulting
Carter factor k¢ is equal to the product of the Carter factor for the stator k¢ s and for
the rotor k¢

kC = kC,s . kC.r (256)

where both k¢ 5 and k¢, are calculated assuming that the opposite side of air gap has
no slots. Here the principle of reciprocity can be applied, since for the computation
of Carter factor in electrically excited machines the source of the field is placed
outside the air gap. Both stator and rotor windings face the same air gap geometry
in Fig. 2.28 and, therefore, the same effective air gap width .

The air gap width 6(x) of a doubly slotted machine in Fig. 2.28 can be repre-
sented with a constant term, the fundamental harmonic representing the stator
slotting, with period length 1., and the fundamental harmonic representing the
rotor slotting, with period length T,

Ts,s

Ts,r

<
<

Fig. 2.28 Doubly slotted air gap of an electric machine
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N, N,
8(x) = 80+ 31,4 COS x4+ 3 cOS ——x (2.57)
P P T

with Ny standing for the number of stator, and N, for the number of rotor slots.

In order to increase the heat exchange surface and improve the cooling perfor-
mance, electric machines are often built with radial cooling channels through which
the cooling air is blown from inner to outer, or from outer to inner portions of
machines. If the lamination contains N, radial cooling channels, it is built of
N¢ + 1 lamination stacks separated by the cooling channels. Radial cooling
channels extend the machine axial length for the amount of w,. - N.. and deteri-
orate the lamination fill factor. The rate of deterioration can be expressed by using
the axial Carter factor k¢ ,x defined as

lax — NecWee

ke gy = % Tecllee 2.58
X Ly — NeaWl, 425 (2.38)
with
, Wee
N ———— 2.59
W (2.59)

Wee
for the same number of stator and rotor radial cooling channels, and

/ Wee
~N— 2.60
ey (2.60)
for different numbers of stator and rotor cooling channels. [, in Eq. 2.58 denotes
the axial length of active part, i.e., the distance between the beginning of the first
and the end of the last lamination stack. The resulting Carter factor for a machine
with radial cooling channels can be expressed as

kc = ke - ke - ke ax (2.61)

The principle of reciprocity used for the determination of Carter factor for
doubly slotted air gap is disturbed when the excitation on one side of the air gap is
relocated from iron structure into the air gap, as is the case in surface-mounted PM
machines, as shown in Fig. 2.29.

Permanent magnet in the air gap of the machine in Fig. 2.29a faces teeth and slots
on the other side of mechanical air gap §,, relatively close to its surface. As a
consequence, the air gap flux density and the flux density in the magnet below a slot
differ significantly from their values below a tooth. Large pulsations of air gap flux
density are an indicator of a large Carter factor. When excited by a coil in slots as
shown in Fig. 2.29b, the same air gap geometry generates lower amplitudes of flux
density pulsations underneath the slots, which is an indicator for a lower Carter factor.
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By (x) / Bei(x)

®PM(X) ®coil(x)

\4
\4

Fig. 2.29 Qualitative air gap flux density distribution in a surface-mounted PM machine created
by magnets (a) and armature winding (b)

2.5.1 Uneven Air Gap and Homopolar Flux

Consider a two-pole machine with a winding only on one side of the air gap, as
shown in Fig. 2.30. Winding current i creating spatially alternating flux density in
the active part flows through end winding conductors in the given sectional
(z, r) plane in the same direction, as shown in Fig. 2.30b, c. Flux lines created by
end winding MMF go through bearing shields and shaft (if these are made of
magnetic material) into the active part. The total flux through the shaft is equal to
zero as long as the magnetic circuit is perfectly symmetrical, as shown in
Fig. 2.30b. If there is an asymmetry in the machine’s magnetic circuit, such as
uneven gap caused e.g. by rotor eccentricity, the total shaft flux @, is not equal to
zero any more, as shown in Fig. 2.30c, and the homopolar flux is generated.

Homopolar flux @®; can be evaluated by means of the simplified magnetic
equivalent circuit of the machine in Fig. 2.31b. One recognizes in this circuit the
bridge structure created by gap permeances Ggp, s N, Gsns.s» Gs.n, and Gs s. Flux @y
is equal to

Gihatt (GS,N Gass — Gss Gsh,s,N)

Qg = 2iw
Ghaft (Gs,N + GS,S) + (Gsh,S,N + Gsh,s,s) (GS,N +Gss + GShaft)

(2.62)
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() (b) ()

— T E—
— - AO ®,=0 oB < ®;#07
> P ——

i =l “8 [

Fig. 2.30 Two-pole machine with stator winding only: a schematical representation of the end
winding MMF with sectional (z, r) plane denoted by a dash-dot line; b distribution of fluxes in the
(z, r) plane of a machine with perfectly symmetrical magnetic circuit and bearing shields made of
magnetic material; ¢ distribution of fluxes in the (z, r) plane of a machine with uneven air gap(s)

and bearing shields made of magnetic material
(b) +
iw

(a)

1

GFe,rot.N

s . . Ds
% =, =
Gsh, circ A )—M—§ B GFe,stat A ()—M—( B
% Gshatt 7 Gshat

AN

GFe,rot,S

1

o [Jo

Gsh,ax |

i
!
End shield !

Active part

N2

<

Fig. 2.31 Magnetic equivalent circuit of the portion of the machine in Fig. 2.30b, c: detailed
(a) and reduced to its most significant components (b). Index sh relates to the bearing shield, ax to
axial and circ to circumferential direction. Index o stands for air gap, rot for rotor, stat for stator,
Fe for iron, N for the N-pole, and S for the S-pole. Ampere-turns Iw denote the MMF per pole
created by the particular winding
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As long as the magnetic circuit in Fig. 2.31 is balanced, the shaft flux is equal to
zero. Any unbalance in the bridge of air gap permeances in Fig. 2.31b results in shaft
flux. Shaft flux can be constant, or time-dependent. Time dependence of shaft flux is
caused either by time-dependent MMFs, or by variation of gap permeances due to
rotor motion. Time dependent shaft flux induces shaft voltage, which can cause
bearing currents.

2.5.2 Flux Density Distribution in Eccentric Air Gap
of a Slotless Machine

The most common reason for nonuniformity of air gap is the rotor eccentricity
shown in Fig. 2.32, which can be single or both sided (DE and/or NDE), as well as
static or dynamic. The eccentric air gap width varies with periodicity of 2Rm,
R being the average radius of the gap:

X—x
8 = &g +ecos f

(2.63)

The air gap flux density distribution in a 2p-pole machine with rotor eccentricity
can be expressed as

X — X
(80+scos R r)

or

(2.65)

Fig. 2.32 Rotor eccentricity
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The solution of Eq. 2.61 depends strongly on the number of pole pairs p, since
for p = 1 some terms exist which disappear at other pole pairs. Physical reason for
different behavior of 2-pole machine is obvious, because the rotor eccentricity
repeats with the lowest possible periodicity.

(@ p=1

For a 2-pole machine Eq. 2.61 can be further written as

X — X1

BO(B()—l-Bl cos + B, cos2% + Bj cosf% + By cos4x ;M + )

X — X 2X — X1 — X, 3x —2x) — xp
+¢&4 | Bocos +BlcosT+Bzcos—
dx — 3x3 —
+Bmsw+...)
R
x+x —X —2x
+¢_|( Bycos + r+Blcosﬂ+Bzcosx—2+xr
R R
2x — 3
+B30057x ;3+xr+.__)

= u0(®1 cos%x—l— (OB cosS%x—i— (OF cosS%x—i— .- )
(2.66)

with €, = ¢/2 and &_ = &/2.

The unknowns in Eq. 2.66 are amplitudes B; of air gap flux density harmonics
and their spatial shifts x;. Since spatial harmonics B; are orthogonal to each other,
one can derive an infinite number of trigonometric identities from Eq. 2.66—one
identity for each harmonic:

S0Bo + 331 cos ! I;xf =0 (2.67)
— Ar - -2 T
aBocosx il +80By COSx al + EBz COSw: Ho©1 COS{ (2.68)
2 R R
€ 2X — X1 — X; — € 2x—3 .
SBrcosT LT d0B; cos pJ ~B; cosw =0 (2.69)

2 R R 2 R
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3x — 20y — -
%Bgcosw—k&)& cos3 =5
(2.70)
+SB 3x — 4xy + x; 0 3x
“Bjcos — T = cos3 =
27 R HoBs €08 9%
dx — 3xy — . 4x—5
ngcos al ;3 xr+60B4cos4x Rx4+§Bscos%5+xr:O (2.71)
Sx — duy — -
§B4 cos MM TR + 89Bs cos 5 =5
(2.72)
+ip cossx_6x6+xr— Oscos 5>
270 R MR

etc. Each air gap flux harmonic can be resolved along axes x = 0 and x = Rn/2,

which results in cosine

2x) — Xp
R

CoS — + COS— + = COoS

€ X1

+ X;
-B
) 1 COS

‘B
- COS
2 3

2
+ 8B, cos % +

€ B 2)(?2
= COos
) 2

€ 3x3 + X,
ZB - T
23R

€ 4X4 + X

— B, cos
2 4

+ X;

2

€
—Bs cos

4)C4
0B —
+ 0p 4cosR +2

€
—Bg cos
3 6

5
+ 80Bs cos % +

etc., as well as in sine terms

2x) — Xp

. Xr . X1 € .
€Bgsin— + 0B sin— + — B, sin———
oS + 008 R + > B

R
3
— B sinxl tX
2

€ 2
EBZ sin X2+ %

. 2)(2 €
+ 8B, sin X + §B3 sin

8B .
- Sin
2 4
+ooBssin ™ 4 EBesi
Sin —— — sin
004 R 2 5

+ 0¢Bs si B + = Bg si
S Sim
075 R 2 6

. 3X3
+ 8¢ B3 sin R +

€ 3

— B3 sin X5+ X
2
€ L Axs +x

—B
5 4 Sin R

3x; — x;

3 € 4
+ &0B3 cos% + =By cos i

5)(5

6X6

. 3x1 — X

= 1O,

=0

—x
R
—x
R
—x
R

= O3
=0

= H1oOs

=0

=0
R

Adxy — x;

=0
R

Sx5 — x;

=0
R

6x6 — X;

=0
R

etc. Denoting by s, = sin(x,/R) and ¢, = cos(x,/R) one can define the matrix E
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S 5S¢ 55 0 0 0 0 0 0

e O 0 % oG — % Sy 0 0 0 0

e, O & e 0 0 0 0

0 Sc =550 do 0 Sor L8 0 0

E_ 0 358 3o 0 do -5 5o 0 0
= 0 0 0 5o =358 do 0 S S
0 0 0 Ssr Lo 0 o) =55 So

0 0 0 0 0 See =55 Qo 0

0 0 0 0 0 S5 Se 0 &

(2.73)
and the vector of unknowns b as

26y
R

b=[By BcosX BrsinZ2  Bjcosit ]T (2.74)

1 in XL
® Bising  Bpcos

which along with the vector of applied MMF harmonics 6

0=1[0 © 0 0 0 ©® 0 0 0 O 0 0 0 O ...]" (275
build the system of algebraic equations
E-b=0 (2.76)

the solution of which are the magnitudes and phase shifts of air gap flux density
harmonics in a machine with eccentric rotor.

In order to illustrate the influence of eccentricity on air gap flux density, a
two-pole machine with full-pitch coil and with eccentric rotor was analyzed.

Fig. 2.33 Air gap flux
density in a two-pole machine
with centric rotor created by
the first 19 harmonics of
MMF of a full-pitch coil
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Fig. 2.34 Air gap flux
density in a two-pole machine
with eccentric rotor created by
the first 19 harmonics of
MMF of a full-pitch coil

—

Stator circumferential coordinam

2Rn

The air gap flux density distribution evaluated for the first 19 harmonics of
excitation by a full-pitch coil with an amplitude of the fundamental term of 500 At
and for a homogenous air gap width of 1 mm is shown in Fig. 2.33. Apart from
small deviations caused by representation of MMF with Fourier series having a
finite number of terms, the air gap flux density is constant under one pole, inde-
pendent of the rotor position. The amplitude of the fundamental term of air gap flux
density is equal to py 500/.001 = 0.628 T. The air gap flux density spectrum contains
only the terms present in the MMF spectrum, i.e., the 1., 3., 5., etc., harmonics.

If the rotor is eccentric with a maximum eccentricity € of 0.5 mm, i.e., 50 % of
the air gap width, the shape of the air gap flux density distribution becomes
dependent on the rotor to stator angle. In addition to terms existing in the
MMF distribution, the air gap flux density spectrum contains harmonics generated
by variable air gap width due to eccentricity. In particular, the terms with order 0, 2,
4, 6, etc., in the air gap flux density spectrum are generated in addition to odd terms.
The air gap flux density distribution under the same conditions as in Fig. 2.33, but
with an eccentricity € of 0.5 mm (or 50 %) is shown in Fig. 2.34.

Amplitudes of harmonics of air gap flux density in Fig. 2.34 as functions of rotor
angle are shown in Fig. 2.35. Constant term By, as a measure of shaft flux in
Fig. 2.32, becomes negative after a rotor shift of n/2 because the opposite polarity
of stator MMF is a source of more flux. Accordingly, the shaft flux in Fig. 2.32
becomes also negative.

One notes in Fig. 2.35 that the amplitudes of all harmonics of air gap flux
density in a machine with eccentric rotor pulsate as a function of the rotor angle.
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Fig. 2.35 Amplitudes of air
gap flux density harmonics as
functions of rotor angle in a
two-pole machine with
eccentric rotor

Consequently, one can write for the amplitude By

T
BO = BOA,max cos T_xr (277)
p

as well as for the amplitude of the ith harmonic B; in Eq. 2.60:

Bi = Bi,const + Bi,max COS (2 E)Cr + TC) (278)
Tp

(b p>1
For a machine with more than one pole pair, Eq. 2.61 can be written as

3y {B0+B| (cospf—(cosp% + sinp%sinp%) +Bz(c052p20052p% + sian%sinZP%)

+ B3 (cos 3p%cos 3p% + sin3p % sin 3p%) + By (cos 4p%cns 4])%l + sindp E‘; sin 4[)%) + - }

+SB( X x,+4x,x,.)+B p+1
= COS —COS — S —sin— Ccos X CO!
2[R R R R

2p+1

R

px1+ X . p+1l . pxi+x
$———— + sin———x sin————
R R

2pxs + L 2p+1 . 2pxo+ 3p+1 3px3 + . 3p+1 . 3pxs+x

+B, (cos xcos% + sin pTx sm%) +Bs (COSPTXCOS% + sin Lxsm %) + ]
€
2

2p—1 2pxy — 2p—1 2px; — 3p—-1 3px; — 3p—1 3px3 —
+Bz(cos ‘DR xcos%#»sin pR xsin%)JrBs(cos pR XCOS%‘FQH pR xsin%)#““]

= uO(G)lcosp% +®3cos3p% +®scosip% + )

x X X p—1 X1 — X .p—1_ . px;—x
B (co‘—cosfr ‘m—sni) B, | cos X cos ——— + sin sin———
+ { 0 bR R + s I3 1 R + B R xcos R + si R x R

(2.79)

The orders of harmonics which multiply §y in Eq. 2.79 are O, p, 2p, 3p, ..., etc.,
and of harmonics which multiply €/2 are 1, p = 1, 2p £ 1, 3p £ 1, ..., etc. The
orders of harmonics of the air gap flux density in a machine with eccentric rotor as
functions of the number of machine pole pairs are given in Table 2.3.
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Table 2.3 The orders of

N ‘ tolvine ai p 1 2 3 4
armonics multiplying air gap

width components dy, €., and  §, 2p 2 4 6 8

e after Eq. 2.66 in a machine 3p 3 6 9 12

with eccentric rotor as 4p 4 8 12 16

functions of the number of p+1 2 3 5

pole pairs p 2p+ 1 3 5 7 9
[

3p+1 4 7 10 13

4p + 1 5 9 13 17

p—1 0 1 3

. 2p—1 1 3 7

B 3p -1 2 5 11

4p — 1 3 7 11 15

The strongest interaction between harmonics occurs in a two-pole machine with
eccentric rotor. The higher the number of poles, the weaker the influence of the
rotor eccentricity, e.g., for an 8-pole machine, there exists no single harmonic
common for the sets of terms multiplying &, €,, and &_. In a two-pole machine, on
the other hand, every harmonic of the order of 2 and above appears in all three sets
of terms multiplying &, €,, and &_. Only in a two-pole machine the constant term
By can appear, see Table 2.3. Therefore, the rotor eccentricity can be a source of
significant shaft flux only in a two-pole machine.

2.5.3 Flux Density Distribution in the Air Gap
of a Single-Slotted Machine

Consider a single-slotted machine the air gap width of which is described by a
constant term and an infinite series of harmonics with amplitudes 3;:

8(x) = 8o+ Z:&mwggx (2.80)
=135 P Tp

If the slot geometry is identical for all N slots, the order i of harmonics is an odd
number. In most practical cases the influence of slot harmonics with order above 1
is negligible; therefore, the air gap width will be represented with a constant term
and the fundamental slot harmonic of the order of N/p:

5(x) = 8o + 8, cos ~ " x (2.81)
P Tp

For a salient pole machine the number of poles per pole pair N/p = 2.
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The air gap flux density distribution B(x) created by conventional pole-symmetric
winding (only odd harmonics of MMF!), the axis of which is shifted for the amount
of x. relative to the center of the first slot (Fig. 2.36), satisfies equation

Nmn
B(x) - (80—1—61 cos;—x) =l Z 0, cosn— x—xc) (2.82)

Tp n=135,...

Machines with integer numbers of slots per pole have even number of slots per
pole pair N/p. The air gap flux density distribution B(x) in that case contains only
odd terms

00
T
B(x) = n —(x—xc .
(%) Z B cosn - (x — x¢) (2.83)
n=135,... P
and satisfies equation
o8] o8]
So Bicosi— (x — x.)+ 0; Z Bjcosj— (x — xc)-cos——x
i=1,3,5 p j=1,35,... p P
- (2.84)
=l Z 0, cosn—(x — x;)
n=1,35,... p
‘( T x=0
N 1 2 3 4 slot #
&
’ I Q ®
X

Fig. 2.36 Single-slotted air gap with a coil

The order i of flux density distribution due to constant air gap width &, in
Eq. 2.84 must always be equal to the order n of MMF distribution, i = n. The order
Jj of flux density distribution due to slotting in Eq. 2.84 must satisfy the condition

j= n:l:g (2.85)

in order to generate flux density components with the same order n as the MMF in
Eq. 2.84. Note that for n < N/p the order j can be negative, which means nothing
but a 180° phase shift of the particular term. By applying condition in Eq. 2.85, one
can write Eq. 2.84 further as
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o LT ) = . N . T
S - Z Bicosza(x—xc)—i-?l Z Bj+cos{<]++;>~x—]+~xc]1—

i=135,... ji=135,... P
d & [( N> T
+ = Z Bj cos||j-—— ) - x—j_ X |—
2 jo=135,... p Tp
o0
= o Z ®,cosn—(x —x;)
n=135,... P

(2.86)

The nth (odd) harmonic of applied MMF creates in a single-slotted air gap of an
electric machine three components of flux density with the same order n:

— B, (0dd), in the amount of py ®,/d,
B,,—njp (0dd), in the amount of 2 py ©,/5,, and
B,..njp (0dd), in the amount of 2 py ©,/9;

which satisfy equation

b T
Ho®, cosn— (x — x.) = doB, cosn— (x — x¢)
Tp Tp

51 T N
+ =B, xcos— [nx — [ n+ — |x (2.87)
2 z Tp p

81 T N
+ =B, ,xco0s— [nx — | n—— |X
2 P Tp )4

Relationship between the three components of MMF drop and coil MMF har-
monic of the order n can be visualized by means of Fig. 2.37. In this figure the nth
harmonic of applied air gap MMF and nth, (n — N/p)th, and (n + N/p)th harmonics
of MMF drop are resolved into components along the axis o, coincident with
centerline of slot 1, and along the axis B, shifted for 90° to a.

A B=a+90% o,
g
2ug n+—
0 o, = Axis of slot 1

Fig. 2.37 Illustrating relationship between applied MMF and flux density harmonic components
in a machine with single-slotted air gap for a given rotor shift x,
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Due to slotting, the nth harmonic of applied MMF created by coil current
contributes to the amplitudes of (n — N/p)th and (n + N/p)th harmonics of air gap
flux density along with corresponding fluxes @y, and @, y;,. The fluxes @,y
and @y, create MMF drops 9,y and 9.y, across the air gap. One distin-
guishes here between the applied MMF ©,, and its effects, the flux density har-
monics B, B, ny,, and B,,.xy,, and the evoked MMF harmonics 3, ;, and 8, nyp,
along with all their effects. In order to emphasize this difference, capital letters are
used for applied quantities, and small letters for evoked quantities.

bn

On —> Bn bn-N/p

\ Bn—N/p —> Sn—N/p /

> bnanp > Sn2Np

BnNp = SneNip T br+oNp —> Sn+2N/p

N

bn+N/p

bn

Fig. 2.38 The beginning of the chain of generation of flux density harmonics from a single
harmonic of applied MMF in a single-slotted machine

The evoked MMF harmonic 8,y creates flux density harmonics b,,—yyp, b,—2np»
and b,,, whereas 9, y, is a source of b, yp, bpi2np, and by, harmonics, etc. The initial
terms of the chain of generation of air gap flux harmonics from a single MMF
harmonic in a slotted air gap are shown in Fig. 2.38. Since the number of slots per
pole pair N/p is even, an odd harmonic of MMF can create only odd harmonics of air
gap flux density.
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The nonuniformity of air gap width caused by slotting is a source of higher
spatial harmonics in the spectrum of flux density for sinusoidal applied MMF. The
mechanism of generation of higher spatial harmonics of air gap flux density due to
nonuniform air gap width (cosine terms!) is analogous to the mechanism of creation
of higher time harmonics of current in a magnetic circuit with nonlinear B-H curve.
Independent of whether a time or spatial problem is analyzed, the nonlinearity is
always a source of higher harmonics in the system.

In Table 2.4 the orders of components of air gap flux density distribution in a
slotted machine with even number of slots per pole pair are given as functions of
orders of applied MMF. The fundamental component of applied MMF creates the
fundamental component of air gap flux density, along with harmonics of the order
Ni/p — 1 and N/p + 1. These two harmonics correspond to evoked harmonics of air
gap MMF drops 9,y and 9,.,x;, and both of them generate, among other, the
fundamental components of flux density due to higher harmonics of MMF.

Using Eq. 2.86 and Table 2.4, one can relate the amplitude of nth harmonic of
air gap flux density to corresponding applied and evoked MMFs as

T T
B,cosn—(x —x.) = @(Dncosn—(x —Xc)
Tp do Tp

N
Z@w nC [nx— <n—|—zp)xc] (2.88)
Mo T N
2=) O —|mx— |n—i—
5, ; 4 n COS o {nx (n zp)xc]

Salient pole machine has two poles (teeth) per pole pair, N/p = 2 and 1, = 14
(Fig. 2.39). The fundamental harmonic of applied MMF creates with air gap width
three components of flux density of the same order 1 (Eq. 2.87):

— B with constant air gap width component in the amount of g ©,/5,
— B with fundamental component of air gap width in the amount of 21o®,/3,, and
— B3 with fundamental component of air gap width in the amount of 21140,/3;

which satisfy equation

do o o
® =—B  ——B;——B 2.89
Ho b 21y 21 ’ ( )

The fundamental component of air gap flux density By can be found by applying
Eq. 2.88, here rewritten for N/p = 2:

“O ®1 +2§—Z: (@2i1 — @24 1) (2.90)
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x=0

1 2 slot #
(v29] (O]

Xe=Tp/2
Fig. 2.39 Salient pole machine with a coil

Components of air gap flux density harmonics along perpendicular axes o and 3
in Fig. 2.37 satisfy simultaneously two algebraic equations (see also Eq. 2.86):

T 51 .N
B,ycosn—x.+ ——B,_,cos{ n+i—|x
’ T 200 )4

2.91
n 01 B N Lo - Oy s ( )
—B,  4cos({n—i—|x. = cosn—x,
260 e p ¢ 80 ‘Cp ¢
and
B . s T 61 B . ( +,N>
apSinn—x. + ——B,_psin| n+i— |x
P ‘Cp ¢ 260 p p ¢ (2 92)
N S B - sin N u°.®"s'n P '
—~—< Dy 1 n—i—|X;. = 1N 1N — X,
280 P P ¢ 5) Tp ¢

Considering the first » odd harmonics of air gap flux density and MMF, one can
write after rearranging of Egs. 2.91 and 2.92 two matrix equations for the com-
ponents along the axes o and 3 as

Cs- B, =3, (2.93)
and

Cy-By =39y (294)

The vectors 9, and 9 representing the applied MMFs can be written as

M T

9, = 87;) . [@1 cosx. @3cos3Fx. ... Orcos r%xc] (2.95)
H’ . . . T

9 = 573' [@1 sm%xc 0, sm3%xc ... Osin r%xc} (2.96)
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92

and the system matrix Cy

ColumnN/p — 1

Ql

(2.97)

if the number of slots per pole N/(2p) is even, and

ColumnN/p — 1

(2.98)
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if the number of slots per pole N/(2p) is odd. The coefficient 7 is defined as

I
= 2.99
= s (2.99)
and the vectors of a- and B-axes components of resulting flux density as

T
Ba = [Bl,ot B3,cx B%,Lu B%+1,a Br—Z,u Br,cx} (2100)

T
BB = {BI,B Bsg ... B%‘LB B%/+]’B ... Biagpg BLB} (2.101)

In order to illustrate the mechanism of generation of air gap flux harmonics in
single-slotted machines, a machine with 12 slots per pole is excited with sinusoidal air
gap MMF containing only the fundamental harmonic in the amount of 1 p.u. and after
that with only 5. harmonic in the amount of 0.2 p.u., as shown in Figure 2.40. The
excitation with 1 p.u. of fundamental harmonic of MMF creates in this machine the 1.,
11., 13., 23., 25, etc., harmonics of air gap flux density. Without contribution of
evoked harmonics of MMF, the fundamental harmonic of flux density would be equal
to 1 p.u.; in reality, however, it is slightly increased due to action of slot harmonics.
The excitation with only fifth harmonic in the amount of 0.2 p.u. results in 5., 7., 17.,
19., etc., harmonics of air gap flux density corresponding to the scheme in Table 2.4.

In Fig. 2.41 the air gap flux density distributions in three machines with full-pitch
coils and various air gap geometries are shown. The machine denoted by “0” in
Fig. 2.41 has no teeth and/or poles (smooth air gap), the machine denoted by “2” has
two salient poles on one side of air gap and = 6,/(29,) = 0.288, whereas the machine
denoted by “12” has 12 teeth per pole pair on one side of air gap and r = 0.331.

1.27

0.4

0.2 B

-0.2-

Fig. 2.40 Air gap flux density in p.u. in a machine with 12 slots per pole pair excited by the
fundamental (white bars) and 5 harmonic (gray bars) of MMF
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Fig. 2.41 Air gap flux density in p.u. created by current through full-pitch coil in machines with
different air gap geometries and even numbers of slots per pole pair

The spectrum of air gap flux density in a machine with smooth air gap in
Fig. 2.41 is identical to the spectrum of applied MMF. The amplitude of a particular
harmonic of air gap flux density depends solely on the amplitude of air gap MMF
with the same order. In a salient pole machine the amplitudes of flux density
harmonics are lower due to relatively large interpolar space (Carter factor!). The
machine with 12 teeth per pole pair illustrates in the best manner the mechanism of
generation of a particular flux density harmonic through evoked harmonics. The
fundamental harmonic of air gap flux density is higher than in the machine with
smooth air gap, as a consequence of contribution of 11. and 13. air gap MMF
harmonics. Besides, the amplitudes of 11. and 13. harmonics of air gap flux density
in this machine are significantly larger than the amplitudes of their next neighbors,
since very strong fundamental of the MMF contributes to their creation.

One should note that slot harmonics of the order N/p £ 1 are 180° shifted to the
fundamental at the axis of slot 1. If the fundamental is oriented in the positive
direction of the axis of the first slot, the (N/p — 1)th and (N/p + 1)th slot harmonics
are oriented in its negative direction.
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Axis of slot 1

1 2 3 4 slot #

.
By sin —x

\4

T

Fig. 2.42 Slotted air gap represented with a constant term and fundamental harmonic of air gap
width along with the air gap flux density distribution created by the fundamental harmonic of MMF

Different phase shifts of adjacent slot harmonics are illustrated in Fig. 2.43, in
which air gap flux density distribution in a single-slotted machine with 12 teeth per
pole pair created by the fundamental component of MMF after Fig. 2.42 is shown.

The air gap flux density distribution in Fig. 2.43 with 12 slots per pole pair has
the fundamental harmonic with amplitude B; and two slot harmonics with orders N/
p+1=13and N/p — 1 = 11, as shown in Fig. 2.42

_o M N VE, o™ LI .
B%j[l(x)—®1261 [cos(p 1) Tpx cos<p+l) Tpx} —le_g_l(x)-i-B%H(x)

(2.102)
Slot harmonics with orders N/p &£ 1 are at minimum along the axis of slot 1,

where the fundamental is maximum, since the air gap width at this position is
maximum (slot!).
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Axis of slot 1

Fig. 2.43 Air gap flux density under one pole in a machine with N/p = 12 created by the
fundamental component of MMF and fundamental harmonic of air gap width of the order N/p. In
addition, two components of air gap flux density with orders N/p — 1 = 11 and N/p + 1 = 13 are
shown

In special case of N/p = 2 (salient pole machine), the fundamental component of
MMF (n = 1) creates

— A portion of the fundamental component (j = n = 1) of air gap flux density
when acting on constant air gap with width 9,

— A portion of the fundamental component (j = N/p — n = 1) of air gap flux
density when acting on a variable air gap with width §,, and

— A portion of the third harmonic component (j = N/p + n = 3) of air gap flux
density when acting on a variable air gap with width ;.

which can be described by equation

)
TNCH sinﬁx = 8B sin£x+ —131 sin(1 — 2)E (x - X0,1)
T T 2 T (2.103)
5 .
+ —133 Sil’l(3 — 2) E (x — x0_3)
2 T ’
as illustrated in Fig. 2.39.

In machines with odd number of slots per pole pair N/p the air gap flux
density distribution B(x) contains both odd and even harmonics
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Z B, cosn—(x—xc) (2.104)

n=0,1,2,..

in order to satisfy equation

B(x) - (80+81 cosﬁlx) =g - Z 0, cosn—(x—xc) (2.105)
P n=1.23,.

in which the MMF as well can have both odd and even terms. Note that the air gap
flux density spectrum contains a constant term By, as a result of interaction between
the N/pth harmonic of MMF and N/pth harmonic of air gap width. Flux lines of air
gap flux density B spread in axial direction and modify iron core flux densities in
the whole machine in the manner illustrated in Fig. 2.44.

Since iron core losses are proportional to the square of maximum flux density,
the shift of operating point of the machine’s magnetic circuit due to homopolar flux
results in increased iron core losses in the amount of (B()/Bm)2 [p.u.].

The relationship between MMF and flux density can be further written as

T Nr
Z Bcosz—(x—xc)+61 Z Bcos;—(x Xc)- COS——X
i=0,1.2,.. Tp J=0.12,.. Tp P

=g - Z @cosn—(x—xc)
n=123,.

(2.106)

Since N/p is an odd number, odd harmonics of air gap MMF can create only
even harmonics of air gap flux density, whereas even harmonics of MMF create odd
harmonics of flux density when interacting with the fundamental harmonic of air
gap width 6,. Following the same logic, odd harmonics of air gap MMF can create
only odd harmonics of air gap flux density, and even harmonics of air gap MMF
can create only even harmonics of air gap flux density when interacting with the
constant term of the air gap width §,. Therefore,

Fig. 2.44 Shift of flux A
density in iron core due to
homopolar flux

Bmax - BO
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E Bcosz—x—xc)
0,12,.

N . N . T
Z B-+cos Jr+—) - x—j+ x| —
2, &1 P Tp
. el 5)
Z B; cos||j-+ X—J_ X | —
2, 5. p T

o0

Z 0, cosn—x Xc)

n=1,273,...

i=l

(2.107)

If the applied air gap MMF distribution contains only odd terms, its nth har-
monic with an amplitude of ®,, creates in a machine with an odd number of slots
per pole pair N/p again three spatial harmonics of air gap flux density:

— B, (0dd), in the amount of py ®,/d,
— Byjp—, (even), in the amount of 2 py ©,/3;, and
— Bpjp+n (even), in the amount of 2 py ©,/3;.

with corresponding fluxes ®,, ®y;,—,, and ®py,,,,. The chain of generation of higher
harmonics of air gap flux density is identical to the one shown in Fig. 2.38.

By using Eq. 2.107 and Table 2.5, one can relate the amplitude of nth harmonic
of air gap flux density to corresponding applied and evoked MMFs as

T T
B,cosn—(x — x;) = @®ncosn—(x—xc)
T do Tp

Moy T e (niY
+281;®i§,ncosT {nx (n+zp>xc} (2.108)

p

- N
2@2 (Bl-ngncosE {nx - <n — i)xc}
S Tp p
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for n odd, and

T 3 & N
Bncosng X —X) —2— E: ,,,ncos— nx — n+z; Xc
1 T N
— Oy, cos— {nx— <n—z—)x}
2“0; iytn T p c

for n even, except for n = 0. The constant term of air gap flux density (n = 0)
representing homopolar flux is equal to

(2.109)

6 o0
By = —

N
@ cos <i—xc> (2.110)
2= 7 P

Components of air gap flux harmonics along perpendicular axes o and B satisfy
simultaneously two algebraic equations:

B, 4 cos n 6 cos| n+ N + o1 B cos N
n, n n s n—ri— |X —< by n—i—|Xx
o 250 ;0 p (Y 26() +,0 p c

o,
— “080 cosn%xo (2.111)

and

B, g sin Tc 8 sin| n+ 'N— + —81 B sin| n — ’N—
n, 11 n min-—+i1 X " n—i X,
P 260 B P 28, B p ¢

-@
:uOS—Omnn:—pxc (2.112)

for n odd, and

B Tt +iM) et 2p N 0
no COSH B,_ycos[n+i—|x.4+ =—=—B,4 qcos|n—i—|x. =
o 260 * P 280 T )4

(2.113)

) N ) N
B, p sinn%xC + 2_610B"7"B sin (n + i;)xc + 2_<31()B”+’ﬁ sin (n — i;)xc =0
(2.114)

for n even (no harmonics of applied MMF).



2.5 Air Gap Permeance, Carter Factor, Air Gap Flux Density Distribution 101

Denoting by index o the air gap flux components along the axis of the 1. slot,
and by B the air gap flux components 90° ahead, one can write a system of linear
equations which relate the air gap flux harmonics to the air gap MMF harmonics as

where
[t 0o o o0 o0 00 0 0 r r 0 0 0 O 0 0 0 0]
0 1 0 0 0 00 r 0 0 0O r 0 0 O 0 0 0 0
00 1 0 0 00 0 r 0 0 0 r 0 0 0 0 0 0
00 0 1 0 r 0 0 0 0 0 0 0 r 0 0 0 0 0
00 0 0 1 0 r 0 0 0 0 0 0 0 r 0 0 0 0
0 0 0 r 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 r 001 0 0 0 0 0 0 0 0 0 0 0 0
0 r 0 0 0 000 1 0 0 0 0 0 0 0 0 0 0 0
00 r 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0
c_|r 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0
=71y 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0
0 r 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0
00 r 0 0 000 0 0 0 0 0 1 0 0 0 0 0 0
00 0 r 0 000 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0o r 000 0 0 0 0 0 0 0 1 0 0 0 0
00 0 0 0 00 0 0 0 0 0 0 0 0 1o o0
00 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 r
00 0 0 0 00 0 0 0 0 0 0 0 0 ro0 1o
Lo 0o 0o o0 o 00 0 0 0 0 0 0 0 0 0 0 1]
(2.116)
and
T
B,g=[Bo Bia Bip Bay Bap ... Bu1u Bu1p Bus Bup]
(2.117)
Here again the coefficient » was used
31
r= (2.118)
2- 3

The vector of applied MMFs has only odd terms
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Ho

Qa.ﬁ - 870

0
O, cos %xc
O sin %xc
0
0
Oscos3 %xc
O3 sin3 %xe

©,_scos(n—2)L

B

®,_,sin(n — 2) X
0
0

¥

0, cos naXe
1 T

O, sinnx.
P

2 Windings

(2.119)

The previous considerations can be illustrated by means of Fig. 2.45, in which
the air gap flux density spectrum in a tooth-wound machine with N/p =3 and in a
machine with N/p = 11 are shown for a coil shift of x.,; = 0. The spectrum of
applied MMF in the machine with N/p = 3 contains both odd and even harmonics,
and in the machine with N/p = 11 only odd harmonics were present. In both cases,
however, even harmonics of air gap flux density, including the homopolar flux, are
generated. The amplitudes of air gap flux density harmonics in Fig. 2.45 are shown
along with their phase shifts.

1.2

0.8 -

0.6 4

0.4/

o3

0.2 -

o111

-0.2

—h

-0.4

Fig. 2.45 Air gap flux density harmonics in p.u. created by current-carrying coil in machines with

3 and 11 slots per pole pair
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Slot harmonics with order N/p 4 1 are in both machines even and have rela-
tively large amplitudes. Besides, a homopolar flux is generated, which is propor-
tional to By.

The two components of air gap flux density with period lengths of t,/(N/p &+ 1)
are sources of higher harmonics in the induced voltage, pulsating torque on the
shaft, and vibrations due to pulsating radial forces. For these reasons, the ampli-
tudes of the two components of flux density must be reduced.

Pitch factor for slot harmonics of order N/p £ 1 is equal to (see Eq. 2.21):

. (N ym . [Nymn ym . y
fon :sm(—:lzl> ——=sin| —%=-*+—=| =sin{yn +——
ppEl P Tps 2 p zﬂp 27 12 Tps 2

— +sin 2T (2.120)

which is the pitch factor for the fundamental. Since the coil pitch is selected in such
a manner as not to decrease too much the fundamental, the pitch factor for air gap
slot harmonics with orders N/p + 1 is high. Pitching the coils cannot fight slot
harmonics.

Fig. 2.46 Axial skewing of a
conductor for an angle 3

One recalls that higher harmonics of the MMF can be reduced on the coil, pole,
and/or fundamental pole basis. In all three cases, the coil parameters in circum-
ferential direction are modified. In heteropolar machines, the coil geometry offers a
possibility of impacting the air gap quantities by skewing the coils in axial direc-
tion, as shown in Fig. 2.46.

Effects of skewing in Fig. 2.46 can be illustrated in the circumferential-axial (x,
) plane in the manner shown in Fig. 2.47. The black drawn coil has a pitch y and is
skewed for the amount of u
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u=pB-R (2.121)

The fundamental component of air gap flux density can be written as

Bi(x) = Bunax sinl_ﬁx (2.122)
p

The amount of flux concatenated by the skewed coil in Fig. 2.47 is equal to

| Xo+5z+y
lrg
O, = By sin— xdxdz =
T um?

p
0 x +%Z

. T . T . T . T
. [— sin—xp + sin— (u+xp) + sin— (y +x0) — sm(u—l—y—i—xo)}
T T T

T P P P
(2.123)
or, after some trigonometric simplifications
i B
2 sin =& 2
(I)l = _lTmeax . B—2 . sin (lE) . sin <M£) (2' 124)
b1 Ba Tp2 2 Tp

2

As expected, the flux concatenated between the fundamental component of air
gap flux density and a coil is a function of coil shift xy. The concatenated flux is
reduced by two factors: the pitch factor, and the skewing factor f ;

in Be
n3

far = (2.125)

N"@

where

Bel:p'B:p'% (2.126)

The skewing factor is a measure for loss of flux due to skewing and is always
less than one. For an arbitrary nth harmonic, the concatenated flux is equal to

Ba

2 sin 2
O, = = 1ty Bonay - "2 gin(n 2T . g (o uY T (2.127)
T & sz 2 Tp

and the skewing factor f ,:
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i g Pel
sinn o
W = —p (2.128)
ns
If the machine is skewed for one slot pitch
2Rm u 2n
=— =p-—=p— 2.129
u=—r; Pa=p p=pry (2.129)
Fig. 2.47 Representation of T u
a skewed coil in the P >
(x, z) plane S
4
Xo+Z-U /¢
A
/
z
B -B
|l v
Xo y
0
the skewing factor becomes
sinnp
skn = p (2.130)

The skewing factor for slot harmonics of the order n = N/p + 1 can now be
expressed as

in(X s .
. :sm(pzl:l)l?/v:ismpﬁ 1 — 2y 1
sk.]—)il (%:I: l)p% p% %ﬂ:l sk, %:l: 1

(2.131)

By skewing the slots for one slot pitch, the amplitude of the nth harmonic of
concatenated flux decreases to 1/(N/p £ 1) of the amplitude of the fundamental.
Slot skewing is the only efficient means to decrease the amplitudes of slot har-
monics in the air gap flux density distribution.
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2.5.4 Magnetic Gears

Relationships between the orders of harmonic in a single-slotted air gap, summa-
rized in Tables 2.4 and 2.5, can be illustrated by the example of magnetic gears, as
shown in Fig. 2.48. The magnetic gear in this figure has three concentric shells,
each of which can freely rotate. The outer and inner shells carry excitation, usually
permanent magnets, and the intermediate shell is used to modulate the permeance
between the two.

Denoting by n the number of pole pairs of the inner shell, by k the order of
lowest harmonic of the air gap permeance created by the intermediate shell, and by
¢ the number of pole pairs of the outer shell, one can express the condition for
interaction between harmonics given in Tables 2.4 and 2.5 as

k=n+l (2.132)

If the sign of ¢ in Eq. 2.132 is positive, the inner and outer field must rotate in
opposite directions in order to build a torque with the given number of poles of the
intermediate shell. If the sign is negative, both inner and outer shells rotate in the
same direction.

Gear ratio i, i.e., the ratio between speeds of outer and inner shells is obviously
equal to

i:; (2.133)

Outer shell:
2/ poles

Intermediate shell:
2k poles

Inner shell:
2n poles

Fig. 2.48 Magnetic gear. Shaded area iron; gray area magnets; white area non-magnetic
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2.5.5 Flux Density Distribution in the Air Gap
of a Double-Slotted Machine

Consider a double-slotted machine, the air gap width of which is described as

(o) (o)
d(x) =8 + Z O, cosilﬁix—i- Z O cosj%E(x —x0) (2.134)
i=135,.. P i35, P

where index “s” is related to stator, and “r” to rotor quantities, and x, is the rotor
shift. A double-slotted machine with excitation on both sides of the air gap is shown
in Fig. 2.49.

Due to their minor influence on machine performance, higher harmonics of
stator and rotor air gap widths can be neglected. With this assumption, one can
write for air gap quantities

Ny N: @
B(x,x0) - {60 + 851 COS— — X + ;1 cOs —— (x — xo)}
: P T P Tp

(2.135)
[ Z ®wcosn—x+ Z O, cosk— (x—xo)]
n=1,35,. k=13.5,.
where
o0
B(x,xo) Z B; cosz— (x — x;) (2.136)
i=0,12,... Tp
x=0
Ts,s
] Ne 1 2 3 4  Statorslot#
X (O]
X (O]
Tsr N 1 2 3 Rotor slot #
Xo

Fig. 2.49 Double-slotted air gap with stator and rotor excitation
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The nth harmonic of total (stator plus rotor) applied MMF can be written as

0O, = O, max cosnE (x—¢,) (2.137)
, %
where
2 2 T
O, max = \/®g . T 0, +20,0,,cosn—x (2.138)
, s, ) ; T
and

®r,n sinn %XQ

2.139
O, + 0O, ,cosn TTE,XO ( )

Tp
&, = ;arctan € & =

The shift &, denotes the position of maximum of total MMF. Constant term in
the flux density spectrum By is generated when either Ny/p or N/p is odd.
Accordingly

Z Bcosz— (x—§&)

i=0,1,2,...

Ng
+ 8.1 Z B COSJ (x—ij) cos—TEx
P T
SO . (2.140)
+ 81 Z By cos k— (x—&k)-cos—ri(x—xo)
k=012,.. P T

Z ®n.max cosn E (x - E.'n)
) T,

n=135,...

o

g
)+ (o 30)]

N 52
6r, o T Nr Nr o) T
! Z VVB]A)OS}[*{(;*/C) cx+k- <ék* X0>:| = Ho Z ®n.muxcosn?(x7én>

n=135,... P

(2.141)
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A N N
o TC
- {n—r]xo—ﬁ_,n 0,
Py p »
=a +90%)
B el Ns T &
——Gqp 2pg n+—=—
P Tp 4
O
nién i ZHO n—=r
p 2ug n+—=%
0
—OBH iB
\ Ho 2],10 n——->=
y
>
0 o = Axis of slot 1

Fig. 2.50 Illustrating the relationship between MMF and flux density harmonic components in a
machine with double-slotted air gap

Assume for the purpose of simplicity that both Ny/p and N/p are even. The nth
(odd) harmonic of applied MMF creates five components of flux density with the
same order n (Fig. 2.50):

— B, (0dd), in the amount of py ®,/3,

— B,_y,p (0dd), in the amount of 2 py ©,/5;,

— By, yn,/p (0dd), in the amount of 2 py ©,/3,,

— B,_n,/p (0dd), in the amount of 2 py ©,/8,, and
— B, yn,/p (0dd), in the amount of 2 py ©,/3;.

which satisfy equation

35 N.
1o ®p max COS 1 T (x —&,) = 8B, cos nt (x—¢,)+ ‘—'1an& cos - {nx — (n + —g> én:|
T T 2 » Tp p
55,1
B

T N e+ S B T N; E 4 N;
—_ NCOS— |NX — | B — — rCOS— [nX — (n — — — X
2 n+l_‘ Tp p n 2 )17/)—} Tp P n p 0

T 5r,1 B T Nr & Nr
—_ NMCOS— |INX — | N —— — — X
2 n+7 tp p n P 0

The nth harmonic of total (stator plus rotor) applied MMF contributes to the nth,
Nyp — n, NJp + n, NJ/Jp — n, and N,/p + n harmonics of the air gap flux density,
since these harmonics, when modulated with corresponding slot harmonics, have
the same order equal to n.

+

(2.142)
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Initial terms of the chain of generation of flux density from a single harmonic of
total applied MMF is shown in Fig. 2.51.

By using the scheme in Fig. 2.51, one can generate Table 2.6 in which the
relationship between applied and evoked MMF harmonics on one side and air gap
flux density harmonics on the other is given. Here symbol v is used to denote the
number of slots per pole pair on one side of the air gap, and p on the other. Normal
font letters denote harmonics due to v, and italic styled those due to p. Harmonics
denoted by bold letters contain components due to both v and p.

Fig. 2.51 The beginning of bn
gle c.ltlai?1 of genpratfion of flux / br-Ns/p
ensity harmonics from a BrNs/ 9N/
single harmonic of total n-nsip nsip bn-2Ns/p Sn-2Ns/p

applied MMF in a

double-slotted machine

Bn+Nsip— 3n+Ns/p\’ bn+2Ns/p—> Sn+2Ns/p
\ bn+Ns/p

@n - Bn bn

%y bn-Nrp

Bn-Nr/jp —> Sn-Nrp £ bn-2Nrp —> n-2Nr/p

Bn+Nr/p > Sn+Nrip §: bn+2Nr/p—) Sn+2Nrip

bn+Nr/p
bn

Using Eq. 2.142 and Table 2.6, one can relate the amplitude of nth harmonic of
air gap flux density to corresponding applied and evoked MMFs as

T T
B,cosn—(x—§,) = E@njma,( cosn—(x —§&,)
T do Tp

Ho o

+2§12®i%ncos—{nx <n+z—> }
Ho S
S et - 2)

N;
+2HOZ®M cos—[nx (n—l—l—)( —I—;xo)}
Ho N
+2—>» On,  cos— n—i— n — X
P e I Car]

Components of air gap flux created by applied MMF harmonics along perpen-
dicular axes o and B in Fig. 2.50 satisfy for i = 1 simultaneously two algebraic
equations
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N, o N,
B, cOs n— &n 4 COS ( S) £, + ! BH 4 COS (n - —S) g,
280 P p

o1 N N;
+ —By_scos(n+— &, + —x
23 P p
) N, 0,
+—1Bn+acos n—— in——rxo _Ho
28, ’ p

cosn_— &n
(2.144)
and

) N, 1) N,
B,,asinsnlén—i——an,asin n+ — E,+ 1B,Hmsm n—— &,
’ T 260 ' P 250 p

(2.145)

By applying the principle of orthogonality of trigonometric functions through
the separation of sine and cosine terms, one can derive from Eq. 2.143 a system of
2n + 1 algebraic equations (one for the constant term plus two for each harmonic)
for air gap quantities in a doubly slotted machine:

(gs,ﬁ +£r,5) . Ba,B = &o(_yﬁ (2146)
where the solution vector of air gap flux density harmonics B, g is defined as

EqVB:[BO Bl,cx BI,B BZA,a B2,B Bn—l,u Bn—l,B Bnﬁot Bn,B]
(2.147)

By making use of substitutions

8s,l . 6r.1

(2.148)

one can define the system matrices Css (Eq. 2.149) and C, s (Eq. 2.150) as
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rs
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Ts
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It

e

It

(2.150)

The vector 9, representing applied MMFs is equal to
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_ 0 -
O, + O, cos %xo
®r,1 sin %X()
B2+ 0O c082 %xo
B2+ O, ,sin2 %X()
O3+ 0, 3c0s3 %xo
®r,3 sin 3 %XQ

_ ko
Sup =, (2.151)

®s,n—2 + ®r,n—2 COS(” - 2) %X()
®r,n—2 sin(n — 2) r—T:)XO
O;—1 + 0O, cos(n — 1) %xo
@rﬂ,l sin(n - 1) %XO
®s,n + O, , cosn %XO
O, sinn %xo

In Fig. 2.52 the results of analysis of air gap flux density in a machine with 18
stator slots per pole pair, ry = 81/(28¢) = 1+ = 6;,1/(280) = 0.33, and

(a) 2 rotor poles;
(b) 14 rotor slots per pole pair; and
(c) 20 rotor slots per pole pair

are shown.

The machine with 2 rotor (salient) poles has a spectrum similar to that of a
machine with smooth stator and salient poles, as shown in Fig. 2.33—both fun-
damental and 3. harmonic of the air gap flux density are lower than in case of
completely smooth air gap, as a consequence of 180° phase shift of rotor slot
harmonics. In addition, stator slot harmonics (17. and 19.) are stronger than their
next neighbors.

In the machine with 14 rotor slots per pole pair, both stator (17. and 19.) and
rotor (13. and 15.) slot harmonics are strong as compared to their next neighbors.

The air gap flux density in the machine with 20 rotor slots has a very strong peak
at the common slot harmonic of the order 19 (=20 — 1 = 18 + 1). This high peak is
typical for all machines with slot combinations Ny — N, = £2p.
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Fig. 2.52 Air gap flux density harmonics in p.u. created by currents through a stator and a rotor
full-pitch coil in machines with doubly slotted air gap, 18 stator slots per pole pair and 2, 14, and
20 rotor slots per pole pair

The spectrum of air gap flux density harmonics in a machine with equal number
of stator and rotor slots is shown in Fig. 2.53, along with the spectrum of air gap
flux density harmonics in a machine with the same number of stator teeth and
smooth rotor.

Various factors affecting the amplitude of the nth harmonic of MMF can be
expressed in terms of the winding factor for the nth harmonic f,, ,, defined as

Jwn =Jon Jfon fon * fskn (2.152)

By dividing the winding factor for the nth harmonic through the Carter factor,
one obtains the excitation efficacy factor f,. , for the nth harmonic

Jwn

ﬁieﬁn - kC

(2.153)
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O2x12
a12

Fig. 2.53 Air gap flux density harmonics in p.u. created by currents through a stator and a rotor
full-pitch coil in a machine with doubly slotted air gap, 12 stator slots per pole pair and 12 rotor
slots per pole pair (denoted by “2 X 12”). The spectrum of air gap flux density in a machine with
12 stator teeth and smooth rotor (denoted by “12”) is shown as reference. The two spectra differ
only slightly from each other

Physical meaning of the excitation efficacy factor becomes obvious when one
analyzes the relationship between the nth harmonic of flux density and MMF which
created it:

On _p . S0% o 4 fun_p o SING Ho
kc -0 n 0 = kC n )

4
B, =1 = Seem  (2.154)

The excitation efficacy factor determines how much flux density the
ampere-turns / - w can generate in an air gap with a width §.

2.5.6 Flux Density Distribution in Eccentric Air Gap
of a Single-Slotted Machine

Air gap width in a single-slotted machine with eccentric rotor can be described by
equation

N
d =8y + 9y cos—i(x—xr)Jrs cosi(x—xr) (2.155)
P T
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Air gap flux density created by odd harmonics of MMF contains harmonics of
the order O, 1, 2, 3,..., etc., as discussed in previous sections. In special case of
salient pole machine with p = 1, the air gap flux density can be expressed as

8:80+510052§(x—xr)+8 cosrﬁ(x—xr) (2.156)
p p

The fundamental spatial component of MMF ©®; creates homopolar flux density
By, the amplitude of which varies with period length of 2 t,, along with the
fundamental B; second B,, and third harmonic B; of air gap flux density. The
amplitudes of all harmonics with order equal to or larger than 1 pulsate with period
length of T,

2.5.7 The Influence of Saturation

In the previous sections it was assumed that the MMF drop across iron core is
negligible and only those additional harmonics of air gap flux density were cal-
culated, which originated in non-even air gap width. In reality, however, the MMF
drop across iron core cannot be neglected (Fig. 2.54).

Fig. 2.54 Flattening of the A Li B_H
air gap flux density Bs e inear - curve

distribution created by the
fundamental harmonic of
MMF and saturation in iron in
a machine with constant air

gap

Nonlinear B-H curve

21,

>
X

Although there exists no analytical expression for B-H curve of iron core and,
therefore, the decrease of flux density for a given MMF can only be described
qualitatively, the orders of harmonics of air gap flux density due to saturation along
with their influence on machine performance can be precisely quantified.

Flattening of air gap flux density distribution due to saturation in iron is a source
of additional odd harmonics in its spectrum. Harmonics due to saturation act in
rotating field in a different manner than harmonics created by discrete winding
distribution.
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Case Study 2.2: The influence of machine topology on ampere-turns demand for
a given air gap flux density and on the amplitude of its pulsating component will be
illustrated on five representative machine types:

— Large cylindrical rotor synchronous machine;

— Medium-size squirrel cage induction machine;

— Large low-speed surface-mounted permanent magnet machine with distributed
stator windings;

— Large low-speed surface-mounted permanent magnet machine with
tooth-wound stator;

— Large high-speed tooth-wound machine with embedded magnets in flux con-
centration geometry with data as described in Case Study 2.1.

The machines were analyzed from the point of view of excitation demand and the
amplitude of the pulsating component of air gap flux density. The results of analysis
are presented in Table 2.7.

The large wound rotor synchronous machine has a wide air gap and, therefore, a
Carter factor close to one. The pulsating component of the air gap flux density due
to stator slots is very low (4.1 % of the average). The excitation efficacy factor for
the fundamental harmonic of flux density is rather high (0.893), which means that
almost 90 % of a single coil ampere-turns produce the fundamental component of
the air gap flux density. The value of excitation efficacy factor of 0.893 is taken as
100 % in this comparison.

The medium-size squirrel cage induction machine has high excitation efficacy,
along with considerable amplitude of pulsating component of flux density due to
slotting. The relatively high amplitude of B after Eq. 2.39 generates surface losses
in the rotor, which, however, are not critical because the rotor magnetic circuit is
laminated. Local effect of pulsating air gap flux density—attractive force between
stator and rotor iron surfaces proportional to the square of flux density—can be
large enough to generate vibrations and audible noise in this machine.

Permanent magnet machines in Table 2.7 have poorer excitation efficacy basi-
cally due to two reasons: a larger Carter factor, and, in case of tooth-wound
machines, a poorer winding factor caused by large slot openings. The poorest
excitation efficacy factor characterizes the tooth-wound surface-mounted PM
machine, in which slightly more than 50 % of available ampere-turns can be uti-
lized for generation of the fundamental component of air gap flux density. In other
words, in order to produce the same magnitude of air gap flux density, the field
winding of a wound rotor synchronous machine has to generate only 60.5 %
(=0.54/0.893) of ampere-turns created by permanent magnets in a tooth-wound PM
machine with equally wide air gap. This is another reason for supremacy of wound
rotor over permanent magnet machines.
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Table 2.7 Comparison of crucial parameters of AC machines

119

Cylindrical rotor | Squirrel cage | PM surface | PM surface |PM flux
synchronous induction mounted mounted concentration

Stator winding Distributed Distributed Distributed | Tooth Tooth wound

wound

Air gap radius 440 155 2400 1500 600

Poles 2 4 84 70 20

Stator slots 42 48 288 72 30

Pole pitch 1382.3 243.5 179.5 134.6 188.5

Slot width 26.6 35 23 70 56

Stator slot height 200 40.5 117 150 156

Axial length 3420 380 770 480 700

Coil pitch 17 10 3 1 1

Slot-opening factor | 1.00 1.00 0.993 0.892 0.964

foa

Pitch factor f,, | 0.956 0.966 0.981 0.999 0.866

Air gap width 35 0.9 6 5 75

Carter factor k¢ 1.07 1.082 1.236 1.65 1.364

By/By (%) 4.1 37.2 36.7 752 58.9

Excitation efficacy | 0.893 0.893 0.788 0.54 0.612

Seen (100 %) (100 %) (88.3 %) (60.5 %) (68.5 %)

2.6 Time-Dependent Excitation, Rotating Field

Generation, MMF Wave Speed, Positive

and Negative Sequence Components

Rotating field in the air gap of electric machine is generated either mechanically, by
rotation of current-carrying coil(s), or electrically, by supplying stationary or
rotating winding(s) by alternating or constant current(s) respectively, see Table 2.8.
Only those stator and a rotor harmonics of the air gap MMF which rotate at the
same speed can generate a torque with an average value different from zero and
produce mechanical work. Assuming that stator winding generates a rotating field
which revolves at synchronous speed n;, mechanical work will be produced if:

— A DC-excited rotor rotates at synchronous speed, whereas the DC excitation is
generated either by a constant current flowing through a coil, or by permanent

magnets; and

— AC-fed windings generate rotating field with speed of rotation relative to the
stator rotating field equal to zero.
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Table 2.8 Modes of rotating field generation and results of their interaction

Windings

Stator
At standstill Rotating
Polyphase excited DC fed |DC fed
Rotor | At Polyphase Rotary phase shifting - -
standstill excited transformer
Rotating DC fed Synchronous machine - Clutch
AC excited Induction machine Brake -

One should keep in mind that spatially distributed electromagnetic quantities in a
machine—its current sheet, MMF and flux density distributions—are periodical, as
is the current, flux, induced voltage, etc.

Fig. 2.55 The fundamental component of stationary air gap MMF 0;(x) = O . sin
(m/ty, - x) represented in the complex circumferential space by means of complex conjugates

. _imy
®1.maxe/[p and G")l,maxe &

Although the current and the MMF have the same dimension [A], these two
quantities have different physical meanings and properties. Current [ is a scalar,
which alone cannot create physical effects in the air gap, because it does not carry
information on position of conductor in the air gap. Only if the current flows
through a spatially distributed winding, it can influence the electromagnetic con-
dition of the air gap.
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Whereas the alternating current can be represented in the complex plane in the
manner shown in Appendix, one more dimension—the circumferential coordinate
—is necessary in order to represent the air gap MMF correctly. This can be done in
the complex circumferential space, as shown in Fig. 2.55. The complex circum-
ferential space emerges from the complex plane, through the origin of which the
machine circumferential coordinate goes perpendicularly into the plane.

The value of the fundamental component of MMF at a given circumferential
coordinate x in Fig. 2.55 is proportional to the sine of angle n/t, - x. By applying
Euler’s equation, a sine function of a real argument is represented in the complex
plane as a sum of complex conjugates, whereas the real argument can be time,
space, or both of them

(2.157)

j (%x—wr) —j (%x—o)t)
(T € —e
O (x,7) = Oy max Sin (T—x — cot> = O1 max
p

. j(tlx—mt) (le—m) . .
The two functions O maxe \" and O e\’ in the complex cir-

cumferential space (Re, Im, x) are spirals with radius ® ;,,,x and axis coincident
with the x-axis. Their projections to the complex plane (Re, In) are located on a
circle with radius ©; .« and angles £ arc sin (w/t, - x — @ - 1), as shown in
Fig. 2.55.

At a given time instant the coil current is constant and the MMF distribution
along the x-axis is stationary. As the circumferential coordinate x increases, the
positions of the corresponding points in the complex real space begin to slide along
the two MMF spirals. The difference of the associated complex conjugates divided
by 2j lies on the real axis of the complex plane and gives the amount of corre-
sponding MMF.

=]

. J lefmt) —j (Tlemt) . .
The spirals @ max€ (" and Oy mye " \" in the complex circumfer-
ential space determine the character of the air gap MMF in the following manner:

— Stationary air gap MMF created by a constant current through coil(s): one set of
stationary spirals as in Fig. 2.55, the radius @ ,,x of which is determined by the
amount of coil current;

— Rotating air gap MMF created by a system of coils: one set of spirals with
constant radius ©; .« as in Fig. 2.55, rotating in the positive direction;

— Pulsating air gap MMF created by a single coil: two sets of spirals with constant
radius ® . as in Fig. 2.55, rotating in opposite directions.
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2.6.1 MMF Waves Generated by Rotating DC-Fed Coil(s)
on One Side of Air Gap

A DC-fed coil shifted for x, from zero point of the circumferential coordinate
generates the air gap MMF distribution
o0

O(x,x0) Z smn—(x—xo) (2.158)
n=123,. Tp

If the coil rotates at velocity v = xy/t, its air gap MMF distribution rotates too:

(o)
E 0, smn—(x— V-t (2.159)
n=123,. Tp
zzzzzzzzzzzzzzzzzzziza7zzzzazz7??zdzZz
t=t,
7
7
® ° t=t
Y
(S
o(x, t1) O(x, t)
X
} }
0 Tp 2TP

Fig. 2.56 Air gap MMF created by rotating coils fed from a DC source

The velocity of the nth harmonic of MMF is evaluated by setting the corre-
sponding argument of sine function to a constant, the physical meaning of which is
a (constant) distance between the observer and the zero crossing point of the MMF:

nTE (x —v-t) = const (2.160)
p
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the time derivative of which gives the relative velocity v, between the observer and
zero crossing point of the air gap MMF. By setting the relative velocity v, equal to
zero (the observer does not move relative to MMF), one obtains for the velocity v,
of the nth harmonic of the MMF

Vy, =

dx
—= 2.161
=" (2.161)

i.e., the nth harmonic of the MMF wave generated by rotating DC coil rotates at a
circumferential velocity equal to the coil velocity. Since all higher harmonics travel
at the same velocity as the fundamental wave of air gap MMF, they do not move
relative to each other and the air gap MMF distribution retains its shape all the time,
as shown in Fig. 2.56.

From the point of view of air gap MMF generation, permanent magnets have
identical properties as DC-fed coils.

2.6.2 MMF Waves Generated by Symmetrically Wound
Stationary Coils Carrying Symmetrical Alternating
Currents on One Side of Air Gap

Consider now a single full-pitch coil per pole fed from an AC source
= Zlkcosk(wt— ©r) (2.162)
k=1
If the coil axis is shifted for x,, its MMF is equal to
in 2

o0 o0 T
w Z Zlkcosk (ot — @) fo,,smnr—(xfxo) (2.163)

n=123,... k=1 p

O(x, xo, 1)

FH-lk

The MMF distribution created by an alternating current does not qualitatively
change its form; quantitatively, the MMF changes proportionaly to the coil current.
The kth time harmonic of current creates a spatial MMF distribution component
®k(-x9 X0, t)
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4 o sin %t .m
Ou(x, X0, 1) =—w Y Icosk(wr — @) - fansinn—(x = xo) (2.164)
n=135,... no p

The nth spatial harmonic of MMF distribution @y ,(x, xo, 1)

4 sin@®
2
O (x,x0,1) = Ik .EW.

S SinnTE(x —xp) - cosk(ot — @) (2.165)
p

is a standing wave

On(x, X0, 1) = Oppmax - SINA - (x — xg) - cosk(of — @) (2.166)
, .

which can be represented as a sum of two waves with equal amplitudes traveling in
opposite directions

O (x,x0,2) = % . {sin {k(mt — @) — nrﬁ(x - xo)} + sin [k(wt - ¢p) +n1_£ (x— xo)} }
P P

(2.167)

The component of wave in Eq. 2.167 traveling in the positive direction is called
the positive sequence, and that traveling in negative direction, the negative sequence.

The traveling speed of the two waves is obtained by setting their arguments to a
constant, and differentiating thus obtained equation with respect to time

d dx
a {k(mt — @) n% (x —x9) = const} = n%a = t+ko (2.168)

As a result, the circumferential velocity v, and mechanical angular speed €y,
of the kth time and nth spatial harmonic are obtained

k k
AL B¢ W (2.169)
’ n m np

The positive sign in the velocity equations is related to the positive sequence
component of MMF, and the negative sign to the negative sequence component of
MMF. The higher the order n of a spatial harmonic, the lower its speed of prop-
agation through the air gap. This principle is a consequence of the condition that
after one period T of current, i.e., at time instant 7 + 7, the spatial distribution of
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MMF has to have the same shape as at time instant z. This condition is fulfilled only
if each spatial harmonic covers a distance of 2ty/n within time 7, n being the
harmonic order.

i=—1
5 ' max

i=—51max i =————1Imax

-1 1l

Fig. 2.57 Air gap MMF created by one stationary full-pitch coil per pole fed from an AC source.
The total (pulsating) MMF is represented with a solid black curve, the total positive sequence
component with a solid gray, and the total negative sequence component with dashed gray curve.
Time step between figures is 30°

The nth spatial harmonic of MMF, created by the kth time harmonic of current,
travels k times faster and n times slower than the fundamental. This means that
spatial harmonics created by alternating current travel relative to each other, as
opposed to spatial harmonics created by DC-carrying coil rotating at angular speed
Q, which all travel at the same, mechanical speed of rotation.
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i=—1I
2 max

QOO™._~_ Qo0

Fig. 2.58 Air gap MMF created by three stationary coils per pole with y/t, = 7/9, carrying the
same alternating current. The maximum value of resulting MMF is 3 p.u. The total (pulsating) MMF
is represented with a solid black curve, the total positive sequence component with a solid gray, and
the total negative sequence component with dashed gray curve. Time step between figures is 30°

Since the spatial harmonics created by alternating current move relative to each
other, their sum—the total MMF—changes permanently its shape in time. This is
illustrated in Fig. 2.57, in which the total MMF created by a full-pitch coil, along
with its positive and negative sequence components within one half period of the
coil current are shown.

In Fig. 2.57, the peaks of positive and negative sequence MMFs, which are fixed
to the left-hand side and right-hand side of each conductor, can be recognized. At
these points the MMF distribution changes abruptly its slope, i.e., its first derivative
is discontinuous. Since Fourier series representation is defined only for
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continuously derivable functions, it cannot deliver proper results at points of dis-
continuity (Gibb’s phenomenon).

Air gap MMF distribution created by three coils with shorted pitch 7/9 is shown
in Fig. 2.58. The total MMF pulsates, as is the case with the MMF created by a
single coil. In the higher harmonics spectrum of the total MMF some terms from the
spectrum of a single coil are either missing, or suppressed. Therefore, both the
positive and negative sequence components in Fig. 2.58 have waveforms much
closer to sine function than in case of a single coil in Fig. 2.57.

Consider now a set of 2m identically wound groups of q coils placed in adjacent
slots in interval (0,27;) along the circumferential coordinate x. In case of pole
symmetry, oppositely wound coils are shifted for t, and carry the same currents as
their counterparts. Therefore, only m sources (phases) with a phase shift of 2n/m are
needed. The fundamental spatial harmonic (n = 1) of MMF created by the funda-
mental harmonic of current (k = 1) in the jth coil group (j = 1, 2, ..., 2m) is equal to

= T {sin[(wt —¢yy) — % (x _XOJ):| + sin{(wt —,)+ %(x —XOJ)] }
(2.170)

with xy ; standing for the coil group axis shift along the circumferential coordinate x,
©1.1.max for the amplitude of the fundamental time and spatial component of the
MMF created by one coil group per pole pair, and ¢, ; for the phase shift of the
fundamental current harmonic in the jth coil group. Denoting by v, ;.. the argument
of the positive, and by v, ;- of the negative sequence MMF

T T
Yijo+ = (o — (Pl,j) - a (x — x0,); Yij- = (or — (pl.j) + a (x = x0,)
(2.171)

one can further write

®1 1,max . ®1 1,max
110 30,,1) = =575 sinyyy .+ =3

~sinyy ;- =011+ + O -
(2.172)

The total positive sequence MMF is maximum if arguments v, ;, are equal for
j=1,2, ..., 2m. If the condition of equal arguments is applied to arbitrary coil
groups i and j, the equation is obtained

Vigs =Yg = (0 —0p,) — TE (x —x04) = (01 — (Pl,i) - TE (x = x0;)
b b

(2.173)
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the solution of which is a phase angle of the current in jth coil group for which the
positive sequence MMFs of the ith and jth coil group, ®;;;, and ®; ; ., are in
phase

T
(‘DlJ = (Pl,i + ‘E_ ()C()J —)C()Y,') (2174)
p

Positive sequence MMFs O, ; ; , and ©, ; ;, created by two coil groups the axes
of which are shifted along the circumferential coordinate x for xo; — xo; are in
phase if and only if the coil group currents are out of phase! Phase shift between
coil group currents ¢;; — ¢y ; has to be equal to the electrical angle (xo; — xo )/t
between the coil group axes. Arguments v, ;. and vy, ;. of the positive sequence
components ®; ;,;, and O, ;. in the ith and jth coil group are in that case equal

T T T
Tijoy = |0 =@y —— (Y0, —x03) | = — (x = x0;) = (0 = @) — — (x — x04)
Tp T T
=Y+
(2.175)
The angle between the negative sequence components ®; ; ;- and ® ; ;  created
by the coil group j and i can be written as
T T
Ym,—vm,:Om—wu)+;(x—mﬂ—%w%%mﬂ—;%x—mﬂ
P P (2.176)

ZZ%QW—%D

Previous considerations are illustrated in Fig. 2.59, in which the MMF com-
ponents created by two out of phase currents flowing through two coil groups at a
given time instant ¢ are shown. Phase shift between the currents is equal to the
electrical spatial angle between the axes of two coil groups. A; in Fig. 2.59 denotes
the distance which the positive sequence MMF of the ith coil group has passed at a
given time instant. At the same time, the negative sequence MMF of the ith coil
group has passed the distance —A;. Similar considerations are valid for the jth coil
group and the distance A;.
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Fig. 2.59 Fundamental components of air gap MMF created by two stationary coil groups per
pole fed by currents shifted for an angle equal to the electrical angle between the coil group axes.
The two positive sequence components add algebraically, because the angle between them is
permanently equal to zero. Phase shift between negative sequence components is equal to the
twice the electrical angle between the coil axes. For the purpose of simplicity, only the positive
half waves of the MMF components are shown

Whereas for a given phase shift between the coil group currents at each time
instant the positive sequence components of the MMF created by the ith and jth coil
group, O, ;, and ®, ; ., overlap along the circumferential coordinate, the nega-
tive sequence components O, ; ; — and ®; ; ; - remain shifted for the amount of 2(xo,
j ~ Xo), as shown in Fig. 2.59. If the phase shift between currents in two coil
groups is equal to the electrical angle between the coil group axes, the resulting
positive sequence of MMF is twice as big as its single component, and the resulting
negative sequence of MMF is smaller than the algebraic sum of components ©, ; ; —
and O ;-

If the arbitrary distribution of 2m identical coil groups along the two poles 2 1, is
now modified in terms of fixing the shift between adjacent coil groups to t,/m

Xo,i41 = Xo,i + B Xo,1 + i (2.177)
m m
and the phase shift between currents in adjacent coils accordingly to n/m

T i T
. o . — i —_— i p— i — '7 2-178
Prit1 (Pl,z'f‘rp (X0,+1 xo,) ?, +m (P1,1+lm ( )

the argument of the positive sequence MMF created by the ith coil group is
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T T

Ve = (01=01,) ~ = (x=x0) = (@1 —01) — = (r=x01)  (2179)
P P

i.e., the same as for the first coil group. In other words, all positive sequence
components are aligned along the same (radial) axis at each time instant.
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Fig. 2.60 Schematic representation of a symmetrical winding carrying symmetrical currents. As a
result, the total negative sequence MMF created by fundamental components of MMF is equal to
Zero
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Fig. 2.61 Air gap MMF created by three groups of three stationary coils per pole with y/t, = 7/9,
carrying AC 60° out of phase in each coil group. The scale on the y-axis is in p.u.; 0.5 p.u.
corresponds to the amplitude of positive sequence MMF created by a single coil group. The total
MMF is represented with a solid black curve, the dominating resulting positive sequence
component with a dashed gray, and the minor negative sequence component with solid gray curve
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The total positive sequence component is equal to

2m
O 1 max . T
@LLJF (x’ [) = Z l,é,md . sin |:(1)[ — (le — ‘[,'_ ()C _xO,l):|
=1 P (2.180)

. i
=m- O} | ma - Si0 |:O)t -0 — = (x — x071)}
P

with ©; | max denoting the amplitude of the fundamental time and spatial compo-
nent of the MMF created by one out of 2m coil groups per pole pair.

Similarly, one can express the argument of the negative sequence MMF created
by the ith coil group as

i T . 21
Yii- = (cot - ‘Pl_,-) + g (X_XOJ) = (“)t - (Pl,l) + g (x_x0.1) —(i— I)Z

(2.181)

Consequently, if the MMF amplitudes of all 2m coils are equal, the sum of
negative sequence components of MMF over two poles is equal to zero

2m
® max . s . 2
O11-(x,1) = E % sm[o)t— Qi+ —(x=x1)—(-1)=| =0
=1 Tp m

(2.182)

Negative sequence components of MMFs created by 2m coils are out of phase,
with an angle of m/m between components created in adjacent coil groups.
Symmetrical winding with 2m coil groups per pole pair (Fig. 2.60) fed from a
symmetrical m-phase source creates rotating field characterized by constant
amplitude and constant speed of rotation. Each coil group (zone) of the symmetrical
winding in Fig. 2.60 occupies 1/m of the pole pitch 1.

The description “m-phase machine” is always related to the number of supply
phases; windings of conventional machines have m coil groups per pole. Coil groups
shifted for 7, to each other can be connected in series or parallel (the latter usually
only in large turbogenerators) to the same supply phase. Electromagnetically,
however, they count as separate machine phases.

Rotating field contains only one (positive or negative sequence) component of
the MMF. Since the amplitude of each component of coil MMF is equal to 50 % of
the total MMF, the resulting amplitude of rotating field created by 2m coil groups
per pole pair is equal to m times the MMF amplitude of a single coil group.

In Fig. 2.61 the air gap MMF created by fundamental components of currents
flowing through 3 groups of three coils per pole at several time instants is shown.
The phase shift of currents flowing through adjacent groups of coils under each pole
is 60°. Fundamental components of air gap MMF distribution created by the coils
create rotating field characterized by no negative sequence term. Higher harmonics
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of air gap MMF, however, do generate their own traveling fields with the funda-
mental component of the coils current. In Fig. 2.61 one recognizes different speeds
of traveling waves of higher harmonics, resulting in permanently changing shape of
the resulting MMF.

2.6.3 The Influence of the Number of Phases

As discussed in the previous section, a symmetrical winding consisting of 2m coil
groups per pole pair (Fig. 2.60) fed from an m-phase symmetrical source of currents
with fundamental angular frequency ® generates not only the fundamental rotating
field, but also a spectrum of higher harmonic fields described by equation

2m

x| & i— 1 i— 1
O(x, 1) = ZZG)’””““ . sinnTE (x — X —JTTP) . cosk(c)t -0 —]775)

j=1 k=1 n=1 p
(2.183)
the positive sequence component of which can be written as
2m oo 00
®k,n.max . T . k—n
O, (x,1) = ;;; S sin | k(or — @) —ng(x—xo) —(-1)=——n
(2.184)
and the negative sequence component as
e e O n,max . T k+n
O_(x,1) = . sin | k(ot — +n—x—x)—(G—1 T
()= 325+ 3 30 i kor ) 0 5 —) 1)
(2.185)

Positive sequence components of MMF created by adjacent phases are shifted to
each other for an angle of

k—n

Yy =— T (2.186)
and negative sequence components for
k
Y. = Jrnn (2.187)

m
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If the angle y, or y_ is an integer multiple of 2, the particular components
(positive or negative) of MMF in all m phases are in phase, and the resulting
sequence is m/2 times larger than in a single phase consisting of two coil groups
over two poles. In other words, the kth time and nth spatial harmonic in an m-phase
machine will generate a positive sequence MMF if

k—n

—— =even (2.188)
m
and a negative sequence harmonic for
k
tn_ even (2.189)
m

One should note that conditions expressed in Eqgs. 2.188 and 2.189 are more
precise than those found in majority of textbooks on electric machines, namely that
(k = n)/m = integer. One recalls that this condition is valid for an assumption of
m coil groups across two poles, which further implies the phase shift of 2n/m be-
tween currents. This result seduces, because it works perfectly for a 3-phase
machine; however, in a two-phase machine, m = 2, it defines a phase angle of 2/
m = 7 between two currents, which is far from reality. Furthermore, fundamental
space and time harmonics in a two-phase machine generate both positive and
negative sequence components of MMF according to equation (k & n)/
m=(1+1)2=0 or 1, ie., a pulsating MMF! In reality, however, there exists
only a positive sequence MMF in a 2-phase machine. Equations 2.188 and 2.189
deliver an even number (here 0) only for a difference of harmonic orders, (1 — 1)/2,
i.e., only for the positive sequence MMF!

If the angle y, in Eq. 2.186 or y_ in Eq. 2.187 is not an even multiple of =, the
particular components (positive or negative) of MMF in all m phases build a
symmetrical MMF star, which adds up to zero.

In Table 2.9 angular velocities of MMF waves created by the fundamental time
and nth spatial harmonic as multiples of w/p are given for various numbers of
phases m. The width of the zone which belongs to a coil group under one pole is
equal to 180° el./m, where m denotes the number of supply phases. This principle is
illustrated in Fig. 2.62, in which axes of phase windings in symmetrically wound
machines with m = 2—6 are shown.

One should note that in a symmetrically connected polyphase machine either
pulsating, or rotating field is generated, but never elliptical. Another property of
symmetrically connected coil groups in a polyphase machine is that they do not let
pass air gap MMF harmonics the order n of which is an integer multiple of the
number of phases. For example, in a symmetrically wound three-phase machine,
the 3., 9., 15., etc., harmonic can exist in MMF of each phase, but not in the
resulting air gap MMF.

When analyzing results in Table 2.9, one comes to a conclusion that in a
symmetrical m-phase winding fed from a symmetrical system of sinusoidal currents
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(k = 1) the order n, of the lowest higher spatial harmonic which can create rotating
air gap MMF is equal to 2m — 1. By applying Eqgs. 2.188 and 2.189, one can find
the order n, of the lowest higher spatial harmonic in the air gap MMF wave created
by the kth current harmonic in an m-phase machine: By inserting 2 for the lowest
even number in Eqgs. 2.188 and 2.189, one becomes n, = 2m — k. The spatial
harmonic of the order n, creates a negative sequence MMF.

Consider now a symmetrical winding with ¢ =1 and full-pitch coils. The
winding has as many slots per pole as the number of phases, N/(2p) = m, and the
lowest higher harmonic of rotating MMF created by the fundamental of current has
the order n, = N/p — 1, which is the order of slot harmonic, see Table 2.9. Despite
the fact that the absolute value of the pitch factor for each spatial harmonic of
full-pitch coils is equal to one, higher harmonics (with exception of slot harmonics)
do not exist in the resulting rotating field! Obviously the winding with one slot per
pole and phase, as is the case with squirrel cage, creates rotating air gap MMF the
spectrum of which contains the lowest content of higher harmonics among all
conventional winding types.

Table 2.9 Angular velocities of MMF waves (as multiples of w/p) created by the fundamental
harmonic of current (k = 1) and spatial harmonics 1 < n <29 as a function of the number of
supply phases m

Number of supply phases m/Zone width (° el.)

n m=1 m=2 m=3 m=4 m=5 m=06 m="7 m=38 m=9
180° 90° 60° 45° 36° 30° 25.7° 22.5° 20°

1 +1 1 1 1 1 1 1 1 1

3 +1/3 -1/3 - - - - - - -

5 +1/5 1/5 —-1/5 - - - - - -

7 +1/7 -1/7 1/7 -1/7 - - - - -

9 +1/9 1/9 - 1/9 -1/9 - - - -

11 +1/11 —-1/11 -1/11 - 1/11 -1/11 - - -

13 +1/13 1/13 1/13 - - 1/13 -1/13 - -

15 +1/15 -1/15 - -1/15 - - 1/15 -1/15 -

17 +1/17 1/17 -1/17 1/17 - - - 1/17 -1/17

19 +1/19 —-1/19 1/19 - —1/19 - - - 1/19

21 +1/21 1/21 - - 1/21 - - - -

23 +1/23 —-1/23 -1/23 -1/23 - -1/23 - - -

25 +1/25 1725 1725 1724 - 1725 - - -

27 +1/27 -1/27 - - - - -1/27 - -

29 +1/29 1/29 —-1/29 - —1/29 - 129 - -
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Fig. 2.62 Axes of windings in a symmetrically wound machine under one pole for different
numbers of supply phases

2.6.4 MMF Waves Generated by Asymmetrically Wound
Stationary Coils Carrying Asymmetrical Alternating
Currents on One Side of Air Gap

If an m-phase winding is asymmetrical, or carries phase and/or amplitude asym-
metrical currents, both positive and negative sequence components of air gap MMF
can be generated for a given combination of spatial and time harmonics. Denoting
by ®Opax.; the amplitude of the MMF created by ith phase, by ¢, the phase shift of
the current in the ith phase and by v; the electrical angle of axis of the ith phase
winding, one can express the MMF created by the kth time and nth spatial harmonic
in the ith phase as

O kn = Omax,; sin [n (Tﬁx — yiﬂ coslk(ot — ;)] (2.190)
p

The amplitude O, 4, of the positive sequence component of the resulting MMF
created by the kth time and nth spatial harmonic is equal to the geometric sum of
positive sequence components created by all m phases

2
Ot hn=5 +

m 2
> O sin(p; — yi)] (2.191)
i=1

Z O x.n cOS(Q; — ;)
i=1
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whereas the amplitude of the negative sequence component can be expressed as

2
+

2
nm
Z O kn cos(p; +v;)

i=1

Z ®i,k,n Sin((Pi + 'Y,) (2 192)

i=1

If the amplitude of negative sequence component of MMF is different from zero
and smaller than the amplitude of the positive sequence component, the air gap field
is elliptical. An overview of air gap MMF forms is shown in Table 2.10, and their
basic shapes are shown in Fig. 2.63. Here it is assumed that the air gap MMF is
created by the fundamental time and fundamental spatial harmonics, i.e., k = 1 and
n=1.

Fundamental component of elliptical field can be represented as a sum of the
fundamental positive sequence component with amplitude @, and the fundamental
negative sequence component with amplitude ®_

Table 2.10 Forms of air gap field created by m identical coils carrying currents with equal rms
values. ®; ; denotes the amplitude of the MMF created by coils in one zone

Type of Amplitude of the positive sequence Amplitude of the negative sequence
MMF component O, component @_

Pulsating m- ®111 m- @1‘1

Elliptical <m-0Op; <m- 0Oy,

Rotating m- 0y 0

Ox,t) =0, - sin(oot— Ex) +0O_- sin(a)tJr E)c) = 0, - sin(®r+7)

Tp Tp
(2.193)
where
) ) 2n
O, =,/07 +0-+2-0, -O_-cos—x (2.194)
Tp
and
O_-0
Y= arctan ———— " tan  x (2.195)

®7+®+ Tp
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The trajectory of ®, is an ellipse in the polar coordinate system (@, 7y). The
angular speed Q of ®, can be written as

d oo = dx
:d—y— ©+0: & & (2.196)
g cos2 x+ (g:;—%*_) smzlx !

pulsating elliptical rotating

Fig. 2.63 Pulsating, elliptical, and rotating air gap MMF

Fig. 2.64 The p.u. amplitude O [p.u.]
of resulting MMF as a 2 6./0,=1
function of circumferential 1.75 0./0,=0.75

coordinate x with ratio ®_/0,

1.5 ©./0,=05
as a parameter
1.25 ©./0,=025
1 ©./0,=0

0.75
05
0.25
| —
0 Tp 21p
Since
dx T
—=vy,=+2L.0 2.197
dt L1 T ( )

one can express the angular speed Q of the resulting MMF as
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0_-0,
d
*—Y*:I: O_+0,

=5

‘® (2.198)

2
o 0_-0, s 2
Ccos rpx+(®,+®+) sin Tpx

The variation of amplitude of elliptical MMF as a function of the grade of
asymmetry and the circumferential coordinate is shown in Fig. 2.64. The largest
variation of amplitude of elliptic MMF occurs for ®, = O_ (pulsating field), where
it changes between 0 and 2. In rotating field the deviation of amplitude of resulting
MMF from its average value of 1 is equal to zero.

The angular speed Q of the resulting MMF as a function of circumferential
coordinate x and the grade of asymmetry ©®,/@_ as a parameter is shown in
Fig. 2.65. Only in case of rotating field (®— = 0), the resulting MMF rotates at a
constant speed; elliptic field permanently accelerates and decelerates. The larger
the negative sequence component, the bigger the difference between maximum and
minimum speed of rotation. Elliptic field rotates at highest speed at those points of
circumference where the positive and negative sequence components are shifted for
180°, thus acting against each other (ellipse minor axis), and at slowest speed when
they act in the same direction (ellipse major axis).

Virtual work performed by magnetic energy in the air gap can be expressed in
terms of differential area swept by the magnitude ©®, in Fig. 2.63:

1
dA =3O - (Ocdy) (2.199)

and the corresponding areal velocity, which analogously has a dimension of power

a1 dy
=3 . o (2.200)

After substitution of expressions for ®, and dy/ds one can write

Fig. 2.65 p.u. angular speed A
of resulting MMF as a (dv/dt)/w
function of circumferential 7
coordinate x with ratio ®_/0, 0./0,=0.75
as parameter
5 0./0,=05
0./0,=0.25
3 0./0,=0
0./0,=1
= = =
\ I
0 T

21, X
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Fig. 2.66 Areal velocity of A dA
resulting MMF (power!) as a E
function of ratio ©@_/0,
- @i -
2
O_
O,
\ >
0 1
2 n
dA - O 14+r"+2rcos2fx ,_
—= + . Tp (2.201)

dr o ,12.21.[ V+1

cos EXJF (:Jr—l) sin” = x
with r standing for the ratio between amplitude of negative and positive sequence
component of MMF

e
-5

r

(2.202)

Applying trigonometric identities, Eq. (2.201) for areal velocity can be simpli-
fied to

dA o - 02
Ceat (P 1) =27 (0F —@?) (2.203)
which is constant. The magnitude of air gap MMF sweeps equal areas during equal
intervals of time, which is analogous to the second Kepler’s law of planetary
motion!

Physical interpretation of the identical mathematical property is of course dif-
ferent in a rotating field machine than in celestial mechanics. In an electric machine
the constant area swept by the air gap MMF means nothing but that the torque, as a
partial derivative of magnetic energy accumulated in the air gap with respect to
angle, is time invariant.
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The dependence of areal velocity on the ratio ®_/®, is shown in Fig. 2.66.

Fig. 2.67 Three-phase
winding connection with one
phase reversed (a), and with
one phase disconnected (b)

(a) (b)

IZ((p1 - 271:/3) 14((P1 —2“/3)

The power generated by pulsating field, i.e. for equal amplitudes of positive and
negative sequence MMF, is equal to zero.

Elliptical MMF is created in a three-phase machine when terminals of one
supply phase are reversed, or if a phase is disconnected. Denoting by ®; ; max the
amplitude of the fundamental component of MMF created by one coil per pole pair,
the positive sequence MMF in a machine with reversed phase terminals as in
Fig. 2.67a is equal to

O lmax . T O 1max . n
Oy (x,1) = —Lbmx, sm{mtf o 7—(x7x0‘1)} + L-sm{mtf @11 —— (x—x0,1) 711} +
2 T 2 T

4
(€] . b O, . T
+ 2% sm{wtf (o 7‘?,,()(7)(0'1)} + % sm[wtf (o 71::(x7x0,1) — n}
Jj=3

®Ll.max

T

- sin {mt — @ — I (x - xo,1)} = O 1,max - SiN {(Dt N _ (x - XO-,I)}
T T
(2.204)
and the negative sequence

S5n

[CIRT O 1 ma
O11,-(x,1) = —LLm sin {@f =+ =z (Xfxo.l)} + LM i {‘Dl — @+ z (x —x0,1) **]
2 Tp 2 ' T 3

4

O 1 max . T . 2n 0, max . T Sn

+ ; l';‘ . sm[mtf ¢+ E(X*XO.I) - (]7 1)?} + % sm[mtf P + Tfp(xfx(]yl) 7?]
O 1max . T 10m . n 5n
+ % sin {wt — ¢t o (x—x01) *T] =20, 1,max - sin {U)I — ¢t o (x—xo.1) *?]

(2.205)

The amplitude of the negative sequence component in a three-phase machine
with terminals of one phase reversed is twice as large as the amplitude of the
positive sequence component of the air gap MMF! Consequently, the resulting
elliptic MMF rotates in negative direction.
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The positive sequence MMF in a machine with one phase disconnected as
shown in Fig. 2.67b is equal to

4
@ max . T
O+ (x,1) = Z% s [cot — Q1 — = (X—xo,1)]

Jj=1 p

. n
=20} | ma - Sin {wt— o —T—(x—xm)} (2.206)
p

and the negative sequence

. T 4n
O11.—(x,7) = O 1 max - Sin [cot -+ = (x —xO,l) — ?} (2.207)
p

The amplitude of the positive sequence component in a three phase machine
with one phase disconnected is twice as large as the amplitude of the negative
sequence component of the air gap MMF. The resulting elliptic MMF rotates in
positive direction.

2.6.5 MMF Waves Generated by Rotating Coil(s) Carrying
Constant Frequency Current(s)

Consider now a rotor coil fed from current source i.(f)

i(t) = > Iecosk (o — @y,) (2.208)
k=1

shifted for an amount of x,, along the circumferential coordinate x, and rotating at
angular speed Q. The k.th time and n.ith spatial harmonic of air gap MMF wave
created by the rotating coil is equal to

@ 1y ,max .
O, 1, (xr7-x0,ra t) = % - SIn |:kr (mrt - (Pk,r) - anE (xr - xoﬁr)]
o - P (2.209)
w - sin [kr (mrl — (Pk,r) +n,— (xr - xO,r):|
Tp

+

Rotor circumferential coordinate x, can be expressed in terms of stator cir-
cumferential coordinate x as



142 2 Windings

xr:x—|—x0—|—Q-t-R:x+xo+Q~t-p—rp (2.210)
n

with xy denoting the initial rotor shift and R the air gap mean radius. The k.th time
and n,th spatial harmonic of the air gap MMF wave can now be expressed in the
stationary system as

@ Ny, max .
O, (X, X0,1) = hnemax g {kr (ot — p,) — nI~£ (x+xo +q. P xo,r)]
2 ’ Tp T
®k, 7, ,max . T pr
LM MaX oin kr((x)rt — (Pkr) +ny— (X+XO+Q pe= —Xo.r)
2 ’ Tp T ’

+

(2.211)

and

O 1 m . i b

O, (X, X0, 1) = - ; T sin | (ko — npQ) - t — e —x = ey, — e — (xo — xo,)
P P

®kr7n,,max

T

. T T
- sin [(kr(nr —npQ) - t+n, X ke@y, + e (xo — x()‘r)}
p P

(2.212)

The angular speed of rotation ® of the kth time and #n;th spatial harmonic of the
air gap MMF wave relative to the stator can be found by setting the argument of
sine function equal to a constant and then differentiating it w.r.t. time

d i T
T {(kr(or — npQ) 1 F oy —x — k@, F e— (x0 — o) = const}
t Tp Tp
(2.213)
=n E%::I:(km — n,pQ)
T Tp dl rWr P
from which the angular speed ® can be expressed as
k
w=Q+o. (2.214)
ne p

The air gap MMF component created by k;th time harmonic of rotor current and
n,th spatial harmonic of rotor air gap MMF travels relative to stator at rotor
mechanical speed augmented or diminished by the component speed relative to the
rotor. Positive sequence component of the rotor MMF created by fundamental time
and spatial harmonic is at standstill relative to the stator if the rotor mechanical
speed is equal to the negative synchronous speed.
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Stationary coil(s) generate the fundamental component of air gap MMF wave
rotating at the same angular speed ® as in Eq. 2.214 if fed by current(s) with
angular frequency

k
0, =p-Qt— 0 (2.215)

T

Accordingly, rotor DC creates air gap MMF fundamental component (n, = 1)
which rotates at angular speed Q and which is observed on the stator side as if it
were generated by an AC with angular frequency o, = p Q.

2.6.6 MMF Waves Generated by Rotating Coil(s) Carrying
Variable Frequency Currents on One Side of Air Gap

Assume that a coil (group) rotates at mechanical angular speed Q and that it is fed
from an AC source

= Zlkr cos k: (sot — ¢y ) (2.216)
k=1
with s denoting the slip
5.0
g=27P % (2.217)
)

Each coil (group) per pole creates an MMF
4 ) 0 T
®(xr, Xor,t = w Z > Iy, cos k SO — kr) - fwnsinn, - (xr — xo,r)

ne=1,35,... k P

(2.218)

with x( denoting the shift of the coil (group) axis to the circumferential coordinate
x =0 and f,, the winding factor for the nth spatial harmonic. The coil (group)
MMF created by the kth time and nth spatial harmonic can be represented in terms
of positive and negative sequence components, as given in Eq. 2.163, the speed of
which relative to the coil (group) is



144 2 Windings

k ke
Vi = £ 5oy oy, = £ 2 (2.219)
’ n T nop

Since the coil (group) rotates at angular speed Q, the angular speed of the
positive and negative sequence components relative to stator o, 1S equal to

ke so kk o—p-Q
mk.n,sl:Q+mk,.,11,:Qin_r's;zgin_r'Tp
T T

(2.220)

For the fundamental time (k = 1) and spatial (n = 1) harmonic one can further
write

O = Q+ o, e J T Yo Wl (2.221)
' p p
The angular speed of the positive sequence is
o-p-Q o
O g =Qf 222 (2.222)
p p

i.e., it is constant and equal to the synchronous speed of the fundamental wave of
stator MMF. The angular speed of the negative sequence component of the rotor
MMF is

_m—p-Q_

O 15— = Q T =2Q — % (2.223)

For mechanical angular speed values Q2 below one half of the synchronous speed
®/(2p) the negative sequence component of the rotor MMF rotates opposite to the
direction of rotation of the rotor; above one half of the synchronous speed the
negative sequence MMF rotates in the direction of rotation of the rotor. The neg-
ative sequence component of the rotor MMF created by rotating coil(s) is at
standstill when the rotor mechanical speed is equal to one half the synchronous
speed. This property of rotor pulsating field is called Gorges phenomenon.

The slip of the negative sequence component of the rotor MMF is equal to
_O—p-O g O—2pQ+o
= 5 = o =

S_

2s (2.224)
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2.6.7 Resulting MMF Waves Generated by Coils on Both
Sides of Air Gap

Consider the fundamental component of air gap MMF wave created by a sym-
metrical stator winding carrying symmetrical currents, O4(x, 7), and the fundamental
component of the air gap MMF created by rotor winding, ®(x, ¢). The rotor MMF
is created either by a symmetrical rotor winding carrying symmetrical currents with
appropriate frequency, or by a DC-fed coil rotating at synchronous speed. The
resulting air gap MMF O®j;(x, £) can be written as

Os(x, 1) = O(x, 1) + O, (x, 1) (2.225)

or

(OR sin(o)t—nx—f—y) =0, sin(cot—nx—i—‘PS) + O, sin((ot—nx+ ‘I‘r>

T T Tp
(2.226)
where
02 =02+07+2-0, -0, cos(¥, — ¥, (2.227)
and
Y = arctan O, - sin¥s+ 0, - sin¥, (2.228)

O, - cos¥,+ 0O, - cos¥,

The three MMF components O(x, 1), ®.(x, 1), and @z(x, f) can be represented in
the complex plane in the manner shown in Fig. 2.68.

By positioning the resulting air gap MMF ®j to the negative real axis (y = m),
one can further write

sin ¥,

0, = *®r B
) sin P,

(2.229)

Keeping resulting MMF constant, ®5 = const., one can determine the amplitude
of the rotor MMF O, necessary to generate given stator MMF @ at a given angle
Y. In order to do this, substitute first the equation for stator MMF into the rela-
tionship between the three MMF amplitudes
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Fig. 2.68 Stator, rotor, and I A
resulting air gap MMF o
Wy
Re
sin P, 2 sin ¥
el = (0, d @ —2.—L.@% cos(¥, — ¥, 2.230
< sin ‘PS> O sinW, " cos(Fs ) ( )
which can be rewritten as
05\’ 1 sin ¥, 2 ) sin ¥, O (2.231)
— ) -1 = -2 - COoS — .
(CH sin W sin W * !
and solved in form of
O,
(CN (—) (2.232)
®5 W =const

which is nothing but the equation of V-curves of a synchronous machine, as shown
in Fig. 2.69! One should keep in mind that setting ®z = const. determines the
amount of air gap flux. If in addition the angle y of the resulting MMF is kept
constant, the stator-induced voltage remains unchanged, no matter how big the

stator MMF and where it is relative to the resulting MMF.

Fig. 2.69 V-curves of a Ao,
synchronous machine as a 3+ 0
solution of Eq. 2.231 for a
given set of machine
parameters

P.F.=1

P.F. = 0 lagging
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Neglecting voltage drops across the stator resistance and Potier reactance, the
fixing of the amplitude and angle of ®; means nothing but connecting the stator
winding of a synchronous machine to an infinite bus.

2.6.8 Air Gap Flux Density Waves in a Single-Slotted
Machine with Linear Magnetization Curve

If the B-H curve of stator and rotor irons is linear with p, >> 1, the coil
ampere-turns are equal to the MMF drop in the air gap, and the air gap flux density
is proportional to the inverse of the air gap width 3. As shown previously, the
amplitudes of slot harmonics with order n = N/p £ 1 are neither influenced by the
coil pitch, nor by the number of in series connected adjacent coils. A question can
be posed whether the number of winding phases can modify the amplitude of slot
harmonics in a similar manner as it eliminates the harmonics the order of which is
equal to integer multiples of the number of phases. The machine is assumed to have
unskewed slots.

Traveling waves created by slot harmonics of the order n = N/p £ 1 and by the
fundamental time component of current (k = 1) are always present in the spectrum
of the resulting air gap MMF, because these fulfill the condition

1+n
m

= even (2.233)

One can express the order n of slot harmonics by means of the zone width
qg=N/(2-p-m)as

N
n=—+1=2mg+1 (2.234)
P

Now one can apply the condition for existence of a particular component of
resulting MMF (Eqgs. 2.188 and 2.189) as

l+n 14+ Q2mg+1)
m m

= even (2.235)

By taking altering signs inside and outside the brackets, one obtains that the
condition above is fulfilled as long as 2¢ is an even number, which is always true in
integer slot windings. Therefore, slot harmonics are as well present in the spectrum
of resulting air gap MMF created by integer slot windings.

In fractional slot windings 2¢ is never an even number and slot harmonics of the
order n = N/p £+ 1 do not exist in air gap distributions. Nevertheless, slot har-
monics of the order n = N/pg £ 1, with pg denoting the number of fundamental
poles, are present in the air gap flux density spectrum. However, since the
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fundamental harmonic component of air gap MMF with period length D - n/pg in a
fractional slot machine has intentionally low amplitude, the discussed slot har-
monics are of minor importance.

As shown in the previous sections, the spectrum of air gap flux density spatial
components created by a coil in a machine with slotted air gap is different from the
spectrum of coil MMF. If the coil is fed from an AC source, the slot harmonics
N/p — n and N/p + n of air gap flux density B, g0 created by the nth harmonic of
the applied MMF and the fundamental harmonic of air gap width due to slotting,
i = 1, can be written as

LIS _ nl (N
B sior = 2 e W fulon 2 Iy cos(kwt — @) cos tp [nx (n + p)xc}
Ho 4 - n N
2——-w-fon 1 kot — — — —
+ e w fwﬁﬁn 1;:1 i cos (k. (pk)cosTp [nx (n p)xc]

(2.236)

The kth harmonic of coil current in Eq. 2.236 creates the rotating wave of air gap
flux density due to slotting B,,— z s10r €qual to

Ho 4
By gsiot =< =l -w-fin_
n— k,slof 51 T wh—n

Aeos{ror =g £ o (e 2] b cosfron— - E o= (w4 2|}

(2.237)

as well as B, x 101, defined as

Ho4
Bn+,k.s]ot = S_EIk W .fw.'lll+”
1 )

{eosfror— ot 2 [ (=T )]+ cosfvor - o= Z o= (1T )| }}

(2.238)

As long as the coil does not move relative to the teeth, x. = const., the speed of
both components B, i sioc and B, xsior 18 €qual to the speed of the nth spatial and
kth time harmonic of MMF which created them, namely +k/n - o/p.

If the coil rotates at a constant mechanical angular velocity Q relative to slots,
the coil shift coordinate x. can be represented as

X=R-Q-1 (2.239)

with R denoting the air gap radius. The angular speeds of rotation ®,—j of
positive and negative sequence waves of air gap flux density due to slotting B,,— x sjot
become in that case
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N k
O = £ <n - ;> 0+ Zg (2.240)

with positive sign in front of parentheses standing for the positive, and negative
sign for the negative sequence component of B,,— ; siot-

Analogously, the angular speeds of rotation ®,,;+ of positive and negative
sequence waves of air gap flux density due to slotting B,,, x 510t can be expressed as

N k
0)n+7k,i::|:(n+ ;) Q'i‘—g (2241)

The angular speeds of the four components of air gap flux density due to slotting
can be expressed as

N k
Oyt k+ = £ <n + > -Q+ b (2.242)
p np

where every combination of signs stands for a particular higher harmonic and
symmetrical component, respectively.

Coil mechanical angular velocities ), at which the positive or negative sequence
wave of air gap flux density due to slotting B,,— xsior and B4 g 10 1S at standstill
relative to the teeth, i.e., ®,+ x4+ = 0, can now be expressed as

(@)
pnEtN

Q = +k (2.243)

The positive sign in front of the expression on the right-hand side of Eq. 2.243
stands for positive sequence components, and the negative sign for negative
sequence components of B,_ i ot OF By xsior. The positive sign in front of the
number of slots N in Eq. 2.243 is related to a slot harmonic with an order above
N/p, and the negative to a slot harmonic with an order below N/p.

2.6.9 Air Gap Flux Density Waves in a Double-Slotted
Machine with Linear Magnetization Curve

If the stator and rotor coils in Fig. 2.49 are fed from AC sources with angular
frequencies mg and o, respectively, slot harmonics Ny/p — n, N/p + n, NJ/p — n and
N//p + n of air gap flux density B, g created by the nth harmonic of applied MMFs
and fundamental harmonics of air gap width due to slotting, i = 1, can be written as
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4
By , = g_(l);ws Ws_fnZIkcos kgt — (pk)cosr— [nx— <n+ )E_,n]

k=1

(2.244)
M4 - T N
By, = 25_1; WSy Zlk cos(kogt — @) cosg {nx - (n Y in}
(2.245)
o4
By, = 2 Wy
B 51
W,r,——n Zl cos (joxt — ¢)) cos — {nx - (n + ) (én ;xo)}
(2.246)
Ho 4
BNr+n = 2{; Wy
wr_+nZI cos (joxt — ¢)) costE {nx— (n——) (E.'n )]
p p
(2.247)
Busior = B+ B+ Bu_, + B, (2.248)
14 14 14

Each of the pulsating harmonics in Eqs. 2.244-2.248 consists of a positive and a
negative sequence component, the speeds of rotation of which can be found in the
manner shown previously in this chapter. When determining the rotational speed of
rotor harmonics one has to consider the rotor mechanical speed of rotation Q
defined in the previous section.

Denoting by in the derivative of the position coordinate of the maximum of
resulting MMF

®r,n + O, cosn %XO dxo
r,n 2 2
O;, + 05, +20:,0,, cosnxo df

g, =no® (2.249)

one can express the angular speeds of harmonics of air gap flux density created by
harmonics of stator and rotor currents with equal orders, j = k, and the fundamental
harmonics due to slotting (i = 1) in the manner shown in Table 2.11.
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Table 2.11 Angular speeds of air gap flux density harmonics created by nth harmonics of stator
and rotor MMF and fundamental harmonics of stator and rotor slottings in a double-slotted
machine

Pos. seq Neg. seq.
By, k 1 N, . k 1 N, .
b ko, 7(“;)1@” ,&,7(n+¢)£gn
np np pP) T np np D) T
By, £g+i(n_%>£gn E&_i<n_1&)£gn
np np P) T np np PJ) %
By, k 1 N, . k 1 N, .
S I (SO T
np np r)\% np np p)\%
By: k o 1 N; . ko, 1 N; :
TG CTEE T
np np P/ \% np np P/ \%p

One should note that for a given number of stator and rotor phases and slots per
pole pair some harmonics of air gap flux density discussed here may have ampli-
tudes equal to zero.

2.6.10 Air Gap Flux Density Waves in a Slotless Machine
with Nonlinear Magnetization Curve

In order to increase the flux level, electric machines are built in such a manner that
the operating point in the iron portion of their magnetic circuit is located more or
less in saturated region.

A steep increase of MMF drop across iron core as a consequence of increasing
flux density results in a slower increase of MMF drop across the air gap. The
machine’s magnetic circuit acts as if the air gap reluctance has increased, i.e., as if
the air gap width became larger.

A comparison of influence of air gap geometry and iron B—H curve on equiv-
alent air gap width is shown in Fig. 2.70.

(a) (b) (©)
T ®% & | @
! 7
W, >> | W, >> r/
X= 0 X = O ’ //}/;
- x=0
8=2% 8=8p— .5 cosi——x
i=2,4,... Tp

5=29 +5Ncos[nx—wt]
Tp

Fig. 2.70 Representation of air gap structure by means of air gap width: a linear iron curve, constant
air gap width; b linear iron magnetization curve, salient poles—periodical decrease of air gap width
under the poles; ¢ nonlinear iron magnetization curve—periodical increase of air gap width
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Whereas air gap becomes electromagnetically shorter as a consequence of sal-
iency, saturation in iron makes it electromagnetically larger. A narrower air gap is
attached to a salient pole. A wider air gap representing saturation in iron, on the
other hand, travels around the periphery with angular speed of the fundamental of
MMEF which produced it and can be represented as

d = 89 + Oy cos 2 (Tﬁx - mt) (2.250)
P

because it is assumed that only the fundamental component of applied MMF
determines the level of saturation in iron.

Ampere’s circuital law applied to the machine’s magnetic circuit in which the
increased MMF drop in iron is represented with a wider air gap can be written as

T o T T
{50 + On COSZ(TX — cotﬂ l z B; cosi<rx — u)t) = O, cos (Tx - o)t)

p i=1,3,5,... p p
(2.251)

from which one becomes relations between amplitudes of air gap flux density
harmonics as

d d
(80 + 7N> B, + 7N33 = 1O (2.252)
61\] 6N 6N _
7Bl + (60 + 7>B3 + 735 =0 (2.253)
) ) )
7N33 + (50 + 2N> Bs + 7NB7 =0 (2.254)

etc. Saturation in iron generates higher harmonics of air gap flux density which
travel at the speed of the fundamental. If the MMF distribution contains higher
spatial harmonics, their speed decreases with order of harmonic. This means that
saturation in iron is a source of higher harmonics of air gap flux density which have
the same spatial order as higher harmonics of air gap flux density created by higher
harmonics of MMF, but a different time order. As a consequence, there exist two
components of nth order of flux density harmonic which travel relative to each other
at angular speeds given for a three-phase machine in Table 2.12.
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Table 2.12 Angular speeds of air gap flux density harmonics due to MMF and due to saturation.
For the sake of comparison, the speed differences for harmonics of the same order and different
sources are shown

Order Angular speed Angular speed of harmonic Speed difference
of MMF harmonic due to saturation

1 [N O 0

3 - [oN [oN

5 —0/5 N 6/5 o,

7 /7 [N 6/7 wg

9 - O [oN

2.7 Induced Voltage

2.7.1 Rotating Air Gap Flux Density

Assume a coil with w turns and pitch y traveling in air gap at speed v., as shown in
Fig. 2.71. The air gap is excited with a flux density wave B(x, ) created by nth spatial
harmonic of a symmetrical 2p-pole winding fed by symmetrical currents with
angular frequency k. The air gap flux density wave B(x, f) can be represented as

B(x,1) = By cos | kot — @, + nrE (x — x,) (2.255)
p

with @ standing for kth time and x, for mth spatial harmonic phase shift,
respectively.

The air gap flux density wave B(x, #) travels at speed Zk/n - 1,/n - o relative to
the stator, with positive sign denoting the same direction of rotation as the coil, and
negative sign the opposite direction of rotation to the coil velocity v.. At time
instant t the position x, of the coil can be expressed as

Fig. 2.71 Coil in air gap and y
a wave of air gap flux density >

i iz drrriiii 8

q__ ©>v




154 2 Windings

Xe = Vel +Xo (2.256)

where xy denotes the coil position at # = 0. At time instant 7 each turn of the coil
concatenates the flux ®(¢) in the amount of

Xe+y vel +xo +y
D(1) = Iy / B(x,1)dx = lyBrax / cos {kmt — gt n; (x— xn)} dx
Xe Vel + X0 P
(2.257)
or
lax Bmax .
D(1) = _ faxTpBmax {sm {kmt — @ = ni(vct-HCo +y - xn)}
nm Tp
(2.258)

4+ sin [kmt == nrﬂ(vct—l—xo — xn)} }
p

By applying addition theorem for trigonometric functions, one obtains

lax Bmax .
@(r) = —Tp—{sm[(kwinEVC)t— 0 inri(xo —xn)} (cosntiy— 1)
T

nm p p p

- cos[(km j:nivc>t (== ni(xo —x,,)} sin<n£y>}
Tp Ly Tp

(2.259)

or

2l TpB
O(r) = —Msin<nlf) sin[(kco :|:n£v0>t —Qr—Q,, nz(xo —x,,)}
nn Tp S T ” T

(2.260)

where

cosnty—1
T

(2.261)

(pv.n = arctan T
sinnz-y

Define now the maximum flux @,,,, concatenated by each turn of a coil with
pitch y and created by sinusoidal flux density B,.x as

2 . i
Prx = = lox TpBinas sin ("%5) (2.262)
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(recall that the factor 2/m is a consequence of the sinusoidal shape of B, the average
of which over half a period is 2/ Byax)-
Now one can write for the concatenated flux ®(z):

(I)max .
®(t) = ———sin Kkm + nlvc)t -0 —09,,t nl (xo — x,l)} (2.263)
n T Y T

and for the flux linkage ¥(7)

(I)max .
Y(t) = wd(r) = — i sin Kk(» + nivc)t — Q= @y, £ ni(xo - xn)}
n T \ T

(2.264)

The induced voltage u,(?) is equal to

()
u;(t) = (kco - n1v0> Womax o8 [(kco + nivc)t— O — @, E nﬁ(xo —x,l)]
T, n T, ' T

(2.265)

and its amplitude U ,x:
(I)max 2 .
Unax = <k(o + nnvc) d = <k(n + nnvc> Eflaxthmx sin <nyn>
T n T nm Tp S
(2.266)

The induced voltage in Eq. 2.266 has two components, Uyave and U, the
amplitudes of which can be written as

k k T
Unaxwave = — OWOnmax = ~ 02 2l Bax Sin <nlf) (2.267)
n n T Tp S

or, by utilizing expression 132 for circumferential velocity vy ,:

Unaxwave = 2WBumaxVinlax Sin <n 15) (2.268)
’ Tp 8
and
Qm X .
Unascatt = n2ve Y00 _ 900 vl sin (ntlg) (2.269)
p p
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The induced voltage in one conductor of a full-pitch coil is accordingly
Unax,um = Bmaxlax (Vk,;l + Vc) (2270)

which is nothing but B - ¢ - v equation, with v denoting the relative speed between
the flux density wave and the coil!
Angular frequency of induced voltage o; is equal to

wi:kminrlvc = ko £ npQ (2.271)
P

i.e., to a linear combination of the angular frequency ko of the current which
generated the flux density wave and an n times increased coil electrical angular
speed pQ. Since the nth spatial harmonic of the air gap flux density travels n times
slower than the fundamental, the apparent coil speed npQ is n times higher than its
actual electrical speed pQ.

If the coil angular speed Q is expressed in terms of slip s and fundamental
angular frequency o of currents which generate the rotating wave of flux density B
(x, 1), one can write for the angular frequency of induced voltage

0; = ko tn(l —s)o=okxn(l —ys)) (2.272)

Angular frequencies of coil voltage induced by the fundamental time harmonic
(k = 1) and various spatial harmonics n of air gap flux density wave B(x, f) traveling
in the same (®; ) and opposite (®; —) direction of the coil velocity v, are given in
Table 2.13. In addition, the values of slip are given in this table for which the
frequencies m;, and o, — are equal to zero, i.e., at which the particular air gap flux
density harmonic travels at the same speed as the coil. In the last two columns of
Table 2.13 mechanical angular velocities are given at which a particular air gap flux
density harmonic travels at the same speed as the coil (synchronism).

The nth spatial harmonic of air gap flux density travels at a speed n times smaller
than the fundamental, but it has to pass an n times shorter way in order to complete
a distance of two machine poles divided by its order. Therefore, the nth spatial
harmonic needs the same time interval in order to complete one revolution as the
fundamental, i.e., the frequency of voltage that it induces in a stationary coil is
equal to the frequency of the fundamental.

As long as the coil speed is lower than the speed of flux density wave, the
amplitude of induced voltage is positive. If the coil travels at a speed above the flux
density wave speed, the amplitude of induced voltage formally changes its sign,
which is identical to a phase angle skip of 180°. If the coil carries current with the
same frequency as the induced voltage, the product of current and induced voltage
—i.e., the power—changes its sign.

If the coil is at standstill (v. = 0), its position remains constant, x. = X,
Eq. 2.256. In that case, both the amplitude and the frequency of induced voltage are
a function only of the order k of time harmonic, but not of the order n of spatial
harmonic of the air gap flux density wave:
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()
(1) = ko M cos | ket — @ — = nl_E (x0 — X,) (2.273)
n : »

One recognizes in Eq. 2.273 that only the phase shift of induced voltage in a
stationary coil is a function of coil position x.

Table 2.13 Frequencies of voltages induced by the fundamental time and nth spatial harmonic of
air gap flux density in a coil rotating at mechanical angular speed Q

no| o ;- s for s for Q for Q for
®;+=0 0;-=0 0;+=0 w;-=0
1 |s-o 2-95- 0 0 2 wlp —olp
3 |[(—2+43s)-0 4-35) o 2/3 4/3 o/(3p) —o/(3p)
5 |(4+5) 0 6-5) o 4/5 6/5 o/(5p) —o/(5p)
7 [(-6+7s) o 8-=75) o 6/7 8/7 o/(7Tp) —o/(7p)
9 [(-8+9s) - ® (10-9 s)-® 8/9 10/9 ®/(9p) —o/(9p)
11 |10+ 11-) - o [(12 - 11s) - © | 10/11 12/11 o/(11p) —o/(11p)
13 (12 +13s) - o | (14 — 135)0 12/13 14/13 o/(13p) —o/(13p)
15 |(-14 +155) - ® | (16 — 15s5) - © | 14/15 16/15 o/(15p) —o/(15p)
17 [(-16 + 17s) - © | (A8 — 17s)-® 16/17 18/17 o/(17-) —/(17p)
19 | (18 +19s) - ® [(20 — 19s) - ® |18/19 20/19 o/(19p) —o/(19p)

In addition, slip values at which a particular harmonic travels at the same angular velocity Q as the
coil, and mechanical synchronous speeds of selected harmonics are given. Bold printed are the
values related to a symmetrical 3-phase flux density distribution

2.7.2 Elliptic Air Gap Flux Density

Assume now that the air gap is excited with elliptic flux density consisting of a
positive sequence component B, (x, f):

By (x,1) = Buna 4 COS [ku)t g n% (x— xn)} (2.274)
and a negative sequence component B_(x, ?):

B_(x, 1) = Buna._ €OS [kmt — n% (x— xn)} (2.275)
each of which induces its own voltage in a coil with coil pitch y, Eq. 2.205:

(I)m'x
uy(t)= (k(;) —nﬁvc> ucos{(km - nivc)t— O — Oy — nE(xo —x,,)]
T n T ’ Tp

(2.276)
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Dpax
u_(t) = (kw - nT—vC) W%cos[(kw+n;vc)t— P — Py +n;(x0 —x,)

p P

or, in a more compact form:

u+(t) = Umax1+ COS((D+I_ (P+)

and
u_(t) = Upax,— cos(o_t — ¢_)
where
b w2 . yT
Unax,+ = | ko —n—v¢ | ==l TpBmax, + sin| n—=
Tp nm ’ T2
and

T w2 . yT
Unax,— = | ko +n—ve | ==l TpBmax,— sin| n—=
’ Tp nmn T2

The total induced voltage in the coil can now be written as
Mcoil(t) = Unax, + COS((D+I - (P+) + Unax,— COS((J),t - ([.)7)
or

ucoil(t) = Umax,+ [COS((D+[ - (P+) + COS((D_[ — @7)}
+ (Unmax,— = Umax, + ) cos(0_1 — ¢_)

Introducing substitutions

o—PB=w4r—¢,; a+PB=o_r—¢_

or
1 T
u:E[(OJ+ +o ) t—¢, —¢_| =kot— ¢, —n—x
Tp
1 i
BZE[(_C‘)+ to) 1+, _(P—] :”?(Vct_xn)

p

(2.277)

(2.278)

(2.279)

(2.280)

(2.281)

(2.282)

(2.283)

(2.284)

(2.285)

(2.286)

one can express the component of induced voltage with amplitude Uy .+,

Eq. 2.221, as
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Uax, + [cos(0 41— ¢ ) + cos(o_t — ¢_)]

= 2Upax, + COS (k(nt —Qp — n£x0> cos {nl (vet — xy)
’ T

} (2.287)
P Tp

and the total induced voltage, Eq. 2.282:
T s

Ueoil (1) = 2Umax, + COS (ko)t — ¢ — n—xo> cos {n— (vet — xn)]
T Tp

T T
+ (Umax,, — Umaxﬁ)cos {(km—&—nr—vc)t — P — Oy — nT—(xo — xn)}
p p

(2.288)
In case of pulsating field, Bax + = Bmax.— = Bmax» ON€ can write
T w2 . YT
Unmax,— — Umax,+ = 20 —Ve — =l TpBiax,— sin| n—= (2.289)
’ T, nm T2

Combining Egs. 2.288 and 2.289 one can express the voltage in a stationary coil
induced by pulsating field as

Ueoil (1) = 2Upmax, + COS (nrﬁxn> - COS (ko)t — O — Py, — ngx()) (2.290)
P p

The amplitude of voltage in a stationary coil induced by pulsating field is
dependent on the spatial shift x,, of the harmonic which induced it, i.e., on the
position of source of pulsating field B, (x, 7) + B_(x, ?).

2.7.3 DC Flux Density Traveling at Angular Speed £

Field coils of conventional synchronous machines travel at synchronous speed and
generate air gap MMF as described in previous equations. Assuming constant air
gap width, the air gap flux density of a field coil can be expressed as

B, = > Buuns sinnrﬁ(x—v-t) (2.291)
n=123,... p

with v denoting the circumferential velocity of the field coil. The flux which nth
harmonic of air gap flux density in Eq. 2.291 concatenates with an armature coil
with pitch y is equal to (see Eq. 2.257)
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Xe 4y Vel +x0 +y
(I)(t) = lux / B(xv Z)dx = LaxBiax,n / Sil’ll’lrﬁ (X -V t)dx (2292)
p
Xe Vel + Xo

or

T, . T I
(1) = 2ﬁsm (n:—p§> LaxBmax.n cosng [(v — V)t —Xxg — (p),ﬂ] (2.293)

with ¢, , already introduced in Eq. 2.202. Voltage induced in a coil with w turns is
equal to

u;(t) = 2w(v — v¢) sin (nlz> laixBmaxn sinn— [(v=ve)-1—x0—@,,] (2.294)
Tp2 Tp ’

The amplitude of the induced voltage in a stationary full-pitch coil with one turn
(two conductors!) is equal to

Ui (t) = 2vlaxBmax.n (2.295)

i.e., the amplitude of induced voltage in a single conductor is again B - £ - v, as is
the case with voltage induced by traveling wave of flux density, Eq. 2.269.

2.8 Fractional Slot Windings: Fundamental and Principal
Poles; Single-Tooth Winding

Vast majority of rotating field electric machines is built with an integer number of
slots per pole and phase g in such a manner as to create an MMF distribution the
largest harmonic of which repeats at a rate of twice as large as the greatest pole
pitch. As long as there is enough space along the air gap circumference, several
coils carrying the same phase current can be placed next to each other into adjacent
slots under one pole, resulting in appropriately large values of g. Due to manu-
facturing limitations, however, the slot width cannot be decreased arbitrarily in
order to put high number of teeth under a pole of a high-polarity machine. An
increase of number of poles, keeping all other parameters unchanged, means a
decrease of g and less possibility to control the amplitudes of higher spatial har-
monics by means of the zone factor. Higher harmonics of an integer slot winding
with ¢ = 1 can be controlled only by varying the coil pitch. In case of a three-phase
winding with g = 1, the only reasonable chording is 2/3, which significantly
deteriorates the fundamental harmonic.

Connection scheme in an integer slot winding is extremely simple and repeats
each pole: the total of ¢ adjacent coils is grouped together m times under each pole.
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This means that higher spatial harmonics of MMF created by such windings are
suppressed on a single-pole base, which is an inefficient approach in case of low
number of phases and g = 1. Obviously, another method has to be applied in
high-polarity machines with low numbers of phases.

It sounds reasonable to enlarge the interval along which higher harmonics are
fought into r adjacent poles, instead of only one, as is the case with integer slot
windings. In that case, one refers to a fractional slot winding. Basic difference
between fractional and integer slot winding is that in an integer slot winding the
poles with the largest possible pole pitch are at the same time those with the largest
flux per pole, whereas in a fractional slot winding this is not the case. Accordingly,
one distinguishes among fundamental poles and principal poles of a fractional slot
winding. Fundamental poles are those having the largest possible pole pitch;
principal poles are those having the largest flux per pole.

Denoting by py the number of fundamental pole pairs, and by p,, the number of
principal pole pairs of a fractional pitch winding, one can write

N
f = — 2.2
TPJ 2pf ( 96)
and
N
T — 2.297
p;p 2pp ( )
where
Tof =7 Tpp (2.298)

with 1, s denoting the fundamental pole pitch, and 1, , the principal pole pitch, both
in number of slots, and r the (odd) number of principal poles over which given
harmonic(s) are suppressed. The order n¢ of a higher spatial harmonic over the
period length of 27, ¢ is r times larger than the order n, of a higher spatial harmonic
over the period length of 21, ,

ng =r-np (2.299)

The fundamental harmonic on the principal pole basis, i.e., in interval of 2p,
poles, is the rth harmonic on the fundamental pole basis, or in interval of 2p; poles.

The number of slots per phase and principal pole g, of a fractional slot winding
is not an integer
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N
- o (2.300)
2ppm 1

qp

as opposed to the number of slots per phase and fundamental pole g, which is
always an integer

=r-qp (2.301)

The mixed fraction g, is equal to the ratio between the number of slots per phase
and fundamental pole and the number of principal poles per fundamental pole r.
An integer slot winding is characterized by

pr=pp=p (2.302)

i.e., there are as many fundamental as principal poles, r = 1. Whereas the funda-
mental and the (N/p — 1)st harmonics of an integer slot winding with 2p poles have
the largest zone factor in the spectrum bandwidth of N/p spatial harmonics, the rth
and (N/ps — r)th harmonics have the largest zone factor in a fractional pitch
winding with 2p; fundamental poles, as shown in Fig. 2.72. Integer slot winding is,
accordingly, a special case of fractional slot winding with » = 1 in which the
fundamental component of MMF dominates as a consequence of specific winding
topology—the placement of phase coils next to each other under each pole. Such
connection of coils is characterized by a minimum angle between MMFs of adja-
cent coils and, consequently, maximum total MMF and zone factor.

Coil pitch of an integer slot winding is usually equal to, or shorter than the pole
pitch, whereas the coil pitch of a fractional slot winding is approximately equal to
the principal pole pitch, y ~ 1, .

The pitch factor f, . for the rth harmonic created by a coil of a fractional slot
winding with fundamental pole pitch of 1, can be expressed as

Fig. 2.72 Zone factor for A Zone factor
selected spatial harmonics

n of an integer slot winding
with p = py (black lines) and a
fractional slot winding (gray
lines)

-1 zt‘p.f Nt

0 1 2T p Np
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Fig. 2.73 Spatial representation of fundamental (a) and nth harmonics (b) of air gap MMF created
by coils of an integer slot winding

. T . TppT
Jpr = sin r%— A sin rﬁz =1 (2.303)

with y denoting the coil pitch expressed in number of slots.

Sometimes the harmonic with period length of 21, ;, is described as fundamental,
and one uses the construction “subharmonic” in order to describe all periodic
quantities with periods longer than 21, As opposed to higher harmonics, or
simply harmonics, a “subharmonic” cannot be defined in terms of Fourier analysis
and, therefore, it is not a valid quantity which could describe either spatial, or time
periodic functions.

For the sake of clarity, further analysis will be performed for symmetrical
fractional slot windings, i.e., for those with identical winding topologies in all m
phases and with equal shift of 1, /m between adjacent phases at each fundamental
pole. The number of slots per fundamental pole N/(2ps) of a symmetrical fractional
slot winding is an integer multiple of the number of phases.

Nole
2N e i
/’1=1 ol
N
o Coil #
f f f T >
1 2 N, N
p p

Fig. 2.74 Electrical angle between fundamental (black line) and nth harmonic components (gray
lines) of MMF created by adjacent coils of a double-layer winding. Periodical character of angle
causes the saw-tooth form for n > 1

If the resulting rth harmonic of g coils under one fundamental pole ought to be
maximized, the angles between rth harmonic components of the coils must be
minimal. This is obvious in a 2p-pole integer slot winding ( = 1) placed in N slots,
where the angle o, between fundamental components of MMF of adjacent coils,
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O N> O11, O, etc. is equal to 0y = p - 0 = p - 2n/N, as shown in Fig. 2.73a.
The total of N/p coils per pole pair builds the star of fundamental components of
MMF with an angle o, between adjacent legs. The angle between nth harmonics of
MMF of adjacent coils, ©, y;,, ©, 1, ©, etc., is n - ., as shown in Fig. 2.73b.
This means that N/p coils per pole pair build # stars of nth harmonic components of
MMF with an angle of n - a, between adjacent arms.

Since the angle is a periodic quantity with a period length of 2m, as shown in
Fig. 2.74, the n stars of nth harmonic components of MMF overlap n times and end
up in a single MMF star. The adjacent arms in the single MMF star of nth harmonic
MMFs do not belong to adjacent coils, as is the case with the star of fundamental
components of MMF. This key property of electrical angle of nth harmonic makes
it possible to determine the sequence of coils under a fundamental pole of a frac-
tional slot winding in such a manner as to maximize the rth spatial harmonic of
MMF, as shown in Fig. 2.75.

Considering N/(2py) slots per fundamental pole of a fractional slot winding, one
groups gr coils, the rth harmonics of which are placed next to each other in the
MMF star in Fig. 2.75a, and connects them in series. The zone factor f,, for g¢
adjacent coils is equal to

Fig. 2.75 Spatial (a) (b)
representation of rth (a) and O, " o
fundamental harmonics (b) of ' 1,2 role
air gap MMF created by coils (O}
of a fractional slot winding ' O
(O]
®r, 1
(0]
©1,3
4 el
sin gf 72
= ——a (2.304)
g sin =t
where g = pf - 04, = pr - 20/N. Therefore,
2pem sin X
for = —mnZ (2.305)
N sinpey

If coils of a fractional slot winding have y = 1, one refers to single-tooth
winding. In order to maximize the coil pitch factor, one selects the number of
principal poles r close or equal to the fundamental pole pitch 1, ¢, since in that case
(Eq. 2.303)
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. y
for =sinr—— =~
P tp,f2

(2.306)

A single-tooth winding has short end windings. This advantage is compensated
by unfavorably high zone factors for higher harmonics. Besides, in large machines
large slot openings are necessary for manufacturing purposes (inserting the coils
radially from the air gap), which decrease the slot-opening factor and increase the
Carter factor, making ultimately the electromagnetic air gap width significantly
larger than the geometric.

Since the order of the air gap MMF harmonics of a single-tooth-wound machine
with the largest zone factor is close to T, one can represent the zone factor for
selected harmonics as shown in Fig. 2.76. Analogously to the zone factor distri-
bution for selected harmonics, represented in Fig. 2.72, the zone factors for an
integer slot winding are shown in Fig. 2.76 for the purpose of comparison.

Fig. 2.76 Zone factors for A Zone factor
selected spatial harmonics

n of an integer slot winding
with p = pr (black lines) and a
single-tooth winding (gray
lines)

| I ) ALY

0 1 2Tpp Np

>

Fig. 2.77 Comparison of Zone factor

positions of dominating terms

in air gap MMF spectra for X (® y =1, integer slot
various winding types. The
pitch 1, ¢ is expressed in the /@
number of slots, and n; is the R @ Cy=1
order of harmonic on the P Y <<Tps Slnv?/futr? dOth
fundamental pole base fractional slot
' 1 —
0 1 r Tp,f Nt

In extreme case r = 1,7 & 1, and the harmonics with largest zone factor are
positioned next to each other in Fig. 2.76.

One should note that groups of gr adjacent coils of a single-tooth winding with
number of slots close to the number of poles, i.e., with 7 ~ 1, ¢ belong to the same
phase.

In Fig. 2.77, the strongest harmonics of air gap MMF spectra for various
winding types are compared with each other.

Case Study 2.3: Stator winding of a three-phase, 84-pole electric machine is
placed in 288 slots and has a coil pitch of y = 3. The number of slots per principal
pole and phase g, is equal to (Eq. 2.300)



166 2 Windings

N 8
qp_2ppm_7

By selecting the 7. spatial harmonic of the fundamental pole pitch to be the first
harmonic of the principal pole pitch, » = 7, one obtains for p¢ = p,/7 = 6 and 1,
¢ = NI(2ps) = 24. There are 24 slots per fundamental pole in which a symmetrical
three-phase, double-layer winding ought to be placed. The number of slots per
fundamental pole and phase gr is equal to 8, the numerator of g,. The electrical
angle a, between slots is equal to o = ps - 20/N = n/24 (7.5°), and the electrical
angle between 7. harmonics of MMF created by coils in adjacent slots is
Tae = 52.5°. Electrical angles of 7. harmonics of all coils, along with affiliation of a
coil to a particular phase, are given in Table 2.8.

The normalized interval (0,360°) in Table 2.8 is divided into 2m = 6 subinter-
vals, each of which is 60°wide. In order to generate the phase sequence for a
symmetrical 3-phase machine in form of A > —-C — B — —A — C — —B, the
coil connections have to be arranged as shown in column 4 of Table 2.14.

Table 2.14 Electrical angles of 7. harmonic components in an 84-pole, three-phase machine with
288 slots, along with phase affiliation of coils

Coil Nr. i Electrical angle Electrical angle normalized Phase
of the 7. harmonic o ; to interval (0,360°)
1 0 0 +A
2 52.5° 52.5° +A
3 105° 105° —C
4 157.5° 157.5° +B
5 210° 210° -A
6 262.5° 262.5° +C
7 315° 315° -B
8 367.5° 7.5° +A
9 420° 60° —-C
10 472.5° 112.5° -C
11 525° 165° +B
12 577.5° 217.5° -A
13 630° 270° +C
14 682.5° 322.5° -B
15 735° 15° +A
16 787.5° 67.5° —C
17 840° 120° +B
18 892.5° 172.5° +B
19 945° 225° -A
20 997.5° 277.5° +C
21 1050° 330° -B
22 1102.5° 22.5° +A
23 1155° 75° —C
24 1207.5° 127.5° +B
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In particular, coils with an electrical angle of the 7. harmonic between 0° (in-
cluded) and 60° (not included) are positively oriented and belong to the phase A.
Coils with an electrical angle of the 7. harmonic between 180° (included) and 240°
(not included) are negatively oriented and also belong to the phase A.

The pitch factor for r = 7 equals to (Eq. 2.303)

. - 3m
fog = sm7ﬁ§ = 0.981

whereas the zone factors for the first 49 harmonics on interval (0,21, ) are

2 2
1
fon = q_ (E s; sin nocelﬁ,) + < E 5; COS nocelﬁ,) (2.307)
f i i

with s; denoting the sign of a given component:

sin nol ;

s (2.308)

e E—
|sm nocel,i|

and ag; the angles of coils affiliated to the same phase. For the phase A one can
write accordingly (Table 2.15).

Table 2.15 Angles and signs of components in Eq. 2.307

i 1 2 5 8 12 15 19 22
Ol i 0 52.5° 210° 367.5° 577.5° 735° 945° 1102.5°
S; +1 +1 -1 +1 -1 +1 -1 +1

Zone factors for the first 49 harmonics are shown in Fig. 2.78. One recognizes
the dominant 7. and 48 — 7 = 41. harmonics, along with second strongest 21. and
27. harmonics on the fundamental pole basis.
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Fig. 2.78 Zone factors of the fractional pitch winding in Case Study 2.3 as a function of harmonic
orders on the fundamental (n7) and principal (n,) pole basis

l

Fig. 2.79 Winding scheme for the machine in Case Study 2.3

Winding scheme for the first 30 slots of a three-phase, 84-pole generator with
288 slots and a coil pitch of y =3 is given in Fig. 2.79. The winding is fully
symmetrical and can be manufactured with a maximum of 288/24 = 12 parallel
circuits.

Case Study 2.4: Stator winding of a three-phase, 70-pole generator is placed on
72 teeth and has a coil pitch of y = 1 (single-tooth winding). The number of slots
per principal pole and phase g, is equal to (Eq. 2.300)
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N 12
_prm_35

dp

and the number of slots per fundamental pole and phase gr (Eq. 2.238) to

N

= =12
prm

qr

By selecting the 35. spatial harmonic of the fundamental pole pitch to be the first
harmonic of the principal pole pitch, r = 35, one obtains for the number of fun-
damental pole pairs py = p,/35 = 1 and 1,y = N/(2ps) = 36. There are 36 teeth per
fundamental pole carrying a symmetrical three-phase, double-layer winding. The
two layers are placed in slots next to each other, instead of above each other, as is
the case in conventional double-layer winding. The electrical angle o, between
slots is equal to o = pr - 2n/N = n/36 (5°), and the electrical angle between 35.
harmonics of MMF created by coils in adjacent slots is 350, = 175°. Electrical
angles of 35. harmonics of all coils, along with affiliation of a coil to a particular
phase, are given in Table 2.16.

Table 2.16 Electrical angles of 35. harmonic components in an 70-pole, three-phase
single-tooth-wound machine with 72 slots, along with phase affiliation of coils

Coil Nr. i Electrical angle of the 35. Electrical angle normalized Phase
harmonic o ; to interval (0,360°)
1 0 0 +A
2 175° 175° +B
3 350° 350° -B
4 525° 165° +B
5 700° 340° -B
6 875° 155° +B
7 1050° 330° -B
8 1225° 145° +B
9 1400° 320° -B
10 1575° 135° +B
11 1750° 310° -B
12 1925° 125° +B
13 2100° 300° -B
14 2275° 115° —C
15 2450° 290° +C
16 2625° 105° —C
17 2800° 280° +C
18 2975° 95° —C
19 3150° 270° +C

(continued)
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Table 2.16 (continued)

Coil Nr. i Electrical angle of the 35. Electrical angle normalized Phase
harmonic o, ; to interval (0,360°)
20 3325° 85° +C
21 3500° 260° +C
22 3675° 75° —-C
23 3850° 250° +C
24 4025° 65° -C
25 4200° 240° +C
26 4375° 55° +A
27 4550° 230° -A
28 4725° 45° +A
29 4900° 220° -A
30 5075° 35° +A
31 5250° 210° -A
32 5425° 25° +A
33 5600° 200° -A
34 5775° 15° +A
35 5950° 190° -A
36 6125° 5° +A
1
0.75
0.5
0.25
0 |,|,|,|,|,|,|,|,I,I,|,|,|,‘,|,‘ ,,,,, h,‘l],l,I,I,l,l,|,|,|,|,|,|,|,|,|,|,|,|,|,|,I,I,|,|,|,‘,| ,,,,,, h,‘l],l,I,I,|,|,|,|,|,|,|,|,|
1 35 69 103 137 ng
1 3 Np

Fig. 2.80 Zone factors of the single-tooth winding in Case Study 2.4 as a function of harmonic
orders on the fundamental (n7) and principal (r,) pole basis
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In Fig. 2.80 the spectrum of air gap MMF harmonics of the tooth-wound
machine in Case Study 2.4 is shown up to the range of twice the number of teeth
(140 in this case). The third spatial harmonic of air gap MMF on the principal pole
basis coincides with the 35 - 3 = 105. harmonic on the fundamental pole basis, the
fifth harmonic on the principal pole basis with the 35 - 5 = 175. harmonic on the
fundamental pole basis, etc.

Case Study 2.5: Stator winding of a three-phase, 20-pole machine is placed on
N =30 teeth and has a coil pitch of y = 1 (single-tooth winding), see also Case
Study 2.1. The number of slots per principal pole and phase g, is equal to
(Eq. 2.300)

N 1

T = 2ppm )

as is the number of slots per fundamental pole and phase g; (Eq. 2.301), because
Pp = pr = 10. Geometric angle between stator slots is equal to 360°/N = 12°, and
electric angle o = p - 360°/N = 120°.

Despite a non-integer number of slots per pole and phase, the stator winding in
this case study is not a fractional slot one, because the number of fundamental poles
is equal to the number of principal poles. Besides, the number of slots per pole and
phase ¢ is defined under an assumption of identical winding distribution at each
pole, which is not valid in the case of a machine with one coil per pole pair.

2.9 Squirrel Cage Winding

Squirrel cage winding is unique among AC winding types because it has no electric
terminals, no predefined number of phases m and no predefined number of poles
2p. The only way a squirrel cage winding can communicate with other windings in
a machine is through magnetic coupling with them, as shown in Fig. 2.81.

The number of phases of a squirrel cage winding depends on the number of rotor
slots N and the number of pole pairs of stator winding. The number of phases m can
be expressed as

(2.309)

. N N N
m=minq N, —, —, —
2°p ' 2p

Since a squirrel cage winding does not have a predefined number of poles, it
responds with its own MMF distribution to every spatial harmonic of stator created
air gap flux density excitation of the order n - p.
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Fig. 2.81 Squirrel cage winding and the air gap MMF distribution created by bar currents

One recalls that the end winding form of a wound coil does not play any role
when determining its air gap MMF distribution. Analogously, the fact that bars of a
squirrel cage are short-circuited by means of rings on their ends is irrelevant for the
analysis of air gap MMF created by such winding. Assume for the purpose of
clarity that the number of rotor slots N is divisible by the number of poles 2p, i.e.,
m = N/2p. In that case, the phase shift of currents in bars n, n + N/2p, n + Nip,
n + 3N/2p, ..., etc., alters for 180°, which is identical to the current distribution in
slots of full-pitch coils of an m-phase machine. In other words, two bars of a
squirrel cage winding placed in slots n and n + N/2p create identical MMF dis-
tribution as a regular full-pitch coil. As shown in previous sections, a full-pitch coil
creates a rectangularly distributed MMF characterized by unity pitch factor of all
harmonics. A complete cage, however, generates only those harmonics of rotating
MMF which satisfy conditions expressed in Eqs. 2.188 and 2.189. In conventional
squirrel cage induction machine the number of rotor phases is large due to a large
number of rotor slots. When symmetrically excited, e.g., with sinusoidal air gap
flux density, a symmetrical squirrel cage winding generates an air gap MMF with
fundamental component and slot harmonics only.

Taking for the number of rotor phases m = N/2p, one can express the total
positive sequence air gap MMF 0, created by the fundamental time component of
squirrel cage currents as

0, = Z®2i’”+1 cos [(Zim—l— I)TE)C — o)t]

i=0 P
= N

= Z@iN/P+1COS Ki— + 1) Ex — (ot] (2.310)
=0 p T

as well as the negative sequence ®O_
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Z@z,m lcos{ (2im — 1)T£x+wt]

p

= N
: —— 1) Zxtor 2.311
2 e (5= 1) garar] - can

The lowest order of higher harmonics of rotating MMF is N/p — 1. Therefore,
the rotating MMF created by a squirrel cage winding is almost sinusoidal. Squirrel
cage winding is a perfect example of how lower harmonics in the air gap MMF
distribution can be suppressed by increasing the number of phases.

Assume now that stator winding generates an air gap flux density distribution Bj
which tries to penetrate into the squirrel cage. The corresponding fluxes @5 — D »
are related to leakage fluxes @5 — @5 n and tooth fluxes Oy ; — Oy as

(I)S,n = (Dt.n + q)c,n - (Dc.nfl (2312)

where 1 < n < N. Denoting by G, the permeance of the nth slot for tangential flux

1 laxhn
Gsn == 2.313
3 Ho b, ( )
and by ki, the skin effect factor for inductance, one can further write
1 laxhy, | 1 Laxhy,
D5, —q)tn+3uokLn abn 3HokLn 1 ab Bn—1 (2.314)
and
(I)B,n = (I)t,n +kL,nGs,niB,n - kL,nfle,nfliB,nfl (2315)

Voltage differential equation written for the nth loop of the squirrel cage winding
in Fig. 2.66, 1 < n < N, yields

d(Dt . .

Un =~ " + Rrrn iFRn + RBp - i85 + RRR - iRR 0 — RBa—1 - iB0-1 = 0 (2.316)
with Rgg ,, denoting the resistance of the nth front ring segment, Rgg ,, the resistance
of the nth rear ring segment, Rg , the AC resistance of the nth bar, and @, the flux
of the nth tooth. Considering heteropolar machine structure, one can write conti-
nuity equations

N
> 0, =0 (2.317)
j=1

and
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N
D inj=0
=1

as well as voltage equations for the front and rear end ring:

N
g Rerj - ipr; =0
J=1

and

N
E RrRr,j - igr; =0
Jj=1

2 Windings

(2.318)

(2.319)

(2.320)

because the flux linked by front and end ring is equal to zero. Equations of the
I Kirchhoff’s law for bar, front and rear end ring currents can be written as

B = IRy — IFRn+ 1
and
B = IRR;n — IRRy+ 1

By combining Eqs. 2.319 and 2.321 one obtains matrix equation

1 -1 0 .. 0 0 iR
0 1 -1 ... 0 0 iR
o 0 1 .. 0 0 || dms | _p
0 0 0 ... 1 —1| |irwa

Rer1 Rrr2 Rrr3 .- Rernv-1 Rern IFR N

with I’ denoting the modified identity matrix:

1 0 0 0
0 1 0 0 0
s_ |0 1 0 0
0 0 0 1 0

)
)
)
)

(2.321)

(2.322)

iB,1
B2
iB3

IBN—1

iBN

(2.323)

(2.324)
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Introducing vectors ig, irg and irgr, defined as

ig=[iB1 B2 --.. iB,N]T (2.325)
. . ) T
i = [fFR1 IFR2 ... IFRWV] (2.326)
. . . . T
irg = [iRR,1 iRR2 --- IRRN] (2.327)
as well as matrix Cg:
1 -1 0 o 0 0
0 1 —1 .. 0 0
| 0 0 1o 0 (2.328)
0 0 0 o 1 -1
Rrr1 Rrrp Rer3 ... Rern-1 Rrrny

one can rewrite Eq. 2.323 as

Crigg=1"1ip (2.329)
Similarly one can write
Crigg =1 ig (2.330)
where Cg is defined as

1 -1 0 0 0

0 1 -1 0 0
Cp = 0 0 1 e 0 0 (2.331)

0 0 0o ... 1 -1

Rrr;i Rrr2 Rrr3 .- Rrry-1 Rrrwy

Due to linear dependence between tooth fluxes (Eq. 2.317), only N — 1 linearly
independent voltage equations 2.316 can be written, the solution of which are bar
currents. The Nth equation for bar currents follows from 2.318. Consequently, one
can write the system of equations for bar currents and tooth fluxes as

d
r 'a@t = —1' Ry -ipg — I Rpg - Igg + R - i (2.332)

where
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—Rg; O o ... 0 0  Rex
RB,I _RB,Z 0 ce 0 0 0
0 RB,Z —RB73 e 0 0 0
BB: [N oo PPN PPN
0 0 0 ... —Rgno 0 0
0 ... Rsyo —Rgyy O
1 1 | 1 1 1
BFR = diag{RFR,l y RFRA,Z, cey RFR,N}
Rpr = diag{RBR,l ,RBRr 2, .. -aRBR,N}
and
@[ = [(Dt,l ‘1)1,2 ce (DI,N ]T

Inserting Eqgs. 2.326 and 2.327 in Eq. 2.332, one becomes

d
I ®o= (—LReg - C' - I' = I'- Ry - Cr' - I'+Rg) -y
Introducing matrix Rcagg, defined as

ECAGE:EB—L/'BFR-QEI.l/_L’.ERR_glgl.l/

one can finally write for bar currents and tooth fluxes:

iy = BE}xGE ’ I_, ’ agt

Introducing matrix G, defined as

[ ki1Gs,1 0 0 0 0

—kp1Gs,1  kipGsp o ... 0 0 0

G — 0 0 R kL,n—lGS,n—l 0 0

=me 0 0 cee 7kL‘n—lGS‘n—l kL‘nGS,n 0
0 0 e 0 —kLnGsp  kLnt1Gsny1

Lo o .. 0 0 0

2 Windings

(2.333)

(2.334)

(2.335)

(2.336)

(2.337)

(2.338)

(2.339)

—kLnGs ]
0
0
0
0

knGsn |

(2.340)

and substituting time derivatives of tooth fluxes ®,; — @,y from Eq. 2.316 in

Eq. 2.247, one obtains the matrix system of differential equations
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d. . d
Ging "qy8 T Reace s = &95 (2.341)

Assuming constant parameters and sinusoidal excitation, one can rewrite
Eq. 2.339 in terms of real and imaginary components of solution as

OGpng - I im — Reace * Ipre = OPs ke (2.342)
and
0G ., - Igre + Reace * Iim = OPs 1m (2.343)
where
Ig | cos @, Ig 1 Sin @,
Igre = o2 cos @ s Igm = Iasin e (2.344)
Ig .c.o.s oy Isn sm Py
and
@5 siny, @51 cos v,
Oy — sz sinY; | Oy = D52 c08 7, (2.345)
(D&N' sm Ty (I)S,N.(;(.)S YN

The solution of the system of Egs. 2.338 and 2.339 yields

1
Igim = (ngmg - Reace - G +ECAGE> (D(QMm + oG, - Repce '@a,Re)

(2.346)
and
Ing. = BE}\GE(’)<ng g — QS,RS) (2.347)
For air gap MMFs in Fig. 2.81, one can write
O,1=0,+igu+1 (2.348)

where 1 < n < N — 1. The continuity equation for air gap MMFs can be written as

> ©;=0 (2.349)

J=1
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Combining N — 1 Eq. 2.348 with Eq. 2.329, one obtains

1 0 0 0 -1 0,
-1 1 0 0 0,
0o -1 1 0 0 (CH) — 1 (2.350)
0 1 0 On_1
1 1 1 1 1 Oy
or
Q@ : Q = ll I
the solution of which is
O=Cg' Iy (2.351)

By comparing previous equations, one concludes that the air gap MMF distri-
bution ® created by a squirrel cage with identical ring segment resistances is
identical to the front (igg) or rear (irg) ring segment current distribution.

Case Study 2.6: The rotor of a 4-pole, 100-kW, 400-V, 50-Hz squirrel cage
induction machine has a total of 40 slots. Copper bars are 5.5 mm wide and 50 mm
high, and ring dimensions are 50 X 10 mm. At standstill, the sinusoidally dis-
tributed tooth flux density has an amplitude of 0.35 7, which corresponds to some
50 % of its no-load value.

Rotor bar current density distribution in sound cage created by the flux density
distribution in Fig. 2.82 is shown in Fig. 2.83, and the front ring segment current
density distribution in Fig. 2.84. Ring segment currents are 90° shifted in space
relative to bar currents. Bar current density at standstill equals to 32 A/mm?, and at
rated point 5.1 A/mm?>.

Fig. 2.82 The impressed
tooth flux density distribution
at short circuit
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Fig. 2.83 Rotor bar current
density distribution at short
circuit in sound cage
generated by impressed air
gap fluxes in Fig. 2.82

2 Tpo

The air gap MMF created by the rotor bar currents in Fig. 2.83 is shown in
Fig. 2.85. The amplitude of air gap MMF in Fig. 2.85 is as large as the amplitude of
ring current, as shown in Fig. 2.84 and equals to 40 kA.

The spectrum (in % value of the fundamental) of air gap MMF in Fig. 2.85 is
shown in Fig. 2.86. The spectrum contains only the fundamental and the slot
harmonics, because a symmetrical squirrel cage winding filters all harmonics
besides fundamental below the order of the number of slots per pole pair decreased
by 1, see Eqgs. 2.188 and 2.189, and Table 2.9. Both fundamental and slot har-
monics contain only positive sequence components.

w,f
27Tp 0

Fig. 2.84 Rotor front end ring segment current density distribution at short circuit in sound cage
generated by impressed air gap fluxes in Fig. 2.67
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O [kA] 9}_

a0l
0

Fig. 2.85 Air gap MMF distribution created by bar currents in sound cage excited by impressed
air gap fluxes in Fig. 2.82

Assume now that bars Nr. 11 and 12 are broken, i.e., without contact to the front
and rear cage. The two bar currents are equal to zero, as shown in Fig. 2.87, and the
front, along with rear end ring current densities in corresponding segments have
equal amounts, as shown in Fig. 2.88.

100 Fundamental
80
60
40
20
2 3 4 5 6 7 8 9

— Harmonic order

Fig. 2.86 Spectrum of air gap MMF distribution in Fig. 2.85 (in % value of the fundamental)
created by bar currents in sound cage excited by impressed air gap fluxes in Fig. 2.82
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Fig. 2.87 Rotor bar current density distribution in a broken cage generated by impressed air gap
flux densities in Fig. 2.82. Bars Nr. 11 and 12 are broken

The air gap MMF distribution created by currents in a broken squirrel cage is
shown in Fig. 2.89. MMF of teeth surrounded by slots with broken bars is constant
because there is no contribution from those slots to the MMF.

The amplitudes of bar currents are shown in Fig. 2.90. One recognizes typical
increase of current amplitudes on both sides of broken bars and decrease of current

amplitudes in farther bars.

Fig. 2.88 Rotor front ring current density distribution in a broken cage generated by impressed air
gap flux densities in Fig. 2.82. Since the bars Nr. 11 and 12 are broken, current densities in ring

segments connected to these bars are equal to each other
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Fig. 2.89 Air gap MMF distribution created by the bar currents in a broken cage excited by
impressed air gap fluxes in Fig. 2.67. Bars Nr. 11 and 12 are broken

The amplitudes of tooth MMFs are shown in Fig. 2.91. One recognizes a signif-
icant loss of MMF due to broken bars, as well as unequal amplitudes of tooth MMFs.

100} N

8ot
60}
40t

20

+Bar Nr

1112

Fig. 2.90 Bar current amplitudes in a broken cage as percentage values of currents in sound cage.
The cage is excited by impressed air gap flux densities shown in Fig. 2.67. Bars Nr. 11 and 12 are

broken
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20
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Fig. 2.91 Air gap MMF amplitudes, as percentage values of MMFs of sound cage, created by bar
currents in a broken cage excited by impressed air gap flux densities in Fig. 2.82. Bars Nr. 11 and
12 are broken
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Fig. 2.92 Spectrum of the air gap MMF distribution (in % value of the fundamental of a sound
cage) created by bar currents in broken cage excited by impressed air gap flux densities in
Fig. 2.82. For each harmonic the maximum (gray) and minimum (white) values are given

The spectrum (in % value of the fundamental created by sound cage) of air gap
MMF in Fig. 2.89 is shown in Fig. 2.92. The spectrum contains all harmonics from
the interval between the fundamental and the slot harmonic, as a consequence of
cage asymmetry introduced by broken bars.

The positive sequence component of the fundamental component of air gap
MMF in Fig. 2.89 amounts 92.3 % of the positive sequence in a sound machine,
whereas the negative sequence MMF in case of 2 broken bars increases to 2.6 % of
the positive sequence in a sound machine
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Case Study 2.7: The rotor of a 3.75 MVA, 50 Hz, cos ¢ = 0.8 lagging, salient
pole synchronous machine has a damper cage with 6 slots per pole shifted 10° el. to
one another. In the interpolar space, there are no bars; the front and rear end rings
are continuous. The DC bar resistance equals to 82.5 nQ and the DC ring segment
resistance 5.31 pQ. After sudden loading, the rotor oscillates for a while with a
frequency of 1 Hz. During the transient, the air gap flux density is sinusoidally
distributed along the periphery and has a constant amplitude of 0.75 T.

Bar currents distribution in case of continuous ring is shown in Fig. 2.93. One
recognizes an increase of bar current amplitudes closer to pole boundaries, which
compensates for a portion of missing bar currents in the interpolar space. The
corresponding front end ring currents distribution is shown in Fig. 2.94, and the air
gap MMF distribution in Fig. 2.95.

The amplitudes of bar currents for a given excitation are shown in Fig. 2.96. One
recognizes typical increase of currents in bars closer to edges of poles.

ibar [A]

Fig. 2.93 Bar currents in a damper cage with continuous end rings, generated during load change
by a 0.75 T air gap flux density at 1 Hz

Fig. 2.94 Ring currents in a damper cage with continuous end rings, generated during load change
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One of the consequences of missing bar currents in the interpolar space is con-
stant amplitudes of tooth MMFs, as shown in Figs. 2.95 and 2.97. Denoting by
100 % the amplitudes of MMF in the interpolar space, one can represent the per-
centage amplitudes of spatial harmonics of air gap in the manner shown in Fig. 2.96.
The amplitude of the positive sequence component of air gap in Fig. 2.97 equals to
92 %, and of the negative sequence component to 7.2 % of maximum MMF.

Fig. 2.95 Air gap MMF distribution created by a damper cage with continuous end rings
generated during load change

Fig. 2.96 Bar current 3000
amplitudes in a damper cage
with continuous end rings 2500
generated during load change
2000 T [T
1500
1000
500

o T
7 12 25 30  Tooth Nr.
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As opposed to asymmetrically broken bars in an induction machine from Case
Study 2.6, which generated both odd and even spatial harmonics of MMF, the
symmetrically missing bars of damper cage in this example lead to creation of odd
harmonics only, as shown in Fig. 2.98.

6000
5000
4000
3000
2000

1000

-

7 11 25 29 Tooth Nr.

Fig. 2.97 Air gap MMF amplitudes created by currents in a damper cage with continuous end
rings generated during load change
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Fig. 2.98 Spectrum of the air gap MMF distribution (in % value of the largest fundamental in
Fig. 2.82) created by currents in a damper cage with continuous end rings during load change. For
each harmonic, the maximum (gray) and minimum (white) values are given
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A continuous damper cage with bars in the interpole space creates tooth MMFs
with equal amplitudes. Since in interpolar space of the analyzed machine there are
no bars, the amplitude of the fundamental spatial harmonic of air gap MMF
(Fig. 2.99) is obviously smaller than the amplitude of tooth harmonics in interpolar
space in Fig. 2.97.

2 Tp

Fig. 2.99 Bar currents in a damper cage with discontinuous end rings in the interpole space
during load change

Fig. 2.100 Ring currents in a damper cage with discontinuous end rings during load change
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In discontinuous damper cage (ring segments only on poles), the damping is not
as efficient as in a continuous damper cage, since important components of ring
currents are missing, Figs. 2.99 and 2.100. The missing connection between
damper cage sections on salient poles results in significantly lower amplitudes of air
gap MMF, as shown in Fig. 2.101. The amplitude of the positive sequence com-
ponent of air gap in Fig. 2.102 equals to 14.6 %, and the amplitude of the negative
sequence component to 13.2 % of the maximum MMF created by a continuous
cage. The distributions of amplitudes of ring and bar segment currents of discon-
tinuous damper cage are given in Figs. 2.102 and 2.103.

2Tp0

Fig. 2.101 Air gap MMF distribution created by a damper cage with discontinuous end rings
during load change

2000

1500

1000

500

T

7 12 25 30 Tooth Nr.

Fig. 2.102 Bar current amplitudes in a damper cage with discontinuous end rings during load
change
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The spectrum of air gap MMF of discontinuous cage in Fig. 2.104 shows
deterioration of damper cage effects in discontinuous rings, as well as a significant
increase of higher spatial harmonics of MMF created by damper cage currents.

4000

3000

2000

1000

2 T
7 11 25 29 Tooth Nr.

Fig. 2.103 Air gap MMF amplitudes created by currents in a damper cage with discontinuous end
rings during load change. The largest MMF amplitudes are located in the center of interpole space
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Fig. 2.104 Spectrum of the air gap MMF distribution (in % value of the largest fundamental in
Fig. 2.97) created by currents in a damper cage with discontinuous end rings during load change.
For each harmonic, the maximum (gray) and minimum (white) values are given

Case Study 2.8: Double-layer stator winding of a 3-phase, 281-MVA
hydrogen-cooled turbogenerator 15.75 kV, 10.3 kA, two parallel circuits, cos
¢, = 0.8 is placed in 60 slots and has a pitch of 25 slots. The rotor has 14 slots per
pole shifted for 9° to one another and carrying in total of 49 turns of field winding.
Rated field current amounts to 4340 A and air gap is 75 mm wide. Rotor slot
wedges are built of Nibrofor, a high strength copper alloy, and short-circuited on
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both rotor ends by means of end bells. Maximum allowed stator current unbalance
is 8 %.

Negative sequence MMF caused by stator current unbalance is superimposed to
the total air gap MMF. Therefore, the amount of air gap flux density created by the
current unbalance of 8 % depends on the operating point of the magnetic circuit. At
rated operating point the current unbalance causes a negative sequence component
of the air gap flux density in the amount of 20 mT. The negative sequence com-
ponent of flux density rotates at twice the synchronous speed relative to the rotor
and induces in it voltages at twice the stator frequency, as shown in Fig. 2.105.

Fig. 2.105 Air gap flux density distribution at 8 % unbalanced load during one rotor revolution

The air gap flux density in Fig. 2.105 induces in damping wedges voltages
which drive bar and ring currents, as shown in Figs. 2.106 and 2.107, respectively.

Fig. 2.106 Rotor damper bar currents at 8 % unbalanced load during one rotor revolution
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The amplitudes of rotor tooth MMFs at 8 % unbalanced load are shown in
Fig. 2.108. One recognizes the decreasing MMF values toward the rotor g-axis, as a
consequence of the bar currents distribution in Fig. 2.109. The positive sequence
component of MMF in the asymmetric distribution in Fig. 2.108 has the amount of
39.3 kA, and the negative sequence 4.7 kA. Here the positive sequence component
of MMF rotates in the opposite direction to the rotor, and the negative sequence
component of MMF in the direction of rotor rotation.

The spectrum of damper cage MMFs is shown in Fig. 2.110. The MMF spec-
trum contains only odd harmonics, since the pattern of missing bars is identical in
each interpole space.

2 Tp 0

Fig. 2.107 Rotor ring currents at 8 % unbalanced load during one rotor revolution
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Fig. 2.108 Rotor tooth MMF amplitudes created by currents in a damper cage at 8 % unbalanced
load. The largest MMF amplitudes are located in the center of poles
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kA
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Fig. 2.109 Amplitudes of rotor bar currents corresponding to rotor tooth MMF in Fig. 2.108
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Fig. 2.110 Spectrum of the air gap MMF distribution (in % value of the largest fundamental in
Fig. 2.82) created by currents in a damper cage at 8 % unbalanced load. For each harmonic, the
maximum (gray) and minimum (white) values are given

2.10 Winding Failures

As illustrated in Case Study 2.6, an asymmetry of a squirrel cage winding in the
form of broken bars is a source of higher harmonic components in the air gap MMF
created by the squirrel cage. Very often broken bars are accompanied with pulsating
torques and an increased noise level.

In case of field windings of synchronous machines, an interturn fault is a source
of:
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Decrease of the fundamental term of field created MMF, because short-circuited
coils do not contribute to the MMF. The amount of decrease of current sheet can be
quantified by means of Fig. 2.111 in which the rotor of a two-pole turbogenerator is
shown. Denoting the maximum number of field coils with N, and numbering the
short-circuited coil by n, 1 £ n < N, one can write for the total effective number of
turns weg

N,

1 n—1 o
Weff = Zcos(z’ — 1o + Z cos(i — 1)k
Newe \ | i

“nt1

2 n—1 N. 2
+ [Z sin(i — 1)o + Z sin(i — l)ad]
i=1 i

“nt1

(2.352)

Fig. 2.111 Rotor of a n
two-pole turbogenerator with
N, coils. The nth coil is
short-circuited

In Fig. 2.112 the winding factors of a field winding after Fig. 2.111 with 12
coils, the angle between which is 7.5° and one short-circuited coil are shown. The
strongest effect on the field MMF is obtained by short-circuiting the coils in the
center of the winding, i.e., slots number 6 and 7,
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Fig. 2.112 Winding factors for a field winding with 12 coils, the angle between which is 7.5°, and
one coil short-circuited

Even harmonics of MMF, which are reflected in induced voltages;

Asymmetric_heating of the rotor winding, which eventually leads to rotor
bowing; and

Decrease of the field winding main and leakage inductances.
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Chapter 3
Magnetic Circuit
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Some useful procedures for evaluation of field distribution in iron and air portions
of magnetic circuits of electric machines are introduced in this chapter.
A straightforward way for determination of flux distribution in air gap and slots
based on properties of geometric series is discussed. A simple algorithm for closed
form solution of magnetic circuits with nonlinear B-H curve is discussed. An
accelerated procedure for solution of differential algebraic equations is applied to
machine voltage equations.

The solution procedures are illustrated by an example of flux distribution in a
slot and air gap of an electric machine, as well as 3-dimensional analysis of
magnetic circuit of a claw pole (Lundell) generator.

3.1 A Straightforward Method for the Solution of Flux
Distribution in Current-Free Air Gap and Slots

Air gap is the most important portion of an electric machine, because the air gap
flux density distribution determines machine’s most crucial parameters—the
induced voltage and the electromagnetic torque. Both these quantities are directly
dependent on the air gap flux density distribution. In the previous chapter, the
harmonics of air gap flux density for a given slotting and MMF distributions were
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analyzed, without going into details of field distribution determined by variable
geometry between stator and rotor iron surfaces, as shown in Fig. 3.1.

From the point of view of magnetic circuit representation, air gap differs from
other machine portions because the flux lines in it cannot be canalized as in a tooth,
or yoke segment between two teeth. Flux lines distribution in the air gap is a
function of excitation and geometry for a given rotor shift, and computational tools
of different art have to be employed in order to relate the air gap flux density to the
MMF on its borders.

Here an analytical procedure will be presented for the determination of air gap
flux density distribution based on sourcelessness of magnetic field

divB=0 (3.1)
which also can be written as
0 0 0
—B,+—B,+ =—B.=0 32
Ox + Oy y¥ 0z ° (32)
R

Fig. 3.1 Approximate field distribution in current-free air gap and slots

or

0 0 0
a(HxHx) + a—y(HyHy) + 8—Z(Hsz) =0 (3.3)

Setting for p, = p, = p, = po, one obtains
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0 0 0
o+ L0+ = 4
Ox A Oy v+ oz ° 0 (34)

Being a vector quantity, the magnetic field strength H can be expressed in terms
of another scalar or vector function, which formally satisfies the rules of vector
analysis, not necessarily having certain physical meaning. Such scalar or vector
function is called magnetic potential [1]. Both scalar and vector potentials have
found wide area of applications in magnetism. Whereas the scalar magnetic
potential ¢ could be interpreted in terms of MMF drop ® between two points, i.e.,
01, = ¢1—0,, there exists no similar physical interpretation for the vector magnetic

potential A

The choice of the type of potential optimally suited for a particular problem is
dependent on the character of the problem. In a current-free medium, the magnetic
field strength H can be represented only as a gradient of magnetic scalar potential o,
which means further [1]

Sk AR R (3.5)

Fig. 3.2 Rectangular mesh for evaluation of magnetic scalar potential

As long as the effects in the end zone can be neglected, the field in the active part
of an electric machine is two-dimensional. Therefore,

o*o P
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The magnetic scalar potential distribution (3.6) can be discretized in Cartesian

coordinate system in the manner shown in Fig. 3.2. Along the distance d; in
Fig. 3.2 one can discretize the first derivative of magnetic scalar potential as

IP\ 91— 9
(&)dl_ - (3.7)

and along ds, similarly

99\ 9y — 93
(&)d; - (8)

from which one can express the second derivative of scalar magnetic potential w.r.t.
coordinate x at point O as

\ 6,
o _\% a4 \Ma _, (@1 — @9)d5 + (93 — @) (3.9)
Ox? d_d dyds(dy +ds) '

and analogously for the coordinate y:

>’o > (@2 — @g)ds + (94 — @g)da

P drds(dy +ds) (3.10)

Now, one can write discretized Eq. 3.6 as

(@1 — 99)d5 + (93 — 9o)di + (@2 = Pg)ds + (94 — 9g)d2 0 (3.11)

ddz(dy + d3) drdy(ds +dy)
or
1 d2d4 d]dg
N ds + 03di) + = (@rds + @sd2) | (3.12
o (d1d3 +d2d4) |:d1+d3 ((Pl 3703 1) &y +d, ((PZ 4T Py 2) ( )

In case of equidistant mesh along the x-axis, d; = d3 = d,, and y-axis, d, =
dy = d,, one can write

+ @3)d} + (92 + @4)d;
(PO:(% @3)dy + (02 + 94)d; (3.13)

22 +a2)

Introducing auxiliary variables ¢, and c, defined as
d2

W (3.14)

Cy =
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d2
cy = —— (3.15)
22 +a2)
One can express the potential @, at central point as
Pg = CyPy +Cx Py + €03 + Cx Py (3.16)
If d, = d,, one can write
k-1, ¢
O
k, £-1 k, £ k, £+1
@) O O
k+1, ¢
Fig. 3.3 Rectangular mesh for evaluation of scalar magnetic potential

0 4

which is an intuitively comprehensible result.

In order to obtain a given accuracy, the computation of scalar potential after
Eq. 3.12 is performed iteratively. The value of scalar potential at nth step of iter-
ation at a point with coordinates k (vertical) and ¢ (horizontal), as shown in Fig. 3.3,
can be expressed in terms of potential of points around it as

Orin = CyPri—tn—1 T CxProtgn T CyPri—1,n + CxPr_110-1 (3.18)
when evaluating potentials from left to right and up to down. The values of scalar

potentials at nth step of iteration can be expressed in terms of scalar potentials at (n
—L)th step of iteration as

Prin = CxPr—11n = CyPri—1n = CyPri—tn—1 T CxPr—11n—1 (3.19)

and in matrix form as
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Ci-9,=GC0,, (3.20)
with C| and C) denoting matrices of coefficients, ¢ the vector of scalar potentials
at nth step of iteration, and ¢ _, the vector of scalar potentials at (n—1)th step of

iteration. Some points in computational region can have fixed potentials, e.g.,
through boundary conditions. Denoting by ¢, the vector of scalar potentials on the
region boundary, and by B the matrix of boundary conditions, one can rewrite
Eq. 3.20 as

Ci-o=C-9 +B-9, (3.21)
or
9,=Ci' (Qz ‘9, ,TB: 93) (3.22)
Analogously, one can write

9, , =Ci' (f_?z gn,ﬁﬁ'%) (3.23)
©,=C' (Qz "¢, +B- 93) (3.24)

and
9, =Cr' ((_?z "9, +B: 93) (3.25)

with @, denoting the vector of initial assumption of scalar potentials. Now, one can
substitute Eq. 3.25 back in 3.24:

0,=Ci'- [Qz crt (Qz -, +B- 93) +B- 93] (3.26)
or
9,=(Cr" ) o, +C' - (Cy-CrM D) B g, (3.27)
Analogously, one can write

0,=(C' ) o, +Ct G Gt (G G D) +1]-Brg,  (328)
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and

0, = (€ €)@t € [(Cr €T + (G € H Gy G 1) B g,
(3.29)

The vector ¢ of scalar potentials at nth step of iteration can now be written as

?

—n

= (¢! 'Qz)n'90+ )

i=1

crt Z (G -Cl‘)“] ‘B9, (3.30)

One recognizes in square brackets of Eq. 3.30 a sum of geometric series, which
also can be written as

(G = ()] -G (3.31)
i=1

Now one can write the expression for direct computation of scalar magnetic
potentials as

0, =(C' ) o +Ct I (G )] (I-C-Ci) B g,

(3.32)
Since
Cil-G|<1&|C, - cl| <1 (3.33)
one can write for n — ©0:
o =C'(I-¢, - ') 'B-g, (3.34)

As expected, the scalar magnetic potential distribution is dependent on the
problem geometry and boundary conditions and independent of the assumption of
initial values of @,.

Case Study 3.1: Use the scalar magnetic potential distribution to calculate Carter
factor of the rectangular slot in Fig. 3.4. Due to symmetry conditions, only one half
of slot has to be considered.

Scalar magnetic potential distribution calculated by using Eq. 3.34 for boundary
conditions ¢; = —1 p.u. and ¢, = 1 p.u. is shown in Fig. 3.5. One recognizes an
imprint of a portion of the lower teeth from Fig. 3.4 in the potential distribution in
Fig. 3.5.
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Fig. 3.4 Slot and gap geometry with computational mesh
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Whereas the scalar magnetic potential along the mesh radial coordinate » = 1 in
Fig. 3.5 is set to 1 (boundary condition), its value along r = 2 is a function of
boundary conditions and problem geometry. Since the derivative of scalar magnetic
potential in air is proportional to the corresponding flux density component, one can
represent the p.u. values of the radial component of flux density at radial coordinate
r = 1 in the manner shown in Fig. 3.6.

The ratio between the maximum flux density (here 1 p.u.) and an average of 20
values along the coordinate ¢ is equal to the Carter factor, which for the values in
Fig. 3.6 equals to 1.787. When calculated by using the procedure introduced in
Chap. 2, the Carter factor amounts to 1.704.

3.2 A Straightforward Method for the Solution of Flux
Distribution in Air Gap and Slots
with Current-Carrying Conductors

In the previous section, the scalar magnetic potential ¢ was introduced, which
satisfies equation [1]:

H = —grad ¢ (3.33)

Due to the properties of vector functions, scalar magnetic potential ¢ can be
defined only in a current-free medium. Following Ampeére’s circuital law

curl H = J (3.36)

and inserting for magnetic field strength the substitute as defined in Eq. 3.35, one
obtains

curl(—grad @) = J (3.37)

which is a nonsense, because curl of the gradient of any scalar function is equal to
zero

curl(—grad @) =0 (3.38)

Obviously, a vector function has to be introduced for problems with current
different from zero. This function is the magnetic vector potential A, defined as

B = curlA (3.39)
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As opposed to the discretely distributed current density 7, magnetic vector

potential A is a continuous function spread over the whole problem region, as
shown in Fig. 3.7.

€—mmm - —-—— -
€« -===-
<~
P
€ -===-
Cm————

Cemmcccccccacaaa
€ o

-

A

Fig. 3.7 Illustrating relationships between current density 7, flux density B, and magnetic vector

potential A affiliated to J. Vectors A and J are shifted 180° to each other. The value of A at the
center of conductor is set to zero (Ag = 0)

Magnetic vector potential affiliated to a straight current-carrying conductor
coincident with the z-axis on distance r from the conductor center can be expressed
as [2]

I 7
Ar=—Hoy - p +Ao (3.40)

for r < ry, where ry denotes the conductor radius and [ the current through it.
For r 2 ry, the magnetic vector potential is equal to

1 ro 1
Ac=—poz- [m(r) 2] +Ao (3.41)

Magnetic vector potential is determined up to the constant of integration Ay,
which cannot be reconstructed from physical conditions and, therefore, remains
arbitrary. This does not limit the field of application of magnetic vector potential,
because not its value at a point, but the difference of magnetic vector potentials at
two points (which does not contain any more the constant of integration Agp) is
decisive for determination of magnetic field.
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Fig. 3.8 Amplitude of magnetic vector potential affiliated to a single conductor as a function of
distance r to the conductor center

The dependence of magnetic vector potential of a single current-carrying con-
ductor on the radial distance r from the center of the conductor is shown in Fig. 3.8.
Since the amplitude of flux density B on the conductor surface is equal to

B, (3.42)

= Ho 2}’0713
one can write for the amount of vector magnetic potential on the conductor surface

1 1
Ar:rg = AQ — u‘)ﬁ = Ao — 5 OBr:ro (343)

Magnetic vector potential is a handy quantity which helps define flux @ through

surface S
q,://g.dgz//(vxii)~d§ (3.44)

or, by using Stoke’s theorem

—

d=¢A-d (3.45)
/

where C is the contour bounding the surface S.

For two-dimensional problems in the (x, y) plane, where magnetic vector
potential has only the z-component, the flux ®p_, between points P and Q is equal
to
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®p_o =I.(Ap — Ag) (3.46)

with ¢, denoting the length in z-direction, Ap the value of magnetic vector potential
at point P, and A, at point Q. Since magnetic vector potential in case of
two-dimensional problems has only the z-component, the distance between points
P and Q is irrelevant for computation of flux @ in Eq. 3.46.

Equation 3.46 helps one relate magnetic flux to magnetic vector and scalar
potentials in the manner shown in Fig. 3.9. Here a two-dimensional flux tube is
depicted, characterized by flux lines limited within the boundaries A = Ap and
A = Aq. Since no flux line crosses the boundaries A = Ap and A = Ay, a curve
defined by A = const. has the properties of a flux line.

Magnetic vector potential created by two current-carrying conductors in a
medium with relative permeability equal to one, both with radius r,, placed at origin
and point (d, 0) parallel to the z-axis can be expressed as [2]

— “_Ollni(d —x)’+y
 4n X%+ y?

A(x,y) (3.47)

for a point outside both conductors and

®4
Dp.q

Flux line

Aq

Flux line Q - 92

Fig. 3.9 Magnetic vector and scalar potentials of a flux tube

Fig. 3.10 Magnetic vector potential of two conductors carrying the same current I in opposite
directions. On the centerline between the conductors, the value of magnetic vector potential is
equal to zero
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712 244 d—x)*+y?
_ ol 2y e VT (3.48)

A -
) =12~ 2 "

for a point within the conductor placed at origin and carrying current /. For a point
within the second conductor having coordinates (d, 0) and carrying current —/ one
can write
2
ol [rg (d—x)"4+y 5 /X2+)?
—s5 |5 +rgln——
2rgm | 2 2 70

Ax,y) = (3.49)

Qualitative distribution of magnetic vector potential created by two parallel
conductors carrying the same current / in opposite directions is shown in Fig. 3.10.
The value of magnetic vector potential along the centerline between the conductors
is equal to zero.

Curves of constant magnetic vector potential (flux lines) for two parallel con-
ductors carrying the same current in opposite directions as in Fig. 3.10 are shown in
Fig. 3.11. The value of A« in Fig. 3.11 is obtained by substituting for x = 0 and
y = 0 into Eq. 3.48

Amax Amin =" Amax

Fig. 3.11 Curves of constant magnetic vector potential—flux lines—of two parallel conductors
carrying the same current in opposite directions, denoted by X and * symbols
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wol (1 d
Apax == | =+ In— .
. 2n (2 * nro (3:50)

Similarly, for A, one substitutes for x = d and y = 0 into Eq. 3.49:

pol (1 d
Apin = — 202 (2 4 & 3.51
on (2 i (3:51)

By using Eq. 3.46 one can determine the amount of flux created by the two
conductors in Fig. 3.11 as

1 d
® = L(Amax — Amin) = L2 ( + ln) (3.52)

and the equivalent reluctance R,,, coilair:

o_ I _ b
Ol (fpmd) Mk (14 md)

—_
a

(3.53)

Rm,coil,air =

Assume now that the two conductors in Fig. 3.11 are a portion of a coil with
pitch d placed in slots of an electric machine with an air gap width § and that the
relative permeability of surrounding iron is very large. Coil reluctance in that case is
equal to

1
Ho lz

(3.54)

Ul o

Rm,coil,@ =

By placing a coil with pitch d into an air gap with width 8, the amount of created
flux increases proportional to the ratio

(1)5 - Rm.coil.air o T

d
. s (3.55)
(Dair Rm Col ES a )
«coil, B (é +1In ;f])

which reaches two digit values in a range between 20 and 80 in practical cases.
Relationship between magnetic scalar and vector potential of a flux tube can be
expressed by means of Fig. 3.9 as

® =0 -Gy (3.56)

with G,,, denoting the flux tube permeance:
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=

LA = Ag) = (01— 02) "= (3.57)

By introducing the specific magnetic permeance A, of the flux tube [3] as a ratio
between the average flux tube width w perpendicular to the direction of flux density
and average length d in the direction of flux density in the flux tube:

w
A =2 3.58
= (3.58)

one can write
(Ap—Ag) = (01 — @y) "1~ Ay (3.59)

The difference Ap — A, between magnetic vector potentials of flux tube sides is
proportional to the difference @; — ¢, between scalar vector potentials of flux tube
bases, permeability pu of the medium, and specific magnetic permeance A, of the
flux tube.

By combining Eqgs. 3.36 and 3.39 for a two-dimensional problem, one obtains

PA L PA_

ot (3.60)

which is analogous to Eq. 3.6 for scalar potential ¢ in current-free space. Following
similar discretization procedure, one obtains for the mesh in Fig. 3.2

(A1 —Ao)ds — (Ao — A3)d, | (Ay — Ag)ds — (Ao — Ad)dy B Gl
d1d3(d1 er3) d2d4(d2 +d4) 2 '

with Jy denoting the current density at point O in Fig. 3.2. For an equidistant mesh
along the x-axis, d; = d3 = d,, and y-axis, d, = d, = d,, magnetic vector potential
Ay at point 0 in Fig. 3.2 can be expressed as

o At A (s + A + il (3.62)
‘ 22+ a2) |

For a square mesh (d; = d, = d3 = d; = d), one can write

A+ Ay A3+ Ay +dPpdy

Ao .

(3.63)

which is an intuitively comprehensible result. If in addition to auxiliary variables c,
and cy, defined in Egs. 3.14 and 3.15, one introduces c,, as
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L2
Cry = ——— (3.64)
22 +a2)
the expression for magnetic vector potential Aq at point 0, Eq. 3.62, can be rewritten
as

Ay = C},Al +c Ay + CyA3 +c Ay + CXyIJJ() (365)

Analogously to the procedure introduced in Eqs. 3.18 and 3.19, one can write
for magnetic vector potential at node (k, ¢) at nth step of iteration

Apin — CAk—1 10 — OAkI—1n = CYAKI—1n—1 F+ CxAk—11n—1 + CoyW iy (3.66)
as well as
C A, =CA, 1 +B-Ag+J (3.67)

with J denoting the matrix of current densities of the problem and Ay the vector of
boundary conditions. Finally, one can write (see Eq. 3.34)

4, =C' (1= G- CY) (B-Ay ) (3.68)

Boundary conditions specified in vector Agp are defined in terms of angle
between flux line and boundary, which can be either O (flux line parallel to the
boundary) or 90° (flux line perpendicular to the boundary).

3.3 A Straightforward Method for Determination
of Magnetic Parameters of a Nonlinear Permeance

A piecewise linear interpolation of B-H curve helps minimize numerical instabil-
ities when calculating the performance of a nonlinear magnetic circuit [3].
Independently of how a B-H curve is interpolated, a nonlinear problem containing
such interpolation is usually solved in iterative manner [4]. An iterative solution
procedure multiplicates unnecessarily the total computational time. Here procedures
will be introduced for straightforward computation of magnetic field strength H for
a given flux density B and vice versa.

B given, H to be evaluated: For computations in a given interval (0, B,,), the B-H
curve is supplied in equidistant steps AB of flux density B, as shown in Fig. 3.12.

A given value of flux density By, is located in the interval number i determined as
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. Bin
i = INT<AB> +1 (3.69)

with INT denoting the integer part of expression in round brackets after it.
In the ith interval the output field strength Hout is found for an input flux density
Bin by using a linear approximation of the B—H curve
H; —Hi,

Hy=H;_ ———  (Bin — Bi_ 3.70
t 1+Bi_Bi—l( 1) (3.70)

AB A Interval

B / number
B / m
m-1

/

E:” / 1 AB i+1

A |
o/

By : H

\4

Hy Hi His Hun-1 Hun

Fig. 3.12 Linear B—H curve approximation at m points

with By = 0 and Hy = 0.

H given, B to be evaluated: In the previous procedure, the total interval for the
input variable B was divided into m equidistant intervals with width AB = B,,/m,
which perfectly fit the nature of saturation of B—H curve. An inverse approximation,
where B has to be evaluated for a given H, cannot rely on equidistant strategy,
because of unproportional changes of H for equidistantly increasing B’s. Therefore,
the most appropriate seems to be the procedure where the B—H curve is supplied at
N points in such a manner that the magnetic field strength H steadily increases. The
points H; at which the magnetization curve is recorded are selected to satisfy
equation

H\°®
i:N-INT(—’) +1 (3.71)
Hy

with & denoting the elasticity of approximation (See Fig. 3.13)
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Fig. 3.13 Linear B-H curve B A

approximation at m points |
m-1 m
Interval num}ber

—

Bm:z /

B/
By - H
Hi H Hmo Hem-1 Hm
In&=L
g= 2 (3.72)
In&-
Hy

Index ¢ in Eq. 3.72 is related to the point (Hy, B;) of B-H curve after which
significant effects of saturation are observed.

In the ith interval, the output flux density B, is found for an input field strength
H;, by using a linear approximation of the B—H curve

B; —Bi
Bow = Bi —(Hyn, — Hi— 3.73
out a—a 1) (3.73)

with BO =0 and HO =0.

3.4 An Accelerated Procedure for the Solution of a System
of Differential—Algebraic Equations

If n windings of a rotating field machine are connected to voltage source, the
voltage differential equation for the jth winding, where 1 < j < n, can be written as

d¥y; .

I/tj = ? + ljRj (374>
with ¥; denoting the concatenated flux, #; the current, R; the resistance, and u; the
applied voltage in the jth phase. The concatenated flux in the jth phase is a function
of currents in all phases and of the rotor angle vy:
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W =Y, (i1, i, orjyeyin, ¥) (3.75)

The functional relationship expressed by Eq. (3.75) is nonlinear due to several
reasons, out of which the saturation in iron is dominating. Therefore, the system of
voltage differential equations is nonlinear, too.

The system of machine voltage equations can be solved by applying one of the
procedures for numerical integration of differential equations, among which the
Runge—Kutta method is one of most pronounced. As opposed to an analytical
solution, which is given as a family of continuous functions, a numerical solution is
a set of discrete values calculated for each state variable.

In order to solve numerically a system of differential equations, one has to write
it in such a manner as to put derivatives alone on one side of the equal sign. The
integration of the system starts with values of state variables as specified in initial
conditions. For an extrapolated vector of state variables at the next discrete value of
the independent variable, the right-hand-side vector is evaluated based on physical
model, outside of the Runge—Kutta procedure. The evaluation follows by solving a
system of algebraic equations, which in case of integration of voltage equations
relate the vector W of extrapolated fluxes to the vector i of coil currents. Coil
currents stored in vector i are returned back to the Runge—Kutta procedure. If the
achieved accuracy is equal to or better than requested, the computation at current
step of integration is completed and the same pattern repeats for the next discrete
value of the independent variable.

Any numerical solution of a system of differential equations is an iterative
procedure performed step by step, where each step of integration requires certain
time in order to be completed. If the system of algebraic equations which has to be
solved at each step of integration is nonlinear, additional iterations have to be
performed at each step of integration of the nonlinear system of differential
equations.

Summarizing previous considerations, one concludes that a solution of the
system of machine voltage differential equations is a time-consuming task since it
requires iterations within iterations. Obviously, significant time saving could be
achieved if one level of iterations is eliminated.

A way to eliminate iterative solution of the system of algebraic equations within
each step of integration of the system of differential equations is to declare all
relevant quantities state variables [3]. If the dependence of the vector of state
variables ¥ on the vector of unknowns i can be expressed as

¥ = (i) (3.76)

then

W) —i (3.77)



214 3 Magnetic Circuit

This way the unknowns of the system of algebraic equations became additional
state variables of the system of differential equations. Instead of iterating the
nonlinear system of algebraic equations at each step of integration of the system of
differential equations, the right-hand sides of the extended system of differential
equations are solved in straightforward way.

Case Study 3.2: Electrical engineers are used to think in terms of sources and
resistances. They are trained to be able to say what happens in a circuit if certain
quantity with impact on resistance(s) or source(s) changes. Therefore, not only
electric, but also magnetic [5], thermal, and fluid flow problems related to electric
machines have always been solved by means of lumped circuit parameters. It is
interesting that largest electric machines ever built were designed by using mag-
netic, thermal, or fluid flow circuits, the elements of which had physically inter-
pretable properties and reflected all peculiarities of given geometry, material
properties, and boundary conditions.

Ever since advent of modern computers, another analysis method found appli-
cations in electrical machines, which was strongly related rather to mathematical,
than to engineering way of thinking. Following this approach, the machine is
discretized into a set of small elements (thus the name finite elements), in which a
pure mathematical quantity—the magnetic vector potential—is calculated. Here,
the emphasis is put on “mathematical,” i.e., a non-measurable quantity, as opposed
to physical, measurable quantities, such as current. Meanwhile, the finite element
method has found many supporters among electrical engineers, mostly for solution
of two-dimensional problems [6, 7]. The complexity of the finite element approach
increases faster than exponentially when extending the model into third spa-
tial dimension, due to the interaction between various spatial components of
electromagnetic fields. Whereas a two-dimensional finite element model in the (x,
y) plane can be solved by using only the z-component of the magnetic vector
potential, a three-dimensional model requires all three spatial components of the
magnetic vector potential to be known. Consequently, the computational time
explodes when including only one additional spatial dimension.

The magnetic circuit representation of electric machines, on the other hand, does
not suffer from model extension into the third spatial dimension. In order to
illustrate the advantages of the magnetic circuit representation of electric machines,
a three-dimensional model of a claw pole synchronous machine was built [8], as
shown in Fig. 3.14.

The extension into third dimension, imposed by the rotor geometry, is handled
by adding an extra set of elements (reluctances and sources) on the rotor side
(Fig. 3.15), i.e., quantitatively (more elements), rather than qualitatively, as is the
case with finite elements. The machine is divided in axial direction into an arbitrary
number of slices, and the rotor pole trapezoidal geometry is discretized into a
stepwise changing pole width. The three-dimensional model retains its straight-
forward nature and gives designer insight in all important machine quantities, such
as time dependency of axial flux distribution in a single rotor pole at no load, as
shown in Fig. 3.16.
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Fig. 3.14 Rotor iron of al2-pole claw pole synchronous machine [8]

(2.5)
(2.6)
21
2.2)
(2.3)
2.4)
(2.5)
(2.8)

Fig. 3.15 Magnetic equivalent circuit of a rotor pole pair of a claw pole synchronous machine [8]
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Rotor portion of the magnetic equivalent circuit model of the analyzed claw pole
machine was divided into five axial segments. By comparing measured and cal-
culated performance [8], the selected number of segments proved to be a good
compromise between the performance and computational time.

Spatial distribution of rotor pole segment fluxes at no load is shown in Fig. 3.16.
One recognizes in this figure a decrease of rotor pole flux from pole base to pole tip,
primarily as a consequence of decreasing pole segment surface in the air gap.

Statortooth 5 Time

Fig. 3.17 Air gap flux density distribution in a claw pole synchronous machine at no load [8]
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Stator tooth ~ ° Time
0
Fig. 3.18 Air gap flux density distribution in a claw pole synchronous machine at rated load [8]

In Fig. 3.17 positive half waves of air gap flux density at no load as a function of
spatial coordinate, given as a number of stator tooth, and time between 0 and period
length T, are shown. The machine has 6 teeth per pole pair. One recognizes in this
figure a strong third spatial harmonic, as a consequence of the rotor pole form.

When the machine is loaded, the stator ampere-turns superimpose to those
created by the field current in Fig. 3.18. At the given operating point, the power
factor is obviously strongly lagging, since the armature reaction managed to
decrease significantly the no-load air gap flux density distribution.

3.5 A Straightforward Method for the Solution of Flux
Distribution in Magnets

Assume a machine with surface-mounted magnets, the geometry of which is shown
in Fig. 3.19. As shown in [3], the discretization of machine’s magnetic circuit is
fine enough if a single tooth, or a yoke segment between two adjacent teeth, is taken
as smallest elements, because of their high relative permeability and because their
form coincides with flux tubes placed in the machine geometry. A magnet, on the
other hand, generates flux components, the amounts of which are dependent not
only on magnet parameters, but also on the geometry of the rest of the magnetic
circuit [9]. Besides, the relative permeability of magnets does not differ substan-
tially from 1, the relative permeability of air.

For this reason a magnet is subdivided into smaller units, here k in tangential and
¢ in radial direction. From the computational point of view it is interesting that
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Fig. 3.19 Electric machine with surface-mounted magnets

3 Magnetic Circuit

subdividing of permanent magnet in radial direction does not necessarily increase
the size of the system to be solved.

Denoting by p,, M., and p,py, relative permeabilities of stator iron and rotor

iron and permanent magnets, respectively, one can define permeances

hs lux
Gys = Holy s —=
Tgy

Wislax

GtS = uour,sth—

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)
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Rl ax

Gyrz = uO“r,rTy—k (385)
bemlax

Gmax = Ko PII:IB (3.86)

which along with the amount of flux ®py; generated by each magnet segment

bpmlax
Dpy = B, Pﬁ (3.87)

belong to elements outside of air gap of the machine’s magnetic equivalent circuit
in Fig. 3.21. Dashed gray lines outline the stator and rotor geometry in this figure.
Air gap permeance G;; connecting ith stator tooth and jth magnet segment is
piecewise defined in the manner shown in Fig. 3.20
Interval limits x;—x4 in Fig. 3.20 are equal to

G . X +x
A 1+sin -T2
Xy — X 2
Gmax Gmax 2
1 X3 +x4
—sin -
| X4 —X3 2
Gmax 2
1 1 i >
0 X4 Xo X3 X4 21, X

Fig. 3.20 Air gap permeance between ith stator tooth and jth rotor magnet segment as a function
of rotor shift x

X =T == (7“’ mLLU [”TM) (3.88)
X = T+ W? - @ (3.89)
Xy = 27,5 — W? - (@ v b’%’) (3.90)
X = 2t + %—@ (3.91)

and the rotor shift x;; between ith stator tooth and jth magnet segment
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Fig. 3.21 Magnetic equivalent circuit of two poles of the machine, the geometry of which is
shown in Fig. 3.19

b
xij=x— (= )T+ (—1)2M j<k (3.92)

or
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B ) . bpm .
XiJ—X—(l—l)Tiyg—F(]—k—1)74-'[[,;kS]SQ]{ (3.93)
Introducing
2k n
Si=Y _Gii; Sj=> Gji; Gayy=Ga+G, (3.94)
i—1 =
along with matrices
2G,+ Gy —Gy, 0 0 0 0
"Gy 26, +Gy —Gy 0 0 0
A, =
0 0 0 —Gy 2G,+Gy, -Gy
0 0 0 0 "Gy 2G,+Gy
(3.95)
ZGrrs + Gt.v + Sl.i _Grrs 0 0 O _Gax
_GUS ZGys + Glx + S2,i _Gas 0 0 0
0 0 0 _Gas 2Gys + Gt: + Srl—l,i _Gm'
—G,, 0 0 0 e 2G, + Gis + Sus
(3.96)
G Gio Gi3 Giok—1 Gk
Gy Goo Go3 Go k-1 Go o
Go-| G O O Gwa Ga| g
Gi-11 Guo1p Gpoi Gu12k—1 Gu—11
G G2 G,3 G ok—1 Gk
[Gor+2Ga,  —2G, O 0 0 0
~2G, 2G4+G, -G, 0 0 0
0 ~G,  2Gy 0 0 0
APqu =
0 0 0 26, -G, 0
0 0 0 ~G, 2G4+G, —2G,
L 0 0 0 0 _2Gq Gar + 2qu |

(3.98)
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0 0
0 0
Apyp =
0 0
Gy O
A Apmag
PM
APMO’
_GU,+Gd{]+Sj_1 —Gq 0
G, Gy
—Gq 7 +Gyt+S2 —F
- % qu + S/\}
A = -
0 0
0 0
L 0 0
Gor+ Gag + Sjk+1 -Gy 0
-Gy %+qu+s].uz *%
- (7_’ Guag+Sjk+3
Ag = . . .
0 0 0
0 0 0
0 0
A 5= |: Arﬁl
2r
APMO'
2Gyrt + Gyrr 7Gyrt 0
- Gyrt 2Gyrt + Gyrr - Gyrt
A, =
0 0 0
0 0 0
I Gor + qu + Gjr *Gq 0
—Gq % +Gag + G - %
— % G+ Gjr
Ay =
0 0 0
0 0
L 0 0 0

(=)

Gag+Sjak—2

Gy

2
0

APM (4 :|
Ar52

- Gyrt
0

Gag + Gjr
G,
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- Go’r

G,
7’ + qu + Sj.kfl

7Gq

Gy

2

G,
5+ Gag + Sjox—1

7Gq

2Gyrt + Gyrr
7Gyrt

G,
2

% + Gy + G

_Gq

(3.99)

(3.100)

7G£{
Gor + Gag + Sjk |

(3.101)

0
0
0

0
Gor + Gag + Sj ok

(3.102)

(3.103)

- Gyrl
2Gyrt + Gyrr
(3.104)

0
0
0

0
7Gq
Gar + qu + Gjr a
(3.105)
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=L (5109

and vectors
o =01 0 - 9 0] (3.107)
st:[(PnH Pryo 0 P2 @2’ (3.108)
91:[@171 Prop 0 Qo (\DI,Zk]T (3.109)
O, = [P21 @22 " Doz (Pz,zk]T (3.110)
Q=[O @ G (Pz,zk]T (3.111)
9;+1:[(P1+1,1 Prv12 o Pryiok-1 (PI+1,2k]T (3.112)
gryz[(PHz,l Cry22 0 Pry22k-1 (Pz+2,2k]T (3.113)
=0, 0, -- 0,, 0, (3.114)
Qpyy =Ppv[l 1 -~ 1 1 -1 -1 -+ -1 —1]" (3.115)

one can write magnetic scalar potential equations for nodes in Fig. 3.21 as

1
Ay 9, — G = G—ﬂ@ (3.116)

1
Ag 95— O, — G5 @) = —a@ (3.117)
Ags 9, —Gio  —Ga- @, = Dpy (3.118)
Apy - 9, — G0, —Ga 9, =0 (3.119)

Apy - @, —Gy9, —Ga 9, =0 (3.120)



224 3 Magnetic Circuit

Appm @, =G40, —Ga- @, =0 (3.121)
Arr ’ 91+1 - ng[ - Gyrr ’ ﬂry = 7@PM (3122)
Ary ' gry - Gyrr ' 9]+l = Q (3123)

With recursively defined matrices A;,j =2,(+1:

AlJrl = Arr - Girré,;l (3124)
A; = Apy — Ggéf-&l (3.125)
Ay = Apy — GIA! (3.126)
Ay = Apy — GRA,! (3.127)
Ay =Apy — G¢21A3_l (3-128)

the system of algebraic equations for scalar magnetic potentials can be written as

Ay Gyl 0 9,
-Gl A —G; | Py
0 —GI As—GA'| o
1
(T”_
_ 1
- l G (3.129)
- (Gi] 1_[24;1 AL l) - Dpy
i

The core of the system of scalar magnetic potential algebraic equations has a size
of [2(n + k)—1] X [2(n + k)—1], independent of the number of radial layers in
magnets, which substantially decreases the computational time.

Case Study 3.3: Outer rotor synchronous generator with surface-mounted
magnets has the following dimensions: axial length 1,x = 750 mm, 84 poles, 294
stator slots, air gap diameter 4800 mm, air gap width 6 =2 mm, rotor OD
4940 mm, rotor bore 4846 mm, stator OD 4794 mm, stator bore 4440 mm, stator
slot height 118 mm, stator slot width 23 mm, magnet width per pole 136 mm,
magnet height 20 mm, residual flux density 1.25 T, stator and rotor iron relative
permeability 5000, and magnet relative permeability 1.05. Each magnet is divided
into 50 tangential and 6 radial segments. Flux density distribution on the air gap
side of one magnet at no load and x =0 and x = 5 mm, evaluated by using
Eq. 3.129 and assuming negligible MMF drop across stator iron, is shown in
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Fig. 3.22. One recognizes in this figure substantial change of radial component of
air gap density on the magnet surface as a function of rotor position. When the rotor
is rotating, the change of air gap density becomes periodical and induces voltages in
the magnet. Depending on the magnet electric conductivity, the induced voltages
are accompanied by eddy currents, which create losses in magnets and which can be
calculated in the manner shown in Chap. 5.

A
BI[T]
115 .
1.1+
1.05 ——
Segment Nr.
1 1 —>
25 50
Magnet
Tooth 1 Tooth 2 Tooth 3

Fig. 3.22 Radial component of air gap flux density on magnet surface at two rotor positions:
0 mm (dashed black curve) and 5 mm (solid gray curve). On the right magnet edge, one
recognizes substantial changes of flux density as a function of rotor position
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An electric machine interacts with its electrical environment through its terminals.
Machine terminal quantities—voltages and currents—are determined by its
parameters and operating point. If the machine is analyzed as a part of a power
system, its terminal voltages and currents can be related to each other by means of
its impedance, the components of which are resistances and inductances.

DC resistance of a coil is a function of geometry, electric properties of materials
and temperature. AC resistance includes in addition the influence of skin and
proximity effect.

DC inductance of a coil, as a measure of the amount of concatenated flux created
by DC current(s), is significantly more complex to determine than its DC resistance.
The inductance is a function of coil current; only for low current values (unsatu-
rated iron) the inductance is constant. Besides, the total flux created by a single coil
splits into main and leakage components when the coil is brought into a magnetic
circuit with additional coil(s). Main flux is a measure of concatenation between

© Springer International Publishing Switzerland 2017 227
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magnetic fields created by two or more coils at a given number of pole pairs; the
rest is referred to as leakage flux. An important component of leakage flux is the
so-called harmonic leakage—the air gap flux created by a higher harmonic of coil
MMF, which is orthogonal to the fundamental.

4.1 DC Resistance of a Coil

When determining the DC resistance of a coil, the knowledge of end winding
geometry plays an important role. Whereas the end winding length of a
random-wound coil is more or less a question of practical experience, for windings
with a form-wound coil it can be exactly calculated.

The end winding geometry of a winding with form-wound coils is shown in Fig. 4.1.

Fig. 4.1 End winding geometry of form-wound coils

For a given coil pitch y, the axial length ¢; of end winding evolvent can be
expressed as follows:

[ 21
tang = —— = =L ) =Yg tana, (4.1)
~Tg yis 2
)
where
bs+ A
sinol = s+ (4.2)
Ts
Since
. tan o
sinol =

V1+ tana’

one can write for axial length ¢; of end winding evolvent
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yis(bs +A)
24/1% — (bs + A)*

I =

(4.3)

The evolvent length /. is equal to
Ty

2 ‘E% — (bs —|—A)2

le = (4.4)

For a given rotor diameter, number of slots, slot width bs, and distance A
(Fig. 4.1), the axial length ¢; of end winding evolvent is proportional to the coil
pitch y or to the reciprocal of the number of pole pairs

I ~— 4.5
) (4.5)

Low-polarity, high-speed electric machines, such as turbogenerators, have
extremely long end windings, which not only increase their resistance and reac-
tance, but also impact their mechanical strength.

4.2 Air Gap Inductance of a Coil in a Machine
with Constant Air Gap Width

Self-inductance of a coil is defined as a ratio between flux concatenated by coil
turns and the coil current which created it.

Consider a simple magnetic circuit in Fig. 4.2 which, to its farthest extent,
represents an electric machine. Magnetic circuit in Fig. 4.2 can be split into com-
ponents representing iron, air gap, and leakage paths. A significant portion of
machine iron carries the air gap flux @,,,;,; an additional (leakage) component of
flux @,k goes through the rest of the magnetic circuit. Each component of flux
created by coil ampere-turns i - w can be characterized by an inductance L equal to
the ratio between concatenated flux and current i. Accordingly:

q)lotal = q)main + (Dleak = Llotal = Lmain + Lleak (46)

However, since

w2

= R (4.7)

I
=

@&
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Fig. 4.2 Simplified magnetic circuit of an electric machine

I—gap

Lre

L main

Fig. 4.3 Qualitative dependence of machine permeances and inductances on current

one can express the main inductance L., as

2

w LF - Ly,

Linain = = : — (48)
Rm,Fe + Rm,gap LFe + Lgap
where
2 2
w w

Lpe = —: Loy = ——— 4.9
¢ Rm,Fe &P Rm,gap ( )

The value of main inductance of a coil depends on the level of saturation in iron.
At low values of flux density, the B-H curve of iron is linear; therefore,
R pe < Ry gap and Liyain & Lg,p. Deep in saturation, the iron reluctance dominates,
Ry pe > Ry gap, and Liin & Lg., Fig. 4.3.
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At linear portion of B—H curve (low values of flux density), the MMF drop ®g,
across iron of an electric machine is significantly lower than the MMF drop Oy,
across its air gap. Accordingly, one can write for the jth harmonic of air gap flux

“Olax

d(Dmain.j = laxBj(x)dx = T(*Dgap,/(x)dx (410)

considering air gap width & constant. Furthermore,

l
d\Pmain.j =w 'fw,jdq)main,/ w- fW] uosax ®gapj(x)dx (4 1 1)

Assuming series connection of all coils over 2p poles, one can write for the flux
W hain; concatenated by the jth spatial harmonic

Tp

Hol. .
Wrnainj = 2pw - fw; . ax/®gap,i(x)dx = Lgup, - i (4.12)
0

Air gap MMF distribution ®g,,(x) is equal to the sum of orthogonal harmonic
terms ®,,p, (x), each of which is characterized by its own gap harmonic inductance
Lg,p ;- Accordingly, the total air gap inductance Ly, is equal to the sum of all gap
harmonic inductances Lgqp ;-

As shown in Chap. 2, a winding with w turns per pole-carrying current i gen-
erates an air gap MMF distribution ®4,,(x) described as

4 . Xsinf .. T
®gap(x):g-z-w; jszijsm]gx (4.13)

By substituting Eq. 4.13 in 4.12, one can express the total air gap inductance

Lgap,cy1 Of a winding in a machine with cylindrical air gap as

Tp

o sm”E
0 § f / sm]—xdx (4.14)
= gy
0

2

Lgdp cyl =

or

16 HolaxTp o =S
Lgap,cyl = EPTW ;]T (415)

The equivalent circuit of a coil in a cylindrical rotor machine is represented in
Fig. 4.4. The total leakage flux outside the air gap is represented by the leakage
inductance L., whereas R stands for the coil resistance. Each harmonic of air gap
MMF creates its own concatenated flux, which, divided by the coil current, yields


http://dx.doi.org/10.1007/978-3-319-39081-9_2
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Lgap,cyl,1

Lgap,cyI,S

I-gap,cyl,n

o l

Fig. 4.4 Equivalent circuit of a coil in a machine with cylindrical rotor in Fig. 4.2

the corresponding harmonic component Lg,p, cy1, Of the gap inductance. As opposed
to a simple coil of a transformer, a coil in an electric machine is characterized by an
infinite number of inductances, each of which stands for a component of air gap
flux created by a particular MMF harmonic.

For a given harmonic inductance Lg,p ¢y1; all harmonic inductances of the order
¢, where ¢ # j, have a meaning of leakage inductance due to orthogonality of
harmonic in terms of air gap MMF. Consequently, air gap harmonic inductances
with orders larger than 1 create in a machine with cylindrical air gap the air gap
leakage inductance Lgyp oy - for the fundamental harmonic

Lgap7cyl = Lgap7cyl71 +Lgap,cyl,c (416)

where

16 H()l xT
Lgap,cyl,l = Fp % pW2f£71 (417)

and
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16 MolaxT .
Lypeyio = 5 p—stw? Yy ! (4.18)

Maximum and minimum values of the sum in Eq. 4.15

So = i <@>2 (4.19)

=1 N

can be estimated by considering rectangular and pure sinusoidal MMF distribution.
For a winding with one full-pitch coil per pole, y = 1, which creates rectangular
MMF distribution, f,,; =1,j=1, 3,5, ..., and

00 1 2 2
Somax = Y (—) =2~ 12337 (4.20)
j=135,.. \J 8

For a winding creating pure sinusoidal MMF distribution, f,,; =0, j =3, 5, ...,
one can write

= 3 (5) 2 o
0,min N .

=135, \J

Accordingly, the air gap leakage inductance Lgyp ey Of a winding with rect-
angular MMF distribution is equal to ©%/8 — 1 = 23.4 % of its inductance due to
fundamental component of air gap MMF.

For an arbitrary winding distribution, one can write

Lgap cyl,o _ j=23,... (4.22)

Lgap,cyl f\il + i (}%)2

Magnetic energy stored in air gap can now be calculated as (see Eqs. 4.15 and
4.18)

l K K 8 uolaxT
Wmag,gap = ELgapl2 = l2 ?[) 5 P W2S(] (423)

Consider again the magnetic circuit in Fig. 4.2, now connected to a voltage
source u. The voltage differential equation for the coil with resistance R can be
written as

d¥ do
— iR+ —iRfwe 424
u=iR+ ” iR+w i ( )
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and the energy balance equation as
uidt = >Rdrt + wid® (4.25)

A portion of the differential of energy u -i-d¢ supplied by the source covers
losses in resistor R; the rest in the amount of w - i - d® is transferred to the coil and
is stored in air and iron:

Wld(I) = dWmag,air + dWmag‘Fe (426)

The differential of magnetic energy delivered to iron, dWy,g pe, SPlits into a
component which covers eddy current and hysteresis losses in iron and a compo-
nent which is stored.

The differential of magnetic energy dWp,, .ir g0es into air of magnetic circuit
(leakage paths and air gap):

dWmag‘air = ®gapdq)main + ®leakdq)]eak (427)

Differential of magnetic energy transferred to air gap by jth spatial harmonic of
MMF is, accordingly:

Holax
AWinag tr,gap 2 = Ogap,j(x) %d(agapj (x) (4.28)
and its integral
Lol . [
u ax
Wmag,Lr,gap,Zj = 5 08 2P/ ®§apij(x)dx (429)
0

or

2
2 E HolaxTp wz&

Wmag,tr,gap,zj =1 Tl',2p 8 j2 (430)
The total magnetic energy transferred to air gap is, accordingly
8 LxT
Waag.camp = PRatal IR (4.31)

S

which is, as expected, equal to the magnetic energy stored in air gap calculated by
means of winding inductance, Eq. 4.23.

Case Study 4.1: For a two-pole cylindrical rotor machine with a single full-pitch
coil with wy, = 2w turns per pole pair (Fig. 4.5), the expression for Ly, (Egs. 4.15
and 4.17) becomes the following:
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ng

Fig. 4.5 Two-pole machine with cylindrical stator and rotor and a full-pitch coil having a total of
Wop = 2w turns per pole pair

2
16 HolaxT )
=P B2y = —5 5)8 (4.32)
M_O’Cplax

which is nothing but the self-inductance of a coil with w,, turns in a magnetic
circuit with an air gap width 26 and cross-sectional area 1, /., Fig. 4.6a.

In Fig. 4.6 the magnetic circuit of a coil with w5, turns containing iron portion
and air gap with width 28 (Fig. 4.6a) is compared with magnetic circuit of a
two-pole machine having a full-pitch coil with w turns per pole, Fig. 4.6b.

Neglecting MMF drop across iron, flux density in the air gap of a simple
magnetic circuit is constant, Fig. 4.6a. The rectangular flux density distribution in
the air gap of an electric machine in Fig. 4.6b is in fact an infinite sum of sinusoidal
distributions of flux density harmonics with different period lengths, each of which
is characterized by its own air gap inductance. The sum of air gap inductances of all
harmonics is equal to the air gap inductance of the coil.

Although the air gap inductance Ly, of the coil in the simple magnetic circuit in
Fig. 4.6a is formally described by an identical set of parameters as the air gap
inductance of a coil in an electric machine, the two have completely different
physical meanings. Whereas the air gap inductance of a coil in a simple magnetic
circuit as in Fig. 4.6a is a plain number describing global effects of the coil current
in the magnetic circuit, the air gap inductance of a coil in an electric machine has an
infinite number of components, each of which belongs to another spatial harmonic,
and all of them being created by the same coil ampere-turns i - w.
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(a) A G)
Os
Tp
w
PRI
® X 25 >
] X
X Tp
O
(b) ©s
X
w 65
O X H —>
T : X
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Fig. 4.6 Illustrating different physical meaning of air gap flux density distribution and air gap
inductance in a simple magnetic circuit with an air gap (a), and in an electric machine (b). The
horizontal coordinate x in the magnetic circuit above gives solely the direction along which one of
the dimensions of the air gap is defined. The circumferential coordinate x in the machine below, on
the opposite, has a more profound meaning: The rotating magnetic field spreads in a machine
along this coordinate

4.3 Air Gap Inductance of a Coil in a Machine
with Variable Air Gap Width—Rotational Harmonics
of Concatenated Flux

Consider now a 2p-pole electric machine with cylindrical stator and salient pole
rotor, Fig. 4.7. Circumferential coordinate x in Fig. 4.7 is fixed to the stator. The
coordinate x, stands for rotor shift relative to the point of maximum MMF denoted
by x = 0.

Geometric air gap width d(x — xg) is a periodical function of circumferential
coordinate x and rotor shift xy. Since air gap width appears in denominator of the
expression for air gap flux density, it is replaced with its reciprocal A(x — xy) with
identical periodicity properties as the air gap width d(x — x), Fig. 4.8. In this way,
the rules for product (instead of quotient) of trigonometric functions can be applied.

Making use of substitutions A, = 1/0m.x and Ay = 1/8,,n, the reciprocal of
air gap width can be defined as
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Am X +Amin
A()C — XO) = af +
Amax — Ami ., sint b (4.33)
+U Z Q. Sinnipg. Cosznl(x_xo)
2 n=135,. p p

8min

Fig. 4.7 Two poles of an electric machine with cylindrical stator and salient pole rotor. The point
x = 0 denotes the position of the maximum of fundamental component of air gap MMF

3(x-Xo),

6max

6min

\4

0 Xo 21, X

Fig. 4.8 Air gap width d(x — x¢) and its reciprocal A(x — xg) = 1/3(x — x¢) for the machine
geometry in Fig. 4.6

Introducing

in 2% b A Api Amax — Ami
f&n _ Sin > Sil‘ln—pE; Ao = max T Amin - Agier = max min (434)

n 2 2 2
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one can write for the reciprocal of air gap width

A(x —x0) = Aave + Aditt Z fb,, €08 212 (x — xo) (4.35)
n=13,5,.. Tp

The accumulated magnetic energy in the air gap, Wy,,(xo), can be expressed for a
given rotor shift xo by means of Eq. 4.29 as

Winag (%0) = PHolax / Z ®gap A(x — xp)dx (4.36)

As previously discussed, magnetic energy accumulated in air gap has an infinite
number of components, each of which is generated by harmonics of MMF and air
gap width which interact with each other at particular number of pole pairs. In
particular, the jth harmonic component of the accumulated magnetic energy is
generated by those harmonics of the air gap MMF and air gap width, the orders of
which satisfy condition that their sum or difference is equal to j.

By using Eq. 4.13, the magnetic energy in air gap can further be expressed as

p
4.\’ -
ng(X()) :plax“0<niW) ave/( Z f JSIH] ) dx +
0

J=1.3,5,..

2
+Adiff/< Z smj ) Z f(;,ncos2nrl(x—xo)dx

o 135
(4.37)
The first term in Eq. 4.37, containing A,,., gives as a result a number repre-

senting the component of accumulated magnetic energy independent of the rotor
shift xo. The corresponding air gap inductance Lygyp ave can be written as (Eq. 4.15):

16
Lyap.ave = —3 PHolaxTpAae*So (4.38)
Introduce now Ly, . and Ly, ... as well as the saliency ratio r5, defined as
16 , 1 o
/gap,max = —zprplaxuow 6—.;ngap7min = ;ap max Smm .
min max
(4.39)

/
Lgdp min 8min
rg = 7 —6
L max

‘gap,max
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which help one express the component of air gap inductance corresponding to the
average air gap width (as defined in Eq. 4.31) as

L + L 0 N2
Lgapave = w Z <W> = % (I+rs) - So (4.40)
j=135,... \J

The second term in Eq. 4.37 is a periodical function of the rotor shift x,. Here,
the square of the infinite sum can be rewritten as

00 2
(Z @sm] > Z (W"sm]—x) +
=

=135 1,3,5,.. p

+2 Z ZfWJfWI i 'ix- siniTix

j=35,... i p p

(4.41)

because

(Z“") Za +2Y a g (4.42)

k<j

The variable component of accumulated magnetic energy in the air gap can now
be represented as

4\ o -
Wm = lax —1I Ai 5.1 2n— _
e(X0) =p H()(nlw) dff/n Z Jsncos nT (x — x0)
0

=135,... p

- T \* > 2 n n
. Z (WSIHJ)C) +2 Z walfv” in]—x sini—x|dx
i—135,.. \J =35 =1 p Tp

(4.43)

The expression for Wy,g(xo) in Eq. 4.43 contains two products of infinite sums,
the non-orthogonal terms of which build the spatial harmonics of the periodical
component of self-inductance. These products can be denoted as I1; and II,, and
defined as

00 2
IT, = L Z (—’sm]—px> ‘| Z fgncosZn—p(x—xo) (4.44)

i=135,.. \J n=135,.
and
o0 ] 2f f o0
II, = Z Z LA 'n]—x sml—x . f5,10052n—(X7xO)
S5 = p T | =135, p

(4.45)
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Only those factors in the product II; with harmonic orders j=n are
non-orthogonal on interval [0, Dr]. Therefore,

00 2
T .
/ Mdr=-- > (J@) fon+ OS2 —xq (4.46)
4 . J ’Cp
0 j=135,...

For a single coil with f,,; = 1, j = 1, 3, 5,...,the amplitude of a particular higher
harmonic of air gap inductance due to rotor saliency decreases proportional to the
square of reciprocal of its order, as illustrated in Fig. 4.9.

In the product II, three periodic functions must fulfill simultaneously the

non-orthogonality condition in order to build a particular higher harmonic of the
self-inductance. The term

sinj1x~ sini— x - sin2n£(x—x0) (4.47)
P P p

in Eq. 4.39 can be represented as

1
“sinG— ) Zx+ sin(i+j) x| - sin2n— (x — xo) (4.48)
2 Tp Tp ‘Ep

which means that the 2nth harmonic of the air gap width can create a non-zero harmonic
of self-inductance with ith and jth harmonic of the winding MMF if and only if

itj=42n (4.49)

100
BD
60
40
20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 an

Fig. 4.9 Maximum amplitudes of components of air gap inductance created by a single harmonic
of the winding MMF, n denoting the order of harmonic
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Fig. 4.10 Relationship between harmonic orders i and j of the MMF distribution and harmonic
order n of the air gap width distribution satisfying i + j = 2n

All harmonics of orders i, j, and n which satisfy the condition 4.49 are
non-orthogonal. For these harmonics, one can write

T
Z/szx:ir—p- i fon - i ]Zf‘”fw’ - cos2n " x, (4.50)
2 ’ ‘Cp
0

n=135,... =i

where positive sign applies for the case i — j = 2n, and negative for i + j = 2n.

For i 4+ j = 2n, one can state that the higher the order of air gap width harmonic 7,
the more harmonics of air gap MMF contribute to the nth harmonic of air gap
inductance. The relationship between the orders i and j of the air gap MMF distri-
bution harmonics and the order n of the air gap width distribution harmonic which
together build the 2nth harmonic of the self-inductance is illustrated in Fig. 4.10.

Although an increasing number of air gap MMF harmonics contribute to a
self-inductance harmonic of an increasing order, their influence on the total
self-inductance decreases rapidly with increasing .

The reason for such behavior is a decreasing amplitude of higher harmonics of
the MMF, the upper limit of which 1/(i-j) is shown in Fig. 4.11. Black drawn
dashed lines in this figure denote the combinations of the MMF harmonics which
built the same harmonic of self-inductance.
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2n=6; 40%
20 4

20

N\,

2n=10; 32%

2n=14; 26%
/‘1

Fig. 4.11 Upper boundaries of products of amplitudes of ith and jth harmonics in % of the
fundamental; only harmonics with amplitudes larger than 1 % are shown
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10F
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724 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Fig. 4.12 Maximum amplitudes of components of self-inductance created by ith and jth harmonic
of the winding MMF which satisfy the condition i + j = 2n

One can see in Fig. 4.11 that the sum of upper limits of products 1/(i-j)
decreases slowly as the order 2n of the self-inductance harmonic increases: The
resulting amplitude of the 6. harmonic is 40 % of the fundamental, for the 10.
harmonic it is equal to 32 % and for the 14. harmonic it comes to 26 %.
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Fig. 4.13 Relationship between harmonic orders i and j of the MMF distribution and harmonic
order n of the air gap width distribution, which satisfy the condition i — j = +2n

Fig. 4.14 Upper values of products of amplitudes of ith and jth harmonics in % of the
fundamental; only harmonics with amplitudes larger than 1 % are shown

%

80+

40F

02 4 6 B 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 4

Fig. 4.15 Maximum amplitudes of components of air gap inductance created by ith and jth
harmonic of the winding MMF which satisfy the condition i — j = +2n



244 4 Machine Parameters
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Fig. 4.16 Maximum amplitudes of components of air gap inductance created by ith and jth
harmonic of winding MMF which satisfy the condition i £+ j = £2n

Maximum amplitudes of self-inductance harmonics created by terms
i+j=2ninthe case off,,; =f,;=1,i=1,3,5,...,j= 1,3, 5, ...(single coil) are
shown in Fig. 4.12. By comparing the amplitudes of higher harmonics in Figs. 4.12
and 4.9, one comes to the conclusion that the contribution of two MMF harmonics
of different orders to a particular self-inductance harmonic is stronger than in the
case of a single MMF harmonic—in other words, the impact of higher harmonics of
the MMF must not be neglected.

The orders of harmonics which satisfy the condition i — j = +2n are shown in
Fig. 4.13, and the upper limit of MMF harmonics amplitudes, equal to 1/(i - j), in
Fig. 4.14. As opposed to the case i + j = 2n, each harmonic of self-inductance
resulting from interaction of two harmonics of MMF, with a difference of orders
equal to the order of harmonic of the self-inductance, has an infinite number of
contributing MMF harmonics, Fig. 4.13.

Considering a much larger number of MMF harmonics contributing to a given
harmonic of self-inductance through the mechanism of the difference of their order
numbers than through the mechanism of sum, one comes to a conclusion that a
particular harmonic of self-inductance is built predominantly as a result of inter-
action of two harmonics of MMF, the difference of order numbers of which is equal
to the order of the self-inductance harmonic, see Figs. 4.12 and 4.15.
Resulting maximum amplitudes of harmonic components of self-inductance as a
function of the harmonic order n are shown in Fig. 4.16.

The component of accumulated magnetic energy dependent on the rotor shift x,
can now be written as
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4 = SR fw
ng(X()) plaxu()(lw) Adlffz Z fSn' 2]2 =

n=135,. S (451)
00 f N 2 -
+ (ﬂ) ] - €coS2n—x
=135, \J Tp
or by means of the variable component of air gap inductance L, ,(xo):
1 2
ng(xO) = Elwar(xo) 1l (452)

which helps one define the variable component of air gap inductance of a stator
winding in a machine with cylindrical stator and salient pole rotor as

8 S G i f
Lgap,var(xo) = ﬁptplaxp«oszdiff Z Son - lz Z Z_J;+
J=3,

n=135,...

00 2
+ (fW—J) 1 - COS 2n£x0
j=135,.. \J p

or by means of the previously defined inductance L. and saliency ratio rg,:

‘gap,max
L/gapmdx G T
Lgap.var(xo) T ) ;5 S5, - cos 271%)60 (454)
where
oo j2 oo N 2
Son = fon - [ > Tughoi | <@) 1 (4.55)
=35 =1 4 b =135, N
or

1. nn . bpm 2 f
S ——sm7smn—p—- LZ Zf—Jf— 4+ So (4.56)

Minimum value of S,, is obtained for an ideally sinusoidal MMF distribution,
where f,,;=0,j=3,5, ..., and is equal to

1 1
Sonmin = smn—smn—pE S0.min = —sinﬂsinn—pE (4.57)
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Summarizing, one can state that the air gap inductance of a stator winding in a
machine with salient rotor poles is a periodic function of double rotor shift x, and
can be expressed by means of Eqs. 4.37 and 4.51 as

S 1—r > i
L(xo) = L;apﬁmax 70 (L+rs)+ 0 Z Sy, - cos2n 0 (4.58)
n=135,... P
or simplified
L(xp) = Lo+ Z L, cos 2n£xo (4.59)
n=135,... p

Equation 4.56 is valid not only for salient pole machines (n = 2), but also
for machines with any number of rotor teeth per pole N,,, in which case one can
write:

o0

L(xp) = Lo+ Z Ly, cos2n T£x0 (4.60)
P

n=Nip,3Nip,5Nip, ..

4.3.1 Salient Pole Rotor

If the winding with variable inductance as defined in Eq. 4.59 carries an alternating
current described as

i(t)= Y Icos(jor — ¢;) (4.61)
J=123,..
the concatenated flux is equal to
o8 T 00
W(xo,2) = [ Lo+ Z Ly, cos 2nt—x0 . Z chos(jo)t - (pj) (4.62)
n=135,... p j=123,...

When the rotor is at standstill (x, = const), the spectrum of concatenated flux in
Eq. 4.62 is identical to the spectrum of winding current. The amplitude of a par-
ticular flux harmonic is dependent on the rotor position and on the amplitude of
corresponding current harmonic.

If the rotor rotates at a constant angular speed €, its shift relative to the point of
maximum MMF x, changes proportional to time:
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D T
x0 = Q7 (1 = 1o) :pQ?p(t — 1) (4.63)

where the rotor position at time instant ¢ = #y is xo = 0. The air gap inductance of
stator winding varies as a function of time

L(to,t) = Lo+ Y Loy~ cos2npQ(t — )] (4.64)
n=1,3,5,...

Concatenated flux W(zy, 1) created by current i(r) defined in Eq. 4.61 is equal to

W¥(to,t) = L(t, 1) I cos (jor — ¢;) +
123,
N = N (4.65)
+ Z Ly, - cos[2npQ(t — ty)] Z ; cos (jor — ¢))
n=135, j=123,.

The spectrum of concatenated flux can be separated in two groups. Flux har-
monics in the first group, the amplitudes of which are proportional to L, as shown
in the first indefinite sum in Eq. 4.64 have identical orders as current harmonics.
The second group is composed of flux harmonics with angular frequencies

2npQ + jo (4.66)

which depend on the rotor angular speed Q and are in general not an integer
multiple of Q or ®.

If the electrical angular speed of rotation . = p - Q is equal to the angular
frequency of the fundamental current harmonic ® (synchronism: p - Q = ®), the
fundamental harmonic of current /; creates concatenated flux defined as

Y(1,1) = {L0+ i Ly, - cos[2nm(t — to)]} - I cos(mr) (4.67)

n=135,...

which means that the fundamental harmonic of current produces an infinite spec-
trum of flux linkage, the components of which have frequencies which are odd
integer multiples of the fundamental frequency of current. As a result of rotation of
the salient pole rotor, spatial harmonics of self-inductance and the fundamental
harmonic of current generate time harmonics of flux linkage, the order of which is
equal to the sum or difference of the orders of current and inductance harmonics:

W(t9,1) = Lo - Lycos(or) +1y - > Loy - {cos[(2n — 1)or — 2no]
n=135,... (4.68)

+ cos[(2n+ 1)wr — 2nwty|}
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Time harmonics of concatenated flux generated by sinusoidal winding current in
a salient pole machine rotating at an angular speed Q and defined by an infinite sum
in Eq. 4.68 are called rotational flux harmonics. At synchronous speed, the order
of rotational flux harmonics is an integer multiple of the fundamental; at an arbitrary
speed of rotation, the frequency of rotational harmonics of concatenated flux is not
an integer multiple of the winding current frequency. Rotational harmonics of

concatenated flux disappear at rotor standstill.
Time dependence of concatenated flux at standstill, synchronism, and at an

arbitrary speed of rotation is shown in Fig. 4.17.
By selecting the phase shift ¢ of the fundamental component of current equal to

zero, @1 = 0, one has positioned the rotor centerline on the axis of stator MMF. If
the corresponding rotor shift angle is denoted with 8y = ® - #p = —Xom/T,, One can

express the fundamental harmonic of concatenated flux as
W1(80,1) =1 - [Locos(ot) + Ly - cos(wr — 23)] (4.69)

The fundamental harmonic of concatenated flux W (8y, #) in Eq. 4.69 can be
represented as a sum of a component in phase with the current, and a component
shifted for m/2 to the winding current, the latter being proportional to sin 2:

W (80,2) =11 - [(Lo + L2 cos28p) - cos(wt) + Ly sin 28y - sin(wr)] (4.70)
Py Q=w/p

! R Q20&Q#0/p

Fig. 4.17 Waveform of flux concatenated by a winding in a salient pole machine generated by
sinusoidal current at different speeds of rotation
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In order to shift the rotor relative to the stator MMF, mechanical force has to be applied.

Mechanical work performed by force applied on the rotor is equal to electrical power
dissipated on the apparent synchronous resistance Ry, of stator winding, defined as

Rga = oL, sin 28 (4.71)
In a similar manner, one can introduce the apparent synchronous reactance X, as

X = (O(L() + L, cos 260) = Xo + X, cos 29 (472)

(@) [Ijcosmt

- n
M(S(),l) ® L0+ 1§5L2n00s2n—px0
n=1,3,5,...

(b) Ijcosmt

Xgq =0 (Lo+ Ly cos28)

u(ﬁo’[) RSa = (DL2 sin 280

T 3 60,1

n=3,5,...

Fig. 4.18 Equivalent circuit of a winding in a machine with salient rotor poles: a at standstill; b at
synchronous speed. At standstill only fundamental frequency of induced voltage exists; at
synchronous speed, rotational harmonics of induced voltages are generated, the sum of which is
added to the voltage drops across apparent synchronous reactance X, and resistance Ry,

Higher harmonics of concatenated flux in Eq. 4.68 are
Y, (6(), l) =1L, COS(3(DI — 260) (473)
Yy (60, l‘) =1Lg COS(SO)I — 650) (474)

\P7(80, l) =1Lg COS(7(DI — 680) (475)
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At synchronism, the fundamental component of winding current creates not only
the fundamental component, but also an infinite spectrum of rotational harmonics of
concatenated flux, time derivatives of which add to the voltage induced by the
fundamental! The amplitudes of rotational harmonics of the order 2n £ 1, where
n=1,3)5, ..., are equal to each other, which makes them unique among other
higher harmonics (e.g., current harmonics due to saturation, or MMF harmonics due
to winding distribution, etc.).

Equivalent circuit of a winding in a machine with salient rotor poles is shown in
Fig. 4.18a (at standstill), and 4.18b (at synchronism). Equivalent circuit in Fig. 4.18
is based on voltage differential equations:

d
uy (89,1) = a‘I’I(BO,t) =1 - [-(Xo+ X2 cos 28) - sin(wr) + X, sin 23¢ - cos(w?)]
d
l/l3(80,[) = &\P3(507l‘) =-3X;-1, - sin(30)t)
M5(80,t) = %‘PS(SQ,[) = —5X¢-1; - sin(So)t)

M7(60,l> = %T7(6(),[) =—T7X¢-1; - sin(70)t)
(4.76)

Voltage drop across apparent synchronous resistance R, is in phase with the coil
current, whereas the voltage drop across apparent synchronous reactance X, leads
to m/2.

Case Study 4.2: Power Distribution in an Unexcited Salient Pole Synchronous
Machine (Reluctance Machine) Fed by Sinusoidal Current

Salient pole machine acts at standstill as a pure inductance, the value of which is
determined by the rotor shift 8y. At synchronism, the equivalent circuit contains
three elements (Fig. 4.18b):

— Apparent synchronous reactance Xj,, having a component dependent on cosine
of double rotor to stator MMF angle d;

— Apparent synchronous resistance Rg,, being proportional to the sine of double
rotor to stator MMF angle &, and

— The reactance due to rotational harmonics, which acts as harmonic leakage.

Fundamental component of applied voltage u;(d, ) in Eq. 4.76 is a source of
winding current /;, which creates two voltage drops at the frequency of applied
voltage in synchronism: I; * X, and I; - Rg,, as in Fig. 4.19. Neglecting losses in
the machine, one can state that the power dissipated on the apparent synchronous
resistance Ry, of stator winding is equal to the mechanical power. Expressing the
fundamental harmonic of winding current /; as
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efﬂl
I1-Xp
Uy
I1- Xy \ I1-Xpcos26
28 N
¢ i
]1 -X2 sin28=11 'Rsa
—>
0 Re

Fig. 4.19 Complex plane representation of electrical quantities (voltage diagram) in a reluctance
machine at a given load

I = Y (4.77)

\/(Xz sin28)% + (Xo + X, cos 28)°

one can define the mechanical power P, as:

X,8in2d

Pmec = 12R<a = U2 4.78
h ) ! X2 + X3 + 2XX, c0s 28 ( )

the maximum of which occurs at angle 8, p iS equal to

1 XoX>
Omaxp = = -2 4.79
max,p = 5 arccos( X2 +X§) ( )
Maximum mechanical power is equal to
X

Pmech,max = U2 S - (480)

'K
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or by substituting for X, and X, the maximum (X,) and minimum (X,) values of the

coil reactance

_Xd—|-Xq.

X, — X,
X q
2

2 2

0

one obtains

Xy

\/XG+ X2

Omax,p = £ arccos | £

and

P U1 1
mech,max — ) Xq Xd

Power factor cos ¢ can be expressed by means of Fig. 4.19 as

X5 sin 29
V/ (X25in28)° + (Xo + X cos 26)?

cos ¢ =

and has an extreme at angle dp,x ¢, defined as

1 X,
Omax,p = 3 arccos| — X
0

equal to

X Xy X,

COS Pax — XO = Xd +Xq

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

The dependencies of winding current I, power factor cos ¢, and mechanical
power P, on load angle & for Xo =1 p.u,, X, =0.4 p.u. and U =1 p.u. are
shown in Fig. 4.20. Here one recognizes at first sight the Achilles’ heel of a
reluctance machine: its poor power factor. Similarly to an induction machine, a
reluctance machine consumes reactive power from the mains in order to operate,

however, in a far larger extent than an induction machine.
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p.u.
1.5
I

1

0.5
cos ¢ F‘,mech
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-0.5 -

Fig. 4.20 Characteristic quantities of a reluctance machine for X, = 1 p.u., X, = 0.4 p.u. and
U=1pu

iph (t)

Fig. 4.21 Typical waveforms in a Y- connected stator winding of an unexcited salient pole
synchronous machine (reluctance machine) at synchronism for 8, = 0: phase current i,,(f), phase
voltage u,n(?), and line-to-line voltage uy ;1 (7)
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Previous considerations can be qualitatively illustrated with measured wave-
forms of stator voltages and current in an unexcited Y- connected 3-phase salient
pole synchronous machine (reluctance machine) without neutral for a load angle of
8o = 0, Fig. 4.21.

Beside fundamental component of voltage drop across the stator winding,
sinusoidal phase current creates a rich spectrum of rotational harmonics of phase
voltage at synchronism, see Eq. 4.76.

In a Y- connected machine without neutral, no integer multiple of the 3., 9., etc.,
harmonic of phase voltage due to saliency appears in the line-to-line voltage, which
is almost sinusoidal, as shown in Fig. 4.21.

It is interesting that except for a very small number of references, such as [1, 2],
the physics of salient pole synchronous machine, in particular of reluctance
machine, in the literature on electric machines is represented in a somehow mis-
leading manner. For example, the voltage—current diagram of a salient pole syn-
chronous machine introduced in [3] (Fig. 4.22) is based on an assumption which
suspends Kirchhoff’s laws, namely that the stator winding reactances X, and X,, are
at the same time connected in series and parallel, Fig. 4.23.

Arbitrary stator current components I; and [, in Fig. 4.22 sum up into armature
current /,, suggesting that elements of circuit carrying the two currents are con-
nected in parallel, as in Fig. 4.23a.

At the same time, however, voltage drops I, X; and I, X, are added to each other
in Fig. 4.22, suggesting that the two reactances X, and X, are connected in series.

lq Eq

Vi
la Ra lg Xq

Id Ia

Fig. 4.22 Complex plane representation of electrical quantities (after [3]) in a salient pole
synchronous machine at a given load. Although currents /; and I,, as components of armature
current I, must flow through parallel branches, voltage drops 1; X, and I, X, add to each other in
the same diagram! Besides, for E;= 0 (reluctance machine) and neglecting stator winding
resistance R,, this representation reduces the machine to a circuit with two reactances, in which
only reactive power can be generated
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@ L (b) 1. lg lq

Vi

Fig. 4.23 Equivalent circuit of a reluctance machine derived from representation in Fig. 4.22 in
the case of Ey = 0: current (a) and voltage (b) diagram. Both representations cannot obviously be
valid at the same time. Furthermore, although only machine reactances are present, the angle ¢
between applied voltage V, and total current 7, in Fig. 4.22 is different from 90° and active power
can be generated, or absorbed! For this reason, the reluctance machine represented as suggested in
Fig. 4.22 fulfills all criteria characterizing a perpetual motion machine

The applied principle, according to which the stator current separates into two
components, which after that create voltage drops that add to each other, is not the
only paradox in equivalent circuit in Fig. 4.22. Following this approach, a reluc-
tance machine (E; = 0) is reduced solely to reactances X, and X,, when armature
winding resistance is neglected. Since a reactance can consume only reactive
power, a machine represented exclusively by reactances X, and X, cannot produce
mechanical power on its shaft. This simple logic seems not to work in the machine
represented by the voltage and current diagram in Fig. 4.22: Despite the fact that
the electric active power is equal to zero, the machine produces mechanical power!
A device in which mechanical power is generated from zero active electrical power
fulfills all criteria for a perpetual motion machine. This physically untenable rep-
resentation is an ultimate consequence of confusing winding current with its MMF.
Whereas MMF, as a spatial function, can be resolved in arbitrary spatial directions,
such as d- and g-axes, winding current is a scalar, the resolving of which into
components I, and I, is of no physical significance, because the scalar / is not
dependent on spatial coordinates.

4.3.2 Slotted Rotor

If the winding with variable inductance caused by toothed rotor as defined in
Eq. 4.60 carries an alternating current of the fundamental frequency o, the con-
catenated flux is equal to

Y(xo,1) = | Lo+ Z Ly, cos 2n£x0 - Iy cos(mr) (4.87)
n=Nap 3Npp.. P
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with N, denoting the number of rotor teeth per pole, Ny, = N/(2p). By using
Eq. 4.63, one becomes

W(to,1) = < Lo+ ZLZ” - cos[2npo(t — to)] ¢ - 1) cos(?) (4.88)
n=Npp,3Npp,...

Fundamental harmonic of air gap inductance in a 2p-pole machine has 2p - N,
poles and is non-orthogonal with the fundamental harmonic o of current at angular
speed Q of (see Eq. 4.63):

O
Q=—+—=42— 4.89
PNrp ( )

=zle

in which case one can write

x 2 2
W(to,1) = Lo-Lycos(wt) +1y - Y Loy {cos [(—" - 1>mt - N—nmto]

n=Nrp,3Np,...

+ cos ﬁ—kl mt—z—nmt
Ny Ny °

Replacing o - 7, by g, one can express the fundamental harmonic of concate-
nated flux at angular speed Q in a machine with N,, teeth per rotor pole as

W1 (80, 1) = I1 - [(Lo + Law,, c0s 28¢) - cos(wr) + Loy, sin 28y - sin(wr)]  (4.91)

which is analogous to the expression for the fundamental harmonic of concatenated
flux in a salient pole machine (Eq. 4.67). However, the load angle-dependent
components L, in the two machine types do not have the same magnitude.
Therefore, the maximum mechanical power due to rotor saliency of a toothed rotor
machine is lower than in a salient pole (reluctance) machine. Nevertheless, sig-
nificant torques can be developed due to change of self-inductance in a vernier
motor, as well as in a squirrel cage induction motor at a low-speed rotation (syn-
chronous torque).

4.4 Mutual Inductance Between Windings in a Machine
with Cylindrical Rotor

Flux lines created by a winding in an electric machine can concatenate another
winding(s), in which case one speaks of mutual inductance. Assume that the
winding with index 1 generates air gap MMF after Eq. 4.13



4.4 Mutual Inductance Between Windings in a Machine with Cylindrical Rotor 257

4 > sin} .
Ogap,1 (X) = —iw FZI —= fiw1,8in Tpx (4.92)
and that the winding with index 2, shifted for x, along the air gap circumferential
coordinate, concatenates flux lines of the first winding. Considering only odd
harmonics in the MMF distributions of both windings, the jth harmonic of MMF
created by the first winding will create a non-zero flux concatenated by the second
winding equal to

Xo+Tp
p -2 uOlax o .
12j = 2pwa - fwz, 5 Ogapj(x)dx = Liaj - i (4.93)
Xo
Since
Xo +Tp
2
/ sinjixdx = jsinjﬁcosjlxo (4.94)
p Jm 2 p

Xo
one can express the mutual inductance L;,; of the jth harmonic as

16 LT
Lipj=— Hofor™p

g B

The jth harmonic component of mutual inductance between two windings in a
machine with cylindrical rotor is proportional to the cosine of electrical angle
between coil axes.

If two coils have identical parameters, i.e., w; = wy and fi,1; = fwz,, as is the
case with phase windings in an m-phase machine, the mutual inductance L;,; can
be represented as

T
Wi - fulj - W2 - fazj CO8j —Xo (4.95)
P

.
le:f = Lgap,cyl,]' COos T—XO (496)
p

with Lg,p o1 being defined in Eq. 4.15. The jth spatial harmonic component of flux
concatenated by a winding in a symmetrically wound m-phase machine can be

expressed as

m

. n—1
¥ = Laapey § in €O}
n=1

2n (4.97)

because xy = 2 1,/m in a symmetrically wound m-phase machine. If the machine is
in addition symmetrically fed, i.e.,
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—1
ip = Ipax COS (u _n 215) (4.98)
m

with coefficient o denoting an arbitrary parameter, the concatenated flux ‘¥'; can be
written as

m _ 1 _ l
W) = Loap eyl jlmax ;:1 cos <o¢ _n - 2n> cosjn - 2n (4.99)
or
L ; 1 I p 1 n — 1 n— 1
. — “ED Y Tmax —(1—=7j 2 sloa— (147 2
j 5 ,?:1 {cos [oz (1—)) - n} + cos [oz (I+)) - n} }
(4.100)

For (1 — j)/m = integer the first summand yields m cos o; (1 — j)/m # integer it
is equal to zero. Similarly, the second summand in Eq. 4.100 yields mcos o for
(1 + j)/m = integer and zero for (1 + j)/m # integer. Accordingly, one can express
the total flux ‘¥; of the jth spatial harmonic concatenated in one phase of a sym-
metrically wound, symmetrically fed m-phase winding as

147
Y, = ngap,CyUImax coso for SE int (4.101)
m

which means that the equivalent inductance Leg gap,cy1; in that case is equal to

m
Leq gapcyli = ELgap.,cle (4.102)

All harmonics of the order j, which satisfy equation (1 &£ j)/m = integer, gen-
erate resulting concatenated flux m/2 times larger than the concatenated flux of one
phase. The effects of these harmonics can be described by an equivalent gap
inductance which is m/2 times larger than the corresponding harmonic inductance
of one phase. The equivalent inductance of all other harmonics not satisfying
condition (1 % j)/m = integer is equal to zero.

The equivalent inductance of a squirrel cage machine with an integer number
of slots per pole, Fig. 4.24, can be found by applying Eq. 4.101 and substituting for
the number of phases m the number of slots per pole N/(2p).

Since the connections between conductors in the end winding zone have no
influence on the air gap MMF distribution, one can replace the rings of a squirrel
cage winding with separate connections between corresponding bars carrying
currents in opposite directions, as in Fig. 4.25. In particular, the first bar under the
first pole is connected with the first bar under the second pole, etc. This way the air
gap MMF distribution created by a squirrel cage winding with N/(2p) = integer is
identical to the air gap MMF distribution created by an m = N/(2p)-phase full-pitch
winding with one turn per coil.
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Iy Iz In/2p 11 -I2 -INs2p

Tp 1 Tp

Fig. 4.24 Bar currents in adjacent poles of a squirrel cage winding with an integer number of slots
per pole

(a)

L1l IN/2p

(b)

Tp Tp

P <
Y Y

Fig. 4.25 Squirrel cage winding with an integer number of slots per pole (a) and its pendant—an
m = N/(2p)—phase full-pitch winding with one turn per coil (b). Both winding types generate
identical air gap MMF

Mutual inductance between adjacent phases for the fundamental harmonic of air
gap MMF can accordingly be written as (Eq. 4.95)

16 polxT
Lizi =P Og P cos o (4.103)
with o, being equal to
2
O] = P—n (4.104)
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Corresponding equivalent inductance Leg gap cage,1 15 NOW [4]

L 4N l’lolapr
,gap, 1=
eq,gap,cage, ) 3

(4.105)

4.5 Slot Leakage Inductance Due to Transverse Field

4.5.1 Magnetic Energy Accumulated in One Slot

Assume a double-layer winding with a total of z conductors in a slot distributed
uniformly over both conductors, as in Fig. 4.26. Magnetic energy stored in the slot
in Fig. 4.26 can be expressed as

hS

1

1
Wing slot = E/BHdV = Euolax / Hz(r)-w(r)dr (4.106)

v 0

Denoting by H, and H, magnetic field strengths in regions 2 and 4 of the slot in
Fig. 4.26

< il Z il + iu
= —— H = —

2w’ YT,

H, (4.107)

one can express the values of magnetic field strength in the remaining regions and
the amounts of accumulated magnetic energy in all slot portions in the manner
shown in Table 4.1.

hol —  —wp ;
5
hu . Ww
iu
hc.u z/2
hs
hi
i
hc,, z/2
1
Ws H(r)

Fig. 4.26 Double-layer winding with z/2 conductors in each layer
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Table 4.1 Magnetic field strength and accumulated energy components in the slot in Fig. 4.26

Region H(r) Wine

! s (&5

’ e il

3 Hy -+ (Hy — Hy) e~ @t (3 +i-i+ 5)

4 H ()5 (7 +2i - i+ 22)

) it (P (3420 -i+)
2w,

Total accumulated magnetic energy in the slotin Fig. 4.26 can now be expressed as

h hi h 87 hw ho .
ng,slot HOleff (2) |:( cl +—+ = + — + _> 112 +

3wy wy Wy Wy W,
h u h h() . . h u hw h() Iy
F2 (2 20 b ()2
2wy Wy, W, 3wy, wy, W,

Introducing slot specific permeances A, Agpy, and A, defined as

(4.108)

hey  hi  hcy h h

heg=5—+—+ + 2+ 2 (4.109)
’ 3w, wy Wy Wy Wo
h hy  h
o = o Y (4.110)

2wy Wy W,

h
L) (4.111)
T 3wy oww W,

one can express the magnetic energy accumulated in a slot of a double- layer
winding in Fig. 4.26 as

1 2\2 2 .. 2
ngﬁslol = E P—()leff (E) (7\43‘,1 S+ 2)\q,lu /AR 7\fs,u : lu) (4112)

By substituting i, = i, = i, one obtains the magnetic energy accumulated in a
slot of a single-layer winding as

1 h h,  h,
ng,slot = Euoleffzz <W_C + — + —) (4113)

Wy Wo
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4.5.2 Magnetic Energy Accumulated in All N Slots

Windings with full-pitch, double-layer, or single-layer coils are characterized by
i, = iy = ipn, Where phase current ip,, can be any of the machine’s m-phase currents
and is equal to Ipp/a, a denoting the number of parallel circuits. Total magnetic
energy W (o is equal to the sum of magnetic energies stored in all N slots, which
for a symmetrically wound machine further yields the following

N1 2
Wagion = ool (5) (et 20+ ) (B+ 8+ +5)  (4.114)

Inserting for the number of conductors per coil z/2

Z Wph-m-a
I — 4.115
2 N (4.115)

with wpy, standing for the number of turns per phase, one can further write
1 m
W por = 5 Holax W, N (Ao 4+ 201+ Ao) (L + I+ + 1) (4.116)
Introducing the slot leakage inductance Ly, defined as
5 m
leot,cs = uolaxwph N (7"571 + 27\'s,lu + 7‘4&,14) (4 1 17)

one can express the total magnetic energy accumulated in N slots of a machine with
double-layer full-pitch, or single-layer winding as

1
“Lyoo(L+1+...+1) (4.118)

Wing ot =
g, 2

Machines with short pitch winding do not have the same ampere-turns in each
layer. Usually, the coil pitch y is larger than 1, — 1,/m, which means that in some
slots the same current flows both in upper and in lower layers. These slots are
shaded in Fig. 4.27, in which the zones of a double-layer, m-phase winding under
one pole are shown. The width wg, of the zone with same current in both layers of
each slot (monoslots) is given as

m—1

Wse =Y — T (4119)

m

whereas the width wy, of the zone with different currents in slot layers (mixed slots)
is obviously
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Wie = Tp — ¥ (4.120)

The total number of slots Ny, with the same current in both layers is accordingly

—m=lg -1
NsczyT#N:n(l—m—)N (4.121)
P Tp m
m
T
le
upper layer a % b
lower layer a b %
y

Fig. 4.27 Double-layer, m-phase winding with coil pitch y < 1,

and with different currents

Nec = m(l - 1)1\/ (4.122)
P

resulting in total magnetic energy accumulated in N slots (Eq. 4.116)

1 m
Wing,tot = 3 Holax Wi, N { (m% —m+ 1> (Ao + 200+ A) (B + L+ + 1) +
P

VA
+m<1 - %) Pt (G414 .+ L) + 20 ady + Ile + A+ Tula) + Ao (12 + 15+ ..+13,)]}
P

or

1
- [Ls,sc (12 +IZ + - +131) +2LG‘dC(IaIb +IbIc + - +Imla)] (4123)

Wing,tot =
129 2

with Ls s denoting the leakage inductance of monoslots, and L. the leakage
inductance of mixed slots

m y m—1

Lose = HolaxW3, N [xs,l + 21 <mg i ) + x] (4.124)
2 m?* y

Lc,dc = H(]laxwph F Xs,lu 1-— g (4 125)
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Whereas the leakage inductance of monoslots Lss has the meaning of
self-inductance, the leakage inductance of mixed slots Ls . obviously denotes the
mutual inductance between two phases.

4.6 End Winding Leakage Inductance

Currents flowing through stator and rotor end windings create magnetic fields
which do not participate in electromechanical energy conversion, because they are
too far from end windings on the other side of air gap. Nevertheless, magnetic field
in end winding region (Fig. 4.28) can be large enough to create force on conductors
and heat solid metal parts in its vicinity. In low-polarity machines with short active
part the inductance belonging to the end winding field can reach significant, double
digit percental values of the machine reactance. Therefore, the determination of end
winding inductance is an important portion of electric machines designer’s job.

None of three spatial components of the magnetic field in the end winding zone
may be neglected when evaluating the end winding inductance. The procedure for
the determination of end winding inductance is based on its definition as a ratio
between concatenated flux and coil current. In order to find the flux, usually, Biot—
Savart law is utilized with boundary conditions considering mirroring of currents on
the iron lamination, shaft, and machine housing.

Fig. 4.28 Stator end zone of a double-layer winding with form-wound coils
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This way the flux density distribution is evaluated at given points on surface
S created by a single coil in Fig. 4.29. Since ¢ is usually larger than one, the total
concatenated flux belonging to one zone has to be found by adding each other all
components of flux density created by currents in coils of the given zone.

Since the coils of windings on the same side of air gap are placed close to each
other in the end zone, the mutual inductance between them may not be neglected.
The coefficient of mutual inductance for the end winding is evaluated in the similar
manner by using Biot—Savart law, as it is done for the zone inductance (Fig. 4.29).

Fig. 4.29 Area determined by a single conductor in the stator end zone of a double-layer winding
with form-wound coils
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Current and flux densities in electric conductors exposed to alternating magnetic
fields redistribute as a consequence of Faraday’s law. This fundamental observation
has numerous occurrences in electric machines (skin and proximity effect), most of
which lead to increase of losses. Analytical and numerical tools are developed in
this chapter, which help one quantify AC losses and design a machine in such a
manner as to minimize them. Among these are a method for evaluation of AC
parameters of a bar with arbitrary cross section and the analytical tool for com-
putation of proximity effect in a conductor in slot. Various procedures for mini-
mization of AC losses are discussed. Computational procedures are presented for
evaluation of skin effect in ferromagnetic media, thin plates, etc.

5.1 Analytical Solution for Current Density Redistribution
in a Solid Rectangular Conductor in a Slot as a Result
of Alternating Leakage Flux: One-Dimensional Skin
Effect

As shown in the previous chapters, current in a conductor placed in a slot of an
electric machine creates tangential leakage flux @4, Fig. 5.1. A time-dependent
current creates a time-dependent leakage flux, which, following Faraday’s law,
induces voltages, which can drive currents in electrically conducting media.
Consequently, alternating current / . in Fig. 5.1 creates alternating leakage flux @,
the time derivatives of which—induced voltages—are sources of eddy currents i..,
which superimpose to the impressed current /.. An alternating current density
within the solid conductor in Fig. 5.1 is redistributed in such a manner that its
amount increases almost exponentially from the bottom to the top of the conductor.
One refers to the skin effect.

Electromagnetic quantities creating one-dimensional sinusoidal current density
redistribution in the solid conductor in Fig. 5.1 can be quantified using analytical
expressions developed in [1]. Introduce first the parameter 3 [m_l], defined as

We
e [ 51)
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Fig. 5.1 One-dimensional current redistribution in a solid conductor placed in a slot of an electric
machine. The impressed current /. is a function of time

Current density distribution created by real sinusoidal impressed current / . can
be expressed [1] as:

L1 cosh[B(L ) — )]
) = PO ) —Grh B+

(5.2)

The real component of current density can be written as

281
* we(cos 2k — cosh 2fh)
+ sinh[f(h — r)] sin[(h — r)](cosh ph - sin fh — cos fh sinh fh)}

Re{I'(r)} =

{cosh[f(h — r)] cos[f(h — r)](cosh ph - sin fh + cos fhsinh fh) +

(5.3)
and the imaginary as
281

we(cos 2ffh — cosh2h
— sinh[B(h — r)] sin[f(h — r)](cosh Sk - sin fh — cos fhsinh fh)}

Im{I'(r)} =

] {cosh[f(h — r)] cos[f(h — r)](cosh fh - sin i — cos fh sinh k) —

(5.4)

By substituting r = 0 (top of the conductor) in Eqgs. 5.3 and 5.4, one obtains
maximum values of real and imaginary components of current density as
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_ PBI sinh2Bh + sin2Bh
~ wecosh 2Bh — cos 2Bh

Re{Tnax (0)} (5.5)

_ Bl sinh2Bh — sin 2B
~ wecosh2Ph — cos 2Ph

Im{I"1ax (0)} (5.6)

For large values of argument 2Bk applies cosh 2Bk >> cos 2pBh,
sinh 2Bh >> sin 2Ph, and sinh 2Bh ~ cosh 2BA; hence,

BI 1
Re{ Thaxps (0) } = Im{ Tiax ps (0) } = — = 5.7
e{ T (0)} = I D s (0)} = - = - 57)
with & denoting the current density penetration (skin) depth [m], defined as
1 2
d=—-=4/— 5.8
5=\ onx (5.8)

According to Eq. 5.7, the current density skin depth § is equal to the distance
from the air gap side of the conductor toward the slot bottom along which the
impressed current / would create constant current density equal to the actual current
density /6w, on the air gap side of the conductor.

At higher frequencies, the imaginary component of current density at air gap side
of the conductor becomes as large as its real component. The rms. value of current
is not dependent on the conductor height %, but on the skin depth 6.

For a DC current, one can write

1
I'pc.r—0 =lim [Re{l"max(o)}l =7 (5.9)
B—0 We
since, obviously,
lim [Im{l"max(O)}] =0 (5.10)
p—0

The absolute value of current density can be expressed as

|T'(7)] (5.11)

B 2cosh[2[3(h —7)]+ cos2B(h — 7))
oW cosh2Bh — cos 2Bk

For large values of argument B(h — r), the absolute value of current density
decreases exponentially from the conductor air gap side toward the bottom of the
slot:
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1

‘F(r)ﬁ>>‘ ~ e (5.12)

where 9, introduced in Eq. 5.8, can here be interpreted as the exponential decay
constant. The absolute value of current density decreases exponentially at a rate of /9.

Case Study 5.1: A 50-mm-high copper bar is placed in an open slot of an
electric machine as shown in Fig. 5.1. The dependence of current density on fre-
quency and radial distance is illustrated in Fig. 5.2.

Im {J} [A/mm?]

100 Hz

Re {J} [A/mm?]

Fig. 5.2 Current density distribution in a 50-mm-high copper rectangular bar at various
frequencies and radial coordinates

Real, imaginary, and absolute values of current density (in A/mm?) in a
50-mm-high copper bar as functions of radial coordinate r are shown in Fig. 5.3a—c
for various frequencies, and the dependence of the absolute value of current density
on B, which is almost linear for higher values of f, is shown in Fig. 5.3d. One
recalls that B is proportional to the square root of frequency. The direct current with
the same value as the rms of applied current would create a current density of
1 A/mm”.

Both real and imaginary components of current density in Fig. 5.3a, b decrease
rapidly when going from the air gap surface of the conductor to the slot bottom and
after a certain point change their direction. This means that total current in the
conductor portion closer to the slot bottom flows in opposite direction than the
impressed current. In this portion of the conductor the eddy currents overwhelm the
impressed current.

In Fig. 5.4 the dependence of the absolute value of current density on the radial
coordinate r at various time instants is shown both for DC and 50 Hz impressed
current. The absolute value of current density in the portion of the conductor closer
to the slot bottom is almost equal to zero at 50 Hz, whereas it is uniformly dis-
tributed over the whole conductor height in the case of a DC impressed current with
the same amplitude as the rms value of 50 Hz current.
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50  f[Hz]
105 B [1/m]

Fig. 5.3 Current density distributions in a 50-mm-high copper rectangular bar at various
frequencies and radial coordinates. The impressed current creates a DC density of 1 A/mm?.
Surface integral of the real component of current density over conductor height is equal to the
impressed current I_; surface integral of the imaginary component of current density is equal to zero

50 HZ — —— — — - 1

o - r [m]

Fig. 5.4 Current density distributions in a 50-mm-high copper rectangular bar at 50 Hz and DC.
The impressed current creates a DC current density of 1 A/mm?>



5.1 Analytical Solution for Current Density Redistribution ... 273

Total losses P.. created by the impressed current /. are equal to

P. = (5.13)

h
Welax / . Tdr — P2 Plox  sinh2Bh + sin2Bh
K Kkw. cosh2Bh — cos2Bh
0

Total losses P . are a function of conductor height 4 and frequency of impressed
current, since B in Eq. 5.13 is proportional to +/f. For direct current (§ = 0)
P (h) is a hyperbola, whereas P (h) created by alternating current (B # 0) has a
minimum at critical conductor height h.:

T
he =58 (5.14)

For each frequency, represented by skin depth J, there exists a conductor height
he for which the I°R losses are minimal; for example, for solid copper conductor at
50 Hz, the critical height is equal to /.50 * 15 mm (see also Fig. 5.5a).

The amount of losses P ,;, in a solid conductor with critical height A, is equal to

5 Ty sinh

l
. ~ 14417 2 5.15
2xkwche 1+ coshm Kwehe ( )

P ~,min —
which is about 44 % higher than losses in the same conductor created by direct
current with the same value. No matter how much the height of a solid conductor is
increased, the AC IR losses in it are at least 44 % higher than the DC IR losses
with the same amount of current. On the other hand, the thinner the conductor, the
closer its AC losses to the DC value, see Fig. 5.5a.

Any increase of conductor height /2 above the critical height 4. increases the AC
PR losses, which asymptotically reach the value of

lim[PN} _pPla_p le (5.16)
h—00 KWe KOW,

that is, as if the conductor height & were equal to the skin depth . Independent of
conductor dimensions, alternating current can only make use of a layer of thickness
0 on the air gap side of the solid conductor with height #, see also Eq. 5.7.

The product Bh in Eq. 5.13, sometimes referred to as normalized conductor
height &:

g:hﬁzg (5.17)
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helps one express the IR losses in a solid conductor (Eq. 5.13) as

P =P lax, sinh2E 4 sin28 (5.18)
Khwe °cosh2f — cos 2§
or
P =P o) (5.19)
where
P_ = p e (5.20)
Khw,
and
§E) =5 = = b o (5.21)

The function ¢(&) in Eq. 5.21 represents at the same time the ratio between
conductor AC and DC resistance at a given frequency.

The loss density, expressed in W/m®, is an indicator of loss distribution along
the conductor height and can be expressed as

P p. 1 2 —op B2l ~cosh[2B(h — r)] + cos[2B(h — )]
~ dV  «lw. KW, cosh2fh — cos 2Ph

(5.22)

Loss density is maximal on the air gap side of the conductor (» = 0). For medium
and large values of argument B/, the maximum loss density can be expressed as

oy 2 Bl
P_(r=0)~2P" (5.23)

KWe

Analogously to the current density skin depth 9, defined in Eq. 5.8, one can
introduce the power density skin depth &' as a distance from the conductor air gap
side at which losses generated assuming constant loss density are equal to actual
losses in the conductor. Following Eq. 5.23, the power density skin depth is equal
to one half of the current density skin depth:

8
/—_
8 =3 (5.24)

because losses are proportional to the square of the current amplitude.
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 (a) (b)
400 Hz 5 ¢=R./R.
100 Hz
Y 50 Hz
T ~=-..Dc
e 400 hc,SO h 1 £ = Bhs

Fig. 5.5 a Total losses in a 50-mm-high copper rectangular bar at various frequencies; b the ratio
between AC and DC resistance of a conductor

Case Study 5.2: Total losses in a copper conductor, introduced in Case Study
5.1, are shown in Fig. 5.5a as a function of conductor height h for various values of
frequency of impressed current as parameter.

Only direct current creates less losses when conductor height increases; total
losses generated by alternating current end up at the amount given in Eq. 5.16,
independently of the conductor height. Total losses at a given frequency of alter-
nating current are minimal at critical conductor height (Eq. 5.14).

The ratio between AC and DC resistance, R. /R-, as a function of normalized
conductor height & (Eq. 5.17) is shown in Fig. 5.5b. The AC resistance of the
conductor with height £ increases proportionally to the square root of frequency.
This property can also be observed in Fig. 5.6a, in which the ratio between AC and
DC losses, P.. /P_, as a function of frequency is shown. One recognizes that starting
at low frequencies, the factor @(§) (represented with black curve in Fig. 5.6a) is
identical with /f, represented with overlapping gray curve in the same figure. In
other words, AC losses increase proportionally to the square root of frequency of
impressed current.

The ratio between the loss density for alternating and direct current for various
values of frequency of impressed current, as a function of the conductor radial
coordinate r, is shown in Fig. 5.6b. One recognizes in Fig. 5.6b that already at
50 Hz the peak value of loss density on the air gap surface of a conductor exceeds
its DC value for a factor above 50! Such extreme loss densities are a potential
source of hot spots in inadequately cooled conductors.

The concatenated current at a distance r, i(r), is evaluated as a surface integral
of current density in Eq. 5.2, which on the other hand is proportional to the
magnetic field strength H. Therefore:



276 5 Skin and Proximity Effect

() (b)

" 9=P-P. 100

50
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14

f[Hz] 10 /3
50 100 5

Fig. 5.6 a The ratio of AC to DC losses as a function of frequency; b loss density ratio along the
conductor radial coordinate r

i(r) = we / I(r)dr, = Isml;i[fé[l&lj K?);] al (5.25)

and

(5.26)

- Lsinh[B(l +j)(h—r)] _i(r)
H(r) = we  sinh[B(L+)n]  wy

The real and imaginary components of the conductor current at height r can be
expressed as

cosh Bh cosh[B(h — r)| sin B sin[B(h — r)] 4+ cos Bh cos[B(h — r)] sinh Bk sinh[B(h — r)]
cosh 23k — cos 2k

Re{i(r)} = 21
(5.27)
and

. . cos Pk cosh[B(h — r)] sinh Bh sin[B(h — r)] — cosh Bh cos[B(h — r)] sin P& sinh[B(h — r)]
Imfi(r)} =21 cosh 2k — cos 2k

(5.28)

For medium and large values of B, the imaginary component of concatenated
current/ magnetic field strength can be written as

Im{i(r)ﬁ>>} ~ —le P sin Br (5.29)
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and reaches its minimum at

r= % (5.30)

The imaginary component of concatenated current/magnetic field strength has a
minimum value independent of frequency equal to

Im{i(r)ﬁ»}mm: I sing ~ —0.32241 (5.31)

The real component of concatenated current/magnetic field strength at the point
of minimum of the imaginary part (Eq. 5.28) is equal to

Ief cosg ~ 0.32241 (5.32)
@ (b)
1y B ) Ro il (p-u) m ) (pu). I (1) () (i

-0.25

©,_
Re {i} (p.u.), Re {H} (p.u.)
50 Hz& 1\r=0
10 Hz
—0.25 -
Im {i} (p.u.), Im {H} (p.u.)

Fig. 5.7 Real (a) and imaginary (b) components of concatenated current/magnetic field strength
in a 50-mm copper conductor in a slot. The parametric plot of the both components is shown in (c).
At r = 0, the concatenated current is equal to the impressed (real) current /
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Re {i} (p.u.)
Re {H} (p.u.)

T m ), m () ()
-0.325

Fig. 5.8 3-dimensional parametric plot of the real and imaginary components of concatenated
current/magnetic field strength

Case Study 5.3: The dependence of real and imaginary components of con-
catenated current/magnetic field strength (in p.u.) after Eq. 5.23 on the radial
coordinate r in a 50-mm-high copper for various frequencies is shown in Fig. 5.7a, b.

The real component of concatenated direct current is a linear function of the
coordinate r, and its imaginary component is equal to zero—the direct current
density is constant over the whole conductor cross section. With increasing fre-
quency, both real and imaginary components start to concentrate on the air gap side
of the conductor in such a manner that the peak value of the imaginary component
remains constant. This property can be recognized in Fig. 5.7c, in which the
components as a function of the parameter r are shown, as well as in a
3-dimensional representation in Fig. 5.8.

Magnetic energy accumulated in the slot with a current-carrying conductor is
evaluated as
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L/t

1 55

Fig. 5.9 The dependence of the ratio between AC and DC conductor inductance on its normalized
height &

h

1
Wing = “Olast/H(r) “H*(r)dr = Eiz(t)
0

Holax sinh 2Bk — sin2BA
Bws cosh2fh — cos 2ph

(5.33)

and its average value, by utilizing Eq. 5.17

— 1 , pohly 1 sinh 2E — sin 28
W =51 = 5.34
L) ws  Ecosh2E — cos 2§ ( )

The accumulated magnetic energy for direct current is equal to

, 1, pohla
lim [ W, | = 572 200 (5.35)
£0 3 Wy

The ratio between AC and DC values of conductor inductance is proportional to
the ratio between accumulated magnetic energies, or

L. 3 sinh2g —sin2g

L_ 2Ecosh2E — cos 2§ (536)
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air gap 1] air gap

Fig. 5.10 Approximate leakage flux distribution for DC (a) and AC (b)

The dependence of the ratio L.. /L_ on normalized conductor height £ is shown in
Fig. 5.9.

One should keep in mind that the conductor inductance evaluated here is leakage
by its nature, because it is a measure of flux going through the slot, instead of
through air gap. Therefore, an AC conductor current increases total air gap flux,
since it forces flux out of slot into air gap, as shown in Fig. 5.10. The higher the
frequency of alternating current, the stronger the effects of Faraday’s law, the lower
the leakage and the higher the main flux.

The decrease of leakage inductance due to skin effect is utilized in deep bar
induction machines [1], where a lower rotor leakage inductance leads to a higher
torque on the shaft in the low-speed range due to a higher air gap flux.

5.2 Analytical Solution for Current Density Redistribution
in an Arbitrarily Shaped Solid Conductor in a Slot
as a Result of Alternating Leakage Flux

Very often conductors in a slot of an electric machine do not have the simple
rectangular form as shown in Fig. 5.1. As the conductor width changes along the
slot height, a question is posed, how the current density, loss, field strength, etc.,
distributions can be found in the case of variable conductor geometry. Partial
differential equations describing distributions of electromagnetic quantities remain
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obviously the same, independent of the conductor geometry. Their general solution
in the case of sinusoidal applied current [1] yields for the magnetic field strength:

H = (=1 4+ )2 [CePa+tn) _ pghli-+in-r) (537)
o

and for current density

r= K[Ce_B(H' Dh=r) 4 Db+ 1><"—’)] (5.38)

where complex constants of integration C and D
C=C,+jC; D=D,+jD; (5.39)
are determined from boundary conditions. Introducing substitutions

Cie = CrcosB(r—h); Cx=—C,sinB(r—nh)
Cie = CicosB(r —h); Cis = —C;sinB(r — h)

analogously with D,., D, D;. and Dj for the constant D, one can express general
solutions in Egs. 5.37 and 5.38 as

H - (D£“ |:(_Crc + Cis - Crs - Cic)eimllir) - (_Drc +Dis - Drs - Dic)eB<h7r)i| +

+J(D£u {(Crc —Cis — Cs — Cic)e_B(h_r> - (Drc — Dis — D5 — Dic)eﬁ(h_r):|

(5.40)

[ = k|(Ce = C)e M) 4 (D = Dy )M 7)] +
(5.41)
+76[(C = Ci)e I 4 (D = Die)eP ]

Particular solutions—magnetic field strength and current density distributions in
each conductor segment—are obtained by applying proper boundary conditions for
the uppermost and lowest conductor edge, along with continuity equations for
imaginary borders between adjacent radial conductor sections. This procedure will
be illustrated by the example of current redistribution due to skin effect in a hollow
conductor in a slot of an electric machine.

5.2.1 Exact Solution

Hollow conductors, with a typical shape shown in Fig. 5.11 left, are used for direct
gas or fluid cooling. The equivalent conductor, shown on the right in Fig. 5.11, can
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be separated into three zones (1, 2, and 3) with conductor thickness w,, 2d, and w,,
respectively.

Complex constants of integration C and D in Eq. 5.39 have to be determined for
all 3 zones, which sums up to the total of 12 unknowns: C, 4, k = 1,3; Cip, k=1, 3;
D.x, k=1, 3; and D;y, k =1, 3, representing real and imaginary components of
C and D in all 3 zones, respectively.

T Ws == —=n Ws -
| le |
3 | | |
| | | |
| WC | : WC :
|
: | ! |
| | ! :
|
0T | | 2 |
| |
: | I 2d —f— N3l
| d I h | I
| | | |
| | | | |
| | E A |
: T | | |
N o -
: | ! !
| | ! |
|
| ' | |

Fig. 5.11 Hollow conductor in a slot of an electric machine with wall thickness d (leff) and
equivalent conductor (right)

For the 12 unknowns, 12 algebraic equations can be written:

— Two boundary condition equations (one for real and one for imaginary com-
ponent) state that the magnetic field strength H on the lowest bottom of the
conductor is equal to zero;

— Two boundary condition equations (one for real and one for imaginary com-
ponent) state that the magnetic field strength H on the uppermost edge of the
conductor is equal to the applied current divided by the slot width;

— Two continuity equations (one for real and one for imaginary component) state that
the magnetic field strength H on the lower side of the boundary between zones 1
and 2 is equal to the magnetic field strength H on the upper side of the boundary;

— Two continuity equations (one for real and one for imaginary component) state
that the magnetic field strength H on the lower side of the boundary between
zones 2 and 3 is equal to the magnetic field strength H on the upper side of the
boundary;
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— Two continuity equations (one for real and one for imaginary component) state
that the current density I" on the lower side of the boundary between zones 1 and
2 is equal to the current density I' on the upper side of the boundary;

— Two continuity equations (one for real and one for imaginary component) state
that the current density I" on the lower side of the boundary between zones 2 and
3 is equal to the current density I" on the upper side of the boundary;

The system of 12 algebraic equations determining the constants of integration
can now be written as

A-X=B (5.42)
where
T
X=[C, C, C3 Cy Cip Cgs D,y Do D3 Diy D D3]
(5.43)
Top T
B=|0 0 0 O O O B 0O 0 0 0 O (5.44)
- 3Ws
and
ar 0 0 a4 0 0 ag 0 0 ar o 0 0 T
a1 0 0 az 4 O 0 a7 O 0 a 10 0 O
az; azp 0 a4 a5 0 az; azg 0 azi0 azn 0
asr asp 0 asg ass 0 asy asg 0 as0 asn 0
0 asp as3 0 ass asg 0  asg asy 0 asii  as1a
A= 0 a2 a3 0 ass ass 0  ass s 0 as11  de,12
- 0 0 ar s 0 0 are 0 0 arog 0 0 ar 2
0 0 ag s 0 0 as e 0 0 ago 0 0 as 12
ag | agn 0 ag 4 ags 0 ag7 ag g 0 a9 10 ag 11 0
a1 a2 0 aps awns 0  awg aws 0 awo awon 0
0 anp anzg 0 ans ang 0 ang anygy 0 ann ann
L 0 anp apz 0 aps apng 0  apg ape 0 apir an |
(5.45)
Introducing

ck(r) =cosPy(h —r);  sk(r) =sinBy(h—r)
p(r) = c(r) +sc(r);  mi(r) = ci(r) — si(r)
e,:(r) e*Bk( - ); ek* (}") — eBk(h*’)

one can define the matrix coefficients in Eq. 5.45 as
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apr = —ey (Mmi(h);  ara = —ey (Wp1(h); a1y =¢; (

ayi = ey (Wpi(h);  aza = —e; (mi(h);  azy = —e" (Mp1(h); a0 = e, (h)m(h)
azy = —e; (h—d)mi(h—d); azp=e5(h—d)my(h—d)

az4 = —€; (h—d)pi(h—d); ass =e; (h—d)pr(h —d)

az7=ef (h—d)m(h—d); ass=—e) (h—d)my(h—d)

aspo =e (h—d)pi(h—d); asn = —e;) (h—d)pa(h—d)

ass = —¢i (h—dprlh—d); s = &5 (h— dpa(h — d)

asg =e (h—d)mi(h—d); ass=—e; (h—d)my(h—d)

as; = ¢ (h=dpi(h—d); asg=—e; (h—d)p2(h —d)

agio = —e; (h—d)mi(h—d); as1 = e; (h—d)ma(h —d)

asp = —e; (d)yma(d);  as3 = e5(d)ms(d)ass = —e; (d)p2(d);

ase = €3 (d)p3(d); asg = e; (d)my(d); asg = —e; (d)ms(d)
asii = ey (d)pa(d);  asip = —e; (d)ps3(d)

asr = €, (d)p2(d);  aes = —e5(d)ps(d); a5 = —e; (d)ma(d);

age = e (A)ms(d);  asg = —e;) (d)pa2(d);  asy = €5 (d)p3(d)
a1 = €5 (d)ymy(d); ae12 = —e; (d)m3(d)

azz = —e3 (0)m3(0);  ar6 = —e; (0)p3(0);  az9 = e5 (0)m3(0);  az12 = e;” (0)ms3(0)

ags =5 (0)p3(0);  age = —e5 (0)m3(0);  agg = —e;" (0)p3(0);  ag 12 = 5 (0)m3(0)

agy =e  (h—d)ey(h—d); ayp=—e;(h—d)cy(h—d)ags = e; (h—d)s (h—d);

ags = —e5 (h—d)s2(h—d); a7 =ef (h—d)ci(h—d); asg =—e) (h—d)ca(h —d)
ag 1o = eﬁ (h—d)si(h—d); a9 = —62 (h—d)s,(h—d)

a1 = —e; (h—d)si(h—d); apr=e(h—d)s(h—d)

aps =€, (h—d)ci(h—d); aps=—e, (h—d)c2(h—d)

a7 =—e (h—d)si(h—d); ajs=e, (h—d)sa(h—d)

aig = e) (h—d)sy(h —d); awn =—e; (h—d)ea(h —d)

ainp = e, (d)ea(d);  ans =e;(d)es(d);  ans = ey (d)s2(d)

aie = —e; (d)s3(d); ans=e, (d)ca(d); ane = —e; (d)cs(d)
ain = ¢ (W)s2(d);  ann = —e3 (d)s3(d)

apnr = —62 (d)Sz(d apns = 63_ (d)S3(d), ajpns = 62_ (d)Cg(d)
ape = —e; (d)es(d);  ans = —e) (d)s2(d);  ane = e5 (d)s3(d)
a1 = ¢ (d)ea(d);  ann = —e; (d)cs(d)
In order to find the distributions of electromagnetic quantities in a hollow

conductor in Fig. 5.11, one has to solve the simultaneous system of 12 algebraic
equations (Eq. 5.42), which is a time- and resource-consuming job. Therefore, an
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alternative approach seems to be more feasible, which delivers an approximate
solution for an arbitrary conductor shape with less computational effort.

5.2.2 Approximate Solution

Consider a conductor with arbitrary shape placed in a slot of an electric machine as
shown in Fig. 5.12. For the purpose of approximate computation of current
redistribution, the conductor is separated into equidistant layers with thickness d,
which is allowed since there is no radial component of current in the conductor.
Magnetic field strength H; on the upper border of the kth layer is equal to

k

Hywsy = Z i1+ 0 (5.46)

=1

() (b)

Fig. 5.12 Conductor with variable width and layer thickness d (a) and equivalent circuit (b)

with w;, denoting the slot width at the position of the kth layer, i the unknown
current in the I/th layer, and ®, the MMF created by current-carrying conductors
placed below the conductor 1 in Fig. 5.12a.

Flux density By corresponding to the field strength in Eq. 5.46 is equal to

k
By = 1o <§ i,+®o> (5.47)
Ws k

=1

and the flux @, through the kth layer:
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or

(0]
<Lkzz,+Lk 1le+ — 0 ) (5.49)
m k—1
with Ly, Ly, R4 and R, ;—; denoting the inductances and reluctances belonging
to the kth and (k-1)-th conductor layer, respectively.
For an arbitrary loop created by the kth and (k + 1)-th layer, one can write the
equation of II Kirchhoff’s rule

d . .
E((Dk+q)k+l)+Rklk*Rk+llk+l =0 (550)

or

ldd 1 k—1 k+1 @
i+ i+ l+—+
Hom~ dt( Z’ Z’ Z’ (5.51)

Wsk—1 "= Wsk 127 Wsk+1 = bs k-1

+ Ryl — Rir1k+1 =0

and accordingly

mk mk—l

k1 0,
3 (Lk 1le+2Lkle+Lk+1 le+ + Ryix — Resrig11 =0 (5.52)

For a sinusoidal applied total current / and linear media, the current in the /th
layer can be expressed as a complex number by means of its real /*® and imaginary
I"™ components as

i = I = I} 4 jIm (5.53)
whereas its derivative with respect to time is equal to

d ~
ai, == jol; = o(—[" +,I}°) (5.54)
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Substituting Eqgs. 5.53 and 5.54 into 5.52, one obtains

k—1
O (Lt + 2L+ Ly 1) Y (0™ +jI7¢) + QL+ L 1) (=R +1E) + L (<17 +S ) | +
=1

F R HiL™) = Rt (I8 +I% ) = Ugs +jUsys k=2,3,...,n
(5.55)

with U(liz and U™ denoting the real and imaginary components of voltage induced

by the MMF @ in the loop created by the kth and (k + 1)-th layers.
Complex Eq. 5.55 contains n — 1 equations for real:

k—1
,(O(Lk_1+2Lk+Lk+1)Z][Im, (2Lk+Lk+l)I 70)Lk+11k+1+Rka (5 56)
=1 .

Re __ rjRe
—Rip 1l = Ugy

and n — 1 equations for imaginary parts

k—1

O(Lg—1 + 2L+ Ly 4 1) ZlRe+w(2Lk+Lk+ M+ oL [ + Rep™ (5.57)
=1 :

Im Im
=R = Upy

The nth equation for real parts yields
> Ik =Re{l.} (5.58)
=1

and for imaginary

> o™ =1m{i} (5.59)
I=1

The system of 2n algebraic equations can be written in the matrix form as

A B| [I*]_
% 4] ] - (5:60)

where the n X n submatrices A and B are defined as
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(R —R, © 0 0 0 ]
0 R —-Rs O 0 0
0 0 R:  —Ry 0 0
A= (5.61)
0 0 0 0 —Ry—1 0
0 0 0 0 Rn—l Rn
R T T 1 1
2Ly 4 Ly Ly 0 0 0
Li+20)+L; 2+ 1y Ly 0 0
Ly +2L3+ Ly Ly +2L3+ Ly 213+ Ly 0 0
B=-0
L, 3+2L, »+L,y L, 3+2L, »+L,y L,3+2L,o+L,.1 ... ... Ly 0
L, »+2L, 1 +L, L, >+2L,+L, L, ,+2L, ,+L, ... ... 2L, 1+L, L,
0 0 0 0 0
(5.62)
and the vector Y
a n T
v=[ufs ol o Uk, Ul Re(l} Ul Ul Ul Ul i
(5.63)
The solution vector of the system 5.60 can be written as
T Re JR R Re I ) I m]T
= — () (] (] (S m m m m
m | = [[Re [Re .. Re, qRe pm pm pm o pm] (5.64)

Case Study 5.4: Assume a conductor similar to the one introduced in Case
Study 5.1, the upper side of which is half as wide as its lower side, Fig. 5.13. The
trapezoidal conductor form strengthens the effects of current redistribution dis-
cussed in this chapter, because of decreasing cross-sectional area in its portion
closer to the air gap (Fig. 5.14).

W¢

Fig. 5.13 Trapezoidal conductor in a slot (a) and its discretization into n layers (b)
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Ml ee—s
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— 50. layer

............................
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Fig. 5.14 The absolute value of current density [A/mm?] at 50 Hz frequency of impressed current

The impressed current creates at 0 Hz the current density of 1 A/mm? in the
lowest (k = 1), and 2 A/mm? in the uppermost (k = n) layer.

Alternating current density of above 14 A/mm? in the uppermost layer of the
trapezoidal conductor, Fig. 5.14, means a more than seven-time increase as com-
pared to the DC value, which corresponds to the analytical solution for a rectan-
gular conductor presented in Fig. 5.3c. For this reason rotor bars of a squirrel cage
induction machine often have trapezoidal, instead of rectangular form.

5.3 Analytical Solution for Current Density Redistribution
in a Solid Rectangular Conductor in a Slot as a Result
of Impressed Alternating Leakage Flux: One-
Dimensional Proximity Effect

Consider now a conductor in a slot similar to that in Fig. 5.1, however, with an
external source of MMF @ placed on the bottom of the slot, beneath the solid
conductor. The impressed ampere-turns ® modify boundary conditions on the
lower and upper edges of the conductor, which now can be written as:

(a) Magnetic field strength on the lower conductor edge:

Hn =2 (5.65)

=
(b) Magnetic field strength on the upper conductor edge:

Ho) @+

Ws

(5.66)
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whereas the impressed ampere-turns ® have a component ®g. in phase with the
conductor current I, and a component ®p,,, which is 90° out phase with the con-
ductor current /:

O = Ore +jOI (5.67)

Magnetic field strength distribution in the solid conductor exposed to boundary
conditions 5.65 and 5.66 can now be expressed as

_ I+ Oge + jO, sinh[B(1 +j)(h — r)] N Oge +jOm sinh[B(1 +)7]

H
W sinh B(1 +j)h Ws sinh B(1 +j)h

(5.68)

and its partial derivative with respect to the radial coordinate, current density

['=curld, is equal to

[+ Oge +jO1y cosh[B(1 +j)(h — r)] B 4)) Oge + O cosh[B(1 +)r]
W sinh B(1 + )k e sinh 1+ ))h

(5.69)

= —B(1+))

Introducing parameters Cy and Sy, defined as

2B cosh Bk sin Bh
= v
Chs ws(cosh 2Bk — cos 2Bh) (5.70)

She = Mffs:i'éghciif ;Bh) (571)
along with auxiliary functions c,, s;, ¢, and sy,
¢ = cos Prcosh Br (5.72)
sy = sin Brsinh fr (5.73)
¢ = cos B(r — h) cosh B(r — h) (5.74)
Sih = sin B(r — h) sinh B(r — h) (5.75)

one can define the real component of current density
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Re{T'(r)} = I[Cps(cr + 8¢) + She(cr — )] +
+ Ore[Chs(cr + 8¢ — i — i) + Shelcr — 8¢ — cm +sm)] +  (5.76)
+ Om [Chs(cr — 8§ — Cmm + srh) + Shc(_cr + 8+ Crn +Srh)}

along with its imaginary counterpart as

Im{F(r)} = I[Chs(cr - Sr) - Shc (Cr +Sr)] +
+ ®Re [Chs(cr + 8 — Cm + Srh) - Shc(cr + 8 — Ch — Srh)] + (577)
+ ®Im [Chs(_cr + 8¢+ Crh +Srh) - Shc(cr — 8 — Cth + srh)]

Losses in the solid conductor can be expressed as (see also Eq. 5.13)

We
P. =

h

lax %

” /F Idr = Peddy +Pprox (578)
0

PR losses in Eq. 5.78 consist of two components: eddy current losses, Pegqy:

sinh 2Bh + sin2Bh

l
Peaty = P Bh (5.79)

Khwe cosh 2Pk — cos2Ph

Fig. 5.15 When current / flows only through the conductor closer to the air gap (a), the losses in
the conductor on the bottom of the slot are equal to zero because no flux line created by the current
I goes through the conductor on the bottom of the slot. When current / flows only through the
conductor on the bottom of the slot (b), it creates losses in both conductors

and proximity effect losses, Ppoy:

sinh 234 — sin 2BA
cosh 2Bh + cos 2Ph

Lax
Pprox = (®]2 + ®]226 + ®Re1) ZBh (580)

m Khw,
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In addition to the function @(§) defined in Eq. 5.21 as a ratio of AC and DC
losses created by current in a conductor, one can introduce the function y(§) as a
measure of influence of external MMF ® on losses in a conductor as:

sinh 2& — sin 2§

V(&) =25 cosh 2& + cos 2§ (5:81)

In order to get a better insight into the mechanism of proximity effect, a slot with
two solid conductors as shown in Fig. 5.15 is assumed and the current density
along with losses P, in the conductor closer to the air gap are analyzed.

The conductor topology in Fig. 5.15 illustrates in the best manner the meaning
of current redistribution due to own leakage flux, the effect which dominates in the
conductor closer to the air gap in Fig. 5.15a. Eddy currents in the same conductor
are completely differently distributed in the configuration described in Fig. 5.15b,
when their source is an external MMF, instead of the conductor current. In the
former case, there exists a strong feedback within a conductor between eddy cur-
rents and impressed current, whereas in the latter case this feedback vanishes.

The distribution of current density components in the conductor closer to the air
gap is illustrated in Fig. 5.16 for the two supply modi, as defined in Fig. 5.15: Solid
curves stand for current density distributions in the case of skin effect and dashed in
the case of proximity effect. Current density distributions in Fig. 5.16 are evaluated
for a 50-mm-high copper conductor at 50 Hz by using Eq. 5.69. Whereas the
absolute value of current density due to skin effect increases in the direction of air
gap, in the case of proximity effect it is symmetrical with respect to the horizontal
centerline of the conductor. The same is valid for both real and imaginary com-
ponents of current density, as shown in Fig. 5.16a, b.

When the conductor closer to the air gap is fed by current I, as in Fig. 5.15a, the
losses P, in it are determined by the function ¢(£) and can be found by means of
Eq. 5.13. Losses in the conductor on the bottom of the slot are equal to zero
because the conductor current is equal to zero and no flux created by current / in the
upper conductor goes through the lower conductor.

When the conductor on the bottom of the slot is fed by current I, as in
Fig. 5.15b, losses P, in the conductor closer to the air gap are determined by the
function (&) and can be found by means of Eq. 5.81.

The functions ¢(&) and (&), along with the ratio of yw(&)/o(E), are shown in
Fig. 5.17. The impact of external ampere-turns on conductor losses is obviously
negligible at lower frequencies, i.e., for conductor heights significantly below the
skin depth, see Fig. 5.17.
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(@) (b)
5 Re {J} . Im {J}

0.08

Fig. 5.16 The real (a), imaginary (b), and absolute value (c) of current density in the conductor
closer to the air gap for two feeding modes, as defined in Fig. 5.15. The solid curve gives the
current density distribution due to skin effect (Fig. 5.15a), and the dashed curve the current density
due to proximity effect (Fig. 5.15b). At 0 Hz and a given impressed current, the current density is
equal to 1 A/mm?

It is interesting that losses in the current-free conductor closer to the air gap,
created by ampere-turns O, = I and Oy, = 0 in the conductor on the bottom of the
slot (Fig. 5.15b), are as large as the losses created by own current / through the
conductor closer to the air gap (Fig. 5.15a) already at the normalized conductor
height of & = 0.851, at which ¢(&) = y(£).

Any further increase of parameter & results in higher losses due to proximity
effect than due to skin effect. The maximum ratio y(§)/@(§) between the two loss
components is reached at & = ©/2, which is at the same time the conductor critical
height! Above this point, the ratio y(§)/@(§) reaches asymptotically the value of 2,
i.e., the same current / creates twice as much losses when it alone flows through the
conductor on the bottom of the slot than through the conductor closer to the air gap.
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Conductor losses defined in Eqgs. 5.79 and 5.80 can further be written as

(&)

cosh(m)-1 | w(©)/pE)
— B3
1 n 3
2
Fig. 5.17 The functions ¢(&), y(§), and their ratio yw(&)/@(&)
p=p e [+ (Gt Oy Oy (582)
= ame | P i '

The influence of proximity effect on total losses, expressed by the function y (&),
is modified by the amount and phase shift of the external MMF. If the external
MMF is created by the same current / which flows through the conductor closer to
the air gap, one refers to a monoslot.

The losses in the conductor closer to the air gap are in this case

Poon = P 25 [0(E) + 20(2) (5.83)

because Og. =1 and Oy, = 0. If the external MMF is created by the current
I shifted for 60° to the current flowing through the conductor closer to the air gap,
which is the case in some slots of 3-phase machines with shorted pitch, one refers to
a mixed slot. The losses in the conductor closer to the air gap are in this case

P = 1P [o(2) + 1.59(2)] (5.84)

because Oy, = I/2 and ©,, = \/3/21L

The ratio ¢(§) between AC and DC losses, introduced in Eq. 5.21 for a single
conductor, has to be redefined when a conductor is exposed to an additional
external field. Utilizing Eq. 5.82, the coefficient of resistance increase kg = P. /P_,
analogous to the ratio ¢(§), is in general case equal to

2 2
== = 0(@)+ (T 1 Sy (5:85)
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5.4 One-Dimensional Skin and Proximity Effect in Solid
Conductors of a Coil in a Slot: Average Values of Skin
Effect Factors for All Conductors in a Slot and for All
Slots of a Phase

As shown in the previous chapter, the amount of losses in a conductor in a slot is
dependent not only on the conductor current, but also on the amount and phase
shift of ampere-turns in the slot below the conductor. Except in a single-cage
winding, there is always more than one current-carrying conductor in a slot.
Therefore, it is quite interesting to analyze proximity effect in turns of a coil in a slot
of an electric machine. In the following analysis it will be assumed that each
conductor in the coil is solid, without strands, and that all turns are connected in
series and, consequently, carry the same current. The assumption that there are no
strands in conductors means that eddy currents created in the slots can flow in radial
direction through conductors in the end region of each turn.

Single-layer windings have half as many coils as slots. A single coil occupies
two monoslots, one of them being shown in Fig. 5.18.

In a monoslot the nth conductor is exposed to the field of n-1 conductors below
it. Therefore, the coefficient of resistance increase kg in Eq. 5.85 can be written for
the nth conductor as

Fig. 5.18 Monoslot of a single-layer winding with w turns per coil/w conductors in slot
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Fig. 5.19 IR losses in the slot portion of a coil with one turn (black curves) and with five turns
(gray curves) at 50 Hz (solid) and for direct current (dashed). Whereas for direct current the coil
with five turns creates five times as much losses as the coil with one turn and identical conductor
dimensions, the ratio of losses at 50 Hz is a function of the conductor height i

bn = 7 = (&) 4 n(n — DY(E) (5.86)

since Og. = I and Oy, = 0. The average coefficient of resistance increase kg, for
the complete coil is equal to

w?—1

3

= ki = 00+ 0(E) (5.87)
i=1

Total coil losses in the active part can now be expressed as (see also Eq. 5.74):

Lo
P =2

_ [sinh 28+ sin2&  w? — 1 _ sinh 2§ — sin 2§ (5.88)
KOW,

cosh 2& — cos 2§ 3 cosh 2& + cos 2§

The dependence of losses after Eq. 5.88 on conductor height in a coil with one
turn and in a coil with five turns at 50 Hz and for DC are shown in Fig. 5.19, black
and gray, respectively. Loss curves for a single-turn coil correspond to those shown
in Fig. 5.5a.

One recognizes in Fig. 5.19 the influence of proximity effect on total losses,
which substantially increase as the external MMF increases proportionally to the
number of conductors in slot. Starting already at a low number of turns, proximity
effect is strong enough to reverse the natural tendency of losses to decrease as the
conductor height increases. For each number of turns losses increase in a certain
range of conductor height h, as depicted with “P 1” in Fig. 5.19 for w = 5.
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Double-layer windings have as many coils as slots. Windings with shorted coils
(y < 1) have both mono- and mixed slots. Since the proximity effect in a mixed slot
is not as strong as in a monoslots (compare Eqs. 5.83 and 5.84), total losses in
conductors in the layer of a mixed slot closer to air gap are lower than in a
monoslot, as shown in Fig. 5.20.

0 he,50 h

Fig. 5.20 I’R losses in the side of a coil closer to air gap of a mono- (solid curves) and mixed
(dashed curves) slot for various numbers of turns and at 50 Hz

5.5 Coil Manufacturing Techniques for Suppression
of Current Redistribution Due to Skin Effect: Roebel
Bar, Ringland Bar, Willyoung Bar, Strand
Transposition

It has been shown in the previous chapters that a solid conductor is vulnerable
against skin and proximity effect as long as it offers a relatively large area to the slot
leakage flux. Therefore, the basic idea of mitigating the negative consequences of
alternating current redistribution is to cut the conductor along its radial height into
strands isolated to each other, Fig. 5.21.

(a) (b)

>,
1 ]
{;‘.-"_-"".-"""-f) o @ a

Fig. 5.21 Solid (a) and stranded (b) conductor
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5.5.1 Multi-turn Coil with Straight Strands

Assume that each conductor of a multi-turn coil is built out of ¢ insulated strands
connected with strands on the other side of the coil in a straight manner, without
crossing in the end winding zone, as shown in Fig. 5.22. Strands denoted by “1” in
conductors in Fig. 5.22 occupy in both coil sides the lowermost positions of all
conductors and strands denoted by “¢” the uppermost conductor positions, conse-
quently. The strands are connected to each other at the beginning of the first turn
and at the end of the last (wth) turn. The position of strands within a conductor in
end windings remains the same as in slots.

Real and imaginary components of the voltage induced at radial coordinate r by
slot leakage flux in the nth conductor, 1 < n < w, can be expressed by means of
Egs. 5.76 and 5.77 as

Re{Uy(r)} = “Re{I'(r)} (5.89)
Im{U,(r)} = "=Im{I(r)} (5.90)

One recalls that the radial coordinate r is local for each conductor. For a given
local coordinate r, the functions c,, s,, ¢y, and sy, (Egs. 5.72-5.75) have the same
value in each of w conductors in both slots. Since all w conductors carry the same
real current I, Oy, in Eqs. 5.76 and 5.77 is equal to zero, and the real and imaginary
components of induced voltage in the nth conductor can be expressed as

left slot right slot

g ——.

1]

rrrererrrseres)

Fig. 5.22 Multi-turn coil with ¢ strands in each conductor connected to strands in another slot in a
straight manner, without crossing in the end windings
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Re{Uy(r)} = “Re{I'(r)} ="1[a, + (n — 1)b/]

Im{U,(r)} = “Re{I'(r)} ="1[f, + (n — 1)e/]

where

ar = Chs(cr +5¢) + Sheler — sp)

by = Chs(cr + 8 — Ch — srh) +Shc(cr — 8t — Crh +Srh)

e = Chs(cr + 8 — Crh +Srh) - Shc(cr + 8 — Ch — Srh)

fr = Chs(cr - Sr) - Shc(Cr +Sr)

299

(5.91)

(5.92)

(5.93)
(5.94)
(5.95)

(5.96)

Combining Egs. 5.91 and 5.92, one can state that the induced voltage U, at radial
coordinate 7 in the nth conductor has two components: U,,, created by conductor own
current /, and U,, created by the same current / flowing through n — I conductors below:

k- th strand

U2, 2 U2, 2
L] [J

— O

UZ, 1 U2, 1
° [J

— O

left slot | right slot
< D><C—>

1. turn 2. turn

n- th
turn

Fig. 5.23 Equivalent circuit for induced voltages in a coil with £ strands per conductor connected

in straight manner in end windings
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Uo(r) = l”;‘l (ar +ijf;) (5.97)
Ue(r) = "1(b, + jer) (5.98)

resulting in
Uy = U (r) + (n — 1) Ue(r) (5.99)

If the radial strand height is equal to d, the induced voltage in the center of the
kth strand, 1 < k < ¢ of the nth conductor, U, , can be written as

Uni = Uo[(2k — 1)d /2] + (n — 1) - Ue[(2k — 1)d /2] (5.100)

The equivalent circuit for induced voltages in ¢ strands and w turns is shown in
Fig. 5.23.

Circulating currents between two arbitrary parallel branches in Fig. 5.23 are as
larger as higher the difference between induced voltages in the branches. Driving
force for circulating current in a loop containing ith and jth strand is the voltage
difference AU defined as

AU =23 (Uns — Un)) =25 {0120 — 1)/2] — U,[(2 — 1d/2)}
n=1 n=1

Y (5.101)
+2 ; {(n=1) Ue[(2i = 1)d/2] — (n — 1) - Ue[(2j — 1)d/2]}

Introducing

AU, ;i = U,[(2i — 1)d/2] — U,[(2j — 1)d/2] (5.102)
and

AUe;j = Ue[(2i — 1)d/2] — Ue[(2j — 1)d/2] (5.103)

one can write
AU = 2wAU,;j +w(w — 1)AU.; (5.104)

The voltage difference AU in Eq. 5.104 contains a sum of w induced voltages,
each of which is proportional to w — 1 times the conductor current. Therefore, the
voltage difference AU has to be proportional to the square of the number of turns.
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5.5.2 Multi-turn Coil with All Strands Twisted

Formed coils are manufactured in such a manner as to loop the strands in the form
shown in Fig. 5.24. After looping, the coils are spread to the coil pitch. The
spreading of looped coils leads to swapping of the relative position of a strand
within a conductor—the uppermost strand in the left side of the coil changes its
position in the end winding zone and becomes the lowermost strand in the right—
side coil. In other words, conductor sides on one coil side are upside down to the
conductor sides on the other. All strands get twisted by passing through front- and
back-end winding zone, which leads to the induced voltages equivalent circuit as
shown in Fig. 5.25. Circulating current in a loop containing ith and jth strand is
determined by the voltage difference AU defined as

AU=U,;+Uj+ Ui +Usj+ - +Uy1i+Uy1j+ Uy + Uy
~Uyj—Uyi—=Uypo1j—Uptj— - —Uyj— Uy —U; — Uy ; =0
(5.105)

Directions of
bending forces
on coil sides

Fig. 5.24 Formed coil with two strands per conductor. Due to looping and spreading process, the
position of strands in two coil sides is opposite



302 5 Skin and Proximity Effect

Twisting of strands in the end winding zone substantially reduces the total
induced voltage in an arbitrary loop created by ith and jth strand. Therefore, formed
coils with twisted strands in each end winding are free from eddy current losses
within conductors. Strand twisting does not influence eddy current losses within a
single strand.

left slot  right slot

<< —>
1. turn 2. turn last turn
<> €C———— > <>

Fig. 5.25 Equivalent circuit for induced voltages in a coil with ¢ strands per conductor twisted in
each end winding

5.5.3 Multi-turn Coil with Arbitrarily Twisted Strands

Coils of single-tooth-wound machines are usually manufactured in the manner
shown in Fig. 5.22, without natural twisting of strands as in the case of formed coil
in Fig. 5.24. In order to minimize losses due to proximity effect, strands in some
conductors are twisted. Considering quadratic increase of induced voltage due to
proximity effect (Eq. 5.104), it is enough to twist only the turn(s) closest to the air
gap. The voltage difference AU, (Eq. 5.104) in a coil in which only the turn closest
to the air gap is twisted can be written as

AU =2(w — 2)AU,;;+ (w — 1)(w — 4) AU, (5.106)
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Strands positioned in conductors next to each other in tangential, instead above
each other in radial direction as shown in Fig. 5.26, have to be twisted in such a
manner as to compensate for induced voltage due to radial slot flux. This is illus-
trated in Fig. 5.26b, in which strands in the last turn are twisted in the end windings.
Twisting of selected, instead of all, strands disturbs the end winding geometry and
requires additional space for realization. Since there exists no closed form solution
for radial distribution of slot flux density, the effects of strand twisting on radial
distribution of slot flux density cannot be expressed in the form of analytical
function of geometry and excitation, as is the case with tangential distribution. The
only way to quantify the impact of twisting on proximity effect losses in a
tooth-wound coil is by means of numerical analysis.

(@) (b)

o mnT T TTEm T ow T | [ |
L E ol w-i L OED T .
. . w2 En CL
 mm e |  me jem |
. L L . L ]
D o 1 N L S

Fig. 5.26 Single-tooth winding with two strands in tangential direction: straight (a) and two times
twisted (b)

Case Study 5.5: Minimization of losses due to tangential field in a slot by
twisting strands in some conductors Assume a coil with 4 conductors and 6
strands per conductor wound in such a manner that the strands in the conductor
closest to the gap are twisted, Fig. 5.27 [2]. The voltage difference after Eq. 5.106
for w = 4 is equal to

AUtwisted = 4AUo,i.j
which is significantly less than for untwisted, straight strands (Eq. 5.104):
AUstraight = 8AU0,iAj + 12AUc,i,j

As a consequence, the circulating current is significantly reduced when only the
strands in conductor closest to the air gap are twisted.
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-1

prrrrrrrryri
i |
|

i
| R

Fig. 5.27 Single-layer winding with four turns and six strands per turn

Case Study 5.6: Minimization of losses due to radial field in a slot by
twisting strands in some conductors Large slot opening in machines with single
wound teeth not only increases the Carter factor, but also strengthens the radial
component of slot flux density. Whereas tangential component of slot leakage flux
can be expressed analytically, its radial component can be found only numerically,
e.g., by applying some of methods for field computation introduced in Chap. 3.

Coils of the machine introduced in Case Study 2.1 have 8 turns, each of which is
manufactured of two strands next to each other in tangential direction, Fig. 5.28.
Strand currents at rated load are shown in Fig. 5.29.

Fig. 5.28 Single tooth winding with eight turns and two strands per turn: straight (a) and once
twisted in the 5. and 8. turn (b)
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If the machine is wound with straight strands as in Fig. 5.28a, the circulating
current between the strands at rated load exceeds the rated current, as in Fig. 5.29.
When added to the load current, the circulating current exceeds the current in the
inner strand for a factor larger than 2.

2.5

1.25

N %/ %\

Y

-1.25

-2.5-

Fig. 5.29 Strand currents in coil with straight strands after Fig. 5.27a in p.u. of the rated current
(black curve outer strand; gray curve inner strand). Time in ms

N
0.5 -
0 . . .
10 12 1 16
0.5
N N\

Fig. 5.30 Strand currents in coil with straight strands after Fig. 5.27a in p.u. of the rated current
(black curve outer strand; gray curve inner strand). Time in ms

If the strands are twisted once in the 5 and once in the 8 turn as shown in
Fig. 5.28b, the circulating current is significantly decreased. Current waveforms in
both strands in this case are shown in Fig. 5.30.
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5.5.4 Transposed Strands Within a Slot: Roebel Bar,
Ringland Bar, Willyoung Bar

When a machine is designed to operate at such conditions that only one turn per coil
is necessary, as is the case with large 50 and 60 Hz alternators, or medium size
400 Hz aircraft generators, the conductors are made out of a number of strands
insulated to each other. The strands are usually connected in parallel (welded) at the
beginning and at the end of each single conductor and transposed either along the
complete length, or only in the machine active part.

By transposing the strands within the machine active part (i.e., in slots), the
condition is fulfilled that each strand acts on another arbitrary strand in identical
manner. The transposition of conductors, introduced by Roebel [1], is known as
360° one, since each strand returns at the end of active part to its initial position in
the slot as at the beginning.

The 360° transposition of strands in Roebel bar compensates for effects of
leakage flux only in slots. If the induced voltages in end windings in addition have
to be compensated, a phase shift between them has to be created equal or close to
180°. The exact phase shift between induced voltages in front- and rear-end
winding of 180° is achieved by using transposition proposed in [3] (Ringland bar),
in which case one talks of a 540° bar. Compensation of effects of front- and rear-end
winding fields with a 540° bar is complete only if these are absolutely symmetrical,
otherwise, the transposition proposed in [4] (Willyoung bar) has to be applied.

The active part portion of a bar built after [4] is separated into three zones
(Fig. 5.31). Each strand in the central zone along with one end zone occupies all
positions within a conductor. This, however, is not identical to a 360° transposition
because the slope of strand transposition in the end zones is different from the slope
in the central zone. Position of a particular strand within a conductor in one end
zone is identical to its position in the other end zone. If the positions of a strand
within a conductor at the beginning and at the end of front-end zone are denoted by
p1 and p,, respectively, the strand in the central zone is transposed in such a manner
as to restore the identical strand position in the rear-end zone.

Denoting by n the total number of strands in the conductor, and by S the difference
between p, and p;, S = p» — p;, one can introduce the strand shift ratio K [4] as

active part = 360° transposition

end zone central zone __end zone
PN o
2
p1
strand shift . strand shift
nK/2 strand shift n(1-K) nK/2
I 1

Fig. 5.31 Transposition of strands within a conductor after [4]
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K= (5.107)

S
n
K = 0 corresponds to Roebel transposition, and K = 0.5 to the 540° transposition
introduced in [3].

5.6 Analytical Method for the Determination
of Three-Dimensional Proximity Effect in Strands
in the End Winding Zone; Circulating Currents

It was shown in the previous chapter that the flux density in the end winding zone
of an electrical machine can be evaluated by applying Biot—Savart law. The results
obtained give the three-dimensional distribution of flux density, which can generate
losses in all closed loops of strands through the mechanism of proximity effect.
A closed loop is formed by two arbitrary strands connected in parallel at the
beginning and at the end of each conductor, i.e., in the front- and rear-end winding
zone. In order to determine the amount of circulating current in a given loop, the
induced voltage in it is evaluated by differentiating the flux concatenated with the
loop and added to other induced voltages in it. The sum of all induced voltages in a
particular loop is equal to the voltage drop on the total strand resistance, since the
applied voltage in each such loop is equal to zero (Eq. 5.50).

5.7 Skin Effect in a Ferromagnetic, Conducting
Half-Space

Assume a current-carrying conductor placed parallel to a ferromagnetic, electrically
conducting half-space with relative permeability p, g. on a distance d from it, as in
Fig. 5.32. The tangential component of magnetic field strength H(f) on the

®

Ho(t)
%

X X X X X

Mr.Fe
T°(r,1)

Fig. 5.32 Current-carrying conductor in front of ferromagnetic, electrically conducting half-space
with relative permeability L, e
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ferromagnetic half-space surface in case of DC excitation is given by Eq. 1.15. The
field strength H(f) is an impressed quantity for the electrically conducting, ferro-
magnetic half-space, in which eddy currents with current density I" flow following
the Faraday’s law.

By applying Ampére’s circuital law for an arbitrary loop in Fig. 5.32, one
obtains

r

]{ H - d5 =H(r,t)dx — Ho(r)dx = / [ (r, t)drdx (5.108)
0

from which one can write

)
S H(r1) = T(r,1) (5.109)

Faraday’s law for induced voltage u; in an arbitrary loop with dimensions
dr X dx can be written as

u; = —%uH(r, t)drdx = [['(r+dr,t) — I'(r, )] pdx (5.110)

or by replacing p through 1/x:

0 0
ar(r,t):—uourKaH(nt) (5111)

where L, = const. By combining Eqs. 5.109 and 5.11, one obtains the partial dif-
ferential equation

0 O*T(r,1)
HoHrK@F(VJ) =T 792 (5.112)

For sinusoidal time dependence of current density
[(r,t) = V2L (r)e™ (5.113)

one obtains further

%F(r, ) = \/Er(r)jwejmt (5.114)

which leads to the ordinary differential equation for current density distribution
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d’I'(r
dr?

) = —joukI’(r) (5.115)
Defining parameter o [m '] as

o = jopk (5.116)

one can write the ordinary differential equation of the second order (Eq. 5.115) as

dzr(r)
dr?

= —o’T'(r) (5.117)

The solution of Eq. 5.117 is a linear combination of exponential functions of
complex argument

I'(r) = Die® + Dye™™ (5.118)

where the values of integration constants can be found from boundary conditions of
the problem. Since boundary conditions are known both for the magnetic field
strength and current density, it sounds reasonable to express the solution in
Eq. 5.118 in terms of magnetic field strength by using Ampére’s circuital law:

d
@ I(r) = —a?H(r) (5.119)
from which
—oH(r) = D1e* — Dye™ ™" (5.120)

The amounts D, and D, of constants of integration are now found by inserting
the value of magnetic field strength at » = 0, H(0):

H(O) =Hy= D, — D, =—aH, (5121)

and current density at » — 00, ['(00):

I'(c0)=0=D;=0 (5.122)
Thus:
D, = aH, (5.123)
and, finally,
I'(r) = aHpe™ (5.124)

Substituting for a (see Eqs. 5.116 and 5.8)
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e
u:(1+j)1/¥:% (5.125)

and assuming H, to be real, one can write for eddy current density (Eq. 5.124)

1+4j )
I(r) = %Hoe—%” (5.126)
the real, Re{I'(»)}, and imaginary, Im{I'(z)}, components of which can be
expressed as

o t(cos” + sin”

Re{I'(r)} = 5 (cos 5+ sin 6) (5.127)
_Hy . roo.r

Im{I'(r)} = 5 (cosg - smg) (5.128)

Current density is maximal on the surface (r = 0), where its phase shift to the
impressed field strength H, is equal to 45°, see also Fig. 5.2.
The absolute value of current density is, accordingly:

%e*% (5.129)

ID(r)| = V2

The amplitude of eddy current density decreases exponentially from its value on

the surface I'(0) = v/2 a Hy down to zero in the inner portion of half-space with a

decay constant a. This helps visualize the physical meaning of the skin depth 6: The

total current, which in reality flows in the whole ferromagnetic, conducting

half-space, would flow in the layer with thickness 3 in the case of fictitious constant
current density equal to I'(0):

o]

/ IT(r)|dr = T(0)3 (5.130)

0

Eddy current losses generated in a differential of volume dr - dx - dz are equal to

ddz [ dxdz H2
Pe=—— / L) (r)dr === FO (5.131)
0
and the surface loss density
P. H}
P, -0 (5.132)

¢ T dxdz K9
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5.8 The Influence of Saturation on Skin Effect in Iron

Saturation changes relationships between field quantities in iron substantially and
makes analytical computations impossible. Nevertheless, based on the character of
B-H curve, reliable quantitative estimations of current density, losses, etc., can be
made for saturated iron, which correlate well with experimental data [4-7].

Steep increase of flux density in the interval of low-field strengths allows for the
simple approximation of B—H curve, as shown in Fig. 5.33. One can estimate that
in the layer with thickness 6 the flux density remains constant, as a consequence of
high values of magnetic field strength.

Bo

\4

Fig. 5.33 The actual B-H curve (gray) and its approximation (black)

A I',Pe, B
Bo
Pe (r)
I(0) B(r)
r(r)
0 o r

Fig. 5.34 Approximations of current density and loss curves
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Skin depth & can now be defined as

[ 2 /2 Hy
=y|—=1/——= 1
0 UK oK By (5.133)

The actual exponential decay of magnetic field strength within skin depth o is
replaced by linear decrease, which means that losses decrease quadratically,
Fig. 5.34.

With approximations introduced in Fig. 5.34, one can write for the total losses

lez hC
°3

r(0)— (5.134)

with C denoting the axial and /4 tangential distance in which the skin effect takes
place. Replacing the value of surface current density I'(0) by field strength
(Eq. 5.129), one can express the surface loss density as

2 o
P.=>\/—HB 1
e 3\ 070 (5.135)

5.9 Skin Effect in a Thin Plate

Assume now a plate with thickness A and height b through which an alternat-
ing magnetic field with flux density B spreads in the direction shown in Fig. 5.35.

s |(®) A

Fig. 5.35 Illustrating skin effect in a thin ferromagnetic plate

The induced voltage on the plate circumference is equal to

21

U=—f-B-b-A 5.136

Nk (5.136)
and the current density on the plate margin

Few— Y Ui (5.137)

2+A) " " 20 2
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Eddy current losses are now (see Eq. 5.134):

1 ,b-A-1 x?
P.=-I? =—x-
° 3 K 6"

2B - 1- A} (5.138)

with ¢ denoting the length of the plate in the direction of flux density B. Since the
MMF created by eddy currents is significantly smaller than the impressed MMF,
the flux density distribution over the plate area remains constant.

5.10 Skin Effect in a Solid Ferromagnetic Cylinder

Assume a ferromagnetic cylinder with radius R which carries an alternating current
I in axial direction, Fig. 5.36.

Fig. 5.36 Illustrating skin effect in a ferromagnetic cylinder

Considering the current density distribution as shown in Fig. 5.34, one can
express the maximum current density I'(0) on the cylinder surface as

r0)=—— (5.139)

and the flux through cylinder as
® = Byol (5.140)
The induced voltage on the cylinder circumference is now

Ui = 2T Byst = F(O)l LI

N = (5.141)

from which
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S=1/— (5.142)
B() OKRT
and the eddy current losses
2 Rnld 2 [}

If a ferromagnetic cylinder with diameter D rotates at angular velocity Q in
heteropolar field created by DC, Fig. 5.37, eddy current losses in it can be evaluated
in the following manner:

A [A/m]

AITIBX

By X X X X X X R I
v=QR

Fig. 5.37 Skin effect in a ferromagnetic cylinder rotating at angular velocity Q relative to a
rectangularly distributed current sheet with amplitude A«

The equivalent skin depth is (see Eq. 5.133)

1A 1
S = max .144
B() pQKI (5 )
where
K
K = 5.145
1+ 2% (3.145)

In equation above the electrical conductivity of material « is replaced by a term
taking into account the finite length £ of the analyzed cylinder with diameter D and
number of poles 2p.

The rms value of current density on the cylinder surface is now
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F(O) =V pQK/AmaxBO (5146)

and the total eddy current losses

2 pQ
Pe =2 Dml\ |25 A3, Bo (5.147)

If the current sheet is sinusoidally distributed and rotates at angular velocity ®
relative to the ferromagnetic cylinder, the losses are reduced to

1 0
P.= 3Dl %A;axBo (5.148)

5.11 Losses in Surface-Mounted Permanent Magnets

It has been shown in Sect. 3.5 how the magnetic scalar potential distribution is
evaluated in a surface-mounted permanent magnet. For known MMF drops
between points in a permanent magnet one can evaluate proximity effect losses
during one period by utilizing Eq. 5.80.
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Force and Torque
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discussed. Forces acting on conductors in slots and in the end winding are evalu-
ated. A method for measurement of torque is proposed and compared with back-to-
back procedure.

6.1 Magnetic Field as a Medium in Which
Electromechanical Energy Conversion Takes Place,
the Role of Accumulated Magnetic Energy

One of the things which make electrical engineering and especially electric
machines so exciting is extremely simple equations which describe them and
which, however, not always work. There seems to be a reasonable explanation for
such situation—there are only a few general laws governing operation of electric
machines, which result in a huge variety of system equations under different
boundary conditions. Very often, the conditions under which a particular equation
was derived fall into oblivion and one gets an impression that it is generally valid,
which is not always necessarily true.

A perfect example which illustrates possible confusion caused by inconsequent use
offormulas in electrical engineering is the well-known equation for the force acting on
a current-carrying conductor F' = B - £ - I, B denoting the flux density in the con-
ductor, I the conductor current, and £ the length of the conductor, as in Fig. 6.1a.

If the conductor is placed into an iron tube, which shields it from external field B,
the flux density in it goes down to zero, as in Fig. 6.1b. However, despite zero flux
density in the conductor, the force on it remains unchanged, i.e., F=B - ¢ - L

Therefore, it seems to be more appropriate to define the force as a result of
general state in electromagnetic field, in particular as a function of magnetic energy
stored in it [1, 2]. This way one comes to a conclusion that energy accumulated in
the space around a current-carrying conductor only slightly changes (de-
creases) when the conductor is shielded with iron tube as shown in Fig. 6.1 [2].
Consequently, the force acting on a current-carrying conductor in magnetic field
practically does not differ in the two cases illustrated in Fig. 6.1.

(@ (b)

Fe B=0

YVYY YyVvyYy \ 2R 4 \A 4
B B

Fig. 6.1 Illustrating the force acting on a current-carrying conductor in magnetic field. The force
acting on the conductor is the same in both configurations (a) and (b), although the external flux
density in the conductor in case (a) is equal to B and in case (b) to zero
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(a) (b)

(c) (d) F

Kel = 0
Hr >> Mr=1

Kel >>

XXx 0@

Fig. 6.2 Force in electromagnetic field: a between two conductors carrying currents in the same
direction; b between two conductors carrying currents in opposite directions; ¢ on a
current-carrying conductor in front of a high-permeance, non-conducting semispace; d on a
current-carrying conductor in front of a low permeance, conducting semispace

In Fig. 6.2 typical cases of forces acting on conductor(s) in magnetic field are
illustrated.

Force acting between two conductors carrying currents in the same direction is
always attractive (Fig. 6.2a). If the currents flow in opposite directions, the force is
repulsive (Fig. 6.2b). Current imaging in Fig. 6.2c in front of magnetic half-space
results in attractive force acting on the conductor, whereas the conductor carrying
alternating current in front of an electrically conducting half-space (Fig. 6.2d) gets
repelled from it as a result of action of eddy currents.

One should note that force and torque in magnetic field depend only on
instantaneous state in magnetic field.

6.2 Shear Force on Contact Surfaces Between Media
with Different Permeabilities

In linear media with p = const, the magnetic energy volume density Wy, v can be
expressed as
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H-B uH* B?
ng’V:T:HT:E:G (61)

and has a dimension of Ws/m> = N/mz, i.e., the same as pressure c. Consequently,
one can express the magnetic energy density in linear media as the amount of
pressure on a given surface, defined by means of vector of magnetic field strength
and unit surface vector, as in Fig. 6.3. Note that the vector of the pressure G is

perpendicular to the surface in two cases: when the field strength H is also per-
pendicular to the surface and when H is parallel to the surface.

Vector G can be resolved into a component G collinear with Handa component
G, perpendicular to H

6 =G.+ G, (6.2)
where

G, =0coso; O, =o0osina (6.3)

Fig. 6.3 Pressure ¢ acting on unit surface @ in magnetic field with intensity H. In linear media, the
amount o of pressure is numerically equal to volume density of stored magnetic energy if the
vectors &, @, and H lie in the same plane and if the vector H halves the angle between vectors ¢
and d

Introducing the unit vector ho of magnetic field strength, defined as

ho =

Sof ol
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one can write by using unity surface vector d

sino = ona”; coso=hyed (6.5)
as well as
Ge=0c- (iio . a) - Tio (6.6)
and
&, =0y x (iio X a) (6.7)

where symbol “e” denotes scalar product of two vectors and ““-” a regular product of
two scalars, or of a scalar and a vector.
Now, one can rewrite Eq. 6.2 as

G=o- [(ﬁo.a’).ﬁo+ﬁox (ona)} (6.8)

Substituting for value of 6 = pH*/2 (Eq. 6.1), one can further write

H_LLHZ H \ H H H e S
G_Tl<ﬁoa>-ﬁ+ﬁx<ﬁxa>]_5[(Hoa)-H+H><(H><a)]
(6.9)

On a boundary surface between media with equal permeability on both sides, the
pressure ¢ remains unchanged. If the permeability on one side of the boundary is
different than on the other, a pressure difference is generated. If there is no current
sheet on the boundary, the corresponding force acts in the direction from the
medium with bigger to the medium with smaller permeability, as in Fig. 6.4.

Boundary conditions for magnetic field vectors are [2]

Hy, = Hy, (6.10)
and

p'lHl,n = leHzn (611)
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7 Hy .
Hl,n
l (Hy*d) H, / G

a 01 o4
M4 1:11’[

e o

Hl X (Hl X (})
—a

Fig. 6.4 Pressure & acting on unit surface @ in magnetic field with intensity H in the absence of
current sheet on the boundary. 7, /7, and [ are unit vectors in tangential, normal, and lateral directions,
respectively. Tangential components of magnetic field strength are equal on both sides of the
boundary

resulting in

tanoy (6.12)

tanoy W, '
One can further write for both sides of the boundary

Hed=H, (6.13)

H x (H x @) = (tH, +iiH,) x [({H, +7iH,) x ii| = H,(iH, — iH,)  (6.14)
The pressure in the medium with p; is now

&1 = 5 [Hu - (fHy,+ i) + Hyy (= L)
(6.15)

=L 2ttty i (1, — 1, )|

and in the medium with p, on the other side of the boundary, analogously,

& = £2 (it +ii(H3, — H3, )| (6.16)

The total pressure is equal to
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Cll

1=
{ [2:H1 Hig 47 (HY, = HE,) | = g |27 o + (2, — )
(6.17)

NI'—‘

and has a normal component only. By applying boundary conditions (Egs. 6.10—

6.11), one obtains
N Ky A
= () - () o1

or, by means of normal and tangential components of flux density

- 1 Hl) 2 < Hz)]_,
6=—|B ( —B},(1-2%) i 6.19
21 [ b Ha M ( )

The force F, on the boundary between two media with different permeabilities
without current excitation has only one component, which is perpendicular to the
boundary surface. This force acts in the direction from the medium with a higher
permeability to the medium with a lower permeability.

In case of iron-to-air boundary, with p; = p1g and p, = po, one can write for
the amplitude of normal pressure

1 1
6y =~—|B3,(1—y)—B] (1——)] 6.20
2}1;}10 1, ( ) 1, i, ( )

Consider now two extreme cases:

(@) By, =B;By,=0;p, » 1 (flux lines perpendicular to the boundary surface on
air side, as in Fig. 6.5a):

82
Oy N — (6.21)
2y
(a) (b)
Fe Fe tB
. . v On, F
Air Air

Gn, Fn

Fig. 6.5 Pressure acting on air—iron boundary for a given flux density B in iron in absence of
current sheet. The force acts always from iron to air, and the amount of pressure in case of tangential
flux density (b) is p, times smaller than it is for normal flux density of the same amount B
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(b) By, =0; By,=B; p » 1 (flux lines parallel to the boundary surface on air
side, as in Fig. 6.5b):
BZ
2l“lrl’J'O

(6.22)

n ~

The ratio of normal pressure for the same value of normal (Eq. 6.21) to tan-
gential (Eq. 6.22) flux density is equal to p,.

Normal force on a boundary surface acts from the medium with a higher to the
medium with a lower permeability. Equations 6.21 and 6.22 reflect the physical
reality that a flux tube, here represented by the half-space with a relative permeability
U, tends to shorten and widen in magnetic field. Equation 6.21 can be used to find
attractive force of an electromagnet, whereas the pressure after Eq. 6.22 is the reason
why the lamination in electric machines has to be fastened in axial direction by means
of screws/bolts and press fingers. Another application of the principle that pressure
on the iron—air border always acts from iron to air is magnetic separation of iron
sheets, as in Fig. 6.6. When vertically stacked single iron sheets have to be separated
from each other, permanent magnets are placed around the stack, which create
magnetic flux density parallel to the surfaces of each sheet, as in Fig. 6.6. Vertical
distances between single sheets in Fig. 6.6 b are largest on the top of the stack and
smallest on its bottom, as a consequence of interaction between the gravitational and
magnetic forces acting on the sheets. The uppermost sheet levitates and exerts the
repelling magnetic force and the (attracting) gravitational force on the sheet below it.
The sheet below it carries the uppermost sheet and exerts the repelling force against
the third sheet, etc. This way, several upper sheets levitate above each other.

(a) (b) Magnets

=
=

Fig. 6.6 Magnetic sheet separation principle based on repulsion due to tangential field in the
sheets: a sheets in field-free space; b sheets between two permanent magnets generating flux @

If there exists current sheet A [A/m] on the boundary surface, Fig. 6.7, the
boundary condition 6.10 changes to

HZ,[ = Hl,/ TA (6.23)

and the expression for pressure (Eq. 6.17) into:
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BZ M BZ M u [
1,n < _ _1) + L (_2 _ > + _2A2 + _ZAB]‘I (624)
Uy 2p \y 2 H '

For A # 0, the pressure difference & has both normal and tangential components
G = 1o, + 1o, (6.25)
where

o, = +B A (6.26)

and

B} w) | Bl (n o o B
G, = " (1 _ _1) 4 U <_2 - 1) + 22A2 £ 2ABy, (6.27)
2 Wy 21 \y 2 H

Tangential component of pressure/force is different from zero only if there is a
component of flux density perpendicular to the boundary, as in Fig. 6.8.

1

A b b b b A A A S
U2
-G g
2 g

Fig. 6.7 Pressure & acting on unit surface @ in magnetic field with intensity A and current sheet
A on the boundary. Tangential components of magnetic field strength are not equal on the two
sides of the boundary

For iron-to-air boundary, with p; = p o and p, = o, the amplitude of normal
pressure is equal to

B B 1 AB
O ==—"(1—p,) ——2 <1 ~ —> 4 Hop2 A0 (6.28)
211 PITHI Hy 2

He
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Consider again the two extreme cases:

(@) Bin=B;By,=0;p, > 1 (flux lines perpendicular to the boundary surface on
air side, as in Fig. 6.8a):

c,=+B-A (6.29)
1/ B?

Cp A = ——j:pA2> 6.30
2 ( Ho 0 ( )

(b) By, =0;B;,=B;u, > 1 (flux lines parallel to the boundary surface on air
side, as in Fig. 6.8b):

G, =0 (6.31)

(a) (b)
Fe Fe

AT AT AT AL A ;‘yf;’!f!f!f!fﬂ A AL LA L LA LLLLLLLLLLI

’F ’F
Air o T Air om o

\ o,F
Sn, Fn

Fig. 6.8 Pressure acting on air—iron boundary for a given flux density B in iron carrying current
sheet A. Current sheet generates a tangential component of pressure/force

2 AB

Ho 2
+ AT — 6.32
2uly 2 Hy (632)

~ —
o, ~

For current sheet of 100 kA/m and flux density in iron of 1.5 T, one obtains in
case (a) above o, = =150 kN/m? and 6, ~ 895 +6 kN/m?, whereas in case
(b) 6, * 7.2 + 0.23 kN/m>.

6.3 Force Due to External Field Acting
on Current-Carrying Conductors in Slots
of Electric Machines

In conventional electric machines conductors are placed in slots, as in Fig. 6.9,
where the flux density By is significantly smaller than that in the air gap. Following
equation F' = By - ¢ - I, the force acting on conductor in a slot should also be
significantly smaller than that in the air gap.
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The pressure acting along the slot circumference in Fig. 6.9 has both normal and
tangential components after Eqs. 6.29-6.32. Since the direction of normal and
tangential components of pressure changes when passing the slot along tooth flanks
and its bottom, the resulting normal pressure acting on tooth flanks after Eq. 6.17 is

o, = 2 HA (6.33)

B

Fig. 6.9 Illustrating the force due to external field on a current-carrying conductor in a slot of an
electric machine

Considering constant current density in the conductor, the current is proportional
to the conductor area. Since one half of the conductor borders with the tooth on the
left side of the conductor, and the other half on the right side, the current sheet A is
equal to I/(2h), and one can write for the normal force F), acting on tooth flanks

F, = Bl (6.34)

with ¢ denoting the machine axial length. Total force acting on tooth flanks and
conductor is consequently F =B - £ - I.

6.4 Torque as a Function of Air Gap Quantities

In Egs. 6.29 and 6.30 the tangential and normal components of pressure in case of
current sheet on iron surface and normal component of flux density are given. The
two components of pressure are illustrated in Fig. 6.8. Applied to the machine
geometry, the meaning of tangential direction remains unchanged, whereas normal
direction in Fig. 6.8 is identical with machine radial direction. The ratio between
the two components can be expressed as

2
GnN*%U+H0A2 B HoA

o, 2B-A  24A 2B

(6.35)

and is typically a double-digit number. In other words, radial force in an electric
machine is typically an order of magnitude larger than the useful, tangential force.



328 6 Force and Torque

Torque on the shaft is a result of common action of all tangential forces in the air
gap. Thus, torque is an integral, global quantity, whereas radial force is a local
quantity, since it changes from one point to another in the air gap.

For a given continuously distributed force along the air gap circumference the
torque can be evaluated as an integral of tangential force F;. Denoting by R the air
gap radius, one can write for the torque

2Rn 2Rm Iy 2Rm Iy

M:O/ Fl(x)dx:RO/ O/G,(x,z)dzdx:RO/ O/A(x)B(x)dzdx (6.36)

with x standing for air gap circumferential coordinate and z for the machine axial
coordinate.

In the analysis of torque after Eq. 6.36, the air gap geometry plays a decisive
role.

6.4.1 Constant Air Gap Width

A single winding in a machine with constant air gap width cannot create torque on
itself, because in that case none of the components of magnetic energy stored in the
air gap is a function of the rotor to stator angle. In other words, a current-carrying
conductor does not exert any force on itself. In a machine with constant air gap
width at least two independent windings are necessary to create a torque after
Eq. 6.36, which in that case is named the pure electromagnetic torque.

The mechanism of torque creation in a constant air gap width rotating field
electric machine can be visualized by using a simplified machine model in which
the current sheet A and the flux density B in Eq. 6.36 originate from separate
sources, here permanent magnets on each side of the air gap. In the model,
B belongs to permanent magnets on the inner side of air gap, and A is created by a
separate set of permanent magnets on its outer side, as in Fig. 6.10. Since the
relative permeability of magnets is close to 1, the machine acts as if it had a
constant air gap width.

If the orders of harmonics of flux density and current sheet are different, which is
identical to a different number of pole pairs on the stator and rotor sides, as in
Fig. 6.10a, the torque for each and every rotor to stator angle y is equal to zero. If
the orders of two harmonics are equal, which is identical to an equal number of
poles of stator and rotor, as in Fig. 6.10b, the torque different from zero is generated
as a function of the rotor to stator angle y.

Obviously, the orders of the harmonics of air gap flux density and current sheet
have to be equal if a torque different from zero in a machine with constant air gap
width ought to be produced.
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Fig. 6.10 The principle of generation of torque between a current sheet and flux density harmonic
of different orders (a) and of identical orders (b) in a machine with electromagnetically constant air
gap width

Another conclusion that can be drawn from Fig. 6.10b is that the two harmonics
must be at standstill to each other if the generated torque is used to generate
mechanical work, i.e., Q4 = Qp, as in Fig. 6.10. If this condition is not fulfilled, i.e.,
if the two harmonics do not rotate at the same speed, the torque permanently
changes as a function of angle y between them (Fig. 6.10b) and the mechanical
work performed by the two harmonics is equal to zero.

Assume now a 2p-pole machine with windings on one side of air gap creating
current sheet A(x), and windings on the other side of air gap creating flux density B
(x). The ngth spatial and kgth time harmonic of air gap flux density with amplitude
Bax generates with nsth spatial and k4th time harmonic of current sheet with
amplitude A,,.x the torque equal to
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M = RAmameax
2Rm Ly R
cos (nA Tﬁx + kyogt — (pA) cos {ngrE (x — —Bz) + kg, t -+ DY, — @p dzdx
0 0 P P ax
(6.37)
or
M = Rlaxfsk,nAmameax
2RT
T b
cos (nA —x kgt — (pA) cos (nB —Xx— @ + kpo,t j:pyg — (pB) dx
Tp Tp 2
(6.38)

with y, denoting the rotor to stator geometric angle, B the geometric skewing angle,
and f; ,, the skewing factor for the nth harmonic. The amplitude of torque is directly
proportional to the skewing factor. The orders n, and ng of spatial harmonics are
defined on interval length of D - w/p, i.e., the order ny, = ng = 1 is identical to the
order of fundamental spatial term over 2p poles. The altering sign of the product
P - Y allows for both positive and negative directions of rotation, whereas the
altering signs in front of terms multiplying time variable t stand for positive and
negative sequence components of current sheet and flux density.

The character of torque after Eq. 6.38 depends on several parameters:

Current sheet and air gap flux density harmonics rotate in the same
direction: The sign of kg - p - v, is negative, and the torque is equal to zero as long
as the spatial orders of harmonics n4 and np are not equal, no matter how big k, and
kg are.

Current sheet and air gap flux harmonics have the same spatial order
n4 = ng = n and different time orders k4 and kg: The expression for torque reduces to

M = VA Bmaxfskn COS[(kA(DS - kB(Dr)t + Q4 — (PB] (639)

with V standing for the machine air gap volume. The two harmonics have the same
number of pole pairs n - p, but they travel at different speeds of rotation in the same
direction around the circumference. The torque has only a pulsating component, the
amplitude of which is dependent on the spatial order n of harmonics.

Current sheet and air gap flux harmonics have the same spatial order

rotor currents are equal, ®; = ,: The torque is independent of the order numbers n
and k and equal to:
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M = VAmameaxf;k,n COS((pA - (pB) (640)

When the harmonics of current sheet and flux density have the same time and
spatial order and travel at the same speed along the circumference, they can create a
constant component of torque if they are not perpendicular to each other, i.e., if
¢4 — @ # m/2. A constant component of pure electromagnetic torque in an electric
machine create only those harmonics in traveling waves of flux density and current
sheet which stand still relative to each other.

Current sheet and air gap flux density harmonics rotate in opposite direc-
tions: The sign of kz - p - v is positive, and the torque is again equal to zero as long
as the spatial orders of harmonics n, and ng are not equal, no matter how big k, and
kg are.

Current sheet and air gap flux harmonics have the same spatial order n and
different time orders k4 and kg: The expression for torque yields

M= VAmameaxfsk,n COS[(kA(Ds + kB(Dr)t + Py — (PB] (641)

The two harmonics have the same number of pole pairs n - p, but they travel at
different speeds of rotation at opposite directions around the circumference. The
torque has only a pulsating component which, again, is independent of the spatial
order n of harmonics.

Current sheet and air gap flux harmonics have the same spatial order n and the
same time order k: The torque is equal to:

M = VAmameaxfsk,n cos(2kwt+ Py — (PB) (642>

When two harmonics have the same time and spatial order and travel at the same
speed in opposite directions along the circumference, the torque they create pulsates
with twice the angular speed of their rotation.

(a) (b)

A M
Mmax COS(Qa-@g); ka = ks ka = ks

Mot | . M A A /\
VaRR

kA;ékB

o

kAikB

Fig. 6.11 Torque created by current sheet and air gap flux density harmonics of the same spatial
order n and time orders k4 and kp: rotating in the same direction (a) and in opposite directions (b);

Mmax =V - Amax * Bmax
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The dependence of torque on rotor electrical angle p - v, after Egs. 6.39-6.42 is
shown in Fig. 6.11. In Fig. 6.11a the torques created by harmonics of current sheet
and air gap flux density with the same spatial order and rotating in the same direction
are shown, whereas in Fig. 6.11b the torques created by harmonics of current sheet
and air gap flux density with the same spatial order and rotating in opposite directions.

Mechanical work W, .., performed in one rotor revolution can be expressed as

21 2rn

mech */Mdyg = laxr// dXdYg (643)

Out of four cases analyzed here, characterized by expressions for torque in
Egs. 6.39-6.42, obviously only the combination equal orders of time and spatial
harmonics, the same direction of rotation, and the same frequency of stator and
rotor currents (Eq. 6.40) can produce mechanical energy different from zero.
Accordingly, one can formulate:

— The trivial condition for generation of pure electromagnetic torque: The orders
of spatial harmonics ns and ng of current sheet and air gap flux density har-
monics must be equal in order to generate an electromagnetic torque different
from zero;

— The necessary condition for generation of pure electromagnetic torque: Besides
equal orders of spatial harmonics, the orders of time harmonics k4 and kp of
current sheet and air gap flux density along with frequencies of stator and rotor
currents must be equal in order to generate an electromagnetic torque with an
average value different from zero;

— The sufficient condition for continuous electromechanical energy conversion:
The two harmonics of current sheet and air gap flux density with identical
spatial and time orders must rotate in the same direction in order to be able to
generate mechanical energy different from zero.

6.4.2 Variable Air Gap Width

As shown in Chap. 2, in Table 2.4, the air gap flux density distribution generated by
the fundamental spatial harmonic of MMF and fundamental spatial harmonic of air
gap permeance with order N/p contains a spectrum of higher harmonics, the lowest
orders of which are equal to N/p £ 1. Since the fundamental and the harmonics of air
gap flux density are orthogonal to each other, one can contemplate them as if they
were generated by separate sources and, as such, being capable of generating a torque.

MMF harmonics with orders N/p 1 (slot harmonics!), generated by an
m-phase winding carrying alternating current with fundamental frequency o, fulfill
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the conditions expressed in Eqs. 2.184-2.185 for positive and negative sequence
components, in particular:

The slot harmonic N/p — 1 creates negative sequence component of MMEF,
because

1+ (¥-1 _
(1’ ) _1+0@gm-1) 24 (6.44)
m m

is an even number.
The slot harmonic N/p + 1 creates positive sequence component of MMEF,
because

N
1—(;+1)_1_<2qm+1>
m o m

= -2 (6.45)

is an even number, too. The corresponding rotating harmonics of MMF can be
defined as

N
Ov_; = On_| 144 COS [(— — 1) Ex—i— wt} (6.46)
P P P Tp
and
N
On, | = O, | max €OS {(— + l) Tye (DZ:| (6.47)
P P ’ p Tp

The positive sign of the term ot in Eq. 6.46 denotes the negative direction of
rotation of the MMF harmonic of the order N/p — 1.

However, the harmonics of the orders N/p + 1 in the air gap flux density dis-
tribution of a slotted machine are generated by the fundamental harmonic of the
MMF, which rotates in the positive direction, and by the variable air gap geometry.
Since only the fundamental component of MMF has a time dependent term, all
harmonics of air gap flux density created by the fundamental component of air gap
MMEF must also rotate in the positive direction, i.e., the sign of the term ot has to be
negative for them. In particular,

N
On_; = Ox_| pax COS [(— - 1) L wt} (6.48)
4 P ? p Tp

Variable parts of the product of the fundamental of current sheet and (N/p — 1)st
harmonic of MMF can now be described as
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T N T 1 N= 1 N T
cos|—x— ot )cos|[——1)—x—of| ==cos| ——x—2wt | + —cos||——2 | —
T p T 2 P T 2 p T

The first term on the right-hand side of Eq. 6.49 rotates at a mechanical speed Q
equal to

0=22 (6.50)
N

whereas the second term of the order N/p — 2 is stationary.
Similarly, one can write for the product of the fundamental and (N/p + 1)st

harmonic
T N T
cos (x — (Dt) cos {( + 1) —Xx — cot]
T )4 Tp
1 N 1 N
:—cos[<— —|—2> E)6—2(14 + —cos(—£x> (6.51)

2 P Tp 2 DT

The first term on the right-hand side of Eq. 6.51 rotates at a mechanical speed Q

equal to

®
Q=2 6.52
N+2p ( )

and the second term of the order N/p is stationary.

Following Eq. 6.36, the torque is proportional to the integral of the product of
current sheet and air gap flux density. Therefore, the products introduced in
Egs. 6.49 and 6.51 have to be multiplied by the fundamental harmonic of air gap
width distribution, which has the order of N/p, as in Eq. 2.77. Following the criteria
for torque generation introduced in the previous subsection, one can claim that only
those terms in Egs. 6.49 and 6.51, which have the same number of poles as the air
gap width in Eq. 2.77, can generate torque. Since only the first summand on the
right-hand side of Eq. 6.49 fulfills this criterion, one can further write for the
reluctance torque

2pTy

N N
Moy ~ / cos (—Ex - 2c0t> cos [—E (x — QRt — v,) | dx = sin(2py,) (6.53)
s P P

with vy denoting the geometric angle between the centerline of one tooth and the
axis of the resultant field.
Based upon previous results, one can formulate

— The trivial condition for generation of reluctance torque: The air gap has to be
slotted and not skewed for a slot pitch, with windings placed on unslotted side;
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— The necessary condition for generation of reluctance torque with an average value
different from zero: Current(s) in winding(s) has/have to be time-dependent;

— The sufficient condition for continuous electromechanical energy conversion by
means of reluctance torque: The rotor has to rotate at mechanical speed equal to
the angular frequency f the winding current(s), multiplied by the factor of 2/N,
with N denoting the number of teeth.

Since the pure electromagnetic torque is created by two fundamental harmonics
of air gap quantities, and the reluctance torque by the fundamental and a slot
harmonic, it is realistic to expect that the amplitude of the reluctance torque is
smaller than the amplitude of the pure electromagnetic torque for a given volume
and electromagnetic and thermal loading of the machine.

6.5 Spectral Components of Torque in a Constant Width
Air Gap

Rotating field electric machines create torque spectra which can vary from one
operating point to another. Pulsating torque components do not contribute to the
electromechanical energy conversion. Instead, they can cause torsional vibrations in
the machine and mechanical load. If a particular torque component is a result of
interaction of a current sheet and an air gap flux harmonic, its properties can be
analyzed by means of Eqs. 6.39-6.42.

As illustrated in Chap. 2, the source of spatial harmonics in current sheet dis-
tribution are discretely distributed ampere-turns along the air gap circumference.
Higher spatial harmonics in conventional rotating field machines interact with the
fundamental and with each other and, as a result, a torque is created.

6.5.1 Symmetrically Wound Polyphase Machine Fed
Symmetrically with Sinusoidal Currents

Time harmonics in current spectrum are either a consequence of nonlinearities in
magnetic circuit, or they are injected from the source. Stator currents in some types of
rotating field machines are perfectly sinusoidal. Symmetrical stator winding in a
rotating field machine carrying sinusoidal symmetrical currents generates armature
current sheet A4 with fundamental time harmonic and spatial harmonics of the order n:

- s
Aq = ZAmax,n cos (ngx — ot — (pA> (6.49)

The nth harmonic of current sheet rotates at an angular velocity which is n times
smaller than the angular velocity of the fundamental.
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Symmetrically wound polyphase synchronous machine at steady state is
characterized by the rotor flux density distribution Bg the harmonics of which all
rotate at the same mechanical synchronous speed Q = w/p

= T
Br = Z Brax.n €08 (n T—px — npQt — (p3> (6.50)

In Fig. 6.12 spatial distributions of stator current sheet and rotor air gap flux
density containing fundamental terms and the 5th and 7th spatial harmonics at two
time instants, denoted by #, and ¢y + T/4, are shown, with T standing for the period
length of the stator current. After 7/4, the rotor along with the air gap flux density
distribution shifts for 90° electrically. Since all harmonics of the air gap flux density
distribution rotate at the same angular (synchronous) speed, i.e., they do not move
relative to each other, the resulting air gap flux density distribution does not change
its shape during rotation (compare Fig. 6.12c¢, d).

(a) t=tg (b) t=to+T/4
AA fund. Ares AA Ares
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7 Tp
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(c) (d)
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G ()
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Fig. 6.12 Current sheet and air gap flux density harmonics of the same time order k = 1 and
different spatial orders n =1, 5, and n =7 in a symmetrically wound 3-phase synchronous
machine at two time instants shifted for one quarter of the period of stator current. Dashed vertical
lines denote zero crossing points of the fundamental components of current sheet and flux density.
Only the fundamental spatial harmonics traveling at synchronous speed ® can create a constant
torque. The 5th spatial harmonic of stator current sheet travels at —@/5 and the 5th spatial harmonic
of rotor flux density at ®; therefore, they create only a pulsating torque. The 7th spatial harmonic
of stator current sheet travels at w/7 and the 7th spatial harmonic of rotor flux density at w;
therefore, they again create only a pulsating torque
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The rotation of the stator current sheet, on the other hand, is caused by alter-
nating currents flowing through stationary windings. Therefore, each harmonic of
the rotating current sheet travels at its own angular speed. Since current sheet
harmonics travel relative to each other, the form of resulting current sheet varies
from one time instant to another, as illustrated in Fig. 6.12a, b.

Whereas the 5th spatial harmonic of current sheet rotates at angular speed of
o5 = —Q/5, Q being the mechanical synchronous speed of the fundamental, the
Sth spatial harmonic of air gap flux density created on the rotor side rotates at
mechanical angular speed of the rotor Q. Relative angular speed between the two is
Q — (—Q/5) = 6/5 Q, which is six times the synchronous speed of the fifth har-
monic. Therefore, the torque created by the fifth spatial harmonic of stator current
sheet and fifth spatial harmonic of rotor air gap flux density pulsates at six times the
stator angular frequency. Frequencies of pulsation of torque components created by
other higher spatial harmonics are determined in similar manner, as illustrated in
Table 6.1, in which the pure electromagnetic torque components at steady state of a
3-phase synchronous machine created by current sheet and air gap flux density
distributions after Eqs. 6.39 and 6.40 are evaluated for the first 19 spatial har-
monics. One recognizes in Table 6.1 that besides the dominating constant torque,
components of electromagnetic torque are generated which pulsate at
2 - k - m multiple frequencies of the stator angular synchronous speed, m being the
number of phases, and k =1, 2, ...

Table 6.1 Pure electromagnetic torque components in a 3-phase synchronous machine at steady
state

Spatial order n Current sheet Air gap flux Torque
density

ka O /O] 1 ki O /O] 1 MI(V - Amaxn * Bmax.n)
1 1 1 1 1 cos(Pa1 — 9p.1)
3 1 N.A. 3 1 N.A.
5 1 =1/5 5 1 cos(6pQt + Qa5 — Pps)
7 1 177 7 1 cos(6pQt + Qa7 — Pp7)
9 1 N.A. 9 1 N.A.
11 1 —1/11 11 1 cos(12pQt + @a11 — Op.11)
13 1 1/13 13 1 cos(12pQt + Q413 — Pp13)
15 1 N.A. 15 1 N.A.
17 1 -1/17 17 1 cos(18pQt + Q.17 — Pp.17)
19 1 1/19 19 1 cos(18pQt + @410 — ©p.19)

“Equivalent order of the time harmonic, which would result in the same angular velocity as in case
of rotor rotating at synchronous speed

Since all higher harmonics of stator current sheet travel relative to the rotor, they
induce voltages in rotor components. The induced voltages cause currents in
electrically conducting parts of the rotor, which dissipate losses and increase
temperature in them.
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Proper synchronization and/or hunting of a symmetrically wound poly-
phase synchronous machine: The rotor rotates at an angular velocity Q which
swings periodically around the synchronous speed w/p, i.e.,

0=21p cos(Awr) (6.51)
p

with D denoting the amplitude and Aw the angular frequency of the deviation
component of angular velocity Q. Along with the rotor, the fundamental and all
harmonics of the rotor flux density distribution Bg rotate at the same angular
velocity Q. Formally, the varying rotor angular velocity can be replaced by variable
factor kg in Eq. 6.39

kg =1+ gcos(Amt) (6.52)

Table 6.2 Pure electromagnetic torque components in a 3-phase synchronous machine during
proper synchronization and/or hunting

Spatial order n | Current sheet | Air gap flux Torque
density

ky | opalory | Kp O /01,1 | MI(V - Amaxn * Bmaxon)
1 1 1 1* | Eq. 6.52 | See Eq. 6.48
3 1 |N.A. 3* |Eq. 6.52 |N.A.
5 1 |-1/5 5* |Eq. 6.52 | cos[p(6Q + Dcos Aot)t + Gas — ¢ps]
7 1 177 7* | Eq. 6.52 | cos[p(6Q + Dcos Aot + 047 — ¢p7]
9 1 |N.A. 9% |Eq. 6.52 |N.A.
11 1 —1/11 11* | Eq. 6.52 | cos[p(12Q + Dcos Aot)t + Qa1 — ¢p11l
13 1 1/13 13" | Eq. 6.52 | cos[p(12Q + Dcos Aot + ¢a13 — Op13]
15 1 |N.A. 15 |Eq. 6.52 |N.A.
17 1 -1/17 17" | Eq. 6.52 | cos[p(18Q + Dcos Awnt + §a17 — ¢p.17]
19 1 1/19 19* | Eq. 6.52 | cos[p(18Q + Dcos Awt)t + ¢a.19 — ¢p.19]

“Equivalent order of the time harmonic, which would result in the same angular velocity as in case
of rotor rotating at synchronous speed

resulting in
My = VApax 1Bmax.1 cos[pD cos(Awt)t + @, — @] (6.53)

for the fundamental current sheet time harmonic, i.e., k4, = 1.
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Relationship between current sheet and air gap flux density harmonics during
proper synchronization and/or hunting can be illustrated by means of modified
Fig. 6.12. Since the rotor does not rotate at synchronous speed, the dashed line
between Fig. 6.12b, d would not go through the zero crossing point of the fun-
damental in Fig. 6.12d. Instead, the rotor flux density distribution is shifted to the
left or to the right of the position in Fig. 6.12d.

In Table 6.2 the pure electromagnetic torque components created during proper
synchronization and/or hunting of a 3-phase synchronous machine by current sheet
and air gap flux density distributions after Eqs. 6.54—6.55 are evaluated for the first
19 spatial harmonics.

Faulty synchronization of a symmetrically wound polyphase synchronous
machine is a consequence of opposite directions of rotation of stator current sheet
and rotor. Consequently, all harmonics of the rotor flux density distribution Bg
rotate at the same, negative synchronous speed o = —p - Q, as in Fig. 6.13.

Table 6.3 Pure electromagnetic torque components in a 3-phase synchronous machine during
faulty synchronization

Spatial order n Current sheet Air gap flux Torque
density

ka O, /1,1 ki O /01,1 MIV - Amax.n * Bmax.n)
1 1 1 1 -1 cos(2pQt + Qa1 — Pp1)
3 1 N.A. 3 -1 N.A.
5 1 -1/5 5 -1 cos(4pQt + Qa5 — Pps)
7 1 1/7 7 -1 cos(8pQt + Qa7 — Pp7)
9 1 N.A. 9 -1 N.A.
11 1 —1/11 11 -1 cos(10pQt + Q.11 — Pp.11)
13 1 1/13 13 -1 cos(14pQt + Q.13 — 9p.13)
15 1 N.A. 15 -1 N.A.
17 1 —1/17 17 -1 cos(16pQt + @417 — ©p.17)
19 1 1/19 19 -1 cos(20pQdt + Q4,10 — Pp.19)

“Equivalent order of the time harmonic, which would result in the same angular velocity as in case
of rotor rotating at synchronous speed

Fundamental component of stator current sheet rotates in positive direction,
whereas the fundamental component of air gap flux density rotates along with the
rotor in negative direction. As a result, the two fundamental components create a
pure electromagnetic torque which pulsates at twice the mains frequency, as in
Eq. 6.42.
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Fig. 6.13 Current sheet and air gap flux density harmonics of the same time order k = 1 and
different spatial orders n = 1, 5, and n = 7 in a symmetrically wound synchronous machine during
faulty synchronization at two time instants shifted for one quarter of period of the stator current. The
fundamental spatial harmonics traveling at synchronous speed ® in opposite directions create
torque which pulsates at twice the mains frequency. The Sth spatial harmonic of stator current sheet
travels at —«/5 and the 5th spatial harmonic of rotor flux density at —w; therefore, they create a pure
electromagnetic torque which pulsates with the difference of two angular speeds, i.e., with 4 times
the stator angular frequency. The 7th spatial harmonic of stator current sheet travels at /7 and the
7th spatial harmonic of rotor flux density at —; therefore, the frequency of pulsations of the pure
electromagnetic torque created by these two components is 8 times the stator angular frequency, etc.

Since the 5th harmonic of stator current sheet rotates in the same (negative)
direction as the Sth harmonic of the air gap flux density, the relative speed between
them equals 4 Q. The difference between the positive speed of rotation of the 7th
harmonic of stator current sheet and the negative speed of rotation of the 7th
harmonic of the air gap flux density is equal to 8 Q.
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In the same manner, one comes to the conclusion that the 11th and 13th har-
monics generate pulsating torques at 10 and 14 times the mains frequency,
respectively, whereas the 17th and 19th harmonics create pulsating torques at 16
and 20 times the mains frequency.

In Table 6.3 the pure electromagnetic torque components created during faulty
synchronization of a symmetrically wound 3-phase synchronous machine are
evaluated.

Doubly fed polyphase machine generates at steady state a stator current sheet
equal to

> T
As = ZAmax,n COS <n T—px - kmst - (pA) (654)

and the rotor flux density relative to stator
= T
B, = Z Binax.» €OS [nt— (x — x0) — koot — (pB} (6.55)
n p

with oy =2 - n - f; and o, =2 - © - f; standing for stator and rotor angular fre-
quencies, respectively, k denoting the order of time harmonic of currents and x, the
rotor shift

D
X = EQI (656)

whereas Q stands for the rotor angular speed. With substitutions above, one can
express the rotor flux density distribution as

o b1
B, = Z Bimax n €OS [n T—px — (npQ +kwy) t — kg (6.57)

where positive sign in front of @, denotes the positive and negative sign the neg-
ative sequence harmonics. Introducing slip s for the fundamental stator time
harmonic
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Q=(1-s5)— 6.58
(1—s) ) (6.58)

and taking into account the connection between the angular frequencies of stator
and rotor fundamental time harmonics

O = 5O (6.59)

one can express the rotor flux density as
= T
B, = Zn:Bma"v" cos{ngx —ogn—s(nFk)r— (pB} (6.60)

The nth spatial harmonic of rotor flux density created by the kth time harmonic
of rotor currents rotates at slip s relative to the stator with an angular speed of

o TS FRO {1—5(1:!:]{)]@5 (6.61)
' nop n)|p

Negative sign of the ratio k&/n denotes positive and positive sign the negative
sequence component. Accordingly, one can write

N 6 \ o 6 | o
o, =— o.=(1== — o, =1—-—=s|— etc. 6.62
L1 » ; 15 ( 5S> » 5 1,7 |: 7S:| p etc ( )

Relative angular speed between the stator current sheet and rotor flux density

component created by kth time harmonic of current and nth spatial harmonic of
winding distribution can now be expressed as

k k k
o) = £ = {1—s(l$ﬁ)]%:%(l—s)<iz—l) (6.63)

np

and in particular

(see Fig. 6.14).
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Fig. 6.14 Current sheet and air gap flux density harmonics of the same time order k = 1 and
different spatial orders n = 1, 5, and n = 7 in a symmetrically wound induction machine with slip
rings at slip s = 0.7 and two time instants shifted for one quarter of period of the stator current.
Dashed lines denote zero crossing points of the fundamental components of current sheet and flux
density. Only the fundamental spatial harmonics traveling at synchronous speed ®, can create a
constant torque. The 5Sth spatial harmonic of stator current sheet travels at —oy/5 and the Sth spatial
harmonic of rotor flux density at p(1 — s)ms — so/5; therefore, they create only a pulsating torque.
The 7th spatial harmonic of stator current sheet travels at o, /7 and the 7th spatial harmonic of
rotor flux density at p(1 — s)og + soy/7; therefore, they again create only a pulsating torque

The value of slip sy at which stator kth time and nth spatial harmonic rotates at
the same angular speed as the rotor harmonic of the same order can be found by
setting the two angular speeds equal to each other, i.e.,

ifﬁz%[l—s(,(lng)] (6.65)

np

which has a solution for so = 1. In a wound rotor induction machine, a stator
harmonic and a rotor harmonic of arbitrary order are in synchronism only at
standstill. Only the fundamental stator and rotor time and spatial harmonics travel at
the same angular speed w¢/p at every rotor mechanical speed of rotation Q.

In Table 6.4 the components of pure electromagnetic torque generated by the
fundamental stator and rotor time harmonics and first 19 spatial harmonics in a
3-phase induction machine are given. The frequency of pulsations of torque
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components is a function of slip; at zero speed, all components of pure electro-
magnetic torque become constant.

In Fig. 6.14 the stator current sheet and rotor air gap density distribution created
by windings of a wound rotor induction machine carrying pure sinusoidal currents
at two time instants and the slip of 0.7 are shown. Whereas the fundamental
harmonic of rotor air gap flux density travels at the same angular speed as the
fundamental harmonic of current sheet, each higher spatial harmonic in both dis-
tributions travels at its own speed.

Table 6.4 Pure electromagnetic torque components at steady state of a 3-phase wound rotor
induction machine fed with sinusoidal currents

Spatial order n | Current sheet Air gap flux Torque
density

ka | 0palo11s kg | 0p/010 | MIV - Amaxn © Bmaxon)
1 1 1 1 1 cos(Pa,1 ~ 95.1)
5 1 -1/5 1 -1/5 cos[6/5mg(1 — $)t + Qas — @ps]
7 1 1/7 1 1/7 cos[6/7ms(1 — $)t + Qa7 — ¢p7l
11 1 —1/11 1 -1/11 cos[12/11wy(1 = $)t + Qa11 — Pp 11l
13 1 1/13 1 1713 cos[12/13w(1 — $)t + Qa13 — Pp 13l
17 1 -1/17 1 —1/17 cos[18/17wy(1 — $)t + Qa.17 — ¢p.17]
19 1 1/19 1 1/19 cos[18/19w4(1 — $)t + Qa.10 — ¢5.19]

Symmetrically wound squirrel cage induction machine is characterized by
stator current sheet distribution at steady state

A, = ZAmax’n cos <n§x — kot — (pA> (6.66)
n P

The nth spatial harmonic of corresponding air gap flux density induces in rotor
squirrel cage a 2n-p-pole voltage distribution and, as a consequence, a 2n-p-pole
MMF distribution. Since both the stator current sheet and rotor MMF have the same
number of poles 2n-p, they create a pure electromagnetic torque with a constant
component since they rotate at the same angular speed (Fig. 6.15).
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Fig. 6.15 Current sheet and air gap flux density harmonics of the same time order k = 1 and
different spatial orders n =1, 5, and n =7 in a symmetrically wound squirrel cage induction
machine at two time instants shifted for one quarter of period of the stator current. Dashed lines
denote zero crossing points of the fundamental components of current sheet and flux density. Not
only the fundamental spatial harmonics traveling at synchronous speed o, create a constant torque:
The 5th spatial harmonic of stator current sheet travels at —@¢/5 and the 5th spatial harmonic of
rotor flux density also at —®¢/5; therefore, they create a true electromagnetic torque with constant
component. The 7th spatial harmonic of stator current sheet travels at wy/7 and the 7th spatial
harmonic of rotor flux density also at ®y/7—they both create a constant component of torque as
well

In Table 6.5 components of pure electromagnetic torque generated by the fun-
damental stator and rotor time harmonics and first 19 spatial harmonics in a 3-phase
squirrel cage induction machine are given. In this table the pure electromagnetic
torque components created by slot harmonics are not included because their order is
out of range of interest.
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Table 6.5 Pure electromagnetic torque components at steady state of a 3-phase squirrel induction
machine fed with sinusoidal currents

Spatial order n Current sheet Air gap flux Torque
density
ka O/ 01,15 kg O/ ®1,1,0 MI(V - Amax.n * Bmaxn)

1 1 1 1 1 cos(Qa.1 — Pp.1)

5 1 —1/5 1 -1/5 cos(Pas5— Pps)

7 1 1/7 1 1/7 cos(Pa7- Pg.7)

11 1 -1/11 1 -1/11 cos(Qa.11- Pp.11)

13 1 1/13 1 1/13 coS(Pa.13— P5.13)

17 1 -1/17 1 -1/17 cos(Qa.17- PB.17)

19 1 1/19 1 1/19 cos(Pa19- P 19)

6.5.2 Symmetrically Wound Machine Fed with Sinusoidal
Unbalanced Currents

Unbalanced operation of a symmetrically wound synchronous machine at
steady state is caused by amplitude and/or phase asymmetry of stator currents. As a
consequence, both positive and negative sequence components of stator air gap
current sheet and MMF are generated. Since the rotor is at synchronism, the relative
speed between the fundamental term of negative sequence component of stator
current sheet and rotor is twice the synchronous speed. In addition to torques
created by positive sequence component of stator current sheet, as in Table 6.1, the
negative sequence of stator current sheet generates with rotor air gap flux density a
spectrum of pulsating torque components with frequencies identical to those at
faulty synchronization represented in Table 6.3.

Pure electromagnetic torque components created by negative sequence compo-
nents of stator current sheet and rotor air gap flux density terms with corresponding
numbers of poles are represented in Table 6.6.

In Fig. 6.16, negative sequence harmonics of current sheet created by stator
unbalanced currents along with rotor air gap flux density harmonics are shown.

The fundamental component of stator current sheet rotates in opposite direction
to the rotor and induces in it voltages with twice the stator frequency. The induced
voltages generate eddy currents in rotor solid parts, which dissipate losses in them.
In order to minimize rotor eddy current losses due to unbalanced load, the stator
negative sequence current is limited to typically 5-12 % of rated current, the value
depending on the machine size and the rating of the damper cage.
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Fig. 6.16 Negative sequence current sheet and air gap flux density harmonics of the same time
order k = 1 and different spatial orders n = 1, 5, and n = 7 in a symmetrically wound synchronous
machine fed with sinusoidal unbalanced currents at two time instants shifted for one quarter of
period of the stator current. The fundamental spatial harmonics traveling at synchronous speed ®
in opposite directions create a pulsating torque. The 5Sth spatial harmonic of stator current sheet
travels at /5 and the 5th spatial harmonic of rotor flux density at ®; therefore, they create a pure
electromagnetic torque which pulsates with the difference of two angular speeds, i.e., with 4 times
the stator angular frequency. The 7th spatial harmonic of stator current sheet travels at —w/7 and
the 7th spatial harmonic of rotor flux density at ®; therefore, the frequency of pulsations of the pure
electromagnetic torque created by these two components is 8 times the stator angular frequency

Table 6.6 Pure electromagnetic torque components in a 3-phase synchronous machine at steady
state created by negative sequence component of stator current sheet

Spatial order n Current sheet Air gap flux Torque
density
ka O, /01,1 ki O, /01,1 MIV - Amax.n * Bmax.n)
1 1 -1 1 1 cos(2pQt + Qa1 — Pp1)
3 1 N.A. 3 1 N.A.
5 1 1/5 5 1 cos(4pQt + Pas — Pps)
7 1 -1/7 7 1 cos(8pQt + Qa7 — Pp7)

(continued)



348 6 Force and Torque

Table 6.6 (continued)

Spatial order n Current sheet Air gap flux Torque
density
ka O /O] 1 kg O/ ®1,1 MI(V - Amax.n * Bmax.n)

9 1 N.A. 9 1 N.A.

11 1 1/11 11 1 cos(10pQt + Q411 — Pp.11)
13 1 —1/13 13 1 cos(14pQt + Q.13 — Pp.13)
15 1 N.A. 15 1 N.A.

17 1 1/17 17 1 cos(16pQt + Q.17 — Pp.17)
19 1 —1/19 19 1 cos(20pQdt + Q410 — Pp.19)

“Equivalent order of the time harmonic, which would result in the same angular velocity as in case
of rotor rotating at synchronous speed

Polyphase machine with symmetrically wound, symmetrically fed stator
and unbalanced rotor is a mode of operation characteristic for both synchronous
and induction machines, e.g., during:

— Start-up transient of a synchronous machine with short-circuited field winding;

— Start-up transient of a wound rotor induction machine with asymmetrically
connected rotor winding;

— Start-up transient of a squirrel cage induction machine with broken bar(s) and/or
ring segment(s).

The impressed stator currents generate rotating current sheet distribution at
steady state described as

A, = ZAmax,n cos <n§x — kot — (pA> (6.67)
n p

Independent of the machine type, rotor asymmetric currents create besides a
positive B, also a negative sequence air gap flux density B, the speed of rotation of
which depends on slip (Eq. 6.64)

- {Bhncos{nzx— os[n —s(n F k)Jt — (pB}

T
= Z P (6.68)
i
" +B_, cos{n—x+ os[n — s(n F k)]t — (pB}}
Tp
The order n of harmonic in Eq. 6.68 can be 1, 3, 5, 7, ... in an asymmetrical

3-phase and single-phase rotor, or 1, N/p = 1, 2N/p = 1, ... in an asymmetrical
squirrel cage with N/2p phases. Since in the current sheet spectrum of symmetri-
cally wound, symmetrically fed stator there exist no harmonics with order equal to
odd multiples of the number of phases, pure electromagnetic torque components
created by these harmonics are equal to zero.
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The effects of positive sequence harmonics in the spectrum of rotor air gap flux
density B, were discussed previously. Here torque components created by negative
sequence harmonics B_,, will be found in a similar manner as for positive sequence
harmonics. If in Eq. 6.72 the positive sign of the ratio k/x is applied for positive and
negative sign for negative sequence components, one obtains for angular speed of
the first 3 harmonics of the negative sequence component of the air gap flux density

4 8
o =(1- 25)%3 o5 = (1 —§S> %; 7= <1 —7s> % etc. (6.69)

The fundamental term of the negative sequence component of the rotor air gap
flux density caused by rotor winding asymmetry is at standstill for slip s = 1/2, the
fifth spatial harmonic at slip s = 5/4, the seventh at s = 7/8, etc.

Table 6.7 Relative angular speeds between harmonics of the rotor negative sequence flux density
and current sheet after Eq. 6.67 along with slip values at which the corresponding harmonics are
synchronized

Spatial order n Relative angular speed /(®4/p) Harmonics synchronized at slip
1 —2s 0

5 2(3 — 2s)/5 32

7 2(3 — 4s)/7 3/4

11 2(6 — 5s)/11 6/5

13 2(6 — 7s)/13 6/7

17 2(9 — 8s)/17 9/8

19 2(9 — 10s)/19 9/10

Relative angular speed between the stator current sheet in Eq. 6.67 and negative
sequence components of the rotor flux density created by kth time harmonic of
current and nth spatial harmonic of winding distribution can now be expressed as

k k
m;{l:%[li—ﬂ(—li—ﬂ (6.70)
p n

In Table 6.7 relative angular speeds after Eq. 6.70 are calculated for the first 19
spatial harmonics in a machine with 3-phase stator winding.

The fifth spatial harmonic of the rotor negative sequence flux density travels at
one-fifth of the rotor synchronous speed plus one-fifth of the stator synchronous
speed relative to the fifth spatial harmonic of the stator positive sequence current
sheet. At slip s = 3/2, the rotor rotates with one half of the negative synchronous
speed, whereas the fifth harmonic of the rotor flux density rotates relative to rotor at
1/5 of the rotor synchronous speed. Since the rotor synchronous speed at that oper-
ating point is 3/2 of the stator synchronous speed, the relative speed of the fifth
harmonic of the rotor flux density to the rotor is 1/5 - 3/2 = 3/10 of the stator syn-
chronous speed. Added to the rotor mechanical speed of one half of the negative stator
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synchronous speed, the speed of the fifth rotor spatial harmonic of flux density is
equal to the speed of the fifth spatial harmonic of stator current sheet, i.e., —2/10 of the
stator synchronous speed. Therefore, at slip s = 3/2, the fifth harmonic of rotor flux
density in a machine with unbalanced rotor is synchronized with the fifth harmonic of
stator current sheet and the torque they create can have a constant component. At all
other speeds of the rotor, the two harmonics create only a pulsating torque.

In Table 6.8 components of pure electromagnetic torque generated by the fun-
damental time harmonics and first 19 spatial harmonics of stator current sheet after
Eq. 6.71 and negative sequence rotor air gap flux density are presented. The pure
electromagnetic torque components created by slot harmonics are not included in
this table because their order is out of scope of interest.

Table 6.8 Pure electromagnetic torque components at steady state of a 3-phase machine with
unbalanced rotor created by stator currents with angular frequency-o, and negative sequence air
gap flux density harmonics

Spatial order n | Current sheet Air gap flux Torque
density

ka | opn/o11s |k | 0pa/011c | MIV - Amaxn © Bmax.n)
1 1 1 1 1 cos(2smgt + Qa1 — Pp.1)
5 1 -1/5 1 —-1/5 cos[2/504(3 — 25)t + Qa5 — Ops]
7 1 /7 1 177 cos[2/7wy(3 — 4s)t + Qa7 — 9Bl
11 1 —1/11 1 -1/11 cos[2/11wy(6 — 58)t + a1 — ¢p.11]
13 1 1/13 1 1/13 co8[2/1304(6 — 78)t + Pa.13 — ¢p.13]
17 1 -1/17 1 -1/17 cos[2/1704(9 — 85)t + Q417 — Pp17]
19 1 1/19 1 1/19 c0s[2/1904(9 — 105)t + Q.19 — Pp 19l

In addition to the currents which create current sheet after Eq. 6.67, stator
winding carries currents the source of which are voltages induced by the negative
sequence component of rotor air gap flux density, as in Eq. 6.68. Since the stator
windings do not move, the frequency of induced voltage in them is independent of
the order of spatial harmonic of flux density wave which induced it.

Stator currents with angular frequency o, driven by voltages induced by the
negative sequence component of rotor flux density create current sheet A_ equal to

= T
A_ = ZAmaX’ny_ cos (nT—px—&—a)_t— (pA‘> (6.71)

where the frequency ®_ is equal to

o- =p(Q— o) = (1 — 25w (6.72)
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because the fundamental time component of the rotor negative sequence flux
density travels at electrical angular speed—p - ®, = —s - p - o, relative to the rotor
mechanical speed p - Q.

The fundamental (n = k = 1) negative sequence component of air gap flux
density in Eq. 6.68 can be expressed as

B,y = B_; cos LEH (1 — 25)yt — (pB] (6.73)
P

The fundamental negative sequence component of air gap flux density B,
generates with the fundamental component of current sheet A_; in Eq. 6.71

A_ ) = Amax,1,— COS le—k (1 —2s5)ogt — ¢A7_} (6.74)
p

an electromagnetic torque the average value of which is [see also Eq. (6.38)]
M = VAmax‘l‘,—B—,Lf;k‘l COS ((pA — (pB) (675)

An unbalanced rotor generates both positive and negative sequence components
of current sheet, which interact with stator flux density. Besides pulsating com-
ponents, a constant pure electromagnetic torque is generated which is equal to zero
at slip s =0.5. This property of negative sequence MMF is called Gorges
phenomenon.

6.5.3 Single-Phase Operation of a Rotating Field Machine

Single-phase synchronous machine in the power range above 100 MVA is a
typical source of electrical energy for railroads where only one contact wire is
available. In order to avoid too a low winding factor for the fundamental, usually
only 2/3 of stator slots are wound. A 2-pole generator usually rotates at 1000 rpm in
order to produce voltages at a frequency of 16 2/3 Hz. The rotor is cylindrical with
a very strong damping cage, which protects field winding from the 100 % unbal-
ance of the stator MMF.

Single-phase stator winding fed by sinusoidal current creates pulsating current
sheet A (x, 1)

As(x, 1) = ZAmaxvn {cos <n§x — ot — (pA> -+ cos (n;x—i—mt — (pA>] (6.76)

P p

whereas the field coil rotating at synchronous speed generates air gap flux density
which is defined in Eq. 6.50 (Table 6.9).
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Table 6.9 Pure electromagnetic torque components created by negative sequence component of
stator current sheet in a single-phase synchronous machine at steady state

Spatial order n Current sheet Air gap flux Torque
density

ka O,/ ®1,1 kg O,/ O1,1 MIV - Amax.n © Bmax.n)
1 1 1 1 1 cos(2pQt + Qa1 — Pp1)
3 1 N.A. 3 1 N.A.
5 1 —1/5 5 1 cos(4pQt + Qa5 — Pps)
7 1 1/7 7 1 cos(8pQt + Qa7 — Pp7)
9 1 N.A. 9 1 N.A.
11 1 —1/11 11 1 cos(10pQt + @411 — ©p.11)
13 1 1/13 13 1 cos(14pQt + @413 — ©p.13)
15 1 N.A. 15 1 N.A.
17 1 -1/17 17 1 cos(16pQt + Q.17 — 9Pp.17)
19 1 1/19 19 1 cos(20pQt + @419 — Pp.19)

#Equivalent order of the time harmonic, which would result in the same angular velocity as in case
of rotor rotating at synchronous speed

In addition to the torques created by positive sequence component of stator
current sheet and rotor flux density (Table 6.1), pulsating torques are generated in a
single-phase synchronous machine as a result of interaction between negative
sequence component of stator current sheet and the rotor flux density.

The fundamental negative sequence component of stator current sheet creates
with the fundamental component of the rotor flux density an electromagnetic torque,
which pulsates at twice the mains frequency. Since the machine is single-phase-fed,
its power has a pulsating component besides constant term U - [ - cos ¢.

The single-phase synchronous generator for railroads is unique among all
electric machine types because the amplitude of its pulsating torque is larger or
equal to the constant, useful torque which it generates. For this reason, the housing
of a single-phase synchronous generator is fixed with a series of springs to its
fundamental. In addition, the rotor damping cage must be dimensioned for a 100 %
unbalanced load.

Single-phase operation of an induction machine at steady state is charac-
terized by stator current sheet

o0
A, = ZAmaX’n {cos (nnx — kst — (pA) + cos (n:x+ksmst — (pAﬂ (6.77)

n Tp p

which induces voltages after Eq. 2.266 in symmetrical rotor windings rotating at
mechanical angular speed Q. Denoting by k, the order of stator current time har-
monic, the frequency of induced voltage can be expressed by means of Eq. 2.667 as
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®;— = 0k —n(l —s)] (6.78)
for voltage components introduced by positive sequence of stator current sheet, and
0, + = Olks+n(l —s)] (6.79)

for voltage components induced by negative sequence of stator current sheet. The
positive sequence of stator current sheet rotates in the same direction as the rotor.
The fundamental time and spatial harmonic of the positive sequence component of
current sheet, n = k; = 1, induces in rotor conductors voltages with frequency
®;. = 5 - ®, whereas the fundamental time and spatial harmonic of the negative
sequence component of current sheet induces in rotor conductors voltages with
frequency ;. = (2 — 5) - ®.

Induced voltages in a squirrel cage rotor generate currents, which are the source
of rotor component of air gap flux density B,. Considering Eqs. 6.68, one can define
for positive rotor mechanical angular speed Q the positive sequence of the rotor air
gap flux density as

B, = Bu cos{ntix —[n(1 =951 — k) —l—krks](nt} (6.80)
P

with k, standing for the order of rotor current time harmonic. Analogously, the
negative sequence of the rotor air gap flux density equals

B = B cos{ntix — (1l =) (1+k) — krks](nt} (6.81)
P

The positive sequence component of the rotor air gap flux density for negative
rotor mechanical angular speed Q is equal to

Table 6.10 Trigonometric functions multiplying terms V Ap,ax Bmax in the expression for pure
electromagnetic torque components in a single-phase induction machine rotating in positive
direction at steady state

n B, B,

1 cos(Pa,1 — P.1) cos(Qa.1 — Pp1 + 2500)

3 cos(Pa3 — 9p3) cos[@as — 9p3 — 2(2 — 3s)0t]

5 cos(Pa.s ~ PB.s) cos[@as — ps — 2(4 — Ss)oi]

7 cos(@a,7 — 95,7 cos[@a7 — @7 — 2(6 — Ts)i]

As+ 9 cos(@a9 ~ PBo) cos[@ao — Ppo — 2(8 — 9s)ar]

11 cos(Pa,11- PB,11) cos[@a11 — @11 — 2(10 — Ils)wi]
13 cos(Pa,13 ~ ¢5.13) cos[@a,13 = ¢p13 — 2(12 — 13s5)wi]
15 cos(Pa.15 ~ Pp.15) cos[@a,15 = @p15 — 2(14 — 15s)wi]
17 cos(Pa,17 ~ PB.17) cos[@a,17 = @p.17 — 2(16 — 17s)wi]
19 cos(Pa,19 ~ ¢B.19) cos[Pa,19 — ¢p.19 — 2(18 — 19s)wi]

(continued)
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Table 6.10 (continued)

n B;r A B;,r_

1 cos(Pa,1 — Pp,1 + 200) cos[@a,1 — @p,1 + 2(s — Dot]

3 cos(Pas ~ Pp3 + 200) cos[pas = @p3 + 6(s — Dor]

5 cos(Pa,s — Pps + 200) cos[pas — @ps + 10(s — Dot]

7 cos(Pa7 ~ @p7 + 200) cos[paz — @p7 + 14(s — D]

As.- 9 cos(Pao — Ppo + 201) cos[@ao — Qpo + 18(s — 1oi]
11 cos(@a,11 ~ P11 + 200) cos[@a,11 — @p 11 + 22(s — Dot]
13 co8(Pa,13 ~ P13 + 200) cos[@a,13 = @z.13 + 26(s — Dowi]
15 co8(Pa,15 ~ Pp.15 + 200) cos[pa,15 = @515 + 30(s — Dor]
17 cos(Qa.17 — @p.17 + 200) cos[@a.17 — @p17 + 34(s — Dot]
19 cos(Pa,19 ~ P19 + 200) cos[@a,19 — @p,10 + 38(s — Dor]
B . = Bun cos{nTEH (1 —s)(1 — k) — krks]oat} (6.82)
P

and the negative sequence

B, = B cos{ntﬁx—i- (1 —=s)(1+k)— krks](x)t} (6.83)
P

Table 6.11 Trigonometric functions multiplying terms V A, Bmax in the expression for pure
electromagnetic torque components in a single-phase induction machine rotating in negative
direction at steady state

n B; _ Brf .

1 cos(Pa,1 — 95.1) cos(Qa,1 — Pp.1 + 2 sor)

3 cos(Pa3 — Pp3) cos[@az — ¢p3 — 2(2 — 3s)wi]

5 cos(Pa5 ~ PB.s) cos[@as — @ps — 2(4 = Ss)wi]

7 cos(@a7 — 957 cos[@a,7 — 97 — 2(6 — Ts)or]

As.- 9 cos(Pa.0 ~ PBo) cos[@ao — P9 — 2(8 — Is)r]

11 cos(Pa,11 ~ ¢B.11) cos[@a11 — @11 — 2(10 — 1ls)ar]
13 cos(Pa,13 ~ ¢5.13) cos[@a13 — ¢p13 — 2(12 — 135)r]
15 cos(Pa,15 ~ PB.15) cos[@a15 =~ @pis — 2(14 — 155)wi]
17 cos(Pa,17 ~ ¢B,17) cos[@a,17 = @p.17 — 2(16 — 17s)01]
19 cos(Pa,19 ~ ¢B,19) cos[@a,19 — ¢p.19 — 2(18 — 19s)axr]

(continued)
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Table 6.11 (continued)

n B; 7 B; N

1 cos(pa,1 — 9p1 + 200) cos[@a,1 — @1 + 2(s — Dol

3 cos(pas — Pp3 + 200) cos[pas — @3 + 6(s- — D]

5 cos(Pas — Pps + 201) cos[@as — ¢ps + 10(s — 1)ot]

7 cos(Pa,7 — Pp7 + 201) cos[Qa7 — @7 + 14(s — o]

As+ 9 cos(Pao — Ppo + 201) cos[@a0- Ppo + 18(s-1)ot]

11 cos(Pa.11 — P11 + 200) cos[@a11 — @11 + 22(s — Dot]
13 co8(Pa,13 ~ Pp.13 + 200) cos[@a,13 = ¢p13 + 26(s — Doi]
15 co8(Qa,15 — Pp,15 + 200) c08[@a,15 — Pp,15 + 30(s — D]
17 cos(Pa,17 ~ Pp.17 + 200) cos[Qa,17 = ¢p.17 + 34(s — Dot]
19 cos(Pa.10 — Pp.19 + 200) cos[@a.10 = Pp.19 + 38(s — 1wt]

Denoting by A, the positive and by A;_ the negative sequence components of
stator current sheet

> T

A4+ = En Amax.n COS (ngx — kot — (pA> (6.84)
> b

A = En Amaxn cos(ng)ﬂ—ksmst— (pA> (6.85)

and considering only fundamental time components of stator and rotor currents,
ks = k. = 1, one can express torque components generated in a single-phase-fed
squirrel cage induction machine at positive rotor mechanical speed in the manner
shown in Table 6.10. Only positive sequence components of stator current sheet
and rotor air gap flux density can create constant torque components at any speed;
otherwise, the pure electromagnetic torque is pulsating. Since the negative sequence
component of current sheet rotates relative to the positive sequence component of
rotor air gap flux density with twice the synchronous speed, the frequency of
pulsations of pure electromagnetic torque between the two is always equal to the
twice angular frequency of the stator current.

When the rotor is rotating in negative direction, the positive and negative
sequence components of stator current sheet and rotor air gap flux density swap
their roles resulting in identical structure of torque components as for positive speed
of rotation (see Table 6.11).
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6.6 Spectral Components of Torque in a Machine
with Uneven Air Gap: Slotting, Salient Poles,
and Rotor Eccentricity

When air gap width is not constant, the nth harmonic of air gap flux density
contains a component created by the current sheet harmonic of the same order, as
well as components which result from interaction of slot harmonics and current
sheet harmonics of orders different from n. As shown in Eq. 6.37, a current sheet
harmonic in a machine with constant air gap width cannot create a pure electro-
magnetic torque with an air gap flux harmonic of the same order which it created.
Therefore, in a machine with constant air gap width, two independent sources—one
for current sheet and the other for flux density—are needed in order for electro-
magnetic torque to be created.

In a machine with N/p slots per pole pair, the nth harmonic of the positive
sequence of current sheet wave and the jth harmonic of the positive sequence of air
gap flux density wave generate electromagnetic torque due to slotting (reluctance
torque) after Eq. 6.53

21,
N
M = pRlaXfSk,nAnBj/ sin [nn (x+x) — (ot} cos {jn (x+x) — (Dt:| cos—ixdx
' , Tp Tp DT
(6.86)
where
Xe = R(Qr+7) (6.87)

Here x. denotes the position of the zero crossing point of current sheet relative to the

centerline of the 1. slot, Q the rotor mechanical speed at which the two harmonics

modulated by slotting synchronize with each other and y the initial rotor angle.
The definite integral in Eq. 6.86 is equal to

(0 =) cosl(n —p( )] | 5 (n-+i)cos[ - n)p(@ )+ 201
2n [Nz — (G- n)2p2 b 2n|N? — (j—|—n)2p2}
cos{(n+j)py — 2n(N/p+n) + 20 — (n+j)pQ]t}

I = pzrp

TP AN+ G +n)p]
cos{(n+j)py — 2n(N/p — n) + 20 — (n+j)pQ]t}
TP 4n[N — (j+n)p] +

cos[(n — j)p(Qt — y)] . cos[(n — j)p(Qt — v)]

PR T aa N -] T AnN - ]

(6.88)
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and its average value is different from zero only for certain combinations of N, j, n,
p, and Q . This mathematical result can be as well physically interpreted: A 2p-pole
machine with N slots generates reluctance torque only at certain mechanical angular
speeds Q as a result of interaction of a given jth harmonic of air gap flux density
and nth harmonic of air gap current sheet.

At a mechanical angular speed

0
Q=25 (6.89)

the jth harmonic of current sheet and nth harmonic of air gap flux density create a
reluctance torque after Eq. 6.86 if and only if the condition is fulfilled

N
jrn=2 (6.90)

The amount of reluctance torque created at mechanical angular speed Q is

N_
4 1

My = %V AmaxJBmax,,»_)/,j sin(NJ) (6.91)
J=13,5,..

which means that all harmonics of current sheet and air gap flux density the orders

of which are below N/p contribute to the reluctance torque at mechanical angular

speed of Q.

In a double-slotted air gap of an induction machine besides stator current sheet
and rotor air gap flux density, rotor current sheet and stator air gap flux density
create reluctance torque(s). Since the frequency of rotor currents varies proportional
to the rotor slip, one can express the rotor mechanical angular speed Q' at which the
reluctance torque due to stator slotting is generated as

Q=2— (6.92)

with s denoting the corresponding slip and N’ the number of stator slots. In the
worst case, the two mechanical speeds in Egs. 6.89 and 6.92 are equal, which occur
at slip

N/

i~ (6.93)

N

In order to avoid that slip s in Eq. 6.93 falls into normal operating mode (s < 1),
the number of stator slots N’ should be larger than the number of rotor slots N.
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In special case N/p = 2 (salient pole synchronous machine), the torque is gen-
erated at synchronous speed (2 = ®) and its amplitude is proportional to the pro-
duct of the amplitudes of fundamental harmonic of current sheet and air gap flux
density.

Reluctance torque after Eq. 6.91 is also generated at standstill, Q = 0, in which
case the orders of current sheet and air gap flux density harmonics satisfy equation

N
=l = (6.94)

When the coil does not rotate, the nth harmonic of flux density created by the jth
harmonic of current sheet and N/pth harmonic of air gap slotting are at standstill.
The reluctance torque after Eq. 6.91 can be expressed as

vy Ama” max 2 SIn(N'3) (6.95)
j=135,..

l\JI'—‘

rel -

In case of salient pole machine, N/p = 2, the mechanical angular speed Q after
Eq. 6.89 at which a constant reluctance torque is generated equals ®/p. Following
Eq. 6.90, only the fundamental spatial harmonic of MMF (n = 1) and the funda-
mental spatial harmonic of air gap flux density (j = 1) can create the reluctance
torque.

Eccentric air gap is a source of both odd and even flux density harmonics in a
machine with windings creating odd MMF harmonics only. Reluctance torque
acting on eccentric rotor can be evaluated by using equations derived in this section
and inserting for N = 1. In particular, the rotor mechanical speed Q after Eq. 6.89 at
which a constant reluctance torque due to eccentricity is developed equals 2o, i.e.,
twice the synchronous speed of a two-pole machine. According to Eq. 6.90, only
the fundamental harmonic of MMF (n = 1) and constant term of flux density (j = 0)
can generate this reluctance torque.

Case Study 6.1: A 6 kV, 60 Hz, 440 kW, 10-pole, cos ¢ = 0.815, 3-phase
squitrel cage induction machine has 90 stator and 70 rotor slots. Air gap diameter is
675 mm, and stator has rectangular slots with a width of 12.5 mm and a height of
57 mm. Stator winding has a pitch of y = 6. The number of stator slots per pole and
phase is equal to g =90/(2 - 5 - 3) = 3 and the slot angle o, =5 - 2n/90 = @/9.
The ratio between locked rotor and rated current is 5.6 and between maximum and
rated torque 3.2. The air gap flux at the mechanical speed of Q = w; /7 equals to
60 % of the rated value.
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Fig. 6.17 Torque—speed curve of the motor in Case Study 6.1 measured at 50 % of the rated
voltage

Table 6.12 Stator winding factors of the machine under study along with relative amplitudes of
current sheet and air gap flux density

n Soun Sen S A/A; B,/B; A, Bnp—nlAi By @ Q

1 0.866 0.96 0.831 1 1 0.794

5 —0.866 0.218 —0.188 0.045 0.12 0.006

7 0.866 -0.177 —0.154 0.026 0.09 0.008

11 —0.866 —-0.177 0.154 0.017 0.05 0.01

13 0.866 0.218 0.188 0.017 0.235 0.061
Note a substantially increased amplitude of the flux density slot harmonic (n = 13) due to 14 slots
per pole pair

torque due to rotor slotting is created can be expressed as

Torque—speed curve of the motor recorded during start-up transient is shown in
Fig. 6.17. Even unloaded, the motor stalls at a speed of about 103 rpm.

Winding factors along with the amplitudes of current sheet and flux density for
the first couple harmonics are evaluated in Table 6.12.
Following Eq. 6.95, the mechanical speed of rotation #n,, at which a reluctance

The number of rotor slots per pole pair, N/p, is equal to

Nm

TN =

70

N_T70_

p

5

_30,_600 _ 60120m

14

= 102.9rpm

The ratio of the reluctance torque at 102.9 rpm to rated torque is equal to the
sum of all terms in the last column of Table 6.12, i.e.,
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M, rel

rated

=0.879

The largest contribution to the reluctance torque comes from the fundamental
harmonic of current sheet and the slot harmonic of air gap flux density, the latter
being a consequence of the fundamental harmonic of air gap slotting.

Besides reluctance torque, the squirrel cage induction machine in this case study
develops pure electromagnetic torques as shown in Table 6.5. The amplitude of the
7. harmonic of stator current sheet equals 2.6 % of the amplitude of the funda-
mental. At the synchronous speed for the 7. spatial harmonic ®;

_112011'
75

o7 =10.77s!

and the corresponding rotational speed n-

30
ny; = ;(,07 = 1029rpm

the machine draws almost the short-circuit current. This helps one estimate the ratio
between the maximum motor torque due to 7. harmonic and the rated machine
torque as

Muyss7 _ Musx Asc.7Bsc.s _ , , 0.026:5.60.09-56-0.6

=0.141
M, rated M, rated Arated B rated 1 1

i.e., 14.1 % of the rated torque. Due to a higher flux level, the maximum generator
torque is considerably larger than the maximum motor torque. This makes the total
negative torque at and in the vicinity of n, = 102.9 rpm larger than
0.879 + 0.141 = 1.02 of the rated torque—no wonder that the motor cannot
accelerate over the saddle at n,,, as recorded in Fig. 6.17.

6.7 Side Effects of Accumulated Magnetic Energy: Radial
Air Gap Force, Forces on Conductors in Slots
and on Slot Wedges

Both components of electromagnetic torque calculated in the previous sections—
the pure electromagnetic and the reluctance torque—add to each other and act in the
shaft direction, in the following equation:

M=FxF (6.96)
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Electromagnetic torque, as a sum of all products of r and F on the air gap
circumference, is therefore a global quantity. For this reason, there exists no pos-
sibility to access from outside a particular component of torque created by a single
pole in a 2p-pole machine.

Besides electromagnetic torque, which is the useful quantity generated in an
electric machine, the accumulated magnetic energy creates forces which do not
contribute to the electromechanical energy conversion and which are typically a
source of unwanted effects, such as vibrations and electromagnetic noise. A typical
side effect of air gap flux density is the attractive force between stator and rotor
cylindrical surfaces, as in Eq. 6.21. Since the attractive force F; is proportional to
the square of the amplitude of air gap flux density, one can write for the radial air
gap force created by the positive sequence component of air gap flux density

Fey(x,2,0) { i i Ikcos[n— <x— Bslei) —kmt} }2 (6.97)
. —

1,3,5,... k=1,

As opposed to the electromagnetic torque, radial air gap force is a local quantity,
the effects of which act on the particular machine section independent of the amount
of radial air gap force at some other place in the machine. Total electromagnetic
torque acting on the shaft is equal to the algebraic sum (integral) of torque com-
ponents over the whole air gap circumference. On the other hand, a vector sum of
radial forces along the whole air gap circumference might be equal to zero, which
does not mean that there is no locally acting radial force.

Considering only the fundamental time harmonic component of current and the
fundamental and the slot harmonic of air gap flux density, one can rewrite Eq. 6.97 as

Fi i (x,z,0)~ {81 cos {1 (x - BskRi> - mt}
' ) Lax
N ' 2
+ By_ cos [(— — 1) T (x — BskRi) — o)t} }
’ p T, L

(6.98)

or

Fr 1 (x,2,t) ~ B cos? {E (x — ByR i) — o)t] +
’ T Lax

N
+2BB,  cos [TC <x — BSkRZ> — (D[:| cos [( — 1) T (x — BSkRZ> — (x)t]
P! Tp Lax p Tp lax

(6.99)

for
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B, < B
P

Radial force after Eq. 6.99 has a constant term proportional to

1 N T Z
e (G H)

along with a two-dimensional traveling wave components

1
Frwave ~ EB% cos [2‘5E (x — PR i) - th]
p

Lax

N = Z
—i—BlB%1 cos [;g <x - BSlea_x) - 2601]

the velocities of which in circumferential direction are

T p Ot
Vel =05 vy =20—"
b P N n
and in axial direction
_ TpOlyx D OTplax

V. = V.N = 22—
T BgRn T TN mBR

(6.100)

(6.101)

(6.102)

(6.103)

(6.104)

as long as By # 0. The effects of skewing, represented here by the skewing angle
Bsk, are illustrated in Fig. 6.18, in which radial force waves due to slotting in a

2-pole machine with 24 slots are shown.

If the slots are not skewed, as in Fig. 6.18a, the same amount of force acts in axial
direction for a given circumferential coordinate along the whole active part length.

Fig. 6.18 Radial air gap force waves due to slotting in a 2-pole machine with 24 slots:

a unskewed and b skewed for one slot
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If the slots are skewed for one slot, as in Fig. 6.18b, the amount of force varies
axially along the active part resulting in zero total force for any circumferential
coordinate. The effect of slot skewing on radial force is similar to the effect of skewing
gears—the operation is smoother and quieter than in a machine with unskewed slots.

Radial air gap forces are always positive, i.e., they tend to decrease the air gap
width. Considering mechanically stiff inner structure, radial forces excite me-
chanically the outer structure of the machine which, as a result, begins to oscillate at
various spatial modi [3], as in Fig. 6.19. At each spatial mode, a frequency spec-
trum of vibrations is generated, which act on the machine fundaments and create
electromagnetic noise.

Effects of air gap radial forces can be very strong in machines with thin outer
structures, such as high polarity outer rotor permanent magnet machines, charac-
terized by large diameters and extremely thin yokes.

Fig. 6.19 Vibration modi of the outer cylinder of an electric machine produced by air gap radial
forces

Case Study 6.2: A 690 V, 2.8 MW, 96-pole, 3-phase outer rotor permanent
magnet synchronous generator has 252 slots and a rated speed of 10.2 rpm.

Due to its large outer diameter of 4.8 m and thin yoke (50 mm), the rotor has a
structure known as “beer can.” Rotor magnets are skewed for 1/8 of the stator slot
pitch, following recommendation in [4—6]. During operation at rated speed, tonal
sounds at frequencies of 42.8 and 85.6 Hz were measured, the intensity of which
exceeded 100 dB (Fig. 6.20). In order to operate in accordance with stringent
acoustic emission standards, the machine had to be redesigned and noise level
decreased. By applying proper skewing of 1 stator slot pitch, instead of only 1/8, the
sound level due to cogging torque was suppressed down to 80 dB, as in Fig. 6.20.
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Fig. 6.20 Measured intensity of sound radiated by a 2.8-MW PM wind generator with outer rotor:
original magnet skewing of 1/8 of the stator slot pitch after [4—6] (shaded bars) and for magnet
skewing of 1 stator slot (black bars)

6.7.1 Unbalanced Magnetic Pull Caused by Rotor
Eccentricity

As shown in Chap. 2, the spectrum of air gap flux density in a machine with eccentric
rotor contains besides homopolar flux both even and odd harmonics. Accordingly,
the air gap (attractive) force after Eq. 6.97 created only by the fundamental time
harmonic of current can be written for a machine with eccentric rotor as

2
Fe 4 (x,2,1) { Z B, cos {n—( X=X — BSlei> - mt}} (6.105)
n=0,1.2,.. ax

Considering the dependence of the amplitudes of flux density on the rotor shift
coordinate expressed in Eqs. 2.73-2.74, one can rewrite Eq. 6.104 for a two-pole
machine as

T > T
Fr,Jr (xv <y t) ~ {BO,max oS — X, + E (Bn,const + By, max COS (2 — X TC))
T T

p n=1.2,... P

2
cos {ni <x — X — BskRi> - (Dt:| }
Tp Lax

(6.106)
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Radial force in Eq. 6.106 has a time constant term, the components of which are
spatial functions of the rotor shift coordinate x,, and terms which pulsate with twice
the frequency o, the amplitudes of which are spatial functions of the rotor shift
coordinate x,. The amplitude of resulting radial force in Eq. 6.106 is highest for rotor
shift x, = 0, i.e., at the point of minimum air gap width. Since the air gap attractive
force is a function of rotor shift x,, it is often called unbalanced magnetic pull.

6.7.2 Radial Forces on Conductors in Slots

Current-carrying conductors in slots of electric machines create leakage flux, the
flux lines of which spread tangentially through slots and build radial forces along
with current-carrying conductors. Since conductor currents are periodical functions
of time, radial forces acting on conductors in slots pulsate with twice the frequency
of current. If the conductors are not firmly fixed within slots, the permanently acting
pulsating forces can move conductors relative to each other and to the slot wedges
and slot insulation, which ultimately causes destruction of insulation. In case of
rigid conductors, as in squirrel cage induction machines, the vibrations caused by
radial forces on bars can result in their complete destruction.

Consider now a rectangular slot after Fig. 6.21 with two conductors one above
another. The lower conductor carries current /; and the upper I,. The upper con-
ductor consists of n parallel connected strands, each of which carries current I,/n.

Magnetic field strength H; in the jth strand, j = 1, ..., n is equal to

1 i1
Hy = (11 +1uJT) (6.107)

and the corresponding force on the jth strand:

H, — Holax [ﬂ+ (Lu)z(,-_ 1)] (6.108)

w n n

\/lu/n
I ——
1

Fig. 6.21 Illustrating radial force on a conductor in a slot
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Total force on the upper conductor is equal to the sum of forces acting on its n
strands:

s 1
F, = Mol (1. +1,2 ) (6.109)
w 2n

If the lower conductor consists of m strands, the total force on it is equal to

1polax ,m—1
F|_2 " I - (6.110)
The force on the lower conductor F, acts always toward slot bottom. The
direction of force on the upper conductor F, depends on signs of currents I, and /.
In a 3-phase machine, the currents I, and I, can belong to the same phase (mono
slots), or to different phases (mixed slots). The force on the upper conductor in a
mono slot acts always in the direction of slot bottom; for the force exerted on the
upper conductor in a mixed slot one can write

3

2

w

l 2 1
fult) = PO P2 cos oot {— cos <wt - _n) + —coswt] (6.111)

The extreme values of force after Eq. 6.111 are

Fig. 6.22 Radial forces on conductors in a mixed slot

_ 2+ ﬁ“Olax 2 2— ﬁ“olax I2

Finax 4 W ) min — 4 W

(6.112)

The force F,;, is negative, which means that it acts against the slot wedge, i.e.,
towards the air gap.

Forces acting on upper and lower conductors in a slot during one period of
conductor currents are shown in Fig. 6.22.
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6.8 Forces on Conductors in End Winding

Magnetic field in the end winding zone has all three spatial components, created
both by the stator and by the rotor windings. Currents in conductors in the end
winding zone change their directions as a function of the circumferential coordi-
nate. Total flux density acting on a conductor segment is not only dependent on
stator and rotor currents, but also on their mirror images created by the action of
stator and rotor iron.

Since the medium in the end winding zone is linear, field distribution can be
found by applying Biot—Savart law, as in Fig. 6.23.

The computational procedure starts with evaluation of all 3 spatial components
of magnetic field at a given time instant at points within the conductors of end
winding as a function of all actual currents in the stator and rotor end winding and
of all mirrored currents. In the next step, the three spatial components of forces
acting on conductor segments are found (Fig. 6.24).

Fig. 6.23 Magnetic field
created by current I in
segment dl

Fig. 6.24 Coils in the stator
end winding
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6.9 Torque as a Function of Terminal Quantities

One of the most pronounced properties of energy is that it can be stored.
Independent of the medium in which it is stored and the form in which it is stored,
energy is time invariant. From this point of view, the product u - i - ¢, usually called
electric energy, cannot be considered energy, but work performed by current i and
voltage u during time interval ¢. The dependence of the product u - i - ¢ on time is
the reason why this quantity cannot be stored, i.e., left aside for a while and then
used as required.

Having this in mind, one can analyze the electromechanical energy conversion in
terms of electrical work necessary to change the amount of stored energy in an
electric machine, to perform mechanical work, and to cover losses in it [1]

m

> widt = Fdx+ dWpg (6.113)
j=1

Neglecting i°R losses, one can write

m

> ijdy; = Fdx+ dWi, (6.114)
j=1
where
Wy, " AW
dW,, = Sdv+ Y —EdY, 6.115
Wing Oox ; 0Y; ( )

By substituting Egs. 6.115 in 6.114, one obtains

F= "‘g <Z Zawmg>' (6.116)

The terms in brackets in Eq. 6.116 multiply quotients of state variables d'¥'j/dx.
Since state variables are orthogonal, i.e., independent of each other, one can write
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=0, j=1,2,...m (6.117)

Now, one can express the electromagnetic force F in Eq. 6.116 as

W

F= Ox

(6.118)

Magnetic energy Wy, is accumulated in air gap (Ws), iron core (Wg.), and
leakage paths (W) of an electric machine

Wing = Ws + Wee + Wo (6.119)

When evaluating the electromagnetic force after Eq. 6.118, the stored magnetic
energy has to be partially differentiated w.r.t. the circumferential coordinate x,
which means that all other state variables (fluxes ‘P;) have to be kept constant. The
magnetic energy Wk, stored in iron is dependent only on the flux level in iron. As
long as the flux in iron is kept constant, the accumulated energy Wg. remains
unchanged, no matter how the circumferential coordinate (rotor shift) x changes.
The same is valid for the accumulated energy in leakage paths

Wee o OWo _
ox 7 ox

0 (6.120)

Accordingly, one can state that electromagnetic force is equal to the partial
derivative of accumulated magnetic energy in air gap w.r.t. rotor circumferential
coordinate x

oWs
F=——— 6.121
P (6.121)
Similarly, one can write for the electromagnetic torque
- W (6.122)
oy

With y denoting rotor angle, y = x,/R, with R being the air gap diameter and x, the
rotor shift. Substituting for accumulated magnetic energy in the air gap
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2R1
Lax
Ws = /Hsng, :“‘)Ta/ @2dx (6.123)
\%4 0

where ®; denotes the resulting MMF drop across the air gap, and one can write for
the torque

2Rn
d o gl d )
M= —Ro-Ws =R~ /®5dx (6.124)
0

d,

r

Case Study 6.3: A 138 MVA, 10.75 kV, 12.8 kA, 2-pole, 1000 rpm, cos
¢ = 0.8, single-phase cylindrical rotor synchronous generator has 142 stator and 52
rotor slots. Single-layer stator winding with 2 parallel circuits and one turn per coil
is placed in 48 slots per pole. Rated field current equals to 1330 A. Out of 52 rotor
slots, 40 are wound, each of which carrying 11 conductors. Winding distributions
are shown in Fig. 6.25. Rotor diameter equals 1550 mm and length 5625 mm.

Generator air gap width is 50 mm. Stator and rotor MMF distributions are
presented in Fig. 6.26. Corresponding stator pitch factor is 0.798 and rotor pitch
factor of 0.774. Generator no load curve is shown in Fig. 6.27. At rated point, the
MMF drop across air gap equals to 38 % of the total winding MMF.

(a)

( /ﬁ((ﬁwﬁm

i J JJ

o /

Fig. 6.25 Stator (a) and rotor (b) winding distribution of the generator in Case Study 6.3

G

J
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(a)

1.00 +

0.75 - n n
0.50 - n n

0.25 -

ol I

Slot #

(b)

1.00 - R
0.75 A
0.50 1 - -

0.25

il l

1 26
Slot #

Fig. 6.26 Stator (a) and rotor (b) MMF distributions in p.u. created by the windings in Fig. 6.25
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Fig. 6.27 No load curve

Torque created by the fundamental stator MMF wave

T .
Os1 = Opaxs,1 COS—x sin(or — @)
: : T
P

with ¢ denoting the phase shift between stator voltage and current, and by the
fundamental rotor MMF wave

T
O = Omaxr,1 COS— (X — X;)
Tp

with x, standing for the rotor shift
X, = Rw,t
and o, for the rotor angular speed, can be expressed by using Eq. 6.124 as
2Rn )

Holax d T T
M=-R="— O — t — O nax —(x— dx
5 dn J [ max.s,1 COS tpx sin(wt — @) + .1 COS 5 (x —x)

At the rotor speed of ®, = w/p, the torque can be written as

1 Lax
M = §RP7THOT®WM7S,1@WM,1 [cos @ — cos(p — 2mr)]

and, finally,
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Imax,s,l stw,slmmx,r, 1 W];fw,r

M=p [cos @ — cos(@ — 201)]
ng.gap,pole
where (Eq. 4.28)
R 8
mg,gap,pole = T —
16p Holapr

After inserting machine dimensions, one obtains

2.5 4
MNm
2.0
1.5 4
1.0
0.0 T T T :
J s W s
-0.5 - ms

Fig. 6.28 Torque at the rated point of the single-phase synchronous generator 138 MVA,
10.75 kV, 12.8 kA, 2-pole, 1000 rpm, cos ¢ = 0.8

2
Ring gap pote = %Ho = 6;)5'0.51. S 1792H~"!
and
4y (03512800 V2/2) .24 ~1(;.97298 0351330 110-0.774 o)
or

M =1.34-[0.8 — cos(¢ — 2wt)] [MNm]

At rated point, the torque oscillates with twice the mains frequency around the
average value of 1.34 - 0.8 = 1.072 MNm. The amplitude of torque oscillations
equals to 1.34 MNm, Fig. 6.28.
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6.10 A Method for Direct Measurement
of Electromagnetic Torque in Large
Synchronous Machines

As opposed to the mechanical power, the shaft torque is not a direct function of the
rotor speed. Based upon the fundamental equation for electromagnetic force
F =B - £ - I, one concludes that the torque is determined only by the flux level in a
machine and currents in its windings. Following this conclusion, one can state that
the widely spread method for torque measurement in large electric machines, the
so-called back-to-back test [7], becomes superfluous for synchronous and wound
rotor induction machines. The back-to-back test requires two identical machines
connected electrically and mechanically in such a manner that the total power
consumption is used to cover the losses in the system, although each machine
operates at its rated point. This is possible because one machine is run as a motor
and the other as a generator, as in Fig. 6.29a.

Very often, especially when building a prototype of a large machine, e.g., a PM
generator, only one unit is manufactured. Nevertheless, the torque—angle curve of
such machine can be recorded by means of the connection in Fig. 6.29b.

The rotor of the tested machine is firmly hold by means of a lever on the other
end of which a strain gauge-type force sensor is mounted. Relative position
between the (stator) rotating field and (rotor) flux density (load angle) is set by a
proper combination of (stator) DC. This way, the stator air gap flux density dis-
tribution is fixed in space. The torque is dependent on the amount of all three
(stator) currents, which determine both the amount and position of air gap MMF
and the amount of the field current ir. The machine is force-cooled in order to keep
the windings temperature at a given level.

(a) (b)
_(\ f')_
[ [ Strain
I gauge
Pgen Pmot

Yz

M

Fig. 6.29 Back-to-back connection of two identical electric machines M; and M, (a) and the
torque measurement at standstill of a single machine (b)

n
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Thermal Design of Rotating Field Electric
Machines
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Electromechanical energy conversion in an electric machine is accompanied by
losses, which increase its temperature. In order to secure smooth operation of a
machine, the temperature increase in it has to be kept under certain level, i.e., the
losses have to be taken out from the machine. Therefore, cooling of a machine is an
inevitable component of its design procedure. Not only the winding and lamination
temperatures must stay under allowed level but also inadequate heating at the rated
point means poor machine utilization and, ultimately, a too expensive machine.

Besides its reactances, heating is the dominating factor which limits the rated
power of an electric machine. Substantial increase of rated power is possible only
by applying direct conductor cooling either with gas or fluids (oil and water). An
improvement of the machine’s torque to volume ratio is possible only with a more
efficient machine cooling.
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Rotating electric machines are cooled predominantly by the ambient air, pri-
marily because of its availability and simplicity of air-based cooling systems.
Besides air, hydrogen, water, and oil are used a coolants in electric machines.

7.1 Types of Cooling

Heat can be taken out from an electric machine in numerous ways, depending on
machine size, choice of cooling medium, level of losses, price of the cooling
system, etc. As discussed in Introduction, the larger the machine, the more complex
its cooling system. The most common types of cooling are

Natural cooling: The machine has no fan; the heat is taken from it by means of
free air flow and radiation from its housing. This type of cooling is common for
small and micro-machines.

Self-cooling: The machine has its own fan(s). The amount of cooling gas is
dependent on the rotor speed. It is suitable for constant speed machines up to the
highest power ratings.

External cooling: The machine is cooled by separate fan(s), or by means of
cooling medium other than gas. It is used for machines operating at variable speed,
or high torque density machines.

Small-size machines are usually cooled on their outer surface, whereas medium-
and large-size machines utilize air/gas flowing through its active part.

Open cooling circuit is used in small- and medium-size machines. In an open
cooling system the ambient air directly cools the machine heat exchange surfaces.
The airborne noise caused by large amounts of cooling air blowing through the
machine along with difficulties related to filtering and demoisturizing of the per-
manently fresh air is the main reason why the open cooling circuit is not used in
large machines.

Closed cooling system requires heat exchanger in which the warm gas from the
machine transfers its heat to another cooling medium, typically water. The machine
is totally enclosed; air or hydrogen are used as primary coolers. Cooling gas takes
the heat out from conductors either directly (hollow conductors) or indirectly by
blowing over the conductor insulated outer surfaces.

Closed cooling systems are sometimes combined with liquid cooling (oil or
water). The coolant usually flows through hollow conductors, or cooling pipes built
into the lamination.

Air-cooled machines are characterized by carefully designed cooling circuit in
which the air pressure creates optimally distributed air velocities. The availability of
cooling air on heat exchange surfaces determines thermal performance of the
machine and its overall characteristics. Cooling air paths within the machine are
connected in series and in parallel, and the fan is placed either on the inlet (pressure)
or outlet (suction) portion of the cooling system. Air pressure in a machine with
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suction cooling is lower than the ambient air pressure. In a pressure-based cooling,
the cooling air is pre-heated by losses created by the fan.

Hydrogen-cooled machines are totally enclosed in order to prevent hydrogen
leakage and mixture with air, which could create highly explosive oxyhydrogen
gas. Hydrogen as cooling medium, especially at couple of ata overpressure, has a
significantly higher heat transfer coefficient and a better thermal conductivity than
air.

Cooling gas is set in motion by fan(s). In axial fans, the gas inlet and outlet are
axial, and the pressure increase is relatively low. In radial fans, the gas inlet is axial,
whereas the outlet is radial. Radial fans, especially in combination with a diffusor,
can create a couple of ata pressure difference, necessary for hydrogen cooling.

7.2 Rated Torque and Rated Power

In the previous chapter the dependence of electromagnetic torque on machine
geometry, material properties, and current/fluxes was derived. It was shown that the
electromagnetic torque has components which are either dependent on stator to
rotor angle, or which are constant. The electromagnetic torque was derived from
accumulated magnetic energy, which is only one of various energy forms flowing
between machine electrical and mechanical terminals.

Another important energy form present in electric machines is losses, which are
converted directly into heat. Although losses play a negligible role when deter-
mining machine rated torque, they are crucial when defining the machine rated
power. In conventional electric machines, the energy of losses is significantly
smaller than the energy converted from mechanical to electrical form and vice
versa. Nevertheless, the rated power of a machine is determined only by dissipated
losses, particularly by that portion of total losses which remain in the machine and
increase its temperature. According to international standards, the maximum tem-
perature 3,,,x of machine’s winding may not exceed the amount determined by its
class of insulation. Given temperature of environment 3, one has the window with
the width 9,,.x — 99 to fill with temperature increase A9 after Eq. 1.20.

Coolant flow Electromagnetic Geometry of
rates and and mechanical heat exchange
pressure drops losses surfaces

l

Heat transfer
coefficients
o

\\>Aﬁ

Fig. 7.1 Schematical representation of temperature increase computational procedure
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The amount of temperature increase A3 is defined by electrical, fluid dynamical,
and geometrical quantities, as visualized in Fig. 7.1. The crucial quantities thereby
are the heat transfer coefficients o at machine heat exchange surfaces, as a measure
of cooling efficiency: The higher the value of «, the larger the amount of heat that
can be taken from a heat exchange surface. Heat transfer coefficient a is a function
of the type of coolant (air, hydrogen, water, oil, etc.) and coolant velocity [1].

7.3 Hydraulic Resistances and Fan Curves

Hydraulic properties of cooling ducts and channels in an electric machine can be
dealt in terms of sources and resistances and solved by applying rules known from
electric circuits in the same manner as in the case of magnetic or thermal networks.
The result of such solution procedure is the distribution of coolant velocities in the
machine, which are necessary when calculating the heat transfer coefficients.
Hydraulic resistance Ry, [kg/m4s] of a portion of machine with length ¢ [m],
cross-sectional area S [m?] and hydraulic diameter dj, [m] is defined by means of
pressure drop Ap [Pa] across it and volumetric flow rate Q [m’/s] through it as

A
Ry = 5” (7.1)
where
Ap = d 52 2 5+ ZC’ 2 2 (7.2)

with A denoting the dimensionless friction factor, {; the dimensionless pressure loss
coefficient, and p the coolant density [kg/m’]. Note that the coolant velocity v [m/s]
can be expressed as

(7.3)

V=

Q
S

The friction factor A is a function of the roughness of the heat exchange surface
and can be expressed by means of transcendental equation [2] as

1 2.51 k
— =2 —— 7.4
\/X <Re\/x 372dh> ( )

with Re standing for the Reynolds number and k for the coefficient of roughness
[m]. Since the values of k are far below those typical for hydraulic diameters [3],
one may use instead of Eq. 7.4 the definition [4] for A:
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20318 9
VRe

The pressure loss coefficient {; of the ith component of hydraulic resistance
reflects an increase of pressure drop due to geometry changes or coolant redirection
within the resistance of the length ¢. The values for A and (; for a particular
geometry can be found in [2-7]. Here friction factors and pressure loss coefficients
will be discussed, which are characteristic for electric machines geometry, in par-
ticular for constructions typical for medium- and large-size electric machines, where
cooling plays a more important role than in case of small machines.

7.3.1 Friction Factor for Coolant Expanding in Axial
Direction Through Air Gap

Consider coolant inlet into air gap of a rotating electric machine characterized by
axial component of velocity only. After entering the air gap, the tangential com-
ponent of coolant velocity increases, following distribution along radial direction
sketched in Fig. 7.2.

Radial direction
A

Stator bore

Rotor surface
Uy

R

Direction of rotation
Axial direction
Fig. 7.2 Distribution of tangential and axial velocities in the air gap of a rotating electric machine

[7]. Tangential component of coolant velocity u varies from O on the stator bore to u#; on the rotor
surface
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Fig. 7.3 Friction factor for air gap of a rotating electric machine [7]

Denoting by Re the Reynolds number for axial fluid flow defined as

axS
Re = Y

- (7.6)

where v, stands for mean velocity of axial flow, & for air gap width, and v for
kinematic viscosity of the coolant, as well as by Ro the Reynolds number for
rotating fluid flow, which is defined as

Ro = 12 (7.7)
Ay

where u; stands for peripheral velocity on the rotor surface, one can write for the
friction factor A5 of air gap as
Lo (7 Re g
8 2Re

The dependence of friction factor A; on Reynolds number Re in axial direction
and for rotating Reynolds number Ro as a parameter is shown in Fig. 7.3.

0.38

As = 0.26Re " (7.8)
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7.3.2 Pressure Loss Coefficients for Radial Cooling Ducts

In order to increase the heat exchange surface, lamination in active part of medium-
and large-size electric machines is divided in axial direction into subpackages,
creating radial cooling ducts that way. Typical width (axially) of a lamination
subpackage is about 50 mm and that of a cooling duct is about 10 mm.

(a) (b)
gzl.s[
Press
finger
Gor
Slot

ceof
h
vV g
Slot d E=MRe) 2W:cd
wedge
Pre =0.1
S|Ot\ U g M U

—_— > Vg
Ww

Fig. 7.4 Radial cooling duct with coolant flowing in centrifugal (a) and centripetal (b) direction
[5, 8]. Slot height is denoted by Ay and axial width of radial cooling channel by w4

Coolant can flow through a radial cooling duct either in centrifugal, or in cen-
tripetal direction (Fig. 7.4), each of which is characterized by its own values of
friction factor and pressure loss coefficient [5, 8].
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Fig. 7.5 Pressure loss coefficients for centrifugal direction of coolant flow in Fig. 7.4a and for
various pre-slot heights [8]

Centrifugal flow (Fig. 7.4a): The pressure loss coefficient is a function of
pre-slot height. For the pre-slot height /1, between 5 and 26 mm, the measurements
carried out in [5, 8] have shown linear dependence

_G-¢
C* [21 h

(26 — hps) +Cy (7.9)

with {, denoting the pressure loss coefficient for pre-slot height below 5 mm and ,
the pressure loss coefficient for pre-slot height above 26 mm and Ap in mm. The
dependencies of {, and {, on the ratio between the duct and gap coolant velocities
vq and v, are shown in Fig. 7.5.

Centripetal flow (Fig. 7.4b): The pressure loss coefficients at various segments
of radial cooling duct in tooth and yoke are given in Fig. 7.4 [5, 8].

7.3.3 Pressure Loss Coefficients for End Winding
with Form-wound Coils

Stator end winding acts as a sieve for coolant. As shown in [9], the pressure loss
coefficient in zones 1 and 3 of the end winding in Fig. 7.6 can be expressed as

(&)

In the zone 2 in Fig. 7.6, the loss coefficient can be interpolated as

A
T

=08

(7.10)
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Zone 1

Zone 2

Zone 3

Fig. 7.6 End winding structure from the point of view of coolant distribution

=275 (%) e (7.11)

for 0 £ A/t £0.3, and
= 175¢ 0% (7.12)

for A/t > 0.3.

7.3.4 Fan Curve

Large majority of electric machines are cooled by their own fans; most of them with
one and some with two. A rotating fan creates a pressure increase Ap at a given
volumetric flow rate Q and acts as a source in the machine’s hydraulic network.

P max ¢

Fig. 7.7 Dimensionless fan curve. The interval of ¢ below ¢, is avoided due to danger of stall
and pumping effect [13, 14]
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A fan on the machine shaft takes gas axially and blows it out either axially or
radially. Instead of the fan curve Ap (Q), a dimensionless dependence of the
coefficient of pressure ¥ on the flow coefficient ¢ is sometimes used, where

729.5 Ap
= - 7.13
d2n2 p ( )
and
24.3
= 7.14
20 (7.14)

with # [rpm] denoting the speed of rotation and d [m] the fan diameter. Typical fan
curve is represented in Fig. 7.7.

Besides fan(s), rotating components of an electric machine generate pressure
difference (inherent pressure), which also acts as a source in the machine’s hydraulic
network. The inherent pressure is created by a rotating component as long as the
difference between the inlet and outlet speed to the component is different from zero.

7.4 Coolant Distribution in Electric Machines, Pressure,
and Volumetric Flow Rate in Elements of Its
Hydraulic Network

In the previous sections the nonlinear character of friction factor and pressure loss
coefficient of hydraulic resistances in electric machines was discussed. Both A and £
are dependent on Reynolds number Re, which on the other hand is a function of the
volumetric flow rate Q. Therefore, one can rewrite Eq. 7.2 as

Ap =f(Q) (7.15)

Since the pressure drop Ap is analogous to electrical voltage, and the volumetric
flow rate Q to electrical current, one can interpret Eq. 7.15 as an analogue to a
nonlinear electrical resistance [10]. As indicated in Table 1.4, one can formulate
Kirchhoft’s nodal rule as

Y 0=0 (7.16)

and Kirchhoff’s mesh rule for a hydraulic network as

> Ap=0 (7.17)
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Fig. 7.8 Simplified hydraulic network of an electric machine including fan along with hydraulic
resistance of stator radial cooling channels R, rotor radial cooling channels R,,, stator yoke back
R, rotor yoke back R, and air gap section R,,, (a), and its equivalent with only one hydraulic
resistance R, (b)

Rm = Raap + Rs Il R,

Rr =R + Rar Rs = Ris + Ras

Rs I R

A Pfan

Rgap

Qfan Q

Fig. 7.9 Graphical solution of the simplified hydraulic network of an electric machine in Fig. 7.8.
The operating point P of the fan has coordinates (Qfan, APfan)

Cooling gas in the majority of electric machines is set in motion by only one fan,
which extremely simplifies the solution procedure of their hydraulic circuits.
Machine hydraulic resistances, as defined in Sect 7.2, are connected in series or in
parallel to each other. The hydraulic resistance network can be reduced to a single
resulting hydraulic resistance of the machine R,;, connected to the fan, as illustrated
in Fig. 7.8, in which a simple hydraulic network of an electric machine is converted
into a single element connected in parallel/series with the fan.

Graphical solution of the hydraulic network in Fig. 7.8 is represented in Fig. 7.9.
One recognizes in this figure the structure of the machine equivalent hydraulic
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resistance R, and steps how it is created from hydraulic resistances of the segments
of the machine.

Case Study 7.1: The two-pole air-cooled generator as described in [11] has the
following data: § = 35.4 MVA, U = 10.5 kV, 50 Hz, rated field current 905 A,
operating pressure 1.012 bar, gas inlet temperature 40 °C, 3000 rpm, fan outer
diameter 990 mm, fan inner diameter 750 mm, fan stagger angle 29°, rotor diam-
eter 810 mm, active part length 2100 mm, air gap width 37.5 mm, stator yoke outer
diameter 1880 mm, 66 stator slots, stator slot height 229 mm, stator slot width
19.4 mm, rotor conductor gas cross-sectional area 105.7 mm?, 94 field winding
turns per rotor pole, shaft diameter below the end bell 400 mm, stator end winding
maximum diameter 1600 mm, 49 radial cooling channels, width of a cooling
channel 10 mm, and fan curve as shown in Fig. 7.10.

The machine hydraulic network is shown in Fig. 7.11. The elements of hydraulic
network in Fig. 7.11 represent the portions of the machine as follows:

— TI1-T3: space between stator yoke and housing;

— RCCI1-RCC3: radial cooling channels;

— SEW: stator end winding zone;

— PP: channel between press plate and stator lamination;
— RAX: space between fan and air gap;

— REW: rotor end winding;

— GAPI-GAP3: air gap segments in axial direction; and
— RC: rotor hollow conductors.

5000
Pa

4000

3000

2000

1000

Fig. 7.10 Fan curve
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Fig. 7.11 Machine hydraulic network

The solution of the machine hydraulic network [15]shown in Fig. 7.11 is a set of
pairs of volumetric flow rates Q and pressure drops Ap for all resistances. Knowing
the cross-sectional areas of all elements, one can find corresponding gas velocities
and heat transfer coefficients o [1], Table 7.1.

Table 7.1 Volumetric flow — Element | [m¥%s] | Ap [Pa]  [v[mss] [ o [Wim® K]
rates Q [m/s], pressure drops ey 2.84 27.04 | 5.66 30.2
Ap [Pa], coolant velocities
v [m/s] and heat transfer PP 0.91 2776 | 7.09 359
coefficients a [W/m2 K] for RCCl1 4.05 1165.39 38.97 135.8
hydraulic resistances in RCC2 1.81 986.07 | 34.87 124.5
Fig. 7.11 RCC3 3.06 93339 [33.62 | 121
GAP1 7.65 311.03 | 61.03 192.7
GAP2 3.60 179.57 | 28.74 107.1
GAP3 1.79 5268 | 14.29 62.1
REW 1.08 3573.19 | 30.33 111.7
RC 1.26 2279.88 | 31.81 115.9

Heat transfer coefficients o [W/m2 K] for air are evaluated as
o=78 "7 (7.18)

with v in m/s [1].
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7.5 Finite Difference Solution of Temperature Distribution
in Electric Machines—Thermal Node Potential
Equations

Temperature distribution at steady state in a space with heat sources is described by
Poisson’s equation [12].

&9 82 #
with A%, A%, and A\* denoting thermal conductivities in x-, y-, and z-direction,
respectively, and ¢ the heat density in W/m®. If Eq. (7.19) is discretized in the
manner shown in Sect. 3.1, i.e., by substituting for

009 Mo N30

—=2—— (3 =) +2—(93 -9 7.20
ox2 dl(dl-i-dq)( ! 0) d%(d1+d3)( 3 0) ( )

xyz
A 325

2
Al B

5 % 1

0O)

ds / ds
A il it

ds d4

Fig. 7.12 Rectangular grid on which the Poisson’s equation is discretized

99 M0 Ao
Ne—a=2——(3 -39 2————— (94— 9§ 7.21
o “d (d2+d4)( 2= %)+ da (d2+d4)( += %) (7.21)
629 7\450 >\6O
e =2 (35— %) +2— (3 — 9 7.22
07~ ads+de) N T2 Gy Yo 72
where
Mo = Mps + Mg + Mas + Mg (7.23)

4
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— 7\‘)1]25 + 7\’126 + 7%25 + 7%26

Ao : (7.24)

hag = W35 + Nage + Maas + Mase (7.25)
4

ho = Mas + Mae + Mas + Mg (7.26)
1 .

hso = Mas + Mas + 55 + Mias (7.27)
1 .

heo = s+ Mas + Mze + M (7.28)

4

one can write for the rectangular three-dimensional grid shown in Fig. 7.12

1 1

1 1 1 1 1 1
(80—81)(—+ + + >+(90—92)(—+++—+—)+
R)I(ZS R)1(45 R’I46 RJIC26 RXZS R)126 R§26 R§25

1 1 1 1 1 1 1 1
(90—93)( +—+ =+ )+(80—94)(++ + 5+ = >+
R);ZS R§45 R§46 R§26 R}145 R{46 R§46 R§45

1 1 1 1 1 1 1 1
Bo =) -t e TR +z—)+9—9 (z_+z +z—+z>:
( 0 5)<R125 Rl45 R345 R325 ( 0 6) R126 Rl46 R346 R326
= qi25di1dards + qia6d1drds + q325d3dads + qedadads +
+ q345d3dads + q3aedidads + qrasdidads + qraedidads

(7.29)
where
1 d;
R)-r-yz = Tz —l 730
Introducing substitutions
1 1 1 1
Gil=5—+ 55—+ 55—+ (7.31)
Rlys  Rlus Rl Riy
1 1 1 1
G2:—+—+V—+—y (732)
Ris Rl  Ryg Rl
1 1 1 1
Gs + (7.33)

= +—+
R)3(25 R§45 R§46 R§26
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1 1 1 1

Gi=—+ =+ o + = (7.34)
R R Ruys  Rugs
1 1 1 1
Gs= o+ o+ o+ o (7.35)
Riys  Ris  Rys Ry
1 1 1 1
Go=— bt —— + —— (7.36)
Rl R Ry R
along with
Py = qi25d1dads + qiaedidads + g325d3dads 4 qasdsdads + (737)
+ q345dzdads + qaaedadads + qrasdidads + qraedidads
one can rewrite the discretized Poisson’s Eq. 7.29 as
6 6
%) Gi—> %G =P (7.38)
-1 p

which is nothing but a regular node potential equation for the node 0! In other
words, the discretized Poisson’s equation for heat flow and temperature distribution
(7.19) can be interpreted in terms of electric circuits as a node potential equation,
where electrical potential is analogous to the temperature, and electric current to the
heat. In Eq. 7.29 both conduction and convection resistances, as introduced in
Table 1.3, can appear. Corresponding boundary conditions have the meaning of
fixed temperatures of particular nodes.

Case Study 7.2: The PM generator introduced in the Case Study 1.1 has 288
stator slots with dimensions 23 X 116 mm, mechanical air gap width of 6 mm, and
stator yoke height of 46 mm. The stator is indirectly cooled with air blown through
12 radial cooling channels, each of which is 8 mm wide, from air gap toward the
back iron.

Machine geometry is discretized, and Eq. 7.38 is applied to each node. The
position of nodes in the machine’s 3D thermal grid in (r, @) and (7, z) planes is
shown in Fig. 7.13.

Each radial cooling channel is blown with 0.5 m® air per second. The resulting
temperature increases at selected points of the grid are shown in Fig. 7.14.
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Fig. 7.13 Rectangular grid in (r, ¢) and (r, z) planes with points A, G, and L at which temperature
increases are shown in Fig. 7.14
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Fig. 7.14 Temperature increase [K] distribution at points A- G, and L in Fig. 7.13 along the
machine length, starting at the beginning of the first lamination subpackage and ending at the axial
center of the machine

7.6 Thermal Networks of Electric Machines and Methods
for Their Solution

In the previous chapter the Poisson’s equation was used to derive the node potential
equations of the general thermal network, in which the temperatures are analogous
to electric potentials, heat to electric currents, and thermal resistances to electrical



394 7 Thermal Design of Rotating Field Electric Machines

resistances. It was emphasized that both types of thermal resistance introduced in
Table 1.3, i.e., the resistance due to convection and conduction, can appear in the
thermal network.

The resistance due to convection is related to the heat transfer from a solid body
to fluid or gaseous medium. The value of convection resistance is determined by the
heat transfer coefficient a, which is a measure of the amount of heat that warms up
the fluid or gaseous medium.

Warming-up of the cooling medium can be taken into account by means of
Eq. 1.20. Introducing the inverse of the heat storage capacity, the coolant heat
resistance Ry, [K/W], defined as

1

Ry =——=
ch va

(7.39)

one can write for the temperature drop A9 across an element representing cooling
medium as:

Fig. 7.15 Illustrating the definition of heat transfer resistance Ry,

AS =P Ry (7.40)

with P denoting the amount of losses which increase the cooling medium tem-
perature, such as friction.

Alternatively to the convection resistance R., introduced in Table 1.3, the
temperature drop across a heat exchange surface and cooling medium can be
evaluated by means of the thermal conductivity of the heat exchange surface and
heat storage capacity of the cooling medium [12]. This approach is illustrated in
Fig. 7.15 by the example of channel with cooling medium taking heat from solid
surfaces with thermal conductivities A, and A,.

Temperature difference AS across the heat transfer resistance Ry, in Fig. 7.15 is
defined as


http://dx.doi.org/10.1007/978-3-319-39081-9_1
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http://dx.doi.org/10.1007/978-3-319-39081-9_1

7.6 Thermal Networks of Electric Machines and Methods for Their Solution 395

1 "~ 9. — % .
Ay = . : + . 7.41
o 2CpV<Z Rcdr,i Z > ( )

i=1 = Reay

The value of heat transfer resistance Ry, is dependent on temperatures of adjacent
nodes. Therefore, Ry, is nonlinear and accordingly denoted shaded in Fig. 7.15.

Case Study 7.3: The tooth wound PM surface-mounted generator introduced in
the Case Study 2.2 has 72 stator slots with dimensions 70 X 150 mm in which two
layer coils are placed, each of which has 8 X 26 conductors. Stator active part is
indirectly cooled with water flowing through pipes placed on the stator back iron, as
in Fig. 7.16.
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Fig. 7.16 Tooth wound machine geometry (above) and temperature rise distribution (below)
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Temperature rise distribution shown in Fig. 7.16 was evaluated for the stator
current density of 1.95 A/mm? by using the thermal resistances described in this
section. A node of the thermal network is placed in every conductor in Fig. 7.16, as
well as along the tooth centerline and in yoke segment. The nodes are connected
with each other by means of thermal resistances and fed by generated losses.
PR losses in each element are updated in each computational step by considering
the thermal coefficient of specific resistance.

As one can see in Fig. 7.16, the highest temperature rise takes place in the
outermost conductor close to the air gap, which is farthest from the tube with
cooling water. One should keep in mind that the analyzed generator rotates at a very
slow speed of 24 rpm, at which there exists practically no cooling by means of
blowing air. On the other hand, stator iron losses are extremely low due to a low
frequency of 24 - 35/60 = 14 Hz. The overwhelming majority of losses are dissi-
pated in stator winding, and the applied cooling concept is obviously inefficient,
because the heat creates too high temperature gradients on its way from coils to
water pipes.

Case Study 7.4: A 62.9 MVA, 24-pole hydro generator with 3400 mm stator
bore, 120 stator slots, 142 X 35 mm stator slot dimensions, 1860 mm length has
directly water cooled stator winding and directly water cooled stator yoke by means
of 80 cooling tubes with inner diameter 20 mm.

Circular holes for cooling tubes require special handling in a cylindrical or
rectangular grid. Conduction resistance of iron lamination around a circular hole is
usually evaluated as a sum of n resistances of rectangular elements with variable
widths, as in Fig. 7.17.

Stator current density at rated operating point is 6.2 A/mm?, average iron core
loss density in stator teeth equals to 31.2 kW/m>, and 28 kW/m® in stator yoke.
Cooling water velocity is 0.76 m/s, and inlet temperature is 35 °C. Average air
temperature in the air gap equals to 45 °C.
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Fig. 7.17 Refined elements 1 — n representing thermal conduction resistance around a circular
cooling hole
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Fig. 7.18 Two dimensional cylindrical grid (r radial coordinate; ¢ tangential coordinate) in a stator
segment of directly water cooled stator of analyzed 62.9 MVA hydro generator (above) and
temperature distribution over grid points for given current and loss densities (below)
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As one can see in Fig. 7.18, owing to efficient water cooling of stator conductors
and yoke, temperatures at rated point remain far below critical values.

Case Study 7.5: Stator bars of a 688 MVA, two-pole turbogenerator are directly
cooled by water flowing at 1.5 m/s through 6 hollow conductors imbedded in 54
strands within each bar, as in Fig. 7.19. Hole dimensions of a hollow conductor are
10.8 X 2 mm, and strand dimensions are 13 X 1.8 mm. Cooling water inlet tem-
perature is 45 °C, and rated current density equals to 6.8 A/mm?. Total I°R losses in
a bar at rated point amount to 36.4 kW.

1 5 15 25 30

Qwi @
5
Fig. 7.19 “Green” bar (no bar insulation yet) with a total of 60 strands. Six strands are hollow and

31 3
carry cooling water. Strand numbers are referred to abscissa in the following 2 figures

/ ,mz% ;

:/%/%/% R

45 55 60

Temperature increase distribution at rated point with properly functioning
cooling is shown in Fig. 7.20a for strands 1-30 and in Fig. 7.20b for strands 31-60.
The lowest temperature increase points at a given axial coordinate z are allocated in
hollow conductors and the highest in the strands in the middle between two hollow
conductors, at the end of conductors on cooling water outlet (here about 24 K).

If one hollow conductor is blocked, the temperatures of strands around it
increase due to worsened cooling. Assume that the hollow conductor denoted by
“45” in Fig. 7.19 is blocked at the beginning of the bar, as in Fig. 7.21. Besides
immense temperature increase of about 60 % in the blocked hollow conductor
(from about 23 K in properly functioning operation to about 37 K in case of
blocked conductor), strands in its vicinity are also exposed to higher temperatures.
Considering that at the given machine size a bar is typically about 10 m long, an
uneven temperature distribution within it could result in relative motion between the
strands and possible insulation damage. Therefore, if a hollow conductor is
blocked, the machine power must be reduced. Ultimately, the machine must be
taken of the mains and the bar must be repaired.
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Fig. 7.20 Temperature increase distribution in strands 1-30 (a) and 31-60 (b) at properly
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Fig. 7.21 Temperature increase distribution in strands 1-30 (a) and 31-60 (b) at improperly
functioning cooling
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Case Study 7.6: Rotor conductors of a 125 MVA, two-pole turbogenerator are
directly cooled with air, Fig. 7.22. Cooling air inlet temperature is 40 °C, and rated
current density equals to 6.2 A/mm”. Total rotor I°R losses at rated field current of
1526 A amount to 210.5 kW. Cooling air inlet is on both driving end (DE) and
non-driving end (NDE), and outlet in the middle of the machine (axially). Total
rotor conductor length is 3938 mm.

R

10

1

Fig. 7.22 Field winding conductors in a rotor slot. Conductor numbers are referred to abscissa in
the following 2 figures
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Fig. 7.23 Temperature increase distribution in rotor conductors at rated point and properly
functioning cooling
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Fig. 7.24 Temperature increase distribution in rotor conductors at rated point and blocked cooling

Temperature increase distribution at properly functioning cooling and at rated
field current is shown in Fig. 7.23. If 60 % of the lowermost conductors 8, 9, and 10
on machine’s NDE, and 40 % of the conductor 7 are blocked, the temperature
increase distribution changes to the one shown in Fig. 7.24. The maximum tem-
perature increase is far above the limit given by the class of insulation, and the
machine cannot operate safely at the given load any more.

7.7 Transient Heating of a Hollow Conductor

Highly utilized electric machines are characterized by double-digit current density
values of A/mm?, which create IR losses that can be taken out of conductor only by
directly cooling them with gas, oil, or water. The combination of parameters
determining thermal time constant of a directly cooled conductor is such as to speed
up thermal transients. Therefore, not only stationary parameters of the cooling
system discussed previously in this chapter are decisive for thermal design of
directly cooled conductors, but also their heat storage capability.

Consider a segment of a directly cooled conductor of the length dx in which
volume losses ¢ = P/V = T p [W/m®] are dissipated as shown in Fig. 7.25.
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Scd

S
. ./VCC

HZ

Fig. 7.25 A segment of a directly cooled conductor: S.q conductor cross-sectional area; Sc.
cooling channel cross-sectional area; c.. cooling channel circumference

Denoting by cc4 the specific heat of the conductor material [Ws/kg K], by cc the
specific heat of the coolant [Ws/kg K], by pcq the mass density of the conductor
[kg/m3], and by pc the mass density of the coolant [kg/m3], one can write for the
differential amount of losses dW;, generated in the conductor element with length dx:

dw, = q Scd dx dt (742)

A portion dWg ¢4 of generated losses remains accumulated in the conductor, thus
increasing its temperature 9¢q:

09
dWsca = ccd Sca Peg WCddx dt (7.43)

and the rest dW, is transferred to the cooling medium
dw, = (SCd — 8(:)0((: ccedx dt (744)

with oc denoting the heat transfer coefficient of the coolant. Based upon the energy
balance equation

dWp = dWs cq +dW, (7.45)

one can combine Eqs. 7.42-7.44 into a single partial differential equation

09
cca Scd PchCd + (8ca — 9c)oc ccc = g Sca (7.46)

At steady state, 99¢q/0t = 0 and

(SCd,t—mo - 8C,t—>oo) = = ASCC (747)
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with AScc denoting the temperature drop across the heat transfer surface at steady
state.
The differential of energy dWs ¢ accumulated by the coolant is equal to

09
dWsc = cc Sc pCTICdx dr (7.48)

and the difference between delivered and dissipated energy differentials in the
coolant

99¢ 4y ar (7.49)

dWaies = cc pc See v I
X

with v denoting the coolant velocity [m/s].
The energy balance partial differential equation for the coolant is now

a9 09
7(: +CC Pc Scc <

o 2 (8ca — 8c)oc ccc =0 (7.50)

cc pC Scc 1%

The solution of the system of partial differential Eqs. 7.46 and 7.50 are the
temperature increase distributions for the conductor, 9¢4(f, x), and for the coolant,
Sc¢ (¢, x). The corresponding initial condition can be expressed as

SCd(O,x) =0 (751)
and boundary condition as
9c(1,0) =0 (7.52)

Substituting in Eq. 1.50 for the conductor current 7 = 0, one obtains the differ-
ential thermal time constant of the conductor Ty cq, Which is defined as

S
€cd Ocd Ped (7.53)
Q¢ Ccc

Tth,cd =

Analogously one can define the differential thermal time constant of the coolant
Tth,C as

Tth,C = (754)

Division of Eq. 7.47 by g Scq and Eq. 7.50 by acccc results in the system of
partial differential equations for a directly cooled conductor

Tihed 0%cd Sca — ¢ _
A19CC ot A'&CC

1 (7.55)
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99 9% Sca—9c

v W W Toe 0 (756)

Solution of the system of partial differential Eqs. 7.55-7.56 can be expressed by
means of modified Bessel function I as:

X t

Tth,C Tth,Cd

Sc(x, 1) = / / e_“e_él()(\/M) dn d& (7.57)
o0

t

Tth,Cd
ca(x, 1) = c(x, 1) +e* / e "Iy <\/4n x) dn (7.58)
0

Solution of the system 7.55-7.56 is shown qualitatively in Fig. 7.26.

A (a) A (b)
B [K] B [K]

t— o x = const

Ve

Veg Alcc
Acc

Ve

V¢

> >
X t

Fig. 7.26 Qualitative representation of the solution of system 7.55-7.56 in spatial (a) and time
(b) domain

Case Study 7.5: Stator bars of a 688 MVA, two-pole turbogenerator are built of
60 strands and 6 water-cooled hollow conductors. Cross-sectional area of copper
strands is 1386 mm?® and that of a stainless steel hollow conductors is 178 mm?.
Stator current density of 6.8 A/mm?” at rated point creates 19.5 kW IR losses in
each bar. Bar length is 9.48 m, and hole circumference of a hollow conductor
equals to 25.6 mm. Cooling water has a velocity of 1.5 m/s, at which the heat

transfer coefficient reaches the value of 8961 W/m? K.
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The coefficients of partial differential Eqs. 7.55 and 7.56 are as follows:

19500 W 0.001386 m?

S .
ASce — aq o _9.48m 0.001386m? 6 _ sk
¢ e 8961 ——-0.0256 m
m°K
2
2544 WS 0.001386m” o kg
Tth_CCdSCd Pca _ kg K 6 m3—347s
th, —_— —_— — .
| oc cce 8961 W 0.0256 m
W k
4187 ——0.0000216 m* 1000 —
_Ccscpc_ kgK 11'1_0342
TihC = = W =u s
de cec 8961 —— - 0.0256 m
m°K

At time instant ¢ = 0, the generator is loaded with rated current. Both bar and
water temperatures increase to their steady-state values within 300—400 s. Such
short thermal transients are a consequence of extremely large heat transfer coeffi-
cient. Steady-state temperature increase in a conductor at the end of the bar equals
29.5 K and water outlet temperature 28 K.

Graphical representation of solutions is given in Figs. 7.27, 7.28, 7.29, and 7.30.

Fig. 7.27 Temperature 0
increase within a conductor 2
Length [m] 4
5]
120
K
10
(A 0
0 200 400
time [s]
Fig. 7.28 Temperature 400
increase within a ' time [s] —
conductor (same as in ;
Fig. 7.27, but with rotated o/
abscissa and ordinate)
120
K
10
0 2 4 6 8

Length [m]
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Fig. 7.29 Temperature increase of cooling water in a hollow conductor
1400
200 time [s]
0
20
K {
10
0! — : .
0 2 4 6 8
Length [m]

Fig. 7.30 Temperature increase of cooling water in a hollow conductor (same as in Fig. 7.29, but
with rotated abscissa and ordinate)

Case Study 7.6: Rotor conductors of a 688 MVA, two-pole turbogenerator are
directly cooled with hydrogen at 5 ata. Cross-sectional area of a conductor is
405 mm? and that of a cooling hole is 245 mm? Rotor current density of
14.7 A/mm? at rated point creates loss density of 5.4 MW/m? in each bar. The rotor
is cooled with two fans, one on each side. Therefore, the rotor conductor length is
5.7/2 = 2.85 m, 5.7 m being the rotor active length. The conductor hole circum-
ference equals to 95 mm. Hydrogen in hollow conductors has a velocity of 59 m/s,
at which the heat transfer coefficient equals to 1188 W/m?* K.

The coefficients of partial differential Eqs. 7.55 and 7.56 are as follows:

_ qSca 5400000%0.000405 m?

AScc = W =19.4K
dc Ccc 1188 K" 0.095m
Ws 2 kg
384.4 0.000405 m~8960 -5
S 3
Tth,cd = ¢cd Ocd Ped _ kg K m_ 12.36s

Oc ccc 1188% -0.095m



7 Thermal Design of Rotating Field Electric Machines
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3/ ==
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/ 120
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Fig. 7.31 Temperature increase within a conductor

K
14400 WS _0.000245m? - 6 - 0.0899 ~&
- kg K M 0.0169s

1188% -0.095m

Graphical representation of solutions is given in Figs. 7.31, 7.32, 7.33, and 7.34.

400/
time [s] 200,
80
&0
‘40 K
|20

0

1 2 3

Length [m]
Fig. 7.32 Temperature increase within a conductor (same as
Fig. 7.31, but with rotated abscissa and ordinate)

O.
1.
Length [m] 5
160

;. 140 K
20

! . . 40

0 200 400
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Fig. 7.33 Temperature increase of hydrogen in a hollow conductor

in
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In the middle of the rotor, the steady-state temperature increase in a conductor

equals 91 K and hydrogen temperature increase equals 72 K.

-:400

o0g time [s]
] 0
60
K 40
20
0 1 2 3
Length [m]

Fig. 7.34 Temperature increase of hydrogen in a hollow conductor (same as in Fig. 7.33, but with
rotated abscissa and ordinate)
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Chapter 8
General Principles of AC Machine Design
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Key aspects of electromagnetic design of induction and synchronous machines are
discussed starting from equivalent circuit and/or voltage diagram. It is shown how
the design criteria, such as short-circuit current, torque overload capability, e.t.c.
influence the selection of parameters of an induction machine. The role of syn-
chronous reactance and short-circuit ratio is discussed, along with the influence of
air gap geometry of a synchronous machine to its transient parameters.

8.1 Introduction

To design an electric machine means to find an economically optimal solution
which satisfies customer specifications and relevant standards, and which is man-
ufacturable with given production facilities and materials. Since in the process of
design several independent criteria have to be fulfilled, many of them being
opposite to each other, the designer’s challenge is to consider all of them in a proper
weight and implement simplest and most efficient solutions. Obviously, there exists
no best machine which would satisfy given specification, because machine design
procedure is not only the number crunching procedure per se, but also a creative
activity with attributes of applied arts and industrial design. The designer is free to
select the optimal solution, which he reaches by using models and tools in which he
has to have absolute confidence. This is especially important in design from scratch,
when the limits of existing machine models are shifted and a question is often
posed, how reliable is the machine design model. Even if the machine manufacturer
has developed his own software for the purpose of machine design, it is hard to
predict how accurate it would be when applied on a virgin soil. Very often,
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however, the machine manufacturer does not posses such an extensive computa-
tional tool. In such cases, a commercial finite element software package turns out to
be too a large risk factor, because its vendor would not allow designer to access the
source code in order to estimate the software performance in critical cases. Even
worse, vendors tend to bind machine designers offering them to design the machine
by themselves, however, disclaiming any responsibility for results of their design.
The situation becomes precarious when a three-dimensional problem has to be
solved, such as eddy current losses in solid components in the end winding zone or
in stator wedges on the outer diameter of lamination package. Here methods and
procedures for generating a functioning mesh and obtaining reliable results still
have an enormous optimization potential.

National and international standards specify, among others, rated and test volt-
ages, current and torque overloads, protection types, classes of insulation, wire
shapes, shaft heights, power factor and efficiency intervals, etc. In case of large
machines, e.g., turbo- and hydrogenerators, the specifications from standards are
usually extended by conditions requested by the customer.

Since every machine manufacturer has his own design philosophy based on specific
experience and production facilities, in this chapter only the common principles of
machine design will be discussed. As a result, no recipes, but general concepts of sizing
AC machines from scratch are developed in the following two sections [8, 9, 10].

8.2 Sizing Equations of an Induction Machine

In order do design an induction machine for a given rated voltage U, and rated
frequency f;, the following data have to be specified:

— Rated mechanical power P, (continuous), or its equivalent for intermittent
operation;

— Synchronous speed ng;

— Rotor type (single/ double cage, slip rings) along with the ratio between the
starting and the rated torque M/M,;

— Ratio between the starting and the rated current I/I;

— Torque overload capability M ,.x/M,;

— Type of construction and mounting arrangements (horizontal or vertical shaft,
bearing type, flange, feet, etc.);

— Degree of protection provided by enclosure;

— Cooling method

Furthermore, very often certain machine parameters have to be reached, such as
rated and starting torque, starting (short circuit) current, rated slip, efficiency and
power factor at partial load, etc.

The design of an induction machine for the fundamental spatial harmonic is
based on its per-phase equivalent circuit, Fig. 8.1. Real and imaginary components
of impedance in Fig. 8.1 are
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RQ{Z} — R1 + RFeXI%lain (R/Zz + SRIZRFe + SZch)
2SR,2RF3Xr2nain + RIZZ (Rl%e + Xr2nain) + 5? [sznainxézc + R127£ (Xmain + Xéc)z]
(8.1)
Im{Z} = X6+ ReeXvain [R5+ 5X36 (Ximain + X35 |
= c

2SR,2RF3X|%1ain + R,22 (Rlz:c + sznain) + s2 |:X2

main

Xézc + Rlz:c (Xmain + X£6)2:|
(8.2)

Usually, iron core losses are calculated separately, because of their negligible
influence on power distribution in Fig. 8.1. This is equivalent to connecting the
equivalent iron core resistance R, in parallel with the terminal voltage U, instead
of in parallel with Uj;, as shown in Fig. 8.1. The error introduced that way is low,
knowing that the ratio between induced and applied voltage in motor mode equals
about 0.95 for machines with a number of pole pairs p < 7 and 0.98 — 0.004p for
p > 7. Accordingly, by setting Rg. — ©0 in Eqgs. 8.1 and 8.2, one obtains

. XZ . sR.

Re{Z} =R, + main’ (8.3)
RE -+ 52 (Xonin + X3,
and
(e} O

Fig. 8.1 Per-phase equivalent circuit of an induction machine

m{Z} = X0+ Xinain |[RZ + X5 (Xmain + X35 | (8.4)
=Xis .

R/22 +52 (Xmain + Xéc)z

Introducing factors ¢, and o,, defined as
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Xig X}
=219 2004 ; o0,=-29~004 (8.5)

main main

O]

one can simplify expressions for impedance and write them as
Ry
R = RC{Z} = Rl —+ " 3 § (86)
(i) + (1 +02)

(1 + GZ)Xmain

X = Im{Z} = (1 + Gl)Xmain - R \2
() +0+0)?

(8.7)

At short circuit (s = 1) the components of machine impedance are equal to

R/
Rsc = Ri+ —— 2 - (8.8)
(Xmiin) + (1 + 62)
I+o Xmain
XSC = (1 =+ Gl)Xmain - - ( 5 2) 5 (89)
(%main) + (1 + 02)
with typical values of
R, R, Rsc
—~02;, —==~02;, —=~04 8.10
Xsc Xsc Xsc ( )
Phase current Ip, can now be expressed by using Eqgs. 8.6 and 8.7 as
Ui
=R (810
and the short-circuit current Igc as
U
V Rsc +Xsc
or, in p.u.
I U 1 1 1
isc =~ = : = (8.13)
Ipn Xsclraed R. XsC R
I+ 3 I+ 3
SC SC

Air gap torque M; can be written as
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Ry
m
M; :Q—‘If — (8.14)
1 (Slxrzm) -|-(1—|—52)2

or, after substituting for the stator current I; = Uy/Z:

B mlUf 1

Ms =

T, 1( R )2
4+
Xmain+X16

2
+ AR 1+ 02 + Xio + X, (1+01))*}

2R +Rl2(1+c)2
s : R,

(8.15)

with Q; denoting mechanical synchronous speed created by stator MMF. Maximum
(pullout) torque M, is equal to

m U3 1
Q

ME,m =

2
Ri+(1 +01)2\/R%(1 +62)" + [Xio + Xjo(1+01)] % [1+ (ﬁ)

(8.16)

and it is created at pullout slip s,, equal to

R’ R 2
S = 2 2(1+61)\/1+(ﬁ)
\/R%(1+02)2+ [Xlo- +Xéc(1+01)} main lo

(8.17)
After simplifying, one can write
m U? 1
Ms,, = 8.18
5, 20 Xsc R, R, 2 ( )
By 1+ ()
as well as

R ! (8.19)

Sm = 5 .

Xsc
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Now one can express the p.u. pullout torque m,, as

M 1 1—s 1 1
m, = d,m _ rated _— (820)
Mraea  2X5C Mrated €08 Prated R R 2]+ =
ESEE S (_1) Praea
XSC XSC
as well as the p.u. starting torque mgc
N\ 2
2 1+( L R,Z)
M I Srated X3 1
mg = -— = ¢, (SC ) Statedh ——— 220 (8.21)
sc
Mitea Tiated

Lt (k)T 1 m
26
where the ratio Py,,/Pyeq varies between 0.75 and 1.5 % forp = 1, 0.45 and 0.9 %
for p =2, and 0.3 and 0.6 % for p = 3 or 4, all for the rated power P ,.q between
0.5 and 50 kW. Factor ¢, in Eq. 8.21 reflects various levels of saturation at short
circuit and at rated point, whereas k stands for increase of rotor resistance due to
skin effect.
The p.u. magnetizing current i, can be expressed as

L U 1
i, = = 8.22
g Irated Xmain Irated ( )
with
V2
U,' = OJBllaXTpWI_thWI ? (823)
P Ay
Loted = ———— 8.24
rated mlwl‘p}fwl \/E ( )
and

my WoDlox 5
Py kspzwlﬁp wl

(8.25)

Xinain = O®

and ks standing for increase of air gap width due to slotting and saturation in iron.
Substituting Eqgs. 8.23-8.25 in Eq. 8.22, one obtains

_ n B 6 kg
“OAI T

Iy (8.26)

Keeping machine dimensions constant, the p.u. magnetizing current changes
proportionally to the ratio Bj/A,. Keeping electromagnetic loading and level of
saturation constant, the p.u. magnetizing current changes proportionally to the ratio
of &/,

P



8.2 Sizing Equations of an Induction Machine 417

One of the basic parameters characterizing an AC machine is the ratio A between
its active length ¢ and pole pitch 1,

A= — (8.27)

T

When starting new design from scratch [9, 10], the ratio A helps one define
machine active volume based upon the apparent power S; crossing air gap

Ui
Si =mq - Ui . Il - 7Srated (828)
U,

and synchronous speed n

— (8.29)
p

Substituting for the induced voltage U; in Eq. 8.2

2
Ui = 210 - fiw, o fol —=11,B1 = 2V 2fiw, p fu1 11, B (8.30)
w2

as well as for the phase current I,

PTp

I =A ——— (8.31)
\/EmIWwal
one obtains for the apparent power crossing air gap
2 Ui
Si = Zflp’f lA]B] = 7Srated (832)
P U,

and the pole pitch 1,

U4
3 Srated 7; 3 Srated
= = —_— 8.33
K \ o\ 2miB T\ (8:33)

In the previous considerations, the minimum (integer) number of slots and the
insulation thickness were not taken into account. With these details, the pole pitch

can be expressed as
T, =a+c;- 3/%}5‘1 (8.34)

with coefficients a and ¢, being usually in the range given in Table 8.1 [1, 2].

T
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Table 8.1 Orientational values of coefficients a and ¢, for induction machines

Machine type a[mm] |c, [mm/(VA)']
Moderately utilized | Squirrel cage, 2—-12 poles, 0.1-100 kW | 35 6.5

Slip rings, 2-12 poles, 1-250 kW 35 6.5
Highly utilized Squirrel cage, 2-pole, low voltage 60 52

Slip rings, 2-pole, low voltage 50 6.0

Induction machine, 2—-12 poles, <500 V|20 5.2

Induction machine, high voltage 30 53

Usual values of slot pitch 1, lie between 15 and 50 mm. The number of slots per
pole and phase g = N/(2pm) should not be larger than 5, because of no significant
improvement of MMF spatial distribution and not smaller than 3, because of too
strong MMF harmonics.

The apparent rotational thrust ¢, is a quantity with the same dimension as
torque density, however, with a slightly different physical meaning. Whereas the
torque density has a meaning of torque per volume, the apparent rotational thrust is
equal to apparent force per area. The apparent rotational thrust should not be
confused with pressure, which has the same dimension [N/mz], but a different
meaning: The pressure is equal to the normal component of force acting on a given
surface, whereas the apparent rotational thrust is equal to the fangential component
of force acting on a surface

Fp My

Op=——
ATTA T 2RIy,

(8.35)

where apparent force F4 and apparent torque M, correspond to apparent power S

S U,' S, Ui D2
rated Ui POrated _ TnlaxAlBl (8.36)

M = = _—
A Ql Ul TEzDzlaxfl Ul

By applying Eq. 8.36, one can express the product A; - B; as

AiB, = 2%% (8.37)
and the apparent rotational thrust o,
oa = %Al B (8.38)
The p.u. short-circuit reactance xsc, defined in Eq. 8.13 as
%y, = Xog el (8.39)

SC U]
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determines both the p.u short-circuit current isc (Eq. 8.13) and the p.u. pullout
torque m,,, Eq. 8.20. Whereas the short-circuit current must not be larger than a
given value, the pullout torque must not be smaller than a given value. Accordingly,
one can define the limits for the p.u. short-circuit reactance as

1 1
Xscmin = (8.40)
2
SC,max 1 R£
X
For the ratio Rsc/Xsc ® 0.4 (Eq. 8.10) one obtains
0.93
'xSCmin ~ (8'41)
) SC,max
Analogously, for xsc max One can write by using Eq. 8.20
I 1 1 — Sued 1 1
Xscmax — m ] En dCOSa;e) B 214 My (842)
m,min rate rated R R -
By ()T
A reasonably well-designed induction machine is characterized by
xSC.min S xSC S ‘xSC,mmx (843)

If the condition 8.43 cannot be fulfilled, a slip ring machine should be used
instead of a squirrel cage one.

The short-circuit reactance Xsc can be expressed by means of the stator and rotor
leakage reactances as

X/
X ~X 20 844
s lo + 1 +o, ( )

where (Eq. 4.111)
2
W1 ph
Xis = (Dlmll»l()lax—xl.res (845)
Ny ’

and

W2 m w hf 1 :
X — T e e
26 = O1M2yly N, 2,res ny Wz,thwvz ( )
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After some mathematical manipulations, one can write for Xsc

W1ph W1ph
Xoe = (DlmluolaxT'lec ~ N—lksc (8.47)

where the value of Agc can be reconstructed from expressions 8.45-8.47.
On the other hand, based upon Eq. 8.39

Irated Irated
=X =X 8.48
Yo s, e Un ULII (8.48)
and substituting for
()
Uit = 01w, fud —= (8.49)
) 1,Pl ) \/E
2
(Dl = _Bllapr (850)
b
Py
Irated - Al D (851)
mlwl_phfw.l\/z
one can write
o Mo UithscAr Al (8.52)
*2fp, Ui Ni By By '
By combining Egs. 8.41, 8.42, and 8.52, one can write
B, 1
—_— ~Y ~Y ] 8-53
(A 1) max  XsCmin Fscimes ( )
and
B 1
— ~ ~m 8.54
<A 1 ) min xSC‘mHX e ( )

Equations 8.38, 8.53, and 8.54 define the product P,z = A; - B; as well as the
quotient Q4 = Bj/A; as functions of machine rated data. The quantities P,z and
Q,p are basic parameters in the machine design procedure.
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Number of turns per phase w, p;, is calculated after determining the amount of
air gap flux density B,

B, = V PAHQAB = (Al Bl)(%) (855)

and for previously selected values of D and /,,. The main flux is then evaluated as
2
(I)l = 7laprBl (856)
I
and the induced voltage per turn u,

Q]
Uy = —fo® 8.57
1 \/Ef 1Dy (8.57)

The number of turns per phase is selected in such a manner that the induced
voltage U; corresponds to the phase voltage U, in the manner discussed at the
beginning of this section. Knowing the number of turns per phase w, pp, one can
determine the number of conductors per slot z, as

myay
Ny

s — 2 W1 Ph (858)

where a; denotes the number of parallel branches. The number of conductors per
slot is an integer value, which in the case of double-layer winding can only be even.

The bigger the machine, the smaller the number of conductors per slot. Whereas
in large machines only one conductor per layer (bar) is necessary in order to obtain
the proper value of induced voltage, the coils of small machines have typically a
double-digit number of turns. Consequently, the requested value of air gap flux
density is much easier to reach accurately in small than in large machines. If the
discrepancy between induced and applied voltage is too large, one can try to correct
the quotient Agc/N; in Eq. 8.48, or to decrease the rotational thrust. The latter
measure increases the machine size; therefore, at this point is a good idea to rethink
the machine’s main dimensions

Air gap width 6 of conventional induction machines varies typically between
0.2 and 2 mm, as a function of rated speed and active length. Air gap width should
be minimal in order to minimize the magnetizing current after Eq. 8.26. Typical
ratios &/t vary between 0.0025 and 0.004 for p = 1, 0.006 and 0.007 for p = 6, and
0.012 and 0.013 for p = 30, the first number standing for short, and the second for
long machines.

Air gap flux density represented with amplitude of its fundamental component
B typically remains below 1 T, in order to avoid too high iron losses in teeth and
too strong air gap radial forces. On the other hand, the values of B; below 0.65 T
are seldom and characteristic for small, low-utilized machines. If the air gap flux
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density turns out to be too high, the same countermeasures have to be undertaken as
in the case of too a large discrepancy between induced and applied voltage.
Winding resistance is evaluated by using standard equation

Lywpp
Sc

Ry = p(9) f~ (8.59)

with p(9) denoting specific electric resistance at temperature 9, Sc the
cross-sectional area of a single conductor, and f_ the factor of resistance increase
due to skin effect. Equation 8.59 is valid both for stator phase winding and for rotor
slip ring phase winding.
Squirrel cage resistance is evaluated by means of I°R losses in it
P..... = NaRpl3+2Rgl2 (8.60)

loss,cage

with Rg and Ry denoting the bar and ring resistance, respectively

R = p,(9) S (5.61)
Ru=0,(9) 27 (5.62)

and Dy, the ring average diameter. Substituting for the ratio between ring and bar
current [3]

I 1
I sin
one can rewrite Eq. 8.60 as
2RI
ez = NaRBIG+ = I;I,If[ =NRo1; (8.64)
Sin N
with R, standing for equivalent bar resistance
Ip P.(8) Sp Dgm 1 fer
Ri=p ) —fup|l+LF-—- : — 8.65
2 pB( )SBf B PB(S) SR lBN2 2sin2’1(,—: f~7B ( )
Introducing ratio  defined as
9
r= Pl S5 Dem (8.66)

p,(9) Sk lsN> 2sin’LT
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one can express the equivalent bar resistance R, in Eq. 8.66 as

Ry =p,(9) ;—';fN B (1 + r%) (8.67)

Denoting by k the ratio between equivalent rotor bar resistance at short circuit
and at rated point (Eq. 8.21)

1+ rf~ RSC

r— RB.SC _ S~ BSC [~ Bsc (8 68)
Ry [ praea 14 pftos

one can express the p.u. starting torque (Eq. 8.21) as

2
M. = C - Srated (IS—C> -k (8.69)
Irated

Obviously, there exists a minimum value of the coefficient k£ for which the
machine still develops a given p.u. starting torque. If this is not the case, a slip ring
rotor should be used instead.

Assuming that losses are taken from the rotor only on its lateral area, one can
define the loss density as a ratio Pjyg/S

Ploss _ N2R2112;
S Dl

(8.70)

with a dimension of kW/m?. Loss density in the rotor of air-cooled squirrel cage
machines can reach the value of ~ 10 kW/m?, which is about 50 % above the loss
density on the stator side. The reason for higher allowed loss density in a squirrel
cage rotor is the absence of conductor and slot insulation. Usually, the loss density
in bars is higher than in rings, in order to avoid mechanical damage of rings:
Whereas thermal dilatation of bars in axial direction has almost no mechanical
consequences, the expansion of rings can be a reason for their breakage.

Stator conductor cross-sectional area is selected in such a manner as to fulfill
the cooling specifications. Slot width w, is approximately equal to half of the slot
pitch t; however, this ratio varies from one machine to another. Slot height &, is
selected in such a manner as to provide enough space for obtaining the allowed
current density I' in conductors

7A1 Ts 1

=—=——— 8.71
’ I W \/Efw,]fs ( )

with fs denoting the slot fill factor, i.e., the ratio between conductor and slot area.
The slot fill factor for windings with round wires can exceed 40 %, and for formed
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coils it goes up to 70 %. The highest slot fill factor is achieved in squirrel cage
machines, where it exceeds 90 %.

Since smaller machines dissipate less losses per heat exchange surface than
larger, their current density may go up to 10 A/mm?>. Large air-cooled machines
have typical current densities between 3 and 4 A/mm?>. Highest current densities are
found in machines with directly (water, oil) cooled conductors, where they reach
values of typically 15 A/mm?. The amplitude of current sheet in smallest machines
is about 30-50 kA/m, in medium size machines about 70-90 kA/m, and in largest
machines ~ 350 kA/m. Accordingly, the ratio A{/I" in Eq. 8.60 varies between
~3 mm for the smallest, over ~20 mm for medium size up to ~23 mm for the
largest machines.

Magnetic circuit at no load can be solved by using the magnetic equivalent
circuit method (MEC), as shown in [4]. In the approach described in this reference,
nonlinear magnetic circuits are solved in a straightforward manner, without itera-
tions. This way the computational time is significantly reduced, as compared to
similar methods, such as finite element analysis, and at the same time, the com-
putational accuracy is increased. As opposed to the finite element method, which
tolerates large local errors, the field distribution evaluated with the MEC method is
calculated with the same level of accuracy in all elements.

8.3 Sizing Equations of a Synchronous Machine

The largest electric machines ever built are synchronous machines, in particular
high-speed turbogenerators. The overwhelming field of applications of a syn-
chronous machine is the generation of active and reactive power, the latter being
controlled by the field current.

Whereas conventional synchronous machines are built with a single- or
three-phase armature winding on the stator side and field winding on the rotor side,
exciters for large synchronous machines are built inside-out: Their armature
winding rotates, along with rectifier diodes, and the field winding is placed on the
stator side.

The source of air gap flux inducing no-load voltage can be either the field
winding, or permanent magnets, Fig. 8.2.

Denoting by o, = 2/r the ratio between the average and maximum value of sine
function, and by } = B,.x/B; the ratio between the maximum of the air gap flux
density, which determines the level of saturation and the amplitude of its funda-
mental harmonic, one can express the air gap flux @, created by the fundamental
component of flux density as

oy

q)l = F‘Cplameax (872)
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Current sheet A created by z; conductors per slot of the field winding, each
carrying the current I, can be expressed as

Armature side

(b) (c)

o e A " A S IS SIS LSS,

5 | {8

Bmax Bmax Bmax

. Tp > < Tp > le Tp >

Fig. 8.2 Modi of field generation in cylindrical wound rotor (a), salient pole wound rotor (b), and
surface mounted permanent magnet synchronous machine (c)

l meow, I

A="= 8.73
& PTp (8.73)

The amplitude of the fundamental component of current sheet is then
AL =V24 - fu (8.74)

Synchronous machines are predominantly used as generators of both active and
reactive power. In order to supply reactive power into the power system, a syn-
chronous machine has to be overexcited. Typically, the field MMF at rated oper-
ating point is 1.5—3 times the armature MMF, which makes the rotor of a
synchronous machine its bottleneck. One should keep in mind that a large field
MMF results in increased i°R losses, which have to be taken out of the rotor.

The no-load curve of a synchronous machine is usually evaluated by applying
the MEC method [4]. Rotor yoke is split into a network of elements, the reluctances
of which determine required MMF for a given flux.

The short-circuit ratio k. is defined as a quotient between the field current
required to induce the rated voltage at no load and the field current which generates
rated armature current at short circuit. The reciprocal of k¢ is equal to the p.u. value
of unsaturated synchronous reactance in the d-axis x;
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Urated 1

k=t = — 8.75
> (8.75)

with X, being defined as
X4 = Xad + Xuo (876)

where X4 stands for reactance due to armature reaction in the d-axis, as defined in
Eq. 8.25, and X, is the stator leakage reactance

w2
Xuo = mmuolaxﬁx (8.77)
and
Xosc  Xus
Xgg = =—— = 8.78
Zrated Unaieg ( )

rated

By simplifying, the reactance X, can be written as
Xd :Xad(1+61) (879)

and the rated voltage U, ,.q and rated current I ;eq as

U 2
Urated = Z?Ed O)WPh,lfw.,l %Bllaxrp (880)
PTp
Tpted = A —— 2 (8.81)
rate mWPh_lwa\/i

After inserting for Uyeqd, Laea and X, one can express the p.u. synchronous
reactance x; as

Ho Ui Tp Al
=—1 — 8.82
a T ( - Gl) Urated k66 Bl ( )
Since
U;
~l+o 8.83
Urated ! ( )

one can express the short-circuit ratio as
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! MkSBi 1 Unea T k3B (8.84)

k = _ =
Tt o Al (1401 U w1 A

The armature reactance MMF O, ,,..q per pole pair at rated current is equal to
(see Fig. 8.3)

my Wy, fw‘l
®a7rated = 7 - \/Elrated (8'85)
p-Ji
Ui : )
Air gap line
Urated
Ofield
0 00,5 O

Fig. 8.3 MMF components at armature open circuit

Denoting by ® s the air gap MMF drop across the air gap created by field
current at no load, one can define the unsaturated air gap reactance (p.u.) in d-axis
as

®a rated
i = 2 8.86
Yadi =g, (8.86)

The p.u. unsaturated air gap reactance in g-axis is

kCRd
8.87

Xag = Xadi
CRq

with kcrg and kcgr, denoting the Carter factor in the d- and g-axis, respectively.
Saturated air gap reactance in p.u. is defined as

1
Xadr =7~ Xac (ia) (8.88)
c

and unsaturated synchronous reactance in d- and g-axis, respectively, as
Xa = Xadi + Xac (ia) (8.89)

Xg = Xag + Xac(ia) (8.90)
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Rotor slots are characterized by specific permeances [3], defined as

ksd .
o = pois M (8.91)
’ 2deeNf]§¢

for the field winding, with D, denoting the diameter of the center of air gap, N; the
number of rotor slots with field winding, and f; the field winding factor;

TE/Q;S XfD
P 2D 2Dave NfoD

(8.92)

for the common effects of damper and field winding, where Np denotes the number
of rotor slots with damper winding and fp the damper winding factor;

TCk§6 7\4D
c 8.93
T (893
for the damper winding in the d-axis, and
TCkSS 7\Q
c, = 8.94
T 2Dave N Df ( )

for the damper winding in the g-axis. The specific permeances of rotor windings
help define the p.u. values of characteristic reactances [3] as

X, = OpXadi (8.95)

¢

for the rotor coupling reactance along the d-axis;

o

x,, = (0f — ) Xadi (8.96)
for the common leakage reactance of the field and damper winding in the d-axis;

X, = (04— O, ) Xaai (8.97)
for the ideal leakage reactance of the damper winding in the d-axis, and

X, = O Xag (8.98)
for the ideal leakage reactance of the damper winding in the g-axis.

More about computation of transient and subtransient machine parameters one
can find in [5-7].
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Appendix

A.1 Orthogonal Functions

The properties of the most pronounced parameters of an electric machine, such as
torque, electric power, and induced voltage, are defined by time and/or spatial
orthogonality of physical variables which determine their primordial quantities:
mechanical, magnetic, and electric energy.

Mathematically speaking, two functions f(x) and g(x) are orthogonal over the
interval @ < x < b if and only if

b
[ £ glwar =0 (ALD)

Physical quantities, which determine properties of an electric machine, are
periodical functions of time, space, or both of them. Basic means to handle periodical
functions is the Fourier analysis. A periodic function can have:

— a constant term;
— the fundamental harmonic; and
— higher harmonics.

Two periodic functions are orthogonal to each other if they have different
lengths of periods. If two periodic functions have the same length of period, they
are non-orthogonal. The fundamental physical meaning of orthogonal functions is
that they cannot interact with each other in a sense of producing energy or con-
catenating fluxes; non-orthogonal functions, on the opposite, are those which create
electric power, mechanical torque, mutual inductance, etc.

Three periodic functions f{x), g(x), and h(x), defined as

f(x) = Fcos(o-x) (A.1.2)
g(x) = Gceos(B - x) (A.1.3)
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h(x) = H cos(y - x) (A.14)
are non-orthogonal to each other over the interval a < x < b if and only if

b

/cos(oc‘x) cos(P - x) - cos(y-x)dx # 0 (A.1.5)

a

which is fulfilled for
at+Bty=0 (A.1.6)

By using addition theorems, the integrand in Eq. A.1.5 can be further written as

%cos(a - x)[cos(B+v)x+ cos(P — v)x]

:%[COS(Q+B+Y)X+ cos(at — B —7)x (A.1.7)

+ cos(ot+ P — y)x—+ cos(a — B+ v)x]

If the interval length [a, ] is an integer multiple of (a0 &  + y)x, the integral in
Eq. A.1.5 will be different from zero if and only if the condition A.1.6 is fulfilled,
i.e., if the particular combination of coefficients a, B, and y yields 0 and one of the
four summands in Eq. A.1.7 becomes a constant equal to 1.

Substituting for

2 2 2

o= 5P B=5mg Y= 5Pa (A.1.8)

with p; denoting the number of pole pairs, and i = F, G, H, one can rewrite the
condition A.1.6 as

prEtp;£p, =0 (A.1.9)

Three air gap distributions are non-orthogonal, i.e., capable of creating torque, if
their numbers of pole pairs satisfy condition A.1.9.

Orthogonality of time functions: The length of period 7, i.e., time interval after
which for a function of time applies f(f) = f(t + T), is a function of angular fre-
quency ® = 2xaf:

(A.1.10)

with f denoting the frequency [Hz].
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Voltage u(?) is defined as
u(t) = Upax sin(not) (A.1.11)
and current i(7) is defined as
i(t) = Iax Sin(mot — @) (A.1.12)

where n and m are positive integers, are orthogonal over interval -t < of < 7 if
the electrical energy W, in the given interval is equal to zero, i.e., if

We = / Unnax Sin(not) - Inax sin(mot — ¢@q)dt =0 (A.1.13)

which is fulfilled for

n#m (A.1.14)
If both voltage and current have the same frequency, i.e., if

n=m (A.1.15)

the energy in the given interval is equal to

Wet = Unax - Inax g c0s @y (A.1.16)

This energy corresponds to an average (active!) power Pg; of

W] (O] T
Fa :Te:ﬂ' Unax * Imax ‘o cos@y = U-1-cosq, (A.1.17)

with U and [ denoting the rms values of voltage and current, respectively.

If an alternating voltage has a different frequency than an alternating current, i.e.,
if they are orthogonal over a given interval, the energy created by the two is equal to
zero. A current must have the same frequency as a voltage in order to create with
it electric energy different from zero; the amount of created energy is proportional
to the cosine of the phase angle between current and voltage.

If the periodical voltage and current functions contain higher harmonics terms,
i.e., if they can be represented as
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time

Fig. A.1 1 p.u. voltage u(r) = sin(ot — w/4) (dashed black curve), 1 p.u. current i(f) = sin
(6wt) (solid black curve), and their product—instantaneous power p(f) = u(f) - i(t) (gray curve).
The area between the product of voltage and current represents electrical energy, the average of
which in a given interval is equal to zero. In this case, the voltage and the current are orthogonal
because of their different frequencies

ZUmaxksm(kmt i(t) =Y Inaxasin(lot — ¢;) (A.1.18)
k=1 =1

the active electric power is equal to

Py=> UL+ cosg (A.1.19)
j=1

Only voltage and current harmonics of the same order can generate active
electric power.

Graphical interpretation of two orthogonal time functions is given in Fig. A.1, in
which a 1 p.u. sinusoidal voltage v(f) = sin(wf — n/4) and a 1 p.u. sinusoidal current
i(t) = sin(bwr) are shown. The instantaneous power p(f), equal to the product of
instantaneous voltage and instantaneous current, oscillates around zero in this case.
The integral of power, having a meaning of energy in a given interval, is equal to
zero. Graphically, the total area between the product of voltage and current (in-
stantaneous power) and the time axis in the given interval is equal to zero.

Non-orthogonal harmonic functions of time have the same frequency, as shown
in Fig. A.2. Here, a p.u. sinusoidal voltage u(f) = sin(wf — n/4) and p.u. sinusoidal
current i(f) = sin(w?) are shown, along with their product—the instantaneous power

p() = u(t) - o).
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uLp

Fig. A2 1 p.u. voltage u(f) = sin(ot — n/4) (dashed black curve), 1 p.u. current i(f) = sin
(o) (solid black curve), their product—instantaneous power p(f) = u(¢) - i(¢) (gray curve), and the
average of the instantaneous power (gray dash-dotted curve). The area between the product of
voltage and current represents electrical energy, the average of which in a given interval—the
active power—monotonically increases, since the voltage and the current with the same frequency
are not orthogonal ant not 90° out of phase

The instantaneous power oscillates around the amount proportional to the cosine
of the angle between the voltage and current. The area below the product p(f) = u
(t) - i(?) is not equal to zero, since the functions are not orthogonal.

Orthogonality of spatial functions: The length of period of the fundamental
harmonic of a spatial function is twice the machine pole pitch t,, defined as

7Dn

=— A.1.20
2p (A.1.20)

Tp

with D denoting the air gap diameter and p the number of machine pole pairs. The
machine pole pitch t,, measured along the circumferential coordinate x in the center
of the air gap, equals to the length of interval belonging to one pole. It is important
to note that a spatial higher harmonic of the order m has the same meaning as
m times more pole pairs, i.e., m - p instead of p.

The orthogonality of spatial functions will be illustrated on the example of
torque created by a stator and rotor harmonic of air gap flux density. The mth
harmonic of air gap flux density created by a stator winding with pg pole pairs can
be expressed as

By (%) = Bunams Sin <m:x - as) = Binams Si (Zm Dy Zi) - as) (A.1.21)
P

The nth harmonic of current sheet created by a rotor winding with p, pole pairs
can be expressed as
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Anr(x) = Amax,n,r SIN (n Ex - 0tr) = Amax,n,r SN (2n *Pr % - 0(;) (A.1.22)
; ; T ;

and the corresponding flux density as
B,:(x) = pg——— A.1.23
)= b5t (A.1.23)
Considering constant air gap width d(x) = d, one can further write

. x T
Byr(x) = % Apr(X)dx = Bpaxur Sin (Zn ~pr5 — o, — 5) (A.1.24)

where the amplitude of the mth harmonic of air gap flux density created by the rotor
winding with p, pole pairs, Bmax . 1S equal to

D
20 Ay = (A.1.25)

Bmax.n,r: 5 max,n,r m »
“Pr

The accumulated magnetic energy in the air gap is equal to

Dn Drn
15 15 2
Wie = — | B*(x)dx=— [ [B, B, dx A.1.26
= g [ B0 =2 [ [+ B (A.126)
0 0
or
16 Dn
Wg = 5 / (82,40 + 28,5 (5)Bus () + B2, ()| (A.1.27)
Ho )
which results in
5 |D D T
T i
ng = 2—HO 7 2max,m,s + TBrznax,n,r + 2/ Bmvs(x)B"sr(x)dx =
0
Dmld
- 4“0 ( ﬁmx,n@s +Bﬁ1ax7n,r)+
DIS cos(oy — 0s) — cos[oy — g — 27 - (n - pr — m - ps)]

+ 4_Bmax,m,sBmax,n,r :
Ko n-pr—nm:ps

(A.1.28)

Since n, m, p;, and py are all integers, the expression for magnetic energy in case
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m-ps £ n-p; (A.1.29)

i.e., when created by rotor and stator spatial harmonics of different orders, can be
written as

ngzDLla(

4 (B A B (A.1.30)

max,m,s

Electromagnetic torque is equal to the derivative of the accumulated magnetic
energy with respect to angle o, — o, between current sheet and flux density

OWing

M= _6(&r — o)

(A.1.31)

which in case of spatial harmonics with different orders obviously gives zero as
result:
B oims+ B

M= - max,m,s max,nﬁr)] =0 (A.1.32)

0 Dl (
0oy — ots) | 4o

or orthogonal spatial harmonics create no torque.
If the two spatial harmonics are of the same order, i.e.,

m-ps =n-p; (A.1.33)

the expression for magnetic energy created by them becomes

Drld Dind
Wm = (32 32 ) - 7Bmaxm ﬁBmax nr i r — s A.1.34
g 4”0 maxﬁm,s—’_ max,n,r 2“0 »M, S My sm(oc 0(~) ( )
because
Dr

liIE_lp sin<2m ~ps% — ozs) sin (Zn -pr% — Ol — g)dx =

"y (A.1.35)
Dr .
= —TSIH(OLI — o)

The derivative of magnetic energy accumulated in the air gap with respect to the
angle o, — o is

OWn, DInd
Ao — o)~ M =y PmanmsBmacns - c03(% = ) (A.136)
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After replacing the rotor flux density with current sheet, one becomes the
expression for torque created by two harmonics of the same order as:

M =V - BnaxnsAmaxnr - €OS(0 — 0L) (A.1.37)

A BF

circumference

Fig. A.3 1 p.u. current sheet A(x) = sin2nx/t, — n/4) (dashed black curve), 1 p.u. flux density B
(x) = sin(3mx/ty,) (solid black curve), and their product, proportional to the force distribution along
the circumference (gray curve). The total force created by the two harmonics, equal to the area
below the gray curve, is equal to zero, because these harmonics are orthogonal to each another

The stator harmonic of the order m - py is not orthogonal to the rotor harmonic of
the order n - p, when m - p; = n - p, and therefore, the two can create an elec-
tromagnetic torque. For example, the third harmonic of flux density in a ten-pole
stator can create a torque different from zero with the fifth harmonic of flux density
in a six-pole rotor. The number of stator pole pairs in electric machines for con-
ventional applications is without exception equal to the number of rotor pole pairs,
Ds = pr. In that case, only the stator and rotor spatial harmonics of the same order
can create a torque, i.e., m = n, and all higher spatial harmonics are torqueless.

Orthogonality of spatial functions is illustrated on an example of a 1 p.u. 4-pole
current sheet A(x) = sin(2mx/t, — n/4) and a 1 p.u. 6-pole flux density distribution B
(x) = sin(3mx/t,), Fig. A.3. The product of the two for a given value of circum-
ferential coordinate is proportional to the force created by them at that particular
point. The infinite sum of all products—their integral—is equal to the total force
created by the two harmonics. The integral (area below the product of the two
functions) along the complete circumference in Fig. A.3 is equal to zero; conse-
quently, any two harmonics of different spatial order cannot create a torque.

If the two harmonics of flux density and current sheet are non-orthogonal, their
interaction can result in a force/torque if the spatial shift between them is different
from 90°. This is illustrated in Fig. A4, in which a 1 p.u. 4-pole current sheet
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A(x) = sin(2nx/t, — m/4) and a 1 p.u. 4-pole flux density distribution B(x) = sin

(2mx/tp,) are shown, along with their product. The integral of the product of two,
equal to the force created by them, is different from zero.

circumference

Fig. A4 1 p.u. current sheet A(x) = sin(2mx/t, — n/4) (dashed black curve), 1 p.u. flux density B
(x) = sin(2mx/t,,) (solid black curve), and their product, proportional to the force distribution along
the circumference (gray curve). The total force created by the two harmonics, equal to the area
below the gray curve and represented by a dash-dot horizontal line, is different from zero, because
these harmonics are non-orthogonal and the spatial angle between them is different from 90°

A.2 Periodic Functions of Time

The complex number A = A - ¢(®*+ ) with modulus A and time-dependent argu-
ment ot + @, is according to Euler’s formula

A-dO0) — A cos(wt+ @,) +jA - sin(of + @) (A2.1)
equal to the sum of a real
Re{A : ef<mf+‘Pa>} = A cos(f +,) (A2.2)
and an imaginary component

Im{A . ej(mt+®a)} =A - sin(wr+ @,) (A2.3)
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Fig. A.5 Representation of real numbers A cos(of; + ¢,) and A sin(of; + @,) at a time instant

t = t; by means of complex conjugates A = A - /@i + @) and A* = A - ¢ (@ +9)

Here e denotes the base of natural logarithms, o is the angular frequency equal to
2n/T, T is the period length in s, and j is the imaginary unit, j = v(—1).
The complex conjugate A* of the number A = A - &/ +9) jg equal to

A" =A%) — A cos(or+@,) —jA - sin(or + @,) (A.2.4)
By introducing a complex number Z, such that Im{Z} = 0:
Z =

=A 5 (A2.5)

A+ A el(@1+0.) | p=j(0r+0,)
2

one can express the real component a(f) = A cos (of + ¢,) of the complex number
A=A @+0) g5

a(t) = A cos(ot+¢,) =Re{Z} =Z (A.2.6)

which means that a time function a(f) = A cos (ot + ¢,) is identical to a sum of two
complex conjugates, the arguments of which are functions of time.

Introduce now a complex number D, such that Im{ﬁ} =0

. A—A* ot +9,) _ p—j(or+e,)
b= = —jA
2 / 2

(A2.7)

The imaginary component of the complex number A = A - &/(® + ) is equal to
the real component of 15, because
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A — A* ot +9) _ p—jlor+e,) . .
Assin(or + ) ==~ = —jaA 26 —Re{D} =D (A23)
]
Since
1 .
—=—j=eh (A.2.9)
J

i.e., division through j is identical to the rotation for —n/2, one can further write

01+ 9,) _ pi(or+9,) oo, _ i(orto,+5)
A sin(ot+¢,) =A-e 26 =A- 26

(A.2.10)

Graphical interpretation of previous results in the complex plane (Re 9m) at a
time instant ¢ = #; is shown in Fig. A.5. As opposed to vectors, which are charac-
terized by their magnitude and direction in space, complex numbers have no
direction in the complex plane. Therefore, the usage of arrow for complex numbers
is inappropriate. Instead, the bold dot symbol is employed in order to indicate the
position of a complex number in the complex plane.

One should note that the argument of the complex number A=A ®@ite) jg
proportional to time. This property can be interpreted as rotation in the complex
plane at an angular frequency ® in mathematically positive direction, as shown in
Fig. A.5. The same is valid for its conjugate A* = A - e /(@19 which rotates at
the same angular frequency ®, but in mathematically negative direction.

A
Im A=A- eJ(‘”ti‘*'(Pa)

T

J= - Pt
A-sing, ¢ 2 -/ P

Fig. A.6 Complex number A = A - ¢/ T ) at a time instant 7 = 1, represented as a sum of its
components A cos ¢, and A sin @, along two perpendicular axes

The sum of a complex number and its conjugate, rotating in opposite directions,
is a real number which pulsates at an angular frequency .
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This very interesting property of mathematical objects has a well-known analogy
in physics, stating that a pulsating field is equal to the sum of two fields with same
amplitudes, rotating in opposite directions.

For the purpose of simplicity it is usual in electrical engineering to represent a
time function A cos (of + ¢,) in the complex plane with a single complex number
A- @i+ je  without its complex conjugate. A consistent representation,
however, requires a complex number and its conjugate for a single time function.

The complex number A =A-©i+e) can further be expressed as

A :A.ej((mﬁL(Pa) :A.ej(’)t.ej(Pa =A- COS(pa'eiwt+A' Sin(pa.ej%.ejw’
(A2.11)

the graphical interpretation of which at a time instant ¢ = ¢; is shown in Fig. A.6.

I ) $=5.¢/ (ot +o)
A=4- e./(wti"'@a)

B=p.o/@itep)

7

S cos(ot; + @y )

AN
0 AN
\ » .
AN B :B,E*J(m[i'*'q)b)

-0 N\
AN

AN
»

1:1* =4- e_j(wti"'q’a)

S‘* =S e_./((o’iJr(Ps)

Fig. A.7 Sum of two real numbers a(f) = A cos(ot; + ¢,) and b(t) = B cos(ot; + @p) at a time
instant 7 = f; represented as a sum of complex conjugates § = § - &/(@i+9) and §* = § . ¢+ )

Complex number A = A - ¢/(®i ) can be resolved into two complex numbers
perpendicular to each other with absolute values A - cos ¢, and A - sin @,, ¢, being
the angle between the original complex number and one of the axis of resolution.

Addition and subtraction in the complex plane follows identical rules as addition
and subtraction of vectors in space. This can be illustrated by means of another
time-dependent quantity b(¢) defined as

b(t) = B cos(wt + ¢p) (A.2.12)

or by means of complex conjugates B and B*
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B+ B* o1 +y) —j(or+ @)
b(t) = J; —B J’; (A2.13)

The sum s(f) of a(f) and b(¢) is equal to
Aei(Pa + Bej(Pb —jaat Ae*j(Pa + Be*j(Pb

2 2
(A.2.14)

s(t) = S cos(ot 4 @,) = a(t) +b(t) = &

The first term of the sum s(f) in Eq. A.2.14 rotates with an angular frequency ®
in positive direction. The second term, its complex conjugate, rotates with the same
angular frequency o in negative direction. The complex sum

Ae/® + Bel® (A.2.15)

is evaluated by adding real and imaginary components separately from each
other, following rules for vector addition along orthogonal axis % and .%.. The
same is valid for the sum of complex conjugates

Ae /P - Be ™/ (A.2.16)

as shown in Fig. A.7.

The analogy between operations on complex numbers and spatial vectors is
limited to addition and subtraction only. In case of multiplication and division,
completely different rules are valid for spatial vectors than for complex numbers.
The result of multiplication of two complex numbers is a complex number again,
which can be represented in the complex plane. The result of multiplication of two
spatial vectors is either a scalar, or a vector perpendicular to the plane defined by the
two multiplicands. In the latter case the product of two spatial vectors is not defined
in the plane created by the two vectors. Furthermore, the division of two spatial
vectors is not defined, whereas the quotient of two complex numbers is again a
complex number.

Consider now the product p(f) of two time-dependent real quantities u(f) and
i(?) defined as

p(t) = u(t) - i(t) = UV2cos(ot) - IV2 cos(or — @) =
=U-I-[cos@+ cos(2ot — @) =U-1-cos®-(1+ cos2wt)+U-1-sing - sin2ot
(A2.17)

and graphically represented in Fig. A.8. The product p(f) can be interpreted as
instantaneous power in an AC circuit with voltage u(f) and current i(f). As known,
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the instantaneous power pulsates with an amplitude of S = U - I (apparent power)
around the average value P = U - [ - cos ¢ = S - cos ¢ (active power). By further
decomposition of the product u(?) - i(¢), one obtains that the instantaneous power is
equal to a sum of the component U - I - cos ¢ multiplied by (1 + cos 2w¢) and
Q = U - I - sin ¢ (reactive power) multiplied by sin 2oz

U-1I-cosq-(1+cos2ax) pl)=U-1- [cos @ + cos(20r — (p)]

N 7

U\/ECOS(DI \/\
I\/Ecos

Fig. A.8 Product of two trigonometric functions u(f) = U2 cosot and i(f) = W2 cos(ot — ¢) and
its components in time domain

U-1I-sin@-sin2wt

(0 - )

One should note in Fig. A.8 that the term V - I - cos ¢ cos 2wt leads the term
V. I-sin ¢ - sin 2w¢ for an angle of /2.

The result of multiplication of u(¢) and i(#) can be as well represented in the
complex plane, in which p(f) can be written in terms of complex numbers

U=UV2-éand U = V2 e as well as | =12 &©@=® and J* =
12 - e7i(or—0) standing for u(f) and i(¢), respectively, as
&(©1=0) | p=i(0—0)

ejo)f —jor
() =UV2 =
2 2 (A.2.18)

- ; [e/’(mtﬂp) 4 e /Qw=0) 4 o 4 ef/ip}
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Fig. A.9 Product of two trigonometric functions u(f) = UV2 coswt and i(f) = V2 cos(wt — ¢) and
its components in the complex plane at time instant 7 = ;

Complex numbers U = Uv/2-¢® and I =129 along with their
conjugates U* = Uv/2 - ¢ and I* = [\/2 - ¢ 7(®"=9)_rotate in the complex plane
with angular frequencies ® and —o, respectively, with the center of rotation at the
origin of the complex plane, as shown in Fig. A.9.

The product p(¢) has a constant real termP:

o+ eI
P=§S———F7—
2

= S cos @ (A.2.19)

and two complex conjugates which rotate at twice the angular frequency 2 in
opposite directions

(201—0) | y-i201—0)
s +2(3 =S cos(20r — ¢) (A.2.20)
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Fig. A.10 Constant and pulsating components of power in the complex plane at t = t;

The product p(¢) can be represented in the complex plane in Fig. A.9 as a sum of
steady (DC) component S cos @ on the real axis and two complex conjugates,
§=5/2.60=0) and §* = §/2 . ¢7/(29'=9) which rotate around the point P on the
real axis with coordinates (S cos ¢; 0) at angular frequencies 20 and —2o,
respectively. Each of the complex conjugates carries 50 % of the pulsating com-
ponent of power U - I - cos(2wf — @) and can be resolved into two components
perpendicular to each other.

The two pulsating components of power can be represented in terms of the
power triangle as shown in Fig. A.10.

The projection of S=8§ /2 - /29i=9) to an axis rotating at an angular frequency

20 and leading for an angle ¢ is equal to P/2-¢“i; the projection of S =

§/2 - ?9i=9) to an axis lagging for an angle /2 — ¢ is equal to Q/2 - o/ (200 3),

since P = S cos@ and Q = S sin ¢.
Similarly, the projection of § =5 /2 - e /2®1=®) to an axis rotating at an angular
frequency of —2w and leading for an angle ¢ is equal to P/2 - e /2 and to an axis

lagging for an angle 7/2 — ¢ to Q/2 e (zwl‘ﬂ),

shift between the complex numbers P/2 - e and Q/2 - e (200 +3) i /2, as
already illustrated in the time domain, see Fig. A.8. One should note that lagging
position between two complex numbers rotating with positive angular frequency
means leading position for negative angular frequency and vice versa.

In an absolutely symmetrical m-phase system with voltages

since Q = § sin ¢. The phase
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(1) = U\cmos{mt— G — 1)2 }; =123 ...m (A.2.21)

T
m
and currents

2
i(t) = IV/2 cos [(Dt —-1Z - (p} j=1,2,3, ... m (A2.22)
’ m

the instantaneous power is equal to

p(t) = Zuj(t) ii(t) = zm: U-1I- {coscp+ cos [Zwt —-2(j — 1)%] } (A.2.23)

j=1
or
p(t)=P=m-U-1-cos¢ (A.2.24)

Instantaneous power in a symmetrical m-phase system is time invariant, as
shown in Fig. A.11.

2= 3u;0)1,0)
j=1

\4

Fig. A.11 Instantaneous power in a symmetrical m-phase system

A symmetrical m-phase system acts in terms of power consumption identically
as a resistor fed from a DC source, as shown in Fig. A.12. The conclusion that the
total instantaneous power in a symmetrical m-phase system is constant is not
contradictory to the fact that the power pulsates in each phase with twice the supply
frequency. One should keep in mind that the total instantaneous current in a
symmetrical m-phase system is also constant (and equal to zero), independent of
how large are the phase currents.
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Fig. A.12 Comparison between instantaneous power in a symmetrical m-phase system and in a
DC circuit
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Fig. A.13 Instantaneous power in a symmetrical three-phase system and its components in the
complex plane

Graphical interpretation of power in a symmetrical three-phase system is shown
in Fig. A.13, in which power components in all three phases are shown along with
the resulting power 3P, with P denoting the active power in one phase. The sum of
power components in separate phases for both positive (solid) direction and neg-
ative (dashed) direction of rotation is equal to zero at each time instant.

Very often, sinusoidal quantities are represented only with complex numbers
rotating at positive angular frequencies and named phasors, as shown in
Fig. A.14a. The description phasor is redundant, because it is nothing but a
complex number. As such, it does not carry any information more than a complex
number, and therefore, will not be used.

Sinusoidal voltage and current in Fig. A.14a are real numbers, which, accord-
ingly, can be represented only on real axis in the complex plane. There exists no
correct physical interpretation for the voltage and current components on imaginary
axis in Fig. A.14a.
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The only consequent way to represent a real current or voltage in the complex
plane is to express them as sums of two complex conjugates, in which case their
imaginary components are equal to zero, as shown in Fig. A.14b. If the real current
or voltage is a periodical function of time, the two complex conjugates representing
them rotate in the complex plane in opposite directions at the same angular
frequency.

A
(@ gm U=Ur2 -/

V2 sin o { ® P =142 @i=0)

i - ¢
I\/Esm((ntl (P)L{ U2 cos wt;

> Re
ﬁ—/
W2 cos(u)tl- - (p)
A
(b) 9 U=U+2 -/
® P= 142 e @i-0)
)
U\/E cos 0t; -
e~—— > 1%0
.\ ¢ IV2 cos(wtl» - (p)
\
%
—® \\\ i* :I\/E X e—j(wfj—(P)
\\.
U =U2 -1

Fig. A.14 Time-dependent periodical functions in the complex plane: incomplete (a) and com-
prehensive (b) presentation

Correct representation of periodical quantities in the complex plane becomes
extremely important in applications related to rotating field electric machines,
where the physical rotation of windings and fields is often confused with fictitious
rotation of a complex number in the complex plane. By focusing exclusively on
rotation in the complex plane in positive direction, a false impression is obtained
that the positive direction of rotation of complex numbers representing machine
currents and voltages coincides with physical direction of rotation of the rotor.
Neither do the complex numbers representing AC voltages and currents rotate in the
machine (7, ¢) plane, nor does the rotor along with its windings, air gap MMF, and
flux density distributions rotate in the complex plane.
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A.3 Power Factor

Power factor of a rotating field machine is an important parameter which not only
stands for the level of magnetic energy absorbed or generated by the machine, but
also has a strong influence on its I°R losses. A machine with poor power factor
requires an additional component of current in order to build the magnetic field,
which increases the stator copper losses.

The only rotating field machine that can generate magnetic energy is the wound
rotor synchronous machine. All other machine types, including a permanent magnet
machine, require magnetic energy from an external source in order to operate
properly at rated point. Consequently, the only machine that can have rated power
factor equal to 1 and, therefore, minimum stator copper losses, is the wound rotor
synchronous machine.

A.3.1 Field MMF Necessary to Operate Wound Rotor
Synchronous Machine at a Given Power Factor

The bottleneck of a wound rotor synchronous machine is its field winding, which
on the one hand has to provide the MMF necessary to operate the machine at a
given power factor cos ¢ lagging and, on the other hand, has to be properly cooled
in order to keep its temperature within the limit for a given insulation class. The
field winding ampere-turns have to override the stator MMF due to armature
reaction, so that the rated field current i, is typically up to three times larger than
the no-load field current iy, resulting in up to nine times larger rotor i°R losses at
rated point than at no load.

(a) (b)

uliK:Og

Fig. A.15 Voltage (a) and MMF (b) diagram of a cylindrical rotor synchronous machine
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The ratio between the field and armature MMF at rated point of a wound rotor
synchronous machine can be determined on the basis of its voltage and MMF
diagram, as shown in Fig. A.15.

E; in Fig. A.15 denotes the excitation voltage, E, the induced voltage, X, the
stator leakage reactance, and X; the synchronous reactance. The factor K. stands for
the no-load short-circuit ratio S.C.R., u for p.u. rated voltage, i for p.u. rated current,
X, Tor p.u. stator leakage reactance, ®, for the armature MMF, and ®'¢for the field
MMF referred to one stator phase. Based upon the two diagrams in Fig. A.15, one
can further write

Wa - f, U X, u
U a‘Jwa _ L N A S =_.K.-(1 . A3.1
X — Xy X, foa - Lo Xo—Xag 0 (14 xur) ( )

as well as

(A3.2)

lagging

leading

Fig. A.16 Ratio between field and armature MMF necessary to operate a synchronous machine
with a given short-circuit ratio K, at rated current and voltage and phase shift ¢ between them

Using the MMF diagram in Fig. A.15b, one can express the ratio between the
(referred) field and armature MMF as
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CH \/ u_ N2 uo
0.~ (14+x6)14/ 1+ (7KC> —1—2;1(C sin @ (A3.3)

whereas at the rated point, i = 1, u = 1, one can write

@l
o= (14 %ag)( /1 + K2 + 2K, sin (A3.4)

The ratio between field and armature MMF as a function of the short-circuit ratio
K. and phase shift ¢ for various values of x,; and at u = 1 p.u., i = 1 p.u. is shown
in Fig. A.16. As expected, one needs a field MMF stronger than the armature
MMF in order to operate a synchronous machine at a given lagging power factor.

A.3.2 Power Factor and Magnetic Energy Demand
of a Permanent Magnet Synchronous Machine

Permanent magnets are widely used in synchronous machine because they provide
air gap flux without dissipating field I* R losses. At first sight, this might look as an
advantageous property as compared to a wound rotor machine. However, after
taking a closer look to physical relationships in a permanent magnet machine, one
comes to a quite opposite conclusion.

Usually, the magnet dimensions and magnetic properties are such that the
induced voltage at rated speed is equal to the machine rated voltage, in which case
the power factor at rated operating point must be leading and, obviously, less than
one. This can be easily justified by means of the machine operating chart, as shown
in Fig. A.17.

In Fig. A.17, the area within which a regular wound rotor machine can operate is
denoted gray. The dashed circle with center at point (=1/xs ,; 0) and a radius of
1/x5 pu. denotes 1 p.u. excitation (i.e., the no-load voltage) and represents a per-
manent magnet machine. Operating point of a permanent magnet machine slides
along the circle of constant no-load voltage denoted by PM. As shown in Fig. A.17,
the maximum power of a permanent magnet excited machine, Pp,.x pym, 1S propor-
tional to the reciprocal of the p.u. synchronous reactance x; ...

Rated power factor cos ¢.py of a permanent magnet synchronous machine
depends on machine topology. It can be as low as 0.7 leading, as is the case in
tooth-wound machines, where the high synchronous reactance is a consequence of
an excessive air gap leakage flux.
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Active power

1 p.u. = Pmax.WR

Tew (Pmax,WR) Iwr (Pmax WR)

PM - I B Pmax.PM

Ipm (Prmax,pm) N

PrPm > WR
\

1/Xs pu. Reactive power

Fig. A.17 Simplified operating chart of a wound rotor synchronous generator (gray area) and
permanent magnet generator (dashed circle). Iwr(Pmax.wr) denotes the wound rotor machine
armature current at the point of maximum power of wound rotor machine and Ipn(Prmaxpm)
(shown dashed in figure) the permanent magnet machine armature current at the point of maximum
power of permanent magnet machine. Ipp(Pmax wr) is the permanent magnet machine armature
current necessary to produce the same maximum power as the wound rotor machine. Py, pum iS the
maximum power of the PM machine in p.u., and ¢, py denotes its rated power factor

Rated power factor cos ¢, determines the amount of stator copper losses P¢, s, as

2 Rs Mr2
Pcysy =3I Rs = Q22 " od? o (A.3.5)
with M, denoting the rated torque at the rated mechanical angular speed Q,.

In order to find the ratio between stator copper losses of a PM and wound rotor
synchronous machine for the same rated torque and active volume, one should first
determine the ratio between the fundamental components of permanent magnet and
wound rotor current sheet, Apy; and Awg, respectively.

Apm _ Bwr cos Fwr (A3.6)
Awr  Bpmcos Wpym o

with Bwpg standing for the wound rotor and Bpy, for permanent magnet machine air
gap flux density. Wpy is the spatial angle between fundamental components of
stator current sheet and rotor flux density in a permanent magnet machine and Ywgr
ditto for a wound rotor machine. Whereas Wwr can be varied by changing the
amount of field current, Wpy, at rated point is constant and can be determined by
using the MMF diagram in Fig. A.15b extended for the fundamental of armature
current sheet A,, as shown in Fig. A.19.

Based upon the MMF and current sheet diagram in Fig. A.18, one can express
the cosine of angle Wpy as
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u
F K¢ cos Qpy

\/1 + (%KC)Z + 25K, sin @py

cos Ppm = (A3.7)

Keeping the machine dimensions constant, current sheet is proportional only to
the current. Therefore, the ratio between stator current losses in a permanent magnet
and wound rotor machine is proportional to the square of the ratio between the
amplitudes of current sheet in Eq. A.3.6, or

uli-Ke-04

Fig. A.18 Relationship between fundamental components of MMF and current sheet in a syn-
chronous machine

Pcustpm
= P
Kc=0.5 10 CuStWR
Ke=0.75 R 5
1
n n
-2 - - = 0
4 6 12

Stator current angle (leading)

Fig. A.19 Ratio between stator copper losses in a permanent magnet Pcys.pm and wound rotor
Pcyscwr machine with equal rated torques and active volumes as a function of the short-circuit
ratio K, and stator current phase shift at rotor temperature of 20 °C. Typical stator current angle of
a permanent magnet machine is 30° leading. The air gap flux of permanent magnet machine is only
about 2/3 of the air gap flux of the wound rotor machine, as discussed in Chap. 1
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u 2 u 1
Pousiem _ 1+ ($Ke) "+ 24K sin gpy <BWR cos TWR)Z (A.3.8)

PCuSt,WR (% KC cos QDPM)z BPM

In Fig. A.19 the ratio between stator copper losses in a permanent magnet and
wound rotor machine with equal rated torques and active volumes as a function of
the short-circuit ratio K. and stator current phase shift at 20° C rotor temperature is
presented. Already at this low rotor temperature, a permanent magnet machine can
dissipate an order of magnitude of higher stator copper losses than a wound rotor
synchronous machine, depending on the combination of machine parameters K. and
COS Prated-

The most rotors of synchronous machines are built with insulation materials in
the class F, but operated in the class B (120° absolute temperature) in order to
extend its service life. Considering temperature coefficient of —0.12 %/K for
remanent flux density and intrinsic coercive force, one obtains the ratio between
stator copper losses in a permanent magnet and wound rotor machine with equal

Kc=0.5 fPousiom
PCUS(,WR
10

Stator current angle (leading)

Fig. A.20 Same as in Fig. A.19, however, at rotor temperature of 120 °C. The loss of magne-
tization of permanent magnets at field winding rated temperature results in a significant increase of
stator copper losses and makes permanent magnet machines fully non-competitive to a field wound
machine

rated torques and active volumes at 120° rotor temperature as shown in Fig. A.20.

A permanent magnet machine having the same volume as, and operating in the
thermal environment of a wound rotor machine dissipates several times higher
stator copper losses, due to:

— Incapability of permanent magnets to generate additional ampere-turns needed
to compensate armature reaction and
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— Loss of magnetization of permanent magnets at normal operating temperatures
of contemporary electric machines.

For example, a permanent magnet machine with K. = 1 and rated power factor
cos ¢ = 0.866 dissipates 3.87 times more stator copper losses than a wound rotor
machine at a field winding temperature of 120 °C. This means that the field winding
of a wound rotor machine placed in the same geometry as the permanent magnet
rotor may dissipate 3.87 — 1 = 2.87 times the losses of the armature winding if both
machines should have the same efficiency and operate at the same temperature.

A.3.3 Power Factor of an Induction Machine—The Influence
of the Number of Machine Poles

As shown in Chap. 4, the main inductance of a winding can be expressed as

16 polaxTp 50
Lgap,cyl,l :TEZPT fw,l

with w denoting the number of turns per pole

Wph
= — A.3-9
and wp, denoting the number of in-series connected turns per phase.
A symmetrically fed, symmetrically built m-phase machine has a main inductance
per phase due to fundamental harmonic of MMF L,.i,

- m IJ'ODlZlX
L‘main - ; sz

LmainA,l

(Wenfiv) = e (A3.10)

with Lp,in,1 denoting the main inductance due to fundamental harmonic in a 2-pole
machine (p = 1). Leakage inductance of one phase can be expressed as

m
Lo = BolaxWp, v (A.3.11)

with m denoting the number of phases, N the number of slots, and A the specific
leakage permeance.

Keeping machine dimensions and winding parameters constant, one can draw
the equivalent circuit of an induction machine as a function of the number of pole
pairs p in the manner shown in Fig. A.21. Whereas leakage reactances are inde-
pendent of the number of pole pairs p, the main reactance decreases as p increases
because of an increasing air gap reluctance.

Real and imaginary components of impedance of the equivalent circuit in
Fig. A.21 can be expressed as


http://dx.doi.org/10.1007/978-3-319-39081-9_4
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Fig. A.21 Equivalent circuit of an induction machine. Only the main reactance is a function of the
number of pole pairs
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Power factor cos ¢ is now
Re{Z
cos p = é } (A3.14)

Case Study A.1 A 320 kW, 6 kV, and 2-pole squirrel cage induction machine
has the following equivalent circuit parameter: R; = 0.798 Q, X;,=8.7 Q,
R, =0.75Q, X565 =0.75 Q, Xpain1 = 465.5 Q, and Rg. = 3658 Q. The depen-
dence of its power factor on slip is shown in Fig. A.22.

If the machine is wound as a four pole with identical parameters as the original
two-pole one, its power factor decreases in the manner shown in Fig. A.22.
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Fig. A.22 Power factor as a function of slip of a squirrel cage induction machine built as a 2-pole
(curve above) and as a 4-pole (curve below)

A.4 Efficiency

Although machine efficiency is a function of numerous parameters, there exists a
scaling law for a given cooling art and construction practice, which shows a clear
dependence of efficiency on the machine rated power.

Machine electrical losses generated in the active volume V are transferred to the
cooling medium on its heat exchange surface S. If the cooling art and insulation
class remain unchanged, the heat transfer coefficient remains the same and the
losses taken from the heat exchange surface are proportional to its area

Ploss"’S’\“x2 (A41)

with x denoting the machine’s linear dimension.
Rated torque and rated power (considering rotational speed constant) are pro-
portional to the machine volume

Praea ~V NXS (A42)
On the other hand, one can write

Ploss - (1 - n)Pra[ed (A43)
Substituting expressions A. 4.1-4.2 in A.4.3, one obtains

1
n= 1-— Cm (A44)

with calibrating constant ¢ being evaluated for a given cooling art.
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Case Study A.2 The squirrel cage induction machine in Case Study A.l has a
rated efficiency of 91 %.
Taking for P, yeq in Eq. A.4.4 1 p.u., one can determine the constant cpy

CiM = (1 — n)\3/Prated =0.09

A low-speed permanent magnet wind generator 3200 kW, 690 V, and
Qrated = —34° (leading), 12.75 rpm has a rated efficiency of 93.2 %. The constant
cpm in Eq. Ad44 is

CpM = (1 — T])\s/ Prated = 0.068

The efficiency curve as a function of rated power of similarly built squirrel cage
and permanent magnet machines is shown in Fig. A.23. In the whole power range
from Ppyeqmv = 320 kW to Pryeapm = 3200 kW, the efficiency of the squirrel cage
induction machine is superior to the efficiency of the permanent machine due to
drawbacks of permanent magnet excitation.

nlp.ul
0.95 'nduitio_"__"f‘_’r_‘if?-——————_ =
/""--flsermanent magnet
machine

0.9

0.85 lu'
P [kW]
08

320 2000 3158

Fig. A.23 Efficiency curve of a squirrel cage induction machine and a permanent magnet machine
in a given power range
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Adiabatic, 20, 23
Air cooling, 379
Air gap flux density distribution, 70
Air gap inductance, 229
Air gap leakage inductance, 232
Air gap MMF, xi
Air gap permeance, 70, 79, 106, 219
Air gap width

constant, 328

variable, 332
Ampére’s circuital law, 8, 309
Apparent rotational thrust, 418
Apparent synchronous reactance, 249
Apparent synchronous resistance, 249
Armature reactance MMF, 427

B

Bernoulli, 14

Bessel function, 405
Biot-Savart, 307

Biot-Savart law, 367, 264, 265
Boundary conditions, 7
Broken cage, 181

C

Carter factor, 70, 427

Carter factor (axial), 76
Centrifugal flow, 384
Centripetal flow, 384

Charge density, ix

Circulating current, 300
Circumferential coordinate, 57
Class of insulation, vii, 40, 379
Claw pole synchronous machine, 214
Coil pitch, 50

Coil pitch factor, 59
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Complex circumferential space, 120
Concentric winding, 50
Conduction, 15
Continuity equation, 173, 177
Convection, 15
Cooling
external, 378
natural, 378
self, 378
Cooling system
closed, 378
open, 378
Cooling type, 16
Correction factor for hydraulic resistance, 15
Critical conductor height, 273
Current density, viii, 269
Current sheet, 55, 329, 425
Cylindrical rotor machine, the inductance of,
231

D

Damper winding, 428
Displacement current, viii
Distributed winding, 51

Double layer windings, 48, 297
Double-slotted air gap, 107

Doubly fed polyphase machine, 341

E

Eccentric air gap, 79, 358
Elasticity of approximation, 211
Electrical charge, viii

Electrical current, viii
Electrothermal conductance, 20
End winding, 13, 26, 228, 264
Euler, 121

Even harmonics of MMF, 97
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Evoked harmonics of MMF, 93
Evolvent, 228
Excitation efficacy, 115

F

Fan curve, 385

Fan, radial, 379

Fans, axial, 379

Faraday’s law, vii, 25, 268

Faulty synchronization, 339
Ferromagnetic cylinder, 313

Flux density, 329

Flux tube, 206

Force, on a current-carrying conductor, 318
Formed coils, 301

Form wound coils, 228

Fractional slot winding, 48, 69, 161
Friction factor, 380

Fundamental pole, 48, 161

G
Gibb’s phenomenon, 127

H

Harmonic inductance, 231

Heat resistance, 394

Heat stoage capability, 402

Heat transfer, 15

Heat transfer coefficient, 15, 380, 458
Helmbholtz, 32

High energy density permanent magnets, 30
Hollow conductor, 281

Homopolar flux, 77

Hot spot, 2, 22

Hunting, 338

Hydraulic resistance, 14, 380
Hydraulic resistance network, 387
Hydrogen cooling, 379

I

Induced voltage, 156

Integer slot winding, 48
Interturn fault, 192

Iterative solution procedure, 210

K
Kepler, 139
Kinematic viscosity, 39, 382

L

Lap winding, 51
Liquid cooling, 378
Looping of a coil, 301
Loss density, 274

Index

Losses, 379
Lundell alternator, 195

M

Magnetic energy, 233, 318

Magnetic equivalent circuit (MEC), 77, 220,
425

Magnetic field strength, viii

Magnetic gears, 106

Magnetizing current, 416

Maxwell, viii

Millikan-Fletcher experiment, viii

Mixed layer winding, 54

Mixed slot, 294

MMF, 55

Monoslot, 295

Multi turn coil, 298

Mutual inductance, 256

N

Necessary condition for generation of pure
electromagnetic torque, 332

Nibrofor, 189

Node potential equations, 393

Normalized conductor height, 273

(0]
Ohm's law, xi
Orthogonal functions, 431

P
Permanent magnets, 28, 218, 315, 452
Phasor, 448
Pitch factor for slot harmonics, 103
Poisson’s equation, 390
Pole pitch, 57
Pole symmetry, 65
Pressure, 320
Pressure drop, 380
Pressure loss coefficient, 380
end winding, 384
Principal pole, 160
Proximity effect
one- dimensional, 289
Pull out slip, 415
Pull out torque of an induction machine, 411
Pulsating magnetic field, 3

R

Radial force, 327
Radiation, 15

Random wound coils, 46
Rated power, vii, 379
Rated torque, 379
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Reluctance machine, 250
Resistance

squirrel cage, 422

winding, 422
Reynolds number, 38, 380
Ringland bar, 306
Roebel bar, 306
Rotating coil(s), 122
Rotating magnetic field, 3
Rotational harmonics of concatenated flux, 250
Rotor eccentricity, 79, 356
Roughness

coefficient of, 380

S
Saliency ratio, 238, 245
Salient pole machine, 85, 90, 94
Salient pole rotor, 236
Salient poles, 356
Saturation, 117, 311
Scalar magnetic potential, 197
Self-inductance of a coil, 235
Sequence
negative, 124
positive, 124
Shear force, 319
Sheet separation, 324
Short-circuit ratio, 425
Short circuit reactance, 418
Short turn, 65
Single layer winding, 48, 295
Single-phase induction machine, 353
Single-phase synchronous machine, 351
Single-slotted air gap, 87
Single tooth winding, 160
Skewing, 103
Skewing factor, 104
Skin depth
for current density, 270
for loss density, 274
Skin effect, 268
Slot fill factor, 45, 423
Slot harmonics, 48, 59, 74, 93, 103, 105, 147,
332
Slot leakage inductance, 260
Slot-opening factor, 58
Slot pitch, 72, 75
Slotting, 356
Sourcelessness of magnetic field, 196
Spatial harmonics, 56
Specific electric resistance, 17
Specific heat, 39, 403
Squirrel cage, 134, 171
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Squirrel cage machine, 258

Standing wave, 3, 124

Stationary coil, vii

Stefan—Boltzmann law, 16

Strand, 297

Subharmonic, 163

Sufficient condition for electromechanical
energy conversion, 332

Superconducting coils, 31

Synchronous reactance, 425

T
Tangential force, 328
Thermal conductivity, 39, 394
Thermal time constant, 402
Thin plate, 312
Tooth-wound machine, 45
Torque, 328
pulsating, 330
pure electromagnetic, 328
reluctance, 334, 357
Transient heating, 402
Transposition of strands, 306
Trapezoidal conductor, 288
Traveling speed of MMF harmonic, 124
Trivial condition for the generation of pure
electromagnetic torque, 332
Turbulence, 14
Twisted strands, 302

U
Unbalanced stator currents, 346
Unbalanced rotor flux, 350

A\

V-curves, 34

Vector magnetic potential, 205
Voltage differential equations, 213
Volume flow rate, 14

Volumetric flow rate, 380

w

Wave winding, 51
Wiedemann—Franz law, 15
Willyoung bar, 306
Winding pitch, 49, 51

Y
Yoke wedges, 27

Z
Zone factor, 67
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