

Use R!

Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

For other titles published in this series, go to
http://www.springer.com/series/6991

http://www.springer.com/series/6991

Chemometrics with R

Multivariate Data Analysis in the Natural Sciences
and Life Sciences

Ron Wehrens

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

laws and regulations and therefore free for general use.

liable to prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 2011

ISBN 978-3-642-17840-5 e-ISBN 978-3-642-17841-2
DOI 10.1007/978-3-642-17841-2
Springer Heidelberg Dordrecht London New York

Ron Wehrens
Fondazione Edmund Mach
Research and Innovation Centre
Via E. Mach 1
38010 San Michele all’Adige
Italy
ron.wehrens@iasma.it

Cover design: deblik, Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

Series Editors:
Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Avenue, N. M2-B876

USA

Kurt Hornik
Department of Statistik and Mathematik
Wirtschaftsuniversität Wien

A-1090 Wien
Austria

Giovanni Parmigiani
The Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins University
550 North Broadway
Baltimore, MD 21205-2011
USA

Augasse 2-6

Seattle, Washington 98109

mailto:ron.wehrens@iasma.it
http://www.springer.com

For Odilia, Chris and Luc

Preface

The natural sciences, and the life sciences in particular, have seen a huge
increase in the amount and complexity of data being generated with every ex-
periment. It is only some decades ago that scientists were typically measuring
single numbers – weights, extinctions, absorbances – usually directly related to
compound concentrations. Data analysis came down to estimating univariate
regression lines, uncertainties and reproducibilities. Later, more sophisticated
equipment generated complete spectra, where the response of the system is
wavelength-dependent. Scientists were confronted with the question how to
turn these spectra into useable results such as concentrations. Things became
more complex after that: chromatographic techniques for separating mixtures
were coupled to high-resolution (mass) spectrometers, yielding a data matrix
for every sample, often with large numbers of variables in both chromato-
graphic and spectroscopic directions. A set of such samples corresponds to a
data cube rather than a matrix. In parallel, rapid developments in biology
saw a massive increase in the ratio of variables to objects in that area as well.

As a result, scientists today are faced with the increasingly difficult task
to make sense of it all. Although most will have had a basic course in statis-
tics, such a course is unlikely to have covered much multivariate material. In
addition, many of the classical concepts have a rough time when applied to
the types of data encountered nowadays – the multiple-testing problem is a
vivid illustration. Nevertheless, even though data analysis has become a field
in itself (or rather: a large number of specialized fields), scientists generating
experimental data should know at least some of the ways to interpret their
data, if only to be able to ascertain the quality of what they have generated.
Cookbook approaches, involving blindly pushing a sequence of buttons in a
software package, should be avoided. Sometimes the things that deviate from
expected behaviour are the most interesting in a data set, rather than unfor-
tunate measurement errors. These deviations can show up at any time point
during data analysis, during data preprocessing, modelling, interpretation...
Every phase in this pipeline should be carefully executed and results, also

VIII Preface

at an intermediate stage, should be checked using common sense and prior
knowledge.

This also puts restrictions on the software that is being used. It should be
sufficiently powerful and flexible to fit complicated models and handle large
and complex data sets, and on the other hand should allow the user to exactly
follow what is being calculated – black-box software should be avoided if pos-
sible. Moreover, the software should allow for reproducible results, something
that is hard to achieve with many point-and-click programs: even with a rea-
sonably detailed prescription, different users can often obtain quite different
results. R [1], with its rapidly expanding user community, nicely fits the bill. It
is quickly becoming the most important tool in statistical bioinformatics and
related fields. The base system already provides a large array of useful pro-
cedures; in particular, the high-quality graphics system should be mentioned.
The most important feature, however, is the package system, allowing users to
contribute software for their own fields, containing manual pages and exam-
ples that are directly executable. The result is that many packages have been
contributed by users for specific applications; the examples and the manual
pages make it easy to see what is happening.

Purpose of this book.

Something of this philosophy also can be found in the way this book is set
up. The aim is to present a broad field of science in an accessible way, mainly
using illustrative examples that can be reproduced immediately by the reader.
It is written with several goals in mind:

� An introduction to multivariate analysis. On an abstract level, this
book presents the route from raw data to information. All steps, starting
from the data preprocessing and exploratory analysis to the (statistical)
validation of the results, are considered. For students or scientists with
little experience in handling real data, this provides a general overview that
is sometimes hard to get from classical textbooks. The theory is presented
as far as necessary to understand the principles of the methods and the
focus is on immediate application on data sets, either from real scientific
examples, or specifically suited to illustrate characteristics of the analyses.

� An introduction to R. For those scientists already working in the fields
of bioinformatics, biostatistics and chemometrics but using other software,
the book provides an accessible overview on how to perform the most
common analyses in R [1]. Many packages are available on the standard
repositories, cran1 and bioconductor2, but for people unfamiliar with
the basics of R the learning curve can be pretty steep – for software, power
and complexity are usually correlated. This book is an attempt to provide
a more gentle way up.

1 http://cran.r-project.org
2 http://www.bioconductor.org

Preface IX

� Combinding multivariate data analysis and R. The combination of
the previous two goals is especially geared towards university students, at
the beginning of their specialization: it is of prime importance to obtain
hands-on experience on real data sets. It does take some help to start
reading R code – once a certain level has been reached, it becomes more
easy. The focus therefore is not just on the use of the many packages that
are available, but also on showing how the methods are implemented. In
many cases, simplified versions of the algorithms are given explicitly in the
text, so that the reader is able to follow step-by-step what is happening.
It is this insight in (at least the basics of) the techniques that is essential
for fruitful application.

The book has been explicitly set up for self-study. The user is encouraged to
try out the examples, and to substitute his or her own data as well. If used
in a university course, it is possible to keep the classical “teaching” of theory
to a minimum; during the lessons, teachers can concentrate on the analysis of
real data. There is no substitute for practice.

Prior knowledge.

Some material is assumed to be familiar. Basic statistics, for example, in-
cluding hypothesis tests, the construction of confidence intervals, analysis of
variance and least-squares regression are referred to, but not explained. The
same goes for basic matrix algebra. The reader should have some experience in
programming in general (variables, variable types, functions, program control,
etcetera). It is assumed the reader has installed R, and has a basic working
knowledge of R, roughly corresponding to having worked through the excel-
lent “Introduction to R” [2], which can be found on the CRAN website. In
some cases, less mundane functions will receive a bit more attention in the
text; examples are the apply and sweep functions. We will only focus on the
comman-line interface: Windows users may find it easier to perform actions
using point-and-click.

The R package ChemometricsWithR.

With the book comes a package, too: ChemometricsWithR contains all data
sets and functions used in this book. Installing the package will cause all
other packages used in the book to be available as well – an overview of these
packages can be found in Appendix A. In the examples it is always assumed
that the ChemometricsWithR package is loaded; where functions or data sets
from other packages are used for the first time, this is explicitly mentioned in
the text.

More information about the data sets used in the book can be found in the
references – no details will be given about the background or interpretation
of the measurement techniques.

X Preface

Acknowledgements.

This book has its origins in a reader for the Chemometrics course at the
Radboud University Nijmegen covering exploratory analysis (PCA), cluster-
ing (hierarchical methods and k-means), discriminant analysis (LDA, QDA)
and multivariate regression (PCR, PLS). Also material from a later course in
Pattern Recognition has been included. I am grateful for all the feedback from
the students, and especially for the remarks, suggestions and criticisms from
my colleagues at the Department of Analytical Chemistry of the Radboud
University Nijmegen. I am indebted to Patrick Krooshof and Tom Bloem-
berg, who have contributed in a major way in developing the material for
the courses. Finally, I would like to thank all who have read (parts of) the
manuscript and with their suggestions have helped improving it, in particu-
lar Tom Bloemberg, Karl Molt, Lionel Blanchet, Pietro Franceschi, and Jan
Gerretzen.

Trento, Ron Wehrens
September 2010

Contents

1 Introduction . 1

Part I Preliminaries

2 Data . 7

3 Preprocessing . 13
3.1 Dealing with Noise . 13
3.2 Baseline Removal . 18
3.3 Aligning Peaks – Warping . 20

3.3.1 Parametric Time Warping . 22
3.3.2 Dynamic Time Warping . 26
3.3.3 Practicalities . 31

3.4 Peak Picking . 31
3.5 Scaling . 33
3.6 Missing Data . 38
3.7 Conclusion . 39

Part II Exploratory Analysis

4 Principal Component Analysis . 43
4.1 The Machinery . 44
4.2 Doing It Yourself . 46
4.3 Choosing the Number of PCs . 48

4.3.1 Statistical Tests . 49
4.4 Projections . 51
4.5 R Functions for PCA . 53
4.6 Related Methods . 57

4.6.1 Multidimensional Scaling . 57

XII Contents

4.6.2 Independent Component Analysis and Projection
Pursuit . 60

4.6.3 Factor Analysis . 63
4.6.4 Discussion . 65

5 Self-Organizing Maps . 67
5.1 Training SOMs . 68
5.2 Visualization . 71
5.3 Application . 73
5.4 R Packages for SOMs . 76
5.5 Discussion . 77

6 Clustering . 79
6.1 Hierarchical Clustering . 80
6.2 Partitional Clustering . 85

6.2.1 K-Means . 85
6.2.2 K-Medoids . 87

6.3 Probabilistic Clustering . 90
6.4 Comparing Clusterings . 95
6.5 Discussion . 97

Part III Modelling

7 Classification . 103
7.1 Discriminant Analysis . 104

7.1.1 Linear Discriminant Analysis . 105
7.1.2 Crossvalidation . 109
7.1.3 Fisher LDA. 111
7.1.4 Quadratic Discriminant Analysis . 114
7.1.5 Model-Based Discriminant Analysis 116
7.1.6 Regularized Forms of Discriminant Analysis 118

7.2 Nearest-Neighbour Approaches . 122
7.3 Tree-Based Approaches . 126

7.3.1 Recursive Partitioning and Regression Trees 126
7.3.2 Discussion . 135

7.4 More Complicated Techniques . 135
7.4.1 Support Vector Machines . 136
7.4.2 Artificial Neural Networks . 141

8 Multivariate Regression . 145
8.1 Multiple Regression . 145

8.1.1 Limits of Multiple Regression . 147
8.2 PCR . 149

8.2.1 The Algorithm . 149

Contents XIII

8.2.2 Selecting the Optimal Number of Components 152
8.3 Partial Least Squares (PLS) Regression . 155

8.3.1 The Algorithm(s) . 156
8.3.2 Interpretation . 160

8.4 Ridge Regression . 163
8.5 Continuum Methods . 165
8.6 Some Non-Linear Regression Techniques . 165

8.6.1 SVMs for Regression . 165
8.6.2 ANNs for Regression . 168

8.7 Classification as a Regression Problem . 170
8.7.1 Regression for LDA . 170
8.7.2 Discussion . 172

Part IV Model Inspection

9 Validation . 175
9.1 Representativity and Independence . 176
9.2 Error Measures . 178
9.3 Model Selection . 179
9.4 Crossvalidation Revisited . 181

9.4.1 LOO Crossvalidation . 181
9.4.2 Leave-Multiple-Out Crossvalidation 183
9.4.3 Double Crossvalidation . 183

9.5 The Jackknife . 184
9.6 The Bootstrap . 186

9.6.1 Error Estimation with the Bootstrap. 187
9.6.2 Confidence Intervals for Regression Coefficients 190
9.6.3 Other R Packages for Bootstrapping 195

9.7 Integrated Modelling and Validation . 195
9.7.1 Bagging . 196
9.7.2 Random Forests . 197
9.7.3 Boosting . 202

10 Variable Selection . 205
10.1 Tests for Coefficient Significance . 206

10.1.1 Confidence Intervals for Individual Coefficients 207
10.1.2 Tests Based on Overall Error Contributions 210

10.2 Explicit Coefficient Penalization . 213
10.3 Global Optimization Methods . 217

10.3.1 Simulated Annealing . 218
10.3.2 Genetic Algorithms . 225
10.3.3 Discussion . 232

XIV Contents

Part V Applications

11 Chemometric Applications . 235
11.1 Outlier Detection with Robust PCA . 235

11.1.1 Robust PCA . 236
11.1.2 Discussion . 240

11.2 Orthogonal Signal Correction and OPLS 240
11.3 Discrimination with Fat Data Matrices . 243

11.3.1 PCDA . 244
11.3.2 PLSDA . 248

11.4 Calibration Transfer . 251
11.5 Multivariate Curve Resolution . 255

11.5.1 Theory . 256
11.5.2 Finding Suitable Initial Estimates 257
11.5.3 Applying MCR . 261
11.5.4 Constraints . 263
11.5.5 Combining Data Sets . 265

Part VI Appendices

R Packages Used in this Book . 271

References . 273

Index . 283

1

Introduction

In the life sciences, molecular biology in particular, the amount of data has
exploded in the last decade. Sequencing a whole genome is becoming routine
work, and shortly the amount of money needed to do so will be less than
the cost of a medium-sized television set. Rather than focussing on measur-
ing specific predefined characteristics of the sample1 modern techniques aim
at generating a holistic view, sometimes called a “fingerprint”. As a result,
one analysis of one single sample can easily yield megabytes of data. These
physical samples typically are complex mixtures and may, e.g., correspond to
body fluids of patients and controls, measured with possibly several different
spectroscopic techniques; environmental samples (air, water, soil); measure-
ments on different cell cultures or one cell culture under different treatments;
industrial samples from process industry, pharmaceutical industry or food in-
dustry; samples of competitor products; quality control samples, and many
others. The types of data we will concentrate on are generated by analytical
chemical measurement techniques, and are in almost all cases directly related
to concentrations or amounts of specific classes of chemicals such as metabo-
lites or proteins. The corresponding research fields are called metabolomics
and proteomics, and a host of other -omics sciences with similar characteris-
tics exist. A well-known example from molecular biology is transcriptomics,
focussing on the levels of mRNA obtained by transcription from DNA strains.
Although we do not include any transcriptomics data, many of the techniques
treated in this book are directly applicable – in that sense, the characteristics
of data of completely different origins can still be comparable.

These data can be analysed at different levels. The most direct approach is
to analyse them as raw data (intensities, spectra, ...), without any prior inter-
pretation other than a suitable pretreatment. Although this has the advantage

1 The word “sample” will be used both for the physical objects on which measure-
ments are performed (the chemical use of the word) and for the current realization
of all possible measurements (the statistical use). Which one is meant should be
clear from the context.

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_1,
© Springer-Verlag Berlin Heidelberg 2011

1

2 1 Introduction

that it is completely objective, it is usually also more difficult: typically, the
number of variables is huge and the interpretability of the statistical mod-
els that are generated to describe the data often is low. A more often used
strategy is to apply domain knowledge to convert the raw data into more
abstract variables such as concentrations, for example by quantifying a set of
compounds in a mixture based on a library of pure spectra. The advantage
is that the statistical analysis can be performed on the quantities that really
matter, and that the models are simpler and easier to validate and interpret.
The obvious disadvantage is the dependence on the interpretation step: not
always it is easy to decide which compounds are present and in what amounts.
Any error at this stage cannot be corrected in later analysis stages.

The extremely rapid development of analytical techniques in biology and
chemistry has left data analysis far behind, and as a result the statistical
analysis and interpretation of the data has become a major bottleneck in the
pipeline from measurement to information. Academic training in multivariate
statistics in the life sciences is lagging. Bioinformatics departments are the pri-
mary source of scientists with such a background, but bioinformatics is a very
broad field covering many other topics as well. Statistics and machine learning
departments are usually too far away from the life sciences to establish joint
educational programmes. As a result, scientists doing the data analysis very
often have a background in biology or chemistry, and have acquired their sta-
tistical skills by training-on-the-job. This can be an advantage, since it makes
it easier to interpret results and assess the relevance of certain findings. At
the same time, there is a need for easily accessible background material and
opportunities for self-study: books like the excellent “The Elements of Statis-
tical Learning” [3] form an invaluable source of information but can also be a
somewhat daunting read for scientists without much statistical background.

This book aims to fill the gap, at least to some extent. It is important
to combine the sometimes rather abstract descriptions of the statistical tech-
niques with hands-on experience behind a computer screen. In many ways
R [1] is the ideal software platform to achieve this – it is extremely powerful,
the many add-on packages provide a huge range of functionalities in different
areas, and it is freely accessible. As in the other books in this series, the exam-
ples can be followed step-by-step by typing or cutting-and-pasting the code,
and it is easy to plug in one’s own data. To date, there is only one other book
specifically focused on the use of R in a similar field of science: “Introduction
to Multivariate Statistical Analysis in Chemometrics” [4] which to some ex-
tent complements the current volume, in particular in its treatment of robust
statistics.

Here, the concepts behind the most important data analysis techniques will
be explained using a minimum of mathematics, but in such a way that the
book still can be used as a student’s text. Its structure more or less follows the
steps made in a “classical” data analysis, starting with the data pretreatment
in Part I. This step is hugely important, yet is often treated only cursorily.
An unfortunate choice here can destroy any hope of achieving good results:

1 Introduction 3

background knowledge of the system under study as well as the nature of the
measurements should be used in making decisions. This is where science meets
art: there are no clear-cut rules, and only by experience we will learn what
the best solution is.

The next phase, subject of Part II, consists of exploratory analysis. What
structure is visible? Are there any outliers? Which samples are very similar,
which are different? Which variables are correlated? Questions like these are
most easily assessed by eye – the human capacity for pattern recognition in
two dimensions is far superior to any statistical method. The methods at this
stage all feature strong visualization capabilities. Usually, they are model-free;
no model is fitted, and the assumptions about the data are kept to a minimum.

Once we are at the modelling phase, described in Part III, we very often
do make assumptions: some models work optimally with normally distributed
data, for example. The purpose of modelling can be twofold. The first is predic-
tion. Given a set of analytical data, we want to be able to predict properties of
the samples that cannot be measured easily. An example is the assessment of
whether a specific treatment will be useful for a patient with particular char-
acteristics. Such an application is known as classification – one is interested
in modelling class membership (will or will not respond). The other major
field is regression, where the aim is to model continuous real variables (blood
pressure, protein content, ...). Such predictive models can mean a big improve-
ment in quality of life, and save large amounts of money. The prediction error
is usually taken as a quality measure: a model that is able to predict with high
accuracy must have captured some real information about the system under
study. Unfortunately, in most cases no analytical expressions can be derived
for prediction accuracy, and other ways of estimating prediction accuracy are
required in a process called validation. A popular example is crossvalidation.

The second aim of statistical modelling is interpretation, one of the topics
in Part IV. Who cares if the model is able to tell me that this is a Golden
Delicious apple rather than a Granny Smith? The label in the supermarket
already told me so; but the question of course is why they taste different,
feel different and look different. Fitting a predictive model in such a case
may still be informative: when we are able to find out why the model makes a
particular prediction, we may be able to learn something about the underlying
physical, chemical or biological processes. If we know that a particular gene
is associated with the process that we are studying, and both this gene and
another one show up as important variables in our statistical model, then we
may deduce that the second gene is also involved. This may lead to several
new hypotheses that should be tested in the lab. Obviously, when a model
has little or no predictive ability it does not make too much sense to try and
extract this type of information.

Our knowledge of the system can also serve as a tool to assess the quality
of our model. A model that fits the data and seems to be able to predict
well is not going to be very popular when its parameters contradict what we
know about the underlying process. Often, prior knowledge is available (we

4 1 Introduction

expect a peak at a certain position; we know that model coefficients should
not be negative; this coefficient should be larger than the other), and we can
use that knowledge to assess the relevance of the fitted model. Alternatively,
we can constrain the model in the training phase to take prior knowledge into
account, which is often done with constraints. In other cases, the model is hard
to interpret because of the sheer number of coefficients that have been fitted,
and graphical summaries may fail to show what variables contribute in what
way. In such cases, variable selection can come to the rescue: by discarding the
majority of the variables, hopefully without compromising the model quality,
one can often improve predictions and make the model much more easy to
interpret. Unfortunately, variable selection is an NP-complete problem (which
in practice means that even for moderate-sized systems it may be impossible
to assess all possible solutions) and one never can be sure that the optimal
solution has been found. But then again, any improvement over the original,
full, model is a bonus.

For each of the stages in this “classical” data analysis pipeline, a plethora
of methods is available. It can be hard to assess which techniques should be
considered in a particular problem, and perhaps even more importantly, which
should not. The view taken here is that the simplest possibilities should be
considered first; only when the results are unsatisfactory, one should turn to
more complex solutions. Of course, this is only a very crude first approach,
and experienced scientists will have devised many shortcuts and alternatives
that work better for their types of data. In this book, I have been forced to
make choices. It is impossible to treat all methods, or even a large subset, in
detail. Therefore the focus is on an ensemble of methods that will give the
reader a broad range of possibilities, with enough background information to
acquaint oneself with other methods, not mentioned in this book, if needed. In
some cases, methods deserve a mention because of the popularity within the
bioinformatics or chemometrics communities. Such methods, together with
some typical applications, are treated in the final part of the book.

Given the huge number of packages available on CRAN and the speed
with which new ones appear, it is impossible to mention all that are relevant
to the material in this book. Where possible, I have limited myself to the
recommended packages, and those coming with a default R installation. Of
course, alternative, perhaps even much simpler, solutions may be available in
the packages that this book does not consider. It pays to periodically scan
the CRAN and Bioconductor repositories, or, e.g., check the Task Views that
provide an overview of all packages available in certain areas – there is one on
Physics and Chemistry, too.

Part I

Preliminaries

2

Data

In this chapter, some typical data sets are presented, several of which will
occur throughout the book. All data sets are accessible, either through one of
the packages mentioned in the text, or in the ChemometricsWithR package.
Chemical data sets nowadays are often characterized by a relatively low num-
ber of samples and a large number of variables, a result of the predominant
spectroscopic measuring techniques enabling the chemist to rapidly acquire a
complete spectrum for one sample. Depending on the actual technique em-
ployed, the number of variables can vary from several hundreds (typical in
infrared measurements) to tens of thousands (e.g., in Nuclear Magnetic Res-
onance, NMR). A second characteristic is the high correlation between vari-
ables: neighbouring spectral variables usually convey very similar information.
An example is shown in Figure 2.1, depicting the gasoline data set, one of sev-
eral data sets that will be used throughout this book. It shows near-infrared
(NIR) spectra of sixty gasolines at wavelengths from 900 to 1700 nm in 2 nm
intervals [5], and is available in the pls package. The plot is made using the
following piece of code:

> data(gasoline, package = "pls")

> wavelengths <- seq(900, 1700, by = 2)

> matplot(wavelengths, t(gasoline$NIR), type = "l",

+ lty = 1, xlab = "Wavelength (nm)", ylab = "1/R")

The matplot function is used to plot all columns of matrix t(gasoline$NIR)

(or, equivalently, all rows of matrix gasoline$NIR) against the specified wave-
lengths. Clearly, all samples have very similar features – it is impossible to
distinguish individual samples in the plot. NIR spectra are notoriously hard
to interpret: they consist of a large number of heavily overlapping peaks which
leads to more or less smooth spectra. Nevertheless, the technique has proven
to be of immense value in industry: it is a rapid, non-destructive method of
analysis requiring almost no sample preprocessing, and it can be used for quan-
titative predictions of sample properties. The data used here can be used to
quantitatively assess the octane number of the gasoline samples, for instance.

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011

7
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_2,

8 2 Data

1000 1200 1400 1600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Wavelength (nm)

1/
R

Fig. 2.1. Near-infrared spectra of sixty gasoline samples, consisting of 401 re-
flectance values measured at equally spaced wavelengths between 900 and 1700 nm.

0 1000 2000 3000 4000 5000

0
20

0
40

0
60

0

time

I

Fig. 2.2. The first gas chromatogram of data set gaschrom from the ptw package.

In other cases, specific variables can be directly related to absolute or
relative concentrations. An example is the gaschrom data set from the ptw
package, containing gas chromatograms measured for calibration purposes.
The first sample is shown in Figure 2.2. Each feature, or peak, corresponds to
the elution of a compound, or in more complex cases, a number of overlapping
compounds. These peaks can be easily quantified, usually by measuring peak
area, but sometimes also by peak height. Since the number of features usually
is orders of magnitude smaller than the number of variables in the original
data, summarising the chromatograms with a peak table containing position
and intensity information can lead to significant data compression.

2 Data 9

An example in which most of the variables correspond to concentrations
is the wine data set, used throughout the book. It is a set consisting of 177
wine samples, with thirteen measured variables [6]:

> data(wines, package = "kohonen")

> colnames(wines)

[1] "alcohol" "malic acid" "ash"

[4] "ash alkalinity" "magnesium" "tot. phenols"

[7] "flavonoids" "non-flav. phenols" "proanth"

[10] "col. int." "col. hue" "OD ratio"

[13] "proline"

Variables are reported in different units. All variables apart from "col.

int.", "col. hue" and "OD ratio" are concentrations. The meaning of the
variables color intensity and color hue is obvious; the OD ratio is the ratio
between the absorbance at wavelengths 280 and 315 nm. All wines are from
the Piedmont region in Italy. Three different classes of wines are present:
Barolo, Grignolino and Barberas. Barolo wine is made from Nebbiolo grapes;
the other two wines have the name of the grapes from which they are made.
Production areas are partly overlapping [6].

> table(vintages)

vintages

Barbera Barolo Grignolino

48 58 71

The obvious aim in the analysis of such a data set is to see whether there
is any structure that can be related to the three cultivars. Possible questions
are: “which varieties are most similar?”, “which variables are indicative of the
variety?”, “can we discern subclasses within varieties?”, etcetera.

A quick overview of the first few variables can be obtained with a so-called
pairs plot1:

> pairs(wines[,1:3], pch = wine.classes, col = wine.classes)

This leads to the plot shown in Figure 2.3. It is clear that the three classes
can be separated quite easily – consider the plot of alcohol against malic acid,
for example.

A further data set comes from mass spectrometry. It contains 327 samples
from three groups: patients with prostate cancer, benign prostatic hyperplasia,
and normal controls [7,8]. The data have already been preprocessed (binned,
baseline-corrected, normalized – see Chapter 3). The m/z values range from
200 to 2000 Dalton. The data set is available in the R package msProstate:

1 Gray-scale figures such as shown throughout the book are obtained by, e.g.,
col = gray(0:2/4)[wine.classes].
In the text and the code we will in almost all cases use the default R colour
palette.

10 2 Data

alcohol

1 2 3 4 5 6

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

11
12

13
14

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

1
2

3
4

5
6

●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●● ●

●

●

malic acid

●

●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

● ●●

●

●

11 12 13 14

●

●

●

●

● ●

●

●

●
●●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0
1.

5
2.

0
2.

5
3.

0

ash

Fig. 2.3. A pairs plot of the first three variables of the wine data. The three vintages
are indicated with different shades of gray and plotting symbols: Barbera wines are
indicated with black circles, Barolos with dark gray triangles and Grignolinos with
gray plusses.

> data(Prostate2000Raw, package = "msProstate")

> plot(Prostate2000Raw$mz, Prostate2000Raw$intensity[,1],

+ type = "h", xlab = "m/z", ylab = "Intensity",

+ main = "Prostate data")

Figure 2.4 shows the first mass spectrum, that of a healthy control sample.
In total, there are 168 tumour samples, 81 controls, and 78 cases of benign
prostate enlargement: all samples have been measured in duplicate.

> table(Prostate2000Raw$type)

bph control pca

156 162 336

2 Data 11

5000 10000 15000 20000

0
5

10
15

20
Prostate data

m/z

In
te

ns
ity

Fig. 2.4. The first mass spectrum in the prostate MS data set.

Such data can serve as diagnostic tools to distinguish between healthy and
diseased tissue, or to differentiate between several disease states. The number
of samples is almost always very low – for rare diseases, patients are scarce,
and stratification to obtain relatively homogeneous groups (age, sex, smoking
habits, ...) usually does the rest; and in cases where the measurement is un-
pleasant or dangerous it may be difficult or even unethical to get data from
healthy controls. On the other hand, the number of variables per sample is
often huge. This puts severe restrictions on the kind of analysis that can be
performed and makes thorough validation even more important.

The final data set in this chapter comes from LC-MS, the combination
of liquid chromatography and mass spectrometry. The chromatography step
serves to separate the components of a mixture on the basis of properties like
polarity, size, or affinity. At specific time points a mass spectrum is recorded,
containing the counts of particles with specific mass-to-charge (m/z) ratios.
Measuring several samples therefore leads to a data cube of dimensions ntime,
nmz, and nsample; the number of timepoints is typically in the order or thou-
sands, whereas the number of samples rarely exceeds one hundred. Mass spec-
tra can be recorded at a very high resolution and to enable statistical analysis,
m/z values are typically binned (or“bucketed”). Even then, thousands of vari-
ables are no exception. Package ptw provides a data set, lcms, containing data
on three tryptic digests of E. coli proteins [9]. Figure 2.5 shows a top view
of the first sample, with projections to the top and right of the main plot.
The top projection leads to the “Total Ion Current” (TIC) chromatogram,
and would be obtained if there would be no separation along the m/z axis;

12 2 Data

0.
0e

+
00

1.
5e

+
08

5.0e+07 2.0e+08

50000

1e+05

1e+06

1e+07

1e+08

Projection:
max

Colour scale:
exponential

2000 2500 3000 3500 4000 4500 5000 5500

55
0

56
0

57
0

58
0

59
0

Time (s)

m
/z

Fig. 2.5. Top view of the first sample in data set lcms. The TIC chromatogram is
shown on the top, and the direct infusion mass spectrum on the right.

similarly, if the chromatographic dimension would be absent, the mass spec-
trum of the whole sample would be very close to the projection on the right
(a “direct infusion” spectrum). The whole data set consists of three of such
planes, leading to a data cube of size 100× 2000× 3.

3

Preprocessing

Textbook examples typically use clean, perfect data, allowing the techniques
of interest to be explained and illustrated. However, in real life data are messy,
noisy, incomplete, downright faulty, or a combination of these. The first step in
any data analysis often consists of preprocessing to assess and possibly improve
data quality. This step may actually take more time than the analysis itself,
and more often than not the process consists of an iterative procedure where
data preprocessing steps are alternated with data analysis steps.

Some problems can immediately be recognized, such as measurement noise,
spikes, and unrealistic values. In these cases, taking appropriate action is rarely
a problem. More difficult are the cases where it is not obvious which character-
istics of the data contain information, and which do not. There are many ex-
amples where chance correlations lead to statistical models that are perfectly
able to model the training data but have no predictive abilities whatsoever.

This chapter will focus on standard preprocessing techniques used in the
natural sciences and the life sciences. Data are typically spectra or chro-
matograms, and topics include noise reduction, baseline removal, peak align-
ment, peak picking, and scaling. Only the basic general techniques are men-
tioned here; some more specific ways to improve the quality of the data
will be treated in later chapters. Examples include Orthogonal Partial Least
Squares for removing uncorrelated variation (Section 11.2) and variable selec-
tion (Chapter 10).

3.1 Dealing with Noise

Physico-chemical data always contain noise, where the term “noise” is usually
reserved for small, fast, random fluctuations of the response. The first aim of
any scientific experiment is to generate data of the highest quality, and much
effort is usually put into decreasing noise levels. The simplest experimental way
is to perform n repeated measurements, and average the individual spectra,
leading to a noise reduction with a factor

√
n. In NMR spectroscopy, for

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011

13
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_3,

14 3 Preprocessing

example, a relatively insensitive analytical method, signal averaging is routine
practice, where one has to strike a balance between measurement time and
data quality.

As an example, we consider the prostate data, where each sample has
been measured in duplicate. The replicate measurements of the prostate data
cover consecutive rows in the data matrix. Averaging can be done using the
following steps:

> prostate.array <- array(t(Prostate2000Raw$intensity),

+ c(2, 327, 10523))

> prostate <- apply(prostate.array, c(2,3), mean)

> dim(prostate)

[1] 327 10523

The idea is to convert the matrix into an array where the first dimension
contains the two replicates for every sample – each element in the first dimen-
sion thus contains one complete set of measurements. The final data matrix is
obtained by averaging the replicates. The function apply is useful here: it (in-
deed) applies the function given by the third argument to the data indicated
by the first argument while keeping the dimensions indicated by the second
– got that? In this code snippet the outcome of apply is a matrix having
dimensions equal to the second and third dimensions of the input array. The
first dimension is averaged out. As we will see later, apply is extremely handy
in many situations. There is, however, also another much faster possibility
using rowsum:

> prostate <- rowsum(t(Prostate2000Raw$intensity),

group = rep(1:327, each = 2),

reorder = FALSE) / 2

> dim(prostate)

[1] 327 10523

This function sums all the rows for which the grouping variable (the second
argument) is equal. Since there are two replicates for every sample, the result is
divided by two to get the average values, and is stored in variable prostate.
For this new variable we should also keep track of the corresponding class
labels:

> prostate.type <- Prostate2000Raw$type[seq(1, 654, by = 2)]

To plot the result, we combine the original data with the averaged data in a
three-column matrix x:

> x <- cbind(prostate[1,1:500],

+ Prostate2000Raw$intensity[1:500, 1:2])

The result of the signal averaging is visualized in Figure 3.1, again using the
function matplot:

3.1 Dealing with Noise 15

2000 2100 2200 2300 2400

−
0.

5
0.

0
0.

5
1.

0
1.

5

m/z

re
sp

on
se

Fig. 3.1. The first averaged mass spectrum in the Prostate data set; only the first
500 m/z values are shown. Original data are in gray.

> matplot(Prostate2000Raw$mz[1:500], x, type = "l",

+ col = c(1, "gray", "gray"), lty = c(1,2,2),

+ xlab = "m/z", ylab = "response")

Clearly, despite the averaging, the noise is appreciable; reducing the noise level
while taking care not to destroy the data structure would make subsequent
analysis much easier.

The simplest approach is to apply a running mean, i.e. to replace every
single value by the average of the k points around it. The value of k needs
to be optimized; large values lead to a high degree of smoothing, but also to
peak distortion, and low values of k can only make small changes to the signal.
Running means can be easily calculated using the function embed, providing
is a matrix containing as rows successive chunks of the original data vector;
using the function rowMeans one then can obtain the desired running means.

> rmeans <- rowMeans(embed(prostate[1,1:500], 5))

> plot(Prostate2000Raw$mz[1:500], prostate[1,1:500],

+ type = "l", xlab = "m/z", ylab = "response",

+ main = "running means", col = "gray")

> lines(Prostate2000Raw$mz[3:498], rmeans, type = "l")

As can be seen in the left plot in Figure 3.2, the smoothing effectively re-
duces the noise level. Note that the points at the extremes need to be treated
separately in this implementation. The price to be paid is that peak heights
are decreased, and especially with larger spans one will see appreciable peak
broadening. These effects can sometimes be countered by using running medi-

16 3 Preprocessing

2000 2100 2200 2300 2400

0.
0

0.
5

1.
0

running mean

m/z

re
sp

on
se

2000 2100 2200 2300 2400

0.
0

0.
5

1.
0

running median

m/z

re
sp

on
se

Fig. 3.2. Smoothing of the averaged mass spectrum of Figure 3.1: a running mean
(left plot) and a running median (right plot), both with a window size of five.

ans instead of running means. The function runmed, part of the stats package,
is available for this:

> plot(Prostate2000Raw$mz[1:500], prostate[1,1:500],

+ type = "l", xlab = "m/z", ylab = "response",

+ main = "running median", col = "gray")

> lines(Prostate2000Raw$mz[1:500],

+ runmed(prostate[1,1:500], k = 5), type = "l")

The result is shown in the right plot in Figure 3.2. Its appearance is less
smooth than the running mean with the same window size; in particular,
peak shapes seem less natural. Note that the function runmed does return a
vector with the same length as the input – the points at the extremes are left
unchanged. The plots of the residuals in Figure 3.3 show that both smoothing
techniques do quite a good job in removing high-frequency noise components
without distorting the signal too much.

Many other smoothing functions are available – only a few will be men-
tioned here briefly. In signal processing, Savitsky-Golay filters are a popular
choice [10]; every point is replaced by a smoothed estimate obtained from
a local polynomial regression. An added advantage is that derivatives can si-
multaneously be calculated (see below). In statistics, robust versions of locally
weighted regression [11] are often used; loess and its predecessor lowess are
available in R as simple-to-use implementations. The fact that the fluctuations
in the noise usually are much faster than the data has led to a whole class of
frequency-based smoothing methods, of which wavelets [12] are perhaps the
most popular ones. The idea is to set the coefficients for the high-frequency
components to zero, which should leave only the signal component.

A special kind of smoothing is formed by binning, also called bucketing,
which not only averages consecutive values but also decreases the number of
variables. To replace five data points with their average, one can use:

3.1 Dealing with Noise 17

2000 2100 2200 2300 2400

−
0.

2
−

0.
1

0.
0

0.
1

mz

ru
nn

in
g

m
ea

n:
 r

es
id

s

2000 2100 2200 2300 2400

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

mz

ru
nn

in
g

m
ed

ia
n:

 r
es

id
s

Fig. 3.3. Residuals of smoothing the first spectrum of the prostate data with a
running mean (left plot) or running median (right).

2000 2100 2200 2300 2400

0.
0

0.
5

1.
0

binning

m/z

re
sp

on
se

Fig. 3.4. Binned version of the mass spectrometry data from Figure 3.1. Five data
points constitute one bin.

> mznew <- colMeans(matrix(Prostate2000Raw$mz[1:500], nrow = 5))

> xnew <- colMeans(matrix(prostate[1, 1:500], nrow = 5))

> plot(Prostate2000Raw$mz[1:500], prostate[1, 1:500],

+ type = "l", xlab = "m/z", ylab = "response",

+ main = "binning", col = "gray")

> lines(mznew, xnew)

We have seen the idea before: in this case we fill a matrix with five rows
column-wise with the data, and then average over the rows1. This leads to
the plot in Figure 3.4. Obviously, the binned representation gives a cruder
description of the data, but still is able to follow the main features. Again,
determining the optimal bin size is a matter of trial and error. Binning has
several major advantages over running means and medians. First, it can be

1 What would the code look like using rowsum?

18 3 Preprocessing

applied when data are not equidistant and even when the data are given as po-
sitions and intensities of features, as is often the case with mass-spectrometric
data. Second, the effect of peak shifts (see below) is decreased: even when
a peak is slightly shifted, it will probably be still within the same bin. And
finally, more often than not the variable-to-object ratio is extremely large in
data sets from the life sciences. Summarising the information in fewer variables
in many cases makes the subsequent statistical modelling more easy.

Although smoothing leads to data that are much better looking, one should
also be aware of the dangers. Too much smoothing will remove features, and
even when applied prudently, the noise characteristics of the data will be
different. This may significantly affect statistical modelling.

3.2 Baseline Removal

In some forms of spectroscopy one can encounter a baseline, or “background
signal” that is far away from the zero level. Since this influences measures
like peak height and peak area, it is of utmost importance to correct for such
phenomena.

Infrared spectroscopy, for instance, can lead to scatter effects – the sur-
face of the sample influences the measurement. As a result, one often observes
spectral offsets: two spectra of the same material may show a constant differ-
ence over the whole wavelength range. This may be easily removed by taking
first derivatives (i.e., looking at the differences between intensities at sequen-
tial wavelengths, rather than the intensities themselves). Take a look at the
gasoline data:

> nir.diff <- t(apply(gasoline$NIR, 1, diff))

> matplot(wavelengths[-1] + 1, t(nir.diff),

+ type = "l", xlab = "Wavelength (nm)",

+ ylab = "1/R (1st deriv.)", lty = 1, col = 1)

Note that the number of variables decreases by one. The result is shown in
Figure 3.5. Comparison with the original data (Figure 2.1) shows more de-
tailed structure; the price is an increase in noise. A better way to obtain
first-derivative spectra is given by the Savitsky-Golay filter, which is not only
a smoother but can also be used to calculate derivatives:

> nir.deriv <- apply(gasoline$NIR, 1, sgolayfilt, m = 1)

In this particular case, the differences between the two methods are very small.

Another way to remove scatter effects in infrared spectroscopy is Multi-
plicative Scatter Correction (MSC, [13,14]). One effectively models the signal
of a query spectrum as a linear function of the reference spectrum:

yq = a+ byr

3.2 Baseline Removal 19

1000 1200 1400 1600

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Wavelength (nm)

1/
R

 (
1s

t d
er

iv
.)

Fig. 3.5. First-derivative representation of the gasoline NIR data.

An obvious reference spectrum may not be available, and then often a mean
spectrum is used. This is also the approach in the msc function of the pls
package:

> nir.msc <- msc(gasoline$NIR)

For the gasoline data, the differences are quite small.
In more difficult cases, a non-constant baseline drift can be observed. First

derivatives are not enough to counter such effects, and one has to resort to
techniques that actually estimate the shape of the baseline. The exact function
is usually not important – the baseline will be subtracted and that is it. To
illustrate this point, consider the first chromatogram in the gaschrom data.
One very simple solution is to connect local minima, obtained from, e.g., 200-
point sections:

> x <- gaschrom[1,]

> lsection <- 200

> xmat <- matrix(x, nrow=lsection)

> ymin <- apply(xmat, 2, min)

> plot(x, type = "l", col = "gray", ylim = c(20, 50),

+ xlab = "Time", ylab = "I")

> lines(rep(ymin, each = lsection))

We have used the by now familiar trick to convert a vector to a matrix and
calculate minimal values for every column to obtain the intensity levels of the
horizontal line segments. The result is shown in the left plot of Figure 3.6.
Obviously, a more smooth baseline estimate would be better. One function
that can be used is loess, fitting local polynomials through the minimal
values:

> minlocs <- seq(lsection/2 + 1, length(x), len = length(ymin))

> bsln.loess <- loess(ymin ~ minlocs)

> lines(predict(bsln.loess, 1:length(x)), lwd = 2)

20 3 Preprocessing

2000 3000 4000 5000 6000

−
2

−
1

0
1

2
3

4
5

m/z

I

2000 3000 4000 5000 6000

−
2

−
1

0
1

2
3

4
5

m/z

I

Fig. 3.6. Simple baseline correction for the first chromatogram in the gaschrom

data: in the left plot the baseline is estimated by a series of twenty local minima,
the connected horizontal segments. The thick line indicates the loess smooth (using
default settings) of these minima. Right plot: asymmetric least squares estimate of
the baseline.

This leads to the right plot in Figure 3.6. The loess solution clearly is much
smoother and does not follow the data that much. For the current distortion,
that is all right, but in some cases one may want a different behaviour. Twid-
dling with the settings (the length of the segments to find local minima, and
loess smoother settings) can lead to even better results.

Another alternative is to use asymmetric least squares, where deviations
above the fitted curve are not taken into account (or only with a very small
weight). This is implemented in function baseline.corr in the ptw package,
which returns a baseline-corrected signal. Internally, it uses the function asysm

to estimate the baseline:

> plot(x, col = "gray", type = "l", ylim = c(20, 50),

+ xlab = "Time", ylab = "I")

> lines(asysm(x), lwd = 2)

The result is shown in the right plot of Figure 3.6. Again, the parameters of
the asysm function may be tweaked to get optimal results.

3.3 Aligning Peaks – Warping

Many analytical data suffer from small shifts in peak positions. In NMR spec-
troscopy, for example, the position of peaks may be influenced by the pH.
What complicates matters is that in NMR, these shifts are by no means uni-
form over the data; rather, only very few peaks shift whereas the majority
will remain at their original locations. The peaks may even move in different
directions. In mass spectrometry, the shift is more uniform over the m/z axis
and is more easy to account for – if one aims to analyse the data in matrix
form, binning is required, and in many cases a suitable choice of bins will

3.3 Aligning Peaks – Warping 21

0 500 1000 1500 2000

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

Time

I

Sample 2
Sample 3

Fig. 3.7. Comparison of two mass chromatograms of the lcms data set. Clearly,
corresponding features are not in the same positions.

already remove most if not all of the effects of shifts. Moreover, peak shifts
are usually small, and may be easily corrected for by the use of standards.

The biggest shifts, however, are encountered in liquid chromatography.
Two different chromatographic columns almost never give identical elution
profiles, up to the extent that peaks may even swap positions. The situation
is worse than in gas chromatography, since retention mechanisms are more
complex in the liquid phase than in the gas phase. Moreover, ageing is an
important factor in column quality, and a column that has been used for some
time almost certainly will show different chromatograms than when freshly
installed.

Peak shifts pose significant problems in modelling. In Figure 3.7 the first
mass chromatograms in two of the samples of the lcms data are shown:

> plot(lcms[1,,2], type = "l", xlab = "Time", ylab = "I")

> lines(lcms[1,,3], type = "l", col = "gray")

Clearly, both chromatograms contain the same features, although at different
locations – the shift is, equally clearly, not constant over the whole range. Com-
paring these chromatograms with a distance-based similarity function based
on Euclidean distance, comparing signals at the same time points, will lead
to the conclusion that there are huge differences, whereas the chromatograms
in reality are very similar.

Correction of such shifts is known as “time warping”, one of the more
catchy names in data analysis. The technique originates in speech processing
[15, 16], and nowadays many forms exist. The most popular in the literature
for natural sciences and life sciences are Dynamic Time Warping (DTW, [17]),
Correlation-Optmized Warping (COW, [18]) and Parametric Time Warping
(PTW, [19]). Often, the squared differences between the two signals are used
as optimization criterion; this is the case for DTW and the original version of
PTW [19]. The R package ptw [9] also provides a measure called the weighted

22 3 Preprocessing

cross correlation (WCC, [20]) to assess the similarity of two patterns – note
that in this context the WCC is used as a distance measure so that a value of
zero indicates perfect alignment [9]. COW maximizes the correlation between
patterns, where the signals are cut into several segments which are treated
separately. Both DTW and PTW currently are available as R packages on
CRAN, as well as a penalized form of dynamic time warping (package VPdtw,
[21]).

3.3.1 Parametric Time Warping

In PTW, one approximates the time axis of the reference signal by applying
a polynomial transformation of the time axis of the sample [19]:

Ŝ(tk) = S(w(tk)) (3.1)

where Ŝ(tk) is the value of the warped signal at time point tk, where k is an
index. The warping function, w, is given by:

w(t) =
J∑
j=0

ajt
j (3.2)

with J the maximal order of the polynomial. Only low-order polynomials are
used in general. Since neighbouring points on the time axis will be warped with
almost the same amount, peak shape distortions are limited. The optimization
then finds the set of coefficients a0, ...aJ that minimizes the difference between
the sample S and reference R, using whatever difference measure is desired.

This procedure is very suitable for modelling the gradual deterioration of
chromatographic columns, so that measurements taken days or weeks apart
can still be made comparable. For situations where a few individual peak shifts
have to be corrected (e.g. pH-dependent shifting of patterns in NMR spectra),
the technique is less ideal.

We will illustrate the use of PTW by aligning the mass chromatograms of
Figure 3.7. We will use sample number 2 as a reference, and warp the third
sample so that the peak positions show maximal overlap:

> sref <- lcms[1,,2]

> ssamp <- lcms[1,,3]

> lcms.warp <- ptw(sref, ssamp, init.coef = c(0, 1, 0))

> summary(lcms.warp)

PTW object: single alignment of 1 sample on 1 reference.

Warping coefficients:

[,1] [,2] [,3]

[1,] 41.83585 0.974073 5.479969e-06

Warping criterion: WCC

Value: 0.08781744

3.3 Aligning Peaks – Warping 23

3000 3200 3400 3600 3800 4000 4200

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

Time

I

Reference
Sample
Warped sample

Fig. 3.8. PTW of the data shown in Figure 3.7, using a quadratic warping function.
Small offsets have been added to the sample and warped sample spectra.

Using the default quadratic warping function with initial values init.coef

= c(0, 1, 0), corresponding to the unit warp (no shift, unit stretch, no
quadratic warping), we arrive at a warping where the sample is shifted al-
most 42 points to the right, is compressed almost 3%, and experiences also a
quadratic warping (with a small coefficient). The result is an agreement of just
under 0.09, according to the default WCC criterion. A visual check confirms
that the peak alignment is much improved:

> plot(time, sref, type = "l", lwd = 2, col = "gray",

+ xlim = c(time[600], time[1300]),

+ xlab = "Time", ylab = "I")

> lines(time, ssamp + 1e6, lty = 2)

> lines(time, lcms.warp$warped.sample + 2e6)

> legend("topleft", lty = c(1,2,1), col = c("gray", 1, 1),

+ legend = c("Reference", "Sample", "Warped sample"),

+ lwd = c(2, 1, 1))

The result is shown in Figure 3.8. To show the individual traces more clearly,
a small vertical offset has been applied to both the unwarped and warped
sample. Obviously, the biggest gains can be made at the largest peaks, and
in the warped sample the features around 3250 and 3900 seconds are aligned
really well. Nevertheless, some other features, such as the peaks between 3450
and 3650 seconds, and the peaks at 3950 and 4200 seconds still show shifts.
This simple quadratic warping function apparently is not flexible enough to
iron out these differences. Note that RMS-based warping in this case leads to
very similar results:

24 3 Preprocessing

> lcms.warpRMS <- ptw(sref, ssamp, optim.crit = "RMS")

> lcms.warpRMS$warp.coef

[,1] [,2] [,3]

[1,] 40.84908 0.9719185 9.619694e-06

More complex warping functions, fitting polynomials of degrees three to five,
can be tried:

> lcms.warp2 <- ptw(sref, ssamp, init = c(0, 1, 0, 0))

> lcms.warp3 <- ptw(sref, ssamp, init = c(0, 1, 0, 0, 0))

> lcms.warp4 <- ptw(sref, ssamp, init = c(0, 1, 0, 0, 0, 0))

To visualize these warping functions, we first gather all warpings in one list,
and obtain the qualities of each element using a close relative of the apply

function, sapply:

> allwarps <- list(lcms.warp, lcms.warp2, lcms.warp3, lcms.warp4)

> wccs <- sapply(allwarps, function(x) x$crit.value)

> wccs <- round(wccs*1000) / 1000

Where apply operates on rows or columns of a matrix, sapply performs ac-
tions on list elements, and returns the result in a simple way, in this case a
matrix. We use the round trick to avoid having too many digits in the plot
later on.

Because we are interested in the deviations from the identity warp (i.e. no
change), we subtract that from the warping functions:

> allwarp.funs <- sapply(allwarps, function(x) x$warp.fun)

> warpings <- allwarp.funs - 1:length(sref)

Finally, we can plot the columns of the resulting matrix using the matplot

function:

> matplot(warpings, type = "l", lty = rep(c(1,2), 2),

+ col = rep(c(1,"gray"), each = 2))

> legend("topleft", lty = rep(c(1,2), 2),

+ col = rep(c(1,"gray"), each = 2),

+ legend = paste("Degree", 2:5, " - WCC =", wccs))

This leads to Figure 3.9. A horizontal line here would indicate the identity
warp. The fourth-degree warping shows the biggest deviation from the un-
warped signal, especially in the right part of the chromatogram, but is re-
warded by the lowest distance between sample and reference. The warping
functions for degrees three and five are almost identical. This shows, in fact,
that it is possible to end up in a local minimum: the fifth-degree warping
function should be at least as good as the fourth-degree function. It is usually
a good idea to use several different starting values in these situations.

One very important characteristic of LC-MS data is that it contains mul-
tiple m/z traces. If the main reason for differences in retention time is the

3.3 Aligning Peaks – Warping 25

0 500 1000 1500 2000

0
10

0
30

0
50

0

w
ar

pi
ng

s
Degree 2 − WCC = 0.088
Degree 3 − WCC = 0.083
Degree 4 − WCC = 0.074
Degree 5 − WCC = 0.083

Fig. 3.9. PTW warping functions for different degrees. The fourth degree warping
is the most agressive but also achieves the best agreement.

state of the column, all traces should be warped with the same warping func-
tion. When using multiple traces, one should have less trouble identifying the
optimal warping since ambiguities, that may exist in single chromatograms,
are resolved easily [9]. The ptw package also has provisions for such so-called
global alignment – we will come back to this later. One can also select traces
on the basis of certain criteria, such as maximal intensity. A popular criterion
is Windig’s Component Detection Algorithm (CODA, [22]), which is one of
the selection criteriain function select.traces in the ptw package. CODA
basically selects high-variance traces after smoothing, and a unit-length scal-
ing step – the variance of a trace with one high-intensity feature will always
be larger than that of a trace with the same length but many low-intensity
features.

The following example chooses the ten traces which show the highest values
for the CODA criterion, and uses these for constructing a warping function:

> sref <- lcms[,,2]

> ssamp <- lcms[,,3]

> traces <- select.traces(sref, criterion = "var")

> lcms.warpglobal <-

+ ptw(sref, ssamp, warp.type = "global",

+ selected.traces = traces$trace.nrs[1:10])

> summary(lcms.warpglobal)

PTW object: global alignment of 10 samples on 10 references.

Warping coefficients:

[,1] [,2] [,3]

[1,] 91.37956 0.8727316 5.969587e-05

Warping criterion: WCC

Value: 0.1309732

26 3 Preprocessing

Note that the ten selected traces are seen as separate samples for which one
global warping function should be found. This is a situation that will occur
often in practice – using a couple of information-rich mass traces the quality
of the alignment is probably much higher than when using all traces simulta-
neously. If necessary, small, individual alignments can be made to correct for
any remaining shifts. Let us compare an eight-degree individual warping with
a global warping of degree two, followed by a four-degree individual warping.
The latter strategy also generates a net warping of degree eight [9]:

> sample2.indiv.warp <-

+ ptw(lcms[,,3], lcms[,,2],

+ init.coef = c(0, 1, 0, 0, 0, 0, 0, 0, 0))

> sample2.global.warp <-

+ ptw(lcms[,,3], lcms[,,2], init.coef = c(0, 1, 0),

+ warp.type = "multiple")

> sample2.final.warp <-

+ ptw(lcms[,,3], lcms[,,2],

+ init.coef = c(sample2.global.warp$warp.coef, 0, 0))

The individual warping is initialized using estimates for the lower degree co-
efficients found in the global warping. We evaluate the results by looking at
the total ion currents, given by the column sums of the warped samples:

> plot(time, colSums(lcms[,,3]), col = "gray", lwd = 3,

+ type = "l", main = "PTW (indiv.)", ylab = "I")

> lines(time, colSums(sample2.indiv.warp$warped.sample))

> legend("topleft", legend = c("Sample", "Reference"),

+ lty = 1, col = c("black", "gray"), lwd = c(1,3))

This gives the top panel in Figure 3.10, showing the result of the individual
eight-degree warping. The bottom plot is produced with similar code, using
sample2.final.warp instead of sample2.indiv.warp. Clearly, already the
individual alignments lead to an overall result that is not bad at all, with very
good agreement in the middle of the signal. At longer times, however, the com-
pression is much too strong and the dominant feature just after 5000 seconds
is placed too early in the warped signal. The combined strategy fares much
better with a more or less perfect warping. Note the absence of the aligned
signal at the extremes in both cases, the result of an overall compression.

3.3.2 Dynamic Time Warping

Also in Dynamic Time Warping (DTW), implemented in package dtw [23],
the first step is to construct a warping function. This provides a mapping from
the indices in the query signal to the points in the reference signal2:

2 Note that the order of sample and reference signals is reversed compared to the
ptw function.

3.3 Aligning Peaks – Warping 27

2000 2500 3000 3500 4000 4500 5000 5500

0.
0e

+
00

1.
5e

+
08

3.
0e

+
08

PTW (indiv.)

time

I

Sample
Reference

2000 2500 3000 3500 4000 4500 5000 5500

0.
0e

+
00

1.
5e

+
08

3.
0e

+
08

PTW (global + indiv.)

time

I

Sample
Reference

Fig. 3.10. Comparison of individual and global parametric time warping for samples
two and three of the lcms data: the total ion current (TIC) of the aligned samples
is shown. In the top panel, all mass traces have been warped individually using a
warping function of degree eight – the bottom panel shows a two-stage warping using
a global warping of degree two, followed by an individual warping of degree four.

> warpfun <- dtw(ssamp, sref)

> plot(warpfun)

> abline(-20, 1, col = "gray", lty = 2)

The result is shown in the left plot of Figure 3.11. A horizontal segment in-
dicates that several points in the query signal are mapped to the same point
in the reference signal; the axis of the query signal is compressed by elimi-
nation (or rather, averaging) of points. Similarly, vertical segments indicate
a stretching of the query signal axis by the duplication of points. Note that
these horizontal and vertical regions in the warping function of Figure 3.11
may also lead to peak shape distortions.

DTW chooses the warping function that minimizes the (weighted) distance
between the warped signals:

28 3 Preprocessing

●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●

0 100 300 500 700

0
10

0
30

0
50

0
70

0

Query index

R
ef

er
en

ce
 in

de
x

Query index

R
ef

er
en

ce
 in

de
x

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0
Fig. 3.11. Left plot: warping function of the data from Figure 3.7. The identity warp
is indicated with a dashed gray line. Right plot: lower left corner of the warping
function plot, showing the contour lines of the cost function, as well as the final
warping function (fat line).

∑
k

{q(m(k))− r(n(k))}2w(k)/
∑
k

w(k)

where k is the common axis to which both the query and the reference are
mapped, m(k) is the warped query signal and n(k) is the warped reference.
Note that in this symmetric formulation there is no difference in treatment
of query and reference signals: reversing the roles would lead to the same
mapping. The weights are used to remove the tendency to select the shortest
warping path, but should be chosen with care. The weighting scheme in the
original publication [15] is for point k + 1:

w(k + 1) = m(k + 1)−m(k) + n(k + 1)− n(k)

That is, if both indices advance to the next point, the weight is 2; if only
one of the indices advances to the next point, the weight is 1. A part of the
cumulative distance from the start of both signals is shown in the right plot
of Figure 3.11: the warping function finds the minimum through the (often
very noisy) surface.

Obviously, such a procedure is very flexible, and indeed, one can define
warping functions that put any two signals on top of each other, no matter
how different they are. This is of course not what is desired, and usually
several constraints are employed to keep the warping function from extreme
distortions. One can, e.g., limit the maximal warping, or limit the size of
individual warping steps. The dtw package implements these constraints and
also provides the possibility to align signals of different length.

3.3 Aligning Peaks – Warping 29

3000 3200 3400 3600 3800 4000 4200

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

Time

I

Reference
Sample
Warped sample

Fig. 3.12. DTW-corrected mass spectrometry data.

Once the warping function is calculated, we can use it to actually map the
points in the second signal to positions corresponding to the first. For this, the
warp function should be used, which internally performs a linear interpolation
of the common axis to the original axes:

> wx2 <- warp(warpfun)

> plot(mz, x[,1], type = "l", xlab = "m/z", ylab = "I")

> points(mz, x[wx2,2], col = "gray")

The warped signal can directly be compared to the reference. The result is
shown in Figure 3.12. Immediately one can see that the warping is perfect:
peaks are in exactly the same positions. The only differences between the two
signals are now found in areas where the peaks in the reference signal are
higher than in the warped signal (e.g. m/z values at 3,100 and just below
3,300) – these peak distortions can not be corrected for.

These data are ideally suited for DTW: individual mass traces contain not
too many, nicely separated peaks, so that it is clear what features should be
aligned. The quality of the warping becomes clear when we align all traces
individually and then compare the TIC of the warped sample with the TIC
of the reference:

> sample2.dtw <- matrix(0, 100, 2000)

> for (i in 1:100) {

+ warpfun.dtw <- dtw(lcms[i,,3], lcms[i,,2])

+ new.indices <- warp(warpfun.dtw, index.reference = FALSE)

+ sample2.dtw[i,] <- lcms[i,new.indices,3]

+ }

The result is shown in the top plot of Figure 3.13 – this should be compared
with the top plot in Figure 3.10. Clearly, the DTW result is much better. Note
that since there is no overall compression, the length of the warped sample
equals the original length. Global alignment, using one warping function for
all traces simultaneously, is available using the following code:

> warp.dtw.gl <- dtw(t(lcms[,,3]), t(lcms[,,2]))

> samp.aligned <- lcms[,warp(warp.dtw.gl),3]

30 3 Preprocessing

2000 2500 3000 3500 4000 4500 5000 5500

0e
+

00
2e

+
08

DTW (indiv.)

time

I

Sample
Reference

2000 2500 3000 3500 4000 4500 5000 5500

0e
+

00
2e

+
08

DTW (global)

time

I

Sample
Reference

Fig. 3.13. TIC profiles of samples two and three of the lcms data. Top plot: DTW
alignment using individual traces. Bottom plot: global DTW alignment.

The result, although still very good, is less convincing than the sum of in-
dividual DTW alignments: although the features are still aligned correctly,
there are many examples of peak deformations. Global alignment with DTW
is more constrained and therefore is forced to make compromises. One should
be careful, however, when applying extremely flexible warping methods such
as DTW to data sets in which not all peaks can be matched: in this particular
example we have aligned replicate measurements. In practice, one very often
will want to compare samples from different classes, and probably will want
to identify those peaks that are discriminating between the classes. Align-
ment methods that are too flexible may be led astray by the presence of extra
peaks, especially when these are of high intensity. More constrained versions
of DTW, or PTW, then would probably be more appropriate.

3.4 Peak Picking 31

3.3.3 Practicalities

In almost all cases, a set of signals should be aligned in such a way that all
features of interest are at the same positions in every trace. One strategy is to
use the column means of the data matrix as a reference. This is only possible
with very small shifts and will lead to peak broadening. Simply taking a
random sample from the set as a reference is better but still may be improved
upon – it usually pays to perform some experiments to see which reference
would lead to the smallest distortion of the other signals, while still leading
to good alignment. If the number of samples is not too large, one can perform
all possible combinations and see which one comes out best.

Careful data pretreatment is essential – baselines may severely influence
the results and should be removed before alignment. In fact, one of the mo-
tivations of the CODA algorithm is to select traces that do not contain a
baseline [22]. Another point of attention is the fact that features can have
intensities differing several orders in magnitude. Often, the biggest gain in the
alignment optimization is achieved by getting the prominent features in the
right location. Sometimes, this dominance leads to suboptimal alignments.
Also differences in intensity between sample and reference signals can dis-
tort the results. Methods to cope with these phenomena will be treated in
Section 3.5. Finally, it has been shown that in some cases results can be
improved when the signals are divided into segments which are aligned indi-
vidually [17]. Especially with more constrained warping methods like PTW
this adds flexibility, but again, there is a danger of warping too much and
mapping features onto the wrong locations. Especially in cases where there
may be differences between the samples (control versus diseased, for instance)
there is a risk that a biomarker peak, present only in one of the two classes, is
incorrectly aligned. This, again, is all the more probable when that particular
peak has a high intensity.

Packages dtw and ptw are by no means alone in tackling alignment. We al-
ready mentioned the VPdtw package: in addition, several Bioconductor pack-
ages, such as PROcess and xcms, implement both general and more specific
alignment procedures, in most cases for mass spectrometry data or hyphen-
ated techniques like LC-MS.

3.4 Peak Picking

Several of the problems associated with misalignment can be avoided if the
spectra can be transformed into lists of features, a process that is also known
as peak picking. The first question of course is: what is a peak, exactly?
This depends on the spectroscopic technique – usually it is a local maximum
in a more or less smooth curve. In NMR, for instance, peaks usually have
a specific shape (a Lorentz line shape). This knowledge can be used to fit
the peaks to the data, and also to give quality assessments of the features

32 3 Preprocessing

that are identified. In chromatography, peaks can be described by a modified
normal distribution, where the modification is allowing for peak tailing and
other experimental imperfections. In cases where we do not want to make
assumptions about peak shape, we are forced to more crude methods, e.g.,
finding a list of local maxima. One simple way to do this is again to make use of
the embed function that splits up the spectrum in many overlapping segments.
For each segment, we can calculate the location of the local maximum, and
eliminate those segments where the local maximum is at the beginning or at
the end. A function implementing this strategy is given in the next piece of
code:

> pick.peaks <- function(x, span) {

+ span.width <- span * 2 + 1

+ loc.max <- span.width + 1 -

+ apply(embed(x, span.width), 1, which.max)

+ loc.max[loc.max == 1 | loc.max == span.width] <- NA

+

+ pks <- loc.max + 0:(length(loc.max)-1)

+ unique(pks[!is.na(pks)])

+ }

The span parameter determines the width of the segments: wider segments
will cause fewer peaks to be found. Let us investigate the effect using the
prostate data from Figure 3.2:

> pks10 <- pick.peaks(rmeans, 10)

> plot(prostate.mz[3:498], rmeans, type = "l",

+ xlab = "m/z", ylab = "Response")

> abline(v = prostate.mz[pks10 + 2], col = "gray")

> pks40 <- pick.peaks(rmeans, 40)

> plot(prostate.mz[3:498], rmeans, type = "l",

+ xlab = "m/z", ylab = "Response", main = "span = 40")

> abline(v = prostate.mz[pks40 + 2], col = "gray")

This leads to the plots in Figure 3.14; with the wider span, many of the smaller
features are not detected. At the same time, the many noisy features that are
found with the smaller span, e.g., around m/z value 2040, probably do not
consitute valid features. Clearly, the results of peak picking depend crucially
on the degree and quality of the smoothing – method-specific peak picking
methods will lead to superior results.

Once the positions of the features have been identified, one should quantify
the signals. If an explicit peak model has been fitted, the normal approach
would be to use the peak area, obtained by integrating between certain limits;
if not, very often the peak height is taken. Under the assumption that peak
widths are relatively constant, the two measures lead to similar results. If
possible, one should then identify the signals: in, e.g., mass spectrometry this
would mean the identification of the corresponding fragment ion. Having these

3.5 Scaling 33

2000 2100 2200 2300 2400

−
0.

2
0.

2
0.

6
1.

0

span = 10

m/z

R
es

po
ns

e

2000 2100 2200 2300 2400

−
0.

2
0.

2
0.

6
1.

0

span = 40

m/z

R
es

po
ns

e

Fig. 3.14. Peak picking by identifying local maxima (prostate data): in the left
figure the span is ten points, in the right forty.

assignments makes it much easier to compare spectra of different samples:
even if the features are not exactly at the same position, it still is clear which
signals to compare. Thus, the need for peak alignment is obviated. In practice,
however, it is rare to have complete assignments of spectral data from complex
samples, and an alignment step remains necessary.

3.5 Scaling

The scaling method that is employed can totally change the result of an anal-
ysis. One should therefore carefully consider what scaling method (if any)
is appropriate. Scaling can serve several purposes. Many analytical methods
provide data that are not on an absolute scale; the raw data in such a case
are cannot be used directly when comparing different samples. If some kind
of internal standard is present, it can be used to calibrate the intensities. In
NMR, for instance, the TMS (tetramethylsilane, added to indicate the posi-
tion of the origin on the x-axis) peak can be used for this if its concentration
is known. Peak heights can then be compared directly. However, even in that
situation it may be necessary to further scale intensities, since samples may
contain different concentrations. A good example is the analysis of a set of
urine samples by NMR. These samples will show appreciable global differences
in concentrations, perhaps due to the amount of liquid the individuals have
been consuming. This usually is not of interest – rather, one is interested in
finding one or perhaps a couple of metabolites with concentrations that devi-
ate from the general pattern. As an example, consider the first ten spectra of
the prostate data:

> range(apply(prostate[1:10,], 1, max))

[1] 16.35960 68.89841

> range(rowSums(prostate[1:10,]))

[1] 2531.694 15207.851

34 3 Preprocessing

The intensity differences within these first ten spectra are already a factor
five for both statistics. If these differences are not related to the phenomenon
we are interested in but are caused, e.g., by the nature of the measurements,
then it is important to remove them. As stated earlier, also in cases where
alignment is necessary, this type of differences between samples can hamper
the analysis.

Several options exist to make peak intensities comparable over a series of
spectra. The most often-used are range scaling, length scaling and variance
scaling. In range scaling, one makes sure that the data have the same minimal
and maximal values. Often, only the maximal value is considered important
since for many forms of spectroscopy zero is the natural lower bound. Length
scaling sets the length of each spectrum to one; variance scaling sets the
variance to one. The implementation in R is easy. Here, these three methods
are shown for the first ten spectra of the prostate data. Range scaling can be
performed by

> prost10.rangesc <- sweep(prostate[1:10,], MARGIN = 1,

+ apply(prostate[1:10,], 1, max),

+ FUN = "/")

> apply(prost10.rangesc, 1, max)

[1] 1 1 1 1 1 1 1 1 1 1

> range(rowSums(prost10.rangesc))

[1] 103.3278 220.7286

The sweep function is very similar to apply – it performs an action for every
row or column of a data matrix. The MARGIN argument states which dimension
is affected. In this case the MARGIN = 1 indicates the rows; column-wise sweep-
ing would be achieved with MARGIN = 2. The third argument is the statistic
that is to be swept out, here the vector of the per-row maximal values. The
final argument states how the sweeping is to be done. The default is to use
subtraction; here we use division. Clearly, the differences between the spectra
have decreased.

Length scaling is done by dividing each row by the square root of the sum
of its squared elements:

> prost10.lengthsc <- sweep(prostate[1:10,], MARGIN = 1,

+ apply(prostate[1:10,], 1,

+ function(x) sqrt(sum(x^2))),

+ FUN = "/")

> range(apply(prost10.lengthsc, 1, max))

[1] 0.1107480 0.2058059

> range(rowSums(prost10.lengthsc))

[1] 18.93725 30.23589

3.5 Scaling 35

The difference between the smallest and largest values is now less than a factor
of two. Variance scaling has a similar effect:

> prost10.varsc <- sweep(prostate[1:10,], MARGIN = 1,

+ sd(t(prostate[1:10,])),

+ FUN = "/")

> range(apply(prost10.varsc, 1, max))

[1] 11.69716 21.65927

> range(rowSums(prost10.varsc))

[1] 1976.494 3245.692

In this case we use the function sd which returns the standard deviations of
the columns of a matrix – hence the transpose.

The underlying hypothesis in these scaling methods is that the maximal
intensities, or the vector lengths, or the variances, should be equal in all ob-
jects. However, there is no real way of assessing whether these assumptions
are correct, and it is therefore always advisable to assess different options.

Often in statistical modelling, especially in a regression context, we are
more interested in deviations from a mean value than in the values per se.
These deviations can be obtained by mean-centering, where one subtracts
the mean value from every column in the data matrix, for example with the
gasoline data:

> NIR.mc <- t(sweep(gasoline$NIR, 2, colMeans(gasoline$NIR)))

Subtraction is the default operation in sweep, but one can also use sweep

to perform other functions using the FUN argument. An even easier way to
achieve the same effect is to use the scale function:

> NIR.mc <- scale(gasoline$NIR, scale = FALSE)

> matplot(wavelengths, t(NIR.mc),

+ type = "l", xlab = "Wavelength (nm)",

+ ylab = "1/R (mean-centered)", lty = 1, col = 1)

The result is shown in Figure 3.15; note the differences with the raw data
shown in Figure 2.1 and the first derivatives in Figure 3.5.

When variables have been measured in different units or have widely dif-
ferent scales, we should take this into account. Obviously, one does not want
the scale in which a variable is measured to have a large influence on the
model: just switching to other units would lead to different results. One pop-
ular way of removing this dependence on units is called autoscaling, where
every column xi is replaced by

(xi − µ̂i)/σ̂i

In statistics, this is often termed standardization of data; the effect is that all
variables are considered equally important. This type of scaling is appropriate

36 3 Preprocessing

1000 1200 1400 1600

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

Wavelength (nm)

1/
R

 (
m

ea
n−

ce
nt

er
ed

)

Fig. 3.15. Mean-centered gasoline NIR data.

for the wine data, since the variables have different units and very different
ranges:

> apply(wines, 2, range)

alcohol malic acid ash ash alkalinity magnesium

[1,] 11.03 0.74 1.36 10.6 70

[2,] 14.83 5.80 3.23 30.0 162

tot. phenols flavonoids non-flav. phenols proanth

[1,] 0.98 0.34 0.13 0.41

[2,] 3.88 5.08 0.66 3.58

col. int. col. hue OD ratio proline

[1,] 1.28 0.48 1.27 278

[2,] 13.00 1.71 4.00 1680

The apply function in this case returns the range of every column. Clearly,
the last variable (proline) has values that are quite a lot bigger than the
other variables. The scale function, already mentioned, also does autoscaling:
simply use the argument scale = TRUE, or do not mention it at all (it is the
default):

> wines.sc <- scale(wines)

> boxplot(wines.mc ~ col(wines.mc),

+ main = "Mean-centered wine data")

> boxplot(wines.sc ~ col(wines.sc),

+ main = "Autoscaled wine data")

The result is shown in Figure 3.16. In the left plot, showing the mean-centered
data, the dominance of proline is clearly visible, and any structure that may

3.5 Scaling 37

●●● ●●● ●
●●●

●●●
●

●● ●●● ●

1 2 3 4 5 6 7 8 9 10 11 12 13

−
40

0
−

20
0

0
20

0
40

0
60

0
80

0
Mean−centered wine data

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10 11 12 13

−
2

0
2

4

Autoscaled wine data

Fig. 3.16. Boxplots for the thirteen mean-centered variables (left) and auto-scaled
variables (right) in the wine data set.

be present in the other variables is hard to detect. The right plot is much
more informative. In almost all cases where variables indicate concentrations
or amounts of chemical compounds, or represent measurements in unrelated
units, autoscaling is a good idea. For the wine data, we will use always au-
toscaled data in examples, even in cases where scaling does not matter.

For spectral data, prevalent in the natural sciences and the life sciences, on
the other hand, autoscaling is usually not recommended. Very often, the data
consist of areas of high information content, viz. containing peaks of different
intensities, and areas containing only noise. When every spectral variable is
set to the same standard deviation, the noise is blown up to the same size as
the signal that contains the actual information. Clearly, this is not a desirable
situation, and in such cases mean-centering is much preferred.

Specialized preprocessing methods are used a lot in spectroscopy. When the
total intensity in the spectra is sample-dependent, spectra should be scaled in
such a way that intensities can be compared. A typical example is given by the
analysis of urine spectra (of whatever type): depending on how much a person
has been drinking, urine samples can be more or less diluted, and therefore
there is no direct relation between peak intensities in spectra from different
subjects. Apart from the range scaling method that we saw earlier, one other
form of scaling is often used, especially in NIR applications: Standard Normal
Variate scaling (SNV). This method essentially does autoscaling on the rows
instead of the columns. That is, every spectrum will after scaling have a mean
of zero and a standard deviation of 1. This gets rid of arbitrary offsets and
multiplication factors. Obviously, the assumption that all spectra should have
the same mean and variance is not always realistic! In some cases, the fact
that the overall intensity in one spectrum is consistently higher may contain
important information. In most cases, SNV gives results that are very close
to MSC.

38 3 Preprocessing

When noise is multiplicative in nature rather than additive, the level of
variation depends on the signal strength. Since most noise reduction methods
assume additive noise, a simple solution is to perform a log-transformation
of the data. This decreases the influence of the larger features, and makes
the noise more constant over the whole range. Next, regular noise reduction
methods can be applied. Log transformation can also be used to reduce the
dominance of the largest features, which can be disturbing the analysis, e.g.,
in alignment applications. A similar effect can be obtained by using Pareto
scaling, which is the same as autoscaling with the exception that the square
root of the standard deviation is used in rescaling, rather than the standard
deviation itself. This form of scaling has become popular in biomarker iden-
tification applications, e.g., in metabolomics: one would like to find variables
that behave differently in two populations, and one is mostly interested in
those variables that have high intensities.

3.6 Missing Data

Missing data are measurements that for some reason have not led to a valid
result. In spectroscopic measurements, missing data are not usually encoun-
tered, but in many other areas of science they occur frequently. The main
question to be answered is: are the data missing at random? If yes, then
we can probably get around the problem, provided there are not too many
missing data. If no, then it means that there is some reason behind the dis-
tribution of NAs in the data set – and that means trouble. We may never be
able to tell whether the missingness of some data points is not related to the
process that we are studying. Therefore, in many practical applications the
missing-at-random hypothesis is taken for granted.

Then, there are several strategies: one may use only those samples for
which there are no missing values; one may leave out all variables containing
missing values, or one can try to estimate the missing values from the other
data points, a process that is known as imputation. Given the fact that missing
values are not playing a prominent part in the analysis of spectral data in the
life sciences, the main focus of this book, we will leave it at the observation
that R provides ample mechanisms for dealing with missing values, which
are usually represented by NA. Many functions have built-in capabilities of
handling them. The simplest is just to remove the missing values (na.rm =

TRUE, e.g. one of the arguments of functions like mean). Matrix functions like
cov and cor have the use argument, that for instance can choose to consider
only complete observations. Consult the manual pages for more information
and examples.

3.7 Conclusion 39

3.7 Conclusion

Data preprocessing is an art, in most cases requiring substantial background
knowledge. Because several steps are taken sequentially, the number of possible
schemes is often huge. Should one scale first and then remove noise or the
other way around? Individual steps will influence each other: noise removal
may make it more easy to correct for a sloping baseline, but the presence of a
baseline may also influence your estimate of what is noise. General recipes are
hard to give, but some problems are more serious than others. The presence
of peak shifts, for instance, will make any multivariate analysis very hard to
interpret.

Finally, one should realise that bad data preprocessing can never be com-
pensated for in the subsequent analysis. One should always inspect the data
before and after preprocessing and assess whether the relevant information
has been kept while disturbing signals have been removed. Of course, that is
easier said than done – and probably one will go through a series of modelling
cycles before one is completely satisfied with the result.

Part II

Exploratory Analysis

4

Principal Component Analysis

Principal Component Analysis (PCA, [24, 25]) is a technique which, quite
literally, takes a different viewpoint of multivariate data. In fact, PCA defines
new variables, consisting of linear combinations of the original ones, in such
a way that the first axis is in the direction containing most variation. Every
subsequent new variable is orthogonal to previous variables, but again in the
direction containing most of the remaining variation. The new variables are
examples of what often is called latent variables (LVs), and in the context of
PCA they are also termed principal components (PCs).

The central idea is that more often than not high-dimensional data are
not of full rank, implying that many of the variables are superfluous. If we
look at high-resolution spectra, for example, it is immediately obvious that
neighbouring wavelengths are highly correlated and contain similar informa-
tion. Of course, one can try to pick only those wavelengths that appear to be
informative, or at least differ from the other wavelengths in the selected set.
This could, e.g., be based on clustering the variables, and selecting for each
cluster one“representative”. However, this approach is quite elaborate and will
lead to different results when using different clustering methods and cutting
criteria. Another approach is to use variable selection, given some criterion –
one example is to select the limited set of variables leading to a matrix with
maximal rank. Variable selection is notoriously diffucult, especially in high-
dimensional cases. In practice, many more or less equivalent solutions exist,
which makes the interpretation quite difficult. We will come back to variable
selection methods in Chapter 10.

PCA is an alternative. It provides a direct mapping of high-dimensional
data into a lower-dimensional space containing most of the information in
the original data. The coordinates of the samples in the new space are called
scores, often indicated with the symbol T . The new dimensions are linear
combinations of the original variables, and are called loadings (symbol P).
The term Principal Component (PC) can refer to both scores and loadings;
which is meant is usually clear from the context. Thus, one can speak of

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_4,

43

44 4 Principal Component Analysis

sample coordinates in the space spanned by PC 1 and 2, but also of variables
contributing greatly to PC 1.

The matrix multiplication of scores and loadings leads to an approximation
X̃ of the original data X:

X̃ = T aP
T
a (4.1)

Superscript T , as usual, indicates the transpose of a matrix. The subscript a
indicates how many components are taken into account: the largest possible
number of PCs is the minimum of the number of rows and columns of the
matrix:

amax = min(n, p) (4.2)

If a = amax, the approximation is perfect and X̃ = X.
The PCs are orthogonal combinations of variables defined in such a way

that [25]:

� the variances of the scores are maximal;
� the sum of the Euclidean distances between the scores is maximal;
� the reconstruction of X is as close as possible to the original: ||X − X̃||

is minimal.

These three criteria are equivalent [24]; the next section will show how to find
the PCs.

PCA has many advantages: it is simple, has a unique analytical solution
optimizing a clear and unambiguous criterion, and often leads to a more easily
interpretable data representation. The price we have to pay is that we do not
have a small set of wavelengths carrying the information but a small set of
principal components, in which all wavelengths are represented. Note that the
underlying assumption is that variation equals information. Intuitively, this
makes sense: one can not learn much from a constant number.

Once PCA has defined the latent variables, one can plot all samples in
the data set while ignoring all higher-order PCs. Usually, only a few PCs are
needed to capture a large fraction of the variance in the data set (although
this is highly dependent on the type of data). That means that a plot of
(the scores of) PC 1 versus PC 2 can already be highly informative. Equally
useful is a plot of the contributions of the (original) variables to the important
PCs. These visualizations of high-dimensional data perhaps form the most
important application of PCA. Later, we will see that the scores can also be
used in regression and classification problems.

4.1 The Machinery

Currently, PCA is implemented even in low-level numerical software such as
spreadsheets. Nevertheless, it is good to know the basics behind the computa-
tions. In almost all cases, the algorithm used to calculate the PCs is Singular

4.1 The Machinery 45

Value Decomposition (SVD)1. It decomposes an n × p mean-centered data
matrix X into three parts:

X = UDV T (4.3)

where U is a n × a orthonormal matrix containing the left singular vectors,
D is a diagonal matrix (a × a) containing the singular values, and V is a
p×a orthonormal matrix containing the right singular vectors. The latter are
what in PCA terminology is called the loadings – the product of the first two
matrices forms the scores:

X = (UD)V T = TP T (4.4)

The interpretation of matrices T , P , U , D and V is straightforward. The
loadings, columns in matrix P (or equivalently, the right singular vectors,
columns in matrix V) give the weights of the original variables in the PCs.
Variables that have very low values in a specific column of V contribute only
very little to that particular latent variable. The scores, columns in T , con-
stitute the coordinates in the space of the latent variables. Put differently:
these are the coordinates of the samples as we see them from our new PCA
viewpoint. The columns in U give the same coordinates in a normalized form
– they have unit variances, whereas the columns in T have variances cor-
responding to the variances of each particular PC. These variances λi are
proportional to the squares of the diagonal elements in matrix D:

λi = d2i /(n− 1)

The fraction of variance explained by PC i can therefore be expressed as

FV (i) = λi/

a∑
j=1

λj (4.5)

One main problem in the application of PCA is the decision on how many
PCs to retain; we will come back to this in Section 4.3.

One final remark needs to be made about the unique solution given by
the SVD algorithm: it is only unique up to the sign. As is clear from, e.g.,
Equation 4.4, one can obtain exactly the same solution by reversing the sign
of both scores and loadings simultaneously. There are no conventions, so one
should always keep in mind that this possibility exists. For the interpretation
of the data, it make no difference whatsoever.

Although SVD is a fast algorithm in some cases it can be efficient not to
apply it to the data matrix directly, especially in cases where there is a large
difference in the numbers of rows and columns. In such a case, it is faster

1 One alternative for SVD is the application of the Eigen decomposition on the
covariance or correlation matrix of the data. SVD is numerically more stable and
is therefore preferred in most cases.

46 4 Principal Component Analysis

to apply SVD to either XTX or XXT , whichever is the smaller one. If the
number of columns is much smaller than the number of rows, one would obtain

XTX = (UDV T)TUDV T = V D2V T

Applying svd2 directly yields loadings and sums of squares. Matrix T , the
score matrix, is easily found by right-multiplying both sides of Equation 4.4
with P :

XP = TP TP = T (4.6)

because of the orthonormality of P . Similarly, we can find the left singular
vectors and singular values when applying SVD to XXT – see the example
in the next section.

4.2 Doing It Yourself

Calculating scores and loadings is easy: consider the wine data first. We per-
form PCA on the autoscaled data to remove the effects of the different scales
of the variables using the svd function provided by R

> wines.svd <- svd(wines.sc)

> wines.scores <- wines.svd$u %*% diag(wines.svd$d)

> wines.loadings <- wines.svd$v

The first two PCs represent the plane that contains most of the variance; how
much exactly is given by the squares of the values on the diagonal of D. The
importance of individual PCs is usually given by the percentage of the overall
variance that is explained:

> wines.vars <- wines.svd$d^2 / (nrow(wines) - 1)

> wines.totalvar <- sum(wines.vars)

> wines.relvars <- wines.vars / wines.totalvar

> variances <- 100 * round(wines.relvars, digits = 3)

> variances[1:5]

[1] 36.0 19.2 11.2 7.1 6.6

The first PC covers more than one third of the total variance; for the fifth PC
this amount is down to one fifteenth.

The scores show the positions of the individual wine samples in the coor-
dinate system of the PCs. A score plot can be produced as follows:

> plot(wines.scores[,1:2], type = "n",

+ xlab = paste("PC 1 (", variances[1], "%)", sep = ""),

+ ylab = paste("PC 2 (", variances[2], "%)", sep = ""))

> abline(h = 0, v = 0, col = "gray")

> points(wines.scores[,1:2], pch = wine.classes)

2 Or eigen, which returns eigenvectors and eigenvalues.

4.2 Doing It Yourself 47

−4 −2 0 2 4

−
2

0
2

4

PC 1 (36%)

P
C

 2
 (

19
.2

%
)

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

−0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

PC 1 (36%)
P

C
 2

 (
19

.2
%

)

alcohol

malic acid

ash

ash alkalinity

magnesium

tot. phenols

flavonoidsnon−flav. phenols proanth

col. int.

col. hue

OD ratio

proline

Fig. 4.1. Left plot: scores on PCs 1 and 2 for the autoscaled wine data. Different
symbols correspond to the three cultivars. Right plot: loadings on PCs 1 and 2.

The result is depicted in the left plot of Figure 4.1. It is good practice to
indicate the amount of variance associated with each PC on the axis labels.
The three cultivars can be clearly distinguished: class 1, Barbera, indicated
with open circles, has the smallest scores on PC 1 and class 2 (Barolo – plusses
in the figure) the largest. PC 2, corresponding to 19% of the variance, improves
the separation by separating the Grignolinos, the middle class on PC 1, from
the other two. Note that this is a happy coincidence: PCA does not explicitly
look to discriminate between classes. In this case, the three cultivars clearly
have different characteristics. What characteristics these are can be seen in
the loading plot, shown on the right in Figure4.1. It shows the contribution of
the original variables to the PCs. Loadings are traditionally shown as arrows
from the origin:

> plot(wines.loadings[,1] * 1.2, wines.loadings[,2], type = "n",

+ xlab = paste("PC 1 (", variances[1], "%)", sep = ""),

+ ylab = paste("PC 2 (", variances[2], "%)", sep = ""))

> arrows(0, 0, wines.loadings[,1], wines.loadings[,2],

+ col = "darkgray", length = .15, angle = 20)

> text(wines.loadings[,1:2], labels = colnames(wines))

The factor of 1.2 in the plot command is used to create space for the text labels.
Clearly, the wines of class 3 are distinguished by lower values of alcohol and a
lower color intensity. Wines of class 1 have high flavonoid and phenol content
and are low in non-flavonoid phenols; the reverse is true for wines of class
2. All of these conclusions could probably have been drawn also by looking
at class-specific boxplots for all variables – however, the combination of one

48 4 Principal Component Analysis

score plot and one loading plot shows this in a much simpler way, and even
presents direct information on correlations between variables and objects. We
will come back on this point later, when treating biplots.

As an example of the kind of speed improvement one can expect when
applying SVD on the crossproduct matrices rather than the original data,
consider the prostate data. Timings can be obtained by wrapping the code
within a system.time call:

> system.time({

+ prost.svd <- svd(prostate)

+ prost.scores <- prost.svd$u %*% diag(prost.svd$d)

+ prost.variances <- prost.svd$d^2 / (nrow(prostate) - 1)

+ prost.loadings <- prost.svd$v

+ })

user system elapsed

30.706 0.264 30.988

Here, the number of variables is much larger than the number of objects
(which, by the way, is not extremely small either), so we perform SVD on the
matrix XXT :

> system.time({

+ prost.tcp <- tcrossprod(prostate)

+ prost.svd <- svd(prost.tcp)

+ prost.scores <- prost.svd$u %*% diag(sqrt(prost.svd$d))

+ prost.variances <- prost.svd$d / (nrow(prostate) - 1)

+ prost.loadings <- solve(prost.scores, prostate)

+ })

user system elapsed

16.085 0.132 16.216

The second option is twice as fast.

4.3 Choosing the Number of PCs

The question how many PCs to consider, or put differently: where the in-
formation stops and the noise begins, is difficult to answer. Many methods
consider the amount of variance explained, and use statistical tests or graph-
ical methods to define which PCs to include. In this section we briefly review
some of the more popular methods.

The amount of variance per PC is usually depicted in a scree plot: either
the variances themselves or the logarithms of the variances are shown as bars.
Often, one also considers the fraction of the total variance explained by every
single PC. The last few PCs usually contain no information and, especially on

4.3 Choosing the Number of PCs 49

a log scale, tend to make the scree plot less interpretable, so they are usually
not taken into account in the plot.

> par(mfrow = c(2,2))

> barplot(wines.vars[1:10], main = "Variances",

> names.arg = paste("PC", 1:10))

> barplot(log(wines.variances[1:10]), main = "log(Variances)",

> names.arg = paste("PC", 1:10))

> barplot(wines.relvars[1:10], main = "Relative variances",

> names.arg = paste("PC", 1:10))

> barplot(cumsum(100 * wines.relvars[1:10]),

> main = "Cumulative variances (%)",

> names.arg = paste("PC", 1:10), ylim = c(0, 100))

This leads to the plots in Figure 4.2. Clearly, PCs 1 and 2 explain much
more variance than the others: together they cover 55% of the variance. The
scree plots show no clear cut-off, which in real life is the rule rather than
the exception. Depending on the goal of the investigation, for these data one
could consider three or five PCs. Choosing four PCs would not make much
sense in this case, since the fifth PC would explain almost the same amount
of variance: if the fourth is included, the fifth should be, too.

4.3.1 Statistical Tests

One can show that the explained variance for the i-th component, λi = d2i /(n−
1) is asymptotically normally distributed [26, 27], which leads to confidence
intervals of the form

ln(λi)± zα
√

2

n− 1

For the wine example, 95% confidence intervals can therefore be obtained as

> llambdas <- log(wines.vars)

> CIwidth <- qnorm(.975) * sqrt(2 / (nrow(wines) - 1))

> CIs <- cbind(exp(llambdas - CIwidth),

+ wines.vars,

+ exp(llambdas + CIwidth))

> colnames(CIs) <- c("CI 0.025", " Estimate", " CI 0.975")

> CIs[1:5,]

CI (0.025) Estimate CI (0.975)

PC 1 3.7958 4.678 5.765

PC 2 2.0297 2.501 3.083

PC 3 1.1793 1.453 1.791

PC 4 0.7501 0.924 1.139

PC 5 0.6993 0.862 1.062

50 4 Principal Component Analysis

PC 1 PC 3 PC 5 PC 7 PC 9

Variances

0
1

2
3

4

PC 1 PC 3 PC 5 PC 7 PC 9

log(Variances)

−
1.

0
0.

0
0.

5
1.

0
1.

5

PC 1 PC 3 PC 5 PC 7 PC 9

Relative variances

0.
00

0.
10

0.
20

0.
30

PC 1 PC 3 PC 5 PC 7 PC 9

Cumulative variances (%)

0
20

40
60

80
10

0

Fig. 4.2. Scree plots for the assessment of the amount of variance explained by each
PC. From left to right, top to bottom: variances, logarithms of variances, fractions
of the total variance and cumulative percentage of total variance.

Mardia et al. present an approach testing the equality of variances for
individual PCs [26]. For the autoscaled wine data, one could test whether the
last p−k PCs are equally important, i.e. have equal values of λ. The quantity

(n− 1)(p− k) log(a0/g0)

is distributed approximately as a χ2-statistic with (p − k + 2)(p − k − 1)/2
degrees of freedom [26, p. 236]. In this formula, a0 and g0 indicate arithmetic
and geometric means of the p− k smallest variances, respectively. We can use
this test to assess whether the last three PCs are useful or not:

> small.ones <- wines.vars[11:13]

> n <- nrow(wines)

> nsmall <- length(small.ones)

> geo.mean <- prod(small.ones)^{1/nsmall}

> mychisq <- (n - 1) * nsmall * log(mean(small.ones) / geo.mean)

> ndf <- (nsmall + 2) * (nsmall - 1) / 2

> 1 - pchisq(mychisq, ndf)

[1] 9.91e-05

4.4 Projections 51

This test finds that after PC 10 there is still a difference in the variances. In
fact, the test finds a difference after any other cutoff, too: apparently all PCs
are significant.

The use of statistical tests for determining the optimal number of PCs
has never really caught on. Most scientists are prepared to accept a certain
loss of information (variance) provided that the results, the score plots and
loading plots, help to answer scientific questions. Most often, one uses informal
graphical methods: if an elbow shows up in the scree plot that can be used
to decide on the number of PCs. In other applications, notably with spectral
data, one can sometimes check the loadings for structure. If there is no more
structure – in the form of peak-like shapes – present in the loadings of higher
PCs, they can safely be discarded.

4.4 Projections

Once we have our low-dimensional view of the original high-dimensional data,
we may be interested how other data are positioned. This may be data from
new samples, measured a different instrument, or at a different day. The key
point is that the low-dimensional representation allows us to look at the data
and in one glance assess whether there are patterns. Obtaining scores for new
data is pretty easy. Given a new data matrix X, the projections in the space
defined by loadings P can be obtained by simple right-multiplication:

XP = TP TP = T

The wine data, for example, are more or less ordered according to vintage.
If we would perform PCA on the first half of the data, the third class, the
Grignolino wines, would not play a part in defining the PCs, and the first
class, Barbera, would dominate. To see the effect of this, we can project the
second half of the data matrix into the PCA space defined by the first half.
We start by constructing scores and loadings:

> X1 <- scale(wines[1:88,])

> X1.svd <- svd(X1)

> X1.pca <- list(scores = X1.svd$u %*% diag(X1.svd$d),

+ loadings = X1.svd$v)

Then, we scale the second half of the data using the means and standard
deviations of the first half. This is a very important detail that sometimes is
missed – obviously, both halves should have the same point of origin. Using
the scaled second half of the data, we calculated the corresponding scores, and
show them in a plot, together with the scores of the first half:

> X2 <- scale(wines[89:177,],

+ center = attr(X1, "scaled:center"),

+ scale = attr(X1, "scaled:scale"))

52 4 Principal Component Analysis

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

PC 1

P
C

 2

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●●
●

●
●●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

4

PC 1

P
C

 2
Fig. 4.3. Projections in PCA space. Left plot: second half of the wine data (tri-
angles) projected into the PCA space defined by the first half (circles). Right plot:
PCA model based on the odd rows (circles). The even rows (triangles) are projected
in this space. The result is very similar to a PCA on the complete data matrix.

> X2.scores <- X2 %*% X1.pca$loadings

> plot(rbind(X1.pca$scores, X2.scores),

+ pch = rep(c(1,2), c(88, 89)),

+ col = rep(c(1,2), c(88, 89)),

+ xlab = "PC 1", ylab = "PC 2")

This leads to the left plot in Figure 4.3. Clearly, the familiar shape of the PC 1
vs. PC 2 plot has been destroyed, and what is more: the triangles, correspond-
ing to the second half of the data, are generally in a different location than
the first half (circles). Since Grignolino wines are only present in the second
half, and Barbera wines only in the first half, this comes as no surprise. The
right plot in the same figure shows a completely different picture. It has been
obtained by defining X1 and X2 as follows:

> odd <- seq(1, nrow(wines), by = 2)

> even <- seq(2, nrow(wines), by = 2)

> X1 <- scale(wines[odd,])

> X2 <- scale(wines[even,],

+ center = attr(X1, "scaled:center"),

+ scale = attr(X1, "scaled:scale"))

Now both halves have similar compositions, and the data clouds neatly over-
lap. In fact, this is a very important way to check whether a division in training
and test set, a topic that we will talk about extensively in later chapters, is a
good one.

4.5 R Functions for PCA 53

nir.prcomp

V
ar

ia
nc

es

0.
00

0.
01

0.
02

0.
03

0.
04

Fig. 4.4. Scree plot for the NIR data. By default, the scree plot shows not more
than ten PCs.

4.5 R Functions for PCA

The standard R function for PCA is prcomp. By default, the data are mean-
centered (but not scaled!). We will show its use on the gasoline data:

> nir.prcomp <- prcomp(gasoline$NIR)

> summary(nir.prcomp, digits = 2)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 0.210 0.083 0.0651 0.0529 0.0275 0.02426

Proportion of Variance 0.726 0.113 0.0695 0.0460 0.0124 0.00967

Cumulative Proportion 0.726 0.839 0.9086 0.9546 0.9670 0.97664

The output of the summary command is limited here to only six PCs. One can
see that they explain almost 98% of the variance. The default plot command
is to show a scree plot (in fact, the screeplot function is used):

> plot(nir.prcomp)

The result is depicted in Figure 4.4. Probably, most people would select four
components to be included: although the first is much larger than the others,
components two to four still contribute a substantial amount, whereas higher
components are much less important.

Plotting the loadings of the first four PCs shows some interesting structure.
The are available as the rotation element of the prcomp object:

> nir.loadings <- nir.prcomp$rotation[,1:4]

The original variables are, of course, highly correlated, and therefore con-
necting subsequent variables in the loading space forms a trajectory. In the
following code, producing the plots in Figure 4.5, the variables with the most
extreme loadings have been indicated – these can easily be found using the
identify function (see the manual page for details).

54 4 Principal Component Analysis

−0.1 0.0 0.1 0.2 0.3

0.
0

0.
1

0.
2

0.
3

PC 1 (72.6%)

P
C

 2
 (

11
.3

%
)

●

●

1670 nm

1690 nm

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

PC 3 (6.95%)

P
C

 4
 (

4.
60

%
)

●

●

●

1206 nm

1638 nm

1694 nm

Fig. 4.5. Loading plots for the mean-centered gasoline data; the left plot shows PC
1 versus PC 2, and the right plot PC 3 versus PC 4. Some extreme variable weights
are indicated with the corresponding wavelengths.

> par(mfrow = c(1,2), pty = "s")

> offset <- c(0, 0.09) # to create space for labels

> plot(nir.loadings[,1:2], type = "l",

+ xlim = range(nir.loadings[,1]) + offset,

+ xlab = "PC 1 (72.6%)", ylab = "PC 2 (11.3%)")

> points(nir.loadings[c(386, 396), 1:2])

> text(nir.loadings[c(386, 396), 1:2], pos = 4,

+ labels = paste(c(1670, 1690), "nm"))

The procedure for PCs three and four is completely analogous:

> offset <- c(-0.12, 0.12) # to create space for labels

> plot(nir.loadings[,3:4], type = "l",

+ xlim = range(nir.loadings[,3]) + offset,

+ xlab = "PC 3 (6.95%)", ylab = "PC 4 (4.60%)")

> points(nir.loadings[c(154, 370, 398), 3:4])

> text(nir.loadings[c(154, 370), 3:4], pos = 4,

+ labels = paste(c(1206, 1638), "nm"))

> text(nir.loadings[398, 3:4, drop = FALSE],

+ labels = "1694 nm", pos = 2)

We can see that the variation on PC 1 is mainly attributable to the intensities
around 1670 nm, whereas the wavelengths around 1690 nm are contributing
most to PC 2. PC 3 shows the largest loadings at 1638, 1694 and 1206 nm; the
latter two are also extreme loadings on PC 4. These wavelengths correspond
with areas of significant variation (see Figure 2.1).

An even more interesting visualization is the biplot [28, 29]. This shows
scores and loadings in one and the same plot, which can makes interpretation

4.5 R Functions for PCA 55

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

PC1

P
C

2

1
2 3 4

56

7

8
9 10

11

12

13

14
15

16

17

18
19
20

21

22

23
2425

26

27
28

29

30
31

32

33

34
35

36

37

38

39
40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
59

60

−0.6 −0.4 −0.2 0.0 0.2 0.4

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

900 nm902 nm904 nm906 nm908 nm910 nm912 nm914 nm916 nm918 nm920 nm922 nm924 nm926 nm928 nm930 nm932 nm934 nm936 nm938 nm940 nm942 nm944 nm946 nm948 nm950 nm952 nm954 nm956 nm958 nm960 nm962 nm964 nm966 nm968 nm970 nm972 nm974 nm976 nm978 nm980 nm982 nm984 nm986 nm988 nm990 nm992 nm994 nm996 nm998 nm1000 nm1002 nm1004 nm1006 nm1008 nm1010 nm1012 nm1014 nm1016 nm1018 nm1020 nm1022 nm1024 nm1026 nm1028 nm1030 nm1032 nm1034 nm1036 nm1038 nm1040 nm1042 nm1044 nm1046 nm1048 nm1050 nm1052 nm1054 nm1056 nm1058 nm1060 nm1062 nm1064 nm1066 nm1068 nm1070 nm1072 nm1074 nm1076 nm1078 nm1080 nm1082 nm1084 nm1086 nm1088 nm1090 nm1092 nm1094 nm1096 nm1098 nm1100 nm1102 nm1104 nm1106 nm1108 nm1110 nm1112 nm1114 nm1116 nm1118 nm1120 nm1122 nm1124 nm1126 nm1128 nm1130 nm1132 nm1134 nm1136 nm1138 nm1140 nm1142 nm1144 nm1146 nm1148 nm1150 nm1152 nm1154 nm1156 nm1158 nm1160 nm1162 nm1164 nm1166 nm1168 nm1170 nm1172 nm1174 nm1176 nm1178 nm1180 nm1182 nm1184 nm1186 nm1188 nm1190 nm1192 nm1194 nm1196 nm1198 nm1200 nm1202 nm1204 nm1206 nm1208 nm1210 nm1212 nm1214 nm1216 nm1218 nm1220 nm1222 nm1224 nm1226 nm1228 nm1230 nm1232 nm1234 nm1236 nm1238 nm1240 nm1242 nm1244 nm1246 nm1248 nm1250 nm1252 nm1254 nm1256 nm1258 nm1260 nm1262 nm1264 nm1266 nm1268 nm1270 nm1272 nm1274 nm1276 nm1278 nm1280 nm1282 nm1284 nm1286 nm1288 nm1290 nm1292 nm1294 nm1296 nm1298 nm1300 nm1302 nm1304 nm1306 nm1308 nm1310 nm1312 nm1314 nm1316 nm1318 nm1320 nm1322 nm1324 nm1326 nm1328 nm1330 nm1332 nm1334 nm1336 nm1338 nm1340 nm1342 nm1344 nm1346 nm1348 nm1350 nm1352 nm1354 nm1356 nm1358 nm1360 nm1362 nm1364 nm1366 nm1368 nm1370 nm1372 nm1374 nm1376 nm1378 nm1380 nm1382 nm1384 nm1386 nm1388 nm1390 nm1392 nm1394 nm1396 nm1398 nm1400 nm1402 nm1404 nm1406 nm1408 nm1410 nm1412 nm1414 nm1416 nm1418 nm1420 nm1422 nm1424 nm1426 nm1428 nm1430 nm1432 nm1434 nm1436 nm1438 nm1440 nm1442 nm1444 nm1446 nm1448 nm1450 nm1452 nm1454 nm1456 nm1458 nm1460 nm1462 nm1464 nm1466 nm1468 nm1470 nm1472 nm1474 nm1476 nm1478 nm1480 nm1482 nm1484 nm1486 nm1488 nm1490 nm1492 nm1494 nm1496 nm1498 nm1500 nm1502 nm1504 nm1506 nm1508 nm1510 nm1512 nm1514 nm1516 nm1518 nm1520 nm1522 nm1524 nm1526 nm1528 nm1530 nm1532 nm1534 nm1536 nm1538 nm1540 nm1542 nm1544 nm1546 nm1548 nm1550 nm1552 nm1554 nm1556 nm1558 nm1560 nm1562 nm1564 nm1566 nm1568 nm1570 nm1572 nm1574 nm1576 nm1578 nm1580 nm1582 nm1584 nm1586 nm1588 nm1590 nm1592 nm1594 nm1596 nm1598 nm1600 nm1602 nm1604 nm1606 nm1608 nm1610 nm1612 nm1614 nm1616 nm1618 nm1620 nm1622 nm1624 nm1626 nm1628 nm1630 nm1632 nm1634 nm1636 nm1638 nm1640 nm1642 nm1644 nm1646 nm1648 nm1650 nm1652 nm1654 nm1656 nm1658 nm1660 nm1662 nm1664 nm1666 nm1668 nm1670 nm1672 nm1674 nm1676 nm1678 nm1680 nm1682 nm1684 nm1686 nm
1688 nm

1690 nm1692 nm
1694 nm

1696 nm
1698 nm1700 nm

Fig. 4.6. Biplot for the mean-centered gasoline data showing PC 1 versus PC 2.

easier. The origins for the score and loading plots are overlayed, and the two
sets of points are plotted in separate axis systems. An example is shown in
Figure 4.6:

> biplot(nir.prcomp)

Again, scores are plotted as individual points, and loadings as arrows. The
axes corresponding to the scores are shown on the bottom and the left of the
picture; the axis to the right and no top are for the loadings. Since there are
many correlated variables, the loading plot looks quite crowded.

We can see in the biplot that wavelength 1690 nm is one of the arrows
pointing upward, in the direction of PC 2. Samples 15 and 41 are most different
in PC 1, and samples 57 and 43 differ most in PC 2. Let us plot the mean-
centered data for these four samples (since the mean-centered data are what
is fed to PCA):

> extremes <- c(15,41,45,57)

> Xextr <- scale(gasoline$NIR, scale = FALSE)[extremes,])

> wavelengths <- seq(900, 1700, by = 2)

> matplot(wavelengths, t(Xextr),

+ type = "l", xlab = "Wavelength (nm)",

+ ylab = "Intensity (mean-scaled)", lty = c(1,1,2,2),

+ col = c(1,"gray",1,"gray"))

> abline(v = wavelengths[extreme.vars], col = "gray", lty = 3)

> legend("bottomleft", legend = paste("sample", extremes),

+ lty = c(1,1,2,2), col = c(1,2,1,2), bty = "n")

56 4 Principal Component Analysis

1000 1200 1400 1600

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

Wavelength (nm)

In
te

ns
ity

 (
m

ea
n−

sc
al

ed
)

sample 15
sample 41
sample 45
sample 57

Fig. 4.7. Mean-centered spectra of samples that are extreme in either component.

This results in Figure 4.7. The largest difference in intensity, at 1670 nm,
corresponds with the most important variables in PC 1 – and although it
is not directly recognizable from the loadings in this figure, this is exactly
the wavelength with the largest loading on PC 1. The largest difference in the
samples that are extreme in PC 2 is just above that, at 1690 nm, in agreement
with our earlier observation. Another major feature just below 1200 nm is
represented in the bottom left corner of the loading plot of PC 1 vs PC 2.

Another R function, princomp, also does PCA, using the eigen decom-
position on the covariance matrix instead of directly performing svd on the
data themselves. Since the svd-based calculations are more stable, these are
to be preferred for regular applications; princomp does allow you to provide
a specific covariance matrix that will be used for the decomposition, which
can be useful in some situations (see Section 11.1), but is retained mainly for
compatibility reasons.

The package ChemometricsWithR comes with a set of PCA functions, too,
based on the code presented in this chapter. The basic function is PCA, and the
usual generic functions print, plot, and summary are available, as well as some
auxiliary functions such as screeplot, project, and the extraction functions
variances, loadings and scores. To produce, e.g., plots very similar to the
ones shown in Figure 4.1, for example, one can issue:

> wines.PCA <- PCA(scale(wines))

> scoreplot(wines.PCA, pch = wine.classes, col = wine.classes)

> loadingplot(wines.PCA, show.names = TRUE)

One useful feature of these functions is that the percentage of explained vari-
ance is automatically shown at the axis labels.

4.6 Related Methods 57

4.6 Related Methods

PCA is not alone in its aim to find low-dimensional representations of high-
dimensional data sets. Several other methods try to do the same thing, but
rather than finding the projection that maximizes the explained variance, they
choose other criteria. In Principal Coordinate Analysis and the related multi-
dimensional scaling methods, the aim is to find a low-dimensional projection
that reproduces the experimentally found distances between the data points.
When these distances are Euclidean, the results are the same or very similar
to PCA results; however, other distances can be used as well. Independent
Component Analysis maximizes deviations from normality rather than vari-
ance, and Factor Analysis concentrates on reproducing covariances. We will
briefly review both in the next paragraphs.

4.6.1 Multidimensional Scaling

In some cases, applying PCA to the raw data matrix is not appropriate, for
example in situations where regular Euclidean distances do not apply – sim-
ilarities between chemical structures, e.g., can be expressed easily in several
different ways, but it is not at all clear how to represent molecules into fixed-
length structure descriptors [30], something that is required by distance mea-
sures such as the Euclidean distance. Even when comparing spectra or chro-
matograms, the Euclidean distance can be inappropriate, for instance in the
presence of peak shifts [20,9]. In other cases, raw data are simply not available
and the only information one has consists of similarities. Based on the sample
similarities, the goal of methods like Multidimensional Scaling (MDS, [31,32])
is to reconstruct a low-dimensional map of samples that leads to the same
similarity matrix as the original data (or a very close approximation). Since
visualization usually is one of the main aims, the number of dimensions usu-
ally is set to two, but in principle one could find an optimal configuration with
other dimensionalities as well.

The problem is something like making a topographical map, given only
the distances between the cities in the country. In this case, an exact solution
is possible in two dimensions since the original distance matrix was calculated
from two-dimensional coordinates. Note that although distances can be re-
produced exactly, the map still has rotational and translational freedom – in
practice this does not pose any problems, however. An amusing example is
given by maps not based on kilometers but rather on travel time – the main
cities will be moved to the center of the plot since they usually are connected
by high-speed trains, whereas smaller villages will appear to be further away.
In such a case, and in virtually all practical applications, a two-dimensional
plot will not be able to reproduce all similarities exactly.

In MDS, there are several ways to indicate the agreement between the two
distance matrices, and these lead to different methods. The simplest approach

58 4 Principal Component Analysis

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

−4 −2 0 2 4

−
2

0
2

4
Principal Coordinates Analysis

Coord 1

C
oo

rd
 2

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●
●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

−4 −2 0 2 4

−
4

−
2

0
2

4
6

8

Sammon mapping

Coord 1
C

oo
rd

 2

●

●

●

●

●

●

●

●●

●

●●

●

● ●
●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

Nonmetric MDS

Coord 1

C
oo

rd
 2

Fig. 4.8. Multidimensional scaling approaches on the wine data: classical MDS
(left), Sammon mapping (middle) and non-metric MDS (right).

is to perform PCA on the double-centered distance matrix3, an approach
that is known as Principal Coordinate Analysis, or Classical MDS [33]. The
criterion to be minimized is called the stress, and is given by

S =
∑
j<i

(||xi − xj || − eij)2 =
∑
j<i

(dij − eij)2

where eij corresponds with the true, given, distances, and dij are the distances
between objects xi and xj in the low-dimensional space.

In R, this is available as the function cmdscale:

> wines.dist <- dist(scale(wines))

> wines.cmdscale <- cmdscale(wines.dist)

> plot(wines.cmdscale$points,

+ pch = wine.classes, col = wine.classes,

+ main = "Principal Coordinate Analysis",

+ xlab = "Coord 1", ylab = "Coord 2")

This leads to the left plot in Figure 4.8, which up to the reversal of the sign
in the first component is exactly equal to the scores plot of Figure 4.1.

Other approaches optimize slightly different criteria: two well-known ex-
amples are Sammon mapping and Kruskal-Wallis mapping [34] – both are
available in the MASS package as functions sammon and isoMDS, respectively.
Sammon mapping decreases the influence of large distances, which can domi-
nate the map completely. It minimizes the following stress criterion:

S =
1∑

i

∑
j<i dij

∑
i

∑
j<i

dij − eij
dij

3 Double centering is performed by mean-centering in both row and column dimen-
sions, and subsequently adding the grand mean of the original matrix to center
the data around the origin.

4.6 Related Methods 59

Since no analytical solution is available, gradient descent optimization is em-
ployed to find the optimum. The starting point usually is the classical solution,
but one can also provide another configuration – indeed, one approach to try
to avoid local optima is to repeat the mapping starting from many different
starting sets, or to use different sets of search parameters. The wine data are
a case in point: whereas the default initial step size of .2 generates exactly the
same solution as the PCA, tinkering with this parameter leads to a substantial
improvement:

> wines.sammon <- sammon(wines.dist)

Initial stress : 0.14753

stress after 0 iters: 0.14753

> wines.sammon <- sammon(wines.dist, magic = .00003)

Initial stress : 0.14753

stress after 10 iters: 0.14347, magic = 0.002

stress after 19 iters: 0.11250

> plot(wines.sammon$points, main = "Sammon mapping",

+ col = wine.classes, pch = wine.classes,

+ xlab = "Coord 1", ylab = "Coord 2")

Note that the function sammon returns a list rather than a coordinate ma-
trix: the coordinates in low-dimensional space can be accessed in list element
points.

The non-metric scaling implemented in isoMDS uses a two-step optimiza-
tion that alternatively finds a good configuration in low-dimensional space,
and an appropriate non-monotone transformation. In effect, one finds a set of
points that leads to the same order of the distances in the low-dimensional
approximation and in the real data, rather than resulting in approximately
the same distances.

> wines.isoMDS <- isoMDS(wines.dist)

initial value 25.980817

iter 5 value 19.977649

iter 10 value 17.798597

iter 15 value 17.327216

iter 20 value 17.128918

iter 20 value 17.116929

iter 20 value 17.111706

final value 17.111706

converged

> plot(wines.isoMDS$points, main = "Non-metric MDS",

+ col = wine.classes, pch = wine.classes,

+ xlab = "Coord 1", ylab = "Coord 2")

60 4 Principal Component Analysis

The results of Sammon mapping and IsoMDS are shown in the middle and
right plots of Figure 4.8, respectively. Here we again see the familiar horse-shoe
shape, although it is somewhat different in nature in the non-metric version
in the plot on the right. There, the Grignolino class is much more spread out
than the other two.

MDS is popular in the social sciences, but much less so in the life sciences:
maybe there its disadvantages are more important. The first drawback is that
MDS requires a full distance matrix. For data sets with many thousands of
samples this can be prohibitive in terms of computer memory. The other side
of the coin is that the (nowadays more common) data sets with many more
samples than variables do not present any problem; they can be analysed by
MDS easily. The second and probably more important disadvantage is that
MDS does not provide an explicit mapping operator. That means that new
objects cannot be projected into the lower-dimensional point configuration as
we did before with PCA; either one redoes the MDS mapping, or one positions
the new samples as good as possible within the space of the mapped ones and
takes several iterative steps to obtain a new, complete, set of low-dimensional
coordinates. Finally, the fact that the techniques rely on optimization, rather
than an analytical solution, is a disadvantage: not only does it take more time,
especially with larger data sets, but also the optimization settings may need
to be tweaked for optimal performance.

4.6.2 Independent Component Analysis and Projection Pursuit

Variation in many cases equals information, one of the reasons behind the
widespread application of PCA. Or, to put it the other way around, a vari-
able that has a constant value does not provide much information. However,
there are many examples where the relevant information is hidden in small
differences, and is easily overwhelmed by other sources of variation that are of
no interest. The technique of Projection Pursuit [35,36,37] is a generalization
of PCA where a number of different criteria can be optimized. One can for
instance choose a viewpoint that maximises some grouping in the data. In gen-
eral, however, there is no analytical solution for any of these criteria, except
for the variance criterium used in PCA. A special case of Projection Pursuit
is Independent Component Analysis (ICA) [38], where the view is taken to
maximise deviation from multivariate normality, given by the negentropy J .
This is the difference of the entropy of a normally distributed random variable
H(xG) and the entropy of the variable under consideration H(x)

J(x) = H(xG)−H(x)

where the entropy itself is given by

H(x) = −
∫
f(x) log f(x)dx

4.6 Related Methods 61

var 1

−2 −1 0 1 2

●
●

●

●

●

●
●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

● ●
● ●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

−
2

−
1

0
1

2

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

● ●
● ●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

● ●
●

●

●

●

−
2

−
1

0
1

2

●
●

●

●

●

● ●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●● ●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●●

● ●
●

●

●

●

●

var 2
●

●

●

●

●

●● ●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●●
●

●

●

●

●

−2 −1 0 1 2

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

−4 −2 0 2 4

−
4

−
2

0
2

4

var 3

ICA components

Fig. 4.9. Fast ICA applied to the wine data, based on a three-component model.

Since the entropy of a normally distributed variable is maximal, the negen-
tropy is always positive [39]. Unfortunately, this quantity is hard to calcu-
late, and in practice approximations, such as kurtosis and the fourth moment
are used. Package fastICA provides the fastICA procedure of Hyvarinen and
Oja [40], employing other approximations that are more robust and faster.
The algorithm can be executed either fully in R, or using C code for greater
speed.

The fastICA algorithm first mean-centers the data, and then performs a
“whitening”, viz. a principal component analysis. These principal components
are then rotated in order to optimize the non-gaussianity criterion. Applied
to the wine data, this gives the result shown in Figure 4.9:

> wines.ica <- fastICA(wines.sc, 3)

> pairs(wines.ica$S, main = "ICA components",

+ col = wine.classes, pch = wine.classes)

It is interesting to note that the first ICA component in this case is not
related to the difference in variety. Instead, it is the plot of IC 2 versus IC
3 that shows most discrimination, and is most similar to the PCA score plot
shown in Figure 4.1. One characteristic that should be noted is that ICA

62 4 Principal Component Analysis

var 1

−4 −2 0 2

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

● ●

●● ●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

● ●

●

●
●

●
●

●●

●

●

●

−
2

−
1

0
1

2

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

● ●

● ●●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●
−

4
−

2
0

2

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●
●
●

●

●●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

● var 2
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

−2 −1 0 1 2

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

● ●●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●● ●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●●

●

●

●

−4 −3 −2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

var 3

ICA components (3 out of 5)

Fig. 4.10. Fast ICA applied to the wine data using five components; only the first
three components are shown.

components can change, depending on their number: where in PCA the first
component remains the same, no matter how many other components are
included, in ICA this is not the case. The pairs plot will therefore be different
when taking, e.g., a five-component ICA model:

> wines.ica5 <- fastICA(wines.sc, 5)

> pairs(wines.ica5$S[,1:3],

+ main = "ICA components (3 out of 5)",

+ col = wine.classes, pch = wine.classes)

In Figure 4.10 we can see that the scores are quite different from the ones in
Figure 4.9: now, only component two shows discrimination between the three
varieties. In fact, for this model the familiar horse shoe appears in the plot of
IC 2 versus IC 5! One should be very cautious in the inspection of ICA score
plots. Of course, class separation is not the only criterion we can apply – just
because we happen to know in this case what the grouping is does not mean
that projections not showing this grouping should be considered “not useful”.

4.6 Related Methods 63

4.6.3 Factor Analysis

Another procedure closely related to PCA is Factor Analysis (FA), developed
some eighty years ago by the psychologist Charles Spearman, who hypothe-
sized that a large number of abilities (mathematical, artistic, verbal) could be
summarized in one underlying factor “intelligence” [41]. Although this view
is no longer mainstream, the idea caught on, and FA can be summarized as
trying to describe a set of observed variables with a small number of abstract
latent factors.

The technique is very similar to PCA, but there is a fundamental differ-
ence. PCA aims at finding a series of rotations in such a way that the first
axis corresponds with the direction of most variance, and each subsequent
orthogonal axis explains the most of the remaining variance. In other words,
PCA does not fit an explicit model. FA, on the other hand, does. For a mean-
centered matrix X, the FA model is

X = LF +U

where L is the matrix of loadings on the common factors F , and U is a ma-
trix of specific factors, also called uniquenesses. The common factors again
are linear combinations of the original variables, and the scores present the
positions of the samples in the new coordinate system. The result is a set
of latent factors that capture as much variation, shared between variables,
as possible. Variation that is unique to one specific variable will end up in
the specific factors. Especially in fields like psychology it is customary to try
and interpret the common factors like in the original approach by Spearman.
Summarizing, it can be stated that PCA tries to represent as much as pos-
sible of the diagonal elements of the covariance matrix, whereas FA aims at
reproducing the off-diagonal elements [24].

There is considerable confusion between PCA and FA, and many examples
can be found where PCA models are actually called factor analysis models:
one reason is that the simplest way (in a first approximation) to estimate the
FA model of Equation 4.6.3 is to perform a PCA – this method of estimation is
called Principal Factor Analysis. However, other methods exist, e.g., based on
Maximum Likelihood, that provide more accurate models. The second source
of confusion is that for spectroscopic data in particular, scientists are often
trying to interpret the PCs of PCA. In that sense, they are more interested
in the FA model than in the model-free transformation given by PCA.

Factor analysis is available in R as the function factanal. Application to
the wine data is straightforward:

> wines.fa <- factanal(wines.sc, 3, scores = "regression")

> wines.fa

Call:

factanal(x = wines.sc, factors = 3)

64 4 Principal Component Analysis

Uniquenesses:

alcohol malic acid ash ash alkalinity

0.393 0.729 0.524 0.068

magnesium tot. phenols flavonoids non-flav. phenols

0.843 0.198 0.070 0.660

proanth col. int. col. hue OD ratio

0.559 0.243 0.503 0.248

proline

0.388

Loadings:

Factor1 Factor2 Factor3

alcohol 0.776

malic acid -0.467 0.211

ash 0.287 0.626

ash alkalinity -0.297 -0.313 0.864

magnesium 0.119 0.367

tot. phenols 0.825 0.346

flavonoids 0.928 0.262

non-flav. phenols -0.533 -0.140 0.192

proanth 0.621 0.226

col. int. -0.412 0.751 0.153

col. hue 0.653 -0.206 -0.170

OD ratio 0.865

proline 0.355 0.684 -0.134

Factor1 Factor2 Factor3

SS loadings 4.005 2.261 1.310

Proportion Var 0.308 0.174 0.101

Cumulative Var 0.308 0.482 0.583

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 159.14 on 42 degrees of freedom.

The p-value is 1.57e-15

The default print method for a factor analysis object shows the uniquenesses,
i.e., those parts that cannot be explained by linear combinations of other
variables. The uniquenesses of the variables ash alkalinity and flavonoids,
e.g., are very low, indicating that they may be explained well by the other
variables. The loadings are printed in such a way as to draw attention to
patterns: only three digits are shown after the decimal point, and smaller
loadings are not printed.

Scores can be calculated in several different ways, indicated by the scores

argument of the factanal function. Differences between the methods are usu-
ally not very large; consult the manual pages of factanal to get more infor-

4.6 Related Methods 65

Factor1

−2 −1 0 1 2

●

●
●

●

●

●●
●

●
●

●

●

● ●

●●
●

●

●

●

●

●

●
●● ●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●●●
●●

●

−
2

−
1

0
1

2

●

●
●

●

●

● ●
●

●
●

●

●

● ●

● ●
●

●

●

●

●

●

●
● ●●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●● ●

●

●● ●
●●

●

−
2

−
1

0
1

2

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●●
●

●

● ●

●
●

● ●●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●●

●
●

●

Factor2
●

●

●

●

●

●
●

● ● ●

●
●

●

●

● ●
●

●

●●

●
●

● ● ●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

● ●

●
●

●

−2 −1 0 1 2

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
● ●

●

●●

● ●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
●●

●

●●

● ●

●

●

●

●

●

●

●
● ●

−2 0 2 4

−
2

0
2

4

Factor3

FA components

Fig. 4.11. Scores for the FA model of the wine data using three components.

mation about the exact implementation. The result for the regression scores,
shown in Figure 4.11, is only slightly different from what we have seen earlier
with PCA; the familiar horse shoe is again visible in the first two components.

In Factor Analysis it is usual to rotate the components in such a way that
the interpretability is enhanced. One of the ways to do this is to require that as
few loadings as possible have large values, something that can be achieved by
a so-called varimax rotation. This rotation is applied by default in factanal,
and is the reason why the horseshoe is rotated compared to the PCA score
plot in Figure 4.1.

4.6.4 Discussion

Although there are some publications where ICA and FA are applied to data
sets in the life sciences, their number is limited, and certainly much lower
than the number of applications of PCA. There are several of reasons for this.
Both ICA and FA do not have analytical solutions and require optimization
to achieve their objectives, which takes more computing time, and can lead
to different results, depending on the optimization settings. Moreover, several
algorithms are available, each having slightly different definitions, which makes

66 4 Principal Component Analysis

the results harder to compare and to interpret. PCA, on the other hand,
always gives the same result (apart from the sign). In particular, PCA scores
and loadings do not change when the number of component is altered. Since
choosing the “right” number of components can be quite difficult, this is a
real advantage over applying ICA. In a typical application, there are so many
choices to make with respect to preprocessing, scaling, outlier detection and
others, that there is a healthy tendency to choose methods that have as few
tweaking possibilities as possible – if not, one can spend forever investigating
the effects of small differences in analysis parameters. Nevertheless, there are
cases where ICA, FA, or other dimension reduction methods can have definite
advantages over PCA, and it can pay to check that.

5

Self-Organizing Maps

In PCA, the most outlying data points determine the direction of the PCs
– these are the ones contributing most to the variance. This often results in
score plots showing a large group of points close to the centre. As a result,
any local structure is hard to recognize, even when zooming in: such points
are not important in the determination of the PCs. One approach is to select
the rows of the data matrix corresponding to these points, and to perform a
separate PCA on them. Apart from the obvious difficulties in deciding which
points to leave out and which to include, this leads to a cumbersome and hard
to interpret two-step approach. It would be better if a projection can be found
that does show structure, even within very similar groups of points.

Self-organizing maps (SOMs, [42]), sometimes also referred to as Kohonen
maps after their inventor, Teuvo Kohonen, offer such a view. Rather than
providing a continuous projection into R2, SOMs map all data to a set of
discrete locations, organized in a regular grid. Associated with every location
is a prototypical object, called a codebook vector. This usually does not cor-
respond to any particular object, but rather represents part of the space of
the data. The complete set of codebook vectors therefore can be viewed as
a concise summary of the original data. Individual objects from the data set
can be mapped to the set of positions, by assigning them to the unit with the
most similar codebook vectors.

The effect is shown in Figure 5.1. A two-dimensional point cloud is simu-
lated where most points are very close to the origin.1 The codebook vectors
of a 5-by-5 rectangular SOM are shown in black; neighbouring units in the
horizontal and vertical directions are connected by lines. Clearly, the density
of the codebook vectors is greatest in areas where the density of points is
greatest. When the codebook vectors are shown at their SOM positions the
plot on the right in Figure 5.1 emerges, where individual objects are shown at

1 The point cloud is a superposition of two bivariate normal distributions, centered
at the origin and with diagonal covariance matrices. The first has unit variance
and contains 100 points; the other, containing 500 points, has variances of .025.

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_5,

67

68 5 Self-Organizing Maps

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●
●

●●●

●
●●●●●

●●
●

●

●●●
● ●
●●
●

●

●
●

●●
● ●
●

●
● ●

●

●
●

●

●●●
●
●●●● ●●

●

●

●
● ●

●

●
●●

●

●● ●

● ●
●●

●

●

●
●●

●
●

●

●●

●
●●

●●
●●

●
●
●

●
●●

●
● ●

●

●●
●

●

●
●● ●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●
●

●
●

●
●
●●

●
●
●●

●
●●

●

●

●

●

●
●

●

●

●
●●

●
●●

●

●
●●

●

●
●●●
●●

●
●●●

●
●

●

●

●● ●
●

●
●

● ●
●

●●
●● ●●

●
●

●

●

●
●

●
●

●●
●

●
●

●●●

●

●

●
●● ●

●● ●

●

●
●

●

●
●

●

●●
●●

●
●
●

●

●●●
●

●●●
●●●

●●●
●

●
●
●

●

●●
●●
●

● ●

●
●● ●●

●
●● ●

●●
●●

●●
● ●●●●

●
●
●

● ●
● ●●

●
●

●

●

●

●
●

●●
●●

●

●

●●●●
●●●

●

●
●

●●

●
●
●

●●● ●

●

●
●●●

●
●●
●

●

●●
●

●
●

●●●

●

●

●●

●

● ●
●●●

●● ●●
●
●
●
●

●●
●
●

●●
●

●●

●

●
●●●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●
●

●
●●

●

●●●

●
●●

●
●

●

●
●
●●

●
●
●

●●
●

●●

●

●

●

●
●

●●
●●

●
●

●

●

●
●
●
●

●

●

●●

●

●
●
●

●

●

●
●

●
●

●●

●

●
●●

●
●●●● ●●

●

●

●
●●●

●
●

●
●
●●

●
●

●

●
●

●
●
●●
●

●●●●●
●

●
●●

●

●● ●●

●
●●

●● ●

● ●
●

●
●

●

●
●
●

●
●

● ●
●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●●

●

●

●

1

5

21

25

●

●

●

●

●

●

●
● ●

●

●
●

●
●●

●

●

●

●

● ●

●

●

●

●●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

● ●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

● ●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

● ●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

1 5

21 25

Fig. 5.1. Application of a 5-by-5 rectangular SOM to 600 bivariate normal data
points. Left plot: location of codebook vectors in the original space. Right plot:
location of data points in the SOM.

a random position close to “their” codebook vector. The codebook vectors in
the middle of the map are the ones that cover the center of the data density,
and one can see that these contain most data points. That is, relations within
this densely populated area can be investigated in more detail.

5.1 Training SOMs

A SOM is trained by repeatedly presenting the individual samples to the map.
At each iteration, the current sample is compared to the codebook vectors.
The most similar codebook vector (the “winning unit”) is then rotated slightly
in the direction of the mapped object. This is achieved by replacing it with a
weighted average of the old values of the codebook vector, cvi, and the values
of the new object obj:

cvi+1 = (1− α) cvi + α obj (5.1)

The weight, also called the learning rate α, is a small value, typically in the
order of 0.05, and decreases during training so that the final adjustments are
very small.

As we shall see in Section 6.2.1, the algorithm is very similar in spirit to
the one used in k-means clustering, where cluster centers and memberships
are alternatingly estimated in an iterative fashion. The crucial difference is
that not only the winning unit is updated, but also the other units in the
“neighbourhood” of the winning unit. Initially, the neighbourhood is fairly
large, but during training it decreases so that finally only the winning unit is

5.1 Training SOMs 69

alcohol
malic acid
ash
ash alkalinity
magnesium

tot. phenols
flavonoids
non−flav. phenols
proanth
col. int.

col. hue
OD ratio
proline

Fig. 5.2. Codebook vectors for a SOM mapping of the autoscaled wine data. The
thirteen variables are shown counterclockwise, beginning in the first quadrant.

updated. The effect is that neighbouring units in general are more similar than
units far away. Or, to put it differently, moving through the map by jumping
from one unit to its neighbour would see gradual and more or less smooth
transitions in the values of the codebook vectors. This is clearly visible in the
mapping of the autoscaled wine data to a 5-by-4 SOM, using the kohonen
package:

> wines.som <- som(wines.sc, somgrid(5, 4, "hexagonal"))

> plot(wines.som, type = "codes")

The result is shown in Figure 5.2. Units in this example are arranged in a
hexagonal fashion and are numbered row-wise from left to right, starting from
the bottom left. The first unit for instance, is characterized by relatively large
values of alcohol, flavonoids and proanth; the second unit, to the right of
the first, has lower values for these variables, but still is quite similar to unit
number one.

The codebook vectors are usually initialized by a random set of objects
from the data, but also random values in the range of the data can be em-

70 5 Self-Organizing Maps

ployed. Sometimes a grid is used, based on the plane formed by the first two
PCs. In practice, the initialization method will hardly ever matter; however,
starting from other random initial values will lead to different maps. The
conclusions drawn from the different maps, however, tend to be very similar.

The training algorithm for SOMs can be tweaked in many different ways.
One can, e.g., update units using smaller changes for units that are further
away from the winning unit, rather than using a constant learning rate within
the neighbourhood. One can experiment with different rates of decreasing val-
ues for learning rate and neighbourhood size. One can use different distance
measures. Regarding topology, hexagonal or rectangular ordering of the units
is usually applied; in the first case, each unit has six equivalent neighbours,
unless it is at the border of the map, in the second case, depending on the
implementation, there are four or eight equivalent neighbours. The most im-
portant parameter, however, is the size of the map. Larger maps allow for
more detail, but may contain more empty units as well. In addition, they take
more time to be trained. Smaller maps are more easy to interpret; groups
of units with similar characteristics are more easily identified. However, they
may lack the flexibility to show specific groupings or structure in the data.
Some experimentation usually is needed. As a rule of thumb, one can consider
the object-to-unit ratio, which can lead to useful starting points. In image
segmentation applications, for instance, where hundreds of thousands of (mul-
tivariate) pixels need to be mapped, one can choose a map size corresponding
to an average of several hundreds of pixels per unit; in other applications
where the number of samples is much lower, a useful object-to-unit ratio may
be five. One more consideration may be the presence of class structure: for
every class, several units should be allocated. This allows intra-class structure
to be taken into account, and will lead to a better mapping.

Finally, there is the option to close the map, i.e., to connect the left and
right sides of the map, as well as the bottom and top sides. This leads to
a toroidal map, resembling the surface of a closed tube. In such a map, all
differences between units have been eliminated: there are no more edge units,
and they all have the same number of neighbours. Whereas this may seem a
desirable property, there are a number of disadvantages. First, it will almost
certainly be depicted as a regular map with edges, and when looking at the
map one has to remember that the edges in reality do not exist. In such a
case, similar objects may be found in seemingly different parts of the map
that are, in fact, close together. Another pressing argument against toroidal
maps is that in many cases the edges serve a useful purpose: they provide
refuge for objects that are quite different from the others. Indeed, the corners
of non-toroidal maps often contain the most distinct classes.

5.2 Visualization 71

alcohol

−1

−0.5

0

0.5

1

non−flav. phenols

−1

−0.5

0

0.5

1

col. hue

−1

−0.5

0

0.5

1

1.5

proline

−1

−0.5

0

0.5

1

1.5

Fig. 5.3. Separate maps for the contributions of individual variables to the codebook
vectors of the SOM shown in Figure 5.2.

5.2 Visualization

Several different visualization methods are provided in the kohonen package:
one can look at the codebook vectors, the mapping of the samples, and one
can also use SOMs for prediction. Here, only a few examples are shown. For
more information, consult the manual pages of the plot.kohonen function,
or the software description [43].

For multivariate data, the locations of the codebook vectors can not be
visualized as was done for the two-dimensional data in Figure 5.1. In the
kohonen package, the default is to show segment plots, such as in Figure 5.2
if the number of variables is smaller than 15, and a line plot otherwise. One
can also zoom in and concentrate on the values of just one of the variables:

> par(mfrow = c(2,2))

> for (i in c(1, 8, 11, 13))

+ plot(wines.som, "property", property = wines.som$codes[,i],

+ main = colnames(wines)[i])

Clearly, in these plots, shown in Figure 5.3, there are regions in the map
where specific variables have high values, and other regions where they are
low. Areas of high values and low values are much more easily recognized than
in Figure 5.2.

Perhaps the most important visualization is to show which objects map
in which units. In the kohonen package, this is achieved by supplying the
the type = "mapping" argument to the plotting function. It allows for using
different plotting characters and colors (see Figure 5.4):

72 5 Self-Organizing Maps

Mapping plot

●

●

●

●

● ●●

●
●

●●

●

●
●

●

●●●

● ●●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

Fig. 5.4. Mapping of the 177 wine samples to the SOM from Figure 5.2. Circles
correspond to Barbera, triangles to Barolo, and plusses to Grignolino wines.

> plot(wines.som, type = "mapping",

+ col = as.integer(vintages), pch = as.integer(vintages))

Again, one can see that the wines are well separated. Some class overlap
remains with the Grignolinos in units 6, 8, 10 and 14. These plots can be used
to make predictions for new data points: when the majority of the objects in
a unit are, e.g., of the Barbera class, one can hypothesise that this is also the
most probably class for future wines that end up in that unit. Such predictions
can play a role in determining authenticity, an economically very important
application.

Since SOMs are often used to detect grouping in the data, it makes sense
to look at the codebook vectors more closely, and investigate if there are
obvious class boundaries in the map – areas where the differences between
neighbouring units are relatively large. Using a colour code based on the av-
erage distance to neighbours gives a quick and simple idea of where the class
boundaries can be found. This idea is often referred to as the “U-matrix” [44],
and can be employed by issuing:

> plot(wines.som, type = "dist.neighb")

The resulting plot is shown in Figure 5.5. The map is too small to really be
able to see class boundaries, but one can see that the centers of the classes
(the bottom left corner for Barbera, the bottom right corner for Barolo, and
the top row for the Grignolino variety) correspond to areas of relatively small
distances, i.e., high homogeneity.

Training progress, and an indication of the quality of the mapping, can be
obtained using the following plotting commands:

> par(mfrow = c(1,2))

> plot(wines.som, "changes")

> plot(wines.som, "quality")

5.3 Application 73

Neighbour distance plot

5

10

15

20

Fig. 5.5. Summed distances to direct neighbours: the U-matrix plot for the mapping
of the wine data.

This leads to the plots in Figure 5.6. The left plot shows the average distance
(expressed per variable) to the winning unit during the training iterations, and
the right plot shows the average distance of the samples and their correspond-
ing codebook vectors after training. Note that the latter plot concentrates on
distances within the unit whereas the U-matrix plot in Figure 5.5 visualizes
average distances between neighbouring units.

Finally, an indication of the quality of the map is given by the mean
distances of objects to their units:

> summary(wines.som)

som map of size 5x4 with a hexagonal topology.

Training data included; dimension is 177 by 13.

Mean distance to the closest unit in the map: 3.580196

The summary function indicates that an object, on average, has a distance of
3.6 units to its closest codebook vector. The plot on the left in Figure 5.6
shows that the average distance drops during training: codebook vectors be-
come more similar to the units that are mapped to them. The plot on the
right, finally, shows that the distances within units can be quite different. In-
terestingly, some of the units with the largest spread only contain Grignolinos
(units 16 and 20), so the variation can not be attributed to class overlap alone.
For other visualization possibilities, consult the manual page for the function
plot.kohonen.

5.3 Application

The main attraction of SOMs lies in the applicability to large data sets; even
if the data are too large to be loaded in memory in one go, one can train
the map sequentially on (random) subsets of the data. It is also possible to
update the map when new data points become available. In this way, SOMs

74 5 Self-Organizing Maps

0 20 40 60 80 100

0.
04

0
0.

04
5

0.
05

0
0.

05
5

Training progress

Iteration

M
ea

n
di

st
an

ce
 to

 c
lo

se
st

 u
ni

t Distance plot

3

4

5

6

Fig. 5.6. Quality parameters for SOMs: the plot on the left shows the decrease in
distance between objects and their closest codebook vectors during training. The
plot on the right shows the mean distances between objects and codebook vectors
per unit.

provide a intuitive and simple visualization of large data sets in a way that is
complementary to PCA. An especially interesting feature is that these maps
can show grouping of the data without explicitly performing a clustering. In
large maps, sudden transitions between units, as visualized by e.g. a U-matrix
plot, enable one to view the major structure at a glance. In smaller maps,
this often does not show clear differences between groups – see Figure 5.5
for an example. One way to find groups is to perform a clustering of the
individual codebook vectors. The advantage of clustering the codebook vectors
rather than the original data is that the number of units is usually orders of
magnitude smaller than the number of objects.

As a practical example, consider the mapping of the 654 samples from
the prostate data using the complete, 10,523-dimensional mass spectra in a
7-by-5 map. This would on average lead to almost twenty samples per unit
and, given the fact that there are three classes, leave enough flexibility to
show within-class structure as well. The plot in Figure 5.7 is produced with
the following code:

> X <- t(Prostate2000Raw$intensity)

> types <- Prostate2000Raw$type

> prostate.som <- som(X, somgrid(7, 5, "hexagonal"))

> plot(prostate.som, "mapping", col = as.integer(types),

+ pch = as.integer(types),

+ main = "Prostate data")

> legend("bottom", legend = levels(types),

+ col = 1:3, pch = 1:3, ncol = 3)

5.3 Application 75

Prostate data

●

●

●●
●

●

●●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

● ●
●

●

●

●
●
●

●

●●●
●

●
●

●
●

● ●

●

●

● ●●
●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●●
●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

● bph control pca

Fig. 5.7. Mapping of the prostate data. The cancer samples (pca) lie in the bottom
left part of the map. Although there is considerable class overlap, one can clearly
see that the control samples are at the opposite end of the map, and the benign
enlargments are in between.

Clearly, there is considerable class overlap. However, some separation can be
observed: the cancer and control samples are on opposite ends of the map, with
the benign enlargments occupying middle ground. To investigate differences
between the individual units, one can plot the codebook vectors of some of
the units containing only objects from one class:

> cols <- c(2,1,3)

> units <- c(7,21,35)

> par(mfrow = c(3,1))

> for (i in 1:3)

+ plot(prostate.som$codes[units[i],], type = "l",

+ col = cols[i], main = paste("Unit", units[i]),

+ ylab = "codebook vector")

These codebook vectors, shown in Figure 5.8, display appreciable differences.
The cancer samples, for instance, show peaks at m/z values of 6000 and 6200
that are absent in the controls and much lower in the bph samples. The large
peaks at 3300, 4000 and 4300 m/z units on the other hand, are only present
in the non-cancer samples.

76 5 Self-Organizing Maps

5000 10000 15000 20000

0
20

40
60

Unit 7

m/z

co
de

bo
ok

 v
ec

to
r

5000 10000 15000 20000

0
20

40
60

Unit 21

m/z

co
de

bo
ok

 v
ec

to
r

5000 10000 15000 20000

0
20

40

Unit 35

m/z

co
de

bo
ok

 v
ec

to
r

Fig. 5.8. Codebook vectors for three units from the far-right side of the map in
Figure 5.7, containing only samples from one class: unit seven contains controls,
unit 21 bph samples and unit 35 pca samples.

5.4 R Packages for SOMs

Apart from the kohonen package used in this chapter, other R packages are
available implementing SOMs, most notably Ripley’s class package [45], on
which the kohonen package is based. Apart from the SOM training algorithm
described earlier, the class package also implements another training strategy
for SOMs, known as the batch algorithm. Rather than updating the map after
every single object has been mapped, the update is performed after the com-
plete data matrix has been presented; all codebook vectors are replaced by the
mean of all objects that are mapped to them. Again, a neighbourhood is taken
into account that gets smaller during training. The training loop contains only
five (elegant) lines of R code. The advantage of the batch algorithm is that it

5.5 Discussion 77

dispenses with one of the parameters of the SOM: the learning rate α is no
longer needed. The main disadvantage is that it is less stable and more likely
to end up in a local optimum. Another package, often used in clustering of
microarray data, is the som package. This package also implements the batch
algorithm and provides extra flexibility in training parameters.

One advantage of SOMs is that other measures than the usual Euclidean
distance can be used. An example can be found in the package wccsom [46],
which applies a specially devised distance measure to compare X-ray powder
diffractograms. In these patterns, the position rather than the intensity of
features is the primary information, and therefore package wccsom (which
is based on the kohonen package) utilises a cross-correlation-based distance,
called wcc [20]. In cases where binary strings are compared, a measure like the
Tanimoto distance can be used, which is just the fraction of bits that are not
equal in the two strings. This is the default measure in the distance function
in the fingerprint package, specifically desiged to handle binary descriptors.

5.5 Discussion

Conceptually, the SOM is most related to MDS, seen in Section 4.6.1. Both, in
a way, aim to find a configuration in two-dimensional space that represents the
distances between the samples in the data. Whereas (metric forms of) MDS
focus on the preservation of the actual distances, SOMs provide a topological
mapping, preserving the order of the distances, at least for the smallest ones.
Because of this, an MDS mapping is often dominated by the larger distances,
even when using methods like Sammon mapping, and the configuration of the
finer structure in the data may not be well preserved. In SOMs, on the other
hand, a big distance between the positions of two samples in the map does
not mean that they are very dissimilar: if the map is too large, and not well
trained, two regions in the map that are far apart may very well have quite
similar codebook vectors. What one can say is that objects mapped to the
same or to neighbouring units are likely to be similar.

Both MDS and SOMs operate using distances rather than the original data
to determine the position in the low-dimensional representation of the data.
This can be a considerable advantage when working with high-dimensional
data: even when the number of variables is in the tens or hundreds of thou-
sands, the distances between objects can be calculated fairly quickly. Obvi-
ously, MDS, in particular, runs into trouble when the number of samples gets
large – SOMs can handle that more easily because of the iterative training
procedure employed. It is not even necessary to have all the data in memory
simultaneously.

Using SOMs is doubtful when the number of samples is low, although
applications have been published with fewer than fifty objects. If the number
of units in the map is much smaller than the number of objects in such cases,
one loses the advantage of the spatial smoothness in the map, and one could

78 5 Self-Organizing Maps

just as well perform a clustering; if the number of units approaches the number
of objects, it is more likely than not that the majority of the objects will occupy
a unit by itself, which is not very informative either.

One should realise that in the case of correlated variables the distances
that are calculated may be a bit biased: a group of highly correlated variables
will have a major influence on the distance between objects. In areas like, e.g.,
quantitative structure-activity relationships (QSAR), it is usual to calculate as
many chemical structure descriptors as possible in order to define the two- or
three-dimensional structure of a set of compounds. Many of these descriptors
are variations on a theme: some groups measure properties related to dipole,
polarizability, surface area, etcetera. The influence of one single descriptor
capturing information that is unrelated to the hundreds of other descriptors
can easily be lost when calculating distances. For SOMs, one simple solution
is to decorrelate the (scaled) data, e.g., using PCA, and to calculate distances
using the scores.

6

Clustering

As we saw earlier in the visualizations provided by methods like PCA and
SOM, it is often interesting to look for structure, or groupings, in the data.
However, these methods do not explicitly define clusters; that is left to the
pattern recognition capabilities of the scientist studying the plot. In many
cases, however, it is useful to rely on somewhat more formal methods, and
this is where clustering methods come in. They are usually based on object-
wise similarities or distances, and since the late nineties have become hugely
popular in the area of high-throughput measurement techniques in biology,
such as DNA microarrays. There, the activities of tens of thousands of genes
are measured, often as a function of a specific treatment, or as a time series.
Of course, the question is which genes show the same activity pattern: if
an unknown gene has much the same behaviour as another gene of which
it is known that it is involved in a process like cell differentiation, one can
hypothesise that the unknown gene is somehow related to this process as well.

With only a slight exaggeration one could say that there are about as
many clustering algorithms as there are scientists and by no means do these
methods always give the same results. Modern software packages have made
many of these clustering methods available to a wide audience; unfortunately,
this provides the temptation to try all methods in order to get the result one
is looking for, rather than the result that is suggested by the data. There are
no formal rules to help you decide which clustering method to use.

One of the reasons for this is that most clustering methods are heuristic in
nature, rather than that they stem from solid statistical foundations. More-
over, assessing the quality of the clustering, or validation, is a problem: since
the “real” clustering is by definition unknown (otherwise it would be more
appropriate to use a supervised approach such as the classification methods
described in Chapter 7) we can not say that one clustering is better than the
other. Also cluster characteristics (sphericity, density, ...) can not be used for
this, since different clustering methods “optimize” different criteria. It is often
difficult for users to get a good idea of the behaviour of the separate methods,
since our visualization abilities break down in more than three dimensions,

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_6,

79

80 6 Clustering

●

●

●

●
Single linkage

Complete linkage

Average linkage

● Cluster 1
Cluster 2

a
b

c
d

A
B

C
D

Fig. 6.1. Distances between clusters: single linkage, average linkage and complete
linkage consider the closest points, the averages, and the farthest points, respectively.

and at the same time the assumptions behind the clustering methods are
often unknown.

In this chapter, we concentrate on several popular classes of methods.
Hierarchical methods are represented by single, average and complete linkage,
respectively, while k-means is an example of partitional methods. Both yield
“crisp” clusterings; objects belong to exactly one cluster. More sophisticated
methods lead to a clustering where membership values are assigned to each
object: the object can be assigned to the cluster with the highest membership
value. An example is given by model-based clustering methods.

6.1 Hierarchical Clustering

Quite often, data have a hierarchical structure in the sense that groups con-
sist of mutually exclusive sub-groups. This is often visualized in a tree-like
structure, called a dendrogram. The dendrogram presents an intuitive and
appealing way for visualising the hierarchical structure: the y-axis indicates
the “distance” between different groups, whereas the connections show where
successive splits (or joins) take place.

Hierarchical clustering starts with a square matrix containing distances or
(dis)similarities; in the following we will assume we have the data in the form
of distances. It is almost always performed in a bottom-up fashion. Starting
with all objects in separate clusters, one looks for the two most similar clus-
ters and joins them. Then, the distance matrix is updated. There are several
possibilities to determine the distance between clusters. One option is to take
the shortest distance between clusters. In Figure 6.1 this would correspond to
the distance between objects d and D. This choice leads to the single-linkage
algorithm. It joins two groups if any members of both groups are close to-
gether, a strategy that is sometimes also referred to as friends-of-friends: “any
friend of yours is my friend, too!”.

6.1 Hierarchical Clustering 81

The opposite strategy is complete linkage clustering: there, the distance
between clusters is determined by the objects in the respective clusters that
are furthest apart – in Figure 6.1 objects a and A . In other words: to belong
to the same cluster, the distances to all cluster members must be small1. This
strategy leads to much more compact and equal-sized clusters. Of course,
intermediate strategies are possible, too. Taking the distance between cluster
means leads to average linkage. Ward’s method explicitly takes into account
the cluster size in calculating a weighted average, and in many cases gives
very similar result to average linkage.

Let us see how this works by clustering a random subset of the wine data.
In R hierarchical clustering is available through function hclust, which takes
an object of class dist as its first argument:

> subset <- sample(nrow(wines), 20)

> wines.dist <- dist(wines.sc[subset,])

> wines.hcsingle <- hclust(wines.dist, method = "single")

> plot(wines.hcsingle, labels = vintages[subset])

This leads to the dendrogram at the top in Figure 6.2. When we go down
in distance, starting from the top, two Grignolino samples are split off from
the main branch as singletons before the whole Barbera cluster is identified.
Going down even further, the Grignolino samples are split off and finally we
end up with the group of Barolos. This makes sense: also the PCA scoreplots
show the Barolo (and Barbera) samples to be more homogeneous than the
Grignolinos.

The bottom plot in Figure 6.2 shows the dendrogram from complete link-
age, obtained by:

> wines.hccomplete <- hclust(wines.dist, method = "complete")

> plot(wines.hccomplete, labels = vintages[subset])

The structure is very different: immediately there is a split between Barbera
and Barolo wines, with the main body of the Grignolinos at the Barbera
side. Thus, even with a small and relatively simple data set and two related
clustering methods, very different results can be obtained.

In principle, a dendrogram from a hierarchical clustering method in itself
is not yet a clustering, since it does not give a grouping as such. However,
these can be obtained by “cutting” the diagram at a certain height: all objects
that are connected are supposed to be in one and the same cluster. For this,
function cutree is available, which either takes the height at which to cut, or
the number of clusters to obtain as an argument. In this case, let’s cut at a
height of 3.3:

> wines.cl.single <- cutree(wines.hcsingle, h = 3.3)

> table(wines.cl.single, vintages[subset])

1 We can only be friends if all our friends are friends of both of us.

82 6 Clustering

G
rig

no
lin

o

G
rig

no
lin

o

B
ar

be
ra

B
ar

be
ra

B
ar

be
ra

B
ar

be
ra

B
ar

be
ra

G
rig

no
lin

o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o G
rig

no
lin

o

G
rig

no
lin

o

G
rig

no
lin

o

2
3

4
5

6
Cluster Dendrogram

hclust (*, "single")
wines.dist

H
ei

gh
t

B
ar

be
ra

B
ar

be
ra

B
ar

be
ra

B
ar

be
ra

B
ar

be
ra

G
rig

no
lin

o

G
rig

no
lin

o

G
rig

no
lin

o

G
rig

no
lin

o

G
rig

no
lin

o

G
rig

no
lin

o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

B
ar

ol
o

2
4

6
8

Cluster Dendrogram

hclust (*, "complete")
wines.dist

H
ei

gh
t

Fig. 6.2. Single linkage clustering (top) and complete linkage clustering (bottom)
of 20 samples from the wine data.

wines.cl.single Barbera Barolo Grignolino

1 5 0 0

2 0 0 1

3 0 9 0

4 0 0 1

5 0 0 1

6 0 0 2

7 0 0 1

The clustering is perfect in the sense that there are no mixed clusters; on the
other hand, the Grignolino cluster is split over five different clusters. Clus-
tering the complete wine data with single linkage does not lead to any useful
result: even cutting the dendrogram at 40 clusters does not separate the Barolo
wines from the Grignolinos.

6.1 Hierarchical Clustering 83

Now we turn to the complete data set, and recalculate the clusterings.
Single linkage, cut at a height to obtain three clusters, does not show anything
useful:

> wines.dist <- dist(wines.sc)

> wines.hcsingle <- hclust(wines.dist, method = "single")

> table(vintages, cutree(wines.hcsingle, k = 3))

vintages 1 2 3

Barbera 48 0 0

Barolo 58 0 0

Grignolino 67 3 1

Almost all samples are in cluster 1, and small bits of the data set are chipped
off leading to clusters 2 and 3, each with only very few elements. On the other
hand, the three-cluster solution from complete linkage is already quite good:

> wines.hccomplete <- hclust(wines.dist, method = "complete")

> table(vintages, cutree(wines.hccomplete, k = 3))

vintages 1 2 3

Barbera 3 0 45

Barolo 50 8 0

Grignolino 14 52 5

Cluster 1 corresponds to mainly Barolo wines, cluster two to Grignolinos,
and cluster three to the Barberas. Of course, there still is significant overlap
between the clusters.

Hierarchical clustering methods enjoy great popularity: the intuitive visu-
alization through dendrograms is one of the main reasons. These also provide
the opportunity to see the effects of increasing the number of clusters, without
actually recalculating the cluster structure. Obviously, hierarchical clustering
will work best when the data actually have a hierarchical structure: that is,
when clusters contain subclusters, or when some clusters are more similar than
others. In practice, this is quite often the case.

A further advantage is that the clustering is unique: no random element
is involved in creating the cluster model. For many other clustering methods,
this is not the case. Note that the uniqueness property is present only in
the case that there are no ties in the distances. If there are, one may obtain
several different dendrograms, depending on the order of the data and the
actual implementation of the software. Usually, the first available merge with
the minimal distance is picked. When equal distances are present, one or more
equivalent merges are possible, which may lead to different dendrograms. An
easy way to investigate this is to repeat the clustering many times on distance
matrices from data where the rows have been shuffled.

There are a number of drawbacks to hierarchical clustering, too. For data
sets with many samples (more than ten thousand, say) these methods are less

84 6 Clustering

suitable. To start with, calculating the distance matrix may be very expensive,
or even impossible. More importantly, interpreting the dendrograms quickly
becomes cumbersome, and there is a real danger of over-interpretation. Ex-
amples where hierarchical methods are used with large data sets can be found
in the field of DNA microarrays, where the ground-breaking paper of Eisen et
al. [47] seems to have set a trend.

There are a number of cases where the results of hierarchical clustering can
be misleading. The first is the case where in reality there is no class structure.
Cutting a dendrogram will always give you clusters: unfortunately, there is no
warning light flashing when you investigate a data set with no class structure.
Furthermore, even when there are clusters, they may be too close to separate,
or they may overlap. In these cases it is impossible to conclude anything about
individual cases (although it can still be possible to infer characteristics of the
clusters as a whole). The two keys to get out of this conundrum are formed by
the use of prior information, and by visualization. If you know class structure
is present, and you already have information about part of that structure, the
clustering methods that fail to reproduce that knowledge obviously are not
performing well, and you are more likely to trust the results of the methods
that do find what you already know. Another idea is to visualise the (original)
data, and give every cluster a different colour and plotting symbol. One can
easily see if clusters are overlapping or are nicely separated. Note that the
dendrogram can be visualized in a number of equivalent ways: the ordering of
the groupings from left to right is arbitrary to some extent and may depend
on your software package.

The cluster package in R also provides functions for hierarchical cluster-
ing: agnes implements single, average and complete linkage methods but also
allows more control over the distance calculations using the method = "flex-

ible" argument. In addition, it provides a coefficient measuring the amount
of cluster structure, the “agglomerative coefficient”, ac:

ac =
1

n

∑
i

(1−mi)

where the summation is over all n objects, and mi is the ratio of the dissimilar-
ity of the first cluster an object is merged to and the dissimilarity level of the
final merge (after which only one cluster remains). Compare these numbers
for three hierarchical clusterings of the wine data:

> wines.agness <- agnes(wines.dist, method = "single")

> wines.agnesa <- agnes(wines.dist, method = "average")

> wines.agnesc <- agnes(wines.dist, method = "complete")

> cbind(wines.agness$ac, wines.agnesa$ac, wines.agnesc$ac)

[1,] 0.538022 0.6994485 0.8162538

Complete linkage is doing the best job for these data, according to the ag-
glomerative coefficient.

6.2 Partitional Clustering 85

6.2 Partitional Clustering

A completely different approach is taken by partitional clustering methods.
Instead of starting with individual objects as clusters and progressively merg-
ing similar clusters, partitional methods choose a set of cluster centers in such
a way that the overall distance of all objects to the closest cluster centers
is minimised. Algorithms are iterative and usually start with random cluster
centers, ending when no more changes in the cluster assignments of individual
objects are observed. Again, many different flavours exist, each with its own
characteristics. In general, however, these algorithms are very fast and are
suited for large numbers of objects. The calculation of the complete distance
matrix is unnecessary - only the distances to the cluster centers need to be
calculated, where the number of clusters is much smaller than the number
of objects - and this saves resources. Two examples will be treated here: k-
means and k-medoids. The latter is a more robust version, where outlying
observations do not influence the clustering to a large extent.

6.2.1 K-Means

The k-means algorithm is very simple and basically consists of two steps. It
is initialized by a random choice of cluster centers, e.g. a random selection of
objects in the data set or random values within the range for each variable.
Then the following two steps are iterated:

1. Calculate the distance of an object to all cluster centers and assign the
object to the closest center; do this for all objects.

2. Replace the cluster centers by the means of all objects assigned to them.

Note the similarity to the training of SOMs in Chapter 5, particular to the
batch training algorithm. The main difference is that the SOM imposes a
spatial ordering in the units so that also inter-unit relations are observed.
However, the goals of the two methods are quite different: SOMs aim at pro-
viding a suitable mapping to two dimensions, and the units should not be seen
as individual clusters, whereas k-means explicitly focusses on finding a specific
number of groups. The R function is conveniently called kmeans. Application
to the wine data leads to the following result:

> wines.km <- kmeans(wines.sc, centers = 3)

> wines.km

K-means clustering with 3 clusters of sizes 51, 61, 65

Cluster means:

alcohol malic acid ash ash alkalinity magnesium

1 0.174 0.864 0.187 0.517 -0.065

2 0.833 -0.301 0.366 -0.607 0.569

3 -0.918 -0.395 -0.491 0.164 -0.483

86 6 Clustering

tot. phenols flavonoids non-flav. phenols proanth

1 -0.9711 -1.2062 0.7192 -0.7717

2 0.8877 0.9802 -0.5617 0.5758

3 -0.0711 0.0266 -0.0371 0.0651

col. int. col. hue OD ratio proline

1 0.938 -1.157 -1.287 -0.400

2 0.170 0.475 0.775 1.130

3 -0.896 0.461 0.282 -0.746

Clustering vector:

[1] 2

[28] 2

[55] 2 2 2 2 3 3 1 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3

[82] 3 1 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

[109] 3 3 3 3 3 3 3 3 3 1 3 3 2 3 3 3 3 3 3 3 3 1 1 1 1 1 1

[136] 1

[163] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Within cluster sum of squares by cluster:

[1] 326 382 559

Available components:

[1] "cluster" "centers" "withinss" "size"

The algorithm not only returns the clustering of the individual objects, but
also cluster-specific information such as the sum of squares, the cumulative
distance of all cluster objects to the center of the cluster.

So the question now is: how good is the agreement with the vintages? Let’s
see:

> table(vintages, wines.km$cluster)

vintages 1 2 3

Barbera 0 48 0

Barolo 0 0 58

Grignolino 65 3 3

Only six of the Grignolino samples are classified as Barbera and Barolo wines;
a lot better than the complete-linkage solution.

The k-means algorithm enjoys great popularity through its simplicity, ease
of interpretation, and speed. It does have a few drawbacks, however. We al-
ready mentioned the fact that one should pick the number of clusters in ad-
vance. In general, the correct number (if such a thing exists at all) is never
known, and one will probably try several different clusterings with differ-
ent numbers of clusters. Whereas hierarchical clustering delivers this in one
go - the dendrogram only has to be cut at different positions - for k-means
clustering (and partitional methods in general) one should repeat the whole

6.2 Partitional Clustering 87

clustering procedure. As already said, the results with four or five clusters
may differ dramatically.

Worse, even a repeated clustering with the same number of clusters will
give a different result, sometimes even a very different result. Remember that
we start from a random initialization: an unlucky starting point may get
the algorithm stuck in a local minimum. Repeated application, starting from
different initial guesses, gives some idea of the variability. The kmeans function
returns the within-cluster sums of squares for the separate clusters, which can
be used as a quality criterion:

> wines.km <- kmeans(wines.sc, centers = 3)

> best <- wines.km

> for (i in 1:100) {

> tmp <- kmeans(wines.sc, centers = 3)

> if (sum(tmp$withinss) < sum(best$withinss))

> best <- tmp

> }

One can then pick the one that leads to the smallest overall distance. In this
particular case, the overall best solution is found every time – the wine data
do not present that much of a problem. The kmeans function has a built-in
argument for repeating the clustering and only returning the best solution.
Thus, the loop in the previous example can be replaced by

> wines.km <- kmeans(wines.sc, centers = 3, nstart = 100)

Several minima with comparable overall distance measure may exist, so that
different but equally good clustering solutions can be found by the algorithm.

6.2.2 K-Medoids

In k-means, cluster centers are given by the mean coordinates of the objects
in that cluster. Since averages are very sensitive to outlying observations, the
clustering may be dominated by a few objects, and the interpretation may be
difficult. One way to resolve this is to assess clusterings with more groups than
expected: the outliers may end up in a cluster of their own. A more practical
alternative would be to use a more robust algorithm where the influence of
outliers is diminshed. One example is the k-medoids algorithm [48], available
in R through the function pam – Partitioning Around Medoids – in the cluster
package. Rather than finding cluster centers at optimal positions, k-medoids
aims at finding k representative objects within the data set. Typically, the sum
of the distances is minimized rather than the sum of the squared distances,
decreasing the importance of large distances.

Applied to the wine data, k-medoids gives the following result:

> wines.pam <- pam(wines.dist, k = 3)

> wines.pam

88 6 Clustering

Medoids:

ID

[1,] 35 35

[2,] 106 106

[3,] 148 148

Clustering vector:

[1] 1

[28] 1

[55] 1 1 1 1 2 2 2 2 1 2 1 2 2 2 1 2 1 2 1 1 2 2 2 1 1 2 2

[82] 2 3 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2

[109] 1 1 2 2 2 2 2 2 2 2 2 1 1 2 2 1 2 2 2 2 2 3 3 3 3 3 3

[136] 3

[163] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Objective function:

build swap

2.908525 2.808552

Available components:

[1] "medoids" "id.med" "clustering" "objective"

[5] "isolation" "clusinfo" "silinfo" "diss"

[9] "call"

The result presents the medoids with their row numbers. The objective func-
tion, the sum of the distances of objects to the medoids, is reported in two
stages: the first stage serves to find a good initial set of medoids, whereas the
second stage performs a local search, trying all possible medoid swaps until
no more improvement can be found. In this rather simple example, the av-
erage distance after the second stage has decreased by 0.1, compared to the
distances to the initial set of medoids – not a huge decrease.

The implementation of pam in the cluster package comes with additional
visualization methods. The first is the “silhouette” plot [48]. It shows a quality
measure for individual clusterings: object with a high silhouette width (close
to 1) are very well clustered, while objects with low values lie in between two
or more clusters. Objects with a negative value may be even in the wrong
cluster. The silhouette width si of object i is given by:

si =
bi − ai

max(ai, bi)

where ai is the average distance of object i to all other objects in the same
cluster, and bi is the smallest distance of object i to another cluster. Thus, the
maximal value will be obtained in those cases where the intra-cluster distance
a is much smaller than the inter-cluster distance b.

For the wine data clustering, the silhouette plot shown in Figure 6.3 is
obtained by:

> plot(wines.pam, main = "Silhouette plot")

6.2 Partitional Clustering 89

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot

Average silhouette width : 0.27

n = 177 3 clusters Cj

j : nj | avei∈∈Cj si

1 : 74 | 0.24

2 : 54 | 0.23

3 : 49 | 0.34

Fig. 6.3. Silhouette plot for the k-medoids clustering of the wine data. The three
clusters contain 74, 54 and 49 objects, and have average silhouette widths of 0.24,
0.23 and 0.34, respectively.

An overall measure of clustering quality can be obtained by averaging all si-
houette widths. This is an easy way to decide on the most appropriate number
of clusters:

> best.pam <- pam(wines.dist, k = 2)

> for (i in 3:10) {

+ tmp.pam <- pam(wines.dist, k = i)

+ if (tmp.pam$silinfo$avg.width < best.pam$silinfo$avg.width)

+ best.pam <- tmp.pam

+ }

> best.pam$medoids

[1] 12 56 34 97 91 163 125 148

In this case, eight clusters seem to give the clustering with the least ambiguity.
The agreement with the true class labels is quite good:

90 6 Clustering

> table(vintages, best.pam$clustering)

vintages 1 2 3 4 5 6 7 8

Barbera 0 0 0 0 0 18 0 30

Barolo 21 17 20 0 0 0 0 0

Grignolino 0 1 5 20 15 5 24 1

Clusters 1, 2 and 3 correspond to the Barolo wines, and clusters 6 and 8 to
the Barbera. Again, the Grignolino wines are the most difficult to cluster, and
12 Grignolino samples end up in clusters dominated by other wines.

For large data sets, pam is too slow; in the cluster package, an alternative is
provided in the function clara [48] which considers subsets of size sampsize.
Each subset is partitioned using the same algorithm as in pam. The sets of
medoids that result are used to cluster the complete data set, and the best
set of medoids, i.e. the one for which the sum of the distances is minimal, is
retained.

6.3 Probabilistic Clustering

In probabilistic clustering, sometimes also called fuzzy clustering, objects are
not allocated to one cluster only. Rather, cluster memberships are used to
indicate which of the clusters is more likely. If a “crisp” clustering result is
needed, an object is assigned to the cluster with the highest membership
value.

The most well-established methods are found in the area of mixture mod-
elling, where individual clusters are represented by mixtures of parametric
distributions, and the overall clustering is a weighted sum of the individual
components [49,50]. Usually, multivariate normal distributions are applied. In
that case, assuming G clusters, the likelihood is given by

L(τ, µ,Σ|x) =

n∏
i=1

G∑
k=1

τkφk(xi|µk,Σk) ,

where τk is the fraction of objects in cluster k, µk and Σk correspond to the
cluster means and covariance matrices of cluster k, respectively, and φk is the
density of cluster k. If the cluster labels would be known, one could estimate
the unknown parameters τk, µk and Σk by maximizing the likelihood (for
example). Vice versa, when these parameters are known, it is easy to calculate
the conditional probabilities of belonging to class k:

zik = φk(xi|θk)/
K∑
j=1

φj(xi|θj)

These two steps are the components in the Expectation-Maximization algo-
rithm (EM) [51,52]: estimating the conditional probabilities is indicated with

6.3 Probabilistic Clustering 91

2 4 6 8

−
63

00
−

61
00

−
59

00
−

57
00

number of components

B
IC

VVV

Fig. 6.4. BIC values for clustering the autoscaled wine data with mclust. The label
“VVV” indicates a completely unconstrained model. The optimal model has two
clusters.

the E-step, whereas estimating the parameters (class means and variances,
and mixing proportions) is the M-step. The conditional probabilities zik can
also be seen as indicators of uncertainty: the larger zi,max, the maximal value
of all zik values for object i, the more certain the classification.

One can use the likelihood to determine what number of clusters is optimal.
Of course, the likelihood will increase with the number of clusters, so one
usually takes into account the number of parameters that are estimated in
penalized versions. Two popular measures are Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). The AIC criterion [53]
is defined by

AIC = −2 logL+ 2p (6.1)

where L is the likelihood and p the number of parameters in the model (here
τ , µ, and Σ). The closely related BIC criterion [54] uses a more heavy penal-
ization:

BIC = −2 logL+ p log n (6.2)

The optimal model has a minimal value for AIC and/or BIC2 – because of the
more heavy penalty, BIC is likely to select slightly more parsimonious models
than AIC. Several other criteria exist [49]. None of these is able to correctly
identify the number of clusters in all cases, but in practice, differences are not
very big and both AIC and BIC criteria are often used.

Several packages in R implement this form of clustering. In the mclust
package [55], for example, one can calculate BIC values for different numbers
of clusters easily:

2 Especially for the BIC value, one often sees the negative form so that maximiza-
tion will lead to an optimal model. This is also the definition by [54].

92 6 Clustering

> wines.BIC <- mclustBIC(wines.sc, modelNames = "VVV")

> plot(wines.BIC)

This produces the plot in Figure 6.4. The BIC value, here given in its negative
form, has a maximum at two clusters, which will be the model picked by the
function mclustModel if no specific number of clusters is given. Alternatively,
one can specifiy a specific number of clusters by providing a value for the G

argument:

> wines.mclust2 <- mclustModel(wines.sc, wines.BIC)

> wines.mclust3 <- mclustModel(wines.sc, wines.BIC, G = 3)

One can make scatter plots at specific combinations of variables with the
coordProj function, visualising the clustering in low-dimensional subspaces.
Als the uncertainties, given by 1− zi,max, can be visualized. This provides an
easy way to compare the two- and three-cluster solutions graphically:

> par(mfrow = c(2,2))

> coordProj(wines.sc, dimens = c(7, 13),

+ parameters = wines.mclust2$parameters,

+ z = wines.mclust2$z, what = "classification")

> title("2 clusters: classification")

> coordProj(wines.sc, dimens = c(7, 13),

+ parameters = wines.mclust3$parameters,

+ z = wines.mclust3$z, what = "classification")

> title("3 clusters: classification")

> coordProj(wines.sc, dimens = c(7, 13),

+ parameters = wines.mclust2$parameters,

+ z = wines.mclust2$z, what = "uncertainty")

> title("2 clusters: uncertainty")

> coordProj(wines.sc, dimens = c(7, 13),

+ parameters = wines.mclust3$parameters,

+ z = wines.mclust3$z, what = "uncertainty")

> title("3 clusters: uncertainty")

The result, here for the variables flavonoids and proline, is shown in Fig-
ure 6.5. The top row shows the classifications of the two- and three-cluster
models, respectively. The bottom row shows the corresponding uncertainties.

Just like with k-means and k-medoids, the clustering using the EM algo-
rithm needs to be kick-started with an initial guess. This may be a random
initialization, but the EM algorithm has a reputation for being slow to con-
verge, and an unlucky guess may lead into a local optimum. In mclust, the
initialization is done by hierarchical clustering3. This has the advantage that
initial models for many different numbers of clusters can be generated quickly.

3 To be more precise, model-based hierarchical clustering [56].

6.3 Probabilistic Clustering 93

−1 0 1 2 3

−
1

0
1

2
3

flavonoids

pr
ol

in
e

2 clusters: classification

−1 0 1 2 3

−
1

0
1

2
3

flavonoids

pr
ol

in
e

●

● ●

●
●

●
●
●●

●

●●●

●

●
●

●●

●

●●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

● ●

●●

●

3 clusters: classification

−1 0 1 2 3

−
1

0
1

2
3

flavonoids

pr
ol

in
e

●

●

●
●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●

●●

●

●
●

●

●

●

●
●

●
●

● ●

●

●
●

●
●

● ●●
●

●●

●●

● ●

●

●●

2 clusters: uncertainty

−1 0 1 2 3

−
1

0
1

2
3

flavonoids

pr
ol

in
e

●

●

●
●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●●
●

●

●
●

●

●
●

●●

●

●

●

●

●

3 clusters: uncertainty

Fig. 6.5. Two- and three-cluster models for the wines data, obtained by mclust.
The top row shows the classifications; the bottom row shows uncertainties at three
levels, where the smallest dots have z-values over .95 and the largest, black, dots
have z-values below .75. The others are in between.

Moreover, this initialization algorithm is stable in the sense that the same clus-
tering is obtained upon repetition. A BIC table, such as the one depicted in
Figure 6.4 is therefore easily obtained.

While mixtures of gaussians (or other distributions) have many attractive
properties, they suffer from one big disadvantage: the number of parameters
to estimate quickly becomes large. This is the reason why the BIC curve
in Figure 6.4 does not run all the way to nine clusters, although that is the
default in mclust: in high dimensions, clusters with only few members quickly
lead to singular covariance matrices. In such cases, no BIC value is returned.
Banfield and Raftery [57] suggested to impose restrictions on the covariance
matrices of the clusters: one can, e.g., use spherical and equal-sized covariance
matrices for all clusters. In this case, which is also the most restricted, the
criterion that is optimized corresponds to the criterion used in k-means and
in Ward’s hierarchical clustering. For each cluster, Gp parameters need to be

94 6 Clustering

2 4 6 8

−
70

00
−

65
00

−
60

00
−

55
00

number of components

B
IC

●

●

●

● ●
● ● ● ●

●

●

●
● ●

● ● ●
●

●

●

● ● ●
●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●EII
VII
EEI
VEI
EVI

VVI
EEE
EEV
VEV
VVV

Fig. 6.6. BIC plots for all ten covariance models implemented in mclust: although
the constrained models do not fit as well for the same numbers of clusters, they are
penalized less and achieve higher BIC values for larger numbers of clusters.

estimated for the cluster centers, one parameter for the covariance matrices,
and p mixing proportions, a total of (G+1)p+1. In contrast, for the completely
free model such as the ones in Figures 6.4 and 6.5, indicated with “VVV” in
mclust, every single covariance matrix requires p(p + 1)/2 parameters. This
leads to a grand total of p(Gp+G+4)/2 estimates. For low-dimensional data,
this is still doable, but for higher-dimensional data the unrestricted models
are no longer workable.

Consider the wine data again, but now consider all ten models implemented
in mclust:

> wines.BIC <- mclustBIC(wines.sc)

> plot(wines.BIC, legendArgs = list(x = "bottom", ncol = 2))

This leads to the output in Figure 6.6. The three-letter codes in the legend
stand for volume, shape and orientation, respectively. The“E” indicates equal-
ity for all clusters, the “V” indicates variability, and the “I” indicates identity.
Thus, the “EEI” model stands for diagonal covariance matrices (the “I”) with
equal volumes and shapes, and the“VEV”model indicates an ellipsoidal model
with equal shapes for all clusters, but complete freedom in size and orienta-
tion. It is clear that the more constrained models achieve much higher BIC
values for higher numbers of clusters: the unconstrained models are penalized
more heavily for estimating so many parameters.

6.4 Comparing Clusterings 95

6.4 Comparing Clusterings

In many cases, one is interested in comparing the results of different cluster-
ings. This may be to assess the behaviour of different methods on the same
data set, but also to find out how variable the clusterings are that are obtained
by randomly initialized methods like k-means. The difficulty here, of course,
is that there is no golden standard; one cannot simply count the number of in-
correct assignments and use that as a quality criterion. Moreover, the number
of clusters may differ – still we may be interested in assessing the agreement
between the partitions.

Several measures have been proposed in literature. Hubert and Arabie [58]
compare several of these, and propose the adjusted Rand index, inspired by
earlier work by Rand [59]. The original Rand index is based on the number
of times two objects are classified in the same cluster, n. In the formulas
below, ni· indicates the number of object pairs classified in the same cluster
in partition one, but not in partition two, n·j the reverse, and nij the number
of pairs classified in different clusters in both partitions. The index, comparing
two partitions with I and J objects, respectively, is given by

R =

(
n
2

)
+ 2

I∑
i=1

J∑
j=1

(
nij
2

)
−


I∑
i=1

(
ni·
2

)
+

J∑
j=1

(
n·j
2

) (6.3)

The adjusted Rand index “corrects for chance” by taking into account the
expected value of the index under the null hypothesis of random partitions:

Radj =
R− E(R)

max(R)− E(R)
=

a

(
n
2

)
− bc

1
2

(
n
2

)
(b+ c)− bc

(6.4)

with

a =
∑
i,j

(
nij
2

)
(6.5)

b =
∑
i

(
ni·
2

)
(6.6)

c =
∑
j

(
n·j
2

)
(6.7)

This measure is zero when the Rand index takes its expected value, and has
a maximum of one.

The implementation in R takes only a few lines:

96 6 Clustering

> AdjRkl <- function(part1, part2)

+ {

+ confusion <- table(part1, part2)

+

+ n <- sum(confusion)

+ a <- sum(choose(confusion[confusion>1], 2))

+ b <- apply(confusion, 1, sum)

+ b <- sum(choose(b[b>1], 2))

+ c <- apply(confusion, 2, sum)

+ c <- sum(choose(c[c>1], 2))

+

+ Rexp <- b*c/choose(n,2)

+ (a - Rexp) / (.5*(b+c) - Rexp)

+ }

The function takes two partitionings, i.e., class vectors, and returns the value
of the adjusted Rand index. Note that the number of classes in both parti-
tionings need not be the same. An alternative is function adjustedRandIndex

in package mclust.
How this can be useful is easily illustrated. As already stated, repeated

application of SOM mapping will, in general, lead to mappings that visually
can appear very different. However, objects may find themselves very close
to the same neighbours in repeated training runs, so that conclusions from
the two maps will be very much the same. One way to investigate that is to
quantify the similarities. Consider the SOM mapping of the wine data for two
initializations:

> X <- scale(wines)

> set.seed(7)

> som.wines <- som(X, grid = somgrid(6, 4, "hexagonal"))

> set.seed(17)

> som.wines2 <- som(X, grid = somgrid(6, 4, "hexagonal"))

Assessing the similarities of the maps should not be done on the level of the
individual units, since these are not relevant entities in themselves. Rather, the
units should be aggregated into larger clusters. This can be achieved by looking
at plots like Figure 5.5; an alternative is to explicitly cluster the codebook
vectors (see, e.g., [60]). If hierarchical clustering is used, the dendrograms
can be cut at the desired level, immediately providing cluster memberships
for the individual samples.

> som.hc <- cutree(hclust(dist(som.wines$codes)), k = 3)

> som.hc2 <- cutree(hclust(dist(som.wines2$codes)), k = 3)

> plot(som.wines, "mapping", bgcol = terrain.colors(3)[som.hc],

+ pch = as.integer(vintages), main = "Seed 7")

> plot(som.wines2, "mapping", bgcol = terrain.colors(3)[som.hc2],

+ pch = as.integer(vintages), main = "Seed 17")

6.5 Discussion 97

Seed 7

●● ●●

●●

●

●

●

●

●

●

●

●● ● ●

●●
●● ●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●●
●●●●

Seed 17

●
●●● ●

●

●
●

●

●
●

●

●

●

●

●●●

●●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

Fig. 6.7. Clustering of the codebook vectors of two mappings of the wine data,
indicated by background colors. Symbols indicate vintages.

This leads to the plots in Figure 6.7. The mappings seem very different. Is
this really the case, or is it just a visual artefact? Let’s find out:

> som.clust <- som.hc[som.wines$unit.classif]

> som.clust2 <- som.hc2[som.wines2$unit.classif]

> AdjRkl(som.clust, som.clust2)

[1] 0.3312089

This rather low value suggests that both mappings are quite different. Note
that this analysis does not take into account the vintages and is applicable
also in cases where “true” class labels are unknown. Of course, one can also
use the adjusted Rand index to compare clusterings with a set of “true” labels:

> AdjRkl(som.clust, som.clust)

[1] 0.4321626

> AdjRkl(som.clust, som.clust2)

[1] 0.7598247

Clearly, the second random seed gives a mapping that is more in agreement
with the class labels, something that is also clear when looking at the agree-
ment between plotting symbols and background color in Figure 6.7.

Other indices to measure correspondence between two partitionings in-
clude Fowlkes’ and Mallows’ Bk [61], Goodmans and Kruskals γ [62], and
Meila’s Variation of Information criterion [63], also available in mclust. The
latter is a difference measure, rather than a similarity measure.

6.5 Discussion

Hierarchical clustering methods have many attractive features. They are suit-
able in cases where there is a hierarchical structure, i.e., subclusters, which

98 6 Clustering

very often is the case. A large number of variables does not pose a problem: the
rate-limiting step is the calculation of the distance matrix, the size of which
does not depend on the dimensionality of the data, but only on the number of
samples. And last but not least, the dendrogram provides an appealing pre-
sentation of the cluster structure, which can be used to assess clusterings with
different numbers of clusters very quickly. Partitional methods, on the other
hand, are more general. In hierarchical clustering a split cannot be undone
– once a sample is in one branch of the tree, there is no way it can move
to the other branch. This can lead, in some cases, to suboptimal clusterings.
Partitional methods do not know such restrictions: a sample can always be
classified into a different class in the next iteration. Some of the less com-
plicated partitional methods, such as k-means clustering, can also be applied
with huge data sets, containing tens of thousands of samples, that cannot be
tackled with hierarchical clustering.

Both types of clustering have their share of difficulties, too. In cases relying
on distance calculations (all hierarchical methods, and some of the partitional
methods, too), the choice of a distance function can dramatically influence
the result. The importance of this cannot be overstated. On the one hand,
this is good, since it allows one to choose the most relevant distance function
available – it even allows one to tackle data that do not consist of real numbers
but are binary or have a more complex nature. As long as there is a distance
function that adequately represents dissimilarities between objects, the regular
clustering methods can be applied. On the other hand, it is bad: it opens up
the possibility of a wrong choice. Furthermore, one should realize that when
correlated groups of variables are present, as often is the case in life science
data, these variables may receive a disproportionally large weight in a regular
distance measure such as Euclidean distance, and smaller groups of variables,
or uncorrelated variables, may fail to be recognized as important.

Partitional methods force one to decide on the number of clusters before-
hand, or perform multiple clusterings with different numbers of clusters. More-
over, there can be considerable differences upon repeated clustering, something
that is less prominent in hierarchical clustering (only with ties in the distance
data). The main problem with hierarchical clustering is that the bottom-up
joining procedure may be too strict: once an object is placed in a certain cat-
egory, it will stay there, whatever happens further on in the algorithm. Of
course, there are many examples where this leads to a sub-optimal clustering.
More generally, there may not be a hierarchical structure to begin with.

Both partitional and hierarchical clustering yield “crisp” clusters, that is,
objects are assigned to exactly one cluster, without any doubt. For partitional
methods, there are alternatives where each object gets a membership value for
each of the clusters. If a crisp clustering is required, at the end of the algorithm
the object is assigned to the cluster for which it has the highest membership.
We have seen one example in the model-based clustering methods.

Finally, one should take care not to over-interpret the results. If you ask
for five clusters, that is exactly what you get. Suppose one has a banana-

6.5 Discussion 99

shaped cluster. Methods like k-means, but also complete linkage, will typically
describe such a banana with three or four spherical clusters. The question is:
are you interested in the peas or the pod4? It may very well be that several
clusters in fact describe one and the same group, and that to find the other
clusters one should actually instruct the clustering to look for more than five
clusters.

Clustering is, because of the lack of “hard” criteria, more of an art than
a science. Without additional knowledge about the data or the problem, it is
hard to decide which one of several different clusterings is best. This, unfor-
tunately, in some areas has led to a practice in which all available clustering
routines are applied, and the one that seems most “logical” is selected and
considered to describe “reality”. One should always keep in mind that this
may be a gross overestimation of the powers of clustering.

4 Metaphor from Adrian Raftery.

Part III

Modelling

7

Classification

The goal of classification, also known as supervised pattern recognition, is
to provide a model that yields the optimal discrimination between several
classes in terms of predictive performance. It is closely related to clustering.
The difference is that in classification it is clear what to look for: the number of
classes is known, and the classes themselves are well-defined, usually by means
of a set of examples, the training set. Labels of objects in the training set are
generally taken to be error-free, and are typically obtained from information
other than the data we are going to use in the model. For instance, one
may have data – say, concentration levels of several hundreds of proteins
in blood – from two groups of people, healthy, and not-so-healthy, and the
aim is to obtain a classification model that distinguishes between the two
states on the basis of the protein levels. The diagnosis may have been based
on symptoms, medical tests, family history and subjective reasoning of the
doctor treating the patient. It may not be possible to distinguish patients
from healthy controls on the basis of protein levels, but if one would be able
to, it would lead to a simple and objective test.

Apart from having good predictive abilities, an ideal classification method
also provides insight in what distinguishes different classes from each other.
Especially in the natural sciences, this has become an important objective: a
gene, protein or metabolite, characteristic for one or several classes, is often
called a biomarker. Such a biomarker, or more often, set of biomarkers, can
be used as an easy and reliable diagnostic tool, but also can provide insight
in the underlying biological processes. Unfortunately, in most cases biomarker
identification is difficult because the number of variables far exceeds the num-
ber of cases, so that there is a real risk of false positives because of chance
correlations.

What is needed as well is a reliable estimate of the success rate of the
classifier. In particular, one would like to know how the classifier will per-
form in the future, on new samples, of course comparable to the ones used in
setting up the model. This error estimate is obtained in a validation step –
Chapter 9 provides an overview of several different methods. These are all the

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_7,

103

104 7 Classification

more important when the classifier of interest has tuneable parameters. These
parameters are usually optimized on the basis of estimated prediction errors,
but as a result the error estimates are positively biased, and a second vali-
dation layer is needed to obtain an unbiased error estimate. In this chapter,
we will take a simple approach and divide the data in a representative part
that is used for building the model (the training set), and an independent
part used for testing (the test set). The phrase “independent” is of utmost
importance: if, e.g., autoscaling is applied, one should use the column means
and standard deviations of the training set to scale the test set. First scaling
the complete data set and then dividing the data in training and test sets is,
in a way, cheating: one has used information from the test data in the scaling.
This usually leads to underestimates of prediction error.

That the training data should be representative seems almost trivial, but
in some cases this is hard to achieve. Usually, a random division works well,
but also other divisions may be used. In Chapter 4 we have seen that the odd
rows of the wine data set are very similar to the even rows: in a classification
context, we can therefore use the even rows as a training set and the odd rows
as a test set:

> wines.trn <- wines[odd,]

> wines.tst <- wines[even,]

Note that classes are represented proportional to their frequency in the original
data in both the training set and the test set.

There are many different ways of using the training data to predict class
labels for future data. Discriminant analysis methods use a parametric de-
scription of means and covariances. Essentially, observations are assigned to
the class having the highest probability density. Nearest-neighbour methods,
on the other hand, focus on similarities with individual objects and assign
objects to the class that is prevalent in the neighbourhood; another way to
look at it is to see nearest-neighbour methods as local density estimators.
Similarities between objects can also be used directly, e.g., in kernel methods;
the most well-known representative of this type of methods is Support Vector
Machines (SVMs). A completely different category of classifiers is formed by
tree-based approaches. These create a model consisting of a series of binary
decisions. Finally, neural-network based classification will be discussed.

7.1 Discriminant Analysis

In discriminant analysis, one assumes normal distributions for the individ-
ual classes: Np(µk, Σk), where the subscript p indicates that the data are
p-dimensional [64]. One can then classify a new object, which can be seen
as a point in p-dimensional space, to the class that has the highest probabil-
ity density (“likelihood”) at that point – this type of discriminant analysis is

7.1 Discriminant Analysis 105

therefore indicated with the term “Maximum-Likelihood” (ML) discriminant
analysis.

Consider the following univariate example with two groups [26]: group one
is N(0, 5) and group 2 is N(1, 1). The likelihoods of classes i are given by

Li (x;µi, σi) =
1

σi
√

2π
exp

[
− (x− µi)2

2σ2
i

]
(7.1)

It is not too difficult to show that L1 > L2 if

12

25
x2 − x+ 1/2− ln 5 > 0

which in this case corresponds to the regions outside the interval [−0.9, 2.9]. In
more general terms, one can show [26] that for one-dimensional data L1 > L2

when

x2
(

1

σ2
1

− 1

σ2
2

)
− 2x

(
µ1

σ2
1

− µ2

σ2
2

)
+

(
µ2
1

σ2
1

− µ2
2

σ2
2

)
< 2 ln

σ2
σ1

(7.2)

This unrestricted form, where every class is individually described with a
mean vector and covariance matrix, leads to quadratic class boundaries, and
is called “Quadratic Discriminant Analysis” (QDA). Obviously, when σ1 = σ2
the quadratic term disappears, and we are left with a linear class boundary
– “Linear Discriminant Analysis” (LDA). Both techniques will be treated in
more detail below.

Another way of describing the same classification rules is to make use of
the Mahalanobis distance:

d(x, i) = (x− µi)
T
Σ−1i (x− µi) (7.3)

Loosely speaking, this expresses the distance of an object to a class center in
terms of the standard deviation in that particular direction. Thus, a sample x
is simply assigned to the closest class, using the Mahalanobis metric d(x, i). In
LDA, all classes are assumed to have the same covariance matrix Σ, whereas
in QDA every class is represented by its own covariance matrix Σi.

7.1.1 Linear Discriminant Analysis

It is easy to show that Equation 7.2 in the case of two groups with equal
variances reduces to

|x− µ2| > |x− µ1| (7.4)

Each observation x will be assigned to class 1 when it is closer to the mean of
class 1 than of class 2, something that makes sense intuitively as well. Another
way to write this is

αT (x− µ) > 0 (7.5)

with

106 7 Classification

α = Σ−1(µ1 − µ2) (7.6)

µ = (µ1 + µ2)/2 (7.7)

This formulation clearly shows the linearity of the class boundaries. The sep-
arating hyperplane passes through the midpoint between the cluster centers,
but is not necessarily perpendicular to the segment connecting the two centers.

In reality, of course, one does not know the true means µi and the true
covariance matrix Σ. One then uses the plugin estimate S, the sample covari-
ance matrix, estimated from the data. In LDA, it is obtained by pooling the
individual sample covariance matrices Si:

S =
1

n−G

G∑
i=1

niSi (7.8)

where there are G groups, ni is the number of objects in group i, and the total
number of objects is n.

For the wine data, this can be achieved as follows:

> wines.counts <- table(vintages[odd])

> ngroups <- length(wines.counts)

> wines.groups <- split(as.data.frame(wines.trn),

+ vintages[odd])

> wines.covmats <- lapply(wines.groups, cov)

> wines.wcovmats <- lapply(1:ngroups,

+ function(i, x, y) x[[i]]*y[i],

+ wines.covmats, wines.counts)

> wines.pooledcov <- Reduce("+", wines.wcovmats) /

+ (nrow(wines.trn) - ngroups)

This piece of code illustrates a convenient feature of the lapply function:
when the first argument is a vector, it can be used as an index for a function
taking also other arguments – here, a list and a vector. Each of the three
covariance matrices is multiplied by a weight corresponding to the number
of objects in that class. In the final step, the Reduce function adds the three
weighted covariance matrices. An alternative is to use a plain and simple loop:

> wines.pooledcov2 <- matrix(0, ncol(wines), ncol(wines))

> for (i in 1:3) {

+ wines.pooledcov2 <- wines.pooledcov2 +

+ cov(wines.groups[[i]]) * nrow(wines.groups[[i]])

+ }

> wines.pooledcov2 <-

+ wines.pooledcov2 / (nrow(wines.trn) - ngroups)

The number of parameters that must be estimated in LDA is relatively small:
the pooled covariance matrix contains p(p + 1)/2 numbers, and each cluster
center p parameters. For G groups this leads to a total of Gp + p(p + 1)/2

7.1 Discriminant Analysis 107

estimates – for the wine data, with three groups and thirteen variables, this
implies 130 estimates.

The LDA classification itself is now easily performed: first we calculate the
Mahalanobis distances (using the mahalanobis function) to the three class
centers using the pooled covariance matrix, and then we determine which of
these three is closest for every sample in the training set:

> distances <-

+ sapply(1:ngroups,

+ function(i, samples, means, covs)

+ mahalanobis(samples, colMeans(means[[i]]), covs),

+ wines.trn, wines.groups, wines.pooledcov)

> trn.pred <- apply(distances, 1, which.min)

Let’s see how good the predictions are:

> table(vintages[odd], trn.pred)

trn.pred

1 2 3

Barbera 24 0 0

Barolo 0 29 0

Grignolino 0 0 36

The reproduction of the training data is perfect, much better than we have
seen with clustering, which is not surprising since the LDA builds the model (in
this case the pooled covariance matrix) using the information from the training
set with the explicit aim of discriminating between the classes. However, we
should not think that future observations are predicted with equal success.
The test data should give an indication of what to expect:

> distances <-

+ sapply(1:ngroups,

+ function(i, samples, means, covs)

+ mahalanobis(samples, colMeans(means[[i]]), covs),

+ wines.tst, wines.groups, wines.pooledcov)

> tst.pred <- apply(distances, 1, which.min)

> table(vintages[even], tst.pred)

tst.pred

1 2 3

Barbera 24 0 0

Barolo 0 29 0

Grignolino 1 0 34

One Grignolino sample has been classified as a Barbera – a very good result,
confirming that the problem is not very difficult. Nevertheless, the difference
with the unsupervised clustering approaches is obvious.

Of course, R already contains an lda function (in package MASS):

108 7 Classification

> wines.ldamod <- lda(wines.trn, grouping = vintages[odd],

+ prior = rep(1,3)/3)

> wines.lda.testpred <- predict(wines.ldamod, new = wines.tst)

> table(vintages[even], wines.lda.testpred$class)

Barbera Barolo Grignolino

Barbera 24 0 0

Barolo 0 29 0

Grignolino 1 0 34

The prior = rep(1,3)/3 argument in the lda function is used to indicate
that all three classes are equally likely a priori. In many cases it makes sense to
incorporate information about prior probabilities. Some classes may be more
common than others, for example. This is usually reflected in the class sizes
in the training set and therefore is taken into account when calculating the
pooled covariance matrix, but it is not explicitly used in the discrimination
rule. However, it is relatively simple to do so: instead of maximising Li one
now maximises πiLi, where πi is an estimate of the prior probability of class
i. In the two-group case, this has the effect of shifting the critical value of
the discriminant function with an amount of log(π2/π1) in Equation 7.5. This
approach is sometimes referred to as the Bayesian discriminant rule, and is
the default behaviour of the lda function. Obviously, when all prior proba-
bilities are equal, the Bayesian and ML discriminant rules coincide. Also in
the example above, using the relative frequencies as prior probabilities would
not have made any difference to the predictions – the three vintages have
approximately equal class sizes.

The lda function comes with the usual supporting functions for printing
and plotting. An example of what the plotting function provides is shown in
Figure 7.1:

> plot(wines.ldamod, xlim = c(-7, 6))

The xlim argument provides some extra horizontal space to show the labels.
The training samples are projected in the space of two new variables, the
Linear Discriminants (LDs). In comparison to the PCA scoreplot from Fig-
ure 4.1, class separation has clearly increased. Again, this is the result of the
way in which the LDs have been chosen: whereas the PCs in PCA account
for as much variance as possible, in LDA the LDs maximize separation. This
will be even more clear when we view LDA in the formulation by Fisher (see
Section 7.1.3).

One particularly attractive feature of the lda function as it is implemented
in MASS is the possibility to choose different estimators of means and covari-
ances. In particular, the arguments method = "mve" and method = "t" are
interesting as they provide robust estimates.

7.1 Discriminant Analysis 109

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4
6

LD1

LD
2

Barolo

Barolo

BaroloBarolo

Barolo

Barolo Barolo

Barolo

Barolo

Barolo

Barolo Barolo

Barolo

Barolo
Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Barolo

Grignolino

Grignolino

Grignolino

Grignolino

Grignolino

Grignolino

GrignolinoGrignolino

Grignolino

Grignolino

Grignolino

GrignolinoGrignolino

Grignolino

GrignolinoGrignolinoGrignolino
Grignolino

Grignolino

Grignolino

Grignolino

Grignolino

Grignolino

Grignolino

Grignolino

Grignolino

Grignolino
Grignolino

Grignolino

Grignolino

Grignolino Grignolino

Grignolino

Grignolino
Grignolino

Grignolino

BarberaBarberaBarbera
BarberaBarbera

Barbera

Barbera
Barbera

Barbera

BarberaBarbera

BarberaBarbera

Barbera
Barbera

Barbera

Barbera

Barbera

Barbera

Barbera

Barbera

Barbera

Barbera
Barbera

Fig. 7.1. Projection of the training data from the wine data set in the linear dis-
criminant space. It is easy to see that linear class boundaries can be drawn so that
all training objects are classified correctly.

7.1.2 Crossvalidation

If the number of samples is low, there are two important disadvantages of
dividing a data set into two parts, one for training and one for testing. The
first is that with small test sets, the error estimates are on a very rough scale:
if there are ten samples in the test set, the errors are always multiples of ten
percent. Secondly, the quality of the model will be lower than it can be: when
building the classification model one needs all information one can get, and
leaving out a significant portion of the data in general is not helpful. Only
with large sets, consisting of, say, tens or hundreds of objects per class, it is
possible to create training and test sets in such a way that modelling power will
suffer very little while giving a reasonably precise error estimate. Even then,
there is another argument against a division into training and test sets: such
a division is random, and different divisions will lead to different estimates
of prediction error. The differences may not be large, but in some cases they

110 7 Classification

segment 1

segment 5 segment 5 segment 5 segment 5 segment 5

segment 4 segment 4 segment 4 segment 4 segment 4

segment 3 segment 3 segment 3 segment 3

segment 2 segment 2 segment 2 segment 2

segment 1 segment 1 segment 1 segment 1

segment 2

segment 3

it. 1 it. 2 it. 3 it. 4 it. 5

Fig. 7.2. Illustration of crossvalidation; in the first iteration, segment 1 of the data
is left out during training and used as a test set. Every segment in turn is left out.
From the prediction errors of the left-out samples the overall crossvalidated error
estimate is obtained.

can be important, especially in the case of outliers and/or extremely unlucky
divisions.

One solution would be to try a large number of random divisions and
to average the resulting estimates. This is indeed a valid strategy – we will
come back to this in Chapter 9. A very popular formalization of this principle
is called crossvalidation [65]. The general procedure is as follows: one leaves
out a certain part of the data, trains the classifier on the remainder, and
uses the left-out bit – sometimes called the out-of-bag, or OOB, samples – to
estimate the error. Next, the two data sets are joined again, and a new test
set is split off. This continues until all objects have been left out exactly once.
The crossvalidation error in classification is simply the number of misclassified
objects divided by the total number of objects in the training set. If the size
of the test set equals one, every sample is left out in turn – the procedure
has received the name Leave-One-Out (LOO) crossvalidation. It is shown to
be unbiased but can have appreciable variance: on average, the estimate is
correct, but individual components may deviate considerably.

More stable results are usually obtained by leaving out a larger fraction,
e.g. 10% of the data; such a crossvalidation is known as ten-fold crossvali-
dation. The largest errors cancel out (to some extent) so that the variance
decreases; however, one pays the price of a small bias because of the size
difference of the real training set and the training set used in the crossvali-
dation [66]. In general, the pros outweigh the cons, so that this procedure is
quite often applied. It also leads to significant speed improvements for larger
data sets, although for the simple techniques presented in this chapter it is not
likely to be very important. The whole crossvalidation procedure is illustrated
in Figure 7.2.

For LDA (and also QDA), it is possible to obtain the LOO crossvalida-
tion result without complete refitting – upon leaving out one object, one can
update the Mahalanobis distances of objects to class means and derive the
classifications of the left-out samples quickly, without doing expensive matrix
operations [34]. The lda function returns crossvalidated predictions in the list
element class when given the argument CV = TRUE:

7.1 Discriminant Analysis 111

> wines.ldamod <- lda(wines.trn, grouping = vintages[odd],

+ prior = rep(1,3)/3, CV = TRUE)

> table(vintages[odd],wines.ldamod$class)

Barbera Barolo Grignolino

Barbera 24 0 0

Barolo 0 28 1

Grignolino 1 0 35

So, where the training set can be predicted without any errors, LOO cross-
validation on the training set leads to an estimated error percentage of
2/89 = 2.25%, twice the error on the test set. This difference in itself is
not very alarming – error estimates also have variance.

7.1.3 Fisher LDA

A seemingly different approach to discriminant analysis is taken in Fisher
LDA, named after its inventor, Sir Ronald Aylmer Fisher. Rather than as-
suming a particular distribution for individual clusters, Fisher devised a way
to find a sensible rule to discriminate between classes by looking for a linear
combination of variables a maximising the ratio of the between-groups sums
of squares B and the within-groups sums of squares W [67]:

aTBa/aTWa (7.9)

These sums of squares are calculated by

W =
G∑
i=1

X̃
T

i X̃i (7.10)

B =
G∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T (7.11)

where X̃i is the mean-centered part of the data matrix containing objects of
class i, and x̄i and x̄ are the mean vectors for class i and the whole data matrix,
respectively. Put differently: W is the variation around the class centers, and
B is the variation of the class centers around the global mean. It also holds that
the total variance T is the sum of the betweens and within-groups variances:

T = B +W (7.12)

Fisher’s criterion is equivalent to finding a linear combination of variables a
corresponding to the subspace in which distances between classes are large and
distances within classes are small – compact classes with a large separation. It
can be shown that maximizing Equation 7.9 leads to an eigenvalue problem,
and that the solution a is given by the eigenvector of BW−1 corresponding

112 7 Classification

with the largest eigenvalue. An object x is then assigned to the closest class,
i, which means that for all classes i 6= j the following inequality holds:

|aTx− aT x̄i| < |aTx− aT x̄j | (7.13)

Interestingly, although Fisher took a completely different starting point
and did not explicitly assume normality or equal covariances, in the two-group
case Fisher LDA leads to exactly the same solution as ML-LDA. Consider
the discrimination between Barbera and Grignolino wines. To enable easy
visualization, we will restrict ourselves to only two variables, flavonoids and
proline. Fisher LDA is performed by the following code:

> X <- wines[vintages != "Barolo", c(7, 13)]

> vint <- factor(vintages[vintages != "Barolo"])

>

> wines.counts <- table(vint)

> wines.groups <- split(as.data.frame(X), vint)

> WSS <-

+ Reduce("+", lapply(wines.groups,

+ function(x) {

+ crossprod(scale(x, scale = FALSE))}))

> BSS <-

+ Reduce("+", lapply(wines.groups,

+ function(x, y) {

+ nrow(x) * tcrossprod(colMeans(x) - y)},

+ colMeans(X)))

> FLDA <- eigen(solve(WSS, BSS))$vectors[,1]

> FLDA / FLDA[1]

[1] 1.000000 -0.000876

Application of ML-LDA, Equation 7.5, leads to

> wines.covmats <- lapply(wines.groups, cov)

> wines.wcovmats <- lapply(1:length(wines.groups),

+ function(i, x, y) x[[i]]*y[i],

+ wines.covmats, wines.counts)

> wines.pcov12 <- Reduce("+", wines.wcovmats) / (length(vint) - 2)

> MLLDA <-

+ solve(wines.pcov12,

+ apply(sapply(wines.groups, colMeans), 1, diff))

> MLLDA / MLLDA[1]

flavonoids proline

1.000000 -0.000875

Setting the first element of the discrimination functions equal to 1 makes
the comparison easier: the vector a in Equation 7.9 can be rescaled without

7.1 Discriminant Analysis 113

Fisher LDA

flavonoids

pr
ol

in
e

1 2 3 4 5

50
0

10
00

15
00

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

LDA

flavonoids
pr

ol
in

e

1 2 3 4 5

50
0

10
00

15
00

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

Fig. 7.3. Class boundaries for the wine data (proline and flavonoids only) for Fisher
LDA (left) and ML-LDA (right). Models are created using the odd rows of the wine
data; the plotting symbols indicate the even rows (test data), as mentioned in the
text.

any effect on both allocation rules 7.13 and 7.5. In the two-group case, both
ML-LDA and Fisher-LDA lead to the same discrimination function.

For problems with more than two groups, the results are different unless
the sample means are collinear: Fisher LDA aims at finding one direction
discriminating between the classes. An example is shown in Figure 7.3, where
the boundaries between the three classes in the two-dimensional subset of the
wine data are shown for Fisher LDA and ML-LDA.

The Fisher LDA boundaries are produced by code very similar to the
two-group case on page 112: one should replace the line

> X <- wines[vintages != "Barolo", c(7, 13)]

by

> X <- wines.sc[odd, c(7, 13)]

and use vintages[odd] rather than vint. Then, after calculating the discrim-
inant function FLDA, predictions are made at positions in a regular grid:

> scores <- gridXY %*% FLDA

> meanscores <- t(sapply(wines.groups, colMeans)) %*% FLDA

> Fdistance <- outer(scores, meanscores,

+ FUN = function(x, y) abs(x - y))

> Fclassif <- apply(Fdistance, 1, which.min)

The distances of the scores of all gridpoints to the scores of the class means
are calculated using the outer function – this leads to a three-column matrix.

114 7 Classification

The classification, corresponding to the class with the smallest distance, is
obtained using the function which.min.

Finally, the class boundaries are visualized using the function contour;
the points of the test set are added afterwards.

> contour(x, y,

+ matrix(Fclassif, nrow = length(x), byrow = TRUE),

+ main = "Fisher LDA", drawlabels = FALSE,

+ xlab = "flavonoids", ylab = "proline")

> points(wines.tst[, c(7, 13)],

+ col = as.integer(vintages[even]),

+ pch = as.integer(vintages[even]))

The result is shown in the left plot of Figure 7.3. The right plot is produced
analogously:

> x <- seq(.4, 5.4, length = 251)

> y <- seq(250, 1750, length = 251)

> gridXY <- cbind(rep(x, each = length(y)), rep(y, length(x)))

> wines.ldamod <- lda(wines.trn[,c(7,13)],

+ grouping = vintages[odd],

+ prior = rep(1,3)/3)

> lda.2Dclassif <- predict(wines.ldamod, newdata = gridXY)$class

> contour(x, y,

+ matrix(as.integer(lda.2Dclassif),

+ nrow = length(x), byrow = TRUE),

+ main = "LDA", drawlabels = FALSE,

+ xlab = "flavonoids", ylab = "proline")

> points(wines.tst[,c(7,13)], col = as.integer(vintages[even]),

+ pch = as.integer(vintages[even]))

Immediately it is obvious that although the error rates of the two classifica-
tions are quite similar for the test set, large differences will occurr when data
points are further away from the class centers. The class means are reason-
ably close to a straight line, so that Fisher LDA does not fail completely;
however, for multi-class problems it is not a good idea to impose parallel class
boundaries, as is done by Fisher LDA using only one eigenvector. It is better
to utilise the information in the second and higher eigenvectors of W−1B as
well [26]; these are sometimes called canonical variates, and the correspond-
ing form of discriminant analysis is known as canonical discriminant analysis.
The maximum number of canonical variates that can be extracted is one less
than the number of groups.

7.1.4 Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) takes the same route as LDA, with the
important distinction that every class is described by its own covariance ma-
trix, rather than one identical (pooled) covariance matrix for all classes. Given

7.1 Discriminant Analysis 115

our exposé on LDA, the algorithm for QDA is pretty simple: one calculates
the Mahalanobis distances of all points to the class centers, and assigns each
point to the closest class. Let us see what this looks like in two dimensions:

> wines.trn <- wines[odd, c(7, 13)]

> wines.tst <- wines[even, c(7, 13)]

> wines.groups <- split(as.data.frame(wines.trn), vintages[odd])

> wines.covmats <- lapply(wines.groups, cov)

> ngroups <- length(wines.groups)

> distances <- sapply(1:ngroups,

+ function(i, samples, means, covs) {

+ mahalanobis(samples,

+ colMeans(means[[i]]),

+ covs[[i]]) },

+ wines.tst, wines.groups, wines.covmats)

> test.pred <- apply(distances, 1, which.min)

> table(vintages[even], test.pred)

test.pred

1 2 3

Barbera 19 0 5

Barolo 0 28 1

Grignolino 3 1 31

Ten samples are misclassified in the test set. To see the class boundaries in
two-dimensional space, we use the same visualization as seen in the previous
section:

> qda.mahal.dists <- sapply(1:ngroups,

+ function(i, samples, means, covs) {

+ mahalanobis(samples,

+ colMeans(means[[i]]),

+ covs[[i]]) },

+ gridXY, wines.groups, wines.covmats)

> qda.2Dclassif <- apply(qda.mahal.dists, 1, which.min)

> contour(x, y,

+ matrix(qda.2Dclassif, nrow = length(x), byrow = TRUE),

+ main = "QDA", drawlabels = FALSE,

+ xlab = "flavonoids", ylab = "proline")

> points(wines.tst, col = as.integer(vintages[even]),

+ pch = as.integer(vintages[even]))

The result is shown in the left plot of Figure 7.4. The quadratic form of the
class boundaries is clearly visible. Again, only the test set objects are shown.

Using the qda function from the MASS package, modelling the odd rows
and predicting the even rows is done just like with lda. Let’s build a model
using all thirteen variables:

116 7 Classification

QDA

flavonoids

pr
ol

in
e

1 2 3 4 5

50
0

10
00

15
00

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

MBDA

flavonoids
pr

ol
in

e

1 2 3 4 5

50
0

10
00

15
00

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

Fig. 7.4. Class boundaries for the wine data (proline and flavonoids only) for QDA
(left) and MBDA (right). Models are created using the odd rows of the wine data;
the plotting symbols indicate the even rows (test data), as mentioned in the text.

> wines.qda <- qda(wines[odd,], vintages[odd],

+ prior = rep(1, 3)/3)

> test.qdapred <- predict(wines.qda, newdata = wines[even,])

> table(vintages[even], test.qdapred$class)

test.qdapred

Barbera Barolo Grignolino

Barbera 24 0 0

Barolo 0 29 0

Grignolino 0 0 35

In this case, all test set predictions are correct.
The optional correction for unequal class sizes (or account for prior prob-

abilities) is done in exactly the same way as in LDA. Several other arguments
are shared between the two functions: both lda and qda can be called with
the method argument to obtain different estimates of means and variances:
the standard plug-in estimators, maximum likelihood estimates, or two forms
of robust estimates. The CV argument enables fast LOO crossvalidation.

7.1.5 Model-Based Discriminant Analysis

Although QDA uses more class-specific information, it still is possible that
the data are not well described by the individual covariance matrices, e.g., in
case of non-normally distributed data. In such a case one can employ more
greedy forms of discriminant analysis, utilizing very detailed descriptions of

7.1 Discriminant Analysis 117

class densities. In particular, one can describe each class with a mixture of
normal distributions, just like in model-based clustering, and then assign an
object to the class for which the overall mixture density is maximal. Thus,
for every class one estimates several means and covariance matrices – one
describes the pod by a set of peas. Obviously, this technique can only be used
when the ratio of objects to variables is very large.

Package mclust contains several functions for doing model-based discrim-
inant analysis (MBDA), or mixture discriminant analysis, as it is sometimes
called as well. The easiest one is mclustDA:

> wines.mclustDA <- mclustDA(train = list(data = wines[odd,],

+ labels = vintages[odd]),

+ test = list(data = wines[even,],

+ labels = vintages[even]),

+ G = 1:5)

EEI VEI VEI

3 2 3

In this case, we have restricted the number of Gaussians, to be used for each
individual class, to be at most five. Again, the BIC value is employed to se-
lect the optimal model complexity. For the Barolo class, a mixture of three
Gaussians seems optimal; these all have the same diagonal covariance matrix
(indicated with model EEI). The two other classes can be described by mix-
tures of two and three diagonal covariance matrices, respectively, with varying
volume – see Section 6.3 for more information on model definition in mclust.
The print method for the fitted object gives more information:

> wines.mclustDA

Modeling Summary:

trainClass mclustModel numGroups

Barolo Barolo EEI 3

Grignolino Grignolino VEI 2

Barbera Barbera VEI 3

Test Classification Summary:

Barbera Barolo Grignolino

24 29 35

Training Classification Summary:

Barbera Barolo Grignolino

24 28 37

Training Error: 0.01123596

Test Error: 0

118 7 Classification

Classification errors for both training and test sets are very low: the training
set has one misclassification, and in the test set all objects are predicted
correctly.

If more control is needed over the training process, functions mclustDA-

train and mclustDAtest are available in the mclust package. To visualize the
class boundaries in the two dimensions of the wine data set employed earlier
for the other forms of discriminant analysis, we can use

> wines.mclust2D <- mclustDAtrain(wines[odd, c(7, 13)],

+ vintages[odd], G = 1:5)

XXI VEV EVI

1 3 2

The model is simpler than the model employed for the full, 13-dimensional
data, which seems logical. Prediction and visualization is done by

> wines.mclust2Dpred <- mclustDAtest(gridXY, wines.mclust2D)

> contour(x, y,

+ matrix(apply(wines.mclust2Dpred, 1, which.max),

+ nrow = length(x), byrow = TRUE),

+ main = "MBDA", drawlabels = FALSE,

+ xlab = "flavonoids", ylab = "proline")

> points(wines[even, c(7, 13)],

+ col = as.integer(vintages[even]),

+ pch = as.integer(vintages[even]))

The class boundaries, shown in the right plot of Figure 7.4, are clearly much
more adapted to the densities of the individual classes, compared to the other
forms of discriminant analysis we have seen.

7.1.6 Regularized Forms of Discriminant Analysis

At the other end of the scale we find methods that are suitable in cases where
we cannot afford to use very complicated descriptions of class density. One
form of regularized DA (RDA) strikes a balance between linear and quadratic

forms [68]: the idea is to apply QDA using covariance matrices
∼
Σk that are

shrunk towards the pooled covariance matrix Σ:

∼
Σk = αΣ̂k + (1− α)Σ (7.14)

where Σ̂k is the empirical covariance matrix of class k. In this way, character-
istics of the individual classes are taken into account, but they are stabilized
by the pooled variance estimate. The parameter α needs to be optimized, e.g.,
by using crossvalidation.

In cases where the number of variables exceeds the number of samples,
more extreme regularization is necessary. One way to achieve this is shrinkage
towards the unity matrix [3]:

7.1 Discriminant Analysis 119

∼
Σ = αΣ + (1− α)I (7.15)

Equivalent formulations are given by:

∼
Σ = κΣ + I (7.16)

and ∼
Σ = Σ + κI (7.17)

with κ ≥ 0. In this form of RDA, again the regularized form
∼
Σ of the covari-

ance is used, rather than the empirical pooled estimate Σ. Matrix
∼
Σ is not

singular so that the matrix inversions in Equations 7.3 or 7.6 no longer present
a problem. In the extreme case, one can use a diagonal covariance matrix (with
the individual variances on the diagonal) leading to diagonal LDA [69], also
known as Idiot’s Bayes [70]. Effectively, all dependencies between variables are
completely ignored. For so-called “fat” matrices, containing many more vari-
ables than objects, often encountered in microarray research and other fields
in the life sciences, such simple methods often give surprisingly good results.

Diagonal Discriminant Analysis

As an example, consider the odd rows of the prostate data, limited to the first
1000 variables. We are concentrating on the separation between the control
samples and the cancer samples:

> prost <- prostate[prostate.type != "bph",1:1000]

> prost.type <- factor(prostate.type[prostate.type != "bph"])

> odd <- seq(1, length(prost.type), by = 2)

> even <- seq(2, length(prost.type), by = 2)

Although it is easy to re-use the code given in Sections 7.1.1 and 7.1.4, plugging
in diagonal covariance matrices, we will use the dDA function from the sfsmisc
package.

> prost.dlda <-

+ dDA(prost[odd,], as.integer(prost.type)[odd], pool = TRUE)

The pool = TRUE argument (the default) indicates that for all classes the
same covariance matrix is to be used (LDA). The result for the predictions
on the even samples is not too bad:

> prost.dldapred <- predict(prost.dlda, prost[even,])

> table(prost.type[even], prost.dldapred)

prost.dldapred

1 2

control 32 8

pca 7 77

120 7 Classification

Almost 88% of the test samples are predicted correctly. Allowing for different
covariance matrices per class, we arrive at diagonal QDA, which does slightly
worse for these data:

> prost.dqda <-

+ dDA(prost[odd,], as.integer(prost.type)[odd], pool = FALSE)

> prost.dqdapred <- predict(prost.dqda, prost[even,])

> table(prost.type[even], prost.dqdapred)

prost.dqdapred

1 2

control 38 2

pca 16 68

Shrunken Centroid Discriminant Analysis

In the context of microarray analysis, it has been suggested to combine RDA
with the concept of “shrunken centroids” [71] – the resulting method is in-
dicated as SCRDA [72] and is available in the R package rda. As the name
suggests, class means are shrunk towards the overall mean. The effect is that
the points defining the class boundaries (the centers) are closer, which may
lead to a better description of local structure. These shrunken class means are
then used in Equation 7.3, together with the diagonal covariance matrix also
employed in DLDA. For a more complete description, see, e.g., [3].

Let us see how SCRDA does on the prostate example. Application of the
rda function is straightforward1. The function takes two arguments, α and δ,
where α again indicates the amount of unity matrix in the covariance estimate,
and δ is a soft threshold, indicating the minimal coefficient size for variables
to be taken into account in the classification:

> prost.rda <-

+ rda(t(prost[odd,]), as.integer(prost.type)[odd],

+ delta = seq(0, .4, length = 5),

+ alpha = seq(0, .4, length = 5))

Printing the fitted object shows some interesting results:

> prost.rda

Call:

rda(x = t(prost[odd,]),

y = as.integer(prost.type)[odd],

xnew = t(prost[even,]),

ynew = as.integer(prost.type)[even],

alpha = seq(0, 0.4, length = 5),

delta = seq(0, 0.4, length = 5))

1 Note that in this function the variables are in the rows of the data matrix and
not, as usual, in the columns – hence the use of the transpose function.

7.1 Discriminant Analysis 121

$nonzero

delta

alpha 0 0.1 0.2 0.3 0.4

0 1000 433 193 121 92

0.1 1000 220 34 3 0

0.2 1000 192 19 4 0

0.3 1000 179 18 4 0

0.4 1000 195 24 4 0

$errors

delta

alpha 0 0.1 0.2 0.3 0.4

0 36 38 39 39 39

0.1 10 16 32 41 41

0.2 7 21 43 41 41

0.3 4 23 44 41 41

0.4 2 20 44 41 41

Increasing values of δ lead to a rapid decrease in the number of non-zero
coefficients; however, these sparse models do not lead to very good predictions,
and the lowest value for the training error is found at α = .4 and δ = 0.
Obviously, the training error is not the right criterion to decide on the optimal
values for these parameters. This we can do using the rda.cv crossvalidation
function, and subsequently we can use the test data as a means to estimate
the expected prediction error:

> prost.rdacv <-

+ rda.cv(prost.rda, t(prost[odd,]),

+ as.integer(prost.type)[odd])

Inspection of the result (not shown) reveals that the optimal value of α would
be .2, with no thresholding (delta = 0). Predictions with these values lead to
the following result:

> prost.rdapred <-

+ predict(prost.rda,

+ t(prost[odd,]), as.integer(prost.type)[odd],

+ t(prost[even,]), alpha = .2, delta = 0)

> table(prost.type[even],prost.rdapred)

prost.rdapred

1 2

control 30 10

pca 4 80

Overall, fourteen samples are misclassified, only slightly better than the DLDA
model. This sort of behaviour is more general than one might think: for fat
data, the simplest models are often among the top performers.

122 7 Classification

7.2 Nearest-Neighbour Approaches

A completely different approach, not relying on any distributional assumptions
whatsoever, is formed by techniques focussing on distances between objects,
and in particular on the closest objects. These techniques are known under the
name of k-nearest-neighbours (KNN), where k is a number to be determined.
If k = 1, only the closest neighbour is taken into account, and any new object
will be assigned to the class of its closest neighbour in the training set. If k > 1,
the classification is straightforward in cases where the k nearest neighbours
are all of the same class. If not, a majority vote is usually performed. Class
areas can be much more fragmented than with LDA or QDA; in extreme
cases one can even find patch-work-like patterns. The smaller the number k,
the more irregular the areas can become: only one object is needed to assign
its immediate surroundings to a particular class.

As an example, consider the KNN classification for the first sample in the
test set of the wine data (sample number two), based on the training set given
by the odd samples. One starts by calculating the distance to all samples in the
training set. Usually, the Euclidean distance is used – in that case, one should
scale the data appropriately to avoid large numbers to dominate the results.
For the wine data, autoscaling is advisable. The mahalanobis function has a
useful feature that allows one to calculate the distance of one object to a set
of others. The covariance matrix is given as the third argument2. Thus, the
Euclidean distance can be calculated in two ways, either from the autoscaled
data using a unit covariance matrix, or from the unscaled data using the
estimated column standard deviations:

> wines.sc <- scale(wines, scale = sd(wines[odd,]),

+ center = colMeans(wines[odd,]))

> dist2sample2a <- mahalanobis(wines.sc[odd,], wines.sc[2,],

diag(13))

> dist2sample2b <- mahalanobis(wines[odd,], wines[2,],

+ diag(sd(wines[odd,])^2))

> range(dist2sample2a - dist2sample2b)

[1] -7.105427e-15 7.105427e-15

Next, we order the training samples according to their distance to sample two:

> nearest.classes <- vintages[odd][order(dist2sample2a)]

> nearest.classes[1:10]

[1] Barolo Barolo Barolo Barolo Barolo Barolo Barolo Barolo

[9] Barolo Barolo

Levels: Barbera Barolo Grignolino

2 Note that function sd returns a vector of per-column standard deviations, and
the diag functionis used to convert this into a matrix. An alternative would be
to use diag(diag(var(...))).

7.2 Nearest-Neighbour Approaches 123

The closest ten objects are all of the Barolo class – apparently, there is little
doubt that object 2 also should be a Barolo.

Rather than using a diagonal of the covariance matrix, one could also use
the complete estimated covariance matrix of the training set. This would lead
to the Mahalanobis distance:

> dist2sample2 <- mahalanobis(wines[odd,], wines[2,],

+ cov(wines[odd,]))

> nearest.classes <- vintages[odd][order(dist2sample2)]

> nearest.classes[1:10]

[1] Barolo Barolo Barolo Grignolino Grignolino

[6] Grignolino Barolo Barolo Grignolino Barolo

Note that autoscaling of the data is not necessary. Clearly, the results depend
on the distance measure employed. Although the closest three samples are
Barolo wines, the next three are Grignolinos; values of k between 5 and 9
would lead to a close call or even a tie. Several different strategies to deal
with such cases can be employed. The simplest is to require a significant
majority for any classification – in a 5-NN classification one may require at
least four of the five closest neighbours to belong to the same class. If this
is not the case, the classification category becomes “unknown”. Although this
may seem a weakness, in many applications it is regarded as a strong point if a
method can indicate some kind of reliability – or lack thereof – for individual
predictions.

The class package contains an implementation of the KNN classifier using
Euclidean distances, knn. Its first argument is a matrix constituting the train-
ing set, and the second argument is the matrix for which class predictions are
required. The class labels of the training set are given in the third argument.
It provides great flexibility in handling ties: the default strategy is to choose
randomly between the (tied) top candidates, so that repeated application can
lead to different results:

> X <- scale(wines, scale = sd(wines[odd,]),

+ center = colMeans(wines[odd,]))

> knn(X[odd,], X[68,], cl = vintages[odd], k = 4)

[1] Barbera

Levels: Barbera Barolo Grignolino

> knn(X[odd,], X[68,], cl = vintages[odd], k = 4)

[1] Grignolino

Levels: Barbera Barolo Grignolino

Apparently, there is some doubt about the classification of sample 68 – it can
be either a Barbera or Grignolino. Of course, this is caused by the fact that
from the four closest neighbours, two are Barberas and two are Grignolinos.

124 7 Classification

Requiring at least three votes for an unambiguous classification (l = 3) leads
to:

> knn(X[odd,], X[68,], cl = vintages[odd], k = 4, l = 3)

[1] <NA>

Levels: Barbera Barolo Grignolino

In many cases it is better not to have a prediction at all, rather than a highly
uncertain one.

The value of k is crucial. Unfortunately, no rules of thumb can be given
on the optimal choice, and this must be optimized for every data set sepa-
rately. One simple strategy is to monitor the performance of the test set for
several values of K and pick the one that leads to the smallest number of
misclassifications. Alternatively, LOO crossvalidation can be employed:

> wines.knnresult <- rep(0, 10)

> for (i in 1:10) {

+ wines.knncv <- knn.cv(X[odd,], vintages[odd], k = i)

+ wines.knnresult[i] <-

+ sum(diag(table(vintages[odd], wines.knncv))) }

> 100 * wines.knnresult / length(odd)

[1] 92.1 92.1 96.6 93.3 95.5 96.6 96.6 96.6 96.6 97.8

In this example, k = 10 shows the best prediction, although k = 3 and values
six to nine also perform well.

An alternative is to use the convenience function tune.knn in package
e1071. This function by default uses ten-fold crossvalidation for a range of
values of k:

> knn.tuned <- tune.knn(X[odd,], vintages[odd], k = 1:10)

> knn.tuned

- sampling method: 10-fold cross validation

- best parameters:

k

6

- best performance: 0.01111111

> plot(knn.tuned)

The result is shown in the left plot of Figure 7.5 – the differences with the
LOO results we saw earlier show what kind of variability is to be expected
with crossvalidated error estimates. Indeed, repeated application of the tune
function will – for these data – lead to quite different estimates for the optimal
value of k:

7.2 Nearest-Neighbour Approaches 125

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Performance of ‘knn.wrapper'

k

er
ro

r

Histogram of bestKs

bestKs
F

re
qu

en
cy

2 4 6 8 10

0
10

0
20

0
30

0
40

0

Fig. 7.5. Optimization of k for the wine data using the tune wrapper function. Left
plot: one crossvalidation curve. Right plot: optimal values of k in 1000 crossvalida-
tions.

> bestKs <- rep(0, 1000)

> for (i in 1:1000)

> bestKs[i] <- tune.knn(X1, vintages[odd],

+ k = 1:10)$best.parameters[1,1]

> hist(bestKs)

The result is shown in the right plot of Figure 7.5. In roughly half the cases,
k = 2 is best. This is partly caused by a built-in preference for small values
of k in the script: the smallest value of k that gives the optimal predictions is
stored, even though larger values may lead to equally good predictions.

Although application of these simple strategies allow one to choose the
optimal parameter settings, the optimal error associated with this setting
(e.g., 97.8% in the LOO example) is not an estimation of the prediction error
of future samples, because the test set is used in this procedure to fine-tune
the method. Another layer of validation is necessary to find the estimated
prediction error; see Chapter 9. The 1-nearest neighbour method enjoys great
popularity, despite coming out worst in the above comparison – there, it is
almost never selected. Nevertheless, it has been awarded a separate function
in the class package: knn1. Most often, odd values of K smaller than ten are
considered.

One potential disadvantage of the KNN method is that in principle, the
whole training set – the training set in a sense is the model! – should be
saved, which can be a nuisance for large data sets. Predictions for new objects
can be slow, and storing really large data sets may present memory problems.
However, things are not so bad as they seem, since in many cases one can

126 7 Classification

safely prune away objects without sacrificing information. For the wine data,
it is obvious that in large parts of the space there is no doubt: only objects
from one class are present. Many of these objects can be removed and one
then still will get exactly the same classification for all possible new objects.

7.3 Tree-Based Approaches

A wholly different approach to classification is formed by the tree-based ap-
proaches. These proceed in a way that is very similar to medical diagnosis: the
data are “interrogated” and a series of questions are posed which finally lead
to a classification. Modelling, in this metaphore, is to decide which questions
are most informative. As a class, tree-based methods possess some unique ad-
vantages. They can be used for both classification and regression. Since the
model is based on sequential decisions on individual variables, scaling is not
important: every variable is treated at its own scale and no “overall” mea-
sure needs to be computed. Variable selection comes with the method – only
those variables that contribute to the result are incorporated in the tree. Trees
form one of the few methods that can accomodate variables of a very different
nature, e.g., numerical, categorical and ordinal, in one single model. Their
handling of missing values is simple and elegant. In short, trees can be used
for almost any classification (and regression) problem.

Currently, tree-based modelling comes in two main branches: Breiman’s
Classification and Regression Trees (CART, [73]) and Quinlan’s See5/C5.0
(and its predecessors, C4.5 [74] and ID3 [75]). Both are commercial and not
open-source software, but R comes with two pretty faithful representation of
CART in the form of the rpart and tree functions, from the packages with
the same names. Since the approaches by Quinlan and Breiman have become
more similar with every new release, and since no See5/C5.0 implementation
is available in R, we will here only focus on rpart [76] – one of the recom-
mended R packages – to describe the main ideas of tree-based classification.
The differences with the implementation in the tree package are small; consult
the manual pages and the technical report by Therneau et al. [76] for more
information.

7.3.1 Recursive Partitioning and Regression Trees

Recursive Partitioning and Regression Trees, which is what the acronym rpart

stands for, can be explained most easily by means of an example. Consider,
again, the the two-dimensional subset of the wine data encountered earlier:

> wines.df <- data.frame(vint = vintages, wines[,c(7, 13)])

> wines.rpart <- rpart(vint ~ ., subset = odd,

+ data = wines.df, method = "class")

7.3 Tree-Based Approaches 127

In setting up the tree model, we explicitly indicate that we mean classification
(method = "class"): the rpart function also provides methods for survival
analysis and regression, and though it tries to be smart in guessing what
exactly is required, it is better to explicitly provide the method argument.
The result is an object of class rpart:

> wines.rpart

n= 89

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 89 53 Grignolino (0.2697 0.3258 0.4045)

2) flavonoids< 1.23 23 1 Barbera (0.9565 0.0000 0.0435) *

3) flavonoids>=1.23 66 31 Grignolino (0.0303 0.4394 0.5303)

6) proline>=739 30 2 Barolo (0.0000 0.9333 0.0667) *

7) proline< 739 36 3 Grignolino (0.0556 0.0278 0.9167) *

The top node, where no splits have been defined, is labelled as “Grignolino”
since that is the most abundant variety – 36 out of 89 objects (a fraction
of 0.4045) are Grignolinos. The first split is on the flavonoids variable. A
value smaller than 1.235 leads to node 2, which is consisting almost completely
of Barbera samples (more than 95 percent). This node is not split any fur-
ther, and in tree terminology is indicated as a “leaf”. A flavonoid value larger
than 1.235 leads to node three that is split further into separate Barolo and
Grignolino leaves.

Of course, such a tree is much easier to interpret when depicted graphically:

> plot(X.rpart, margin = .12)

> text(X.rpart, use.n = TRUE)

> plot(X, pch = as.integer(vint)+1)

> segments(X.rpart$splits[1,4], par("usr")[3],

+ X.rpart$splits[1,4], par("usr")[4], lty = 2)

> segments(X.rpart$splits[1,4], X.rpart$splits[2,4],

+ par("usr")[2], X.rpart$splits[2,4], lty = 2)

This leads to the plots in Figure 7.6. The tree on the left shows the splits,
corresponding to the tesselation of the surface in the right plot. The plot com-
mand sets up the coordinate system en plots the tree; the margin argument
is necessary to reserve some space for the annotation added by the text com-
mand. At every split, the test, stored in the splits element in the X.rpart

object, is shown. At the final nodes (the “leaves”), the results are summarized:
two Barberas (triangles) are classified as Barolos (pluses), two Barolos are in
the Grignolino area and one Grignolino is classified as a Barolo.

Application to multivariate data is equally simple. For the wine data, we
will predict the classes of the even rows, again based on the odd rows:

128 7 Classification

|flavonoids< 1.235

proline>=739
Barbera

22/0/1

Barolo
0/28/2

Grignolino
2/1/33

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

40
0

60
0

80
0

12
00

16
00

flavonoids

pr
ol

in
e

Fig. 7.6. Tree object from rpart using default settings (left). The two nodes lead
to the class boundaries visualized in the right plot. Only points for the even rows,
the test set, are shown.

> wines.df <- data.frame(wines, vint = vintages)

> wines.rpart <- rpart(vint ~ ., subset = odd,

+ data = wines.df, method = "class")

> plot(wines.rpart, margin = .1)

> text(wines.rpart, use.n = TRUE)

The plot in Figure 7.7 shows that the flavonoids and proline variables are
again important in the classification, now in addition to the colour intensity.

Prediction is done using the predict.rpart function, which returns a
matrix of class probabilities, simply estimated from the composition of the
training samples in the end leaves:

> wines.rpart.predict <- predict(wines.rpart,

+ newdata = wines.df[even,])

> wines.rpart.predict[31:34,]

Barbera Barolo Grignolino

62 0 0.0323 0.968

64 0 0.0323 0.968

66 0 0.1429 0.857

68 0 0.0323 0.968

In this rather simple problem, most of the probabilities are either 0 or 1, but
here some Grignolinos are shown that have a slight chance of actually being
Barolos, according to the tree model. The uncertainties are simply the mis-
classification rates of the training model: row 66 ends up in a lead containing

7.3 Tree-Based Approaches 129

|col..int.>=3.915

flavonoids< 1.4

proline>=720
Barbera

24/0/0 Barolo
0/27/0

Grignolino
0/1/6

Grignolino
0/1/30

Fig. 7.7. Fitted tree using rpart on the odd rows of the wine data set (all thirteen
variables).

11

111

1

111111

1

1111111111111

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample number (test set)

w
in

es
.r

pa
rt

.p
re

di
ct

2222222222

22

222

2

22

2

2222222222

222
2
2222

2
2222222222

2
2222222222222

2
22222222222

2

22222222222223333333333

33

333

3

33

3

3333333333

333
3
3333

3
3333333333

3
3333333333333

3
3

333

3

333333

3

3333333333333

Fig. 7.8. Classification probabilities of the test set of the wine data for the tree
shown in Figure 7.7. Within the first twenty samples we see four incorrect predic-
tions: the true class is Barolo (indicated by “2”) but there is some confusion with
Grignolino (“3”). Similarly, the two other misclassifications show up clearly.

seven training samples, one of which is a Barolo and six are Grignolinos. The
other rows end up in the large Grignolino group, containing also one Barolo
sample. A global overview is more easily obtained by plotting the probabilities:

> matplot(wines.rpart.predict)

This leads to the plot in Figure 7.8. Clearly, most of the Barolos and Barberas
are classified with complete confidence, corresponding with “pure” leaves. The
Grignolinos on the other hand always end up in a leaf also containing one
Barolo sample. When using the type = "class" argument to the prediction
function, the result is immediately expressed in terms of classes, and can be
used to assess the overall prediction quality:

130 7 Classification

> table(vintages[even],

+ predict(wines.rpart, newdata = wines.df[even,],

+ type = "class"))

Barbera Barolo Grignolino

Barbera 22 0 2

Barolo 0 25 4

Grignolino 0 0 35

This corresponds to the six misclassifications seen in Figure 7.8.

Constructing the Tree

The construction of the optimal tree is an NP-complete problem, and there-
fore one has to resort to simple approximations. The standard approach is the
following. All possible splits – binary divisions of the data – in all predictor
variables are considered; the one leading to the most “pure” branches is se-
lected. The term “pure” in this case signifies that, in one leaf, only instances
of one class are present. For categorical variables, tests for unique values are
used; for continuous variables, all data points are considered as potential split
values. This simple procedure is applied recursively until some stopping cri-
terion is met.

The crucial point is the definition of “impurity”: several different measures
can be used. Two criteria are standing out [34]: the Gini index, and the en-
tropy. The Gini index of a node is given by

IG(p) =
∑
i6=j

pipj = 1−
∑
j

p2j (7.18)

and is minimal (exactly zero) when the node contains only samples from one
class – pi is the fraction of samples from class i in the node. The entropy of a
node is defined by

IE(p) = −
∑
j

pj log pj

which again is minimal when the node is pure and contains only samples of
one class (and we define 0 log 0 = 0).

The optimal split is the one that minimises the average impurity of the
new left and right branches:

PlI(pl) + PrI(pr)

where Pl and Pr signify the sample fractions and I(pl) and I(pr) are the
impurities of the left and right branches, respectively.

As an illustration, again consider the two-dimensional subset of the odd
rows of the wine data, using variables flavonoids and proline. Since the
data are continuous, we consider all values as potential splits, and calculate
the Gini and entropy indices. We can, e.g., define a small function to calculate
the impurity based on the Gini index:

7.3 Tree-Based Approaches 131

> gini <- function(x, class, splitpoint)

+ {

+ left.ones <- class[x < splitpoint]

+ right.ones <- class[x >= splitpoint]

+ nleft <- length(left.ones)

+ nright <- length(right.ones)

+

+ if ((nleft == 0) | (nright == 0)) return (NA)

+

+ p.left <- table(left.ones) / nleft

+ p.right <- table(right.ones) / nright

+

+ (nleft * (1 - sum(p.left^2)) +

+ nright * (1 - sum(p.right^2))) /

+ (nleft + nright)

+ }

This function takes a vector x, for instance values for the proline variable
in the wines data, a class vector and a split point, and returns the impurity
value defined in Equation 7.18. To calculate which split is optimal for the
two-dimensional wine data, we can use all possible values as split points, and
plot the result:

> Ginis <- matrix(0, nrow(X), 2)

> splits.flav <- sort(X[,1])

> splits.prol <- sort(X[,2])

> for (i in 1:nrow(X)) {

+ Ginis[i,1] <- gini(X[,1], vint, splits.flav[i])

+ Ginis[i,2] <- gini(X[,2], vint, splits.prol[i])

+ }

> matplot(Ginis, pch = 1:2, col = 1:2)

> legend("topleft", legend = c("flavonoids", "proline"),

+ col = 1:2, pch = 1:2)

Figure 7.9 shows that the first split should be on the flavonoids column:
it leads to a lower Gini value, i.e., more pure leaves. To identify the exact
location of the minima, we can use function which.min:

> apply(Ginis, 2, which.min)

[1] 24 56

The 24th element in the sorted flavonoids concentrations is 1.25, but any value
between the 23rd (1.22) and 24th elements would of course lead to the same
Gini index.

The division obtained in this way can be split further for both the left and
right parts of the data. Following the same strategy as above, this leads to
the following suggestions for both variables:

132 7 Classification

0 20 40 60 80

0.
45

0.
50

0.
55

0.
60

0.
65

G
in

is

flavonoids
proline

Fig. 7.9. Impurity values (Gini indices) for all possible split points in the two-
dimensional subset of the wine data. The 24th value of the flavonoids variable lead
to the best solution and is selected as the first split.

Left part Right part
Optimal value ∆ Gini index Optimal value ∆ Gini index

Flavonoids 0.575 0.0107 2.30 0.1875
Proline 525 0.0180 739 0.3832

In this table, the third and fifth columns signify the change in purity compared
to the unsplit parent node. Clearly, the best option is to choose the split in
the right part on proline at a value of 739. This corresponds exactly to the
result shown in Figure 7.6.

Obviously, one can keep on splitting nodes until every sample in the train-
ing set is a leaf in itself, or in any case until each single leaf contains only
instances of one class. Such a tree is able to represent the training data per-
fectly, but whether the predictions of such a tree are reliable is quite another
matter. In fact, these trees generally will not perform very well. By describing
every single feature of the training set, the tree is not able to generalize. This
is an example of overfitting (or overtraining, as it is sometimes called as well),
something that is likely to occur in methods that have a large flexibility – in
the case of trees, the freedom to keep on adding nodes.

The way this problem is tackled in constructing optimal trees is to use
pruning, i.e., trimming useless branches. When exactly a branch is useless
needs to be assessed by some form of validation – in rpart, tenfold cross-
validation is used by default. One can therefore easily find out whether a
particular branch leads to a decrease in prediction error or not.

More specifically, in pruning one minimizes the cost of a tree, expressed as

C(T) = R(T) + α|T | (7.19)

7.3 Tree-Based Approaches 133

In this equation, T is a tree with |T | leafs, R(T) the “risk” of the tree –
e.g., the proportion of misclassifications – and α a complexity penalty, chosen
between 0 and ∞. One can see α as the cost of adding another node. It is
not necessarily to build up the complete tree to calculate this measure: during
the construction the cost of the current tree can be assessed and if it is above
a certain value, the process stops. This cost is indicated with the complexity
parameter (cp) in the rpart function, which is normalized so that the root
node has a complexity value of one.

Once again looking at the first 1000 variables of the control and pca

classes in the prostate data, one can issue the following commands to construct
the full tree with no misclassifications in the training set:

> prost.df <- data.frame(type = prost.type, prost = prost)

> prost.rprt <-

+ rpart(type ~ ., data = prost.df, subset = odd,

+ control = rpart.control(cp = 0, minsplit = 0))

The two extra arguments tell the rpart function to keep on looking for splits
even when the complexity parameter, cp, gets smaller than 0.1 and the mini-
mal number of objects in a potentially split node, minsplit, is smaller than
20 (the default values). This leads to a tree with seven leaves. Printing the
prost.rprt object would show that the training data are indeed predicted
perfectly – however, four of the terminal nodes only three or fewer samples.
Indeed, the test data are not predicted with the same level of accuracy:

> prost.rprtpred <-

+ predict(prost.rprt, newdata = prost.df[even,])

> table(prost.type[even], classmat2classvec(prost.rprtpred))

control pca

control 29 11

pca 12 72

Pruning could decrease the complexity without sacrificing much accuracy in
the description of the training set, and hopefully would increase the generalis-
ing abilities of the model. To see what level of pruning is necessary, the table
of complexity values can be printed:

> printcp(prost.rprt)

Classification tree:

rpart(formula = type ~ ., data = prost.df,

subset = odd, control = rpart.control(cp = 0,

minsplit = 0))

Variables actually used in tree construction:

[1] prost.112 prost.209 prost.360 prost.588 prost.8 prost.965

134 7 Classification

●

●

●

●

●

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Inf 0.41 0.12 0.034 0

1 2 3 5 7

size of tree

Fig. 7.10. Complexity pruning of a tree: in this case, three terminal nodes are
optimal (lowest prediction error at lowest complexity).

Root node error: 41/125 = 0.328

n= 125

CP nsplit rel error xerror xstd

1 0.56098 0 1.00000 1.00000 0.128024

2 0.29268 1 0.43902 0.73171 0.116462

3 0.04878 2 0.14634 0.39024 0.091103

4 0.02439 4 0.04878 0.43902 0.095739

5 0.00000 6 0.00000 0.48780 0.099970

Also a graphical representation is available:

> plotcp(prost.rpart)

This leads to Figure 7.10. Both from this figure and the complexity table
shown above, it is clear that the tree with the lowest prediction error and the
least number of nodes is obtained at a value of cp equal to 0.12. Usually, one
chooses the complexity corresponding to the minimum of the predicted error
plus one standard deviation, indicated by the dotted line in Figure 7.10. The
tree created with a cp value of 0.12, containing only two leaves rather than the
original seven, leads to a higher number of misclassifications (six rather than
zero) in the training set, but unfortunately also to a slightly higher number
of misclassifications in the test set:

> prost.rprt2 <-

+ rpart(type ~ ., data = prost.df, subset = odd,

+ control = rpart.control(cp = 0.12))

7.4 More Complicated Techniques 135

> prost.rprt2pred <-

+ predict(prost.rprt2, newdata = prost.df[even,])

> table(prost.type[even], classmat2classvec(prost.rprt2pred))

control pca

control 29 11

pca 15 69

Either way, the result is quite a bit worse than what we have seen earlier with
RDA (page 121).

Apart from the 0/1 loss function normally used in classification (a predic-
tion is either right or wrong), rpart allows to specify other, more complicated
loss functions as well – often, the cost of a false positive is very different
from the cost of a false negative decision. Another useful feature in the rpart
package is the possibility to provide prior probabilities for all classes.

7.3.2 Discussion

Trees offer a lot of advantages. Perhaps the biggest of them is the appeal of the
model form: many scientists feel comfortable with a series of more and more
specific questions leading to an unambiguous answer. The implicit variable
selection makes model interpretation much easier, and alleviates many prob-
lems with missing values, and variables of mixed types (boolean, categorical,
ordinal, numerical).

There are downsides too, of course. The number of parameters to adjust
is large, and although the default settings quite often lead to reasonable solu-
tions, there may be a temptation to keep fiddling until an even better result
is obtained. This, however, can easily lead to overfitting: although the data
are faithfully reproduced, the model is too specific and lacks generalization
power. As a result, predictions for future data are generally of lower quality
than expected. And as for the interpretability of the model: this is very much
dependent on the composition of the training set. A small change in the data
can lead to a completely different tree. As we will see, this is a disadvantage
that can be turned into an advantage: combinations of tree-based classifiers
often give stable and accurate predictions. These so-called Random Forests,
taking away many of the disadvantages of simple tree-based classifiers while
keeping the good characteristics, enjoy huge popularity and will be treated in
Section 9.7.2.

7.4 More Complicated Techniques

When relatively simple models like LDA or KNN do not succeed in producing
models with good predictive capabilities, one can ask the question: why do
we fail? Is it because the data just do not contain enough information to

136 7 Classification

build a useful model? Or are the models we have tried too simple? Do we
need something more flexible, perhaps nonlinear? The distinction between
information-poor data and complicated class boundaries is often hard to make.

In this section, we will treat two popular nonlinear techniques with comple-
mentary characteristics: whereas Support Vector Machines (SVMs) are very
useful when the number of objects is not too large, Artificial Neural Networks
(ANNs) should only be applied when there are ample training cases available.
Conversely, SVMs are applicable in high-dimensional cases whereas ANNs are
not: very often, a data reduction step like PCA is employed to bring the num-
ber of variables down to a manageable size. These two techniques do share one
important property: they are very flexible indeed, and capable of modelling
the most complex relationships. This puts a large responsibility on the re-
searcher for thorough validation, especially since there are several parameters
to tune. Because the theory behind the methods is rather extensive, we will
only sketch the contours – interested readers are referred to the literature for
more details.

7.4.1 Support Vector Machines

SVMs [77,78,79] in essence are binary classifiers, able to discriminate between
two classes. They aim at finding a separating hyperplane maximizing the
distance between the two classes. This distance is called the margin in SVM
jargon; a synthetic example, present in almost all introductions to SVMs, is
shown in Figure 7.11. Although both classifiers, indicated by the solid lines,
perfectly separate the two classes, the classifier with slope 2/3 achieves a
much bigger margin than the vertical line. The points that are closest to the
hyperplane are said to lie on the margins, and are called support vectors –
these are the only points that matter in the classification process itself. Note
however that all other points have been used in setting up the model, i.e.,
in determining which points are support vectors in the first place. The fact
that only a limited number of points is used in the predictions for new data
is called the sparseness of the model, an attractive property in that it focuses
attention to the region that matters, the boundary between the classes, and
ignores the exact positions of points far from the battlefield.

More formally, a separating hyperplane can be written as

wx− b = 0 (7.20)

The margin is the distance between two parallel hyperplanes with equations

wx− b = −1 (7.21)

wx− b = 1 (7.22)

and is given by 2/||w||. Therefore, maximizing the margin comes down to
minimizing ||w||, subject to the constraint that no data points fall within the
margin:

7.4 More Complicated Techniques 137

0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Fig. 7.11. The basic idea behind SVM classification: the separating hyperplane
(here, in two dimensions, a line) is chosen in such a way that the margin is maximal.
Points on the margins (the dashed lines) are called “support vectors”. Clearly, the
margins for the separating line with slope 2/3 are much further apart than for the
vertical boundary.

ci(wxi) ≤ 1 (7.23)

where ci is either −1 or 1, depending on the class label. This is a standard
quadratic programming problem.

It can be shown that these equations can be rewritten completely in terms
of inner products of the support vectors. This so-called dual representation
has the big advantage that the original dimensionality of the data is no longer
of interest: it does not really matter whether we are analysing a data matrix
with two columns, or a data matrix with ten thousand columns. By applying
suitable kernel functions, one can transform the data, effectively leading to
a representation in higher-dimensional space. Often, a simple discrimination
function can be obtained in this high-dimensional space, which translates into
an often complex class boundary in the original space. Because of the dual
representation, one does not need to know the exact transformation – it suffices
to know that it exists, which is guaranteed by the use of kernel functions
with specific properties. Examples of suitable kernels are the polynomial and
gaussian kernels. More details can be found in the literature (e.g., [3]).

138 7 Classification

Package e1071 provides an interface to the libsvm library3 through the
function svm. Application to the Barbera and Grignolino classes leads to the
following results:

> wines.df <-

+ data.frame(vint = factor(vintages[vintages != "Barolo"]),

+ X = wines[vintages != "Barolo",])

> wines.svm <- svm(vint ~ ., data = wines.df, subset = odd)

> wines.svmpred <- predict(wines.svm, newdata = wines.df[even,])

> table(vint[even], wines.svmpred)

wines.svmpred

Barbera Grignolino

Barbera 24 0

Grignolino 0 35

These default settings lead to a perfect classification of the test set.
One attractive feature of SVMs is they are able to handle fat data matrices

(where the number of features is much larger than the number of objects)
without any problem. Let us see, for instance, how the standard SVM performs
on the prostate data. We will separate the cancer samples from the other
control class – again, we are considering only the first 1000 variables. Using
the cross = 10 argument, we perform ten-fold crossvalidation, which should
give us some idea of the performance on the test set:

> prost <- prostate[prostate.type != "bph",1:1000]

> prost.type <- factor(prostate.type[prostate.type != "bph"])

> prost.df <- data.frame(type = prost.type, prost = prost)

> prost.svm <- svm(type ~ ., data = prost.df, subset = odd,

+ cross = 10)

> summary(prost.svm)

Call:

svm(formula = type ~ ., data = prost.df, cross = 10, subset = odd)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 1

gamma: 0.001

Number of Support Vectors: 88 (38 50)

Number of Classes: 2

Levels: control pca

3 See http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

7.4 More Complicated Techniques 139

10-fold crossvalidation on training data:

Total Accuracy: 92

Single Accuracies:

100 100 83.3 84.6 100 76.9 91.7 84.6 100 100

The summary (slightly edited to save space) shows us that rather than the
complete training set of 125 samples, only 88 objects are seen as support
vectors, which for SVMs is quite a large fraction. The prediction accuracies
for the left out segments vary from 77 to 100%, with an overall error estimate
of 8%. Let us see whether the test set can be predicted well:

> prost.svmpred <- predict(prost.svm, newdata = prost.df[even,])

> table(prost.type[even], prost.svmpred)

prost.svmpred

control pca

control 33 7

pca 1 83

Eight misclassifications out of 124 cases, nicely in line with the crossvalidation
error estimate, is better than anything we have seen so far – not a bad result
for default settings.

Extensions to More than Two Classes

The fact that only two-class situations can be tackled is a severe limitation: in
reality, it often happens that we should discriminate between several classes.
The standard approach is to turn one multi-class problem into several two-
class problems. More specifically, one can perform one-against-one testing,
where every combination of single classes is assessed, or one-against-all testing.
In the latter case, the question is rephrased as: “to be class A or not to be
class A” – the advantage is that, in the case of n classes, only n comparisons
need to be made, whereas in the one-against-one case .5n(n− 1) models must
be fitted. The disadvantage is that the class boundaries may be much more
complicated: class “not A” may be very irregular in shape. The default in the
function svm is to assess all one-against-one classifications, and use a voting
scheme to pinpoint the final winning class.

> plot(wines.svm, wines.df[odd,], proline ~ flavonoids)

This leads to the left plot in Figure 7.12. The background colours indicate
the predicted class for each region in the plot, obtained in a way very similar
to the code used to produce the contour lines in Figure 7.3 and similar plots.
Plotting symbols show the positions of the support vectors – these are shown
as crosses, whereas regular data points, unimportant for this SVM model, are
shown as open circles.

140 7 Classification

Fig. 7.12. SVM classification plots for the two-dimensional wine data (training data
only). Support vectors are indicated by crosses; regular data points by open circles.
Left plot: default settings of svm. Right plot: best SVM model with a polynomial
kernel, obtained with best.svm.

Finding the Right Parameters

The biggest disadvantage of SVMs is the large number of tuning parameters.
One should choose an appropriate kernel, and, depending on this kernel, values
for two or three parameters. A special convenience function, tune, is available
in the e1071 package, which, given a choice of kernel, varies the settings over
a grid, calculates validation values such as crossvalidated prediction errors,
and returns an object of class tune containing all validation results. A related
function is best which returns the model with the best validation performance.
If we wanted to find the optimal settings for the three parameters coef0,
gamma and cost using a polynomial kernel (the default kernel is a radial basis
function), we could do it like this:

> wines.bestsvm <-

+ best.svm(vintages ~ ., data = wines.dfodd,

+ kernel = "polynomial",

+ coef0 = seq(-.5, .5, by = .1),

+ gamma = 2^(-1:1), cost = 2^(2:4))

> wines.bestsvmpred <-

+ predict(wines.bestsvm, newdata = wines.df[even,])

> sum(wines.bestsvmpred == vintages[even])

[1] 80

The number of correct classifications is exactly the same as with the default
SVM parameters; however, the classification plot, shown in the right of Fig-
ure 7.12 looks completely different. Differences are mainly located in areas
where no samples are present, but in some cases are also present in more rel-
evant parts – consider, for example, the centers of the figures. This presents a

7.4 More Complicated Techniques 141

bias bias

Fig. 7.13. The structure of a feedforward NN with three input units, four hidden
units and two output units.

sobering illustration of the dangers we face when we trust complicated mod-
els trained with relatively few data points. Note that also the number and
position of support vectors is radically different.

7.4.2 Artificial Neural Networks

Artificial Neural Networks (ANNs, also shortened to neural networks, NNs)
form a family of extremely flexible modelling techniques, loosely based on the
way neurons in human brains are thought to be connected – hence the name.
Although the principles of NNs had already been defined in the fifties of the
previous century with Rosenblatt’s perceptron [80], the technique only really
caught on some twenty years later with the publication of Rumelhart’s and
McClellands book [81]. Many different kinds of NNs have been proposed; here,
we will only treat the flavour that has become known as feed-forward neural
networks, backpropagation networks, after the name of the training rule (see
below), or multi-layer perceptrons.

Such a network consists of a number of units, typically organized in three
layers, as shown in Figure 7.13. When presented with input signals si, a unit
will give an output signal so corresponding to a transformation of the sum of
the inputs:

so = f(
∑
i

si) (7.24)

For the units in the input layer, the transformation is usually the identity
function, but for the middle layer (the hidden layer in NN terminology) typi-

142 7 Classification

cally sigmoid transfer functions or threshold functions are used. For the hidden
and output layers, special bias units are traditionally added, always having
an output signal of +1 [34]. Network structure is very flexible. It is possible to
use multiple hidden layers, remove links between specific units, to add connec-
tions skipping layers, or even to create feedback loops where output is again
fed to special input units. However, the most common structure is to have a
fully connected network such as the one depicted in Figure 7.13, consisting of
one input layer, one hidden layer and one output layer. One can show that
adding more hidden layers will not lead to better predictions (although in
some cases it is reported to speed up training). Whereas the numbers of units
in the input and output layers are determined by the data, the number of
units in the hidden layer is a parameter that must be optimized by the user.

Connections between units are weighted: an output signal from a partic-
ular unit is sent to all connected units in the next layer, multiplied by the
respective weights. These weights, in fact form the model for a particular net-
work topology – training the network comes down to finding the set of weights
that gives optimal predictions. The most popular training algorithm is called
the backpropagation algorithm, and consists of a steepest-descent based adap-
tion of the weights upon repeated presentation of training data. Many other
training algorithms have been proposed as well.

In R, several packages are available providing general neural network ca-
pabilities, such as AMORE and neuralnet [82]. We will use the nnet package,
one of the recommended R packages, featuring feed-forward networks with
one hidden layer, several transfer functions and possibly skip-layer connec-
tions. It does not employ the usual backpropagation training rule but rather
the optimization method provided by the R function optim.

For the autoscaled wine data, training a neural net with four units in the
hidden layer is done as follows:

> X <- scale(wines, scale = sd(wines[odd,]),

+ center = colMeans(wines[odd,]))

> w.df <- data.frame(vintage = vintages, wines = X)

> wines.nnet <- nnet(vintage ~ ., data = w.df,

+ size = 4, subset = odd)

weights: 71

initial value 109.648958

iter 10 value 0.812789

iter 20 value 0.002502

final value 0.000093

converged

Although the autoscaling is not absolutely necessary (the same effect can
be reached by using different weights for the connections of the input units
to the hidden layer) it does make it easier for the network to reach a good
solution – the optimization easily gets stuck in a local optimum. In practice,

7.4 More Complicated Techniques 143

multiple training sessions should be performed, and the one with the smallest
(crossvalidated) training error should be selected. An alternative is to use a
(weighted) prediction using all trained networks.

As expected for such a flexibly fitting technique, the training data are
reproduced perfectly:

> training.pred <- predict(wines.nnet, type = "class")

> sum(diag(table(vintages[odd],

+ training.pred))) / length(odd)

[1] 1

But also the test data in this case are predicted very well – only three errors
are made:

> table(vintages[even],

+ classmat2classvec(predict(wines.nnet, X[even,])))

Barbera Barolo Grignolino

Barbera 23 0 1

Barolo 0 29 0

Grignolino 2 0 33

Several default choices have been made under the hood of the nnet func-
tion: the type of transfer functions in the hidden layer and in the output layer,
the number of iterations, whether least-squares fitting or maximum likelihood
fitting is done (default is least-squares), and several others. The only explicit
setting in this example is the number of units in the hidden layer, and this
immediately is the most important parameter, too. Choosing too many units
will lead to a good fit of the training data but potentially bad generalization
– overfitting. Too few hidden units will lead to a model that is not flexible
enough.

A convenience function tune.nnet is available in package e1071, similar
to tune.svm. Let us see whether our (arbitrary) choice of four hidden units
can be improved upon:

> wines.nnetmodels <-

+ tune.nnet(vintage ~ ., data = w.df[odd,], size = 1:8)

> summary(wines.nnetmodels)

Parameter tuning of `nnet':

- sampling method: 10-fold cross validation

- best parameters:

size

2

- best performance: 0

144 7 Classification

- Detailed performance results:

size error dispersion

1 1 0.12361 0.09721

2 2 0.00000 0.00000

3 3 0.02222 0.04685

4 4 0.01111 0.03514

5 5 0.01111 0.03514

6 6 0.01111 0.03514

7 7 0.01111 0.03514

8 8 0.01111 0.03514

Clearly, one hidden unit is not enough; two hidden units apparently suffice. In
addition to the summary function, a plot method is available as well. Instead
of using tune.nnet, one can also apply best.nnet – this function directly
returns the trained model with the optimal parameter settings:

> best.wines.nnet <-

+ best.nnet(vintage ~ ., data = w.df[odd,],

+ size = 1:8)

> table(vintages[even],

+ predict(best.wines.nnet, w.df[even,], type = "class"))

Barbera Barolo Grignolino

Barbera 23 0 1

Barolo 0 29 0

Grignolino 2 5 28

The result is quite a bit worse than the network with four hidden units shown
above. It illustrates immediately the one major problem with applying neural
networks to relatively small data sets: the variability of the training procedures
is so large that one only has a faint idea of what optimal settings to apply.
The golden rule of thumb is to use the smallest possible models. In this case,
one would expect a network with only two hidden neurons to perform better
than one with four, and perhaps, over a large number of training events, this
may actually be the case. For individual training runs, however, it is not at
all uncommon to see the kind of unexpected behaviour shown above.

In the example above we used the default stopping criterion of the nnet

function, which is to perform 100 iterations of complete presentations of the
training data. In several publications, scientists have advocated continuously
monitoring prediction errors throughout the training iterations, in order to
prevent the network from overfitting. In this approach, training should be
stopped as soon as the error of the validation set starts increasing. Apart
from the above-mentioned training parameters, this presents an extra level of
difficulty which becomes all the more acute with small data sets. To keep these
problems manageable, one should be very careful in applying neural networks
in situations with few cases; the more examples, the better.

8

Multivariate Regression

In Chapters 6 and 7 we have concentrated on finding groups in data, or, given
a grouping, creating a predictive model for new data. The last situation is
“supervised” in the sense that we use a set of examples with known class labels,
the training set, to build the model. In this chapter we will do something
similar – now we are not predicting a discrete class property but rather a
continuous variable. Put differently: given a set of independent real-valued
variables (matrix X), we want to build a model that allows prediction of Y ,
consisting of one, or possibly more, real-valued dependent variables. As in
almost all regression cases, we here assume that errors, normally distributed
with constant variance, are only present in the dependent variables, or at least
are so much larger in the dependent variables that errors in the independent
variables can be ignored. Of course, we also would like to have an estimate of
the expected error in predictions for future data.

8.1 Multiple Regression

The usual multiple least-squares regression (MLR), taught in almost all statis-
tics courses, is modelling the relationship

Y = XB + E (8.1)

where B is the matrix of regression coefficients and E contains the residuals.
The regression coefficients are obtained by

B = (XTX)−1XTY (8.2)

with variance-covariance matrix

Var(B) = (XTX)−1σ2 (8.3)

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011

145
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_8,

146 8 Multivariate Regression

The residual variance σ2 is typically estimated by

σ̂2 =
1

n− p− 1

n∑
i=1

(yi − ŷi)2 (8.4)

MLR has a number of attractive features, the most important of which is that
it is the Best Linear Unbiased Estimator (BLUE) when the assumption of
uncorrelated normally distributed noise with constant variance is met [26]. The
standard deviations of the individual coefficients, given by the square roots of
the diagonal elements of the variance-covariance matrix Var(B), can be used
for statistical testing: variables whose coefficients are not significantly different
from zero are sometimes removed from the model. Since removing one such
variable will in general lead to different estimates for the remaining variables,
this results in a stepwise variable selection approach (see Chapter 10).

For the gasoline data, a regression using four of the 401 wavelengths,
evenly spaced over the entire range, would yield

> X <- gasoline$NIR[, 100*(1:4)]

> Y <- gasoline$octane

> odd <- seq(1, nrow(X), by = 2)

> even <- seq(2, nrow(X), by = 2)

> Xtr <- cbind(1, X[odd,])

> Ytr <- Y[odd]

> t(solve(crossprod(Xtr), t(Xtr)) %*% Ytr)

1098 nm 1298 nm 1498 nm 1698 nm

[1,] 64.482 1312.9 -1607.5 229.94 26.244

Adding the column of ones using the cbind function on the fifth line in the
example above causes an intercept to be fitted as well. The solve statement
is the direct implemention of Equation 8.2. This also works when Y is multi-
variate – the regression matrix B will have one column for every variable to
be predicted.

Rather than using this explicit matrix inversion, one would use the stan-
dard linear model function lm, which also provides the usual printing, plotting
and summary functions:

> Xtr <- X[odd,]

> Blm <- lm(Ytr ~ Xtr)

> summary(Blm)

Call:

lm(formula = Y[odd] ~ X[odd,])

Residuals:

Min 1Q Median 3Q Max

-2.59870 -0.64860 0.07353 0.65509 1.73075

8.1 Multiple Regression 147

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.5 15.6 4.12 0.00036 ***

Xtr1098 nm 1312.9 276.7 4.74 7.2e-05 ***

Xtr1298 nm -1607.5 368.1 -4.37 0.00019 ***

Xtr1498 nm 229.9 82.1 2.80 0.00968 **

Xtr1698 nm 26.2 10.7 2.46 0.02100 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.116 on 25 degrees of freedom

Multiple R-squared: 0.4807, Adjusted R-squared: 0.3976

F-statistic: 5.786 on 4 and 25 DF, p-value: 0.001941

The lm function automatically fits an intercept; there is no need to explic-
itly add a column of ones to the matrix of independent variables. Under the
usual assumption of normal iid residuals, the p-values for the coefficients are
gathered in the last column: all coefficients are significant at the α = 0.05
level.

8.1.1 Limits of Multiple Regression

Unfortunately, however, there are some drawbacks. In the context of the nat-
ural sciences, the most important perhaps is the sensitivity to correlation in
the independent variables. This can be illustrated using the following example.
Suppose we have a model that looks like this:

y = 2 + x1 + 0.5x2 − 2x3

and further suppose that x2 and x3 are highly correlated (r ≈ 1.0). This means
that any of the following models will give more or less the same predictions:

y = 2 + x1 − 1.5x2

y = 2 + x1 − 1.5x3

y = 2 + x1 + 5.5x2 − 7x3

y = 2 + x1 + 1000.5x2 − 1002x3

So what is so bad about that? If all predictions would exactly be the same, not
even that much, but in practice there will be differences, especially when new
samples are far away from the space covered by the training set. The differ-
ences will be larger when coefficients are larger, such as in the last line; from a
set of equivalent models, the one with the smallest regression coefficients is to
be preferred. Furthermore, confidence intervals for the regression coefficients
are based on the assumption of independence, which clearly is violated in this
case: any coefficient value for x2 can be compensated for by x3, and variances

148 8 Multivariate Regression

for the x2 and x3 coefficients will be infinite. Also in cases where there is less
than perfect correlation, we will see more unstable models, in the sense that
the variances of the coefficient estimates will get large and predictions less
reliable.

To be fair, ordinary multiple regression will not allow you to calculate the
model in pathological cases like the above: matrix XTX will be singular, in-
dicating that infinitely many inverse matrices, and, conversely, many different
coefficient vectors, are possible – cf. drawing a straight line through only one
point. Another case where the inverse cannot be calculated is the situation
where there are more independent variables than samples:

> Xtr <- cbind(1, gasoline$NIR[odd,])

> solve(crossprod(Xtr), t(Xtr)) %*% Ytr

Error in solve.default(crossprod(Xtr), t(Xtr)) :

system is computationally singular: reciprocal

condition number = 3.49858e-24

This was the primary reason to select four of the variables in the gasoline
example in the beginning of this section. Unfortunately, in almost all appli-
cations of spectroscopy the number of variables far exceeds the number of
samples; the correlations between variables is often high, too.

One possibility to tackle the above problem is to calculate a pseudoinverse
matrix X+ – such a pseudoinverse, or a generalized inverse, has the property
that

XX+ = 1 (8.5)

and can be applied to non-square matrices as well as square matrices. The
most often used variant is the Moore-Penrose pseudoinverse, available in R
as function ginv in package MASS:

> Blm <- ginv(Xtr) %*% Ytr

The Moore-Penrose inverse uses the singular value decomposition of the data
matrix:

X−1 =
(
UDV T

)−1
= V D−1UT (8.6)

The trick is to ignore the singular values in D that are zero – in the inverse
matrix D−1 these will still have a value of zero and the corresponding rows in
V and U will be disregarded. In practice, of course, a threshold will have to be
used which is usually taken to be dependent on the machine precision. Values
smaller than the threshold will be set to zero in the inverse of D. Singular
values which are slightly larger, however, may exert a large influence on the
result, and in many cases the generalized inverse is not very stable.

It is taking this idea one step further to restrict the number of singular val-
ues in Equation 8.6 to only the most important principal components. This is
the basis of Principal Component Regression (PCR). PCR basically performs
a regression on the scores of X, where a suitable number of latent variables

8.2 PCR 149

has to be chosen. An alternative, Partial Least Squares (PLS) regression em-
ploys the same basic idea, but takes the dependent variable into account when
defining scores and loadings, whereas PCR concentrates on capturing variance
in X only. In both techniques, the inversion of the covariance matrix is simple
because of the orthogonality of the scores. The price we pay is threefold: vital
information may be lost because of the data compression, we have to choose
the degree of compression, i.e., the number of latent variables, and finally it
is no longer possible to derive analytical expressions for the prediction error
and the variances of individual regression coefficients. In practice, the latter is
not too useful anyway because of the violated assumption of independence in
virtually all examples from the natural sciences. To be able to say something
about the optimal number of latent variables, and about the expected error of
prediction, crossvalidation or similar techniques must be used (see Chapter 9).

We have already seen that in general models with small regression coeffi-
cients are to be preferred. It can be shown that PLS as well as PCR actually
shrink the regression coefficients towards zero [3]. They are therefore biased
methods: the coefficients on average will be smaller in absolute value than
the unknown, “true”, coefficients – however, this will be compensated for by
a much lower variance. Other approaches, based on explicit penalization of
the regression coefficients, can be used as well. If a quadratic (L2) penalty is
employed, the result is called ridge regression. A penalty in the form of abso-
lute values (an L1 penalty) leads to the lasso, whereas a combination of L1

and L2 penalties is known as the elastic net. Methods based on the L1 norm
have the advantage that many of the coefficients will have a value of zero,
thereby implicitly performing variable selection. They will be treated, along
with explicit variable selection methods, in Chapter 10.

8.2 PCR

The prime idea of PCR is to use scores rather than the original data for the
regression step. This has two advantages: scores are orthogonal, so there are
no problems with correlated variables, and secondly, the number of PCs taken
into account usually is much lower than the number of original variables. This
reduces the number of coefficients that must be estimated considerably, which
in turn leads to more degrees of freedom for the estimation of errors. Of course,
we have the added problem that we have to estimate how many PCs to retain.

8.2.1 The Algorithm

For the moment, let us select a PCs; matrices T , P , etcetera, will have a
columns. The regression model is then built using the reconstructed matrix
X̃ = TP T rather than the original matrix:

Y = X̃B + E = T (P TB) + E = TA+ E (8.7)

A = (T TT)−1T TY (8.8)

150 8 Multivariate Regression

where A = P TB will contain the regression coefficients for the scores. The
crossproduct matrix of T is diagonal (remember, T is orthogonal) so can
be easily inverted. The regression coefficients for the scores can be back-
transformed to coefficients for the original variables:

B = PA

= P (T TT)−1T TY (8.9)

This can be simplified further by resubstituting T = UD (from the SVD
routine):

B = P (DUTUD)−1DUTY

= PD−2DUTY

= PD−1UTY (8.10)

In practice, one always performs PCR on a mean-centered data matrix.
In Chapter 4 we have seen that without mean-centering the first PC often
dominates and is very close to the vector of column means, an undesirable
situation. By mean-centering, we explicitly force a regression model without
an intercept. The result is that the coefficient vector B does not contain an
abscissa vector b0; it should be calculated explicitly by taking the difference
between the mean y values and the mean predicted y-values.

b0 = ȳ −XB (8.11)

For every variable in Y , we will find one number in b0.
Let’s see how this works for the gasoline data. We will model the odd rows,

now based on the complete NIR spectra. We start by mean-centering the data,
based only on the odd rows:

> X <- scale(gasoline$NIR, scale = FALSE,

+ center = colMeans(gasoline$NIR[odd,]))

Note that we do not use autoscaling, since that would blow up noise in un-
informative variables. Next, we calculate scores and use these as independent
variables in a regression. For the moment, we choose five PCs.

> Xodd.svd <- svd(X[odd,])

> Xodd.scores <- Xodd.svd$u %*% diag(Xodd.svd$d)

> gasodd.pcr <-

+ lm(gasoline$octane[odd] ~ I(Xodd.scores[,1:5]) - 1)

The - 1 in the formula definition prevents lm from fitting an intercept; the
other coefficients are not affected, whether an intercept is fitted or not, but
removing it makes the comparison below slightly easier. The regression coef-
ficients of the wavelengths, the original variables, are obtained by multiplying
the regression coefficients of the scores with the corresponding loadings:

8.2 PCR 151

1000 1200 1400 1600

−
6

−
4

−
2

0
2

Wavelength (nm)

R
eg

re
ss

io
n

co
ef

fic
ie

nt

Fig. 8.1. Regression coefficients for the gasoline data (based on the odd rows),
obtained by PCR using five PCs.

> gasodd.coefs <- coef(gasodd.pcr) %*% t(Xodd.svd$v[,1:5])

The same model can be produced by the pcr function from the pls pack-
age [83]:

> gasoline.pcr <- pcr(octane ~ ., data = gasoline,

+ subset = odd, ncomp = 5)

> all.equal(c(coef(gasoline.pcr)), c(gasodd.coefs))

[1] TRUE

> plot(wavelengths, coef(gasoline.pcr), type = "l",

+ xlab = "Wavelength (nm)", ylab = "Regression coefficient")

The last line produces the plot of the regression coefficients, shown in Fig-
ure 8.1. As usual, the intercept is not visualized. One can clearly see features
such as the peaks around 1200 and 1400 nm. Often, such important variables
can be related to physical or chemical phenomena.

The model can be summarized by the generic function summary.mvr:

> summary(gasoline.pcr)

Data: X dimension: 30 401

Y dimension: 30 1

Fit method: svdpc

Number of components considered: 5

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps

X 74.318 86.26 91.66 96.11 97.32

octane 9.343 11.32 16.98 97.22 97.26

Clearly, the first component focuses completely on explaining variation in X;
it is the fourth component that seems most useful in predicting Y , the octance
number.

152 8 Multivariate Regression

8.2.2 Selecting the Optimal Number of Components

How much variance of Y is explained is one criterion one could use to de-
termine the optimal number of PCs. More often, however, one monitors the
(equivalent) root-mean-square error (RMS or RMSE):

RMS =

√√√√ n∑
i

(ŷi − yi)2/n (8.12)

where ŷi − yi is the difference between predicted and true value, and n is
the number of predictions. A simple R function to find RMS values is the
following:

> rms <- function(x, y) sqrt(mean((x-y)^2))

It is important to realise that both criteria assess the fit of the model to the
training data, i.e., the quality of the reproduction rather than the predictive
abilities of the model.

The pls package comes with an extractor function for RMS estimates:

> RMSEP(gasoline.pcr, estimate = "train", intercept = FALSE)

1 comps 2 comps 3 comps 4 comps 5 comps

1.3467 1.3319 1.2887 0.2358 0.2343

The intercept = FALSE argument prevents the RMS error based on nothing
but the average of the dependent variable to be printed. The error when using
only the fourth PC in the regression is given by

> RMSEP(gasoline.pcr, estimate = "train", comp = 4)

[1] 0.6287

It is only half the size of the error of prediction using PCs one to three, again
confirming that the fourth PC is the dominant one in the prediction model.
Nevertheless, the combination of the fourth with the first three components
leads to a significant improvement. Adding the fifth does not seem worth-
while. Compare these numbers with the MLR predictions based on only four
wavelengths:

> rms(Ytr - fitted(Blm))

[1] 1.019

The first three PCs apparently capture less relevant information for predicting
the octane numbers than four randomly selected wavelengths!

One should be very cautious in interpreting these numbers – reproduction
of the training set is not a reliable way to assess prediction accuracy, which
is what we really are after. For one thing, adding another component will

8.2 PCR 153

0 2 4 6 8 10

0.
4

0.
8

1.
2

1.
6

Ytr

number of components

R
M

S
E

P

●

●

●

●●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

85 86 87 88 89

85
86

87
88

89

Ytr, 4 comps, validation

measured

pr
ed

ic
te

d

Fig. 8.2. Validation plot for PCR regression on the gasoline data (left) and predic-
tion quality of the optimal model, containing four PCs (right).

(by definition) always decrease the error. Predictions for new data, however,
may not be as good: the model often is too focussed on the training data, the
phenomenon known as overfitting that we also saw in Section 7.3.1.

A major difficulty in PCR modelling is therefore the choice of the optimal
number of PCs to retain. Usually, crossvalidation is employed to estimate this
number: if the number of PCs is too small, we will incorporate too little infor-
mation, and our model will not be very useful – the crossvalidation error will
be high. If the number of PCs is too large, the training set will be reproduced
very well, but again, the crossvalidation error will be large because the model
is not able to provide good predictions for the left-out samples. So the strat-
egy is simple: we perform the regression for several numbers of PCs, calculate
the crossvalidation errors, put the results in a graph, et voilà, we can pick the
number we like best.

In LOO crossvalidation, n different models are created, each time omit-
ting another sample y−i from the training data. Equation 8.12 then is used
to calculate an RMS estimate. Alternatively, a group of samples is left out
simultaneously. One often sees the name RMSCV or RMSECV, to indicate
that it is the RMS value derived from a crossvalidation procedure. Of course,
this procedure can be used in other contexts as well; the RMSEP usually is
associated with prediction of unseen test data, RMSEV is an error estimate
from some form of validation, and RMSEC is the calibration error, indicating
how well the model fits the training data. The RMSEC value is in almost all
cases the lowest; it measures how well the model represents the data on which
it is based. The RMSEP is an estimate of the thing that really interests us, the
error of prediction, but it can only reliably be calculated directly when large
training and test sets are available and the training data are representative
for the test data. In practice, RMSE(C)V estimates are the best we can do.

154 8 Multivariate Regression

In the pls package, the function RMSEP is used to calculate all these quanti-
ties – it takes an argument estimate which can take the values "train" (used
in the example above), "CV" and "test" for calibration, crossvalidation and
test set estimates, respectively. The pcr function has an optional argument
for crossvalidation: validation can be either "none", "LOO", or "CV". In the
latter case, 10 segments are used in the crossvalidation by default (“leave 10%
out”). Application to the gasoline data leads to the following results:

> gasoline.pcr <- pcr(octane ~ ., data = gasoline, subset = odd,

+ validation = "LOO", ncomp = 10)

> plot(gasoline.pcr, "validation", estimate = "CV")

This leads to the left plot in Figure 8.2, showing the RMSECV estimate1

against the number of PCs. Not unexpectedly, four PCs clearly are a very
good compromise between model complexity and predictive power. For the
argument estimate, one can also choose "adjCV", which is a bias-corrected
error estimate [84].

Zooming in on the plot would show that the absolute minimum is at seven
PCs, and perhaps taking more than ten PCs into consideration would lead to
an lower global minimum. However, one should keep in mind that an RMS
value is just an estimate with an associated variance, and differences are not
always significant. Moreover, the chance of overfitting increases with a higher
number of components. Numerical values are accessible in the validation

list element of the fitted object. The RMS values plotted in Figure 8.2 can be
assessed as follows:

> RMSEP(gasoline.pcr, estimate = "CV")

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps

1.4631 1.5351 1.5802 1.6682 0.3010 0.3082

6 comps 7 comps 8 comps 9 comps 10 comps

0.3031 0.2661 0.2738 0.2949 0.2861

which is the same as

> sqrt(gasoline.pcr$validation$PRESS / nrow(Xtr))

The quality of the four-component model can be assessed by visualization:
a very common plot shows the true values of the dependent variable on the
x-axis and the predictions on the y-axis. We use a square plot where both
axes have the same range so that an ideal prediction would lie on a line with
a slope of 45 degrees.

> par(pty = "s")

> plot(gasoline.pcr, "prediction", ncomp = 4)

1 Note that the axis uses the term “RMSEP” which sometimes is used in a more
general sense – whether it deals with crossvalidation or true predictions must be
deduced from the context.

8.3 Partial Least Squares (PLS) Regression 155

Each point in the right plot of Figure 8.2 is the prediction for that point when
it was not part of the training set. Therefore, this plot gives some idea of what
to expect for unseen data. Note, however, that this particular number of PCs
was chosen with the explicit aim to minimise errors for these data points –
the LOO crossvalidation was used to assess the optimal number of PCs. The
corresponding error estimate is therefore optimistically biased, and we need
another way of truly assessing the expected error for future observations.

This is given, for example, by the performance of the model on an unseen
test set:

> gasoline.pcr.pred <- predict(gasoline.pcr, ncomp = 4,

+ newdata = gasoline[even,])

> rms(gasoline$octane[even], gasoline.pcr.pred)

[1] 0.2101745

or, by using the RMSEP function again:

> RMSEP(gasoline.pcr, ncomp = 4, newdata = gasoline[even,],

+ intercept = FALSE)

[1] 0.2102

The error on the test set is 0.21, which is smaller than the crossvalidated error
on the training set with four components (0.3010). Although this may seem
surprising at first, it is again the result of the fact that LOO error estimates,
although unbiased, have a large variance [66]. We will come back to this point
in Chapter 9.

8.3 Partial Least Squares (PLS) Regression

In PCR, the information in the independent variables is summarized in a
small number of principal components. However, there is no a priori reason
why the PCs associated with the largest singular values should be most useful
for regression. PC 1 covers the largest variance, but still may have only limited
predictive power, as we have seen in the gasoline example. Since we routinely
pick PCs starting from number 1 and going up, there is a real chance that we
include variables that actually do not contribute to the regression model. Put
differently: we compress information in X without regard to what is to be
predicted, so we can never be sure that the essential part of the data is pre-
served. Although it has been claimed that selecting specific PCs (e.g. nrs 2, 5
and 6) on which to base the regression, rather than a sequence of PCs starting
from one, leads to better models (see, e.g., [85]), this only increases the diffi-
culties one faces: selection is a much more difficult process than determining
a threshold.

156 8 Multivariate Regression

PLS forms an alternative. Just like PCR, PLS defines orthogonal latent
variables to compress the information and throw away irrelevant stuff. How-
ever, PLS explicitly aims to construct latent variables in such a way as to
capture most variance in X and Y , and to maximize the correlation between
these matrices. Put differently: it maximizes the covariance between X and
Y . So it seems we keep all the advantages, and get rid of the less desirable
aspects of PCR. The algorithm is a bit more complicated than PCR; in fact,
there exist several almost equivalent algorithms to perform PLS. The differ-
ences are caused by either small variations in the criterion that is optimized,
different implementations to obtain speed improvements in specific situations,
or by different choices for scaling intermediate results.

8.3.1 The Algorithm(s)

Just as in PCR, in PLS it is customary to perform mean-centering of the data
so that there is no need to estimate an intercept vector; this is obtained af-
terwards. The notation is a bit more complicated than with PCR, as already
mentioned, since now bothX and Y matrices have scores and loadings. More-
over, in many algorithms one employs additional weight matrices. One other
difference with PCR is that the components of PLS are extracted sequentially
whereas the PCs in PCR can be obtained in one SVD step. In each iteration
in the PLS algorithm, the variation associated with the estimated component
is removed from the data in a process called deflation, and the remainder
(indicated with E for the “deflated”X matrix, and F for the deflated Y) is
used to estimate the next component. This continues until the user decides it
has been enough, or until all components have been estimated.

The first component is obtained from an SVD of the crossproduct matrix
S = XTY , thereby including information on both variation in X and Y ,
and on the correlation between both. The first left singular vector, w, can
be seen as the direction of maximal variance in the crossproduct matrix, and
is usually indicated with the somewhat vague description of “weights”. The
projections of matrix X on this vector are called “X scores”:

t = Xw = Ew (8.13)

Eventually, these scores t will be gathered in a matrix T that fulfills the same
role as the score matrix in PCR; it is a low-dimensional, full-rank, estimate of
the information in X. Therefore, regressing Y on T is easy, and the coefficient
vector for T can be converted to a coefficient vector for the original variables.

The next step in the algorithm is to obtain loadings for X and Y by
regressing against the same score vector t:

p = ET t/(tT t) (8.14)

q = F T t/(tT t) (8.15)

8.3 Partial Least Squares (PLS) Regression 157

Notice that one divides by the sum of all squared elements in t: this leads to
“normalized” loadings. It is not essential that the scaling is done in this way.
In fact, there are numerous possibilities to scale either loadings, weights, or
scores – one can choose to have either the scores or the loadings orthogonal.
Unfortunately, this can make it difficult to compare the scores and loadings of
different PLS implementations. The current description is analogous to PCR
where the loadings are taken to have unit variance.

Finally, the data matrices are deflated: the information related to this
latent variable, in the form of the outer products tpT and tqT , is subtracted
from the (current) data matrices.

En+1 = En − tpT (8.16)

F n+1 = F n − tqT (8.17)

The estimation of the next component then can start from the SVD of the
crossproduct matrix ET

n+1F n+1. After every iteration, vectors w, t, p and q
are saved as columns in matrices W , T , P and Q, respectively.

In words, the algorithm can be summarized as follows: the vectors w con-
stitute the direction of most variation in the crossproduct matrix XTY . The
scores t are the coordinates of the objects on this axis. Loadings for X and Y
are obtained by regressing both matrices against the scores, and the products
of the scores and loadings for X and Y are removed from data matrices E
and F .

One complication is that columns of matrix W can not be compared di-
rectly: they are derived from successively deflated matrices E and F . An
alternative way to represent the weights, in such a way that all columns relate
to the original X matrix, is given by

R = W (P TW)−1 (8.18)

Matrix R has some interesting properties, one of which is that it is a general-
ized inverse for P T . It also holds that T = XR. For interpretation purposes,
one sometimes also calculates so-called y-scores U = Y Q. Alternatively, these
y-scores can be obtained as the right singular vectors of ETF .

Now, we are in the same position as in the PCR case: instead of regressing
Y on X, we use scores T to calculate the regression coefficients A, and later
convert these back to the realm of the original variables:

Y = X̃B + E = T (P TB) + E = TA+ E (8.19)

A = (T TT)−1T TY (8.20)

B = RA (8.21)

These equations are almost identical with the PCR algorithm presented in
Equations 8.7 and 8.8. The difference lies first and foremost in the calculation
of T , which now includes information on Y , and in the calculation of the

158 8 Multivariate Regression

regression coefficients for the original variables, where PLS uses R rather
than P . Again, the singularity problem is solved by using a low-dimensional
score matrix T of full rank. The coefficient for the abscissa is obtained in the
same way as with PCR (Equation 8.11).

In the pls package, PLS regression is available as function plsr:

> gasoline.pls <- plsr(octane ~ ., data = gasoline,

+ subset = odd, ncomp = 5)

> summary(gasoline.pls)

Data: X dimension: 30 401

Y dimension: 30 1

Fit method: kernelpls

Number of components considered: 5

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps

X 71.71 79.70 90.71 95.70 96.59

Ytr 22.82 93.93 97.49 97.79 98.74

Clearly, the first components of the PLS model explain much more variation in
Y than the corresponding PCR model: the first two PLS components already
cover almost 94%, whereas the first two PCR components barely exceed ten
percent. The price to be paid lies in the description of the X data: the two-
component PCR model explains seven percent more than the corresponding
PLS model.

To assess how many components are needed, the validation argument
can be used, in the same way as with the pcr function:

> gasoline.pls <- plsr(octane ~ ., data = gasoline, subset = odd,

+ validation = "LOO", ncomp = 10)

> par(mfrow = c(1,2))

> plot(gasoline.pls, "validation", estimate = "CV")

> par(pty = "s")

> plot(gasoline.pls, "prediction", ncomp = 3)

> abline(0, 1, col = "gray")

The resulting plots, shown in Figure 8.3, indicate that a PLS model compara-
ble to the four-component PCR model from Figure 8.2 only needs three latent
variables. This difference between PLS and PCR is often observed in practice:
PLS models typically need one or two fewer components than PCR models to
achieve similar CV error estimates. Let’s check the predictions of the unseen
data, the even rows of the data frame:

> RMSEP(gasoline.pls, ncomp = 3, newdata = gasoline[even,],

+ intercept = FALSE)

[1] 0.2093

8.3 Partial Least Squares (PLS) Regression 159

0 2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

octane

number of components

R
M

S
E

P

●

●

●

●●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

85 86 87 88 89

85
86

87
88

89

octane, 3 comps, validation

measured

pr
ed

ic
te

d

Fig. 8.3. Validation plot for PLS regression on the gasoline data (left) and prediction
quality of the optimal model, containing three PLS components (right).

Indeed, with one component less the PLS model achieves a prediction quality
that is as good as that of the PCR model.

The plsr function takes a method argument to specify which PLS algo-
rithm is to be used. The default is kernelpls [86], a very fast and stable
algorithm which gives results equal to the original NIPALS algorithm [87]
which is available as oscorespls. The kernel algorithm performs SVD on
crossproduct matrix XTY Y TX rather than XTY , and avoids deflation of
Y . In cases with large numbers of variables (tens of thousands), a variant
called widekernelpls [88] is more appropriate – again, it operates by con-
structing a smaller kernel matrix, this time XXTY Y T , on which to perform
the SVD operations. However, it is numerically less stable than the default
algorithm. Also the widekernelpls algorithm gives results that are identical
(upon convergence) to the NIPALS results.

One popular alternative formulation, SIMPLS [89], deflates matrix S
rather than matrices E and F individually. It can be shown that SIMPLS
actually maximizes the covariance between X and Y (which is usually taken
as “the” PLS criterion), whereas the other algorithms are good approxima-
tions; for univariate Y , SIMPLS predictions are equal to the results from
NIPALS and kernel algorithms. However, for multivariate Y , there may be
(minor) differences between the approaches. SIMPLS can be invoked by pro-
viding the method = "simpls" argument to the plsr function. In all these
variants, the scores will be orthogonal, whereas the loadings are not:

> cor(gasoline.pls$loadings[,1:3])

Comp 1 Comp 2 Comp 3

Comp 1 1.00000 -0.55329 -0.07528

Comp 2 -0.55329 1.00000 -0.06226

Comp 3 -0.07528 -0.06226 1.00000

160 8 Multivariate Regression

> cor(gasoline.pls$scores[,1:3])

Comp 1 Comp 2 Comp 3

Comp 1 1.000e+00 6.704e-17 2.113e-17

Comp 2 6.704e-17 1.000e+00 1.789e-16

Comp 3 2.113e-17 1.789e-16 1.000e+00

Given that one has a certain freedom to decide where exactly in the algo-
rithm to normalize, the outcome of different implementations, and in partic-
ular, in different software packages, may seem to vary significantly. However,
the regression coefficients, and therefore the predictions, of all these are usu-
ally virtually identical. For all practical purposes there is no reason to prefer
the outcome of one algorithm over another.

8.3.2 Interpretation

PLS models give separate scores and loadings for X and Y , and additionally,
in most implementations, some form of a weight matrix. In most cases, one
concentrates on the matrix of regression coefficients B which is independent
of algorithmic details such as the exact way of normalization of weights, scores
and loadings, and is directly comparable to regression coefficients from other
methods like PCR. Sometimes, plots of weights, loadings or scores of indi-
vidual components can be informative, too, although one should be careful
not to overinterpret: there is no a priori reason to assume that the individual
components directly correspond to chemically interpretable entities [90].

The interpretation of the scores and loadings is similar to PCA: a score
indicates how much a particular object contributes to a latent variable, while
a loading indicates the contribution of a particular variable. An example of a
loading plot is obtained using the code below:

> plot(gasoline.pls, "loading", comps = 1:3, legendpos = "top",

+ lty = c(1, 2, 4), col = c(1, 2, 4))

This leads to Figure 8.4. The percentage shown in the legend corresponds with
the variation explained of the X matrix for each latent variable. Note that
the third component explains more variation of X than the second; in a PCR
model this would be impossible2. Components one and two show spectrum-
like shapes, with the largest values at the locations of the main features in the
data, as expected – the third component is focussing very much on the last ten
data points. This raises questions on the validity of the model: it is doubtful
that these few (and noisy) wavelengths should play a major part. Perhaps a
more prudent choice for the number of latent variables from Figure 8.3 would
have been to use only two.

2 The plot.mvr function can be applied to PCR models as well as PLS models, so
the discussion in this paragraph pertains to both.

8.3 Partial Least Squares (PLS) Regression 161

0 100 200 300 400

−
0.

4
−

0.
2

0.
0

0.
1

0.
2

0.
3

variable nr

lo
ad

in
g

va
lu

e

Comp 1 (72 %)
Comp 2 (8 %)
Comp 3 (11 %)

Fig. 8.4. PLS loadings for the first three latent variables for the gasoline data; the
third component has large loadings only for the last ten variables.

Biplots, showing the relations between scores and loadings, can be made
using the function biplot.mvr. One can in this way inspect the influence of
individual PLS components, where the regression coefficient matrix B gives a
more global view summarizing the influence of all PLS components. The argu-
ment which, taking the values "x", "y", "scores" and "loadings", indicates
what type of biplot is required. In the first case, the scores and loadings for
x are shown in a biplot; the second case does the same for y. The other two
options show combinations of x- and y- scores and loadings, respectively. In
the current example, y-loadings are not very interesting since there is only one
y variable, octane. An additional source of information is the relation between
the X-scores, T , and the Y-scores, U . For the gasoline model these plots are
shown for the first two latent variables in Figure 8.5 using the following code:

> plot(scores(gasoline.pls)[,1], Yscores(gasoline.pls)[,1],

+ xlab = "X scores", ylab = "Y scores", main = "LV 1")

> abline(h = 0, v = 0, col = "gray")

> plot(scores(gasoline.pls)[,2], Yscores(gasoline.pls)[,2],

+ xlab = "X scores", ylab = "Y scores", main = "LV 2")

> abline(h = 0, v = 0, col = "gray")

Usually one hopes to see a linear relation, as is the case for the second latent
variable; the first LV shows a less linear behaviour. One could replace the linear
regression in Eqs. 8.14 and 8.15 by a polynomial regression (using columns of
powers of t), or even a non-linear regression. There are, however, not many
reports where this has led to significant improvements; see for example [91,92].

162 8 Multivariate Regression

●

●

●

●
● ●

●

● ●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

LV 1

X scores

Y
 s

co
re

s

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

−0.10 0.00 0.05 0.10 0.15

−
0.

10
0.

00
0.

05
0.

10
0.

15

LV 2

X scores

Y
 s

co
re

s
Fig. 8.5. Relation between X-scores and Y-scores, T and U , respectively, for the
first two latent variables (gasoline data).

For multivariate Y , there is an additional difference between PLS and
PCR. With PCR, separate models are fit for each Y variable: the algorithm
does not try to make use of any correlation between the separate dependent
variables. With PLS, this is different. Of course, one can fit separate PLS
models for each Y variable (this is often indicated with the acronym PLS1),
but one can also do it all in one go (PLS2). In that case, the same X-scores
T are used for all dependent variables; although a separate set of regression
coefficients will be generated for every y-variable, implicitly information from
the other dependent variables is taken into account. This can be an advantage,
especially when there is appreciable correlation between the y-variables, but
in practice there is often little difference between the two approaches. Most
people prefer multiple PLS1 models (analogous to PCR regression) since they
seem to give slightly better fits.

It is no coincidence that chemistry has been the first area in which PLS
was really heavily used. Analytical chemists had been measuring spectra and
trying to relate them to chemical properties for years, when this regression
technique finally provided them with the tool to do so. Other disciplines such
as statistics were slow to follow, but eventually PLS has found its place in a
wide range of fields. Also the theoretical background has now been clarified:
PLS started out as an algorithm that was really poorly understood. Nowadays,
there are very few people who dispute that PLS is an extremely useful method,
but it has been overhyped somewhat. In practical applications, its performance
is very similar to techniques like PCR. Careful thinking of experimental design,
perhaps variable selection, and appropriate preprocessing of the data is likely
to be far more important than the exact choice of multivariate regression
technique.

8.4 Ridge Regression 163

PLS Packages for R

Apart from the pls package, several other packages provide PLS functions,
both for regression and classification. The list is large and rapidly expanding;
examples include the packages lspls implementing Least-Squares PLS [93], and
gpls [94] implementing generalized partial least squares, based on the Itera-
tively ReWeighted Least Squares (IRWLS) method [95]. Weighted-average
PLS [96], often used in paleolimnology, can be found in package paltran.
Package plsgenomics implements methods for classification with microarray
data and prediction of transcription factor activities from combined ChIP-chip
analysis, combining a.o. ridge regression with PLS. This package also provides
function pls-lda performing LDA on PLS scores (see Section 11.3.2). Pack-
age plspm contains, in addition to the usual functions for PLS regression, also
functions for Path Modelling [97]. Penalized PLS [98] is available in package
ppls, and sparse PLS, forcing small loadings to become zero so that fewer
variables are taking part in the model, in package spls [99]. Which of these
packages is most suited depends on the application.

8.4 Ridge Regression

Ridge Regression (RR) [100,101] is another way to tackle regression problems
with singular covariance matrices, usually for univariate Y . From all possible
regression models giving identical predictions for the data at hand, RR selects
the one with the smallest coefficients. This loss function is implemented by
posing a (quadratic) penalty on the size of the coefficients B:

arg max
B

(Y −XB)
2

+ λBTB (8.22)

The solution is given by

B̂ =
(
XTX + λI

)−1
XTY (8.23)

Compared to Equation 8.2, a constant is added to the diagonal of the
crossproduct matrix XTX, which makes it non-singular. The size of λ is
something that has to be determined (see below). This shrinkage property
has obvious advantages in the case of collinearities: even if the RR model is
not quite correct, it will not lead to wildly inaccurate predictions (which may
happen when some coefficients are very large). Usually, the intercept is not
included in the penalization: one would expect that adding a constant c to the
y-values would lead to predictions that are exactly the same amount larger.
If the intercept would be penalized as well, this would not be the case.

Optimal values for λ may be determined by crossvalidation (or variants
thereof). Several other, direct, estimates of optimal values for λ have been

164 8 Multivariate Regression

proposed. Hoerl and Kennard [101] use the ratio of the residual variance s2,
estimated from the model, and the largest regression coefficient:

λ̂HK =
s2

max(B2
i)

(8.24)

A better estimate is formed by using the harmonic means of the regression
coefficients rather than the largest value. This is known as the Hoerl-Kennard-
Baldwin estimate [102]:

λ̂HKB =
ps2

BTB
(8.25)

where p, as usual, indicates the number of columns in X. A variance-weighted
version of the latter is given by the Lawless-Wang estimate [103]:

λ̂LW =
ps2

BTXTXB
(8.26)

Since PCR and PLS can also be viewed as shrinkage methods [90,3], there are
interesting links with ridge regression. All three shrink the regression coeffi-
cients away from directions of low variation. Ridge regression can be shown
to be equivalent to PCR with shrunken eigenvalues for the principal compo-
nents; PCR uses a hard threshold to select which PCs to take into account.
PLS also shrinks – it usually takes the middle ground between PCR and RR.
However, in some cases PLS coefficients may be inflated, which may lead to
slightly worse performance [3]. In practice, all three methods lead to very
similar results. Another common feature is that just like PCR and PLS, ridge
regression is not affine equivariant: it is sensitive to different (linear) scalings
of the input. In many cases, autoscaling is applied by default. It is also hard-
coded in the lm.ridge function in package MASS. Unfortunately, for many
types of spectroscopic data autoscaling is not very appropriate, as we have
seen earlier. For the gasoline data, it does not work very well either:

> gasoline.ridge <-

+ lm.ridge(octane ~ NIR, data = gasoline, subset = odd,

+ lambda = seq(0.001, 0.1, by = 0.01))

> select(gasoline.ridge)

modified HKB estimator is -6.695607e-28

modified L-W estimator is -3.908617e-28

smallest value of GCV at 0.001

Both the HKB estimate and the L-W estimate suggest a very small value of
λ; the generalized crossvalidation (see Chapter 9) suggests the smallest value
of λ is the best.

Apart from the links with PCR and PLS, ridge regression is also closely
related to SVMs when seen in the context of regression – we will come back
to this in Section 8.6.1. Related methods using L1 penalization, such as the
lasso and the elastic net, will be treated in more detail in Section 10.2.

8.6 Some Non-Linear Regression Techniques 165

8.5 Continuum Methods

In many ways, MLR and PCR form the opposite ends of a scale. In PCR, the
stress is on summarizing the variance in X; the correlation with the property
that is to be predicted is not taken into account in defining the latent variables.
With MLR the opposite is true: one does not care how much information in
X is actually used as long as the predictions are OK. PLS takes a middle
ground with the criterion that latent variables should explain as much of the
covariance between X and Y as possible.

There have been attempts to create regression methods that offer other
intermediate positions, most notably Continuum Regression (CR, [104]) and
Principal Covariates Regression (PCovR, [105]). Althought they are interest-
ing from a theoretical viewpoint, in practice they have never caught on. One
possible explanation is that there is little gain in yet another form of multi-
variate regression, where methods like PCR, PLS and RR already exist and
in most cases give very similar results. Moreover, these continuum methods
provide additional crossvalidation problems because more often than not an
extra parameter needs to be set.

8.6 Some Non-Linear Regression Techniques

Many non-linear techniques are available for regression. Here, we will very
briefly focus on two classes of methods that we have already seen in Chap-
ter 7 on classification, SVMs and neural networks. Both can be adapted to
continuous output without much trouble.

8.6.1 SVMs for Regression

In order not to get lost in mathematical details that would be out of context in
this book, only the rough contours of the use of SVMs in regression problems
are sketched here. A more throrough treatment can be found in the literature
(e.g., [3]). Typically, SVMs tackle linear regression problems by minimization
of a loss function of the following form:

LSVM =
∑
i

V (yi − f(xi)) + λ||β||2 (8.27)

where the term V (yi − f(xi)) corresponds to an error function describing the
differences between experimental and fitted values, and the second term is
a regularization term, keeping the size of the coefficients small. If the error
function V is taken to be the usual squared error then this formulation is
equal to ridge regression, but more often other forms are used. Two typical
examples are shown in Figure 8.6: the left panel shows a so-called ε-insensitive
error function, where only errors larger than a cut-off ε are taken into account

166 8 Multivariate Regression

V
(e

)

e

− ε ε

V
(e

)

e

− ε ε

Fig. 8.6. Typical error functions for SVMs in a regression setting: left, the ε-
insensitive error function; right, the Huber function.

(linearly), and the right plot shows the Huber loss function, which is quadratic
up to a certain value c and linear above that value. The reason to use these
functions is that the linear error function for larger errors leads to more robust
behaviour. Moreover, the solution of the loss function in Equation 8.27 can be
formulated in terms of inner products, just like in the classification case, and
again only a subset of all coefficients (the support vectors) are non-zero. More-
over, kernels can be used to find simple linear relationships in high dimensions
which after back-transformation represent much more complex patterns.

Let us concentrate on how to use the svm function, seen earlier, in re-
gression problems. We again take the gasoline data, and fit a model, for the
moment using the default settings:

> gasoline.svm <- svm(octane ~ ., data = gasoline,

+ subset = odd, cross = 10)

Note that the svm function by default performs autoscaling on both X and y,
which for the gasoline data is not optimal for reasons discussed earlier. The
next piece of code shows the predictions for the training set (recognition, not
the crossvalidated predictions), and the test set:

> plot(gasoline$octane[odd], predict(gasoline.svm),

+ main = "Training set", xlab = "Octane number (true)",

+ ylab = "Octane number (predicted)")

> abline(0, 1)

> plot(gasoline$octane[even],

+ predict(gasoline.svm, new = gasoline[even,]),

+ main = "Test set", xlab = "Octane number (true)",

+ ylab = "Octane number (predicted)")

> abline(0, 1)

8.6 Some Non-Linear Regression Techniques 167

●

●

●

●
●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

85 86 87 88 89

85
86

87
88

89
Training set

Octane number (true)

O
ct

an
e

nu
m

be
r

(p
re

di
ct

ed
)

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

84 85 86 87 88 89

85
86

87
88

Test set

Octane number (true)
O

ct
an

e
nu

m
be

r
(p

re
di

ct
ed

)

Fig. 8.7. Predictions for the training data (left) and the test data (right) using the
default values of the svm function.

The result, shown in Figure 8.7, tells us that the training data are predicted
quite well (although there seems to be a slight tendancy to predict too close to
the mean), but the predictions for the test data show large errors. Clearly, the
model is not able to generalize. Applying summary to the fitted gasoline.svm

object shows that the mean squared error of crossvalidation equals 0.505,
which corresponds to an RMS value of 0.711, quite a lot higher than we have
seen with some other methods. This is a clear example of overfitting.

In this kind of situation, one should consider the parameters of the method.
The default behaviour of the svm function is to use the ε-insensitive error
function, with ε = .1, a value of 1 for the penalization factor in Equation 8.27,
and a gaussian (“radial basis”) kernel, which also has some parameters to tune.
Since in this case already many variables are available for the SVM, it makes
sense to use a less flexible kernel. Indeed, swapping the radial basis kernel for
a linear one makes a big difference for the prediction of the test data:

> gasoline.svm <- svm(octane ~ ., data = gasoline,

+ subset = odd, kernel = "linear")

> rms(gasoline$octane[even],

+ predict(gasoline.svm, new = gasoline[even,]))

[1] 0.2642303

Optimization of the parameters, for instance using tune.svm, should lead to
further improvements.

168 8 Multivariate Regression

8.6.2 ANNs for Regression

The basic structure of a backpropagation network as shown in Figure 7.13
remains unchanged for regression applications: the numbers of input and out-
put units equal the number of independent and dependent variables, respec-
tively. Again, the number of hidden units is subject to optimization. In high-
dimensional cases one practical difficulty needs to be solved – the data need to
be compressed, otherwise the number of weights would be too high. In many
practical applications, PCA is performed on the input matrix and the network
is trained on the scores.

Let’s see how that works out for the gasoline data. We will use the scores
of the first five PCs, and fit a neural network model with five hidden units.
To indicate that we want numerical output rather than class output, we set
the argument linout to TRUE (the default is use logistic output units):

> X <- scale(gasoline$NIR, scale = FALSE,

+ center = colMeans(gasoline$NIR[odd,]))

> Xodd.svd <- svd(X[odd,])

> Xodd.scores <- Xodd.svd$u %*% diag(Xodd.svd$d)

> Xeven.scores <- X[even,] %*% Xodd.svd$v

> gas.nnet <- nnet(Xodd.scores[,1:5],

+ matrix(gasoline$octane[odd], ncol = 1),

+ size = 5, linout = TRUE)

weights: 36

initial value 230114.767351

iter 10 value 2.873687

iter 20 value 1.599885

iter 30 value 1.557083

iter 40 value 1.541940

iter 50 value 1.508819

iter 60 value 1.463200

iter 70 value 1.329733

iter 80 value 1.234174

iter 90 value 1.196288

iter 100 value 1.109134

The number of weights is 36, perhaps already a bit too high given the limited
number of samples. Clearly, the decrease in error value for the training set has
not yet slowed after the (default) maximum value of 100 training iterations –
however, using more iterations may lead to overfitting. The usual approach is
to divide the data in three sets: the training set, the validation set, of which the
predictions are continuously monitored, and a test set. As soon as the errors
in the predictions for the validation set start to increase, training is stopped.
At that point, the network is considered to be trained, and its prediction
errors can be assessed using the test set. Obviously, this can only be done

8.6 Some Non-Linear Regression Techniques 169

Repeated ANN training

RMS

F
re

qu
en

cy

0.0 0.5 1.0 1.5

0
10

20
30

40

Fig. 8.8. Histogram of prediction errors (RMS values) for the even rows of the
gasoline data upon repeated neural network training.

when the number of data points is not too small, a serious impediment in the
application of neural nets in the life sciences...

For the moment, we will ignore the issue, and we will assess the predictive
performance of our final network:

> rms(gas.nnet.pred, gasoline$octane[even])

[1] 0.2930

The prediction error is similar to the PCR result on page 155. Obviously,
not only the number of training iterations, but also the number of hidden
units needs to be optimized. Similar to the approach in classification, the
convenience function tune.nnet can be helpful.

One further remark needs to be made: since the initialization of neural nets
usually is done randomly, repeated training sessions rarely lead to comparable
results. Figure 8.8 shows a histogram of RMS prediction errors (test set, even
rows of the gasoline data) of 100 trained networks. Clearly, there is consid-
erable spread. Even a local optimum can be discerned around 1.63 in which
more than 10% of the networks end up. The bottom line is that although
neural networks have great modelling power, one has to be very careful in
using them – in particular, one should have enough data points to allow for
rigid validation.

170 8 Multivariate Regression

8.7 Classification as a Regression Problem

In many cases, classification can be tackled as a regression problem. The
obvious example is logistic regression, one of the most often used classification
methods in the medical and social sciences. In logistic regression, one models
the log of the odds ratio, usually with a multiple linear regression:

ln
p

1− p
= XB (8.28)

where p is the probability of belonging to class 1. This way of modelling has
several advantages, the most important of which may be that the result can
be directly interpreted as a probability – the p value will always be between
0 and 1. Moreover, the technique makes very few assumptions: the indepen-
dent variables do not need to have constant variance, or even be normally
distributed; they may even be categorical. The usual least-squares estimators
for findingB are not used, but rather numerical optimization techniques max-
imizing the likelihood. However, a big disadvantage is that many data points
are needed. Because of the high dimensionality of most data sets in the life
sciences, logistic regression has not been widely adopted in this field and we
will not treat it further here.

Although it may not seem immediately very useful to use regression for
classification problems, it does open up a whole new field of elaborate, pos-
sibly non-linear regression techniques as classifiers. Another very important
application is classification of fat data matrices, a situation that is covered
quite well in a regression context as we have seen. This topic will be treated
in more detail in Section 11.3. Here, we will show the general idea in the
context of LDA.

8.7.1 Regression for LDA

In the case of a two-class problem (healthy/diseased, true/false, yes/no) the
dependent variable is coded as 1 for the first class, and 0 for the other class.
For prediction, any object whose predicted value is above 0.5 will be classified
in the second class. In the field of machine learning, often a representation
is chosen where one class is indicated with the label −1 and the other one
with 1; the class boundary then is at 0. For problems involving more than two
classes, a class matrix is used with one column for every class and at most
one “1” per row; the position of the “1” indicates the class of that particular
object.

Package kohonen contains a function to convert a class vector to a matrix:

> wine.indices <- seq(1, 175, by = 25)

> classvec2classmat(vintages[wine.indices])

8.7 Classification as a Regression Problem 171

Barbera Barolo Grignolino

[1,] 0 1 0

[2,] 0 1 0

[3,] 0 1 0

[4,] 0 0 1

[5,] 0 0 1

[6,] 0 0 1

[7,] 1 0 0

In this example, there is only one Barbera sample, and three each of Barolo
and Grignolino.

To illustrate the close connection between discriminant analysis and linear
regression, consider a two-variable subset of the wine data with equal sizes of
only classes Barolo and Grignolino:

> C <- classvec2classmat(vintages[c(1:25, 61:85)])

> X <- wines[c(1:25, 61:85), c(7, 13)]

The regression model can be written as

C = XB + E (8.29)

where C is the two-column class matrix – note that because this is only a
two-class problem, we could also have used one vector with the 0/1 or -1/1
coding. Solving this equation by least squares leads to:

> C <- classvec2classmat(vintages[c(1:25, 61:85)])

> X <- wines[c(1:25, 61:85), c(7, 13)]

> wines.lm <- lm(C ~ X)

> wines.lm.predict <- classmat2classvec(predict(wines.lm))

> table(vintages[c(1:25, 61:85)], wines.lm.predict)

wines.lm.predict

Barolo Grignolino

Barbera 0 0

Barolo 23 2

Grignolino 1 24

This is exactly the same classification as the one obtained from LDA:

> wines.lda <- lda(factor(vintages[c(1:25, 61:85)]) ~ X)

> table(vintages[c(1:25, 61:85)], predict(wines.lda)$class)

Barolo Grignolino

Barbera 0 0

Barolo 23 2

Grignolino 1 24

172 8 Multivariate Regression

The factor function in the lda line is used to convert the three-level factor
vintages to a two-level factor containing only Barolo and Grignolino, making
the comparison with the lm predictions easier. This means that instead of
doing LDA, we could use linear regression with a binary dependent variable:
any object for which the predicted value is larger than 0.5 will be classified in
class 2, otherwise in class 1. The direct equality of the least-squares solution
with LDA only holds for two groups with equal class sizes [34, 3]; for more
classes, or classes with different sizes, the linear regression approach actually
optimizes a slightly different criterion than LDA.

8.7.2 Discussion

Although the concept of using regression methods for classification seems ap-
pealing and certainly adds flexibility, there are some remarks that should be
made. The question arises what exactly it is that we are predicting. Since the
only two reasonable values are zero and one, what do other values signify?
How can we compare predictions from different classifiers? If a prediction is
far greater than one, does that mean that the classification is more reliable
than a prediction that is close to the class cut-off point of 0.5?

More serious are the violations of the usual regression assumptions. In
logistic regression, maximum likelihood methods are used to obtain the re-
gression coefficients, but in most cases where a classification is disguised as a
regression problem, ordinary least squares methods are used. The assumption
of normally distributed errors with equal variance is certainly not fulfilled
here. Still, as is so often the case, when a method performs in practice by
achieving good quality predictions, people will not be afraid to use it.

Part IV

Model Inspection

9

Validation

Validation is the assessment of the quality of a predictive model, in accordance
with the scientific paradigm in the natural sciences: a model that is able to
make accurate predictions (the position of a planet in two weeks’ time) is
– in some sense – a “correct” description of reality. In many applications in
the natural sciences, unfortunately, validation is hard to do: chemical and
biological processes often exibit quite significant variation unrelated to the
model parameters. An example is the circadian rhythm: metabolomic samples,
be it from animals or plants, will show very different characteristics when
taken at different time points. When the experimental meta-data on the exact
time point of sampling are missing, it will be very hard to ascribe differences
in metabolite levels to differences between patients and controls, or different
varieties of the same plant. Only a rigorous and consistent experimental design
will be able to prevent this kind of fluctuations. Moreover, biological variation
between individuals often dominates measurement variation. The bigger the
variation, the more important it is to have enough samples for validation.
Only in this way, reliable error estimates can be obtained.

A second validation aspect is to assess the stability of the model coef-
ficients, summarized here with the term model stability. In the example of
multiple regression with a singular covariance matrix in Section 8.1.1, the
variance of the coefficients effectively is infinite, indicating that the model is
highly unstable. Regression methods like ridge regression and PLS yield coef-
ficients with much lower variance, at the expense of introducing bias. If it is
possible to derive confidence intervals for these, this not only provides an idea
of the stability of the model, but it can also be useful in determining which
variables actually are important in the model.

Finally, there is the possibility of making use of prior knowledge. Partic-
ularly in the natural sciences, one can often assess whether the features that
seem important make sense. In a regression model for spectroscopic data, for
instance, one would expect wavelengths with large regression coefficients to
correspond to peaks in the spectra – large coefficients in areas where no peaks
are present would indicate a not too reliable model. Since in most forms of

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011

175
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_9,

176 9 Validation

spectroscopy it is possible to associate spectral features with physicochemical
phenomena (specific vibrations, electron transitions, atoms, ...) one can often
even say something about the expected sign and magnitude of the regression
coefficients. Should these be very different than expected, one may be on to
something big – but more likely, one should treat the predictions of such a
model with caution, even when the model appears to fit the data well. Typi-
cally, more experiments are needed to determine which of the two situations
applies. Because of the problem-specific character of this particular type of
validation, we will not treat it any further, but will concentrate on the error
estimation and model stability aspects..

9.1 Representativity and Independence

One key aspect is that both error estimates and confidence intervals for the
model coefficients are derived from the available data (the training data), but
that the model will only be relevant when these data are representative for
the system under study. If there is any systematic difference between the data
on which the model is based and the data for which predictions are required,
these predictions will be suboptimal and in some cases even horribly wrong.
These systematic differences can have several causes: a new machine operator,
a new supplier of chemicals or equipment, new schedules of measurement time
(“from now on, Saturdays can be used for measuring as well”) – all these things
may cause new data to be slightly but consistently different from the training
data, and as a result the predictive models are no longer optimal. In analytical
laboratories, this is a situation that often occurs, and one approach dealing
with this is treated in Section 11.4.

Especially with extremely large data sets, validation is sometimes based
on only one division in a training set and a test set. If the number of samples
is very large, the sheer size of the data will usually prevent overfitting and
the corresponding error estimates can be quite good. However, it depends on
how the training and test sets are constructed. A random division is to be
preferred; to be even more sure, several random divisions may be considered.
One can check whether the training data are really representative for the test
data: pathological cases where this is not the case can usually be recognized
by simple visualization (e.g. using PCA). However, one should be very careful
not to reject a division too easily: as soon as one starts to use the test data,
in this case, to assess whether the division between training and test date is
satisfactory, there is the risk of biasing the results. The training set should
not only be representative of the test set, but also completely independent. An
example is the application of the Kennard-Stone algorithm [106] to make the
division in training and test sets. The algorithm selects training samples from
the complete data set to cover the complete space of the independent variables
as good as possible. However, if the training samples are selected in such a
way that they are completely surrounding the test samples, the prediction

9.1 Representativity and Independence 177

error on the test set will probably be lower than it should be – it is biased. Of
course, when the algorithm is only used to decrease the number of samples in
the training set, and the test set has been set aside before the Kennard-Stone
algorithm is run, then there is no problem (provided the discarded training
set samples are not added to the test set!) and we can still treat the error on
the test set as an unbiased estimate of what we can expect for future samples.

If the available data can be assumed to be representative of the future
data, we can use them in several ways to assess the quality of the predictions.
The main point in all cases is the same: from the data at hand, we simulate a
situation where unseen data have to be predicted. In crossvalidation, this is
done by leaving out part of the data, and building the model on the remainder.
In bootstrapping, the other main validation technique, the data are resampled
with replacement, so that some data points are present several times in the
training set, and others (the “out-of-bag”, or OOB, samples) are absent. The
performance of the model(s) on the OOB samples is then an indication of the
prediction quality of the model for future samples.

In estimating errors, one should take care not to use any information of
the test set: if the independence of training and test sets is compromized error
estimates become biased. An often-made error is to scale (autoscaling, mean-
centering) the data before the split into training and test sets. Obviously,
the information of the objects in the test set is being used: column means
and standard deviations are influenced by data from the test set. This leads
to biased error estimates – they are, in general, lower that they should be.
In the crossvalidation routines of the pls package, for example, scaling of
the data is done in the correct way: the OOB samples in a crossvalidation
iteration are scaled using the means (and perhaps variances) of the in-bag
samples. If, however, other forms of scaling are necessary, this can not be
done automatically. The pls package provides an explicit crossval function,
which makes it possible to include sample-specific scaling functions in the
calling formula:

> gasoline.mscpcr <- pcr(octane ~ msc(NIR), data = gasoline,

+ ncomp = 4)

> gasoline.mscpcr.cv <- crossval(gasoline.mscpcr, loo = TRUE)

> RMSEP(gasoline.mscpcr.cv, estimate = "CV")

(Intercept) 1 comps 2 comps 3 comps 4 comps

1.543 1.452 0.8838 0.2647 0.2712

This particular piece of code applies multiplicative scatter correction (MSC,
see Section 3.2) on all in-bag samples, and scales the OOB samples in the same
way, as it should be done. Interestingly, this leads to a PCR model where three
components would be optimal, one fewer component than without the MSC
scaling.

178 9 Validation

9.2 Error Measures

A distinction has to be made between the prediction of a continuous vari-
able (regression), and a categorical variable, as in classification. In regression,
the root-mean-square error of validation (RMSEV) is given, analogously to
Equation 8.12, by

RMSEV =

√∑
i(ŷ(i) − y(i))2

n
(9.1)

where y(i) is the out-of-bag sample in a crossvalidation or bootstrap. That is,
the predictions are made for samples that have not been used in building the
model. A summary of these prediction errors can be used as an estimate for
future performance. In this case, the average of the sum of squared errors is
taken – sometimes there are better alternatives.

For classification, the simplest possibility is to look at the fraction of cor-
rectly classified observations. in R:

> err.rate <- function(x, y) sum(x != y)/length(x)

A more elaborate alternative is to assign each type of misclassification a cost,
and to minimize a loss function consisting of the total costs associated with
misclassifications. In a two-class situation, for example, this makes it possible
to prevent false negatives at the expense of accepting more false positives; in
a medical context, it may be the case that a specific test should recognize all
patients with a specific disease, even if that means that a few people without
the disease are also tagged. Missing a positive sample (a false negative out-
come) in this example has much more radical consequences than the reverse,
incorrectly calling a healthu person ill.

A related alternative is to focus on the two components of classification
accuracy, sensitivity and specificity. Sensitivity, also known as the recall rate
or the true positive rate, is the fraction of objects from a particular class k
which are actually assigned to that class:

sensitivityk =
TPk

TPk + FNk
(9.2)

where TPk is the number of True Positives (i.e., objects correctly assigned to
class k) and FNk is the number of False Negatives (objects belonging to class
k but classified otherwise). A sensitivity of one indicates that all objects of
class k are assigned to the correct class – note that many other objects, not
of class k, may be assigned to that class as well.

Specificity is related to the purity of class predictions, and summarizes the
fraction of objects in class k that belong elsewhere:

specificityk =
TNk

FPk + TNk
(9.3)

TNk and FPk indicate True Negatives and False Positives for class k, respec-
tively. A specificity of one indicates that no objects have been classified as

9.3 Model Selection 179

class k incorrectly. The measure 1− specificity is sometimes referred to as the
false positive rate.

9.3 Model Selection

In practice, one will have to compromise between specificity and sensitivity:
usually, sensitivity can be increased at the expense of specificity and vice
versa by changing parameters of the classification procedure. For two-class
problems, a common visualization is the Receiver Operating Characteristic
(ROC, [107]), which plots the true positive rate against the false positive rate
for several values of the classifier threshold. Consider, e.g., the optimization
of k, the number of neighbours in the KNN classification of the wine data.
Let us focus on the distinction between Barbera and Grignolino, where we
(arbitrarily) choose Barbera as the positive class, and Grignolino as negative.

> X <- wines[vintages != "Barolo",]

> vint <- factor(vintages[vintages != "Barolo"])

> kvalues <- 1:12

> ktabs <- lapply(kvalues,

+ function(i) {

+ kpred <- knn.cv(X, vint, k = i)

+ table(vint, kpred)

+ })

For twelve different values of k we calculate the crossvalidated predictions
and we save the crosstable. From the resulting list we can easily calculate true
positive and false positive rates:

> TPrates <- sapply(ktabs, function(x) x[1,1]/sum(x[,1]))

> FPrates <- sapply(ktabs, function(x) 1 - x[2,2]/sum(x[2,]))

> plot(FPrates, TPrates, type = "b",

+ xlim = c(.15, .45), ylim = c(.5, .75),

+ xlab = "FP rate", ylab = "TP rate")

> text(FPrates, TPrates, 1:12, pos = 4)

In this case, the result, shown in Figure 9.1, leaves no doubt that k = 1 gives
the best results: it shows the lowest fraction of false positives (i.e., Grignolinos
predicted as Barberas) as well as the highest fraction of true positives. The
closer a point is to the top left corner (perfect prediction), the better.

In the field of model selection, one aims at selecting the best model amongst
a series of possibilities, usually based on some quality criterion such as an
error estimate. What makes model selection slightly special is that we are not
interested in the error estimates themselves, but rather in the order of the
sizes of the errors: we would like to pick the model with the smallest error.
Also biased error estimates are perfectly acceptable when the bias does not
influence our choice, and in some cases biased estimates are even preferable

180 9 Validation

●

●

●

●

●

●

●

●

●

●

●●

0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

FP rate

T
P

 r
at

e

1

2
3

4
5

6

7
8

9

10

1112

Fig. 9.1. ROC curve (zoomed in to display only the relative part) for the discrim-
ination between Grignolino and Barbera wines using different values of k in KNN
classification. Predictions are LOO-crossvalidated.

since they often have a lower variance. We will come back to this in the
discussion of different crossvalidation estimates.

An alternative to resampling approaches such as the bootstrap and cross-
validation is provided by simple, direct estimates, usually consisting of a
term indicating the agreement between empirical and predicted values, and
a penalty for model complexity. Important examples are Mallows’ Cp [108]
and the AIC and BIC values [53,54], already encountered in Section 6.3. The
Cp value is a special case of AIC for general models, adjusting the expected
value in such a way that it is approximately equal to the prediction error. In
a regression context, these two measures are given by

Cp = MSE + 2× p σ̂2/n (9.4)

BIC = MSE + log n× p σ̂2/n (9.5)

where n is the number of objects, p is the number of parameters in the model,
MSE is the mean squared error of calibration, and σ̂2 is an estimate of the
residual variance – an obvious choice would be MSE/(n − p) [66]. It can be
seen that, for any practical data size, BIC penalizes more heavily than Cp and
AIC, and therefore will choose more parsimonious models. For model selection
in the life sciences, these statistics have never really been very popular. A
simple reason is that it is hard to assess the “true” value of p: how many
degrees of freedom do you have in a PLS or PCR regression? Methods like

9.4 Crossvalidation Revisited 181

crossvalidation are more simple to apply and interpret – and with computing
power being cheap, scientists happily accept the extra computational effort
associated with it.

9.4 Crossvalidation Revisited

Crossvalidation, as we already have seen, is a simple and trustworthy method
to estimate prediction errors. There are two main disadvantages of LOO cross-
validation. The first is the time needed to perform the calculations. Especially
for data sets with many objects and time-consuming modelling methods, LOO
may be too expensive to be practical. There are two ways around this prob-
lem: the first is to use fast alternatives to direct calculations – in some cases
analytical solutions exist, or fast and good approximations. A second possi-
bility is to focus on leaving out larger segments at a time. This latter option
also alleviates the second disadvantage of LOO crossvalidation – the relatively
large variabiality of its error estimates.

9.4.1 LOO Crossvalidation

Let us once again look at the equation for the LOO crossvalidation error:

ε2CV =
1

n

n∑
i=1

(
y(i) − ŷ(i)

)2
=

1

n

n∑
i=1

ε2(i) (9.6)

where subscript (i) indicates that observation i is being predicted while not
being part of the training data. Although the procedure is simple to under-
stand and implement, it can take a lot of time to run for larger data sets.
However, for many modelling methods it is not necessary to calculate the n
different models explicitly. For ordinary least-squares regression, for example,
one can show that the i-th residual of a LOO crossvalidation is given by

ε2(i) = ε2i /(1− hii) (9.7)

where ε2i is the squared residual of sample i when it is included in the training
set, and hii is the i-th diagonal element of the hat matrix H, given by

H = X
(
XTX

)−1
XT (9.8)

Therefore, the LOO error estimate can be obtained without explicit iteration
by

ε2CV =
1

n

n∑
i=1

(
yi − ŷi
1− hii

)2

(9.9)

182 9 Validation

This shortcut is available in all cases where it is possible to write the predicted
values as a product of a type of hat matrix H, independent of y, and the
measured y values:

ŷ = Hy (9.10)

Generalized crossvalidation (GCV, [109]) goes one step further: instead of us-
ing the individual diagonal elements of the hat matrix hii, the average diagonal
element is used:

ε2GCV =
1

n
(

1−
∑n
j=1 hjj

)2 n∑
i=1

(yi − ŷi)2 (9.11)

Applying these equations to PCR leads to small differences with the usual
LOO estimates, since the principal components that are estimated when leav-
ing out each sample in turn will deviate slightly. Consider the (bad) fit of
the one-component PCR model for the gasoline data, calculated with explicit
construction of n sets of size n− 1:

> gasoline.pcr <- pcr(octane ~ ., data = gasoline,

+ validation = "LOO", ncomp = 1)

> RMSEP(gasoline.pcr, estimate = "CV")

(Intercept) 1 comps

1.543 1.447

The estimate based on Equation 9.9 is obtained by

> gasoline.pcr2 <- pcr(octane ~ ., data = gasoline, ncomp = 1)

> X <- gasoline.pcr2$scores

> HatM <- X %*% solve(crossprod(X), t(X))

> sqrt(mean((gasoline.pcr2$residuals/(1 - diag(HatM)))^2))

[1] 1.419

The GCV estimate from Equation 9.11 deviates more from the LOO result:

> sqrt(mean((gasoline.pcr2$residuals/(1 - mean(diag(HatM))))^2))

[1] 1.389

If one is willing to ignore the variation in the PCs introduced by leaving out
individual objects, as may be perfectly acceptable in the case of data sets with
many objects, this provides a way to significantly speed up calculations. The
example above was four times faster than the explicit loop, as is implemented
in the pcr function with the validation = "LOO" argument. For PLS, it
is a different story: there, the latent variables are estimated using y, and
Equation 9.10 does not hold.

9.4 Crossvalidation Revisited 183

9.4.2 Leave-Multiple-Out Crossvalidation

Instead of leaving out one sample at a time, it is also possible to leave out
a sizeable fraction, usually 10% of the data; the latter is also called “ten-fold
crossvalidation”. This approach has become quite popular – not only is it
roughly ten times faster, it also shows less variability in the error estimates
[66]. Again, there is a bias-variance trade-off: the variance may be smaller, but
a small bias occurs because the model is based on a data set that is appreciably
smaller than the“real”data set, and therefore is slightly pessimistic by nature.

This “leave-multiple-out” (LMO) crossvalidation is usually implemented in
a random way: the order of the rows of the data matrix is randomized, and
consecutive chunks of roughly equal size are used as test sets. In case the data
are structured, it is possible to use non-randomized chunks: the functions in
the pls package have special provisions for this. The following lines of code
lead, e.g., to interleaved sample selection:

> gasoline.pcr <- pcr(octane ~ ., data = gasoline,

+ validation = "CV", ncomp = 4,

+ segment.type = "interleaved")

> RMSEP(gasoline.pcr, estimate = "CV")

(Intercept) 1 comps 2 comps 3 comps 4 comps

1.543 1.426 1.446 1.218 0.2468

An alternative is to use segment.type = "consecutive". Also, it is possible
to construct the segments (i.e., the crossvalidation sets) by hand or otherwise,
and explicitly present them to the modelling function using the segments

argument. See the manual pages for more information.

9.4.3 Double Crossvalidation

In all cases where crossvalidation is used to establish optimal values for mod-
elling parameters, the resulting error estimates are not indicative of the per-
formance of future observations. They are biased, in that they are used to
pick the optimal model. Another round of validation is required. This leads
to double crossvalidation [65], as visualized in Figure 9.2: the inner crossval-
idation loop is used to determine the optimal model parameters, very often,
in chemometrics, the optimal number of latent variables, and the outer cross-
validation loop assesses the corresponding prediction error. At the expense of
more computing time, one is able to select optimal model parameters as well
as estimate prediction error.

The problem is that usually one ends up selecting different parameter
settings in different crossvalidation iterations: leaving out segment 1 may lead
to a PLS model with two components, whereas segment two may seem to need
four PLS components. Which do you choose? Averaging is no solution – again,
one would be using information which is not supposed to be available, and the

184 9 Validation

segment 1

segment 2

segment 3

segment 4

segment 5

it. 1 it. 2 it. 3 it. 4 it. 5

Fig. 9.2. Double crossvalidation: the inner CV loop, indicated by the grey horizontal
lines, is used to estimate the optimal parameters for the modelling method. The outer
loop, a five-fold crossvalidation, visualized by the gray rectangles, is used to estimate
the prediction error.

resulting error estimates would be biased. One approach is to use all optimal
models simultaneously, and average the predictions [110]. The disadvantage is
that one loses the interpretation of one single model; however, this may be a
reasonable price to pay. Other so-called ensemble methods will be treated in
Sections 9.7.1 and 9.7.2.

9.5 The Jackknife

Jackknifing [66] is the application of crossvalidation to obtain statistics other
than error estimates, usually pertaining to model coefficients. The jackknife
can for instance be used to assess the bias and variance of regression coeffi-
cients. In general, the mean squared error of a model coefficient estimate b
can be decomposed in a bias and a variance component:

MSE(b) = Var(b) + Bias(b)2 (9.12)

Biased regression methods like ridge regression and PLS achieve lower MSE
values by decreasing the variance component, but pay a price by accepting
bias. The jackknife estimate of bias, for example, is given by

B̂iasjck(b) = (n− 1)(b̄(i) − b) (9.13)

where b is the regression coefficient1 obtained with the full data, and b(i) is
the coefficient from the data with sample i removed, just like in LOO crossval-
idation. The bias estimate is simply the difference between the average of all
these LOO estimates, and the full-sample estimate, multiplied by the factor
n− 1.

1 In a multivariate setting we should use an index such as bj – to avoid complicated
notation we skip that for the moment.

9.5 The Jackknife 185

1000 1200 1400 1600

−
0.

2
0.

0
0.

2
0.

4
Jackknife bias and variance estimates

wavelength

bi
as

Fig. 9.3. Jackknife estimates of bias and variance (gray line) for a two-component
PLS model on the gasoline data.

Let us check the bias of the PLS estimates on the gasoline data using two
latent variables. The plsr function, when given the argument jackknife =

TRUE,2 is keeping all regression coefficients of a LOO crossvalidation in the
validation element of the fitted object, so finding the bias estimates is not
too difficult:

> gasoline.pls <- plsr(octane ~ ., data = gasoline,

+ validation = "LOO", ncomp = 2,

+ jackknife = TRUE)

> n <- length(gasoline$octane)

> b.oob <- gasoline.pls$validation$coefficients[,,2,]

> bias.est <- (n-1) * (rowMeans(b.oob) - coef(gasoline.pls))

> plot(wavelengths, bias.est, xlab = "wavelength", ylab = "bias",

+ type = "h", main = "Jackknife bias estimates")

The result is shown in Figure 9.3 – clearly, the bias for specific coefficients can
be appreciable.

The jackknife estimate of variance is given by

V̂arjck(b) =
n− 1

n

∑
(b(i) − b̄(i))2 (9.14)

and is implemented in var.jack. Again, an object of class mvr needs to be
supplied that is fitted with jackknife = TRUE:

2 Information on this functionality can be found in the manual page of function
mvrCv.

186 9 Validation

> var.est <- var.jack(gasoline.pls)

> lines(wavelengths, var.est, col = "gray")

The result is shown as the gray line in Figure 9.3. In the most important
regions, bias seems to dominate variance.

Several variants of the jackknife exist, including some where more than one
sample is left out [66]. In practice, however, the jackknife has been replaced
by the more versatile bootstrap.

9.6 The Bootstrap

The bootstrap [66,111] is a generalization of the ideas behind crossvalidation:
again, the idea is to generate multiple data sets that, after analysis, shed
light on the variability of the statistic of interest as a result of the different
training set compositions. Rather than splitting up the data to obtain training
and test sets, in nonparametric bootstrapping one generates a training set
– a bootstrap sample – by sampling with replacement from the data. The
idea is that where the measured data set is one possible realization of the
underlying population, an individual bootstrap sample is, analogously, one
realization from the complete set. Since we may have sufficient knowledge
of difference between the complete set and the empirical realizations, simply
by generating more bootstrap samples, we can study the distribution of the
statistic of interest θ. In nonparametric bootstrapping applied to regression
problems, there are two main approaches for generating a bootstrap sample,
One is to sample (again, with replacement) from the errors of the initial
model. Bootstrap samples are generated by adding the resampled errors to the
original data. This strategy is appropriate when the X data can be regarded
as fixed and the model is assumed to be correct. In other cases, one can sample
complete cases, i.e., rows from the data matrix, to obtain a bootstrap sample.
In such a bootstrap sample, some rows are present multiple times; others are
absent.

In parametric bootstrapping on the other hand, one describes the data
with a parametric distribution, from which then random bootstrap samples
are generated. In the life sciences, high-dimensional data are the rule rather
than the exception, and therefore any parametric description of a data set is
apt to be based on very sparse data. Consequently, the parametric bootstrap
has been less popular in this context.

bootstrapping, the following analysis is identical. Typically, several hundreds
to thousands bootstrap samples are analysed, and the variability of the statis-
tic of interest is monitored. This enables one to make inferences, both with
respect to estimating prediction errors and confidence intervals for model co-
efficients.

Whether bootstrap samples are generated using parametric or non-parametric

9.6 The Bootstrap 187

9.6.1 Error Estimation with the Bootstrap

Because a bootstrap sample will effectively never contain all samples in the
data set, there are samples that have not been involved in building the model.
These out-of-bag samples can conveniently be used in estimation of prediction
errors. A popular estimator is the so-called .632 estimate ε̂.632, given by

ε̂2.632 = .368 MSEC + .632ε̄2B (9.15)

where ε̄2B is the average squared prediction error of the OOB samples in the
B bootstrap samples, and MSEC is the mean squared training error (on the
complete data set). The factor .632 ≈ (1 − e−1) is approximately the prob-
ability of a sample to end up in a bootstrap sample [66]. In practice, the
.632 estimator is the most popular form for estimating prediction errors; a
more sophisticated version, correcting possible bias, is known as the .632+
estimator [112] but in many cases the difference is small.

As an example, let us use bootstrapping rather than crossvalidation to
determine the optimal number of latent variables in PCR fitting of the gasoline
data. In this case, the independent variables are not fixed, and there is some
uncertainty on whether the model is correct. This leads to the adoption of the
resampling cases paradigm. We start by defining bootstrap sample indices –
in this case we take 500 bootstrap samples.

> B <- 500

> ngas <- nrow(gasoline)

> boot.indices <-

+ matrix(sample(1:ngas, ngas * B, replace = TRUE), ncol = B)

> sort(boot.indices[,1])

[1] 1 4 5 5 6 6 7 10 10 11 12 12 12 14 15 16 17 18

[19] 19 20 21 22 23 23 24 24 24 27 28 28 28 30 30 34 35 38

[37] 38 39 41 44 44 46 47 47 48 48 48 49 51 51 54 55 55 58

[55] 59 59 60 60 60 60

Objects 2 and 3 are absent from the first bootstrap sample, shown here as
an example, but others occur multiple times – object 60 even four times.
We now build PCR models with all these bootstrap samples and record the
predictions of the out-of-bag objects. The following code is not particularly
memory-efficient but easy to understand:

> npc <- 5

> predictions <- array(NA, c(ngas, npc, B))

> for (i in 1:B) {

+ gas.bootpcr <- pcr(octane ~ ., data = gasoline,

+ ncomp = npc, subset = boot.indices[,i])

+ oobs <- (1:ngas)[-boot.indices[,i]]

+ predictions[oobs,,i] <-

188 9 Validation

+ predict(gas.bootpcr,

+ newdata = gasoline$NIR[oobs,])[,1,]

+ }

Next, the OOB errors for the individual objects are calculated, and summa-
rized in one estimate:

> diffs <- sweep(predictions, 1, gasoline$octane)

> sqerrors <- apply(diffs^2, c(1,2), mean, na.rm = TRUE)

> sqrt(colMeans(sqerrors))

[1] 1.4759 1.4872 1.2316 0.2857 0.2765

Finally, the out-of-bag errors are combined with the calibration error to obtain
the .632 estimate:

> gas.pcr <- pcr(octane ~ ., data = gasoline, ncomp = npc)

> RMSEP(gas.pcr, intercept = FALSE)

1 comps 2 comps 3 comps 4 comps 5 comps

1.3656 1.3603 1.1097 0.2305 0.2260

> error.632 <- .368 * colMeans(gas.pcr$residuals^2) +

+ .632 * colMeans(sqerrors)

> sqrt(error.632)

1 comps 2 comps 3 comps 4 comps 5 comps

octane 1.436 1.442 1.188 0.2667 0.2591

The result is an upward correction of the too optimistic training set errors.
We can compare the .632 estimate with the LOO and ten-fold crossvalidation
estimates:

> gas.pcr.cv <- pcr(octane ~ ., data = gasoline, ncomp = npc,

+ validation = "CV")

> gas.pcr.loo <- pcr(octane ~ ., data = gasoline, ncomp = npc,

+ validation = "LOO")

> bp <- barplot(sqrt(error.632),

+ ylim = c(0, 1.6), col = "peachpuff")

> lines(bp, sqrt(c(gas.pcr.cv$validation$PRESS) / ngas),

+ col = 2)

> lines(bp, sqrt(c(gas.pcr.loo$validation$PRESS) / ngas),

+ col = 3, lty = 2)

> legend("topright", lty = 1:2, col = 2:3,

+ legend = c("CV", "LOO"))

The result is shown in Figure 9.4. The estimates in general agree very well –
the differences that can be seen are the consequence of the stochastic nature of
both ten-fold crossvalidation and bootstrapping: every time a slightly different
result will be obtained.

9.6 The Bootstrap 189

1 comps 2 comps 3 comps 4 comps 5 comps

0.
0

0.
5

1.
0

1.
5 CV

LOO

Fig. 9.4. Error estimates for PCR on the gasoline data: bars indicate the result of
the .632 bootstrap, the solid line is the ten-fold crossvalidation, and the dashed line
the LOO crossvalidation.

It now should be clear what is the philosophy behind the .632 estimator.
What it estimates, in fact, is the amount of optimism associated with the
RMSEC value, ω̂.632:

ω̂.632 = .632(MSEC− ε̄B) (9.16)

The original estimate is then corrected for this optimism:

ε̂.632 = MSEC + ω̂.632 (9.17)

which leads to Equation 9.15.
Several R packages are available that contain functions for bootstrapping.

Perhaps the two best known ones are bootstrap, associated with the book
by Efron and Tibshirani [66], and boot, written by Angelo Canty and imple-
menting functions from Davison and Hinkley [111]. The former is a relatively
simple package, maintained mostly to support the book [66] – boot, a recom-
mended package, is the primary general implementation of bootstrapping in
R. The implementation of the .632 estimator using boot is done in a couple
of steps [111, page 324]. First, the bootstrap samples are generated, returning
the statistic to be bootstrapped – in this case, the prediction errors:3

3 In reference [111] and the boot package the number of bootstrap samples is typi-
cally a number like 499 or 999, whereas other implementations use 500 and 1000.
The differences are not very important in practice.

190 9 Validation

> gas.pcr.boot632 <-

+ boot(gasoline,

+ function(x, ind) {

+ mod <- pcr(octane ~ ., data = x,

+ subset = ind, ncomp = 4)

+ gasoline$octane -

+ predict(mod, newdata = gasoline$NIR, ncomp = 4)},

+ R = 499)

> dim(gas.pcr.boot632$t)

[1] 499 60

The optimism is assessed by only considering the errors of the out-of-bag
samples. For every bootstrap sample, we can find out which errors we should
take into account with the boot.array function:

> in.bag <- boot.array(gas.pcr.boot632)

> in.bag[1:10,1]

[1] 0 1 1 2 0 1 2 0 0 1

That is, when considering the occurrence of the first ten objects in the first
bootstrap sample, we can see that first object has been left out of the training
data in bootstrap samples 1, 5, 8 and 9, was present once in the training data
in bootstrap samples 2, 3, 6 and 10, and was present twice in samples 4 and 7.
Every bootstrap sample therefore takes a slightly different view of the data.

Averaging the squared errors of the OOB objects leads to the following
.632 estimate:

> in.bag <- boot.array(gas.pcr.boot632)

> oob.error <- mean((gas.pcr.boot632$t^2)[in.bag == 0])

> app.error <- MSEP(pcr(octane ~ ., data = gasoline, ncomp = 4),

+ ncomp = 4, intercept = FALSE)

> sqrt(.368 * c(app.error$val) + .632 * oob.error)

[1] 0.2684

This error estimate is slightly higher than the four-fold crossvalidation result
on page 183. Note that it is not exactly equal to the .632 estimate on page 188
because different bootstrap samples have been selected. The difference this
time is very small indeed.

9.6.2 Confidence Intervals for Regression Coefficients

The bootstrap may also be used to assess the variability of a statistic such
as an error estimate. A particularly important application in chemometrics
is the standard error of a regression coefficient from a PCR or PLS model.
Alternatively, confidence intervals can be built for the regression coefficients.

9.6 The Bootstrap 191

No analytical solutions such as those for MLR exist in these cases; neverthe-
less, we would like to be able to say something about which coefficients are
actually contributing to the regression model.

Typically, for an interval estimate such as a confidence interval, more boot-
strap samples are needed than for a point estimate, such as an error estimate.
Several hundred bootstrap samples are taken to be sufficient for point es-
timates; several thousand for confidence intervals. Taking smaller numbers
may drastically increase the variability of the estimates, and with the current
abundance of computing power there is rarely a case for being too economical.

The simplest possible approach is the percentile method: estimate the mod-
els for B bootstrap samples, and use the Bα/2 and B(1− α/2) values as the
(1− α) confidence intervals. For the gasoline data, modelled with PCR using
four PCs, these bootstrap regression coefficients are obtained by:

> B <- 1000

> ngas <- nrow(gasoline)

> boot.indices <-

+ matrix(sample(1:ngas, ngas * B, replace = TRUE), ncol = B)

> npc <- 4

> gas.pcr <- pcr(octane ~ ., data = gasoline, ncomp = npc)

> coefs <- matrix(0, ncol(gasoline$NIR), B)

> for (i in 1:B) {

+ gas.bootpcr <- pcr(octane ~ ., data = gasoline,

+ ncomp = npc, subset = boot.indices[,i])

+ coefs[,i] <- c(coef(gas.bootpcr))

+ }

A plot of the regression coefficients of all bootstrap samples is shown in Fig-
ure 9.5:

> matplot(wavelengths, coefs, type = "l",

+ lty = 1, col = "gray",

+ ylab = "Coefficients", xlab = "Wavelength (nm)")

> abline(h = 0)

Some of the wavelengths show considerable variation in their regression coef-
ficients, especially the longer wavelengths above 1650 nm.

In the percentile method using 1000 bootstrap samples, the 95% confidence
intervals are given by the 25th and 975th ordered values of each coefficient:

> coef.stats <- cbind(apply(coefs, 1, quantile, .025),

+ c(coef(gas.pcr)),

+ apply(coefs, 1, quantile, .975))

> matplot(wavelengths, coef.stats, type = "n",

+ xlab = "Wavelength (nm)",

+ ylab = "Regression coefficient")

> abline(h = 0, col = "gray")

192 9 Validation

Fig. 9.5. Regression coefficients from all 1000 bootstrap samples for the gasoline
data, using PCR with four latent variables.

> matlines(wavelengths, coef.stats,

+ lty = c(2,1,2), col = c(2,1,2))

The corresponding plot is shown in Figure 9.6. Clearly, for most coefficients,
zero is not in the confidence interval. A clear exception is seen in the longer
wavelengths: there, the confidence intervals are very wide, indicating that this
region contains very little relevant information.

The percentile method was the first attempt at deriving confidence inter-
vals from bootstrap samples [113] and has enjoyed huge popularity; however,
one can show that the intervals are, in fact, incorrect. If the intervals are not
symmetric (and it can be seen in Figure 9.6 that this is quite often the case –
it is one of the big advantages of bootstrapping methods that they are able to
define asymmetric intervals), it can be shown that the percentile method uses
the skewness of the distribution the wrong way around [66]. Better results are
obtained by so-called studentized confidence intervals, in which the statistic
of interest is given by

tb =
θ̂b − θ̂
σ̂b

(9.18)

where θ̂b is the estimate for the statistic of interest, obtained from the b-
th bootstrap sample, σ̂b is the standard deviation of that estimate, and θ̂ is
the estimate obtained from the complete original data set. In the example of
regression, θ̂ corresponds to the regression coefficient at a certain wavelength.
Often, no analytical expression existst for σ̂b, and it should be obtained by

9.6 The Bootstrap 193

1000 1200 1400 1600

−
6

−
4

−
2

0
2

95% percentile bootstrap confidence intervals

Wavelength (nm)

R
eg

re
ss

io
n

co
ef

fic
ie

nt

Fig. 9.6. Regression vector and 95% confidence intervals for the individual coeffi-
cients, for the PCR model of the gasoline data with four PCs. Confidence intervals
are obtained with the bootstrap percentile method.

other means, e.g., crossvalidation, or an inner bootstrap loop. The studentized
confidence intervals are then given by

θ̂ − tB(1−α/2) ≤ θ ≤ θ̂ − tBα/2 (9.19)

Several other ways of estimating confidence intervals exist, most notably the
bias-corrected and accelerated (BCα) interval [66,111].

The boot package provides the function boot.ci, which calculates several
confidence interval estimates in one go. Again, first the bootstrap sampling is
done and the statistics of interest are calculated:

> gas.pcr.bootCI <-

+ boot(gasoline,

+ function(x, ind) {

+ c(coef(pcr(octane ~ ., data=x,

+ subset = ind)))},

+ R = 999)

> dim(gas.pcr.bootCI$t)

[1] 999 401

Here we use R = 999 to conform to the setup of the boot package. The re-
gression coefficients are stored in the gas.pcr.bootCI object, which is of class
"boot", in the element named t. Plots of individual estimates can be made
through the index argument:

194 9 Validation

Histogram of t

t*

D
en

si
ty

−6.0 −5.5 −5.0 −4.5 −4.0

0.
0

0.
5

1.
0

1.
5

2.
0

●●●●●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●●●
●●●

●●
●●

●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●

●●●●
●●●●

●●
●●

●

−3 −2 −1 0 1 2 3

−
6.

0
−

5.
5

−
5.

0
−

4.
5

Quantiles of Standard Normal
t*

Fig. 9.7. Bootstrap plot for the regression coefficient at 1206 nm; in all bootstrap
samples the coefficient is much smaller than zero.

> smallest <- which.min(gas.pcr.bootCI$t0)

> plot(gas.pcr.bootCI, index = smallest)

From the plot, shown in Figure 9.7, one can see the distribution of the values
for this coefficient in all bootstrap samples – the corresponding confidence
interval will definitely not contain zero. The dashed line indicates the estimate
based on the full data; these estimates are stored in the list element t0.

Confidence intervals for individual coefficients can be obtained from the
gas.pcr.bootCI object as follows:

> boot.ci(gas.pcr.bootCI, index = smallest,

+ type = c("perc", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = gas.pcr.bootCI, type = c("perc", "bca"),

index = smallest)

Intervals :

Level Percentile BCa

95% (-5.928, -5.104) (-6.117, -5.532)

Calculations and Intervals on Original Scale

Warning : BCa Intervals used Extreme Quantiles

Some BCa intervals may be unstable

Warning message:

9.7 Integrated Modelling and Validation 195

In norm.inter(t, adj.alpha) : extreme order statistics used

as endpoints

Despite the warning messages, one can see that the intervals agree reason-
ably well; the BCα intervals are slightly shifted downward compared to the
percentile intervals. Neither contains zero, as expected.

9.6.3 Other R Packages for Bootstrapping

The bootstrap is such a versatile technique, that it has found application in
many different areas of science. This has led to a large number of R pack-
ages implementing some form of the bootstrap – at the moment of writing,
the package list of the CRAN repository contains already four other packages
in between the packages boot and bootstrap already mentioned. To name
just a couple of examples: package FRB contains functions for applying boot-
strapping in robust statistics; DAIM provides functions for error estimation
including the .632 and .632+ estimators. Using EffectiveDose it is possible
to estimate the effects of a drug, and in particular to determine the effective
dose level – bootstrapping is provided for the calculation of confidence inter-
vals. Packages meboot and BootPR provide machinery for the application of
bootstrapping in time series.

9.7 Integrated Modelling and Validation

Obtaining a good multivariate statistical model is hardly ever a matter of
just loading the data and pushing a button: rather, it is a long and sometimes
seemingly endless iteration of visualization, data treatment, modelling and
validation. Since these aspects are so intertwined, it seems to make sense to
develop methods that combine them in some way. In this section, we consider
approaches that combine elements of model fitting with validation. The first
case is bagging [114], where many models are fitted on bootstrap sets, and
predictions are given by the average of the predictions of these models. At the
same time, the out-of-bag samples can be used for obtaining an unbiased error
estimate. Bagging is applicable to all classification and regression methods,
but will give benefits only in certain cases; the classical example where it
works well is given by trees [114] – see below. An extension of bagging, also
applied to trees, is the technique of random forests [115]. Finally, we will
look at boosting [116], an iterative method for binary classification giving
progressively more weight to misclassified samples. Bagging and boosting can
be seen as meta-algorithms, because they consist of strategies that, in principle
at least, can be combined with any model-fitting algorithm.

196 9 Validation

9.7.1 Bagging

The central idea behind bagging is simple: if you have a classifier (or a method
for predicting continuous variables) that on average gives good predictions
but has a somewhat high variability, it makes sense to average the predictions
over a large number of applications of this classifier. The problem is how to
do this in a sensible way: just repeating the same fit on the same data will
not help. Breiman proposed to use bootstrapping to generate the variability
that is needed. Training a classifier on every single bootstrap sets leads to an
ensemble of models; combining the predictions of these models would then,
in principle, be closer to the true answer. This combination of bootstrapping
and aggregating is called bagging [114].

The package ipred implements bagging for classification, regression and
survival analysis using trees – the rpart implementation is employed. For
classification applications, also the combination of bagging with kNN is im-
plemented (in function ipredknn). We will focus here on bagging trees. The
basic function is ipredbag, while the function bagging provides the same
functionality using a formula interface. Making a model for predicting the
octane number for the gasoline data is very easy:

> gasoline.bagging <- ipredbagg(gasoline$octane[odd],

+ gasoline$NIR[odd,],

+ coob = TRUE)

> gasoline.bagging

Bagging regression trees with 25 bootstrap replications

Out-of-bag estimate of root mean squared error: 1.0666

The OOB error is already quite high which does not forbode well... Let’s
see. Predictions for the even-numbered samples can be obtained by the usual
predict function:

> gs.baggpreds <- predict(gasoline.bagging, gasoline$NIR[even,])

> resids <- gs.baggpreds - gasoline$octane[even]

> sqrt(mean(resids^2))

[1] 1.642050

This is not such a good result – even worse than the result of the prediction
using four wavelengths, shown on page 152. Again, one should keep in mind
that the default settings of the functions may not always be optimal and that
in some cases substantial improvements are possible.

Doing classification with bagging is equally simple. Here, we show the
example of discriminating between the control and pca classes of the prostate
data, again using only the first 1000 variables as we did on page 119:

> prost.bagging <- bagging(type ~ ., data = prost.df,

+ subset = odd)

9.7 Integrated Modelling and Validation 197

> prost.baggingpred <- predict(prost.bagging,

+ newdata = prost.df[even,])

> table(prost.type[even], prost.baggingpred)

prost.baggingpred

control pca

control 29 11

pca 4 80

which doubles the number of misclassifications compared to the SVM solution
on page 138) but still is a lot better than the single-tree result.

Does bagging always improve things? Unfortunately not. Clearly, when a
classification or regression procedure changes very little with different boot-
strap samples, the result will be the same as the original predictions. It can be
shown [114] that bagging is especially useful for predictors that are unstable,
i.e., predictors that are highly adaptive to the composition of the data set.
Examples are trees, neural networks [3] or variable selection methods. In these
cases, bagging can improve performance, sometimes even quite drastically so.

9.7.2 Random Forests

The combination of bagging and tree-based methods is a good one, as we saw
in the last section. However, Breiman and Cutler saw that more improvement
could be obtained by injecting extra variability into the procedure, and they
proposed a number of modifications leading to the technique called Random
Forests [115]. Again, bootstrapping is used to generate data sets that are used
to train an ensemble of trees. One key element is that the trees are constrained
to be very simple – only few nodes are allowed, and no pruning is applied.
Moreover, at every split, only a subset of all variables is considered for use.
Both adaptations force diversity into the ensemble, which is the key to why
improvements can be obtained with aggregating.

It can be shown [115] that an upper bound for the generalization error is
given by

Ê ≤ ρ̄(1− q2)/q2

where ρ̄ is the average correlation between predictions of individual trees,
and q is a measure of prediction quality. This means that the optimal gain is
obtained when many good yet diverse classifiers are combined, something that
is intuitively logical – there is not much point in averaging the outcomes of
identical models, and combining truly bad models is unlikely to lead to good
results either.

The R package randomForest provides a convenient interface to the original
Fortran code of Breiman and Cutler. The basic function is randomForest,
which either takes a formula or the usual combination of a data matrix and
an outcome vector:

198 9 Validation

> wines.df <- data.frame(vint = vintages, wines)

> wines.rf <- randomForest(vint ~ ., subset = odd,

+ data = wines.df)

> wines.rf

Call:

randomForest(formula = vint ~ ., data = wines.df, subset = odd)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 4.49%

Confusion matrix:

Barbera Barolo Grignolino class.error

Barbera 24 0 0 0.00000000

Barolo 0 28 1 0.03448276

Grignolino 2 1 33 0.08333333

The print method shows the result of the fit in terms of the error rate of
the out-of-bag samples, in this case less than 5%. Because the algorithm fits
trees to many different bootstrap samples, this error estimate comes for free.
Prediction is done in the usual way:

> wines.rf.predict <- predict(wines.rf,

+ newdata = wines.df[even,])

> sum(wines.rf.predict == wines.df[even,"vint"]) / length(even)

[1] 1

In this case, prediction for the even rows in the data set is perfect. Note that
repeated training may lead to small differences because of the randomness
involved in selecting bootstrap samples and variables in the training pro-
cess. Also in many other applications random forests have shown very good
predictive abilities (see, e.g., reference [117] for an application in chemical
modelling).

So it seems the most important disadvantage of tree-based methods, the
generally low quality of the predictions, has been countered sufficiently. Does
this come at a price? At first sight, yes. Not only does a random forest add
complexity to the original algorithm in the form of tuning parameters, the
interpretability suffers as well. Indeed, an ensemble of trees would seem more
difficult to interpret than one simple sequence of yes/no questions. Yet in re-
ality things are not so simple. The interpretability, one of the big advantages
of trees, becomes less of an issue when one realises that a slight change in the
data may lead to a completely different tree, and therefore a completely differ-
ent interpretation. Such a small change may, e.g., be formed by the difference
between successive crossvalidation or bootstrap iterations – thus, the result-
ing error estimate may be formed by predictions from trees using different
variables in completely different ways.

9.7 Integrated Modelling and Validation 199

non.flav..phenols

ash

proanth

ash.alkalinity

tot..phenols

malic.acid

magnesium

col..hue

OD.ratio

alcohol

flavonoids

col..int.

proline

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0
MeanDecreaseAccuracy

non.flav..phenols

ash

proanth

ash.alkalinity

malic.acid

magnesium

tot..phenols

col..hue

alcohol

OD.ratio

col..int.

flavonoids

proline

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20
MeanDecreaseGini

wines.rf

Fig. 9.8. Assessment of variable importance by random forests: the left plot shows
the mean decrease in accuracy and the right the mean decrease in Gini index, both
after permuting individual variable values.

The technique of random forests addresses these issues in the following
ways. A measure of the importance of a particular variable is obtained by
comparing the out-of-bag errors for the trees in the ensemble with the out-
of-bag errors when the values for that variable are permuted randomly. Dif-
ferences are averaged over all trees, and divided by the standard error. If one
variable shows a big difference, this means that the variable, in general, is
important for the classification: the scrambled values lead to models with de-
creased predictivity. This approach can be used for both classification (using,
e.g., classification error rate as a measure) and regression (using a value like
MSE). An alternative is to consider the total increase in node purity.

In package randomForest this is implemented in the following way. When
setting the parameter importance = TRUE in the call to randomForest, the
importances of all variables are calculated during the fit – these are available
through the extractor function importance, and for visualization using the
function varImpPlot:

> wines.rf <- randomForest(vint ~ ., data = wines.df,

+ importance = TRUE)

> varImpPlot(wines.rf)

The result is shown in Figure 9.8. The left plot shows the importance measured
using the mean decrease in accuracy; the right plot using the mean decrease

200 9 Validation

in node impurity, as measured by the Gini index. Although there are small
differences, the overall picture is the same using both indices.

The second disadvantage, the large number of parameters to set in using
tree-based models, is implicitly taken care of in the definition of the algorithm:
by requiring all trees in the forest to be small and simple, no elaborate pruning
schemes are necessary, and the degrees of freedom of the fitting algorithm have
been cut back drastically. Furthermore, it appears that in practice random
forests are very robust to changes in settings: averaging many trees also takes
away a lot of the dependence on the exact value of parameters. This has caused
random forests to be called one of the most powerful off-the-shelf classifiers
available.

Just like the classification and regression trees seen in Section 7.3, random
forests can also be used in a regression setting. Take the gasoline data, for
instance: training a model using the default settings can be achieved with the
following command.

> gasoline.rf <- randomForest(gasoline$NIR[odd,],

+ gasoline$octane[odd],

+ importance = TRUE,

+ xtest = gasoline$NIR[even,],

+ ytest = gasoline$octane[even])

For interpretation purposes, we have used the importance = TRUE argument,
and we have provided the test samples at the same time. The results, shown
in Figure 9.9, are better than the ones from bagging:

> pl.range <- c(83,90)

> plot(gasoline$octane[odd], gasoline.rf$predicted,

+ main = "Training: OOB prediction", xlab = "True",

+ ylab = "Predicted", xlim = pl.range, ylim = pl.range)

> abline(0, 1)

> plot(gasoline$octane[even], gasoline.rf$test$predicted,

+ main = "Test set prediction", xlab = "True",

+ ylab = "Predicted", xlim = pl.range, ylim = pl.range)

> abline(0, 1)

However, there seems to be a bias towards the mean – the absolute values
of the predictions at the extremes of the range are too small. Also the RMS
values confirm that the test set predictions are much worse than the PLS and
PCR estimates of .21:

> resids <- gasoline.rf$test$predicted - gasoline$octane[even]

> sqrt(mean(resids^2))

[1] 0.6167062

One of the reasons can be seen in the variable importance plot, shown in
Figure 9.10:

9.7 Integrated Modelling and Validation 201

●

●

● ●
●
●

●

●

●

●

●●
●

●

●
●

●●

●

●

●
● ●

●
●

●
●

●

● ●

83 84 85 86 87 88 89 90

83
84

85
86

87
88

89
90

Training: OOB prediction

True

P
re

di
ct

ed

●● ●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●
●
●

●

●

●
●

●●

●●

●
●

83 84 85 86 87 88 89 90

83
84

85
86

87
88

89
90

Test set prediction

True

P
re

di
ct

ed
Fig. 9.9. Predictions for the gasoline data using random forests. Left plot: OOB
predictions for the training data – right plot: test data.

> rf.imps <- importance(gasoline.rf)

> plot(wavelengths, rf.imps[,1] / max(rf.imps[,1]),

+ type = "l", xlab = "Wavelength (nm)",

+ ylab = "Importance")

> lines(wavelengths, rf.imps[,2] / max(rf.imps[,2]), col = 2)

> legend("topright", legend = c("Error decrease", "Gini index"),

+ col = 1:2, lty = 1)

Both criteria are dominated by the wavelengths just above 1200 nm. Espe-
cially the Gini index leads to a sparse model, whereas the error-based impor-
tance values clearly are much more noisy. Interestingly, when applying random
forests to the first derivative spectra of the gasoline data set (not shown) the
same feature around 1200 nm is important, but the response at 1430 nm comes
up as an additional feature. Although the predictions improve somewhat, they
are still nowhere near the PLS and PCR results shown in Chapter 8.

For comparison, we also show the results of random forests on the predic-
tion of the even samples in the prostate data set:

> prost.rf <-

+ randomForest(prost[odd,], prost.type[odd],

+ x.test = prost[even,], y.test = prost.type[even])

> prost.rfpred <- predict(prost.rf, newdata = prost[even,])

> table(prost.type[even], prost.rfpred)

prost.rfpred

control pca

control 30 10

pca 3 81

Again, a slight improvement over bagging can be seen.

202 9 Validation

1000 1200 1400 1600

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Wavelength (nm)

Im
po

rt
an

ce

Error decrease
Gini index

Fig. 9.10. Variable importance for modelling the gasoline data with random forests:
basically, only the wavelengths just above 1200 nm seem to contribute.

9.7.3 Boosting

In boosting [116], validation and classification are combined in a different way.
Boosting, and in particular in the adaBoost algorithm that we will be focusing
on in this section, is an iterative algorithm that in each iteration focusses the
attention to misclassified samples from the previous step. Just as in bagging,
in principle any modelling approach can be used; also similar to bagging, not
all combinations will show improvements.

The main idea is to use weights on the samples in the training set. Initially,
these weights are all equal, but during the iterations the weights of incorrectly
predicted samples increase. In adaBoost, which stands for adaptive boosting,
the changes in the weight of object i is given by

Dt+1(i) =
Dt(i)

Zt
×

{
e−αt if correct

eαt if incorrect
(9.20)

where Zt is a suitable normalization factor, and αt is given by

αt = .5 ln

(
1− εt
εt

)
(9.21)

with εt the error rate of the model at iteraton t. In prediction, the final clas-
sification result is given by the weighted average of the T predictions during
the iterations, with the weights given by the α values.

9.7 Integrated Modelling and Validation 203

The algorithm itself is very simple and easily implemented. The only pa-
rameter that needs to be set in an application of boosting is the maximal
number of iterations. A number that is too large would potentially lead to
overfitting, although in many cases it has been observed that overfitting does
not occur (see, e.g., references in [116]).

Boosting trees in R is available in package ada [118], which directly follows
the algorithms described in reference [119]. Let us revisit the prostate example,
also tackled with SVMs (on page 138):

> prost.ada <- ada(type ~ ., data = prost.df, subset = odd)

> prost.adapred <- predict(prost.ada, newdata = prost.df[even,])

> table(prost.type[even], prost.adapred)

prost.adapred

control pca

control 29 11

pca 4 80

The result is equal to the one obtained with bagging. The development of
the errors in training and test sets can be visualized using the default plot

command. In this case, we should add the test set to the ada object first4:

> prost.ada <- addtest(prost.ada, prost[even,], prost.type[even])

> plot(prost.ada, test = TRUE)

This leads to the plot in Figure 9.11. The final error on the test set is less than
half of the error at the beginning of the iterations. Clearly, both the training
and testing errors have stabilized already after some twenty iterations.

The version of boosting employed in this example is also known as Dis-
crete adaboost [119, 3], since it returns 0/1 class predictions. Several other
variants have been proposed, returning membership probabilities rather than
crisp classifications and employing different loss functions. In many cases they
outperform the original algorithm [119].

Since boosting is in essence a binary classifier, special measures must be
taken to apply it in a multi-class setting, similar to the possibilities men-
tioned in section 7.4.1. A further interesting connection with SVMs can be
made [120]: although boosting does not explicitly maximize margins, as SVMs
do, it does come very close. The differences are, firstly, that SVMs use the
L2 norm, the sum of the squared vector elements, whereas boosting uses L1

(the sum of the absolute values) and L∞ (the largest value) norms for the
weight and instance vectors, respectively. Secondly, boosting employs greedy
search rather than kernels to address the problem of finding discriminating
directions in high-dimensional space. The result is that although there are
intimate connections, in many cases the models of boosting and SVMs can be
quite different.

4 We could have added the test set data to the original call to ada as well – see the
manual page.

204 9 Validation

0 10 20 30 40 50

0.
00

0.
10

0.
20

0.
30

Iteration 1 to 50

E
rr

or

50

1
1 1 1 1

Training And Testing Error

2
2 2 2 2

1
2

Train
Test1

Fig. 9.11. Development of prediction errors for training and test sets of the prostate
data (two classes, only 1000 variables) using ada.

The obvious drawback of focusing more and more on misclassifications
is that these may be misclassifications with a reason: outlying observations,
or samples with wrong labels, may disturb the modelling to a large extent.
Indeed, boosting has been proposed as a way to detect outliers.

10

Variable Selection

Variable selection is an important topic in many types of modelling: the choice
which variables to take into account to a large degree determines the result.
This is true for every single technique discussed in this reader, be it PCA,
clustering methods, classification methods, or regression. In the unsupervised
approaches, uninformative variables can obscure the “real” picture, and dis-
tances between objects can become meaningless. In the supervised cases (both
classification and regression), there is the danger of chance correlations with
dependent variables, leading to models with low predictive power. This danger
is all the more real given the very low sample-to-variable ratios of current data
sets. The aim of variable selection then is to reduce the independent variables
to those that contain relevant information, and thereby to improve statistical
modelling. This should be seen both in terms of predictive performance (by
decreasing the number of chance correlations) and in interpretability – often,
models can tell us something about the system under study, and small sets of
coefficients are usually easier to interpret than large sets.

In some cases, one is able to decrease the number of variables significantly
by utilizing domain knowledge. A classical application is peak-picking in spec-
tral data. In metabolomics, for instance, where biological fluids are analysed
by, e.g., NMR spectroscopy, one can typically quantify hundreds of metabo-
lites. The number of metabolites is usually orders of magnitude smaller than
the number of variables (ppm values) that have been measured; moreover,
the metabolite concentrations lend themselves for immediate interpretation,
which is not the case for the raw NMR spectra. A similar idea can be found in
the field of proteomics, where mass spectrometry is used to find the presence
or absence of proteins, based on the presence or absence of protein fragments
called peptides. Quantification is more problematic here, so typically one ob-
tains a list of proteins that have been found, including the number of fragments
that have been used in the identification. When this step is possible it is nearly
always good to do so. The only danger is to find what is already known – in
many cases, data bases are used in the interpretation of the complex spectra:
an unexpected compound, or a compound that is not in the data base but is

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011

205
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_10,

206 10 Variable Selection

present in the sample, is likely to be missed. Moreover, incorrect assignments
present additional difficulties. Even so, the list of metabolites or proteins may
be too long for reliable modelling or useful interpretation, and one is interested
in further reduction of the data.

Very often, this variable selection is achieved by looking at the coefficients
themselves: the large ones are retained, and variables with smaller coefficients
are removed. The model is then refitted with the smaller set, and this pro-
cess may continue until the desired number of variables has been reached.
Unfortunately, as shown in Section 8.1.1, model coefficients can have a huge
variance when correlation is high, a situation that is the rule rather than the
exception in the natural sciences nowadays. As a result, coefficient size is not
always a good indicator of importance. A more sophisticated approach is the
one we have seen in Random Forests, where the decrease in model quality
upon permutation of the values in one variable is taken as an importance
measure. Especially for systems with not too many variables, however, tests
for coefficient significance remain popular.

An alternative way of tackling variable selection is to use modelling tech-
niques that explicitly force as many coefficients as possible to be zero: all
these are apparently not important for the model and can be removed with-
out changing the fitted values or the predictions. It can be shown that a
ridge-regression type of approach with a penalty on the size of the coefficients
has this effect, if the penalty is suitably chosen [3] – a whole class of methods
has descended from this principle, starting with Tibshirani’s lasso [121].

One could say that the only reliable way of assessing the modelling power
of a smaller set is to try it out – and if the result is disappointing, try out
a different subset of variables. Given a suitable error estimate (and we will
come back to that), one can employ optimization algorithms to find the subset
that gives maximal modelling power. Two strategies can be followed: one is to
fix the size of the subset, often dictated by practical considerations, and find
the set that gives the best performance; the other is to impose some penalty
on including extra variables and let the optimization algorithm determine
the eventual size. In small problems it is possible, using clever algorithms, to
find the globally optimal solution; in larger problems it very quickly becomes
impossible to assess all possible solutions, and one is forced to accept that the
global optimum may be missed.

10.1 Tests for Coefficient Significance

Testing whether coefficient sizes are significantly different from zero is espe-
cially useful in cases where the number of parameters is modest, less than fifty
or so. Even if it does not always lead to the optimal subset, it can help to
eliminate large numbers of variables that do not contribute to the predictive
abilities of the model. Since this is a univariate approach – every variable is
tested individually – the usual caveats about correlation apply. Rather than

10.1 Tests for Coefficient Significance 207

concentrating on the size and variability of individual coefficients, one can
compare nested models with and without a particular variable. If the error
decreases significantly upon inclusion of that variable, it can be said to be rel-
evant. This is the basis of many stepwise approaches, especially in regression.

10.1.1 Confidence Intervals for Individual Coefficients

Using the wine data as an example, we can assess the confidence intervals for
the model quite easily, when we formulate the problem in a regression sense:

> X <- wines[odd,]

> C <- classvec2classmat(vintages[odd])

> wines.lm <- lm(C ~ X)

> wines.lm.summ <- summary(wines.lm)

> wines.lm.summ[[3]]

Response Grignolino :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.77235 0.63633 4.36 4.1e-05 ***

Xalcohol -0.12466 0.04918 -2.53 0.0133 *

Xmalic acid -0.06631 0.02628 -2.52 0.0138 *

Xash -0.56351 0.12824 -4.39 3.6e-05 ***

Xash alkalinity 0.03227 0.00975 3.31 0.0014 **

Xflavonoids 0.12497 0.05547 2.25 0.0272 *

Xcol. int. -0.04748 0.01661 -2.86 0.0055 **

Xproline -0.00064 0.00012 -5.33 1.0e-06 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The (edited) result shows the regression coefficients for Grignolino, the third
of the dependent variables. We have removed those variables that are not
significantly different from zero at the 0.1 confidence level. Seven variables
are, and so we could consider a model including only these. Comparing which
variables are important for all three cultivars, we can look at the fourth column
in the summary for each of the independent variables, which contains the p-
value:

> sapply(wines.lm.summ,

+ function(x) which(x$coefficients[,4] < .1))

$`Response Barbera`

Xmalic acid Xash Xflavonoids

3 4 8

Xnon-flav. phenols Xcol. int. XOD ratio

9 11 13

208 10 Variable Selection

$`Response Barolo`

(Intercept) Xalcohol Xash

1 2 4

Xash alkalinity Xflavonoids Xproanth

5 8 10

XOD ratio Xproline

13 14

$`Response Grignolino`

(Intercept) Xalcohol Xmalic acid

1 2 3

Xash Xash alkalinity Xflavonoids

4 5 8

Xcol. int. Xproline

11 14

Variables ash and flavonoids occur as significant for all three cultivars; six
others (not counting the intercept) for two cultivars.

In cases where no confidence intervals can be calculated analytically, such
as in PCR or PLS, we can, e.g., use bootstrap confidence intervals. For the
gasoline data, modelled with PCR using four latent variables, we have calcu-
lated bootstrap confidence intervals in Section 9.6.2. The percentile intervals,
shown in Figure 9.6, already indicated that most regression coefficients are
significantly different from zero. How does that look for the (better) BCα
confidence intervals? Let’s find out:

> gas.BCACI <-

+ sapply(1:ncol(gasoline$NIR),

+ function(i, x) {

+ boot.ci(x, index = i, type = "bca")$bca[,4:5]},

+ gas.pcr.bootCI)

A plot of the regression coefficients with these 95% confidence intervals im-
mediately shows which variables are significantly different from zero:

> coefs <- gas.pcr.bootCI$t0

> matplot(wavelengths, t(gas.BCACI), type = "n",

+ xlab = "Wavelength (nm)", ylab = "Regression coefficient",

+ main = "Gasoline data: PCR (4 PCs)")

> abline(h = 0, col = "gray")

> lines(wavelengths, coefs, col = "gray")

> matlines(wavelengths, t(gas.BCACI), col = 2, lty = 1)

> insignif <- apply(gas.BCACI, 2, prod) < 0

> coefs[insignif] <- NA

> lines(wavelengths, coefs, lwd = 2)

In Figure 10.1 non-significant coefficients are shown in gray, significant coef-
ficients in black.

10.1 Tests for Coefficient Significance 209

1000 1200 1400 1600

−
6

−
4

−
2

0
2

4
95% BCa bootstrap confidence intervals

Wavelength (nm)

R
eg

re
ss

io
n

co
ef

fic
ie

nt

Fig. 10.1. Significance of regression coefficients for PCR using four PCs on the
gasoline data; coefficients whose 95% confidence interval (calculated with the BCα
bootstrap) does not contain zero are indicated in black, others in gray.

Re-fitting the model after removing the insignificant wavelengths (in total
74, nearly 20%) leads to

> smallmod <- pcr(octane ~ NIR[,!insignif], data = gasoline,

+ ncomp = 4, validation = "LOO")

> RMSEP(smallmod, intercept = FALSE, estimate = "CV")

1 comps 2 comps 3 comps 4 comps

1.5236 1.4964 0.2801 0.2945

The error estimate is slightly higher than with the full data set, and the
optimal number of latent variables has decreased from four to three. This is
quite common: after variable selection, refitting leads to more parsimonious
models which are often more easy to interpret. Even if the predictions are not
(much) better, the improved interpretability is often seen as reason enough to
consider variable selection.

Although this kind of procedures has been proposed in the literature
(e.g., [122]), it is essentially incorrect. For the spectrum-like data, the cor-
relations between the wavelengths are so large that the confidence intervals of
individual coefficients are not useful to determine which variables are signifi-
cant – both errors of the first (false positives) and second kind (false negatives)
are possible. In practice, however, the procedure at least gives some idea of
where important information is located.

210 10 Variable Selection

10.1.2 Tests Based on Overall Error Contributions

In regression problems for data sets with not too many variables, the stan-
dard approach is stepwise variable selection. This can be performed in two
directions: either one starts with a model containing all possible variables and
iteratively discards variables that contribute least. This is called backward
selection. The other option, forward selection, is to start with an “empty”
model, i.e., prediction with the mean of the independent variable, and to keep
on adding variables until the contribution is no longer significant.

As a criterion for inclusion, values like AIC, BIC or Cp can be employed
– these take into account both the improvement in the fit as well as a penalty
for having more variables in the model. The default for the R functions add1

and drop1 is to use the AIC. Let us consider the regression form of LDA for
the wine data, leaving out the Barolo class for the moment:

> C <- as.numeric(vintages[vintages != "Barolo"])

> X <- wines[vintages != "Barolo",]

>

> wines2.df <- data.frame(vintages = C, wines = X)

> wines2.lm0 <- lm(vintages ~ 1, data = wines2.df)

> add1(wines2.lm0, scope = names(wines2.df)[-1])

Single term additions

Model:

vintages ~ 1

Df Sum of Sq RSS AIC

<none> 114.6 -2.5

wines.alcohol 1 45.3 69.2 -60.5

wines.malic.acid 1 35.0 79.6 -43.9

wines.ash 1 12.6 102.0 -14.4

wines.ash.alkalinity 1 4.3 110.3 -5.1

wines.magnesium 1 2.9 111.7 -3.6

wines.tot..phenols 1 30.3 84.3 -37.1

wines.flavonoids 1 63.5 51.1 -96.6

wines.non.flav..phenols 1 11.5 103.0 -13.1

wines.proanth 1 18.8 95.8 -21.8

wines.col..int. 1 72.3 42.3 -119.2

wines.col..hue 1 61.1 53.5 -91.2

wines.OD.ratio 1 71.8 42.8 -117.7

wines.proline 1 14.8 99.8 -17.0

According to this model, the first variable to enter should be col..int – this
gives the largest effect in AIC. Since we are comparing equal-sized models,
this also implies that the residual sum-of-squares of the model with only an
intercept and col..int is the smallest.

10.1 Tests for Coefficient Significance 211

Conversely, when starting with the full model, the drop1 function would
lead to elimination of the term that contributes least:

> wines2.lmfull <- lm(vintages ~ ., data = wines2.df)

> drop1(wines2.lmfull)

Single term deletions

Model:

vintages ~ wines.alcohol + wines.malic.acid +

wines.ash + wines.ash.alkalinity +

wines.magnesium + wines.tot..phenols + wines.flavonoids +

wines.non.flav..phenols + wines.proanth + wines.col..int. +

wines.col..hue + wines.OD.ratio + wines.proline

Df Sum of Sq RSS AIC

<none> 14.6 -221.6

wines.alcohol 1 0.1 14.7 -222.7

wines.malic.acid 1 1.3 15.9 -213.3

wines.ash 1 0.5 15.1 -219.5

wines.ash.alkalinity 1 0.1 14.7 -223.1

wines.magnesium 1 0.00016 14.6 -223.6

wines.tot..phenols 1 0.4 15.0 -220.4

wines.flavonoids 1 3.3 17.9 -199.5

wines.non.flav..phenols 1 0.7 15.3 -218.3

wines.proanth 1 0.1 14.7 -222.7

wines.col..int. 1 3.8 18.5 -195.8

wines.col..hue 1 0.6 15.3 -218.4

wines.OD.ratio 1 1.0 15.6 -215.6

wines.proline 1 0.01929 14.6 -223.4

In this case, wines.magnesium is the variable with the largest negative AIC
value, and this is the first one to be removed.

Concentrating solely on forward or backward selection will in practice often
lead to sub-optimal solutions: the order in which the variables are eliminated
or included is of great importance and the chance of ending up in a local opti-
mum is very real. Therefore, forward and backward steps are often alternated.
This is the procedure implemented in the step function:

> step(wines2.lmfull)

Coefficients:

(Intercept) wines.malic.acid

2.444 -0.114

wines.ash wines.tot..phenols

-0.472 -0.167

wines.flavonoids wines.non.flav..phenols

0.483 0.764

212 10 Variable Selection

wines.col..int. wines.col..hue

-0.129 0.447

wines.OD.ratio

0.270

The output of the function has been edited to show those variables eventually
ending up in the model, and their coefficients. From the thirteen original
variables, only eight remain.

Several other functions can be used for the same purpose: the MASS pack-
age contains functions stepAIC, addterm and dropterm which allows more
model classes to be considered. Package leaps contains function regsubsets1

which is guaranteed to find the best subset, based on the branch-and-bounds
algorithm. Another package implementing this algorithm is subselect, with
the function leaps.

The branch-and-bounds algorithm was first proposed in 1960 in the area
of linear programming [123], and was introduced in statistics by [124]. The
title of the latter paper has led to the name of the R-package. This particular
algorithm manages to avoid many regions in the search space that can be
shown to be less good than the current solution, and thus is able to tackle
larger problems than would have been feasible using an exhaustive search.
Application of the regsubsets function leads to the same set of selected
variables:

> wines2.leaps <- regsubsets(vintages ~ ., data = wines2.df)

> wines2.leaps.sum <- summary(wines2.leaps)

> names(which(wines2.leaps.sum$which[8,]))

[1] "(Intercept)" "wines.malic.acid"

[3] "wines.ash" "wines.tot..phenols"

[5] "wines.flavonoids" "wines.non.flav..phenols"

[7] "wines.col..int." "wines.col..hue"

[9] "wines.OD.ratio"

In some special cases, approximate distributions of model coefficients can
be derived. For two-class linear discriminant analysis, a convenient test statis-
tic is given by [26]:

F =
a2i (m− p+ 1)c2

tim(m+ c2)D2
(10.1)

with m = n1 + n2 − 2, n1 and n2 signifying group sizes, p the number of
variables, c2 = n1n2/(n1 + n2), and D2 is the Mahalanobis distance between
the class centers, based on all variables. The estimated coefficient in the dis-
criminant function is ai, and ti is the i-th diagonal element in the inverse of
the total variance matrix T , given by

1 It also contains the function leaps for compatibility reasons; regsubsets is the
preferred function.

10.2 Explicit Coefficient Penalization 213

T = W +B (10.2)

This statistic has an F -distribution with 1 and m− p+ 1 degrees of freedom.
Let us see what that gives for the Grignolino and Barbera classes from the
wine data, already considered on page 112, but now using all variables. We
again use the code from that page, and subsequently calculate the elements
for the test statistic:

> Ddist <- mahalanobis(colMeans(wines.groups[[1]]),

+ colMeans(wines.groups[[2]]),

+ wines.pcov12)

> m <- sum(sapply(wines.groups, nrow)) - 2

> p <- ncol(wines)

> c <- prod(sapply(wines.groups, nrow)) /

+ sum(sapply(wines.groups, nrow))

> Fcal <- (MLLDA^2 / diag(Tii)) *

+ (m - p + 1) * c^2 / (m * (m + c^2 * Ddist))

> Fcal

> which(Fcal > qf(.95, 1, m-p+1))

malic acid ash flavonoids

2 3 7

non-flav. phenols col. int. col. hue

8 10 11

OD ratio

12

Using this method, seven variables are shown to be contributing to the sep-
aration between Grignolino and Barbera wines on the α = 0.05 level. The
only variable missing, when compared to the earlier selected set of eight, is
tot..phenols, which has a p-value of .08.

10.2 Explicit Coefficient Penalization

In the chapter on multivariate regression we already saw that several methods
use the concept of shrinkage to reduce the variance of the regression coeffi-
cients, at the cost of bias. Ridge regression achieves this by explicit coefficient
penalization, as shown in Equation 8.22. Although it forces the coefficients to
be closer to zero, the values almost never will be exactly zero. If that would be
the case, the method would be performing variable selection: those variables
with zero values for the regression coefficients can safely be removed from the
data.

Interestingly enough, one can obtain the desired behaviour by replacing
the quadratic penalty in Equation 8.22 by an absolute-value penalty:

arg max
B

(Y −XB)
2

+ λ|B| (10.3)

214 10 Variable Selection

The penalty, consisting of the sum of the absolute values of the regression co-
efficients, is an L1-norm. As already stated before, ridge regression, focussing
on squared coefficients, employs an L2-norm, and measures like AIC or BIC
are using the L0-norm, taking into account only the number of non-zero re-
gression coefficients. In Equation 10.3, with increasing values for parameter
λ more and more regression coefficients will be exactly zero. This method
has become known under the name lasso [121,3]; an efficient method to solve
this equation – and related approaches – has become known under the name
of least-angle regression, or LARS [125]. Several R versions for the lasso are
available; package lars is written by the inventors of the method, and will be
used here as an example. Packages implementing similar routines are glmnet,
a package for lasso-type generalized linear regression by the same authors,
lpc for “lassoed principal components”, relaxo, a generalization of the lasso
using possibly different penalization coefficients for the variable selection and
parameter estimation steps, and several others.

Rather than one set of coefficients for one given value of λ, the function
lars from the package with the same name returns an entire sequence of fits,
with corresponding regression coefficients. For the odd rows of the gasoline
data, the model is simply obtained as follows:

> gas.lasso <- lars(gasoline$NIR[odd,], gasoline$octane[odd])

> plot(gas.lasso, xlim = c(0, .1))

> plot(gas.lasso, breaks = FALSE)

> plot(gas.lasso, breaks = FALSE,

+ xvar = "step", xlim = c(0, 20))

The result of the corresponding plot method is shown in the top left pane
in Figure 10.2. It shows the (standardized) regression coefficients against the
size of the L1 norm of the coefficient vector. The x-axis has been truncated
here to be able to see what is happening. For an infinitely large value of
λ, the weight of the penalty, no variables are selected. Gradually decreasing
the penalty leads to a fit using only one non-zero coefficient. Its size varies
linearly with the penalty – until the next variable enters the fray. The right
of the plot shows the position of the entrances of new non-zero coefficients.
This piecewise linear behaviour is the key to the LARS algorithm, and makes
it possible to calculate the whole trace in approximately the same amount of
time as needed for a normal linear regression. The complete trace is shown in
the top right plot in the same figure; for clarity the vertical lines have been
left out (using breaks = FALSE). To the right, the variable numbers of some
of the coefficients are shown at their “final” values, i.e. at the end point of the
algorithm. This enables easy identification of what may be the most influential
variables. The bottom left plot shows the same coefficients plotted against the
number of variables in the model.

Of course, the value of the regularization parameter λ needs to be op-
timized. A function cv.lars is available for that, using by default ten-fold
crossvalidation. It automatically plots the CV curve:

10.2 Explicit Coefficient Penalization 215

●

●

●

●

●
●
●
●
●
●
●
●
●●

●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

fraction

cv

Fig. 10.2. Top row: coefficients plotted against the fraction of the coefficient vec-
tor lenght. Left plot: partial view showing the inclusion of the first eight variables.
Right plot: complete view until the saturated model. Bottom row, left plot: same
coefficients, now plotted against the number of included variables. Right plot: cross-
validation curve.

> gas.lasso.cv <- cv.lars(gasoline$NIR[odd,],

+ gasoline$octane[odd])

> best <- which.min(gas.lasso.cv$cv)

> abline(v = gas.lasso.cv$fraction[best], col = "red")

The result is shown in the bottom right plot in Figure 10.2. In this case,
the optimal CV error is reached at approximately one-third of the maximal
length of the coefficient vector. Thus, “optimal” predictions are obtained at
this point:

> gas.lasso.pred <- predict(gas.lasso, gasoline$NIR[even,],

+ s = best)

> resids <- gas.lasso.pred$fit - gasoline$octane[even]

> sqrt(mean(resids^2))

[1] 0.2263087

The prediction error for the test set is very close to the best values seen with
PCR and PLS, but now only a small fraction of the 400 original variables is
included in the model. The predict.lars function can also be used to assess
which coefficients are non-zero:

216 10 Variable Selection

● ● ●

●

●

●

● ● ● ●
●

●
●

● ●

0 10 20 30 40 50

0.
5

1.
0

1.
5

2.
0

step

cv

Fig. 10.3. Elastic net results for the gasoline data. The left plot shows the devel-
opment of the regression coefficients upon relaxation of the penalty parameter. The
right plot shows the ten-fold crossvalidation curve for the first fifty variables.

> gas.lasso.coefs <- predict(gas.lasso, gasoline$NIR[even,],

+ s = best, type = "coef")

> gas.lasso.coefs$coefficients[gas.lasso.coefs$coeff != 0]

914 nm 1194 nm 1206 nm 1212 nm 1226 nm 1360 nm

15.22869 7.55376 -4.27597 -38.28831 -57.36533 0.28568

1362 nm 1366 nm 1620 nm 1630 nm 1636 nm 1682 nm

27.64500 30.18210 18.25265 -12.84600 -1.39421 -1.00424

1692 nm 1696 nm 1698 nm 1700 nm

-0.63252 -3.07971 -0.37270 0.00218

Again we see that also in this model the longer wavelengths at the right
extreme are included, but that the main coefficients are around 1200 and
1360 nm.

A further development is mixing the L1-norm of the lasso and related
methods with the L2-norm used in ridge regression. This is known as the
elastic net [126]. The penalty term is given by∑

i

(
α|βi|+ (1− α)β2

i

)
(10.4)

where the sum is over all variables. The result is that large coefficients are
penalized heavily (because of the quadratic term) and that many of the coef-
ficients are exactly zero, leading to a sparce solution.

The elastic net is available as function enet in package elasticnet:

> gas.enet <- enet(gasoline$NIR, gasoline$octane, lambda = .5)

> plot(gas.enet, "step")

The argument lambda indicates the weight of the quadratic penalty – using
lambda = 0 would lead to the LASSO solution seen earlier. The plot, shown in
the left part of Figure 10.3, again displays the development of the coefficients
upon inclusion of more and more variables. Crossvalidation is available, too.
In the following example, we limit ourselves to the inclusion of a maximum of
50 variables:

10.3 Global Optimization Methods 217

Wavelength (nm)

C
oe

ffi
ci

en
ts

1000 1200 1400 1600

Lasso
Elastic net

Fig. 10.4. Non-zero coefficients in the lasso and elastic net models. A small vertical
offset has been added to facilitate the comparison.

> gas.enet.cv <- cv.enet(gasoline$NIR, gasoline$octane,

+ lambda = .5, s=1:50, mode="step")

The result is shown in the right plot in Figure 10.3. Further inspection of the
elastic net model, completely analogous to the code shown earlier for the lasso,
shows that in this case an RMS value is obtained for the test data of 0.427,
almost twice the error of the lasso solution, using 24 non-zero coefficients.
However, the location of the important variables seems to make more sense
than in the case of the lasso: from Figure 10.4 we can see that in the noisy area
at the longer wavelengths nothing is selected by the elastic net. Moreover, the
variables that are selected are placed in four small, contiguous regions, which
makes sense chemically.

10.3 Global Optimization Methods

Given the speed of modern-day computing, it is possible to examine large
numbers of different models and select the best one. However, as we already
saw with leaps-and-bounds approaches, even in cases with a moderate num-
ber of variables it is practically impossible to assess the quality of all subsets.
One must, therefore, limit the number of subsets that is going to be consid-
ered to a manageable size. The stepwise approach does this by performing a
very local search around the current best solution before adding or removing
one variable; it can be compared to a steepest-descent strategy. The obvious
disadvantage is that many areas of the search space will never be visited.
For regression or classification cases with many variables, almost surely the
method will find a local optimum, very often of low quality.

218 10 Variable Selection

An alternative is given by random search – just sampling randomly from
all possible subsets until time is up. Of course, the chance of finding the global
optimum in this way is smaller than the chance of winning the lottery... What
is needed is a search strategy that combines random elements with “gradient”
information; that is, a strategy that uses information, available in solutions
of higher quality, with the ability to throw that information away if needed,
in order to be able to escape from local optima. This type of approaches has
become known under the heading of global search strategies. The two best-
known ones in the area of chemometrics are Simulated Annealing and Genetic
Algorithms. Both will be treated briefly below.

What is quality, in this respect, again depends on the application. In most
cases, the property of interest will be the quality of prediction of unseen data,
which for larger data sets can conveniently be estimated by crossvalidation
approaches. For data sets with few samples, this will not work very well be-
cause of the coarse granularity of the criterion: many subsets will lead to an
equal number of errors. Additional information should be used to distinguish
between these.

10.3.1 Simulated Annealing

In Simulated Annealing (SA, [127, 128]), a sequence of candidate solutions is
assessed, starting from a random initial point. A new solution, not too far
away from the current one, is unconditionally accepted if it is better than the
current one. If not, and this is the defining feature of SA, it is accepted with
a probability

pacc = exp ((Ei+1 − Ei)/Tt) (10.5)

where Ei is the quality of the current solution, Ei+1 the quality of the new
candidate solution, and Ti the state of the control parameter at the current
time point i. Note that pacc, defined in this way, is always between zero and
one since Ei > Ei+1: we already saw that an improvement will always be
accepted so in this case the quality of the current solution is higher than that
of the new solution. This criterion is known as the Metropolis criterion [129].
Other criteria are possible, too, but are hardly ever used.

The name comes from an analogy to annealing in metallurgy, where crys-
tals with fewer defects can be created by repeatedly heating and cooling a
material: during the (slow) cooling, the atoms are able to find their energeti-
cally most favorable positions in a regular crystal lattice, whereas the heating
allows atoms that have been caught in unfavourable positions (local optima)
to “try again” in the next cooling stage. The analogy with the optimization
task is clear: if an improvement is found (better atom positions) it is accepted;
if not, then sometimes a deterioration in quality is accepted in order to be
able to cross a ridge in the solution landscape and to find an solution that
is better in the end. Very often, the control parameter is therefore indicated
with T , to stress the analogy with temperature. During the optimization, it

10.3 Global Optimization Methods 219

will slowly be decreasing in magnitude – the cooling – causing fewer and fewer
solutions of lower quality to be accepted. In the end, only real improvements
are allowed. It can be shown that SA leads to the global optimum if the cool-
ing is slow enough [130]; unfortunately, the practical importance of this proof
is limited since the cooling may have to be infinitely slow...

The naive implementation of an SA therefore can be very simple: one needs
a function that generates a new solution in the neighbourhood of the current
one, an evaluation function to assess the quality of the new solution, and the
acceptance function, including a cooling schedule for the search parameter T .
For the evaluation function, typically some form of crossvalidation is used –
note that the evaluation function in this schedule probably is the most time-
consuming step, and since it will be executed many times (typically tens of
thousands or even millions of solutions are evaluated by global search meth-
ods) it should be very fast. If possible, analytical estimates for crossvalidation
error should be used.

The step function should generate a new solution that is somewhat differ-
ent from the current one, but not too much. In this way a trajectory through
the solution space can be obtained – if the differences between old and new
solutions would be too big, we would be performing random search. The fol-
lowing is an example of a simple step function for variable selection:

> SAstep <- function(curr.set, maxvar,

+ fraction = .3, size.dev = 1)

+ {

+ if (is.null(curr.set)) { # create a new set

+ sample(1:maxvar, round(maxvar * fraction))

+ } else { # modify the existing one

+ new.size <- length(curr.set)

+ if (size.dev > 0) # perhaps change the size

+ new.size <- new.size + sample(-size.dev:size.dev, 1)

+ if (new.size < 2) new.size <- 2

+ if (new.size > maxvar - 2) new.size <- maxvar - 2

+

+ not.in <- which(!((1:maxvar) %in% curr.set))

+ superset <- c(curr.set,

+ sample(not.in, max(size.dev, 1)))

+ newset <- sample(superset, new.size)

+ ## looks familiar? If yes, then try again

+ while (length(newset) == length(curr.set) &&

+ !any(is.na(match(newset, curr.set))))

+ newset <- sample(superset, new.size)

+

+ newset

+ }

+ }

220 10 Variable Selection

If no current subset is given, a random selection is made, the size of a given
fraction of the complete set. If a subset is presented as the first argument, the
function first determines the length of the output: if size.dev equals zero,
the output has the same length as the input. If not (the default), there is some
margin for change. From the combination of the current set and a random set
of the previously unselected variables a new subset is selected, again randomly.
The last step is repeated until the new set differs from the current set, which
is usually the case. Anticipating the application to a well-known data set, let
us generate a random subset from thirteen variables as an example:

> sbst <- SAstep(NULL, 13)

> sbst

[1] 13 5 2 1

> (sbst <- SAstep(sbst, 13))

[1] 5 1 13

> (sbst <- SAstep(sbst, 13))

[1] 5 13 3

Of course, it is very well possible that an earlier selected subset is reached
again during the SA iterations, and in fact, the next step in the example –
that can be reproduced by issuing set.seed(7) before running the first as-
signment of sbst – would again lead to the second subset. More sophisticated
step functions can take this into account; another possibility is to generate a
number of close neighbours rather than one, and to accept the best (or the
least bad) of these.

The evaluation is based on the fast built-in LOO classification estimates
of the lda function; to force the algorithm to solutions with as few variables
as possible one can add an explicit penalization for every variable included in
the model. The following (rather naive) function takes the number of correct
classifications minus the number of variables as the objective function:

> lda.loofun <- function(x, grouping, subset)

+ {

+ lda.obj <- lda(x[, subset, drop = FALSE],

+ grouping, CV = TRUE)

+

+ sum(lda.obj$class == grouping) - length(subset)

+ }

Of course, many methods may be used to strike a balance between the quality
of the fit and the number of variables, analogously to the AIC and BIC criteria.
The SA function itself is now a simple loop with some bookkeeping:

10.3 Global Optimization Methods 221

> SAfun <- function(x, response, eval.fun, Tinit, niter = 100,

+ cooling = .05, fraction = .3, ...)

+ { # preparations...

+ nvar <- ncol(x)

+ best <- curr <- SAstep(NULL, nvar, fraction = fraction)

+ best.q <- curr.q <- eval.fun(x, response, curr, ...)

+

+ Temp <- Tinit

+ for (i in 1:niter) { # Go!

+ new <- SAstep(curr, nvar)

+ new.q <- eval.fun(x, response, new, ...)

+ accept <- TRUE

+ if (new.q < curr.q) { # Metropolis criterion

+ p.accept <- exp((new.q - curr.q) / Temp)

+ if (runif(1) > p.accept) accept <- FALSE

+ }

+ if (accept) {

+ curr <- new

+ curr.q <- new.q

+ if (curr.q > best.q) { # store best until now

+ best <- curr

+ best.q <- curr.q

+ }

+ }

+ Temp <- Temp * (1 - cooling)

+ }

+ list(best = best, best.q = best.q)

+ }

This SA function takes the data matrix and the response as the first two
arguments, and an evaluation function as its third; the initial value of the
temperature control parameter is in position four. Extra arguments can be
passed to the evaluation function using the ellipses (...). At every iteration,
a new candidate subset is evaluated. If it is accepted, it replaces the old subset,
and a check is performed to see whether the new solution is the best one so
far. At the end of the iteration, the best subset and the associated quality
value are returned.

Let us see how this works in the two-class wines example from Sec-
tion 10.1.2, excluding the Barolo variety. This is a simple example for which
it still is quite difficult to assess all possible solutions, especially since we do
not force a model with a specific number of variables. An SA run with 100
iterations leads to the following result:

> C <- factor(vintages[vintages != "Barolo"])

> X <- wines[vintages != "Barolo",]

222 10 Variable Selection

●

●
●

●
● ● ●

●

● ● ● ● ● ●

●
●

● ●● ● ● ●

0 20 40 60 80 100

80
90

10
0

11
0

SA subset selection

Iteration

Q
ua

lit
y

●

●
●

●
● ● ●

●

● ● ● ● ● ●

●
●

● ●● ● ● ●

Fig. 10.5. Progression of the quality of the candidate subsets during an SA optimiza-
tion. Black circles indicated accepted solutions; gray triangles indicate rejections.

> SAobj <- SAfun(X, C, lda.loofun, Tinit = 1)

> SAobj

$best

[1] 11 7 10

$best.qual

[1] 115

With only three variables, flavonoids, color intensity and color hue, the result
is only one misclassification; in fact, this is the same error rate as obtained with
the full set. Several other combinations may be found with the same error rate.
It is illustrative to consider the quality values throughout the optimization,
shown in Figure 10.5. Black circles indicate acceptance of a new solution; gray
triangles indicate new solutions that have been rejected. In the beginning of
the optimization, sometimes solutions are accepted that do not constitute
an improvement (visible between iterations ten and twenty). Later in the
optimization, with the lower temperature parameter, this no longer occurs.

A more ambitious example is to predict the octane number of the gasoline
samples with only a subset of the NIR wavelengths. The only thing we have
to change is the evaluation function:

10.3 Global Optimization Methods 223

> pls.cvfun <- function(x, response, subset, ...)

+ {

+ pls.obj <- plsr(response ~ x[,subset],

+ validation = "CV", ...)

+ -MSEP(pls.obj, estimate = "CV")$val[length(subset) + 1]

+ }

In this case, we use the explicit crossvalidation provided by the plsr function.
The number of components to take into account can be specified in the extra
argument of the evaluation function; the error of the model with the largest
number of latent variables is returned. Since the SA function, as implemented
here, does maximization only, the negative value of the mean squared error is
used as quality indicator. Let us try to find an optimal two-component PLS
model (fewer variables often lead to less complicated models). We start with
a very small model using only eight variables (.02×401), do the optimization,
and look at the RMSCV of the best solution:

> SAobj <- SAfun(gasoline$NIR, gasoline$octane,

+ eval.fun = pls.cvfun, Tinit = 3,

+ fraction = .02, niter = 1000, ncomp = 2)

> length(SAobj$best)

[1] 20

> sqrt(-SAobj$best.q)

[1] 0.1998400

Comparing with the model using two latent variables in Figure 8.3, the error
of the best subset of twenty variables is almost three times smaller! In this op-
timization, we used 1000 iterations and a higher value of the search parameter
Tinit; users will in most cases do some tweaking to find optimal results.

Although the above examples only take seconds on a modern desktop com-
puter, real applications can be very computer-intensive; the implementation
should be done in compilable code such as Fortran or C. This is the case
for the anneal function in package subselect, which can be used for variable
selection in situations like discriminant analysis, PCA, and linear regression,
according to the criterion employed. For LDA, this function takes the between-
groups covariance matrix, the minimal and maximal number of variables to
be selected, the within-groups covariance matrix and its expected rank, and
a criterion to be optimized (see below) as arguments. For the LDA example
above, a solution to find the optimal three-variable subset would look like this:

> winesHmat <- ldaHmat(X, C)

> wines.anneal <-

+ anneal(winesHmat$mat, kmin = 3, kmax = 3,

+ H = winesHmat$H, criterion = "ccr12", r = 1)

224 10 Variable Selection

> wines.anneal$bestsets

Var.1 Var.2 Var.3

Card.3 2 7 10

> wines.anneal$bestvalues

Card.3

0.8328148

Repeated application (using, e.g., nsol = 10) in this case leads to the same
solution every time. Rather than the direct estimates of prediction error, the
anneal function uses functions of the within- and between-groups covariance
matrices [131]. In this case using the ccr12 criterion, the first root of BW−1

is optimized, analogous to Fisher’s formulation of LDA on page 111. As an
other example, Wilk’s Λ is given by

Λ = det(W)/ det(T) (10.6)

and is (in a slightly modified form) available in the tau2 criterion. For the
current case where the dimensionality of the within-covariance matrices is
estimated to be one, all criteria lead to the same result.

The new result differs from the subset from our own implementation in only
one instance: variable 11, color hue, is swapped for the malic acid concentra-
tion. The reason, of course, is that both functions optimize different criteria.
Let us see how the two solutions fare when evaluated with the criterion of
the other algorithm. The value for the ccr12 criterion of the solution using
variables 7, 10 and 11, found with our own simplistic SA implementation, can
be assessed easily:

> ccr12.coef((nrow(X) - 1) * var(X), winesHmat$H,

+ r = 1, c(7, 10, 11))

[1] 0.8229304

which, as expected, is slightly lower than that of the set consisting of variables
2, 7 and 10. Conversely, the prediction quality of the newer set is slightly worse:

> lda.loofun(X, C, c(2, 7, 10))

[1] 114

Obviously, there are probably many sets with the same or similar values for the
quality criterion of interest, and to some extent it is a matter of chance which
one is returned by the search algorithm. Moreover, the number of possible
quality values can be limited, especially with criteria based on the number of
misclassifications. This can make it more difficult to discriminate between two
candidate subsets.

The anneal function for subset selection is also applicable in other types
of problems than classification alone: e.g., for variable selection in PCA it

10.3 Global Optimization Methods 225

uses a measure of similarity of the original data matrix and of the projections
on the k-variable subspace – again, several different criteria are available.
The speed and applicability in several domains are definite advantages of this
particular implementation. However, there are some disadvantages, too: firstly,
because of the formulation using covariance matrices it is hard to apply anneal

to problems with large numbers of variables. Finding the most important
discriminating variables in the prostate data set would stretch your computer
to the limit... Secondly, in the case of LDA the quality criteria are focussing
very much on the fit of the training data, rather than on prediction ability. The
danger of overfitting is huge – we will come back to this point later. Finally, it
can be important to monitor the progress of the optimization, or at least keep
track of the speed with which improvements are found – especially when fine-
tuning the SA parameters (temperature, cooling schedule) one would like to
have the possibility to assess acceptance rates. Currently, no such functionality
is provided in the subselect package.

10.3.2 Genetic Algorithms

Genetic Algorithms (GAs, [132]) manage a population of candidate solutions,
rather than one single solution as is the case with most other optimization
methods. Every solution in the population is represented as a string of values,
and in a process mimicking sexual reproduction offspring is generated com-
bining parts of the parent solutions. The quality of the offspring is measured
in an evaluation phase – again in analogy with biology, this quality is often
called “fitness”. Strings with a low fitness will have no or only a low proba-
bility of reproduction, so that subsequent generations will generally consist of
better and better solutions. This obvious imitation of the process of natural
selection has led to the name of the technique. GAs have been applied to a
wide range of problems in very diverse fields – an overview of applications
within chemistry can be found in, e.g., [133].

Again, the best way to find out how GAs work is to write a simple version
ourselves. The first choice we have to make is on the representation of the can-
didate solutions, i.e., the candidate subsets. Two obvious possibilities present
themselves: either a vector of indices of the variables in the subset, or a string
of zeros and ones. For other optimization problems, e.g. non-linear fitting, real
numbers can also be used. In the example here, we will use vectors of indices
to indicate subsets; a population of candidate solutions is then conveniently
stored as a list of subsets. This is typically initialized randomly:

226 10 Variable Selection

> GA.init.pop <- function(popsize, nvar, kmin, kmax)

+ {

+ lapply(1:popsize,

+ function(ii, x, min, max) {

+ if (min == max) {

+ sample(x, min)

+ } else {

+ sample(x, sample(min:max, 1))

+ }},

+ nvar, kmin, kmax)

+ }

> pop1 <- GA.init.pop(pops = 5, nvar = 13, kmin = 2, kmax = 4)

> pop1

[[1]]

[1] 6 2 1 3

[[2]]

[1] 5 12 2 13

[[3]]

[1] 4 10

[[4]]

[1] 6 2

[[5]]

[1] 1 12 4

In this example, five different subsets containing two to four variables are
generated. Each of these solutions can be directly evaluated with the same
function as we already used in the SA implementation:

> pop1.q <-

+ sapply(pop1, function(subset) lda.loofun(X, C, subset))

> pop1.q

[1] 102 106 101 99 107

The two two-variable solutions do not work well and the last one, the three-
variable subset is the best.

The selection function determines which of these solutions is allowed to
reproduce, and is the driving force behind the optimization – if all solutions
would have the same probability the result would be a random search. Typical
selection procedures are to use random sampling with equal probabilities for
all solution above a quality cutoff, or to use random sampling with (scaled)
quality indicators as probability weights. The following function combines

10.3 Global Optimization Methods 227

these concepts, and returns the indices of the candidate solutions that may
become parents:

> GA.select <- function(pop, number, qlts,

+ min.qlt = .4, qlt.exp = 1)

+ {

+ n <- length(pop)

+ qlts <- qlts - min(qlts)

+ threshold <- quantile(qlts, min.qlt)

+

+ weights <- rep(0, n)

+ weights[qlts > threshold] <-

+ qlts[qlts > threshold] ^ qlt.exp

+

+ sample(n, number, replace = TRUE, prob = weights)

+ }

> GA.select(pop1, 2, pop1.q, qlt.exp = 0)

[1] 2 5

In this case we have applied rank-threshold selection: all members of the pop-
ulation above the quality cutoff have the same chance of being selected. Pro-
viding a value for the parameter qlt.exp (the default is 1) will lead to a
further bias towards the better solutions:

> GA.select(pop1, 2, pop1.q)

[1] 5 5

In this case, the function selects the same object (the best one) twice – there is
no provision to prevent this, in accordance with general practice. If too many
identical samples are selected, this is seen as a product of a selection pressure
that is too high, something that should be corrected by either lowering the
values for either the min.qlt or qlt.exp parameters. If too many bad samples
are selected, the reverse applies.

A crucial difference between GAs and SA is that in a GA no problem-
specific step function is needed: this is taken care of by the GA machinery
of reproduction, typically consisting of two components, a crossover and a
mutation. Both are random processes, not influenced by the quality of the
solutions involved. The aim of the crossover is to combine elements of the
parent solutions to obtain better children. An example implementation could
be the following:

> GA.XO <- function(subset1, subset2)

+ {

+ n1 <- length(subset1)

+ n2 <- length(subset2)

+ if (n1 == n2) {

228 10 Variable Selection

+ length.out <- n1

+ } else {

+ length.out <- sample(n1:n2, 1)

+ }

+ sample(unique(c(subset1, subset2)), length.out)

+ }

> GA.XO(pop1[[1]], pop1[[2]])

[1] 5 2 13 3

The result of combining to four-variable solutions is one child, again a four-
variable solution. By repeatedly calling the selection and crossover operators,
the next generation of bright young candidate solutions is gradually obtained.

Finally, a process of random mutation is active with a low probability, to
maintain diversity in the population of candidate solutions. This also ensures
that variables that were not selected in the initial population have a chance of
entering the picture. The following function may remove a selected variable,
add a previously unselected variable, or do both. The length of the mutated
solution can be equal to the original, or differ by one. As with all other GA
components, its machinery is based on chance:

> GA.mut <- function(subset, maxvar, mut.prob = .01)

+ {

+ if (runif(1) < mut.prob) { # swap variable in or out

+ new <- sample((1:maxvar)[-subset], 1)

+ length.out <- sample(-1:1 + length(subset), 1)

+

+ sample(c(new, subset), length.out)

+ } else { # do nothing

+ subset

+ }

+ }

> GA.mut(pop1[[1]], 13, 1)

[1] 3 1 2

In this case, just to show the effect, we have forced a mutation by setting
the mutation probability to one. Obviously, having a high mutation rate will
reduce the whole algorithm to random search, so the default mutation prob-
ability is usually very low.

Putting it all together leads to the following GA function:

> GAfun <- function(X, C, eval.fun, kmin, kmax,

+ popsize = 20, niter = 50,

+ mut.prob = .05, ...)

+ {

+ nvar <- ncol(X) # preparations: the first generation

10.3 Global Optimization Methods 229

+ pop <- GA.init.pop(popsize, nvar, kmin, kmax)

+ pop.q <- sapply(pop,

+ function(subset) eval.fun(X, C, subset, ...))

+ best.q <- max(pop.q)

+ best <- pop[[which.max(pop.q)]]

+

+ for (i in 1:niter) { # Go!

+ new.pop <-

+ lapply(1:popsize, function(j) {

+ GA.mut(GA.XO(pop[[GA.select(pop, 1, pop.q)]],

+ pop[[GA.select(pop, 1, pop.q)]]),

+ maxvar = nvar, mut.prob = mut.prob)}

+) # do crossover, and later perhaps mutation

+ pop <- new.pop

+ pop.q <- sapply(pop,

+ eval.fun(X, C, subset, ...))

+ if (max(pop.q) > best.q) { # bookkeeping of best solutions

+ best.q <- max(pop.q)

+ best <- pop[[which.max(pop.q)]]

+ }

+ if (length(unique(pop.q)) == 1) break # total convergence

+ }

+ list(best = best, best.q = best.q, n.iter = i)

+ }

In this function, the default number of evaluations, the number of generations
times the population size, equals 1000, the same as in our proposed SA func-
tion. If the population has completely converged to solutions with the same
fitness, the iteration stops.

So, how does this function perform? Let’s find out using the wine data:

> GAobj <- GAfun(X, C, lda.loofun, kmin = 3, kmax = 3)

> GAobj

$best

[1] 7 10 12

$best.q

[1] 115

$n.iter

[1] 8

We see that the same quality value as the optimal SA solution is obtained
with a slightly different subset. This problem is perhaps not the best example
of the use of a GA: the number of variables is fairly low, and only after eight

function(subset)

230 10 Variable Selection

●
●

●

●

●

●

● ● ●

● ●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00
GA subset selection

Generation

Q
ua

lit
y

●

best
median
worst

Fig. 10.6. Progression of the quality of the best, median and worst solution in the
population during the GA-based subset selection for PLS-modelling of the gasoline
data. The y-axis is limited to the interval [−0.2, 0].

generations there is convergence, in the sense that all solutions have the same
fitness.

A better example is the variable selection for the gasoline data. Again, the
only thing we have to do is to plug in the appropriate evaluation function and
perhaps tweak some of the settings:

> GAobj <- GAfun(gasoline$NIR, gasoline$octane, ncomp = 2,

+ eval.fun = pls.cvfun, kmin = 3, kmax = 25)

> GAobj$best

[1] 227 103 221 398 72 189 75 148 48 306 241 342

[13] 154 43 33 162 4 7 89 147 81 142 97 135

> sqrt(-GAobj2$best.q)

[1] 0.2260878

The result, using 24 variables, is slightly worse than obtained with the SA
optimization but still much better than with the full set.

As with the SA example, it is sometimes useful to visualize the progress
of the optimization. A plot of the best, median and worst members of the
population is shown in Figure 10.6. Such a plot immediately shows the level

10.3 Global Optimization Methods 231

of diversity in the population, which decreases during the optimization but
is still appreciable in the last generation; much larger, in this case, than the
difference between the overall best solution and the best solution of the first,
random, generation. The plot shows a slightly upward trend, also in the later
generations, so that better results may be obtained by continuing for more
generations. Typically, population sizes of 50–100 candidate solutions are used,
and the number of generations is usually several hundred to one thousand.

In more complicated problems, speed is a big issue. Some simple tricks
can be employed to speed up the optimization. Typically, several candidate
solutions will survive unchanged during a couple of generations. Rigorous
bookkeeping may prevent unnecessary quality assessments, which in almost
all cases is the most computer-intensive part of a GA. An implementational
trick that is also very often applied is to let the best few solutions enter the
next generation unchanged; this process, called elitism, makes sure that no
valuable information is thrown away and takes away the need to keep track of
the best solution. Provisions can be taken to prevent premature convergence:
if the population is too homogeneous the power of the crossover operator
decreases drastically, and the optimization usually will not lead to a useful
answer. One strategy is to disallow offspring that is equal to other candidate
solutions; a second strategy is to penalize the fitness of candidate solutions
that are too similar; the latter strategy is sometimes called sharing.

The genetic function in the subselect package provides a fast Fortran-
based GA. The details of the crossover and mutation functions are slightly
different from the description above – indeed, there are probably very few
implementations that share the exact same crossover and mutation operators,
testimony to the flexibility and power of the evolutionary paradigm. Having
seen the working of the anneal function, most input parameters will speak
for themselves:

> wines.genetic <-

+ genetic(winesHmat$mat, kmin = 3, kmax = 5, nger = 20,

+ popsize = 50, maxclone = 0,

+ H = winesHmat$H, criterion = "ccr12", r = 1)

> wines.genetic$bestvalues

Card.3 Card.4 Card.5

0.8328148 0.8436784 0.8524806

> wines.genetic$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5

Card.3 2 7 10 0 0

Card.4 2 3 7 10 0

Card.5 2 3 7 10 12

And indeed, the same three-variable solution is found as the optimal one. This
time, also four- and five-variable solutions are returned (because of the values
of the kmin and kmax arguments).

232 10 Variable Selection

The maxclone argument tries to enforce diversity by replacing duplicate
offspring by random solutions (which are not checked for duplicity, however).
Leaving out this argument would, in this simple example, lead to a premature
end of the optimization because of the complete homogeneity of the popu-
lation. Both anneal and genetic provide the possibility of a further local
optimization of the final best solution.

10.3.3 Discussion

Variable selection is a difficult process. Simple stepwise methods only work
with a small number of variables, whereas the largest gains can be made in
the nowadays typical situation of hundreds or even thousands of variables.
More complicated methods containing elements of random search, such as SA
or GA approaches, can have a high variability, especially in cases where cor-
relations between variables are high. One approach is to repeat the variable
selection multiple times, and to use those variables that are consistently se-
lected. Although this strategy is intuitively appealing, it does have one flaw:
suppose that variables a and b are highly correlated, and that a combination
of either a or b with a third variable c leads to a good model. In repeated
selection runs, c will typically be selected twice as often as a or b – if the
overall selection threshold is chosen to include c but neither of a and b, the
model will not work well.

In addition, the optimization criterion is important. It has been shown
that LOO crossvalidation as a criterion for variable selection is inconsistent,
in the sense that even with an infinitely large data set it will not choose
the correct model [134]. Baumann et al. advocate the use of leave-multiple-
out crossvalidation for this purpose [135,136], even though the computational
burden is high. In this approach, the data are repeatedly split, randomly, in
training and test sets, where the number of repetitions needs to be greater
than the number of variables, and for every split a separate crossvalidation is
performed to optimize the parameters of the modelling method such as the
number of latent variables in PCR or PLS. A workable alternative is to fix the
number of latent variables to a “reasonable” number, and to find the subset of
variables that with this particular setting leads to the best results. This takes
away the nested crossvalidation but may lead to subsets that are suboptimal.
In general, one should accept the fact that there is no guarantee that the
optimal subset will be found, and it is wise to accept a subset that is “good
enough”.

Part V

Applications

11

Chemometric Applications

This chapter highlights some typical examples of research themes in the
chemometrics community. Up to now we have concentrated on fairly gen-
eral techniques, found in many textbooks and applicable in a wide range of
fields. Several other topics, some of them more specific to the field of chemo-
metrics, combine elements from the previous chapters and warrant a separate
section. We start with two examples dealing with outliers and noise, respec-
tively. Robust PCA is an attractive method to identify outliers in multivariate
space, at a modest computational cost. Orthogonal Signal Correction and its
combination with PLS, OPLS, is a way to remove variation in the data that
is irrelevant for predicting the dependent variable. In some cases this leads to
simpler models that are easier to interpret. Discriminant analysis with PLS,
PLSDA, is an important technique for doing classification in high-dimensional
data sets. However, there are certain risks involved. In analytical laboratories,
there is often a need to develop calibration models that can be transferred
across a range of instruments. One example is to develop a model using a
laboratory, high-quality setup, and then to apply the model for in-line mea-
surements of a much lower quality. The approach to achieve this has become
known as calibration transfer. Finally, we take a look at a decomposition of
a matrix X where the individual components are directly interpretable, e.g.
as concentration profiles or spectra of pure compounds: Multivariate Curve
Resolution.

11.1 Outlier Detection with Robust PCA

Identifying outliers is always an extremely difficult and dangerous task, prone
to subjective judgements. The danger of introducing bias by rejecting samples
that do not fit in with the expected pattern is always present. At the same
time, however, outlying samples will occur in practice: whole microarrays with
expressions of tens of thousands of genes can be useless because of some exper-
imental artifact, and including them could be detrimental to the results. One

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011

235
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2_11,

236 11 Chemometric Applications

of the problems obviously is that in high-dimensional space, every object of a
small-to-medium-sized data set can be seen as an outlier. Only if the samples
are occupying a restricted subspace can we have any hope of performing a
meaningful outlier detection.

11.1.1 Robust PCA

Of course, we know a tool to find such a subspace: PCA. What would be easier
than to apply PCA to the data, and see the outliers far away from the bulk of
the data? Although this sometimes does happen, and PCA in these cases is a
valuable outlier detector, in other cases the outliers are harder to spot. The
point is that PCA is not a robust method: since it is based on the concept of
variance, outliers will greatly influence scores and loadings, sometimes even
to the extent that they will dominate the first PCs. What is needed in such
cases is a robust form of PCA [137]. Many different approaches exist, each
characterized by their own breakdown point : the fraction of outliers that can
be present without influencing the covariance estimates.

The simplest form is to perform the SVD on a robust estimate of the
covariance or correlation matrix [138]. One such estimate is given by the Min-
imum Covariance Determinant (MCD, [139]), which has a breakdown point
of up to .5, meaning that half of the data can be “wrong” without affecting
the estimate. Higher breakdown points than .5 obviously do not make too
much sense. As the name already implies, the MCD estimator basically sam-
ples subsets of the data of a specific size, in search of the subset that leads
to a covariance matrix with a minimal determinant, i.e. covering the smallest
hypervolume. The assumption is that the outlying observations are far away
from the other data points, increasing the volume of the covariance ellipsoid.
The size of the subset, to be chosen by the user, determines the breakdown
point, given by (n − h + 1)/n, with n the number of observations and h the
size of the subset. Unless one really expects a large fraction of the data to
be contaminated, it is recommended to choose h ≈ .75n. The resampling ap-
proach can take a lot of time, and although fast algorithms are available [140],
matrices with more than a couple of hundred variables remain hard to tackle.

The MCD covariance estimator is available in several R packages. One
example is cov.mcd in package MASS. If we use this in combination with
the princomp function, we can see the difference between robust and classical
covariance estimation. Let’s focus on the Grignolino samples from the wine
data:

> X <- wines[vintages == "Grignolino",]

> X.sc <- scale(X)

> X.clPCA <- princomp(X.sc)

> X.robPCA <- princomp(X.sc, covmat = cov.mcd(X.sc))

> biplot(X.clPCA, main = "Classical PCA")

> biplot(X.robPCA, main = "MCD-based PCA")

11.1 Outlier Detection with Robust PCA 237

−0.2 0.0 0.2 0.4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Classical PCA

Comp.1

C
om

p.
2

1

2
3

4 5

6

7

8

910

11

12 13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29303132
3334

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57
5859

60
61

62

63

64

65

66
67

68

69

70

71

−5 0 5

−
6

−
4

−
2

0
2

4

alcohol

malic acidash
ash alkalinity

magnesium

tot. phenols

flavonoids

non−flav. phenols

proanth
col. int.

col. hue

OD ratio

proline

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

4
−

0.
2

0.
0

0.
2

MCD−based PCA

Comp.1

C
om

p.
2

1

2
34

5

6

7

8 9

10

11
12

13

14

15
16

17

18

19
20

21

2223
24

25

26

27 28

293031

32
33

34

35
36

37
38

39

40
41

42

43

44

4546
47

48
49

50

5152

53
54

55
56

5758
59

60

61

62

63

64

65

66

6768
69

70
71

−5 0 5 10

−
10

−
5

0
5

10

alcohol

malic acid

ash
ash alkalinity

magnesium

tot. phenols
flavonoids

non−flav. phenols

proanth

col. int.

col. hue

OD ratio

proline

Fig. 11.1. Biplots for the Grignolino samples: the classical PCA solution is shown
on the left, whereas the right plot is based on the MCD covariance estimate.

This leads to the biplots in Figure 11.1. There are clear differences in the
first two PCs: in the classical case PC 1 is dominated by the variables OD

ratio, flavonoids, proanth and tot. phenols, leading to samples 63, 66,
15 and 1, 2, and 3 to having extreme coordinates. In the robust version, on
the other hand, these samples have very relatively small PC 1 scores. Rather,
they are extremes of the second component, the result of increased influence
of variables (inversely) correlated with ash on the first component. Although
many of the relations in the plots are similar (the main effect seems to be a
rotation), the example shows that even in cases where one would not expect
it applying (more) robust methods can lead to appreciable differences.

An important impediment for the application of the MCD estimator is
that it can only be calculated for non-fat data matrices, i.e. matrices where the
number of samples is larger than the number of variables – in other cases, the
covariance matrix is singuar, with a determinant of zero. In such cases another
approach is necessary. One example is ROBPCA [141], combining Projection
Pursuit and robust covariance estimation: PP is employed to find a subspace
of lower dimension in which the MCD estimator can be applied. ROBPCA
has one property that we also saw in ICA (Section 4.6.2): if we increase the
number of PCs there is no guarantee that the first PCs will remain the same –
in fact, they usually are not. Obviously, this can make interpretation somewhat
difficult, especially since the method to choose the “correct” number of PCs is
less obvious in robust PCA than in classical PCA [137].

Since the details of the ROBPCA algorithm are a lot more complicated
than can be treated here, we just illustrate its use. ROBPCA, as well as several
other robust versions of PCA, is available in package rrcov as the function
PcaHubert. Application to the Grignolino samples using five PCs leads to the
following result:

238 11 Chemometric Applications

> X.HubPCA5 <- PcaHubert(X.sc, k = 5)

> summary(X.HubPCA5)

Call:

PcaHubert(x = X.sc, k = 5)

Importance of components:

[,1] [,2] [,3] [,4] [,5]

Standard deviation 1.59 1.317 1.087 0.891 0.871

Proportion of Variance 0.36 0.248 0.169 0.114 0.109

Cumulative Proportion 0.36 0.608 0.778 0.891 1.000

Note that the final line gives the cumulative proportion of variance as a frac-
tion of the variance captured in the robust PCA model, and not as the fraction
of the total variance, usual in classical PCA. If we do not provide an explicit
number of components (the default, k = 0) the algorithm chooses the optimal
number itself:

> X.HubPCA <- PcaHubert(X.sc)

> summary(X.HubPCA)

Call:

PcaHubert(x = X.sc)

Importance of components:

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

Standard deviation 1.541 1.295 1.124 0.958 0.871 0.759 0.531

Proportion of Variance 0.303 0.214 0.161 0.117 0.097 0.073 0.036

Cumulative Proportion 0.303 0.516 0.677 0.794 0.891 0.964 1.000

Apparently this optimal number equals seven in this case. The rule-of-thumb
to calculate the “optimal” number of components is based on the desire to
explain a significant portion of the variance explained by the model (a fraction
of .8 is used as the default) while not taking into account components with
very small standard deviations – the last component of the model should have
an eigenvalue at least .1% of the largest one. If the number of variables is small
enough, the MCD algorithm is used directly; if not, the ROBPCA algorithm
is used. One can force the use of ROBPCA by setting mcd = FALSE. Note that
the standard deviations of the first components are not the same as the ones
calculated for the five-component model.

The default plotting method is different from the classical plot: it shows
an outlier map, or distance-distance map, rather than scores or loadings. The
main idea of this plot is to characterise every sample by two different distances:

� the Orthogonal Distance (OD), indicating the distance between the true
position of every data point and its projection in the space of the first few
PCs;

� the Score Distance (SD), or the distance of the sample projection to the
center of all sample projections.

11.1 Outlier Detection with Robust PCA 239

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

0 1 2 3 4 5 6 7

0
1

2
3

4

Score distance

O
rt

ho
go

na
l d

is
ta

nc
e

38

11

37

63
15

65

Robust PCA

Fig. 11.2. Outlier map for the Grignolino data, based on a seven-component
ROBPCA model.

Or, put differently, the SD of a sample is the distance to the center, measured
in the hyperplane of the PCA projection, and the OD is the distance to this
hyperplane. Obviously, both SD and OD depend on the number of PCs. When
a sample is above the horizontal threshold it is too far away from the PCA
subspace; when it is to the right from the vertical threshold it is too far
from the other samples within the PCA subspace. The horizontal and vertical
thresholds are derived from χ2 approximations [142].

For the Grignolino data, this leads to the plot in Figure 11.2:

> plot(X.HubPCA)

Several of the most outlying samples are indicated with their indices, so that
they can be inspected further. Also a biplot method is available, which shows
a plot that is very similar to the right plot in Figure 11.1. Inspection of the
data shows that objects 63 and 15 do contain some extreme values in some of
the variables – indeed, object 63 is also the object with the smallest score on
PC 1 in a classical PCA. However, it would probably be too much to remove
them from the data completely.

240 11 Chemometric Applications

11.1.2 Discussion

A robust approach can be extremely important in cases where one suspects
that some of the data are outliers. Classical estimates can be very sensitive
to extreme values, and it frequently occurs that only one or very few samples
dominate the rest of the data. This need not be an error, because influential
observations may be correct, but in general one would put more trust in a
model that is based on many observations rather than a few. This is not in
contradiction with the desire to build sparse models, as seen in the section
on SVMs, for example: there, the sparseness was obtained by selecting only
those objects in the relevant part of the space, using all other objects in the
selection process.

The robust methods in this section have a wider applicability than just
outlier detection: they can be used as robust plugin estimators in classifica-
tion and regression methods. Robust LDA can be obtained, for example, by
using robust estimate of the pooled covariance matrix; robust QDA by robust
covariances for all classes. PCR can be robustified in several ways, e.g., by ap-
plying SVD to a robust covariance matrix estimate; an alternative is formed by
regressing on robust scores, for instance from the ROBPCA algorithm. One
can even replace the least squares regression by robust regression methods
such as least trimmed squares [139]. Also robust versions of PLS regression
exist [143,144]. These robust versions of classification and regression methods
share the big advantage that one can safely leave in all objects, even though
some of them may be suspected outliers: the analysis will not be influenced
by only a couple atypical observations. And to turn the question of outliers
around: if robust and classical analyses give the same or similar results, then
one can conclude that there are no (influential) outliers in the data.

R contains many packages with facilities for robust statistics, the most im-
portant one probably being robustbase. According to the taskview on CRAN,
plans exist to further streamline the available packages, using robustbase as
the basic package for robust statistics, and several more specialized packages
building on that, such as is the case already for packages like rrcov.

11.2 Orthogonal Signal Correction and OPLS

Orthogonal Signal Correction (OSC) was first proposed by Wold and cowork-
ers [145] with the aim to remove information from X that is orthogonal to
Y . Several different algorithms have been proposed in literature – a concise
comparison of several of them has appeared in [146]. The conclusion of that
paper is that OSC in essence does not improve prediction quality per se but
rather leads to more parsimonious models, that are easier to interpret. More-
over, the part of X that has been removed before modelling can be inspected
as well and may provide information on how to improve measurement quality.

11.2 Orthogonal Signal Correction and OPLS 241

As an example, we will show one form of OSC, called Orthogonal Projec-
tion to Latent Structures (OPLS, [147]), as summarized in [146]. Using the
weights w and loadings p from an initial PLS model, the variation orthogonal
to the dependent variable is obtained and subtracted from the original data
matrix:

w⊥ = p− wT p

wTw
w (11.1)

t⊥ = Xw⊥ (11.2)

p⊥ =
XT t⊥
tT⊥t⊥

(11.3)

Xc = X − tT⊥p⊥ (11.4)

The corrected matrixXc is then used in a regular PLS model. If desired, more
orthogonal components can be extracted – it is claimed that for univariate Y
only one PLS component is required in the final model.

Let us see how this works out for the gasoline data. From Figure 8.3 we
have concluded that, based on a training set consisting of the odd rows of
the gasoline data frame, three PLS components are needed. To make things
easier, we start by mean-centering the spectra, based on the mean of the
training data only. The OSC-corrected matrix is then obtained as follows:

> gasoline$NIR <- scale(gasoline$NIR, scale = FALSE,

+ center = colMeans(gasoline$NIR[odd,]))

> gasoline.pls <- plsr(octane ~ ., data = gasoline,

+ ncomp = 5, subset = odd,

+ validation = "LOO")

> ww <- gasoline.pls$loading.weights[,1]

> pp <- gasoline.pls$loadings[,1]

> w.ortho <- pp - crossprod(ww, pp)/crossprod(ww) * ww

> t.ortho <- Xtr %*% w.ortho

> p.ortho <- crossprod(Xtr, t.ortho) / c(crossprod(t.ortho))

> Xcorr <- Xtr - tcrossprod(t.ortho, p.ortho)

Next, a new PLS model is created using the corrected data matrix:

> gasoline.osc1 <- data.frame(octane = gasoline$octane[odd],

+ NIR = Xcorr)

> gasoline.opls1 <- plsr(octane ~ ., data = gasoline.osc1,

+ ncomp = 5, validation = "LOO")

Removal of a second OSC component proceeds along the same lines:

> pp2 <- gasoline.opls1$loadings[,1]

> w.ortho2 <- pp2 - crossprod(ww, pp2)/crossprod(ww) * ww

> t.ortho2 <- Xcorr %*% w.ortho2

> p.ortho2 <- crossprod(Xcorr, t.ortho2) / c(crossprod(t.ortho2))

> Xcorr2 <- Xcorr - tcrossprod(t.ortho2, p.ortho2)

242 11 Chemometric Applications

0 1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Gasoline training data (validation)

number of components

R
M

S
E

P
PLS
OPLS: 1 OSC component
OPLS: 2 OSC components

Fig. 11.3. Crossvalidation results for the gasoline data (training set only): removal
of one or two orthogonal components leads to more parsimonious PLS models.

> gasoline.osc2 <- data.frame(octane = gasoline$octane[odd],

+ NIR = Xcorr2)

> gasoline.opls2 <- plsr(octane ~ ., data = gasoline.osc2,

+ ncomp = 5, validation = "LOO")

Note that the ww vector is the same for every component that is removed [147].
We now can compare the validation curves of the regular PLS model, the PLS
model having one orthogonal component removed, and the PLS model with
two components removed:

> plot(gasoline.pls, "validation", estimate = "CV",

+ ylim = c(0.2, 1.5),

+ main = "Gasoline training data (validation)")

> lines(0:5, c(RMSEP(gasoline.opls1, estimate = "CV"))$val,

+ col = 2, lty = 2)

> lines(0:5, c(RMSEP(gasoline.opls2, estimate = "CV"))$val,

+ col = 4, lty = 4)

> legend("topright", lty = c(1,2,4), col = c(1,2,4),

+ legend = c("PLS", "OPLS: 1 OSC component",

+ "OPLS: 2 OSC components"))

The result is shown in Figure 11.3. Clearly, the best prediction errors for the
two OPLS models are comparable (even slightly better) to the error in the
original model using three components, and the optimal values are reached
with fewer latent variables.

To do prediction, one has to deflate the new data in the same way as
the training data; i.e., one has to subtract the orthogonal components before
presenting the data to the final PLS model.

11.3 Discrimination with Fat Data Matrices 243

> Xtst <- gasoline$NIR[even,]

> t.tst <- Xtst %*% w.ortho

> p.tst <- crossprod(Xtst, t.tst) / c(crossprod(t.tst))

> Xtst.osc1 <- Xtst - tcrossprod(t.tst, p.tst)

> gasoline.opls1.pred <- predict(gasoline.opls1,

+ newdata = Xtst.osc1,

+ ncomp = 2)

Predictions for the OPLS model with two OSC components removed are ob-
tained in the same way:

> t.tst2 <- Xtst.osc1 %*% w.ortho2

> p.tst2 <- crossprod(Xtst.osc1, t.tst2) / c(crossprod(t.tst2))

> Xtst.osc2 <- Xtst.osc1 - tcrossprod(t.tst2, p.tst2)

> gasoline.opls2.pred <- predict(gasoline.opls2,

+ newdata = Xtst.osc2,

+ ncomp = 1)

We can now compare the RMSEP values for the different PLS models:

> RMSEP(gasoline.pls, newdata = gasoline[even,],

+ ncomp = 3, intercept = FALSE)

[1] 0.2093

> rms(gasoline$octane[even], gasoline.opls1.pred)

[1] 0.3790201

> rms(gasoline$octane[even], gasoline.opls2.pred)

[1] 0.4488759

Although the crossvalidation errors do not increase, the prediction of the un-
seen test data deteriorates quite a bit.

11.3 Discrimination with Fat Data Matrices

“Fat” data matrices, or data sets with many more variables than objects, are
becoming the rule rather than the exception in the natural sciences. Although
this means that a lot of information is available for each sample, it also means
in practice that a lot of numbers are available that do not say anything partic-
ularly interesting about the sample – these can be pure noise, but also genuine
signals, unrelated to the research question at hand. Another problem is the
correlation that is often present between variables. Finding relevant differ-
ences between classes of samples in such a situation is difficult: the number of
parameters to estimate in regular forms of discriminant analysis far exceeds
the number of independent samples available. An example is the prostate

244 11 Chemometric Applications

data set, containing more than 10,000 variables and only 327 samples. We
could eliminate several without losing information, and also removing vari-
ables that are “clearly” not related to the dependent variable (in as far as we
would be able to recognise these) would help, the idea that is formalized in
the OPLS approach from the previous section. An alternative is formed by
variable selection techniques, such as the ones described in Chapter 10, but
these usually rely on accurate error estimates that are hard to get with low
numbers of samples.

The same low number of samples also forces the statistical models to have
very few parameters: fat matrices can be seen as describing sparsely – very
sparsely – populated high-dimensional spaces, and only the simplest possible
models have any chance of gaining predictive power. The simplest possible case
is that of linear discriminant analysis, but direct calculation of the coefficients
is impossible because of the matrix inversion in Equation 7.6 – the covariance
matrix is singular. Regularization approaches like RDA are one solution; the
extreme form of regularization, diagonal LDA, enjoys great popularity in the
realm of microarray analysis. Another often-used strategy is to compress the
information in a much smaller number of variables, usually linear combinations
of the original set, and perform simple methods like LDA on the new, small,
data matrix. Two approaches are popular: PCDA and PLSDA.

11.3.1 PCDA

One way to compress the information in a fat data matrix into something
that is more easy to analyse is PCA. Subsequently, LDA is performed on the
scores – the result is often referred to as PCDA or PCLDA. The prostate data
provide a nice example: the number of variables far exceeds the number of
samples, even though that number is not low in absolute terms. Again, we
are trying to discriminate between control samples and cancer samples, so
we consider only two of the three classes. Now, however, we use all variables
– in the cases of SVMs and boosting this would have led to large memory
demands, but the current procedure is much more efficient. Using the SVD on
the crossproduct matrix of the non-bph samples of the prostate data, similar
to the procedure shown on page 48, we obtain scores and loadings. The first
sixteen PCs cover just over 70% of the variance of the X matrix, not too
surprising given the number of variables. We should have a look at the scores,
for clarity limiting ourselves to the first five components:

> pairs(prost.scores, pch = as.integer(prost.type),

+ col = as.integer(prost.type),

+ labels = paste("PC", 1:5))

The result is shown in Figure 11.4. Although some interesting structure is
visible, there is no obvious separation between the classes in any of the plots.
This five-dimensional representation of the data can be used in any form of
discriminant analysis; we will stick to LDA, and just to get a feeling for what

11.3 Discrimination with Fat Data Matrices 245

PC 1

−50 0 50 100

●●● ●● ●

●●

●
●

●
●

● ● ● ●
●

●
●●

● ●
●●

●● ● ●● ●● ●● ●●
●●●
●

●
● ● ●●
●● ● ●● ●● ●

● ● ● ●●
●● ● ●

● ●● ●
●

● ●●●● ●●●● ●●●●
● ●

●●●●● ●

● ●

●
●

●
●

●● ●●
●
●

●●

●●
●●

● ●●●●●●● ●● ●
● ●●

●
●

●● ●●
●●● ●●● ●

●
●●●●●

●●●●
● ●●●

●
●●●●●●●● ● ●●●●
●●

−100 0 50

●●●● ● ●

●●

●
●

●
●

●●●●
●
●

●●

● ●
●●
● ●●● ●●●● ●● ●

● ●●
●

●
●● ●●

●●●● ●● ●
●

●●●● ●
●●●●

● ●●●
●

●●● ●●●●● ● ●● ●●
●●

−
50

50
15

0
25

0

●●●●●●

●●

●
●
●

●

●●●●
●
●

● ●

● ●
●●
●● ●●●●●●●●●●● ●

●
●

●●● ●
●●●●●●●

●
●●●●
●

●●● ●
●●●●
●
●●●●●●●●●● ●●●
●●

−
50

0
50

10
0

●●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●
●

●

●

PC 2
●●
●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●
●

●

●

●●●●
●

●

●
●

●
●

●

● ●●

●
●

●●

●

●

●
●

●

●
●

●

●
●
●
●●●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●
●

●●
●●

●●●

●

●

●

●
●

●

●
●
●
●●
●●

●

●

●

●
●
●

●
●

●●● ●
●

●

●
●

●
●

●

●● ●

●
●

● ●

●

●

●
●

●

●
●

●

●
●

●
●● ●

●
●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●
●

●

●
●

● ●
●●

●● ●

●

●

●

●
●

●

●
●

●
●●

●●

●

●

●

●
●

●

●
●

PC 3
●●●●

●

●

●
●

●
●

●

● ●●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●
●●●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●
●

●●
● ●

●●●

●

●

●

●
●

●

●
●
●

●●
●●

●

●

●

●
●

●

●
●

−
50

0
50

10
0

●●●●
●

●

●
●

●
●

●

●●●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●
●●●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●
●

●●
●●

●●●

●

●

●

●
●

●

●
●
●

●●
●●

●

●

●

●
●
●

●
●

−
10

0
0

50

●
●
●
●

●

●

●●
●●

●

●

●
●●

●
●●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●
●

●
●

●●

●●
●
●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●●
● ●

●

●

●
● ●

●
● ●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

● ●
●

●

●●
●

●

●

●

●
●

●
●

●●

●●
●

●
●

●

●

●

●
● ●

●

●
●

●
●

●

●

● ●
●●

●

●

●
● ●

●
●●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●
●

●
●

●●

●●
●
●

●

●

●

●

●
● ●

● PC 4
●
●
●
●

●

●

●●
●●
●

●

●
●●

●
●●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●
●

●
●
●●

●●
●

●
●

●

●

●

●
●●

●

−50 50 150 250

●●●
●
●

●

●● ●●●
●

●●●
●

●●

●

● ●

●

●
●●

●
●●
●
●●
●

●
●●
●

●

●
●

●
●●

●

●

●
●●
●●●●

●

●
●●●
●

●
●●

●
●●●
●

●
●●●●●●
●
●
●●

●
●
●●

●
●●● ●

●

●

●●● ● ●
●

● ● ●
●

● ●

●

●●

●

●
●●

●
● ●

●
●●

●

●
●●

●

●

●
●

●
● ●

●

●

●
● ● ●● ●●

●

●
● ● ●

●
●
● ●

●
● ●●

●
●

● ●●●● ●
●

●
● ●

●
●

● ●
●

−50 0 50 100

●●●
●

●

●

● ●●● ●
●

●● ●
●

●●

●

●●

●

●
●●

●
●●
●

●●
●

●
● ●
●

●

●
●

●
●●

●

●

●
●●

●●● ●

●

●
●●●

●
●
●●

●
● ●●

●
●

●●●●●●
●

●
● ●

●
●

● ●
●

●●●●
●

●

●●●●●
●

●●●
●

●●

●

●●

●

●
●●

●
●●

●
●●

●

●
● ●

●

●

●
●

●
●●

●

●

●
●●
● ●● ●

●

●
●●●

●
●

●●

●
● ●●

●
●

●●● ●●●
●

●
● ●

●
●

●●
●

−50 50 150

−
50

50
15

0

PC 5

Fig. 11.4. Pairs plot of the scores of the prostate data in the first five PCs.

we can hope to expect, we will use five PCs. The naive, and as we shall see
later, incorrect approach would be the following:

INCORRECT

> prost.pcda5 <- lda(prost.type ~ prost.scores[,1:5], CV = TRUE)

> table(prost.type, prost.pcda5$class)

prost.type control pca

control 44 37

pca 12 156

Leave-one-out crossvalidation leads to a correct prediction in over 80% of the
cases, better than we might have expected on the basis of Figure 11.4. One
should not forget, however, that the cancer class is more than twice the size
of the control class, so that already a not-too-clever random classification of
cancer for all samples would lead to a success rate of over 65%. Note that the
prediction errors are slightly unbalanced: more control samples are predicted
to be cancer than vice versa. This is the result of the default prior of the lda

function, which is proportional to the class representation in the training set.

246 11 Chemometric Applications

As already stated, the above procedure is incorrect: the error estimate is
optimistically biased because the PCA step (including mean-centering and
scaling) has not been incorporated in the crossvalidation. As it is now, the
left-out sample still exerts influence on the classification model through its
contribution to the PCs, whereas in the correct way, the crossvalidation should
include the PCA. This can be done by using an explicit crossvalidation loop,
leaving out part of the samples, performing PCA and building the LDA model,
but a more easy approach is to see the classification as a regression problem
and use the pcr function, with its built-in crossvalidation facilities. While we
are at it, we should also separate training data from test data, in order to get
some kind of estimate for the prediction error, as well as the optimal number
of latent variables. Here goes:

> odd <- seq(1, length(prost.type), by = 2)

> even <- seq(2, length(prost.type), by = 2)

> prost.df <- data.frame(class = as.integer(prost.type),

+ msdata = I(prost))

> prost.pcr <- pcr(class ~ msdata, ncomp = 16,

+ data = prost.df, subset = odd,

+ validation = "CV", scale = TRUE)

> validationplot(prost.pcr, estimate = "CV")

In this case the validation (by default a ten-fold crossvalidation) is done cor-
rectly: the scaling and the PCA are done only after the out-of-bag samples
are removed from the training data. This leads to the left plot in Figure 11.5
– a cautious person would perhaps select six PCs here, but since the number
of samples is quite large, one might even consider twelve PCs. Your results
may differ because of the randomness involved in choosing the crossvalidation
segments.

Note that the RMSEP measure shown here is not quite what we are in-
terested in: rather than the devation from the ideal values of 0 and 1 in the
classification matrix, we should look at the number of correct classifications.

> prost.trn <- predict(prost.pcr)

> prost.trn.cl <- round(prost.trn[,1,])

> prost.trn.err <- apply(prost.trn.cl, 2,

+ err.rate, prost.df$class[odd])

> plot(1 - prost.trn.err, col = "gray", type = "l",

+ xlab = "# PCs"ylab = "Misclassif. rate")

The result is shown in the right plot of Figure 11.5. Although the RMS values
in the left plot go up with higher number of PCs, the number of misclassi-
fications does not The training data show a reasonable performance, with a
crossvalidated error just below 15% for a model taking into account six PCs.
Of course we can do the same for the test set:

> prost.tst <- predict(prost.pcr, newdata = prost.df[even,])

> prost.tst.cl <- round(prost.tst[,1,])

11.3 Discrimination with Fat Data Matrices 247

0 5 10 15

0.
35

0.
40

0.
45

class

number of components

R
M

S
E

P

5 10 15

0.
10

0.
15

0.
20

0.
25

0.
30

PCs

M
is

cl
as

si
f.

ra
te

LOO training set
test set

Fig. 11.5. Validation plots for the PCR regression plot of the prostate MS data:
discrimination between control and pca samples. Left plot: RMSEP values for the
class codes. Right plot: fraction of misclassifications.

> prost.tst.err <- apply(prost.tst.cl, 2,

+ err.rate, prost.df$class[even])

> lines(prost.tst.err, lty = 2)

Given this crossvalidation curve, the optimal value seems to be around eleven
PCs. It is good to see that the crossvalidation estimates are reasonably close
to the test set results: this is an indication that there is no overfitting. Ob-
viously, one should not look at the results of the test data in choosing the
optimal number of PCs! The test data show that with eleven PCs the ex-
pected classification error is around twelve percent.

A big advantage of this approach is that it can be applied to multiclass
problems directly. In the PCR-based implementation, one just needs to convert
the class vector into a class-membership matrix, with one column per class,
and run the algorithm:

> prostate.clmat <- classvec2classmat(prostate.type)

> prostate.df <- data.frame(class = I(prostate.clmat),

+ msdata = I(prostate))

> prostate.pcr <- pcr(class ~ msdata, ncomp = 16,

+ data = prostate.df, subset = odd,

+ validation = "CV", scale = TRUE)

Again, we should convert the predicted values in the PCR crossvalidation
to classes, and plot the number of misclassifications so that we can pick the
optimal number of components:

248 11 Chemometric Applications

> predictions.loo <-

+ sapply(1:16, function(i, arr) classmat2classvec(arr[,,i]),

+ prostate.pcr$validation$pred)

> loo.err <- apply(predictions.loo, 2, err.rate,

+ prostate.type[odd])

> plot(loo.err, type = "l", main = "PCDA", col = "gray",

+ ylim = c(.2, max(loo.err)),

+ xlab = "# PCs", ylab = "Misclassif. rate")

This results in the gray solid line in Figure 11.6 – the classification error
is quite high for all numbers of components. Perhaps eight components can
be picked as the least bad model. The test set results can be obtained in a
completely analogous way, and are shown as the black dashed lines in the
same plot:

> prostate.pcrpred <-

+ predict(prostate.pcr, new = prostate.df[even,])

> predictions.pcrtest <-

+ sapply(1:16, function(i, arr) classmat2classvec(arr[,,i]),

+ prostate.pcrpred)

> lines(apply(predictions.pcrtest, 2, err.rate,

+ prostate.type[even]),

+ type = "l", lty = 2)

We could ask ourselves what is going wrong:

> table(prostate.type[even], predictions.pcrtest[,8])

bph control pca

bph 4 3 32

control 0 30 10

pca 1 8 75

There is considerably confusion between the pca and bph classes: almost all
bph objects are classified as pca. The controls are separated relatively well.

11.3.2 PLSDA

Although the above approach often is reported to work well in practice, it has
a (familiar) flaw: there is no reason to assume that the information relevant
for the class discrimination is captured in the first PCs. Since PLS takes into
account the dependent variable when defining latent variables, this is a logical
alternative. In literature, this form of discriminant analysis, usually done in
the form of a direct regression on coded class variables, is called PLSDA [148].
For the prostate data, this leads to:

> prostate.pls <- pls(prostate.classmat ~ prostate,

+ ncomp = 16, validation = "CV")

11.3 Discrimination with Fat Data Matrices 249

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

PCDA

PCs

M
is

cl
as

si
f.

ra
te

LOO training set
test set

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

PLSDA

PCs

M
is

cl
as

si
f.

ra
te

LOO training set
test set

Fig. 11.6. PCDA (left) and PLSDA (right) classification results for the three-class
prostate data.

Using code that is completely analogous to the PCDA case on the previous
pages, we arrive at the right plot in Figure 11.6. As expected, fewer compo-
nents are needed for optimal results – six would be selected in the case of
PLSDA, whereas PCR would need eight. The PLSDA error values are con-
siderably lower than with PCR, both for the LOO crossvalidation and for the
test data: already with one PLS component the prediction of the test data
is better than the PCDA model achieves with eight. With six components,
PLSDA prediction of the test set looks like this:

> table(prostate.type[even], predictions.plstest[,6])

bph control pca

bph 25 1 13

control 1 33 6

pca 13 5 66

Clearly, the confusion between the bph and pca classes has decreased signifi-
cantly.

An alternative is to perform a classical LDA on the PLS scores – in several
papers (e.g., [148, 149, 150]) this is claimed to be superior in quality. Where
performing LDA on the first couple of PCs is completely analogous to doing
PCR on the class matrix (for equal class sizes, at least), this is not the case
in PLS, since class knowledge is used in defining latent variables. One there-
fore may expect some differences. First we should calculate the scores of the
test set, which is done by post-multiplying the (scaled) test data with the
projection matrix in the PLS object:

250 11 Chemometric Applications

> Xtst <- scale(prostate[even,],

+ center = colMeans(prostate[odd,]),

+ scale = sd(prostate[odd,]))

> tst.scores <- Xtst %*% prostate.pls$projection

Next, we can build an LDA model on the scores of the training set, directly
available with the scores extractor function, and use this model to make
predictions for the test set:

> prostate.ldapls <- lda(scores(prostate.pls)[,1:6],

+ prostate.type[odd])

> table(prostate.type[even],

+ predict(prostate.ldapls, new = tst.scores[,1:6])$class)

bph control pca

bph 23 0 16

control 1 34 5

pca 15 4 65

Compared to the direct PLSDA method, two more misclassifications are ob-
tained. For this case at least, the differences are small.

A Word of Warning

Because it is more focused on information in the dependent variable, PLS
can be called a more greedy algorithm than PCR. In many cases this leads
to a better fit for PLS (with the same number of components as the PCR
model, that is), but it also presents a bigger risk of overfitting. The following
example will make this clear: suppose we generate random data from a normal
distribution, and allocate every sample randomly to one of two possible classes:

> nvar <- 2000

> nobj <- 40

> RandX <- matrix(rnorm(nobj*nvar), nrow = nobj)

> RandY <- sample(c(0, 1), nobj, replace = TRUE)

Next, we compress the information in variable RandX into two latent variables,
so that LDA can be applied. We use both PCA1 and PLS. The results are
quite interesting:

> Rand.pcr <- pcr(RandY ~ RandX, ncomp = 2)

> Rand.ldapcr <- lda(RandY ~ scores(Rand.pcr), CV = TRUE)

> table(RandY, Rand.ldapcr$class)

RandY 0 1

0 8 12

1 13 7

1 For simplicity, we employ the pcr function from the pls package so that the results
can be directly compared with the results from the plsr function.

11.4 Calibration Transfer 251

> Rand.pls <- plsr(RandY ~ RandX, ncomp = 2)

> Rand.ldapls <- lda(RandY ~ scores(Rand.pls), CV = TRUE)

> table(RandY, Rand.ldapls$class)

RandY 0 1

0 20 0

1 0 20

Where the PCA compression leads to results that are reasonably close to the
expected 50-50 prediction, PLS-LDA leads to perfect predictions. For random
data, that is not exactly what we would want! Note that we did not perform
any optimization of the number of latent variables employed – in this case,
choosing two latent variables is already enough to be in deep trouble. Valida-
tion plots for the regression models would have shown that there is trouble
ahead – in both the PCR and PLS case, zero latent variables would appear
optimal. The moral of the story should by now sound familiar: especially in
cases with low ratios of numbers of objects to numbers of variables, one should
be very, very careful...

11.4 Calibration Transfer

Imagine a company with high-quality expensive spectrometers in the central
lab facilities, and cheap simple equipment on the production sites, perhaps in
locations all over the world – you can easily see why a calibration model set
up with data from the better instruments (the “master” instruments) may do
a better job in capturing the essentials from the data. In general, however,
it is not possible to directly use the “good” model for the inferior (“slave”)
instruments: there will be systematic differences, such as different wavelength
ranges and resolutions, as well as some less-clear ones; every measuring device
has its own characteristics. Predictions directly using the model from the
master instrument, if possible at all, will not always be of a high quality.

Constructing individual calibration models for every instrument separately
is of course the best strategy to avoid incompatibilities. However, this may be
difficult because calibration samples may not be available, or very expensive.
Ideally then, one would want to use the model of the master instrument for the
slave spectrometers, too. Several ways of achieving this have been proposed
in the literature [151]. For one thing, one may try to iron out the differences
between the slaves and the master by careful preprocessing, usually including
variable selection. In this way, parts of the data that are not too dependent
on the instrument – but are still relevant for calibration purposes – can be
utilized. This is sometimes called robust calibration in chemometrics literature,
and is not to be confused with robust regression as is known in statistics.

Another approach has become known under the phrase calibration trans-
fer or calibration standardization [152]. The goal is to use a limited number
of common calibration samples on the slave instruments to adapt the model

252 11 Chemometric Applications

developed on the master. This strategy is also useful in cases where instru-
ment response changes over time, or when batch-to-batch differences occur.
Although a complete recalibration is always better, it has been reported that
an approach using standardization leads to an increase in errors by only 20–
60%, which in practice may still be perfectly adequate.

Several variants of calibration transfer have been published (see, e.g., [153,
154]). The simplest is direct standardization (DS, [152]). For a set of samples
measured on both instruments, one constructs a transformation F relating
the measurements on the master instrument, X1, to the measurements on
the slave X2:

X1 = X2F (11.5)

The transformation can be easily obtained by a generalized inverse:

F = X+
2X1 (11.6)

Alternatives are to use PCR or PLS regression, which are less prone to over-
fitting. Thus, responses measured on the slave instrument can then be trans-
formed to what they would look like on the primary instrument. Consequently,
the calibration model of the primary instrument applies – this approach is also
known as backward calibration transfer. The reverse (forward transfer) is also
possible: spectra of the high-resolution master instrument can be transformed
to be similar to the data measured on the lower-quality slaves. The latter
option is usually preferred in on-line situations, where speed is an issue.

To illustrate this, we will use data presented at the 2002 Chambersburg
meeting,2 available from the ChemometricsWithR package. It consists of NIR
data of 654 pharmaceutical tablets, measured at two Multitab spectrometers.
Each tablet should contain 200 mg of (undisclosed) active ingredient. The data
have already been divided into training, validation and test sets. The complete
wavelength range is from 600 to 1898 nm; we will use the first-derivatives of
the area between 1100 and 1700 nm (calibrate.1). Let us first build a PLS
model for the training data, using the pls package:

> data(shootout)

> wl <- seq(600, 1898, by = 2)

> indices <- which(wl >= 1100 & wl <= 1700)

> nir.training1 <-

+ data.frame(X = I(shootout$calibrate.1[,indices]),

+ y = shootout$calibrate.Y[,3])

> mod1 <- plsr(y ~ X, data = nir.training1,

+ ncomp = 5, validation = "LOO")

> RMSEP(mod1, estimate = "CV")

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps

22.05 17.95 5.83 4.95 4.90 4.72

2 http://www.idrc-chambersburg.org/shootout2002.html

11.4 Calibration Transfer 253

1100 1200 1300 1400 1500 1600 1700

−
4

−
2

0
2

4

wavelength (nm)

m
od

el
 c

oe
ffi

ci
en

ts

set 1
set 2

Fig. 11.7. Regression coefficients for the 3-LV PLS models of the NIR shootout
data; the two instruments are indicated in black and gray, respectively.

Three components should be enough. The model based on the spectra mea-
sured at the second instrument (mod2) is made in the same way, and also
requires three latent variables. Figure 11.7 shows the regression vectors of
the two models. Some small differences are visible, in particular in the areas
around 1100, 1600 and 1700 nm. As a consequence, mod1 fares very well in
predictions based on spectra measured on instrument 1:

> RMSEP(mod1, estimate = "test", ncomp = 3, intercept = FALSE,

+ newdata = data.frame(y = test.Y[,3],

+ X = I(test.1[,indices])))

[1] 4.974

Then again, predictions for data from instrument 2 are quite a bit off:

> RMSEP(mod1, estimate = "test", ncomp = 3, intercept = FALSE,

+ newdata = data.frame(y = test.Y[,3],

+ X = I(test.2[,indices])))

[1] 9.983

The average error for predictions based on data from instrument 2 is twice
as large – maybe surprising, because the model coefficients do not seem to be
very different. Keep in mind, though, that the intercept is usually not shown
in these plots – in this case, a difference of more than twenty units is found
between the intercepts of the two models.

Now suppose that five samples (numbers 10, 20, ... 50) are available for
standardization purposes: these have been measured at both instruments. Let
us transform the data measured on instrument 2, so that the model of instru-
ment 1 can be applied. Now we can use an estimate of transformation matrix
F to make the data from the two instruments comparable:

254 11 Chemometric Applications

 −
0.

1

 −
0.1

 −
0.

1

 −
0.05

 −
0.

05

 −
0.05

 0 0
 0

 0

 0 0

 0
 0

 0

 0

 0

 0

 0

 0
.0

5

1100 1300 1500 1700

11
00

13
00

15
00

17
00

Fig. 11.8. Contour lines of the transformation matrix F1, mapping spectral data of
one NIR instrument to another.

> recal.indices <- 1:5 * 10

> F1 <- ginv(shootout$calibrate.2[recal.indices, indices]) %*%

+ shootout$calibrate.1[recal.indices, indices]

> RMSEP(mod1, estimate = "test", ncomp = 3, intercept = FALSE,

+ newdata = data.frame(y = test.Y[,3],

+ X = I(test.2[,indices] %*% F1)))

[1] 4.485

Immediately, we are in the region where we expect prediction errors of mod1
to be. Matrix F1 can be visualized using the contour function, which sheds
some light on the corrections that are made:

> contour(wl[indices], wl[indices], F1)

The result is shown in Figure 11.8. Horizontal lines correspond with columns
in F1, containing the multiplication factors for the spectra of the second in-
strument X2. The largest changes can be found in the area between 1600 and
1700 nm, not surprisingly the area where the largest differences in regression
coefficients are found as well.

Because spectral variations are often limited to a small range, it does not
necessarily make sense to use a complete spectrum of one instrument to esti-
mate the response at a particular wavelength at the other instrument. Wave-
lengths in the area of interest are much more likely to have predictive power.
This realization has led to piecewise direct standardization (PDS, [152]), where
only measurements xi−k, ..., xi, ..., xi+k of one spectrometer are used to pre-
dict xi at the other spectrometer. This usually is done with PLS or PCR.

11.5 Multivariate Curve Resolution 255

The row-wise concatenation of these regression vectors, appropriately filled
with zeros to obtain the correct overall dimensions, will then lead to F , in the
general case a banded diagonal matrix.

An obvious disadvantage of the method is that it takes many separate
multivariate regression steps. Moreover, one needs to determine the window
size, and information is lost at the first and last k spectral points. Nevertheless,
some good results have been obtained with this strategy [152].

Methods that directly transform the model coefficients have been described
as well, but results were disappointing [155]. Apart from this, a distinct disad-
vantage of transforming the model coefficients is that the response variable y is
needed. The DS and PDS approaches described above, on the other hand, can
be applied even when no response information is available: in Equation 11.6
only the spectral data are used.

11.5 Multivariate Curve Resolution

In Multivariate Curve Resolution (MCR, sometimes indicated with Alternat-
ing Least Squares regression, ALS, or even MCR-ALS), one aims at decom-
posing a data matrix in such a way that the individual components are corre-
sponding directly to chemically relevant characteristics, such as spectra and
concentration profiles. In contrast to PCA, no orthogonality is imposed. This
comes at a high price, however: in PCA, the orthogonality constraint ensures
that only one linear combination of original variables gives the optimal ap-
proximation of the data (up to the sign ambiguity). In MCR, usually a band
of feasible solutions is obtained. On the other hand, the orthogonality con-
straint in PCA prevents one from direct interpretation of the PCs: real, “pure”
spectra will almost never be orthogonal. This direct interpretation is the goal
of MCR.

Monitoring a reaction by some form of spectroscopy is a classical example:
during the reaction products are formed which may, in turn, react to form
other compounds. The concentrations of the starting compounds go down
over time, those of the end products go up, and those of the intermediates
first go up and finally go down again. Some of the components may be known
to be present, others may be unexpected and their spectra unknown. Another
example, often encountered, is given by data from HPLC-UV analyses: the
sample is separated over a column and at certain points in time the UV-Vis
spectra are measured. Again, this results in concentration profiles over time
for all compounds in the sample, as well as the associated pure spectra.

An example of such a data set is bdata. It consists of UV measurements at
73 wavelengths, measured at 40 time points. Two data matrices are available;
at this moment we will concentrate on the first. The sample is a mixture
of three compounds, two of which are diazinon and parathion-ethyl, both
organophosphorus pesticides [156]. A perspective plot of the data is shown in
Figure 11.9.

256 11 Chemometric Applications

Time W
av

el
en

gt
h

Z

Fig. 11.9. Perspective plot of a HPLC-UV data set. At several points in time,
spectra are measured from the eluate passing the detector; the goal is to estimate
the pure spectra and the concentration profiles of the compounds in the mixture.

11.5.1 Theory

The basis of the method is laid in the a seminal paper by Lawton and
Sylvestre [157], but the real popularity within the chemometrics community
came two decades later, especially because of the work by Tauler, De Juan
and Maeder (e.g., [158, 159]). In the ideal case, only the number of compo-
nents and suitable initial estimates for either concentration profiles or pure
spectra should have to be provided to the algorithm. The data matrix typi-
cally contains the spectra of the mixture at several time points, and can be
decomposed as

X = CST +E (11.7)

where C is the matrix containing the “pure” concentration profiles, S contains
the “pure” spectra and E is an error matrix. The word “pure” is quoted since
there is rotational ambiguity: CR−1 and RST will, for any rotation matrix
R, lead to the same approximation of the data:

X = CST = CR−1RST (11.8)

Whether it is possible to identify one particular set of CR−1 and RST as
better than others depends on the presence of additional information. This
often takes the form of constraints. If C indeed corresponds to a concentra-
tion matrix, it can only contain non-negative elements. Such a non-negativity

11.5 Multivariate Curve Resolution 257

constraint is applicable for many forms of spectroscopy as well, like a number
of other constraints that will be briefly treated below.

The decomposition of Equation 11.7 is usually performed by repeated ap-
plication of multiple least squares regression – hence the name ALS. Given a
starting estimate of, e.g., C, one can calculate the matrix S that minimizes
the residuals E in Equation 11.7, which in turn can be used to improve the
estimate of C, etcetera.

Ŝ = XTC(CTC)−1 = XTC+ (11.9)

Ĉ = XS(STS)−1 = X
(
ST
)+

(11.10)

Equations 11.9 and 11.10 alternate until no more improvement is found or
until the desired number of iterations is reached.

11.5.2 Finding Suitable Initial Estimates

The better the initial estimates, the better the quality of the final results –
moreover, the MCR algorithm will usually need fewer iterations to converge.
Therefore it pays to invest in a good initialization. Several strategies have been
proposed. Perhaps the most simple, conceptually, is to calculate the ranks of
submatrices, a procedure that has become known in chemometrics as Evolving
Factor Analysis (EFA, [160]). The original proposal was to start with a small
submatrix, and monitor the size of the eigenvalues upon adding more and
more columns (or rows) to the data matrix; later approaches apply a mov-
ing window, e.g. Evolving Windowed Factor Analysis (EWFA, [161]). Several
other methods such as the Orthogonal Projection Approach (OPA, [162]) and
SIMPLISMA [163] are not based on SVD, but on dissimilarities between the
spectra. These typically return the indices of the “purest” variables or objects.
Here, we focus on EFA and OPA.

Evolving Factor Analysis

EFA basically keeps track the number of independent components encountered
in the data matrix upon sequentially adding columns (often corresponding to
time points). This is especially useful in situations where there is a develop-
ment over time, such as occurs when monitoring a chemical reaction – the
reaction proceeds in a number of steps and it can be interesting to see when
certain intermediates are formed, and what the order of the formation is. In
this context, the result of an MCR consists of the pure spectra of all species,
and their concentration profiles over time.

The most basic implementation of EFA is takes a data matrix, and the
desired number of components. In the forward pass, starting from a submatrix
containing only three rows, the singular values of iteratively growing matrices
are stored. The backward pass does the same, but now the growth starts at

258 11 Chemometric Applications

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forward pass

S
in

gu
la

r
va

lu
es

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Backward pass

S
in

gu
la

r
va

lu
es

Fig. 11.10. Forward (left plot) and backward (right) traces of EFA on the HPLC-
UV data.

the end and is in the backward direction. The“pure”profiles then are obtained
by combining the forward and backward traces, where it is assumed that the
first compound to come up is also the first one to disappear. Should one be
interested in initial estimates of the other dimension, it suffices to present a
transpose matrix as the first argument. In R code this would be:

> efa <- function(x, ncomp)

+ {

+ nx <- nrow(x)

+ Tos <- Fros <- matrix(0, nx, ncomp)

+ for (i in 3:nx)

+ Tos[i,] <- svd(scale(x[1:i,], scale = FALSE))$d[1:ncomp]

+ for (i in (nx-2):1)

+ Fros[i,] <- svd(scale(x[i:nx,], scale = FALSE))$d[1:ncomp]

+

+ Combos <- array(c(Tos, Fros[,ncomp:1]), c(nx, ncomp, 2))

+ list(forward = Tos, backward = Fros,

+ pure.comp = apply(Combos, c(1,2), min))

+ }

For the HPLC-UV data mentioned above, the forward and backward passes
give the following result:

> X <- bdata$d1

> X.efa <- efa(X, 3)

> matplot(X.efa$forward, type = "l", ylab = "Singular values")

> matplot(X.efa$backward, type = "l", ylab = "Singular values")

11.5 Multivariate Curve Resolution 259

0 10 20 30 40

0.
00

0
0.

01
0

0.
02

0

Fig. 11.11. Estimated pure traces using EFA for the Bdata data.

The result is shown in Figure 11.10. In the left plot, showing the forward pass
of the EFA algorithm, the first compounds starts to come up at approximately
the fifth time point. The second and third come in at about the thirteenth
and nineteenth time points. In the backward trace we see similar behaviour.
Estimates of the “pure” traces are obtained by simply taking the minimal
values – we combine the first component in the forward trace with the last
component in the backward trace, etcetera.

> matplot(X.efa$pure.comp, type = "l", ylab = "", col = 1)

The result is shown in Figure 11.11. Although the elution profiles do not yet
resemble neat chromatographic peaks, they are good enough to serve as initial
guesses and start the MCR iterations. In some cases, logarithms are plotted
rather than the singular values themselves – this can make it easier to see
when a compound starts to go up.

OPA – the Orthogonal Projection Approach

Rather than estimating concentration profiles, where the implicit assumption
is that a compound that comes up first is also the first to disappear, one can
also try to find wavelengths that only lead to absorbtion for one particular
compound in the mixture. Methods like the Orthogonal Projection Approach
(OPA, [162]) and SIMPLISMA [163] have been developed exactly for that situ-
ation. Put differently, they focus on finding time points in the chromatograms
in which the spectra are most dissimilar. Several related methods are pub-
lished as well – an overview is available in [164]. Here, we will treat OPA
only.

The key idea is to calculate dissimilarities of all spectra with a set of
reference spectra. Initially, the reference set contains only one spectrum, usu-
ally taken to be the average spectrum. In every iteration except the first, the
reference set is extended with the spectrum that is most dissimilar – only

260 11 Chemometric Applications

in the first iteration, the reference is replaced rather than extended by the
most dissimilar spectrum. As a dissimilarity measure, the determinant of the
crossproduct matrix of Yi is used:

di = det(Y T
i Yi) (11.11)

where Yi is the reference set, augmented with spectrum i:

Yi = [Yref yi] (11.12)

Several scaling issues should be addressed; usually the spectra in the reference
set are scaled to unit length [164], and that is the convention we will also use.

This is easily implemented in R:

> opa <- function(x, ncomp)

+ {

+ Xref <- colMeans(x)

+ Xref <- Xref / sqrt(sum(crossprod(Xref))) # scaling

+

+ selected <- rep(0, ncomp)

+ for (i in 1:ncomp) {

+ Xs <- lapply(1:nrow(x),

+ function(ii, xx, xref) rbind(xref, xx[ii,]),

+ x, Xref)

+ dissims <- sapply(Xs, function(xx) det(tcrossprod(xx)))

+ selected[i] <- which.max(dissims)

+ newX <- x[selected[i],]

+

+ if (i == 1) {

+ Xref <- newX / sqrt(crossprod(newX))

+ } else {

+ Xref <- rbind(Xref, newX / sqrt(sum(crossprod(newX))))

+ }

+ }

+ dimnames(Xref) <- NULL

+

+ list(pure.comp = t(Xref), selected = selected)

+ }

Again, the function takes a data matrix and the desired number of components
as arguments. For the HPLC-UV data, this leads to

> X.opa <- opa(X, 3)

> matplot(X.opa$pure.comp, type = "l", col = 1,

+ ylab = "response", xlab = "wavelength number")

In this case, the pure spectra rather than the pure elution profiles are obtained.
The result is shown in Figure 11.12. Clearly, the first and third component

11.5 Multivariate Curve Resolution 261

0 10 20 30 40 50 60 70

0.
0

0.
1

0.
2

0.
3

0.
4

wavelength number

re
sp

on
se

Fig. 11.12. Pure spectra obtained using OPA for the HPLC-UV data set.

are very similar. Adding another component would lead to an estimate of a
pure spectrum that is very similar to what we already have – it seems two
components is about optimal.

11.5.3 Applying MCR

The initial estimates of either elution profiles or pure spectra can be used to
initiate the MCR iterations of Eqs. 11.9 and 11.10. The simplest possible form
of MCR could look something like the following:

> mcr <- function(x, init, what = c("row", "col"),

+ convergence = 1e-8, maxit = 50)

+ {

+ what <- match.arg(what)

+ if (what == "col") {

+ CX <- init

+ SX <- ginv(CX) %*% x

+ } else {

+ SX <- init

+ CX <- x %*% ginv(SX)

+ }

+

+ rms <- rep(NA, maxit + 1)

+ rms[1] <- sqrt(mean((x - CX %*% SX)^2))

+

+ for (i in 1:maxit) {

+ CX <- x %*% ginv(SX)

+ SX <- ginv(CX) %*% x

+

+ resids <- x - CX %*% SX

262 11 Chemometric Applications

0 10 20 30 40

0.
00

0.
02

0.
04

Concentration profiles

C
on

ce
nt

ra
tio

n

0 10 20 30 40 50 60 70

0
1

2
3

Pure spectra

In
te

ns
ity

Fig. 11.13. Estimates of concentration profiles (left) and spectra of pure compounds
(right) for the HPLC-UV data with MCR. The gray profiles in the left plot indicate
the initialization values from EFA.

+ rms[i+1] <- sqrt(mean(resids^2))

+ if ((rms[i] - rms[i+1]) < convergence) break;

+ }

+

+ list(C = CX, S = SX, resids = resids, rms = rms[!is.na(rms)])

+ }

Depending on the nature of the initialization, the algorithm starts by estimat-
ing pure spectra (input parameter what == "col") or elution profiles (what
== "row"). For the Moore-Penrose inverse we again use function ginv from
the MASS package. The RMS error for the initial estimate is calculated and
the iterations are started. The algorithm stops when the improvement is too
small. Alternatively, the algorithm stops when a predetermined number of
iterations has been reached.

The result of applying this algorithm is visualized in Figure 11.13:

> X.mcr.efa <- mcr(X, X.efa$pure.comp, what = "col")

> matplot(X.mcr.efa$C, col = 1, type = "n",

+ main = "Concentration profiles",

+ ylab = "Concentration")

> matlines(X.efa$pure.comp, type = "l", lty = c(1,2,4),

+ col = "gray")

> matlines(X.mcr.efa$C, type = "l", lty = c(1,2,4), col = 1)

> matplot(t(X.mcr.efa$S), col = 1, type = "l", lty = c(1,2,4),

+ main = "Pure spectra", ylab = "Intensity")

The original concentration profile estimates from EFA have been indicated
in gray in the left plot – clearly, they have improved dramatically. The peak
shapes now are close to what one should expect from a chromatographic sep-

11.5 Multivariate Curve Resolution 263

arations. The corresponding estimates of the pure spectra are shown on the
right. The quality of the model can be assessed by looking at the RMS values:

> X.mcr.efa$rms

[1] 0.0134851 0.0001368 0.0001366 0.0001366

> X.mcr.opa$rms

[1] 0.0001474 0.0001367 0.0001366 0.0001366

Both the EFA- and OPA-based models end up with the same error value; note
that the initial guess provided by OPA is already very close to the final result.
Although both models achieve the same RMS error, they are not identical:
this is a result of the rotational ambiguity, where there is a band of solutions
with similar or identical quality.

11.5.4 Constraints

One remedy for the rotational ambiguity is to use constraints. From the set
of equivalent solutions, only those are considered relevant for which certain
conditions hold. In this particular case two constraints are immediately obvi-
ous: a non-negativity constraint can be applied to both concentration profiles
and spectra, and in addition the concentration profiles can be thought to be
unimodal – compounds show a unimodal distribution across the chromato-
graphic column. A non-negativity constraint can be crudely implemented by
inserting lines like

SX[SX < 0] <- 0

and

CX[CX < 0] <- 0

in the mcr function, but a better way to do this is to use non-negative least
squares. This (as well as several other constraints) has been implemented in
the als function of package ALS. Again, the function requires initial estimates
of either C or S. Let us see what this leads to:

> X.als.efa <- als(CList = list(X.efa$pure.comp),

+ PsiList = list(X), S = matrix(0, 73, 3),

+ nonnegS = TRUE, nonnegC = TRUE,

+ optS1st = TRUE, uniC = TRUE)

Initial RSS 1.648

Iteration (opt. S): 1, RSS: 0.5329, RD: 0.6766

Iteration (opt. C): 2, RSS: 0.000716, RD: 0.9987

...

Iteration (opt. S): 9, RSS: 0.0001455, RD: 0.0547

Iteration (opt. C): 10, RSS: 0.0001499, RD: -0.02999

Initial RSS / Final RSS = 1.648 / 0.0001499 = 10995

264 11 Chemometric Applications

The output shows the initial RSS, which in this case – since we specify zeros
as the initial estimate of S – equals the sum of squares in X. After estimating
S, the RSS value has decreased to 0.533. The “RD” in the output signifies
the improvement in the corresponding step: using the first estimate for the
pure spectra to estimate concentration profiles virtually eliminates the fitting
error. After ten iterations, the algorithm stops because there is no further
improvement.

The non-negativity constraints for both spectra and diffusion profiles are
given by the nonnegS and nonnegC arguments; optS1st = TRUE indicates that
the first equation to be solved is Equation 11.9 – giving S0 as an argument is
therefore not necessary, although it is necessary to provide a (dummy) matrix
of the correct size. The unimodality constraint is indicated with uniC = TRUE.
The results are shown in Figure 11.14. All spectra and concentration profiles
in this plot have been scaled to unit length to allow for easier comparison.
Basically, the two initializations lead to the same models, although the effect
of the unimodality constraint is much clearer in the EFA-based concentration
profiles: the second and third peaks show artificial shoulders. This is much
less the case with the OPA-based fit. On the other hand, the RSS value of the
EFA-based model is slightly better: 0.00015 versys 0.00019.

As already stated, constraints are a way to bring in prior knowledge and to
limit the number of possible solutions to the chemically relevant ones. Apart
from the non-negativity and unimodality constraints encountered in the previ-
ous section, several others can be applied. An important example is selectivity :
in some cases one knows that certain regions in a particular spectrum do not
contain peaks from one compound. This forces the algorithm to assign any
signal in that region to spectra of other components. Knowledge of mass bal-
ances in chemical reactions can lead to closure constraints, indicating that the
sum of certain concentrations is constant.

The most stringent constraint is to impose an explicit model for one or
even both of the data dimensions. One example can be found in the area
of diffusion-ordered spectroscopy (DOSY), a form of NMR in which proton
patterns of compounds in a mixture are separated on the basis of diffusion
coefficients. Theoretical considerations lead to the assumption that the dif-
fusion profiles follow an exponential curve [165,166]. Indeed, so-called single-
channel algorithms for interpreting DOSY data concentrate on fitting mono-
or bi-exponentials to individual variables [167]. Such data may conveniently
be tackled with MCR, where the diffusion profiles are fit using exponential
curves. This is reported to lead to more robust results than less stringent con-
straints [168]. An extension of the ALS package, TIMP, allows to do this in
R as well. A well-documented example of the use of TIMP in the realm of
GC-MS data, where individual peaks are represented by generalized normal
distributions, can be found in [169].

11.5 Multivariate Curve Resolution 265

0 10 20 30 40 50 60 70

0.
0

0.
1

0.
2

0.
3

0.
4

Pure spectra (EFA)

In
te

ns
ity

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Concentration profiles (EFA)

C
on

ce
nt

ra
tio

n

0 10 20 30 40 50 60 70

0.
0

0.
1

0.
2

0.
3

0.
4

Pure spectra (OPA)

In
te

ns
ity

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Concentration profiles (OPA)

C
on

ce
nt

ra
tio

n

Fig. 11.14. Results for the HPLC-UV data with non-negativity and unimodality
constraints: the top row shows the fit after initialization with EFA, the bottom line
with OPA.

11.5.5 Combining Data Sets

In the classical application, MCR-ALS leads to estimates of pure spectra and
pure concentration profiles, given a matrix of several measurements of the
mixture. Extensions are possible in cases where either one mixture is studied
with different measurement methods, or where several mixtures containing
the same components are studied [170]. In the first case, the concentration
profiles of the individual components C are the same, but it is possible to
estimate the pure spectra for two or more spectroscopic techniques:

[X1|X2|...|Xn] = C
[
ST1 |S

T
2 |...|S

T
n

]
(11.13)

266 11 Chemometric Applications

In the other situation one assumes that the constituents of the different sam-
ples are the same, but the concentrations are not:

X1

X2

...
Xn

 =


C1

C2

...
Cn

ST (11.14)

An example of an application where common spectra and distinct concen-
tration profiles are estimated is available from the als manual page. This
particular form of MCR allows one to quantify compounds in the presence of
unknown interferents: one of the additional data matrices is then the outcome
of a measurement of a known quantity of the compound of interest. Because of
the linearity of the response in most forms of spectroscopy, it is then possible
to relate the concentration in the mixture to that of the standard.

The HPLC-UV data provide a way to see how this works: a second data
matrix is present, containing the same three compounds. Since the variabil-
ity of the chromatographic separation is much larger than the variability in
spectral response, we assume common spectra, and will estimate two sets of
concentration profiles. This can be done with the following code:

> C0 <- matrix(0, 40, 3)

> X2.als.opa <- als(CList = list(C0, C0),

+ PsiList = list(bdata$d1, bdata$d2),

+ S = X.opa$pure.comp,

+ nonnegS = TRUE, nonnegC = TRUE,

+ optS1st = FALSE, uniC = TRUE)

Initial RSS 2.135595

Iteration (opt. C): 1, RSS: 0.001065275, RD: 0.9995012

Iteration (opt. S): 2, RSS: 0.000796382, RD: 0.2524164

Iteration (opt. C): 3, RSS: 0.000729763, RD: 0.08365207

...

Iteration (opt. C): 35, RSS: 0.0004115873, RD: 0.0005339897

Initial RSS / Final RSS = 2.135595 / 0.0004115873 = 5188.681

> resids2 <- X2.als.opa$S[,1:2] - cbind(c(bdata$sp1), c(bdata$sp2))

> apply(resids2, 2, function(x) sum(x^2))

[1] 0.0026367 0.0004589

The residuals of the original model can be calculated in a similar way:

> resids <- X.als.opa$S[,1:2] - cbind(c(bdata$sp1), c(bdata$sp2))

> apply(resids, 2, function(x) sum(x^2))

[1] 0.0007835 0.0006311

11.5 Multivariate Curve Resolution 267

Clearly, in this case the gain is very limited: although the second component
is slightly closer to the spectrum of the pure compound, the first is actually
estimated with less accuracy. A more interesting effect is the behaviour of the
third compound, however. It is present in a larger quantity in the second data
matrix, and as a result the estimated spectrum contains more details.

This way of combining data matrices also provides an opportunity for
quantitation: when some of the components of the mixture are known, one
can measure samples in which these components are present in known con-
centrations. This immediately enables the analyst to convert the area under
the curve in the concentration profiles to true concentrations.

Part VI

Appendices

R. Wehrens, Chemometrics with R: Multivariate Data Analysis in the Natural Sciences

© Springer-Verlag Berlin Heidelberg 2011
and Life Sciences, Use R!, DOI 10.1007/978-3-642-17841-2,

269

A

R Packages Used in this Book

The table below contains an overview of R packages mentioned (but not nec-
essarily treated in the same detail) in the book.

Table A.1. R packages used in this book

ada elasticnet mclust rda
ALS fastICA meboot relaxo
AMORE fingerprint msProstate robustbase
boost FRB neuralnet rpart
boot glmnet nnet rrcov
BootPR gpls paltran sfsmisc
bootstrap gtools VPdtw som
caMassClass ipred pls spls
ChemometricsWithR kohonen plsgenomics stats
class lars plspm subselect
cluster lasso2 ppls TIMP
DAIM leaps PROcess tree
dtw lpc ptw wccsom
e1071 lspls randomForest xcms
EffectiveDose MASS

References

1. R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2010.
ISBN 3-900051-07-0.

2. W.N. Venables, D.M. Smith, and the R development Core Team. An introduc-
tion to R, December 2009. Version 2.10.1.

3. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer, New York, 2001.

4. K. Varmuza and P. Filzmoser. Introduction to Multivariate Statistical Analysis
in Chemometrics. Taylor & Francis - CRC Press, Boca Raton, FL, USA, 2009.

5. J. Kalivas. Two data sets of near infrared spectra. Chemom. Intell. Lab. Syst,
37:255–259, 1997.

6. M. Forina, C. Armanino, M. Castino, and M. Ubigli. Multivariate data analysis
as a discriminating method of the origin of wines. Vitis, 25:189–201, 1986.

7. B.-L. Adam, Y. Qu, J.W. Davis, M.D. Ward, M.A. Clements, L.H. Cazares,
O.J. Semmes, P.F. Schellhammer, Y. Yasui, Z. Feng, and G.L. Wright. Serum
protein fingerprinting coupled with a pattern-matching algorithm distinguishes
prostate cancer from benign prostate hyperplasia and healthy men. Cancer
Res., 62(13):3609–3614, July 2002.

8. Y. Qu, B.-L. Adam, Y. Yasui, M.D. Ward, L.H. Cazares, P.F. Schellhammer,
Z. Feng, O.J. Semmes, and G.L. Wright. Boosted decision tree analysis of
surface-enhanced laser desorption/ionization mass spectral serum profiles dis-
criminates prostate cancer from noncancer patients. Clin Chem, 48(10):1835–
43, October 2002.

9. T.G. Bloemberg, J. Gerretzen, H.J.P. Wouters, J. Gloerich, M. van Dael,
H.J.C.T. Wessels, L.P. van den Heuvel, P.H.C. Eilers, L.M.C. Buydens, and
R. Wehrens. Improved parametric time warping for proteomics. Chemom.
Intell. Lab. Systems, 2010.

10. A. Savitsky and M.J.E. Golay. Smoothing and differentiation of data by sim-
plified least squares procedures. Anal. Chem., 36:1627–1639, 1964.

11. W.S. Cleveland. Robust locally weighted regression and smoothing scatter-
plots. J. Am. Stat. Assoc., 74:829–836, 1979.

12. G.P. Nason. Wavelet methods in statistics with R. Springer, New York, 2008.
13. P. Geladi, D. MacDougall, and H. Martens. Linearization and scatter-

correction for NIR reflectance spectra of meat. Appl. Spectr., 39:491–500, 1985.

274 References

14. T. Næs, T. Isaksson, and B.R. Kowalski. Locally weighted regression and
scatter correction for near-infrared reflectance data. Anal. Chem., 62:664–673,
1990.

15. H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans. Acoust., Speech, Signal Process., 26:43–
49, 1978.

16. L.R. Rabiner, A.E. Rosenberg, and S.E. Levinson. Considerations in dynamic
time warping algorithms for discrete word recognition. IEEE Trans. Acoust.,
Speech, Signal Process., 26:575–582, 1978.

17. C.P. Wang and T.L. Isenhour. Time-warping algorithm applied to chromato-
graphic peak matching gas chromatography / Fourier Transform infrared /
Mass Spectrometry. Anal. Chem., 59:649–654, 1987.

18. N.P.V. Nielsen, J.M. Carstensen, and J. Smedsgaard. Aligning of single and
multiple wavelength chromatographic profiles for chemometric data analysis
using correlation optimized warping. J. Chrom. A, 805:17–35, 1998.

19. P.H.C. Eilers. Parametric time warping. Anal. Chem., 76:404–411, 2004.
20. R. de Gelder, R. Wehrens, and J.A. Hageman. A generalized expression for

the similarity spectra: application to powder diffraction pattern classification.
J. Comput. Chem., 22(3):273–289, 2001.

21. D. Clifford, G. Stone, I. Montoliu, S. Rezzi, F.-P. Martin, P. Guy, S. Bruce, and
S. Kochhar. Alignment using variable penalty dynamic time warping. Anal.
Chem., 81:1000–1007, 2009.

22. W. Windig, J. Phalp, and A. Payna. A noise and background reduction method
for component detection in liquid chromatography/mass spectrometry. Anal.
Chem., 68:3602–3606, 1996.

23. T. Giorgino. Computing and visualizing dynamic time warping alignments in
R: the dtw package. J. Stat. Softw., 31(7), 2009.

24. J.E. Jackson. A User’s Guide to Principal Components. Wiley, Chichester,
1991.

25. I.T. Jolliffe. Principal Component Analysis. Springer, New York, 1986.
26. K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press,

1979.
27. W. Härdle and L. Simar. Applied Multivariate Statistical Analysis. Springer,

Berlin, 2nd edition, 2007.
28. K.R. Gabriel. The biplot graphic display of matrices with application to prin-

cipal component analysis. Biometrika, 58:453–467, 1971.
29. J.C. Gower and D.J. Hand. Biplots. Number 54 in Monographs on Statistics

and Applied Probability. Chapman and Hall, London, UK, 1996.
30. K. Baumann. Uniform-length molecular descriptors for quantitative structure-

property relationships (QSPR) and quantitative structure-activity relation-
ships (QSAR): classification studies and similarity searching. Trends Anal.
Chem., 18(1):36–46, 1999.

31. T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman and Hall,
2001.

32. I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling. Springer, 2nd
edition, 2005.

33. J.C. Gower. Some distance properties of latent root and vector methods used
in multivariate analysis. Biometrika, 53:325–328, 1966.

34. B.D. Ripley. Pattern recognition and neural networks. Cambridge University
Press, 1996.

References 275

35. J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory
data analysis. IEEE Trans. Comput., C23:881–889, 1974.

36. P.J. Huber. Projection pursuit. The Annals of Statistics, 13:435–475, 1985.
37. J.H. Friedman. Exploratory projection pursuit. Journal of the American Sta-

tistical Association, 82:249–266, 1987.
38. A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis.

Wiley, Chichester, 2001.
39. T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, Chich-

ester, 1991.
40. A. Hyvärinen and E. Oja. Independent component analysis: algorithms and

applications. Neural Networks, 13:411–430, 2000.
41. C. Spearman. “General intelligence”, objectively determined and measured.

Am. J. Psychol., 15:201–293, 1904.
42. T. Kohonen. Self-Organizing Maps. Number 30 in Springer Series in Informa-

tion Sciences. Springer, Berlin, 3 edition, 2001.
43. R. Wehrens and L.M.C. Buydens. Self- and super-organising maps in R: the

kohonen package. Journal of Statistical Software, 21(5), 9 2007.
44. A. Ultsch. Self-organizing neural networks for visualization and classification.

In O. Opitz, B. Lausen, and R. Klar, editors, Information and Classification –
Concepts, Methods and Applications, pages 307–313. Springer Verlag, 1993.

45. W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,
New York, fourth edition, 2002. ISBN 0-387-95457-0.

46. R. Wehrens and E. Willighagen. Mapping databases of x-ray powder patterns.
R News, 6(3):24–28, August 2006.

47. M. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis
and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA,
95:14863–14868, December 1998.

48. L. Kaufman and P.J. Rousseeuw. Finding Groups in Data – An Introduction
to Cluster Analysis. John Wiley & Sons, New York, 1990.

49. G.J. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, New
York, 2000.

50. C. Fraley and A.E. Raftery. Model-based clustering, discriminant analysis, and
density estimation. J. Am. Stat. Assoc., 97:611–631, 2002.

51. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. J. R. Statist. Soc. B, 39(1):1–38, 1977.

52. G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John
Wiley & Sons, 1997.

53. H. Akaike. A new look at the statistical model identification. IEEE Trans.
Automatic Control, 19:716–723, 1974.

54. G. Schwarz. Estimating the dimension of a model. Ann. Statist., 6:461–464,
1978.

55. C. Fraley and A.E. Raftery. Enhanced software for model-based clustering,
discriminant analysis, and density estimation: MCLUST. J. Classif., 20:263–
286, 2003.

56. C. Fraley. Algorithms for model-based gaussian hierarchical clustering. SIAM
J. Scient. Comput., 20:270–281, 1998.

57. J.D. Banfield and A.E. Raftery. Model-based Gaussian and non-Gaussian clus-
tering. Biometrics, 49:803–821, 1993.

58. L. Hubert. Comparing partitions. J. Classif., 2:193–218, 1985.

276 References

59. W.M. Rand. Objective criteria for the evaluation of clustering methods. J.
Am. Stat. Assoc., 66:846–850, 1971.

60. J. Vesanto and E. Alhoniemi. Clustering of the self-organising map. IEEE
Trans. Neural Netw., 11:586–600, 2000.

61. E.B. Fowlkes and C.L. Mallows. A method for comparing two hierarchical
clusterings. J. Am. Stat. Assoc., 78:553–584, 1983. Including discussion.

62. L.A. Goodman and W.H. Kruskal. Measures of association for cross classifica-
tions. J. Am. Statist. Assoc., 49:732–764, 1954.

63. M. Meila. Comparing clusterings – an information-based distance. J. Multivar.
Anal., 98(5):873–895, 2007.

64. G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition.
Wiley-Interscience, 2004.

65. M. Stone. Cross-validatory choice and assessment of statistical predictions. J.
R. Statist. Soc. B, 36:111–147, 1974. Including discussion.

66. B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman and
Hall, New York, 1993.

67. R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7:179–188, 1936.

68. J. Friedman. Regularized discriminant analysis. J. Am. Stat. Assoc., 84:165–
175, 1989.

69. S. Dudoit, J. Fridlyand, and T.P. Speed. Comparison of discrimination methods
for the classification of tumors using gene expression data. J. Am. Stat. Assoc.,
97:77–87, 2002.

70. D. Hand and K. Yu. Idiot’s Bayes – not so stupid after all? Int. Statist. Rev.,
69:385–398, 2001.

71. R. Tibshirani, T. Hastie, B. Narashimhan, and G. Chu. Class prediction by
nearest shrunken centroids with applications to dna microarrays. Statistical
Science, 18:104–117, 2003.

72. Y. Guo, T. Hastie, and R. Tibshirani. Regularized linear discriminant analysis
and its application in microarrays. Biostatistics, 8(1):86–100, 2007.

73. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and
Regression Trees. Wadsworth, 1984.

74. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
75. J.R. Quinlan. The induction of decision trees. Mach. Learn., 1(1):81–106, 1986.
76. T.M. Therneau and E.J. Atkinson. An introduction to recursive partitioning

using the rpart routines. Technical Report 61, Mayo Foundation, September
1997.

77. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
78. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-

chines and other kernel-based Learning Methods. Cambridge University Press,
2000.

79. B. Schölkopf and A.J. Smola. Learning with kernels. MIT Press, Cambridge,
MA, 2002.

80. F. Rosenblatt. Principles of neurodynamics. Spartan Books, Washington DC,
1962.

81. D.E. Rumelhard and J.L. McClelland, editors. Parallel distributed processing:
explorations in the microstructure of cognition. Volume 1: Foundations. MIT
Press, Cambridge MA, 1986.

82. Frauke Günther and Stefan Fritsch. neuralnet: Training of neural networks.
The R Journal, 2(1):30–38, June 2010.

References 277

83. B.-H. Mevik and R. Wehrens. The pls package: principal component and partial
least squares regression in R. J. Stat. Soft., 18(2), 2007.

84. B.-H. Mevik and H.R. Cederkvist. Mean squared error of prediction (MSEP)
estimates for principal component regression (PCR) and partial least squares
regression (PLSR). J. Chemom., 18:422–429, 2004.

85. A.S. Barros and D.N. Rutledge. Genetic algorithms applied to the selection of
principal components. Chemom. Intell. Lab. Syst., 40:65–81, 1998.

86. B.S. Dayal and J.F. MacGregor. Improved PLS algorithms. J. Chemom.,
11:73–85, 1997.

87. H. Martens and T. Næs. Multivariate Calibration. Wiley, Chichester, 1989.
88. S. Rännar, F. Lindgren, P. Geladi, and S. Wold. The PLS Kernel algorithm for

data sets with many variables and fewer objects. Part 1: Theory and algorithm.
J. Chemom., 8:111, 1994.

89. S. de Jong. SIMPLS: an alternative approach to partial least squares regression.
Chemom. Intell. Lab. Syst., 18:251–263, 1993.

90. I.E. Frank and J.H. Friedman. A statistical view of some chemometrics regres-
sion tools. Technometrics, 35:109–135, 1993.

91. S. Wold, N. Kettaneh-Wold, and B. Skagerberg. Nonlinear PLS modeling.
Chemom. Intell. Lab. Syst., 7:53–65, 1989.

92. K. Hasegawa, T. Kimura, Y. Miyashita, and K. Funatsu. Nonlinear partial least
squares modeling of phenyl alkylamines with the monoamine oxidase inhibitory
activities. J. Chem. Inf. Comput. Sci-, 36:1025–1029, 1996.

93. K. Jorgensen, V. H. Segtnan, K. Thyholt, and T. Næs. A comparison of meth-
ods for analysing regression models with both spectral and designed variables.
J. Chemometr., 18:451–464, 2004.

94. B. Ding and R. Gentleman. Classification using penalized partial least squares.
J. Comput. Graph. Stat., 14:280–298, 2005.

95. B.D. Marx. Iteratively reweighted partial least squares estimation for general-
ized linear regression. Technometrics, 38:374–381, 1996.

96. C.J.F. ter Braak and S. Juggins. Weighted averaging partial least squares re-
gression WAPLS: an improved method for reconstructing environmental vari-
ables from species assemblages. Hydrobiologia, 269:485–502, 1993.

97. M. Tenenhaus, V. Esposito Vinzi, Y.M. Chatelin, and C. Lauro. PLS path
modelling. Comput. Stat. Data Anal., 48:159–2005, 2005.

98. N. Krämer, A.-L. Boulesteix, and G. Tutz. Penalized partial least squares with
applications to B-spline transformations and functional data. Chemom. Intell.
Lab. Syst., 94:60–69, 2008.

99. H. Chun and S. Keles. Sparse partial least squares for simultaneous dimension
reduction and variable selection. J. Royal Stat. Soc. – Series B, 72:3–25, 2010.

100. A.E. Hoerl. Application of ridge analysis to regression problems. Chemical
Engineering Progress, 58:54–59, 1962.

101. A.E. Hoerl and R.W. Kennard. Ridge regression: biased estimation for non-
orthogonal problems. Technometrics, 8:27–51, 1970.

102. A.E. Hoerl, R.W. Kennard, and K.F. Baldwin. Ridge regression: some simu-
lations. Commun. Stat. – Simul. Comput., 4:105–123, 1975.

103. J.F. Lawless and P. Wang. A simulation study of ridge and other regression
estimators. Commun. Stat. – Theory and Methods, 5:303–323, 1976.

104. M. Stone and R.J. Brooks. Continuum regression: cross-validated sequentially
constructed prediction embracing ordinary least squares, partial least squares

278 References

and principal components regression (with discussion). J. R. Statist. Soc.,
52:237–269, 1990.

105. S. de Jong and H.A.L. Kiers. Principal covariates regression: Part I. Theory.
Chemom. Intell. Lab. Syst., 14:155–164, 1992.

106. R.W. Kennard and L. Stone. Computer aided design of experiments. Techno-
metrics, 11:137–148, 1969.

107. C.D. Brown and H.T. Davis. Receiver operating characteristic curves and
related decision measures: a tutorial. Chemom. Intell. Lab. Syst., 80:24–38,
2006.

108. C.L. Mallows. Some comments on Cp. Technometrics, 15:661–675, 1973.
109. P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numer.

Math., 31:377–403, 1979.
110. S. Smit, M.J. van Breemen, H.C.J. Hoefsloot, A.K. Smilde, J.M.F.G. Aerts,

and C.G. de Koster. Assessing the statistical validity of proteomics based
biomarkers. Anal. Chim. Acta, 592:210–217, 2007.

111. A.C. Davison and D.V. Hinkley. Bootstrap Methods and their Applications.
Cambridge University Press, Cambridge, 1997.

112. B. Efron and R. Tibshirani. Improvements on cross-validation: the .632+ boot-
strap method. J. Am. Stat. Assoc., 92:548–560, 1997.

113. B. Efron. Bootstrap methods: another look at the jackknife. Ann. Stat., 7:1–26,
1979.

114. L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
115. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
116. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139,
1997.

117. V. Svetnik, A. Liaw, C. Tong, J.C. Culberson, R.P. Sheridan, and B.P. Feuston.
Random forest: a classification and regression tool for compound classification
and qsar modeling. J. Chem. Inf. Comput. Sci., 43(6):1947–58, 2003.

118. G. Michailides, K. Johnson, and M. Culp. ada: an R package for stochastic
boosting. J. Stat. Softw., 17(2), 2006.

119. J.H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a
statistical view of boosting. Ann. Stat., 28:337–374, 2000.

120. R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: a
new explanation for the effectiveness of voting methods. Ann. Stat., 26:1651–
1686, 1998.

121. R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal.
Statist. Soc B, 58:267–288, 1996.

122. R. Wehrens and W.E. van der Linden. Bootstrapping principal-component
regression models. J. Chemom., 11(2):157–171, 1997.

123. A.H. Land and A.G. Doig. An automatic method for solving discrete program-
ming problems. Econometrica, 28:497–520, 1960.

124. G.M. Furnival and G.M. Wilson. Regression by leaps and bounds. Technomet-
rics, 16:499–511, 1974.

125. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.
Annals of Statistics, 32:407–499, 2004.

126. H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
J. Royal. Stat. Soc. B, 67:301–320, 2005.

127. S. Kirkpatrick, C.D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

References 279

128. V. Cerny. A thermodynamical approach to the travelling salesman problem:
an efficient simulation algorithm. Journal of Optimization Theory and Appli-
cations, 45:41–51, 1985.

129. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.
Equations of state calculations by fast computing machines. J. Chem. Phys.,
21:1087–1092, 1953.

130. V. Granville, M. Krivanek, and J.-P. Rasson. Simulated annealing: a proof of
convergence. IEEE Trans. Patt. Anal. Machine Intell., 16:652–656, 1994.

131. A.P. Duarte Silva. Efficient variable screening for multivariate analysis. J.
Mult. Anal., 76:35–62, 2001.

132. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Kluwer Academic Publishers, Boston, MA., 1989.

133. R. Leardi. Genetic algorithms in chemometrics and chemistry: a review. J.
Chemom., 15:559–569, 2001.

134. J. Shao. Linear model selection by cross-validation. J. Am. Statist. Assoc.,
88:486–494, 2003.

135. K. Baumann, H. Albert, and M. von Korff. A systematic evaluation of the
benefits and hazards of variable selection in latent variable regression. Part I.
Search algorithm, theory and simulations. J. Chemometr., 16:339–350, 2002.

136. K. Baumann, H. Albert, and M. von Korff. A systematic evaluation of the
benefits and hazards of variable selection in latent variable regression. Part II.
Practical applications. J. Chemometr., 16:351–360, 2002.

137. M. Hubert. Robust calibration. In S.D. Brown, R. Tauler, and B. Walczak,
editors, Comprehensive Chemometrics – Chemical and Biochemical Data Anal-
ysis, chapter 3.07, pages 315–343. Elsevier, 2009.

138. C. Croux and G. Haesbroeck. Principal components analysis based on robust
estimators of the covariance or correlation matrix. Biometrika, 87:603–618,
2000.

139. P. Rousseeuw. Least median of squares regression. J. Am. Stat. Assoc., 79:871–
880, 1984.

140. P.J. Rousseeuw and K. van Driessen. A fast algorithm for the minimum co-
variance determinant estimator. Technometrics, 41:212–223, 1999.

141. M. Hubert, P.J. Rousseeuw, and K. Vanden Branden. ROBPCA: a new ap-
proach to robust principal component analysis. Technometrics, 47:64–79, 2005.

142. V. Todorov and P. Filzmoser. An object oriented framework for robust multi-
variate analysis. J. Stat. Softw., 32(3):1–47, 2009.

143. M. Hubert and K. Vanden Branden. Robust methods for partial least squares
regression. J. Chemom., 17:537–549, 2003.

144. B. Liebmann, P. Filzmoser, and K. Varmuza. Robust and classical PLS regres-
sion compared. J. Chemom., 24:111–120, 2009.

145. S. Wold, H. Antti, F. Lindgren, and J. Ohman. Orthogonal signal correction
of near-infrared spectra. Chemom. Intell. Lab. Syst., 44:175–185, 1998.

146. O. Svensson, T. Kourti, and J.F. MacGregor. A comparison of orthogonal signal
correction algorithms and characteristics. J. Chemom., 16:176–188, 2002.

147. J. Trygg and S. Wold. Orthogonal projections to latent structures (O-PLS).
J. Chemom., 16:119–128, 2002.

148. M. Barker and W. Rayens. Partial least squares for discrimination. J.
Chemom., 17:166–173, 2003.

149. D.V. Nguyen and D. Rocke. Tumor classification by partial least squares using
microarray gene expression data. Bioinformatics, 18:39–50, 2002.

280 References

150. A.L. Boulesteix. PLS dimension reduction for classification with high-
dimensional microarray data. Stat. Appl. Genet. Mol. Biol., 3, 2004. Article
33.

151. O.E. de Noord. Multivariate calibration standardization. Chemom. Intell. Lab.
Syst., 25:85–97, 1994.

152. Y. Wang, D.J. Veltkamp, and B.R. Kowalski. Multivariate instrument stan-
dardization. Anal. Chem., 63:2750–2756, 1994.

153. Z.Y. Wang, T. Dean, and B.R. Kowalski. Additive background correction in
multivariate instrument standardization. Anal. Chem., 67:2379–2385, 1995.

154. E. Bouveresse, D.L. Massart, and P. Dardenne. Modified algorithm for stan-
dardization of near-infrared spectrometric instruments. Anal. Chem., 67:1381–
1389, 1995.

155. Y. Wang, M.J. Lysaght, and B.R. Kowalski. Improvement of multivariate cal-
ibration through instrument standardization. Anal. Chem., 64:764–771, 1992.

156. R. Tauler, S. Lacorte, and D. Barceló. Application of multivariate self-modeling
curve resolution to the quantitation of trace levels of organophosphorus pes-
ticides in natural waters from interlaboratory studies. J. Chromatogr. A,
730:177–183, 1996.

157. W.H. Lawton and E.A. Sylvestre. Self-modeling curve resolution. Technomet-
rics, 13:617–633, 1971.

158. R. Tauler. Multivariate curve resolution applied to second-order data.
Chemom. Intell. Lab. Syst., 30:133–146, 1995.

159. A. de Juan, M. Maeder, M. Martinez, and R. Tauler. Combining hard- and
soft-modelling techniques to solve kinetic problems. Chemom. Intell. Lab. Syst.,
54:49–67, 2000.

160. M. Maeder. Evolving factor analysis for the resolution of overlapping chro-
matographic peaks. Anal. Chem., 59:527–530, 1987.

161. H.R. Keller and D.L. Massart. Peak purity control in liquid chromatography
with photodiode-array detection by a fixed size moving window evolving factor
analysis. Anal. Chim. Acta, 246:379–390, 1991.

162. F. Questa Sanchez, M.S. Khots, D.L. Massart, and J.O. de Beer. Algorithm for
the assessment of peak purity in liquid chromatography with photodiode-array
detection. Anal. Chim. Acta, 285:181–192, 1994.

163. W. Windig and J. Guilment. Interactive self-modeling mixture analysis. Anal.
Chem., 63:1425–1432, 1991.

164. F. Cuesta Sanchez, B. van de Bogaert, S.C. Rutan, and D.L. Massart. Multi-
variate peak purity approaches. Chemom. Intell. Lab. Syst., 36:153–164, 1996.

165. P. Stilbs. Molecular self-diffusion coefficients in Fourier transform nuclear mag-
netic resonance spectrometric analysis of complex mixtures. Anal. Chem.,
53:2135–2137, 1981.

166. P. Stilbs. Fourier-transform pulsed-gradient spin-echo studies of molecular dif-
fusion. Progr. NMR Spectrosc., 19:1–45, 1987.

167. R. Huo, R. Wehrens, J. van Duynhoven, and L.M.C. Buydens. Assessment of
techniques for DOSY NMR data processing. Anal. Chim. Acta, 490:231–251,
2003.

168. R. Huo, R. Wehrens, and L.M.C. Buydens. Improved DOSY NMR data pro-
cessing by data enhancement and combination of multivariate curve resolution
with non-linear least squares fitting. J. Magn. Reson., 169:257–269, 2004.

References 281

169. K.M. Mullen, I.H.M. van Stokkum, and V.V. Mihaleva. Global analysis of mul-
tiple gas chromatography-mass spectrometry (GC/MS) data sets: a method for
resolution of co-eluting components with comparison to MCR-ALS. Chemom.
Intell. Lab. Syst., 95:150–163, 2009.

170. G. Munoz and A. de Juan. pH- and time-dependent hemoglobin transitions: a
case study for process modelling. Anal. Chim. Acta, 595:198–208, 2007.

Index

Akaike’s information criterion (AIC),
91, 180

Artificial neural networks (ANNs),
141–144

Backpropagation networks, see Artificial
neural networks (ANNs)

Bagging, 196–197
Baseline removal, 18–20
Bayesian information criterion (BIC),

91, 180
Bias, 149, 177, 183, 184
Binning, 11, 16
Biomarkers, 38, 103
Boosting, 202–204
Bootstrap, 177, 186–195

.632 estimate, 187
BCα confidence intervals, 193
nonparametric, 186
parametric, 186
percentile confidence intervals, 191
studentized confidence intervals, 192

Breakdown point, 236
Bucketing, see Binning

Chromatography, 21
Classification and regression trees

(CART), 126–135
Clustering, 79–99

average linkage, 81
comparing clusterings, 95–97
complete linkage, 80
hierarchical, 80–84
k-means, 85–87

k-means clustering, 68
k-medoids, 87–90
single linkage, 80
Ward’s method, 81

Common factors, 63
Component Detection Algorithm

(CODA), 25, 31
Crossvalidation, 109–111, 177, 181–184,

245
double, 183
generalized, 182
leave-multiple-out, 110, 183, 232
leave-one-out (LOO), 110, 181
ten-fold, 110, 183

Data sets
gas chromatography, 8, 19
gasoline, 7, 18–19, 35, 53, 168–169,

177, 184, 196, 223, 230
LC-MS, 11–12, 21–26, 29–30
prostate, 9–11, 14, 33–35, 48, 119,

138, 196, 201, 244–250
shootout (NIR), 252–254
UV, 255, 258–267
wine, 9, 36–37, 46, 49, 51, 58, 63, 81,

85, 87, 91, 96, 106, 115, 117, 122,
138, 221, 229, 236

Discriminant analysis, 104–118
canonical, 114
diagonal, 119–120
Fisher LDA, 111–114
linear, 105–108
model-based, 116–118
PCDA, 244–248

284 Index

PLSDA, 248–250
quadratic, 114–116
regularized, 118–121
shrunken centroid, 120–121

Dual representation, 137

Elastic net, 216
Entropy, 130
Error estimates, 178–179
Expectation-maximization (EM)

algorithm, 90, 92

Factor analysis, 63–65
False positive rate, see Specificity
Feed-forward networks, see Artificial

neural networks (ANNs)
Finite mixture modelling, see Mixture

modelling

Gas chromatography, 8
Generalized inverse, 148, 262
Gini index, 130

Independent component analysis (ICA),
60–62

Jackknife, 184

k-nearest-neighbours (KNN), 122–126
Kennard-Stone algorithm, 176
Kernel functions, 137

LDA, see Discriminant analysis
LOO, see crossvalidation
Loss function, 135, 163, 178

Mahalanobis distance, 105, 107, 110,
115, 123, 212

Mallows’ Cp, 180
Mass spectrometry

coupled to liquid chromatography
(LC-MS), 11

Metropolis criterion, 218
Minimum covariance determinant

(MCD), 236
Mixture modelling, 90–94
Model selection, 179
Model-based clustering, see Mixture

modelling

Moore-Penrose inverse, see Generalized
inverse

Multi-layer perceptrons, see Artificial
neural networks (ANNs)

Multidimensional scaling (MDS), 57–60,
77

classical, 58
non-metric MDS, 58
Sammon mapping, 58

Multiplicative scatter correction (MSC),
18, 177

Near-infrared (NIR) spectroscopy, 7
Neural networks, see Artificial neural

networks (ANNs)
hidden layer, 141
transfer functions, 142

NP-complete, 4, 130
Nuclear Magnetic Resonance (NMR), 7,

13, 20, 22, 31, 33

OPLS, 240–243
Orthogonal signal correction (OSC),

240
Outliers, 87, 204, 235–240
Overfitting, 132, 143, 144, 153, 167, 168,

176, 203, 250

Peak distortion, 15, 16, 22, 27, 29
Peak picking, 31–33
Penalization, 149, 163
Principal component analysis (PCA),

43–56
biplot, 54
explained variance, 45
loading plot, 47
loadings, 43, 45
robust, 235–240
score plot, 46
scores, 43, 45

Principal coordinate analysis, see
Multidimensional scaling (MDS)

Projection pursuit, 60, 237
Pruning, 132

QDA, see Discriminant analysis

Rand index (adjusted), 95
Random Forests, 197–201

Index 285

Recall rate, see Sensitivity
Receiver operating characteristic

(ROC), 179
Regression

logistic, 170
multiple, 145–149
PCR, 149–155
PLS, 155–163
Ridge, 163–164

Root-mean-square error (RMS), 152,
153, 178, 180

Savitsky-Golay filter, 16
Scaling, 33–38

autoscaling, 35, 104
double centering, 58
length scaling, 34
mean-centering, 35
Pareto scaling, 38
range scaling, 34
standard normal variate scaling, 37
standardization, 35
variance scaling, 34, 35

Self-organising maps
initialization, 96

Self-organizing maps (SOMs), 67–78
codebook vectors, 67
initialization, 69

learning rate, 68
topology, 70
U-matrix, 72

Sensitivity, 178
Shrinkage, see Penalization
Simulated annealing, 218–225
Singular value decomposition (SVD), 45
Smoothing, 13–18

running mean, 15
running median, 16

Sparseness, 136
Specific factors, 63
Specificity, 178
Support Vector Machines (SVMs),

136–141

Tanimoto distance, 77
True positive rate, see Sensitivity

Uniquenesses, 63

Validation, 103
test and training sets, 104, 176

Variable selection
stepwise, 210

Varimax rotation, 65

Wavelets, 16

	Chemometrics with R
	Preface
	Contents
	1 Introduction
	Part I Preliminaries
	Part II Exploratory Analysis
	Part III Modelling
	Part IV Model Inspection
	Part V Applications
	Part VI Appendices

