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   Editors’ Foreword   

 We have given ourselves the job of helping to persuade you—a creative ecologist or 
social scientist—that you have all the necessary capabilities to begin capturing your 
unique expertise in simple, powerful simulation models that codify your knowledge 
into a computerized analytical tool. Your model gives you the opportunity to share 
your individual insights with your community of peers in the form of an easy-to-
use, science-driven computer program that they can in turn examine, use, extend, 
and repurpose for their own work. 

 Simulation modeling is no longer the exclusive domain of elite computer scien-
tists and programmers. Practical and expedient models now can be written without 
any mastery of low-level computer languages, numerical methods, or interface 
design. Simulation modeling platforms are now available that facilitate experimen-
tation without bogging down the model builder in complicated software compiling 
tasks or graphical output issues. Powerful, user-friendly model-development tools 
have emerged—both open source programs and commercial packages—that can be 
mastered by anyone who has expert knowledge of a system, a fundamental under-
standing of desktop computers, and willingness to learn how to use software that is 
considerably less complicated than the everyday “offi ce” applications that vex us all 
from time to time. You will fi nd simulation modeling to be a gratifying and highly 
empowering skill if you are interested in:

   Harnessing computer power to refl ect the implications of your intuitive under-• 
standing of a system, and make supportable predictions based on them.  
  Verifying whether your understanding of a system can be codifi ed in a way that • 
replicates known system behaviors.  
  Personally transcribing your intuitive expert knowledge into a transparent, • 
science-based framework without asking computer programmers to intervene.    

 In the preface to this book, Dr. Bruce Hannon describes how he has encouraged 
a generation of social science and ecology students to climb the modest learning 
curve within a few class sessions, and then apply their skills to building operational 
simulation models in workgroups of two to eight. In his classes and the preface, 
Dr. Hannon emphasizes the benefi ts that students will gain by acquiring formal, but 
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expedient, simulation modeling skills. He illustrates how an individual’s deep 
understanding of a system’s dynamics and behavior can readily be captured in a 
form that computers can process to unveil hidden implications of system processes 
that would otherwise probably evade conscious thought. Modeling enables you to 
do what you are good at—describing the system—while enlisting the computer to 
make supportable projections based on your expert knowledge. 

 This book is divided into two parts: (1) a technical orientation for prospective 
modelers and (2) examples of expedient operational models developed using the 
methods and tools described in Part I. The fi rst part is intended especially for read-
ers with no substantive experience in model building, but it includes insights that 
should benefi t all modelers. 

 Chapter   1     addresses the topic of “modeling reluctance,” for lack of a better term, 
that often inhibits ecologists and social scientists from acquiring model-building 
capabilities. As Dr. Hannon notes in his Preface, this inhibition can affect research-
ers like you, who have built a large store of technical expertise based on both direct 
observations from the fi eld and an intuitive capability for drawing accurate infer-
ences about future system behavior based on changes to the environment. If com-
puter programming and higher mathematics are far removed from your daily 
practice, it is not surprising that you would be skeptical about how these disciplines 
might contribute to your work. Chapter   1     makes it clear that model building does 
not require high levels of computer or mathematical expertise and explains that 
modeling is already part of your everyday cognitive processes. 

 Chapter   2     describes a general process by which multidisciplinary groups may 
use relatively simple software tools to model relatively complex domains. It pro-
vides a general project roadmap to help multiple researchers from different disci-
plines work effi ciently and harmoniously toward creating a rich simulation model 
in a very reasonable amount of time. These working guidelines have been used suc-
cessfully at the University of Illinois for more than a decade to teach nonprogram-
mers how to develop dynamic simulation models working in a computer lab 
environment for several hours a week over a single semester. Most of the models 
presented in the second half of the book were created as class projects by multidis-
ciplinary groups ranging from two to eight in size. Many of the team members were 
new to computer-based modeling. 

 Chapter   3     introduces you to NetLogo (Wilensky 1999), the model-development 
environment that was used to construct the models documented in the second part 
of the book. NetLogo is a free, public domain model-building software platform 
that enables you to describe the behavior of individuals within the spatial environ-
ment they inhabit. The individuals can interact with each other and their environ-
ment, and the environment itself may change according to its own dynamics. The 
chapter also provides grist for traditional computer programmers: a short introduc-
tion to Repast Simphony, a free, open source agent-based modeling package devel-
oped by Argonne National Laboratory, U.S. Department of Energy (  http://repast.
sourceforge.net/    ). Repast offers a migration path from simple NetLogo models to 
more challenging simulation modeling environments preferred by computer scientists. 
The fall 2010 release of Repast includes the ReLogo framework, which converts 
NetLogo models to Repast compatibility. Once converted, a computer programmer 

http://repast.sourceforge.net/
http://repast.sourceforge.net/
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can then integrate the NetLogo model with other models, run the model on more 
powerful machines, and visualize and analyze model outputs in many useful ways 
not natively available in NetLogo. 

 Part II presents 11 simulation models, as documented using the Overview, Design 
concepts, and Details (ODD) protocol (Grimm et al. 2006). This protocol, devel-
oped cooperatively by 28 professional modelers, is a standardized model documen-
tation specifi cation intended to help a model builder clearly communicate the 
essential contents of a simulation model as well as its assumptions and scope. The 
purpose of the ODD protocol is to make the contents of a simulation model trans-
parent to a reader who has some knowledge of the specifi c technical domain for 
which the model is built. This content format also makes it easy for the reader to 
evaluate similar models side by side. 

 All 11 models documented in Part II (Chaps.   4    –  14    ), and their data sets, are avail-
able for download and use. 1  These models were developed in NetLogo (Wilensky 
1999), and your learning experience will be greatly enhanced if you load and run 
each model on your computer as you are reading about it in the book. You may 
download a full, operable version of NetLogo from   http://ccl.northwestern.edu/net-
logo/    . All models presented in this book have been tested to run in NetLogo 5.0. 
Because NetLogo is programmed in Java (Oracle, Redwood Shores, CA), it oper-
ates on computers running Microsoft Windows, Macintosh OS X, or Linux. 

 Most of the models presented in Part II were developed and authored by students 
who took a University of Illinois spatial simulation-modeling course taught by 
Dr. Hannon, Dr. Charles Ehlschlaeger, and Dr. Jim Westervelt. They are grouped as 
individual-based models (IBMs) representing animal populations in the wild (Chaps. 
  4    –  8    ), a river nutrient model (Chap.   9    ), patch and inter-patch valuation models 
(Chaps.   10    –  12    ), and social models (Chaps.   13     and   14    ). 

 The fi rst two models, fi re ants (Chap.   4    ) and newts (Chap.   5    ), were developed by 
students in the class to explore, respectively, control measures for red imported fi re 
ants (RIFA) in Texas and forecasting responses of striped newts to rainfall patterns 
in Georgia. In both cases, a pair of students new to simulation modeling turned lit-
erature reviews and interviews with experts into conceptual and then working mod-
els. The next two chapters consider the gopher tortoise, a species at risk, in the 
southeast United States. Chapter   6     captures a research effort that did not include 
direct involvement by an ecologist familiar with the gopher tortoise, but did involve 
experienced modelers. Conversely, the model in Chap.   7     was created by a team of 
ecologists familiar with the tortoise but without any experience in simulation mod-
eling. This team quickly achieved profi ciency with NetLogo. 

 The feral hog model described in Chap.   8     was developed by a team of seven 
graduate students, none of whom had previously written software. Their purpose 
was to test the hypothesis that adding a contraceptive program to an existing hunt-
ing policy would improve the control of wild swine on a military installation in 
Georgia. At one point during the course, the sound of virtual gunshots cracked out 
through the lab from computer speakers—NetLogo-generated hunters applying 

   1   Operational copies of the models are available through   http://extras.springer.com    .  

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://extras.springer.com
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“control measures” during a demonstration of work in progress. The model proved 
so useful for testing the advantages of a proposed contraceptive program that one 
student, now the lead author of Chap.   8    , was funded to further develop the model. 

 Chapter   9     explores nutrient cycling in the Mississippi River, taking into account 
the movement of nutrients via water currents in a pool on the river. River nutrients 
cycle through several trophic layers as the water fl ow moves components of the 
system downstream. This effort began with a nonspatial model written a decade 
earlier that was adapted to produce spatial output in NetLogo. 

 The next three chapters explore the value of land in terms of its contribution to the 
viability of a population. Habitat patches are analyzed in Chaps.   10     and   11    . The fi rst 
of those traces the lineage of populations in patches over time with respect to the 
original home of the original ancestors to reveal the relative connectivity among all 
pairs of patches. The second documents a model developed to reveal the relative 
value of each patch supporting a metapopulation in terms of sustaining the viability 
of the metapopulation. The intent of this second model is to support the development 
of an equation into which certain characteristics of patches, easily measured in the 
fi eld, could be used to compute a “patch valuation” estimate. Chapter   12     looks at the 
value of land between patches for supporting inter-patch migration, which is neces-
sary to connect populations into a broader metapopulation. This project translated a 
published supercomputer-based model into the NetLogo modeling system. The result 
is a very accessible model useful for experimentation and potential extension. 

 The fi nal two chapters explore social science models that extend beyond natural 
ecosystems. Chapter   13     considers a model that forecasts urban residential growth 
patterns within a county based on the relative attractiveness of land to that growth. 
Domestic violence is the subject of the model documented in Chap.   14    . The help-
seeking behavior of violence victims is explored in a way that makes it possible to 
test policy impacts on violence rates. 

 Each of these models demonstrates how students and researchers have captured 
their understanding of dynamic spatial systems using a simulation modeling soft-
ware package. The models make it possible for users to experimentally manipulate 
the system to test its response when subjected to alternate assumptions, conditions, 
or scenarios. Our hope is that these examples will encourage you to do the same! 

Champaign, IL, USA James D. Westervelt
Gordon L. Cohen
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   Preface 

     The Simulation Model: A Left-Brain Tool 
for Right-Brain Scientists 

 In the domain of ecology, there exists a huge source of information that is largely 
undocumented and therefore unavailable to practitioners. It is expertise that is 
sequestered in the individual minds of many fi eld ecologists and rarely captured in 
a form that is readily accessible by the greater community of practice. The nature of 
this expertise differs depending on the interests and working style of the practitio-
ner. Some ecologists seek documentable precision in knowledge by investigating 
natural systems through the collection of large data samples capable of producing 
statistically verifi able insights. This quantitative approach can offer intimate and 
accurate understandings of small subsets of an ecosystem. Other ecologists develop 
their knowledge by conducting diverse case studies designed to inform a larger 
overview. Both approaches lead ecologists to develop valuable insights on how 
ecosystem components function and interact. Each individual’s growing expertise 
constitutes a part of a rich, but uncompiled, knowledge base. It is available to the 
possessor and associates for specifi c projects or applications, but it remains gener-
ally, if unintentionally, concealed from the greater community of practice. 

 Psychology informs us that people have two different modes of thinking, each of 
which roughly correlate to one brain hemisphere or the other. Right-brain thinking is 
considered to be more creative, intuitive, holistic, and spontaneous, while left-brain 
thinking is considered to be more methodical, logical, linear, and analytical. In terms 
of ecological research, the synthesis of big-picture results from many case studies rep-
resents a right-brain approach, and the development and analysis of large data samples 
represents a left-brain approach. But because there is little overlap in the two approaches, 
we often have to choose between keen but unverifi able intuition, on one hand, and hard 
but never-complete data on the other. And these differences pose an understanding gap 
between experts from the two different methodological approaches. 

 This gap may be illustrated by the following scenario. Over many years, a fi eld 
ecologist develops deep, intuitive insight into an ecosystem that makes it possible 
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for him or her to forecast the consequences of proposed management actions on an 
ecosystem, often with a very high level of confi dence. A planner who is considering 
new management initiatives may seek out the insights of the seasoned expert, whose 
reputation the planner knows and trusts. The fi eld ecologist’s expertise is often 
rooted more deeply in experience and intuition than in peer-reviewed research. If he 
or she wants to disseminate those insights to others beyond the immediate research 
team or work group, prospective users must be able to verify the validity and appli-
cability of that expertise. 

 One approach the fi eld ecologist can take to disseminate the use of hard-won tech-
nical insights is to apply left-brain skills to what is already understood intuitively—to 
explicitly identify and analyze the cause–effect relationships that lie beneath the intui-
tive knowledge. A computer simulation model is an excellent tool for capturing and 
representing such technical knowledge in a way that is highly explanatory and well 
documented. A simulation model can employ validated algorithms plus data and alter-
nate assumptions to refl ect the fi eld ecologist’s insight into the implications of envi-
ronmental change or management actions. Simulation results can be compared with 
the ecologist’s “instincts,” both to assess the validity of the model and to further illu-
minate the right-brain thinking behind it. Any gaps revealed between simulation 
results and the ecologist’s deep understanding can be considered and addressed. As 
the model is refi ned and simulation results match the right-brain understanding of the 
system, the ecologist achieves an analytical validation of ideas that may previously 
have been beyond the reach of the left brain. At that point, the model is ready to share 
and to apply to specifi c cases, which can help decision makers and the general public 
develop improved impact analyses and policy alternatives. 

 For more than 25 years, I have taught life science students at the University of 
Illinois at Urbana-Champaign how to simulate dynamic biological phenomena on 
computers. It is my favorite activity as a professor. Over the years, students have 
modeled a full gamut of biological activity, ranging from the disciplines of micro-
biology to genetic engineering, and covering the dynamics of the individual cell, 
bacteria, individual plants or animals, and large collections of organisms. I try to 
help them learn that the intent of building these models is to better understand func-
tion and limits for the ultimate purpose of informing good management practice. 

 Regardless of my enthusiasm and best efforts, I have not had unqualifi ed success 
at teaching my students why I believe that dynamic modeling and the acquisition of 
systems thinking capabilities are so essential to their future work. Below, I explore 
why this has happened and what might be done about it. I also will clearly lay out the 
general benefi ts of modeling. Students do well in my course in part because it is tai-
lored to minimize reliance on sophisticated mathematics and programming. We are 
fortunate that model-building computer environments such as STELLA (isee systems, 
Lebanon, NH) and NetLogo (Wilensky 1999) are now available to help students to 
quickly and easily capture and document their ideas about biological dynamics as 
computer simulation models. The models created using these tools enable my stu-
dents to clearly explain to me, to their other professors, and to the professional com-
munity the structure and dynamics of those areas where their specifi c interests lie. 

 Although students are not actively discouraged from model building by their 
thesis supervisors, they are not actively encouraged to investigate it, either. Most of 



xiPreface

my students have enrolled in my modeling courses more on their own volition than 
on someone’s advice. A second inhibitory factor is that modeling must be practiced 
continuously in order to develop skills and internalize them. Because the typical 
students in master’s or doctoral programs in this area are under high demand to 
perform laboratory and fi eld experiments, they fi nd little time or incentive to build 
models for the purpose of capturing their understandings of how systems work. 

 Ecology-oriented students are traditionally focused on hypothesis-driven case 
studies and huge data collection projects that allow them to draw statistical inferences 
about how their systems function. This approach to research rarely allows one to infer 
behavior at one level from behavior observed at a lower level, or at one location in a 
landscape behavior observed in another. It does not help students to formalize fi rst-
principle understanding of the cause-and-effect functioning of their systems. 

 I have often speculated why this is the case. Is it because they are not trained in 
simulation modeling at an earlier age, as are engineering students, for example? Or 
do these students imagine that modeling and simulation require skills that are 
beyond their reach? (The ease of modeling using new and evolving software envi-
ronments could dispel that notion, given some introductory hands-on instruction.) 
Or do such students really so love nature that they simply seek the means to dwell 
within it through ecological fi eldwork? I would argue that this love of nature might 
be signifi cantly enriched by starting the journey with a set of hypotheses, followed 
by a modeling exercise that can verify and improve their understanding of their 
system. A model offers students a means for testing their assumptions and questions 
and for identifying the parameters that must be investigated and verifi ed by lab or 
fi eldwork. It also can help students understand which parameters are the most 
important and which can be reliably derived from the literature. 

 I begin each course by sharing the idea that education has been evolving since 
literacy was solely found within the monastery, through the time when we realized 
that numeracy was required to distinguish the importance of our assumptions, to the 
present, when we fi nd it necessary to add systems thinking to the list. Systems 
thinking helps us to more accurately formulate pertinent questions about the phe-
nomena that interest us. As with the acquisition of literacy and numeracy, skill in 
systems thinking improves with practice. And the level of practice increases with 
improved understanding of the power of systems thinking. This explanation leads to 
my discussion of the power of systems thinking, and how dynamic systems simula-
tion on the computer provides the key to this power. 

 It helps us to understand that we all model the dynamics of the world around us. 
We instinctively know how to duck a stone thrown at us, we know how to safely 
cross a street in fast, heavy traffi c, and how to hit a baseball. We do this by fi rst 
formulating a mental model of the process and the probable consequences of various 
alternative actions. We evolve this model by our own trial and error and by observation 
of the actions of others. Given that we all routinely construct mental models, it 
should come as no surprise that we can increase the complexity and explanatory 
power of those models by extending them with computer power. The application of 
computers to our models of the world expands the reach of our mind in a similar 
way that the telescope and microscope extend the reach of our eyes. 
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 When we try to extend our mental models exclusively through thought to solve 
complex social, political, or economic problems, for example, we encounter three 
specifi c diffi culties. First is the uncertainty of our grasp of the important features of 
the problem; second is the effects of responses to our interventions or to internal 
forces driven by complex feedback loops; and third is the delay between the inter-
ventions (or forces) and the reactions to them. This uncertainty—these feedbacks 
and delays—can so complicate the dynamics of a system that the human minds can-
not account for them all unaided. Society has reached the point where the complex-
ity of environmental, interpersonal, and interagency connections is growing faster 
than the human mind can evolve to comprehend them. So instead of waiting for 
evolution, humans invent the means to extend our senses—and now, our capacity to 
apply logic—in order to master the complexities of the system in a timely way. To 
my mind, that is the great promise of simulation modeling technology. 

 But what are the specifi c benefi ts of computer-aided dynamic modeling? Over 
the years, with the help of many others, I have compiled a list of such benefi ts. 
Presented roughly in order of importance, dynamic modeling:

    1.    Can highlight the gaps in our understanding of the system processes. The con-
struction of a computer model requires us to systematically lay out the stocks and 
fl ows within a system and to identify the nature of the systems controls. It helps 
us to establish a hierarchy of importance of system parameters. It enables us to 
identify and challenge the assumptions behind our understanding of the process. 
Simulation results, along with clear documentation of the model structure, make 
it possible to provide a common frame of reference for all those involved in 
studying and managing the system.  

    2.    Provides a system memory. Model building is the process of formally building 
and joining models of the component parts of a system to create a published 
description of it. Every validated model iteration contributes to a more realistic 
model of the whole system for everyone who is interested.  

    3.    Reveals “normal” system performance. Large changes in a system’s behavior 
are, many times, just rare events that a good system model would show to be 
expected and at what frequency. Managers of such systems, without the aid of a 
model, tend to implement changes based on the occurrence of these rare but 
potentially expectable events. Such management actions, if based on a misdiag-
nosis of the environmental stress, can produce delayed reactions that have the 
potential to throw the system into disarray.  

    4.    Allows testing  what-if  scenarios and experimentation with various kinds and 
levels of system management. A dynamic model makes it possible to see what 
happens when a system fails without any real-world consequence, and at far 
lower cost than witnessing an actual failure of the real system.  

    5.    Provides quantitative information about the system operation at organizational 
levels (e.g., landscape or biome) and time scales (e.g., centuries) not ever expe-
rienced by observers of the real system.  

    6.    Reveals emergent properties of the system, such as reactions and new states 
anticipated by no one involved in the study of the system. In other words, a 
dynamic model makes it possible to develop realistic predictions of a complex 
system under dynamic conditions.  
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    7.    Allows for “mediated modeling,” which involves all appropriate experts and 
stakeholders, and facilitates the development of consensus in complex or contro-
versial situations. Current software is user-friendly and transparent enough that 
novices can quickly understand that their views are being accurately captured in 
the model. Once this is accomplished for all of those involved, the simulation 
results are more credible and, therefore, more readily accepted by all. Mediated 
modeling also can shed light on the accuracy of contending theories about sys-
tem functions.  

    8.    Promotes the accurate formulation of novel, previously unanticipated questions 
about system performance.     

 If these benefi ts provide suffi cient motivation for the student to begin the inves-
tigation and practice of model building, then it is appropriate to generally outline 
what is involved in the modeling process. 

 The most suitable environment for creating spatially explicit dynamic models 
will be simple to learn but capable of handling high complexity. It should serve as a 
stepping stone to compiled modeling languages such as C+ when the form of the 
model has become fi xed and intensive parameter testing is required. The program-
ming language should make maximum use of symbols for the state and control 
variables in order to take advantage of our ability to quickly understand such sym-
bolism. The programming language itself should be capable of handling statements 
in English-like language and provide effi cient input from data sources. The lan-
guage should be capable of graphical data input and have some ability to model 
spatially. It should allow easy testing of the effects of parameter variation. 

 STELLA (  http://www.iseesystems.com/    ) fully meets these requirements, so it is 
ideal for those who are beginning to model and wish to explore while easily chang-
ing model structure and controls. STELLA is a simulation modeling environment 
that allows one to graphically capture the cause–effect relationships of a system that 
affect state variables. Equations and logic are then added to determine rates of fl ows 
in the state variables during a predetermined time step. When the model is fi nished 
to the developer’s satisfaction and is ready for extensive parameter sensitivity test-
ing, curve fi tting the model results to known data, or optimizing a certain state vari-
able, another program is needed. My students use Berkeley-Madonna (  http://www.
berkeleymadonna.com/    ) to transform a STELLA model into a compiled form that 
runs many times faster than it can natively in STELLA. The Berkeley-Madonna 
program (1) runs extensive parameter sensitivity trials, (2) fi ts the model results to 
a given set of data, and (3) optimizes a given state in the model. The second item 
treats the model as though it was a regression “equation,” allowing that equation to 
embody all of our specifi c understanding of the system. 

 STELLA is most useful for modeling systems that are homogeneous in space. 
If the dynamic system model requires specifi c location-dependent detail, one can 
develop the model for each cellular space (or cell) in STELLA, and then translate 
those into the NetLogo modeling environment (Wilensky 1999,   http://ccl.
northwestern.edu/netlogo/    ) to capture the spatial dynamic process. Each parameter 
is set using a digital map to represent its geographical variation. 

http://www.iseesystems.com/
http://www.berkeleymadonna.com/
http://www.berkeleymadonna.com/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
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 The NetLogo environment is the best compromise between the simple programming 
requirements of STELLA (which is ideal for either a single-cell model or a spatial 
model with no more than, say, 25 cells) and the complex programming required to 
knit thousands of cellular models together into a dynamic whole. One can learn a 
signifi cant amount from a STELLA model, and it is always useful to begin one’s 
ecological modeling there. But the resulting model will need to be restated in 
NetLogo with added programming to incorporate the maps of the constants and 
initial state values. It is quite possible that the slightly more demanding program-
ming skills needed for using NetLogo will eventually evolve into an even simpler 
procedure. Our practice is to use either free or commercially available software and 
concentrate on the process of modeling instead of developing a spatial modeling 
program of our own. 

 Having taught the spatial dynamic modeling course at the University of Illinois 
for more than 20 years, with the help of Dr. James Westervelt and Dr. Charles 
Ehlschlaeger, we have evolved what I believe to be the best current way to learn the 
process. We start the class by dividing the students into teams of two or three, with 
each team focusing on a specifi c set of modeling questions. The fi rst 2 weeks are 
spent learning NetLogo, and the rest of the course is devoted to fi nishing the model, 
preparing the map data, and answering the modeling questions. 

 Some class projects have blossomed into large follow-on projects, including 
master’s theses and doctoral dissertations. The LEAM urban development model 
(  http://www.leam.uiuc.edu/    ) originated in this class and is now the basis of a com-
pany and a university laboratory. Our model of the Mississippi River aquatic eco-
system is another such project, having begun in the class and now the basis for a 
major interuniversity project. As these models matured and grew to the point of tens 
of millions of cells, the programs were rewritten in C++, which greatly accelerated 
simulation speed but required more esoteric knowledge to revise the model. 

 I cannot overstate to life science and social science students the importance of fi rst 
formulating clear and concise questions about the phenomenon of interest. After that, 
they should construct a model—fi rst in STELLA—of the part of the ecosystem that 
is most directly relevant to answering their questions about it. This two-phase pro-
cess, if well executed, will reveal after relatively little time and expense the param-
eters to which the model is very sensitive. Discovering the values of these key 
parameters becomes the objective of their lab and fi eld experiments. Data from the 
literature may be suffi cient to obtain the rest of the parameters. This process reduces 
the overall research work and makes its progress more predictable.  

Urbana, IL, USA Bruce Hannon
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 The task of writing simulation models to support environmental management 
decision-making has historically been assigned to software development specialists 
working in cooperation with a technical subject matter expert. The objective of 
model development was, and is, to capture the expert’s knowledge of a system to 
provide a more formal description and analysis of the system. Because few ecologi-
cal management professionals have the computer science training to direct the actual 
model-building effort, computer specialists have carried out most of that work. 
Common programming languages have included FORTRAN, C, Java, and Perl. 
Models based on statistical analysis have been developed using scripting languages 
with software packages such as R, SPSS, and SAS. Spatially explicit models incor-
porate geographical information systems (GIS) that provide scripting languages for 
executing map analysis. For purely mathematical models, there are programming 
tools included in industry-standard packages such as Mathematica and Matlab. 
Because of the need to recruit computer specialists for the bulk of model-building 
work on behalf of the subject matter expert, model development efforts have histori-
cally been costly and time-consuming. Ecological models considered to be the most 
useful over time have been given names, then reused, and maintained over many 
years. Not surprisingly, these successes tend to produce somewhat generic results. 

 Ecologists who have no formal training in model development—that is, most of 
them—have tended to consider the computer-based simulation model as a costly 
“black box” tool whose utility is marred by uncertainty about how it works inside. 
Consequently, most professional ecologists have chosen to ignore formal modeling 
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of their management domains and make decisions based on their own scientifi c 
expertise, experience, and intuition. We might say that ecologists are typically most 
comfortable using the creative part of their brain, their right brain. Thinking with 
this part of the brain opens the conscious to the unregulated wanderings and musings 
of the subconscious where experiences are folded together to provide us with deep 
understandings of systems. This results in our ability to intuitively forecast conse-
quences of actions on or changes to the systems with which we are familiar. Through 
this type of intelligence, instinct, and good luck, most ecologists can succeed, excel, 
and greatly prosper at their work. For a scientist, however, using only this approach 
has its shortcomings. One signifi cant defi ciency is that the individual’s professional 
knowledge itself emerges from a kind of black box—a complex but subjective 
thought process in which the system is captured only informally, as far as the rest of 
the world knows, possibly using unquantifi able assumptions or undocumented intu-
itions. This is where left brain thinking, involving logic, classifi cation, scheduling, 
process, and procedure, becomes valuable. By carefully looking at and describing 
the parts of a system, it becomes possible to build a more comprehensive under-
standing of the cause-and-effect relationships underlying the behavior of the whole 
system. When we are able to capture the assumptions and dynamics of a system 
formally and clearly, they become available for review by anyone who can read the 
language in which the knowledge is encoded. That encoding has traditionally been 
accomplished in print, using the language of the discipline. The same information 
also can be captured in computer languages, and this is highly useful because 
computers are very good at executing their instructions to refl ect the behavior of a 
captured system when the state of the model is altered. When used together, captured 
right- and left-brain thinking can provide much more complete and compelling 
insights than using either exclusively. 

 Although the practice of modeling may seem abstruse to the reader who is not a 
computer programmer, we will venture to point out that you are already an expert 
modeler! Humans, as well as all higher animals, must reliably model the world around 
them in order to survive. Grazers, for example, must retain a mental image of the 
seasonally changing locations of food, shelter, and water. Predators and prey must 
develop cognitive models of the “battleground” where hunting and foraging take 
place. Each must be able to sense the probability of success or failure in satisfying the 
fundamental requirements for survival and procreation. The deer, on one hand, has a 
model of how close it can allow the wolf to approach in the current terrain and still be 
able to fl ee to safety; on the other hand, the wolf has a model of how to use the same 
terrain, wind direction, and other factors to approach the deer with stealth in order to 
overtake it. A tourist visiting in New York City must develop an “on the fl y” model 
for how to effi ciently cross a busy street without being run over by a yellow taxi. 

 Consider the components that comprise a “geospatially explicit model” of a 
baseball outfi elder as a towering fl y ball soars toward the wall in left-center. The 
player must rapidly calculate trajectory and peak altitude in order to determine 
whether to fi eld the ball on the fl y or a bounce, knowing both the static location 
and height of the wall and also the dynamic location of another outfi elder who may 
be running on a converging path. Temperature affects air density and, thus, the 
drag of friction; and the cloud cover may or may not provide additional visual 
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information. All these data streams feed an ad hoc model that the fi elder uses to 
coordinate running across a landscape and reaching into space in the hope of 
putting out a batter, and perhaps instantly hurling the ball to an infi elder to keep a 
runner from advancing. 

 Or consider a more impressive modeling project: a baby learning to walk. 
Lacking even the basic tools represented by a signifi cant spoken vocabulary, the 
infant builds rudimentary models of his or her body in space and time, refi ned and 
combined over a year on the planet, to fully repurpose a body that was seemingly 
designed for a prone, static existence. This new mind, unimpeded by ideas of what 
may not be possible, exercises a growing spatial awareness and fl accid neck muscles 
to balance an outsized head upright. Within a few months, the baby can balance the 
whole upper body in a seated position—no hands! And then, through imitation, 
trial, error, continuous observation, and revision and combination of “sub-models,” 
uses those free hands and higher-resolution spatial models to grasp objects and 
parental appendages in the environment. Legs learn to perambulate in response to 
forward guidance by a parent; lower body strength grows; sub-models of vertical 
balance are revised as the baby learns how to stand stably with a higher center of 
gravity than just a few weeks before. Somehow, using observational and experimen-
tal methods that cannot be adequately communicated in chapters of technical 
writing, the infant applies spatial and nonverbal conceptual models to learn the 
exquisitely complex task of combining bodily motion, balance, and controlled 
falling into standing and walking at will. The physics and calculus required to model 
this task for a robot are highly challenging to this day, even after decades of engi-
neering research dedicated to that purpose. 

 Although the human ability to create, refi ne, and apply conceptual models is 
formidable, and has helped us to survive and prosper through the ages, it has two 
signifi cant limitations: our models are very diffi cult to accurately communicate, and 
we are not good at predicting the behavior of a system when it includes a feedback 
loop. Both of these limitations can be powerfully addressed using mathematics, 
formal logic, and computer software. 

 The limits of fully communicating our conceptual models often become apparent 
when we initiate the  because-I-said-so  “sub-model,” or someone uses it with us. 
Closest to home for a parent are the continual cases in which attempts to communi-
cate our models of, say, good nutrition or personal hygiene are refl exively chal-
lenged with the question, “Why?” In such cases,  because I said so  may suffi ce as a 
functional sub-model for practical purposes. This same “sub-model” also is invoked 
by many professional practitioners, albeit using more customer-friendly phrasing, 
when a conceptual model is too nuanced to communicate. The physician, the 
attorney, and the fi nancial advisor all rely on models of their technical domains, 
developed through formal education and experience, to effectively advise their 
clients. They pronounce a diagnosis, or declare a legal strategy, or propose an 
investment plan based on a tacit agreement that, for the most part, these are valid 
recommendations  because I said so . 

 Most conceptual models, whether professional or personal, are not developed 
using mathematics and are not shared with others as precise, formal descriptions. 
These models are created primarily through training of the neural network hosted 
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within our brains to discover and retain associations of information (e.g., a patient’s 
symptom) with an explanation or response pertaining to it (e.g., a diagnosis and 
treatment). However, while we can help someone to understand a model through 
observation, trial and error, and repetition, it is very diffi cult to explicitly and fully 
communicate a model, even for something as seemingly simple as distinguishing a 
cat from a dog. It is simply more practical to repeat the training course for each of 
our children, complete with illustrations and repetitions, than it is to prepare a defi n-
itive documented model of comparative animal morphology and behavior. 

 Unfortunately, that practical approach is not suffi ciently rigorous for the effective 
documentation and transfer of knowledge according to the scientifi c method. It is 
likely that few center fi elders could formally document the process of trying to snag 
a 385-ft blast heading toward the fence, and most people probably cannot clearly 
explain their conceptual model for distinguishing a dog from a cat. The physician or 
attorney may have more success describing the model for a recommended treatment 
or a legal strategy since their professions depend to a great extent on systems of 
logic, but few could provide a succinct model for applying their professional judg-
ment given all the changing assumptions and variables each case imposes. Inevitably, 
people with expert knowledge are faced with a gap between what they know “in 
their bones” and their ability to convince their clients or colleagues of its validity. 

 Fortunately, we have formal logic, and derivative mathematical and symbolic 
forms of it, which can help guide us from what is known toward new information as 
yet unknown. Formal logic provides uniform standards for reasoning and critical 
thinking, and accepted methods for applying logic are invaluable for documenting 
the validity of thought processes and identifying fallacies in them. Furthermore, 
powerful quantitative tools such as statistics, matrix algebra, and calculus extend 
formal logic into highly abstract realms of mathematics and science that are other-
wise impossible to penetrate. These tools and their underlying systems of logic have 
made it possible to capture professional expertise as highly explanatory models of 
physical systems. Using various computer programming languages, expert knowl-
edge can be encoded to create automated tools that simulate the consequences of 
altering the system’s assumptions, parameters, and variables. These  simulation 
models  are also very good at processing the effects of feedback loops in systems—
something of which the human mind is much less capable because the results may 
appear too complex for comprehension. An additional benefi t of simulation models 
is that they produce repeatable results. 

 As indicated at the beginning of this text, however, modeling has generally 
remained a “sandbox” for computer programmers and other researchers who have 
the skills to translate conceptual models into mathematical algorithms, and then into 
computer programming languages. Practitioners who possess both subject matter 
expertise and excellent model-building skills have been almost as rare as alche-
mists; the communication gulf between scientist and modeling team has been almost 
as wide as the one between, say, attorney and client. The necessary division of labor 
between the scientist and the modeling team’s mathematicians, statisticians, and 
programmers has encumbered both model development and adoption by interested 
practitioners. Why is this so? 
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 First, creating models has typically been time-consuming and costly because of 
ineffi ciencies inherent in translating one expert’s intuitive knowledge of system 
dynamics into the precise language of algorithms, and then translating the algo-
rithms into computer code. Each translation has historically been executed by a 
different expert. In order to ensure that nothing has been “lost in translation,” several 
iterations of revision and verifi cation may be necessary before all contributors are 
confi dent of the model’s scientifi c content and operation. The process competes 
with many other research activities for suffi cient funding, personnel, and time 
allotted to produce results. 

 Second, even after the model has been verifi ed and formalized by the develop-
ment team, there is still the matter of validation (i.e., proof of accuracy). Without 
validation, fi eld ecology peers who cannot readily look inside to evaluate it for 
themselves often regard the model as a “black box.” On one hand, the prospective 
user deserves to know whether the model is accurate; on the other hand, the subject 
matter expert is put in a position of being considered guilty until proven innocent by 
second or third opinions—not unheard of in the professional world, but quite far 
from standard practice, too. 

 An unfortunate implication of this dilemma is that the highly technical aspects of 
model development have contributed to the alienation, or perhaps intimidation, of 
practitioners in the fi eld who might greatly benefi t from using explanatory simula-
tion models. However, technology is on the side of scientists who have an interest 
in simulation modeling but no practical way to use it. The growing availability of 
open source software tools, and methods for using them to capture expert knowl-
edge of system dynamics, now make it possible to develop spatially explicit simula-
tion models without formal training or programming skills. 

 This book is written for ecologists and students of ecology who are interested in 
the idea of capturing and sharing their own undocumented conceptual models of 
natural systems using simplifi ed software tools and proven collaborative methods of 
development. The immediate benefi t of creating this type of model is that internal 
expert knowledge becomes clarifi ed and quantifi ed as a decision-support tool the 
scientifi c content of which may be reviewed by others with related expertise. These 
models may be revised and extended with relative ease, and some may even be 
adapted or repurposed beyond their original intent without starting again from a 
blank slate. The fi rst part of the book summarizes current state of the science and art 
of ecological simulation modeling. It includes chapters dedicated to a survey of 
landscape modeling environments for users with no formal programming experi-
ence and methods for managing a multidisciplinary ecological modeling project. 
The second part of the book documents 11 case studies where expedient ecological 
simulation models have been developed and applied by university graduate students. 
These applications are used to support management activities ranging from species 
at risk and nutrient fl ows in rivers to food distribution and social services. 

 The editors of this collection have two objectives for the book. The fi rst is to 
outline an expedient and effective methodology for fi elding useful ecological simu-
lation models. The second is to inspire readers with the confi dence that it is within 
their grasp to create and use computer-driven tools that help to clarify and extract 
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their professional expertise, and share it with their community of peers. We sincerely 
hope that this guide contributes to the advance of effective environmental manage-
ment practice for the purpose of improving ecological sustainability.     

   Reference 
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     2.1   Introduction 

 Although a virtually unlimited number of ecosystem management issues may be 
illuminated using small, expedient simulation models developed by one person or a 
few, there are many cases where much more complex problems can be effi ciently 
modeled by a relatively larger team that spans several disciplines or technical 
domains. This chapter describes a process for conceiving, coordinating, and launch-
ing such a model development initiative using the same simple software platforms 
described elsewhere in this book. 

 We have successfully taught ecosystem modeling to groups of university stu-
dents as a three-stage process, with a sequence of steps comprising each stage. By 
adhering to this process, our students have developed highly utilitarian ecological 
simulation models that are based on real-world data and specialized technical exper-
tise. Many of the models documented in this book were developed by students. Our 
model-development process can be outlined as follows:

    1.    Prepare to model

   (a)    Identify objectives and scope  
   (b)    Identify available resources (personnel, expertise, time, software, hardware)  
   (c)    Consider group dynamics (including ownership issues)      
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    2.    Construct the model

   (a)    Set modeling constraints  
   (b)    Conceptualize the full model  
   (c)    Design submodels  
   (d)    Construct a full dummy model  
   (e)    Construct the submodels      

    3.    Integrate the model

   (a)    Debug NetLogo 1  compilation errors  
   (b)    Debug errors in model logic  
   (c)    Demonstrate to end users         

 This process applies irrespective of the modeling software environment that 
is used. Each of these steps is discussed below.  

    2.2   Prepare to Model 

    2.2.1   Identify Objectives and Scope 

 The fi rst step for successful multidisciplinary dynamic modeling efforts is to review 
the objectives and scope of the project. This involves answering the following essen-
tial questions:

    • Who is the end user?  This question is often glossed over because model devel-
opers often assume that the end user is exactly like them. A model’s utility can 
be signifi cantly limited when the needs and applications of a prospective exter-
nal community of users are not fully considered at the outset. This often 
becomes clear to the model developer only when the model is demonstrated to 
others.  
   • What does the end user require of the fi nal model?  Determining what the identi-
fi ed end user expects from the modeling effort requires substantive communica-
tion among the modeling team and the end user. The answers to this question are 
not always immediately apparent to the prospective end user, and they often need 
to be drawn out through direct and open communication between modelers and 
prospective end users.  
   • How accurate do the output requirements need to be?  There is no single correct 
answer to this question. For some end users, it may be suffi cient for the model to 
be capable of generating relative or suggestive output to show trend directions. 
Other end users may require highly accurate data for purposes of fi ne-tuning land 

   1   This text assumes that the modeling group is using NetLogo (Wilensky  1999  )  as its collaborative 
development platform.  
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management scenarios. Again, the most suitable answer is arrived at through 
direct, substantive communication between the modeling team and prospective 
end users.     

    2.2.2   Identify Available Resources 

 This task also can be aided by answering certain essential questions related to per-
sonnel capabilities and availability, data requirements, and computer technology, as 
discussed below. 

    2.2.2.1   Personnel Capabilities 

     • What expertise is available through the modeling group?  If the group has the 
right mix of collective experience, model development can proceed rapidly and 
with great effi ciency.  
   • What actions are needed to fi ll any knowledge gaps in the team?  Depending on 
the gaps identifi ed, the group may either need to recruit outside expertise or iden-
tify supplemental training needs for various team members.     

    2.2.2.2   Participant Availability 

     • How much time will each participant be able to provide the modeling effort?  
Regardless of how fast and profi cient each team member is, and how well orga-
nized the team is, a participant’s lack of availability during critical “windows of 
opportunity” for collaboration can delay progress. Availability of team members 
is easy to overlook because it may seem imponderable at the planning stage.  
   • What time frames are available for inter-team coordination?  For interdisciplin-
ary efforts, the viability of a group member must be assessed with respect to how 
much time the member can be available to coordinate with the others.     

    2.2.2.3   Available Data 

     • Have other models already been developed for the subject environment?  Find out 
what other models are already available and how they may apply to the current 
problem. Investigate what existing models can teach the team about modeling 
the environment and about problems or limitations yet to be addressed.  
   • What data are available?  Determine whether the model can simulate the subject 
environment to the required level of accuracy using readily available data. 
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If insuffi cient data are available to produce the level of accuracy needed, the 
responsible person needs to determine whether it is feasible to obtain more fund-
ing or work time to fi ll the data gap through additional fi eldwork or research.  
   • What is the full set of data requirements for the model?  Thoroughly consider all 
forms of data needed, not just technical information about the biome. A spatially 
explicit model requires spatial data such as raster maps, satellite imagery, vector 
maps, polygon maps, and point data (representing the location of data sampling 
points).     

    2.2.2.4   Computer Technology 

     • What computer hardware is available?  Review the inventory of hardware avail-
able to support the project locally. Consider whether local network or Internet 
access is needed, and whether the available connections have suffi cient band-
width to support communication between connected machines.  
   • What software capabilities are available?  In addition to selecting the software 
modeling environment, consider what ancillary software may be needed to sup-
port the modeling effort.  
   • Do the benefi ts of the identifi ed computer technology justify its cost?  It may be 
tempting to acquire sophisticated information technology that requires heroic 
effort to apply. This temptation may arise from the desire to do the best possible 
job, or simply to extend the joy of modeling as long as possible. From a business 
standpoint, this approach may not provide a suffi cient benefi t, so a less expensive 
approach (in terms of money, time, or both) may be optimal.      

    2.2.3   Consider Group Dynamics 

 Interdisciplinary efforts have special management needs. Traditional management 
hierarchies must be deemphasized in favor of more unmediated coordination and 
cooperation among team members. Individuals from different disciplinary back-
grounds often base problem-solving on different paradigms, which makes some 
diffi culty in communication likely. Such diffi culties, however, provide an opportu-
nity for signifi cant “cross-pollination” of knowledge within the team. Focusing spe-
cifi cally on group management considerations that pertain to model building, several 
issues that have a direct bearing on integrating individual efforts into the group 
product must be recognized and addressed. 

    2.2.3.1   Model Development and Integration Responsibilities 

 Large, complex, multidisciplinary modeling efforts undertaken by a team must be 
split logically into model subcomponent development tasks. The role of each task in 
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the project is defi ned in terms of the scope of the entire project. Each model 
subcomponent is completed through individual effort, imagination, and expertise. 
Development of the subcomponents begins with the defi nition of subcomponent 
requirements, continues with coding that is often accomplished in isolation, and 
completed with refi nement efforts during full model integration. It is crucial that the 
owner of each subcomponent be involved during all phases of integration. An indi-
vidual’s temptation to “turn over” a model component should be discouraged until 
the entire project is completed. If a component that has been “completed” prema-
turely and ultimately needs refi nement or revision based on overall model develop-
ment, it is almost always more effi cient for the author of that component to make the 
changes. In cases where it is necessary to assign a different team member to make 
the revisions, it is often better to completely rewrite the subcomponent than to spend 
much time trying to understand the original. For the sake of time, cost, pride in 
accomplishment, and avoidance of disruption, individual responsibility for subcom-
ponents and submodels must be maintained throughout entire project.  

    2.2.3.2   Scope of Subcomponent Development Efforts 

 Each individual developer must understand that his or her task is the development 
of a submodel that provides essential outputs for use by the full model, not a fully 
functional model in its own right. Developers also should understand that they need 
to meet, but not exceed, the functional requirements of the subcomponent. A sub-
component that does signifi cantly more work than is needed by the full model can 
drain developer resources and also produce a model that runs slower than what is 
acceptable.  

    2.2.3.3   Scheduling 

 People work best within the context of achievable expectations. Schedules defi ne 
expectations from the perspective of available time, energy, and ability. A team 
must work off a common schedule that sets achievable goals within realistic time-
frames. A feasible yet challenging schedule must be developed with and clearly 
communicated with the team. “Plan the model and model according to the plan.”  

    2.2.3.4   Leadership Among Equals 

 A nonhierarchal, multidisciplinary team can be diffi cult to coordinate. As a practi-
cal matter, someone on the team should be responsible for pulling the team together 
as a working unit based on his or her understanding of everyone’s individual person-
alities, expertise, and motivations. When a difference of opinion cannot be resolved 
by group consensus, someone must provide leadership in order to move forward. 
The designation of an effective team leader may be the most important decision 
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made during the entire modeling project. Ideally, an effective team leader will be 
able to work well with all members of the team on both a personal and technical 
level. The person must fully understand the modeling team’s overall objective, be 
well versed in the modeling process, and be trusted by the group to exercise impar-
tial, well-informed judgment to avoid or resolve confl icts.    

    2.3   Construct the Model 

    2.3.1   Set Modeling Constraints 

    2.3.1.1   Potential Model Components 

 A large array of model components is available to the ecological modeler. Decisions 
made in the choice of hardware and software, however, will limit the range of options 
available. Typical model components to consider are briefl y described below.

    • Landscape patches.  Landscapes are now recognized to be important variables in 
models that simulate the movement of individual organisms, structural changes 
in ecosystem boundaries, or the movement of air and water. Dividing the land-
scape into grid cells, hexagons, or irregular polygons is an effective way to cap-
ture some spatial information. For the sake of simplicity, most models are 
designed to use, at a fi xed resolution, data in only one of those landscape patch 
formats. Landscape resolution is often chosen with respect to the operational 
time step incorporated for simulations.  
   • Linear objects.  Some spatial structures are most effi ciently simulated as linear 
objects. Examples include streams, rivers, and most of the built environment 
such as roads, fences, buildings, and parking lots. Incorporating both linear 
objects and landscape data stored as rasters or hexagons is complex, but it is 
often unavoidable. Just as different data storage techniques are appropriate to 
different data formats, so are different modeling techniques appropriate depend-
ing on the model output requirements.  
   • Discrete mobile objects.  If individual people, groups of individuals, vehicles, or 
individuals of an endangered species are key variables in the model, they must be 
represented as discrete mobile entities. Such objects must be able to disconnect 
from a location in the landscape space and “reconnect” in an adjacent space to 
interact with the environment there.     

    2.3.1.2   Potential Model Interactions 

 There are a very large number    of potential interactions among model components, 
so the following list indicates only broad categories of interaction. The modeling 
team must identify the model interactions that will best simulate the system.
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    • Raster geographic information system (GIS) interactions . Classes of traditional 
GIS interactions have been developed and discussed by Tomlin  (  1990  ) . These 
include the following:

   Simple location-by-location overlays that can be expressed with mathemati- –
cal equations, using maps as variables. These can be used to fi nd locations 
that meet certain local criteria; fi nd correlations or potential local impacts 
related to a proposed change to the landscape; or transform a set of maps (e.g., 
slope, aspect, soil characteristics, rainfall) into new interpretations using 
mathematical relationships (e.g., soil erosion potential based on the Universal 
Soil Loss Equation).  
  Near-neighborhood operations at computer output as a function of the state of  –
small regions surrounding each map location. These can be used to compute 
slope or aspect as a function of the elevations surrounding each map location, 
determine direction of a fl ow such as water or air, or identify areas where 
information changes rapidly (e.g., edge detection).     

   • Cellular automata interactions . Individual cellular automata (CA) comprise a 
two-dimensional surface that changes over time. The changes are driven by equa-
tions that generate the future state of each cell (i.e., location) as a function of the 
current state of that cell and its nearest neighbors (either four or eight depending 
on system design). For exploring the qualities and characteristics of the cellular 
automata approach, cells are often assigned to a limited number (fewer than 256) 
of states. Relaxing this limit to accommodate a large number of variables results 
in the type of models described in this book: models with fi xed time steps that 
run simultaneously for a number of land parcels arranged in regular grid cell 
arrays. Each cell is treated as a homogenous system that can be infl uenced in 
each time step by its own state and the state of all its adjacent neighbors.  
   • Vector GIS interactions . Landscape information stored as polygons and linear 
features can also represent objects that interact and move such as traffi c fl ow pat-
terns along roadways or the hydrologic activity of stream or river networks dur-
ing unusual storm events. Entities like cities, parking areas, private land, or stable 
ecosystem regions are most effi ciently stored as polygon data elements, and they 
can be conceptually easy to model as distinct entities.  
   • Mobile object interactions . Some models require distinct entities that move 
across the landscape. Examples include individual members of an endangered 
species, vehicles moving about a landscape, or a group of individuals that moves 
collectively in close geographical contact.    

 These broad classes of interaction can combine into compound or hybrid types of 
interaction. Animals modeled as mobile objects must interact with water found in 
streams that are modeled as vector entities, and also with vegetation that is modeled 
as a component of a cellular model fi xed in space. Entities can communicate with 
each other through sounds, propagules, pheromones, and waste gases that dissemi-
nate through the modeled space. It can be seen that the range of potential interactions 
is quite large. Generally, the group’s options for modeling will be greatly constrained 
by the selected modeling environment and available computer hardware.  
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    2.3.1.3   Simulation Timeframe 

 Once the purpose of the model has been determined, it should be relatively straight-
forward to identify the optimal timeframe for simulations. The timeframe is deter-
mined on the basis of informed guesses about how rapidly the predictive power of 
the model will decay over simulated time. This same issue impacts the accuracy of 
the sophisticated large-scale models used to forecast weather patterns; even state-
of-the-art models lose predictive power the longer the simulation runs. There may 
be exceptions to this, however. For example, spatial models may show stability at a 
gross scale while showing apparently random output at a detailed scale. That is, the 
overall pattern may remain the same over time, but details about the location of the 
pattern may change with different simulation runs. In general, the timeframe is 
determined directly by end user requirements.  

    2.3.1.4   Time Step Options 

 The simulation proceeds from a given starting point to the end of the timeframe 
identifi ed above. Simulation time may proceed according to fi xed time steps, vari-
able time steps, or the occurrence of specifi ed events.

    • Fixed.  This is conceptually the simplest approach, but functionally it is the most 
limiting. The model runs with a set time step, such as 0.25 or 1, which can rep-
resent days, months, years, or other measures of time. A known time step simpli-
fi es the model because all equations are generated with respect to the same time 
step. A fi xed time step, by defi nition, cannot accommodate variability in 
the  system. If the time step is weekly, for example, then the model cannot capture 
daily changes in temperature, moisture, or plant growth. Similarly, a daily time 
step would miss the effects of a fl ash fl ood that may take only minutes to cause 
great devastation to vegetation.  
   • Variable.  There are two options available for using a variable time step. One 
option is to set the time step to be long, initially, but also allow it to be modifi ed 
dynamically as changes occur and are detected within the model. In the case of 
the fl ash fl ood example given above, when the storm occurs the model would 
detect rapidly changing activities, stop the simulation, back it up, and resume the 
simulation using an appropriately smaller time step. The second option is to 
assign different fi xed time steps to different parts of the model. This approach 
requires less computational power while maintaining the relative simplicity of 
fi xed time steps.  
   • Event driven.  This approach advances time not by steps but according to a calen-
dar that schedules specifi c events. A plant submodel may execute plant growth 
and then schedule itself to be updated at some later time based on its own rate of 
activity. A storm submodel would be programmed to run at a specifi c time, and 
while it runs it can interact with the plant model and schedule the plant submodel 
to accelerate growth in response to the infl ux of water. This approach is most 
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attractive for models designed for limited computing resources. From a 
modeler’s perspective, however, it is the most time-consuming approach because 
it requires signifi cantly larger simulation models than are needed using the other 
two approaches.    

 As can be seen, one of the main criteria for selecting an approach is the capabili-
ties of available hardware and software. When this criterion is not critical, the selec-
tion will be made on the basis of the costs and benefi ts of the alternatives.  

    2.3.1.5   Spatial Resolution Options 

 The resolution of the landscape’s spatial representation must be considered in terms 
of the modeling objective, model subcomponents, and technology constraints. Two 
major aspects of dynamic, spatially explicit ecological models are the spatial distri-
bution of model components and the effects of the space on model component 
interaction. The resolution of space in this type of model is as important as the reso-
lution of time steps. Most modeling environments divide space into a checkerboard-
type grid surface using cells of uniform size. If the cell size is too large, the 
implications of the spatial arrangement of objects in the system can be lost. As cell 
size is reduced, more computational power is required to support the model. Another 
consideration is how the cell size relates to agent activities and time steps; without 
a logical correlation among the three, the task of developing the model logic 
becomes much more diffi cult. In the case of an animal that covers up to 1 ha in a 
time step, for example, a cell size smaller than 1 ha will require the modeler to track 
the several cells comprising the specifi ed 1-ha area and to ensure that the animal 
agent interacts with all of those cells during the time step. The development of the 
modeling logic to address that situation could be avoided simply by assigning the 
cells a size of 1 ha. That said, there is no universal formula for assigning cell size 
because other factors may equally infl uence the landscape surface scaling deci-
sions. Three general terrain resolution schemes may be applied to simulation model 
design:

    • Fixed.  The terrain features assume a fi xed resolution that can be constant across 
the landscape representation. A regular array of square grid cells or hexagons is 
commonly used in spatial simulation environments. These have the advantage of 
being conceptually simple as models need not account for different or changing 
resolutions.  
   • Hierarchical.  Models that simulate activities occurring at different spatial reso-
lutions may adopt a spatial data structure that maintains information in a hierar-
chical manner. Each cell or hexagon can be iteratively decomposed into 
increasingly smaller components. Large entities (e.g., weather systems, fl ocks of 
birds, clouds of spores or pollens) can move rapidly across the system using rela-
tively long time steps and large spatial patches. Smaller entities (individuals or 
vehicles) can operate at smaller time steps and smaller patches. In this scenario 
data are maintained simultaneously at varying scales.  
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   • Variable.  In the case of large objects that move slowly across the landscape (eco-
systems, roaming herds of ungulates, or populations of invading species), there 
may be advantages to maintaining the entity as a single whole while retaining 
detailed spatial structure that defi nes the dynamically varying extent of the entity. 
This type of operation requires maintenance of the spatial extent at a fi ne resolu-
tion while allowing simulation of the object dynamics at a grosser resolution.    

 As is true with other considerations discussed above, the modeling staff will 
generally fi nd their options constrained by the software and hardware limitations.   

    2.3.2   Conceptualize the Full Model 

 The full model concept begins with a focus on the model output requirements. These 
will almost always take the form of time series output showing the dynamic status 
of something in the model. The output series might track the status of an endangered 
species, property values, soil depth, land use patterns, ecosystem health, or the posi-
tion and paths of vehicles or individual organisms. In all cases, a fi rm set of output 
requirements must be specifi ed, and they will drive all subsequent decisions. First 
the outputs are documented as diagrams on paper, whiteboard, or computer screen 
(see Fig.  2.1 ). These represent the model’s fi rst  state variables , parameters whose 
values will change over time. Each variable must be associated with a unit of mea-
sure. Some units will be straightforward (e.g., dollars, weight, mass, count), but 
others may be challenging. For each of these output variables, the group identifi es 
the factors that directly infl uence the state of the variable. The diagram is revised 
as these factors are captured, with arrows showing the state variables that are 
affected.  

 At this point the group may have diagrams of system components with arrows as 
in Fig.  2.1 . Boxed components are state variables; circled variables with arrows 
coming to them are calculated at each time step; and circled items with no 
arrows coming to them are model parameters (i.e., fi xed variables). Equations will 
be written for every component in the diagram that has incoming arrows, so it is 

  Fig. 2.1    Early state of model concept       
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important to begin ensuring that the units associated with the connected compo-
nents are compatible. 

 This conceptual model grows over time. Participants may become anxious about 
whether there is enough time, funding, energy, or information to complete the 
model. Once a model is captured as a computer application, sensitivity experiments 
can identify which model values, components, equations, and logic affect model 
outputs to greater and lesser extents. It has often been repeated that a model is done 
when nothing else can be taken out of it. Although the model remains conceptual at 
this point, it is important that developers continually perform conceptual sensitivity 
analyses to discover which model components are clearly not likely to signifi cantly 
affect model outputs. With judicious pruning and reference to the core project objec-
tives, the conceptual model can be kept within limits that allow its completion using 
the available time, energy, and expertise. The process proceeds by looking at the key 
input variables that might be used to compute the state of the primary outputs 
desired; team members look in turn at each of these variables and determine key 
inputs required to compute their changing states. The group accomplishes this task 
iteratively until the participants are comfortable that the conceptual model is suffi -
ciently complex to answer the primary questions of importance to the end user, but 
is still achievable within the identifi ed constraints. 

 To summarize, the following steps are required to fully conceptualize the 
model:

    1.    Identify and discuss the primary output desired. Begin with the questions that 
will be asked of the completed system.  

    2.    Discuss the model inputs that might be required for generating accurate state 
changes in the primary state variables.  

    3.    Perform a conceptual sensitivity analysis for each potential input to help priori-
tize them.  

    4.    Repeat the previous two steps iteratively for each important input until the model 
is agreed to address all primary end user questions and to be feasible to complete 
given the availability of project resources.      

    2.3.3   Design Submodels 

 If the model is suffi ciently large, development effi ciency will require that it be 
divided into submodels. Consider the design of a new automobile engine. The pro-
cess may involve the expertise of dozens of people and it would be ineffi cient for all 
of those people to collaborate in one room on the design of every component. 
Instead, the design group is divided into smaller units with specifi c expertise to 
independently design engine subsystems, such as fuel delivery, ignition, cooling, 
exhaust elimination, and noise management. Each subsystem team is given specifi c 
parameters to ensure that the subsystem performs as specifi ed, fi ts the available 
physical space, and is properly supported by other subsystems. The steps explained 
below will help guide the effective development of submodels. 
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    2.3.3.1   Identify the Submodels 

 Once conceptualization of the full model is complete, responsibility for the devel-
opment of the submodels is assigned. Submodel teams then divide their responsi-
bilities among individuals, who clearly understand their tasks in the context of group 
needs and the overall requirements of the fi nal model. Each team retains primary 
responsibility for its submodels throughout the life of the project. Thus, this decom-
position of the full model must be accomplished with close attention to team 
member:

   Expertise  • 
  Availability  • 
  Learning requirements    • 

 This stage often proceeds smoothly since the capabilities of each participant are 
often expressed during model conceptualization.  

    2.3.3.2   Set Submodel Requirements 

 This portion of the work starts with further conceptualization of the submodels, 
with the immediate objective being to identify submodel input requirement that will 
need to be satisfi ed by other submodels. This process becomes an iterative conversa-
tion among all submodel groups. Through identifi cation of submodel input require-
ments and submodel output possibilities, the teams work out design and development 
contracts with each other. Stated concisely, the three steps are for teams to:

    1.    Identify external input requirements for their submodels.  
    2.    Identify potential outputs of their submodels.  
    3.    Agree on contracts with all other submodel teams based on the required inputs 

and outputs.     

 The contract must identify publicly available state variables, variable units, and 
variable resolution requirements. Debate among teams will likely proceed through 
several iterations before a consensus is reached. It is important that this debate and 
the resulting contract be taken as a fi rm obligation. If a team labors to develop a 
submodel based on the agreement that a key input will be available, then that input 
must be made available. Failure to meet these obligations can severely weaken team 
cohesiveness and jeopardize successful completion of the model. 

 Table  2.1  illustrates a representative, partially completed “submodel team agree-
ment table.” The column headings are fi lled with parameter name, associated unit, 
variable type, and—grouped at the right—the submodel team names. The row head-
ings do not list all state variables in the model, but only those that are shared across 
models, which are those that are initialized and maintained by the submodels. The 
agreements captured in this table are (1) the variable names, (2) designation of the 
submodel responsible for each variable, and (3) the units to be applied. In some 
cases it is also important to include an agreement on the update frequency and the 
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uncertainty of the value. The variable type column indicates whether the value is a 
state variable (decreased/increased each step) or a simple variable that is calculated 
at each time step. An “O” in the table is used to indicate that the value is an output 
of the submodel directly above it and an “I” indicates that the value is an input. The 
table is not completed until every variable not associated with an “I” is deleted and 
every other variable is associated with one—and only one—“O.”   

    2.3.3.3   Model Identifi cation Requirements 

 As a special case of the submodel requirements identifi cation, model state variables 
must be initialized with a system state at time step 0 (zero). Depending on the 
approach to state variable simulation, external data sources such as raster and vector 
maps, site description tables, entity state descriptions, and external model output 
(e.g., a global climate model) will be required to seed the model’s state variables. 
This effort can be as time-consuming and diffi cult as the development of the model 
rules and equations. Team members will be assigned to this effort and will similarly 
debate and establish working contracts with the submodel teams, as described in the 
previous paragraph.   

    2.3.4   Construct a Full Dummy Model 

 To facilitate the integration of submodels into a functioning whole, it is very useful 
to assemble a “dummy” model that contains simplifi ed versions of all submodels. 
At a minimum at this stage, each submodel should feed static values of all variables 
that it is responsible for providing to other submodels. The dummy model serves as 
a sort of workbench for each submodel development team. Some useful dynamics 
may be built in as data are available. For example, a dummy weather model might 
report a fi xed series of monthly average temperatures, rainfall, etc., for use else-
where in the model; or a population model might generate a monotonically increas-
ing total population count needed by another submodel. The goal is to provide a 
simple, clear model context within which submodel development can be accom-
plished. That context includes the “wiring” between all submodels, which allows 
each submodel development team to replace their dummy submodel with working 
versions while maintaining all expected submodel outputs and using all preestab-
lished inputs. 

 As submodel development proceeds, developers are likely to discover that they 
need additional inputs not previously agreed to, or cannot generate certain agreed-
upon outputs, or can easily provide potentially useful new outputs not previously 
discussed. Therefore, during development it is important for teams to communicate 
all revisions needed to the contracts captured in the “agreement table,” and to gener-
ate updated dummy submodel components as appropriate.  
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    2.3.5   Construct the Submodels 

 By this point the submodels have been identifi ed; submodel development teams 
have been formed; submodel interaction requirements, expectations, and initializa-
tion requirements have been documented; and timeframes for completion of the 
submodel components have been set. Submodel development teams can now focus 
independently on the further design, refi nement, debugging, and sensitivity analysis 
of the submodel components. If the identifi ed submodels are found to be too 
unwieldy, they must be broken into manageable components using the procedure 
described above for decomposing the full model into submodels. A more ambitious 
model will require several levels of partitioning before it is suitable for individuals 
to focus on developing the cause-effect mathematics that drive the model. 

 There is no universal method for constructing submodels because specifi c objec-
tives and individual modeler capabilities vary to a great degree from project to proj-
ect. This stage of model development is where individuals can be most creative with 
respect to the modeling process. Nevertheless, a number of activities and objectives 
must be considered during a submodel design and development exercise. These may 
grouped into two categories: general modeling and group modeling. The general 
modeling category involves such considerations as keeping the model simple, mak-
ing sure it can be understood by the intended audience, ensuring that units used in 
the model conform with the submodel team agreement table, and performing sensi-
tivity analyses. Of more interest here are group modeling principles related to sub-
model design and development:

   The submodel must be developed within the parameters established for the • 
project.  
  Duplication of names for variables, stock, and other values that will be publicly • 
visible (e.g., “age”) must be avoided among teams in order to prevent subsequent 
diffi culties during model integration.  
  All modelers must use only the software and hardware designated for the • 
project.  
  Submodel development will depend only on inputs generated by other • 
submodels.  
  All outputs required from the model must actually be generated by simulations.  • 
  All inputs and outputs are used and generated using the units previously agreed • 
upon by the entire group.  
  Submodel development is completed within the negotiated timeframes.  • 
  All required changes are communicated quickly and diplomatically to other sub-• 
model teams.  
  Submodel teams continue to monitor the internal state and external input vari-• 
ables for their submodel to determine whether the submodel is operating within 
reasonable parameters.  
  Submodels are tested and initially refi ned using group-generated artifi cial time • 
series data.    
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 As the individual submodels are completed, they are ready to be integrated into 
the full model.   

    2.4   Integrate the Model 

 When multiple submodels are completed and ready to be joined, the process of 
integration is usually performed by a subset of the entire modeling team, but that 
subset should include a representative from each submodel team. Integration is 
accomplished by inserting fi nished submodels into the dummy model, one at a time, 
while testing and debugging them to identify and eliminate errors in program execu-
tion and output. Because “interesting” things are likely to happen when fi nished 
submodels start working with each other’s actual output for the fi rst time (instead of 
dummy outputs), the necessary problem-solving work may become vexing if it is 
not approached systematically. 

 The most effective general approach to testing and debugging is to add the fi n-
ished submodels one at a time, fi rst ensuring that NetLogo can execute them without 
problems, then testing one submodel’s operation in tandem with another one. This 
approach is familiar to anyone who has tried to diagnose and rectify problems with 
a complex device or system—a desktop computer or an automobile, for example. 
The intent is to isolate and resolve one problem at a time in order to avoid compli-
cating the diagnosis process with divided attention or irrelevant variables. Once the 
two submodels are executing correctly in NetLogo and producing output that is 
reasonable and realistic, then a third submodel may be inserted and tested. 

 Although submodel integration must proceed in a controlled, systematic way, it 
cannot be prescribed as a linear procedure. Integration is an iterative process. It may 
require repeated testing and debugging work with different combinations of sub-
models, or even taking a step back to fi x a new problem with a previously opera-
tional submodel that appeared after debugging a different one. The successful 
isolation of problems involves detailed inspection of each submodel’s behavior 
within the context of the evolving operational model, and debugging requires par-
ticipation by representatives of all submodel teams. The diffi culty of these tasks 
depends on the specifi c model and the complexity of the system behaviors it simu-
lates. Some trial and error during the debugging    and integration of submodels is 
unavoidable. As noted previously, debugging addresses the two basic issues 
described below: compilation and logic errors. 

    2.4.1   Debug NetLogo Compilation Errors 

 Each submodel was developed in relation to the common time series output test 
environment embodied by the dummy model, so the fi nished submodel should “plug 
into” the dummy model with few problems, if any. Nevertheless, when a submodel 
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is fi rst inserted in place of its corresponding dummy submodel, certain “mechanical” 
types of errors may emerge right away. We refer to these as  compilation errors , and 
they are revealed in the form of NetLogo error messages. They represent obvious 
errors with respect to the dummy model, such as incorrect unit errors or duplicated 
variable names that mean different things in two or more submodels. Resolution of 
these problems is generally a straightforward task.  

    2.4.2   Debug Errors in Model Logic 

 As NetLogo compilation problems are resolved and operational testing continues, 
the submodels will be responding to input combinations not included in the dummy 
model (i.e., authentic input provided by other completed submodels). At this stage, 
it is common for test simulations to produce incorrect output or other incoherent 
behavior. Examples include unexpected cycling, chaotic activity, operation of sub-
models outside their range of sensitivity, and nonsensical output. These results indi-
cate errors in the logic embodied in the submodels, particularly in terms of how 
each one interacts with the others. The testing and debugging of model logic draw 
on the technical expertise of the team and each working group’s deep familiarity 
with its own submodel. Each team must provide guidance for evaluating whether 
inputs from other submodels are within the specifi ed ranges. This can take the form 
of inserting code that produces an explicit error message when a submodel is not 
receiving valid inputs. These error messages can help to facilitate communication 
between the submodel teams, but successful debugging further requires that all sub-
model teams collaborate very closely to assess model integrity and to monitor how 
their own submodels perform within the context of the whole system. All require-
ment changes and fi xes must be assiduously refl ected in the shared model 
documentation.  

    2.4.3   Demonstrate to End Users 

 Once all issues with submodel performance and operation of the integrated model 
are resolved, the development team provides demonstrations for representative end 
users. The purpose of the demonstrations is to let the end users run the model and 
see how it performs when loaded with real or simulated data. Two reasons for pro-
viding demonstrations are to observe whether the target users have any unforeseen 
problems running the model and whether they offer any suggestions for last-minute 
“tweaks.” 

 If the modeling team has followed our three-phase development process, no sig-
nifi cant problems should emerge. Straightforward changes, such as level of detail 
displayed in the user interface, may emerge; these are easy to implement. Direct 
requests by users for more substantive revisions should be considered in terms of 
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model utility and cost of implementation. Fairly substantive changes are not 
unheard-of after end user demonstrations, but at the fi nal stage of a project the proj-
ect team tends to be constrained in terms of revisions it can consider. The nonnego-
tiable constraint is the project objective: user change requests that exceed the 
original scope of the project can rarely be satisfi ed under the original funding and 
personnel commitments. However, constructive user input for signifi cantly extend-
ing the scope or utility of the model should not be discarded: it may suggest the need 
for a follow-on project when funding and time are available, and may even provide 
core concepts for a more ambitious model development project in the future.   

    2.5   Disseminate the Model 

 Product distribution is not part of the model development process, strictly speaking. 
But dissemination of the model to a community of interest is usually the fi nal, if 
unspoken, goal of nonproprietary model builders. Even given the level of interest 
and effort each member of the multidisciplinary team has invested to fulfi ll the spe-
cifi c modeling objective, the fi nal product may have important potential uses not 
recognized by the team. Transparent, open-source models such as those constructed 
using NetLogo may be readily adaptable for different applications within any of the 
disciplines represented by the modeling team. An operational model may serve as a 
sort of template—or at least as a concrete starting point—for specialized or enhanced 
follow-on models. Teams that wish to maximize the utility of their modeling effort 
will think about effi cient modes of model distribution through the course of the 
project. Common modes of model dissemination    include formal documentation and 
publication of the model using the  Overview, Design concepts, and Details  or ODD 
format (Grimm et al.  2006  ) ; posting the model and user documentation to appropri-
ate user-community web sites; and distribution on physical media such as 
CD-ROMs.  

    2.6   Conclusion 

 This chapter has outlined a practical framework within which an interdisciplinary 
research team can design and develop a large, dynamic, spatially explicit ecological 
landscape simulation model. This framework, repeatedly used with success with 
our university students over many years, is intended to promote an effective balance 
between efforts that need approval by the whole development team and efforts that 
draw on the imagination, expertise, and motivation that arises through the effort of 
the individual. Full model conceptualization is performed with respect to end user 
requirements, as tempered by available resources. That conceptualization governs 
the partitioning of the model into components that can be developed through indi-
vidual efforts. As the model components are completed within the overall design 
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requirements, they are linked together as an operational fi nal model. Full model 
debugging requires modifi cation to the components by the original developers of 
those components in coordination with the developers of the other components. 

 Quality leadership in this multidisciplinary environment is crucial for success, 
and it must be executed with consideration and respect for differences in the person-
ality, background, motivation, and time availability of the team members. Using the 
approach outlined in this document will help the team leader and members to 
 successfully design, develop, and operate large, complex spatial models.      
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    3.1   Background 

    3.1.1   Program Overview 

 NetLogo (Wilensky  1999  )  is a user-friendly agent-based modeling environment 
created by Dr. Uri Wilensky at the Center for Connected Learning and Computer-
Based Modeling (CCL), Tufts University, Medford, MA. In 2000, the CCL moved 
to Northwestern University, Evanston, IL, where NetLogo development has contin-
ued to date. This discussion is based primarily on NetLogo 4.1. 

 NetLogo runs on most desktop computer platforms, including Microsoft 
Windows, Apple operating system OS X, and Linux. The modeling environment is 
programmed mostly in the cross-platform Java language (Oracle Corp., Redwood 
Shores, CA), but the BehaviorSpace component of NetLogo and the user-code com-
piler are written in a language called Scala. The language actually used to develop 
simulation models is called NetLogo, which is a “dialect” of the language called 
Logo, as is the well-known derivative language called StarLogo. NetLogo differs 
from both of those in many respects, particularly in terms of ease of use and greater 
power. Interested readers can fi nd details about this in the NetLogo frequently asked 
questions (FAQ) document and the Programming Guide, both of which are avail-
able on the NetLogo web site (  http://ccl.northwestern.edu/netlogo/    ). 

 This chapter is written to introduce new users to the NetLogo modeling environ-
ment, particularly people who have no substantive exposure to simulation modeling 
but understand the benefi ts of capturing their personal expertise as a dynamic, 
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spatially explicit model. Despite its high degree of accessibility to novice modelers, 
however, NetLogo also may be very useful to others who have more demanding 
requirements, such as researchers experienced with higher-power modeling tech-
nology or those who wish to extend NetLogo output by linking it to a geographic 
information system (GIS), statistical analysis software, or a specialized  mathematics 
package. This text focuses on fundamentals of using NetLogo, which was used to 
develop the models presented in Part II of this book, but it also points to supplemen-
tary information intended for users with more demanding modeling ambitions. 

 This chapter addresses the following aspects of NetLogo’s suitability for the 
prospective user and his or her intended use:

   Ease of software use, particularly in terms of working through the interface and • 
writing code.  
  Scope of model-building features and effectiveness of NetLogo’s implementa-• 
tion of them.  
  Quality of software documentation, tutorials, sample models, and other support.    • 

 The chapter opens with an overview of NetLogo’s origins and its technical 
capabilities.  

    3.1.2   Capabilities and Features 

 NetLogo can model both mobile and immobile agents. It handles multiple agents 
occupying the same physical space, and can include thousands of agents in a single 
simulation. Other capabilities include agent linking and networking capabilities, 
both two- and three-dimensional (2D and 3D) display, and easy switching between 
single-step execution and continuous simulations. 

 Features that distinguish NetLogo include:

   Clear and thorough documentation, including a large and rich set of sample mod-• 
els to instruct and stimulate the would-be modeler.  
  An easy-to-understand graphical user interface (GUI) through which a variety of • 
easy-to-use tools are accessible for shaping a model, controlling it, and monitor-
ing its behavior.  
  The easy-to-learn NetLogo modeling language, which is a powerful and fl exible • 
tool for model creation.  
  HubNet, a “participatory simulation” tool that enables multiple users running • 
separate client programs to interact with a NetLogo model.  
  Tools that facilitate running multiple simulations in the background.  • 
  BehaviorSpace, a tool that facilitates running a model many times using different • 
inputs to explore the consequences of alternate scenarios.  
  Icon editors and import capabilities for agents and links.  • 
  A separate environment with dedicated tools for graphically creating system • 
dynamics models instead of agent-based models.  
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  The ability to easily convert models into  • applets  (small Java applications) for 
web viewing and experimentation.  
  An application programming interface (API) of controller functions that allows • 
NetLogo to be embedded in other applications.  
  Software extensions that augment NetLogo’s basic capabilities, including a spe-• 
cial API for custom development of new extensions.  
  A substantial GIS capability, providing the ability to load both vector (point, line, • 
polygon) and raster (gridded) geographic data layers, display them, and incorpo-
rate their real-world features into models.     

    3.1.3   Installation and Setup 

 NetLogo may be downloaded free of charge from the NetLogo website,   http://ccl.
northwestern.edu/netlogo/    . The installation process is simple for computers running 
Windows, OS X, and Linux, and simply involves downloading an executable instal-
lation fi le, double-clicking it, and following the prompts. Once installed, NetLogo 
is ready to run any of the included sample models to help the new user become 
acquainted with the nature of agent-based simulations. You can examine and tinker 
with the sample models at your own pace, or else follow the well-documented tuto-
rials to immediately start preparing to build your fi rst model.   

    3.2   Description of the Modeling Environment 

 The top-level NetLogo GUI provides three principal work areas organized as tabs 
near the top of the screen: the  Interface  tab, the  Information  tab, and the  Procedures  
tab. The Interface tab is where model development usually begins, and also where 
existing models are selected, run, and manipulated. The Information tab provides a 
space for reading and writing succinct model documentation comments. In 
NetLogo’s many sample models, the Information tab contains user documentation 
that can be highly instructive for novice modelers. The Procedures tab is the work-
space where the model’s  source code —the program—is developed and stored. This 
section discusses each tab in its order of placement in the NetLogo GUI. 

    3.2.1   The Interface Tab 

 Figure  3.1  is a screen shot of the NetLogo sample Wolf Sheep Predation model 
(Wilensky  1997  )  with the Interface tab selected, shown running on a personal computer. 
This model, which you can open and experiment with after installing NetLogo on 
your computer, consists of three elements: grass, sheep, and wolves. Immediately 
on launching this model, the model view occupying the right half of the Interface 

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
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tab is fi lled with a random array of live (green) and dead (brown) patches of grass. 
Within this fi eld of grass, user-specifi ed quantities of individual sheep and wolves 
are randomly placed. When the model is run at regular time steps, called  ticks  in 
NetLogo, the sheep and wolves are randomly moved. The consequences of the 
movement are then evaluated. Sheep may gain or lose energy depending on their 
movement to live or dead grass patches. Whether the sheep survive, reproduce, or 
die depends on their energy gain or loss, and also whether they encounter a wolf. 
Whether wolves survive, reproduce, or die also depends on their own energy levels, 
which depend on their ability to land on and eat sheep.  

 Immediately beneath the three tab labels, we see a horizontal toolbar with a core 
set of controls (buttons, sliders, and dropdown menus) that are activated or dormant 
depending on which tab is selected. With the Interface tab selected, the toolbar 
grays out any tools not applicable to the tab’s functionality. The workspace includes 
a variety of additional tools immediately below, on the left half of the screen. The 
actual Wolf Sheep Predation “world” is displayed on the right half. At the bottom of 
the workspace is the  Command Center , a fi eld where commands may be keyed in to 
affect a simulation without affecting the model’s source code. 

  Fig. 3.1    The interface tab for the Wolf Sheep Predation model       
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 In the Wolf Sheep Predation model, the world is displayed as a 51 × 51 square, 
2D grid showing all model elements (i.e., grass, sheep, and wolves). In the horizon-
tal bar at the top of the modeled space in Fig.  3.1 , the simulation is shown to have 
already run for 205 ticks. The individual sheep and wolves are examples of mobile 
agents which, oddly, are called  turtles  in the jargon of NetLogo. The individual 
squares of grass, called  patches , are examples of a stationary agent. The model 
world includes not only turtles and patches, but also an  observer  agent and, in many 
models,  link  agents that connect turtles in various ways. 

 Taking a closer look at the buttons and widgets displayed next to the model space 
in Fig.  3.1 , we see the following, moving right and down from the upper left:

   A  • setup  button, which sets the initial placement of sheep, wolves, and the living 
and dead grass patches.  
  A  • go  toggle button that starts and stops the simulation.  
  A switch labeled  • show-energy , which    specifi es whether the current energy for 
each sheep and wolf is displayed.  
  A switch labeled  • grass , which specifi es whether grass status (i.e., live or dead) 
will affect the model’s behavior.  
  Six  • slider  controls with self-explanatory labels, which the user manipulates to 
specify the initial values for various model parameters, including numbers of sheep 
and wolves, energy gains from food for each, and reproduction percentages.    

 Below these buttons and sliders are data display components that visualize infor-
mation as the simulation runs. In the Wolf Sheep Predation model we see two types 
of these displays:

   Three  • monitors , which track the current amounts of sheep, wolves, and live grass.  
  A  • plot  with two labeled axes (population and time) showing changes in sheep/
wolf populations and grass cover 1  at each tick during the run time, which echoes 
the monitor values in graphical form.    

 The Command Center at the bottom of the workspace is for typing certain ad hoc 
commands directly to agents during a simulation, such as changing the display color 
of sheep or specifying which direction particular sheep should rotate. These com-
mands are not added to the model’s source code, and they do not persist after the 
simulation has ended. 

 At this point, it is important to interject that the NetLogo Interface tab will look 
somewhat different in each model. The general organization of the workspace is the 
same in all models, but the buttons and other devices that appear on the left side of 
the tab are custom controls added by the model developer. These will vary depend-
ing on the nature of the simulation model that is being developed. The basic model 
elements, for example, will vary in number and name, as will the types of input tools 

   1   The value for grass is divided by 4 (“grass/4”) so it scales to the plot display while still showing 
the trend in live cover.  
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provided for toggling certain conditions off and on, setting the values of parameters, 
providing dynamic data display during simulations, and so on. 

 Similarly, it is important to note here that the command buttons, toggles, and 
sliders do not become functional until they are referenced as variables within the 
NetLogo code. Certain types of ephemeral commands can be added using the 
Command Center, as explained above, but the actual model source code is developed 
in the Procedures tab, which will be described after a brief introduction to the 
Information tab.  

    3.2.2   The Information Tab 

 Figure  3.2  shows the Information tab for the sample Wolf Sheep Predation model. 
Commands for fi nding text in this tab ( Find ) and editing or writing it ( Edit ) appear 
as icons in the horizontal toolbar just beneath the three tabs near the top of the win-
dow. The content of the Information tab is unique to each NetLogo model, as it is in 
the Interface and Procedures tabs.  

 This example shows a concise summary of the model’s nature and purpose, an 
explanation of what the model does, and a description of how to use the controls to 
run and control the simulation. Note that the text continues beyond the bottom of the 
window and is accessible using the standard scrollbar at the right side of the window. 
The model builder may use this tab to make notes about the model development 
process. When the model is verifi ed and ready to distribute, the text in the Information 
tab may be further developed to serve as an instructional readme fi le targeted at new 
users of the model.  

    3.2.3   The Procedures Tab 

 The code-editing workspace for NetLogo—the Procedures tab—is shown in Fig.  3.3  
for the Wolf Sheep Predation model. It is little more than a simple, specialized text 
editor designed for writing and revising computer code in the NetLogo program-
ming language. The toolbar contains a Find command (functionally identical to the 
one in the Information tab); a  Check  command, a debugging capability that high-
lights errors in source code syntax; a dropdown navigation menu, which lists all the 
model’s user-defi ned procedures; and a switch to toggle automatic indenting of the 
code. In the Procedures tab as it displays on a computer screen, the NetLogo pro-
gramming language is color-coded. Commands are blue,  reporters  (commands that 
return a value) are purple, and other keywords are green, for example.  

 Most of the work to create a NetLogo model involves the writing and checking 
of computer code. But compared with many other computer languages, the NetLogo 
language is easy to comprehend, read, and write. It is an economical language 
because its vocabulary of commands is very well considered and focused on the 
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specifi c problems of model creation. Consequently, the imaginative application of a 
relatively small amount of NetLogo code can result in simulation models of consid-
erable power and explanatory value. This fact is evident in the quality of the sample 
models that come bundled with the NetLogo application. In examining the 
Procedures tabs of these models, many new users will fi nd that they can reuse por-
tions of the source code for their own models. 

  Fig. 3.2    The information tab for the Wolf Sheep Predation model       
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 All source code for a model can fi t in a single source fi le, and it is the content of 
that fi le that is displayed in the Procedures tab. However, there is an option to incor-
porate multiple source fi les into a model by using the  __includes  keyword. The 
purpose of this is to extend the basic model’s functionality by exploiting NetLogo 
source code that may already have been written for a similar application. Other ways 
to extend NetLogo programming capabilities are discussed in Sect.  3.3.6 .   

  Fig. 3.3    The procedures tab for the Wolf Sheep Predation model       
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    3.3   Using NetLogo 

    3.3.1   Workfl ow Description 

 A model development project typically begins with the creation of Setup and Go 
control buttons using the Interface tab to establish a new NetLogo modeling work-
space. Next, the modeler selects the Procedures tab to write the essential startup 
code for a rudimentary working model. This initial coding task includes the specifi -
cation of the spatial grid within which the simulations will operate and the creation 
of mobile and stationary agents that comprise the working elements of the model. 
As the project proceeds, much time will be spent alternating between the Procedures 
tab to develop source code and the Interface tab to build the model user interface 
that links custom controls and output display monitors to the source code. The coding 
of new agents or revisions of spatial grid parameters, for example, will make it 
necessary to revisit the Interface tab to add or modify controls for parameter values, 
shapes, or other functionality. 

 Although model building is primarily an exercise in writing and debugging 
NetLogo code, the workfl ow can be surprisingly free-wheeling, almost gamelike. 
The coding of an agent or a new behavior via the Procedures tab may immediately 
propel the modeler back to the Interface tab to create a control or monitor tool for 
the user. NetLogo facilitates not only this sort of extemporaneous development pro-
cedure but also the executing of interim results so the modeler can get immediate 
feedback about his or her work. These characteristics greatly contribute to the 
attractiveness and accessibility of NetLogo to new modelers as they gain confi dence 
and refi ne their models.  

    3.3.2   Coding in NetLogo 

 A comprehensive exposition of the NetLogo language is beyond the scope of this 
chapter. However, the examples provided below will provide the fi rst-time user with 
an accurate sense of NetLogo’s character and accessibility. As indicated previously, 
it is much easier to write agent-based simulation modeling code in NetLogo than in 
conventional general-purpose languages such as C++ or Java. 

 One reason for this ease is that the NetLogo language was expressly designed 
for the specialized purpose of building simple, dynamic, spatially explicit simula-
tion models. The language contains no vocabulary, operators, or rules that do not 
pertain directly to building models, so there is less of it to master. It is powerful but 
economical, with an easy-to-grasp syntax, designed to shield the programmer from 
many of constructs that would have to be created manually in languages that oper-
ate at lower levels. This advantage may be better appreciated when examining the 
entire contents of Procedures tab for the Wolf Sheep Predation model, about half 
of which is shown in Fig.  3.3 . The entire model contains only about 100 lines of 
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source code (excluding programmer comments), many of which are only a handful 
of characters long. 

 Another reason NetLogo is easy to use is that developers have prebuilt many 
elements that any modeler will need on a recurring basis, eliminating the need to 
code them from scratch. Examples include the 2D and 3D grid spaces where simu-
lations are staged. These are built into the programming environment, and their 
characteristics can be easily modifi ed using the Interface tab without resorting to 
manual coding. The same is true of other stock graphical controls and monitors 
previously referred to. All of these would represent substantial manual coding tasks 
if using a general-purpose programming language, but they are ready-made in 
NetLogo so programmers can focus developing the application instead of the lower-
level environment. 

 The accessibility of NetLogo coding skills can readily be seen in the following 
examples. The following three lines of code, extracted from Tutorial #3 in the 
NetLogo User Manual, comprise form a rudimentary setup procedure:

clear-all

create-turtles 100

ask turtles 

[ setxy random-xcor random-ycor ] 

 Each line of the code above is constructed using NetLogo  primitives , which is 
NetLogo’s term for programming elements that are defi ned by the language itself, 
as opposed to procedures that are created through the combination of primitives and 
other elements. Below is an explanation of each line:

    • Clear-all : this is a general-purpose function that calls several other primitives to 
reset all global variables, reset the tick (i.e., time step) count, clear mobile agents, 
patches, plots, etc.  
   • Create-turtles 100 : this line of code creates 100 new turtles, which are the default 
mobile agents in NetLogo.  
   • Ask turtles … : this is a command that “asks” all turtles to execute the list of 
directives that follows inside the square brackets; in this case,  x  and  y  refer to the 
axes of a 2D grid, and [ setxy random-xcor random-ycor ] directs the model to set 
the  xy  coordinate (location) of each individual turtle randomly.    

 The lines above apply commands to each turtle, irrespective of actual  breed  (i.e., 
type). To differentiate mobile agents, we designate separate breeds in the manner 
shown below:

breed [ wolves wolf ]

or
breed [ sheep a-sheep] 
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 To someone new to writing code, a detail of interest is that both a singular and plural 
term must be provided for each breed. For a case such as sheep, in which the singular 
and plural forms are identical in plain English, it is necessary to invent a singular 
term for purposes of writing unambiguous source code (a-sheep, in this case). 

 After differentiation of breeds, we then write code that creates the desired 
numbers of sheep and wolves:

create-wolves 50

create-sheep 100  

 Once the breeds are defi ned, we are able to substitute wolves and sheep (and an 
individual wolf or a-sheep) into any of the commands that govern turtles. 

 The following line uses a built-in command ( ask ) and points to a user-defi ned 
procedure ( move ):

ask wolves [ move ] 

 The user-defi ned procedures are identifi ed by beginning with the word “to”:

      which causes each wolf to rotate (rt) right randomly between 0 and 360°, and 
then move forward (fd) one unit on the grid. Once this procedure is created, the 
model can invoke it whenever it is needed.  

    3.3.3   Ease of Initialization, Compilation, Execution, 
and Error Messaging 

 As noted previously, NetLogo simulations are run from within the NetLogo 
environment using the Interface tab. First, the user  initializes  the model by clicking 
the Setup button. Initialization involves the launch of a user-programmed Setup 
procedure that returns the model to its intended default state prior to running a 
simulation. Next, the user clicks the Go button, which invokes a user-programmed 

to move [

rt random 360

fd 1

]
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procedure that executes all actions intended to occur in a single tick. Typically, this 
Go procedure consists of multiple user-created sub-procedures, and the Go button 
repeats ticks indefi nitely until either the user clicks the button again or a condition 
written into the source code occurs. The compilation and execution processes that 
prepare the model to run happen behind the scenes and require no intervention by 
the user. Section  3.3.4 , below, provides some basic information on running NetLogo 
models independently of the NetLogo environment. 

 Syntax and other coding errors that cause runtime errors during program execu-
tion will interrupt the simulation. NetLogo will highlight the incorrect code and 
display an error description in the Procedures tab. The modeler can then modify the 
program as needed and try to run it again.  

    3.3.4   Techniques for Running Simulation Experiments 

 Once a model is operating as intended, it can be used to run simulation experiments. 
There are several ways to do this. The most direct way to run experiments is for the 
user to actively manipulate the controls on the Interface tab to set up a simulation, 
then click the Run button and observe the model output. 

 The  BehaviorSpace  tool   , which is accessed through the NetLogo Tools menu, 
provides a more sophisticated interface for experimenting with multiple related 
simulations in which parameter values are changed to compare alternate scenarios. 
It also provides a convenient workspace for modifying simulation setup details, stop 
conditions, or other aspects of the model for different experiments, including output 
reporting appearance and format. A powerful feature of BehaviorSpace is its ability 
to take advantage of multiple processors, if they are available on your computer, 
making it possible to run multiple simulation experiments concurrently. 

 Modelers who know how to write scripts can achieve even greater control over 
simulation experiments with BehaviorSpace by running it with Java from script fi les. 
The BehaviorSpace documentation provides easy-to-follow examples that demon-
strate what kinds of tasks this approach is useful for and how to accomplish them. 

 Users who are profi cient in Java can perform even more powerful simulations by 
writing Java code to create experiments that control the NetLogo model directly. 
The NetLogo Controlling Guide, part of the user’s manual, provides substantial 
guidelines for manipulating NetLogo models using Java, including sample Java pro-
grams that can readily be adapted for this purpose.  

    3.3.5   Data Input and Output Capabilities 

 The NetLogo language contains a number of easy-to-use commands for opening, 
reading, and writing to data fi les. The sample model library contains a File Input 
Example and a File Output Example, and others, that demonstrate how input and 
output data fi les can be used in NetLogo models.  
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    3.3.6   Extensibility 

    3.3.6.1   General Procedure 

 The power of NetLogo models may be signifi cantly enhanced through the use of 
 extensions , which are packages of code written in Java or other languages. Extensions 
provide model libraries of new commands, which effectively extend the NetLogo 
language with new capabilities. Extensions are added to individual models by refer-
ence, through the inclusion of the extension keyword in essentially the same way 
that external source code fi les can be incorporated into the basic model.  

    3.3.6.2   GIS Capabilities 

 NetLogo gains its GIS capabilities through a GIS extension that is bundled with the 
installation package. Like other extensions, the GIS extension becomes available to 
any model by including the GIS keyword in brackets after the extensions command 
at the top of the Procedures fi le, as shown below: 

 extensions [ gis ] 

 This extension gives NetLogo a useful set of GIS capabilities. Both vector ( .shp ) 
and raster ( .asc  and  .grd ) fi le formats are supported, as are a variety of projections. 
Once the desired GIS fi les are loaded and mapped to the NetLogo coordinate grid, a 
number of basic GIS functions become available, making it possible to link GIS data 
(spatial and attribute) with NetLogo’s turtles and patches. As is typical, NetLogo doc-
umentation of these functions is exemplary. Also, the bundled GIS sample models 
provide informative, if brief, illustrations of many of these functions. Most of the 
case studies in this book illustrate the power that the NetLogo GIS extension can add 
to simple models.  

    3.3.6.3   Linking to External Software Packages 

 Analysis of data generated by NetLogo models has typically been accomplished by 
using external software such as spreadsheet, statistical, or mathematical applica-
tions to process data exported from the model. Recently, however, software applica-
tions developed by third parties have begun appearing to facilitate direct linking 
between NetLogo and external packages. 

 One product of interest is the NetLogo-R extension (developed by Jan C. Thiele 
and Volker Grimm,   http://netlogo-r-ext.berlios.de    ), which provides automated links 
between NetLogo and the free statistical computing application, R (  http://www. 
r-project.org/    ). This allows for runtime statistical analysis of NetLogo model output. 
Note that none of the examples in this book make use of this extension, but the 
R stats package was used to analyze results generated by the patch valuation model 
documented in Chap.   11    . 

http://netlogo-r-ext.berlios.de
http://www.r-project.org/
http://www.r-project.org/
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 Of interest to users of Wolfram Mathematica (Wolfram Research, Inc., 
Champaign, IL), the NetLogo installation package includes a plug-in called 
MathematicaLink. When installed in Mathematica, this add-on capability 
makes it possible to run NetLogo models from within Mathematica and use 
Mathematica capabilities to analyze and visualize a NetLogo model (Bakshy 
and Wilensky  2007  ) .  

    3.3.6.4   Advanced Development of NetLogo Models 

 A new third-party tool is now available that greatly enhances the potential useful-
ness of NetLogo models. This tool, called ReLogo, provides an easy way to import 
NetLogo models into the Repast Simphony (Repast S) agent-based modeling plat-
form for further development. Repast S, which was developed by Argonne National 
Laboratory for the U.S. Department of Energy (  http://repast.sourceforge.net/repast_
simphony.html    ), is a powerful Java-based platform for developing simulation 
 models both in native Java code and the Java-based Groovy object-oriented 
 programming language. ReLogo was integrated with Repast S 2.0 (beta) in 2010, 
and brings the benefi ts of the NetLogo coding language to the Repast modeler while 
providing access to the powerful features of the Repast environment. 

 ReLogo offers two very important prospective advantages to the greater simula-
tion modeling community. First, it provides a powerful development path for simple 
NetLogo models that show potential for providing deep insight into poorly under-
stood complex systems. ReLogo includes an import capability that translates 
NetLogo models for full functionality and development within Repast S. Second, 
ReLogo makes it easy for Repast S model builders to exploit the simplicity of the 
NetLogo environment for drafting quick working prototypes for the purpose of test-
ing new ideas. Once a NetLogo-based prototype is validated and operational, and 
considered useful, it can then be migrated to Repast S for advanced development 
and integration into “enterprise-level models” (Ozik et al.  2007  ) . Furthermore, the 
Repast platform includes a high-performance computing option that makes it pos-
sible to optimize Repast S models for execution on engineering workstations and 
cluster computers. Therefore, ReLogo offers the potential to capture simple models 
developed by subject matter experts who have little modeling capability and then 
transfer them to expert modelers capable of fl eshing them out into powerful visual-
ization, analytical, and planning tools.      

    3.4   Conclusions 

 As the models in this book demonstrate, NetLogo has been demonstrated many 
times over to be a viable platform for sophisticated model creation. It is a platform 
that is accessible to the subject matter expert who, regardless of the depth or subtlety 
of understanding of simulation modeling, may have little practical background as a 

http://repast.sourceforge.net/repast_simphony.html
http://repast.sourceforge.net/repast_simphony.html
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hands-on programmer of automated models. NetLogo’s ease of use, its well-
designed interface, and its powerful and capable programming language are sup-
ported by outstanding documentation and a highly instructive collection of sample 
models, making it an outstanding tool for anyone who wishes to codify his or her 
expertise to explore the dynamics of a system.      
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       4.1   Background 

 Fort Hood, Texas, is home to rare endemic cave invertebrate species. Although these 
species are not listed under the Endangered Species Act (US Fish and Wildlife 
Service  1994,   2000  ) , they are being carefully studied and managed to avoid listing. 
The at-risk invertebrates at Fort Hood are found in caves that extend across the 
entirety of the karst landscape, although many caves are concentrated in remote 
areas that are not often accessed by people. 

 The caves beneath Fort Hood lack primary producers and roosting bat popula-
tions, a large source of energy input in other cave systems. Therefore, the endangered 
karst invertebrates rely on organic matter vectored into the caves by crickets 
( Ceuthophilus secretus ) (Taylor et al.  2003a  ) . 

 Cricket guano, eggs, and juvenile nymphs are consumed by a number of gastro-
pods (e.g.,  Helicodiscus  spp. and  Mesodon  spp.), carabid beetles ( Rhadine reyesi ), 
and spiders ( Cicurina  spp.), respectively (Taylor et al.  2003a,   b  ) . Thus, cave crickets 
are a keystone resource supplier for the endemic karst communities. 

 These cave crickets also allow for a relatively easy method of measuring cave 
health, without a negative impact on the species of interest. While the endangered 
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species are hard to fi nd, due to their relative lack of numbers and living deep within 
caves,  C. secretus  is populous and leaves the cave each night to forage. 

 However, the cave crickets are now at risk from an exotic species that has invaded 
Fort Hood: the Red Imported Fire Ant (RIFA) ( Solenopsis invicta ), which origi-
nated in South America and fi rst appeared in the USA in the 1930s (Taber  2000  ) . 

 The RIFAs spread quickly and successfully invaded numerous southern states. 
Among these are established colonies in Texas (Cokendolpher and Phillips  1989  )  
that have been found within 15 m of caves in Fort Hood (Elliott  1992  ) . 

 RIFA are aggressive omnivores that have been known to eat millipedes, salaman-
ders, earthworms, and both live and dead cave crickets (Elliott  1992 ; Wojcik et al. 
 2001  ) . This makes them a broad spectrum pest to the management of any endan-
gered invertebrate species within their territory. A number of observational studies 
have documented the potential for detrimental impacts of RIFA on the karst com-
munity. Taylor et al.  (  2003b  )  documented widespread colonization of Fort Hood by 
RIFA, including those areas with caves. 

 Both cave crickets and RIFA are opportunistic omnivores that eat nearly every-
thing except raw plant materials (Campbell  1976 ; Elliott  1992 ; Taber  2000 ; 
Cokendolpher et al.  2001  ) . Thus, interspecifi c competition for resources is likely. In 
addition, RIFA foraging of cricket eggs and nymphs has been observed inside caves 
on Fort Hood (Reddell  2001 ; Taylor et al.  2003a  ) , especially in summer months 
when high temperatures drive RIFA deep into the soil. Elliott  (  1992  )  has observed 
RIFA preying upon live adult crickets, along with many other cave invertebrates. 

 These fi eld studies have motivated the management of fi re ant mounds in the 
vicinity of caves, in order to protect karst invertebrates. However, no model to date 
has investigated the broader impacts of a different management strategy as it affects 
cricket populations and, ultimately, the sustainability of karst communities and fi re 
ant abundances on a landscape scale. We have developed an expedient simulation 
model that provides the ability to track RIFA agents in the form of mounds across a 
spatial and temporal landscape, and to assess the impact of the invasive species on 
the native community.  

    4.2   Objectives 

 The objectives of this model are to incorporate the information from fi eld studies 
into a spatially explicit model of fi re ant and cricket behavior, and to document the 
effectiveness of RIFA management in order to ensure the long-term sustainability of 
karst communities. We hypothesize that the size of cave cricket populations, eradi-
cation of RIFA mounds, and intensity of RIFA within the foraging area of cave 
crickets affect the probability of the destruction of the cave invertebrate populations. 
We expected that the results would help to identify the level of management needed 
for caves of varying size, as well as direct areas of future research. 

 A general objective of this work was to demonstrate how biologists and land man-
agers may quickly develop a simple computer-based model, using location-specifi c 
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data and parameters with public-domain software, that can rapidly simulate the 
impacts of alternate habitat-management strategies. The intent is to illustrate that 
simple, expedient models may be developed by personnel who have no expertise in 
model building, and how those models may add considerable value to land manage-
ment activities. 

 The RIFA model documented here was created for use in the public domain, and it 
may be downloaded from   http://earth.cecer.army.mil/LandSimModel/?q=node/43     at 
no charge for adoption or modifi cation by natural resource managers working in RIFA 
territories. Although this model was developed for karst environments at Fort Hood, it 
can readily be modifi ed to address RIFA management questions at other locations.  

    4.3   Model Description 

    4.3.1   Purpose 

 The specifi c purpose of the model was to understand the potential impact of RIFA 
foraging and raiding on native karst fauna (cave crickets), particularly if fi re ant 
populations continue to grow at rates consistent with the last 50 years. Two goals 
for the model were to provide a tool to help in the assessment of RIFA management 
and to evaluate potential parameters of interest for future fi eld research. Spot 
mound eradication using hot water is a common management technique and will be 
tested in the model over a period of 10 years. The model will also assess various 
parameters (cave-carrying capacity, intrinsic rate of growth, cave raiding by RIFA) 
to understand which parameters cause signifi cant deviance in cave viability, both 
with and without management. This will focus further studies in data acquisition 
for cave managers, and provide a framework for cost-effectiveness of future RIFA 
management.  

    4.3.2   State Variables and Scales 

 Interactions between RIFA, cave crickets, and resources in the environment were 
modeled using NetLogo 4.0.2 (Wilensky  1999  ) . 1  RIFA and crickets are modeled 
as colonies, labeled “Mound” or “Cave,” respectively. Both obtain resources from 
the environment, but only mound colonies reproduce. Resources obtained from the 
environment directly infl uence the number of individuals contained within the 
mound or cave. An overview of interactions within the model is shown in Fig.  4.1 .   

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://earth.cecer.army.mil/SARPVA
http://extras.springer.com
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    4.3.3   Design Concepts 

    4.3.3.1   Colony Invasion 

 RIFA mounds, or colonies, consist of a queen and an array of supporters that carry 
out the various functions of the colony, including foraging, construction, and defense. 
These colonies act as a single organism that reproduces by spawning new colonies in 
new mounds nearby. This process is captured in the model as a seasonal activity.  

    4.3.3.2   Predator–Prey 

 We modeled caves and RIFA mounds, rather than individual crickets and RIFA, as 
agents. This approach dramatically improved modeling speed by reducing the num-
ber of agents from many thousands to several dozen. Mounds were associated with 
a number of RIFA, and caves with a number of crickets. Each agent was associated 
with a foraging distance and where cricket and RIFA foraging overlapped, and 
predator–prey relationships determined changes in cricket populations in caves 
and the associated energy changes to both mounds and caves.  

    4.3.3.3   Energy Networks 

 Figure  4.1  captures the energy exchange network. Crickets gain energy from forag-
ing on the landscape around caves. RIFA forage in the same area but also prey on 
the cricket population.   

  Fig. 4.1    Overview of interactions within model       
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    4.3.4   Initialization and Input 

    4.3.4.1   World Details 

 Satellite map images were downloaded from US Geological Survey (USGS) 
Seamless Server (  http://seamless.usgs.gov    ), and coded with NLCD 2001 Land 
Cover Data. 

 ERDAS IMAGINE (  http://www.erdas.com/    ) was used to convert each pixel into 
one of four colors, each matched to a specifi c type of land cover. Upon importing 
the image into the NetLogo model, the colors were changed for ease of reference 
into the following:

   DARK GRAY = disturbed area (e.g., dirt roads, land development).  • 
  WHITE = grassland.  • 
  BLACK = low density cover (e.g., shrubs and small trees).  • 
  LIGHT GRAY = high density cover (e.g., high density trees).    • 

 Each pixel coded represents a 10 × 10 m plot of land. The fi nished world view 
can be seen in Fig.  4.2 . Within the model’s world, there are intermittent areas of 
high and low cover, along with diagonal streaks of disturbance that may have 
resulted from vehicle movement, the collapse of trees, or human activity. In the 
lower left corner of the model’s world is a streak of disturbance. This is the starting 
point for the introduction of mounds. From here, three mounds are introduced and 
will propagate across the landscape test location as detailed below.   

  Fig. 4.2    World view of NetLogo model area shown as imported and coded LCID image.  Dark 
gray  disturbed area (e.g., dirt roads, land development);  white  grassland;  black  low density cover 
(e.g., shrubs and small trees);  light gray  high density cover (e.g., high density trees)       

 

http://seamless.usgs.gov
http://www.erdas.com/
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    4.3.4.2   Resources 

 Each imported pixel is represented in NetLogo by a  patch  and assigned a maximum-
energy variable based on the specifi c land type. To simulate replenishment of 
resources from infl ux of prey species, growth of edible plant matter, etc., the avail-
able energy of each patch has a 20% chance of increasing during each week, up to 
its maximum-energy variable. This prevents the caves and mounds from depleting 
their resources and dying off, and creates a more realistic setting of use and growth 
of resources. Caves and mounds will attain a stable carrying capacity based on the 
local resources available, and the resource replenishment within their respective 
foraging range.   

    4.3.5   Submodels 

    4.3.5.1   Cave Crickets 

  Cave stabilization . Within the model, the caves are given a period of time without 
competing with mounds, or being preyed upon by mounds. This is to allow for each 
cave to reach a stable population size comparable to that found in the wild. It takes 
approximately 5–10 years for the cricket population to stabilize, without any fi re 
ants present. (The model allows for 10 years to pass before the introduction of 
mounds). 

  Foraging range . Caves rely on foraging crickets to bring in bioenergy. The mini-
mum and maximum range for crickets’ foraging distance from the cave is 30 and 
100 m, respectively (Taylor et al.  2003a  ) . Caves with larger populations of crickets 
have a greater range. Below 30 m from the cave, cricket density during foraging is 
uniform. At greater ranges (up to 100 m), the density of crickets drops, ultimately 
reaching a density of no crickets at 100 m. 

 Since the movements of individual crickets are not tracked in this model, this 
function of cricket density allows for the reduction of available energy to the crick-
ets—the further the patch from the cave, the less energy will be gathered, due to 
lower cricket density. This simulates both the decreased number of crickets at 
distant ranges from caves as well as the reduced energy consumption at the further 
ranges, due to more energy being expended while retrieving nutrients farther from 
the cave. 

  Birth and death . Cricket populations were determined using the Verhulst equation, 
with varying carrying capacity used to simulate the different sizes of caves at Fort 
Hood. The intrinsic rate of growth was determined to be within the range of closely 
related cricket species, and below that of the faster-reproducing RIFA. 

 The equation also included a sensitivity to the surrounding conditions, where the 
impact of decreases in available energy could vary. Within the formula used, a lower 
number indicated a high sensitivity to available resources.  
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    4.3.5.2   RIFA Model 

  Mound foraging range . The RIFA mound sub-model’s foraging code is virtually 
identical to the cave sub-model, due to the similar energy fl ow. For a RIFA mound, a 
large percentage of the adult ants are foragers, and leave the mound to gather energy. 
Their success in bringing in energy means the population of the mound increases, 
reaching a maximum-carrying capacity of 250,000 ants (Markin et al.  1974  ) . Since 
RIFA are observed to be more aggressive, more cooperative and more numerous in 
their foraging than crickets, RIFA will usually gain more energy from the same 
source when mounds and caves simultaneously forage the same patch of resources. 

 Mounds will also diminish the available resources in a patch during each week 
before the caves are able to forage. This is also due to the greater aggression of 
RIFA over the crickets, as areas that have RIFA show a decrease in crickets numbers 
(Taylor et al.  2003a  ) . It is believed that the presence of RIFA discourages cricket 
foraging as they attempt to avoid predation. RIFA also forage during both day and 
night, but are more dependent on temperature than time of the day. By contrast, cave 
crickets forage only at night. 

  Mound propagation . RIFA typically propagate during mean daily temperatures over 
69°F but below 89°F (Tana  2002  ) , and with high humidity or rain present. By map-
ping the weekly mean temperatures together with average rainfall and humidity, we 
can designate propagation seasons for RIFA (spring and fall in this model). The prop-
agation seasons cause the spread of RIFA across the landscape and higher foraging 
activity, since late propagation requires enormous energy. Propagation is a high-risk 
activity for RIFA; only 2% of new starts typically result in a successful new mound. 

 Three factors affect the success of mound establishment: (1) new mounds 
participating in intraspecifi c mound raids, (2) new mounds having enough energy 
resources nearby without high competition, and (3) new mounds being more 
successful in disturbed areas. 

 To simulate these conditions within the model, new mounds followed three sets 
of rules: (1) If multiple new mounds are established on the same patch, they will 
form into one mound, simulating mounds performing raids in which the losing 
mounds’ workers are absorbed by the winning mounds. (2) New mounds will not be 
able to establish on the same plot as old mounds. (3) New mounds will be more 
likely to establish on disturbed areas. 

  Mound raiding . Caves at Fort Hood are periodically raided by RIFA. This typically 
occurs in the summer months when RIFA stay underground to avoid the heat 
(Taylor et al.  2003a  ) . To simulate this within the model, caves within the foraging 
range of a mound were given a 20% chance of being raided each week during the 
summer season. 

 Also within the model, caves that are raided lose 100 crickets. This number was 
chosen as a conservative estimate of the raiding that typically occurs close to the 
entrance of a cave, or the Twilight Zone, though it is possible that additional raiding 
occurs in remote regions not accessible by humans (Taylor et al.  2003a  ) . 
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  Mound management . One common method employed to exterminate RIFA is the 
injection of boiling water deep into the mounds. Within the model, management of 
mounds simulated a yearly hot water treatment of RIFA mounds within the foraging 
radius of caves. 

 When enabled, each year mounds within the foraging radius of a cave would have 
a 60% chance of being killed. This is because injecting hot water into the mounds 
has a 60% success rate, which follows observed data (Nature Conservancy  2000  ) , 
and allows for reduced, though still present, impact on the caves by mounds.    

    4.4   Simulation Experiments 

 Results were analyzed using the general linear model software from the SAS com-
pany (  http://www.sas.com    ). Because the random effect for caves was not signifi -
cant, no random effect was fi t to the model. The Tukey–Kramer procedure for 
analyzing unequal pair-like comparisons was used to adjust for multiple compari-
sons. No outliers were present, and all runs under all parameters were used. 

 Most main effect and combined effect parameters within the model were statisti-
cally signifi cant. This shows that the presence of RIFA signifi cantly impacts cricket 
populations at all cave levels ( p  = 1.000). The parameters are also useful in under-
standing that RIFA signifi cantly impacted crickets, whether or not raiding was 
turned on, as this could possibly be a point of contention (see Sect.  4.5 ). 

 However, when too much data are considered signifi cant, it runs the risk of being 
meaningless. We mitigated this risk with two further steps. The fi rst step was to 
account for what was not statistically signifi cant. Establishing those parameters 
allowed us to understand when no change needs to occur in order to protect cricket 
populations between situations. These parameters also allowed us to check for 
model reliability, by comparing situations that should not be signifi cantly different. 
The second step was to identify select cases of importance, such as complete cave 
loss, and large patterns that are not illuminated by the statistical analysis. The fol-
lowing paragraphs describe these steps in detail. 

    4.4.1   Model Validation 

 To check for model reliability, we examined the situations where management tech-
niques were applied, both with and without RIFA present. With no RIFA present, 
management techniques should not cause any change in the average number of 
crickets. This was confi rmed by our results: average number without RIFA, 
management on = 91.8%; management off = 91.8%;  p  = 1.000. 

 However, all other conditions with RIFA being present, whether raiding was turned 
on or off, and whether management was turned on or off, were highly signifi cant from 

http://www.sas.com
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each other ( p  < 0.0001). This is evidence that management techniques within the 
model were affecting cricket populations through reduction of RIFA, and not an 
unknown error in the coding. 

 Within any setting of sensitivity to resources, the caves with a  K  = 1,000 were 
consistently at a disadvantage to caves with a  K  = 5,000–10,000 (Fig.  4.3 ).  

 Caves with a  K  = 5,000–10,000 did not have statistically signifi cant differences in 
their average population across all levels of sensitivity ( p  = 0.9533, 0.7179, 0.2905, 
and 0.3259 for sensitivity; 0.1, 0.2, 0.02, and 0.05 for respectivity). However, caves 
with a  K  = 1,000 crickets saw signifi cantly fewer percentage of those crickets 
survive, though the general trend followed that of the caves with a higher  K  value. 
Sensitivity appears not to affect caves severely when they have a  K  = 5,000 or higher, 
but caves with a  K  = 1,000 appear to be impacted greatly by sensitivity. 

 Concerning the overall average number of crickets, caves that had a  K  = 1,000 
were signifi cantly different from caves that had 5,000–10,000 crickets ( p  < 0.0001). 
While caves that had 5,000–10,000 crickets were signifi cantly different from each 
other ( p  = 0.0002), the averages were close enough (81.4 and 82.4%, respectively) 
that this signifi cance can be attributed more to the large sample size than to an effect 
between caves that needs to be accounted for with management procedures. 

  Fig. 4.3    Effect of sensitivity on average level of percent of crickets when RIFA is present       
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 At the most robust sensitivity level (0.2), the presence of RIFA does not 
significantly affect the number of crickets when they are not raiding caves 
( p  = 0.9205). Nor is there a signifi cant change from these if the sensitivity is dropped 
to 0.1, so long as RIFA are no longer present ( p  = 1.000 when compared to sensitiv-
ity 0.2 and no RIFA present, and  p  = 0.9899 when compared to sensitivity 0.2 and 
RIFA present, but not raiding caves). 

 Raiding caves plays a role in differentiating the large and small caves. If RIFA 
are present and raiding, they impact cave populations at all cave sizes ( p  = 1.000); 
however, there is no difference between how they impact cave sizes when raiding is 
turned off ( p  = 1.000). Once raiding is turned on, the number of cave crickets signifi -
cantly drop at all cave sizes ( p  < 0.0001). 

 Cave sizes have been seen to ameliorate some of the effects of RIFA. Management 
signifi cantly increases the level of crickets at all cave sizes ( p  < 0.0001). However, 
in some cases the same result can be seen through an increase in cave size. To 
elaborate, the average number of crickets in the smallest cave ( k  = 1,000), when 
management is turned on, is not signifi cantly different than the next largest cave 
( k  = 5,000), when the larger cave does not have management ( p  = 1.000). 

 Management can also be seen to decrease the number of crickets lost in two 
larger caves. When management is applied, there is no signifi cant difference between 
caves of  K  = 5,0000 or  K  = 10,000 ( p  = 0.5286). Without management, these two 
cave sizes are signifi cantly different ( p  = 0.0004), though not as much as is normally 
seen. As their average population sizes are decreased by less than 2% (80.5 and 
79%, for the 10,000 and 5,000 K caves, respectively), this can again be attributed to 
the large number of runs rather than a decrease that warrants concern.  

    4.4.2   Hypothesis Testing 

 If no RIFA were introduced, caves continued to stay at, or close to, their  K  value. 
However, if mounds were introduced, caves showed a decrease in the number of 
crickets they held. This decrease led to the loss of entire caves in nine separate con-
ditions, as shown in Table  4.1 . Several other conditions showed a severe decrease in 
cricket population, but those decreases did not result in complete population loss in 
any of the four caves in each simulation.  

 Table  4.1  is sorted by the average number of caves that lost all crickets. The aver-
age numbers of caves (out of four in each simulation) that “died” are listed, along with 
the standard deviation for each design. With one exception, each loss happened to a 
cave with the lowest maximum carrying capacity. The exception had the next-highest 
carrying capacity, and the maximum level of sensitivity to resources, with ants pres-
ent and raiding, and no hot water management of the ants. All possible designs that 
included small caves with raiding ants experienced some cave loss. This result sug-
gests that smaller caves are more at risk to species loss than caves with large carrying 
capacity, particularly if the ants use the caves directly for resources as opposed to only 
competing for outside foods. It also shows that a moderate level of management for 
the ants may not be suffi cient to prevent species loss in smaller caves, as management 
reduced but did not eliminate complete cricket loss from smaller caves. 
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   Table 4.1    Conditions leading to loss of all crickets   

 Sensitivity  Max crickets  Raiding  Management  Ants  AveDead  StDevDead 

 0.02  1,000  TRUE  FALSE  TRUE  2.323  0.979 
 0.05  1,000  TRUE  FALSE  TRUE  1.839  1.003 
 0.2  1,000  TRUE  FALSE  TRUE  1.821  0.983 
 0.1  1,000  TRUE  FALSE  TRUE  1.643  1.096 
 0.02  1,000  TRUE  TRUE  TRUE  0.774  0.845 
 0.2  1,000  TRUE  TRUE  TRUE  0.143  0.356 
 0.02  5,000  TRUE  FALSE  TRUE  0.097  0.301 
 0.1  1,000  TRUE  TRUE  TRUE  0.071  0.262 
 0.05  1,000  TRUE  TRUE  TRUE  0.065  0.250 

 Of the nine conditions that lost the most caves, eight had a  K  = 1,000 crickets. 
This accounted for every condition that had a  K  = 1,000 crickets, with ants present, 
and raiding turned on. Sensitivity and management implementation had an effect on 
the average number of caves that lost all crickets—with sensitivity effects having 
priority over management effects. But, all conditions with  K  = 1,000, and ants 
performing raids, had at least some where there was a total loss of crickets. 

 Caves showed a marked reduction in losses when management was turned on, 
from 1.643 to 0.774. This is despite the fi nding that the condition having the “worst” 
sensitivity setting did better, while the condition having the “best” sensitivity setting 
for caves lost over 1.5 caves, on average. 

 The only condition to experience complete cricket loss, other than the above-
mentioned trend of caves with a  K  = 1,000, was a single condition that included a 
 K  = 5,000. This condition also included the “worst” case scenarios for the caves: 
high sensitivity, ants present, raiding turned on, and management turned off. 
However, this condition only lost, on average, 0.097 caves out of four. Likewise, the 
average number of crickets in caves under this condition was 1,801. Also, no other 
conditions that included a  K  = 5,000 lost any crickets. 

 Similarly, no caves with a  K  = 10,000 crickets experienced complete loss of 
crickets. However, the lowest number of crickets for a cave with a  K  = 10,000 was 
4,045. This is a reduction of over half the maximum crickets, though not a reduction 
that places the cave at a severe risk of cricket loss. 

 Large reductions are not uncommon for larger caves, though. While the smaller 
caves were the most likely to have lost all crickets, caves with a  K  = 10,000 made up 
a signifi cant portion of those caves that had a severe reduction in the percent of 
crickets remaining at the end of the trials (shown in Table  4.1 ). Larger cave popula-
tions are still highly impacted by RIFA activity, with several populations losing over 
half of their maximum capacity. 

 However, these larger caves stabilize at those reduced populations, whereas the 
smaller caves cannot support such large reductions. While the largest caves lost over 
half their populations in some cases, none was completely wiped out. Bottlenecking 
of the population gene pool may be a problem for larger caves, but loss of popula-
tion is not as much a problem for the largest caves as it is for the smallest caves. 
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 While reduction relative to  K  is widespread across all levels of  K , those with the 
fewest absolute number of average crickets are the caves with a  K  = 1,000. 

 Surprisingly, though, the correlation between the average cricket numbers and 
the number of caves lost is only −0.504 (correlation only for the 35 smallest caves). 
The average number of crickets is not tightly proportional to the number of caves 
lost, and there are even several conditions with lower average cricket numbers and 
no caves lost than some conditions with caves lost (Table  4.2 ).  

   Table 4.2    Simulation results sorted by the percent of surviving crickets   

 Sensitivity  Max crickets  PercentMax  Raiding  Management  Ants 

 0.02  1,000  0.186314 52  TRUE  FALSE  TRUE 
 0.05  1,000  0.32076613  TRUE  FALSE  TRUE 
 0.02  1,000  0.33295161  TRUE  TRUE  TRUE 
 0.02  5,000  0.3602129  TRUE  FALSE  TRUE 
 0.02  10,000  0.40452903  TRUE  FALSE  TRUE 
 0.2  1,000  0.41138393  TRUE  FALSE  TRUE 
 0.02  5,000  0.43519516  FALSE  FALSE  TRUE 
 0.02  10,000  0.43715  FALSE  FALSE  TRUE 
 0.02  1,000  0.43952419  FALSE  FALSE  TRUE 
 0.1  1,000  0.4429375  TRUE  FALSE  TRUE 
 0.02  5,000  0.44355484  TRUE  TRUE  TRUE 
 0.02  10,000  0.47659435  TRUE  TRUE  TRUE 
 0.02  1,000  0.48024194  FALSE  TRUE  TRUE 
 0.02  10,000  0.48645806  FALSE  TRUE  TRUE 
 0.02  5,000  0.48657097  FALSE  TRUE  TRUE 
 0.05  1,000  0.65820161  TRUE  TRUE  TRUE 
 0.05  5,000  0.66205968  TRUE  FALSE  TRUE 
 0.05  10,000  0.71096129  TRUE  FALSE  TRUE 
 0.02  1,000  0.71609375  FALSE  FALSE  FALSE 
 0.02  5,000  0.71629375  TRUE  FALSE  FALSE 
 0.02  5,000  0.71637188  FALSE  TRUE  FALSE 
 0.02  1,000  0.71645313  TRUE  FALSE  FALSE 
 0.02  5,000  0.7164625  FALSE  FALSE  FALSE 
 0.02  10,000  0.71648047  TRUE  TRUE  FALSE 
 0.02  10,000  0.71656875  FALSE  FALSE  FALSE 
 0.02  10,000  0.71663203  TRUE  FALSE  FALSE 
 0.02  5,000  0.71667188  TRUE  TRUE  FALSE 
 0.02  10,000  0.71667656  FALSE  TRUE  FALSE 
 0.02  1,000  0.716875  FALSE  TRUE  FALSE 
 0.02  1,000  0.71692188  TRUE  TRUE  FALSE 
 0.05  5,000  0.73736452  FALSE  FALSE  TRUE 
 0.05  10,000  0.75688917  FALSE  FALSE  TRUE 
 0.05  1,000  0.75910484  FALSE  FALSE  TRUE 
 0.05  5,000  0.77403065  TRUE  TRUE  TRUE 
 0.05  10,000  0.78235484  TRUE  TRUE  TRUE 
 0.05  1,000  0.79287097  FALSE  TRUE  TRUE 
 0.05  5,000  0.79536452  FALSE  TRUE  TRUE 
 0.05  10,000  0.79562581  FALSE  TRUE  TRUE 



554 A Simulation Model of Fire Ant Competition…

 The average number of crickets indicates a cave that is at risk of complete cricket 
loss, but not defi nitively. At 500 or fewer average crickets, there is likely to be a loss 
of at least one cave. At average cricket populations of 2,000 or fewer, cave loss is 
still possible, though far less likely. 

 While the presence or absence of RIFA is the main contributing factor to the 
overall percentage of crickets that survive, the sensitivity to resources plays a larger 
role than either the presence or absence of hot water management of the RIFA 
mounds, RIFA’s ability to raid caves, or the absolute carrying capacity of the cave. 
For caves within the foraging radius of RIFA, the robustness of cricket populations 
to fl uctuations of resource availability is a key factor that requires further data 
collection and analysis. 

 At any cave size, management of mounds was able to alleviate the decrease in 
crickets caused by RIFA activity. However, for caves of  K  = 1,000, management was 
seen to play a much larger role, with the average population size increasing by 
almost 20% of its maximum (see Fig.  4.4 ).  

 While larger caves do appear to be infl uenced by yearly hot water treatment of 
surrounding RIFA mounds, this indicates that smaller caves may be the most cost-
effective place to provide RIFA management. This is especially true since the lower 
average number of crickets present in caves (where  K  = 1,000 when no management 
is present), is due in part to the relatively large number of caves that have lost all 
their crickets when no management was applied. 

  Fig. 4.4    Effect of management on average level of percent of crickets when RIFA is present       
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 With management, the largest average number of caves lost was 0.774, but 
without management, the largest average number lost was 2.323, as was shown in 
Table  4.1 .   

    4.5   Discussion 

 RIFA are known to be a danger to cave communities (Taylor et al.  2003b  ) . With the 
RIFA invasion of Fort Hood, Texas (Elliott  1992  ) , cave-dwelling species listed 
under the Endangered Species Act (USFWS  1994,   2000  )  are being threatened. The 
cave cricket simulation model shows that not all caves will be impacted uniformly 
by RIFA, but additional information about the robustness of cricket populations is 
needed to understand the scope of impact. 

 In the simulation model, fi ve factors infl uenced cave cricket survivorship:

    1.    Presence or absence of RIFA.  
    2.    Whether or not RIFA raided caves.  
    3.     K  of the cave, which can be correlated in natural populations to overall cave size 

and abundance of surrounding resources.  
    4.    Sensitivity of cricket populations to fl uctuations in resource availability.  
    5.    Presence or absence of the hot water treatment performed on caves within the 

foraging radius of crickets.     

 The model confi rmed that RIFA can have a negative impact on cave cricket pop-
ulations. While this impact varies in severity across many scenarios, it caused 
complete cave loss a signifi cant number of times. Even without complete cave loss, 
the sharp decline in the population of cave crickets causes a reduction in their gene 
pool. Even the largest caves examined sometimes lost more than half their cricket 
populations. Because the model showed that RIFA can seriously impact cave cricket 
populations even without raiding activity, RIFA management is needed even when 
raiding is found to be moderate compared with expectations. 

 However, in a signifi cant number of simulations, raiding did play an important 
role in complete cave loss. As noted above, a conservative estimate was assumed for 
cave cricket loss to RIFA during raiding because the exact number is not known due 
to diffi culties in tracking RIFA raids. If that estimate is too low, then raiding could 
account for a signifi cant portion of the RIFA problem, and management techniques 
that specifi cally target raiding would have to be devised. The most important point 
to remember is that the model shows RIFA impacting cave communities even when 
raiding ceases. 

 The RIFA model showed that cave size is a major factor in the loss of caves. 
Despite caves of all sizes having their average percent of the population lowered, 
the caves with a  K  = 1,000 crickets were the most at risk for complete loss. This may 
occur through the lowering of the absolute cricket populations, at which point, either 
raiding or lack of resources may be the fi nal stress that removes all crickets. 

 For purposes of predicting total cave loss, the number of crickets within a cave 
(once it has stabilized to a RIFA invasion) is far more important than the number of 
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crickets the cave can hold. However, smaller caves are still important; the 32 caves 
with the lowest number of average crickets all had a  K  = 1,000, while there was a 
condition in which caves starting at  K  = 5,000 experienced signifi cant loss. 

 However, the average number of crickets left at the end of a simulation was not 
a direct indicator of cave loss. The eight conditions in which the caves had a 
 K  = 1,000 and experienced cave loss were not the eight caves with the lowest aver-
age number of crickets (Table  4.3 ). These caves, and their relative number of com-
plete losses, suggest that the caves be narrowed down to two groups: those that may 
experience cave loss and those that are at high risk for cave loss.  

   Table 4.3    Simulation results sorted by the average number of crickets left at the end of the trial   

 Sensitivity  Max crickets  Ave crickets  Ave cave lost  Percent of max 

 0.02  1,000  186.3145161  2.322580645  0.186314516 
 0.05  1,000  320.766129  1.838709677  0.320766129 
 0.02  1,000  332.9516129  0.774193548  0.332951613 
 0.2  1,000  411.3839286  1.821428571  0.411383929 
 0.02  1,000  439.5241935  0  0.439524194 
 0.1  1,000  442.9375  1.642857143  0.4429375 
 0.02  1,000  480.2419355  0  0.480241935 
 0.05  1,000  658.2016129  0.064516129  0.658201613 
 0.02  1,000  716.09375  0  0.71609375 
 0.02  1,000  716.453125  0  0.716453125 
 0.02  1,000  716.875  0  0.716875 
 0.02  1,000  716.921875  0  0.716921875 
 0.05  1,000  759.1048387  0  0.759104839 
 0.05  1,000  792.8709677  0  0.792870968 
 0.2  1,000  826.6696429  0.142857143  0.826669643 
 0.1  1,000  857.9196429  0.071428571  0.857919643 
 0.1  1,000  918.2678571  0  0.918267857 
 0.1  1,000  950.4375  0  0.9504375 
 0.05  1,000  957.1875  0  0.9571875 
 0.05  1,000  957.25  0  0.95725 
 0.05  1,000  957.2578125  0  0.957257813 
 0.05  1,000  957.265625  0  0.957265625 
 0.2  1,000  987.6160714  0  0.987616071 
 0.2  1,000  995.4732143  0  0.995473214 
 0.1  1,000  998  0  0.998 
 0.1  1,000  998  0  0.998 
 0.1  1,000  998  0  0.998 
 0.1  1,000  998  0  0.998 
 0.2  1,000  1,000  0  1 
 0.2  1,000  1,000  0  1 
 0.2  1,000  1,000  0  1 
 0.2  1,000  1,000  0  1 
 0.02  5,000  1801.064516  0.096774194  0.360212903 
 0.02  5,000  2175.975806  0  0.435195161 
 0.02  5,000  2217.774194  0  0.443554839 
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 While complete cricket loss is slightly correlated to average number of crickets 
( r  = −0.504, indicating that as the average number of crickets increases the likeli-
hood of cave loss decreases), there are many conditions with no cave loss that result 
in fewer average crickets than some conditions with some cave loss. A lower aver-
age number of crickets puts caves at risk for complete cricket loss, but is not an 
absolute indicator that caves will be lost. 

 Caves with a population averaging below 500, when RIFA are present, can be 
considered at high risk for cave loss. Caves under these conditions often experi-
enced complete loss of crickets, with over fi ve out of seven conditions resulting in 
complete loss of crickets. This loss occurs regardless of the sensitivity crickets have 
to their resources, or if RIFA are directly raiding the caves, or whether management 
techniques are in place (although management can be seen to reduce the number of 
caves lost). 

 Conditions where the caves have an average population of more than 500 crick-
ets still show same caves loss, though it drops off drastically, with 0.14 average 
caves lost being the largest number of caves that lose all crickets. However, there are 
still possible losses of caves all the way to those having an average population of 
2,000 crickets. Despite a relatively robust level of survivorship, these caves also 
appear to be at risk of cricket loss from RIFA. 

 While RIFA also appeared to impact the caves that have larger cricket populations, 
in some cases lowering their populations to 40% of their  K , those caves appeared to 
settle at a lower new population without risk of complete cricket loss. Therefore, 
efforts to reduce RIFA foraging close to those caves may not be cost-effective for 
conserving the endangered species within the cave ecosystems on Fort Hood. 

 Conversely, smaller caves appear to be impacted greatly and are in need of at 
least yearly hot water treatments to surrounding RIFA mounds. In many cases, even 
this treatment may not be enough, and more aggressive management measures may 
be needed. 

 Sensitivity to surrounding resources was also a factor in the survivorship of cave 
cricket populations. Unfortunately, it is not known how sensitive crickets are to 
fl uctuations in resource availability, and this is not a factor that can be controlled for 
as can controlling for population size. Suffi cient information is not available to 
understand how cricket populations fl uctuate with resource availability and the 
degree to which resource availability is changed by the addition of RIFA. Until this 
is known, management techniques need to be aggressively applied to all Fort Hood 
caves with small cricket populations, and at least yearly spot treatment performed 
for caves with moderate cricket populations. 

 The results of the cave cricket simulations suggest two courses of action. First, 
they point to the need for fi eld research on how cave crickets respond to changes in 
food availability. This information is needed because it helps to determine which 
caves need to be protected from RIFA, and how aggressively. Depending on cricket 
sensitivity to food availability, it may be found that some caves need no protection 
while additional caves need to be managed. Second, the model shows us potential 
impacts of RIFA on cave communities, operating through their impact on cave 
crickets, which demands immediate management to prevent species loss. 
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 The simulations have shown that a simple hot water treatment can effectively 
reduce loss of species in most caves and also that more aggressive treatment is 
needed for smaller caves until more is known about how cricket populations react 
to changes in resources. At that time, we may fi nd that hot water treatment is still 
effective or that more management is needed to protect endangered karst 
invertebrates. 

 This discussion highlights some of the limitations of out RIFA model. While 
some parameters were accounted for through multiple iterations that assigned dif-
ferent values (sensitivity to resources being one of these), others had to be estimated 
to simplify the model enough that it could be run. Among these, and related to sen-
sitivity, is the question of how quickly resources are depleted by each species. 

 Resource limitations can be assumed to play a role in regulating population size, 
but it is not known how resources are depleted. Neither is it known how fast 
resources are replenished through new growth, the infl ux of new prey species, or 
other means. It is also likely that the rate of replenishment will change on a seasonal 
basis. Future versions of the RIFA model should account for various rates of growth 
during each season. 

 The overall populations of RIFA mounds may vary with the season. There has 
been evidence that RIFA populations reach their maximum numbers in midwinter, 
their maximum biomass in the spring, and declined to a minimum population in 
midsummer (Tschinkel  1993  ) . However, it can be diffi cult to track exact numbers of 
RIFA if they are foraging more underground to avoid the summer heat, or if they are 
part of polygyne communities with multiple queens sharing control over a single 
colony with multiple mounds. 

 To simplify control methods, this model incorporated the most common method 
for exterminating RIFA, i.e., hot water treatment. Other options are available, how-
ever, including pesticides, poison bait and the imported phorid fl y. While each of 
these options poses its own risk, all have been used to some degree, and it would be 
benefi cial to understand the impacts of these methods on karst fauna. 

 One problem with all management interventions is the method of application. 
Most areas needing management are not easily accessible by humans. Bringing in 
equipment to control RIFA carries the risk of creating habitat disturbances that 
can actually facilitate RIFA colonization. For example, conveying boiling water to 
RIFA mounds requires a truck with a large enough bed to hold a boiler, hoses, and 
ancillary equipment. Driving to a treatment area and around each mound can 
uproot vegetation and soil, providing new routes for RIFA to more easily access 
the site and potentially colonize the entire area around the cave. Obviously, then, 
hot water treatment equipment can potentially be a very counterproductive way to 
approach the preservation of endangered kvarst invertebrates. To better under-
stand the disturbance mechanisms and impacts of applying hot water to mounds, 
future versions of the RIFA model will include the capability of creating distur-
bances at a set point in relation to the caves and surrounding region during each 
treatment session.  
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    4.6   Conclusions and Recommendations 

    4.6.1   Conclusions 

 This chapter describes the development of a simple computer simulation model that 
has served us as a cost-effective decision support tool for the proactive management 
of karst environments hosting species at risk of predation by RIFA. This model 
captures the expert knowledge of natural resources personnel and combines it with 
data from fi eld studies and GIS information to create a spatially explicit model of 
RIFA behavior and its impact on cave cricket populations. The model was devel-
oped using the public domain NetLogo modeling environment, and did not require 
the intervention of a computer programmer. Ecologists and biologists need no com-
puter expertise to develop NetLogo models, and the results are transparent enough 
to be understood by other technical peers with no computer expertise. 

 While providing valuable, actionable insights into karst population vulnerability 
to RIFA predation as related to cricket population sizes, cave sizes, and RIFA activi-
ties, the model is currently limited by several gaps in knowledge about the subject 
ecosystem. Three key gaps are as follows:

    1.    The impact of RIFA invasions on resource availability to cricket populations. 
Filling this gap would require fi eld research to document the amount of pertinent 
resources depleted from the environment over a set time and how fast they are 
replenished, as well as the degree to which the presence of RIFA discourages 
cave crickets from foraging in the same area.  

    2.    The impact of food variation on cricket populations. In order to better understand 
this dynamic, fi eld research is needed to quantify the relation between a given 
decrease in food availability and the resulting decrease in cave cricket popula-
tion. Combined with new fi eld data about RIFA impact on resource availability, 
this information will provide a basis for the simulation model to quantify the 
indirect impact of RIFA on cave crickets.  

    3.    The extent of RIFA raiding in Fort Hood caves. Field documentation would be 
diffi cult because many cave entrances are too small for direct human access. 
Although current simulations indicate that raiding is not a strong factor in 
decreasing the average number of crickets in a cave, raiding did play a strong 
role where entire cricket populations were lost. One possible interpretation is 
that RIFA raiding may provide the “fi nal blow” in eliminating cricket popula-
tions that have been suffi ciently stressed through other mechanisms, but fi eld 
research would be necessary to supply data that the model needs to test that 
hypothesis.     

 These identifi ed gaps pertain specifi cally to the Fort Hood cave environment. 
They may or may not represent information gaps that would be relevant to enhanc-
ing the RIFA model for application at other locations. The general point is that the 
NetLogo cave cricket model may be extended with additional site-specifi c data to 
improve the realism of its simulations.  
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    4.6.2   Recommendations 

 Based on our interpretation of simulation results, we were able to offer the following 
recommendations about RIFA management to Fort Hood personnel.

    1.    Cave ecosystems that rely on cave cricket populations need to be identifi ed and 
assessed. The locations of these caves and the types of surrounding environment 
(e.g., disturbed or not, relative abundance of resources) need to be recorded, 
along with recording the population of crickets within the cave, and the presence 
or absence of RIFA.  

    2.    Caves that have RIFA present will need management at different levels, depending 
on the cricket population present.  

    3.    Caves with a population of 500 or fewer crickets need immediate protection. All 
surrounding RIFA mounds should be treated with hot water, and treatment should 
continue regularly on any new RIFA mounds that appear. The caves should be 
monitored to assess the health of the cricket population.  

    4.    Caves with a population of 2,000 crickets and the presence of RIFA should have 
their RIFA mounds treated with hot water on a yearly basis, at minimum.  

    5.    Caves with a population of 1,000 crickets, but that do not yet have RIFA present, 
need to be monitored closely to see if any RIFA invade the habitat. If RIFA 
invade, they need to be managed on a yearly basis while watching cricket popula-
tions to see if more management is required.  

    6.    Caves that have a population of 5,000 crickets, with no RIFA present, should be 
inspected on a yearly basis to see if RIFA invade, and, if so, how the population 
is affected.           
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    5.1   Background 

 The striped newt ( Notophthalmus perstriatus ) is a rare salamander species occurring 
only in southern Georgia and northern Florida. The newt breeds only in temporary 
ponds, which can remain dry over many years, within upland sandhill habitats 
(Dodd  1993  ) . It has a complex life cycle that involves aquatic egg and larval stages, 
terrestrial juvenile eft and adult forms, and a neotenic aquatic adult (Johnson  2002  ) . 
Due to land development in the newt’s home range, the species is currently restricted 
to a few locales that contain much of the remaining suitable habitat. Military instal-
lations, including Fort Stewart in southeastern Georgia, contain newt populations. 
It is believed that long-term droughts threaten the newt, which only breeds success-
fully when suffi cient water is present in breeding ponds (Dodd  1993  ) . Climate 
change and continuing habitat disturbance and fragmentation, including more 
intense use of bases for military training, further threaten the striped newt. As a 
result of these factors, the US Fish and Wildlife Service is considering listing the 
species as endangered. Endangered status would be especially costly to military 
installations because it would require curtailing training and other land uses around 
breeding sites. Conservation of striped newt populations is thus a high priority for 
base staff. 

 Few detailed studies of striped newt ecology have been performed (Johnson 
 2002  ) . The co-generic red-spotted newt ( Notophthalmus viridescens ), however, has 
been studied throughout the eastern United States. The conservation priority of the 
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striped newt means that more information is urgently needed both to inform future 
studies and to guide management and restoration. This study aims to address this 
gap by using spatially explicit, agent-based modeling to synthesize existing infor-
mation on the striped newt and red-spotted newt and to identify priority variables 
for research and management. 

 Few systematic ecological studies of the striped newt have been undertaken. The 
several available studies of the newt’s basic life history provide a rudimentary pic-
ture of its seasonal movement and habitat use (Dodd  1993,   1997 ; Dodd and Johnson 
 2007 ; Johnson  2002,   2003  ) . Newts reproduce in temporary ponds, where larvae 
metamorphose into the eft life stage. After approximately 6 months, most efts leave 
the ponds and move to surrounding upland habitat. When pond conditions are favor-
able, however, some efts may remain in the pond for another 6 months, metamor-
phosing into sexually mature paedomorphs and breeding. Paedomorphs then lose 
their gills and move into the upland (Johnson  2002 ; Tuberville, February 19, 2009, 
personal communication). Previous studies have not recorded the ratio of paedo-
morphs to efts under particular conditions. After migrating, newts remain in the 
upland until a precipitation event fi lls the pond once again. 

 Because temporary ponds are the sole breeding sites for striped newts, pond 
conditions are likely to have a dominant effect on population viability (Dodd and 
Johnson  2007  ) . Climatic factors are centrally important, especially the timing 
and quantity of precipitation, as newts require ponds to contain water for at least 6 
months in order to breed successfully (Dodd  1993  ) . 

 Newt movement includes both micro-movements in and out of ponds and the 
surrounding area, and migration between ponds and upland habitat. Migration 
occurs over prolonged periods, with in- and out-migration overlapping. Peaks, dur-
ing which a maximum number of individuals move, strongly correlate with large 
rainfall events. One study in northern Florida observed four peaks, the largest occur-
ring between late winter and early summer. The quantity of precipitation was not, 
however, correlated with the size of the migration (Johnson  2002  ) . Female and male 
adults normally share similar movement patterns, with both sexes orienting toward 
several primary directions when leaving and reentering ponds. Juveniles’ move-
ment, however, is more multidirectional. Most individuals remain within a small 
area of upland throughout the dry period (   Johnson  2002 ; Semlitsch  2008  ) . After 
their fi rst migration away from the pond, efts may disperse to other nearby ponds. 
Mature newts that have bred previously, however, remain essentially entirely faith-
ful to a single breeding pond (Dodd  1997 ; Tuberville, February 19, 2009, personal 
communication). 

 While there is little literature on the striped newt, much work has been conducted 
on several closely related subspecies of red-spotted newt (Gabor et al.  2000 ; Regosin 
 2005  ) . This species shares a similar life history, migrating from ponds to upland 
forest habitat in winter. Newt movement is similarly concentrated around breeding 
ponds, with 83–87% of the newts found within 100 m in one study (Regosin  2005  ) . 
Adult newts disperse around their natal ponds, usually within 500–600 m (Roe and 
Grayson  2008  )  but is known to occur up to 709 m from ponds (Dodd and Johnson 
 2007  ) . This movement distance is independent of age and sex (Roe and Grayson 
 2008  ) . As with striped newts, red-spotted newt adults exhibit stronger directionality 
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during migration than do metamorphs (Malmgren  2002  ) ; adults are more likely to 
move through uplands in a direct path than juveniles (Roe and Grayson  2008  ) . 

 Red-spotted newts prefer forest sites adjacent to breeding ponds (Malmgren 
 2002  ) . They also prefer upland habitat with signifi cant forest cover. Two studies 
found no newts in sites with less than 25% (Porej et al.  2004  )  and 50% forest cover 
(Gibbs  1998  ) , respectively. Within uplands, red-spotted newts are present beneath 
leaf litter (40.2%) or branches (29.5%); some also rest on exposed surfaces (16.4%) 
or ferns and logs (13.9%) (Roe and Grayson  2008  ) . 

 Red-spotted newts have high dispersal tendency and habitat specifi city, and are 
sensitive to environmental fragmentation and other anthropogenic impacts (Gibbs 
 1998  ) . Populations are impacted by road construction, controlled burning, and habi-
tat fragmentation (Malmgren  2002  ) . The likelihood of newt population presence in 
ponds decreases with cumulative road length, distance to nearest wetlands, and 
increases with amount of forest (Porej et al.  2004  ) . Forest cover may be especially 
important during droughts, when newts require shade to prevent dehydration (Rohr 
and Madison  2003  ) . Clearcutting reduces leaf litter mass and depth, driving newts 
from the area. Canopy fi res destroy 50% of the overstory and most of the under-
story, and also can evaporate ponds and alter water quality (Sadinski and Dunson 
 1992 ; Gamradt  1997 ; Kerby and Kats  1998  ) . While newts may be exposed to herbi-
cides applied near to ponds, recent research has not found a clear impact of herbicide 
exposure on amphibian population viability or movement (McComb et al.  2008 ; 
Cole et al.  1997  ) . 

 Research on striped newt population dynamics is critical given the species’ high 
conservation priority and the scarcity of existing data. However, the lack of infor-
mation makes it diffi cult to choose which variables to assign the highest priority for 
study. There is thus a need to use the available data to predict which variables may 
control newt population dynamics in order to guide future research. For this type of 
situation, spatially explicit agent-based modeling is a method well suited for inform-
ing research because sensitivity analysis can be used to identify the most important 
variables even where data may be unavailable. At the most basic level, an agent-
based model (ABM) can assess the relative importance of mortality in upland vs. 
pond habitats for overall population viability. Thus, sensitivity analysis can help 
managers decide whether to prioritize upland habitats or pond habitats in their future 
research on competition, predation, and other environmental factors affecting mor-
tality. While available research demonstrates that striped newts exhibit different 
behavior and movement patterns at different life stages, little is known about how 
mortality rates change across these stages. An ABM can assess whether mortality in 
one life stage is especially important to metapopulation viability. 

 Because of the importance of temporary breeding ponds to striped newt popula-
tions and the predicted decline in rainfall in the southern United States with climate 
change (Burkett et al.  2001  ) , the effects of drought are a central component of popu-
lation viability (Dodd  1993 ; Johnson  2002  ) . Agent-based modeling allows us to 
examine the viability of striped newt populations in several pond clusters under dif-
ferent climatic scenarios. 

 Upland habitat mosaics are another important determinant of newt populations 
documented in the literature, and one that can be altered by human intervention. 
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Agent-based modeling allows the assessment of different upland habitat scenarios 
in conjunction with climate scenarios in order to quantify the impact of potential 
habitat management through, for example, controlled burns.  

    5.2   Objective 

 In order to identify priorities for future fi eld studies, we developed a spatially 
explicit ABM to identify the most important variables impacting the dynamics of 
striped newt metapopulations in the southeast United States. When resources are 
limited, factors deemed to have the highest impact on simulated newt population 
viability may be the best candidates for fi eld study. Then, targeted fi eld research 
based on model results may quantify key dimensions of newt ecology and inform 
management approaches aimed to ensure long-term metapopulation viability. 

 We hypothesize that precipitation will be the controlling factor for newt metapo-
pulation dynamics. Specifi cally, we hypothesize that reduced monthly precipitation 
will have the greatest negative impact on newt populations among the variables 
tested. Increased seasonal and interannual variability will also substantially increase 
the risk of newt extirpation. Furthermore, we hypothesize that the newt population 
will be sensitive to the percentage of forest canopy cover across the landscape. 
However, we hypothesize that forest fragmentation will have a less pronounced 
impact than precipitation.  

    5.3   Model Description 

    5.3.1   Purpose 

 The model allows users to quantify and compare the relative impacts of broad-scale 
variables on newt metapopulations. Changes in input values for climatic and habitat 
variables are expected to alter the long-term viability of the simulated newt metapo-
pulation. Quantifi cation of these changes makes it possible to assess the relative 
importance of certain variables in areas where published data are scarce.  

    5.3.2   Modeling Tools 

 We used NetLogo 4.04 (Wilensky  1999  )  to develop the model. 1  ArcGIS spatial data 
were imported into NetLogo, which resampled rasters into 100 × 100 m patches.  

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com


675 Spatially Explicit Agent-Based Model of Striped Newt Metapopulation Dynamics…

    5.3.3   Data Sources 

 We used public domain climate data and the following vector map layers for the 
Fort Stewart area: elevation contours, known striped newt ponds, canopy cover, and 
roads. The elevation contours were converted to a raster-based digital elevation 
model (DEM); the drainage networks, pond area, and catchment contribution area 
were extracted using ArcGIS.  

    5.3.4   Study Area 

 Fort Stewart, adjacent to Savannah, GA in the southeastern United States, provides 
the geospatial context for this study. This model was developed for a 640 ha area in 
the forested northwestern portion of the installation. Striped newt ponds tend to be 
located at the highest areas of watersheds in conjunction with Ellabelle loamy sand 
areas. This suggests that newts prefer extremely ephemeral ponds. A rainfall event 
suffi ciently heavy to fi ll these ponds may occur only once in several years. These 
areas are depressions associated with very small watersheds. The extremely ephem-
eral nature of these pond areas may result in very low aquatic predation and compe-
tition. Adapting to survive spans of several years without reproductive events may 
result in a minimization of predators (Semlitsch  2008  ) .  

    5.3.5   State Variables and Scales 

 At the most basic level, the model is composed of agents, patches, and state vari-
ables. Agents represent individual striped newts. Two types of newt agents exist in 
the model: efts (terrestrial juveniles) and adults. After 12 months, efts metamor-
phose into adults. Patches represent two-dimensional 100 × 100 m areas of the land-
scape. The spatial extent of the landscape is an area of 1,500 × 1,700 m. Agents that 
move beyond this area are removed from the model simulation. Patches are divided 
into two categories according to the behaviors that the newts perform in them: (1) 
depressions, which can serve as breeding habitat when they contain water; and (2) 
upland habitat, through which newts move, and in which they settle when not breed-
ing (Fig.  5.1 ). State variables (properties possessed by agents and patches) and the 
units to which they apply are listed in Table  5.1 . They are described in greater detail 
below.  

    Lifestage  dictates whether a newt agent is an adult or an eft. These two agent types 
behave differently. Again, efts metamorphose into adults after 12 months.  

   Behavior trigger  determines which actions are currently being undertaken by a 
newt. The variable carries four values: “move into upland,” “move to pond,” 
“upland,” and “breed.”  
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   Home pond location  stores the Cartesian coordinates defi ning the pond in which a 
newt breeds. Efts do not have a home pond location until they mature into adults, 
after which point they select the closest pond as their home pond. Adults are 
100% loyal to a single home pond throughout their lifetime.  

   Rainfall sensitivity  defi nes the minimum quantity of monthly rainfall that will trig-
ger a newt to return to its home pond and attempt to breed. Only newts whose 
current behavior trigger is set to “upland” respond to precipitation in this way. 
The values of rainfall sensitivities are normally distributed across newts, with the 
model user determining the mean value and standard deviation. The rainfall sen-
sitivity of a particular newt agent does not change throughout its lifetime.  

   Patch type  dictates whether a patch is a depression capable of forming an ephemeral 
breeding pool or an upland forest.  

  Fig. 5.1    Model landscapes as displayed in the NetLogo environment.  Shading  represents the per-
centage of canopy cover in a patch, with darker patches having more cover.  Black patches  repre-
sent depressions that can hold ephemeral breeding ponds. ( a ) Simulated landscape. ( b ) Landscape 
based on raster data for an area of Fort Stewart, GA       

   Table 5.1    State variables used in the model, according to the unit with which they are associated 
(agents or patches)   

 Newt properties  Patch properties 

 Variable  Type  Variable  Type 

 Life stage  Categorical  Patch type  Categorical 
 Behavior trigger  Categorical  Canopy cover  Percentage 
 Home pond location  Integer set  Depth  Integer 
 Rainfall sensitivity  Integer  Catchment area  Integer 

 Pond area  Integer 
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   Canopy cover  defi nes the percentage of canopy cover for a given patch. Depressions 
are defi ned as having a 0% canopy cover.  

   Depth  represents the current water depth in a depression patch in meters. Depressions 
are assumed to be “bucket-shaped,” with a uniform depth across their area.  

   Catchment area  describes the surface area draining into a depression. This property 
only applies to depressions, not to upland patches. Note that if the user chooses 
to use Fort Stewart geographic data, then catchment area is measured in square 
meters, but if the user selects a simulated landscape, then catchment area is mea-
sured in numbers of patches.  

   Pond area  is the surface area of depression patches. When the Fort Stewart land-
scape is used, this value is defi ned by measurements made using ArcGIS. In the 
simulated landscape, depressions are assumed to exactly fi ll 100 × 100 m 
patches.    

 Each time step in the model is equivalent to 1 month, in order to allow newts to 
enter and exit the ponds in overlapping waves. The time horizon is 287 months, cor-
responding to the period over which observed precipitation data are available for 
Fort Stewart. A 1-month time step does not account for newt micro-movements 
within the pond, the upland, or between the pond and bank habitat. However, we 
judged such micro-movements unimportant to overall metapopulation viability.  

    5.3.6   Process Overview and Scheduling 

 The processes making up the model and the order in which they occur are depicted 
in Fig.  5.2 . All processes except for newt movement and mortality occur in discrete 
1-month time steps. The newt movement function is recursive: each newt moves 
into one patch, determines whether to remain in the patch it enters, and, if it decides 
to continue, the newt performs the movement function again. Because newts are 
subject to a risk of mortality each time they enter a patch, the mortality process is 
also recursive.   

  Fig. 5.2    Sequence of model processes. Precipitation is read from user-determined input data 
( oval ); runoff and pond fi lling are landscape processes ( triangle ); the remaining processes are 
agent-based activities ( rectangles ). All processes occur in discrete time steps, except movement 
and movement-driven mortality, which are recursive (indicated by  dashed lines )       
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    5.3.7   Design Concepts 

    5.3.7.1   Emergent Phenomena 

 Spatial distribution of newts across the landscape is the most apparent emergent 
property within the model. The distribution of newts around ponds is the result of 
individual newt choices based on the canopy cover of surrounding patches and the 
distribution of rainfall sensitivities across the newt population. The distance which 
newts (especially efts) disperse away from ponds is a critical factor in determining 
rates of recolonization of ponds whose newt population has been locally extirpated 
(Petranka and Holbrook  2006 ; Semlitsch  2008  ) . Dispersal distance may thus have 
important implications for striped newt conservation. Furthermore, the distribution 
of newt distances from home ponds can serve as a means of evaluating the model, 
since previous studies provide data on newt dispersal distance (Regosin  2005 ; Dodd 
and Johnson  2007  )  and directionality (Dodd and Cade  1998 ; Roe and Grayson 
 2008  ) . Further research rigorously quantifying newt distribution across upland hab-
itat may help to validate and calibrate the model.  

    5.3.7.2   Adaptation 

 Intergenerational selection is not present in the model. Adaptation alters the distribu-
tion of sensitivities to rainfall across the newt population only insomuch as newts that 
respond to very low precipitation amounts are more likely to return to ponds contain-
ing water insuffi cient for successful breeding. These individuals then suffer addi-
tional risks of mortality when they return to the upland. However, in the model there 
is no relationship between the rainfall sensitivity of adults and their offspring.  

    5.3.7.3   Stochasticity 

 The NetLogo random number generator is used in several model processes, includ-
ing movement, mortality, and breeding. Stochasticity is also present in the distribu-
tion of rainfall sensitivity across the newt population, which is based on a random 
normal function with the user determining the mean and standard deviation values. 
When a simulated landscape is used, a random canopy cover value is assigned to 
each patch. The canopy value is modifi ed by the user-selected canopy modifi cation 
index (see Sect.  5.3.8.2  below).  

    5.3.7.4   Observation 

 The user interface includes plots of the total number of newts, subdivided among 
adults and efts. Other plots depict the mean depth of ponds, mean and maximum 
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newt distance to home pond, histogram of newt distances to home ponds, and 
variable mortality rate (when precipitation-infl uenced mortality is used). All plots 
are calculated based on values at the end of each time step. For the purpose of analy-
sis, the maximum, minimum, and mean newt populations were used. However, in 
the initial round of analysis, only the total number of newts at the end of the time 
horizon was used.   

    5.3.8   Initialization 

 Because virtually no quantitative data were available on striped newt ecology, we 
used two approaches to generate the initial model state: randomization and user-
specifi cation of variables. Two dimensions of the initial model state are based on 
randomization: the geographic distribution of newts across the landscape and the 
distribution of canopy cover across patches. The function for determining newt 
positions at the start of the model is described below under Sect.  5.3.8.1 . Canopy 
cover is only randomly generated if the user chooses to employ a simulated land-
scape; otherwise, cover values from the Fort Stewart study site are used. Furthermore, 
the user can alter the distribution of canopy cover across the simulated landscape 
using the canopy modifi er slider. The landscape simulation process therefore com-
bines randomization and user specifi cation. For the sake of clarity, it is therefore 
described in more detail below under Sect.  5.3.8.2 . 

    5.3.8.1   Randomized Initialization 

 At the beginning of the model, newts are distributed in upland patches surrounding 
ponds such that each newt has an equal probability of “landing” in patches less than 
or greater than three patches from a depression. Furthermore, newts are more likely 
to land in patches with greater canopy cover, and they are distributed independently 
of one another. The two mathematical criteria used are as follows:

    1.     cover  2  > random integer falling between 0 and 10,000  
    2.     Distance to depression  = 3 ± random integer falling between 0 and     10        

 It should be noted that the canopy cover criterion is identical to that underlying 
newt movement as discussed under Sect.  5.3.10 .  

    5.3.8.2   User-Specifi ed Initialization 

 Before running the model, the user specifi es values pertaining to three model com-
ponents: the landscape, agent behavior, and landscape–agent interactions 
(Table  5.2 ).  
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 The user selects one of two methods for determining landscape initial state: reading 
in observed spatial data from Fort Stewart, as described previously, or generating a 
simulated landscape. In the simulation option, the user specifi es three variables that 
determine the makeup of the landscape: the number of pond depressions, the mean 
catchment area of ponds (in number of patches), and the canopy cover multiplier. 
Canopy cover in the simulated landscape is generated by a random cover value 
(between 0 and 100) that is assigned to each patch. These cover values are then 
modifi ed according to the user-specifi ed canopy cover multiplier. If the user selects 
a negative value, the cover of each patch is decreased by a random integer falling 
between 0 and the forest cover multiplier. If the user selects a positive value, the 
cover of each patch is increased in this same manner. No patch can have a canopy 
value greater than 100 or less than 0. 

 The user also specifi es several terms underlying landscape hydrology, as only 
limited hydrological data were available for the study site. The model employs a 
user-determined parameter to alter the linear function governing leakage from 
ponds. When this value is increased, pond depth has a greater impact on the rate of 
water leakage from depressions. The user also selects one of two ways for calculat-
ing evapotranspiration: either a linear function similar to the leakage function, or a 
calculation of evapotranspiration based on Dalton’s law of partial pressures (Meyer 
 1942  ) . The hydrological functions used in the model are described in greater detail 
under Sect.  5.3.10 . 

 The agent factors specifi ed by the user include the number of individuals at the 
start of the model, the maximum number of efts recruited per breeding adult, and 
the mean and standard deviation of newt rainfall sensitivity (see previous discussion 
under Sect.  5.3.5 ). The user also chooses the carrying capacities of upland and pond 
patches.   

    5.3.9   Input 

 The user selects one of six precipitation scenarios as inputs into the model. The fi rst 
scenario (a) comprises observed monthly precipitation for Fort Stewart between 
1985 and 2008 (Fig.  5.3 ). The second (b) and third (c) scenarios represent reduced 
rainfall potentially associated with climate change; they correspond to monthly 

   Table 5.2    User-determined variables   

 Landscape variables  Agent variables 
 Agent–landscape interaction 
variables 

 Number of ponds  Initial number of newts  Upland carrying capacity 
 Canopy cover multiplier  Maximum recruitment per adult  Pond carrying capacity 
 Leakage rate  Mean and standard deviation of 

rainfall sensitivity 
 Evapotranspiration time 
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precipitation of 40 and 60% of observed rainfall values, respectively. The fi nal three 
scenarios represent altered precipitation seasonality with the same total precipita-
tion falling during the study time horizon. In the fi rst of these (d), intra-annual vari-
ability is increased, with more rain falling during the winter months. In the second 
(e), intra- and interannual variability is reduced, with relatively similar amounts of 
precipitation falling in all months. In the fi nal scenario (f), intra- and interannual 
variability is increased, producing wet and dry months, as well as several-year peri-
ods with little rainfall.   

    5.3.10   Submodels 

    5.3.10.1   Pond Hydrology 

 The model treats pond depressions as “buckets”: water enters through subsurface 
and surface fl ow from catchment areas and leaves through evapotranspiration and 
leakage. Incoming fl ow is the result of rainfall. The quantity of water stored in a 
pond in a given month is calculated as follows:

     Pond water volume in previous month precipitation evapotranspiration leakage+ - -    

 Precipitation is read from input fi les, and leakage is assumed to be a linear func-
tion of water storage in pond—the more water in the pond, the more quickly leakage 

  Fig. 5.3    Precipitation data used in the model for 287 months. ( a ) Observed precipitation (1985–
2008), ( b ) 40% of observed precipitation, ( c ) 60% of observed precipitation, ( d ) high seasonal 
fl uctuations, ( e ) low seasonal fl uctuations, and ( f ) high seasonal and interannual fl uctuations       
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occurs. The rate factor for this linear function can be changed based on the users’ 
understanding of soil properties using the variable “leak-time.” 

 The user can specify one of two mechanisms for determining evapotranspiration. 
The fi rst is the same as the leakage mechanism: evapotranspiration is calculated as 
a linear function of pond water storage. As with leakage, the user can specify the 
residence time based on his or her understanding of local climate, using the variable 
“evap-time.” The second evapotranspiration mechanism uses the empirical formula 
developed by Meyer  (  1942  )  based on Dalton’s law, which is suitable for calculating 
evapotranspiration for open water bodies. The formula is as follows:
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average value posted online. These variables can be changed in the model code, but 
are not present in the user interface.  

    5.3.10.2   Movement 

 As previously discussed, newt movement, unlike the other submodels, is a recursive 
process occurring continuously within discrete 1-month time steps. There are also 
two distinct types of movement: (1) migration away from ponds and into the upland 
following breeding, and (2) returning to home ponds after rainfall of suffi cient 
magnitude. 

 When moving away from ponds, newts move in single-patch increments, and 
determine after each increment whether to settle in the current patch or move again. 
The process occurs as follows:

    1.    Newts rotate to face a random heading, then move into the patch directly in front 
of them.  

    2.    After entering the patch, a risk of mortality is applied based on the canopy cover 
of the new patch (see Sect.  5.3.10.3  below).  

    3.    If they survive, they then decide whether to remain in the patch, again based on 
the patch’s canopy cover.     

 The criterion for which newts will settle in the patch is:

    cover  2  > random integer falling between 0 and 10,000    

 The second power of canopy cover is used in order to produce increasing mar-
ginal likelihoods of newt settling as patch cover increases. This relationship was 
selected because it produced model behavior best matching the observations that 
striped newt and red-spotted newt individuals do not occur in areas with less than 
50% canopy cover (Gibbs  1998  ) . 
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 When newts return to ponds from the upland, a second and distinct movement 
process operates. Newts jump from the upland patch in which they settled directly 
into their home pond patch. The move occurs instantaneously and disregards the 
canopy cover values (and all other properties) of patches that the newt crosses.  

    5.3.10.3   Mortality 

 Mortality occurs in three ways during each time step. First, newts moving away 
from ponds and into the upland face a risk of mortality for each patch of upland 
habitat they cross. Second, newts leaving the upland and returning to ponds are 
subject to a one-time risk of mortality. This introduces a tradeoff for newts with low 
rain sensitivity; they are more likely to return to ponds to breed following rainfall, 
but are also subject to higher risks of mortality. The third type of mortality affects 
all newts in upland patches. This simulates attrition while newts are “settled” in the 
upland, increasing the risk of mortality for newts that settle in patches with lower 
canopy cover. The criterion for determining the risk of mortality at all three of these 
stages is the same:
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where cover is the percentage canopy cover of the upland patch,  n  
t
  is the number of 

newts in the patch at the current time step,  N  
max

  is the user-determined carrying 
capacity for upland patches, mortality is the user-determined mortality coeffi cient, 
    p̂    is the user-determined base precipitation rate, and     p    is the 4-month mean 
precipitation. 

 Since very little data were available on the determinants of striped newt mortal-
ity, the above approach requires the user to select mortality criteria based on his or 
her understanding of newt ecology. The numerator of the criterion represents the 
ecological effects of habitat and intraspecifi c competition. The square root of cover 
is used in order to reduce the marginal effect of a 1% increase in canopy cover. This 
allows a substantial percentage of newts occurring in patches with greater than 
50% canopy cover to persist for at least several time steps. The second term in the 
numerator represents standard density-dependent mortality. The denominator 
comprises two components that serve to alter mortality risks. First, the mortality 
coeffi cient allows the user to alter mortality rates uniformly across all newts for the 
entire simulation. Second, precipitation-based mortality can be turned on or off 
depending on the extent to which the user believes rainfall infl uences newt survival 
in uplands. Turning on precipitation-based mortality causes the mortality rate to 
fl uctuate with the 4-month mean of precipitation. When the mean exceeds the 
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user-selected base precipitation level, the mortality rate is decreased for all newts; 
when the mean is less than this level, mortality is increased. 

 It should be noted that newts are not subject to the mortality process while they 
are in ponds. We excluded in-pond mortality due to the paucity of available data and 
because we believed breeding was the controlling factor in newt populations while 
they are in the pond (see Sect.  5.3.10.4  below).  

    5.3.10.4   Breeding 

 Breeding occurs when newts return to their “home ponds” following monthly rain-
fall events exceeding their individual rainfall sensitivities. Because very little data 
were available on newt reproduction, the model employs a highly simplifi ed repro-
duction process. The model excludes the larvae life stage. Instead, reproduction 
produces newts in the eft life stage that are ready to leave the pond and move into 
the upland. Water must be present in the pond depression for at least 6 months in 
order for larvae to survive and metamorphose into efts (Johnson  2002  ) . Thus, in 
order to breed successfully in the model, newts must be present in a pond for 6 
months during which water depth does not fall to zero. If pond depth is zero during 
any month in which newts are in the pond, breeding fails and the newts move into the 
upland using the movement process (Sect.  5.3.10.2 ) described above. If, however, 
pond depth remains above zero, each newt produces a number of efts determined by 
the function:
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where     depth    is the mean pond depth during the 6-month breeding period, recruit 
max

  
is a random integer less than the user-defi ned maximum recruitment per breeding 
adult, and the fi nal term represents standard density dependence.    

    5.4   Simulation Experiments 

    5.4.1   Model Calibration 

 Long-term population dynamics of the striped newt are unavailable. Therefore, in 
lieu of statistically based validation, we adopted a qualitative approach (Rykiel 
 1996  ) . We repeatedly compared model behavior under different conditions to a 
priori expectations. For example, literature on pool-breeding amphibians indicates 
that while population levels peak after breeding events, effective breeding popula-
tions are very much smaller (Johnson  2002  ) . We therefore adjusted breeding and 
mortality functions in order to reduce observed instances of exponential population 



775 Spatially Explicit Agent-Based Model of Striped Newt Metapopulation Dynamics…

growth and rapid extinction across the study period. In addition, we calibrated the 
model with regard to observed patterns of pond fi lling and drying and newt migra-
tion to and from breeding ponds in response to rainfall (Johnson  2002  ) . 

 Under conditions of limited data availability, we followed the principle of creat-
ing the minimum amount of complexity necessary to generate qualitative expecta-
tions. Where more than one function appeared to produce realistic behavior, the 
least complex was used in the model. 

 The normal values for user-determined variables (the mid-point on the model 
interface slider bars) were similarly determined to guard against the qualitative 
extremes of system behavior. The maximum and minimum values were selected 
such that they tend to produce behavior impossible given real world conditions. 
Therefore, they represent the limits of the range most likely to interest model users 
for each parameter. 

 One concern that arose during calibration was whether the time horizon over 
which precipitation data were available was suffi ciently long enough to produce 
equilibrium behavior. Therefore, we produced long-term time horizon precipitation 
data by looping observed data ten times, producing a 2,870 month dataset. Visual 
inspection of population plots for this dataset shows that population fl uctuations do 
not appear to change over long-term periods of time (Fig.  5.4 ). This suggests that 
the system is in steady state during the fi rst loop of precipitation data.   

  Fig. 5.4    Newt populations in a single simulation conducted over 2,870 months generated by loop-
ing the 287-month time horizon of observed precipitation data       
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    5.4.2   Preliminary Results 

 We tested the sensitivity of the model to changes in the values of each variable indi-
vidually. Control conditions constituted all variables being set to their mid-point 
values, which were selected during calibration. Then, each test constituted a single 
variable being set to 150 or 50% of its mid-point value, holding all other variables 
constant. All tests were conducted using 60 trials of the 287-month time horizon. 
The total newt population at the end of each trial was used as the output. We did not 
use measures of population variability or newt spatial distribution in preliminary 
analysis. Correlation coeffi cients between fi nal newt population under test condi-
tions and fi nal population under control conditions were used as measures of sensi-
tivity. Results were interpreted in the following manner: lower coeffi cients of 
correlation indicate that the model is more sensitive to the variable at its given value 
(50 or 150%). 

 Results indicate a range of sensitivities, with correlation coeffi cients varying 
from 0.56 to 0.93 using the 150% values, and from 0.41 to 0.95 using the 50% 
 values (   Table  5.3 ). Among the 150% conditions, newt population was most sensi-
tive to mean “sensitivity to rainfall.” Among the 50% conditions, newt population 
was most sensitive to precipitation scenario (Fig.  5.5 ).   

   Table 5.3    Coeffi cients of correlation between end population in tests and 
under control conditions   

 Variable 

 Coeffi cient of correlation at value 

 50%  150% 

 Landscape 
 Precipitation a   0.54  0.69 
 Evapotranspiration time  0.41  0.78 
 Leakage time  0.54  0.66 
 Canopy cover  0.59  0.83 
 Number of ponds  0.71  0.88 
 Catchment size  0.72  0.8 

 Agent 
 Maximum recruitment/adult  0.73  0.89 
 Rainfall sensitivity  0.73  0.56 
 Rainfall sensitivity standard 

deviation 
 0.91  0.9 

 Ecology 
 Pond carrying capacity  0.57  0.82 
 Mortality coeffi cient  0.58  0.66 
 Mortality precipitation rate  0.95  0.93 

  Tests scenarios involved setting each variable individually to 50 or 150% of its 
“normal” value, holding other variables constant. Low coeffi cients of correla-
tion indicate that the model is more sensitive to a variable at the given value 
  a The high precipitation value is 167% of the “normal” value, and thus its cor-
relation coeffi cient cannot be compared to others  
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 Because rainfall was hypothesized to be a central factor in controlling newt pop-
ulations, we tested model sensitivity to the fi ve precipitation scenarios. The same 
approach was used: based on 60 trials, we calculated coeffi cients of correlation 
between the constructed scenarios and observed precipitation data, using newt pop-
ulation at the end of the study period as the output variable (Table  5.4 ).  

 Two caveats should be noted in interpreting the above data. First, we used 
observed precipitation data from Fort Stewart as the high precipitation value. 
The 60% scenario was used as the normal value, and the 30% scenario was used 
as the low value. The high value is thus 167% of the normal value, rather than 
150%. Therefore, the correlation coeffi cient at the high value is not directly compa-
rable with those of other variables. Second, there are three variables that represent 
properties of the simulated landscape but do not apply to the Fort Stewart study 

  Fig. 5.5    Coeffi cients of correlation between end populations in the control scenario and test sce-
narios. Each variable was tested individually       
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area: canopy cover, number of ponds, and catchment size. The correlation coeffi -
cients for these variables should therefore not be directly compared with others. 
These limitations notwithstanding, comparison of correlation coeffi cients gives an 
initial sense of the importance of various ecological processes in determining newt 
population dynamics and viability.   

    5.5   Discussion 

 Preliminary sensitivity analysis suggests that several processes may strongly deter-
mine newt population dynamics. At both high and low values, three variables—
leakage rate, upland mortality coeffi cient, and precipitation—showed correlation 
coeffi cients of less than 0.70. Furthermore, two variables had little impact at both 
high and low values, with correlation coeffi cients equal to or greater than 0.90: 
variation in sensitivity to rainfall and precipitation-based mortality. These results 
suggest three areas for further fi eld study of striped newts:

    1.    Factors affecting leakage rates from different depressions, which are likely linked 
to soil type.  

    2.    Factors infl uencing mortality as newts both move through and settle in upland 
forests. Precipitation-related mortality may be a less important factor than other 
sources of mortality, as the model was least sensitive to the base precipitation 
rate at both high and low values.  

    3.    Predicted precipitation trends associated with climate change in the study area. 
Changes in precipitation, especially should they drastically reduce monthly rain-
fall or increase seasonal and interannual variation, may strongly impact newt 
population dynamics (Table  5.2 ).     

 Priorities one and three relate to a priori expectations that pond hydroperiods 
critically control striped newt populations (Dodd  1993 ; Tuberville, February 19, 
2009, personal communication). Priority two suggests that upland sources of mor-
tality cannot be ignored. 

 The differences between variable effects at low and high values could provide a 
basis for further model development or fi eld research. Three variables displayed 

   Table 5.4    Coeffi cients of correlation between end population in precipita-
tion scenarios and in observed data   

 Scenario  Coeffi cient of correlation 

 30% Precipitation  0.37 
 High seasonal variation  0.42 
 Low variation  −0.45 
 High interannual variation  0.5 
 60% Precipitation  0.69 

  Low values indicate the model is substantially sensitive to the scenario  
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coeffi cients that differed by more than 0.20 across low and high values: 
evapotranspiration rate, pond carrying capacity, and forest cover (Table  5.5 ). All 
of these variables had a correlation coeffi cient of less than 0.70 at either their high 
or low value, suggesting that they may, under some conditions, act as important 
determinants of newt population dynamics.   

    5.6   Conclusions 

 The simulation results support our hypothesis that, based on available information, 
rainfall is likely a key factor governing striped newt population viability. The model 
highlighted the importance of hydrologic variables such as precipitation, leakage 
from ponds, and evapotranspiration, and it suggested that pond depth may be a key 
factor controlling newt populations. Regarding our second hypothesis, the results do 
not provide conclusive evidence regarding the importance of forest canopy cover; 
while decreasing cover had a substantial negative effect on newt populations, 
increasing cover had little effect. 

 While tests of model sensitivity to joint and contingent conditions are needed in 
order to fully specify model implications for research on the striped newt, priorities 
for future fi eldwork might include characterizing rates of leakage and evapotranspi-
ration in pond depressions and describing the relationship between pond depth, 
breeding, and eft recruitment. More detailed analysis of climate change scenarios 
may also be warranted; the precipitation scenarios used in this report represent only 
a few possible scenarios (and simplifi ed ones) for changes in rainfall quantity and 
variability. The current model design allows for further precipitation data to be 
incorporated in a straightforward manner. 

   Table 5.5    Changes in correlation coeffi cients between 
high and low value tests of sensitivity   

 Rank  Variable  Change 

 1  Evap-time  0.37 
 2  Pond-capacity  0.25 
 3  Forest-cover-multiplier  0.24 
 4  Number-ponds  0.17 
 5  Sensitivity-to-rainfall  −0.17 
 6  Max-reproduction  0.16 
 7  Precipitation  0.15 
 8  Leak-time  0.12 
 9  Upland mortality  0.08 
 10  Catchment-area  0.08 
 11  Precip-upland-mortality  −0.02 
 12  Sensitivity-sd  −0.01 
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 Our analysis has treated comparisons in a qualitative and preliminary way. 
Further analysis should measure the effects of varying multiple variables jointly, 
and determine the statistical signifi cance of different outcomes.      

   References 

       Burkett VR, Ritschard R, McNulty S, O’Brien JJ, Abt R, Jones J, Hatch U, Murray B, Jagtap S, 
Cruise J (2001) Potential consequences of climate variability and change for the southeastern 
United States. In: National Assessment Synthesis Team for the U.S. Global Change Research 
Program (ed) Climate change impacts in the United States: potential consequences of climate 
variability and change. Cambridge University Press, Cambridge, pp 137–164  

    Cole EC, McComb WC, Newton W, Chambers CL, Leeming JP (1997) Response of amphibians 
to clear cutting, burning, and glyphosate application in the Oregon coast range. J Wildl Manage 
61(3):656–665  

    Dodd CK (1993) Cost of living in an unpredictable environment: the ecology of striped newts 
 Notophthalmus perstriatus  during a prolonged drought. Copeia 3:605–614  

    Dodd CK (1997) Movement patterns and the conservation of amphibians breeding in small, tem-
porary wetlands. Conserv Biol 12(2):331–339  

    Dodd CK, Cade BS (1998) Movement patterns and the conservation of amphibians breeding in 
small, temporary wetlands. Conserv Biol 12(2):331–339  

    Dodd CK, Johnson SA (2007) Breeding ponds colonized by striped newts after 10 or more years. 
Herpetol Rev 38(2):150–152  

    Gabor CR, Krenz JD, Jaeger RG (2000) Female choice, male interference, and sperm precedence 
in the red-spotted newt. Behav Ecol 11(1):115–124  

    Gamradt SC (1997) Impact of chaparral wildfi re-induced sedimentation on oviposition of stream-
breeding California newts ( Taricha torosa ). Oecologia 110(4):546–549  

    Gibbs JP (1998) Distribution of woodland amphibians along a forest fragmentation gradient. 
Landsc Ecol 13:263–268  

    Johnson SA (2002) Life history of the striped newt at a north-central Florida breeding pond. 
Southeast Nat 1:381–402  

    Johnson SA (2003) Orientation and migration distances of a pond-breeding salamander 
( Notophthalmus perstriatus, Salamandridae ). Alytes 21(1, 2):3–22  

    Kerby JL, Kats LB (1998) Modifi ed interactions between salamander life stages caused by wild-
fi re-induced sedimentation. Ecology 79(2):740–745  

    Malmgren JC (2002) How does a newt fi nd its way from a pond? Migration patterns after breeding 
and metamorphosis in great crested newts ( Tritutus cristatus ) and smooth newts ( T. vulgaris ). 
Herpetol J 12:29–35  

    McComb BC, Curtis L, Chambers CL, Newton M, Bentson K (2008) Acute toxic hazard evalua-
tions of glyphosate herbicide on terrestrial vertebrates of the Oregon coast range. Environ Sci 
Pollut Res 15(3):266–272  

    Meyer AF (1942) Evaporation from lakes and reservoirs. Minnesota Resources Commission, 
St. Paul  

    Petranka JW, Holbrook CT (2006) Wetland restoration for amphibians: should local sites be 
designed to support metapopulations or patchy populations? Restor Ecol 14(3):404–411  

    Porej D, Micacchion M, Hetherington TE (2004) Core terrestrial habitat for conservation of local 
populations of salamanders and wood frogs in agricultural landscapes. Biol Conserv 
120:399–409  

    Regosin JV (2005) Variation in terrestrial habitat use by four pool-breeding amphibian species. 
J Wildl Manage 69(4):1481–1493  

    Roe AW, Grayson KL (2008) Terrestrial movements and habitat use of juvenile and emigrating 
adult eastern red-spotted newts,  Notophthalmus viridescens . J Herpetol 42(1):22–30  



835 Spatially Explicit Agent-Based Model of Striped Newt Metapopulation Dynamics…

    Rohr JR, Madison DM (2003) Dryness increases predation risk in efts: support for an amphibian 
decline hypothesis. Oecologia 135:657–664  

    Rykiel EJ Jr (1996) Testing ecological models: the meaning of validation. Ecol Model 
90(3):229–244  

    Sadinski WJ, Dunson WA (1992) A multilevel study of effects of low pH on amphibians of tempo-
rary ponds. J Herpetol 26(4):413–422  

    Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphib-
ians. J Wildl Manage 72(1):260–267  

      Wilensky U (1999) NetLogo: computer software. Center for Connected Learning and 
Computer-Based Modeling, Northwestern University, Evanston.   http://ccl.northwestern.
edu/netlogo/.     Accessed 01/2011     

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/


85J.D. Westervelt and G.L. Cohen (eds.), Ecologist-Developed Spatially Explicit 
Dynamic Landscape Models, Modeling Dynamic Systems, 
DOI 10.1007/978-1-4614-1257-1_6, © Springer Science+Business Media, LLC 2012

    6.1   Background 

 The goal of this study is to provide information to military installation land managers 
who make decisions on land-use allocations that affect the viability of species at risk 
(SAR) populations over decades and centuries. As a department of the US govern-
ment, the US Army is required both by federal law and Army regulation to ensure the 
long-term persistence of species residing on its training lands. However, the Army 
must also ensure that suffi cient training and testing areas remain available to meet 
current and future Army needs. If a SAR residing on Army installations is elevated 
to federally threatened status, it could compromise military readiness through the 
associated loss of training land (Guertin  2005 ). This challenge must be met with 
careful and cost-effective regional planning that will proactively ensure adequate 
habitat for SAR in the face of cumulative natural and anthropogenic changes. 

 The gopher tortoise ( Gopherus polyphemus ) is a charismatic SAR that has 
historically occupied large areas of the southeastern USA. This tortoise can easily 
live 50 or more years (Iverson  1980 ; Landers et al.  1980 ; Rostal and Douglas   2002 ) 
and has a delayed sexual maturity ranging from 12 to 20 years (Mushinsky and 
McCoy  1994  ) , resulting in a generation time of around 30 years. It is federally 
protected in the western portion of its range, and is a species of interest throughout 
its entire range (Fig.  6.1 ). Federal lands, like Fort Benning, Georgia, are aggressively 
engaged in maintaining remaining populations at the same time the land is used 
more completely and intensively. Unfortunately, the preponderance of information 
about the gopher tortoise comes from a relatively small body of fi eld studies. These 
studies are informative and signifi cant, but taken together they are analogous to the 
disjunct surviving frames of a lost feature fi lm: a full understanding of the gopher 
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tortoise based on available fi eld studies is as elusive as understanding the plot of a 
motion picture based on a collection of fi lm scraps.  

 A question generally asked when new development is proposed is how is that 
development likely to change the probability that the local population remains 
viable throughout the foreseeable future. Answering this question generally requires 
intimate knowledge of the dynamics of the local populations—especially as part of 
a larger metapopulation within which individuals can move among the separate 
populations. A population viability analysis (PVA) involves formally modeling a 
system to identify the probability that a population will persist through projected 
human activities and random natural events involving weather, fi re, and changes in 
community structures. A PVA can be developed to forecast the impact of proposed 
and actual conservation and land management decisions made today. Population 
viability analyses are often based on knowledge of the behavior of populations 
using models such as Vortex and RAMAS (Lindenmayer et al.  1995 ; Akçakaya 
 2002  ) . Unfortunately, in the case of the long-lived gopher tortoise little is known 
about the dynamics of populations at this scale. However, much has been studied 
and is published about the behavior of individuals over months to years. We are 
therefore limited to using published results of such studies as the foundation for 
proposing and testing alternative regional planning options designed to strike the 
balance between the survival of target populations and the needs for human activity. 
Specifi c management strategies that require testing include the allocation of land 
use over space and time and the scheduled management and maintenance of land. 
Therefore, we look at the potential for using this information to construct a dynamic 

  Fig. 6.1    Gopher tortoise range       
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spatially explicit model that might help evaluate the consequences of proposed land 
use changes with the anticipation that the behavior of a metapopulation will emerge 
from published knowledge of individual behavior.  

    6.2   Objective 

 The objective of this agent-based spatially explicit simulation model is to test alter-
native land use allocation and land management strategies with respect to the 
probability of gopher tortoise population survival, as based on published literature 
and expert advice.  

    6.3   Model Description 

    6.3.1   Purpose 

 Our research questions involve the allocation and management of land over time, 
which requires an environment that supports the simulation of processes on a land-
scape scale and incorporates individual tortoise behaviors over space and time. 
Modeling is best accomplished when the user of the system is deeply familiar with 
the model itself. Therefore, we required a modeling environment that allows for 
constructing models that are easily understood by ecologists. We selected NetLogo 
(Wilensky  1999  ) , a user-friendly simulation modeling environment based on a com-
puter language of the same name. 1  The NetLogo language is a rich, high-level pro-
gramming language that is easy to learn and use. NetLogo technology is designed 
to enable scientists with no computer programming experience to read, write, mod-
ify, and distribute highly explanatory simulation models. 

 This model is intended to be used by land managers to test alternative land 
management decisions and their long-term consequences with respect to local 
gopher tortoise populations. In this chapter, we hope to show that there is suffi cient 
published information about the gopher tortoise to develop a spatially explicit indi-
vidual-based simulation model that could help guide the development of land 
management plans. 

 The model was developed for a small area known to support gopher tortoises 
within Fort Benning, which is located on the border of Georgia and Alabama 
(Fig.  6.2a  and  6.2b ). The study site is centered near 32°22 ¢ N and 84°42 ¢ W and is 
approximately 3.36 × 2.76 km in size (Fig.  6.3 ). The area supports a population of 

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com
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  Fig. 6.2    Location of Fort Benning study area (inset enlarged in Fig.  6.3 )          
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tortoises and has historically been used for training by the Army. This use is likely 
to increase over the next decade as tank maneuver training is added to the Fort 
Benning mission. The area is largely composed of forest, which primarily occupies 
lower elevations, while dirt roads and trails share the uplands with gopher tortoises.    

    6.3.2   State Variables and Scales 

 The model, SimGT, uses two agents: tortoises and patches. The fi rst represents 
individual tortoises that hatch, live, grow, reproduce, move, and die on a regular 
square grid of 60 × 60 m patches via 1-month model time steps. The patches are 
defi ned by their vegetation coverages (herbaceous and woody), number of eggs 
laid, fi re frequency and size, tortoise capacity, number of initial burrows, and soil 
type. Many of these variables are dynamic during a simulation. Tortoises are 
dynamically defi ned by their location, carapace length, sex, age, energy reserves, 
move-motivation, distance moved, and whether they are a “disperser.” In addition, 
the following variables—user-settable with slider controls—are used to guide the 
simulation (Table  6.1 ).   

  Fig. 6.3    Study area. Note light-colored dirt roads and trails used for soldier training, lighter areas 
that are sparsely vegetated uplands, and darker forested lowlands       
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    6.3.3   Process Overview and Scheduling 

 This model runs with a 1-month time step, accomplishing the following steps:

    1.    Vegetation grows (optionally, May only).  
    2.    Wildfi res burn (optionally, May only).  
    3.    Hatchlings are promoted to juveniles (April only).  
    4.    Smallest tortoises migrate if the temperature is greater than 50°F and if the area 

is over carrying capacity.  
    5.    A small randomly selected set of tortoises disperse if the temperature is greater 

than 50°F.  
    6.    All tortoises age 1 month and grow.  

   Table 6.1    User-settable variables   

 Name  Default value  Description 

 Juvenile-CL  50 mm  The initial carapace size for new juveniles 
 Carapace-rate  20 mm/year  The carapace growth per year 
 Max-CL-female  330 mm  The maximum carapace size for females 
 Max-CL-male  310 mm  The maximum carapace size for males 
 Min-juvenile-age  1 year  The age at which hatchlings mature to 

juveniles 
 Min-adult-age  10 year  The age at which juveniles mature to adults 
 Min-senior-age  40 year  The age at which adults mature to seniors 
 Max-GT-per-HA  3.0 GT  The maximum carrying capacity 
 Initial-tortoises  100  The number of initial tortoises randomly 

distributed 
 Dispersers  2%  The percent of tortoises that disperse 
 Egg-to-juvenile-survival  5%  Percent of eggs that survive through 

hatchlings to juveniles 
 Juvenile-death-prob  5%/year  Annual probability of death for juveniles 
 Adult-death-prob  3%/year  Annual probability of death for adults 
 Senior-death-prob  20%/year  Annual probability of death for seniors 
 Female-reproduction-prob  60%/year  Annual probability of each female laying 

eggs 
 Eggs-per-female  6/year  Number of eggs laid by each reproducing 

female 
 Veg-growth?  T/F  A toggle for vegetation growth 
 Woody-growth-rate  5%/year  Growth rate for woody vegetation (trees) 
 Herb-growth-rate  10%/year  Growth rate for herbaceous vegetation 
 Fire?  T/F  A toggle for lightning-induced fi re 
 Lightning  0.01 strikes/year/ha  Number of lightning strikes 
 Burn-probability  20%  Probability that a patch will burn 
 Pct-herbs-lost-to-fi re  10%  Percent of herbaceous vegetation destroyed 

in a patch by fi re 
 Pct-woody-lost-to-fi re  95%  Percent of wood vegetation destroyed in a 

patch by fi re 
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    7.    All tortoises increase energy reserves if the temperature is greater than 50°F.  
    8.    All females of an appropriate age reproduce (April only).  
    9.    Some tortoises die based on energy levels and age.      

    6.3.4   Design Concepts 

    6.3.4.1   Emergence 

 By capturing the behavior of many individuals over time and space, we anticipate 
the illumination of an emergent behavior for populations and metapopulations.  

    6.3.4.2   Migration 

 Patches that are overpopulated result in the migration of younger individuals until 
carrying capacity is reached. This primarily means that the youngest individuals are 
forced to the edges of habitable areas.  

    6.3.4.3   Dispersion 

 Regardless of tortoise density and tortoise age, some tortoises have been docu-
mented to simply disperse (Diemer  1992 ; Wilson et al.  1994  ) . Based on the litera-
ture, a small percentage of tortoises are selected at random to move at randomly 
large distances.  

    6.3.4.4   Aging and Reproduction 

 Over time tortoises age and reproduce. This process, at the scale of the individual, 
results in the emergence of population age cohorts.  

    6.3.4.5   Death 

 As tortoises age from eggs to seniors, their probability of death changes. Few, of 
course, are lucky enough to reach old age.   

    6.3.5   Initialization 

 Model initialization involves user-settable variables (as listed previously in 
Sect.  6.3.2 ), reading maps to set patch variables (discussed below in “input map 
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development”   ), and using a few hard-coded values that capture minimum and 
maximum average temperatures and changes in carrying capacity by month. The 
temperatures can easily be modifi ed in the NetLogo procedure view by editing code 
in the “set-location” procedure. Temperatures are set for the Fort Benning area 
based on historic weather measurements. The relative carrying capacity adjustments 
are set to 1.0 for winter months and up to 3.0 for summer months to capture the 
notion that carrying capacity densities vary over the year based on food availability. 
To use this model for another area, these values will need to be reset, and the input 
maps will need to be recreated (Fig.  6.4 ).      

    6.3.6   Input 

 The interface (Fig.  6.5 ) enables users to change operation parameters and to view 
the state of the system during simulation. The map at the top right provides a 55 × 45 

  Fig. 6.4    Habitat suitability maps for gopher tortoises generated based on herbaceous density 
( top left ), woody density ( top right ), burrow density ( lower left ), and soil suitability ( lower right )       
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raster geographic information system (GIS)-type view of the system during 
simulations. Model output displays patches of woody vegetation as different shades 
of red, based on the percent cover. Similarly, areas of differing shades of green rep-
resent the percent of herbaceous vegetation within each patch. Figure  6.5  is a black 
and white illustration of these patches (black is no vegetation). Tortoises are repre-
sented as tortoise icons colored pink for females and blue for males, and size is 
based on their carapace size (which is based on age). During simulations the patches 
and tortoises can be probed to allow tracking of their individual states over time. 
Buttons on the top left of the interface can be clicked to initialize and run SimGT. 
Model parameters can be changed with the many sliders along the lower left side of 
Fig.  6.5 .    Various plots under the main map provide summary feedback during model 
runs to show the total population count, the age distribution, vegetation covers, and 
time (month and year).  

 The spatial habitat in this model can be initialized using input from digital maps 
based on a GIS or with software-based descriptions of simplifi ed habitats. In this case, 

  Fig. 6.5    Model Interface. User inputs to the left and outputs to the right       
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we used GRASS 2  GIS software to develop each of the model’s fi ve input maps. 
These GIS maps provide the required landscape description for the area of interest: 
burrows, soil, trails, percent herbaceous growth, and percent woody growth. The 
burrows map holds the total number of burrows that exist in each 60 × 60 m grid 
cell. The percent woody and herbaceous map uses integer values between 0 and 100 
to capture the percent of the land in each cell covered by woody (tree and shrub) and 
herbaceous (forbs and grasses) vegetation. This vegetation density map was created 
by processing aerial imagery with a resolution of 1 m using the unsupervised maxi-
mum likelihood classifi er i.cluster and the classifi cation program i.maxlik. The 
resulting map had 49 categories, which were visually matched to four landcover 
types: water, urban, forest, and four levels of herbaceous density. From this, a forest 
map was generated with a value of 100% assigned to cells containing forest and a 
value of 0 to those that did not. These were resampled to a 60 m cell resolution to 
generate the average forest cover. Similarly, the levels of herbaceous density were 
assigned values of 25, 50, 75, and 100% and then averaged over 60 m cells. Likewise, 
the trails map provides an integer value between 0 and 100 representing the percent 
of land covered by roads and trails. 

 Gopher tortoises prefer upland habitat types (Landers  1980 ; Auffenberg and 
Franz  1982 ; Diemer  1986  )  and they seem to respond more to physical conditions 
than to plant associations (Campbell and Christman  1982  ) . The most important 
aspect of the land itself is its ability to support the construction of burrows. 

 The soils suitability map was constructed as an index map, with values ranging 
from 0 to 100 used to indicate the value of each cell’s soils for supporting tortoise 
burrow development. This map was developed as a linear regression applied to the 
model’s independent variables for each patch, i.e., amount of a particular soil type 
passing through a 200 mesh (200 wires/in.) sieve, slope, slope aspect, and water-
shed area that drains through the patch. The dependent variables are known loca-
tions of historic tortoise burrows and a random sampling of an equal number of 
locations in the study area that represent areas where no burrows are found. A linear 
regression equation was obtained using MacAnova software (Oehlert and Bingham 
 1997  )  and applied to every location across the study area using the GRASS r.map-
calc program at a resolution of 1 m. The result was then averaged across the 60 m 
resolution map. The four resulting maps (Fig.  6.6 ) were written into ASCII fi les 
that could then be read into the NetLogo modeling environment. A grey scale is 
used in each of the images to show relative habitat suitability. Darker gray tones in 
the map correspond to higher suitability value. Gray scales represent index values 
ranging from 0 to 100 except in the burrow density map (lower left), which uses 
a data range of 0–8 burrows/60-m cell. The tortoise burrow density map is simply a 

   2   GRASS, originally an acronym for the Geographic Resources Analysis Support System, is an 
open source GIS developed starting in 1982 by the U.S. Army Construction Engineering Research 
Laboratory (USACERL), the predecessor organization of the U.S. Army Engineer Research and 
Development Center–Construction Engineering Research Laboratory (ERDC-CERL). GRASS 
is currently developed and maintained by the Open Source Geospatial Foundation (  http://www.
osgeo.org/    ).  

http://www.osgeo.org/
http://www.osgeo.org/
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count of the total number of burrows in each 60-m cell from a database developed 
in the 1990s (unpublished work performed for Fort Benning by Auburn University, 
Auburn, AL).   

    6.3.7   Submodels 

    6.3.7.1   Tortoise Development 

 In the model, each tortoise is defi ned by a set of state variables that change over the 
simulation time (Table  6.2 ) and a set of constants that can be modifi ed by the 
modeler.  

 Because tortoises have a very long lifespan, it is necessary to model a population 
over the course of a century, at least. This way it is possible to capture population 
dynamics across multiple generations. A time step of 1 month was chosen to capture 
the individual behaviors that affect a population’s viability over this time period. 

 The spatial resolution was chosen to ensure that the vast majority of tortoise 
movements do not go beyond neighboring areas in any given time step. Adult gopher 
tortoises are reported to be active only 9.2% of the time (Auffenberg and Iverson  1979  ) . 

  Fig. 6.6    Maps developed by GRASS r.mapcalc program using linear regression equation applied 
to every location across the study area          

   Table 6.2    Tortoise state 
variables   

 The length of the carapace in mm 
 F or M 
 In years, but incremented by 1/12 each month 
 Energy units used to limit dispersal efforts 
 A desire-to-move index (0–1) 
 Counts of the number of cells traversed 
 A desire to move longer distances (T/F) 
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Over the course of a year, tortoises were observed to be above ground only 0.8% of 
the time (Eubanks et al.  2003  ) . Various studies have looked at home ranges for 
tortoises during a year: 0.0002 and 1.435 ha with a mean of 0.492 ha (Mitchell 
 2005  ) , 365 ± 265 m 2  (Butler et al.  1995  ) , and 0.88 ha for males/0.31 ha for females 
(Diemer  1992  ) . Home range size appears to be inversely proportional to the density 
of herbaceous ground cover (Auffenberg and Iverson  1979  )  within suitable gopher 
tortoise habitat. The mean home range size for subadults is 0.05 and 0.01 ha for 
juveniles (Diemer  1992  ) . Based on this information, landscapes for the model were 
raster gridded with a resolution of 60 m, creating a regular array of 0.36 ha patches. 
This provided a home range area that could naturally support two to three tortoises 
and captures typical tortoise movement. 

 An initial population of tortoises is distributed across the simulation space. Using 
the Fort Benning study area, each cell that contained one or more burrows is assigned 
a single tortoise, who is given an age between 1 and 50 and a sex at random. The 
carapace length is set based on the assigned age. For graphic display purposes, a 
tortoise icon is used. Females are set to pink and males to blue. The icon size is set 
based on carapace size. When the model is initialized for a randomized landscape, a 
user-specifi ed number of tortoises are created and then are randomly assigned loca-
tions in the space until each tortoise is in an area with herbaceous cover greater than 
30%. The maximum number of tortoises that can exist in the best habitat is also set, 
but can be changed through the interface. These variables are listed in Table  6.3 .  

 Gopher tortoises are warm-weather creatures that remain in burrows during the 
months of colder weather (Butler et al.  1995 ). Activity in the model for a given month 
is based on the monthly average low and average high temperatures. Outside the bur-
row, activity only happens when the average of these temperatures are above 25°C. 

 A set of values representing monthly average conditions is stored in the model 
and can be easily changed to help localize the model. Lists contain average daily low 
and high temperatures and a relative tortoise density adjustment (Table  6.4 ). This 
information is then used for habitat suitability and tortoise activity calculations.   

    6.3.7.2   Model Simulation Dynamics 

 The model uses 1 month as its time step. At each increment, several general events 
may occur. First, the optional vegetation growth and landscape fi res are processed—
these dynamics can be turned on and off through the main interface. Then, the patch 

   Table 6.4    Weather parameters   

 Average monthly high temperature  A temperature for @ month 
 Average monthly low temperature  A temperature for @ month 
 Relative density adjust  A% value for @ month 

   Table 6.3    Initial population parameterization   

 Maximum of tortoises/ha   3.0 
 Initial number of tortoises  100 



976 Forecasting Gopher Tortoise ( Gopherus polyphemus ) Distribution…

state variables are updated including the calculation of the maximum number of 
gopher tortoises allowed. Next, incubating gopher tortoise eggs are transitioned into 
hatchlings. Finally, the gopher tortoises are allowed to migrate, grow, eat, repro-
duce, and die. Each of these steps is discussed below.  

    6.3.7.3   Growth of Vegetation 

 Gopher tortoises need ground-level access to herbaceous forage, including broad-
leaved grasses, wiregrass, legumes, and other plant materials (Cox et al.  1987  ) . In 
otherwise suitable habitat, it is the lack of suffi cient vegetation that will drive a 
population out of an area. As herbaceous cover is lost through succession to a woody 
climax forest, home ranges expand, tortoise densities drop, and eventually tortoises 
cannot be supported any longer. 

 To accommodate vegetation growth, woody and herbaceous vegetation grows 
according to the following logistic growth equation at each time step:

     = + −(1 / )P P rP P K    

where  P  is the population expressed in percent cover,  r  is the maximum growth rate, 
and  K  is the maximum cover (100%). 

 Woody growth after a density of 80% limits the maximum herbaceous growth 
linearly until it equals 0; then, woody growth is 100%. Vegetation growth can be 
turned on or off depending on experimental needs. If turned on, and without any 
process decreasing vegetation cover, the entire area turns into an uninhabitable 
forest. 

 Fires in the longleaf pine ecosystem of the southeastern USA have been an impor-
tant component in maintaining the gopher tortoise habitat. Both naturally occurring 
fi res and prescribed burning serve to eliminate woody vegetation and allow the her-
baceous vegetation to dominate when it occurs with suffi cient frequency. In many 
areas, however, fi res are routinely suppressed to protect life and property. As a result, 
an unnatural overdevelopment of the forest canopy occurs, and gopher tortoise habi-
tat quality suffers. In a study of areas subject to prescribed burning compared with 
others existing under a policy of fi re suppression, tortoise densities were measured 
to be three times greater in the burned areas (Landers and Buckner  1981  )  than the 
unburned. We sought to emulate these fi re characteristics in the model. 

 In the model user interface, four fi re-related variables can be set. The lightning-
strikes-per-year-per-hectare variable is used to set the random frequency of fi re 
starts and a burn-probability value establishes the potential for fi re to spread from 
cell to cell. Then, there are two variables that set the percent herbaceous and woody 
vegetation cover that is lost to each fi re. Vegetation growth and fi res occur once 
every 12 months and establish ever-changing random patches that mainly remove 
woody vegetation. 

 The simplest assumption to model is that the current landscape pattern of vegeta-
tion will be maintained through human activities. Optionally, vegetation growth could 
be turned on and vegetation-control efforts could be scheduled and simulated.  
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    6.3.7.4   Set Tortoise Carrying Capacity 

 The next step in the monthly simulation is to establish the current tortoise carrying 
capacity for each cell on the simulated landscape. For this model, each tortoise is 
associated with a home-range centroid that is attached to a patch. Behavior rules 
allow each tortoise to relocate that centroid to a neighboring patch each month. The 
attractiveness of each patch is computed based on vegetation density, tortoise density, 
and seasonality (which adjusts the food value of the vegetation). The attractiveness is 
computed as a maximum density value. If the 0.36 ha patch has more tortoises than 
the maximum, tortoises leave, beginning with the youngest/smallest, until the maxi-
mum density is reached. This only occurs during months when tortoises are active. 

 In the model the number of tortoises that could be added to each cell is calculated 
as follows. The user-set maximum-tortoise-per-acre variable (Table  6.3 ) is multi-
plied times the monthly relative-density-adjust value (Table  6.4 ) and by a vegetation 
index based on the percent herbaceous cover. The last value ranges between 0 (for a 
percent herbaceous cover  £ 20%) and 1 (for a percent cover  ³ 80%). This value times 
the number of hectares per cell gives the current tortoise carrying capacity. The dif-
ference between that value and the current tortoise population gives the number of 
tortoises that could be added to the cell.  

    6.3.7.5   Process Eggs and Hatchlings 

 The process of egg production and survival through the hatchling year all takes 
place in a relatively small area. For this model, the most important factor is the sur-
vival of eggs to the juvenile stage. That is reported as 94.2% (Alford  1980  )  and 
92.3% (Witz et al.  1991  ) . Hatchlings range from 1.8 to 24.2 m away from the nest 
with an average distance of 8.3 m (McRae et al.  1981  ) . Therefore, eggs and hatch-
lings are modeled as a whole with progression to the juvenile stage occurring after 
a year, based on an overall survival rate that can be set by the user. The number of 
eggs and hatchlings is stored as a variable associated with patches; they are not 
treated as individual entities, which is possible because they do not move out of 
their 0.36 ha patch during that time. In month 4 (April), those that survive are initial-
ized as model agents (i.e., mobile individual tortoises).  

    6.3.7.6   Tortoise Movement 

 Gopher tortoises prefer to remain close to their burrows. One study discovered that 
female feeding takes place within 17 m of the current burrow and the average radius 
of feeding areas is 11.9 m (Smith  1995  ) . In another study it was found that 95% of 
all feeding activity took place within 30 m of the active burrow with an average of 
only 13 m (McRae et al.  1981  ) . 

 Tortoise motivation to relocate is not well understood, but some clues have been 
published. Home range sizes vary considerably. For example, Smith measured 
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ranges from 0.002 to 1.435 ha (Smith  1995  )  over 500 days. Tortoises relocate even 
from suitable habitat, moving over 0.45 ha in favorable conditions (McRae et al. 
 1981  ) . Additionally, there may be movement from xerophytic summer areas to 
mesophytic lowlands in winter (McRae et al.  1981 ; Means  1982 ; Breininger et al. 
 1988  ) . It has also been suggested that home range size may double or triple in the 
late summer and fall compared with spring sizes (Auffenberg and Iverson  1979 ; 
McRae et al.  1981 ). This increase may be based on variation in seasonal vegetation 
density, which is lower in summer and fall than in spring; and seasonal migration to 
and from overwintering areas (McRae et al.  1981  ) . 

 In this model, tortoises can move to neighboring cells if the average low 
temperature for that month is greater than 50°F. Dispersal only happens when the 
total number of tortoises in a cell is greater than the previously calculated capacity 
for the cell for that month. Required dispersal begins with the smallest tortoises and 
continues until no patch is overpopulated.  

    6.3.7.7   Tortoise Migration 

 For the purposes of this model, dispersing tortoises are those that move just far enough 
to avoid overpopulation and migrating tortoises are those that travel farther than 
needed to avoid overpopulation. There is little information in the literature reporting 
the migration success rates, but there is strong evidence for the occasional migrating 
tortoise. In the Eubanks et al. study  (  2003  ) , two surviving tortoises were considered 
emigrants from the study site. Both were males and moved signifi cant distances 
(4.8 and 6.4 km) from the study site before settling. In another study a migrating 
subadult was tracked 0.74 km (Diemer  1992  ) . None of the authors report any particu-
lar motivations for these dramatic moves in an otherwise sessile population. To 
accommodate for these fi ndings in the model, some percentages of adult tortoises 
each year (e.g., 2%) are given an extra motivation to migrate. For the active periods 
of the year, assuming they have enough energy stored, they move up to 800 m.  

    6.3.7.8   Tortoise Growth 

 The model provides a user selected eggs per female variable and a frequency of 
female egg laying variable. In the model, these are applied to each female based on 
carapace length, which is based on age as follows. The CL is set to an initial value 
for a yearling juvenile and increases each year according to the following equation:

     + = + −1 max(1 / )t t tC C R C C    

where  C  is the carapace length and  R  is the initial rate of growth. 
 The initial CL, initial CL growth rate, and maximum CL are user settable vari-

ables that default to 10, 20, and 380 cm, respectively. The probability of a female 
nesting in any given year and the number of eggs per nest are also user settable with 
default values of 60% and 6 eggs respectively   .  
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    6.3.7.9   Tortoise Feeding 

 As a poikilotherm, the gopher tortoise has very low caloric requirements, but if 
caught in a developing deep forest it can conceivably starve to death, or succumb to 
disease when weak. No energetics information has been located in the literature that 
describes the caloric cost of various behaviors (e.g., foraging, burrow digging, trav-
eling) and the caloric benefi t of feeding. Unfortunately, without caloric costs and 
benefi ts of various activities, there is little hard data to help build a PVA. Because 
tortoises can ingest so many different materials, our modeling effort assumes that 
(1) tortoises will not starve, (2) tortoises caught in unsuitable habitat will continue 
moving until suitable habitat is found, and (3) the movement of younger/smaller 
tortoises from overpopulated areas will capture the food competition activity. In the 
model, every month in which the average low temperature is above 50°F, each 
tortoise’s energy reserve level is increased by 0.5, up to a maximum of 5.0. (These 
numbers represent unitless values on a scale of 0–5 that indicate the size of a 
tortoise’s energy reserves.) (Table  6.5 ).      

    6.3.7.10   Tortoise Reproduction 

 Gopher tortoises reach sexual maturity relatively late. For the purposes of this 
model, 10 years was used as the age at which tortoises begin to reproduce. Once 
mature, males compete for females. Larger males tend to dominate the breeding 
game and fertilize the majority of clutches by winning aggressive encounters with 
smaller males (Moon et al.  2006  ) . They also mate with several females (Douglass 
 1976 ; Epperson  2003  ) . Clutches generated by larger females tend to be sired by a 
single male, while smaller females have clutches sired by multiple males (Moon 
et al.  2006  ) . In one study, 28.6% of clutches showed multiple paternity (Colson-
Moon  2003  ) . Breeding can begin as early as February (Dietlein and Franz  1979  )  and 
may extend into September. 

 Perhaps the most thoroughly studied aspect of the gopher tortoise is the number 
of eggs laid in a nest. Reported mean clutch sizes are 4.8 (Yager et al.  2006  ) , about 
6 (Diemer  1986  ) , 3–11 (Dietlein and Franz  1979  ) , 9 in southern Florida (Iverson 
 1980  ) , 4.8 at Camp Shelby (Epperson  2003  ) , 5.76 (Smith  1995  ) , 6–7 in southwest 
Georgia (Landers  1980  ) , 4–6 in north central Florida (Iverson  1980 ; Diemer  1986  ) , 
and 5.4 in Duval County (Butler et al.  1996  ) . In general, the number of eggs laid 
seems to vary across regions and states, but is associated with carapace length 

   Table 6.5    Tortoise growth parameters   

 Minimum carapace length of juveniles  50 mm 
 Growth rate  20 mm/year 
 Maximum carapace size for females  330 mm 
 Maximum carapace size for males  310 mm 
 Age at which a hatchling becomes a juvenile  1 year 
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(Iverson  1980 ; Landers et al.  1980 ;    Diemer and Moore  1994 ; Rostal and Douglas  
 2002 ; Colson-Moon  2003  ) . 

 Fifty-fi ve percent of females were gravid each year in Central Florida (Colson-
Moon  2003  )  and elsewhere it was reported that females lay eggs 2 out of every 
3 years (Lohoefener and Lohmeier  1981  ) . In the model, 60% of female tortoises lay 
eggs each year. 

 The parameters listed in Table  6.6  are used to add to the number of eggs/juve-
niles in each patch as follows. In month 4 (April) females between the minimum 
and maximum reproduction ages are nominated to lay eggs. A random number is 
generated for each female between 0 and 100, and those with a number less than the 
egg-laying probability lay eggs at the egg-laying rate.   

    6.3.7.11   Tortoise Death 

 Tortoises may die because they have exhausted energy reserves or they are ran-
domly unlucky based on parameters listed in Table  6.7 . The probabilities of death 
are adjusted from annual values to monthly values and applied each month.     

    6.4   Simulation Experiments 

    6.4.1   Simple Circular Habitat Experiment 

 An expectation of individual-based modeling is that behaviors and responses of 
populations will emerge. This fi rst experiment seeks to compare model outputs with 
snapshot measurements in the fi eld of populations that have survived and potentially 
stabilized in relatively consistent environmental conditions. In this experiment, 

   Table 6.6    Tortoise reproduction parameters   

 Parameter  Value 

 Age at which a tortoise becomes reproductive  10 years 
 Age at which a tortoise is no longer productive  40 years 
 Eggs laid per female   6 
 Probability of female egg-laying  60%/year 

   Table 6.7    Tortoise survival parameters   

 Minimum juvenile age   1 
 Minimum adult age  10 
 Minimum senior age  40 
 Egg-to-juvenile survival   5% 
 Probability of juvenile death   5%/year 
 Probability of adult death   1%/year 
 Probability of senior death  20%/year 
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there is a central 163 ha circle of excellent habitat (80% herbaceous and 0% woody 
vegetation) surrounded by forest (100% woody and 0% herbaceous). 

 Wildfi res and vegetation growth are turned off for this simulation. A view of the 
simulation at initialization is displayed in the left image in Fig.  6.6 . The herbaceous 
area is the green center section and the surrounding forest is in red. All initial tor-
toises are randomly located in the herbaceous area. By the 163rd year of the simula-
tion, the maximum density is reached and the young tortoises are being displaced 
into the surrounding forest (right image in Fig.  6.6 ). There, the individual tortoises 
die after several months as a result of being forced to exist without food. This com-
pletes the feedback loop that results in a population logistic growth curve (Fig.  6.7 ). 
Note that the population in this experiment overshoots an overall carrying capacity 
and oscillates around about 750 adults and juveniles.   

    6.4.2   Model Application 

 The SimGT model was initialized with prepared maps and resulted in the image in 
Fig.  6.8 . Herbaceous and woody index values were used as vegetation (percentage) 
densities. The cells measure 60 × 60 m, resulting in a monthly home range of 0.36 ha. 
The amount of woody vegetation is represented by intensities of red ranging from 
black to bright red, and herbaceous vegetation is similarly represented in shades of 
green. The area is populated with gopher tortoises at a density of one per burrow, 
and the tortoises are assigned random ages and genders. The model parameters 
remain set to those discussed in Sect.  6.3.2 . Vegetation growth and random wild 
fi res are turned off to represent land management that will maintain the status quo. 

  Fig. 6.7    Population logistic growth curve       
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For this model, the “world” ends at the boundaries and does not wrap east–west and 
north–south as is often done to avoid edge effects.  

 The model was run 100 times, each for a 100-year simulation (Fig.  6.9 ). Note 
that the vegetation did not change over the simulation time (no growth or loss by 
fi re). In all cases the overall population persisted in the area, but at the end of the 
100 years different subareas experienced loss of tortoises, while others developed a 
local population. Sample 100-year simulations of this model are presented in 
Fig.  6.9 . The resulting patterns of gopher tortoise settlement are presented for each 
of three consecutive simulation runs (top two and bottom left images). Note that 
these patterns can be quite different—simply because of the random movement of 
migrating individuals. Areas B, D, and F show consistent expectation of persistence 
of tortoises and may be categorized as source or refugia areas. Areas A, C, and E 
range from few/no individuals to signifi cant populations during different simulations. 
Semi-isolated areas like G show no settlement after 100 years in these simula-
tions, but occasionally they can be colonized. With nearly identical starting points 
(only the age and sex of initial individuals are different) and identically constant 
boundary conditions, the spatial distribution of the population can be substantially 
different. Such results match fi eld experiences of inexplicable changes in popula-
tion patterns of distribution. The bottom right image in Fig.  6.9  summarizes the 
results of 100 runs of the model and indicates the average number of tortoises 

  Fig. 6.8    A snapshot of the model display showing darker male tortoises (blue when running the 
model) and lighter female tortoises (pink in the model). The large contiguous darker areas are 
higher-density trees. Tortoises are clustered in open areas with low tree cover. When running 
the model, patches are colored in darker greens with increased tree density and darker orange with 
increased herbaceous density          
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occurring in each location after 100 years. The results range from an average of 0 
tortoises (white) to 1.44 tortoises (black).  

 This analysis could assist in land management decisions. For example, areas B, 
C, and D clearly remain the best areas for ensuring a viable population. Areas A, E, 
F, and G provide potential for enhancing the population, but do not ensure natural 
population persistence as modeled. Future losses of tortoises in these areas should 
be viewed as natural, and the areas could be recolonized by tortoises from the B, C, 
and/or D core areas.   

    6.5   Discussion 

 This work investigated whether a spatially explicit population viability model can be 
built for a species whose population dynamics have been studied very little but 
the behavior of individuals has been studied in detail. Much of the literature falls 
into two categories: short-term studies on individual behaviors and snapshots of 

  Fig. 6.9    Sample 100-year simulations. Individual simulation results after 100 years ( a – c ) and a 
summary of 100 runs ( d ), where the darker the cell, the more frequent the cell contained one or 
more tortoises at simulation end       
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population structure and distribution. We have shown that there is suffi cient 
published information about the gopher tortoise to develop a spatially explicit 
individual-based simulation model that could help guide the development of land 
management plans. In this model, tortoise agents are programmed with behaviors 
that move them among adjacent home ranges based on habitat suitability, average 
monthly air temperature, and tortoise density. To allow natural settlement of suitable 
habitat, unoccupied areas must be virtually contiguous with already populated areas. 
This contiguity must be maintained over decades with appropriate management to 
ensure the duplication of the historic effects of wildfi res. This information and the 
model can be used to compare the utility of alternative tortoise reserve plans. 

 The current model contains only a rudimentary representation of the effect of 
military training activities on tortoise densities. More published research on the 
effects of training—and associated maps of training intensity and types—would 
help the model respond appropriately to military land management alternatives. 
Also, more research is required to understand the motivations and strategies of tor-
toise dispersal and settlement—i.e., how far a tortoise can and will travel when 
dispersing. Another needed area of research is gopher tortoise dispersal triggers. We 
do not know how permeable different habitat types are to tortoises or what strategies 
tortoises use to optimize the probability of fi nding suitable habitat.  

    6.6   Conclusion 

 Models are abstractions of the real world and are best developed to answer specifi c 
questions. Much of the cited gopher tortoise literature describes the behavior of 
individual tortoises or demographic characteristics of tortoise populations. This 
study demonstrated the utility of this information in the development of a compre-
hensive description of tortoise behavior in the form of a spatially explicit simulation 
model that allows forecasts of the long-term viability of tortoise populations. 

 SimGT could easily be applied to other areas at or around Fort Benning, as well 
as other areas in the southeastern USA by developing the required input maps. The 
model will remain available to any interested parties as open source by contacting 
the authors.      
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    7.1   Background 

 One of the challenges with conserving rare species is identifying the most effective 
management targets; that is, the demographic traits most likely to positively infl u-
ence population persistence through either manipulation of the habitat or the wild-
life population. Furthermore, these targets should represent the most effi cient use of 
limited resources, especially given that resource managers need to balance multiple, 
often complex issues (Reed et al.  2009  ) . Population models can often aid managers 
in this process, and such models are frequently used to rank relative threats to spe-
cifi c populations, evaluate effects of proposed management actions or regulations, 
determine which demographic or ecological variables have greatest infl uence on 
extinction risk, and identify information gaps and research priorities (Tuberville 
et al.  2009  and references therein). 

 Population viability analysis (PVA) models represent a traditional modeling 
approach that has been used to support management decision-making for both game 
and nongame species. Unfortunately, robust PVA models require extensive 
 population-level data for accurately estimating demographic parameters. Developing 
PVAs for rare species can be diffi cult, therefore, because complete life history 
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 information and long-term population trend data often are not available. For many 
rare species, however, detailed information is known about their natural history and 
the behavior of individuals, including how they interact with each other and the 
landscape and how they respond to environmental cues. For these species, individual-
based models (IBMs) may be more appropriate than PVA models for performing 
demographic sensitivity analysis; IBMs have the added advantage of imposing a 
spatially explicit landscape context. 

 The gopher tortoise ( Gopherus polyphemus ) is an example of a species whose 
life history data are incomplete, but whose natural history and individual behavior 
are well characterized. This species is considered to be declining throughout its 
range (Smith et al.  2006  ) . It is federally listed as threatened in the western portion 
of its range (USFWS  1987  )  and is currently under consideration for listing through-
out the remainder of its range (USFWS  2009  ) . Gopher tortoise populations occur on 
many military installations throughout the southeastern USA (Wilson et al.  1997  )  
and the species has been identifi ed for management under the Army’s Species at 
Risk (SAR) program. The SAR program seeks to develop proactive management 
strategies to ensure long-term viability of imperiled species that currently reside on 
military installations (NatureServe  2004  ) . 

 Fort Stewart is the largest Army installation within the range of the gopher tor-
toise (Fig.  7.1 ). Given the current and anticipated increase in training demands at 
Fort Stewart—in terms of both intensity and spatial extent—resource managers are 
challenged to maintain viable populations of rare species within a limited or even 
diminishing footprint. One of the most practical ways to address this challenge is by 
improving demographic conditions for “at-risk” species through improvement of 
their existing habitat. Population models, used with demographic sensitivity analysis 

  Fig. 7.1    Location of Fort Stewart Army installation ( dot ) within geographic range of the gopher 
tortoise ( shaded area )       
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in particular, can help to determine the extent that habitat management alone can 
infl uence demographic parameters of rare species (such as the gopher tortoise) so 
that their abundance and likelihood of persistence will increase.   

    7.2   Objectives 

 As previously stated, IBMs and PVA models are both techniques that have been 
employed for developing long-term species management strategies. Although the 
two techniques have similar capabilities, some of the fi ner details can vary signifi -
cantly. These variable details include the type of data required to develop the mod-
els, how scenarios are simulated, and the format and ways in which output data can 
be applied. A comparison of these two techniques can provide insight into which 
method is more sensitive to changes in parameter estimates and how a spatially 
explicit context may affect model results. Furthermore, as the SAR program and 
other management initiatives rely increasingly on predictive models, the use of mul-
tiple theoretical approaches can buffer the biases that are inherent in any one par-
ticular model. Eliminating biases will lend stronger support to management 
recommendations based on results from such models. 

 Our research objectives are listed here.

    1.    Develop a spatially explicit IBM to predict population-level dynamics that refl ect 
the current understanding of the life history of the gopher tortoise. The IBM 
would simulate the collective behavior of individuals across multiple popula-
tions at Fort Stewart.  

    2.    Conduct demographic sensitivity analysis of the developed IBM by comparing 
model output among simulations with different values for select demographic 
parameters.  

    3.    Compare demographic sensitivity analysis results from the IBM to sensitivity 
analysis results from a traditional PVA.  

    4.    Identify gopher tortoise life history parameters that may be amenable to manipu-
lation via habitat management or that need additional research at Fort Stewart.      

    7.3   Model Description 

 NetLogo 4.0.4 (Wilensky  1999  )  was chosen for development of the IBM. 1  Vortex 
software (version 9.7) was used to generate the PVA and to help validate the IBM. 
NetLogo provides an accessible programming environment to support spatially 
explicit IBM simulation modeling (Wilensky  1999  ) . Vortex is a population-based 
ecological modeling system (Lindenmayer et al.  1995  ) . It captures dynamics of age-
specifi c cohorts with respect to survival and reproduction statistics, and it also gen-
erates probabilities of metapopulation survival over time. 

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com
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    7.3.1   Purpose 

 Our purpose was to assess the demographic factors most likely to infl uence persis-
tence and abundance of gopher tortoises across Fort Stewart’s range lands. However, 
the most infl uential (i.e., “sensitive”) parameters were not necessarily the ones most 
amenable to manipulation, but some demographic traits were known to be infl u-
enced by habitat quality and thus could potentially serve as management targets. 
Ultimately, the purpose of the model was to guide management of gopher tortoises 
at the installation level by determining whether current habitat conditions and man-
agement practices would be likely to ensure the species’ continued persistence on 
the installation, and if not, to evaluate whether increased habitat manipulation would 
be likely to infl uence demographic parameters suffi ciently to improve overall spe-
cies viability.  

    7.3.2   State Variables and Scales 

    7.3.2.1   Spatial and Temporal Scale 

 The spatial extent of the model’s landscape is Fort Stewart (Fig.  7.2 ) which is the 
largest Army installation east of the Mississippi River (113,090 ha or approximately 
54 × 30 km). Each patch in our model corresponded to a 150 × 150 m (2.25 ha) area. 
This size was large enough to allow us to model across the entire Fort Stewart 

  Fig. 7.2    Map of Fort Stewart lands, depicting data layers used in individual-based model (IBM). 
 Grayscale shading  corresponds to estimated carrying capacity (with  darker shading  for higher 
carrying capacity and  white  for unsuitable patches). Gopher Tortoise Management Areas (GTMAs) 
are shown as  polygons  with  solid boundaries  and indicate the known concentrations of gopher 
tortoises. Army ranges are delineated with  double dashed lines        
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landscape and for each patch to support more than one tortoise, yet not so large as 
to preclude movement among patches by individual tortoises during their lifetime. 
Each time step in the model represented 1 month to allow movement of individual 
tortoises between patches and to capture seasonal differences in movement proba-
bility (active vs. inactive season). Data were output from the model at 20-year inter-
vals over the course of 100-year simulations.   

    7.3.2.2   Patch Variables 

 The primary patch variable was carrying capacity which is the number of adult tor-
toises each patch is predicted to support based on the soils and canopy cover within 
the patch (see Sect.  7.3.6 ). In this context, carrying capacity serves as a proxy for 
habitat quality. Gopher tortoises prefer deep sandy soils in which to burrow, and soil 
types have been previously classifi ed as to their suitability for gopher tortoises 
(McDearman  1995 ; Hermann et al.  2002  ) . In addition, burrow densities (and pre-
sumably tortoise densities) have been documented as varying with soil suitability 
(   Jones and Dorr  2004  ) . Canopy cover also has been shown to exert a strong infl u-
ence on habitat selection by tortoises and thus is an important component of habitat 
carrying capacity (Aresco and Guyer  1999 ; Jones and Dorr  2004 ; Tuberville et al. 
 2007  ) . 

 Patches also were characterized by whether a certain percentage of their area was 
comprised of the following features: (a) wetlands which serve as barriers to move-
ment by tortoises, (b) active fi ring ranges and tank maneuver areas (hereafter 
referred to collectively as ranges) many of which are inaccessible and therefore 
have not been surveyed or do not have the potential for future gopher tortoise man-
agement due to this inaccessibility, and (c) Gopher Tortoise Management Areas 
(GTMAs) which correspond to delineated areas on Fort Stewart known to support 
concentrations of gopher tortoises (see Fig.  7.2  for ranges and GTMAs). The num-
ber of successful recruits (egg-to-juvenile stage) also was a patch variable which 
was based on the number of females that occupied each patch, the probability that a 
particular female reproduced in that year, and clutch size (which was affected by 
patch quality).  

    7.3.2.3   Individual (Agent) Variables 

 Agent-based variables were selected and parameterized to represent demographic 
traits associated with individual gopher tortoises. Individuals were classifi ed as one 
of two types of agents (juveniles and adults) that behaved differently in the model. 
Mortality probability, dispersal probability, and dispersal distance varied between 
juveniles and adults. Juveniles graduated to adult status at age 15 years. Default 
parameter values were based on published values for gopher tortoises from Fort 
Stewart or the southeastern Georgia region when possible, or from data collected 
elsewhere in the species’ range (Table  7.1 ). When published data were not available 



114 T.D. Tuberville et al.

   Table 7.1    Individual parameters in the gopher tortoise model, their default values, and additional 
values tested to evaluate demographic sensitivity   
 Demographic 
parameter  Default 

 Other parameter 
values tested  References 

 Longevity  100  60, 70, 80, 90  Miller et al.  (  2001  )  
 Age of sexual maturity 

(years) 
  15  None 

 Mortality probability (annual) a  
 Egg stage to age 1 

(combined egg and 
hatchling mortality) 

 92  90, 91, 93, 94, 
95, 96 

 Alford  (  1980  ) , Landers et al.  (  1980  ) , Pike 
and Seigel  (  2006  ) , Tuberville et al. 
 (  2009  )  

 Juvenile  13.5  9, 18, 22.5, 27  Modifi ed from Tuberville et al.  (  2009  )  
 Adult  1.5  3, 6, 9, 12  Ashton and Burke  (  2007  ) , Tuberville et al. 

 (  2008  ) , Guyer (unpublished data) 

 Dispersal probability (annual) b  
 Juvenile  10  None 
 Adult   2  None  Eubanks et al.  (  2003  )  

 Reproduction 
 Average clutch size c    6  4, 5, 7, 8  Rostal and Jones  (  2002  ) , Mitchell  (  2005  )  
 Proportion of females 

breeding (%) 
 80  60, 70, 90, 100  Rostal and Jones  (  2002  ) , Mitchell  (  2005  )  

 Sex ratio of clutch  0.5  None 

  Tested values are based on the references provided 
  a  Annual mortality rates were converted to monthly mortality rates in NetLogo, assuming mortality 
could occur with equal probability in any month of the year including when tortoises are relatively 
inactive 
  b  Annual dispersal rates were converted to monthly dispersal rates, assuming dispersal occurred 
with equal probability in any month in which movement by tortoises is likely to occur (April–
October in this model) 
  c  For any given simulation, average clutch size also varies with habitat suitability, as specifi ed in 
the reproduction submodel  

for a particular parameter, default values were chosen based on values used in previ-
ous demographic models developed for gopher tortoises (Miller et al.  2001 ; 
Tuberville et al.  2009  ) . Additional parameter values were tested to investigate model 
sensitivity by manipulating a single variable at a time and then comparing model 
results.    

    7.3.3   Process Overview and Scheduling 

 This model proceeded in monthly time steps for the duration of the 100-year simula-
tions. Although 100 years may only represent at most three tortoise generations, our 
objectives relied on testing a timeframe more realistic to land and wildlife manage-
ment goals. Based primarily on life history data available for the species in the 
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literature, our model specifi ed that the following processes (see also Sect.  7.3.7 ) occur 
each year during the month(s) indicated. An individual can disperse from or be evicted 
from its patch and attempt to relocate to another patch (April–October), assess the 
relative quality of its patch compared to surrounding patches (May) (see    Sect.  7.3.7.2 ), 
reproduce (June), age (December), and die (January–December). In addition, mortal-
ity in the fi rst year of life (egg stage-to-age 1) occurred in September.  

    7.3.4   Design Concepts 

    7.3.4.1   Emergence 

 The life cycle and behaviors of individuals were explicitly modeled through simple 
empirical rules governing the processes of mortality, reproduction, dispersal, and 
movement between patches. Population dynamics emerged from the collective 
behavior of individuals in the landscape. Emergent population dynamics included 
total population size, change in population size over the course of the simulation, 
and probability of extinction. In addition, population regulation emerged through 
the interaction between agents and patches; when the number of adult tortoises 
within a patch exceeded the patch’s carrying capacity, the youngest adult tortoise 
was forced to move from the patch until the number of adult tortoises inside in patch 
was at or below carrying capacity.  

    7.3.4.2   Adaptation and Fitness 

 In the NetLogo model, each tortoise annually (in May) assessed the carrying capac-
ity of its current patch relative to the eight neighboring patches. It then moved to (or 
remained in) the patch with the highest carrying capacity as long as the patch had 
space available (i.e., carrying capacity [number of adults in patch] > 0). Suffi cient 
differences in carrying capacity (a proxy for habitat quality) between patches trans-
lated into differences in clutch size (Ashton et al.  2007  ) . Finally, tortoises were 
allowed to move during any month of the activity season (April–October), but if 
they were not able to fi nd a suitable patch with space available by the end of the 
activity season, they were forced to die in November. Thus, adaptation and fi tness 
seeking were not explicitly modeled but resulted from the empirical rules governing 
individual behavior.  

    7.3.4.3   Sensing 

 Individual tortoises were able to sense the quality of their current and neighboring 
patches, and then behaved according to the movement, mortality, and reproductive 
rules specifi ed for their individual sex and life stage in the model.  
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    7.3.4.4   Interaction 

 The only interaction assumed to occur in the model was when carrying capacity was 
exceeded, the youngest adult was evicted from the patch and forced to search for 
another suitable patch with space available.  

    7.3.4.5   Stochasticity 

 The primary demographic and behavioral parameters including dispersal, mortality, 
and reproduction were interpreted as probabilistic processes. This approach was 
chosen because the default parameter values used in the model were based on pop-
ulation-level data from the literature and because we were interested in emergent 
population-level phenomena. Randomization was incorporated into the model dur-
ing initialization of tortoises at the start of each simulation with sex, age, and loca-
tion being assigned randomly according to the criteria described in Sect.  7.3.5 . For 
each parameter combination (scenario), we ran 100 replicate simulations from 
which we calculated means from the response variables that were output from the 
model. Temporal environmental stochasticity (biotic or abiotic) was not incorpo-
rated into the model due to high levels of uncertainty that would confound assess-
ments of demographic sensitivity.  

    7.3.4.6   Observation 

 We were interested in population-level variables such as the change in population 
size over course of the simulation and the probability of extinction. As part of model 
verifi cation (sensu Rykiel  1996  ) , during simulation runs the user interface plotted 
the tortoise population (juvenile, adult, total), tortoise density (overall and in suit-
able habitat only), and age distribution of the population. User-interface plots can be 
updated at each time step, or as with our models, updated annually in the time step 
corresponding to the month of reproduction (June) so that we could monitor popula-
tion trends during simulations.   

    7.3.5   Initialization 

 The initial population size (3,000 tortoises) was based on an installation-wide sur-
vey for gopher tortoises conducted in 2009 (Macey, unpublished data), using the 
line transect, distance-sampling protocol described in Smith et al.  (  2009b  ) . Because 
survey effort focused on those GTMAs that could be accessed by installation bio-
logists, tortoises in the model were randomly placed among patches that were within 
GTMAs but outside of Fort Stewart’s ranges. Although initial tortoise placement 
was restricted to outside the ranges, tortoises were allowed to subsequently move 
through ranges. Placement of tortoises in the landscape also was constrained by the 
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model such that total number of tortoises populating a given patch was less than or 
equal to the carrying capacity of the patch. Finally, age and sex were randomly 
assigned to individuals such that the overall tortoise population had a 1:1 sex ratio 
and a normal adult age distribution with mean age of 30 years.  

    7.3.6   Input 

 The model inputs were raster and vector geographic information system (GIS) maps 
developed using the GRASS GIS (  http://grass.itc.it    ). Raster maps were used to ini-
tialize patch variables and vector maps were used for visualization purposes. Raster 
maps included carrying capacity (generated from soils and canopy cover maps), 
wetlands, GTMAs, ranges, and study area boundaries. Vector maps included roads, 
streams, GTMAs, ranges, and study area boundaries. The primary model input was 
projected carrying capacity which was used as a proxy for habitat quality. To esti-
mate the carrying capacity of each patch for gopher tortoises, we fi rst generated a 
soils suitability map and a tree basal area map for Fort Stewart. The soils suitability 
map was created by reclassifying the Fort Stewart soils map previously digitized 
from 1:20,000 scale county soil survey maps published by the U.S. Department of 
Agriculture (USDA) Soil Conservation Service (SCS). Soils were reclassifi ed as 
marginal, suitable, or priority soils based on established criteria (McDearman  1995 ; 
Guyer, Johnson, and Herman (unpublished data)). 

 Basal area was derived from the 2001 Gap Analysis Program (GAP) canopy 
cover map developed by the Multi-Resolution Land Characteristics (MRLC) 
Consortium (  http://www.mrlc.gov/multizone_download.php?zone=14    ) using ( 7.1 ) 
reported for Michigan oak and pine stands (Buckley et al.  1999  ) . We used average 
oak and pine canopy cover estimates from GAP maps for the Fort Stewart area to 
generate a basal area map for the installation, with resolution of 30 m and basal area 
output in units of square meters per hectare.

     

= +
= +

Oak stand basal area [(canopy cover 1.25) /15.5]

Pine stand basal area [(canopy cover 2.91) /12.14]    
(7.1)

   

 In addition, a carrying capacity map with 30-m resolution was generated from 
the soils suitability map and the derived basal area map by using the formulas in 
( 7.2 ), taken from Guyer, Johnson, and Herman (unpublished data).

     

“Priority” soils 9.7 tortoises/ha *[100 (1.43*basal area)] /100

“Suitable” soils 2.9 tortoises/ha *[100 (1.43*basal area)] /100

“Marginal” soils 1.2 tortoises/ha *[100 (1.43*basal area)] /100

= −
= −
= −   

 (7.2)

   

    The 30-m resolution carrying capacity map was resampled at 150 × 150-m 
resolution to create the fi nal projected carrying capacity used as input in the model. 
Vector maps of the installation boundary, GTMAs, ranges, and wetlands were 
converted to 30-m resolution raster maps and similarly resampled to create input 
maps with a 150 × 150-m resolution. 

http://grass.itc.it
http://www.mrlc.gov/multizone_download.php?zone=14
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 Throughout the model, we assumed carrying capacity related only to the number 
of adult tortoises in a patch. Juvenile tortoises and their burrows routinely are under-
estimated when using standard survey methods, due to their small size and cryptic 
appearance (Smith et al.  2009a ; Tuberville and Dorcas  2001  ) . In addition, habitat 
quality and social factors are both likely to infl uence the carrying capacity of a 
patch, with the latter factor presumably more likely to affect adults than juveniles. 
Therefore, the carrying capacity input map was used both in initializing tortoises in 
patches at the start of each simulation and in dictating eviction of the youngest adult 
tortoises from patches when carrying capacity was exceeded during the simulation. 

 Finally, a habitat class map was derived by categorizing individual patches in the 
carrying capacity map into the following habitat quality classes based on projected 
tortoise densities per hectare: habitats were classifi ed as unsuitable (<0.5 tortoises/
ha), low (0.5–2.9), moderate (3.0–5.0), and high quality ( ³ 5). The habitat class map 
was used to apply reproductive penalties (reduced clutch sizes) to tortoises occupy-
ing lower-quality habitat patches (Ashton et al.  2007  ) .  

    7.3.7   Submodels 

    7.3.7.1   Eviction from Patch 

 Adult tortoises were forced to move from their patch when carrying capacity within 
the patch was exceeded. The model evicted the youngest adult until the patch was 
again at or below carrying capacity. Once a tortoise was forced to leave a patch, the 
individual assessed the immediately surrounding eight patches and moved to the 
patch with the greatest space available (i.e., the greatest difference between carrying 
capacity and number of adult tortoises currently occupying the patch). If none of the 
neighboring cells had space available, the evicted tortoises moved to a randomly 
selected neighboring patch and continued to search for available space. The evicted 
tortoise could make up to eight attempts to fi nd space available in neighboring 
patches per monthly time step, corresponding to a maximum cumulative movement 
distance of 1.2 km/month. The only additional constraint on movement in the evic-
tion submodel was that tortoises, although allowed to move through ranges, could 
not move through patches that were classifi ed as wetland. Eviction and the resulting 
search for patches with available space could occur in any month in which tortoise 
movement occurs (April–October).  

    7.3.7.2   Search for Better Habitat 

 Once per year, tortoises had the opportunity to relocate to better habitat. Every May, 
each individual assessed whether any of the neighboring patches had space available 
and then compared the habitat quality (i.e., carrying capacity) of those neighboring 
patches relative to its current patch. If habitat quality was highest in its current 
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patch, the individual remained in the patch. If habitat quality was higher in one or 
more neighboring patches with space available, it would relocate to the neighboring 
patch with the highest habitat quality. Habitat quality (i.e., carrying capacity) was 
maintained as a static feature in our model based on the presumption that current 
habitat management efforts for gopher tortoises would continue and because tor-
toises in our model were ejected from a patch when carrying capacity was exceeded, 
thereby preventing resource depletion. Thus, as long as an individual did not move 
from its patch, an individual’s associated habitat quality did not change during 
model simulations. However, other factors in our model elicited movement among 
patches by tortoises. This submodel provided tortoises the opportunity to respond to 
a heterogeneous landscape by moving among patches based on habitat quality and 
resource availability. In reality, gopher tortoises may elect to search for better habi-
tat in any month during the active season. However, to signifi cantly reduce simula-
tion run time, we constrained the model so that this behavior was only allowed to 
occur in 1 month (May).  

    7.3.7.3   Dispersal 

 Gopher tortoises in high-quality habitat have small home ranges generally defi ned 
as 1–2 ha for adult males and <0.5 ha for adult females (Diemer  1992 ; Eubanks 
et al.  2003 ; Smith et al.  1997  ) . While gopher tortoises occasionally will make long-
distance excursions outside their home range, they will return to their core use areas. 
However, each year a small percentage of tortoises will disperse from their home 
range and establish a new home range in another location (Eubanks et al.  2003  ) . We 
incorporated dispersal behavior into the model, assuming that dispersal could be 
motivated by factors other than habitat quality or carrying capacity of the current 
patch. In the dispersal submodel, a certain number of juvenile and adult tortoises 
were randomly selected to disperse based on previously defi ned dispersal probabili-
ties. Dispersing tortoises oriented in a random direction and searched for patches 
with space available and occupied by at least one other tortoise. The maximum 
dispersal distance varied between adults and juveniles, but if individuals could not 
fi nd an occupied patch within that distance, they were forced to stop. If tortoises 
encountered wetland patches while dispersing, they were forced to continue search-
ing and move through patches that were not dominated by wetlands. Dispersal could 
occur during any month from April–October.  

    7.3.7.4   Reproduction 

 In the reproduction submodel, females produced eggs in June, which is the peak 
nesting month for gopher tortoises in southern Georgia (Landers et al.  1980  ) . Adult 
females were randomly selected to reproduce according to the reproductive 
probability specifi ed in the model. Clutch size varied among females, based on the 
habitat quality of their patch. Females in high and moderate quality patches produced 
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the average clutch size specifi ed in the model. Females in patches    labeled as “low 
quality” incurred a reproductive penalty by producing two fewer eggs than the aver-
age clutch size. Females in unsuitable patches were not allowed to reproduce. Eggs 
hatched in September.  

    7.3.7.5   Aging 

 The age of individuals increased 1 year every December. After that time, individuals 
of the appropriate age graduated to the next life stage.  

    7.3.7.6   Mortality 

 A certain percentage of gopher tortoises died in each monthly time step based on 
stage-specifi c mortality probabilities for egg-to-age 1, juveniles, and adults. Monthly 
mortality probabilities were converted from the annual mortality probabilities spec-
ifi ed in Table  7.1 , assuming mortality could occur with equal probability in any 
month of the year including when tortoises were relatively inactive. In addition, any 
tortoises unable to locate suitable habitat patches by October were not allowed to 
overwinter there and were forced to die in November. Finally, tortoises were not 
allowed to live more than 100 years in the model.    

    7.4   Simulation Experiments 

    7.4.1   Model Calibration 

 As part of the model calibration process (sensu Rykiel  1996  ) , we adjusted the default 
value for juvenile survivorship (the parameter that is least well known) until the 
combination of default parameters resulted in a sustained population. Initially, we 
set juvenile mortality to 15% based on previous work by Tuberville et al.  (  2009  ) . 
However, we found that a 10% reduction was required to produce a stable popula-
tion in NetLogo (i.e., for a juvenile, a resulting mortality rate of 13.5% was set as 
the default value). Once we selected the combination of default values for our IBM, 
we varied parameters individually over a range of biologically realistic values 
(Table  7.1 ) to perform demographic sensitivity analysis.  

    7.4.2   Model Validation 

 We intended to validate the demographic sensitivity results of our IBM by perform-
ing a similar analysis using the more traditional PVA approach. We constructed a 
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PVA in Vortex 9.7 by using the default and range-of-parameter values identifi ed in 
Table  7.1  and systematically varying each parameter, one at a time. Each scenario 
(i.e., parameter combination) was run for 100 years and repeated for a total of 100 
simulations. Each simulation was initialized with a starting population of 300 tor-
toises, characterized by an age structure that mirrored the starting age structure in 
the IBM simulations. We selected a starting population size of 300 tortoises (10% 
of the population estimate for Fort Stewart that was used as the initial population 
size for the IBM simulations), which was based on minimum reserve sizes esti-
mated by McCoy and Mushinsky  (  2007  )  and Styrsky et al.  (  2010  ) , and the number 
of tortoises predicted to occur on those reserves. Although Vortex will support 
models with multiple populations linked in a metapopulation structure, we did not 
have suffi cient data for Fort Stewart to estimate dispersal among GTMAs. Thus, 
our Vortex simulations were not spatially explicit and assumed a single cohesive 
population rather than several “populations” distributed among habitat patches 
across the landscape. For each PVA scenario, we reported the average population 
size at 20-year intervals and the probability of extinction over the 100-year simula-
tion. To scale our demographic sensitivity results from the PVA to results from the 
IBM, we also reported the percentage change in population size for both sets of 
results.  

    7.4.3   Effects on Population Trends and Probability 
of Extinction 

 Simulations of the baseline scenario (i.e., all parameters set to default values) for 
our IBM resulted in an average population increase of 7.1% (Table  7.2 ). Any sce-
nario in which a single parameter was set at a value less favorable than in the base-
line scenario predicted a population decline during the 100-year simulations, 
although rarely did it result in extinction (defi ned here as when fewer than two indi-
viduals remain at end of simulation). In fact for our IBM model, the probability of 
extinction ( P  

E
 ) was greater than zero only when annual adult mortality was set to 9 

or 12%, which resulted in a  P  
E
  of 0.11 and 0.87, respectively.  

 Compared to IBM simulations, PVA simulations of the same scenario were less 
likely to predict a population decline than IBM simulations (Table  7.2 ). However, 
for those scenarios where the PVA  did  predict a decline, the  P  

E
  tended to be higher 

for PVA than for IBM. When both IBM and PVA simulations projected a positive 
change in population size (e.g., when longevity was set to 90 years or juvenile mor-
tality to 9%), the PVA predicted a greater percentage increase than did the IBM; the 
converse was observed when both the model types projected a negative change in 
population size (e.g., when adult mortality was set to 3% or proportion of females 
breeding to 60%). When the direction of population change differed between the 
two model types (i.e., positive or negative), the IBM predicted a population decrease 
while the PVA predicted a population increase. Finally, the PVA model exhibited a 
greater magnitude of responses among scenarios than did the IBM.  
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   Table 7.2    Comparison of IBM and PVA model results based on same set of scenarios and parameter 
combinations      

 Scenario name 

 IBM results ( N  
0
  = 3000 tortoises)  PVA results ( N  

0
  = 300 tortoises) 

 Final  N   Change (%)   P  E   Final  N   Change (%)   P  
E  

 Baseline (all default 
parameters) 

 3,215  +7.2  0  544  +81.4  0 

 Longevity = 90 years  3,092  +3.1  0  482  +60.6  0 
 Longevity = 80 years  2,891  −3.6  0  411  +37.1  0 
 Longevity = 70 years  2,674  −10.9  0  311  +3.5  0 
 Longevity = 60 years  2,357  −21.4  0  207  −30.9  0 
 Adult mortality = 3%  899  −70.0  0  189  −36.9  0 
 Adult mortality = 6%  78  −97.4  0  26  −91.3  0.02 
 Adult mortality = 9%  7  −99.8  0.11  8  −97.3  0.62 
 Adult mortality = 12%  <1  −100.0  0.87  <1  −100.0  1.00 
 Juvenile mortality = 9%  10,213  +240.4  0  2,721  +806.9  0 
 Juvenile mortality = 18%  1,497  −50.1  0  134  −55.3  0 
 Juvenile mortality = 22.5%  925  −69.2  0  40  −86.6  0 
 Juvenile mortality = 27%  701  −76.6  0  14  −95.5  0.03 
 Egg-to-juvenile 

mortality = 90% 
 4,907  +63.6  0  912  +204.1  0 

 Egg-to-juvenile 
mortality = 91% 

 4,003  +33.4  0  705  +135.0  0 

 Egg-to-juvenile 
mortality = 93% 

 2,554  −14.9  0  409  +36.4  0 

 Egg-to-juvenile 
mortality = 94% 

 2,004  −33.2  0  279  −7.0  0 

 Egg-to-juvenile 
mortality = 95% 

 1,551  −48.3  0  198  −33.9  0 

 Egg-to-juvenile 
mortality = 96% 

 1,178  −60.7  0  133  −55.8  0 

 Mean clutch size = 8  5,844  +94.8  0  1,070  +256.5  0 
 Mean clutch size = 7  4,374  +45.8  0  796  +165.3  0 
 Mean clutch size = 5  2,321  −22.6  0  362  +20.9  0 
 Mean clutch size = 4  1,645  −45.2  0  225  −25.0  0 
 Proportion females 

breeding = 100% 
 4,690  +56.3  0  917  +205.8  0 

 Proportion females 
breeding = 90% 

 3,881  +29.4  0  704  +134.6  0 

 Proportion females 
breeding = 70% 

 2,625  −12.5  0  398  +32.7  0 

 Proportion females 
breeding = 60% 

 2,133  −28.9  0  286  −4.7  0 

  Scenarios are grouped according to parameter manipulations and are ordered from most favorable 
to least favorable conditions within each parameter. All IBM simulations start with initial popula-
tion size of 3,000 tortoises; PVA simulations start with 300 tortoises. For each model type, the 
following are reported: gopher tortoise population size at end of simulation (Final  N ), percent 
change in population size during simulation (% change), and probability of extinction ( P  

E
 ; range 

of possible values 0–1).  Shaded cells  correspond to simulations resulting in population decline 
and/or  P  

E
  > 0  
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    7.4.4   Demographic Sensitivity Analysis 

 For each model type, we evaluated sensitivity to changes in six demographic param-
eters by individually varying those parameters over a range of biologically realistic 
values. However, due to expected differences in plasticity of corresponding life his-
tory traits, the range of values tested varied among parameters. In order to relate the 
magnitude of differences in parameter values tested to the magnitude of resulting 
responses, we calculated the following two ratios.

   Parameter ratio = scenario parameter value/baseline parameter value  
  Response ratio = scenario population size/baseline population size    

 For example, for the scenario where adult mortality = 3%, the parameter value 
for the scenario was 3% compared to the baseline scenario’s default value of 1.5%, 
resulting in a parameter ratio of 2. Based on the IBM, the predicted fi nal tortoise 
population for the scenario of interest was 899, compared to a fi nal population size 
of 3,215 in the baseline scenario (Table  7.2 ). This scenario resulted in a response 
ratio of 899/3,215 or 0.28. Based on these ratios, the IBM predicted that a doubling 
of the baseline adult mortality rate would result in a 78% smaller ending population 
when compared to a scenario using default values. For the baseline scenario, the 
parameter ratio and the response ratio always were equal to 1. 

 Results of these ratio calculations are shown in Fig.  7.3 , where the parameter 
ratio (independent variable) was plotted on the  x  axis, and the response ratio (depen-
dent variable) was plotted on the  y  axis; the steepness of the curve indicates the 
sensitivity of the model to changes in parameter value. Ratios for each of the six 
demographic parameters were plotted separately, with ratios for both the IBM and 
PVA model presented in the same graph. All results were plotted on the same scale 
to facilitate comparisons among parameters.  

 Despite differences in population size and percentage change in population size 
observed between our IBM and PVA model (Table  7.2 ), the two model types exhib-
ited remarkable congruence in their sensitivities to manipulation of demographic 
variables. In fact, the results are so similar that it sometimes is diffi cult to discern 
that two distinct data sets are plotted (Fig.  7.3 ). The one notable exception is juve-
nile survivorship, which predicted similar responses in the IBM and PVA at param-
eter values greater than or equal to baseline value; although both model types 
predicted dramatically larger populations when juvenile mortality rates were lower 
than baseline, the PVA model predicted a greater response than the IBM. 

 As mentioned previously, we varied values for each demographic parameter over 
a range of biologically realistic values. Keeping that in mind, several observations 
can be made from our results.

    1.    The baseline values for adult mortality and longevity represented the most optimis-
tic scenario (i.e., no scenario has a parameter ratio greater than 1); all other param-
eter values predicted smaller population sizes (i.e., response ratio less than 1).  

    2.    Scenarios varying juvenile mortality exhibited the greatest magnitude in 
responses among scenarios over the range of values tested.  
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    3.    Based on the nearly vertical plots for egg-to-age 1 mortality, this demographic 
parameter predicted the greatest difference in population size per unit difference 
(i.e., the models were most sensitive to changes in this parameter).       

    7.5   Discussion 

    7.5.1   Population Trends and Probability of Extinction 

 Although we reported fi nal population sizes and probability of extinction after 100 
years for each scenario tested, the primary goal of the IBM and PVA models was to 
identify parameters to which our simulated populations were most sensitive rather 
than to predict the specifi c outcome of any given scenario. Therefore, one must be 
cautious about interpreting and applying the results of our models to specifi c man-
agement scenarios for gopher tortoises on Fort Stewart. However, our results are 
useful for identifying patterns and potential factors contributing to those patterns. 

 One major pattern we observed was that when any demographic parameter 
(except longevity) was set to a value less optimistic than the baseline scenario, the 
IBM predicted a population decline. In the case of adult mortality, the default value 
was the most optimistic value, suggesting that any chronic increase in adult mortality 
above baseline would result in declines that could potentially compromise long-term 

  Fig. 7.3    Comparison of demographic sensitivity analysis results between IBM ( dashed lines , 
 open circles ) and population viability model ( solid lines  and  circles ). For each demographic 
parameter, the parameter ratio (scenario parameter value/baseline parameter value) is plotted on 
the  x -axis and the response ratio (scenario population size/baseline population size) on the  y -axis. 
Note that results for all parameters are plotted at the same scale       

 



1257 Using Demographic Sensitivity Testing to Guide Management…

persistence if all other parameters remained the same. The importance of high adult 
survivorship in the life history of most turtle species and in the management of 
individual populations is well documented (e.g., Congdon et al.  1993,   1994  ) . We did 
not run simulations with adult mortality less than 1.5% because we wanted to only 
test parameters with biologically realistic values. The most optimistic value used in 
our simulations was based on studies of gopher tortoise populations on protected 
lands (Ashton and Burke  2007 ; Tuberville et al.  2008  ) , and we are aware of no pub-
lished study to date that has documented lower mortality rates. 

 The other major pattern that emerged was that the PVA was more likely than the 
IBM to predict a population increase and to predict an increase of greater magni-
tude. Apparent discrepancies between the two model types are probably best 
explained by additional challenges imposed by the spatial context of the IBM mod-
eling environment. The PVA we constructed in Vortex assumed a single population 
that was closed to immigration and emigration, and in which all individuals were 
exposed to the same habitat conditions. Furthermore, carrying capacity for the entire 
population was set at ten times the initial population size (i.e., 3,000). 

 In contrast, carrying capacity was specifi ed for each patch (i.e., pixel) in the 
IBM. Carrying capacity could have affected overall population in at least two ways. 
First, the sum of carrying capacity values for individual patches determined the 
maximum population size possible for the entire installation (at least for adults), 
although population sizes in our simulations never approached this maximum value. 
More importantly, however, carrying capacity of individual patches infl uenced the 
initial placement of tortoises and also determined whether tortoises were forced to 
leave a patch to search for suitable habitat elsewhere. NetLogo initiated each simu-
lation by placing tortoises in suitable patches among GTMAs, which were distrib-
uted across Fort Stewart and interspersed with unsuitable habitat, effectively 
fragmenting the installation’s tortoise population. In addition, when carrying capac-
ity for an individual patch was exceeded, individual tortoises were ejected from the 
patch and forced to search for a suitable patch that had not yet reached carrying 
capacity. In some cases, individuals were not able to fi nd a patch meeting these 
criteria before activity season ended, at which time they were forced to die. Thus, 
the landscape context of the IBM (particularly when that landscape is patchy) cre-
ated a more complex real-world environment for the simulated population. It is 
likely the landscape context also contributed to the differences in population trends 
that we observed between the two types of models.  

    7.5.2   Demographic Sensitivity Analysis 

 When considering sensitivity to individual parameters, the congruence between 
model types suggests that IBMs, such as the one we developed for gopher tortoises 
in NetLogo, can be a valuable approach to conducting demographic sensitivity anal-
ysis. Because the overall sensitivity results from the IBM and PVA models were so 
similar, we will restrict our discussion to the IBM. 
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 Although scenarios in which adult mortality rates were elevated above baseline 
level were the only scenarios likely to result in population extinction (Table  7.2 ), 
adult mortality was not the parameter to which the model was most sensitive 
(Fig.  7.3 ). In addition, adult mortality rate in the baseline scenario (1.5%) was the 
most optimistic value tested. The baseline value corresponded to long-term esti-
mates that have been published about two different translocated populations (Ashton 
and Burke  2007 ; Tuberville et al.  2008  ) . We could fi nd no estimates of long-term 
adult mortality rates for any naturally occurring gopher tortoise populations in the 
peer-reviewed literature, but the estimate used in our model is among the lowest 
adult mortality estimates reported for chelonians (Iverson  1991 ; Wilbur and Morin 
 1988  ) . From an application perspective, these fi ndings imply that although it may 
not be feasible to reduce adult mortality below 1.5%, monitoring and management 
efforts should prevent or mitigate threats that could potentially cause chronic 
increases in adult mortality. 

 The parameter associated with the greatest magnitude of change in population 
size over the values tested was juvenile mortality. The lowest juvenile mortality rate 
(9%) predicted population sizes that were three times the size predicted by the base-
line scenario in which juvenile mortality was set to 13.5%. Juvenile mortality rates 
could conceivably be reduced through habitat management particularly in areas 
where canopy cover is excessively high or herbaceous vegetation is limited. Low 
canopy cover ( £ 60%) and basal area (30 m 2 /ha) are important for providing neces-
sary thermal conditions for tortoises and for promoting diverse and abundant herba-
ceous vegetation in the understory (Aresco and Guyer  1999 ; Tuberville et al.  2007 ; 
Wilson et al.  1997  ) . In turn, the herbaceous understory provides forage for growth 
and camoufl aging cover from predators while vulnerable juveniles are active outside 
their burrows. We are aware of no studies comparing juvenile survivorship rates 
among different habitat types; indeed, few data at all are available for estimating 
juvenile survivorship (but see Wilson  1991 ; Tuberville et al.  2008 ; and inferred esti-
mates from Pike et al.  2008  ) . Obtaining information on juvenile tortoise mortality 
rates from Fort Stewart would greatly improve the predictive value of the IBM and its 
utility for guiding management of gopher tortoise populations on the installation. 

 The parameter for which the smallest change predicted the greatest effect on 
population size was egg-to-age 1 mortality. Mortality rates for both eggs and hatch-
lings are known to be high and are suspected—at least for the egg stage—to be quite 
variable among sites and years (Landers et al.  1980 ; Pike and Seigel  2006 ; Wright 
 1982  ) . Such high and variable mortality rates highlight the importance of this param-
eter in the model and the challenge of making broadly applicable management 
recommendations. Mortality in the egg-to-age 1 stage probably can be infl uenced by 
habitat management in the same manner that we suspect juvenile mortality may be 
infl uenced. Egg-to-age 1 mortality also probably is infl uenced to a greater 
extent by environmental stochasticity and predator population cycles than is juvenile 
mortality. Thus, although habitat management may improve conditions such that 
hatchling survivorship increases, other factors more diffi cult to control may hinder 
the ability of habitat management to have an appreciable effect on population level. 
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 Finally, our IBM appears suffi ciently sensitive to changes in both clutch size and 
proportion of females breeding to suggest that those two demographic traits merit 
consideration as management targets. For both parameters, we observed a twofold 
difference in population size between scenarios with the baseline vs. the maximum 
parameter values. Data from Fort Stewart and a nearby state park suggest that these 
demographic traits can vary among sites with differing habitat quality (Rostal and 
Jones  2002  ) . It is therefore feasible that these demographic traits could be improved 
through habitat-based management approaches.   

    7.6   Conclusions and Recommendations 

 We found IBM to be a useful tool for performing demographic sensitivity analysis, 
and we observed remarkable agreement between sensitivity results from our IBM 
and PVA models for gopher tortoises on Fort Stewart. Our analyses identifi ed sev-
eral demographic traits that appeared to disproportionately infl uence size of simu-
lated populations, particularly mortality rates in the juvenile stage and egg-to-age 1 
stage. Although there are few data comparing these rates among sites with varying 
habitat quality, we suspect both traits are fairly responsive to changes in habitat 
quality and thus, habitat manipulation. In addition, it is important to keep in mind 
our analyses varied by only a single parameter at a time, whereas habitat improve-
ment at poorer quality sites should positively infl uence a suite of demographic traits 
simultaneously. Furthermore, our baseline model, which was intended to refl ect 
demographic traits for tortoises under current management conditions at Fort 
Stewart, predicted a population increase during the 100-year simulations. Based on 
these factors, we believe current management conditions are conducive to long-term 
persistence of gopher tortoises in the Fort Stewart landscape, and that habitat man-
agement is a practical and effective means to improve population conditions at 
poorer quality sites. 

 Should there be a net loss of suitable habitat for gopher tortoises—perhaps as a 
result of range construction or infrastructure development—resource managers 
likely will need to improve habitat conditions for tortoises on remaining patches. 
Most of Fort Stewart is comprised of soils considered to be unsuitable for gopher 
tortoises (Fig.  7.4a ), which limits the ability of resource managers to implement 
large-scale improvements in habitat quality across the installation. However, 
approximately 13% of the landscape can be characterized as marginal habitat occur-
ring on suitable soils (Fig.  7.4b ). Habitat improvements targeting these patches 
could increase carrying capacity of individual patches, hopefully offsetting any 
potential losses in suitable habitat.  

 There are two important caveats to our conclusions that stem from the following 
assumptions in our model: (1) parameter values in our IBM are representative of 
demographic traits for gopher tortoises on Fort Stewart, and (2) current wildlife and 
land management practices will be maintained so that there is no change in the 
amount, quality, or distribution of suitable habitat patches across the installation. 
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We estimated parameters for our IBM from the literature, using data specifi c to Fort 
Stewart or the surrounding region whenever possible. However, for some 
parameters—particularly juvenile mortality and longevity—few data or no data 
were available. In addition, parameters estimated from data from other portions of 
the species’ range may not refl ect demographic traits for gopher tortoises on Fort 
Stewart. However, as more data become available, parameter estimates can be mod-
ifi ed to refi ne the model and make it more useful to resource managers making 

  Fig. 7.4    Habitat conditions for gopher tortoises in the Fort Stewart landscape in terms of: ( a ) rela-
tive abundance of unsuitable, marginal, suitable, and priority soil types (categories based on infor-
mation presented in McDearman  1995 ; Hermann et al.  2002  ) , and ( b ) habitat quality of patches 
associated with each soil suitability category       
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installation-specifi c management recommendations. Resource managers also can 
adapt the model to examine gopher tortoise dynamics under changing or altered 
landscapes, such as conversion of tortoise habitat to training areas or habitat 
improvement in suitable patches outside of GTMAs. These landscape changes can 
affect not only the suitability of individual patches for gopher tortoises but also the 
distribution of suitable patches and the ability of tortoises to move between patches. 
By considering both demographic traits and behavior of individuals—particularly 
regarding how they interact with the landscape—IBMs offer a powerful means for 
resource managers to evaluate the likelihood of long-term persistence of rare spe-
cies under current or alternative landscape conditions and to identify and implement 
appropriate management actions.      
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    8.1   Background 

 This model was developed to explore the relative effectiveness of controlling feral 
swine ( Sus scrofa ) with hunting, contraception, and a combination of hunting and 
contraception. Feral swine are an invasive species known to feed on small animals, 
eggs, roots, and herbaceous material. They alter the environment, disrupting plant 
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and animal habitat, by rooting in the soil (Graves  1984  ) . Feral swine are highly 
adaptable. As true dietary generalists, they can thrive on an extensive spectrum of 
food sources. They are also unusually prolifi c for large mammals (Mauget et al. 
 1991  ) . A single female may be capable of producing more than 26 offspring in a 
single year. Adult feral swine have few predators, none of which is signifi cant other 
than humans. Even after their numbers have been reduced by drought, food shortage, 
or lethal removal, their unique combination of adaptability and fecundity enables the 
population to recover quickly soon after the threat is removed (Dziecolowski et al.  
 1992    ). The animals’ intelligence further complicates population control efforts: feral 
swine quickly learn to avoid areas where hunting or trapping have taken place 
(Stephen S. Ditchkoff, Auburn University, personal communication 2008   ). 

 Fort Benning, GA, is home to several at-risk species of fauna and fl ora, including 
the federally listed gopher tortoise ( Gopherus polyphemus ) and relict trillium 
( Trillium reliquum ), both of which can be negatively impacted by feral swine preda-
tion and rooting activities. It is currently estimated that about 5,000 feral swine 
reside at Fort Benning, and this population is supplemented with immigration from 
other regional populations. Roughly 30,000 acres of the impacted area are off limits 
to humans because of hazards posed by unexploded ordnance. An ongoing bounty 
program led to the apparent removal of over 1,200 feral pigs from Fort Benning 
from June 2007 through February 2008. The program is believed to have some suc-
cess in reducing the swine population despite their tremendous reproductive capac-
ity. In research conducted at Fort Benning, Hanson  (  2006  )  concluded that both 
immigration and increased reproductive rates (in response to intensive removal 
activities) factor into the ability of this population to withstand substantial lethal 
removal without a decrease in population growth rates. Therefore, the bounty pro-
gram alone may not be suffi cient to remove feral hog threats to remaining gopher 
tortoise and relict trillium populations. 

 In addition to the hunting program operated by Fort Benning for lethal removal 
of feral swine, other proposed options include trapping, poisoning, physical exclu-
sion, and contraceptive delivery. The feasibility and effectiveness of each control 
option is infl uenced by cost, mode of delivery, route of administration, specifi city 
for the target population (e.g., species, sex), and—for nonlethal controls—duration 
of effect. Physical exclusion, such as fencing, is considered impractical due to the 
length and nature of the terrain at the Fort Benning perimeter.  

    8.2   Objective 

 The objective of this project was to answer the following questions about feral pig 
demographics, terrain, and hunting data specifi c to Fort Benning:

   How would a contraceptive program affect the density of the Fort Benning feral • 
swine population over time?  
  Could a contraceptive program replace lethal control for this population?  • 
  How would the combination of sterilization and lethal control programs affect • 
the density of the feral pig population?    
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 We hypothesized that swine population control would be optimized by a 
combination of lethal removal and contraceptive delivery.  

    8.3   Model Description 

    8.3.1   Purpose 

 In order to evaluate the potential for control of a feral pig population via hunting 
and/or contraception, we constructed a spatially explicit model of feral pig demo-
graphic and spatial characteristics relative to specifi c features of the Fort Benning 
landscape using the agent-based modeling system NetLogo 4.0.2 (Wilensky  1999  ) . 1  
Our model was populated with the best available information about  Sus scrofa  in 
general and the Fort Benning population in particular, but it is designed to be readily 
adaptable to different feral swine populations, control methods, and sites. The model 
covers an area that includes all of Fort Benning and Columbus, GA, and captures 
processes that defi ne landscape characteristics (land cover, land use, vegetation, and 
water availability), individual hogs, hunting, and contraceptive baits (Fig.  8.1 ). 
Dynamic hog behavior captures reproductive cycles, attrition, social grouping and 
dynamics, diet and feeding, and movement. Hog hunting and distribution of contra-
ceptive baits were modeled as individual and combined options for hog control. The 
equations, parameters, and variables that defi ne the model are taken from the 
literature with expert advice from Fort Benning environmental staff familiar with 
the feral hog populations there. The model is described below.   

    8.3.2   State Variables and Scales 

 The landscape for this model consists of a grid of 206 × 213 cells, with each cell 
representing a 200 × 200-m patch. The model operates on a 1-week time step. The 
primary agents in this model are landscape patches and pigs. A third agent, called a 
 sounder , represents a group of female pigs; it facilitates moving pigs together around 
the landscape. Each sounder agent has several state variables: a list of associated 
pigs, the week that that group  farrows  (i.e., gives birth), and travel in the current 
time step. The pig agent also manages several state variables: age, sounder, travel in 
the current time step, and color. The color is used to identify the individual as male 
(blue), female (red), or sterilized female (yellow). Each patch is defi ned by state 
variables that contain the following information:

   Whether the cell is accessible to pigs  • 
  Whether the cell is accessible to humans  • 

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com
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  Whether contraceptive bait exists in the patch  • 
  Distance to water in the dry season  • 
  Distance to water in the wet season  • 
  Potential for generating mast (i.e., hard-shelled seeds and nuts)  • 
  Current availability of mast  • 
  Optimal attractiveness of the patch to pigs  • 
  Current attractiveness based on optimal and presence of others  • 
  Sounder whose sign is strongest in the patch  • 
  Boar whose sign is strongest in the patch  • 
  Representation of other pig sign strength     • 

  Fig. 8.1    Model overview       
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    8.3.3   Process Overview and Scheduling 

 The model is initialized by importing patch variables from digital maps of Fort 
Benning and distributing an initial population of feral hogs on the landscape. 
At each time step (i.e., 1 week), the following events occur:

    1.    The state of the patches is set based on the time of year, time remaining on bait 
viability, and current presence of boars and sounders.  

    2.    The sounders are updated, which may involve deleting those no longer contain-
ing members, allowing them to move, and farrowing.  

    3.    All pigs are allowed to potentially die, age, move, fl edge, and regroup into 
sounders.     

 The simulation time is divided into pre-control and control periods. The pre-
control period is used to allow the initial randomly located pigs to group into a 
population that is distributed according to the rules of behavior captured in the 
model. Once the population stabilizes, control methods are applied.  

    8.3.4   Design Concepts 

    8.3.4.1   Recruitment 

 One of the challenges of controlling feral hogs is their rapid rate of reproduction. In this 
model, pigs are recruited into the population through birth. Because of the porous 
nature of the boundary of the area, the model uses a torus-shaped world that moves 
pigs exiting one edge to simultaneously enter into the study area at the opposite edge.  

    8.3.4.2   Weaning 

 Piglets remain attached to their mothers until they are weaned. At this time, females 
can become part of a sounder and males are forced to begin a more solitary life.  

    8.3.4.3   Attrition 

 Pigs die naturally at rates set within the model.  

    8.3.4.4   Social Grouping and Dynamics 

 After weaning, males begin a solitary life in which they hunt, establish territories, 
and attempt to mate with females in estrous. Females, on the other hand, form 
sounders and remain gregarious throughout their lives.  
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    8.3.4.5   Diet 

 The location of swine on the landscape is based largely on the availability of food and 
water. While a pig’s dietary requirements are extremely fl exible, they are particularly 
attracted to certain foodstuffs, which change in abundance over the annual cycle.  

    8.3.4.6   Habitat, Range, and Travel 

 Sounders and solitary males maintain and defend home ranges that change with 
food and water availability and with the presence of competitors.  

    8.3.4.7   Control Methods 

 Two population control methods are provided in the model: hunting and the distri-
bution of contraceptives in food baits.   

    8.3.5   Initialization 

 The model is initialized by (1) establishing the landscape characteristics based on 
GIS maps of the area, (2) randomly distributing a population of swine across parts 
of the landscape accessible to swine, and (3) ramping up the simulation by allowing 
the randomly located individuals to interact according to the behavior rules over the 
course of two simulation years.  

    8.3.6   Input 

 The model is built on a landscape consisting of a 206 × 213 grid of cells, with each 
cell representing a patch measuring 200 × 200 m. All input maps, including hog 
access, human access, mast (acorns and other tree nuts) production, and access to 
water, were derived from 2001 National Land Cover Data maps for the area (  http://
www.epa.gov/mrlc/nlcd-2001.html    ), and then resampled to this resolution. Hogs 
were allowed access to all areas except for dense urban areas and water bodies. Pigs 
were not killed by hunters in areas that are off-limits to humans. 

 Mast production is generally considered heavier in uplands, and lighter in bot-
tomland woods (Stephen S. Ditchkoff, Auburn University, personal communication 
2008). Mast abundance was predicted on the basis of relative local elevation and 
vegetative cover type. A patch was considered upland if it was in the top half of the 
elevation range within a 225-patch area. Patches were considered capable of mast 

http://www.epa.gov/mrlc/nlcd-2001.html
http://www.epa.gov/mrlc/nlcd-2001.html
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production if classifi ed as deciduous forest, mixed forest, woody wetlands, hardwood 
forest, xeric hardwood, xeric mixed pine-oak, mixed pine and hardwood, or bot-
tomland hardwood. Each upland patch that was capable of mast production was 
assigned a mast potential value of 100, while those that were not were assigned a 
mast potential value of 0. The mast value applied to each 200 × 200-m patch in the 
model was the average of mast potential values within a 30-m, seven-patch diame-
ter. At Fort Benning, the mast crop begins to fall in September; mast is present in 
our model from week 39 to week 13 and is absent at all other times. 

 For each patch, the distance to water was the minimum number of other patches 
a pig would have to enter to reach surface water. A patch was considered to contain 
surface water all year if classifi ed as open water, cypress-gum swamp, or freshwater 
marsh, or if more than 500 other patches drained to it. September through February 
is Fort Benning’s wet season, whereas March through August is considerably drier. 
For the dry season—model weeks 8–33—higher distance-to-water values were 
applied to patches.  

    8.3.7   Submodels 

    8.3.7.1   Recruitment 

 Feral swine can live at least 13 years, and no reproductive senescence has been 
noted. Female reproductive maturity can occur as early as 21 weeks (Hanson  2006  ) , 
and may vary depending on nutrition and exposure to mature boars (males). While 
boars may be physiologically capable of breeding around 21 weeks of age, their 
fertility continues to increase over a period of several months (Flowers  2001  ) . 
Competition is observed among boars attempting to breed (Pedersen  2007  ) . In this 
model, gilts (young females) may farrow (give birth) at 43 weeks of age, which cor-
relates to a minimum breeding age of about 26 weeks. Due to the inferior physio-
logical fertility and competitive disadvantage of younger males, boars in this model 
begin breeding at 32 weeks. 

 While inadequate nutrition (Matschke  1964  )  and heat stress (Jolley  2007  )  have 
been shown to negatively affect male and female fertility, density-dependent 
decreases in fertility are not observed as long as the population is in good nutritional 
condition (Jolley  2007  ) . Through necropsy of pregnant sows, feral pigs at Fort 
Benning have been found to carry as few as 3 to as many as 12 fetuses (Jolley  2007  ) . 
The average litter for young females is signifi cantly smaller than for older ones: at 
Fort Benning, females under 1 year old produce an average of 5 piglets, while older 
sows average 6.87 (Hanson  2006  ) . In our simulation, females under 1 year old 
delivered 5 piglets. Sows 1 year or older had a 13% likelihood of delivering 6 pig-
lets, and an 87% likelihood of delivering 7. Hanson  (  2006  )  observed a 1:1 sex ratio 
in the adult population; in our model, sex was randomly applied to each piglet as it 
was “born.”  
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    8.3.7.2   Farrowing 

 Feral piglets are weaned at 2–3 months of age (Choquenot et al.  1996  ) , and sows 
may breed as soon as 1 week later. With a gestation of 114 days, the minimum far-
rowing interval for sows whose piglets survive to weaning is 26 weeks. Socialization 
with cycling sows and with boars induces estrus, so reproduction tends to be 
synchronized within sow groups (Pedersen  2007  ) . 

 While domestic sows may farrow as many as three times in a 14-month period, 
such timetables are associated with managed weaning within days of birth. Feral 
piglets are unlikely to survive without maternal care at such an early stage. Under 
favorable conditions, feral sows are observed to produce approximately two litters 
annually. Breeding is considered nonseasonal (Jolley  2007  ) , but timing is heavily 
dependent on food availability, especially during mast crop season (Graves  1984 ; 
Jolley  2007 ; Matschke  1964 ; Mauget et al.  1991  ) . At Fort Benning, a bimodal 
breeding distribution is observed, with the majority of births occurring in March, 
and from July through November. 

 Because estrus tends to be synchronized within sow groups, semiannual farrow-
ing schedules were assigned to sounders within the model. Farrowing dates were 
randomly determined based on a probability distribution that matched observed 
temporal birthing patterns.  

    8.3.7.3   Attrition 

 Feral pig mortality is high during the fi rst 3 months of life (Hanson  2006  ) . Depending 
on region, coyotes, bobcats, mountain lions, large raptors, and feral dogs are known 
to prey on feral swine, particularly young pigs. Little data are available on feral pig 
mortality prior to 1 month of age. Hanson  (  2006  )  provided survivorship data for Fort 
Benning pigs aged 1 month and older, but pigs less than 1 month old were too small 
to be trapped in that study. Pasture-raised domestic pigs may experience very high 
mortality during their fi rst weeks of life; newborns can be crushed or suffocated by 
the sow, or succumb to hypothermia, starvation, disease, or predation (Honeyman 
and Roush  2002  ) . For pigs 1 month old or less, we assigned survival rates of 42% 
based on preweaning mortality fi gures for pasture-raised domestic pigs. 

 In studies conducted at Fort Benning, very few adult feral pig deaths were 
reported due to predators, disease, starvation, or other nonanthropogenic causes. 
Humans are considered the primary predator for the species. When Hanson  (  2006  )  
measured apparent survival rates on the installation, hunting was believed to cause 
approximately 90% of adult swine mortality. We derived annual mortality rates for 
pigs over 1 month of age directly from Hanson’s apparent survival fi gures:

   Gilts 1–8 months old—0.311  • 
  Gilts/sows over 8 months—0.319  • 
  Boars 1–8 months old—0.200  • 
  Boars over 8 months—0.207    • 
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 To correspond with temporal and demographic partitions in the model, these 
rates were converted to weekly mortality for each age/sex class using the equation

     - -1/52DW = (1 DA) 1    

where DW is the derived weekly morality and DA is the derived annual mortality 
rates for pigs over 1 month old. The resulting fi gures represent total attrition: emi-
gration, natural mortality, and death caused by recreational hunting prior to the 
implementation of the bounty program.  

    8.3.7.4   Social Grouping and Dynamics 

 Sounders typically consist of 1–3 sows and their piglets, with an average size of 
2.59 sows (Hanson  2006  ) . When food is scarce, a sounder may become much larger. 
Male piglets typically remain with the sounder until they reach sexual maturity, at 
which time they may disperse widely (Hirotani and Nakatani  1987  ) . Mature boars 
generally live and travel alone, but they congregate to follow sounders during estrus 
(Pedersen  2007  ) . Mature females tend to remain much closer to their original home 
ranges (Hirotani and Nakatani  1987  ) . Sounders in our simulation contained 2 or 3 
mature sows and all of their immature offspring. Upon reaching sexual maturity, 
male offspring left the sounder. When a female reached sexual maturity, she was 
forced to leave her sounder if it already contained 3 older females. The expelled 
females then formed new sounders, with pigs in closer proximity more likely to end 
up in the same group. Each new sounder convened at the cluster of at least nine 
unoccupied patches nearest to a randomly selected member.  

    8.3.7.5   Diet 

 Movement and location of feral hogs appears to be driven largely by dietary require-
ments and food sources. Human land use and climate are also important factors in 
hog movement (Hanson and Karstad  1959 ). The diets of males and females do not 
signifi cantly differ (Adkins and Harveson  2006  ) . Roots, tubers, and herbaceous 
material comprise up to two-thirds of the summer diet, while the remainder includes 
mast, vertebrate and invertebrate fauna, bait, or other materials (Adkins and 
Harveson  2006 ; Taylor  1991  ) . As food availability varies, swine may feed heavily 
on items such as earthworms, carrion, frogs, leeches, insects, eggs, small mammals, 
agricultural crops, and garbage (Graves  1984 ; Hanson and Karstad  1959 ; Herrero 
et al.  2006  ) . Mast, consisting of hard-shelled seeds such as acorns and hickory, 
provides a source of high-quality nutrition because of its high fat and carbohydrate 
content (Graves  1984  ) . During the winter when mast is available, it is the preferred 
food of feral swine (Adkins and Harveson  2006  ) , comprising a majority of the diet 
(Graves  1984  ) . Grass and forb    intake increases in the summertime (Adkins and 
Harveson  2006  ) . It is believed that grasses alone are insuffi cient to fulfi ll swine 
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nutritional needs (Graves  1984  ) , and an increase in destructive rooting behavior is 
observed as the availability of high quality above-ground food sources such as mast 
decreases (Graves  1984  ) . Possibly due to their highly adaptive feeding behaviors, 
feral swine at Fort Benning do not appear to be approaching carrying capacity 
(Jolley  2007  ) .  

    8.3.7.6   Habitat, Range, and Travel 

 Although cover can be essential for habitat selection depending on hunting pressure 
(Graves  1984  ) , feral swine are observed in a broad range of habitats. At Fort Benning 
they are believed to occupy most habitat types, with the exception of urbanized 
areas. Our model excluded pigs from areas classifi ed as urban or open water by 
National Land Cover Data. 

 Range data vary widely, with estimated seasonal ranges as small as 304 acres or 
as large as 6,175 acres (Graves  1984 ; Hanson and Karstad  1959  ) . From approxi-
mately 1 month prior to birthing until piglets are about 4 weeks old, the sow moves 
away from the sounder (Hanson and Karstad  1959  )  and inhabits a much smaller 
area (Kurz and Marchint  1972  ) . Boars tend to utilize larger home ranges than sound-
ers (Graves  1984 ; Caley  1997  ) , and may occupy up to twice as much terrain 
(Saunders and McLeod  1999  ) . For both sexes, however, range size appears to 
depend on food and water availability (Hanson and Karstad  1959 ; Graves  1984  ) . 
Feral swine exhibit strong fi delity to their home ranges (Graves  1984  ) , generally 
leaving only when food (Kurz and Marchint  1972 ; Graves  1984  )  and/or water 
(Graves  1984 ; Taylor  1991  )  are inadequate, or to breed (Graves  1984  ) , and return-
ing when conditions are again suitable. 

 Sounder home ranges at Fort Benning are about 500–940 acres (Hanson  2006 ; 
Sparklin, unpublished data), and do not overlap (Sparklin, unpublished data). Swine    
are observed to move to wetland or bottomland areas within their ranges during the 
warmer, drier season, and into woodlands in the winter when the mast crop becomes 
available and water is more abundant. Simulated pig movement refl ected these 
observations. 

 No published data were found for daily total distance walked or for net daily 
travel. One study found that the maximum distance between points visited on a 
given day was, on average, 0.4 miles for sounders and 0.7 miles for boars. These 
extremes in daily position depended on the availability of food and water (Kurz and 
Marchint  1972  ) . Despite ample data regarding habitat preferences and range, the 
specifi c daily movements of feral pigs are considered diffi cult to predict (Stephen S. 
Ditchkoff, Auburn University, personal communication 2008). 

 The daily net distance traveled by modeled pigs was generated at random, and 
varied from zero to the average distances between extreme positions noted above. 
This randomly generated distance was applied to each boar and sounder at each 
time step, except when the constraints described below prevented a pig or group 
from moving to any adjacent patch. Ranges were not directly limited in size, shape, 
or environmental characteristics (except as stated above), but emerged as a result of 
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the rules governing pig movement. The separation of sows from the sounder at 
farrowing was not modeled. 

 Lack of range overlap was achieved via an avoidance function. The model tracked 
which boar and which sounder had last visited each patch, and how long ago. This 
simulated “pig sign” allowed pigs to determine whether a patch was part of another 
pig’s range, and it faded linearly over 52 weeks. The avoidance function prevented 
boars or sounders from entering patches visited within the last year by a pig of the 
same sex, unless they were otherwise unable to leave their patch. 

 Direction of travel was determined at each time step via a comparison of patches 
adjacent to a boar’s or sounder’s position. Comparisons were based on weighted 
values for distance to surface water, mast availability, and a random “attractiveness” 
factor. Distance to surface water was calculated as the distance to the nearest water. 
Distance-to-water and mast values each comprised 30% of direction-of-travel deci-
sions. The remaining 40% was provided by a random number generated to account 
for other factors contributing to pig movement. Mirroring the behavior of feral swine 
at Fort Benning (Bill Sparklin, Montana State University, personal communication), 
simulated pigs moved seasonally among neighboring habitat types, establishing 
home ranges that provided surface water during the dry season as well as high-quality 
wintertime mast. At observed population sizes, boar ranges covered the majority of 
available land. Studies have found boar home ranges to be about twice the size of 
sounder ranges, but estimated Fort Benning population density and social groupings 
preclude this ratio. Because the number of boars is between two and three times the 
number of sounders, the study area is too small to allow for boar ranges larger than 
the typical area observed to be occupied by sounders at current densities.  

    8.3.7.7   Control Methods 

 All pigs occupying hunter-accessible areas were, while the hunt function was active, 
eligible to be hunted. In each step the model applies hunt-related mortality to ran-
domly selected eligible pigs until either the specifi ed number of hunt-related kills 
has been achieved or all eligible pigs have been killed. 

 Oral baits deliver contraceptives that indefi nitely sterilize adult females. 
Techniques used in swine population control fi eld trials could include ground place-
ment by hand or aerial drop from a small aircraft (Fleming et al.  2000 ; Mitchell 
 1998  ) , and bait feeding stations (Kavanaugh and Linhart  2000 ; Twigg et al.  2007  ) . 
Nontarget species may remove a signifi cant portion of the bait within the fi rst few 
days following placement (Campbell et al.  2006 ; Fleming et al.  2000  ) . 

 In our model, bait density was manipulated to emulate ground or aerial distribu-
tion techniques. We tested the distribution of different numbers of baits, both in 
single spatial blocks and by random dissemination between specifi ed numbers of 
single patches. When the placement function was active, baits were distributed at 
user-specifi ed intervals, with a default interval of 4 weeks. Baits remained in place 
for one time step, and only pigs in baited patches were eligible to ingest it. For every 
patch, the odds that each female pig would become sterile were ( b /2 p ), where  b  is 
the number of baits in patch and  p  is the number of pigs in patch.   
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    8.3.8   Interface 

 The NetLogo interface for this model is shown in Fig.  8.2 . The darker objects 
(greenish when viewed in NetLogo) are user input controls. Adjustments to user-
specifi ed variables take effect immediately; the number of pigs killed by hunting 
and the quantity, frequency, and distribution of contraceptive bait can be modifi ed 
while an experiment is running. The lighter objects (light brown when viewed in 
NetLogo) show system state information. In this model, the pig population counter 
and the graphs showing age and sex demographics are updated at the end of each 
time step. The three buttons at the top left initialize and run the model, and the large 
square in the center shows the mapped state of the system, including the actual loca-
tions of pigs on the installation. Because groups of up to ten sows and their piglets 
may move together, the total pig population may be signifi cantly greater than the 
number of pig icons visible.    

    8.4   Simulation Experiments 

 The model was used to test all 16 combinations of 4 hunt and 4 contraceptive 
scenarios. The hunt levels were 0, 25, 50, and 75 kills per month. The bait levels 
were 0, 2,500, 5,000, and 7,500 baits placed per month. Each scenario was simu-
lated ten times, and ended when either 12 model years had passed or the simulated 
population exceeded 12,000 pigs. In each simulation our modeled population 
quickly achieved an age distribution similar to that seen in the literature, with only 
a small percentage of pigs surviving past 2 years of age. Each scenario began with 
1,100 swine generating a population after a 104-week “ramp-up” during which 
there was no hunting or baiting. Population growth rates generally remained within 
the measured range, consistently approaching the 142% mean observed at Fort 
Benning (Hanson  2006  ) . 

  Fig. 8.2    Model interface       
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 Without the use of contraceptive baits, even high-intensity hunting ultimately 
had little impact on the size of the feral pig populations although it did slightly 
reduce the rate of population growth (Fig.  8.3 ). In these fi gures, each trace repre-
sents 1 of the 10 trials for that scenario. When used in the absence of hunting, 
contraceptive baits were similarly ineffective at low intensity (Fig.  8.4 ). However, 
when a larger number of baits were placed each month, contraception showed 
potential for limiting the size of the feral pig population.   

 With low-intensity contraceptive use, population growth slowed but did not stop as 
the number of pigs killed by hunting was increased (Fig.  8.5 ). In the inverse scenario, 
with hunting kept at low intensity, growth rates were similarly responsive to increases 
in contraceptive baiting (Fig.  8.6 ). Population control was consistently achieved at 
higher hunting intensities in these lower-intensity contraception scenarios.   

 For any time step in a simulation, variation in the pig population across treat-
ments was inversely related to treatment intensity. For simulations in which treatment 
intensity was adequate to prevent the pig population from reaching 12,000 individu-
als, greater differences between treatments were seen at the 8- and 12-year time 
points. Figure  8.7  shows how the population at the 8-year mark (416 weeks) varied 
with kill rate, represented by individual lines showing the average population across 
replicates, and contraceptive bait intensities.  

  Fig. 8.3    Various hunting intensity, no contraceptive bait       
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  Fig. 8.4    Various contraceptive bait intensity, no hunting       

  Fig. 8.5    Low contraceptive bait intensity, various hunt intensities       
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 When moderate to high-intensity hunting was combined with contraceptive 
baiting, population reduction and control were consistently achieved. Population 
control was feasible with low, moderate, or high-intensity placement of contracep-
tive baits in combination with moderate or high-intensity hunting. Figure  8.8  shows 
population changes using monthly totals of 25 kills with 7,500 baits, 50 kills with 
5,000 baits, and 75 kills with 2,500 baits   .   

  Fig. 8.6    Low hunt intensity, various contraceptive bait intensities       

  Fig. 8.7    Average population at week 416 for different hunt rates across various bait intensities       
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    8.5   Discussion 

 Age distribution, population growth rates, and seasonal movement produced by our 
model were consistent with general data available for feral swine and with observa-
tions specifi c to the Fort Benning population. Our results support the hypothesis that 
the combination of lethal control and oral contraceptive delivery will provide better 
control of the Fort Benning feral swine population than will either technique alone. 
We did not evaluate the impacts of trapping, bait stations, bait-and-euthanize 
schemes, or the sterilization of males. Future modeling studies would be useful to 
determine whether and how these techniques might be included in an integrated 
management program. 

 Behavioral adaptations, such as aversion to hunting and trapping sites or increased 
frequency of visits to baited areas, have been reported, and could warrant specifi c 
attention in the development of long-term control strategies. Variation in surface 
water availability due to annual climate variation or climate change could also affect 
feral pig ranges. Future modeling efforts should investigate the potential impact of 
these factors on feral pig movement and management.  

    8.6   Conclusions 

 Our study suggests that a combination of lethal and contraceptive techniques is more 
likely than either method alone to achieve management goals for the Fort Benning 
feral swine population. Improved control of this population by combined methods is 

  Fig. 8.8    Combined moderate hunting and contraceptive baiting intensities       
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likely to reduce habitat destruction and disease risks to threatened and endangered 
species, and improve overall achievement of conservation management objectives. 
In addition, our model provides a framework for understanding how feral swine 
interact with the landscape and helps management decision-makers predict the 
effects of proposed control techniques on swine populations and their location. The 
ability to test such controls could improve cost- and labor-effi ciency of invasive 
species management, particularly as control options are reevaluated in the context of 
new information, alternative management scenarios, or changing conditions.      
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    9.1   Background 

 Understanding what fuels large river ecosystems is important because rivers produce, 
utilize, store, and transport energy in the form of organic carbon, thereby playing an 
important role in the global carbon cycle (Shih et al.  2010  ) . Virtually all large rivers 
in the world have been developed for water supply, navigation, and fl ood control, 
but at a cost to valuable natural goods (e.g., fi sh) and services (e.g., sustainment of 
biodiversity) that depend on natural sources of energy (Vorosmarty et al.  2010  ) . 
However, it is diffi cult to determine what fuels large river ecosystems because of the 
spatial and temporal complexity of fl oodplain-river ecosystems. The fl ow of organic 
carbon in river ecosystems is controlled not only by biotic and abiotic factors similar 
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to those observed in terrestrial ecosystems (e.g., “who eats whom” and ambient 
temperature, respectively) but also by hydraulic factors that move carbon within the 
river system (Doi  2009 ; Power  2006  ) . 

 It is easy to understand that the ultimate source of energy is the carbon fi xed by 
green plants through photosynthesis, but these primary producers (called  autotro-
phs , literally meaning “self-feeders”) live in complex distribution patterns along 
tributary streams, on vast fl oodplains, and in the river itself in the form of micro-
scopic algae and rooted or fl oating  macrophytes . The consumers of carbon (i.e., 
 heterotrophs ) include mobile fauna such as fi sh and zooplankton, and relatively 
immobile animals such as mollusks, worms, and aquatic insects that attach to or 
burrow into the bed of the river. Additionally, there are the decomposers such as 
bacteria and fungi, which utilize the waste products or dead bodies of both the 
producers and consumers. 

 In rivers, as in most other ecosystems, carbon does not move in a simple, linear 
food chain from plants to herbivores to smaller and larger predators. Instead, con-
sumers such as zooplankton, fi sh, and mollusks may use several sources of organic 
carbon, including algae, particulate organic carbon (POC), and other smaller 
consumers. The microbial layer of bacteria, fungi, and algae that coats the river bed 
and solid objects in the river (e.g., mollusk shells, sunken logs, and built structures) 
can take up dissolved organic carbon (DOC). The resulting feeding linkages look 
less like a food chain and more like a  food web . 

 The complexity of the food web is compounded by the fact that the distribution 
of producers and consumers varies both spatially and temporally. Annual cycles in 
day length, temperature, water depth, and water fl ow typically distinguish a warm 
season of reproduction and growth from a cold season of relative inactivity. Because 
the dynamics of riverine food webs are so complex, it is not surprising that there is 
considerable debate about what controls productivity in large rivers (Dettmers et al. 
 2001 ; Hoeinghaus et al.  2007 ; Power  2006 ; Power and Dietrich  2002  )  and that there 
are alternative riverine productivity theories. 

 Three current theories that attempt to explain patterns of productivity in large 
rivers are (1) the river continuum concept, or RCC; (2) the riverine productivity 
model, or RPM; and (3) the fl ood-pulse concept, or FPC (Dettmers et al.  2001  ) . The 
RCC states that leaves from terrestrial plants that fall into headwater streams are the 
main source of carbon, which is assimilated and transferred downstream with water 
fl ow (Vannote et al.  1980  ) . The RPM states that plants growing in the river, includ-
ing microscopic algae and rooted macrophytes, generate most of the carbon con-
sumed by crustaceans, mollusks, aquatic worms, aquatic insects, and fi sh (Thorp 
and Delong  1994  ) . The FPC asserts that consumers in the river depend mostly on 
carbon produced in the adjacent fl oodplains by aquatic or fl ood-tolerant plants. Fish 
and other mobile consumers can access the resources of the fl oodplains during sea-
sonal fl oods, and carbon produced on the fl oodplains can also be carried into the 
river when the fl oods recede (Junk et al.  1989  ) . The FPC regards the seasonal fl ood 
pulse as the major driving force responsible for the existence, interactions, and pro-
ductivity of the major biota in large fl oodplain-river ecosystems. 

 Field data have provided some support for each of these three theories across 
different river systems and within river systems across seasons (Gutreuter et al.  1999 ; 
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Hoeinghaus et al.  2007 ; Kohler  1995 ; Oliver and Merrick  2006 ; Schramm and 
Eggleton  2006 ; Sheldon and Thoms  2006  ) . However, no single theory applies uni-
formly across time or space, and in many cases it remains unclear whether carbon 
produced in the river ( autochthonous  carbon) or outside of the river ( allochthonous  
carbon) is the most important driver of large river productivity. One possibility is that 
all three sources of productivity are important, but in different places at different 
times of year (e.g., carbon from upstream and from fl oodplains adjacent to the river 
may be important during seasonal fl oods, but not during the low fl ow season). 

 The question of what fuels river ecosystems is not merely of theoretical interest 
because the answer could determine priorities for managing and restoring rivers. If fi sh 
and other organisms valued by humans depend on upstream sources of carbon, then an 
effi cient restoration strategy would be to work from the headwaters down. However, if 
riverine consumers obtain their carbon mostly from the river itself, then from an energy 
standpoint it matters little whether the fl oodplains are periodically connected to the 
river, although there may be other reasons for maintaining or restoring river-fl oodplain 
connectivity, such as providing fl ood storage (Akanabi et al.  1999  ) . 

 Built structures such as levees, locks, and dams may alter natural patterns of 
productivity by altering water depth, fl ood dynamics, and sediment accumulation 
(Tyser et al.  2001  ) . On the Upper Mississippi River, there are 29 navigation dams 
and locks in place from Minneapolis, Minnesota, to St. Louis, Missouri. Downstream 
of St. Louis, the river is free-fl owing to the Gulf of Mexico. Most of the fl oodplain 
in Wisconsin and Minnesota is unleveed and connected to the river during seasonal 
fl oods, while approximately half of the fl oodplain in Iowa, Illinois, and Missouri is 
leveed, mostly for agriculture purposes (Delaney and Craig  1997  ) . Despite the pres-
ence of dams and levees, the Upper Mississippi River retains a complex lateral and 
upstream-downstream mosaic of landforms and ecological communities, and exhib-
its processes characteristic of large fl oodplain-river ecosystems (Sparks et al.  1990  ) . 
Typically, each reach of the river that is defi ned by navigation dams, termed a  navi-
gation pool  by the US Army Corps of Engineers, consists of a downstream portion 
that is impounded during the seasonal low fl ow to maintain water depths for naviga-
tion (Fig.  9.1 ). During moderate seasonal fl oods, the dam gates are raised from the 
bottom of the river and out of the water. During major fl oods, the dams (typically 
low earthen weirs that connect the gates to the shore) are overtopped. Even during 
low fl ows, the infl uence of the dams extends only approximately half the distance 
upstream to the next dam. Upstream of the halfway point, the river retains the mean-
dering main channel, numerous side channels, islands, backwaters, and fl oodplains 
that characterized the original natural environment (Fig.  9.1 ). The navigation dams 
have, in effect, created multiple replicate systems that are well suited for hypothesis 
testing. The subject of this study was Pool 5, for which a hydraulic model and 
biological data were available.  

 Spatially explicit modeling of large river ecosystems offers a study approach that 
enables researchers to use both short-term and long-term data to develop restoration 
and management plans. Field studies of food webs are expensive. The results are 
usually valid only for a few years, and at best they provide snapshots of river dynamics 
that may not represent either prevailing trends across decades or long-term responses 
to signifi cant environmental disturbances. By contrast, long-term monitoring programs 
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may detect trends in populations and productivity over time, but they fail to identify 
the underlying causes of the trends. Models can be used to determine whether the 
spatial and temporal patterns of primary production and consumption identifi ed in 
short-term studies play a role in long-term population trends detected by monitoring, 
and they also can effi ciently identify gaps in current databases to guide future data 
collection. Although modeling is an excellent tool for planning and directing long-
term productivity studies, the creation of a riverine model can be time-consuming 
and expensive. Furthermore, while numerous studies have used modeling to examine 
river ecosystem dynamics in terms of productivity (Best and Boyd  2008 ; Best et al. 
 2001 ; Garbey et al.  2006 ; Herb and Stefan  2003 ; Park et al.  2003  ) , many of these 
models are limited in their ability to incorporate the physical complexities of river 
ecosystems. This chapter describes a basic river productivity simulation model that 
builds off of previously constructed models and also incorporates ecological and 
hydraulic processes, thereby improving overall model realism while reducing the 
time and cost requirements of making those improvements.  

    9.2   Objective 

 The objective of this project was to integrate river hydrology into an ecological 
model of river productivity. By uniting ecological and hydraulic processes within 
the same model we seek to better represent the complexity of the Mississippi River 
carbon cycle and to pinpoint key sources of productivity within it. If our model of 
the food web within the Mississippi River can accurately predict productivity in the 

  Fig. 9.1    Map of Pool 5 on the Upper Mississippi River. The darkest colors represent sections of 
the river that have a 50% probability of being submerged during any given year. Two years are 
predicted to pass before these sections will be submerged       
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river, it will support the RPM (in-river production of organic carbon is suffi cient to 
fuel the river ecosystem); if this is not the case, then organic carbon from upstream 
sources, the fl oodplain, or both may also play important roles and should be incor-
porated into future models. 

 A secondary objective of this work was to design the model so it can easily be 
applied to a variety of river ecosystems simply by changing hydrology inputs such 
as maps of depth, velocity, and fl ow direction. By meeting the secondary objective, 
this model may provide useful guidance for management planning by addressing 
variations in hydrology from locks and dams as well as natural processes such as 
sedimentation.  

    9.3   Model Description 

    9.3.1   Purpose 

 This model was developed using NetLogo 4.0.4 (Wilensky  1999  ) . 1  The purpose of 
the model is to combine ecological and hydrological processes to simulate carbon 
fl ow through Pool 5 of the Upper Mississippi River, a 24 km section extending from 
Navigation Dam No. 4 at Alma, Wisconsin, downstream to Navigation Dam No. 5 
near Whitman, Minnesota (Fig.  9.1 ). A basic carbon cycle was modeled using sim-
ple food web interactions. Water depth, current velocity, and current direction were 
derived for Pool 5, assuming a moderate discharge of 88,000 cfs, using the Adaptive 
Hydraulics 2D hydraulic simulation model (USACE  2008  )  to describe the spatial 
distribution of dissolved carbon.  

    9.3.2   State Variables and Scales 

 Water depth, velocity, and fl ow direction in Pool 5, as reported by the US Army 
Corps of Engineers, were plotted on digital maps using a color gradient. These maps 
were divided into patches of 30 × 30 m (Fig.  9.2 ), and the carbon cycle was modeled 
within each patch (as described in Sect.  9.3.6 ). This carbon cycle model, originally 
developed in 1983 for Pool 19 of the Upper Mississippi River (Sparks  1985  ) , simu-
lates the transfer of labile carbon among trophic levels within each patch. It includes 
11 basic carbon states: DOC, POC, detritus, phytoplankton, macrophytes, periphy-
ton, herbivores, decomposers in the water column, decomposers in the sediment, 
consumers in the water column, and consumers in the sediments. The abundance of 
each of these stocks was expressed in grams of carbon per patch.  

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com


156 K.R. Amato et al.

 While there is evidence that primary productivity in large river ecosystems is 
infl uenced by nitrogen, phosphorous, and other nutrients (Allan and Castillo  2007 ; 
Francoeur  2001 ; Houser and Richardson  2010  ) , there is other evidence that the 
Upper Mississippi River is not nutrient-limited and that primary production, 
especially in the main channel, is often limited by factors such as light availability 
and temperature (Houser et al.  2010 ; Huff  1986 ; Owens and Crumpton  1995    ). For 
these reasons, and to maintain simplicity, the effects of nitrogen and phosphorous 
are not simulated in this model. Primary productivity is based on temperature, light, 
and water velocity. Transfer of carbon from one stock to another is based on biomass-
dependent interactions between stock. The movement of labile carbon between 
patches is modeled on the basis of water velocity and fl ow direction (see Sect.  9.3.6.4 ). 
The time step for the model is set at 1 h for the purpose of corresponding with many 
of the measurements reported for river processes in the literature and with the 
hydrology data.  

    9.3.3   Process Overview and Scheduling 

 Within each patch, during each time step, carbon is fi rst added to both autotrophic 
and heterotrophic carbon stocks as dictated by the formulas for primary production 
and consumption. Then the carbon that was consumed by the heterotrophs is 
removed from the appropriate carbon stocks indicated by the food web. Finally, 
each stock is assigned a new biomass value that takes growth and predation into 
account, and the hydrologic component moves carbon among patches. Interactions 
between stocks are described below.  

  Fig. 9.2    Grayscale GIS maps of water velocity, depth, and fl ow direction in Pool 5.  Darker  colors 
represent increased velocity and depth, as well as changes in the direction of fl ow. Maps were cre-
ated using data from a US Army Corps of Engineers ADH 2D hydraulic model. Units are m/s/30 m 2  
(velocity), m/30 m 2  (depth), and degrees/30 m 2  (vector, from 0 to 360°)       
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    9.3.4   Initialization 

 All carbon stocks transported in the current (phytoplankton, water column decom-
posers, DOC, POC) were arbitrarily set at 10 g of carbon per patch to start the 
model. These stocks also received infl uxes of 10 g of carbon in each of the patches 
bordering the upstream end of Pool 5 during each time step to simulate the infl uence 
of upstream carbon on the system. This amount was chosen based on organic sus-
pended sediments data for Pool 4 from the Long-Term Resource Monitoring 
Program implemented by the US Geological Survey (  http://www.umesc.usgs.gov/
ltrmp.html    ). All other stocks were set at 1 g of carbon per cell to start the model and 
were not subject to infl uxes or outfl uxes during the simulation.  

    9.3.5   Input 

 The model takes input from GIS maps of water depth, velocity, and fl ow direction 
in Pool 5 of the Mississippi River, which was created from a 2D hydraulic model 
developed by the US Army Corps of Engineers (USACE  2008  ) . The hydraulic 
model simulated a discharge of 2,097 m 3 s −1 . Although this discharge level is not 
common for periods longer than 1 month, it was chosen because the data from the 
hydraulic model were the most readily available source. Maps were divided into 
patches across a color gradient so that an average depth, velocity, and fl ow vector 
could be calculated for each patch.  

    9.3.6   Submodels 

    9.3.6.1   Autotrophic Stocks 

 The two autotrophs considered for this model are macrophytes and phytoplankton. 
Macrophytes were modeled only in patches where water velocity was less than 
1 m/s because higher velocities result in complete scouring. 

 We modeled all autotrophic stocks using the general equation:

     = - -d / d Prod Phys Predj j j jX t    (9.1)  

where the biomass of stock  j  equals the difference between primary production and 
physiological and predatory losses. 

 Primary production for macrophytes is described using the maximum gross pho-
tosynthesis equation (Chambers et al.  1991 ; Sand-Jensen et al.  2007  ) :

     = ´ + -Prod 0.08 ( / ( 10))( ) /j j jX l l K X K    (9.2)  

http://www.umesc.usgs.gov/ltrmp.html
http://www.umesc.usgs.gov/ltrmp.html


158 K.R. Amato et al.

where  X  
 j 
  is macrophyte biomass,  K  is the half-saturation constant, and  l  is the 

amount of light that reaches the macrophytes depending on the amount of surface 
light, depth, and total suspended solids:

     
-= (( ) )( e )d bl s    (9.3)  

where  s  is surface light,  d  is depth, and  b  is turbidity. Primary production for phyto-
plankton was modeled using a formula similar to that used for macrophytes 
(Huisman and Weissing  1994  ) . 

 Physiological losses of an autotrophic stock were modeled as:

     μ η σ= + +Phys ( )j j j j jX    (9.4)  

where   m   
 j 
  is the specifi c physiological mortality rate,   h   

 j 
  is carbon lost to excretion, 

and   s   
 j 
  is carbon lost to respiration (Garbey et al.  2006  ) . Carbon lost via physiologi-

cal mortality is transferred to the detritus, POC, and DOC stocks. Carbon lost via 
excretion enters the DOC stock. Carbon lost to respiration by a stock is removed 
from the system. In this version of the model, the phytoplankton stock—not the 
macrophyte stock—loses carbon to herbivores. These losses are described in the 
equations for heterotrophic stocks.  

    9.3.6.2   Heterotrophic Stocks 

 Heterotrophic stocks included aufwuchs (microbial component), herbivores, con-
sumers, and decomposers. We modeled all of these stocks using the general equa-
tions developed by Wiegert  (  1975  ) . Biomass of a stock at time  t  + 1 is determined by 
the formula:

     ε= - - -d / d (1 ) Phys Predj j j j jX t C    (9.5)  

where the biomass of stock  j  equals the difference between consumption corrected 
for egestion (  e   

 j 
 ) and physiological and predatory losses. Egested material enters the 

detrital food web as POC, much of which may be converted to detritus depending 
on the hydrological conditions of the cell. Consumption ( C ) by stock  j  is determined 
by the summation of consumption of each available prey type ( m ) of predator  j , 
given by the formula:

     ( )= =å å( ) is sum from 1 toj ij j j ij jjC X f f i mπ τ    (9.6)  

where   p   
 ij 
  is the preference of stock  j  for prey stock  i ,   t   

 j 
  is the maximum rate of con-

sumption by predator stock  j , and  X  
 j 
  is the biomass of predator stock  j . The func-

tional response of predator stocks is determined by  f  
 ij 
  and  f  

 jj 
 , which represent prey 

and space limitation functions:

     = -/ ( )ij ixy ixyf y A G    (9.7)  

     = - - -1 (( ) / ( ))jj jx jx jxf x A G A    (9.8)  
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where  x  is the present biomass of the heterotrophic stock in question and  y  is the pres-
ent biomass of the prey stock being fed on by the heterotrophic stock. Because popu-
lation growth rates can be limited by both prey availability and intraspecifi c 
interference at high population densities, both  f  

 ij 
  and  f  

 jj 
  produce values between 0 and 

1. At high prey densities, predators will not be resource-limited and thus will feed at 
the maximum rate (  t   

 j 
 ). However, below a prey density threshold ( A  

 ij 
 ), consumption 

will be reduced and will eventually fall to zero when prey densities are below a refuge 
level ( G  

 ij 
 ). If a predator stock feeds only on one prey type, then   p   

 ij 
  is set to 1. However, 

when a predator stock feeds on multiple stocks,   p   
 ij 
  is a function of innate prey prefer-

ence ( P  
 ij 
 ) for specifi c stocks and the biomass of those stocks in the cell, given as:

     ( )= =å å( ) / ( ) is sum from 1 toij ij ij ij ijP f P f i mπ    (9.9)   

 For simplicity we assume  f  
 ij 
  decreases linearly between  A  

 ij 
  and  G  

 ij 
 . Space limita-

tion is determined similarly, except values of  A  
 jj 
  and  G  

 jj 
  relate to predator density. 

 Stock-specifi c values for  A  
 ij 
 ,  A  

 jj 
 ,  G  

 ij 
 ,  G  

 jj 
 , and  P  

 ij 
  were adapted from Pace  (  1984  )  

and are listed in Tables  9.1  and  9.2 . However, these values are likely to be system-
specifi c and thus should be calibrated with independent data from the system to be 
modeled. Calibration for this system will occur with further model validation and 
sensitivity analyses.   

 Physiological losses of a heterotrophic stock were modeled as above for auto-
trophic stocks:

     = + +Phys ( )j j j j jXμ η σ    (9.10)   

 Carbon lost to predation is determined by the summation of losses to each preda-
tor stock ( k ).

     ( )= =å åPred ( ) is sum from 1 toj jk k k jk kkX f f k nπ τ    (9.11)    

   Table 9.1    Stock-specifi c values for prey limitation of heterotrophs   

 Predator stock  Prey stock    p   
 ij 
    A  

 ij 
    G  

 ij 
  

 Herbivore  Phytoplankton  0.7  20  0.01 
 Herbivore  Periphyton  0.15  3  0.01 
 Herbivore  Water decomposers  0.15  3  0.01 
 Water decomposer  POC  0.5  30  0.05 
 Water decomposer  DOC  0.05  30  0.05 
 Sediment decomposer  Detritus  1  0.6  0.005 
 Periphyton  DOC  0.5  30  0.05 
 Periphyton  POC  0.5  30  0.05 
 Sediment consumer  Sediment decomposer  0.5  3  0.02 
 Sediment consumer  Detritus  0.1  3.5  0.02 
 Sediment consumer  Periphyton  0.4  2  0.02 
 Consumer  Herbivore  0.7  3.5  0.025 
 Consumer  Sediment consumer  0.3  4  0.04 
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    9.3.6.3   Detritus, POC, and DOC 

 Both the detritus and POC carbon stocks acquire carbon from dead organic matter 
that is greater than 1  m m in size. However, POC refers to matter in the water column 
and detritus refers to matter in the sediments. For this model, senesced material was 
deemed detritus if particle size was greater than 10  m m (Wetzel  2001  ) . The percent 
of senesced material transferred to the detritus stock varied according to its source 
(Table  9.3 ). All egested carbon contributes to detritus (Table  9.3 ). Carbon lost to 
POC from the detritus category is described as: 

     = + +Trans (2.5 log(( / 40.0) 0.0001) 0.5)j jX v    (9.12)  

where  v  is equal to the water velocity, and higher velocities result in a greater pro-
portion of organic matter in the water column. Similarly, the transfer of carbon from 
the POC stock to the detritus stock is described as the product of POC biomass and 
    -(1 Trans )j   . When velocity is equal to zero, 90% of the carbon in the POC stock 
settles out and becomes detritus. 

 All senesced carbon in the model that is not assigned to the detritus stock is 
assigned to the POC stock, with the exception of a small percentage that is assigned 
to the DOC stock (Table  9.3 ). Carbon is also transferred to POC from DOC at a rate 
of 1% due to fl occulation. 

 The DOC carbon stock acquires carbon from dead or excreted objects that mea-
sure less than 1  m m in size (Wetzel  2001  ) . In this model, in addition to some senesced 
carbon, all carbon excreted or released as exudates contributes to DOC, seen in 
Table  9.3  (Wetzel  1984  ) .  

   Table 9.3    Percent of senesced, excreted, and egested carbon assigned to new carbon states   

 Carbon source  Detritus  DOC  POC 

 Senescence 
 Macrophytes  100  0  0 
 Scoured macrophytes  90  1  9 
 Phytoplankton  90  1  9 
 Herbivore  30  0  70 
 Periphyton  70  0  30 
 Water column consumer  100  0  0 
 Sediment consumer  100  0  0 
 Water column decomposer  30  0  70 
 Sediment decomposer  100  0  0 

 Excretion  0  100  0 
 Macrophyte exudation  0  100 (4% of carbon from 

photosynthesis) 
 0 

 Egestion  100  0  0 
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    9.3.6.4   Incorporation of Hydraulics 

 Mobile carbon from each cell was modeled to fl ow at the same velocity as water, 
and the amount of carbon transferred between cells was calculated using trigono-
metric functions based on the speed and direction of water fl ow in each cell (Fig.  9.3 ). 
Since most fi sh actively move to fi nd food, consumers in the water column in this 
model were not affected by hydraulics.     

    9.4   Simulation Experiments 

    9.4.1   Model Run 

 The model was run for 1,368 time steps, which is equivalent to approximately 57 
days of simulated time. The simulation took approximately 1 week to complete run-
ning on a desktop computer. The starting values for each stock and carbon infl uxes 
into the pool are listed in Tables  9.4  and  9.5 . The amount of carbon (g) assigned to 
each carbon stock was recorded at each time step for the duration of the simulation, 

  Fig. 9.3    Trigonometric design of the hydrological component of the model       
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and changes in each carbon stock were plotted as a function of time. The fi nal size 
of each carbon stock in each cell was also recorded. These data were translated into 
maps representing each stock.    

    9.4.2   Simulation Results 

 The amount of carbon in each stock remained relatively constant throughout the 
simulation or plateaued after an initial increase. The patches bordering the down-
stream end of the pool had measured outfl uxes of 10 g of carbon during each time 
step, which was equal to the programmed infl ux into the patches bordering the 
upstream end. The greatest amount of carbon biomass accumulated in areas of mod-
erate depth and velocity directly adjacent to the main channel (see Figs.  9.4 – 9.7 ). 
Detritus accumulated in most of the pool during the 57-day simulation, which is not 
surprising since the relatively low discharge promotes the settling of organic matter 
in low-current, off-channel areas (Fig.  9.6 ). The patterns for individual stocks are 
detailed below.     

   Table 9.4    Model starting values for carbon stocks   

 Stock  Starting value (g C/cell) 

 Macrophytes  1.0 
 Phytoplankton  10.0 
 Herbivores  1.0 
 Water column consumers  0.1 
 Sediment consumers  1.0 
 Water column decomposers  10.0 
 Sediment decomposers  1.0 
 Detritus  1.0 
 POC  10.0 
 DOC  10.0 

   Table 9.5    Values for infl uxes at the top of the navigation pool (upstream 
end)   

 Stock  Infl ux value (g C/cell) 

 Phytoplankton  10.0 
 Water column decomposers  10.0 
 POC  10.0 
 DOC  10.0 

  Values for outfl uxes at the bottom of the pool (downstream end) were equal 
to infl ux values  
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  Fig. 9.4    NetLogo grayscale map output of autotrophic stocks after a 57-day model simulation. 
 Darker  colors represent higher carbon biomass. Units are grams of carbon/30 m 2        

  Fig. 9.5    NetLogo grayscale map output of heterotrophic consumer stocks after a 57-day model 
simulation.  Darker  colors represent higher carbon biomass. Units are grams of carbon/30 m 2        

    9.4.2.1   Autotrophic Stocks 

 Primary producers were present throughout Pool 5 (Fig.  9.4 ). Therefore, although 
the amount of carbon available to consumers from producers varied depending on 
location in the pool, producers were available for consumers in all parts of the pool. 
Macrophytes and phytoplankton did not coexist in any portion of the pool. 
Phytoplankton biomass was greatest in several off-channel areas, including the 
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shallow, low-velocity backwater area to the left of the main channel (Fig.  9.4 ), 
locally known as Weaver Bottoms. By contrast, macrophytes exhibited more carbon 
biomass in deeper areas with higher water velocities (Fig.  9.4 ). The only exception 
to this pattern was found in the main channel, where velocities exceeded 1 m/s and 
complete scouring of macrophytes occurred.  

  Fig. 9.7    NetLogo grayscale map output of decomposer stocks after a 57-day model simulation. 
 Darker  colors represent higher carbon biomass. Units are grams of carbon/30 m 2        

  Fig. 9.6    NetLogo grayscale map output of detritus, DOC, and POC after a 57-day model simula-
tion.  Darker  colors represent higher carbon biomass. Units are grams of carbon/30 m 2        
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    9.4.2.2   Heterotrophic Consumer Stocks 

 Like primary producers, the consumers included in the model were present through-
out the pool, with different subsets of consumers occupying different areas. 
Herbivore distribution mirrored that of phytoplankton (Fig.  9.5 ). A small amount of 
herbivores were present throughout the pool, but they gained the most biomass in 
shallow, low-velocity areas; additionally, water column consumer biomass distribu-
tion matched the herbivore distribution (Fig.  9.5 ). Although their biomass was 
reduced in comparison with low-fl ow areas, water column consumer biomass was 
higher than herbivore biomass in deeper, high-velocity areas near the main channel. 
Finally, sediment consumer biomass distribution was similar to water column 
consumer biomass distribution (Fig.  9.5 ). However, sediment decomposers exhibited 
a greater decrease in biomass from shallow, low-velocity areas to deeper, high-
velocity areas when compared with water decomposers.  

    9.4.2.3   Detritus, POC, and DOC 

 Detritus, POC, and DOC distributions throughout Pool 5 were similar to each other. 
All three carbon stocks exhibited the highest biomass in areas of moderate depth 
and velocity adjacent to the main channel (Fig.  9.6 ). None of these stocks accumu-
lated biomass in the main river channel, and POC and DOC biomass were also very 
low in areas of low depth and velocity.  

    9.4.2.4   Decomposers 

 Decomposers in both the water column and sediments appeared to gain the most 
carbon biomass in areas of low to moderate depth and velocity in Pool 5 (Fig.  9.7 ). 
However, sediment decomposers appeared to inhabit more areas of the pool than 
water decomposers, and water decomposers exhibited increased biomass in areas 
adjacent to the main channel and to the river bank.   

    9.4.3   Validation 

 Preliminary model validation was performed using descriptive procedures. First, we 
ensured that the model accurately captures the key aspects of carbon fl ow in the 
Mississippi River and that the model was internally consistent and logical. No 
known aspects of the carbon cycle were violated in this model. The amount of 
carbon entering and exiting the model was conserved, and the model was free of 
programming errors. 

 To quantitatively validate this model, simulation results must be compared with 
fi eld data. To accomplish this, spatial and temporal patterns from carbon distribution 
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maps for each stock within Pool 5 must be compared with empirical data from Pool 
5. Specifi cally, quantitative tests can be used to verify that spatial patterns in mod-
eled stocks correlate with empirically observed spatial patterns in the same stock 
(e.g., vegetation bed size, confi guration, total area, etc.). However, because data are 
still being compiled from the Long-Term Resource Monitoring Program of the US 
Geological Survey, only descriptive validation has been possible to date. Validation 
using more rigorous tests will continue as empirical data become available.   

    9.5   Discussion 

 Using existing models and data, we were able to build a preliminary spatially 
explicit carbon-based model of productivity for Pool 5 of the Upper Mississippi 
River. Our model suggests that the hydrology of the Mississippi River directly 
affects its food web. Simulation results indicate that the effect of depth on light 
availability was important to the success of primary producers in this simulation as 
they rely on light for carbon fi xation. Furthermore, because macrophytes rely on 
their root system to anchor them and obtain nutrients, they were negatively affected 
by higher water velocities. The model dictated that above velocities of 1 m/s, mac-
rophytes were completely scoured, inhibiting their survival regardless of light con-
ditions. However, in shallow areas that had the lowest velocities and highest light 
availability, phytoplankton appeared to outcompete macrophytes. Therefore, mac-
rophyte distribution in Pool 5 appears to be limited by biotic factors in addition to 
abiotic factors. 

 The data obtained from this simulation provide basic support for the RPM. 
Because the RPM states that consumers rely on autochthonous producers as a car-
bon resource, we would expect consumer carbon acquisition to depend heavily on 
producer carbon acquisition within this system. The model validates that expecta-
tion since consumers were able to acquire carbon in any location in the river that 
contained producers, and consumers did not run out of prey in 57 days under a rela-
tively low river discharge of 2,097 m 3 /s. Additionally, the fact that outfl uxes of car-
bon at the downstream end of Pool 5 were equal in size to carbon infl uxes at the 
upstream end suggests that Pool 5 did not function as a carbon sink for upstream 
carbon infl uxes or as a carbon source for downstream food webs. However, it is 
important to note that the model does not include allochthonous carbon inputs or 
simulate fl ood-pulse dynamics to directly test either the RCC or the FCC. Future 
iterations of this model must include these processes in order to more thoroughly 
explore their infl uences on river productivity. 

 This modeling approach is powerful and cost-effective because it capitalizes on 
hydraulic models that engineers are likely to employ in river development and res-
toration projects, previously collected ecological data, and an open source software 
modeling environment that is widely available at no cost. Details of the model 
processes can easily be modifi ed depending on the user’s needs as NetLogo runs 
on any reasonably current desktop computer under multiple operating systems. 
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Also, by using different hydraulic input maps, users can readily simulate different 
systems, and simulated time periods may be shortened or lengthened depending on 
the time step specifi ed. Finally, this simple model can provide inputs to more com-
plex individual-based or population-based simulation models. 

 Despite the many advantages of a simplifi ed model, some limitations must be 
considered when evaluating this model’s accuracy. For example, in our simulation 
of carbon fl ow, the hydraulic model does not account for waves and currents that are 
generated by outside forces such as wind or recreational boats (Bhowmik et al. 
 1982 ; Sparks  1984  ) . Carbon removal from the river by external consumers such as 
fi shermen, bald eagles, and other raptors, or by processes such as emergent insects 
being blown off-river, is not included in the model, and neither is the exchange of 
carbon dioxide between the river and the atmosphere (Rasera et al.  2008  ) . Although 
the absence of details such as these may not dramatically affect the broad patterns 
simulated by this model, users may wish to include them in future versions of the 
model to add realism to the simulation. 

 Improved and validated versions of this spatially explicit river productivity model 
may be useful for predicting the impacts of major natural disturbances such as 
droughts and fl oods, and also human environmental interventions such as dam and 
levee construction. Such information could be crucial in mitigation of or prepara-
tion for the impacts of such disturbances. The impacts of restoration measures, such 
as reconnection of rivers and their fl oodplains or naturalization of water regimes, 
also could be evaluated using this type of model by making it possible to analyze the 
implications of alternate restoration scenarios. Simulation results may also help 
environmental agencies to justify more detailed modeling or data gathering prior to 
river development. The fl exibility of our modeling approach allows application to a 
wide variety of systems and questions.  

    9.6   Conclusions 

 Mechanisms behind productivity in large river ecosystems are diffi cult to identify 
due to the large degree of spatial and temporal variability involved. Three different 
theories attempt to explain productivity in large rivers, but none describes a general-
ized mechanism that can be applied to all rivers and all seasons. Using NetLogo, we 
have developed a spatially explicit carbon-cycle model that simulates patterns of 
productivity in Pool 5 of the Mississippi River by incorporating both ecological and 
hydraulic components of the river. With further development and validation against 
empirical data, the model will be a simple and effective analytical tool for research-
ers studying a variety of river ecosystems.      
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    10.1   Background 

 Habitat loss and associated habitat fragmentation is a growing problem worldwide 
and is considered to be one of the greatest threats to biodiversity as well as a primary 
cause of the current high rate of species extinction (Wu et al.  2003  ) . Habitat frag-
mentation is defi ned as the process through which a natural habitat becomes divided 
into isolated small patches of complex geometrical form, within a sea of generally 
inhospitable land uses (Bunnell  1999 ; McComb  1999  ) . 

 Fragmentation negatively affects many species, since smaller habitat patches 
support disproportionately smaller populations that are more vulnerable to local 
extinction than larger ones (Berec  2002 ; Hanski  1997 ; McComb  1999  ) . By increas-
ing patch isolation, fragmentation effectively decreases the gene pool of local popu-
lations, thereby favoring inbreeding depression and making the population more 
prone to demographic stochasticity (Berec  2002  ) . It also modifi es the quality of the 
remaining habitat by increasing edges and reducing core habitat, which can further 
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increase biodiversity loss among core-dwelling species. Although fragmentation is 
strongly connected to habitat loss, this work focused on the connectivity issues that 
result from fragmentation. 

    10.1.1   The Role of Land-Use Change 

 Habitat loss and fragmentation result principally from the expansion of urban and 
agricultural land uses (Tigas et al.  2002  ) . Land-use policies drastically and perma-
nently affect animal and plant populations by modifying the landscapes in which 
they evolved. As a result, road construction, suburban development, and agricultural 
growth can alter species movement and dispersal patterns, potentially isolating and 
extirpating local populations (Bunnell  1999 ; Hanski  1997  ) . Appropriate tools are 
needed to help planners consider development alternatives leading to minimal 
impacts on the environment, but the response of animal and plant species to land-
use change (LUC) is highly complex, which complicates the development of such 
tools. Decisions based on oversimplifi cation of species’ needs or responses may 
lead to irreversible losses of biodiversity. Managers and planners increasingly seek 
decision-support tools based on simulation modeling to help assess the impacts of 
development alternatives (Jorgensen et al.  1996 ; van Daalen et al.  2002  ) . The simu-
lation modeling efforts reported here address the challenge of identifying the rela-
tive value of individual subpopulations with respect to their contribution to the 
diversity of future populations, given their response to proposed regional land man-
agement plans.  

    10.1.2   Gopher Tortoise Natural History 

 The native range of the gopher tortoise ( Gopherus polyphemus ) is found in parts of 
six southeastern states (Fig.  10.1 ). Today, although large populations still persist in 
Mississippi, Alabama, Georgia, and Florida, tortoise populations are declining 
throughout the species’ range. Auffenberg and Franz  (  1982  )  estimated that in the 
last century gopher tortoise populations have declined by 80%. Additional declines 
of individual tortoise populations are occurring throughout the southeastern United 
States due to habitat destruction, fragmentation, and fi re suppression (Lohoefener 
and Lohmeier  1984  ) . This signifi cant decline has led the U. S. Fish and Wildlife 
Service (FWS) to list the tortoise as a threatened species under the US Endangered 
Species Act of 1973 (ESA; 16 U.S.C. 35) in the western portion of its range in 
Louisiana, Mississippi, and Alabama ( Federal Register , July 7, 1987). In the remain-
der of its range, it is considered by the Department of Defense to be a species at risk 
(SAR) and has been recommended for listing as threatened under the Endangered 
Species Act (Save Our Big Scrub Inc and Wild South  2006  ) .   
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    10.1.3   Habitat and Home Range Characteristics 

 Vegetation and soil associations that the gopher tortoise has been reported to 
 colonize include sandhill, oak scrub, southeastern coastal plain, longleaf pine-oak 
( Pinus palustris and Quercus  spp.), xeric hammock, pine fl atwoods, dry prairies, 
mixed hardwood-pine communities, and ruderal areas (roadsides, fencerows, utility 
rights-of-way, pasture edges, clearings and fallow fi elds) (Auffenberg and Franz 
 1982 ; Burke  1989 ; Diemer  1986  ) . Three conditions for survival must be met: well-
drained sandy soils in which the tortoises can burrow, intermittent sunny areas in 
which they can bask and nest, and adequate low-growing forage. Fence rows, 
orchard edges, golf course roughs and edges, and some pastures may contain very 
dense populations (Auffenberg and Franz  1982  ) . Home range sizes have been mea-
sured at between 0.008 and 9.167 ha (Mitchell  2005  ) , with averages (in good habitat) 
reported to be 0.31 ha for adult females, 0.88 ha for adult males, and 0.05 and 
0.01 ha for juveniles (Diemer  1992  ) .  

  Fig. 10.1    Study area adjacent to Fort Benning with current gopher tortoise range and 
distribution       
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    10.1.4   The Georgia Study Area 

 The study area for this project is east of the US Army’s Fort Benning military instal-
lation, which is located in west-central Georgia, south of the City of Columbus 
(see Fig.  10.1 ). The study area occupies approximately 2,260 ha within Georgia, as 
shown by the hatched box in Fig.  10.1 . This area could be considered for future gopher 
tortoise habitat protection since the predominant vegetation and soil associations con-
sist of ideal tortoise habitat, particularly Sandhills (U.S. Geological Survey  2003a  ) . 

 The study area has historically experienced fairly slow rates of urban LUC, and 
there is currently no evidence that this trend will change in the near- or mid-future. 
However, past agricultural land uses, including cotton farming and timber harvest-
ing, have signifi cantly fragmented the landscape. Land cover is shown in the base 
case scenario in Fig.  10.2a . FRAGGLE is one model that could help test the long-
term implication of alternative land management strategies to protect populations of 
species-at-risk.   

    10.1.5   Issues in Fragmentation Modeling 

 A signifi cant number of models have been developed for understanding the process of 
fragmentation and its effects. Although several species-specifi c modeling approaches 
have recently been used to determine potential species habitat within landscapes 
(Aurambout et al.  2005 ; Iverson et al.  1999 ; Mladenhoff et al.  1995 ; Ortega-Huerta 
and Peterson  2004  ) , models that focus exclusively on habitat and species location can 
fail to account for demographic processes such as reproduction, mortality, immigra-
tion and emigration, rescue effects, and inbreeding depression (Hanski  1991  ) . These 
processes can trigger potential time lags in habitat use patterns and can have exten-
sive, long-term repercussions on the persistence of species within landscapes. 
Furthermore, habitat models do not often incorporate life stage analysis (Hastings 
 1996  )  or key landscape features selected by the species (McComb  1999  ) . Consequently, 
the use of population models as complements to habitat models could improve predic-
tions of species-specifi c demographic responses to environmental changes. 

 Although much of the research on species movement in fragmented landscapes 
has focused on corridors, less attention has been placed on studying species move-
ments through adjacent matrices of habitat patches (With  1999  ) . Moreover, as the 
amount of continuous natural habitat decreases below 60–80% of the landscape, 
connectivity between the remaining habitat patches becomes increasingly important 
for many species (McComb  1999  ) . In order to evaluate trans-matrix species move-
ments, the shortest distance between suitable habitat patches may not always pro-
vide the most appropriate estimate of movement behavior. Rather, an estimate of the 
permeability of individual land uses to the movement of species based on their 
 specifi c biology may be necessary (Hanski  1997  ) . Consequently, the creation of 
corridors may not be the only way to facilitate population movements between 
 habitat patches.  
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    10.1.6   Fragmentation Modeling Techniques 

 Researchers have identifi ed two major classes of modeling techniques for habitat 
fragmentation:  agent-based models  (ABMs) and  cellular automata  (CA) models. 
ABMs, also referred to as individual-based models, have been effectively used to 

  Fig. 10.2    ( a ) Study    area GAP land cover map for base case and land-use change scenario. Minor 
land-use classes have been grouped together. Under the land-use change scenario, urban growth 
has occurred in corridors along major roads in the study area. These new areas are simulated to be 
impassable by the tortoise due to fencing constructed along the roads. Note that the Sandhill cells 
are core habitat areas. ( b ) Subpopulation areas maps. These areas are user-defi ned       
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simulate the behavior of individual animals in the landscape (Grimm and Railsback 
 2005  ) . They allow individuals to migrate and reproduce across an array of raster 
GIS habitat patches, while tracking the resulting diffusion of each individual’s 
genetic characteristics. Individuals in ABMs move discretely, often with a stochas-
tic component, in a chosen direction. An ABM can provide a high level of realism 
that makes the model easier for the user to grasp intuitively, but it needs 
 high- performance computer technology to run the many simulations required to 
understand the effects of stochasticity on the probabilities of alternative population 
distributions. The Hargrove/Hoffman PATH ABM (Hargrove et al.  2001  ) , for 
 example, allows agents to migrate beyond the edges of suitable habitat into the 
interstitial landscape in search of new suitable habitat. Successful “walkers” look 
back on their paths and inform associated cells of the success. However, PATH is 
implemented on a supercomputer to accommodate the great number of simulations 
needed before results become meaningful. We previously attempted to apply a simi-
lar modeling approach using desktop computer technology, but simulation times 
were unacceptably long. 

 Alternatively, CA (Wolfram  1984  )  and other grid-cell modeling methods have 
been shown to be a viable alternative to the use of partial differential equations 
(a common mathematical technique) for modeling populations within landscapes 
(Darwen and Green  1996 ; Hanski and Ovaskainen  2000  ) . CA have the capacity to 
handle complex boundaries and are effective for modeling dynamic processes 
 (epidemics, biological invasions) in two-dimensional environments (Cannas et al. 
 2003 ; Karafyllidis  1998 ; Sirakoulis et al.  2000  ) . 

 For our work, the primary advantage of the CA approach is that movement prob-
abilities could be calculated and used directly. Instead of selecting a movement 
direction for an individual in ABM model, using a CA approach, a virtual individual 
may simultaneously migrate to more than one location, thereby making it possible 
to compute spatial connectivity measurements in one simulation run rather than 
hundreds. This capability provides a sort of shortcut for simulating stochasticity in 
movements, improving our understanding of how likely movement is to any specifi c 
habitat area. The average location of the individual becomes a probability surface, 
thereby negating the need for multiple model runs that may be required by an equiv-
alent ABM (e.g., Monte Carlo analysis).   

    10.2   Objective 

 The objective of this research was to better understand the link between habitat 
fragmentation and subpopulation mixing through development and application of a 
spatial-dynamic model that can readily be adjusted and parameterized to capture the 
specifi c life-history and landscape characteristics associated with a variety of spe-
cies and geographic areas. To verify the utility of the model, we studied the potential 
impact of a hypothetical LUC scenario in an area near Fort Benning, Georgia, on 
gopher tortoise ( G. polyphemus ) movements and populations.  
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    10.3   Model Description 

 There is a wide variety of population viability analysis software available, including 
Vortex, RAMAS, Meta-X, SpaSIM, and ALEX (Brook et al.  1999,   2000 ; 
Lindenmayer et al.  1995 ; Spatialworks  2004  ) , but their ready applicability to 
regional development and population fragmentation issues is uncertain. For pur-
poses of development expediency, we constructed FRAGGLE using NetLogo 4.1 
(Wilensky  1999  ) . 1  Our approach incorporates a dynamic population model driven 
by a set of nonlinear difference equations (Deaton  2000 ; Ford  1999  )  into a grid cell 
structure in order to estimate strength of connections among gopher tortoise popula-
tions within a specifi ed landscape. This method of representing local spatial interac-
tions allows each grid cell to interact dynamically with its neighbors, thereby 
forming a dynamic, raster-based, spatially explicit simulation model. In order to 
parameterize each of the cellular models, several raster GIS input grid maps derived 
from land-use data are required. These cellular models are then run in parallel to 
simulate gopher tortoise population dynamics and movement of individuals within 
each habitat patch occurring in the landscape. By running the model on grid maps 
representing projected future land uses, the model provides indications of the 
potential long- and short-term responses of tortoise populations to regional human 
landscape development. 

 In FRAGGLE, a proportion of the population in each cell moves into adjoining 
patches based on factors including cell connectivity, relative crowding, and immi-
gration rates. A population in each patch is defi ned by both the number of individu-
als in the cell and a vector representing the proportion of that population derived 
from individuals (or descended from individuals) from the original habitats. 
Population movement patterns are completely deterministic; they generate identical 
results for identical initial conditions, removing any need for multiple runs after the 
model is parameterized and calibrated. Populations in each patch are organized as 
nonmoving hatchlings, moving (but not reproducing) juveniles, and moving adults. 
Each life stage is parameterized to capture published characteristics of the target 
species. 

    10.3.1   Purpose 

 The purpose of FRAGGLE is to forecast the contribution of starting populations 
associated with patches (grouped into unique habitats) to the future populations in 
those patches. The desired end result is a set of values that indicate the relative con-
tribution of the population in each patch to a future population in each patch.  

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com
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    10.3.2   State Variables and Scales 

    10.3.2.1   Spatial Dynamic Framework 

 Using FRAGGLE, we simulate tortoise demographic and movement processes over 
a grid composed of regular 90-m square cells. This resolution (cell size of 0.81 ha) 
was chosen to approximate reasonable home range size for adults (1 ha). This size 
also allows for a straightforward combination of 30-m square GIS raster data, which 
is a common size for satellite imagery used in natural resource management.  

    10.3.2.2   Spatial Relationships and Input Data 

 In order to account for species-specifi c habitat considerations in estimating popula-
tions and their movement patterns in the landscape, the model requires four grid 
map inputs with identical geographical extent and cell size: (1) a habitat map, (2) a 
dispersal attractiveness map, (3) a mortality probability map, and (4) a subpopula-
tion areas map. The habitat map identifi es Sandhill as habitat, which is divided into 
core and edge habitat and initialized with tortoises at the start of a simulation. Core 
areas are those that support populations, with edges being those areas that transition 
between core habitat and non-habitat areas (90 m or 1 cell thick). The dispersal 
attractiveness map (index 0–1) represents the attractiveness of each non-habitat area 
to migrating animals. Animals motivated to migrate from a cell disperse to neigh-
boring cells based on the relative attractiveness of those cells. The mortality proba-
bility map provides a value (0–1) representing the percentage of individuals that are 
lost to predation in a year (including human and nonhuman predation). Finally, the 
subpopulations areas map gives user-chosen areas, typically contiguous, which 
 represent locations of more closely similar animals (numbered 1 to  n ).   

    10.3.3   Process Overview and Scheduling 

    10.3.3.1   Gopher Tortoise Population Model 

 We articulate the FRAGGLE population submodel around the three gopher tortoise 
life stages: hatchlings, juveniles, and adults. The population submodel (Fig.  10.3 ) 
centers on state variables (Ford  1999 ; Hannon and Ruth  1997  )  that track changes in 
the number of individuals at each life stage in a given cell. The content of each state 
variable (rectangles) is modifi ed through input and output fl ows (double arrows 
with valves), whose functions are controlled through converters (circles) accounting 
for species-specifi c life history traits (Fig.  10.3 ). Feedback within the model is 
depicted through information links (arrows). This representation remains generic 
enough that it corresponds to the three-stage population structure of many verte-
brate species.  
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 Gopher tortoise hatchlings (under 1 year of age, given as  H ) represent a spatially 
static phase of the population model, since they rarely move beyond 8–15 m from 
their hatched location (McRae et al.  1981  ) . They hatch in August and September, 
after the May and June breeding season (Iverson  1980 ; Landers et al.  1980 ; 
Mushinsky et al.  1997  )  as a result of mating by sexually mature adults (age over 20 
years in many areas) (Landers et al.  1980  ) , which only occurs in cells of suitable 
habitat, at a rate given in ( 10.1 ). We make no distinction between males and females 
as every individual able to secure territory is assumed to reproduce until death (tor-
toises maintain approximately 1:1 sex ratio and live 40–60 years, but can potentially 
exceed 150 years) (Landers et al.  1980  ) . Assuming that tortoises mature to adults 
and suffer 3% mortality per year, then an adult will live on average to approximately 
53 years.

     
=

2

A
H ag

   (10.1)   

 Here,   a   represents the proportion of breeding adults,   g    represents adult reproduc-
tion rate, and  A  represents the size of the adult population. 

 After 1 year, we assume that hatchlings turn into juveniles, and juveniles turn 
into breeding adults after a total of 20 years. Juveniles are assumed to have a fi xed 
age class structure over their 19 years. Adult and juvenile tortoises represent mobile 
life stages during which movement between cells is possible. However, we assume 
adult tortoises tend to remain in their cell as long as it remains suitable for them, 
while a proportion of juveniles emigrate annually (   see “Population Movement”). 
Once reaching adulthood, an individual remains in the adult stock until it moves out 
of the cell or dies. Here, we assume base reproduction rates are set as a random 
number bound between maximum and minimum values given as model inputs. 

 An important part of this model is the integration of separate death rates for each 
tortoise life stage. This is important to ensure that only surviving individuals can 
reproduce (Berec  2002  ) . We varied death rates among hatchling (80% in core 

  Fig. 10.3    STELLA diagram of the population submodel       
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 habitat) (Landers et al.  1980 ; Wright  1982  ) , juvenile (34%) (Wilson et al.  1994  ) , 
and adult life stages to refl ect their differential vulnerability to predators. 

 In contrast, mortality rates during dispersal are presumed to vary among specifi c 
land uses (Table  10.1 ). We simulate dispersion as a series of steps, across which the 
annual death rate due to predation is divided, as given in ( 10.2 ). Each dispersal step 
represents a type of sub-time step, whereby model calculations halt as adults and 
juveniles migrate. Here, adults are allowed to migrate for 16 steps, yielding a maxi-
mum potential dispersal distance of 1,440 m, while juveniles are allowed to migrate 
for 8 steps (720 m). After each dispersal step, a percent of the population in each 
cell is lost based on the cell dispersal mortality rates. After the dispersal steps com-
plete during each time step (year), the model continues operation.

     
-= ln(1 )/e a mr aS    (10.2)  

where  S  is the proportion of the population surviving,  r  
 a 
  is the adult death rate (3%), 

and  a  
 m 
  is the number of adult dispersal steps (16). This equation is replicated for 

juveniles using their respective death rates and dispersal steps. For example, distrib-
uting a 3% death rate over 20 dispersal steps results in a 99.848% survival rate 
between each dispersal step for adults. To end the annual cycle, all adult and juve-
nile populations in habitat are reduced to carrying capacity values and all remaining 
in non-habitat areas are presumed to die.  

 Additionally, various land uses present different environments and the tortoise 
death toll associated with crossing each cell depends on the associated land use/land 
cover. Therefore, we defi ned specifi c adult and juvenile dispersal death rates for 
each land use in Table  10.1 . These dispersal death rates affect every migrating indi-
vidual and are applied at every time step (1 year) during which adults and juveniles 
enter new cells.   

   Table 10.1    Habitat attractiveness and user-defi ned dispersal mortality rate by land cover   

 GAP l 
and class  Land-use category 

 Dispersal 
attractiveness (0–1) 

 Death rates during 
movement (0–1) 

 18  Transportation  0.180  0.09 
 22  Low-intensity urban non-forested  0.180  0.02 
 24  High-intensity urban  0.180  0.02 
 80  Pasture hay  0.593  0.02 
 83  Row crop  0.180  0.02 
 412  Hardwood forest  0.180  0.02 
 413  Xeric hardwood  0.263  0.02 
 432  Xeric mixed pine hardwood  0.537  0.02 
 434  Mixed pine hardwood  0.494  0.02 
 440  Loblolly shortleaf pine  0.764  0.02 
 512  Sandhill  1.000  0.02 
 900  Bottomland hardwood  0.312  0.02 
 930  Freshwater marsh  0.312  0.02 

  Our values are derived from Wright  (  1982  )   
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    10.3.4   Design Concepts 

    10.3.4.1   Habitat Carrying Capacity 

 The carrying capacity of an environment corresponds to the maximum number of 
individuals of a species that it can support for an indeterminate period of time. 
Species that are not limited by interactions with other species tend to increase their 
populations as far as their environment allows while remaining in a dynamic state 
of equilibrium and oscillating around the population carrying capacity value 
(Karafyllidis  1998  ) . Given this, our model assumes that any cell of suitable habitat 
can provide a fi xed amount of food and shelter for tortoise populations. The 
maximum individuals per cell (M) is calculated from model parameters as follows:

     
= s sM gh c

   (10.3)  

where  g  is the number of animals per home range (3),  c  
 s 
  is the cell size (0.81 ha), 

and  h  
 s 
  is the size of the home range (1 ha). 

 We assume a maximum carrying capacity for a suitable habitat cell of three adults 
due to territoriality effects (McRae et al.  1981  ) , leading to a value of 2.43 for M.  

    10.3.4.2   Movement 

 The decision to move is triggered by a specifi ed inherent likelihood for adults and 
juveniles to move in combination with an analysis of juvenile overcrowding in 
which a juvenile migrates if it exceeds the cell’s carrying capacity. The decision on 
what direction to move can be completely random (“directed-random”) or opti-
mized. FRAGGLE allows for the fact that some species are able to sense distant 
habitat, and therefore take a more or less optimized path toward those areas. In the 
current example, however, the gopher tortoise moves in a “directed-random” man-
ner since the probability of moving any direction is based on the relative dispersal 
attractiveness of adjacent habitat compared to the combined attractiveness of all 
adjacent habitat cells.

     -

=
å 1

i
i m

in

W
P

W   
 (10.4)   

  P  
 i 
 : proportion of the cell population emigrating to a given neighbor 

  W  
 i 
 : weight of the land use situated in the  i  th  direction of the target cell 

  m : number of adjacent neighboring cells, assumed here to be eight  

    10.3.4.3   Mixing of Subpopulations 

 Consider a simple FRAGGLE model with two populations. For this model, each 
cell tracks a 2-element vector, which at model initialization is set to     [1.0 0.0]   for 
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populations within Area 1 and     [0.0 1.0]    for populations within Area 2. If, in the 
course of model simulation, migrating populations can successfully cross the non-
habitat space between the areas, these values will change to provide a running count 
of the percentage of contribution of the original designated areas to the population 
at every location. 

 Consider, for example, a fi ve-area model. At the outset, cells with animals in 
Area 1 will be assigned the vector     [1.0 0.0 0.0 0.0 0.0]  , which indicates that 
100% of the lineage originated in Area 1, and 0% from the other 5 areas. After some 
years of simulation that vector might shift to     [0.6 0.1 0.0 0.3 0.0]   (60% from 
Area 1; 10% from Area 2; 0% from Areas 3 and 5; and 30% from Area 4) indicating 
a signifi cant infl ux of population from Area 4, some infl ux from Area 2, and appar-
ent isolation from Areas 3 and 5. This information along with population sizes can 
be used to identify the original areas that provided the richest lineage sources (and 
strongest movement capabilities) in the study area. 

 For example, consider a situation with four separate areas with populations of 
10, 5, 8, and 20 individuals, respectively. The state of this original population can be 
defi ned as:

     

é ù é ù é ù
ê ú ê ú ê ú
ê ú ê ú ê ú=
ê ú ê ú ê ú
ê ú ê ú ê ú
ë û ë û ë û

1.0 0.0 0.0 0.0 10 10

0.0 1.0 0.0 0.0 5 5
•

0.0 0.0 1.0 0.0 8 8

0.0 0.0 0.0 1.0 20 20   

 (10.5)

   

 By multiplying the population vector with the distribution, we get an array of 
values that we will call  individual-equivalents . These indicate the total contribution 
of an original area to the future populations. For example, an Area 1 with an original 
population of 10 individuals may be responsible in the future for 80% of the lineage 
of 5 individuals in that same area, 30% of the lineage of 10 individuals in Area 2, and 
20% of the lineage of 15 individuals in Area 3. This would calculate to 0.8 * 5 + 0.3 
* 10 + 0.2 * 20 = 11.0 individuals, which suggests an overall increase in the popula-
tion of the area that originated in Area 1, making Area 1 a population source. Of 
course, at the start of the simulation, these are identical to the population distribution. 
It indicates that there are 10 individual-equivalents of genes from Area 1, 5 from 
Area 2, 8 from Area 3, and 20 from Area 4. At the end of the simulation, the popula-
tion (vertical vector) and lineage contribution in each area could be as follows:

     

é ù é ù é ù
ê ú ê ú ê ú
ê ú ê ú ê ú=
ê ú ê ú ê ú
ê ú ê ú ê ú
ë û ë û ë û

0.6 0.1 0.0 0.4 10 10.1

0.1 0.8 0.1 0.0 1 2.0
•

0.0 0.1 0.9 0.0 2 1.9

0.3 0.0 0.0 0.6 10 9.0    

(10.6)

   

 The columns in the matrix give the proportion of the lineage coming from each 
original area. For example, at the end of the simulation there are 10 individuals in 
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Area 1, and 60% of the lineage came from Area 1 at the start of the simulation, 10% 
from Area 2, and 30% from Area 4. Note that the columns each sum to 1. Multiplying 
these matrices yields the individual-equivalents from each of the original areas 
(10.1 from Area 1, 2.0 from Area 2, 1.9 from Area 3, and 9.0 from Area 4). 

 To understand the contribution of the original subpopulation areas to the fi nal 
population, we divide the values in the fi nal individual-equivalents array with the 
fi rst and get:

     [1.01 0.40 0.28 0.45]    (10.7)   

 The fi nal vector suggests that original individuals in Area 1 were the best at con-
tributing to the future population. Area 4 began with 20 individual-equivalents, but 
dropped 55% to only 9 individual-equivalents. This analytical technique addresses 
the basic question of which areas are able to best contribute to future generations on 
a given landscape.  

    10.3.4.4   Subpopulation Movement Across the Landscape 

 We assume that movement of a small percentage of tortoises occurs in underpopu-
lated areas, and that a higher percentage moves when the population exceeds the 
cell carrying capacity. This density-dependent approach accommodates the forcing 
of juveniles and adults to search for new territories. In this model, juveniles compete 
among themselves for space (as do adults), but adults and juveniles do not compete 
with each other. 

 During tortoise movement, lineage must be traced to enable us to estimate the 
contribution of each original population through time. This is accomplished by con-
tinually merging incoming dispersing individuals with the current local population 
to update the overall lineage composition of a cell. As we saw above, lineages are 
tracked with lineage arrays associated with each cell. Each array contains a position 
to identify the lineage contribution of the original subpopulation areas. 

 Consider an example system with four subpopulations, where we aim to capture 
the movement of individuals in and out of cells. Assume there are 5.2 individuals in 
one cell with the lineage array     [0.1 0.2 0.3 0.4]  . Of those individuals, 2.3 will 
move into a neighboring cell that contains 2.7 individuals associated with the lin-
eage array     [0.2 0.3 0.5 0.0]  . The state of the system after this move will fi nd 
2.9 individuals in the fi rst cell with the identical original lineage array 
    [0.1 0.2 0.3 0.4]  . The second cell will have 5.0 individuals with a combined 
lineage array based on the proportion of original and incoming animals and their 
original arrays as follows:

    

æ ö æ ö+ç ÷ ç ÷è ø è ø
=

2.3 2.7
•[0.1 0.2 0.3 0.4] •[0.2 0.3 0.5 0.0]

5.0 5.0

[0.154 0.255 0.408 0.184].    
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 Note that the fractional vector coeffi cients in the fi nal calculation sum to 1.0, 
representing a full accounting of the source of 100% of the lineage from the original 
lineage areas. A similar type of calculation is also used to track the average age of 
animals in each cell. 

 Consider another simple example of two circular subpopulation areas arranged 
east–west next to each other. Adults are randomly assigned to each cell within each 
of these areas and are assigned lineage markers     [1 0]   in the left area and     [0 1]   in 
the right. At step 1, the population in the cells associated with the left area origi-
nated 100% from the left area (represented by the solid black) and the populations 
in the cells associated with the right area are white, representing 100% origination 
from the right area. By step 20, through dispersal simulation, dispersing individuals 
from both areas have begun to move into the other area, which is indicated by the 
lightening of the cells in the left area and the darkening of the cells in the right area. 
The rate of lineage mixing between the two core habitat areas emerges from the 
model based on the starting number of individuals in the original habitats, the dis-
tance between habitats, and the differential ability of animals to cross each of the 
intervening cells. A separate population contribution array and average age is main-
tained for hatchlings, juveniles, and adults, but movements are only calculated for 
mobile juveniles and adults. 

 To measure the extent of population mixing within individual cells and across 
original lineage areas, we created the lineage mixing index. The value can range 
from 0, indicating that there is no lineage sharing with other areas, to 1, indicating 
an equal mixing with all other areas. It is calculated as follows:

     =

-é ù
ê ú-ë û

å
1

/
min * ,

/

n
x

x
x

T cT n
c

T T T n    
(10.8)

  

where: 

  T  = Total population in the subpopulation area 
  c  

 x 
  = The total contribution of the original subpopulation in area  x  to this area 

  n  = The number of subpopulation areas 

 When the total population originates from a single area, this results in an index 
of 0. Conversely, when that total population is equally derived from all other areas, 
the index will be 1.0. This calculation can be used for any spatial unit; in this analy-
sis it is used for both cells and the original areas.   

    10.3.5   Initialization 

 To start a simulation, populations of gopher tortoises at each life stage are initialized 
within each cell identifi ed by the habitat as occupied. A reasonable January popula-
tion structure is initialized in each cell (including 0–6 hatchlings, 1–4 juveniles, and 
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   Table 10.2    Model parameterization   

 Model parameter  Value  Unit  Citation/assumption 

 Proportion of adults breeding  100  Percent  Assumption (all are sexually 
active) 

 Hatchlings initialized in core cells  0  Count  Assumption 
 Hatchlings predation rate in edge/core  81  % Pop/year  Landers et al.  (  1980  ) ; Wright 

 (  1982  )  
 Hatchlings predation rate outside 

habitat 
 100  % Pop/year  Landers et al.  (  1980  ) ; Wright 

 (  1982  )  
 Juveniles initialized in core cells  5–10  Count  Assumption 
 Juvenile predation rate in edge/core  20/10  % Pop/year  Wilson  (  1991  )  
 Juvenile predation rate outside habitat  100  % Pop/year 
 Juvenile hunting rate  0  % Pop/year 
 Juvenile capacity per home range  12  McRae et al.  (  1981  )  
 Juvenile dispersal steps per year for 

those moving 
 8  90-m steps  Assumption 

 Adults initialized in core cells  0.1–0.3  Assumption 
 Adult predation rate in edge/core  3  % Pop/year     Taylor  (  1982  ) ; Lohoefener and 

Lohmeier  (  1984  ) , 
assumption 

 Adult predation rate outside habitat  100  % Pop/year 
 Adult hunting rate  0  % Pop/year 
 Adult capacity per home range  3  Count  McRae et al.  (  1981  )  
 Reproduction age  20  Years  Landers  (  1982  )  
 Hatchlings per adult per year  2–4  Count  Iverson  (  1980  ) ; Smith  (  1995  ) ; 

Smith et al.  (  1997  )  
 Animals per home range  3  McRae et al.  (  1981  )  
 Home range size  1  Ha  Diemer  (  1992  )  
 Cell size  0.81  Ha  U.S. Geological Survey 

 (  2003a,   b  )  
 Percentage of adults/juveniles that 

move each year from under-
populated locations 

 5  % Pop/year  5% for distances greater than 
250 m based on assump-
tions gained from 
reviewing (Auffenberg and 
Iverson  1979 ; McRae et al. 
 1981 ; Diemer  1986  )  

 Adult dispersal steps per year for 
those moving 

 16  90-m steps  Based on an interpretation of 
McRae et al.  (  1981  ) ; 
Diemer  (  1992  )  

  Estimates were either taken directly from cited sources or were estimated based on information in 
these sources  

1–3 adults). Table  10.2  lists the FRAGGLE biological parameters that are set for 
each initialized tortoise.  

 Tortoise populations in each cell are initialized with a lineage array indicating 
that 100% of their lineages are associated with their starting area. The model is then 
run for a 100-year simulation.  
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    10.3.6   Input 

 We begin with Gap Analysis Program (GAP) land use/cover maps (based on the 
National Land Class Dataset—NLCD) produced by the U.S. Geological Survey 
 (  2003a,   b  ) . These maps are derived from Landsat Thematic Mapper (TM) imagery 
with a spatial resolution of 30 × 30 m (later aggregated to 90 × 90 m using the 
nearest-neighbor and averaging algorithms, as appropriate). The Georgia GAP map 
was created in two stages, beginning with the production of an 18-class Anderson-
level map (Anderson et al.  1976  ) , which was then refi ned into a much more detailed 
44-class land cover map. The overall state-wide accuracy of this two-step process is 
75.46% (U.S. Geological Survey  2003a  ) . 

 A survey of current literature was conducted to determine which of the 44 classes 
in the Georgia GAP map most closely resembled vegetation and soil associations 
consistent with gopher tortoise habitat. A dispersal attractiveness value was assigned 
to each land class in terms of its suitability as gopher tortoise dispersal corridors. 
The habitat map was generated by selecting Sandhill areas (land class 512) as suit-
able habitat (given a dispersal attractiveness value of 1.0, or 100%), while all other 
values were assigned as non-habitat (see Fig.  10.2 ). Dispersal attractiveness and 
mortality probability maps are developed as a cross-reference of information in 
Table  10.1 , which characterizes the utility or attractiveness of each land-use cate-
gory for supporting dispersal of the target species, as well as the death rate experi-
enced while crossing unsuitable habitat. Our mortality rate information was derived 
from values given in Wright  (  1982  )  for tortoises 5 years and older. 

 Finally, we generated the subpopulation areas map (Fig.  10.2b ) by clumping 
habitat areas into contiguous areas, with each area assigned a unique small integer 
as an identifi er. The FRAGGLE model is designed to forecast how populations from 
each area are mixed into the future populations of all areas. Note that any user-
chosen subdivision of the areas could be used. To this point, all GIS operations used 
a 30-m resolution. Simulation model input maps were resampled to a 90-m resolu-
tion using a nearest-neighbor approach. The habitat map and the subpopulation 
input map are shown in Fig.  10.2 .   

    10.4   Simulation Experiments 

    10.4.1   Summary of Simulations 

 Simulations were run to analyze two subpopulation exchange scenarios under dif-
fering land-use confi gurations. The fi rst scenario retains existing land use and land-
cover patterns, while the second has undergone a plausible, but artifi cial, LUC. 
Habitat and subpopulation area input maps to the model are displayed in Fig.  10.2a, b.  
While the habitat loss associated with the LUC scenario does not affect many 
subpopulation areas, it reduces overall habitat by 10.2% and reduces the size of 
some lineage areas by as much as 18% (e.g., Areas 6, 11, and 14). 
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 This model was developed to test the consequences of alternative regional plan-
ning scenarios on the interconnectivity of remaining areas of suitable habitat. 
Scenarios might refl ect a county zoning that promotes the development of housing 
and commercial uses in the area. A LUC scenario was developed to test the ability 
of the model to illuminate consequences in the projected lineage exchanges among 
subpopulations. In this scenario, new development would be restricted to areas that 
are within 200 m of urban land uses and within 100 m of existing roads (Fig.  10.2a ). 
The projected result of this scenario is that the attractiveness weight for tortoises 
through these areas drops to 0, creating a dispersal barrier.  

    10.4.2   Results 

 Figure  10.4  displays the extent of the movement of the Area 14 population marker 
across the landscape at the end of 100 years for each of the scenarios. Populations 
from each of the subpopulation areas moved into other areas and intersperse their 
subpopulations with other populations. The implications of the two scenarios with 
respect to the contributions of original areas to future populations are captured in 
Tables  10.3  and  10.4 . Columns 1–3 of these tables show the original areas followed 
by the total initial and fi nal populations in those areas. The fourth column provides 
the subpopulation mixing index at the end of the 100-year simulation. The remain-
ing columns show the distribution of individuals within each area with lineages 
originating from the areas indicated by the column headings. For example, in the 
base case scenario, Area 6 started with 257 individuals and ended with 334, while 
lineages were mixed with individual-equivalents from 7 areas. While most of the 
lineages in Area 6 originated in Area 6 (222 individual-equivalents), 58 individual-
equivalents emigrated from Area 11, 48 from Area 16, 5 from Area 14, and 1 from 

  Fig. 10.4    Dispersal spread map for individuals originating in Area 14.  Darker  areas represent 
higher mixing through dispersal. The color scale ranges linearly from nearly one individual-equivalent 
( black ) to zero individual-equivalents ( white )       
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Area 17. The two bottom rows show the total and percentage change in the number 
of individual-equivalents originating from each of the original area populations dur-
ing the course of the simulation. In Table  10.3  these values suggest that Areas 7 and 
12 will not contribute much to the lineages of the region in the future. Conversely, 
Areas 6, 13, 16, and 18 appear to have the strongest connectivity to other areas. Area 
22 is the most isolated, with virtually no input from (or output to) other populations. 
The mixing index, a measure of the level of connectedness between each area, is 
provided in column 4 in Tables  10.3  and  10.4 .    

 Area 22 is associated with a mixing index of 0.010, which suggests the potential 
for genetic drift and inbreeding depression that may eventually result in increased 
death rates and reductions in fecundity (birth rates). Areas 7 and 10 are also rela-
tively isolated, indicated by indices of 0.024 and 0.69, respectively. In this model, 
the largest spatial Areas (13, 16, and 18) are also suffi ciently connected to nearby 
areas to enable them to be the greatest contributors and receivers of dispersing indi-
viduals from neighboring areas (indices of 0.366, 0.504, and 0.420, respectively). 
These large areas, and their most important neighbors (e.g., Areas 12, 14, 15, 17, 19, 
and 20), are perhaps the best to target for preservation to ensure a healthy population 
of tortoises far into the future. 

 Consider now the LUC scenario using Table  10.4  and the images in Fig.  10.4 , 
which compare the spread of subpopulations in both scenarios. The fi gure shows a 
visibly signifi cant difference in the distribution of subpopulations from Area 14 into 
Area 16 to the south and Area 13 to the west. At the end of a 100-year run, the total 
number of animals is 3,342, compared to 3,617 in the base case scenario, a drop of 
over 7%. Subpopulation mixing in 11 of the 14 areas dropped (only Areas 7 and 10 
slightly increased), refl ecting an increase in habitat fragmentation. This is refl ected 
in an overall decrease in the average mixing index in the areas from 0.223 to 0.153, 
a drop of 31%. The subpopulation areas that become most isolated are Area 13 with 
a 64% drop in the mixing index, Area 6 with a 52% drop, Area 12 with a 49% drop, 
and Area 18 with a 42% drop.   

    10.5   Discussion 

 Fragmentation leads to the isolation of populations, which increases the likelihood 
of inbreeding, and eventually can contribute to signifi cant reductions in population 
abundance, genetic diversity, and, potentially, local extirpation. The development of 
FRAGGLE was motivated by the need to rapidly predict the impact of proposed 
land management decisions on the habitat fragmentation of a target species. 

 FRAGGLE provides an excellent method for rapidly projecting the redistribu-
tion of subpopulations (and their progeny) within a metapopulation over time in 
response to alternative land management practices. A population is divided into 
subpopulations and each is provided a unique marker. Through dispersal of the 
animal as a juvenile and as an adult, those markers are inserted into neighboring 
populations. At any point in the simulation, the percentages of the population in 
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each cell or area possessing the subpopulation markers from each of the original 
populations can be estimated. At any point in the simulation, each cell location 
contains the total number of individuals (a fl oating-point number) as hatchlings, 
juveniles, and adults, and the proportional contribution of the original populations 
to each life-stage. For example, at some point during simulation time, a cell might 
have 10.34 adults with a contribution ratio from all areas in the simulation (which 
sum to 100%). This information can be spatially aggregated as desired.  

    10.6   Conclusions 

    10.6.1   Utility for Other Species 

 FRAGGLE should be directly applicable for evaluating the importance of core habitat 
patches and dispersal paths for other species. As each species is potentially very 
different in its dispersal behavior, the model may need to be adapted. To facilitate 
adaptations, we developed the model within the NetLogo spatially explicit simula-
tion modeling system, making it very accessible to a wide range of researchers. 
NetLogo is readily available for no cost, and provides model compilation, editing, 
and visualization capabilities, which allows the model developer to focus on the 
system being simulated, not software acquisition and training. 

 A number of model adaptations might be anticipated, depending on the species. 
For the gopher tortoise, FRAGGLE allows an animal to choose a dispersal path 
based only on the relative dispersal attractiveness of the current location and the 
eight immediate neighbors. Larger and more wide-ranging animals may need 
modifi cations that allow for a broader perception of the landscape. Additionally, 
various levels of learning could be supported for more cognitively advanced 
species. 

 An important consideration when attempting to ensure the ability of a natural 
population to persist is how to maintain a suffi cient level of diversity. When com-
bined with knowledge of the impact of inbreeding on fecundity and survival rates, 
the subpopulation mixing coeffi cients calculated in the model could potentially be 
used to predict population viability rates. 

 This model assumes land management activities to maintain the current system 
state, including the halting of natural succession. Gopher tortoises in and around the 
region of our study area require non-climax habitat that was naturally maintained 
through fi re. While an overstory can be benefi cial in moderating summer tempera-
tures, a well-developed mid-story will eventually reduce the ground vegetation 
required as forage to the point that tortoises will abandon the site. In past centuries, 
natural and human-induced fi re ensured an ever-changing mosaic of suitable habi-
tat. With current fi re suppression to protect human lives, homes, and agriculture, it 
becomes imperative to insert human-induced management into any future tortoise 
habitat. This model assumes that through targeted management habitat will remain 



192 T. BenDor et al.

constant. Hence, in this model, vegetation growth or succession, weather, and 
 wildfi re are not simulated. However, for other species, simulation of these or other 
landscape processes may be required.  

    10.6.2   Policy Implications 

 With the steadily increasing fragmentation of natural habitat within the matrix of 
human modifi ed landscapes, it has become critical to understand a species’ move-
ment strategies and patterns in order to create successful species management 
regimes. Increasingly, planners and environmental managers need the ability to 
anticipate possible repercussions of changes in local and regional land-use policies 
on sensitive animal species. 

 By simulating gopher tortoise population dynamics and movement of individu-
als through the landscape, environmental managers can create land-use policies that 
maximize the likelihood of population persistence. Examples of these policies 
include the placement and design of corridors or road overpasses in order to allow 
the maximum number of individuals to cross inhospitable patches of land. Evidence 
has shown that landscape modifi cations, while minimal at the scale of a species’ 
home range, can have dramatic consequences on individual movement and behavior 
(e.g., the passage of a highway in the middle of the grizzly bear home range) (Gibeau 
and Herrero  1998  ) . However, fragmentation models must consider many factors, 
including the relative cost and effectiveness of corridors (Simberloff and Cox  1987  ) . 
Furthermore, fragmentation models must provide managers with the ability to com-
pare the relative ecological value of potential habitat restoration sites for particular 
species and then choose optimal locations.  

    10.6.3   Directions for Future Gopher Tortoise Research 

 The results of this model can be improved through further long-term studies of the 
gopher tortoise. Although it is a well-studied species, its longevity and generation 
time increase the diffi culty in conducting population studies. This model requires 
information concerning dispersal distances during habitat searches, as well as a bet-
ter understanding of how much information an animal can use or obtain to strategize 
and maximize its chances for dispersal success. The projections yielded by this 
model will be vastly improved if our associated assumptions were replaced with the 
results of future fi eld research.       
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    11.1   Background 

 Many threatened, endangered, and at-risk species are habitat specialists (Owens and 
Bennett  2000 ; Korkeamäki and Suhonen  2002 ; Munday  2004  )  that occupy noncon-
tiguous parcels of favorable habitat within matrices of otherwise-unsuitable land-
scape (Brown  1984 ; With and Crist  1995  ) . Land managers who are stewards of these 
species may be faced with diffi cult decisions about the allocation of conservation 
resources among parcels, or on which parcels to focus conservation resources in the 
face of potential habitat losses due to commercial development or changing land-use 
priorities. Such choices may be critical if the contribution of each parcel to metapo-
pulation viability depends on unfi xed attributes of the parcels and the populations 
that occupy them. If not all parcels contribute equally to the stability of the metapo-
pulation, then the parcels should be prioritized on the basis of conservation goals. 

 There is a considerable body of literature dealing with identifying important habi-
tat parcels based on multispecies considerations, such as protecting biodiversity 
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(Reyers et al.  2002 ; Wiersma and Urban  2005 ;    Rothley  2006  ) . In many cases, however, 
land managers must focus on a particular species and other land use objectives in 
 addition to conservation. In these circumstances, land managers have a critical need 
to understand the role of habitat parcels in promoting robust populations of a 
 target species.  

    11.2   Objective 

 Our interest is in identifying parcel attributes that make signifi cant contributions to 
overall metapopulation robustness, and quantitatively incorporating them into a 
utility index framework that may be used to prioritize parcels for habitat manage-
ment purposes. 

 We hypothesized that the risk of metapopulation extinction increases when a 
habitat parcel is eliminated from a patchy landscape, and that the increase in extinc-
tion risk is related to the genetic, demographic, and network characteristics of the 
removed parcel. We developed the Individual-Based Model for Metapopulations on 
Patchy Landscapes-Genetics and Demography (IMPL-GD) model to help quantify 
essential correlations by making it possible to rapidly run large numbers of simula-
tions to test the impacts when habitat parcels are removed.  

    11.3   Model Description 

    11.3.1   Purpose 

 We developed the IMPL-GD model using NetLogo 4.0.4 (Wilensky  1999  ) . 1  The 
purpose of the model is to support the running of thousands of experiments in which 
habitat parcels are removed from randomly generated landscapes. After each simu-
lation, ecological variables of the removed parcel—such as physical characteristics 
of the landscape, population genetic and demographic traits, and network relation-
ships to other habitat parcels—are captured as independent variables along with the 
impact of parcel removal on the population. Statistical analysis of these experimen-
tal results (not covered in this chapter) allows the construction of multiple-regression 
models that amalgamate habitat and population data into a single conservation 
utility index (CUI). This index can be used to rank parcel utility relative to a given set 
of conservation objectives, and to determine which additional data may be most 
crucial to collect from the fi eld when conservation resources are limited. Once a 
species-specifi c algorithm is produced by IMPL-GD, it may be applied to any loca-
tion to determine which additional critical fi eld data may be needed for manage-
ment decisions when limited resources preclude a comprehensive study.  

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com
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    11.3.2   State Variables and Scales 

 The model places generic organisms (whimsically referred to as “whatsits”) on a land-
scape of discrete habitable areas that are separated by traversable but non-habitable 
terrain. For this study, whatsits were designed to refl ect small, solitary animals that 
defend small, circular territories against others of the same sex. Landscape patches 
(i.e., cells) are designated either habitable or non-habitable, with each habitable 
patch identifi ed as part of a discrete habitat parcel. Agents are described by a unique 
identifi cation number, age, sex, lineage, a binary indicator of heterozygosity, and 
genetic markers. 

 The IMPL-GD landscape consists of a user-designated number of discrete habit-
able parcels, and it wraps horizontally and vertically to avoid edge effects. Because a 
generic cell is the unit of spatial scaling within the model, the physical landscape and 
whatsit behavior may be scaled to fi t any real-world or hypothetical scenario (refer to 
the Appendix for a complete description of user-specifi ed settings and ranges). 

 A single cycle comprising birth, migration, and death represents one time step. 
While this increment is easily conceptualized as annual, it could be applied to breed-
ing cycles of any length.  

    11.3.3   Process Overview and Scheduling 

 The elimination of a habitat parcel occurs at the beginning of the annual time step 
for which it is scheduled. Whatsit ages are then updated. The generation of new 
offspring is next, followed by the application of demographic mortality. The time 
step concludes with whatsit dispersal.  

    11.3.4   Design Concepts 

    11.3.4.1   Emergence 

 For whatsit populations, emergent properties include genetic profi les, extent of 
inbreeding, and dispersal percentages and outcomes. Nondispersal-related mortal-
ity is based on a combination of terrain quality and random factors. Population sizes 
and rates of change, and migration rates and routes, derive continuously from a 
combination of landscape features, agent distribution and behavior, and random fac-
tors. The genetic properties of populations reemerge with every time step. Along 
with the magnitude, number, and importance of dispersal routes, population genetic 
properties infl uence the importance of parcels within the dispersal network and 
determine the contribution of each parcel to metapopulation composition, connec-
tivity, and extinction risk. Examples of emergent network and genetic properties 
that are measured on a global scale in our model include global and average diver-
sity, allelic richness, and total node-degrees.  
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    11.3.4.2   Adaptation 

 A whatsit will disperse if its patch becomes uninhabitable, or in the step before it 
becomes sexually mature, or if it is displaced by an older whatsit.  

    11.3.4.3   Fitness 

 Individual mortality risk depends on the mean quality (i.e., habitability) of patches 
within an individual’s territory. 

 The survivability of an individual’s offspring (expressed as an adjustment to litter 
size) depends on the degree of relatedness between that whatsit and its potential 
mate(s), expressed as Wright’s inbreeding coeffi cient (Wright  1922  ) .  

    11.3.4.4   Sensing 

 In each time step, each whatsit reassesses whether the patch it occupies is still habit-
able. When a whatsit lands on a patch during dispersal it can tell whether that patch 
is already included in another whatsit’s territory, and it senses the sex of the associ-
ated whatsit. A female whatsit can breed with any reproductive male, but will not 
produce any offspring if there is no eligible mate within the user-specifi ed breeding 
radius.  

    11.3.4.5   Interaction 

 Whatsits establish circular territories of a user-settable radius that may encompass 
both habitable and non-habitable patches. Same-sex territory overlap is optionally 
prohibited. If a dispersing whatsit settles in a territory already occupied by another 
whatsit of the same sex, the younger of the two occupants is displaced and will com-
mence dispersal.  

    11.3.4.6   Stochasticity 

 Stochasticity drives initial landscape parcel geometry and whatsit distribution. 
Individual whatsit dispersal and demographic mortality, litter size, and paternity are 
also constrained random values, based on user-settable variables.  

    11.3.4.7   Observation 

 We achieve model validation and data analysis through a combination of real-time 
visual output and electronic reports. Generation of initial landscapes and subsequent 
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agent activity can be followed directly on a graphical interface, while on-screen 
monitors provide statistical information in real time (see Fig.  11.1 ). Reporting func-
tions capture landscape and demographic measurements for each parcel at specifi ed 
timepoints, while migration and gene fl ow events are continuously recorded in .csv 
format fi les for all network connections between parcels. Additional outputs may be 
specifi ed by the user.    

    11.3.5   Initialization 

 Each simulation began with the random generation of a landscape. Habitat qualities 
were established by an algorithm that designates 105 random patches to seed the 
landscape. Thirty-three percent of these were randomly designated as being habit-
able, and the rest were designated non-habitable. These designations propagated to 
remaining patches via an algorithm that randomly selects a patch adjacent to one 
that already had a habitability rating, then gives the new patch the same rating. 

 Eighty founder whatsits were created to begin each simulation, and unique iden-
tifi cation numbers were assigned in series. Male or female sex was randomly chosen 
for each with equal odds. Founders did not have lineages. All founders were 
heterozygotes, and each was assigned unique genetic markers. In order to help the 
model rapidly achieve a steady-state age distribution, all founders were 1 year old 
at initialization.  

  Fig. 11.1    Annotated Individual-Based Model for Metapopulations on Patchy Landscapes-
Genetics and Demography (IMPL-GD) user interface       
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    11.3.6   Input 

 Random seeds generated by the model for landscape initialization and initial whatsit 
distribution were recorded with datasets.  

    11.3.7   Submodels 

    11.3.7.1   Habitat Parcel Elimination 

 If the current time step has been designated for habitat elimination (e.g., step 51 in 
the experiments performed here), a random habitat parcel is identifi ed, and the qual-
ity of patches within that parcel is changed from habitable to non-habitable.  

    11.3.7.2   Generation of New Offspring 

 The following steps are executed for each female at least 2 years old. First, breeding 
males (at least 2 years old) within the mating radius are identifi ed. If there are none, 
the female will not produce offspring. If breeding males are found within the mating-
radius, the number of offspring for this female is determined by the following 
equation:

     
( * )* e F LS    

where  S  is the number of individuals expected to survive to age 1;  F  is a calculated 
Wright’s inbreeding coeffi cient; and  L  is the average number of lethal equivalents. 

 For each offspring, the father is selected from eligible breeding males within the 
user-specifi ed mating-radius. Genetic markers are randomly chosen from each 
parent.  

    11.3.7.3   Demographic Mortality 

 For each whatsit at least 1 year old, the probability of dying is a function of the hab-
itable area within that whatsit’s territory and a user-settable whatsit survival rate.  

    11.3.7.4   Dispersal 

 All year-old whatsits and all individuals displaced by habitat degradation or by 
other whatsits will disperse. Whatsits begin dispersal in order of age, with the oldest 
disperser fi rst taking one “stride” (distance = one patch width) in a random direction. 
That whatsit remains a disperser if the patch it lands on is uninhabitable, or if that 
patch is within the territory-radius of an older whatsit. For all whatsits who remain 
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dispersers, dispersal mortality is determined at the end of each stride, with odds of 
death weighted by patch quality, as shown in Table  11.1 . If the disperser lands on a 
patch that is habitable and does not overlap an older whatsit’s territory, then it will 
stay and is no longer a disperser. If this whatsit’s new territory overlaps that of any 
younger whatsit, the younger whatsit will become a disperser.  

 The whatsit then examines all patches within the territory-radius and moves to 
the patch that offers the optimal territory quality—in other words, the one with the 
most habitable patches within its territory-radius. During this search for the most 
habitable patch within its territory-radius, the whatsit cannot move to a habitable 
patch that would trigger eviction of a younger whatsit. The dispersal procedure is 
shown in Fig.  11.2 .     

    11.4   Simulation Experiments 

 We sought to discover whether the risk of metapopulation extinction would increase 
with the elimination of a habitat parcel from a given landscape, and whether the 
magnitude of increase in extinction risk might be related to the size (i.e., area) of the 
parcel removed. 

 Following initialization, simulations were run for 50 time steps (50 years) with 
the intent to allow for achievement of steady state. A habitat parcel was removed at 
step 51, and the simulation was allowed to run an additional 100 time steps. The 
model was calibrated to approximate 50% extinction after 150 steps in positive 
controls (in which a random habitat parcel was removed at step 51). 

 Simulation results suggest that the size of the parcel that was eliminated had a 
signifi cant effect on metapopulation extinction. Here, we are concerned with the 

   Table 11.1    Overview of parameter values for conserva-
tion utility index (CUI) experiments   

 Parameter  Value 

 initial-whatsits  80 
 survival_to_age_1  1 
 annual-survival_>age_1  0.82 
 death-rate-grn  0.0001 
 death-rate-red  0.001 
 territory-radius  3 
 allow-M/F-terr-overlap  True 
 fi rst-repro-age  2 
 superior-repro-age  2 
 last-repro-age  100 
 lineage-depth  8 
 mating-radius  6 
 Avg_Lethal_Equivalents  2 
 avg-litter-size  2 
 #_Loci  5 
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percentage of populations surviving until the habitat parcel is removed, then becom-
ing extinct within the following 100 steps. If a random parcel was removed, the 
metapopulation became extinct about 45% of the time (Fig.  11.3 ). If the smallest 
parcel was removed, there was a small decrease in the probability of extinction. 
However, when the largest habitat parcel was removed, the probability of metapo-
pulation extinction increased to 84%. Similar results were obtained from analysis of 
the number of generations prior to extinction. If the smallest parcel was eliminated, 
the mean time to extinction was 70 time steps. For random eliminations, the mean 
time to extinction was slightly lower. However, when the largest parcel was elimi-
nated, the mean time to extinction was 50 time steps.   

  Fig. 11.2    Whatsit dispersal behavior       
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    11.5   Discussion 

 The importance of large habitat parcels to population viability, as shown in these 
simulations, is obvious and not surprising. Larger habitable parcels are likely to host 
more individuals, including colonizers and dispersing breeders. Changing a large 
parcel of suitable habitat into unsuitable habitat can substantially increase the time 
some dispersers must spend in unfavorable habitat, consequently increasing the 
proportion of dispersers that die during dispersal. Thus, the loss of a large habitat 
parcel is likely to have a greater impact on metapopulation viability than the loss of 
a small parcel. It is of particular interest that removal of a random parcel resulted in 
an only slightly higher extinction rate than removal of the smallest parcel. This 
suggests that land managers should focus their conservation resources on the largest 
parcels, and that saving parcels of intermediate size is unlikely to be signifi cantly 
more benefi cial than preserving the smallest parcels. 

 Undoubtedly, the spatial arrangement of parcels across a landscape would infl u-
ence the results of simulations. Likewise, other demographic and ecological factors 
associated with parcels likely play a role in population viability. When combined, 
these relative predictors of metapopulation viability could provide a fi rm basis for 
supporting management decisions that may involve habitat degradation or fragmen-
tation. This information would be highly valuable to decision-makers who must 
consider multiple—sometimes even competing—land management objectives. With 
an improved understanding of the relative importance of habitat characteristics, 

  Fig. 11.3    Percentage of simulated metapopulations that became extinct within 50 generations 
following removal of one parcel of suitable habitat. Parcel selection for removal was based on area 
(largest or smallest), or the parcel was selected at random       
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managers could better utilize existing data and better allocate limited resources to 
collect the evidence most crucial to determining the relative conservation utility of 
various habitat areas on a patchy landscape. 

 Running IMPL-GD thousands of times produces a data set that aggregates the 
characteristics of each parcel randomly removed during each simulation as well as 
the population impact of removing each parcel. Using the former as a set of inde-
pendent variables and the latter as the dependent variable, this data set can be 
processed using multilinear regression analysis to support the calculation of any 
habitat parcel’s CUI value. This value is a number that indicates the importance of 
a habitat parcel to species population viability. The experiments described here 
demonstrate the use of IMPL-GD to identify associations between parcel character-
istics and quantify their relationship to species population viability.  

    11.6   Conclusions 

 IMPL-GD was designed to assist in understanding how landscape and population 
characteristics, including network relationships between habitable areas, contribute 
to metapopulation viability. Through the simulations, we quantifi ed correlations 
between several relevant demographic, genetic, and network characteristics of 
habitat parcels. These correlations can provide sound footing on which habitat 
managers can base decisions that attempt to achieve multiple objectives, including 
conservation-oriented management of patchy landscapes. 

 Subsequent to the simulations described here, the authors identifi ed statistically 
signifi cant correlation between parcel characteristics and the impact of removing a 
parcel. That analysis falls outside the scope of this chapter, and the results of it are 
being prepared for documentation in a peer-reviewed journal.       

    11.7   Appendix    

 User-specifi ed 
setting  Description  Range or options 

 patch-seed  Seeds the random number generator for 
initial placement of seed patches, to 
ensure that runs are replicable 

 Any number 

 Landscape_Specs?  If true, user-defi ned parameters 
constrain acceptance of randomly 
generated landscapes 

 True or false 

 #Habitats?  If true, acceptance of randomly 
generated landscapes is based on the 
number of discrete habitat parcels 

 True or false 

(continued)



20711 An Individual-Based Model for Metapopulations…

 User-specifi ed 
setting  Description  Range or options 

 seed-patches  The number of patches that will be 
designated “habitable” or “not 
habitable” to begin landscape 
initialization 

 0–350 Patches 

 seed-good  The percentage of seed patches that will 
be designated “habitable” 

 Any whole number percentage 

 #-Habitats  The number of discrete habitat parcels 
that will comprise an acceptable 
landscape 

 Any whole number 

 Parcel_Size?  If true, acceptance of randomly 
generated landscapes is constrained 
by the area of habitat parcels 

 True or false 

 min-terr/hab  The minimum number of whatsit 
territories available in each 
acceptable habitat parcel 

 Any whole number 

 max-terr/hab  The maximum number of whatsit 
territories available in each 
acceptable habitat parcel 

 Any whole number 

 %_Good/Bad?  If true, acceptance of randomly 
generated landscapes is constrained 
by the proportions of habitable and 
non-habitable patches 

 True or false 

 min%good  The minimum percent habitable patches 
in an acceptable landscape created 
via the “seed-all” algorithm 

 Any whole number percentage 

 max%good  The maximum percent habitable patches 
in an acceptable landscape created 
via the “seed-all” algorithm 

 Any whole number percentage 
not > (min%good) 

 min%bad  The minimum percent non-habitable 
patches in an acceptable landscape 
created via the “seed-all” algorithm 

 Any whole number percentage 

 max%bad  The maximum percent non-habitable 
patches in an acceptable landscape 
created via the “seed-all” algorithm 

 Any whole number percentage 
not > (min%bad) 

 whatsit-seed  Seeds the random number generator for 
initial placement of whatsits, to 
ensure that runs are replicable 

 Any number 

 initial-whatsits  The number of founder whatsits created 
to begin the run 

 Any whole number 

 #_Steps  The total number of steps included in 
the replicate 

 To extinction 
 1 
 10 
 25 
 50 
 100 
 150 

 step#  The step on which habitat elimination 
will occur 

 Any whole number 

(continued)
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 User-specifi ed 
setting  Description  Range or options 

 #     The number of habitat parcels that are 
eliminated at the scheduled step 

 Any whole number 

 criteria  Determines the order in which habitat 
parcels are selected for elimination 

 Highest or lowest 

 attribute  The characteristic by which habitat 
parcels are chosen for elimination 

 Random 
 #-of-whatsits 
 Births-previous-year 
 Deaths-previous-year 
 Net-population-change-

previous-year 
 #-outmigrants-previous-year 
 Area 
 Edge-to-area-ratio 
 Distance-to-closest-habitat 
 Female:male_ratio 
 #-founders-represented 
 #-founders-

represented- only-here 
 #-alleles 
 #-private-alleles 
 Heterozygosity 
 Abs-diversity 
 Relative-diversity 
 Differentiation-relative 
 Contribution-to-total-diversity 
 Allelic-richness 
 Contribution-to-total-allelic-

richness 
 Node-degree 
 Connectivity-contribution 
 Bonacich’s-centrality 
 Node-strength 
 Sum-of-linked-nodes’-strengths 
 Contribution-to-connectivity-

strength 
 #-of-founders-represented 

 survival_to_age_1  The mortality rate for individuals in the 
fi rst year of life 

 0–1 (increment 0.001) 

 annual-
survival_>age_1 

 The mortality rate for individuals at 
least 1 year of age 

 0–1 (increment 0.001) 

 death-rate-grn  The odds that a dispersing whatsit will 
die while traveling one cell-length 
through habitable terrain 

 0 to (death-rate-red) (increment 
0.0001) 

 death-rate-red  The odds that a dispersing whatsit will 
die while traveling one cell-length 
through non-habitable terrain 

 (death-rate-grn) to 1 (increment 
0.0001) 

(continued)
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 User-specifi ed 
setting  Description  Range or options 

 territory-radius  The distance (in patches) from a 
whatsit’s location to the boundary of 
its territory in all directions 

 1–20 Cells (whole numbers) 

 allow-M/F-terr-
overlap 

 This setting determines whether or not a 
patch may be included simultane-
ously in both a male and a female 
territory 

 True or false 

 fi rst-repro-age  The minimum age at which whatsits are 
capable of reproducing 

 0–5 Steps 

 superior-repro-age  The age at which individuals become 
more likely to reproduce than 
younger whatsits 

 0–25 Steps 

 last-repro-age  The maximum age at which whatsits are 
capable of reproducing 

 (superior-repro-age) to 100 
steps 

 lineage-depth  The number of generations contained in 
each whatsit’s lineage 

 0–20 Levels 

 mating-radius  The maximum distance (in patches) at 
which whatsits are able to mate 

 1–10 Cells (whole numbers) 

 Avg_lethal_ 
equivalents 

 The average number of lethal equiva-
lents for the population 

 0–20 (Increment 0.1) 

 avg-litter-size  The minimum average litter size  0–20 
 #_Loci  The number of loci for which genetic 

information is recorded 
 0–449 
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    12.1   Background 

 When developing plans to protect populations of species at risk, we tend to focus on 
protecting and preserving habitat where the species naturally occurs. Ecologists 
employ historic sightings of individuals, habitat suitability index (HSI) models, and 
the expert advice of local naturalists familiar with the environments desired and 
required. In many cases, the optimal habitats are fragmented to the extent that a 
species at risk could be extirpated from any single area by storms, drought, disease, 
or other local insult. Alternately, over time, a small population could become so 
inbred that it becomes susceptible to disturbances that increase the probability of 
local extirpation. However, if nearby populations can reach the isolated population 
across the fragmented space, then the isolated population becomes part of a larger 
metapopulation. The strength of habitat connections, therefore, can be critical to 
ensure the viability of at-risk populations over time. Habitat connectivity plays this 
important role by increasing the effective population size, maintaining gene fl ow, 
and facilitating regular migration, dispersal, and recolonization. Each of these 
processes helps ensure the long-term persistence of a population. A connected land-
scape is preferable to a fragmented one (Beier and Noss  1998 ;    Bennett  1999 ). 
Natural landscapes are generally more connected than landscapes altered or manip-
ulated by humans, so establishing or maintaining corridors is a viable strategy to 
sustain the natural connectivity (Noss  1987  ) . 
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  Metapopulation  is the term for a collection of discrete local breeding populations 
that occupy distinct habitat patches but are connected by migration (Hanski and 
Gilpin  1997  ) . Population viability analysis (PVA), a method for forecasting the 
probability that a metapopulation will persist over time, has been automated by 
numeric modeling applications such as RAMAS (Applied Biomathematics  2003  ) . 
A key input to a PVA is the probability of migration among all individual popula-
tions of the metapopulation. Understanding the viability of an at-risk population or 
metapopulation depends to a signifi cant extent on identifying the migration routes 
that connect the discrete constituent populations. Also, without this understanding, 
land managers may not have enough information to protect important migration 
paths. That defi ciency, in turn, may lead to the loss of more-isolated populations, an 
increased threat to the survival of the greater metapopulation. 

 In order to help improve our understanding of species migration routes among 
separated populations,    Hargrove, Hoffman, and Efroymson ( 2005 ) developed the 
Pathway Analysis Through Habitat (PATH) computer simulation model. Originally 
developed for implementation on a supercomputer, the purpose of PATH is to help 
a decision-maker to reliably predict where potential dispersal corridors are likely to 
exist in real-world landscape maps. This information makes it possible to project 
which habitats will support population growth (sources) and which will tend to lose 
population (sinks). The PATH algorithm works by launching  walkers  (i.e., virtual 
animals) from each habitat patch to simulate the journey of individuals through land 
cover types in the intervening matrix until arriving at a different habitat patch or 
dying. Each walker is given a set of user-specifi ed habitat preferences that direct its 
walking behavior to resemble the animal of interest. As originally implemented, 
PATH was designed for a massively parallel computing environment in order to 
analyze the activity of very large numbers of random walkers in large landscapes 
with many habitat patches. PATH produces three outputs: (1) a map of the most 
heavily traveled potential migration pathways between patches, (2) a square transfer 
matrix that quantifi es the fl ow of animals successfully dispersing from each patch to 
every other patch, and (3) a set of importance values that quantifi es, for every habi-
tat patch in the map, the contribution of that patch to successful animal movement 
across the landscape. The transfer matrix is square and not triangular since the rate 
of animal movement is likely to be asymmetrical between any two habitat patches. 
That is, the rate of successful migration from patch 1 to patch 2 will likely not equal 
the successful migration from 2 to 1. 

 One problem with the original implementation of PATH is the inherent barrier to 
its use: the application is designed to perform massive simulations that require a 
supercomputer to run them in a reasonable amount of time. This project was con-
ceived as a way to make migration pathway analysis more accessible to users of 
desktop computers by implementing the core PATH algorithm in the NetLogo simu-
lation modeling environment (Wilensky  1999  ) .  
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    12.2   Objective 

 The objective of this modeling project was to develop a computationally effi cient 
PATH-based tool for desktop computers that can identify important species migra-
tion corridors between habitats based on expert information about inter-habitat 
patch lethality, the energy cost to cross, and the energy available to animals to move 
outside of core habitat.  

    12.3   Model Description 

    12.3.1   Purpose 

 This implementation of PATH is intended to illuminate the essential mecha-
nisms that help to identify animal migration corridors. 1  A premise of the design 
was to avoid including any data or processes not directly illuminating the suc-
cessful migration of species between two or more separated habitat patches. 
This model converts expert knowledge about habitat patch locations, traversal 
cost, and probability of mortality through the interstitial landscape into informa-
tion about the relative connectivity of all pairs of habitat patches and the impact 
of interstitial lands on successful migrations. In future versions, certain addi-
tional aspects of “realism,” such as seasonal effects and time steps, could be 
added in instances where model results might be improved. As you read further 
you will note that, unlike the other models in this book, this model does not use 
time steps.  

    12.3.2   State Variables and Scales 

 The scale and extent of the area are determined by the user, with the practical limit 
depending on the processing power of the user’s computer. The demonstration data 
set used in this model supports a simulation space encompassing more than 1,000 by 
1,000 cells (i.e., one million cells). The primary state variable that changes over simu-
lation time is the number of successful migrations supported by each patch in the 
simulation space.  

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com
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    12.3.3   Process Overview and Scheduling 

 The model is initialized by reading data from a set of three location-specifi c maps 
that characterize (1) the location of habitat patches, (2) the energy cost to cross the 
space between patches, and (3) the lethality associated with migrating through 
non-habitat. During initialization, fi rst the habitat map loads, then the model 
aggregates, outlines, and numbers all contiguous habitat patches (i.e., “habitats”). 
A user’s chosen number of travelers is initialized. The simulation runs in discrete 
steps, but these steps do not represent time because time has no bearing on an indi-
vidual’s energy level, the energy cost of migrating, or patch lethality. At each step 
in the simulation, walkers are randomly distributed along the edges of a habitat 
based on area size. Walkers are faced away from the habitat interior and started on 
a walk that is partially directed with an adjustable level of randomness. The amount 
of energy consumed during one step is based on the data provided by the energy cost 
input map, and travelers randomly die according to the patch-specifi c probability of 
mortality read from the patch lethality input map. As a traveler moves through the 
interstitial space between habitats, it remembers its course. If the traveler succeeds 
in arriving alive at a habitat patch different from where it started, it communicates 
to every patch along the successful path that the patch supported a successful cross-
ing. Each patch then updates a habitat-to-habitat crossing array that tracks the 
number of successful crossings among all patch combinations.  

    12.3.4   Design Concepts 

    12.3.4.1   Emergence 

 PATH reveals the value of every patch in supporting habitat-to-habitat migration 
through the emergent behavior of the walkers, as an increasing number of them suc-
cessfully complete migrations and the most favorable paths become more evident.  

    12.3.4.2   Stochasticity 

 Walkers begin their attempted migrations by facing away, randomly, from the inte-
rior of their beginning habitats, and then proceed to move through the space separat-
ing habitat patches. The travel direction of walkers may be set to be fully random, 
partially random, or fully deterministic depending on the value selected for a user-
set variable. The movement of a walker at each simulation step may be characterized 
as a “wiggle,” turning to the left between 0 and  X  angular degrees (where  X  is a user-
selected value); then turning to the right between 0 and  X  degrees. If the user sets  X  
to 0, then the travel path is straight; if the angle is set to 360, then every step is fully 
random. The user will assign a value to  X  based on what is known of the subject spe-
cies’ tendency to maintain a direction; movement tendencies vary among species.  
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    12.3.4.3   Observation 

 In this version of the model, walkers observe nothing about their surroundings 
because that information is largely extraneous to path selection on a collective level. 
However, this model could be modifi ed for experimentation purposes to support 
species-specifi c observation and evaluation of travel-direction options by individual 
walkers.  

    12.3.4.4   Time 

 This model deals with time in a manner very different from any other model in this 
book, which all include an idea of time passing as the model executes. In this PATH 
model, each step involves releasing a new batch of walkers, which expend energy 
and risk death as they move. One may imagine that time passes as they move, but 
their “time” is not associated with any other walker’s “time” in any model step. 
Regardless of the number of ticks, the total set of walkers active during the simula-
tion can be assumed to begin their walking at the same time. Also, the state of the 
landscape never changes as it often does in other models, which leaves the land-
scape essentially timeless.   

    12.3.5   Initialization 

 Patches are initialized with data read from the habitat-location, energy-cost, and 
patch-lethality maps. Habitat quality is represented by a binary variable, either 0 for 
non-habitat or 1 for habitat. The walkers’ energy store is set by the user before 
migration attempts begin, and the amount of energy lost to walkers as they cross 
patches is accounted for by data from the model’s energy-cost map. Finally, the 
probability of mortality while crossing a patch is represented by a value ranging 
from 0 to 100 as determined by the model’s lethality map. Also during initialization, 
as briefl y noted above, patches are clumped together to form contiguous habitats, 
and each habitat is given a unique identifi cation number.  

    12.3.6   Input 

 Input is provided by the three raster maps described above. The habitat-location, 
energy-cost, and patch-lethality maps are prepared within a raster-based geographic 
information system (GIS) and provided to the model as Esri ASCII grid fi les. PATH 
requires maps that are location- and species-specifi c. The habitat map could be 
produced using the results of a Habitat Suitability Index study. It also might be 
based on a regression analysis that correlates known habitat and non-habitat patches 
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with factors in other GIS maps such as slope, land cover, soil type, land use, canopy 
cover, and elevation. In any case, the end product must be a map of habitat for the 
target species—places where the species can establish a home range and survive. 
The lethality map represents the probability (0–100%) that an individual will die 
while crossing any patch. A patch lethality value is based on exposure to predators, 
the probability of being caught in an inescapable situation, and the species’ ability 
to deal with the land cover. GIS data involved in developing this information might 
include land cover, land use, slope, and aspect. The energy-cost map is similar to the 
lethality map, but instead of encountering immediate death in specifi c patches, the 
walker loses energy based on the energy-cost value for the patch being crossed. For 
example, crossing through dense woods, a swamp, or a pond may require more 
energy than crossing an open short-grass fi eld. Energy cost, of course, varies with 
the species. Like the lethality map, the energy-cost map will likely be based on an 
ecologist’s analysis of land cover, slope, and aspect data.  

    12.3.7   Submodels 

 Our NetLogo implementation of PATH sets aside all ecosystem and species func-
tions that are not essential to the modeling of animal migration path formation. It is 
a very simple model that operates on data provided by three raster maps as initial-
ized with species-specifi c values set by the user for a small number of variables. 

 The concept of time is not essential to understanding the establishment of migra-
tion paths, so each NetLogo tick (i.e., step) occurs independently of time, and rep-
resents only one discrete action that involves walkers attempting to migrate from a 
home habitat to another habitat. At each NetLogo tick, a user-chosen number of 
travelers make a crossing attempt. That number is not critical, but the number of 
total attempts is. The number of travelers leaving each habitat is proportional to the 
size of the habitat, based on the assumption that larger habitats have larger popula-
tions and therefore will send forth more emigrants. Walkers depart home habitats 
from a random edge location. 

 As the simulation proceeds, successful migration paths are traced onto the output 
map in black, and each path becomes denser as more individuals use the same path. 
These paths accrete into increasingly stable shaded areas that reveal the corridors 
between habitats that are most successfully used in migration. The darkest traces 
within these grayscale areas indicate the most successfully used corridors.   

    12.4   Simulation Experiments 

 We used this PATH application to identify the corridors within Fort Benning, GA, 
that might be used by gopher tortoises ( Gopherus polyphemus ) migrating among 
tortoise habitat fragments. This animal, an at-risk species that has been nominated 
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for Federal Threatened status, is carefully managed on Fort Benning. The three 
GIS maps required for the model were derived from National Land Cover Data 
(NLCD) maps. Areas with land cover suitable for tortoises were selected, and 
contiguous areas greater than 18 ha were identifi ed as habitat. Each of the NLCD 
land cover types was then associated with a transit-energy cost and a probability of 
mortality (0–100%), and these parameters were then used as the basis for reclassi-
fying the NLCD map into the other two input maps. 

 Model initialization, which involves reading    the three maps as well as identify-
ing and labeling contiguous habitat patches into habitats, takes several minutes and 
produces the image in Fig.  12.1 . The 108 identifi ed habitats are shown in medium 
gray, with edges outlined in darker gray and uniquely labeled. For this experiment, 
each walker was given 4,000 units of energy before its crossing attempt and was 
assigned a maximum turn angle of 20° after each step. Five hundred walkers were 
arbitrarily initialized at the same time, started at a habitat edge and randomly faced 
away from the habitat. The total leaving any habitat was based on that habitat’s rela-
tive size. Each walker moved ahead until it ran out of energy or successfully reached 

  Fig. 12.1    The study area after being initialized       
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a new habitat. Once these walkers were fi nished, a new set of 500 was initialized 
and the process continued over and over. In 1 min of “wall-clock time,” the model 
generated 1.25 million walker attempts, with about 10% successfully migrating 
from 1 of the 108 habitat patches to another. After three million habitat-crossing 
attempts were simulated, the patches were assigned a color along a log-adjusted 
gray scale based on the relative number of successful crossings in which they were 
used (Fig.  12.2 ). The specks in the image identify locations at which travelers ran 
out of energy in their fi nal attempt. The maximum number of successful crossings 
supported by any one patch was 2,932 and is represented in black. Numerous patches 
participated in crossing. When the simulation is viewed on a computer screen, these 
patches are visible as white sinuous lines against the darker background.   

 Just 357,328 of the 3 million crossing attempts were successful. This value was 
derived from the inter-habitat migration success table, which can be displayed by 
selecting NetLogo’s Interface tab. For this simulation, four strong metapopulations 
emerged, with three of them being tenuously linked (inspect Fig.  12.2 ). With lower 
initial energy levels, the number of successful migrations decreased, the number of 

  Fig. 12.2    Successful migration density after three million attempts       
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separated metapopulations increased, and the number of habitats unconnected to 
other habitats increased. In terms of species conservation and survival, higher num-
bers of metapopulations and disconnected habitats are less desirable; and higher 
numbers of individuals and larger metapopulations are more desirable. 

 One output of this application is a table that shows the number of successful 
migrations between all pairs of habitats. By subtracting out-migrations from 
in-migrations, the user can discover which habitats in each pair are net population 
sources or sinks. Figure  12.3  shows the net migration from every habitat to every 
other habitat for habitats 1–34 (out of 108 total). Note that habitat 2 is a net source 
to habitats 1, 3, 15, 18, and 21 while habitat 16 is a net sink for 7 other habitats.   

    12.5   Discussion 

 This PATH application reveals that high-quality interstitial habitat is more likely to 
be associated with corridors than less-preferred habitat, and that short connectors 
develop more often than longer ones. The model assumes that movement through 
non-habitat areas is semi-random, with the walker’s current heading having some 

  Fig. 12.3    Net in- and out-migration among habitats 1 through 34       
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persistence. Actual animals may functionally select resources at a fi ner scale than is 
used in this model, and thus may not follow the same route as one optimized by 
PATH at a coarser resolution. However, animals also may respond to coarser-grained 
landscape cues than are represented by this model’s habitat map, especially when 
migrating or dispersing across long distances. Animal movement choices and 
behaviors may vary with age, gender, pregnancy and nutrition status, and the nature 
and composition of traveling groups. The importance of those factors may differ 
between species. 

 The implementation of PATH described here attempts to illuminate patterns 
of successful inter-habitat migration with a computationally low-overhead model-
ing approach. It encapsulates essential migration activities and costs into bare 
fundamentals—a binary habitat indicator, a movement parameter, a randomness 
parameter, an energy-accounting function, and a mortality probability. The model 
also includes output basic functions to track and display successful crossings. The 
map interface shows only the metapopulations and the strength of population con-
nections within them. This information can be concisely output to reveal whether 
given populations are likely sources and sinks (Fig.  12.3 ). 

 Although this PATH-based model is very simple, it is important to note that it is 
technically suffi cient to capture the essential elements of real-world migration path-
formation for a variety of species. While simpler analytical approaches are possible, 
such as a least-cost method for predicting path formation, they do not account for 
multiple terrain types that differ in terms of crossing-energy costs or lethality prob-
ability, and are too simplistic to capture all essential considerations. More impor-
tantly, because least-cost path modeling methods show the solution to be a single 
pathway, they illustrate only the current optimal route but do not show secondary 
routes that could be improved over the current best route through small modifi ca-
tions to the habitat map. The PATH tool shows all feasible connectivity routes, not 
just the single current best one. Paths that have good potential, but are currently 
used as secondary routes by the metapopulation, are exactly the ones that resource 
managers need to know about in order to consider where strategic management 
alterations can dramatically improve habitat connectivity. Such routes are evident in 
a PATH output corridor map as strong potential corridors, which may be impeded 
only in one or two locations by passing through low-quality patches. 

 The walkers in a simulation, considered individually, have almost no sophistica-
tion at fi nding migration paths as compared with individual real-world animals. 
However, considered collectively, the behavior of all successful walkers represents 
a spatial optimization process that can be used to reproduce the optimum pathways 
we would expect well-adapted individuals of the subject species to use most often. 
For this reason, it is not a problem that the walkers, endowed only with the ability 
to “see” land types immediately adjacent to their current location, represent animals 
that may have much greater sensory scope and range. The simplifi ed walker mode 
of functioning in the model does not constrain the optimization of the potential cor-
ridors found by PATH. The optimization in this model results from the collective 
action of the large number of successful dispersers and the weighting of the most 
effi cient potential dispersal paths the most heavily. Even if individual walkers in the 
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model had a greater look-ahead capability, the same optimal potential corridors 
would be predicted by the PATH tool. Consider, for example, a situation in which 
the local environment is inhospitable, but just beyond this there is a high-quality 
habitat pathway to another patch. Although short-sighted, a few walkers will make 
rare, immediately suboptimal choices and cut through the inhospitable bottleneck to 
discover the optimized pathway beyond. Becoming successful dispersers, their 
tracks will become part of the fi nal map, showing the connection just as surely as if 
they had been able to look beyond the local problem with terrain. A converse situa-
tion is also true: pockets of higher-quality habitat that are surrounded by barriers of 
poor-quality habitat will attract many individual walkers, but it is not likely that 
those walkers will successfully reach a second patch. Since only the travel paths of 
successful dispersers are used, no potential corridors will pass through this attrac-
tive dead-end area, just as if walkers had been able to see the barriers to migration 
that lie beyond. 

 For purposes of real-world application to habitat-management decisions, corri-
dors identifi ed using randomized walkers in this PATH tool must be verifi ed against 
actual movement corridors that have been observed in the fi eld. Radio tracking and 
telemetry studies would be appropriate for empirically testing walker-generated 
corridors against migration paths established by the subject species in the natural 
environment.  

    12.6   Conclusions 

 The original PATH model, designed to handle very large numbers of walkers on 
very large landscapes, was implemented on a supercomputer. Few working resource 
managers actually have access to a supercomputer. This implementation of the 
PATH algorithm as a simplifi ed NetLogo model makes PATH available to a much 
wider user community because it works well on a standard desktop computer. This 
PATH-driven model identifi es and highlights areas in a landscape that contribute to 
the natural connections among populations, identifi es the metapopulation structure, 
and indicates the relative strength of connections holding a metapopulation together. 
This information is essential to making effective habitat-management decisions that 
support robust populations of species at risk.      
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    13.1   Background 

 In 2007, for the fi rst time in history, more than half of the world’s population resided 
in urban areas (United Nations Population Fund  2007  ) . In the USA, the transition 
from dense urban centers and dispersed rural populations to expansive suburban 
landscapes has been rapid (Calthorpe and Fulton  2001  ) . When compared with US 
population growth, this development history has led to a disproportionately high 
rate of land use change and the creation of concentrated stretches of impervious 
(impermeable to water) surfaces (Ewing et al.  2002  ) . Studies have observed this 
expansion, noting the drop in urban densities and rapid expansion of land developed 
for urban uses and infrastructure (Deal and Schunk  2004 ; Ewing et al.  2002  ) . 

 Excessive suburbanization (often referred to as  sprawl ) has concerned research-
ers and planners, sparking a demand for new tools to help understand the effects of 
large-scale urbanization. Among these tools are computer-based simulation models 
of urban growth. Several studies have surveyed these models, describing their 
advantages, disadvantages, and intended uses (Agarwal et al.  2002 ; EPA  2000  ) . 
Agarwal et al.  (  2002  )  analyze these models and their capabilities in terms of three 
considerations: spatial detail, ability to mimic human decision-making capability, 
and dynamic implementation. However, from the perspective of researchers or plan-
ners interested in applying these models, important additional practical factors 
affecting adoption include the level of technical complexity, cost of implementation, 
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magnitude of data requirements, and the amount of time required for model 
implementation. These models are also diffi cult to implement for teaching purposes, 
requiring months or even years to parameterize, populate with data, and run. 

 Tools for modeling urban environments and land use change have been shown to 
be useful for predicting and understanding urban, social, and ecological problems 
(Agarwal et al.  2002 ; Barredo et al.  2003 ; Grimm and Railsback  2005  ) . Additionally, 
these tools have been used to present environmental complexities to wide audi-
ences, thereby establishing their value as educational and visualization tools 
(Costanza and Voinov  2001,   2004 ; Ford  1999  ) . 

 Waddell and Ulfarsson  (  2004  )  provide an introduction to the design and develop-
ment of operational urban simulation models, recommending a number of steps to 
developing useful modeling tools. These steps include assessments of institutional, 
political, and technical context; and stakeholders, value confl icts, and public policy 
objectives. These assessments are followed by development of measurable benchmarks 
for objectives, inventories of policies to be tested, maps of policy inputs to outcomes, 
and assessment of model requirements. Finally, input data are prepared, followed by 
model specifi cation, estimation, calibration, validation and, fi nally, model usage. 

 Land use modeling frameworks typically address specifi c questions, such as:

   Where are people likely to be living within urban regions over the next 20–50 • 
years?  
  To what extent and where will new impervious surfaces be introduced into the • 
landscape, and how will these affect nutrient or pollutant input into downstream 
water bodies?  
  What percentage of important natural habitat in the region will be located on • 
publicly owned land?  
  How much habitat is likely to be damaged, and in what patterns?    • 

 There is a considerable body of literature on urban growth modeling at the local 
and regional scales, as reviewed in various studies (Agarwal et al.  2002 ; EPA  2000  ) . 
Well-known city-scale models include METROPILUS (Putman  1983  ) , MEPLAN 
(Echenique et al.  1990  ) , and UrbanSim (Waddell  2002  ) . Some of these have been 
developed to work in conjunction with commercial geographic information system 
(GIS) software, such as What-if (Klosterman  1999  ) . Regional-scale models typi-
cally cover multiple counties and attempt to forecast land development at the edges 
of and beyond cities. Examples include SLEUTH (Clarke and Gaydos  1998 ; Jantz 
et al.  2003  ) , the Land use Evolution and impact Assessment Model (LEAM; Deal 
and Schunk  2004 ; Wang et al.  2005  ) , and California Urban Futures-2 (CUF-2; 
Landis and Zhang  1998  ) . In order to adequately represent the complexities of urban 
systems, while handling the computational requirements for testing alternative 
policy scenarios, construction, initialization, and calibration of urban and regional 
models tend to be very resource-intensive and time-consuming. 

 In this project we explored the development and application of a much smaller 
urban simulation model, constructed in NetLogo (Wilensky  1999  )  working in con-
junction with purpose-built input maps of two small US cities. Our hypothesis is 
that even a small, expedient urban model can teach students and nonspecialists 
about important cause–effect relationships in urban dynamics.  
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    13.2   Objective 

 The objective of this project was to provide a classroom-level modeling exercise 
that allows students to experiment with urban growth concepts.  

    13.3   Model Description 

    13.3.1   Purpose 

 This model helps users to explore and visualize urban growth patterns in response 
to land cover and urban growth attractiveness maps, neighborhood development, 
projected development, and randomness. Project development proceeded in two 
phases. First, raster-based GIS overlay processing and analysis code was written to 
create urban growth attractiveness based on National Land Cover Data (NLCD) 
maps for an area of interest. This work is described in Sect.  13.3.6 . Second, a spa-
tially explicit simulation model was developed with NetLogo 4.1 (Wilensky  1999  )  
to generate new urban areas based on several user inputs, including growth needed, 
development of and size of neighborhoods, effect of growth on attracting new adja-
cent growth, and a user-selected level of randomness in the growth. 1  

 The model interface is displayed in Fig.  13.1 , which divides the simulation into 
a three-step process. The model comes with map sets for two locations: Champaign-
Urbana, IL, and Chapel Hill, NC. In the fi rst step, the user initializes the model with 
the map of either location by selecting the appropriate button. The fi gure illustrates 
what appears when the “initialize-champaign” button is clicked. In the second step, 
the user sets four variables (discussed in Sect.  13.4 ). In the third step, the user des-
ignates the length of time, in years, that the simulation will represent. The simula-
tion can be stepped 1 year at a time or run for the full number of years by clicking 
the “step” or “run steps” button.   

    13.3.2   State Variables and Scales 

 The single state variable in this model is a binary value for each patch indicating 
new urban development. Sets of two input maps are provided with the model for 
Chapel Hill, NC, and Champaign-Urbana, IL. The resolution of these maps is 30 m. 
The Champaign-Urbana map covers approximately 20 × 20 km, and the Chapel Hill 
map covers 21.5 × 22.7 km. Development of the maps, land cover, and attractiveness 
to urban growth are described below. The maps are used to establish two variables 
for each patch: a value representing the land cover type and a value ranging from 

   1   An operational copy of this model is available through   http://extras.springer.com    .  

http://extras.springer.com
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0 to 1.0 that represents the attractiveness of each patch to new development. The 
second value can change during model runs depending on the development of 
immediate neighbors. 

 Several input variables are supported by slider bars in the interface:  

 res_per_year  This number of patches will be converted to urban use each year 
 neighbor_effect  This 0–1.0 value is used to adjust the development attractiveness 

of patches immediately neighboring new development. If set 
to 0, there is no effect on development attractiveness. If set to 
1, attractiveness will increase to 1.0 

 random_factor  The development attractiveness input map values are randomly 
modifi ed based on this 0–1.0 value. If set to 0, the attractive-
ness values are not modifi ed; if set to 1.0, they are com-
pletely replaced with random values. A blending of these 
extremes occurs with the selection of other values 

 neighborhoods  This on/off switch toggles neighborhood production. When on, 
all new growth will be in the form of neighborhoods that are 
equal to or less than the neighborhood_size 

 neighborhood_size  If “neighborhoods” is turned on, then growth will occur in 
clusters that are no larger than this number 

 Using these variables, students can explore urban growth concepts.  

  Fig. 13.1    Model interface       
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    13.3.3   Process Overview and Scheduling 

 At each time step, the following events occur:

    1.    The attractiveness of each patch is updated based on recent new development.  
    2.    Patches are sorted based on attractiveness and a random factor.  
    3.    A user-specifi ed number of patches are selected for development.      

    13.3.4   Design Concepts 

    13.3.4.1   Emergence 

 This urban growth model operates at the patch level, but it generates an emergent 
pattern of growth in response to the input maps and user selection of variable values.  

    13.3.4.2   Stochasticity 

 Random values are employed at two points in the model. First, the attractiveness 
of each patch to new development is modifi ed with a uniquely generated random 
value to take into account factors that were not specifi cally included in the devel-
opment of the input urban attractiveness map. The weight of that value is user-
adjusted via the  random_factor  variable entered through the interface. Depending 
on the setting, the adjusted attractiveness can be left unchanged or can be com-
pletely replaced with the random value. Second, if neighborhood development is 
turned on, neighborhood growth proceeds randomly around an initially selected 
seed location.   

    13.3.5   Initialization 

 Each patch is initialized with two variables: a land use category based on the 1992 
NLCD values; and a base urban growth attractiveness value in the form of a 0–1.0 
value index. These values are provided to the model through Arc-ASCII (.asc) grid 
maps. Growth is allowed to occur in areas not categorized as water, wetland, or 
already urban (including roadways).  

    13.3.6   Input 

 The NLCD map is created by acquiring digital land cover maps and incorporating 
that information into a map with the 1992 NLCD data categories listed in Table  13.1 . 
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The map displayed through NetLogo on the right-hand side of Fig.  13.1  shows the 
sample Champaign-Urbana area. The same data for other cities can be directly 
downloaded from the United States Geological Survey (USGS) “seamless” website: 
  http://seamless.usgs.gov    .  

 The urban growth attractiveness map provides an index value in the range of 
0–1.0, representing the relative attractiveness of every raster GIS grid cell to new 
development. We developed the sample maps using a  hedonic logic  approach, which 
is typically used to estimate land values in the resource economics literature. The 
logic calculates and then combines the level of attractiveness of each grid cell with 
respect to (1) surrounding urban area centers, (2) access to roads, highways, and 
interstates, and (3) proximity to forest and water. The analysis process is accom-
plished through fi ve primary steps:

    1.    Acquire data and re-project it into a common coordinate system.  
    2.    Identify a set of locations for each attractor believed to infl uence development.  
    3.    Calculate travel times to each attractor forming a map.  
    4.    Convert the travel time maps to attractiveness maps.  
    5.    Combine attractiveness maps to generate a single, comprehensive urban devel-

opment attractiveness map.     

   Table 13.1    1992 National Land Cover Data (NLCD) categories 
used in input maps   

 Category  Description 

 11  Open water 
 12  Perennial ice/snow 
 21  Low-intensity residential 
 22  High-intensity residential 
 23  Commercial/industrial/transportation 
 31  Bare rock/sand/clay 
 32  Quarries/strip mines, gravel pits 
 33  Transitional 
 41  Deciduous forest 
 42  Evergreen forest 
 43  Mixed forest 
 51  Shrubland 
 61  Orchards/vineyards 
 71  Grasslands/herbaceous 
 81  Pasture/hay 
 82  Row crop 
 83  Small grains 
 84  Fallow 
 85  Urban recreational grasses 
 91  Woody wetlands 
 92  Emergent herbaceous wetlands 

http://seamless.usgs.gov


22913 A Technique for Rapidly Forecasting Regional Urban Growth

 Steps 1–4 are accomplished for each landscape attractor. The results for the 
attractors are combined in step 5 using a simple binary logistic regression model, 
shown in ( 13.1 ):

     0
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where:

    A   = Overall attractiveness of a parcel to development  
    b   

0
  =  Y -axis intercept of the regression  

    b   
 i 
   =  Fit by Maximum Likelihood Estimation (MLE; binary or multinomial logistic 

regression)  
   V    = Value of attractor ( k  values)  
   P    = Probability of urban growth occurring on cell    

 A more detailed description of this process can be found in    Westervelt et al. 
 (  2011  ) .  

    13.3.7   Model Logic 

 The steps at each time step (year) proceed as follows. First, an urban attractiveness 
value is calculated for each patch that has not already been developed, was not origi-
nally urban, and is not classifi ed as water or wetland, based on the following equation:

     = + -* (1.0 )*D F R F A    (13.2)  

where:

    D  = Development probability index  
   F =  User chosen “random_factor”  
   R =  A random number unique to each patch (0–1.0)  
   A =  Base development probability index originally read from the GIS map    

 Second, these patches are sorted by the development probability index,  D . Next, 
locations are selected from this list to be developed. If neighborhoods are not being 
developed, the fi rst  n  locations are chosen for development, where  n  is the user-
selected res_per_year value. If the neighborhood switch is set to “On,” then each 
selected patch recursively induces growth in its immediate neighbors until a new 
neighborhood is developed with a total size less than or equal to the user-set neigh-
borhood_size variable. All newly developed areas then increase the urban attrac-
tiveness of neighboring patches as follows:

     = + -(1.0 )*A A A N    (13.3)  
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where:

    A =  Base development probability index originally read from the GIS map  
   N =  A user-settable neighbor-effect variable with a value between 0 and 1.0    

 Figure  13.2  shows the urban growth attractiveness map as displayed through 
NetLogo for the sample Champaign-Urbana area.    

    13.4   Simulation Experiments 

 This model provides a classroom exercise that allows the student to experiment with 
the various inputs: res_per_year, neighbor_effect, random_factor, neighborhood_
size, and the on/off neighborhoods switch. Three “starter” experiments are 
described below. 

  Fig. 13.2    Sample urban growth attractiveness map       
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    13.4.1   Optimal Growth 

 Let us assume that the attractiveness input map accounts for all possible consider-
ations that affect where people choose to develop. To do so, set the input values as 
follows:  

 res_per_year  2000  This many 30 × 30 m patches will convert into 
urban patches each year 

 neighbor_effect  0  New urban patches will not induce any more 
adjacent new urban patches 

 random_factor  0  No randomness will be injected into the 
default attractiveness 

 neighborhoods  Off  Neighborhoods will not be developed 
 neighborhood_size  N/A  This value will not be used since  neighbors  is 

turned off 
 years  10  Run the model for 10 years 

 Hit one of the initialize buttons and then “run steps” to generate 10 years of 
growth. If you repeat this experiment, the results will always be the same because 
they are determined by the set values, with no randomization of attractiveness. Next, 
reset the “random_factor” to 1.0, reinitialize the model, and run the simulation. 
Note that urban growth throughout the area is now generated in a completely random 
fashion, and that the random placements are different every time the simulation is 
run. By setting the value somewhere between 0 and 1.0 you may seek an appropriate 
balance where simulations are neither totally deterministic (i.e., determined solely 
by the data inputs) nor totally random (i.e., completely overriding the set attractive-
ness values with random growth values).  

    13.4.2   Neighborhood Growth 

 You may fi nd it disconcerting to see development happen one cell (or patch) at a 
time if you are used to witnessing the development of 60 ha neighborhoods around 
you, as is typical with suburban-style developments that are large and come into 
existence all at once). To begin a neighborhood growth experiment, set the input 
values as follows:  

 res_per_year  2000 
 neighbor_effect  0 
 random_factor  0.2 
 neighborhood_size  600 
 neighborhoods  Off 
 years  10 

 Initialize the model and run the designated steps. Note that the growth occurs 
with some randomness, as indicated by the salt-and-pepper nature of the development 
pattern, but is heavily guided by the urban growth attractiveness map. Now, switch 
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the neighborhoods value to “On” reinitialize and rerun. Note how the patch-level 
salt-and-pepper pattern has been replaced with clumps, which are themselves grow-
ing in random-shaped “blobs.”  

    13.4.3   Induce Neighbor Growth 

 The level of urban growth attraction provided in the input map is, in part, based on 
proximity to already developed urban areas. Therefore, it is reasonable that all 
newly generated growth in the model should similarly affect the attraction of new 
growth in its neighbors. The neighbor_effect variable in the user interface provides 
a way to experiment with this concept. That variable identifi es the difference, in 
terms of percentage, between a neighbor’s growth attraction and 100% (a value of 
1.0) that the attraction should be increased in response to next-door-neighbor devel-
opment. To experiment with this variable, set the input values to those used in the 
previous experiment, specifi ed in Sect.  13.4.2 . 

 Initialize the model and run the designated steps. As before, the growth occurs 
with some salt-and-pepper randomness. Next, reset the neighbor_effect from 0 to 
1.0, reinitialize the model, and rerun the simulation. Note that growth is now much 
more compact, with developed cells appearing more tightly clustered instead of 
spread-out, randomized patterns. This output represents what happens when new 
growth stimulates growth in neighboring cells.   

    13.5   Discussion 

 This model provides a starting point for exploring how new growth may induce 
growth in adjacent areas, how randomness impacts growth attractiveness, how dif-
fering sizes of new neighborhoods may lead to different results, and what effects 
different annual target levels of urban growth might have. Experimentation with this 
model will help a student to gain appreciation for the consequences of choosing dif-
ferent input variables, and it is useful for understanding the implications of different 
development styles on the landscape. 

 Driving forces behind urban growth attractiveness are represented in the form of 
the growth attractiveness input map, which can be enlarged or modifi ed through 
GIS analyses for the sample locations or any other site for which appropriate GIS 
data are available.  

    13.6   Conclusions 

 This model provides students a more direct experience of basic planning theory and 
dynamics than is available through more passive learning processes alone. This 
experience can lead to more fruitful discussions and deeper insights, and may inspire 
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further refi nement of the model to increase its explanatory power. It is possible, for 
example, to extend the model to execute all of the GIS processing required to gener-
ate the urban attractiveness information based directly on raw transportation, land 
cover, elevation, and no-growth maps. One key to urban development is often the 
installation of utilities that are required to support residential areas; this model could 
be extended to capture those plans, thus improving its predictive capabilities. Master 
plans and zoning ordinances defi ning where residential development may or may 
not occur also could be captured in a modifi ed version of this model. The model’s 
built-in generic assumptions about residential development could be extended to 
distinguish between large-lot and dense apartment and condominium growth. The 
model also can provide a foundation for further exploration of ideas about urban 
growth through spatial simulation modeling.      
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    14.1   Background 

 Intimate partner violence (IPV) is a serious ongoing social problem. IPV refers to 
the physical, psychological, emotional, and sexual abuse among intimate hetero-
sexual partners (Hattery  2009  ) . Both men and women can be victims of family 
abuse, but the percentage of affected women is higher (Catalano  2007 ; Hattery 
 2009  ) . The National Violence Against Women Survey, conducted from November 
1995 to May 1996, revealed that 22.1% of surveyed women and 7.4% of surveyed 
men have been physically assaulted by an intimate partner in her or his lifetime 
(Tjaden and Thoennes  2000  ) . However, women appear to use violence primarily in 
self-defense and are more vulnerable to physical injuries than men (Hattery  2009 ; 
Tjaden and Thoennes  2000  ) . IPV affects people of all races, income levels, and 
social classes, but African American, immigrant, and low-income women appear to 
be at a higher risk (Firestone et al.  2003 ; Garcia et al.  2005 ; Hattery  2009 ; Raj and 
Silverman  2002  ) . 

 Due to such problems as ineffective data-collection systems, underreporting of 
incidents, and the use of different defi nitions of IPV by criminal justice, social 
services, and healthcare agencies (Hiselman  1999  ) , there are ongoing debates about 
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IPV rates. According to the US Bureau of Justice Statistics, the average annual rate 
of nonfatal victimization of females by an intimate partner is 4.2 per 1,000 persons 
of age 12 or over (Catalano  2007  ) . Other estimates of annual IPV rates vary from 
9.3 to 220 per 1,000 women, with the most commonly cited fi gure of 116 annual 
acts of any violence or 34 acts of severe violence per 1,000 women on the basis of 
the 1975 and 1985 National Family Violence Surveys (Crowell and Burgess  1996  ) . 
IPV incidents rarely get reported to the authorities, and the share of incidents 
reported to police has been estimated to vary from 2 to 52% of the actual occur-
rences (Wolf et al.  2003  ) . 

 There is a positive correlation between violence and the economic disadvantage 
of women (Basu and Famoye  2004 ; Farmer and Tiefenthaler  1997 ; Sanders and 
Schnabel  2006  ) . Women from marginalized communities often make numerous 
attempts to leave an abusive relationship (Sullivan et al.  1992  ) , but often cannot suc-
ceed because of the lack of access to employment, education, transportation, hous-
ing, child care, fi nancial support, and legal support. This lack of structural support 
has been associated with short-term and long-term homelessness, housing instabil-
ity (Bassuk et al.  2001 ; Baker et al.  2003  ) , and the inability to fi nd or maintain 
employment (Romero et al.  2003 ; Bell  2003  ) . 

 Research indicates that a woman’s cultural, ethnic, or social background can 
infl uence patterns of accessing and utilizing social services. Women have different 
frequencies of use and different perceived effectiveness of various help sources 
(Allen et al.  2004  ) . According to Lipsky et al.  (  2006  ) , non-Hispanic White women 
were nine times more likely to use emergency services and twice as likely to use 
domestic violence services when compared with Hispanic women. South Asian 
women were more likely to disclose abuse to family members or friends rather than 
offi cial sources, but received a lower level of support from nonkin members when 
compared with Hispanics and African Americans (Yoshioka et al.  2003  ) . Non-
Hispanic women may be less likely to disclose abuse to a family member than 
Hispanics (Ingram  2007  ) . Finally, the level of informational awareness regarding 
the availability of formal support can be as low as 45–50% among immigrant women 
(Raj and Silverman  2003 ; Murdaugh et al.  2004  ) . 

 Usually IPV has been modeled using traditional statistical methods. To the best 
of our knowledge, this text documents the fi rst project that attempts to represent IPV 
dynamics within a spatially explicit social support system. The model can help pol-
icy makers understand the dynamics and context of where IPV occurs, and it also 
can be used as a tool for testing policy and combating the aforementioned informa-
tional problems associated with IPV.  

    14.2   Objective 

 The objectives of this project are to model a body of knowledge developed by 
subject matter experts in order to represent IPV dynamics in the lives of women who 
do not respond equally to a one-size-fi ts-all set of remedies to violence at home. 
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While women from a higher socioeconomic context tend to solve such problems 
themselves (Hattery  2009  ) , those from marginalized communities lack access to 
social services and other resources (Allen et al.  2004  ) . We thus predict that better 
access to shelters, along with increased informational awareness of the public and 
cultural sensitivity of the service providers regarding IPV problems, should dimin-
ish IPV rates among women in general and women from lower socioeconomic strata 
in particular. It is intended that policy makers can use the model as a tool to evaluate 
the effectiveness of various IPV policies among major racial groups as well as insuf-
fi ciently represented individuals without actually “experimenting” with people at 
risk. Accordingly, this model was designed to serve as a template that can be modi-
fi ed as needed in order to match the requirements of other users.  

    14.3   Model Description 

    14.3.1   Purpose 

 The purpose of the model is to evaluate the effectiveness that such parameters as 
cultural sensitivity of service providers, public awareness, and the number of shelter 
beds have on IPV rates among non-Hispanic White, African American, and Hispanic 
women, organized by income level, in Chicago, IL. The model demonstrates the 
discrepancy between offi cially reported violent incidents and all violent incidents, 
both reported and unreported. While many spatially explicit models represent the 
fl ow of a system across the duration of many generations of population or events, 
this model explores the state changes of a set of IPV events at a point in time until 
those IPV events are resolved. Figure  14.1  demonstrates the conceptual relation-
ships in the model.   

  Fig. 14.1    Conceptual 
relationships       
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    14.3.2   State Variables and Scales 

 The model was developed using Netlogo 4.1 (Wilensky  1999  ) . 1  The model area is the 
City of Chicago represented by a map of census tracts mapped onto a 90-m grid. Each 
tract contains information on its racial composition to account for the percentage of 
African American, non-Hispanic White, and Hispanic individuals. A portion of 
Chicago’s social-support system is represented by 60 community service centers that 
provide classes in English as a Second Language (ESL) and the General Equivalency 
Diploma (GED), child care, fi nancial, and housing assistance. The model operates on 
1-month time step. For the results reported here, the simulation was run for 10 years. 

 The model contains two types of agents: individual humans and shelters. 
 Representing the people in a study area is a major challenge in building models 

that need demographic input data, and that was the case during the development of 
our IPV model. At the time we developed the IPV model, the most recent available 
census data at the tract scale was based on 2009 estimates by GeoLytics, Inc.  (  2009  ) . 
A free version of the 2009 estimates, obtained from the Joseph Regenstein Library 
at the University of Chicago, provided only the most basic attribute information, 
such as race, ethnicity, age, gender, and number of households by income per census 
tract. However, detailed household attribute information for 2008 was available from 
the American Community Survey, or ACS (US Census Bureau  2008  ) . The ACS 
provides major attributes for people, including age, gender, race, ethnicity, 2  personal 
income, household income, type of household, educational attainment, school enroll-
ment, English-speaking ability, number of children and children’s age, vehicle, pov-
erty status, relationship to the head of the household, public assistance (food stamps), 
and the year when a person moved to a household. However, ACS data do not have 
spatial resolution as detailed as census tracts. In order to estimate the location of 
relevant agents containing the necessary ACS variables, Digital Populations soft-
ware (Ehlschlaeger  2004  )  3  used land-use and census-tract spatial and proportional 
information to capture locations for the households and people (and their attributes) 
from the ACS. Digital Populations, at the time the IPV model was built, located the 
proportion of each race, ethnicity, age group, and income based on 2009 census tract 
spatial proportions of each attribute. Due to the lack of the proportions of marital 
status and English-speaking abilities by age in 2009 census tract data, these attri-
butes were based instead on 2001 US census data. Households and person attributes 
were coregistered based on the 2008 ACS attributes. If we assume the 2008 ACS 
population attribute proportions are more accurate than the 2009 census tract pro-
portions, then the population sample generated by Digital Populations underrepre-
sents Hispanics by 2% and African Americans by 5%; and it overrepresents 

   1   An operational copy of this model is available through   http://extras.springer.com    .  
   2   The defi nitions of race and ethnicity used by the US Census Bureau may differ from the defi ni-
tions used elsewhere in the literature. These variations account for slight differences between the 
model and certain standard references.  
   3   Digital Populations is an open source software that may be downloaded for no cost at 
  http://digitalpopulations.pbworks.com/w/page/26034597/FrontPage    .  

http://extras.springer.com
http://digitalpopulations.pbworks.com/w/page/26034597/FrontPage
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non-Hispanic Whites by 6%. The model’s targeted sample of interest is drawn from 
1% of Chicago’s married or cohabiting African American, non-Hispanic White, and 
Hispanic women over the age of 15. Additional attributes are described in the 
Sect.  14.3.7 , and the data for those variables were derived from the literature. 

 Shelters are the second element of the social support system. Following    Levin 
et al. ( 2004  )  and the 2006 assessment of homeless population (Chicago Coalition for 
the Homeless  2006  ) , it has been estimated that approximately 0.15% of homeless 
women are without homes due to IPV incidents, and 4.3% of all shelter beds are avail-
able for these women. The number of shelter beds in Chicago, including those in 
homeless and family shelters, is estimated to be 3,337, based on the data collected 
from the web sites of corresponding agencies. According to the Chicago Coalition for 
the Homeless, 73,656 people were homeless at some point in fi scal year 2006, which 
constitutes approximately 2.6% of Chicago’s 2006 population (2,833,321 people as 
estimated by the US Census Bureau). Thus, the ratio of 3,337 beds to 73,656 people 
is 0.045 beds per person. The Chicago Coalition for the Homeless also estimated that 
adults constituted 60% of all homeless population, while women represented 43% of 
all homeless adults in 2004 (Library Index  2010  ) , and 22% of women in shelters 
became homeless immediately following an IPV incident (Levin et al.  2004  ) . 

 The value of 0.15% is a result of multiplying these percentages. Because this 
model uses a 1% sample of the population (30,537 people), it has been estimated 
that 45 women can be potentially homeless due to IPV incidents (i.e., 30,537 mul-
tiplied by 0.15) and the number of shelter beds is similarly reduced to 2 (i.e., 45 
multiplied by 0.045). Children are not explicitly taken into account in the model, 
and each woman receives one bed regardless of the number of children she has. 

 The model uses two shelters with one bed in each. One shelter is located in a 
Hispanic tract and another one in a racially mixed tract. The choice of these loca-
tions was random.  

    14.3.3   Process Overview and Scheduling 

 Each sampled woman may experience violence at any time step. It is assumed that 
each battered woman wants to reduce or stop violence by becoming economically 
independent (i.e., having a higher income) or by leaving the relationship if the vio-
lence continues. Once a woman experiences violence, she can respond in any or 
combination of the following: call police, disclose abuse to friends (disclosure of 
abuse is assumed to be equal to asking for help), leave the relationship, go to a shel-
ter or a community center, and become homeless or return back to the relationship. 
Figure  14.2  outlines general fl ows and state updates based on these activities.  

 Women living at or below the poverty level will search for a job and are considered 
capable of living apart from their abuser when their income reaches $16,640, 4  which 

   4   This income is calculated on the basis of a 40-h week at $8.00 per hour, the Illinois minimum 
wage in 2010 (US Department of Labor,   http://www.dol.gov/whd/state/stateMinWageHis.html    ). 
From the model’s 1% sample of ACS households, all women at or below the poverty level have 
income lower than $16,000, with half of them earning less than $3,500.  

http://www.dol.gov/whd/state/stateMinWageHis.html
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is 150% of the poverty level for a one-person household in 2009–2010 (US Census 
Bureau  2010  ) . The job search is not directly triggered by exposure to violence, but the 
probability of becoming employed is infl uenced by violence. If a woman has not 
found a job and she has low educational attainment, poor English skills, or needs 
child care, she may go to a community center in search of these services. 

 Other processes include the willingness of a woman’s friends to assist in response 
for her request for help and the provision of services by shelters.  

    14.3.4   Design Concepts 

    14.3.4.1   Adaptation 

 It is assumed that each battered woman’s goal is to leave the relationship. As income 
is inversely related to the probability of violence, women at or below the poverty 
level want to obtain a job and reach income of $16,640. Searching for education 
and/or child care in community centers is a direct adaptive trait to increase 
employability. In general, searching for employment and higher income is an indi-
rect adaptive trait since it may either help a woman to decrease the violence or to 
become fi nancially independent and leave the relationship.  

  Fig. 14.2    Model fl ow       
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    14.3.4.2   Sensing 

 It is assumed that women know about shelters and their location, but they do not know 
which shelter has available beds. It is also assumed that women know about commu-
nity centers, but have no information about specifi c services. Women do not keep 
information about shelters and community centers that they visited in memory.  

    14.3.4.3   Interaction 

 Interactions between abused women and their friends occur only if the women have 
experienced violence. Women can ask friends for help, and friends may or may not 
provide assistance. Women do not keep track of friends who refused to help them. 
The number of friends and the specifi c individuals stay constant. 

 Women also interact with shelters and community centers by requesting services. 
Indirectly, they interact with other battered women which whom they compete for a 
shelter bed.  

    14.3.4.4   Stochasticity 

 The model is primarily stochastic. It uses stochasticity:

   As an input value with a mean and a standard deviation to the logistic regression • 
equations in order to represent the variability of reality.  
  As a decision-making process by comparing the results of a random number • 
generator and the logistic regression equations in order to represent the uncer-
tainty in the women’s decisions.    

 Stochasticity is a vital characteristic to the model due to the unpredictability of 
human behavior in general and due to the variety of decisions that might be made in 
the uncertainty of the IPV context in particular.  

    14.3.4.5   Observation 

 Model results are collected based on the number of incidents and police calls 
(represented as a rate per 1,000 of the subject population) and the percentage of 
battered women who left the relationship categorized by race/ethnicity and income 
level (i.e., above and below poverty level).   

    14.3.5   Initialization 

 The model starts by initializing the geographic space. Next, shelters and community 
centers are created, followed by initialization of a 1% sample of Chicago’s population. 
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Each married or cohabiting African American, non-Hispanic White, and Hispanic 
woman over the age of 15 is assigned an “at risk of domestic violence” status. None 
of the women are assigned any personal exposure to violence, and the shelters are 
empty. As the model runs, it takes about fi ve time steps to fully populate the shelters. 

 The variables are read from the input fi les or created by using random numbers. 
The model does not use a seed, so the same parameters will produce different results 
for each simulation. At the end of the initialization, the racial composition of the 
tracts is calculated by summing up all individuals within the tract boundary and 
dividing it by the total population.  

    14.3.6   Input 

 The model’s inputs include an ESRI shapefi le to determine Chicago’s boundary, a 
raster fi le of census tracts with a 90 m resolution, and population data produced 
using Digital Populations software (Ehlschlaeger  2004  )  based on the 2008 ACS. 
Each person is placed in geographic space according to the coordinates generated 
by Digital Populations and contains the variables discussed in Sect.  14.3.2 . 

 For the data obtained from the literature, the values are assigned using a random 
number generator. Percentages are treated as probabilities. For example, if 5% of 
non-Hispanic White females over the age of 45 have alcohol problems, then each 
simulated non-Hispanic White female over 45 years old has that same probability of 
an alcohol problem. 

 Data on the location and available services in shelters and community centers are 
collected from the web sites of corresponding agencies.  

    14.3.7   Submodels 

    14.3.7.1   Experiencing Violence 

 The probability of violence in a couple is calculated based on a logistic regression 
developed by Salari and Baldwin  (  2002  ) . They distinguish between verbal, physi-
cal, and injurious violence, but our model omits verbal violence. The probability of 
violence depends on variables such as household income, woman’s income, pres-
ence of a child under 5 years old, offi cial marriage status (vs. cohabiting), relation-
ship duration, number of shared friends between a couple, race/ethnicity, number 
of personal friends, adherence to traditional gender roles, availability of informal 
support in a crisis, alcohol problems, and a level of self-esteem for each partner. 
These variables are either drawn from ACS information, or they are stochastically 
derived based on research on those social variables. If violence occurs, it is assumed 
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to be equal to one act. “Experiencing violence” is one of the inputs into the  Calling 
police ,  Receiving help from friends ,  Leaving the relationship , and  Looking for a 
job  submodels.  

    14.3.7.2   Calling Police 

 This submodel is initiated by exposure to violence and is based on a logistic regres-
sion developed by Felson and Paré  (  2005  ) . It depends on variables including the 
reporting person’s age, education, income, race/ethnicity, and whether the violence 
was initiated by a partner (vs. a stranger), whether it occurred at home (vs. on a 
street), and whether it resulted in a physical injury. It is assumed that IPV happens 
at home. Calls made to the police are documented for each woman on a yearly basis 
and represent offi cial statistics reported to the authorities.  

    14.3.7.3   Disclosing Abuse to Friends 

 This submodel represents a request for any help, and is initiated for each woman 
that experienced violence during the simulation. Using a nonrepresentative sample, 
Yoshioka et al.  (  2003  )  and West et al.  (  1998  )  reported the percentages of women by 
race and ethnicity who are willing to discuss abuse with friends, with the model 
stochastically determining which abused women do so. A friend to be contacted is 
chosen randomly.  

    14.3.7.4   Receiving Help from Friends 

 The submodel is initiated if a woman contacted one of the friends and is based on a 
logistic regression developed by Beeble et al.  (  2008  ) . It evaluates the willingness of 
an individual to provide any kind of support and depends on such variables as a 
person’s gender, age, attitudes and beliefs about violence, perceived prevalence of 
violence rates in the community, and childhood and personal exposure to violence. 
The result is one of the inputs into  Experiencing violence  and  Leaving the relation-
ship . Public awareness (PA) is one of the dependent variables, and includes the level 
of willingness to disclose abuse to friends and the kinds of attitudes and beliefs 
about violence and perceived prevalence of violence rates in the community.  

    14.3.7.5   Leaving the Relationship 

 This submodel is initiated for each woman who has ever experienced violence and 
is based on a logistic regression developed by Sabina and Tindale  (  2008  ) . It depends 
on variables including a yearly number of violent acts, the level of the most severe 
incident, harassment, power and control, health and depression, education, income, 
availability of social support, and type of employment.  
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    14.3.7.6   Being Homeless 

 A woman’s status is updated to homeless if she left the relationship and her income 
is below $16,640. During the homelessness period, a woman attempts to stay at a 
shelter (a temporary solution) or goes to a community center for a housing assis-
tance (a permanent solution). A woman is allowed to stay homeless for up to 1 year. 
If she does not fi nd housing assistance or a job during this period she returns to the 
abusive relationship.  

    14.3.7.7   Searching for Shelters 

 This submodel is initiated in two cases: when a woman leaves the relationship and 
when she becomes homeless. First, the probability of making a decision to go to a 
shelter depends on a woman’s income, and is assumed to be 0.6 for women below 
the poverty level and 0.4 for women above the poverty level. 5  The probability of 
making an actual visit depends on physical distance, race/ethnicity, and the racial 
composition of the tract where a shelter is located. The formula for making an actual 
visit takes a form of:

     
-= 0.11

CS * 0.525e ijD

mkP P    

where     mkP    is the percentage of trips for mode     m    and purpose     k   ,     CSP    is cultural 
sensitivity (CS) of service providers at shelter     j   , and     ijD    is the distance in kilome-
ters between a woman     i    and a shelter     j   . The parameters are fi tted to automobile 
trips to health care clinics on the basis of Minneapolis data (Iacono et al.  2008  )  and, 
for the lack of better alternatives, are assumed to be representative of shelter visits. 

 The concept of cultural sensitivity of service providers is derived on the basis of 
Donnelly et al.  (  2005  ) , who suggested that minority women may be less likely to 
use mainstream, white, middle-class oriented services that are usually located 
outside of their neighborhoods. The model’s assumption is that if the racial compo-
sition of a tract where a shelter is located does not match a woman’s race, then she 
will be less willing to use this service. The racial/ethnic composition of each census 
tract is defi ned on the basis of Turner and Hayes  (  1997  ) : predominantly Black tracts 
are those where more than 50% of the population is African American; predomi-
nantly White tracts are those with less than 10% of African Americans and less than 
10% of Hispanics; mixed tracts are those where African American population is 
between 10 and 50%; and Hispanic tracts are those with less than 10% of African 
Americans and more than 10% of Hispanics. 

 A woman gets accepted if a shelter has available beds. Otherwise, she moves to 
the next shelter. Women at or below the poverty level are allowed to stay at a shelter 

   5   These values are informed by George et al.  (  2010  ) , who reported signifi cant differences in shelter 
utilization by employment status and number of hours worked, which implies differences by 
income level and poverty status. For simplifi cation purposes, we used the poverty status divide 
rather than the actual employment status and number of hours worked.  
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for a maximum available time. The length of stay for women above the poverty 
level is determined by drawing a random number between 1 month and the maxi-
mum available time.  

    14.3.7.8   Looking for a Job 

 This submodel is initiated for each woman who is at or below 100% of the federal 
poverty level and is based on a logistic regression developed by Blumenberg  (  2002  ) . 
It depends on such variables as education, English ability, ownership of a personal 
car, health problems (assumed to be equal to exposure to violence), and presence of 
children who need child care.  

    14.3.7.9   Searching for Services in Community Centers 

 This submodel is initiated in two cases: (1) when a woman is homeless and searches 
for housing assistance and (2) when she did not fi nd a job and searches for GED or 
ESL classes or child care. A woman selects a community center within a distance of 
3 km and evaluates the probability of visiting according to:

     1
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where     jA    is the attractiveness o f a community center,     ijD    is the distance in 
kilometers, and     b    is a coeffi cient equal to 1. Attractiveness of a community center 
is calculated as:

     
= åjA WS

   

where     W    is a service and     S    is a coeffi cient representing perceived usefulness of a 
given service (Allen et al.  2004  ) . Each service (i.e., education, housing assistance, 
child care, and fi nancial aid) is coded as 1 if present and 0 if absent. 

 If a woman has decided to visit a community center, she does so, and checks for 
the services of interest. If no services are available, she selects the next block of 
community centers within the search distance.    

    14.4   Simulation Experiments 

 A total of 100 simulations were run to test the effect of the number of shelter beds at 
100 and 200% increase, and the level of CS and PA at 50 and 100% increase in com-
parison with existing conditions (represented as 0% increase in the subsequent tables). 
The results were averaged for each experiment over 10 years of simulations. 
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 Table  14.1  demonstrates that the average “real” (as opposed to “offi cial” 
 incidents—those reported to the police) incident rate for a total population is the 
highest for Hispanic women, followed by African American and non-Hispanic 
White women. The model reveals noticeable differences when income is taken into 
account. Non-Hispanic White women experience the lowest incident rates in both 
the below and above the poverty level groups, while the rates for African American 
and Hispanic women in both groups are approximately the same. Non-Hispanic 
White women below the poverty level appear to experience violence 6.4 times more 
often than those from the above the poverty-level group. For Hispanic women below 
the poverty level, the incidence is 4.8 times higher than the more affl uent group, and 
for African Americans the incidence is 4.6 times higher.  

 The number of incidents reported to police vs. actual number of incidents is sub-
stantially lower for each racial and income group. On average, non-Hispanic White 
women report 18.7% of actual incidents to police; Hispanic women report 18.3% of 
all incidents; and African American women report 23.7%. There are some differ-
ences by income group. Non-Hispanic White women below poverty report 17.5% 
of all incidents and those above poverty report 18.9%. For Hispanic women, the 
values are 18.2 and 17.2%, and for African American women the values are 22.9 
and 24.8%, respectively. 

 The average percentage of women who were tagged as “safe” at the end of each 
simulation, and hence were out of the system either temporarily or permanently, is 
similar for non-Hispanic White, African American, and Hispanic women in the 
above the poverty level group (87.1, 86.8, and 86.0%, respectively). These values 
contrast signifi cantly with the results obtained for women in the below the poverty 
level group: 60.8, 63.5, and 50.1% for White, African American, and Hispanic 
women, respectively. 

 Table  14.2  demonstrates the results for each change in parameters, and there is a 
great degree of variability in the results. This may be due to either a degree of uncer-
tainty represented in the model, an inadequate population sample, or an insuffi cient 
number of simulation runs.  

 Linear regression analysis was carried out in order to determine the positive or 
negative effect of each parameter on simulation results. Linear regression indicates 
very low  R  2  values and gentle slopes, as shown in Table  14.3 . This table also shows 
variability in the signs of trends among the three racial groups. The same level of 
variability is observed for incident and safety rates, race, and income although the 
trends are slightly stronger when safety is used as a measuring parameter. Finally, 
the signs of the trends for incident and safety rates do not always match. Thus, it is 

   Table 14.1    Average “real”/“offi cial” incident rate per 1,000 women   

 Group  Total  Below poverty  Above poverty 

 Non-Hispanic White   6.1/1.1  34.2/6.0   5.3/1.0 
 Hispanic  19.1/3.5  56.0/10.2  11.6/2.0 
 African American  15.6/3.7  54.2/12.4  11.7/2.9 
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expected that if a given scenario indicates an increase in incident rates, the safety 
rates should decrease and the converse should also be true. In several cases, however, 
a mismatch occurred instead.   

    14.5   Discussion 

 We expected that better accessibility to services together with informational and 
cultural awareness of the public and service providers would reduce the risk of IPV 
for all women, and those from marginalized communities in particular. However, 
the results of the simulations did not fully support our hypothesis. 

   Table 14.2    Mean, standard deviation and standard error by simulation, total population a    

 Beds  PA increase  CS increase 

 Mean 

 White  African American  Hispanic 

 2  0  0  6.13  15.60  19.34 
 2  0  50  6.11  15.74  19.28 
 2  0  100  6.10  15.56  19.08 
 2  50  0  6.13  15.68  19.05 
 2  50  50  6.07  15.69  19.16 
 2  50  100  6.16  15.56  19.15 
 2  100  0  6.09  15.63  19.32 
 2  100  50  6.10  15.62  19.01 
 2  100  100  6.04  15.57  19.18 
 4  0  0  6.13  15.77  19.05 
 4  0  50  6.12  15.53  19.10 
 4  0  100  6.05  15.57  19.19 
 4  50  0  6.08  15.79  18.92 
 4  50  50  6.12  15.70  19.24 
 4  50  100  6.00  15.60  19.29 
 4  100  0  6.05  15.65  19.26 
 4  100  50  6.20  15.54  19.09 
 4  100  100  6.15  15.61  19.10 
 6  0  0  6.15  15.66  19.08 
 6  0  50  6.11  15.56  19.21 
 6  0  100  6.13  15.34  19.30 
 6  50  0  6.09  15.68  19.14 
 6  50  100  6.11  15.49  19.05 
 6  100  0  6.23  15.32  19.18 
 6  100  50  6.13  15.67  19.07 
 6  100  100  6.05  15.55  19.20 

   a Non-Hispanic White population had standard deviation from 0.36 to 0.49 and standard error from 
0.04 to 0.05; African American had standard deviation from 0.88 to 1.20 and standard error 
from 0.09 to 0.12; Hispanic population had standard deviation from 0.87 to 1.24 and standard 
error from 0.09 to 0.12  
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 According to most studies, the rate of reported IPV is higher for African 
American women than Hispanics, and the rates for non-Hispanic White and 
Hispanic women do not signifi cantly differ from one another (Tjaden and Thoennes 
 2000  ) . However, as noted in the introduction, only 2–52% of actual IPV incidents 
are reported to the authorities. The model predicts the highest rates of incidents 
actually occurring for Hispanic women. These simulation results agree with studies 
that identify an inverse relationship between income and IPV rates (Catalano  2007  ) : 
the sampled Hispanic women had a mean personal income of $17,746, while 
African Americans had a mean income of $29,507 and non-Hispanic White had a 
mean personal income of $39,311. 

 The simulations indicate that different scenarios produce different trends in the 
average incident rates and the percentage of women in safety, as sorted by race and 

   Table 14.3    Simulation results for annual incident rates, total population   

 Grouped by  Scenario 

 White  African American  Hispanic 

 Slope   R  2   Slope   R  2   Slope   R  2  

 Increased # 
of shelter beds 

 PA CS 
 0  0  0.0058  0.0005  0.0167  0.0007  −0.0642  0.0093 
 0  50  −0.0001  4E-07  −0.0456  0.0052  −0.0174  0.0007 
 0  100  0.0083  0.0009  −0.0542  0.0069  0.0552  0.0065 

 50  0  −0.0099  0.0015  0.0005  6E-07  0.0224  0.001 
 50  50  0.01  0.0014  −0.0495  0.0061  −0.028  0.0021 
 50  100  0.0176  0.0036  −0.062  0.0081  0.0065  1E-04 

 100  0  0.0116  0.0018  0.0113  0.0003  −0.0631  0.0088 
 100  50  −0.0116  0.0019  −0.017  0.0008  0.0475  0.0048 
 100  100  −0.0063  0.0005  −0.0197  0.0011  −0.0367  0.0029 

 Increased CS  Beds PA 
 2  0  −0.0003  0.0008  −0.0004  0.0002  −0.0026  0.0096 
 2  50  0.0002  0.0004  −0.0011  0.0019  0.001  0.0016 
 2  100  −0.0005  0.0018  −0.0006  0.0006  −0.0014  0.0024 
 4  0  −0.0008  0.0062  −0.0021  0.0068  0.0014  0.0031 
 4  50  −0.0008  0.0048  −0.0019  0.0051  0.0037  0.0203 
 4  100  0.001  0.0083  −0.0004  0.0002  −0.0017  0.0039 
 6  0  −0.0002  0.0005  −0.0032  0.0187  0.0022  0.006 
 6  50  −0.0002  0.0003  0.0012  0.0023  −0.0007  0.0006 
 6  100  −0.0012  0.0118  −0.0018  0.0064  −0.0003  0.0002 

 Increased PA  Beds CS 
 2  0  −0.0004  0.0015  0.0003  0.0002  −0.0002  4E-05 
 2  50  −0.0001  0.0002  −0.0013  0.0025  −0.0027  0.0112 
 2  100  −0.0006  0.0023  0.0001  1E-05  0.001  0.0014 
 4  0  −0.0008  0.0058  −0.0013  0.0024  0.0022  0.0069 
 4  50  0.0008  0.0066  8E-05  1E-05  −7E-05  7E-06 
 4  100  0.001  0.0072  0.0004  0.0003  −0.0009  0.0014 
 6  0  −0.0002  0.0003  1E-04  2E-05  −0.0001  2E-05 
 6  50  −0.0006  0.0034  −0.0001  2E-05  −9E-05  1E-05 
 6  100  −0.0011  0.0105  0.0015  0.0039  −0.0026  0.0089 
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income. In some simulation scenarios a higher percentage of women left the system 
than in others, yet this dynamic was not refl ected in the average incident rates. As 
such, the main question of interest is why a given combination of parameters would 
potentially increase violence rates for one group of women while decreasing 
violence rates for another group. 

 Women from the various socioeconomic and racial groups have very different 
levels of exposure to violence, and the ability of low-income women in the modeled 
system to leave IPV relationships appears to be substantially lower than for others. 
One possible explanation for why none of the simulated scenarios demonstrates a 
defi nitive impact on average annual IPV rates is that higher-income women with 
less IPV experience leave the IPV relationship faster, and thus reach safety in higher 
percentages than lower-income women with more IPV experience. 

 One result we expected was that high public awareness of IPV would diminish 
annual IPV rates by increasing the probability of leaving the relationship. Benefi ting 
from increased public awareness, more women with higher income may leave an 
abusive relationship and enter a shelter. However, women with lower income tend 
not to leave the relationship, and if they do, then they compete for shelter space with 
the rest of the population. Because shelters in the model select their future residents 
at random, low-income women had a lower chance of selection simply because they 
are underrepresented in the total population of those requesting shelter beds. For 
this reason, increasing the number of shelter beds in the model may not show statis-
tically signifi cant patterns of change because the shelters do not have a realistic 
opportunity to work with this particular segment of the population in need. 

 If more beds were added to the model, the simulations might show a signifi cant 
reduction in IPV rates. However, a shelter is only a temporary solution both in the 
model and in the real world. In the model, specifi cally, a shelter serves as a tempo-
rary holder for a given number of time steps, during which a shelter resident is 
considered safe. As such, it is possible that the model would demonstrate stronger 
trends if unlimited shelter beds were available. However, without more support in 
the areas of housing, employment, and education, low-income women would sim-
ply cycle between shelters until the end of the simulation, remaining safe as the 
result of a scenario that is not actually sustainable in the real world. 

 Another result we expected was that a higher level of cultural sensitivity by 
service providers would have a positive impact on shelter visits and safety rates 
among non-Hispanic White and African American women, as those women would 
be more willing to visit shelters located in tracts whose racial composition does not 
match their own. Because one of the shelters is located in a Hispanic neighborhood 
and another in a racially mixed neighborhood, a high level of cultural sensitivity 
would not be expected to have the same effect among Hispanic women in the model. 
However, the simulation results unexpectedly revealed a negative impact on shelter 
visits and safety rates among Hispanic women. It is possible that as more non-
Hispanic White and African American women start requesting and receiving shelter 
beds, a lower percentage of Hispanic women will enter shelters because there is less 
room for them than previously. In other words, the model suggests that as Hispanic 
women are exposed to a higher rate of IPV, greater cultural sensitivity at shelters 
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may in some circumstances increase the total violence rates because the population 
most at risk is less able to obtain shelter due to competition with other groups. 

 The location of shelters is also important. If the location is not geographically 
convenient for most of the population in need, then at some point higher numbers of 
shelter beds and higher public awareness or cultural sensitivity may cease to have a 
positive impact because women are less likely to visit. Policy makers may need to 
consider whether it is more effective to have one large shelter with many beds or 
many small shelters distributed more widely. Policy makers also need to consider 
how shelter location may affect the probability of visits by women from different 
socioeconomic groups. A trend that results from adding more shelter beds and mak-
ing changes in public awareness and cultural sensitivity may have either positive or 
negative implications, depending on the demographics of the affected population. 
For example, if more low-income women obtain a shelter bed, the trend may indi-
cate a reduction in annual IPV rates; but if higher-income women occupy the shelter 
beds, the trend may indicate an increase in IPV rates. 

 The frequency of the calls to the police as sorted by race and income was not 
addressed by our hypothesis. Police calls represent the “offi cial” incident rates and 
are used for purposes of model validation. The low number of police calls relative 
to the number of actual IPV incidents in the model is in agreement with the litera-
ture (Wolf et al.  2003  ) . Additionally, African American women in the model report 
to police more often than non-Hispanic White women, which also correlates to the 
literature (Catalano  2007  ) . The simulated rate of police reports by African American 
women in the model is slightly higher than the rate by Hispanic women; this, too, 
correlates to the literature (Catalano  2007  ) , but additional research is required to 
determine the statistical signifi cance of this difference. In contrast to some studies 
(Felson and Paré  2005 ; Pearlman et al.  2003  ) , the simulation results indicate that 
higher-income non-Hispanic White and African American women appear to report 
to the police slightly more often than lower-income women. Similarly, additional 
research is needed to determine whether the difference is statistically signifi cant.  

    14.6   Conclusions 

 In this chapter we have presented the framework for a new application of agent-
based modeling to capture the dynamics of IPV. Building on socioeconomic and 
cultural representations of IPV, the model simulates the help-seeking behavior of 
battered women within informal and formal social support systems: friends, shel-
ters, and community service centers. It demonstrates a novel method of representing 
and understanding the dynamics of IPV, and can be used as a tool for testing the 
implications of various policy alternatives. 

 This model should be considered a prototype, and as such it could benefi t sig-
nifi cantly through further development. Four immediate adjustments would 
enhance the model’s ability to address the great variety of ways in which women 
respond to IPV. First, household and population input data generated by Digital 
Populations would have benefi ted if additional attributes, such as marital status, 



25114 Modeling Intimate Partner Violence and Support Systems

English language abilities, and poverty status, were available for the 2009 census 
tract data. Second, the version documented here assumes a negative feedback 
between violence and economic independence (i.e., greater economic resources 
reduce exposure to violence while fewer resources increase exposure to violence). 
In our model, economic independence is linked to leaving the abusive relationship. 
However, this connection may not hold true for all women. Adjustments should 
account for a possible backlash effect in which the chance of IPV increases as a 
woman gains more economic power in a way that challenges the man’s established 
authority in the relationship. Third, the model could benefi t from further develop-
ment that enables it to more accurately represent the decisions and opportunities 
for women who do not have a viable path for leaving the relationship. Finally, the 
current version of the model only represents married and cohabiting households as 
defi ned by the US Census Bureau. It should be further refi ned to account for 
divorced and separated individuals, who appear to experience IPV at a much higher 
rate (Catalano  2007  ) . In addition to these four improvements, this model also could 
be extended to help better inform policy decisions about where to locate future 
shelters and community service centers. These improvements of the model would 
help policy makers to better understand how their decisions may affect different 
populations.      
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 See also  Striped newt 
metapopulation dynamics  

  American Community Survey (ACS) , 238    

  B 
  BehaviorSpace tool , 38    

  C 
  Cave crickets , 48   
  Cave stabilization , 48   
  Cellular automata (CA) 

 interactions , 13  
 models , 175, 176   

  Colony invasion process , 46   
  Compilation errors , 22–23   
  Computer simulation model , 1–2 . 

  See also  Red Imported 
Fire Ant (RIFA)  

  Conceptual model development 
 ad hoc model , 3  
 cognitive, probability , 2  
 communication , 3  
 complex task learning , 3  
 computer-based simulation model , 1–2  
 decision-support tool , 5  
 ecological models , 1  
 encoding , 2  
 expert knowledge , 4, 5  
 geospatially explicit model , 2  
 iteration and verifi cation method , 5  
 knowledge transfer and documentation , 4  

 mathematical models , 1  
 neural network training , 4  
 objectives , 1, 5–6  
 quantitative tools , 4  
 simulation models , 4, 5  
 statistical analysis , 1  
 “sub-model,” 3  

  Constraints modeling 
 potential model components , 12  
 potential model interactions , 12–13  
 simulation timeframe , 14  
 spatial resolution options , 15, 16  
 time step options , 14–15    

  D 
  Data analysis , 39   
  Demographic sensitivity analysis 

 adult mortality rates , 126  
 baseline  vs.  maximum parameter 

value , 127  
 egg-to-age 1 mortality , 126  
 IBM  vs.  PVA model , 122, 123  
 parameter values , 123  
 population sizes , 126  
 sensitivity , 125   

  Digital elevation model (DEM) , 67   
  Discrete mobile objects , 12    

  E 
  Energy exchange network , 46   
  Event driven approach , 14–15   
  Expedient models , 45   
  Expert knowledge , 4, 5    

                    Index 
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  F 
  Feral hog population control methods.   

 See  Hunting and contraception 
evaluation  

  Fixed resolution method , 15   
  Flood-pulse concept (FPC) , 152   
  Foraging range , 48–49   
  FRAGGLE model 

 biodiversity , 171  
 design concepts 

 density-dependent approach , 183  
 habitat carrying capacity , 181  
 lineage array , 183, 184  
 lineage mixing index , 184  
 movement decision , 181  
 subpopulation mixing , 181–183  

 dispersal behavior 
 base case scenario , 187, 188, 190  
 land-use change scenario , 187, 189, 190  

 dispersal spread map , 187  
 fragmentation modeling 

 agent-based models , 175, 176  
 cellular automata models , 175, 176  
 species-specifi c modeling , 174  
 trans-matrix species , 174  

 GAP , 175, 186, 187  
 gopher tortoise 

 habitat attractiveness and user-defi ned 
dispersal mortality rate , 180  

 hatchlings , 179  
 natural history , 172, 173  
 STELLA diagram , 178, 179  

 habitat and home range characteristics , 
172–173  

 habitat fragmentation, defi nition , 171  
 human-induced management , 191  
 land management activities , 191  
 land use and land cover patterns , 186  
 LUC , 172, 176, 190  
 model parameterization , 184–185  
 NetLogo 4.1 , 177  
 policy implications , 192  
 population viability analysis , 177  
 spatial-dynamic model , 176  
 state variables and scales , 178  
 west-central Georgia , 173–175    

  G 
  Gap Analysis Program (GAP) , 175, 186, 187   
  Geographic information system (GIS) , 

215–216, 224  
 capabilities , 39  
 interactions , 13   

  Geospatially explicit model , 2   
  Gopher tortoise ( Gopherus polyphemus ) 

 carrying capacity , 125  
 charismatic SAR , 85  
 demographic parameter , 124  
 Fort Stewart Army installation , 110  
 habitat conditions , 127, 128  
 IBMs , 110  
 management strategy , 86  
 military training activity , 105  
 model description , 87–89, 111, 112  

 adaptation and fi tness , 115  
 aging , 120  
 basal area , 117  
 better habitat search , 118–119  
 carrying capacity map , 117, 118  
 design concepts , 91  
 dispersal probability , 119  
 emergence , 115  
 eviction from patch , 118  
 Fort Benning study area , 87, 88  
 gray scales , 94, 95  
 growth of vegetation , 97  
 habitat class map , 118  
 individual-based simulation model , 87  
 individual (agent) variables , 113–114  
 initialization , 91–92, 116–117  
 management level , 112  
 model interaction , 116  
 model interface , 92, 93  
 model simulation dynamics , 96–97  
 mortality , 120  
 NetLogo , 87, 111  
 patch variables , 112, 113  
 process eggs and hatchlings , 98  
 process overview and scheduling , 

90–91, 114–115  
 reproduction submodel , 119–120  
 sensing , 115  
 set tortoise carrying capacity , 98  
 soils suitability map , 94  
 spatial and temporal scale , 112–113  
 spatial habitat , 93–94  
 state variables and scales , 89, 90  
 stochasticity , 116  
 study site , 87, 89  
 tortoise death , 101  
 tortoise development , 95–96  
 tortoise feeding , 100  
 tortoise growth , 99, 100  
 tortoise migration , 99  
 tortoise movement , 98–99  
 tortoise reproduction , 100–101  
 upland habitat type , 94  
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 user-interface plots , 116  
 vector maps , 117  
 vegetation density map , 94  
 Vortex , 111  

 objectives , 87, 111  
 optimistic value , 125  
 population models , 109  
 PVA , 86, 109–110  
 range , 85, 86  
 resource managers , 129  
 simulation experiments 

 demographic sensitivity analysis , 
122–124  

 land management decisions , 104  
 model calibration , 120  
 model validation , 120–121  
 population trends and probability 

of extinction , 121, 122  
 SimGT model , 102, 103  
 simple circular habitat experiment , 

101–102  
 woody vegetation , 102  
 100-year simulations , 103, 104    
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  Hedonic logic approach , 228   
  Heterotrophic carbon stocks , 156, 164, 166  

 biomass , 158  
 carbon lost , 159  
 consumption , 158  
 physiological loss , 159  
 prey and space limitation functions , 

158–159  
 stock-specifi c values 

 prey limitation , 159  
 space limitation , 159, 160   

  Hierarchical models , 15   
  HubNet tool , 28   
  Hunting and contraception evaluation 

 agent-based modeling system 
NetLogo 4.0.2 , 135  

 average population , 145, 147  
 behavioral adaptations , 148  
 contraceptive bait intensity 

and no hunting , 145, 146  
 design concepts , 137–138  
 events , 137  
 fauna and fl ora , 134  
 feral swine control , 133, 135  
 Fort Benning and feral pig population , 

135, 136  
 hunt and bait levels , 144  

 hunting intensity and no 
contraceptive bait , 145  

 input , 138–139  
 landscape characteristics , 138  
 low contraceptive bait intensity , 145, 146  
 low hunt intensity , 145, 147  
 NetLogo interface , 144  
 pre-control and control periods , 137  
 state variables and scales , 135–136  
 submodels 

 attrition , 140–141  
 control methods , 143  
 diet , 141–142  
 farrowing , 140  
 habitat, range and travel , 142–143  
 recruitment , 139  
 social grouping and dynamics , 141   

  Hypothesis testing 
 loss of entire caves , 52, 53, 56  
 management , 52, 53  
 marginal mean estimation , 55  
 RIFA , 55  
 sensitivity , 53  
 surviving crickets , 54  
 “worst” case scenario , 53    

  I 
  Individual-based model for metapopulations 

on patchy landscapes-genetics and 
demography (IMPL-GD) , 206–209  

 conservation resources , 197  
 demographic mortality , 202  
 design concepts 

 adaptation , 200  
 emergence , 199  
 fi tness and interaction , 200  
 observation , 200–201  
 sensing and stochasticity , 200  

 dispersal behavior , 202–204  
 habitat parcel elimination , 199, 202  
 habitat qualities , 201  
 landscape initialization and initial 

whatsit distribution , 202  
 metapopulation extinction , 198, 203  
 multilinear regression analysis , 206  
 NetLogo 4.0.4 , 198  
 offspring generation , 202  
 simulated metapopulation percentage , 

204, 205  
 state variables and scales , 199  
 statistical analysis , 198   

  Individual-based models (IBMs) , 110   
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  Intimate partner violence (IPV) 
 average real/offi cial incident rate , 246  
 community center and shelters, 

interactions , 241  
 conceptual relationships , 237  
 cultural sensitivity , 249–250  
 defi nition , 235  
 Digital Populations , 250–251  
 direct adaptive trait , 240  
 ESRI shapefi le , 242  
 geographic space initialization , 241–242  
 linear regression analysis , 246, 248  
 mean, standard deviation and standard 

error , 246, 247  
 model fl ow and state updates , 239, 240  
 police  vs.  actual number of incidents , 246  
 policy makers , 250  
 race/ethnicity , 241  
 risk reduction , 247  
 shelters information , 241  
 socioeconomic context , 237  
 state variables and scales , 238–239  
 stochasticity , 241  
 submodels 

 abused women , 243  
 being homeless , 244  
 calling police , 243  
 community center services , 245  
 federal poverty level , 245  
 logistic regression , 242, 243  
 public awareness , 243  
 shelter searching , 244–245  

 violence  vs.  economic disadvantage, 
women , 236    
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  Landscape patches , 12   
  Land-use change (LUC) , 172, 176, 190   
  Linear objects , 12    

  M 
  MathematicaLink , 40   
  Mississippi river 

 Adaptive Hydraulics 2D hydraulic 
simulation model , 155  

 autotrophic stocks , 156–158, 164–165  
 built structures , 153  
 carbon fi xation , 152, 167  
 decomposers , 165, 166  
 detritus, POC and DOC , 161, 165, 166  
 ecological and hydraulic process , 154  
 fl oodplain-river ecosystem , 151  
 food web , 152  

 grayscale GIS maps , 155–156  
 heterotrophic stocks , 156, 164, 166  

 biomass , 158  
 carbon lost , 159  
 consumption , 158  
 physiological loss , 159  
 prey and space limitation functions , 

158–159  
 prey limitation, stock-specifi c values , 

159  
 space limitation, stock-specifi c values , 

159, 160  
 hydrology input change , 155  
 infl uxes , 162, 163  
 maps division , 157  
 natural disturbance impacts , 168  
 NetLogo 4.0.4 , 155  
 NetLogo grayscale map   ( see  NetLogo, 

grayscale map) 
 organic carbon , 151–152  
 organic suspended sediments data , 157  
 Pool 5 map , 153, 154  
 preliminary model validation , 166–167  
 productivity patterns , 152  
 short-term and long-term monitoring 

programs , 153–154  
 starting values, carbon stocks , 162, 163  
 trigonometric design , 162   

  Mobile object interactions , 13   
  Model validation 

 cave crickets, management process , 51  
 cave sizes , 51  
 raiding caves , 52  
 RIFA, reliability , 50  
 sensitivity effect , 51   

  Mounds 
 foraging range , 49  
 management , 50  
 propagation and raiding , 49   

  Multidisciplinary group modeling projects 
 constraints modeling 

 potential model components , 12  
 potential model interactions , 12–13  
 simulation timeframe , 14  
 spatial resolution options , 15, 16  
 time step options , 14–15  

 full dummy model construction , 20  
 full model conceptualization , 16–17  
 group dynamics 

 leadership , 11–12  
 model development and integration 

responsibility , 10–11  
 scheduling , 11  
 subcomponent development 

efforts , 11  
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 model-development process , 7–8  
 model dissemination , 24  
 model integration 

 demonstration, end users , 23–24  
 logic error debug , 23  
 NetLogo compilation error debug , 

22–23  
 objectives and scope identifi cation , 8–9  
 resources identifi cation 

 computer technology , 10  
 data availability , 9–10  
 participant availability , 9  
 personnel capabilities , 9  

 submodel construction , 21, 22  
 submodel design 

 identifi cation , 18  
 model identifi cation requirements , 20  
 set submodel requirements , 18–20  

 three-stage process , 7    

  N 
  National Land Cover Data (NLCD) map , 

217, 225, 227–229   
  NetLogo.    See also  Pathway analysis 

through habitat (PATH) 
algorithm 

 Champaign-Urbana area , 228, 230  
 grayscale map 

 autotrophic stocks , 163, 164  
 decomposer stocks , 163, 165  
 DOC, POC and detritus , 163, 165  
 heterotrophic consumer stocks , 

163, 164  
 regional urban growth modeling , 224   

  NetLogo modeling environment 
 capabilities and features , 28–29  
 coding 

 accessibility , 36  
 breeds , 36, 37  
 construction, primitives , 36  
 NetLogo language , 35  
 user-defi ned procedure , 37  
 Wolf Sheep Predation model , 34, 35  

 compilation and execution processes , 38  
 data input and output capabilities , 38  
 extensibility , 39, 40  
 information tab , 32, 33  
 initialization process , 37–38  
 installation and setup , 29  
 interface tab 

 buttons and widgets , 31  
  Command Center  , 30–32  
  observer  and  link  agent , 31  

  ticks  , 30  
  turtles  and  patches  , 31  
 Wolf Sheep Predation model , 29–31  

 procedures tab , 32–34  
 program overview , 27–28  
 simulation experiments , 38  
 syntax and coding errors , 38  
 workfl ow description , 35   

  NetLogo-R extension , 39   
  NLCD map.    See  National Land Cover Data map   

  P 
  PATH algorithm.    See  Pathway analysis 

through habitat algorithm  
  Pathway analysis through habitat (PATH) 

algorithm 
 animal movement choices and behaviors , 220  
 design concepts , 214–215  
 GIS , 215–216  
 gopher tortoises , 216  
 habitat connectivity , 211  
 initialization , 215  
 least cost method , 220  
 location-specifi c maps , 214  
 low overhead modeling approach , 220  
 metapopulation, defi nition , 212  
 migration density , 218  
 net in-and out-migration , 219  
 NLCD maps , 217  
 patch lethality , 214  
 radio tracking and telemetry studies , 221  
 species migration , 213  
 state variables and scales , 213  
 submodels , 216  
  walkers  (virtual animals) , 212  
 wall-clock time , 218   

  Population logistic growth curve , 102   
  Population viability analysis (PVA) , 86   
  Predator-prey relationships , 46    

  R 
  Red Imported Fire Ant (RIFA) 

 aggressive omnivores , 44  
 average number of crickets , 57, 58  
 and cave crickets , 44  
 cave cricket survivorship , 56  
 cave loss prediction , 56–57  
 colonization , 59  
 disadvantages , 59  
 fi eld research , 58  
 key gaps , 60  
 loss of crickets , 58  
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 Red Imported Fire Ant (RIFA) (cont.) 
 management strategy , 44  
 model description 

 design concepts , 46, 47  
 initialization and input , 47, 48  
 potential impact , 45  
 state variables and scales , 45, 46  
 submodels , 48–50  

 objectives , 44–45  
 populations , 59  
 raiding , 56  
 recommendations , 61  
 resource limitations , 59  
 sensitivity , 58  
 simulation experiments 

 hypothesis testing (   see  Hypothesis 
testing) 

 main and combined effect parameters , 50  
 model validation , 50–52  
 Tukey-Kramer procedure , 50   

  Regional urban growth modeling 
 binary logistic regression model , 229  
 classroom-level modeling exercise , 

225, 230  
 computer-based simulation model , 223  
 design concepts , 227  
 events , 227  
 hedonic logic approach , 228  
 human decision-making , 223  
 induce neighbor growth , 232  
 initialization , 227  
 land use change , 224  
 model interface , 225, 226  
 model logic , 229–230  
 neighborhood growth experiment , 231–232  
 NetLogo , 224  
 NLCD map , 227–229  
 optimal growth , 231  
 state variables and scales , 225–226  
 urban simulation models , 224   

  ReLogo , 40   
  Resources identifi cation 

 computer technology , 10  
 data availability , 9–10  
 participant availability , 9  
 personnel capabilities , 9   

  River continuum concept (RCC) , 152   
  Riverine productivity model (RPM) , 152    

  S 
  Scala langauge , 27   
  SimGT model , 102, 103   
  Species at risk (SAR) , 85   
  StarLogo , 27   
  Striped newt metapopulation dynamics 

 breeding , 76  
 climatic and habitat variables , 66  
 correlation coeffi cient , 78–81  
 DEM , 67  
 design concepts , 70–71  
 Ellabelle loamy sand areas , 167  
 input , 72–73  
 long-term metapopulation , 66  
 model calibration , 76–78  
 model process sequence , 69  
 mortality , 75–76  
 movement types , 74–75  
 NetLogo 4.04 , 66  
  Notophthalmus perstriatus  , 63  
  Notophthalmus viridescens  , 63  
 pond hydrology , 73–74  
 precipitation-based mortality , 80  
 randomized initialization , 71  
 red spotted newts , 65  
 seasonal movement and habitat use , 64  
 sensitivity analysis , 80  
 state variables and scales 

 agents and patches , 67, 68  
 behavior trigger , 67  
 canopy cover , 69  
 catchment area , 69  
 depth , 69  
 home pond location , 68  
 lifestage , 67  
 model landscapes , 67, 68  
 patch type , 68  
 pond area , 69  
 rainfall sensitivity , 68  

 user-specifi ed initialization , 71–72    

  U 
  U.S. Geological Survey , 186    

  V 
  Variable time step method , 14           
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