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Preface

This volume can be viewed from different perspectives. First of all, it is a result of a
special project initiated by the editors, and then implemented thanks to an enthu-
siastic response of the contributors to the invitation to present their new ideas and
solutions. The idea of the volume has been a result of, first of all, discussions of the
editors between themselves and with the participants at the well-known IEEE
Intelligent Systems, IEEE IS, which since 2002 have been a popular venue for the
international research community interested in broadly perceived intelligent sys-
tems theory and applications. These idea of these conferences was born in Bulgaria
in the beginning of the new century and the first IEEE IS conferences were held in
2002, 2004 and 2008 in Varna, Bulgaria, where both the scientific level and a very
attractive venue at the Black Sea coast attracted many participants from all over the
world. Due to a growing importance of the IEEE ISs, and a growing interest from
the international research community, the third and fifth conferences, in 2006 and
2010, were organized in London, UK and the sixth conference, in 2012 was held in
Sofia, Bulgaria.

Following the tradition that had existed since the very beginning, that is, since
IEEE IS’2002, during the IEEE IS’2012 the International Program Committee
again decided to choose the best papers, both from the point of view of their novelty
of ideas and tools, and technical content, to be included in a special volume meant
as some sort of a summary of the state of the art and new trends in broadly
perceived intelligent systems.

This volume has resulted from that decision and careful analyses of both the
theoretical and applied contents of the papers and interests of the participants and
the entire research community, with an emphasis on, on the one hand, what has
been presented in the best papers at the conference, and on the other hand, with
some emphasis of what has been proposed by leading Bulgarian scientists and
scholars who have inspired many people around the world with new ideas and
solutions.

In this short preface, we will briefly summarize the content of the consecutive
papers included in the volume, emphasizing novel concepts, and ideas.
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Samuel Delepoulle, André Bigand Christophe Renaud and Olivier Colot
(Chapter “Low-Level Image Processing Based on Interval-Valued Fuzzy Sets and
Scale-Space Smoothing”) present a new approach for image analysis and restora-
tion based on interval-valued fuzzy sets and scale-space smoothing. To show the
effectiveness and efficiency of their solution, two specific and significant image
processing applications are considered: no-reference quality evaluation of
computer-generated images and speckle noise filtering.

In his paper Dimitar G. Dimitrov (Chapter “Generalized Net Representation of
Dataflow Process Networks”) presents translation rules for mapping from a given
dataflow process network to a generalized net which is a novel, highly effective and
efficient model of, among others, discrete event processes and systems.

Stefka Fidanova, Miroslav Shindarov and Pencho Marinov (Chapter “Wireless
Sensor Positioning Using ACO Algorithm”) deal with spatially distributed sensors
which communicate wirelessly and form a wireless sensor network. The mini-
mization of the number of sensors and energy consumption by the network is then
performed using an Ant Colony Optimization (ACO) algorithm.

In the paper by Petia Georgieva, Luis Alberto Paz Suárez and Sebastião Feyo de
Azevedo (Chapter “Time Accounting Artificial Neural Networks for Biochemical
Process Models”) the problem of developing more efficient computational schemes
for the modeling of biochemical processes is discussed. A theoretical framework for
the estimation of process kinetic rates based on different temporal (time accounting)
Artificial Neural Network architectures is introduced.

Tomohiro Hara, Tielong Shen, Yasuhiko Mutoh and Yinhua Liu (Chapter
“Periodic Time-Varying Observer-Based Learning Control of A/F Ratio in Multi-
cylinder IC Engines”) present an air-fuel ratio control scheme via individual fuel
injection for multi-cylinder internal combustion (IC) engines. Their concern is to
improve the air-fuel ratio precision by a real-time compensation of the unknown
off-set in the fuel path of the individual cylinder, which represents the effect of the
cylinder-to-cylinder imbalance caused by the perturbations in each injector gain or
disturbances in the dynamics of fuel injection path.

Tatjana Kolemishevska-Gugulovska, Mile Stankovski, Imre J. Rudas, Nan Jiang
and Juanwei Jing (Chapter “Fuzzy T–S Model-Based Design of Min–Max Control
for Uncertain Nonlinear Systems”) present an approach to robust control synthesis
for uncertain nonlinear systems through the use of the Takagi–Sugeno fuzzy model
and fuzzy state observer. The existence conditions the output feedback min-max
control in the sense of Lyapunov asymptotic stability are derived, and a convex
optimization algorithm is used to obtain the minimum upper bound on the per-
formance and the optimum parameters of mini-max controller. An example of an
inverted pendulum is shown and the results are promising.

A novel application of a generalized net is described in the paper by Maciej
Krawczak, Sotir Sotirov and Evdokia Sotirova (Chapter “Modeling Parallel
Optimization of the Early Stopping Method of Multilayer Perceptron”) for the
parallel optimization of the multilayer perception (MLP) based on an early stopping
algorithm.
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Paper Jinming Luo and Georgi M. Dimirovski (Chapter “Intelligent Controls for
Switched Fuzzy Systems: Synthesis via Nonstandard Lyapunov Functions”)
investigate the synthesis of intelligent control algorithms for switched fuzzy sys-
tems by employing non-standard Lyapunov functions and some combined, hybrid
techniques. The control plants are assumed to be nonlinear and to be represented by
some specific Takagi–Sugeno fuzzy models.

The latest advances in the field of switching adaptive control based on hybrid
multiple Takagi–Sugeno (T–S) models are presented in paper by Nikolaos A.
Sofianos and Yiannis S. Boutalis (Chapter “A New Architecture for an Adaptive
Switching Controller Based on Hybrid Multiple T-S Models”).

Ketty Peeva (Chapter “Optimization of Linear Objective Function Under
min−Probabilistic Sum Fuzzy Linear Equations Constraint”) presents a method for
the solution of a linear optimization problem when the cost function is subject to the
constraints given as fuzzy linear systems of equations.

Tania Pencheva and Maria Angelova (Chapter “Intuitionistic Fuzzy Logic
Implementation to Assess Purposeful Model Parameters Genesis”) are concerned
with the derivation of intuitionistic fuzzy estimations of model parameters of the
process of yeast fed-batch cultivation. Two kinds of simple genetic algorithmswith the
operator sequence selection-crossover-mutation and mutation-crossover-selection are
considered, and both applied for the purposes of parameter identification of S. cere-
visiae fed-batch cultivation.

Patrick Person, Thierry Galinho, Hadhoum Boukachour, Florence Lecroq and
Jean Grieu (Chapter “Dynamic Representation and Interpretation in a Multiagent
3D Tutoring System”) present an intelligent tutoring system aimed at decreasing the
students’ dropout rate by offering a possibility of a personalized follow up. An
architecture of an intelligent tutoring system is described and the experimental
results of the decision support system used as the core of the intelligent tutor are
given.

The dynamics of the upper extremity is modeled in Simeon Ribagin, Vihren
Chakarov and Krassimir Atanassov (Chapter “Generalized Net Model of the
Scapulohumeral Rhythm”) as the motion of an open kinematic chain of rigid links,
attached relatively loosely to the trunk.

A method for the interpretation of propositional binary logic functions that
allows the logical concepts ‘true’ and ‘false’ to be treated as stochastic variables is
described in Vassil Sgurev and Vladimir Jotsov (Chapter “Method for Interpretation
of Functions of Propositional Logic by Specific Binary Markov Processes”).
Examples are presented and a numerical realization is done by using some functions
of propositional logic by binary Markov processes.

Shannon, A.G., B. Riecan, E. Sotirova, K. Atanassov, M. Krawczak,
P. Melo-Pinto, R. Parvathi and T. Kim (Chapter “Generalized Net Models of
Academic Promotion and Doctoral Candidature”) propose a new generalized net
based model for the analysis of the process of academic promotion through the
hierarchy in higher education and the preparation of PhD candidates.

The generalized net model, described in paper “Maria Stefanova-Pavlova, Velin
Andonov, Todor Stoyanov, Maia Angelova, Glenda Cook, Barbara Klein, Peter
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Vassilev and Elissaveta Stefanova’s paper (Chapter “Modeling Telehealth Services
with Generalized Nets”), presents the processes related to the tracking of changes in
health status (diabetes) of adult patients. The progress in telecommunications and
navigation technologies allow this model to be extended to the case of active and
mobile patient.

Yancho Todorov, Margarita Terziyska and Michail Petrov (Chapter “State-
Space Fuzzy-Neural Predictive Control”) give a novel view of potentials of the
state–space predictive control methodology based on a fuzzy-neural modeling
technique and different optimization procedures for process control. The proposed
controller methodologies are based on the Fuzzy-Neural State-Space Hammerstein
model and variants of Quadratic Programming optimization algorithms.

Vesela Vasileva and Kalin Penev (Chapter “Free Search and Particle Swarm
Optimisation Applied to Global Optimisation Numerical Tests from Two to
Hundred Dimensions) investigate two methods of global optimization, Free Search
(FS) and Particle Swarm Optimisation (PSO), and show results of some numerical
tests on difficult examples. The objective is to identify how to facilitate the eval-
uation of effectiveness and efficiency of heuristic, evolutionary, adaptive, and other
optimisation and search algorithms.

Peter Vassilev (Chapter “Intuitionistic Fuzzy Sets Generated by Archimedean
Metrics and Ultrametrics”) investigates a general metric approach for the generation
of intuitionistic fuzzy sets, notably the cases when the generation is done by a norm
on R2 and a field norm on Q2.

Boriana Vatchova and Alexander Gegov (Chapter “Production Rule and
Network Structure Models for Knowledge Extraction from Complex Processes
Under Uncertainty”) consider processes with many inputs, some of which are
measurable, and many outputs from different application areas, and in which
uncertainty plays a key role.

We wish to thank all the contributors to this volume. We hope that their papers,
which constitute a synergistic combination of foundational and application oriented
works, including relevant real world implementations, will be interesting and useful
for a large audience interested in broadly perceived intelligent systems.

We also wish to thank Dr. Tom Ditzinger, Dr. Leontina di Cecco, and Mr.
Holger Schaepe from Springer for their dedication and help to implement and finish
this publication project on time maintaining the highest publication standards.

Sofia, Bulgaria Vassil Sgurev
New Rochelle, USA Ronald R. Yager
Warsaw, Poland Janusz Kacprzyk
Sofia, Bulgaria Krassimir T. Atanassov
March 2015
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Low-Level Image Processing Based
on Interval-Valued Fuzzy Sets
and Scale-Space Smoothing

Samuel Delepoulle, André Bigand, Christophe Renaud
and Olivier Colot

Abstract In this paper, a new technique based on interval-valued fuzzy sets and

scale-space smoothing is proposed for image analysis and restoration. Interval-

valued fuzzy sets (IVFS) are associated with type-2 semantic uncertainty that makes

it possible to take into account usually ignored (or difficult to manage) stochastic

errors during image acquisition. Indeed, the length of the interval (of IVFS) provides

a new tool to define a particular resolution scale for scale-space smoothing. This res-

olution scale is constructed from two smoothed image histograms and is associated

with interval-valued fuzzy entropy (IVF entropy). Then, IVF entropy is used for

analyzing the image histogram to find the noisy pixels of images and to define an

efficient image quality metric. To show the effectiveness of this new technique, we

investigate two specific and significant image processing applications: no-reference

quality evaluation of computer-generated images and speckle noise filtering.

1 Introduction

Low-level image processing is very important to provide good quality images to

further stages of digital image processing. Low-level image processing is based on

image acquisition, which is viewed as a composition of blurring, ideal sampling

and added noise [1]. In this model, (ideal) intensity distribution is first affected by

aberrations in the optics of the real camera (blurring). This process attenuates high-
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2 S. Delepoulle et al.

frequency components in the image. Then in the case of blurred images issued from

video cameras (CCD array images), the image acquisition process is classically mod-

eled using two important hypotheses.

First, each pixel intensity is considered as the weighted mean of the intensity

distribution in a window around the ideal pixel position (ideal sampling, that is to

say the image intensity distribution is mapped onto a discrete intensity distribution,

or histogram h in the sequel). The second classic hypothesis is about added noise that

is classically assumed to be an additive stationary random field (quantization effects

are ignored). These assumptions are often set as prior knowledge in many vision

models. In two special cases, we will try to estimate the blurred, distorted intensity

distribution h using a new technique.

The first hypothesis is not verified in the case of image synthesis using global

illumination methods. The main goal of global illumination methods is to produce

computer-generated images with photo-realistic quality. For this purpose, photon

propagation and light interaction with matter have to be accurately simulated. Sto-

chastic methods were proposed for more than 20 years in order to reach these goals.

They are generally based on the Path Tracing method proposed by Kajiya [2] where

stochastic paths are generated from the camera point of view towards the 3D scene.

Because paths are randomly chosen, the light gathering can greatly change from one

path to another generating high-frequency intensity variations through the image [3].

The Monte Carlo theory however ensures that this process will converge to the cor-

rect image when the number of samples (the paths) grows. But no information is

available about the number of samples that are really required for the image being

considered as visually satisfactory. The human visual system (HVS) is endowed with

powerful performances, and most HVS models provide interesting results but are

complex and still incomplete due to the internal system complexity and its partial

knowledge. So, objective metrics have been developed: full-reference metrics (using

a reference image and PSNR or SSIM quality index [4]) and no-reference metrics

(with no-reference image available). Image quality is governed by a variety of factors

such as sharpness, naturalness, contrast, noise, etc. To develop a no-reference objec-

tive image quality metric by incorporating all attributes of images without referring

to the original ones is a difficult task. Hence, we shall concentrate on the work of the

no-reference image sharpness metric (or blurriness metric which is inversely related

to sharpness metric). In [5], a general review of no-reference objective image sharp-

ness/blurriness metrics is given. They generally require relatively long computation

times and are often difficult to use and to compute. So, in this paper a novel no-

reference image content metric is proposed, based on type-2 fuzzy sets entropy (to

model uncertainty brought by blur and noise affecting the image computer genera-

tion). This metric does not require any prior knowledge about the test image or noise.

Its value increases monotonically either when image becomes blurred or noisy. So it

may be used to detect both blur and noise.

Speckle is the term used for granular patterns that appear on some types of images

(in particular ultrasonic images), and it can be considered as a kind of multiplica-

tive noise. Speckle degrades the quality of images and hence it reduces the ability

of human observer to discriminate fine details. Ordinary filters, such as mean or



Low-Level Image Processing Based on Interval-Valued . . . 3

median filters are not very effective for edge preserving smoothing of images cor-

rupted with speckle noise. So particular filter, like Frost filter, was developed [6].

This filter assumes multiplicative noise and stationary noise statistics. So, in a more

general case, we propose to use type-2 fuzzy sets in he same way than for computer-

generated images. We want to demonstrate the general ability of type-2 fuzzy sets

entropy to quantify noise level for each stage of image generation (or acquisition)

that is to say blurring, stochastic errors at the pixel level, and added multiplicative

noise.

Type-1 fuzzy sets (or FS in the sequel) are now currently used in image process-

ing [7–9], since greyscale images and fuzzy sets are modeled in the same way, [10,

11]. The major concern of these techniques is that spatial ambiguity among pixels

(imprecision about ideal pixel position) has inherent vagueness rather than random-

ness. However, some sources of uncertainties are not managed using FS [12]: the

meaning of the words that are used, measurements may be noisy, the data used to tune

the parameters of FS may also be noisy. Imprecision and uncertainty are naturally

present in image processing [13], and particularly these three kinds of uncertainty.

The concept of type-2 fuzzy set was introduced first by Zadeh [14] as an extension

of the concept of FS. Mendel [12, 15, 16] has shown that type-2 fuzzy sets (or FS2)

may be applied to take into account these three kinds of uncertainty. Type-2 fuzzy

sets have membership degrees that are themselves fuzzy. Hence, the membership

function of a type-2 fuzzy set is three dimensional, and it is the new third dimension

that provides new design degrees of freedom for handling uncertainties.

In this paper, we consider the special case of interval type-2 fuzzy set (or interval-

valued fuzzy sets) for image pre-processing. An interval valued-fuzzy set [14] is

defined by interval-valued membership functions; each element of an IVFS (related

to an universe of discourse X) is associated with not just a membership degree but

also the length of its membership interval that makes it possible IVFSs to deal with

other dimensions of uncertainty. One way to model uncertainty in the pixel val-

ues of a greyscale image is to use fuzzy mathematical morphology (FMM) [10].

FMM has also been extended to interval-valued FMM ([11]) and makes it possible

IVFSs generation. Melange et al. [11] investigated with success the construction of

IVFS for image processing using these tools. Sussner et al. presented an approach

towards edge detection based on an interval-valued morphological gradient [17],

and obtained good results applying this method to medical images processing. The

interval length of IVFS can also be used to take into account the dispersion of the

probability of occurrences associated to each pixel grey level of an image and due to

noise. In a previous paper [18], we have shown that interval-valued fuzzy entropy is

a particularly adapted tool to detect relevant information in noisy images, and then

impulse noise removal from images becomes possible. We have also shown [19]

that this method is efficient to remove speckle noise and to define a no-reference

computer-generated images quality metric [20] (and its application to denoising).

According to these interesting results, it seems important to link IVFSs and sto-
chastic analysis of image acquisition (or image generation) using a scale-space

smoothing frame, to provide a generic low-level image pre-processing technique.

Indeed, a classic way to model uncertainty in the pixel values of a greyscale image
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is to use information brought by image histograms, that allows the construction of

IVFSs from extension of scale-space theory. IVFS is constructed from the associa-

tion of two non-additive Gaussian kernels (the upper and lower bounds of member-

ship interval are obtained from two smoothed histograms). In this paper we focus on

IVFSs construction for the special case of stochastic image analysis and filtering. The

paper is organized as follows: Sect. 2 describes some preliminary definitions about

scale-space smoothing and IVFSs; Sect. 3 introduces the design of the IVFS image

quality evaluation; Sect. 4 presents the design of the IVFS speckle noise detection

and filtering. Conclusion and potential future work are considered in Sect. 5.

2 IVFS and Scale-Space Smoothing

2.1 Scale-Space Smoothing

Scale-space smoothing is an interesting framework for stochastic image analysis

[21]. Smoothed histograms are classically generated using kernel convolution, and

we propose to extend this technique to interval-valued fuzzy membership function

generation for image processing.

A kernel is a [0, 1]-valued function K defined on a domain X verifying the sum-

mative normalization property

∫x∈X
K(x)dx = 1. (1)

Since Babaud et al. [22] proved that Gaussian kernel is the only linear filter that

gives a consistent scale-space theory, we only consider this kind of kernel. As well as

classic kernels K (normal, Epanechnikov, . . . kernels), Gaussian (FS) fuzzy numbers

may be considered as non-additive kernels. Like an additive kernel, a non-additive

kernel (or maxitive kernel as defined by Rico et al. [23]) is a [0, 1]-valued function

𝜋 defined on a domain X verifying the maxitive normalization property

Supx∈X𝜋(x) = 1. (2)

where 𝜋(x) can be seen as a possibility distribution or as the membership function of

a normalized FS of X. Jacquey et al. [24] successfully used this technique to define

maxitive filters applied on noisy images, as well as Strauss et al. [23] for histogram

smoothing. Then we consider a (Gaussian) membership function 𝜇(x; g, 𝜎) seen as

non-additive kernel for the sequel, (𝜇(x; g, 𝜎) is represented in Fig. 1), centered on g
and defined using a free constant parameter 𝜎, considered as the scale value in the

following (x ∈ [0,G − 1]):
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𝜇(x; g, 𝜎) = exp
[
−1
2

(x − g
𝜎

)2
]
. (3)

Let “G” measured data points be (g, h(g)), with g the image pixels grey level, (g =
0,… ,G − 1) and h(g) the image histogram value at the gth location. Averaging or

scale-space smoothing is used to reduce the effects of noise. The main idea of this

approach is to map the discrete histogram h to a continuous one H(x) (interpolation

method). H(x) is called the scale-space representation of h, at scale 𝜎 and is given

by the following equation:

H(x) =
G−1∑
g=0

[
K(x − g).h(g)

]
(4)

with x ∈ X, x = 0,… ,G − 1. The scale-space theory has several advantages, and

particularly it works for all scales. The effect of additive noise can easily be esti-

mated. It makes it possible to compare the real intensity distribution with the inter-

polated distribution. A classic and well-known application of this theory is sub-pixel

edge detection [25], so this framework is a good candidate to take into account the

stochastic errors involved in computer-generated images and for multiplicative noise.

Nevertheless, there remains a huge drawback about the choice of scales (and particu-

larly for small-scale parameters). So we propose a new strategy to remedy this draw-

back. IVFSs, applied to digital images, can be viewed as a special kind of resolution

scale constructed from differencing two smoothed image histograms.

2.2 Interval-Valued Fuzzy Sets

Ordinary fuzzy sets (precise fuzzy sets) used in image processing are often fuzzy

numbers. A fuzzy set defines the meaning representation of the vagueness associated

with a linguistic variable A in a natural language. However, it is not possible to say

which membership function is the best one. The major motivation of this work is

to remove the uncertainty of membership values by using interval-valued fuzzy sets

(and so incorporate uncertainty carried by the grey values of pixels of an image).

Let X be the universe of discourse. An ordinary fuzzy set A of a set X is classically

defined by its membership function 𝜇A(x) (with x ∈ X) written as

𝜇A ∶ X → [0, 1] (5)

Let S([0, 1]) denote the set of all closed subintervals of the interval [0, 1]. An

interval-valued fuzzy set (IVFS) A in a non-empty and crisp universe of discourse X
is a set such that [14, 26]

A = {
(
x,MA(x) =

[
𝜇AL(x), 𝜇AU(x)

])
∣ x ∈ X}. (6)
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Fig. 1 Interval-valued fuzzy set

The membership function (MF) MA defines the degree of membership of an element

x to A as follows:

MA ∶ X ⟶ S([0, 1]) (7)

For each IVFS A, we denote by 𝛿A(x) the amplitude of the considered interval

(𝛿A(x) = 𝜇AU(x) − 𝜇AL(x)). So non-specific evidence (an interval of membership val-

ues) for x belonging to a linguistic value A is identified by IVFS. Figure 1 presents

(Gaussian) membership functions of an IVFS in X, and particularly illustrates inter-

val 𝛿(x′) associated with an element x′ ∈ X. For each element x ∈ X of the IVFS, the

imprecision of the FS is defined by closed intervals delimited by the upper member-

ship function 𝜇U(x) and the lower membership function 𝜇L(x). These membership

functions 𝜇L(x) and 𝜇U(x) are two FS membership functions, which fulfill the fol-

lowing condition:

0 ≤ 𝜇L(x) ≤ 𝜇U(x) ≤ 1. (8)

2.3 Multiscale Image Analysis Using IVFSs

According to multiscale technique, a signal can be decomposed into components of

different scales. In that way, many 2D wavelet transforms algorithms [27] have been

introduced. All these methods have advantages and drawbacks. Following the con-

tent of the data, and the nature of the noise, each of these models can be considered

as optimal. So, we propose to use IVFS to build a generic model using a resolution

scale interval instead of a multiresolution decomposition. A resolution scale inter-
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val is constructed from differencing two smoothed image histograms, one smoothed

image histogram at scale 𝜎1, the other smoothed image histogram at scale 𝜎2 (𝜎1 and

𝜎2 are defined using 𝜎 and 𝛼 in the following membership functions 𝜇U(x) and 𝜇L(x)).
An important case of partial information about a random variable h(g) is when we

know that h(g) is within a given interval hU(g) − hL(g) (with probability equal to 1),

but we have no information about the probability distribution within this interval.

Thus, IVFS is defined with the following membership functions 𝜇U(x) and 𝜇L(x):

∙ upper limit: 𝜇U(x) ∶ 𝜇U(x) = [𝜇(x; g, 𝜎)]1∕𝛼 , (with 𝛼 to be determined),

∙ lower limit: 𝜇L(x) ∶ 𝜇L(x) = [𝜇(x; g, 𝜎)]𝛼

So, it is natural to use IVFSs to take into account uncertainty regarding the measured

grey levels. In this model, a pixel in the image domain is not longer mapped onto

one specific occurrence h(g) (associated to grey value g), but onto an interval of

occurrences to which the uncertain value h(g) is expected to belong. The previous

smoothing technique is refined to construct IVFSs from histogram smoothing as we

present now.

First, we generate two smoothed histograms HU and HL by performing Gaussian

convolution with scales 𝜎1 and 𝜎2 on the initial histogram, where 𝜎1 is smaller than

𝜎2. The Gaussian kernel was previously presented and HU and HL are computed

using the functions 𝜇U(x) and 𝜇L(x)

HU =
G−1∑
g=0

[
h(g).

(
𝜇U(x)

)]
=

G−1∑
g=0

[
h(g). ([𝜇(x; g, 𝜎)]𝛼)

]

HL =
G−1∑
g=0

[
h(g).

(
𝜇L(x)

)]
=

G−1∑
g=0

[
h(g).

(
[𝜇(x; g, 𝜎)]1∕𝛼

)] (9)

2.4 Interval-Valued Fuzzy Entropy

As mentioned before, one way to model uncertainty in the pixel values of a greyscale

image is to use information brought by image histograms. Image histograms are

probability distributions, and information is typically extracted using information

measures, and particularly entropy. The terms fuzziness degree [28] and entropy [29]

provide the measurement of fuzziness in a set and are used to define the vagueness

degree of the process. These well-known concepts have been developed in a previous

paper [18]. Particularly, the linear index of fuzziness proposed by Pal [30] reflects

the average amount of ambiguity present in an image A. So, for aM × N image subset

A ⊆ X with G grey levels g ∈ [0,G − 1], the histogram h(g), and for each previous

smoothed image histogram, we can define the linear indices of fuzziness
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𝛾U(A) =
1

M × N

G−1∑
g=0

[
h(g).

(
𝜇U(g)

)]

𝛾L(A) =
1

M × N

G−1∑
g=0

[
h(g).

(
𝜇L(g)

)] (10)

Nevertheless, the total amount of uncertainty is difficult to calculate in the case of

fuzzy sets (FS), and particularly when images (represented using a FS) are corrupted

with noise, so we introduced the IVFS imprecision degree (imprecision of approx-

imation of a fuzzy set; Many authors named it interval-valued fuzzy entropy for

historical reasons). Burillo [31] presented an interesting study relative to the entropy

of an IVFS A in X. The defined entropy measures how interval-valued a set is with

respect to another fuzzy set.

Tizhoosh [9], first intuitively showed that it is very easy to extend the previous

concepts of FS (linear index of fuzziness proposed by Pal [30]) for IVFS, and to

define (linear) index of ultrafuzziness. The construction of IVFS using histogram

smoothing we propose leads to an IVF entropy 𝛤 (x) that fulfills the conditions

required by Burillo [31] for IVFS entropy. So, it is very easy to extend the previ-

ous concepts of linear ultrafuzziness index 𝛾(x) proposed by Tizhoosh [9], and to

define the IVF entropy 𝛤 (x) as follows:

𝛤 (x) = 1
M × N

G−1∑
g=0

[
h(g).

(
𝜇U(x) − 𝜇L(x)

)]

= 1
M × N

G−1∑
g=0

[
h(g).

(
[𝜇(x; g, 𝜎)]1∕𝛼 − [𝜇(x; g, 𝜎)]𝛼

)]

= 1
M × N

G−1∑
g=0

[
Δg(x)

]
(11)

Tizhoosh used linear ultrafuzziness index as a tool to threshold greyscale images with

success. Bustince et al. [32] proposed a very similar method to generalize Tizhoosh’s

work using IVFS. They introduced the concept of ignorance function and proposed a

thresholding method based on this function (they look for the best threshold to define

background and objects of an image). Using the same definition of the linear index

of ultrafuzziness, we apply this performing index to greyscale images multithresh-

olding [18]. We want to show that IVF entropy, built using scale-space smoothing,

is a generic tool to characterize stochastic errors during image generation. This IVF

entropy is a good candidate to define a no-reference quality metrics for images syn-

thetic and to handle images distorted with multiplicative noise, that we will present

in the next sections.
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2.5 Scale Parameters Tuning

Now, let us consider the different parameters involved in the characterization of an

IVFS. 𝜎1 and 𝜎2 are defined using the parameter 𝜎 (of the previous Gaussian ker-

nel defined by 𝜇(x; g, 𝜎) and the exponent 𝛼). Tizhoosh has applied IVFS to image

thresholding, where IVFS was defined with 𝛼 = 2. It is almost impossible to find

these optimum values depending on the input images, and this is why an iterative

scheme is adopted. In our case, from a large quantity of tests, we have observed that

filtering effects were better for 𝛼 > 2. In this application, the value of 𝛼 was kept

constant to 𝛼 = 3, but values from 2 to 5 yield good results as well.

The method for the automatic tuning of 𝜎 is data dependent, and, consequently,

sensitive to the noise present in the input image. The proposed technique adopts a

multipass procedure that takes into account IVF entropy 𝛤 . In fact, IVFS construc-

tion and image processing are carried out both together and this action is performing

until IVF entropy 𝛤 becomes maximum to conduct the best image processing (and

IVFS construction). This procedure operates as follows:

∙ An image I corrupted by stochastic errors is assumed as input data.

∙ By varying the value 𝜎 of IVFS from a minimum value (𝜎 = 10) to a max-

imum one (𝜎 = 125), a collection of scale-space representations with their

IVF entropy 𝛤 is evaluated. Let 𝜎(p1) the value that corresponds to the global

maximum of 𝛤 , Max(𝛤 ) (pi corresponds to the number of iteration).

∙ The resulting scale-space representation is assumed as input data in order to

perform a second scale-space representation.

∙ Again, by varying the value of parameter 𝜎, a collection of scale-space rep-

resentations is obtained. Let 𝜎(p2) the value that correspond to Max(𝛤 ). If

MAX(𝛤 (p2) > MAX(𝛤 (p1)) proceed to the next step, otherwise stop the pro-

cedure and consider the previous resulting scale-space representation as the

data output.

∙ The result represents the resolution scale corresponding to image I.

2.6 Noise Filtering

To complete the pre-processing scheme it is possible to filter the considered cor-

rupted image. Let denote I(n,m) the grey level value of the pixel (n,m) of a M × N
noisy image. The noise detection process results in dividing the histogram into dif-

ferent zones, according to the maxima of IVF entropy 𝛤max. So pixels are classified

into two groups: noise-free pixels (i.e. belonging to one of the K classes), and noisy

pixels. Each of the K pixels class is associated with a region Rk in the restored image.

Then, median filter (med(n,m)) is applied to all pixels I(n,m) identified as corrupted
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while leaving the rest of the pixels identified as noise-free. Letmed(n,m) be the value

of pixels in a local window of size 3 × 3 in the surrounding of I(n,m) (i.e. a window-

ing (3, 3) around the pixel (n,m)). This method reduces the distortion generated in

the restored image, introducing the necessary spatial (local) information to obtain

spatially connected regions. So, the restored image J(n,m) appears as follows:

J(n,m) =

{
I(n,m) if I(n,m)isnoise − free
med(n,m) if I(n,m)isnoisy.

(12)

3 The Design of the IVFS Image Quality Evaluation

We propose now to use IVF entropy to extract a new blur (and noise) level index,

and thus to introduce a new no-reference image quality metrics.

3.1 Proposed Scheme

The blur and noise level measure scheme is divided into two steps. In the first one,

we perform histogram analysis using the IVF entropy 𝛤 (x) applied to a block of

the processed image I (I is divided into Ki patches (or blocks)). We use the effi-

cient peak detection method (dominating peaks in the histogram analysis represent

homogeneous regions of I) presented by Cheng [33] to obtain the maximum IVF

entropy for each block. In the second step, we applied the denoising treatment on

that block. The implementation of image quality evaluation based on IVF entropy

𝛤 is illustrated by the following experiment. Consider an edged image patch (chess-

board example, see Fig. 2) added with white Gaussian noise with different variances

𝜎

2
n . The average value of 𝛤 is plotted in Fig. 2 (100 simulations are carried out with

independent noise realizations). Then the test patch was blurred first and added by

white Gaussian noise with 𝜎n = 0.1, the average 𝛤 is also plotted Fig. 2 (the edged

patch is blurred by applying a Gaussian smoothing filter with a growing standard

deviation 𝜎). From this set of experiments we can see that for edged patches, the

value of the metric 𝛤 drops monotonically as the image content becomes more and

more blurred and/or noisy. In other words, we experimentally demonstrate that 𝛤 is

an indicator of local signal to noise ratio.

3.2 Algorithm

The implementation of image quality evaluation based on IVFSs and IVF entropy 𝛤

is given by the following algorithm (Algorithm 1).
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Fig. 2 Simulations using both random noise and blur for an edged patch. a Clean patch. b White

Gaussian noise added to the clean patch, 𝜎n = 0.02. c Blurred clean patch. d Blurred clean patch

and added with white Gaussian noise, 𝜎n = 0.1. e 𝛤 versus noise. f 𝛤 versus kernel
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Algorithm 1 Image quality measure

Require: an input noisy M × N grey-level image I, divided into Ki non-overlapping patches and

calculate the entropy 𝛤

k
for each patch k (0 < k < Ki),

for example a 512 × 512 image is divided into 16 non-overlapping blocks of size 128 × 128
1: Compute the k-patch image histogram hk(g)
2: Select the shape of MF (MF, membership function, with 𝜎 approximation)

3: Initialize the position of the membership function

4: Shift the MF along the grey-level range

5: 𝛤

k
max ← 0

6: for each position g do
7: Compute 𝜇U(g) and 𝜇L(g)

8: Compute 𝛤

k(g) = 1
M×N

L−1∑
g=0

hk(g) ×
[
𝜇U(g) − 𝜇L(g)

]
9: if 𝛤 k

max ≤ 𝛤

k(g) then
10: 𝛤

k
max ← 𝛤

k(g)
11: end if
12: Keep the value 𝛤

k
max for patch k

13: end for
14: Iterate the number of the patch: k + 1
15: Apply the test parameter to get a denoised patch

16: For each denoised patch, keep the local metric 𝛤

k(g) . Compute the value 𝛤 for global image

I with 𝛤 (g) = 1
Ki

Ki∑
k=1

𝛤

k(g)

17: Compute the new image (J) histogram hJ(g), normalized to 1
Ensure: The image I quality metrics 𝛤 , the filtered image J

3.3 Experimental Results with a Computer-Generated Image

In order to test the performance of the proposed technique, some results obtained

with the computer-generated image named “Bar”, (the original (Bar) image is pre-

sented Fig. 3 with the blocks registration), are shown is this presentation (other

images were tested and same behaviors were observed. They are not presented

here due to the lack of space and can be found on http://www-lisic.univ-littoral.

fr/~bigand/IJIS/Noref-metrics.html). This image is composed of homogeneous and

noisy blocks and is interesting to present some results. In Fig. 4, the first image (left)

is the fifth noisy block, the second one is the result obtained with the IVFS filter,

the third one is the tenth noisy block (at first iteration, 𝜎 = 10), and the fourth one

(bottom right) is the result obtained with the IVFS filtering obtained at optimized

(tenth) iteration. The main idea of the paper is the following: synthesis process is

started with a great noise level and a certain entropy value. So the initial position of

the synthesis process is unknown but the observed behavior measured at each itera-

tion of the image synthesis process brings us information. The average information

quantity gained at each iteration is entropy. The measured entropy using IVFS seems

to be an interesting measure of noise level and supplies a no-reference quality eval-

uation used as denoising scheme in the proposed image synthesis process. It proves

the advantage of this approach qualitatively (more uncertainty is taken into account

using IVFSs, as previously suggested).

http://www-lisic.univ-littoral.fr/~bigand/IJIS/Noref-metrics.html
http://www-lisic.univ-littoral.fr/~bigand/IJIS/Noref-metrics.html
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Fig. 3 Reference image “Bar”

(a) (b)

(c) (d)

Fig. 4 Blocks denoising using 𝛤 . a Noisy image, block 5. b Denoised image, block 5. c Noisy

image, block 10. d Denoised image, block 10



14 S. Delepoulle et al.

3.4 Performance Comparisons of Image Quality Measures

We have applied the unsupervised algorithm we propose further, and extensive

experiments have been conducted on a variety of test images to evaluate the perfor-

mance of the proposed image quality index. The previous image will be filtered iter-

atively “p” times. If the method correctly operates, the image should not be degraded

but noise should be canceled. In order to verify this assumption a quantitative com-

parison with different filtering methods has been made. So the measure of struc-

tural similarity for images (SSIM quality index [4]) has also been calculated on the

course of ten iterations as shown Fig. 5. This measure is based on the adaptation of

the human visual system to the structural information in a scene. The index accounts

for three different similarity measures, namely luminance, contrast and structure. The

closer the index to unity, the better the result. It is easy to see that Wiener and averag-

ing filters have a stable behavior for recursive filtering (but small SSIM values) while

IVFS filtering presents the best results in term of SSIM. We would like to highlight

the advantages of the proposed measure: this measure is simple; it is parameter free

and avoids additional procedures and training data for parameter determination.

: IVFS filter

•: Wiener filter

: Mean filter

1 2 3 4 5 6 7 8 9 10
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0.4
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0.7

0.8

0.9

1.0

Iteration number

• • • • • • • • • •

SS
IM

Fig. 5 SSIM index versus iteration number
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4 The Design of the IVFS Speckle Noise Detection
and Filtering

After the proposition of a new no-reference image quality metrics, speckle noise

detection is now considered.

4.1 Proposed Scheme

The restoration scheme of image I corrupted with speckle noise is divided into two

steps. In the first one, we perform histogram analysis of image I using the IVF

entropy 𝛤max that is used as a tool to find all major homogeneous regions of I as pre-

viously. In the second step, median filter (med(n,m)) is applied to all pixels I(n,m)
identified as corrupted while leaving the rest of the pixels identified as noise-free. Let

med(n,m) be the value of pixels in a local window of size 3 × 3 in the surrounding

of I(n,m) (i.e. a windowing (3, 3) around the pixel (n,m)). This method reduces the

distortion generated in the restored image, introducing the necessary spatial (local)

information to obtain spatially connected regions.

4.2 Algorithm

The implementation of image restoration based on IVFS and IVF entropy 𝛤 is made

according to the algorithm presented in [19] for impulse noise filtering.

4.3 Experimental Results with a Synthetic Image

In order to test the performance of the proposed technique, a classic synthetic image

(named “Savoyse”, Fig. 6), and composed of five areas on an uniform background,

added with a multiplicative speckle noise (Variance = 0.2) is first tested. We present

Fig. 6 the original and noisy images respectively. How does it work? It is now well-

known that images and fuzzy sets can be defined in the same way. To each pixel xi
corresponds a membership value 𝜇(xi), when using FS. Using IVFS, to each pixel xi
corresponds a membership value 𝜇L(xi) and 𝜇U(xi), respectively. Let us consider one

pixel and its neighbors. If these pixels are uncorrupted by noise, they have about the

same grey level, and consequently the same membership values. So we obtain about

the same results with FS and IVFS. On the other hand, if some pixels in the neighbor-

ing areas are noisy, the FS-entropy consider only 𝜇(xi), while IVFS-entropy consider

the difference 𝜇L(xi) − 𝜇U(xi). The maximum difference represents the uncertainty

about the grey-level value of the pixel considered and consequently the noise-free
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(a) (b)

Fig. 6 The original and noisy images. a Original image Savoyse. b Noisy image Savyse, Speckle

noise (Variance = 0.2)

accepted range of that pixel. So, noise is taken into account (the greater the differ-

ence 𝜇L(xi) − 𝜇U(xi) is, the bigger the entropy is and the better the filtering effects

should be).

In order to verify these assumptions, we have compared fuzzy sets entropy

approach to its counterpart with IVFSs. In particular, we can notice that the peak

values of the entropy IVF entropy are more important than their counterparts using

type-1 fuzzy sets (FS entropy, Fig. 7, where the first two modes of the histogram

have disappeared when using FS), so corresponding regions will be easier to extract

in a noisy image, and this proves the advantage of this approach qualitatively (more

uncertainty is taken into account using IVFSs, as it is previously suggested). This is

well illustrated by the results obtained with the synthetic image. It is clear that IVFSs

lead to better results. IVFSs are able to model imprecision and uncertainty which FS

cannot afford to handle efficiently. Local entropy in information theory represents

the variance of local region and catches the natural properties of transition region.

So IVFS being able to deal with a greater amount of uncertainty than FS, transi-
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Fig. 7 Ultrafuzziness curves
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Fig. 8 Restored images and comparison of histograms, image ‘Savoyse’. a Restored image using

FS. b Restored image using IVFS. c Filtering results: comparison of histograms (number of pixels

versus grey level)

tion regions are more acute and homogeneous regions are better drawn, as we can

see with the inside circle of the Savoyse image. Finally, we present the comparative

results we obtain for fuzziness (FS, Fig. 8a) and IVF entropy (IVFS, Fig. 8b). The

histograms shown in Fig. 8c confirm the efficiency of the proposed method to reduce

speckle noise in images.

4.4 Experimental Results

Anyway, running time is less than one second, and in the same order of time than the

other tested filters. The peak signal-to-noise ratio (PSNR) is used to quantitatively

evaluate the restoration performance, which is defined as
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PSNR = 10 log10
2552
MSE

(13)

where mean square error (MSE) is defined as:

MSE = 1
M.N

M∑
m=1

N∑
n=1

(ni − nf )2 (14)

where ni and nf denote the original image pixels and the restored image pixels,

respectively, and M × N is the size of the image.

The evaluation is also carried out on visual level (based on visual inspection). We

applied the unsupervised restoration algorithm we propose further, and extensive

experiments have been conducted on a variety of test images to evaluate the perfor-

mance of the proposed filter. These images are the natural well-known scene images,

named “House”, “Peppers,” and “Lena”. The intensity value of each test image is

from 0 to 255. The results about House’s image are presented in Fig. 10. Other

results, presented in [19], and additional results about some medical images segmen-

tation can be found on http://www-lisic.univ-littoral.fr/~bigand/IJIS/Specklefiltering.

html. In each figure, the first image (top left) is the original image, the second image

(top right) is the noisy image (with a Speckle noise variance of 0.2), the third one is

the image obtained with the median filter, the fourth one (middle right) is the image

restored with the Frost filter, the fifth one (bottom left) is the result obtained with the

FS restoration method proposed by Cheng [34], and the sixth one (bottom right) is

the result obtained with the IVFS restoration method we propose (Fig. 9).

It is interesting to analyze these results. First, we can easily notice that after the

restoration process, filtering using IVF entropy is very effective. Mendel has shown

that the amount of uncertainty associated to IVFS is characterized by its lower and

upper membership functions, and these results confirm this assertion. So we are intu-

itively able to explain these results (compared with a FS for example, Fig. 10a and b).

On the synthetic image (Savoyse), the two regions corresponding to the two concen-

tric discs are correctly extracted. This result shows that the method is able to handle

unequiprobable and overlapping classes of pixels. The restoration of the other (nat-

ural) images is challenging because of the presence of shadows and highlight effects.

Comparisons have been carried out between the IVFS filter and other filters (clas-

sical filters like mean, median and Frost filters, and the Cheng’s FS filter) in terms of

capability of noise removal. Table 1 shows that the proposed filter performed well,

providing an improvement in PSNR on the other methods. It is well-known that

PSNR depends on the type of images, so the average value of the PSNR for these four

images is calculated and presented in Table 1. The following figure (Fig. 9) displays

the results from processing a classic “Lena” image corrupted with different values

of noise level, demonstrating the superior results obtained by our proposed method

when compared to the FS, Frost and the median filters. The displayed values for the

median filter and the FS filter follow behaviors presented in the literature. Relatively

http://www-lisic.univ-littoral.fr/~bigand/ IJIS/Specklefiltering.html
http://www-lisic.univ-littoral.fr/~bigand/ IJIS/Specklefiltering.html
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good results obtained with FS filter confirm the results presented by Nachtegael et al.

[35] for impulse and Gaussian noises filtering. These results also confirm the signif-

icant improvement that our proposed method successfully achieves.

5 Conclusion

The central idea of this paper was to introduce the application of IVFSs, to take into

account the total amount of uncertainty present at the image acquisition stage. IVF

entropy is defined from discrete (h, image histogram) and continuous (H, smoothed

histogram at scale 𝜎) scale-space representations and is consistent with scale-space

theory. The stochastic and deterministic properties of H can be studied separately.

So in our case, we used the deterministic part of H to define IVF entropy and to

propose a new no-reference image quality metrics. Like other techniques based on

image thresholding, this technique is simple and computationally efficient. It makes it

possible to characterize computer-generated images efficiently and to restore images

corrupted with multiplicative noise. Particularly, it assumes no “a-priori” knowledge

of a specific input image, no numerous tunable parameters, yet it has superior per-

formance compared to other existing fuzzy and non-fuzzy filters for the full range
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Comparison of different method of noise reduction, speckle variance of 0.2 a Original

image House. b Noisy image House, Speckle noise (Variance = 0.2). c Restored image House

using median filter. d Restored image House using Frost filter. e Restored image House using FS

filter. f Restored image House using IVFS
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Table 1 Comparative restoration results in PSNR (dB) for Speckle noise (𝜎
2
n = 0.2)

Image name Size

(in pixels)

Filters

Mean Median Frost FS IVFS

Savoyse 320 × 200 9.42 17.16 16.12 17.99 20.82

House 256 × 256 4.62 12.85 11.99 13.73 16.69

Peppers 512 × 512 5.50 13.64 12.62 14.65 18.45

Lena 512 × 512 5.22 13.30 12.35 14.25 17.61

Average 6.19 14.23 13.27 15.15 18.39

of Speckle noise level. In a previous paper, we showed that this new technique can

also deal with impulsive and Gaussian noise [18]. Uncertainty is correctly treated,

and interplay between scale-space theory and IVFS seems very fruitful for stochastic

analysis of image generation (stochastic detection of errors and image filtering). Nev-

ertheless there remains some open questions to effectively establish a link between

the characteristics of noise affecting the image (noise level) and the choice of the

IVFS. So the stochastic properties of the errors fields present during image genera-

tion have to be studied now with this new framework. In particular, more extensive

investigations on other measures of entropy and the effect of parameters influencing

the width (length) of IVFS are under investigation, and could lead to establish a gen-

eral noise model in images using a link between IVFS and level and type of noise

(particularly with color images).
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Generalized Net Representation of Dataflow
Process Networks

Dimitar G. Dimitrov

Abstract This paper presents translation rules for mapping from a given dataflow

process network (DPN) to a generalized net (GN). The so obtained GN has the same

behaviour as the corresponding DPN. A reduced GN that represents the functioning

and the results of the work of an arbitrary DPN is also defined.

Keywords Generalized nets ⋅Dataflow process networks ⋅Kahn process networks

1 Introduction

Generalized Nets (GNs) are defined as extensions of ordinary Petri nets, as well as of

other Petri nets modifications [1]. The additional components in GN definition give

more and greater modeling possibilities and determine the place of GNs among the

separate types of Petri nets, similar to the place of the Turing machine among finite

automata. GNs can describe wide variety of modeling tools such as Petri nets and

their extensions [1, 2], Unified modeling language (UML) [7], Kahn Process Net-

works (KPN) [4], etc. In this paper we shall show how GNs can adequately represent

dataflow process networks (DPN).

Dataflow process networks are a model of computation (MoC) used in digital

signal processing software environments and in other contexts. DPN are a special

case of Kahn Process Networks [5, 6].

The structure of this paper is as follows. In next section a brief introduction of

DPN is presented. In Sect. 3 a procedure for translating a concrete DPN to a GN is

given. In the next section, a universal GN that represents the functioning and the
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results of the work, an arbitrary DPN is formally defined. After that the advantages

of using GN instead of DPN are discussed. Finally, future work on this subject is

proposed, as well as software implementation details are given.

2 Dataflow Process Networks

DPNs consist of a set of data processing nodes named actors which communicate

through unidirectional unbounded FIFO buffers. Each actor is associated with a set

of firing rules that specify what tokens must be available in its inputs for the actor to

fire. When an actor fires, it consumes tokens from its input channels and produces

tokens in its output channels [8, 9]. Figure 1 shows a DPN with four actors.

A (dataflow) actor with m inputs and n outputs is a pair ⟨R, f ⟩, where

R = {R1,R2,… ,Rk}

is a set of firing rules. Each firing rule constitutes a set of patterns, one for each

input:

Ri = {Ri,1,Ri,2,… ,Ri,m}

A pattern Ri,j is a finite sequence of data elements from j-th channel’s alphabet.

A firing rule Ri is satisfied, iff for each j ∈ {1, 2,… ,m} Ri,j forms a prefix of the

sequence of unconsumed tokens at j-th input. An actor with k = 0 firing rules is

always enabled. Ri,j = ⊥ denotes that any available sequence of tokens is acceptable

from input j. “*” denotes a token wildcard (i.e., any value is acceptable).

f ∶ Sm → Sn is a function that calculates the token sequences that are to be output

by the actor, where Sm is the set of all m-tuples of token sequences.

DPNs are an untimed model. Firing rules are not bounded to a specific time

moment.

DPNs do not over specify an execution algorithm. There are many different exe-

cution models with different strengths and weaknesses.

To avoid confusion with tokens in GNs, in this paper we shall denote channel

tokens in DPN as data elements.
With priA we shall denote the i-th projection of the n-dimensional set A where

n ∈ ℕ, 1 ≤ i ≤ n.

Fig. 1 Example DPN
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P2P4

P3
c1

c2

c3 c6

c7

c5

c4
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3 Translating a DPN to a GN

In generalized nets, as in Petri nets, transitions represent discrete events, and places

represent conditions (either preconditions or postconditions, depending on arc direc-

tions). Dataflow actors consume tokens from its input channels and produce tokens to

its output channels. Similarly when a GN transition is activated, it transfers tokens

from its input places to its output places. Dataflow actors fire when tokens in the

inputs satisfy given conditions (firing rules). The same way token transfer in GN

occurs when predicates associated with transitions are evaluated as true. Thus actors

in DPN can obviously be mapped to GN transitions and firing rules can be seen as

a special case of GN transition predicates. GN transitions’ concept of firing rules—

transition types—will not be used, because they ensure only the presence of a token

in a given input, not its contents.

In GN, places have characteristic functions. They calculate the new characteris-

tics of every token that enters an output place. This can be used as analog of DPN

actors’ firing function that calculates output sequences based on actors’ input data.

Channels in DPN which connect dataflow actors can be translated to GN places.

Similar approach of mapping from dataflow actors to Petri net transitions and chan-

nels to places is also used in [10]. DPN tokens can be directly mapped to GN tokens

but in order to preserve their ordering, whole data sequence can be represented as a

single GN token.

Table 1 summarizes the translation rules from DPN to GN.

Figure 2 shows a GN representation of the example DPN in Fig. 1.

Token splitting and merging must be enabled for the GN, e.g., operator D2,2 must

be defined for it [2].

In this paper we shall use the following function to check whether an actor can

fire:

c(R, I) = (∃i ∈ {1,… , |R|} ∶ ∀Ri,j ∈ Ri ∶ Ri,j ⊑ Ij)

where R is a set of firing rules, I is a list of data element sequences, one for each

input channel, and p ⊑ q is true iff the sequence p is a prefix of q.

Each dataflow actor ⟨R, f ⟩ can be translated to a transition in the following form:

Z = ⟨{l′1,… , l′m, l, l
∗}, {l′′1 ,… , l′′n , l, l

∗}, ∗, ∗, r, ∗, ∗⟩

Table 1 Mapping from dataflow process networks to generalized nets

DPN GN

Actor Node Transition

Channel Arc Place

Firing rules (First component of an actor) Transition predicate

Firing function (Second component of an actor) Characteristic function

Data Tokens with single data elements Token with one or more data

elements



26 D.G. Dimitrov

P1 P3

P2

P4

c1

c2

l1

l∗1

c3

c4

c5

l3

l∗3

c6

l2

l∗2

c7

l4

l∗4

Fig. 2 GN representation of the example GN

where

∙ l′1,… , l′m are places that correspond to the actor’s inputs;

∙ l′′1 ,… , l′′n are places that correspond to the actor’s outputs;

∙ l is a place that collects all input data consumed by one firing of the actor and l’s
characteristic function calculates the actor’s output sequences;

∙ l∗ is a place that keeps all input data before it can be consumed;

∙ tokens in l∗ are merged into token 𝛿 with the following characteristic:

x𝛿s+1 = {⟨li, get(x𝛿s , li).x𝛿li ⟩|li ∈ {l′1,… , l′m}}

where 𝛿li is the token (if such available) in the input place li, x𝛿s is the previous

characteristic of token 𝛿 which loops in l∗ (if available, empty set otherwise), “.”

is sequence concatenation and get is a function that gets the content of a given

channel stored as characteristic in 𝛿;

∙ r is the following index matrix (IM):

r =

l′′1 … l′′n l∗ l
l′1
⋮ false true false
l′m
l∗ false true Wl∗,l
l true false false
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where predicate Wl∗,l checks whether exists a firing rule from R that is satisfied by

current input:

Wl∗,l = c(R, pr2x𝛿)

∙ the characteristic function 𝛷 is defined for l as follows:

𝛷l = {⟨l′′j , prjf (pr1x𝛿)⟩|1 ≤ j ≤ n}

where f is the function associated with the dataflow actor corresponding to Z. As

a side effect 𝛷l removes consumed data from the characteristic of the token in l∗
(which may result in empty characteristic of this token, if there is no unconsumed

data);

∙ 𝛷 for outputs l′′1 ,… , l′′n retains only the data sequence which corresponds to the

given output place (previously the token contains information for all output chan-

nels):

𝛷l′′j
= get(x𝛿, l′′j ), 1 ≤ j ≤ n

A special case are dataflow actors without inputs. Such actors are always enabled

[9]. The so defined GN transition Z is capable of representing such actors. An empty

token should always be present in l∗ meaning that there is no input data. Predicate

Wl∗,l is always evaluated as true.

4 Universal GN for Dataflow Process Networks

Below is a formal definition of a reduced GN E that represents any DPN N. The

graphical structure of E is shown in Fig. 3. Token splitting and merging must be

enabled for the net.

E = ⟨⟨{Z1,Z2}, ∗, ∗, ∗, ∗, ∗, ∗⟩, ⟨{𝛼}, ∗, ∗⟩, ⟨∗, ∗, ∗⟩, ⟨{x𝛼0}, ∗, ∗⟩, 𝛷, ∗⟩

Fig. 3 Graphical structure

of the universal GN

representing dataflow

process networks

Z1 Z2 Z3

l1

l6l2

l3

l4

l5
l8

l7
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The first transition is responsible for dividing dataflow actors into two sets—ones

that can be fired, according to their firing rules, and ones, that cannot:

Z1 = ⟨{l1, l6}, {l2, l3}, ∗, ∗, r1, ∗, ∗⟩
Token 𝛼 enters place l1 containing as a characteristic information about the DPN

in the following form:

x𝛼 = {⟨⟨R, f ⟩, {⟨i1, si1⟩, ..., ⟨imk
, simk ⟩}⟩}

where ⟨R, f ⟩ denotes a dataflow actor and sij is a sequence of initial data elements in

j-th input of the actor.

A token may be available in either l1 or l6. There is a token in l1 only in the first

step of the functioning of E.

Token 𝛼 is transferred to l2 if it contains at least one actor that can be fired. If

there is at least one actor whose firing rules are not satisfied by input data, the token

splits and goes to l3 too. The predicates of Z1 are the following:

r1 =
l2 l3

l1 W1 W2
l6 W1 W2

where W1 = (∃a ∈ x𝛼 ∶ c(pr1pr1a, pr2pr2a) and W2 = (∃a ∈ x𝛼 ∶ ¬c(pr1pr1a,
pr2pr2a)

The characteristic function for l2 and l3 retains only firable and non-firable actors,

respectively:

𝛷l2 = {⟨⟨R, f ⟩, {⟨i1, si1⟩, ..., ⟨imk
, simk ⟩}⟩|c(R, {i1,… , imk

})}

𝛷l3 = {⟨⟨R, f ⟩, {⟨i1, si1⟩, ..., ⟨imk
, simk ⟩}⟩|¬c(R, {i1,… , imk

})}

After passing the second transition, actors are fired and their firing function f is

calculated. Data elements are read from inputs and output data is written to outputs.

Z2 = ⟨{l2}, {l4}, ∗, ∗, ∗, ∗, ∗⟩
The characteristic function for 𝛷l4 calls the firing functions of each actor in 𝛼1,

removes consumed data elements and stores output sequences in a new characteristic

named output_data:

output_data = {⟨oi,j, prjfi(Ii)|1 ≤ i ≤ |x𝛼|⟩}
where oi,j is j-th output of i-th actor, fi is the firing function of i-th actor and Ii are

its inputs.
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The last transition Z3 merges actors in a single token 𝛼 again. It also collects input

data from input channels (which is not generated by an actor from the DPN).

Z3 = ⟨{l3, l4, l5}, {l6, l7, l8}, ∗, ∗, r3, ∗,□2⟩
Tokens carrying data elements corresponding to input channels enter in l5. Char-

acteristics have the following form:

x𝛿 = {⟨c, s⟩}
where c is a channel and s is a sequence of data elements.

Z3 has the following predicate matrix:

r3 =

l6 l7 l8
l3 W false false
l4 W true false
l5 false false true
l8 W false ¬W

Predicate W checks whether tokens exist in both l3 and l4. If there is incoming

data but no actor tokens, input data is collected in l8 and waits.

In order for input data and actor information to be merged easily, all actors must

be available:

□2 = ∨(∧(l3, l4), l5, l8)

Tokens in place l6 are merged and the new characteristic is the union of the char-

acteristics of 𝛼1 and 𝛼2. The characteristic of the token from l8 (if such is available)

is merged with the characteristic named output_data (the two sets do not intersect).

Merging is executed before the calculation of 𝛷l6 .

In l8 tokens are merged. The new characteristic is calculated in similar way as in

place l∗ from Sect. 3:

x𝛿s+1 = {⟨i, get(x𝛿, i).get(x𝛿′ , i)⟩|i ∈ pr1x𝛿 ∪ pr1x𝛿
′ }

where 𝛿 denotes the token from l8 and 𝛿

′
the new token coming from l5.

In l6 after tokens are merged, the characteristic function writes actors’ output data

into the corresponding channels. After that it removes the output_data characteristic

from 𝛼:

𝛷l6 = {⟨⟨R, f ⟩, {⟨ij, sij .get(output_data, ij)⟩|1 ≤ j ≤ mk}⟩}
Data written to output channels (which do not act as input channels for other

actors) leaves the net through place l7. The new characteristic that tokens receive in

l7 consists of only output data written to such channels (previously tokens contains

output data for all channels).
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𝛷l7 = {s ∈ output_data|pr1s ∉ ⋃
pr1pr2x𝛼}

5 Conclusion

The so constructed in this paper GNs are reduced ones, i.e., this work shows that

even simple class of GNs is capable of describing DPNs. If one uses a GN to model

a real process, usually modeled by a DPN, he will receive many advantages, since

GNs are more detailed modeling tool. First, token characteristics in GNs have his-

tory, so in the universal GN all data elements that pass through a given channel are

remembered. Complex dataflow actors’ mapping functions by default are translated

to characteristic functions but they can also be represented as GNs. If a real process

that runs in a given time is represented by a GN instead of a DPN, the modeler

can use the global time component of the GN, so process time can be mapped to the

time scale. Unlike DPNs and KPNs, GNs support different types of time. As in Kahn

process networks’ universal GN [4], a scheduler that manages the execution order of

actors and channel capacities can easily be integrated.

As a future work on the topic we can define GNs for other models of computation,

as well as for some special cases of DPN such as synchronous DPN.

GN IDE [3], the software environment for modeling and simulation with GNs,

can be extended to support different modeling instruments such as KPNs, DPNs,

as well as Petri nets, and their various extensions. The results of current research

imply that the above functionality can easily be implemented without modifying

GNTicker—the software interpreter for GNs, used by GN IDE.

Another potential direction is to introduce fuzzyness in DPN. Several fuzzy GN

extensions are defined [2] and can be used to model such fuzzy DPNs.
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Wireless Sensor Positioning Using ACO
Algorithm

Stefka Fidanova, Miroslav Shindarov and Pencho Marinov

Abstract Spatially distributed sensors, which communicate wirelessly form a wire-

less sensor network (WSN). This network monitors physical or environmental con-

ditions. A central gateway, called high energy communication node, collects data

from all sensors and sends them to the central computer where they are processed.

We need to minimize the number of sensors and energy consumption of the network,

when the terrain is fully covered. We convert the problem from multi-objective to

mono-objective. The new objective function is a linear combination between the

number of sensors and network energy. We propose ant colony optimization (ACO)

algorithm to solve the problem. We compare our results with the state of the art in

the literature.

Keywords Wireless sensor network ⋅ Ant colony optimization ⋅ Metaheuristics

1 Introduction

The development of new technologies during the last decades gives a possibility for

wireless data transmission. Thus a new types of networks, called wireless networks,

was created.

Wireless sensor networks (WSN) allow the monitoring of large areas without the

intervention of a human operator. Their working is based on the exchange of local

information between nodes in order to achieve a global goal. Cooperation between

the sensor nodes is an important feature when solving complex tasks.
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The WSN can be used in areas where traditional networks fail or are inadequate.

They find applications in a variety of areas, such as climate monitoring, military

use, industry, and sensing information from inhospitable locations. Unlike other net-

works, sensor networks depend on deployment of sensors over a physical location to

fulfill a desired task. Sometimes deployments imply the use of hundreds or thousands

of sensor nodes in small areas to ensure effective coverage range in a geographical

field.

For a lot of applications wireless sensors offer a lower cost method for collecting

system health data to reduce energy usage and better manage resources. Wireless

sensors are used to effectively monitor highways, bridges, and tunnels. Other appli-

cations are continually monitor office buildings, hospitals, airports, factories, power

plants, or production facilities. The sensors can sense temperature, voltage, or chemi-

cal substances. A WSN allows automatically monitoring of almost any phenomenon.

The WSN gives a lot of possibilities and offers a great amount of new problems to

be solved. WSN have been used in military activities, such as reconnaissance, sur-

veillance, [5], environmental activities, such as forest fire prevention, geophysical

activities, such as volcano eruptions study [16], health data monitoring [19] or civil

engineering [12].

A WSN node contains several components including the radio, battery, micro-

controller, analog circuit, and sensor interface. In battery-powered systems, higher

data rates, and more frequent radio use consumes more power. There are several

open issues for sensor networks, such as signal processing [13], deployment [18],

operating cost, localization, and location estimation.

The wireless sensors, have two fundamental functions: sensing and communi-

cating. The sensing can be of different types (seismic, acoustic, chemical, optical,

etc.). However, the sensors which are far from the high energy communication node

(HECN) cannot communicate with him directly. Therefore, the sensors transmit their

data to this node, either directly or via hops, using nearby sensors as communication

relays.

When deploying a WSN, the positioning of the sensor nodes becomes one of the

major concerns. The coverage obtained with the network and the economic cost of

the network depend directly of it. Since many WSN can have large numbers of nodes,

the task of selecting the geographical positions of the nodes for an optimally designed

network can be very complex. Therefore, metaheuristics seem an interesting option

to solve this problem.

In this paper, we propose an algorithm which solves the WSN layout problem

using ACO. We focus on both minimizing the energy depletion of the nodes in the

network and minimizing the number of the nodes, while the full coverage of the net-

work and connectivity are considered as constraints. The problem is multi-objective.

We convert it to mono-objective. The new objective function is a combination of the

two objective functions of the original problem. We learn the algorithm performance

and influence of the number of ants on achieved solutions.

Jourdan [8] solved an instance of WSN layout using a multi-objective genetic

algorithm. In there formulation a fixed number of sensors had to be placed in order to

maximize the coverage. In some applications most important is the network energy.
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In [7] is proposed ACO algorithm and in [17] is proposed evolutionary algorithm for

this variant of the problem. In [6] is proposed ACO algorithm taking in to account

only the number of the sensors. In [10] are proposed several evolutionary algorithms

to solve the problem. In [9] is proposed genetic algorithm which achieves similar

solutions as the algorithms in [10], but it is tested on small test problems.

The number of sensor nodes should be kept low for economical reasons and the

network needs to be connected. Finally, the energy of the network is a key issue that

has to be taken into account, because the life time of the network depends on it.

The rest of the paper is organized as follows. In Sect. 2 the WSN is described

and the layout problem is formulated. Section 3 presents the ACO algorithm. The

existing state of the art is briefly reviewed in Sect. 4. In Sect. 4 the experimental

results obtained are shown. Finally, several conclusions are drown in Sect. 5.

2 Wireless Sensor Network Layout Problem

A WSN consists of spatially distributed sensors which monitor the conditions of

sensing area, such as temperature, sound, vibration, pressure, motion, or pollutants

[1, 14]. The development of WSN was motivated by military applications, such as

surveillance and are now used in many industrial and civilian application areas,

including industrial process monitoring and control, machine health monitoring,

environment and habitat monitoring, healthcare applications, home automation, and

traffic control [14].

A sensor node might vary in size from that of a box to the size of a grain of dust

[14]. The cost of sensor nodes is similarly variable, ranging from hundreds of dollars

to a few cents, depending on the complexity required of individual sensor nodes

[14]. Size and cost constraints on sensor nodes result in corresponding constraints

on resources such as energy, memory, computational speed and bandwidth [14].

A WSN consists of sensor nodes. Each sensor node sense an area around itself

called its sensing area. The sensing radius determines the sensitivity range of the

sensor node and thus the sensing area. The communication radius determines how

far the node can send his data. A special node in the WSN called High Energy Com-

munication Node is responsible for external access to the network. Therefore, every

sensor node in the network must have communication with the HECN. Since the

communication radius is often much smaller than the network size, direct links are

not possible for peripheral nodes. A multi-hop communication path is then estab-

lished for those nodes that do not have the HECN within their communication range.

They transmit their date by other nodes which are closer to the HECN.

The WSN layout problem aims to decide the geographical position of the sen-

sor nodes that form a WSN. In our formulation, sensor nodes has to be placed in

a terrain providing full sensitivity coverage with a minimal number of sensors and

minimizing the energy spent in communications by any single node, while keeps the

connectivity of the network. Minimal number of sensors means cheapest network for

constructing. Minimal energy means cheapest network for exploitation. The energy
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of the network defines the lifetime of the network, how frequently the batteries need

to be replaced. These are opposed objectives since the more nodes there are the

lesser share of retransmissions they bear and in opposite, when we try to decrease

the energy consumption normally we include nodes. Thus, we look for a good bal-

ance between number of sensors and energy consumption.

In order to determine the energy spent by communications, the number of trans-

missions every node performs is calculated. The WSN operates by rounds: In a

round, every node collects the data and sends it to the HECN. Every node transmits

the information packets to the neighbor that is closest to the HECN, or the HECN

itself if it is within the communication range. When several neighbors are tied for the

shortest distance from the HECN, the traffic is distributed among them. That is, if a

node has n neighbors tied for shortest distance from HECN, each one receives 1/n of

its traffic load. Therefore, every node has a traffic load equal to 1 (corresponding to

its own sent data) plus the sum of all traffic loads received from neighbors that are

farther from the HECN. On one hand the sensing area need to be fully covered. On

the other hand, the number of sensor nodes must be kept as low as possible, since

using many nodes represents a high cost of the network, possibly influences of the

environment. The objectives of this problem is to minimize network energy and the

number of sensors deployed while the area is fully covered and connected.

3 ACO for WSN Layout Problem

The WSN Layout problem is a hard combinatorial optimization problem which needs

an exponential amount of computational resources (NP-hard). Exact methods and

traditional numerical methods are unpractical for this kind of problems. Therefore

normally the NP problems are solved with some metaheuristic method. Many of

the existing solutions of WSN Layout problem come from the field of evolutionary

computation [2, 10]. After analyzing them, we noticed that the ACO is based on

solution construction, most of other metaheuristics are based on improving current

solution. Therefore ACO is appropriate for problems with restrictive constraints. The

ACO is one of the most successful metaheuristics which outperforms others for a lot

of classes of problems. The idea for ACO comes from real ant behavior.

Real ants foraging for food lay down quantities of pheromone (chemical cues)

marking the path that they follow. An isolated ant moves essentially guided by pre-

viously laid pheromone. After the repetition of the above mechanism if more ants

follow a trail, the more attractive that trail becomes. Thus ants can find the shortest

path between the nest and sours of the food.

The ACO algorithm uses a colony of artificial ants that behave as cooperative

agents in a mathematic space were they are allowed to search and reinforce pathways

(solutions) in order to find the optimal ones.

On the Fig. 1 is shown a pseudocode of ACO algorithm.

The problem is represented by graph and the ants walk on the graph to construct

solutions. The solution is represented by a path in the graph. After initialization of the
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Fig. 1 Pseudocode for ACO Ant Colony Optimization

Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k=0 to number of ants
ant k starts from a random node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Local search procedure;
Update-pheromone-trails;

end while

pheromone trails, ants construct feasible solutions, starting from random nodes, then

the pheromone trails are updated. At each step ants compute a set of feasible moves

and select the best one (according to some probabilistic rules based on a heuristic

function) to carry out the rest of the tour. The structure of ACO algorithm is shown

in Fig. 1. The transition probability pij, to chose the node j when the current node is

i, is based on the heuristic information 𝜂ij and on the pheromone trail level 𝜏ij of the

move, where i, j = 1,… , n.

pij =
𝜏

𝛼

ij 𝜂
𝛽

ij∑
k∈allowed

𝜏

𝛼

ik𝜂
𝛽

ik

(1)

The higher value of the pheromone and the heuristic information, the more prob-

able is to select this move. The pheromone corresponds to the global memory of

the ants, their experience in problem solving from previous iterations. The heuristic

information is an a priori knowledge for the problem which is used to manage the

search process to improve the solution. In the beginning, the initial pheromone level

is set to a small positive constant value 𝜏0 and then ants update this value after com-

pleting the construction stage [3]. ACO algorithms adopt different criteria to update

the pheromone level.

In our implementation we use MAX–MIN Ant System (MMAS) [15], which is

one of the more popular ant approaches. The main feature of MMAS is using a fixed

upper bound 𝜏max and a lower bound 𝜏min of the pheromone trails. Thus, the accu-

mulation of big amounts of pheromone by part of the possible movements and rep-

etition of same solutions is partially prevented on one side, and the amount of the

pheromone to decrease a lot of and to become close to zero and the element to be

unused is partially prevented in another side.

The pheromone trail update rule is given by:

𝜏ij ← 𝜌𝜏ij + 𝛥𝜏ij, (2)



38 S. Fidanova et al.

𝛥𝜏ij =
⎧⎪⎨⎪⎩
1∕C(Vbest) if (i, j) ∈ best solution

0 otherwise

,

where Vbest is the iteration best solution and i, j = 1,… , n, 𝜌 ∈ [0, 1] models evapo-

ration in the nature. By parameter 𝜌 we decrease the influence of the old information

and we keep it in some level. C(V) is the objective function.

The WSN layout problem is a NP-hard multi-objective problem. We simplify it

converting it to mono-objective. Normally converting from multi- to mono- objec-

tive make worse the achieved solutions. Therefore it is very important how the new

objective function will be constructed. It is one of our contributions in this work. The

new objective function is a combination of the number of sensors and the energy of

the network and we search for solution which minimizes it. The new objective func-

tion is as follows:

C(Vk) =
f1(Vk)

max
i

f1(Vi)
+

f2(Vk)
max

i
f2(Vi)

(3)

where Vk is the solution constructed by the ant k and f1(Vk) and f2(Vk) are the number

of sensors and energy corresponding to the solution Vk. Dividing f1 by max f1 and f2
by max f2 is a sort to normalize the values of f1 and f2, respectively, the maximum is

over the solutions from the first iteration.

Thus, when the energy and/or number of sensors decreases the value of the objec-

tive function will decrease and the two components have equal influence.

To avoid stagnation of the search, the range of possible pheromone values on each

movement is limited to an interval [𝜏min, 𝜏max]. 𝜏max is an asymptotic maximum of 𝜏ij
and 𝜏max = 1∕(1 − 𝜌)C(V∗), while 𝜏min = 0.087𝜏max. Where V∗

is the optimal solu-

tion, but it is unknown, therefore we use Vbest, the current best value of the objective

function, instead of V∗
.

One of the crucial point of the ACO algorithms is construction of the graph of

the problem. We need to chose which elements of the problem will correspond to

the nodes and the meaning of the arcs, where is more appropriate to deposit the

pheromone—on the nodes or on the arcs. In our implementation the WSN layout

problem is represented by two graph, it is one of our contributions. The terrain is

modeled by grid G = {gij}N×M , where M and N are the size of the sensing region. By

the graph G we calculate the coverage of the terrain. We use another graph G1N1×M1,

on which nodes we map the sensors, where N1 ≤ N and M1 ≤ M. The parameters

M1 and N1 depend of the sensing and communication radius. Thus, we decrease the

number of calculations the algorithm performs, respectively the running time. The

pheromone is related with location sites Ph = {phij}N1×M1, the initial pheromone can

be a small value, for example, 1∕nants. The central point, where the HECN is located,

is included in the solutions like first point (zero point).

Every ant starts to create the rest of the solution from a random node which com-

municates with central one, thus the different start of every ant in every iteration is
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guaranteed. The ant chooses the next position by the ACO probabilistic rule (Eq. 1).

It chooses the point having the highest probability. If there are more than one point

with same probability, the ant chooses one of them randomly.

The construction of heuristic information is another crucial points of the ACO

algorithm. The heuristic information needs to be constructed thus, to manage the

ants to look for better solutions and to avoid unfeasible solutions. For some kinds of

problems it is not obvious how to prepare it. One needs to combine different elements

of the problem to most appropriate way.

Other contribution of this paper is proposition of appropriate heuristic informa-

tion, which will guarantee construction of feasible solutions. Our heuristic informa-

tion is a product of three parameters as follows:

𝜂ij(t) = sijlij(1 − bij), (4)

where sij is the number of points which the new sensor will cover, and

lij =
{

1 if communication exists

0 if there is not communication
(5)

b is the solution matrix and the matrix element bij = 1 when there is sensor on the

node (i, j) of the graph G1, otherwise bij = 0. With sij we try to locally increase the

covered points, more new covered points leads eventually to less number of sensors.

With lij we guarantee that all sensors will be connected; with rule (1 − bij) we guar-

antee that the position is not chosen yet and no more than one sensor will be mapped

on the same node of the graph G1. When pij = 0 for all values of i and j the search

stops. Thus, the construction of the solution stops if no more free positions, or all

points are covered or new communication is impossible.

4 Experimental Results

We will contribute with this work to improve the state of the art of the use of

metaheuristics for solving the WSN layout problem. Our aim is to provide an effi-

cient solving method by comparing a set of state-of-the-art metaheuristic techniques

applied in the same scenario. We want to solve a new flexible instance in which, for

the first time (to the best of our knowledge), both the number and positions of the

sensors can be freely chosen, with full coverage of the sensor field guaranteed, and

treating the energy efficiency and the overall cost of the network. Besides this, our

interest is to tackle complex instances in which the WSN size is in the same order of

magnitude as real WSN, with several hundred nodes.

With our algorithm we can solve WSN layout problem on any rectangular area

and the HECN can be fixed on any point on the area. The reported results are for an

WSN problem instance where a terrain of 500 × 500 points has to be covered using

sensors with coverage and communication radii covered 30 points (see Table 1). We
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Table 1 Problem parameters

Terrain 500× 500

Coverage radius 30

Communication radius 30

Table 2 Algorithm parameters

Ants 1–10

Iterations 60

𝜌 0.5

𝛼 1

𝛽 1

choose this example because other authors use the same and to can compare achieved

results. The terrain has an area of 250,000 points in total, and each sensor covers

2,827 points, meaning that in ideal conditions only 89 would be necessary. Now,

these ideal conditions do not exist since they would imply that no overlap exists

between any two nodes sensing areas, which is impossible due to their geometrical

shape (circle). Therefore, the expected minimum number of nodes for full coverage

is higher than 89. Thus, the graph G consists of 500 × 500 nodes. When we apply our

ACO algorithm on this example the graph G1 consists of 50 × 50 nodes which are

100 times less than the graphG. The number of nodes of the graphG1 is proportional

to the number of the nodes of the graph G and is proportional to the number of points

covered by coverage and communication radius. Thus, the nodes of the graph G1
are mapped on nodes of the graph G and coverage and communication radii cover

3 points from the graph G1. In our example, the HECN is fixed in the center of the

area.

An example of solution that achieves full coverage of the region is a square grid

formed by the sensors separated by 30 points. Starting at the HECN, 250 points have

to be covered to each side of the terrain, requiring eight sensors. Therefore, the grid

has 17 (8 + 8 + 1) rows and 17 columns, thus 289 sensors including the HECN. In

this symmetrical configuration there are four nodes directly connected to the HECN,

so the complete traffic of the network 288 messages per round is evenly divided

among them. This results in the most loaded nodes having a load of 72 messages. So

this candidate solution obtains (288, 72).

After several runs of the algorithm we specify the most appropriate values of

its parameters (see Table 2). We apply MAX–MIN ant algorithm with the following

parameters: 𝛼 = 𝛽 = 1, 𝜌 = 0.5. When the number of ants is double the running time

is doubled. The number of used ants is from 1 to 10 and the maximum number of

iterations is 60 (about 3 h per ant).

In Table 3 are reported best found results (with respect to the sensors and with

respect to the energy) achieved by several metaheuristic methods. We compare our
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Table 3 Comparison with other metaheuristics

Algorithm Min sensors Min energy

Symmetric (288, 72) (288, 72)

MOEA (260, 123) (291, 36)

NSGA-II (262, 83) (277, 41)

IBEAHD (265, 83) (275, 41)

ACO (227, 61) (239, 50)

ACO algorithm results with results obtained by the evolutionary algorithms in [10]

and the symmetric solution. These evolutionary algorithms performs like multi-

objective and reports non-dominated solutions. A solution dominates other if all

components of the first are better than the second. A solution is non-dominated if

and only if no other solution dominates it.

We perform 30 independent runs of the ACO algorithm, because for statistical

point of view the number of runs need to be minimum 30. The achieved numbers of

sensors are in the interval [227, 247]. Thus, the worst number of sensors achieved by

ACO algorithm is less than the best number of sensors achieved by other mentioned

algorithms.

Let compare achieved solutions with minimal number of sensors. The solutions

achieved by mentioned evolutionary algorithms have very high energy more then

symmetric solution. Thus they are not good solutions. The ACO solution with min-

imal number of sensors dominates other solutions with minimal number of sensors

and symmetric solution. Thus it is a good solution. Let compare solutions with min-

imal energy achieved by mentioned algorithms. MOEA algorithm achieves solution

with very small value for energy, but too many sensors, more than symmetric solu-

tion, thus it is not good solution. Other two evolutionary algorithms achieve solutions

with a less energy than symmetric and a little bit less number of sensors. Thus they

are not bed solutions. The ACO solution dominates symmetric one. Its energy is a

little bit more than the evolutionary algorithms, but the number of sensors is much

less. We can conclude that our ACO algorithm achieves very encouraging solutions.

We learn the influence of the number of ants on algorithm performance and qual-

ity of the achieved solutions. Our aim is to find optimal number of ants, first accord-

ing the solutions and second—according the computational resources.

We run our ACO algorithm 30 times. We prepare Pareto front for over 30 runs for

every ant number extracting the achieved non-dominated solutions. On the Table 4

we show the achieved non-dominated solutions (Pareto fronts). In the left column

are the number of sensors and in other columns is the energy corresponding to

this number of sensors and number of ants. We observe that the front achieved

by eight ants dominates the fronts achieved by 1, 2, 3, 4, 5, 6, and 7 ants. The

fronts achieved by 8, 9, and 10 ants do not dominate each other. To estimate them

we prepare Pareto front by the solutions (Pareto fronts) achieved by 8, 9, and 10

ants and we call it common Pareto front. In our case the common Pareto front
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Table 4 Pareto fronts

Sensors Ants

1 2 3 4 5 6 7 8 9 10

239 55 50

238

237 56

236

235 52 52 52 52

234 51 51 51 48 51

233 54 54

232 51 55 55

231 58 58 56 56 56 51

230 59 57 57 57 57 57 54 57

229 60 60 60 60 58 56

228 60

227 60 61 57 58 58

226 58

Table 5 Distances from extended front

Ants 8 9 10

Distance 3 4 3

is {(226, 58), (230, 57), (231, 56), (232, 55), (233, 54), (234, 51)}. We introduce the

concept for “extended front.” If for some number of sensors there are not corre-

sponding energy in the common Pareto front, we put the energy to be equal to

the point of the front with less number of sensors. We can do this because if

we take some solution and if we include a sensor close to the HECN it will not

increase the value of the energy and will increase with 1 only the number of the

sensors. Thus, there is corresponding energy to any number of nodes. In our case

the extended front is {(226, 58), (227, 58), (228, 58), (229, 58), (230, 57), (231, 56),
(232, 55), (233, 54), (234, 51), (235, 51)}.

We include additional criteria to estimate Pareto front. We calculate the distance

between a Pareto front and the Extended front. To calculate the distance we extend

every of the Pareto fronts in a similar way as the extended front. The distance between

any Pareto front and the Extended front is the sum of the distances between the points

with a same number of sensors, or it is the difference between their energy. These

distances are positive because the Extended front dominates the Pareto fronts. Thus,

the best Pareto front is the closest to the Extended front.

Regarding Table 5 we observe that the distance of the fronts achieved by 8 and 10

ants is 3 and the distance of the front achieved by 9 ants is 4. Thus, the fronts achieved

by 8 and 10 ants are with a equal quality and they are better than the front achieved
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by 9 ants. We consider that the algorithm performs better with 8 ants because the

solution (226, 58) dominates solution (227, 58) and when the number of ants is less

the used computational resources are less, running time is less and the used memory

is less.

5 Conclusion

We have defined WSNs layout problem with its connectivity constraint. A very large

instance consisting of 500 × 500 points area has to be covered, using sensors whose

sensing and communication radii are 30 points in a way that minimizes both the

number of sensors and the traffic load in the most loaded sensor node. We simplify

the problem converting it from multi-objective to mono-objective. The new objec-

tive function is a linear combination of the number of sensors and energy of the

network. Thus, the both “previous” objective functions have equal influence in the

“new” objective function. We propose ACO algorithm to solve this problem and

we compare it with existing state-of-the-art algorithms. We decrease the number

of computations describing the problem by two graphs (square grids) with different

size. We learn the algorithm performance with different number of ants and the same

number of iterations. We conclude that our algorithm achieves best results when the

number of ants is 8. We compare our algorithm with state of the art in the literature

and can conclude that our solutions dominate most of the solutions achieved by other

methods. The results of the experiments indicate very encouraging performance of

ACO algorithm.
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Time Accounting Artificial Neural
Networks for Biochemical Process Models

Petia Georgieva, Luis Alberto Paz Suárez
and Sebastião Feyo de Azevedo

Abstract This paper is focused on developing more efficient computational
schemes for modeling in biochemical processes. A theoretical framework for
estimation of process kinetic rates based on different temporal (time accounting)
artificial neural network (ANN) architectures is introduced. Three ANNs that
explicitly consider temporal aspects of modeling are exemplified: (i) Recurrent
Neural Network (RNN) with global feedback (from the network output to the
network input); (ii) time-lagged feedforward neural network (TLFN), and
(iii) reservoir computing network (RCN). Crystallization growth rate estimation is
the benchmark for testing the methodology. The proposed hybrid (dynamical ANN
and analytical submodel) schemes are promising modeling framework when the
process is strongly nonlinear and particularly when input–output data is the only
information available.

1 Introduction

The dynamics of chemical and biochemical processes are usually described by mass
and energy balance differential equations. These equations combine two elements,
the phenomena of conversion of one reaction component into another (i.e., the
reaction kinetics) and the transport dynamics of the components through the reactor.
The identification of such mathematical models from experimental input/output
data is still a challenging issue due to the inherent nonlinearity and complexity of
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this class of processes (for example polymerization or fermentation reactors, dis-
tillation columns, biological waste water treatment, etc.) The most difficult problem
is how to model the reaction kinetics and more particularly, the reaction rates. The
traditional way is to estimate the reaction rates in the form of analytical expressions,
Bastin and Dochain [2]. First, the parameterized structure of the reaction rate is
determined based on data obtained by specially designed experiments. Then, the
respective parameters of this structure are estimated. Reliable parameter estimation
is only possible if the proposed model structure is correct and theoretically iden-
tifiable, Wolter and Pronzato [15]. Therefore, the reaction rate analytical structure is
usually determined after a huge number of expensive laboratory experiments. It is
further assumed that the initial values of the identified parameters are close to the
real process parameters, Noykove et al. [11], which is typically satisfied only for
well-known processes. The above considerations motivated a search for alternative
estimation solutions based on computationally more attractive paradigms as are the
ANNs. The interest in ANNs as dynamical system models is nowadays increasing
due to their good nonlinear time-varying input–output mapping properties. The
balanced network structure (parallel nodes in sequential layers) and the nonlinear
transfer function associated with each hidden and output nodes allows ANNs to
approximate highly nonlinear relationships without a priori assumption. Moreover,
while other regression techniques assume a functional form, ANNs allow the data to
define the functional form. Therefore, ANNs are generally believed to be more
powerful than many other nonlinear modeling techniques.

The objective of this work is to define a computationally efficient framework to
overcome difficulties related with poorly known kinetics mechanistic descriptors of
biochemical processes. Our main contribution is the analytical formulation of a
modeling procedure based on time accounting ANNs, for kinetic rates estimation.
A hybrid (ANN and phenomenological) model and a procedure for ANN super-
vised training when target outputs are not available are proposed. The concept is
illustrated on a sugar crystallization case study where the hybrid model outperforms
the traditional empirical expression for the crystal growth rate.

The paper is organized as follows. In the next section, a hybrid model of a
general chemical or biochemical process is introduced, where a time accounting
ANN is assumed to model the process kinetic rates in the framework of a nonlinear
state-space analytical process model. In Sect. 3 three temporal ANN structures are
discussed.

In Sect. 4 a systematic ANN training procedure is formulated assuming that all
kinetics coefficients are available but not all process states are measured. The
proposed methodology is illustrated in Sect. 5 for crystallization growth rate
estimation.
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2 Knowledge-Based Hybrid Models

The generic class of reaction systems can be described by the following equations,
Bastin and Dochain [2]

dX
dt

=Kφ X, Tð Þ−DX +Ux ð1:1Þ

dT
dt

= bφ X,Tð Þ− d0T +UT ð1:2Þ

where, for n,m∈N, the constants and variables denote

X = x1ðtÞ, . . . , xnðtÞð Þ∈Rn Concentrations of total amounts of n process
components

K = k1, . . . , km½ �∈Rn×m kinetics coefficients (yield, stoichiometric, or other)
φ= φ1, . . . ,φmð ÞT ∈Rm Process kinetic rates
T Temperature
b∈Rm Energy-related parameters
qin/V Feeding flow/volume
D Dilution rate
do Heat transfer rate-related parameter

Ux and UT are the inputs by which the process is controlled to follow a desired
dynamical behavior. The nonlinear state-space model (1) proved to be the most
suitable form of representing several industrial processes as crystallization and
precipitation, polymerization reactors, distillation columns, biochemical fermenta-
tion, and biological systems. Vector (φ) defines the rate of mass consumption or
production of components. It is usually time varying and dependent of the stage of
the process. In the specific case of reaction process systems φ represents the
reaction rate vector typical for chemical or biochemical reactions that take place in
several processes, such as polymerization, fermentation, biological waste water
treatment, etc. In nonreaction processes as, for example, crystallization and pre-
cipitation, φ represents the growth or decay rates of chemical species. In both cases
(reaction or nonreaction systems) φ models the process kinetics and is the key
factor for reliable description of the components concentrations. In this work,
instead of an exhaustive search for the most appropriate parameterized reaction rate
structure, three temporal (time accounting) ANN architectures are applied to esti-
mate the vector of kinetic rates. The ANN submodel is incorporated in the general
dynamical model (1) and the mixed structure is termed knowledge-based hybrid
model (KBHM), see Fig. 1. A systematic procedure for ANN-based estimation of
reaction rates is discussed in the next section.
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3 Time Accounting Artificial Neural Networks

The ANN is a computational structure inspired by the neurobiology. An ANN is
characterized by its architecture (the network topology and pattern of connections
between the nodes), the method of determining the connection weights, and the
activation functions that employs. The multilayer perceptron (MLP), which con-
stitute the most widely used network architecture, is composed of a hierarchy of
processing units organized in a parallel-series sets of neurons and layers. The
information flow in the network is restricted to only one direction from the input to
the output, therefore a MLP is also called feedforward neural network (FNN).
FNNs have been extensively used to solve static problems as classification, feature
extraction, pattern recognition. In contrast to the FNN, the recurrent neural network
(RNN) processes the information in both (feedforward and feedback) directions due
to the recurrent relation between network outputs and inputs, Mandic and Chambers
[10]. Thus, the RNN can encode and learn time dependent (past and current)
information which is interpreted as memory. This paper specifically focuses on
comparison of three different types of RNNs, namely, (i) RNN with global feedback
(from the network output to the network input); (ii) Time lagged feedforward neural
network (TLFN), and (iii) Reservoir Computing Network (RCN).

3.1 Recurrent Neural Network (RNN) with Global
Feedback

An example of RNN architecture where past network outputs are fed back as inputs
is depicted in Fig. 2. It is similar to Nonlinear Autoregressive Moving Average with
eXogenios input (NARMAX) filters, Haykin [7]. The complete RNN input consists
of two vectors formed by present and past network exogenous inputs (r) and past
fed back network outputs (p), respectively.

The RNN model implemented in this work is the following

uNN = r, p½ � complete network inputð Þ ð2:1Þ

r= r1ðkÞ, . . . r1ðk− lÞ, . . . rcðkÞ, . . . rcðk− lÞ½ � network exogenous inputsð Þ ð2:2Þ

data-based 
submodel 

analytical 
submodel

process model 

Fig. 1 Knowledge-based
hybrid model (KBHM)
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p= n2ðk− 1Þ, . . . n2ðk− hÞ½ � recurrent network inputsð Þ ð2:3Þ

x=W11 ⋅ r+W12 ⋅p+b1 network statesð Þ ð2:4Þ

n1 = ex − e− xð Þ ̸ ex + e− xð Þ hidden layer outputð Þ ð2:5Þ

n2 =w21 ⋅ n1 + b2 network outputð Þ, ð2:6Þ

where W11 ∈Rm×2, W12 ∈Rm×2, w21 ∈R1×m, b1 ∈Rm×1, b2 ∈R are the network
weights (in matrix form) to be adjusted during the ANN training, m is the number of
nodes in the hidden layer. l is the number of past exogenous input samples and h is
the number of past network output samples fed back to the input. The RNNs are a
powerful technique for nonlinear dynamical system modeling, however, their main
disadvantage is that they are difficult to train and stabilize. Due to the simultaneous
spatial (network layers) and temporal (past values) aspects of the optimization, the
static Backpropagation (BP) learning method has to be substituted by the Back-
propagation through time (BPTT) learning. BPTT is a complex and costly training
method, which does not guarantee convergence and often is very time consuming,
Mandic and Chambers [10].

3.2 Time Lagged Feedforward Neural Network (TLFN)

TLFN is a dynamical system with a feedforward topology. The dynamic part is a
linear memory, Principe et al. [13]. TLFN can be obtained by replacing the neurons
in the input layer of an MLP with a memory structure, which is sometimes called a
tap delay-line (see Fig. 3). The size of the memory layer (the tap delay) depends on
the number of past samples that are needed to describe the input characteristics in
time and it has to be determined on a case-by-case basis. When the memory is at the
input the TLFN is also called focused time-delay neural network (TDNN). There

Fig. 2 RNN architecture
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are other TLFN topologies where the memory is not focused only at the input but
can be distributed over the next network layers. The main advantage of the TDNN
is that it can be trained with the static BP method.

3.3 Reservoir Computing Network (RCN)

RCN is a concept in the field of machine learning that was introduced indepen-
dently in three similar descriptions, namely, Echo State Networks [8], Liquid State
Machines [9] and Backpropagation-Decorelation learning rule [14]. All three
techniques are characterized by having a fixed hidden layer usually with randomly
chosen weights that is used as a reservoir of rich dynamics and a linear output layer
(termed also readout layer), which maps the reservoir states to the desired outputs
(see Fig. 4). Only the output layer is trained on the response to input signals, while
the reservoir is left unchanged (except when making a reservoir re-initialization).
The concepts behind RCN are similar to ideas from both kernel methods and RNN
theory. Much like a kernel, the reservoir projects the input signals into a higher
dimensional space (in this case the state space of the reservoir), where a linear
regression can be performed. On the other hand, due to the recurrent delayed
connections inside the hidden layer, the reservoir has a form of a short-term
memory, called the fading memory which allows temporal information to be stored

Fig. 4 Reservoir Computing
(RC) network with fixed
connections (solid lines) and
adaptable connections
(dashed lines)

z-1

z-1

z-1
z-1

PE

PE

PE

Fig. 3 RNN architecture

50 P. Georgieva et al.



in the reservoir. The general state update equation for the nodes in the reservoir and
the readout output equation are as follows:

xðk+1Þ= f W res
res xðkÞ+W res

inpuðkÞ+W res
outyðkÞ+W res

bias

� �
ð3Þ

yðk+1Þ=Wout
res xðk+1Þ+Wout

inpuðkÞ+Woutr
out yðkÞ+Wout

bias ð4Þ

where: u(k) denotes the input at time k; x(k) represents the reservoir state; y(k) is the
output; and f () is the activation function (with the hyperbolic tangent tanh() as the
most common type of activation function). The initial state is usually set to x(0) = 0.
All weight matrices to the reservoir (denoted asW res) are initialized randomly, while
all connections to the output (denoted asWout) are trained. In the general state update
Eq. (3), it is assumed a feedback not only between the reservoir neurons expressed
by the term W res

res xðkÞ, but also a feedback from the output to the reservoir accounted
by W res

outyðkÞ. The first feedback is considered as the short-term memory, while the
second one as a very long-term memory. In order to simplify the computations
Following the idea of Antonelo et al. [1], for the present study the second feedback is
discarded and a scaling factor α is introduced in the state update equation

xðk+1Þ= f ð1− αÞxðkÞ+ αW res
res xðkÞ+W res

inpuðkÞ+W res
bias

� �
ð5Þ

Parameter α serves as a way to tune the dynamics of the reservoir and improve
its performance. The value of α can be chosen empirically or by an optimization.
The output calculations are also simplified [1] assuming no direct connections from
input to output or connections from output to output

yðk+1Þ=Wout
res xðk+1Þ+Wout

bias ð6Þ

Each element of the connection matrix W res
res is drawn from a normal distribution

with mean 0 and variance 1. The randomly created matrix is rescaled so that the
spectral radius λmaxj j (the largest absolute eigenvalue) is smaller than 1. Standard
settings of λmaxj j lie in a range between 0.7 and 0.98. Once the reservoir topology is
set and the weights are assigned, the reservoir is simulated and optimized on the
training data set. It is usually done by linear regression (least-squares method) or
ridge regression, Bishop [3]. Since the output layer is linear, regularization can be
easily applied by adding a small amount of Gaussian noise to the RCN response.

The main advantage of RCN is that it overcomes many of the problems of
traditional RNN training such as slow convergence, high computational require-
ments, and complexity. The computational efforts for training are related to com-
puting the transpose of a matrix or matrix inversion. Once trained, the resulting
RCN-based system can be used for real time operation on moderate hardware since
the computations are very fast (only matrix multiplications of small matrices).
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4 Kinetic Rates Estimation by Time Accounting ANN

The ANNs are a data-based modeling technique where during an optimization
procedure (termed also learning) the network parameters (the weights) are updated
based on error correction principle. At each iteration, the error between the network
output and the corresponding reference has to be computed and the weights are
changed as a function of this error. This principle is also known as supervised
learning. However, the process kinetic rates are usually not measured variables,
therefore, targets (references) are not available and the application of any
data-based modeling technique is questionable. A procedure is proposed in the
present work to solve this problem. The idea is to propagate the ANN output
through a fixed partial analytical model (Anal. model) until it comes to a measured
process variable (see Fig. 5). The proper choice of this Anal. model and the for-
mulation of the error signal for network updating are discussed below. The pro-
cedure is based on the following assumptions:

(A1) Not all process states of model (1) are measured.
(A2) All kinetics coefficients are known, that is b and all entries of matrix K are

available.
For more convenience, the model (1) is reformulated based on the following

augmented vectors

Xaug =
X
T

� �
, Xaug ∈Rn+1, Kaug =

K
b

� �
, Kaug ∈Rðn+1Þ×m. ð7Þ

Then (1.1) is rewritten as

dXaug

dt
=Kaugφ Xaug

� �
− D̄Xaug +U with D̄=

D 0
0 d0

� �
, U =

Ux

UT

� �
ð8Þ

Step 1: State vector partition A
The general dynamical model (8) represents a particular class of nonlinear
state-space models. The nonlinearity lies in the kinetics rates φ Xaug

� �
that are

nonlinear functions of the state variables Xaug. These functions enter the model in
the form Kaugφ Xaug

� �
, where Kaug is a constant matrix, which is a set of linear

combinations of the same nonlinear functions φ1ðXaugÞ, . . . ,φmðXaugÞ. This par-
ticular structure can be exploited to separate the nonlinear part from the linear part
of the model by a suitable linear state transformation. More precisely, the following
nonsingular partition is chosen, Chen and Bastin [4].

ANN
in X

Target
available

error

Anal.
model

Fig. 5 Hybrid ANN training
structure
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LKaug =
Ka

Kb

� �
, rank Kaug

� �
= l, ð9:1Þ

where L∈Rn× n is a quadratic permutation matrix, Ka is a lxm full row rank sub-
matrix of Kaug and Kb ∈Rðn− lÞ×m. The induced partitions of vectors Xaug and U are

LXaug =
Xa

Xb

� �
, LU =

Ua

Ub

� �
, ð9:2Þ

with Xa ∈Rl, Ua ∈Rl, Xb ∈Rn− l, Ub ∈Rn− l.
According to (9.1, 9.2), model (8) is also partitioned into two submodels

dXa

dt
=Kaφ Xa,Xbð Þ−D ̄Xa +Ua ð10Þ

dXb

dt
=Kbφ Xa,Xbð Þ−D ̄Xb +Ub ð11Þ

Based on (9.1, 9.2), a new vector Z ∈Rn+1− l is defined as a linear combination
of the state variables

Z =A0Xa +Xb, ð12Þ

where matrix A0 ∈Rðn+1− lÞ× l is the unique solution of

A0Ka +Kb =0, ð13Þ

that is

A0 = −KbK − 1
a , ð14Þ

Note that, a solution for A0 exist if and only if Ka is not singular. Hence, a
necessary and sufficient condition for the existence of a desired partition (9.1, 9.2),
is that Ka is a pxm full rank matrix, which was the initial assumption. Then, the first
derivative of vector Z is

dZ
dt

=A0
dXa

dt
+

dXb

dt
=A0 Kaφ Xa,Xbð Þ−D ̄Xa +Ua½ �+Kbφ Xa,Xbð Þ−D ̄Xb +Ub

= ðA0Ka +KbÞφ Xa,Xbð Þ− D̄ðA0Xa +XbÞ+A0Ua +Ub

ð15Þ

Since matrix A0 is chosen such that Eq. (13) holds, the term in (15) related with
φ is canceled and we get
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dZ
dt

= −D ̄Z +A0Ua +Ub ð16Þ

The state partition A results in a vector Z whose dynamics, given by Eq. (15), is
independent of the kinetic rate vector φ. In general, (9) is not a unique partition and
for any particular case a number of choices are possible.

Step 2: State vector partition B (measured and unmeasured states)
Now a new state partition is defined as subvectors of measured and unmeasured
states X1, X2, respectively. The model (8) is also partitioned into two submodels

dX1

dt
=K1φ X1,X2ð Þ−D ̄X1 +U1 ð17:1Þ

dX2

dt
=K2φ X1,X2ð Þ−D ̄X2 +U2 ð17:2Þ

From state partitions A and B, vector Z can be represented in the following way

Z =A0Xa +Xb =A1X1 +A2X2. ð18Þ

The first representation is defined in (12), then applying linear algebra trans-
formations A1 and A2 are computed to fit the equality (18). The purpose of state
partitions A and B is to estimate the unmeasured states (vector X2) indepen-
dently of the kinetics rates (vector φ). The recovery of X2 is defined as state
observer.

Step 3: State observer
Based on (16) and starting with known initial conditions, Z can be estimated as
follow (in this work the estimations are denoted by hat)

dZ ̂
dt

= −DZ ̂+A0ðFin a −Fout aÞ+ ðFin b −Fout bÞ ð19Þ

Then according to (18) the unmeasured states X2 are recovered as

X2̂ =A− 1
2 ðZ ̂−A1X1Þ ð20Þ

Note that, estimates X2̂ exist if and only if A2 is not singular, Bastin and Dochain
[2]. Hence, a necessary and sufficient condition for observability of the
unmeasured states is that A2 is a full rank matrix.

Step 4: Error signal for NN training
The hybrid structure for NN training is shown in Fig. 6, where the adaptive hybrid
model (AHM) is formulated as

54 P. Georgieva et al.



dXhyb

dt
=KaugφNN − D̄Xhyb +U +ΩðXaug −XhybÞ ð21Þ

The true (but unknown) process behavior is assumed to be represented by (8).
Then the error dynamics is modeled as the difference between (8) and (21)

dðXaug −XhybÞ
dt

=Kaugðφ−φNNÞ−D ̄ðXaug −XhybÞ+ΩðXaug −XhybÞ ð22Þ

The following definitions take place:
Ex = ðXaug −XhybÞ is termed as the observation error,
Eφ =φ−φNN is the error signal for updating the ANN parameters.
Xaug consists of the measured (X1) and the estimated (X ̂2) states. Thus, (22) can

be rearranged as follows

dEx

dt
=KaugEφ − ðD ̄−ΩÞEx ð23Þ

and from (23) the error signal for NN training is

Eφ =K − 1
aug D ̄−Ω 1

� 	 Ex

E ̇x

� �
=B

Ex

E ̇x

� �
, B=K − 1

aug D ̄−Ω 1
� 	 ð24Þ

Ω is a design parameter which defines the speed of the observation error con-
vergence. The necessary identifiability condition for the kinetic rate vector is the
nonsingularity of matrix Kaug. Note that, the error signal for updating the network
parameters is a function of the observation error (Ex) and the speed of the obser-
vation error (Eẋ). The intuition behind is that the network parameters are changed
proportionally to their effect on the prediction of the process states and the pre-
diction of their dynamics.

[ ]TXXX 21
ˆ=

xE

-

⎥
⎦

⎤
⎢
⎣

⎡
=

x

x

E

E
BEϕ

Error signal for 
NN updating 

hybX
Biochemical 

reactor model
+

(state observer)

AHM

Xaug

ANN

NNϕ

Fig. 6 Hybrid NN-based reaction rates identification structure
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Step 5: Optimization porcesure—Levenberg–Marquardt Quasi-Newton algorithm
The cost function to be minimized at each iteration of network training is the sum of
squared errors, where N is the time instants over which the optimization is per-
formed (batch mode of training)

Jk =
1
N

∑
N

i=1
EφðiÞ
� 	2 ð25Þ

A number of algorithms have been proposed to update the network parameters
(w). For this study the Levenberg–Marquardt (LM) Quasi-Newton method is the
chosen algorithm due to its faster convergence than the steepest descent or con-
jugate gradient methods, Hagan et al. [6]. One (k) iteration of the classical Newton’s
method can be written as

wk+1 =wk −H − 1
k

gk , gk =
∂Jk
∂wk

, Hk =
∂J2k

∂wk∂wk
ð26Þ

where gk is the current gradient of the performance index (25) Hk is the Hessian
matrix (second derivatives) of the performance index at the current values (k) of the
weights and biases. Unfortunately, it is complex and expensive to compute the
Hessian matrix for a dynamical ANN. The LM method is a modification of the
classical Newton method that does not require calculation of the second derivatives.
It is designed to approach second-order training speed without having to compute
directly the Hessian matrix. When the performance function has the form of a sum
of error squares (25), at each iteration the Hessian matrix is approximated as

Hk = JTk Jk ð27Þ

where Jk is the Jacobian matrix that contains first derivatives of the network errors
(ek) with respect to the weights and biases

Jk =
∂Eφk

∂wk
, ð28Þ

The computation of the Jacobian matrix is less complex than computing the
Hessian matrix. The gradient is then computed as

gk = JkEφk ð29Þ

The LM algorithm updates the network weights in the following way

wk+1 =wk − JT
k
J
k
+ μI

h i− 1
JT
k
Eφk ð30Þ
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when the scalar μ □ is zero, this is just Newton’s method, using the approximate
Hessian matrix. When μ □ is large, this becomes gradient descent with a small step
size. Newton’s method is faster and more accurate near an error minimum, so the
aim is to shift toward Newton’s method as quickly as possible. Thus, μ □ is
decreased after each successful step (reduction in performance function) and is
increased only when a tentative step would increase the performance function. In
this way, the performance function will always be reduced at each iteration of the
algorithm.

5 Case Study—Estimation of Sugar Crystallization
Growth Rate

Sugar crystallization occurs through mechanisms of nucleation, growth, and
agglomeration that are known to be affected by several not well-understood oper-
ating conditions. The search for efficient methods for process description is linked
both to the scientific interest of understanding fundamental mechanisms of the
crystallization process and to the relevant practical interest of production require-
ments. The sugar production batch cycle is divided in several phases. During the
first phase the pan is partially filled with a juice containing dissolved sucrose. The
liquor is concentrated by evaporation, under vacuum, until the supersaturation
reaches a predefined value. At this point seed crystals are introduced into the pan to
induce the production of crystals (crystallization phase). As evaporation takes place
further liquor or water is added to the pan. This maintains the level of supersatu-
ration and increases the volume contents. The third phase consists of tightening
which is controlled by the evaporation capacity, see Georgieva et al. [5] for more
details. Since the objective of this paper is to illustrate the technique introduced in
Sect. 4, the following assumptions are adopted:

i. Only the states that explicitly depend on the crystal growth rate are extracted
from the comprehensive mass balance process model;

ii. The population balance is expressed only in terms of number of crystals;
iii. The agglomeration phenomenon is neglected.

The simplified process model is then

dMs

dt
= − k1G+Ff ρf Bf Purf ð31:1Þ

dMc

dt
= k1G ð31:2Þ

dTm
dt

= k2G+ bFf + cJvap + d ð31:3Þ
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dm0

dt
= k3G ð31:4Þ

where Ms is the mass of dissolved sucrose, Mc is the mass of crystals, Tm is the
temperature of the massecuite, m0 is the number of crystals. Purf and ρf are the
purity (mass fraction of sucrose in the dissolved solids) and the density of the
incoming feed. Ff is the feed flowrate, Jvap is the evaporation rate and b, c, d are
parameters incorporating the enthalpy terms and specific heat capacities. They are
derived as functions of physical and thermodynamic properties. The full state vector
is

Xaug = Ms Mc Tm m0½ �T , with Kaug = − k1 k1 k2 k3½ �T . Now we are in
a position to apply the formalism developed in Sects. 2.2 and 2.3 for this particular
reaction process.

We chose the following state partition A: Xa =Mc, Xb = Ms Tm m0½ �T
and the solution of Eq. (13) is

A0 = 1 − k2
k1

− k3
k1

h iT
ð32Þ

Mc and Tm are the measured states, then the unique state partition B is

X1 = Mc Tm½ �T , X2 = Ms m0½ �T ,

Taking into account (32), the matrices of the second representation of vector Z in
(18) are computed as

A1 =
1 − k2

k1
− k3

k1
0 1 0

� �T
, A2 =

1 0 0
0 0 1

� �T

For this case D = 0, then the estimation of the individual elements of Z are

Z 1̂ =Mc + M̂s, Z ̂2 = −
k2
k1

Mc +Tm, Z ̂3 = −
k3
k1

Mc + m̂0 ð33Þ

The analytical expression for the estimation of the unmeasured states is then

M̂s

m̂0

� �
=

1 0 0
0 0 1

� � Z ̂1
Z 2̂

Z 3̂

2
4

3
5−

1 0
− k2

k1
1

− k3
k1

0

2
4

3
5 Mc

Tm

� �0
@

1
A ð34Þ

The observation error is defined as

Ex =

M̂s −Ms hyb

Mc −Mc hyb

m̂0 −m0 hyb

Tm − Tm hyb

2
664

3
775 ð35Þ
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In the numerical implementation the first derivative of the observation error is
computed as the difference between the current ExðkÞ and the previous value
Exðk− 1Þ of the observation error divided by the integration step (Δt)

E ̇x =
ExðkÞ−Exðk− 1Þ

Δt
ð36Þ

The three types of time accounting ANNs were trained with the same training
data coming from six industrial batches (training batches). The physical inputs to all
networks are (Mc, Tm,m0,Ms), the network output is GNN . Two of the inputs
(Mc, Tm) are measurable, the others (m0,Ms) are estimated. In order to improve the
comparability between the different networks a linear activation function is located
at the single output node (see Fig. 2, Layer 2—purelin) and hyperbolic tangent
functions are chosen for the hidden nodes (Fig. 2, Layer 1—tansig). Though other
S-shaped activation functions can be also considered for the hidden nodes, our
choice was determined by the symmetry of the hyperbolic tangent function into the
interval (−1, 1).

The hybrid models are compared with an analytical model of the sugar crys-
tallization, reported in Oliveira et al. [12], where G is computed by the following
empirical correlation

G=Kg exp −
57000

RðTm +273Þ
� �

ðS− 1Þ exp − 13.863ð1−PsolÞ½ � 1+ 2
Vc

Vm


 �
, ð37Þ

where S is the supersaturation, Psol is the purity of the solution and Vc V̸m is the
volume fraction of crystals. Kg is a constant, optimized following a nonlinear
least-squares regression.

The performance of the different models is examined with respect to prediction
quality of the crystal size distribution (CSD) at the end of the process which is
quantified by two parameters—the final average (in mass) particle size (AM) and
the final coefficient of particle variation (CV). The predictions given by the models
are compared with the experimental data for the CSD (Table 1), coming from eight
batches not used for network training (validation batches). The results with respect
to different configurations of the networks are summarized in Tables 2, 3, and 4. All
hybrid models (Eqs. 31 +RNN/TLNN/RCN) outperform the empirical model (37)
particularly with respect to predictions of CV. The predictions based on TLFN and
TCN are very close especially for higher reservoir dimension. Increasing the RCN
hidden nodes (from 100 to 200) reduces the AM and CV prediction errors, however
augmenting the reservoir dimension from 200 to 300 does not bring substantial
improvements. The hybrid models with RNN exhibit the best performance though
the successful results reported in Table 2 were preceded by a great number of
unsuccessful (not converging) trainings. As with respect to learning efforts the RCN
training takes in average few seconds on an Intel Core2 Duo processor based
computer and by far is the easiest and fastest dynamical regressor.
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Table 2 Final CSD—hybrid
model predictions
(Eqs. 31 + RNN)

RNN Batch no. AM (mm) CV (%)

Exogenous input 1 0.51 29.6
Delay: 2 2 0.48 30.7

3 0.58 33.6
Recurrent input 4 0.67 31.7
Delay: 2 5 0.55 29.5

6 0.57 34.5
Total number of inputs: 14 7 0.59 29.6
Hidden neurons: 5 8 0.53 32.2
Average error (%) 4.1 7.5

exogenous input 1 0.59 30.7
Delay: 1 2 0.55 41.5

3 0.59 39.3
Recurrent input 4 0.51 35.9
delay: 3 5 0.49 32.1

6 0.58 31.7
Total number of inputs: 11 7 0.56 30.5
Hidden neurons: 5 8 0.53 36.8
Average error (%) 5.2 9.2

Exogenous input 1 0.51 30.9
Delay: 3 2 0.56 31.1

3 0.59 37.2
Recurrent input 4 0.48 29.8
Delay: 1 5 0.52 34.8

6 0.51 32.4
Total number of inputs: 17 7 0.59 30.6
Hidden neurons:5 8 0.50 33.5
Average error (%) 3.6 6.9

Table 1 Final CSD—experimental data versus analytical model predictions

Batch no. Experimental data Analytical model
(Eqs. 31 + 37)

AM (mm) CV (%) AM (mm) CV (%)

1 0.479 32.6 0.583 21.26
2 0.559 33.7 0.542 18.43
3 0.680 43.6 0.547 18.69
4 0.494 33.7 0.481 14.16
5 0.537 32.5 0.623 24.36
6 0.556 35.5 0.471 13.642
7 0.560 31.6 0.755 34.9
8 0.530 31.2 0.681 27.39
Average error 13.7 % 36.1 %
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Table 3 Final CSD—hybrid model predictions (Eqs. 31 + TLNN)

TLNN Batch no. AM (mm) CV (%)

Tap delay: 1 1 0.49 30.8
2 0.51 37.1
3 0.62 31.5

Total number of inputs: 8 4 0.60 35.5
Hidden neurons: 5 5 0.57 36.2

6 0.52 28.7
7 0.55 38.6
8 0.54 32.4

Average error (%) 6.02 11.0

Tap delay: 2 1 0.51 37.5
2 0.49 31.6
3 0.59 34.6
4 0.53 40.3

Total number of inputs: 12 5 0.60 35.2
Hidden neurons: 5 6 0.49 31.5

7 0.51 29.6
8 0.54 30.3

Average error (%) 5.9 10.8

Tap delay: 3 1 0.479 30.3
2 0.559 41.2
3 0.680 39.4
4 0.494 35.7

Total number of inputs: 16 5 0.537 35.4
Hidden neurons: 5 6 0.556 30.3

7 0.560 29.9
8 0.530 28.3

Average error (%) 5.8 10.3
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Table 4 Final CSD—hybrid model predictions (Eqs. 31 + RCN)

RCN Batch no. AM (mm) CV (%)

Reservoir 1 0.53 31.2
Dimension: 100 nodes 2 0.49 28.1

3 0.57 43.6
Total number of inputs: 4 4 0.61 41.7

5 0.59 39.6
6 0.60 36.1
7 0.51 30.4
8 0.54 40.2

Average error (%) 6.8 12.0

Reservoir 1 0.56 40.1
Dimension: 200 nodes 2 0.51 37.4

3 0.61 36.2
4 0.56 38.6

Total number of inputs: 4 5 0.49 28.9
6 0.59 34.7
7 0.61 30.4
8 0.54 39.2

Average error (%) 5.9 10.2

Reservoir 1 0.59 33.9
Dimension: 300 nodes 2 0.48 28.8

3 0.57 39.7
4 0.51 29.6

Total number of inputs: 4 5 0.53 31.8
6 0.51 33.9
7 0.49 30.7
8 0.57 36.9

Average error (%) 5.9 9.8
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6 Conclusions

This work is focused on presenting a more efficient computational scheme for
estimation of process reaction rates based on temporal ANN architectures. It is
assumed that the kinetics coefficients are all known and do not change over the
process run, while the process states are not all measured and therefore need to be
estimated. It is a very common scenario in reaction systems with low or medium
complexity.

The concepts developed here concern two aspects. On one side we formulate a
hybrid (temporal ANN+ analytical) model that outperforms the traditional reaction
rate estimation approaches. On the other side a procedure for ANN supervised
training is introduced when target (reference) outputs are not available. The net-
work is embedded in the framework of a first principle process model and the error
signal for updating the network weights is determined analytically. According to the
procedure, first the unmeasured states are estimated independently of the reaction
rates and then the ANN is trained with the estimated and the measured data.
Ongoing research is related with the integration of the hybrid models proposed in
this work in the framework of a model-based predictive control.
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Periodic Time-Varying Observer-Based
Learning Control of A/F Ratio
in Multi-cylinder IC Engines

Tomohiro Hara, Tielong Shen, Yasuhiko Mutoh and Yinhua Liu

Abstract This paper presents an air–fuel ratio control scheme via individual fuel

injection for multi-cylinder internal combustion engines. The aim of presented con-

trol scheme is to improve air–fuel ratio precision by real-time compensation of the

unknown offset in the fuel path of individual cylinder, which represents the effect

of the cylinder-to-cylinder imbalance caused by the perturbations in each injector

gain or disturbances in the dynamics of fuel injection path. First, the fueling-to-

exhaust gas mixing system is treated as single-input single-output (SISO) periodic

time-varying system where the input is fuel injection command for each cylinder and

the output is the air–fuel ratio measured at each exhaust bottom dead center (BDC).

Then, a periodic time-varying observer is presented that provides an estimation of

the internal state of the system. Based on the presented observer, an iterative learning

control strategy is proposed to compensate the unknown offset. The effectiveness of

the learning control scheme will be demonstrated with the simulation and experi-

ment results conducted on a commercial car used engine with six cylinders.

1 Introduction

For the internal combustion engines with multi-cylinders, individual cylinder actu-

ation is an effective way to achieve high performance of the emission and the torque

generation. Recently, due to the rapid progress in the technology of car electronics

and electrical control unit (ECU), the individual cylinder control problem has begun

to attract the attention of researchers in engine control community. For example, the

literatures [1–3, 8, 9] addressed the air–fuel ratio control problem based on the esti-

mation of the individual air–fuel ratio in each cylinder. The air–fuel ratio or torque

balancing with individual fueling or variable valve timing is investigated by [4].
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Meanwhile, when an engine is operated on a static mode, the effect of cylinder-to-

cylinder imbalance might be equivalently represented as offset in the level of actu-

ation signal of each cylinder. If we focus on the air–fuel ratio control problem, the

variation of the air–fuel ratio measured at the exhaust manifold, which caused by the

perturbation of fuel mass injected into each cylinder, can be regarded as constant

offset in each fuel injection path. As it is shown in [6], at a static mode, the dynam-

ics of BDC-scaled air–fuel ratio under individually actuated fuel injection, which is

denoted as single input delivered to each cylinder according the crank angle, can be

represented as periodic time-varying linear system, where the periodic time-varying

parameter is due to the difference between the characteristics of each cylinder. In

general, the cylinder-to-cylinder imbalance represented by the offset is difficult to be

calibrated exactly.

Motivated by the periodic time-varying characteristics of the fueling-to-exhaust

gas mixing system, this paper proposes a periodic time-varying observer-based

learning control scheme to real-time compensation of the unknown offset in the fuel-

ing path of each cylinder. At first, a periodic time-varying linear model is introduced

from the physical observation to describe the dynamical behavior of the fueling-to-

exhaust gas mixing system. Then, a state observer is designed based on the periodic

time-varying model. By embedding the observer into the iterative learning control

law, the air–fuel ratio controller with real-time unknown offset compensation is pre-

sented for a six cylinder gasoline engines. To demonstrate the effectiveness of the

proposed control scheme, numerical simulation and experiments will be conducted

on a full-scaled engine test bench.

This paper is organized as follows. Section 2 gives a detailed explanation of

the targeted system and the control problem. Section 3 presents the periodic time-

varying modeling for the engines, and in Sect. 4, the observer design will be given

with the model. The learning control scheme embedded with the periodic time-

varying observer is proposed in Sect. 5. Finally, Sect. 6 demonstrates the simulation

and experiment results.

2 System and Problem

In multi-cylinder combustion engines, the combustion event in each cylinder occurs

sequentially along the crankshaft angle, and the burnt gas is exhausted during the

corresponding exhaust phase. Usually, in the multi-cylinder internal combustion

engines, several cylinders share a common exhaust manifold where the burnt gases

from different cylinders exhausted at different timing in crank angle are mixed and

exhausted to the atmosphere passing through the tail pipe. To perform online air–

fuel ratio control, air–fuel ratio sensor is usually equipped at the gas mixing point

of the exhaust manifold, and the fuel mass injected to each cylinder is decided and

delivered by ECU. As an ideal situation, if the air charge of each cylinder is same as

the others, then the fuel injection command for all cylinders might take unified value

to obtain the targeted air–fuel ratio. However, imbalance between the cylinders, for
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Fig. 1 Fueling-to-exhaust gas mixing system

instance, the injector gains and disturbances in the intake path of each cylinder, will

unfortunately cause the errors of air–fuel ratio in each cylinder. As a result, it will

damage the air–fuel ratio control performance.

For example, in the six-cylinder V-type engines, which is the main target of

this paper, each of three cylinders shares a common exhaust manifold as shown in

Fig. 1. We focus on one of the two exhaust manifolds, where the cylinders numbered

as No.1, No.2, and No.3 share the same manifold, and for each cylinder the fuel

injection command is decided individually, which is denoted with a unified signal

uf (k) where k is the sampling index with BDC-scaled sampling period, i.e., uf (k)
is assigned to the individual cylinder with the rotation uf1, uf2, uf3, uf1,…, here ufi
(i = 1, 2, 3) denotes the fuel injection command for the No. 1, No. 2, No. 3 cylinders.

The sensor is mounted at the gas mixing point of exhaust manifold, where the burnt

gas exhausted from each cylinder with BDC-scaled delay comes together. Hence, the

measured air–fuel ratio, denoted as output y(k), is of mixed gas from different cylin-

ders. In order to represent the imbalance of air–fuel ratio between the cylinders, the

unknown constant vector d = [d1, d2, d3]T is introduced where di(i = 1, 2, 3) denotes

the unknown offset.

The control problem considered in this paper is to find a real-time control scheme

that decides the fuel injection mass for each cylinder with the offset compensation

without any previous information about the offset. As a result, the air–fuel ratio con-

trol precision is improved by the individual cylinder fuel injection. In the follow-

ing, this problem is challenged with two steps: first, a state observer is designed for

handling the internal state of the dynamical system from the unified fuel injection

command u(k) to the sensor output y(k). Second, by embedding the state observer a

learning control law is constructed to estimate the unknown offset and perform the

compensation. We will start this challenging by introducing a periodic time-varying

linear model for the targeted systems.
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3 Periodic Time-Varying Model

For the sake of simplicity, we consider the engines with direct injection. It means

that there is no wall-wetting phenomena which introduce additional first order delay

dynamics during the injection command to the burnt fuel mass [6]. A brief review

with a slight simplification from the periodic time-varying model in [5] is given as

follows.

Suppose behavior of the exhaust gas traveling from the exhaust valve to the gas

mixing point can be presented as a first order linear system with time constant

Ti(i = 1, 2, 3). Then, the rate of the air mass and the fuel mass flow measured at the

sensor position, denoted as ṁsfi and ṁsai for No. i cylinder, are calculated as follows,

respectively.

ṁsai(t′) = ∫
t′

0

1
Ti
ṁai(𝜏)e

− 1
Ti
(t′−𝜏)d𝜏 (1)

ṁsfi(t′) = ∫
t′

0

1
Ti
ṁfi(𝜏)e

− 1
Ti
(t′−𝜏)d𝜏 (2)

where t′ = t − tBDCi
, tBDCi

denotes the exhaust valve opening time of the No. i cylin-

der. Thus, the gas mixing including the air and the fuel is obtained as

ṁsa(t) =
N∑
i=1

ṁsai(t − tBDCi
) (3)

ṁsf (t) =
N∑
i=1

ṁsfi(t − tBDCi
) (4)

where ṁsa(t) and ṁsf (t) are the total mass of air and the fuel, respectively.

Therefore, the air–fuel ratio of the gas passing through the sensor head is given

by

𝜂(t) =
ṁsf (t)
ṁsa(t)

(5)

Furthermore, taking the sensor’s delay into account, which is usually represented

as the first order system with time constant 𝜏s, the measured air–fuel ratio 𝜂s is

obtained as

𝜂̇s(t) =
1
𝜏s
[−𝜂s(t) + 𝜂(t)] (6)

Under the assumption that the exhaust gases exist in the manifold no longer that a

combustion cycle, the system output 𝜂s(t) will be a periodic function with the period

of combustion cycle time T when the engine is working at a static operation mode.
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Note that the sampling period for individual cylinder injection is 2𝜋∕3 in crank

angle, i.e., the sampling and delivering the control signal are performed at each BTC.

Denote the time interval between two adjacent BDCs as Ts, then T = 3Ts for the

exhaust system with three cylinders. Let j be the index of combustion cycle, we have

the following relationship at each discrete sampling time kTs

y(kTs) = y(jT + (i − 1)Ts) (7)

Furthermore, for the direct injection engines, the fuel mass injected into the No. i

cylinder is given by

ṁfi(t) = ufi(t) + di, (i = 1, 2, 3) (8)

where di is introduced to represented the unknown offset in the fuel injection path.

With the unified injection command uf (k) = ufi(k), and Mod(k, 3) = i − 1 in mind,

we obtain the discrete gas mixing model as follows:

𝜂(k) =
p∑
i=1

ri(t) [ufi(k − p + i) + di]

+
3∑

k+p+1
ri(k)[ufi(k − N − p + i) + di] (9)

for p = 1, 2, 3 when Mod(k, 3) = p − 1. For the sensor dynamics, we have

𝜂s(k + 1) = g𝜂s(k) + (1 − g)𝜂(k) (10)

with g = 1 − Ts∕𝜏s.
In order to obtain a state-space model, define the state variables as

⎧⎪⎨⎪⎩
x1(k) = uf (k − 1) + m(k − 1)d
x2(k) = uf (k − 2) + m(k − 2)d
x3(k) = 𝜂s(k)

(11)

with

d =
⎡⎢⎢⎣
d1
d2
d3

⎤⎥⎥⎦
, m(k) = βΓk

where β and Γ are defined by

Γ =
⎡⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
, β =

[
1 0 0

]
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This leads to the following state equation:

⎡⎢⎢⎣
x1(k + 1)
x2(k + 1)
x3(k + 1)

⎤⎥⎥⎦
= A(k)

⎡⎢⎢⎣
x1(k)
x2(k)
x3(k)

⎤⎥⎥⎦
+ B(k)[u(k) + m(k)d] (12)

and the output equation

y(k) = C
⎡⎢⎢⎣
x1(k)
x2(k)
x3(k)

⎤⎥⎥⎦
(13)

where

A(k) =
⎡⎢⎢⎣

0 0 0
1 0 0

(1 − g)r1(k) (1 − g)r2(k) g

⎤⎥⎥⎦
B(k) =

⎡⎢⎢⎣
1
0

(1 − g)r3(k)

⎤⎥⎥⎦
,C =

[
0 0 1

]

and the parameter ri(k) (i = 1, 2, 3) is a periodic time varying with the period 3, i.e.,

ri(k + 3) = ri(k), (i = 1, 2, 3) (14)

holds for all k ≥ 0.

4 Observer Design

In this section, a state observer will be designed based on the periodic time-varying

model obtained in Sect. 3. For the sake of simplicity, the model (12) is rewritten as

follows with a concise notation

{
x(k + 1) = A(k)x(k) + B(k)(uf (k) + m(k)d)
y(k) = C(k)x(k) (15)

where the periodic time-varying matrices are defined as

A(k) =
⎡⎢⎢⎣

0 0 0
1 0 0

a(k) b(k) g(k)

⎤⎥⎥⎦
, B(k) =

⎡⎢⎢⎣
1
0

c(k)

⎤⎥⎥⎦
,

C(k) =
[
0 0 1

]
,
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a(k) = (1 − g)r1(k), b(k) = (1 − g)rs(k), c(k) = (1 − g)r3(k)

To construct an observer for the time-varying system with convergence of the

state estimation error, the design process is focused on the case when d = 0. We start

with some collection of fundamental concepts of time-varying system regarding the

observer design.

Definition 1 System (15) is said to be completely reachable from the origin within

n steps, if and only if for any x1 ∈ Rn
there exists a bounded input u(l) (l = k,… , k +

n − 1) such that x(0) = 0 and x(k + n) = x1 for all k.

Definition 2 System (15) is said to be completely observable within n steps, if and

only if the state x(k) can be uniquely determined from output y(k), y(k + 1), …, y(k +
n − 1) for all k.

Under the definitions, the completely reachability can be concluded with the fol-

lowing conditions:

Lemma 1 System (15) is completely reachable within n steps if and only if the rank
of the reachability matrix defined below is n for all k.

R(k) =
[
B0(k) B1(k) ⋯ Bn−1(k)

]
(16)

where,

B0(k) = B(k + n − 1)
B1(k) = A(k + n − 1)B(k + n − 2)

= Φ(k + n, k + n − 1)B(k + n − 2)
⋮

Bn−1 = Φ(k + n, k + 1)B(k).

and the state transition matrix of the system Φ(i, j) is defined as follows:

Φ(i, j) = A(i − 1)A(i − 2)⋯A(j) i > j. (17)

As shown in [7], the reachability matrix R(k) can be rewritten as

R(k) =
[
b01(k)⋯ b0m(k)|⋯ |bn−11 (k)⋯ bn−1m (k)

]
(18)

with bri (k), the r-th column of Br(k), which is determined by



72 T. Hara et al.

b0i (k) = bi(k + n − 1)
b1i (k) = A(k + n − 1)bi(k + n − 2)

= Φ(k + n, k + n − 1)bi(k + n − 2) (19)

⋮

bn−1i = Φ(k + n, k + 1)bi(k)

where bi(k) is the i-th column of B(k).
Now, we construct the state observer for the system (15) as follows:

x̂(k + 1) = A(k)x̂(k) + B(k)u(k) + H(k)(y(k) − C(k)x̂(k)) (20)

where H(k) is the observer gain to be designed.

Then, the error of state observer is represented as follows:

e(k + 1) = (A(k) − H(k)C(k))e(k). (21)

where e(k) = x(k) − x̂(k). Therefore, our goal to finish the observer construction is

to find a gain matrix H(k) such that the error system is asymptotically stable. In the

following, we will show a procedure to find a desired H(k) under the condition of

completely reachability, which can be done by routine work with the method pre-

sented in [7]. In principle, this is to perform the pole placement for an anti-causal

system.

First, for the system (15), consider its anti-causal system

𝜉(k − 1) = AT (k)𝜉(k) + CT (k)v(k). (22)

where 𝜉(k) ∈ Rn
, v(k) ∈ Rp

. It has been shown in [7] that if the original system is

observable, then there exists a time-varying vector function ̃C(k) such that the rela-

tive degree of the anti-causal system is n between the input v and the auxiliary output

𝜎(k) defined by

𝜎(k) = ̃C(k + 1)𝜉(k). (23)

By using the reachability matrix ̄R(k − n) of the anti-causal system, the output

matrix ̃C(k) can be constructed as follows:

Theorem 1 If the anti-causal system is completely reachable in n steps, there exists
a new output 𝜎(k) such that the relative degree from v(k) to 𝜎(k) is n. And, such a
̃C(k) can be calculated by the following equation:

̃C(k) = W ̄R−1(k − n) (24)
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where ̄R is the anti-causal reordered reachability matrix and W is constant matrix
defined by

W = diag(w1,w2,… ,wm)
wi =

[
0 ⋯ 0 1

]
∈ R1×μi (25)

Furthermore, for any given stable polynomials qi(z−1) (i = 1, 2,⋯ , n), it is able

to transform the system into the following:

⎡⎢⎢⎣
q1(z−1)

⋱
qp(z−1)

⎤⎥⎥⎦
𝜎(k) = Γ(k)𝜉(k) + Λ(k)v(k). (26)

where qi(z−1) is the i-th ideal closed-loop characteristic polynomial from ui to 𝜎i(k)

qi(z−1) = z−1 νi +
i
α

νi −1
z−1 νi −1 +⋯ +

i
α
1
z−1 +

i
α
0

(27)

where z−1 is the shift operator, νi is the reachability indice shown as [7].

It means that the anti-causal system can be stabilized by the state feedback

v(k) = Λ−1(k)Γ(k)𝜉(k). (28)

Consequently, a desired observer gain matrix H(k) is determined by

H(k) = ΓT (k)Λ−T (k). (29)

For detailed algorithm to find Γ(k) and Λ(k) can be found in [7]. If we regard such

an observer gain H(k) as a state feedback gain for the anti-causal system, then there

exists a transformation matrix Q(k) such that

Q−1(k)(AT (k) − CT (k)HT (k))Q(k + 1) = A∗T
a (30)

where A∗T
a is constant matrix which has the desired closed loop characteristic poly-

nomial. Equivalently, we have

QT (k + 1)(A(k) − H(k)C(k))Q−1T (k) = Aa
∗

(31)

where A(k) − H(k)C(k) has the desired characteristic polynomial to guarantee the

asymptotical stability of the error system.
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Fig. 2 PCCL block diagram

5 Learning Control Law

Figure 2 shows a typical structure of iterative learning control algorithm. γ(k) is a

given reference signal, u(k) is the control signal and u(k − T0) is the input with T0
step delay, which is to record the effective control signal used in the previous steps.

The memory blocks play the role of learning.

For the periodic time-varying system discussed above, we introduce a learning

mechanism to generate an estimation of the unknown offset m(k)d. Since m(k)d takes

the value d1, d2, d3 periodically, which represent the offset of individual cylinder

injector, for example,

m(k)d = m(k + 3)d = ⋯ = m(k + n) = d1, n = 1, 2,…

we embed a memory with 3-steps delay in the estimation path of the offset as follows:

̂d(k) = ̂d(k − 3) + F(z−1)e(k) (32)

with the learning gain function F(z−1), which will be chosen later. Replacing the

offset m(k)d with this estimation in the observer, we have

x̂(k + 1) = A(k)x̂(k) + B(k)(u(k) + ̂d(k))
+H(k)(y(k) − C(k)x̂(k)),

̂d(k) = ̂d(k − 3) + F(z−1)e(k) (33)

The block diagram of the observer-based learning algorithm is as shown in Fig. 3.

The learning gain function F(k) can be simply chosen with current and previous

learning error as

F(z) = Kc + Kpz−1 (34)
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Fig. 4 Feedback control system with feedforward

Finally, by embedding the observer-based iterative learning algorithm to the fuel

injection control loop, which provides a feedforward compensation with the estima-

tion of the unknown offset, the whole control scheme is obtained as shown in Fig. 4.

In the experiment shown in next section, the feedback control law of the fuel path is

a conventional PI.

6 Numerical Simulation

To validate the learning algorithm in principle, numerical simulation is first con-

ducted with a model identified from experiment data. The specification of the tar-

geted engine is as shown in Table. 1.

Under the operation mode with the engine speed 1600 (rpm), the BDC-scaled

sampling time is 25 (ms). The model parameter values obtained by the least square

(LES) identification algorithm are given in Table 2. The observer-based iterative

learning algorithm in open loop is tested with the model. The results are shown in

Fig. 5. In the simulation, the offset is set to d1 = 1300, d2 = 1000, d3 = 1500. It can
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Table 1 Basic engine specifications

Number of cylinders 6
Bore 94.0 (mm)

Stroke 83.0 (mm)

Compression ratio 11.8
Crank radius 41.5 (mm)

Connection rod length 147.5 (mm)

Combustion chamber volume 53.33 (mm3)
Displacement 3.456 (L)

Manifold volume 6.833 (L)

Fuel injection D-4S

Injection sequence 1-2-3-4-5-6

Table 2 Model parameter(×10−3)
Mod(k,3) = r r = 0 r = 1 r = 2

a(k) 0.0716 0.0695 0.0545

b(k) 0.0428 0.0427 0.0498

c(k) 0.1020 0.1534 0.1581

g(k) 932.229

be observed that the estimation error of the state variables converge to zero, and the

estimation of the offset convergence to the set value.

7 Experiment Results

The experiments are conducted on an engine test bench where a commercial pro-

duction V6 gasoline engine with six cylinders is controlled by electrical control unit

(ECU), which is bypassed via CAN bus so that the control law can be programmed

on dSPACE prototype control environments. The system structure is shown in Fig. 6.

The engine in the test bench and the dynamometer are shown in lower image of

Fig. 7. The upper image shows the control desk. The UEGO sensor placed at the gas

mixing point of exhaust manifold provides the air–fuel ratio sampled with sampling

period 240 (deg) in crank angle. The control input is the command delivered to each

injector that inject the fuel directly into according cylinder.
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Fig. 5 Simulation results of iterative learning observer

7.1 Open-Loop Learning

To validate the effectiveness of the learning algorithm, we first conduct open-loop

learning experiments, i.e., the observer-based learning algorithm is implemented

without the air–fuel ratio feedback control loop.
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Fig. 6 Structure of the experiment system

Fig. 7 Engine test bench and control desk

Case 1. The engine is under speed control set 1600 (rpm) and the load is changed

from 60 to 70 (Nm). The response of the speed, state estimation, and the learning

response of the offset are shown in Fig. 8.
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Fig. 8 Experiment results of iterative learning (acceleration)

Case 2. The same operation mode as the Case 1, but the load is changed from 70

to 60 (Nm). The response is shown in Fig. 9.

Case 3. The engine speed is operated at 1200 (rpm) and the load is changed from

80 to 70 (Nm).

Case 4. The engine speed is set to 1800 (rpm) with the load change from 70 to

80 (Nm).

It can be observed from the experiment results, zoomed window in the bottom of

Fig. 8, the output of the learning algorithm converges to the individual offset value of

each cylinder. The last two cases shows the learning algorithm has good robustness

on the engine operating condition. Moreover, the experiment results operated at dif-

ferent speed ranges with the same model are shown in Figs. 10 and 11, which show

that the model with fixed parameter value can work well at a rather wilder operation

range.



80 T. Hara et al.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
4

1600

1700

1800

Step

rp
m

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
4

15.5

15.6

15.7

15.8

Step

A
/F

Estimated AF AF

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
4

10

20

30

Step

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
4

10

20

30

Step

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
4

−5

0

5

10

Step

D
is

tu
rb

an
ce

Fig. 9 Experiment results of iterative learning (deceleration)

7.2 Learning-Based Control

The feedback control with learning-based feedforward compensation presented in

Sect. 5 is conducted. Figure 12 shows control responses data of the engine under the

operating condition with speed 1600 (rpm), load 60 (Nm), and the nominal value

of the injected fuel mass 17.26 (mm
3
/str). In Fig. 12, the air–fuel ratio control error

of the left bank is shown under the fuel injection commanded shown in the third

figure, and the bottom shows the feedforward signal generated by the iterative learn-

ing algorithm. The learning signal converges to the three level which is equivalent

to the offset value of the injector of individual cylinder.
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Fig. 10 Experiment results with speed 1200 (rpm)
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Fig. 11 Experiment results with speed 1800 (rpm)
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Fig. 12 Experimental results of feedback control

8 Conclusions

Air–fuel ratio control with high precision is required not only by strict emission

constraint, but also the torque management for a combustion engine. This paper

addressed this topic via individual fuel injection and small-scaled sampling and con-

trol decision. The main attention is focused on the unknown offset of each injector

of cylinders. An observer-based iterative learning algorithm to estimate the offset is

proposed, and as an application of the learning algorithm, a feedback air–fuel ratio

control scheme with feedforward offset compensation is demonstrated. The effective-

ness of the proposed learning and control algorithm can be claimed by the presented

experiment results conducted on industrial scaled engine test bench.
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Fuzzy T–S Model-Based Design
of Min–Max Control for Uncertain
Nonlinear Systems

Tatjana Kolemishevska-Gugulovska, Mile Stankovski, Imre J. Rudas,
Nan Jiang and Juanwei Jing

Abstract The min–max robust control synthesis for uncertain nonlinear systems is
solved using Takagi–Sugeno fuzzy model and fuzzy state observer. Existence
conditions are derived for the output feedback min–max control in the sense of
Lyapunov asymptotic stability and formulated in terms of linear matrix inequalities.
The convex optimization algorithm is used to obtain the minimum upper bound on
performance and the optimum parameters of min–max controller. The closed-loop
system is asymptotically stable under the worst case disturbances and uncertainty.
Benchmark of inverted pendulum plant is used to demonstrate the robust perfor-
mance within a much larger equilibrium region of attraction achieved by the pro-
posed design.

1 Introduction

The ever growing needs in control of nonlinear systems has also enhanced rapidly
growing interest in applying fuzzy system-based control techniques [1]. Although
in industrial practice many rather successful implementations exist heuristics-based
fuzzy control designs employing both linguistic and fuzzy-set models still prevail
along with empirical choice of membership functions [2, 3].

Initially, fuzzy control techniques employing semantic-driven fuzzy models [3]
lacked a formal and systematic synthesis design methodology that would guarantee
basic design requirements such as robust stability and acceptable system perfor-
mance in closed loop. However, such a methodological approach has emerged
through works based on Lyapunov stability theory via using specific fuzzy models,
introduced in [4] by Takagi and Sugeno [4], by means of which any original
nonlinear plant system can be emulated much more accurately. These models are
known T–S fuzzy rule models on the grounds of which Tanaka and co-authors
[5–8] have paved the way of Lyapunov based fuzzy control designs beginning with
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a stability condition that involved finding a common positive definite matrix P for
the T–S models. For fuzzy control systems, being a specific kind of nonlinear
systems, celebrated Lyapunov stability approach has been well established (e.g., see
[9–17] and references therein) too. Furthermore, it has been into a fully elaborated
LMI methodological approach [18].

Nowadays, control approaches employing fuzzy T–S models and Lyapunov
stability theory are commonly viewed as conceptually amenable to design synthesis
tasks of effective control for complex nonlinear systems [1, 3], switched fuzzy
systems [17] inclusive. Recently, a number of methods to design fuzzy controllers
for nonlinear systems based on T–S fuzzy models with embedded uncertainties
were proposed. For it is feasible to decompose a complex plant system into several
subsystems (via fuzzy rules employing T–S model), and then fairly simple control
law synthesized for each subsystem so as to emulate the overall control strategy [4].

Techniques for fuzzy observer-based designs based on fuzzy T–S modeled
nonlinear plants that guarantee robust stability [11, 12] are of particular importance
since very seldom all plant states are measurable. In practice, measuring the states is
physically difficult and costly, and often even impossible. Besides complicated
sensors are often subject to noise, faults, and even complete failures. Thus asymp-
totic stability and quality performance are the two most important problems in
control analysis and synthesis of nonlinear systems hence in fuzzy control systems
too, as demonstrated in works [14–16]. In particular, Lin et al. [15] made a con-
siderable improvement to the observer-based H∞ control of T–S fuzzy systems
following the crucial contribution by Liu and Zhang [14]. In [12], Tong and Li gave
a solution to observer-based robust fuzzy control of nonlinear systems in the pres-
ence of uncertainties. Works [19–21] studied and gave solutions to the fuzzy
guaranteed cost control for nonlinear systems with uncertain and time delay via the
LMI. An implicit assumption in most of those contributions is the measurability of
state variables. Then controller design is based on a memory-less linear state feed-
back law. Fairly recently, a robust and non-fragile min–max control for a trailer truck
represented by a derived T–S fuzzy model has been contributed in [22].

In the guaranteed cost optimum control synthesis only the existence of the dis-
turbance is considered; the influence that disturbance may have actually is not dealt
with. In contrast, the min–max control is a special kind of optimum control reaching
beyond that of the guaranteed cost synthesis. In 1998, Kogan [22–24] was the first to
find a solution and derive the sufficient condition for min–max control design of
linear continuous-time systems; initially he termed it “minimax.” Yet, he has not
made it into the optimal parameter settings of his min–max controller. Recently,
Yoon and co-authors studied the optimal min–max control for linear stochastic
systems with uncertainty and gave a solution in [25]. However, they did not consider
nonlinearities, which are most often present in plants-to-be-controlled (objects or
processes) [1].

The chapter is largely based on the work given in [30]. We develop a new design
synthesis of efficient min–max controller for nonlinear systems by employing fuzzy
T–S models, which is solvable by using LMI toolbox of MATLAB [26, 27]. Since
all the states of nonlinear systems usually are not measurable it is rather important
to find a solution via employing a fuzzy state observer. Furthermore, in here the
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problem is solved under assumption of the worst uncertainty or disturbance [25]
also accounting for possible state bias and control energy consumption too. Next,
Sect. 2 introduces fuzzy T–S model construction for uncertain nonlinear systems
and the definition of the min–max robust control. Existence conditions and design
of min–max robust controller guaranteeing asymptotic Lyapunov stability by using
LMI are investigated in Sect. 3. Section 4 presents application results to the
inverted pendulum benchmark plant. Conclusion and references follow thereafter.

2 Plant Representation and Problem Statement

2.1 Fuzzy Takagi–Sugeno Model of the Plant

It is well known that fuzzy dynamic models crated by Takagi and Sugeno (T–S) are
described by means of a finite set of specific fuzzy If-Then rules. Fuzzy T–S models
involve rules that have math-analytic consequent part such that they interpolate the
originally nonlinear system by local linear input–output relations [4].

Thus, a class of uncertain nonlinear systems can be described by the following
T–S fuzzy model with parametric uncertainties:

Ri: IF z1 kð Þ is Fi
1, z2 kð Þ is Fi

2, . . . , zn kð Þ is Fi
n,

THEN
xi̇ðtÞ= ðAi +ΔAiÞxiðtÞ+ ðBi +ΔBiÞuðtÞ+DiωðtÞ
yðtÞ=CixðtÞ, i=1, . . . , q

, ð1Þ

Quantities in (1) denote: Fi
jðj=1, . . . , nÞ is a fuzzy subset;

zðkÞ= ½z1ðkÞ, . . . , znðkÞ�T is a vector of measurable quantities representing certain
premise variables; xðkÞ= x1ðkÞ, x2ðkÞ, . . . ; xnðkÞ½ �T ∈Rn is the state, uðtÞ∈Rm is
the control, and yðtÞ∈Rl is the output vectors while ωðtÞ is the disturbance vector;
matrices Ai ∈Rn× n, Bi ∈Rn×m, Ci ∈Rl× n and Di ∈Rn×m represent the state, the
input, the output, and the disturbance system matrices, respectively; ΔAi and ΔBi

are constant matrices of appropriate dimensions representing the parametric
uncertainties; and q is the number of rules of plant’s fuzzy T–S model.

Application of Zadeh’s inference [28] to this fuzzy rule-based model yields

x ̇ðtÞ= ∑
q

i=1
hiðzðtÞÞ AixðtÞ+BiuðtÞ+DiωðtÞ½ �+

+ ∑
q

i=1
hiðzðtÞÞ ΔAixðtÞ+ΔBiuðtÞ½ �,

ð2Þ

yðtÞ= ∑
q

i=1
hiðzðtÞÞCixðtÞ, i=1, 2, . . . , q ð3Þ
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where

wiðzðtÞÞ= ∏
n

j=1
Fi
jðzjðtÞÞ, hiðzðtÞÞ= wiðzðtÞÞ

∑
q

i=1
wiðzðtÞÞ

ð4Þ

Here, Fi
j is a fuzzy subset, hi is the membership grade of zjðtÞ in Fi

j . Furthermore,
hiðtÞ and wiðzðtÞÞ possess properties so as to satisfy the following relationships,
respectively:

wiðtÞ≥ 0, ∑
q

i=1
wiðtÞ>0, i=1, 2, . . . , q; ð5Þ

hiðzðtÞÞ≥ 0, ∑
q

i=1
hiðzðtÞÞ=1, i=1, . . . , q. ð6Þ

It is realistic to assume existing uncertainties in the plant are bounded hence
Assumption 1 is adopted.

Assumption 1 The parameter uncertainties are norm bounded hence represented
as:

½ΔAi,ΔBi�=DiFiðtÞ½Ei1,Ei2� ð7Þ

where Di,Ei1, Ei2 are known real-valued constant matrices of appropriate dimen-
sions, FiðtÞ is unknown matrix function with Lebesgue-measurable elements sat-
isfying FT

i ðtÞFiðtÞ ≤ I with I an appropriate identity matrix.
Assumption 1 and Zadeh’s inference enable deriving an equivalent representa-

tion to system (2)–(4) as follows:

x ̇ðtÞ= ∑
q

i=1
hiðzðtÞÞ½AixðtÞ+BiuðtÞ+ D̄iWðtÞ�, ð8Þ

yðtÞ= ∑
q

i=1
hiðzðtÞÞCixðtÞ, i=1, . . . , q. ð9Þ

Notice the new quantities in (8): Dī = Di Di Di½ �, WðtÞT = ðvðtÞT ,ωðtÞTÞT ,
vðtÞT = ðvi1ðtÞT , vi2ðtÞTÞ, vi1ðtÞ=FiEi1xðtÞ, vi2ðtÞ=FiEi2uðtÞ.

2.2 Fuzzy Observer via T–S Fuzzy Model

Similarly, the fuzzy state observer [7, 11–14] for the T–S fuzzy model with para-
metric uncertainties (2)–(6) can be formulated in the rule-based form as follows:
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Ri: IF z1 kð Þ is Fi
1, z2 kð Þ is Fi

2, . . . , zn kð Þ is Fi
n,

THEN
x ̃̇ðtÞ=Aix ̃ðtÞ+BiuðtÞ+Gi½y− y ̃�,
y ̃ðtÞ=Cix ̃ðtÞ, i=1, . . . , q

ð10Þ

In here, Gi ∈Rn× l is a constant observer gain matrix that is to be determined in
due course of this synthesis. The output of the above observer is found as

x ̃̇ðtÞ= ∑
q

i=1
hðzðtÞÞ Aix ̃+BiuðtÞ½ � + ∑

q

i=1
hiðzðtÞÞGi y− y ̃½ � ð11Þ

y ̃ðtÞ= ∑
q

i=1
hiðzðtÞÞCix ̃ðtÞ, i=1, . . . , q. ð12Þ

The observation error traditionally is defined as follows:

eðtÞ= xðtÞ− x ̃ðtÞ. ð13Þ

2.3 Task Problem Formulation

The adopted performance index (or criterion or else cost function) is the augmented
one

Jðu,WÞ=
Z∞

0

ðξTQξ+ uTu−WTWÞdt. ð14Þ

In here, ξT = ½xTðtÞ, eTðtÞ�T , eðtÞ is the observation error, Q=QT ≥ 0, and WTW
accounts for the admissible disturbances and uncertainty. It should be noted
ξ0 = ξð0Þ.

Now, the task problem and objective of this research can be stated as follows:
Via employing the above-defined fuzzy observer (12)–(13), synthesize a fuzzy
feedback controller

uðtÞ= − ∑
q

i=1
hiðzðtÞÞKix ̃ðtÞ ð15Þ

that reinforces the system (2)–(6) to the asymptotic stability equilibrium with the
upper bound of performance cost (14) reaching its minimum under the worst case
disturbances and uncertainty.
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Representation model of the overall fuzzy control system described by (2)–(6),
(11)–(13) and (15) is inferred and reformulated as follows:

x ̇ðtÞ= ∑
q

i=1
∑
q

j=1
hiðzðtÞÞhjðtÞ ðAi −BiKjÞxðtÞ+BiKjeðtÞ+DīW

� � ð16Þ

e ̇ðtÞ= ∑
q

i=1
∑
q

j=1
hiðzðtÞÞhjðzðtÞÞððAi −GiCjÞeðtÞ+ D̄iWÞ ð17Þ

Definition 1 Consider the uncertain nonlinear system (2)–(6) and the performance
cost (15) along with a positive number J* representing its upper bound. Control
u*ðtÞ is called the min–max control law, if there exist a control law u= u*ðtÞ and a
positive number J* = const for the worst case disturbance and uncertainty such that
the closed-loop system is asymptotically stable and the upper bound of the per-
formance cost tends to its minimum ultimately J ≤ J* is satisfied.

It should be noted, the bounds on performance in the specified min–max control
are related to those of H∞ control in the sense that the former are generally lower.
A precise quantitative relationship has not been proved as yet [22].

3 Main New Results

The existence conditions for a mini–max controller design are explored in this
section. It appeared, these ought to be investigated in two separate cases of control
design synthesis. These new results address the optimal min–max control problem,
which can be solved by convex optimization algorithms and the LMI tool [26]. For
this purpose also Assumption 2 [5, 8] has to be observed.

Assumption 2 The initial value ξ0 of the nonlinear system (16)–(17) is the zero
mean random variable, satisfying E ξ0, ξ

T
0

� �
= I, where Eð*Þ denotes the expecta-

tion operator.

Case 1 When D̃iD ̃
T
j − B̃iB

T̃
j <0, the existence conditions for the min–max controller

are drawn from Theorem 1.

Theorem 1 Consider system (2)–(6) and performance cost (14). If there exist
common symmetric positive definite matrices X,Y, and Zji such that

XAT
i +AiX +Γij <0, i; j=1, . . . , q ð18Þ

XAT
i +AiY −Zji − ZT

ji +DiDj <0, i; j=1, . . . , q, ð19Þ
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where

X =P− 1, Y =P− 1
2 , Zji =P− 1

2 CjGT
i , Γij =DiDj −BiBj; ð20Þ

then

u= − ∑
q

i=1
hiðBT

i Xx ̃ðtÞ+BT
i XeðtÞÞ ð21Þ

is a min–max output feedback control law for the plant system where state is
estimated and guarantees asymptotic stability in the closed loop while the corre-
sponding upper-bounded performance cost is

J ̄≤TraceðPÞ= J*,

the value of which depends on the found matrix P.

Proof See Appendix 1.

Case 2 When DĩD ̃
T
j −BĩB̃

T
j ≥ 0, the existence conditions of min–max controller

design are given by Theorem 2.

Theorem 2 Consider system (2)–(6) and performance cost (14). If there exist the
common symmetric positive definite matrices X,Y , and Zji such that

XAT
i +AiX +2Γij <0, i; j=1, . . . , q ð22Þ

XAT
i +AiY − Zji −ZT

ji +2DiDj <0, i; j=1, . . . , q; ð23Þ

then

u= − ∑
q

i=1
hiðBT

i Xx ̃ðtÞ+BT
i XeðtÞÞ ð24Þ

is a min–max output feedback control law for the plant system where state is
estimated and guarantees asymptotic stability in the closed loop while the corre-
sponding upper-bounded performance cost is

J ̄≤TraceðPÞ= J*,

the value of which depends on the found matrix P.
Proof See Appendix 2.

Remark 1 If the above-presented existence condition is satisfied, then there exists a
min–max output feedback control law that employs the fuzzy state observer for
system (2). Furthermore, together Theorem 1 and Theorem 2 parameterize the
min–max control law similarly to the results in [29]. Notice the upper bound of

Fuzzy T–S Model-Based Design of Min–Max Control … 91



performance in fact depends on the selection of the min–max control law thus the
choice of an appropriate min–max control law is crucial.

It is for that matter, the optimum parameter settings of the feedback controller
and the minimum of the upper bound of performance index can be obtained by
constructing and solving a convex optimization problem.

Theorem 3 Consider the system (2)–(4) and performance cost (15), and assume

M =P− 1, N =P− 1G ̃Ti , Γij
∼

=DiDj −BiBj, ð25Þ

Ãi =
Ai 0
0 Ai

� �
,G ̃i =

0 0
0 GiCj

� �
, ð26Þ

and

K ̄= IT0MI0, I0 =
I
0

� �
, ð27Þ

where I is the identity matrix of appropriate dimension.
If solvability condition for the following optimization problems are fulfilled

ið Þ When Γij
∼

≥ 0,

min
M, M̃,N

TraceðM̃Þ

s.t M >0,

MA
T̃
i + ÃiM −N −NT +2Γij

∼
<0, i, j=1, . . . , q

− M̃ I

I −M

" #
<0

there exist a solution ðM, M̃, NÞ;

, ð28Þ

iið Þ When Γij
∼

<0,

min
M, M̃,N

TraceðM̃Þ

s.t M >0,

MA
T̃
i +AĩM −N −NT + Γij

∼
<0, i, j=1, . . . , q

− M̃ I

I −M

" #
<0

there exist a solutionðM, M̃, NÞ;

ð29Þ
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then

u= − ∑
q

i=1
hiðBT

i K ̄x ̃ðtÞ+BT
i K ̄eðtÞÞ ð30Þ

is the optimal min–max control law for system (2)–(6) where plant state is estimated
and guarantees asymptotic stability in the closed loop while the corresponding
performance cost has an upper bound of optimum value.

Proof Given the proofs of the Theorem 1 (Appendix 1) and of Theorem 2
(Appendix 2), the proof of Theorem 3 readily inferred. □

4 Application Results for Inverted Pendulum Benchmark
Example

The motion equations of the well-known benchmark example inverted pendulum
[5, 12] are as follows:

x ̇1 = x2,

x2̇ =
g sinðx1Þ− amlx22 sinð2x2Þ 2̸− a cosðx1Þu

4l 3̸− aml cos2ðx1Þ +ω2ðtÞ.

In there, variables and coefficients denote: x1 the angle (Rad) of the pendulum
relative to the vertical; x2 is the angular velocity (Rad/s); g=9.8 (m/s2) is Earth’s
gravity constant; m=2 (kg) is the mass of the pendulum; M =8(kg) is the mass of
the cart; l=0.5 (m) is the length from pendulum’s center of mass to the shaft axis; u
(N) is the force applied to the cart; ω2ðtÞ represents the disturbances; and
a=1 ð̸m+MÞ is the obvious accessory coefficient for pragmatic purpose. In order
to design the fuzzy controller and the fuzzy observer, a fuzzy model that represents
the dynamics of the nonlinear plant is needed. Therefore, first the plant system is
represented with a T–S fuzzy model. To minimize the design effort and complexity,
as few rules as possible should be employed. Notice that the given pendulum plant
system is uncontrollable when x1 =±π 2̸ [5].

In here, the plant system is approximated with the following two-rule fuzzy
model:

Plant rule 1:
If x1 is about 0 Then x ̇=A1xðtÞ+B1uðtÞ+ωðtÞ.
Plant rule 2:
If x1 is about ±22π 4̸5 Then x ̇=A2xðtÞ+B2uðtÞ+ωðtÞ.
where
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A1 =
0 1
g

4l
3 − aml 0

" #
, B1 =

0
− a

4l
3 − aml

" #
,

A2 =
0 1
2g

πð4l3 − amlβ2Þ 0

" #
, B2 =

0
− aβ

4l
3 − amlβ2

" #
,

β= cosð22π 4̸5Þ.

The adopted membership functions for this plant’s rules are given as

h1 = 1−
2
π
x1j j, h2 =

2
π
x1j j.

The corresponding model for the above dynamic T–S fuzzy system has been
built up, and the parameter system matrices are found [12]:

A1 =
0 1

17.294 0

� �
,B1 =

0
− 0.1765

� �
,

A2 =
0 1

9.365 0

� �
,B2 =

0
− 0.0349

� �
.

Using the LMI convex optimization algorithm [26] to solve the inequality (10),
the feedback gain and the observer gain matrices can be obtained as follows:

K1 = 1.2100 − 2.2027½ �, K2 = 0.3125 − 2.1007½ �,

G1 =G2 =
3.8460 2.8071
5.0946 2.7978

� �
.

The experimental simulations were carried out under the inflicted persisting sine
disturbance into the system and the following initial values for the state vectors:

xð0Þ= 0.002 0½ �, x ̃ð0Þ= 0 0.001½ � (Figs. 1 and 2);
xð0Þ= 0.609 0½ �, x ̃ð0Þ= 0 0.001½ �, (Figs. 3 and 4).
The amplitude of the disturbances was suddenly increased from 0.01 to 1.0 but

kept bounded. When the disturbance strength increased from 0.01 to 1.0, the
maximum overshoot increased from 70 to about 160 (Figs. 1 and 3); and the stable
control operating point also changed from 25 to 80 (Figs. 2 and 4). Apparently the
control responses tend to stable steady states.

The simulation experiments when the initial values of x1 is in 0.002 and
0.609 rad, respectively, showed that the system response curves remain stable still.
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Fig. 1 Time history of the
closed-loop state response for
initial conditions
xð0Þ= 0.002 0½ �,
x̃ð0Þ= 0 0.001½ �

Fig. 2 Time history of the
control signal for initial
conditions xð0Þ= 0.002 0½ �,
x̃ð0Þ= 0 0.001½ �

Fig. 3 Time history of the
closed-loop state response for
initial conditions
xð0Þ= 0.609 0½ �,
x̃ð0Þ= 0 0.001½ �
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This fact demonstrates that the region of attraction of this balancing plant controlled
by means of the proposed mini–max control design has been made considerably
larger to reach (±34.89°).

Furthermore, these results of the simulation experiments illuminate that the
proposed min–max control design possesses a certain robustness property [8]. And
therefore the stability operating region in the plant’s state space has been expanded.
Figures 5 and 6 illustrate the time histories of the observation errors in the system.
Comparison of Figs. 2 and 4 as well as of Figs. 5 and 6, respectively, demonstrate
the state and the observation error responses have maintained largely their original
sharp changes and fast decays.

Fig. 4 Time history of the
control for initial conditions
xð0Þ= 0.609 0½ �,
x̃ð0Þ= 0 0.001½ �

Fig. 5 Time history of the
observation error response for
initial conditions
xð0Þ= 0.609 0½ �,
x̃ð0Þ= 0 0.001½ �
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5 Concluding Remarks

A new design method for output feedback min–max control of nonlinear plants,
following the original [23] and the works [22], based on a fuzzy observer [7, 11,
14], by using the linear matrix inequalities technique [18] was developed. The
design procedure requires representing the original nonlinear plant system by means
of a constructed fuzzy T–S model that can emulate it with considerable accuracy.
Hence it has a potential for wide range of applications.

The proposed min–max control design minimizes the upper bound of perfor-
mance index with low energy expenditure while guaranteeing asymptotic stability
in the closed-loop system. Furthermore, as proved in [18, 22], the nonlinear
closed-loop system possesses an operating equilibrium with quadratic stability
property. This new control design is applied to motion control of an inverted
pendulum to demonstrate the robust stability performance within a rather enlarged
attraction domain of the equilibrium state than reported in so far despite the per-
sisting disturbances. Refining improvements of transient control accuracy are the
envisaged future research toward.

Acknowledgments The Authors gratefully acknowledge the crucial contribution by Professor
Georgi M. Dimirovski in proving the theoretical results reported in this article.

Fig. 6 Time history of the
observation error response for
initial conditions
xð0Þ= 0.609 0½ �,
x̃ð0Þ= 0 0.001½ �
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Appendix 1

Proof of Theorem 1 Consider Lyapunov function candidate

V = xðtÞTP1xðtÞ+ eðtÞTP2eðtÞ= ξTPξ, P=
P1 0
0 P2

� �
ð31Þ

hence V1 = xðtÞTP1xðtÞ, V2 = eðtÞTP2eðtÞ. Then it follows:

V 1̇ðxÞ= x ̇TP1x+ xTP1x ̇= ∑
q

i=1
∑
q

j=1
hihj½½ðAi −BiKjÞxðtÞ+BiKjeðtÞ+DīW �TP1x

+ xTP1½ðAi −BiKjÞxðtÞ+BiKjeðtÞ+ D̄iW ��=

= ∑
q

i=1
∑
q

j=1
hihj½xTðHT

ij P1 +P1HijÞx+ eTðtÞðBiKjÞTP1xðtÞ+

+ xTðtÞP1BiKjeðtÞ+2xTðtÞP1D̄iW �
ð32Þ

and

V ̇2ðtÞ= e ̇TP2e+ eTP2e ̇= ∑
q

i=1
∑
q

j=1
hihj½eTðΣT

ijP2 +P2ΣijÞe+2eTðtÞP2D̄iW �, ð33Þ

where Hij =Ai −BiKj. Hence

V ̇=V ̇1 +V ̇2 = ∑
q

i=1
∑
q

j=1
hihj½ξTðtÞðΨT

ijP+PΨijÞξðtÞ−

− 2xTðtÞKT
i B

T
j P1 xðtÞ+2eTðtÞKT

i B
T
j P1 xðtÞ+

+2xTðtÞP1D ̄iW +2eTðtÞP2D ̄iW �=

= ∑
q

i=1
∑
q

j=1
hihj½ξTðtÞðΨT

ijP+PΨijÞξðtÞ+2ξTðtÞPDĩW −

− 2xTðtÞKT
i B

T
j P1xðtÞ+2eTðtÞKT

i B
T
j P1xðtÞ�,

ð34Þ

where Σij =Ai −GiCj,Ψij =
Ai 0
0 Σij

� �
, D ̃i =

D̄i

D̄i

� �
.

Next, the following local checking function:

ϕðtÞ=V ̇+ uTu−WTW ð35Þ
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is constructed. Substitution of (34) into the above expression yields

φðtÞ= ∑
q

i=1
∑
q

j=1
hihj½ξT

AT
i P1 +P1Ai 0

0 ΣT
ijP2 +P2Σij

" #
ξ+

+2uTðtÞBiP1 xðtÞ+2xTðtÞP1 D̄i W +

+2eTðtÞP2D̄iW + uTu−WTW �

ð36Þ

Thus maximization of (36) about W yields

W* = ∑
q

i=1
hi½D̄T

i P
T
1 xðtÞ+DT̄

i P
T
2 eðtÞ� = ∑

q

i=1
hiD ̃

T
i P

TξðtÞ ð37Þ

Because of ∂
2ϕðtÞ
∂W2 = − 2< 0, (37) represents the parametric expression of the

worst case disturbance [24–26] for system (16)–(17). Substitution of W* into (36)
gives:

max
W

φðtÞ= ∑
q

i=1
∑
q

j=1
hihj½ξT

AT
i P1 +P1Ai 0

0 ΣT
ijP2 +P2Σij

" #
ξ+

+2xTðtÞP1Bi uðtÞ+2xTðtÞP1 D̄i W +

+ ξTðtÞPDĩD̃
T
j PξðtÞ+ uTðtÞuðtÞ

+2eTðtÞP2D̄iW + uTu−WTW �

= ∑
q

i=1
∑
q

j=1
hihj½ξTðtÞðΨT

ijP+PΨijÞξðtÞ+

+2xTðtÞP1BiuðtÞ+ uTðtÞuðtÞ+ ξTðtÞPDĩD̃
T
j PξðtÞ

ð38Þ

Minimization of the above expression about u yields

u* = − ∑
q

i=1
hiBT

i P1xðtÞ = − ∑
q

i=1
hiðBT

i P1x ̃ðtÞ+BT
i P1eðtÞÞ. ð39Þ

And for
∂
2ðmax

W
ϕðtÞÞ

∂u2 = I >0, the (39) is the parametric expression of min–max
controller for system (16)–(17) apparently. Next, the substitution of u* into (38)
gives

min
u

max
W

φðtÞ= ∑
q

i=1
∑
q

j=1
hihj½ξTðtÞðΨT

ijP+PΨijÞξðtÞ− xTðtÞPT
1Bi BT

j P1xðtÞ+

+ ξTðtÞPD ̃iD ̃Tj PξðtÞ�⋯= ∑
q

i=1
∑
q

j=1
hihjξTðtÞ½ΨT

ijP+PΨij −PTB̃iB
T̃
j P+PD ̃iD

T̃
j P�ξðtÞ,
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where B̃i =
Bi

0

� �
. Further, let it be denoted

min
u

max
W

ϕðtÞ= − ξTQξðtÞ ð40Þ

Notice that if the following inequality is satisfied

ΨT
ijP+PΨij −PTBĩB̃

T
j P+PD ̃iD ̃

T
j P<0, ð41Þ

then Q>0 holds true. Substitution of (37) and (39) into (34) yields

V ̇= ∑
q

i=1
∑
q

j=1
hihjξT tð Þ ΨT

ijP+PΨij − 2PTB̃iB̃
T
j P+2PDĩD ̃

T
j P

h i
ξ tð Þ

In turn, if D̃iD ̃
T
j − B̃iB

T̃
j <0 and (39) hold, then V ̇<0 obviously. Thus the

closed-loop system (16)–(17) is asymptotically stable and ξð∞Þ=0. Pre- and post-
multiplication of both sides of (41) by diagðP− 1

1 ,P− 1
2 Þ, and then application of

Schur’s complement yields

XAT
i +AiX +Γ 0

0 YAT
i +AiY −Z − ZT +DiDj

� �
<0 ð42Þ

Apparently, the above expression is equivalent to (18)–(19) in Theorem 1. Now
the integral of (42) is calculated; after some appropriate transpose, to give:

min
u

max
v,ω

Jðu,WÞ= min
u

max
v,ω

Z ∞

0
ðξTQξ+ uTu−WTWÞdt≤ −

Z ∞

0
V ̇dt

=Vðξð0ÞÞ−Vðξð∞ÞÞ= ξð0ÞTPξð0Þ
ð43Þ

Therefore, due to Assumption 2 and via considering the expected value of the
performance cost, it follows

J ̄=E Jf g≤E ξT0Pξ0
� �

=TraceðPÞ. ð44Þ

Nonetheless, notice the initial state of a plant system can hardly be accurately
measured in real-world practice.
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Appendix 2

Proof of Theorem 2 From the proof of Theorem 1 it is seen if the inequality

ΨT
ijP+PΨij − 2PTBĩB̃

T
j P+2PDĩD ̃

T
j P<0, ð45Þ

is satisfied then apparently V ̇<0. That is, the closed-loop system (16)–(17) is

asymptotically stable and ξð∞Þ=0. Further, if DĩD̃
T
j − B̃iB

T̃
j ≥ 0, then

ΨT
ijP+PΨij −PTBĩB̃

T
j P+PD ̃iD ̃

T
j P<0, ð46Þ

and thus Q>0 is guaranteed. After pre- and post- multiplication of both sides of
(23) by diagðP− 1

1 ,P− 1
2 Þ, the application of Schur’s complement yields

XAT
i +AiX +2Γ 0

0 YAT
i +AiY −Z − ZT +2DiDj

� �
<0. ð47Þ

As seen, the above expression is equivalent to (21). Now recall the proof of
Theorem 1. After the appropriate transposing and then calculating the integral, the
investigation of expected value of performance index yields

J ̄=E Jf g≤E ξT0Pξ0
� �

=TraceðPÞ. ð48Þ
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Modeling Parallel Optimization
of the Early Stopping Method
of Multilayer Perceptron

Maciej Krawczak, Sotir Sotirov and Evdokia Sotirova

Abstract Very often, overfitting of the multilayer perceptron can vary significantly
in different regions of the model. Excess capacity allows better fit to regions of
high, nonlinearity; and backprop often avoids overfitting the regions of low non-
linearity. The used generalized net will give us a possibility for parallel optimiza-
tion of MLP based on early stopping algorithm.

1 Introduction

In a series of papers, the process of functioning and the results of the work of
different types of neural networks are described by Generalized Nets (GNs). Here,
we shall discuss the possibility for training of feed-forward Neural Networks
(NN) by backpropagation algorithm. The GN optimized the NN-structure on the
basis of connections limit parameter.

The different types of neural networks [1] can be implemented in different ways
[2–4] and can be learned by different algorithms [5–7].
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2 The Golden Sections Algorithm

Let the natural number N and the real number C be given. They correspond to the
maximum number of the hidden neurons and the lower boundary of the desired
minimal error.

Let real monotonous function f determine the error f(k) of the NN with k hidden
neurons.

Let function c: R × R → R be defined for every x, y ∈ R by

cðx, yÞ=
0; if max(x; y) < C
1
2 ; if x≤ C≤ y
1; if min(x, y) > C

8<
:

Let φ=
ffiffi
5

p
+1
2 = 0.61 be the Golden number.

Initially, let we put: L = 1; M = [φ2:N] + 1, where [x] is the integer part of the
real number x ≥ 0.

The algorithm is the following:

1. If L ≥ M go to 5.
2. Calculate c(f(L), f(M)). If

cðx, yÞ=
1 to go 3
1
2

to go 4

0 to go 5

8>>><
>>>:

3. L = M + 1; M = M + [φ2 ⋅ (N−M)] + 1 go to 1.
4. M = L + [φ2 ⋅ (N−M)] + 1; L = L + 1 go to 1.
5. End: final value of the algorithm is L.

3 Neural Network

The proposed generalized-net model introduces parallel work in learning of two
neural networks with different structures. The difference between them is in neu-
rons’ number in the hidden layer, which directly reflects on the all network’s
properties. Through increasing their number, the network is learned with fewer
number of epoches achieving its purpose. On the other hand, the great number of
neurons complicates the implementation of the neural network and makes it
unusable in structures with elements’ limits [5].

Figure 1 shows abbreviated notation of a classic tree-layered neural network.
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In the many-layered networks, the one layer’s exits become entries for the next
one. The equations describing this operation are

a3 = f 3 w3f 2 w2f 1 w1p+ b1
� �

+ b2
� �

+ b3
� �

, ð1Þ

where

• am is the exit of the m-layer of the neural network for m = 1, 2, 3;
• w is a matrix of the weight coefficients of the everyone of the entries;
• b is neuron’s entry bias;
• fm is the transfer function of the m-layer.

The neuron in the first layer receives outside the entries p. The neurons’ exit
from the last layer determine the neural network’s exit a.

Because it belongs to the learning with teacher methods, the algorithm are sub-
mitted couple numbers (an entry value and an achieving aim—on the network’s exit)

p1, t1f g, p2, t2f g, . . . , pQ, tQ
� �

, ð2Þ

Q ∈ (1…n), n—numbers of learning couple, where pQ is the entry value (on the
network entry), and tQ is the exit’s value replying to the aim. Every network’s entry
is preliminary established and constant, and the exit have to reply to the aim. The
difference between the entry values and the aim is the error—e = t − a.

The “back propagation” algorithm [6] uses least-quarter error

F ̂= ðt− aÞ2 = e2. ð3Þ

In learning the neural network, the algorithm recalculates network’s parameters
(W and b) to achieve least-square error.

The “back propagation” algorithm for i-neuron, for k + 1 iteration use equations

wm
i ðk+1Þ=wm

i ðkÞ− α
∂F ̂
∂wm

i
, ð4Þ

bmi ðk+1Þ= bmi ðkÞ− α
∂F ̂
∂bmi

, ð5Þ

+

P

R

Rx1
W1

b1
+

1
S1xR

S1x1

n1

S1x1
F1

S1x1

1 W2

b21

S2xS1

S2x1

+n
a
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a 2
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2 W3

b31

S3xS2
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where

α—learning rate for neural network;
∂F ̂
∂wm

i
—relation between changes of square error and changes of the weights;

∂F ̂
∂bmi

—relation between changes of square error and changes of the biases.

The overfitting [8] appears in different situations, which effect over trained
parameters and make worse output results, as show in Fig. 2.

There are different methods that can reduce the overfitting—“Early Stopping”
and “Regularization”. Here we will use Early Stopping [9].

When multilayer neural network will be trained, usually the available data must
be divided into three subsets. The first subset named “Training set” is used for
computing the gradient and updating the network weighs and biases. The second
subset is named “Validation set”. The error on the validation set is monitored
during the training process. The validation error normally decreases during the
initial phase of training, as does the training set error. Sometimes, when the network
begins to overfit the data, the error on the validation set typically begins to rise.
When the validation error increases for a specified number of iterations, the training
is stopped, and the weights and biases at the minimum of the validation error are
returned [5]. The last subset is named “test set”. The sum of these three sets has to
be 100 % of the learning couples.

Fig. 2 xxx
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When the validation error ev increases (the changing dev have positive value) the
neural network learning stops when

dev >0 ð6Þ

The classic condition for the learned network is when

e2 <Emax, ð7Þ

where Emax is maximum square error.

4 GN Model

All definitions related to the concept “GN” are taken from [10]. The network,
describing the work of the neural network learned by “Backpropagation” algorithm
[9], is shown in Fig. 3.
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The below constructed GN model is the reduced one. It does not have temporal
components, the priorities of the transitions; places and tokens are equal, the place
and arc capacities are equal to infinity.

Initially the following tokens enter in the generalized net:

• in place SSTR—α-token with characteristic
xα0 = “number of neurons in the first layer, number of neurons in the output
layer”;

• in place Se—β-token with characteristic
xβ0 = “maximum error in neural network learning Emax”;

• in place SPt—γ-token with characteristic
xγ0 = “{p1, t1}, {p2, t2}, {p3, t3}”;

• in place SF—one δ-token with characteristic
xδ0 = “f1, f2, f3”.
The token splits into two tokens that enters respectively in places S′F and S′′F;

• in place SWb—ε-token having characteristics
xε0 = “w, b”;

• in place Scon—ξ-token with a characteristics
xξ0 = “maximum number of the neurons in the hidden layer in the neural net-
work—Cmax”.

• in place Sdev—ψ-token with a characteristics
xψ0 = “Training set, Validation set, Test set”.

Generalized net is presented by a set of transitions

A= fZ1,Z2,Z ′

3,Z
′′

3 , Z4g,

where transitions describe the following processes:

Z1—Forming initial conditions and structure of the neural networks;
Z2—Calculating ai using (1);
Z ′

3—Calculating the backward of the first neural network using (3) and (4);
Z ′′

3—Calculating the backward of the second neural network using (3) and (4);
Z4—Checking for the end of all process.

Transitions of GN model have the following form. Everywhere

p—vector of the inputs of the neural network,
a—vector of outputs of neural network,
ai—output values of the i neural network, i = 1, 2,
ei—square error of the i neural network, i = 1, 2,
Emax—maximum error in the learning of the neural network,
t—learn target;
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wik—weight coefficients of the i neural networks i = 1, 2 for the k iteration;
bik—bias coefficients of the i neural networks i = 1, 2 for the k iteration.

Z1 = ⟨ SSTR, Se, SPt, Scon, Sdev, S43, S13f g, S11, S12, S13f g,R1,

∧ ð∨ ð∧ Se, SPt, Scon, Sdevð Þ, S13Þ, ∨ SSTR, S43ð ÞÞ⟩,

where:

and

W13,11 = “the learning couples are divided into the three subsets”;
W13,12 = “is it not possible to divide the learning couples into the three subsets”.

The token that enters in place S11 on the first activation of the transition Z1 obtain
characteristic

xθ
′

0 = ′′pr1xα0, 1; xξ0
h i

, pr2x
α
0, x

γ
0, x

β
0
′′.

Next it obtains the characteristic

xθ
′

cu = ′′pr1xα0, lmin; lmax½ �, pr2xα0, xγ0, xβ0 ′′,

where [lmin;lmax] is the current characteristics of the token that enters in place S13
from place S43.

The token that enters place S12 obtains the characteristic [lmin;lmax].

Z2 = ⟨fS′31, S′′31, S11, SF , SWb, SAWbg, fS21, S′F , S22, S′′F , gR2

∨ ð∧ ðSF , S11Þ, ∨ ðSAWb, SWbÞ, ðS′31, S′′31ÞÞ⟩,
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where

The tokens that enter places S21 and S22 obtain the characteristics respectively

xη
′

cu =
′′xε

′

cu, x
γ
0, x

β′′

0 , a1, pr1x
α
0, lmin½ �, pr2xα0 ′′

and

xη
′′

cu =
′′xε

′

cu, x
γ
0, x

β′′

0 , a2, pr1xα0, ½lmax�, pr2xα0 ′′.

Z ′

3 = ⟨fS21, S′F , S′3Ag, fS′31, S′32, S′3Ag, R′

3, ∧ ðS21, S′F , S′3AÞ⟩,

where

and

W ′

3A, 31 = “e1 > Emax or de1v <0”;
W ′

3A, 32 = “e1 < Emax or de1v <0”;
W ′

3A, 33 = “(e1 > Emax and n1 > m) or de1v >0”;

where

n1—current number of the first neural network learning iteration,
m—maximum number of the neural network learning iteration,
de1v—validation error changing of the first neural network.

The token that enters place S′31 obtains the characteristic “first neural network: w
(k + 1), b(k + 1)”, according (4) and (5). The λ′1 and λ′2 tokens that enter place S

′

32

and S′33 obtain the characteristic
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xλ
′

1
0 = xλ

′

2
0 = ′′l′′min

Z ′′

3 = ⟨fS22, S′′F , S′′A3g, fS′′31, S′′32, S′′33, S′′A3g, R′′

3 ∧ ðS22, S′′F , S′′A3Þ⟩

where

and

W ′′

3A, 31 = “e2 > Emax or de2v <0”,
W ′′

3A, 32 = “e2 < Emax or de2v <0”,
W ′′

3A, 33 = “(e2 > Emax and n2 > m) or de2v >0”,

where

n2—current number of the second neural network learning iteration;
m—maximum number of the neural network learning iteration;
de2v—validation error changing of the second neural network.

The token that enters place S′′31 obtains the characteristic “second neural network:
w(k + 1), b(k + 1)”, according (4) and (5). The λ′′1 and λ′′2 tokens that enter place
S′′32 and S′′33 obtain, respectively

xλ
′′

1
0 = xλ

′′

2
0 = ′′l′′max

Z4 = ⟨fS′32, S′33, S′′32, S′′33, S44g, fS41, S42, S43, S44g,R4,

∧ ðS44 ∨ ðS′32, S′33, S′′32, S′′33ÞÞ⟩,

where

and

W44,41 = “e1 < Emax” and “e2 < Emax”;
W44,42 = “e1 > Emax and n1 > m” and “e2 > Emax and n2 > m”;
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W44,43 = “(e1 < Emax and (e2 > Emax and n2 > m)) or (e2 < Emax and (e1 > Emax

and n1 > m))”.

The token that enters place S41 obtains the characteristic
Both NN satisfied conditions—for the solution is used the network who wave

smaller numbers of the neurons.
The token that enters place S42 obtain the characteristic
There is no solution (both NN not satisfied conditions).
The token that enters place S44 obtains the characteristic
the solution is in interval [lmin; lmax]—the interval is changed using the golden

sections algorithm.

5 Conclusion

The proposed generalized-net model introduces the parallel work in the learning of
the two neural networks with different structures. The difference between them is in
the number of neurons in the hidden layer, which reflects directly over the prop-
erties of the whole network.

On the other hand, the great number of neurons complicates the implementation
of the neural network.

The constructed GN model allows simulation and optimization of the architec-
ture of the neural networks using golden section rule.
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Intelligent Controls for Switched Fuzzy
Systems: Synthesis via Nonstandard
Lyapunov Functions

Jinming Luo and Georgi M. Dimirovski

Abstract This paper investigates the synthesis of intelligent control algorithms for
switched fuzzy systems by employing nonstandard Lyapunov functions and com-
bined techniques. Controlled plants are assumed nonlinear and to be represented by
certain specific T–S fuzzy models. In one of case studies, a two-layer multiple
Lyapunov functions approach is developed that yields a stability condition for
uncontrolled switched fuzzy systems and a stabilization condition for closed-loop
switched fuzzy systems under a switching law. State feedback controllers with the
time derivative information of membership functions are simultaneously designed.
In another case, Lyapunov functions approach is developed that yields a non-fragile
guaranteed cost optimal stabilization in closed-loop for switched fuzzy systems
provided a certain convex combination condition is fulfilled. Solutions in both cases
are found in terms of derived linear matrix inequalities, which are solvable on
MATLAB platform. In another case, a single Lyapunov function approach is
developed to synthesize intelligent control in which a designed switching law
handles stabilization of unstable subsystems while the accompanied non-fragile
guaranteed cost control law ensures the optimality property. Also, an algorithm is
proposed to carry out feasible convex combination search in conjunction with the
optimality of intelligent control. It is shown that, when an optimality index is
involved, the intelligent controls are capable of tolerating some uncertainty not only
in the plant but also in the controller implementation. For both cases of intelligent
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control synthesis solutions illustrative examples along with the respective simula-
tion results are given to demonstrate the effectiveness and the achievable noncon-
servative performance of those intelligent controls in closed loop system
architectures.

1 Introduction

Hybrid dynamic systems have been a scientific challenge for a fairly long time [1]
in both communities of computer and of control sciences. A switched system is a
special type of hybrid dynamical system that comprises several continuous-time or
discrete-time subsystems (system models) and a rule governing the switching
between them [13, 14, 20, 46]. The dynamics of switched systems is typically
described by a set of differential equations, for continuous-time plants, or difference
equations, for discrete-time plants, and a switching law that governs the switching
among these system models. Such systems have drawn considerable attention from
both academic and industrial-application-oriented researches during the past couple
of decades [3, 9, 44, 46, 49]. In particular, in the study of switched systems, most
works are focused on the stability and stabilization issues [14, 44, 45]. It has been
shown in [9, 13, 49] that finding a common Lyapunov function guarantees stability
in closed loop under arbitrary switching law. However, a common Lyapunov
function may be too difficult to find and even may not exist, besides it may yield
conservative results. The known effective design approaches for designing
switching laws when no common Lyapunov function exists are the ones employing
single Lyapunov function [13, 14, 47], multiple Lyapunov functions [4, 5, 15] and
the average dwell-time [9, 15, 25].

On the other hand, it is well known that nonlinear real-world systems [44] can be
rather well represented by means of the class of Takagi–Sugeno (T–S) fuzzy
models [2, 26, 27], which interpolate a set of locally linear systems via fuzzy
If-Then rules and inference in fuzzy-logic [41–43]. In turn, this fact has enabled
many of the conventional linear system and control theories to be transformed in
applications to a fairly general class of nonlinear systems, e.g., such as in [49].
Many synthesis design results by employing fuzzy T–S models have been reported,
e.g., see [4, 5, 38, 47] for discrete-time systems and [29, 33, 36, 37, 39, 48] for
various classes of plant systems via fuzzy models. Yet, the most widely used
approach via fuzzy T–S models is the one seeking for common Lyapunov function
that is applicable to each local linear model in order to obtain the overall fuzzy
system stabilized with acceptable performance [31]; thus, the original nonlinear
plant is stabilized as well. As the common Lyapunov function method is known to
yield conservative results, successful attempts have made to use piecewise Lya-
punov [11, 48] and switched Lyapunov function [6, 36, 48], fuzzy Lyapunov
function [28] as well as multiple Lyapunov [3, 29] functions.
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A switched system whose all subsystems are fuzzy systems is called a switched
fuzzy system. Since this class of systems does exhibit features of both switched and
fuzzy systems they possess useful properties. Namely, a switched fuzzy system may
be viewed according to either the “hard switching” between its fuzzy subsystems or
the “soft switching” among the linear models within a fuzzy T–S model. These two
switching strategies and possibly their interaction may lead to very complex
behaviors of switched fuzzy systems hence can represent the dynamics emanating
from any nonlinear plant. Switched fuzzy systems too recently have attracted
considerable research attention by both computer and control scientists, and by the
community of intelligent control and decision, in particular [31, 36, 38].

Recent advances in switched fuzzy systems research contributed rather signifi-
cant new results. Work [29] gave stability and smoothness conditions for the
switched fuzzy system when a switching law is predetermined by a given partition
of plant’s state space. Works [15, 33, 36, 37, 39, 48] proposed switched fuzzy
system models by means of which the purposeful switching strategy between fuzzy
subsystems can be designed. Most often the stabilization is achieved by designing a
switching law via employing single Lyapunov function. In addition, work [21]
investigated the impact of partitioning the state space fuzzy control designs while
[22] explored the feasible performances of several typical controls for switched
fuzzy systems.

The multiple Lyapunov functions method has also been established as an
effective tool for designing switching laws to stabilize various systems. In partic-
ular, work [9] used multiple Lyapunov functions to solve the stabilization problem
of networked continuous-time plants while [3, 36] of switched fuzzy systems. In
there, each Lyapunov function of fuzzy subsystems is essentially a common Lya-
punov function for every consequent linear model. Although the multiple Lyapunov
functions method for switched systems relaxes the conservativeness, the fact of a
common Lyapunov function for fuzzy subsystems still involves conservativeness.
In this paper, the synthesis of intelligent controls of two types of plant stabilization
problems for a class of nonlinear possibly uncertain plant systems based on swit-
ched fuzzy models have been solved.

In the first case study, synthesis of intelligent control the task is solved through
exploring for a feasible solution via investigation employing Lyapunov functions
which are multiple-ones for either the fuzzy subsystems or for the consequent local
linear models. For this reason those Lyapunov functions referred to as two-layer
multiple Lyapunov functions [17]. In addition, the state feedback controllers that
have the first-time derivative information on the membership functions for the
switched fuzzy system, which substantially increases the solvability of the inves-
tigated control problem, are also employed. The relevant literature does not seem to
have exploited this idea hence it is believed that is, for the first time, used in this
paper.

In the second case study synthesis of intelligent control, the task is solved
through exploring for a feasible solution via investigation employing single
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Lyapunov function but in conjunction with certain optimality required in the sense
of the non-fragile guaranteed cost control performance [10, 24]. It has been shown
that such a solution for switched fuzzy systems exists provided a certain convex
combination condition is also fulfilled [16]. This in turn imposes certain properties
the rule based mappings, from the antecendent to the consequent spaces, have to
constitute an “into” polytopic mapping operator (see Fig. 1).

Further this paper is organized as follows. In Sect. 2, the statement of the control
synthesis tasks in both case studies and the needed preliminaries are given. In the
sequel, the subsequent two sections present the first case of intelligent switched
fuzzy control. Section 3 presents the solutions to stability analysis and controller
design problems. In Sect. 4, a numerical example and its numerical and sample
simulation results are given. Thereafter the next two sections present the second
case of intelligent switched fuzzy control. In Sect. 5, the main synthesis solution
results are derived. Then Sect. 6 presents the respective numerical example and its
numerical and sample simulation results. Conclusion and references are given
thereafter.

A note on the notation in this paper is given in the sequel. Namely, X >O
(X ≥O) means matrix X is positive definite (positive semi-definite) and X <O
(X ≤O) means that matrix X is negative definite (negative semi-definite). Capital
letters I and O, respectively, represent the identity matrix and the zero matrix of
appropriate dimensions as needed.

Fig. 1 The class of Takagi–Sugeno fuzzy systems models along with the involved rule-based
polytopic mappings from the antecendent into the consequent space
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2 Mathematical Preliminaries and Statements of the Task
Problems

Consider the specific Takagi–Sugeno (T–S) fuzzy model (Fig. 1) of switched fuzzy
systems [38, 39], representing complex nonlinear and possibly uncertain plants. To
the best of our knowledge, no results on using Lyapunov functions that are multiple
either for each fuzzy subsystem or for every consequent local linear model have
been found and were reported prior to our work [17]. This is the main motivation
for the present investigation study.

In the case of the first task problem, one arbitrary inference rule [26, 42] is
assumed to be represented as follows:

Ri
σ: if x1isΩi

σ1
, isΩi

σ2
, . . . , xn isΩi

σn
,

Then x ̇ðtÞ=AσixðtÞ+BσiuσðtÞ.
ð2:1Þ

where the constants, symbols, and variables denote:

Ri
σ It denotes the i-th fuzzy inference rule

xðtÞ= ½x1ðtÞ, x2ðtÞ, . . . , xnðtÞ�T
∈Rn

Vector of plant states variables, i.e., n component process
variables

σ:R+ →M = f1, 2, . . . ,Ng A piecewise constant function that represents a switching
signal

Ωi
σn

It represents a fuzzy subset of the plant with a known
fuzzy-set membership function

uσðtÞ It represents the control input
Aσi, Bσi These are known constant matrices of appropriate

dimensions

Following Zadeh’s fuzzy-logic inference [40, 41], by means of the product
inference engine and center average defuzzification, the overall model of the system
(2.1) is inferred as

x ̇ðtÞ= ∑
rσ

i=1
hσiðxðtÞÞ½AσixðtÞ+BσiuσðtÞ�, ð2:2Þ

where rσ is the number of inference rules. Thus the l-th fuzzy subsystem (l∈M) can
be described by means of the model

xl̇ðtÞ= ∑
rl

i=1
hliðxðtÞÞ½ðAlixðtÞ+BliulðtÞ�, ð2:3Þ
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where hliðxðtÞÞ is represented as

hliðxðtÞÞ=
Πn

p=1μ
i
lp
ðxpÞ

∑rl
i=1 Π

n
p=1μ

i
lp
ðxpÞ , ð2:4aÞ

satisfying

0≤ hliðxðtÞÞ≤ 1, ∑
rl

i=1
hliðxðtÞÞ=1. ð2:4bÞ

Here above μi
lp
ðxpÞ denotes the membership function of xp in the fuzzy subset Ωi

lp

for p=1, 2, . . . , n. For simplicity, the symbol hliðtÞ is used to denote hliðxðtÞÞ
actually.

Assumption 2.1 The membership functions hliðtÞ are assumed to be C1 functions.

This assumption implies

∑
rl

i=1
hl̇iðtÞ=0, ð2:5Þ

which emanates directly from the membership functions. In turn, property (2.5)
does imply that

hl̇rlðtÞ= − ∑
rl − 1

ρ=1
hl̇ρðtÞ, ρ=1, 2, . . . , rl − 1. ð2:6Þ

The state feedback controller uσðtÞ and the considered system (2.1), respectively
(2.2), employ the same premises as the original plant system. Thus, by means of the
product inference engine along with center average defuzzification and via the
parallel distributed compensation (PDC) scheme [29, 31], the global representation
of the state feedback controller with the time derivative-information on fuzzy-set
membership functions is inferred as follows:

uσðtÞ= ∑
rσ

i=1
hσiðtÞKσixðtÞ+ ∑

rσ

i=1
hσ̇iðtÞTσixðtÞ. ð2:7Þ

In here, quantities Kσi and Tσi are local feedback matrices to be designed. Naturally,
the objectives are to solve the intelligent control synthesis task by solving both the
analysis guaranteeing asymptotic stability and the control design, respectively.

It should be noted, in the case of switched fuzzy systems where both “hard
switching” and “soft switching” are involved and coexist simultaneously, the
investigation of any control synthesis becomes more complicated hence involved.
Thus, the study of non-fragile guaranteed cost control and search for intelligent
control synthesis that exploits its features becomes even more challenging. To the
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best of our knowledge, no results on the non-fragile guaranteed cost control for
switched fuzzy systems have been reported prior to our work [16], which motivates
the present investigation study. The non-fragile guaranteed cost control problem for
uncertain switched fuzzy systems is studied via the single Lyapunov function
method when a specific of convex combination exists. An algorithm to search for
feasible solutions of the convex combination is also derived albeit this issue is not
solved for the arbitrary case. In the present study, the presence of additive gain
variation in the controller uncertainty is assumed and the existence of an upper
bound on the guaranteed cost-function are assumed, which is quite a general case.

In this second task problem studied in here, a similar representation of one
arbitrary inference rule is assumed:

Ri
σ : if x1isΩi

σ1
, isΩi

σ2
, . . . , xn isΩi

σn

Then x ̇ðtÞ= ðAσi +ΔAσiðtÞÞxðtÞ+BσiuσðtÞ.
ð2:8Þ

where the constants, symbols, and variables denote:

Ri
σ It denotes the i-th fuzzy inference rule

xðtÞ= ½x1ðtÞ, x2ðtÞ, . . . , xnðtÞ�T
∈Rn

Vector of plant states variables, i.e., n component process
variables

σ:R+ →M = f1, 2, . . . ,Ng A piecewise constant function representing a switching
signal

Ωi
σn

It represents a fuzzy subset of the plant with a known
fuzzy-set membership function

uσðtÞ It represents the control input

Aσi, Bσi These are known constant matrices of appropriate
dimensions

ΔAσiðtÞ Its is a time-varying matrix of appropriate dimensions
representing uncertainty in the plant

Following Zadeh’s fuzzy-logic inference [40, 41], by means of the product
inference engine and center average defuzzification, the overall model of the system
(2.8) is inferred as

x ̇ðtÞ= ∑
rσ

i=1
hσiðxðtÞÞ½ðAσi +ΔAσiðtÞÞxðtÞ+BσiuσðtÞ�, ð2:9Þ

where rσ is the number of inference rules. Thus the ℓ-th fuzzy subsystem (l∈M) is
described by means of the model

x ̇lðtÞ= ∑
rl

i=1
hliðxðtÞÞ½ðAσi +ΔAσiðtÞÞxðtÞ+BliulðtÞ�, ð2:10Þ
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where hliðxðtÞÞ is represented as before by (2.4a) and satisfies (2.4b). Here above
μi

lp
ðxpÞ denotes the membership function of xp in the fuzzy subset Ωi

lp
for

p=1, 2, . . . , n. For simplicity, the symbol hliðtÞ is used to denote hliðxðtÞÞ actually.
The state feedback controller uσðtÞ and the considered system (2.8), respectively

(2.9), employ the same premises as the original plant system. Thus, by means of the
product inference engine along with center average defuzzification and via the
parallel distributed compensation (PDC) scheme [29, 31], the global representation
of the state feedback control is inferred as follows:

uσðtÞ= ∑
rσ

i=1
hσiðtÞðKli +ΔKliðtÞÞxðtÞ. ð2:11Þ

In here, the quantity Kli is the controller gain for the ℓ-th fuzzy subsystem, which is
to be designed, and ΔKli represents the variation of this gain following gain drift
due to the uncertainty. It should be noted

It should be noted, naturally, there may well appear in the plant both additive
and multiplicative norm-bounded uncertainties. Hence also additive and multi-
plicative gain drifts may be considered, but this work is confined solely to the
additive norm-bounded uncertainties.

Assumption 2.2 The norm-bounded uncertainties are ΔAliðtÞ=DliMliðtÞEli and
ΔKliðtÞ=DαliMαliðtÞEαli, where Dli, Eli and Dαli, Eαli, respectively, are real-valued
known constant while MliðtÞ and MαliðtÞ are unknown time-varying matrices, all of
appropriate dimensions, respectively satisfying MliðtÞTMliðtÞ≤ I and
MαliðtÞTMαliðtÞ≤ I.

Definition 2.1 The cost-function or the optimality index for the ℓ-th fuzzy control
system (2.9), respectively (2.10), is defined as

J =
Z ∞

0
½xðtÞTQ xðtÞ + uσðtÞTR uσðtÞ�dt, ð2:12Þ

where, following the optimal control theory, are positive definite weighting
matrices.

Definition 2.2 For the fuzzy control system (2.9), respectively (2.10), and all
admissible uncertainties, if there exist a state feedback control law ul = ulðtÞ with
l∈M and t∈ ½0, +∞Þ for each subsystem, a switching law σ = σðtÞ, and a positive
real-valued scalar J* such that the overall closed-loop system is asymptotically
stable and the cost-function (2.12) satisfies J ≤ J*, then the scalar index J* is called
a non-fragile guaranteed cost (NGC) and the state feedback control ul = ulðtÞ is
called a non-fragile guaranteed cost (NGC) control.

Remark 2.1 Notice that the above stated NGC control problem is different from the
standard one [12, 34] because (a) the uncertainty time-varying gains in the control
(2.11) affects the system matrices and (b) also enters the cost-function (2.12).
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Solving this intelligent control synthesis task in the sense of the NGC control
also belongs to the objectives of this paper.

3 Intelligent Control Synthesis Task One: Main New
Results

In this section, first a stability condition for the uncontrolled switched fuzzy systems
is derived that enables the existence of synthesis solution sought. Then, a synthesis
design condition for a controller that renders the closed-loop switched fuzzy sys-
tems stable is presented.

Thus, the uncontrolled system (2.1) is investigated first and, since uσðtÞ≡ 0,
consequently the autonomous switched fuzzy system is derived:

xl̇ðtÞ= ∑
rσ

i=1
hσiðtÞAσixðtÞ. ð3:1Þ

This investigation yielded the next novel theoretical result for the investigated
class of systems.

Theorem 3.1 Suppose that

hl̇ρðtÞ
�� ��≤Φlρ, l=1, 2, . . . ,N, ρ=1, 2, . . . , rl − 1, ð3:2Þ

where Φlρ ≥ 0. If there exist a set of symmetric positive definite matrices
Pli ði=1, 2, . . . , rlÞ and Pvq ðv=1, 2, . . . ,N, q=1, 2, . . . , rvÞ, and nonnegative
constants βvl such that

Plρ ≥Plrl , ð3:3Þ

and

1
2
ðAT

ljPli +PliAlj +AT
liPlj +PljAliÞ+ ∑

rl − 1

ρ=1
ΦlρðPlρ −PlrlÞ+ ∑

N

v=1, v≠ l
βvlðPvq −PliÞ<0, i≤ j,

ð3:4Þ

for l∈M, then under the state dependent switching law

σ =argmin xTl ðtÞPlxlðtÞ
� �

. ð3:5Þ

the autonomous system (3.1) is asymptotically stable when no operating sliding
modes occur.
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Proof Choose the following composite fuzzy function

VlðxlðtÞÞ= xTl ðtÞPlxlðtÞ, Pl = ∑
rl

i=1
hliðtÞPli , l=1, 2, . . . ,N, i=1, 2, . . . , rl. ð13Þ

ð3:6Þ

as the candidate Lyapunov function of the system (3.1). This kind of Lyapunov
function candidate, defined indirectly via (1.4-a), is dependent on the plant’s fuzzy
sets’ membership functions. Here it is called two-layer multiple Lyapunov function
if the time derivative of VlðxlðtÞÞ is negative at xlðtÞ≠ 0 when all Pli are symmetric
positive definite matrices. Notice that this is a novel kind of fuzzy-set dependent
Lyapunov function.

Calculation of the time derivative along the trajectory of system state vector
yields

Vl̇ðxðtÞÞ= ∑
rl

i=1
hliðtÞ½x ̇TðtÞPlixðtÞ+ xðtÞPlix ̇ðtÞ�+ ∑

rl

ρ=1
hl̇ρðtÞxTðtÞPlρxðtÞ.

Further, from the property (2.6), it follows

Vl̇ðxðtÞÞ= ∑
rl

i, j=1
hliðtÞhljðtÞxTðtÞðAT

ljPli +PliAljÞxðtÞ+ ∑
rl − 1

ρ=1
hl̇ρðtÞxTðtÞPlρxðtÞ+ hl̇rlðtÞxTðtÞPlrlxðtÞ

= ∑
rl

i, j=1
hliðtÞhljðtÞxTðtÞðAT

ljPli +PliAljÞxðtÞ+ ∑
rl − 1

ρ=1
hl̇ρðtÞxTðtÞðPlρ −PlrlÞxðtÞ

= ∑
rl

i, j=1
hliðtÞhljðtÞxTðtÞ½12 ðA

T
ljPli +PliAlj +AT

liPlj +PljAliÞ�xðtÞ+ ∑
rl − 1

ρ=1
hl̇ρðtÞxTðtÞðPlρ −PlrlÞxðtÞ.

Taking into consideration the inequalities (2.2) (9) and (2.3) (10) into the last
expression gives

V ̇lðxðtÞÞ≤ ∑
rl

i, j=1
hliðtÞhljðtÞxTðtÞ½12 ðA

T
ljPli +PliAlj +AT

liPlj +PljAliÞ�xðtÞ+

+ ∑
rl − 1

ρ=1
ΦlρxTðtÞðPlρ −PlrlÞxðtÞ.

Then the use of inequality (2.4a), (2.4b) on the right-hand side of this expression
yields
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V ̇lðxðtÞÞ≤ ∑
rl

i, j=1
∑
rv

q=1
hliðtÞhljðtÞhvqðtÞxTðtÞ½12 ðA

T
lj Pli +PliAlj +A T

li Plj +PljAliÞ+

+ ∑
rl − 1

ρ=1
ΦlρðPlρ −PlrlÞ+ ∑

N

v=1, v≠ l
βvlðPvq −PliÞ�xðtÞ=

= ∑
rl

i, j=1
hliðtÞhljðtÞxTðtÞ½12 ðA

T
lj Pli +PliAlj +A T

li Plj +PljAliÞ+

+ ∑
rl − 1

ρ=1
ΦlρðPlρ −PlrlÞ�xðtÞ+ ∑

rl

i=1
∑
rv

q=1
∑
N

v=1, v≠ l
hliðtÞhvqðtÞβvlxTðtÞðPvq −PliÞxðtÞ<0.

Furthermore, by virtue of the switching law (2.5) (12), the following inequality

xTðtÞðPv −PlÞxðtÞ= xTðtÞ ∑
rv

q=1
∑
rl

i=1
hvqðtÞhliðtÞðPvq −PliÞxðtÞ≥ 0

holds true. It is therefore that Vl̇ <0, ∀x≠ 0, hence system (3.1) is asymptotically
stable. Thus the proof is complete. □

Remark 3.1 Note that switching law (3.5) represents a set of LMI if Φlρ is given
beforehand. It should be noted, however, it is not an easy matter to select Φlρ.

In the sequel, the newly derived set of PDF controllers, which possess infor-
mation on the time derivative of membership functions efficiently overcome this
difficulty. This is presented in terms of the next theorem.

Theorem 3.2 If there exist a set of symmetric positive definite matrices
Pli ðl=1, 2, . . . ,N, i=1, 2, . . . , rlÞ and Pvq ðv=1, 2, . . . ,N, q=1, 2, . . . , rvÞ,
matrices Kli, Tli, positive constants ε, γ, sliðsli ≥ 1Þ, and nonnegative constants βvl
such that, for all i≤ j≤ k, ρ=1, 2, . . . , rl − 1, m=1, 2, the inequalities

Pli ≥ sliI, ð3:7Þ

μlρmðPlρ −PlrlÞ− ½sli + slj + slk
3ε2ðrl − 1Þ +

sli + slj
γ2

�I + 1
6ðrl − 1ÞUlijk

Λ
+

1
2
Mlijρm

Λ
+

1
2
Llijrlm

Λ
+ ∑

N

v=1, v≠ l
βvlðPvq −PliÞ<0,

i< j< k, ρ=1, 2, . . . , rl − 1, m=1, 2 ð3:8Þ

where

Ulijk
Λ

=Ulijk +Ulikj +Uljik +Uljki +Ulkij +UlkjiUlijk = ðεG T
ljk +

1
ε
PliÞðεG T

ljk +
1
ε
PliÞT ,
ð3:9Þ

Mlijρm
Λ

=Mlijρm +Mljiρm, Mlijρm = ðγμlρmH T
ljρ +

1
γ
PliÞðγμlρmH T

ljρ +
1
γ
PliÞT , ð3:10Þ
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Llijrlm
Λ

=Llijrlm + Lljirlm, Llijrlm = ðγμlrlmH T
ljrl −

1
γ
PliÞðγμlrlmH T

ljrl −
1
γ
PliÞT , ð3:11Þ

Gljk =Alj +BljKlk , Hljρ =BljTlρ, ð3:12Þ

and where the set of μlρm’s represent the maximum and the minimum of the hl̇ρðtÞ,
respectively, then the system (2.2) can be asymptotically stabilized by the syn-
thesized control (2.7) when no operating sliding modes occur under the switching
law (2.5).

Proof Choose (3.6) as the candidate Lyapunov functions for the system (2.2).
Calculating the time derivative along the trajectory of the state vector yields:

V ̇lðxðtÞÞ= ∑
rl

ρ=1
hl̇ρðtÞxðtÞTPlρxðtÞ+ ∑

rl

i=1
hliðtÞ½x ̇ðtÞTPlixðtÞ+ xðtÞTPlix ̇ðtÞ�=

= ∑
rl

ρ=1
hl̇ρðtÞxTðtÞPlρxðtÞ+

+ ∑
rl

i=1
hliðtÞ½xTðtÞ ∑

rl

j, k=1
hljðtÞhlkðtÞðAlj +BljKlk + ∑

rl

ρ=1
hl̇ρðtÞBljTlρÞTPlixðtÞ+

+ xTðtÞPli ∑
rl

j, k=1
hljðtÞhlkðtÞðAlj +BljKlk + ∑

rl

ρ=1
hl̇ρðtÞBljTlρÞxðtÞ�=

= ∑
rl

ρ=1
hl̇ρðtÞxTðtÞPlρxðtÞ+ ∑

rl

i, j, k=1
hliðtÞhljðtÞhlkðtÞxTðtÞ½ðAlj +BljKlkÞTPli +

+PliðAlj +BljKlkÞ+ ∑
rl

ρ=1
hl̇ρðtÞððBljTlρÞTPli +PliBljTlρÞ�xðtÞ=

= ∑
rl

i, j, k=1
hliðtÞhljðtÞhlkðtÞxTðtÞ½ ∑

rl

ρ=1
hl̇ρðtÞðPlρ + ðBljTlρÞTPli +PliBljTlρ +

+ ðBliTlρÞTPlj +PljBliTlρÞ+ ðAlj +BljKlkÞTPli +PliðAlj +BljKlkÞ�xðtÞ=
= ∑

rl

i, j, k=1
hliðtÞhljðtÞhlkðtÞxTðtÞ½ ∑

rl

ρ=1
hl̇ρðtÞðPlρ +HT

ljρPli +PliHljρ +

+HT
liρPlj +PljHliρÞ+GT

ljkPli +PliGljk�xðtÞ=

= ∑
rl

i, j, k=1
hliðtÞhljðtÞhlkðtÞxTðtÞ½ ∑

rl

ρ=1
hl̇ρðtÞðPlρ + JlijρÞ+Wlijk�xðtÞ=

= ∑
rl

i, j, k=1
hliðtÞhljðtÞhlkðtÞxTðtÞ½ ∑

rl

ρ=1
hl̇ρðtÞðPlρ +

1
2
Jlijρ
Λ Þ+ 1

6
Wlijk
Λ �xðtÞ,

where
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Wlijk =GT
ljkPli +PliGljk, Wlijk

Λ
=Wlijk +Wlikj +Wljik +Wljki +Wlkij +Wlkji,

Jlijρ =HT
ljρPli +PliHljρ , Jlijρ

Λ
= Jlijρ + Jljiρ:

On the grounds of the expression on property (2.6), it can be further derived:

Vl̇ðxðtÞÞ=

∑
rl

i, j, k=1
hliðtÞhljðtÞhlkðtÞxTðtÞ½ ∑

rl − 1

ρ=1
hl̇ρðtÞðPlρ −Plrl +

1
2
Jlijρ
Λ

−
1
2
Jlijrl
Λ Þ+ 1

6
Wlijk
Λ �xðtÞ=

= ∑
rl

i, j, k=1
hliðtÞhljðtÞhlkðtÞxTðtÞ½ ∑

rl − 1

ρ=1
∑
2

m=1
alρmðtÞμlρmðPlρ −PlrlÞ+

1
2
Jlijρ
Λ

−
1
2
Jlijrl
Λ Þ+ 1

6
Wlijk
Λ �xðtÞ=

= ∑
rl

i, j, k=1
∑
rl − 1

ρ=1
∑
2

m=1
hliðtÞhljðtÞhlkðtÞalρmðtÞxTðtÞ½μlρmðPlρ −Plrl +

1
2
Jlijρ
Λ

−
1
2
Jlijrl
Λ Þ+ 1

6ðrl − 1ÞWlijk
Λ �xðtÞ=

≤ ∑
rl

i, j, k=1
∑
rl − 1

ρ=1
∑
2

m=1
hliðtÞhljðtÞhlkðtÞalρmðtÞxTðtÞ½μlρmðPlρ −PlrlÞ+

1
6ðrl − 1Þ ðWlijk

Λ
+

+ ε2GT
ljkGljk + ε2GT

ljiGlji + ε2GT
likGlik + ε2GT

lijGlij + ε2GT
lkiGlki + ε2GT

lkjGlkjÞ+

+
1
2
μlρmðJlijρ

Λ
− Jlijrl

Λ Þ+ 1
2
ðγ2μ2lρmHT

ljρHljρ + γ2μ2lρmH
T
liρHliρÞ+

+
1
2
ðγ2μ2lrlmHT

ljrlHljrl + γ2μ2lrlmH
T
lirlHlirl �xðtÞ=

= ∑
rl

i, j, k= 1
∑
rl − 1

ρ= 1
∑
2

m=1
hliðtÞhljðtÞhlkðtÞalρmðtÞxTðtÞ½μlρmðPlρ −PlrlÞ +

1
6ðrl − 1Þ Slijk

Λ
+

1
2
Nlijρm

Λ
+

1
2
Rlijrlm

Λ �xðtÞ

where

Slijk =Ulijk −
1
ε2

PliPli, Slijk
Λ

= Slijk + Slikj + Sljik + Sljki + Slkij + Slkji,

Nlijρm =Mlijρm −
1
γ2

PliPli, Nlijρm
Λ

=Nlijρm +Nljiρm, Rlijrlm =Llijrlm −
1
γ2

PliPli,

Rlijrlm
Λ

=Rlijrlm +Rljirlm, hl̇ρðtÞ= ∑
2

m=1
alρmðtÞμlρm, 0≤ alρmðtÞ≤ 1, ∑

2

m=1
alρmðtÞ=1.

Now taking into consideration the inequality (3.7), one obtains

V ̇lðxðtÞÞ≤

∑
rl

i, j, k=1
∑
rl − 1

ρ=1
∑
2

m=1
hliðtÞhljðtÞhlkðtÞalρmðtÞxTðtÞ½μlρmðPlρ −PlrlÞ+

1
6ðrl − 1Þ Slijk

Λ
+

1
2
Nlijρm

Λ
+

1
2
Rlijrlm

Λ �xðtÞ≤
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≤ ∑
rl

i, j, k=1
∑
rl − 1

ρ=1
∑
2

m=1
hliðtÞhljðtÞhlkðtÞalρmðtÞxTðtÞ½μlρmðPlρ −PlrlÞ−

− ðsli + slj + slk
3ε2ðrl − 1Þ +

sli + slj
γ2

ÞI + 1
6ðrl − 1ÞUlijk

Λ
+

1
2
Mlijρm

Λ
+

1
2
Llijrlm

Λ �xðtÞ.

By making use of the inequality (3.8), it can be further found that the right-hand
side of the above inequality yields

∑
rl

i, j, k=1
∑
rl − 1

ρ=1
∑
2

m=1
∑
rv

q=1
hliðtÞhljðtÞhlkðtÞalρmðtÞhvqðtÞxTðtÞfμlρmðPlρ −PlrlÞ−

− ðsli + slj + slk
3ε2ðrl − 1Þ +

sli + slj
γ2

ÞI + 1
6ðrl − 1ÞUlijk

Λ
+

1
2
Mlijρm

Λ
+

1
2
Llijrlm

Λ
+ ∑

N

v=1, v≠ l
βvlðPvq −PliÞgxðtÞ

= ∑
rl

i, j, k=1
∑
rl − 1

ρ=1
∑
2

m=1
hliðtÞhljðtÞhlkðtÞalρmðtÞxTðtÞ½μlρmðPlρ −PlrlÞ−

− ðsli + slj + slk
3ε2ðrl − 1Þ +

sli + slj
γ2

ÞI + 1
6ðrl − 1ÞUlijk

Λ
+

1
2
Mlijρm

Λ
+

1
2
Llijrlm

Λ �xðtÞ+

+ ∑
rl

i=1
∑
rv

q=1
∑
N

v=1, v≠ l
hliðtÞhvqðtÞβvlxTðtÞðPvq −PliÞxðtÞ<0.

Due to the switching law (3.5), the following inequality

xTðtÞðPv −PlÞxðtÞ= xTðtÞ ∑
rv

q=1
∑
rl

i=1
hvqðtÞhliðtÞðPvq −PliÞxðtÞ≥ 0

is found to hold true. It is therefore that Vl̇ <0, ∀x≠ 0, and the system (2.2),
respectively (2.1), is asymptotically stable under the synthesized intelligent control,
which combines the feedback and the switching control laws. Thus the proof is
complete. □

Remark 3.2 In here a new kind of PDC controllers are proposed that employ the
time derivative information on membership functions. These are valid in terms of
the LMI for the case where the time derivative of hlρðtÞ can be calculated from the
states and are not directly related to the control, which limits the applicability of
these new synthesis designs.

Remark 3.3 The new PDC controllers have terms of hl̇iðtÞ and reduce to the
original PDC controllers when Tli =T , i.e., when a single design matrix is used.
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4 The First Intelligent Control Synthesis: Illustrative
Example

As an illustrative example a switched fuzzy system composed of two subsystems is
considered as in [17, 31]. These are given in terms of their system state

A11 =
− 5 − 4
− 1 − 2

� �
, A12 =

− 2 − 4
20 − 2

� �
, A21 =

− 5 − 4
− 1 − 2

� �
,A22 =

− 2 − 4
20 − 2

� �

ð4:1Þ

and input matrices:

B11 =
0 0
1 10

� �
, B12 =

0 0
1 3

� �
, B21 =

0 0
1 8

� �
, B22 =

0 0
1 5

� �
. ð4:2Þ

The actual nonlinear physical plant is assumed to be characterized by mem-
bership functions as follows:

h11ðx1ðtÞÞ= h21ðx1ðtÞÞ= 1+ sin x1ðtÞ
2

, h12ðx1ðtÞÞ= h22ðx1ðtÞÞ= 1− sin x1ðtÞ
2

.

ð4:3Þ

Following the technique developed in [29, 30] one may readily obtain:

μ111 = μ211 = 3.44, μ121 = μ221 = 3.68, μ112 = μ212 = − 3.68, μ122 = μ222 = − 3.44.

Solving the inequality (15) using the LMI toolbox of MATLAB [8] (also see
[18, 19]) yields the following symmetric positive definite matrices

P11 =
4.0800 0.2222

0.2222 4.2513

� �
, P12 =

3.6174 0.2710

0.2710 4.0143

� �
,

P21 =
3.9297 0.2613

0.2613 4.0545

� �
, P22 =

3.5241 0.2666

0.2666 4.0195

� �

and feedback gain matrices

K11 =
0.0175 0.0760

0.0760 − 0.2327

� �
, K12 =

− 3.7911 − 5.4933

− 5.4933 1.1597

� �
,

K21 =
0.0264 0.0890

0.0890 − 0.2679

� �
, K22 =

− 1.5140 − 3.7505

− 3.7505 0.3462

� �
,
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as well as the matrices

T11 =
0.0652 7.8165

− 7.8328 0.0406

� �
, T12 =

− 0.0768 8.2736

− 8.2515 − 0.0300

� �
,

T21 =
− 0.0106 8.2211

− 8.2168 0.0050

� �
, T22 =

0.0042 − 5.2361

5.2353 0.0059

� �
.

Hence, the stabilizing control synthesis design according to Theorem 2, which
renders system (2.1) asymptotically stable in closed loop, does exist and its
implementation is feasible.

The resulting fuzzy control law synthesis is given as follows:

ulðtÞ= ∑
2

i=1
hliðtÞKlixðtÞ+ ∑

2

i=1
hl̇iðtÞTlixðtÞ ð4:4Þ

and it does complement operationally the switching law (2.5) in the sense of
fuzzy-logic-based computational intelligence.

Computer simulation experiments were carried out by applying the control law
(4.4) to the system representation (2.3) and by assuming xð0Þ= ½1, − 1�T . A typical
sample of the obtained simulation results are shown in Fig. 2. Apparently, the
closed-loop system is asymptotically stable via the switching law (2.5), respectively
(4.4).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

t(s)

x(
t)

x1

x2

Fig. 2 The plant state
responses in the designed
closed-loop control system
using the switched fuzzy
system representation

130 J. Luo and G.M. Dimirovski



5 Intelligent Control Synthesis Task Two:
Main New Results

The second intelligent control synthesis task problem, due to its statement also
requiring NGC control constraints, appeared to be subject to a certain solvability
condition. It is this solvability condition that has been found using the single
Lyapunov function approach. Yet, the control synthesis theorem appeared to imply
computationally a hard NP (nondeterministic polynomial) problem hence some
algorithm ought to be derived, that yielded a solvable case involving convexity
condition. In what follows, the next two lemmas shall be needed.

Lemma 5.1 ([24]) Let D, E, K, and MðtÞ denote real-valued matrices of appro-
priate dimensions, and also let MðtÞTMðtÞ≤ I. Then for any scalar μ>0 and any
positive real-valued matrix W =WT and W − μDDT >0, the following inequalities
hold true:

DMðtÞE+ ðDMðtÞEÞT ≤ μ− 1DDT + μETE; ð5:1Þ

ðK +DMðtÞEÞTW − 1ðK +DMðtÞEÞ≤KTðW − μDDTÞ− 1K +
+ μ− 1ETE.

. ð5:2Þ

Lemma 5.2 ([35]) Let X ∈Rm× n and Y ∈Rm× n denote arbitrary real-valued
matrices and ε>0 any constant real-valued positive scalar. Then the following
inequality holds true:

XTY +YTX ≤ εXTX + ε− 1YTY ð5:3Þ

Both Lemmas 5.1 and 5.2 are used to investigate the inequalities involved in
establishing conditions under which the time derivative of Lyapunov function is
guaranteed negative definite.

Theorem 5.1 For the considered control system (2.9) and for a given convex
combination α1, α2, . . . , αN , ∑l=N

l=1 αi =1, if there exist a positive definite matrix P
and a gain matrix Kli satisfying the following matrix inequalities

∑l=N
l=1 αl½Π*

lii + Tlii +PSliiP+KT
li ðR− 1 −DαliDT

αliÞ− 1Kli�<0 ð7Þ ð5:4Þ

∑l=N
l=1 αl½Π*

lii + Tlii +PSliiP+ ðRKljÞTðI −DαljDT
αljÞ− 1ðRKljÞ+

+KT
li ðI −DαliDT

αliÞ− 1Kli�<0, i< j, ð8Þ
ð5:5Þ

Intelligent Controls for Switched Fuzzy Systems: Synthesis … 131



where

Π*
lii =PAli +AT

liP+PBliKli +KT
li B

T
liP, ð5:6Þ

Slii =DliDT
li +BliDαliDT

αliB
T
li , ð5:7Þ

Tlii =2EαliET
αli +EliET

li +Q, ð5:8Þ

Π*
lij =PAli +AT

liP+PBliKlj +KT
lj B

T
liP+PAlj +AT

ljP+PBljKli +KT
li B

T
ljP, ð5:9Þ

Slij =DliDT
li +BliDαljDT

αljB
T
li +DljDT

lj +BljDαliDT
αliB

T
lj , ð5:10Þ

Tlij =2EαliET
αli +EliET

li +2EαljET
αlj +EljET

lj +2Q, ð5:11Þ

Then there exists the NGC feedback control (2.11) such that the control system
(2.10), respectively (2.9), is asymptotically stable under the switching law

σðtÞ= argminfxðtÞT ∑
i= rl

i=1
∑
j= rl

j= i
hliðtÞhliðtÞ½ðAli +BliKljÞT +PðAli +BliKljÞ+

+PDliDT
liP+PBliDαljDT

αljB
T
liP+EliET

li +EαljET
αlj�xðtÞ

ð5:12Þ

and the cost-function possesses a non-fragile guaranteed optimum J*= xT0P x0 for
any nonzero initial state xð0Þ= x0.

Proof Substitution of the control law (2.11) into the system (2.10) yields

xl̇ðtÞ= ∑
rl

i=1
∑
rl

j=1
hliðtÞhljðtÞ½ðAli +ΔAliðtÞÞxðtÞ+BliðKlj +ΔKljðtÞÞxðtÞ�, ð5:13Þ

In conjunction with this representation of the closed-loop system consider next
the analysis of the following overall system model:

xl̇ðtÞ= ∑
l=N

l=1
αl ∑

rl

i=1
∑
rl

j=1
hliðtÞhljðtÞ½ðAli +ΔAliðtÞÞxðtÞ+BliðKlj +ΔKljðtÞÞxðtÞ�.

Further, it can be shown

xl̇ðtÞ= ∑
l=N

l=1
αl ∑

rl

i=1
∑
rl

j=1
hliðtÞhljðtÞ½ðAli +ΔAliðtÞÞ+BliðKlj +ΔKljðtÞÞ�xðtÞ

132 J. Luo and G.M. Dimirovski



hence

x ̇ðtÞ= ∑
l=N

l=1
αl ∑

rl

i=1
∑
rl

j=1
h2liðtÞ½ðAli +ΔAliðtÞÞ+BliðKlj +ΔKljðtÞÞ�xðtÞ+

+ ∑
l=N

l=1
αl ∑

rl

i< j
∑
rl

j=1
hliðtÞhljðtÞ½ðAli +ΔAliðtÞÞ+BliðKlj +ΔKljðtÞÞ+

+ ðAlj +ΔAljðtÞÞ+BljðKli +ΔKliðtÞÞ�xðtÞ.

ð5:14Þ

On these grounds, now choose VðxðtÞÞ= xðtÞTP xðtÞ as the candidate Lyapunov
function and calculate its time derivative dVðtÞ d̸t along the state trajectory of the
system in closed loop using this equivalent representation model. Thus, it follows:

Vl̇ðxðtÞÞ= x ̇ðtÞTPlixðtÞ+ xðtÞTPlix ̇ðtÞ�=

= ∑
l=N

l=1
αl ∑

rl

i=1
h2liðtÞf½ðAli +ΔAliðtÞÞ+BliðKli +ΔKliðtÞÞ�TP+P½ðAli +ΔAliðtÞÞ+

+BliðKli +ΔKliðtÞÞ�gxðtÞ+ ∑
l=N

l=1
αl ∑

rl

i< j
∑
rl

j=1
hliðtÞhljðtÞxðtÞTf½ðAli +ΔAliðtÞÞ+

+ ðBliðKlj +ΔKljðtÞÞ+ ðAlj +ΔAljðtÞÞ+BljðKli +ΔKliðtÞÞ�TP+P½ðAli +ΔAliðtÞÞ+
+BliðKlj +ΔKljðtÞÞ+ ðAlj +ΔAljðtÞÞ+BljðKli +ΔKliðtÞÞ�gxðtÞ;

This expression can be further re-arranged so as to yield:

Vl̇ðxðtÞÞ=

= ∑
l=N

l=1
αl ∑

rl

i=1
h2liðtÞfxðtÞT ½Q+ ðKli +ΔKliðtÞÞTRðKli +ΔKliðtÞÞ+PAli +AT

liP+

+PBliKli +KT
li B

T
liP+PΔAli +ΔAT

liP+PBliΔKliðtÞ+ΔKliðtÞTBT
liP�xðtÞ−

− xðtÞTQxðtÞ− xðtÞTðKli +ΔKliðtÞÞTRðKli +ΔKliðtÞÞxðtÞg+

+ ∑
l=N

l=1
αl ∑

rl

i< j
∑
rl

j=1
hliðtÞhljðtÞxðtÞTf½2Q+ ðKlj +ΔKljðtÞÞTRðKlj +ΔKljðtÞÞ+

+ ðKlj +ΔKljðtÞÞTRðKli +ΔKliðtÞÞ+PAli +AT
liP+PBliKlj +KT

lj B
T
liP+

+PΔAli +ΔAT
liP+PBliΔKljðtÞ+ΔKljðtÞTBT

liP+PAlj +AT
ljP+PBjiKli +

+KT
li B

T
ljP+PΔAlj +ΔAT

ljP+PBljΔKliðtÞ+ΔKliðtÞTBT
ljP�xðtÞ− 2xðtÞTQ xðtÞ−

− xðtÞTðKli +ΔKliðtÞÞTRðKlj +ΔKljðtÞÞxðtÞ−
− xðtÞTðKlj +ΔKljðtÞÞTRðKli +ΔKliðtÞÞxðtÞg≤
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≤ ∑
l=N

l=1
αl ∑

rl

i=1
h2liðtÞfxðtÞT ½Q+KT

li ðR− 1 −DαliDT
αliÞ− 1Kli +EαliET

αli +PAli +AT
liP+

+PBliKli +KT
li B

T
liP+PDliDT

liP+PBliDαliDT
αliB

T
liP+EαliET

αli +EliET
li �xðtÞ−

− xðtÞTQxðtÞ− xðtÞTðKli +ΔKliðtÞÞTRðKli +ΔKliðtÞÞxðtÞg+

+ ∑
l=N

l=1
αl ∑

rl

i< j
∑
rl

j=1
hliðtÞhljðtÞxðtÞTf½2Q+ ðRKljÞTðI −DαljDT

αljÞ− 1ðRKljÞ+

+KT
li ððI −DαljDT

αljÞ− 1Kli +EαliET
αli +EαljET

αlj +PAli +AT
liP+PBliKlj +

+KT
lj B

T
liP+PDliDT

liP+PBliDαljDT
αljB

T
liP+EαljET

αlj +EliET
li +PAlj +AT

ljP+

+PBljKli +KT
li B

T
ljP+PDljDT

ljP+PBljDαliDT
αliB

T
ljP+EαliET

αli +EljET
lj �xðtÞ−

− 2xðtÞTQxðtÞ− xðtÞTðKli +ΔKliðtÞÞTRðKlj +ΔKljðtÞÞxðtÞ−
− xðtÞTðKlj +ΔKljðtÞÞTRðKli +ΔKliðtÞÞxðtÞg.

By making use of the two inequalities (5.4) and (5.5) in the statement of The-
orem 5.1, one can show

V ̇lðxðtÞÞ< ∑
l=N

l=1
αl ∑

rl

i=1
h2liðtÞ½− xðtÞTQxðtÞ− xðtÞTðKli +ΔKliðtÞÞTRðKli +ΔKliðtÞÞxðtÞ�+

+ ∑
l=N

l=1
αl ∑

rl

i< j
∑
rl

j=1
hliðtÞhljðtÞ½− 2xðtÞTQxðtÞ− xðtÞTðKli +ΔKliðtÞÞTRðKlj +ΔKljðtÞÞxðtÞ−

− xðtÞTðKlj +ΔKljðtÞÞTRðKli +ΔKliðtÞÞxðtÞ�= − ∑
l=N

l=1
αl½xðtÞTQxðtÞ+ ulðtÞTRulðtÞ�,

that is

V ̇ðxðtÞÞ= − ∑
l=N

l=1
αl½xðtÞTQxðtÞ+ ulðtÞTRulðtÞ�<0. ð5:15Þ

Integration of the left- and right-hind sides of (5.15) yields

Vðxð∞ÞÞ−Vðxð0ÞÞ= − xT0Px0 ≤ − ∑
l=N

l=1
αl

Z∞

0

½xðtÞTQxðtÞ+ ulðtÞTRulðtÞ�dt= − J.

ð5:16Þ

hence it must be J < xT0Px0 = J* for any nonzero initial state vector.
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Furthermore, it should be pointed out for any nonzero initial state x0 there is at
least one fuzzy system that satisfies

xðtÞT ∑
rl

i= j
∑
rl

j=1
hliðtÞhljðtÞf½ðAli +ΔAliðtÞÞ+BliðKlj +ΔKljðtÞÞTP+

+P½ðAli +ΔAliðtÞÞ+BliðKlj +ΔKljðtÞÞT �gxðtÞ<0,

and therefore the argminf∙g switching law enforces the single Lyapunov function
to decrease in the whole of the systems state space ℵn as the time elapses. Thus the
proof is complete. □

It should be noted, nonetheless, the above intelligent control synthesis solution
id feasible for a family of gain coefficients αl according to the convexity require-
ment, which turned out to be a NP-hard problem. For the general case, this is a
research task for the future. For the particular case of the considered class of
switched fuzzy systems that have two subsystems there is constructed in here a
search algorithm, ℑ2, for finding coefficients αl according to a feasible convex
combination.

Algorithm 5.1 Assume the switched fuzzy systems possess two subsystems only,
and let n0 and ne denote two given nonnegative integers. The search for a Hurwitz
convex combinations of systems yields the necessary coefficients via the following
iteration process ℑ2

Process ℑ2(1, n0, ne)

For 0 ; ei n n=
1 1 1

2 21 2 22 2 2 22 212 22
; ; 1 ;ih s h s h m s s= = = − =

For 20 :j m=

1 21 2 2 2; 1 ;s j hα α α= + × = −
If inequalities (7) and (8) are solvable, then

1α , 
2α represent 

a feasible convex combination, else continue Process 
2ℑ

end If 
end For

end For
end 

2ℑ

Remark 5.1 In an analogous way, this process ℑ2 can be extended to switched
system with N(N > 2) subsystems; however, the solvability of the involved
inequalities is an open issue yet to be fully explored.
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6 The Second Intelligent Control Synthesis:
Illustrative Example

As an illustrative example a switched fuzzy system composed of two subsystems is
considered as in [16]. These are given by means of the respective matrices as
follows:

A11 =
− 10 0.01

− 9.3 − 1.0493

� �
, A12 =

0 0.1

− 32 − 4.529

� �
,

A21 =
− 10 0.1

10 − 0.1

� �
,A22 =

0 0.8

− 8 − 0.9

� �
;

ð5:17Þ

B11 =B12 =B21 =B22 =
0 1
1 0

� �
; ð5:18Þ

D11 =D12 =
− 0.1125 1

1 0

� �
, D21 =D22 =

0.01 1
1 0

� �
; ð5:19Þ

E11 =E12 =
1 0.2
0 0

� �
,E21 =E22 =

0.5 1
0 0

� �
; ð5:20Þ

Dα11 =Dα12 =Dα21 =Dα22 =
0.5 0
0 0.5

� �
; ð5:21Þ

Eα11 =Eα12 =Eα21 =Eα22 =
0.5 0
0 0.5

� �
; ð5:22Þ

M11ðtÞ=M12ðtÞ=M21ðtÞ=M22ðtÞ= sin t 0
0 cos t

� �
; ð5:23Þ

Mα11ðtÞ=Mα12ðtÞ=Mα21ðtÞ=Mα22ðtÞ= sin t 0
0 cos t

� �
; ð5:24Þ

Also notice, in optimal control theory and applications it is assumed Q=R= I.
The actual nonlinear physical plant is assumed to be characterized by mem-

bership functions as follows:

h11ðx1ðtÞÞ=1− h12ðx1ðtÞÞ=1−
1

1+ e− 2x1ðtÞ , h12ðx1ðtÞÞ=
1

1+ e− 2x1ðtÞ ; ð5:25Þ

h21ðx1ðtÞÞ=1− h22ðx1ðtÞÞ=1−
1

1+ e− 2ðx1ðtÞ− 0.3Þ , h22ðx1ðtÞÞ=
1

1+ e− 2ðx1ðtÞ− 0.3Þ ;

ð5:26Þ
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Application of the search algorithm has yielded α1 = 0.6 and α2 = 0.4. Therefore
the LMI toolbox of the MATLAB [8] (also see [18, 19]) can be used to solve the
inequalities (5.4) and (5.5) in order to compute the symmetric positive definite
matrix P as well as the respective feedback gain matrices. In turn, on can obtain

P=
33.4256 − 0.0000

− 0.0000 33.4256

" #
ð5:27Þ

and feedback gain matrices

K11 =
16.6000 931.5000

− 1366.600 16.6000

� �
,K12 =

109.6370 − 309.5325

− 194.5343 109.6370

� �
,

K21 =
− 20.3000 − 1468.6000

2001.5000 − 20.3000

� �
,K22 =

− 134.2774 398.9315

218.7505 − 134.2774

� �
.
ð5:28Þ

Hence, the intelligent control synthesis design combining the NGC feedback
control of Theorem 5.1 and the argminf∙g-switching control, which render plant
system asymptotically stable in closed loop, does exist and its implementation is
feasible.

The resulting fuzzy control law synthesis is given as follows:

ulðtÞ= ∑
2

i=1
hliðtÞðKli +ΔKliðtÞ�xðtÞ, ΔKliðtÞ=DαliMαliðtÞEαli ð5:29Þ

It does complement the switching law (5.12) thus adding a blend of
fuzzy-logic-based computational intelligence.

Computer simulation experiments were carried out by applying the synthesized
intelligent control comprising the NGC-state feedback (5.29) and switching laws

Fig. 3 The plant state
responses in the designed
closed-loop control system
using the switched fuzzy
system representation
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(5.12) to the system representation (5.10) and by assuming x(0) = [1, –1]T.
A typical sample of the obtained simulation results are shown in Fig. 3. Apparently,
in the closed loop, the plant system is enforced to operate with an asymptotically
stable equilibrium state.

7 Conclusions

This work is focused on presenting novel synthesis design solutions for intelligent
controls of complex plant processes, involving nonlinearities and uncertainties,
using the synergy of fuzzy systems, switched systems and nontraditional Lyapunov
functions approach. It is assumed that the physical parameters of the plant process
to be controlled remain largely constant as time elapses. The minimum necessary
performance requirement is the operating asymptotic stability in the closed loop.

A new intelligent control synthesis via two-layer multiple Lyapunov functions is
proposed to solve the stabilization problem of arbitrary nonlinear continuous-time
plants. It is derived on the grounds of switched fuzzy system models as developed
via the theory of Takagi–Sugeno (T–S) fuzzy systems. A switching law and state
feedback controller that use the time derivative information of membership functions
are designed via the PDC scheme. The sufficient conditions for asymptotic stability
are derived. The method is shown to be LMI solvable. Numerical and simulation
results for an illustrative example are given to demonstrate the effectiveness and the
control performance of the proposed synthesis design for nonlinear plant systems.

Also, for a class of uncertain switched fuzzy plant systems with unstable sub-
systems, the single Lyapunov function method is successfully applied to arrive at
another new intelligent control synthesis, comprising a non-fragile guaranteed cost
(NGC) feedback control law and a typical switching law, was derived. Furthermore,
an algorithm is proposed so as to search a feasible convex combination. Numerical
and simulation for another illustrative example are presented to demonstrate the
feasible performance as well as that any employed controller should be able to
tolerate some uncertainties not only in the plant but also in the implementation of
the controller under a performance index.

As it was pointed out, in general, in the second intelligent control synthesis
finding a family of gain coefficients αl according to the convexity requirement is a
NP-hard problem. Thus this general case is a research task for the future. In the first
intelligent control synthesis, however, solely minor modifications so as to improve
the systems transients, possibly via ensuring exponential stability, is left for future
research. In both cases nonacademic applications are yet to be developed.
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A New Architecture for an Adaptive
Switching Controller Based on Hybrid
Multiple T-S Models

Nikolaos A. Sofianos and Yiannis S. Boutalis

Abstract The scope of this chapter is to provide the reader with the latest advances

in the field of switching adaptive control based on hybrid multiple Takagi-Sugeno

(T-S) models. The method presented here proposes a controller which is based on

some semi-fixed and adaptive T-S identification models which are updating their

parameters according to a specified updating rule. The main target of this enhanced

scheme—compared with the fixed and adaptive multiple models case—is to con-

trol efficiently a class of unknown nonlinear dynamical fuzzy systems. The identi-

fication models define the control signal at every time instant with their own state

feedback fuzzy controllers which are parameterized by using the certainty equiva-

lence approach. A performance index and an appropriate switching rule are used

to determine the T-S model that approximates the plant best and consequently to

pick the best available controller at every time instant. Three types of identifica-

tion models are contained in the models bank: some semi-fixed T-S models which

are redistributed during the control procedure, a free adaptive T-S model which is

randomly initialized, and finally a reinitialized adaptive model which uses the para-

meters of the best semi-fixed model at every time instant. The asymptotic stability

of the system and the adaptive laws for the adaptive models are given by using Lya-

punov stability theory. The combination of these different model categories, offers

many advantages to the control scheme and as it is shown by computer simulations,

the semi-fixed models method enhances the system’s performance and makes the

initialization problem less significant than it is in the fixed models case.
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1 Introduction

Controlling nonlinear plants with unknown or uncertain and time-varying parame-

ters is unquestionably a very challenging problem. Amongst the various methods that

have been proposed for this kind of problems, the multiple models control methods

seem to exhibit very promising results.

The main advantage of using more than one identification models is that the iden-

tification procedure of the unknown parameters is more effective both in speed and

accuracy terms. Also, in cases where the controllers are realized, the scheme is more

reliable and is capable of producing the appropriate control signals even if one or

some of the controllers are damaged or get out of order. As expected, all these advan-

tages are achieved by increasing the computational burden or the cost of the control

system if it is to be implemented in hardware. In [1, 2] the authors introduced for

the first time the multiple model control methods. In these works the authors pro-

vided stability analysis and some simulation results which show the superiority of

these controllers. In a more analytic work [3], Narendra and Balakrishnan proposed

a number of various methods and techniques which are all based on multiple iden-

tification models. A common and novel constituent in all these methods—except

from the fixed models case—is the inclusion of adaptive identification models. The

adaptation algorithms and techniques that are commonly used can be found in [4,

5]. The main techniques which are described in [3] include fixed identification mod-

els, adaptive identification models, a combination of fixed and adaptive models, and

finally an improved method which uses a reinitialized adaptive model. These control

schemes are designed for linear plants. During the last decade the interest for mul-

tiple models control has been returned and some new notable works are available.

In [6], the authors provide a scheme for simple nonlinear systems, and in [7] the

authors present some new ideas and new perspectives in this field. In [8], the author

uses some adaptive identification models and a backstepping technique in order to

control a nonlinear plant with an unknown parameter vector but a known input vec-

tor. Ioannou and Kuipers in [9], propose a multiple models adaptive control scheme

with mixing, using at the same time the powerful tools from linear time invariant

theory and providing a robustness analysis. Recently, in [10, 11], the authors pre-

sented some new control schemes and techniques for linear systems which are based

on multiple models logic. These techniques include the redistribution of some fixed

models and the second level adaptation of these models. Although, all of the afore-

mentioned methods are very effective, most of them are designed for linear plants.

This fact, along with the observation that the single model adaptive control methods

are not adequate enough in difficult control problems lead the authors in [12–14] to

design reliable methods for nonlinear unknown systems utilizing the advantage of

fuzzy theory to handle effectively the nonlinearities [15–18]. More specifically, T-S

[14] fuzzy multiple models were used in order to express the nonlinear plants to be

controlled. Depending on the control problem, the following three types of identifica-

tion models were used: fixed models, free adaptive models, and reinitialized adaptive

models. The proposed architectures have many advantages and provide better results



A New Architecture for an Adaptive Switching Controller . . . 145

than other methods which are based on single adaptive models. Moreover, the idea of

combining adaptive and fixed models that change regularly has shown an improved

performance [19]. In this chapter, the improved architecture which is mostly based

on some redistributed fixed models (semi-fixed models), a free adaptive model and a

reinitialized adaptive model is described. The semi-fixed models (SFMs) are chang-

ing their parameters toward a direction which minimizes a performance index. Also,

the SFMs help the reinitialized adaptive model to be initialized according to a better

point inside the uncertainty region and finally to approximate the real plant within

a small time period. This strategy provides better results than the previous ones and

in some cases reduces the complexity.

2 Problem Statement

In this section the objective of the controller is given and the expressions of the plant

and the identification models are formulated in a suitable form for the designing

procedure of the controller that follows in the next sections. Utilizing the following

T-S fuzzy rules, one can describe a continuous-time nth order nonlinear plant,

Rule i ∶ IF x1(t) is Mi
1 and x2(t) is Mi

2 and …
…and xn(t) is Mi

n THEN ẋ(t) = Aix(t) + Bu(t)

where i = 1,… , l is the number of fuzzy rules, Mi
p, p = 1,… , n are the fuzzy sets,

x(t) ∈ Rn
is the state vector, u(t) ∈ R is the input vector, An×n

i are the state matrices

which are considered to be unknown and Bn×1
is the known input matrix,

Ai =
⎡⎢⎢⎢⎣

0
0 𝐈(𝐧−𝟏)
⋮
𝛼

i
n 𝛼

i
n−1 … 𝛼

i
1

⎤⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎣

0
0
⋮
1

⎤⎥⎥⎥⎦
where 𝐈(𝐧−𝟏) is an (n − 1) × (n − 1) identity matrix.

The following plant is used as a reference model,

ẋm = Adxm (1)

where Ad is a n × n stable state matrix. The aim of the proposed control scheme is to

enforce the state x of the unknown fuzzy system to track the desired state trajectory

xm ensuring at the same time the stability of the closed-loop system and an improved

performance compared to former similar control schemes.
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The dynamical fuzzy system which results from a fuzzy blending of the linear models

in the consequent parts of the rules can be described as follows:

ẋ(t) =

l∑
i=1

hi(x(t))(Aix(t) + Bu(t))

l∑
i=1

hi(x(t))
(2)

where hi(x(t)) =
n∏

p=1
Mi

p(xp(t)) ≥ 0 and Mi
p(xp(t)) is the grade of membership of xp(t)

in Mi
p for all i = 1,… , l and p = 1,… , n. The state-space parametric model (SSPM)

expression of (2) is given in (3).

ẋ(t) = Adx(t) +

l∑
i=1

hi(x(t))((Ai − Ad)x(t) + Bu(t))

l∑
i=1

hi(x(t))
(3)

The series parallel model (SPM) [20] of (2), is given as follows:

̇x̂(t) = Adx̂(t) +

l∑
i=1

hi(x(t))(( ̂Ai − Ad)x(t) + Bu(t))

l∑
i=1

hi(x(t))
(4)

where ̂Ai, are the estimations of Ai matrices.

3 The SFMs Based Switching Fuzzy Control Scheme

The proposed switching fuzzy control scheme is described in detail in this section

along with some useful tools that are used to ensure a satisfactory performance and

the stability of the system.

3.1 Multiple T-S Identification Models Architecture

A hybrid bank of fuzzy identification models is the main part of the proposed control

scheme. The role of these fuzzy models is to approximate the behavior of the real

plant. The identification models consist of N-2 semi-fixed T-S identification mod-
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Fig. 1 The multiple T-S estimation models switching control scheme

els
{
Msf
}N−2
sf=1, one free running adaptive model Mad and one reinitialized adaptive

modelMadr. Every identification model is connected with its own adaptive controller

by using the certainty equivalence approach for the adaptation of the controllers’

parameters. The main parts of the control scheme are given in Fig. 1. The objective

of the control scheme is to drive the reference model tracking error, em = x − xm,

to zero. The SPM formulation (4) is used to describe all the identification mod-

els
{
Mk
}N
k=1 whose initial parameter values are different. The estimations for Ai are

denoted as ̂Aki and the uncertain parameters of Ai are denoted as EA ∈ 𝛯 ⊂ Rn
, where

𝛯 is a compact space indicating the region defined by all possible parameter values

combinations and n is equal to the number of the unknown parameters. The critical

point here is that the initial estimations are not picked randomly but they are distrib-

uted uniformly over a lattice in 𝛯 . Although N controllers are used in the proposed

scheme, only one of them defines the control signal u, which is finally applied to all

the T-S models and the real fuzzy model of the plant and an output x̂k is produced

for every model. The identification error which defines how "close" the models are

to the real plant is given as ek = x − x̂k. A feedback linearization controller Ck with

an output uk corresponds to identification model Mk. The semi-fixed controllers Csf
and the adaptive controllers Cad and Cadr are updated in an indirect way using the

certainty equivalence approach. The controller’s Ck signal is designed so that when

applied to the corresponding T-S plant Mk, the output is given by a state equation

identical to that of the reference model (1). At every time instant, the appropriate

controller is chosen according to a switching rule, which is based on a cost criterion

Jk, where

Jk(t) =
t

∫
0

eTk (r)ek(r)dr (5)
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The cost criterion (5) is calculated at every time instant for every identification

model and finally defines which model approximates best the real plant. The switch-

ing rule except from the cost criterion uses two additional tools; an additive hysteresis

constant h which ensures the convergence of the system to one of the two adaptive

models [21] and an interval Tmin which is allowed to elapse between the switchings

so that Ti+1 − Ti ≥ Tmin,∀i where
{
Ti
}∞
i=0 is a switching sequence with T0 = 0 and

Ti < Ti+1,∀i. It has been proved that the choice of an arbitrarily small Tmin leads in

a globally stable system and does not allow switching at very high frequencies [3].

The switching rule which defines the appropriate controller is described as follows:

If Jj(t) = min
k∈𝛬

{
Jk(t)
}

, 𝛬 = {1,… ,N}, and Jj(t) + h ≤ Jcr(t) is valid at least for the

last evaluation of the cost criterion in the time interval [t, t + Tmin] then the model

Mj is chosen and then tuned according to some rules that will be described in the

next sections. Here, Jcr(t) is the index of the current active T-S model Mcr. It has to

be noted that the algorithm step is smaller than Tmin and thus there will be more than

one evaluations in the time interval [t, t + Tmin]. For example, if Tmin is equal to three

algorithm’s steps then the inequality Jj(t) + h ≤ Jcr(t) should be valid at least during

the third step in order to change the controller. If the aforementioned inequality is

not valid, the controller Ccr remains active, meaning that it is the ideal controller

for the time instant t + Tmin. Note that Mj, i.e., the model with the minimum cost

criterion may change during the evaluations in the time interval [t, t + Tmin]. The

above procedure is repeated at every step. In case Mj ∈
{
Msf
}N−2
f=1 , i.e., Mj is a

semi-fixed model, the model Madr reinitializes its parameter vector value, its cost

criterion value, and its state vector value according to the corresponding values of

the dominant semi-fixed model Mj and the entire adaptation process is continued.

It is clear that the better the location of the semi-fixed models inside the uncertainty

region 𝛯 is, the better will be the initialization of the adaptive model Madr. Every

T-S identification model Mk is described by the following fuzzy rules:

T-S Identification ModelMk
Rule i ∶

IF x1(t) is Mki
1 and x2(t) is Mki

2 and … and xn(t) is Mki
n

THEN ̇x̂k(t) = Adx̂k(t) + ( ̂Aki − Ad)x(t) + Bu(t)

where k ∈ 𝛬 = {1,… ,N} and i = 1,… , l. The final form of every T-S model is

given by the following equation:

̇x̂k(t) = Adx̂k(t) +

l∑
i=1

hki(x)(( ̂Aki − Ad)x(t) + Bu(t))

l∑
i=1

hki(x)
(6)
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where hki(x) =
n∏

p=1
Mki

p (xp(t)) ≥ 0 and Mki
p (xp(t)) is the grade of membership of xp(t)

inMki
p , k ∈ 𝛬={1,… ,N} , i = 1,… , l and p = 1,… , n. Also,Mki

p (xp(t)) = Mi
p(xp(t))

and hki(x) = hi(x) for all k, i, p. The matrices of all the T-S models are of the following

form:

̂Aki =
⎡⎢⎢⎢⎣

0
0 𝐈(𝐧−𝟏)
⋮
âkin âkin−1 ⋯ âki1

⎤⎥⎥⎥⎦

3.2 Controller Design

Using a feedback linearization technique and supposing that Mj is the superior T-S

model, the control signal for the plant is identical to the control signal of the con-

troller Cj and is given by the following equation:

u(t) = uj(t) =

l∑
i=1

hji(x)(𝐚d − 𝐚̂ji)Tx(t)

l∑
i=1

hji(x)
(7)

where (𝐚̂ji)T =
[
âjin âjin−1 ⋯ âji2 âji1

]
and (𝐚d)T =

[
adn adn−1 ⋯ ad2 ad1

]
are the nth rows

of the identification and reference model state matrices respectively. Applying the

control input u(t) to Mj and taking into account that hji(x) = hki(x) = hi we obtain:

̇x̂j(t) = Adx̂j(t) +
1
l∑

i=1
hi

⎛⎜⎜⎜⎜⎝

l∑
i=1

hi

⎛⎜⎜⎜⎜⎝
( ̂Aji − Ad)x(t) + B

l∑
i=1

hi(𝐚d − 𝐚̂ji)Tx(t)

l∑
i=1

hi

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

= Adx̂j(t) +
1
l∑

i=1
hi

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
0 𝐈(𝐧−𝟏)
⋮

l∑
i=1

hiâ
ji
n

l∑
i=1

hiâ
ji
n−1 ⋯

l∑
i=1

hiâ
ji
1

⎤⎥⎥⎥⎥⎥⎦
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−

⎡⎢⎢⎢⎢⎢⎣

0
0 𝐈(𝐧−𝟏)
⋮

l∑
i=1

hiadn
l∑

i=1
hiadn−1 ⋯

l∑
i=1

hiad1

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣

0
0
⋮
l∑

i=1
hi

⎤⎥⎥⎥⎥⎥⎦

1
l∑

i=1
hi

[ l∑
i=1

hi(adn − âjin)
l∑

i=1
hi(adn−1 − âjin−1) ⋯

l∑
i=1

hi(ad1 − âji1)
]⎫⎪⎪⎬⎪⎪⎭

x(t)

= Adx̂j(t) +
1
l∑

i=1
hi

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
0 𝟎(𝐧−𝟏)
⋮

l∑
i=1

hi(â
ji
n − adn)

l∑
i=1

hi(â
ji
n−1 − adn−1) ⋯

l∑
i=1

hi(â
ji
1 − ad1)

⎤⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎣

0
0
⋮
1

⎤⎥⎥⎥⎦

[ l∑
i=1

hi(adn − âjin)
l∑

i=1
hi(adn−1 − âjin−1) ⋯

l∑
i=1

hi(ad1 − âji1)
]⎫⎪⎬⎪⎭

x(t).

where 𝐈(𝐧−𝟏) is a (n − 1) × (n − 1) zero matrix.

From the above equations it follows that:

̇x̂j(t) = Adx̂j(t) (8)

From (8) it is obvious that when uj(t) is applied toMj, this model is linearized and has

an identical behavior to that of the desired reference model (1). When the numerator

of the control signal (7) equals to zero, then the control signal will not be able to

control the system. In this case, the switching rule is enriched with the following

rule:

If Cj is the ideal controller

and
l∑

i=1
hji(x)(𝐚d − 𝐚̂ji)Tx(t) = 0 and x(t) ≠ 0

Then u(t) = uj(nbc)(t), where j(nbc) = arg min
k∈𝛬,k≠j

{
Jk(t)
}
.

This rule ensures that the best alternative controller will undertake the control pro-

cedure for this time instant and the control signal will not be zero.
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4 Learning Rules, Redistribution of Semi-Fixed T-S
Models, and Stability Analysis

In this section a learning rule for the adaptive models, that leads the system to the

desired behavior ensuring at the same time its stability, is given, and in addition a rule

for the updating of the semi-fixed models is formulated. According to the previous

sections, the time derivative of the identification error ek of every T-S model is given

by the following equation:

ėk = ẋ − ̇x̂k = Adek −

l∑
i=1

hi ̃Aki

l∑
i=1

hi

x (9)

= Adek −

l∑
i=1

hi
[
𝟎𝐧×(𝐧−𝟏) 𝐚̃ki

]T
l∑

i=1
hi

x (10)

where ̃Aki = ̂Aki − Ai, 𝐚̃ki =
[
ãkin ãkin−1 ⋯ ãki1

]T
is a n × 1 vector, ãkip = âkip − aip,

𝟎𝐧×(𝐧−𝟏) is a n × (n − 1) zero matrix and p = 1,… , n. Consider the following Lya-

punov function candidates:

Vk(ek, 𝐚̃ki, ̃bki) = eTk Pkek +
l∑

i=1

(𝐚̃ki)T 𝐚̃ki
rki

(11)

where rki > 0 is the learning rate constant, Vk ≥ 0, and Pk = PT
k is the solution of the

Lyapunov equation:

AT
dPk + PkAd = −Qk (12)

where Qk is an n × n positive definite matrix. The time derivative of Vk is given as

follows:

̇Vk = ėTk Pkek + eTk Pkėk +
l∑

i=1
2 (

̇𝐚̃ki)T 𝐚̃ki
rki

= eTk (A
T
dPk + PkAd)ek +

l∑
i=1

2 (
̇𝐚̃ki)T 𝐚̃ki
rki
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−

l∑
i=1

hixT 𝐚̃ki

l∑
i=1

hi

PT
ksek − eTk Pks

l∑
i=1

hi(𝐚̃ki)Tx

l∑
i=1

hi

= −eTk Qkek +
l∑

i=1
2 (

̇𝐚̃ki)T 𝐚̃ki
rki

− 2

l∑
i=1

hiPT
ksekx

T 𝐚̃ki

l∑
i=1

hi

where Pks ∈ Rn×1
is the nth column of Pk. The semi-fixed models may not change

their parameters at every step—this depends on the algorithm—so whenever Mk ∈{
Msf
}N−2
f=1 , i.e., Mk is a semi-fixed model, ( ̇𝐚̃ki)T = 0. In that case,

̇Vk = −eTk Qkek − 2

l∑
i=1

hiPT
ksekx

T 𝐚̃ki

l∑
i=1

hi

(13)

Since the semi-fixed models are not used for stability purposes and, as it can be seen

from (13), when only semi-fixed models are used in the control scheme, there is no

guarantee for the boundedness of ek, the duty of stabilizing the system is assigned

to the adaptive models. In case Mk ∈
{
Mad,Madr

}
, i.e., Mk is an adaptive model,

the updating law for (𝐚̃ki)T is given as follows:

( ̇𝐚̃ki)T = rki
hi
l∑

i=1
hi

PT
ksekx

T
(14)

On the other hand, the semi-fixed models will update their parameters too, toward

the region of the uncertainty space that is closer to the real plant. From (10) one has:

ėk = Adek − B

l∑
i=1

hi(𝐚̃ki)T

l∑
i=1

hi

x (15)
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By solving (15) and assuming x(0) = x̂k(0), it follows that

ek = −
t

∫
0

eAd(t−r)BxT (r)dr

l∑
i=1

hi𝐚̃ki

l∑
i=1

hi

(16)

The identification errors can be expressed as follows:

ek(t) = −K(t)

l∑
i=1

hi𝐚̃ki

l∑
i=1

hi

(17)

where K(t) =
t∫

0
eAd(t−r)BxT (r)dr can be computed at every time instant since its para-

meters are known and accesible. It is obvious that ek(t) and 𝐚̃ki are linearly related.

The performance index can be expressed as follows:

Jk(t) =
t

∫
0

(

l∑
i=1

hi(𝐚̃ki)T

l∑
i=1

hi

KT (r)K(r)

l∑
i=1

hi𝐚̃ki

l∑
i=1

hi

)dr

=

l∑
i=1

hi(𝐚̃ki)T

l∑
i=1

hi

(
t

∫
0

KT (r)K(r)dr)

l∑
i=1

hi𝐚̃ki

l∑
i=1

hi

=

l∑
i=1

hi(𝐚̃ki)T

l∑
i=1

hi

C(t)

l∑
i=1

hi𝐚̃ki

l∑
i=1

hi

The above expression for Jk(t) shows that the performance indices are quadratic func-

tions of the unknown vectors 𝐚̃ki. If matrix C(t) is positive definite for t ≥ T , then

the performance indices are parts of a quadratic surface in which the minimum cor-

responds to the real plant, where the performance index is equal to zero. Based on

this fact, an algorithm for the redistribution of the semi-fixed models is used in this

paper [10]. The main objective of this algorithm is to change the parameter values of

the semi-fixed models toward a direction which is close to the real plant. The algo-

rithm can be expressed as follows: If Jj(t) = min
k∈𝛬

{
Jk(t)
}

where 𝛬 = {1,… ,N} and

j ∈ [1,… ,N − 2], then all the semi-fixed models—except Mj—redistribute their

parameters according to the following equation:
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𝐚̂kinew =
√
Jk√

Jj +
√
Jk
𝐚̂ji +

√
Jj√

Jj +
√
Jk
𝐚̂ki (18)

where k ≠ j and k ∈ [1,… ,N − 2]. The redistribution does not take place at every

algorithm step and is defined according to the problem specifications. It is obvious

that when the dominant model is an adaptive model the redistribution does not take

place.

The following Theorem ensures that the dynamical fuzzy system (2) is asymptot-

ically stable and its state follows the state of the reference model (1).

Theorem 1 The proposed indirect switching control architecture for the dynamical
fuzzy system (2), along with the control law (7), the adaptive law (14) and the ref-
erence model (1), guarantees that: 𝐚̂ki, ek(t) are bounded, [ek(t), ̇𝐚̂ji(t), em(t)] → 0
as t → ∞ for all i, j = 1,… , l, k ∈ {ad, adr} and finally the controller converges to
one of the two available adaptive controllers (except from the case where one of the
semi-fixed controllers matches the plant exactly). The stability results of Theorem 1
are valid only when adaptive models are used in the control architecture.

Proof Considering the adaptive law (14), the time derivative of Vk is given in as

follows:

̇Vk = −eTk ek (19)

Therefore, ̇Vk = −eTk ek ≤ 0, for k ∈ {ad, adr} and t ≥ 0. Consequently, the func-

tion Vk is a Lyapunov function for the systems (10), (14) when k ∈ {ad, adr}. This

implies that ek, 𝐚̃ki, 𝐚̂ki ∈ L∞. Due to the fact that Vk is bounded from below

(Vk ≥ 0) and nonincreasing with time ( ̇Vk ≤ 0), the following equation holds,

lim
t→∞

Vk(ek(t), 𝐚̃ki(t)) = V(∞) < ∞ (20)

and
∞

∫
0

eTk ekdr ≤ −
∞

∫
0

̇Vkdr = (Vk(0) − Vk(∞)) (21)

where Vk(0) = Vk(ek(0), 𝐚̃ki(0)). Consequently, ek ∈ L2 ∩ L∞. At any time instant,

only one controller Cj is chosen in order to control the plant. Applying uj(t) from

(7) in Mj, and taking into account the expression (3), the time derivative of the

identification error for Mj is given as follows:

ėj(t) = ẋ(t) − ̇x̂j(t) = Adej(t) +

l∑
i=1

hi(x(t))((Ai − Ad)x(t) + Bu(t))

l∑
i=1

hi(x(t))
(22)
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The time derivative of the reference model tracking error em = x − xm, is given in

(23):

ėm(t) = ẋ(t) − ẋm(t) = Adem(t) +

l∑
i=1

hi(x(t))((Ai − Ad)x(t) + Bu(t))

l∑
i=1

hi(x(t))
(23)

From (22), (23) one has:

ėj(t) − ėm(t) = Ad(ej(t) − em(t)) (24)

Taking into account that ej ∈ L2 ∩ L∞ for all j ∈ {ad, adr}, and that equation (24) is

satisfied at any instant, it follows that em(t) is bounded and consequently x, u ∈ L∞
when one of the adaptive models ends up to be the dominant model. This is the case

in the proposed control architecture with the particular performance index (5). The

performance indices Jad or Jadr of the adaptive models are bounded while the per-

formance indices of the semi-fixed models grow in an unbounded way due to the

fact that they are formulated using the integral terms of the squared errors. A semi-

fixed model may never approximate the parameters or the behavior of the controlled

plant. Therefore, there exists a finite time tad such that the system switches to one of

the available adaptive controllers and stays there for all t ≥ tad [6]. The role of the

semi-fixed models is very significant because they provide to the reinitialized adap-

tive model the best possible starting point. Moreover, they revise this starting point

many times through the control procedure by adapting their own parameters. On the

other hand, the reinitialized adaptive model takes the control role—if necessary—

from a semi-fixed model very quickly and leads the system in stability, in case the

free adaptive model does not have a satisfactory parameters initialization. Conse-

quently, the main role of the semi-fixed models is to adapt their parameters towards

a direction which minimizes their performance indices and provide the best pos-

sible approximation for the plant’s parameters in the reinitialized adaptive model

during the first steps of the control procedure. Considering these facts, equation (10)

implies that ėk ∈ L∞ and if combined with ek ∈ L2 ∩ L∞, we obtain that ek → 0
asymptotically. Using (14) we conclude that ̇𝐚̂ji → 0. Finally from (24) it follows

that lim
t→∞

em(t) → 0 which is the objective of the proposed controller architecture.

Remark 1 The computational cost of the proposed control scheme mainly depends

on the number of the T-S identification models. The number of T-S models is spec-

ified by the controller designer and is associated with the size of the uncertainty

region. Compared to the case where only adaptive T-S models are used, we conclude

that this method is less complicated and requires a reduced computational effort. On

the other hand, compared with approaches employing only fixed models that do not

change their parameters, the method appears more complicated and is computation-

ally more demanding. Nevertheless, the redistribution of the fixed models speeds
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up the control procedure and leads the system to the desired point faster than all

the previous methods. In order to obtain all the advantages of the proposed method,

the designer should compromise between the performance and the computational

requirements of the controller.

5 Simulation Results

The effectiveness and the advantages of the proposed controller are demonstrated

by utilizing a known mechanical system as the plant to be controlled. It should be

noted that the theoretical analysis of the proposed method supports its use for the

control of the T-S fuzzy system model. However, in the simulation carried out, the

derived control signal is applied on the real system demonstrating with simulations

the robustness of the method. Three methods are tested and compared here: (i) the

control scheme that uses only adaptive multiple models (AMs) [14], (ii) the hybrid

scheme where fixed and adaptive multiple models are used together (FMs) [13], and

(iii) the proposed controller scheme (SFMs). These three controllers are applied to

the mass–spring system [22], which is depicted in Fig. 2 and is described by the

following equations in state-space form:

[
ẋ1
ẋ2

]
=
[

0 1
−k − ka2x12 −c

] [
x1
x2

]
+
[
0
1

]
u(t) (25)

where x1 ∈ [−d, d] is the displacement of the mass from the stability point, u is

the control signal, a2 = 0.90, m = 1Kg, and k, c are the uncertain constants. More

specifically k ∈ [0.4, 1.4] and c ∈ [0.1, 1.3]. The nonlinear term x12 can be approxi-

mated by using two fuzzy rules with membership functions, M1 = (d2 − x12)∕d2 and

M2 = x12∕d2.

The fuzzy rules are given as follows:

Rule 1 ∶ IF x1(t) is about 0 THEN ẋ(t) = A1x(t) + B1u(t)
Rule 2 ∶ IF x1(t) is about ± d THEN ẋ(t) = A2x(t) + B2u(t),
where

A1 =
[
0 1
−k −c

]
,B1 =

[
0
1

]

Fig. 2 The mass–spring

mechanical system
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A2 =
[

0 1
−k − ka2d2 −c

]
,B2 =

[
0
1

]

and d = 1. The control objective is to force the system (25) to follow the reference

model (1) where:

Ad =
[

0 1
−5 −5

]

Using Qk = 𝐈𝟐×𝟐 in Lyapunov equation (12) one obtains:

Pk =
[
0.1 0.1
0.1 0.12

]
,Pks =

[
0.1 0.12

]T
.

The first control scheme consists of ten adaptive models
{
Mk
}10
k=1 along with their

corresponding fuzzy controllers. The second control scheme consists of nine fixed

models
{
Mk
}9
k=1, one free adaptive model M10 and one reinitialized adaptive

model M11, and the third control scheme consists of nine semi-fixed fuzzy models{
Mk
}9
k=1, one free adaptive fuzzy model M10 and one reinitialized adaptive fuzzy

model M11 along with their corresponding controllers. The initial estimates 𝐚̂ki in

the fixed models, the semi-fixed models, and the free adaptive models are the same

Fig. 3 a–b State responses, c Control signal and d Dominant controllers sequence for the adaptive

models case
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Fig. 4 a–b State responses, c Control signal and d Dominant controllers sequence for the fixed

and adaptive models case

for the three schemes and they are distributed uniformly in the uncertainty region.

Also, rki = 5 for all k ∈ {ad, adr} , i, Tmin = 0.06 sec., h = 0.01 and the algorithm’s

step is ts = 0.03 sec. The initial states for the real plant, the free adaptive model,

the fixed models and the reference model are x = x̂k =
[
0.9 0

]T
and xm =

[
0.2 0

]T
respectively. The results of the three simulations are depicted in Figs. 3, 4 and 5. In

all these figures, the dashed green line is related with the reference model and the

solid black line is related with the real plant and the controller that is used in each

case. In Figs. 3, 4 and 5a–b, the states of the real plant (25) and the reference model

(1) are given for all the three cases. In Figs. 3, 4 and 5c, the control signals for all

three cases are depicted. Finally, in Figs. 3, 4 and 5d and in the included subfigures,

the switching sequences of the controllers for all three cases are depicted. Due to

the fact that the initial Jk(t) is identical for all models Mk, the same controller C6 is

chosen arbitrarily in order to provide the initial control signal to the system in every

case. The states of the plant approximate the reference model’s states after about 4 s

for the AM and FM cases and after about 3.5 s for the SFM case. The control sig-

nal is very smooth in the SFM case in contrast to the other cases where there are

some oscillations at the first second. In the AM case, three controllers (C6, C9, C10)

are used, in the FM case, three controllers (C1, C6, C11) are used and finally in the

SFM case, four controllers (C1, C6, C9, C11) are used during simulation (Figs. 3, 4

and 5d). In the last two cases the reinitialized adaptive controller C11 is the domi-
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Fig. 5 a–b State responses, c Control signal and d Dominant controllers sequence for the semi-

fixed and adaptive models case

nant controller. It is obvious that in SFM case, the semi-fixed model M1 provides a

good reinitialization in the adaptive model M11 at about 0.1 s and after that period

of time the controller C11 gains the domination. On the other hand in the FM case,

the reinitialized controller is not ideally parameterized by the fixed models and this

causes a small problem in the control signal at about 0.7 s. Consequently, although

all three methods are very reliable, there is an improvement in the system’s dynamics

when the SFM method is used due to the fact that the reinitialized adaptive controller

exploits a better initialization from the semi-fixed models and thus a faster conver-

gence and better performance is achieved. Also the SFM control scheme reduces the

computational burden compared with the AM case.

6 Conclusions

Multiple models control architectures which contain tunable fixed models are very

effective and offer an enhanced performance compared with the architectures which

do not use that kind of models. The usual methodologies locate the fixed models

uniformly inside the uncertainty region. This chapter describes a technique where

the fixed models are transformed to semi-fixed models according to a specified tun-
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ing algorithm. More specifically, the control scheme consists of a switching fuzzy

controller which is based on some semi-fixed models, one adaptive model, and one

reinitialized adaptive model. The semi-fixed models are changing their parameter

estimations towards a direction where the performance index minimizes its value.

In contrast to fixed model methods, the semi-fixed models offer a better initializa-

tion to the reinitialized adaptive model and thus improve the performance of the

system requiring only a moderate increase in the computational burden. The asymp-

totic stability of the system and the asymptotic tracking of a stable reference model

are ensured by using Lyapunov stability theory and some other tools such as a min-

imum time period which is left to elapse between switchings and a hysteresis in the

switching rule. The effectiveness of the proposed method is demonstrated by some

computer simulations which compare the effectiveness of three different methods.
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Optimization of Linear Objective Function
Under𝐦𝐢𝐧−Probabilistic Sum Fuzzy Linear
Equations Constraint

Ketty Peeva

Abstract We present here linear optimization problem resolution, when the cost

function is subject to fuzzy linear systems of equations as constraint.

1 Introduction

We study optimization of the linear objective function

Z =
n∑

j=1
cjxj, cj ∈ ℝ, 0 ≤ xj ≤ 1, 1 ≤ j ≤ n , (1)

with traditional addition and multiplication, if c = (c1,… , cn) is the cost vector and

(1) is subject to fuzzy linear system of equations as constraint

A ⊗ X = B . (2)

In (2) A = (aij)m×n stands for the matrix of coefficients, X = (xj)n×1 stands for the

matrix of unknowns, B = (bi)m×1 is the right-hand side of the system and for each

i, 1 ≤ i ≤ m, and for each j, 1 ≤ j ≤ n, we have aij, bi, xj ∈ [0, 1]. The composition

written as ⊗ is min−probabilistic sum. The aim is to minimize or maximize (1) sub-

ject to constraint (2). The results for solving this linear optimization problem are pro-

vided by the inverse problem resolution for fuzzy linear system of equations (FLSE)

with min−probabilistic sum composition as presented in [11] and next developed

here for optimization.

In Sect. 2 we introduce basic notions. Sections 3 and 4 present method and algo-

rithm for solving fuzzy linear systems of equations withmin−probabilistic sum com-

position, following [11]. Suitable list manipulations lead to all maximal solutions.
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When the system (2) is consistent, its solution set is determined. In Sect. 4 we pro-

pose method and algorithm for solving linear optimization problem (1) subject to

constraint (2). Section 5 contains conclusions.

Terminology for algebra, orders and lattices are given according to [5, 9], for

fuzzy sets and fuzzy relations—according to [2, 3, 7, 12], for computational com-

plexity and algorithms is as in [4].

2 Basic Notions

Partial order relation on a partially ordered set (poset) P is denoted by the symbol

≤. By a greatest element of a poset P we mean an element b ∈ P such that x ≤ b for

all x ∈ P. The least element of P is defined dually. The (unique) least and greatest

elements of P, when they exist, are called universal bounds of P and are denoted by

0 and 1, respectively.

Let x, y ∈ [0, 1]. The following operations will be used

(1) Minimum: min{x, y} = x ∧ y.
(2) Maximum: max{x, y} = x ∨ y;
(3) Probabilistic sum: x ⊕ y = x + y − xy.

Its residuum → is:

x → y =
{

0 if x ≥ y
y−x
1−x

if x < y . (3)

The matrix A = (aij)m×n, with aij ∈ [ 0, 1 ] for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, is

called a membership matrix [7]. In what follows we write ‘matrix’ instead of ‘mem-

bership matrix’.

Two finite matrices are called conformable, if the number of the columns in the

first matrix equals the number of the rows in the second matrix. The matrices A =
(aij)m×p and B = (bij)p×n are conformable and their product Cm×n = AB, in this order,

makes sense.

Definition 1 Let A = (aij)m×p and B = (bij)p×n be given matrices. The matrix

(i) C = A ⊗ B, Cm×n = (cij), is called the min−probabilistic sum product of A and

B if

cij =
p
∧

k=1
(aik ⊕ bkj) when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(ii) C = A → B, Cm×n = (cij), is called the max− → product of A and B if

cij =
p
∨

k=1
(aik → bkj) when 1 ≤ i ≤ m, 1 ≤ j ≤ n .

If there does not exist danger of confusion, we write A B for any of the matrix

products in Definition 1.



Optimization of Linear Objective Function . . . 165

Let A = (aij)m×p and B = (bij)p×n be given matrices. Computing their product A B
is called direct problem resolution.

If A = (aij)m×p and C = (cij)m×n are given matrices, computing an unknown matrix

B = (bij)p×n such that A B = C is called inverse problem resolution. The algorithms

for inverse problem resolution have exponential time complexity (see [1, 10]).

Let 𝔹 denote the set of all matrices B, such that A ⊗ B = C, when the matrices A
and C are given; B ∈ 𝔹 means that A ⊗ B = C is true.

Theorem 1 ([11]) Let A = (aij)m×p and C = (cij)m×n be given matrices. Then for
inverse problem resolution of A ⊗ B = C we have

(i) The set 𝔹 is not empty iff At → C ∈ 𝔹.
(ii) If 𝔹 ≠ ∅ then At → C is the least element in 𝔹.□

3 Fuzzy Linear Systems of Equations

We present method and algorithm for inverse problem resolution of fuzzy linear

systems of equations when the composition is min−probabilistic sum (notation

⊗−FLSE) according to [11].

The ⊗−FLSE has the following long form description:

||||||
(a11 ⊕ x1) ∧⋯∧ (a1 n ⊕ xn) = b1

⋯ ⋯ ⋯ ⋯ ⋯
(am 1 ⊕ x1) ∧⋯∧ (am n ⊕ xn) = bm

(4)

and its equivalent short form matrix description is

A ⊗ X = B. (5)

Here aij, bi, xj ∈ [ 0, 1 ] for each i = 1,… ,m and j = 1,… , n, A = (aij)m× n stands

for the matrix of coefficients, X = (xj)n×1 – for the matrix of unknowns, B = (bi)m×1
is the right-hand side of the system.

For X = (xj)n×1 and Y = (yj)n×1 the inequality X ≤ Y means xj ≤ yj for each j =
1,… , n.

Definition 2 Let the FLSE A ⊗ X = B in n unknowns be given.

(i) The vector X0 = (x0j )n×1 with x0j ∈ [0, 1], when 1 ≤ j ≤ n, is called a solution
of A ⊗ X = B if A ⊗ X0 = B holds.

(ii) The set of all solutions of A ⊗ X = B is called complete solution set and it is

denoted by 𝕏. If 𝕏 ≠ ∅ then A ⊗ X = B is called consistent, otherwise it is

called inconsistent.
(iii) A solution ̌X ∈ 𝕏 is called a lower or minimal solution of A ⊗ X = B if for any

X ∈ 𝕏 the relation X ≤ ̌X implies X = ̌X, where ≤ denotes the partial order,
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induced in 𝕏 by the order of [0, 1]. Dually, a solution ̂X ∈ 𝕏 is called an upper
or maximal solution of A ⊗ X = B if for any X ∈ 𝕏 the relation ̂X ≤ X implies

X = ̂X. When the upper solution is unique, it is called the greatest or maximum
solution. When the lower solution is unique, it is called the least or minimum
solution.

(iv) The n−tuple of intervals (X1,… ,Xn) with Xj ⊆ [0, 1] for each j, 1 ≤ j ≤ n,

is called an interval solution of the system A ⊗ X = B if any X0 = (x0j )n×1

belongs to 𝕏 when x0j ∈ Xj for each j, 1 ≤ j ≤ n.

(v) Any interval solution of (4), whose components are bounded by the least solu-

tion from the left and by an upper solution from the right, is called its maximal
interval solution.

3.1 Inverse Problem Resolution for ⊗−FLSE—Basic Results

We propose a way (with list operations) to compute the complete solution set of (5).

We assign to A ⊗ X = B a new matrix A∗ = (a∗
ij), where a∗

ij = aij → bi is deter-

mined from A and B:

a∗
ij = aij → bi =

{
0, if aij ≥ bi

bi−aij

1−aij
, if aij < bi

. (6)

The matrix (A∗ ∶ B) with elements a∗
ij, determined by (6), is called augmented

matrix of the system A ⊗ X = B.

The system A∗
⊗ X = B is called associated to the system A ⊗ X = B.

The systems A ⊗ X = B and its associated system A∗
⊗ X = B are equivalent.

This permits to investigate the associated system instead of the original one. This

reduces the size of the instant and makes easier to solve the original ⊗−FLSE.

We introduce the vector ̌B = At → B = ( ̌bj) with elements ̌bj, j = 1,… , n ∶

̌bj =
m

max
i=1

{a∗
ij}, j = 1,… , n, (7)

where a∗
ij is according to (6).

We denote by A∗(j) the jth column of the matrix A∗
.

Theorem 2 Let the system A ⊗ X = B be given.

(i) If A∗(j) contains coefficient(s) a∗
ij ≠ 0, then

x̌j = ̌bj =
m

max
i=1

{bi − aij

1 − aij

}
implies:

(a) aij ⊕ x̌j = bi when a∗
ij = x̌j;
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(b) aij ⊕ x̌j > bi when a∗
ij ≠ x̌j (In this case a∗

ij < x̌j);

(ii) If in A∗(j) all coefficients a∗
ij = 0, then x̌j = ̌bj = 0 and

(a) aij ⊕ x̌j = bi when aij = bi and a∗
ij = 0 = x̌j;

(b) aij ⊕ x̌j > bi when aij > bi and a∗
ij = 0 = x̌j.□

Remarks:

1. According to Theorem 2 ib: in A∗(j) there may exist(s) a∗
ij ≠ 0, that do(es) not

contribute for solving the system.

2. According to Theorem 2 iia: nevertheless in A∗(j) we have a∗
ij = 0 for i = 1,… , n,

there may exist zero coefficients that contribute for solving the system.

3. If in A∗(j) all coefficients a∗
ij = 0 and corresponding aij > bi for i = 1,… , n, then

aij ⊕ x̌j > bi for each i = 1,… , n. Hence there does not exist equation that could

be satisfied by aij ⊕ x̌j for each i = 1,… , n.

3.2 Least Solution of ⊗−FLSE

We denote by ̌X = (x̌j) the vector with components x̌j, computed according to Theo-

rem 2, i.e.,:

x̌j = ̌bj =

{ m
max
i=1

{
bi−aij

1−aij

}
if there exists a∗

ij ≠ 0
0, othervise

. (8)

Corollary 1 If the FLSE A ⊗ X = B is consistent, then the vector ̌X = (x̌j)with com-
ponents determined by (8) is its least solution.□

Theorem 3 If the system A ⊗ X = B is consistent, then the following expressions
for its least solution ̌X are equivalent:

(i) ̌X = At → B;
(ii) ̌X = (A∗)t → B.□

In what follows the vector IND is used to establish consistency of the system by

the eventual ̌X: if all components in IND are TRUE, the system is consistent and

̌X contains its least solution, otherwise the system is inconsistent; i = 1,m means

1 ≤ i ≤ m and j = 1, n means 1 ≤ j ≤ n.

Algorithm 1—least solution and consistency

Step 1. Initialize the vector ̌X = (x̌j) with x̌j = 0 for j = 1, n.

Step 2. Initialize a boolean vector IND with INDi = FALSE for i = 1,m.

Step 3. For each j = 1, n and for each i = 1,m determine x̌j according to (8), upgrade

̌X and correct INDi to TRUE if a∗
ij = x̌j when aij ≤ bi.



168 K. Peeva

Step 4. Check if all components of IND are set to TRUE.

a. If INDi = FALSE for some i, the system A ⊗ X = B is inconsistent. Go to

Step 5.

b. If INDi = TRUE for all i = 1,m, the system A ⊗ X = B is consistent and its

least solution is ̌X.

Step 5. Exit.

Example 1 Find the least solution of the system by Algorithm 1

⎛⎜⎜⎜⎜⎝

1 0.95 0.6 1
1 0.7 0.8 0.9
0.2 0.76 1 1
0.7 1 0.2 0.85
1 0.88 0.58 0.9

⎞⎟⎟⎟⎟⎠
⊗

⎛⎜⎜⎜⎝

x1
x2
x3
x4

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

0.9
0.7
0.76
0.8
0.88

⎞⎟⎟⎟⎟⎠
. (9)

The augmented matrix for (9) is

A∗ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 09.−0.6
0.4

0
0 0 0 0

0.76−0.2
0.8

0 0 0
0.8−0.7
0.3

0 0.8−0.2
0.8

0
0 0 0.88−0.58

0.42
0

⎞⎟⎟⎟⎟⎟⎟⎠

, (10)

i.e.,

A∗ =

⎛⎜⎜⎜⎜⎜⎝

0 0 0.75 0
0 0 0 0
0.7 0 0 0
1
3

0 0.75 0
0 0 5

7
0

⎞⎟⎟⎟⎟⎟⎠
(11)

We denote by A∗(j) the jth column of A∗
.

1. Initialize ̌X = (0 0 0 0)′.
2. Initialize IND =

(
INDi

)
= FALSE for each i = 1, 5.

3. For each i = 1, 5:

(A1) In A∗(1), x̌1 = max{0.7, 1
3
} = 0.7. Upgrade x̌1 = 0.7 and ̌X = (0.7 0 0 0)′;

Since a∗
31 = 0.7, IND3 = TRUE.

(A2) In A∗(2), x̌2 = 0. No upgrade for ̌X. Since a22 = b2, a32 = b3, a52 = b5, IND2 =
TRUE, IND5 = TRUE, IND3 is already TRUE.

(A3) In A∗(3), x̌3 = max{0.75, 1
14
} = 0.75. Upgrade x̌3 = 0.75 and ̌X = (0.7 0

0.75 0)′. Since a∗
13 = a∗

43 = 0.75, IND4 = TRUE and IND1 = TRUE.



Optimization of Linear Objective Function . . . 169

All elements in IND are set to TRUE on this step. This means that the system

is consistent.

(A4) In A∗(4), x̌4 = 0. No upgrade for ̌X. Since aij > bi for each i = 1, 5, no upgrade

for IND.

4. All components of IND are set to TRUE. The system is consistent and its least

solution is: ̌X = (0.7 0 0.75 0)′.
Corollary 2 Let the FLSE A ⊗ X = B be consistent. Then:
(i) If ̂X =

(
x̂j
)

is its upper solution, then either x̂j = 1 or x̂j = x̌j;
(ii) If aij > bi for each i = 1,… ,m, then x̌j = 0 in the least solution and x̂j = 1 in

any upper solution. □

3.3 Selected Coefficients in ⊗−FLSE

There exist coefficients that contribute for solving the system and such that do not

contribute to solve it—see Theorem 2 and the remarks after it. This is the reason to

propose a selection of all coefficients that do contribute for solving the system.

For consistent ⊗−FLSE (4) with the least solution ̌X = (x̌j):

1. We find the value of the unknown x̌j in ̌X = (x̌j) only from the jth column A∗(j) of

the matrix A∗
.

2. For each i, 1 ≤ i ≤ m, only coefficients aij with the property aij ⊕ x̌j = bi lead to

a solution.

If the FLSE (4) is consistent, any coefficient aij with property aij ⊕ x̌j = bi is

called selected coefficient.
Corollary 3 The FLSE A ⊗ X = B is consistent iff for each i, 1 ≤ i ≤ m, there exists
at least one selected coefficient, otherwise it is inconsistent.

The time complexity function for establishing the consistency of FLSE A ⊗ X =
B and for computing ̌X is O(mn)

If ||Hi
|| denotes the number of selected coefficients in the i−th equation of (4) then

the number of its potential upper solutions does not exceed the estimation

PN1 =
m∏

i=1
|Hi|. (12)

4 Algorithms for Solving A ⊗ X = B

The complete solution set of A ⊗ X = B is the set of all its maximal interval solu-

tions. Since there exists analytical expression for the least solution, attention is paid

on computing the upper solutions [11].



170 K. Peeva

4.1 Upper Solutions—List Manipulations

The hearth of the next approach is to find all selected coefficients aij in A—they

contribute to satisfy the ith equation by the term aij ⊕ x̌j = bi. Next, according to

Corollaries 1, 2 we give to x̂j either the value x̌j when the coefficient contributes to

solve the system or 1 when it does not.

Obviously, there exist solutions that are neither lower, nor greatest, see [11]. In

order to extract only upper solutions and to skip not extremal solutions, a method,

based on list manipulation techniques, is presented in [11].

4.2 Removing Redundant Equations

We suppose that the system A ⊗ X = B is consistent and ̌X is its least solution. First,

using ̌X we select and mark all coefficients that contribute to solve the system. Then

we associate with each equation i, 1 ≤ i ≤ m, a set Ei—it contains list of all indices

j of the selected coefficients aij that contribute to satisfy the ith equation with aij ⊕

x̌j = bi.

Definition 3 The set Ei, which elements are the indices j ∈ {1,… , n} in the ith
equation of (4), such that aij ⊕ x̌j = bi, is called a marking set for the i−th equa-

tion.

𝔼 denotes the set of all marking sets for the system (4).

Rather than work with equations, we use the marking sets—they capture all the

properties of the equations with respect to solutions. In this manner we reduce the

complexity of exhaustive search by making a more clever choice of the objects, over

which the search is performed.

Definition 4 Let El, Ek ∈ 𝔼 be two marking sets for (4). If El ⊆ Ek, then El is called

a dominant set to Ek and Ek is called a dominated set by El.

The set of all non-dominated marking sets for (4) is denoted by ̂𝔼. Each Ei from

̂𝔼 corresponds to the ith row in A∗
or ith equation in (4).

Each dominated set corresponds to redundant equation in (4). We implement Def-

inition 4 to remove redundant equations from (4).

The number of upper solutions now does not exceed the estimation

PN2 =
m∏

i=1
|Ei|, where Ei ∈ ̂𝔼. (13)

If we compare (12) and (13), obviously PN1 ≥ PN2.
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Example 2 For the system

⎛⎜⎜⎜⎜⎜⎜⎝

1 0.8 0.95 1 0.6 1
0.9 0.4 0.7 1 0.8 0.8
0.2 0.52 0.76 0.52 1 1
0.7 1 1 0.6 0.2 0.85
1 1 0.88 0.8 0.52 0.9
0.5 0.7 1 0.9 0.4 1

⎞⎟⎟⎟⎟⎟⎟⎠

⊗

⎛⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

0.9
0.7
0.76
0.8
0.88
0.85

⎞⎟⎟⎟⎟⎟⎟⎠

. (14)

obtain the sets 𝔼 and ̂𝔼 and all its upper solutions.

The system is consistent and

̌X = (0.7 0.5 0 0.5 0.75 0)′.

The marking sets are

E1 = {2, 5} ,E2 = {2, 3} ,E3 = {1, 2, 3, 4} ,

E4 = {4, 5} ,E5 = {3, 5} ,E6 = {1, 2, 5} ,

and hence

𝔼 = {{2, 5} , {2, 3} , {1, 2, 3, 4} , {4, 5} , {3, 5} , {1, 2, 5}} , (15)

leading to PN1 = 2.2.4.2.2.3 = 172 potential solutions.

In (15): E1 ⊂ E6, E2 ⊂ E3 and thus

̂𝔼 = {{2, 5} , {2, 3} , {4, 5} , {3, 5}} , (16)

We expand ̂𝔼 step by step:

1. Expand the first set in the list, namely E1 = {2, 5}.

1.1 Begin with the first element {2}: since {2} ⊂ {2, 3}, we remove {2, 3}
from the list (16) and investigate the path determined by the sequence {2},

{4, 5}, {3, 5}.

1.1.1 Expand the path determined by the first element 4 in {4, 5}. Since 4 does

not belong to the set {3, 5}, there exist two paths, namely
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{2}, {3}, {4} and {2}, {4}, {5}.

1.1.2 Backtracking to the second element 5 in {4, 5} gives that {3, 5} should be

removed because {5} ⊂ {3, 5} and this creates the only path {2}, {5}. Note

that this path covers a path from previous step 1.1.1, namely ({2}, {4}, {5})

Hence the irreducible paths from this branch are:

a. {2}, {3}, {4};

b. {2}, {5}.

1.2 Backtracking to the second 5 element in {2, 5} gives that {5} ⊂ {4, 5}, {5} ⊂

{3, 5} and we remove the sets {4, 5} and {3, 5} from the list (16). Then

{{5} , {2, 3}} gives two paths

a. {2}, {5} (already known).

b. {3}, {5}.

Finally, we obtain three different paths leading to three upper solutions:

a. {2}, {3}, {4} leading to ̂X1 = (1 0.5 0 0.5 1 1)′;
b. {2}, {5} leading to ̂X2 = (1 0.5 1 1 0.75 1)′.;
c. {3}, {5} leading to ̂X3 = (1 1 0 1 0.75 1)′.

sols =
⎛⎜⎜⎝
1 0.5 0 0.5 1 1
1 0.5 1 1 0.75 1
1 1 0 1 0.75 1

⎞⎟⎟⎠
(17)

According to (13) and (16) PN2 = 2.2.2.2 = 16.

In this manner with this very simple operation we reduce the size of the instant:

according to (12) we should investigate 172 paths for upper solutions, while (13)

requires to investigate only 16 paths.

“Backtracking” based algorithm using that principle is presented next. Backtrack-

ing reduces the size of the instant.

Let ̂X = (x̂j) denote an upper solution of (4).

Example 3 Find all upper solutions for the FLSE (14).

Algorithm 2—extracting the upper solutions from ̂𝔼

Step 1. Form the sets 𝔼 and ̂𝔼.

Step 2. Initialize solution vector ̂X0(j) = 1, j = 1, n.

Step 3. Initialize a vector rows(i), i = 1,m which holds all consecutive row

numbers—the indices i for each Ei ∈ ̂𝔼.

Step 4. Initialize i with the first element in rows.

Step 5. Initialize sols to be the empty set of vectors, which is supposed to be the set

of all minimal solutions for the current problem.

Step 6. Check if rows = ∅. If so, add ̂Xij to sols and go to step 8.
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Step 7. For each i in rows expand the set Ei: for each j ∈ Ei create a successor ̂Xij of

̂X0 and update its jth element to be equal to x̌j. Remove i from rows. Go to

step 6 with copied in this step rows and ̂Xij.

Step 8. Exit.

Corollary 4 For any consistent ⊗−FLSE the upper solutions are computable and
the set of all its upper solutions is finite. □

Algorithm 3—solving A ⊗ X = B

Step 1. Input the matrices A and B.

Step 2. Obtain least solution for the system and check it for consistency (Algorithm

1).

Step 3. If the system is inconsistent go to step 5.

Step 4. Obtain all upper solutions (Algorithm 2).

Step 5. Exit.

5 Linear Optimization Problem—The Algorithm

Our aim is to solve the optimization problem, when the linear objective function (1)

is subject to the constraints (2). We first decompose the linear objective function Z
in two functions Z′

and Z′′
by separating the non-negative and negative coefficients

(as it is proposed in [8] for instance). Using the extremal solutions for constraint and

the above two functions, we solve the optimization problem, as described below.

The linear objective function

Z =
n∑

j=1
cjxj, cj ∈ ℝ, 0 ≤ xj ≤ 1, 1 ≤ j ≤ n, (18)

determines a cost vector Z = (c1, c2,… , cn). We decompose Z into two vectors with

suitable components

Z′ = (c′1, c
′
2,… , c′n) and Z′′ = (c′′1 , c

′′
2 ,… , c′′n ),

such that the objective value is

Z = Z′ + Z′′

and cost vector components are

cj = c′j + c′′j , for each j = 1,… , n,
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where

c′j =
{

cj, if cj > 0,
0, if cj ≤ 0 , (19)

c′′j =
{

0, if cj ≥ 0,
cj, if cj < 0 . (20)

Hence the components of Z′
are nonnegative, the components of Z′′

are non-

positive.

We study how to maximize (or minimize, respectively) the linear objective func-

tion (18), subject to the constraint (2).

5.1 Maximize the Linear Objective Function,
Subject to Constraint (2)

The original problem: to maximize Z subject to constraint (2) splits into two prob-

lems, namely to maximize both

Z′ =
n∑

j=1
c′jxj (21)

and

Z′′ =
n∑

j=1
c′′j xj (22)

with constraint (2), i.e., for the problem (18) Z takes its maximum when both Z′
and

Z′′
take maximum.

Since the components c′j , 1 ≤ j ≤ n, in Z′
are nonnegative (see 19), Z′

takes its

maximum among the maximal solutions of (2). Hence for the problem (21) the max-

imal solutionis among the maximal solutions ̂X = (x̂1,… , x̂n) of the system (2).

Since the components c′′j , 1 ≤ j ≤ n, in Z′′
are non-positive (see 20), Z′′

takes its

maximum for the least solution ̆X = (x̆1,… , x̆n) of (2).

The maximal solution of the problem (18) with constraint (2) is

X∗ = (x∗1,… , x∗n),

where

x∗i =
⎧⎪⎨⎪⎩

x̆i, if ci < 0
x̂i, if ci > 0
0, if ci = 0

(23)
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and the optimal value is

Z∗ =
n∑

j=1
cjx∗j =

n∑
j=1

c′j x̂j + c′′j x̆j. (24)

Example 4 Maximize the following linear objective function

Z = −3x1 + 0.5x2 − 2x4 + x5 + 2x6

under the constrains (14).

The cost vector is

c =
(
−3 0.5 0 −2 1 2

)

and hence according to (19) and ( 20) we obtain:

c′ =
(
0 0.5 0 0 1 2

)
,

c′′ =
(
−3 0 0 −2 0 0

)
.

As obtained in Example 2, the FLSE has the following extremal solutions:

̌X = (0.7 0.5 0 0.5 0.75 0)′

and

̂X1 = (1 0.5 0 0.5 1 1)′;

̂X2 = (1 0.5 1 1 0.75 1)′;

̂X3 = (1 1 0 1 0.75 1)′.

First, using ̂X and c′ we obtain for Z′
max

Z′
max = 0, 5x̂2 + 1x̂5 + 2.x̂6,

with

Z′
max(1) = 0, 25 + 1 + 2 = 3, 25,

Z′
max(2) = 0, 25 + 0, 75 + 2 = 3,

Z′
max(3) = 0, 5 + 0, 75 + 2.1 = 3, 25.
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Then, for ̌X = (0.7 0, 5 0 0.5 0.75 0)′ and c′′ we obtain

Z′′
max = −3x̆1 − 2x̆4 = −3.0, 7 − 2.0, 5 = −3, 1

Next, implementing (24) we obtain:

Z∗ =
n∑

j=1
cjx∗j =

n∑
j=1

c′j x̆j + c′′j x̂j, (25)

leading to three candidates:

Z∗(1) = −3, 1 + 3, 25 = 0, 15

Z∗(2) = −3, 1 + 3 = −0, 1

Z∗(3) = −3, 1 + 3, 25 = 0, 15.

Both of the maximal solutions of the constraint are equal and together with the

least solution they lead to the same optimal solution of the problem Z∗(1) = Z∗(3) =
0, 15 with

X∗
1 = ( 0.7 0.5 0 0.5 1 1 )

X∗
2 = ( 0.7 1 0 0.5 0.75 1 ).

The optimal value of this optimization problem is 0, 15.

5.2 Minimize the Linear Objective Function,
Subject to Constraint (2)

If the aim is to minimize the linear objective function (18), we again split it, but now

for Z′′
the optimal solution is among the maximal solutions of the system (2), for Z′

the optimal solution is ̆X. In this case the optimal solution of the problem is

X∗ = (x∗1,… , x∗n),

where

x∗j =
⎧⎪⎨⎪⎩

x̂j, if cj < 0
x̆j, if cj > 0
0, if cj = 0

. (26)
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and the optimal value is

Z∗ =
n∑

j=1
cjx∗j =

n∑
j=1

c′j x̆j + c′′j x̂j. (27)

5.3 Algorithm for Finding Optimal Solutions

1. Enter the matrices Am×n, Bm×1 and the cost vector C1×n.

2. Establish consistency of the system (2). If the system is inconsistent go to step 8.

3. Compute ̆X and all maximal solutions of (2).

4. If finding Zmin go to Step 6.

5. For finding Zmax compute x∗j , j = 1,… , n according to (23). Go to Step 7.

6. For finding Zmin compute x∗j , j = 1,… , n according to (26).

7. Compute the optimal value according to (24) (for maximizing) or (27) (for min-

imizing).

8. End.
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Intuitionistic Fuzzy Logic Implementation
to Assess Purposeful Model Parameters
Genesis

Tania Pencheva and Maria Angelova

Abstract In this investigation, intuitionistic fuzzy logic is implemented to derive
intuitionistic fuzzy estimations of model parameters of yeast fed-batch cultivation.
Two kinds of simple genetic algorithms with operators sequences selection-
crossover-mutation and mutation-crossover-selection are here considered, both
applied for the purposes of parameter identification of S. cerevisiae fed-batch
cultivation. Intuitionistic fuzzy logic overbuilds the results achieved by the appli-
cation of recently developed purposeful model parameters genesis procedure in
order to keep promising results obtained. Behavior of applied algorithms has also
been examined at different values of the genetic algorithms parameter generation
gap, proven as the most sensitive parameter toward convergence time. Results
obtained after the implementation of intuitionistic fuzzy logic for the assessment of
algorithms performances have been compared and based on the evaluations in each
case the most reliable algorithm has been distinguished.

Keywords Intuitionistic fuzzy logic ⋅ Genetic algorithm ⋅ Parameter identifi-
cation ⋅ Fermentation process ⋅ Saccharomyces cerevisiae

1 Introduction

Genetic algorithms [11], inspired by Darwin’s theory of “survival of the fittest”, are
a stochastic global optimization technique with applications in different areas [11,
15]. Some properties such as hard problems solving, noise tolerance, easiness to
interface and hybridize, make GA a suitable and quite workable technique espe-
cially for incompletely determined tasks, and in particular—for parameter identi-
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fication of fermentation process models [1–7, 12–15]. Fermentation processes
(FP) are well known as complex, dynamic systems with interdependent and
time-varying process variables. These peculiarities make their modelling specific
and difficult to be solved task. Inability of conventional optimization methods such
as Nelder-Mead’s minimization, sequential quadratic programming, quasi-Newton
algorithms (i.e., Broyden, Fletcher, Goldfarb, and Shanno), etc., to reach a satis-
factory solution for model parameter identification of FP [14] provokes the idea
genetic algorithms (GA) to be tested. Promising results obtained through GA
application, evaluated by the model accuracy achieved and the convergence time
needed, encourage their future investigation.

For the purposes of current investigation, standard simple genetic algorithm
(SGA), originally presented in [11] with the sequential execution of the main
genetic operators selection-crossover-mutation, is here denoted with the abbrevia-
tion SGA-SCM. Starting algorithm, chromosomes (a coded parameter set) repre-
senting better possible solutions according to their own objective function values
are chosen from the population by means of selection. After that, crossover takes
place in order to form new offspring. Mutation is then applied with a determinate
probability, aiming to prevent all solutions in the population from falling into a
local optimum of the problem. Many modifications of SGA-SCM have been
elaborated with the purpose of improvement of model accuracy and algorithm
convergence time [5]. These modifications differ from one to another in the
sequence of execution of GA operators—selection, crossover, and mutation. As
such, SGA-MCS (coming from mutation-crossover-selection) is proposed and
thoroughly investigated in [5]. In it, selection operator has been applied after
crossover and mutation, in order to avoid the loss of any eventually reached “good”
solution as a result of either crossover or mutation, or both. In this case, SGA-MCS
calculates the objective function for the offspring after the reproduction and the best
fitted individuals are selected to replace the parents.

According to [11], SGA-MCS working principle is shown as follows:

1. [Start]
Generate random population of n chromosomes

2. [Object function]
Evaluate the object function of each chromosome x in the populations

3. [Fitness function]
Evaluate the fitness function of each chromosome n in the populations

4. [New population]
Create a new population by repeating following steps:

4:1. [Mutation]
Mutate new offspring at each locus with a mutation probability

4:2. [Crossover]
Cross over the parents to form new offspring with a crossover probability
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4:3. [Selection]
Select parent chromosomes from the population according to their fitness
function

5. [Accepting]
Place new offspring in a new population

6. [Replace]
Use new generated population for a further run of the algorithm

7 [Test]
If the end condition is satisfied, stop and return the best solution in current
population, else move to Loop step

8 [Loop]
Go to Fitness step.

Aiming to obtain reliable results in parameter identification of a fermentation
process model when applying GA, a great number of algorithm runs have to be
executed due to their stochastic nature. First, the genetic algorithm searches for
model parameters estimations in wide but reasonably chosen boundaries. When
results from many algorithms executions were accumulated and analyzed, they
showed that the values of model parameters can be assembled and predefined
boundaries could be straitened. Thus the development of a procedure for purposeful
model parameters genesis was forced [7]. Its implementation results in the deter-
mination of more appropriate boundaries for variation of model parameters values,
aiming to decrease convergence time while at least saving model accuracy.

The purpose of this study is intuitionistic fuzzy logic to be implemented to assess
the performance quality of two modifications of simple genetic algorithms. Aiming
to save decreased convergence time while keeping or even improving model
accuracy, intuitionistic fuzzy estimations overbuild the results achieved by pur-
poseful model parameters genesis application. Intuitionistic fuzzy logic is going to
be applied for the purposes of parameter identification of S. cerevisiae fed-batch
cultivation in the order

• to assess the performance of SGA at different values of generation gap (GGAP),
proven as the most sensitive genetic algorithm parameter;

• to assess the performance of two modifications of SGA, namely SGA-SCM and
SGA-MCS.

2 Background

A. Model of S. cerevisiae fed-batch cultivation

Experimental data of S. cerevisiae fed-batch cultivation is obtained in the Institute
of Technical Chemistry—University of Hannover, Germany [14]. The cultivation of
the yeast S. cerevisiae is performed in a 1.5 l reactor using a Schatzmann medium.
Glucose in feeding solution is 50 g/l. The temperature was controlled at 30 °C, the

Intuitionistic Fuzzy Logic Implementation … 181



pH at 5.7. The stirrer speed was set to 500 rpm. Biomass and ethanol were mea-
sured off-line, while substrate (glucose) and dissolved oxygen were measured
online.

Mathematical model of S. cerevisiae fed-batch cultivation is commonly descri-
bed as follows, according to the mass balance: [14]:

dX
dt

= μX −
F
V
X ð1Þ

dS
dt

= − qSX +
F
V

Sin − Sð Þ ð2Þ

dE
dt

= qEX −
F
V
E ð3Þ

dO2

dt
= − qO2X + kO2

L a O*
2 −O2

� � ð4Þ

dV
dt

=F ð5Þ

where X is the concentration of biomass, (g/l);
S concentration of substrate (glucose), (g/l);
E concentration of ethanol, (g/l);
O2 concentration of oxygen, (%);
O*

2 dissolved oxygen saturation concentration, (%);
F feeding rate, (l/h);
V volume of bioreactor, (l);
kO2
L a volumetric oxygen transfer coefficient, (1/h);
Sin initial glucose concentration in the feeding solution, (g/l);
μ, qS, qE, qO2 specific growth/utilization rates of biomass, substrate, ethanol, and

dissolved oxygen, (1/h).
All functions are continuous and differentiable.
The fed-batch cultivation of S. cerevisiae considered here is characterized by

keeping glucose concentration equal to or below its critical level (Scrit = 0.05 g/l),
sufficient dissolved oxygen O2 ≥ O2crit (O2crit = 18 %), and availability of ethanol
in the broth. This state corresponds to the so-called mixed oxidative state (FS II)
according to functional state modeling approach [14]. Hence, specific rates in the
model (1)–(5) are as follows:

μ= μ2S
S

S+ kS
+ μ2E

E
E+ kE

, ð6Þ
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qS =
μ2S
YSX

S
S+ kS

, ð7Þ

qE = −
μ2E
YEX

E
E+ kE

, ð8Þ

qO2 = qEYOE + qSYOS ð9Þ

where μ2S, μ2E are the maximum growth rates of substrate and ethanol, (1/h);
kS, kE saturation constants of substrate and ethanol, (g/l);
Yij yield coefficients, (g/g).

All model parameters fulfill the nonzero division requirement.
As an optimization criterion, mean square deviation between the model output

and the experimental data obtained during cultivation has been used

JY = ∑ Y − Y*ð Þ2 →min , ð10Þ

where Y is the experimental data;

Y*—model predicted data;
Y = [X, S, E, O2].

B. Procedure for purposeful model parameters genesis

The procedure for purposeful model parameter genesis (PMPG), originally devel-
oped for SGA [7], consists of six steps shortly outlined below. First, a number of
genetic algorithm runs have to be performed in as here denoted “broad” range and
the minimum and maximum values of the objective function to be determined.
Then, following the scheme presented in [7], top level (TL), middle level (ML), and
low level (LL) of performance with corresponding low boundary (LB) and up
boundary (UB) are constructed. At the next step, minimum, maximum, and average
value for each parameter at each level is set. The last step is a determination of new
intervals of model parameters variations—as here denoted “narrow” range, which is
user-defined decision. Then, the genetic algorithm is again performed with
boundaries determined in the last step.

This stepwise procedure passes through all the six steps described above, not
omitting any of them and without cycles. Originally developed for standard SGA
(with a sequence selection-crossover-mutation), the procedure has been imple-
mented successfully further to some of the developed modifications, among them
for SGA-MCS [3], as well as to multi-population genetic algorithm.

Following model (1)–(9) of S. cerevisiae fed-batch cultivation, nine model
parameters have to be estimated altogether. The procedure for purposeful model
parameter genesis has been applied to SGA_SCM and SGA_MCS for the purposes
of parameter identification of model parameters. Parameter identification has been
performed using Genetic Algorithm Toolbox [10] in Matlab 7 environment. Based
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on the previous authors’ investigation [2], the values of genetic algorithms
parameters and the type of genetic operators have been accepted as presented below

Genetic algorithm parameters

• number of variables (NVAR) 9
• precision of binary representation (PRECI) 20
• number of individuals (NIND) 20
• maximum number of generations (MAXGEN) 100
• generation gap (GGAP) 0.1–0.9
• crossover rate (XOVR) 0.85
• mutation rates (MUTR) 0.1

Type of genetic operators:

• Encoding binary
• Reinsertion fitness-based
• Crossover double point
• Mutation bit inversion
• Selection roulette wheel selection
• Fitness function linear ranking

GA is terminated when a certain number of generations is performed, in this case
100. Scalar relative error tolerance RelTol is set to 1e−4, while the vector of absolute
error tolerances (all components) AbsTol—to 1e−5. All the computations are per-
formed using a PC Intel Pentium 4 (2.4 GHz) platform running Windows XP.

C. Intuitionistic fuzzy estimations

In intuitionistic fuzzy logic (IFL) [8, 9] if p is a variable, then its truth value is
represented by the ordered couple

V pð Þ= <M pð Þ, N pð Þ> , ð11Þ

so that M(p), N(p), M(p) + N(p) ∈ [0, 1], where M(p) and N(p) are degrees of
validity and of nonvalidity of p. These values can be obtained applying different
formula depending on the problem considered. In [8, 9], the relation ≤ between
the intuitionistic fuzzy pairs <a, b> and <c, d> is defined by

< a, b> ≤ < c, d> if and only if a≤ c and b≥ d.

In the frame of intuitionistic fuzzy logic [9] different (standard) logic operations
are introduced: conjunction, disjunction, more than 40 different negations, more
than 180 different implications. Some types of modal logic operators are intro-
duced. They include as particular case the standard modal logic operators “neces-
sity” and “possibility”. Now there is also temporal intuitionistic fuzzy logic,
elements of which will be included in the future research. As a component of
intuitionistic fuzzy logic, an intuitionistic fuzzy predicate calculus is developed.
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For the purpose of this investigation, the degrees of validity/nonvalidity can be
obtained, e.g., by the following formula:

M pð Þ= m
u
, N pð Þ=1−

n
u
, ð12Þ

where m is the lower boundary of the “narrow” range; u—the upper boundary of the
“broad” range; n—the upper boundary of the “narrow” range.

If there is a database collected having elements with the form <p, M(p), N(p)>,
different new values for the variables can be obtained. In case of two records in the
database, the new values might be as follows:

• optimistic prognosis

Vopt pð Þ= <maxðM1 pð Þ,M2 pð ÞÞ, minðN1 pð Þ,N2 pð ÞÞ> , ð13Þ

• average prognosis

Vaver pð Þ= <
M1 pð Þ +M2 pð Þ

2
,
N1 pð Þ +N2 pð Þ

2

� �
> , ð14Þ

• pessimistic prognosis

Vpes pð Þ= <minðM1 pð Þ,M2 pð ÞÞ, maxðN1 pð Þ,N2 pð ÞÞ> ð15Þ

Therefore, for each p

Vpes pð Þ≤Vaver pð Þ≤Vopt pð Þ.

In case of three records in the database, the following new values can be
obtained:

• strong optimistic prognosis

Vstrong opt pð Þ = <M1 pð Þ +M2 pð Þ +M3 pð Þ −
− M1 pð ÞM2 pð Þ −M1 pð ÞM3 pð Þ −M2 pð ÞM3 pð Þ +
+ M1 pð ÞM2 pð ÞM3 pð Þ,N1 pð ÞN2 pð ÞN3 pð Þ>

ð16Þ

• optimistic prognosis

Vopt pð Þ= <max M1 pð Þ,M2 pð Þ,M3 pð Þð Þ, min N1 pð Þ,N2 pð Þ,N3 pð Þð Þ> , ð17Þ

• average prognosis

Vaver pð Þ= <
M1 pð Þ +M2 pð Þ +M3 pð Þ

3
,
N1 pð Þ +N2 pð Þ +N3 pð Þ

3
Þ> , ð18Þ
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• pessimistic prognosis

Vpes pð Þ= <min M1 pð Þ,M2 pð Þ,M3 pð Þð Þ, max N1 pð Þ,N2 pð Þ,N3 pð Þð Þ> , ð19Þ

• strong pessimistic prognosis

Vstrong pes pð Þ= <M1 pð ÞM2 pð ÞM3 pð Þ,N1 pð Þ +N2 pð Þ +N3 pð Þ −N1 pð ÞN2 pð Þ −N1 pð ÞN3 pð Þ
−N2 pð ÞN3 pð Þ +N1 pð ÞN2 pð ÞN3 pð Þ>

ð20Þ

Therefore, for each p

Vstrong pes pð Þ≤Vpes pð Þ≤Vaver pð Þ≤Vopt pð Þ≤Vstrong opt pð Þ.

D. Procedure for genetic algorithms quality assessment applying IFL

The implementation of IFL for assessment of genetic algorithms performance
quality requires construction of degrees of validity and nonvalidity in two different
intervals of model parameters variation: so-called “broad” range as known from the
literature and so-called “narrow” range which is user-defined. In [13] authors have
proposed a procedure for assessment of algorithm quality performance imple-
menting IFL. The procedure starts with the performance of a number of runs of
each of the algorithms, object of the investigation, in both “broad” and “narrow”
ranges of model parameters. Then the average values of the objective function,
algorithms convergence time and each of the model parameters for each one of the
ranges and each one of the investigated algorithms are obtained. According to (12),
degrees of validity/nonvalidity for each of the investigated algorithms are deter-
mined. Then, in case of two objects, the ranges for optimistic, average, and pes-
simistic prognosis are calculated for each one of the model parameters according to
(13)–(15), while in case of three objects, the ranges for strong optimistic, optimistic,
average, pessimistic, and strong pessimistic prognosis are calculated according to
(16)–(20). Next, for each of the algorithms, in both considered ranges, each of the
model parameters is assigned a value based on the determined in such а way
prognoses. Finally, on the basis of these assigns, the quality of each one of the
considered algorithms is assessed.

3 Intuitionistic Fuzzy Estimations of Model Parameters
of S. cerevisiae Fed-Batch Cultivation

A. IFL applied to assess the performance of SGA at different values of GGAP

According to previous authors’ investigations [2], generation gap has been proven
as the most sensitive genetic algorithm parameter toward convergence time. In this
section, the performance quality of two kinds of SGA considered here is going to be
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assessed at different values of GGAP. In [4] the influence of GGAP has been
thoroughly investigated for SGA-SCM by applying three different values of GGAP:
GGAP = 0.9, GGAP = 0.5, and GGAP = 0.1 as representatives of two “extreme”
cases and the middle one. Results from this investigation are shortly repeated here
in order to be compared to SGA_MCS, for which investigation begun in [3] but
here it is thoroughly expanded. Table 1 presents the results from the first step of the
procedure for purposeful model parameter genesis application. Thirty runs, which
are assumed as a representative from a statistical point of view, have been per-
formed in order to obtain reliable results.

For each of the levels, constructed in such a way, the minimum, maximum, and
average values of each model parameter have been determined. Table 2 presents
these values only for the top levels, according to Table 1.

Table 3 presents previously used “broad” boundaries for each model parameter
as well as new boundaries proposed based on the procedure for purposeful model
parameter genesis when applying corresponding SGA. In this investigation, the
“narrow” range is constructed in a way that the new minimum is lower but close to
the minimum of the top level, and the new maximum is higher but close to the
maximum of the top level. Additionally, Table 3 consists of intuitionistic fuzzy
estimations, obtained based on (12) as described in the Background section C.

Table 1 SGA performance at different values of GGAP

Objective function Levels of performance Average
convergence
time

SCMa MCSa SCMa MCSa SCMa MCSa

GGAP = 0.9 minJ 0.0221 0.0222 TL_LB 0.0221 0.0222 81.67 71.16
TL_UB ∼0.0222 ∼0.0227

avrgJ 0.0222 0.0225 ML_LB 0.0222 0.0227
ML_UB 0.0222 ∼0.0231

maxJ 0.0223 0.0236 LL_LB 0.0222 0.0231
LL_UB 0.0223 0.0236

GGAP = 0.5 minJ 0.0222 0.0221 TL_LB 0.0222 0.0221 46.99 40.53
TL_UB ∼0.0223 ∼0.0223

avrg 0.0223 0.0224 ML_LB 0.0223 0.0223
ML_UB ∼0.0225 ∼0.0226

maxJ 0.0226 0.0228 LL_LB 0.0225 0.0226
LL_UB 0.0226 0.0228

GGAP = 0.1 minJ 0.0224 0.0223 TL_LB 0.0224 0.0223 25.98 25.89
TL_UB ∼0.0225 ∼0.0225

avrgJ 0.0225 0.0225 ML_LB 0.0225 0.0225
ML_UB 0.0226 ∼0.0227

maxJ 0.0228 0.0230 LL_LB ∼0.0226 0.0227
LL_UB 0.0228 0.0230

aShort denotations used: SCM instead of SGA-SCM and MCS instead of SGA_MCS

Intuitionistic Fuzzy Logic Implementation … 187



T
ab

le
2

M
od

el
pa
ra
m
et
er
s
va
lu
es

fo
r
th
e
to
p
le
ve
ls

μ 2
S

μ 2
E

k S
k E

Y S
X

Y E
X

kO
2

L
a

Y O
S

Y O
E

G
G
A
P
=

0.
9

SC
M

a
m
in

0.
94

0.
14

0.
13

0.
80

0.
39

1.
81

40
.4
2

33
3.
03

35
.7
3

m
ax

0.
99

0.
15

0.
14

0.
80

0.
40

2.
00

95
.5
3

78
5.
10

96
.7
3

av
rg

0.
97

0.
14

0.
13

0.
80

0.
39

1.
92

63
.2
4

51
5.
78

61
.7
8

M
C
Sa

m
in

0.
90

0.
09

0.
10

0.
71

0.
39

1.
13

59
.5
6

50
7.
42

9.
94

m
ax

0.
95

0.
13

0.
13

0.
80

0.
44

1.
70

13
8.
70

97
9.
42

29
2.
97

av
rg

0.
92

0.
10

0.
11

0.
78

0.
42

1.
38

10
1.
53

78
7.
85

18
9.
82

G
G
A
P
=

0.
5

SC
M

a
m
in

0.
91

0.
11

0.
11

0.
79

0.
39

1.
47

99
.5
9

76
8.
66

10
2.
84

m
ax

1.
00

0.
15

0.
14

0.
80

0.
40

2.
04

12
6.
78

98
3.
37

26
1.
13

av
rg

0.
95

0.
14

0.
13

0.
80

0.
40

1.
84

10
8.
41

85
3.
07

21
6.
27

M
C
Sa

m
in

0.
90

0.
10

0.
10

0.
78

0.
40

1.
28

28
.5
3

22
5.
11

11
6.
93

m
ax

0.
95

0.
14

0.
13

0.
80

0.
42

1.
98

12
7.
80

99
7.
50

25
2.
26

av
rg

0.
92

0.
12

0.
12

0.
80

0.
40

1.
58

90
.2
3

70
8.
44

20
3.
38

G
G
A
P
=

0.
1

SC
M

a
m
in

0.
91

0.
08

0.
10

0.
71

0.
39

1.
06

30
.5
3

24
4.
17

78
.4
7

m
ax

0.
99

0.
14

0.
15

0.
80

0.
44

1.
84

12
8.
75

97
6.
78

22
0.
70

av
rg

0.
94

0.
11

0.
13

0.
77

0.
41

1.
36

79
.5
5

63
9.
94

17
1.
59

M
C
Sa

m
in

0.
91

0.
09

0.
11

0.
77

0.
39

1.
19

51
.3
7

36
4.
45

11
.6
8

m
ax

0.
93

0.
13

0.
13

0.
79

0.
47

1.
63

10
7.
22

69
6.
21

23
9.
89

av
rg

0.
92

0.
11

0.
12

0.
77

0.
43

1.
43

70
.3
3

52
6.
30

14
0.
25

a S
ho

rt
de
no

ta
tio

ns
us
ed
:
SC

M
in
st
ea
d
of

SG
A
-S
C
M

an
d
M
C
S
in
st
ea
d
of

SG
A
_M

C
S

188 T. Pencheva and M. Angelova



T
ab

le
3

M
od

el
pa
ra
m
et
er
s
bo

un
da
ri
es

fo
r
SG

A
-S
C
M

an
d
SG

A
-M

C
S

Pr
ev
io
us
ly

us
ed

μ 2
S

μ 2
E

k S
k E

Y S
X

Y E
X

kO
2

L
a

Y O
S

Y O
E

L
B

0.
90

0.
05

0.
08

0.
50

0.
30

1.
00

0.
00

1
0.
00

1
0.
00

1
U
B

1.
00

0.
15

0.
15

0.
80

10
.0
0

10
.0
0

10
00

.0
0

10
00

.0
0

30
0.
00

SG
A
-S
C
M

at
G
G
A
P
=

0.
9

A
dv

is
ab
le

af
te
r
pr
oc
ed
ur
e

ap
pl
ic
at
io
n

L
B

0.
9

0.
13

0.
12

0.
7

0.
38

1.
8

40
30

0
35

U
B

1
0.
15

0.
15

0.
8

0.
4

2.
1

10
0

80
0

10
0

D
eg
re
es

of
va
lid

ity
of

p
M

1(
q)

0.
90

0.
87

0.
80

0.
88

0.
13

0.
18

0.
04

0.
30

0.
12

D
eg
re
e
of

no
n-
va
lid

ity
of

p
N
1(
q)

0.
00

0.
00

0.
00

0.
00

0.
87

0.
79

0.
09

0.
20

0.
67

SG
A
-S
C
M

at
G
G
A
P
=

0.
5

A
dv

is
ab
le

af
te
r
pr
oc
ed
ur
e

ap
pl
ic
at
io
n

L
B

0.
9

0.
1

0.
1

0.
7

0.
39

1.
4

90
76

0
10

0
U
B

1
0.
15

0.
15

0.
8

0.
45

2
13

0
99

0
27

0
D
eg
re
es

of
va
lid

ity
of

p
M

2(
p)

0.
90

0.
67

0.
67

0.
88

0.
13

0.
14

0.
09

0.
76

0.
33

D
eg
re
e
of

no
n-
va
lid

ity
of

p
N
2(
p)

0.
00

0.
00

0.
00

0.
00

0.
85

0.
80

0.
87

0.
01

0.
10

SG
A
-S
C
M

at
G
G
A
P
=

0.
1

A
dv

is
ab
le

af
te
r
pr
oc
ed
ur
e

ap
pl
ic
at
io
n

L
B

0.
9

0.
07

0.
1

0.
7

0.
39

1
30

24
0

75
U
B

1
0.
15

0.
15

0.
8

0.
45

1.
9

13
0

98
0

24
0

D
eg
re
es

of
va
lid

ity
of

p
M

3(
q)

0.
90

0.
47

0.
67

0.
88

0.
13

0.
10

0.
03

0.
24

0.
25

D
eg
re
e
of

no
n-
va
lid

ity
of

p
N
3(
q)

0.
00

0.
00

0.
00

0.
00

0.
85

0.
81

0.
87

0.
02

0.
20

SG
A
-M

C
S
at

G
G
A
P
=

0.
9

A
dv

is
ab
le

af
te
r
pr
oc
ed
ur
e

ap
pl
ic
at
io
n

L
B

0.
90

0.
09

0.
10

0.
70

0.
30

1.
00

50
.0
0

50
0.
00

5.
00

U
B

0.
95

0.
13

0.
13

0.
80

0.
50

2.
00

14
0.
00

10
00

.0
0

30
0.
00

D
eg
re
es

of
va
lid

ity
of

p
M

1(
p)

0.
90

0.
60

0.
67

0.
88

0.
03

0.
10

0.
05

0.
50

0.
00

D
eg
re
e
of

no
n-
va
lid

ity
of

p
N
1(
p)

0.
05

0.
13

0.
13

0.
00

0.
95

0.
80

0.
86

0.
00

0.
00

SG
A
-M

C
S
at

G
G
A
P
=

0.
5

A
dv

is
ab
le

af
te
r
pr
oc
ed
ur
e

ap
pl
ic
at
io
n

L
B

0.
90

0.
10

0.
10

0.
70

0.
30

1.
00

20
.0
0

20
0.
00

11
0.
00

U
B

0.
95

0.
14

0.
13

0.
80

0.
50

2.
00

13
0.
00

10
00

.0
0

26
0.
00

D
eg
re
es

of
va
lid

ity
of

p
M

2(
q)

0.
90

0.
67

0.
67

0.
88

0.
03

0.
10

0.
02

0.
20

0.
37

D
eg
re
e
of

no
n-
va
lid

ity
of

p
N
2(
q)

0.
05

0.
07

0.
13

0.
00

0.
95

0.
80

0.
87

0.
00

0.
13

SG
A
-M

C
S
at

G
G
A
P
=

0.
1

A
dv

is
ab
le

af
te
r
pr
oc
ed
ur
e

ap
pl
ic
at
io
n

L
B

0.
91

0.
09

0.
11

0.
70

0.
30

1.
00

50
.0
0

30
0.
00

10
.0
0

U
B

0.
93

0.
13

0.
13

0.
80

0.
50

2.
00

11
0.
00

70
0.
00

25
0.
00

D
eg
re
es

of
va
lid

ity
of

p
M

3(
p)

0.
91

0.
60

0.
73

0.
88

0.
03

0.
10

0.
05

0.
30

0.
03

D
eg
re
e
of

no
n-
va
lid

ity
of

p
N
3(
p)

0.
07

0.
13

0.
13

0.
00

0.
95

0.
80

0.
89

0.
30

0.
17

Intuitionistic Fuzzy Logic Implementation … 189



Table 4 presents the boundaries (low LB and up UB) for the strong optimistic,
optimistic, average, pessimistic, and strong pessimistic prognoses for the perfor-
mances of both SGA, obtained based on intuitionistic fuzzy estimations (12) and
formula (16)–(20).

Investigated SGA has again been applied for the parameter identification of S.
cerevisiae fed-batch cultivation involving newly proposed according to Table 3
boundaries at GGAP = 0.9, GGAP = 0.5, and GGAP = 0.1. Again thirty runs of
the algorithm have been performed in order to obtain reliable results.

Table 5 presents the average values of the objective function, convergence time,
and model parameters when both SGA considered here have been executed at three
investigated values of GGAP before and after the application of the purposeful
model parameter genesis.

The applied procedure for PMPG leads to the reduction of the convergence time
in both SGA at any of investigated values of GGAP. Meanwhile, the procedure
ensures saving and even slightly improving of model accuracy. When SGA_SCM
has been applied, between 29 % and 44 % of the convergence time has been saved
for different GGAP values. But if one compares the “fastest” case—at GGAP = 0.1
after PMPG to the slowest one—at GGAP = 0.9 before PMPG, about 77 % time
saving has been realized keeping the model accuracy at the highest achieved value.
When applying SGA_MCS, the algorithm calculation time decreases from 25 to
29 % for different GGAP values without loss of model accuracy. Similarly,
GGAP = 0.1 after PMPG instead of 0.9 before PMPG leads to saving of 73 % of
calculation time. In such a way, good effectiveness of proposed procedure for
purposeful model parameter genesis has been demonstrated for both applied SGA.

Table 6 lists the estimations assigned to the each of the parameters concerning
Table 4 for the three values of GGAP in “broad” and “narrow” range, i.e., before
and after PMPG application, for both SGA considered here.

As presented in previous authors’ investigation [4], there are only two strong
pessimistic prognoses when applying SGA_SCM—one at GGAP = 0.9 before
PMPG and one at GGAP = 0.5 but after PMPG, while there are no pessimistic
ones. In five out of six cases there are three strong optimistic prognoses, except of
GGAP = 0.1 before PMPG. The number of optimistic and average prognosis is
relatively equal, with a slight dominance of the average ones. The analysis shows
that there are three absolutely equal performances—one of each value of GGAP: for
GGAP = 0.9 and GGAP = 0.1 after PMPG, and GGAP = 0.5 before PMPG. In all
the cases, the value of the objective function is very close to the lowest one that
means they are with the highest achieved degree of accuracy. But if one compares
the time, the SGA_SCM with GGAP = 0.1 after PMPG is about 58 % faster than
SGA_SCM with GGAP = 0.9 after PMPG and about 39 % faster than GGAP =
0.5 before PMPG. Thus, based on the IFL estimations of the model parameters and
further constructed prognoses, SGA_SCM with GGAP = 0.1 and after the proce-
dure for purposeful model parameter genesis has been distinguished as more reli-
able algorithm, if one would like to obtain results with a high level of relevance and
for less computational time.
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When applying SGA_MCS which is more in the focus of present investigation,
there is only one strong pessimistic prognosis (in the case of GGAP = 0.9 before
PMPG) compared to two in the case of SGA-SCM. In three of the cases there are
two strong optimistic prognoses while another three are with one strong optimistic
prognosis. Between the cases with two strong optimistic prognoses, slightly better
performance has been achieved at GGAP = 0.9 after PMPG with seven compared
to six (at GGAP = 0.5 after PMPG) and five (at GGAP = 0.9 before PMPG)
optimistic prognoses. Moreover, SGA_MCS at GGAP = 0.9 before PMPG has
been evaluated with one average and one strong pessimistic prognosis compared to
none of them in the other two cases. In all these cases, the value of the objective
function has been slightly improved after PMPG application, very close to the
lowest one achieved. Another three cases—at GGAP = 0.5 before PMPG, at
GGAP = 0.1 before and after PMPG, show absolutely equal performance—with
only one strong optimistic prognoses, but followed by eight optimistic ones. But if
one compares the convergence time between, from one side, distinguished as a
leader based on the IFL estimations SGA_MCS at GGAP = 0.9 after PMPG, and—
on the other side the fastest one SGA_MCS at GGAP = 0.1 after PMPG, the last
one is about 2.77 times faster than the first one. Thus, based on the IFL estimations
of the model parameters and further constructed prognoses, as an acceptable
compromise SGA_MCS at GGAP = 0.1 after PMPG might be distinguished not as
the most reliable one, but the second one, while this is the fastest one.

Due to the similarity of the results but focus pointed on the SGA_MCS, Fig. 1
presents results from experimental data and model prediction, respectively, for
biomass, ethanol, substrate, and dissolved oxygen when applying SGA_MCS at
GGAP = 0.1 in “narrow” range (that means after the PMPG application).

B. IFL applied to assess the performance of SGA-SMC and SGA-MCS

Following investigation is a logical consequence from previous subsection. The
assessment of the performance quality of both SGA considered here is going to be
done for the best results obtained at different GGAP values. As such, SGA_SCM
and SGA_MCS are to be compared at GGAP = 0.1 after PMPG. The application of
the procedure for quality assessment steps on the results is presented in previous
section. Table 7 presents previously used “broad” range for each model as well as
new boundaries proposed. In this case, the new boundaries are again advised based
on the minimum and maximum values of the investigated parameters in the top
level. Additionally, Table 7 consists of intuitionistic fuzzy estimations, obtained
based on (12) as described above.

Table 8 presents the boundaries (low LB and up UB) for the optimistic, average,
and pessimistic prognoses for the performances of both SGA, obtained based on
intuitionistic fuzzy estimations (12) and formula (13)-(15).

Investigated here, two kinds of SGA have been again applied for parameter
identification of S. cerevisiae fed-batch cultivation involving newly proposed
boundaries at GGAP = 0.1, according to Table 7. Again thirty runs of the algo-
rithms have been performed in order to obtain.
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Fig. 1 Model prediction compared to experimental data when SGA_MCS at GGAP = 0.1 in
“narrow” range has been applied. a Biomass concentration. b Ethanol concentration. c Substrate
concentration. d Dissolved oxygen concentration
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Table 9 presents the average values of the objective function, computation time,
and model parameters when SGA-SCM and SGA-MCS have been executed at
GGAP = 0.1 both in “broad” and “narrow” ranges, corresponding to before and
after PMPG application.

As expected and shown in the previous subsection as well, the application of the
purposeful model genesis procedure for both SGA considered here leads to
expecting decrease of the convergence time. Meanwhile, even slight improvement
of the model accuracy has been observed. In comparison to the results before the
procedure application, up to 24 % reduction of the computation time of SGA-MCS
without loss of model accuracy has been achieved, while for SGA-SCM even 29 %
of computation time has been saved, thus showing good effectiveness of PMPG.

Table 10 lists the estimations assigned to each of the estimated parameters
concerning Table 8 for the considered SGA_SCM nd SGA_MSC in “broad” and
“narrow” ranges.

It is interesting to note that obtained results are absolutely equal for both SGA
considered here, before and after the PMPG application. Specific at a first glance,
results might be reasonably explained and had been expected in some way. The
application of the procedure for assessment of the algorithm performance quality
has been demonstrated here for “leaders of the leaders”. Both algorithms have been

Table 9 Results from model parameter identification

SGA_SCM SGA_MCS
Before PMPG After PMPG Before PMPG After PMPG

J 0.0225 0.0222 0.0225 0.0222
time, s 25.98 18.45 25.88 19.66
μ2S 0.96 0.95 0.92 0.91
μ2E 0.11 0.12 0.11 0.12
kS 0.13 0.12 0.12 0.12
kE 0.75 0.79 0.77 0.79
YSX 0.41 0.4 0.43 0.41
YEX 1.48 1.67 1.45 1.57

ko2L a 79.31 94.03 70.33 81.71

YOS 627.78 729.57 526.3 650.34
YOE 187.09 192.43 140.25 138.08

Table 10 Models parameter estimations before and after PMPG

SGA_SCM SGA_MCS
GGAP = 0.1 GGAP = 0.1
Before PMPG After PMPG Before PMPG After PMPG

opt 9 9 9 9
aver 0 0 0 0
pes 0 0 0 0
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Fig. 2 Model prediction compared to experimental data when SGA_SCM at GGAP = 0.1 in
“narrow” range has been applied. a Biomass concentration. b Ethanol concentration. c Substrate
concentration. d Dissolved oxygen concentration
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Fig. 2 (continued)
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applied at GGAP = 0.1 and proved as the fastest case without lose of model
accuracy. As seen from Table 10, both algorithms have been evaluated with only
optimistic prognoses.

Due to the equality of the results and no leader distinguished between two
algorithms considered in this subsection, Fig. 2 shows results from experimental
data and model prediction, respectively, for biomass, ethanol, substrate, and dis-
solved oxygen (results also presented in [4]), when SGA_SCM at GGAP = 0.1 in
“narrow” range has been applied for the purposes of parameter identification of S.
cerevisiae fed-batch cultivation.

The obtained results show the workability of both SGA algorithms applied here
at different values of GGAP, as well as the efficacy of both procedures used—for
purposeful model parameter genesis and for assessment of the algorithms quality
implementing intuitionistic fuzzy logic.

4 Conclusions

Intuitionistic fuzzy logic has been here applied as an alternative to assess the quality
of different kinds of SGA, as well as to evaluate the influence of GGAP, proven as
the most sensitive GA parameter. In this investigation, SGA_SCM and SGA_MCS
have been examined at three values of GGAP for the purposes of parameter
identification of S. cerevisiae fed-batch cultivation. In order to obtain promising
results (less convergence time at kept model accuracy) to be saved, intuitionistic
fuzzy logic overbuild the results after the application of recently developed pur-
poseful model parameters genesis procedure.

When the influence of GGAP has been investigated, applying GGAP = 0.1
instead of GGAP = 0.9 and GGAP = 0.5 leads to promising results for less
computational time while saving and even improving the model accuracy in both
SGA considered here. When further both algorithms have been compared at
GGAP = 0.1, they show absolutely equal performance with only optimistic
prognoses.

As a conclusion, presented here are “cross-evaluation” of different kinds of
SGA, as well as the influence of the most sensitive to convergence time GA
parameter demonstrating the workability of intuitionistic fuzzy estimations to assist
in assessment of quality of genetic algorithms performance. Such approach is
multi-purpose—it might be considered as an appropriate tool for reliable assess-
ment of other genetic algorithm parameters, or different optimization algorithms, as
well as to be applied to various objects of parameter identification.
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Dynamic Representation and Interpretation
in a Multiagent 3D Tutoring System

Patrick Person, Thierry Galinho, Hadhoum Boukachour,
Florence Lecroq and Jean Grieu

Abstract In this paper we present an intelligent tutoring system which aims at

decreasing students’ dropout rate by offering the possibility of a personalized follow-

up. We address the specific problem of the evolution of the large amount of data to be

processed and interpreted in an intelligent tutoring system. In this regard we detail

the architecture and experimental results of our decision support system used as the

core of the intelligent tutor—which could be applied to a variety of teaching fields.

The first part presents an overview of the characteristics of intelligent tutors, the cho-

sen data organization—composed of a composite factual semantic feature descrip-

tive representation associated to a multiagent system—and two examples used to

illustrate the architecture of our prototype. The second and last part describes all

the components of the prototype: student interface, dynamic representation layer,

characterization, and interpretation layers. First, for the student interface, the system

shows our 3D virtual campus named GE3D to be connected to the intelligent tutor.

Then we explain how the agents of the first layer represent the evolution of the situa-

tion being analyzed. Next, we specify the use of the characterization layer to cluster

the agents of representation layer and to compute compound parameters. Finally, we

expose how—using compound parameters—the third layer can measure similarity

between current target case and past cases to constitute an interpretation of cases

according to a case-based reasoning paradigm.
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1 Introduction

Intelligent tutoring systems (ITS) might be one adequate answer toward helping

decrease students’ dropout rate by offering personalized follow-up either in blended

or distance learning courses [20]. Quoting Hafner [8], an ITS: “is educational soft-

ware containing an artificial intelligence component. The software tracks students’

work, tailoring feedback, and hints along the way. By collecting information on a par-

ticular student’s performance, the software can make inferences about strengths and

weaknesses, and can suggest additional work.” On the one hand, thanks to informa-

tion feedback given by the decision support system we have conceived, our system

lets the ITS deal with students who learn easily. On the other hand, the ITS spots

students with most difficulties and calls on a human tutor for help. Thus the latter

has more time to focus on students more likely to abandon their studies.

In the first part, we give an explanation of the dynamic aspect of the problem

dealt with by an ITS. Considering the characteristic mentioned above we chose how

to organize and process data to design an appropriate multiagent decision support

system accordingly. Then, the architecture of the decision system is introduced and

illustrated by two applications: first, a game to present technical details and second,

the intelligent tutoring system itself. Finally, the design and realization of the ITS

are described:

∙ the 3D virtual campus interface;

∙ the representation of successive dynamic situations;

∙ the clustering characterization and its associated computed parameters applied to

dynamic representations;

∙ the specification of target case and past cases by using computed parameters.

2 Data Structures, Algorithms, and Dynamic Problems

Following Denning [5]: “the fundamental question underlying all of computing is,

what can be (efficiently) automated?” Three broad categories of problems are identi-

fied: first, problems that are impossible to solve with a computer, such as predicting

the next Lotto numbers drawn at random. Second problems that are easy to solve with

a computer, such as searching whether a given integer exists in a billion integers. In

this range of problems, there is only one possible answer or one optimal solution.

And third, problems where it is possible to use a computer to achieve a correct out-

put, even if not the best one. This is the typical situation where artificial intelligence

is applied to find solutions to complex problems. For the second and third categories

of problems—simple or complex—a correct answer depends on the quality of infor-

mation used as input, as well as the data structures and data organization chosen

according to the characteristics of the problems at hand. So, we will detail the input,

structure, and organization of data for their relationships of interdependence.
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Knuth [9] defines a data structure as “A table of data including structural relation-

ships” and also includes means by which one may access and manipulate the data

structures as data organization—which is “a way to represent information in a data

structure, together with algorithms that access and/or modify the structure” [15].

Currently, intelligent systems have scarcely been applied to the educational field.

The notion of an intelligent tutoring system presents complex problems—key among

them, the number of dynamic elements needing to be taken into account, to inter-

pret and model toward providing answers to students [3]. Consequently in line with

Wooldrigde [22], considering the dynamic characteristics of the problem, we chose

a multiagent system (MAS) as processing part of data organization.

Our data structures—used as inputs by agents—are descriptive representations

of knowledge with few attribute-value couples grouped in composite factual seman-

tic features (CFSFs). In linguistics, a semantic feature is a meaningful component

used in text analysis. Here, it is used in another context. For us, a composite factual

semantic feature is still a meaningful component but in addition, a CFSF is also an

observable fact which is composite because it is composed of a few items. An item

is a property-value pair. The generic model of CFSF is:

< !ELEMENT CFSF (Type, Name, Date, Item
+

)>

To illustrate composite factual semantic features in a general context we give the

following example chosen to be as simple as possible. The river Seine is 776 km long

rising in the Langres plateau and flowing through Paris. On the March 21, 2012, the

recorded flow of river Seine in Paris was 227 cubic meters per second and it was

1.1 m high [18]. Here is the CFSFs descriptive representation of this example:

<fact1>

<type> river </type>

<name> Seine </name>

<date> 21 March 2012 </date>

<long> 776 </long>

<spring> Langres </spring>

</fact1>

<fact2>

<type> river </type>

<name> Seine </name>

<date> 21 March 2012 </date>

<flow> 227 </flow>

<height> 1.1 </height>

</fact2>

Using this same example we will expose the three classes of problems according

to data variation analysis, as shown in Fig. 1. Unless dealing with a long geologic

timescale, <fact1> will never change over time (case A, Fig. 1). Cases B and C in

Fig. 1 could both exploit <fact2>. In case B, a fact has successive values over time,

but knowing the last one is enough to answer the problem. Is there enough or too



208 P. Person et al.

Dynamic
Problem

Analysis
of Variation

NO

NO

var1               varN 

time 

A YES

YES
B C

river: Seine
long: 776
spring: Langres

river: Seine, date: 21 March 2012, flow: 227, height: 1.1

time 

time 

var1               varN 

var1               varN 

Fig. 1 Classes of problems according to data variation analysis
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much water for a boat to go under the bridge facing you? Only knowing <fact2> is

enough to decide to go under the bridge with a boat in Paris on 21st of March. In

case C, the system needs successive values of the same fact to provide an answer.

To predict a flood, you will collect <fact2i> hour by hour to analyze the successive

dynamic evolution.

Our decision support system will not fit for classes of A and B problems because

the lack of variation of data implies no evolution to represent inside the MAS. How-

ever, it is designed specifically to handle type C dynamic problems with evolving

data. Figure 2 summarizes the global architecture of our multiagent decision support

system (DSS).

3 Architecture and Applications

In order to expose the architecture of our decision support system we now consider

two applications. First, the example of the game of Risk which allows us to present

the technical details then we expose the ITS whose core is the DSS.
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Fig. 3 Architecture of the

intelligent system
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3.1 Game of Risk

We have adapted our DSS to the game of Risk as it is not a toy problem. Indeed

“Risk is far more complex than most traditional board games” [21]. Risk is a game

of strategy for 2–6 players. The game board is a map of the world divided into 42 ter-

ritories. A player wins by conquering all territories. In turn, after an initial placement

of armies, each player receives and places new armies and may attack adjacent terri-

tories. An attack is one or more battles which are fought with dice. Rules and strate-

gies are detailed in [13].

Figure 3 displays the main components of the system. From a set of files recorded

during test phases, a file is chosen as input to representation layer of the multiagent

system. This file contains all the composite factual semantic features describing suc-

cessive steps of a given game of Risk. The following is an example of a CFSF from

the game of Risk. Every territory is represented by a CFSF with the player who owns

the territory and the number of armies. In this example, player red owns the territory

called Quebec, at step 14, with 2 armies:

<cfsf>

<type> territory </type>

<name> Quebec </name>

<step> 14 </step>

<player> red </player>

<nbArmies> 2 </nbArmies>

</cfsf>

Using CFSFs as input, representation layer represents the global current situation

and its dynamic tendency of ulterior evolutions. The challenge is to represent both
a whole situation and its dynamic tendency of evolution.

The most difficult part is not to represent a static view of the current situation,

i.e., a complete and accurate map of the board game at a given step of the game.

Indeed, the main challenge consists in adding dynamic tendency of evolutions. In

other words, the problem is how to make a static data structure such as a CFSF

dynamic? From the successive static representations, the main problem is to compute

information describing evolutions used by the characterization layer. One answer is

to use factual agents in the representation layer. A factual agent is made of two parts:

a knowledge part—its CFSF—and a computed behavior part due to semantic com-
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parison measure between factual agents. Semantic comparisons lean on a dedicated

domain ontology. Factual agents are more detailed in the next section.

Characterization layer partitions subsets of factual agents of representation layer

according to levels of internal activity, and then, computes a synthetic measure char-

acteristic for each subset.

Interpretation and decision are parts of a case-based reasoning system [10] where

the interpretation layer associates subsets of the characterization layer with sections

of a scenario and the decision layer finds scenarii closed to the current situation

and chooses the most appropriate one to propose to users. The representation of a

given case and definition of the chosen similarity measure are defined in the section

concerning the interpretation layer.

3.2 Intelligent Tutoring System

Wenger [19] considers the main goal of ITS to be communicating knowledge effi-

ciently. The model contains four components: domain model, student model, teach-

ing model, and user interface. Woolf uses a similar model to the one presented by

Wenger, with updated computer architectures, one of which being based on multia-

gent systems [23]. In the challenge for capturing intelligence, Luger also mentions

this possible choice [12].

Our ITS (Fig. 4) follows the four components proposed by Wenger:

1. Knowledge of the domain contains domain ontology, semantic proximity mea-

sure, and composite factual semantic features. The users’ inputs from the 3D vir-

tual campus are transformed into composite factual semantic features;

2. Student model uses case-based reasoning [1]. During the first step, supervised

learning with a group of students generates input from the interpretation layer to

the base of scenarii;
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Fig. 4 Architecture of the intelligent tutoring system
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3. Teaching models are associated to student models during the supervised learning

steps. Decision layer must produce the most appropriate answer for the learner

from the data retrieved in the base of scenarii. That layer may also call a human

tutor when needed;

4. GE3D virtual campus provides interfaces for students [7].

Architecture of our ITS differs from other multiagent intelligent tutoring sys-

tems [16], because we do not ask agents to mimic traditional human roles as teach-

ers, experts or peers. Instead, we choose to represent, characterize and interpret a

sequence of learners’ activities and compare them to previous recorded sequences.

In that respect, we are close to the question asked by Craw [4]: “what happened when

we saw this pattern before?”

We also foresee—as a special pattern—the situation when only a human tutor can

answer, because the learner is so lost that an ITS could not analyze and help him or

her. This is why we include in our ITS a possibility of calling a human tutor when

needed. The idea is to make a team with—on the one hand, the intelligent tutor,

and on the other hand the human tutor. The intelligent tutor automatically deals with

students who learn easily. Thus the human tutor will have more time to focus on

students with difficulties.

Figure 5 shows the enriching process of the base of scenarii with students’ inputs.

One or a few scenarii which are similar to the current situation and associated to the

given profile of the student emerge from the system. The system will either adapt the

chosen scenario or ask the expert for creating a brand-new one.

Fig. 5 Enriching process of

the base of scenarii Decision

Interpretation
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Scenarii # i

(t0 )

Emergence

Feedback
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Representation
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4 3D Virtual Campus

We have built the GE3D virtual campus that will be connected to the ITS. This

platform is a virtual site in 3D similar to university premises [7] with several rooms:

1. The patio, which is the entrance of the site. Inside, the students can consult their

schedules, their assessments, and other information. The connected person is rep-

resented in 3D by a simple photo as an avatar.

2. The amphitheater (Fig. 6) which is generic. There, different kinds of lectures

(mathematics, physics, ...) can be given. Then the material displayed on the screen

will vary accordingly.

3. The examination room for e-assessments. The usual communication tools are not

available in this room. Their examination taken, students can immediately get

their marks.

4. The library for e-books and media.

5. The meeting room. There, any student can simultaneously collaborate using a

whiteboard and interact with the other connected people. This room is also a

generic room where any discipline of teaching can be provided (Fig. 7).

6. The room for practical workshops (Fig. 8) using Programmable Logic Controllers

(PLC’s). A simple actuator is presented here by a cylinder and its Sequential

Function Chart (SFC) program. With the 3D environment users can undertake

activities in a synchronous way. For example, when one student activates the

SFC, the rod of the cylinder moves according to its evolution cycle. At the same

time, all connected users can see the cylinder movements and the SFC evolutions

synchronously. Other simple exercises are available in the same room. If a stu-

dent can complete all the exercises with success, then he can access videos and

specifications of five other more sophisticated industrial processes.

Once they have prepared their own programs of the process, they can leave the

virtual campus and test then in the real PLC’s room. As always, if they meet some

difficulties, they can get help from peers, teacher, or intelligent tutoring system.

Fig. 6 Amphitheater in

GE3D



Dynamic Representation and Interpretation in a Multiagent 3D Tutoring System 213

Fig. 7 Meeting room in GE3D

Fig. 8 Programmable logic

controllers room in GE3D

5 Multiagent Representation Layer

Figure 9 represents the successive steps of multiagent internal processing. Layer L0

indicates external input of data represented by two composite factual semantic fea-

tures SF1 and SF2, later followed by SFi. L1, L2, and L3 are short notations for

representation, characterization, and interpretation layers. The arrival of SF1 trig-

gers processing P1 in representation layer L1. The span of time used for processing

changes according to internal activity needed to take the new data into account. The

processing ends when no more message is sent nor received by agents and when

no more internal evolution takes place within agents. During experimentation, no

deadlock nor infinite loop happened, thus representation process always ended after

finding an equilibrium.

Characterization layer L2 waits until representation layer processes completion

to start process P’. In the same way interpretation layer L3 waits until characteriza-
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Fig. 9 Successive steps of

multiagent processing
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tion layer processes termination for beginning process P”. When P”1 is completed,

SF2—which has been put in the queue—is processed. As shown in Fig. 9 a step is

defined as the whole process initiated by the arrival of a composite factual semantic

feature followed by the successive processes of representation, characterization, and

interpretation layers. Our prototype is coded with Java Agent DEvelopment frame-

work [2].

The successive transformations and uses of a given incoming CFSF will be

detailed below to explain factual agents [17]. The first transformation occurs when

users’ inputs are converted into CFSFs and sent to the representation layer from pre-

determined types of CFSFs stored in the ontology. The second transformation starts

when a given CFSF is embedded in a factual agent. Each CFSF is associated with

one and only one factual agent. When a CFSF reaches the representation layer of the

MAS, there are two cases. If a factual agent contains a CFSF with the same key (cou-

ple type-name), then this factual agent is updated with the incoming CFSF. There is

no conservation of the previous one. Else, a new factual agent is created. The third

transformation dispatches the incoming CFSF within the whole multiagent system.

5.1 Internal Indicators

Figure 10 shows the structure of a factual agent where the knowledge part is the

composite factual semantic feature, and where the computed behavior part is made

of four internal indicators, an automaton describing the level of internal activity and

an acquaintance network. The three components of the behavior part are strongly

bound.

The four indicators are position p, celerity c, acceleration a, and satisfaction s.

The computation of position p depends on the type of CFSF. This indicator rep-

resents the agent in the representation space. Definitions and computations of all

the other parts of the behavior are independent on the type of CFSF. Celerity c and

acceleration a describe the internal dynamics of the agent between two evolutions t
and t’:

ct′ = pt′ − pt (1)
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Fig. 10 Structure of a

factual agent
Composite  Factual
Semantic  Feature

Internal  Indicators

Activity  Automaton Acquaintance  Network

at′ = ct′ − ct (2)

Satisfaction s is linked to the automaton, and so, will be defined after the presen-

tation of the automaton.

5.2 Activity Automaton

Figure 11 shows the activity automaton with its five states. This automaton is set to

the initial state when a factual agent is created. Reaching the end state causes the

death of its factual agent. The states are typical of the significance of its associated

CFSF in the whole representation, from minimal to maximal activity. There is always

one and only one transition from the current state to another one or to the same state.

As a notation, tij stands for the transition from state i to state j. Transitions t23 and

t34—associated with acquaintance network—are explained below in the paragraph

about semantic proximity. Conditions of transitions depend on values of internal

indicators. Table 1 contains the transitions and associated conditions.

The satisfaction indicator measures whether a transition occurs from one state to

the same one or from a state to a different state. This indicator keeps the last ten values

in memory and adds them up to give a single value. Thus, satisfaction indicates the

level of activity in [0 .. 20].

Fig. 11 Activity automaton

of a factual agent
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Table 1 Conditions of transitions in activity automaton

p c a s

t11 p < 1

t12 p ⩾ 1

t22 c ⩽ 0 s ⩾ 0

t23 c > 0 s ⩾ 0

t25 s < 0

t32 c ⩽ 0 and a ⩽ 0 s ⩾ 0

t33 c ⩽ 0 xor a ⩽ 0 s ⩾ 0

t34 c > 0 and a > 0 s ⩾ 0

t35 s < 0

t43 c ⩽ 0 or a ⩽ 0 s ⩾ 0

t44 c > 0 and a > 0 s ⩾ 0

t45 s < 0

Fig. 12 Transitions and

values used for computation

of satisfaction
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Figure 12 shows the transitions which are active for the computation of satisfac-

tion; i.e., when the given transition is activated, the associated value of the arrow is

the new value added to satisfaction.

5.3 Acquaintance Network

The third component of the behavior part is an acquaintance network. This is a

dynamic memory of factual agents whose semantic proximity measure, between

the embedded CFSF and the CFSF of the current agent, is semantically related. As

shown in Figs. 3 and 4, the knowledge part of the whole system contains domain

ontology structuring and defining the meaning of the observed facts. The proxim-

ity measure uses the ontology to compare CFSFs and returns a value in interval

[–1 .. 1] (Fig. 13).

A value of -1 means a total opposition between the two compared CFSFs. A value

of 0 means neutral or nonrelated. A value of 1 means identity between the two CFSFs.

Other values mean a semantic connection in the range from opposite to close.

Proximity between two CFSFs—opposite or close—is either strong or weak. As

previously described, transition occurs according to predefined values of internal
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Fig. 13 Semantic proximity

measure
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indicators. Two transitions—t23 and t34—cause particular actions as displayed in

Fig. 11: transition from state “minimal activity” to state “average activity,” and tran-

sition from state “average activity” to state “maximal activity.” The first one, t23,

triggers messages to agents of the acquaintance network with weak proximity. The

second one triggers messages to agents of the acquaintance network with strong prox-

imity.

A multiagent system is made of several agents interplaying. Systematically, when

a factual agent is created or updated, it broadcasts messages containing its own CFSF

to all the others but itself. Then, each receiving agent uses semantic proximity mea-

sure to compare the CFSF carried by the message with its private CFSF. If, and only

if, the result returned by semantic proximity measure is semantically related, i.e.,

different from 0, then the receiving agent is activated. In this case, its acquaintance

network is kept up-to-date and its position can be modified. As a consequence, that

could cause changes in internal indicators and lead to a new transition in the activity

automaton which might in its turn generate an evolution inside the set of seman-

tically connected agents. This third transformation dispatches the incoming CFSF

beyond its own factual agent consistent with the strength of this new CFSF in the

global representation.

6 Multiagent Characterization Layer

The aim of the characterization layer is to determine the clusters of the agents of the

representation layer. Each characterization agent of this layer:

1. is associated with one cluster;

2. receives data from factual agents of this cluster;

3. computes global parameters identifying the associated cluster.

When ready, characterization agents send their data to the interpretation layer.

Below we explain first the clustering of the factual agents and second the character-

ization of each subset computed by characterization agents.
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6.1 Clustering

We tried several clustering algorithms such as K-Means [14] and DBSCAN [6].

However, experiments gave us results that were difficult to interpret or to reproduce—

two consecutive tests of K-means on the same data would not necessarily give the

same clusters. So, at each step, we identified structural and dynamic properties of
factual agents used to determine to which subset every factual agent belonged.

The following notations are used to define the partition:

EFA is the set of all factual agents.

EC is the singleton containing only the factual agent whose composite factual

semantic feature has just been updated. Here, “C” is a short notation for CFSF.

EAN is the subset of factual agents semantically related to EC. This subset contains

all the factual agents of the acquaintance network of factual agent whose CFSF has

just been updated.

The acquaintance network subset EAN could be partitioned into two smaller sub-

sets, where EAN+ is the subset of agents of the acquaintance network which are

semantically close and EAN− the subset of agents of the acquaintance network which

are semantically opposite:

EAN = EAN+ ∪ EAN− (3)

ECAN = {EFA - EC - EAN} is the subset of all the other factual agents, that is to

say, all factual agents except the one whose composite factual semantic feature has

just been updated together with those of its own acquaintance network as displayed

in Fig. 14.

By definition, the intersection of the subsets of the partition is empty. From a

structural point of view, the partition of the whole set of factual agents is defined

in (4):

EFA = EC ∪ EAN+ ∪ EAN− ∪ ECAN (4)

A characteristic of all factual agents is to contain internal indicators: position,

celerity, acceleration, and satisfaction whose shortened notations are “p”, “c”, “a”

and “s”.

That leads to complementary notations for subset ECAN :

E
𝛥PCA = {ECAN ∶ ∃𝛥 p or ∃𝛥 c or ∃𝛥 a} where at least one position, celerity, or

acceleration variation exists.

E
𝛥S = {ECAN ∶ ∄𝛥 p and ∄𝛥 c and ∄𝛥 a and ∃𝛥 s} for which at least one satisfac-

tion indicator variation exists but no variation for position, celerity, and acceleration.

Fig. 14 Partition of the set

of factual agents
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Fig. 15 Detailed partition

of the set of factual agents
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Eno𝛥 = {ECAN ∶ ∄ 𝛥 p and ∄ 𝛥 c and ∄ 𝛥 a and ∄ 𝛥 s} for which there is no

variation for either position, celerity, acceleration, or satisfaction indicators.

Subset ECAN could be partitioned into three subsets:

ECAN = E
𝛥PCA ∪ E

𝛥S ∪ Eno𝛥 (5)

Now, using (4) and (5), the partition of the factual agents of the representation

layer could be defined by (6) and shown in Fig. 15:

EFA = EC ∪ EAN+ ∪ EAN− ∪
E
𝛥PCA ∪ E

𝛥S ∪ Eno𝛥 (6)

Expression (6) of EFA is adequate for showing the impact of a given composite

factual semantic feature on the decision support system by highlighting the strength

of the new data for the factual agent directly concerned by composite factual semantic

feature (EC) and for its two semantically related subsets (EAN+ , EAN− ). The analysis

of data from representation layer shows that the impact of a given composite factual

semantic feature could be important. In some cases, a CFSF influences factual agents

beyond agents belonging to its acquaintance network:

1. The case when E
𝛥PCA is not empty, is called a propagation/diffusion beyond

acquaintance network.

2. The other particular situation, when E
𝛥S is not empty means a trail effect affecting

some factual agents which are not directly linked to the new or updated factual

semantic feature but have been recently quite active.

6.2 Subset Characterization

Each subset EC, EAN+ , EAN− , E
𝛥PCA, E

𝛥S and Eno𝛥 is represented by one characteri-

zation agent (Fig. 16). When representation layer processing ends after reaching an

equilibrium, factual agents exchange messages between themselves and with char-

acterization agents for:

1. asking each factual agent to find to which subset it belongs;

2. informing each characterization agent of the beginning of a new step by sending

the names of the factual agents which are members of the subset;
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Fig. 16 Factual agents
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3. requesting each factual agent to send to its associated characterization agent a list

of all variations of indicators—position, celerity, acceleration, satisfaction—that

occurred during the last representation processing. This information is the input

of the characterization layer.

When all characterization agents have received messages from all its factual

agents—with individual list of variations of internal indicators, each characteriza-

tion agent needs to compute the global signature of each subset from the received

data. Before explaining how to compute characterization parameters, the key point

is to identify why. The results of the characterization layer are inputs of the interpre-

tation layer. The interpretation layer relies on similarity measure to retrieve stored

past situations with a similar pattern as the target situation being analyzed. The sim-

ilarity measure of the interpretation layer uses characterization parameters defined

as signature during characterization layer processing. So, the challenge is to design

characterization parameters before being able to test them in the interpretation layer.

As a consequence, we chose to define several characterization parameters to antici-

pate the needs of the interpretation layer: cardinal number of subsets determined by

(6), subset variation ratio, dispersion and shape parameters.

Figure 17 shows that cardinal number of subsets vary depending on steps, but the

cardinal number of EC which is always equal to one and gives scale of this figure.

As displayed, cardinal numbers of EAN− , E
𝛥PCA, E

𝛥S could be zero, which could also

be true for EAN+ , even if it is not the case in this sequence of steps coming from the

experiments of our prototype.

For nonempty subsets, variation ratio describes the density of evolution of a given

subset by counting numbers of variations of position indicator for each agent belong-

ing to this subset and dividing this sum by the cardinal number of the subset. This

ratio is not computed for celerity and acceleration indicators, to avoid duplication,

nor for satisfaction which is already a cumulative indicator.

Our first approach to compute dispersion and shape parameters was to choose

descriptive statistics as standard deviation and skewness. But, definitions of stan-

dard deviation or even absolute deviation use an average value: the mean for stan-

dard deviation and the median or the mode for absolute deviation. Using an average

value is relevant for a sample of data where there is no particular data to be given
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Fig. 17 Cardinal number of

subsets on several successive

steps
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priority. This is not the case with our data because, at the end of representation layer

processing, each factual agent determines one last value summarizing successive val-

ues for each of its internal indicators. So, to keep the benefit of representation layer

treatment giving last values as references, we chose to define dispersion and shape

parameters to compute global characterization of subsets with the last value obtained

when variations occurred instead of an average value. Last value notation is xn. The

computed deviation, referring to last value n, is called
n
𝜎 to avoid confusion with

standard deviation 𝜎. In the same way,
n
𝛾 is the computed skewness:

n
𝜎 =

√√√√1
n

n∑
i=1

(xi − xn)2 (7)

n
𝛾 =

1
n

n∑
i=1

(xi − xn)3

n
𝜎

3 (8)

Using (7) and (8), each characterization agent computes, for its associated sub-

set, parameters
n
𝜎 and

n
𝛾 for internal indicators position, celerity, acceleration, and

satisfaction. There is no parameter to compute:
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Table 2 Existence of computed characterization parameters

Subset Cardinal number Variation ratio Dispersion, shape

EC Yes 1 Yes p, c, a, s

EAN+ Yes 0
+

Conditional p, c, a, s

EAN− Yes 0
+

Conditional p, c, a, s

E
𝛥PCA Yes 0

+
Conditional p, c, a, s

E
𝛥S Yes 0

+
No s

Eno𝛥 Yes 0
+

No No

∙ for an empty subset;

∙ for an indicator with no variation in a nonempty subset;

∙ for Eno𝛥 because, by definition, this subset gathers together factual agents with no

variation of their internal indicators.

Table 2 summarizes characterization parameters. As EC is a singleton, its cardinal
number is always 1. For other subsets 0

+
means that the cardinal number, starting

from 0 for an empty subset, is not known. Conditional refers to the fact that variation

ratio is not defined for empty subsets. Dispersion parameter
n
𝜎 and shape parameter

n
𝛾 could have values for position, celerity, acceleration, and satisfaction. Definitions

of celerity (1) and acceleration (2) imply that when variation occurs for position,

values are computed for celerity and acceleration.

The following example illustrates the computation of parameters. A subset with

two factual agents has successive values for position indicator:

agent#i Values xn#i

agent#1 1 2 4 xn#1 = 4

agent#2 3 12 7 15 xn#2 = 15

There are three values for agent#1 and four values for agent#2, so variation ratio

is:
3+4
2

= 3.5
A property of standard deviation 𝜎 which is also true for

n
𝜎 is that adding a con-

stant to every value does not change the deviation. For this example, xn#2 is the cho-

sen constant for agent#1 and xn#1 is the chosen constant for agent#2. These choices

give xn#1 equal to xn#2:

agent#i New values xn#i

agent#1 16 17 19 xn#1 = 19

agent#2 7 16 11 19 xn#2 = 19

Using ||16||17||19||7||16||11||19 with (7) and (8), rounded results are
n
𝜎 = 5.73 and

n
𝛾 = –1.75.
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After the completion of characterization layer processing, characterization agents

send their data to the interpretation layer, which is detailed in the next section.

7 Multiagent Interpretation Layer

Characterization layer data are sent to the interpretation layer for retrieving past cases

which are similar to the target case being analyzed. To do so, the interpretation layer

uses a similarity measure. Outputs of the interpretation layer—past cases retrieved—

must be sent to the decision layer. Below we detail how to represent a given case and

the definition of the similarity measure.

The characterization layer sends the characterization parameters of each subset

to the interpretation layer. Thus, the input of the interpretation layer is a vector con-

taining computed parameters described in Table 3. The size of this vector depends

on the content of the subsets. The existence of a value for a parameter is marked

by ✓ as in EC for variation ratio. The satisfaction indicator evolves only when the

activity of the agent implies a change of state in the internal automaton, however, it

is not always the case and it is then represented by ? in Table 3.

When the cardinal number of a subset is equal to zero, there is no value for para-

meters which are indicated by x. In several cases we observe that EAN contains agents

(positive cardinal number) but the impact of the incoming CFSF is not important

enough to impulse any change for position, celerity or acceleration indicators result-

ing in a variation ratio equal to zero. By definition E
𝛥PCA only contains agents with

evolutions of indicators. So variation ratio is strictly positive when this subset is non-

empty. Variation ratio depends on position indicator and therefore is always equal to

zero for subset E
𝛥S.

Results obtained with a sample of experimental cases give 100 % for EC (A,

Fig. 18). A third of cases is when EAN has a strictly positive variation ratio. EAN
defined in (3) regroups cases where at least EAN+ or EAN− is nonempty with a strictly

Table 3 Variable number of computed parameters

n
𝜎

n
𝛾

Subset c r p c a s p c a s

EC 1 ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ?

EAN+ or EAN− 0 x x x x x x x x x

1
+

= 0 x x x ? x x x ?

1
+

>0 ✓ ✓ ✓ ? ✓ ✓ ✓ ?

E
𝛥PCA 0 x x x x x x x x x

1
+

>0 ✓ ✓ ✓ ? ✓ ✓ ✓ ?

E
𝛥S 0 x x x x x x x x x

1
+

= 0 x x x ✓ x x x ✓
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EΔPCAEC EAN+ EAN-EAN

% 100

34 30 32
26

A B

EC

EAN

EΔPCA

Fig. 18 Percentage of strictly positive variation ratio for tested cases

positive variation ratio. E
𝛥PCA contains agents when activity in EAN is important

enough to spread beyond ECAN . Consequently percentage of nonempty subset E
𝛥PCA

is always inferior to percentage of EAN (A, Fig. 18) and only happens when EAN is

nonempty with a strictly positive variation ratio (B, Fig. 18).

Figure 19 summarizes the content of input computed parameter vector for a given

case. Similarity measure relies on those data and must give priority to EC parameters

as they are the only data available in two-thirds of cases (A, Fig. 19).

Similarity measure must also take into account parameters describing evolution

of EAN and E
𝛥PCA. Data from E

𝛥S are not used in the similarity measure. Instead they

indicate a global level of activity from the whole multiagent system. Similarity is a

comparison between two cases computed by:

sim(target, c#i) = simEC(target, c#i)
and simEAN(target, c#i)
and simE

𝛥PCA(target, c#i) (9)

As described in Table 4 simEC(target, c#i) compares
n
𝜎 and

n
𝛾 for position, celer-

ity, and acceleration; simEAN(target, c#i) compares values of cardinal number and

2/3 1/3

EC

EAN  Ø    
or

variation ratio EAN =  0 

variation ratio 
EAN >  0 

1/4 3/4

EΔPCA  Ø EΔPCA  not Ø

A B C

A

B
C

Fig. 19 Frequency of having value for subsets in computed parameter vector



Dynamic Representation and Interpretation in a Multiagent 3D Tutoring System 225

Table 4 Compared values in similarity measure

simEC(target, c#i) c#i target c#i

n
𝜎(p) – 1 % ≤ n

𝜎(p) ≤ n
𝜎(p) + 1 %

and n
𝜎(c) – 1 % ≤ n

𝜎(c) ≤ n
𝜎(c) + 1 %

and n
𝜎(a) – 1 % ≤ n

𝜎(a) ≤ n
𝜎(a) + 1 %

and n
𝛾(p) – 1 % ≤ n

𝛾(p) ≤ n
𝛾(p) + 1 %

and n
𝛾(c) – 1 % ≤ n

𝛾(c) ≤ n
𝛾(c) + 1 %

and n
𝛾(a) – 1 % ≤ n

𝛾(a) ≤ n
𝛾(a) + 1 %

simEAN (target, c#i) c#i target

(c = 0) or (r = 0) and (c = 0) or (r = 0)
or (r > 0) and (r > 0)
simE

𝛥PCA c#i target

(r = 0) and (r = 0)
or (r > 0) and (r > 0)

variation ratio; simE
𝛥PCA(target, c#i) compares variation ratio only when E

𝛥PCA is

nonempty (Fig. 19). Some compound parameters are not used in the similarity mea-

sure described above. However, we keep them all as we are still testing alternative

similarity measures.

The interpretation layer processes data coming from the characterization layer:

1. to store incoming compound parameter vector;

2. to retreive stored cases and compute a similarity measure with the current target

case.

8 Multiagent Decision Layer

The decision layer receives the result of the interpretation layer which is a list of past

cases which are similar to the target case. Even if this layer is still under development,

we assume to follow these hypotheses:

∙ the term case refers to a step previously defined (Fig. 9) as the whole process
initiated by the arrival of a composite factual semantic feature followed by the
successive processes of representation, characterization, and interpretation.

∙ the special pattern where only a human tutor can answer, is when the list of past

cases is empty. In that situation a call on an human tutor is needed. During the

development phase, the expert and the tutor are the same person.

∙ a scenario is a list of successive steps.

The expected result of the decision layer is to return a case chosen to help the

student by offering her or him a personalized answer.
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When the expert is called to decide to add or not a new scenario, the system

provides a description of the successive actions of the student. The expert does not

see at all the computed process described in this article except for tests. The expert

must judge to add a scenario and he associates to it actions to be activated in the

students’ interface. By doing so, the expert will enrich the work of the decision sup-

port system—the result of decision layer which is the aim of the whole MAS—with

concrete actions to help the student.

9 Conclusion

Here we have presented an intelligent tutoring system with its 3D students’ interface

and its internal decision support system designed to face the challenge of process-

ing the evolution of a large amount of data. Our prototype was tested and used to

improve the design of agents. The GE3D campus was well approved by students on

programmable logic controllers course.

A Ph.D. thesis focuses on the interpretation layer to propose a dynamic case-

based reasoning architecture able to merge incoming data while looking for suitable

scenarii [24, 25].

Our architecture is designed to be as independent as possible on learning fields.

The key point of our current work is the development of the knowledge part, i.e.,

ontology, semantic proximity, and predetermined composite factual semantic fea-

tures, for programmable logic controllers course to connect the intelligent tutoring

system to the 3D virtual campus. Courses on other topics such as English, computer

science, or sociology are also planned. Combining Bloom’s taxonomy and Felder-

Silverman’s index of learning styles as a guide for intelligent tutoring system course

designers could be a way to create the knowledge part regardless of the topic to teach

[11].

Finally, we project to elaborate a 3D visualization to display and follow evolutions

of agents and messages exchanged inside the multiagent system.
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Generalized Net Model
of the Scapulohumeral Rhythm

Simeon Ribagin, Vihren Chakarov and Krassimir Atanassov

Abstract The dynamics of the upper extremity can be modeled as the motion of an
open kinematic chain of rigid links, attached relatively loosely to the trunk. The
upper extremity or upper limb is a complex mechanism which includes many bones,
joints, and soft tissues allowing various movements in space. The shoulder is one of
the most complex musculoskeletal units not only in the upper limb but also in the
entire human body. Codman [7] understood the complex and dependent relation-
ships of the structures of the shoulder when he coined the term “scapulohumeral
rhythm” to describe the coordinated motion. The purpose of the paper is to present a
simple mathematical model of the scapulohumeral rhythm using the apparatus of the
Generalized Nets Theory [1, 2]. The presented model is a part of a series of gen-
eralized net models of the upper limb developed by the authors (see [22, 23]).

Keywords Generalized net ⋅ Modeling ⋅ Scapulohumeral rhythm ⋅ Upper
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S Sagittal plane
F Frontal plane
R Rotation
T Transversal plane

1 Introduction

GN [1, 2] are extensions of Petri nets and their modifications. During the last
30 years, they have a lot of applications in medicine and biology. In [3] GN models
of human body and of the separate systems in the human body are described. One
of the modeled by GN systems is the muscle–skeletal (see [4]). In the papers [22,
23], the authors discuss GN models of the upper limb together with the circulatory
system involved and also a simple example of involuntary movement of the upper
extremity. For building a detailed GN model of the human upper limb the authors
suggest a theoretical model which includes the basic biomechanical relations among
the upper limb structures observed in a simple voluntary movement of the shoulder.
The proposed GN model describes the movement from 0° to 180° abduction of the
shoulder in the frontal plane.

2 Short Anatomical Description of the Upper Limb

The upper limb or upper extremity is a complex mechanism which includes many
bones, joints, and soft tissues allowing various movements in space. The muscu-
loskeletal anatomy of the upper limb is particularly well suited to illustrate and
illuminate the anatomical basis of function. In general the upper limb can be divided
into shoulder girdle, arm, wrist, and hand. The scapula, clavicle, sternum, and the
proximal part of the humerus comprise the shoulder girdle. The shoulder girdle is a
complex of five joints: glenohumeral joint, acromioclavicular joint, sternoclavicular
joint, scapulothoracic joint, and suprahumeral [5] or subdeltoid joint [13]. The last
two are not anatomical but physiological (“false”) joints [13, 26]. Arm or “bra-
chium” is composed of three bones: distal part of the humerus, radius, and ulnae.
These bones form the elbow complex which includes humeroradial, humeroulnar,
and superior radioulnar joints and also distal radioulnar articulation and the
so-called “antebrachium” (composed of the radius and ulna). The wrist is a terminal
link of the upper limb. The wrist complex includes three joints: radiocarpal, distal
radioulnar, and midcarpal joints. The human hand is a multicomponent system not
only with motor but also with sensory function. Bones and joint structures of the
hand formed a mobile and stable segment [20]. There are carpometacarpal,
metacarpophalangeal, and interphalangeal joints. The skeleton of the upper limb is
attached relatively loosely to the trunk. That relatively loose attachment maximizes
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upper limb mobility and flexibility (movement is possible in all 3 planes). The
mobility and stability of the upper limb is provided by the large number of liga-
ments and muscles (see Table 1).

The proper functioning of the upper limb depends entirely on the intactness and
coordination of the composed segments together with the major structures of the
nervous system involved.

The nerve supply of the upper limb is provided by the brachial plexus and some
branches of the cervical plexus (see Table 2). The brachial plexus is formed by the
anterior rami of C5 to T1 (the posterior roots give innervation for the skin and

Table 1 Ligaments and muscles of the upper limb

Upper
limb
segments

Ligaments Muscles

Shoulder
girdle

lig. interclaviculare, lig.
sternoclaviculare, lig. costoclaviculare,
lig. coracohumerale, lig.
coracoacromiale, lig. transversum
scapulae super. et infer., lig.
acromioclaviculare, lig.
coracoclaviculare

m. trapezius, m. latissimus dorsi, m.
levator scapulae, m. rhomboideus, m.
pectoralis major, m. pectoralis minor, m.
subclavius, m. serratus anterior, m.
coracobrachialis, m. deltoideus, m.
supraspinatus, m. infraspinatus, m. teres
minor, m. teres major and m.
subscapularis

Arm lig. collaterale radiale, lig. collaterale
ulnare, lig. annulare radii, Chorda
obliqua, Membrana interossea
antebrachii

m. brachialis, m. biceps brachii, m.
brachioradialis, m. triceps brachii, m.
anconeus, m. pronator teres, m.
supinator, m. pronator quadratus, m.
flexor carpi ulnaris, m. flexor carpi
radialis, m. extensor carpi radialis
longus, m. extensor carpi radialis brevis
and m. extensor carpi ulnaris

Wrist lig. radiocarpeum palmare, lig.
collaterale carpi radiale, lig. collaterale
carpi ulnare, lig. radiocarpeum dorsale

m. extensor carpi ulnaris, m. extensor
carpi radialis longus, m. extensor carpi
radialis brevis, m. flexor carpi radialis,
m. flexor carpi ulnaris, m.abductor
pillicis longus and m. extensor pollicis
brevis

Hand lig. carpi radiatum, lig. pisohamatum,
lig. pisometacarpeum, lig.
carpomatacarpeum palmare, ligg.
metacarpea palmaria, ligg. metacarpea
transversa profunda, ligg. collateralia,
ligg. palmaria, ligg. metacarpea
dorsalia, ligg. carpometacarpea dorsalia

m. extensor digitorum, m. extensor
indicis, m. extensor digiti minimi, m.
flexor digitorum profundus, m.flexor
digitorum superfacialis, mm.
lumbricalis, mm interossei, m.flexor
digiti minimi, m. abductor digiti minimi,
m. extensor pollicis longus, m. extensor
pollicis brevis, m. abductor pollicis
longus, m. flexor pollicis longus, m.
flexor pollicis brevis, m.opponens
pollicis, m.abductor pollicis brevis, m.
adductor pollicis and m. opponens digiti
minimi
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muscle of the paravertebral area). The anterior rami supply the upper (C5-6), middle
(C7), and lower (C8-T1) trunks. At the level of the superior border of the first rib,
each trunk divides into an anterior and posterior division. The six divisions combine
to form tree cords—lateral, posterior, and medial. At the lower part of the axilla the
tree cords split into the terminal branches which enter the arm and innervate the
different segments. The major branches of the brachial plexus are n. axillaris, n.
musculocutaneous, n. ulnaris, n. radialis, and n. medianus.

The PNS connects the brain and the spinal cord to the periphery and it includes
the cranial nerves, the spinal nerves, the peripheral nerves, and the peripheral

Table 2 Innervation of the upper limb joints and muscles

Peripheral nerve Innervated joint Innervated muscle

n. axillaris Glenohumeral joint m. Deltoideus, m. teres minor
n.
suprascapularis

Glenohumeral joint
acromioclavicular
joint

m. infraspinatus, m. supraspinatus

n. subclavius Sternoclavicular joint m. subclavius, m
n. dorsalis
scapulae

m. levator scapulae, mm. rhomboidei

n. thoracalis
longus

m. serratus anterior

nn. thoracales
anteriores

m. pectoralis major et minor

nn. subscapularis m. teres major, m. subscapularis
n.
thoracodorsalis

m. latissimus dorsi

n. accessorius m. trapezius
n. pectoralis
lateralis et
medialis

Glenohumeral joint m. pectoralis major et minor

n.
musculocutaneus

Glenohumeral joint,
Humeroradial joint

m. biceps brachii, m. brachialis, m.
coracobrachialis

n. medianus Elbow complex, wrist,
and hand

m. pronator teres, m. pronator quadratus, m. flexor
carpi radialis, m. flexor digitorum superficialis,
mm lumbricalis, m. flexor pollicis brevis, m.
opponens pollicis, m. abductor pollicis brevis

n. ulnaris Elbow complex, wrist,
and hand

m. flexor carpi ulnaris, mm. interossei, mm.
lumbricalis, m. flexor digiti minimi, m. abductor
digiti minimi, m. abductor pollicis, m. opponens
digiti minimi, m. flexor digitorum profundus

n. radialis Elbow complex, wrist
and hand

m. brachioradialis, m. triceps brachii, m. anconeus,
m. supinator, m. extensor carpi radialis longus, m.
extensor carpi radialis brevis

n. interosseus Elbow comlex and
wrist

m. extensor digitorum, m. extensor indicis, m.
extensor digiti minimi, m. extensor carpi ulnaris,
m. extensor pollicis longus et brevis, m. abductor
pollicis longus, m
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extension of the autonomic nervous system [25]. Within peripheral nerves are
motor and sensory fibers. The sensory fibers receive information from the receptors
in the muscles, tendons, joints, and skin. Through these special structures providing
information about muscle length, muscle tension, joint angles, and indication of the
distribution of forces at points of contact becomes possible (somatosensory
receptors). That information is transmitted via afferent roots to the CNS. The
processing and analysis of this information is subjective expression in the emer-
gence of different senses. Its two submodalities are sense of stationary position
(position sense) and sense of movement (kinesthetic sense) [16]. Apart from sen-
sory, muscles are innervated by motor nerve fibers. Motor nerve fibers are called
motoneurons and innervate the different parts of the muscle tissue. The relationship
between a sensory and a motor neuron in the gray matter of the spinal cord is
performed by an intermediate/inhibit/interneuron. The most routes from the higher
centers of the CNS ended on these interneurons.

3 Short Description of the “Relaxed” (Resting) Position
of the Upper Limb

For the purpose of the present paper we will describe shortly our concept on the
“relaxed position” of the upper limb and inner-relationship between muscu-
loskeletal and nervous systems.

In terms of the upright posture, which is a natural one (body position in space) in
the human, the upper limbs are freely granted to the body as “volare” surface of the
hand facing the body. Normally shoulders have a round contour due to prominence
of the grater tuberosity beneath the deltoid muscle [14] and they are both with
symmetrical height. (However, many people have lower shoulder on the dominant
side [15].) The shoulders are slightly protracted but relatively relaxed [11]. There is
a minimal flexion in the elbows and the forearms (antebrachium) which are in
semi-pronated position. All of the five fingers are slightly flexed at all their joints.
For the maintenance of this position it is not necessary to have voluntary movement
or effort. In these conditions stability of the upper limb depends on static restraints
(ligaments), muscular stabilizers, and intra-articular forces. Ligaments and joint
structures not only provide mechanical support but also provide sensory feedback
information (from sensory receptors) that regulates involuntary muscular activation
for joint positioning and stability. By virtue of gravity and the weight of the upper
extremity there is slight tension in the soft tissues (ligaments, tendons, and mus-
cles). The tension activates the different receptors and they send the information to
the regulatory structures of the CNS. The spinal cord controls the positioning
through the muscle activity and condition by means of a closed circuit. This type of
regulation is through the formation of so-called “reflex arcs.”
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4 The Shoulder Complex and Scapulohumeral Rhythm

As already mentioned above the shoulder complex is composed of five joints:
glenohumeral joint, acromioclavicular joint, sternoclavicular joint, scapulothoracic
“joint,” and suprahumeral “joint.” The glenohumeral joint is an example of a
multiaxial “ball-and-socket” synovial joint. This joint is formed by the articulations
of the rounded humeral head with the glenoid fossa of the scapula. Because the
head of the humerus is larger than the glenoid fossa, only part of the humeral head
can be in articulation with the glenoid fossa in any position of the joint. At any
given time, only 25–30 % of the humeral head is in contact with the glenoid fossa
[27]. The glenohumeral joint largely depends on the ligamentous and muscular
structures for stability, provided by both static and dynamic components. The static
components for stability include the glenoid labrum, joint capsule, and ligaments.
The static stability of the glenohumeral joint is provided by two major mechanisms,
the glenoid suction cup mechanism and the limited joint volume mechanism [20].
The glenohumeral suction cup provides stability by virtue of the seal of the labrum
and capsule to the humeral head. A suction cup adheres to a smooth surface by
expressing the interposed air or fluid and then forming a seal to the surface [28].
The limited joint volume is a stabilizing mechanism in which the humeral head is
held to the socket by the relative vacuum created when they are distracted. Dynamic
support of the glenohumeral joint is provided by a large number of muscles acting
in a coordinated pattern.

The acromioclavicular joint is a plane synovial joint and is formed by the
articulation of the distal end of the clavicula with the medial border of the acromion
process of the scapula. Both articular surfaces are covered with fibrocartilage, and
the joint line formed by the two bones slopes inferiorly and medially, causing the
clavicle to tend to override the acromion [21]. Due to the relative flatness of the
articulating surfaces, they held in place by strong ligaments.

The only point of skeletal attachment of the upper extremity to the trunk occurs at
the sternoclavicular joint. The sternoclavicular joint is a gliding synovial joint with
fibrocartilaginous disc which compensates for the mismatch of surfaces between the
two saddle—shaped articular faces of the clavicle and manubrium sterni.

Both of physiological (or functional) articulations: scapulothoracic “joint” and
suprahumeral “joint” are playing an important role in proper functioning of the
shoulder complex. The suprahumeral “joint” contains subacromial and subdeltoid
bursae. These tissues lie in a space called the “subacromial space” and that allows
gliding between the acromion and the rotator cuff muscles. The scapulothoracic
articulation occurs between the concave costal surface of the scapula and the
convex surface of the thorax. The scapula actually rests on the two muscles, the
serratus anterior and the subscapularis, both connected to the scapula and moving
across each other as the scapula moves. Underneath these two muscles lies the
thorax. Movements of the scapula on the thorax result from combined motions of
the sternoclavicular and acromioclavicular joints.
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The design of the shoulder complex provides the upper limb with an extensive
range of movement. The complex is more mobile than any other joint mechanism of
the body because of the combined movement at all the four articulations comprising
the shoulder. This wide range of motion permits positioning of the hand in space,
allowing performance of numerous gross and skilled functions [28]. Shoulder range
of motion is traditionally measured in terms of flexion and extension (elevation or
movement of the humerus away from the side of the thorax in the sagittal plane),
abduction (elevation in the coronal plane), and internal–external rotation (axial
rotation of the humerus with the arm held in an adducted position) [17]. The arm
can move through approximately 165° to 180° of flexion to approximately 30° to
60° of hyperextension in the sagittal plane [29, 19].

S: 60◦ − 0◦ − 180◦

The arm can also abduct through 150° to 180°. The abduction movement can be
limited by the amount of internal rotation occurring simultaneously with abduction.
The adduction of the arm is approximately 75° from 25° of flexion in the sagittal
plane [19].

F: 180◦ − 0◦ − 0◦

Fðs25◦Þ: 180◦ − 0◦ − 75◦

The arm can rotate both internally and externally 60° to 90° for a total of 120° to
180° of rotation.

R: 75◦ − 0◦ − 90◦

Finally, the arm can move across the body in an elevated position for 135° of
horizontal flexion or adduction and 45° of horizontal extension or abduction [29].

T: 45◦ − 0◦ − 135◦

As stated earlier, the four joints of the shoulder complex must work together in a
coordinated action to create arm movements. Any time the arm is raised in flexion
or abduction, accompanying scapular and clavicular movements take place. As the
humerus moves in the glenoid fossa the scapula rotates on the thorax and the
clavicle moves on the sternum. This coordinated and synchronous movement of the
shoulder’s structures driven by the muscular and ligament systems is called
“Scapulohumeral rhythm”. The synchronized movement of the shoulder girdle
and humerus, is known since the first studies on the upper limb, carried out during
the nineteenth century, but only in 1934 was described by the first time by Codman
[7] as the “scapulohumeral rhythm.” According to Codman, during arm elevation,
for every 2° of glenohumeral motion, there is 1° of scapulothoracic motion. In
1944, Inman et al. [12], described the scapulohumeral rhythm as the bidimensional
relationship between the scapular spine (projected on the frontal plane) and the
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humeral angle during arm flexion and abduction. They suggest that the scapular
upward rotation and humeral abduction to be a 2:1 ratio between the humerus and
scapula throughout flexion and abduction (entire range of motion from 0° to 180°).
Further research has shown that scapulohumeral rhythm might not be as simple as it
was first described. Many studies have evaluated scapular and arm motion and have
reported different ratios of glenohumeral motion to scapulothoracic upward rotation
depending on how the study was measured, different planes of elevation, and
anatomic variations between the individuals (see Table 3).

The relationship between glenohumeral and scapulothoracic motion is critical
and is generally considered to be 2:1, culminating in 120° and 60°, respectively [12,
19, 20, 28]. During the arm elevation in frontal plane (abduction) from 0° to 180°
there are four phases of scapulohumeral rhythm.

• Phase 1: The upper limb is in relaxed position (see above).
• Phase 2 (30° abduction): The supraspinatus muscle “unlocks” the arm and

together with deltoid muscle slowly elevates the upper limb. In the first phase of
30° of elevation through abduction, the scapula is said to be “setting”. This
setting phase means that the scapula moves either toward the vertebral column
or away from it to seek a position of stability on the thorax. During this phase
the main contributor to movement is the glenohumeral joint. The clavicle ele-
vates minimally (0°–15°) during this stage [19].

• Phase 3 (during the next 60° of elevation): The contraction of the deltoid muscle
is accompanied by the supraspinatus, which produces abduction while at the
same time compressing the humeral head and resisting the superior motion of the
humeral head by the deltoid. The rotator cuff muscles contract as a group to
compress the humeral head and maintain its position in the glenoid fossa. The
teres minor, infraspinatus, and subscapularis muscles stabilize the humerus in
elevation by applying a downward force. The antagonistic action is produced by
the mm. pectoralis major et minor, m. levator scapulae, and mm. rhomboidei. The
latissimus dorsi also contracts eccentrically to assist with the stabilization of the
humeral head and increases in activity as the angle increases. At this stage there is
a contraction of the upper and lower trapezius and the serratus anterior muscles
and they work as a force couple to create the lateral, superior, and rotational
motions of the scapula to maintain the glenoid fossa in the optimal position. The
scapula rotates about 20° and the humerus elevates 40° [15, 19] with minimal

Table 3 Scapulohumeral rhythm ratios

Study Ratio Range of motion

Innman et al. (1944) [12] 2:1 over entire range (180°)
Freedman and Munro (1966) [10] 3:2 From 0° to 135°
Doody et al. (1970) [8] 1.74:1 over entire range (180°)
Poppen and Walker (1976) [18] 4.3:1

5:4
during first 30°
from 30° to 180°

Saha (1961) [24] 2.3:1 from 30° to 135°

236 S. Ribagin et al.



protraction or elevation of the scapula. Because of the scapular rotation the
clavicle elevates approximately 30°–35° through the sternoclavicular joint.

• Phase 4 (final 90° of elevation): During the final stage of abduction the humerus
elevates another 60° and the scapula continues to rotate and now begins to
elevate. The scapula rotates 30° through acromioclavicular joint. It is in this
stage that the clavicle rotates posteriorly 30°–50° on a long axis and elevates up
to a further 15°. As the arm abducts to 90°, the greater tuberosity on the humeral
head approaches the coracoacromial arch, compression of the soft tissue begins
to limit further abduction. External rotation of the humerus to 90° places the
grater tuberosity posteriorly, allowing the humerus to move freely under the
coracoacromial arch. The external rotation of the humerus is produced by the
infraspinatus and the teres minor muscles. The final degrees of elevation are
achieved trough contralateral trunk flexion and/or trunk extension [6] by con-
traction of the paravertebral muscles.

For the total range of motion through 180° of abduction, the glenohumeral to
scapula ratio is 2:1; thus, the 180° range of motion is produced by 120° of
glenohumeral motion and 60° of scapular motion. The contributing joint actions to
the scapular motion are 20° produced at the acromioclavicular joint, 40° produced
at the sternoclavicular joint, and 40° of posterior clavicular rotation [9]. From the
discussion of scapulohumeral rhythm, it becomes apparent that restriction or dis-
order in movement at any of the joints of the shoulder complex will limit the ability
of proper position the hand for functioning.

5 A Reduced Generalized Net Model of the Upper Limb

Here we represent a simplified GN model of the upper limb in relaxed position.
The GN model (Fig. 1) has 4 transitions and 11 places with the following

meaning.

• Transition Z1 represents the function of the CNS.
• Transition Z2 represents the function of the PNS (sensory and motor fibers of

brachial plexus branches).
• Transition Z3 represents the function of the striated muscles and tendons of the

upper limb.
• Transition Z4 represents the function of the joints and ligaments of the upper

limb.

Each of these transitions contains a special place to collect and keep information
about the current status of the respective structures which it represents, as follows.

• In place l2 token α stays permanently and it collects information about the
current status of the CNS.

• In place l5 token β collects information about the current status of the PNS.
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• In place l18 token µ collects information about the current status of the striated
muscles and tendons.

• In place l11 token ν collects information about the current status of the joints and
ligaments.

Tokens α, β, µ, ν that permanently stay, respectively, in these places obtain as
current characteristic the corresponding information. At the time of duration of the
GN functioning, some of these tokens can split, generating new tokens, that will
transfer in the net obtaining respective characteristics, and also in some moments
they will unite with some of tokens α, β, µ, ν.

When some of these tokens splits, e.g., token ω ∈ {α, …, te}, let us assume that
it generates two or more tokens that we shall note by ω, ω1, ω2, … and the first of
them (ω) will continue to stay in its place, while the other ones will go somewhere
in the net.

The four GN transitions have the following forms:

Z1 = ⟨ l2, l4f g, l1, l2f g, r1⟩,

where

truefalsel

trueW1,2

l1 l2
r

4

=

Fig. 1 GN model of the upper limb
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andW2,1 = “efferent impulses from the CNS are necessary for the maintenance and
regulation of the muscles.”

The tokens from all input places enter place l2 and unite with token α that obtains
the above mentioned characteristic. On the other hand, token α splits to two tokens,
the same token α, and α1 that enters place l1, when predicate W2,1 has truth value
“true”. In the model, place l1 corresponds to the kind of the efferent impulse from
CNS.

Z2 = ⟨fl1, l5, l7, l9, l10g, fl3, l4, l5g, r2⟩,

where

trueeslaf eslafl

trueeslaf eslafl

trueeslaf eslafl

teurt eurW5,3

trueeslaf eslafl
r

10

9

7

l5

1

l3 l4 l5
2 =

and W5,3 = “efferent impulse from CNS was transmitted via motor fibers of the
PNS branches to the muscles of the upper limb”

The tokens from all input places enter place l5 and unite with token β that obtains
the above-mentioned characteristic. On the other hand token β splits to three tokens,
the same token β and tokens β1, β2, that enter, respectively, in places l3, l4. When
predicate W5,3 has truth value “true”, a token enters place l3.

Token in place l3 obtains characteristics

“efferent impulse to the muscles of the upper limb.”

Token in place l4 enters with characteristics

“afferent (sensory) impulse from the joints, ligaments and the extrafusal muscle fibers of
the upper limb.”

Z3 = ⟨ l3, l8f g, l6, l7, l8f g, r3⟩,

where

W8,6

truefalse false

truetrue

l
r

3

l6 l7 l8

l8

3 

and W8,6 = “there is involuntary muscular activation.”
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The tokens from all input places enter place l10 and unite with token µ that
obtains the above-mentioned characteristic. On the other hand, token µ splits to
three tokens, the same token µ and tokens µ1, µ2 that enter, respectively, in places l6,
l7.

When predicate W8,6 has truth value “true”, a token enters place l6. There it
obtains characteristics

“influence of the muscular activation on the upper limbs joints and ligaments (joints
positions).”

Place l7 corresponds to the sensory receptors in muscle fibers of upper limb
muscles.

Z4 = ⟨ l6, l11f g, l9, l10, l11f g, r4⟩,

where

true true eurtl

truefalse falsel
r

11

6

l9 l10 l11
4 =

The tokens from the two input places enter place l11 and unite with token ν that
obtains the above-mentioned characteristic. On the other hand, token ν splits to
three tokens: the same token ν and tokens ν1, ν2 that enter, respectively, in places l9,
l10.

Token in place l9 obtains characteristics

“the position of individual joints of upper limb segments in space.”

Place l10 corresponds to the sensory receptors in ligaments and joints of the
upper limb.

6 Generalized Net Model of the Scapulohumeral Rhythm

Here we represent a GN model of the scapulohumeral rhythm observed in arm
abduction in the frontal plane from 0° to 180°. The initial phase of the abduction
begins with the upper limb in relaxed position.

The GN model (Fig. 2) has 7 transitions and 24 places with the following
meaning:
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• Transition Z1 represents the function of the CNS.
• Transition Z2 represents the function of the PNS (sensory and motor fibers of

brachial plexus branches).
• Transition Z3 represents the function of the striated muscles and tendons initi-

ating the arm elevation.
• Transition Z4 represents the function of the rotator cuff muscles and function of

the striated muscles and tendons that connect the upper limb to the trunk of the
body from which it buds

• Transition Z5 represents the function of the antagonist muscles and the lumbar
part of the spine.

• Transition Z6 represents the joints and ligaments of the shoulder complex.
• Transition Z7 represents the position of the upper limb in space

The net contains seven types of tokens: α, β, μ, η, κ, π, and ɸ tokens. Each of
these transitions contains a special place to collect and keep information about the
current status of the respective structures which it represents, as follows.

Fig. 2 GN model of the scapulohumeral rhythm
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• In place l2, token α stays permanently and it collects information about the
current status of the CNS.

• In place l7, token β stays permanently and it collects information about the
current status of the PNS.

• In place l10, token μ stays permanently and it collects information about the
current status of the striated muscles and tendons initiating the arm elevation.

• In place l13, token η stays permanently and it collects information about the
current status of the rotator cuff muscles and muscles and tendons that connect
the upper limb to the trunk.

• In place l17, token κ stays permanently and it collects information about the
current status of the antagonist muscles and tendons and current status of the
lumbar spine.

• In place l20, token π stays permanently and it collects information about the
current status of the joints and ligaments of the shoulder complex.

• In place l24, token ɸ stays permanently and it collects information about the
current position of the upper limb in space.

Tokens α, β, µ, η, κ, and π that permanently stay, respectively, in these places
obtain as current characteristic the corresponding information. At the time of
duration of the GN functioning, some of these tokens can split, generating new
tokens, that will transfer in the net obtaining respective characteristics, and also in
some moments they will unite with some of the tokens α, β, µ, η, κ, and π.

The six GN transitions have the following forms:

Z1 = ⟨ l2, l6f g, l1, l2f g, r1⟩,

where

truefalsel

true
r

6

l2

l1
W2,1

l2
1 =

and W2,1 = “in the higher centers of the brain is generated a conscious command
for elevation of the upper limb.”

The tokens from the two input places enter place l2 and unite with token α that
obtains the above-mentioned characteristic. On the other hand, token α splits to two
tokens, the same token α and α1 that enters place l1, when predicate W2,1 has truth
value “true”. The token α1 enters place l1 with characteristics “efferent motor
impulse to the PNS”

Z2 = ⟨fl1, l7, l9, l12, l15, l16, l19, l21, l22, l23g, l3, l4, l5, l6, l7,f g, r2⟩,

where
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32 ,723

22 ,722

21

19

16

15

12

9

7

7,11

7654
2

Wl

Wl

truel

truel

truel

truel

truel

truel

true true true true truel

Wfalse false falsefalse

false false false false

false false false false

false false false false

false false false false

false false false false

false false false false

false false false false

false false false false

l

3l l l l l
r =

and W1,7 = “efferent impulse from CNS was transmitted via motor fibers of the
PNS branches to the muscles of the upper limb.”

W22,7 = “there is a 30° of humeral elevation and the humerus begins to elevate in the range
of 30° to 90° in the frontal plane”

W23,7 = “there is a 90° of humeral elevation and the humerus begins to elevate in the range
of 90° to 180° in the frontal plane”

When predicate W1,7 has a true value “true”, token α1 from place l1 enters in
place l7 and the transition Z2 becomes active.

The tokens from all input places enter place l7 and unite with token β that obtains
the above mentioned characteristic. On the other hand, token β splits to five tokens,
the same token β and β1, β2, β3, β4.

Token β1 enters in place l3 with characteristics:

“motor impulses travelling trough n. axilaris and n.suprascapularis”

When predicate W22,7 has a true value “true”, token β2 enters in place l4 with
characteristics:

“motor impulses travelling trough n. axillaris, n. suprascapularis, n. subclavius, n. tho-
racalis longus, n. subscapulares, n. thoracodorsalis and n.accesorius”

When predicate W23,7 has a true value “true”, token β3 enters in place l5 with
characteristics:

“motor impulses travelling trough n. axillaris, n. suprascapularis, n. subclavius, n. tho-
racalis longus, n. subscapulares, n. thoracodorsalis, n. accesorius, n. dorsalis scapulae,
nn. thoracales anteriores, n. pectoralis lateralis et medialis”

Token β4 enters in place l6 with characteristics
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“afferent (sensory) impulse from the joints, ligaments and the extrafusal muscle fibers of the
shoulder complex”

Z3 = ⟨ l3, l10f g, l8, l9, l10,f g, r3⟩,

where

true truetruel

Wfalse falsel

l l l
r

10

3,103

1098
3 =

and W3,10 = “the afferent motor impulses are reached the motoneurons of the
muscles initiating the upper limb elevation”

When predicate W3,11 has a true value “true”, token β1 enters in place l10 and
unites with token μ that obtains the above-mentioned characteristics. On the other
hand, token μ splits to three tokens, the same token μ and tokens μ1, μ2 that enter,
respectively, in places l8 and l9.

Token μ1 enters in place l8 and there it obtains characteristics

“contraction of the m. supraspinatus and m. deltoideus”

Place l9 corresponds to the sensory receptors in muscle fibers of the muscles
initiating the upper limb elevation.

Z4 = ⟨ l4, l13f g, l11, l12, l13,f g, r4⟩,

where

l

Wl

l l l
r

13

4,134

131211
4 =

true truetrue

false false

and W4,13 = “the afferent motor impulses are reached the motoneurons of the
rotator cuff muscles, m.trapezius and m.serratus anterior.”

When predicate W4,15 has a true value “true”, token β2 enters in place l15 and
unites with token η that obtains the above mentioned characteristics. On the other
hand, token η splits to three tokens, the same token η and tokens η1, η 2.

Token η1 enters in place l11 and there it obtains characteristics

“contraction of the rotator cuff muscles, m.trapezius and m.serratus anterior”

Place l12 corresponds to the sensory receptors in muscle fibers of the rotator cuff
muscles, m. trapezius and m. serratus anterior.
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Z5 = ⟨ l5, l17f g, l14, l15, l16, l17f g, r5⟩,

where:

l

Wl

l l l l
r

17

5,175

17161514
4 = false false false

true true true true

and W5,17 = “the afferent motor impulses are reached the motoneurons of mm.
pectoralis major et minor, m. levator scapulae, mm. rhomboidei, m. latissimus
dorsi and paravertebral muscles of the lumbar spine.”

When predicate W5,17 has a true value “true”, token β3 enters in place l17 and
unites with token κ that obtains the above-mentioned characteristics. On the other
hand, token κ splits to four tokens, the same token κ and tokens κ1, κ2, κ3.

Token κ1 enters in place l14 and there it obtains characteristics

“contraction of the mm.pectoralis major et minor, m.levator scapulae, mm.romboidei, m.
latissimus dorsi”

Token κ2 enters in place l15 and there it obtains characteristics

“contraction of the paravertebral muscles of the lumbar spine”

Place l16 corresponds to the sensory receptors in muscle fibers of the antagonist
muscles and the lumbar part of the spine.

Z6 = ⟨ l8, l11, l14, l20f g, l18, l19, l20,f g, r6⟩,

where

l

true

true true true

l

truel

truefalse false

false false

false false

l

l l l
r

20

14

11

8

201918
6 =

The tokens from all input places enter place l20 and unite with token π that
obtains the above-mentioned characteristic. On the other hand, token π splits to five
tokens, the same token π and tokens π1, π2, π3 and π4.

Tokens π1, π2, and π3 enter place l18 with characteristics

“30° of abduction in the glenohumeral joint”

“60° of abduction in the glenohumeral joint, 30° rotation of the scapula and 30° elevation
of the clavicle”

“30° of abduction and 90° of internal rotation in the glenohumeral joint, 30° rotation of the
scapula and 30° to 50° posterior rotation of the clavicle”
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Place l19 corresponds to the sensory receptors in the joints and ligaments of the
shoulder complex.

Z7 = ⟨ l18, l24f g, l21, l22, l23, l24f g, r7⟩,

where:

l

true

truetruetruetrue

false false falsel

l l l l
r

24

18

24232221
7 =

The tokens from the two input places enter place l24 and unite with token ɸ that
obtains the above-mentioned characteristic. On the other hand, token ɸ splits to
four tokens, the same token ɸ and ɸ1, ɸ2, ɸ3.

Token ɸ1 enters place l21 and there it obtains characteristics

“the upper limb is abducted in the range from 0° to 30° in the frontal plane”

Token ɸ2 enters place l22 and there it obtains characteristics

“the upper limb is abducted in the range from 30° to 90° in the frontal plane”

Token ɸ3 enters place l23 and there it obtains characteristics

“the upper limb is abducted in the range from 90° to 180° in the frontal plane”

7 Conclusion

The so-described GN model can be used for simulation of different situations,
related to activities of the upper limb. It can help for the studying of different real
processes, related to the mechanism of its movement from biological point of view.
In future, the model can be used for a basis of new models, describing functioning
of an artificial hand and appropriate rehabilitation treatments.
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Method for Interpretation of Functions
of Propositional Logic by Specific Binary
Markov Processes

Vassil Sgurev and Vladimir Jotsov

Abstract The current paper proposes a method for interpretation of propositional
binary logic functions using multi-binary Markov process. This allows logical
concepts ‘true’ and ‘false’ to be treated as stochastic variables, and this in two ways
—qualitative and quantitative. In the first case, if the probability of finding a
Markov process in a definitely true state of this process is greater than 0.5, it is
assumed that the Markov process is in state ‘truth.’ Otherwise the Markov process
is in state ‘false.’ In quantitative terms, depending on the chosen appropriate binary
matrix of transition probabilities it is possible to calculate the probability of finding
the process in one of the states ‘true’ or ‘false’ for each of the steps n=0, 1, 2, . . . of
the Markov process. A single-step Markov realization is elaborated for standard
logic functions of propositional logic; a series of analytical relations are formulated
between the stochastic parameters of the Markov process before and after the
implementation of the single-step transition. It has been proven that any logical
operation can directly, uniquely, and consistently be described by a corresponding
Markov process. Examples are presented and a numerical realization is realized of
some functions of propositional logic by binary Markov processes.

Methods and means of propositional logic perform a fundamental role in series of
modern scientific fields for decision-making such as artificial intelligence and
intelligent systems, perform a fundamental role methods and means of propositional
logic [1]. Therefore, different formal mathematical structures are recently proposed to
describe this logic and to expand its applications, namely probabilistic Bayesian logic
[2], matrix logic [3], network-stream logic [4], fuzzy logic [5]. Of these, fuzzy logic
was most widely spread in different classes of technical systems and control systems.
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A general integration of propositional logic using a discrete Markov process
with two states was proposed in [6]. In the same work it was shown that via Markov
processes it is possible to achieve a new stochastic realization of propositional logic
with special features missing in other classes of logic—from [1–4].

In this work are introduced some new results concerning the stochastic inter-
pretation of propositional logic based on a binary Markov process.

Let us define a set of two states: N = a1, a2f g, the first of which is related to
truth, and the second to false meanings. Markov process may be in one of these two
states; for a discrete time interval it may be either in state a1 or in state a2 with
respective probabilities p11 or p22 or it may change its state to the opposite one a2 or
a1 with respective probabilities p12 or p21. At that

0≤ pij ≤ 1; i, j∈ I = 1, 2f g; ð1Þ

p11 + p12 = 1 and p21 + p22 = 1. ð2Þ

We introduce the following denotations:

0≤P1 ≤ 1; 0≤P2 ≤ 1; 0≤P3 ≤ 1 ð3Þ

π1 = P1, 1−P1ð Þ; π2 = P2, 1−P2ð Þ; π3 = P3, 1−P3ð Þ, ð4Þ

where π1, π2 and π3 are line vectors with two elements.
Then, if at the moment of time n the Markov process is in state a1 with prob-

ability P1 or in state a2 with probability P2 and if we apply the Markov transition
matrix

pij
�� ��= p11 p12

p21 p22

����
����, ð5Þ

the general transition probability P2 is embedded in the elements of it, then the
one-step Markov process will be implemented in the following matrix-vector
equation:

π1 × pij
�� ��= π3 . ð6Þ

Below we consider two cases where probabilities Pij
� �

receive specific
meanings s and p—respectively 1− s and 1− p. These two cases are related to two
types of binary matrices P 1ð Þ and P 2ð Þ .

It is assumed that the following dependencies hold for the matrix P 1ð Þ:

p21 = s; p22 = 1− s; p11 = 1− p; p12 = p ð7Þ
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and there are analogous dependencies for matrix P 2ð Þ:

p21 = 1− s; p22 = s; p11 = p; p12 = 1− p. ð8Þ

Then both matrices P 1ð Þ and P 2ð Þ satisfy (5) and they take the following form:

P 1ð Þ= 1− p p
s 1− s

����
����; P 2ð Þ= p 1− p

1− s s

����
����, ð9Þ

and the vector matrix Eq. (6) can be written, respectively, for P 1ð Þ and P 2ð Þ as

π1 ×P 1ð Þ= π3 and π1 ×P 2ð Þ= π3 . ð10Þ

At every step of the Markov process it will be determined with what probability
this process is at state a1 (true) or at state a2 (false).

We shall denote the probability for the process to be in state a1 by P1 and the
probability to be in state a2 by 1−P1. Then, if

0≤ 1−P1 <P1 ≤ 1, ð11Þ

then the Markov process is with prevailing probability P1 in the true state a1.
Otherwise, if

0≤P1 < 1−P1 ≤ 1, ð12Þ

then the process at the same step is with prevailing probability 1−P1 in the false
state a2. The case

P1 = 1−P1 = 0.5 ð13Þ

1 – 
(a)

(b)

p 1 – ss

pa1 a2

a1 a1

a2 a2

1 – s

p

s

1 – pn 1+n

Fig. 1 .
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is boundary and it is possible to accept that the process is at any of the two states a1
and a2 with equal probability.

Since now, for brevity the word ‘prevailing’ will be meant by default and it will
be omitted.

Analogously to P1, from (11) and (12) it is possible to interpret parameters P2

and P3 defined by (3) and (4).
Graphically the possibilities and the respective probabilities for a single-step

transition in the matrix P 1ð Þ from one state to the next state can be represented by
arcs and nodes of these two graphs in Fig. 1—static (a) and dynamic (b):

For the transition matrix P 2ð Þ by (9), respectively, the static and dynamic graphs
will have the following form:

Further, the element s in P 1ð Þ and P 2ð Þ is considered as the general probability
P2 of the transition in matrices (9), i.e.,

P2 = s. ð14Þ

Each of the values P1,P2,P3, s and p can be represented by its positive or
negative difference εi to the value 0.5, which distinguishes the probabilities of
being in true—a1 or in false state a2. For this purpose, taking

P1 = 0.5+ ε1; P1 = 0.5+ ε2; P3 = 0.5 + ε3; S=0.5+ εs; P=0.5+ εP, ð15Þ

where εi = >
< 0; εij j≤ 0.5 and εij j is the absolute value of εi.

Interesting is the case when the transition probabilities s and p coincide with
each other, i.e.,

s= p . ð16Þ

a1 a2

p 1 – 
(a)

(b)

s

1 – p

s

a1 a1

a2 a2

1 – s

s

1 – p

pn 1+n

Fig. 2 .
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This equation provides the necessary symmetry using P2—otherwise the value
P2 a priori and genetically will ‘favor’ one of the two states—a1 or a2 and the
Markov process will be directed with a high probability to it (Fig. 2).

Lemma 1 For the matrix P 1ð Þ by (9) and for the vector matrix Eq. (10) the
following dependencies exist:

ε3 = − 2ε1ε2; ð17Þ

P3 = 0.5− 2ε1ε2; 1−P3 = 0.5 + 2ε1ε2. ð18Þ
Proof The product of the vector line π1 from (4) and the vector columns of the
matrix P 1ð Þ of (9) leads to the same subject:

P1 1− s+ pð Þð Þ+ s=P3. ð19Þ

Assumptions (14)–(16) lead to

P1 1− 2sð Þ+ s=P3; εs = εp = ε2. ð20Þ

If (20) is carried by the substitutions (15), it is true that

0.5 + ε1ð Þ 1− 2 0.5+ ε2ð Þð Þ+0.5 + ε2 = 0.5+ ε3. ð21Þ

After the appropriate transformations we obtain (17). Addictions (18) are a direct
consequence of (4) and (17).

Next eight corollaries can be derived directly from the results (17) and (18) of
Lemma 1:

Corollary 1.1 If ε1 = 0 or ε2 = 0 or both ε1 and ε2 are zero, then

P3 = 1−P3 = 0.5.

Corollary 1.2 If ε1 = 0.5, then

P3 = 0.5− ε2 and 1−P3 = 0.5 + ε2.

Corollary 1.3 If ε1 = − 0.5, then

P3 = 0.5+ ε2 and 1−P3 = 0.5− ε2.

Corollary 1.4 If ε2 = 0.5, then

P3 = 0.5− ε1 and 1−P3 = 0.5 + ε1.
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Corollary 1.5 If ε2 = − 0.5, then

P3 = 0.5+ ε1 and 1−P3 = 0.5− ε1.

Corollary 1.6 If ε1 = ε2 = 0.5, then

P3 = 0 and 1−P3 = 1.

Corollary 1.7 If ε1 = ε2 = − 0.5, then

P3 = 0 and 1−P3 = 1.

Corollary 1.8 If ε1 = − 0.5 and ε2 = 0.5 or ε1 = 0.5 and ε2 = − 0.5, then

P3 = 1 and 1−P3 = 0.

The results from the next Lemma 2 can be considered as opposite in some
aspects to those of Lemma 1.

Lemma 2 For the matrix P 2ð Þ by (9) and for the vector matrix Eq. (10) the
following relations exist:

ε3 = 2ε1ε2; ð22Þ

P3 = 0.5+ 2ε1ε2; 1−P3 = 0.5− 2ε1ε2. ð23Þ

These two results can be obtained in a manner analogous to the proof of Lemma
1. The product π1 ×P 2ð Þ leads to:

P1 s+ pð Þ − 1ð Þ+1− s=P3. ð24Þ

From assumptions (14)–(16) it follows that

P1 2s− 1ð Þ+1− s=P3, εs = εp = ε2. ð25Þ

Then by substituting (15) in (25)

0.5+ ε1ð Þ 2 0.5+ ε2ð Þ − 1ð Þ+1− 0.5− ε2 = 0.5+ ε3. ð26Þ

The above results directly to (22), and this, in turn, together with (18) proves
(22) and (23).

Analogously to Lemma 1 eight consequences of Lemma 2 can be derived from
2.1 to 2.7. Corollary 2.1 coincides entirely with Corollary 1.1.
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Corollary 2.1 If ε1 = 0.5, then

P3 = 0.5+ ε2 and 1−P3 = 0.5− ε2.

Corollary 2.2 If ε1 = − 0.5, then

P3 = 0.5− ε2 and 1−P3 = 0.5 + ε2.

Corollary 2.3 If ε2 = 0.5, then

P3 = 0.5+ ε1 and 1−P3 = 0.5− ε1.

Corollary 2.4 If ε2 = − 0.5, then

P3 = 0.5− ε1 and 1−P3 = 0.5 + ε1.

Corollary 2.5 If ε1 = ε2 = 0.5, then

P3 = 1 and 1−P3 = 0.

Corollary 2.6 If ε1 = ε2 = − 0.5, then

P3 = 1 and 1−P3 = 0.

Corollary 2.7 If ε1 = − 0.5 and ε2 = 0.5 or ε1 = 0.5 and ε2 = − 0.5, then

P3 = 0 and 1−P3 = 0.

In the last three corollaries of both lemmas the stochastic values P1,P2, and P3

can actually be considered as deterministic parameters.
Lemma 2 can be inferred directly by Lemma 1. To do this, instead s = 0.5 + ε2 it

is necessary to make

s= p=1−P2 = 1− 0.5 + ε2ð Þ .

Then s=0.5− ε2. If this relationship is made in (20), it will lead to results (22)
and (23) of Lemma 2.

Values ε1, ε2, and ε3 are convenient for a logical interpretation, since by (15)
they not only provide quantitative indicators for the transition probabilities P1,P2

and P3 but their sign (plus or minus) can be placed directly under the prevailing true
state in a1 or under the prevailing false state—in a2. The positive sign for εi >0
always shows a predominantly positive value of the variable Pi, i∈ 1, 2,f 3g, i.e.,
0.5≤Pi ≤ 1; the negative sign for εi <0 corresponds to the case 0≤Pi ≤ ≤ 0.5.

The sign of the value εi—plus or minus will be denoted by ε ̄i, i∈ 1, 2, 3f g.
The results of Lemma 1 by sign εīf g are shown in Table 1, and their logical

interpretation is reflected in Table 2.
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Logical variables X, Y, and Z in Table 2 are a relevant interpretation of the sign
parameters ε1̄, ε2̄ and ε3̄ from Table 1. It should be noted that instead the sign
parameters ε1̄, ε2̄ and ε3̄ in Table 1 there can be used also the values ε1, ε2 and ε3 or
the corresponding stochastic quantities P1,P2and P3 by (15). The results in Table 2
will be the same.

Similarly, Table 3 shows the sign parameters ε ̄1, ε2̄ and ε3̄ based on the results
(22) and (23) of Lemma 2. The following Table 4 shows the logical variables X, Y,
and Z, corresponding to ε1̄, ε2̄ and ε3̄ by Lemma 2.

Both Tables 2 and 4 show two possible binary logic functions out of 16 possible
ones. The next six logic functions can be realized by the matrix structures of the
transitional probabilities P 1ð Þ and P 2ð Þ as it follows:
1. Table 2 corresponds to the binary logic function ‘Exclusive OR,’ which can be

indicated by logical variables X, Y, and Z as it follows:

Z ≡X +Y ,Z ≡ X ∧¬Yð Þ∨ ¬X ∧ Yð Þð Þ, ð27Þ

Table 2 . X Y Z ≡X + Y

T T F
T F T
F T T
F F F

Table 3 . ε̄1 ε̄2 ε̄3 = ε̄1ε̄2

+ + +
+ – –

– + –

– – +

Table 4 . X Y Z ≡X ∼ Y

T T T
T F F
F T F
F F T

Table 1 . ε̄1 ε̄2 ε3̄ = − ε̄1ε2̄

+ + –

+ – +
– + +
– – –
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where ≡ means equivalency and ∧ , ∨ , and ¬ are, respectively, the symbols of
conjunction, disjunction, and negation.
This logical function is realized uniquely and directly via the vector matrix
Eq. (10) and also by the stochastic matrix P 1ð Þ from (9).

2. Logical function ‘equivalence’ corresponds to the truth Table 4 and it can be
denoted as it follows:

Z ≡X ∼Y ,Z ≡ X ∧ Yð Þ∨ ¬X ∧¬Yð Þð Þ, ð28Þ

Logical function ‘equivalence’ is uniquely and directly realized by the vector
matrix Eq. (10) and also by the transition matrix P 2ð Þ from (9).

3. The following Table 5 for truth corresponds to the logical function ‘disjunc-
tion’. If we compare it to the truth Table 2 then the only difference will be found
in the row with number 1. This allows us to move from the logical function
‘Exclusive OR’ to the logical function ‘disjunction’ via the following Rule 1,
namely:

ε3 :=
2ε1ε2 iff ε1 > 0 and ε2 > 0;
− 2ε1ε2 otherwise.

�
ð29Þ

In this case we use matrix P 1ð Þ and relations (9) and (10).
4. Table 6 for truth corresponds to the logical function ‘conjunction’ (∧ ). When

compared to the truth Table 4 the only difference will be found in the line with
number 4 on both matrices; the other three lines coincide. This allows us to
move from the logical function ‘equivalence’ to the similar function ‘conjunc-
tion’ with the following Rule 2, namely:

ε3: =
− 2ε1ε2 iff ε1 < 0 and ε2 < 0;
2ε1ε2 otherwise.

�
ð30Þ

Table 5 . X Y X ∨Y ≡ Z

T T T
T F T
F T T
F F F

Table 6 . X Y X ∧Y ≡ Z

T T T
T F F
F T F
F F F
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Matrix P 2ð Þ is used in (30) and also the relations (9) and (10).
5. The logical function ‘implication’ corresponds to the truth Table 7:

The comparison of Tables 4 and 7 leads to the conclusion that the only dif-
ference is in the row with number 3. This allows us to move from the logical
function ‘equivalence’ to the logical function ‘implication’ by following Rule 3:

ε3 :=
− 2ε1ε2 iff ε1 < 0 and ε2 > 0;
2ε1ε2 otherwise .

�
ð31Þ

The above rule uses matrix P 2ð Þ and also the relations (9) and (10).
6. Unary logical operation ‘negation’ is realized in a natural way, changing the

locations of the elements of the vectors π1, π2 and π3 as it is shown in Table 8.
The negation for the three vectors can be defined as follows: for each i∈ 1, 2,f 3g

εi := − εi ð32Þ

or in another way

Pi := 1−Pi. ð33Þ

Table 9 shows a logical variable X and the corresponding function ‘negation,’
realized through εif g from Table 8.

It is possible to define also the remaining 10 binary logic functions by the
described above binary Markov process in an analogous way.

Table 8 . εi − εi

− εi εi

Table 9 . X ¬X

T F
F T

Table 7 . X Y X→Y ≡ Z

T T T
T F F
F T T
F F T
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Using the above-mentioned six logical functions (only three of them—dis-
junction, conjunction, and negation, are necessary for completeness) all formulas of
classical propositional logic can be derived as binary Markov processes. The
so-constructed Markov processes give the way for direct and unambiguous inter-
pretation of the formulas of propositional logic, without any ambiguity and logical
contradictions.

This should take into account the specifics of the stochastic interpretation of truth
and false—the process is in the true state iff at the moment n its probability to be in
state a1 is greater than 0.5. Otherwise the process is in the false state.

In those results attention was paid basically to the qualitative nature in precise
and unambiguous distinction between true or false states of the binary Markov
process. But the results of Lemmas 1, 2 and their corollaries show that also qual-
itative changes occur at any single-step transition in the stochastic parameters that
can be best represented by (17) and (22), namely:

ε3 =±2ε1ε2.

The research of stochastic behavior of the so-defined binary Markov process is
the subject of a separate investigation.

Numerical examples for the implementation of Markov processes described by
six logical functions: +, ∼, ∨ , ∧ , → , ¬ will be presented below.

The raw data for these examples are:

ðaÞ ε1 = 0.2 iff ε1̄ = +ð Þ and ε1 = − 0.3 iff ε ̄1 = −ð Þ; ð34Þ

ðbÞ ε2 = 0.3 iff ε2̄ = +ð Þ and ε2 = − 0.1 iff ε2̄ = −ð Þ. ð35Þ
The relevant logic functions will have the following form:

1. Based on Table 1, equality (17) and the data from (34) and (35), ‘Exclusive OR’
function can be described by the elements of Table 10.

2. Table 11 shows items corresponding to the ‘equivalence’ function. They are
calculated by formula (22), Table 3 and the data from (34) and (35).

3. The ‘disjunction’ function may be determined by the data from Table 1, rule
(29) and relations (34) and (35). The results are shown in Table 12.

4. The elements of Table 13 are calculated via Table 3, Rule (30) and data (34)
and (35). They describe the logical function ‘conjunction.’

Table 10 . ε1 ε2 ε3

0.2 0.3 –0.12
0.2 –0.1 0.04

–0.3 0.3 0.18

–0.3 –0.1 –0.06

Method for Interpretation of Functions of Propositional … 259



5. The logical function ‘implication’ is shown in Table 14. The elements of this
table are determined by the data from Table 3, Rule (36) and (34) and (35).

6. Quantitative data of the logical ‘negation’ are given in Table 15. They are based
on the elements of Table 8 and also on the dependencies (32).

Analogous results can be obtained for different values of ε1 and ε2, , respec-
tively, also for P1 and P2.

Table 12 . ε1 ε2 ε3

0.2 0.3 0.12
0.2 –0.1 0.04

–0.3 0.3 0.18
–0.3 –0.1 –0.06

Table 13 . ε1 ε2 ε3

0.2 0.3 0.12
0.2 –0.1 –0.04

–0.3 0.3 –0.18
–0.3 –0.1 –0.06

Table 14 . ε1 ε2 ε3

0.2 0.3 0.12
0.2 –0.1 –0.04

–0.3 0.3 0.18
–0.3 –0.1 0.06

Table 15 . ε3 − ε3

0.12 –0.12
–0.12 0.12

Table 11 . ε1 ε2 ε3

0.2 0.3 0.12
0.2 –0.1 –0.04

–0.3 0.18 –0.18
–0.3 –0.1 0.06
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1 Conclusion

1. A method for interpreting binary logic functions with a multistep binary Markov
process is introduced. It allows logical concepts ‘true’ and ‘false’ be treated not
as deterministic but as stochastic variables that are ‘mostly true’, with a prob-
ability between 0.5 and 1, to enter state a1 or ‘mostly false’ with a probability
between 0.5 and 1 to enter state a2. This enables a Markov process to deal with
different degrees of truth or false.

2. A single-step Markov realization is elaborated for standard logic functions of
propositional logic; a series of analytical relations are formulated between the
stochastic parameters of the Markov process before and after the implementation
of the single-step transition. It has been proven that any logical operation can
directly, uniquely, and consistently be described by a corresponding Markov
process. It is shown that it is possible via the proposed method to implement a
Markov interpretation of different formulas of propositional logic. The results
allow precise studies of the behavior of the used class of Markov processes.

3. Examples are presented and a numerical realization is realized of some functions
of propositional logic by binary Markov processes.
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Abstract In a series of research papers, the authors have studied some of the most
important features of the principal operations within universities and have con-
structed Generalized Net (GN) models to describe them. The main focus in this
paper is to analyse the process of academic promotion through the hierarchy in
higher education and the preparation of PhD candidates.
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1 Introduction

The processes of administrative functions within an idealized university have been
described within the framework of Generalized Nets (GNs, see [1, 2]) in a series of
papers (subsequently collated in a book [6]). The rapid growth of university edu-
cation in general, and the onset of the Bologna Process in particular, have made the
consideration of these functions more urgent. Moreover, the preparation of doctoral
candidates in this era of growth necessitates more detailed analyses of the prepa-
ration of these research students [8].

In Chap. 5 of [6], the process of promotion through the higher education hier-
archy (universities and scientific institutes) was described. The information we have
used about the processes involved is derived from our own countries. While there
are certain small differences between university staff and scientific institute staff in
different countries, for the sake of brevity and simplicity, we shall ignore these
differences.

The more important fact is that the scientific degrees and titles in the separate
countries are different. In the monograph [6], we have provided schematic sum-
maries to illustrate the order of these titles and degrees, as stipulated in Argentina,
Australia, Belgium, Bulgaria, Greece, Korea, Lebanon, Poland, Portugal, Romania,
Slovakia, the UK and the USA.

In this paper in Sect. 2 we present a GN-model of academic promotion G (see
Fig. 1), which is based on the model from Chapter Five in [6]. In Sect. 3, we extend
the GN G with the hierarchical operator H1 over GNs [1, 2], so that we can replace
the place l13 of GN G with a new GN from Fig. 2 that represents PhD preparation.

Throughout the discussion, by “Academic Institution” (AI) we shall mean either
a university or a scientific institute.
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2 GN-Model of Academic Promotion

The GN-model in Fig. 1 describes the procedure and time scheduling to obtain
scientific titles and degrees in one of the aforementioned countries (Bulgaria). In
Sect. 4, we discuss the changes needed to extend the model in order to describe
similar processes in each of the remaining countries. The basic time step of the GN
is assumed to be one year. If we need to describe the processes involved in more
detail, we can decrease the duration of this time step.

The GN-model consists of six transitions that represent, respectively:

• the process of studying in a university (transition Z1),
• the process of competition for starting a procedure of PhD dissertation or of

starting a job as an Assistant Professor (transition Z2),
• the process of preparing of PhD dissertations (transition Z3),
• the set of Assistant Professors and their activities (transition Z4),
• the set of Associated Professors and their activities (transition Z5),
• the set of the (Full) Professors and their activities (transition Z6).

For the different stages of the process of obtaining scientific titles and degrees,
we include some possibilities for potential evaluation procedures. In order to do so,
we utilize estimations of intuitionistic fuzzy sets [3–5].

During the whole period of the GN-functioning, tokens αYear will enter the net
with initial characteristic

xαYear = “number of students who enrolled a university after finishing secondary
school in year Year.”

Let the number of the students who have started study in year Year be SN(Year).
Therefore, the formal form of an α-token’s initial characteristic for time step that

corresponds to year Year is

xαYear =
′′SN Yearð Þ′′.

Initially, the tokens β, γ, δ, ε, ζ, η stay in places l4, l13, l17, l20, l21 and l24. They
will be in their own places during the whole time during which the GN functions.
While they may split into two or more tokens, the original token will remain in its
own place the whole time. The original tokens have the following initial and current
characteristics:

• token β in place l4:
xβcu = “number of students who currently study in the universities,”

• token γ in place l13:
xγcu = “number of PhD students who currently work on their dissertations in
AIs”,

• token δ in place l17:
xδcu = “number of Assistant Professors, who currently work in AIs”,

• token ε in place l20:
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xεcu = “number of Associate Professors, who currently work in AIs and who
simultaneously prepare their DSc-dissertations,”

• token ζ in place l21:
xζcu = “number of Associate Professors, who have not started yet or who had
finished their DSc-dissertations,”

l0

l4

Z1

l1

l2

Z2

l6

l3

l5

l13

Z3
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l11
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Fig. 1 GN-model of the process of academic promotion (Bulgaria)
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Fig. 2 GN-model of the PhD development

266 A.G. Shannon et al.



• token η in place l24:
xηcu = “number of (Full) Professors, who currently work in AIs.”

Obviously, if the duration of the full university course is D years, then the
number AN(Year) of all ordinary students in year Year is

AN Yearð Þ= ∑
Year

i=Year−D+1
SNðiÞ.

Transition Z1 has the form:

Z1 = ⟨ l0, l4f g, l1, l2, l3, l4f g, r1, ∨ l0, l4ð Þ⟩,

where

where

W4,1 = “there are students who stop studying,”
W4,2 = “there are students who finish studying and start work outside scientific
institutions,”
W4,3 = “there are students who finish studying and start work in scientific
institutions.”

On each time step, token α from l0 enters place l4 and unites with token β. The β
token can split to four tokens. As we mentioned above, the original β token con-
tinues to stay in place l4.

• Token β1 enters place l1 with characteristic
xβ1 = “number of students who stop their studies in a university,”

• token β2 that enters place l2 with characteristic
xβ2 = “number of students who finish their studies in a university and start
working outside some AIs,”

• token β3 that enters place l4 with characteristic
xβ3 = “number of students who finish their studies in a university and start
working in some AIs.”

From the point of view of the process of obtaining scientific titles and degrees,
the intuitionistic fuzzy estimation of the results of this transition is

⟨

xβ2 + xβ3
xαYear −D+1

,
xβ1

xαYear−D+1
⟩. ð1Þ
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The degree of uncertainty in estimation (1) corresponds to the number of stu-
dents who have been learning in year Year.

Transition Z2 has the form:

Z2 = ⟨ l3, l8, l16f g, l5, l6, l7f g, r2, ∨ l3, l8, l16ð Þ⟩,

where

where

W3,5 = “there are participants in a competition for PhD doctorates, who win the
competition,”
W3,6 = “there are participants (without PhD) in a competition for Assistant Pro-
fessors, who win the competition,”
W3,7 = ¬W3,5 OR ¬W3,6,
W8,6 = “there are participants with PhD in a competition for Assistant Professors,
who win the competition,”
W8,7 = ¬W8,6,
W16,5 = “there are Assistant Professors who win the competition for PhD
doctorates,”
W15,6 = ¬W16,5.

Token β3 splits to tree tokens:

• β3,1 that enters place l5 with a characteristic
xβ3, 1 = “number of candidates for PhD doctorates who win the competition,”

• β3,2 that enters place l6 with a characteristic
xβ3, 2 = “number of candidates for title Assistant Professor, who win the
competition”

• β3,3 that enters place l7 with a characteristic
xβ3, 3 = “number of candidates who lose the competition.”

On the other hand, token δ3 enters place l5 from place l16 with a characteristic
xδ3 = “number of Assistant Professors that want to participate for doctorates.”

Transition Z3 has the form:

Z3 = ⟨ l5, l13f g, l8, l9, l10, l11, l12, l13f g, r3, ∨ l5, l13ð Þ⟩,

where
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where

W13,8 = “the dissertation has been successfully defended and the person want to
start work as an Assistant Professor in an AI,”
W13,9 = “the dissertation of an Assistant Professor has been successfully
defended,”
W13,10 = ¬W13,9,
W13,11 = “the dissertation has been successfully defended and the person starts
working outside an AI,”
W13,12 = “the dissertation has not been successfully defended and the person starts
working outside an AI.”

Token β3,1 unites with token γ in place l13 with the above mentioned charac-
teristic. Token γ splits to six tokens. The original token γ remains in place l13.

• token γ1 enters place l8 with a characteristic
xγ1 = “number of persons with defended PhD, who want to work as Assistant
Professors in some AI,”

• token γ2 enters place l9 with a characteristic
xγ2 = “number of Assistant Professor, who works in AIs and have successfully
defended dissertation,”

• token γ3 enters place l10 with a characteristic
xγ3 = “number of Assistant Professor, who works in AIs and has not been
successfully defended dissertation,”

• token γ4 that place l11 with a characteristic
xγ4 = “number of persons with defended PhD, who start working outside AIs,”

• token γ5 that enters place l12 with a characteristic
xγ5 = “number of persons who had not defended their PhD.”

From the point of view of the process of obtaining scientific titles and degrees,
the intuitionistic fuzzy estimation of the results of this transition is

⟨

xγ1 + xγ2 + xγ4
xαYear−E+1

,
xγ3 + xγ5

xαYear−E+1
⟩, ð2Þ

where E is the duration of PhD thesis preparation.
The degree of uncertainty in estimation (2) corresponds to the number of the

PhD students who have been preparing their dissertations.
Transition Z4 has the form:
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Z4 = ⟨ l6, l9, l10, l17f g, l14, l15, l16, l17f g, r4, ∨ l6, l9, l10, l17ð Þ⟩,

where

where

W17,14 = “there are Assistant Professors, who participate in competition for
Associate Professor,”
W17,15 = “there are Assistant Professors, who leave AIs,”
W17,16 = “there are Assistant Professors (without PhD), who would like to prepare
it.”

Tokens β3,1, γ2, and γ3 unite with token δ in place l17 with the above-mentioned
characteristic. Token δ splits to four tokens, with the original staying in place l17,
while the other tokens enter places l14, l15, and l16, respectively:

• token δ1 that enters place l14 with a characteristic
xδ1 = “number of Assistant Professors (with PhD), who want to take part in
competition for Associate Professor.”

• token δ2 that enters place l15 with a characteristic
xδ2 = “number of Assistant Professors (without PhD), who stopped work in an
AI,”

• token δ3 that enters place l16 with a characteristic
xδ3 = “number of Assistant Professors (without PhD), who want to start to
prepare PhD dissertations.”

From the point of view of the process of obtaining of scientific titles and degrees,
the intuitionistic fuzzy estimation of the results of this transition is

⟨

APðYearÞ
xδYear

,
AWPðYearÞ

xδYear
⟩, ð3Þ

where AP(Year) is the number of the Assistant Professors with PhD, AWP(Year) is
the number of Assistant Professors who had not then started preparing a PhD.

The degree of uncertainty in estimation (3) corresponds to the number of
Assistant Professors who currently prepare their (free or external) dissertations.

Transition Z5 has the form:
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Z5 = ⟨ l14, l20, l21f g, l18, l19, l20, l21f g, r5, ∨ l14, l20, l21ð Þ⟩,

where

where

• W20,20 = W21,20 = “there are Associated Professors without DSc, who would
like to prepare or currently prepare it,”

• W20,19 = W21,19 = “there are Associated Professors, who leave AIs,”
• W21,18 = “there are Associated Professors, who want to participate in compe-

tition for Full Professor.”

Token δ1 unite with token ζ in place l21 with the above-mentioned characteristic.
Token ζ splits to four tokens:

• token ζ1 that enters place l18 with a characteristic
xζ1 = “number of Associated Professors, who want to take part in competition
for Full Professor,”

• token ζ2 that enters place l19 with a characteristic
xζ2 = “number of Associated Professors, who stopped working in a AI,”

• token ζ3 that enters place l20 with a characteristic
xζ3 = “number of Associated Professors without DSc, who want to start a DSc
procedure.”

Tokens ζ3 unites with token ε in place l20 with the above-mentioned
characteristic.

From the point of view of the process of obtaining scientific titles and degrees,
the intuitionistic fuzzy estimation of the results of this transition is

⟨

APDðYearÞ
xζ

,
AWPSðYearÞ

xζ
⟩, ð4Þ

where APD(Year) is the number of Associated Professors with a DSc, APWS(Year)
is the number of Associated Professors who had not started preparing a DSc
dissertation.

The degree of uncertainty in estimation (4) corresponds to the number of the
Associated Professors who currently prepare their DSc dissertations.

Transition Z6 has the form:
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Z6 = ⟨ l18, l24f g, l22, l23, l24f g, r6, ∨ l18, l24ð Þ⟩,

where

where

W24,22 = “there are Professors who have left AIs,”
W24,23 = “there are Professors, who have retired.”

Tokens ζ1 and η unite with token η in place l24 with the above mentioned
characteristic. Token η splits to three tokens:

• token η1 that enters place l22 with a characteristic
xη1 = “number of Professors, who have left AIs,”

• token η2 that enters place l23 with a characteristic
xη2 = “number of Assistant Professors, who have retired,” and token η that stays
in place l24.

From the point of view of the process of obtaining scientific titles and degrees,
the intuitionistic fuzzy estimation of the results of this transition is

⟨

PWISðYearÞ
xη

,
PPðYearÞ

xη
⟩, ð5Þ

where PWIS(Year) is the number of the Professors working in AIs and PP(Year) is
the number of the Professors who have retired.

The degree of uncertainty in estimation (5) corresponds to the number of Pro-
fessors who are currently not working in any AI, but can potentially return to work
there, because they have not yet reached the age of retirement.

3 A GN-Model of the PhD Candidature

The GN-model (see Fig. 2) contains 8 transitions and 22 places, and it is a set of
transitions:

A=Z*
1 , Z

*
2 ,Z

*
3 ,Z

*
4 , Z

*
5 ,Z

*
6 ,Z

*
7 , Z

*
8

in which the transitions represent:

• Z*
1—Submission of documents for PhD examination;

• Z*
2—Examination for enrollment in the PhD;
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• Z*
3—The process of evaluation, ranking the candidates’ evaluations and deter-

mining the candidates;
• Z*

4—Preparation for the PhD exams;
• Z*

5—Check the deadline for taking the PhD exams;
• Z*

6—Submission of the PhD thesis;
• Z*

7—Selection of thesis reviewers;
• Z*

8—A thesis defense.

The forms of the transitions are the following:
The tokens ω1, ω2, …, ωn enter the GN through place p1 with characteristics
Candidate: name, date, competition documents.

Z*
1 = ⟨ p1, p4f g, p2, p3, p4f g,R*

1⟩,

where

w4,2 = “The time for submission documents has expired and commission has
assessed that submitted documents are accurate,”
w4,3 = “The time for submission documents has expired and commission has
assessed that submitted documents are not accurate,”
w4,4 = “The time for submission documents has not expired.”

The tokens do not take on any characteristic in place p4 and they obtain the
characteristic, respectively:

“The candidate is approved” in place p2,
“The candidate fails” in place p3.

Z*
2 = ⟨ p2, p7f g, p5, p6, p7f g, ∨R*

2⟩,

where

w7,5 = “Examination has taken place and the estimation is positive,”
w7,6 = “Examination has taken place and the estimation is negative,”
w7,7 = “The moment of examination has not yet taken place.”
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The tokens do not have any characteristic in place p7 and they obtain in place p5
and p6 the characteristic, respectively:

Name of the candidate, positive estimation,
Name of the candidate, negative estimation.

Z*
3 = ⟨fp5, p10g, p8, p9, p10f g,R*

3⟩,

where

w10,8 = “A final decision has been made by the Commission, and it is positive,”
w10,9 = “A final decision has been made by the Commission, and it is negative,”
w10,10 = “The Commission has not yet made its final decision.”

The tokens do not obtain any characteristic in place p10 and they obtain in places
p8 and p9 the characteristic, respectively:

The candidate is finally approved,
The candidate is rejected.

Z*
4 = ⟨fp8, p13, p15g, fp11, p12, p13g,R*

4⟩,

where

• w13,11 = “The PhD student has passed all of his/her examinations,”
• w13,12 = “The PhD student has some of his/her examinations untaken,”
• w13,13 = “Exam session has not yet finished.”

The tokens do not obtain any characteristic in place p13 and they obtain in places
p11 and p12 the characteristic, respectively:

The PhD student takes all exams and obtains all its educational credit units,
The candidate has untaken exam (exams).

Z*
5 = ⟨fp12g, fp14, p15g,R*

5⟩,

where
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w12,14 = “The time of*** education of PhD student is finished,”
w12,15 = ¬ w12,14,

where ¬P is the negation of predicate P.
The tokens that enter places p14 and p15 obtain the characteristic, respectively:
The time of education of PhD student has finished but he/she has not passed all

exams,
The time of education of PhD student has not finished but he/she has not passed

all exams.

Z*
6 = ⟨ p11, p17, p24f g, p16, p17f g,R*

6⟩,

where

w17,16 = “The thesis is ready,”
w17,17 = ¬ w17,16.

The tokens do not have any characteristic in place p17 and they obtain in place
p16 the characteristic:

The PhD student has prepared his/her thesis.

Z*
7 = ⟨ p16, p19f g, p18, p19f g,R*

7⟩,

where

w19,18 = “The reviewers are determined,”
w19,19 = ¬ w19,18.

The tokens take on in places p18 and p19 the characteristic
The examination reports of the thesis,
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The chosen reviewers for current thesis.

Z*
8 = ⟨fp18g, fp20, p21, p22g,R*

8⟩

where

w18,20 = “The defense is successful,”
w18,21 = “The defense is not successful and the student does not have possibility
for another one,”
w18,22 = “The defense is not successful, and the student has possibility for another
one.”

The tokens that enter places p20, p21 and p22 obtain, respectively, the
characteristics:

The defense is successful,
The defense is not successful and the PhD student not has the possibility for next

defense,
The defense is not successful, but the PhD student has the possibility for next

defense.

4 Conclusion

In the present paper, we construct two GN-models to represent the procedure for
obtaining scientific titles and degrees and the time order for obtaining scientific
titles in different countries. The second GN-model is a subnet of the first, because it
can replace the place l13 from the first GN-model by the hierarchical operator H1.
The GNs constructed in this way can be used to study the dynamics of AI staff
development.

The first GN-model is for academic promotion. With this model we can compare
the status of the scientific potential of different countries. It can also be detailed in
order to trace the status of the separate AIs in a particular country. On the other
hand, the model can be transformed with only small changes in order to be used in
different countries. For example, in the GN-models for Australia, Greece, Korea,
Portugal there will be no feedback relations between transitions Z4 and Z2, because
the PhD thesis is generally to be prepared after obtaining the master’s degree.

The second GN-model is the detailed description of the place l13 which rep-
resent the salient features of the preparation of doctoral candidates in AIs. This GN
can be used to study the dynamics of PhD candidate development in AI. It can also
be used for monitoring and evaluating the PhD development process in that it
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provides the possibility of tracing all stages of the students’ education, including the
timing of the selection of candidates. Moreover, this model can be utilized for
simulation purposes, particularly in workshops to prepare and develop doctoral
advisers and supervisors [7, 8].
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Modeling Telehealth Services
with Generalized Nets
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and Elissaveta Stefanova

Abstract Generalized Net model of processes, related to tracking the changes in

health status (diabetes) of adult patients has been presented. The contemporary state

of the art of the telecommunications and navigation technologies allows this model

to be extended to the case of active and mobile patient. This requires the inclusion

of patient’s current location as a new and significant variable of the model. Various

opportunities are considered for the retrieval of this information, with a focus on the

optimal ones, and a refined Generalized Net model is proposed.
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1 Introduction

Ambient-Assisted Living, telecare, and telehealth belong to the framework of assis-

tive technologies, the aim of which is to secure an independent life at home for

elderly and/ or chronically ill people or persons with disabilities as long as possi-

ble. In addition, there was in recent years a number of national and international

policy initiatives and projects to develop the necessary technologies in pilot projects

to test or to support the implementation. In Germany, it is the BMBF/VDE Initiative

Ambient-Assisted Living, which significantly contributed to the connection of all

relevant social groups. In Great Britain, the Department of Health has developed the

whole systems demonstrator program to promote large-scale telecare/telehealth and

to carry out the world largest randomized study. In Australia were created an Inde-

pendent Living Centers as the LifeTech center in Brisbane, in addition to the large

areas of assistive technologies, specifically telecare and telehealth. Relevant services

were developed and tested [1].

The most effective assistive technology mentioned in research in Australia and

United Kingdom is when older people are provided with early intervention, care-

ful assessment, the correct prescription, and home-based follow-up training in how

to use assistive technologies. The most effective assistive technologies, identified in

research [2, 3] are aids, devices, and equipment to improve quality of life, envi-

ronmental adaptations to the home, telecare/telehealth, and smart technologies.

Although only brief information is given of assistive technology policies and devel-

opments in other countries, there is work under way to expand the provision of

assistive technologies to older people in a number of countries, including the United

States, Japan, China, Spain, and many Scandinavian countries.

One of the main goals of the EU Project MATSIQEL (Models for Aging and

Technological Solutions for Improving and Enhancing the Quality of Life (2011–

2013), IRSES People Marie Curie Action) is the research on new technologies, used

for concepts as Ambient Assisting Living, Telecare or Telehealth, and their contribu-

tion for improving the quality of life of older people worldwide. The research field is

interdisciplinary. The partners in the project are from different countries and different

research areas—Northumbria University in UK (the project coordinator), University

of Applied Sciences in Frankfurt, Germany, the Griffith University in Brisbane Aus-

tralia, die Universidad National Autonoma de Mexico, University Kapstadt in South

Africa

The Bulgarian partner is the Institute of Biophysics and Biomedical Engineering

at the Bulgarian Academy of Sciences. New knowledge for development of new

devices should be developed on the base of Generalized Net approach. Here, we

shall show the application of the apparatus of Generalized Nets (GNs, see [4–6]) to

assistive technology, namely to telehealth (including the action of a medical doctor)

services for diabetes, and the advantages of using such model.

Diabetes mellitus (DM) is a major cause of mortality and morbidity in every coun-

try. In 2011, more than 366 million people had DM worldwide. Due to the world’s

increasingly aging populations, increasingly unhealthy diets, sedentary lifestyles,
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and obesity, it is estimated that the prevalence of DM will increase to 552 million

people by 2030. DM is an intractable condition in which blood glucose levels cannot

be regulated normally by the body alone; it has many complications, including car-

diovascular diseases, nephropathy, neuropathy, retinopathy, and amputations. The

treatment methods include dietary regulation to control blood glucose levels, oral

medication, and insulin injection; however, all of these have adverse effects on the

patients’ quality of life.

Type 1 diabetes, Type 2 diabetes, and gestational diabetes are three main types of

diabetes, although there are some other forms of DM, including congenital diabetes,

cystic fibrosis-related diabetes, and steroid diabetes, induced by high doses of gluco-

corticoids. Type 1 diabetes is an autoimmune disease with pancreatic islet beta cell

destruction. It is an autoimmune disorder in which the body cannot produce suffi-

cient insulin. Type 2 diabetes, the most prevalent form, results from insulin resistance

with an insulin secretary defect. Both Type 1 and Type 2 diabetes are chronic condi-

tions that usually cannot be cured easily. Gestational diabetes is the term used when

a woman develops diabetes during pregnancy. Generally, it resolves after delivery,

but it may precede development of Type 2 diabetes later in life [7].

Criteria for the diagnosis of diabetes: Fasting glucose: ≥7.0 mmol/l (126 mg/dl)

Fasting is defined as no caloric intake for at least 8 h. Symptoms of hyperglycemia

and a casual plasma glucose ≥11.1 mmol/l (200 mg/dl). Casual is defined as any

time of day without regard to time since last meal. The classic symptoms of hyper-

glycemia include polyuria, polydipsia, and unexplained weight loss. In conclusion,

when the fasting blood glucose is above 7 mmol/l or blood glucose after 2 h after

eating is above 11,1 mmol/l the patient has diabetes [8]. In order to have a view on

the state of the patient and to have a reaction by a doctor we should monitor the blood

glucose. The control of blood glucose levels relies on blood glucose measurement.

Diabetic patients, whether Type 1 or Type 2, are encouraged to check their blood

glucose levels several times per day; currently, the most common means of checking

is using a finger-prick glucose meter. In this way, diabetic patients can obtain a clear

picture of their blood glucose levels for therapy optimization and for insulin dosage

adjustment for those who need daily injections. Finger-pricking, however, has sev-

eral disadvantages. Many people dislike using sharp objects and seeing blood, there

is a risk of infection, and, over the long term, this practice can result in damage to

the finger tissue. Given these realities, the advantages of a noninvasive technology

are easily understood. Further, the finger-prick glucose meter is a discrete glucose

measurement device that is not practical for continuous monitoring of blood glu-

cose. Some incidences of hyperglycemia or hypoglycemia between measurements

may not be recorded. Thus, the resultant monitoring cannot fully represent the blood

glucose pattern. Noninvasive glucose measurement eliminates the painful pricking

experience, risk of infection, and damage to finger tissue. The noninvasive concept

was launched more than 30 years ago. Nevertheless, it can be said that most of the

noninvasive technologies are still in their early stages of development. Many nonin-

vasive technologies have been described in the literature, and there is an increasing

volume of recent research results.
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Table 1 Information regarding noninvasive glucose-monitoring devices

Company (or Device) Technology Status

BioSensors Inc. Bioimpedance spectroscopy Under development

Freedom Meditech Fluorescent technology Awaiting FDA approval

Cnoga Medical Near-infrared spectroscopy Awaiting FDA approval

C8 MediSensors Raman spectroscopy Investigational device

Positive ID Chemical sensing in exhaled

breath

Under development

EyeSense Fluorescent technology R&D phase

Calisto Medical Inc. Bio-electromagnetic resonance Under production

Integrity Applications Ltd. Ultrasonic, conductivity and

heat capacity

Clinical trials phase

Grove Instruments NIR spectroscopy(optical

bridge technology)

Clinical trials phase

SCOUT DS, VeraLight Inc. Fluorescent spectroscopy Approved

Noninvasive glucose-monitoring technologies

∙ Bioimpedance spectroscopy

∙ Electromagnetic sensing

∙ Fluorescence technology

∙ Mid-infrared spectroscopy

∙ Near-infrared spectroscopy

∙ Optical coherence tomography

∙ Optical polarimetry

∙ Raman spectroscopy

∙ Reverse iontophoresis

∙ Ultrasound technology

Table 1 shows the most recent developments concerning noninvasive glucose

measurement (c.f. [7])

It is important to note that noninvasive monitoring will never be achieved with-

out vigorous scientific and clinical evidence. Many technical issues should be still

resolved in order to have a reliable, technically proven glucose measurement.

Further we consider a noninvasive glucose meter as a sensor capable of collect-

ing, storing (to some extent), analyzing the obtained data, and consequently tak-

ing the most expected decision. In practice, two types of sensors are considered.

The first type are the sensors which are attached to the patient’s body. These sen-

sors are looking for biomedical parameters, e.g., ECG signal, SPO2 (Saturation of

Peripheral Oxygen). The second-type sensors which are stationary are placed in the

rooms to monitor for CO(carbon monoxide) concentration. There are also life sen-

sors which are similar to the first type but work in standby mode and are activated by

patient—when event has occurred, e.g., extra beats, the patient pushes event button

and the sensors collect the signal. The first and second life sensor types are patient-

independent and can work autonomously [9].
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For the considered sensor, alarm message is sent to the server and, if necessary,

parameter value (or a series of them). The server can send requests to the sensor

to confirm the alarm event or the parameter. With these sensors we can have the

False positive event. For this reason, the server has to have very smart filter for False

positive removal or translate the alarm event to human operator if the case is com-

plicated. This type of sensors can work with a cheap smart module for connecting

to the GSM network. Since this network allows more flexibility, the patient is free

to go wherever he wants. These sensors can make communication to smart phone

by Bluetooth or direct cable communication. Nowadays, the existing GSM network

has enough speed and data translation capability via, e.g., network type 3G and 4G

too. Also these GSM modules can have a GPS module. This GPS module is neces-

sary in case that the medical center has to localize the person in urgent cases such as

earthquake, fires, etc. The smart module can send the GPS coordinates to the rescue

center for easy localization of the person or persons. In order to carry out the con-

nection between GSM networks, the sensor should have a GSM module or a smart

module. Another requirement to prevent connection break is that the GSM module

has to be connected to at least two networks available or a WiFi network connection

should be accessible [10].

Further for the purpose of discussion, we will assume that the sensor carrier is

equipped with a GPS tracking unit (a device using the Global Positioning System

to determine the precise location of a vehicle, person, to which it is attached and

to record the position of the asset at regular intervals). The recorded location data

can be stored within the tracking unit, or it may be transmitted to a central location

data base, or internet-connected computer, using a cellular, radio, or satellite modem

embedded in the unit. This allows the asset’s location to be displayed against a map

backdrop either in real time or when analyzing the track later, using GPS tracking

software http://www.liveviewgps.com/. GPS personal tracking devices assist in the

care of the elderly and vulnerable. Devices allow users to call for assistance and

optionally allow designated carers to locate the user’s position, typically within 5

to 10 m. Their use helps promote independent living and social inclusion for the

elderly. Devices often incorporate either one-way or two-way voice communication

which is activated by pressing a button. Some devices also allow the user to call sev-

eral phone numbers using preprogrammed speed dial buttons. GPS personal tracking

devices are used in several countries to help in monitoring people with early stage

of dementia and Alzheimer http://www.eurogps.eu/bg/world-news/tracking/99-gps-

tracking-alzheimer.

2 Generalized Net Model

The GN model developed on the base of the models from [9] and [10] (see Fig. 1)

consists of

∙ eleven transitions: Z1,… ,Z11;
∙ thirty-one places l1,… , l31;

http://www.liveviewgps.com/
http://www.eurogps.eu/bg/world-news/tracking/99-gps-tracking-alzheimer.
http://www.eurogps.eu/bg/world-news/tracking/99-gps-tracking-alzheimer.
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∙ tokens representing the patients, the sensors, criteria for correctness of the sig-

nals, history, and previous actions taken, the dispatchers that monitor the signals

from the sensors, the medical doctors who examine the patients and the medical

specialists who transport the patient to the hospital;

Tokens 𝜋1, 𝜋2,… , 𝜋k which represent the patients enter the net in place l4 with

initial characteristic

“patient; name of the patient; current health status”

Tokens 𝜎1,… , 𝜎m which represent the sensors enter the net in place l6 with initial

characteristic

“name of the patient; type of sensor”

As an example, we can include in the model the glucose meter which was discussed

in the previous section by adding an additional 𝜎-token.

Tokens 𝛼 and 𝛽 enter the net in places l11 and l14 respectively with initial charac-

teristics

“criteria for the correctness of the signals”

Tokens d1,… , dn enter the net in place l19 with initial characteristics

“name of the patient; previously recorded sensor data and respective action taken”

Tokens 𝛿1,… , 𝛿k enter the net in place l23 with initial characteristics

“dispatcher; name of the dispatcher; information about all received signals”

Tokens s1,… , sl enter the net in place l27 with initial characteristics

“medical specialist responsible for the transportation of the patient; name of the specialist”

Tokens 𝜇1, 𝜇2,… , 𝜇p which represent the medical doctors who examine the

patients enter the net in place l24 with initial characteristic:

“medical doctor; name of the medical doctor; specialty”

Below is a formal description of the transitions of the net.

Z1 = ⟨{l4, l30, l25}, {l1, l2, l3, l4},
l1 l2 l3 l4

l4 false W4,2 W4,3 true
l25 true false false false
l30 false false false true

⟩,
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where

W4,2 = “there is a change in the current patient’s status.”;

W4,3 = “the current patient must be transported to hospital”;

When the truth value of the predicate W4,2 = true the token 𝜋i representing the

i-th patient (here and below 1 ≤ i ≤ k) splits into two tokens the original token 𝜋i
that continues to stay in place l4 with the above-mentioned characteristic, and token

𝜋

′
i that enters place l2 where it does not obtain new characteristics. When the truth

value of the predicate W4,3 = true the current 𝜋i token enters place l3. In place l1 the

tokens obtain the characteristic

“duration of the examination of the patient”

Z2 = ⟨{l2, l6, l10, l12, l15}, {l5, l6},
l5 l6

l2 false true
l6 W6,5 W6,6
l10 false true
l12 false true
l15 false true

⟩,

where

W6,5 = “the sensor detected the patient’s body signals”;

W6,6 = ¬W6,5,

where ¬P is the negation of the predicate P.
When the truth value of predicate W6,5 = true the corresponding 𝜎 token splits

into two tokens—the original and a new one that enters place l5 with characteristic

“signal of the sensor about the current patient”

Z3 = ⟨{l5}, {l7, l8}, l7 l8
l5 W5,7 W5,8

⟩,
where

W5,7 = “the signal comes from a stationary sensor”,

W5,8 = “the signal comes from a non-stationary sensor”,

Z4 = ⟨{l7, l8, l11}, {l9, l10, l11},
l9 l10 l11

l7 true false false
l8 W8,9 W8,10 false
l11 false false true

⟩,

where

W8,9 = “the criterion shows that the signal of the sensor is correct and it must be

further evaluated whether a medical doctor’s reaction is necessary.”,
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W8,10 = “the criterion shows that the current signal must be confirmed.”

When the current 𝜎 token enters places l9 or l10 it does not obtain any new charac-

teristics.

Z5 = ⟨{l9, l14}, {l12, l13, l14},
l12 l13 l14

l9 W9,12 W9,13 false
l14 false false true

⟩,

where

W9,12 = “the criterion shows that the signal is incorrect.”

W9,13 = “the criterion shows that the signal is correct.”

In place l12 the current 𝜎 token obtains the characteristic “there is a problem with

the sensor.” In place l13 the current 𝜎 token does not obtain any new characteristics.

Z6 = ⟨{l13, l19}, {l15, l16, l17, l18, l19},
l15 l16 l17 l18 l19

l13 W13,15 W13,16 W13,17 W13,18 false
l19 false false false false true

⟩,

where

W13,15 = “the history suggests that the signal must be confirmed”;

W13,16 = “the history suggests that a doctor should visit the patient”;

W13,17 = “the signal should be examined by dispatcher”;

W13,18 = “the patient should be sent to hospital”

Z7 = ⟨{l17, l23}, {l20, l21, l22, l23},
l20 l21 l22 l23

l17 W17,20 W17,21 W17,22 false
l23 false false false true

⟩,

where

W17,20 = “a medical doctor should be sent to examine the patient”;

W17,21 = “no action is necessary”;

W17,22 = “the patient should be transported to a medical center”;

When the truth-value of the predicate W17,20 = true the current 𝜎 token enters place

l20 with characteristic

“a decision to visit the patient has been taken”

When the truth-value of the predicate W17,21 = true the current 𝜎 token enters place

l21 with characteristic

“a decision to ignore the signal has been taken”
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When the truth-value of the predicate W17,22 = true the current 𝜎 token enters place

l22 with characteristic

“a decision to transport the patient to a medical center has been taken”

Z8 = ⟨{l1, l16, l20, l24}, {l24, l25},
l24 l25

l1 true false
l16 true false
l20 true false
l24 W24,24 W24,25

⟩,

where

W24,25 = “a medical doctor should be sent to examine the patient”,

W24,24 = ¬W24,25.

In place l24 the 𝜎 tokens do not obtain new characteristics. When the truth value of

the predicate W24,25 = true the 𝜇i token representing the medical doctor who will

visit the patient enters place l25 with characteristic

“name of the medical doctor who will visit the patient; name of the patient”

Z9 = ⟨{l22, l27, l28}, {l26, l27},
l26 l27

l22 false true
l27 W27,26 W27,27
l28 false true

⟩,

where

W27,26 = “specialists should be sent to transport the patient to the hospital”;

W27,27 = ¬W27,26. In place l26 the current token si receives the characteristic

“name of the patient that should be transported to the hospital”

In place l27 the tokens receive the characteristic

“names of the staff on duty”

Z10 = ⟨{l3, l26}, {l28, l29},
l28 l29

l3 false true
l26 true false

⟩,

In place l28 the tokens receive the characteristics

“time for completing the transportation of the patient”
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In place l29 the tokens receive the characteristics

“condition of the patient upon arrival at the hospital”

Z11 = ⟨{l29, l31}, {l30, l31},
l30 l31

l29 false true
l31 W31,30 W31,31

⟩,

where

W31,30 = “all medical procedures are completed”;

W31,31 = ¬W31,30
In place l30 the tokens receive the characteristics

“condition of the patient upon discharge from hospital”

In place l31 the tokens receive the characteristics

“condition of the patient during the procedures”

3 Conclusion

Telecare/telehealth is the remote or enhanced delivery of services to people in

their own home by means of telecommunications and computerized systems. Tele-

care/telehealth ranges from basic community alarm services to more complex inter-

ventions involving fall detectors and sensors which monitor a range of physical

behavior. The present GN-model describes the indirect (i.e., by life-sensors, glu-

cosemetres) communication between patients in helpless condition and medical doc-

tors from a telecare/telehealth center. It can be used, e.g., for simulation of different

situations, related to increasing the number of emergent cases by diabetes mellitus

to which the medical doctors/nurses or the person in the response center must react.

The GN-model could show the necessary combinations of sensors used for the dif-

ferent patients on the basis of the simulations, we can determine the minimal number

of the necessary professionals in the telecare/telehealth center.

Acknowledgments This work was partly supported by project 247541 MATSIQEL, European FP7

Marie Curie Actions-IRSES.



290 M. Stefanova-Pavlova et al.

References

1. Klein, B., Horbach, A., Cook, G., Bailey, C., Moyle, W., Clarke, C.: Ambient Assisted Living,

Telecare, Telehealth—Neue Technologieund Organisa-tionskonzepte. Projekte und Trends

in Australien, Gro///britannien und Deutschland. Technik fuiir ein selbstbestimmtes Leben,

Deutscher AAL-Kongress, pp. 24–25. Berlin (2012)

2. http://www.lifetec.org.au

3. Connell, J., Grealy, C., Olver, K., Power, J.: Comprehensive scoping study on the use of assis-

tive technology by frail older people living in the community, Urbis for the Department of

Health and Ageing (2008)

4. Alexieva, J., Choy, E., Koycheva, E.: Review and bibloigraphy on generalized nets theory and

applications. In: Choy, E., Krawczak, M., Shannon, A., Szmidt, E. (eds.) A Survey of Gener-

alized Nets, Raffles KvB Monograph No. 10, pp. 207–301 (2007)

5. Atanassov, K.: Generalized Nets. World Scientific, Singapore, London (1991)

6. Atanassov, K.: On Generalized Nets Theory. Prof. M. Drinov Academic Publ. House, Sofia

(2007)

7. So, C.F., Choi, K.S., Wong, T.K.S.: Med. Devices: Evid. Res. Recent advances in noninvasive

glucose monitoring. 5, 45–52 (2012)

8. Genuth, S., Alberti, K., Bennett, P., Buse, J.: The Expert Committee on the Diagnosis and

Classification of Diabetes Mellitus: Follow-up report on the Diagnosis of Diabetes Mellitus:

Diabetes Care 26, pp. 3160–3167 (2003)

9. Andonov V., Stefanova-Pavlova, M., Stoyanov, T., Angelova, M., Cook, G., Klein, B.,

Atanassov, K., Vassilev, P.: Generalized Net Model for Telehealth Services. In: Proceedings of

IEEE 6th Conference on Intelligent Systems, vol. 2, pp. 221–224. Sofia 6–8 Sept. (2012)

10. Atanassov, K., Andonov, V., Stojanov, T., Kovachev, P.: Generalized net model for telecom-

munication processes in telecare services. In: Proceedings of First International Conference on

Telecommunications and Remote Sensing, pp. 158–162. Sofia 29–30 Aug. (2012)

http://www.lifetec.org.au


State-Space Fuzzy-Neural Predictive
Control

Yancho Todorov, Margarita Terziyska and Michail Petrov

Abstract The purpose of this work is to give an idea about the available potentials
of state-space predictive control methodology based on fuzzy-neural modeling
technique and different optimization procedures for process control. The proposed
controller methodologies are based on Fuzzy-Neural State-Space Hammerstein
model and variants of Quadratic Programming optimization algorithms. The effects
of the proposed approaches are studied by simulation experiments to control a
primary drying cycle in small-scale freeze-drying plant. The obtained results show a
well-driven drying process without violation of the system constraints and accurate
minimum error model prediction of the considered system states and output.

1 Introduction

Model Predictive Control (MPC) is an advanced control methodology that origi-
nates in the late 1970s. MPC represents an optimal control strategy that relies on
dynamic model used to predict the future response of a plant. Afterwards, the MPC
algorithm computes an optimal control policy by minimizing a prescribed cost
function. One of the key advantages of MPC is its ability to deal with input and
output constraints while it can be applied to multivariable process control. For this
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purpose, MPC very quickly became popular and nowadays it is a well-known,
classical control method [1, 2].

Since, most of the industrial processes are inherently nonlinear this implies the
use of nonlinear models and, respectively, Nonlinear Model Predictive Control
(NMPC) algorithms. NMPC is a variant of MPC that is characterized by the use of
nonlinear system models in the prediction step. As in linear MPC, NMPC requires
an iterative solution of optimal control problems on a finite prediction horizon.
While these problems are convex in linear MPC, in nonlinear MPC they are not
convex anymore. Because the nonlinear optimization task must be solved online,
the success of a NMPC algorithm depends critically on the applied model. It is very
important to find a predictive model that effectively describes the nonlinear
behavior of the system and can easily be incorporated into NMPC algorithm. One
possibility is to use first principle models such as nonlinear ordinary differential
equations, partial differential equations, integro-differential equations and delay
equations models. Such models can be accurate over a wide range of operating
conditions, but they are difficult to develop for many industrial cases and may lead
to numerical problems (e.g., stiffness, ill-conditioning). The other possibility is to
use empirical or black-box models (e.g., neural networks, fuzzy models, polynomial
models, Wiener, Hammerstein, and Volterra series models). How to select a non-
linear model for NMPC is described in detail in [3].

Fuzzy-neural (FN) systems have been proved to be a promising approach to
solve complex nonlinear control problems. They have been proposed as an
advantageous alternative to pure feed forward neural networks schemes for learning
the nonlinear dynamics of a system from input–output data [4]. Also, any methods
have been proposed in the literatures that combine fuzzy-neural network and model
predictive control algorithm [5–7]. In the recent years, a general approach based on
multiple LTI models around various function points has been proposed. The
so-called multiple models, Takagi-Sugeno approach is a convex polytopic repre-
sentation, which can be obtained either through mathematical transformation or
through achieved linearization around various operating points [8].

In many situations, Hammerstein systems are seen to provide a good tradeoff
between the complexity of general nonlinear systems and interpretability of linear
dynamical systems [9]. They have been used, e.g., for modeling of biological
processes [10, 11] chemical processes and signal processing applications. A lot of
research has been carried out on identification of Hammerstein models. Hammer-
stein systems can be modeled by employing either nonparametric or parametric
models. Parametric representations such as state-space models are more compact
having fewer parameters and the nonlinearity is expressed as a linear combination
of finite and known functions [12].

Bioprocesses are naturally involved in producing different pharmaceutical and
food productions. Complicated dynamics, nonlinearity and non-stationarity make
controlling them a very delicate task. The main control goal in this process is to get
a pure product with a high concentration, which commonly is achieved by regu-
lating a number of parameters. The MPC can fulfill these requirements [13]
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especially in industrial applications, where dynamics are relatively slow and hence
it can accommodate online optimization easily [14].

The removal of the water at subfreezing temperatures, from the solution of a
product that is potentially chemically and mechanically liable is a complex and
costly operation [15]. The process is known as freeze-drying and it ensures con-
ditions to induce sublimation process which help the product to dry and to keep its
qualities for a long period of time without the degradative affect of either microbial
or autolytic processes. Freeze-drying removes the water level below the level at
which the microbial or enzymatic activity is possible. On the other hand, the
process significantly reduces the total weight of the material by 8–9 folds.
Removing water by about 90 % reduces the total volume and weight, facilitating
easier transport [16, 17].

Nowadays, pharmaceutical industries are generating many pharmaceutical and
bio products each year, thus creating pressure for reliable determination and control
of the drying cycles during freeze-drying, as well as reduction of the operating
costs. Several recent economical analyses conclude that a shorter drying regime
gives lowest production cost and highest capacity. This issue is crucial for large
scale drying apparatuses and depends on the nature of the material being dried and
its robustness, aiming to provide high production capacity with high activity per
unit product [15].

During the past years, many researchers propose the application of different
innovative and advanced methodologies and procedures, in order to be achieved
more reliable modeling/monitoring, control and parameter optimization of the
drying processes. Effective solutions are already considered for different purposes:
in thermodynamic modeling and control of grain dryers, in predicting drying
kinetics [18], in development of optimal selection of freeze-drying operating con-
ditions [19], in the framework of model based pharmaceuticals freeze-drying
optimization [20] and innovation in monitoring of freeze-drying [21]. As well, in
[22, 23] authors propose methods for monitoring and control of the freeze-drying of
pharmaceuticals by applying an advanced algorithm for dynamic parameters esti-
mation coupled with a controller which minimizes the drying time and monitoring
observer approach which ensures that the maximum temperature of the product is
maintained.

This latest developments in the area of drying technology have stimulated the
active research in application of MPC strategies as effective tools for control and
optimization of the drying cycles as well. For instance, in [24, 25] authors propose
optimization and control strategy for the primary drying step, beside preserving
product quality, to minimize the drying time and solution and to achieve robustness
of the controller with respect to the main model parameter uncertainty. Recently,
researchers have proposed different suitable applications of fuzzy logic and neural
networks for drying processes, e.g. for rotary dryer control [26], to forecast
freeze-drying parameters [27], to model intermittent drying of grains in a spouted
bed [28], etc., but their proper use with appropriate optimization procedures into
FN-MPC control schemes for effective process control of the freeze-drying process
is not well studied area. For this purpose, the presented research is focused not only

State-Space Fuzzy-Neural Predictive Control 293



on the MPC algorithm development and to assess the potentials of such control
methodologies and expected effects on a typical freeze-drying plant by carrying out
a simulation study.

This chapter investigates the performances of a state-space MPC based on
fuzzy-neural Hammerstein model and implementations of different Quadratic Pro-
gramming optimization algorithms in order to be studied the effectiveness of the
proposed methodologies for process control of a freeze-drying batch for pharma-
ceutical product. The used methodology assumes that the process states are fully
estimable and they are used to predict steps ahead the product temperature.
Afterwards, using the fuzzy-neural model predictions, the applied constrained
optimization procedure compute an optimal control trajectory for the temperature of
the heating shelves. The transient responses of the occurring processes, as well as
the algorithm performances and their variations are studied by simulation experi-
ments in MATLAB/SIMULINK environments.

2 Design of Hammerstein Fuzzy-Neural State-Space
Model

Generally, the Hammerstein model represents a cascade connection of static non-
linearity and linear time invariant dynamics and during the past years it is widely
used in practice for nonlinear system representation. Creating a hybrid structure
combining the advantages of the Hammerstein model with the flexibility and
robustness of a Takagi-Sugeno inference, gives the possibility to develop a dynamic
predictive model which can be easily implemented in a MPC scheme.

In this contribution, the proposed idea in [29, 30] is adopted, so that the non-
linearity of the model is easily approximated as a set of local linear simple systems,
while the linear part is flexibly introduced by mathematical transformations. Thus,
the nonlinear part of the FN Hammerstein model is expressed in state-space as

x1ðk+1Þ= fxðx1ðkÞ, uðkÞÞ
zðkÞ= fzðx1ðkÞ, uðkÞÞ
���� ð1Þ

where x1(k), u(k) and z(k) are vectors for the state, the input and the output of the
nonlinear part. The nonlinear functions fx and fz are approximated by
Takagi-Sugeno type fuzzy rules:

RðiÞ: if r1ðkÞ isMðiÞ
1 . . . and . . . rpðkÞ isMðiÞ

p then

x1ðk+1Þ=A1x1ðkÞ+B1uðkÞ
zðkÞ=C1x1ðkÞ+D1uðkÞ
����

����
ðiÞ ð2Þ

where R is the ith rule of the rule base, rp are the state regressors (outputs and inputs
of the system), Mi is a membership function of a fuzzy set, A(i), B(i), C(i) and D(i) are
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the state-space matrices with dimensions in notion to ith fuzzy rule: A(i)(n × n), B(i)

(n × m), C(i)(q × n) and D(i)(q × m) where n is the number of the system states,
q is the number of the system outputs and system inputs for m, respectively.

For each input vector, the output of the fuzzy model is computed by using the
following equation:

xðiÞ1 ðk+1Þ= f ðiÞx gðiÞu
zðiÞðkÞ= f ðiÞz gðiÞu

where gðiÞu = ∏
N

i=1
μðiÞui

����� ð3Þ

where μui are the degrees of fulfillment in notion to the activated fuzzy membership
function. On the other hand, the state-space matrices for the approximated nonlinear
part of the model are calculated as a weighted sum of the local matrices using the
normalized value of the membership function degree, g ̄ui = μui ∑̸

L
i=1 μui upon the

ith activated fuzzy rule and L is the number of the activated rules. The fuzzification
is performed by using Gaussian membership functions for nonlinear input
approximation

guj = exp −
ðri − cijÞ2

2σ2ij
ð4Þ

Thereafter, the linear part of the model is introduced as

x2ðk+1Þ=A2x2ðkÞ+B2zðkÞ
yðkÞ=C2x2ðkÞ+D2zðkÞ+ϑ

����� ð5Þ

where ϑ is a free offset used to compensate possible disturbances in the process. In
notion to each activated fuzzy rule, the general local fuzzy-neural model is
expressed as combination of both approximated nonlinear and linear parts. Thus,
the generalized model representation has the following form:

x1̇
x2̇

����
����= AðiÞ

1 0

B2C
ðiÞ
1 A2

�����
�����×

x1
x2

����
����+ B

ðiÞ
1

B2D
ðiÞ
1

�����
�����u

y= D2C
ðiÞ
1 C2

��� ���× x1
x2

����
����+DðiÞ

1 D2u+ ϑ

ð6Þ

Finally, the designed model is described as

x1ðk+1Þ= ∑N
i=1 gūiðA1x1ðkÞ+B1uðkÞÞ

x2ðk+1Þ= ∑N
i=1 ðA2x2ðkÞ+B2gūiðC1x1ðkÞ+D1uðkÞÞ

yðkÞ= ∑N
i=1 ðC2x2ðkÞ+D2gūiðC1x1ðkÞ+D1uðkÞÞ+ϑ

������ ð7Þ

as well as, with the following generalized scheme Fig. 1.
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2.1 Learning Algorithm for the Designed Model

The learning procedure provides structure identification of the process and esti-
mation of the values of the unknown parameters. The fuzzy-neural model structure
depends on the type and the number of the chosen membership functions, their
shape and the linear coefficients into the f functions in the consequent part of the
fuzzy rules. Thus, the identification task implies the determination of two groups of
parameters, the center and the deviation of the used Gaussian membership functions
in the rules premise part and the linear coefficients in the rules consequent part.

A simple identification procedure is applied in this work in order to be facilitated
the real-time implementation of the tuning procedure [31–33]. The learning algo-
rithm for the fuzzy-neural model lies on the minimization of an error measurement
function: E(k) = ε2/2 where ε(k) = y(k) – ŷ(k), is the instant error between the real
plant output y(k) and the model output ŷ(k), calculated by the FN model. The
algorithm performs two steps gradient learning procedure. Assuming that η is the
considered learning rate and βsi is an adjustable sth coefficient for the functions
f into the ith activated rule as a connection in the output neuron, the general
parameter learning rule for the consequent parameters is: βsi(k + 1) = βsi(k) +
η(∂E/∂βsi). After calculating the partial derivatives, the final recurrent predictions
for each adjustable coefficient βsi (as, bs, csor ds) are obtained by the following
equations:

asiðk+1Þ= asiðkÞ+ ηεðkÞgūiðkÞrpðkÞ, s=1÷n ̃× n ̃
bsiðk+1Þ= bsiðkÞ+ ηεðkÞgūiðkÞrpðkÞ, s=1÷n ̃× m̃

csiðk+1Þ= csiðkÞ+ ηεðkÞgūiðkÞrpðkÞ, s=1÷q ̃× n ̃
dsiðk+1Þ= dsiðkÞ+ ηεðkÞgūiðkÞrpðkÞ, s=1÷q ̃× m̃

ð8Þ

where the dimensions of the general matrices are
Ãðn ̃× n ̃Þ, B ̃ðn ̃× m̃Þ, C ̃ðq ̃× n ̃Þ, Dðq ̃× m̃Þ. The output error E is used back directly to
the input layer, where there are the premise (center-cpi and the deviation-σpi of a
Gaussian fuzzy set) adjustable parameters. The error E is propagated through the
links composed by the corresponded membership degrees where the link weights
are unit. Hence, the learning rule for the second group adjustable parameters in the
input layer can be done by the same learning rule

cpiðk+1Þ= cpiðkÞ+ ηεðkÞgūiðkÞ½f ðiÞx ðkÞ− x ̂ðkÞ� ½rpðkÞ− cpi�
σ2piðkÞ

σpiðk+1Þ= σpiðkÞ+ ηεðkÞgūiðkÞ½f ðiÞx ðkÞ− x ̂ðkÞ� ½rpðkÞ− cpi�2
σ3piðkÞ

ð9Þ

To improve the efficiency in the learning procedure of the nonlinear fuzzy-neural
part of the model and adaptive learning rate scheduling algorithm has been
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introduced. For this purpose, at each sampling period the Root Squared Error of the
predicted state is assumed as

ε=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

j=1 ðx1ðjÞ− x1̂ðjÞÞ2
q

ð10Þ

Afterwards, following the rule at each sample step η is calculated as:

if εi > εi− 1kw
ηi+1 = ηiτd

if εi ≤ εi− 1kw
ηi+1 = ηiτi

ð11Þ

where τd = 0.7 and τi = 1.05 are scaling factors and kw = 1.41 is the coefficient of
admissible error accumulation [34].

3 Model Predictive Control Strategies

Using the designed Hammerstein model, the optimization algorithm computes the
future control actions at each sampling period, by minimizing the following cost:

JðkÞ= ∑N2
i=N1

y ̂ðk+ iÞ− rðk+ iÞk k2Q+ ∑Nu
i=N1

Δuðk+ iÞk k2R
subject to ΩΔU≤ γ

ð12Þ

which can be expressed in vector form as

JðkÞ= YðkÞ−TðkÞk k2Q+ ΔUðkÞk k2R ð13Þ

YðkÞ=
yðk+N1Þ

⋮
yðk+N2Þ

2
4

3
5TðkÞ=

rðk+N1Þ
⋮

rðk+N2Þ

2
4

3
5ΔUðkÞ=

Δuðk+N1Þ
⋮

Δuðk+NuÞ

2
4

3
5 ð14Þ

where, Y is the matrix of the predicted plant output, T is the reference matrix, ΔU is
the matrix of the predicted controls and Q and R are the matrices, penalizing the
changes in error and control term of the cost function

Q=

QðN1Þ 0 ⋯ 0
0 QðN1 + 1Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ QðN2Þ

2
664

3
775R=

RðN1Þ 0 ⋯ 0
0 RðN1 + 1Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ RðNuÞ

2
664

3
775

ð15Þ
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Taking into account the general prediction form of a linear state-space model
[35, 36], we can derive:

YðkÞ=ΨXðkÞ+Yuðk− 1Þ+ΘΔUðkÞ+ϑ ð16Þ

Ψ=

C ̃
C ̃Ã
C ̃Ã2

⋮
C ̃ÃN2 − 1

2
66664

3
77775Y=

D ̃
C ̃B̃+D ̃
C ̃ÃB ̃+C ̃B̃+D ̃
⋮
C ̃∑N2

i=N1
Ã
i
B̃+D ̃

2
66664

3
77775 ð17Þ

Θ=

D̃ 0 ⋯ 0
C ̃B̃+D ̃ D̃ ⋮

C ̃A ̃B̃+C ̃B̃+ D̃ ⋱ 0
⋮ ⋱ D ̃

C ̃∑N2 − 2
i=1 Ã

i
B ̃+D ̃ ⋯ 0

⋮ ⋱ ⋮
C ̃∑N2 − 1

i=1 Ã
i
B ̃+D ̃ ⋯ C ̃∑N2 −Nu − 1

i=1 Ã
i
B̃+ D̃

2
666666664

3
777777775

ð18Þ

Then, we can define: E(k) = T(k)-ΨX(k)-Υu(k – 1)-ϑ. This expression is
assumed as tracking error in sense of that it is the difference between the future
target trajectory and the free response of the system that occurs over the prediction
horizon if no input changes were made; if ΔU = 0 is set. Using the last notation, we
can write

JðkÞ=ΔUTHΔU +ΔUTΦ+ETQE, Φ= − 2ΘTQEðkÞ,H =ΘTQΘ+R ð19Þ

Differentiating the gradient of J with respect to ΔU, gives the Hessian matrix:
∂
2J(k)/∂ΔU2(k) = 2H = 2(ΘTQΘ + R). If Q(i) ≥ 0 for each i (ensures that
ΘTQΘ ≥ 0) and if R ≥ 0 then the Hessian is certainly positive-definite, which is
enough to guarantee the reach of minimum.

To improve the robustness of the controller, an alternative formulation of the
cost function is also considered

JðkÞ= ∑N2
i=N1

y ̂ðk+ iÞ−ωðk+ iÞk k2Q+ ∑Nu
i=N1

Δuðk+ iÞk k2R
subject to ΩΔU≤ γ

ωðk+ iÞ= αωðk+ i− 1Þ+ ð1− αÞrðk+ iÞ and ωðkÞ= yðkÞ
ð20Þ

where ω defines a reference trajectory to follow, taking into account not only the
desired reference values r(k + i), but including the current value of the system
output y(k), as well. Thus, implementing the ω term and defining a value of α
between 0 and 1, a more smooth approximation of the reference trajectory is
achieved [37].
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Constraints formulation
Since, U(k) and Y(k) are not explicitly included in the optimization problem, the

constraints can be expressed in terms of ΔU signal:

F1

GΘ
W

2
4

3
5ΔU ≤

−F2uðk− 1Þ+ f
−GðΨXðkÞ+Yuðk− 1ÞÞ+ g

w

2
4

3
5 ð21Þ

The first row represents the constraints on the amplitude of the control signal, the
second one the constraints on the output changes and the last the constraints on the
rate change of the control.

Optimization procedures
Quadratic Programming-Active Set method
Using the active-set methods at each step of the algorithm must be defined a

working set of constraints to be treated as the active set. The working set is a subset
of the constraints that are actually active at the current point and the current point is
feasible for the working set. The algorithm then proceeds to move on the surface
defined by the working set of constraints to an improved point. At each step, an
equality constraint problem is solved. If λi ≥ 0 for all Lagrange multipliers, then
the point is a local solution to the original problem. If, λi < 0 exists, the objective
function value can be decreased by relaxing the constraint i. During the mini-
mization process, it is necessary to monitor the values of the other constraints to be
sure that they are not violated, since all points defined by the algorithm must be
feasible. It often happens that while moving on the working surface, a new con-
straint boundary is encountered. It is necessary to add this constraint to the working
set, then proceed to the redefined working surface [38]. Using the active-set
notation, the problem can be formulated as:

max
λ>0

min
ΔU

ΔUTHΔU +ΔUΦ+ETQE+ λTðΩΔU − γÞ� �
ΔU = −H − 1ðΦ+ΩTλÞ

ð22Þ

Necessary conditions for optimization in presence of inequality constraints are
the satisfaction of the KKT conditions:

−H − 1ðΦ+ΩTλÞ=0

ΩΔU − γ ≤ 0

λTðΩΔU − γÞ=0

λ≥ 0

ð23Þ

where the vector λ contains the Lagrange multipliers.
Hildreth Quadratic Programming
Using the active-set notation the optimal solutions are based on primal decision

variables which have to be identified along with the current active constraints.
A major problem is the dimension of the set of constraints which impacts the
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computational load. To overcome this problem, a dual method is introduced in
order to be identified constraints that are not active, so they can be eliminated in the
solution. In this purpose a very simple programming procedure can be adopted for
finding optimal solutions of constrained minimization problems [38]. The dual
problem to the original primal problem is derived below. Assuming feasibility, the
primal problem is equivalent to (20). Substituting, the problem can be rewritten as:

max
λ>0

λTMλ− λTK +ΦTM − 1Φ
� �

M =ΩH − 1ΩT ,K = γ +ΩH − 1Φ
ð24Þ

The dual is also a quadratic programming problem with λ as the decision
variable:

ΔU = −H − 1Φ−H − 1ðΩactλactÞ
min
λ>0

λTMλ+ λTK + γTM − 1γ
� � ð25Þ

The λ vector can be varied one component at a time. At a given step in the
process, having obtained a vector λ ≥ 0, our attention is fixed on a single com-
ponent λi. The objective function may be regarded as a quadratic function in this
single component. We adjust λi to minimize the objective function. If that requires
λi < 0, we set λi = 0. In either case, the objective function is decreased. Then, we
consider the next component λi + 1. If we consider one complete cycle through the
components to be one iteration taking the vector λm to λm+1, the method can be
expressed explicitly as:

λm+1
i =maxð0, αm+1

i Þ
αm+1
i = −

1
hii

ki + ∑i− 1
j=1 hijλ

m+1
j + ∑n

j= i+1 hijλ
m
j

h i ð26Þ

where the scalar hij is the ijth element in the matrix M, and ki is the ith element in
the vector K. Also, there are two sets of λ values in the computation: one involves
λm and one involves the updated λm + 1. Because the converged λ vector contains
either zero or positive values of the Lagrange multipliers, we finally have

ΔU = −H − 1ðΦ+ΩTλ*Þ
λ*act = − ðΩactH − 1ΩT

actÞ− 1ðγact +ΩactH − 1ΦÞ
ð27Þ

Interior-point method
Since Karmarkar’s breakthrough, many different interior-point methods have

been developed. It is important to note that there exists in fact a whole collection of
methods, sharing the same basic principles whose individual characteristics may
vary. The fact that finding the optimal solution of a linear program is completely
equivalent to solving the KKT conditions may suggest the use of a general method
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designed to solve systems of nonlinear equations. The most popular of these
methods is the Newton’s method, but a major problem in the resolution of the KKT
conditions is the nonnegativity constraints on ΔU and γ which cannot directly be
taken into account via mapping of Φ. One way of incorporating these constraints is
to use a barrier term. Using such a barrier, it is possible to derive a parameterized
family of unconstrained problems from an inequality-constrained problem [39].

A Newton-like interior-point convex algorithm has been implemented to cal-
culate the optimal control sequence. Following the notation in (20), the algorithm
requires the KKT conditions to be held as

−H − 1ðΦ+ΩTλÞ=0

ΩΔU − γ − s=0

s≥ 0

λ≥ 0

siλi =0

ð28Þ

where s is a vector of slacks of length m that convert inequality constraints to
equalities depending on the number of linear inequalities and bounds. At first, the
algorithm predicts a Newton-Raphson step, and then computes a corrector step. The
corrector attempts to better enforce the nonlinear constraint siλi = 0. The predictor
steps are formulated by the following residuals:

rd =HΔU −Φ−ΩTλ

rineq =ΩΔU − γ − s

rsλ = Sλ

rc =
STλ
m

ð29Þ

Then, the algorithm iterates as:

H 0 −ΩT

Ω − I 0
0 Λ S

0
@

1
A ΔU

ΔS
ΔΛ

0
@

1
A=

rd
rineq
rsλ

0
@

1
A ð30Þ

Additionally, to maintain the position in the interior, instead of trying to solve
sizi = 0, the algorithm takes a positive parameter σ, and tries to solve sizi = σrc.
Then, the algorithm replaces rsλ in the Newton step equation with rsλ + ΔsΔλ –

σrc1, where 1 is the vector of ones. Also, in order Newton equations to obtain a
symmetric, more numerically stable system for the predictor step calculation are
reordered. After calculating the corrected Newton step, the algorithm performs
more calculations to get both a longer current step, and to prepare for better sub-
sequent steps. These multiple correction calculations improve both performance
and robustness of the algorithm.
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4 Results and Discussion

Reference plant model
To investigate the potentials of the proposed approaches, simulation experiments

in MATLAB and Simulink environments, are performed. As reference for the
proper controller operation is taken a validated first principle model of a small-scale
freeze-drying plant. Referring to Fig. 2, a simplified diagram of the main compo-
nents of the apparatus is shown. The plant consists of a drying chamber (1);
temperature controlled shelves (2), a condenser (3) and a vacuum pump (4). The
cooling and heating processed are supported by the shelves (6) heater, and refrig-
eration system (5). The chamber is isolated from the condenser by the valve (7) and
the vacuum system is placed after the condenser.

The experiments assume that the product is a priori frozen and the chamber is
evacuated in order to increase the partial vapor water pressure difference between
the frozen ice zone and the chamber. Then the shelf heating system starts to provide
enthalpy for the sublimation process and controller starts to operate. The used
reference model accounts for a coupled heat and mass transfer governing the pri-
mary drying phase. The mass transfer is governed by simple diffusion and heat

Fig. 1 Generalized scheme of the proposed state-space Fuzzy-Neural Hammerstein model

Fig. 2 Schematic diagram of a lyophilization plant
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transfer is driven primarily through conduction from the shelves. Thus, the com-
bined process forms a nonlinear fourth order system of differential equations.

In the conducted simulation experiments, the proposed reference model was
used to simulate the nonlinear behavior of a freeze-drying plant in a theoretical way,
without pre-generated real plant data. The experiments consider a freeze-drying
batch for 50 vials filled with solution of amino acid. A detailed model description
and the used process parameters are given in [40, 41].

Conditions and constraints
The following initial conditions for simulation experiments are assumed:

N1 = 1, N2 = 5, Nu = 3; system reference r = 255 K; initial shelf temperature,
before the start of the primary drying Tsin = 228 K; initial thickness of the interface
front x = 0.0023 m; thickness of the product L = 0.003 m. In the primary drying
stage it is required to maintain the shelf temperature about 298 K, until the product
will be dried. This circumstance requires of about 45 min of time for the primary
drying stage of the process.

There are imposed the following constraints on the optimization problem: on the
amplitude of the control signal—the heating shelves temperature 228 K < Ts <
298 K; on the output changes—product temperature 238 K < T2 < 256 K; and on
the rate change of the control signal 0.5 K < ΔTs < 3 K.

Control system statement
As measured states used for model prediction are taken the moving ice front and

the temperature inside the frozen layer. It is assumed, that both parameters are fully
observable/estimable. The main idea behind the states selection is the gathering of
valuable information for the process dynamics at each discrete sampling period of
time by parameters which cannot be manipulated but they can indicate the current
state of the process.

The first one of the selected states gives information about the evolution of the
sublimation process, while the second one for the temperature gradient. Thus, the
fuzzy-neural model predicts steps ahead along the prediction horizon the temper-
ature profile of the product using estimates of the mentioned parameters. The
optimization algorithms compute the optimal control actions using the model
predictions. As optimal control, it is used the temperature of the heating shelves,
which accounts for the evolution of the sublimation process during the
freeze-drying cycle. The used optimization criterion represents a general cost
function which includes terms of the system error, the control action increment and
the assumed constraints. The underlying idea of using such function is to be
minimized the error between the reference of the temperature of the product and its
actual value estimated by the model by applying appropriate heating policy. The
statement of the optimization problem ensures that the maximum allowed product
temperature will be reached by satisfying the major system constraints, without
overheating the product. The selection of the initial tuning parameters of the
fuzzy-neural model is made heuristically, in order to be guaranteed random
directions for the optimization procedures, while tuning of the cost function
parameters is made following the well-known rule Nu < N2 > N1.
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Discussion
To preserve the computational consistency, a final value of x = 0.0001 m for the

interface front is chosen to stop the simulation experiments. Increasing the heating
shelves temperature from 228 K indicates the start of the primary drying phase,
confirmed by the initial drop of the product temperature, which represents the
sudden loss of heat due to sublimation. The loss of heat due to sublimation vanishes
after all of the unbound water has sublimed, then the enthalpy input from the shelf
causes a sharp elevation of the product temperature.

The proposed FN Hammerstein model have a simplified structure based on the
classical Takagi-Sugeno technique, which aims to ensure reliable and accurate
modeling of the nonlinear dynamics of the lyophilization process, stating small
number of parameters without additional need of computational power. The con-
sequent parameters of the proposed fuzzy-neural rules are initialized at first with
randomly selected coefficients in a normalized range. The learning procedure for
the model parameters is executed online at each computational sampling. Thus, the
model produces a predicted system output (the product temperature) in notion to
current values of the input vector. The penalty terms/matrices into the objective
functions are experimentally chosen.

Usually, the application of predictive control requires the development of an
accurate process model and selection of an appropriate optimization approach.
Many optimization policies are proposed in literature, but their real time use may be
restricted by many factors, e.g., the nature of the plant process, the statement of the
optimization problem the imposed constraints, etc. The described above HQP
algorithm has been proved to be faster than classical active-set method, but its
possible applicability in MPC control problems is less studied issue. For this pur-
pose, its potentials was investigated in a simulation batch for two different values of
the main diagonal of the penalty matrix R, using a standard cost function with
constant reference signal.

The temperature versus time profile for the product and heating shelves tem-
peratures for the representative vial are presented on Fig. 3. The prediction of the
assumed states; x1—interface position and x2—temperature in the frozen region, is
presented on Figs. 4 and 5. On Fig. 6 are demonstrated the squared errors of the
model, during the controller operation. As can be seen for both cases the transient
responses of the considered squared errors have a smooth nature and they are
successfully minimized during the learning process for the model. This circum-
stance proves the proper operation of the model and ensures a well driven
lyophilization cycle demonstrated by the transient responses of the moving ice
front. The moving ice front is an important parameter which accounts for the
reliable and optimal drying process.

For this purpose, it is used into the state-space model for a parameter being
predicted by the model, along with the temperature in the frozen region. A slight
error during the prediction of the moving ice front is observed, which is proved to
vary by selecting the initial values of the respective rule consequent part coefficients
or their learning rate.
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Fig. 3 Temperature profile when using HQP

Fig. 4 State x1 (interface position) prediction when using HQP

Fig. 5 State x2 (frozen region temperature) prediction when using HQP

State-Space Fuzzy-Neural Predictive Control 305



As can be seen from Table 1, the variation of the penalty factor leads to
improved process dynamics, intensification of the drying process and diminishing
of the drying time. The carried out simulation experiments shown that the reliability
of the investigated HQP algorithm strongly depends on the accurate predictions of
the model and the statement of the constraints. It was observed, also that a major
factor to obtain a feasible solution of the HQP is the selection of the relative error
tolerance to stop the algorithm, which impacts the number of the performed iter-
ations for adjusting the Lagrange multipliers

The algorithm proves to be suitable for implementation in MPC control schemes,
but its application on various plant processes will depend on the specific process
conditions, which may impact the minimization process and its accuracy.

A major problem while developing different types of fuzzy-neural models is the
selection not only of a suitable structure, but the definition of its tuning parameters
as: initial values of the rule consequent coefficients and their learning rates, which
affects by one side the model accuracy and the output predictions and on the other,
the consistency and the proper computation of the control policy in MPC as well.

As been shown above, the designed fuzzy-neural model has potentials to be a
promising modeling solution in state-space MPC, but in the nonlinear part of the
model due to selection of the tuning parameters a slight prediction error of the
predicted state is observed.

To overcome these problems, many approaches are described in literature, how
to select good model tuning parameters instead of their heuristically selection. For
that purpose, in this study, a potential approach to minimize the prediction error in
the fuzzy-neural part of the model by introducing an adaptive learning rate
scheduling has been investigated. As described above, the RSE is evaluated at each

Fig. 6 Squared errors of the model during controller operation

Table 1 Quality control
parameters

R(k) tp, s RMSE Ts, K

0.020 2460 0.076 298.3
0.008 1830 0.088 298.4
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sampling period and compared to its previous value multiplied by a coefficient of
admissible grow. Afterwards, the proposed approach at each sampling period
computes a variable learning rate coefficient, depending on its previous value and
multiplied by a grow factor, which depends on the RSE. To assess the efficiency of
the proposed adaptive online learning rate approach, applied in calculation of the
rule premise and consequent parameters, a simulation experiments with the classical
active-set QP notation, have been performed.

In Fig. 7 are shown the obtained results in a MPC control system with constant
and variable learning rates with initial value of 0.03 and equal initial conditions for
the rule consequent parameters. As can be observed, in even random selection of
the initials, the adopted adaptive learning rate approach, leads to significant
improvement in the model prediction performance proved by the reduced instant
value of the RMSE of the state prediction. A greater value of the learning rate is
achieved inversely proportional when the error is high and it starts to decrease when
it reaches values of the RMSE closer to zero. Also, an improved system perfor-
mance is observed by reduction of the time of the transient response of the system,
which proves again the positive effect of introduction of such adaptive learning rate
approach. Additional studies on the selection of the error admissible grow coeffi-
cient and the learning rate scaling coefficients should be effectuated, since the
proposed values may depend on the concrete plant process system dynamics.

Usually, when a MPC is designed, the reference signal is taken as constant, but
in fact this may impact the controller performance leading to aggressive behavior.
In this purpose arises the question how to be properly generated the reference signal
and how this process affect the computation of the optimal control policy. A com-
mon recommendation in literature is to be used a smooth approximation of the
output taking into account the previous value of the output, the desired reference
scaled by an appropriate factor, leading to less or more smooth approximation. The
simulation experiments using the cost functions (12) and (20) with α = 0.95, on
equal initial system conditions by using active-set QP are shown on Fig. 8. Since,
the way of generation of the reference will impact the instant value of the system
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error; this will affect also the performance of the optimization procedure and the
calculated control trajectory. For that purpose, the instant value of the J, during the
minimization process is investigated.

The value of the scaling factor α is taken as 0.95, in order to assess the smoothest
case of reference approximation. The obtained results show that the approximation
of the system reference leads to more smooth transient response of the process, with
a smaller value of the applied control action for an equal system instant, which
leads to less aggressive controller operation. On the other hand, in the sense of QP,
the performance of the optimization procedure, which depends on the stated
problem at and the assumed constraints, the current error value affects the way the
control signal is being calculated. As can be seen from the results, the transient
response of J is affected by the adaptive reference generation, especially when the
velocity of the moving reference trajectory is changing significantly the value of J is
decreasing.

Numerous methods for constrained optimization exist, but their application in
various MPC strategies are less studied, because of the greater number of variances
of the type of the predictive model being used coupled with the possible different
optimization approaches, gives a rich algorithmic potential for predictive control. In
this chapter, a comparative study between the widely used active-set QP and the
interior-point QP optimization approaches is made. The interior-point method is a
global optimization approach and a QP variant that uses a Newton prediction step
and correction mechanism by a vector of slack variables. In Fig. 9 are shown the
obtained simulation results with both optimization strategies, on equal conditions
for the model and penalty terms and using a constant reference signal. As can be
observed, the transient responses of the control signal and the controlled output
slightly differ. Using the interior-point method leads a more active controller
operation when the system error is high. A more smooth behavior of J is achieved
when the change of system error is small. The transient response of the instant value
of J shows also that greater values are reached when the velocity of the system error
is changed. A major drawback of the interior-point algorithm is that the relative
error term, to stop the algorithm is sensitive in notion to the optimization problem
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and the imposed constraints and may cause algorithm malfunctioning due to
reaching infeasible point.

Nevertheless, the mentioned drawback is that the interior-point QP variant seems
to be applicable in state-space predictive control, but its performance may be
affected by the plant process-specific features and constraints which may impact the
optimization process.

5 Conclusions

The performed investigations in this chapter have shown that the designed
state-space Hammerstein modeling approach is an effective and reliable tool for
modeling specific nonlinear system behavior by using a simple fuzzy-neural
approach. The model is stated with small number of parameters, which effectively
cover the nonlinear region of the process and ensure good system states and output
predictions. The introduction of a variable learning rate for the rule consequent
parameters of the model improves the model operation and diminishes the pre-
diction error.

The proposed HQP optimization approach using a dual mechanism as variant of
active-set QP may be a promising approach for MPC implementations. It manip-
ulates the constraints which are not active and they are eliminated in the solution,
which is very important in large-scale problems with a greater number of imposed
constraints.

The considered interior-point QP variant optimization algorithm also has shown
a good performance in the investigated state-space MPC. In spite of its more
complicated computational performance, it may be applicable due to its potential
being global optimization approach.
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The use of smooth approximation of the system reference affects the computa-
tion of the optimal control policy, leading to less aggressive controller performance,
achieving a good system performance by calculating smaller instant values of the
optimal control being sent to the plant

The executed simulation results show also that a reliable system performance by
controlling the nonlinear dynamics during a primary freeze-drying cycle can be
achieved by applying a fuzzy-neural model predictive controller. In such a way, a
flexible controller structure can be obtained for various products undergoing
freeze-drying or similar thermal processing.

The real-time applicability of the proposed approaches has to be additionally
studied taking into account some issues which cannot be considered in the pre-
sented simulation batches, as immeasurable disturbances, possible system operation
faults, type of the product, etc., as well as the made assumptions. Nevertheless, in a
theoretical aspect is proved that such control methodologies have major benefits,
which can be considered for real-time process control.

Although, the state-space approach seems to be a promising solution for large
scale drying plants, where the handling of the regime constraints is crucial and the
system dynamic is relatively slow, which can accommodate with the computational
procedures of the algorithms. A major advantage of the proposed control
methodologies is the application of simple FN approach, which may impact the
proper handling of some process uncertainties and disturbances.
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Free Search and Particle Swarm
Optimisation Applied to Global
Optimisation Numerical Tests from Two
to Hundred Dimensions

Vesela Vasileva and Kalin Penev

Abstract This article presents an investigation on two real-value methods such as
Free Search (FS) and Particle Swarm Optimisation (PSO) applied to global opti-
misation numerical tests. The objective is to identify how to facilitate assessment of
heuristic, evolutionary, adaptive and other optimisation and search algorithms.
Particular aim is to assess: (1) probability for success of given method; (2) abilities
of given method for entire search space coverage; (3) dependence on initialisation;
(4) abilities of given method to escape from trapping in local sub-optima;
(5) abilities of explored methods to resolve multidimensional (one hundred
dimensions) global optimisation tasks; (6) performance on two and hundred
dimensional tasks; (7) minimal number of objective function calculation for
resolving hundred dimensional tasks with acceptable level of precision. Achieved
experimental results are presented and analysed. Discussion on FS and PSO
essential characteristics concludes the article.

Keywords Global optimisation ⋅ Multidimensional optimisation ⋅ Numerical
tests ⋅ Free search ⋅ Particle swarm optimisation ⋅ Heuristic methods

1 Introduction

One of the challenges of modern Computer Science is to cope with global opti-
misation tasks reaching acceptable level of precision for affordable period of time
and with limited computational resources. According to the publications [1, 2]
global optimisation refers to finding extremum (minimum or maximum) of a given

V. Vasileva (✉) ⋅ K. Penev
Technology School Maritime and Technology Faculty, Southampton Solent University,
East Park Terrace, Southampton SO14 0YN, UK
e-mail: Vesela.Vasileva@solent.ac.uk

K. Penev
e-mail: Kalin.Penev@solent.ac.uk

© Springer International Publishing Switzerland 2017
V. Sgurev et al. (eds.), Recent Contributions in Intelligent Systems,
Studies in Computational Intelligence 657,
DOI 10.1007/978-3-319-41438-6_18

313



nonconvex objective function. Scientists, engineers and practitioners often face in
practice global optimisation problems and need reliable methods to resolve such
tasks. For this purpose various search methods such as Genetic Algorithm [3],
Particle Swarm Optimisation (PSO) [4, 5], Evolution Strategy [6], Differential
Evolution [7] and Free Search (FS) [8] can be used. Majority of search and opti-
misation methods encounter difficulties when dealing with global optimisation
problems. The main reasons of their failure are

• inability to generate non-zero probability for access to the whole search space;
• entrap in local sub-optimal solution;
• inability to escape from trapping;
• inability to abstract sufficient knowledge or use it effectively (if available) for a

global task with multiple potential solutions.

In order to assess different algorithms many numerical tests are proposed and
published [2, 9]. However, there is no enough evidence that available tests could
provide sufficient assessment of given method and its applicability to complete
global optimisation. This article aims to contribute to the knowledge using specific
global tests.

Algorithms’ abilities for global optimisation closely relates with their potential
for highest level of adaptation to various tasks, [10] without retuning the search
parameters, which is widely discussed in the literature [11–15]. In practice algo-
rithms parameters retuning very often could be impossible due to luck or absence of
knowledge for any particular optimisation tasks.

This study uses hard and introduces modified numerical tests for global opti-
misation supported by short and fast experimental methodology, which facilitates
assessment of given optimisation algorithm.

Proposed methodology could measure the following:

• probability to resolve global and multidimensional tasks within finite (accept-
able) period of time with limited computational resources;

• dependence of algorithms success on initial conditions;
• probability to resolve the problem, without initial knowledge;
• dependence on search parameters retuning for resolving various tasks;
• probability for algorithms’ success if applied to similar real-world tasks.

2 Numerical Test

For the purposes of this investigation, all tests are modified for maximisation and
designed in unified black box model, published in the literature [8]. If minimisation
is required the objective functions should be with reversed sign.
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2.1 Michalewicz Test Function

Objective function for Michalewicz test [2] is:

f ðxiÞ= ∑
n

i=1
sinðxiÞðsinðix2i π̸ÞÞ2m ð1Þ

where the search space is xi ∈ [0.0, 3.0], m = 10, i = 2 and the optimum value is
fopt = 1.8013. [2] Global optimum is in the middle of the search space. Although
this search space has local peak, previous investigation [16] suggests that it is
relatively easy for resolving by modern powerful search algorithms. Therefore, for
two-dimensional tests in this study modification with extension of the search space
is proposed. For modified Michalewicz test search space boundaries are xi ∈ [−5.0,
5.0], m = 10, i = 2.

Two equal value fopt = 1.96785 global optima are situated close to the search
space boundaries. This makes the test difficult for methods, which rely on
recombination due to the reduced probability for assess of the space between the
optimal hills and adjoining boundary.

This test is suitable for assessment of algorithms’ abilities to cover the whole
search space with non-zero probability and to escape from trapping in sub-optimal
areas. It is generalised for multidimensional space and used also for one hundred
dimensional tests.

2.2 Five Hills Test

Five Hills numerical test is two-dimensional test specially designed for global
optimisation. Its objective function is

f xið Þ= 11.4

1+ 0.05 0− x1ð Þ2 + 0− x2ð Þ2
� � +

9.9

1+ 2 7− x1ð Þ2 + 7− x2ð Þ2
� � +

9.9

1+ 1.7 7+ x1ð Þ2 + 7+ x2ð Þ2
� � +

10.0

1+ 2.3 7− x1ð Þ2 + 7+ x2ð Þ2
� � +

9.7

1+ 1.7 7+ x1ð Þ2 + 7− x2ð Þ2
� �

ð2Þ
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where xi ∈ [−10.0, 10.0]. It has five local optima. A smooth hill in the middle
dominatesmore than 60 % of the search space, but four corners’ peaks are higher. The
highest peak fmax (6.994, −6.994) = 12.0076 is situated in one of the four corners.

The highest area is less than 0.1 % of the search space only. Identification of the
maximum requires good divergence, which could guarantee coverage of the whole
search space, and then good convergence with small precise steps.

Five hills test could be transformed to time dependent test where the highest
peak coordinates are variables, which change over the time.

2.3 Norwegian Test

Objective function for Norwegian test [17] is

f xið Þ= ∏
n

i=1
cosðπx3i Þ

99+ xi
100

� �� �
ð3Þ

In this study space boundaries are extended to xi ∈ [−1.1, 1.1]. The highest peak
is fmax (1.00011, 1.00011) = 1.00000113.

Search space is dominated by flat hill in the middle. This hill occupies more than
70 % of the space. It attracts and could easily entrap any search method. Higher
peaks are located closely to the four corners. Identification of the highest peak could
be very hard for majority of search methods. This test is generalised for multidi-
mensional space and used for one hundred dimensional tests as well.

2.4 Sofia Test

Sofia numerical test is two dimensional, specially designed for testing and
assessment of global optimisation algorithms.

f xið Þ= 1

0.9 0.01+ x21 + x2 + 1ð Þ2
� � +

1

0.9 0.01+ x1 + 3ð Þ2 + x22
� � +

1

2.0 0.01+ x1 − 4.5ð Þ2 + x2 − 4.5ð Þ2
� � +

1

3.0 0.01+ x1 + 4.5ð Þ2 + x2 − 4.5ð Þ2
� �

ð4Þ
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The search space is defined by xi ∈ [−5.0, 5.0].
It has seven local maxima—four in the corners and three peaks within the wide

global valley. The global maximum is located close to the bottom of the valley in
other words close to the global minimum. Gradient of the local correlation is in
opposite direction to the global maximum for more than 90 % of the search space.

In order to discover this maximum, any search algorithm needs to guarantee
non-zero probability for access to the whole search space and must be able to
abstract sufficient knowledge about entire task and then use it effectively within
limited (acceptable) period of time and with limited computational resources.

2.5 Bump Test

This is hard constrained global optimisation problem [3] transformed in this study
for maximisation.

f ðxiÞ= ∑
n

i=1
cos4ðxiÞ− 2 ∏

n

i=1
cos2ðxiÞ

����
���� ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i=1
ix2i

s
ð5Þ

subject to: ∏
n

i=1
xi >0.75 ð6Þ

and ∑
n

i=1
xi <15n 2̸ ð7Þ

where xi ∈ [0.0, 10.0], and start from xi = 5, i = 1,…, n. xi are variables (expressed
in radians) and n is the number of dimensions [14].

It has many peaks. It is very hard for most optimisation methods to cope with
because its optimal value is defined by presence of constraint boundary formulated
as a variables product (inequality 6) and because of initial condition—start from
xi = 5.

Start from the middle of the search space excludes from initial population
locations, which could be accidentally near to the unknown optimal value.

Maximal values fmax and constraint boundaries defined as variables product
(shortly noted as p) p > 0.75 are located on a steep slope so that very small changes
of variables lead to substantial change of the objective function. In the same time
product constraint (7) defines very uncertain boundary. Various variables combi-
nations satisfy constraint (7) but produce different function values, which makes
this test even harder. A given combination of variables produces highest function
value when variables are in descending order [18]. It is generalised for multidi-
mensional continuous search space and used for one hundred dimensional tests in
this investigation.
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3 Algorithms Essential Peculiarities

For this investigation two algorithms are used. These are Free Search [8] and
Particle Swarm Optimisation [4, 5]. Other comparison between FS and PSO is
published earlier [8].

3.1 Free Search

This section summarises and refines algorithms description. Free Search could be
classified as adaptive heuristic. Adaptive is understood as an algorithm, which can
adapt to various search spaces and can achieve optimal solutions without external
changes of its parameters. According to the literature [8, 16, 10] several level of
adaptation could be differentiated, namely:

• adaptation to various static known spaces;
• adaptation to time dependent (changeable) spaces;
• adaptation to unknown spaces where no prior knowledge about the problems

exists and no proved right settings could be done.

Published earlier investigations show that FS can adapt to heterogeneous tasks [8],
time-dependent tasks [19], and unknown constrained multidimensional tasks [18].

The description below aims to illustrate the manner in which a computational
program can generate adaptive processes. FS process organisation differs from
ordinary iterative and evolutionary processes. FS is organised as a harmony of short
individual explorations with continuous self-control, task learning, knowledge
update and behaviour improvement. FS explores the search space by heuristic trials.
It generates a new solution as deviation of a current one:

x= x0 +Δx ð8Þ

where x is a new solution, x0 is a current solution and Δx is modification. Other
interpretation of Δx is that this is simply individual’s step.

Individuals in FS explore the search space walking step by step. Steps are
described by x, x0 and Δx, which are vectors of real numbers. The modification
strategy is

Δxtji =Rji*ðXmaxi − XminiÞ*randomtji 0, 1ð Þ ð9Þ

where: i indicates dimension; i = 1, …, n for a multidimensional step; n is
dimensions number; t is the current step t = 1, …, T. T is the steps number limit per
walk; Rji indicates the maximal step size for individual j within dimension i. ran-
domtji(0,1) generates random values between 0 and 1. Δxtji indicates the actual step
size for step t of individual j within dimension i. During the exploration an indi-
vidual with abilities for large steps, which could exceed search space boundaries,

318 V. Vasileva and K. Penev



can perform global exploration whereas another individual with abilities for small
steps can do precise search around one location.

FS modification strategy is independent from the current or the best achieve-
ments. This independence highly supports adaptation and excludes well-known
dilemma “exploration versus exploitation”. Event exploration performs heuristic
trials based on stochastic divergence from one location. The concrete value of the
neighbourhood space for a particular exploration defines the extent of uncertainty of
chosen individual. The exploration walk is followed by an individual assessment of
the explored locations. The best location is marked. By analogy with nature the
variable used for marking is called pheromone. The variable pheromone indicates
the quality of the locations and may be interpreted also as result or cognition from
previous activities. The assessment, during the exploration, is defined as follows:

ftj = f xtji
� 	

, fj =max ftj
� 	 ð10Þ

where ftj is the value of the objective function achieved from individual j for step
t. fj is the quality of the location marked with pheromone from an individual after
one exploration. The pheromone generation is generalised for the whole population:

Pj = fj ̸max fj
� 	 ð11Þ

where max(fj) is the best achieved value from the population for the exploration.
This is a normalisation of the explored problem to an idealised qualitative (or

cognitive) space, in which the algorithm operates. This idealised space is used to
model the ideal space of notions in the mind of biological systems in which they
generate decisions. Normalisation of any particular search space to one idealised
space supports adaptation and successful performance across variety of problems
without additional external adjustments. Decision-making policy in FS by analogy
with biological systems depends on apprehension of the space. It is related with a
variable called sense. The variable sense can be likened as a quantitative indicator
of sensibility.

The algorithm tunes sensibility during the process of search as function of the
explored problem. The same algorithm makes different regulations of the sense
during the exploration of different problems. This is the model of adaptation in Free
Search [8, 16]. Variable sense distinguishes individuals from solutions. The indi-
viduals are explorers differentiated from evaluated solutions and detached from the
problem’s search space. A solution in FS is a location from a continuous space
marked with pheromone. Abstract individuals explore, select, evaluate, and mark
these solutions.

The sensibility generation is

Sj = Smin+DSj ð12Þ
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whereΔSj = Smax− Sminð Þ * randomj 0, 1ð Þ ð13Þ

Smin and Smax are minimal and maximal possible values of the sensibility.

Smin=Pmin, Smax=Pmax. ð14Þ

Pmin and Pmax are minimal and maximal possible values of the pheromone
marks. The process continues with selection of a start location for a new exploratory
walk. The ability for decision-making based on the achieved from the exploration
(which can be in contradiction with the existing assumptions about the problem
during the implementation of the algorithm) supports a good performance across
variety of problems, adaptation and self-regulation without additional external
adjustments. Selection for a start location x0j for an exploration walk is

x0j = xkðPk ≥ SjÞ ð15Þ

where: j = 1, …, m, j is the number of the individuals; k = 1, …, m, k is the number
of the location marked with pheromone; x0j is the start location selected from
individual number j. After exploration the termination follows. Individual relation
between sensibility and pheromone distributions affects decision-making policy of
the whole population. A short discussion on three idealised general states of sen-
sibility distribution can clarify FS self-regulation and how chaotic on first view
accidental events can lead to purposeful behaviour. These are—uniform, enhanced
and reduced sensibility.

In Fig. 1 (and in following Figs. 2 and 3) left side represents distribution of the
variable sense within sensibility frame and across the animals from the population.
Right side represents distribution of the pheromone marks within the pheromone
frame and across the locations marked from previous generation. In case of uni-
formly distributed sensibility and pheromone (Fig. 1), individuals with low level of
sensibility can select for start position any location marked with pheromone.

Individuals with high sensibility can select for start position locations marked
with high level of pheromone and will ignore locations marked with low level of
pheromone. It is assumed that during a stochastic process within a stochastic
environment any deviation could lead to non-uniform changes of the process. The
achieved results play role of deviator.
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Fig. 1 Uniform sensibility
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An enhancement of sensibility encourages animals to search around the area of
the best-found solutions during previous exploration and marked with highest
amount of pheromone. This situation appears naturally (within FS process) when
pheromone marks are very different and stochastic generation of sensibility pro-
duces high values.

External adding of a constant or a variable to the sensibility of each animal could
make forced sensibility enhancement. Individuals with enhanced sensibility will
select and can differentiate more precisely locations marked with high level of
pheromone and will ignore these indicated with lower level (Fig. 2).

By sensibility reduction an individual can be allowed to explore around locations
marked with low level of pheromone. This situation naturally appears (within FS
process) when the pheromone marks are very similar and randomly generated
sensibility is low. In this case the individuals can select locations marked with low
level of pheromone with high probability, which indirectly will decrease the
probability for selection of locations marked with high level of pheromone. Sub-
tracting of a constant or a variable from sensibility of each animal could make a
forced reduction of sensibility frame (Fig. 3). Sensibility across all individuals
varies. Different individuals can have different sensibility. It also varies during the
optimisation process, and one individual can have different sensibility for different
explorations.

Adaptive self-regulation of sense, action and pheromone marks is organised as
follows. An achievement of better solutions increases the knowledge of the pop-
ulation for best possible solution. This knowledge clarifies pheromone and sensi-
bility frames, which can be interpreted as an abstract approach for learning and
sensibility can be described as high-level abstract knowledge about the explored
space. This knowledge is acquired from the achieved and assessed results only.
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The individuals do not memorise any data or low-level information, which
consume computational resources. Sensibility can be interpreted as implicit
knowledge about the quality of the search space and in the same time creates
abilities to recognise further, higher or lower quality locations. Better achievements
and higher level of distributed pheromone refines and enhance sensibility.

A higher sensibility does not restrict or does not limit abilities for movement. It
implicitly regulates the action of the individuals in terms of selection of a start
location for exploration [16]. Learning new knowledge does not change individual
abilities for movement. Animals continue to do small or large steps according to the
modification strategy (By analogy with nature elephants will not do small ants size
steps and vice versa). However, enhanced sensibility changes their behaviour. They
give less attention to locations, which bring low quality results. They can be
attracted with high probability from locations with better quality.

Another advanced concept, implemented in Free Search algorithm, is indepen-
dence of the optimisation process on initial population. Free Search can operate on
any initial population. This is a conceptual improvement in comparison to other
real-value methods for optimisation of non-discrete problems. Analysis of Genetic
Algorithm [3], Particle Swarm Optimisation and Differential Evolution [6] suggests
that these methods cannot operate when optimisation starts from one location.
Genetic Algorithm starts effective work after the first mutation and DE and PSO
cannot start at all.

Three types of initialisations presented below can illustrate FS abilities for start
from stochastic initial locations, start from certain initial locations and start from
one location.

Free Search can start from a stochastically selected set of initial solutions where
all the initial locations x0ji are random values:

x0ji =Xmini + Xmaxi −Xminið Þ * randomji 0, 1ð Þ ð16Þ

where Xmini and Xmaxi are the search space borders, i = 1,…, n, n is the number of
dimensions, j = 1, …, m, m is the population size. random(0,1) is a random value
between 0 and 1. A start from random locations guarantees non-zero probability for
access to any location from the search space.

Free Search can start from certain initial population where all the initial locations
x0ji are prior-defined values aji:

x0ji = aji, aji ∈ Xmini,Xmaxi½ � ð17Þ

where Xmini and Xmaxi are the search space borders, i = 1,…, n, n is the number of
dimensions, j = 1, …, m, m is the population size and aji are constants, which
belong to the search space.

A start from certain locations is a valuable ability for multi-start optimisation. It
is useful from a practical point of view, when are available. The starting from
certain locations can be used when some values are already achieved and the
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algorithm can continue from these values instead of repeating starts from random
locations.

Free Search can start from an initial population where all the initial solutions x0ji
are in one location c:

x0ji = c, c∈ Xmini,Xmaxi½ � ð18Þ

where Xmini and Xmaxi are the search space borders, i = 1,…, n, n is the number of
dimensions, j = 1, …, m, m is the population size c is constant.

A start for one location is a difference from Particle Swarm Optimisation. Ability
for start from one location closely relates with abilities to avoid stagnation and to
escape for trapping in local optimal solutions. If during the optimisation process all
individuals converge to one location, due to this ability FS quickly diverges and
continues search process, in contrast PSO stagnates.

3.2 Particle Swarm Optimisation

This section discusses mainly PSO modification strategy in order to compare
conceptual differences between FS and PSO. According to some publications, PSO
intends to model a social behaviour of a group of individuals where it searches
gradually for the optimum by changing the values of the set of solutions [4].

However, observation of PSO generated search process suggests that its beha-
viour could be liken as self-organised particles in a cloud systems.

Each particle (individual) shows a single intersection of all search dimensions
and is defined as a potential solution to a test problem in multidimensional space.

At every iteration the particles appraise their position relative to an objective
function (fitness) whether particles in a local neighbourhood allocate memories of
their best positions then use those memories to accommodate their-own velocities,
and thus positions [4].

The original PSO concept [4] is modified by adding inertia factor for velocities
tuning [5]. This study uses modified PSO with variable inertia factor proposed earlier
[5]. The velocity v is used to compute a new position for the particle as shown below:

x′id = xid + vid ð19Þ

where x′id is new position of particle i for dimension d, xid is its current position and
vid is its velocity. The velocity vector v′id for each particle is calculated using the
best particles’ achievement Pid, best for all population achievement gd and inertia
factor w according to the equation below:

v′id =w * vid + n1 * random 0, 1ð Þ * Pid − xidð Þ + n2 * random 0, 1ð Þ * gd − xidð Þ ð20Þ
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The constants n1 (individual learning factor) and n2 (social learning factor) are
usually set with the equal values in terms of giving each component equal weight as
the cognitive and social learning rate.

Both velocity component and inertia factor support adaptation to the explored
test problem. PSO could be adjusted easily as it contains few parameters only.

4 Experimental Methodology

Proposed experimental methodology is simple and fast. All tests are evaluated for
two dimensions. For all experiments for both FS and PSO, population is 10
individuals.

For two-dimensional tests PSO experiments are limited to 100 and 2000 itera-
tions per each test. Total number of test function evaluations for 10 individuals are:
100 × 10 = 1000 and 2000 × 10 = 20000 accordingly. FS experiments are
limited to 20 and 400 explorations with 5 steps per exploration. Total number of test
function evaluations for 10 individuals are: 20 × 5 × 10 = 1000 and
400 × 5 × 10 = 20000.

For hundred dimensions PSO and FS are evaluated on Michalevicz and Nor-
wegian tests and FS separately is evaluated on Bump test.

For all test PSO is applied with variable inertia factor, which enhances to some
extent its ability for adaptation. Individual learning factor is 2.0. Group learning
factor is 2.0. Inertia weight varies within the interval 0.5–1.5 with step 0.1. Ini-
tialisation is stochastic:

x0ji =Xmini + Xmaxi −Xminið Þ * randomji 0, 1ð Þ ð21Þ

where Xmaxi – Xmini are search space boundaries; j is individual, i is dimension.
For all tests FS is used with its standard set of parameters. Detailed description of
these parameters is published [8]. In order to provide equal conditions for testing
with PSO neighbour space varies within the interval 0.5–1.5 with step 0.1. Sen-
sibility randomly varies within the interval 0.99999–1.0.

To evaluate probability for dependence on initialisation, 32 experiments with
different initialisations per each inertia value for PSO and per each neighbour space
value for FS are completed. This corresponds to 320 experiments per test per
method in total. FS is evaluated additionally to the same number of experiments but
with start for all individuals from a single location selected away from the global
optimum. The single location for all tests is defined as

x0ji =Xmini +0.1 * ðXmaxi −XminiÞ ð22Þ

where Xmaxi – Xmini are search space boundaries; j is individual; i is dimension.
For Sofia test FS is evaluated for extra hard initial conditions with start for all
individuals from a single location close to the local sub-optimal solutions, which
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purposefully increases probability for trapping. The single location for these tests is
defined as

x0ji =Xmaxi − 0.25 * ðXmaxi −XminiÞ ð23Þ

where Xmaxi – Xmini are search space boundaries; j is individual; i is dimension.
In order to compare algorithms performance on multidimensional global test, FS

and PSO are tested on Michalewicz, Norwegian test and FS only on Bump test for
100 dimensions.

For 100 dimensions, Michalewicz test is implemented for search space xi ∈
[0.0, 3.0].

Experiments for Michalewicz and Norwegian tests are limited to 1000000
iterations for PSO and 200000 explorations with 5 steps for FS. A criterion for
termination for the experiments on Bump test is reaching particular optimal value
[4, 20].

5 Experimental Results for 2-Dimensional Tests

PSO completed four tests with start from randomly generated initial solutions. Due
to its modification strategy, PSO is unable to process from single initial solution.

FS completed all tests starting from single and random locations. For each
experiment 320 results are obtained, analysed and summarised. Achieved experi-
mental results for two-dimensional tests are assessed by the following criteria:

• Michalewicz test for xi ∈ [−5.0, 5.0] has two equal value maxima
fmax(−4.96599769, −4.71238898) = 1.96785066 and fmax(−4.96599769,
1.57079633) = 1.96785066. Second local maximum is 1.80130341. As suc-
cessful are accepted results above 1.96.

• Norwegian test for xi ∈ [−1.1, 1.1] has maximum at fmax(1.00011, 1.00011) =
1.00000113. Second local maximum is 0.98344. As successful are accepted
results above 0.99.

• Five hills test for xi ∈ [−10.0, 10.0] has maximum at fmax(6.99344, −6.9942) =
12.0076. Second local maximum is 11.9076. As successful are accepted results
above 11.91.

• Sofia test for xi ∈ [−5.0, 5.0] has maximum at fmax((−3.0003, 0.000100313)) =
122.256. Second local maximum is 106.148. For this test, as successful are
accepted results above 110.

• Bump test for xi ∈ [−10.0, 10.0] has maximum at fmax(1.601116247
0.468424618) = 0.36497. As successful are accepted results above 0.36.

Table 1 presents the number of successful results from 320 experiments reached
by FS with start from single location and FS and PSO with start from random
locations for 100 and 2000 iterations (for FS 20 and 400 explorations 5 steps each).
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Table 2 presents the number of successful results reached by FS on Sofia test
from 320 experiments with start from extra hard singe location for 100 iterations
and for 2000 iterations.

On the Fig. 4, RL indicates start form random locations and OL indicates start
form one location. Figure 4 summarises the total number of successful results
achieved by FS on five tests for 100 and 2000 iterations with start from one location
and random locations and PSO on five tests with start from random locations.

On the Fig. 5, RL indicates start form random locations and OL indicates start
form one location. Figure 5 shows successful results achieved on Sofia test by PSO
for 100 and 2000 iterations with start from random locations and by FS for 100 and
2000 iterations with start from random locations, single location and extra hard
single location. Results presented in Tables I and II suggest that probability for
success on explored tests:—within 100 iterations is low for both methods. For
majority of tests (except Bump test and FS on Michalewicz test) probability for
success is below 10 %;—within 2000 iterations for PSO is moderate on Norwegian
(16 %) and Five hills (37 %) and low for Michalewicz (5 %) and Sofia (0.6 %); for
FS, which does not depend on initialisation, for start from random locations is 61 %
and for start from single location is 64 %. FS can resolve with 60 % probability

Table 1 FS and PSO successful results on two-dimensional tests

Successful results Iterations
One location Random locations
FS 100 FS 2000 FS 100 FS 2000 PSO 100 PSO 2000

Michalewicz 93 320 138 313 16 16
Norwegian 11 173 9 160 9 118
Five Hills 41 260 21 242 4 52
Sofia 21 74 24 65 2 2
Bump 30 312 56 316 126 275
Total 196 1139 248 1096 157 463

Table 2 FS on Sofia test
start form extra hard location

FS starting from extra hard single location Iterations
100 2000

Sofia 7 41
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Fig. 4 FS and PSO
successful results
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global optimisation tests. FS is independent on initialisation. FS would be reliable
with high probability for global optimisation real-world tasks. On two-dimensional
Bump test PSO demonstrates high convergence, for 100 iterations reaches 39 %
successful results and outperforms FS, which reaches 17.5 %. However for 2000
iterations FS has 98.75 % success versus 85.94 % for PSO.

6 Experimental Results for 100-Dimensional Tests

Experimental results for 100 dimensional tests are assessed by the following
criteria:

On 100 dimensional Michalewicz test for xi ∈ [0.0, 3.0] maximal achieved
result by Free Search on experiments limited to two hundred thousand explorations
of five steps, which corresponds to then million iterations is f100max = 99.6191.
Firm confirmation whether this is the global optimum could be a subject of further
research. For statistical purposes, as successful are accepted results above 99.4.

On 100-dimensional Norwegian test for xi ∈ [−1.1, 1.1] maximal achieved
result by Free Search on experiments limited to two hundred thousand explorations
of five steps, which corresponds to then million iterations is f100max = 1.00004.
Firm confirmation whether this is the global optimum could be a subject of further
research. For statistical purposes, as successful are accepted results above 1.0.

For 100 dimension FS and PSO are tested on 100 dimensional Michalewicz and
Norwegian tests. Completed are three series of experiments limited to 105, 106 and
107 iterations for PSO and 20000, 200000, 2000000 exploration 5 steps for FS.
These limitations guarantee identical number of objective functions calculations.
Although they perform well on two-dimensional Bump test they need more itera-
tions to cope with 100 dimension, therefore only FS is tested separately.

Table 3 presents the number of successful results on 100 dimensional tests from
320 experiments reached by FS and PSO with start from random locations for 105,
106 and 107 iterations limits. Used implementation of PSO although performed well
on two-dimensional tests was trapped at sub-optimal solutions for booth 100
dimensional tests. FS resolved with acceptable level of precision 100 dimensional
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Fig. 5 FS and PSO on Sofia test
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Michalewicz test for all tests. More explorations just add to the precision. For
100-dimensional Norwegian tests, however, FS reached global maximum only for
117 from 320 experiments limited to 2000000 explorations * 5 step (corresponding
to 107 iterations).

Table 4 presents maximal results on 100 dimensional tests from 320 experiments
reached by FS and PSO with start from random locations for 105, 106 and 107

iterations limits.

Table 3 FS and PSO successful results on one hundred dimensional tests

Successful results for 100
dimensions

Iterations
FS
105

FS
106

FS
107

PSO
105

PSO
106

PSO
107

Michalewicz 320 320 320 0 0 0
Norwegian 0 0 117 0 0 0

Table 4 FS and PSO
maximal results on
Michalevicz and Norwegian
tests

Method/limits Maximal results
Michalewicz 100D Norwegian 100D

FS/20000 * 5 99.5808 0.750627
FS/200000 * 5 99.6157 0.967082
FS/2000000 * 5 99.6191 1.00004
PSO/100000 79.2948 0.220553
PSO/1000000 79.2948 0.224411
PSO/10000000 79.2948 0.225525

Table 5 FS and PSO mean
results on Michalevicz and
Norwegian tests

Method/limits Mean results
Michalewicz 100D Norwegian 100D

FS/20000 * 5 99.5021065 0.69120580
FS/200000 * 5 99.6109537 0.92401155
FS/2000000 * 5 99.618175 0.98937421
PSO/100000 31.9071906 0.00747217
PSO/1000000 33.0173021 0.00798572
PSO/10000000 34.28708729 0.008360065

Table 6 FS and PSO
standard deviation on
Michalevicz and Norwegian
tests

Method/limits Standard deviation
Michalewicz 100D Norwegian 100D

FS/20000 * 5 0.033529264 0.02712148
FS/200000 * 5 0.002655801 0.01853559
FS/2000000 * 5 0.000480039 0.00843936
PSO/100000 0.03091758 20.51973245
PSO/1000000 0.03013784 20.98219184
PSO/10000000 ? ?
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Table 5 presents mean results on 100-dimensional test from 320 experiments
reached by FS and PSO with start from random locations for 105, 106 and 107

iterations limits.
Table 6 presents standard deviation on 100-dimensional tests from 320 experi-

ments reached by FS and PSO with start from random locations for 105, 106 and 107

iterations limits. Experiments on 100 dimensional tests confirm published earlier [8,
16] Free Search abilities to:

• avoid stagnation;
• escape from trapping in sub-optimal solutions;
• avoid dependence on initial population;
• adapt to unknown space.

Used implementation of PSO, although resolved two-dimensional tests, has
difficulties to cope with one-hundred dimensional versions of these tests. Tables 4
and 5 suggest that cannot achieve global optimum within defined iterations limits.
Table 6 shows that increasing the number of iterations lead to an increase of
standard deviation. Reasons for this behaviour and an increase of the PSO con-
vergence for global multidimensional tasks could be a subject of further research.

Although PSO and FS show good results on two-dimensional Bump test on one
hundred dimensional version of this test used PSO implementation could not reach
acceptable results. After substantial number of sequential multi-start experiments
Free Search reaches maximal value of Fmax100 = 0.84568545610035528, con-
straint perimeter for this value is p100 = 0.75000000000000466.

Variables for this value are presented in Table 7 and could be used for com-
parison to other methods or for start location for further refining of this value.

7 Discussion

This section discusses FS performance and how FS avoids fundamental accep-
tances, on which are based attempts to prove inability of the modern heuristic
methods to perform well on heterogeneous global optimisation problems.

In the same time FS does not contradict the existing conclusion that there is no
algorithm, which performs best across all possible range of problems [12, 13]. FS is
based on several advanced concepts, whose harmony contributes to the adaptation
to various problems and to the good performance on unknown tasks. In some
extent, these concepts differ from existing assumptions, published in the literature.
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7.1 Adaptation Versus Preliminary Parameters Settings

According to the literature “There is much recent evidence to support the use of
advanced search algorithms in wide range scientific, technological and social fields.
Advantages have been demonstrated in design, engineering, transport, business,
diagnosis, planning and control. However, when objectives are incomplete and

Table 7 Variables for Bump test for Fmax100 = 0.84568545610035528

× 0 9.4220110174916201 × 34 2.9539993057768896 × 68 0.45441962950622516

× 1 6.2826269503345156 × 35 2.946700290458983 × 69 0.45356136749912962

× 2 6.268383174968319 × 36 2.9393411869342341 × 70 0.45270186591116279

× 3 3.1685544120244855 × 37 2.9319048348438392 × 71 0.45185207098772395

× 4 3.1614801076277121 × 38 2.9243754868990863 × 72 0.45101725657683717

× 5 3.1544518696911341 × 39 2.9167792641902861 × 73 0.45017531809106459

× 6 3.1474495832289167 × 40 0.48215961508911009 × 74 0.44936319426877097

× 7 3.1404950479045404 × 41 0.48103824313351567 × 75 0.4485377329920564

× 8 3.1335624856086999 × 42 0.47990261875141216 × 76 0.4477274215608178

× 9 3.1266689455963657 × 43 0.47878287205581088 × 77 0.44690913523308484

× 10 3.1197829709276546 × 44 0.47768430094929853 × 78 0.44610180306836622

× 11 3.1129330728191893 × 45 0.47661284860125969 × 79 0.44530695939065651

× 12 3.1060985093274232 × 46 0.47553401880423046 × 80 0.44452775570335706

× 13 3.0992700218084379 × 47 0.47446785125492774 × 81 0.44374601157744475

× 14 3.0924554965695812 × 48 0.47341194393636354 × 82 0.44296210126059304

× 15 3.0856546345558531 × 49 0.47238534512975816 × 83 0.44218165327387443

× 16 3.0788600779867954 × 50 0.471363407442003 × 84 0.44144485059511346

× 17 3.0720627258530895 × 51 0.47032875754599018 × 85 0.44065200218379885

× 18 3.065265700036762 × 52 0.46930945558813297 × 86 0.43991686744809411

× 19 3.0584746707061194 × 53 0.46831837263410242 × 87 0.4391561530937918

× 20 3.0516637032956146 × 54 0.4673564573538872 × 88 0.43841830158401307

× 21 3.0448584948795405 × 55 0.46635873320297838 × 89 0.43768312099339146

× 22 3.0380286239783816 × 56 0.4653959047174871 × 90 0.43694766056794315

× 23 3.0311926837052807 × 57 0.46442273745998447 × 91 0.43620589320100195

× 24 3.0243298573367188 × 58 0.4634765652864925 × 92 0.43550809718429934

× 25 3.0174564446916823 × 59 0.46251430644316693 × 93 0.43477896752008077

× 26 3.0105548474617962 × 60 0.46159995229591577 × 94 0.43406590079301738

× 27 3.0036206348180787 × 61 0.46065790486205743 × 95 0.43335315526735246

× 28 2.9966580744764033 × 62 0.45977027595464537 × 96 0.43265449240042753

× 29 2.9896625571719468 × 63 0.45882918141692586 × 97 0.43194929446147168

× 30 2.9826197373857943 × 64 0.45794414020951224 × 98 0.43126789176092595

× 31 2.9755470498458614 × 65 0.45703884159185892 × 99 0.430563651

× 32 2.9684103339517844 × 66 0.45616083798158447

× 33 2.9612203185135004 × 67 0.45530543288455649
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when search environments are uncertain and infinite, which is common for
real-world tasks, performance may fall drastically. An approach to cope with
complex problems is by the use of prior knowledge about the problem and pre-
liminary setting of the optimisation parameters” [21].

Assumptions for existence of prior knowledge about the explored problem as a
premise, as a requirement, for adaptation, such as: “Systems that include prior case
knowledge provide opportunities for systems to adapt and learn in uncertain
environment” [21] are opposed to the concept for black box model, which excludes
requirements for prior knowledge about the search problem.

It is accepted that Free Search has to be able to adapt and to adjust its behaviour
to the explored problem without prior knowledge. FS has to be able to cope with the
problem by utilisation of the knowledge achieved during the process of search,
only. FS does not require prior knowledge and preliminary settings related to the
particular problem.

At the same time, FS does not restrict a use of prior knowledge if it exists and if
it supports the search process [8]. In the literature on Evolutionary Computation, the
notion adaptation is interpreted as: “The process of generating a set of behaviours
that more closely match or predict a specific environmental regime. An increased
ecological-physiological efficiency of an individual relative to others in the popu-
lation”. [22] In FS the term adaptation is understood not only as an adjustment of
the behaviour to the different environments or as prediction of the changes of a
time-dependent data space.

The attribute adaptive is understood as ability, as a potential, for variations and
changes in the behaviour. On conceptual level, Free Search attempts to avoid any
rules, acceptances or settings, which may restrict the ability for adaptation.

According to some publications [21] one system could be able to adapt to
different environments or to changes of the current environment if it performs
prediction, control and feedback and action. FS is based on the concept that if the
individuals of a population are set in advance and suffers restrictions to do changes
because of prior acceptances or prior knowledge, then precise prediction of the
possible changes and a full control on, and feedback from, the environment become
meaningless. These individuals would be unable to adapt due to the imposed
restrictions. Free Search is not set to perform well on a certain class of problems. It
has rich potential for: local search; global exploration; sharp convergence; wide
divergence. The behaviour of Free Search is not previously set. The individuals
possess these abilities and the algorithm varies their behaviour and exhibits their
potential during the optimisation process. FS attempts to adapt to the explored
problem. It can be formulated that during the search process the individuals are
exploring and learning the optimisation problem and then decide how to behave.
Furthermore, the individuals can change their behaviour during this process.
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7.2 Unrestricted Step Size Versus Regulation by Step Size

The idea for variation of the parameters of evolutionary algorithms has been dis-
cussed since earlier stages of iterative computation. For an iterative scheme to
succeed, multiple elements had to be altered simultaneously, leading to a combi-
natorial explosion of possibilities [20, 23].

For global search problems, uncertainty of the behaviour of the individuals
establishes two problems—(1) to overcome stagnation of the search process and
(2) to cope with a large number of possibilities as result of given probability for
change of the individuals behaviour. The idea for alteration of the search parameters
affects the step size. Earlier published results indicate that: “Depending upon the
step size it can be reached a point of stagnation, which may or may not be near to
the solution. For well-conditioned systems and with some knowledge about the
problem the method achieves quickly area of the best solution. Badly conditioned
system usually gets trapped at a point of stagnation. A change of the step size may
result in further progress, but after a while the search gets trapped again”. [23]

Free Search attempts to cope with stagnation or trapping in a local sub-optimum
by: elimination of any restrictions of the step size, which is limited by the space
borders, only, (Precisely, the step size is not restricted, even, by the space borders.
The individuals can step outside of the borders. However, the results achieved
outside of the borders are ignored.); use of a modification strategy that highly
encourages escaping from trapping; individual decision-making policy, which
allows individuals to explore remote locations. In FS the term configuration of the
optimisation parameters is understood as a frame for variation of the parameters.
In FS parameters are not set to a particular value. They can be changed and adapted
flexibly during the process of search within a defined frame.

In PSO increasing the divergence for wide global exploration of the search space
requires a large step. Large steps encourage escaping from trapping. However,
increasing the convergence speed to an exact optimal location requires small precise
steps. Small steps lead to trapping in local sub-optima. This principle for regulation
of the convergence and divergence has the following contradictions: Large steps—
low probability for trapping but low convergence to the optimum; Small steps—
high convergence to the optimum but high probability for trapping.

Free Search uses adaptive self-regulation of the convergence and divergence:
Increasing the difference between achieved results increases the number of possible
variations but decreases the probability for exploration of locations with a low level
of pheromone.

Decreasing the probability to explore locations with a low level of pheromone
increases the convergence speed to better locations.

Decreasing difference between achieved results, which indicates a high possi-
bility of trapping, leads to an increasing of the probability for exploration of
locations marked with a low level of pheromone. Increasing the probability to
explore locations with a low level of pheromone, combined with the ability for
large steps, increases the divergence and encourages escaping from trapping in local
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sub-optima. This manner of regulation is possible, because of the new concept for
sense. It has no contradictions and harmonises the behaviour of the individuals:

• A large tolerance of the results and a low probability for trapping—increases the
convergence;

• A small tolerance of the results and a high probability for trapping—increases
the divergence.

Regulation of the process by sensibility:—allows regulation of the convergence
and divergence without determination or discrimination of the search space;—
allows use of large and small steps during the whole search process.

In some cases, for example, when the random initial population generates
accidentally solution within the area of the global optimum Particle Swarm Opti-
misation may reach global optimum. Two successful results on optimisation of
Sofia test illustrate this case.

7.3 Creativity Versus Constant Principles

Creativity is understood as a capability to discover an original successful approach
to different and changeable environments, which leads to the ability to adapt and to
solve different and time-dependent problems.

It is based on the definition for intelligence and intelligent system: “Intelligence
may be defined as the capability of a system to adapt its behaviour to meet its goals
in a range of environments. For natural species, survival is a necessary goal in any
given or changeable environment. For human created systems, as machines and
computers, both goals and environments may be imbued by the machine’s creator”
[20].

Constant principles are understood as acceptance based principles, which are
applicable and valid for a large period and a large number of cases. The applica-
bility for large period leads to the acceptance that these principles are not
changeable.

It is accepted that for an infinite period or for an infinite space constant principles
do not exist. Acceptance of any principle can be only temporary and must not
restrict the capability for adaptation.

This study is based on a clear understanding that all knowledge including all
logical and mathematical rules are grounded on acceptances under certain condi-
tions. These rules and that knowledge may not be applicable to uncertain, infinite
and unknown problems and environments, where required for the acceptances
conditions may not exist.

An infinite variety of real-world problems can be difficult to solve for many
reasons such as those detailed below:

“The problem is so complicated that just to facilitate any answer at all, which
requires a use of simplified models of the problem that any result is essentially
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useless” [15]. In the thesis these types of difficulties are defined as: obstacles caused
from the continuous search space. The simplified model of the continuity can be
considered as a model with a low level of precision, where complex details can be
ignored.

“The number of possible solutions in the search space is so large and it forbids
an exhaustive search for the best answer” [15]. In the thesis formulation of these
types of difficulties is—obstacles caused from the infinite search space.

“The objective function that describes the quality of any proposed solution is
noisy or time dependent, thereby requiring not just a single solution but an entire
series of solutions” [15]. In the thesis, the description, of such types of difficulties,
is—obstacles caused from time-dependent or dynamic search space.

“The possible solutions are so heavily constrained that constructing even one
feasible answer is difficult, let alone searching for an optimal solution” [15]. In the
thesis these types of difficulties are described as obstacles caused from the con-
strained search space. “The person solving the problem is inadequately prepared or
imagines some psychological barrier that prevents him from discovering a solution”
[15]. In the thesis this is described as obstacles caused from the constant principles,
un-creativity or inability to adapt.

“Systems often contain fixed conceptual models of the engineering task based on
concrete assumptions, which are often impossible to change. Even when adaptive
methodologies act on higher-level representations such as in composition mod-
elling, there are a finite number of ways to learn with new information”. [21].

Free Search attempts to avoid constant assumptions and principles on conceptual
level. FS aims to eliminate restrictions for a number of ways to learn new infor-
mation and a number of ways to behave. During the process of search FS temporary
accepts the way of learning and behaving, however, it is always able to change
them. Therefore, Free Search can be applied successfully to infinite, continuous,
changeable and constraint space. If the current experience suggests a change of the
behaviour FS can change it. The algorithm does not rely on prior constant principles
or rules. How it is implemented in Free Search?

In Free Search the concepts for pheromone and sensibility are a dynamic cog-
nitive abstraction of the process of search and of the search space. Before initial-
isation sensibility is undefined and pheromone does not exist. After the initial
exploration walk, the animals assess their-own achievements and indicate with
pheromone their-own best-found location. The amount of deposited pheromone is
proportional to the quality of the location according to the explored objective
function. The amount of pheromone defines a frame of acquired knowledge. The
pheromone can be considered as abstracted cognition about the search space. The
frame of the knowledge defines the way of learning, which is implemented by the
frame of sensibility for each animal. The ability to refine the sense can be con-
sidered as ability for learning. The two frames of the pheromone and of the sen-
sibility are equal. So that the full abstracted cognition about the space can be
learned. The amount of pheromone depends on the quality of the location according
to the objective function. However, the sensibility does not depend upon the quality
of a particular location or particular pheromone. The sensibility does not depend on
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the explored problem and on the objective function, as well. The sense makes the
animals independent from the problem. The sense, also, differentiates the animals
between each other as different independent individuals. The animals can explore
the same problem. They can be in the same location but that is no reason to be
equal. That is no reason for all the animals to continue in the same way. The
animals in FS are different. They have different sensibility. They can take different,
even contrary, decisions for further explorations. Consequently they can proceed in
different ways. This is understood as creative, intelligent individualism. That
individualism differentiates a team from a flock.

The cognition, which animals abstract from exploration walk has two aspects.
The first aspect is acquaintance of the search space. Selected locations are marked
and can be used for further exploration. The search space is not unknown any more
after the initial exploration. The second aspect is improvement of their-own skills.
Each animal refines and perfects its own level of sensibility. So that it can be better
prepared to select the appropriate location marked with pheromone, which is most
suitable for its sensibility. Sensibility varies for a variety of animals. They can have
either different or equal sensibility. The pheromone amount varies for a variety of
selected locations. The locations can be marked either with different with or equal
amounts of pheromone. A relation of these two variables is an act of selection.

Selection of further directions for search can be classified as a decision-making
event. The event of decision-making is, in fact, an act of assessment of the indi-
viduals’ knowledge and skills. If the animals’ sensibility is appropriate for selection
of locations, which lead to the desired optimum, it follows, that the animals have
good way of learning, good cognition and successful behaviour. If the animals
cannot select a successful location it follows that the way of learning can be
improved.

A creation of the sensibility can be considered as a high-level cognitive
abstraction about the explored problem, in comparison to memorizing of the
explored path, marked with pheromone, which can be considered as a data level
abstraction. This is a conceptual difference with ant algorithms.

Abstraction, as a form of cognition, based on separation in thought of essential
characteristics and relationships, it is one of the fundamental ways that humans can
cope with complexity. In real life high-level abstractions can cover a large amount
of data and information. Operation with large sets of information leads to high-level
thinking and behaviour. Respectively, in computational modelling, high-level
abstractions can lead to high performance and high quality results, which the
experiments presented in this article confirm.

8 Conclusion

This article presents an evaluation of FS and PSO on global and multidimensional
optimisation numerical tests. New and modified test together with experimental
methodology are presented. From the achieved results, it can be concluded that the

Free Search and Particle Swarm Optimisation Applied … 335



implemented in unified Black Box model [8] tests and simple multi-start experi-
mental methodology are suitable to measure and assess:—search algorithms per-
formance;—probability for success of explored methods;—abilities of explored
methods for entire search space coverage;—dependence on initialisation; abilities
of explored methods to escape from trapping in local sub-optima;—probability for
success on global optimisation of other real-value coded methods.

Experimental results could be summarised as follows: FS demonstrates good
overall performance and abilities to escape from trapping on both two and hundred
dimensional tests. With high probability PSO cannot escape from trapping. In
particular on two-dimensional Sofia tests for start from extra hard single location FS
still can resolve the test within 2000 iterations with probability 13 %. Due to its
specific modification strategy, which requires difference between individuals, PSO
cannot start and proceed from single location. Experiments confirm previous
investigation [8] and experiments on one hundred dimensions extend the knowl-
edge about FS abilities to avoid stagnation in sub-optimal solutions and to resolve
with high probability global multidimensional optimisation test. FS is able to
explore entire search space with non-zero probability for access to any arbitrary
location. FS is independent on initialisation. PSO depends on initialisation. PSO
could be very fast if some of the initial locations are close to the global optimum.
FS could be reliable for real-world global multidimensional optimisation.

Future research could focus on evaluation of other methods and test and
application to real-world problems in communications, science and industry.
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Intuitionistic Fuzzy Sets Generated
by Archimedean Metrics and Ultrametrics

Peter Vassilev

Abstract For a nonempty universe E it is shown that the standard intutitionistic

fuzzy sets (IFSs) over E are generated by Manhattan metric. For several other types

of intuitionistic fuzzy sets the metrics, generating them, are found. As a result a gen-

eral metric approach is developed. For a given abstract metric d, the corresponding

objects are called d-intuitionistic fuzzy sets. Special attention is given to the case

when d is a metric generated by a subnorm. If d is generated by an absolute nor-

malized norm (the Archimedean case), an important result is established: the class

of all d-intuitionistic fuzzy sets over E is isomorphic (in the sense of bijection) to

the class of all IFSs over E. In § 4, instead of ℝ2
, the Cartesian product ℚ2

, of the

rational number field ℚ with itself, is considered. It is shown that ℚ2
may be trans-

formed in infinitely many ways (depending on family of primes p) into a field with

non-Archimedean field norm 𝛷p generated by p-adic norm. Using the corresponding

ultrametric d
𝛷p

on ℚ2
, objects called d

𝛷p
-intuitionistic fuzzy sets over E are defined

(the non-Archimedean case). Thus, for the first time intuitionistic fuzzy sets depend-

ing on ultrametric are introduced.

1 Preliminary Definitions

Below we remind some important definitions to be used in the investigation.

Definition 1 Let M be a nonempty set. A map d ∶ M × M → [0,+∞) is called met-

ric (or distance) on M (M-metric) if the
1

following conditions are fulfilled:

(1) For x, y ∈ M d(x, y) = 0 iff x = y (coincidence axiom);

(2) For x, y ∈ M d(x, y) = d(y, x) (symmetry);

1
Here and further iff means “if and only if”.
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(3) For x, y, z ∈ M d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The ordered couple (M, d) is called metric space.

Definition 2 M-metric d is said to be ultrametric (non-Archimedean metric, if 3) is

replaced by the stronger condition

(4) For x, y, z ∈ M d(x, y) ≤ max(d(x, z), d(z, y)).

If d is not an ultrametric, then d is called Archimedean metric.

Definition 3 Let F be Abelian group with group operation ⊕ and zero element 0F.

We call a map 𝜑 ∶ F → [0,+∞) subnorm2
on F (F-subnorm) if the following three

conditions are fulfilled:

(5) For x ∈ F 𝜑(x) = 0 iff x = 0F;
(6) For x ∈ F 𝜑(x) = 𝜑(−x) (where −x is the inverse of x with respect to ⊕);

(7) For x, y ∈ F 𝜑(x ⊕ y) ≤ 𝜑(x) + 𝜑(y).

Definition 4 F-subnorm 𝜑 is said to be non-Archimedean if (7) is replaced by the

stronger condition

(8) For x, y ∈ F 𝜑(x ⊕ y) ≤ max(𝜑(x), 𝜑(y)).

If 𝜑 is not non-Archimedean subnorm, then 𝜑 is called Archimedean subnorm.

Any F-subnorm 𝜑 generates F-metric d = d
𝜑

that for x, y ∈ F is given by

d
𝜑

(x, y) = 𝜑(x ⊕ (−y)) , (1)

where −y denotes the inverse element of y (with respect to operation ⊕) in F.
Thus, 𝜑 transforms the Abelian group F into a metric space (F, d

𝜑

).
Using Definition 3, the notions norm on vector space and norm on field may be

easily defined. Namely, let F be a vector space over the number field K. Then F is

Abelian group with respect to an additive operation ⊕ and a second operation ⊙

(multiplication between the elements of F and K) is introduced, satisfying the basic

axioms for the vector space.

Definition 5 Let F be a vector space over K with additive operation ⊕ and mul-

tiplicative operation ⊙. An F-subnorm 𝜑 is said to be norm (vector norm) if the

condition:

𝜑(𝜆 ⊙ x) = |𝜆|𝜑(x) (2)

for x ∈ F and 𝜆 ∈ K is satisfied.

Let F be a field with additive operation ⊕ and multiplicative operation ⊙. Then

F is Abelian group with respect to ⊕.

2
Some authors use the term “group norm” [8, p. 89], [5].
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Definition 6 F-subnorm 𝜑 is said to be norm (field norm) if for x, y ∈ F

𝜑(x ⊙ y) = 𝜑(x)𝜑(y) . (3)

Remark 1 A vector (or a field) F-norm 𝜑 is called Archimedean or

non-Archimedean if 𝜑 is Archimedean or non-Archimedean, considered as a sub-

norm.

It is clear that every vector norm 𝜑 on a vector space F transforms F into a metric

space (F, d
𝜑

), because of (1). The same is true when 𝜑 is a field norm on F. The

corresponding metric d
𝜑

is Archimedean or non-Archimedean if the subnorm 𝜑 is

Archimedean or non-Archimedean, respectively.

Let for n ≥ 1 ℝn
is the set of all n-tuples with real components and ℝn

+ is the set

of all n-tuples with real nonnegative components. ℝ
def
= ℝ1

is the real number field.

Below we give examples of vector norms on F = ℝn
, when ℝn

is considered as a

vector space over K = ℝ with additive and multiplicative operations:

x ⊕ y = (x1 + y1,… , xn + yn); 𝜆 ⊙ x = (𝜆x1,… , 𝜆xn) (4)

with: x = (x1,… , xn), y = (y1,… , yn), 𝜆 ∈ K.

Example 1 For a fixed real p ∈ [1,+∞) the ℝn
-norm 𝜑

(p)
n is introduced by

𝜑

(p)
n (x) =

( n∑
i=1

|xi|p
) 1

p

, (5)

for x = (x1,… , xn).

Let us note (see [12, 13]) that the norm𝜑

(1)
n is called Manhattan norm (sometimes,

wrongly,
3

Hamming norm—see [8]) and the corresponding distance d
𝜑

(1)
n

is called

Manhattan metric, Manhattan distance (sometimes, wrongly, Hamming distance),

taxicab metric or rectilinear distance. The norm 𝜑

(2)
n is called Euclidean norm and

the corresponding metric d
𝜑

(2)
n

is the widely used Euclidean metric.

Example 2 The limit case p = ∞ (in (5)) yields

𝜑

(∞)
n (x)

def
= lim

p→∞
𝜑

(p)
n (x) = max(|x1|,… , |xn|) .

The last norm is known as Chebyshev norm, supremum norm, uniform norm, or

infinity norm and the corresponding metric as Chebyshev distance, maximum metric

(for n = 2 also chessboard distance) [9, p. 143].

3
Manhattan norm must be called Hamming norm only when the components of x are binary.
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Since all ℝn
-norms are equivalent to Euclidean norm, which is Archimedean,

any ℝn
-norm is Archimedean too. Therefore, the above norms 𝜑 = 𝜑

(p)
n are also

Archimedean. Moreover, they are absolute norms, i.e., satisfying the condition

𝜑(x) = 𝜑(x∗) , (6)

where x∗
def
= (|x1|,… , |xn|).

The norms𝜑
(p)
n are also known as: p, Lp

, Lp, 𝓁p
, 𝓁p-norms or as Minkowski norms,

since for them (7) represents the well-known Minkowski inequality (cf. [7, p. 189,

Theorem 9]).

It is necessary to note that for p < 1, 𝜑(p)
n is not a norm, since in this case

Minkowksi’s inequality is violated. This is the reason to consider subnorms, instead

of norms, to make it possible for p to take values in the entire interval (0,+∞].

Definition 7 For a fixed real p ∈ (0,+∞] the Archimedean ℝn
-subnorm 𝜑̃

(p)
n is

introduced by

𝜑̃

(p)
n (x) =

⎧⎪⎨⎪⎩

n∑
i=1

|xi|p, if p ∈ (0, 1)

𝜑

(p)
n (x), if p ∈ [1,+∞] ,

(7)

with x = (x1,… , xn).

Although for p ∈ (0, 1) 𝜑̃(p)
n satisfies (6) and Minkowski inequality, it is not norm

((2) is violated). But for p ∈ (0,+∞] the metric space

(
ℝn

, d
𝜑̃

(p)
n

)
exists due to (1).

2 Introduction

In 1965, with his groundbreaking paper Zadeh [21], generalized the idea of charac-

teristic function of a set introducing the notions membership function and fuzzy set

(FS). This started a new direction of research, now widely known as Fuzzy set The-

ory. In 1983, with his pioneering report, Atanassov [1] generalized the concept of FS
by defining the intuitionistic fuzzy sets (IFSs) over a nonempty universe E. The cru-

cial idea was the introduction of a second generalized characteristic function, called

non-membership function, related to the complement of a set A ⊂ E to E. Thus the

theory of IFS appeared. The concept of IFS contains the concept of FS as a particu-

lar case. Following the numerous publications of K. Atanassov on IFSs, addressing

different areas of application and his two monographs devoted to IFS from 1999 [3]

and 2012 [4], recently many authors, recognizing his enormous contributions to the

field, have begun to refer to IFSs as Atanassov sets or Atanassov’s intuitionistic fuzzy

sets.
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For A ⊂ E and mappings 𝜇A ∶ E → [0, 1], 𝜈A ∶ E → [0, 1], such that

𝜇A(x) + 𝜈A(x) ≤ 1 (x ∈ E) , (8)

Atanassov introduced the object called intuitionistic fuzzy set ̃A as

̃A =
{⟨x, 𝜇A(x), 𝜈A(x)⟩ |x ∈ E

}
.

He named the mappings 𝜇A and 𝜈A membership and non-membership functions and

the map 𝜋A ∶ E → [0, 1], that is given by

𝜋A(x) = 1 − 𝜇A(x) − 𝜈A(x) (x ∈ E) ,

is called hesitancy function. So

𝜇A(x) + 𝜈A(x) + 𝜋A(x) = 1 (x ∈ E)

and the numbers 𝜇A(x), 𝜈A(x), 𝜋A(x) are said to be degree of membership, degree of

non-membership and hesitancy degree/margin of the element x ∈ E to the set A.
Further we shall denote by IFS(E) the class of all IFSs over E.

Later Atanassov in [2] considered (besides the mentioned above standard IFSs)

other types of intuitionistic fuzzy sets for which the condition (8) is replaced by

𝜇

2
A(x) + 𝜈

2
A(x) ≤ 1 (x ∈ E) . (9)

He called these sets 2-intuitionistic fuzzy sets (or briefly 2-IFSs).

More generally, for a fixed real p ∈ (0,+∞), it is possible to consider intuitionistic

fuzzy sets for which condition (8) is replaced by

𝜇

p
A(x) + 𝜈

p
A(x) ≤ 1 (x ∈ E) . (10)

By analogy these sets are called p-intuitionistic fuzzy sets (or briefly p-IFSs) and

for fixed p the class of all p-IFSs over E is denoted by p-IFS(E). Such kind of sets

have been studied by several authors. For example see [14, 17].

All these attempts to extend and generalize the notion intuitionistic fuzzy set are

interesting and admit appropriate applications, but unfortunately share one and the

same disadvantage—they are not a part of a general scheme that is able to explain

what is common between all of them. We observe that conditions (8)–(10) may be

rewritten as follows:

𝜑

(1)
2 ((𝜇A(x), 𝜈A(x))) ≤ 1 (x ∈ E) ; (11)

𝜑

(2)
2 ((𝜇A(x), 𝜈A(x))) ≤ 1 (x ∈ E) ; (12)
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𝜑̃

(p)
2 ((𝜇A(x), 𝜈A(x))) ≤ 1 (x ∈ E) . (13)

In this form they are obviously connected with the corresponding metrics in ℝ2
.

For (11) it is the Manhattan metric, generated by the Manhattan norm𝜑

(1)
2 . For (12) it

is the Euclidean metric, generated by the Euclidean norm 𝜑

(2)
2 . And for (13) we have

two cases. When p ≥ 1, it is the Lp
metric, that is generated by 𝜑

(p)
2 norms. And for p

satisfying 0 < p < 1, it is the metric that is generated by the subnorm 𝜑̃

(p)
2 from (7).

The mentioned above suggests the idea for a unified metric approach to the notion

intuitionistic fuzzy set. Under this approach, the standard IFSs (Atanassov sets) cor-

respond to Manhattan metric; 2-IFSs correspond to Euclidean metric; and generally

p-IFSs correspond to the metric generated by the subnorm 𝜑̃

(p)
2 (which is a norm for

the mentioned cases p = 1 and p = 2 and moreover only for real p ≥ 1).

3 Intuitionistic Fuzzy Sets Depending on ℝ𝟐-Metrics.
Abstract Approach

Definition 8 An ℝ2
-metric d is called normalized if

d((1, 0), (0, 0)) = d((0, 1), (0, 0)) = 1 .

Definition 9 An ℝ2
-subnorm (norm) 𝜑 is called normalized if

𝜑((1, 0)) = 𝜑((0, 1)) = 1 .

The class of all normalized ℝ2
-norms is denoted by N2 and the class of all absolute

normalized ℝ2
-norms is denoted by AN2.

We note that AN2 ⊂ N2 and the inclusion is strict, since the ℝ2
-norm

𝜑((u, v))
def
= sup

t∈[0,1]
|u − t v|

satisfies 𝜑 ∈ N2, but 𝜑 ∉ AN2 because 𝜑((1,−1)) = 2 ≠ 1 = 𝜑((|1|, | − 1|)).
It is clear that any normalized subnorm (norm) 𝜑 generates a normalized metric

d = d
𝜑

, given by (1), where ⊕ is given by (4) with n = 2. When 𝜑 is a norm, the

corresponding metric d
𝜑

is an Archimedean metric.

Definition 10 Let E be a universe, A ⊂ E, 𝜇A ∶ E → [0, 1], 𝜈A ∶ E → [0, 1] are

mappings and d is a normalized metric. We say that the set

̃A = {⟨x, 𝜇A(x), 𝜈A(x)⟩|x ∈ E}
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is d-intuitionistic fuzzy set (briefly d-IFS4
) over E generated by A (through the metric

d), if the relation

d((𝜇A(x), 𝜈A(x)), (0, 0)) ≤ 1 (x ∈ E) (14)

holds. The mappings 𝜇A and 𝜈A are called membership and non-membership func-

tions. The mapping 𝜋A ∶ E → [0, 1], given by

𝜋A(x)
def
= 1 − d((𝜇A(x), 𝜈A(x)), (0, 0)) , (15)

is called hesitancy function.

For x ∈ E the numbers 𝜇A(x), 𝜈A(x) and 𝜋A(x) are called degree of membership,

degree of non-membership and hesitancy degree/margin of the element x to the set

A. The class of all d-IFSs over E is denoted by d-IFS(E).

Let Bd be the closed disc in ℝ2
(centered at (0, 0)) with respect to the metric d,

i.e.,

Bd = {(u, v)|(u, v) ∈ ℝ2 & d((u, v), (0, 0)) ≤ 1} .

Further 𝜕Bd denotes the contour of Bd.

Definition 11 The set

Kd
def
= Bd ∩ℝ2

+

is called interpretation domain for the class d-IFS(E).

Let 𝜑 be a normalized subnorm and d = d
𝜑

is defined by (1). Then (14) becomes

𝜑((𝜇A(x), 𝜈A(x))) ≤ 1

and (15) may be rewritten as:

𝜋A(x) = 1 − 𝜑((𝜇A(x), 𝜈A(x))) .

When d = d
𝜑

, with 𝜑 ∈ N2, the sets Bd
𝜑

and Kd
𝜑

are always convex but for an

arbitrary normalized subnorm 𝜑 the convexity of Bd
𝜑

and Kd
𝜑

is not guaranteed.

In particular Kd
𝜑

(1)
2

is the so-called interpretation triangle (with vertexes (0, 0),

(1, 0), (0, 1)) for the standard IFSs. The set Kd
𝜑

(2)
2

is a quarter of the Euclidean unit

disc in ℝ2
+ (centered at (0, 0)). It is the interpretation domain for the 2-IFSs. The set

Kd
𝜑

(∞)
2

coincides with the Cartesian product [0, 1] × [0, 1] and it is the interpretation

domain for the class d
𝜑

(∞)
2

-IFS(E).

4
A more precise denotation would be

(ℝ2)d-IFS but we will omit it since there is no danger of

misunderstanding.
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The well-known facts: 𝜑 ∈ N2 implies 𝜑 ≤ 𝜑

(1)
2 ; 𝜑 ∈ AN2 implies 𝜑

(∞)
2 ≤ 𝜑,

yield

Proposition 1 Let 𝜑′
, 𝜑

′′ ∈ AN2 and 𝜑

(∞)
2 < 𝜑

′′
< 𝜑

′
< 𝜑

(1)
2 . Then for the convex

sets
Bd

𝜑

(∞)
2

,Bd
𝜑
′′ ,Bd

𝜑
′ ,Bd

𝜑

(1)
2

;Kd
𝜑

(∞)
2

,Kd
𝜑

,Kd
𝜑
′ ,Kd

𝜑

(1)
2

the strict inclusions hold

Bd
𝜑

(1)
2

⊂ Bd
𝜑
′ ⊂ Bd

𝜑
′′ ⊂ Bd

𝜑

(∞)
2

;Kd
𝜑

(1)
2

⊂ Kd
𝜑
′ ⊂ Bd

𝜑
′′ ⊂ Kd

𝜑

(∞)
2

= [0, 1] × [0, 1] .

If 𝜑 ∈ N2 the curve 𝛿d
𝜑

def
= 𝜕Bd

𝜑

∩ℝ2
+ is a continuous (because of the continuity

of the ℝ2-norms) and concave function passing through the points (1, 0) and (0, 1)
and if 𝜑 ∈ AN2 this curve is contained in [0, 1] × [0, 1].

Let 𝜑̃
(p)
2 be the subnorm introduced with (7) (when n = 2). Then the following asser-

tion is true.

Proposition 2 Let p run over (0,+∞]. Then Kd
𝜑̃

(p)
2

are closed sets in the topology of

ℝ2
. They grow with p and tend to Kd

𝜑

(∞)
2

= [0, 1] × [0, 1].
For p ≥ 1 these sets are convex, coincide with Kd

𝜑

(p)
2

(in particular, the curves

𝛿d
𝜑̃

(p)
2

def
= 𝜕Bd

𝜑̃

(p)
2

∩ℝ2
+ coincide with 𝛿d

𝜑

(p)
2

) and contain the interpretation triangle

Kd
𝜑

(1)
2

for the standard IFSs, tending to it when p tends to 1 + 0.

For 0 < p < 1, the sets Kd
𝜑̃

(p)
2

are not convex. They are contained in Kd
𝜑

(1)
2

, tending

to it when p tends to 1 − 0.

Corollary 1 Let p, q ∈ (0,+∞] and p < q. Then d
𝜑

(p)
2

-IFS(E) ⊂ d
𝜑

(q)
2

-IFS(E) and if
0 < p < q < +∞, then p-IFS(E) ⊂ q-IFS(E).

Some important properties of the class AN2 are based on

Definition 12 With Ψ2 is denoted the class of all continuous convex functions 𝜓 in

[0, 1] which for t ∈ [0, 1] satisfy the condition

max(1 − t, t) ≤ 𝜓(t) ≤ 1 .

The fundamental result for the class AN2 is given by Bonsall and Duncan [6, p. 37,

Lemma 3]. Below we represent it in the following form

Theorem 1 There exists a bijection between AN2 and Ψ2. Namely, if 𝜓 ∈ Ψ2, then
there exists a unique 𝜑 ∈ AN2 such that for t ∈ [0, 1]

𝜓(t) = 𝜑((1 − t, t)) (16)
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and if 𝜑 ∈ AN2, then there exists a unique 𝜓 ∈ Ψ2, such that for (𝜇, 𝜈) ∈ ℝ2

𝜑((𝜇, 𝜈)) =

{
(|𝜇| + |𝜈|)𝜓 ( |𝜈|

|𝜇|+|𝜈|
)
, if (𝜇, 𝜈) ≠ (0, 0)

0, if (𝜇, 𝜈) = (0, 0) .
(17)

Since for p ≥ 1𝜑(p)
2 ∈ AN2, the associated function 𝜓 = 𝜓p ∈ Ψ2 (from Bonsall–

Duncan’s bijection) is given by

𝜓p(t) = ((1 − t)p + tp)
1
p
.

Let p run over [1,+∞] and L∗
be the class of all Lp

-norms onℝ2
. Since for (𝜇, 𝜈) ∈

ℝ2

𝜑

(p)
2 ((𝜇, 𝜈)) = 𝜑

(p)
2 ((𝜈, 𝜇)) ,

we obtain

L∗
⊂ SYMAN2 , (18)

where SYMAN2 denotes the class of all symmetric norms 𝜑 ∈ AN2, i.e., such that

𝜑((𝜇, 𝜈)) = 𝜑((𝜈, 𝜇))

for all (𝜇, 𝜈) ∈ ℝ2
.

The inclusion (18) is strict, since if 𝜆 ∈ (0, 1), p, q ≥ 1 and p ≠ q, then the norm

𝜑
𝜆,p,q

def
= (1 − 𝜆)𝜑(p)

2 + 𝜆𝜑

(q)
2 ,

satisfies 𝜑
𝜆,p,q ∈ SYMAN2 and 𝜑

𝜆,p,q ∉ L∗
. On the other hand, if 𝜑 ∈ SYMAN2 and

𝜓 ∈ Ψ2 is its associate function, then for t ∈ [0, 1] the relation

𝜓(1 − t) = 𝜓(t)

holds. Hence, the strict inclusion SYMAN2 ⊂ AN2 is true. Therefore, the following

result is valid:

Proposition 3 The strict inclusions

L∗
⊂ SYMAN2 ⊂ AN2 ⊂ N2

hold.

Our main result in this paragraph is the following theorem, which gives the con-

nection between the standard IFS and the introduced here d
𝜑

-IFS, when 𝜑 ∈ AN2
(here we remind that the metric d

𝜑

is Archimedean)
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Theorem 2 Let E be a universe and 𝜑 ∈ AN2 be fixed norm. Then there exists a
bijection between the classes d

𝜑

-IFS(E) and IFS(E).

Proof Let 𝜓 ∈ Ψ2 be the associated function (from (16)) for 𝜑 and T
𝜑

be the map-

ping which juxtaposes to

A
def
= {⟨x, 𝜇(x), 𝜈(x)⟩|x ∈ E} ∈ d

𝜑

-IFS(E)

the set

B
def
= {⟨x, 𝜇∗(x), 𝜈∗(x)⟩|x ∈ E},

where

𝜇

∗(x) =

{
𝜇(x)𝜓

(
𝜈(x)

𝜇(x)+𝜈(x)

)
, if 𝜇(x) + 𝜈(x) > 0

0, if 𝜇(x) + 𝜈(x) = 0 ;
(19)

𝜈

∗(x) =

{
𝜈(x)𝜓

(
𝜈(x)

𝜇(x)+𝜈(x)

)
, if 𝜇(x) + 𝜈(x) > 0

0, if 𝜇(x) + 𝜈(x) = 0 .

(20)

We will prove that T
𝜑

is a bijection between d
𝜑

-IFS(E) and IFS(E).
First we have to show that B ∈ IFS(E).
From A ∈ d

𝜑

-IFS(E) we obtain

𝜑((𝜇(x), 𝜈(x))) ≤ 1 (x ∈ E) . (21)

Now (17), (19) and (20) yield

𝜇

∗(x) + 𝜈

∗(x) =

{
(𝜇(x) + 𝜈(x))𝜓

(
𝜈(x)

𝜇(x)+𝜈(x)

)
, if 𝜇(x) + 𝜈(x) > 0

0, if 𝜇(x) + 𝜈(x) = 0
=

𝜑((𝜇(x), 𝜈(x))) ≤ 1 .

Hence (from (21)) B ∈ IFS(E).
Second, we have to show that T

𝜑

is injection.

Let us assume the opposite. Then there would exist mappings 𝜇i ∶ E → [0, 1],
𝜈i ∶ E → [0, 1], i = 1, 2, such that

(𝜇1, 𝜈1) ≠ (𝜇2, 𝜈2) ; (22)

(𝜇∗
1 , 𝜈

∗
1 ) = (𝜇∗

2 , 𝜈
∗
2 ) . (23)
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Obviously, (22) means that the following condition holds:

(i1) There exists x0 ∈ E, such that at least one of the equalities

𝜇1(x0) = 𝜇2(x0); 𝜈1(x0) = 𝜈2(x0)

is violated.

On the other hand, (23) means that for x ∈ E it is fulfilled:

𝜇

∗
1(x) = 𝜇

∗
2(x); 𝜈

∗
1 (x) = 𝜈

∗
2 (x) .

In particular

𝜇

∗
1(x0) = 𝜇

∗
2(x0); 𝜈

∗
1 (x0) = 𝜈

∗
2 (x0) . (24)

For x0 we have

(i2) At least one of the equalities

𝜇1(x0) + 𝜈1(x0) = 0 ; 𝜇2(x0) + 𝜈2(x0) = 0 ,

is violated.

The assumption that (i2) is not true, yields

𝜇1(x0) = 𝜈1(x0) = 𝜇2(x0) = 𝜈2(x0) = 0 ,

which contradicts to (i1).
Therefore, because of (i2), there are only three possible cases

(A) 𝜇1(x0) + 𝜈1(x0) > 0 & 𝜇2(x0) + 𝜈2(x0) = 0;

(B) 𝜇1(x0) + 𝜈1(x0) = 0 & 𝜇2(x0) + 𝜈2(x0) > 0;

(C) 𝜇1(x0) + 𝜈1(x0) > 0 & 𝜇2(x0) + 𝜈2(x0) > 0.

Let (A) hold. Then

𝜇2(x0) = 𝜈2(x0) = 0 .

From (19) and (20) with: 𝜇 = 𝜇2; 𝜇∗ = 𝜇

∗
2; 𝜈 = 𝜈2; 𝜈∗ = 𝜈

∗
2 ; x = x0, it follows:

𝜇

∗
2(x0) = 𝜈

∗
2 (x0) = 0.

The last equalities and (24) yield

𝜇

∗
1(x0) = 𝜇

∗
2(x0) = 0; 𝜈∗1 (x0) = 𝜈

∗
2 (x0) . (25)
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Definition 12 provides for t ∈ [0, 1]

(i3) 𝜓(t) > 0.

Putting 𝜇 = 𝜇1; 𝜇∗ = 𝜇

∗
1; 𝜈 = 𝜈1; 𝜈∗ = 𝜈

∗
1 ; x = x0 (in (19) and (20)), from (25) and

(i3) we obtain

𝜇1(x0) = 𝜈1(x0) = 0 .

But the above contradicts to (A).

In the same manner, the case (B) also leads us to contradiction.

Let (C) hold. We put

𝜓

(
𝜈1(x0)

𝜇1(x0) + 𝜈1(x0)

)
= z; 𝜓

(
𝜈2(x0)

𝜇2(x0) + 𝜈2(x0)

)
= −w . (26)

From (19), for: 𝜇 = 𝜇1; 𝜈 = 𝜈1; 𝜇∗ = 𝜇

∗
1; x = x0, we obtain

𝜇

∗
1(x0) = 𝜇1(x0)z (27)

and for: 𝜇 = 𝜇2; 𝜈 = 𝜈2; 𝜇∗ = 𝜇

∗
2 ; x = x0, we obtain

𝜇

∗
2(x0) = −𝜇2(x0)w . (28)

From (20), for: 𝜇 = 𝜇1; 𝜈 = 𝜈1; 𝜈∗ = 𝜈

∗
1 ; x = x0, we obtain

𝜈

∗
1 (x0) = 𝜈1(x0)z (29)

and for: 𝜇 = 𝜇2; 𝜈 = 𝜈2; 𝜈∗ = 𝜈

∗
2 ; x = x0, we obtain

𝜈

∗
2 (x0) = −𝜈2(x0)w . (30)

Then, because of (24), we get the linear homogeneous system with unknowns z
and w ∶ {

𝜇1(x0)z + 𝜇2(x0)w = 0
𝜈1(x0)z + 𝜈2(x0)w = 0 .

Now (i3) and (26) imply z ≠ 0 and w ≠ 0, i.e. this system has a nontrivial solution.

Then, because of the well known result of the linear algebra, the determinant

𝛥 =
||||
𝜇1(x0) 𝜇2(x0)
𝜈1(x0) 𝜈2(x0)

||||
equals to 0.
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This means that the vector-columns of 𝛥 are linearly dependent. Then, due to (C),

these vectors are different from the zero-vector. Hence, there exists a real number

k ≠ 0, such that

𝜇2(x0) = k𝜇1(x0); 𝜈2(x0) = k𝜈1(x0) .

The last two equalities imply

𝜓

(
𝜈2(x0)

𝜇2(x0) + 𝜈2(x0)

)
= 𝜓

(
k𝜈1(x0)

k𝜇1(x0) + k𝜈1(x0)

)
= 𝜓

(
𝜈1(x0)

𝜇1(x0) + 𝜈1(x0)

)
.

The above equalities and (26) yield −w = z. Hence, from (27)–(30), we obtain

𝜇

∗
1(x0) = z𝜇1(x0); 𝜇∗

2(x0) = z𝜇2(x0); 𝜈∗1 (x0) = z𝜈1(x0); 𝜈∗2 (x0) = z𝜈2(x0) .

The last equalities and (24) yield

z𝜇1(x0) = z𝜇2(x0); z𝜈1(x0) = z𝜈2(x0) .

Hence

𝜇1(x0) = 𝜇2(x0); 𝜈1(x0) = 𝜈2(x0) ,

since z ≠ 0. But the last contradicts to (i1), and therefore to (22).

Thus, we proved that T
𝜑

is injection.

Third, we have to show that T
𝜑

is surjection.

Let B
def
= {⟨x, 𝜇∗(x), 𝜈∗(x)⟩|x ∈ E} ∈ IFS(E). For any x ∈ E we put

𝜇(x) =
⎧⎪⎨⎪⎩

𝜇

∗(x)
𝜓

(
𝜈
∗(x)

𝜇
∗(x)+𝜈∗(x)

) , if 𝜇
∗(x) + 𝜈

∗(x) > 0

0, if 𝜇
∗(x) + 𝜈

∗(x) = 0 ;
(31)

𝜈(x) =
⎧⎪⎨⎪⎩

𝜈

∗(x)
𝜓

(
𝜈
∗(x)

𝜇
∗(x)+𝜈∗(x)

) , if 𝜇
∗(x) + 𝜈

∗(x) > 0

0, if 𝜇
∗(x) + 𝜈

∗(x) = 0 .

(32)

We will show that

𝜇 ∶ E → [0, 1]; 𝜈 ∶ E → [0, 1] . (33)

Let x ∈ E is such that 𝜇
∗(x) + 𝜈

∗(x) = 0. Then (31) and (32) imply: 𝜇(x) = 0 and

𝜈(x) = 0, i.e. 𝜇(x), 𝜈(x) ∈ [0, 1].
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Let x ∈ E is such that 𝜇
∗(x) + 𝜈

∗(x) > 0. Then (31) and (32) yield

𝜇(x) = 𝜇

∗(x)

𝜓

(
𝜈
∗(x)

𝜇
∗(x)+𝜈∗(x)

) ; 𝜈(x) = 𝜈

∗(x)

𝜓

(
𝜈
∗(x)

𝜇
∗(x)+𝜈∗(x)

) . (34)

Let us put

t = 𝜈

∗(x)
𝜇
∗(x) + 𝜈

∗(x)
.

Since 𝜓 ∈ Ψ2, then Definition 12 implies

𝜓

(
𝜈

∗(x)
𝜇
∗(x) + 𝜈

∗(x)

)
= 𝜓(t) ≥ max(t, 1 − t) = max

(
𝜈

∗(x)
𝜇
∗(x) + 𝜈

∗(x)
,

𝜇

∗(x)
𝜇
∗(x) + 𝜈

∗(x)

)
.

The last and (34) provide that (33) will be proved if the following inequalities hold

𝜇

∗(x) ≤ max
(

𝜈

∗(x)
𝜇
∗(x) + 𝜈

∗(x)
,

𝜇

∗(x)
𝜇
∗(x) + 𝜈

∗(x)

)

𝜈

∗(x) ≤ max
(

𝜈

∗(x)
𝜇
∗(x) + 𝜈

∗(x)
,

𝜇

∗(x)
𝜇
∗(x) + 𝜈

∗(x)

)
.

But these inequalities follow from the inequality

𝜇

∗(x) + 𝜈

∗(x) ≤ 1 , (35)

which is true, since B ∈ IFS(E).
We will prove that 𝜇(x) and 𝜈(x), given by (31) and (32), satisfy (21).

According to (17) we have

𝜑(𝜇(x), 𝜈(x)) =

{
(𝜇(x) + 𝜈(x))𝜓

(
𝜈(x)

𝜇(x)+𝜈(x)

)
, if 𝜇(x) + 𝜈(x) > 0

0, if 𝜇(x) + 𝜈(x) = 0 .

(36)

Equalities (31), (32) and (i3) imply that

𝜇(x) + 𝜈(x) = 0 iff 𝜇

∗(x) + 𝜈

∗(x) = 0.

From the last it follows that (36) may be rewritten as

𝜑(𝜇(x), 𝜈(x)) =

{
(𝜇(x) + 𝜈(x))𝜓

(
𝜈(x)

𝜇(x)+𝜈(x)

)
, if 𝜇

∗(x) + 𝜈

∗(x) > 0
0, if 𝜇

∗(x) + 𝜈

∗(x) = 0 .

(37)
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Let x ∈ E is such that𝜇
∗(x) + 𝜈

∗(x) = 0.Then𝜇(x) + 𝜈(x) = 0.Hence:𝜇(x) = 0; 𝜈(x) =
0 and 𝜑(𝜇(x), 𝜈(x)) = 0, i.e. (21) holds.

Let x ∈ E is such that 𝜇
∗(x) + 𝜈

∗(x) > 0. Then (31), (32) and (37) yield

𝜑(𝜇(x), 𝜈(x)) = 𝜇

∗(x) + 𝜈

∗(x)

𝜓

(
𝜈
∗(x)

𝜇
∗(x)+𝜈∗(x)

)𝜓
(

𝜈(x)
𝜇(x) + 𝜈(x)

)
. (38)

Equalities (31) and (32) imply

𝜓

(
𝜈(x)

𝜇(x) + 𝜈(x)

)
= 𝜓

⎛⎜⎜⎜⎜⎜⎝

𝜈

∗(x)
𝜓

(
𝜈

∗(x)
𝜇

∗(x) + 𝜈

∗(x)
)

𝜇

∗(x)
𝜓

(
𝜈

∗(x)
𝜇

∗(x) + 𝜈

∗(x)
) + 𝜈

∗(x)
𝜓

(
𝜈

∗(x)
𝜇

∗(x) + 𝜈

∗(x)
)

⎞⎟⎟⎟⎟⎟⎠
.

Hence (because of (i3))

𝜓

(
𝜈(x)

𝜇(x) + 𝜈(x)

)
= 𝜓

(
𝜈

∗(x)
𝜇
∗(x) + 𝜈

∗(x)

)
. (39)

Equalities (38) and (39) yield

𝜑(𝜇(x), 𝜈(x)) = 𝜇

∗(x) + 𝜈

∗(x) .

The last equality and (35) immediately prove (21).

Let A
def
= {⟨x, 𝜇(x), 𝜈(x)⟩|x ∈ E}. From the proved (21) and (33) it follows: A ∈

d
𝜑

-IFS(E).
Equalities (19), (20) and (39) immediately yield

T
𝜑

(A) = B.

Hence T
𝜑

is surjection. Therefore T
𝜑

is a bijection.

Theorem 2 is proved. ⊓⊔

Remark 2 From the proof of Theorem 2 it is seen that T
𝜑

is an injection also for

the case: 𝜑 ∈ N2 ⧵ AN2. But in this case it is not guaranteed that T
𝜑

is surjection.

The last means that for 𝜑 ∈ N2 ⧵ AN2 it is not true (in the general case) that T
𝜑

is a

bijection.
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Let T−1
𝜑

denote the inverse mapping of T
𝜑

. From the proof of Theorem 2 we obtain

the following

Corollary 2 The mappings T
𝜑

and T−1
𝜑

admit the representations

T
𝜑

⟨𝜇(x), 𝜈(x)⟩ =
{⟨𝜇(x)𝜑((𝜇(x),𝜈(x)))

𝜇(x)+𝜈(x)
,

𝜈(x)𝜑((𝜇(x),𝜈(x)))
𝜇(x)+𝜈(x)

⟩, if 𝜇(x) + 𝜈(x) > 0
⟨0, 0⟩, if 𝜇(x) = 𝜈(x) = 0 ,

where 𝜇 and 𝜈 are the membership and non-membership functions of an element
from the class d

𝜑

-IFS(E);

T−1
𝜑

⟨𝜇(x), 𝜈(x)⟩ =
{⟨𝜇(x) 𝜇(x)+𝜈(x)

𝜑((𝜇(x),𝜈(x)))
, 𝜈(x) 𝜇(x)+𝜈(x)

𝜑((𝜇(x),𝜈(x)))
⟩, if 𝜇(x) + 𝜈(x) > 0

⟨0, 0⟩, if 𝜇(x) = 𝜈(x) = 0 ,

where 𝜇 and 𝜈 are the membership and non-membership functions of an element
from the class IFS(E).

Another Corollary from Theorem 2 is

Theorem 3 Let𝜑′
, 𝜑

′′ ∈ AN2. Then the mapping T
𝜑
′
,𝜑

′′ ∶ d
𝜑
′ -IFS(E) → d

𝜑
′′ -IFS(E),

given by
T
𝜑
′
,𝜑

′′
def
= T−1

𝜑
′′ T

𝜑
′ ,

is a bijection between d
𝜑
′ -IFS(E) and d

𝜑
′′ -IFS(E).

Corollary 3 Let p ∈ [1,+∞]. Then the mapping Tp ∶ d
𝜑

(p)
2

-IFS(E) → IFS(E), that
for ̃A = {⟨x, 𝜇(x), 𝜈(x)⟩|x ∈ E} ∈ d

𝜑

(p)
2

-IFS(E) is given by

Tp⟨𝜇(x), 𝜈(x)⟩ =
⎧⎪⎨⎪⎩
⟨𝜇(x) (𝜇p(x)+𝜈p(x))

1
p

𝜇(x)+𝜈(x)
, 𝜈(x) (𝜇

p(x)+𝜈p(x))
1
p

𝜇(x)+𝜈(x)
⟩, if 𝜇(x) + 𝜈(x) > 0

⟨0, 0⟩, if 𝜇(x) = 𝜈(x) = 0 ,

is a bijection between d
𝜑

(p)
2

-IFS(E) and IFS(E) and for p ≠ +∞ Tp is a bijection
between p-IFS(E) and IFS(E).

Corollary 4 Let p, q ∈ [1,+∞] and Tp,q
def
= T−1

q Tp. Then Tp,q is a bijection between
d
𝜑

(p)
2

-IFS(E) and d
𝜑

(q)
2

-IFS(E) and when p, q ≠ +∞ Tp,q is a bijection between
p-IFS(E) and q-IFS(E).



Intuitionistic Fuzzy Sets Generated by Archimedean Metrics and Ultrametrics 355

The validity of the following proposition is a matter of direct check.

Proposition 4 (see [15]) Let p, q ∈ (0,+∞). Then there exists a bijection T∗
p,q between

p-IFS(E) and q-IFS(E), that for ̃A = {⟨x, 𝜇(x), 𝜈(x)⟩|x ∈ E} ∈ p-IFS(E) is given by

T∗
p,q(A)

def
= {⟨x, 𝜇(x) p

q
, 𝜈(x)

p
q ⟩|x ∈ E} .

All preceding related to d-IFS(E), represents the entire apparatus of

d-intuitionistic fuzzy sets, considered for an abstract normalized metric d and espe-

cially for the case when d = d
𝜑

is generated by a normalized subnorm (norm) 𝜑. The

corresponding d-IFS operators are considered and studied by us in [19].

4 Intuitionistic Fuzzy Sets Based on ℚ𝟐-Ultrametrics

Let E be a nonempty universe,ℚ be the rational number field andℚ2
be the Cartesian

product ℚ ×ℚ. In the preceding paragraph we discussed the class d-IFS(E). The

elements of this class are the so-called d-intuitionistic fuzzy sets (d-IFS) over E.

They are generated by an arbitrary normalized ℝ2
-metric d. In Definition 10 there is

no restriction for d to be Archimedean metric. Therefore, it is possible, to consider

the class d-IFS(E) for a normalized ultrametrics d too. Unfortunately, this possibility

does not exist for metrics d = d
𝜑

, generated by ℝ2
-norms 𝜑, since every ℝ2

-norm

is Archimedean. So to consider ultrametrics d = d
𝜑

, generated by norms, we must

forgo ℝ2
and replace it by ℚ2

. Further we consider only field norms (which again,

for brevity, we call norms).

ℚ is a classical example of a field with characteristic 0, in which there exist non-

Archimedean norms. According to Ostrowski’s theorem (see Theorem 4), each one

of these norms is equivalent to the so-called p-adic norm 𝜑p, for an appropriate

p ∈ ℙ, where ℙ denotes the set of all primes. The main problem is to show that ℚ2

can be turned in infinitely many ways into a field in which there exist infinitely many

non-Archimedean norms 𝛷p, generated by the ℚ-norms 𝜑p. Solving successfully

this problem, we can apply the general scheme for d-IFS(E) to introduce
(ℚ2)d

𝛷p
-

intuitionistic fuzzy sets over E. Examples of such sets, depending on ultrametric

d
𝛷p
, are presented here for the first time. Similar considerations with extension of

the norm 𝜑p to the p-adic number field ℚp are potentially viable. They correspond

to the possibility for introducing
(ℚ2

p)d
𝛷p

-intuitionistic fuzzy sets with the extended

norm 𝛷p, acting on ℚ2
p
def
= ℚp ×ℚp.
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4.1 ℚ-Norms

Here we recall basic facts for ℚ-norms.

Let ℤ be the set of all integers. For u, v,w ∈ ℤ and w > 0, we write

u ≡ v (mod w) ,

if w divides u − v, and write

u ≢ v (mod w) ,

if w does not divide u − v.

Definition 13 Let a ∈ ℤ ⧵ {0} and p ∈ ℙ. By ordpa we denote the greatest nonneg-

ative m ∈ ℤ such that

a ≡ 0 (mod pm) .

For instance: ord212 = 2; ord3162 = 4; ord715 = 0.

It is easy to see that if a, b ∈ ℤ ⧵ {0}, then

ordp(a b) = ordpa + ordpb . (40)

Also we agree that ordp0
def
= +∞. Hence (40) is true for all a, b ∈ ℤ.

In other words ordpx and logpx share the same additive property (namely, (40)).

Definition 14 Let x ∈ ℚ and x = a
b

be an arbitrary representation of x with a, b ∈ ℤ.
For any p ∈ ℙ we set

ordpx = ordpa − ordpb .

Then it is easy to verify that ordpx does not depend on the representation of x.

Indeed, if

x = a c
b c

with c ∈ ℤ ⧵ {0}, then due to (40) we have:

ordpx = ordp(a c) − ordp(b c) = ordpa + ordpc − ordpb − ordpc = ordpa − ordpb,

which shows that Definition 14 is correct.

Let x ∈ ℚ and p ∈ ℙ. We define

𝜑p(x) =
⎧⎪⎨⎪⎩

(
1
p

)ordpx
, if x ≠ 0;

0, if x = 0 .

(41)
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The following fact is well known ([11, p. 2]):

Lemma 1 For any p ∈ ℙ, 𝜑p is ℚ-norm, satisfying the inequality

𝜑p(x + y) ≤ max (𝜑p(x), 𝜑p(y)) x, y ∈ ℚ . (42)

From (42) and Remark 1 it follows that 𝜑p is non-Archimedean ℚ-norm. It is known

as p-adic norm.

The result below is well known ([11, p. 7]):

Lemma 2 Let F be a field, and f and g are F-norms. Then f is equivalent with g on
F iff there exists positive real number 𝛼, such that for every x ∈ F it is fulfilled

f (x) = (g(x))𝛼 .

For an arbitrary real 𝛼 ∈ (0, 1] we introduce

𝜑

{𝛼}
∞ (x)

def
= (|x|)𝛼 .

Then 𝜑

{𝛼}
∞ is Archimedean ℚ-norm.

The following two assertions are well known ([11, p. 7]):

Lemma 3 The norms 𝜑{𝛼}
∞ , 𝛼 ∈ (0, 1] are equivalent ℚ-norms.

Lemma 4 If p, q ∈ ℙ and p ≠ q, then 𝜑p and 𝜑q are not equivalent ℚ-norms.

Definition 15 ℚ-norm 𝜑 is called trivial,
5

if for x ∈ ℚ ⧵ {0}

𝜑(x) = 1 .

All norms which are not trivial are called nontrivial.

The following result of Ostrowski ([11, p. 3]) gives complete description of all

nontrivial ℚ-norms:

Theorem 4 (Ostrowski’s theorem) Let 𝜑 be a nontrivial ℚ-norm.
If 𝜑 is non-Archimedean, then there exists p ∈ ℙ, such that 𝜑 is equivalent with

𝜑p on ℚ.

If 𝜑 is Archimedean, then 𝜑 is equivalent with 𝜑

{1}
∞ on ℚ.

4.2 Examples of ℚ𝟐-Metrics Generated by Nontrivial
ℚ-Norms

Let𝜑 be an arbitrary nontrivialℚ-norm. The above theorem (together with Lemma 2)

completely describes 𝜑. Since 𝜑 transforms ℚ into metric space (ℚ, d
𝜑

) where

5
This definition remains valid if ℚ is replaced by arbitrary field.
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d
𝜑

(x, y) = 𝜑(x − y) (x, y ∈ ℚ) ,

the question for introducing ℚ2
-metric generated by 𝜑 arises. The same question for

a finite Cartesian product of arbitrary metric spaces is answered in [20, Theorem 1,

p. 125]. Since ℚ2 = ℚ ×ℚ is a particular case of the mentioned result, we obtain the

following.

Let 𝜑̂ be an arbitrary ℚ2
-subnorm generated by the ℚ-norm 𝜑. For example, we

may put

𝜑̂((x, y)) = 𝜑(x) + 𝜑(y), x, y ∈ ℚ

or

𝜑̂((x, y)) = max(𝜑(x), 𝜑(y)), x, y ∈ ℚ ,

or to use another appropriate formula.

Since 𝜑̂ generates ℚ2
-metric d

𝜑̂

given by

d
𝜑̂

((x1, y1), (x2, y2)) = 𝜑̂((x1 − x2, y1 − y2)), (xi, yi) ∈ ℚ2
, (i = 1, 2) ,

then the metric space (ℚ2
, d

𝜑̂

) is obtained.

4.3 ℚ𝟐 Considered as a Field

In § 4.2 we showed that the set ℚ2
may be transformed into metric space in infinitely

many ways. Here we will show that there are infinitely many ways to turn the set ℚ2

into field. To this end in ℚ2
is introduced the additive operation ⊕ (addition) defined

for (a1, b1), (a2, b2) ∈ ℚ2
by

(a1, b1)⊕ (a2, b2) = (a1 + a2, b1 + b2) . (43)

Obviously the operation ⊕ turns ℚ2
in Abelian group with zero element (0, 0), and

each element (a, b) ∈ ℚ2
has a unique inverse element: (−a,−b). Also we may intro-

duce in ℚ2
multiplicative operation (multiplication) in infinitely many ways so ℚ2

is

transformed into a field (with respect to ⊕ and the chosen multiplication). Namely,

let ⊙D be given by

(a1, b1)⊙D (a2, b2) = (a1a2 + Db1b2, a1b2 + a2b1) , (44)

where D ≠ 1 is a nonzero rational number and

√|D| is an irrational number (if D ≠
−1).
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It is easy to see, that if D ≠ −1, then ℚ2
, together with operations (43) and (44),

is a field isomorphic to the field ℚ(
√

D) with elements x +
√

Dy (x, y ∈ ℚ). When

D = −1, ℚ2
, together with the operations (43) and (44), is a field isomorphic to the

field with elements x + i y (x, y ∈ ℚ, i =
√
−1), which is a subfield of the complex

number field. This field is called Gaussian rational field.

Further the mentioned above fields (for fixed D) will be denoted by ℚ2(D).
Obviously

(0, 1)⊙D (0, 1) = D(1, 0) .

Therefore (0, 1) ∈ ℚ2(D) represents

√
D.

4.4 ℚ𝟐(D)-Norms Generated by ℚ-Norms

Here we will show how any nontrivialℚ-norm generates a nontrivialℚ2(D)-norm. In

particular any p-adic ℚ-norm generates non-Archimedean ℚ2(D)-norm. In the next

assertion the norms are required to satisfy only (5) and (3) but not necessarily (7).

Lemma 5 Let 𝜑 be ℚ-norm. Then the function

𝛷((a, b))
def
=

√
𝜑(a2 − Db2) (45)

is ℚ2(D)-norm.

Proof Since 𝜑 is ℚ-norm, we have (5) and (3). Let for (a, b) ∈ ℚ2
𝛷((a, b)) = 0.

Then (45) yields 𝜑(a2 − Db2) = 0. Hence a2 − Db2 = 0 since 𝜑 is norm.

If D < 0, then the last equality yields: a = 0, b = 0.
If D > 0 and b ≠ 0, then

√
D = a

b
∈ ℚ. But the last contradicts to

√
D being an

irrational number. Therefore b = 0. Hence a = 0.
From (45) 𝛷((a, b)) ≥ 0 (a, b) ∈ ℚ2

.

Thus we proved that 𝛷 ∶ ℚ2 → [0,+∞) and (5) is satisfied.

Let (a1, b1) ∈ ℚ2
, (a2, b2) ∈ ℚ2

. It remains to prove (3) for 𝛷, i.e.,

𝛷((a1, b1)⊙D (a2, b2)) = 𝛷((a1, b1))𝛷((a2, b2)) .

But:

𝛷((a1, b1)⊙D (a2, b2)) = 𝛷((a1a2 + Db1b2, a1b2 + a2b1)) =√
𝜑([(a1a2 + Db1b2)2 − D(a1b2 + a2b1)2]) =√
𝜑([(a2

1a
2
2 + D2b21b22 − Da2

1b22 − Da2
2b21]) =√

𝜑([(a2
1 − Db21) (a

2
2 − Db22)]) = (applying (3) for 𝜑) =
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√
𝜑((a2

1 − Db21)
√

𝜑((a2
2 − Db22) = 𝛷((a1, b1))𝛷((a2, b2)) ,

and (3)is proved. Thus 𝛷 is ℚ2(D)-norm.

Lemma 5 is proved. ⊓⊔

Corollary 5 If 𝜑 is a nontrivial ℚ-norm then 𝛷 is a nontrivial ℚ2(D)-norm.

Corollary 6 If 𝜑(1) = 𝜑(−D) = 1, then 𝛷 is a normalized norm.6

Further instead of D we take arbitrary fixed q ∈ ℙ.
We need the following definition (cf. [10, p. 50])

Definition 16 Let r ∈ ℙ. Then the number t ∈ ℤ, t ≢ 0 (mod r) is called quadratic

residue modulo r, if there exists x ∈ ℤ, such that x2 ≡ t (mod r). Otherwise (i.e., if

there does not exist such x) t is called quadratic nonresidue modulo r.

Let p ∈ ℙ be fixed, 𝜑 = 𝜑p is put in (45) (see (41)), and 𝛷 is denoted by 𝛷p.

Using only elementary techniques we will prove the following

Theorem 5 Let p, q ∈ ℙ and q be quadratic nonresidue modulo p. Then 𝛷p is a
non-Archimedean ℚ2(q)-norm.

Before giving the proof of Theorem 5 we need the following

Lemma 6 Let p, q ∈ ℙ and q be quadratic nonresidue modulo p. If x, y ∈ ℤ, then

ordp(x2 − qy2) = 2min(ordpx, ordpy) . (46)

Proof Since q is quadratic nonresidue modulo p,we have q ≠ p. Indeed, q = p yields

p2 ≡ q (mod p) ,

i.e., q is quadratic residue modulo p, which is a contradiction.

If x = y = 0, then +∞ = ordpx = ordpy = min(ordpx, ordpy) and the assertion of

Lemma 6 is true. If exactly one of the numbers x and y is different from 0, then

exactly one of the numbers ordpx, ordpy is less than +∞. Therefore, the assertion of

Lemma 6 is also true.

It remains only to consider the case x ≠ 0, y ≠ 0.
Let ordpx = 𝛼, ordpy = 𝛽. We put:

x∗ = x
p𝛼

; y∗ =
y

p𝛽

.

Let 𝛼 < 𝛽. Then

x2 − qy2 = p2𝛼
.((x∗)2 − q.p2(𝛽−𝛼)

.(y∗)2) .

6
We remind that 𝛷 is a normalized norm, if 𝛷((1, 0)) = 𝛷((0, 1)) = 1.
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Hence

ordp(x2 − qy2) = 2𝛼 = 2ordpx = 2min(ordpx, ordpy) ,

since

x∗ ≢ 0 (mod p) .

Let 𝛽 < 𝛼. Then

x2 − qy2 = p2𝛽
.(p2(𝛼−𝛽)

.(x∗)2 − q.(y∗)2) ,

i.e.,

ordp(x2 − qy2) = 2𝛽 = 2ordpy = 2min(ordpx, ordpy) ,

since

y∗ ≢ 0 (mod p) .

Let

ordpx = ordpy = 𝛾 .

Then

x2 − qy2 = p2𝛾
.((x∗)2 − q.(y∗)2)

and

x∗ ≢ 0 (mod p), y∗ ≢ 0 (mod p) .

Hence

ordp(x2 − qy2) ≥ 2𝛾 .

If we assume that

ordp(x2 − qy2) > 2𝛾 ,

then

(x∗)2 − q(y∗)2 ≡ 0 (mod p) .

The last contradicts to the fact that q is quadratic nonresidue modulo p. Therefore

ordp(x2 − qy2) = 2𝛾 = 2min(ordpx, ordpy) .

Lemma 6 is proved. ⊓⊔

Definition 17 Let u, v ∈ ℤ. By gcd(u, v) is denoted the greatest common divisor of

u and v.
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Proof (of Theorem 5) Lemma 5 provides that 𝛷p is aℚ2(q)-norm. It remains to show

that 𝛷p is non-Archimedean norm, i.e., for (a1, b1), (a2, b2) ∈ ℚ2
the inequality

𝛷p((a1, b1)⊕ (a2, b2)) ≤ max(𝛷p((a1, b1)), 𝛷p((a2, b2))) . (47)

holds.

Using the definition of ⊕ we rewrite (47) in the form

𝛷p(a1 + a2, b1 + b2) ≤ max(𝛷p((a1, b1)), 𝛷p((a2, b2))) . (48)

Let

a1 =
A1
E1

, a2 =
A2
E2

, b1 =
B1
G1

, b2 =
B2
G2

, (49)

where

gcd(A1,E1) = gcd(A2,E2) = gcd(B1,G1) = gcd(B2,G2) = 1 . (50)

Then

a2
1 − qb21 =

A2
1G2

1 − qB2
1E2

1

E2
1G2

1

; (51)

a2
2 − qb22 =

A2
2G2

2 − qB2
2E2

2

E2
2G2

2

; (52)

(a1 + a2)2 − q(b1 + b2)2 =
G2

1G2
2(A2E1 + A1E2)2 − qE2

1E2
2(B2G1 + B1G2)2

E2
1E2

2G2
1G2

2

. (53)

Applying (46) for x = A1G1 and y = B1E1 and using (51), and the definitions of

𝛷p and 𝜑p, we obtain

𝛷p((a1, b1)) = pordpE1+ordpG1−min(ordpA1G1,ordpB1E1)
. (54)

Applying (46) for x = A2G2 and y = B2E2 and using (52), and the definitions of

𝛷p and 𝜑p, we obtain

𝛷p((a2, b2)) = pordpE2+ordpG2−min(ordpA2G2,ordpB2E2)
. (55)

Applying (46) for x = G1G2(A2E1 + A1E2) and y = E1E2(B2G1 + B1G2) and using

(53), and the definitions of 𝛷p and 𝜑p, we obtain

𝛷p((a1 + a2, b1 + b2)) = pordpE1+ordpE2+ordpG1+ordpG2−min(ordpx,ordpy)
, (56)
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where

ordpx = ordpG1 + ordpG2 + ordp(A2E1 + A1E2) ; (57)

ordpy = ordpE1 + ordpE2 + ordp(B2G1 + B1G2) . (58)

Below we consider the following two cases separately

ordpy ≤ ordpx (I)

ordpx ≤ ordpy . (II)

In order to prove Theorem 5, we must prove (48) for each of these cases.

Let (I) hold. Then

min(ordpx, ordpy) = ordpy

and (56) and (58) yield

𝛷p((a1 + a2, b1 + b2)) = pordpG1+ordpG2−ordp(B2G1+B1G2)
. (59)

We will consider the following three subcases

G1 ≡ 0 (mod p) & G2 ≡ 0 (mod p) (I1)

G1 ≢ 0 (mod p) & G2 ≢ 0 (mod p) (I2)

G1 ≡ 0 (mod p) & G2 ≢ 0 (mod p) (I3)

The case G1 ≢ 0 (mod p) & G2 ≡ 0 (mod p) is analogous to (I3) and we will omit

it.

Let (I1) be fulfilled. Then

B1 ≢ 0 (mod p),B2 ≢ 0 (mod p) ,

because of (50). Therefore

ordp(B2G1 + B1G2) ≥ min(ordpB2G1, ordpB1G2) .

But ordpB1 = ordpB2 = 0. Therefore:

ordpB2G1 = ordpB2 + ordpG1 = ordpG1 ;

ordpB1G2 = ordpB1 + ordpG2 = ordpG2 .
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Hence

ordp(B2G1 + B1G2) ≥ min(ordpG1, ordpG2)

and (59) yields

𝛷p((a1 + a2, b1 + b2)) ≤ pordpG1+ordpG2−min(ordpG1,ordpG2)
. (60)

Let

ordpG1 ≤ ordpG2 .

Then (60) yields

𝛷p((a1 + a2, b1 + b2)) ≤ pordpG2
. (61)

Let us consider (55). Since

ordpB2E2 = ordpB2 + ordpE2 = ordpE2 ,

we have

𝛷p((a2, b2)) = pordpG2+ordpE2−min(ordpA2G2,ordpE2)
.

But obviously

ordpE2 − min(ordpA2G2, ordpE2) ≥ 0 .

From the last inequality and the above equalities, we conclude that

pordpG2 ≤ 𝛷p((a2, b2)) .

The last inequality and (61) yield

𝛷p((a1 + a2, b1 + b2)) ≤ 𝛷p((a2, b2)).

Therefore (48) directly follows. If

ordpG2 ≤ ordpG1 ,

then the considerations are analogous. In this case we reach the inequality

𝛷p((a1 + a2, b1 + b2)) ≤ 𝛷p((a1, b1)) ,

from where we obtain again (48).

Thus we proved that if (I1) holds, then (48) holds too.

Let (I2) hold. Then:

ordpG1 = ordpG2 = 0
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and (59) yields

𝛷p((a1 + a2, b1 + b2)) = p−ordp(B2G1+B1G2)
. (62)

If

B2G1 + B1G2 = 0 , (63)

then from (58) and (I) we conclude that y = 0 and +∞ = ordpy ≤ ordpx. Therefore

x = 0 and due to (57)

A2E1 + A1E2 = 0 . (64)

From (63) and (64) it follows

(a1 + a2, b1 + b2) = (0, 0) .

Therefore

𝛷p((a1 + a2, b1 + b2)) = 0

and since 𝛷p takes only nonnegative values, then (48) holds.

Let

B2G1 + B1G2 ≠ 0 .

Then (62) yields

𝛷p((a1 + a2, b1 + b2)) ≤ 1 . (65)

From (54) and (55) we find

𝛷p((a1, b1)) = pordpE1−min(ordpA1,ordpB1E1) ; (66)

𝛷p((a2, b2)) = pordpE2−min(ordpA2,ordpB2E2)
, (67)

since

ordpA1G1 = ordpA1 + ordpG1 = ordpA1 ;

ordpA2G2 = ordpA2 + ordpG2 = ordpA2 .

If at least one of the congruences

Ei ≡ 0 (mod p), i = 1, 2

holds, e.g.,

E1 ≡ 0 (mod p) ,
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then gcd(A1,E1) = 1 yields

A1 ≢ 0 (mod p)

and therefore

ordpA1 = 0 .

In this case (65) and (66) yield

𝛷p((a1, b1)) = pordpE1
> 1 ≥ 𝛷p((a1 + a2, b1 + b2)) .

The last inequality yields (48).

Analogously in case that

E2 ≡ 0 (mod p) ,

from (67), we obtain the inequality

𝛷p((a2, b2)) = pordpE2
> 1 ≥ 𝛷p((a1 + a2, b1 + b2)) ,

which immediately yields (48).

Let us have

E1 ≢ 0 (mod p) & E2 ≢ 0 (mod p) .

Then from (62) and the equalities

ordpE1 = ordpE2 = ordpG1 = ordpG2 = 0

we find

𝛷p((a1, b1)) = p−min(ordpA1,ordpB1) ; (68)

𝛷p((a2, b2)) = p−min(ordpA2,ordpB2) ; (69)

𝛷p((a1 + a2, b1 + b2)) = p−ordp(B1G2+ordpB2G1)
. (70)

But obviously

ordp(B1G2 + B2G1) ≥ min(ordpB1G2, ordpB2G1) .

Hence

ordp(B1G2 + B2G1) ≥ min(ordpB1, ordpB2) .
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The last inequality and (70) yield

𝛷p((a1 + a2, b1 + b2)) ≤ p−min(ordpB1,ordpB2)
. (71)

If at least for one i ∈ {1, 2} we have

Bi ≢ 0 (mod p) ,

then

ordpBi = 0

and hence

min(ordpB1, ordpB2) = 0 .

Then (71) yields

𝛷p((a1 + a2, b1 + b2)) ≤ p0 = 1 . (72)

But (68) and (69) yield:

𝛷p((ai, bi)) = p−min(ordpAi,ordpBi) = p0 = 1 . (73)

From (72) and (73) immediately follows (48).

Let us have

B1 ≡ 0 (mod p) & B2 ≡ 0 (mod p) .

If i ∈ {1, 2} is the index for which we have

min(ordpB1, ordpB2) = ordpBi ,

then (71) yields

𝛷p((a1 + a2, b1 + b2)) ≤ p−ordpBi
.

From (68) or (69) it follows

𝛷p((ai, bi)) = p−min(ordpAi,ordpBi) ≥ p−ordpBi
. (74)

The last two inequalities give

𝛷p((a1 + a2, b1 + b2)) ≤ 𝛷p((ai, bi))

and thus (48) is fulfilled.

Let (I3) hold. Then (59) yields

𝛷p((a1 + a2, b1 + b2)) = pordpG1−ordp{B2G1+B1G2} (75)
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and from (54) we obtain

𝛷p((a1, b1)) = pordpE1+ordpG1−min(ordpA1G1,ordpE1)
. (76)

We note that (77) follows from (54), since

G1 ≡ 0 (mod p) & gcd(B1,G1) = 1

imply

B1 ≢ 0 (mod p) .

Therefore

ordpB1 = 0 .

Hence

ordpB1E1 = ordpB1 + ordpE1 = ordpE1 .

Since

B1 ≢ 0 (mod p) & G2 ≢ 0 (mod p) ,

then

B1G2 ≢ 0 (mod p)

and

B2G1 ≡ 0 (mod p) .

Therefore

ordp{B2G1 + B1G2} = 0

and (76) yields

𝛷p((a1 + a2, b1 + b2)) = pordpG1
. (77)

But obviously

ordpE1 − min(ordpA1G1, ordpE1) ≥ 0 .

Then (76) yields

𝛷p((a1, b1)) ≥ pordpG1
. (78)

From (77) and (78) we obtain

𝛷p((a1 + a2, b1 + b2)) ≤ 𝛷p((a1, b1)) .

The last yields (48).

Thus we proved that if (I) holds, then (48) holds too. Completely analogously

one may prove that if (II) holds, then (48) holds too. To accomplish the proof the
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following replacements in the above considerations are needed: E1 with G1, E2 with

G2, G1 with E1, G2 with E2, A1 with B1, A2 with B2, B1 with A1 and B2 with A2.

Theorem 5 is proved. ⊓⊔

If we consider the field ℚ2(−q), where q = 1 or q ∈ ℙ, then in analogous manner

the following two theorems may be proved.

Theorem 6 Let p ∈ ℙ be such that −1 is a quadratic nonresidue modulo p. If for
(a, b) ∈ ℚ2

̃
𝛷p is given by

̃
𝛷p((a, b)) =

√
𝜑p(a2 + b2) ,

then ̃
𝛷p is non-Archimedean ℚ2(−1)-norm.

Theorem 7 Let p, q ∈ ℙ and −q be quadratic nonresidue modulo p. If for (a, b) ∈
ℚ2

𝛷

∗
p is given by

𝛷

∗
p((a, b)) =

√
𝜑p(a2 + qb2) ,

then 𝛷

∗
p is non-Archimedean ℚ2(−q)-norm.

As a corollary from Theorems 5–7 and Corollary 6, we obtain

Theorem 8 Let 𝛷p,
̃
𝛷p, and 𝛷

∗
p be the norms from Theorems 5–7. Then each one

of these norms is a normalized norm.

Proof Let p ∈ ℙ be fixed and q ∈ ℙ satisfies the conditions of Theorem 5 or Theo-

rem 7. Then q ≢ 0 (mod p) and according to Definition 13

ordpq = ordp(−q) = 0 .

But we also have

ordp1 = ordp(−1) = 0 .

Hence

𝜑p(1) = 𝜑p(−1) = 𝜑p(q) = 𝜑p(−q) = 1.

Now, for D = −1,D = q and D = −q, from Corollary 6 (for 𝜑 = 𝜑p) Theorem 8

follows. ⊓⊔

4.5 An Infinite Class of Prime Numbers Generating
Non-Archimedean ℚ𝟐(D)-Norms

Using some well-known facts from number theory (concerning the theory of

quadratic residues) we will show that there are infinitely many examples of prime
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numbers, satisfying the conditions of Theorems 5–7. In such way, with the help of

these theorems, we will introduce infinitely many non-Archimedean norms on ℚ2

(considered as a field), that are generated by appropriate p-adic ℚ-norms.

Let us begin with the following well known result

Theorem 9 (Dirichlet’s Theorem (see [10, pp. 25, 249])) Let A,B ∈ ℤ ⧵ {0} and
gcd(A,B) = 1. The infinite arithmetic progression

A + k B, k = 0, 1, 2,… ,

contains infinitely many prime numbers.
The same Theorem allows elegant and unexpected formulation (observed by us),

namely,

Theorem 10 Let A,B ∈ ℤ. The infinite arithmetic progression

A + k B, k = 0, 1, 2,… ,

contains infinitely many prime numbers iff it contains at least two different prime
numbers.
We also need the following

Definition 18 Let a ∈ ℤ and p ∈ ℙ ⧵ {2}. The Legendre symbol

(
a
p

)
is introduced

by

(
a
p

)
def
=

⎧⎪⎨⎪⎩

1, if a is quadratic residue modulo p
−1, if a is quadratic nonresidue modulo p
0, if a ≡ 0 (mod p)

Some very important properties of this symbol needed for the further considerations

are given as the following

Theorem 11 Let p, q ∈ ℙ ⧵ {2} and a, b ∈ ℤ ⧵ {0}. Then it is fulfilled ([10, pp. 51,
53])

(
1
p

)
= 1;

(
−1
p

)
= (−1)

p−1
2 ;

(
2
p

)
= (−1)

p2−1
8 ;

(
a
p

)
=
(

b
p

)
if a ≡ b (mod p) ;

(
ab
p

)
=
(

a
p

)(
b
p

)
(multiplicativity of Legendre symbol) ;

(
p
q

)
= (−1)

p−1
2

q−1
2

(
q
p

)
(Gauss quadratic reciprocity law) .



Intuitionistic Fuzzy Sets Generated by Archimedean Metrics and Ultrametrics 371

With the help of Theorem 11 it can be directly checked that the following asser-

tions are true:

Lemma 7 Let p ∈ ℙ. Then −1 is quadratic nonresidue modulo p iff p belongs to the
infinite arithmetic progression

3 + k 4, k = 0, 1, 2,… .

Lemma 8 Let q ∈ ℙ and q ≡ 3 (mod 8). If p ∈ ℙ belongs to the union of the fol-
lowing two infinite arithmetic progressions:

2q + 1 + k (4q), k = 0, 1, 2,… ;

q + 2 + k (4q), k = 0, 1, 2,… ,

then q is quadratic nonresidue modulo p.

Lemma 9 Let q ∈ ℙ and q ≡ 5 (mod 8). If p ∈ ℙ belongs to the infinite arithmetic
progression

q + 2 + k (2q), k = 0, 1, 2,… ,

then q is quadratic nonresidue modulo p.

Lemma 10 Let q ∈ ℙ and q ≡ 7 (mod 8). If p ∈ ℙ belongs to the infinite arithmetic
progression

2q + 1 + k (4q), k = 0, 1, 2,… ,

then q is quadratic nonresidue modulo p.

Lemma 11 Let q ∈ ℙ and q ≡ 1 (mod 8). If p ∈ ℙ belongs to the infinite arithmetic
progression

2q + 1 + k (4q), k = 0, 1, 2,… ,

then −q is quadratic nonresidue modulo p.

Lemma 12 Let q ∈ ℙ and q ≡ 3 (mod 8). If p ∈ ℙ belongs to the infinite arithmetic
progression

q + 2 + k (4q), k = 0, 1, 2,… ,

then −q is quadratic nonresidue modulo p.

Lemma 13 Let q ∈ ℙ and q ≡ 5 (mod 8). If p ∈ ℙ belongs to the infinite arithmetic
progression

2q + 1 + k (4q), k = 0, 1, 2,… ,

then −q is quadratic nonresidue modulo p.
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Lemma 14 Let q ∈ ℙ and q ≡ 7 (mod 8). If p ∈ ℙ belongs to the infinite arithmetic
progression

2q − 1 + k (4q), k = 0, 1, 2,… ,

then −q is quadratic nonresidue modulo p.

From Theorems 6 and 8, according to Lemma 7, we obtain

Theorem 12 Let p ∈ ℙ and p ≡ 3 (mod 4). Then ̃
𝛷p, defined for (a, b) ∈ ℚ2

, by

̃
𝛷p((a, b)) =

√
𝜑p(a2 + b2) ,

is a normalized non-Archimedean ℚ2(−1)-norm.

From Theorems 5 and 8, according to Lemma 8, we obtain

Theorem 13 Let q ∈ ℙ and q ≡ 3 (mod 8). If p ∈ ℙ belongs to the union of the
following two infinite arithmetic progressions:

2q + 1 + k (4q), k = 0, 1, 2,… ;

q + 2 + k (4q), k = 0, 1, 2,… ,

then 𝛷p, defined for (a, b) ∈ ℚ2 by

𝛷p((a, b)) =
√

𝜑p(a2 − qb2) ,

is a normalized non-Archimedean ℚ2(q)-norm.

From Theorems 5 and 8, according to Lemma 9, we obtain

Theorem 14 Let q ∈ ℙ and q ≡ 5 (mod 8). If p ∈ ℙ belongs to the infinite arith-
metic progression

q + 2 + k (2q), k = 0, 1, 2,… ,

then 𝛷p, defined for (a, b) ∈ ℚ2 by

𝛷p((a, b)) =
√

𝜑p(a2 − qb2) ,

is a normalized non-Archimedean ℚ2(q)-norm.

From Theorems 5 and 8, according to Lemma 10, we obtain

Theorem 15 Let q ∈ ℙ and q ≡ 7 (mod 8). If p ∈ ℙ belongs to the infinite arith-
metic progression

2q + 1 + k (4q), k = 0, 1, 2,… ,
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then 𝛷p, defined for (a, b) ∈ ℚ2 by

𝛷p((a, b)) =
√

𝜑p(a2 − qb2) ,

is a normalized non-Archimedean ℚ2(q)-norm.

From Theorems 7 and 8, according to Lemma 11, we obtain

Theorem 16 Let q ∈ ℙ and q ≡ 1 (mod 8). If p ∈ ℙ belongs to the infinite arith-
metic progression

2q + 1 + k (4q), k = 0, 1, 2,… ,

then 𝛷

∗
p , defined for (a, b) ∈ ℚ2 by

𝛷

∗
p((a, b)) =

√
𝜑p(a2 + qb2) ,

is normalized non-Archimedean ℚ2(−q)-norm.

From Theorems 7 and 8, according to Lemma 12, we obtain

Theorem 17 Let q ∈ ℙ and q ≡ 3 (mod 8). If p ∈ ℙ belongs to the infinite arith-
metic progression

q + 2 + k (4q), k = 0, 1, 2,… ,

then 𝛷

∗
p , defined for (a, b) ∈ ℚ2 by

𝛷

∗
p((a, b)) =

√
𝜑p(a2 + qb2) ,

is a normalized non-Archimedean ℚ2(−q)-norm.

From Theorems 7 and 8, according to Lemma 13, we obtain

Theorem 18 Let q ∈ ℙ and q ≡ 5 (mod 8). If p ∈ ℙ belongs to the infinite arith-
metic progression

2q + 1 + k (4q), k = 0, 1, 2,… ,

then 𝛷

∗
p , defined for (a, b) ∈ ℚ2 by

𝛷

∗
p((a, b)) =

√
𝜑p(a2 + qb2) ,

is a normalized non-Archimedean ℚ2(−q)-norm.
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From Theorems 7 and 8, according to Lemma 14, we obtain

Theorem 19 Let q ∈ ℙ and q ≡ 7 (mod 8). If p ∈ ℙ belongs to the infinite arith-
metic progression

2q − 1 + k (2q), k = 0, 1, 2,… ,

then 𝛷

∗
p , defined for (a, b) ∈ ℚ2 by

𝛷

∗
p((a, b)) =

√
𝜑p(a2 + qb2) ,

is a normalized non-Archimedean ℚ2(−q)-norm.

Remark 3 According to Theorem 9, for each one of Theorems 12–19, there exist

infinitely many p ∈ ℙ, satisfying its respective conditions.

4.6 (ℚ𝟐)d𝜱-Intuitionistic Fuzzy Sets Depending on
Normalized Non-Archimedean ℚ𝟐-Norms 𝜱

In § 4.3 we introduced the fieldℚ2(D)(where D ≠ 1 is nonzero rational number and if

D ≠ −1, then

√|D| is irrational number), which consists of ordered pairs of rational

numbers, that are added component wise and multiplied by the rule (44).

Definition 19 Let A ⊂ E and 𝜇A ∶ E → [0, 1] ∩ℚ, 𝜈A ∶ E → [0, 1] ∩ℚ are map-

pings. Let 𝛷 be ℚ2(D)-norm and d
𝛷

be ℚ2
- metric that for (a1, b1), (a2, b2) ∈ ℚ2

is given by

d
𝛷

((a1, b1), (a2, b2)) = 𝛷((a1 − a2, b1 − b2)) .

Then the set

̃A = {⟨x, 𝜇A(x), 𝜈A(x)⟩|x ∈ E}

is called
(ℚ2)d

𝛷

-intuitionistic fuzzy set (
(ℚ2)d

𝛷

-IFS) over E, generated by A (through

the ℚ2
-metric d

𝛷

) if the relation

𝛷((𝜇A(x), 𝜈A(x))) ≤ 1

holds.

The mappings 𝜇A, 𝜈A are called membership and non-membership function and

the mapping 𝜋A ∶ E → [0, 1], that for x ∈ E is given by

𝜋A(x) = 1 −𝛷((𝜇A(x), 𝜈A(x))),

is called hesitancy function.
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For x ∈ E the numbers 𝜇A(x), 𝜈A(x) and 𝜋A(x) are called degree of membership,

degree of non-membership and hesitancy degree/margin of the element x to the set

A.
The class of all

(ℚ2)d
𝛷

-IFSs over E is denoted by
(ℚ2)d

𝛷

-IFS(E).

Let q ∈ ℙ, p ∈ ℙ, p ≠ q and 𝜑p is p-adic ℚ-norm defined by (41). In § 4.4 the

following results were established:

(a) If D = q and q is quadratic nonresidue modulo p, then the mapping 𝛷p, given

for (a, b) ∈ ℚ2
by

𝛷p((a, b)) =
√

𝜑p(a2 − qb2) ,

is a normalized non-Archimedean ℚ2(D)-norm (Theorems 5 and 8);

(b) If D = −q and −q is quadratic nonresidue modulo p, then the mapping 𝛷

∗
p , given

for (a, b) ∈ ℚ2
by

𝛷

∗
p((a, b)) =

√
𝜑p(a2 + qb2) ,

is a normalized non-Archimedean ℚ2(D)-norm (Theorems 7 and 8);

(c) If D = −1 and −1 is quadratic nonresidue modulo p, then the mapping ̃
𝛷p, given

for (a, b) ∈ ℚ2
by

̃
𝛷p((a, b)) =

√
𝜑p(a2 + b2) ,

is a normalized non-Archimedean ℚ2(D)-norm (Theorems 6 and 8).

In § 4.5 we proved that there exist infinitely many prime numbers q and p, satisfy-

ing the conditions in (a) and (b). The main results, corresponding to the case (a), are

Theorems 13–15. The main results corresponding to the case (b), are Theorems 16–

19.

There also exist infinitely many prime numbers p, satisfying (c). The main result

corresponding to the case (c), is Theorem 12.

Let q and p satisfy the conditions in (a). Then the normalized non-Archimedean

norm 𝛷 = 𝛷p generates a ℚ2
-ultrametric d

𝛷

= d
𝛷p

given for (a1, b1), (a2, b2) ∈ ℚ2

by the formula:

d
𝛷p
((a1, b1), (a2, b2))

def
= 𝛷p((a1 − a2, b1 − b2)) =

√
𝜑p((a1 − a2)2 − q(b1 − b2)2) .

The metric d
𝛷p

generates the class
(ℚ2)d

𝛷p
-IFS(E). For

{⟨x, 𝜇(x), 𝜈(x)⟩|x ∈ E} ∈ (ℚ2)d
𝛷p

-IFS(E)

we have

𝜇 ∶ E → [0, 1] ∩ℚ; 𝜈 ∶ E → [0, 1] ∩ℚ
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and

𝛷p((𝜇(x), 𝜈(x))) ≤ 1 ,

i.e.,

𝜑p((𝜇(x))2 − q(𝜈(x))2) ≤ 1 .

The hesitancy function 𝜋d
𝛷p

∶ E → [0, 1] now is given by

𝜋d
𝛷p
(x) = 1 −𝛷p((𝜇(x), 𝜈(x)) ,

i.e., by

𝜋d
𝛷p
(x) = 1 −

√
𝜑p((𝜇(x))2 − q(𝜈(x))2) .

Let q and p satisfy the conditions in (b). Then the normalized non-Archimedean

norm 𝛷 = 𝛷

∗
p generates a ℚ2

-ultrametric d
𝛷

= d
𝛷

∗
p

given for (a1, b1), (a2, b2) ∈ ℚ2

by the formula

d
𝛷

∗
p
((a1, b1), (a2, b2))

def
= 𝛷

∗
p((a1 − a2, b1 − b2)) =

√
𝜑p((a1 − a2)2 + q(b1 − b2)2) .

The metric d
𝛷

∗
p

generates the class
(ℚ2)d

𝛷
∗
p
-IFS(E). For

{⟨x, 𝜇A(x), 𝜈A(x)⟩|x ∈ E} ∈ (ℚ2)d
𝛷

∗
p
-IFS(E)

we have

𝜇 ∶ E → [0, 1] ∩ℚ; 𝜈 ∶ E → [0, 1] ∩ℚ

and

𝛷

∗
p((𝜇(x), 𝜈(x))) ≤ 1 ,

i.e.,

𝜑p((𝜇(x))2 + q(𝜈(x))2) ≤ 1 .

The hesitancy function 𝜋d
𝛷

∗
p
∶ E → [0, 1] now is given by

𝜋d
𝛷

∗
p
(x) = 1 −𝛷

∗
p((𝜇(x), 𝜈(x)) ,

i.e., by

𝜋d
𝛷

∗
p
(x) = 1 −

√
𝜑p((𝜇(x))2 + q(𝜈(x))2) .
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Let p satisfy the conditions in (c). Then the normalized non-Archimedean norm

𝛷 = ̃
𝛷p generates ℚ2

-ultrametric d
𝛷

= d
̃
𝛷p

given for (a1, b1), (a2, b2) ∈ ℚ2
by the

formula:

d
̃
𝛷p
((a1, b1), (a2, b2))

def
= ̃

𝛷p((a1 − a2, b1 − b2)) =
√

𝜑p((a1 − a2)2 + (b1 − b2)2) .

The metric d
̃
𝛷p

generates the class
(ℚ2)d

̃
𝛷p

-IFS(E). For

{⟨x, 𝜇(x), 𝜈(x)⟩|x ∈ E} ∈ (ℚ2)d
̃
𝛷p

-IFS(E)

we have

𝜇 ∶ E → [0, 1] ∩ℚ; 𝜈 ∶ E → [0, 1] ∩ℚ

and

̃
𝛷p((𝜇(x), 𝜈(x))) ≤ 1 ,

i.e.,

𝜑p((𝜇(x))2 + (𝜈(x))2) ≤ 1 .

The hesitancy function 𝜋d
̃

𝛷p
∶ E → [0, 1], now is given by

𝜋d
̃

𝛷p
(x) = 1 − ̃

𝛷p((𝜇(x), 𝜈(x)) ,

i.e., by

𝜋d
̃

𝛷p
(x) = 1 −

√
𝜑p((𝜇(x))2 + (𝜈(x))2) .

Sufficient conditions for the existence of
(ℚ2)d

𝛷p
-IFS(E) in case (a) are given by

Theorems 13–15.

Sufficient conditions for the existence of
(ℚ2)d

𝛷
∗
p
-IFS(E) in case (b) are given by

Theorems 16–19.

Sufficient conditions for the existence of
(ℚ2)d

̃
𝛷p

-IFS(E) in case (c) are given by

Theorem 12.
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Production Rule and Network Structure
Models for Knowledge Extraction
from Complex Processes Under
Uncertainty

Boriana Vatchova and Alexander Gegov

Abstract This paper considers processes with many inputs and outputs from dif-
ferent application areas. Some parts of the inputs are measurable and others are not
because of the presence of stochastic environmental factors. This is the reason why
processes of this kind operate under uncertainty. As some factors cannot be mea-
sured and reflected into the process model, data mining methods cannot be applied.
The proposed approach which can be applied in this case is based on artificial
intelligence methods[1].

1 Introduction

Finding a relation between inputs and outputs of complex processes and building an
adequate process model is the main control objective for these processes. The
presence of uncertainty as a result of many factors, environmental behaviour and
impossibility to measure all inputs makes difficult the modelling of these complex
processes.

In this paper, the existing data mining methods [2–6] are supplemented by
methods of random functions theory [7, 8] and multi-valued logic [8, 9]. The
models of the processes are knowledge bases of production rules or multi-layer
network structures which include probability of occurrence.
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2 Essence of the Method of MLPF

The processes which are investigated with the purpose to extract traditional
knowledge depend on measurable factors like x ̃iðτÞ, i=1÷ n, which are called
numerical values of the measurable factors. In this case, τ=1, 2, 3 . . . is the discrete
time for each measurement and WðtÞ is the set of immeasurable factors which is
summarized as one generalized input influence.

The output yẽðτÞ, e=1÷m, where m is the number of the processes, is derived as
a result of inputs xĩðτÞ and generalized factor WðtÞ which has time delay τ0. The
output of the process y ̃ðτÞ is a package of data sets with numerical values denoted by
M̃ xĩðτÞ, yẽðτÞf g, where τ=1÷N and N is the number of measurements for a
package.

The non-measurable inputs W(t) are supposed to change within a limited range
and to be characterized by limited time modifications so that they can be interpreted
as pseudo-stationary stochastic processes.

The numerical values for different inputs x ̃iðτÞ and outputs yẽðτÞ have different
ranges because of the existence of different measurements.

The data set package M̃ xĩðτÞ, yẽðτÞf g is transformed from a package of
numerical values M xiðτÞ, yeðτÞf g to logical values LxijðτÞ, LyeqðτÞ, where j=1÷ ki
is the number of xi, ki is the number of the logical values of xi; q=1÷ ke is the
logical values of ye, ke is the number of the logical values of ye. This transformation
is calculated as a relation between numerical values and their max relative values
for input xiðτÞ and output yeðτÞ. The parameters ki and ke express the range of the
proposed multi-valued logical system for each measurable factor xi and for each
output ye [10]. The option for ki and ke depends on the range modification for inputs
and outputs. The logical values LxijðτÞ and LyeqðτÞ of each particular value τ define
the current data set of logical values LNðτÞ LxijðτÞ,LyeqðτÞ

� �
. The combination of

current sequence data sets for a particular sequence of time discrete moment τ is
defined as a package of logical values LMs⟨LNðτÞ LxijðτÞ,LyeqðτÞ

� �
⟩, where s is the

number of the package. The combination of current sequence data sets for a par-
ticular package LMs⟨LNðτÞ LxijðτÞ, LyeqðτÞ

� �
⟩ characterized by logical values for

each input are defined as grouping sequence data sets GLNr LMs⟨LNτ LxijðτÞ,
��

LyeqðτÞg⟩� where r=1, 2, 3, . . . is the number of the grouping sequence sets.
It is possible to include in one package of logical values LMs⟨LNðτÞ LxijðτÞ,

�
LyeqðτÞg⟩ a number of grouping sequence sets GLNr LMs⟨LNτ LxijðτÞ, LyeqðτÞ

� �
⟩

� �
.

The probability of occurrences p GLNr LMs⟨LNðτÞ LxijðτÞ,LyeqðτÞ
� �

⟩

� �� �
for

each package LMs⟨LNðτÞ LxijðτÞ,LyeqðτÞ
� �

⟩ is calculated for every grouping
sequence set.

The probability of occurrences of one grouping sequence set is calculated as a
relation between the number of the current sequence sets included in a grouping
sequence set and a current sequence set of a given package LMs⟨LNðτÞ LxijðτÞ,

�
LyeqðτÞg⟩.
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When the probability of occurrence of one grouping sequence set has a signif-
icant value then this grouping sequence set is perceived as dominant grouping
sequence set. The current sequence sets which occur only once in a given package
do not give reliable information for further investigations.

The dominant grouping sequence set GLNr with its probability of occurrence of
the package of real data sets ensures the existence of reliable relations between the
logical values of inputs LxijðτÞ, outputs LyeqðτÞ and the probability of occurrences
p LyeqðτÞ
� �

.
The relations between LxijðτÞ, LyeqðτÞ and GLNr are presented in a table format

which is similar to the form of the functions of multi-valued logic [11, 12]. These
class functions are supplemented with a probability of occurrences as a result of an
additional argument WðtÞ

Lyeq =F1 GLNrf g GLNrðτÞ=F2 Lxij,W
� � ð1Þ

p Lyeq
� �

=P1 GLNrf g p GLNrf g=P2 ðLxij,WÞ� � ð2Þ

where 1 expresses the logical correspondence F, 2 expresses the probabilistic
correspondence P.

The two correspondences F(F1, F2), P(P1, P2) which are mutually related and
they present new class functions in the multi-valued logic—Multi-Valued Logic
Probabilistic Functions (MLPF) [10, 13].

The widely known functions of multi-valued logic express a correspondence
between logical values of the inputs (arguments) and the outputs (function value)
for deterministic subjects. The new class of functions MLPF corresponds to the
general case for stochastic subjects with no apparent arguments WðtÞ and
non-stationary parameters.

The use of MLPF makes possible the description of processes from different
application areas with multi inputs and outputs, nonlinearity, non-stationary and
stochastic behaviour.

MLPF are presented mostly in a table format for a better visual form in com-
parison to the analytical form.

An example for MLPF is presented in the Table 1 for a subject with three
measurable inputs Lx1, Lx2, Lx3, two outputs Ly1, Ly2 and non-apparent factorsWðtÞ.

Table 1 MLPF for three- degree logic

Lx1 a1 a1 a1 a1 a1 a1 a1 a2 a2 ….. ….. a3
Lx2 a1 a2 a2 a2 a3 a3 a3 a1 a2 ….. ….. a3
Lx3 a1 a1 a2 a3 a1 a2 a3 a1 a1 ….. ….. a3
Ly1 a1 p1111 pabcd

a2 p1112 p1222
a3 p1113 P3333

Ly2 a1 p1111 pabcd
a2 p1112 p1322
a3 p1113 p1333 P3333
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Three degree multi-valued logic is used. The possible logical values of the inputs
and the outputs are named as a1, a2, a3 and the frequency of occurrences are named
as Pabcd, where abc correspond to the logical values of the three inputs and d
corresponds to the logical value of the output.

The logical values a1, a2, a3 have a particular meaning, e.g. small, medium and
large. Each given sequence set of logical values for the inputs Lx1, Lx2, Lx3 (a1, a2
and a3) corresponds to two possible logical values for Ly1 and Ly2 because of the
non-measurable inputs W(t). The sum of the frequencies of occurrence of the
outputs Ly1, Ly2 … for each sequence data set of logical values Lx1, Lx2 and Lx3 is
equal to 1.

3 Models of Multi-factor Processes Under Uncertainty
Using MLPF

3.1 Production Rule Models

Using new data sets in real time creates packages of numerical values for inputs and
outputs, which are updated values of MLPFs [11–13]. The model or the updated
knowledge base is a combination of production rules with the following structure:

If ⟨logical values of measurable inputs⟩ Then ⟨logical values of the outputs
supplemented with aprobability of occurrences⟩ or

If ⟨Lx1, Lx2, Lx3⟩ Then ⟨Ly1, Ly2⟩.

3.2 Network Structure Models

The network structure includes three layers:

• The input layer has elements which correspond to the number of the measurable
inputs and the number of the perceived logical values;

• The intermediate layer has elements which correspond to the number of the
dominant input grouping sequence data sets;

• The output layer has elements which correspond to the number of the occur-
rence logical values for the output.

According to Fig. 1, if the process has more than one output then the network
model is a composition of models.

The models for the other outputs Ly2, Ly3,… differ from the model for the output
Ly1 only by the links and the coefficients between the intermediate and the output
layers. The logical values Lx1j, Lx2j,…, Lxnj are passed to the input layer. For each
element of the intermediate layer there are signals from the elements of the input
layer. The output of each element of the intermediate layer is passed to the input of
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the elements of the output layer. The links between these three layers are presented
by coefficients which are elements of the matrixes.

RLxGLNr is a relation between the relative values corresponding to the logical
values of the inputs Lx1j(τ) of the input layer and the sum of the relative values
included in the corresponding dominant grouping sequence set GLNr of the
intermediate layer.

R*
LxGLNr

is a relation between the frequency of occurrences of the sets of the input
and the intermediate layers;

RGLNrLyeq is a relation between the relative values corresponding to the logical
values of the elements of the intermediate and the output layers;

R*
GLNrLyeq is a relation between the frequency of occurrences of the elements of

the sets of the intermediate and the output layers.
Using the network model, the logical values Ly with their probability of

occurrence p{Ly} for each sequence set and the logical input values LX with their
probability of occurrence p{LX} are derived as follows:

Fig. 1 Network model Ly1 = f(Lx1, Lx2, Lx3) for a seven-degree logical system
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Ly=RGLNrLy × RLxGLNr × LX ð3Þ

p Lyf g=R*
GLNrLy × R*

LxGLNr
× p LXf g ð4Þ

4 Main Features of the Models

4.1 Models Based on Production Rules

The production rules of pseudo-stationary processes are changed by entering new
coming packages of experimental data sets. However, the disadvantage of the
production rules is that they may not be able to cover significant parts of the
variation range of the inputs. This is why additional interpolation is required
between similar production rules of MLPF [10, 13].

4.2 Model-Based on Network Structure

The advantage of these models is to develop approximation by a lack of a com-
bination of inputs in the massive of input data. The network model could be
implemented as a program or as a logical device. For pseudo-stationary subjects the
coefficients of the relations between the elements of the three layers of the network
must be updated in real time using data sets packages.

5 Network Model Application for an Industrial Process

The process considered here is flotation of multi-component ore. A package of
experimental input/output data sets with 56 measurements is available for this
process. According to the range of modification and the desirable accuracy of the
model presentation, a seven-degree logic system for presentation of inputs and
outputs is perceived. The logical values are named as VVS, VS, S, M, L, VL and
VVL, where VVS is ‘very very small’, VS is ‘very small’, S is ‘small’, M is
‘medium’, L is ‘large’, VL is ‘very large’ and VVL is ‘very very large’. Table 2
presents the range of modifications and the mean values which correspond to the
adopted logic values for the input, intermediate and output layers. The measurable
inputs for Lx1, Lx2 and Lx3 are grouped in five dominant grouping sequence sets:
GLN1, GLN2, GLN3, GLN4, GLN5. The probability of occurrence for dominant
grouping sequence sets p GLNrf g, the sum of the relative values of the inputs of the
dominant grouping sequence sets and the relations between the input and the output
layers are given in Fig. 1. The coefficients (relations) between the elements of the
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input and the intermediate layers are given in Tables 3, 4 and 5. The coefficients
between the elements of the intermediate and the output layer are given in Table 6.

Using the network model, the logical values Ly1 for each given sequence set of
logical input values Lx1, Lx2, Lx3 are derived. For example if there are logical input
values Lx1 = VVL, Lx2 = VVL and Lx3 = M then a grouping sequence set GLN2 is
activated. This grouping sequence set GLN2 activates the logical output values Ly1
as follows: VVS with a probability of occurrence p VVSf g = 0.083, VS with a
probability of occurrence p VSf g = 0.167, S with a probability of occurrence

Table 2 Relative values and their corresponding logic values

VVS VS S M L VL VVL

Min 0.0000 0.1429 0.2857 0.4285 0.5713 0.7141 0.8570
Max 0.1428 0.2856 0.4284 0.5712 0.7140 0.8569 0.9997
Mean value 0.0714 0.2142 0.3570 0.4998 0.6426 0.7855 0.9283

Table 3 Relations between
mean values for Lx1 and
dominant grouping sequence
sets

GLNr GLN1 GLN2 GLN3 2.4993 GLN5

Lx1 2.6421 2.3564 2.4992 GLN4 2.6421

0.9283 2.8461
0.9283 2.5384
0.9283 2.6922
0.7855 3.1817
0.7855 3.3635

Table 4 Relations between
mean relative values for Lx2
and dominant grouping
sequence sets

GLNr GLN1 GLN2 GLN3 GLN4 GLN5

Lx2 2.6421 2.3564 2.4992 2.4993 2.6421

0.9283 2.8461
0.9283 2.5384
0.9283 2.6922
0.9283 2.6923
0.9283 2.8461

Table 5 Relations between
mean relative values for Lx3
and dominant grouping
sequence sets

GLNr GLN1 GLN2 GLN3 GLN4 GLN5

Lx3 2.6421 2.3564 2.4992 2.4993 2.6421

0.7855 3.3635
0.4998 4.7146
0.6426 3.8892
0.7855 3.1817
0.9283 2.8461
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p Sf g = 0.333, M with a probability of occurrence p Mf g = 0.167, VL with a
probability of occurrence p VLf g = 0.167 and VVL with a probability of occurrence
p VVLf g = 0.083. For the investigated sequence input data set the biggest proba-
bility of occurrence for the output Ly1 is p Sf g = 0.333 with a logical value
S (small). This low frequency of occurrence of the dominant logical value
Ly1 = S implies that except the main three influenced inputs Lx1, Lx2, Lx3,, other
factors influence the output Ly1 with a significant impact on the flotation process.

The possibility for other logical values to occur over the output Ly1 is based on the
existence of other immeasurable inputs such as a stage of oxide of the copper ore, an
existence of minerals and other impurities. The network model that is based on the
existence of 56 experimental data sets could be extended with additional sequence
sets of logic input values, which do not appear in the existing data package [10, 11,
13]. The weight coefficients between the three layers for absent sequence data set are
derived using the data from the tables of the relative values corresponding to the
logical values of the elements of the input, intermediate and output layers. For
example if Lx1 = L = 0.6426; Lx2 = VVL = 0.9283; Lx3 = VL = 0.7855, then
their sum is 2.3564, i.e. this non occur data sequence set is close to the inputs of the
grouping sequence set GLN2. The frequency of occurrence for Ly1 according to
Table 6 is: VVS = 0.083; VS = 0.164; S = 0.333, M = 0.167; VL = 0.167;
VVL = 0.083. This example of a network structure includes the inputs of the relative
values between 2.3564 and 2.6421. This limited range of inputs is due to the small
number of experimental data sets and their small range deviations. The network
model allows a set of combinations of logical inputs to be added. For example, if the
range of modification of inputs changes with one logical value Lx1, L, VL, VVL
where Lx2 = VL, VVL, Lx3 = S, M, L, VL, VVL, then the number of possible inputs
increases significantly. The network model allows an extension of the combination
of logic values of the inputs without additional computations based on interpolation.

6 Derivation of Additional Knowledge Based on MLPF

The following knowledge attributes of the process are discovered:

Table 6 Relations of frequency of occurrences between dominant grouping sequence sets GLNr
and the output logic values Ly1

p GLNrf g GLNr VVS VS S M L VL VVL

0.3455 GLN1 0.053 0.158 0.105 0.000 0.105 0.474 0.105
0.2182 GLN2 0.083 0.167 0.333 0.167 0.000 0.167 0.083
0.2000 GLN3 0.364 0.091 0.000 0.182 0.000 0.091 0.273
0.1818 GLN4 0.200 0.000 0.200 0.000 0.000 0.500 0.100
0.0545 GLN5 0.000 0.000 0.667 0.000 0.000 0.333 0.000
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6.1 System of Production Rules for Control

Each column of MLPF value is one production rule. New production rules [10, 12]
are added using interpolation.

6.2 Static Characteristic of Multi-factor Processes

The static characteristic of the process is presented graphically. In Fig. 2, this is
implemented using relative values of the inputs and outputs. The sum of the relative
values of the inputs Lxi, i=1÷ n of the grouping sequence sets SGLNr is presented
on the abscise. The relative output values Lye, e=1÷m for the outputs of the
process are presented on the ordinate. The interval of inputs is determined by the
character of the static characteristics of each input. These characteristics could be
increasing, decreasing or extreme.

An example of static characteristics of the grouping sequence set GLNr is given
in Fig. 2.

where LNr—set of logical input values
Lyeq (ye)—logical and relative output values
SLNr—sum of relative values of inputs in the set LNr.

6.3 Significance of the Environmental Influence Over
the Output of the Process

Relations are derived between the relative values of each input from each grouping
sequence set and the relative values of the outputs.

Fig. 2 Static characteristics
of multi-factor process
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6.4 Influence of the Immeasurable Factors WðtÞ

Relative values of immeasurable factors WðtÞ are derived in addition to the value of
the sum of the relative values of the measurable inputs X(t).

6.5 Assessment of the Time Delay Between the Inputs
and the Outputs

The time delay is assessed using MLPF for different values of the time discrete
moments τ between the experimental data for the inputs and the outputs [10].

6.6 A Reveal of the Existence of the New Period
of Pseudo-Stationary

There are two ways to discover pseudo-stationarity

• Statistical methods for analysis of experimental data sets for each output: These
methods are applied for a preliminary analysis of the experimental data sets with
the purpose of choosing main parameters such as degree of the multi-valued
logic, tsize of the data package, etc.

• Logical method based on time modifications of the relative values of a particular
output with respect to the corresponding logic values of the inputs.

Example: The process with three inputs with logical values Lx1,Lx2,Lx3 and
three outputs Ly1, Ly2, Ly3 is presented again. The experimental data sets are 56 and
they are shown in Table 7. A seven-degree logic system is perceived where the
inputs and the outputs have logical values: VVS, VS, S, M, L, VL, VVL, where VVS
is ‘very very small’, VS is ‘very small’, S is ‘small’, M is ‘medium’, L is ‘large’, VL
is ‘very large’, VVL is ‘very very large’ and the time delay is one discrete moment
between the inputs and the outputs. The experimental input data sets are grouped in
5 grouping sequence sets GLNr, r=1÷ 5. Using the number of occurrences Zr
included in each grouping sequence set, the probability of occurrences p GLNrf g for
each grouping sequence set is calculated. In Table 7 are also given the numbers and
frequency of occurrences of logical values Ly1 for the output y1.

Other MLPF are created analogically for time delays τ=2, 3, 4, 5 time discrete
moments [10, 13]. The data of each grouping sequence set of MLPF is one pro-
duction rule of knowledge base. For example, grouping sequence set GLN1 implies
the following production rule:

If ⟨Lx1 =VVL, Lx2 =VVL,Lx3 =VL⟩ Then Ly1 has a value ⟨VVS⟩ with fre-
quency of occurrence p VVSf g = 0.053; VS with frequency of occurrence
p VSf g = 0.158; Swith frequency of occurrence p Sf g = 0.105;M with frequency of
occurrence p Mf g = 0; with frequency of occurrence p Lf g = 0.105; VL with
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frequency of occurrence p VLf g = 0.474; VVL with frequency of occurrence
p VVLf g = 0.105. For each grouping sequence set, the significance of each input is
determined from the frequency of occurrence of each logical value of the output y1.

Table 7 implies that the input Lx3 has maximal significance that is much higher
than the significance of the inputs Lx1 and Lx2.

The degree to which the outputs are stochastic is assessed using the distribution
of the frequency of occurrences of each output logic value.

The bigger the number of occurrences of logical values for a given output for
different grouping sequence sets, the bigger the influence of the immeasurable
factors.

The discovery of pseudo-stationarity is based on the derivation of the relations
between the relative values of the inputs and the outputs. These relations should be
similar to each other and within the series of discrete time moments in one
pseudo-stationary time interval.

7 Conclusion

Two MLPF-based models for knowledge extraction from multi-factor,
non-stationary, nonlinear complex processes are proposed. The model with
updatable knowledge base is illustrated with real data sets for an industrial process

Table 7 MLPF for a limited
number of data sets Lx1, Lx2,
Lx3 and Ly1

GLNr 1 2 3 4 5

Zr 19 12 11 10 3
p{GLNr} 0.3455 0.2182 0.200 0.1818 0.0545
Lx1 VVL VVL VVL VL VL
Lx2 VVL VVL VVL VVL VVL
Lx3 VL M L VL VVL
Ly1 VVS 1 1 4 2 0

0.053 0.083 0.364 0.2 0
VS 3 2 1 0 0

0.158 0.167 0.091 0 0
S 2 4 0 2 2

0.105 0.333 0 0.2 0.667
M 0 2 2 0 0

0 0.167 0.182 0 0
L 2 0 0 0 0

0.105 0 0 0 0
VL 9 2 1 5 1

0.474 0.167 0.091 0.5 0.333
VVL 2 1 3 1 0

0.105 0.083 0.273 0.1 0
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from the mining industry. The difference between the two models is that the model
with updatable knowledge base uses knowledge extraction in the form of produc-
tion rule whereas the model with network structure uses a network whose elements
can perform computational logical operations. The model with network structure is
better for non-stationary processes than the model with updatable knowledge base
because of its capability to interpolate new data.

The main strength of the proposed models is their suitability for a wide range of
complex processes operating under uncertainty from different areas such as tech-
nology, the environment and others.
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