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Preface 

The history of stochastic dynamics may be traced back over 100 years ago to Ein-
stein’s paper on Brownian motion in 1905. Since then, its scope and depth have 
been broadened and enhanced by a wide variety of applications in science and en-
gineering. From 1972 to 2002 ten symposia on stochastic dynamics were spon-
sored by International Union of Theoretical and Applied Mechanics (IUTAM).  
More recently, much progress on various aspects of nonlinear stochastic dynamics 
has been made and the research activities in the field have placed greater emphasis 
on systems with high nonlinearity, and on systems in which controllers play an 
important role.  

This volume contains the papers presented at the IUTAM Symposium on 
Nonlinear Stochastic Dynamics and Control, held in Zhejiang University, China, 
May 10-14, 2010. The scientific committee appointed by the Bureau of IUTAM 
includes the following members: 

W.Q. Zhu, Hangzhou, China (Chairman) 
Y.K. Lin, Boca Raton,USA (Co-chairman) 
A. Naess, Trondheim, Norway 
W. Schiehlen, Stuttgart,Germany 
G.I. Schüller, Innsbruck, Austria 
K. Sobczyk, Warsaw, Poland 
T.T. Soong, Buffalo, USA 

A total of 44 active scientists from 13 countries (regions) accepted the invita-
tion from the scientific committee, and 31 presentations, covering the following 
six groups of topics, were scheduled for the symposium: 

1. Response and reliability of nonlinear stochastic systems. K. Sobczyk and P. 
Holobut gave a brief analysis of the entropy/information change in stochastic dy-
namical system with a special emphasis on the effect of the system parameters and 
intensities of random noise. V.V. Malanin and I.E. Poloskov proposed a scheme of 
study for systems with different forms of time aftereffect which has a transparent 
algorithm and can be simply combined with Monte Carlo method. W. Xu et al fo-
cused on the steady-state analysis of a class of nonlinear dynamical systems with 
multi-delayed feedbacks. J.Q. Sun presented a finite-dimensional Markov process 
approximation which opens a gate to various studies of stochastic dynamical sys-
tems with time delay. G.Q. Cai and Y.K. Lin studied the stochastic nonlinear be-
havior of two competing species of grass and woody vegetation. M.L. Deng and 
W.Q. Zhu investigated the stochastic energy transition of peptide-bond (PB) in 
enzyme-substrate-complex (ESC) by using stochastic averaging method and 
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Monte Carlo simulation. X.L. Jin and Z.L. Huang obtained the non-stationary 
probability densities of system responses for multi-degree-of-freedom nonlinear 
systems subject to stochastic parametric and external excitations. Y. Zeng and 
W.Q. Zhu proposed a stochastic averaging method for single-degree-of-freedom 
strongly nonlinear oscillators under Poisson white noise excitation using the  
so-called generalized harmonic functions. Cho W. S. To presented a novel ap-
proach for response analysis of MDOF nonlinear systems under non-Gaussian 
nonstationary random excitations using the stochastic central difference method, 
co-ordinate transformation and adaptive time scheme. M. Vasta and M. Di Paola 
obtained an approximate explicit response probability density function of a beam 
under external impulsive random Poisson excitation as approximate solution of  
integro-differential KF equation. G.K. Er and V.P. Iu proposed a method for de-
termining the probabilistic stationary solutions for multi-dimensional nonlinear 
stochastic dynamic systems. S. Narayanan and P. Kumar developed an efficient 
numerical implementation for the path integral (PI) method based on non-
Gaussian transition probability density function (PDF) and the Gauss-Legendre 
 integration scheme. P.D. Spanos and I.A. Kougioumtzoglou proposed a novel 
harmonic wavelet-based statistical linearization approach for determining the evo-
lutionary power spectrum (EPS) of the response of nonlinear oscillators subject to 
stochastic excitation. C.H. Loh et al developed methods for analyzing the seismic 
response data and the long-term static data of the Fei-tsui arch dam and thus set-
ting an early warning threshold level for dam safety evaluation. A. Naess et al 
considered the first-passage type failure for systems subject to multiplicative and 
additive white noises excitations and obtained the numerical results using the path 
integration method. 

 
2. Stability, bifurcation and chaos of nonlinear stochastic systems. M. F. Di-
mentberg et al found that temporal random variations of parameters in dynamic 
systems might “smear” classical neutral stability boundaries. The system’s re-
sponse within such a “twilight zone” of marginal instability was found to be of an 
intermittent nature, with alternating periods of zero (or almost zero) response and 
rare short outbreaks. S.H. Li and X.B Liu investigated the pth moment Lyapunov 
exponent of a co-dimension two bifurcation system, that is on a three-dimensional 
centermanifold and excited parametrically by a white noise. T. Fang et al pro-
posed a practical strategy for studying stochastic chaos based on orthogonal poly-
nomial approximation and ergodic theorem. C.B. Gan studied the noisy scattering 
dynamics in the randomly-driven Henon-Heiles oscillator when the energy was 
large enough to permit particles to escape from the exits. The author paid special 
attention to the computation of the exit basins, which show a rich pattern of noisy 
fractal structures and the uncertainty dimensions of the fractal sets. N. Gaus and C. 
Proppe investigated the bifurcation behavior of the non-smooth mass on a belt  
system.  

 
3. Resonance and synchronization of nonlinear stochastic systems. W. Wedig 
investigated stochastic resonances (SR), a phenomenon that nonlinear system syn-
chronizes with noise to boost a resonant-like behavior, for road-vehicle systems 
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and related bifurcation problems.  Y.B. Yang and B.H. Xu presented a review on 
the parametric SR technique and its applications in signal processing and target 
detection in shallow water reverberation.  X.J. Sun and Q.S. Lu discussed the syn-
chronization behavior of a clustered neuronal network with additive noise to re-
veal the role played by the clustered structure of networks and the effects of the 
coupling strength and cluster number.  

 
4. Control of nonlinear stochastic systems. Z.H. Liu and W.Q. Zhu studied  
stochastic optimal time-delay control and stabilization of quasi-integrable Hamil-
tonian systems by converting the original control problem into a stochastic  
optimal control problem without time-delay. P. Kaczynski and L. Socha solved the 
problem of quasi-optimal control for Duffing oscillator with parametric and exter-
nal Gaussian and Poisson noise excitations, using an iterative procedure combin-
ing Gaussian statistical linearization and LQGP technique. V. Gattulli et al  
presented semi-active control strategies for asymmetric structures based on opti-
mal sizing of an equivalent Kelvin-Voight model describing the constitutive  
behavior of semi-active magneto-rheological devices, when operating in passive 
modality with maximum achievable modal damping.  

 
5. Modeling of stochastic dynamical systems and stochastic excitations. J. Li et 
al presented a review on modeling stochastic dynamic excitations, which is incor-
porated with a probability density evolution method for response analysis of 
nonlinear structures. G. I. Schuëller and B. Goller proposed model updating pro-
cedures to improve the match between experimental data and corresponding 
model output. X.Q. Wang et al proposed a nonparametric stochastic modeling 
technique to reduce the order of geometrically nonlinear structural models.  

 
6. Structural health monitoring. B. F. Spencer et al proposed a RDT-based de-
centralized data aggregation approach for efficient data condensation and feature 
extraction, and verified experimentally the results. The performance of decentral-
ized RDT was assessed in terms of accuracy of the estimated modal properties and 
efficiency in the wireless data communication. R. Zhang et al proposed a wave-
based approach to model and analyze seismic building motion, providing addi-
tional perspective of seismic behavior of building structures, not clearly obtainable 
with the traditional vibration-based approach. 

 
We wish to thank all participants of this IUTAM Symposium, and all organizers 
for their enthusiastic and valuable contributions to the Symposium. In addition, we 
gratefully acknowledge the financial supports from IUTAM and National Natural 
Science Foundation of China. 

 
 Symposium Chairmen 

W.Q. Zhu 
Y.K. Lin 

 



Contents

Part 1: Response and Reliability of Nonlinear Stochastic
Systems

Nonlinear Stochastic Ecosystem of Two Competing
Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
G.Q. Cai, Y.K. Lin

Energy Transition Rate at Peptide-Bond Using Stochastic
Averaging Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
M.L. Deng, W.Q. Zhu

A New Method for the Probabilistic Solutions of
Large-Scale Nonlinear Stochastic Dynamic Systems . . . . . . . . . . 25
G.K. Er, V.P. Iu

Nonstationary Probability Densities of Nonlinear
Multi-Degree-of-Freedom Systems under Gaussian White
Noise Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
X.L. Jin, Z.L. Huang

Feature Extraction within the Fei-Tsui Arch Dam under
Environmental Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C.H. Loh, J.H. Weng, C.H. Chen, Y.W. Chang

About Some Schemes of Study for Systems with Different
Forms of Time Aftereffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
V.V. Malanin, I.E. Poloskov

Reliability of Linear and Nonlinear Dynamic Systems
under Multiplicative and Additive Noise . . . . . . . . . . . . . . . . . . . . . 65
A. Naess, D. Iourtchenko, O. Batsevych



X Contents

Numerical Solution of Fokker-Planck Equation for
Nonlinear Stochastic Dynamical Systems . . . . . . . . . . . . . . . . . . . . 77
S. Narayanan, Pankaj Kumar

An Approximate Approach for Nonlinear System
Evolutionary Response Spectrum Determination via
Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
P.D. Spanos, I.A. Kougioumtzoglou

On Information/Entropy Flow in Stochastic Dynamical
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
K. Sobczyk, P. Ho�lobut

Finite Dimensional Markov Process Approximation for
Time-Delayed Stochastic Dynamical Systems . . . . . . . . . . . . . . . . 107
Jian-Qiao Sun

Response Analysis of Nonlinear Multi-degree of Freedom
Systems to Non-Gaussian Random Excitations . . . . . . . . . . . . . . 117
Cho W. Solomon To

Stationary and Nontationary Response Probability Density
Function of a Beam under Poisson White Noise . . . . . . . . . . . . . 127
M. Vasta, M. Di Paola

Steady State Analysis of Stochastic Systems with Multiple
Time Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
W. Xu, C.Y. Sun, H.Q. Zhang

Stochastic Averaging of Strongly Nonlinear Oscillators
under Poisson White Noise Excitation . . . . . . . . . . . . . . . . . . . . . . . 147
Y. Zeng, W.Q. Zhu

Part 2: Stability, Bifurcation and Chaos of Nonlinear
Stochastic Systems

Marginal Instability and Intermittency in Stochastic
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
M.F. Dimentberg, A. Hera, A. Naess

A Practical Strategy to Study Stochastic Chaos . . . . . . . . . . . . . 171
T. Fang, C.L. Wu, X.L. Yang

Fractal Basin Boundaries and Chaotic Dynamics in the
Randomly-Driven Henon-Heiles Oscillator . . . . . . . . . . . . . . . . . . . 183
C.B. Gan



Contents XI

Moment Lyapunov Exponent for a Three Dimensional
Stochastic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Shenghong Li, Xianbin Liu

Bifurcation Analysis of Stochastic Non-smooth Systems . . . . . 201
Nicole Gaus, Carsten Proppe

Part 3: Resonance and Synchronization of Nonlinear
Stochastic Systems

Synchronization Behavior of a Clustered Neuronal Network
in a Noisy Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
X.J. Sun, Q.S. Lu

Stochastic Parameter Resonance of Road-Vehicle Systems
and Related Bifurcation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Walter V. Wedig

A Review of Parameter-Induced Stochastic Resonance
and Current Applications in Two-Dimensional Image
Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Yibing Yang, Bohou Xu

Part 4: Control of Nonlinear Stochastic Systems

Design of Damper Viscous Properties for Semi-active
Control of Asymmetric Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
V. Gattulli, M. Lepidi, F. Potenza

Iterative Procedures in Application of the LQGP Approach
to the Duffing Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Piotr Kaczyński, Les�law Socha

Stochastic Optimal Time-Delay Control and Stabilization
of Quasi-Integrable Hamiltonian Systems . . . . . . . . . . . . . . . . . . . . 261
Z.H. Liu, W.Q. Zhu

Part 5: Modeling of Stochastic Dynamical Systems and
Stochastic Excitations

Modeling of Stochastic Dynamic Excitations and the
Probability Density Evolution Theory for Nonlinear
Stochastic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
J. Li, Q. Yan, J.B. Chen



XII Contents

On the Consideration of Model Uncertainties in Model
Updating of Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
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Nonlinear Stochastic Ecosystem of Two 
Competing Species 

G.Q. Cai and Y.K. Lin 

College of Engineering and Computer Science, Florida Atlantic University, 
Boca Raton, FL 33431, USA 

Abstract. A nonlinear stochastic model describing two competing species of grass and 
woody vegetation is proposed.  Two types of stochastic processes are proposed to model 
the variation part of the stocking rate.  One is Gaussian white-noise, and another is random-
ized sinusoidal process. The system nonlinear behaviors are investigated for the determinis-
tic case and the cases with two different stochastic variations.  Some key characteristics of 
the system are found to be different for cases with and without stochastic variations.  With 
the stochastic variation, a single stable state in the deterministic system is diffused into a 
region of stable states, and a separatrix dividing the two attraction zones no longer exists. 
The system may follow different trajectories and lead to different outcomes, beginning 
from the same initial state.  It is also found that the stationary probability of the system re-
sponse depends on the initial conditions, a special phenomenon for the investigated nonlin-
ear system.  Although the white-noise process and the randomized sinusoidal process are 
quite different in nature, the qualitative behaviors of the system are similar.  Furthermore, 
effects of the initial state and the intensity of the stochastic variations on the system behav-
iors are investigated.  

Keywords: Nonlinear ecosystem, Stochastic variation, Probability density, Monte-Carlo 
simulation. 

1   Introduction 

In its natural state, a semi-arid savanna has a predominant grass cover, with scat-
tered trees and shrubs.  It is an ecosystem of two species competing for resources.  
Such a natural state is found in the south-western U.S.A, and in Africa, India and 
Australia.  Sustainability, stability and resilience of such a state have generated 
considerable interest among ecologists.  Early studies of the dynamics of such sys-
tems were presented by Ludwig et al. [3] and Walker et al. [7].  More recently, 
Ludwig et al. [4] presented a comprehensive investigation based on a modified 
version of the well-known model of Lotka [2] and Volterra [5,6] as follows  

)]1([

)1(

wcgcwarw

wcgcsgrg

wwgww

wgggg

−−+=

−−−=
�
�

                                     (1) 



4 G.Q. Cai and Y.K. Lin 
 

where g and w are the densities of the grass and woody vegetation, respectively, rg 
and rw are their growth rates, s is the cattle stocking rate, cwg and cgw are the inter-
species-competition coefficients, cgg and cww are the intraspecies-competition coef-
ficients, and a is a source term for the woody vegetation.  Model (1) differs from 
the original Lotka-Volterra model by adding the intraspecies competition terms -

2gcgg and - 2wcww , a source term to the woody vegetation, and a cattle stocking 
term.  Equation set (1) is nonlinear and deterministic; namely, all parameters in 
the set are assumed to be precisely known.  Such assumption is idealistic since 
changes in the environment are always present, and in most cases, they cannot be 
predicted in advance.  

In the present paper, the nonlinear qualitative behaviors are investigated first 
for the deterministic model (1).  Then a stochastic model is proposed for the two 
competing species of grass and woody vegetation with the stocking rate varying 
randomly.  Two stochastic processes, Gaussian white-noise process and random-
ized sinusoidal process, are used to model the variation of the stocking rate, re-
spectively.  Since the system is highly nonlinear, Monte Carlo type simulations are 
carried out to analyze the characteristics of the stochastic systems. The purpose of 
the paper is aimed at shedding some light on the profound effects of the nonlinear-
ity and random variability on system behaviors. 

2   Characteristics of Deterministic Nonlinear System 

The equilibrium points of system (1) can be found by letting the right-hand-sides 
of (1) be zero, namely, 

0)1(

0)1(

=−−+

=−−−

wcgcwa

wcgcsg

wwgw

wggg
                                              (2) 

Denoting 

gggggwwwgggwwg acCcscBccccA =−−=−=     ,)1(     ,            (3) 

The following three equilibrium centers exist if B2 - 4AC > 0 

       Unstable center S:  )4(
2

1 2 ACBB
A

w −+= , 
gg

wg

c

wcs
g

−−
=

1
 

      Asymptotic stable center W:  )411(
2

1
ww

ww

ac
c

w ++= , g = 0 

      Asymptotic stable center G: )4(
2

1 2 ACBB
A

w −−= , 
gg

wg

c

wcs
g

−−
=

1
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On the other hand, if B2 - 4AC = 0, then system (1) has an unstable equilibrium 
center S, and an asymptotic stable equilibrium center W. Finally, if B2 - 4AC < 0, 
then there exists just an asymptotic stable equilibrium center W. 

The case of three equilibrium centers is shown in Fig. 1 with rg = 1.5, rw = 1,  
s = 0.3, a = 0.03, cgg = 0.7, cwg = 1, cgw = 2, and cww = 1.03, respectively.  These 
values are non-dimensional and have been used in literatures.  The stable equilib-
rium center W corresponds to the extinction of grass, while the stable equilibrium 
center G corresponds nearly to the opposite; namely, the grass density is high and 
the woody vegetation density is very low.  Depending on the initial conditions, the 
system will approach definitely to one of the stable equilibrium centers.  As shown 
in Fig. 1, a trajectory starting from an initial state of g0 = 0.1 and w0 = 0.1 will ap-
proach the stable center G, while one will end up at the stable center W if it begins 
from g0 = 0.1 and w0 = 0.3.  A separatrix passes through center S, and divides the 
whole permissible domain into two regions of attraction. 
  

 

 

 

 
 

 

 

 

 

 

Fig. 1 Phase plane of deterministic system (1) 

While Equation (1) catches some basic characteristics of the nonlinear ecosys-
tem, it fails to account for variations in a real ecological environment.  According 
to the model, the system would eventually approach either state S or state W, and 
the outcome would depend entirely on the initial populations of the grass and 
woody vegetation, respectively.  Such type of behavior is obviously not realistic. 

3   Stochastic Nonlinear Model 

The present paper attempts to find out what will happen if certain parameters in 
the system are allowed to change randomly with time.  Specifically, the stocking  
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rate is allowed to vary randomly, namely, the parameter s in Equation (1) is now 
replaced by  

)(0 tss ξ+=                                                            (4) 

where 0s is a constant, and )(tξ is a stochastic process with zero mean value.  The 

stochastic version of deterministic model (1) is then proposed as follows 

)]1([

)()1( 0

WcGcWarW
dt

d

tGrWcGcsGrG
dt

d

wwgww

gwgggg

−−+=

+−−−= ξ
                      (5) 

where G(t) and W(t) are now stochastic processes representing the uncertain grass 
density and woody vegetation density, respectively.  The tradition of using a capi-
tal letter to represent a random variable or a stochastic process is adopted here. 

The random variation of the stocking rate, )(tξ , should be estimated from the 

observation data.  Depending on different situations, two stochastic processes may 
be feasible to model )(tξ .  One is Gaussian white noise, describing fast changing 

variations; while another is randomized sinusoidal process, allowing random 
variations embedded in periodic processes. 

Due to the strong system nonlinearity, analytical solution is presently not avail-
able for (5); thus, a Monte Carlo type simulation study has been carried out with 
the same parameters as those in Fig. 1, i.e. rg = 1.5, rw = 1, a = 0.03, cgg = 0.7, cwg = 
1, cgw = 2, cww = 1.03, and s0 = 0.3. 

3.1   Gaussian White-Noise Model 

ξ(t) is modeled as a Gaussian white noise with an intensity D, i.e.,  

)()]()([ τδτξξ DttE =+                                                    (6) 

Equation (6) indicates that the correlation time is very short, namely, the change 
of ξ(t) is very fast.  Due to the random variability in the stocking rate, the behavior 
of the stochastic system (5) is substantially different from that of its deterministic 
counterpart.  Fig. 2 shows two trajectories of the stochastic system (5) beginning 
from g0 = 0.2 and w0 = 0.1, and corresponding to two different noise intensities D 
= 0.01 and 0.05 respectively.  The starting point (0.2, 01) of the trajectory is not 
included in the figure to permit using a larger scale, thus a clearer display of the 
trajectory near point G.  It is seen that the steady state of the system can no longer 
be represented by a single point; instead, it is represented by a region around G, 
which is in better agreement with what is expected of a real ecosystem.  Also 
shown in the figure, the larger the noise intensity is, the more diffusive of the sys-
tem state is.  
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Fig. 2 Trajectories of stochastic system (6) with white noise variation for two cases with 
different noise intensities 

It is noted that, with a random variation in the cattle stocking rate, which affects 
the grass consumption, the stable equilibrium point G is transformed into a region 
of stable steady states, while W remains a single stable equilibrium point.  If ran-
dom variation is also included in the source term of the woody vegetation, then 
point W will also be diffused into a region of stable steady states. 

Another significant change of the system characteristics is that a distinctive 
separatrix of the system no longer exists, nor does an explicit boundary between 
two domains of attraction.  Fig. 3 shows two different trajectories of the same sys-
tem (5) with a noise intensity D = 0.01 and beginning from the same initial state of 
g0 = 0.06 and w0 = 0.1.  One trajectory approaches the stable center W, and an-
other ends up in a region around G.  It is noted that the initial point (0.06, 01) is in 
the attraction zone leading to stable center W for the deterministic system.  For the 
stochastic system, however, two possible outcomes exist.  Therefore, management 
and control are important to lead the system to a desired steady state. 

Although a single initial state may lad to two different steady states and the out-
come is not predictable, the probability of approaching either steady state can be 
calculated using Monte Carlo simulations.  Define PW as the probability of the sys-
tem with the steady state at the stable center W.  It is obvious that PW depends on 
two factors, one is the noise intensity and another is the initial state.  PW was cal-
culated versus varying initial g0 with initial w0 = 0.1 and for three different noise 
intensities.  The results are depicted in Fig. 4.  When there is no stochastic distur-
bance, i.e., D = 0, the point on the separatrix is g0 ≅ 0.0622 (w0 = 0.1).  The system 
will approach the steady state W if g0 < 0.0622, while it will end up at point G if 
g0 > 0.0622.  With a stochastic disturbance present, the separatrix disappears, and 
there is always a probability to go either steady state starting from a single initial 
state.  With a larger noise intensity, the PW curve deviates farther from that of the 
deterministic one. 
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Fig. 3 Two possible trajectories of stochastic system (5) with white noise variation starting 
from the same point 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 4 Probability PW versus the initial value g0 for the case of initial w0 = 0.1 and three  
different intensities of white noise 

Although the outcome for a single trajectory of system (5) is not predictable, 
the probability distribution of all possible outcomes can be determined.  Fig 5 
shows the stationary probability density p(g) of the grass density for the system 
starting from point (0.2, 0.1) with different noise intensities.  The starting point 
(0.2, 0.1) is in the attraction zone of stable state G and far from the separatrix.  
The areas under the probability density curves are 1, 0.999, and 0.985 for  
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D = 0.01, 0.02, and 0.04, respectively.  For the case of weak noise level of  
D = 0.01, almost all trajectories approach the area around G.  With an increasing 
noise intensity, more sample trajectories approach the stable point W, resulting in 
the total probability in the G area less than one.  The figure also shows that the 
stronger the noise is, the more diffusive the system state is around point G. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Probability densities of grass density, computed with starting point (0.2, 0.1), and 
different intensities of white noise 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Probability densities of grass density, computed with starting point (0.07, 0.1), and 
different intensities of white noise 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

D = 0.01
D = 0.02
D = 0.04

Area = 0.681

Area = 0.635

Arae = 0.603

p(g)

g



10 G.Q. Cai and Y.K. Lin 
 

Fig 6 shows the same stationary probability density p(g) for three different 
noise intensities.  However, the system starts from point (0.07, 0.1) which is closer 
to the separatrix, although still in the attraction zone of point G.   Compared with 
the case of Fig. 5 in which the starting point is farther from the separatrix, the area 
under each curve is much less than one since more samples end up at the stable 
point W.   The stronger the noise is, the less the total probability in the G area is.  

It is well known that for a linear or nonlinear system, the stationary probability 
density of the system response, if exists, depends on system parameters and noise 
intensities.  It is generally recognized that effect of the initial state disappear after 
a long period of time.  However, the nonlinear system (5) exhibits an interesting 
phenomenon that the system stationary probability distribution also depends on 
the system initial state, as shown in Figs. 5 and 6.  The initial state determines the 
probability of the system approaching one of the two possible steady states; thus, 
determines the overall system stationary probability distribution.  

3.2   Randomized Sinusoidal Process Model 

Another feasible model for )(tξ is randomized sinusoidal process described as 

follows  

)(d,)(cos)( tBdtdtst r σνθθξ +==                                      (7) 

in which sr is a positive constants indicating the intensity of the noise, ν and σ  
are also positive constants representing the mean frequency and the level of ran-
domness of the noise, B(t) is a unit Brownian process (also known as the Wiener 
process).  Equation (7) indicates that )(tξ  has a random phase.  This randomized 

sinusoidal process was proposed independently by Dimentberg [1] and Wedig [8], 
and it has been used in the investigations of a variety of engineering problems. 

The stochastic system (5) with a random variation modeled as a randomized si-
nusoidal process (7) is now investigated for the same system parameters as before.  
It is found that the system behavior is similar qualitatively to that of the case of 
white noise model.  Two possible outcomes exist for the system with the same ini-
tial state, indicating that a definite separatrix does not exist.  The stationary state is 
not the single point G, but an area around G  However, due to the periodic factor 
in the random noise, the system also exhibit periodic nature.  The larger the ran-
domness parameter σ is, the more close the system behavior is to that of the white 
noise case. 

Stationary probability density p(g) of the grass density is calculated for a noise 
intensity sr = 0.2, an initial state g0 = 0.07 and w0 = 0.1, and three different ran-
domnesses,  σ = 0.05, 0.2 and 1.0.  The results are shown in Fig. 7.  With a 
stronger randomness, the probability density is very much different from that with 
a weak randomness.  Moreover, the total probability, i.e., the area under the curve 
is smaller in the strong randomness case since the total probability of the system 
arriving at the final state W is higher. 
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Fig. 8 shows the probability density p(g) for sr = 0.2, σ = 0.2, w0 = 0.1, and 
three different initial states of the grass density of g0 = 0.058, 0.062 and 0.066, re-
spectively.  Although they have similar shapes, the areas under the curves are dif-
ferent.  With the initial state closer to the point G, i.e. the case of  g0 = 0.066,  the 
area is larger, indicating that the system is more likely to approach the states 
around G. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Probability densities of grass density, computed with starting point (0.07, 0.1), and 
different σ values of randomized sinusoidal noise 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Fig. 8 Probability densities of grass density, computed with noise randomness σ = 0.2, ini-
tial w0 = 0.1, and different initial g0 values 
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4   Conclusions 

Nonlinearity and uncertain variability are always present in natural ecosystems, 
which must be accounted for in their mathematical models and in the formulation 
of effective management policies.  The present investigation is an attempt in this 
direction, using the example of a system with two competing species, specifically, 
the semi-arid savanna graving system.  In particular, the intraspecies- and  
interspecies- competitions are introduced and the stocking rate is assumed to be a 
constant plus a random variation.  Qualitative changes in the system nonlinear be-
haviors take place as a result of the presence of the random variation.  A single 
stable state of the deterministic system is expanded into a stable region, the same 
initial state may lead to multiple final states, and the system stationary probability 
distribution depends not only on the system parameters and noise intensities, but 
also on the initial state. 

Two different random processes, Gaussian white noise and randomized sinu-
soidal process, are utilized to model the random variation. Although they are quite 
different in nature, the qualitative behaviors of the system are similar. 

In the present investigation, certain types of nonlinearity are introduced, and 
only one system parameter is treated as being randomly varying with time.  Simi-
lar approaches may apply to other types of system nonlinearity and random varia-
tion, or for other ecosystems.  The system properties, random variations, as well as 
the system initial state must be estimated from the observation data.  Nonetheless, 
theoretical and numerical investigations are important to find out what types of 
data are most critically needed and what are not.  
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Energy Transition Rate at Peptide-Bond Using 
Stochastic Averaging Method 

M.L. Deng and W.Q. Zhu 

Department of Mechanics, State Key laboratory of Fluid Power Transmission and Control, 
Zhejiang University, Hangzhou 310027, China 

Abstract. The stochastic energy transition of peptide-bond (PB) in enzyme-substrate-
complex (ESC) is investigated. By introducing a coupled Pippard system and thermal fluc-
tuation as the noise, the two important mechanisms of enhancing PB breaking rate, i.e., the 
Fermi resonance and the reduction of potential barrier height are studied. The necessary 
frequency ratio 1:2 for Fermi resonance is verified by using the deterministic averaging 
method. With the noise terms present, the average energy transition rate of PB is predicted 
by using the stochastic averaging method. The comparison of the analytical results and 
Monte Carlo simulation results shows that the stochastic averaging method is promising for 
predicting the PB breaking rate. A preliminary work to investigate the possible influence of 
the oxygen ion on the PB is presented. The Morse potential model is introduced to describe 
the potential landscape of the oxygen ion oscillator, which is coupled with the Pippard sys-
tem. Monte Carlo simulation results for PB energy transition rate are obtained for the cou-
pled system, and they agree well with the theoretical results in the range of low potential 
barrier.  

Keywords: Peptide bond breaking, Fermi resonance, Energy transition, Stochastic averag-
ing method. 

1   Introduction 

Recently, research topics concerning protein and its reaction dynamics have at-
tracted considerable attention of physicist [1]. Particularly, many researchers fo-
cused on the problem of enzyme-catalyzed PB breaking in protein molecular chain 
[2-4]. There are two different reaction processes in PB breaking, i.e., the sponta-
neous breaking in aqueous solution and the catalysis breaking under the action of 
enzyme. The primary difference between these two processes is that the latter has 
higher breaking rate than the former by several orders of magnitude. The protein 
hydrolysis enzyme such as chymotrypsin (ChT) is usually named as molecular 
scissor in which the active site affects the substrate protein. At the active site the 
local reactive dynamics connected with potential barrier crossing may be coupled 
with other oscillating degrees of freedom. As for the research work for the dy-
namical process in PB breaking, two dynamics mechanisms are usually used to 
explain the increasing probability of PB breaking in ESC, i.e., the Fermi resonance 
and the reduction of potential barrier height [1,2]. 
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Fermi resonance is named according to the classical work of Enrico Fermi on 

the Raman effect in 2CO  molecule [5]. Fermi resonance was also found in other 

inorganic matters, most significantly, in the protein macromolecules [6,7]. Fermi 
established a simple model of 2-DOF system by introducing a coupling term to the 
potential [5]. The frequent energy exchange between the two coupled oscillators 
was regarded as the mechanism for promoting energy transition rate over a poten-
tial barrier [8,9]. On the other hand, the height of potential barrier is reduced due 

to the influence of some electronegative atom groups, e.g., the oxygen ion O−  in 
Ser195 of ChT [2]. The reduction of the potential barrier height increases the 
probability of PB breaking by several orders of magnitude, and the catalysis effi-
ciency is higher than Fermi resonance. 

In general, chemical reactions are stochastic processes because the chemical 
transformation is effected by inevitable uncertain factors, such as thermal fluctua-
tion [1]. In this paper, we study the stochastic dynamics of enzyme catalyzed PB 
breaking. Both mechanisms mentioned above are considered. The energy transi-
tion rates in both non-resonance and Fermi resonance cases are obtained by using 
the stochastic averaging method and solving the averaged Pontryagin equation 
[10]. The analytical results are compared with those from the Monte Carlo simula-
tion. Preliminary work to explore the influence of oxygen ion O−  is also pre-
sented. Monte Carlo simulations are carried out to obtain numerical results for 
some cases.  

2   PB Breaking in ESC and Its Stochastic Dynamical Model 

PB is a single valence bond jointing aminoacids to construct protein, and its break-
ing will lead to protein splitting. The structure of PB and its breaking reaction is il-
lustrated in Fig. 1. The left-hand-side is the state before the reaction, while the 

right-hand-side is that after the reaction. 1R  and 2R  are the residues of the two 
neighbor aminoacids; the wavy line ~ denotes the PB. The PB breaking reaction in 
Fig. 1 is a hydrolysis process that can spontaneously take place in aqueous solu-

tion at very low rate. In aqueous solution, the hydroxyl ions OH−  casually attack 

protein molecule, and incur PB breaking with a rate k  about 8 110 s− − . In vivo, 
such a reaction process is in general assisted by hydrolytic enzyme (e.g. ChT). 

Under the support of enzyme, the PB breaking rate increases to about 3 110 s− . 

C N* C1 C
R1 O R2

H H* H

... ...__ ~
||

| |

||

|
+ H2O ĺ C NH2 HOOC C

R1 R2

H H

... ...__
|

||

|
+

 

Fig. 1 PB breaking reaction process 
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ChT is a typical molecular scissor which plays an extremely important role dur-
ing the hydrolysis process of PB and ester bonds. As shown in Fig. 2, the active 
site of ChT is located between the two sub-globules. The catalytic active site is 
composed with aminoacids residues Ser197, His57 and Asp102. Those aminoacid 
residues in active site are activated by proton transfer which brings electronegative 

to an oxygen atom in Ser195 to form oxygen ion O− . Affected by the oxygen ion 

O− , the PB in ESC breaks with rather high probability. 

 

Fig. 2 Chymotrypsin (ChT) molecule consisting of two sub-globules A and B and the sub-
strate (protein chain) from Reference 1 

From the dynamics point of view, protein is a complex nonlinear system with 
thousands degrees of freedom [11,12]. Furthermore, the theory and methods of 
nonlinear stochastic dynamics should be used since any biomacromolecular reac-
tion is subjected to stochastic fluctuation (e.g. thermal noise) [1]. Presently, two 
dynamical characteristics are used to explain the increasing probability of PB 
breaking in ESC, i.e., the Fermi resonance and the reduction of potential barrier 
height [1,2]. 

The theory of Fermi resonance was applied in Pippard’s book [13] on the the-
ory of oscillations. Volkenstein [14] first discussed the Fermi resonance in the PB. 
The popular stochastic model for studying Fermi resonance in the PB is a test par-

ticle moving in a 2-dimensional potential 1 2( , )U x x  under action of noise and 

damping [1]. The model is governed by the following Langevin equation 

1 1 1 2 1 1

2 2 1 2 2 2

( , ) 2 ( )

( , ) 2 ( )

mX X U X X X D t

mX X U X X X D t

γ ξ

γ ξ

+ + ∂ ∂ =

+ + ∂ ∂ =
                         (1) 

where 1X  is the displacement of first oscillator representing the * 1N ~ C  bond in 

PB as shown in Fig. 1, while 2X  the displacement of second oscillator  
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representing * *N H−  bond; m  is the mass of test particle; γ  is a constant 

damping coefficient; 2D  is the noise intensity; 1( )tξ , 2( )tξ  are independent unit 

Gaussian white noises originating from the thermal fluctuation. According to the 

fluctuation dissipation theorem, the Einstein relation BD k Tγ=  is applied here, 

where Bk  is the Boltzmann constant and T  is the temperature. The popular Pip-

pard potential in (1) for investigating Fermi resonance is [13] 

2 2 2 2 2
1 2 1 1 2 2 1( , ) 2 ( ) 2U x x x x cxω ω= + −                              (2) 

where 1ω  and 2ω  are the frequencies of the two oscillators, respectively, and c  is 

a coefficient reflecting the coupling strength between the two oscillators. Since c  
is generally very small, the two oscillators can be treated as quasi-linear system. 

Consider the conservative Pippard model, namely, Eq. (1) without dampings 

and noises. Denote 1e , 2e  and 1φ , 2φ  as the energies and phase angles of the two 

oscillators in system (1), respectively. Introducing the frequency ratio 

1 2: :n mω ω =  where n and m are prime integers, the phase angle difference 

1 2( )m nϕ φ φ= − , and then using the deterministic averaging method yield the 

following equations for 1e , 2e  and ϕ  

1 21 2 2 2 sin , : 1 : 2
- =

          0,         : 1 : 2

ce e n mde de

n mdt dt

ϕ⎧⎪− =⎪⎪= ⎨⎪ ≠⎪⎪⎩
                        (3) 

1 2

2

2 ( 2 )cos
.

c e ed

dt e

ϕϕ −
=                                             (4) 

 

It is seen from Eq. (3) that 1 2 0de dt de dt= − ≠  only when 1 2: 1 : 2ω ω = . 

In other words, when frequency ratio 1 2:ω ω  of the conservative Pippard system 

is equal to 1:2, energy exchange between the two oscillators occurs. This case is 
called Fermi resonance. 

With dampings and noises, it can be seen by performing Monte Carlo simula-
tion that the energy process of the first oscillator fluctuates more frequently in the 
case of Fermi resonance than in the case of non-resonant case [15]. It is point out 
that the frequent energy exchange between the two oscillators reduces the energy 
transition time over potential barrier in the first oscillator.  
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3   Energy Transition Rate in the Case of Fermi Resonance 

For the quasi-linear Pippard system (1) with weak coupling and weak dampings, 
Fermi resonance can be investigated by using the stochastic averaging method. 
The mean transition time τ  in both cases of non-resonance and Fermi resonance 
have been obtained by solving the averaged Pontryagin equation [16]. Denote 

，10 20 0( , )E Eτ τ ϕ=  as the mean time of energy process 1( )E t  of the first oscil-

lator over the potential barrier UΔ  for the first time, given the initial energies 

100 E U≤ < Δ , 200 E≤ . When 1 2:ω ω  is far from 1:2, i.e., in the case of non-

resonance, one can obtain the following exact energy transition rate 

1
1

0
B B

1
ln( ) real (0, )

U U
k

k T k T
τ γ

γ

−
−

⎧ ⎡ ⎛ ⎞ ⎤ ⎫⎪ ⎪− Δ Δ ⎟⎪ ⎪⎜⎢ ⎥⎟= = + Γ − +⎜⎨ ⎬⎟⎜⎢ ⎥⎟⎪ ⎪⎜⎝ ⎠⎪ ⎪⎩ ⎣ ⎦ ⎭
               (5) 

where 0 0.577216γ ≈  is the Euler-Mascheroni constant; (, )Γ ⋅ ⋅  is the incomplete 

Gamma function. 

In the resonance case, i.e., 1 2: 1 : 2ω ω ≈ , we replace the frequency ratio by 

2 1 2ω ω σ= + , where σ  is a small detuning parameter. The Pontryagin equa-

tion governing the mean transition time can be obtained as 

2 2 2

1 2 3 1 2 32 2 2
10 20 0 10 20 0

1a a a b b b
E E E E

τ τ τ τ τ τ
ϕ ϕ

∂ ∂ ∂ ∂ ∂ ∂
+ + + + + = −

∂ ∂ ∂ ∂ ∂ ∂
      (6) 

where 10E , 20E  are the initial energies of the two oscillator, and 0ϕ  is the initial 

phase angle difference. The drift and diffusion coefficients in Eq. (6) read 

        1 B 10 10 20 02 (1 ) 2 sin ,a k T E c E Eγ γ σ ϕ= − − +  

2 B 20 10 20 0

3 1 10 20 0 20

1 B 10 2 B 20 3 B 10 B 20

2 (1 ) 2 sin ,

2 (1 )( 2 )cos ,

, , 4 .

a k T E c E E

a c E E E

b k TE b k TE b k T E k T E

γ γ σ ϕ

σω σ ϕ
γ γ γ γ

= − + +

= − + + −
= = = +

     (7) 

The boundary conditions associated with Eq. (6) are 

10 20 0 10 20 0

10 20 0 10 20 0

10 20 0 10 20 0

( 0, , ) finite, ( , , ) 0,

( , 0, ) finite, ( , , ) finite,

( , , 2 ) ( , , 0).

E E E U E

E E E E

E E E E

τ ϕ τ ϕ
τ ϕ τ ϕ

τ ϕ π τ ϕ

= = = Δ =

= = → ∞ =
= = =

          (8) 

For the case of Fermi resonance, τ  is obtained from numerically solving Eq. (6) 
together with boundary conditions in Eq. (8) using finite difference method. 
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Other than solving accurate PB energy transition rate for a particular case, we 

aim at the feasibility of the present analytical method. Therefore, the values of pa-

rameter in system (1) are chosen representatively for real protein molecules. Spe-

cifically, mass m  is chosen as one unit mass 1[m]m =  where m 12u=  

( 27u 1.6605 10 kg−= ×  is the unified atomic mass unit) which is equal to the 

mass of one carbon atom. The length unit is chose as the angstrom A . The energy 

unit is chosen as Bk T  ( 300KT =  for normal temperature) for convenience. 

These chosen units make the time unit to be 13
0t 2.193 10 s−= × . For 

11 1
1 5 10 sQγ ω −= ≈ ×  and 100Q =  [15], the frequency of the first oscillator 

is 1 10.97ω =  and damping coefficient 0.1097γ = . Numerical results for the 

energy transition rate of PB for frequency ratio 2 1:ω ω  varying from 210−  to 
210  are obtained, and compared with those from Monte Carlo simulation, as 

shown in Fig. 3.  
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Fig. 3 The energy transition rate of peptide-bond as function of frequency ratio 

It is seen that the energy transition rate reaches its maximum at Fermi reso-

nance frequency 2 1: 2 : 1ω ω = . The agreement between the analytical results 

and the simulation results indicates the applicable ranges of the exact solution in 

Eq. (5) for the non-resonant case and the numerical solution of Eq. (6) for the 

resonant case. 
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Fig. 4 shows the energy transition rates for varying potential barrier UΔ  for 

the Fermi resonance frequency 2 1: 2 : 1ω ω = . When UΔ  exceeds B12k T , so-

lution of equations become ill-conditioned, and the finite difference method is not 

applicable. On the other hand, the computer time for Monte Carlo simulation in-

creases exponentially with an increasing UΔ , and simulation results were ob-

tained up to UΔ  = B24k T . It is seen that both results agree quite well. 
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Fig. 4 Energy transition rate of PB for the Fermi resonanve case 

4   PB Breaking Rate Affected by Oxygen Ion  

As mentioned before, the probability of PB breaking in the presence of oxygen ion 

O−  of Ser195 of catalytic group is rather greater than the probability of spontane-
ous breaking in aqueous solution. The quantum mechanics and experimental data 

have shown that the existence of oxygen ion O−  affects the potential landscape of 
PB which is changed with the distance between them [2]; thus, the potential  
barrier for PB breaking changes accordingly. The change of the bond energy and 

potential barrier is shown in Fig. 5. On the other hand, the oxygen ion O−  is os-
cillating about its equilibrium, and its potential is also dependent on its distance to 

PB. X-ray data show that the equilibrium distance between O−  and PB is about 
3Å, and that the potential barrier UΔ  is extremely sensitive to the distance near 
3Å, as shown in Fig. 5. It is also found that the minimum distance between  
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O−  and PB is about 1.34Å, which implies that the repulsive force is rather high 
when they approach each other. Therefore, it is important to consider the vibration 

of O−  in the orthogonal direction to PB and its coupling with the PB. 
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Fig. 5 Bond energy versus the distance between oxygen ion O−  and PB (data from  
Reference 2) 

Denoting L as the distance between the PB and the oxygen ion O− , the poten-
tial barrier is a function of L, i.e., 

( )U f LΔ =                                                            (9) 

where the function f is defined in Fig. 5. 
Without taking into account the effect of PB oscillators, a linear model was 

suggested in [2] for the oxygen ion O−  oscillation. It reads 

3 2 2
0 3 3 3 3 0 3

3

( )
2 ( ), ( ) 2

dM X
m X X D t M X X

dX
γ ξ ω+ + = =           (10) 

With the linear oscillator model (10), the potential is parabolic. To introduce the 

effect of the PB on the motion of oxygen ion O− , we propose to use the Morse 
potential to replace the parabolic potential in Eq. (10). The Morse potential reads 

2
3 3( ) exp( ) 1 .M X Xβ α⎡ ⎤= − −⎣ ⎦                                      (11) 
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which has been used to model the interaction between atoms or molecules generally. 
By varying parameters α and β in (11) with respect to the distance L, the Morse po-

tential can be used to model the potential landscape of oxygen ion O− . Fig. 6 shows 
the parabolic potential with ω0 = 30, as well as the Morse potentials with several sets 
of α and β values.  Larger α and β  values indicates harder stiffness. 

 

Fig. 6 Morse potential (11) for different parameters and parabolic potential 

Combining PB oscillator (2), oxygen ion O−  oscillator (10) with Morse poten-
tial (11), and the variation of the potential barrier (9), one can establish a coupled 
stochastic dynamics model with both the effects of Fermi resonance and oxygen 

ion O−  taken into account. 

Monte Carlo simulations were performed for the coupled stochastic model. 

Currently, the dependence of parameters α and β on distance L has not been ac-

cessed; thus, we consider three sets of α and β values. The other parameters are 

the same as those in Fig. 4, i.e. the case of Fermi resonance frequency 

2 1: 2 : 1ω ω = . The results are shown in Fig. 7. The same theoretical results as 

in Fig. 4 obtained without considering the effect of oxygen ionO−  are also shown 

ion Fig. 7. It is seen that the simulation results from the coupled model agree well 

with those from the theoretical results for certain ranges of potential barrier, espe-

cially for the set of large α and β values. In this case, the stiffness of O−  oscilla-

tor is hard, its displacement X3 is small, 3L X L+ ≈ ，and the effect of oxygen 

ionO−  is negligible. 
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Fig. 7 Energy transition rate of peptide-bond of coupled Pippard system under the effect of  
oxygen ion oscillator 

5   Conclusions 

In the present paper, the stochastic dynamics of enzyme-catalyzed PB breaking in 
protein molecular chain has been studied by using the stochastic averaging method 
and the Monte Carlo simulation. The two main mechanisms of enhancing the PB 
breaking rate, i.e., the Fermi resonance and the reduction of potential barrier due 

to oxygen ion O− , are investigated. The stochastic Pippard dynamical model of 
PB breaking was introduced for the Fermi resonance. The energy transition rate of 
PB has been predicted by applying the stochastic averaging method and solving 
Pontryagin equation, the analytical results and those from Monte Carlo simulation 
agree well. For investigating the second mechanism of enhancing PB breaking 
rate, preliminary work has been done. Specifically, the parabolic potential in oxy-

gen ion O−  oscillator has been replaced by the Morse potential, the PB potential 

barrier is varying with the distance between PB and oxygen ion O− , and the Pip-

pard model is coupled with the oscillation of oxygen ion O− . Some simulation re-
sults have shown the feasibility of the proposed coupled model. 
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A New Method for the Probabilistic Solutions of 
Large-Scale Nonlinear Stochastic Dynamic 
Systems 

G.K. Er and V.P. Iu 

Department of Civil and Environmental Engineering, University of Macau, 
Macau SAR, China 

Abstract. This paper proposes a novel method for determining the probabilistic stationary 
solution of multi-dimensional nonlinear stochastic dynamic systems. In general, the PDF 
solution is governed by Fokker-Planck equations in multi-dimensions. By dividing the 
space of the state variables into two subspaces and integrating the Fokker-Planck equation 
over one of the subspaces, a reduced set of Fokker-Planck equations can be obtained in the 
state variables of the other subspace. This is achieved by manipulating the integrals and ap-
proximating the conditional PDFs resulted from integration. Hence, the reduced set of Fok-
ker-Planck equation will have a smaller number of state variables at choices and can be 
solved by the exponential polynomial closure method. Examples of the nonlinear stochastic 
dynamic systems with polynomial nonlinearity are given to show the effectiveness of this 
novel subspace method. The paper attempts to provide a tool for analyzing the probabilistic 
solutions of some highly multi-dimensional nonlinear stochastic dynamics systems in vari-
ous areas of science and engineering. 

Keywords: Fokker-Planck equation, nonlinear stochastic dynamic system, Subspace, Prob-
ability density function. 

1   Introduction 

The problems of nonlinear random vibrations of multi-degree-of-freedom 
(MDOF) systems are encountered in many areas of science and engineering. 
However, obtaining the probabilistic solution of MDOF nonlinear stochastic dy-
namic (NSD) systems has been a challenge for over one century. Only in some 
limited cases, the exact probabilistic solutions of two-degree-of-freedom system or 
few-degree-of-freedom systems are obtainable [Scheurkogel and Elishakoff 1988, 
Lin and Cai 1995]. It is well known that even the solutions of nonlinear single-
degree-of-freedom (SDOF) systems attracted much attention in the last decades. 
The key problem in nonlinear random vibrations is about obtaining the probability 
density function (PDF) of system responses because all other statistical analyses 
are based on it. Even if the PDF solution of NSD system is governed by Fokker-
Planck (FP) equation, it is still difficult to obtain the exact solution if the system  
is nonlinear or there are parametric excitations. Therefore, some methods  
were employed for the approximate solutions. The most frequently employed  
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approximation method is the equivalent linearization (EQL) (Caughey 1959, Lin 
1967, Spanos 1981). The advantage of EQL method is that it can be used for ana-
lyzing large-scale NSD systems. It is suitable for the system with weak nonlinear-
ity because in this case the probability distribution of the system responses is close 
Gaussian. To improve the accuracy of the approximate solution in the case of high 
nonlinearity of system, various non-Gaussian closure methods were proposed, but 
all the methods are limited to either SDOF systems or some other conditions. The 
stochastic average method can be used for analyzing MDOF systems. It is suitable 
for the systems with weak nonlinearity and weak excitations (Stratonovich 1963, 
Roberts and Spanos 1986). Monte Carlo simulation (MCS) is versatile, but the 
amount of computation with it is usually unacceptable for estimating the PDF so-
lution of system responses, especially for small probability problems. Exponential 
polynomial closure (EPC) method was proposed which is suitable for analyzing 
few-degree-of-freedom system without being limited by parametric excitations 
and the level of system nonlinearity (Er 1998, Er and Iu 1999). From the above 
discussion, it is seen that the problem of obtaining the PDF solutions of large-scale 
NSD systems has been a challenge since the formulation of the FP equation. In 
this paper, a new method is proposed for obtaining the PDF solutions of some 
large-scale NSD systems. With the idea of this method, the problem of solving the 
FP equation in high-dimensional space becomes the problem of solving some FP 
equations in low-dimensional spaces. Thereafter, the FP equations in the low-
dimensional spaces can be solved with the EPC method. Numerical results are 
presented to show the effectiveness of the proposed method.  

2   Problem Formulation 

In the following discussion, the summation convention applies unless stated oth-
erwise. The random state variable or vector is denoted with capital letter and the 
corresponding deterministic state variable or vector is denoted with the same letter 
in low case.  

Many problems in science and engineering can be described with the following 
multi-dimensional nonlinear stochastic dynamic system:  

             )(),(),(0 tWhhY jijii YYYY ���� =+           mjni Y ,,2,1 ;,,2,1 "" ==        (1) 

where ),,2,1( , Yi niRY "=∈ , are components of the vector process YnR∈Y , 

RRRh YY nn
i →×:0 , RRRh YY nn

ij →×: , and )(tW j are excitations which are 

zero-mean white noise with cross-correlation )()()([ τδτ jkkj StWtWE =+  in 

which )(τδ is Dirac function and jkS  are constants, representing the cross spec-

tral density of jW and kW . ),(0 YY �
ih  and ),( YY �

ijh are nonlinear and their func-

tional forms are assumed to be deterministic.  
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Setting 12 −= ii XY , ii XY 2=� , ii Xd 212 =− , ioi hd −=2 , 0,12 =− jig , ijji hg =,2 , 

),,2,1;,,2,1( mjni Y "" == , and YX nn 2= , then equation (1) can be expressed 

as follows. 

                 
)()()( tWgfX

dt

d
jijii XX +=               ),,2,1( Xni "=                      (2) 
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iX , ( Xni …,2,1= ), are components of the state vector process X ; 

RRf Xn
i →:)(X ; and RRg Xn

ij →:)(X . The state vector X  is Markovian and 

the PDF ),( tp x of the Markov vector is governed by FP equation. Without loss of 

generality, consider the case when the white noise are Gaussian. In this case, the 
stationary PDF )(xp of the Markov vector is governed by the following reduced 

FP equation [2]: 
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where x is the deterministic state vector, XnR∈x , and )()()( xxx jsillsij ggSG = . 

It is assumed that the PDF solution )(xp of equation (2) fulfill the following 

conditions: 
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3   Subspace Method 

Separate the state vector X  into two parts 1
1

Xn
R∈X and 2

2
Xn

R∈X , i.e., 

21},{ 21
XXX

nnn RRR ×=∈= XXX . 

Denote the PDF of 1X as )( 11 xp . In order to obtain )( 11 xp , integrating equa-

tion (2) over 2Xn
R gives 
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Because of equation (4), we have  
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Equation (5) can then be expressed as 
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which can be further expressed as 
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Separate )(xjf and )(xijG into two parts, respectively, as 
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Substituting equation (10) into equation (9) gives 
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For practical systems, normally )(xII
jf and )(xII

ijG are functions of only few state 

variables for given i  and j . Denote ),()( 1 k
II
j

II
j ff zxx =  in which 

2XkZ nn
k RR ⊂∈z , and ),()( 1 r

II
ij

II
ij GG zxx = in which 2XrZ nn

r RR ⊂∈z . 
kzn is 

the number of the state variables in kz  and 
rzn is the number of the state variables 

in rz . Therefore, equation (11) can be expressed as  
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in which ),( 1 kkp zx denotes the joint PDF of },{ 1 kZX and ),( 1 rrp zx  denotes 

the joint PDF of },{ 1 rZX . The summation convention not applies on the indexes 

k and r  in equation (12) and in the following discussions. 
From equation (12), it is seen that the coupling of 1X and 2X  comes from 

),(),( 11 kkk
II
j pf zxzx and ),(),( 11 rrr

II
ij pG zxzx . Express ),( 1 kkp zx as 
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where );( 1xz kkq is the conditional PDF of kZ for given 11 xX = , and express 

),( 1 rrp zx as 
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where );( 1xz rrq is the conditional PDF of rZ for given 11 xX = . 

    Substituting equations (13) and (14) into equation (12) gives 
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Approximately replace the conditional PDFs );( 1xz kkq and );( 1xz rrq by those 

from equivalent linearization, then equation (15) is written as 
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where );( 1xz kkq is the conditional PDF of kZ  from EQL for given 11 xX = , 

);( 1xz rrq is the conditional PDF of rZ  from EQL for given 11 xX = , and 

)(~
11 xp  is the approximation of )( 11 xp . Denote 
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which is the approximate FP equation for the joint PDF of state variables in the 

sub state space 1Xn
R . 

If one chooses 1X  to have a few state variables, for instance, two state vari-

ables, the resulting FP equations is in low dimensions and the EPC method can be 
employed to solve equation (19). Therefore, the whole solution procedure is 
named subspace-EPC method in the following discussions. 

4   Numerical Analysis 

From the above discussion, it is seen that the subspace method is not limited by 
the number of state variables in the system. Consider the following 10-DOF  
system: 
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The results obtained with the subspace-EPC method are compared with those from 
MCS and EQL to verify the effectiveness of the proposed method. The sample 

size is 710 in MCS. The results corresponding to 4=n  are the results obtained 
from subspace-EPC when the polynomial order equals 4 in the EPC solution pro-
cedure. yiσ denotes the standard deviation of iY from EQL, iy�σ denotes the stan-

dard deviation of iY� from EQL in the figures. The stationary PDFs obtained with 

the subspace-EPC method, MCS and EQL methods are compared in order to show 
the effectiveness of the subspace-EPC method in analyzing the large-scale NSD 
systems with additive excitations and polynomial nonlinearity. Because there are 
10 degrees of freedom or 20 state variables, it is not possible to present all the re-

sults in this paper. Only the PDFs and logarithmic PDFs of 1Y , 1Y� , 5Y , 5Y� , 10Y , 

and 10Y�  are shown and compared in Figs. (1)-(6). With the proposed method, the 

stationary PDFs )(~
11 xp  are obtained by taking )10 ,5 ,1( ,},{1 == iYY iii

�X . It can 

be seen that the PDFs and the tails of the PDFs of iY and iY�  obtained with sub-

space-EPC are close to MCS while the PDFs from EQL method deviate much 
from simulation. Similar behavior of the PDFs and the tails of the PDFs of other 
state variables can also be observed though not being presented here. 

It is seen from the solution procedure that the results from EQL are employed in 
deriving the subspace method. Hence the subspace method is only suitable for the 
systems for which EQL is applicable for obtaining the approximate covariance 
matrix of the system responses.  
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Fig. 1 Comparison of PDFs and logarithmic PDFs of displacement 1Y  
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Fig. 3 Comparison of PDFs and logarithmic PDFs of displacement 5Y  
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Fig. 4 Comparison of PDFs and logarithmic PDFs of displacement 5Y�  
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Fig. 5 Comparison of PDFs and logarithmic PDFs of displacement 10Y  
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Fig. 6 Comparison of PDFs and logarithmic PDFs of velocity 10Y�
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5   Conclusions 

A novel subspace method is presented to solve the reduced FP equation in highly 
multi-dimensions. The subspace method reduces the problem of solving the FP 
equations in high dimensional state space to a set of FP equations in the state 
space dimensions at choices. The resulting FP equations in lower dimensions can 
be solved accurately by the EPC method. The proposed method is not limited by 
high dimensions, high nonlinearity of the systems, and the presence of multiplica-
tive excitations. The responses of the NDS system with 10 degrees of freedom and 
high nonlinearity are given to show the effectiveness and accuracy of the proposed 
method in  the case of polynomial nonlinearity of system. The results show good 
agreement with those of MCS. It attempts to provide an effective tool for obtain-
ing the probabilistic solutions of some practical NSD systems in science and engi-
neering. The subspace method is only suitable for the systems for which EQL is 
applicable for obtaining the approximate covariance matrix of the system  
responses. 
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Nonstationary Probability Densities of 
Nonlinear Multi-Degree-of-Freedom Systems 
under Gaussian White Noise Excitations  

X.L. Jin and Z.L. Huang 

Department of Mechanics, Zhejiang University, Hangzhou, 310027, P.R. China 

Abstract. The nonstationary probability densities of system responses are obtained for 
nonlinear multi-degree-of-freedom systems subject to stochastic parametric and external 
excitations. First, the stochastic averaging method is used to obtain the averaged Itô  
equation for amplitude envelopes of the system response. Then, the corresponding Fokker-
Planck-Kolmogorov equation governing the nonstationary probability density of the ampli-
tude envelopes is deduced. By applying the Galerkin method, the nonstationary probability 
density can be expressed as a series expansion in terms of a set of orthogonal base functions 
with time-dependent coefficients. Finally, the nonstationary probability densities for the 
amplitude response, as well as those for the state-space response, are solved approximately. 
To illustrate the applicability, the proposed method is applied to a two-degree-of-freedom 
van der Pol oscillator subject to external excitations of Gaussian white noises.   

Keywords: Nonstationary probability density, Nonlinear stochastic system, Stochastic av-
eraging method, Galerkin method. 

1   Introduction 

The randomness in structural dynamics is often encountered in various engineer-
ing fields. The source of randomness may arise from environmental loads, e.g. 
ground motion, atmospheric turbulence, sea waves, etc., as well as structural prop-
erties, such as materials properties, geometry parameters and so on. Moreover, re-
al structures are generally nonlinear and of multiple degrees of freedom (MDOF). 
It is difficult to predict the nonstationary response of stochastic nonlinear MDOF 
system. The common methods so far are the equivalent linearization method and 
the Monte Carlo simulation [1-5]. In many MDOF systems with intrinsic nonlin-
ear property, the equivalent linearization and lower-order statistical moments can 
not completely characterize the system response. The Monte Carlo simulation, al-
though being a universal method, usually cannot capture system behavior change 
with varying system parameters.  

In the present paper, a procedure is proposed to predict the nonstationary prob-
ability densities of system responses for MDOF nonlinear systems subject to sto-
chastic parametric and external excitations. Conbining the stochastic averaging 
method, a similar procedures proposed in [6], and the Galerkin method, the  
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nonstationary probability densities of the amplitude processes and the state vari-
ables are obtained. An example is given to illustrate the feasibility of the proposed 
procedure.  

2   Approximate Nonstationary Probability Density  

Consider a nonlinear MDOF system subject to stochastic parametric and external 
excitations, governed by  

( ) ( )1 2, ( ) , ( ), , 1, , ; 1, ,i ij j i i ik kX c X g X f W t i j n k m+ ε + = ε = =X X X X    �� � � � " "   (1) 

where [ ]T

1, ,X nX X= " and
T

1, ,X nX X⎡ ⎤= ⎣ ⎦
� � �" are the generalized displacements 

and velocities, respectively, ε  is a small positive parameter, ( ),X Xijc � are the 

damping coefficients, ( )i ig X  are the stiffnesses, which are assumed to be odd 

functions of the Xi, i.e., ( ) ( )i i i ig X g X− = − , ( )1/ 2 ,X Xikfε �  are magnitudes of the 

external and/or parametric excitations, and ( )kW t  are independent Gaussian white 

noises with intensities 2 kkD . It is assumed that for each degree of freedom (also 

called subsystem) in (1), at least one external excitation is present.  In the pesent 
investigation, only the case of non-internal resonance is considered. 

Eq. (1) suggests that the stiffness terms are uncoupled, and the dampings and 
excitations are weak.  Then, the following transformations can be introduced [7, 8]  

( ) cos ( ), ( ) ( , ) sin ( ) 1, ,          i i i i i i i i iX t A t X t A A t i n= = − =� "Θ Λ Θ Θ        (2) 

where 

02 2
1

0

( ) ( ) ( )

2[ ( ) ( cos )]
( , ) ( ) ( ) cos

sin

( ) ( )
i

i i i

i i i i i i
i i i i i ir i

ri i

X

i i i

t t t

d U A U A
A b A b A r

dt A

U X g u du

∞

=

= +

−
= = = +

=

∑

∫

Θ Φ Γ

Φ ΘΛ Θ Θ
Θ

  

(3) 

In (3), ( ), ( ), ( )i i iA t t tΘ Φ , and ( )i tΓ are stochastic processes. Substituting Eq.(2) 

into Eq.(1), one can obtain the stochastic differential equations for the amplitudes 

iA  and phases iΓ . Based on the Stratonovich-Khasminskii theorem [9], the 

slowly varying processes iA  and iΓ  converge weakly into a 2n -dimensional dif-

fusion Markov process. After stochastic averaging and deterministic averaging, 
the averaged Itô equations for iA  are independent of iΓ  as follows 

 
 



Nonstationary Probability Density 37
 

( ) ( ) ( ) 1, , ; 1, ,A A         i i ik kdA m dt dB t i n k m= + σ = =" "                  (4) 

where the drift and diffusion coefficients are 

1 1
1 1 2

1 1

( )

( ) ( ) ( ) 2

A

A A A

ik ik
i i kk jk kk jk

j j

ij ik jk kk ik jk

G G
m F D G D G

A

b D G G

∂ ∂
= ε + +

∂ ∂

= σ σ = ε

Γ
Θ

Θ

                         (5) 

in which ( )2

0
2

n
d

π
〈⋅〉 = 〈⋅〉 π∫Θ Θ  denotes the deterministic averaging with respect 

to Θ , and 

( )1

1

2

( , ) ( , ) sin , ( , ) sin ( )

( , ) ( , ) sin ( , ) ( )

( , ) ( , ) cos ( , ) ( )

A A

A A

A A

i i i i i i ij j j j j j i i

ik i i i i i ik i i

ik i i i i ik i i

F A A c A A g A

G A A f g A

G A f g A

′= −
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′= −

Λ Θ Θ Λ Θ Θ
Λ Θ Θ

Λ Θ Θ

Γ Θ

Γ Θ
Γ Θ

        (6) 

In (4)-(6), the vector processes A, Γ and Θ are defined as [ ]T

1, , ,nA A=A "  

[ ]T

1, , ,nΓ Γ= "Γ and [ ]T

1, , ,nΘ Θ= "Θ respectively, and functions ( ),Aijc′ Θ and 

( , )Aikf ′ Θ are obtained from functions ( ),ijc X X� and ( ),ikf X X� respectively, ac-

cording to the transformations (2). The explicit expressions for mi and bij can be 
obtained by expanding 1 1, ,i ikF G and G2ik into Fourier series with respect to Θ . 

The corresponding FPK equation associated with Eq.(4) can be obtained as  
follows 

[ ]
2( , ) 1

( ) ( , ) ( ) ( , )
2

A
A A A Ai ij

i i j

p t
m p t b p t

t A A A

∂ ∂ ∂ ⎡ ⎤= − + ⎣ ⎦∂ ∂ ∂ ∂
             (7) 

It is assumed that the system (1) is initially at rest, i.e., the initial condition for 
Eq.(7) is 

ˆ( ,0) ( )A Ap = δ                                                            (8) 

where ˆ( )Aδ  denotes the one-sided Dirac delta function. 

It is difficult to obtain the exact solution of Eq.(7) under initial condition (8). 
Inspired by the procedures proposed in [6], we express the nonstationary probabil-
ity density ( , )Ap t  as follows 

1

1

, ,
, , 0 1 1

( , ) exp ( ) ( )A
i n i

n

nn

ir r r ir i
r r i i

p t t s t R A
∞

= = =

⎛ ⎞⎛ ⎞= − λ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ ∏"
"

            (9) 
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where 
1 , , ( )

nr rs t"  are functions to be determined, , ( )
i iir ir iR Aλ  are the eigenvalue 

and eigenfunction, respectively, of the FPK equation corresponding to the uncou-
pled and linearized ith subsystem [6]: 
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( )
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2 2 2
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0

1
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⎜ ⎟
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" "
               (10) 

in which ( )
ir

L i  is the Laguerre polynomial of order ir . 

Using Eq.(9) and the properties of Laguerre polynomials, the initial conditions 
for 

1 , , ( )
nr rs t"  can be derived from (8) as follows  

1 , , 1,(0) 0. , 0,1,2,                
nr r ns r r= =" " "                        (11) 

Substitution of Eq.(9) into Eq.(7) yields the residual error 
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According to the Galerkin scheme, the unknown functions 
1 , , ( )

nr rs t"  

1, , 0,1,2, )nr r =( " " can be calculated by making the projection of the residual er-

ror R  to vanish on a proper set of independent functions. For the present case, we 

select 0
1

( ) ( )
i

n

ik i i i
i

R A R A
=

∏  as weighting function and obtain  

10
1 0

( )
0 , , 0,1,

( )
A            i

n
ik i

n
i i i

R A
Rd k k

R A

∞

=

= =∏∫ " "                      (13) 

Substituting Eq.(12) into Eq.(13) and rearranging the resulting equations with the 
properties of Laguerre polynomials, a set of linear first-order ordinary differential 
equations governing the unknown functions 

1 , , ( )
nr rs t"  can be derived as follows 
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(14) 

The series in Eq.(9) will be truncated in numerical calculation, and the number of 
terms for the ith degree is denoted by Ni, i.e., ri = 0, 1, …, Ni.  Note that Ni may be 
different for different i. Then Eq.(14) can be solved numerically with initial condi-
tion (11) by using the Runge-Kutta algorithm. An approximate analytical expres-
sion of ( , )Ap t  can be obtained by substituting 

1 , , ( )
nr rs t"  into Eq.(9). For the sta-

tionary case, Eq.(14) is reduced to a set of linear algebraic equations. By 
determining the eigenvalues and eigenvectors, the stationary probability density 

( )Asp  can be obtained. 

The nonstationary marginal probability density of the amplitude iA  can be ob-

tained by integrating Eq.(9) with respect to [ ]1 1 1
ˆ , , , , ,

T
Ai i i nA A A A− += " "   as 

0,0, , ,0, ,0
0
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i i

i

t

i r ir i
r

p A t e s t R A
∞

−λ

=

⎡ ⎤= +⎣ ⎦∑ " "                            (15) 

Then, the joint nonstationary probability density of the generalized displacement 

iX  and velocity iX�  can be calculated from 

[ ] 1 20 ( 2 ( ))
( , , ) ( , ) ( ) 2 ( )

i i i i i
i i i i i i i A U X U X

p X X t p A t b A g A −= +
= π �

�                (16) 

where ( )1
iU − i  is the inverse function of ( )iU i . The corresponding stationary 

probability densities can also be obtained similarly. 

3   An Illustrative Example 

Consider two-degree-of-freedom van der Pol oscillator subject to additive Gaus-
sian white noise excitations. The equation of motion of the system is of the form 

2 2 2
1 10 11 1 12 2 1 1 1 1

2 2 2
2 20 21 1 22 2 2 2 2 2

( ) ( )

( ) ( )

X X X X X W t

X X X X X W t

+ β + β + β + ω =

+ β + β + β + ω =

�� �
�� �                          (17) 

where 1, ,ijβ ω and ω2 are constants, 1( )W t and 2 ( )W t are independent Gaussian 

white noises with intensities 11 222 ,2D D , respectively. 
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By using the stochastic averaging method described in Section 2, the averaged 
Itô equation for ( )iA t  is of the form of Eq.(4) with the following averaged drift 

and diffusion coefficients  

( )
( )

3 2 2
1 10 1 11 1 12 1 2 11 1 1

3 2 2
2 20 2 22 2 21 1 2 22 2 2

2 2
11 11 1 22 22 2 12 21

2 8 4 2

2 8 4 2

, , 0

m A A A A D A

m A A A A D A

b D b D b b

= −β −β −β + ω

= −β − β −β + ω

= ω = ω = =

                     (18) 

The associated FPK equation has the form (7) and initial condition (8). According 
to the procedures proposed in Section 2, the nonstationary probability density of 
the amplitudes can be approximately expressed as 

1 2
1 2( )

1 2 1 1 2 2
0 0
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N N
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σ = β ω =
         (20) 

Functions ( )ijs t  are governed by the following set of linear first-order ordinary 

differential equations, 
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in which jlδ  is the Kronecker delta symbol, and 

, 1 , 1(2 1) ( 1)jl jl j l j lI l l l− += + δ − δ − + δ                                    (22) 

Eq.(21) can be solved numerically by using the fourth-order Runge-Kutta method. 
The nonstationary marginal probability densities of the amplitudes A1 and A2 

can be derived from (15), respectively, 

1 2
21

1 0 1 1 2 0 2 2
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tt

i i j j
i j

p A t e s t R A p A t e s t R A
−λ−λ

= =

⎡ ⎤⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦∑ ∑     (23) 

According to (16), the joint nonstationary probability density of the generalized 
displacement kX  and velocity kX�  are obtained as follows 
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( ) 2 2 2( , , ) ( , ) 2 1,2
k k k k

k k k k k A X X
p X X t p A t A k

= + ω
= πω =,        �

�              (24) 

Numerical calculations were carried out for system (17) with parameters β10 =  
-0.04, β11 = 0.01, β12 = 0.01, β20 = -0.085, β21 = 0.02, β22 = 0.01, ω1 = 1, 

2 2,ω = D11 = 0.1, and D22 = 0.3.  The numbers of truncated terms 

are 1 20N = and 2 40N = . Fig.1 shows the nonstationary and stationary probability 

densities of the amplitudes. The joint nonstationary probability densities of X2 and 

2X�  (V2) are shown in Fig. 2. The joint stationary probability densities 

1 1 2 2( , ), ( , )s sp X X p X X� �  are shown in Fig. 3. In these figures, results from Monte 

Carlo simulations are also depicted.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The nonstationary probability densities of the amplitude at different time instants and 
the stationary probability densities of the amplitudes. (a) 10t =  (b) 30t =  (c) 50t =  
(d)stationary case. The solid lines represent the results obtained by the proposed method 
while the symbols represent the results from Monte Carlo simulation. 
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Fig. 2 The joint nonstationary probability densities 2 2( , , )p X X t�  at different time instants. 
(a1)(a2) 10t =  (b1)(b2) 50t = . (a1)(b1) depict results obtained by the proposed method 
while (a2)(b2) show the results from Monte Carlo simulation. 

 
 
 
 
 
 
 
 
 
 
 
 

(a2) (a1) 

(b2) (b1) 
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Fig. 3 The joint stationary probability densities of the generalized displacement and veloc-
ity 1 1 2 2( , ), ( , )s sp X X p X X� � . (a1)(b1) depict results obtained by the proposed method while 
(a2)(b2) show the results from Monte Carlo simulation. 

It can be seen from Figs.1-3 that the results obtained from the proposed proce-
dure agree well with those from the Monte Carlo simulation. Fig. 3 shows that the 
two oscillators have different behaviors at the stationary state although they have 
similar forms of equations with negative linear dampings (β10 = -0.04, β20 =  
-0.085). The first oscillator tends to a diffused region about the trivial solution 
while the second oscillator approaches to diffused regionas both about the trivial 
solution and a limit circle. Neverthless, the behavious of the two oscillators de-
pend on the parameter values, and the proposed procedure provides practical 
means to predict the transient behaviors of the system response.  

4   Conclusions 

In the present paper, nonstationary probability densities of the system response 
have been estimated for nonlinear MDOF systems subject to stochastic parametric 
and external excitations. By using the stochastic averaging method, the system is 

(a2) (a1) 

(b2) (b1) 
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transformed to one for Markovian amplitude processes, and FPK equation govern-
ing the nonstationary probability density of the amplitude processes is obtained. 
Then, using a similar procedures proposed in [6], the nonstationary probability 
density is expressed as a series expansion in terms of a set of properly selected 
base functions with time-dependent coefficients. Using Galerkin method, a set of 
first-order equations governing these time-dependent coefficients are derived and 
solved numerically. The nonstationary probability densities for the system state-
space response can also be obtained from those of the amplitude processes. 

The propose procedures have been applied to a two-degree-of-freedom van der 
Pol oscillator subject to external excitations of Gaussian white noises. Compari-
sons of the analytical results with those obtained from Monte Carlo simulation 
show that the proposed procedure is deasible and accurate. In pronciple, the pro-
posed procedures can be extended to nonlinear MDOF systems subject to nonsta-
tionary stochastic excitations. 
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Feature Extraction within the Fei-Tsui Arch 
Dam under Environmental Variations 
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Department of Civil Engineering, National Taiwan University,  
Taipei 10617, Taiwan 

Abstract. The objective of this research is to develop methods for analyzing the seismic re-
sponse data and the long-term static data of the Fei-tsui arch dam, and based on the result of 
analysis to set an early warning threshold level for dam safety early warning evaluation. 
First, the input/output subspace identification technique is used to analysis the re-
corded seismic data from 84 earthquake events in order to identify the modal properties 
of the dam under different water level. Considering the spatial variability of input excita-
tion, two kinds of system model are applied to subspace identification technique: the 
single-input and the multiple-input system. The regression curves between the iden-
tified system natural frequencies and water level are developed from the statistical 
analysis of identification results. Second, two different approaches are applied to extract 
features of the long-term data of the dam. The methods include the singular spectrum 
analysis with AR model (SSA-AR) and the nonlinear principal component analysis (NPCA) 
using auto-associate neural network method (AANN). By using these methods, the residual 
deformation between the estimated and the recorded data was generated, through statistical 
analysis, the threshold level of the dam static deformation can be determined. Discussion on 
(1) the difference between two kinds of input model for subspace identification and (2) 
proposed methods to extract static data are also made in this research.  

Keywords: Input/Output Subspace Identification, Singular Spectral Analysis, Autoregres-
sive Model, Auto-Associate Neural Network, Nonlinear principal component analysis. 

1   Introduction 

Monitoring technology plays an important role in securing integrity of structural 
system and maintaining the longevity of the structure. It consists of three aspects: 
(1) instrumentation with sensors, (2) methodologies for obtaining meaningful in-
formation concerning the structural health monitoring, (3) early warning from the 
measured data. Various methods based on the dynamic and static test have been 
applied to address the structural health monitoring and damage identification. 
However, the system properties of the structure may be changed by the changing 
environment conditions and strong earthquakes. As a result, it is necessary to de-
velop some effective and efficient approaches based on the dynamic and static da-
ta not only to determine damage occurrences and damage location for structural 
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health monitoring in practice but also to set an early warning threshold before  
the disaster occurred.   

Application of system identification techniques to the recorded seismic re-
sponse of structures had been studied based on discrete-time linear filter approach 
[1, 2]. The modal properties of the Fei-tsui arch dam located in Taiwan had been 
identified based on recorded seismic data by using ARX-LS method in 1996 [3]. 
After Chi-Chi earthquake, a forced vibration test was conducted on the dam to 
check the resonant frequencies and mode shapes [4]. In this study, the subspace 
identification algorithm is employed to identify the modal properties of the dam. 

Feature extraction from the long-term data of structural health monitoring is 
another important issue in this research. Hsu and Loh [5] applied the nonlinear 
principal component analysis by using auto-associative neural network to extract 
the underlying environmental factors and identify the damage features of the 
structure. The singular spectrum analysis can be applied to extract tendencies and 
harmonic components of time series [6]. In this study, these two different ap-
proaches are applied to the long-term static deformation data of the dam to extract 
the tendencies of the deformation. Then, through the statistical analysis of the re-
sidual deformation, the threshold level for early warning on dam static deforma-
tion can be determined.  

2   Measurement Systems of the Fei-Tsui Arch Dam 

The Fei-Tsui arch dam is a 122.5 meter high, 510 meter long which is located in 
the Taipei city, Taiwan. Figure 1 shows the photo, the dynamic and static monitor-
ing systems of the dam. To monitor the dynamic properties of the dam during 
earthquake, eleven tri-axial accelerographs were deployed in the dam, as shown in 
Figure 1(a). Five of these instruments are installed along the abutment (SD1 ~ 
SD5), the others are installed on different level gallery of the dam. Total 84 strong 
motion recorded data collected during 1999 to 2008 were chosen to analyze in this 
study. Figure 2(a) shows the relationship of 84 seismic events between water level 
and peak ground acceleration (PGA) from accelerometer SD1. The most intense 
one of these earthquakes occurred on March 31, 2002 which was called as 331 
Earthquake in Taiwan. The recorded PGA of 331 Earthquake is up 0.028g which 
is greater than 921 Chi-Chi Earthquake (0.025g). In addition, the static measure-
ment system composed of thirteen sensors is used to monitor of dam deformation, 
as shown in Figure 1(c). Before analyzing, the deformation data points collected 
once a day from Jan. 1, 1978 to April 30, 2009 were check one by one at first. All 
data points at the same time were eliminated if one of these sensors was broken. 
As a result, total 7719 data points were chosen to analyze for early warning in this 
study. Figure 2(b) plots the measured deformation of the dam along profile NPL2. 
Note that the abscissa of Figure 2(b) indicates the number of point not time. 
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Fig. 1 The Fei-Tsui arch dam ; (a) seismic measurement system , (b) real photo , (c) long-
term static measurement system along three plumb lines of the dam 
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Fig. 2 The measurement data of the Fei-Tsui arch dam ; (a) the relationship between water 
level and PGA for SD1 for total 84 seismic events during 1999 to 2008 , (b) measured de-
formation of the dam along profile NPL2 at different level (from Jan. 1, 1978 to April 30, 
2009, a total of 7719 data points) 
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3   System Identification from Seismic Response Data 

The subspace identification algorithm [7] was applied to analyze recorded seismic 
response data to identify dynamic properties of the Fei-Tsui arch dam. This me-
thod can effectively identify the modal frequencies and mode shapes of a multi-
input/multi-output system in time domain. Note that the input ground motion for 
the dam is not uniform along the abutment of the dam [4]. As a result, it is sug-
gested that the dam should be considered as a multi-support system for system 
identification. In this study, the recorded seismic data from five tri-axial accelero-
graphs (SD1~SD5) was considered as five support excitation [8]. Hence, the mo-
tion equation for this MIMO system can be written in partitioned form:  

m m c c k k 0u u u
pu u um m c c k k

t t tg g g

T T T gg g gg gg g gg g gg

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�� �
�� �

 (1)

where ug is a displacement vector which includes the DOFs of the supports (such 
as SD1~SD5), ut is also a displacement vector which includes all DOFs of the 
dam except the DOFs of the supports, and pg is earthquake loading which is ap-
plied to the dam. Eq.(1) can then be rewritten by focusing on the dynamic dis-
placements u on the DOFs of the dam: 

mu cu ku peff+ + =�� �  (2)

( ) ( )p mu m u cu c us s
eff g g g g= − + − +�� �� � �  (3)

where us = ut – u is the quasi-static displacement, and peff is the effective earth-
quake forces. Assume that the dam is a small damped and lump mass system. 
Eq.(3) can be further simplified by these two assumptions for real application: 

mu cu ku mιug+ + = −�� � ��  (4)

where 1ι k k g
−= −  is the influence matrix which describes the influence of sup-

port displacements on the structural displacements. On the other hand, assume that 
the input ground motion is uniform and one of the records from SD1~SD5 is se-
lected to be the representative ground motion. Eq.(4) can be simplified for a dy-
namic system with uniform support excitations: 

mu cu ku m1 gu+ + = −�� � ��  (5)

where ug is a scalar of the uniform input and 1 is a vector with each element equal 
to unity.  

In this study, these two kinds of dynamic model will be applied to identify sys-
tem properties of the Fei-Tsui arch dam by using subspace identification. The first  
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step of the subspace identification to identify the system is to transform the motion 
equation into the continuous-time state space model [7]: 

x A x B u wc c g= + +� ��  (6)

u Cx vt = +��  (7)

where 1 1
1 1

0 Iu 0
x ;  A ;  B ;  C m k m c

u ιm k m c
c c

− −
− −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = = − −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦−− −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦�
.  

w and v represent the disturbances vector and the measurement noise vector indi-

vidually which are assumed to be zero mean and white noise. Besides, ug��  and ut��  

represent inputs and outputs of this system.  
The basic concept of subspace algorithms is exploitation of the state as a finite-

dimensional interface between the past part and the future part. First, the input and 
output data are arranged into the Hankel matrices. Then projection theorem is em-
ployed to avoid the influence of noise and extract the observability matrixΓi : 

/UY W Γ X
f

d
f p i f=  (8)

Then, we can obtain the system parameters Ac and C by using singular value de-
composition to extract the observability matrix. The natural frequencies, damping 
ratios and mode shapes of the dam can be identified at last. The detail procedure 
of the subspace identification can be found in reference 3.  

In this study, the seismic response data from 331 Earthquake was chosen to 
identify the modal properties for multi-input and single-input model at first. The 
corresponding water level is 144.4 m during 331 Earthquake.  For multi-input case 
(Input = SD1~SD5), the identified modal frequencies are equal to 2.59, 2.90 and 
3.55 Hz. For the single-input cases, the record of SD1 and SD5 were considered as 
the input excitation individually. The modal frequencies for SD1-input model are 
equal to 2.59, 2.90 and 3.55 Hz. Besides, the results for SD5-input model are very 
similar to the results for SD5-input model. The modal frequencies for SD5-input 
model are equal to 2.47, 2.58 and 3.45 Hz. According to the same procedure, total 
84 recorded seismic response data were used to identify the modal frequencies un-
der different water level. The identified modal frequencies under different water 
level were plotted in the Figure 3. Then, the relationships between water level and 
modal frequencies were regressed by using the general power-2 function: 

( ) bf x ax c= +  (9)

where f is the calculated modal frequency according to the regression model and x 
is the corresponding water level. It is observed that the modal frequencies of dam 
decreases when the reservoir level increases. Figure 4 shows the first 3 identified 
mode shapes for SD1-input model using the data from 331 Earthquake. 
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Fig. 3  Regression analysis of the relationship between water level and first 3 modal fre-
quencies of the Fei-Tsui arch dam. ( ☆ are the results from force vibration test [4] ) 

 

Fig. 4 Identified mode shapes for SD1-input model using the data from 331 earthquake 

4   Deformation Monitoring from Long-Term Data 

Two different methods are applied to extract the response feature of the long-term 
static deformation data of the dam. One is the singular spectrum analysis with AR 
model (SSA-AR) [9] and the other is the nonlinear principal component analysis 
(NPCA) using auto-associate neural network method (AANN) [10].  

SSA-AR model is composed of singular spectrum analysis (SSA) and Autore-
gressive (AR) model. SSA can be applied to smooth a noisy signal, extraction of 
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tendency or seasonality component, or to detect the singularities. In this study, 
SSA is used to decompose the original time series into a series of principle com-
ponent time series. The basic concept of SSA is to produce a Hankel matrix from 
the recorded time series by a sliding window at first. Note that the length of the 
sliding window must be smaller than the length of recorded time series. The  
second step is to decompose the Hankel matrix into element matrices by using 
singular value decomposition. The last step is to determine a parameter M and re-
construct first M principal components (PCs) corresponding to first M element 
matrix. The detail procedure of SSA can be found in reference 6. After recon-
structing PCs by SSA, each PC was modeled by an AR model. The short term de-
formation forecasting for each PC can then be calculated based on each fitting AR 
model. Finally, the summation of PCs after forecasting means predicted response 
of the structure which can be used for determining the threshold value of early 
warning. Figure 5 shows the predicted procedure of the SSA-AR Model. 

Load
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Fig. 5 Diagram of developing short time deformation forecasting for SSA-AR Model 

The other method is the NPCA algorithm to perform feature extraction by ap-
plying the auto-associative neural network (AANN). The AANN is a particular 
class of neural networks in which the target output pattern is identical to the input 
pattern and the NPCA can be used to extract the intrinsic environmental factors 
causing the variation of measured features. There are five layers in the typical 
AANN as illustrated in Figure 6, where s represents sigmoid transfer function and 
l represents the linear transfer function. Supervised learning is applied to train 
AANN. Once the AANN is trained to reconstruct the original data and it can be 
used to extract the underlying nonlinear principal components simultaneously. As 
a result, the latent relationship between the identified features and the unknown in-
trinsic features causing the variations of the identified features is revealed. The re-
sidual error due to the mapping and de-mapping of AANN plays an important rule 
to determine the uncertainty level with respect to the underlying principle compo-
nents. In other words, through statistical analysis of the residual error the threshold 
level for the uncertainty level of abnormal data can be estimated.  
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Fig. 6 Auto-Associate Neural Network (AANN) 

These two proposed methods were applied to the long-term static data (from 
January 1, 1987 to April 30, 2009) to establish the model for forecasting the de-
formation behavior of the dam. Figure 7 shows the comparison between recorded 
deformation and reconstructed deformation by using SSA-AR model and AANN-
NPCA methods from location NPL2Y172.5. The statistical distribution of the re-
sidual error between recorded and reconstructed deformation was also calculated. 
Figure 8 shows the histograms of residual error from two different methods. The 
standard deviation of the residual error from SSA-AR model and AANN method 
along the measurement line of NPL2Y is shown in Table 1. From Figure 8 it is 
found that the distribution of residual error does not exactly follow the normal dis-
tribution. As a result, the deviation value at 1% and 99% (σlower and σlower) of the 
cumulative probability density function of the residual error was also calculated in 
this study, as shown in Table 1. The monitoring displacement can be compared 
with the estimated displacement from SSA-AR Model and AANN method. Then, 
the error residual can be generated for early warning.  
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Fig. 8 Probability density function (histogram) of residual errors (NPL2Y172.5) 

Table 1 Comparison the estimated standard deviation of deformation residual by using 
SSA-AR model and NPCA-AANN method 

SSA-AR Model
AANN-method
(without “T” and “D”)

AANN-method
(with “T” and “D”)

σ
(mm)

σupper

(mm)

σlower

(mm)

σ
(mm)

σupper

(mm)

σlower

(mm)

σupper

(mm)

σlower

(mm)

NP2Y172.5 1.59 4.34 -4.28 1.15 2.58 -3.18 4.86 -3.94

NPL2Y150 1.24 3.44 -3.6 1.20 3.18 -2.76 4.31 -3.45

NPL2Y115 0.72 2.07 -2.12 0.78 1.98 -1.85 2.03 -1.89

NPL2Y90 0.43 1.26 -1.33 0.48 1.43 -1.28 1.64 -1.42

NPL2Y57.5 0.14 0.37 -0.41 0.20 0.53 -0.53 0.86 -0.88

Note: “T” indicates temperature and “D” indicates water level.
 

5   Conclusions 

In this study, the input/output subspace identification is applied to seismic re-
sponse data to identify the modal properties of the Fei-Tsui arch dam. The dam is 
considered as a lumped mass system with small damping. In order to compare the 
accurately of multi-input and single-input system, the result from the forced vibra-
tion test [4] was also plotted as the star in Figure 4. It shows that the identified 
modal frequencies are closer to the result from the forced vibration test than multi-
input model under ambient vibration with specific frequency. Based on these re-
sults, the regression curves between the identified system natural frequencies and 
water level can be used to monitor the health condition of the dam. If the 
identified modal frequencies are out of the confidence interval based on the 
regression curves, an early warning signal can be sent for close inspection of the 
structure. 

Besides, SSA-AR Model and NPCA-AANN method were used to extract long-
term trends of structural health monitoring data in this study. The SSA is used to 
decompose original time series into principle components and AR model is opti-
mized for each PC. Then, the multi-step predicted values are recombined to make 
the time series. However, it is necessary to decide the number of principle  
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component to be extracted from the trajectory matrix. In this study, it is suggested 
that 99% norm value of the trajectory matrix retained. The NPCA-AANN method 
is also used to extract the underlying features of time series, and then a prediction 
model for NPCA is proposed to estimate the abnormal response data. Besides, not 
only the static deformation data were used, but also the temperature and water 
level data were considered as input by using NPCA-AANN method in this paper. 
The σlower and σlower shown in Table 1 are different with and without considering 
the effect of environmental conditions. The probability distribution of the residual 
error generated from the trained data can also be used for determining the struc-
tural health monitoring threshold value. If the predicted deformation value from 
the proposed method larger than the prescribed threshold value, an early warning 
signal can be sent for close inspection of the structure. 
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Abstract. One of types of stochastic retarded systems is under consideration. Our scheme 
of analysis is applicable for investigation of linear and nonlinear differential difference 
equations with single and multiple constant delays, linear differential equations with  
variable delays, linear neutral delay differential equations, and separate linear differential 
difference equations. In addition, a problem of sensitivity estimation for linear dynamic 
systems described by stochastic differential difference equations can be explored too. All 
these schemes are based on extensions of phase spaces.  

Keywords: Stochastic system, Differential equations, Discrete and continuous delays, 
Moment functions, Symbolic and numeric calculations. 

1   Introduction 

Functional differential equations (FDE) and their special forms such as differential 
difference equations (DDE), neutral delay differential equations (NDDE), integro-
differential equations (IDE), etc. [3,5] have been attracting an increased interest 
both from theoretical and practical viewpoints since the middle of the last century. 
Such equations are encountered in those areas where the properties of an object 
depend on the hereditary effect, and serve as models for different processes, viz., 
retarded mechanical vibrations in engineering structures, automatic control for 
technical processes, development of economic and social systems, combustion in 
liquid jet engines, neutron moderation, effects of radiations, a radio-location, radar 
and radio-navigation, autonomous vessel course stabilization, oscillations in vac-
uum-tube generators, struggle for survival in biology, etc. [6,9,13]. 

Such phenomena arise as a result of deterministic, stochastic, transport, techno-
logical, information, inertial and other forms of delays (in long-distance transmis-
sion of matter, energy, signals, information), finiteness of speed of charge carriers, 
and a lag of response delay in man-machine systems. Delays in systems induce 
new effects, for example, self-excitation of oscillations, increased overcontrol, in-
stability of objects, etc. 

As developments of methods for deterministic systems have become important 
for theory and practice as nowadays significant interest is paid to stochastic FDE 
(SFDE) of various types (SDDE, SNDDE, SIDE) [10,11]. 
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An analysis of such systems causes considerable difficulties. Therefore only 
few areas are known now where developments are produced. Among them there 
are qualitative researches of existence and stability of SFDE solutions, exact re-
sults for linear systems on the base of the method of steps, approximate techniques 
including Monte Carlo methods, a usage of averaging schemes with respect to 
small delays, numeric integrators, etc. [l,2,8].  

Our scheme for study of such systems is based on an extension of the phase 
space [7]. We apply this scheme to linear SNDDE with multiple constant delays 
(Section 2). Examples (Section 3) show the scheme afoot. A tool in our calcula-
tions is the computer algebra package Mathematica [12], a well-known powerful 
instrument for different sciences.  

2   Neutral Systems with Multiple Constant Delays 

Let us consider a linear system of SNDDE 

[ ]
1

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ), .

k

k k k

k k k

' t P t t Q t t R t ' t

t H t t t t t k

ν ν
ν

ν τ ν τ

τ
=

= + − + − +

+ + > = +

∑x x x x

c ξ

               (1) 

Here x = {xi} ∈ Rn is the phase vector, ξ = {ξi} ∈ Rm is a vector of independent 
Gaussian white noises with M[ξ(t)] = 0, M[ξ(t) ξT(t')] = E⋅δ(t-t'), τ is a constant 
delay, k > 0 is an integer, ck = {cki}, Pk = {pkij}, Qkν = {qkνij}, Rkν = {rkνij}, Hk = 
{hkij} are deterministic vector- and matrix-functions of t, T is a symbol of the 
transposition, M stands for the mathematical expectation, ' is a symbol of differen-
tiation with respect to t, E is the identity matrix. 

We suppose that on the intervals (t0, t1], (t1, t2], ..., (tk-1, tk] the phase vector x 
satisfies the following systems of stochastic differential equations  

1

0
1 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ), ( , ], ( ) .

' t P t t Q t t R t ' t

t H t t t t t t

μ

μ μν μν
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μ μ μ μ

ν τ ν τ
=

+

⎡ ⎤= + − + − +⎣ ⎦

+ + ∈ =

∑x x x x

c x yξ

              (2) 

Let's elements of the mean values vector m(t) = M[x(t)] and components of the 
covariance matrix D(t) = M[{x(t) - m(t)}{x(t) - m(t)}T] for the phase vector x(t) 
are defined for t = t0: 

0 0
0 0( ) , ( ) .t D t D= =m m                                           (3) 

The main task of this research is to obtain a set of ordinary differential equations 
(ODE) satisfied by elements of the vector m(t) and components of the matrix D(t) 
for t > t0. 
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2.1   Scheme of Study 

To derive these equations, we expand the phase space of the system and transform 
a non-Markovian vector process to a Markovian one. For this purpose we intro-
duce the following notation 

1
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1 1

0 1 1 01 02 0 11 12 1

[0, ], ( , ], 0,1,2,..., ( ) ( ),

, col( , ), col( , , ), ..., ,

(0) ( ), ( ) ( ), (0) ( ),

col( , ,..., , ) { , ,..., , , ,..., ,...,

k k k k k

k k

k k k k k k k

N N n n

N

s t t k s s

s t s

s s

x x x x x x

x

τ

τ τ

+

− −

−

−

∈ Δ = = =
= = = = +
≡ = = =

=

x x

z x z x x z x x x

y x x

x x x x

ξ ξ ξ ξ

1,1 1,2 1, 1 2, ,..., , , ,..., } .T
N N n N N Nnx x x x x− −

      (4) 

Using this notation, we construct a chain of sets of ODE for the mean values vec-
tors and the covariance matrices of the vectors z0, z1, z2, …, zN, … belonging to the 
family of embedded phase spaces Rn ⊂ R2n ⊂ R3n ⊂ ... ⊂ R(N+1) n ⊂ ... . 

Let's consider a sequence of segments {Δi}. 
0º. Let's start from the segment Δ0. The random vector x0(s) defined on Δ0 satis-

fies the system 

0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ).s P s s s H s s′ = + +x x c ξ  

Here and below symbol ' stands for differentiation with respect to s. Therefore 

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ),s P s s s H s s′ = + +z z f η                                          (5)  

0 0 0 0 0 00 0 0
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= = = =

z x

f f c

η ξ  

1º. Let's consider the intervals Δ0 and Δ1. It is possible to present the system of 
SDE for calculation of the vector col(x0(s), x1(s)) as follows 

0 0 0 0 0 0 0 0 0

1 11 1 0 1 1 1 11 1 0 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ),
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x x c
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ξ
ξ

 

Then we have got  

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ),s P s s s H s s′ = + +z z f η                                          (6) 
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kº. Now let's pay attention to the time intervals Δ0, Δ1, Δ2 , …, Δk and construct the 
set of SDE for the vector col(x0(s), x1(s), ..,  xk(s)) by the way 

0 0 0 0 0 0 0 0 0

1 11 1 0 1 1 1 11 1 0 1 1 1 1 1

,

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

.....................................................................................

( )k k

s P s s s H s s

s Q s s P s s R s s s H s s

s Q μ +

′ = + +
′ ′= + + + +

′ =

x x c

x x x x c

x

ξ
ξ

1 1

1 , 1
0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

k k

k k k k k k

k k k k k

s s P s s R s s

s H s s

μ μ μ
μ μ

− −

+
= =

′+ + +

+ +

∑ ∑x x x

c ξ

 

These equations can be converted to the form 
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Nº. Similarly for the vector col(x0(s), x1(s), …, xk(s), …, xN(s)) we obtain  
equations  
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and their more suitable form 
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2.2   Equations for Moments 

Now the chain of linear SDE without delay can be used to derive new sequence of 
equations, i.e., ODE for the first moments of the vectors z0, z1, z2, …, zN, … and  
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             (9) 

Obviously, the vector mk(s) and the matrix Dk(s) are blocks of ( )k s+m  and ( )kD s+ . 

Therefore it is sufficiently to calculate the last functions and then to choose their 
required components. 

Using equations (4)-(7) and notations (8), the necessary ODE can be presented 
as follows: 
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Similar equations for the vector 1
+z  take the form 
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3   Examples 

The first system under investigation was as follows: 

( ) ( ) ( ) ( ) ( ), 0;

( ) 0, 0; const.

x t p x t q x t r x t h t t

x t t p q r h

τ τ ξ′ ′= + − + − + >
′ = ≤ = = = =

                   (13) 

Figs. 1 and 2 show behavior of the mean value and the variance of x(t). Values of 
parameters were   
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0 0
01, 0.2, 0.5, , 5, 0.25,

1) 1, 0.4; 2) 1.25, 0.4; 3) 1.25, 0.2.

r h t m D

p q p q p q

τ τ= − = = = − = =
= − = = − = = − =

 

The cases 1, 2, 3 are represented by dashed, dot-and-dashed and continuous lines 
respectively. 
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Fig. 1 The mean value of x(t) in the system (12) 

0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

t

D

 

Fig. 2 The variance of x(t) in the system (12) 

The second example demonstrates as the scheme was applied to study a system 
in the form  

1 2

1 2

( ) ( ) 2 ( ) 2 ( )

( ) ( ) ( ) , 0;

x t x t x t x t

x t x t t t

γ τ α α τ
β β τ σ ξ

+ − + + − +
+ − = >

�� �� � �
                 (14) 

1 2 1 2( ) 0, 0; , , , , , const.x t t γ α α β β σ= ≤ =��  



About Some Schemes of Study for Systems with Different Forms of Time Aftereffect 63
 

Figs. 3 and 4 display a time evolution of the first moments of the phase vector {x1, 
x2} = {x, x'} for the following values: 

1 2 1 2
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α α β β
γ σ τ τ

= = = =
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Fig. 3 The mean values of {x(t), x'(t)} in the system (13) 
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Fig. 4 The covariances of {x(t), x'(t)} in the system (13) 

4   Conclusions 

In the paper the scheme of the phase space extension to study linear SNDDE is 
described. Moreover this scheme was successfully applied to analyze linear and 
nonlinear differential difference equations with single and multiple constant  
delays, linear differential equations with variable delays, a problem of sensitivity 
estimation for linear dynamic systems described by SDDE, and linear system ex-
cited by continuous and discrete fluctuations and constant delay. In contrast to a 
number of known techniques [4] our scheme doesn't require to change equations 
with the aim of delay withdrawal and special numeric integration methods, has a 
transparent algorithm and can be simply combined with Monte Carlo method in 
case of complicated nonlinear problems. 

This work is supported by RFBR grant No.09-01-99006. 
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Abstract. The paper considers a first passage time reliability problem for systems subjected
to multiplicative and additive white noises. For numerical calculations of the reliability func-
tion and the first passage time the path integration method is properly adapted and used. Some
results of numerical calculations are compared to approximate analytical results, obtained by
the stochastic averaging method.

Keywords: Probability density function, path integration, reliability, upcrossing rate.

1 Introduction

Among different reliability criteria the first passage problem [1] is widely used and
studied by a number of authors. It may be defined as the probability that a system’s
response stays within a prescribed domain, an outcrossing of which leads to imme-
diate failure. It has been shown that the first passage problem is directly related to a
solution of the corresponding Pontryagin equation, written with respect to the first
excursion time T . An exact analytical solution to this problem, even for a linear sys-
tem, is yet to be found. During the last decades a few strategies have been proposed
to deal with this type of problems. The averaging procedure with further problem
reformulation for the system’s response amplitude or energy has been used for a
linear system [2], systems with nonlinear stiffness [3] or nonlinear damping [4].

Solving the corresponding Pontryagin equation numerically has been proposed
in [5], whereas a numerical solution to the backward Kolmogorov-Feller equation,
for a system subjected to a Poisson driven train of impulses, has been found in [6].
Different novel analytical as well as numerical strategies were proposed recently by
a number of authors [7, 8].

It has been shown recently in [9] that it is possible to adapt the path integration
(PI) method [10] for problems of reliability, including the first passage problem.
This paper focuses on numerical investigation of reliability of systems, subjected
to multiplicative and additive white noise. The PI method is used to construct the
reliability function and the first passage time for two systems. The first system con-
sidered is a single-degree-of-freedom (SDOF) linear oscillator, considered earlier
in [13], see also [1]. Using the averaging procedure it was possible to provide ap-
proximate formulas for the first passage time of the system. Using the PI method
one is in the position to verify the accuracy of these formulas. As it turns out, the

W.Q. Zhu et al. (Eds.): Nonlinear Stochastic Dynamics & Control, IUTAM BOOK SERIES 29, pp. 65–75.
springerlink.com c© Springer Science + Business Media B.V. 2011
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approximate first passage times given by stochastic averaging may be quite wrong
even for parameter values for which one would expect reasonable agreement. The
second system investigated is a nonlinear oscillator with a Duffing type nonlinearity.

2 Path Integration Approach to Reliability

The motion of a stochastic dynamic system may be expressed as an Itô stochastic
differential equation (SDE):

dZ(t) = h(Z(t))dt + bdB(t), (1)

where the state space vector process Z(t) = (X(t),Y (t))T = (X(t), Ẋ(t))T has been
introduced; h = (h1,h2)T with h1(Z) = Y and h2(Z) =−g(X ,Y ); b = (0,

√
D)T , and

B(t) denotes a standard Brownian motion process. From Eq. (1) it follows immedi-
ately that Z(t) is a Markov process, and it is precisely the Markov property that will
be used in the formulation of the PI procedure.

The reliability is defined in terms of the displacement response process X(t) in
the following manner, assuming that all events are well defined,

R(T |x0,0,t0) = {xl < X(t) < xc; t0 < t ≤ T |X(t0) = x0, Y (t0) = 0}, (2)

where xl,xc are the lower and upper threshold levels defining the safe domain of op-
eration. Hence the reliability R(T |x0,0, t0), as we have defined it here, is the prob-
ability that the system response X(t) stays above the threshold xl and below the
threshold xc throughout the time interval (t0,T ) given that it starts at time t0 from x0

with zero velocity (xl < x0 < xc). In general, it is impossible to calculate the reliabil-
ity exactly as it has been specified here since it is defined by its state in continuous
time, and for most systems the reliability has to be calculated numerically, which
inevitably will introduce a discretization of the time. Assuming that the realizations
of the response process X(t) are piecewise differentiable with bounded slope with
probability one, the following approximation is introduced

R(T |x0,0,t0) ≈ {xl < X(t j) < xc, j = 1, . . . ,n|X(t0) = x0, Y (t0) = 0}, (3)

where t j = t0 + jΔ t, j = 1, . . . ,n, and Δ t = (T − t0)/n. With the assumptions made,
the rhs of this equation can be made to approximate the reliability as closely as
desired by appropriately choosing Δ t, or, equivalently, n. Within the adopted ap-
proximation, it is realized that the reliability can now be expressed in terms of the
joint conditional PDF fX(t1)...X(tn)|X(t0),Y (t0)(·, . . . , ·|x0,0) as follows, which is just a
rephrasing of Eq. (3),

R(T |x0,0,t0) ≈
∫ xc

xl

· · ·
∫ xc

xl

f(···)(x1, . . . ,xn|x0,0)dx1 · · ·dxn. (4)
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Due to the Markov property of the state space vector process Z(t) = (X(t),Y (t))T ,
we may express the joint PDF of Z(t1), . . . ,Z(tn) in terms of the transition probabil-
ity density function

p(z,t|z′,t ′) = fZ(t)|Z(t′)(z|z′) = fZ(t)Z(t′)(z,z
′)/ fZ(t′)(z

′), ( fZ(t′)(z
′) �= 0) (5)

in the following way

fZ(t1)...Z(tn)|Z(t0)(z1, . . . ,zn|z0) =
n

∏
j=1

p(z j, t j|z j−1, t j−1). (6)

This leads to the expression (z0 = (x0,0)T , dz j = dx j dy j, j = 1, . . . ,n)

R(T |x0,0,t0) ≈
∫ ∞

−∞

∫ xc

xl

· · ·
∫ ∞

−∞

∫ xc

xl

n

∏
j=1

p(z j, t j|z j−1, t j−1)dz1 · · ·dzn, (7)

which is the path integration formulation of the reliability problem. The numerical
calculation of the reliability is done iteratively in an entirely analogous way as in
standard path integration. To show that, let us introduce a reliability density function
(RDF) q(z,t|z0,t0) as follows,

q(z2,t2|z0,t0) =
∫ ∞

−∞

∫ xc

xl

p(z2, t2|z1, t1) p(z1, t1|z0, t0)dz1, (8)

and (n > 2)

q(zk,tk|z0,t0) =∫ ∞

−∞

∫ xc

xl

p(zk,tk|zk−1,tk−1) · q(zk−1, tk−1|z0, t0)dzk−1, k = 3, . . . ,n.
(9)

The reliability is then finally calculated approximately as (T = tn)

R(T |x0,0,t0) ≈
∫ ∞

−∞

∫ xc

xl

q(zn, tn|z0, t0)dzn. (10)

The complementary probability distribution of the time to failure Te, i.e. the first
passage time, is given by the reliability function. The mean time to failure 〈Te 〉 can
thus be calculated by the equation

〈Te 〉 =
∫ ∞

0
R(τ |x0,0, t0)dτ (11)

To evaluate the reliability function it is required to know the transition probability
density function p(z,t|z′,t ′), which is unknown for the considered nonlinear sys-
tems. However, from Eq. (1) it is seen that for small t − t ′ it can be determined
approximately, which is what is needed for the numerical calculation of the reliabil-
ity. A detailed discussion of this, and the iterative integrations of Eqs. (8) and (9), is
given in [9, 11]. Concerning the integrations, there is, however, one small difference
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between the present formulation and that described in these references. In Eqs. (8)
and (9), the integration in the x-variable only extends over the interval (xl,xc). The
infinite upper and lower limits on the y-variable are replaced by suitable constants
determined by e.g. an initial Monte Carlo simulation.

If the system response Z(t) has a stationary response PDF fZ(z) as t → ∞, it
follows that the conditional response PDF f{Z(tn)|Z(0),xl<X(t j)<xc;0≤ j≤n−1}(z) also
reaches a stationary density, say q∗(z), when tn → ∞. This means that the reliability
process eventually becomes memoryless, and hence the RDF converges q(z, tn|z0,t0)
→ q∗(z)Ke−νtn for some constants K and ν as tn → ∞. Also the numerical method
should reach stationarity in the conditional density. This also implies that the nu-
merically estimated reliability function must be exponential, since the same relative
amount of probability mass leaves the system at every iteration. So, in the end, the
only thing one should need for a good reliability estimate is the behavior in the
transient phase, and the exponential decay thereafter. The implication of this for
highly reliable systems is that the important parameter to determine is the decay
rate, since the transient phase can then usually be neglected. The decay rate can be
conveniently estimated using the ACER method [12].

3 Numerical Examples

3.1 A Linear Oscillator with Multiplicative and Additive Noise

Consider the following linear oscillator under both additive and multiplicative ran-
dom excitations:

Ẍ + ω0[2ζ +W2(t)]Ẋ + ω2
0 [1 +W1(t)]X = W3(t), (12)

where Wj(t)), j = 1,2,3, are wide band stationary processes with zero mean val-
ues. Earlier, this model has been studied by Ariaratnam and Tam [13] under the
assumption that ζ is of order ε and the Wj(t)) are of order

√
ε , where ε is a small

parameter. By applying the stochastic averaging procedure, it was argued that the

amplitude process A(t) =
(
X2 + Ẋ2/ω2

0

)1/2 is approximately a Markov diffusion
process governed by the (Itô) stochastic differential equation (SDE)

dA = m(A)dt + σ(A)dB(t) . (13)

The drift coefficient m(A) and the diffusion coefficient σ(A) are given by the equa-
tions,

m(A) = −αA +
δ
2A

, (14)

σ(A) = (γA2 + δ )1/2 , (15)

in which

α = ζω0 − πω2
0

8

[
2Φ22(0)+ 3Φ22(2ω0)+ 3Φ11(2ω0)−6Ψ12(2ω0)

]
, (16)
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δ =
π

ω2
0

Φ33(ω0) , (17)

γ =
πω2

0

4

[
2Φ22(0)+ Φ22(2ω0)+ Φ11(2ω0)+ 2Ψ12(2ω0)

]
, (18)

and

Φi j(ω) =
1

2π

∫ ∞

−∞
e[Wi(t)Wj(t + τ)] cos(ωτ)dτ , i, j = 1,2,3 , (19)

Ψi j(ω) =
1

2π

∫ ∞

−∞
e[Wi(t)Wj(t + τ)] sin(ωτ)dτ , i, j = 1,2,3 . (20)

Ariaratnam and Tam [13] showed that the expected time 〈Tf 〉 to first failure of the
amplitude process A(t) is given by the formulas

〈Tf 〉 =
1

ηγ

∫ ac

a0

1
u

[(
1 +

γ
δ

u2)η −1
]

du , η =
α
γ

+
1
2
�= 0 (21)

〈Tf 〉 =
1
γ

∫ ac

a0

1
u

ln
(
1 +

γ
δ

u2)du , η = 0 (22)

Here a0 denotes the initial condition and ac the critical level (a0 < ac). This ap-
proach would usually represent an approximation in the sense that failure for the
original problem would typically be when X(t) exceeds a critical region bounded
by the thresholds ±xc. An approximate solution for this is obtained by studying the
exceedance of ac = xc by the amplitude process A(t).

For the numerical calculations in this paper the Wj(t) are assumed to be inde-
pendent Gaussian white noise processes, with e[Wj(t)Wj(t + τ)] = σ2

j δ (τ). Using
numerical PI we have calculated the reliability function associated with the linear
oscillator model in Eq. (12) for three case studies with different values of the ω0

parameter. Since PI can be done for any choice of parameter values, it provides a
means of studying the limitations of the amplitude diffusion model adopted in [13],
and thereby also the limitations of stochastic averaging in this context.

To provide a means for verification of the PI results, we have calculated the sta-
tionary part of the reliability function by the ACER method [14]. This method makes
it possible to estimate the exact extreme value distribution, and hence the reliability
function, of the response process provided the transient response can be neglected.
From Eq. (10) and the following discussion, it is obtained that the tail behaviour of
the reliability function is given as,

R(t) = R(t0) exp{−ν(xc)(t − t0)} , t ≥ t0 , (23)

for a suitable t0. The ACER method provides an estimate and a 95% confidence
interval of the parameter ν(xc) for each critical level xc. An approximate mean time
to failure is then given by 1/ν(xc).
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3.1.1 Case 1

In this case the system parameters are ω0 = 0.1, ζ = 0.01, and σ1 = σ2 = σ3 = 0.1.
The standard deviation of the response was found to be σX = 16.271, while σẊ =
1.628. The reliability functions calculated by the numerical PI method for three
different critical levels are shown in Fig. 1. Some numerical results are summarized
in Table 1. It is seen that the mean time to failure calculated by PI agrees with
the approximate time to failure provided by 1/ν(xc) for all three critical levels,
while the corresponding failure times obtained by stochastic averaging are orders of
magnitude wrong. This seems to be caused by a large value of the parameter η , cf.
Eq. (21), which assumes the value 19.5 for this case.
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Fig. 1 Two-sided reliability function of system (12). —– : xc/σX = 2.5, – – –: xc/σX = 3.0,
– · –: xc/σX = 3.5.

Table 1 Mean time to failure for ω0 = 0.1, ζ = 0.01

xc/σX < TSA > (sec.) < TPI > (sec.) νPI νACER 95% CI
2.5 1.67 ·106 5.90 ·103 1.88 ·10−4 2.08 ·10−4 (1.81 ·10−4,2.36 ·10−4)
3.0 4.22 ·106 1.58 ·104 6.64 ·10−5 7.56 ·10−5 (5.64 ·10−5,9.48 ·10−5)
3.5 1.20 ·107 4.87 ·104 2.10 ·10−5 2.21 ·10−5 (1.32 ·10−5,3.09 ·10−5)

3.1.2 Case 2

In this case the system parameters are ω0 = 1.0, ζ = 0.05, and σ1 = σ2 = σ3 =
0.1. The standard deviation of the response was found to be σX = 1.832, while
σẊ = 1.836. The reliability functions calculated by the numerical PI method for
three different critical levels are shown in Fig. 2. Numerical results are summarized
in Table 2. Again it is seen that the mean time to failure calculated by PI agrees
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with the approximate time to failure provided by 1/ν(xc) for all three critical levels,
while the corresponding failure times obtained by stochastic averaging are approx-
imately two orders of magnitude wrong. In this case η = 9.5, which is still quite
large.
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Fig. 2 Two-sided reliability function of system (12). —– : xc/σX = 2.5, – – –: xc/σX = 3.0,
– · –: xc/σX = 3.5.

Table 2 Mean time to failure for ω0 = 1.0, ζ = 0.05

xc/σX < TSA > (sec.) < TPI > (sec.) νPI νACER 95% CI
2.5 7.45 ·103 1.66 ·102 6.54 ·10−3 6.15 ·10−3 (5.83 ·10−3 ,6.48 ·10−3)
3.0 1.69 ·104 4.26 ·102 2.45 ·10−3 2.37 ·10−3 (2.19 ·10−3 ,2.54 ·10−3)
3.5 4.03 ·104 1.17 ·103 8.68 ·10−4 7.98 ·10−4 (7.31 ·10−4 ,8.65 ·10−4)

3.1.3 Case 3

In this case the system parameters are ω0 = 10.0, ζ = 0.15, and σ1 = σ2 = σ3 =
0.1. The standard deviation of the response was found to be σX = 0.0410, while
σẊ = 0.4261. The reliability functions calculated by the numerical PI method for
three different critical levels are shown in Fig. 3. Numerical results are summarized
in Table 3. Also in this case it is seen that the mean time to failure calculated by PI
agrees with the approximate time to failure provided by 1/ν(xc) for all three critical
levels, while the corresponding failure times obtained by stochastic averaging are
now more on the same level as the correct values. In this case η = 2.5.
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Fig. 3 Two-sided reliability function of system (12). —– : xc/σX = 2.5, – – –: xc/σX = 3.0,
– · –: xc/σX = 3.5.

Table 3 Mean time to failure for ω0 = 10.0, ζ = 0.15

xc/σX < TSA > (sec.) < TPI > (sec.) νPI νACER 95% CI
2.5 16.8 8.54 1.25 ·10−1 1.16 ·10−1 (1.09 ·10−1 ,1.24 ·10−1)
3.0 29.4 16.9 6.16 ·10−2 5.85 ·10−2 (5.33 ·10−2 ,6.36 ·10−2)
3.5 48.9 31.9 3.21 ·10−2 2.89 ·10−2 (2.50 ·10−2 ,3.28 ·10−2)

3.2 A Duffing Oscillator with Multiplicative and Additive Noise

The following specific version of a nonlinear Duffing oscillator with multiplicative
and additive noise is adopted here:

Ẍ + 2ζω0 Ẋ + ω2
0 [1 + X2 +W1(t)]X = W2(t), (24)

where Wj(t)), j = 1,2, are stationary Gaussian white noise processes with zero mean
values, with e[Wj(t)Wj(t + τ)] = σ2

j δ (τ).
Again, using numerical PI we have calculated the reliability function associated

with the nonlinear oscillator model in Eq. (24) for five case studies with different
values of the σ1 parameter, that is, the intensity of the parametric noise. For the
calculations, ω0 = 1.0, ζ = 0.1, and σ2 = 0.1. Table 4 summarizes the calculated
values of the mean time to failure as depending on the parametric noise level σ1

and the size of the critical level xc. It is seen that while the mean time to failure is
rather insensitive to changes in the parametric noise intensity expressed by σ1 for
xc/σX = 2.5, this situation changes significantly for xc/σX = 3.5. At this level, the
mean time to failure is reduced by a factor of about 5 when the noise intensity σ1 is
increased by a factor of 5. This effect can also be seen from the calculated reliability
functions for the two cases σ1 = 0.1 and 0.5, which have been plotted in Figure 5.
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Table 4 Mean time to failure 〈Te〉 for different values of σ1

σ1 0.1 0.2 0.3 0.4 0.5
σX 0.155 0.160 0.170 0.186 0.211

2.5 1.16 ·102 1.14 ·102 1.11 ·102 1.10 ·102 1.11 ·102

xc/σX 3.0 4.36 ·102 3.80 ·102 3.16 ·102 2.64 ·102 2.30 ·102

3.5 2.34 ·103 1.64 ·103 1.04 ·103 6.81 ·102 4.90 ·102
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Fig. 4 Two-sided reliability function of system (24) with σ1 = 0.1. —– : xc/σX = 2.5, – – –:
xc/σX = 3.0, – · –: xc/σX = 3.5.
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Fig. 5 Two-sided reliability function of system (24) with σ1 = 0.5. —– : xc/σX = 2.5, – – –:
xc/σX = 3.0, – · –: xc/σX = 3.5.
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4 Conclusions

In the paper the authors have considered a first passage type reliability problem for
two types of systems: linear and nonlinear oscillators with parametric and additive
white noises. The numerical results presented in the paper are obtained by the path
integration method, which was reformulated from its standard form to handle relia-
bility problems. The results were verified by Monte-Carlo simulations through the
use of the ACER method.

For the linear system it has been shown that the use of stochastic averaging has
its limitations especially for calculating the reliability. The results calculated by nu-
merical PI were verified by using Monte-Carlo simulations in combination with the
ACER method, which allows the estimation of the exact extreme value distribution
for the stationary part of the response process. This provides a means of determining
an approximate value of the mean time to failure. In all the case studies investigated
there were agreement between the results calculated by PI and estimated by the
ACER method.

The applicability of the PI method for calculating the reliability of the nonlinear
oscillator with parametric noise was also demonstrated.
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Abstract. A new approach for efficient numerical implementation of the path integral (PI) 
method based on non-Gaussian transition probability density function (PDF) and the Gauss-
Legendre integration scheme is developed. The PI method is used to solve the Fokker-
Planck (FP) equation and to study the nature of the stochastic and chaotic response of the 
nonlinear systems. The steady state PDF, jump phenomenon, noise induced state changes of 
PDF are studied by the method. A computationally efficient higher order, finite difference 
(FD) technique is derived for the solution of higher dimensional FP equation. A two degree 
of freedom (DOF) nonlinear system having Coulomb damping with variable friction coeffi-
cient is considered representative of bladed disk assembly of turbo-machinery blades. Ef-
fects of normal force and viscous damping on the mean square response of a blade are  
investigated. 

Keywords: Random Vibration, Fokker-Planck equation, Path integration method, Nonlin-
ear stochastic dynamics, Finite Difference Method. 

1   Introduction 

Nonlinear dynamical systems subjected to random excitation occur in many fields 
of science and engineering. The determination of the PDF of their response is a 
difficult problem and they are available only for a very restricted class of dynami-
cal systems. Several approximate methods such as the equivalent linearization, 
perturbation method, Gaussian closure, stochastic averaging, equivalent nonlin-
earization have been developed for obtaining the second order statistics of the 
nonlinear system based on the Gaussian assumption of the PDF.  The Monte Carlo 
Simulation (MCS) is a brute force method involving the generation of a large 
number of sample functions of the excitations and numerically integrating  
the nonlinear equations to obtain the response and the associated probability struc-
ture. This method is computationally intensive especially for higher dimensional  
systems.  

The response of a dynamical system to white noise excitation constitutes a 
Markov vector process whose transition PDF is governed by the FP equation. 
Analytical solutions of the FP equation are available only for a few nonlinear os-
cillators. Numerical techniques like the path integration (PI) [1,2], finite element 
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(FE) [3,4], finite difference (FD) [5], and multi scale FE [6] have been developed 
to get approximate solutions for the FP equation. However, their application to 
higher dimensional systems has been limited. The PI method is based on the 
Gaussian assumption of the response process. While second order statistics are 
predicted reasonably accurately, determination of higher order moments and reli-
ability estimates by this method is fraught with error especially for systems with 
strong nonlinearities. The application of this method to nonlinear systems  
subjected to narrow band excitation and combined white noise and harmonic exci-
tations is also very limited. When a nonlinear system is subjected to combined 
harmonic and white noise excitation, the response is a Markov process with one of 
the drift coefficients being periodic and may exhibit multi-valued behaviour, with 
random jumps between two pseudo-stable states [7]. Due to the explicit time de-
pendence of the drift coefficient the PDF is not stationary for such a case. 

This paper presents a new modified PI method for the solution of the FP equa-
tion and the evaluation of the response statistics of nonlinear systems subjected to 
wide band, parametric and combined white noise and harmonic excitations. The 
modified PI method is based on a non-Gaussian transition PDF and the Gauss-
Legendre integration scheme. The method captures the changes in the PDF due to 
noise, jump behaviour of the response and the rotating periodicity of the steady 
state PDF. The modified PI method is applied to a number of examples. This pa-
per also presents a sixth order FD stencil scheme in conjunction with GEAR time 
integration for the solution of a four dimensional FP equation. The FD method is 
applied to a two degree-of-freedom (DOF) nonlinear system having Coulomb as 
well as viscous damping with variable friction coefficients representative of a 
bladed disk assembly subjected to random excitation. 

2   Path Integration Method 

Extremely small time steps and space intervals should be used in the PI method 
based on the Gaussian assumption of the joint PDF to obtain the PDF with reason-
able accuracy leading to large computational effort as the response of nonlinear 
systems to Gaussian excitation is non-Gaussian.  A modified PI method based on 
an adjustable non-Gaussian transition PDF expressed as a product of a Gaussian 
PDF and a polynomial function is derived in this paper [8]. The polynomial func-
tion is obtained by truncating an infinite expansion [9]. The Gauss-Legendre inte-
gration scheme [1] is used. Thus the method takes into account the non-Gaussian 
nature of the response and makes use of the knowledge of higher order moments 
allowing a coarse space grid size and longer time steps in the computation, leading 
to significant reduction in the computational effort. This approach has also the 
advantage that it provides for the deviation of the response distribution from 
Gaussian right in the beginning of the PI procedure. The evaluation of the 
PDF ( ),p tX  from 1  it − to it  can be expressed as and is obtained from  
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                           ( ) 1 1 1
1 1, ( , | , ) ( , )

S

i i i i i
i i i iR

p t p t t p t d− − −
− −= ∫X X X X X                      (1)  

where Rs represents the reduced state range, within an n -dimensional rectangle.      
The integral of Eq. (1) can be discretized into the following composite Gauss-
Legendre quadrature form [1]  

              1 1
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k l
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p x t q p x t p x t x t− −
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where K is the number of sub-intervals, Lk is the number of quadrature  points in  
the sub-interval k , zk is the length of  the sub interval K, each xkl is the position of 
a Gauss quadrature point and qkl is its corresponding weight. Eq. (2) can be used to 
calculate the PDF at any point xi at step i, provided that the PDF values are known 
at step i-1.  

The best known approach for approximating a non-Gaussian PDF is to express 
it as a product of a Gaussian PDF and a polynomial function, which is a truncated 
version of an infinite expansion [9]. Hence, the transition PDF from xkl at ti-1 to xmn 
at ti is assumed in the non-Gaussian form as 
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(3)  

The adjustable polynomial function must be consistent with the orthogonality and 
also the normalization conditions with respect to the other terms in the series. The 
polynomial is written as a sum of Hermite polynomials because their orthogonal-
ity with respect to the normalized Gaussian PDF makes it relatively easy to obtain 
the expression for the coefficients an. The most attractive property of the Hermite 
approximation is that it transforms the partial differential equation into approxi-
mate integral kernels which when evaluated by quadrature allows their calculation 
through a matrix vector multiplication. Eq. (3) can be written in terms of the 
Gram-Charlier series of type A3  
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          (4) 

The next three coefficents in the series are simply related to the cumulants of X as 
( ) / ( ! )n

n n Xa X nκ σ=  for n = 3, 4 and 5, where ( )n Xκ is  the nth cumulant of X. 

For n ≥ 6 the relationships are more complicated. Each transition PDF 
1

1( , | , )i i
mn i kl ip x t x t−

− in Eq. (2) is now assumed to be non-Gaussian of the form given 

in Eq. (4), which depends only on the conditional mean, variance and few higher 
moments of Xmn (ti).  

The modified PI method is applied to the following examples showing the effi-
cacy of the method. The Dimentberg oscillator subjected to both external and pa-
rametric random excitations is considered as the first example. 
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      ( )( ) ( ) ( )( ) ( )22 2
21 1 2 2 3 32 1 1XX W t X X X W t X W tα σ β ω σ σω+ + + + + + =��� � �           (5) 

The corresponding FP equation for this system is given by 
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where 2 2 4 2 2 2
1 2 2 1 3

2Q = 4 X Xα σ ω σ σ+ + . The term 2 2
1 22 Xα σ appearing in the expres-

sion is a Wong-Zakai correction term. The probability densities are calculated 
from Eq. (2) using the approximate non-Gaussian transition PDF given by Eq. (4) 
within a reduced state space [-10, 10] x [-10, 10] which is divided into 50 uniform 
subintervals in each direction, with two quadrature points in each sub-interval and 
an initial Gaussian density with mean value zero. A uniform time step 

0.60tΔ = sec. is found to be sufficient for good accuracy. For the parame-

ters 2 2
1 20.1, 0.1, 1.0, 0.1, 0.1α β ω σ σ= − = = = = ,and 2

3 0.3σ = ,the stationary mar-

ginal PDFs of the displacement are shown in Fig. 1 on linear as well as on the 
logarithmic scales. The non-Gaussian based PI method gives impressively-low 
error of 0.025% at extremely small probability levels of order 10-7. There is very 
good agreement between the PI and the MCS results. The method shows good 
convergence with reduced number of grids leading to a reduction of CPU time by 
a factor of almost 2 compared to the traditional PI method.    
 

 

Fig. 1 Linear and logarithmic plot of the Marginal PDF of  Displacement; ⎯⎯  MCS 
results;  ◦◦◦◦◦ ,PI with non-Gaussian transition PDF;  ▫▫▫▫▫ , PI with Gaussian transition 
PDF; ****,FEM. 

The Duffing oscillator subjected to combined white noise and harmonic excitation 
is considered as the next example to study the jump and bifurcation phenomena. 

              ( )3
02 cosX X X X W t f tβ α λ+ + + = + ω�� �                            (10)       

where W(t) is a stationary, zero mean Gaussian white noise satisfying 
E[ ( ) ( )] 2 ( )W t W t Dτ δ τ+ = . For the parameters 00.05, 0.3, 1.0, 0.2fβ λ α= = = = , 

and 1.2ω = , a time step Δt = T/4, and 100×100 Gaussian quadrature points in 
50×50 subinterval within the reduced domain [-10, 10]×[-10, 10] are selected. The 
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snapshots of joint PDF of X  vs. X� captured by using the modified PI technique 
at t = 60.5 sec. are shown in Fig. 2. The presence of the nonlinearity causes multi-
valued regions where more than one mean square value of the response is possi-
ble. When the intensity of noise changes from 0.002 to 0.01, the joint PDF is still 
bimodal implying jumps may occur. At smaller intensity, the two peaks are well 
separated, jumps occur rarely and the most probable motion is around the lower 
branch of amplitude response curve. At higher intensity, on the other hand, the 
peaks connect and even merge, jumps occur more frequently and the most prob-
able motion is around the upper branch of amplitude response curve.  

 
 

 
 
 
 
 
 

                                
           (a)                                                         (b) 

Fig. 2 Joint PDF of Duffing oscillator (a) D = 0.002, (b) D = 0.01 

For 0.075, 1, 1.0β α λ ω= = − = = and 0 0.3f =  the above Duffing oscillator 

exhibits chaotic behaviour under harmonic excitation (Fig. 3) and if an addition a 
stochastic excitation is also present the response may consist of coexisting chaotic 
and stochastic orbits. It is difficult to distinguish between the two behaviours. The 
periodic attractor is relatively stronger compared to the chaotic attractor. Periodic-
ity in the PDF can be removed by time averaging. Jung and Hänggi [10] intro-
duced a time averaged density as an invariant measure for both deterministic and 
noisy chaos. The invariant measure on x1 can be defined as  

              1 1 2 2
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Fig. 3 A strange attractor for the Duffing 
oscillator     

Fig. 4 Invariant Measure on X1  
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Fig. 4 shows the time averaged probability density for the noisy chaotic attractors 
with noise intensity at 0.02 (dashed line) and 0.07 (solid line). The invariant 
measure indicates that the probability of large excursion is increased as noise in-
tensity increases.  

Next, we consider the equation of motion of the system with restoring force 
having more than one  zero subjected to wide band random excitation. 

                  3 5
1 3 5 ( )X cX k X k X k X W t+ + + + =�� �                                   (12) 

The computation is carried out in a reduced state space of [-2, 2]×[-2, 2] with a 
total of 40×40 Gauss-quadrature points in 20×20 subintervals. For the parame-
ters 1 50.1, 1,c k k= = = 3 2.3, 0.005k D= − = , the joint and marginal PDF of the 

response are shown in Fig. 5. It is observed that the displacement PDF shows three 
peaks suggesting three types of probable motions but the velocity PDF has only 
one peak. Displacement and velocity in Eq. (12) are independent. 
 

 
                     
                      (a)                                        (b)                                           (c)  

Fig. 5 (a) Joint PDF, (b) Marginal PDF of displacement, (c) Velocity; Key as Fig. 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Surface plot of PDF of the Duffing-Rayleigh oscillator at t = 1/4, 2/4, 3/4, 4/4 of a 
period 
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The Duffing-Rayleigh oscillator subjected to harmonic and white noise excitation 
is investigated next. 

( )2 2 2
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1 1 cos ( )oX X X X X f t W t
βγ ω ξ ω

ω
⎛ ⎞

+ + + + = +⎜ ⎟
⎝ ⎠

�� � �            (13) 

For the dynamical system subjected to harmonic and stochastic excitations, one of 
the drift coefficients of the corresponding FP equation is periodic [7]. A steady 
state solution may exist at t → ∞ . The approximate methods cannot capture the 
periodicity in the instantaneous PDF before averaging. The modified PI method 
based on the Gauss-Legendre integration formula [1] is a powerful method which 
can capture the evolution of the instantaneous PDF. For the parameters 0.5,γ = β 

= ξ = 0.3, ω1 = f0 = 1.0, ω = 2.0, and D = 0.05, the instantaneous PDFs at 1/4, 2/4, 
3/4, and 4/4 of the period after reaching periodicity are shown in Fig. 6. From the 
single peak it may be concluded that for this system there is no multi-valued am-
plitude as the frequency varies. 

3   Finite Difference Method 

In this section, higher order discretization schemes using FD methods are pro-
posed to solve   four dimensional nonlinear problems. The scheme involves the 
manipulation of the Taylor series expansion of the PDF about uniformly distrib-
uted nodal points in a   n = 4 dimensional mesh as shown in Fig. 7.  
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Fig. 7 Finite difference scheme for 4D  
spatial discretization  
 

Fig. 8 Two degree of freedom model                  

Let , , ,i j k lp  denote the PDF at a discrete location relative to a candidate point as 

shown in Fig. 7.  By taking more and more neighboring nodal points and solving 
for the derivative terms at the candidate points a 6th order FD stencil is derived as 
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By substituting into the FP equation a set of n-discrete first order differential equa-
tions is given by 

             [ ]{ } [ ]{ } 0,+ =M p K p�              lR∈p                                  (19)                                                                     

Using the GEAR time integration scheme [11] the time derivative of the PDF is 
approximated by a linear combination of the density function evaluated at the cur-
rent and several previous points given by [11] 

            ( ) ( )
0

GN

j i
i

p t p t i tψ
=

= Σ − Δ�                                          (20)                                            

where NG is the order of GEAR method and jψ  is the integration weight. The 

resulting system of linear algebraic equations is solved at each time step employ-
ing the non-symmetric iterative solver. The PDF obtained by the GEAR method is 
further integrated by higher order quadrature rules to compute the response  
moments.  

The FD method is applied to the two DOF system consisting of a nonlinear 
spring, viscous damper and nonlinear Coulomb damper shown in Fig. 8 represen-
tative of a tip shrouded bladed disk assembly involving the solution of a four di-
mensional FP equation. The equations of motion for the two DOF model subjected 
to white noise excitation (Fig. 8) can be expressed as                                 

                 
1

3
1 1 1 1 1 1 0 1 1 2 1( ) ( ) ( )c N Gm x c x k x k x k x x F Sgn d W tμ+ + + + − + =��� �                             (21) 

2

3
2 2 2 2 2 2 0 2 1 2 2( ) ( ) ( )c N Gm x c x k x k x k x x F Sgn d W tμ+ + + − − + =��� �                           (22) 

where m1 and m2 are corresponding masses, k1 and k2 are linear stiffness, k0 is cu-
bic stiffness, kc is coupling stiffness, kG is the stiffness of friction damper, 1 2,c c  

are viscous damping coefficients, μ  is the coefficient of friction, FN is the normal 

preload, 
1Gd  and 

2Gd are displacements of friction dampers, 1( )W t  and 2 ( )W t are 

Gaussian white noises and sgn(.) is the signum function. The corresponding FP 
equation is given by 
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The friction coefficient is assumed of the form 

                                exp GdA B αμ −= + �
                                           (24) 

where A, B, and α are constants. The following parameters are assumed for the 
numerical study 1 2 4,15,000 / ; 75,000 / ; 42,000 /c Gk k N m k N m k N m= = = = , m1 = m2 = 

0.0115 kg, 1 2 1.45 / ,  0.25,  0.05,  0.18c c N s m A B α= = ⋅ = = = , and D1 = D2 = 

1 N2/(rad/s). The state space in the FD method is discretized using a computational 
mesh of 354 nodes in the interval [-10, 10]×[-10, 10]×[-10, 10]×[-10, 10]. The ini-
tial distribution chosen is a zero mean, four dimensional Gaussian distribution 
with variance 2 0.7iσ = .The intensity of cubic nonlinearity, k0, is chosen as 0.2 

and time step used for the GEAR integration is 0.001. For three values of the nor-
mal load the mean square values of the displacement are compared with the results 
obtained from MCS, of six million realizations, in Fig. 9(a) with very good 
agreement between the two except at large times which may be due to the integra-
tion error.   

 
(a) (b)  

Fig. 9 (a) Mean square of displacement, (b) Effects of damping coefficient on the mean 
square response. FD method for [ FN(N)____75,–·–·–25,------325]; °°°° MCS,  ▪▪▪▪  FEM. 

The effect of increasing the damping on the response statistics is studied by va-
rying the damping coefficients c1 and c2 in the range of 0.3 to 1.75 N⋅m/s, The 
stationary mean square response at time t =24 sec is presented in Fig. 9(b) for dif-
ferent values of the damping coefficient. From the Fig. 9(b) it is seen that the 
mean square response of the blade to white noise excitation decreases with in-
creased damping in the range of 1 2c c= = 0.3 to 1.4 Nm/s and, saturates beyond 

that value. It is also seen from the Fig. 9 that the FD results agree well with the 
MCS results. 
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5   Conclusions 

A modified PI procedure is developed for the solution of the FP equation to pre-
dict the stochastic and chaotic response of number of nonlinear systems, subjected 
to external and parametric random excitations. The modified PI method is based 
on a non-Gaussian transition PDF which is the product of a Gaussian PDF and a 
series of Hermite polynomials. The examples considered show the efficacy of the 
proposed method. The method is useful in reducing the computational time and 
cost due to reduced number of time steps on the coarse grid. The paper also stud-
ies the stochastic jump, bifurcation, periodic and noise induced state change of 
PDF for nonlinear system subjected to combined harmonic and white noise excita-
tion. A sixth order FD stencil scheme in conjunction with GEAR time integration 
is presented  for the solution of four dimensional FP equation corresponding to a 
two DOF nonlinear system subjected to Gaussian white  noise excitation represen-
tative of a tip-shrouded bladed-disk assembly. Effects of normal force and viscous 
damping on the mean square response of a blade are investigated.  
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An Approximate Approach for Nonlinear 
System Evolutionary Response Spectrum 
Determination via Wavelets 

P.D. Spanos1 and I.A. Kougioumtzoglou2 

1 L.B. Ryon Chair in Engineering, Rice University, USA 
2 Department of Civil and Environmental Engineering, Rice University, USA 

Abstract. A novel harmonic wavelet-based statistical linearization approach is proposed for 
determining the evolutionary power spectrum (EPS) of the response of nonlinear oscillators 
subject to stochastic excitation. Specifically, first a mathematically rigorous wavelet-based 
representation of non-stationary stochastic processes is presented. Next, a representation of 
the process corresponding to a specific scale and translation level is derived. This procedure 
leads to an EPS estimation approach which is applicable for estimating not only separable 
but non-separable in time and frequency EPS as well. Next, focusing on the case of the sto-
chastic response of a nonlinear system and relying on the orthogonality properties of the 
developed representation an excitation-response EPS relationship is derived via statistical 
linearization. The approach involves the concept of assigning optimal and response de-
pendent equivalent stiffness and damping elements corresponding to the specific frequency 
and time bands. This leads to an iterative determination of the EPS of the oscillator re-
sponse. Pertinent Monte Carlo simulations demonstrate the reliability and versatility of the 
approach.  

Keywords: Stochastic processes; Random vibration; Monte Carlo method; Nonlinear sys-
tems; Statistical linearization; Wavelets. 

1   Introduction 

Structural systems are often subject to stochastic excitations such as seismic mo-
tions, winds, and ocean waves which inherently possess the attribute of evolution 
in time. Therefore, representation of these phenomena by non-stationary stochastic 
processes is necessary to capture accurately the system behavior. Associated with 
the notion of a non-stationary stochastic process is the concept of the evolutionary 
power spectrum (EPS) (e.g. [1,2]). Several research efforts have focused  
on determining the response of systems under evolutionary excitation; see 
Kougioumtzoglou and Spanos [3] for a recent reference. Nevertheless, limited re-
sults exist in the context of a joint time-frequency response analysis. 

Recently, wavelets have been successfully applied to study dynamic systems 
with time-varying characteristics and to develop system identification approaches. 
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A detailed presentation of engineering related applications can be found in review 
articles such as the one by Spanos and Failla [4]. In particular, harmonic wavelets 
have a critical presence in structural dynamics applications. In this paper, relying 
on the properties of the generalized harmonic wavelets and on a statistically rigor-
ous approach to modeling non-stationary processes [2], a representation of the 
process corresponding to a specific scale and translation level is derived. Further, 
a novel statistical linearization approach is developed for the nonlinear response 
EPS determination. The advantages of this approach vis-à-vis the existing lineari-
zation schemes are emphasized and its reliability is verified by pertinent Monte 
Carlo studies. 

2   Harmonic Wavelet-Based Stochastic Process Representation 
and EPS Estimation 

2.1   Harmonic Wavelet Transform 

The family of generalized harmonic wavelets uses two parameters ( ),m n  for the 

definition of the bandwidth at each scale level; see reference [5]. Generalized har-
monic wavelets have a band-limited, box-shaped frequency spectrum. A wavelet 

of ( ),m n  scale and ( )k  position in time attains a representation in the frequency 

domain of the form  

( ) ( ) ( ), ,
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where ( )m , ( )n  and ( )k  are considered to be positive integers and 
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T  is the total time duration of the signal under consid-

eration. The inverse Fourier transform of Eq.(1) gives the time-domain representa-
tion of the wavelet which is equal to 
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The continuous generalized harmonic wavelet transform (GHWT) is defined as 

( ) ( ) ( )
, , , ,

( )G G

m n k m n k

o

n m
W f t t dt

T
ψ

∞

−∞

−
= ∫ ,                                    (3) 

and projects the ( )( )f t  on this wavelet basis; the bar over a symbol represents 

complex conjugation.  

2.2   Locally Stationary Wavelet Process Representation 

Most rigorous approaches to modeling non-stationary stochastic processes are 
based on extensions of the classical representation of stationary processes (e.g. 

[6]). Specifically, a zero mean stationary process ( )( )f t  can be represented as 

( )( ) ( )i tf t A e dZωω ω
∞

−∞
= ∫ ,                                             (4) 

where ( )( )A ω  is a deterministic function and ( )( )dZ ω  is a zero mean orthonor-

mal increment stochastic process. The power spectrum of the process ( )( )f t  is 

then defined as 
2

( ) ( )
f

S Aω ω= . Next, to develop models whose spectral content 

changes with time one option is to replace the amplitude ( )( )A ω  in Eq.(4) by a 

time-varying version ( )( , )A t ω . This leads to the slowly varying non-stationary 

processes as defined by Priestley [1]. Further, Nason et al. [2] introduced a novel 
representation of non-stationary stochastic processes in which the Fourier basis is 
replaced by a wavelet basis. The proposed process model is constructed to be lo-
cally stationary via constraints on the model coefficients, resulting in what is 
known as a locally stationary wavelet (LSW) process. This allows for defining a 
wavelet spectrum at a particular scale and location. According to the LSW process 

representation, the non-stationary process ( )( )f t  can be represented as 

, , ,
( ) ( )

j k j k j k

j k

f t w tψ ξ=∑∑ ,                                              (5) 

where ( ),j k
ξ  is a stochastic orthonormal increment sequence; and ( ),

( )
j k

tψ  is a 

non-decimated family of wavelets. According to the properties of the representa-
tion of Eq.(5), which are defined and proved in Nason et al. [2], the EPS at each  
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time and scale is given by the equation ( )2

, ,j k j k
S w= . Rewriting Eq.(5) for the 

case of the generalized harmonic wavelets yields 

( ) ( )( , ), , , ( , ),

( , )

( ) G

m n k m n k m n k

m n k

f t S tψ ξ= ∑∑ ,                                 (6) 

where ( )( , ),m n k
S  is the evolutionary spectrum at scale ( ),m n  and translation ( )k . 

In conjunction with the preceding analysis consider a representation of a stochas-

tic process ( )( )f t  in the form 

( , ),

( , )

( ) ( )
m n k

m n k

f t f t= ∑∑ ,                                           (7) 

where ( )( , ), ( )m n kf t  is the process at scale ( ),m n  and translation ( )k  given by 
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where ( )( )( , ), ( , ), ( , ),
( )

m n k m n k m n k
dZ S n mω ω ξ= − Δ , with the properties 
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( ) 0

m n k
E dZ ω = , and ( ) ( )2

( , ), ( , ),
( )

m n k m n k
E dZ S n mω ω= − Δ . In deriving 

Eq.(8), Eq.(2) has been taken into account. The similarity between Eq.(4) and 
Eq.(8) is obvious. This is not surprising considering the fact that the harmonic 
wavelet basis functions are essentially localized Fourier functions. Following a 

similar analysis as in reference [7], a spectral representation of ( )( , ), ( )m n kf t  of 

the form of Eq.(8) involving an adequately large number of N harmonics of con-
stant amplitudes and of random phases can be cast in the form 
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Note that this representation is defined in the intervals ( )
l
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2.3   EPS Estimation 

Early attempts of applications of wavelets in spectral estimation for vibration 
problems include the work by Basu and Gupta [8] where they related the mean 
square value of the wavelet transform at different scales and the time-dependent 
spectral content of the process (see also reference [9]). Spanos and Failla [10] fol-
lowed an alternative approach developing relationships between the EPS and the 
wavelet coefficients in context with the theory of non-stationary processes as pro-
posed by Priestley [1]. In the same context, the developments of the preceding 
section are used herein to derive a scheme for estimations of both separable and 
non-separable EPS for stochastic processes. According to Newland [5] the  
equation 

( )
22

, ,

,

( ) 2 Go

m n k

m n k

T
f t dt W

n m

∞

−∞
=

−
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∑∑∫ ,                             (10) 

holds true. Moreover, considering Parseval’s theorem yields  

2 2
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∞ ∞
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=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ .                             (11) 

Combining Eqs.(10) and (11) and considering the non-overlapping character of 
the different energy bands, it can be argued that the estimation of the EPS 

( )( ),S tω  can be obtained as  
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To demonstrate the accuracy of the proposed estimation the non-separable spec-
trum of the form 

( )2
2

0.15 2 5
2

( , ) , 0,
5

t
tS t S e t e t

ω

π
ω

ω ω
π

−
−= ≥ −∞ < < ∞⎛ ⎞

⎜ ⎟
⎝ ⎠

.               (13) 

where ( )
2

1S = , is considered next. This spectrum comprises some of the pre-

dominant features of seismic shaking, such as decreasing of the dominant fre-
quency with time. Realization records compatible with Eq.(13) are produced using  
the concept of spectral representation of a stochastic process (e.g. [7]). In Fig.(1) 

the target and the EPS estimate are plotted at two time instants ( )1.6 sect =  and 

( )4.1sect = .  
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Fig. 1 Non-separable power spectrum ( )
2

1S =  at ( )1.6 sect =  and ( )4.1sect = . Com-

parison between MCS data (500 realizations) and the target spectrum. 

The two EPS are in good agreement with each other verifying the reliability of 
the generalized harmonic wavelet-based EPS estimation approach for physically 
realistic versions of EPS with time-varying frequency content.  

3   Harmonic Wavelet-Based Statistical Linearization 

3.1   Nonlinear Response EPS Determination 

Early attempts towards developing a linearization approach include the work by 
Basu and Gupta [11], where the equivalent linear element is essentially averaged 
over the different wavelet scales leading to a linear time-variant (LTV) system. It 
can be argued that this approach negates in a sense the joint time-frequency repre-
sentation capabilities of the wavelet transform. In this section, relying on the LSW 
representation developed in section 2 a statistical linearization approach is pre-
sented for each scale and translation level. In this regard, the equivalent stiffness 
and damping elements corresponding to the specific frequency and time band are 
employed to evaluate the response EPS in an iterative manner. Consider next a 
nonlinear single-degree-of-freedom system whose motion is governed by the dif-
ferential equation 

2

0 0 0
2 [ , ] ( )x x x h x x w tζ ω ω ε+ + + =�� � � .                                    (14) 

where (
0

ζ ) is the ratio of critical damping; ( )
0

ω  is the natural frequency of the 

corresponding linear oscillator; ( ( )w t ) represents a Gaussian, zero-mean non-

stationary stochastic process possessing an EPS ( , )S tω ; ( )ε  denotes the degree 
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of nonlinearity; and ( )[ , ]h x x�  is an arbitrary nonlinear function which depends on 

the response displacement and velocity. Replacing next the nonlinear Eq.(14) with 
the equivalent linear 

22 ( )
eq eq eq

x x x w tζ ω ω+ + =�� � .                                   (15) 

and performing minimization of the error in a mean square sense (e.g. [12]) yields 
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E xG x x E x E xxζ ω ω− − =� � � � ,                          (16) 

and 
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where 2

0 0 0
[ , ] 2 [ , ]G x x x x h x xζ ω ω ε= + +� � � . Substituting next Eq.(7) into Eqs.(16-

17) and considering Eq.(9) it can be readily seen that the only terms which survive 
from the expectation operation are those which correspond to the same scale (fre-

quency) ( ),m n  and translation (time) ( )k  intervals. The expectation of the rest 

of the terms is equal to zero due to the independence of the random phase vari-
ables. This yields 

( )( , ), ( , ),

,( , ), , ( , ), 0 0

( , ),

,
2 2

m n k m n k

eq m n k eq m n k

m n k

h x x
E

x
ζ ω ζ ω ε

∂
= +

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

�

�
,                  (18) 

and 

( )( , ), ( , ),2 2

,( , ), 0

( , ),

,
m n k m n k

eq m n k

m n k

h x x
E

x
ω ω ε

∂
= +

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

�
,                                (19) 

where the standard Gaussian assumption for the response processes has been in-
voked (e.g. [12]). It is important to note that the equivalent elements (Eqs.(18-19)) 
are treated as frequency and time dependent. In other words, Eqs.(18-19) are valid 

in the intervals  ( )
l

m nω ω ωΔ ≤ < Δ  and 
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. Obviously, 

the evaluation of the equivalent stiffness and damping elements depends on the re-
sponse statistics. Thus, additional spectral input-output relationships must be con-
sidered to yield a system of simultaneous nonlinear equations which can be solved 
iteratively. To this aim, raising Eq.(15) to the second power, applying the expecta-
tion operator and taking into account the representation of Eq.(9) and the orthogo-
nality properties of the monochromatic functions yields 
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It can be readily seen that for each scale ( ),m n  and translation level ( )k , the un-

knowns ( )2

,( , ),eq m n k
ω , ( ),( , ), , ( , ),

2
eq m n k eq m n k

ζ ω  and ( )( , ),

x

m n k
S  can be obtained by solving 

Eqs.(18-20). To this aim, an iterative scheme can be adopted. Note that the pro-
posed statistical linearization approach can be the basis for performing a joint 
time-frequency response analysis and is readily applicable for both separable and 
non-separable excitation EPS.  

3.2   Duffing Oscillator Application 

To assess the accuracy of the approach, a Duffing oscillator of the form 

2 2 3

0 0 0 0
2 ( ), 0x x x x w tζ ω ω εω ε+ + + = >�� � ,                          (21) 

is considered. Applying Eqs. (18-19) and taking into account Eq.(9) yields 
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parameters values ( )
0

10 / sec, 0.1, 10radω ζ ε= = =  are chosen for the Duffing 

oscillator of Eq.(21). The response EPS of the Duffing oscillator is calculated us-
ing the non-separable excitation EPS of Eq.(13). Comparisons of the EPS with 
MCS data at distinct time instants (Fig.(2)) demonstrate the accuracy of the ap-
proach even for this high degree of nonlinearity. 

 

Fig. 2 Response EPS of a Duffing oscillator ( )
0

10 / sec, 0.1, 10radω ζ ε= = =  at 
( )5.7 sect =  and ( )15.7 sect =  under a non-separable evolutionary spectrum ( )

2
1S = . 

Comparison between MCS data (500 realizations) and the analytical approach. 
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4   Conclusions  

In this paper, a novel wavelet-based statistical linearization approach has been 
proposed for determining the EPS of the response of nonlinear oscillators under 
evolutionary stochastic excitation. The approach has been developed in conjunc-
tion with the family of harmonic wavelets. Specifically, relying on the properties 
of the generalized harmonic wavelet and exploiting the concept of a locally sta-
tionary wavelet-based representation of stochastic processes, a process corre-
sponding to a specific scale and translation level has been defined. In this context, 
first an EPS estimation approach has been presented in conjunction with the pro-
posed process representation and has been applied in estimating both separable 
and non-separable EPS. Thus, the capacity of the approach to capture successfully 
the time-varying frequency content of quite complex non-stationary stochastic 
phenomena is demonstrated. Finally, in context with the statistical linearization 
approach, excitation-response relationships have been obtained by employing the 
novel concept of wavelet scale (frequency) and wavelet translation level (time) 
dependent equivalent stiffness and damping elements. The resulting nonlinear sys-
tem of equations has been solved iteratively to determine the response EPS. In this 
manner, a joint time-frequency response analysis has been achieved. Pertinent 
Monte Carlo simulations have demonstrated the accuracy of the approach.  
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Abstract. The objective of this paper is to show how some basic informational quality
measures (such as entropy and relative entropy / Kullback divergence) of stochastic dynami-
cal systems depend on the system properties and characteristics of the external/internal ran-
domness. First, the Shannon entropy flow in dynamic systems with random initial states is
considered with emphasis on the effects of the system properties. Next, we quantify the in-
fluence of random external noise as well as the parametric randomness on the entropy and
on the Kullback-Leibler relative entropy of the system. The analysis is illustrated by specific
dynamical systems for which the entropy change in time is presented graphically.

Keywords: stochastic systems, Shannon entropy, relative entropy, entropy production.

1 Introduction

Although the contemporary stochastic dynamics of linear and nonlinear systems has
gained a high level of maturity (cf. Lin, Cai [7], Sobczyk [11]), it seems that in its
applicatory aspects, it still concentrates primarily on the reliability-type properties.
It is no doubt, that the information-theoretic approach to the system dynamics may
seriously enrich the existing applied analysis of stochastic systems. Especially, the
advantages of the potential inherent in information theory seems to be relevant to
various complex biological and social systems.

Theoretic information reasoning is well known in physics, but in this field the
basic focus is on the relationships of statistical entropy with nonequilibrium ther-
modynamics. A good example is the famous Boltzmann H-theorem, and the second
law of thermodynamics. The language of information theory turned out to be use-
ful to quantifying chaos, system predictability and self-organization (cf. Haken [5],
Ebeling [3]). It is also very relevant to data processing and statistical inference in-
cluding inference on the behaviour of dynamical systems. For variety of real sys-
tems an important question is, for example: how does the Shannon entropy flow
through a dynamic system, and how does it depend on the system characteristics
and properties of random disturbances? Although in the existing literature there are
a number of contributions on information and dynamics (cf. Sobczyk [12] and ref-
erences therein, Garbaczewski [4], Munakata and Igarashi [8]) the subject still calls
for further insight. This paper is an attempt in this direction.

W.Q. Zhu et al. (Eds.): Nonlinear Stochastic Dynamics & Control, IUTAM BOOK SERIES 29, pp. 97–106.
springerlink.com c© Springer Science + Business Media B.V. 2011
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2 Entropy and Relative Entropy for SDS

Real stochastic dynamical systems (SDS) are usually modelled by stochastic differ-
ential equations which, generally, can be represented as

dY(t)
dt

= F[Y(t), t;X(t,γ)], Y(t0) = Y0 (1)

where Y(t) = [Y1(t), . . . ,Yn(t)] is unknown stochastic process, t denotes time (t ∈ T ),
and X(t,γ) is a given stochastic process (γ ∈ Γ , where Γ is the space of elementary
events on which the probability is defined (cf. Sobczyk [11])). Function F(y, t,x) is a
given sufficiently smooth function characterizing the physical nature of the system
considered. We are interested in characterization of the process Y(t) on the basis
of information/data about F, Y0, and X. Since Y(t) is a stochastic process we are
interested in the probability density f (y,t) of Y for each t ∈ T (more completely, as
is known, process Y(t) is described by the family of all joint probability densities
over sets {t1,t2, . . . ,tk} of t ∈ T ). Here, we are interested in the behaviour of the
following functional defined on f (y,t):

Ht( f ) = HY( f ;t) = −
∫

f (y, t) log f (y, t)dy = −〈log f (y, t)〉 f (2)

where the bracket 〈·〉 denotes the average value (with respect to density f ) of the
quantity indicated, and the integration is extended over the support of f (y, t). The
quantity Ht( f ) is the Shannon entropy of Y(t) at time t. It quantifies, for each t, the
overall randomness of Y(t); we may also say that HY(t) quantifies the information
content It of Y(t) at time t (cf. Cover, Thomas [2]).

Another measure/functional assigned to process Y(t) which can be used for quan-
tifying the information transfer in stochastic system (1) is the relative entropy (or,
the Kullback-Leibler divergence measure). Let f (y, t) and q(y, t) be two probabil-
ity densities with the same support and such that f (y,t) is the density of our main
interest (often unknown explicitly), whereas q(y, t) is some prior or reference den-
sity associated with the system considered. We wish to quantify the informational
difference between f and q. The relative entropy between f and q is defined as

Ht( f ,q) =
∫

f (y, t) log
f (y,t)
q(y, t)

dy =
〈

log
f (y, t)
q(y, t)

〉
f

(3)

with the convention that 0 log(0/q) = 0 and f log( f/0) = ∞.
The relative entropy Ht( f ,q) � 0 with equality if and only if densities f and q

are identical. The quantity (3) is not a distance measure in the sense of metric (it is
not symmetric and the triangle inequality does not hold) but it is widely accepted
as an informational indicator of similarity or divergence of two densities f and q.
When density f (y,t) in (2) or both f (y,t) and q(y,t) in (3) are Gaussian then Ht( f )
and Ht( f ,q) have analytical expressions in terms of the corresponding covariance
matrices (for n = 1, in terms of variances). When log = log2 the units of Ht( f ) and
Ht( f ,q) are bits.

In the next sections we will investigate the properties of the measures (2) and (3)
for various forms of system (1).
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3 Entropy in Liouvillian Systems

The simplest case of random dynamics occurs when randomness is caused by the
statistical nature of the initial states. So, in model (1) there is no stochastic process
in the system equations (X(t,γ) ≡ 0); only the initial condition Y0 is random with
given probability density f0(y). During the motion the initial density f0(Y) evolves
to a new density f (y,t) for t > t0. This means that also the Shannon entropy of the
system passes from H0 to HY(t). This is a Liouvillian flow since (as it is known
– cf. Sobczyk [11]) the probability density f (y, t) satisfies the Liouville’s equation
(cf. Nemytskii and Stepanov [9])

∂ f
∂ t

+
n

∑
i=1

∂
∂yi

[ f (Y, t)Fi(y, t)] = 0 (4)

with f (y, t0) = f0(y).
Making use of equation (4) we can derive an evolution equation for the Shan-

non entropy functional (2). After differentiation of Ht( f ) with respect to time and
making the appropriate transformations (with the assumption that f Fi tend to zero
at infinity) one obtains (cf. Sobczyk and Hołobut [13])

dHt( f )
dt

=
n

∑
i=1

〈
∂Fi

∂yi

〉
f
= 〈divyF〉 f (5)

Equation (5) says that the sign of the entropy rate of the system considered depends
on the sign of the divergence of the vector field F(y,t) governing the system. In con-
trast with standard thermodynamical intuition (and the second law of thermodynam-
ics) the information entropy can grow with time only if the dynamic deterministic
system (1), when X(t) ≡ 0, has positive mean flow divergence. For the Hamiltonian
systems (i.e. described by Hamilton’s equations) commonly studied in statistical
physics divYF = 0, so dH/dt = 0 which means that entropy HY(t) is conserved
during the motion, i.e. HY(t) = H0, t � t0. For other systems we may observe the
entropy decrease or increase with time. The simplest example is: let Ẏ (t) = −Y (t),
divF = −1, therefore Ḣ(t) = −1 which means that HY (t) = H0 − (t − t0), t � t0
(entropy decreases with time – the system is more and more predictable).

It is worth noticing that the entropy concept used here in the context of dynam-
ical systems is the entropy defined by (2) and commonly known as the statisti-
cal or Shannon entropy (which, in fact, is the Boltzmann entropy with opposite
sign – introduced in 1872). In the qualitative theory of dynamical systems a useful
measure for the chaotic nature of motion of a system the analogous (but different)
Kolmogorov-Sinai entropy is used.

4 Entropy Rate of Systems with External Random Excitation

It is of interest to know how a random external noise influences the entropy flow in
the system in question.
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Let us consider a system governed by a special case of equation (1), namely by
the following Langevin-type vectorial equation

dY(t)
dt

= F(Y,t)+ σξ (t), t ∈ [t0,∞) (6)

where Y(t) is an unknown stochastic n-dimensional vector process, ξ (t) is a given
vector stochastic white noise excitation with the intensity matrix σ = {σi j}. Un-
der known assumptions the probability density f (y,t|y0,t0) = f (y, t) satisfies the
following Fokker-Planck-Kolmogorov equation

∂ f
∂ t

+
n

∑
i=1

∂
∂yi

[Fi(y, t) f (y, t)]− 1
2

n

∑
i, j=1

bi j
∂ 2 f

∂yi∂y j
= 0 (7)

where bi j = ∑n
r=1 σirσ jr (that is the matrix B = {bi j} = σσT).

What is the rate of the Shannon entropy flow in system (6) with its probability
density governed by eq.(7)? According to the definition of H(t) – eq.(2)

dH
dt

= − d
dt

∫
f ln f dy = −

∫ ∂ f
∂ t

(ln f + 1)dy (8)

The second term on the right hand side is (due to the normalization condition) equal
to zero, and ∂ f/∂ t (due to F-P-K equation (7)) consists of two components, i.e.

AL = −div(F f ) , AD =
1
2 ∑

i, j
bi j

∂ 2 f
∂yi∂y j

. (9)

Therefore
dH
dt

= ḢL + ḢD (10)

where ḢL – the Liouvillian rate is represented by formula (5). After suitable trans-
formations, the second component ḢD – the diffusion entropy rate is as follows

dHD

dt
= −

∫
1
2 ∑

i, j

bi j
∂ 2 f

∂yi∂y j
ln f dy

=
1
2 ∑

i, j

bi j

〈
∂ ln f
∂yi

∂ ln f
∂y j

〉
f

(11)

The above entropy rate is positive since the diffusion matrix {bi j} is positive def-
inite. This indicates that the total entropy rate Ḣ = ḢL + ḢD may have positive or
negative signs (with value of zero when random noise is absent and the system is
divergenceless). The quantity ḢD expressed by formula (11) can be interpreted as
the information entropy production (by a random excitation). The quantity ḢL char-
acterizes the system entropy due to the process inside the system.
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Example 1

As an illustration of the entropy change in a stochastic dynamical system let us
consider a simple process governed by the equation

Ẏ (t)+ aY(t) = ξ (t), a > 0 (12)

and ξ (t) is the Gaussian white noise, such that

〈ξ (t)〉 = 0, 〈ξ (t1)ξ (t2)〉 =
√

2Dδ (t2 − t1) (13)

Therefore the drift and diffusion coefficients are

F(y) = −ay, σ =
√

2D (14)

and equation (7) is

∂ f
∂ t

= −a
∂
∂y

[y f (y,t)]+ D
∂ 2 f
∂y2 (15)

with f (y,0) = f0(y) – being a Gaussian density with mean m0 and variance σ2
0 .

Since the system is linear the normality of this initial (Gaussian) density is pre-
served, and we have NY

(
mY (t),σ2

Y (t)
)

mY (t) = 〈Y (t)〉 = m0e−at , σ2
Y (t) = σ2

0 e−2at +
D
2a

(1− e−2at) (16)

Therefore the density f (y,t) and entropy HY (t) are, respectively

f (y,t) =
1

[2πσ2
Y (t)]1/2

exp

[
− (y−m0e−at)2

2σ2
Y (t)

]
(17)

HY (t) =
1
2

log[2πeσ2
Y (t)] (18)

ḢY (t) =
a(D−2aσ2

0 )e−2at

D− (D−2aσ2
0)e−2at

loge (19)

It is seen that increase of entropy (ḢY (t) > 0) takes place if σ2
0 < D/2a whereas the

entropy decreases when σ2
0 > D/2a. Keeping in mind that in the case without noise

(D = 0) we have Liouvillian system for which ḢY (t) = −a loge, this decrease of
entropy is “inverted” to its growth by noise if σ2

0 < D/2a.
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Figure 1 illustrates the entropy change given by equations (18), (19). For such
numerical values of σ2

0 , a, and D that σ2
0 < D/2a (σ0 = 2, a = 0.1, D = 10) we

observe the monotonic growth of HY (t), whereas for σ0 = 2, a = 0.3, D = 0.5, we
have σ2

0 > D/2a and the entropy decreases in time.

Fig. 1 HY (t), as given by eq.(18), for σ0 = 2, a = 0.1, D = 10 – curve (1), and σ0 = 2, a = 0.3,
D = 0.5 – curve (2)

Example 2

Let us take now a linear harmonic oscillator

Ÿ (t)+ 2ω0ζẎ (t)+ ω2
0Y (t) = ξ (t) (20)

Y (0) = 0, Ẏ (0) = 0

where ω0 is the natural frequency of the system, ζ is the damping ratio, and ξ (t)
is a Gaussian white noise with constant spectral density g0. As it is well known the
nonstationary probability density of the response is Gaussian N(0,σ2

Y (t)), where

σ2
Y (t) =

πg0

2ζω3
0

{1−λ−2
0 exp(−2ω0ζ t)[λ 2

0 + 2ω2
0 ζ 2 sin2 λ0t

+ω0λ0ζ sin2λ0t]} (21)

where λ0 = ω0(1−ζ 2)1/2. The entropy HY (t) is in this case proportional to logσ2(t)
and its variability in time is shown in Fig. 2.
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Fig. 2 HY (t) of the harmonic oscillator (20), for g0 = 10, ω0 = 2, and several values of ζ

5 Relative Entropy for True and Idealized Models

5.1 Non-stationary Dynamics

Let us consider now a general form of dynamic model

Ẏ(t) = F(Y, t)+ X(t) (22)

where F is, in general, a nonlinear vector-valued function with values in R
n, X(t) is

random, time-varying excitation. The initial condition Y(t0) = Y0 can be determin-
istic or random.

Let f (y,t) represent a true probability density of Y(t) at time t. However, this
density is not easily available (due to complexity of the system). Let q(y, t) be an-
other probability density associated with the system response which can be obtained
under some simplifying hypotheses; it can be viewed as an “idealized approxima-
tion”. The question which arises is: what is the information loss if we make the
system predictions on the basis of q instead of f .

A measure which seems to be particularly well suited for answering the above
question is relative entropy defined by (3). According to its meaning it quantifies
the amount of information which distribution f (y, t) provides about the system
behaviour in excess to that given by the distribution q(y, t). We may think of the
probability density f as being non-stationary – compared to the stationary one, non-
Gaussian – compared to the Gaussian approximation, or – generally – as the “real-
istic” in contrast to “idealized” one. In the existing studies, the relative entropy has
mostly been used in the analysis of the convergence of non-stationary densities of
diffusion Markov processes to the stationary ones (cf. Lasota and Mackey [6]); for
example, it has been shown that if f and q are two solutions of the F-P-K equa-
tion, then Ht( f ,q) decays monotonically with time. Here we wish to concentrate
primarily on the quantitative characterization of Ht( f ,q) with a special attention to
the effect of system parameters.
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5.2 Vibratory System with Time-Varying Parameters

To illustrate further the utility of the relative entropy measure to prediction of non-
stationary processes let us consider a system analysed by G.J. Sissingh [10]:

Ÿ (t)+ c(t)Ẏ(t)+ [p2 + k(t)]Y (t) = α(t)ξ (t) (23)

Y (0) = Ẏ (0) = 0

where ξ (t) is a Gaussian white noise with zero mean and one-sided spectral density
g0, and

c(t) =
γ
8

(
1 +

4μ
3

sin t

)

k(t) =
γμ
6

cost − μ2γ
8

sin2t (24)

α(t) =
γ
6

(
1 +

3μ
2

sin t

)

and γ , μ are constants identified in rotor dynamics.
Since the time-varying coefficients (24) are deterministic, the response process

Y (t) is Gaussian. It has been shown (cf. Sissingh [10]) that for p � 1 the approxi-
mate solution (as a series solution in terms of power of p−2) for the variance of the
response has the form

σ2
Y (t) =

πg0

p2 e−η(t)
∫ t

0
eη(τ)α2(τ)dτ (25)

where

η(t) =
∫ t

0
c(τ)dτ =

γ
8

t +
8μ
6

(1− cost) (26)

Therefore, the Gaussian probability density f (y,t) of Y (t) is N(0,σ2
Y (t)), where

σ2
Y (t) is given by (25)-(26).

Let us take as a reference (or, idealized) system associated with oscillator (23)
the system (23) in which coefficients are constant and given by:

c(t) = 2ζω0 =
γ
8

, k(t) = 0 , p2 = ω2
0 , α(t) =

γ
6

= α0 (27)

In this case the response is governed by the Gaussian process with density q(y,t) =
N(0, σ̃2

Y (t)), where σ̃2
Y (t) obtained from the approximate solution (25)-(26)-(27) as

a particular case, is

σ̃2
Y (t) =

πg0α2
0

2ζω3
0

(
1− e−2ζω0t

)
(28)

Of course, we should keep in mind that the exact variance of the oscillator charac-
terized by (27) is given by (21) with multiplier α2

0 .
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Fig. 3 Ht( f ,q) between the responses of oscillators with time-varying and constant
parameters

Fig. 4 Standard deviations of the responses of oscillators with time-varying and constant
parameters

The relative entropy Ht( f ,q) has been calculated here on the basis of an appro-
priate formula for Gaussian densities. Its graphical illustration is shown in Fig. 3,
whereas in Fig. 4 there are the plots of the standard deviations σY (t) determined
by (25)-(26) and σ̃Y (t) from (28). The numerical values of parameters are taken
as follows: γ = 0.8, μ = 2.0, p = 5.0, g0 = 1. It is seen that periodicity present
in the standard deviation of the response results in the periodic-type variability of
the relative entropy it time. Quantitatively, the informational difference between the
presented responses can be regarded as essential.
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6 Conclusions

In this paper a brief analysis of the entropy/information change in stochastic dy-
namical systems is presented with a special emphasis on the effect of the system
parameters and intensities of random noise. More extensive treatment of the in-
formation dynamics problems (e.g. including effects of system uncertainty and the
moment-based approximation) the reader can find in Sobczyk, Hołobut [13].
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Finite Dimensional Markov Process
Approximation for Time-Delayed
Stochastic Dynamical Systems

Jian-Qiao Sun
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Abstract. This paper presents a method of finite dimensional Markov process
(FDMP) approximation for stochastic dynamical systems with time delay. The
FDMP method preserves the standard state space format of the system, and allows
us to apply all the existing methods and theories for analysis and control of stochas-
tic dynamical systems. The paper presents the theoretical framework for stochastic
dynamical systems with time delay based on the FDMP method, including the FPK
equation, backward Kolmogorov equation, and reliability formulation. The work of
this paper opens a door to various studies of stochastic dynamical systems with
time delay.

Keywords: Time delay, stochastic systems, control, Markov approximation.

1 Introduction

Time delay comes from different sources and often leads to instability or poor
performance in control systems. Other than a few exceptional cases, delay is
undesired and control strategies to eliminate or minimize its unwanted effects
have to be employed. Effects of time delay on the stability and performance
of deterministic control systems have been a subject of many studies. For
example, Yang and Wu [1] and Stepan [2] have studied structural systems
with time delay. A powerful method using Chebyshev polynomial expansion
to approximate general nonlinear functions of time has been developed to
handle linear and nonlinear time-delayed dynamical systems with periodic
coefficients [3,4, 5, 6]. A study on stability and performance of feedback con-
trols with multiple time delays is reported in [7] by considering the roots
of the closed loop characteristic equation. For deterministic delayed linear
systems a survey of recent methods for stability analysis is presented in [8].

There is a growing interest in the stochastic systems with time delay. An
effective Monte Carlo simulation scheme that converges in a weak sense is pre-
sented by Kuchler and Platen [9]. Buckwar [10] studied numerical solutions of
Itô type differential equations and their convergence where the system consid-
ered has time delay both in diffusion and drift terms. Guillouzic, L’Heureux
and Longtin [11] studied first order delayed Itô differential equations using
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a small delay approximation and obtained PDFs as well as the second or-
der statistics analytically. Frank and Beek [12] obtained the PDFs using the
FPK equation for linear delayed stochastic systems and studied the stability
of fixed point solutions in biological systems. State feedback stabilization of
nonlinear time delayed stochastic systems has been investigated by Fu, Tian
and Shi [13] where a Lyapunov approach is used.

The delayed systems are studied using discretization techniques with an
extended state vector. For example, Pinto and Goncalves [14] fully discretized
a nonlinear SDOF system to study control problems with time delay. Klein
and Ramirez [15] studied MDOF delayed optimal regulator controllers with a
hybrid discretization technique where the state equation was partitioned into
discrete and continuous portions. Another powerful discretization method is
the semi discretization method. It is a well established method in the litera-
ture and used widely in structural and fluid mechanics applications. Recently,
the method is applied to delayed deterministic systems by Insperger and
Stepan [16]. They studied high dimensional multiple time delayed systems
in [17]. The method can be extended to control systems with delayed feed-
back. We have studied the effect of various higher order approximations in
semi discretization on the computational efficiency and accuracy. The merit
of the semi-discretization method as introduced by Insperger and Stepan [16]
lies in that it makes use of the exact solution of linear systems over a short
time interval to construct the mapping of a finite dimensional state vector for
the system with time delay. Recently, a method of continuous time approxi-
mation (CTA) of delayed dynamical systems was introduced [18]. The method
can be viewed as an extension of the semi-discretization. It also discretizes
the delayed portion of the response leading to a high and finite dimensional
state space formulation of the time-delayed system in continuous time do-
main. The advantage of the CTA method lies in that the resulting finite
dimensional state equations are in the standard state space form, making all
the existing analysis methods and control design tools for linear and nonlin-
ear dynamical systems amenable to the CTA method. The method can also
handle multiple independent time delays in a natural way. In this paper, we
apply the CTA method to study the responses of stochastic dynamical sys-
tems with time delay. The CTA method leads to a finite dimensional Markov
process (FDMP) approximation of stochastic dynamical systems with time
delay, whose responses are non-Markovian. For this reason, we refer to the
current approach as the FDMP method for stochastic systems.

The paper is organized as follows. Section 2 introduces the FDMP method.
Section 3 presents the theoretical framework for stochastic dynamical systems
with time delay, including the FPK equation, the backward Kolmogorov
equation, reliability theory and first-passage failure probability. Section 4
concludes the paper.
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2 The FDMP Method

Consider a stochastic system in the Stratonovich sense,

ẋ = f (x (t) ,x (t − τ) , t)+G (x (t) ,x (t − τ) , t)W (t) , (1)

where x ∈ Rn, W ∈ Rp, f describes the system dynamics with time delay,
and G = {Gij} is a matrix determining the parametric and external random
excitations. Wi (t) are delta correlated Gaussian white noise processes with
E [Wi (t)Wj (t + T )] = 2πKijδ (T ). Equation (1) can be converted to the
stochastic differential equations in the Itô sense,

dX = m (X (t) ,X (t − τ) , t) dt+σ (X(t),X (t − τ) , t) dB (t) , (2)

where m is the drift vector including the Wong-Zakai correction term, and
σ (X(t),X (t − τ) , t) is the diffusion matrix given by

σjlσkl (X(t),X (t − τ) , t) = 2πKrsGjrGks, (3)

where repeated indices imply summation. The Brownian motion dB (t) has
the following properties

E [dB (t)] = 0, E [dBi (t1) dBj (t2)] =
{

0 t1 �= t2
δijdt t1 = t2 = t

. (4)

Note that the system lives in a state space with an infinite dimension and
the state vector is given by (X (t) ,X (t − t1) , 0 < t1 ≤ τ). In general, X (t)
is no longer a Markov process because it depends on its history. Following
the idea of the semi-discretization method, we discretize the delayed part
of the state vector (X (t − t1) , 0 < t1 ≤ τ). Let N be integer such that
Δτ = τ/N . τi = iΔτ (i = 1, 2, · · · , N). Then, we introduce a finite difference
approximation of the derivatives of (Ẋ (t − τi) , 1 ≤ i ≤ N) as

Ẋ (t − jΔτ) =
1

Δτ
[X (t − (j − 1)Δτ) − X (t − jΔτ)] , 1 ≤ j ≤ N. (5)

Note that higher order Runge-Kutta algorithms, Chebyshev nodes to replace
the uniform sampled points τi and implicit-explicit methods can be applied
leading to better approximation of Ẋ (t − jΔτ) and more accurate solutions
overall in frequency and time domain [19,20,21,22,23,24,25].

Define a discrete vector as

Y (t) = [X (t) ,X (t − Δτ) ,X (t − 2Δτ) , · · · ,X (t − NΔτ)]T

≡ [Y1 (t) ,Y2 (t) ,Y3 (t) , · · · ,YN+1 (t)]T . (6)

We obtain an Itô stochastic equation for the vector Y (t).
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dY (t) =

⎡
⎢⎢⎢⎣

m
(
Y1 (t) ,YN+1 (t) , t

)
1

2Δτ [Y1 (t) − Y3 (t)]
...

1
Δτ [YN (t) − YN+1 (t)]

⎤
⎥⎥⎥⎦ dt +

⎡
⎢⎢⎢⎣

σ
(
Y1 (t) ,YN+1 (t) , t

)
0
...
0

⎤
⎥⎥⎥⎦ dB (t)

≡ m̂(Y, t)dt + σ̂ (Y, t) dB (t) . (7)

Note that for the indices 2 ≤ i ≤ N − 1, the central difference approximation
of the derivatives is adopted. We have found that this substantially improves
the accuracy of the approximate solution, and is used in all the numerical
examples.

Remarks

Some remarks on the FDMP method are in order.

1. Equation (7) indicates that Y (t) is a Markov process when dB (t) is
a Brownian motion [26]. The conditional probability density function of
Y (t) satisfies a FPK equation as well as backward Kolmogorov equation.
We shall study these equations later in the paper.

2. Discretization of the delayed time interval (0, τ) can be non-uniform. For
systems with more than one time delays, we can make all the time delays
to be the instances of the discretization. This enables the FDMP method
to deal with multiple time delays in a consistent manner [18].

3. Note that Equation (5) introduces a time-domain approximation of the
delayed system response in a similar manner to other numerical integra-
tion methods such as the Runge-Kutta method. The frequency domain
properties of the approximation can be explicitly addressed as is the case
in [20, 23, 24]. We have found that the FDMP method based on the fi-
nite difference scheme accurately computes the dominant poles of linear
systems with time delay, hence, correctly predicts the stability of the sys-
tem. When Chebyshev nodes or a low-pass filter based approximation are
used to discretize the delayed response, many lower frequency poles can
be predicted accurately.

3 Applications

One of the advantages of the FDMP method is that it keeps the system
in a standard state space format. This allows us to extend all the existing
methods and theories for analysis and control of stochastic systems to the
ones with time delay. Here, we present the theory of stochastic systems within
the framework of FDMP.
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3.1 FPK Equation

The conditional probability density function pY(y, t|y0, t0) for the stochastic
system (7) satisfies the FPK equation given by

∂

∂t
pY(y, t|y0, t0) = − ∂

∂yj
[m̂j(y, t)pY] +

∂2

∂yj∂yk

[
b̂jk(y, t)

2!
pY

]
, (8)

where the index j runs from 1 to m = n(N +1) and b̂jk = σ̂jlσ̂kl or b̂ = σ̂σ̂T .
The index l runs from 1 to p, the dimension of dB(t). The FPK equation is
subject to an initial condition, for example,

pY(y, t|y0, t0) = δ(y − y0). (9)

Note that since the stochastic excitations only act on the vector X (t) =
Y1 (t), the second order derivatives of the FPK equation only involve the
components of Y1 (t). Hence, there are only n×n diffusion terms, instead of
m×m. In other words, the time-delay within the FDMP method only affects
the drift term of the FPK equation. This is also true with the backward
Kolmogorov equation and its derivatives in the study of reliability and first-
passage time probability.

3.2 Moment Equations

Recall that in the Itô sense, dBk(t) is defined as the forward difference and
σ̂jk(Y, t) is independent of dBk(t). Also, E[dBk(t)] = 0. Taking the mathe-
matical expectation on both sides of Equation (7), we have

dE[Yj(t)]
dt

= E[m̂j(Y, t)]. (10)

Consider a function F (Y, t) = YjYk. According to Itô’s lemma, we have

d(YjYk) =
(

m̂jYk + m̂kYj +
1
2
b̂jk

)
dt + (σ̂jlYk + σ̂klYj) dBl(t). (11)

Taking the expectation of the equation, we obtain the equation for the cor-
relation function

dE[YjYk]
dt

= E

[
m̂jYk + m̂kYj +

1
2
b̂jk

]
. (12)

By following the same steps, we can construct differential equations governing
the evolution of the moments of any order. Consider a linear example. The
moment equations of the first and second orders are readily obtained in the
matrix form,
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dμY

dt
= ÂμY, (13)

dRYY

dt
= ÂRYY + RYYÂT +

1
2
b̂, (14)

where μY = E[Y] and RYY = E[YYT ].

3.3 Reliability

The backward Kolmogorov equation for the process Y (t) can be derived
as [27]

− ∂

∂t0
pY(y, t|y0, t0) = m̂j(y0, t0)

∂pY

∂y0j
+

b̂jk(y0, t0)
2!

∂2pY

∂y0j∂y0k
. (15)

Note that t0 ≤ t < ∞. Integrating Equation (15) with respect to the delayed
components (y2,y3, · · · ,yN+1) of the state vector leads to the backward
equation for the marginal probability density function.

− ∂

∂t0
pX(x, t|y0, t0) = m̂j(y0, t0)

∂pX

∂y0j
+

b̂jk(y0, t0)
2!

∂2pX

∂y0j∂y0k
. (16)

An important application of the backward Kolmogorov equation is the re-
liability study. Consider the state vector X (t) of the original system. Let
S ⊆ Rn be a domain in which the system is considered to be safe. Γ is the
boundary of S. Assume that all the components of Y (t0) = y0 lie inside S
at time t0. The probability that the system is still in the safe domain S at
time t is given by

RS (t, t0,y0) = P (t < T ∩ X (t) ∈ S|Y (t0) = y0) (17)

=
∫
S

pX(x, t|y0, t0)dx,

where T is the first time when X (t) crosses the boundary Γ . RS (t, t0,y0) is
also known as the reliability against the first-passage failure with respect to
the safe domain S.

Integrating Equation (15) over S with respect to x, we obtain a partial
differential equation of the reliability function RS (t, t0,y0).

−∂RS (t, t0,y0)
∂t0

= m̂j(y0, t0)
∂RS (t, t0,y0)

∂y0j
+

b̂jk(y0, t0)
2!

∂2RS (t, t0,y0)
∂y0j∂y0k

,

(18)
subject to the following initial and boundary conditions

RS (t0, t0,y0) = 1, y0i ∈ S, (1 ≤ i ≤ N + 1), (19)
RS (t, t0,y0) = 0, y0i ∈ Γ (for at least one i). (20)
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3.4 First-Passage Time Probability

Denote the complement of RS (t, t0,y0) as FS (t, t0,y0), which is the proba-
bility distribution function of the first-passage time. We have

FS (t, t0,y0) = P (t ≥ T |Y (t0) = y0) = 1 −RS (t, t0,y0) . (21)

Substituting this relationship to Equation (18), we obtain

−∂FS (t, t0,y0)
∂t0

= m̂j(y0, t0)
∂FS (t, t0,y0)

∂y0j
+

b̂jk(y0, t0)
2!

∂2FS (t, t0,y0)
∂y0j∂y0k

.

(22)
The probability density function of the first-passage time denoted by
pT (t|y0, t0) is given by

pT (t|y0, t0) =
∂FS (t, t0,y0)

∂t
= −∂RS (t, t0,y0)

∂t
. (23)

Differentiating Equation (22) with respect to t, we yield the governing equa-
tion for pT (t|y0, t0)

−∂pT (t|y0, t0)
∂t0

= m̂j(y0, t0)
∂pT (t|y0, t0)

∂y0j
+

b̂jk(y0, t0)
2!

∂2pT (t|y0, t0)
∂y0j∂y0k

. (24)

Since, at a given time t > t0 and when y0i ∈ Γ (for at least one i), the reli-
ability of the system vanishes RS (t, t0,y0) = 0, this suggests the boundary
condition

pT (t|y0, t0) = 0, t > t0, y0i ∈ Γ (for at least one i). (25)

Assume that initially, the system starts from a point in the safe domain with
probability one, we have an initial condition

pT (t0|y0, t0) = δ(y0), y0i ∈ S, (1 ≤ i ≤ N + 1). (26)

3.5 Pontryagin-Vitt Equations

The first-passage time is a random variable and its rth order moment can be
defined as

Mr (y0, t0) = E[(T − t0)r|y0, t0] =

∞∫
t0

(t − t0)rpT (t|y0, t0) dt. (27)
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From Equation (24), we obtain a set of integral-partial differential equations
for the moments of the first-passage time as

−
∞∫

t0

(t − t0)r ∂pT (t|y0, t0)
∂t0

dt = m̂j(y0, t0)
∂Mr (y0, t0)

∂y0j
(28)

+
b̂jk(y0, t0)

2!
∂2Mr (y0, t0)

∂y0j∂y0k
.

This equation is in general difficult to solve. Assume that X(t) is a station-
ary process such that pT (t|y0, t0) = pT (τ |y0) = −∂RS(τ,y0)

∂τ , m̂j(y0, t0) =
m̂j(y0) and b̂jk(y0, t0) = b̂jk(y0) where τ = t − t0. Let

Mr (y0) =

∞∫
0

τrpT (τ |y0) dτ. (29)

Assume that limτ→∞τrpT (τ |y0) = 0. We can derive a set of the generalized
Pontryagin-Vitt equations for the moments of the first-passage time as

−rMr−1(y0) = m̂j(y0)
∂Mr (y0)

∂y0j
+

b̂jk(y0)
2!

∂2Mr (y0)
∂y0j∂y0k

. (30)

All the moments satisfy the same boundary condition

Mr (y0) = 0, y0i ∈ Γ (for at least one i), r = 1, 2, 3, ... (31)

Note that M0(y0) = 1 because pT (τ |y0) is a probability density function
of τ . Hence, the mean of the first-passage time satisfies the Pontryagin-Vitt
equation with r = 1,

−1 = m̂j(y0)
∂M1 (y0)

∂y0j
+

b̂jk(y0)
2!

∂2M1 (y0)
∂y0j∂y0k

. (32)

4 Conclusion

We have presented a method of finite dimensional Markov process approxi-
mation for stochastic dynamical systems with time delay. The FDMP method
preserves the standard state space format of the system, and allows us to ap-
ply all the existing methods and theories for analysis and control of stochastic
dynamical systems. We have presented the theoretical framework for stochas-
tic dynamical systems with time delay based on the FDMP method, including
the FPK equation, backward Kolmogorov equation, moment equations and
reliability formulation. The present work opens a gate to various studies of
stochastic dynamical systems with time delay.
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Response Analysis of Nonlinear Multi-degree of 
Freedom Systems to Non-Gaussian Random 
Excitations 
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Department of Mechanical Engineering, University of Nebraska, Lincoln, 
NE 68588-0656, USA 

Abstract. A novel approach for response analysis of multi-degree-of-freedom (mdof) non-
linear systems under non-Gaussian nonstationary random excitations is presented. It makes 
use of the stochastic central difference (SCD) method, time co-ordinate transformation 
(TCT), and adaptive time scheme (ATS). For tractability and simplicity of illustration, a 
two degree-of-freedom (dof) nonlinear asymmetric system under a non-Gaussian nonstatio-
nary random excitation is studied in the present investigation. Comparisons between com-
puted results obtained for the system with Gaussian random excitations to those of the same 
system under non-Gaussian random excitations are made. It is concluded that the proposed 
approach is relatively very efficient, simple, and accurate for response analysis of mdof 
highly nonlinear systems under non-Gaussian nonstationary random excitations.  

Keywords: Nonlinear, Multi-degree-of-freedom systems, Non-Gaussian excitations. 

1   Introduction 

For reasons of safety and economy, many modern structures and systems such as 
systems that house nuclear reactors, tall buildings, naval and aerospace installa-
tions, and their components have to be designed to withstand various intensive 
complicated loadings which can only be realistically modeled as random 
processes. Until very recently, these latter processes have generally been treated as 
Gaussian random processes. In practice, particularly in the designs and analysis of 
space shuttles and many other vehicles, there is a need to deal with the excitation 
processes as non-Gaussian ones. Specifically, the MIL-STD-810F DOD Test  
Method Standard [1], and Defence Standard 00-35 of the Ministry of Defence [2] 
require consideration of the non-Gaussian behavior in simulation and testing envi-
ronments. Furthermore, in offshore structure design such as the tension-leg plat-
form the response has been known to be non-Gaussian. Wind-generated waves in 
finite water depth have long been recognized as non-Gaussian random processes.  

While analysis of non-Gaussian random processes has generated considerable 
amount of interests in recent years in the field of random vibration [3-5] it seems 
that an efficient and accurate analysis for nonlinear multi-degree-of-freedom 
(mdof) systems under non-Gaussian random excitations is not available. The  
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investigation being reported here was therefore concerned with providing a means 
of efficient and accurate analysis, and predicting responses of highly nonlinear 
mdof systems under non-Gaussian nonstationary random excitations. Owing to 
their abilities to provide efficient and accurate responses of mdof nonlinear sys-
tems and discretized nonlinear shell structures under Gaussian random excitations, 
the stochastic central difference (SCD) method [6], the time co-ordinate transfor-
mation (TCT) [7], and the adaptive time scheme (ATS) [7] were combined to form 
a novel procedure that was developed in the investigation. For tractability and 
simplicity of illustration, a two degree-of-freedom (dof) nonlinear asymmetric sys-
tem under a non-Gaussian nonstationary random excitation is considered. This 
same nonlinear two dof system under a zero-mean Gaussian nonstationary random 
excitation was studied by the author and associate [7]. The latter excitation was 
modeled as a product of a deterministic modulating function and a zero-mean dis-
crete Gaussian white noise (DGWN). Comparison between results obtained by the 
SCD method and those computed by the Monte Carlo simulation (MCS) was 
made and it was found to have excellent agreement [7]. Thus, the SCD method 
was further developed to be applied to nonlinear mdof systems under non-
Gaussian nonstationary random excitations.  

In Section 2, the SCD method for mdof nonlinear systems under non-stationary 
Gaussian random excitations is introduced. Section 3 is concerned with the SCD 
method for mdof nonlinear under non-Gaussian nonstationary random excitations. 
Computed results and comparisons between those obtained for systems under non-
Gaussian nonstationary random excitations and those for systems under Gaussian 
nonstationary random excitations are included in Section 4. The final section,  
Section 5 includes concluding remarks. 

2   Nonlinear Systems under Gaussian Excitations  

For completeness and in order to provide a foundation for the formulation and 
presentation of the systems under non-Gaussian random excitations to be intro-
duced in the following section, analysis of  mdof nonlinear systems under Gaus-
sian random excitations are consider in this section first. 
     The governing matrix equation of motion is given by ݔܯሷ ൅ ሶݔܥ ൅ ݔܭ ൌ ܲ                                              (1) 

where M, C and K are, respectively the nonlinear assembled mass, damping and 
stiffness matrices of the system; P is the external excitation vector which, in gen-
eral, includes Gaussian nonstationary random forces. A typical example for P is 
the product of modulating forcing vector and a zero mean Gaussian white noise 
process.  
     Discretizing Eq. (1) in the time domain, one has  ܯ௦ݔ௦ሷ ൅ ௦ሶݔ௦ܥ ൅ ௦ݔ௦ܭ ൌ ௦ܲ,                                              ሺ2ሻ 

where the subscript ݏ denotes the time step; for instance, ݔ௦ is the value of ݔ at 
time step ݐ௦ such that the time step size  ∆ݐ ൌ ௦ାଵݐ െ ଴ݐ  ௦  andݐ ൌ 0.  
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Following the steps in the derivation of recursive expression for the mean 
square matrix of generalized displacement vector in the SCD method [6], one  
obtains 

             ܴ௦ାଵ ൌ ଶܴܰ௦ ଶ்ܰ ൅ ଷܴܰ௦ିଵ ଷ்ܰ ൅ ሺ∆ݐሻସ ଵܰܤ௦ ଵ்ܰ ൅ ଶܰܦ௦ ଷ்ܰ                                 ൅ ଷܰܦ௦் ଶ்ܰ ൅ ሺ∆ݐሻଶ ଶܰݔۃ௦ ௦்ܲ ۄ ଵ்ܰ ൅ ሺ∆ݐሻଶ ଵܰۃ ௦ܲݔ௦் ۄ ଶ்ܰ          (3)    ൅ሺ∆ݐሻଶ ଷܰݔۃ௦ିଵ ௦்ܲ ۄ ଵ்ܰ ൅ ሺ∆ݐሻଶ ଵܰۃ ௦ܲݔ௦ିଵ் ۄ ଷ்ܰ , 
in which      ଵܰ ൌ ቂܯ௦ ൅ ଵଶ ሺ∆ݐሻܥ௦ቃିଵ

, ଶܰ ൌ ଵܰሾ2ܯ௦ െ ሺ∆ݐሻଶܭ௦ሿ , ଷܰ ൌ ଵܰ ቂଵଶ ሺ∆ݐሻܥ௦ െ ௦ቃ,                             ܴ௦ܯ ൌ ௦்ݔ௦ݔۃ ௦ܤ   , ۄ ൌ ۃ ௦ܲ ௦்ܲ , ۄ ௦ܦ ൌ ௦ିଵ்ݔ௦ݔۃ ۄ௦ାଵݔۃ                                   (4a,b,c)                        ,ۄ ൌ  ሺ∆ݐሻଶ ଵܰۃ ௦ܲۄ ൅  ଶܰݔۃ௦ۄ ൅  ଷܰݔۃ௦ିଵۄ,                     ሺ4dሻ  
where the angular brackets denote the mathematical expectation or ensemble aver 
age and the superscript T designates “the transpose of”. Equation (3) contains the 
recursive covariance matrix. The terms containing ௦ܲݔ௦் -௦ and their transposܦ ,௦ܤ ,
es on the right-hand side (RHS) of Eq. (3) require further algebraic manipulation 
and expansion in the following. 

Without loss of generality, the external random excitation vector P  in Eq. (1) 
may be defined by 

 ܲ ൌ Φሺݐሻݓሺݐሻ,                                                     (5) 

where  Φሺݐሻ is the vector of deterministic modulating functions, every element or 
entry of the deterministic modulating vector can be written as ߶௜ሺݐሻ ൌ  ݉௜ሺݐሻ ൌ ௥௜ሺ݁ିఈభ೔௧ܧ െ ݁ିఈమ೔௧ሻ                            ሺ6ሻ 

in which ߙଵ௜ ,  i = 1, 2, 3,…, and ߙଶ௜ are positive constants satisfying ߙଵ௜ ൏  , ଶ௜ߙ
and ܧ௥௜ is a constant applied to normalize  ߶௜ሺݐሻ such that ݉ܽݔሼ߶௜ሺݐሻሽ ൌ ۄ௦ଶሺ0ሻݓۃ                                                      ሻ is the zero-mean Gaussian white noise whose discrete varianceݐሺݓ ;1.0 ൌ  ሺ0ሻ                                                   ሺ7ሻߜ଴ܵߨ2

where ߜሺ. ሻ is the Kronecker delta function such that ߜሺ0ሻ ൌ 1; ܵ଴ is the spectral 
density of the discrete Gaussian white noise process. Of course, for stationary ran-
dom excitations  ߶௜ሺݐሻ ൌ 1  which are just special cases of Eq. (6). 
     Application of Eqs. (5) through (7) to Eq. (3) and after some algebraic manipu-
lation, one can show that                                                       ܴ௦ାଵ ൌ ܴ௦ሺଵሻ ൅ ܴ௦ሺଶሻ ൅  ܴ௦ሺଷሻ ,                                  (8) 

where         ܴ௦ሺଵሻ ൌ   ଶܰ ܴ௦ ଶ்ܰ ൅  ଷܰ ܴ௦ିଵ ଷܰ ்  ,        ܴ௦ሺଶሻ ൌ   ଶܰ ܦ௦ ଷ்ܰ ൅  ଷܰ ܦ௦் ଶܰ ்  ,         ܴ௦ሺଷሻ ൌ ሺ∆ݐሻସ  ଵܰ ܤ௦ ଵ்ܰ . 
Equation (8) is the recursive mean square of generalized displacement vector of 
the nonlinear system under Gaussian nonstationary random excitations. It is noted 
that the parameter matrices N1, N2 and N3 have to be updated at every time step 
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since they are time-dependent for the nonlinear system. If the system is linear 
these parameter matrices are constant. 

The expression for the recursive covariance matrix of the generalized dis-
placement vector can be obtained from Eq. (8) as                                                  ௦ܷାଵ ൌ ௦ܷሺଵሻ ൅  ௦ܷሺଶሻ ൅  ௦ܷሺଷሻ ,                                      (9) 

where        ௦ܷሺଵሻ ൌ   ଶܰ ௦ܷ ଶ்ܰ ൅  ଷܰ ௦ܷିଵ ଷܰ ்  ,        ௦ܷሺଶሻ ൌ   ଶܰ ܣ௦௠ ଷ்ܰ ൅  ଷܰ ሺܣ௦௠ሻ் ଶܰ ்  ,         ௦ܷሺଷሻ ൌ ሺ∆ݐሻସ  ଵܰ ܤ௦ ଵ்ܰ ,                                        ௦ܷ ൌ  ܴ௦ െ ݔۃ௦ݔۃۄ௦்ۄ , ௦ܦ = ௦௠ܣ െ ்ۄ௦ିଵݔۃۄ௦ݔۃ  .    

Before leaving this section it is noted that an efficient route of computing recur-
sive covariances and mean squares of generalized displacement vector of the non-
linear system is to first apply Eq. (9) for the covariance matrix ௦ܷାଵ and then eva-
luate the mean square matrix ܴ௦ and so on. 

3   Nonlinear Systems under Non-Gaussian Excitations 

The SCD method for the case with non-Gaussian random excitations, the  
non-Gaussian random excitation model, time co-ordinate transformation (TCT) 
technique, and an adaptive time scheme (ATS) are presented in the following sub-
sections. 

3.1   Recursive Expressions for Systems under Non-Gaussian  
Random Excitations 

In this case, the recursive expression for the mean square matrix of displacements 
is identical to that given in Eq. (3) except that the third, sixth, seventh, eighth, and 
ninth terms on the RHS have to be evaluated differently. Unlike in the case of 
Gaussian random excitations these terms are not zero in general. Thus, the recur-
sive mean square of the generalized displacement vector can be obtained as                                                      ܴ௦ାଵ ൌ ܴ௦ሺଵሻ ൅ ܴ௦ሺଶሻ ൅  ܴ௦ሺ௡ሻ ,                                (10) 

where the first two terms on the RHS are defined in Eq. (8) while the third term on 
the RHS is given by ܴ௦ሺ௡ሻ ൌ ሺ∆ݐሻସ ଵܰܤ௦ ଵ்ܰ ൅ ሺ∆ݐሻଶ ଶܰݔۃ௦ ௦்ܲ ۄ ଵ்ܰ                                                               ൅ ሺ∆ݐሻଶ ଵܰۃ ௦ܲݔ௦் ۄ ଶ்ܰ                                                           (11)         ൅ ሺ∆ݐሻଶ ଷܰݔۃ௦ିଵ ௦்ܲ ۄ ଵ்ܰ ൅ ሺ∆ݐሻଶ ଵܰۃ ௦ܲݔ௦ିଵ் ۄ ଷ்ܰ , 

in which now the random excitation vector Ps is non-Gaussian and the terms on 
the RHS have to be evaluated for a particular non-Gaussian excitation process. 
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For the covariance matrix, Eq. (9) can be similarly applied, of course, with due 
modification to the terms involving the excitation process. 

3.2   Non-Gaussian Random Excitation Models 

Various non-Gaussian random excitation processes can be found in [4,5], for ex-
ample. However, for verification purpose and direct comparison to results of 
known nonlinear system under Gaussian random excitations the following specific 
non-Gaussian nonstationary random excitation process is employed.  Consider                                               ௦ܲ ൌ ሾ ௦ܲଵ ௦ܲଶ ௦ܲଷ … ௦ܲ௡ሿ்,                                                ሺ12ሻ 

where Psi  is the i’th element of the non-Gaussian random excitation vector at time 
step ts. In the present investigation,                                                ௦ܲ௜ ൌ  ௦ܲ௜ ሺݐ௦ሻ ൌ ሾ݉௜ሺݐ௦ሻሿଶ ଴ܵߨ௦ሻඥ6ݐଶሺݓ  .                             ሺ13ሻ 

The corresponding discrete ensemble average is defined by ۃ ௦ܲ௜ۄ ൌ  ඥ2ܵߨ௢/3 ݉௜ଶሺݐ௦ሻ.                                     (14) 

The corresponding discrete mean square is ۃ ௦ܲ௜ଶ ሺݐ௦ሻۄ ൌ  ௦ሻ.                                     (15)ݐ௢ ݉௜ସሺܵߨ2 

Finally, the corresponding discrete variance, however, is obtained as                                                ߪۃ௦௜ଶ ሺݐ௦ሻۄ ൌ  ሺ4ܵߨ௢/3ሻ݉௜ସሺݐ௦ሻ.                                       ሺ16ሻ 

With the above results, Eq. (11) can be explicitly obtained, accordingly.  

3.3   Time Co-ordinate Transformation 

For stiff mdof nonlinear systems or systems with large numbers of dof, typically 
encountered in the finite element analysis (FEA), a computational strategy, known 
as the TCT technique has been proposed by the author [8] to deal with computa-
tional instability [9], and its use in the FEA has been demonstrated by the author 
and his associate [10], for example. Another advantage of applying the TCT tech-
nique in the FEA is the fact that the finite element size or mesh dimensions can be 
relatively much coarser for accurate response computations since the dimension-
less highest natural frequency is always equal to unity. For completeness, it is 
briefly introduced in this sub-section.  

In the TCT strategy it is assumed that the stiff linear counter part of the nonli-
near system governed by Eq. (2) has its highest natural frequency Ωs or simply 
writing as Ω. Within every time step the system can be considered as linear. 
Therefore, one can perform the following operation    ܯ௦ఛݔ௦ఛሷ ൅ ሺܥ௦ఛ/Ωሻ ݔ௦ఛሶ ൅ ሺܭ௦ఛ /Ωଶሻ ݔ௦ఛ ൌ ௦ܲఛ/Ωଶ,                         ሺ17ሻ 
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where the over-dot and double over-dot now denote, respectively the first and 
second order derivatives with respect to dimensionless time τ which is related to 
Ω  by τ = Ωݐ. The second subscript τ refers to the quantity in the τ-domain. Thus, 
for example, ܭ௦ఛ is the stiffness matrix at dimensionless time step τs, so that ܭ௦ఛ ൌ ௦ /Ωଶ, and ௦ܲఛܭ ൌ ௦ܲ /Ωଶ,  and so on. 

Equation (10) can now be applied to compute the recursive mean square matrix 
of the generalized displacement vector of the discretized system defined by Eq. 
(17) in the dimensionless time domain. It should be noted that the time step size ∆ݐ in Eq. (10) now should be replaced with the dimensionless time step size Δτ 
while the mass matrix ܯ௦ in Eq. (10) should be replaced with  ܯ௦ఛ, for example. 

Once the mean square and covariance matrices of displacements in the τ do-
main are obtained using Eqs. (10) and (9), they are converted back to the original t 
domain by the following relations [9]:                                              ܴ௦ ൌ  Ω ܴ௦τ ,           ௦ܷ ൌ Ω ௦ܷఛ.                                ሺ18a, bሻ 

3.4   Adaptive Time Scheme 

Three ATS have been studied by the author and his associate, and presented in [7] 
for the response computation and analysis of highly nonlinear mdof systems. In 
the latter reference it was found that in terms of computational effectiveness and 
accuracy, the SCD-TATS is a better strategy for stiff systems. This was further 
confirmed in [10]. Therefore, in the presently proposed approach only the SCD-
TATS is adopted. The SCD-TATS means that in the application of the SCD me-
thod the TCT is applied once at the beginning of the computation process before 
the application of the ATS.  

4   System with Asymmetric Nonlinear Stiffness 

For tractability and simplicity of illustration, a two dof nonlinear asymmetric sys-
tem under a non-Gaussian nonstationary random excitation is considered in this 
section. This same nonlinear two dof system under a zero-mean Gaussian nonsta-
tionary random excitation has been studied by the author and associate [7]. In the 
latter work the nonstationary random excitation was modeled as a product of a de-
terministic modulating function and a zero-mean discrete Gaussian white noise 
(DGWN). Comparison between results obtained by the SCD method and those 
computed by the MCS was made and it was found to have excellent agreement 
[7]. Therefore, responses of this system under Gaussian nonstationary random ex-
citations are readily available for comparison. In Sub-section 4.1 system parameter 
matrices and other pertinent data are provided while computed results and com-
parison studies are included in Sub-section 4.2. 
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4.1 Two Dof System with Asymmetric Stiffness 

The two dof nonlinear system considered here has previously been investigated by 
Kimura and Sakata [11], and the author and his associate [7,12]. It may be applied 
to study soil-structure interaction or a primary structure housing a secondary 
equipment under an earthquake excitation treated as a Gaussian nonstationary ran-
dom process. The system parameter matrices are given as:                            ܯ ൌ  ቂ1 00 1ቃ ܥ   , ൌ  ቈ 2ζଵܹ െ2μζଶെ2ζଵܹ 2ሺ1 ൅ μሻζଶ቉,                        ሺ19ܽ, ܾሻ             ܭ ൌ  ൤݇ଵଵ ݇ଵଶ݇ଶଵ ݇ଶଶ൨,      ݇ଵଵ ൌ ܹଶ,    ݇ଵଶ ൌ  െߤ ൅ ଶݔηሺߤ െ  μεݔଶଶሻ,        ሺ19ܿሻ ݇ଶଵ ൌ  െܹଶ,    ݇ଶଶ ൌ 1 ൅ ߤ ൅ ሺ1 െ ଶ൅ሺ1ݔሻηߤ ൅ μሻεݔଶଶ,    ߤ ൌ ݉ଶଶ݉ଵଵ ,     ܹ ൌ ߱ଵ߱ଶ ,   ߬ ഥ ൌ  ߱ଶݐ, ߱ଵ ൌ  ඨ ݇ଵ݉ଵଵ  ,   ߱ଶ ൌ  ඨ ݇ଶ݉ଶଶ,                               ௖೔௠೔೔ ൌ 2ζ௜߱௜ ,         ݅ ൌ 1,2,           ܲ ൌ  ൫௠భሺఛതሻ௪ሺఛതሻ଴ ൯ ,                       ሺ20ሻ  

η and ε are the nonlinear parameters of the system,  ݇ଵ and ܿଵ are the stiffness and 
damping constants between the first mass and base where the excitation is applied, ݇ଶ and ܿଶ are the stiffness and damping constants between the first and second 
masses. Note that the above system nonlinear stiffness matrix is asymmetric. 

For the system studied in the present investigation, the above parameters are: 
W=1, ζଵ ൌ  ζଶ ൌ ߤ  ,0.10 ൌ 1.0, ܵ௢ ൌ 0.0012, ଵଵߙ ൌ 0.125, ଶଵߙ ൌ ௥ଵܧ,0.250 ൌ 4.0 ,η ൌ  െ1.0, and ε ൌ 1.5, indicating the system is highly nonlinear. 

4.2   Computed Results and Discussion 

With the system parameters and nonstationary random excitations provided in the 
last sub-section and defined by Eqs.(6) and (13), the non-Gaussian nonstationary 
random excitation is presented in Figure 1. The computed mean square responses 
for the system under Gaussian and non-Gaussian nonstationary random excitations 
are included in Figures 2 through 4. Specifically, Figures 2 and 4 include results of 
Gaussian and non-Gaussian random responses of the first mass, and second mass 
of the system, respectively. Figure 3 includes results of ensemble average of x1 
and x2. These figures clearly show that for the particular Gaussian and non-
Gaussian random excitations considered in the present investigation the differenc-
es of the peak values of the mean squares of responses are not very much. It is also 
noted that the width of the plots are narrower for the non-Gaussian random excita-
tion case. It is important to note that every MCS run requires approximately 90 
times longer than the presently proposed approach for results of Gaussian random 
excitation. For systems with large numbers of dof the saving in computational 
time for the presented approach is believed to be much more substantial. 
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Fig. 1 Non-Gaussian nonstationary random excitation applied to first mass 

 
 
 

 

Fig. 2 Comparison of mean squares of displacement response x1 
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Fig. 3 Comparison of ensemble averages of x1 and x2 
 
 
 

 

Fig. 4 Comparison of mean squares of displacement response x2 
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4   Concluding Remarks 

In the foregoing, a novel approach for response analysis of multi-degree-of-
freedom (mdof) nonlinear systems under non-Gaussian nonstationary random ex-
citations has been presented. It makes use of the stochastic central difference 
(SCD) method, time co-ordinate transformation (TCT), and adaptive time scheme 
(ATS). For tractability and simplicity of illustration, a two degree-of-freedom 
(dof) nonlinear asymmetric system under a non-Gaussian nonstationary random 
excitation was considered. Comparisons between computed results obtained for 
the system with Gaussian random excitations to those of the same system under 
non-Gaussian random excitations have been made. The proposed approach is very 
efficient compared with the MCS. It is relatively simple to implement and com-
puted results are very accurate.  

Computed results of nonlinear systems in the FEA will be obtained and pub-
lished elsewhere in due course. 
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Abstract. In this paper an approximate explicit probability density function for the analysis 
of external oscillations of a linear and geometric nonlinear simply supported beam driven 
by random pulses is proposed. The adopted impulsive loading model is the Poisson White 
Noise , that is a process having Dirac's delta occurrences with random intensity distributed 
in time according to Poisson's law. The response probability density function can be ob-
tained solving the related Kolmogorov-Feller (KF) integro-differential equation. An ap-
proximated solution, using path integral method, is derived transforming the KF equation to 
a first order partial differential equation. The method of characteristic is then applied to ob-
tain an explicit solution. Different levels of approximation, depending on the physical as-
sumption on the transition probability density function, are found and the solution for the 
response density is obtained as series expansion using convolution integrals. 

Keywords: Poisson Pulses, Kolmogorov Feller Equation, Path Integral Method, Method of 
Characteristic, convolution integrals. 

1   Introduction 

In many civil and mechanical engineering applications, trains of pulses arriving at 
random times are used as ideal excitation. Such an idealization is suitable as an 
example for earthquakes [1], [2] and the dynamical behavior of a railway vehicle 
travelling over an imperfect track [3]. When the impulsive loads is the so called 
Poisson White Noise, that is a process having Dirac's delta occurrences with  
random intensity distributed in time according to Poisson's law, the probabilistic 
descriptors of the response can be obtained using either the stochastic integro-
differential equation approach [4] or the differential approach [5]. Connection be-
tween the differential and the integro-differential approach has been recently 
found [10]. 

For the case of Gaussian White Noise input, an approximated response  
transition probability density function can be obtained solving the well known  
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Fokker-Planck equation. An approximated solution of the Fokker-Planck equation, 
for small values of the time step, is available in literature [6], [7]. This approxi-
mate solution was considered by many authors to solve engineering problems 
through path integral technique [8],[9].  For the case of Poisson White Noise  
input, the transition probability density function can be obtained as solution of an 
integro-differential equation   [4], known as Kolmogorov-Feller (KF) equation.  
Exact stationary solutions for some particular classes of nonlinear systems excited 
by both external and parametric delta correlated excitations were obtained 
[11],[12]. A direct numerical solution of the KF equation is not an entirely 
straightforward matter, even for two-dimensional problems, and only approxi-
mated method have been derived [13],[14],[15]. An approximate technique, for 
deriving the response transition probability density function, solving the related 
KF equation,  was proposed in [16], [21].  

In this paper an approximate explicit response probability density function, for 
the analysis of external oscillations of a linear and geometric nonlinear simply 
supported beam driven by Poisson White Noise, is obtained as solution of the re-
lated KF equation. The approximated solution, using path integral method, is de-
rived transforming the KF equation to a first order partial differential equation. 
The method of characteristic is then applied to obtain an explicit solution.  
Different levels of approximation, depending on the physical assumption on the 
transition probability density function, are found and the solution for the response 
density is obtained as series expansion using convolution integrals. 

2   Linear Oscillations of a Beam under Transversal Poisson 
Pulses 

Let us consider a simply supported beam subjected to a train of stationary Poisson 
pulses at midspan defined by 

( ) ( )
( )

∑
=
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k
kk ttAt
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δξ                                                  (2) 

where  ( )⋅δ  stand for a Dirac's delta. In eqn(1) the random instants kt  are inde-

pendent of the intensities of the spikes kA , having assigned probability density 

function ( )apA and assumed to be independent random variables, while ( )tN is an 

homogeneous Poisson counting process giving the total number of impulses oc-
curring in the time interval [0,t) with mean arrival rate equal to λ. 

The equation of motion of the beam can be written as follows 
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( )txw , being the vertical displacement of the beam. In Eq.(3) ρ is the beam den-

sity; J is the moment of inertia of the beam cross section; E is the Young's 
modulus; μ is a damping factor; l is the length of the beam. 
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Solution of eqn(3) can be obtained by mode superposition 
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In Eq.(4) ( )xnφ  are the eigenfunctions, that for simply supported beams are given 

by ( ) ( )lxnxn /sin πφ = , and using the well known orthogonality properties of the 

eigenfunction basis the following set of stochastic uncoupled linear differential 
equations is obtained 
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For n=1 the following single degree of freedom equation of motion is obtained 

( )tYYDY ξωω =++ 2
112 ���                                              (6) 

The probabilistic characterization of the response can be achieved, when truncat-
ing at the first mode, by considering the time evolution of the transition probabil-
ity of the response 
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that respects the Kolmogorov-Feller integro-differential equation 
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The initial condition for Eq. (8) reads 

( ) ( ) ( )yyyytyytyyp ′−′−=′′+ ���� δδτ ;,/;,                            (9)  

Exact stationary solutions (i.e. 0/ =∂∂ τp ) of Eq.(8) are known for particular 

classes of nonlinear systems [11], [12].  
In order to find an approximate solution of Eq.(8), following Di Paola and 

Santoro [20], the following approximation hold for the transition density function 
up to order τ 

( ) ( ) ( ) ( ) ( )[ ]yypyyyytyytyyp A ′−+′−−′−=′′+ ������ λτδλτδτ 1;,/;,       (10) 



130 M. Vasta and M. Di Paola
 

It follows that the integral term appearing in Eq.(8) becomes 
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Substituting Eq.(11) into Eq.(8) we obtain 
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Multiplying both members of Eq.(12) by the joint probability distribution 
( )tyyppt ,, ′′= � and then integrating with respect of the initial variables, the fol-

lowing differential equation for the joint probability density function 
( )ττ +=+ tyyppt ,, �  up to order τ is obtained 
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where 
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 Equation (13) is a linear partial differential equation that can be solved by the 
Method of Characteristics (see e.g. [17]). In order to construct the solution surface 
one solves the following system of ordinary differential equations on s 
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Subjected to the following initial conditions 
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Solution of Eq.(15) takes the form 
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having set 
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The solution found is finally 
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Where for the linear case the characteristic curves are explicitly given by 
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3   Nonlinear Oscillations of a Beam under Transversal Poisson 
Pulses 

Let us now consider the case of a geometric nonlinear simply supported beam sub-
jected to a train of stationary Poisson pulses at mid span whose equations of mo-
tion are defined by 
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By expanding the solution in linear mode superposition Eq.(4), the following set 
of nonlinear coupled stochastic differential equation of motion is obtained 
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For the simple case n=m=p=q=1, by setting  1111Γ=γ , the following nonlinear 

stochastic differential equation is obtained 
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The Kolmogorov-Feller equation associated with Eq.(22) reads 
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Following the same approach outlined for the linear case, the approximated solu-
tion of Eq.(23) by applying the Method of Characteristics is given by Eq.(18)  
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where the characteristic curves, because of the nonlinear term in Eq.(22), needs 
now to be evaluated by numerical integration solving the nonlinear system of or-
dinary differential equations 
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Subjected to the initial conditions 
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4   Solution of Higher Order τ 

The solution found in the previous sections for linear and nonlinear systems is 
confined to the approximation of order τ of the transition pdf as given in Eq.(11). 
However, an approximate transition pdf of higher order can be defined, consider-
ing the probability of occurrence of n pulses in the time interval τ following the 
Poisson law 
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The probability of having one spike of amplitude ( )yy ′− �� , as stated in Eq.(11) is 

simply  ( )yyp A ′− �� . The probability of having two spikes in τ of amplitude sum-

mation equal to ( )yyY ′−= �� , can be found as solution of the convolution equation 
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It follows that combining Eqs.(26),(28) the following relationship hold for the 
transition pdf 
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The transition pdf appearing in the integral term in Eq.(9), because of Eq.(29), can 
be written as follows (setting ρ=a) 
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Substituting Eq.(30) in Eq.(8), multiplying both members by the joint probability 
density ( )tyyppt ,, ′′= � and then integrating with respect of the initial variables, 

the following differential equation for the joint probability density function 
( )ττ +=+ tyyppt ,, �  up to order τ is obtained 
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Solution of Eq.(31) can be explicitly derived by the method of characteristics, 
leading to the following formula for the joint pdf of displacement and velocity at 
t+τ 
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It is worth noting that the transition pdf in Eq.(29) as well as the solution found in 
Eq.(32) recover to Eq.(11) and Eq.(18) if only terms up to order τ and τ2 are con-
sidered respectively. 

4   Conclusions 

An approximate explicit response probability density function of a beam under ex-
ternal impulsive random Poisson excitation has obtained as approximate solution 
of the KF equation. It was shown that, using a physical-based transition pdf, the 
integro differential KF equation  reduce to a first order partial differential equa-
tion, using path integral solution method for the integral term. Then, the Method 
of Characteristics has been applied to obtain the required solution. Different levels 
of approximation, depending on the physical assumption on the transition prob-
ability density function, were found and the solution for the response density has 
been obtained as series expansion using convolution integrals. 
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Abstract. In this paper, attention is focused on the steady state analysis of a class of nonlin-
ear dynamic systems with multi-delayed feedbacks driven by multiplicative correlated Gaus-
sian white noises. The Fokker-Planck equations for delayed variables are at first derived by
Novikov’s theorem. Then, under small delay assumption, the approximate stationary solu-
tions are obtained by the probability density approach. As a special case, the effects of multi-
delay feedbacks and the correlated additive and multiplicative Gaussian white noises on the
response of a bistable system are considered. It is shown that the obtained analytical results
are in good agreement with experimental results in Monte Carlo simulations.

Keywords: stochastic systems, multiple time delays, delay Fokker-Planck equation, Gaus-
sian white noise.

1 Introduction

In the past few years, stochastic time-delayed dynamic systems have been exten-
sively investigated, and the primary interests lie in revealing the interplay between
stochastic excitations and time delay feedbacks, which have been proved capable
of producing surprisingly rich phenomena. Resonance behavior in a quite sim-
ple stochastic model with time delay was observed both numerically and analyt-
ically [1]. Noise-induced resonance was studied in a single-mode semiconductor
laser with weak optical feedback [2]. Analytical results were obtained for a pro-
totypical bistable system with delayed feedback and the phenomena of coherence
resonance was found [3]. Noise-induced coherence in bistable systems with mul-
tiple time delays was investigated by using the two-state approximation [4]. Hopf
bifurcation analysis of a four-neuron network with multiple time delays was pre-
sented in [5]. Stochastic resonance in time-delayed bistable systems driven by weak
periodic signal was investigated in [6].

As an important theoretic tool for learning about the response of stochastic dy-
namical systems, the Fokker-Planck equation has been studied extensively [7,8]. In
1991, Fulinski etc [9] first introduced a correlation between a multiplicative noise
and an additive noise. Then the effects of correlation between noise have attracted
attention of many researchers [10, 11, 12].

The variety of applications demand a theory of stochastic time-delayed system.
In this context, the delay Fokker-Planck equation was first introduced by Guilouzic

W.Q. Zhu et al. (Eds.): Nonlinear Stochastic Dynamics & Control, IUTAM BOOK SERIES 29, pp. 137–146.
springerlink.com c© Springer Science + Business Media B.V. 2011
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et al [13, 14]. Then Frank [15, 16] obtained the same result by using Novikov’s the-
orem and compared the small delay approximation based on stochastic delay differ-
ential equation approach with the probability density approach. The impact of time
delays on noise-induced transitions for a Hongler model was studied in [17, 18].
Delay Fokker-Planck equations have been obtained for stochastic systems with
multiple delays by using Kramers-Moyal expansion technique [19]. In our pre-
vious work, a class of stochastic time-delayed systems with single time delay is
studied [20].

In this paper, the delay Fokker-Planck equation is first obtained for a class of
stochastic time-delayed systems driven by correlated Gaussian white noises with
multiple time delays. As a kind of generalization, it matches the result derived by
Frank [19] for some special cases. Then, the approximate stationary probability
densities are obtained by using the small delay approximations based on a prob-
ability density approach. Numerical simulations are performed for a special case
and it is shown that the analytical result is in good agreement with the Monte Carlo
simulation.

2 Delay Fokker-Planck Equations

The class of stochastic time-delayed systems to be considered within this paper are
of the form

dx(t)
dt

= h(x(t),x(t − τ1), . . . ,x(t − τm))+ g1(x(t),x(t − τ1), . . . ,x(t − τm))ξ (t)

+g2(x(t),x(t − τ1), . . . ,x(t − τm))η(t). (1)

Further, p(x,t) =< δ (x− x(t)) > denotes the probability density of the stochastic
process defined by Eq.(1). Differentiating p(x, t) with respect to time yields

∂
∂ t

p(x,t) = − <
∂
∂x

δ (x− x(t))
d
dt

x(t) >

= − ∂
∂x

∫
h(x,xτ1 , . . . ,xτm)P(x, t;xτ1 , t − τ1; . . . ;xτm , t − τm)dVτ

− ∂
∂x

∫
g1(x,xτ1 , . . . ,xτm)<ξ (t)δ (x− x(t))

m

∏
i=1

δ (xτi − x(t − τi))>dVτ

− ∂
∂x

∫
g2(x,xτ1 , . . . ,xτm)<η(t)δ (x− x(t))

m

∏
i=1

δ (xτi − x(t − τi))>dVτ ,

(2)

dVτ corresponds to the M-dimensional differential dVτ = dxτ1 . . .dxτm .
Next the Novikov’s theorem is adopted to calculate the ensemble average <

ξ (t)δ (x− x(t))∏m
i=1 δ (xτi − x(t − τi)) > and < η(t)δ (x− x(t))∏m

i=1 δ (xτi − x(t −
τi)) >, which reads

< ξkφ(ξk,ξl) > =
∫ t

0
γkl(t,t ′) <

δφ(ξk,ξl)
δξl′(t ′)

> dt ′, (3)
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here ξk and ξl are Gaussian processes with correlation function γkl , φ(ξk,ξl) is an
arbitrary functional of them. Thus

< ξ (t)δ (x− x(t))
m

∏
i=1

δ (xτi − x(t − τi)) >

= 2D
∫ t

0
δ (t − t ′) <

δ (δ (x− x(t))∏m
i=1 δ (xτi − x(t − τi)))
δx(t ′)

δx(t ′)
δξ (t ′)

>

+2D
∫ t

0
δ (t − t ′) <

δ (δ (x− x(t))∏m
i=1 δ (xτi − x(t − τi)))

δx(t ′ − τ1)
δx(t ′ − τ1)

δξ (t ′)
>

+ . . .

+2D
∫ t

0
δ (t − t ′) <

δ (δ (x− x(t))∏m
i=1 δ (xτi − x(t − τi)))

δx(t ′ − τm)
δx(t ′ − τm)

δξ (t ′)
>

+2λ
√

DQ
∫ t

0
δ (t − t ′) <

δ (δ (x− x(t))∏m
i=1 δ (xτi − x(t − τi)))
δx(t ′)

δx(t ′)
δη(t ′)

>

+2λ
√

DQ
∫ t

0
δ (t − t ′) <

δ (δ (x− x(t))∏m
i=1 δ (xτi − x(t − τi)))

δx(t ′ − τ1)
δx(t ′ − τ1)

δη(t ′)
>

+ . . .

+2λ
√

DQ
∫ t

0
δ (t − t ′) <

δ (δ (x− x(t))∏m
i=1 δ (xτi − x(t − τi)))

δx(t ′ − τm)
δx(t ′ − τm)

δη(t ′)
> .

(4)

Further, due to causality,

δx(t ′ − τi)
δξ (t ′)

=
δx(t ′ − τi)

δη(t ′)
= 0, i = 1, . . . ,m. (5)

On the other hand, integrating Eq.(1) leads to

x(t) = x(0)+
∫ t

0
h(x(t),x(t − τ1), . . . ,x(t − τm))ds

+
∫ t

0
g1(x(t),x(t − τ1), . . . ,x(t − τm))ξ (t)ds

+
∫ t

0
g2(x(t),x(t − τ1), . . . ,x(t − τm))η(t)ds, (6)

and the functional derivative gives

x(t)
ξ (t)

=
1
2

g1(x(t),x(t − τ1), . . . ,x(t − τm)), (7)

x(t)
η(t)

=
1
2

g2(x(t),x(t − τ1), . . . ,x(t − τm)). (8)
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Substituting Eq.(5), (7) and Eq.(8) into Eq.(4) yields

< ξ (t)δ (x− x(t))
m

∏
i=1

δ (xτi − x(t − τi)) >

= −D
∂
∂x

g1(x,xτ1 , . . . ,xτm) < δ (x− x(t))
m

∏
i=1

δ (xτi − x(t − τi)) >

−λ
√

DQ
∂
∂x

g2(x,xτ1 , . . . ,xτm) < δ (x− x(t))
m

∏
i=1

δ (xτi − x(t − τi)) >

= −D
∂
∂x

g1(x,xτ1 , . . . ,xτm)p(x,t;xτ1 , t − τ1; . . . ;xτm ,t − τm)

−λ
√

DQ
∂
∂x

g2(x,xτ1 , . . . ,xτm)p(x,t;xτ1 ,t − τ1; . . . ;xτm ,t − τm). (9)

Similarly,

< η(t)δ (x− x(t))
m

∏
i=1

δ (xτi − x(t − τi)) >

= −Q
∂
∂x

g2(x,xτ1 , . . . ,xτm)p(x,t;xτ1 ,t − τ1; . . . ;xτm ,t − τm)

−λ
√

DQ
∂
∂x

g1(x,xτ1 , . . . ,xτm)p(x, t;xτ1 ,t − τ1; . . . ;xτm ,t − τm). (10)

Inserting Eq.(9) and Eq.(10) into Eq.(2)leads to the delay Fokker-Planck equation

∂
∂ t

p(x,t) = F̂ p(x,t) (11)

where

F̂ =
∫

[− ∂
∂x

h(x,xτ1 , . . . ,xτm)+ D
∂
∂x

g1(x,xτ1 , . . . ,xτm)
∂
∂x

g1(x,xτ1 , . . . ,xτm)]

+λ
√

DQ
∂
∂x

g1(x,xτ1 , . . . ,xτm)
∂
∂x

g2(x,xτ1 , . . . ,xτm)]

+Q
∂
∂x

g2(x,xτ1 , . . . ,xτm)
∂
∂x

g2(x,xτ1 , . . . ,xτm)]

+λ
√

DQ
∂
∂x

g2(x,xτ1 , . . . ,xτm)
∂
∂x

g1(x,xτ1 , . . . ,xτm)]

p(xτ1 , t − τ1; . . . ;xτm ,t − τm|x,t)dVτ . (12)

When λ = D = 0, the result matches the delay Fokker-Planck equation derived by
using the Kamers-Moyal expansion [19].

3 Approximate Stationary Solution

The perturbation theoretical approach proposed by Frank [15,16] has been proven a
useful tool for obtaining the approximate stationary solution of delay Fokker-Planck
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equation. The method can also be applied to Eq.(11). Like Ref [19], we can also
illustrate this issue for a stochastic system in the form

dx(t)
dt

= h(0)(x(t))+
n

∑
i=1

h(1)
i (x(t),x(t − τi))+ g1(x(t))ξ (t)

+g2(x(t))η(t). (13)

Eq.(11) can be rewritten as

∂
∂ t

p(x,t) = − ∂
∂x

[h(0)(x)+
n

∑
i=1

∫
h(1)

i (x(t),x(t − τi))p(0)(xτi , t − τi|x,t)dxτi

+Dg1
∂g1

∂x
+ λ
√

DQg2
∂g1

∂x
+ Qg2

∂g2

∂x
+ λ
√

DQg1
∂g2

∂x
]p(x,t)

+
∂ 2

∂x2 [Dg2
1 + 2λ

√
DQg1g2 + Qg2

2]p(x, t). (14)

Like Ref [19, 20], a perturbation theoretical technique is used and we have

∂
∂x

[h(0)(x)+
n

∑
i=1

∫
h(1)

i (x(t),x(t − τi))p(0)
st (xτi ,t − τi|x,t)dxτi

+Dg1
∂g1

∂x
+ λ
√

DQg2
∂g1

∂x
+ Qg2

∂g2

∂x
+ λ
√

DQg1
∂g2

∂x
]p(1)

st (x)

=
∂ 2

∂x2 [Dg2
1 + 2λ

√
DQg1g2 + Qg2

2]p
(1)
st (x), (15)

where p(0)
st (xτi ,t − τi|x,t) is the zero order approximation of the stationary condi-

tional distribution pst(xτi ,t − τi|x, t), p(1)
st (x) is the first order approximation of the

stationary probability density pst(x).

On the other hand, since p(0)
st (xτi ,t − τi|x,t) is the conditional probability density

of the unperturbed problem, using the short time propagator discussed in Ref [7, 8]
gives

p(0)
st (xτi ,t − τi|x,t) =

√
1

4πR(0)(x)τi
exp(− [xτi − x− f (0)(x)τi]2

4R(0)(x)τi
). (16)

Substituting Eq.(16) into Eq.(15), the approximate stationary solution

p(1)
st (x) =

N
Re f f

exp(
∫

fe f f (x′)
Re f f (x′)

dx′) (17)
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is derived with

fe f f = h(0)(x)+
n

∑
i=1

√
1

4πR(0)(x)τi

∫
h(1)

i (x(t),x(t − τi))

∗exp(− [xτi − x− f (0)(x)τi]2

4R(0)(x)τi
)dxτi

+Dg1
∂g1

∂x
+ λ
√

DQg2
∂g1

∂x
+ Qg2

∂g2

∂x
+ λ
√

DQg1
∂g2

∂x
, (18)

Re f f = Dg2
1 + 2λ

√
DQg1g2 + Qg2

2. (19)

4 Case Study and Numerical Simulations

As a special case, we consider a bistable system with coupling between additive and
multiplicative noise which can be written as

d
dt

x(t) = x− x3 + ε1x(t − τ1)+ ε2x(t − τ2)+ xξ (x)+ η(t). (20)

The delay Fokker-Planck equation of the system is

∂
∂ t

p(x,t) =
∫

[− ∂
∂x

(x− x3 + ε1x(t − τ1)+ ε2x(t − τ2)+ Dx + λ
√

DQ)

+
∂ 2

∂x2 (Dx2 + 2λ
√

DQx + Q)]p(xτ1 ,t − τ1;xτ2 , t − τ2|x,t)
dVτ p(x,t). (21)

When 0 < λ < 1, the approximate stationary probability density is

Pst(x) =
N

R(x)
exp{−1 + ε1τ1 + ε2τ2

D
[
1
2

x2 − cx +
c2 + a− e

2
ln|x2 + cx + e|

−c(c2 + a)−3ce−2b

2
√

e− c2

4

Arctg(
1√

e− c2

4

(x +
c
2
)), (22)

where R(x) = Dx2 + 2λ
√

DQx + Q,a = −(1 + ε1 + ε2 + D),b = −λ
√

DQ,c =
2λ

√
DQ

D ,e = Q
D . The critical curve separating the bimodal and unimodal regions is

1
4

λ 2DQ(1− ε1τ1 − ε2τ2)2 +
1
27

[D− ετ − (1 + ετ)(1 + ε)]3

1 + ετ
= 0. (23)
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Fig. 1 The critical curves in the Q−D parameter plane. (a) λ=0, ε1=0.3, τ1=0.1, ε2=0, τ2=0
(solid line), ε2=0.2, τ2=0.1 (dashed line). (b) λ=0.5, ε1=0.3, τ1=0.1, ε2=0, τ2=0 (solid line),
ε2=0.2, τ2=0.1 (dashed line).

The critical curves are plotted in Fig.1. It can be seen that the unimodal region
is increased while the bimodal region is decreased when the second time delay is
increased. It can also be seen that when λ = 0, the critical curves are straight lines.
The fact can be confirmed by examining Eq.(23).

Numerical simulation is performed to verify the validity of the analytical result
and second-order Runge-Kutta algorithm is adopted (ensemble size N = 2× 107,
single time step Δ t = 0.001).
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Fig. 2 The stationary probability density functions Pst(x) relative to point A in Fig.1 are
plotted(′−′ analytical results, ′◦′ numerical simulations results). D=1.5, Q=0.4, λ=0, ε1=0.3,
τ1=0.1, (a) ε2=0, τ2=0; (b) ε2=0.4, τ2=0.3.
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Fig. 3 The stationary probability density functions Pst(x) relative to point B in Fig.1 are
plotted(′−′ analytical results, ′◦′ numerical simulations results). D=0.7, Q=0.4, λ=0.5,
ε1=0.3, τ1=0.1, (a) ε2=0, τ2=0; (b) ε2=0.4, τ2=0.3.

From Fig.2, it can be seen that Pst(x) corresponding to the point A in Fig.1 ex-
periences the transition from a bimodal to a unimodal structure when the second
time delay is increased. Corresponding to the point B in Fig.1, Fig.3 show such a
transition, too. We can also find that when the noises are uncorrelated, the stationary
probability density function exhibits a symmetry bimodal structure. But when the
noises are correlated, the symmetry bimodal structure is broken.

Based on the probability density derived above, further discussion about the mean
first passage time (MFPT) can be performed. In this regard, interest is focused on
in the effects of the two different time delays and the degree of correlation between
noises on the transient property of the system. The switch time to escape from one
stable state −xs to another stable state +xs is given by the equation

T+xs(−xs) =
∫ +xs

−xs

dx
R(x)pst(x)

∫ x

−∞
pst(y)dy, (24)

through which MFPT can be evaluated analytically by inserting Eq.(22) into Eq.(24).

Fig. 4 The MFPT of the bistable system when parameters are fixed in the bimodal region are
depicted. ε1=0.3, τ1=0.1, ε2=0.4, (a) λ=0, D=1.5, (b) λ=0.5, D=0.7.
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Shown in Fig.4 are results for various value of the parameter Q when one time
delay is fixed to a certain value, the MFPT is seen increased with the other time
delay in both symmetric and asymmetric cases.

The quantitative aspects in conjunction with the comparison with Monte Carlo
simulation of the pervious section venders the proposed approach a viable tool for
analyzing of stochastic systems with multiple time delays.
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Stochastic Averaging of Strongly Nonlinear 
Oscillators under Poisson White Noise 
Excitation 

Y. Zeng and W.Q. Zhu 

Department of Mechanics, State Key Laboratory of Fluid Power Transmission and Control, 
Zhejiang University, Hangzhou, China 

Abstract. A stochastic averaging method for single-degree-of-freedom (SDOF) strongly 
nonlinear oscillators under Poisson white noise excitation is proposed by using the so-
called generalized harmonic functions. The stationary averaged generalized Fokker-Planck-
Kolmogorov (GFPK) equation is solved by using the classical perturbation method. Then 
the procedure is applied to estimate the stationary probability density of response of a 
Duffing-van der Pol oscillator under Poisson white noise excitation. Theoretical results 
agree well with Monte Carlo simulations.  

Keywords: Strongly nonlinear oscillator, Poisson white noise, stationary response, stochas-
tic averaging. 

1   Introduction 

In stochastic dynamics, stochastic excitation is usually modeled as Gaussian white 
noise or filtered Gaussian white noise. Many analytical and numerical methods 
have been developed for predicting the response of such kind of stochastic dy-
namical systems. However, in real engineering there are many non-Gaussian ran-
dom excitations. The representative examples of such random excitations are 
highway traffic loading, loadings caused by wind gusts associated with eddies, by 
atmospheric turbulence, or by buffeting of an airplane, and the loading acting on 
moving vehicles due to rough ground or imperfect track, etc. Therefore, many 
techniques for predicting the response of non-linear dynamical systems to non-
Gaussian random excitation have been developed in recent years, including mo-
ment closure method [1], equivalent linearization method [2], perturbation method 
[3], cell mapping method [4], spectral finite difference method [5], characteristic 
function method [6], Wiener-Hermite expansion method [7] and Monte Carlo 
simulation method [8]. However there are several difficulties which restrict the  
extensive use of these techniques, e.g., complexity in calculation for high-
dimensional nonlinear systems, much more time in repeating simulations for dif-
ferent parameter conditions, etc.. 

As a powerful technique, stochastic averaging methods based on diffusion  
approximation were extensively used in the prediction of response of various 
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nonlinear systems to Gaussian random excitation [9-12]. Through stochastic aver-
aging, nonlinear systems can be simplified and approximate statistics of response 
can be more easily obtained from the averaged equations. However, for non-
Gaussian random excitations the stochastic averaging based on diffusion approxi-
mation is not applicable and it is necessary to establish new stochastic averaging 
procedures. As the application of stochastic averaging theorems in predicting the 
response of nonlinear systems under non-Gaussian random excitations, stochastic 
averaging method of coefficients of GFPK equation for quasi linear systems under 
Poisson white noise excitation [13], standard stochastic averaging method for 
quasi linear systems under filtered Poisson white noise excitation [14], and sto-
chastic averaging method for quasi-nonintegrable-Hamiltonian system under Pois-
son white noise excitation [15] have been developed by the authors successfully. 
In this paper, a new stochastic averaging procedure is proposed for predicting the 
response of SDOF strongly nonlinear oscillators under Poisson white noise excita-
tion by using the so-called generalized harmonic functions. The approximate sta-
tionary solution of averaged GFPK equation is obtained by using the classical per-
turbation method. As an example, approximate probability density of stationary 
response of a Duffing-van der Pol oscillator under Poisson white noise excitation 
is obtained by using this new stochastic averaging method and confirmed by using 
Monte Carlo simulation.  

2   Stochastic Averaging Method 

Consider the following SDOF strongly nonlinear oscillator,  

2

1

( ) ( , ) ( , ) ( )
r

k k
k

Q P

P g Q f Q P f Q P t
=

=

= − − ε + ε ξ∑

�

�

                           

(1) 

where ( )g Q  represents nonlinear restoring force, 2 ( , )f Q Pε  represents lightly 

linear and(or) nonlinear damping, ε  is a small positive parameter and 
( ), 1, ,k t k rξ = "  represent independent Poisson white noises which can be treated 

as formal derivatives of the following homogeneous compound Poisson processes:  

( )
( ) , 1, 2, ,k

k
dC t

t k r
dt

ξ ≡ = "
                                            

(2) 
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( )

1

( ) ( )
kN t

k ki ki
i

C t Y U t t
=

= −∑
                                             

(3) 

in which, ( )kN t  is Poisson counting process with average arrival rate kλ  , 

( )kiU t t−  is unit step function at pulse arrival time kit  and kiY  is a random vari-

able representing the intensity of the i -th impulse of kξ . 

Because ε  is small, the sample motion of system (1) will be nearly periodic 
and can be written as 

cos , ( , )sin , ,Q A B P A A= Φ + = − υ Φ Φ Φ = Ψ + Θ                  (4) 

where Θ  is initial phase angle, ( , )Aυ Φ  is instantaneous angle frequency, A  is 

amplitude and B  is symmetric center coordinate. sin Φ  and cos Φ  are called 
generalized harmonic functions. In Eq. (4), A , B , Φ , Ψ  and Θ  are random 
processes and 

2 2
2[ ( ) ( cos )]

( , ) ,
sin

d V A B V A B
A

dt A

Ψ + − Φ +υ Φ = =
Φ                               

(5) 

( ) ( ) ,V A B V A B H+ = − + =                                                         (6) 

21
( ),

2
H P V Q= +

                                                            
(7) 

0
( ) ( ) .

Q
V Q g u du= ∫                                                                

(8) 

Eq.(4) can be regarded as a set of random van der Pol transformations from Q ,  

P  to A , Θ . With the transformations accomplished, Stratonovich SDE of new 
state variables A , Θ  are obtained from Eq.(1) as follows:  

2
1 1

1

2
2 2

1

( , ) ( , ) ( ),

( , ) ( , ) ( ),

r

k k
k

r

k k
k

dA m A dt g A dC t

d m A dt g A dC t

=

=

= ε Φ + ε Φ

Θ = ε Φ + ε Φ

∑

∑

D

D
                              

(9) 
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where 

1( , ) sin ,m A A f ′Θ = − υ Φ                                          (10) 

2 ( , ) (cos ),m A f R′Θ = −υ Φ +                                   (11) 

1 ( , ) sin ,k kg A A f ′Θ = − υ Φ                                         (12) 

2 ( , ) (cos ) ,k kg A R f ′Θ = − Φ + υ                                   (13) 

( cos , ( , ) sin )
,

( )(1 )

f A B A A
f

g A B R

Φ + − υ Φ Φ′ =
+ +                              

(14) 

( cos , ( , ) sin )
,

( )(1 )
k

k
f A B A A

f
g A B R

Φ + − υ Φ Φ′ =
+ +                             

(15) 

( ) ( )
.

( ) ( )

dB g A B g A B
R

dA g A B g A B

− + + += =
− + − +                                        

(16) 

By using the transformation from Stratonovich SDE to Itô SDE proposed by Di 
Paola and Falsone [16, 17], Itô SDE of A , Θ  can be obtained as follows:  

N
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1 1
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s fold
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(17) 

in which,  

N N N
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By using probability evolution equation of Markov process, GFPK equation is ob-
tained from Itô SDE (17) as follows:  

( ) ( )

( )

21

1 1

1 1

( 1) ( 1)

! !
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∞ ∞
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∑ ∑
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(19) 

where ( , , )a tρ = ρ θ  and 
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in which, i  denotes mathematical expectation. 

Obviously, coefficients of GFPK Eq. (19) are functions of A  and Θ . By using 
Eqs. (4), (5) and (17), it is found Φ  is a rapid variable, i.e.,  

N
( )( )2

2 2
1 1
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s fold
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kkk k
s k

d A dt m A dt G dC
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(22) 
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Therefore, time averaging to GFPK Eq.(19) can be replaced by space averaging 
with respect to Φ , averaged GFPK equation is obtained as follows:  

( )1

1

( 1)
,

!

ii
i

i
i

M

t i a

∞

=

∂ ρ∂ρ −=
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∑
                                         

(23) 

where ( , )a tρ = ρ  and 

2

0 0

1 1
lim ( , ) ( , ) .

2

T
ij ij ij

T
M M a dt M a d

T

π

→∞
= ϕ = ϕ ϕ

π∫ ∫
                     

(24) 

Because all the terms in the right side of averaged GFPK Eq. (23) can be rear-
ranged with respect to the order of ε , following perturbation expansion of station-
ary solution can be made:  

2
0 1 2( ) ( ) ( ) ( ) .a a a aρ = ρ + ερ + ε ρ +"                                   (25) 

Substituting Eq.(25) into Eq.(23) and using the classical perturbation method, ap-
proximate stationary solution of ( )aρ  can be obtained. And then, approximate sta-

tionary probability density ( , )aρ θ  can be derived as follows:  

1
( , ) ( ).

2
a aρ θ = ρ

π                                                 
(26) 

Using the transformations in Eq.(4), the joint probability density of Q  and P  is 

obtained as follows:  

1 2( 2 ( ))
( , ) 1 ( , )

( , ) ( , ) ( ) .
( , ) 2 ( , ) a V p V q b
a a

q p a a
q p q p

−= + −
∂ θ ∂ θρ = ρ θ = ρ
∂ π ∂      

(27) 

and marginal probability density of Q  can be obtained in the following:  

( ) ( , ) .q q p dp
∞

−∞
ρ = ρ∫

                                            

(28) 

In the following section, intensity  of random impulses of Poisson white noise is 
assumed to be Gaussian distributed with zero mean for illustrative purpose, i.e., 

24 23Y Y= . 
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3   Example 

Consider a Duffing-van der Pol oscillator subject to external excitation of Poisson 
white noise in the form:  

3 2 2( ) ( 1) ( )

Q P

P wQ Q Q P t

=

= − + α − ε β − + εξ

�

�
                         

(29) 

Substituting Eq. (29) into the Stratonovich and Itô SDEs and averaged GFPK 
equation in section 2 and solving stationary averaged GFPK equation by using the 
proposed perturbation method, approximate stationary probability density ( )aρ  

and stationary marginal probability density ( )qρ  are obtained and presented sepa-

rately in Figures 1 and 2 with parameters: 1.0w = , 1.0α = , 1.0β = , 0.4ε = , 

1.0λ = , and 2 2.0Y = . 

It is shown in Figure 1 that approximate stationary probability density ( )aρ  

agrees well with results from Monte Carlo simulation and is better than the Gaus-
sian approximate solution which is obtained under the assumption that the random 
excitation is a Gaussian white noise with the same intensity of Poisson white noise 
in Eq. (29). It is also shown in Figure 2 that stationary marginal probability den-
sity ( )qρ  obtained by using the proposed method agrees well with results from 

Monte Carlo simulation. 
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Fig. 1  Stationary probability density ( )aρ  of Duffing-van der Pol oscillator:  , ap-
proximate stationary solution obtain by the proposed method; ---, Gaussian approximate so-
lution; ● , results from Monte Carlo simulation  
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Fig. 2 Stationary marginal probability density ( )qρ  of Duffing-van der Pol oscillator: 
 , approximate stationary solution obtain by the proposed method; ● , results from 

Monte Carlo simulation  

4   Conclusions 

In the present paper, a stochastic averaging procedure for predicting the response 
of SDOF strongly nonlinear oscillator under Poisson white noise excitation is pro-
posed by using the so-called generalized harmonic functions and a classical per-
turbation method is introduced to solve approximate stationary probability density 
form corresponding averaged GFPK equation. Using this stochastic averaging 
method, approximate stationary density of amplitude and stationary marginal 
probability density of displacement of Duffing-van der Pol oscillator are obtained 
and confirmed by comparing with results from Monte Carlo simulation. This sto-
chastic averaging procedure is the basis of further research on stability and reli-
ability of strongly nonlinear oscillators under Poisson white noise excitation. 
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Abstract. Dynamic systems with lumped parameters which experience random temporal 
variations are considered. The  variations may “smear” boundary between the system’s 
states which are dynamically stable and unstable in the classical sense. The system’s re-
sponse within such a “twilight zone” of marginal instability is found to be of an intermittent 
nature, with alternating periods of zero or almost zero response and rare short outbreaks. As 
long as it may be impractical to preclude completely such outbreaks for a designed system, 
the corresponding response should be analyzed to evaluate the system’s reliability. 

Results of such analyses are presented separately for cases of slow and rapid parameter 
variations. Linear models of the systems are studied in the former case using parabolic ap-
proximation for the variations in the vicinity of their peaks together with Krylov-
Bogoliubov averaging for the transient response. This results in a solution for the response 
probability density function (PDF). The analysis is also used to derive on-line identification 
procedure for the system from its observed response with set of rare outbreaks. Potential 
examples of applications include 1D and 2D short-term galloping of elastically suspended 
bodies in cross-flow of fluid with random temporal variations of flow speed; bundles of 
heat exchanger tubes in cross-flow with potential for flutter-type instability; and rotating 
shafts.   

The case of rapid broadband parameter variations is studied using theory of Markov 
processes. The system is assumed to operate beyond its stochastic instability threshold – al-
though only slightly – and its nonlinear model is used accordingly. The analysis is based on 
solution of the Fokker-Planck-Kolmogorov (FPK) partial differential equation for station-
ary PDF of the response. Several such PDFs are analyzed; they are found to have integrable 
singularities at the origin indicating an intermittent nature of the response. One of potential 
applications is population dynamics where behaviour of predator-prey (or parasite-host) 
pair in random environment is studied using extended stochastic Lotka-Volterra model. The 
analysis provides potential for probabilistic predictions of response outbreaks, in particular 
for the cases of intermittency (like the notorious case of seven outbreaks in budworms (for-
est parasites) in eastern Canada since 1710). 

Keywords: marginal instability, excursions, probability density function, intermittency.  
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1   Introduction 

Classical definitions of stability and instability deal with long-term behavior of 
dynamic systems, that is, behavior as time t → ∞ . These definitions are known to 
be not perfectly appropriate for applications with limited service life (such as mis-
siles, projectiles, etc.) which may sometimes be qualified as acceptable in spite of 
being unstable in the classical sense. Design of such marginally unstable systems 
may be based on analysis of their transient response within limited service life. 

These classical definitions may also prove to be not perfectly adequate for 
some dynamic systems that may be intended for long-term operation. Such sys-
tems are designed, as a rule, to operate within their stability domain in the classi-
cal sense as long as their “nominal” design parameters are considered. However, if 
the parameters may experience random temporal variations around their “nomi-
nal” or expected values, the system may become “marginally unstable” within the 
“smeared” stability boundary. Whenever complete elimination of this kind of re-
sponse may lead to impossible or impractical design the corresponding short-time 
outbreaks in response should be analyzed to evaluate the system’s reliability with 
respect to, say, first-passage failure and/or of low-cycle fatigue. Relevant dynamic 
studies may also be of importance for interpretation of measured response signals. 

Results of such analyses are presented separately for cases of slow and rapid 
parameter variations. Linear models of the systems are studied in the former case 
using parabolic approximation (PA) for the variations in the vicinity of their peaks 
together with Krylov-Bogoliubov (KB) averaging for the transient response. This 
results in a solution for the probability density function (PDF) of the response in 
terms of that of the bifurcation parameter. The analysis is also used to derive pro-
cedure for on-line system identification from its observed intermittent response. 

The case of rapid broadband parameter variations is studied using theory of 
Markov processes. The system is assumed to operate beyond its stochastic insta-
bility threshold but only slightly and its nonlinear model is used accordingly. The 
analysis is based on solution of the FPK equation for stationary response PDF. 
Several such PDFs are analyzed with integrable singularities at their origins indi-
cating an intermittent nature of the response. One of the potential applications is 
population dynamics where behaviour of predator-prey pair in random environ-
ment is studied using extended stochastic Lotka-Volterra model.  

2   Systems with Slow Variations of Parameters 

Linear systems with slow stationary random temporal variations of parameter(s) 
are considered which operate within classical stability domain for the mean or 
“nominal” system. However,  any brief excursion beyond the instability threshold 
may lead to growth of the system’s response. The growth is assumed to be limited 
as long as the system quickly returns back into the stability domain. The response 
would be seen then as a set of spontaneous brief outbreaks alternating with inter-
vals of zero response.  
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The Slepian model [12] of a stationary zero-mean random process g(t) with unit 
standard deviation implies parabolic approximation (PA) [14] in the vicinity of its 
peak –during upcrossing given level u that starts at time instant t = 0 namely  

( ) ( )( ) ( ) ( )( )
( ) ( )

22 2

2 2 2 2

1 2  so that 2

 for 0, 2  and max 2 .t p

g t u u u t t g t u t u t

t u g t g u g u u

ς λ ς λ

ς λ ς λ ς λ

≅ + − ≅ + −

⎡ ⎤∈ = = = +⎣ ⎦
      (1)  

Subscript “p” is used for peak values of random processes, ς is random slope of 

g(t) at the instant of upcrossing and ( )2 2 2
g gg dλ σ ω ω ω

∞

−∞

= = Φ∫&  where ( )gg ωΦ is 

power spectral density (PSD) of g(t) so that λ is a mean frequency of  g(t). Thus, 
according to the equation (1) random process g(t) is regarded as deterministic 
within the high-level excursion of duration 2f ft uτ λ ς λ= =

 
above level u, de-

pending just on its initial slope ς at the instant of upcrossing. This slope is re-

garded as a random variable for the excursion; in particular, it has the Rayleigh 
PDF in case of a Gaussian g(t)[14] . This probabilistic description is used together 
with the solution for the transient response within the instability domain. 

The first example is a SDOF system with randomly varying damping – say, 
Den-Hartog model of 1D galloping [2] under variable windspeed 

( )( ) 22 0X q t X Xα+ − + Ω =&& &  so that ( ) ( )qq t g tσ= ⋅  and qu α σ= .       (2)  

Substituting the PA (1) into equation (2) reduces the latter to an ordinary differen-
tial equation (ODE) with a single random parameter ς . This ODE for a certain 

representative crossing should be integrated starting from the instant of upcrossing 

ut until instant of peak of X(t) for a given outbreak. Here it can be done analyti-

cally using the KB-averaging over the response period for a quite common case of 
a lightly damped system (2) with slow temporal variations of the damping coeffi-

cient: ( )q tα − << Ω , λ << Ω  [1]. The method leads to first-order ODE for 

slowly varying amplitude ( ) 2 2 2A t X X= + Ω&  which has the solution  

( ) ( ) ( ) ( ) ( )( ) ( )2 3
0 exp ; 2 6 , .q uA A f f u t tτ τ τ σ λ ς λ τ τ τ λ⎡ ⎤= = − = −⎣ ⎦  (3) 

The peak amplitude of the response as attained at 2f uτ ς λ=  is  

( ) ( ) ( )( )32
0 exp 2 , 3 .p f qA A A uτ δ δ σ λ ς λ= = =                (4)  

This solution together with equation  (1) define, in parametric form,  relation be-

tween 0  and p p pA A A g= . Let ( ) for p p pA h g g u= ≥ . Then the function inverse 

to h (denoted by superscript “-1”) can be obtained as 
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( ) ( ) ( ) ( ) ( ) 2 32 1 21 2 1 2 3 2 ln .p p q pg u u h A u u u Aς λ λ σ− ⎡ ⎤= + = = + ⎣ ⎦      (5) 

These relations open way to predicting reliability for the system (2) based on  
relevant statistics of g(t). Thus, the first-passage problem for A(t) with barrier *A is 

reduced to that for g(t) with barrier ( )1
* *g h A−=  as evaluated by equation (5). 

Furthermore, the PDF of g(t) can be used to obtain the PDF of pA  as 

( ) ( )( )1 1 .p g p pp A p h A dh dA− −= ⋅                          (6) 

This PDF is non-zero for 1pA ≥  rather than for 0pA ≥  and is normalized not to 

unity but to { }Pr pob g u> ;
 
according to the equations (5) and (6) it has a singular-

ity at 1pA = .  

Figure 1 illustrates response sample of the system (2) with 
0.16, 2α = Ω = which contains one excursion of the apparent damping into nega-

tive domain (see dash-dot curve of q(t)) with the corresponding response outbreak. 
To guarantee nonzero response during the short-term instability a small zero-mean 
stationary broadband random process had been added to the RHS of the equation 
(2); one can see that the corresponding subcritical response is really very small.  

 
Fig. 1 Response sample with “outbreak” (solid line) of a SDOF system with apparent linear 
viscous damping 0.16 – q(t);  sample of random process q(t) is shown by dotted line 

In Fig. 2 the PDF ( )pp A  for the case of Gaussian g(t) is compared with 

Monte-Carlo simulation (where values of 0A were measured for each upcrossing). 

The corresponding prediction of the PDF of the actual (nonscaled) response am-

plitude and/or its peaks may be improved if PDF ( )0p A of the random 

variable 0A is known [8]. 
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Fig. 2 Theoretical PDF of scaled amplitude 0/p pA A A=  and corresponding histogram as 
obtained from sample of X(t) 

The simplest approach for getting rough estimates for 0A  is just to ignore the 

parameter(s) variations in prediction of small-level steady-state response [7, 8]. 
However, such a crude approximation may be unconservative. To improve its ac-
curacy a model with deterministic parameter variations and external random exci-
tation is considered.  

( ) ( ) ( )22 ( )  with sin  and , , , .X q t X X t q t t qα ς β λ α β λ+ − + Ω = = << Ω&& &
  

(7) 

To this model the method of moments can be applied together with stochastic av-

eraging [4, 13] resulting in three ODEs for second-order moments 2
, , ,cc ss c sD X=

 
cs csD X=

 
where 

( ) ( )cos ( ) sin , sin ( ) cos .c sX t X t X t X t X t X t= Ω − Ω Ω = Ω + Ω Ω& &
 

Numerical solutions to this ODE set have been obtained within [ ]0, ut with initial 

conditions (ICs) corresponding to steady-state response of a system with constant 
parameters: ( ) ( ) ( )20 0 4 , 0 0cc cc csD D D Dς α= = Ω = . The results provide ICs for the 

following analytical solution as based on the PA for ( ) sinq t tβ λ=  within 

( ) ( )1 1, , sin , sinu f u ft t t tλ α β λ π α β− −⎡ ⎤ = = −⎣ ⎦  

( ) ( ) ( ) ( ){ }3 22

, , exp 4 3 1 .cc ss f cc ss uD t D t α λ β α⎡ ⎤= ⋅ −⎣ ⎦                 (8)   

The results may be compared with “stationary approximation” whereby the simple 

ICs are enforced as ( ) 2
, 4cc ss uD t Dς α= Ω . Figure 3 illustrates the corresponding 

correction factor for peak values of ( ) ( ) ( )cc ssD t D t D t+ = +  as established upon 

identifying β as peak value of g(t):  
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( ) ( )numerical 2 2 2
*

1 stationary 

( )
1/ ( *) , * exp 2 /  for 1 

( )

where , , .p p p q q

D z
K p z dz p z u z u z P z

D z

z g u g q uβ α σ α σ

∞
+

+

= = ⋅ − >

= = = =

∫  
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Fig. 3 Correction factor K as function of λ/α and u. 

These correction  factors  may be used to obtain improved estimates for  
initial values of the response amplitude at each starting instant of the response 
outbreak due to short-term instability. Namely, the estimate of a steady-state  
rms value for the system without parameter variations may be directly multi- 
plied by K . As could be expected, the correction is seen to be reduced with  
increasing λ .   

The equation (4) is convenient for evaluating the system’s properties  
from its measured (on-line!) response with outbreaks as one shown in  
Fig. 1. To this end one can use peak amplitudes pA , as attained  

at instants 2f uτ ς λ=  in the local time frames and corresponding amplitudes  

iA  at inflexion points of the curve ( )ln A τ . From the equation (4)  

( )  0 exp ,i iA A Aτ δ= = so that expp iA A δ=  and 2
0 i pA A A=  Thus, for each 

one of the observed response outbreaks one can identify in a global time frame the 
instants f u ft t τ λ= +  and i u it t τ λ= + which correspond to peak and inflexion-

point amplitudes pA and iA  respectively; the instants of upcrossings can also be 

identified as ( )2 2u f f i i ft t t t t t= − − = − . The frequency λ  may now be obtained 

by averaging time difference f it t− over all observed outbreaks of response. The 

identification procedure as described in details in [7] relies upon averaging 
ln( ) expp iA A δ= over all observed outbreaks. It provides on-line estimates both 

for the mean apparent damping coefficient – which may be regarded as a nominal 
stability margin – and for standard deviation and mean frequency of its random 
temporal variations. 
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The described analytical solutions can be extended to certain TDOF systems 
with certain “symmetry” which permit to “wrap up” two equations of motion into 
a single complex equation [6, 8]. Thus, translational and tilting oscillations of the 
Jeffcott rotor had been considered in [6] and [8] respectively.  

In the general case of TDOF system two coupled response amplitudes remain 
after KB-averaging for the case of lightly damped system thereby requiring  
numerical integration for the two ODEs of slow motion from starting point of the 
response outbreak till the instant when both response variables pass their peaks. 
Then, as long as relation is established (numerically) between peak value(s) of re-
sponse(s) and that of scaled zero-mean part g(t) of the bifurcation parameter the 
basic procedure can be applied for predicting response PDF. Several examples of 
such analysis as presented in [8] are:  

• Rotating shaft with anisotropic stiffness in translational vibrations;  
• TDOF flutter of a tube row in heat exchanger in cross-flow of fluid; 
• Two-dimensional galloping of a rigid body in a fluid flow (case of full 

2 2× damping matrix). 

3   Systems with Rapid Variations of Parameters 

Systems with broadband stationary random temporal variations of parameters are 
considered here which may be described by the theory of Markov processes. They 
have clearly defined boundaries corresponding to various definitions of stochastic 
stability for the system’s linear part [13]. They operate within the domain of  
stochastic instability - although close to the corresponding instability threshold - 
where the instability may be called marginal indeed. Therefore, adequate model-
ling requires the system’s nonlinearity to be accounted for. The response is found 
to be of the intermittent nature indeed in such cases. The analysis provides the  
potential for predicting the response PDF’s through solution of the stationary Fok-
ker-Planck-Kolmogorov (FPK) partial differential equation. Several such station-
ary PDF’s are analyzed; all of them are found to possess an integrable singularity 
at the origin, whereas the response itself does exhibit the intermittency indeed.  
Common characteristic features of these solutions are also certain other typical 
patterns of a stationary intermittent response; for example, if amplitude A(t) has 
mean <A> and standard deviation Aσ  then typically a small relative stay time of  

A(t) above <A> is observed, and also Aσ  >> <A>.  

Stationary PDF of response amplitude with singularity at zero has been known 
for a long time for a SDOF system with small nonlinear damping [14] but correla-
tion between the singularity and intermittency has been established by  numerical 
simulation only recently [11]. Extensive study of intermittency in distributed-
parameter system through their response moments see in [10].  

Solutions to the FPK equations for response PDFs are presented here for two 
cases of potential intermittency in systems with impacts. They have different types 
of damping than in [11, 14] which may effectively restrict response growth in case 
of stochastic instability. The first is that of a single-barrier SDOF system with  
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inelastic impacts as governed by the equation of motion between impacts for its 
displacement Y(t) 

( )22 1 0 for Y Y Y t Y hα ξ+ + Ω + = > −⎡ ⎤⎣ ⎦&& & ,                  (9)  

and impact condition at the barrier at Y = -h (with subscripts “plus” and “minus”  
corresponding to rebound and impact velocities respectively) 

( ) ( )* * where 0 ,  and 0 1Y rY Y Y t Y t h r+ − ±= − = ± = − < ≤& & & & .            (10)  

Here r is a restitution factor, ( )tξ is a stationary zero-mean Gaussian  

white noise with intensity Dξ . Stationary PDF of response energy
 

( ) ( )( )2 2 21 2H t X X= + Ω&  had been obtained in [3] for the system (9), (10)  by a 

quasiconservative stochastic averaging [4, 12]. It does exist (is normable) if and 

only if ( ) ( )1 and 1 1rδ πα δ δ< Ω − > − where 2Bξδ α= and is described by 

different analytical expressions for  and for h hH H H H< >  2 2where 2hH h= Ω   

is the system’s potential energy at the barrier. The first of these expressions which 

may be regarded as the conditional PDF ( ) ( )c hp H p H H H= <  normalized 

within [0, ]hH  is 

( ) ( )1 ( )c h hp H H H H δδ −= −⎡ ⎤⎣ ⎦  .                   (11) 

The (conditional) mean and relative stay time above this mean of the response en-
ergy may be found from (11) as 

( ) ( ) ( ) ( )
1

0

2
1 2 , 1.

1

h HH

h H c c

H

H H p H dH p H dH
δδδ δ λ

δ

−−⎛ ⎞= − − = = −⎡ ⎤ ⎜ ⎟⎣ ⎦ −⎝ ⎠∫ ∫  

Thus Hλ << 1 for small1 δ− clearly indicating that the response should be intermit-

tent indeed in this case. The intermittency may also be seen from expected time 

<T> for reaching mean energy from initial state with H H< . The latter may be 

adopted as an index of expected period between outbreaks and can be obtained 
from solution to the corresponding Pontryagin equation for T(H) - one with given 
initial state H [13].  Averaging this T(H) over H using the conditional PDF (11) 
yields 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1

0

2 1 2 1 2 1 .
H

cT T H p H dH
δ δα α δ δ δ δ− + − −= = − − ≅ −⎡ ⎤⎣ ⎦∫  (12) 

This expected period between outbreaks is clearly increasing with reducing 1 δ−  
The other case of intermittency is considered for vibroimpact system with double-
sided barrier and linear damping. The equation of motion between impacts is  
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( ) ( )22 1 1 0 for Y Y t Y t h Y hα η ξ+ + + Ω + = − < <⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦&& & ,         (13) 

where ( ) ( ),t tξ η are stationary zero-mean independent Gaussian white noises with 

intensities ( )2
, 2D D Dξ η ξα= Ω  respectively. Impact condition (10) with r = 1 is 

now imposed both at Y = - h and Y = + h. Under the above relation between inten-
sities of excitations the FPK equation for the joint PDF of response displacement 
and velocity has an exact stationary solution [4] 

( ) ( )2 2 2 2,  where 2 1 2w y y C y y D
δ

ξδ α= + Ω = Ω +& & .          (15) 

Without barriers this solution is not normable. However, nonlinearity due to the 
double-sided barrier may restrict response growth even in the absence of nonlinear 
damping if1 2 1δ< < . Specifically, integrating PDF (15) over y& provides PDF 
p(y) of the displacement  

( )
( )2 1

1
 for p y h y h

h y h
δ

δ
−

−= − < <                    (16) 

with integrable singularity at the origin if 1 2δ > . Relative stay time Yλ  of the 

magnitude of Y(t) above its mean may be considered as an index of intermittency 
and it  is seen to approach zero with1 0δ− →  thereby indicating intermittency: 

( ) ( ) { } ( )

( ) ( ) ( ) ( )
0 0

2 1

2 1
2 , Pr 2

3 2

2 1 3 2  and 1 .

Yh

Y

Y yp y dy h P ob Y Y p y dy

P P
δ

δ
δ

δ δ λ−

−
= = ⋅ = < = =

−

− − = −⎡ ⎤⎣ ⎦

∫ ∫      (17) 

Finally, consider extended stochastic Lotka-Volterra (L-V) model [4, 5] of inte-
racting populations of the predator-prey or parasite-host type  

( ) 2,  1u mu k uv v v t uv vβ α ξ β γ= − + = + − −⎡ ⎤⎣ ⎦& & .             (18) 

Here u(t) and v(t)are population sizes of predators (or parasites) and preys (or 

hosts) respectively, whereas ( )tξ  is a zero-mean Gaussian random white noise 

with intensity D.  The system (18) has asymptotically stable equilibrium point  

( )0 0/ ;u m k v m kα γ β β β= − =  and an additional equilibrium state 

* 0,u = *v α γ= which  is unstable if * * or ov v k mγ γ α β< < = . At the bifurca-

tion point *γ γ= these two equilibrium states merge, with the state 

* *0,u v α γ= =  becoming stable for * γ γ> . Physical meaning of these transfor-
mations: beyond this transcritical bifurcation point growth of the preys’ population 
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is bounded by its interspecies competition rather than by predators’ activity, whe-
reas the latter become extinct because of food shortage. Joint stationary PDF  
w(u, v) of population sizes as derived in [4, 5] from exact solution to the corres-
ponding FPK equation is  

( ) ( ) ( ) ( ) ( )1 2, ,  where  and 2oz z
ow u v p u k p v p z z e z Dγ α− −= Δ ⋅ Δ = Γ Δ =   (19) 

where Г is gamma-function and  and 0 0 0 0z u k ,z u k z v,z vΔ Δ Δ Δ= = = = for sta-
tionary  PDFs of u(t) and v(t), respectively. Thus,  both steady-state  population  
sizes u(t) and v(t) are independent gamma-distributed random variables with the 
following mean values and standard deviations  

( ) ( )( )

( ) ( )
0 * 0

2 2

u

1 ,  

and , .

o

o v o

u u m k v v v v m k

u u u k v v v

α γ β β α β β

σ σ

= = − = − = =

= − = Δ = − = Δ
       (20) 

Both these PDFs do exist provided that * γ γ< . It can be seen from the equations 
(19) that intermittent behavior should be expected for v(t) (u(t)) if 

0 01 ( 1),  so that ( )v o u ov u k v uσ σΔ << Δ << >> >> , with rare and short pulse-like 
intensive outbreaks in v(t) (u(t)) and low-level oscillations between the pulses. Re-
levant indices of intermittency such as small relative stay time above the mean and 
large values of the ratio standard deviation/mean may also be used. Figure 4 illus-
trates such a behavior of predators for small * *1 1ov v γ γ− = − . Cases with in-
termittent behavior of both predators and preys are illustrated in [5, 9].  
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Fig. 4 Samples of u(t) and v(t) as obtained from numerical simulation for the system (18) 
with m=1, α=1, β=1, k=1, γ=0.98, D=1. It illustrates an intermittency in predators only 
(u0=.01 and Δ=1.98). All quantities are non-dimensional. 
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4   Conclusions 

Temporal random variations of parameters in dynamic systems may “smear” clas-
sical neutral stability boundaries. The system’s response within such a “twilight 
zone” of marginal  instability is found to be of an intermittent nature, with alter-
nating periods of zero (or almost zero) response and rare short outbreaks. As long 
as it may be impractical to preclude completely such outbreaks for a designed sys-
tem its response should be analyzed to evaluate reliability, in particular, to predict 
response PDF and/or to solve first-passage problem.  

Procedures and results of such analyses are presented for cases of slow and 
rapid parameter variations. Linear models may be adequate in the former  
case where using parabolic approximation for the variations together with tran-
sient analysis yields response PDF. The analysis is also used to derive on-line 
identification procedure for the system from its observed response with set of rare 
outbreaks. Potential applications include 1D and 2D short-term galloping of  
suspended bodies in fluid cross-flow; heat exchanger tubes in cross-flow with po-
tential flutter-type instability; rotating shafts.   

The case of broadband parameter variations is studied using theory of Markov 
processes with the system  operating beyond its stochastic instability threshold – 
although only slightly – and its nonlinear model is used accordingly. The analysis 
is based on solution of the FPK equation for stationary PDF of the response. Sev-
eral such PDFs are analyzed; they are found to have integrable singularities at the 
origin indicating an intermittent nature of the response. One of the potential appli-
cations is population dynamics where behaviour of predator-prey pair in random 
environment is studied using extended stochastic L-V model. The analysis pro-
vides potential for probabilistic predictions of response outbreaks, in particular for 
the cases of intermittency (like the notorious case of seven outbreaks in budworms 
(forest parasites) in eastern Canada since 1710). 
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A Practical Strategy to Study Stochastic Chaos 
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Abstract. Stochastic chaos often appears in random nonlinear dynamic systems. Based on 
orthogonal polynomial approximation and ergodic theorem, a practical strategy for studying 
stochastic chaos is proposed and illustrated by a Duffing oscillator with bounded random 
parameter and driven by an ergodic random excitation. By the proposed method we have 
studied stochastic chaos and its control, and synchronization in typical nonlinear dynamical 
systems. Some representative results are reported. 

Keywords: Stochastic chaos, Orthogonal polynomial approximation, Chaos control,  
Synchronization. 

1   Introduction 

Chaos is a specific type of motion featuring a sensitive dependence on initial con-
ditions [1-3]. The repellence between any two adjacent chaotic responses causes 
not only the sensitive dependence on initial conditions but also the hold of at least 
one positive Top Lyapunov Exponent (TLE) for chaos. Systems with random pa-
rameters or under random excitations are called stochastic systems. Chaotic phe-
nomena in stochastic systems are called stochastic chaos, which not only reflects 
the intrinsic randomness of the nonlinear system but also the random effects of the 
random parameter or/and the random excitation. Hence, stochastic chaos also fea-
tures at least one positive TLE. For analysis of random phenomena, one used to 
look for the probability density function (PDF) of random responses. However, 
the PDF information is not favorable to study repellency of the neighboring cha-
otic responses, nor to calculate the related TLE; so we would rather study stochas-
tic chaos through its sample responses than its PDF. Moreover, any sample of a 
mature stochastic chaos should be a deterministic one, so we need not to supply 
any additional definition on stochastic chaos. We mainly concern two basic kinds 
of nonlinear stochastic systems: one with random variables as its parameters and 
one with ergodic random processes as excitations. To solve the stochastic chaos 
problems in the first type of systems, we transform the stochastic system into an 
equivalent deterministic one using the orthogonal polynomial approximation.  For 
the second type one, we replace the ergodic random excitations by their represen-
tative deterministic samples. Having transformed the stochastic chaos problem 
into the deterministic one of equivalent systems, we can use all available effective 
methods for further chaos analysis. In this paper, we aim to review the state of art 
of studying stochastic chaos by the proposed strategy.  
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2   Implement of Orthogonal Polynomial Approximation 

Taking a low dimensional system for example, the two kinds of stochastic systems 
can be described in a unified form as follows: 

)()()0/,,( 21 tFtFxxfxbxax +=+++ ε���� ,  0>a                     (1) 

where a and b are constants; the assumption a > 0 ensures system (1) is dissipa-
tive; F1(t) is a deterministic excitation, F2(t) is an ergodic random one; 

)0/,,( εxxf �  is a polynomial function of x  and x� , and ε is a bounded random pa-

rameter. It is assumed that F2(t) and ε are mutually independent. Express ε  as 
uδεε += , where ε  is the mean value, δ is an intensity coefficient, and u  is a 

random variable defined on [−1, 1] with an arch-like PDF: 
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which well matches the second kind Chebyshev polynomials ( ) ( )0, 1,iU u i = " , 

due to the orthogonal property: ( ) ( ) ijji duuUuUup δ=∫ −

1

1
)( . The recurrent for-

mula for Chebyshev polynomials of the second kind is 

( ) ( ) ( )1 12 i i iuU u U u U u− += +                                            (2) 

Due to orthogonality of Chebyshev polynomials, any measurable function 

2)( Lu ⊂φ  can be expressed in the series form: ( ) ( )∑
∞

=
=

0i
ii uUcuφ . Hence, the re-

sponse ( )utx ,  of system (1) can be approximately expressed as 

)()(),(
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N

i
∑
=

=                                                    (3) 

The implement of orthogonal polynomial approximation for Eq. (1) to study  sto-

chastic chaos can be illustrated for any specific )0/,,( εxxf � , say 3xf ε= . In this 

case, Eq. (1) is reduced to 

( ) 0),(21
3 >+=+++ atFtFxbxxax ε���                                     (4) 
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Substituting the expression of ε  and Eq. (3) into Eq. (4), we have 
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The nonlinear cubic term in Eq. (5) can be reduced into a linear combination of 
basic polynomial functions. Multiplying both sides of Eq. (5) by )(uUi  in se-

quence and taking expectation with respect to u, we obtain  
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                        (6)  

where Xi(t), i = 0, 1,…, N, are polynomial functions of xi(t), which can be derived 
symbolically by MAPLE.  If the ergodic random excitation F2(t) in Eq. (6) is  
replaced by its representative sample process, usually a pseudo-random one in 
practice, then, Eq. (6) is fully an  equivalent deterministic nonlinear system for the 

stochastic system (1). When ∞→N  in Eq. (3), )()(
0

uUtx ii i∑∞
= is strictly 

equivalent to ),( utx of the stochastic dynamical system. Otherwise, if N is finite, 

Eq. (3) is just approximately valid with a minimal residual mean square error. For 
example, we can take N = 4 and obtain the numerical solution ( ) ( )4,,1,0, "=itxi  

of Eq. (6) by available effective numerical methods. Then, the approximate sto-
chastic response and its ensemble mean for system (1) can be expressed respec-
tively as 

( ) ( ) ( )uUtxutx i
i

i∑
=

≈
4

0

,    and   ( )[ ] ( ) ( )[ ] ( )., 0

4

0

txuUEtxutxE i
i

i =≈∑
=

                  (7) 

It is worth noting if any xi (t) is found to be chaos, then x(t, u) must be stochastic  
chaos. Hence, Eq. (6) is of vital importance to studying stochastic chaos. 
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3   Typical Phenomena of Stochastic Chaos  

3.1   Example 1 - Stochastic Chaos in Duffing Oscillator 

Consider a Duffing oscillator with a bounded random parameter and driven by a 
harmonic excitation  

)sin()( 3 tfcxxbxax ω=+++ ��� ,  a > 0   

where a, c, and f are constants, b is the random parameter, expressed as 

ubb α+= , with u as a bounded random variable with an arch-like PDF.  

In calculation, system parameters are taken as a = 0.3,  0.1−=b , 0.1−=c , 
2.1=ω , and f = 0.46 . Two sample chaotic attractors are shown in Figs. 1(a) and 

1(b) with TLE ≈ 0.3 and 0.2, for α = 0.1 and 0.0, respectively, [4]. One can see 
that the stochastic chaos attractor in Fig. 1(a) is much more diffusive than the de-
terministic one in Fig. 1(b). 
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Fig. 1 Chaotic attractors.  (The ordinate y in Poincaré maps stands for dx/dt.) 

3.2   Example 2 - Control of Chaos by Random Noise or Chaotic 
Driving 

The differential equation of a Φ6-DVP system is described as follows [5]: 

)(cos)1( 1
532 tUDtfxxxxxx +Ω=+++−− βγαμ ���  

where μ, α, β, and γ are system parameters, f and Ω1 are amplitude and frequency 
of the harmonic excitation, U(t) is an ergodic bounded noise with intensity D. Us-
ing the ergodic assumption, the random noise can be replaced by its representative 
sample, and the stochastic problem can be treated as a deterministic one. 
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At first, letting D = 0, we obtain the TLE diagram for the system responses via 
the bifurcation parameter f , shown in Fig. 2. In calculation, the system parameters 
are taken as μ = 0.4，α = 0.212,  β = 0.1,  γ = 1.0，and  Ω1 = 0.86. 
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Fig. 2 Variation of TLE against f 

Now consider the effect of bounded noise on chaos control. Bounded noise U(t) 
may be defined as follows: 

Γ+=+Ω= )(),cos()( 2 tBttU σψψ  

where, Ω2 stands for center frequency of noise, B(t) is a standard Wiener process, 
σ  is the noise intensity, and Г is a uniform random variable defined on [0, 2π]. In 
calculation, we take σ = 0.2, Ω2 = 0.43, and f = 4.5 for chaos suppression. The 
variations of TLE against D for system responses are shown in Fig. 3(a), while the 
results for Rössler chaotic driving in Fig. 3(b). The effect of chaos suppression is 
clearly seen after the TLE becomes negative. 
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Fig. 3 Variation of TLE vs. D for suppressing chaos,  by (a) bounded noise, (b) chaotic 
driving 
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For the case of inducing chaos, we take σ = 0.2, Ω2 = 0.43, and f = 3.5. The 
variations of TLE against D for system responses under both the harmonic and 
bounded noise excitations are shown in Fig. 4(a), while the results for Rössler 
chaotic driving are shown in Fig. 4(b). The inducing of chaos happens in the re-
gion in Fig. 4 where there TLE becomes positive. Figure 3(b) and 4(b) show that 
chaotic driving can play the similar role as bounded random noise in chaos con-
trol. Fig. 5 shows the two different kinds of attractors of DVP system before and 
after the happening of inducing chaos. However, the induced chaos is actually a 
stochastic chaos. 
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Fig. 4 Variation of TLE vs. D for inducing chaos, by (a) bounded noise, (b) chaotic driving  
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Fig. 5 Attractors of DVP system for different values of D, (a) for D = 0, (b) for D = 0.3 

3.3   Example 3- Synchronization Induced by Common Noise 

Noise induced synchronization originally refers to the phenomenon where two un-
coupled identical nonlinear oscillators achieve complete synchronization under the 
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action of a common noise. Consider the complete synchronization induced by 
bounded noise in a pair of Ф6-Duffing systems via numerical simulations. The Ф6-
Duffing system implies its potential is of a sixth-order polynomial.  The system is 
governed by the following equation 

3 5 cos ( )x ax bx cx d x f t DU t+ + + + = Ω +�� �  

where U( t) stands for a bounded noise with strength D. Fig. 6 shows how the TLE 
of the system is evolving with varying D [6]. As the strength D gradually in-
creases, the general trend of evolution of TLE is descending from a positive value, 
until the TLE across abscissa for the first time at a critical value D1 (≈ 0.24). Then, 
the TLE fluctuates about abscissa in a small interval of D, and the TLE across ab-
scissa finally at another critical value D2 (≈ 0.42). From then on, as D further in-
creases from D2, the general trend of TLE repeats its descending way, and the 
TLE remains negative. We did not find any synchronization during 0 < D < D1, 
but we did find some kind of synchronization when D > D2. Meanwhile we ob-
tained three kinds of attractors in the Poincaré maps, as shown in Figs. 7(a) – (c). 
Fig. 7(a) shows the one for D = 0, Fig. 7(b) is for D = 0.1 (0 < D < D1), and Fig. 
7(c) is for D = 1.0 (D > D2). The first one indicates surely deterministic chaos, 
since D = 0, and TLE > 0. The second one, thicker than the first one and smeared 
with some random diffusions, indicates stochastic chaos, since D1 > D >0 and 
TLE > 0. However, the third kind of attractor cannot be chaotic, since TLE < 0; 
yet must indicate steady state random responses due to the excitation of bounded 
noise, since D > D2 > 0. 

Synchronization of stochastic chaos does not happen when the TLE is positive, 
but it does happen when the TLE becomes negative. Hence, the steady state ran-
dom responses are no longer chaotic, though the random attractor may look even  
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Fig. 6 TLE vs. strength of bounded noise D 
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Fig. 7 Three kinds of different attractors in a Ф6-Duffing system with different noise 
strength,   (a) for D = 0.0; (b) for D = 0.1; (c) for D = 1.0 

much more diffusive. In fact, not all motion that looks in disorder is chaos. Be-
sides, it is found that synchronization of two identical nonlinear systems can also 
be induced by a common chaotic driving in a similar way as by the bounded noise 
[6]. 

3.4   Example 4 - Forced Synchronization in Master-Slave Systems  

Chaos synchronization is a specific chaos control aiming at making the responses 
of two nonlinear systems to move in some synchronized way. Since Pecora LM 
and Carroll TL [7] discovered the phenomenon, chaos synchronization has been 
attracting great attention. However, one may want to know what kind of motion 
the synchronized one is. The following example may reveal some clues. 

Consider a harmonically driven stochastic Duffing system, described as  

0,sin)( 3 >=+++ atfxcxbxax ω���                              (8) 

where μσ+= bb , and μ is a bounded random variable with a given λ-PDF. 

Treating system (8) as a master system, its equivalent deterministic system can be 
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obtained using the Gegenbauer polynomial approximation.  It can be rewritten in 
the form of first order differential equations as follows, named as a master system 
as well, 

                                    )()( tFXGXAX ++=�                                                    (9) 

where TxxxxX ][ 4040 �"�"= and TtftF ]0,0,0,0,sin,0,0,0,0,0[)( ω= . Then 

choose an identical Duffing system with state feedback as a slave system  

                 0,sin)()()( 3 >=−′′+−′++++ atfxzkxzkzczbzaz ω�����            (10) 

The equivalent deterministic system of the slave Duffing system (10) can be ob-
tained also by the Gegenbauer polynomial approximation, and further expressed in 
terms of the following first order differential equations, called as a slave system as 
well, 

                     )()()( ZXKtFZGZAZ −+++=�                                       (11) 

where TzzzzZ ][ 4040 �"�"= , and ]",,",',,'[diag kkkkK ""=  as the feedback 

gain matrix .   
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Fig. 8  (a) TLE for the slave system , (b) Errors between zi and xi , for k’=0.34, k”=0.2 

Numerical simulations were conducted on synchronization phenomena between 
systems (9) and (11) under initial conditions  

TX ]0,0,0,0,0,0,0,0,0,1[)0( −= and  TZ ]0,0,0,0,1,0,0,0,0,1[)0( =  

The master system is treated as an independent system, whose ensemble mean 
sample response with given initial conditions X(0) is taken as a specific reference 
time function for the slave system. Then, due to the pre-designed feedback  
control, an ensemble mean sample response of the slave system under the initial 
condition Z(0), different from X(0), finally synchronizes with the given reference 
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motion within satisfactory accuracy. It seems that the synchronization is nearly 
perfect in this numerical experiment. However, one may ask what kind of motion 
the synchronized response could be. In Fig. 8(a), we can see that when k′ = k″= 0, 
the master system and the slave system are identical, and they all have a positive 
TLE. Hence, the ensemble mean response )],([ μtxE , obtained from the master 

system, is a deterministic chaos, and ),( μtx  is a stochastic chaos. On the other 

hand, we know that reference motion is a deterministic time function, no matter 
how irregular or strange it looks like. In addition, for k′ = 0.34, k″ = 0.2, the slave 
system just has a negative TLE, so that the only way out for the negative feedback 
slave system is to duplicate the reference motion. Fig. 8(b) shows the errors be-
tween the master system and the slave system, defined as iii xze −= , i = 0, …, 4. 

It is seen that then errors approach zero after certain period of time, indicating that 
the given sample of random chaos can be duplicated within a prescribed accuracy. 
However, at this moment the slave system is essentially no longer a chaotic one. 

4   Conclusions 

A practical strategy for studying stochastic chaos for two kind of stochastic 
nonlinear systems is introduced. Stochastic chaos is a specific kind of random 
process with both the features of chaos and random process. Stochastic chaos 
holds an infinite numbers of deterministic samples, each having at least one posi-
tive TLE as its identification. Hence, the study and the control of stochastic chaos 
can be effectively made through its deterministic sample motion. The orthogonal 
polynomial approximation method is shown to be practical for studying stochastic 
chaos in dynamic systems with random parameters and polynomial nonlinearities, 
especially for control of stochastic chaos. The results of our analysis show that 
synchronization can be realized even in two stochastic nonlinear systems. How-
ever, the essence of “synchronization in chaotic systems” in master-slave mode is 
simply the duplication of the control reference signal, a deterministic realization of 
a given chaos. The synchronized motion of two identical nonlinear systems in-
duced by a common noise is found merely a kind of non-chaotic motion. 
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Fractal Basin Boundaries and Chaotic 
Dynamics in the Randomly-Driven  
Henon-Heiles Oscillator 

C.B. Gan 

Department of Mechanical Engineering, Zhejiang University,  
Hangzhou 310027, P.R. China  

Abstract. Chaotic scattering is usually associated with the transient chaotic dynamics in 
open Hamiltonian systems. Our goal is twofold. First, the Henon-Heiles oscillator with the 
bounded noisy excitation and/or weak dissipation is chosen as a chaotic scattering paradig-
matic example to observe the noisy basin boundaries and compute their corresponding frac-
tal characteristics. Second, we investigate several sample invariant sets, and employ some 
previous methods to identify the noisy dynamics. It is shown that, fractal structure of basins 
is robust in the presence of the bounded noisy excitation for the Henon-Heiles oscillator, 
which is also verified by the evaluation of quantitive fractal dimension. The stable and un-
stable manifolds of sample chaotic invariant sets in some typical two-dimensional section, 
as well as the noisy chaotic time series, are presented and discussed.  

Keywords: Henon-Heiles oscillator, bounded noisy excitation, fractal basin boundary,  
chaotic dynamics. 

1   Introduction 

Chaotic scattering has been studied for more than two decades because it is rele-
vant to many areas such as nonlinear dynamics, fluid mechanics, astrophysics, op-
tics, nanophysics, etc., see [1] and other references therein. It is very important to 
investigate which dynamical phenomena are robust and may persist in the pres-
ence of various kinds of perturbation, since perturbations such as noisy excitation 
and/or weak dissipation can be present in most realistic situations.  

Originally, the Henon-Heiles (H-H) system was proposed in 1964 to address 
the question whether there exist more than two constants of motion in the dynam-
ics of a galaxy model ([2]). It is described by the Hamiltonian 
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which defines the motion of a particle with unit mass in the two-dimensional  
potential 
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Since then it has become a paradigmatic model for studying nonlinear and chaotic 
dynamics in continuous-time Hamiltonian systems ([3-7]). In the H-H system, for 
energies below a certain threshold value, the motions are bounded and the parti-
cles cannot leave the scattering region, but for energies above this threshold value, 
three exits appear and particles can escape towards infinity through any one of the 
exits. 

In this study, the H-H oscillator is further used to investigate the effects of the 
bounded noise on the exit basin boundaries and the scattering dynamics. In Sec-
tion 2, we briefly introduce the model, and explore the noisy fractal basin bounda-
ries in the nondissipative and dissipative H-H oscillator respectively. Section 3 
discusses the fractal characterizations, the stable and unstable manifolds of sample 
chaotic invariant sets, as well as the noisy chaotic dynamics. In the final section, 
the results of this work are summarized.  

2   Noisy Exit Basins in the H-H Oscillator 

Here, the H-H oscillator subjected to the bounded noisy excitation ([8]) is written 
by  

])(cos[

02
22 γσβ

α
++Ω=+−++

=+++
tBtfyyxyy

xxyxx

���
���

                           (3) 

where α  and β  are the damping coefficients, f  and Ω  are the strength and cen-

tral circular frequency of the bounded noisy excitation respectively, )(tB  is a 

standard Wiener process with strength σ , and γ  is a random variable uniformly 

distributed in the interval )2,0[ π . When 0=== fβα , the H-H oscillator (3) has 

vC3  symmetry: it is invariant under rotations around the origin by 3/2π  and 

3/4π , and under reflections at three symmetry lines with the angles 6/π±  and 
2/π  with respect to the x axis. 

Fig. 1 shows the contours of the potential U(x,y) (see Eq. (2)). It exhibits three 
saddles at energy 6/1=sadE  lying at ),1,0(),( =yx  )2/1,2/3( −−  and )2/1,2/3( − . 

The equipotential lines at 
sadEE =  form an equilateral triangle with side length 

3 . For the sake of clarity, we call Exit 1 the upper exit ( +∞→y ), Exit 2 the left 

exit ( −∞→−∞→ yx , ), and Exit 3 the right exit ( −∞→+∞→ yx , ). In this H-H 

system, the phase space is mixed with the KAM islands and chaotic seas, and a 
small amount of dissipation can convert the islands into sinks, or attractors. 
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Fig. 1 Equipotential lines of the H-H potential function U(x,y) 

To plot the exit basin diagrams for the H-H oscillator (3), we must calculate 
each trajectory by solving the differential equations of motion from a fine grid of 
initial conditions. The phase space of (3) depends on ),,,( yxyx ��  and the energy, 

so three variables must be fixed to define a trajectory. Throughout this paper, we 
define some specific Poincare surfaces of section to display the results. For each 
particle, its initial velocity is expressed by  

322222

3

2
22 yyxyxEyxv +−−−=+= ��                               (4) 

In [4], two different choices on initial conditions are discussed in detail. Here, we 
also fix the initial conditions as ),(,0 min LOyyyx ∈= , )2,0( πθ ∈ , and the ini-

tial energies of all the particle are the same as E=0.19 . The value LOy  is the dis-

tance between the origin of coordinates and the position of each Lyapunov orbit 
([3]), and is required to be calculated numerically. θ  is the angle that v  forms 
with the positive y axis in the counterclockwise sense. The Poincare map is de-
fined by the plane 0=x  and 0>x� , and for this choice of initial conditions, Eq. 

(4) becomes 32

3

2
2 yyEv +−= . As the radicand must be positive, y  must be 

bigger than miny , where miny  is the real solution of 0
3

2
2 32 =+− yyE . For each 

initial angle θ , the initial vertical velocity iy�  is given by θcosvy =� , so we use 

),( yy �  as initial conditions and plot the exit diagram by generating 20002000×  

grid points uniformly in the region )2,0(),( min π×LOyy  . 

From [9], each physical realization )(tη of the bounded noisy process 

])(cos[ γσ ++Ω tBt  can be approximated by 

∞→+≈∑
=

NtAt
N

k
kk ,)cos()(

1

ψωη                                   (5) 

where ωξ Δ= SA 2 , },,2,1|{ Nkk "=ω  are independent and nonnegative ran-

dom variables over the interval ],[ rl ωω , ωΔ  (= Nlr /)( ωω − ) is a frequency  

Exit 1 

Exit 2 Exit 3 
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increment, },,2,1|{ Nkk "=ψ  are identically uniformly distributed over the inter-

val )2,0[ π  and N is a fixed positive integer. For crucial aspects on this approxi-

mate description, e.g., the minimal number N in Eq. (5), see [9]. For large positive 
integer N, the physical realization generated by Eq. (5) is almost ergodic, and nu-
merical results show that the influence of this large integer can be neglected. 

In many applications, systems are affected by the same external perturbations, 
so it is reasonable to use the identical almost-ergodic realization to simulate the 
motions of all chosen particles in the H-H system. If an orbit escapes through Exit 
1, its initial condition belongs to the Exit 1 basin, and the same applies for Exit 2 
and Exit 3. In order to visualize it, we plot the initial conditions with different col-
or codes, according to the exit through which they escape. The color code we have 
chosen is black for Exit 1, dark gray for Exit 2, and light gray for Exit 3.  

Typical plots of the exit basin structure of the randomly-driven H-H oscillator 
(3) are shown in Figs. 2 (a) and 2(b), the basin boundaries are clearly fractal for 
E=0.19. The complex basin topology associated with chaotic scattering turns out 
to be robust in the presence of the bounded noisy excitation. Here, the phase space 
has four different regions: three of them correspond to the three different exits, 
and the white region inside the plotted structure represents the particles that can 
not escape from the three exits. More numerical results show that similar fractal 
structures can be obtained from different physical realizations due to their ergodic-
ity, which are not presented here. 

                  

(a) Nondissipative ( 0== βα ),                       (b) Dissipative ( 001.0== βα ). 

Fig. 2 Fractal exit basins in the randomly-driven H-H oscillator, where 025.0=f  

3   Noisy Chaotic Dynamics 

A chaotic attractor is usually characterized by the fractal dimension. The fractal 
dimension of the set of singularities in a scattering function can be calculated by 
employing the uncertainty algorithm ([9]). For a fixed value of the “uncer-
tainty”ε , we should randomly choose an initial angle 0θ  and compute the quan-

tity |)()(| 00 εθθ +−≡Δ TT  , where T is the delay time (see Fig. 3 (a)). If s>Δ  (s is 
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a small positive number), then the angle 0θ  is uncertain with respect to ε . Oth-

erwise, 
0θ  is certain. A large number of initial conditions should be chosen ran-

domly, which yields )(εf , i.e., the fraction of the uncertain initial conditions. The 

quantity εε /)(f  typically scales with ε  as Df −εεε ~/)( , where D is the uncer-

tainty dimension related to the dimension D  of the chaotic attractor as 
DMD −= , and M is the dimension of the phase space (M=3 in our case). 

Fig. 3(b) shows εε /)(f  versus ε  on a logarithmic scale for the dissipative H-

H oscillator subjected to the bounded noisy excitation, where the same physical 
realization is used as in Fig. 2 and the constant s is arbitrarily chosen to be 0.01. 
The estimated slope is 1003.08.0 <±=D , and the fractal dimension of the sample 
chaotic attractor DD −= 3 . Here, the terminology “sample” means that the result 
is obtained from a deterministic physical realization generated by Eq. (5). Thus, 
the fractal dimension of a sample chaotic attractor may also be estimated from the 
uncertainty algorithm even though the bounded noisy excitation is imposed on the 
H-H oscillator.  
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(a) Typical delay-time function,                             (b) Uncertainty dimension. 

Fig. 3 Fractal characteristics of exit basin boundaries in the randomly-driven H-H oscillator (3), 
where 001.0== βα , 025.0=f  

As shown in [11], each stable manifold of a sample chaotic invariant set can be 
approximated by the “sprinkler algorithm”. To find the unstable manifold of the 
sample chaotic invariant set, it is better to change the sign of every differential 
equation and draw the stable manifold of the dynamical system. The result is ex-
actly the unstable manifold of the original system. As the dimension of these frac-
tal sets is between two and three, we can only plot its intersection with a Poincare 
map. Fig. 4 shows two sample sets of the stable and unstable manifolds in the 
Poincare surface of section for E=0.19. As compared with the results presented by 
Aguirre et al [4], we can see that there are no significant changes when the 
bounded noisy excitation is imposed on the H-H oscillator. However, the stable 
and unstable manifolds of each sample chaotic set seem not symmetric to each 
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other, since we have used the time-reversal physical realization to solve the equa-
tions of motion. Moreover, the traces of the sample manifolds are thicker than 
those in the deterministic case due to the dispersive role of the bounded noisy  
excitation. 

                  
(a) Stable ( 03.0,0 === fβα ),                                    (b) Unstable ( 03.0,0 === fβα ), 

                  
(c) Stable ( 01.0,0001.0 === fβα ),                             (d) Unstable ( 01.0,0001.0 === fβα ). 

Fig. 4 Typical sample invariant manifolds in the randomly-driven H-H oscillator (3) 

In the end of this section, we explore chaotic dynamics from the noisy signals 
in the randomly-driven H-H oscillator (3) by some previous methods ([12-16]). 
Here, the leading Lyapunov exponent of each sample time series can be evaluated 
by the least-square fit from the mean divergence <Ln(Divergence)> vs t curve in 
Fig. 5 (b) ([14]). For the noisy time series shown in Fig. 5 (a), the original signal 

and its corresponding surrogates are clearly distinct when the viewing scale 0ε  

tends to zero, and the null hypothesis of a periodic orbit with correlated noise 
should be rejected ([15]), see Fig. 5 (c). The correlation dimensions are estimated 
according to the algorithm by Judd ([17]) for each original time series and 30 PPS 
data sets. The algorithm described in [17] estimates correlation dimension 

cd  as a 

function of viewing scale 
0ε , so 

cd  for each time series is not a single number,  
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but a curve. According to the initial obvious linear slope shown in Fig. 5 (b), as 
well as the rejected null hypothesis from Fig. 5 (c), the time series is chaotic-
dominant.  
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(c) Correlation dimensions. 

Fig. 5 Typical chaotic-dominant response in the randomly-driven H-H oscillator, in which 
025.0,003.0 === fβα . The top panel shows the original data from system (3) for (a) sample 

noisy time series, (b) the mean divergence from the data in (a). Comparisons of the correla-
tion dimensions for the original time series and its surrogates are presented in (c), where the 
thick scatter line and the thin scatter lines represent the results from the original data and its 
surrogates respectively. The embedding dimension m=7, the reconstruction delay 31=J , 
and the noise radius 0003.0=ρ .  

4   Conclusions 

In this paper, we have studied the noisy scattering dynamics in the randomly-
driven H-H oscillator when the energy is enough large to permit particles to  
escape from the exits. We paid special attention to the computation of the exit ba-
sins, which show a rich pattern of noisy fractal structures�  and the uncertainty 
dimensions of the fractal sets. Computations of the stable and unstable manifolds 
of two sample chaotic invariant sets have also been carried out, from which we  
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can see no significant differences as compared with those previously presented for 
the deterministic H-H oscillator. In addition, an arbitrarily chosen noisy time se-
ries is identified as the chaotic-dominant one by previous methods. 
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Moment Lyapunov Exponent for a Three 
Dimensional Stochastic System 

Shenghong Li 1,2 and Xianbin Liu1 
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  Nanjing, China 
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Abstract. In the present paper, for an arbitrary finite real number p, the pth moment 
Lyapunov exponent for a codimension two bifurcation system that is on a three-
dimensional center manifold and is subjected to a parametric excitation by a small intensity 
white noise is investigated. Via a perturbation method and a linear stochastic transformation 
introduced by Wedig, an eigenvalue problem associated with the moment Lyapunov expo-
nent is obtained. The eigenvalue problem is then solved approximately via a Fourier cosine 
series, and for whom the convergence rate is illustrated numerically. Furthermore, the sta-
bility regions of pth moment are also obtained.  

Keywords: Moment Lyapunov exponent, Ito equation, perturbation method, Stability  
region. 

1   Introduction 

For a stochastic system that is driven by a white noise or an ergodic and real noise 
excitation, there are many results refer to the asymptotic expansions of maximal 
Lyapunov exponents. However, for an almost sure stable system, there exists a 
probability that the mean square response for the system may still exceed some 
threshold and may grow exponently, which implies that the mean square response 
is unstable. 

Let x(t,x0) be a solution to a random dynamical system, in order to describe the 
exponential growth rate of its pth(p>0) moment, the moment Lyapunov exponent 
is defined as 

0 0
1( , ) lim log ( , ) ,p

t
p x E x t x p R

t
Λ

→∞
= ∈

                                
(1) 

which implies that if Λ(p,x0)<0, then E||x(t,x0)||p→0 as t→∞ and if Λ(p,x0)>0, 
E||x(t,x0)||p→∞ as t→∞. It has been proven [1,2] that the limit is independent of the 
initial value x0, and Λ(p) is a convex analytic function of p∈R, and 
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p
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x t x p R
p t
Λλ =
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is in fact the maximal Lyapunov exponent. 
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Although the moment Lyapunov exponents are important in the study of the 
stability of stochastic dynamical systems, it is very difficult to determine the ex-
pressions of the moment Lyapunov exponent in actual cases, and there are very 
few results concerning this aspect. 

For a white and real noises excited two dimensional system and a system of 
two coupled oscillators that is driven by a real noise, Arnold et al. [3,4] and Na-
machchivaya et al. [5] obtain the asymptotic expansions of the pth moment 
Lyapunov exponents in the case of small noise intensity and small p. Khasminskii 
and Moshchuk [6] consider a two dimensional system with small white noise exci-
tations. They prove that for a system in which the system matrix has two purely 
imaginary eigenvalues, the pth moment Lyapunov exponent possesses an asymp-
totic expansion in terms of the small noise intensity for a finite value of p. For a 
system of two coupled oscillators that is driven by real noises, Namachchivaya 
and Roessel [7] obtained an asymptotic expansion of the finite pth moment 
Lyapunov exponent. In Ref. [7], the extension of the perturbation method that is 
first introduced by Arnold et al. [8] is applied. For a two dimensional system that 
are under real noise excitation and bounded noise excitation, via applying a proce-
dure similar to that employed in Khasminskii and Moshchuk [6], Xie [9] obtain 
weak-noise expansions of moment Lyapunov exponent, the Lyapunov exponent, 
and the stability index. 

In this paper, we consider a codimension two bifurcation system, that is on a 
three dimensional center manifold and is excited parametrically by a white noise. 
the maximal Lyapunov exponent for this system has been investigated by Liu and 
Liew[10]. Applying the procedure exposed by in Wedig [11] and the perturbation 
method, an eigenvalue problem for the first order term of the expansion of the 
moment Lyapunov exponent is obtained. The eigenvalue problem is then solved 
by Fourier cosine series, through which an infinite matrix is yielded and the lead-
ing eigenvalue of this infinite matrix is the first order approximation of the pth 
moment Lyapunov exponent. The numerical results of the pth moment Lyapunov 
exponent are illustrated and in addition, the stability regions of pth moment are 
also obtained numerically. 

2   Equations 

Consider a typical deterministic codimension two bifurcation system which is on a 
three-dimension central manifold and possesses one zero-eigenvalue and a pair of 
pure imaginary eigenvalues [12] 

43 2
1 1 2 3

42 2 2 3
2 1 2 3 4

2

( ) ( , )

( ) ( ) ( , )

( , )

r r a rz a r a r z O r z
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O r z
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Θ ω

= + + + +

= + + + + +

= +

�
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                     (3) 

Where μ1 and μ2 are unfolding parameters, a1, a2, a3, b1, b2, b3 and ω are real con-
stants. This normal form arises in the classic fluid dynamic stability study of co-
quette flow. Via the transformation of r=(x1

2+x2
2)1/2, z=x3, Θ=arctan(x1/ x2), and in 
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the vicinity of equilibrium point (x1, x2, x3)=(0,0,0), the linearization of the original 
system (3), that is subjected to a white noise excitation is then obtained, i.e. 

0 1dx (A x A x)d Bx d ( )t W tε ε= − + D                                      (4) 

where, W(t) is a unit Wiener process, “°” means that Eq.(2) is a Stratonovitch sto-
chastic differential equation, and 
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In Eq.(4), the parameters μ1, μ2 have been rescaled such that 

1 1 2 2,μ εδ μ εδ= − = −                                                      (5) 

Via appling a spherical polar transformation 
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(6) 

and introducing a pth norm P=ap, then the Stratonovitch equations about the norm 
process P and the phase processes θ and φ is then obtained as 
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where 
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   (8) 

By introducing the Wong-Zakai correction terms, Eq.(7) can then be converted to 
Ito stochastic differential equations, i.e. 
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d d d

d d d , d ( )d d

P pP t pP W

t W t W

ε ρ ε ρ
θ εθ εθ φ ω εφ εφ

= +
= + = + +

�
� �   (9) 
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where 

1 1 2 2 2 1 2 2 2

2
1 1 2 2 2 2

1 1[ ] , [ ]
2 2
1{ [ ] }, ,
2

p

θ φ θ φ

θ φ θ φ

θ θ θ φ θ φ θ φ φ

ρ ρ ρ θ φ ρ θ φ

= + ∂ + ∂ = ∂ + ∂

∂ ∂= + + ∂ + ∂ ∂ = ∂ =∂ ∂

� �

�
   (10) 

3   Asymptotic Analysis 

In this section, a linear stochastic transformation, which was firstly introduced by 
Wedig [11] and is used to obtain the eigenvalue problem for the pth moment 
Lyapunov exponents of a two dimensional linear Ito stochastic system, is applied, 
i.e. 

1( , ) , ( , ) , , 0 2
2 2

S T P P T S π πθ φ θ φ θ φ π−= = − ≤ ≤ ≤ ≤    (11) 

where, T(θ, φ) is defined as a scalar function with respect to the stationary phase 
processes θ and φ, then the Ito equation for the new scalar diffusion process S is 
obtained via Ito lemma, i.e. 

1 1 2 2 1 2 2 2 2
2 2
2 2 2 2 2

d { [ ( ) ( )

1 1 ]}d ( )d
2 2

S P T p T p T p T T

T T t P p T T T W

φ θ φ θφ

θθ φφ θ φ

ω ε ρ θ ρ θ φ ρ φ θ φ

θ φ ε ρ θ φ

′ ′ ′ ′′= + + + + + +

′′ ′′ ′ ′+ + + + +

� ��
   (12) 

where 

2 2 2

2 2 22 2 2
2 2

, , , ,

, ,

T T T T T T T T T Tφ φ θ θ θφ θφ θθ θ φφ φ

θφ θ φθ φ θ φ

′ ′ ′′ ′′ ′′= ∂ = ∂ = ∂ = ∂ = ∂

∂ ∂ ∂∂ = ∂ = ∂ =∂ ∂ ∂ ∂                

  (13) 

If the transformation function T(θ, φ) is bounded and non-singular, both of the 
processes P and S possess the same stochastic stability. Then, according to Wedig 
[11], the function T(θ, φ) is chosen such that the drift term of Eq.(12) is independ-
ent of the phase processes θ and φ, i.e. 

1
2 2 2d d ( , )( )dS S t ST p T T T Wθ φΛ ε θ φ ρ θ φ− ′ ′= + + +

                    
(14) 

where Λ=Λ(p), which is an unknown function of p. By comparing Eq.(8) and 
Eq.(9), we see that the transformation function T(θ, φ) is govern by the following 
equation 

0 1( ) ( , ) ( ) ( , )L L T p Tε θ φ Λ θ φ+ =                                             (15) 

where 

0
2 2 2 2 2

1 1 1 2 2 1 2 2 2 2 2 2
1 1( ) ( )
2 2

L

L p p p

φ

θ φ θφ θ φ

ω

ρ θ ρ θ φ ρ φ θ φ θ φ

= ∂

= + + ∂ + + ∂ + ∂ + ∂ + ∂� ��
   (16) 



Moment Lyapunov Exponent  195
 

Eq.(15) defines an eigenvalue problem for a second-order differential operator 
in which Λ(p) is the eigenvalue and T(θ,φ) is the ralevant eigenfunction. In 
Eq.(14), the eigenvalue Λ(p) is the pth moment Lyapunov exponent of system (4).  

Through a perturbation method, both Λ(p) and T(θ,φ) are expanded in power 
series of ε, i.e. 

0 1

0 1

( ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , )

n
n

n
n

p p p p

T T T T

Λ Λ εΛ ε Λ
θ φ θ φ ε θ φ ε θ φ

= + + + +

= + + + +

" "
" "                      

(17) 

Substituting Eq.(17) into Eq.(15) and equating terms of the equal powers of ε, we 
then obtain the following recurrent equations 

0
0 0 0 0

1
0 1 1 0 0 1 1 0

2
0 2 1 1 0 2 1 1 2 0

0 1 1 0 1 1 0

, ,

,n
n n n n n

L T T

L T L T T T

L T L T T T T

L T L T T T T

ε Λ
ε Λ Λ
ε Λ Λ Λ
ε Λ Λ Λ− −

=

+ = +

+ = + +

+ = + + +

"
" "                   

(18) 

3.1   The ε0 Order Equation 

The first equation in Eq.(18) is 

 [ ]0 0 0T Tω φ Λ∂ ∂ =                                                    (19) 

The moment Lyapunov exponent Λ(p) has the property that Λ(0)=0, which means 
that Λ0(0)=0. Since the left hand of Eq.(19) does not contain the parameter p, then 
the eigenvalueΛ0(p) is independent of p, which leads to a fact that Λ0(p)=0. 
Eq.(19) is then equivalent to 

[ ]0 0Tω φ∂ ∂ =                                                        (20) 

to which, the solution is  

0 0
1( , ) ( ), [ , ], [0,2 ]

2 2 2
T F π πθ φ θ θ φ ππ= ∈ − ∈

                    
(21) 

Since 0( ) 0pΛ = , then the associated adjoint differential equation of Eq.(20) is 

0 0Tω φ∗⎡ ⎤− ∂ ∂ =⎢ ⎥⎣ ⎦
                                                   (22) 

Via a direct integral, one can easily obtain the solution, i.e. 

0 0
1( , ) ( ), [ , ], [0, 2 ]

2 2 2
T F π πθ φ θ θ φ ππ

∗ ∗= ∈ − ∈
                       

(23) 

where both F0(θ) and F0
*(θ) are arbitrary bounded functions with respect to θ, and 

F0(θ) is needed to be determined through the solvability condition of the second 
equation in Eq.(18). 
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3.2   The ε1 Order Equation 

The second equation in Eq.(18) is 

0 1 1 0 1 0L T T L TΛ= −                                                        (24) 

The result in Eq.(21) leads to 

2
1 0 1 0 1 2 2 0 2 0

1 1[ ( ) ( ) ( ) ( )]
2 2

L T p F p F Fρ θ θ ρ θ θ θ θπ
′ ′′= + + +��

             
(25) 

The solvability condition of Eq.(24) is found to be 

2 2
1 0 0 0 0 02

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d 0
2

F F F pq F F
π
π

Λ θ σ θ θ μ θ θ θ θ θ θ∗
−

⎡ ⎤′′ ′− − − =⎢ ⎥⎣ ⎦∫  (26) 

where 

1 1 9 3 2 5 10

2
8 7 3 4 3

2
1 5 1 11

1 6 2

2
3 8 3 4

( ) ( ) sin(4 ) cos(2 ) ( )sin(2 )
2

[ sin(2 ) 2 cos ( )] tan( )

( ) cos(4 ) cos(2 )
1( ) ) cos(4 ) ( )cos(2 )
2

[2 tan( ) 4 ]cos ( ) [ tan( )]sin

p
p

q p

μ θ β β β θ β θ β β β θ

α α β θ β θ θ β
σ θ β θ β θ β β

θ β θ β β θ

β θ β θ β β θ

= − + − + − −

+ − − + +

= + − +

= − + −

+ − − −

（1

2
8 1 4 7 7 6

(2 )

sin (2 )

θ
β θ β πΔ β β α β++ − − − + + +

 (27) 

and 

2 2 2 2 2 2
1 1 33 33 1 2 3 5 7

2 2 2 2
2 33 1 2 3 5 7 4

3 3 23 2 13 4 5 23 7 13

2 2
5 5 6 7 8 6 2 3

2 2 2 2 2
7 1 33 33 1 2 3 5

(8 8 2 4 4 )
32

1(8 2 )
16 2
1 1( 2 ), ( )

12 8

( ), ( 3 )
2 8

(8 24 6 3 3 4 4
64

k b b k k k k k

p b k k k

k b k b k b k b

k k k k k k

p k b b k k k k

πβ
πβ β α β πΔ

β β
π πβ β
πβ

−

= − − − − + +

= − − − − + − +

= − = − +

= + = +

= + + + + + + 2
7

2
8 1 2 9 7

2 2 2 2 2 2
10 2 3 11 5 6 7 8

1 2 23 2 13

)

,
16 8

( 4 ), ( )
16 4

, ( ), 7,8,
4i i i

k

pk k k

k k k k k k

k b k b i

π πβ β
π πβ β

πΔ δ δ α±
−

= =

= − − = + + +

= ± = + =

   (28) 
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4   Solution of the Eigenvalue Problem 

Since the equality in Eq.(26) is satisfied for arbitrary F0
*(θ), then Eq.(26) can be 

simplified as an ordinary differential equation, i.e. 

22
0 1 0 2

1 d d( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )
2 dd

L p F p F L p pqθ Λ θ σ θ μ θ θθθ
= = + +  (29) 

To solve Eq.(29), appropriate boundary conditions for the process θ are needed. 
As in [7], the boundary conditions are determined by considering the adjoint equa-
tion with p=0, i.e. 

2 2
2

1 d d( ) 0, [ ( )] [ ( )]
2 dd

L F Lθ σ θ μ θθθ
∗ ∗ ∗= = −  (30) 

is the relevant Fokker-Planck operator. The solution to Eq.(30) had been studied in 
[10], and only the case, in whch, both of the boundaries θ=±π/2 are entrances, are 
considered in the present paper. In this case, it is easy to verify that for Eq.(29), at 
both of θ=±π/2, zero Neumann boundary conditions are obtained. 

According to Wedig [8], the solution to Eq.(29) can be obtained by an orthogo-
nal expansion. As in Namachchivaya[7], F0(θ) may be expanded as a Fourier co-
sine series, i.e. 

0
0

( ) cos(2 )n
n

F z nθ θ
∞

=
= ∑                                                 (31) 

By inserting Eq.(31) into Eq.(29), multiplying by cos(2nθ) in both sides and inte-
grating for θ, we obtain               

1
0

, 0,1,2,mn m n
m

a z z nΛ
∞

=
= =∑ "                                    (32) 

Where 

{ }2
2

2

1 ( )[cos(2 )] cos(2 )mna L p m n d
π

π θ θ θ
π −

= ∫
                          

(33) 

In Eq.(32), for each zn, to guarantee the existence of the nontrivial solution, the de-
terminant of the coefficients must vanishes. Therefore, the problem for evaluating 
Λ1(p) is converted into evaluating the leading eigenvalue of an infinite sequence of 
sub-matrices of the matrix A that is defined in Eq.(34), which construct an ap-
proximate sequence of Λ1(p).  

 
00 01 02
10 11 12
20 21 22

A

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"

# # # %
                                         (34) 

The set of approximate eigenvalues obtained by this method converges to the ex-
act eigenvalues as n→∞. However, the mass of calculation increases drastically 
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with the increase of n, so we obtain the approximate eigenvalues by the truncation 
of n. For example, in the case that n=0, we obtain Λ1(p)=a00. For n=1, we obtain 
the second order approximation of Λ1(p) by solving the eigenvalue of the second 
order sub-matrix, and for n=2, by solving the eigenvalue of the third order  
sub-matrix, the third order approximation of Λ1(p) is obtained. Because of the 
complexity of expressions, here we only present the elements of the second order 
sub-matrix 

2 22
2 25 71

00 33 1 33 2

2 2
3 1 2 7 23 5 13 1 2

2 2
01 2 3 5 6 13 7 8 23

2
2 2
1 1 2 33 1 2

10

[(3 2)( ) ( 2)( )] [(3 10)
8 4 2 2 64

3(3 26) ] ( ) ( )
4 16

[( 2) ( 6) ] [ ( ) ( )]
32 8

[ 2 4 ] ( )
16 2

k kkp p
a p b p k b p k

p
p k p k b k b p k k

p p
a p k p k k k b k k b

p p
k k k b

p
a

δ δ

δ δ

= + + + − + + + +

+ + − + + + −

= + + + + − + −

+ − − − −

+= 2 2 2 2
1 33 5 6 7 8 1 2 2

2 2 2
3 7 23 5 13 6 13 8 23 1 2

2 2 2 2 2 2 2 2
11 1 33 2 3 2 3

2 2
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16 32

1 1 1( 8 8) ] ( 2)( ) ( )
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1 1(7 6 8)( 4 ) [(7 8)( ) 2 (11 27 )]
128 256
1 ( 6 8)(
64

p k b k k k k p k

p p k p k b k b k b k b p k k

a p p k b p k k p k k

p p k k

δ δ− + + − − + +

+ + − − − + − + −

= + − + + − + + +

+ − − + 2
7 1 33 5 13 7 23

2 2 2
6 8 6 13 8 23 1 2 1 2

1) ( 2)[( 4) 4( )]
32

1 1 7( ) ( )
4 2 64

p p k b k b k b

k k k b k b p p k kδ δ

+ − − + +

− + − + − + −

 

5   Numerical Results and Conclusions 

Because of the expressions of the elements of the matrix A, it is difficult to solve 
the eigenvalues of matrix defined in Eq.(34), especially in the case that n>2. We 
now investigate the numerical approximations of the eigenvalues to show the con-
vergence rate.  

          
                                       (a)                                                                  (b) 

Fig. 1 Variation of moment Lyapunov exponent with n and p for the case: (a), ε=0.1, k1=k5=k7=2, 
k4=-2, k2=k3=k6=k8=0, δ2=δ2=1; (b), ε=0.1, k1=k4=k6=k8=2, k2=k3=k5=k7=0, δ2=δ2=1 
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In Fig.1(a), it appears that the deviation of approximate eigenvalues g(p) be-
comes less and less with the increase of n, and in the cases of n=2 and n=3, the 
values of g(p) almost coincide. In Fig.1(b), it is clear that the first four order ap-
proximations completely coincide, which means that this method is efficient. The 
two figures also indicate that the system is almost-sure stable because the value of 
g′(0), which is in fact the maximal Lyapunov exponent for the stochastic system, 
is negative, but for sufficient large p, the system is unstable in pth moment sense. 

In addition, the stability boundaries shown in Fig.2(a) and (b) are obtained by 
setting the moment Lyapunov exponent to be equal zero. By comparing these re-
gions, it is seen that these stability regions are strongly dependent on the value of 
p. In Fig.2(a), the differences among the stability boundaries in the cases of the 
first three order approximations are neglectable, and all the lines virtually coincide 
at p=2, and in Fig.2(b), all the three-order approximations of the stability bound-
ary coincide. 

        
                                       (a)                                                              (b) 

Fig. 2 Variation of stability region with n and p for the case: (a), ε=0.1, k1=k5=k7=2, k4=-2, 
k2=k3=k6=k8=0, n=1—Solidline, n=2—Dotline, n=3—Dashline; (b), ε=0.1, k1=k4=k6=k8=2, 
k2=k3=k5=k7=0, n=1—Solidline, n=2—Dotline, n=3—Dashline 

In this paper, the pth moment Lyapunov exponent of a codimension two bifur-
cation system, that is on a three dimensional center manifold and is excited para-
metrically by a white noise, is investigated. By applying the procedure exposed by 
in Wedig [11] and the perturbation method, an eigenvalue problem of the first ex-
pansion of the moment Lyapunov exponent is obtained. The eigenvalue problem is 
then solved by Fourier cosine series. The numerical results of the pth moment 
Lyapunov exponent are illustrated and in addition, the stability regions of pth 
moment are also obtained numerically. 
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Bifurcation Analysis of Stochastic  
Non-smooth Systems 

Nicole Gaus and Carsten Proppe 

Institute of Engineering Mechanics Karlsruhe Institute of Technology,  
Kaiserstr. 10, 76131 Karlsruhe, Germany 

Abstract. Non-smooth systems with stochastic parameters are important models e.g. for 
brake and cam follower systems. They show special bifurcation phenomena, such as  
grazing bifurcations. This contribution studies the influence of stochastic processes on bi-
furcations in non-smooth systems. As an example, the classical mass on a belt system is 
considered, where stick-slip vibrations occur. Measurements indicate that the friction coef-
ficient which plays a large role in the system behavior is not deterministic but can be de-
scribed as a friction characteristic with added white noise. Therefore, a stochastic process is 
introduced into the non-smooth model and its influence on the bifurcation behavior is stud-
ied. It is shown that the stochastic process may alter the bifurcation behavior of the deter-
ministic system. 

Keywords: Bifurcation, Non-smooth system, Lyapunov exponent. 

1   Introduction 

The system consists of a mass (m) on a belt, see Fig. 1. The belt moves with  
constant velocity v0. The mass is attached to the surrounding by a spring (spring 
constant c) and a damper (damping constant d). It is externally excited by the pe-
riodically driven force Q0 cos(Ωt). The friction force FR=µ(vrel)FNsign(vrel) changes 

its sign due to the direction of the relative velocity rel 0v v x= − � . As normal force 

FN merely the dead weight is considered. 

 

Fig. 1 The model 
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Two different motion modes may occur, the stick mode where the mass sticks 
to the belt and the slip mode where the mass slips due to the restoring force. The 

conditions for the stick mode are 0x v=�  and R 0F cx dx Q cos( t)> + − Ω� . 

The stochastic friction coefficient µ(vrel) is modeled as a sum of Gaussian white 
noise ξτ with intensity µS and a deterministic friction coefficient µ0(vrel) which fol-
lows a characteristic like Coulombs or Stribecks law 

µ(vrel)= µ0(vrel)+ µS ξτ.                                              (1) 

The deterministic friction coefficient following Stribecks law has been obtained 
by Hinrichs [1] from experimental data: 

2
0

0.3
( ) 0.1 0.01

1 1.42 | |rel rel
rel

v v
v

μ = + +
+

                             (2) 

A realisation of the stochastic friction characteristic is shown in Fig. 2. For  
the stick phase vrel=0 the friction characteristic µ(vrel)=0.4 is modeled to be  
deterministic. 

 

Fig. 2 Stochastic friction characteristic 

Introducing the stochastic friction characteristic µ(vrel), the normalized time 
τ=ω0t, the eigenfrequency ω0

2=c/m, the damping ratio D=d/(2mω0) and frequency 
ratio η=ω0/Ω, the two different motion modes can be described by first order dif-
ferential equations. For the stick mode (deterministic) 

1 0

2

dx d

dx 0

= γ τ
=

                                                            (3) 

where γ0 is the ratio of belt velocity to eigenfrequency  γ0=v0/ω0. For the slip mode 
(stochastic) 
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1 2

2 1 2 0 0 0 2 3

S 0 0 2

3

dX X d

dX [ X 2DX F sign(v X ) Q cos(X )]d

         [F sign(v X )]dW

dX d
τ

= τ
= − − + μ − ω + τ

+ μ − ω
= η τ

           (4) 

where F=FN/c, Q=Q0/c and dWτ is the increment of a Wiener process. The numeri-

cal integration is done by the Euler- Maruyama method, see [2]. 
In the phase plane shown in Fig. 3, we can see that the mass has the constant 

velocity of the belt 0x = γ�  during the stick phase. Up to the point where the stick 

condition no longer holds and the slip phase starts. Once the velocity is the same 
as the belt velocity and the stick condition is fulfilled the mass reattaches to the 

belt and moves with constant velocity 0x = γ� again. The motion is described by a 

limit cycle. 

 

Fig. 3 Phase plane (γ0=1, ω0=1, Q=0, D=0, µS=0) 

2   Damping Induced Bifurcation 

First the external excitation is not considered. The system parameters are ω0=1 and 
D=0. The initial conditions are X(0) 0= , 0X(0) = γ� . If the damping coefficient is 

increased, as can be seen in Fig. 4, the limit cycle becomes narrower and the dif-
ference between the position Xsl-st (changing point from slip to stick) and Xst-sl  
(changing point from stick to slip) is reduced, up until the point where the limit 
cycle no longer exists. In this case, here for D=0.4 there is a fixed point with the 
velocity X 0=� . At a damping coefficient D=0.376 the distance is almost zero. The 
limit cycle still exists, see Fig. 5. 

In the stochastic case for µS=0.005 however, it can be seen in the phase plane in 
Fig. 6, that only some trajectories still reach the limit cycle but most of them are 
moving to the fixed point. The mean of all trajectories therefore also approaches to 
the fixed point thus in the mean the limit cycle no longer exists. 
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Fig. 4 Limit cycle to fixed point 

 

Fig. 5 Phase plane D=0.376 (γ0=1, ω0=1, Q=0, µS=0) 

 

Fig. 6 Phase plane for D=0.376: all trajectories (grey), mean value (black) 
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3   Excitation Induced Bifurcation and Sensitivity to Initial  
Conditions 

Another bifurcation can be examined if the external excitation is considered. Now 
higher periodic solutions can occur in the deterministic case as well as in the sto-
chastic one, see Fig. 7. Damping is neglected, the eigenfrequency ω0=1, the initial 
conditions are X(0) 0= , 0X(0) = γ� and the amplitude of the external excitation is 
Q=1m. In grey the stochastic trajectories are shown (µS=0.005), in black the de-
terministic ones. 

 

 

 

 
Fig. 7 Phase plane for η=1.6, η=0.8, η=0.4 (D=0, γ0=1, Q=1m) 

For the frequency ratio η=0.4 the trajectory is chaotic, for η=0.8 it has two pe-
riods and for η=1.6 one period. In Fig. 8 the Poincaré diagram of the coordinate 
Xsl-st (changing point from slip to stick) is shown. The different behavior (one-
periodic, higher periodic, chaos) is visible in the deterministic case (black) as well 
as in the stochastic case (grey).  
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Fig. 8 Poincaré diagram (D=0, γ0=1, Q=1m, µS=0.005) 

3.1   Sensitivity to Initial Condition 

As an indicator for chaos the sensitivity of one trajectory to a change in initial 
conditions is often studied with the help of a Lyapunov exponent. If a trajectory 
starts close to a reference trajectory in the phase plane it is stable, if it does not 
move outside a certain surrounding of the reference trajectory. More information 
can be found for example in [3]. Here the distance is measured not for the entire 
trajectory but for the position of the changing point slip to stick Xsl-st. The sensitiv-
ity is examined by a Lyapunov exponent based on the Poincaré map. For more in-
formation about Poincaré maps see for example [4].  

 

Fig. 9 Distance of Xsl-st of disturbed trajectory to reference trajectory 

First a reference trajectory is calculated. Then a small disturbance is put on the 
initial conditions and the trajectory is calculated once more. As shown in Fig. 9 
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the difference w of the position at the slip to stick changing point of the disturbed 
trajectory to the one of the reference trajectory is calculated. This distance will ei-
ther decrease or increase during the motion which is described by the Lyapunov 
exponent 

( )1
lim ln

(1)i

w i
i w

λ
→∞

=
                                                            

(5) 

where for a positive exponent (λ>0), the trajectory is unstable, and for a negative 
exponent (λ<0), the trajectory is stable. 

In the stochastic case the reference and the disturbed trajectory are calculated M 
times and the mean value of each difference is calculated with 

1

.
1

( ( )) ( , )
M

i

E W i w i k
M =

= ∑                                                   (6) 

The Lyapunov exponent can be calculated from the mean value of the differences 
by 

.
( ( ))1

lim ln
( (1))i

E W i
i E W

λ
→∞

=                                                      (7) 

For longer time spans and thus a large number of changes the Lyapunov exponent 
should approach asymptotically a constant value.  

  

 
 

Fig. 10 Distance w and Lyapunov exponent λ for η=0.4, η=0.8, η=1.6 (D=0, γ0=1, Q=1m)  
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The comparison of distance w and the development of λ are shown in Fig.10 for 
the deterministic and the stochastic system with three different frequency ratios 
and a simulation time of 200 seconds. Again the stochastic case is colored grey 
and the deterministic one black. The stochastic and the deterministic Lyapunov 
exponent have the same sign for these frequency ratios. For η=0.6 the stochastic 
case is unstable while the deterministic one is stable, see Figs. 11 and 12. For 
η=1.2 we can see in the Poincare diagram in Fig. 8 that the deterministic trajectory 
is one periodic but the stochastic one is two-periodic. However in Fig. 13 it can be 
seen that the deterministic case is unstable. If a small disturbance is added the de-
terministic trajectory is also two periodic. 

 

Fig. 11 Phase plane for η=0.6 

 

Fig. 12 Distance w and Lyapunov exponent λ for η=0.6 (D=0, γ0=1, Q=1m) 
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Fig. 13 Lyapunov exponent for η=0.2-1.8 (D=0, γ0=1, Q=1m) 

4   Conclusions 

The non-smooth mass on a belt system shows several bifurcation behaviors: 

• Considering damping we can see that the stable limit cycle in the deterministic 
case does not exist anymore if the stochastic friction coefficient is introduced. 
In the mean the trajectories meet in a stable fixed point.  

• Considering the external excitation the bifurcation from one periodic to two 
periodic solutions to chaos can be detected with a Poincare diagram. The be-
havior is similar for the stochastic case and the deterministic one. However 
looking at the sensitivity, in this case a Lyapunov exponent of the switch point 
from slip to stick, we can see that for some excitation parameters the trajecto-
ries are stable in the deterministic case but unstable in the mean of the sto-
chastic case or vice versa. 
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Abstract. Synchronization behavior is discussed in a clustered neuronal network, in which 
Rulkov  maps with additive noise are applied as building blocks. Additive noise applied 
here is used to make the Rulkov map generate spiking activities. It is revealed that clustered 
structure of networks in noisy environments is able to make the subnetwork more synchro-
nous but suppress the synchrony of the entire network meanwhile. The effects of the cluster 
number, the coupling strength and the noise intensity on spatiotemporal synchronization in 
the network are discussed. The obtained results are helpful for understanding the clustered 
structure in cortical systems of the brain from a new viewpoint of synchronization. 

Keywords: Neuronal network, Synchronization, Noise, Pattern. 

1   Introduction 

Synchronization is ubiquitous in nature and plays an important role in several dif-
ferent situations such as predator-prey process, birds migratory and heartbeats. 
Synchronization has also been experimentally observed in nervous systems, such 
as hippocampal CA1 area [1], retina [2], and striate cortex [3]. Synchronization 
involves at least two elements in interaction. Several works addressing synchroni-
zation of large populations, which constitutes a complex network, have been in-
tensively studied [4-7] and comprehensively reviewed [8]. In nervous systems, 
neurons are connected via synapses-forming complex neuronal networks. Syn-
chronization of neuronal complex networks has been discussed in many articles. 
The obtained results indicate that various factors, such as coupling connections 
and external stochastic forces, may have important influences on synchronization 
behavior of neuronal complex networks. For example, Hasegawa found that with 
introducing the weak heterogeneity to regular networks, the synchronization may 
be slightly increased for diffusively couplings, while it is decreased for sigmoid 
couplings [9]. Shi et. Al. showed that noise not only can induce complete syn-
chronization in uncoupled identical neurons but also can enhance the synchroniza-
tion of weakly coupled neurons [10].  

                                                           
* Corresponding author. 
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In the human brain, neurons in some communities usually behave synchro-
nously to realize nervous information functions. Nevertheless, as we know, many 
of disorder diseases, such as Parkinson and epilepsy, are bound up with ideas of 
widespread rhythmic synchronization of neuronal elements. Thus, synchronization 
is essential in carrying out nervous functions but is not always a fine phenomenon 
in nervous systems. A question emerges from our mind, i.e. how our brain can 
sustain these two paradoxical states simultaneously. In this paper, we devote  
to giving some explanations on this problem from the perspective of nonlinear  
dynamics. 

2   Mathematical Model 

It is commonly accepted that cortical architecture and connections are organized 
in a hierarchical and clustered (modular) way. Integration of many clusters, in-
cluding large numbers of neurons forms a particular cortical area. Generally, the 
connectivity within each individual cluster is dense, while connections between 
neurons which are in different clusters are sparse. This kind of network is called 
complex clustered network. 

 

Fig. 1 Illustration of a clustered network with regular subnetworks. Here 25N = , 
5M = , 2m = , 0.1p = . 

In this paper, we consider a clustered network [11], in which N nodes are 
grouped into M clusters and each cluster contains n N M= nodes. Nodes are dis-

tributed on a ring so that the subnetwork is a regular one. Each node connects to 
m  nearest neighbors in the same cluster, and each pair of nodes in the nearest 
clusters is connected with probability p . A clustered network model with regular 

subnetworks is illustrated in Fig.1. In this paper, we take the size of the clustered 
network N  as 200 . Let each node inside a cluster connects to its 8m =  nearest 
neighbors. 

The local neuronal model for each node in the clustered network is taken as 
Rulkov map [12, 13]. In nervous systems, neurons are usually subject to random 
fluctuations. These random fluctuations arise from many different sources, such  
as the quasi-random release of neurotransmitter by the synapses, the random 
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switching of ion channels, and most importantly random synaptic input from other 
neurons. Thus, the existence of noise in dynamics of nervous systems should be 
concerned. In this paper, we introduce additive noise into the neuronal network. 
The mathematical equations of the studied network with additive noise terms are 
presented as follows:  

2
1

( 1) ( ) ( ) ( , )( ( ) ( )),
1 ( )

( 1) ( ) ( ) ,

N

i i i j i
ji

i i i

x n y n n a i j x n x n
x n

y n y n x n

α η ε

β γ
=

⎧ + = + + + −⎪ +⎨
⎪ + = − −⎩

∑
         (1) 

where ( )ix n  is the membrane potential of the neuron and ( )iy n  is the  variation of 

the ion concentration. n  is the iterated time index, ε  is the coupling strength, and 
( , ) 1a i j = if nodes i and j are connected, otherwise ( , ) 0a i j = . ( )i nη  is the addi-

tive noise with  

, ,

( ) 0,

( ) ( ) 2 ,
i

i j i j n m

n

n m

η
η η σδ δ

=⎧⎪
⎨ =⎪⎩

                                                (2) 

where σ  denotes the noise intensity of  ( )i nη . ,α β  and γ are system parame-

ters. Here ,β γ  are both taken as 0.001. In this case, the map is governed by a 

single excitable steady state when 2.0α < , and the excitable steady state loses its 
stability via a Hopf bifurcation when 2.0α > . In this paper, we take 1.99α = . It 
means that the studied system will not generate any spiking activities in the ab-
sence of noise ( )i nη .  Here, the noise intensity σ  is taken as 0.001. Under this 

noise intensity, the neuronal network can stay in the firing state.  

3   Main Results 

Firstly, we fix the network topology, namely we fix the probability p  as 0.004  

and the cluster number M  as 2 . We take the coupling strength ε  as the control 
parameter to study the effect of ε  on the firing activities of the studied neuronal 
network. Fig.2 shows four spatiotemporal patterns observed in the clustered net-
work for four different coupling strengths. When the neurons are weakly coupled 
with each other, the clustered neuronal network exhibits chaotic spatiotemporal 
pattern, as shown by Fig.2(a) with 0.0005ε = . When ε  increases a bit to 
0.0008 ,  although the clustered neuronal network remains still chaotic (see 
Fig.2(b)), some black stripes (none in Fig.2(a)) can be observed from the right side 
of this figure. This implies that there are some ordered parts shown by Fig.2(b), 
even though the pattern is disordered as a whole. With the coupling strength ε  in-
creasing to 0.001 (see Fig.2(c)), we find that the black stripes become more clear  
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and the spatiotemporal chaotic pattern becomes more ordered. When the coupling 
strength ε increases further to 0.005 , the clustered neuronal network exhibits 
synchronized pattern (see Fig.2(d)). The obtained results show that the clustered 
neuronal network can stay in synchronous state when the coupling strength ε  is 
large enough. 

 

Fig. 2 Space-time plots illustrate the transition from chaotic spatiotemporal patterns to spik-
ing synchronized ones with the coupling strength ε  increasing. 0.0005ε = , 0.0008 , 0.001  
and 0.005 , respectively. The color profile is linear, black depicting ( ) 0ix n =  and white 

( ) 1.7ix n = − . 

Next, we study the effect of the cluster number M  on the firing activities of 
the studied neuronal network. Namely, we take M  as the control parameter. As 
mentioned before, the size of the studied neuronal network N  is taken as 200  
and it is required that each neuron connects to its eight nearest neighbors. Thus, 
20  is the maximum value of M . In the following, we take the coupling strength 

0.005ε = , where the entire clustered neuronal network with two clusters 
( 2M = ) is synchronized (see Figs.2(d) and 3(a)). We increase the cluster number 
M  from 2  to 8 , the spatiotemporal pattern for 8M =  is presented by Fig.3(b). 
From this figure, we can see that synchronization of the entire clustered neuronal 
network has been broken down, but neurons which belong to the same cluster are 
still synchronized with each other.  Here, we call this dynamical behavior as clus-
ter-synchronization. In order to understand the meaning of cluster-synchronization 
better, we plot the time series of four neurons as shown in Fig.4. In this figure, 
neurons #1  and # 2  are randomly chosen from the first cluster, while neurons #3  
and # 4  are randomly chosen from the second    cluster. From this figure, we can 
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see that neurons #1  and # 2  (or #3  and # 4 ) inside the first  (or second) cluster 
are synchronized with each other. While neurons #1  and #3 , belonging to differ-
ent clusters,  are not synchronized. Figs.3(c) and (d) are the spatiotemporal pat-
terns corresponding to 10M =  and 20M = , respectively. Similar to Fig.3(b), 
cluster-synchronization can also be observed from these two figures. Thus, it is 
conclude from the results shown in Figs.3 and 4 that the synchronized patterns 
transit to cluster-synchronized ones with M  increasing. Namely, the synchroniza-
tion of the whole clustered neuronal network is weakened, while the synchroniza-
tion of each cluster still sustain. 

 

Fig. 3 Space-time plots illustrate transition from spiking synchronized patterns to clustered 
synchronized ones with the cluster number M  increasing. 2, 8,10M =  and 20 , respec-
tively. The profile is linear, where black is for ( ) 0ix n =  and white for ( ) 1.7ix n = − . Here 

0.005ε = . 

In order to study the degree of spatiotemporal synchronization in the network 
quantitatively and confirm the above assessments of wave front propagation via 
space-time plots, we introduce a synchronization parameter S  by means of the 
standard deviation which can be calculated effectively according to [14] 

2 2

1 1 1

1 1 1
( ), ( ) [ ( )] [ ( )]

T N N

i i
n i i

S S n S n x n x n
T N N= = =

= = −∑ ∑ ∑                   (3) 

Similarly, we can define an synchronization index iS  to quantify synchrony 

of the i -th cluster ( 1, ,i M= " ) as 
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Fig. 4 Time series of firing neurons. Neurons #1  and # 2  are arbitrarily chosen from the 
first   cluster, while neurons #3  and # 4  are arbitrarily chosen from the second cluster. In 
this figure, 8M =  and 0.005ε = . 

1

1
( ),

T

i i
n

S S n
T =

= ∑                                                         (4) 

where 

2 2
( 1) ( 1)

1 1

1 1
( ) [ ]

n n

i m i j m i j
j i

S n x x
n n− + − +

= =

= −∑ ∑                                (5) 

The indices S  and iS  are used to denote the synchronization levels of the entire 

network and the i -th cluster, respectively.  
Variations of  S  and iS  with respect to the coupling strength ε  are plotted in 

Figs.5(a) and 5(b).  These two figures are corresponding to the spatiotemporal  
patterns shown in Fig.2. From Figs 5(a) and 5(b), we find that both of  S  and 

iS decreases with increasing ε . This is an intuitive result that coupling strength 

can enhance the synchrony of the network.  The influence of the cluster number 
M on synchronization of the network exhibited in Fig.3 is quantitatively exhibited 
by Figs.5(c) and 5(d).  It is clearly seen that S increases while iS  decreases with 

M  increasing. In other words, synchronization of subnetwork can be enhanced by 
clustered structures at the expense of desynchronization of the entire network. 

Finally, we discuss the effect of the noise intensity on the observed spatiotem-
poral synchronization phenomena briefly. Fig.6 exhibits the dependence of S  (see 
Fig.6(a)) and iS  (see Fig.6(b)) on the coupling strength ε  and the noise intensity 

σ , respectively. As shown in Fig.6, we can see that S  and iS  increases when the 
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noise intensity σ  becomes larger for fixed coupling strength ε . Stronger coupling 
is required to make the entire clustered neuronal network (or subnetworks) syn-
chronized for larger noise intensities. This indicates that additive noise may reduce 
the synchrony of both the entire clustered neuronal network and its clusters. 

 

Fig. 5 Variations of synchronization index S  (a) and iS  (b) with respect to ε  and varia-
tions of synchronization index S  (c) and iS  (d) with respect to M  

 

Fig. 6 Contour plots of S  (a) and iS  (b) on the coupling strength ε  and the noise intensity 
σ . The cluster number 2M =  and the probability 0.004p = . The profile is linear, where 
black is for 0S =  (a) or 0iS =  (b) and white for 0.2S =  (a) or 0.2iS =  (b).  

4   Summary 

Synchronization behavior in a clustered neuronal network with additive noise is 
discussed to reveal the role played by the clustered structure of networks. The ef-
fects of the coupling strength and the cluster number are considered. Clustered 
structures have been found in several cortical systems and may be ideal for 
achieving high functional complexity [4]. These results can help us to understand 
the existence of clustered structure in cortical systems from the viewpoint of 
synchronization.  
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Abstract. The paper investigates stochastic dynamics of road-vehicle systems
and related bifurcation problems. The ride on rough roads generates vertical car
vibrations whose root-mean-squares are resonant for critical car speeds and vanish
when the car velocity is increasing, infinitely. These investigations are extended
to wheel suspensions with progressive spring characteristics. For weak but still
positive damping, the car vibrations become unstable when the velocity reaches
the parameter resonance near twice the critical speed bifurcating into stochastic
chaos of larger non-stationary car vibrations.

Keywords: Nonlinear road-vehicle systems, random road models, covariance
equations, critical car speeds, parameter resonances, stability, chaos.

1 Introduction to the Problem

To introduce road-vehicle systems of interest (see e.g. [1]), consider the quar-
ter car model with one degree of freedom, shown in Fig. (1). The car is riding
on randomly shaped road surfaces, that generates vertical car vibrations de-
scribed by the following system equations [2]:

Ẍt + 2Dω1Ṙt + ω2
1(1 + γR2

t )Rt = 0, γ ≥ 0, (1)

dZs = −ΩZsds + σdWs, Sz(w) =
σ2

Ω2 + w2
. (2)

In Eq. (1), ω1 is the natural frequency of the car and D is its damping mea-
sure. The parameters γ determine the cubic-progressive spring characteristic
of the wheel suspension. Xt describes the absolute vertical car vibration in
dependence on time t and Rt denotes the associated relative motion, given
by Rt = Xt − Zt. The base excitation Zs of the car is defined by Eq. (2) in
dependence on the way coordinate s where Ω is a fixed road or way frequency
and σ denotes the noise intensity of the Wiener increments dWs. In the sta-
tionary case, Zs possesses the variance σ2

z = σ2/(2Ω) and the way spectrum
Sz(w), noted in Eq. (2).

W.Q.Zhu et al. (Eds.):Nonlinear Stochastic Dynamics& Control, IUTAM BOOKSERIES29, pp. 221–228.
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Fig. 1 Scheme of road-vehicle systems

The transformation from way to time is performed by means of the car
speed v applying the increments ds = vdt and dWs =

√
v dWt with the

expectations E(dW 2
s ) = ds and E(dW 2

t ) = dt. Therewith, Eq. (2) yields

dZt = −ΩvZtdt + σ
√

vdWt, Sz(ω) =
σ2v

ω2 + (Ωv)2
. (3)

The integration of the time spectrum Sz(ω) over all frequencies |ω| < ∞
leads to the same variance σ2

z = σ2/(2Ω), already noted above. Obviously,
this road spectrum (see also [3]) is vanishing for sufficiently slow and fast car
speeds, respectively. Its variance, however, is independent on speed.

2 Spectral Analysis of Road-Vehicle Systems

In the linear case that γ, δ = 0, the complex transfer functions are applied to
Eq. (1) and (3) in order to obtain the complete response spectrum

Sx(ω) =
σ2v[ω4

1 + (2Dω1ω)2]
[(ω2

1 − ω2)2 + (2Dω1ω)2](ω2 + Ω2v2)
. (4)

It is valid for all frequencies |ω| < ∞. The square root of the response spec-
trum related to the excitation spectrum is plotted in Fig. (2) versus the
frequency ratio ω/ω1 for three damping values. According to [4], the applied
frequency scaling is linear with ω/ω1 = μ in the under-critical range and
rational with ω/ω1 = 1/(2 − μ) for over-critical frequencies. Note, that the
spectral diagram in Fig. (2) coincides exactly with the resonance diagram
of cars under harmonic base excitations showing no amplification in the low
frequency range, high resonances near the critical frequency ratio ω/ω1 = 1
and complete absorption when the spectral frequencies tend to infinity.
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Fig. 2 Resonance diagram of related spectra

The integration of the power spectrum (4) over all frequencies leads to the
following rms-ratio of the stationary car response and its base excitation:

σx

σz
=

√
2D + (1 + 4D2)ν
2D[1 + (ν + 2D)ν]

, with ν = v
Ω

ω1
. (5)

Herein, the dimensionless parameter ν is proportional to the car speed v
times the ratio of road and car frequency. The calculated rms ratio in Eq. (5)
is plotted in Fig. (3) for three different dampings showing similar resonance
properties, as above; i.e. the rms-ratio is one and zero for sufficiently low
or high car speeds, respectively. In between both limiting speeds, there is
a critical car speed near ν = 1. However, due to the broad-banded base
excitation applied, the resonance range around the critical speed is lower but
much broader in comparison with that one of harmonic base excitations.

3 Covariance Analysis of Road-Vehicle Systems

To derive the same rms-ratio, as already noted in Eq. (5), by means of the
Lyapunov matrix equation, the equation (1) of motion is rewritten into a
first order increment equation system. For these purposes, the velocity Yt =
Ẋt/ω1 is introduced as well as dimensionless time and noise by dτ = ω1dt
and dWτ =

√
ω1dWt. Eliminating the displacement Xτ , the state variables

Zτ , Rτ , Yτ are related to σz to obtain the state equations, as follows:

dZ̄τ = −νZ̄τdτ +
√

2v dWτ , Zτ = σzZ̄τ , γ̄ = γσ2,

dR̄τ = (Ȳτ + νZ̄τ )dτ −√
2v dWτ , (Rτ , Yτ ) = σz(R̄τ , Ȳτ ),

dȲτ = −(1 + γ̄R̄2
τ )R̄τdτ − 2D(Ȳτ + νZ̄τ )dτ + 2D

√
2v dWτ .

(6)
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For the linear case that γ̄ = 0, these equations are written into the vector
form (7), which gives the Lyapunov covariance equation, noted in (8).

dVτ = AVτ dτ + g
√

2ν dWτ , Vτ = (Z̄τ , R̄τ , Ȳτ )T , (7)
dE(VτVT

τ )/dτ = AE(VτVT
τ ) + E(VτVT

τ )AT + 2ν g gT . (8)

The matrix equation (8) possesses the stationary solutions E(Z̄2
τ ) = 1 and

E(R̄2
τ ) =

ν

2D

1 + 2Dν

1 + ν2 + 2Dν
, E(X̄2

τ ) =
1

2D

2D + ν + 4D2ν

1 + ν2 + 2Dν
. (9)

The square root of these expectations yields the rms-values of interest.

0 0.5 1 2 ∞→ ν

0 0.5 1 1.5 2→ μ

↑
σx/σz

0

1

2

3

D = .011

D = 0.03

D = 0.1

Fig. 3 RMS-ratios of car vibrations vs car speed

Fig. (3) shows analytical results and numerical approximations of the rms-
values plotted versus the related car speed ν = vΩ/ω1 in the range 0 ≤
ν < ∞. As already explained, the applied ν- scaling is linear in the under-
critical range and rational for 1 ≤ ν < ∞. Solid lines represent analytical
results calculated by Eq. (5) or (9). Simulation results are obtained applying
Euler schemes to the linear system (6) for the scan rate Δτ = 0.001 and
Ns = 106 sample points. Hereby, the Wiener increment dWτ is approximated
by ΔWn =

√
Δτ Rn, where Rn is a sequence of normally distributed numbers

with zero mean and E(R2
n) = 1. The simulation results are marked by squares

for the excitation values and by diamonds for the response. Note, that the
applied Euler scheme may be improved by some higher order schemes [5].

4 Extensions to Nonlinear Car Vibrations

The investigations above are extended to progressive spring characteristics
by means of the normalized nonlinear state equations
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dR̃τ = [(σȳỸτ + Z̄τ )dτ − σr̄ dWτ ]/σr̄, dZ̄τ = −νZ̄τdτ +
√

2ν dWτ , (10)

dỸτ = [−σr̄(1 + γ̄σ2
r̄ R̃2

τ )R̃τdτ − 2D(σȳỸτ + νZ̄τ )dτ + 2D
√

2νdWτ ]/σȳ . (11)

These equations are derived by introducing the normalized state processes
R̄τ = σr̄R̃τ and Ȳτ = σȳ Ỹτ into Eq. (6) utilizing the rms-values

σr̄ =

√
ν

2D

1 + 2Dν

1 + ν2 + 2Dν
, σȳ =

√
ν

2D

1 + 4D2 + 2D3ν

1 + ν2 + 2Dν
. (12)

For extensions to nonlinear damping in stochastic systems see [6].
The stationary solutions of Eq. (10) and (11) are investigated by means

of the Hermite moments Pk� m = E[Hk(R̃τ )H�(Ỹτ )Hm(Z̄τ )]. Applying the
multiplication and derivation rules, the Hermite moments are derived to

dPk�m/dτ = −νm(Pk�m + Pk�m−2) − 2D
(Pk�m + Pk�−2m)

+k[σȳ(Pk−1�+1m + Pk−1�−1m) + ν(Pk−1�m+1 + Pk−1�m−1)]/σr̄

−
[2Dν(Pk�−1m+1 + Pk�−1m−1) + σr̄(Pk+1�−1m + Pk−1�−1m)]/σȳ

−
γ̄σ3
r̄ (Pk+3�−1m + 3Pk+1�−1m + 3Pk−1�−1m + Pk−3�−1m)/σȳ

+ν[k(k − 1)Pk−2�m/σ2
r̄ + 4D2
(
 − 1)Pk�−2m/σ2

ȳ + m(m − 1)Pk�m−2

+4D
mPk�−1m−1/σȳ − 2kmPk−1�m−1/σr̄ − 4Dk
Pk−1�−1m/σr̄/σȳ].

(13)

Eq. (13) is an infinite equation system for all indices k, 
, m = 0, 1, 2, . . . and
P000 = 1. Decoupling higher order moments with indices k + 
 + m > 2 by
Pk+3�−1m ≈ 0, a second order approximation is calculated to

E(R̄2
τ ) =

ν

2D

1 + 2Dν + 3γ̄σ2
r̄

1 + ν2 + 2Dν + 3γ̄σ2
r̄

. (14)

Obviously, Eq. (14) represents an asymptotic result that leads to the correct
rms value for the limiting procedure γ̄ → 0 of linear road-vehicle systems.

Solid lines in Fig. (4) show evaluations of the approximated result (14)
in comparison with the interrupted lines of corresponding linear road-vehicle
systems. Numerical results of Monte-Carlo simulations are marked by cir-
cles, valid for the rms-values of the relative car vibration. They are obtained
for three different damping values and the nonlinearity parameter γ̄ = 0.2
applying the Euler scheme to Eq. (6) for N = 107 samples and the step
size Δτ = 0.001. For strong damping, there is a good coincidence between
the numerical circle results and the solid lines calculated by the approxima-
tion (14). For decreasing damping, however, deviations between both become
larger particularly in the parameter resonance range near ν = 2 where the
stationary car vibrations are unstable as shown in the next section.
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Fig. 4 Relative rms-values vs car speed for γ̄ = 0.2

5 Asymptotic Stability of Stationary Car Vibrations

To investigate the asymptotic stability of nonlinear car vibrations (see e.g.
[7]), the perturbation equations associated to Eq. (6) are derived for both,
the relative displacement Rτ and the absolute velocity Yτ by means of R̄τ =
Rst + ΔRτ and Ȳτ = Yst + ΔYτ . The insertion of both perturbations into
Eq. (6) gives the linearized perturbation equations

d(ΔRτ ) = ΔYτ dτ , ΔRτ , ΔYτ << 1, (15)
d(ΔYτ ) = −(2DΔYτ + ΔRτ + 3γ̄R2

stΔRτ ) dτ. (16)

The introduction of the polar coordinates [8] by ΔRτ = Aτ cosΦτ and ΔYτ =
Aτ sinΦτ into Eq. (15) and (16) leads to the transformed equations

dΦτ = −dτ − (3γ̄R2
st cosΦτ + 2D sin Φτ ) cosΦτdτ, (17)

d(ln Aτ ) = −(3γ̄R2
st cosΦτ + 2D sin Φτ ) sin Φτ dτ. (18)

According to the multiplicative ergodic theorem [9], the ln-amplitude equa-
tion is integrated in the time domain yielding the top Lyapunov exponent

λtop = lim
T→∞

1
T

∫ T

0

[−3γ̄R2
st cosΦτ − 2D sin Φτ ] sin Φτdτ. (19)

Fig. (5) shows evaluations of the top Lyapunov exponent for the damping
measures D = 0.07, 0.05 and the parameter values γ̄ = 0.1, 0.12. The scan
rate selected was Δτ = 0.001 applied for N = 107 sample points.
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Fig. 5 Top Lyapunov exponents vs car speed

Note, that the results obtained above show Kramer’s effect [10]; i.e. for
weak positive damping stationary system vibrations can be destabilized even
if they are excited by white noise. In our case of road noise, destabilization is
effected by car speeds, as well. In Fig. (5), the calculated Lyapunov exponents
are plotted for three data sets. The lowest curve shows that the damping is
so strong, that the top Lyapunov exponents are negative in the whole speed
range. For same nonlinearity, but smaller damping, the top Lyapunov expo-
nents of the middle curve are negative only for slow or high car speeds. In
between these two speed ranges, the top Lyapunov exponents are positive
indicating that the stationary car vibrations become non-stationary bifurcat-
ing into stochastic chaos. The highest curve in Fig. (5) is obtained for the
same weak damping but higher nonlinear parameter. Again, the largest top
Lyapunov exponents are situated in the parameter resonance near twice the
critical car speed of the linear vehicle system.

6 Conclusions

The present paper investigates road-vehicle systems and related bifurcation
problems. Riding on rough roads, vertical car vibrations are generated in
dependence on the velocity of the car. For increasing car speeds, the vertical
vibrations become resonant, when the related car speed is critical near ν = 1.
However, the car vibrations are absorbed and vanishing completely, when the
car is running with infinite velocity.

In the second part, the vehicle modelling is extended to nonlinear wheel
suspensions. Introducing relative displacement coordinates, stationary solu-
tions are approximated by means of Hermite polynomials. The result ob-
tained show a good coincidence between both, the analytical and numerical
approximations only for small nonlinearities and strong damping.
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Larger deviations from the stationary situation are due to instabilities
of the nonlinear car vibrations. For sufficiently weak damping they become
unstable and bifurcate into stochastic chaos when the car speeds reach the
parameter resonance near twice the critical speed of the linear system.
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A Review of Parameter-Induced Stochastic 
Resonance and Current Applications in  
Two-Dimensional Image Processing 
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Zhejiang University, Hangzhou 310027, P.R. China  

Abstract. Stochastic resonance (SR) is a phenomenon that nonlinear system synchronizes 
with noise to boost a resonant-like behavior. Parameter-induced stochastic resonance (PSR) 
proposed in this paper is realized by optimally tuning system parameters without adding 
any noise. It has been proved the performance of PSR is better than traditional SR tech-
nique which is in fact a particular case in PSR region. The applications of PSR to signal 
processing and target detection in shallow water reverberation have been reviewed. A new 
concept of two-dimensional parameter-induced stochastic resonance (2D-PSR) and its ap-
plications in the restoration of degraded image and pattern recognition of remote sensing 
image are developed. 

Keywords: Stochastic resonance; Nonlinear system; Image processing. 

1   Review of Parameter-Induced Stochastic Resonance 

Stochastic Resonance (SR) is a phenomenon manifested in nonlinear systems in 
which generally feeble input information, such as a weak signal, can be amplified 
and optimized by the presence of noise. This concept was first proposed by Benzi 
in 1981 [1], addressing the problem of the periodically recurrent ice ages. The ef-
fect requires three basic ingredients: 

1. An energetic activation barrier or, more generally, a form of threshold; 
2. A weak coherent input, such as a periodic signal; 
3. A source of noise that is inherent in the system or that adds to the coherent  
input. 

Given these features, the response of the system undergoes resonant-like behavior 
as a function of the noise level, hence the name Stochastic Resonance. Over the 
last few decades, Stochastic Resonance has continuously attracted considerable at-
tention, and has been applied to large variety of fields, including physics, chemis-
try, biomedical sciences and engineering systems. 
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Fig. 1 (a) Symmetric double-well potential. (b) Double-well potential under periodic weak 
forcing. 

In order to introduce the mechanism of stochastic resonance, let us consider a 
heavily damped particle of mass m  and viscous friction γ  moving in a symmet-
ric double-well potential )(xU  (see Fig. 1(a)). If we apply a weak periodic forcing 
to the particle, the double-well potential would be titled asymmetrically up and 
down, periodically raising and lowering the potential barrier, as shown in Fig 1(b). 
Generally, the weak force itself cannot cause the particle to shift between the two 
wells. However, if the system is interfered by noise with certain intensity which is 
synchronized with the periodic force, the particle will roll between the two wells 
in accordance with the periodic force. This synchronization is called the stochastic 
resonance. 

Conventional SR is realized by adding an optimal amount of noise into the sys-
tem. However, this method has some shortcomings. For example, in most situa-
tions, the input signal is corrupted by noise with a given quantity. So it is easy to 
increase the input noise but impossible to decrease it. If the input signal is already 
suprathreshold, Conventional SR can do nothing with it. Recently, a new approach 
called Parameter-induced Stochastic Resonance (PSR) is proposed to realize the 
SR effect by optimally tuning the system parameters. Unlike Conventional SR, 
PSR which in fact tunes the height of the barrier to affect the system’s response 
speed can occur both in subthreshold case and in suprothreshold case. Moreover, it 
has been proved that SR realized by conventional method (adding noise) is an op-
timization problem in a subregion of the parameter space [2]. Parameter-induced 
Stochastic Resonance has been successfully applied to many fields including one-
dimensional (1D) digital signal and analog signal processing, target detection in 
shallow-water reverberation, two-dimensional (2D) image processing and etc. 

In one-dimensional case, the theory of Parameter-induced Stochastic Reso-
nance and the principle of parameter optimization have been founded. It is proved  
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that the low SNR baseband binary pulse amplitude modulated (PAM) signals can 
get a high SNR gain after being processed by PSR technique with optimally tuned 
parameters. Besides, a marked enhancement of the channel capacity for binary 
PAM signal is achieved [3]. Since the PSR system is double-well and nonlinear, if 
we process analog signal directly by PSR technique, strong distortion may occur 
in outputs. To overcome this problem, a simple but effective nonlinear inversion 
method is developed to remove the distortion, which makes it possible to tackle 
with analog signal using PSR technique [4]. The target detection with active sonar 
is often limited by the presence of reverberation which is highly correlated with 
the transmitted signal. Using PSR-based technique, the detection performance can 
be optimized by tuning system parameters. Theoretical and experimental results 
have shown that PSR technique performs well under the condition of weak signal-
to-reverberation-noise ratio [5]. Image processing is another important field to 
which SR technique can be applied [6]. Based on PSR theory, we propose a two-
dimensional parameter-induced stochastic resonance (2D-PSR) system with pa-
rameters ba,  to be adjustable. It will be proved in this paper that the SNR gain of 
2D-PSR system can surpass one which is impossible for linear filtering [7]. 

This paper is organized as follows. In Section 2, we describe the 2D-PSR  
system and its output probability density function which is derived by solving  
corresponding Fokker-Planck Equation. In Section 3, we will introduce how to use 
theories discussed in Section 2 to improve SNR gain. Experimental results  
of degraded image processing and an application to pattern recognition of  
remote sensing image by our proposed technique are presented in Section 4 and 
Section 5. Finally, we draw the conclusions of 2D-PSR technique and its prospect 
in Section 6. 

2   2D-PSR System and the Corresponding Fokker-Planck  
Equation 

Similar to one-dimensional case, we propose the following two-dimensional pa-
rameter-induced stochastic resonance system 

),(3 yxhwbwa
y

w

x

w Γ++⋅−⋅=
∂
∂+

∂
∂

                                     (1) 

where ),( yxww = is the state variable (also taken as the system output), ba,  are 

system parameters to be adjustable, h  is the original signal and ),( yxΓ  is the 

Gaussian white noise with ),(2),(),,( 1111 yyxxDyxyx −−⋅=ΓΓ δ . Here D  is 

the noise intensity, which is related to noise variance 2σ  by 
yx

D

Δ⋅Δ
⋅= 22σ  in two-

dimensional case, where yx ΔΔ ,  are the sampling intervals along horizontal and  
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vertical directions. According to the characteristic method in Partial Differential 
Equation (PDE) theory [8], Equation (1) is equivalent to a set of Ordinary Differ-
ential Equations (ODE) 

Γ++−
==

hbwaw

dwdydx
311

                                                 (2) 

The characteristic line is 1=
dx

dy
 or Cxy +=  with C  being the constant, which 

indicates that in any arbitrarily small region, the solution of Eq. (1) is symmetric 
along the diagonal direction. Thus we can solve Eq. (1) by independently dealing 
with Eq. (2) 

3 ( ) ( )
dw

aw bw h x x
dx

= − + + Γ                                             (3-1) 

3 ( ) ( )
dw

aw bw h y y
dy

= − + + Γ                                             (3-2) 

The corresponding Fokker-Planck Equation (FPE) for Eq. (3-1) is 

[ ]
2

2 ),(
),()(

),(

w

xw

x

D
xwwf

xx

xw

∂
∂⋅

Δ
+⋅

∂
∂−=

∂
∂ ρρρ

                                (4) 

where ),( xwρ  is the output probability density function (PDF). When ∞→x  we 

can obtain the static PDF of Eq. (4) 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +−⋅Δ⋅=⋅==∞→ ∫
∞+

∞−
dw

D

hbwaw
xNwNwxw s

3

0 exp)(exp)(),( ϕρρ        (5) 

with N  to be the normalized factor. The asymptotic dynamic PDF of Eq. (4) is [3] 

)exp()()()exp()(),(
1

0

1

0

xwNwxwNxw n

n

i
iis

n

i
iii ⋅−⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Φ⋅−+⋅−⋅Φ⋅= ∑∑

−

=

−

=

λρλρ  (6) 

where nλλλ <<<= ...0 10  and [ ] nw ΦΦ=Φ ,...,,)(exp 100 ϕ  are the n  orders ei-

genvalues and eigenfunctions of Eq. (3-1), iN  is the constant to be determined by 

orthodonal condition of eigenfunctions [3]. 1λ  which is the dominant factor of 

system’s settling down to steady state is regarded as the system response speed. 
The static and dynamic PDF of Eq. (3-2) can be derived similarly. 
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3   Theory of 2D-PSR for Degraded Image Processing 

Previously we set 1λ  to be around 3 so that the error between dynamic and static 

PDF is within %53 ≈−e . However this constrained condition will restrict our 
choice for parameters ba, . Therefore we introduce the concept of dynamic sig-
nal-to-noise ratio (DSNR) 

][

][
),(

wVar

wE
baDSNR =                                                   (7) 

where [ ]•E  is an expectation operator and [ ] [ ] [ ]•−•=• 22 EEVar . Without the re-

striction of 31 ≈λ , the system response speed can either be higher or lower. Con-

sequently the valid sample points of the output will vary following the value of 

1λ . Previously, when processing a noisy image through 2D-PSR system, we just 

directly pick up the last sample point of each sample period [6], which is assumed 
to have the best statistic performance in the means of probability density. Accord-
ing to the dynamic solution, when the system response speed grows faster, the 
output performance will decrease, however, there will be more sample points valid 
to be considered. If these available sample points are averaged, we will get a better 
result. The statistic characteristics of averaged outputs can be calculated by the 
theory of local average random field [9]. Assume )(xw  is a random field with ex-

pectation m  and variance 2σ . )(xWX  is length average of )(xw  over a period 

X . Here )(xWX  is called the local average random field, which has expectation 

and variance 

[ ]
[ ] 2)()(

),()(

σ

ρ

⋅Ω=

⋅== ∫
XxWVar

dwxwwmxWE

X

X                                         (8) 

where )(XΩ  is called the variance function of )(xWX . Let 2)()( σξξρ Cov=  

be the normalized correlation function of )(xw . The relationship between )(XΩ  

and )(ξρ  can be described as follows 

ξξρξρ d
XX

dxdxxx
X

X
XX X
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⎠
⎞
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)(               (9) 

In order to obtain variance function )(XΩ  from Eq. (9), we have to figure out the 

second-order statistic characteristics of  )(xw .Thus we rewrite Eq. (4) as 

[ ]
2

00
2

00
00 ),,(

),,()(
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         (10) 
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where ),,( 00 xwxwρ  is the conditional PDF with )(),,( 0000 wwxwxw −= δρ  

and ),(),,(lim 00 xwxwxw
x

ρρ =
∞→

. The first-order approximate solution of  

Eq. (10) is 

[ ] [ ])(exp),()(),(),,( 01000 xxxwwwxwxwxw −⋅−⋅−−+= λρδρρ              (11) 

with 1λ  the system response speed. Thus 

( ) ξξλξ
d

XX
X

X

∫ −⎟
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⎞

⎜
⎝
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0
1exp1

2
)(                                      (12) 

Replacing [ ] [ ]wVarwE ,  in Eq. (7) with Eqs. (8) and (12) we obtain 

( ) ξξλξσ
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dwxww
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),(                                      (13) 

Here X  is determined as follows. Define an allowance error: ( ) err=⋅− ξλ1exp  

errln
1

1λ
ξ −=⇒ . If bX≥ξ  (here bX  means each length period), we directly 

use the last sample point to calculate the DSNR. If bX<ξ , we take ξ−= bXX . 

Our goal is to maximize DSNR by optimizing system parameters ba, , which can 
be solved by gradient descent algorithm very efficiently. 

It has been proved that the SNR gain of linear systems cannot surpass one [7]. 
We will prove that the SNR gain of 2D-PSR system can outstrip one. The input 

SNR in our case is DhSNRinput ⋅= 2  with h  the original image and D  the 

noise intensity. The SNR gain can be written as 

( ) ξξλξσ

ρ

d
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Xh

dwxwwD
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baDSNR
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1

2 exp12

),(2),(
                (14) 

Fig. 2 shows the SNR gain as a function of parameter b  with 5.1=a . It indicates 
when system parameters ba,  are properly set, the SNR gain will surpass 
one ,which is impossible for linear systems. In addition, the SNR gain remains 
high and descending slowly as b  grows larger, which means 2D-PSR technique  
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performs strong robustness to system parameters variations. If the parameters are 
not best optimized or even biased seriously, we can still obtain high SNR gain. 

 

Fig. 2 SNR gain as a function of parameter b 

4   Example of 2D-PSR Image Restoration 

The simulation equation equivalent to Equation (3) is 

[ ]
[ ]⎪⎩

⎪
⎨
⎧

+Δ⋅Γ++−=
+Δ⋅Γ++−=

−−−−−

−−−−−

nmnmnmnmnmnm

nmnmnmnmnmnm

wyhbwaww

wxhbwaww

,1,1,1
3

,1,1,

1,1,1,
3

1,1,,                       (15) 

where the subscripts represent the locations of sample points, and yx ΔΔ ,  are the 

sampling intervals along horizontal and vertical directions. 
The intensity value of an image usually distributes in the region of [0, 255]. 

However, the double-well potential of 2D-PSR system is symmetric to zero. Thus 
we should first subtract the mean value of an image before processing with 2D-
PSR technique and add it back later. Fig. 3(a) shows a computed tomography (CT) 
image corrupted by additive Gaussian white noise )57,0(N  (Fig. 3(b)). We sam-
ple the degraded image 55×  times per pixel (five by row and five by column), 
and operate it on 2D-PSR system. After optimizing parameters ba,  according to 
Eq. (13) we come up with the recovered image Fig. 3(c). Fig. 3(d) shows the result 
obtained by linear mean filtering, which takes the average value of every 55×  
blocks of Fig. 3(b). As a comparison, we have further processed Fig. 3(b) with to-
tal variation method [10], wavelet de-noising [11] and adaptive Wiener filtering 
[12]. The results are shown in Figs. 3(e), (f) and (g) respectively. 
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Fig. 3 (a) Original CT image. (b) Sampled CT image degraded by additive Gaussian white 
noise. (c) Image processed by 2D-PSR technique. (d)Image processed by mean filtering. (e) 
Image processed by total variation method. (f) Image processed by wavelet de-noising. (g) 
Image processed by adaptive Wiener filtering. 

5   Example of 2D-PSR Pattern Recognition of Remote Sensing 
Image 

The remote sensing multi-spectral image is a set of registered images with differ-
ent bands of wavelength ranging from visible light to infrared. Fig. 4 shows a set 
of multi-spectral images of bands blue, green, red and infrared. Our goal is to clas-
sify rivers, buildings and forests from the multi-spectral images using 2D-PSR 
technique. To this end, we rewrite 2D-PSR equation in vector’s form 

),(
x

3 yxba
y

Γh ++−=
∂
∂+

∂
∂

ww
ww

                                  (16) 

where [ ]TNwww ,...,, 21=w , [ ]TNhhh ,...,, 21=h , [ ]TNΓΓΓ= ,...,, 21Γ , N  is the 

number of registered images. The static PDF of corresponding FPE in the horizon-
tal direction is 
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Fig. 4 Multi-spectral images with blue, green, red and infrared bands 

Assume that the noise in the registered images is uncorrelated, thus 

∏
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Fig. 5 Classified image by 2D-PSR technique with black, grey and white representing  
rivers buildings and forests respectively 

The decision function of 2D-PSR based classifier is 

( ) [ ] )(ln)(ln)()(ln)(ln)( kkkkkk P,xP,xdD ωωρωωρ +=⋅== wwww         (19) 

where kω  is the number of classes (such as rivers, buildings and forests) and 

)( kP ω is the probability of kω . In pattern recognition of remote sensing image, 
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each class kω  is determined by the input value kh  (for example the class of rivers 

buildings and forests can be classified by their grey levels). Thus we can replace 

kω  in Eq. (19) by kh . The final decision is 

{ }MkDkD jiki,j ,...2,1)],([max)( , == ww                                 (20) 

Fig 5 shows the classified result by 2D-PSR based pattern recognition. 

6   Conclusions 

In this paper, the researches on PSR technique and its applications in signal proc-
essing and target detection in shallow water reverberation have been reviewed. A 
current developed 2D-PSR technique is proposed. The corresponding static and 
dynamic PDF of the FPE is derived. A concept of dynamic signal-to-noise ratio 
(DSNR) is introduced to utilize more valid sample points to upgrade the output 
performance. It has been proved 2D-PSR technique can have SNR gain greater 
than one which is impossible in linear cases. Examples of 2D-PSR based image 
restoration and pattern recognition of remote sensing image have shown 2D-PSR 
technique to be promising in the field of image processing. 
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Design of Damper Viscous Properties for  
Semi-active Control of Asymmetric Structures 

V. Gattulli, M. Lepidi, and F. Potenza 

DISAT, University of L’Aquila 67040 Monteluco di Roio, L’Aquila, Italy 

Abstract. A method to design semi-active control strategies of asymmetric structures is 
presented. The method is based on the optimal sizing of an equivalent Kelvin-Voight model 
describing the constitutive behavior of semi-active magneto-rheological devices, through 
the evaluation of the maximum achievable modal damping when they work in passive mo-
dality. The complex eigenvalue loci of the passively-controlled system versus the device 
mechanical characteristics are spanned for symmetric and asymmetric frame structures. A 
coherent representation of the reference effect ensured by an optimized linear active feed-
back on the eigenvalues loci is selected to drive the design of the adjustable properties of 
the semi-active device. A clipped-optimal control algorithm is used in a prototype experi-
mental application whose performance are highlighted by the presented design method.  

Keywords: Semi-active control, Earthquake engineering, Structural dynamics, Viscous  
devices. 

1   Introduction 

Great research effort has been focused over the last years on reducing the seismic 
response of engineering structures through dissipative systems [1]. Presently, an 
increasing attention is being paid to combine the reliable and cost-saving passive 
technology with the highly performing active strategies, by means of different hy-
brid and semi-active solutions. In this field, magnetorheological dampers are con-
sidered among the most promising devices to mitigate the structural vibrations, 
due to their mechanical simplicity, high dynamic range, low power requirements, 
large force capacity and mechanical robustness [2]. Experimental testing on large 
scale models show that the technology can be effectively implemented to control 
the structural dynamic response, and is suited for the seismic protection of civil 
structures [3,4]. Nonetheless, the full-scale applications are still circumscribed, 
owing probably to the relative youthfulness of the design guidelines currently 
available in the national and international codes.  

The rich literature of theoretical and experimental studies existing on the topic 
[5-7] reveals that a number of challenging issues is calling for further research ef-
forts. The accuracy level requested to the dynamical model describing the con-
trolled structure, the adequacy of the rheological models used to reproduce the 
highly nonlinear hysteretic behaviour of the dampers, the stochastic versus deter-
ministic approach to the optimization of the control strategies, the definition of 
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significant and synthetic performance indices, the representativeness of the re-
duced-scale specimens used in laboratory tests remain open investigation fields. 

In this respect, the paper summarizes the authors' experience in the multifaceted 
task of semi-actively controlling the three-dimensional seismic response of a 
minimal building model, through interstorey chevron-type bracings embedding 
magnetorheological dampers. The work approaches the modellisation of the struc-
ture dynamics and the damper rheology, the model updating based on the experi-
mental modal analysis, the design of a semi-active control strategy, and finally the 
experimental verification of the effectiveness of the adopted solutions in the seis-
mic protection of the prototypal structure. Here, the issues related to overall semi-
active control design method, for optimal sizing and placement of the dampers, the 
dynamic description of the relationship between the applied magnetic field and the 
damper rheological properties, the optimization of the semi-active-to-passive pro-
portion in the control strategy for the energy dissipation are treated primarily. 

2   Device Sizing for Seismic Excited Frame Structures 

Consider a structural system equipped with control devices, described by a  
dynamic discrete model. Denoting u  the displacement vector related to the N  
degrees-of-freedom, the forced response of the structure to a seismic action, repre-
sented by the monodirectional ground acceleration )(g tu�� , is governed by  

)(),( gds tu ������ MruufKuuCuM −=+++  (1) 

where M e K are the mass and stiffness matrix, respectively, sC  is the structural 
viscous damping matrix, df  is the control force vector (which in principle can be a 
nonlinear function of the displacement and velocity vectors), and r is the alloca-
tion vector of the seismic forces. Among different constitutive laws, describing the 
constitutive behavior of the control device, it is possible to approximate it through 
an equivalent Kelvin-Voight linear model.  

 

 

 

 

 

 
 
 
 

Fig. 1 Structural schemes: (a) seismic protected frame; (b) Kelvin-Voight dissipative  
devices  

u1 c

k

u 2u1 c

k

u 2



Semi-active Control  243
 

Adopting the Kelvin-Voight model for all the control devices in the structural 
system, and assuming known their placement according to a certain design strat-
egy, the control force vector obeys to the force-velocity-displacement relationship 

uKuCuuf ddd ),( += ��  (2) 

So that the equation of motion (1) can be rearranged as 

)()()( gdds tu ����� MruKKuCCuM −=++ ++  (3) 

where the additional damping matrix dC  is non-proportional in the general case. 
Then, defining a state vector as TTT }, { uux �= , equation (3) can be rearranged as 

gu��� HxAx +=  (4) 

where the state matrices A and H are 

⎥
⎦

⎤
⎢
⎣

⎡
+−+−

= −− )(   )( d
1

d
1 KKMCCM

I0
A  ,  ⎥

⎦

⎤
⎢
⎣

⎡
−

=
r

0
H  (5) 

The dynamic structural response, also in the case of seismic excitation, is strictly 
dependent on the input-output transfer functions, which are expression of the sys-
tem spectral properties. Therefore, analyzing the frequency and mode dependence 
on the stiffness and viscosity properties of the devices may be a matter of theoreti-
cal and technical interest. The frequency and modal damping of the system ensue 
from the complex roots of the characteristic equation 

0]),([det dd =− IKCA λ  (6) 

in which it is convenient to assume ΓC c=d  and ΓK k=d  for sake of simplicity. 
Therefore a parametric analysis can be carried out, tracking the equation root loci 
versus the independent variation of the only significant control parameters c and k 

),(),( iii kcbikca ±=λ  (7) 

where the real ),(i kca  and the imaginary part ),(i kcb  of the i-th eigenvalue are 
found to be highly nonlinear function of the control parameters. Subsequently, it is 
possible to find the loci of optimal c- or k-values, imposing the condition 

0
),(i =

∂
∂

c

kca
,     or   0

),(i =
∂

∂
k

kca
 (8) 

whose solution determines the maximum achievable real part of the i-th eigen-
value in the c (fixed k) or k (fixed c) parameter range. As the real part of the ei-
genvalue relates to the modal damping iξ , it is expected that the optimal values of 
the parameters, referred for instance to the principal structural mode, could ensure 
the best performance of the passively controlled structure. 
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2.1   Reference Linear Active Control Feedback   

Active control strategies have been deeply investigated to enhance the perform-
ance of seismic protection systems [8,9]. In the case of classical linear quadratic 
regulator (LQR) in which the active control device is driven by optimal linear 
feedback, the dissipative force is yet a general linear function of displacement and 
velocity vectors, in the form of a non-collocated relationship, such as 

uGuGuuf 21d ),( += ��  (9) 

where G1 and G2 are full gain matrices which determines the relation between the 
active force acting between two floors in an assigned direction and the whole dis-
placement and velocity variables describing the frame dynamic motion (the dy-
namic state). The feedback is available from direct measures or reconstructed by a 
dynamic observer. The overall control can be designed according to the H2/LQG 
method. The LQG design provides both control feedback (LQR) and Kalman ob-
server (Linear Gaussian). The linear control force in Equation (9) minimizes the 
cost functional 

∫ +=
F

0

 )  (),( d
T
d

T
d

t

t
dtJ fRfxQxfx  (10) 

where Q and R are weight matrices. Equation (4) representing the controlled sys-
tem assumes now the following form 

gu��� HfBxAx ++= d  

xGf =d  
(11) 

Coherently with the passive case, it is possible to study the eigenvalue loci of the 
controlled system matrix )()(c rr GBAA +=  varying the cost parameter r, used to 
define the second weight matrix as ΓR r= . The frequency and modal damping of 
the system again ensue from the complex solutions of the characteristic equation 

0])([det c =− IA λr  (12) 

Consequently, the root loci can be determined varying the parameter r, as 

)()( iii rbira ±=λ  (13) 

where )Re( ii λ=a  and )Im( ii λ=b  are nonlinear functions of the control parame-
ter. Similarly to the passive case, it is possible to find the loci of optimal r-values, 
imposing the condition 

0
)(i =

∂
∂

r

ra
 (14) 
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3   Semi-active Control Design 

Recently, the semi-active control design has been fully exploited both for model 
prototypes [3] and real structures. The designers have to solve two principal is-
sues: the device best placement and the optimal sizing of the mechanical device 
characteristics. In particular, in [10] it was evidenced that in the design process of 
semi-active protection system for full scale irregular building the lower and the 
higher force values are achieved when the minimum (OFF) or maximum voltage 
(ON) is supplied, respectively. A complete design process for semi-active seismic 
protection of frame structure includes the definition of the maximum and mini-
mum device force (or maximum and minimum equivalent viscous damping). Con-
sequently, to select the force capacity range of the physical semi-active device, a 
methodology based on equivalent optimal viscous damping may be pursued. In 
this respect, let assume that the semi-active device delivers a control force  

))(()()( dd t,,Δ,,,, υuuf0uufυuuf ��� +=  (15) 

where fΔ  is the force increment due to the voltage change )(tυ  with respective to 
the passive part. Consider Equation (2) as description of the passive (OFF) com-
ponent, and Equations (7-8) as design criteria. In order to exemplify the criterion, 
Fig. 2 represents the root loci of a 2-dof and 4-dof frame structures [7], varying 
the c and k sizing coefficient representing the first term of Equation (15) for a 
semi-active damper. Fig. 2a shows the effects of increasing the viscous coefficient 
c of a dashpot placed at the first floor of a 2-dof frame structure on the system ei-
genvalues in the Argand plane. Increasing the parameter produces an increment of 
the modal damping up to a certain value (marked with a dot) through the nonlinear 
dependence of the real part ),(1 kca  of the fundamental eigenvalue, while the 
natural frequencies, related to the imaginary part ),(i kcb , flip to each other due to 
the increasing of the lower and decreasing of the higher one. 

 

 

 

 

 

 

 

 

 

Fig. 2 Eigenvalue loci of dynamic systems varying the parameters c and k: (a) 2-dof sym-
metric, and (b) 4-dof non-symmetric frame structures 
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The device stiffness k produces a modal damping increment in the second mode 
and the opposite on the first mode. The effect of Kelvin-Voight devices on  
lateral-torsional coupling has been studied in the three-dimensional model of an 
asymmetric two-floor frame structure. In this case, depicted in Fig.2b, the coupled 
lateral-torsional modes are modified similarly to the previous planar case, with the 
only difference that the optimal c-values are, now, related to the two lateral-
rotational modes and they are not equal (dot and square marks in Fig.2b). 

A consistent procedure is here proposed as design criterion for the force device 
increment fΔ , regulated by the voltage )(tυ  in semi-active devices. In particular, 
the force increment is determined through the design of a reference active feed-
back control which should be reproduced, as much as possible, by the semi-active 
strategy. Therefore, the reference active device follows the “constitutive” relation 
defined by Equation (9) and its effect on the dynamic system may be again repre-
sented by the root loci determined from the solution of Equation (12), obtained 
varying the design parameter r. It must be remarked that the reference active de-
vice is designed in a non-collocated configuration which permits the root loci to 
span a larger range of values. Fig. 3 presents the root loci for the 2-dof (Fig. 3a) 
and 4-dof (Fig. 3b) system varying the design parameter r. Looking at Fig.3a, it is 
evident that the design of the active device allows the increment of the second fre-
quency, and consequently the avoidance of the flipping phenomenon noticed in 
the passive case, in which the second frequency had necessarily to decrease. Lar-
ger modal damping for the higher mode can be also achieved. A similar behavior 
is confirmed also in the 4-dofs case characterized by the latero-torsional modal 
coupling (Fig.3b).  

Therefore, the semi-active control design is strongly conditioned by the actual 
possibility to simultaneous optimize the passive device characteristic (c and k) and 
the optimal reference active control intensity (r value).  
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

Fig. 3 Comparison between the root locus varying c and k and varying the r-parameter of 
the LQR: (a) 2-dof symmetric  and (b) 4-dof non-symmetric frame structures 
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3.1   Semi-active Control Strategies  

In recent years, different types of control algorithms for semi-active devices have 
been studied including Lyapunov Stability Theory, Decentralized Bang-Bang Con-
trol, Maximum Energy Dissipation and Clipped-Optimal Control [1]. 

In particular, the clipped-optimal control has been used in simulating the possi-
ble efficacy for real buildings [10] and implemented in prototype experiment [5]. 
Here, the clipped strategy logic is discussed on the basis of the overall design pro-
cedure. In particular, the controller is designed to perform as closely as possible to 
the linear optimal controller which defines the desired control force vector 

T
d2d1d },{ FF=f . To force the i-th damper to generate approximately the corre-

sponding desired optimal control force ciF , the command signal iυ  is selected as 
follows. When the damper is providing the desired optimal force, the voltage ap-
plied to the damper should remain unchanged. If the force produced by the damper 
is lower than the desired optimal force and the two forces have the same sign, the 
voltage applied to the current driver is instantaneously increased to the maximum 
level admitted max

iυ , in order to increase the force produced by the damper aim-
ing to match the desired control force. Otherwise, the commanded voltage is set to 
zero. Therefore the command signal follows the law 

( )dididi
max
ii  )( FFFΗ −= υυ  (16) 

where H is the Heaviside function.  
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Fig. 5 Comparison between semi-active force determined by clipped-optimal algorithm and 
reference active force in harmonic motion of the 2-dof system: (a) Bouc-Wen model 
semiactive force, (b) reference active force; (c) applied voltage. 

The clipped-optimal control has been tested applying a harmonic excitation to 
the 2-dof frame structure, equipped with a semi-active device modeled by a Kel-
vin-Voight device with viscous and stiffness coefficient varying in time, depend-
ing on the supplied voltage. The passive behavior of the device (voltage OFF) is 
selected on the basis of the optimal condition, Equation (8), while the voltage-
depending part is requested to follow the reference active force according to the 
clipped optimal law (16). In Fig. 4 the comparison between the two forces is pre-
sented. It should be noted that most of the experimental studies available in the lit-
erature of semi-active control of prototypal structure employ magnetorheological 
(MR) dampers [3-5,7]. On this respect, the nonlinear behavior of the MR dampers 
may be described by the 9-parameter phenomenological model proposed by 
Spencer [5], in which the Bouc-Wen block is combined with a series dashpot and 
a parallel spring. The equation governing the relationship between the damper 
force dF  and the application point displacement du  and velocity du�  is  

)(),( d0d1d1ddd uukυcuuF −+= ��  (12) 

where the evolution of the displacement variable dυ  and the internal auxiliary 
variable ζ  is governed by a couple of differential equations 

[ ]αζucυukccυ ++−+= −
d0dd0

1
10d )()( ��  (13) 

1
dddddd )()(

−−−−−−= nn ζυuγζζυuβυuAζ �������  (14) 
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The coefficients 0k  and 0c  in the Bouc-Wen block assess the stiffness and 
damping at higher velocities, the stiffness 1k  of the spring accounts for the 
damper accumulator, while the series dashpot with viscosity 1c  reproduces the 
roll-off phenomenon. The parameters defining the Bouc-Wen model of the MR 
dampers are purposely tuned to simulate the experimental behavior of the com-
mercial device Lord RD1005-3, as experimentally identified by dynamic tests [7]. 
In particular, the voltage-dependence of the significantly-varying coefficients 

)(1 υc , )(0 υc  and )(υA  has been described through a polynomial function interpo-
lating to the identified results at different voltage amplitudes. In Fig. 5 the behav-
ior of the available damper with respect the designed one is represented. Even if 
the clipped-optimal algorithms perform in the desired manner, a general defi-
ciency of the device in terms of available deliverable force can be noted. 

3.2   Implementation on a Prototype Structure 

The results of an experimental campaign are here summarized. The project aimed 
to exploit the available technology in the wide area of earthquake engineering in 
developing design methods and implementation guidelines to improve civil con-
struction code. To this end, a prototype frame structure was used as a benchmark 
study for different types of earthquake protection systems (Fig. 6). For this proto-
type, equipped by two magneto-rheological damper, acting in the direction of the 
column’s minimum flexibility to the first floor, as first step, has been defined the 
analytical model, describing the three-dimensional motion formulated according 
to the direct displacement method [7]. To obtain a representative and reliable 
model, dynamical tests have been done for the updating of the parameters charac-
terizing the mass and stiffness matrices.  

 

 

 

 

 

 

 

 

 

 

Fig. 6 Prototypal building: (a) frame, (b) MR damper, (c) actuator, (d) accelerometers 
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 Using the updated model, the performance of the semi-active control according 
to the clipped optimal strategy have been tested both numerically and experimen-
tally. The modified Bouc-Wen block [5,7] has been implemented in the model to 
describe the nonlinear constitutive relationship for the MR dampers (Lord RD 
1005-3) used in the experimental tests. The optimal control forces have been de-
signed according to the H2/LQG method. Further insights and a detailed discus-
sion of the numerical and experimental results are presented in [7]. 

4   Conclusion 

The paper deals with the sizing of semi-active device for seismic protection of 
frame structures. The issue plays a fundamental role in the design process of  
enhanced dissipative bracings. The root loci of the controlled systems are used to 
determine both minimum (OFF) and maximum (ON) semi-active device charac-
teristics. Last ones are searched looking at reference linear active control demand 
for the device force. The method is completed by a clipped-optimal non-collocated 
feedback used to change the applied voltage of magneto-rheological dampers. An 
experimental investigation has evidenced the needs of a clear design procedure.  
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Abstract. The problem of the determination of the quasi-optimal control for the Duffing
oscillator using the LQGP technique and a linearization method is considered. A few cases
of these oscillators are considered including Gaussian and Poisson excitations both additive
and multiplicative. Some sufficient conditions of convergence for the considered iterative
procedure used in the evaluation of quasi-optimal control are derived. Obtained results are
illustrated by a numerical example.

Keywords: Duffing oscillator, Gaussian and Poisson excitations, LQ Problem, Iterative
methods.

1 Introduction

Nonlinear control problem for stochastic systems does not have analytical, exact
solution. One of approximate methods is a combination of statistical linearization
technique and LQG optimal control theory for linearized systems introduced by
Wonham and Cashman [10]. This approach was developed due to its simplicity
and easy applicability for systems with Gaussian excitations; see for instance [1]
and [4, 11]. Such combination leads to an iterative procedure including consecutive
solving of both Riccati and Lyapuov equations.

To obtain a quasi-optimal control strategy one can use iterative methods de-
scribed above. Application of this method for the Duffing oscillator gives very good
results for both Gaussian and non-Gaussian excitations [9].

Despite the fact that such iterative procedures are commonly used in applications,
there are very few publications dealing with the convergence of such procedures.
One can find sufficient conditions of the convergence in [5] for vector and scalar
systems with Gaussian excitations. However, condition for vector case is very diffi-
cult to verify.

In this paper we consider the problem of the determination of the quasi-optimal
control for the Duffing oscillator with Gaussian additive excitation and Gaussian
and Poisson multiplicative excitations, using a combination of Gaussian statistical
linearization and the LQGP technique (an extension of LQG technique to dynamic
systems with Gaussian and Poisson excitations). The main goal is to derive sufficient
conditions for convergence of the iterative procedures applied to the determination
of control.

W.Q. Zhu et al. (Eds.): Nonlinear Stochastic Dynamics & Control, IUTAM BOOK SERIES 29, pp. 251–260.
springerlink.com c© Springer Science + Business Media B.V. 2011
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2 Problem Formulation

We will now present a general problem formulation with which we deal in this paper.
Consider a standard stochastic optimal control problem for a polynomial dynamic
system described by the Itô vector differential equation

dx(t) = [Ax(t)+ Φ(x(t))+ Bu(t)]dt + G0dξ0 +
M

∑
k=1

Gkx(t)dξk(t)+

∫
Rn

D(v)x(t)ν̄(dt,dv) (1)

where x(t) is n-dimensional state vector, u(t) is m-dimensional control vector and
A ∈ R

n×n, B ∈ R
n×m and G0 ∈ R

n, Gk = [Gpi
k ] ∈ R

n×n,k = 1, . . . ,M ∈ N are time
invariant system coefficients matrices, Φ : R

n →R
n is a polynomial vector function,

C(v) : R→R
n and D(v) : R→R

n×n are matrix functions, ξk(t),k = 0, . . . ,M denote
mutually independent, standard scalar Wiener processes, each of which does not de-
pend on the centered Poisson measure ν̄(t,v), where ν̄(t,v) = ν(t,v)−E[ν(t,v)] =
ν(t,v)− tπ(v),

π(v) =
{

λ for {(1, . . . ,1)} ⊆ v
0 for {(1, . . . ,1)} �⊆ v

. (2)

The steady state control strategy minimizes the criterion

I = E
[
x̄T Qx̄+ ūT Rū

]
, (3)

where x̄ and ū denote stationary values of the state and control vectors, respectively;
Q ∈ R

n×n and R ∈ R
m×m are time invariant positive definite matrices.

We assume that the stationary solution of equation (1) exists and that the poly-
nomial vector function can be approximated by the linearized form Φ(x) ≈ Aex,
where Ae is a n×n matrix of linearization coefficients. One can find different crite-
ria and methods for determining Ae in the literature [8]. In this paper the mean-sqare
criterion is used. Substituting Φ(x) by Aex we obtain the linearized system corre-
sponding to (1) which has the following form

dxL(t) = [(A + Ae)xL(t)+ Bu(t)]dt + G0dξ0 +
M

∑
k=1

GkxL(t)dξk(t)+

∫
Rn

D(v)xL(t)ν̄(dt,dv) (4)

where xL is the n-dimensional state vector of the linearized system. The problem of
finding optimal steady-state control for system (4) with criterion (3) is well estab-
lished in the literature [7]. If (A+Ae,B) pair is controllable, then the optimal control
strategy is given by

û = −R−1BT Px̄L, (5)
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where x̄L is the stationary value of the linearized system and P = [Ppq] is the positive
definite solution of the Algebraic Riccati Equation (ARE)

(A + Ae)T P+ P(A + Ae)−PSP+ L+ Q+ λ DTPD = 0 (6)

with S = BR−1BT and

L = [Li j] =
M

∑
k=1

n

∑
p=1

n

∑
q=1

Rpk
i Rqk

j Ppq, Rpk
i = Gpi

k , i, j = 1, . . . ,n. (7)

The corresponding covariance matrix of the system can be evaluated using the Itô
formula applied to system (4) and the averaging operation. It can be found by solv-
ing the Lyapunov algebraic matrix equation

(A + Ae−SP)VL +VL(A + Ae−SP)T + G0GT
0

+
M

∑
k=1

GkVLGT
k + λ DVLDT = 0, (8)

where VL denotes the n× n covariance matrix of the linearized system stationary
response VL = E

[
x̄Lx̄T

L

]
with control strategy (5) applied.

3 Quasi-Optimal Nonlinear Control Problem

A general solution of the problem of finding the optimal steady-state control strat-
egy for system (1) with criterion (3) is unknown. However, one can use the Gaussian
statistical linearization method to obtain linearized form of (1) and then find the op-
timal control strategy for this linearized system solving (6). There are numerous
literature positions which contain methods and algorithms for finding the solution
of ARE, for example [2, 3]. The only problem is, that the linearization coefficients
matrix Ae is dependent on the variance of the controlled system. Since finding vari-
ance matrix for the nonlinear system (1) is also difficult, one can use solution of the
Lyapunov equation (8) for the linearized system as an approximation of the vari-
ance of the nonlinear system. Assuming that the approximate response of nonlinear
system (1) is a Gaussian process, we denote the general dependency of Ae on the
variance matrix VL as

Ae = F(VL), (9)

where F : R
n×n → R

n×n is a (possibly nonlinear) vector function.
Evaluations described above and their results strictly depend on each other: opti-

mal solution for the linearized system (4) depends on linearization coefficients ma-
trix Ae, but this matrix is a function of linearized system’s variance, which in fact,
is dependent on the control problem solution. This leads to the following iterative
procedure for finding quasi-optimal solution of control problem for the nonlinear
system (1) with criterion (3) [10, 1].
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QOC Procedure. (Quasi-optimal control procedure in a nonlinear quadratic
problem)

Step 1 Set V0 = 0 and evaluate Ae0 = F(Vk), k = 0.
Step 2 Find the positive definite solution of the ARE (6) using linearization

matrix Aek and denote the solution as Pk+1

Step 3 Substitute the solution from Step 2 into the algebraic Lyapunov equa-
tion (8) for covariance matrix V of the linearized system (4) and find
its solution denoting it as Vk+1.

Step 4 Using the covariance matrix Vk+1 find the linearization coefficients
matrix Aek+1 given by the function Aek+1 = F(Vk+1), where F is im-
plied by the criterion used for determination of linearization coeffi-
cients.

Step 5 If the deviation of Vk+1 with respect to Vk or Pk+1 with respect to
Pk (i.e. using matrix norms ||Vk+1 −Vk|| and ||Pk+1 − Pk||, where
||X || = maxi, j |xi j|) is greater than a given precision parameter ε , set
k = k + 1 and go back to Step 2, otherwise the procedure is finished
and Vk+1 and Pk+1 are the quasi-optimal solutions of the polynomial
control problem.

Procedures like QOC Procedure are commonly used in applications and in theoret-
ical papers [10, 1, 9, 4]. However, there are very few publications which deal with
convergence of those procedures. One can find some sufficient conditions for con-
vergence in [5] derived for simplified system (1) (additive Gaussian excitation only)
in scalar and vector case.

4 Procedure Convergence for the Duffing Oscillator

In this section we find sufficient conditions for the convergence of QOC Procedure
when applied to the Duffing oscillator with Gaussian and Poisson additive and multi-
plicative noises. We consider system (1) for n=2, M=2 and the following parameters

A =
[

0 1
−ω2

0 −2ζω0

]
,B =

[
0
b

]
,Φ(x) =

[
0

−εx3
1

]
,G0 =

[
0
g0

]

G1 =
[

0 0
g1 0

]
,G2 =

[
0 0
0 g2

]
,D(v) =

[
0 0
d1 d2

]
, (10)

where x(t) =
[
x1(t) x2(t)

]T
is 2-dimensional state vector, u(t) ∈ R is the scalar

control variable, ω0,ζ ,b,g0,g1,g2,d1,d2 and ε are all positive real values.
The control strategy minimizes stationary criterion (3) with

Q =
[

q1 0
0 q2

]
, R = r, (11)

where q1,q2,r ∈ R. In order to find quasi-optimal solution of the control problem,
we use the mean-square criterion to linearize function Φ as follows [8]
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Φ(x) ≈ Aex =
[

0 0
−3εv11 0

][
x1

x2

]
(12)

The corresponding Riccati equation for the linearized system is simplified to the
following set of three equations

−2ω2
0 p12 −6ε p12v11 − sp2

12 +(g2
1 + λ d2

2)+ q1 = 0 (13)

p11 −2ζω0 p12 −ω2
0 p22 −3ε p22v11 − sp12 p22 = 0 (14)

2p12 −4ζω0 p22 − sp2
22 + g2

2p22 + q2 + λ d2
2 p22 = 0, (15)

where s = b2

r . The Lyapunov equation is simplified to

2v12 = 0 (16)

v22 −
(
ω2

0 + sp12 + 3εv11
)

v11 − (2ζω0 + sp22)v12 = 0 (17)

−2
(
ω2

0 + 3εv11 + sp12
)

v12 −2(2ζω0 + sp22)v22+

g2
0 + g2

1v11 + g2
2v22 + λ d2

1v11 + λ d2
2v22 = 0 (18)

We will now deal with a specific case of system (10) with g1 = 0 and d1 = 0. The
following theorem gives sufficient conditions of convergence of the QOC Procedure
in this specific case.

Theorem 1. Consider the Duffing oscillator system (1) with parameters (10) with
g1 = 0,d1 = 0 and control criterion (3) with parameters (11). If there exists α0,
0 < α0 < 1 such, that the following inequalities are satisfied:

3ε < s (19)

s
√(

g2
2 + λ d2

2 −4ζω0
)2 + 4sq2 > 1 (20)

2sg2
0 < (4ζω0 −g2

2 −λ d2
2)

2 (21)

s
6ε

+
1

ω2
0

< α0 (22)

where s = b2

r , then QOC Procedure applied to system (10) is convergent.

Proof. See Appendix.

Note that inequalities (20) and (21) can be replaced by the following condition

(
g2

2 −4ζω0 −λ d2
2

)2
> max

{
(

1
s2 −4sq2), 2sg2

0

}
(23)

We will now deal with a general case. Consider system (1) with M = 2,n = 2 and
parameters g1 and d1 not equal to zero. Their presence allows us to take into account
noises not only in dumping, but also in stiffness.
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We will now present the theorem which shows, that for a special set of parame-
ters, the QOC Procedure is convergent.

Theorem 2. Consider Duffing oscillator system (1) with parameters (10) and con-
trol criterion (3) with parameters (11). For sufficiently small value of g2

0 the QOC
Procedure is convergent.

Proof. Similarly to the proof of Theorem 1 we evaluate the derivative of v(k+1)
11 as a

function of vk
11, which can be presented in the following form

∂v(k+1)
11

∂vk
11

= −
g2

0
∂F (vk

11)
∂vk

11(
F (vk

11)
)2 (24)

where F : R → R is a scalar, Lipschitz function. We can also show that both p12

and p22 are positive and bounded. Finally we can state that for sufficiently small g2
0

there exists 0 < α0 < 1 for which

∂v(k+1)
11

∂vk
11

< α0 (25)

5 Example

In this section we present some applications of theorems we derived in this paper.
We also make a practical comparison of the proposed QOC Procedure and classical
algorithms for finding function zeros.

In this example we will show the application of the Theorem 1. Consider the
Duffing oscillator, that is system (1),(2) with parameters (10) and control criterion
(3). Assume d1 = 0 and g1 = 0.

To find the sufficient condition for convergence of the QOC Procedure we use
conditions (19)-(22). Note, that these conditions are only sufficient. That means,
that some systems may not satisfy those conditions, however the QOC Procedure
may be convergent. Especially condition (19) is very restrictive.

We will now deal with specific set of parameters. Assume α0 = 0.99 and ε =
0.3,ζ = 1,ω0 = 2,r = b = 1,λ = 1,g0 = 1,g2 = 2,q1 = q2 = 1,d2 = 1,g1 = d1 = 0.
It is easy to show, that conditions (19)-(22) are satisfied. Therefore, applying Theo-
rem 1 we find, that the QOC Procedure is convergent. Numerical tests showed, that
subsequent values of vk evaluated using QOC Procedure converged in 6 iterations.

Further numerical tests showed, that it is very difficult to find a set of parameters
which would make the QOC Procedure non convergent. In fact, we did not find
such set of parameters. It is worth noting, that this is not a general case for all
systems – this depicts only the Duffing oscillator. One can find examples of other
systems (even scalar systems) [5], for which the QOC Procedure is not convergent.
Further work should be done to find less restrictive sufficient conditions than those
in Theorem 1.
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Fig. 1 Convergence speed comparison with precision ε = 10−8
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We also analyzed the convergence speed of the QOC Procedure using numerical
experiments. Note, that Lyapunov equation (8) and Riccati equation (6) for Duffing
oscillator can be treated as a set of 6 equations. That means, that actually, they can be
solved using classic methods. We have compared the QOC Procedure (when using
equations (13)-(18)) with classic Newton method [3] and its modification, which
was described in recent work [6].

Comparison results are roughly presented in Figure 5. The number of iterations
required to achieve selected precision is usually the highest for classic Newton’s
method. Modified Newton’s method [6] and evaluation using QOC Procedure are
more or less equal, depending on the set of parameters. However, if we compare
execution times, not the iterations, proposed method is far better, while Newton’s
method and its modification are comparable. The execution time was measured on a
standard desktop PC (with Intel Core 2 Duo 2GHz processor). The QOC Procedure
achieves assumed precision about ten times faster than two other methods. This is
due to the fact, that Newton methods need to evaluate the gradient of the function.

6 Conclusions

In this paper we have considered the problem of the determination of quasi-optimal
control for the Duffing oscillator with parametric and external Gaussian and Poisson
excitations. To solve this problem we have used the iterative procedure, called QOC
Procedure, that combines Gaussian statistical linearization and LQGP technique.
Furthermore, we have presented two theorems depicting sufficient conditions for
convergence of the QOC Procedure. An example, which proved applicability of
those theorems and compared the convergence speed of proposed procedure with
classic Newton’s method and its recent modification from [6], was presented.
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Appendix: Proof of Theorem 1

In order to show the convergence we consider only the variance v11. We shall denote
v11 evaluated in the k-th iteration of the procedure as vk

11. We derive the element p12

of the Riccati matrix P using (13). Since (13) is the second order algebraic equation
with respect to p12 it is easy to find the positive solution. Similarly we can derive
p22 from equation (15) assuming that p12 is known. Note, that we don’t have to
evaluate p11 in order to derive v11 from equations (17)-(18). The next step in the
proof is to find the solution of the Lyapunov equation (8). We derive v22 from (18)
and finally we derive the solution of (17), which is also the second order algebraic
equation with respect to v11 and we denote this solution as the concurrent iteration’s

solution v(k+1)
11 . We then find the derivative of p12

∂ p12

∂vk
11

= −6ε
2s

f1(vk
11), f1(vk

11) =

⎛
⎝1−

(
2ω2

0 + 6εvk
11

)
√(

2ω2
0 + 6εvk

11

)2 + 4sq1

⎞
⎠ . (26)

Since v11 ≥ 0 and s,q1,ω0,ε > 0 and using both (19) and the fact that f1(vk
11) < 1

for all vk
11 ≥ 0, we have −1 < ∂ p12

∂vk
11

< 0.

We perform a similar calculation of the derivative of p22

∂ p22

∂vk
11

=
4

4s
√(

g2
2 + λ d2

2 −4ζω0
)2 + 4s(q2 + 2p12)

∂ p12

∂vk
11

. (27)

Using (20) and the fact, that p12 ≥ 0 we can easily show, that −1 < ∂ p22
∂vk

11
< 0. Again

we use similar calculation of the derivative of v22. We get

∂v22

∂vk
11

= − 2sg2
0(

4ζω0 + 2sp22 −g2
2 −λ d2

2

)2

∂ p22

∂vk
11

. (28)

Using (21), derivative bounds of p22 and the fact, that p22 ≥ 0, it is straightforward

to show, that 0 < ∂v22
∂vk

11
< 1. Finally we evaluate the derivative of v(k+1)

11 as a function

of vk
11. We get

∂v(k+1)
11

∂vk
11

= − s
6ε

(
1− ω2

0 + sp12

f2(p12,v22)

)
∂ p12

∂vk
11

+
1

f2(p12,v22)
∂v22

∂vk
11

(29)
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where f2(p12,v22) =
√

(ω2
0 + sp12)2 + 12εv22. Assuming that there exists a con-

stant 0 < α0 < 1 which satisfies (22) and taking into account bounds of derivatives
of p12 and v22, nonnegativity of both p12 and v22 and finally the condition (22) we
can state, that

0 <
∂v(k+1)

11

∂vk
11

< α0. (30)

Application of Banach’s fixed point theorem [12] gives the convergence of the pro-

cedure because the function which evaluates v(k+1)
11 in terms of vk

11 is contractive.
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Abstract. Innovative procedures for the stochastic optimal time-delay control and stabiliza-
tion are proposed for a quasi-integrable Hamiltonian system subject to Gaussian white 
noises. First, the problem of stochastic optimal control with time delay is formulated. Then, 
the problem is converted into a stochastic optimal control without time delay, and the con-
verted control problems are then solved by applying the stochastic averaging method and 
the stochastic dynamical programming principle. The optimal time-delay stabilization of 
quasi-integrable Hamiltonian systems is formulated as an ergodic control with a cost func-
tion determined by minimizing the largest Lyapunov exponent of the controlled system. As 
an example, a two-degree-of-freedom quasi-integrable Hamiltonian system with time delay 
in feedback control forces is investigated in detail to illustrate the procedures and their  
effectiveness.  

Keywords: Time-delay feedback control, Stochastic averaging method, Stochastic optimal 
control, Feedback stabilization. 

1   Introduction 

The time delay in feedback control can be caused by physical properties of control 
equipments, measurements of system states, filtering and data processing, calculat-
ing and executing control forces, etc.. The time delay in feedback control may not 
only deteriorate the performance of controlled systems but also destabilize the con-
trolled systems. The dynamics of time-delay feedback controlled systems under 
stochastic excitation has been analyzed by using several methods. Recently, a  
stochastic averaging procedure was proposed for quasi-integrable Hamiltonian  
systems with time-delayed feedback control, and has been applied to predict the re-
sponse, stochastic stability, stochastic Hopf bifurcation [1-3]. In principle, the dy-
namical programming principle can be extended to the stochastic optimal control 
problems with time delay [4]. However, only a few problems are solvable and most 
problems are practically intractable since the resulting Hamilton-Jacobi-Bellman 
(HJB) equation is of infinite-dimensions [5]. In the present paper, innovative pro-
cedures for the stochastic optimal time-delay control and stabilization of quasi-
integrable Hamiltonian systems are proposed and illustrated with an example.  
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2   Formulation of Stochastic Optimal Time-Delay Control 

Consider an n-degree-of-freedom quasi-Hamiltonian system with time-delay feed-
back control, governed by the following equations: 

1/2( , ) ( )

, 1,2,..., ; 1,2,..., .

i
i

i ij i ik k
i j

H
Q

P

H H
P c u f W t

Q P

i j n k m

τ τε ε ε

′∂=
∂

′ ′∂ ∂= − − + +
∂ ∂

= =

Q P

�

�                         (1) 

where iQ  and iP  are generalized displacements and momenta, respectively; 

( , )H H′ ′= Q P  is a twice differentiable Hamiltonian; ε  is a small parameter; 

( , )ij ijc cε ε= Q P  represent the coefficients of quasi-linear dampings; 
1/2 1/2 ( , )ik ikf fε ε= Q P represent the magnitudes of stochastic excitations; 

( , )iu τ τε Q P with ( )tτ τ= −Q Q  and ( )tτ τ= −P P  denote feedback control forces 

with time delay τ ; ( )kW t are Gaussian white noises in the sense of Stratonovich 

with zero mean and correlation functions [ ( ) ( )] 2 ( )k l klE W t W t T D Tδ+ = .  
The objective of stochastic optimal control is to minimize a performance index 

[ ]
0

1
( ) lim , , ( , )

T

T
J L dt

T τ τ→∞
= ∫u Q P u Q P                                      (2) 

for semi-infinite time-interval ergodic control. In Eq.(2),  [ ], , ( , )L τ τQ P u Q P  is the 

cost function, which is a continuous, differentiable and convex function. Eqs.(1) 
and (2) constitute a stochastic optimal time-delay control problem of quasi-
integrable Hamiltonian system. 

3   Conversion to Stochastic Optimal Control Problems without 
Time-Delay 

Assume that Hamiltonian 'H  in Eq.(1) is separable and of the form 

2

1

1
' '( , ), ' ( )

2

n

i i i i i i
i

H H q p H p G q
=

= = +∑                                   (3) 

where ( ) 0iG q ≥  is symmetric with respect to 0iq =  and with minimum at 

0iq = . The conservative system corresponding to (1) has a family of periodic  



Stochastic Optimal Time-Delay Control and Stabilization 263
 

solutions. For weak dampings, weak excitations, and small time delay τ ,  the fol-

lowing approximate expressions can be used 

( ) ( ) cos ( ) sin

( ) ( ) cos [ ( ) sin ] /
i i i i i i

i i i i i i

P t P t Q t

Q t Q t P t

τ ω τ ω ω τ
τ ω τ ω τ ω

− +
− −

�
�

                              (4) 

Thus the time-delay feedback control forces can be expressed approximately in 

terms of the state variables without time delay, i.e., ( , ) ( , ; )i iu uτ τ τ=Q P Q P . By 

using this approximation and considering possible Wong-Zakai correction terms, 

Eq.(1) can be rewritten as 

1/2( , ; ) ( , ) ( )

i
i

i ij i ik k
i j

H
dQ dt

P

H H
dP m u dt dB t

Q P
ε ε τ ε σ

∂=
∂

⎡ ⎤∂ ∂= − − + +⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

Q P Q P

           (5) 

where ( , ; )H H τ= Q P is a modified Hamiltonian, which is still assumed to be 

separable, i.e., 1 2 nH H H H= + + +" , ( )kB t  are unit Wiener processes, and 

2ik jk kl ik jlD f fσ σ = . Accordingly, the performance index in Eq.(2) is modified to 

[ ]
0

1
( ) lim , , ( , ; )

T

T
J L dt

T
τ

→∞
= ∫u Q P u Q P                                      (6) 

Eqs.(5) and (6) constitute a stochastic optimal control problem without time delay, 

converted from the original problem (1) and (2). 

Applying the stochastic averaging method for quasi-integrable Hamiltonian sys-

tems [6] to system(5), in the non-resonance case, the following partially averaged 

Itô stochastic differential equations are obtained: 

[ ( ) ] ( ) ( )r
r r i rk k

i

H
dH m u dt dB t

P
σ∂

= + +
∂

H H                              (7) 

where T
1 2[ , , , ]nH H H=H " , ⋅  denotes averaging operation; ( )rm H  and 

( )rkσ H  are, respectively, the averaged drift coefficients and diffusion  

coefficients.  

Eq.(7) implies that H is a controlled diffusion vector process. Correspondingly, 

partial average performance index (6) becomes 
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0

1
( ) lim ( , )

T

T
J L dt

T→∞
= ∫u H u                                            (8) 

By applying the stochastic dynamical programming principle [7] to Eq.(7) and (8), 

the following dynamical programming equation can be established: 

21
inf{ [ ( ) ] ( , )}

2
r

rk sk r i
r s i r

HV V
m u L

H H P H
σ σ γ∂∂ ∂+ + + =

∂ ∂ ∂ ∂u
H H u          (9) 

where ( )V H  is called the value function, and  

*

0

1
lim ( ( ), ( ) )

T

T
L t t dt

T
γ

→∞
= ∫ H u                                           (10) 

is the optimal average cost function and * ( )tu  is the optimal control. 

Let L  be quadratic with respect to u, i.e., 

T
1( , ) ( )L f= +H u H u Ru                                              (11) 

where 1( ) 0f ≥H  and R is a diagonal matrix with positive elements iR . Minimiz-

ing the left-hand side of Eq.(9) with respect to u  yields 

* 1

2
r

i
i r i

HV
u

R H P

∂∂= −
∂ ∂

                                                   (12) 

Substituting Eq.(12) into Eq.(9) and averaging the terms involving *
iu  lead to the 

final dynamical programming equation. Solving the equation and substituting the 
resultant V(H) into Eq.(12) yield the optimal control. Note that *u are generally 
nonlinear in iQ  and iP . The reverse of Eq.(4) is 

( ) ( )cos( ) ( )sin( ) /

( ) ( ) cos( ) ( ) sin( )
i i i i i i

i i i i i i

Q t Q t P t

P t P t Q t

τ ω τ τ ω τ ω
τ ω τ τ ω ω τ

− + −
− − −

�
�

                     (13) 

Substituting Eq.(13) into Eq.(12), the following time-delay optimal control can be 

obtained: 

*

( , ), ( , )

1
( , )

2
r

i
i r i

HV
u

R H P
τ τ τ τ

τ τ
= =

∂∂= −
∂ ∂

Q Q Q P P P Q P

Q P                        (14) 

Substituting * ( , )iu τ τQ P in Eq.(14) into Eq.(7 ) and averaging the terms involving 
*

iu  yield 

*[ ( )] ( ) ( ), ( ) ( ) r
r r rk k r r i

i

H
dH m dt dB t m m u

P
σ ∂

= + = +
∂

H H H H            (15) 
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The response of the controlled quasi-integrable Hamiltonian system can be pre-
dicted by solving the Fokker-Planck-Kolmogorov (FPK) equation corresponding 
to the fully averaged Itô Eq.(15). The root mean square displacements u

hσ , c
hσ  of 

uncontrolled and controlled systems and the root mean square control forces *u
σ  

can also be calculated. To characterize the performance of a controller, two quan-
tities are introduced. One is the control effectiveness, defined as 

u c
h h

u
h

K
σ σ

σ
−

=                                                        (16) 

K indicates the relative reduction of the root mean square displacement due to the 
control. The other is control efficiency, which is defined as the ratio of reduction 
to root mean-square control force, i.e., 

*/
u

Kμ σ=                                                         (17) 

Obviously, the higher K  and μ  are, the better the controller is. 

4   Time-Delay Feedback Stabilization 

Now consider the case in which the stochastic excitations in Eq.(1) are pure para-

metric, the trivial solution is an equilibrium, and it may be unstable without con-

trol. Following the same derivation, we obtain Eq.(15) for the controlled system. 

Since the stochastic excitations are pure parametric, the drift and diffusion coeffi-

cients of Eq.(15) satisfy the following conditions: 

(0) 0, (0) 0r rkm σ= =                                                      (18) 

indicating that H=0 is the trivial solution for the controlled system. Since the sta-
bility of the trivial solution is considered, the system can be linearized about the 
trivial solution, and rm and rk skσ σ  are homogeneous in sH  of degree one.  We 

assume that diffusion process ( )tH  is nonsingular. Introduce the following new 

variables 

(ln ) / 2, /r rH H Hρ α= = .                                              (19) 

The Itô equations for ρ  and rα  are obtained as: 

( ) ( ) ( )c
k kd Q dt dB tρ = + Σα α                                     (20a) 

( ) ( ) ( )c
r r rk kd m dt dB tα σ= +α α                                    (20b) 

where T
1 1[ ,..., , ]n nα α α−=α , 1, 2,..., ; 1,2,..., .r n k m= = Note that only n-1 equa-

tions for rα  in Eq.(20b) are independent; thus we can use T
1 1' [ ,..., ]nα α −=α to  
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replace α in (20a) and (20b).  It is noted that Eq. 20(b) is independent on Eq. 

(20a), and the stationary probability density of α′ can be obtained. 

Define the Lyapunov exponent of averaged system (15) as the asymptotic rate 

of the exponential growth of the square root of H , i.e., 

1/21
lim ln
t

H
t

λ
→∞

=                                                        (21) 

The largest Lyapunov exponent of controlled system (15) can be obtained as 

1 ( ') ( ') 'c c cQ p dλ = ∫ α α α                                             (22) 

where ( ')cQ α  is obtained from ( )cQ α  in Eq.(20a). and  ( ')cp α  is the stationary 

probability density of 'α  obtained from solving the reduced FPK equations asso-

ciated with Itô Eq.(20b).  The necessary and sufficient condition for asymptotic 

Lyapunov stability with probability one of the trivial solution of Eq.(15) is 

1 0cλ < . It can also be considered as the approximate condition for asymptotic 

Lyapunov stability with probability one of the trivial solution of original system 

(1). Let * 0iu = , the largest Lyapunov exponent 1
uλ of the uncontrolled system  can 

also be obtained. 

The difference of the Lyapunov exponent between controlled and uncontrolled 

system is c uλ λ− . If it is negative, the system is more stable (or less unstable).  

Furthermore, if 1
cλ  is negative, the trivial solution is asymptotic stable.  Thus,  the 

feedback stabilization can be achieved by proper setting the cost function in Eq.(2) 

so that 1
cλ  is negative and minimized. 

Apply the dynamical programming Eq.(9) and also assume the cost function of 

the form of (11).  Design of the feedback stabilization is actually to select f1(H) 

and R to make 1
cλ  negative and minimized. In the following, an example is given 

to illustrate the designing procedure in detail. 

5   Example 

As an example, consider system 
2 2( ) ( ) ( )    , 1, 2i ij j i j j i i i ij jX X X X X u k X W t i jτα β ω+ + + = + =�� � �

，                  (23) 

where ( )jW t  are uncorrelated Gaussian white noises with small intensities 2 iD ; 

iu τ  are time-delay feedback control forces. The Hamiltonian system associated 

with Eq.(23) is linear and integrable. 
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First consider the case of purely external stochastic excitations, i.e., 
( )ij ijk X k= . Assume that 1 2/ / ,r sω ω = where ,r s are prime integers. The par-

tially averaged performance index is of the form of Eq.(8) and the cost function is 
of the form of Eq.(11) with 1 2[ , ]TH H=H , 1 2[ , ]Tu u=u , 1 2[ , ]TR diag R R= , and  

2 2 3
1 00 10 1 01 2 20 1 11 1 2 02 2 30 1

2 2 3
21 1 2 12 1 2 03 2

( )f s s H s H s H s H H s H s H

s H H s H H s H

= + + + + + +

+ + +

H
           (25) 

The solution of the dynamic programming equation for ergodic control is assumed 
to be of the form 

2 2
1 1 2 2 3 1 4 1 2 5 2( )V c H c H c H c H H c H= + + + +H                      (26) 

Following the procedure described in section 3, the time-delay optimal control 
forces can be obtained as 

( )* 11
cos( ) sin( )

2i i i i i i i
i

V
u R P Q

Hτ τ τω τ ω ω τ− ∂= − −
∂

                  (27) 

Table 1 Results for the first degree of freedom of the system 

τ  0 0.2 0.4 0.6 0.8 1.0 

1( )xσ  0.385 0.390 0.396 0.403 0.408 0.411 

1( )uσ  0.125 0.133 0.141 0.151 0.163 0.176 

1K  0.635 0.631 0.625 0.619 0.614 0.611 

1μ  5.068 4.758 4.425 4.094 3.765 3.470 

1( )xσ  0.385 0.391 0.401 0.412 

1( )uσ  0.125 0.133 0.145 0.164 

1K  0.635 0.629 0.622 0.610 

1μ  5.068 4.728 4.302 3.719 

Unstable 

 

Numerical calculations are carried out for system (23) with the following pa-

rameters: 11 22 0.01α α= = , 12 21 0α α= = , 1 2 0.01β β= = , 2
1 1.0ω = , 2

2 2.0ω = , 

11 22 1.0k k= = , 12 21 0k k= = , 1 2 0.05D D= = , 1 2 10R R= = , 30 03 1s s= = , and 

10 01 0s s= = . The results are shown in Table 1, where 1( )xσ , 1( )uσ , 1K , 1μ  denote 

root mean square of displacement 1x , root mean square of control force *
1u τ ,  

control effectiveness and control efficiency, respectively, by using the proposed 

optimal time-delay control, while 1( )xσ , 1( )uσ , 1K , 1μ are those by using a control 

without considering time-delay effect, i.e., letting cos(ωiτ)=1 and sin(ωiτ)=0 in  
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Eq. (27). It is seen from Table 1 that the proposed controller is better in terms of  

control effectiveness and efficiency. Furthermore, the system with the proposed 

controller is stable even for larger time delay in contrast with the instability by us-

ing the control without considering time delay effect. 

Now consider another case in which the stochastic excitations are pure para-

metric, i.e., ( )ij ij jk X k X= . The partially averaged performance index is of the 

form of Eq.(8) with cost function of the form of Eq.(11), where f1(H) and R are to 

be determined. For stabilization, only the asymptotic behaviors near H=0 are of in-

terest, and the linearized averaged Itô equations are 

1
1 1 1 11 1 12 2

1

2
2 2 2 21 1 22 2

2

[ ( ) ] ( ) ( ) ( ) ( )

[ ( ) ] ( ) ( ) ( ) ( )

H
dH F u dt G dB t G dB t

P

H
dH F u dt G dB t G dB t

P

∂
= + + +

∂

∂
= + + +

∂

H H H

H H H

       (28) 

The optimal control strategy is of the form in Eq.(12). The value function ( )V H  

should be linear function of 1H  and 2H . Then it is seen from dynamical pro-

gramming equation that 1( )f H γ−  should also be linear function of  1H  and 2H . 

Let  

1 1 2 2 1 1 1 2 2( ) , ( )V H C H C H f H k H k Hγ= + − = +                  (29) 

Substituting Eq.(12) and (29) into final dynamical programming principle equa-

tions lead to the following equations: 

2
1 11 1 21 2 1 1

2
2 12 1 22 2 2 2

/ 4 0

/ 4 0

k F C F C C R

k F C F C C R

+ + − =

+ + − =
                                 (30) 

1C  and 2C  can be solved for given ik  and R i . The optimal control *
iu  are then 

obtained from Eq.(12) as follows: 

*

2
i

i i
i

C
u P

R
= −                                                         (31) 

Finally, the expression for the largest Lyapunov exponent of the controlled sys-

tem(23) is 
1

1 1 1 10
( ) ( )c c cQ p dλ α α α= ∫                                             (32) 

where 1( )cQ α  and 1( )cp α  are of the controlled system. When 0iu = , the largest 

Lyapunov exponent 1
uλ  of uncontrolled system is also obtained. 
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The objective of the feedback stabilization of system(23) is to determine ,i ik R  

such that the largest Lyapunov exponent determined by Eq.(28) is negative and 

minimized.  After ki and Ri are determined, the optimal time-delay control is 

( )* cos( ) sin( )
2

i
i i i i i i

i

C
u P Q

Rτ τ τω τ ω ω τ= − −                          (33) 

Numerical results have been obtained for system (23) with the following  
parameters 11 220.02, 0.01α α= − = − ， 12 21 0.01α α= = ， 1 0.01β = ， 2 0.01β = ，

2 2
1 21, 2ω ω= =

，
11 12 21 22 1.0k k k k= = = =

，
1 2D D D= =

，
1 2 0.0005k k= = , 

1 2 1R R= = . The initial condition for simulations are: 1 2 0.01X X= = and 

1 2 0X X= =� � . The largest Lyapunov exponents are shown in Fig.1, where the 

symbol US denotes the uncontrolled system ( 0iu = ), WTD the controlled system 
without  time-delay ( * ( / 2 )i i i iu C R P= − ), NCT the controlled system without con-

sidering time-delay effects ( ( / 2 ) ( )i i i iu C R P tτ τ= − − ), and PCS the controlled 

system using proposed control strategy (Eq.(33)). It is seen from Fig.1 that the 
largest Lyapunov exponent of uncontrolled system ( 1

uλ ) is positive, indicating that 

the trivial solution is unstable. When time delay occurs in the controlled system, 
the largest Lyapunov exponents by using PCS are generally less than those by us-
ing NCT control strategy. It is also shown that the stabilization effect of the pro-
posed control strategy is quite obvious especially for weak noise excitations. 
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Fig. 1 The largest Lyapunov exponents

1
λ versus stochastic excitations intensity D  
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6   Conclusions 

In the present paper, innovative procedures for stochastic optimal time-delay con-
trol and stabilization of quasi-integrale Hamiltonian systems have been proposed. 
The time-delayed feedback control forces were approximated by control forces 
without time-delay and the original control problem was converted into a stochas-
tic optimal control problem without time-delay, which was solved by applying the 
stochastic averaging method and the stochastic dynamical programming principle. 
One example has been worked out in detail to illustrate the procedure. The result 
showed that the proposed control strategy procedures are effective. 
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Modeling of Stochastic Dynamic Excitations and 
the Probability Density Evolution Theory for 
Nonlinear Stochastic Dynamics 

J. Li, Q. Yan, and J.B. Chen 

State Key Laboratory of Disaster Reduction in Civil Engineering & School of  
Civil Engineering, Tongji University,1239 Siping Road, Shanghai 200092, China 

Abstract. Basic thoughts of physical stochastic systems are delineated. Different from tra-
ditional modeling where the measured data are statistically analyzed to obtain second-order 
characteristics, e.g covariance function or power spectral density, in the present framework, 
physical mechanism of stochastic dynamic excitation is firstly studied and used as a basis to 
construct a random function model with random parameters, of which the probability dis-
tributions are then identified via measured data. Modeling of fluctuating wind via physical 
stochastic model is exemplified. Stochastic response analyses of nonlinear structures by in-
corporating physical stochastic models of dynamic excitations and the probability density 
evolution methods are implemented. Investigation results demonstrate that this is a promis-
ing way. 

Keywords: Physical stochastic modeling, Fluctuating wind, Probability density evolution 
method, Nonlinear structure. 

1   Introduction 

The past decades have seen great development in stochastic dynamics, not only in 
modeling of stochastic excitations but also in analysis theory of stochastic  
dynamical systems [11,17]. Interestingly, when we examine from these two  
fundamental aspects, it is easy to find that they are essentially coordinative.  
Researchers have devoted many endeavors to modeling of stochastic dynamic ex-
citations, resulting in e.g. the Kanai-Tajimi spectrum for ground motion [5], the 
Davenport spectrum for fluctuating wind [3] and the Neumann spectrum for sea 
waves [14], etc. These models set the foundation for classical random vibration 
based on moments and power spectral density. Nonetheless, it has been recog-
nized that via this path it is very hard to solve problems of response analysis and 
dynamic reliability evaluation, particularly of MDOF nonlinear systems [17].  

Critical revisiting may find that this path of modeling stochastic process is es-
sentially a phenomenological methodology, which might induce some shortages. 
To overcome these shortages, physical mechanism or background of dynamic ex-
citations should be introduced as a basis, leading to physical stochastic models. In 
this framework, a stochastic dynamic excitation is described by a random  
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function, of which the shape is determined from the physical mechanism or em-
pirical physical background. Probability distributions of the random variables in-
volved in the random function are identified from measured data. 

2   Physical Stochastic Modeling of Dynamic Excitations  

2.1   Basic Thoughts of Physical Stochastic Systems 

To describe a stochastic process ( ),  [0, ]X t t T∈ , theoretically the finite-

dimensional distributions, 1 1 2 2 1 1 2 2( , ), ( , ; , ), , ( , ; , ; ; , ),n nf x t f x t x t f x t x t x t , 

are complete. However, in this description exist some disadvantages, e.g.: (1) to 
obtain and calibrate the finite-dimensional distributions for a stochastic process, 
prohibitively huge data and computational efforts are needed which makes it prac-
tically impossible [1]; and (2) even this is possible the relationship between the 
ensemble information (finite-dimensional distributions) and the information of the 
samples, are indirect, i.e. to generate a sample from the finite-dimensional distri-
butions is not straightforward. This induces inconsistency in modeling and gener-
ating a stochastic process. To overcome the first disadvantage, the second-order 
stochastic processes are studied in depth, say, via covariance function or power 
spectral density function instead of finite-dimensional distributions. However, this 
reduction from the complete description does not change the essence of phenome-
nological description. Actually, in traditional modeling the measured data are  
statistically analyzed directly, without considering the embedded physical back-
ground that will shape the measured data, to construct covariance function or 
power density spectrum [1]. Here, a stochastic process ( )X t  was regarded as an 

abstract function of time t, dependence of ( )X t  on the random events (or more ri-

gorously, on the point in probability space) is not explicitly involved.  
An alternative complete description is to expose the stochastic process ( , )X tϖ  

as a function of basic random event ϖ  and time t simultaneously. For a stochastic 
process ( )X t , [0, ]t T∈   with an embedded physical background, a function can 

be found such that 

( ) ( , ),  [0, ]X t g t t Tη= ∈                                        (1) 

where ( )g ⋅  is a function determined by physical laws or empirical physical rela-

tions, η  is the random variable(s) embedded in the system that induce randomness 

of the process. Generally, if a set of samples are available, then distributions 
and/or characteristic values of the random variable(s) η  can be identified via ap-

propriate criteria. Clearly, once information of the random variable(s) η  are 

known, then the stochastic process specified by Equation (1) is completely de-
scribed. This description of stochastic process, via a random function of basic ran-
dom variable(s) based on physical background/mechanism, might be referred to a 
physical stochastic process description. Compared to traditional phenomenological 
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description, relationship between the ensemble and the sample is straightforward 
as in Equation (1). In addition, the data needed to identify information of the ran-
dom variable(s) are greatly reduced. 

A convenient tool to the physical stochastic process description is the random 
Fourier function, which can be defined as [7] 

( ) ( ) i

0

1
, , d

T
t

XF g t e t
T

ωη ω η −= ∫                                      (2) 

The random Fourier function is usually a complex function that can be rewritten 
as 

( ) ( ) i ( , ), ,X XF F e ϕ η ωη ω η ω=                                             (3) 

where ( ),XF η ω  is the Fourier amplitude spectrum and ( , )ϕ η ω   is the Fourier 

phase spectrum. Generally the amplitude spectrum is a kind of spectral decompo-
sition of kinetic energy (Li and Chen, 2009 [11]) and the phase spectrum is the 
leading factor controlling the shape of the time history (Seong and Peterka, 
2001[15]). 

It is easy to prove that 

( )
2 2

0
( ) , ( , ) ( )X X XS E F F p dηω η ω ω

∞⎡ ⎤= =⎢ ⎥⎣ ⎦ ∫ z z z                    (4) 

where ( )XS ω  is the power spectral density function if ( )X t  is stationary. How-

ever, we should note that the model in Equation (2) is not confined to stationary 
processes. 

For many engineering dynamic excitations, it is relatively easy to find the ex-
pression of ( ),XF η ω . With this background, probabilistic information of the ran-

dom variable(s) η  can be identified from the measured data [7]. The proposed 

modeling process will be exemplified in the following section by modeling of 
fluctuating wind. 

2.2   Physical Stochastic Models: Exemplified by Fluctuating Wind 

Existence of eddies is one of the main characters of turbulence. The fluctuating 
part of wind speed could be regarded as superposition of a series of eddies with 
different scale and frequency. The eddy scale in atmosphere is in a wide range 
from over one kilometer to several millimeters. It is recognized that turbulent eddy 
motion in the atmospheric boundary layer exhibits three spectral ranges: energy-
containing sub-range, inertial sub-range and dissipation range. In wind engineer-
ing, the first two sub-ranges are mostly concerned. For the energy spectrum in  
inertial sub-range, “-5/3” power law has been reported both theoretically and in 
atmospheric boundary-layer measurements. The analysis of large-scale turbulence 
is more complex because of their strong anisotropy. Despite the complexity,  
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several laboratory and field experiments reported “-1” power law at production 
scales for the longitudinal velocity spectrum in boundary-layer flows (Katul and 
Chu, 1998[6]). Employing wind speed records in our research group, we also find 
the “-1” power law in energy-containing sub-range of both three-dimensional 
spectrum and longitudinal spectrum. 

The wave-length l, reciprocal of the wave-number k, could give a straight view 
of the eddy scale. According to Taylor’s “frozen” hypothesis, the wave-number 

2 /k n Uπ= , where 2n ω π=  is the frequency. Thus the stochastic Fourier wave-

number spectrum could be defined, following Equation (2), as 

( ) ( ), / 2 ,F k U F nη π η=
                                            

(5) 

A specified wind speed record is the joint effect of many eddies in different scales. 
As mentioned in the energy spectrum (power spectral spectrum) there are energy-
containing sub-range and equilibrium sub-range in which the  “-1” law and “-5/3” 
law are obeyed, respectively. Therefore, the boundary position kc between the two 
sub-ranges might be called as “boundary wave-number” and the reciprocal of kc 
marked as lc might be called as “boundary wave-length”. Thus, considering Equa-
tion (4), the wave-number Fourier spectrum is defined as a logarithmically bilinear 
function 

( )
1/ 2

low

5/ 6
up

,  
,

,  

c

c

Ak k k k
F k

Bk k k k
η

−

−

⎧ < ≤⎪= ⎨ < <⎪⎩                                          

(6) 

where lowk  and upk  are the lower and upper limits of the wave number of interest. 

Generally 10-min duration and 10Hz sampled wind speed records are adopted. In 
this case up low2 5/ 10 / , 2 (1/600)/ /(300 )k U U k U Uπ π π π= × = = × = . A and 

B are dependent parameters related to total energy,  

( )2 2/ 3 2/3 1/3
low up/ ln ln 1.5 1.5 ,  c c cA k k k k B Akσ −= − − + =

                    
(7) 

where σ  is the standard deviation of the fluctuating wind speed. The only inde-
pendent parameter in Equation (6) is kc.  

According to Tchen (1953[16]), the leading factor affecting the value of kc is 
the ratio γ  between the main-flow vorticity Vm and turbulence vorticity Vt 

/m tV Vγ =                                                              
(8) 

where Vm is the shear-ratio and Vt could be expressed as ( Hinze, 1975[4]) 

( ) ( )
1/ 2 1/ 2

22 2

0 0
,tV k S k dk k F k dkη

∞ ∞⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫
                                   

(9) 
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Substituting Equations (6) and (7) in (9) yields 

1/ 2 1/ 22 2 2/3 4/3 2/3 2/3
low up low up0.25 0.5 0.75 / ln ln 1.5 1.5t c c c cV k k k k k k k kσ −⎡ ⎤ ⎡ ⎤= − − + − − +⎣ ⎦ ⎣ ⎦ (10) 

To calculate the value of γ , 2000 sets of 10-min fluctuating wind speed records 

are applied. The correlation coefficient between γ  and ( ) /dU z dz  is 0.8288, thus 

it can be assumed that γ  is approximately linearly variant against ( ) /dU z dz . 

Through curve-fitting, the relationship can be written as: 

( )1.19 / 0.0637dU z dzγ = +
                                      

(11) 

Basic random variables in the model are the ground roughness 
0z  and 10-min 

mean wind speed ( )U z  at a certain height. It is found that 
0z  can be characterized 

by lognormal distribution and ( )U z  can be characterized by Gumbel Distribution 

(Li and Yan, 2009[13]). Fig. 1 displays comparison of the mean and standard-
deviation of the amplitude spectrum between the measured data and the presented 
model. It is seen that the model spectra are almost identical with the measured 
spectra at all four heights.  
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Fig. 1 Comparison of the mean and standard-deviation of the spectra between model and 
measurements 

The characteristic speed of different eddies could be expressed as (Hinze, 
1975[4]): 

2
( ) ( )v n F n n= Δ

                                                      
(12) 

The ratio between the distance that the eddy goes forward in a time interval and 
the wave length characterizes the changed circle numbers of the eddy. Each circle  
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corresponds to a phase change of 2π . The phase evolution speed of eddies with 
different frequency could be expressed as: 

( ) ( ) ( )2n v n k nϕ πΔ =�
                                                   

(13) 

Different characteristic speed leads to different phase evolution speed. Generally 
speaking, large scale eddies possess slower phase evolution speed than small scale 
eddies do. It is reasonable to suppose that the measured fluctuating wind speed is 
the superposition of a series of harmonic waves which evolved from identical ini-
tial phase at time Te, as shown in Fig. 2. For simplicity, we can assume the initial 
phases are all zero. Te is named phase evolution time with the unit second. 

 

Te 

t 

 

Fig. 2 Schematic diagram of phase evolution time Te 

The value of 
eT  can be identified from the fluctuating wind speed samples with 

relaxed criterion. 800 sets of wind record are adopted. The identified values of Te 
can be fitted by Gamma distribution, as shown in Fig. 3.  
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Fig. 3 Probability distribution fitting of phase evolution time Te 

Thus, both the amplitude and the phase spectrum are specified, where totally 3 
random variables, ground roughness 0z , 10-min mean wind speed at a certain 

height ( )U z , and phase evolution time eT , are involved.  

Likewise, physical stochastic models can also be studied for earthquake ground 
motion and sea wave. For details, refer to [8,12]. 
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3   Stochastic Responses of Nonlinear Structures via Probability 
Density Evolution Equation 

3.1   Fundamentals of the Probability Density Evolution Method 

Consider a generic nonlinear MDOF structure subjected to physically modeled 
stochastic dynamic excitations. The equation of motion reads 

( ) ( , )t+ + =MX CX f X DF Θ                                       (14) 

where M and C are the n by n mass and damping matrices, respectively, f is the 
nonlinear restoring forces, D is the n by r load location matrix, F is the r by 1 sto-
chastic external forces, Θ  is the random variable(s) with known joint PDF ( )pΘ θ  

involved in the physical stochastic process. For fluctuating wind, the forces are 
specified by the models outlined in the foregoing sections. 

Denote by T
1 2( ) ( , , , )mt Z Z Z=Z  the physical quantities of interest in the system 

(14). The randomness of ( )tZ  comes entirely from Θ and thus the augmented sys-

tem ( ( ), )tZ Θ  is a probability preserved system [10,11]. According to the random 

event description of the principle of preservation of probability, we have 

( , , ) 0
t

D
p t d d

Dt Ω
=∫ Z z zΘ θ θ                                          (15) 

where ( , , )p tZ zΘ θ  is the joint probability density function of ( ( ), )tZ Θ . Combining 

with the uncoupled physical equations, we have the following m-dimensional par-
tial differential equation governing evolution of the joint probability density 

1

( , , ) ( , , )
( , ) 0

m

j
j j

p t p t
Z t

t z=

∂ ∂
+ =

∂ ∂∑Z Zz zΘ Θθ θ
θ                            (16) 

Here ( , )jZ tθ  is time rate of the physical quantity ( )jZ t  with specified { }=Θ θ . 

Once Equation (16) is solved, the instantaneous probability density can be ob-
tained by 

( , ) ( , , )p t p t d
Ω

= ∫Z Zz z
Θ

Θ θ θ                                         (17) 

Equation (16) is the generalized density evolution equation, which reveals the in-
trinsic connections between a stochastic system and the deterministic counterpart. 
It tells us that evolution of the probability density in time is proportional to vary-
ing of probability density in space. 

In most practical cases, 1m =  is adequate. Solving Equation (16) under ap-
propriate initial and boundary conditions, the instantaneous probability density 
function of the responses can be captured [9]. Further, reliability evaluation of the 
nonlinear structures can be carried out [2,10]. 



280 J. Li, Q. Yan, and J.B. Chen
 

3.2   Numerical Implementation Procedure 

To perform probability density evolution analysis for responses of nonlinear struc-
tures, Equations (14), (16) and (17) should be solved in an incorporative manner, 
with the physical stochastic models embedded. For instance, if the response analy-
sis of a nonlinear structure under strong wind is to be carried out, the first step is 
to employ the physical stochastic models outlined in the fore-going sections. To 
generate representative time histories, selection of representative points, denoted 
by sel, 1,2, ,q q n=θ ,  in the space of Θ  is needed. Then for each specified qθ , a 

time history of dynamic excitation can be generated by the physical stochastic 
model. A deterministic dynamic response analysis can then be carried out for the 

system (14), resulting in responses of the system, including time rate ( , )qZ tθ of 

the physical quantities of interest. These quantities can then be substituted in Equ-
ation (16), which can therefore be solved by the finite difference method with ap-
propriate difference scheme. Details of the numerical algorithm can be found in Li 
and Chen (2006) [9] and Li and Chen (2009) [11]. 

4   Numerical Examples 

A steel TV tower, totally 388 m high with structure of 268m and shaft of 120m. In 
the analysis the P-Delta effect and geometric nonlinearity are taken into account. 
Parameters of the wind field are: the ground roughness 0z  obeys log-normal dis-

tribution with the mean 0.05 and coefficient of variation 0.38; the average wind 
speed at 10m high obeys the extreme type-I distribution with the mean 28.5m/s 
and coefficient of variation 0.1. Pictured in Fig.4 are three typical representative 
time histories of wind speed generated by the proposed physical stochastic model. 

Some of the results are discussed here. Shown in Fig. 5 is information of the 
stochastic inter-story drift between the 9th and 10th story, including the PDF at 
three different time instants (Fig.5(a)), the instantaneous PDF evolving against 
time (Fig.5(b)) and the contour of the PDF evolution surface (Fig.5(c)). It is seen 
that the PDF evolves in a complex manner, generally non-stationary. In addition, 
the PDF is not symmetric to its center (Fig.5(a)), which can also be seen clearly 
from Fig.5(c).  
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Fig. 4 Typical representative wind speed time history generated by the proposed model 
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Fig. 5 Probabilistic information of inter-9-10-story drift angle 

The extreme value distribution can also be obtained via the probability density 
evolution method. Fig.5(d) shows the extreme value distribution in this case. It is 
seen that now the extreme value distribution is close to the Extreme type-I distri-
bution. But this accordance is rather accidental than often. Further, reliability of 
the tower can be obtained by integration of the extreme value distribution.  

5   Conclusions 

Methodology of modeling stochastic dynamic excitations and that of random vi-
bration analysis are essentially cooperative. Phenomenological modeling of sto-
chastic process is in consistency with classical random vibration, which leads to 
difficulties in tackling stochastic response analysis of nonlinear systems. The me-
thodology of physical modeling of stochastic dynamic excitations is described in 
the present paper. Physical modeling of fluctuating wind is exemplified. Probabil-
ity density evolution method is then incorporated with the physical stochastic ex-
citations to implement response analysis of nonlinear structures. Investigations 
show that the proposed methodology is promising in stochastic dynamic response 
analysis and reliability evaluation of nonlinear structures under stochastic  
excitations. 
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On the Consideration of Model Uncertainties in 
Model Updating of Dynamic Systems 

G.I. Schuëller and B. Goller 

Institute of Engineering Mechanics, University of Innsbruck, Austria, EU 

Abstract. Model updating procedures are applied in order to improve the match between 
experimental data and corresponding model output. The updated, i.e. improved, finite ele-
ment (FE) model can be used for more reliable predictions of the structural performance in 
the target mechanical environment. The discrepancies between the output of the FE-model 
and the results of tests are due to the uncertainties that are involved in the modeling proc-
ess. These uncertainties concern the structural parameters, measurement errors, the incom-
pleteness of the test data and also the FE-model itself. The latter type of uncertainties is of-
ten referred to as model uncertainties and is caused by simplifications of the real structure 
that are made in order to reduce the complexity of reality. Several approaches have been 
proposed for taking model uncertainties into consideration, where the focus of this manu-
script will be set on the updating procedure within the Bayesian statistical framework. A 
numerical example involving different degrees of non-linearity will be used for demonstrat-
ing how this type of uncertainty is considered within the Bayesian updating procedure. 

Keywords: Bayesian statistics, model updating, stochastic analysis, model uncertainties, 
non-linear dynamics. 

1   Introduction 

The topic of model updating has been in the focus of intensive research now for 
over four decades and it continues to be a topic of high importance for the accu-
rate prediction of structural performance of dynamic systems [1]. The need for 
taking uncertainties into account within the model updating process has been 
widely recognized and it has led to the development of several approaches for  
performing model updating under the consideration of uncertainties. The thereby 
involved spectrum of uncertainties is interpreted in different ways by the two main 
schools for probability interpretations, namely the frequentist and Bayesian  
interpretation.  

The frequentist interpretation of probability leads to a differentiation of uncer-
tainties into two categories: the first category comprises the uncertainty in the pa-
rameters and is denoted aleatoric uncertainty. Its source is seen to be the inherent 
randomness of physical parameters. Model uncertainties (or epistemic uncertain-
ties) on the other hand arise from the complexity of physical processes that have 
not been understood sufficiently enough in order to be explicitly modelled. The 
uncertainties in the modelling process must therefore form another category since 
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the probability of a model does not make sense if probability is interpreted as the 
relative frequency of a random event in the long run. 

In order to consider the whole spectrum of uncertainties in the analysis,  
different approaches have been proposed. One way to treat epistemic uncertainties 
consists in the shift of model uncertainties to parameter uncertainties and in con-
sidering them as variables describing events in the long run, i.e. in a frequentist in-
terpretation of probability (see [2, 3]). Another way to treat model uncertainties is 
given by the non-parametric approach [4]. Within this approach, the relaxation  
of the topological connectivity of the structural matrices aims at a consideration  
of the uncertainties in processes that are not modelled explicitly by structural  
parameters. This approach broadens the set of structural models (i.e. all stiffness 
matrices which are symmetric and positive definite) and uses the Principle of 
Maximum Entropy to construct a PDF over this set. Applications of the non-
parametric model in context with structural model updating are shown in e.g. [5]. 
Alternative approaches for taking epistemic uncertainties into account consist in 
the use of possibility theory and fuzzy sets. In e.g. [6, 7] it is discussed how this 
method is fitted into the robust updating process with the aim of damage detection. 

The Bayesian interpretation of probability does not distinguish between these 
two categories, since all uncertainties are seen as epistemic uncertainties [8]. In 
this context, probability is not interpreted as the relative occurrence of a random 
event in the long run, but as the plausibility of a hypothesis. Probability quantifies 
the uncertainty about propositions and therefore its domain contains both physical 
variables and models by themselves. The wider scope of the interpretation of 
probability in the Bayesian sense leads to the fact that the reason of uncertainty of 
both parameters and models is seen in the incomplete available information. 

In this manuscript, the approach for considering the entire spectrum of uncer-
tainties within the Bayesian statistical framework is discussed. First, the basic 
principles of Bayesian updating procedures are summarized (Sec. 2), where the 
prediction error, which takes into account the discrepancies between model output 
and measurements, is subject of a thorough discussion in Sec. 3. Finally, in Sec. 4, 
a linear beam model is updated where the reference data derives from non-linear 
models involving different degrees of non-linearity. This provides a means for in-
vestigating quantitatively the effect of model uncertainties. 

2   Bayesian Model Updating 

The concept of the Bayesian statistical framework is to embed a deterministic 
model in a class of probability models as introduced in [9, 10]. Each probability 
model in the chosen model class is described by probability distributions of the 
unknown parameters and the prediction error. Based on the available data, the ini-
tial knowledge of the range of the unknown parameters is updated, making some 
parameter ranges more plausible if the data provide the necessary information. 
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This embedment of the deterministic model in a model class is performed by the 
use of the Bayes’ Theorem which is given by 

 p(θ |D,M ) = c−1p(D|θ,M) p(θ |M) ,                                            (1) 

where θ is the vector of the unknown (adjustable) parameters, D denotes the set of 
available data points and M is the chosen model class. The constant c is a normal-
izing constant given by ∫= θθθ dppc M)M)|D |(,( .  This constant c is actually p(D 

|M), which is called the evidence of the model class M and which is used in model 
class comparison and selection which is however not in the focus of the present 
manuscript.  

The term p(D | θ,M) is called likelihood and expresses the probability of the 
data conditional on the structural parameters, i.e. a probability model for the mea-
sured data. This term describes the discrepancies between model output and meas-
urements through the prediction error, which is introduced in order to bridge the 
gap between model output, and measurements and which will be discussed in Sec. 
3. The factor p(θ |M) is the prior PDF, which quantifies the initial plausibility of 
each model defined by the parameters θ within the model class M. The product of 
these two terms determines the shape of the posterior PDF p(θ|D,M), which re-
flects the updated, relative plausibility of each model within the model class after 
incorporating the information contained in the data D. 

The analytical or also the numerical solution of Eq. (1) is only feasible for low 
dimensional problems. For the case of large number of uncertain parameters θ, ef-
ficient sampling algorithms have been developed which are based on Markov 
Chain Monte Carlo algorithms, like the multi-level Metropolis-Hastings algorithm 
(the so-called Transitional Markov Chain Monte Carlo algorithm) in [11], Gibbs 
sampler in [12] and Hybrid Monte Carlo in [13]. 

3   The Prediction Error in Bayesian Updating 

Due to the complexity of real systems and the therefore arsing necessity for reduc-
ing the complexity of the model, the established numerical model can not predict 
exactly reality. Within the Bayesian updating procedure, the parameter values are 
updated in order to better represent the real structure, where the updating process 
is directed by the prior information and the information contained in the measure-
ments of the investigated structure. However, since the model does not represent 
an exact picture of reality, there is no true parameter value and there remains a gap 
between model output and measurements which is taken into account by the so-
called prediction error. The prediction error therefore makes it possible to go out-
side of the domain of the model class. As already pointed out, in the Bayesian 
sense, uncertainty in model parameters and in the model itself are interpreted as a 
lack of knowledge and therefore they both fall into the category of epistemic un-
certainty. If model uncertainty is interpreted as the type of uncertainty that can not 
be considered within the structural parameters, the prediction error can be  
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understood as an approach for considering this type of uncertainties. Hence, the 
prediction error provides a means for considering those uncertainties that cause 
the remaining lack of knowledge which prohibits a perfect matching between 
model and real system. 

In general terms, the connection between the analytical output of the system 
y(θ) and the corresponding test value q is given by 

eyq += )(θ                                                         (2) 

The choice of the PDF for the prediction is based on the maximum entropy princi-
ple. Based on the given knowledge that on average model and measurements 
agree (i.e. zero mean) and that the variance is finite, a Gaussian probability density 
function maximizes the uncertainty. It should be noted that the prediction-error va-
riance is not taken as a known value, but it is included in the vector of uncertain 
parameters and it is updated based on the data. 

In the present manuscript, model updating is performed using modal data. The 
formulation of the likelihood function using modal data is derived in [14] and is 
summarized in the following. The experimental data D from the structure is as-
sumed to consist of Ns sets of modal data D, comprised of Nm modal frequencies 

j,1ω̂  and Nm incomplete mode-shape vectors ˆ ψ 1, j ∈ RN0 where No is the number of 

observed degrees of freedom. The model output q(θ) is then the corresponding 
modal properties of the structural model defined by the parameter vector 
θ∈Θ∈RNp , that is, eigenfrequencies ωr(θ) and partial eigenvectors ψr(θ) . 

First, the use of Eq. (2) for the modeshape vectors yields 

ˆ ψ r, j = arψ r(θ) + eψ r
,                                                 (3) 

where ar is a scaling factor as defined in [14] to relate the scaling of the model 
mode shape vector ψr (θ) to that of the experimental mode shape vector ˆ ψ r, j

. 

Assuming a Gaussian distribution for the probabilistic characterization of the 
prediction error variance and with the choice of the scaling factor ar as defined in 
[15], the likelihood function for the mode shape vector is given by 
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where I is the identity matrix of size Nm x Nm and δ2
 denotes the prediction error 

variance (assumed to be equal for all Nm modes). 
Secondly, Eq. (2) is formulated for the squared eigenfrequencies, which yields 

ˆ ω r, j
2 = ω r

2 + eω r
2                                                        (5) 

Using again a Gaussian probability model for the statistical description of the dis-
crepancies between analytical and experimental eigenfrequencies, Eq. (2) yields 
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where ε2
 denotes the prediction error variance of the normalized squared eigenfre-

quencies (again assumed to be equal for all Nm modes). 
Due to the assumed statistical independence between the mode shape vectors 

and the modal frequencies, between the different modes and between one data set 
to another, the resulting likelihood function can be written as 
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     (7) 

In the following investigation, a quantitative assessment of those uncertainties that 
can not be captured by model parameters is carried out and it is shown how  
these uncertainties are taking into account within the Bayesian model updating 
procedure. The focus will thereby be set on the parameters taking into account 
these uncertainties, namely the prediction error variances corresponding to the ei-
genvectors and squared, normalized eigenfrequencies. 

4   Numerical Example 

As a numerical example a beam model as shown in Fig. 1 has been chosen in or-
der to quantitatively analyze the uncertainty by which the updating procedure is 
affected. The model used for structural model updating is a linear model with a 
nominal Young’s modulus of E = 9.45·107 N/m2, the density is given by 
ρ=1800N/m3

 and the stiffness of the springs modelling the supports is assumed to 
be c=3.0·104 N/m. The structure is clamped at one end (visualized in Fig. 1 by the 
red circles at the supporting DOFs) and 6 springs (where only the respective 3 
front springs are visible) connect the structure to the ground. 

 

Fig. 1 FE-model of the beam used for model updating 
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Three cases of model updating are performed in the following which differ by 
the type of model which is used for simulating the reference data: 

1. Case 1: In case 1, a linear model is used for generating the modal data set 
(Ns =1), which consists of Nm = 5 modes where the partial modeshape 
vectors have a length of No = 129. The parameter values are equal to 
E=9.0·107 N/m2, ρ = 2000 N/m3

 and c = 2.0·104 N/m. 
2. Case 2: In case 2, a slightly non-linear model is used, with the structural 

parameters chosen as in case 1, where however the supports involve non-
linearities, i.e. the springs are only active when pressured. Modal proper-
ties are determined by using the structural response due to a sine-sweep 
excitation. Of course, the extracted modal properties are a function of the 
magnitude of the applied load. 

3. Case 3: The reference model in case 3 is the same as in case 2 where ad-
ditionally the width b= 4 cm of the supports is considered, which leads to 
the fact that a tilting movement is observable at the supports. The modal 
properties are determined as described above for case 2. 

Table 1 Initial comparison of modal properties 

Case 1 Case 2 Case 3 

Mode r [Hz] ?
r
[Hz]

r / ?
r MACrr ?

r
[Hz] r / ?

r MACrr ?
r
[Hz] r / ?

r MACrr

1 2.45 2.26 0.085 1.0000 2.24 0.092 0.9874 2.28 0.073 0.9977

2 3.62 3.37 0.074 0.9998 3.33 0.087 0.9625 3.35 0.081 0.9998

3 4.58 4.19 0.093 0.9995 3.95 0.161 0.8771 4.05 0.132 0.9245

4 5.57 5.10 0.092 0.9990 4.85 0.149 0.9422 4.76 0.170 0.9798

5 6.28 5.70 0.103 0.9980 5.70 0.102 0.9253 5.68 0.106 0.2212
 

In Tab. 1 the comparison of the initial modal properties of the 3 cases is shown. 
These modal data are compared by means of i) eigenfrequencies ωr for r = 1... 5 
obtained with the linear model and the frequencies at the resonance peaks of the 
reference models ˆ ω r and ii) the modal assurance criterion (MAC) of the first 5 mo-
des defined by 

MACrr =
ˆ ψ r

Tψr

2

ˆ ψ r
T ˆ ψ r ψr

Tψr

,        0.0 ≤ MACr,r ≤1.0                      (8) 

where a MAC-value of 1.0 expresses full correlation and a MAC-value of 0.0 or-
thogonal vectors. The reference mode shapes are defined as the displacement of 
the structure at the resonance peaks due to a certain load magnitude. 
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In order to express the prior knowledge about the parameter values, Gaussian 
distributions with mean values equal to the nominal values and coefficients of 
variations of 10% are assigned to the Young’s moduli and the densities, where for 
both properties 2 independent variables are used for the flange and the web of the 
beam. Uniform distributions within the bounds ci ~ U([1.5, 4.5]·104 N/m), i = 1,2,3 
are used as prior PDFs for the stiffnesses of the supports, where the two springs 
constituting one support i are fully correlated. The transitional Markov Chain 
Monte Carlo algorithm is used for model updating. 

 

Fig. 2 Posterior samples of the spring stiffnesses c1 and c2 (cases 1-3) 

4.1   Updated Structural Parameters 

Fig. 2 shows the posterior samples of two stiffness values, where the red crosses 
derive from case 1, the green circles from case 2 and the blue diamonds from case 
3. This figure points out that for case 1, which is the linear case, true parameter 
values exist and therefore the samples are concentrated around this reference point 
(depicted by a black circle), while for cases 2 and 3 no true values exist due to the 
involved non-linearity. In case 2, the degree of non-linearity affects only slightly 
the reference data used for model updating which results in posterior samples that 
express that values of these parameters in the upper, prior interval are less prob-
able. However, the samples have a considerably higher dispersion if compared 
with case 1 which means that the posterior prediction error variance is higher than 
in case 1. The posterior samples of case 3 show no clear difference to the prior 
samples since they cover the entire support of the prior PDF. Hence, since the 
springs are only active when pressured and due to the additionally considered 
widths of the supports there is no information about the constant stiffness values 
{c1, c2} in the reference data and no decrease of the prior uncertainty is obtained. 
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Fig. 3 (a) Prior and posterior histograms of the 5th eigenfrequencies and corresponding refer-
ence values and (b) posterior histograms of the MAC-values of the 5th eigenvector (cases 1-3) 

4.2   Posterior Modal Properties 

As a next step, the effect of the updating procedure on the match of the modal 
properties is investigated. In Fig. 3(a), the prior (dashed-dotted line) and the poste-
rior histograms (shaded bars) are shown exemplary for mode no. 5, where the 
measured eigenfrequencies of the three cases are included in the figure. It can be 
observed, that due the incorporation of the information contained in the modal da-
ta, the prior distributions are shifted towards the reference values leading to a con-
siderably better match. As already observed for the posterior structural parameter 
values, the distributions of the three cases show a larger prediction error variance 
with increasing degree of non-linearity, which is visible through the scatter of the 
posterior histograms corresponding to the three investigated cases. 

In Fig. 3(b) the correlation of the 5th mode with the respective reference mode 
shape is plotted by means of the MAC-value. The differences of the eigenvectors 
with the reference data becomes larger with increasing degree of non-linearity, 
whereby in case 3 this mode can almost not be identified (MAC5,5 < 0.3). In addi-
tion, it shall be pointed out that the posterior histograms do not show considerable 
changes with respect to the prior histograms. Hence, the prior space of the linear 
model does not span the full solution space and no better fit can be reached. 

 
Fig. 4   Posterior histograms of the prediction errors of the 5th eigenfrequency (cases 1-3) 
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4.3   Posterior Prediction Error 

As a last step, the distribution of the prediction error is discussed. In the Bayesian 
approach, the prediction error is modelled as a zero-mean Gaussian variable with 
an apriori unknown variance which is updated together with the structural parame-
ters. The assumption, that model output and reference data agree on average, can 
be confirmed for the linear case, i.e. for case 1, as shown in Fig. 4. However, the 
figure also depicts that there is a shift in this distribution in case that the model u-
sed for generation of the data and the model employed for model updating show 
differences that are not defined by changes in the parameter values of the model 
(cases 2 and 3). Therefore, in such cases the model might be biased since the mo-
del class does not allow for changes in the parameter values to reach same mean 
values for the model output and the reference data. This situation requires a strat-
egy for consideration of this shift. One approach could consists in an additive con-
stant to be added to the model to allow for this bias, leading again to zero mean for 
the prediction error. However, this approach will not be further investigated here. 

5   Conclusions 

This manuscript has discussed the issues associated with the application of model 
updating for dynamic systems using modal properties where the underlying sys-
tem shows slight non-linearities. It has been shown that these non-linearities 
which can not be captured by the structural parameters of the linear model used 
for model updating lead to larger prediction errors and hence larger prediction er-
ror variances. The results point out that an improvement of the prior model, which 
is conditional on the model class, could be achieved. However, the non-linearity 
of the reference structure leads to a bias in the updated model which evokes the 
need for an additional term considering this shift such that the assumption of a ze-
ro-mean Gaussian variable for the prediction error holds. 
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Infinite-Dimensional Geometrically Nonlinear 
Dynamical Systems- Stochastic Excitation Cases 
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Abstract. The application of the nonparametric stochastic modeling technique to reduced 
order models of geometrically nonlinear structures recently proposed is here further demon-
strated. The complete methodology: selection of the basis functions, determination and 
validation of the mean reduced order model, and introduction of uncertainty is first briefly 
reviewed. Then, it is applied to a cantilevered beam to study the effects of uncertainty on its 
response to a combined loading composed of a static inplane load and a stochastic trans-
verse excitation representative of earthquake ground motions. The analysis carried out us-
ing a 7-mode reduced order model permits the efficient determination of the probability 
density function of the buckling load and of the uncertainty bands on the power spectral 
densities of the stochastic response, transverse and inplane, of the various points of the 
structure. 

Keywords: Uncertainty, reduced order models, random matrices, geometrically nonlinear 
srructures, nonparametric stochastic modeling. 

1   Introduction 

The sharp increase in computational capabilities of the last 10-15 years has led to 
very satisfactory solutions for many complex structural dynamic problems for 
given values of the structural parameters. Further, these same analyses have also 
demonstrated that these solutions can be very sensitive to small variations of the 
structural parameters, thereby emphasizing the need to consider structural uncer-
tainty. Several approaches have been devised to model this uncertainty and esti-
mate its effects on the structural response; among those are the polynomial chaos 
methodology (e.g. Ghanem and Spanos [1]) and the nonparametric approach ini-
tially proposed by Soize [2,3]. The latter approach is particularly computationally 
attractive as it applies to reduced order models of the structure, seeking the distri-
bution of the uncertain parameters that maximizes their statistical entropy under 
given physical constraints. 

The nonparametric method has been applied to a broad class of problems  
including a recent extension to nonlinear geometric structural dynamic problems 
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[4] by relying on novel developments in the formulation of reduced order models 
for such structures (see Kim et al. [5] and references therein). According to these 
reduced order models, the structural response is expressed in a time-invariant basis 
with time-varying generalized coordinates satisfying coupled Duffing-type differ-
ential equations. Further, the parameters of this reduced order model, i.e. mass and 
linear, quadratic, and cubic stiffness coefficients, are identified directly from a full 
finite element model of the structure rendering the approach applicable to infinite-
dimensional systems. 

The earlier investigation of [4] is here further extended and validated to differ-
ent infinite-dimensional structural models under stochastic excitations. A key  
element of the approach is the existence of a positive definite matrix BK  that  
regroups the linear, quadratic, and cubic stiffness coefficients. It is that matrix 
which is randomized in the nonparametric formulation while maintaining the posi-
tive definiteness so that the simulated stiffness properties, linear and nonlinear, are 
rendered uncertain in a physically admissible manner. 

The complete process, reduced order modeling strategy and application of the 
nonparametric methodology, is presented on a cantilevered beam subjected to a 
static compressive load near the buckling limit and a transverse excitation corre-
sponding to ground motions. 

2   Reduced Order Modeling of Geometrically Nonlinear  
Structures 

The formulation of reduced order model of geometrically nonlinear structures in-
volves three specific issues: (i) the selection of the basis functions used to repre-
sent the motion of the structure, (ii) the determination of the form of the equations 
governing the generalized coordinates, and (iii) the determination of the coeffi-
cients of these equations. The resolution of these issues is briefly reviewed below.  

2.1   Basis Functions Selection 

In parallel with modal analysis of linear systems, the displacement field of the 
structure will be expressed in a modal expansion-type representation, i.e., as   

( ) ( ) ( )XX )(, n
ini Utqtu =   i = 1,2,3                                     (1) 

(summation over repeated indices, n here, is implied). In this representation, 

( )X)(n
iU  denote time-invariant, spatially varying basis functions while ( )tqn  are 

the corresponding time-dependent generalized coordinates. Note that the spatial 
domain Ω to which X belongs is the undeformed configuration of the structure, 
see section 2.2. 
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In selecting the functions ( )X)(n
iU , it is first expected that the nonlinear re-

duced order model (1) should reduce naturally to a modal model in the limit of 
small motions. Thus, the nonlinear basis should completely include its linear 
counterpart, i.e. the set of linear modes significantly excited. This is however not 
enough and a complete representation of the structural response requires addi-
tional basis functions. As an example, consider the response to transverse loads of 
a flat, symmetric beam or plate subjected to a purely transverse loading. In the lin-
ear, infinitesimal case, the decoupling of the inplane and transverse modes implies 
that only the latter ones are necessary and no inplane motion takes place. How-
ever, finite deformations can only occur with a stretching of the beam or plate and, 
accordingly, with inplane deformations. Thus, the nonlinear basis required for a 
full representation must include both transverse linear modes and functions de-
scribing the inplane motions. 

The basis functions selected here to complement the linear modes are the 
“dual” modes of [5], i.e. a set of static nonlinear displacement fields induced by 
external loads such that the response they would induce in the structure would  
be proportional to either one of the linear modes or a linear combination of two  
of them. Constructed in this manner, the dual modes capture the nonlinear  
effects corresponding to motions that would take place if the structure was  
behaving linearly.  

2.2   Form of the Reduced Order Model Equations 

The derivation of the form of the ordinary differential equations governing the 
evolution of the generalized coordinates ( )tqn  is next derived from the equations 

of finite deformation elasticity in a Galerkin procedure. To this end, note first that 

the time-invariance of the functions ( )X)(n
iU  is most easily achieved when the 

spatial domain Ω occupied by the structure is constant. This situation occurs when 
the displacement field u is expressed in the undeformed configuration in which the 
equations of elasticity are (see [6,7]) 

( ) iijkij
k

ubSF
X

��0
0

0 ρ=ρ+
∂

∂
 for 0Ω∈X                        (2) 

where S denotes the second Piola-Kirchhoff stress tensor, 0ρ  is the density in the 

reference configuration, and 0b  is the vector of body forces. Further, in Eq. (2), 

the deformation gradient tensor F is defined by its components ijF  as 

j

i
ijij X

u
F

∂
∂

+δ=                                                          (3) 
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where ijδ  denotes the Kronecker symbol. Associated to Equation (2) are appro-

priate boundary conditions, e.g. specification of displacement and/or tractions on 
the boundary 0Ω∂  of the reference configuration domain. 

To complete the formulation of the elastodynamic problem, it remains to spec-
ify the constitutive behavior of the material. In this regard, it will be assumed here 
that the second Piola-Kirchhoff stress tensors S is linearly related to the Green 
strain tensor E, i.e.  

klijklij ECS =       where       ( )ijkjkiij FFE δ−=
2
1

            
        (4),(5) 

where ijklC  denotes the fourth order elasticity tensor. 

Introducing the assumed displacement field of Equation (1) in Eqs (2)-(5) and 
proceeding with a Galerkin approach leads to the desired governing equations, i.e. 

ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++ )3()2()1(���                 (6) 

in which a damping term jij qD �  has been included to collectively represent vari-

ous dissipation mechanisms. In Equation (6), ijM , )1(
ijK , and iF  denote the coef-

ficients of the linear mass and stiffness matrices and the modal forces while )2(
ijlK  

and )3(
ijlpK  are nonlinear stiffness coefficients. 

2.3   Identification of the Stiffness Coefficients 

The form of the reduced order model, derived in the previous section as Equation 
(6), involves a series of structure and loading dependent coefficients, i.e. ijM , iF , 

)1(
ijK , )2(

ijlK , and )3(
ijlpK . While the modal masses ( ijM ) and modal forces ( iF ) 

can be evaluated as in linear modal models, the stiffness coefficients, linear, quad-
ratic, and cubic, necessitate a dedicated identification strategy. The specific meth-
odology used here was initially proposed in [8] and further modified in [5], it is 
based on the availability of a series of static nonlinear solutions (usually from a fi-
nite element of the structure) in which the (static) displacement field is imposed 
and the corresponding necessary forces are determined. 

The identification procedure starts with the imposition of static displacement 

fields that are proportional to each of the basis functions ( )X)(n
iU , i.e. 

( ) ( )XX )()( n
i

j
i Uqu =   i = 1,2,3                                       . (7) 
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In fact, three such cases, with different values of the factor )( jq  = )1(q , )2(q  

(typically - )1(q ), and )3(q , are considered for each ( )X)(n
iU  and the correspond-

ing necessary forces ( )XF )( j  are determined from the finite element model and 

projected onto the basis functions ( )X)(m
iU  to yield the modal forces )( j

mF . Intro-

ducing this data into the reduced order model equations (6) yields the conditions 

[ ] [ ] )(2)()3(2)()2()()1( j
i

j
innn

j
inn

j
in FqKqKqK =++ .                         (8) 

Considering Equation (8) for j = 1, 2, and 3 leads, for each pair of indices i and n, 

to 3 linear algebraic equations in the 3 unknowns )1(
inK , )2(

innK , and )3(
innnK   from 

which these coefficients are determined. 
The identification of the remaining stiffness coefficients proceed in a similar 

manner by imposing static displacement fields which are linear combinations of 2 
and then 3 of the modal bases, see [4,5,8] for complete details. 

The above identification procedure has successfully been applied to a variety of 
problems (e.g. see [5]) but was found to be too sensitive to small errors in the pre-
dicted modal forces in connection with cantilevered structures (see [10] for dis-
cussion). This difficulty led to a modification of the estimation procedure in which 
the linear and quadratic stiffness coefficients of the final model were indeed esti-
mated as above but with cubic coefficients selected (the decondensation technique 
of [10]) to match the corresponding coefficients of a reduced order model in 
which only the transverse motions are used with the inplane ones condensed. This 
two-step approach was employed here for the cantilevered beam of section 3.  

2.4   Nonparametric Uncertainty Modeling 

Two different methodologies have been proposed for the consideration of uncer-
tainty in linear structural dynamic systems. The first one, referred to here as para-
metric, introduces the uncertainty at the level of the full computational model (e.g. 
finite element model) through the randomization of some or all of its material 
properties (Young’s modulus, Poisson’s ratio, etc., e.g see [1]). This approach is 
particularly well suited for the consideration of data uncertainty, i.e. lack of 
knowledge or variability in the system properties but not for model uncertainty 
which is associated with deviations of the structure from its computational model. 
As example, for a beam that is nominally straight, such deviations include the 
presence of a curvature, a twist, or any other variation of geometry that would re-
quire a change of mesh in the finite element model. 

A computationally efficient approach for the consideration of data and model 
uncertainty, referred to as the nonparametric method, has been proposed a few 
years ago, e.g. [2,3]. In this approach, the uncertainty is introduced directly at the 
level of the reduced order model by allowing the matrices it involves (e.g. mass, 
stiffness, and/or damping matrices) to be random. Further, the probability density 
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functions of these matrices is derived (not chosen) to provide the maximum of its 
statistical entropy under mathematical and physical constraints, i.e. that it leads to 
a total unit probability, that all matrices be positive definite if physically required 
(for the mass, damping, and stiffness matrices), that their means be equal to  
the matrices of the mean reduced order model, and finally that the expected value  
of the square Frobenius norm of their inverse be finite, see [2,3] for complete  
discussion. 

Key to the implementation of this approach is the simulation of random matri-
ces according to the derived probability density function which is conveniently 
achieved as follows. Denote by A  the mean reduced order matrix considered and 

let L  be any decomposition (e.g. Cholesky) satisfying TLLA = . Then, random 

matrices A  may then be simulated as 

TT LHHLA =                                                    (9) 

where the random matrix H is lower triangular. Further, its elements were shown 
[2,3] to be independent random variables with those located off diagonal being 
normally distributed with zero mean and common variance. Finally, the diagonal 
elements of H are proportional to the square root of Gamma distributed random 
variables [2,3]. A single free parameter exists in this strategy which can be  
selected to match a particular information on the level of variability, such as coef-
ficient of variation of natural frequencies or the overall measure of uncertainty δ 
introduced in [2,3]. 

The above discussion was first carried out in the context of linear structural  
dynamic systems but it was recently extended [4] to reduced order models of 
nonlinear geometric problems of the form of Eq. (6). Pivotal in this extension is 
the property (e.g. see [4]) that the linear, quadratic, and cubic stiffness coefficients 

)1(
ijK , )2(

ijlK , and )3(
ijlpK  can be combined to form a matrix BK  which is symmet-

ric and positive definite. Then, random coefficients )1(
ijK , )2(

ijlK , and )3(
ijlpK  can be 

obtained from random matrices BK  generated from their mean model counterpart 

BK  according to Eq. (6). 

3   Effects of Uncertainty on a Cantilevered Structure 

The methodology developed in the previous sections was applied to a cantilevered 
beam of length 0.2286m,  width 0.0127m, and thickness 7.75×10-4m which was 
discretized by the finite element method (with MSC NASTRAN) into 40 CBEAM 
elements of equal lengths. The beam material was high-carbon steel with a 
Young’s modulus of 205,000 MPa, a shear modulus of 80,000 MPa, and a mass 
density of 7,875 kg/m3 leading to natural frequencies of the first transverse modes 
of 12.4, 77.9, 218, and 427 Hz. A Rayleigh damping model was assumed that  
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yielded damping ratios of 1.07%, 0.47%, 0.91%, and 1.69%, respectively. Finally, 
the beam was subjected to a combined loading: random time-varying transverse 
motions of its support and an inplane compressive static force. 

The development of an accurate reduced order model represented the first step 
of the uncertainty analysis. The ground motions selected here exhibited a Kanai-
Tajimi spectrum (see [10]) of characteristic frequency equal to 5Hz ( gω =10π) 

and damping ratio of gζ =0.3. Given this low frequency excitation, only the first 

three linear, purely transverse modes were considered for the linear part of the ba-
sis. To these functions, 4 dual modes were added that exhibited only inplane mo-
tions thereby forming a 7 mode reduced order model. 

The first validation of this reduced order model focused on the power spectral 
densities of the transverse and inplane relative displacements of the beam tip. A 
comparison of the spectra obtained from a full finite element computation 
(Nastran SOL 400) and from the reduced order model equations is presented in 
Figure 1 for two different standard deviations of the ground motions and a com-
mon compressive inplane force equal to 80% of its buckling limit (i.e. 4N). The 
standard deviations of the transverse tip deflections corresponding to this loading 
were found to be 10% and 18% of the beam length. Owing to the long Nastran 
computations, this comparison was achieved with records of 40 seconds from 
which the first 20 were removed as transient. The remaining 20 seconds of data 
may not be sufficient for an accurate capture of the low frequency response but are 
sufficient here for the validation of the reduced order model the response of which 
was similarly treated. 

Clearly, the matching between full finite element and reduced order model pre-
dictions is excellent except at the very low frequencies for the inplane motions at 
the highest loading level. As the response levels increases, the Nastran and re-
duced order models will differ, see [9], because of the difference in the definitions 
of linear elasticity used in these methodologies, in a total Lagrangian in the latter 
while the former is believed to proceed in an updated Lagrangian framework. The 
results of Figure 1 demonstrate the appropriateness of the reduced order model for 
the prediction of the mean and uncertain beam responses. 

The response of the uncertain beam to the specified combined loading was  
considered next using the nonparametric methodology of section 2.4. The free pa-
rameter was selected to achieve a coefficient of variation of 2% of the first trans-
verse natural frequencies of the beam. With this level of uncertainty, the response 
of 300 random beams was computed using the stochastic reduced order model for 
90 seconds with the first 20 seconds considered as transient. The uncertainty 
bands corresponding to the 2nd and 98th percentiles of the generated power spec-
tra of the response were then determined and are shown in Figure 2 for the two 
excitation levels and for both transverse and inplane motions. Note that the power 
spectrum of the mean model is within the 2nd-98th percentiles band for the lowest 
excitation levels but it reaches the 98th percentile (for the transverse motions) or 
exceeds it (for the inplane motions) at the highest excitation level. This finding is 
justified by the inclusion in the nonparametric methodology of model uncertainty, 
i.e. the presence of coupling terms in the stochastic reduced order model which are 
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not present for the mean model owing to its symmetry. Thus, the simulated re-
duced order models would be representative of typically curved beams for which 
the response is typically smaller than for the straight beam of the mean reduced 
order model. Uncertainty in the mass matrix was also considered with the non-
parametric method but its effects appear very small and thus are not presented 
here for brevity. 
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Fig. 1 Power spectra of the tip displacements, Nastran vs. reduced order model (ROM) for 
the  two loading cases with standard deviation of transverse response = 10% and 18% of 
span (a) Transverse. (b) Inplane.  

(a) 

(b) 
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Fig. 2 Power spectra of the tip displacements, uncertainty in stiffnesses for the  two loading 
cases with standard deviation of transverse response = 10% and 18% of span. Uncertainty 
bands corresponding to the 2nd and 98th percentiles and mean ROM. (a) Transverse.  
(b) Inplane.  

4   Summary 

The present paper reported on a continued investigation of the effects of uncer-
tainty on the response of nonlinear geometric structures. Owing to the computa-
tionally expensive Monte Carlo simulations involved in such investigations, a 
nonlinear reduced order modeling strategy was adopted for the mean model, see 

(a) 

(b) 
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sections 2.1-2.3 and references therein for details. Next, uncertainty was  
introduced in this mean model according to the nonparametric methodology (see 
section 2.4) which allows the consideration of uncertainty in both structural prop-
erties (data uncertainty) and geometry (as example of model uncertainty). 

This framework was demonstrated on a cantilevered beam subjected to the 
combined action of a static compressive inplane load and a transverse random ex-
citation typical of ground motions. The mean model was first constructed from a 
full finite element model and its predictive capabilities validated vs. this full 
model at significant displacement levels (tip deflections of up to 18% of beam 
length). Uncertainty was then introduced leading to a stochastic reduced order 
model the stationary response of which was determined. The uncertainty bands  
associated with the 2nd and 98th percentiles of the power spectrum of the tip dis-
placements were determined and it was found that the mean model power spec-
trum fits well within these bands at lower response levels but shifts to the 98th 
percentile as the response level increases owing to model uncertainty effects. 
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Abstract. Smart sensors have been recognized as a promising technology with the potential 
to overcome many of the inherent difficulties and limitations associated with traditional 
wired structural health monitoring (SHM) systems.  The unique features offered by smart 
sensors, including wireless communication, on-board computation, and cost effectiveness, 
enable deployment of the dense array of sensors that are needed for monitoring of large-
scale civil infrastructure.  Despite the many advances in smart sensor technologies, power 
consumption is still considered as one of the most important challenges that should be  
addressed for the smart sensors to be more widely adopted in SHM applications.  Data 
communication, the most significant source of the power consumption, can be reduced by 
appropriately selecting data processing schemes and the related network topology.  This 
paper presents a new decentralized data aggregation approach for system identification 
based on the Random Decrement Technique (RDT).  Following a brief overview of RDT, 
which is an output-only system identification approach, a hierarchical approach is described 
and shown to be suitable for implementation in the intrinsically decentralized computing 
environment found in wireless smart sensor networks (WSSNs).  RDT-based decentralized 
data aggregation is then implemented on the Imote2 smart sensor platform based on the  
Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite.  Finally, the effi-
cacy of the decentralized RDT method is demonstrated experimentally in terms of the re-
quired data communication and the accuracy of identified dynamic properties.  

Keywords: wireless smart sensor, decentralized processing, Natural Excitation Technique, 
Random Decrement Technique, output-only system identification. 

1   Introduction 

Vibration-based structural health monitoring (SHM) can provide valuable infor-
mation regarding the dynamic characteristics of structures.  The identification 
process typically consists of measuring vibration responses from structures and 
analyzing the measured data to build a numerical model of the structure.  Tradi-
tionally, the vibration responses are obtained using centralized data acquisition 
systems with wired sensors.  However, the use of wired sensors has proven to be 
problematic, particularly for dense deployments of sensors on large-scale civil  
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infrastructure, primarily due to long setup times, difficulties in cabling, and high 
equipment costs.  

Smart sensors provide a promising alternative to traditional wired sensor systems.  
Spencer et al. [20] defined smart sensors as having four features: (i) on-board com-
puting capability, (ii) small size, (iii) wireless communication, and (iv) low cost.  
Recent studies [5, 8] have demonstrated the potential of such smart sensors to realize 
a dense array of sensors for monitoring large-scale civil infrastructure.  However, 
challenges such as power consumption and long-term reliability still remain.  

As smart sensors typically are battery-powered, power management is critical 
for long-term monitoring.  Although several approaches for power harvesting have 
been reported (e.g., solar power, vibration power [8, 16]), power consumption 
must still be appropriately managed.  Reducing wireless communication, the most 
significant source of power consumption for smart sensors, is an important goal.  

Data communication in wireless smart sensor networks (WSSN) is intimately 
related to the data acquisition and processing schemes employed in a WSSN.  In 
traditional centralized data collection approaches (see Fig. 1a), large amounts of 
data must be transferred to a central data repository; such approaches are not effi-
cient for WSSNs due to problems with limited bandwidth, data congestion, and 
excessive power requirements.  Thus, decentralized approaches that employ local 
data processing for data aggregation and condensation have been introduced.  In-
dependent processing, shown in Fig. 1b, utilizes the computational power of a lo-
cal sensor node to process sensor data [4, 11, 12, 15, 19, 21].  While the amount of 
data wirelessly transferred in the network is significantly reduced, all spatial in-
formation (e.g., mode shapes) is lost in such approaches.   

Gao et al. [7] proposed a coordinated computing strategy for damage detection 
that retains local spatial information, while concurrently reducing data communi-
cation in the network (see Fig. 1c).  In this approach, the sensor network is divided 
into hierarchical sensor communities that consist of a limited number of sensor 
nodes in local proximity to each other.  Nagayama and Spencer [13] implemented 
a coordinated computing strategy in a WSSN employing the Imote2 sensor plat-
form for damage detection.  An output-only identification approach, the Natural 
Excitation Technique (NExT) [10], was employed in conjunction with Eigensys-
tem Realization Algorithm (ERA) [9].  The network topology employed in this 
approach consists of three types of sensor nodes: (a) gateways, (b) cluster-head, 
and (c) leaf node.  The gateway node is directly linked to the base station, control-
ling operation of the sensor network and interfacing users with the WSSN.  The 
use of NExT/ERA in the decentralized computing environment has been shown to 
be quite efficient from a data communication perspective.   

The Random Decrement Technique (RDT) is an alternative output-only system 
identification method proposed by Cole [6] that has several attractive features. The 
decentralized implementation of NExT by Nagayama and Spencer [13] requires 
the complete time history data from the cluster-head in a group be transferred to 
the leaf nodes to calculate the correlation functions.  In contrast, RDT only re-
quires the trigger crossings be sent to the leaf nodes, which is typically much 
smaller in size than the raw sensor data.  The output of the RDT is the random 
decrement (RD) function, which can be used for system identification.   
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Fig. 1 Data acquisition computing strategy [13] 

This paper presents a new decentralized computing strategy for data aggrega-
tion and system identification based on RDT that is suitable for implementation in 
WSSNs.  The implementation of decentralized NExT reported by Sim and Spenc-
er [19] is used as a baseline for comparison.  Finally, the decentralized RDT  
method is realized on the Imote2 smart sensor and experimentally verified.  The 
efficacy of the RDT method is demonstrated in terms of required data communica-
tion and accuracy of identified dynamic models. 

2   Random Decrement Technique 

Cole [6] initially proposed RDT to estimate the dynamic properties of space struc-
tures excited by immeasurable ambient excitation.  The basic assumption is that 
the dynamic response of a structure under ambient excitation is ergodic.  From the 
structural response, n time history segments in the interval [ti, ti+τ] (i = 1,…,n)are 
selected such that the displacement at ti is equal to a specific trigger level.  The re-
sponse of a system at ti+τ is then comprised of three components:  

o Deterministic response due to the initial displacement at time ti 
o Deterministic response due to the initial velocity at time ti 
o Random response due to the random excitation between ti and ti+τ 

If the average is taken over a sufficiently large number of the segments, the third 
part of the response due to the random excitation will tend toward zero.  Further-
more, the velocity at time ti is uncorrelated with the displacement and has zero 
mean.  Thus, the part of the response due to the initial velocity also tends to zero.  
The resulting RD function is the free vibration caused by a nonzero initial dis-
placement.  

Vandiver et al. [22] provided a mathematical foundation for the random decre-
ment function, showing that the RD function is proportional to the autocorrelation 
function for a linear, time-invariant system excited by a zero-mean, stationary, 
Gaussian random process. Later, Brincker et al. [2, 3] introduced a general  
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triggering function and showed that RDT estimates a weighted sum of the auto- 
and cross-correlation functions and their time derivatives.   

The RD functions can be estimated from data as follows: 

( ) ( ) ( )
1

1
k i

N

jk j i x t
i

D x t C
N

τ τ
=

= +∑
                                             

(1) 

where Djk(τ) is the RD function obtained from xj(t) with respect to the reference 
xk(t), N is the total number of trigger events, Cxk(ti) is the specified trigger condi-
tion, and ti is the ith time obtained from the trigger event Cxk(ti).  When j = k, Djj(τ) 
is an auto-RD function.  In this study, the positive-point trigger condition [1] is 
considered: 
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(2) 

where 0≤α1<α2≤∞.  Once the RD functions are obtained, modal properties of the 
structure can be estimated using a wide range of system identification methods.     

3   RDT-Based Decentralized Data Aggregation 

RDT can significantly enhance the efficiency of data aggregation in the distributed 
computing environment in WSSNs.  As previously described, central data collec-
tion and processing in WSSNs can cause severe data congestion due to limited 
communication bandwidth.  The use of decentralized in-network processing con-
dense the data can mitigate this problem.   

To better understand the efficiency of decentralized processing, consider the 
centralized implementation of a community-wide data processing scheme, as 
shown in Fig. 2.  For this community has ns nodes, each sensor node measures da-
ta and transmits it to Node 1.  For time history records of length N and nd aver-
ages, the amount of transmitted data is N × nd × (ns − 1). 

Nagayama et al. [13] proposed a decentralized NExT implementation, taking 
advantage of each node’s computing capability to reduce data communication (see 
Fig. 3).  Node 1 sends a measured time history record as a reference signal to each 
node.  Correlation functions are calculated in all nodes in the community and sub-
sequently collected at Node 1.  The amount of transmitted data is at most 
N × nd + N/2 × (ns − 1).  As the numbers of nodes or averages increase, the effi-
ciency of the decentralized NExT implementation becomes clearer.  

The decentralized RDT implementation shown Fig. 4 can further reduce data 
communication.  In this approach, Node 1 sends the trigger information to all 
nodes in the community.  Once the reference trigger data is received, each node 
calculates the RD functions that are subsequently collected at Node 1.  Note that 
(1) the trigger information is in general much shorter than the time history record 
used as the reference for NExT, and (2) transmission of the reference takes a  
significant portion of the total communication in the decentralized NExT  
implementation, particularly when long records are used.  Thus, the RDT-based 
decentralized data aggregation can considerably reduce data communication  
requirement.  
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Fig. 2 Centralized NExT implementations [13] 
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Fig. 3 Decentralized NExT implementation [13] 
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Fig. 4 Decentralized RDT implementation 

Data communication required by the decentralized RDT implementation is 
closely related to the number of triggering points.  For the positive-point trigger 
condition found in Eq. (2), the expected number of triggering points is [1]: 

( ) ( ) ( )2

1
1 2,

a

X Xa
E n a a N N p x dxτ= − ⋅⎡ ⎤⎣ ⎦ ∫                              

(3) 

where n(a1, a2) is the number of triggering points between a1 and a2, Δt is the sam-
pling rate, pX(x) the probability density function of X(t), and NX and Nτ are the 
number points in X(t) and the RD function, respectively.  Thus, the total number 
of points to be wirelessly transferred in the decentralized RDT implementation is: 

( ) ( ) ( )2
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1
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X X sa
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(4) 

Depending on the choice of a1 and a2, RDT can require substantially less data 
communication than NExT.  The next section presents the implementation and ex-
perimental validation of RDT on the Imote2 wireless smart sensor platform. 
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4   Implementation and Experimental Validation of RDT-Based 
Decentralized Data Aggregation on WSSNs 

RDT is implemented in the decentralized coordinated computing environment (see 
Fig. 1c) based on the Illinois Structural Health Monitoring Project (ISHMP) Ser-
vices Toolsuite (http://shm.cs.uiuc.edu) for the Imote2 sensor platform (see Fig. 5).  
The ISHMP Services Toolsuite provides an open source library of services that are 
essential for developing SHM applications.  The services, software components 
that perform specific tasks such as sensing, time synchronization, wireless commu-
nication, etc., can be assembled to develop customized SHM applications [17].  
The ISHMP Services Toolsuite also contains SHM applications that can be readily 
used for monitoring and identification of structures using the Imote2 smart sensor 
platform.  
 

(a) Imote2 (b) Top view (c) Bottom view 

Fig. 5 Imote2 sensor platform 

DecentralizedDataAggregationRD is an implementation of RDT-based decen-
tralized data aggregation in the hierarchical network shown in Fig. 1c.  Note that 
overlapping nodes are allowed so that phase information from two overlapping lo-
cal communities can be related to each other.  The network is divided into local 
communities where RD functions are calculated at each node and gathered by the 
cluster-heads.  To properly realize the decentralized implementation of RDT in the 
hierarchical network, the design of DecentralizedDataAggregationRD requires 
careful consideration of network topology, controlled network-wide flow, and 
fault tolerance.  More details regarding the implementation can be found in [18, 
19]. 

The performance of RDT-based decentralized data aggregation in WSSNs is 
experimentally investigated using the truss structure shown in Fig. 6.  Herein, the 
estimation accuracy for global modal properties and data communication require-
ments are assessed.  DecentralizedDataAggregationRD installed on the Imote2 
sensors is employed to decentrally calculate the RD functions.  Decentralized-
DataAggregation, an implementation of NExT-based decentralized data aggrega-
tion found in the ISHMP Services Toolsuite [19], is examined for comparison.  

The experimental structure considered is a simply supported truss that consists 
of steel hollow circular tubes with an inner diameter of 0.428 inches and an outer 
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diameter of 0.612 inches (see Fig. 6).  A shaker is used to excite vertically the 
truss with a band-limited white noise on the interval 0–100 Hz. 

A total of 14 Imote2 sensors with SHM-A acceleration sensor boards [17] are 
installed on the bottom chord of the truss as shown in Fig. 6 and Fig. 7.  The sen-
sor network is divided into four local sensor groups that consist of four or six sen-
sor nodes.  Sensor nodes S2, S6, S10, and S14 serve as cluster-heads in each local 
sensor groups (see Fig. 7).   

  

Fig. 6 Truss structure and an installed Imote2 sensor node  

S1

S2 S6 S10 S12 S14

Group 1 Group 3 Group 4Group 2

S3 S7S5 S9 S11 S13

S4 S8

 

Fig. 7 Sensor topology (plan view) (S2, S6, S10, and S14 are cluster-heads) 

Vertical accelerations are measured at each sensor node with a sampling rate of 
280 Hz, with a 70 Hz cutoff frequency.  The measured acceleration time histories 
are 10,752 points in length for both DecentralizedDataAggregation and Decen-
tralizedDataAggregationRD.  For correlation function estimation, a signal with 
10,752 points allows 20 averages if 1,024 points of FFT and 50% overlap between 
windows are specified.  

DecentralizedDataAggregation and DecentralizedDataAggregationRD are em-
ployed to estimate the correlation and RD functions.  The positive-point trigger 
crossing with an interval of (σ, 2.5σ) was found to produce the best results.  Local 
modal properties are estimated for both cases by ERA using the correlation and 
RD functions, and subsequently global modal properties are obtained.  In addition, 
raw acceleration time history data from all sensor nodes are centrally collected to 
provide a reference for comparison of NExT and RDT in the distributed comput-
ing environment, i.e., the centrally collected accelerations, NExT/ERA and 
RDT/ERA are employed to estimate reference modal properties. 

Table 3 summarizes the identified natural frequencies of the truss for system 
identification method.  Compared to the cases of the centralized processing, both 
NExT/ERA and RDT/ERA based on the decentralized processing estimate natural 
frequencies with an excellent accuracy (see Table 3).  
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Table 3 Identified natural frequencies (Hz) 

Centralized processing Decentralized processing 
Mode 

NExT/ERA RDT/ERA NExT/ERA (case 1) RDT/ERA (case 2) 

1 20.59 20.68 20.77 20.73 

2 32.88 32.87 32.88 32.92 

3 41.42 41.38 41.30 41.43 

4 63.81 63.70 63.80 63.85 

5 69.08 69.04 68.99 69.08 

 
The global mode shapes for each case are compared as shown in Fig. 8, which 

shows good agreements with the case of centralized processing.  Note that the 
mode shapes for the centralized NExT/ERA and RDT/ERA are indiscernible from 
each other as shown in Fig. 8, because global mode shapes from Reference 1 and 
2 are visibly indistinguishable.  Both NExT/ERA and RDT/ERA in decentralized 
processing environment estimate global mode shapes accurately. 

 

Decentralized NExT

Decentralized RD
Centralized NExT

Decentralized NExT

Decentralized RD
Centralized NExT

Decentralized NExT

Decentralized RD
Centralized NExT

 
(a) Mode 1. (b) Mode 2. (c) Mode 3. 
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Decentralized RD
Centralized NExT

Decentralized NExT

Decentralized RD
Centralized NExT

Decentralized NExT

Decentralized RD
Centralized NExT

 
(d) Mode 4. (e) Mode 5.  

Fig. 8 Global mode shapes 

Wireless data communication required in correlation and RD function estima-
tion is investigated to identify the efficiency of RDT-based decentralized data and 
is summarized in Table 5. RDT reduces wireless data communication to 29.04% 
of NExT.    

The experiment using DecentralizedDataAggregation for NExT and Decentral-
izedDataAggregationRD for RDT shows both NExT and RDT are well-suited to 
the decentralized processing.  RDT-based decentralized data aggregation is dem-
onstrated to be more efficient with respect to data communication. 



Decentralized Random Decrement Technique 313
 

Table 5. Transferred data for NExT and RDT 

Case 1 
DecentralizedDataAggregation 

Case 2 
DecentralizedDataAggregationRD 

RDT/NExT 
(%) 

51,216 points 14,871 points 29.04 

6   Conclusions 

The RDT-based decentralized data aggregation approach was proposed for effi-
cient data condensation and feature extraction, and verified experimentally. The 
performance of decentralized RDT was assessed in terms of (1) accuracy of the 
estimated modal properties and (2) efficiency in the wireless data communication.  
The NExT-based decentralized data aggregation approach was selected as a refer-
ence for comparison.  DecentralizedDataAggregationRD has been developed as 
an implementation of RDT on the Imote2 wireless sensor platform and verified on 
a steel truss structure.  From the experimental implementation, the efficacy of the 
RDT-based decentralized data aggregation strategy has been demonstrated.   
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A Wave-Based Approach for Seismic Response 
Analyses of High-Rise Buildings 
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P.O. Box 2533, Abu Dhabi, United Arab Emirates  

Abstract. This study examines one-dimensional wave propagation in a multi-story building 
with seismic excitation.  In particular, the building is modeled as a series of shear beams for 
columns/walls and lumped masses for floors.  Wave response at one location of the build-
ing is then derived to an impulse displacement at another location in time and frequency 
domains, termed here as wave-based or generalized impulse/frequency response function 
(GIRF/GFRF), which is dependent upon the building characteristics above the impulse lo-
cation.  Not only does this study illustrate features of GIRF/GFRF in terms of building 
properties, it also shows broad-based applications of the modeling.  Two examples are  
presented with the use of the modeling.  One is wave-based characterization of ten-story 
Millikan Library in Pasadena, California with the recordings of Yorba Linda earthquake of 
September 3, 2002.  The other is analysis for influence of stochastic floor-to-column mass 
ratio, story-height and seismic input in seismic wave responses.   

Keywords: Wave-based approach, Seismic responses of buildings, Wave propagation in 
buildings. 

1   Introduction 

Seismic response analyses of buildings are typically carried out within the frame-
work of vibration theory applied to a discrete or a multi-degree-of-freedom model 
for building structure, in which structural dynamic properties are characterized 
with modal frequency and shape that are a function of physical parameters such as 
floor mass and column stiffness.  This vibration-based approach builds on the be-
lief that seismic responses are synchronous at different locations of the structure.      

Alternatively, seismic response can also be viewed as the result of wave propa-
gation, which is appropriate particularly for tall buildings.  Accordingly, structural 
properties of a building can be characterized with wave-based indices such as 
wave speed, which is directly related to such physical parameters as mass density 
and shear modulus of the building materials.  In fact, recent studies show the 
promising of the wave-based approach in better understanding of wave phenome-
na in seismic recordings and system identification (e.g., Safak, 1999; Todorovska 
et al., 2001; Snieder and Safak, 2006; Kohler et al., 2007).  Building upon the 
aforementioned work, this study proposes seismic wave motion modeling in build-
ing structures and examines its effectiveness and broad-based applications. 
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2   Modeling of Wave Motion in Buildings 

In this study, an N-story building is modelled as a series of shear beams for col-
umns/walls and lumped masses for floors as shown in Fig. 1, in which one-
dimension shear wave propagation in vertical direction is investigated.  Each col-

umn/wall is characterized with shear wave speed ρ/Gv = where G and ρ
 
are 

respectively shear modulus and mass density, hysteretic damping ratio γc, story 

height h, and cross-sectional area A, while each floor with lumped mass fm  which 

excludes the mass overlapped with columns and walls, and damping γf (= cf/mf) 
where cf is the hysteretic damping coefficient. 

 

 
Fig. 1 A model for an N-story building subjected to seismic motion below z0     

For source-free, jth column bounded with (zj-1
+,zj

-) and jth floor bounded with  
(zj

-,zj
+) with j=1,2...,N, wave motion of shear displacement u(z,t) is governed by 
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where superscripts + and – indicate respectively the positive and negative sides of 
height z.  For convenience, height z indicates the positive side in this paper and 
thus superscript + can be dropped in later use.   
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Introducing Fourier transform representation of the wave motion  
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where i is imaginary unit and ω frequency.  Inserting Eq. (3a) into Eqs. (1-2), one 
can solve for wave representation in frequency domain at z and wave relationship 
at zl and zm  
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where displacement Uz consists of up-going and down-going waves denoted with 
superscripts u and d, and transmission and reflection coefficients Tml and Rlm (Tlm 
and Rml) relate the outgoing waves Um

u and Ul
d to input waves Ul

u and Um
d for 

building segment bounded with (zl,zm).   
For the jth column, the coefficients can be found  
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Wave attenuation in propagation due to damping can be taken into consideration 

by replacing real shear wave speed with complex one |]|1[ ωγ cjj iv + . 

For the jth floor, one can find 
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where coefficients rIj, rDj and rMj, amplitude Bfj and equivalent floor-height hej can 
be found in terms of column impedance (ρv) ratio, cross-sectional area ratio, floor-
to-column mass ratio (rm), wave travel time for column length (h/v), i.e.,  
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Eqs. (7-8) indicates that lumped floor mass can be treated as a column-type con-
tinuum with equivalent height and damping but with non-zero reflection coeffi-

cients.  For lumped mass at the building top, ρN+1=vN+1=AN+1=0 or 0=
NIr , 

which corresponds to the free-end boundary condition for the building.  At the 
building lower end z0 (or generally at referenced location zr which could be se-

lected as z0), no segments below level z0 are used in the model, yielding ∞=
1I

r .  

One can then find T0
-
0=1 and R0

-
0=0, suggesting down-going wave at z0 is com-

pletely transmitted to the lower end z0
- and no reflection to the up-going wave.  

This indicates the lower end z0 has the fixed-end boundary condition. 
 For a composite building segment bounded with (zl,zn), or simply (l,n), with in-

termediate location zm (zl<zm<zn) such as (zj-1,zj) with zj
-, repeat use of Eq. (5) for 

(l,m) and (m,n) will lead to the representation of transmission and reflection coef-
ficients in (l,n) in terms of those in two sub-segments in (l,m) and (m,n) as 
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The above composition rule can be applied reversely for (n,l) and also repeatedly 
to find all the transmission and reflection coefficients between any two locations.  

With the aforementioned coefficients R and T, wave response at z (or zR=z-zr) 
can then be related to those at referenced level zr that could be at the bottom of the 
building or any other height as    

∫=
+−

+
==

∞

∞−
ωω ω deDtd

RRR

TR

U

U
D ti

RrRr

NrNRrR

RrNR

z

z
Rr

r

R )(,
)1)(1(

)1(
)(

      
(10,11) 

Eq. (10) indicates that DRr is dependent only upon R and T above zr which are 
function of building properties and frequency.  For z=zr, Eqs. (10-11) lead to 
DRr=1 and dRr=δ(t), suggesting that DRr and dRr are respectively frequency and 
time displacement responses at z to displacement impulse at zr.  Subsequently, 
wave response representation in general, and displacement response at z to input 
displacement at zr in particular, is then found as  
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which has the same mathematical form as traditional vibration response of Du-
hamel’s or convolution integral with impulse response function.   

While the aforementioned derivation is for displacement (u,U), it is straight-
forward to the extension to velocity (v=du/dt,V=iωU) and acceleration 
(a=d2u/dt2,A=-ω2U) with DRr and dRr remaining the same.  For acceleration input  
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at zr and displacement response at z, which is the typical case for displacement re-
sponse to earthquake ground acceleration, Eq. (12) can be modified as 
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where HRr=-DRr/ω2 and hRr have conventional meanings for frequency response 
function and impulse response function respectively.  Because of the aforemen-
tioned generality in addition to the generalized impulse location at zr which is not 
designated at z0, DRr and dRr are referred to respectively as wave-based or general-
ized frequency response function (GFRF) and generalized impulse response func-
tion (GIRF). 

3   Applications in Earthquake Engineering 

For illustration, two examples are presented below to show the usefulness and ef-
fectiveness of the proposed modelling in system identification and seismic re-
sponse analyses. 

3.1   Uniform Shear-Beam Model 

One can first examine a special case for the aforementioned model, i.e., uniform 
shear-beam model without lumped floor mass, which leads Eqs. (10-11) to 
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where Hr=zN-zr and zR=z-zr denote respectively the height and response location of 
the building portion bounded by (zr,zN), vc is shear velocity of the building portion, 
and modal frequency ωj is 

∞==−= ...,2,1,/5.0,)12( 00 jHvj rcj πωωω               (16) 

Eq. (15) shows GIRF consists of infinite number of motion modes, each of which 
has exponentially decaying damping factor, modal shape and harmonic motion.  
The fundamental or first mode with j=1 has period Tc=4Hr/vc which is the travel 
time for waves to propagate up and down the building height (Hr) twice.  Equa-
tions (14-16) are first derived by Snieder and Safak (2006).    
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To validate the uniform shear-beam model, this study follows Snieder and Sa-
fak (2006) to examine seismic recordings in ten-story Millikan Library after the 
Yorba Linda earthquake of September 3, 2002. Figure 2a shows the seismic accel-
eration recordings in the north-south component in the west side of the building at 
basement and the 1st to 10th floor.  While features of wave propagation in the 
building can be seen from the arrival time of travelling shear waves from floor to 
floor in 10-11 s, it can be observed more clearly through GIRF.   

Figure 2b shows GIRF based on recordings at different floors (j=1-10) with re-

spect to referenced motion at basement (b), denoted as jbd
~

, which is calculated 

from GFRF, i.e., )|
~

/(|)
~~

(
~ 2* ε+= bbjjb UUUD  where U

~
 is recordings in fre-

quency domain, superscript asterisk indicates the complex conjugate, and ε is a 
positive small number, implying the added white noise.  The white noise is used 
primarily to avoid unstable calculation at some frequencies near the notches in the 

spectrum bU
~

, as suggested by Snieder and Safak (2006).  As ε approaches zero, 

jbD
~

 is degenerated to the traditional expression of Eq. (10).   

As shown in Fig. 2b, the GIRF at the basement is impulse acceleration with ε 
selected as 5% total power spectrum of basement motion.  As a fictitious input or 
virtual source to the building, the impulse acceleration at basement is propagated 
upward at building shear velocity with gradually-increased amplitude.  The in-
creased wave amplitude as location approaching to the free top is due to the fact 
that transmission coefficient at the top (TNN

-=2) results in the doubled up-going 
wave amplitude in comparison with the input at the basement if damping is not 
concerned.  The travelling waves are then reflected after hitting the top with  
reflection coefficient (RNN

-=1).  They are then propagated downward with gradu-
ally-reduced amplitude, and zero amplitude at the basement.  The decreased wave 
amplitude as location moving downward is due to the fact that the basement with 
impulse displacement input is equivalent to the fixed basement end, which  makes 
the wave motion disappear at time other than t=0.  This phenomena can also be 
explained with transmission and reflection coefficients at the basement (Tb

-
b=1 

and Rb
-
b=0), which indicates that all the down-going waves completely transmit 

through the basement and no up-going waves reflected from down-going waves at 
the basement, i.e., fixed basement boundary.   

The aforementioned cycle of wave propagation continues as time goes on.  For 
earlier time (0-1 s), the GIRF consists primarily of superposition of up-going and 
down-going travelling shear waves.  For later time (>1 s) as the travelling waves 
can be regarded as standing waves, the GIRF develops the character of a reso-
nance of the building, with the amplitude reduced as time goes (e.g., see GIRF at 
the 10th floor),  which is typically the free-vibration or impulse response phe-
nomenon.  The increased amplitude of the GIRF at the fundamental modal  
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frequency with the position changed from the 1st to the 10th floor is again attrib-
uted to the wave phenomena due to the fixed bottom and free top boundaries.  
While Fig. 2b also shows other higher-frequency vibration/wave motion modes, 
they are typically observed more clearly in frequency domain. 

 

Fig. 2a,b Seismic recordings (Fig. 2a, left) and GIRF (Fig. 2b, right) at the different floors 
(indicated as 1-10) with respect to basement motion (indicated as B or b)   

As an example for applications, this study shows system identification for shear 
wave speed and damping with the use of two sets of recordings.  Figures 3a,b 
show the GFRFs of acceleration at the eighth floor with respect to referenced mo-

tion at basement and the 3rd floor respectively based on recordings (i.e., bD8
~

 and 

83
~
D )  and the uniform shear-beam model (i.e., D8b and D83).  The identified shear 

wave speeds for the whole building and the 3rd-floor-up building portion are 330 
and 292 m/s respectively, indicating that shear modulus (G) of the 3rd-floor-up 
building portion is less than that of the whole building if mass density (ρ) remains 
the same.  Alternatively, the lower portion of the building (i.e., from the basement 
to the 3rd floor) is more rigid in shear resistance than the upper portion (from the 
3rd floor to the top).  Typically, the stronger the shear rigidity of the building is, 
the less the corresponding damping ratio.  While not universally correct, this phe-
nomenon is also observed from the identified damping for the aforementioned 
case, i.e., 0.0187 and 0.0281 respectively for the whole and the 3rd-floor-up build-
ing portion.  As shown in Table 1, the identified parameters are also compared 

with those using recordings at other floors (only one of them with D3b and bD3
~

 
is 

shown here due to the limited space) as well as those from Snieder et al., (2006) 
and Chopra (1995), indicating that the uniform shear-beam model is good enough 
to characterize the fundamentals of wave and vibration motion in buildings.  
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Fig. 3a,b GFRFs at the 8th floor with respect to basement motion (Fig. 3a, left) and the 3rd 
floor motion (Fig. 3b, right) obtained based on seismic recordings and theory in Eq. (14)   

Table 1  Identified shear wave speeds and damping and their comparison with results from 
others (one number from Snieder and Safak (2006) using the uniform shear-beam model 
and the same earthquake but averaged over all Djb, j=1-10 with 11-set recordings) and (two 
numbers from Table 11.1.1 in Chopra (1995) with Lytle and San Fan Fernando earthquake 
recordings respectively). 

 

3.2   Stochastic Wave-Motion Model  

The difference between earthquake recordings and any wave/vibration-based 
models such as uniform shear-beam model or its generalized one with floor 
masses is well observed, which is primarily attributed to the deterministic ap-
proach for modeling and analysis.  This issue can however be addressed with a 
stochastic wave-motion model, in which building parameters and/or seismic input 
are treated as random variables/processes.  While various statistical responses for 
the stochastic model can be found within the framework of probabilistic structural 
dynamics (e.g., Lin and Cai, 1995), this study presents some analyses with se-
lected random system parameters in wave responses and stochastic seismic accele-
ration input at building bottom.   

For regular building, column/wall properties are not changed significantly  
from one floor to the other, and can be assumed to be the same without loss  
of generality. For earthquake-excited building motion, the largest frequency of  
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Identified 1st modal 
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Shear wave 
speed in m/s  

Damping  

zr= zb

z= z3

48.2, 13.4 10.77  
(12.08,10.13) 

330 (322) 0.0305 (0.0244) 
(0.029,0.064) 

zr= zb

z= z8

48.2, 34.8 10.77 
(12.08,10.13) 

330 (322) 0.0187 (0.0244)  
(0.029,0.064) 

zr=z3, z= z8 34.1, 21.4 13.16 292  0.0281 
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interest is typically less than n 0ω with n<N.  Therefore, for random floor mass 

with small floor-to-mass ratio (rmj=mfj/mcj<<1), Eqs. (7-8) become   
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which suggests that up-going and down-going waves transmit through the jth floor 
without loss of amplitude.  As far as transmission coefficients are concerned, the 
floor functions like an extended column portion with extra height hej and zero 
damping.  Accordingly, transmission coefficients for a building segment with a 
column connected to a floor mass are equivalent to those in a pure column without 
floor, but with an increased column length (hj+hej) and reduced damping factor 
(γej=γcj/(1+hej/hj)).  Alternatively, they can also be viewed as the equivalent trans-
mission coefficients in the same column length but with decreased velocity and 
reduced damping factor.  Based on Eq. (16), the fundamental modal frequency of 
the building with floor masses, denoted as Ω1, is decreased in comparison with 
those without floor masses (ω1).  This can be seen clearly in Fig. 4a with rm=0 and 
0.1, where rm=0 is the uniform shear-beam building model.  The corresponding 
response amplitude is increased due to the reduced damping.  For higher-order 
mode motion, the higher-order modal frequencies Ωj of the building with floor 
masses will be reduced proportionally and the corresponding amplitude will be in-
creased in general.  The mean μ and standard variation σ of modal frequency Ωj 
can be found as 

222 25.0},5.01{
mjjmj rrj σμσμωμ ΩΩΩ =−=

                       (19) 

where μrm and σrm are the mean and standard deviation of random ratio of total 
floor mass versus total building column mass.  It can be proved that if rmj 
(j=1,2...N) is constant and floor height hj is random, Eq. (19) remains the same ex-
cept μrm and σrm replaced by μh and σh respectively.  The other statistical responses 
such as mean and standard deviation of frequency-response amplitudes at corre-
sponding modal frequencies can be found numerically based on Eqs. (16,19).     

For large floor-to-column mass ratio or other random system parameters, the 
statistical analysis for GIRF/GFRF must be carried out numerically or with Monte 
Carlo simulation.  While not presented here, this paper shows influences of some 
system parameters in frequency responses.  In particular, Fig. 4a shows the influ-
ences of large floor-to-column mass ratio (rm=1) in GFRF, revealing similar phe-
nomena observed with small rm before.  Figure 4b indicates that modal frequencies 
are insensitive to the change of column impedance ratio rI, while the correspond-
ing amplitudes are reduced significantly with decreased rI .  
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Fig. 4a,b GFRFs (D80) at the 8th floor of a 11-story building with respect to bottom motion 
with vj=300 m/s, hj=4.25 m, γcj= γfj=0.03, rIj=1 (only for Fig. 4a, left), rmj=0.1 (only for 
Fig. 4b, right) and rm11=0.5rm10, for j=1,2,…,11.  Note that j (=1-3) of rmj and rIj in the 
legend indicates the case number, not the floor number.  

 

Fig. 5a,b  Spectral density of acceleration at the 8th floor to ground acceleration spectral density 
with Kanai-Tajimi power spectra (G0=1, site pre-dominant frequency ωg, site damping ξg=0.34) 
with the same building parameters as Fig. 4a.  Fig. 5a (left) ωg=18.4 rad/s for alluvium and 27 
rad/s for rock, and rmj=1) and Fig. 5b (right) ωg=18.4 rad/s for alluvium and rmj=0, 0.1 and 1). 

For ground motion characterized by evolutionary stochastic process (Lin and  
Cai, 1995)  
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where Z is a stochastic process with orthogonal increment in frequency, and b is a 
deterministic function of both t and ω, the mean-square acceleration response with 
deterministic building parameters can be found as 
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where E denotes ensemble average, and G and Φ are spectral densities of ground 
acceleration and response respectively.  As a degenerated case with b=1 and 
G=G0(1+4ξ2ω2/ωg

2)/[(1- ω2/ωg
2)2+4ξ2ω2/ωg

2] (Kanai-Tajimi model), Fig. 5a 
shows the spectral densities of acceleration at the 8th floor with seismic input at al-
luvium and rock sites.  Since the rock pre-dominant frequency (ωg=27 rad/s) is 
closer to the second modal frequency (ω2 ~ 22 rad/s) than the alluvium one (18.4 
rad/s), the peak with rock at the second modal frequency is larger than that with 
alluvium.  This can also be seen with mean square accelerations 0.0076 and 0.026 
m2/s4 for rock and alluvium respectively.   Figure 5b shows the response spectral 
densities with different floor-to-column mass ratio, with corresponding mean 
square as 0.0188, 0.0102 and 0.0076 m2/s4 respectively for rmj=0, 0.1 and 1.        

4   Conclusions 

This study proposes a wave-based approach to model and analyze seismic build-
ing motion.  Alternative to vibration-based ones, this approach provides some 
perspective of seismic behaviors of building structures which traditional vibration-
based approach does not show clearly.   
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