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Preface

The application of computational sciences to pharmaceutical research is a
discipline whose time has come. A tranche of techniques, both old and new, have
recently matured into potent weapons in the war against disease. Molecular
informatics — computational chemistry or molecular modelling, bioinformatics,
and cheminformatics — has reached new heights of sophistication and utilitarian
value within drug discovery. As an initiative to further foster and disseminate
understanding of molecular informatics within the wider pre-clinical research
environment, the organising committees of the Biological and Medicinal Chem-
istry Sector (BMCS) and the Molecular Modelling Group (MMG) of the Indus-
trial Affairs Division of the Royal Society of Chemistry (RSC) inaugurated a
series of one day meetings to address the subject. Highly technical, highly specific
meetings that cover certain methodological aspects of the discipline are quite
common, but we felt need for a broader and more accessible kind of conference
that would serve as a gentle introduction to cutting edge approaches to drug
design. This book is the proceedings of our first such meeting.

The pharmaceutical industry is a hugely profitable global business: the total
annual worldwide sales for all human therapeutic drugs is about $350 billion,
while the farm livestock health market is worth about $18 billion and the annual
sales for the companion animal health market is approximately $3 billion. To put
these huge numbers into context: $350 billion is comparable to the yearly gross
national product of Taiwan, the Netherlands, or Los Angeles County. Drug sales
are increasing at about 5% a year, while the vaccine market, currently worth a
modest $5 billion a year, is increasing at about 12% per annum. The annual
global investment in R&D is around $30 billion, up from $2 billion in 1980. As a
proportion of sales, average R&D expenditure has risen from 11.4% in 1970 to
18.5% in 2001. The merged GlaxoSmithKline is, at least in terms of market
capitalisation, now amongst the top few largest companies in the world, yet
controls less than 10% of the pharmaceutical market.

The structure of the global pharmaceutical market is highly biased. Over 50%
of all marketed drugs target G-Protein coupled receptors. This includes a
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quarter of the 100 top-selling drugs, which generate sales of over $16 billion per
year. Many of the top one hundred GPCR targeted drugs are so-called block-
busters each earning over $1 billion dollars a year. The biggest sellers have,
however, been anti-ulcer drugs that have dominated the market place for most of
the last 25 years. SmithKline Beecham’s Tagamet, launched in 1977, was fol-
lowed by Glaxo’s Zantac (launched 1983), followed by Astra’s proton pump
inhibitor Losec, whose global sales peaked at $6.2 billion. Putting aside these
blockbusters the ‘average’ drug struggles to recoup its development costs. In-
deed, two out of three marketed drugs fail to yield a positive return on invest-
ment.

After a long relaxed period of sustained profitability, the industry now faces a
drive towards increased efficiency. The emphasis is now firmly on shortening
time-to-market, yet tightening by regulatory bodies has increased the time it
takes to approve each new NCE: 19 months in 2001 up from only 13.5 months in
1998. Estimates of the attrition rate within pharmaceutical R&D varies widely:
figures quoted lie somewhere between 0.25 and 0.001 depending how one does
the calculation. Only about 1 in 12 compounds in development reaches the
market. Competition has also increased dramatically and so has the concomi-
tant rate of mergers and acquisitions. Should current trends continue, within 5 to
10 years five companies will control about 80% of the pharmaceutical market.

Yet 40% of human disease remains incurable and many existing therapies are
far from ideal. The nature of illness has, at least in the West, changed out of all
recognition over the last century, and can be expected to do so again during the
next hundred years. Thus the challenge to modern medicine, of which the
pharmaceutical industry is a key component, has never been greater, yet neither
has the technology available to address it. The post-genomic revolution —
genomics, transcriptomics, and proteomics — compounded by High Throughput
Screening, and the coming revolution of lab-on-a-chip super-synthesis, will
deliver an unprecedented information explosion. It is only through informatic
strategies that we will be able to manage and fully exploit this data overload.

The first Cutting Edge Approaches to drug design was held on March 12 2001.
The meeting opened with a barn-storming performance by one of the big beasts
of structure based drug design: Professor Sir Tom Blundell. This was followed by
a talk by Dr Jon Terrett of Oxford Glycosystems, deputising for Dr Andy Lyall,
OGS’s Head of Informatics. Dr Darren Green, of GlaxoSmithKline, spoke next
on the subject of Virtual Screening, followed by Dr Dave Brown of Pfizer, who
described the role of X-ray crystallography in drug design. In the afternoon, we
had a talk by Dr lain McLay from GlaxoSmithKline on lead optimisation
methods followed by Dr Andy Davis talking about the resurgent role of Physical
Organic Chemistry in drug discovery. The day was finished off by three talks
detailing applications of informatic strategies: Dr Pascal Furet (Novartis) dis-
cussed Kinase inhibitors, and Dr Peter Hunt (Merck, Sharp & Dohme) & Dr
Frank Blaney (GlaxoSmithKline) discussed drug design problems in G-protein
coupled receptor research.

Before we came to put these proceedings together, Dr Furet declined to
contribute. Later, it became apparent that, that for various reasons, Dr Terrett,
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Dr Brown and Dr Blaney would also be unable to contribute to the writing of
this book. In order to compensate for this, I prevailed on Professor Teresa K
Attwood, incipient grand dame of British bioinformatics, to help me describe the
importance of integrated bioinformatics within G-protein coupled receptor re-
search target discovery. My own group contributed a review of an exciting
development in drug discovery research: the application of computational
methods to the design of vaccines. I have also included a introductory chapter,
which, apart from plumbing the depths of my own ignorance, attempts to put the
other chapters into some kind of context, while trying to introduce some of the
concepts that will be explained later in more detail. In writing these proceedings,
we have tried to stay close to the ideal of the original meeting by attempting to
balance technical accuracy with accessibility and readability for the non-special-
ist. Readers can judge for themselves if we succeeded.

Thanks are, of course, due to all the speakers, and their co-authors, for their
astounding and outstanding efforts. I should also like to extend my thanks to the
other organisers of the meeting: Dr Nicola Aston (GlaxoSmithKline, Chair), Dr
Terry Hart (Novartis), both representing the BMCS, and Dr Chris Snell (Novar-
tis). Of course, the meeting itself could not have happened without the organisa-
tional brilliance of Elaine Wellingham, to whom ineluctable thanks are due. I
should also like to thank Alan Cubitt, Janet Freshwater, and the rest of the staff
of RSC books, without whose help this excellent tome would never have seen the
light of day.

As we have said, Cutting Edge Approaches to Drug Design (CEAtoDD) was
the first of an on-going series of one-day lectures. We have already held
CEAtoDD II and are planning CEAtoDD 111, which will be held on March
2003. For up to date information, please visit the web-site for these meetings
(currently at URL: http://www.jenner.ac.uk/CEAtoDD/CEAtDD.htm). Alter-
natively, visit the Molecular Modelling Group web page (URL:
http://www.rsc.org/lap/rsccom/dab/ind006.htm).

Dr Darren R Flower
The Edward Jenner Institute for Vaccine Research
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Molecular Informatics:
Sharpening Drug Design’s Cutting Edge
Darren R. Flower

EDWARD JENNER INSTITUTE FOR VACCINE RESEARCH,
COMPTON, BERKSHIRE RG20 7NN, UK

1 Introduction

The word ‘drug’, which derives from the Middle English word ‘drogge’, first
appears in the English language during the 14th century and it has, at least
during the last century, become, arguably, one of the most used, and misused, of
words, becoming tainted by connotations of misuse and abuse. The dictionary
definition of a drug is: ‘a substance used medicinally or in the preparation of a
medicine. A substance described by an official formulary or pharmacopoeia. A
substance used in the diagnosis, treatment, mitigation, cure, or other prevention
of disease. A non-food substance used to affect bodily function or structure.’
Even within the pharmaceutical industry, possessed, as it is, by a great concen-
tration of intellectual focus, the word has come, in a discipline-dependent way, to
mean different things to different people. To a chemist a drug is a substance with
a defined molecular structure and attributed activity in a biological screen or set
of screens. To a pharmacologist a drug is primarily an agent of action, within a
biological system, but typically without a structural identity. To a patent lawyer
it is an object of litigious disputation. To a marketing manager it is foremost a
way to make money. To a patient — the pharmaceutical industry’s ultimate
end-user — a drug is possibly the difference between life and death.

Unmet medical need is, then, a constant stimulus to the discovery of new
medicines, be they small molecule drugs, therapeutic antibodies, or vaccines.
This unmet need has many diverse sources, including both life-threatening
conditions — such as arise from infectious, genetic, or autoimmune disease — and
other conditions that impinge deleteriously upon quality of life. The division
between the causes of disease is seldom clear cut. Genetic diseases, for example,
can be roughly divided between those resulting from Mendelian and multifac-
torial inheritance. In a Mendelian condition, changes in the observed phenotype
arise from mutations in a single dominant copy of a gene or in both recessive
copies. Multifactorial inheritance arises from mutations in many different genes,
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often with a significant environmental contribution. The search for genes causing
Mendelian disorders has often been spectacularly successful. Multifactorial dis-
eases, on the other hand, have rarely yielded identifiable susceptibility genes. The
identification of NOD2 as causative component for Crohn’s disease! has been
hailed as a major technical breakthrough, leading, or so it is hoped, to a flood of
susceptibility genes for multifactorial diseases. Unfortunately, the mode of in-
heritance in many multifactorial diseases is probably so complex that the subtle
interplay of genes, modifier genes, and causative multiple mutations, which may
be required for an altered phenotype to be observed, will, for some time yet, defy
straightforward deduction.

Heart disease, diabetes, and asthma are all good examples of multifactorial
disroders. Asthma, in particular, is, arguably, one of the best exemplars of the
complex influence of environmental factors on personal wellbeing. It is a major
health care problem affecting all ages, although it is not clear if the disease is a
single clinical entity or a grouping of separate clinical syndromes. Asthma is a
type I, or atopic, allergic disease, as contrasted with type II (cytotoxic), type 111
(complex immune), or type IV (delayed type). The word ‘asthma’, like the word
‘drug’, first appears in English during the 14th century. It derives from the
Middle English word asma: a Medieval borrowing from Latin and Greek orig-
inals, although the incidence of allergic disease has been known since ancient
times.23 It is a condition marked by paroxysmal or laboured breathing accom-
panied by wheezing, by constriction of the chest, and attacks of gasping or
coughing. It is generally agreed, that, over the past half-century, the prevalence of
asthma, and type I allergies in general, particularly in western countries, has
increased significantly. The reasons for this are complex, and not yet fully
understood. Clearly, improvements in detection will have made a significant
contribution to the increased apparent incidence of asthma, and other allergies,
as is seen in many other kinds of condition, although this will only make a partial
contribution to the overall increase. Other causative factors include genetic
susceptibility; increased allergen exposure and environmental pollution; under-
lying disease; decreased stimulation of the immune system (the so-called hygiene
or jungle hypothesis); and complex psycho-social influences. This final class
includes a rich and interesting mix of diverse suggested causes, including the
increasing age of first time parents, decreased family size, increased psychological
stress, the increase in smoking amongst young women, decreases in the activity
of the young, and changes in house design. The last of these, which includes
increased use of secondary or double glazing, central heating, and fitted carpets
has led to a concomitant increase in the population of house dust mites such as
Dermatophagoides farinae and Dermatophagoides pteronyssinus, which are be-
lieved to be key sources of indoor inhaled aero-allergens.

Amongst the rich, developed countries of the first world — the pharmaceutical
industry’s principal target population — some of the most pressing medical needs
are, or would seem to be, a consequential by-product of our increasingly tech-
nologized, increasingly urbanized personal lifestyles. These include diseases of
addiction or over-consumption, those that characterize the West’s ageing popu-
lation, and those contingent upon subtle changes in our physical environment.
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Certain diseases have increased in prevalence, while the major killers of preced-
ing centuries — infectious diseases — have greatly diminished in the face of
antibiotics, mass vaccination strategies, and improvements in hygiene and public
health. In 1900, the primary causes of human mortality were influenza, enteritis,
diarrhoea, and pneumonia, accounting between them for over 30% of deaths.
Together, cancer and heart disease were responsible for only 12% of deaths.
Today, the picture is radically different, with infectious disease accounting for a
nugatory fraction of total mortality. Chronic diseases — the so-called ‘civilization
diseases’ — account, by contrast, for over 60% of all deaths.

Many of these diseases, and indeed many other diseases per se, are prevent-
able, and the development of long-term prophylactics, which may be taken over
decades by otherwise healthy individuals, is a major avenue for future pharma-
ceutical exploration. Hand in hand with the newly emergent discipline of phar-
macogenetics, the development of prophylactics offers many exciting opportuni-
ties for the active prevention of future disease. As Benjamin Franklin inscribed in
Poor Richard in 1735: ‘An ounce of prevention is worth a pound of cure’.
However, for drugs of this type, problems common in extant drugs will be greatly
magnified. ‘Show me a drug without side effects and you are showing me a
placebo,” a former chair of the UK’s committee on drug safety once commented.
As pharmaceutical products, of which Viagra is the clearest example, are treated
more and more as part of a patient’s lifestyle, the importance of side effects is
likely to grow. A recent study concluded that over 2 million Americans become
seriously ill every year, and over 100,000 actually die, because of adverse reac-
tions to prescribed medications. A serious side effect in an ill patient is one thing,
but one in a healthy person is potentially catastrophic in an increasingly com-
petitive market place. If the industry is able to convince large sections of the
population that it has products capable of preventing or significantly delaying
the onset of disease, then financially, at least, the potential market is huge.
Whether such persuasion is possible, and who would bear the cost of this
endeavour, only time will tell.

Important amongst civilization diseases are examples that arise from addic-
tion and over-consumption. While obesity undoubtedly has a genetic compo-
nent, it also results from a social phenomenon, with a significant voluntary
component, related in part to improvements in the quality and availability of
food. Likewise, diseases relating to the addiction to drugs of misuse (tobacco,
alcohol, and other illegal drugs, such as heroin or cocaine) give rise to both direct
effects — the addiction itself — and dependent pathological impairment, such as
lung cancer or heart disease. There is a need to intervene both to address and to
mitigate the behaviour itself, primarily through direct drug treatment, with or
without psychological counselling, and to address its resulting harmful physio-
logical by-products. Caring for these consequent phenomena has now becoming
a major burden on health services worldwide. As individuals, people find dieting
difficult and giving-up strongly addictive substances, such as tobacco, even more
difficult; pharmaceutical companies are now beginning to invest heavily in the
development of anti-obesity drugs and nicotine patches, inter alia, as an aid
to this endeavour. For example, the appetite supressant anti-obesity drug Reduc-
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til or Sibutramine — a serotonin, norepinephrine, a dopamine reuptake inhibitor
- has recently been licensed by the National Institute for Clinical Excellence in
the UK. Vaccines are also being developed to alter the behavioural effects of
addictive drugs such as nicotine and cocaine.*> Xenova’s therapeutic vaccine
TA-NIC, a treatment for nicotine addiction, has recently entered Phase I clinical
trials to test the safety, tolerability and immunogenicity of the vaccine in both
smokers and non-smokers. TA-NIC is thought to be the first anti-nicotine
addiction vaccine to be clinically tested. Other therapies for nicotine addiction
include skin patch nicotine replacement, nicotine inhalers or chewing gum, or
treatment with the nicotine-free drug Bupropion. A Xenova anti-cocaine addic-
tion vaccine, TA-CD, is currently in Phase II clinical development. We shall see,
as time passes, that this type of direct pharmaceutical intervention, targeting the
process of addiction rather than just treating its outcome, will doubtlessly
increase in prevalence.

Box 1 A Global Plague

From its original introduction into Europe at the close of the 15th century, partly as
a treatment for disease, the success of tobacco as a recreational drug has been
astounding. Today, smoking can be justly called a global plague. It is the number one
cause of respiratory disease and the single most preventable cause of death in the
industrialised west. Some estimates indicate that worldwide smoking leads to more
deaths per annum than AIDS, alcohol, car accidents, homicide, and suicide. Current
figures would suggest that approximately 1 in 6 people in the world smoke: about 1.1
billion smokers out of a total of 6.0 billion. Of these, 50% will die prematurely from
tobacco-related illness. Half will die in middle age with an average loss of life
expectancy of 20-25 years. This means that in excess of 500 million, or about 10% of
the existing population, will die from smoking related diseases: 27% from lung
cancer, 24% from heart disease, 23% from chronic lung diseases, such as emphy-
sema. The remaining 26% will die from other diseases including other circulatory
disease (18%) and diverse other cancers (8%). Although its incidence amongst men
has slowly decreased since the late 1980s, lung cancer remains the most prevalent
cause of cancer deaths in the USA causing approximately 85% of bronchogenic
carcinoma. It remains a deadly disease with 5 yr survival rates of only 14%.
Approximately 17 million smokers in the USA alone attempt to quit each year.

In the First World, approximately one third of all people aged fifteen years and up
smoke, with the percentage increasing sharply in Asia, Eastern Europe and the
former Soviet States. Consumption trends indicate that smoking prevalence is reduc-
ing in developed countries (down 1.5% per annum in the United States, for example)
while increasing in less developed countries (up 1.7% per annum). Based on current
trends, the World Health Organisation estimates the death toll from smoking will
rise to 10 million people per year by 2025. Currently two million deaths occur each
year in developed countries and 1 million deaths occur each year in less developed
countries. By 2025, this ratio will alter to 3 million deaths per year in developed
countries and 7 million deaths per year in less developed countries. In 1950, 80% of
the men and 40% of the women in Britain smoked, and tobacco deaths were
increasing rapidly. There have been 6 million deaths from tobacco in Britain over the
past 50 years, of which 3 million were deaths in middle age (35-69). There are still 10

Continued on p. 5
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million smokers in Britain, of which about 5 million will be killed by tobacco if they
don’t stop. World-wide, there were about 100 million tobacco deaths in the 20th
century, but if current smoking patterns continue there will be about 1 billion in the
21st century. The harmful effects of smoking have been well understood since at least
the middle of the 19th century®-10 but it was only with the solid epidemiological
evidence of Richard Doll in 1950 that the link between smoking and lung cancer
firmly and finally established. In the foliowing fifty years, the links between smoking
and innumerable other diseases have become clear.

In passing, we might mention that so-called diseases of over-consumption are only
recalling some of the environmental disease effects prevalent in earlier ages. Heavy
smoking has similar effects on the lungs to the conditions experienced by people
living in countries in the cold northern climes during earlier eras. For example,
dwellers in Iron Age roundhouses, Anglo Saxon and early Medieval great halls lived
in large communal environments, within these domestic settings, and contended
continually with large open fires, creating a high particulate atmosphere. The physio-
logical effects of such exposure would recreate those of a heavy smoker. Yet, in other
some respects their health was surprisingly good, their diet compensating, at least in
part, for other factors. For example, meat — in the form of beef, mutton, and pork —
was the principal component of the Anglo Saxon diet. Meat, obtained from lean, free
range animals, contained, in those times, three times as much protein as saturated,
and thus cholesterol bearing, fat; a ratio reversed in modern factory farmed animals.
Height is often taken as an indicator of the efficacy of diet, and the Anglo Saxons
were, unlike, say, the diminutive Georgians or Victorians, as tall, at least as a
population, as people at the beginning of the 21st century.

The ageing population apparent in western countries is, amongst other causes,
a by-product of the increased physical safety of our evermore comfortable,
urbanized, post-industrial environment. Together with decades of enhanced
nutrition and the effects of direct medical advancement in both medicines and
treatment regimes, this has allowed many more people to exploit their individual
genetic predisposition to long life. Estimates based on extant demographic
changes would suggest that by 2050 the number of the super-old, i.e. those living
in excess of 100 years, would, within the USA, be well in excess of 100,000. In
terms of its implications for drug discovery, this has led to a refocusing of the
attention of pharmaceutical companies onto gerantopharmacology and the
diseases of old age. Examples of these include hitherto rare, or poorly under-
stood, neurodegenerative diseases, such as Parkinson’s disease, or those condi-
tions acting via protein misfolding mechanisms, which proportionally affect the
old more, such as Alzheimer’s disease. The prevalence of stroke is also increasing:
approximately 60,000 people die as the result of a stroke annually in England
and Wales and approximately 100,000 suffer a non-fatal first stroke. However,
the relative proportion of young people suffering a stroke has also increased.
Here, ‘young’ refers to anyone under 65, but stroke is not unknown in people
very much younger, including infants and children. Indeed, 250 children a year
suffer a stroke in the United Kingdom. This disquieting phenomenon may, in the
era of routine MRI scans, simply reflect the greater ease of successful detection
amongst the young as well as the old.
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Looking more globally — though the danger is still real in developed western
countries — new or re-emergent infectious diseases, such as AIDS or tuberculosis,
pose a growing threat, not least from those microbes exhibiting drug and
antibiotic resistance. As the world appears to warm, with weather patterns
altering and growing more unpredictable, the geographical spread of many
tropical infectious diseases is also changing, expanding to include many areas
previously too temperate to sustain these diseases. The threat from infectious
disease, which we have seen has been largely absent for the last 50 years, is poised
to return, bringing with it the need to develop powerful new approaches to the
process of anti-microbial drug discovery.

From the foregoing discussion, we can identify a large array of new, or
returning, causes of human disease, which combine to generate many accelerat-
ing and diversifying causes of medical need. These come from infectious disease,
which have evolved, with or without help from human society, to exhibit
pathogenicity, but also from diseases of our own creation, such as those resulting
directly, or indirectly, from addiction or substance abuse, to other disease
conditions, which have not previously been recognized, or have not been suffi-
ciently prevalent, due to our ageing population or changing economic demo-
graphics. Patterns of disease have changed over the past hundred years and will
change again in the next hundred. Some of these changes will be predictable,
others not. Medical need is ever changing and is always at least one step ahead of
us. Thus the challenge to medicine, and particularly the pharmaceutical industry,
has never been greater, yet neither has the array of advanced technology avail-
able to confront this challenge. Part of this is experimental: genomics, pro-
teomics, high throughput screening (HTS), etc., and part is based on informatics:
molecular modelling, bioinformatics, cheminformatics, and knowledge manage-
ment.

2 Finding the Drugs. Finding the Targets

Within the pharmaceutical industry, the discovery of novel marketable drugs is
the ultimate fountainhead of sustainable profitability. The discovery of candi-
date drugs has typically begun with initial lead compounds and then progresses
through a process of optimization familiar from many decades of medicinal
chemistry. But before a new drug can be developed, one needs to find the targets
of drug action, be that a cell-surface receptor, enzyme, binding protein, or other
kind of protein or nucleic acid. This is the province of bioinformatics.

2.1 Bioinformatics

Bioinformatics, as a word if not as a discipline, has been around for about a
decade, and as a word it tends to mean very different things in different contexts.
A simple, straightforward definition for the discipline is not readily forthcoming,
It seeks to develop computer databases and algorithms for the purpose of
speeding up, simplifying, and generally enhancing research in molecular biology,
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but within this the type and nature of different bioinformatic activity varies
widely. Operating at the level of protein and nucleic acid primary sequences,
bioinformatics is a branch of information science handling medical, genomic and
biological information for support of both clinical and more basic research. It
deals with the similarity between macromolecular sequences, allowing for the
identification of genes descended from a common ancestor, which share a
corresponding structural and functional propinquity.

Box 2 What is Bioinformatics?

Bioinformatics is one of the great early success stories of the incipient informatics
revolution sweeping through the physical sciences. Bioinformaticians find them-
selves highly employable: indeed many eminent computational biologists have had
to re-badge themselves with this particular epithet. Their services are much in
demand by biologists of most, but not yet all, flavours. But what is bioinformatics?
One definition is ‘Conceptualizing biology in terms of molecules (in the sense of
physical chemistry) and then applying ‘informatics’ techniques (derived from disci-
plines such as applied mathematics, computer science, and statistics) to understand
and organize the information associated with these molecules, on a large scale’. A
more tractable definition than this, which seems more uninterpretable than all
embracing, is ‘the application of informatics methods to biological molecules’. Many
other areas of computational biology would like to come under the bioinformatics
umbrella and thus get ready access to grant funding, but the discipline is still mostly
focused on the analysis of molecular sequence and structure data.

Bioinformatics, as do most areas of science, relies on many other disciplines, both
as a source of techniques and as a source of data (see Figure 1). Bioinformatics also
forms synergistic links with other areas of biology, most notably genomics, as both
vendor and consumer. In the high throughput post-genomic era, bioinformatics feeds
upon these data rich disciplines but also provides vital services for data interpreta-
tion and management, allowing biologists to come to terms with this deluge rather
than being swamped by it. It is still true that bioinformatics is, by and large,
concerned with data handling: the annotation of databases of macromolecular
sequences and structures, for example, or the classification of sequences or structures
into coherent groups. Prediction, as well as analysis, is also important, not least in
trying to address two of the key challenges of the discipline: the prediction of function
from sequence and the prediction of structure from sequence (see Figure 2). Although
these two are intimately linked, there is nonetheless still an important conceptual
difference between them. One can discern three main areas within the traditional core
of bioinformatics: one dealing with nucleic acid sequences, one with protein se-
quences, and one with macromolecular structures (see Figure 3).

At the very heart of bioinformatics is the Multiple Sequence Alignment (see Figure
4). With it, one can do so much: predict 3D structure, either through homology
modelling or via de novo structure; identify functionally important residues; under-
take phylogenetic analysis; and identify important motifs and thus develop discrimi-
nators for the membership of protein families. The definition of a protein family, the
key step in annotating macromolecular sequences, proceeds through an iterative
process of searching sequence, structure, and motif databases to generate a sequence

Continued on p. 8
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corpus, which represents the whole set of sequences within the family (see Figure 5).
Motif databases, of which there are many, contain distilled descriptions of protein
families that can be used to classify other sequences in an automated fashion. There
are many ways to characterize motifs: through human inspection of sequence pat-
terns, by using software to extract motifs from a multiple alignment, or using a
program like MEME to generate motifs directly from a set of unaligned sequences. A
motif or, more likely, a set of motifs defining the family can then be deposited in one
of the many primary motif databases, such as PRINTS, or secondary, or derived,
motif database, such as INTERPRO (see Figure 6). This brief digression into the
nature of bioinformatics has been very much a simplification, as is readily seen in
Figure 7, which shows some of the greater complexity that is apparent in a less drug
design-orientated view of the discipline.

Within the drug discovery arena bioinformatics equates to the discovery of
novel drug targets from genomic and proteomic information. Part of this comes
from gene finding: the relatively straightforward searching, at least conceptually
if not always practically, of sequence databases for homologous sequences with,
hopefully, similar functions and roles in disease states. Another, and increasingly
important, role of bioinformatics is managing the information generated by
micro-array experiments and proteomics, and drawing from it data on the gene
products implicated in disease states. The key role of bioinformatics is, then, to
transform large, if not vast, reservoirs of information into useful, and useable,
information. .

... COMPUTER STRUCTURAL IT MATHS &
SCIENCE BIOLOGY STATISTICS ...

N 7

Sequence / Sthuciire

Sequence to Funcion
BIOINFORMATICS
ﬁ @ Sequence to Suucture
GENOMICS
MOLECULAR BIOLOGY
CELL BIOLOGY

Figure 1 Bioinformatics in its Place. Core bioinformatics makes a series of synergistic
interactions with both a set of client disciplines (computer science, structural
chemistry, etc.) and with customer disciplines, such as genomics, molecular
biology, and cell biology. Bioinformatics is concerned with activities such as the
annotation of biological data (genome sequences for example), classification of
sequences and structures into meaningful groups, etc. and seeks to solve two main
challenges: the prediction of function from sequence and the prediction of struc-
ture from sequence
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Figure 2 The ‘Holy Grails’ of Bioinformatics. Core bioinformatics seeks to solve two main
challenges: the Holy Grails of the discipline. They are the prediction of Structure
from Sequence, which may be attempted using secondary structure prediction,
threading, or comparative modelling, and the prediction of Function from Se-
quence, which can be performed using global homology searches, motif databases
searches, and the formation of multiple sequence alignments. It is also assumed
that knowing a sequence’s structure enables prediction of function. In reality, all
methods for prediction of function rely on the identification of some form of
similarity between sequences or between structures. When this is very high then
some useful data is forthcoming, but as this similarity drops a conclusion one might
draw becomes increasingly uncertain and even misleading

Academic bioinformaticians sometimes seem to lose sight of their place as an
intermediate taking, interpreting, and ultimately returning data from one experi-
mental scientist to another. There is a need for bioinformatics to keep in close
touch with wet lab biologists, servicing and supporting their needs, either direc-
tly or indirectly, rather than becoming obsessed with their own recondite or self
referential concerns. Moreover, it is important to realize, and reflect upon, our
own shortcomings. Central to the quest to achieve automated gene elucidation
and characterization are pivotal concepts regarding the manifestation of protein
function and the nature of sequence—structure and sequence—function relations.
The use of computers to model these concepts is limited by our currently limited
understanding, in a physico-chemical rather than phenomenological sense, of
even simple biological processes. Understanding and accepting what cannot be
done informs our appreciation of what can be done. In the absence of such an
understanding, it is easy to be misled, as specious arguments are used to promul-
gate over-enthusiastic notions of what particular methods can achieve. The road
ahead must be paved with caution and pragmatism, tempered, as ever, by the
rigour for which the discipline is justly famous.

One of the most important recent trends has been the identification of so-
called ‘druggable’ receptors. As databases of nucleic acid and protein sequences
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Figure 3 Subdisciplines within Bioinformatics. Within bioinformatics there are several
sub-disciplines: nucleic acid and protein sequences, and macromolecular struc-
tures. Each has its own unique techniques

and structures have become available on an unprecedented, pan-genomic scale,
attention has turned to the ability of these databases to properly facilitate the
comparison of active sites across a huge variety of related proteins, and thus
allow the informatician to better select and validate biological targets, better
control drug selectivity in the design process, and better verify binding hypothe-
ses in a highly parallel mode. What is, then, a druggable target? This is dependent
on the nature of drug one is interested in, as clearly a short acting, injectible drug
is somewhat different to a long acting, orally bioavailable pharmaceutical agent.
The average G-Protein coupled receptor (GPCR), with its small, hydrophobic,
internal binding site and important physiological role, is an archetypal drugg-
able receptor. Tumour necrosis factor receptor is, on the other hand, not such a
target, despite its important role in the body, as it contains no easily discernible
drug-binding site. That is not to say that useful drugs can not be designed that
act against it, interfering with its biological activity by blocking its action on
other proteins, but it is not, in itself, obviously druggable. So by druggable, we
tend to mean, to a first approximation, proteins exhibiting a hydrophobic
binding site of defined proportions, leading to the development of drugs of the
right size and physicochemical properties. The term druggable, then, relates, in
part, to the structure of the receptor, and has another component related to the
provenance of a protein family as a source of successful drug targets; that is to
say, how useful have similar, related proteins been, historically, as drug targets.
Estimates of the number of druggable receptors vary, as have estimates of the
number of genes in the human genome. As this review is being written, estimates
of gene number are converging away from the initial post-genomic 30—40,000 to
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Figure 4 Multiple Sequence Alignments: the Heart of Core Bioinformatics. The multiple
sequence alignment lies at the heart of the bioinformatic discipline. It enables a
wide range of disciplines and the accuracy of many techniques, such as those
mentioned here, is heavily dependent on the accuracy of multiple sequence align-
ments. Examples include comparative modelling, the prediction of functional
residues, secondary structure prediction (whose success is greatly enhanced by
multiple sequence data), phylogenetic methods, and the deduction of characteris-
tic sequence motifs and motif, or protein family, databases, of which many are
listed here

a more realistic 65-70,000. My own view is that this may well still prove an
underestimate. Nonetheless, this puts the number of druggable receptors some-
where in the region of 2000 to 4000. Of these, about 10% have been extensively
examined to date, leaving many, many receptors left to explore. Beyond the
human genome, there are other druggable receptors now receiving the attention
of pharmaceutical companies. Bacteria, fungi, viruses, and parasites are all viable
targets for drug intervention. As the number of antibiotic resistant pathogens
increases, the hunt for new antimicrobial compounds, and thus the number of
druggable microbial receptors, will also expand.

2.2 Cheminformatics

Cheminformatics, named somewhat awkwardly by comparison with bioinfor-
matics, is a newly emergent discipline that combines the decades old discipline of
chemical information management, which includes substructure searching for
example, with areas from molecular modelling, such as QSAR. It also subsumes
other areas, such as the informatic aspects of compound control, amongst others.
To a certain extent, it seeks to mirror the knowledge management aspects of
bioinformatics and deals with the similarities and differences between chemical
compounds rather than between protein or nucleic acid sequences.

One of the driving forces for the growth of cheminformatics has been the need
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Figure 5 Construction of a Sequence/Structure Corpus. The building of a multiple sequence
alignment begins with the identification of a sequence/structure corpus. In an ideal
case, this should contain all related sequences and structures related to the seed
sequence of interest. The process is iterative and brings together the results of three
types of searches: global sequence searches ( Blast, FastA, or a parallel version of
Smith-Waterman); searches against motif databases such as InterPro or
PRINTS; and searches for similar 3-D structures using full model searches, such
as DALI, or topology searches, such as TOPS. Once a search has converged and
no more reliable sequences can be added, then the final corpus has been found and a
muldtiple alignment can be constructed

to support the design and analysis of high throughput screening efforts. While
chemical information was, historically, concerned primarily with the cataloguing
of chemical compounds in private or public collections, cheminformatics is an
intellectually more active area, bringing research methods to bear on the subject.
It can be assumed, with some certainty, that the greater the number and the
greater the range of compounds to test the greater the likelihood of successfully
identifying lead compounds. This is, of course, only true if the compounds we test
are, in some meaningful sense, different from one another.

Currently, there is no generally agreed quantitative definition of chemical
similarity. Many proposed methods exist, each with different strengths and
weaknesses. However, choice of an appropriate measure of similarity is import-
ant: while no single method is necessarily much better than other good methods,
methods which are clearly inappropriate do exist. One of the most widely used is
based on mapping fragments within a molecule to bits in a binary string. It has
been shown that bit strings provide a non-intuitive encoding of molecular size,
shape, and global similarity; and that the behaviour of searches, based on
bit-string encoding, has a significant component that is non-specific.!! This leads
one to question whether bit string based similarity methods have all the features
desirable in a quantitative measure of chemical similarity.

Many molecular similarity measures have been suggested, including cal-



Darren R. Flower 13

MOTIF SEARCHING
MULTIPLE
ALIGNMENT
UNALIGNED
SEQUENCES DERIVED
MOTIF DATABASE
SMART
—> | B INTERPRO
MEME ete |
Gibbs-Sampling |
ASSET
Human Inspection
of Sequence Patterns

Figure 6 Motif Databases. Motif, or protein family, databases are one of the most fruitful
and exciting areas of research in bioinformatics. An underlying assumption of such
databases is that a protein family can be identified by one or more characteristic
sequence motifs. Such motifs can be identified in three ways. One, by direct human
visual inspection of one or more protein sequences. Two, using unaligned sequences
as input to programs such as MEME, which can automatically perceive statisti-
cally significant motifs. Or, thirdly, from aligned sequence using a motif identifica-
tion approach such as PRATT. The resulting set of one or more motifs becomes
the input into a motif, or pattern, database, of which PRINTS is an example. A
derived database, such as SMART or Inter PRO, can then be built on top of one or
more individual motif databases

culated properties based on representations of molecular structure at both the
2-dimensional level (topological indices and constitutional descriptors) and 3-
dimensional level (properties derived from MO calculations, surface area and
volume, or CoOMFA).!2 Other descriptors include measured physical properties
or biological activities. The number of potential quantities available is daunting.
Of these many alternatives, which are the most appropriate descriptors? We
might wish to choose as descriptors those properties that we feel we understand.
A familiar quantity such as the octanol/water partition coefficient — LogP —
might be a better choice, say, than a particularly obscure and poorly character-
ized topological index. In the context of drug discovery, we might wish to
concentrate on those descriptors that afford us some mechanistic insights into
the basis of biological activity at a particular receptor. Nonetheless, similarity
remains a difficult concept. On what basis can comparisons be made? There is no
obvious criterion by which one can determine if one selection of compounds is
better than any other. There is, ultimately, no ‘gold standard’ by which to judge
the performance of different similarity measures. There is no consensus between
chemists, or computer algorithms, and there isn’t one between receptors either.
There is no universally applicable definition of chemical diversity, only local,
context-dependent ones. The only correct set of rules would be those that a
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Figure 7 The Place of Bioinformatics in Pharmaceutical Research. Within the pharma-
ceutical industry, and related areas, bivinformatics can be sub-divided into several
complementary areas: gene informatics, protein informatics, and system infor-
matics. Gene informatics, with links to genomics and MicroArray analysis, is
concerned, inter alia, with managing information on genes and genomes and the in
silico prediction of gene structure. Protein informatics concerns itself with manag-
ing information on protein sequences and has obvious links with proteomics and
structure—function relationships. Part of its remit includes the modelling of 3-D
structure and the construction of multiple alignments. The third component con-
cerns itself with the higher order interactions rather than simple sequences and
includes the elaboration of functional protein—protein interactions, metabolic path-
ways, and control theory

receptor chooses to select molecules: but these will vary greatly between different
receptors. This has not discouraged the development of a large literature —
comparing methods, primarily in the context of justifying the apparent superior-
ity of a method that the authors have developed; these are often large, complex,
yet discombobulatingly terse papers which assaults the reader with the weight of
information rather than the arguments of sweet reason. In the final analysis, we
are in the realm of relative values; the success and failure of different measures is
largely dependent on the context in which they are used, without any particular
one consistently out-performing the others.

An area, within the domain of cheminformatics, where these issues are less
problematic is 3D-database searching and the identification of pharmacophores.
The pharmacophore is an important and unifying concept in drug design which
embodies the notion that molecules are active at a particular receptor because
they possess a number of key features (i.e. functional groups) that interact
favourably with this receptor and which possess a geometry complementary to it.
To a first approximation, this is a deterministic approach: a molecule either will
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or will not fit a pharmacophore. Like many words used in science, as in life
generally, ‘pharmacophore’ has many meanings. Some use it to describe some-
what vague models of the environment within a ligand binding site. It is more
useful, however, to give it a more specific meaning: an ensemble of interactive
functional groups with a defined geometry. Although the medicinal chemistry
literature is littered with pharmacophore definitions there are few general com-
pendia.

It is possible to derive pharmacophores in several ways: by analogy to a
natural substrate or known ligand, by inference from a series of dissimilar
biologically active molecules (the so-called Active Analogue approach), or by
direct analysis of the structure of a target protein. Most pharmacophores tend to
be fairly simple two, three, or four point (i.e. functional group) pharmacophores,
although some incorporate more elaborate features such as best planes and
regions of excluded volume. Over-specifying a pharmacophoric pattern through
the use of restrictive substructure criteria will limit the overall diversity and
novelty of hits. In an ideal pharmacophore, the generality of functional groups
does not restrict structural classes while the pharmacophore geometry supplies
discriminating power to the search.

Having derived a pharmacophore model there are, in general, two ways to
identify molecules that share its features and may thus elicit a desired biological
response. First, de novo design, which seeks to link the disjoint parts of the
pharmacophore together with fragments in order to generate hypothetical struc-
tures that are chemically reasonable yet typically wholly novel. The second is ‘3D
database searching’, where large databases comprising three-dimensional struc-
tures are searched for those that match to a pharmacophoric pattern. The
principal advantage of this approach over de novo design is the ability to identify
extant molecules that can be obtained ready-made or synthesized by a validated
method. This is clearly rather more efficient and economic than attempting the
synthesis of speculative novel molecules. It approximates to a guided screening
process whereby a set of molecules is identified for biological testing which are
believed to be good candidates for activity. This contrasts with true random
screening where no assumptions are made about structures to be tested and
potentially large numbers of compounds are screened indiscriminately. This may
be appropriate in the case of high throughput screens, but in circumstances
where these are not available it is necessary to prioritize compounds to be tested.
In such cases, we might wish to design focused libraries or complement this by
selecting from extant compounds using pharmacophore methods. Moreover,
with the application of results from graph theory the celerity of 3D database
searching has allowed it to establish itself as a tool in drug design with proven
success in practical applications.

A single pharmacophore is unlikely to recover all compounds known to be
active against a particular receptor. This is especially true for antagonists and
enzyme inhibitors that bind in a number of different ways to block agonist or
substrate binding. Each structurally distinct class may make its own individual
subset of interactions within the total available within a binding site. Single
compounds may also bind to more than one sub-site or in several different
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binding modes. Given the more stringent requirements of receptor activation,
agonists may exhibit less diversity in binding. Thus to span the structural
diversity and different binding modes exhibited by antagonists and other ligands,
many pharmacophores may be required to characterize fully the structural
requirements of a given receptor or pharmacological activity.

Although 3D database searching is a directed approach, there is always a need
to test a reasonable number of molecules which fit a pharmacophore model.
Although a particular compound may fit the pharmacophore, reflecting receptor
complementarity, its activity is not guaranteed. It may possess unfavourable
physical properties, overall lipophilicity for example. Likewise, it may penetrate
excluded volumes within the receptor or introduce the pairing of like charges.
For hits, ranges of activities obtain, including unexpected enhancements as
advantageous additional interactions are made with the receptor. 3D-database
searching will ideally identify compounds with properties outside that of the set
of molecules used to define the pharmacophore. This allows for the identification
of novel chemical structures and molecular features leading to both increased
and decreased activity.

2.3 Lead Discovery

Traditionally, lead compounds have possessed key properties, such as activity at
a particular receptor or enzyme, but are deficient in others, such as selectivity,
metabolic stability, or their pharmacokinetic profile. New leads have arisen
either as a result of serendipity (see Box 3), or from analogy to the structures of
known compounds. These may be natural ligands — enzyme substrates or
receptor agonists — or they may be extant pharmacological agents — inhibitors or
antagonists.

Although there is no doubt that such an approach has proved successful in the
past, and will continue to be successful in the future, the limitations inherent
within this strategy have led many to complement it with many different alterna-
tive approaches. In the context of ethnobiology, leads may also be found by
isolating active compounds from traditional herbal remedies. Many of the most
successful and well-used drugs are derived in this way. Aspirin, which was
originally derived from willow bark, is probably the best known example.
Quinine is another good example: it 1s believed that during the Spanish conquest
of South America it became known that Peruvian Indians were able to combat
malarial fever by drinking from certain bodies of still water. It has been
speculated that these bodies contained the bark of fallen Cinchona trees, a
natural source of quinine. Moreover, many other drugs, including codeine,
atropine, morphine, colchicine, digitoxin, tubocurarine, digoxin, and reserpine,
have been discovered through the investigation of medical folklore. In compara-
tive tests by the NCI, the hit rates for extracts from treatments derived from
ethnomedicine were, in studies against cancer, about twice those of random
screening. In undeveloped countries well over 80% of all treatment regimens
utilize traditional cures. Assuming that they represent around 4.5 billion people,
this means that something in the order of 60% of the world’s population relies on
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Box 3 Serendipity in Drug Discovery

Although the modern pharmaceutical industry spends millions of person-hours and
billions of dollars to increasingly systematize the drug discovery process, many
drugs, perhaps even most drugs, at least historically, have arisen through a process of
serendipity. The story of Intal is particularly interesting in this context. Ammi
visnaga, or the toothpick plant, is an Eastern Mediterranean plant, used since ancient
times as an herbal remedy for the treatment of renal colic. Crystalline khellin was first
isolated from the fruit of the visnaga plant in 1879, with its structure determined later
in 1938. It was found to induce smooth muscle relaxation; given by mouth it causes,
amongst more minor side-effects, nausea and vomiting. Yet khellin was still used
clinically to dilate the bronchi in the tungs, as a coronary vasodilator to treat angina,
and also had effects on asthma.

In 1955 chemists at Benger Laboratories began studying analogues of khellin as
potential treatments for asthma. Compounds were screened against guinea pigs
exposed to aerosols of egg white, a common animal model of asthma. At this point,
asthmatic physician Roger Altounyan joined the research team. Altounyan
(1922-1987) was born in Syria and later trained in medicine in England. As a child,
he, and his siblings, acted as the inspiration for the Walker children in Arthur
Ransome’s twelve ‘Swallows and Amazons’ books. Seeking a more direct assay,
Altounyan began to test hundreds of analogues of khellin on himself for their ability
to prevent his asthma from occurring when he inhaled solubilized ‘guinea pig hair
and skin cells’, to which he was allergic. One analogue, K84, reduced the severity of
his asthmatic attack. New analogues continued to be synthesized and through tests
on Altounyan, albeit at the rate of two compounds a week, an SAR was established.

In 1963 a contaminant proved highly active, and a further series of analogues was
prepared. Early in 1965, Altounyan found one compound — the 670th compound
synthesized during nine years work on the project — to work well for several hours.
Fisons, who had merged with Benger laboratories, called it FPL670. This compound,
disodium, or more commonly, sodium cromoglycate, known commercially as Intal,
is used in numerous forms to treat asthma, rhinitis, eczema, and food allergy. Intal,
and the follow-up drug, nedocromil sodium, both function through the stablilization
of mast cells, preventing degranulation and the concomitant release of histamine and
other inflammatory mediators. As a medication, Intal has strong prophylactic prop-
erties, and allows reduced dosage of steroids and bronchodilators. Clinical trials
began in 1967 and Intal became the top seller for Fisons. Financially, the company
was built on the success of this drug, before it eventually folded in the early 1990s, the
pharmaceutical arm of the company being bought by Astra.

The PDES inhibitor sildenafil citrate, better known as Viagra, is the first effective
oral treatment for impotence and is now prescribed in more than 90 countries
worldwide. It is by far the most widely used treatment for the condition. More than 7
million men have used Viagra in the United States, with doctors there prescribing the
drug over 22 million times. It is also highly effective, with up to 82% of patients
experiencing benefits. As is widely known, Viagra began life in the mid—1980s as a
treatment for hypertension and angina. Pfizer initially tested the drug in men without
a history of coronary heart disease and then progressed to a phase II clinical trial,
where it was to prove unsatisfactory as a heart medicine. At the same time, another,
higher dose phase I trial showed an unexpected effect on erectile function. And the
rest, as they say, is history. This is, perhaps, the finest example of happenstance
working favourably within drug discovery.
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traditional medicine. However, there is considerable difficulty of making scien-
tific sense of some of the medicines. Shilajit — a brownish-black exudation found
throughout Central Asia from China to Afghanistan — is a good example. This
substance is a rasayana (a rejuvenator and immunomodulator), reputed to arrest
ageing and prolong life, and has been used to treat ulcers, asthma, diabetes, and
rheumatism. The natural history of this complex substance remains unclear
despite much analytical work, but it has become apparent, after much study, that
its active ingredients include dibenzo-o-pyrones, triterpenes, phenolic lipids, and
fulvic acids.

A number of companies have been keen to pursue folk medicine as a source of
novel drugs, often through building relationships with local healers and then
testing new extracts from medicinal herbs directly in man, with resultantly high
hit rates for orally active compounds. For example, Shaman pharmaceuticals
have discovered a number of interesting anti-microbial compounds from tropi-
cal plants with a history of medicinal use and have collated a compendium of
medicinal properties from more than 2,600 different tropical plants. After early
success following this approach, the company has shifted from pharmaceutical
development to nutritional supplements. Their first product to reach market is
an anti-diarrhoea product that is based on a tree sap used by Amazonian healers.

Historical documents and ancient medical texts can also suggest starting
points for drug discovery programmes.!> A deep understanding of the past, as
well as a grasp of present day science, is, however, required to tease out effective
remedies from the endemic quackery, charlatanism, and astrological beliefs of
the past. These works are typically written in either a dead language, of which
Latin and Greek texts are probably the most accessible, or in an early and
unfamiliar version of a modern tongue, such as medieval English. Deciphering
something useful from such manuscripts requires a careful collaboration be-
tween drug discovery scientists and language experts, each possessing sufficient
scholarship to understand redundant medical concepts and identify plants from
inexact descriptions. Modern science has tended to regard the medicine of Galen
and Aristotle, conjuring, as it does, images of blood-lettings and crude surgical
techniques, as replete with errors; however, ancient herberia do contain plants of
proven pharmacological effectiveness.

The scale of this should not be underestimated. Hartwell,'* who, for example,
searched hundreds of ancient texts dating back to 2800 BC, recorded over 3,000
plants used against cancer. Siliphion, a plant in the genus Ferula, was of signifi-
cant economic importance during Hellenistic and Roman eras. As Hipprocrates
records, the plant could not be cultivated, only gathered and then traded.
Soranus (1st-2nd century AD), a Greek physician probably born in Ephesus,
was believed to have practiced in both Alexandria and Rome and was an
authority on obstetrics, gynaecology, and pediatrics. His treatise On Midwifery
and the Diseases of Women remained influential until the 16th century. He
recommended siliphion sap, administered orally, as a contraceptive; extracts of
modern relatives of siliphion inhibit conception or the implantation of fertilized
eggs. Pennyroyal (Mentha pulegium L.) is an aromatic mint plant that was used
as an abortifacient in both ancient and mediaeval times. Quintus Serenus
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Sammonicus, a famous collector of books (reputedly amassing 62,000 books),
and the probable author of Liber medicinalis, wrote that a foetus could be
aborted using an infusion of the plant. Latterly, the plant’s active ingredient
pulegone has been shown to induce abortions in animals. In this context,
Ephedrine has an interesting history. It has been known in China for over 5000
years as the herbal medicine ma huang before its introduction into western
medicine during the 1920s. The elder Pliny (23-79 AD) refers to a plant called
ephedron, which was used to treat coughs and stop bleeding: similar to the uses
that ephedrine is put to today.

Amongst the most influential of ancient medical authorities was Pedanios
Dioscorides (40-90AD), a Greek military surgeon to the Neronian armies,
whose five-volume work De Materia Medica, written around 77 AD, was the first
systematic pharmacopoeia, containing objective descriptions of approximately
600 plants and 1000 different medications. His work was much enhanced by the
Islamic polymath Avicenna (980-1037), or more properly Abu Ali al-Husain ibn
Abdallah ibn Sina, who wrote the monumental and epoch making Canon of
Medicine, which was translated from Arabic into Latin and became known to the
west during the 12th century. More recent texts include an important primary
renaissance source, This Booke of Soverigne Medicines by John de Feckeneham
(1515-1585), the last Abbot of Westminster was used by the Benedictine order, of
which he was a member, around 1570. Renaissance folklore also included, inter
alia, knowledge of mandrake (Mandragora) and deadly nightshade (Atropa
belladona). Although this approach clearly has its own intrinsic limitations, it is
able to target complicated disease states that are not conducive to high through-
put models used in pharmaceutical research.

Natural products are another important source of compounds: extracts from
plants, bacterial or fungal cultures, marine flora & fauna, etc. have all been useful
in the search for novel lead compounds. Indeed, about half of the world’s top 25
best-selling drugs derive from natural products. Plants in particular have proved
useful sources of active pharmaceuticals. For example, there are over 120 mar-
keted drugs with a plant origin and approximately one-quarter of all medicines
prescribed in the USA, and perhaps 35% worldwide, derive from plants. Finan-
cially, this amounted to sales of over $15 billion in 1990. Paradoxically, all these
highly profitable drugs have been obtained from less than 0.1% of known plant
species. By contrast, compounds of marine origin form an under-exploited
source of natural product drugs. Marine biology remained largely untapped as a
source of compounds until the National Cancer Institute started a discovery
initiative during the 1970s. This led to the discovery of a dozen or so products,
including Dolastatin and Bryostatin, that are now reaching clinical trials (see
Table 1). Thus the potential of natural products remains huge and, despite the
considerable investment in time and resources, also remains greatly under-
exploited.

By natural products, or secondary metabolites, we really mean compounds
which have an explicit role in the internal metabolic economy of the organism
that biosynthesized them. Several competing arguments seek to explain the
existence of such seemingly redundant molecules. Of these, perhaps the most
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Table 1 Recently identified therapeutic compounds of marine origin. Compounds
of marine origin that have recently started clinical trials. Compounds are
sub-divided based on their organism of origin. All compounds are anti-
cancer agents other than those stated explicitly below. Data fromref. 15

Organism  Compound Origin Therapeutic area Reference
Bryozoan Bryostatin 1 Gulf of California 16
Mollusk  Kahalaide F Hawaii 17
Sea hare  Aplyronine A Japan 18
Dolastatin 10 Indian Ocean 19
Sponge Contignasterol Papua New Guinea Asthma 20
Dithiocyanates Australia Antinematode 21
Halichondrin B Okinawa 22
Hemiasterlin Papua New Guinea 23
Tunicate  Aplidine Mediterranean 24
Cyclodidemniserinol Palau HIV 25
trisulfate
Didemnin B Caribbean 26
Ecteinascidin-743  Caribbean 27
Lamellarin a 20
sulfate Australia HIV 28

engaging is an evolutionary one: secondary metabolites enhance the survival of
their producer organisms by binding specifically to macromolecular receptors in
competing organisms with a concomitant physiological action. As a conse-
quence of this intrinsic capacity for interaction with biological receptors, made
manifest in their size and complexity, natural products will be generally predis-
posed to form macromolecular complexes. On this basis, one might expect that
natural products would possess a high hit-rate when screened and a good chance
of high initial activity and selectivity. However, although potent, the very same
complexity makes natural products difficult to work with synthetically. When
natural products are only weak hits, they do not represent particularly attractive
starting points for optimization. However, at the other extreme natural products
can prove to be very potent and very selective compounds that can, with little or
no modification, progress directly to clinical trials. For example, cyclosporin,
FK 506, and taxol have all found clinical application.

The kind of providential drug discovery described above, and especially in
Box 3, requires a degree of outrageous good fortune which one can not easily
factor into a business plan. Moreover, traditional drug discovery paradigms
require a greater allowance of time than is currently deemed desirable. For
reasons such as these, the industry has turned steadily to new methods, such as
High Throughput Screening and library design, with a greater presumed intrin-
sic celerity. It has, at least in the past, also been contended by some that such
approaches, as well as being fast, are also idiot-proof: test enough compounds
quickly enough and all will be well. Surely our corporate compound banks are
full of new drugs, people would say. And, if not, then in this combinatorial library
or in these collections of compounds we have bought in. Time is beginning to
prove this assertion wrong, though many still believe it.
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In the past decade, HTS has been exploited by most major pharmaceutical
companies as their principal route to the discovery of novel drugs. This technol-
ogy is able to assay very large numbers of compounds in comparatively short
times. At least in principle, HTS allows for the identification of novel lead
compounds, in the absence of any information regarding ligand or receptor
structure, for new areas of biological activity where knowledge concerning the
nature of either is lacking. Notwithstanding arguments about the veracity of
automated assay systems, it has generally been agreed that one can not overesti-
mate the potential benefits of HTS technology in accelerating the drug discovery
process. The degree to which this faith is justified remains unresolved. The extent
to which such an approach has, or will, fulfil its potential is something that must
be left to the verdict of history. Only a large, retrospective analysis of many HTS
campaigns will reveal the relative success and efficiency of this approach.

To capitalize on the power of HTS it is necessary to access compounds for
testing. Moreover, the number of compounds we test will profoundly influence
our results. Test too few compounds and we will fail to find active compounds.
Test too many and the process becomes excessively expensive and time consum-
ing. One source of compounds is molecular libraries generated by combinatorial
chemistry. Initially, designed libraries relied too heavily on overly familiar
templates — benzodiazepines and peptides for example — giving rise to problems
of novelty, variety, and, in the case of peptides and peptidomimetics, metabolic
stability and chemical tractability. As time has progressed, these types of large,
random library have given way to smaller more focused, more rational designed
libraries. This is, as we shall see many times in this volume, now a mainstay of
computational chemistry and cheminformatics. The other principal sources of
compounds for screening are synthetic organic molecules that have accumulated
in public and corporate compound banks. These are generally chemically tract-
able starting points, but can again suffer from lack of novelty and have unwanted
additional activities.

3 Structure-based Design: Crystallography, NMR, and
Homology Modelling

Dramatic and unpredictable changes in binding occur regularly as we make
changes within a series of structurally related ligands. This phenomenon is well
known from the results of X-ray crystallography.2® Changes in binding mode
confuse attempts to understand SAR and to design new drugs in a rational way.
While we can detect changes experimentally using mutagenesis, we are often
unable to anticipate them. This is where crystallography and other experimental
structure determination methods, such as multi-dimensional NMR, can deliver
real benefits. If one is prepared to use crystallography as people have tried to use
modelling, then a experimentally based design process directly involving a fast
turn-around crystallography service can deliver even greater benefits. The poten-
tial of such an approach is well known, and, indeed, many a company is based on
such a paradigm.
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Recently, however, interest in an ambitious meta-project — structural
genomics — has grown significantly. Structural genomics is the automated and
systematic analysis of the three-dimensional (3D) structures of the individual
components of the proteome. For evolutionary reasons, the different proteins
represented within a genome fall into discrete groups. Each group is a set of
proteins related to each other at the level of their amino acid sequences. The 3D
structures of each member of the set should also closely resemble each other.
Thus to determine the unique 3D structures of a whole genome one needs to pick
one example from each of these sequence sets. The other members of the set could
then be modelled by homology techniques. The development of practical Struc-
tural Genomics progresses apace (see Box 4).

Box 4 Structural Genomics

We already live in a post-genomic world. The sequences of genomes from a whole
variety of prokaryotic and eukaryotic organisms are now available, including, of
course, the human genome. There are approximately 150 completed genome se-
quences, and something like 150 currently being sequenced. This is, by any means, a
vast amount of information, but what is to be done with this mass of data? Clearly,
the whole of biology is reorienting itself to capitalize on this embarrasse de riches.
Well known automated and semi-automated approaches such as functional
genomics, MicroArrays, and Proteomics, amongst others, are trying to decipher the
biological functions of these 10,000s of genes. Structural genomics is another ap-
proach to utilizing the potential power of the genome.

For the average bacterial genome, any reasonable division would still represent
hundred upon hundred of protein structure determinations, and for eukaryotic
genomes, such as that of human or arabidopsis, literally thousands. So structural
genomics also requires new ways to automate experimental structure determination.
Traditionally X-ray crystallography has progressed through a series of stages from
the very biological, or, more precisely, biochemical, through to the abstractly math-
ematical, visiting experimental physics on the way. First, having identified our
protein of interest, we need to produce sufficient pure protein to perform the search
for appropriate crystallization conditions. Once we have crystals of the protein we
need to collect X-ray diffraction data from these crystals and then ‘solve’ the
structure, which involves solving the phase problem. That is recovering the electron
density within the unique part of the repeating lattice of the crystal by combining the
intensities of diffracted X-rays with phase data, the other component of the Fourier
transform linking real molecular electron density and the experimentally determined
diffraction pattern. The final stage requires building and refining a protein model
within the electron density and ultimately refining this crude model to optimize its
ability to recreate the diffraction pattern. Each of these many stages represents
significant obstacles to the automation of the process of protein crystallography,
which has always been a highly manual undertaking. Let us look at each stage to see
how the modern crystallographer is overcoming these challenging obstacles.

The production of protein is probably that aspect of structural genomics that is
least specific to the automation of crystallography: these days everyone wants large
quantities of pure protein. What sets it apart is a question of scale: few people want

Continued on p. 23
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quite such pure protein in quite such large amounts. The development of many
different high throughput protein production systems is currently underway in both
academic and commercial organizations. These include both in vitro, or cell-free,
systems and examples based on well-understood microbial systems, such as
Escherichia coli. One significant advantage of cell-free systems is the ability to
incorporate selenium containing amino acids, such as selenomethionine or the
tryptophan mimic, g-selenolo[ 3,2-b]pyrrolyl-L-alanine into proteins or affect N
labelling. Selenium incorporation allows for the phasing of the protein diffraction
pattern using multiwavelength anomalous diffraction, the so-called MAD technique,
which offers a general approach for the elucidation of atomic structures. Likewise,
the ability to label proteins with 1°N, or other isotopes, offers similar advantages in
NMR work.

Once one has sufficient protein, the next stage in the crystallographic phase is
obtaining crystals. This is one of the two main, and largely intractable, problems left
in X-ray crystallography. While the other obstacle, the so-called phase problem, is
slowly yielding to various different forms of attack, crystallization remains what it
has always been, essentially a black art. The process of growing protein crystals, quite
different from the growth of inorganic or small organic molecules, is still poorly
understood and requires an empirical process of trial-and-error to determine the the
relatively few idiosyncratic conditions of pH, ionic strength, precipitant and buffer
concentrations, etc. necessary for the growth of diffraction-quality crystals. However,
even this recalcitrant discipline is yielding to the power of robotics and informatics.’!
This allows many more trials to be performed and at much more accurately defined
conditions than is the case for manual crystallizations. This has, in turn, led to the
successful crystallization of many seemingly intractable proteins, such as several
subunits from the lipocalin crustacyanin. Others have used sophisticated statistical
techniques to speed the search for crystallisation conditions but cutting down the
number of conditions that needed to be tested. For example, robust multivariate
statistics has been used to relate variations in experimental conditions, within
experimentally designed crystallization trials, to their results.32 Although these math-
ematical models can not explain crystallization mechanisms, they do provide a
powerful pragmatic tool allowing the setting up of crystallization trials in a more
rational and more confident manner, particularly when proteins are in limited
supply.

Until recently, crystal mounting has seemed that aspect of crystallography least
tractable to automation. However, recent results have indicated that even this
process may yield to robotics. The process of mounting a protein crystal such that it
can sit comfortably in an X-ray beam is a highly interactive process requiring a
prodigious feat of manual manipulation, personal dexterity, and physical adroitness.
While one may learn the techniques involved it is by no means easy. However, the
system developed by Muchmore et al. addresses most of these issues through a
combination of cryogenic temperatures (which can reduce radiation damage to the
crystals), intelligent software, and a high degree of robotic control.3* Although the
systems they describe have a rather Heath Robinson appearance, they are no worse
than the set ups used in other high throughput regimes within the drug industry.
Other problems of data collection have been solved over the last decade, with a
combination of Area Detectors and high energy synchrotrons, allowing for faster
collection times on smaller, more radiation fragile crystals.

Continued on p. 24
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The determination of a protein structure by crystallography involves the combina-
tion of the diffraction pattern, which is obtained by allowing a focused beam of
X-rays, to pass through a crystal. Each spot on the diffraction pattern (DP) repre-
sents an intensity or amplitude, and has associated with it another quantity, the
so-called phase, which when combined with the intensity, through a Fourier trans-
form, yields an electron density map. The phasing of the DP can be solved in many
ways. However, unlike small molecule crystals, where phases can be determined
directly from relationships between intensities, proteins require much more approxi-
mate, but nonetheless ingenious, solutions. However, in the context of structural
genomics, most are undesirable. Molecular replacement requires an existing 3D
model of a homologous protein, while multiple isomorphous replacement requires a
trial-and-error search for heavy atom derivatives that is similar in concept, if not in
scale, to crystallization trials. MAD phasing, as mentioned above, is a much better
alternative, if selenium containing amino acid derivatives can be incorporated into
the protein. Another approach is the development of so-called direct methods. Of
these, David Sayre and colleagues,® have developed one of the most interesting
approaches. They propose the use of ultrashort, intense X-ray pulses to record
diffraction data in combination with direct phase retrieval. Their approach relies on
the production of femtosecond X-ray pulses generated by free electron X-ray lasers
with a brilliance 10 x that of currently operating synchrotons. They combine these
with clever manipulation of the diffraction data for single specimens to produce an
accurate, phased, and interpretable electron density map.

The final part of the crystallographic process exists more or less entirely within the
computer. This is the fitting and refinement process that turns the initial phase
electron density into a protein structure. It is a complex computational problem
involving the interaction of many different computer programs, each addressing a
particular part of the refinement process: initial fitting of a protein structure to the
initial phased electron density map, iterative refinement of the model, validation, etc.
Most of these issues have been addressed singly over the last ten years and programs
implementing these methods exist. The challenge then is to link them together in such
a way that the process is automatic, or as near to automatic as can be, so that
minimal human intervention is required.

As we have seen, many of the advances in the biochemical and biophysical stages
of the crystallographic process — protein production and crystallization — will be
greatly enhanced by automation, specifically the kind of robotics that have become
familiar from high through screening efforts. Other technical advances will solve, or
side-step, many of the inherently intractable problems of crystallography, such as the
phase problem. How far it is possible to fully automate the highly interactivetechni-
cal process of crystallography remains to be seen. Will it be success or failure? Either
way it will greatly test the ingenuity of X-ray crystallographers.

The one kind of protein to which experimental techniques, such as crystallog-
raphy or NMR, are not well suited are membrane proteins. This is because the
maintenance of their 3D structure requires the presence of a lipid phase. The
over-expression, purification, and crystallization of membrane proteins remain
daunting technical obstacles, although significant progress has been made, with,
for example, the recent structure determination of a GPCR.3 The development
of Structural Genomics methodology capable of providing us with membrane
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protein structures remains a daunting technical challenge for the future.

Structure-based design has, traditionally, followed two broad courses. One
involves the solution of a novel protein structure followed by the use of computa-
tional strategies to predict or identify putative ligands that can then be assessed
experimentally. We will discuss this in more detail below. The other main course
is the application of a cyclical process whereby a molecule is first designed,
synthesized and then crystallized as part of a protein complex. The design is
performed using either computational strategies or, more empirically, using
pairwise differences between compounds, as favoured by traditional medicinal
chemists. This molecule is then co-crystallized, or soaked into an existing protein
crystal, a difference fourier applied, and the structure refined to yield a pro-
tein-ligand complex. This process is applied iteratively until significant improve-
ments in activity are achieved.

The other part of structure-based design is homology modelling. Here the
structure of a protein is modelled using the experimentally determined structure
of homologous proteins. It is now a well-established technique and automated
methods that remove much of the tedium from the routine production of such
models are now well known 3637 Problems still exist, however: the fitting together
of protein domains in a muiti-domain protein, the determination of the most
likely conformation of protein loops, the correct positioning of amino acid side
chains, flexible ligand docking — to name only a few. When one has a model,
either generated by homology modelling or through an experimental technique,
it becomes possible to undertake one, or more, interesting theoretical invetsiga-
tions: one can dock small or large molecules, one can design various kinds of
mutant, or one can perform some kind of atomistic simulation leading, in
turn, to the investigation of thermodynamic properties, principally binding (see
Figure §).

At the start of a new protein modelling project, the receptor or enzyme model
will, generally speaking, be relatively poor and inaccurate. As more and more
data from mutagenesis and/or ligand SAR becomes available, the corresponding
model will improve in its accuracy and predictive power. In describing this
process, it is useful to speak of a model’s nominal resolution. Initially, the model
is of low resolution: it is fuzzy and imprecise. We can visualize this as a spectrum
which extends from de novo models (such as those generated using structure
prediction methods or through the geometrically constrained modelling of mem-
brane proteins), through sequence threading, to knowledge based homology
modelling, finally reaching experimental methods (see Figure 9). In this context,
it is unusual to regard structures from crystallography or NMR as models, but
that is all they are after all, albeit models optimizing the ability of a 3D model to
reproduce experimental measurements. As the project progresses, the model will
improve as its nominal resolution increases, becoming more and more accurate
and predictive. We may begin by drawing conclusions about the overall proper-
ties of bound molecules, and by the end we can make very much more specific,
quantitatively accurate predictions about individual synthetic changes in ligand
series.

The level of detail we draw from our analysis should match the level of detail,
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Figure 8 Prediction of Dynamic Properties. A schematic diagram illustrating the different
ways in which the synergistic interactions between macromolecular modelling,
docking algorithms, and atomistic simulations can leverage solutions within the
drug design process. The construction of a 3D model allows us to predict the
structure of a protein molecule or complex and then to design point, chimeric, or
deletion mutants or fusion proteins thereof. Applying docking algorithms to such
models allows us to predict the structure of both large and small molecule
complexes. The application of molecular dynamic methods to such models allows
us to predict experimentally verifiable thermodynamic properties, such as the free
energy of binding, of protein molecules. It also allows us to explore the ‘complex’
behaviour which ‘emerge’ from the interactions between the components in supra-
molecular systems. An example of such a system might include a membrane
protein embedded in the lipid phase of a membrane and interacting with solvent
and dissolved small molecules

the resolution, or fuzziness, of the model. General and qualitative at early stages
— highly specific and quantitative later on. For example, when the binding mode
is not well resolved, it is probably not possible to use the model directly to design
ideal ligands. However, at this early stage of the development of a homology
model, its gross features, which are unlikely to change, may already be clear.
Analysis of binding site topography can still prove useful. We are able to make
broad, yet useful, generalizations: we might be able to say, for example, that small
lipophilic bases, are required for good activity. Using appropriate information,
in the appropriate way and at the appropriate time, will allow us to get the most
from our model. Over-interpretation at an early stage can often be misleading. At
every stage, it is, ultimately, experimental validation that drives the process of
model refinement.
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Figure 9 The Nominal Resolution of Different Kinds of Protein Models. When discussing
the nature of protein models, we can conveniently talk of their nominal resolution.
Low resolution models are inherently fuzzy and imprecise. As we gain more and
more relevant information, the model becomes more accurate and its resolution
improves. It is no longer fuzzy; the sharp corners become visible. Very low
resolution models correspond to predictions of a protein’s secondary structure.
Assuming these predictions are accurate, which is often not appropriate, then the
tertiary interactions, which determine the nature of, say, the active site, remain
unknown. Models produced by threading, though possessing a greater degree of
tertiary verisimilitude, can be little better, offering little improvement in terms of
active site structure. Likewise, the de novo modelling of membrane proteins, based,
in the main, on topological constraints imposed by the 2D geometry of the mem-
brane phase and some understanding of interacting residues, are, although for
different reasons, equally imprecise. The highest resolution comes from models
derived by X-ray, multidimensional NMR, and other direct biophysical tech-
niques. Although, the prevalent view assumes, albeit subconsciously, that experi-
mental structures are not models but reality. While this view is somewhat justified
when talking in relative terms, it is not strictly correct. Both X-ray and NMR
attempt to model sets of constraints, such as the difference between observed and
calculated structure factors or sets of NOE distance constraints, and are prone to
all manner of random and systematic errors. Intermediate between these extremes
is the area of comparative protein modelling, exemplified by automated systems
such as Composer’® and Modeller’” This improvement in model quality, as we
move up the resolution scale, gives rise to a corresponding improvement in its
predictivity. We can draw conclusions about the overall properties of molecules
from low resolution models and, hoepfully, make very specific, quantitative predic-
tions about the effects of individual synthetic changes from high resolution models.
The level of detail we draw from our analysis should match the level of detail, the
resolution, or fuzziness, of the model. General and qualitative at early stages —
highly specific and quantitative later on. Using appropriate information, in the
appropriate way, and at the appropriate time, allows us to get the most from our
model. Over-interpretation at an early stage can be misleading: at every stage, it is
experimental validation that drives the process of model refinement
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4 Library Design

Parallel synthesis and combinatorial chemistry now allow the medicinal chemist
to supplement the synthesis of individual compounds with the use of the com-
pound library as a tool in drug discovery. These concepts can be traced back at
least as far as Hanak’s work in the 1960s,3 and probably much further, implicit
as they are in the very concept of synthesis itself. These techniques, together with
automated screening methodologies, offer great benefits and have generated con-
comitant levels of interest and excitement within the pharmaceutical industry.

In principle at least, the ability to test the large numbers of compounds
generated by combinatorial methods should allow for a great acceleration in the
discovery of new medicines. However, unless one can achieve this both more
cheaply and more quickly, then any potential benefit will lost. These issues are
now seldom considered important, as more and more faith is put in the reliability
and veracity of high throughput screening. However, the instability and chemical
reactivity of many tested compounds can severely compromise many an HTS
campaign.!? Moreover, the intrinsic trade-off between speed and time in the high
throughput equation reduces the value of each data point generated by each
technique. This greatly affects the type of analysis one can reliably perform on
HTS data: it has long been the desire to extract meaningful SAR from large data
sets, but currently the random component within such sets precludes this.

The capacity of combinatorial chemistry to generate large numbers of com-
pounds can either be directed towards the generation of a universal library (a
large, generalized library containing innumerable diverse compounds) or to-
wards the construction of smaller, more focused libraries of more similar struc-
tures. Design of the first of these types is well met by methods from the emergent
discipline of cheminformatics. The second type requires knowledge of the struc-
tural requirements for activity at a particular kind of receptor; knowledge which
can come from SAR or from an understanding of the receptor structure itself.

Lying somewhere between the extremes of a universal library and a receptor-
focused library is the idea of a targeted library, which is directed against a defined
class of biological targets, mostly likely a protein family such as the GCPRs or
protein kinases. For a particular protein family, assuming some of its members
have been well studied in the past, a large number of compounds, active at these
proteins, should already exist. These will be either commercially successful
compounds or, more likely, one of many other compounds that, while they are
potent agonists or antagonists, never reached the market. The result is a wealth
of chemical knowledge regarding the structural features inherent in this class of
ligands. This has led to the use of such ‘privileged fragments’ to construct
combinatorial libraries. The commonalities apparent in the structures of differ-
ent receptors are thus reflected in the many structural features shared between
the small molecule agonists or antagonists of the particular receptor family.

These libraries are consequently expected to possess a much-increased prob-
ability of yielding active ligands from screening. There is enough evidence in the
open literature, and within individual pharmaceutical companies, to suggest that
this can be, at least in a pragmatic sense, a quite successful strategy; though
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rigorous tests of the assumptions that underlie this approach are not common. A
library targeted at a particular ligand series should be expected to yield more and
better hits than a universal library. This type of library should, in its turn, do
better than libraries targeted at other distinct types of receptor. Such a test, run
over sufficient, and sufficiently different, libraries for a statistically valid number
of targets, is probably unlikely ever to be realized, except as the by-product of
on-going high throughput screening campaigns. The word on the street, how-
ever, is not overly favourable: the combination of large-scale combinatorial
chemistry and high throughput screening is no longer viewed as the saviour of
the drug discovery process. The view that ‘mindlessly’ constructing a large
enough number of molecules and out will pop not just a lead but a development
candidate has proved both naive and shortsighted. In many ways it was replac-
ing thought with action. This has certainly been the attitude of many a drug
discovery manager, keen to overcome the strange inability of his medicinal
chemists to find novel, highly active and selective drugs with a good Drug
Metabolism and Pharmacokinetic (DMPK) profile in an afternoon’s work.
Their view would be to obviate the need for the intellectual input of skilled
chemical knowledge by generating sufficient numbers of compounds.

There is clearly still a place for large libraries, but as a tool alongside many
others rather than as an all-conquering doomsday weapon. One argument raised
in the defence of such thinking is a comparison with quasi-evolutionary stra-
tegies: the SELEX-powered generation of aptamers, or phage display, or, in a
slightly different context, the affinity maturation of antibodies, all of which,
typically, give rise to a number of highly ‘potent’ compounds. Not necessarily
compounds that could, themselves, be used as drugs, but nonetheless affine.
Here, of course, we are dealing with perhaps 106 times as many compounds,
suggesting that if one could move to astronomically high numbers of compounds
then the problems of drug discovery would disappear. Although synthetic ultra-
minimization suggests such numbers are possibly achievable, problems of signal-
to-noise suggest that the inherent veracity of screening would require a similar
increase in sensitivity and reliability.

There has been a move to make lead-like libraries of smaller, less complex
molecules, capable of exhibiting some activity in your screen or screens but with
sufficient room-to-grow that they can be optimized by the addition of hydropho-
bicity and interactive groups while retaining acceptable ADME (Absorption
Distribution Metabolism and Excretion) properties. Thus in the generation of
libraries of potential leads, it is important to distinguish molecules with ‘lead-
like’ properties from molecules from other sources.?*# There are also ‘drug-like’
leads, which may be marketed structures, such as propranolol. Natural products
can also be leads. As we have said, these have high affinity but like, say, NPY or
taxol, they also have high — some might say daunting — chemical complexity.
Drug-like leads will have affinity greater than 0.1 uM, MW greater than 350, and
a clogP greater than 3.0. Lead-like leads will often have affinity greater than
0.1 uM, MW less than 350 and a clogP less than 3.0. Natural product leads will
have affinity perhaps orders of magnitude lower than 0.1 uM, MW much higher
than 350, and a clogP less than 3.0.
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Similar arguments related to the size and complexity of leads have led to the
development of new technologies that use various highly accurate biophysical
measurements, as opposed to biochemical assays, as their primary readout. ‘SAR
by NMR’, developed by Fesik and others,*! uses an NMR-based method by
which small, low complexity organic molecules binding at proximal subsites
within a protein binding site are identified, optimized, and then tethered to form
highly affine ligands. Using this approach it is possible to design, say, nanomolar
compounds by linking together two micromolar ligands. The needle approach of
Hoffmann-la-Roche is an alternative approach to HTS that uses a similar basic
concept.*2 They undertook virtual screening using the 3D structure of their
target protein to search for potential low molecular weight inhibitors, which
were then assayed experimentally using a carefully biased screen, with hits
verified using biophysical methods. The resulting sets of inhibitors were opti-
mized guided by the 3D structural information. Their initial set of 350,000
compounds was reduced to 3,000 molecules, which yielded 150 hits in their
experimental assay. Optimization provided highly potent inhibitors, ten times
better than literature precedents.

5 Virtual Screening

In the era of combinatorial chemistry and high throughput screening the analysis
of virtual chemical structures has assumed a position of central importance
within computational chemistry, impinging directly on the design of combina-
torial libraries. Of course, all computer representations of molecules are, and
always have been, virtual, but historically these representations have often
corresponded to molecules that have been synthesized or ones whose synthesis
has been carefully planned. Now it is possible to generate literally billions of
structurally feasible molecules that exist only within large virtual libraries. How
do we evaluate them? Which small subset do we keep and which larger set do we
throw away?

One route, as we shall see later, is to screen them out on the basis of their size
and computed physical properties. Another is to try to evaluate their potential
activity either using some form of QSAR or through so-called virtual screening.
This technique, as the term is most often used and understood, involves using a
receptor model — a protein active site say — to evaluate molecules, i.e. to predict,
quantitatively or qualitatively, some measure of receptor binding. There are two
linked and unsolved problems that frustrate attempts to develop virtual screen-
ing methodologies: the automatic docking of ligands within the binding site and
the quantitative prediction of ligand affinity. Although many methods for auto-
mated ligand docking have been suggested,*>~45 and although there have been
some successful applications,*47 their overall performance remains relatively
poor. Likewise, it remains difficult to predict reliable measures of binding affinity
using protein—ligand complexes, even where experimental structures are avail-
able.#8-50 Solving these problems remains a major challenge for computational
chemists.
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Solutions to the docking problem must take account of the flexibility of both
ligand and protein, and, if one is docking against a homology model, then one
must also take account of errors in the modelled structure. This leads to a
combinatorial explosion in the number of possible ways of docking an individual
molecule each of which must be evaluated. To deal with this, powerful computa-
tional optimization algorithms, such as Monte Carlo or genetic algorithms, are
now often employed. The work of Anderson et al.’! is a recently reported attempt
to bypass some of these problems. They defined a minimum set of flexible
residues within the active site and thus, effectively, increasing the docking site
from a single conformation to an ensemble with, it is hoped, a concomitant
decrease in the bias that is inherent in the use of a single, rigid protein conforma-
tion. It is not the first, nor likely to be the last, attempt to do something of this
sort.52-54

Likewise, the probing of the active site can have a major impact on the quality
of dockings. There are two main approaches to this problem. One uses some
kind of pre-generated set of favourable interaction points within the active site
and tries to fit molecules to this, in a way analogous to the fitting of molecules
into an initial electron density map in X-ray crystallography. There are many
ways to identify these points of interaction including GRID fields** or Multiple
Copy Simultaneous Search.’¢ The alternative strategy is to evaluate a potential
docking using some form of molecular mechanics energy evaluated between
docked ligand and receptor. In either case one would attempt to evaluate and
score, for each molecule, several different docking conformations and orienta-
tions.

As there are many ways to perform ligand docking, there are, now, many
virtual screening methodologies currently in circulation, all with their own
advantages and disadvantages. Most attempt to overcome the limitations of
computer time by using very simple methodologies that allow each virtual small
molecule structure to be docked and scored very quickly. Examples of these
include GOLD%” and DOCK,® amongst many more. Of course, virtual screen-
ing methods exhibit a wide range of alternative methodologies of increasing
complexity, from simple rule-based scoring to what are, essentially, forms of
relatively time consuming atomistic molecular dynamic simulation such as
Linear Interaction Energies (LIE).* There has been some attempt recently to
combine the results of these different approaches, of which CScore, distributed
by Tripos Inc, is, perhaps, the best known. My own experience of such software
would suggest that any improvement that might come from using data fusion
methodologies such as this, is strongly tempered by the nature of the problem
one is trying to solve. It may increase the gain of true positives in a particular
screening experiement, but has much less success in producing an improved
quantitative correlation with experimental data. A somewhat similar approach,
which is specifically designed to produce more accurate quantitative data, has
been described by So and Karplus.®® They evaluated a variety of different
methods using 30 glycogen phosphorylase inhibitors as their test set. The
methods they employed covered a variety of 2D and 3D QSAR methodologies,
as well as structure-based design tools such as LUDL A jury method used to
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combine the different independent predictions led to a significant increase in
predictivity.

The relative success of FRESNO®:62 in the prediction of binding affinities for
MHC-peptide interactions perhaps suggests that optimization of the screening
function, within a chemical area or protein family, rather than the use of totally
generic screening functions, may be a better route to success. Indeed, the inability
to predict quantitative binding constants using simulation approaches has led
many to combine calculations with some type of statistics in order to leverage
model predictivity. Examples of this include COMBINES? and VALIDATE.%
One of the most interesting of these approaches is PrGen.5>6¢ This approach uses
correlation-coupled minimization to optimize the receptor-ligand interactions
for a series of ligands of known affinity so that the model becomes predictive
both within, and hopefully beyond, the training set. Liaison is a program,
distributed by Schrodinger Inc, which combines molecular mechanics LIE
methodology with a statistical model building capacity to generate models of
ligand affinity within defined ligand receptor series.

A warning note for such methods, however, comes from studies by Groom and
co-workers.5768 By using X-ray crystallography, they determined the high-resol-
ution crystal structures of thermolysin (TLN) soaked in high concentrations of
co-solvents acetone, acetonitrile, phenol and isopropanol. Analysis of the solvent
positions shows little correlation with interaction energy computed using a
molecular mechanics force field or with favourable positions defined using
GRID probes. However, the experimentally determined solvent positions are
consistent with the structures of known protein-ligand complexes of TLN.
Indeed the structure of the protein complex was essentially the same as the native
apo-enzyme. This suggests that existing potential energy functions are not
accurate enough to correctly model protein-ligand interactions even for the
simplest ligands. Yet this approach is, nonetheless, widely used.

One of the most interesting de novo design methodologies to emerge within the
last ten years is also an example of such a strategy. The multi-copy simultaneous
search (MCSS) approach, and its derivative methods, %70 originally developed
by Miranker,”! uses a molecular mechanics formalism to place large numbers of
small functional groups — simple ketones or hydroxyls — at favourable positions
within a protein’s active site. In their method, the protein sees the whole swarm of
ligands but each of the functional groups only sees the protein, not each other.
Dynamic Ligand Design is a truly elegant extension of this approach with
powerful conceptual appeal.’ The results of the MCSS are turned into molecules
under the influence of a pseudo-potential function that joins atoms correctly
accounting for stereochemistry. Their potential energy function allows atoms to
sample a parameter space that includes both the Cartesian coordinates and atom
type. Thus atoms can mutate into different element types and hybridizations.
Subsequently, a modified version of the method was developed which used a new
potential energy function, optimization by simulated annealing, and evaluation
using a thermodynamic cycle.”® An alternative de novo design strategy is the
SPROUT suite developed in Leeds.” This program uses a more conventional
method for transforming sets of site points, derived from pharmacophores or
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from inspection of an active site, into whole ligand molecules. SPROUT now has
the interesting feature that, incorporating concepts from RECAP,” it is able to
joins site points together using a set of synthetically accessible steps that links
purchasable molecular fragments together using known types of reaction. This
brings de novo design, with its notoriously synthetically inaccessible molecules,
closer to the can-do world of combinatorial chemistry or parallel synthesis.

Clearly the more resources, in terms of both human and computer time, one is
prepared to employ in generating and evaluating possible dockings, the more
likely one is to obtain a good solution. Likewise, the more sophisticated, and
thus, generally, time consuming, are our methods for evaluating the scoring
phase of the virtual screening process, the more likely we are to accurately screen
our virtual library (see Box 5). If we want to dock a few dozen small molecule
structures, then we can afford to expend a great deal of time on this process, but if
our goal is to dock a large virtual library, then the practical limitations of
computing power will reduce this to a minimum,

Box § Computing Resources: the Sky’s the Limit

As we have seen, one approach to various problems in computational chemistry is to
simplify, as far as possible, our computing methodology. An alternative is to use high
performance computing which allows for more computationaily demanding ap-
proaches. For example, previous attempts to utilize molecular dynamics and other
atomistic simulation methods in drug discovery have foundered on technical limita-
tions in present day computing methods. While many methods linking ther-
modynamic properties to simulations are known, most of them require an unrealisti-
cally long time to evaluate free energies or other energetic quantities. For example, a
basic simulation yielding a free energy of binding needs, as a minimum, about 10
nanoseconds of simulation. On the kind of simple serial machines that are generally
available, this would require a computing time in the order of 300 hours per
nanosecond. To simulate even small systems in a realistic manner might occupy a
whole machine for several years.

To circumvent these limitations we might seek to use massively parallel implemen-
tations of molecular dynamic codes running on large supercomputers with 128, 256,
or 512 processor nodes. However, the widespread use of high performance comput-
ing has often been limited by the poor availability of true supercomputers. Compac
recently won the world’s supercomputer crown, beating IBM’s Asci White into
second place. IBM had held the number one position for the last three years. The
current champion is a 3,024-processor machine called Terascale, which is based at
the Pittsburgh Supercomputing Centre. It can perform six trillion calculations per
second, the equivalent of 10,000 desktop PCs. Such large multi-processor machines
are, however, generally available only as time-shared resources, while the availability
of ‘home made’ distributed supercomputing composed of LINUX clusters, although
significant amongst bioinformaticians, has made less of an impact in chemistry.

Barabasi et al. have recently proposed a novel form of so called parasitic comput-
ing,’® where one machine hijacks other target computers, through internet communi-
cation protocols, to perform components of large computational tasks. The resulting

Continued on p. 34
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virtual supercomputer raises interesting ethical problems. A very similar idea is one
used by Search for ExtraTerrestrial Intelligence (SETI) [http://setiathome.ssl.
berkeley.edu/]. This and other ‘hard’ computing tasks, such as the simulation of
protein folding, are now seeking solutions using so-called Peer-to-Peer computing
protocols, whereby computers world wide voluntarily donate computing power.
Peer-to-peer computing is defined as the sharing of resources between computers,
such as processing time or spare storage space. Internet-based peer-to-peer applica-
tions position the desktop at the centre of computing, enabling all computer users to
participate actively in the Internet rather than simply surfing it. Recently, computa-
tional chemists have also taken up this approach. The Cancer screensaver project
[http://www.chem.ox.ac.uk/curecancer.html] is an initiative by Graham Richards
and colleagues at Oxford University’s Centre for Computational Drug Discovery —a
‘virtual centre’ funded by the National Foundation for Cancer Research. They are
working with Intel and United Devices, a US distributed computing company, to
perform the virtual screening of 3.5 billion compounds. The project is also aiming to
use this technique to search for drugs to combat anthrax toxin.

Another alternative, although not one currently realized, is the utilization of
fundamental advances in computing technologies: biological, chemical, and optical
computing offers, but has yet to deliver, untold increases in computing speed. Faster
still, of course, is quantum computing. Apart from the technical challenges in
manufacturing such devices is the fundamentally different types of computer pro-
gramming required to make them work.

Grid computing, a fundamental paradigm shift in the financial and social nature of
computing, will allow all of these different approaches to the need for high perform-
ance computing to be seemlessly integrated. The term refers to an ambitious and
exciting global effort needed to make this vision a reality. It will develop an environ-
ment in which individual users can access computers, databases and experimental
facilities simply and transparently, without having to consider where those facilities
are located. It is named by analogy with the national power transmission grid. If one
wants to switch on a light or run a fridge freezer, one does not have to wait while
current is downloaded first, thus Grid seeks to make available all necessary computer
power at the point of need. E-Science is the first step of this process to be realized. It
refers to the large-scale science that will be carried out through distributed global
collaborations enabled by the Internet. Typically, a feature of such collaborative
scientific enterprises is that they will require access to very large data collections, very
large-scale computing resources and high performance visualisation back to the
individual user scientists. The Internet gave us access to information on Web pages
written anywhere in the world. A much more powerful infrastructure is needed to
support e-Science. Scientists will need ready access to expensive and extensive remote
facilities, to computing resources such as a teraflop computer, and to information
stored in dedicated databases.

In the first phase of the Grid initiative in the United Kingdom, six projects were
funded by the EPSRC: RealityGrid, Structure-Property Mapping, Distributed Air-
craft Maintenance Environment, Grid-enabled Optimization and Design Search for
Engineering, Discovery Net: An E-Science test-bed for high throughput informatics,
and Mygrid: Directly Supporting the E-Scientist. Of these, one of the closest to our
present topic is RealityGrid. The project aims to grid-enable the realistic modelling
and simulation of complex condensed matter structures at the meso and nanoscale

Continued on p. 35
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levels and is a collaboration between teams of physical and biological scientists,
software engineers, and computer scientists. The long-term ambition of the project is
to provide generic technology for grid-based scientific, medical and commercial
activities. RealityGrid proposes to extend the concept of a Virtual Reality centre
across the grid and links it to massive computational resources at high performance
computing centres. Using grid technology to closely couple high throughput experi-
mentation and visualization, RealityGrid will move the current bottleneck out of the
hardware and back to the human mind. A twin-track approach will be employed
within RealityGrid: a ‘fast track’ will use currently available grid middleware to
construct a working grid, while a ‘deep track’ will involve computer science teams in
harnessing leading-edge research to create a robust and flexible problem-solving
environment in which to embed RealityGrid. To meet its objectives, it will utilize a
computing environment built around the UK’s most advanced computing technol-
ogy and infrastructure.

6 QSAR

Quantitative Structure Activity Relationships, more usually referred to by the
acronym QSAR, is a discipline conceptually distinct, if operationally comple-
mentary, to molecular modelling. It is a long-standing scientific area stretching
back to the work of Overton.”” It first grew to prominence within pharmaceutical
research following the pioneering work of Corwin Hansch.”® The fundamental
objective of QSAR is to take a set of molecules, for which a biological response
has been measured, and using statistical, or artificial intelligence methods, such
as an artificial neural network or genetic algorithm, relate this measured activity
to some description of their structure. The outcome, then, of a QSAR study is
equations that relate, through statistically sound and hopefully predictive
models, the activity, or more generally, the biological responses or physical
properties, of a set of molecules to their molecular structure. These relationships
can give mechanistic insights, but there is no requirement for this. Their ability to
provide mechanistic explanations is dependent on the form of the particular
molecular description. A QSAR equation based on logP or ¢ may, perhaps, and
here some might argue this point, give rather more detail than ones based on
topological indices, for example.

QSAR methods are widely applicable, and today focus as much on the
prediction of intestinal absorption or blood—brain barrier crossing, as they used
to do on the prediction of activity within a congeneric series. There are two areas
of technical development with QSAR: the development of new, and hopefully
improved, descriptions of molecular structure and the development of new
statistical or artificial intelligence methods which can relate these descriptions to
some measured biological or physical property. These molecular descriptions,
when expressed as numerical variables, are commonly referred to as molecular
descriptors. These can take many forms. One type includes physically measured
values, such as logP. Another type includes topological constants of varying
complexity. These are 2D QSAR descriptors, as their calculation does not
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involve the 3D structures of the molecules involved. 3D QSAR has come to refer
to methods, such as CoMFA and CoMSIA, which calculate a grid of interaction
energies around the aligned sets of molecular structures and use those as its
descriptors. The need to align molecules has proved problematic and other 3D
QSAR methods, such as Almond,” have sought to dispense with this require-
ment. Descriptors abound in the literature. There are so many that it would
require a book of their own just to review and compare them. On a somewhat
smaller scale there is also an explosion in the number of different statistical and
quasi-statistical techniques used to create QSARs, which began with multiple
linear regression, and have progressed to more robust multivariate methods,
artificial intelligence (AI) techniques, and decision trees, to name but a few. There
has been some debate in the literature about the relative statistical accuracy of
multivariate methods, such as Partial Least Squares, versus that of neural
networks. Neural networks have suffered from four main problems: overfitting,
chance effects, overtraining, or memorization, and interpretation. As new, more
sophisticated neural network methods have been developed, and basic statistics
applied to their use, the first three of these problems have been largely overcome.
Interpretation, however, remains an intractable problem: not even computer
scientists can easily visualize the meaning of the weighting schemes used by
neural networks. Quite recently, an interesting new technique has made its
appearance. Support Vector Machines, or SVMs, are another type of Al method
capable of acting as a statistical engine. This is another kind of discriminant
method, trying to divide up a property-hyperspace into regions favourable, or
disfavourable, to activity.

One of the most important recent trends in QSAR has been the development
of generic models that address the prediction of very generalized molecular
properties. These may be physicochemical or biological in character, but rather
than addressing questions of receptor potency, they address the prediction of
more general transport properties such as blood-brain barrier crossing or
permeability in caco-2 screens. The work of Michael Abraham and co-workers is
typical of efforts in this area:30 their approach is to generate multiple linear free
energy relationships using simple descriptors, which include the solute excess
molar refraction, the solute polarizability, the solute hydrogen-bond acidity and
basicity, and the solute volume. As these values can be calculated directly from
the structure of molecules, it becomes possible to predict barrier-crossing prop-
erties in an automated fashion.

7 Integrating the Process: Drugness

Some of the many ideas discussed above converge in the concept of ‘Drugness’.
This is the small molecule analogue of the druggable receptor concept that we
encountered in preceding discussions. Some estimates put the number of avail-
able drug-like compounds at around 10,000. But what determines Drugness?
That is to say what properties do we require in our candidate drugs? This
depends, of course, on the context. For example, the properties of orally bioavail-
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able, long acting compounds are very different from short acting, injected
compounds. By Drugness, then we tend to mean the set of desirable, or drug-like,
properties we would like our developing drug to possess. These are multifarious,
heavily dependent on the type of drug we are aiming to create, and the stage we
have reached in the drug discovery process. Nonetheless, there has been the
realization that multiple molecular properties, both in terms of biological activ-
ity and physical properties, compatible with drug-like properties, can be built
into the design of molecules in both a specific and a general way. This is one of
the key methodological advances in the recent development of molecular
modelling and particularly cheminformatics. This can work at the level of single
molecules designed late in the drug discovery cycle or much earlier at the level of
large combinatorial libraries and, of course, anywhere in between. We can use
these concepts as a guiding principal in the selection, or purchase, of new
compounds. For some, the concept of Drugness has become an all-conquering
mantra, obliterating all counter-arguments. Whatever one might think about
this view, Drugness nonetheless remains of crucial importance in modern-day
drug discovery.

At one extreme, Drugness can be thought of as identifying those structural
properties that would preclude the selection of particular compounds. We can
summarize our exclusion criteria as the Good, the Bad, and the Ugly. The Good
refers to retaining compounds with some desirable feature, such as the presence
of certain interactive atoms or groups or an appropriate balance between acyclic
and cyclic structures. For example, less than 5% of oral drugs are totally acyclic,
while essentially no compound contains only cyclic bonds.

The Bad refers to potentially reactive functional groups, such as protein-
reactive, bond-forming electrophiles. These compounds continue to appear in
the medicinal chemistry literature, in patents, and even as clinical candidates.
Such compounds include the reactive ketones and Michael acceptors that are
advanced as potential magic bullets or suicide inhibitors. These inherently
reactive compounds often appear as false positives in early stage drug discovery
because of their covalent action. Though they can become drugs — at least under
certain conditions — they remain strongly problematic compounds within struc-
tured drug discovery.

By the Ugly we mean the presence of certain features, such as certain func-
tional groups or high complexity, which render a compound an unattractive
starting point for optimization. Few, if any, databases are totally clean and lose
no structures at this stage. The proportion varies, as does the type of structure
screened out. For example, databases biased towards chemical reagents should,
by their very nature, suffer considerably higher rejection rates than databases
whose compounds have supposedly been pre-selected for their suitability for
screening.

Such selection criteria, from this last category, are often referred to colloquial-
ly as Lipinski analysis:®! the use of upper and/or lower bounds on quantities such
as molecular weight (MW) or logP to help tailor the in vivo properties of drugs.
The rule of 5 developed by Lipinski predicts that good cell permeation or
intestinal absorption is more probable when there are less than 5 H-bond
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donors, 10 H-bond acceptors, MW is less than 500, and the calculated logP is
lower than 5. A more careful experimental analysis of orally available, marketed
drugs indicates slight differences to the Lipinski criteria, albeit for a set of small,
relatively old drugs, but this analysis certainly confirms similar overall property
patterns. The properties of agrochemicals — pesticides and herbicides — can be
very different. Bioavailability arises in plants through a combination of potency,
stability, and mobility, which is generally characterised as passive transport. For
agrochemicals, MW should fall between 200 and 500, clogP should be less than 4,
and the number of hydrogen bonding groups should be less than 3. These criteria
do not greatly diverge from Lipinski’s rules of 5, but a significant difference is the
requirement for an acidic pK,. Human drugs, at least orally bioavailable ones,
are biased in their properties towards lipophilic basic amines, where as acidic
compounds, with their increased non-specific binding by Human Serum Al-
bumin (HSA) and other plasma proteins, are significantly under-represented.

High throughput screening has lead to the discovery of lead compounds with
higher MW, higher lipophilicity, and lowered solubility. Driven by the goal of
affinity enhancement, medicinal chemistry optimization is likely to exacerbate all
of these trends, as leads progress inexorably towards clinical candidates. This has
led many to identify criteria for Lead-likeness, as opposed to Drugness. Leads
have to meet variable, project dependent selection criteria. These may include
validated biological activity in primary and secondary screens, normally against
known targets, for a series of related compounds, must be patentable, and have a
good initial DMPK profile. Historical analysis of leads is difficult, complicated
by the bias inherent within the medicinal chemistry literature, and by the
intrinsic complexity of the optimization process. Although the two chemical
spaces overlap, nonetheless there appears to be real difference between lead and
drug, particularly in pairwise comparisons. Property ranges for lead-like com-
pounds can be defined: 1-5 rings, 2—15 rotatable bonds, MW less than 400, up to
8 acceptors, up to 2 donors, and a logP range of 0.0 to 3.0. The average
differences in comparisons between drugs and leads include 2 less rotatable
bonds, MW 100 lower, and a reduction in logP of 0.5 to 1.0 log units. Thus, one of
the key objectives in the identification of lead-like compounds for screening,
either by deriving subsets of corporate, or commercial, compound banks, or
through the design of libraries is the need for smaller, less lipophilic compounds
that, upon optimization, will yield compounds that still have drug-like
properties.

Beyond these kinds of readily evaluated criteria, are properties, structural, as
well as more broadly physicochemical, that determine the interaction of drugs
with the whole organism, rather than with the binding site of their biological
target, their ultimate site of action. They are usually termed DMPK, or
ADME/tox, problems. These cover a range of biological functions: absorption
by the gut, non-specific drug binding in the blood by human serum albumin or
a-1-acid glycoprotein, and the metabolic clearance of compounds. Overall
ADME/tox properties are, typically, relatively difficult to predict for very large
data sets because experimental screens work via multiple mechanisms of active
and passive transport. Nonetheless, in recent years pharmaceutical scientists
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working in the fields of drug absorption, pharmacokinetics, and drug metab-
olism have seen their responsibility grow beyond the provision of supporting
data for regulatory filings of new chemical entities. Exciting advances in technol-
ogy have allowed the enhanced gathering of data on absorption, distribution,
metabolism and excretion, which has, in turn, allowed DMPK or ADME/tox
scientists to make important contributions to the drug discovery process.

Within the development part of the overall discovery program, ADME/tox or
DMPK information is, typically, crucial to registration in both early and late
phases of the process. The term is often used to refer to non-clinical studies, but it
is quite general, being equally applicable to pharmacokinetic and metabolic
investigations in both humans and animals. A number of properties are meas-
ured for early phase animal studies. These including toxicokinetics, phar-
macokinetics and absolute bioavailability in male and female examples of the
toxicological species under investigation, protein binding and plasma distribu-
tion, whole body autoradiography/tissue distribution, metabolite profiles in
toxicology species, pharmacodynamics, and allometric scaling. Later during
drug development, both clinical and non-clinical, where the focus has shifted to
human studies, such studies are intended to more fully characterize human drug
disposition, particularly in the therapeutic target population. Such studies can
include, inter alia, toxicokinetics in chronic and teratology studies, multiple dose
pharmacokinetics, biliary excretion and enterohepatic recirculation, metabolite
identification in toxicology species, multiple dose whole-body autoradiogra-
phy/tissue distribution, and induction effects on metabolism. Measurements in
clinical studies include: single/multiple dose pharmacokinetics in safety and
tolerance studies, dose proportionality, mass balance and metabolite profile,
pharmacokinetics in gender, age, and genetic subpopulations, drug interactions,
pharmacodynamics, population pharmacokinetics and pharmacodynamics, and
studies on bioequivalence.

Hitherto then, a vast amount of work was conducted on drug candidates
during development, many of which had been poorly characterized in terms of
ADME/tox and DMPK properties. This, at least, is clear. It is also clear that this
imbalance was not optimal for the efficiency of the whole process. It is a truism,
within the industry, that development is funded at a vastly higher level than
discovery, and it is equally true that most compounds fail to reach the market,
not for lack of potency but for reasons related to DMPK. Thus it can prove
counterproductive to nominate new drugs, expend large sums, and then see a
drug fail. Better, surely, to evaluate these properties, at least in part, at an early
stage of discovery. Predictions and computational tools can aid in this endeav-
our.82

The key is reaching a balance between potency and pharmacokinetic proper-
ties. Lipophilicity, for example, is an important physicochemical parameter that
can increase oral absorption, plasma protein binding and volume of distribution,
and strongly influence processes such as pharmacokinetic properties and brain
uptake, but high lipophilicity can also increase the intrinsic vulnerablity of
compounds to P450 metabolism and high clearance. Increasing MW often leads
to an increased potency but at the cost of poor solubility, and so on. Balancing
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the desired properties for gastrointestinal absorption and brain uptake is par-
ticularly difficult to address. One might think that, intrinsically, activity is the
harder nut to crack, but it is no longer possible to assault it in isolation. Can we
start with undruglike and become more druglike? Are we on a metastable point
on the drug design hypersurface able to move towards more druglike properties
or must we start, say, with good Lipinksi descriptors and improve potency from
that point? On the other hand we can become too prescriptive: are we prisoners
of our experience? Historical analyses of medicinal chemistry efforts indicate
only what has been done, not what is possible. It is easy to make thousands, even
tens of thousands, of inactive compounds. Indeed, combinatorial chemists do
this with extreme regularity. We can design activity into any series and we can
point to the thousands of molecules that have the correct profile for adsorption
and distribution. The difficulty comes in combining the two. We must strike a
balance between introducing groups that affect the correct physical properties
for ADME/tox, principally lipid solubility, and for activity (see Figure 10). These
are often opposed, yet the balance can also, sometimes, be beneficial, as ultra-
active compounds can have non-ideal DMPK properties, and yet can still be
efficacious as so little is required to act effectively at their receptor.
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Figure 10 Activity vs. Drug-like Properties: the key balancing act for drug design. The
balance between intrinsic activity, and related properties such as sub-type selec-
tive, and the drug-like properties of the molecule, such as its physico-chemical
profile, is the key challenge to modern-day drug design. While activity is almost
entirely a product of inherent features of the drug molecule, such as flexibility,
and of protein—drug interactions, albeit within the biological milieu, which im-
poses certain constraints that are interpretable in global terms, the drug-like
properties are a mixture of both physical (barrier crossing phenomena) and
protein interactions (metabolic sensitivity)
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8 Discussion

Within the ultimately profit-driven pharmaceutical industry, the discovery of
novel chemical entities is the ultimate fountainhead of sustainable profitability
and future commercial success. In the agrochemicals sector there is an analogous
situation with regard to the identification of new herbicides and insecticides. The
three informatics disciplines described above can make significant contributions
to the drug discovery process, as these proceedings will amply demonstrate.
Figure 11 illustrates how the three principal disciplines within molecular infor-
matics — molecular modelling, cheminformatics, and bioinformatics — sit within
pharmaceutical research. Within computational chemistry, the strong intercon-
nectedness of its own subdisciplines is equally well promulgated by Figure 12, as
are its links to other disciplines with the drug discovery process.

The crude and arbitrary way I have divided this introduction is a good
illustration of how interlinked all the facets of the drug design process are, and
how increasingly it is becoming dependent on the ability to process information
in the large. One could have chosen alternative, equally valid, divisions of the
discipline. Moreover, there are many that I have omitted: quantum mechanics
and conformational searching, for example. Are those disciplines 1 have de-
scribed truly at the cutting edge of drug design? Who can say? Must-have
technologies that are the flavour of the moment can quickly lapse into obscurity
pushed out by newer, sexier methods. Forgotten approaches may, as has
happened often in crystallography and chemical information, be rescued from a
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Figure 11 The Synergy of Molecular Informatics. The three areas of molecular informatics
within pharamaceutical research — molecular modelling, cheminformatics, and
bioinformatics — act synergistically within drug design. Information feeds in all
directions and the different areas interact differently with principal customers
within the overall design and discovery process
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Figure 12 The Synergy of computational chemistry. The three areas of computational
chemistry — small molecule modelling, protein modelling, and QSAR — act
synergistically to progress drug design. Information feeds between them and also
between a set of customer and client disciplines within the pharmaceutical
industry, ranging from the simple IT desktop and workstation infrastructure,
through knowledge sources such as structural chemistry, to DMPK

similar obscurity and suddenly put up in lights.

Currently, large amounts of data are being generated by a tranche of high
throughput technologies: genomics, proteomics, microarray experiments, high
throughput screening, etc. Other methods ~ pharmacogenomics for example —
will, in time, generate an even greater volume. One of the tasks of modern drug
research is to evaluate this embarrassment of riches. How much useful data is
locked away? Can we reduce the set of incoherent data into useable, comprehen-
sible information? Can we parse knowledge from this information? Can we
ultimately draw out understanding from the accumulation of knowledge? One
way that we can assault this problem is through computer-based molecular
informatics techniques: a combination of bioinformatics, molecular modelling,
cheminformatics, supplemented by knowledge management, mathematical
modelling, and, as the GRID evolves, e-science. None of this is meant, of course,
to replace the human part of the process. It is merely a supplement to that, albeit
a powerful one: compensating for an area where the human mind is relatively
weak, the fast and reliable processing of massive data sets.

People have spoken for some time now about data mining human or microbi-
al genomes. The ‘omes’, of course, now abound: transcriptomes, proteomes,
metabolomes, immunomes, even chemomes. We might add another, all embrac-
ing ‘ome": the ‘infome’. In the context of a pharmacutical company, this goes
beyond the narrow confines of sequence or chemical structure data, and it is, in
the broadest sense, the complement of all its biological and chemical knowledge.
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It will be a great challenge to the development of knowledge management, to
seek to deal with this highly homogeneous volume of information. The pharma-
ceutical company is probably one of the few organizations that can, within the
area of molecular sciences at least, hope, through its intrinsic scale, both in terms
of existing data and its willingness to invest in the future, to be able to pursue
such an endeavour.

But what will we gain from this? It is worth recalling that many drugs have
unexpected and unimagined lives well after their licensing and market launch.
Let us take a few, high profile, examples. Viagra, originally licensed as an
anti-impotence drug, can provide effective treatment for, among others, pulmon-
ary hypertension (high blood pressure in arteries of the lungs), a disabling
condition, severely limiting exercise capability, and shortening life expectancy,
caused by emphysema, bronchitis, or disease in the heart valves. Thalidomide
was, for a long time, a notorious drug because of its responsibility for the physical
abnormalities seen in hundreds of babies born in the 1950s and 1960s. It has now
been reintroduced in the battle against several diseases. The most recent has been
as a medication in patients suffering myelodysplastic syndromes, conditions
where the production of blood cells is severely disrupted, which often develops
into acute myeloid leukaemia. In the search for drugs able to delay or reverse the
terrifying effects of vCJID, two drugs, quinacrine (an anti-malarial agent) and
chlorpromazine (an anti-psychotic medication) have proved promising when
tested in mice. This phenomenon is called therapeutic switching. The list of
similar instances where drugs have exhibited unexpected medical benefits in
quite different areas to those in which they were originally licensed is very large
and the scope for finding such new therapies is even larger. So large, in fact that
companies, such as Arachnova Ltd (whose pipeline is based on novel patent-
protected uses for existing drugs), have been formed that financially exploit the
concept of therapeutic switching. There are implications inherent in this concept
for the limitations of both animal models for specific diseases and for clinical
trials. In the latter case, trials may be using too small a number of patients, which
are too biased in their ethnicity, age, and gender to adequate cover both the
effects and side effects of drug candidates, and it is an obvious challenge to the
developing disciplines of pharmacovigilance and pharmacogenetics. It also pro-
vides food for thought for both pharmaceutical business strategists and regula-
tory bodies.

Modelling has not yet reached the limits of its usefulness or the breadth of its
application. Apart from perfecting the many techniques described above, mol-
ecular modelling has many other exciting challenges facing it in the future. What,
for example, are the future roles of promiscuous drugs able to act with multiple
activities at several receptors simultaneously?® Is there a place within pharma-
ceutical research for compounds operating, as some believe Chinese medicines
do, at sub-therapeutic values at a wide range of receptors? What role does it have
to play in the development side of pharmaceutical research? Can we apply
material science modelling methods to problems in formulation and drug deliv-
ery? Will molecular modelling find a role as a design tool in the emerging
discipline of nanotechnology?
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Box 6 High Doses vs. Low Doses vs. No Doses

Generally, the pharmaceutical industry is concerned with the development of com-
pounds exhibiting high activity at a well defined set of one, or more, receptors
together with a favourable profile of other relevant properties such as metabolic
stability or oral bioavailability. There is typically some kind of trade-off between
these properties; very high affinity can, sometimes, be sacrificed if the physical
properties are so good that less compound is required to produce a therapeutic effect.
However, some substances produce a biological response at an extraordinarily low
concentration.?? Known as the ‘low’ or ‘small’ dose effect, this is generally assumed to
be dosed at a concentration substantially lower than the equilibrium dissociation
constant of the effector-target complex. However, effects at extremely low concentra-
tions (in the order of 10~1° molar) have been reported. Indeed, the phenomenon of
hormesis, the occurrence of a U- or inverted U-shaped dose-response relationship, is
well documented in numerous biological, toxicological, and pharmacological inves-
tigations.®* The concept of hormesis has a long history dating back to Paracelsus
(1493-1541), more properly known as Theophrastus Phillippus Aureolus Bombastus
von Hohenheim, who noted in the 16th century that various toxic substances may be
beneficial in small quantities. Modern research in hormesis originated over a century
ago with the work of Schulz, who noted that many chemicals could stimulate growth
of yeast at low doses but were inhibitory at higher levels. The concept of a general
stimulation at low doses with high-dose inhibition was supported by many observa-
tions, becoming known as the Arndt-Schulz law. Despite the widespread recognition
of apparent hormetic effects, the Arndt-Schulz law gradually fell into disuse for many
reasons. These include high-dose toxicology testing that precludes the demonstra-
tion of low-level effects and the threat posed by hormesis to the currently accepted
precautionary principle, which assumes that any dose of a chemical is potentially
harmful.

The term ‘hormesis’ can also refer to beneficial effects from low doses of potentially
harmful substances. Although there are many examples of this phenomenon from the
laboratory, it remains a controversial concept and has never become widely accepted
by the medical community. Many vitamins and minerals are essential for life at low
doses but become toxic at higher ones. Similarly, exercise, caloric restriction, and
alcohol consumption are examples of processes that are harmful in the extreme but
beneficial in moderation. Likewise, a co-hormetic is a compound which at relatively
‘low doses’, will, in combination with some other stimulus, demonstrate increased
growth while at higher ‘doses’ will inhibit this increased proliferation. Some view
traditional Chinese medicine as acting in this way. Many Chinese take an interesting
view of western versus eastern therapies: they will seek the help of highly potent
western drugs to deal with acute disease conditions, but look to the prophylactic
powers of traditional cures to keep them healthy. One explanation of this is to
suggest that such complex mixtures of substances, many very active when isolated
but present here in sub therapeutic concentrations, may work synergistically to effect
an overall therapeutic benefit which combines mild stimulation and suppression of
many, many physiological processes.

In this context, many Chinese medicines would be classed as panaceas. A ‘panacea’
is defined as a remedy for all diseases, evils, or difficulties; a universal medicine; a
cure-all; hence, a relief or solace for affliction. In western medicine, aspirin is a good

Continued on p. 45
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example of a panacea. Its uses are various: pain control, suppression of inflammation,
and as an anticoagulant, thus a treatment for stroke and various cardiovascular
problems. Homeopathic medicines are another treatment muted as a panacea.

The basic principle of homeopathy is ‘the doctrine of similars™ a remedy that
causes the same or a very similar pattern in healthy subjects best treats a patient with
a specific pattern of symptoms. Homoeopathic remedies are typically prepared in
extremely high dilutions, where they are unlikely to contain any molecules of the
original agents. Consequently, homoeopathic remedies cannot act by classical phar-
macological means, and are, likewise, generally dismissed by scientific sceptics. There
are many explanations of homeopathy, some strongly physico-chemical invoking
complex ideas about the molecular organization of water, others evincing explana-
tions no more believable than Star Trek technobabble. An appealing explanation is
immunological in nature, invoking the concept of bystander suppression, a special
kind of active inhibition, to explain the regulation induced by very low substance
concentrations.

Nonetheless, it would be dangerous to totally dismiss homeopathy. In a recent
meta-analysis of trial data, 18 reviews were analysed:® of these, six addressed the
question whether homeopathy is effective across conditions and interventions. The
majority of available trials reported positive results but the evidence was not wholly
convincing. For oscillococcinum for influenza-like syndromes, galphimia for pollino-
sis, and for isopathic nosodes for allergic conditions the evidence was promising
while in other areas results were equivocal.

The obvious extension of low doses is the phenomenon of the placebo effect,
whereby the very act of undergoing treatment seems to aid patient recovery. Often it
is taken to refer to a medicine given to please, rather than cure, a patient. Placebo, the
latin for ‘I shall please’, is the first word of the vespers for the dead, and, as a result,
during the 12th century vespers were often refered to as placebos. By the 14th
century, the word had become pejorative, meaning a sycophant or flatterer, and
when it entered the medical vocabulary this negative connotation remained. Most
placebos are taken during double-blind clinical trials: a pharmacologically inert
substance substituting for a compound under test. In such situations, patients
receiving both real and imaginary drugs undergo a similar treatment regime: medical
evaluation, a thorough discussion of their condition, and receive a plausible diag-
nosis and treatment plan. During this, patients will experience the attention, commit-
ment, and even possibly, the respect of both nurses and medics. Perhaps the simplest
explanation for this presupposes a link between a patient’s psychological and physio-
logical status: people who expect to get better are more likely to do so. One might
speculate whether medical training is required in these situations. Would watching
Casualty or ER accomplish something similar for an ailing patient? The healing
environment, whether this manifests itself as taking a pill or interacting with some
form of medically trained individual, is a powerful antidote to illness. In the words of
Voltaire: “The art of Medicine consists of keeping the patient in a good mood while
nature does the healing’.

Though managers seldom realize this the most precious resource that the
industry has is its staff. These are men and women of the highest educational and
ethical standards, people on the whole deeply committed to the future success of
their organizations. It is these people who build the future. Within this organiza-
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tional structure, the molecular modeller has a special place. As with many
people, their potential is limited only by those around them. The best, or most
effective, kind of modeller is then, one who their colleagues, particularly medici-
nal chemists, will willingly listen to and be willingly influenced by. Yet influence
is a two-way process, particularly within a strongly hierarchical structure as
exists in many pharmaceutical companies.

It is interesting to consider how informatics impacts on the philosophy of
science. There are two popular philosophical views on the nature of the scientific
method. One is attributed to Karl Popper (1902—-1994). This view maintains that
science does not start with observations from which inductive claims are made
but rather with conjectures which may subsequently be refuted by appeal to
experiment but which can never be fully proven. There is congruity here with
Thomas Kuhn’s (1922-1996) book The Structure of Scientific Revolutions. Pop-
per’s interpretation supersedes the earlier inductive theory of developed by Sir
Francis Bacon (1561-1626). In his assessment of modern informatics techniques
Gillies®’ seeks to distinguish between competing paradigms: ‘Bacon hoped that
scientific theories could be generated from observations by some kind of mech-
anical process which places “all wits and understandings nearly on a level”’. In
contrast to this view, Popper believed that the creative thinking of brilliant
scientists forms scientific theories. According to Gillies, approaches to infor-
matics fall into an arena delineated by Bacon. Indeed Bacon’s emphasis on
assembling experimental data into a ‘table’, from which inductive truths may be
discovered, bears a remarkable resemblance to the use of large relational
databases.

The integration of automatic synthesis and high throughput screening with
informatics interpretation, in whatever form that may take, coupled to some
form of automatic steering, allows any refinement to be implemented computa-
tionally rather than by purely human intervention. This frees human involve-
ment to concentrate on the choice of search and, ultimately, the use of the
information obtained. However, the idea that human creativity might be dis-
placed conjures up considerable suspicion. Many seek to condemn informatics
despite its widespread use. Some seek to demonstrate that hypothesis-free ma-
chine learning is impossible. The reality is, however, that background knowledge
and hypotheses are nearly always tacitly incorporated by the choice of sample
space and measurement method. The skill seems to be to integrate informatics
methods properly into conventional scientific research programmes.

Much of what a modeller does can be classified as forecasting: predicting to a
purpose. It is useful to draw a comparison with other kinds of forecasting,
particularly weather forecasting. In the average North European country, such
as Britain, which can easily experience four seasons in a day, foretelling the
weather has important economic outcomes. The British Meteorological Office
quotes an accuracy rate of approximately 86%. Good though this appears, it still
means, on average, that one day a week the predictions are wrong. Likewise, the
computational chemist can not guarantee every single prediction will be correct.
If they make 50 predictions, 48 of which are correct, this is a significant achieve-
ment. However, if the most interesting molecules were part of the 2 rather than
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the 48, then this achievement will seem to be lessened. Weather forecasting has,
like molecular modelling, seen an immense improvement on a few decades ago,
when forecasting was only accurate for, say, a day ahead. Today, in no small part
due to the potent combination of informatic and experimental disciplines, in this
case computer simulation and satellite images, we can be confident of accurate
weather forecasts up to five days in advance. In time series analysis such as this,
as in molecular modelling, extreme extrapolation is rarely successful. As in all
fields of science, it is important to realize the limitations of our technology, and
not to seek answers to impossible questions. In this way, the benefits of infor-
matics research can be maximized.

The attrition rate within pharmaceutical drug discovery is, from a corporate
viewpoint, the main underlying problem within the process. It has been es-
timated that for every drug that ultimately reaches the market, about 1000 other
‘projects’ have been failed. Here project refers to anything from a brief biological
dalliance with an assay through lead discovery projects and into a full, and
highly expensive, development project. The accuracy of this 1000 to 1 ratio is
open to question but this statistic neatly captures the enormous wastage rate
within the industry. The perhaps 15 year long journey from exploratory biologi-
cal assay development to registration and marketing is exceedingly expensive. In
an attempt to overcome this, the pharmaceutical industry has over the years
become temporarily fascinated by certain technologies, each promising much for
the future of drug discovery, but, to some at least, each ultimately delivering little.
In the 1970s and early 1980s, molecular modelling promised the Earth, or at least
some early practitioners did. The technique, though useful even in those early
days, was clearly overblown. During the late 1980s, the pharmaceutical industry
dabbled with anti-sense as a therapeutic cure-all. In the 1990s, it has been high
throughput screening, and even more recently the new informatics disciplines:
chem- and bioinformatics. However, these raised expectations have been easily
dashed and the jury is still out on the impact of the more recent methods. It is
possible to feel cynical about the whole process. However, only by combining all
relevant technologies, both biological and chemical, can one hope to move
forward. No one technology, can, or could, answer all questions, solve all
problems, or deliver all solutions. Only an holistic integration of all experimental
and informatics skills can hope to meet the challenges we have outlined.

The pharmaceutical industry, like most organizations in the technology sec-
tor, creates the future. Old fashioned attitudes, which can still be peddled by
universities, and closed-minded ways of thinking are the ultimate enemy here.
The industry should engage as fully as possible with informatics disciplines: only
then can true progress be made. Yet the pharmaceutical industry faces, as all
industries do, financial and commercial pressures as well as scientific challenges.
There is an ever-increasing need to accelerate the discovery of new drugs,
bringing them to market in ever-shorter times. To do this, old-style technologies
will not be sufficient. Informatics, in all its guises, will become essential to the
industry’s efforts to speed the discovery process.
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1 Introduction

Drug discovery remains a risky business. Most lead compounds — those that
might provide useful drugs — do not make it to clinical trials. Less than 10% of
drug candidates survive safety and clinical evaluation, and two out of three
marketed products do not yield a positive return on investment.! Furthermore,
attrition rates of drug candidates are likely to increase, since the industry has
little experience of the potential toxicity of novel classes of drugs that may be
suggested by the new genome-derived targets.

Until a few years ago many leads were derived from plant products, many of
which had proved to be efficacious in traditional medicines. Others were identifi-
ed by screening fermentation broths. As knowledge increased, ligands could be
identified from the biochemistry of their targets. In the eighties the industry
began to use knowledge of the structures of both ligands and target proteins to
suggest leads and then to optimise their binding to the target proteins.2 X-Ray
crystallography, NMR spectroscopy and molecular modelling became widely
used tools to guide the medicinal chemist. Structural information helped the
synthetic chemist to optimise lead compounds by building better interactions
with the protein, resulting in improved potency and selectivity.? Indeed, there are
now several drugs on the market that originated from this structure-based design
approach. The most commonly cited are HIV drugs such as Agenerase and
Viracept that were developed using the crystal structure of HIV proteinase.*

Due to the mounting pressures to increase productivity, pharmaceutical com-
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panies have been constantly looking for technology-driven solutions. In the
1990s the focus of discovery moved to ‘diversity-based’ screening, involving
random high-throughput screening (HTS) of compound libraries, many of them
synthesised using combinatorial chemistry. However, this approach has had less
impact on the number of new chemical entities discovered than was originally
hoped.’ The emphasis now is to combine this approach with more rational
approaches, for example by using ‘knowledge-based’ or ‘focused’ screening.
Here, the knowledge of the biochemistry and/or structure is used to pre-select
compounds or fragments that are predicted to bind, often using in silico screen-
ing methods. These compounds are then tested in bioassay screens, often at
higher concentrations than normal. Initial data on the number of compounds
that need to be screened for each tractable lead identified show that focused
medium/low throughput screening is more effective than random high-through-
put screening.

There is now growing interest in applying biophysical techniques to lead
discovery. Applications of mass spectrometry, isothermal calorimetry, NMR
spectroscopy and X-ray crystallography to lead discovery have been recently
described.®10 A key advantage of these biophysical methods over traditional
bioassays for lead discovery is their ability to detect the binding of relatively low
affinity compounds. Most bioassays performed in HTS formats are designed
only to detect compounds that show potency better than 10 uM. Thus, many
weak, but chemically tractable, leads may be missed by the HTS campaigns
being performed in most pharmaceutical companies.

We are developing a structural approach to lead discovery that can detect
weak leads and optimise them into useful drug candidates.!! In this approach,
which we call structural screening, we couple virtual screening of compounds
with rapid X-ray crystallographic analysis of protein/ligand complexes (Figure
1). To establish structural screening as a useful industrial lead discovery ap-
proach we are developing methods for performing X-ray crystallography in a
high throughput and automated manner. In this paper we describe some pilot
experiments using trypsin that illustrate the application of structural screening
to chemical lead generation.

2 Methods

High throughput anaiysis of protein/ligand complexes requires automation of
data collection and analysis of series of isomorphous crystals. We are, therefore,
less concerned with crystallographic phase determination, and more with calcu-
lation and interpretation of difference Fouriers in order to position ligands in a
previously defined crystal structure. The first step is, therefore, to select a
chemical library for soaking experiments. The second is to arrange for auto-
mated high throughput soaking of cocktails of these compounds into crystals.
We then need to collect X-ray data efficiently and quickly, and automate the
interpretation of the difference electron density maps, so that we can both
recognise the bound ligand and define its position in the complex.
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Figure 1 Structural screening: this approach couples virtual screening with high throughput X-ray crystallography of protein/ligand complexes. The
virtual screening step may involve selection based on chemical similarity, a pharmacophore and|or large-scale docking into a protein active

site. Compounds identified from the virtual screening step are then used in rapid X-ray crystallographic analysis using AutoSolve® to define
experimentally their binding modes
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2.1 Compound Selection for Crystal Soaking

A relatively small library of molecular fragments (300-500 compounds) can
sample a significant amount of chemical space. Therefore, screening small-
molecule fragments can offer a very effective and elegant way to identify novel
pharmacophores for a new target protein, so avoiding synthesis of huge combi-
natorial libraries.

Two sets of small-molecule fragments can be generated for initial structural
screens. The first is a focused set, chosen using known protein binders as starting
points for chemical similarity searches. The second set is a ‘universal fragment
set’ chosen by combining known drug scaffolds with commonly found drug side
chains. These were developed for our target protein trypsin on the basis of
previous published work.

2.1.1 Focused Set. Earlier crystallographic experiments had shown the binding
of three small-molecule fragments to trypsin (unpublished results). These were
benzamidine, 4-aminopyridine and cyclohexylamine. These molecules were each
used as starting points for similarity searches of chemical databases. A further
three molecules, thought capable of making similar interactions, were also used
as starting points. These molecules were histamine, 2-aminoimidazole and 4-
aminoimidazole. Finally, proflavin was also included, as this has been observed
to bind to a related target.’? The set of seven compounds used for similarity
searches is shown in Figure 2.

HN NH,
NH, NH,
| AN
~
N
Benzamidine 4-Aminopyridine Cyclohexylamine
H H H
N N N
NH,
W § W
N N N
H;N
Histamine 2-Aminoimidazole 4-Aminoimidazole
HoN N\ NH,
7

Proflavin

Figure 2 Compounds used as starting points for similarity searches
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The similarity searches were performed on the Available Chemicals Directory
(version acd992) using Merlin Command Language from Daylight (Daylight
Chemical Information Systems, Los Altos, USA). Using the Daylight Similarity
Metric, compounds were chosen with a score of greater than 0.7, where a score of
one would indicate identical compounds. The similarity searches generated a
total of 224 compounds. The set of compounds identified from the seven starting
points was then processed to remove compounds that contained reactive or
functional groups associated with toxicity. The resulting compounds obtained
by this process were then examined for cost, availability and subjective interest
and a subset chosen.

2.1.2 Universal Fragment Set. Simple organic ring systems that are found in
many drug molecules can be considered as low molecular weight frameworks.
Decorating these frameworks with side chains containing the most frequently
found functional groups in drugs can generate a Universal fragment set. The
compounds are generated as SMILES strings, which are then searched for in a
database of available compounds.!? A total of 4513 compounds were generated
in the virtual enumeration stage for trypsin of which 401 were available from UK
chemical suppliers. Of these we obtained 353 compounds for structural screening
against trypsin. The compounds were prepared for soaking experiments by
dissolving into DMSO or water. The final concentration of each compound in a
soaking experiment was 25 mM.

2.2 X-Ray Data Collection

Crystals of trypsin were grown by adapting a published procedure;!4 5.4 mg of
bovine trypsin were dissolved in 100 ul of 50 mM sodium acetate, pH 5.6, 18 mM
CaCl,, 0.81 M ammonium sulfate, 5mgml~! benzamidine and equilibrated in
hanging drops over wells containing 1.6 M ammonium sulfate. The resulting
crystals were repeatedly backsoaked to remove any bound benzamidine before
soaking. The soaks with single crystals were done at a concentration of 100 mM,
the cocktails at a concentration of 25 mM (in 8 compound mixes) for 1 hour. The
crystals were then transferred into cryoprotectant before data collection at
100K.

X-Ray data were collected from trypsin crystals using a Jupiter CCD with a
Rigaku RU H3R generator and processed using D*trek.13

2.3 Interpretation of Difference Maps using AutoSolve®

All X-ray data were automatically analysed and electron density interpreted
using AutoSolve®. Examples of small-molecule fragments bound to trypsin are
shown in Figure 3.

One of the key bottlenecks in performing high throughput X-ray crystallogra-
phy of protein/ligand structures is the time and skills required for interpretation
and analysis of X-ray data. Once the structure of the target protein is known,
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H,N.___NH

NH

{7

Figure 3 Examples of small-molecule fragments bound into a pocket of trypsin. The
electron density was interpreted and models of compounds automatically fitted
using AutoSolve®. The electron density maps are contoured at 36 and density due
to protein and solvent has been removed for clarity

there is a need to complex many different compounds to the target and to
establish rapidly their binding modes. Conventionally, this requires an experi-
enced X-ray crystallographer to interpret and analyse each X-ray data set
collected from a crystal where the protein has been complexed with a compound
either by co-crystallisation or by a soaking experiment. To accelerate this stage
we have developed AutoSolve®,'¢ which allows the rapid structure solution of
protein/ligand complexes by interpreting and analysing the X-ray data without
the need for manual intervention. In each case AutoSolve® was able to identify
the bound fragment from a cocktail of fragments that was used in the soaking
experiment.

3 Results

Crystallographic experiments involving soaking of crystals with cocktails of
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compounds have been previously reported.’® However, we have found that
manual interpretation of electron density from soaking experiments using cock-
tails of compounds is often difficult and can be unreliable. 1t is only by employing
a reliable and robust data analysis tool such as AutoSolve® that an objective
interpretation can be reached. Figure 3 shows examples of clear electron density
that were unambiguously interpreted by AutoSolve®; in each case the binding
mode of the small-molecule fragment is clearly defined. It is worth noting that
even though the binding affinity of these small-molecule fragments is expected to
be in the millimolar range the binding mode is specific and the key interactions
are clearly defined. This data indicates that the weak binding of small-molecule
fragments can be detected using X-ray crystallography.

In this study we have shown how virtual screening coupled with high through-
put X-ray crystallography can be used to screen compound libraries consisting of
hundreds of small-molecule fragments. The detection and subsequent optimisa-
tion of these weak binding small-molecule fragments could be the basis of a
powerful approach for lead discovery resulting in novel drug candidates.
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1 Introduction

G protein-coupled receptors, or GPCRs, also known as 7TM, heptahelical, or
serpentine receptors, form one of the largest, most diverse, yet best studied
groups of cell-surface molecules. GPCRs mediate an enormous range of key
physiological processes, including the perception of light, taste, smell, and pain.
Because of the breadth and importance of these biological roles, as attested with
receptor knockouts and their link to hereditary diseases, members of the GPCR
family have become important pharmacological target molecules. Indeed, over
50% of all marketed drugs act at GPCRs — including a quarter of the 100
top-selling drugs — yielding sales of over 16 billion US dollars per annum (see
Table 1). Yet many therapies involving such drugs have efficacy problems and
limiting side effects, because the compounds do not properly differentiate be-
tween receptor subtypes. There is therefore considerable interest from both
clinicians and pharmaceutical companies in developing therapeutic specificity by
identifying the single receptor subtype responsible for mediating a particular
pathophysiology, and thereby defining an appropriate intervention point. Ulti-
mately, the aim is to design drugs that eliminate, or reduce, unwanted effects,
while still conferring the desired therapeutic benefit. For example, muscarinic
agonists, especially those that activate the M, receptor subtype, have been
considered potentially useful in treating Alzheimer’s disease — it was thought that
the cardiovascular and gastrointestinal side effects associated with non-specific
muscarinic agents could be avoidable, as the M, receptor is found in the brain
and may be involved with cognition, while other subtypes regulate heart and
gastrointestinal functions. Hand in hand with the objective of tailoring subtype
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Table 1 Marketed drugs targeted at GPCRs. Marketed drugs which act via
GPCRs drawn from the 100 top selling pharmaceuticals worldwide during
1997. Total combined sales for these compounds exceeds 15845 million $
Jor 1997. The drugs are listed alphabetically, and are not ranked by sales.

Data taken from [ref. 4]
Drug Commercial name Activity
Atenolol Tenormin B> antagonist
Buspirone Buspar 5HT,, agonist
Cetirizine Zyrtec antihistamine Hy antagonist
Cimetidine Tagamet H; antagonist
Cisapride Prepulsid 5HT, ligand
Doxazosin Cardura o; antagonist
Famotidine Gaster H; antagonist
Goserelin Zoladex LHRH agonist
Ipratropium Atrovent Mixed Muscarinic antagonist
Metoprolol Betaloc B1 antagonist
Nizatidine Axid H, antagonist
Leuprolide Lupron LHRH agonist
Leuprorelin Prostap Sr LHRH agonist
Loratadine Claritin antihistamine H; antagonist
Losartan Cozaar AT antagonist
Olanzapine Zyprexa Mixed D,/D,/5HT, antagonist
Ranitidine Zantac H, antagonist
Risperidone Risperdal Mixed D,/5HT, antagonist
Salbutamol Ventolin B> agonist
Salmeterol Serevent B> agonist
Sumatriptan Imigran 5SHT, agonist
Terazosin Heitrin &y antagonist

specificity is the desire to achieve orally active compounds, or drugs, with
enhanced duration of action and improved ADME properties, as well as an
increasing interest in the combination of clearly defined potencies at several
receptor types within the same molecule.!-3

GPCRs provide an excellent illustration of the phenomenon described by
Jacob as ‘molecular tinkering’:¢ these proteins have been very successful in
evolution, successfully adapting a common structural framework to fulfil in-
numerable different functions.” Amongst these, GPCRs mediate chemotaxis,
stimulation and regulation of mitosis, and the opportunistic entry of viruses into
cells.®? Such functional diversity is achieved via interactions with a wide variety
of ligands, including peptides, glycoproteins, small molecule messenger mol-
ecules, such as adrenalin, and even photons, as well as through the diversity of
second messenger systems they activate. GPCRs derive their name from their
interaction with heterotrimeric G proteins, but it has now become clear that they
also interact with a wide variety of other intracellular molecules.>1° For example,
the adaptor molecule arrestin couples GPCRs to the activation of Src-like
kinases and facilitates the formation of multimolecular complexes. Other struc-
tural components (e.g., polyproline-containing regions, PDZ, SH2 and SH3
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domains) mediate direct interactions between GPCRs and a variety of intracellu-
lar signalling molecules.®10 The extraordinary richness of mechanisms by which
GPCRs transduce signals is only now being appreciated, and the conventional
picture of classical second-messenger-generating systems, operating via single
biochemical routes, is changing rapidly in favour of an integrated view, involving
an intricate network of cytoplasmic signalling pathways.

A pivotal achievement of recent times was the public release of the draft
human genome, which promises to improve our understanding of diverse aspects
of biology, yielding a healthier future with safer, more ‘personalised’ medicines.
To meet these promises, the information sequestered within genomes needs to be
extricated. In particular, researchers need rapid, easy-to-use, reliable tools for
functional characterisation of raw sequence data. Previous estimates of the
number of GPCRs encoded by the human genome suggested that they represen-
ted about 1 percent of all genes, with another 1,000-2,000 GPCRs involved in
olfaction. The current estimate of the size of the human genome has been revised
down from a figure in excess of 100,000 to an initial estimate of 35,000-40,000
genes. Other, more recent, ‘best guesses’ place the number nearer 65,000—75,000.
Based on the draft human genome, subsequent analysis, using an automated
pipeline based on a combination of BLAST and hidden Markov models, has
suggested a total of about 900 rhodopsin-like GPCRs, of which about 420 are
involved in olfaction and about 60 are novel orphan receptors, many with
unassigned functions. Even amongst those receptors whose natural, endogenous
ligands are known, there are still many receptors for which synthetic agonists or
antagonists are lacking. Consequently, there is still much untapped potential for
GPCR-based drug discovery. GPCR-orientated research is a ubiquitous aspect
of target identification and drug design programmes within most major pharma-
ceutical companies and will remain of interest for as long as the human genome
holds undiscovered receptors that may present new therapeutic targets. Within
this context, we describe here some of the in silico approaches by means of which
genome data may now be profitably analysed.

2 Insilico Tools for Sequence Analysis

Today, the number of available biological databanks is now legion — they require
a database of their own just to catalogue them. Dbcat, for example, lists over
500.11 Rationalising the vast quantity of data emerging from innumerable
genome projects has required both an unprecedented level of global co-oper-
ation and an ever increasing degree of automation in data handling and analysis.
However, automation can carry a heavy price. In the field of genomics, for
example, software ‘robots’ are used in the process of functional annotation of
newly-determined sequences, but they pose a threat to information quality
because they can introduce and propagate mis-annotations.!? Although curators
are aware of this problem, and strive to reduce errors, nonetheless databases are
historical products.and users should therefore always bear in mind that they are
imperfect.
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The first step towards functional characterisation of a new sequence usually
involves searching a sequence database with tools such as FastA!> or BLAST .14
Such searches can reveal obvious similarities between the query sequence and a
range of sequences in the database. The difficulty then lies in the reliable
inference of homology (the verification of a divergent evolutionary relationship)
and, from this, the inference of biological function. In an ideal world, a search
output will show unequivocal similarity to a well-characterised protein over the
full length of the query. More commonly, the output will reveal no significant
hits, and the usual scenario lies between the extremes, with a list of partial
matches to diverse proteins, many of them uncharacterised, and some with
dubious or contradictory annotations.!’

There are various reasons for this confusion. First, the greatly enlarged size of
modern sequence databases, and their population by increasing numbers of poor
quality partial sequences, gives rise to a greater likelihood that relatively high-
scoring, but coincidental, matches will be made to a query. Secondly, issues arise
from the existence of multi-gene families because database search techniques
cannot differentiate between a matched paralogue (a homologue that performs
different but related functions within the same organism) and a matched ortho-
logue (the functional counterpart of a sequence in another species). Thirdly, if not
masked, low-complexity matches may interfere with search outputs. The modu-
lar/domain nature of many proteins may also be problematic, as it may not be
clear, when making matches to multi-domain proteins, which domain or do-
mains correctly correspond to the query. Second, even if the right domain has
been found, it may not be appropriate to transfer the functional annotation to
the query because the function of the matched domain may be different, depend-
ing on its precise biological context.

Achieving consistent, reliable functional assignments can prove to be a com-
plex problem. As a result, in addition to routine searches of the sequence
databases, it is now usual to extend search strategies to include a range of protein
families, usually encoded in what are commonly referred to as motif databases.
These databases distil information within groups of related sequences into
potent descriptors or discriminators that can greatly assist family diagnosis.
Searching pattern databases can be both more sensitive and more selective than
sequence database searching because derived family discriminators can detect
weaker regions of similarity, and they can exploit differences between sequences
as well as their similarities, as we shall see later. Different analytical approaches
have been used to create a bewildering array of discriminators: regular expres-
sions, rules, profiles, signatures, fingerprints, blocks, etc.!® The different descrip-
tors have different diagnostic strengths and weaknesses, and different areas of
optimum application, and have been used to create different pattern databases,
which can vary in their composition. It is therefore important to know how best
to exploit them.
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3 Protein Motif Databases

Multiple sequence alignment lies at the heart of the analysis methods that
underpin pattern databases. When an alignment is created, more and more
distantly related sequences can be included, requiring insertions and deletions to
bring the equivalent parts of sequences into the correct register. As a result of this
process, distinct islands of conservation emerge from an ocean of mutational
change. These conserved regions generally correspond to the core structural
elements of the protein and are usually termed motifs. Different techniques have
emerged that can exploit this encoded conservation: they fall into three catego-
ries, depending on whether they use full domain alignments, multiple or single
motifs. All such methods require the derivation of a discriminatory representa-
tion of the conserved elements of the alignment, providing a signature character-
istic of the family, which, in turn, can be used to facilitate diagnosis of future
sequences.

The first pattern database to have been created was PROSITE,!” which uses
regular expressions to encode single motifs. A single motif is often not sufficient
to capture the full extent of a protein family, and hence additional regular
expressions may need to be derived. PROSITE patterns are deterministic: when
matching such patterns, a query sequence must match the expression exactly, or
it will not be diagnosed — the approach will not tolerate any residue mismatch.
Conversely, many otherwise unrelated sequences will match these patterns
exactly. Together, these features complicate genome analysis because a match to
a regular expression is not necessarily true and a mis-match is not necessarily
false.

To overcome this diagnostic limitation, a multiple-motif approach was de-
vised. Here, motifs are encoded as residue frequency matrices, without the use of
mutation or substitution data to weight the matches. This is the basis of the
fingerprint approach, which underpins the PRINTS database.!8 A related tech-
nique exploits substitution matrices to score motif matches, and this weighted-
motif approach is the basis of the Blocks database.!® Finally, to take advantage
of the gapped regions between motifs, which provide important information
about inter-motif distances, approaches were devised to encompass the full
length of conserved domains. Examples include profiles (which use an absolute
scoring system that exploits evolutionary weights and differential gap penalties
to prevent their occurrence in core secondary structure elements) and hidden
Markov models, or HMMs (which use a probabilistic approach to assign match,
delete and insert states to all positions in an alignment). These methods underpin
the Profiles!” and Pfam?? databases.

Understanding the relative strengths and weaknesses of these approaches,
gathering the range of different outputs they provide, and arriving at some sort of
consensus view of their results, is often challenging, In an effort to make the
process more straightforward and to provide a single resource for sequence
analysis, the curators of PROSITE, Profiles, PRINTS and Pfam have created a
unified database of protein families, termed InterPro.2! This database is an
integrated family annotation resource, based primarily on existing documenta-
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tion in PROSITE and PRINTS. Subsequent releases have also included data
from ProDom and SMART. InterPro is an important development because the
participating databases now use a common nomenclature, and share consistent,
standardised documentation for protein families, domains and functional sites.
Potentially this development will greatly facilitate the correct inference of func-
tion by gathering consensus evidence, using a common language, in order to
allow users to pinpoint homologous relationships with greater confidence.

4 The In silico 1dentification of Specific Receptor
Subtypes

Most computational, or in silico, strategies for identifying GPCRs are still based
on similarity searches using primary database search tools, such as BLAST.
GPCRs are, phyletically speaking, widely distributed in eukaryotic organisms.
Several families of GPCRs are distinct at the protein sequence level. By far the
most extensive of these, the so-called rhodopsin-like family, currently has
3000-4000 sequences available in public databases. Given this large set of
known GPCR sequences, characterising family members should, in principle,
become more straightforward. However, as outlined above, the growth of noise
in the source databases has meant that it is actually becoming more and more
difficult to identify and classify members of this large superfamily in a reliable
way. For example, it is apparent that BLAST ‘sees’ similarity between pairs of
sequences in a different way when compared with family-based approaches. It
reveals generic similarities (e.g., it can show that the sequences being compared
share several hydrophobic regions) but it cannot recognise individual family
traits (i.e., it cannot distinguish the differences between the sequences, such as
specific ligand-binding motifs). Similarly, most pattern databases tend to provide
generic signatures that are only capable of diagnosing superfamily relationships.
Thus, these databases might recognise that a sequence belongs to the rhodopsin-
like GPCR superfamily, but they cannot offer insights into the particular family
to which it belongs. But it is no longer sufficient to say that a newly determined
sequence is a GPCR —i.e., one of possibly 50 sub-families. Ideally, we would wish
to identify the specific receptor family and sub-family to which it belongs, and to
begin saying something meaningful about ligand binding. For drug discovery
scientists interested in the treatment of obesity, for example, who might specifi-
cally wish to identify type 4 melanocortin receptors (which are important in
regulating appetite), a superfamily-level diagnosis is of limited value.

To facilitate the identification of particular subtypes, a systematic analysis of
GPCRs has been undertaken as part of the effort to populate the PRINTS
database. In an early attempt to identify GPCRs in sequence databases, a
diagnostic fingerprint for rhodopsin-like GPCRs was developed based on
common patterns of conservation in the seven transmembrane (TM) regions.??
This operated well when publicly available GPCR sequences numbered less than
100. But, as the size of the superfamily and the source databases have both grown
dramatically, the diagnostic performance of the fingerprint has deteriorated.
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Although, in general, key regions of these sequences are well conserved, charac-
teristic variations have been observed in the 7TM signatures, such that many
obvious family members do not now share all features of the fingerprint. Thus,
more recently, efforts were directed toward characterising not just the super-
families, but also their constituent families and subtypes. To this end, sequence
alignments were created manually for each level of the family hierarchy. Regions
of similarity and differences between alignments were located and used to build a
range of discriminatory ‘fingerprints’. As discussed above, fingerprints are
groups of motifs that together provide a signature of family membership. Motifs
tend to reflect functionally or structurally important regions (e.g., TM domains,
protein—protein interaction sites, ligand-binding sites, and so on), thereby char-
acterising the families in which they are found. In this analysis, within super-
families, the motifs encode the only features common to all members (i.e., the
scaffold of 7TM domains). By contrast, at the family level, the motifs focus on
those regions that characterise the particular family, but distinguish it from the
parent superfamily; predictably, these are usually small parts of TM and loop
regions. For receptor subtypes, the distinguishing traits are largely present in the
N- and C-terminal regions, and in the third cytoplasmic loop.

This has led to the development of a GPCR-specific subset of the PRINTS
database. The essential difference between this and other web-based GPCR
databases is its emphasis on sequence diagnosis. The intention is to go beyond
the look-up table approach, with a view to providing interactive analytical tools
for identification and characterisation of family members at the sequence level.
In essence, this GPCR pattern-recognition resource provides a finely-tuned
diagnostic tool for GPCR sequence recognition. To date, more than 200 finger-
prints have been created that distinguish GPCRs at the levels of superfamily,
family and specific receptor subtype.?* For a given query, it is thus possible to
determine to which GPCR superfamily the sequence belongs (e.g., whether
rhodopsin-like, secretin-like, etc.); of which family it is a member (e.g., whether
muscarinic, adrenergic, etc.); and which subtype its sequence signature most
resembles (e.g., whether M|, M,, M,, etc.).

An interesting perspective on this result can be achieved by using the graphical
output option from InterPro’s sequence search facility. Results are plotted for
each of the constituent databases, from which it is possible to place the finger-
print matches in context and see at a glance which regions of a sequence are
matched by PRINTS, PROSITE, Profiles and Pfam. This example illustrates the
fine-tuning that fingerprints add to the diagnostic process, being the only re-
source to offer family- and sub-type-specific diagnoses, and for which the match-
ed ‘blobs’ have any significant meaning — i.e., whether TM domains of the
superfamily scaffold, N- and C-termini, or specific loop regions (see Figure 1).

5 Structural Data

There are now well in excess of 2,000 structurally distinct, solved protein and
peptide structures available in the public domain. These are largely soluble,
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Figure 1 InterPro graphical output for the GPCR sequence ACM5_HUMAN. The depic-
ted ‘blobs’ correspond to hits to different discriminators. The first 4 lines show hits
to the superfamily discriminators in PRINTS (showing each of the 7TM motifs),
PROSITE profiles, PROSITE patterns and Pfam respectively. The final two lines
show hits to the family- and subtype-specific discriminators from PRINTS [show-
ing characteristic motifs in the N- and C-terminal and loop regions (especially the
third cytoplasmic loop, potentially important in G protein coupling ), and parts of
the TM domains (most likely involved in ligand binding) |

globular proteins. Where once each structure was a landmark, it now takes a
remarkable protein to stand out from the crowd. The recently published struc-
ture of rhodopsin, determined to 2.8 A resolution, is such a protein.?4 As the first
GPCR structure to be solved, and regarded by many as the archetypal GPCR,
rhodopsin has profound implications for the future bioinformatic discovery and
analysis of members of this superfamily. Hitherto, and as a consequence of their
preeminence in pharmaceutical research, much work has gone into the
modelling of GPCRs. A structurally related protein from purple bacteria, bac-
teriorhodpsin (BR) was first determined in 1990 using electron crystallography,??
and a completed X-ray structure was published in 1997.26 However, BR bears no
sequence relationship to rhodopsin or other GPCRs, but nonetheless hundreds
of models were based upon it. More recently, theoretical models based on low
resolution and other experimental data have been proposed, again leading to a
flurry of derivative models. With the structure of rhodopsin, such models are
now more or less redundant. However, some of the data upon which such models
were built remains valid, particularly mutagenesis data, which can implicate the
role of particular residues in the interaction between ligand and receptor. Such
data helps us understand the conformational differences between receptor types.
Our understanding of other all-helical proteins, such as the globins or P450s,
suggests that while the topology of interacting helices is conserved, there can be
significant shifts in the relative positions of equivalent helices. So, while the
overall shape of a GPCR will be well maintained, the exact disposition of one
helix relative to another will vary from receptor to receptor, suggesting that
mutagenesis results will still greatly inform future homology modelling.

While the over-expression, purification, and crystallisation of membrane pro-
teins remain difficult technical obstacles, it is interesting to note that, twenty
years ago, solving the structure of a soluble protein was still a relatively rare and
significant event, the number of skilled macromolecular crystallographers was
limited, and the number of crystallographic laboratories was small. Today,
several crystal structures are solved each and every day in one of the several
hundred macromolecular crystallography laboratories around the world staffed
by a huge community of trained crystallographers. Notwithstanding the capri-
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cious nature of protein crystallisation, structure solution has become almost
commonplace. As remaining technical problems are solved, with the necessary
skills becoming more widespread, the study of GPCRs will become similarly
routine, and we may look forward to significant advances in our understanding
of their structure. This is certainly the hope of the semi-academic MEPNET
initiative [http://www.mepnet.org/], as well as many other pharmaceutical, bi-
otech, and start up companies, which are all working to this end.

At the same time, growth in our understanding of GCPR structure will allow
much more detailed bioinformatic analysis. The correlation of biological func-
tion and phylogeny with individual sequence variation,?’?8 useful in itself as a
means of identifying important functional residues, will become much more
useful when placed in a structural context. The ability to perform full atomistic
simulations of drug GPCR interactions, while still some way away, will likewise
inform both bioinformaticians and molecular modellers.

6 Concluding Remarks

The technologies of target identification — genomics and proteomics — are now
delivering an unprecedented volume of new genes and gene products for evalu-
ation within pre-clinical research. Many of these targets may well be found to be
members of the GPCR family. While the characterisation of orphan receptors
may provide a source of novel targets well into the future,?® clinicians and
medicinal chemists remain interested in the development of new drugs targeted
against well known and well investigated GPCRs. Within the integrated research
environment that characterises the modern pharmaceutical industry, target
finding and validation is the fountainhead from which all novel drug discovery
projects will flow. Bioinformatics is a key component of this endeavour.

BLAST and FastA have been the mainstays of bioinformatic genome annota-
tion efforts because they are simple both to use and to implement. However, their
‘facile’ use has led to problems as ‘top hits’ have often been used to transfer
functional annotation from matched sequences to query sequences. Identifying
similarity relationships between sequences is clearly not the same as identifying
their functions, and failure to appreciate this fundamental point has generated
and propagated annotation errors, and problems of all kinds for users of today’s
databases.

GPCR fingerprints allow more specific and reliable diagnoses than pairwise
methods, yielding information from the level of the superfamily down to the
individual receptor subtype. No other computational approach currently offers
such a hierarchical discriminatory system for this important class of receptors.
The fingerprint resource is thus a valuable complement to family and domain
databases such as PROSITE and Pfam, offering potent diagnostic opportunities
that have not been realised by other pattern-recognition methods. Fingerprint
selectivity offers new opportunities to explore correlations between specific
motifs and ligand binding or G protein coupling. With the availability of the first
draft of the human genome, this collection of diagnostic GPCR fingerprints
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promises to facilitate both the identification of potential new drug targets and
computational strategies to characterise orphan receptors.

Used together, pairwise- and family-based search tools offer the best means of
mining the human genome for novel receptors. Preliminary results using a
combination of such approaches have revealed that the total number of sensory
and non-sensory GPCRs in the human genome is likely to be smaller than
expected: lying somewhere between 700 and 900.3%3! Future challenges in the
elucidation of new therapeutic opportunities lie in unravelling the many non-G
protein-coupled cellular pathways used by GPCRs, and also in determining the
roles of alternative-splicing, receptor oligomerisation, and association of 7TM
units with accessory proteins in receptor function. Moreover, some human
diseases are associated with rare GPCR mutations and it is possible that widely
distributed polymorphisms in GPCR genes may allow selective therapeutic
strategies for population subgroups through the development of phar-
macogenetics.

In this review, we have tried to emphasise the need for concerted, integrated
protocols that highlight, in turn, the different perspectives offered by fundamen-
tally different, yet ultimately complementary, methods of sequence analysis. For
example, BLAST and FastA have a key place within bioinformatics, offering, as
they do, broad brush strokes. Fingerprinting, and other motif based search
methods, adds the fine detail. Structural modelling offers yet another perspective,
increasing the nominal resolution to the atomic scale, and allowing us to explore
the important physico-chemical properties that underlie drug binding. All of
these different views are important. Together they will provide much more
informative, much more detailed pictures of GPCR structure and function. They
should also provide crucial help in the all-important process of target validation,
by maximising the information available for a given target and minimising the
risk associated with pursuing the less promising candidates.

Many GPCRs are orphan receptors with, as yet, no identified ligand, but as
functional genomics begins to elucidate their physiological role, new therapeutic
opportunities will follow. As pressure mounts on the pharmaceutical industry to
shorten timescales and increase its cost-effectiveness, bioinformatic analysis is
becoming more and more important. Target finding and validation has broad
influence affecting many upstream functions. Of all the targets to be found,
GPCRs remain one of the most important. The success of GPCR target dis-
covery will continue to maintain the pre-eminent position of this family with
pharmaceutical research for some time to come, promising much for the future.

Acknowledgements

TKA is a Royal Society University Research Fellow.

References

1. Y. Sasaki and T. Chiba, Novel deltorphin heptapeptide analogs with potent delta



70

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

2L

Trawling the Genome for G Protein-coupled Receptors

agonist, delta antagonist, or mixed mu antagonist/delta agonist properties, J. Med.
Chem., 1995, 38, 3995-3999.

. H.S. Jae, M. Winn, D.B. Dixon, K.C. Marsh, B. Nguyen, T.J. Opgenorth and T.W.

von Geldern, Pyrrolidine-3-carboxylic acids as endothelin antagonists. 2. Sulfona-
mide-based ETA/ETB mixed antagonists, J. Med. Chem., 1997, 40, 3217-3227.

. T. Taverne, O. Diouf, P. Depreux, J.H. Poupaert, D. Lesieur, B. Guardiola-Lemaitre,

P. Renard, M.C. Rettori, D.H. Caignard and B. Pfeiffer, Novel benzothiazolin-2-one
and benzoxazin-3-one arylpiperazine derivatives with mixed SHT1A/D2 affinity as
potential atypical antipsychotics, J. Med. Chem., 1998, 41, 2010-2018.

. D.R. Flower, Modelling G-protein-coupled receptors for drug design, Biochim. Bio-

phys. Acta, 1999, 1422, 207-234.

. F. Jacob, Evolution and tinkering, Science, 1977, 196, 1161-1166.
. J. Bockaert and J.B. Pin, Molecular tinkering of G protein-coupled receptors: an

evolutionary success, EMBO J., 1999, 18, 1723-1729.

. D.C. Teller, T. Okada, C.A. Behnke, K. Palczewski and R.E. Stenkamp, Advances in

determination of a high-resolution three-dimensional structure of rhodopsin, a model
of G protein-coupled receptors (GPCRs), Biochemistry, 2001, 40, 7761-7772.

. RJ. Lefkowitz, The superfamily of heptahelical receptors, Nature Cell Biol., 2000, 2,

E133-E136.

. R.A. Hall, R.T. Premont and R.J. Lefkowitz, Heptahelical receptor signaling: beyond

the G protein paradigm, J. Cell Biol., 1999, 145, 927-932.

JJ. Marinissen and J.S. Gutkind, G-protein-coupled receptors and signaling net-
works: emerging paradigms, Trends Pharmacol. Sci., 2001, 22, 368-376.

C. Discala, X. Benigni, E. Barillot and G. Vaysseix, DBcat: a catalog of 500 biological
databases, Nucleic Acids Res., 2000, 28, 8-9.

T. Doerks, A. Barioch and P. Bork, Protein annotation: detective work for function
prediction, Trends Genetics, 1998, 14, 248-250.

D.J. Lipman and W.R. Pearson, Rapid and sensitive protein similarity searches,
Science, 1985, 227, 1435-1441.

S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J.
Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs, Nucleic Acids Res., 1997, 25, 3389-3402.

K. Hoffmann, Protein classification and functional assignment, in Trends Guide to
Bioinformatics, Elsevier, 1998, pp.18-21.

T.K. Attwood, The quest to deduce protein function from sequence: the role of
pattern databases, Int. J. Biochem. Cell Biol., 2000, 32, 139-155.

K. Hofmann, P. Bucher, L. Falquet and A. Bairoch, The PROSITE database, its
status in 1999, Nucleic Acids Res., 1999, 27, 215-219.

T.K. Attwood, M.D. Croning, D.R. Flower, A.P. Lewis, J.E. Mabey, P. Scordis, J.N.
Selley and W. Wright, PRINTS-S: the database formerly known as PRINTS, Nucleic
Acids Res., 2000, 28, 225-227.

J.G. Henikoff, E.A. Greene, S. Pietrokovski and S. Henikoff, Increased coverage of
protein families with the blocks database servers, Nucleic Acids Res., 2000, 28 (1),
228-230.

A. Bateman, E. Birney, R. Durbin, S.R. Eddy, K.L. Howe and E.L. Sonnhammer, The
Pfam protein families database, Nucleic Acids Res., 2000, 28, 263-266.

R. Apweiler, T.K. Attwood, A. Bairoch, A.Bateman, E. Birney, M. Biswas, P. Bucher,
L. Cerutti, F. Corpet, M.D.R. Croning, R. Durbin, L. Falquet, W. Fleischmann, J.
Gouzy, H. Hermjakob, N. Hulo, I. Jonassen, D. Kahn, A. Kanapin, Y.
Karavidopoulou, R. Lopez, B. Marx, N.J. Mulder, T.M. Oinn, T.M. Pagni, F.Servant,



Teresa K. Attwood and Darren R. Flower 71

22.
23.
24.
25.
26.
27.
28.

29.

30.

3L

C.J.A. Sigrist and E. Zdobnov, The InterPro database, an integrated documentation
resource for protein families, domains and functional sites, Nucleic Acids Res., 2001,
29 (1), 37-40.

T.K. Attwood and J.B.C. Findlay, Fingerprinting G-protein-coupled receptors, Pro-
tein Eng., 1994, 7, 195-203.

T.K. Attwood, A compendium of specific motifs for diagnosing GPCR subtypes,
Trends Pharmacol. Sci., 2001, 22, 162—165.

K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox,
I. Le Trong, D.C. Teller, T. Okada, R.E. Stenkamp, M. Yamamoto and M. Miyano,
Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 2000, 289,
739-745.

R. Henderson, J.M. Baldwin, T.A. Ceska, F. Zemlin, E. Beckmann and K.H. Down-
ing, Model for the structure of bacteriorhodopsin based on high-resolution electron
cryo-microscopy, J. Mol. Biol., 1990, 213, 899-929.

E. Pebay-Peyroula, G. Rummel, J.P. Rosenbusch and E.M. Landau, X-ray structure
of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic
phases, Science, 1997, 277, 1676—1681.

F. Horn, R. Bywater, G. Krause, W. Kuipers, L. Oliveira, A.C. Paiva, C. Sander and
G. Vriend, The interaction of class B G protein-coupled receptors with their hor-
mones, Receptors Channels, 1998, 5, 305-314.

F. Horn, E.M. van der Wenden, L. Oliveira, A.P IJzerman and G. Vriend, Receptors
coupling to G proteins: is there a signal behind the sequence?, Proteins, 2000, 41,
448-459.

J.M. Stadel, S. Wilson and D.J. Bergsma, Orphan G protein-coupled receptors: a
neglected opportunity for pioneer drug discovery, Trends Pharmacol. Sci., 1997, 18,
430-437.

C. Southan, A genomic perspective on human proteases as drug targets, Drug Discov.
Today, 2001, 6, 681-688.

T.K. Attwood, M.D. Croning and A. Gaulton, Deriving structural and functional
insights from a ligand-based hierarchical classification of G protein-coupled recep-
tors, Protein Eng., 2002, 15, 7-12.



Virtual Screening of Virtual Libraries — an
Efficient Strategy for Lead Generation

Darren V. S. Green

GlaxoSmithKline, MEDICINES RESEARCH CENTRE, GUNNELS
WOOD ROAD, STEVENAGE, HERTS SG1 2NY, UK

1 What and Why?

A Virtual Library may be defined as a set of chemical structures that theoreti-
cally could be made from defined reactions and starting materials. Virtual
Screening! is the in silico evaluation of chemical structures against a model of
biochemical efficacy — this could be by docking of structures to the crystal
structure of an enyzme, a fit to a 3D pharmacophore model, or a prediction from
a QSAR equation.

Currently, given a large enough budget, it is possible to purchase more than 2
million compounds from suppliers, and to screen these against a target of
interest. Why then is Virtual Screening such an important area of research? The
answer to this question is illustrated by Figure 1. There are ~ 107 compounds
registered in Chemical Abstracts, around 10* compounds in the World Drug
Index,? and, as already mentioned, ~ 10¢ compounds available for purchase. In
contrast, estimates of the number of ‘drug like’ molecules which could be
synthesised vary wildly, but average around 10%.3 To put this figure in some kind
of context, the number of seconds since Big Bang started all of this is 10!7.
Therefore, it is not possible to make and test everything: we must sample this
huge chemical space. The success rate of random high throughput screening in
identifying good start points is generally quoted as 1 compound per 10° com-
pounds screened for tractable targets. This then is a base figure for the expected
success rate if we sample the 1030 structures at random. By simple extrapolation,
to be sure of finding compound series of interest for the 1000s of targets in the
genome would necessitate synthesis on a scale beyond comprehension.

Therefore, we must do something other than randomly sample this virtual
collection of compounds. The VSVL approach to this problem leverages two
techniques which in themselves have tried to improve the efficiency of drug
discovery — computer aided drug design and combinatorial chemistry. One
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Figure 1 Any corporate compound collection is a tiny subset of the world of chemical
structures. VSVL enables the efficient exploration of this world

major problem with computational drug discovery has been to build in synthetic
chemistry tractability to molecules designed to fit receptor sites. One major
problem of combinatorial chemistry has been the lack of success in making large
numbers of compounds with no biological target in mind. VSVL attempts to
remove both deficiencies — combinatorial libraries are by definition chemically
tractable, and computer aided design should help direct the synthesis of biologi-
cally relevant molecules.

2 The Design Process — Monomer Selection and Library
Enumeration

Figure 2 illustrates the process which is promoted at Stevenage via our ADEPT
design tools.* Starting from databases of monomers, chemical reactions and
perhaps some target knowledge, lists of monomers are produced, then refined to
leave a set of possible monomers. These are then normally enumerated to the
corresponding products. Product versus monomer based design has, in the past,
been the subject of considerable debate. Monomer based design has the advan-
tage of being quick and easy, and if your design criteria are additive —for example
molecular weight and algorithms such as ClogP can be considered additive —
then this can be very effective. In contrast, product based design is harder due to
the numbers of products to be considered. However, product based design has
been shown to be superior for ‘diversity’ libraries,’ and current methods for
computing 3D properties such as shape and docking scores in general require a
product structure. It is proper at this point to consider a practical note which for
once works in favour of a computational approach. It is possible to construct
huge virtual libraries for 3- and 4-component combinatorial chemistry, from lists
of apparently available monomers. In practice we find that a combination of
availability and chemical reactivity so reduces the probability of these monomers
actually making it into a final library that great care is taken to include starting
materials which are desirable from a molecular property, ease of availability and
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chemical reactivity considerations. The resultant loss of potential monomers
greatly reduces the size of the typical virtual library.

A method that can be used to propose desirable monomers which would
justify some effort to acquire is RECAP (Retrosynthetic Compositional Analysis
Procedure, Figure 3).6 This method provides a disassemblage of known mol-
ecules at acceptable synthetic points, to generate better monomers for reas-
sembly into libraries. It is particularly useful for biological ‘systems’ such as
kinases, to identify so-called privileged structures.

With monomer sets and synthetic route identified, the virtual library products
must be enumerated. ADEPT uses a reaction-based enumeration, using the
Daylight SMIRKS language.” This is true in silico chemistry — molecule struc-
tures and chemical reactions are mixed together to create new products, if the
starting materials possess functional groups that will react together. The advan-
tages of reaction-based enumeration include the automated creation of a corpor-
ate reaction database, by the capture of reactions drawn into ADEPT, the reuse
of reaction protocols to provide user-friendly tools, and the fact that ADEPT
encourages the use of sequential, individual reaction steps which mirror the
physical synthesis process, thus in theory providing a means to drive synthesis
automation.

3 The Design Process — Virtual Screening

Once the virtual library products are enumerated, they can be profiled in a
bewildering variety of methods. The simplest are property rules such as the
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Figure 3 An example of RECAP. Cisapride is fragmented at synthetically tractable bonds.
Application to a large set of structures with related biological activity yields
commonly occurring, or privileged, fragments. These fragments may then be
converted into possible monomers by database searches
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Lipinski rule of 5.8 More complicated procedures are often used, because there
can be a great deal of target information available, for example crystal structures
of proteins or a natural ligand. Here, we should consider the objectives of Virtual
Screening, and how they differ from more familiar medicinal chemistry lead
optimisation objectives.

Figure 4 illustrates the objective of computational models for medicinal
chemistry projects — the construction of a mathematical description of molecules
with their receptor that can predict whether molecule n + 1 in the series will be
more active than molecule n. Therefore, the desired model must not only dis-
criminate the black (poorly active) molecules from the grey (highly active)
molecules, but also predict ‘good’ grey molecules from ‘better’ greys. Figure 5
looks at this problem from a virtual screening perspective. Obviously, it would
be most effective to correctly and reliably predict affinity. However, because we
are aiming to make a sufficiently large number of compounds (100s to 1000s), it is
enough to discriminate grey from black, because the biological assay will dis-
criminate ‘good’ grey molecules from ‘better’ grey molecules. Of most relevance
to Virtual Screening is the need to maximise the number of compounds in the
area marked ‘A’ (predicted and observed to be ‘active’) whilst minimising those
compounds in ‘B’ (predicted inactive but actually active) and ‘C’ (predicted active
but actually inactive). It is this balance that determines the efficiency, and hence
the utility, of the VSVL processes. The objective is to do sufficiently better than
random to make the whole process of generating a lead more efficient. If random
screening produces a 1 in 10 hit rate, then it may be sufficient for VSVL to
produce a 1:10% hit rate, i.e. an enrichment of 100-fold over random. In other
words, the selection process can afford to be wrong 99% of the time and still be

Cbserved

Predicted

Figure 4 The typical requirement from a lead optimisation QSAR model
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Figure 5 The requirement of a virtual screen is to maximise the number of molecules in
region A whilst minimising the number of molecules in regions B and C

very effective! Moving this argument from the abstract to reality, should a series
of compounds have two potential binding modes which a docking algorithm
cannot distinguish accurately, something that would severely hamper a medici-
nal chemistry program, it is acceptable for the VSVL approach to only find
examples of one binding mode. The overriding objective is to discover the series
in the first place, thus enabling the exploitation of the structural type, and the
identification of other binding mode(s) through the panoply of methods avail-
able for lead optimisation.

Methods for virtual screening are plentiful,’~!2 the most common employed at
Stevenage being 3D pharmacophore construction alongside 3D database
searching. This method has been found to give very good results for focussed
screening strategies.!3-15

4 The Design Process — Library Design

In general, it can be useful to separate library design from the screening process
outlined above. This is because there are many criteria that one may choose to
use in library design, and these will vary from project to project. All of the
algorithms described below are independent of the method used to select the
desired products. In this context, then, library design is essentially monomer
selection, but at this stage it is also possibie to probe, automation restrictions
permitting, the library configuration. For example, for an A + B + C library, what
should the relative proportions of the monomer sets be? With ever-increasing
flexibility of synthetic chemistry automation, it can also be instructive to use
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these methods to probe the usefulness of particular synthetic kit for the task — for
example, can a true combinatorial solution be devised, allowing the use of
split-mix type synthesis, or does the library require more flexible synthetic
procedures to ensure key molecules are made outside of a true combinatorial
solution? There are a variety of design tools available,!6 ranging from simple to
complex algorithms. At Stevenage we nurture and encourage use of a selection of
algorithms, chosen to match the problem in hand. The very simplest method is
MFA (Monomer Frequency Analysis).!” Here, those products which score well
in the virtual screen are decomposed into their monomers. The number of times
each monomer appears in a desired product is counted. It is then assumed that
those monomers which appear most often will, when combined, produce an
effective library containing many of the desired products. For single selection
criteria, such as picking compounds which fit a pharmacophore, MFA can often
be very effective. However, in many cases it is necessary to use a more sophisti-
cated algorithm. PLUMS!8 is an algorithm designed to allow the optimisation of
the effectiveness and efficiency of a library. Effectiveness is defined as the number
of desired compounds made, divided by the total number of desired compounds
in the set. Efficiency is the number of desired compounds made divided by the
size of the real library. For example, 126 compounds are selected by a pharmaco-
phore search on a virtual library of 1000. A library of 160 compounds is designed,
which will succeed in making 101 of the 126 desired products. The efficiency of
this library is 0.6 (101/160) and the effectiveness 0.8 (101/126). PLUMS aims to
increase the efficiency of the library whilst keeping the effectiveness high. It does
this by sequentially removing the worst monomer from the set — for example if a
monomer appears in none of the desired products, discarding it would not
change the effectiveness of the library, but would increase the efficiency. Mono-
mers are generally removed until a user-defined library size is achieved. The
results can be plotted to aid interpretation, and there is often a clear idea of what
the best physical library to make will be (Figure 6). PLUMS typically takes a few
minutes to run.

When more complex criteria are used, particularly the setting of multiple
objectives, even more advanced methods are required. For example, the objec-
tive might be to design a library with a high number of compounds matching a
pharmacophore, with a distribution of molecular weight which resembles the
WDI, and which uses the cheapest monomers possible. In this case a program
such as SELECT? can be employed. For most combinatorial libraries there are
too many solutions to evaluate in order to find the best one, and so a stochastic
algorithm is used. SELECT uses a Genetic Algorithm (GA) to evolve libraries
which can be evaluated against the design criteria. Good solutions are kept and
allowed to breed, whilst the poorest solutions are removed from the population.
In this way, libraries with quite demanding design criteria can be generated. This
type of tool is often used by specialists, and can take several hours to complete,
depending on the size of the virtual library and the design criteria.
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Figure 6 Example of PLUMS output. The score is an addition of the effectiveness and
efficiency of the library. The peak in the score is often indicative of the best
libraries to make

5 A Real Example

This example has been chosen, not to be the best example of VSVL, but rather an
as illustration of the design processes, and the integration of many of the tools
described above.

The objective of the project was to discover novel, chemically tractable series
of inhibitors of an enzyme, for which several chemical series were known, but the
crystal structure of the enzyme was not. A 3D pharmacophore was constructed
from known chemical series, using the Catalyst.2? The pharmacophore consists
of five features (Figure 7). Concurrently, the chemical structures of known
ligands for this family of enzymes were collated from the literature, resulting in
more than 3000 usique compounds. RECAP was applied to this set of structures,
and 1323 available, or accessible monomers were identified that encoded
common chemical functionality found in inhibitors of this protein family. An
ADEPT reaction scheme that could be applied to a subset of these monomers
was identified and used to enumerate a virtual library of 31K products.
Physicochemical properties were then computed for the products, again with
ADEPT, and, by the use of Lipinski-style filters, the set was reduced to 10K
desirable structures. This number was impractical for the available synthesis
automation, and therefore a 3D database was constructed for the 10K products.
Subsequent searching of this database using the pharmacophore selected 4900
products that fit the pharmacophore. These, then, were the products that should
be synthesised. However, they did not comprise a combinatorial solution, which
the synthetic equipment required. PLUMS was applied to identify the best
combinatorial solution which would synthesis as many of the desired products
without making a very large library. To make all the desired products, a library
of 22,932 would be needed. PLUMS identified a solution whereby 3542 (72%) of
the 4907 desired products could be made with a library of just 5390 products. A
salutary lesson can now be imparted. With the final design in hand, it was found
that many of the monomers selected were no longer available in sufficient
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Figure 7 The 3D pharmacophore used in the example. The triangle of light spheres indicate
hydrophobic regions, the overlapping light spheres at the bottom a hydrogen bond
acceptor vector, and the overlapping dark spheres a hydrogen bond donor vector

quantity, or would not react. The actual library synthesised was therefore only
2700 compounds, many of the most attractive structures being absent. It is now
common at Stevenage to build virtual libraries using monomers of more secure
supply, and which are known — or, from an expert perspective are almost certain
— to work in the required reaction scheme. The bottom line for every VSVL
experiment is whether a series of active molecules is identified. In this case some
moderately potent, novel compounds were identified (Figure 8), the best being
1 uM. At the same time, the pharmacophore was used to search the GlaxWel-
lcome compound collection. 2000 compounds were selected for screening, using
similar filters to those applied to the VSVL compounds. From these, 32 active
compounds were found, in multiple chemical series, many being more potent
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Figure 8 The lead molecules identiﬁed using VSVL

than the VSVL series. In our experience, this is a general result. VSVL can work,
but is often less productive than selecting from a compound collection. However,
VSVL does have the major advantage of adding new chemotypes outside of the
existing collection, and in the final part of the paper some current efforts to
address the deficiencies of the present technologies are described.

6 The Near Future — Addressing Deficiencies in the
Current Technology

In our example above, the effort focused around a particular reaction scheme. It
would be highly beneficial to study many schemes. One of the practical limiting
factors is the time taken to evaluate multiple routes. For very large libraries, the
time for enumeration and property calculation can become prohibitive. For a
solution to this problem, algorithms originally developed for Patent searching
can be employed. The majority of chemical patents are expressed in a Markush
scheme (Figure 9). This will immediately be recognisable as how most chemists
think of their combinatorial libraries. In fact, combinatorial libraries are a subset
of the Markush patent requirements, that is, it is a simpler problem. CLUM-
BER2!-23 builds a data structure from which all products of a library may be
constructed, but which stores common fragments and monomers only once
(Figure 10). This may then be used not only to enumerate product structures, but
calculate additive properties (such as Lipinski-type properties), even cluster the
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Figure 9 A typical Markush representation

products or compare the structural overlap between libraries. In a collaboration
between GW and Barnard Chemical Information, a version of this program
which can take our preferred reaction-based input and produce a Markush
mode! has been developed. As an example for how efficient this can be, a 1
million member (100 x 100 x 100) benzodiazepine library (Figure 10) can be
fully enumerated in 26 seconds?* (38,755 products/sec), the Lipinski descriptors
calculated in 96 secs (10,460 products/sec), and 2D fingerprints — needed for
similarity searching or clustering on structure — in 363 seconds (2754 prod-
ucts/sec).

The construction of 3D databases can also be a bottleneck. To some extent
this can be reduced by filtering the 2D structures, so that only compounds that
have acceptable properties ever make it into 3D. However, this is still an area of
active research. It may be that the CLUMBER technology may be useful in the
future. One way to save effort is to keep the databases once built, and to monitor
which products, built from which monomers, are already built. Then one would
only need to build the new products — this is like a poor man’s computer cache.

0 _/<0
X * ORN-Y X
B ;

H 0

Figure 10 The CLUMBER data model for a simple amide library
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At GW we collaborated with Silicon Graphics Inc. (SGI) and Molecular Simula-
tions Inc. (MSI) to apply distributed computing to this problem with the catC-
runch project. Catalyst 3D databases of 5.6 million virtual compounds were
constructed on a 128 processor machine. This took 11,000 processor hours, with
the databases occupying 90 Gb of disk space. However, it is possible to search
these databases with a 3D pharmacophore at the rate of 20 minutes/1 million
products. This indicates the level of throughput one might achieve by harnessing
commodity computing, such as LINUX farms, or the screen-saver technology
created by the SETI project.?* Indeed, it is now possible for people to engage in a
real-life virtual screening experiment organised by the cancer research chari-
ties.’ This project is using a docking algorithm to known protein structures, and
follows in the steps of a previous ‘Crunch’ project between Protherics and SGI1.26

The brute force approach of these Crunch projects is likely to be succeeded by
algorithmic solutions. This is because the chemistry is combinatorial, and the
brute force only parallel. For example, doubling each of the monomer sets in a
three-component library increases the number of products eight-fold, and doubl-
ing the number of computer processors available does not provide a solution.
Docking algorithms are in the lead in this respect, where groups are trying to
convert the combinatorial problem into a linear one, so that increase in library
throughput maps perfectly onto increase in computer horsepower. Typically
these algorithms involve docking monomers or core parts of the molecule then
being smart about how these might join to other monomers, within the con-
straints of the protein environment (Figure 11).27-29

Even supposing that the virtual screen performs as well as we would like, there
still remains the practical problem of reducing the set of desired products to an
efficient synthetic process. With state of the art automation, it is not strictly
necessary to have truly combinatorial solutions, but even so it is desirable to be
as near combinatorial as possible to reduce reagent numbers and costs. As has
been discussed above, this is a multiobjective optimisation problem, best tackled
with a stochastic algorithm working on product properties. SELECT, and
similar programs,3®3! use a weighted sum approach to scoring a library. For
example, should one wish to optimise the diversity of a library, whilst restraining
the molecular weight profile to mimic that of the WDI and keeping the reagent
costs low, each proposed library would be scored by summing the individual
contributions from these objectives, each weighted by a user-defined amount.
There are several problems with this approach. The first is that, without experi-
mentation, there is no sensible way of choosing the weights, and thus a lot of time
must be expended to observe the effect of the weights on the monomers eventual-
ly chosen. In addition, the use of many objectives may result in a uniformly
average solution across all the objectives, when actually there may be an opti-
mum solution for all but one of them. Given this information, the chemist might
well decide that this particular objective could be relaxed, given the excellent
performance against the others. With a weighted sum scoring function, it is not
possible to provide this information. For a solution to this problem, we have
applied the principles of Pareto Optimality and implemented a MultiObjective
Genetic Algorithm (MOGA).32-35 These methods are used for decision support



Templates Monomers 1 ~ Monomers 2

m O 4
e s Ag

Chosen combinations of

Chosen templates
enumerated with monomer template and monomer set
st 1 1 enumerated with monomer

set2

Figure 11 Ilustration of a docking procedure designed to avoid the docking of every combinatorial product

uonpLaUe) praT 10f K6210.01S WAIIYJT up — S21IDIQUT [PNLILY JO Butuaald$ [pnidl



Darren V. S. Green 85

in engineering control systems. The principles of pareto optimality are illustrated
in two dimensions for a simple problem — how to find solutions which simulta-
neously optimise the values of x and y? The stars represent potential solutions,
and the purpose of the algorithm to find the Pareto Frontier (the curved line in
Figure 12). This is a set of non-dominated solutions. A non-dominated solution is
when a line can be drawn from the star to the x and y axes, and no other stars fall
into the box enclosed by these lines and the axes. In Figure 12, each star is
annotated by the number of solutions that dominate that star. The non-
dominated solutions are marked with a 0, and are close to the Pareto Frontier.
Figure 13 brings the theory into practice. This is the result of running the MOGA
to choose a 10K member library from a 100K virtual library, with the objective
to optimise diversity whilst restraining the molecular weight profile to that of the
WDL. Several observations can be made from the range of solutions identified.
The first is that there are many similar solutions along each part of the Pareto
Frontier. Traditional weighted sum approaches will return a solution, without
the information that there are many neighbouring solutions that may be deemed
superior upon other criteria, for example a near-by solution may contain more
attractive monomers to the ‘chemist’s eye’ than the solution returned by the
algorithm. Secondly, the two objectives are in competition, and that it is not
possible to obtain a solution with optimal criteria for both objectives. The final
observation is that the algorithm does a good job in providing a range of
solutions across the Pareto Frontier, and it happens to do this in the time taken
for a traditional algorithm to produce it’s ‘best’ solution. The challenge now is to
provide ways to visualise and interrogate all the data that is produced.
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Figure 12 An illustration of Pareto ranking for possible solutions to a problem where two of
the objectives are to optimise the values of X and Y. The curved line, the Pareto
frontier, shows the desired set of solutions
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Figure 13 The set of libraries designed using a MOGA. Each point is a different library,
with the solutions spread over the range of two objectives — internal similarity of
the library, and the difference in the molecular weight profile of the library
compared to the WDI. The two objectives can be seen to be in competition

7 Conclusions

VSVL is a proven way of finding novel leads from large virtual libraries. It is not
yet the ‘efficient strategy for lead generation’ promised in the title of the paper.
This is due to several reasons, some scientific, some technical. The algorithms
and scoring functions required to predict interactions between ligand and pro-
tein are under constant improvement. The less rigorous requirements for VSVL
over lead optimisation applications has enabled much progress in the area, with
the result that there are several validated schemes for ligand docking, and there is
a growing literature documenting the success of 3D pharmacophore methods.
Library design algorithms continue to improve, with the move towards MOGAs
an illustration of how sophisticated and effective these might become. Smarter
representation of the combinatorial libraries themselves is enabling huge leaps in
efficiency.

In general, however, these tools remain quite daunting for the majority of
scientists working at the bench. The routine use of these methods is not simply a
matter of education and training. Integration of these methods into accessible
and robust end user software, without dilution of the science, must be a priority.
In this respect the software we have can be compared to the fledgling synthesis
automation of the 1990s. The future should see a shift of emphasis from synthesis
hardware to design software. The author, for one, cannot wait.
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1 Introduction

In modern pharmaceutical research the task of lead finding and lead optimisa-
tion are seen as two distinct functions. Lead finding has undergone a revolution
in the past five years. Dr. Green! has presented many of the computational
innovations powering this revolution: focused screening; mining of high
throughput screening data; library design for high throughput chemistry and
analysis of virtual libraries. In this article virtual techniques will be considered
that could lead the way to a similar revolution in lead optimisation.

2 Background

In the drug discovery process a new lead is expected to have five key attributes:
(1) reproducible in vitro activity for the pure compound; (2) proven activity
through the required mechanism; (3) reasonable SAR relationships for a small set
of analogues; (4) ‘chemical tractability’, that is have a wide range of accessible
chemistries available for structural exploration of the compound; (5) either
acceptable ‘drug-like’ properties,? or capable of leading to analogues with ac-
ceptable drug-like properties. In addition, there is a strong opinion>* that a lead
should be structurally simple so that elaboration, to provide increased potency,
is possible whilst staying within the bounds of properties considered to be
drug-like. One factor, the subject of much debate, is the in vitro potency required
for a lead. Opinions vary greatly from sub-micromolar to 50 uM. Leads with
high micromolar activity have certainly been modified to provide nanomolar
active compounds. A prime example of this is the development of Losartan, ICsp
19nM, deveioped from the Takeda angiotensin I antagonist, ICso 42 uM (Fig-
ure 1).5 In truth, the criteria for acceptable lead activity varies depending on the
structure of the compound and the scope for elaboration. It often comes down to
a pragmatic statement ‘will the medicinal chemist pick it up as a lead or not?
The properties that have to be considered by the medicinal chemist during
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Figure 1 The development of the potent angiotensin II receptor antagonist Losartan from
the weakly active Takeda lead

lead optimisation are shown below, with arrows indicating the usual require-
ment to increase or decrease the property.

1 Potency
1 Selectivity
1 Patent coverage

1 Intestinal absorption
Tl CNS penetration

1 Metabolic stability
t Solubility

| Protein Binding

| Toxicity

This is a long list of properties with the first block representing the traditional
goals of potency and patents and the second block properties that have recently
become known as ‘developability criteria’. In modern pharmaceutical research it
is critical that each one of these developability criteria be considered as early as
possible in the optimisation process. It is hoped, by so doing, to reduce the
proportion of failures at a late stage by building in good properties at an early
one. With large Pharma groups currently spending nearly $500,000 an hour on
research and development the price of failure has become very high indeed and it
is no longer acceptable, even with built-in developability properties, for a lead
optimisation project simply to provide a development compound and a single
backup. The requirement must be for a portfolio of good compounds,®-10 any
one of which could eventually make it to market. The strategy should then be to
push forward a single compound, as a pioneer, into the most expensive phases of
development with the expectation of returning to the portfolio to select a
replacement compound if the pioneer fails. Clearly, to achieve this increased
output we have to synthesise and screen more compounds. The industry is
applying several techniques in the real world to achieve these goals: (1) methods
of array and library synthesis,®3 (2) rapid throughput developability screens®
(Caco-2 permeability, solubility, microsomal turnover, CYP450 turnover and
inhibition, cassette dosed pharmacokinetics etc.) and, of course, (3) rapid in vitro
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potency and selectivity screens. Computational chemistry can assist the process
further by paralleling these real world activities in the virtual world. These
virtual activities fall under the headings of: Virtual Focused Diversity (experi-
mental design of arrays and libraries); Virtual Screening (potency, selectivity) and
Virtual Filtering (developability criteria). Each of these will be dealt with separ-
ately below.

3 Virtual Focused Diversity for Experimental Design of
Arrays and Libraries

The term ‘focused diversity’ is an odd one. The objective is simply to define a
region of property space that is relevant to the problem in hand and then ensure
that this region is spanned effectively with the compounds made. There are
several design methods that have been applied by medicinal chemists in order to
achieve such a goal, e.g. Fractional Factorial,!® D-Optimal!! and Partitioning.1?
The most important step in the process is defining the property space to be
explored. There has been much discussion of diversity and how to evaluate it.13 It
is clear that pharmacophore groups in drug molecules are key to their interac-
tion with protein targets4-16 and, therefore, for general exploration of potency
the thorough exploration of pharmacophore space is vital. Several groups have
devised methods to achieve this goal.!’-19 The Gridding and Partitioning (GaP)
method!® will be discussed here in more detail. The general concept is laid out in
Figure 2 for the selection of monomers to be used in an array synthesis. It may be
useful to consider a real example: Figure 3 shows the synthesis of a simple array
that was used in the identification of the p38 inhibitor RPR200765A.6 The
reaction involved is a straightforward amide coupling. In this work the medicinal
chemists used 32 amine monomers selected to represent the common pharmaco-
phore groups and to cover reasonable distances of those groups from the amide
linkage bond. The selection, which was carried out manually (atom and bond
counting) and with no quantification of pharmacophore coverage, is a very
simple example of experimental design using pharmacophores. The GaP method
allows such a selection to be carried out in an automated fashion and ensures the
pharmacophore coverage required. The method considers a large number of
possible monomers, normally selected to lie within property constraints defined
by the medicinal chemist. The linkage bond to the monomer is fixed in the
co-ordinate frame, which is partitioned into cubes of fixed dimensions. Each
monomer is linked in turn to the template to generate a virtual molecule.
Conformational analysis is performed allowing all the bonds contained in, and
linked to, the monomer to vary in a systematic fashion. As the analysis continues
the position of the pharmacophore groups for each conformer is identified,
occunation of a partition cube is recorded and the information stored in a bit
string (see Figure 2). Finally, selection of monomers is made by reviewing the
molecular bit strings and selecting the smallest set of monomers that fill all the
bits possible. There are many ways of modifying and biasing these selections and
these are laid out in the original publication.!® The array prepared during the



92 Virtual Techniques for Lead Optimisation

Attachment Free x-axis rotation
group about attachment
o \
0
e =] H,N harmacophore
* oint

Track locations of

pharmacophores
Iy within regular grid
=T
T =1
Bigi siads s
2
=
- X

' ] H
,d/ HH E_ Create
z - 1 Sinary
String

lofof1/ol1[1]oloo[1]1]1 [0fo[1][0]1[1]0]0l0ol1]0]1]

Figure 2 Schematic description of the GaP method. Each monomer is aligned in the same
co-ordinate space. Conformer generation is performed allowing rotation around
all bonds. For each conformer the position of pharmacophore groups in the
3D-grid are determined and recorded in a bit string
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Figure 3 Synthesis of the amide array used in the discovery of RPR200765 A°

discovery of RPR200765A was re-evaluated using GaP. For the study a set of
1330 suitable (MW <200, cLogP 1.5-3.5, rotatable bonds <4, pharmacophore
groups <2) amines were identified in the Available Chemical Directory and
processed using GaP. It was found that 150 amines were required to fill {at least
once) all the partitions available to the combined set. The original selection of 32
was found to cover just 14% of the bins available to these suitable amines.
Clearly the original selection left most of the property space unexplored.

4 Virtual Screening for Potency and Selectivity

These techniques may be divided into methods for which the binding site
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structure is known, through X-ray crystallography, and those in which it is not.
These are considered below.

4.1 Site Structure Unknown

There are three familiar techniques which may be adapted for use in virtual
screening: (1) pharmacophore fitting, e.g. using the Catalyst?* package (Figure 4),
(2) receptor surface models?%2! (Figure 5) and (3) a statistical receptor model
(CoMFA22/COMSIAZ) (Figure 6). The first technique can act as a reasonably
crude selection criterion with compounds showing close RMS fitting to the
pharmacophore preferred over those with looser fitting. The discriminating
power of the pharmacophore can be increased greatly by the addition of shape?’
or exclusion spheres.?6 However, the other two methods (2) and (3) should be
capable of giving an actual prediction for the activity for the virtual compounds.
Unfortunately, both suffer from the fact that they require a careful superimposi-
tion for each compound. This can be very limiting when many virtual com-
pounds need to be evaluated. Several groups have looked at methods which may
provide an alignment free method, e.g. the MS-Whim?7or the Almond method.?
Almond appears to be promising, though the method is at an early stage (Figure
7). The technique utilises a single low energy conformation for each molecule.
The conformer is explored using three molecular probes, e.g. water probe, dry
(hydrophobic) probe and amide NH. For each probe the regions of energy

Figure 4 A typical pharmacophore with virtual compound fitted: Positive centre (dark
mesh spheres to left of picture), H-bond donor atom and extension point (light
mesh spheres to centre of picture) and aromatic ring centroid with normal (light
mesh sphere to right of picture)
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Figure 5 A typical receptor surface model showing coding for H-bonding interactions:
H-bond acceptor (light grey) and H-bond donor (dark grey)

Figure 6 A typical CoMFA model for steric interactions: favoured regions (dark grey
shading to right and top o, volecule) and disfavoured regions (light grey shading
to right of molecule)
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Figure 7 Schematic description of the Almond method. Regions of favourable interactions
with amide NH probe identified. These are reduced to a defined number of
interaction nodes. For each combination of nodes the product of the interaction
energies and the distance is recorded. The largest product for each distance is
retained for multivariate analysis

minima are identified and the distances between the GRID nodes, which com-
prise these regions, are then determined along with, for each pair, the product of
the interaction energies. This process is performed for nodes derived from the
same probe (auto) and for nodes from different probes (cross) and the maximum
products for each distance stored. These distance-energy variables are then
related to activity through multivariate analysis (PCA, PLS) in order to generate
quantitative or qualitative models suitable for virtual screening, The method has
the advantages of being an interpretable, rapid, pharmacophore based QSAR
with no alignment necessary, but the disadvantage that it uses only two point
pharmacophores which are derived from a single conformation. Currently we are
finding the method most useful when applied to small, simple systems and using
PCA rather than the PLS regression method. An example of this approach is
shown in Figures 8 and 9 where a series of 7TM receptor antagonists was
considered. The structures were simplified by ignoring the common portion and
exploring the single variant position to which various heterocycles had been
attached. The Almond analysis was carried out on the training set, PCA per-
formed and the results displayed as a PCA scores plot with colour coding
according to activity (black active, grey inactive, in Figure 9). Three regions
containing active compounds were identified. A large set of possible heterocyclic
replacements were screened virtually by projection of their Almond descriptors
back into this PCA space. It was then possible to nominate for synthesis those
virtual heterocycles found to be placed in the ‘active’ regions (Figure 9).
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Figure 8 Typical Almond variables for a heterocycle. Such variables were used to generate
the virtual screen developed in Section 4.1. Picture to left shows a substituted
tetrazole with autocorrleation descriptors derived from a GRID dry probe. Picture
to the right shows same heterocycle with crosscorrelation descriptors for dry (light
grey spheres) and amide NH (dark grey spheres) GRID probes
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Figure 9 Left, Principal Component Analysis plot for virtual screen described in Section
4.1, with active regions ringed. Right, heterocycles identified as projecting neatly
into one of the regions found for active compounds

4.2 Site Structure Known

It may be expected that virtual screening would be fairly straightforward when
the active site structure of a target is available. What is required is a good method
for docking virtual compounds and a good scoring method to rank the com-
pounds according to the goodness of fit to the receptor. There are a huge number
of docking and scoring methods available and there have recently been some
good comparisons of the methods.?® However, the common experience for this
sort of work, when applied to lead optimisation, is that docking programs work
extremely well, inasmuch as crystal structures can be reproduced accurately, but
the relative scoring of dockings for different ligands is very poor indeed. An
example of the sort of results obtained can be seen in Figure 10 for p38 MAP
kinase and a series of inhibitors. It can be seen that there is no correlation of the
ICso with the docking score (GOLD?). For the moment the docking and scoring
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Figure 10 Typical plot of GOLD scores against ICsp: no correlation can be seen. The
GOLD score is in essence an estimation of the binding energy for the ligand, but
with sign reversed to make large values favourable for binding

are useful for eliminating very poor compounds (‘no hopers’) but cannot be used
to rank the remainder. In the long term we need new accurate scoring methods.
In the short term one approach is to develop a CoOMFA or CoMSIA model for
the target and embed this into the site for scoring. In this way a target specific
scoring function is created. Such an approach was reported to be superior to all
the currently available scoring methods for a set of for p38 MAP kinase inhibi-
tors.3!

S Virtual Filtering for Developability Criteria

There are a great number of workers involved in the development of general
models to predict developability criteria. These can be divided into two types:
Level 1 models in which compounds are assessed for their ‘drug-like’ properties,
such as application of the Lipinski Rule-of-5? or the Sadowski neural network
classification.??

Level 2 models designed to predict a single property: Intestinal absorption,?
CNS penetration,’*35 metabolic stability,® solubility,?” protein binding,® tox-
icity.?

For lead optimisation it is advisable to check the suitability of these models for
the series under investigation. It will often be found that the Level 1 models have
to be relaxed for the series and that the Level 2 models simply fail. When the
Level 2 models fail it is appropriate, if sufficient measured data become available,
to develop a series specific model. It is not possible here to discuss all the
developability criteria, so the discussion will concentrate on three areas: passage
through membranes, toxicity prediction and metabolism prediction.
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5.1 Passage through Membranes

VolSurf is a new technique designed to have particular applicability to the
modelling of the movement of drugs through membranes* and as such may have
utility for prediction of absorption and penetration of the blood-brain barrier
(BBB). It uses volume properties describing hydrophobic, hydrophilic, H-bond-
ing interactions and various combinations of these properties (Figure 11). A BBB
prediction model has been developed using this methodology. 1! The model was
generated using data almost entirely from a single congeneric series of k-opioid
analgesics (e.g. Figure 12). However, it was found also to be effective for the
general prediction of CNS active compounds, though rather less successful for
prediction of those that were not CNS active. In order to evaluate the VolSurf
method for lead optimisation a three component PCA model was constructed
largely according to the published method, but with the modification that only
the members of the congeneric series were included and that a single representa-
tive enantiomer was used for each racemic pair. It was found that separation of
the penetrant from the non-penetrant compounds was best viewed using a plot of
the first and third PC (Figure 13). A set of sedating (10 compounds) and non-
sedating (10 compounds) antihistamines were then projected into this model
(Figure 14). All the sedating (penetrant compounds) were seen to lie in the correct
zone. However, the non-sedating were split between zones with five in the correct
zone and five misclassified. Such a model could be very useful for virtual
screening, but its application has to be considered carefully. When working with
a large virtual library it should be possible, through this method, to identify a
subset of compounds that will not pass into the CNS. There will be other
non-pentrating compounds that will be misclassified, but this is acceptable if we
are dealing with a large number of possibilities and limited chemical effort.
Alternatively, if we are seeking CNS active compounds, the model will ensure we
don’t miss any potentially good compounds. However, it will also identify a large
number of non-penetrating compounds as CNS active.

Figure 11 Typical VolSurf properties: left favourable water interaction volumes, right
Sfavourable hydrophobic volumes for the antihistamine fexofenedine
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Figure 12 Typical k-opioid agonist used in the production of the blood—brain barrier model
described in Section 5.1
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Figure 13 PCA plot for the BBB model derived for k-opioid agonists described in Section

5.1: CNS active compounds light grey open circles and CNS inactive compounds
dark grey open circles

5.2 Toxicity Prediction

There are several systems available for predicting well known toxicities related to
substructure.3® However, there are many possible sources of toxicity and the
usual problem for lead optimisation is series related toxicity. This can be very
difficult to model and is unlikely to be predicted by the general toxicity predic-
tion systems. It is common for a lead optimisation team to be aware of a
particular toxicity related to a series, but rare to generate enough whole animal
toxicity data to allow production of a model. One way forward is to look for a
simple in vitro surrogate that can generate an endpoint, related to in vivo toxicity,
on a substantial number of compounds. An example of this is seen with the work
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Figure 14 Projection of a set of sedating (light grey squares) and non-sedating (black

squares) anti-histamines into the PCA space defined for the x agonist model
(Figurel3)

described for the identification of RPR200765A. In this case the general class of
compounds was known to have a liver toxicity problem. Initial in vivo rodent
studies were carried out which indicated that this was most likely due to
induction of CYP450 1A 1. An in vitro CYP450 1A1 induction screen using liver
hepatocytes was employed as a rapid screen for toxicity, thus allowing rapid
generation of good quality toxicity related data. It is in vitro data of this sort that
would be ideal for the development of a virtual filter. VolSurf and Almond may
be used for the modelling of such data. In Figure 15 one particular cellular
toxicity marker was modelled using VolSurf water, dry and amide NH probe
variables and PCA. The ‘toxic’ compounds (light grey) were clearly seen to liein a
different portion of PCA space to the non-toxic (dark grey). Virtual filtering for
toxicity was then carried out by projection of compounds into the PCA space
and using the distance from the toxic region to prioritise compounds for syn-
thesis.

5.3 Metabolism Prediction

There are many reports describing the use of QM calculations for the prediction
of sites, and relative rates, of metabolism.*2 These are highly labour intensive,
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Figure 15 An Almond virtual toxicity filter. Toxic compounds (light grey) can be seen in a
distinct region separate from the non-toxic compounds (dark grey)

complex and time-consuming calculations that are certainly not suited for use as
a high throughput virtual metabolism prediction filter. An investigation was
carried out to see if in vitro metabolism could be predicted for a series of
compounds using Almond. The rational behind this is that metabolising en-
zymes have very simple recognition features, and that Almond’s simple two
point/distance—interaction energy approach may be able to simulate these fea-
tures. A series of 7TM ligands, with rat microsomal turnover data, was used for
this work. They were categorised into high and low turnover. Almond par-
ameters were generated and PCA analysis was carried out. The initial three
component model was simplified somewhat by using the most influential vari-
ables only and a two PCA component model produced. The two models are
shown in Figure 16. An examination of the plot reveals a region in the lower
left-hand quadrant that contains compounds largely free of metabolism. All
other areas of the plot contain an approximately equal mixture of both exten-
sively and poorly metabolised compounds. Clearly there are many low metab-
olism compounds found in the other regions. However, in this case virtual
filtering would be directed at prioritising for synthesis compounds found to
project into this promising left-hand quadrant.

5.4 An Example of Virtual Filtering for Library Design

The objectives of the medicinal chemists for the synthesis of the library in Figure
174344 were to produce compounds passing some simple Level 1 filters (Lipinski
rules, modified in the light of previous knowledge of the bioavailability of the
series, and polar surface area < 140A2) whilst at the same time satisfying the
constraints of the synthetic protocols to be used. These were: (1) a near 20 x 20
Library (~ 400 final compounds, but not essential to be fully combinatorial); (2)
Am very close to twenty; (3) Nu number not so critical; (4) All Ams to be used at
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Figure 16 A VolSurf virtual metabolism filter for a series of 7-TM antagonists. Left a PCA
plot of the VolSurf descriptors (PCI1-3). Right a refined model in which the
variables are reduced to the most influential. A region coding for low metabolism
can be seen in the lower left-hand quadrant. Virtual filtering is carried out by
projection of virtual compounds into this PCA space
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Figure 17 Description of the Lib2 described in Section 5.4

least 20 times. A Monte Carlo approach was used to find a solution to this
problem*® in order to satisfy all these objectives in an optimum fashion. The
original virtual library contained 1485 compounds which reduced to 770 on
application of the filters. The 770 compounds were processed by the Monte
Carlo monomer selection to provide a library of 441 compounds using:

21 Amides — Target 20;
24 Nucleophiles — Target > 20
~ 21 Nucleophiles for each amide — Target 20

The success of the virtual filtering was evaluated by comparing the results of
this library in a Caco-2 cell permeability assay with those for a similar library
created without virtual filtering. The comparison can be seen in Figure 18. There
is a clear shift to highly permeable compounds indicating success for the tech-
nique.
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Figure 18 Bar graphs of Caco-2 permeability data for two libraries: Lib I (black) syn-
thesised without virtual filtering and Lib2 (light grey) for which virtual filtering
was applied

6 Conclusions

Virtual techniques are starting to make a big impact in lead optimisation
programmes. They are sure to play a major role in the drive to produce larger
numbers of high quality, robust development candidates. However, much work
has yet to be done in the development, validation and application of the tech-
niques. Pharmacophore experimental design and virtual screening are two com-
plementary methods. One is exploring what is possible, the other quantifying it
and allowing focus onto the highest quality compounds. The two techniques
should both be allied to virtual developability filters. The development of these
filters is the greatest challenge. General developability models will certainly play
a role, but in many cases it will be necessary, when dealing with a lead optimisa-
tion series, to adapt intelligently the models or generate series specific models.
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1 Introduction

Physical organic chemistry is the quantitative study of organic reactivity. The
work of Hammett in the 1930s and 1940s represented the highlight of this
discipline.! Hammett recognised that the effect of electron-withdrawing substitu-
ents on the rates of reaction and position of equilibria were a property of the
substituent and not the reaction. Hammett used the difference in the pKas of
m,p-substituted benzoic acids to quantify the electronic effect of substituents,
which was termed (¢ = pKa H-benzoic acid — PKa X-benzoic acid). The sensitivity of a
particular reaction to the electronic effect is represented by the reaction constant
p. This seminal work led to the development of the whole field of physical
organic chemistry, dissecting the role of electronics in organic reactivity. So, how
does this body of work impact on drug discovery? Taking the lead from physical
organic chemistry, many scientists wished to identify similar structure—activity
relationships with biological activity. While one can point to a few examples of
successful quantitative structure-activity relationships (QSARs) from Ham-
mett’s time forwards, the pharmaceutical industry had to wait until the early
1960s to have their own ‘biological Hammett’ equation with the work of Hansch
and Fujita.2 Their breakthrough was to take a multivariate approach to correlat-
ing structure changes with biological activity — using n-octanol-water partition
coefficients to model the hydrophobic effect, Hammett’s ¢ or Taft’s® ¢* to
represent the electronic effect of substituents and Tafts’ Es parameter to model
steric effects of substituents. Hansch’s choice of n-octanol-water partition coeffi-
cients to model hydrophobicity was inspired, and built upon work of Overton*
and Meyer’ stretching back to the turn of the previous century, which had used
oil-water partition coeflicients to model narcosis. The advantage to Hansch of
n-octanol was that many drugs will dissolve in it, and its UV transparency made

106
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developing experimental methods for determining partition coeflicients straight-
forward. Hansch and Fujita managed to identify many 100s of such QSARs,
which launched the whole area of QSAR upon the pharmaceutical industry.
This was the 1960s revolution — and one can imagine that this must have had a
similar impact on drug discovery to the growth of computational chemistry in
the 1980s and combinatorial chemistry in the 1990s.

Many such correlations were identified, and the fact that p, ¢ and Es could be
tabulated meant correlations could be generated and predictions made without
any actual measurements.” The partitioning system on which the hydrophobicity
scale was based became standardised upon n-octanol-water. The compilation of
databases containing many 10000s of measurements allowed algorithms to be
developed to predict logPs. LogPs for quite complex drug-like molecules could
be predicted with an acceptable degree of accuracy, and these algorithms remain
largely unchanged today.®-® But the new science of the 1970s-1980s was com-
putational chemistry. The rapid increase in affordable computational resources
and the development of visualisation algorithms and high-resolution graphics
terminals started its own revolution. The focus upon electronic distribution,
conformational analysis along with the growth of protein crystallography and
molecular docking initiated true rational structure based design.

One of the best examples of structure based design is the design of cyclic urea
inhibitors for the enzyme HIV protease.? HIV protease is a C; symmetric dimer
with two aspartate residues in the floor of the active site, one from each of the
monomers, and an active site water hydrogen bonded to two flaps in the roof of
the active site.

The Dupont-Merck group suggested, based on molecular docking studies,
that C; symmetric dimers would be potent inhibitors. A combination of molecu-
lar docking, pharmacophore definition and database searching first led them to
design cycloheptanone-diols, to form two charged reinforced hydrogen bonds
with the aspartates, and a ketone to displace the water hydrogen bonded to the
flaps (Figure 1). The ketone was replaced with a urea to strengthen the hydrogen
bonds to the flaps. Their modelling studies allowed them to optimise hydropho-
bic interactions and also correctly predict the stereochemical preferences of the
ligands. These compounds were found to be very potent inhibitors of HIV
protease, and allowed Dupont-Merck to take DMP323 into development as a
possible treatment for AIDS in 1994. This first clinical candidate was rapidly
terminated due to variable bioavailability, poor solubility and metabolic insta-
bility of the hydroxyl functions. This was replaced by DMP450 with better
solubility and good bioavailability in man. This is not the end of the story for this
project and we will return to this later.

Two other important developments in pharmaceutical research occurred in
the late 1980s/early 1990s, which changed the way we do drug discovery. The
first was high throughput screening (HTS) and the second was the appreciation
of the influence of drug metabolism and pharmacokinetics (absorption, distribu-
tion, metabolism and elimination studies, ADME) within pre-clinical projects.
Pfizer’s experience was that HTS was not necessarily delivering robust projects
into discovery. Chris Lipinski,!1? in his evaluation of Pfizer’s ‘success’ in generat-
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Figure 1 Dupont-Merck optimisation of a lead for HIV-protease utilising tools of structure-
based design — design of cyclic ureas

ing projects from high throughput screening, found that hits from HTS tended to
be lipophilic, and that recent entries into Pfizer’s development portfolio were
even more lipophilic. In his study of the physical properties of development
drugs he proposed that a drug-like property range exists. Of the compounds in
development, 90% tend to have logP < 5, MW < 500, number of donors < 5
and number of Ns and Os < 10, which has become known as The Rules of 5.
Lipinski’s work put physical organic chemistry back on the map — not only in
terms of calculated physical properties but also the equal importance of making
measurements in high throughput mode — by developing a high throughput
solubility screen. Pfizer also introduced registration alerts that have been copied
by many pharmaceutical companies — in an effort to improve the properties of
compound synthesised and submitted for testing. The importance of this on the
way we conduct research has not been lost. Indeed, it has spawned a number of
other important papers attempting to classify the drug-like space to allow
database screening and library design.11:12
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It has been reported that 31% drugs in clinical development fail due to
pharmacokinetic deficiencies.!*> More recent figures suggest the proportion of
failures (1994-1997) may remain as high as 24%.14

Our own work used a different database — rather than focus upon develop-
ment compounds we focused upon marketed oral drugs only. While 90% of the
oral drugs lie within the rules of 5 the mean properties of drugs on the market lie
far below these property extremes.!?

The introduction of ADME studies into pre-clinical research has had a huge
impact upon the process of drug discovery. It has moved discovery projects away
from a focus solely on potency and selectivity to optimising upon two key
endpoints: dose to man and dose frequency. The dose-to-man calculations, of
which one simple form of the equation is shown in equation 1, provide a useful
platform to balance the importance of potency, protein binding, clearance and
bioavailability in structure optimisation.

Dose = (Cssav X T x Cl)/F (1)

where Css av = average plasma concentration required to drive efficacy, T = dose
frequency, Cl = prediction of human clearance and F = predicted human bi-
oavailability.

A more detailed dose-to-man equation is illustrated in equation 2. This
equation allows us to balance the effects of volume half-life and dosing frequency.

F.Dose.e=*t
Chin, ss = m (2)

where Cssmin = minimum plasma concentration required at steady state, V' =
volume of distribution and k = elimination constant.

Drug discovery is now aimed not just at optimising potency and selectivity —
but also lowering clearance, maximising absorption and bioavailability, reduc-
ing protein binding (increasing free fraction) and of course increasing potency.
These properties are balanced against the required dose frequency, which has t12
implications as stated above. (In a competitive therapeutic environment, once-a-
day dosing is usually required and indeed the top 10 best selling oral drugs are all
once-a-day dosing.) A good drug could be obtained by having the appropriate
combination of all these properties. A selective compound with relatively lower
potency may still be acceptable if clearance is lower and/or protein binding is
also lowered. However, we still need to consider the total daily dose with respect
to adverse drug reactions and perhaps hepatic-enzyme induction.!®!7 We also
want to minimise any strong inhibition of the cytochrome P450 enzymes since
P450-dependent oxidation is the major mechanism of clearance of many drugs.!?
In modern medicinal therapy regimens drugs are rarely dosed alone but often in
cocktails with other drugs — P450 inhibition may lead to significant drug—drug
interactions, which may lead to toxicity. Indeed, it has been estimated that up to
3% of hospital admissions may be a result of drug-drug interactions,® the most
common of which involve CYP metabolism.!? This seems to make the process of
drug optimisation a much more challenging process than in the past — but the
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rewards would be a more robust nomination candidate, which may be easier and
faster to develop, and less likely to fail in the early stages of drug development.
Not only are we challenged to produce better quality drug candidates in today’s
drugs discovery programs, but also better quality drug candidates much faster
than ever before. Ideally we would want to build in good ADME properties in
the first instance, but the question then remains — how can this be achieved?

2 The Control of ADME Properties

Ideally we would like to have a clear enough understanding of the structural
features/properties that control absorption, free fraction, cytochrome P450 inhi-
bition, metabolism, distribution and elimination in order that ideal properties
could be designed into molecules before synthesis. It is apparent that many of
these important properties are much more dependent upon bulk physical prop-
erties than the target SAR.

Absorption

Prediction of structural features that control human intestinal permeability has
been a major focus for many years. A number of different experimental protocols
have been used to model absorption, including rate of uptake from everted rat
gut-loop, Ussing chamber measurements, and more recently permeability across
epithelial cell monolayers in culture.2’ The in vitro Caco-2 screen has become
almost a standard protocol in all pharmaceutical companies and a quantitative
model of permeability. The Caco-2 cell line is a human colonic carcinoma
cell-line, but it is thought to be a reasonable model of human small intestinal
permeability. It contains many uptake and efflux pumps, many of which have
been well investigated. However, the relevance of these transporter proteins to
human absorption in vivo is not that well defined. Even with all these caveats,
predictive physicochemical QSAR models have been developed from such
screens based on simple physicochemical descriptors.2'-2* QSARs have been
developed that highlight the importance of logP, hydrogen bond donor counts,
molecular weight and polar surface area, amongst others. The problem facing
chemists is that many of these studies are based on only small datasets, with very
limited chemical diversity, and the relative balance of these properties through-
out all of the drug-like space is difficult to determine. Large datasets, that may
not exist in the public domain, provide the best chance of obtaining such global
models. They will surely contain these descriptors of hydrophobicity, hydrogen
bond counts, and some descriptor for molecular size - although of course they
may differ in terms of the exact descriptors chosen to represent these underlying
physical properties. For instance, although polar surface area is very popular as
a descriptor, and even a surrogate for permeability, it is computationally quite an
involved calculation. But polar surface area is largely just another way of
counting Ns and Os as described by Lipinski’s rules of 5.

The mechanism of absorption for the majority of oral drugs is assumed to be
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passive transcellular permeability.2*> With the Caco-2 screen containing many
transporters expressed to differing extents and of unknown in vivo relevance, this
has prompted some companies to question its usefulness as a screen for passive
transcellular permeability, and as a source of data upon which to generate QSAR
models. For instance HoffmanLaRoche over the past few years have developed a
purely physical-organic model of transcellular permeability as a surrogate for the
Caco-2 screen.?* Instead of having a living cell monolayer separating an aqueous
donor and receiver compartment, Roche’s PaMPA screen uses a phospholipid
membrane soaked pad. Permeation from the apical to basal receiver compart-
ment can therefore only occur by passive transmembrane permeability. If the
project aim is to target passive transcellular permeability for oral absorption,
then QSAR models based upon the PAMPA screen data may actually produce
better predictive models than those based upon the Caco-2 screens. Some
companies are so confident in the predictive ability of their computational
models for oral permeability that they have actually ceased screening for per-
meability, and have replaced these experimental protocols with purely computa-
tional models.

Lipinski also highlights the importance of molecular weight in drug-likeness.
Molecular weight sometimes occurs as a descriptor for oral absorption also. This
is one of the more controversial properties, as it is intuitively difficult to under-
stand why molecular weight should or could be a controlling factor. Molecular
weight is a correlate of molecular volume, which controls molecular diffusion,
which may modulate permeability. Further, clearance by biliary excretion is
thought to be dependent upon molecular weight, with the cut-off for rat thought
to be 350 and 500 for human.?> In AstraZeneca R&D Charnwood’s own phar-
macokinetic database, we can clearly determine a dependence of rat bioavailabil-
ity upon molecular weight, after we have removed the confounding effects of
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Figure 2 Dependence of bioavailability in rat upon molecular weight for low clearance
compounds (Cl < 20) and intermediate lipophilicities (logD =1-4)
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clearance and logD74 (Figure 2). Whether biliary clearance or permeability is the
major reason for the importance of molecular weight, it is clear that molecular
weight is an important controlling property. Dupont-Merck?® found that their
cyclic ureas in dog only achieved significant exposure when the molecular weight
of their ligand was below 600.

Many pharmaceutical companies had research programmes aimed at inhibi-
tion of renin as a possible therapy for hypertension. The X-ray crystal structure
of human renin became available in 1989;27 this also proved the opportunity to
exploit the then new computational tools and attempt a rational structure based
drug design approach. But to date no renin inhibitor from any of these programs
have made it past phase II clinical development. All renin inhibitors in develop-
ment failed due to problems in achieving sufficient bioavailability due to the high
molecular weights of the designed inhibitors and also the cost of production of
these complicated molecules.?® (Figure 3). This is also not the end of this story
and we will return to renin later.

Plasma Protein Binding

The degree of plasma protein binding of a compound in vivo is as important as its
inherent potency in determining in vivo efficacy. Efficacy is presumed to be driven
by free concentration of drug — not its total concentration. Plasma protein
binding is largely controlled by lipophilicity, and reducing lipophilicity causes a
concomitant reduction in protein binding. Acids show much higher plasma
protein binding than neutrals or bases (Figure 4), but within a homologous series
it is still modulated by lipophilicity.

The role of protein binding is nicely illustrated in the discovery of NMDA
antagonists by Merck.?? In optimising their 6.5 uM lead I, they managed to

MWt Distribution of PDR Drugs and Renin

Inhibitors
25 ——— =
20
S 15
o - —
O 10 m PDR MWt |
B J | mrenin
5 I —
0 I T |
O O O O 0O O O © © © © O
© ©O © ©6 O ©6 © © © © © o
- N O F O © K ® ® © ~ «
MWt

Figure 3 Comparison of molecular weights of renin inhibitors taken into development with
the Physicians Desk Reference Oral Drugs Profile
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increase potency almost 3000-fold by introducing a hydrophobic binding motif.
In vivo the efficacy of I1 is only 20-fold higher than I. In fact they obtained a good
correlation between in vitro potency and in vivo efficacy (Figure 5). The large loss
in efficacy was solely due to the concomitant increase in protein binding with
structural optimisation. The difficulty with this lead optimisation project arose
because the binding to the receptor in this series of compounds was also largely
controlled by hydrophobicity, along with plasma protein binding (Figure 6).

In attempting to derive QSARs for metabolic properties in vivo, a number of
authors have tried to correct for the confounding role of protein binding by
deriving so-called intrinsic or unbound values. For instance, as in vivo clearance
is modulated by the unbound fraction in plasma (f), log(Cl/f.) vs. logD correla-
tions are often used to demonstrate the role of bulk properties. However, because
of the intercorrelation of free fraction with logD, a number of these apparent
correlations are completely spurious. This can make deriving an understanding
from the literature rather difficult.3®

3 Volume of Distribution

Volume of distribution not only has a direct role in modulating ¢/, but also in
determining the difference between Cmax and Cuin during the dosing interval.
This may be an important consideration in managing the therapeutic margin
between efficacy and side effects. From a consideration of the literature, it is clear
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that the volume of distribution of a drug is largely governed by its physicochemi-
cal properties, most notably charge and lipophilicity.’! A useful relationship for
the volume of distribution at steady state, V32 is given below:

VSS = Vp + VTKp = Vp +fu/f;]T VT

where Vp = volume plasma compartment, ¥t = volume tissue compartment,
Kp = plasma: tissue partition coefficient, f, = fraction drug unbound in plasma
and fyr = fraction drug unbound in tissue.

It can be deduced from this that for compounds with large volumes of
distribution, Vs oc fu. Similarly, for compounds with small volumes of distribu-
tion, tissue penetration (as reflected in the term, Ky, the tissue to plasma concen-
tration ratio) is limited. Therefore, acidic drugs exhibit volumes of distribution
~ 0.1-0.2 L kg1 as a consequence of extensive plasma protein binding and poor
tissue affinity. It can also be deduced that, for such compounds, improvements in
Vss will only be made once fyt is addressed, which would entail reducing protein
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binding while increasing or maintaining tissue affinity. By contrast, basic com-
pounds with moderate lipophilicity will exhibit large volumes of distribution
owing to their higher tissue affinity/membrane interactions,>> and low protein
binding relative to their tissue affinity. In general, neutral compounds may be
expected to have moderate Vs values since both f, and f,T may be influenced
similarly by lipophilicity. The effects of these considerations can clearly be seen in
the AZ R&D Charnwood pharmacokinetic database comparing volumes of
distribution of neutrals and basic compounds vs. logD (Figure 7). The import-
ance of the balance between tissue affinity and protein binding not only deter-
mines the extent of distribution, as measured by the volume of distribution, but
also the sites of drug disposition, with acids and neutrals largely distributing to
adipose tissue, while bases largely distribute to ‘lean’ tissue.3433

Kp can be measured from in vivo studies and from in vitro measurements of
binding to tissues and plasma. A reasonable relationship between K, in vivo
versus in vitro has been established for eleven drugs by Schumann.’® However, for
several highly cleared compounds there was a discrepancy, suggesting either a
flaw in experimental design or active uptake or secretion of such compounds by
some tissues. The labour-intensive nature of such measurements and the require-
ments for human tissue preclude their use as routine screening tools. However,
the scope for optimising Vs in order to achieve pharmacokinetic and phar-
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macodynamic duration may be limited by the SAR for the pharmacodynamic
target. Critical ionic interactions with amino acid residues may hamper efforts to
introduce a basic centre within the molecule, to increase Kp, and may explain
why such case histories (e.g. amlodipine and rifabutin) are limited and often
appear to reflect serendipity arising from a desire to introduce more soluble
functionalities.’”

4 Metabolic Stability and Cytochrome P450 Inhibition

Optimisation of metabolic stability is now accepted to be an equally important
objective of a lead optimisation project as optimisation of potency and selectiv-
ity. In simple terms, clearance and absorption determine bioavailability and both
clearance and the volume of distribution may, at least in theory, be optimised to
provide the required elimination half-life. In turn, clearance can be considered to
be composed predominantly of renal or hepatic processes.

Passive renal filtration usually occurs with water-soluble compounds with
logD74 < 0 and can be predicted well using allometric scaling, a knowledge of
the glomerular filtration rate and the fraction unbound across species.’® Needless
to say, such polar compounds are rarely encountered early in the drug discovery
process for targets aimed at chronic oral delivery. Therefore, hepatic clearance
tends to dominate either via biliary clearance of unchanged drug or enzyme-
catalysed biotransformation {metabolism).

The lack of detailed knowledge of species similarities or differences in uptake
or efflux transporter proteins makes optimisation of hepatic uptake/biliary
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clearance a less attractive proposition at present, despite initial allusions to
molecular weight thresholds and inter-species trends in biliary elimination. 4

In order to facilitate the lead optimisation process, it may therefore seem
prudent to select a series of compounds for which the rate-determining processes
for the ADME fate are well understood. Our lack of knowledge of species
differences, structure—activity relationships, tissue distribution and relative activ-
ity of individual phase 2 enzymes suggests that it may be prudent to target
metabolic clearance via CYP oxidation, where appropriate. Many publications
are appearing defining pharmacophores for cytochrome P-450 dependent oxida-
tion based on homology modelling-docking, QSARs based upon recursive par-
titioning and molecular orbital calculations.*1-47 These may point towards speci-
fic structural features that lead to molecular recognition and subsequent
metabolism, and hence guide a discovery program towards structural modifica-
tion to block these recognition features or metabolic sites.

Optimisation of bulk properties may also be a successful optimisation strategy
in its own right. We have recently analysed data from AstraZeneca R&D
Charnwood’s own rat hepatocyte database (Figure 8). This data comes from
many projects and structural classes. It clearly demonstrates that in a low logD
range 70% of compounds tend to be stable, with only a small percentage with
high intrinsic clearances. In contrast as logDs of compounds rise to 1-3 and
further to 3—5 we see a decrease in the percentage of stable compounds and an
increase in the percentage of highly unstable compounds. In this large dataset of
structurally diverse compounds we can easily demonstrate an underlying control
of hydrophobicity. One possible reason for this observation is that for many
compounds the major route of clearance is through oxidation by CYP-3A4.48
This is probably the most non-specific of all the cytochrome P450 enzymes and
shows little structural specificity; recognition is largely controlled by hydropho-
bicity. This is true for substrates and inhibitors of 3A4, as has been recently
demonstrated by the simple QSAR for structurally diverse 3A4 inhibitors, which
highlights the importance of hydrophobicity, and the increase in affinity afforded
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by the presence of a neutral nitrogen acceptor in the molecules® (Figure 9).
Lipinski’s rules of 5 focused upon properties for oral absorption. But these
properties are of more widespread importance than this. As has been highlighted
in this review, hydrophobicity, polar atom counts, molecular weight and charge
type are also of fundamental importance in controlling protein binding, cyto-
chrome inhibition and metabolic stability, volume of distribution, sites of dispo-
sition and blood-brain barrier permeability,’*-53 renal excretion and, although
not well understood, biliary excretion. The conundrum for many projects is that
while many of the ADME properties improve by modulating these bulk proper-
ties, potency is also dependent upon the same properties, and particularly
hydrophobicity (Figure 10). There are then three possible optimisation targets:

1. To find a new receptor interaction that increases potency, while modulating
these bulk properties

2. Find a position for chemical modulation that can be used to improve the bulk
properties while maintaining receptor potency

3. Trade off potency for an improvement in DMPK properties by focusing on
dose-to-man calculations

While these sound simple project aims, in reality they may prove very difficult to
achieve. It is also true that drugs can be found at the extremes of the bulk
property space. For instance the HIV protease inhibitors saquinavir and nel-
finavir, or the immunosuppressant cyclosporin, do not represent ideal role
models for oral programs. They may represent first in class drugs and are
clinically financially successful but they have DMPK deficiencies, of variable or
poor bioavailability,4>° that potentially could be addressed by a follow-up
compound that would then easily become best in class. Speed and quality in the
pharmaceutical industry now require your candidate to be a potential first and
best in class drug. For example although nifedipine was first in class dihyd-



Andrew M. Davis and Robert Riley 119

Potency A

b New rec interaction
block metabolic
site

Polar “hole”
lower logD
block metabolic
site

' Trade potency for
dmpk
improvements

>
logD/Clearance/cyp inhibition/

Figure 10 The drug design conundrum — maintaining potency while optimising DMPK
properties

ropyridine calcium channel antagonist, the once-a-day amlodipine from Pfizer is
the best in class drug. We are challenged with always discovering the new
‘amlodipine’ first!

Lipinski’s seminal work in defining a drug-like space probably had its biggest
influence in lead generation. The growth of HTS in the 1990s stimulated the
development of high throughput chemical synthesis, as a means of feeding HTS
screens with more chemical targets. Many early combinatorial chemistry libra-
ries have since been discarded and the design of drug-like libraries became the
new paradigm. But recently a number of groups have questioned the drug-like
paradigm for lead discovery.’¢>7

Experience tells us that often chemical optimisation leads to an increase in
molecular weight and lipophilicity of lead structures. In this case optimisation of
drug-like starting points would take the bulk properties outside the drug-like
window. The logical conclusion of this thought experiment would be that the
libraries for lead generation should be targeted at properties somewhat more
conservative than drug-like properties. The starting point should not be drug-
like necessarily but lead-like, and tend to have lower molecular weight and
lipophilicity — allowing room for chemical optimisation.

Dupont-Merck in 1994 took DMP450 into clinical development as the second
clinical compound with improved bioavailability and solubility. But this was not
the end of the story — after reaching patients they found this compound had only
‘modest’ potency.’® The company took the project back to the research phase
with a largely similar discovery program — with the addition of a potency screen
in the presence of plasma protein, as too high plasma protein binding was
identified as the main shortcoming of DMP450. The latest development candi-
date (Figure 11), with maintained potency and substantially reduced protein
binding, is DMP850 and it will be fascinating to follow the development of this
ongoing drug discovery story.

If any protein target was likely to succeed in being druggable it should have
been renin. With most of the world’s pharmaceutical companies at some point
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Figure 11 Development of Dupont-Merck’s cyclic urea HIV protease inhibitors by optimis-
ing (lowering) protein binding

having a renin inhibitor discovery program and with the availability of high-
resolution X-ray structures to guide compound design, by now it should have
yielded a drug. As we highlighted earlier renin has so far not yielded its prize. But
companies have not given up on this target yet. Recently Roche have described
compound Roche 2, a nM renin inhibitor developed from a 22 uM HTS hit*®
(Figure 12). At MW 550 it is one of the smallest most drug-like ligands to have
been discovered, and is furthest from the peptidic ligands of the 1990s. Interest-
ingly both the lead and potent ligand induce a major conformational change in
renin active site, never previously observed in all the years of X-ray crystallo-
graphic studies, and which in itself represents a unique new starting point for
drug-design programs.!> Again, this is clearly not the end of the renin story, and
it will be fascinating to see how modern discovery programs deal with this old
target.

Physical organic chemistry is now back in vogue. As well as its traditional role
in Hansch analysis in the understanding of drug—receptor interactions, the role
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Figure 12 Roche ‘lower’ molecular weight renin Inhibitor — development from a lead-like
HTS screening hit

of hydrophobicity, size, and electronic influences are also important in the area
of ADME optimisation. A focus upon Lipinski type properties and the efficient
control of these aids more than just absorption, and can help move projects from
ligand optimisation towards true drug design.
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1 Introduction

The understanding of biogenic amine G-protein coupled receptor structure and
function has been developing for over five decades and has grown more and
more complex since the first proposal of an adrenergic receptor.! The use of more
and more refined homology models based on bacterial and bovine versions of
rhodopsin have helped to interpret and stimulate experiments into the analysis
of these receptors. Molecular cloning techniques have expanded the diversity of
known GPCRs and hence have increased the complexity of the problem of
selective drug design. However, they have also allowed the examination of the
relationships between sequence variation and pharmacology, not only for differ-
ent receptor subtypes but also for the same receptor in different species. The
cloning technology enabled the identification of two 5-HTp receptor subtypes,
5-HTipx and 5-HTipg receptors, in several mammalian species.? These cloned
receptors share similar pharmacological profiles but our interest in these recep-
tors stems from agonism at the 5-HTp, receptor, which is thought to contribute
to the anti-migraine action of the triptan class of compounds.> The human
5-HTpg receptor has a similar amino acid identity to the rat 5-HTp receptor
despite their differing pharmacological profiles which subsequently led to the
suggestion that the 5-HTip, and 5-HTipg receptors be re-named 5-HTp and
5-HT1s receptors respectively

In general, the affinity of compounds at the 5-HT1p receptor appears to be
consistent across species with the possible exception of ketanserin which displa-
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ces [PH]5-HT binding to the human, rabbit, guinea pig and rat 5-HT1p receptors
with a higher affinity than the dog 5-HTp receptor.>® However, species differen-
ces in the pharmacology of G-protein linked receptor sub-types are known and
the residues responsible for these pharmacologies are becoming increasingly
apparent, e.g. the human and rat 5-HTip receptors with the substitution of a
transmembrane VII asparagine in the rat to a threonine in the human.’

In our search for a selective human 5-HTp receptor agonist and hence an
anti-migraine treatment without the potential coronary side effects of the triptan
class, we needed to study the affinities of a series of selective, and non-selective
5-HT1p/5-HTp receptor compounds at cloned human, dog and rat 5-HTp and
5-HTp receptors, stably expressed in cell lines and at mutant receptors, transi-
ently expressed, to determine where changes in receptor sequence might account
for any differences in moving between species.

2 Methods

CHO cells stably expressing the cloned human or dog 5-HTip and 5-HTis
receptors and rat 5-HTp receptor, and HeLa cells stably expressing the cloned
rat 5-HTp receptor, were homogenised in ice-cold 50 mM Tris HCI buffer (pH
7.7 at RT) and centrifuged at 48000 x g, at 4°C, for 11 min. The resulting
supernatant was discarded and the pellet re-suspended in the same volume of
ice-cold Tris HCI buffer before being incubated at 37 °C for 10 min, to remove
any endogenous 5-HT, and re-centrifuged at 48 000 x g, at 4°C, for a further 11
min. The final pellet was then re-suspended in 50 mM Tris assay buffer contain-
ing 0.1% ascorbate, 10 uM pargyline and 4 mM CaCl, pH 7.7 at RT, to give 4-6
mg wet weight per tube. All assays were carried out in duplicate. Test drug or
buffer was incubated with 500 ul membrane, [*H]5-HT (2.0 nM) in a final assay
volume of 1 ml, at 37 °Cin a shaking water bath. 5-HT (10 uM) was used to define
non-specific binding. The incubation was started by addition of the membrane
suspension and was terminated after 30 min by rapid filtration over GF/B filters
(pre-soaked in 0.3% polyethylenimine/0.5% Triton X-100) using a Brandel cell
harvester. Each assay tube was washed twice with 4 ml of ice-cold Tris HCI
buffer. Radioactivity was counted by liquid scintillation spectrometry (45-55%
efficiency).

Transient transfection of HEK 293 was achieved by mixing plated cells with a
mix of 0.25M CaCl,, 15-20 ug DNA (prepared using the QuikChange Site-
Directed Mutagenesis Kit? with standard conditions and purified through a
Qiagen Maxi-prep system®) and BBS buffer in a medium comprising Eagles’
modified Minimal Essential Medium (EMEM), heat inactivated foetal calf
serum, L-glutamine, penicillin/streptomycin and non-essential amino-acids
(NEAA)in a 50:5:1:1:1 volume ratio. The chimeras were generated by cleavage of
each sequence at the LYS237-ARG238 bond by the Eco47III restriction enzyme
and recombined using standard procedures.!?
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3 Data analysis

Dose-response curves were plotted as percent inhibition versus drug concentra-
tion and were analysed by non-linear least squares regression analysis using an
iterative curve fitting routine (Marquardt-Levenberg method) provided by the
data manipulation software RS/1 (BBN Software Products Corporation, Cam-
bridge, MA, USA).

4 Results

The affinity values for compounds at the cloned human, dog and rat 5-HTp and
5-HTp receptors are shown in Table 1.

5 Discussion

The sequences of all the species and subtypes are shown in Figure 1 and whilst
the amino acid sequence of the cloned human and rat 5-HT;g receptors remains
highly conserved, differences in the pharmacology of these receptors are well
documented.”!1-13 Conversely, the highly conserved 5-HTip receptor (across
species) appears, to date, to retain similar pharmacologies. One exception is that
of ketanserin which displays a higher affinity for the human, rabbit, guinea pig
and rat 5-HTp receptors over the dog 5-HTip receptor.>6

In the first part of the study, a series of human 5-HTp receptor selective and
5-HTip/5-HTis receptor non-selective compounds have been assessed in [?H]5-
HT radioligand binding displacement assays to determine their affinities at
cloned human, dog and rat 5-HTip and 5-HT)p receptors. The results are given
in Table 1.

The non-selective human 5-HTip/5-HTis receptor ligands sumatriptan, CP
122,288, (NS1) and (NS2) (Figure 2) displayed high affinities for the 5-HTip
receptors in all three species. High affinities were also seen at the human and dog
5-HTis receptors, but lower affinities were seen, as anticipated, at the rat 5-HTp
receptor.!* The human 5-HT)p receptor selective compounds (S1), (S2) and (S3),
however, whilst displaying high affinities at the human 5-HT1p receptor, yielded
relatively low affinities at the dog and rat 5-HTip receptors. The affinities of
these compounds were similar at the human and dog 5-HTig receptors but
again, not unexpectedly, were weak in displacing [3H]5-HT from the rat 5-HTis
receptor. Hence, compounds which displayed 5-HTp/5-HTs selectivity at hu-
man receptors were non-selective in the dog. These compounds did retain
selectivity in the rat but this was due, in the most part, to their weak binding at
the rat 5-HTp receptor rather than their high affinity at rat 5-HT;p receptor.

Having established these species differences with our selective compounds we
attempted to discover the residues within the receptors responsible for this effect.
To that end, a number of mutants of the human 5-HT1p/5-HTp receptors and
dog 5-HTip receptor were created along with several chimeric dog/human
5-HTp receptors. Molecular m~dels of the receptors were generated to assist in



Table 1 Comparison of affinity values for compounds at cloned human, dog and rat 5-HTp and 5-HT;p receptors

Human Dog Rat

5-HT;p 5-HT,p 5-HTp

receptor receptor receptor
Compound 5-HT;p 5-HTp selectivity 5-HTp 5-HTp selectivity 5-HTp 5-HTp selectivity
Sumatriptan 82+0.1 8.0+0.1 2 X 82+01 79+0.1 2 x 7.7+0.2 7.2+0.1 3x
CP 122,288 83+0.1 82402 1x 8.24+0.1 8.0+0.2 2 x 8.040.1 6.7+0.1 20 x
(NS1) 9.54+0.1 89+0.1 4 x 9.14+0.1 8.8+0.1 2x 9.0+0.2 78+0.1 16 x
(NS2) 9.0+4+0.1 8.5+0.2 3Ix 8.6+0.1 8.7+0.1 0.8 x 85+4+0.1 7.7+0.1 6 x
(Sp 89+0.1 6.6+0.1 200 x 73402 6.8+0.1 3Ix 7.4+0.1 5.3+0.1 130 x
(S2) 9.8+0.2 7.6+0.2 160 x 8240.1 79+0.1 2 X 8.1+0.2 6.6+0.1 32x
(S3) 9.04+0.1 6.9+0.1 130 x 75401 7.1+4+0.1 3x 72401 51+0.1 130 x

Results are expressed as pICs, values (—logig concentration of drug required to inhibit specific binding by 50%) 4+ SEM, n > 3.
ICsy at the 5-HT;p receptor

The 5-HTp receptor selectivity is

ICsy at the 5-HT)p receptor

‘e e uny *d
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Figure 1 Pile-up of all six sequences where the species is designated by H — human, R — rat
and C - dog. The putative transmembrane domains are coloured and the three
residues important in the binding region TYR98, HIS102 and ILE113 are also
highlighted
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Figure 2 Selective and non-selective 5SHT ;5 agonists

the selection of the mutants and in the interpretation of the effects on compound
binding affinity which are outlined in Table 2.

6 Molecular Modelling and Discussion

All of the non-selective 5-HTp /5-HT1s compounds are molecules which only
have small substituents on the protonatable nitrogen, with selectivity being
gained with larger, aromatic containing, substituents. We assumed that there
was no difference in the binding modes of the 5-HT1p /5-HT1p non-selective
compounds and SHT; therefore the indole 5-substituent would bind to the SER
residues on Transmembrane Helix 5 (TM 5) in the same manner as the hydroxyl
of SHT and the protonated nitrogen binds to the conserved ASP residue on TM
3 (Figure 3). In this orientation it was most likely that the larger substituents of
the selective compounds would extend into the region defined by TMs 1, 2, 3 and
7. The most influential mutant made was the ILE113PHE change which is
indeed in this area. This mutant, in the main, did not affect the binding of the
non-selective compounds (at most a 2.5 fold shift was seen) yet markedly affected
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Table 2 Mutations listing with receptor/mutant and effect on binding

Mutation Outcome Species

TYR 98 LEU No radiolabel binding Human 5HT,p
ILE 100 VAL No effect Human 5HT,p
HIS 102 GLY Affected binding Human 5HT;p
HIS 102 ARG Affected binding Human 5HT;p
ASN 106 ALA No radiolabel binding Human 5SHTp
GLN 108 GLU No effect Human 5HT;p
ASP 112 ALA No effect Human 5HTp
ILE 113 PHE Affected binding Human 5HT,p
TRP 114 ALA No radiolabel binding Human 5HT,p
SER 117 ALA No radiolabel binding Human 5HT,p
THR 157 VAL Affected binding Human 5HT,p
ILE 161 LEU No effect Human 5HTp
SER 166 ALA No effect Human 5HT;p
SER 170 ALA No effect Human 5HT,p
SER 201 ALA Affected binding Human SHT,p
THR 202 ALA No effect Human 5HT,p
TRP 314 ALA No radiolabel binding Human 5HTp
PHE 317 ALA No radiolabel binding Human 5HT,p
SER 321 ASP No radiolabel binding Human 5SHT,p
ASP 329 ALA No radiolabel binding Human 5HTp
SER 330 ALA No effect Human SHT,p
HIS 334 ASP No effect Human 5HT;p
PHE 338 ALA Affected binding Human 5HT,p
THR 342 VAL Affected binding Human 5HT;p
PHE 113 ILE Affected binding Human SHT;g
ARG 102 HIS Affected binding Dog SHTp
Chimera 1 No effect Dog/Human 5HT;p
Chimera 2 No effect Human/Dog 5SHT;p
LEU 112 PHE Affected binding Human D4
MET 113 VAL No radiolabel binding Human D4

the selective compounds (affinity shifts from 3.5 to 31 fold). Although this change
from the SHTp to SHTig amino acid reduced the affinities of the selective
compounds at the SHT;p receptor, the reverse mutation in the SHT;p receptor
did not improve the affinities of the selective compounds. Instead the mutation
reduced the affinities of both the selective and non-selective compounds (affinity
shifts from 4 to 11 fold).

If one examines the region around ILE113 in our homology model of SHT1p
(Figure 4) one can see a possible interaction with TYR98, a residue which is
conserved across all of the SHT, family of receptors. In SHTp there is enough
room for the TYR and ILE residues; however, if the ILE is replaced by the larger
PHE then the two sidechains would clash. In the SHT;g receptor this clash can
be relieved by the movement of the TYR sidechain upwards into the space
created by the presence of GLY102 one helical turn above. In 5HTp this
GLY102 is a HIS residue and so there is no space into which the TYR sidechain
could move in the SHTp to SHT{s mutation and therefore the selectivity area
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Figure 3 The binding mode of a non-selective 5HT,p;1p agonist which was the basis for the
binding mode of the selective agonists

Helix 3

ASP118

Figure 4 An angled view of the selectivity determining region of the receptor with two
selective compounds placed in their expected binding mode which illustrates how
these compounds could interact with this region and how the amino acid sidechains
themselves might interact

becomes sterically congested which, in turn, affects the binding of the larger,
selective compounds. With the reverse mutant the PHE is replaced by the
smaller ILE residue which would allow the TYR much more freedom of move-
ment. It is this freedom which, we believe, destabilises the receptor enough to
weaken the binding of all compounds (this region being close to the key conser-
ved ASP on TM 3). It was pleasing to see that the HIS102GLY mutation also
affected the binding of selective compounds (affinities worsening by up to 12.5
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fold), further implicating this region in the interaction with our selective com-
pounds. The nature of this region is also sensitive to other changes as we have
found that mutations of either TYR98, ASN105, TRP114 or SER117 produce a
system which exhibited no radiolabel binding. It is interesting to note that the
TRP114 residue is conserved, in terms of aromatic nature (e.g. PHE, TYR, ARG)
across all SHT receptors. This region is not totally intolerant of change though,
as can be seen from the mutations of ILE100, GLN108, and ASP112 in the
SHTp receptor which had no effect on the binding of our compounds.

Examination of the literature for mutations in this region reveals that only a
small amount of work has been directed towards these residues. Of the 184
biogenic amine sequences listed in the Tromso GPCR mutation databases
(GRAP and tinyGRAP in March 2001)!%1¢ only 14 of them contain mutations
within five amino acids of the important TYR/HIS residues on TM2 (three of
these mutants are in fact chimeras) whilst only 15 sequences contain mutations
within five amino acids of the ILE residue (six mutants being chimeras). How-
ever, some supporting evidence for the importance of this region has been seen
in-house with the mutation of residues in the human dopamine D4 receptor to
those of the D2 receptor. These mutants either reduce the binding affinity of the
D4 selective ligands (i.e. the LEU112PHE mutation) or fail to produce a receptor
which binds the radioligand (the MET113VAL mutation). It can be seen from
the sequence alignment (Figure 1) that these dopamine residues fall very close to
those of the SHTp receptor and their effects on selective compounds or receptor
viability are comparable.

The change in binding affinity in going from human to dog SHTip receptors
was unfortunate, as the dog is typically used as a safety assessment species. Many
of the changes in the sequence occur in the third intracellular loop and onwards
(see Figure 1). To determine whether these amino acids were responsible for the
species differences, chimeric receptors were created at the LYS237 residue,
combining the first five helices of the human receptor with the remainder from
the dog receptor and vice versa. Interestingly no differences in the affinities of
compounds for these chimeric receptors were seen compared to the wild-type
receptors (data not shown). As the mutants around ILE113 had shown that they
could influence the binding of the selective compounds we re-examined the
human/dog sequence in that region. Of the three changes, we had previously
mutated ILE100 and ASN105 in the human SHT;p/SHT;3 receptors and found
that there was either no effect, or no radiolabel binding respectively. The third
difference in the sequences occurred at HIS102 which was now an ARG in the
dog receptor. Mutation of the HIS to GLY in the previous experiments had
shown an effect on our selective compounds and, gratifyingly, an effect (ranging
from a 2.5- to 10-fold drop) on the binding of the selective compounds was seen
when this residue was changed from HIS to ARG. The only literature support for
our findings highlighted the key nature of this residue in the loss of binding
affinity of SHTp receptor selective isochromans when moving from gorilla to
guinea pig receptors.!” Here the gorilla sequence has HIS102 whilst the guinea
pig has ARG102 and most of the loss in affinity was regained when the mutant
ARGI102HIS was created. In contrast to our results where the ILE100 mutant
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produced no effect on compound affinity, they found that the THR100ILE
mutant also improved the isochroman binding and the guinea pig double mutant
returned the binding affinity to that seen in the gorilla receptor.

The other mutants to show some affinity changes were the replacement of
PHE338 with ALA and the change of THR442 to VAL. As one can see from the
image (Figure 5) the replacement of PHE338 with the smaller ALA residue
should have enlarged the area around the protonated amine binding site, reduc-
ed the van der Waals (VDW) contact and therefore weakened the binding. This
indeed was seen with the selective compounds losing 3—4-fold in affinity and the
non-selective compounds only being slightly affected (1.5-2-fold change). The
THR342 residue previously has been mutated to an ASN and shown to promote
the binding of propanolamine compounds.!218 This was presumed to be due to a
bidentate H-bonding interaction between the ether/hydroxyl oxygens of the
propanolamine and the amide group of the ASN. It is interesting to note that the
mutation of the THR342 into a VAL (i.e. removing all H-bonding possibilities)
actual causes a 24-fold increase in the binding of a selective propanolamine
derivative only. One presumes that the propanolamine is binding within the
SHTip receptor in a similar manner to other receptors (as it is the only com-
pound to be greatly affected by the mutation) but its exact interaction with this
residue cannot be dependent on H-bonding as it is in the other subtypes.

The recent publication of the 2.8 A resolution crystal structure of rhodopsin,!®
the mammalian form of the receptor which provided the template for these
homology models, led us to re-examine our models. However, as one can see
from Figure 6, the homology model derived from the crystal structure does not
allow a simple explanation of our mutagenesis data. This is due to the fact that
whilst the helices are reasonably consistent, and hence the positions of TYR98
and HIS102, the loop region is quite different and as such ILE113 is situated
some distance from its location in the bacteriorhodopsin model and directed
~ away from the compound binding site. This displacement is due to the position
of the second extracellular loop in rhodopsin which lies across the proposed

Helix 4

Helix 3

Helix §

Helix |

Helix 6 Helix7

Figure 5 View of the bacteriorhodopsin model with a selective compound placed in its
expected binding mode. Some of the mutated residues are also shown
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Figure 6 Overlay of the proposed bacteriorhodopsin based model (ribbon for the peptide
backbone and sidechains in white) with a model based upon the recent rhodopsin
crystal structure (ribbon and sidechain carbon atoms) and the rhodopsin crystal
structure itself (tube for the peptide backbone). Illustrating how the differences
between the two models could come solely from the orientation of the TM 4-TM 5
loop region

binding area for our compounds, forming a ‘lid’ for the retinal binding, but also
displacing the loop region at the top of helix 3. Considering the differences
between the binding modes of retinal and the proposed biogenic amines, and also
that we are dealing with agonists whilst the rhodopsin crystal structure is
essentially in its ‘dark’ state, we believe that the rhodopsin crystal structure does
not offer any quick improvements over our more simple bacteriorhodopsin
based models.

7 Conclusions

This study provides further evidence for the existence of species differences in the
pharmacology of the human, dog and rat 5-HTp receptors and emphasises the
need for caution when extrapolating data generated from animal to human
tissue/receptors. We have shown the importance of the region encompassing the
top of helices 2 and 3 and the loop joining them. The selectivity of our com-
pounds depends on the critical interaction of three residues ILE113, TYR98 and
HIS102, and also the viability of these biogenic amine receptors is dependent on
the nature of a number of conserved residues within this region, e.g. TYR98,
TRP114.
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1 Introduction

‘That which does not kill us makes us strong’
Friedrich Nietzsche, Thus Spake Zarathustra

Whatever subtle inferences Nietzsche may have wished his readers to draw from
this maxim, he probably did not have an explicit reference to vaccinology in the
forefront of his mind. However, this sententious and epigrammatic aphorism fits
well the notion that we can do battle with the threat from infectious disease, and
other dangers, by challenging our immune systems. These challenges may be
artificial — vaccines, the topic of this chapter — or they may be naturally endemic
or environmental in nature.

Of course, our immune systems face ‘natural® challenges constantly. The
so-called ‘hygiene hypothesis’ has suggested that in our urbanized, tech-
nologized, and increasingly comfortable, world, ostensibly beneficial improve-
ments to personal hygiene and public health have, over decades, led to a
widespread decrease in our exposure to pathogenic organisms. This hasled to a
decrease in the breadth and depth of acquired immunity to microbial pathogens
and, in turn, to an increase in the prevalence of atopic disease: the increased
tendency for individuals to make immediate, and inappropriate, hypersensitivity
reactions to otherwise innocuous substances. The exposure to bacterial and viral
pathogens early in life plays a significant role in the regulation of allergen-specific
immune responses that underlie atopic allergy. Unless we accept that atopy is the
price to be paid by certain populations for their freedom from microbial diseases,
we must be prepared to continually train our immune systems, especially during
infancy, in order to prevent allergic conditions. In centuries gone by, when
hygiene was not manifest as widely or as well as it is today, this lack of challenge

* To whom correspondence should be addressed.

136



Darren R. Flower et al. 137

was not, of course, a great problem, but the direct threat from disease, albeit
greatly exacerbated by poor diet and sanitation, was concomitantly greater. This
can be seen most graphically in the devastating effects that old world diseases
had on the population of the new world following the Spanish conquest in the
early 16th century.

“Vaccine’ is a term that can be applied to all agents, of either a molecular or a
supramolecular nature, used to stimulate specific, protective immunity against
pathogenic microbes, and the disease they cause, and ultimately to militate
against the effects of subsequent infection. Vaccination, of course, pre-dates
Nietzsche (1844-1890), beginning with the work of Edward Jenner (1749-1823).
After a period of first training in London and then working for a time as an army
surgeon, Jenner, a native of Gloucestershire, spent his entire career working in
the county as a country doctor. On 14th May 1796, he used cowpox, a related
virus, to build protective immunity against smallpox in his gardener’s son. Later,
Pasteur adopted “Vaccination’, the word Jenner had invented for his treatment
(from the Latin vacca, a cow), for immunization against any disease. The influ-
ence of Jenner’s work eventually led to the 1980 declaration by the World Health
Organisation (WHO) that smallpox had been eradicated. It is now generally
accepted that mass vaccination, taking account, as it does, of the principle of
herd immunity, is one of the most effective approaches to the threat from
infectious disease.

Although much effort is directed at disease treatment through the develop-
ment of new antibiotic drugs, vaccines enjoy many intrinsic advantages. The
frequency of vaccine treatment is, perhaps, in the range of once or twice per
lifetime, to, say, once or twice per year. Compare this to the once or twice a day
dosing required for most drugs. Moreover, it is possible to inject vaccines
directly, thus circumventing many issues of bioavailability, which are increasing-
ly complicating drug development. Vaccines are relatively cheap to produce if
not necessarily to discover, making them of special interest to developing coun-
tries. On the down side of course, the development of new vaccines is not easy.
Indeed, the development of vaccines has suffered from, amongst other things, the
empirical nature of the vaccine discovery process. Many are still attenuated
whole pathogen vaccines such as BCG, which is the vaccine in common use
against tuberculosis (TB), and, perhaps, the most widely used vaccine in the
wortld. In what follows, we will examine more modern, rational approaches to the
design or discovery of vaccines, but we begin by first considering, in more detail,
the threat from infectious disease.

1.1 The Threat from Infectious Disease

Infectious disease is one of most significant causes of death worldwide. It is well
to remember, however, that it is only one of many, multifarious causes (see Table
1). Let us simplify them. In the Revelations of St John, the Four Horsemen of the
Apocalypse were considered to be Pestilence, War, Famine, and Death. As an
attempt to place the threat from disease into some kind of context, let us briefly
examine each of these in turn.
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Table 1 Annual leading causes of death in the USA during 1990

Cause of death death rate® Economic burden?
Heart disease 190 138
Cancer 135 104
Accidents 33

Chronic pulmonary disease 20 6
(e.g. asthma)

Pneumonia 14

Infectious disease 12

Diabetes mellitus 11 92
Suicide 11

Homocide 10

Chronic liver disease 9

2 Deaths per hundred thousand to the nearest whole number.
b Financial burden in billions of dollars to the nearest whole number.
Data compiled from figures in ref. 209.

Famine, the black horseman has, it may be argued, given rise to the greatest
loss of life throughout history. Most quoted figures are probably great underesti-
mates, as famine has always hit hardest the poorest and, to the retrospective eye
of history, the most invisible. In modern times, for example, famines in Africa,
most notably Ethiopia, and currently in Tajikistan have produced, and continue
to produce, harrowing images of death and devastation. Looking back a little
further to the famine of Northern China in 196971, history marks a death toll in
excess of 20 million.

As the world population rises, the potential death toll from wars, and other
conflicts, will rise with it. During the 20th century, the most populous in history,
the total human population has risen from about 1.65 billion in 1901 to 6.08
billion in the year 2000. Although figures vary from between 40 million to 71
million, most historians agree that the total death toll of the Second World War
was around 50 million, of which about 25% were military casualties. In compari-
son, the two largest death tolls from other international conflicts seem almost
meagre: 15 million (First World War) and 2.8 million (Korean War). Compare
those figures to loss of life through democide, or murder by government: around
48 million by the postwar China of Mao Tse Tung and the 20 million of Stalin’s
Russia. To the depredations of war we may add homicide, and other forms of
violent death brought about by acts of volition. In the USA, for example, crude
homicide rates are the third highest in the world: 4-73 times that in other
industrialized nations. Between 1976 and 1993, more Americans were the victim
of homicide than died on the battlefields of the Second World War. Homicide is
the second leading cause of death amongst Americans aged 15-24, and the third
leading cause among children aged 5-14. The legacy of war can persist long after
the resolution of conflict: annually, for example, around 25,000 people are killed
or seriously injured by land mines.

Death, the pale horseman, comes in many guises, covering diverse causes from
individual natural disasters to accidental injury. Natural disasters, or what
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insurance brokers are pleased to call acts of god, would figure highly on the
average individual’s list of greatest causes of death and destruction. Floods, such
as those seen in recent years in Mozambique, are an ever-present danger to life,
livelihood, and property. A flood in the Henan province of China in 1939 caused
the deaths of a million people. This was slightly more than a similar flood there in
1887, which cost the lives of 900,000. China is particularly prone to flooding:
1642 saw the deaths of three hundred thousand on the Huanghe river and a
hundred thousand died on the Changjiang river in 1911. A typhoon caused the
deaths of five hundred thousand in Bangladesh in 1970 and a tidal wave killed
over 200,000 in the Bay of Bengal in 1876. Earthquakes have also caused death
on a massive scale. For example, earthquakes in the Shanxi (1556), Tianjin
(1976), Gansu (1920) and Hebei (1290) provinces of China killed an estimated
1.35 million between them. Likewise, volcanic action has resulted in large-scale
death. The eruption of Krakatoa on August 27, 1883, though it did not kill
anyone directly, resulted in a tsunami that killed over 36,000. The pre-historic
eruption of Santorini was four times greater than that of Krakatoa and resulted
in the destruction of the Minoan civilization. This was probably the greatest
volcanic eruption in recorded history, though the probable eruption of Krakatoa
during the sixth century, which caused worldwide climate change, was possibly
larger. Volcanic action remains a threat, with over 70,000 people dying as its
result during the 100 years of the 20th century.

At the other extreme, injury, however we may classify it, remains among the
leading worldwide causes of death.! Injuries have, traditionally, been seen as
primarily as random events, yet they affect all populations and act without
reference to age, sex, income, or geography. In 1998, for example, about 5.8
million people, or a rate of, approximately, 100 per 100,000 population, died of
their injuries throughout the world, causing around 16% of the global disease
burden. Road traffic injuries are the 10th leading cause of death and the 9th
leading cause of the burden of disease; falls and self-inflicted injuries follow
closely.

Pestilence is often seen as the most terrifying of the four horsemen, although, in
a world with increased awareness of potential bio-terrorism, some of these
simplifying, artificial demarcations we have imposed are now becoming blurred.
Disease is, however, also the one agent of human mortality that we can, in
general, combat systematically through the use of biological and chemical enti-
ties, such as vaccines and drugs, through efforts of surgeons and physicians, and
through improvements in public health, drinking water, and sanitation. Al-
though it may be argued — and argued quite cogently — that the greatest benefit to
man has come through improved public health, it is clear that vaccines and drugs
have also made a huge contribution. In contrast, other than through their
dispensing of drugs and other chemical therapies, the contribution made to
public well-being by the trained medic, though the most direct, is relatively small.

Infectious disease is, then, the greatest source of preventable death. Both new
diseases, of which the best known is human immunodeficiency virus (HIV, the
cause of AIDS), and so-called re-emergent diseases, such as tuberculosis, figure
equally amongst its list of causes. 5.3 million people became infected with HIV
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during the year 2000, bringing the total to around 36 million. Since the start of
the epidemic over 21 million people have died from AIDS, of which over 3
million died during 2000. TB is the only infectious disease to be declared a ‘global
emergency’ by the World Health Organisation. It is a chronic bacterial infection
that causes more deaths worldwide than any other infectious disease. One-third
of the world’s population — around 1.7 billion people — are infected with the TB
organism, Mycobacterium tuberculosis. Although most infected people never
develop active TB, each year 8 million people do develop the disease across the
world and 3 million die. The rapid spread of AIDS, especially in developing
countries, has contributed to the sudden increase in TB cases in recent years. In
fact, one third of the world’s HIV positive population is now infected with the
disease. Resistant strains of M. tuberculosis are also spreading for similar
reasons.?

The need to thwart diseases such as TB has become imperative in an era of
failing antibiotics. A recent report into antibiotic resistance by the World Health
Organisation?® detailed the most common resistant pathogens, and noted that
formerly curable bacterial diseases were on the increase. For example, there has
been a sharp rise in the number of nosocomial infections; up to 60% of these in
the developed world are now caused by drug-resistant and often opportunistic
pathogens like Pseudomonas aeruginosa and Staphylococcus aureus.

Several factors have contributed to the rise in resistance. In the five decades
since penicillin became commercially available, misdiagnosed illness by health
workers, patients failing to adhere to treatment, the widespread misuse of
antibiotics with animals and the wrong prescription given for a particular
disease, to name but a few, have all contributed to the problem. Within a
competitive environment, resistance is able to spread quickly through the resi-
dent bacterial population. While antibiotics kill most susceptible cells, the resid-
ual resistant bacteria quickly colonize the empty niche, and pathogenic species
can obtain a significant amount of their genetic diversity this way. Horizontal or
‘lateral’ gene transfer between distinctly related species adds to the problem;*
resistance and/or virulence factors can be exchanged between a virulent donor
and a recipient avirulent strain to produce new pathogenic varieties. Resistant
Neisseria gonorrhoea now accounts for around 98% of all South-East Asia
gonorrhoeal cases, and it is thought that the genes responsible for this arose from
lateral transfer.

As antibiotic resistance increases, we may see history rewinding itself to the
time of widespread plagues, epidemics, and pandemics. For most of the western
world, this is an almost forgotten era, yet as recently as 1918 an influenza
epidemic led to the death of over 22 million people worldwide. This is almost
certainly significantly larger than the death toll from the First World War, yet
visions of the trenches have all but effaced it from our collective memory.
Perhaps the most destructive pandemic to ever have afflicted mankind was the
Black Death. It accounted for over a third of Europe’s population during the
mid-14th century, costing the lives of approximately 75 million worldwide. The
Black Death had first broken out in China in 1331 and began to spread
westward. In October 1347, Genoese ships returning from the Crimea
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introduced the plague into Europe. The preceding forty years had laid a firm
foundation for the success of the disease: poor harvests had led to a terrible
Europe-wide famine in 1315; soon after, a typhoid epidemic killed thousands; in
1318 disease drastically reduced stock sizes; in 1321 another bad harvest brought
more famine; and so on. By the end of 1350, the plague had spread through
Europe as far as the North Baltic. Death was everywhere: we read of lawsuits
where all parties died before their cases could be heard. We hear of dioceses
where the surviving clergy were scarcely able to perform the last rites for their
congregations. We are told of monasteries where half the inmates perished and of
the Goldsmith’s company of London, which had four masters within a year. The
Black Death was a manifestation of bubonic plague, a systemic invasive disease,
caused by the gram-negative bacterium Yersinia pestis. In the modern era, it has
begun to show signs of multiple drug resistance. In all, it was responsible for
three major human pandemics: the so-called Justinian plague (beginning in the
spring of 542 and persisting till the 8th century), the Black Death (14th to 19th
centuries, including the Great Plague of 1665) and modern plague (lasting from
the 1850s till around 1960). There are, of course, many lesser epidemics of plague
recorded before and since, starting with the first certain case, at least in the
western world: the Libyan Plague of the early 1st century AD. Plague is one
amongst very many epidemic diseases to have troubled humanity. For example,
the Facts on File Encyclopedia of Plague and Pestilence lists over 600 separate,
named, historically attested pandemics and epidemics from ancient times to the
present.

One of the most significant events in the history of human disease interaction
was the new world holocaust that affected South America in the century or so
after its ‘discovery’ by the Spanish. The pre-Columbian inhabitants of the New
World had the dubious distinction of having been isolated from the rest of
humanity for longer than anyone else, and thus their exposure to pathogens
which were endemic in the Old World. Exacerbated by the harsh treatment
meted out by the Spanish, the Indian population fell victim to a number of
diseases, foremost amongst which was smallpox. A few statistics will illustrate
the point. When Columbus landed in Haiti in 1492, it had a population of
100,000; by 1570 it had fallen to 300. Peru’s population of 1.3 million was halved
in the fifty years between 1570 and 1620. In 1519, central Mexico had a popula-
tion of 25 million — by 1605 this had dropped to around 1 million. The cata-
strophic decline in the indigenous Indian population was on a scale unmatched
even in the 20th century, and was likely to have been the greatest ever loss of an
aboriginal population.

The need, then, for new anti-microbial treatments, both therapeutic and
prophylactic, is obvious. Antibiotic drugs are one approach to realizing such
treatments. Vaccines are another. Historically, the most successful vaccination
strategies have been based on attenuated whole pathogenic agents: viruses or
bacteria. However, interest is now turning to more-rationally designed vaccines.
At one extreme of the size range, these can be genetically modified pathogens and
at the other protein antigens or isolated T cell epitopes. Here the modern
vaccinologist can make use of genomic data information from the many genomic
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sequencing projects focusing on pathogenic microorganisms. One of the key
disciplines helping the discovery of new vaccines is the use of informatics
strategies, primarily bioinformatics and molecular modelling. As we shall see in
the rest of this review, these computational techniques are beginning to make a
potentially important contribution to the next new generation of vaccine design
programmes. We shall limit ourselves, in the main, to the discussion of vaccines
directed towards cellular immune, or T cell, mediated responses.

2 Processing of Epitopes

A fundamental understanding of immunology underlies our attempts to design
vaccines rationally. The manifestation of immunology at the whole animal level
is, however, an exceedingly complex phenomenon, and it is only by investigating,
at the molecular level, each of its individual stages, in a physico-chemical
manner, that we are able to formulate effectively ways of modelling the process.

We shall concentrate our attention on that part of the adaptive immune
response that is mediated by cells. A specialized type of immune cell mediates
cellular immunity: the T cell, which constantly patrols the body searching out
proteins that originate from a pathogenic organism, be that virus, bacterium,
fungus, or parasite. The surface of T cells is enriched in a particular kind of
receptor protein: the T cell receptor or TCR, which functions by binding to
major histocompatibility complex proteins (MHCs) expressed on the surfaces of
other cells. These proteins, in turn, bind small peptide fragments derived from
both host and pathogen proteins. It is the recognition of such complexes that lies
at the heart of the cellular immune response. These short peptides are referred to,
by immunologists, as epitopes. The overall process leading to the presentation of
antigen-derived epitopes on the surface of cells is a long, complicated, and not yet
fully understood story. There are many alternative processing pathways, but we
shall look at just the two major types: Class I and Class II (see Figure 1). Class I
MHC:s are expressed by almost all cells in the body. They are recognized by T
cells whose surfaces are rich in CD8 co-receptor protein. Class I MHCs are only
expressed on so-called ‘professional antigen presenting cells’ and are recognized
by T cells whose surfaces are rich in CD4 co-receptors.

Class I peptides are ultimately derived from intracellular proteins, such as
viruses. These proteins are targeted to the proteasome, which cuts them into
short peptides of 8 to 11 amino acids in length. These peptides are then bound by

Figure 1 (opposite) Immunological antigen presentation pathways. (a) Presentation of
antigen via Class 1 MHC: Class I MHCs are expressed by almost all cells in the
body. They are recognized by so called CD8+ T cells. Class I peptides are derived
Sfrom intracellular foreign or self-proteins, which are targeted to the proteasome.
This proteolytic macromolecular assembly cleaves them into peptides of length
8-11, which are then bound by the peptide transporter TAP. This translocates
them from the cytosol into the endoplasmic reticulum where they are, in turn,
bound by MHCs. The peptide-MHC complex is then exported to the surface of
the cell through the golgi
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(b) Presentation of antigen via Class Il MHC: Class I MHCs are only expressed
on ‘professional antigen presenting cells’ and are recognized by CD4+ T cells. In
the Class Il pathway, receptor mediated ingestion of extracellular antigenic
protein is targeted to an endosomal compartment, where the proteins are cleaved
by cathepsins, a particular class of protease, to produce peptides of length 15-20.
Class I MHCs, exported through the golgi from the endoplasmic reticulum, then
bind these peptides, displacing an endogenous peptide called CLIP, before trans-

fer to the cell surface
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the transmembrane peptide transporter TAP, which translocates them from the
cell cytoplasm to the endoplasmic reticulum where they are bound by MHCs.
Theoretical analyses of proteasomal cleavage patterns have been conducted by a
number of groups,’~7 leading in turn to a number of prediction methods,? some
of which are available on the Internet.® The amount of data studied remains
relatively small, and the predictive power the different methods have has yet to
be evaluated objectively. Nonetheless, these represent useful contributions and
important starting points for future study. Likewise, studies have also been
conducted on the peptide substrate specificities of the TAP transporter,'leading
to the development of predictive models!! for the determination of peptides that
bind to TAP. Together studies on proteasomal cleavage and TAP transport
represent a good first attempt to produce useful, predictive tools for the process-
ing aspect of Class I restricted epitope presentation. However, there are a
number of other processing routes which complicate the simple picture outlined
above. These include TAP-independent Trojan antigen presentation!? and the
involvement of various other proteases, such as furin.!3 Thus, the accurate
prediction of epitope processing will need to rely on a much more comprehensive
modelling of the entire process. This will account, perhaps through the use of
mathematical modelling techniques prototyped on reaction kinetics within
multi-enzyme metabolic pathways, as well as the bioinformatic modelling of
cleavage patterns, for the complex hierarchy of interrelated dynamic processes
that generate presented peptides.

For Class 11, receptor mediated ingestion of extracellular protein derived from
a pathogen is targeted to an endosomal compartment, where the proteins are
cleaved by cathepsins, a particular class of protease, to produce slightly longer
peptides of 15-20 amino acids. Class II MHCs then bind these peptides. The
peptide specificity of protein cleavage by cathepsins has also been investigated
and simple cleavage motifs are now well known!4 However, more precise
investigations are required before accurate predictive methods can be realized.

As we have said, peptide bound MHCs (or peptide-MHC (pMHC) complexes)
are recognized by receptors on the surface of T cells, so called TCRs. Many other
co-receptors and accessory molecules, in addition to CD4 and CD8 molecules,
are also involved in T cell recognition. The recognition process is by no means
simple, and remains poorly understood. Nonetheless, it has emerged that the
process involves the formation of the so-called immunological synapse, a highly
organized, spatio-temporal arrangement of receptors and accessory molecules of
many types. The involvement of these accessory molecules, although essential, is
not properly understood, at least from a quantitative perspective. Ultimately, the
accurate modelling of all these complex processes will be required to gain full and
complete insight into the process of epitope presentation.

3 Prediction of MHC Binding

The accurate prediction of T cell epitopes, much less immunodominant epitopes,
remains problematic, and because of this, theoretical work, which is described
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below, has focussed on the prediction of peptide binding to MHC molecules. In
order to quantify adequately the affinities of different MHCs for antigenic
peptides, many different methods have been developed. It is possible to group
these methods together thematically, based on the kind of underlying techniques
they employ, and we shall endeavour to review them in this fashion below. As a
preliminary, it is perhaps appropriate to mention some of the underlying issues
involved.

Different MHC alleles, both Class 1 and Class 11, have different peptide
specificities. One way of looking at this is to say that they bind peptides with
particular sequence patterns. This has led to the development of so-called motifs.
A more accurate description of this phenomenon is to say that MHCs bind
peptides with a binding constant dependent on the nature of the bound peptide’s
sequence. The driving forces behind this binding are precisely the same as those
driving drug binding. Within the human population there are an enormous
number of different, possible variant genes coding for MHC proteins, each
exhibiting a different peptide-binding sequence selectivity. T cell receptors, in
their turn, also exhibit different affinities for pMHC. The combination of MHC
and TCR selectivities thus determines the power of peptide recognition in the
immune system and thus the recognition of foreign proteins and pathogens.

Experimentally, there are many different ways of measuring binding affinity.
ICso values are binding affinity measures calculated from a competitive binding
assay.>-17 The value given is the concentration required for 50% inhibition of a
standard labelled peptide by the test peptide. Therefore nominal binding affinity
is inversely proportional to the ICso value. Reference peptides can be labelled
fluorescently or with a radioisotope. The results calculated from these two
methods are significantly different, making their direct comparison difficult, and
are therefore presented separately. BLso values are calculated in a peptide
binding stabilization assay.'®-20 It is the half maximal binding level calculated
from a mean fluorescence intensity (M.F.1.) of MHC expressing RMA-S cells.
These cells are incubated with the test peptide and then labelled with a fluor-
escent monoclonal antibody. The nominal binding strength is again inversely
proportional to the BLso value. The half-life for radioisotope labelled f>-micro-
globulin disassociation from an MHC class I complex, as measured at 37°C, is
an alternative measure.2!~22 The greater the half-life the stronger the peptide-
MHC complex. Apart from these three measures, many others are available.
These include SCsp, Csos, etc. which are closely related to BLsos. Association and
Dissociation equilibrium constants have also been measured, although far less
frequently, and mean fluorescence intensities, measured at a single peptide
concentration are, by contrast, very widely reported. These are amongst the most
well reported measures, but there are many more. No clear consensus has, thus
far, emerged on the most appropriate type of affinity measurement or assay
strategy.

A widely used conceptual simplification, often used to help combine this
bewildering set of binding measures, is to reclassify peptides as either non-
binders or as high-binders, medium binders, and low binders. For example, the
schema used by Brusic?* classifies binders using these criteria: non-binders >
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10 uM, 10uM > low binders > 100nM, 100nM > medium binders > 1nM,
high binders < 1 nM. Such broad schemes also allow for the inherent inaccuracy
in MHC binding measurements.

Once a peptide has bound to a MHC to be recognized by the immune system,
the pMHC complex has to be recognized by one of the TCR of the T cell
repertoire. It is generally accepted that a peptide binding to an MHC may be
recognized by a TCR if it binds better with a pICsp > 6.3, or a halflife > 5
minutes, or some similar figures for other measures of other binding methods.?
Some peptides binding at these affinities will become immunodominant epitopes,
others weaker epitopes, and still others will show no T cell activity. There is some
evidence suggesting that as the MHC binding affinity of a peptide rises, then the
greater the probability that it will be a T cell epitope. The trick — the unsolved
trick — is to determine which will be recognized by the TCR. Generally, the
approach taken has been to whittle down the number of epitopes to a small
number using prediction of MHC binding (see Figure 2). These peptides are then
tested as potential epitopes in one of a great variety of different measures of T cell
activation, such as T cell killing or thymidine incorporation, inter alia. The
prediction, then, of MHC binding is both the best understood, and, probably, the

GENOME
e Coarse Analysis of Epitopes
PROCESSING using Matrix method, QSAR,
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Figure 2 Skeleton scheme for the prediction of T cell epitopes. A brief outline of the stages
involved in the prediction of T cell epitopes. A genome, or, more properly, a
proteome, is analysed from a presentation perspective (i.e. proteasomal cleavage
or TAP) binding, with the potential peptides successively generated and excluded
by this process, passing into a quick, but relatively crude, predictor of MHC
binding which highlights potential binders. The resulting set of binders is then
analysed by a more accurate, but more computationally demanding, method, such
as molecular dynamics, to generate a list of candidate epitopes
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Figure 3 Class I peptide presentation pathway. A schematic of the Class I presentation
pathway showing stages in the processing of antigen to expressed epitope. The
action of the proteasome has been characterized in terms of cleavage patterns.
Binding of peptides to TAP, to MHCs, and the binding of PMHC to TCRs has
been characterized in terms of affinity measures. Peptide binding to MHCs has, in
particular, been characterized by a large collection of different quantitative
measures. These can be divided into ICsy-like, BLs¢-like, equilibrium constants of
binding, and halflife. The response of T cells has also been characterized by a
variety of measures, such as % cell killing or half-maximal lysis. These are whole
cell or whole population measurements, rather than ones based solely on defined
molecular interactions. It is thought that MHC binding is the most discriminating
step on this presentation funnel

most discriminating step in the presentation-recognition pathway (see Figure 3).
In what follows, we will focus our attention on this stage.

3.1 Motif Approaches

The first attempts to computerize the identification of MHC binding peptides led
to the development of motifs characterizing the peptide specificity of different
MHC alieles. Such motifs — a concept with wide popularity amongst immunolo-
gists — characterize a short peptide in terms of dominant anchor positions with a
strong preference for certain amino acids. Probably the first proper attempt to
analyse MHC binding in terms of specific allele-dependent sequence motifs was
by Sette et al.6 They defined motifs for the mouse alleles I-Ad and I-Ed after
measuring affinity for a large set of synthetic peptides originating from eu-
karyotic and prokaryotic organisms, as well as viruses; in addition they also
assayed a set of overlapping peptides encompassing the entire staphylococcal
nuclease molecule. Sette et al. quote prediction rates at the 75% level for these
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two alleles. A large number of succeeding papers, both from this group and
others, have extended this approach to many other human and mouse alleles.
Alleles from organisms other than these have not been studied in such detail,
although the rat and bovine and some primate species have received some
attention. An up-to-date compendium of such motifs is contained in the SYF-
PEITHI database developed by Rammensee et al?’ It is available on-line
(http://syfpeithi.bmi-heidelberg.com/).

As we have said, these motifs are usually expressed in terms of anchor residues:
the presence of certain amino acids at particular positions that are thought to be
essential for binding. For example, human Class I allele HLA-A*0201, probably
the best studied of all alleles, has anchor residues at peptide positions P2 and P9
for a nine amino acid peptide. At P2, acceptable amino acids would be L and M,
and at the P9 anchor position would be amino acids V and L. Secondary
anchors, residues that are favourable, but not essential for binding, can also be
present. Moreover, sequencing of peptides that are known to bind shows prefer-
ences for particular amino acids at particular positions, although whether this
represents anything other than the inherent bias in protein sequences is seldom
addressed. Very many papers have been published both developing new, or
refining old, motifs and also many papers that have tried to used them predictive-
ly. The method is admirably simple: it is easy to implement either by eye or more
systematically using a computer to scan through protein sequences. Some com-
putational approaches that use such motifs in a predictive fashion have extended
standard sequence analysis methods to search for human class I peptides?® and
peptides that bind to bovine MHCs.?

However, there are many problems with the motif approach. Although it is
possible to score the relative contributions of primary and secondary anchors to
produce a rough and ready measure of binding affinity,?’30 the most significant
problem with the motif approach is that it is, fundamentally, a deterministic
method. A peptide is either a binder or is not a binder. Even a brief reading of the
immunological literature shows that matches to motifs produce many faise
positives, and are, in all probability, producing an equal number of false nega-
tives, though peptides predicted to be non-binders are not always screened.

One useful outcome of work at this level, given the variety of different
experimental techniques able to generate such motifs, is that it has clearly
indicated that MHC alleles can be grouped together into so-called supertypes,
which exhibit broad supermotifs, based on the commonality of their substrate
specificity.3! This may well prove useful in trying to rationalize more accurate
prediction methods. Likewise, it can allow one to undertake more interesting
analyses than the paucity of more sophisticated models will allow. For example,
Zhang et al.3? searched for Class I binding motifs in structural proteins of HIV of
different genetic lineages to map the genetic organization of potential T cell
antigenic sites. They found that local organization is characterized by clustering
in relatively short regions, while large-scale organization shows segments of
anomalous length between motifs. Low motif density occurs preferentially in
variable portions of the protein sequence, suggesting that the virus may be
generating escape mutants in order to evade T cell responses.
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3.2 Experimental Matrices

While useful in themselves, binding motifs are, as we have said, very simplistic.
They are not quantitative and their over-reliance on anchor positions can lead to
unacceptable levels of false positives and false negatives. Alternative approaches
abound. The different types have, as one might expect, different strengths and
different weaknesses. The strategy adopted by many workers is to use data from
binding experiments to generate matrices able to predict MHC binding. For
want of a better term, we refer to these approaches as experimental matrix
methods, as most such methods use their own measured data and relatively
uncomplicated statistical treatments to produce their predictive models.

Reay et al®? for example, substituted all natural amino acids at the 11
positions of a moth cytochrome ¢ epitope and evaluated binding to mouse Class
II allele Iek. Apart from identifying three positions that significantly affected
binding, they developed a simple scoring system to give semi-quantitative esti-
mates of peptide-MHC affinity. Rothbard et al.3*3 developed a method to
predict the strength of binding to human Class II allele HLA DRB1*0401. They
assumed, as do many other workers, that peptides of the same length bind
similarly and that the contribution made by each side chain is independent and
can be treated as a simple sum of residue interactions. Within the context of an
otherwise polyalanine backbone the contributions made by the central 11 posi-
tions, of a 13 amino acid peptide, were quantified by measuring the effects of
changes in amino acid identity at each position within the peptide. Later, this
method was extended to further alleless HLA DRB1*0101 and HLA
DRB1*1501.36

An alternative strategy is the use of positional scanning peptide libraries
(PSPLs) to generate such matrices. A number of such studies have been conduc-
ted. Some are aimed at investigating the problem of MHC-peptide interac-
tion,3’3 while others concern themselves with evaluating how variations in
peptide sequence contribute to TCR recognition and T cell activation.**4! One of
the most recent of these is also one of the most promising; Udaka et al.*2 have
used PSPLs to investigate the influence of positional sequence variation on
binding to the mouse Class I alleles Kb, Db, and Ld. From their analysis a
program that could score MHC-peptide interaction was developed and used to
predict the experimental binding of an independent test set. Their results showed
a linear correlation but with substantial deviation. About 80% of peptides could
be predicted within a log unit.

There are many other papers developing methods of this ilk. Though valuable
contributions, it is clear that they betray a series of important limitations. Firstly,
they do not, in general, constitute a systematic approach to solving the
MHC-peptide binding problem. Rather, they are a set of different - essentially
individual, independent, and inconsistent — solutions to the same, or nearly the
same, problem. The measures of binding are different, the degree of quantitation
is different for different methods and they also lack subsequent applications
corroborating their predictive power. Moreover, few, if any, of the papers descri-
bing such work make available sufficient detail for others to use their methods
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independently, despite the relative simplicity of their respective computational
approaches.

3.3 Empirical Methods

A step forward from deterministic motifs came with the work of Parker.4? This
method, which is based on regression analysis, gives quantitative predictions in
terms of half-lives for the dissociation of f>-microglobulin from the MHC
complex. It is founded on a series of important observations about peptide
binding to MHC molecules?!-2344-50 and has been used in a number of applica-
tions.’1:52 Moreover, apart from its intrinsic utility, one of the other important
contributions of this approach is that it was the first to be made available on-line
(http://bimas.dcrt.nih.gov/molbio/hla_bind/). This method, often referred to as
BIMAS by immunologists, is, for this reason, widely used. Because the underly-
ing methodology was developed specifically to address immunology projects by
Parker, rather than adopting an existing methodological approach, we choose to
call it an empirical method, although this is, perhaps, a slightly inaccurate choice
of terminology.

A number of other empirical methods also exist, each derived specifically with
the prediction of MHC binding in mind. For example, Alves et al.53 have used a
combination of sequence alignments, phylogenetic dendrograms and calculated
physical data to predict potential T cell epitopes from the cysteine proteinase of
Leishmania. More recently, Borras-Cuesta et al. developed and compared algo-
rithms for the prediction of Class II binding peptides.’* These algorithms were
based on matrices expressing the peptide selectivity of different alleles. The
sensitivity and specificity of these algorithms were tested against different panels
of peptides and compared to other algorithms reported in the literature. They
note the rather unsurprising conclusion that the sensitivity and specificity of the
approach was dependent on the prediction threshold. The sensitivities and
specificities for test peptides were, however, similar to those used to develop their
algorithms.

De Groot and colleagues have developed several computer programs, princip-
lely EpiMer and EpiMatrix, and have used them in various practical applica-
tions, with a particular focus on HIV.53-¢4 EpiMatrix and EpiMer are pattern-
matching algorithms that attempt to identify putative MHC-restricted T cell
epitopes as a preliminary to constructing multi-epitope vaccines. These algo-
rithms are themselves based on matrix representations of positional amino acid
preferences within MHC-bound peptides. The general utility of these methods
has been limited by the commercial exploitation of the EpiMatrix and EpiMer
technology.

Hammer and co-workers have developed an alternative computational strat-
egy called TEPITOPE.®-8! Good reviews of this methodology are now avail-
able.8283 Although the program can provide allele specific predictions, its main
focus is on the identification of promiscuous Class II binding peptides. This has
also been applied in a number of practical applications,?*-37 but, again, the
general usefulness of the approach is limited by the commercial status of
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TEPITOPE. One of the most interesting aspects of Hammer’s work has been the
development of so-called virtual matrices, which, in principle, provides an el-
egant solution to the problem of predicting binding preferences for alleles for
which we do not have extant binding data.®® Within the three-dimensional
structure of MHC molecules, binding site pockets are shaped by clusters of
polymorphic residues and thus have distinct characteristics in different alleles.
Each pocket can be characterized by ‘pocket profiles’, a representation of all
possible amino acid interactions within that pocket. A simplifying assumption is
that pocket profiles are, essentially, independent of the rest of the binding site. A
small database of profiles was sufficient to generate, in a combinatorial fashion, a
large number of matrices representing the peptide specificity of different alleles.
This concept has wide applicability and underlies, for example, attempts to use
fold prediction methods to identify peptide selectivity. Other workers, such as
Brusic, are developing similar technology.

3.4 Artificial Intelligence Methods

A number of groups have used techniques from artificial intelligence research,
such as artificial neural networks (ANNs) and hidden Markov models (HMMs),
to tackle the problem of predicting peptide-MHC affinity. ANNs and HMMs,
are, for slightly different applications, the particular favourites when bioinfor-
maticians look for tools to build predictive models. However, the development of
ANN:S is often complicated by several adjustable factors whose optimal values
are seldom known initially. These can include, inter alia, the initial distribution of
weights between neurons, the number of hidden neurons, the gradient of the
neuron activation function, and the training tolerance. Other than chance effects,
neural networks have, in their application, suffered from three kinds of limiting
factor: overfitting, overtraining (or memorization), and interpretation. As new,
more sophisticated neural network methods have been developed, and basic
statistics applied to their use, overfitting and overtraining have been largely
overcome. Interpretation, however, remains an intractable problem: few, if any,
can easily visualize or interpret the very complex weighting schemes used by
neural networks.

Notwithstanding these potential problems, many workers have adopted an
ANN strategy in seeking to solve the prediction of peptide-MHC binding. Bisset
and Fierz® were amongst the first to use ANN in this context. They trained an
ANN to relate binding to the Class II allele HLA-DR1 to peptide structure and
reported a correlation coefficient of 0.17 with a statistical significance of
p = 0.0001. Adams and Koziol*® used ANN to predict peptide binding to HLA-
A*0201, which is probably the most abundantly assayed of all Class I alleles.
They took a dataset of 552 nonamers and 486 decamers and generated a
predictive hit rate of 0.78 for classifying peptides into two classes, one showing
good or intermediate binding and another demonstrating weak or non-binding.
Gulukota et al.9192 developed two complementary methods for predicting bind-
ing of 463 nonamer peptides to HLA-A*0201. One method used an ANN and
the other used statistical parameter estimation. They found the ANN was better
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than motif methods for rejecting false positives, while their other alternative
method was superior for eliminating false negatives.

Amongst the best known names of those interested in the area of MHC
binding prediction is Vladimir Brusic. Over many years, he, and his co-workers,
have developed a range of artificial intelligence techniques, including, inter alia,
ANNs, HMMs, and evolutionary algorithms, aimed at solving problems of this
kind.?3-1® His work contains models of both Class I and Class I MHC alleles, as
well as the TAP transporter,1%1! and, within the context of his own classification
scheme,24101-105 his models seem highly predictive. Milik et al. used ANN to
predict binding to the mouse Class I molecule Kb based on a training set of
binding and non-binding peptides derived from a phage display library.1% While
it was easy to identify strongly affine peptides with a number of different
methods, they found that ANNs predicted medium binding peptides better than
simple statistical approaches.

Other varieties of artificial intelligence technique applied to this area include
decision trees'®” and HMMs. Mamitsukal!® has applied supervised learning to
the problem of predicting MHC binding using an HMM as his inference engine.
In a cross-validation test, the discrimination accuracy of their supervised learn-
ing method is usually approximately 2—15% better than other methods, includ-
ing back propagation neural networks. Interestingly, his HMM model allowed
the straightforward identification of new, non-natural peptide sequences that
have a high probability of binding.

3.5 Quantitative Structure—Activity Relationship Methods

There are relatively few examples within the literature that apply Quantitative
Structure—Activity Relationship (QSAR) methodology to questions arising from
the immune system, nor indeed are there that many papers that apply QSAR
techniques to any bioinformatic problem. The difference between QSAR and
artificial intelligence methods is primarily a semantic one. In practice they
achieve the same goal and work in similar ways, but QSAR techniques tend to be
based on different, and possibly more rigorous, types of statistical analyses:
including, amongst others, multiple linear and continuum regression, dis-
criminant analysis, and partial least squares.

Ronna Mallios is one of the few long-standing exponents of this particular
art.199-112 Focussing on the problem of MHC Class II prediction, she has
developed an iterative stepwise discriminant analysis meta-algorithm to derive a
quantitative motif for classifying potential peptides as potential epitopes. Her
most recent results, based in part on Brusic’s MHCPEP database,!!® have
allowed peptides to be classed as high-, moderate- or non-binders for HLA-DR1.
Earlier work used Bayesian discriminant analysis to predict whether or not a
given peptide epitope would activate helper T cells.!14

In a recent paper, Chersi et al''> used the MTD QSAR method to optimize
binding of nonamer peptides to the MHC allele HLA-A*0201 by increasing the
flexibility of amino acids at position 4. Bologa et al.,''® again using the MTD
approach, characterized the type of amino acid required for high binding of nine
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amino acid peptides at the HLA-A*0201 allele. They found that binding of these
peptides is favoured by lipophilic side chains at positions 2 and 9 and by large
amino acids at positions 1, 3 and 6. In a related study, Rovero et al.!'7 analysed
peptide binding to the human Class I allele HLA-B27. Most recently, Buss and
co-workers have used statistical methods to develop and refine quantitative
matrices representing Class I peptide specificities.!!® Their approach was to
improve predictions by including sequence dependency. They developed an
anchor-stratified calibration where their set of peptides was subdivided into
groups containing peptides which had two, one, or zero primary anchors, leading
to predictions with improved accuracy and precision.

In our own group we are beginning to apply a range of related QSAR
techniques, including both 2D and 3D-QSAR methods, developed initially in
pharmaceutical research, to attack similar MHC binding prediction problems.
We have decided to adopt a quantitative approach, using widely available ICsp
values, as measured in radioligand assays, rather than some arbitrary classifica-
tion scheme. We have built this QSAR strategy on the foundation supplied by a
new database system which we have developed.!'® This system, which we have
called JenPep, is a group of relational databases that focuses upon quantitative
data for peptide binding to MHCs and to the TAP peptide transporter, as well as
an annotated list of T cell epitopes. The database, and a HTML graphical user
interface (GUI) for its interrogation, is freely available via the Internet
(http://www jenner.ac.uk/JenPep).

The currently available version of JenPep (Version 1.0) is composed of three
sub-databases: a compilation of quantitative affinity measures for peptides bind-
ing to Class I and Class I MHCs, a compendium of dominant and subdominant
T cell epitopes, and a set of quantitative data for peptide binding to the TAP
peptide transporter. The T cell section contains 2300 T cell epitopes, the MHC
binding section contains 6000 peptides, and the TAP section covers 400 peptides.
JenPep contains binding data on a wide variety of different MHC alleles: for
MHC Class I, JenPep has data for 68 different restriction alleles with over 50
genotype variations. For Class II MHC molecules there are over 40 restriction
alleles with 52 genotype designations. Peptide lengths for class I are in the range
of 7-16 residues and for Class II are in the range of 9-35 residues. The database
itself is a relational system, constructed using MicroSoft ACCESS and is search-
able through a GUI built using ASP. Together with the peptide sequence,
JenPep includes various kinds of binding measure, MHC restriction, and, where
such data is known, the protein from which the peptide originates. Data on T cell
epitopes is currently limited to a list of binders. While there are many different
ways to identify T cell epitopes, including T cell killing, proliferation assays such
as thymidine uptake, etc., the quantitative data produced by such assays is not
consistent enough to be used outside of particular experimental conditions. For
MHC binding we have used a number of alternative measures of binding affinity
which are currently in common currency. These include radiolabelled and fluor-
escent ICsp values, BLso calculated in a peptide binding stabilization assay and
kinetic half-lives.

We are actively developing the database beyond its current limitations, and
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expect to release a much larger and more complete quantitative database in the
near future. Much useful data is still locked into the hard-copy literature or is
presented in a graphical form, and it remains an on-going challenge to find and
extract this data into a machine-readable format. We also look {forward to the
day when immunologists submit their experimental binding data to an online
archive, much as today molecular biologists must submit their data to publicly
curated sequence databases.

The approach we have taken to the prediction of MHC binding is to develop a
novel QSAR application relating the biological activity of a set of peptides to
their properties, as calculated in either 2D or 3D. The explanatory power of 3D-
QSAR methods is considerable, not only in their ability to predict accurately
biological activities, or, in our case, binding affinities, but also in their capacity to
display advantageous and disadvantageous interaction potential, in three di-
mensions, mapped onto the three-dimensional structures of molecules being
studied. The methods differ in the way they describe the compounds and in how
they detect the relationship between 3D properties and bioactivity. We applied
two well known 3D-QSAR techniques: Comparative Molecular Fields Analysis
(COMFA)20 and Comparative Molecular Similarity Indices Analysis (CoM-
SIA).121-123 These methods have some common features. They both use huge
matrices of data generated at regularly spaced grid points using some distance
dependent function. For the statistical calculation of the structure—activity rela-
tionship they both use a PLS protocol able to cope with the large volume of data.
To obtain high predictive power they both need a perfect preliminary alignment
of the investigated structures.

The main differences between CoMFA and CoMSIA are the form of the
defined probe and the type of the distance dependent function used. In CoMFA,
the probe atom is an sp> carbon with a + 1 charge. For each molecule belonging
to the set under study, two values of the interaction energy are calculated at each
grid point — one a van der Waals/Lennard-Jones interaction and one an electros-
tatic Coulombic interaction. Because of the hyperbolic functional form, both of
these potentials obtain very large nonsensical values within the van der Waals
surface. To avoid these values arbitrarily fixed cutoffs are defined (here:
30kcalmol~! for both functions). Due to the different slopes of the potentials
these cutoffs are exceeded for the different terms at different distances from the
molecules.!24

In CoMSIA, similarity indices are calculated instead of interaction energies.
Each molecule from the training set is compared to a common probe with a
radius of 1 A, charge, hydrophobicity, and hydrogen bond property equal to + 1.
The functional form here is selected to be Gaussian with an attenuation factor
a=0.3.121 Compared to the Lennard-Jones and Coulomb potentials, the Gaus-
sian-type function has the advantage of using all grid points inside and outside
the molecules, and no arbitrary cutoffs are required. Five different similarity
fields are calculated: steric, electrostatic, hydrophobic, hydrogen bond donor
and hydrogen bond acceptor. These fields cover the major contributions to
ligand—protein binding.!12

Initially, we applied two 3D-QSAR methods - CoMFA and CoMSIA -to a
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training set of 102 peptides that bound to HLA-A*0201.12 The predictive power
of both methods was assessed using a test set of 50 peptides. We found that
CoMSIA gave much better predictive pICso values for binding to the HLA-
A*0201 molecule than CoMFA, and indicated a dominant role for hydrophobic
interactions in peptide binding to the MHC molecule.

More recently, we extended our 3D-QSAR analysis by applying the CoMSIA
technique to a set of 266 peptides in order to assess the contributions of
physicochemical properties other than the hydrophobic field.1?¢ The best model,
based on steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen
bond acceptor fields, had g% = 0.683 and r2 = 0.891. The stability of this model
was demonstrated by a ‘leave-one-out’ cross-validation procedure and by cross-
validations in two and five groups. The mean [residual| value between the
experimental pICsos (—logiolCsp) and those calculated by ‘leave-one-out’ cross-
validation was 0.489. This model was used to evaluate the physicochemical
requirements at each position in the peptide structure and to define the preferred
amino acid sequence for high affinity binding to HLA-A*(0201 molecule. The
data are highly complementary to the sort of very detailed — but peptide specific
— information obtained from crystal structures of individual peptide-MHC
complexes.

We have also produced a complementary predictive method, based on the so
called additivity concept. According to this concept each substituent makes an
additive and constant contribution to the biological activity regardless of sub-
stituent variation in the rest of the molecule.!?’” The IBS approach, as developed
by Parker and others,22439! js based on a similar concept. We extended this idea
by adding some additional terms accounting for the interaction of different side-
chains. Thus, the binding affinity of a peptide will depend on the contributions of
the amino acid side-chains at each position and the interactions between the
adjacent and every second side-chain:

9 8 7
binding affinity = const + >, P;i + Y PiPis1+ Y, PiPiyso, (1)

i=1 i=1 i=1

where the const accounts, albeit nominally, for the peptide backbone contribu-
tion, ?_, P; is the sum of amino acids contributions at each position, Z¥_ , P;
P;i ., 1 is the sum of adjacent peptide side-chain interactions, and Z7_ | Pi P; 42 is
the sum of every second side-chain interactions.

We applied this method to a set of 340 nonamer peptides with affinity to
HLA-A*0201 molecule.!?® The regression equation consisted of 1815 terms
including the constant. Its MLR parameters were r? = 0.898, s = 0.285,

- Fs334 = 588.883, number of components (NC) = 5. The ‘leave-one-out’ cross-
validation (CV-LOO) gives g> = 0.337, SEP = 0.726, NC = 5, mean [residual|
value = 0.573. The combination of both techniques — CoMSIA and additive —
gives a very useful result. CoMSIA can make extrapolations, predicting the
binding affinity of a peptide carrying an amino acid not present in the inves-
tigated set at the same position, but it cannot assess the contribution of each
amino acid at each position and the interactions between them. The opposite is
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true for the additive method, it lacks the ability to extrapolate but it can give a
quantitative assessment of any amino acid at any position in the peptide. The
application of both methods to the same set of nonamers binding to MHC class I
molecule HLA-A*0201 gave very good agreement between the results generated
by both techniques.!?

3.6 Structural Analyses: Roadmaps of MHC Binding

An alternative approach to gaining some kind of structural understanding of
peptide binding proceeds through a thorough analysis of MHC receptor binding
site structure. This is in contrast with data driven models that rely on the
accumulation of binding data. Studies of that kind provide important structural
information that underlies binding and it also allows links to be drawn between
different MHC alleles, but at the functional, or peptide binding, level rather than
the phylogenetic level. MHCs are polymorphic and it is small variations in the
amino acid identity of binding site residues that give rise to variations in peptide
selectivity exhibited during peptide binding. Thus any significant propinquity
apparent between binding sites should also be mirrored in the overall peptide
selectivities of different MHCs. Rigorous comparative investigation of similari-
ties should allow us, then, to predict both similarities in peptide selectivities and
to group different alleles together on a fundamentally different basis to those
produced by pseudo-phylogenetic studies of the whole MHC sequence.

We have already mentioned this concept above, in the context of Hammer’s
work, 38 for example. A number of early studies of this type focussed on the then
unclear nature of the directionality of peptide binding to MHC molecules.!30-131
More recent work has concentrated more on the nature of peptide binding and
the kinds of sites and sub-sites apparent in MHC molecules, particularly in the
context of Class 1. De Lisi and co-workers,132 sought to establish correlations
between Class I peptide binding specificities and MHC sequence markers occur-
ring at polymorphic positions within the binding site. The analysis of nine MHC
crystal structures of Class I MHC molecules, together with the modelled struc-
tures of 39 more, suggested Class I pockets can be classified into families
distinguishable by their common properties. In turn, this allowed the set of
known Class I motifs to be greatly expanded. Sacchetini and colleagues again
analysed human and mouse Class I molecules,!3? attempting to identify non-
covalent interactions — hydrogen bond and van der Waals interactions — conser-
ved between different structures. These interactions are characteristic of individ-
ual MHC Class I molecules, and determine the nature of anchor residues in
bound peptides.

The name of Chelvanayagam stands out amongst work of this type. He has
attempted to derive so-called ‘road maps’ for both Class I'34135 and Class I1136.137
MHC molecules. In Chelvanayagam’s work, new, less restrictive descriptions of
the peptide binding sites of MHC molecules are developed. Chelvanayagam
refers to these as peptide binding environments and defines them as that set of
amino acid residues within a preset neighbourhood of individual residues in
crystal structures of MHC peptide complexes. Combining this information with
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sequence alignments of Class I MHCs, Chelvanayagam is able to make predic-
tions for motifs for those MHC molecules that share a similar profile of environ-
ments. Chelvanayagam has extended this approach seeking to rationalize the six
supertypes of MHC HLA-A molecules defined on the basis of nucleotide se-
quence and phylogenetic analysis.!3® Unsurprisingly, he finds closer approxi-
mation to family signatures defined at sites showing strong correlation with these
six groups. In particular, positions 62, 97 and 114, within the muitiple alignment,
can discriminate between these families. Chelvanayagam finds that while the
whole site contributes to the definition of antigen binding, these three amino acid
positions play the most important role in the determination of supertype speci-
ficity and the nature of T cell recognition.

In an interesting variant on this kind of static analysis, Schueler-Furman and
co-workers have studied possible structural preferences of MHC-binding pept-
ides by examining the conformation space defined by the structures of these
peptides within the proteins from which they derived.'* Comparing the confor-
mational space accessible to a set of nonameric MHC binders and set of random
nonamers showed no significant difference. This suggests that the MHC binding
site has evolved to bind peptides with any ‘structural background’.

3.7 Molecular Dynamics

A quite different approach to obtaining predictions of peptide-MHC binding is
based on atomistic molecular dynamic simulations. It attempts to calculate the
free energy of binding for a given molecular system, which is closely related to
experimentally observable quantities such as equilibrium constants or ICsps. It
has the advantage that, in principle, there is no reliance on known binding data,
as it attempts the de novo prediction of all relevant parameters given certain
knowledge of the system. Essentially, all that is required is the experimentally
determined structure, or a convincing homology model, of a MHC peptide
complex.

The statistical mechanics definition of free energy is in terms of the partition
function but this theoretical definition is not practical for most types of calcula-
tion. What one can calculate more easily, however, is the free energy difference
between two states. A number of methods exist which allow us to undertake
simulations leading to the evaluation of free energies, each based on different
assumptions and offering differing levels of approximation. In free energy pertur-
bation, or FEP, methodology, for example, the free energy is calculated at
discrete intervals j using the expressions:

Gij+1— Gy = —RTIn <e’i+ ="y > g+
AG = G1 — Go =} Gy +1) — Gy
j

where G and Gy are the free energies of the two states and V is the potential
energy of the system. In thermodynamic integration, the free energy of the system
is calculated by:
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1
AG = G1 — G, = [ dA (dV/dA)

To solve this equation numerically we must transform it, from a continuous
integration over a continuum of indivisible steps, to a discrete integration over a
set of individual steps. In slow growth methods, we assume the steps are very
close and we can approximate:

6H AH
o4 A4
AG=H1=0_H1=1

Many other approximations also exist, notably, that introduced by Aqvist.'4?

Molecular dynamics simulation is, itself, a technique to compute the equilib-
rium position of a classical multiple body system. It is assumed that the atoms of
the system are constrained by an interatomic potential energy force field. Each of
the N atoms in the simulation are treated as a point mass and Newton’s
equations are integrated to compute their motion. This can be written in the
formalism of Hamiltonian mechanics as:

x = JdH(x)

where J is the identity matrix of rank 2 and H = T + U, where T is the kinetic
energy and U is the potential energy. We need to provide the initial configuration
of the system at t = 0, that is the co-ordinates of all atoms in a six dimensional
hyperspace. Thus, at regular time intervals, we resolve the classical equation of
motion represented by the N equations implicit above. The gradient of the
potential energy function is used to calculate the forces on the atoms while the
initial velocities on the atoms are generated randomly. At this point new posi-
tions and velocities are computed and the atoms moved to these new positions.
To measure an observable quantity we must be able to express this as the
position in a phase space of dimension 6*N. The information within our system
is largely contained within the potential energy function, which takes the form of
a simple penalty function for most simulations of biomolecules.

For large molecular systems comprising thousands of atoms, many of the
more sophisticated modelling techniques, which often describe the potential
energy surface in terms of quantum mechanics, are too demanding of computer
resources to be useful. The Born-Oppenheimer approximation states that the
Schrédinger equation for a molecule can be separated into a part describing the
motions of the electrons and a part describing the motions of the nuclei and that
these two motions can be studied independently. We can then think of molecules
as mechanical assemblies made up of simple elements like balls (atoms), rods or
sticks (bonds), and flexible joints (bond angles and torsion angles). Terms that
describe the van der Waals, electrostatic, and possibly hydrogen bonding, inter-
actions between atoms supplement molecular mechanics forcefields.

Delisi and co-workers were among the first to apply molecular dynamics to
peptide: MHC binding, and have, subsequently, developed a series of different
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methods.!41-145 Part of this work has concentrated on accurate docking using
molecular dynamics and part on determining free energies from peptide MHC
complexes. Rognan has, over a long period, also made important contributions
to this area.!*¢-152 In his work, dynamic properties of the solvated protein—
peptide complexes, such as atomic fluctuations, solvent accessible surface areas,
and hydrogen bonding patterns correlated well with available binding data. He
has been able to discriminate between binders that remain tightly anchored to
the MHC molecule from non-binders that are significantly weaker. Other work
from Rognan and co-workers!3315* has concentrated on the design of non-
natural ligands for MHC molecules, demonstrating the generality of molecular
dynamic approaches to problems of MHC binding.

Other work in this area has come from two directions. First, those interested in
using the methodology to analyse and predict features of peptide-MHC com-
plexes. These methods have looked at both Class 1155156 and Class I1,1%7 as well as
investigating the effect of peptide identity on the dynamics of T cell interac-
tion.138 Secondly, those who are more interested in developing novel aspects of
MD methodology, including both simulation methodology!*® and solvation,160
and use the MHC peptide systems as a convenient example of a binary molecular
complex.

The growth of computer power during the last two decades has allowed the
study of biologically interesting systems including small and medium-sized
proteins using atomistic molecular dynamics methodology. However, we are still
faced with problems concerning the validity of our models and the relatively
short time scales that can be reached on current serial machines. Many ap-
proaches have been tried to circumvent these problems, but only with limited
success, since almost any attempt to reach longer time scales will result in more
approximations in the model. Previous attempts to utilize molecular dynamics
and other atomistic simulation methods to investigate peptide-MHC interac-
tions have foundered on technical limitations within present computing
methods. While many methods link thermodynamic properties to simulations,
they take an unrealistically long time. A basic simulation yielding a free energy of
binding requires something like 10 nanoseconds of simulation. On the average
desktop serial workstation, this requires a compute time in the order of 300
hours per nanosecond. To simulate as few as a dozen peptides might occupy a
whole machine for several years. To circumvent these technical limitations one
recourse we might make use of is to take advantage of high performance,
massively parallel implementations of molecular dynamic (MD) codes running
on large supercomputers with 128, 256, or 512 nodes. Another, complementary
way to circumvent this problem is to make use of ‘Grid computing’. This refers to
an ambitious and exciting global effort to develop an environment in which
individual users can access computers, databases and experimental facilities
simply and transparently, without having to consider where those facilities are
located. It is named by analogy with the national power transmission grid. If one
wants to switch on a light or run a fridge freezer, one does not have to wait while
current is downloaded first, thus Grid seeks to make available all necessary
compute power at the point of need.
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Mention should also be made of the study by Schueler-Furman and co-
workers,!6! which strikes a cautionary note. A preliminary to the accurate
prediction of binding data for MHC complexes is the fast, accurate modelling of
the initial peptide structure in the MHC-binding groove. Using 23 Class I
peptide-MHC complexes solved experimentally as a reference, Schueler-Fur-
man evaluated algorithms for this purpose. The peptide backbone and MHC
structures were used as rigid templates within which sidechain conformations
were built from a rotamer library using the ‘dead end elimination’ method.162
Within this context, they evaluated the influence of different parameters on the
prediction quality. They concluded that the structure of the peptide sidechains is
dictated by the structure of the static MHC molecule and that the prediction of
individual rotameric states for specific amino acids is not affected significantly by
sidechain-sidechain interactions. However, under cross validation the success
rate in correctly predicting sidechain rotamers did not exceed 70%, indicating a
fundamental limitation of existing modelling technologies.

3.8 Virtual Screening

A methodology closely related to molecular dynamics, both being based, to a
large degree, on molecular mechanics force fields, or, at least, drawing on
analogies from pairwise atomistic potential energy functions, is a set of tech-
niques grouped loosely under the name of “Virtual Screening’. There are two
principal types of virtual screening methodology that have, thus far, been applied
to the prediction of MHC binding. One derives from computational chemistry
and the other from structural bioinformatics and the development of tools for
fold prediction. Virtual screening is an expression deriving from pharmaceutical
research: the use of predicted ligand~receptor interactions to rank or filter
molecules as an alternative to high throughput screening. Approaches to virtual
screening cover a spectrum of methods which vary in complexity from molecular
descriptors and QSAR variables, through simple scoring functions (such as Ludi,
FlexX, Gold, or Dock), potentials of mean force (PMF) (such as Bleep), force field
methods, QM/MM, linear response methods,!4° to free energy perturbations. In
this transition from, say, atom counts, through to full molecular dynamics, we see
a tremendous increase in computer time required. Virtual screening can be seen
as seeking a pragmatic solution to the accuracy gained vs. time taken equation.
The point at which one stops on this spectrum is contingent upon the system
being evaluated, the number of peptides being evaluated, and the computing
resources available.

Rognan has developed a virtual screening method called FRESNO and
applied this algorithm, which relies on a simple physicochemical model of
host-guest interaction, to the prediction of peptide binding to MHCs.163 This
model was trained on a combination of data and experimentally derived 3D
structures from the alleles HLA-A0201 and H-2Kk. They found that lipophilic
interactions contributed the most to HLA-A0201-peptide interactions, whereas
H-bonding predominated in H-2Kk recognition. Cross-validated models were
afterward used to predict the binding affinity of a test set of 26 peptides to
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HLA-A0204 (an allele closely related to HLA-A0201) and of a series of 16
peptides to H-2Kk. They concluded from their initial study that their scoring
function was able to predict, with reasonable accuracy, binding free energies
from three-dimensional models. In a more comparative study,'®* Rognan and
colleagues found that, for predicting the binding affinity of 26 peptides to the
Class I MHC molecule HLA-B*2705, FRESNO out-performed six other avail-
able methods (Chemscore, Dock, FlexX, Gold, Pmf, and Score). This confirms
our own experience using commercial and freeware virtual screening approaches
for the quantitative assessment of MHC peptide binding. Kanguene and col-
leagues!® obtained a 77% success rate using the number of clashes between the
MHC and peptide and the number of exposed hydrophobic peptide residues to
correctly distinguish peptides into binders and non-binders.

Turning now to bioinformatic based approaches, others are using amino acid
pair potentials, initially developed to predict the fold of a protein, to identify
those peptides which will bind well to a MHC. Margalit and colleagues have
proposed a number of virtual screening methodologies,'96167 each of increasing
complexity. They used amino acid pair potentials, originally developed by
Miyazawa and Jernigan,'®® to evaluate the inter-protein contact complementar-
ity between peptide sequences and MHC binding site residues. They presented
an analysis of peptide binding to four MHC alleles (HLA-A2, HLA-A68, HLA-
B27 and H-2Kb), and were successful in predicting peptide binding to MHC
molecules with hydrophobic binding pockets but not when MHC molecules with
charged or hydrophilic pockets were investigated. Again focusing on Class I
alleles, a more recent study from this group!®® used an updated set of statistical
pairwise potentials. These were developed from the Miyazawa and Jernigan
potential by Betancourt and Thirumalai!’® and describe the hydrophilic interac-
tions more appropriately. This enables more accurate modelling of the threading
of the candidate peptide sequence. In an independent study, Swain et al.!”! have
developed a similar threading method and applied it to Class II MHC-peptide
interactions. This method is currently being developed commercially by Biova-
tion Ltd [http://www.biovation.co.uk/].

Because of the relative celerity of virtual screening methods compared with
MD methods and its ability to tackle MHC alleles for which no known binding
data is available, this method has huge potential. While both molecular dynami-
cs and related methods hold out the greatest hope for true de novo predictions of
MHC binding, their present success rate is very much lower than that of data
driven models. However, as with most of science, one must tease the genuinely
useful from the self-aggrandizing hyperbole. Much work remains to be done on
developing, refining, and applying this methodology.

4 Predicting T cell Epitopes

TCRs are immunoglobulins, homologous in sequence and structure to antibo-
dies, and function through binding to the peptide-MHC (pMHC) complex
formed on the surface of other cells. The binding of TCRs to pMHC is weaker (in
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the micromolar range) than the binding of peptide to MHC (in the nanomolar
range). T cell epitopes are, as defined above, short peptides which bind well to
either Class I or Class I MHC molecules and are recognized by TCRs, and thus
activate a diversity of T cell responses. A number of workers have attempted to
avoid the necessity of predicting MHC binding and opted instead for a direct
evaluation of the potential of a peptide to become a T cell epitope.

Lu et al.l”? found, in sequences of digested fragments of antigenic proteins, a
pattern of recurring hydrophobic sidechains forming a longitudinal hydropho-
bic strip (assuming an a-helical conformation) associated with T cell epitopes.
Raychaudhury et al.!” used a graph-theoretical method to extract allele specific
patterns characteristic of T cell epitopes. In cross validated tests, they found their
algorithm, which used indices calculated from weighted connected graphs to
model their peptides, was almost 100% predictive. However, their database of
only 28 peptides was so small that the statistical significance and global predic-
tivity of the method must be questionable. Davenport et al. 14 used simple two or
three anchor position motifs to predictc MHC Class II restricted im-
munodominant T cell epitopes. Hobohm and Meyerhans!” developed an auto-
mated procedure to extract anchor residue motifs from sets of Class I MHC
binding peptide sequences: their motifs for A*0201, B27, Kb, Kd, Db were in
substantial agreement with measured data. Their method was then used to
predict the natural short epitope inside longer antigenic peptides. Altuvia et al.176
developed a method which seeks to discriminate between true T cell epitopes and
other non-epitopes, which are peptides that are inactive either because they are
not recognized by TCRs or are not bound by MHCs. Again, they used multiple
sequence alignments to generate motifs that are present in epitopes and absent in
non-epitopes. A motif is expressed in terms of physico-chemical and structural
properties that may give rise to the sequence specificity of binding and can be
extracted from sequence data, such as hydrogen bonding capability, hydropho-
bicity and charge. The effectiveness of these motifs was explored using mouse
Class II alleles. In a novel application of artificial intelligence techniques, Savoie
et al.1% used decision trees, as implemented in the BONSAI program, to identify
sequence motifs that cause preferential activation of T cells. By using a database
of previously identified T cell epitopes they were able to identify motifs that
explained 84% of negative T cell responses and 70% of positive T cell responses.

In the light of X-ray crystallographic data, it is now clear what the mechanism
of pMHC-TCR interaction is. However, this has not always been clear.!”” Early
analysis of experimental results did show that T cell epitopes could be defined by
short linear sequences, but the observation that increasing peptide length often
resulted in increased antigenic potency suggested that immunogenicity might
also depend upon the ability of the peptide to adopt an appropriate secondary
structure. These ideas led many researchers to develop direct predictors of T cell
immunogenicity based, in the main, on such erroneous assumptions about the
conformation adopted by T cell epitopes. In an important retrospective analysis
of these diverse approaches, Deavin et al.1”® compared numerous T cell epitope
prediction methods against databases of mouse and human epitopes, assessing
their performance using specificity as a measure of the quality of predictions and
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sensitivity as a measure of the quantity of correct predictions. Versus the human
data, the strip-of-helix algorithm of Stille et al.1’® was the only significant model
and for the mouse dataset, only the method of Rothbard and Taylor!8? was
significant. Overall, they found that most of the algorithms were no better than
random for either data set, indicating again the need to include MHC binding in
the definition of putative T cell epitopes. This is consistent with the diminishing
interest in such methods relative to that which predicts MHC binding. One of the
few approaches of this type that has been published in recent years is the report
by Cornette et al.,'8! which performed a Fourier analysis of sequences from a
compendium of T cell epitopes. This indicated that peptides exhibited a periodic
variation in amino acid polarities of 3-3.6 residues per period, suggestive of an
amphipathic a-helical structure, which is clearly in conflict with the results of
high resolution structural studies. They offered two explanations for this incon-
sistency based on the spacing of hydrophobic and hydrophilic residues and
suggested the existence of an allele independent antigenic motif inherent within
the structure of most T cell epitopes.

5 Predicting Subcellular Location

There are obviously many aspects to computational vaccine design other than
the prediction of potential epitopes. Many of them are as yet only poorly
developed. While we have seen that T cell epitope prediction is now well
developed, at least to the stage where it is beginning to become useful, the
prediction of immunogenicity, particularly for subunit vaccines, which necessar-
ily involves a deeper understanding of host responses, remains primitive (see
Figure 4). The prediction of antibody, or B cell, mediated antigenicity is at an
even more primitive stage.182183 This relies on concepts of some antiquity!34-186
and quite simplistic software.!87.18 However, some other techniques comple-
mentary to the prediction of host responses, such as the prediction of the
subcellular location of potential antigen proteins, have reached a greater level of
maturity.

Consider a microbial genome, or, more specifically, a bacterial genome (Figure
5). The total protein complement — say a few thousand gene-products — is
distributed between the inner and outer compartments of the bacteria. Some will
reside in the cytoplasm, some will find their way to the periplasmic space, at least
in Gram — ve bacteria, and others will be secreted from the cell. Some proteins
will become integral membrane proteins located in the inner or outer membranes
and some will become lipoproteins. An ability to predict these locations would
be of great benefit when choosing which proteins to investigate as candidate
vaccines: a secreted protein, for example, can be regarded, at least naively, to be a
more likely target than, say, a cytoplasmic enzyme. A number of bioinformatic
methods have been developed which address the prediction of subcellular loca-
tion, which has proved to be more complex than was originally envisaged.

In 1982 a strong link between amino acid composition (e.g. Leu and Trp
favoured, Pro disfavoured!®®) and cellular location was identified,!* but as the
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Figure 4 Skeleton scheme for predicting immunogenic protein molecules and candidate
subunit vaccines. The identification of protein immunogenicity and the identifica-
tion of potential vaccine targets from a given genome, or set of proteins, is, as yet,
an unsolved problem. The scheme given here uses the prediction of T cell epitopes
to effect the leverage of a partial solution for the prediction of immunogenicity.
However, many other factors, including many not cited here, will also affect it.
Assuming that immunogencity can be predicted, then other factors can be used to
filter highly immunogenic proteins as putative vaccine targets. Many of the
factors shown here are tractable from a bioinformatic viewpoint, albeit with
greatly varying degrees of accuracy, insofar as data exists from which we can
build models, but those shown underlined require other novel experimental evi-
dence. One can imagine a viral genome of a few hundred proteins, a bacterial
genome of a few thousand, or a parasite genome of, say, ten thousand genes being
fed into a composite software package that undertakes such an analysis, produc-
ing tens of highly immunogenic proteins, from which it can be whittled down to say
five candidate vaccines

number of protein structures available increased this relationship has became
more blurred.!®! Despite the ambiguous relationship between amino acid com-
position and subcellular localization many methods, of increasing sophistica-
tion, have been created that exploit this connection.!®2-1% Nakashima and
Nishikawa!?’ describe a method where the average amino acid composition for a
number of proteins whose subcellular localization is known was calculated.
From. these simply obtained results trends in amino acid composition were
observed such as intracellular proteins being relatively rich in aliphatic residues.
Just using basic rules like these they were able to correctly identify 78% of the
test set as being either intracellular or extracellular.

This idea was developed further by Andrade et al1% who hypothesized that
throughout evolution each subcellular location has maintained a characteristic
physio-chemical environment. The proteins in each location would have adapted
to the environment and therefore each location would have proteins with signa-
ture structural characteristics. These characteristics are more likely to manifest
at the surface (which is exposed to the environment) and therefore the surface
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Figure 5 Determining the subcellular location of proteins in Gram +VE amd Gram —VE
Bacteria. Many methods exist for determining the subcellular location of proteins
within the expressed set of gene products within a bacterium. Intracellular pro-
teins, which are typically, but not exclusively, well conserved, can be identified
through the use of global similarity homology searches of sequence databases,
using BLAST for example, or motif databases, such as PRINTS, or through the
use of generic subcellular location methods such as PSORT. Membrane proteins
are readily, and quite reliably, found through the use of many different prediction
methods. Lipoproteins can be found through the use of sequence patterns, and
proteins secreted through the type II secretion system can be detected using
SIGNALP. Proteins secreted through the other secretion systems I, IIT, IV are
hard to detect, as they have no readily detectable secretion signals within their
sequence

residue composition is likely to give a very strong identification of the subcellular
location. This method predicted 77% of protein locations accurately. Although
amino acid composition correlated with subcellular location the former can not
be exclusively defined by the latter. Neural networks have also been applied to
this problem!?” and are the basis of the NNPSL web-based server. This provided
an accuracy of 81% for prokaryotic prediction but only 66% for eukaryotic. This
seems likely to be due to the persistent neural network shortcoming of over-
fitting to training data especially when the variables are complex.

The majority of methods for predicting localization are based on protein
sorting signals.!?® These signals are normally represented as a short sequence
with variable levels of conservation. Many are represented as well defined motifs
while others show vague sequence features that are undetectable by simpie
homology searching.!% The most obvious protein sorting signal to investigate is
the signal peptide. Looking at a simple bacterial model, if a protein has a signal
peptide but no transmembrane domain then it will be excreted through the inner
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membrane. If a protein with a signal peptide has a transmembrane domain then
it will become inserted into the membrane.2® All signal peptides have a three
region structure, the amino (N), the hydrophobic (H) and the carboxy (C) with a
weak consensus pattern specifying the cleavage site.29! Signal peptides are
divided into classes on the basis of variation of structure of the N, H and C
regions, structure of the cleavage site and different propensities for amino
acids.202

Many approaches have been taken to try and predict subcellular location
from signal peptides and cleavage variations. The different amino acid propensi-
ties of N, H and C regions for different classes can be identified by multivariate
analysis of the individual amino acids.20® A wide range of characteristics of
amino acid properties has been determined and the similarities/dissimilarities in
the property profiles for different signal peptide classes were compared. Initially
this method was applied to just E. coli with some success but later expansion to
Gram positive bacteria was less successful and varied greatly from species to
species.20 There were some factors though such as charge, length, sidechain
hydrophobicity and volume that proved reasonably reliable factors that could be
used as part of possible new techniques. The prediction of cleavage sites and
inference of subcellular location has proved more fruitful than amino acid
composition based methods, with prediction as high as 96%,205.206

6 Applications to the Discovery of Vaccines

Ultimately, the utilitarian value of the many techniques described above will
need to be demonstrated through their usefulness in experimental vaccine dis-
covery programmes. All of the methods we have adduced focus primarily on the
discovery of T cell epitopes, which can prove useful, amongst other things, as
diagnostic markers of microbial infection and as the potential basis of epitope
vaccines. Many workers have, in recent years, used computational methods as
part of their strategy for the identification of both Class I and Class II restricted
T cell epitopes, but it is outside the scope of the present work to review these
studies in detail. However, it is certainly encouraging that many experimental
immunologists are now beginning to see the need for informatics techniques.
One of the key problems they face is the information explosion poised to sweep
over immunology. Computer-based data and knowledge management, as
manifest in the development of novel databases?” 104119 and predictive
methods,?7125163 i essential if this data deluge is not to overwhelm the immu-
nologists in the post-genomic era. What the field currently lacks are any very
convincing comparative studies of the performance of these different algorithms.
Two papers that come close to performing such an analysis reach very different
conclusions. Lu and Celis??’ used two publically available prediction algorithms
— BIMAS?? and SYFPEITHI? - to identify B7 restricted CTL epitopes within
the carcinoembryonic antigen (CEA), yielding three candidate peptides that were
tested for T cell responses. One CEA peptide: IPQQHTQVL, efficiently induced
a CTL response. They concluded that ‘our strategy of identifying MHC Class
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I-restricted CTL epitopes without the need of peptide/HLA-binding assays
provides a convenient and cost-saving alternative approach to previous
methods’. In contrast to this highly upbeat message, Andersen et al 28 analysed
the experimental binding of 84 peptides selected using the presence of allele-
dependent peptide binding motifs. Observed binding was compared with results
obtained from the same two algorithms used by Lu and Celis. The authors
concluded that no strong correlation exists between actual and predicted bind-
ing using these algorithms. Moreover, they also found a high number of false
negatives when using the BIMAS or SYFPEITHI algorithms compared to
simple scanning for primary anchor residues. Andersen et al. concluded that ‘the
peptide binding assay remains an important step in the identification of CTL
epitopes which can not be substituted by predictive algorithms’. Thus it is clear
that there is a need to produce more accurate prediction algorithms, which cover
more Class I and Class II alleles in more species. Yet, for these improved
methodologies to be ultimately effective — that is to say that they are taken up
and used routinely by experimental immunologists — these methods must also be
tested rigorously for a sufficiently large number of peptides that their accuracy
can be shown to work to statistical significance.

7 Conclusion

As we have seen, the accurate prediction of epitopes is one weapon that can be
used to combat the impending flood of new post-genomic information, but there
are many more, some of which we have mentioned in passing, others to which we
have made no allusion. These include methods for the prediction of numerous
properties of the humoural immune system such as B cell epitopes or neutralising
Abs binding sites, the prediction of whole protein, glycoprotein, or lipoprotein
antigens, or clever strategies for presentation of defined epitopes in protein
vectors. Indeed, the whole area of immunogenicity includes not only prediction
of T cell and B cell epitopes, but also many other things beside. We have not
mentioned the role that the rational optimization of epitopes, in terms of MHC
binding or TCR recognition, can play in improving immunogenic or protective
qualities of epitope-based vaccines, or how the use of computer based screening
can help in the search for promiscuous peptides, able to bind many different
allleles, which is a very important concern, particularly for Class II or the part
that variability of antigen sequence can play. There is much that informatic
techniques can offer, including solutions, or partial solutions, to those outstand-
ing problems mentioned above.

Another important observation to arise from many of the studies mentioned
here, but primarily from application of QSAR and MD methods, is the emphasis
placed on the important role of non-anchor residues in influencing the energetics
of peptide-MHC binding. It is clear that anchor residues alone cannot account
for peptide binding. Rather it is the combination of all amino acids within the
peptide that ultimately determines the observed affinity of binding.

It is paradoxical that despite the brilliant insights of immunologists over the
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decades, there remain many fundamental problems of the immune system that
are poorly understood. Computational methods can aid this search for under-
standing. Indeed, it may be essential to overcome the information overload that
is about to break over the subject. Because of the diversity of the immune system,
such computational approaches will be neccessary in the discovery and design of
both individualized and population-based vaccines. Computational simulation
has already proved useful, for example in T cell epitope mapping, to support
more efficient experimentation and discovery. While it is clear that bacterial
pathogens have evolved many ingenious methods to invade the human host
successfully, it is also clear that many seemingly diverse pathogens can share
common virulence traits. This will be of great use when designing novel com-
pounds to combat diseases. As each new genome sequenced increases our
knowledge of microbial pathogenesis, so the number of targets available for
therapeutic research should likewise increase.

The next step will come from closer connections between immunoinfor-
maticians and experimentalists seeking to discover new vaccines, both academic
and commercial, conducted under a collaborative or consultant regime. In such
a situation, work would progress through a cyclical process of using and refining
models and experiments, at each stage moving closer towards a common goal of
effective, cost-efficient vaccine development. This is certainly the focus and
objective of this group. The allied subjects of bioinformatics and molecular
modelling have proved their worth time and again in the search for new drugs
and drug targets. The time is approaching when they will do the same for vaccine
design. Methods that allow us to predict accurately epitopes or immunogenic
proteins, or to eliminate virulence factor genes from individual bacteria, will
prove to be crucial tools for the vaccinologist of tomorrow.
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