
Quantum Science and Technology

Renato Portugal

Quantum Walks 
and Search 
Algorithms
Second Edition



Quantum Science and Technology

Series editors

Raymond Laflamme, Waterloo, Canada
Gaby Lenhart, Sophia Antipolis, France
Daniel Lidar, Los Angeles, USA
Arno Rauschenbeutel, Vienna, Austria
Renato Renner, Zürich, Switzerland
Maximilian Schlosshauer, Portland, USA
Yaakov S. Weinstein, Princeton, USA
H. M. Wiseman, Brisbane, Australia



Aims and Scope

The book series Quantum Science and Technology is dedicated to one of today’s
most active and rapidly expanding fields of research and development. In particular,
the series will be a showcase for the growing number of experimental implemen-
tations and practical applications of quantum systems. These will include, but are
not restricted to: quantum information processing, quantum computing, and
quantum simulation; quantum communication and quantum cryptography; entan-
glement and other quantum resources; quantum interfaces and hybrid quantum
systems; quantum memories and quantum repeaters; measurement-based quantum
control and quantum feedback; quantum nanomechanics, quantum optomechanics
and quantum transducers; quantum sensing and quantum metrology; as well as
quantum effects in biology. Last but not least, the series will include books on the
theoretical and mathematical questions relevant to designing and understanding
these systems and devices, as well as foundational issues concerning the quantum
phenomena themselves. Written and edited by leading experts, the treatments will
be designed for graduate students and other researchers already working in, or
intending to enter the field of quantum science and technology.

More information about this series at http://www.springer.com/series/10039

http://www.springer.com/series/10039


Renato Portugal

Quantum Walks and Search
Algorithms
Second Edition

123



Renato Portugal
National Laboratory of Scientific
Computing (LNCC)

Petrópolis, Brazil

ISSN 2364-9054 ISSN 2364-9062 (electronic)
Quantum Science and Technology
ISBN 978-3-319-97812-3 ISBN 978-3-319-97813-0 (eBook)
https://doi.org/10.1007/978-3-319-97813-0

Library of Congress Control Number: 2018950813

1st edition: © Springer Science+Business Media New York 2013
2nd edition: © Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-97813-0


To my father (in memoriam)



Preface

This is a textbook about quantum walks and quantum search algorithms. The
readers will take advantage of the pedagogical aspects and learn the topics faster
and make less effort than reading the original research papers, often too convoluted.
The exercises and references allow the readers to deepen their knowledge on
specific issues. Guidelines to use or to develop computer programs for simulating
the evolution of quantum walks are also available.

Almost nothing can be extracted from this book if the reader is unfamiliar with the
postulates of quantum mechanics, described in the second chapter, and the material
on linear algebra described in Appendix A. Some extra bases are required: It is
desirable that the reader has (1) notions of quantum computing, including the circuit
model, references of which are provided at the end of Appendix A, (2) notions of
graph theory, references of which are provided at the end of Appendix B, and
(3) notions of classical algorithms and computational complexity. Any undergrad-
uate or graduate student with this background can read this book. Some topics
addressed in this second edition are currently active research areas with impact on
the development of new quantum algorithms. Because of that, researchers working
with quantum computing may find this book useful.

The second edition brings at least three main novelties: (1) a new chapter on the
staggered quantum walk model—Chap. 8, (2) a new chapter on the element dis-
tinctness problem—Chap. 10, and (3) a new appendix on graph theory—Appendix
B. Besides, the chapter on quantum-walk-based search algorithm—Chap. 9—was
rewritten, the presentation has been simplified, and new material has been included.

Corrections, suggestions, and comments are welcome, which can be sent through
Web page (qubit.lncc.br) or directly to the author by email (portugal@lncc.br).

Petrópolis, RJ, Brazil Renato Portugal

vii

http://qubit.lncc.br


Acknowledgements

I am grateful to many people, including colleagues, graduate students, and the
group of quantum computing of LNCC, friends and coauthors in research papers,
projects, and conference organization. I am also grateful to many researchers for
exchanging ideas in conferences and in collaborations. Some of them helped by
reviewing, giving essential suggestions, and spending time on this project, in
special, Drs. Stefan Boettcher, Norio Konno, Raqueline Santos, and Etsuo Segawa.

In January and February 2018, I gave a short course on quantum-walk-based
search algorithms at the Tohoku University under the invitation of Dr. Etsuo
Segawa. I thank the students and researchers that attended the course, who raised
interesting discussion topics, helping to improve some chapters of the new edition
of this book.

I thank Tom Spicer and Cindy Zitter from Springer for encouraging me to write
the second edition, which turned out to be an opportunity for fixing many problems
of the first edition and improving the book by adding new material. I hope to have
introduced fewer problems this time.

I thank the support of the National Laboratory of Scientific Computing (LNCC),
the funding agencies CNPq, CAPES, and FAPERJ, and the scientific societies
SBMAC and SBC.

Last but not least, from the bottom of my heart, I thank my family, wife and
sons, for giving support and amplifying my inner motivation.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The Postulates of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . 5
2.1 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 State Space Postulate . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Unitary Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Evolution Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Composite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Measurement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Measurement Postulate . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Measurement in the Computational Basis . . . . . . . . . . . 14
2.4.3 Partial Measurement in the Computational Basis . . . . . 16

3 Introduction to Quantum Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Classical Random Walk on the Line . . . . . . . . . . . . . . . . . . . . 19
3.2 Classical Discrete-Time Markov Chains . . . . . . . . . . . . . . . . . . 23
3.3 Coined Quantum Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Coined Walk on the Line . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Classical Continuous-Time Markov Chains . . . . . . . . . . . . . . . 33
3.5 Continuous-Time Quantum Walks . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Continuous-Time Walk on the Line . . . . . . . . . . . . . . . 35
3.5.2 Why Must Time be Continuous? . . . . . . . . . . . . . . . . . 38

4 Grover’s Algorithm and Its Generalization . . . . . . . . . . . . . . . . . . . 41
4.1 Grover’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Quantum Circuit of Grover’s Algorithm . . . . . . . . . . . . . . . . . . 44
4.3 Analysis of the Algorithm Using Reflection Operators . . . . . . . 45
4.4 Analysis Using the Two-Dimensional Real Space . . . . . . . . . . . 50
4.5 Analysis Using the Spectral Decomposition . . . . . . . . . . . . . . . 52
4.6 Optimality of Grover’s Algorithm . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Search with Repeated Elements . . . . . . . . . . . . . . . . . . . . . . . . 59

xi



4.7.1 Analysis Using Reflection Operators . . . . . . . . . . . . . . 60
4.7.2 Analysis Using the Reduced Space . . . . . . . . . . . . . . . 62

4.8 Amplitude Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8.1 The Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Coined Walks on Infinite Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Hadamard Walk on the Line . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 Analytic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Other Coins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Two-Dimensional Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.1 The Hadamard Coin . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 The Fourier Coin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.3 The Grover Coin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.4 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Quantum Walk Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Coined Walks with Cyclic Boundary Conditions . . . . . . . . . . . . . . 89
6.1 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.2 Analytic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.3 Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Finite Two-Dimensional Lattices . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Analytic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Analytic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.3 Reducing a Hypercube to a Line Segment . . . . . . . . . . 115

7 Coined Quantum Walks on Graphs . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1 Quantum Walks on Class-1 Regular Graphs . . . . . . . . . . . . . . . 126
7.2 Coined Quantum Walks on Arbitrary Graphs . . . . . . . . . . . . . . 127

7.2.1 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.2 Grover Quantum Walk . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.3 Coined Walks on Cayley Graphs . . . . . . . . . . . . . . . . . 131
7.2.4 Coined Walks on Multigraphs . . . . . . . . . . . . . . . . . . . 132

7.3 Dynamics and Quasi-periodicity . . . . . . . . . . . . . . . . . . . . . . . 132
7.4 Perfect State Transfer and Fractional Revival . . . . . . . . . . . . . . 137
7.5 Limiting Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . 139

7.5.1 Limiting Distribution Using the Fourier Basis . . . . . . . 142
7.5.2 Limiting Distribution of QWs on Cycles . . . . . . . . . . . 143
7.5.3 Limiting Distribution of QWs on Hypercubes . . . . . . . 147
7.5.4 Limiting Distribution of QWs on Finite Lattices . . . . . . 150

xii Contents



7.6 Distance Between Distributions . . . . . . . . . . . . . . . . . . . . . . . . 152
7.7 Mixing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.7.1 Instantaneous Uniform Mixing (IUM) . . . . . . . . . . . . . 156

8 Staggered Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.1 Graph Tessellation Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.2 The Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3 Staggered Walk on the Line . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3.1 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.3.2 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9 Spatial Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.1 Quantum-Walk-Based Search Algorithms . . . . . . . . . . . . . . . . . 176
9.2 Analysis of the Time Complexity . . . . . . . . . . . . . . . . . . . . . . 178

9.2.1 Case B ¼ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.2.2 Tulsi’s Modification . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.3 Finite Two-Dimensional Lattices . . . . . . . . . . . . . . . . . . . . . . . 186
9.3.1 Tulsi’s Modification of the Two-Dimensional

Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.4 Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.5 Grover’s Algorithm as Spatial Search on Graphs . . . . . . . . . . . 195

9.5.1 Grover’s Algorithm in terms of the Coined Model . . . . 195
9.5.2 Grover’s Algorithm in terms of the Staggered

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.5.3 Complexity Analysis of Grover’s Algorithm . . . . . . . . 198

10 Element Distinctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.1 Classical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.2 Naïve Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.3 The Optimal Quantum Algorithm . . . . . . . . . . . . . . . . . . . . . . 203

10.3.1 Analysis of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 207
10.3.2 Number of Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11 Szegedy’s Quantum Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
11.1 Discrete-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 223
11.2 Markov Chain-Based Quantum Walk . . . . . . . . . . . . . . . . . . . . 224
11.3 Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
11.4 Singular Values and Vectors of the Discriminant . . . . . . . . . . . 228
11.5 Eigenvalues and Eigenvectors of the Evolution Operator . . . . . . 230
11.6 Quantum Hitting Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
11.7 Searching Instead of Detecting . . . . . . . . . . . . . . . . . . . . . . . . 237
11.8 Example: Complete Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

11.8.1 Probability of Finding a Marked Element . . . . . . . . . . 242

Contents xiii



Appendix A: Linear Algebra for Quantum Computation . . . . . . . . . . . . 247

Appendix B: Graph Theory for Quantum Walks . . . . . . . . . . . . . . . . . . . 271

Appendix C: Classical Hitting Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

xiv Contents



Chapter 1
Introduction

Quantum mechanics has changed the way we understand the physical world and has
introduced new ideas that are difficult to accept, not because they are complex, but
because they are different fromwhat we are used to in our everyday lives. Those new
ideas can be collected in four postulates or laws. It is hard to believe that Natureworks
according to those laws, and the difficulty starts with the notion of the superposition
of contradictory possibilities. Do you accept the idea that a billiard ball could rotate
around its axis in both directions at the same time?

Quantum computation was born from this kind of idea. We know that digital
classical computers work with zeroes and ones and that the value of the bit cannot
be zero and one at the same time. The classical algorithms must obey Boolean logic.
So, if the coexistence of bit-0 and bit-1 is possible, which logic should the algorithms
obey?

Quantum computation was born from a paradigm change. Information stor-
age, processing, and transmission obeying quantum mechanical laws allowed the
development of new algorithms, faster than the classical analogues, which can be
implemented in physics laboratories. Nowadays, quantum computation is a well-
established area with important theoretical results within the context of the theory of
computing, as well as in terms of physics, and has raised huge engineering challenges
to the construction of the quantum hardware.

The majority of people, who are not familiar with the area and talk about quantum
computers, expect that the hardware development would obey the famous Moore’s
law, valid for classical computer development for fifty years. Many of those people
are disappointed to learn about the enormous theoretical and technological difficulties
to be overcome to harness and control quantum systems whose tendency is to behave
classically. On the one hand, the quantum CPU must be large enough and must
stay coherent long enough to allow at least thousands of steps in order to produce a
nontrivial output.

The processing of classical computers is very stable. Depending on the calcula-
tion, an inversion of a single bit could invalidate the entire process. But we know
that long computations, which require inversion of billions of bits, are performed
without problems. Classical computers are unerring because its basic components

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_1&domain=pdf


2 1 Introduction

are stable. Consider, for example, a mechanical computer. It would be very unusual
for a mechanical device to change its position, especially if we put a spring to keep it
stable in the desired position. The same is true for electronic devices, which remain
in their states until an electrical pulse of sufficient power changes this. Electronic
devices are built to operate at a power level well above the noise, and this noise is
kept low by dissipating heat into the environment.

The laws of quantum mechanics require that the physical device must be isolated
from the environment; otherwise the superposition vanishes, at least partially. It is too
difficult a task to isolatemacroscopic physical systems from their environment. Ultra-
relativistic particles and gravitational waves pass through any blockade, penetrate
into the most guarded places, obtain information, and convey it out of the system.
This process is equivalent to a measurement of a quantum observable, which often
collapses the superposition and slows down the quantum computer, making it almost,
or entirely, equivalent to the classical one. Theoretical results show that there are no
fundamental issues against the possibility of building quantumhardware. It is amatter
of technological difficulty.

There is no point in building quantum computers if we are going to use them in
the same way we use classical computers. Algorithms must be rewritten, and new
techniques for simulating physical systems must be developed. The task is more
difficult than for classical computers. So far, we do not have a quantum program-
ming language. Also, quantum algorithms must be developed using concepts of
linear algebra. Quantum computers with a large enough number of qubits are not
available, as yet, slowing down the development of simulations. At the moment that
the second edition of this book is to be released, Google and IBM and Intel have
built universal quantum computers with 72 and 50 and 49qubits, respectively, using
superconducting electronic circuits which need temperatures as low as one-tenth of
one Kelvin or around one-thirtieth of the temperature in deep space. Despite those
impressive achievements, the coherence time announced by IBM is around 90ms,
not enough yet.

The quantumwalk (QW) is a powerful technique for building quantum algorithms
and for simulating complex quantum systems. Quantum walks were developed in
the beginning as the quantum version of the classical random walk, which requires
the tossing of a coin to determine the direction of the next step. The laws of quantum
mechanics state that the evolution of an isolated quantum system is deterministic.
Randomness shows up onlywhen the system ismeasured and classical information is
obtained. This explains why the name “quantum random walk” is seldom used. The
coined model evolves at discrete time steps on a discrete space, which is modeled by
a graph. The coined model is not the only discrete-time version of quantum walks.
In fact, there is a coinless version called staggered model, which uses an evolution
operator defined by partitioning the vertex set. Besides, there is a continuous-time
version, which has been extensively studied.

The richness of the area has attracted the attention of the scientific community,
and the interest has increased significantly in the last years. Good parameters to test
this statement are shown in Fig. 1.1, which depicts the number of paper with the
tag “quantum walk” either in the title or in the topics returned after querying the



1 Introduction 3

Fig. 1.1 Number of papers with the tag “quantum walk” in the title and in the topics returned by
Scopus and Web of Science from 2000 to 2017

2

3 4

5 6

7 8 9

10

A

B

C 11

2 quantum mechanics
3 introduction to QW
4 Grover
5 QW on infinite lattices
6 QW on finite lattices
7 QW on graphs
8 staggered
9 search
10 element distinctness
11 Szegedy

A linear algebra
B graph theory
C classical hitting time

Fig. 1.2 Flowchart of the chapter dependencies

databases Scopus and Web of Science. It is easy to see that the number of papers is
increasing as a superlinear function.

This book starts by describing in Chap.2 the set of postulates of quantummechan-
ics, which is one of the pillars of quantum computation. Chapter2 is a gentle introduc-
tion to quantumwalks with the goal of describing how the coined and the continuous-
time models can be obtained by quantizing classical random walks and classical
continuous-time Markov chains, respectively. Chapter 4 describes the Grover algo-
rithm, its generalizationwhen there ismore than onemarked element, and its optimal-
ity. At the heart of the Grover algorithm lies the amplitude amplification technique,
which is addressed at the end of the chapter. Chapters5 and 6 are devoted to the coined
model on lattices and hypercubes. Quantumwalks on infinite lattices and latticeswith
cyclic boundary conditions with one and two dimensions are analyzed in detail using
the Fourier transform. Chapter7 defines coined quantum walks on arbitrary graphs
and analyzes the limiting probability distribution and mixing time. Chapter8 is new
to the second edition of this book and describes the staggered quantum walk model
and the analytic calculation of the position standard deviation of a staggered walk



4 1 Introduction

on the line. Chapter9 describes quantum-walk-based spatial search algorithms and
has been remodeled in this edition. Readers will benefit from the efficacious pre-
sentation. Chapter10 is also new to this edition and describes the optimal algorithm
that solves the element distinctness problem. Finally, Chap.11 describes Szegedy’s
quantum walk model and the definition of quantum hitting time. The flowchart of
Fig. 1.2 shows the chapter dependencies.

There are three appendices. Appendix A compiles the main definitions of linear
algebra used in this book. Appendix B compiles the main definitions of graph the-
ory used in the area of quantum walks. Appendix C addresses the classical hitting
time, which is useful to the definition of Szegedy’s model. The dependencies on the
appendices are also shown in Fig. 1.2



Chapter 2
The Postulates of Quantum Mechanics

It is impossible to present quantum mechanics in few pages. Since the goal of this
book is to describe quantum algorithms, we limit ourselves to the principles of
quantum mechanics and describe them as “game rules.” Suppose you have played
checkers for many years and know several strategies, but you really do not know
chess. Suppose now that someone describes the chess rules. Soon you will be playing
a new game. Certainly, you will not master many chess strategies, but you will be
able to play. This chapter has a similar goal. The postulates of a theory are its game
rules. If you break the rules, you will be out of the game.

At best, we can focus on four postulates. The first describes the arena where
the game goes on. The second describes the dynamics of the process. The third
describes howweadjoin various systems. The fourth describes the process of physical
measurement. All these postulates are described in terms of linear algebra. It is
essential to have a solid understanding of the basic results in this area. Moreover,
the postulate of composite systems uses the concept of tensor product, which is a
method of combining two vector spaces to build a larger one. This concept must be
mastered.

2.1 State Space

The state of a physical system describes its physical characteristics at a given time.
Usually, we describe some possible features that the system can have because, oth-
erwise, the physical problems would be too complex. For example, the spin state
of a billiard ball can be characterized by a vector in R

3. In this example, we disre-
gard the linear velocity of the billiard ball, its color or any other characteristics that
are not directly related to its rotation. The spin state is completely characterized by
the axis direction, the rotation direction, and rotation intensity. The spin state can
be described by three real numbers that are the entries of a vector, whose direction

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_2&domain=pdf


6 2 The Postulates of Quantum Mechanics

Z

A

B

O

Fig. 2.1 Scheme of an experimental device to measure the spin state of an electron. The electron
passes through a nonuniform magnetic field in the vertical direction. It hits A or B depending on
the rotation direction. The distance of the points A and B from point O depends on the rotation
speed. The results of this experiment are quite different from what we expect classically

characterizes the rotation axis, whose sign describes to which side of the billiard
ball is spinning, and whose length characterizes the speed of rotation. In classical
physics, the direction of the rotation axis can vary continuously, aswell as the rotation
intensity.

Does an electron, which is considered an elementary particle, i.e., not composed
of other smaller particles, rotates like a billiard ball? The best way to answer this
is by experimenting in real settings to check whether the electron in fact rotates
and whether it obeys the laws of classical physics. Since the electron has charge, its
rotation would produce magnetic fields that could be measured. Experiments of this
kind were performed at the beginning of quantum mechanics, with beams of silver
atoms, later on with beams of hydrogen atoms, and today they are performed with
individual particles (instead of beams), such as electrons or photons. The results are
different from what is expected by the laws of the classical physics.

We can send the electron through a magnetic field in the vertical direction (direc-
tion z), according to the scheme of Fig. 2.1. The possible results are shown. Either
the electron hits the screen at the point A or point B. One never finds the electron
at point O , which means no rotation. This experiment shows that the spin of the
electron only admits two values: spin up and spin down both with the same intensity
of “rotation.” This result is quite different from what is expected classically since the
direction of the rotation axis is quantized, admitting only two values. The rotation
intensity is also quantized.

Quantum mechanics describes the electron spin as a unit vector in the Hilbert
space C2. The spin up is described by the vector

|0〉 =
[
1
0

]



2.1 State Space 7

and the spin down by the vector

|1〉 =
[
0
1

]
.

This seems a paradox because vectors |0〉 and |1〉 are orthogonal.Why use orthogonal
vectors to describe spin up and spin down? In R

3, if we add spin up and spin down,
we obtain a rotationless particle because the sum of two opposite vectors of equal
length gives the zero vector, which describes the absence of rotation. In the classical
world, we cannot rotate a billiard ball to both sides at the same time. We have two
mutually excluded situations, and we apply the law of excluded middle. The notions
of spin up and spin down of billiard balls refer to R

3, whereas quantum mechanics
describes the behavior of the electron before the observation, that is, before entering
the magnetic field, which aims to determine its state of rotation.

If the electron has not entered the magnetic field and if it is somehow isolated
from themacroscopic environment, its spin state is described by a linear combination
of vectors |0〉 and |1〉

|ψ〉 = a0|0〉 + a1|1〉, (2.1)

where the coefficients a0 and a1 are complex numbers that satisfy the constraint

|a0|2 + |a1|2 = 1. (2.2)

Since vectors |0〉 and |1〉 are orthogonal, the sum does not result in the zero vector.
Excluded situations in classical physics can coexist in quantum mechanics. This
coexistence is destroyed when we try to observe it using the device shown in Fig. 2.1.
In the classical case, the spin state of an object is independent of the choice of the
measuring apparatus and, in principle, has not changed after the measurement. In
the quantum case, the spin state of the particle is a mathematical idealization which
depends on the choice of the measuring apparatus to have a physical interpretation
and, in principle, suffers irreversible changes after the measurement. The quantities
|a0|2 and |a1|2 are interpreted as the probability of detection of spin up or down,
respectively.

2.1.1 State Space Postulate

An isolated physical system has an associated Hilbert space, called the state space.
The state of the system is fully described by a unit vector, called the state vector in
that Hilbert space.

Notes

1. The postulate does not tell us the Hilbert space we should use for a given physical
system. In general, it is not easy to determine the dimension of the Hilbert space
of the system. In the case of electron spin, we use the Hilbert space of dimension 2



8 2 The Postulates of Quantum Mechanics

because there are only two possible results when we perform an experiment to
determine the vertical electron spin. More complex physical systems admit more
possibilities, which can be an infinite number.

2. A system is isolated or closed if it does not influence and is not influenced by the
outside. In principle, the system need not be small, but it is easier to isolate small
systems with few atoms. In practice, we can only deal with approximate isolated
systems, so the state space postulate is an idealization.

The state space postulate is impressive, on the one hand, but deceiving, on the other
hand. The postulate admits that classically incompatible states coexist in superposi-
tion, such as rotating to both sides simultaneously, but this occurs only in isolated
systems, that is, we cannot see this phenomenon, as we are on the outside of the
insulation (let us assume that we are not Schrödinger’s cat). A second restriction
demanded by the postulate is that quantum states must have unit norm. The pos-
tulate constraints show that the quantum superposition is not absolute, i.e., is not
the way we understand the classical superposition. If quantum systems admit a kind
of superposition that could be followed classically, the quantum computer would
have available an exponential amount of parallel processors with enough computing
power to solve the problems in class NP-complete.1 It is believed that the quantum
computer is exponentially faster than the classical computer only in a restricted class
of problems.

2.2 Unitary Evolution

The goal of physics is not simply to describe the state of a physical system at a
present time; rather the main objective is to determine the state of this system at
future times. A theory makes predictions that can be verified or falsified by physical
experiments. This is equivalent to determining the dynamical laws the system obeys.
Usually, these laws are described by differential equations, which govern the time
evolution of the system.

2.2.1 Evolution Postulate

The time evolution of an isolated quantum system is described by a unitary trans-
formation. If the state of the quantum system at time t1 is described by vector |ψ1〉,
the system state |ψ2〉 at time t2 is obtained from |ψ1〉 by a unitary transformation U ,
which depends only on t1 and t2, as follows:

1The class NP-complete consists of the most difficult problems in the class NP (nondeterministic
polynomial). The class NP is defined as the class of computational problems that have solutions
whose correctness can be “quickly” verified.



2.2 Unitary Evolution 9

|ψ2〉 = U |ψ1〉. (2.3)

Notes

1. The action of a unitary operator on a vector preserves its norm. Thus, if |ψ〉 is a
unit vector, U |ψ〉 is also a unit vector.

2. A quantum algorithm is a prescription of a sequence of unitary operators applied
to an initial state takes the form

|ψn〉 = Un · · ·U1|ψ1〉.

The qubits in state |ψn〉 aremeasured, returning the result of the algorithm. Before
measurement, we can obtain the initial state from the final state because unitary
operators are invertible.

3. The evolution postulate is to be written in the form of a differential equation,
called Schrödinger equation. This equation provides a method to obtain operator
U once given the physical context. Since the goal of physics is to describe the
dynamics of physical systems, the Schrödinger equation plays a fundamental
role. The goal of computer science is to analyze and implement algorithms, so
the computer scientist wants to know if it is possible to implement some form
of a unitary operator previously chosen. Equation (2.3) is useful for the area of
quantum algorithms.

Let us analyze a second experimental device. It will help to clarify the role of
unitary operators in quantum systems. This device uses half-silvered mirrors with
45◦ incident light, which transmit 50% of incident light and reflect 50%. If a single
photon hits the mirror at 45◦, with probability 1/2, it keeps the direction unchanged,
and with probability 1/2, it is reflected. These half-silvered mirrors have a layer of
glass that can change the phase of the wave by 1/2 wavelength. The complete device
consists of a source that can emit one photon at a time, two half-silvered mirrors, two
fully reflective mirrors, and two photon detectors, as shown in Fig. 2.2. By tuning the
device, the result of the experiment shows that 100% of the light reaches detector 2.

There is no problem explaining the result using the interference of electromagnetic
waves in the context of the classical physics because there is a phase change in the

Fig. 2.2 Schematic drawing
of an experimental device,
which consists of a light
source, two half-silvered
mirrors, fully reflective
mirrors A and B, detectors 1
and 2. The interference
produced by the last
half-silvered mirror makes
all light to go to the
detector 2 A

B

2

1
100%

0%



10 2 The Postulates of Quantum Mechanics

light beam that goes through one of the paths producing a destructive interference
with the beam going to the detector 1 and constructive interference with the beam
going to the detector 2. However, if the light intensity emitted by the source is
decreased such that one photon is emitted at a time, this explanation fails. If we
insist on using classical physics in this situation, we predict that 50% of the photons
would be detected by detector 1 and 50% by detector 2 because the photon either
goes through the mirror A or goes through B, and it is not possible to interfere since
it is a single photon.

In quantum mechanics, if the set of mirrors is isolated from the environment, the
two possible paths are represented by two orthonormal vectors |0〉 and |1〉, which
generate the state space that describes the possible paths to reach the photon detector.
Therefore, a photon can be in the superposition of “path A,” described by |0〉, and
“path B,” described by |1〉. This is the application of the first postulate. The next
step is to describe the dynamics of the process. How is this done and what are the
unitary operators in the process? In this experiment, the dynamics are produced by
the half-silveredmirrors, since they generate the paths. The action of the half-silvered
mirrors on the photon must be described by a unitary operatorU . This operator must
be chosen so that the two possible paths are created in a balanced way, i.e.,

U |0〉 = |0〉 + eiφ|1〉√
2

. (2.4)

This is the most general case where paths A and B have the same probability to be
followed because the coefficients have the same modulus. To complete the definition
of operator U , we need to know its action on state |1〉. There are many possibilities,
but the most natural choice that reflects the experimental device is φ = π/2 and

U = 1√
2

[
1 i
i 1

]
. (2.5)

The state of the photon after passing through the second half-silvered mirror is

U (U |0〉) =
(|0〉 + i |1〉) + i

(
i |0〉 + |1〉)

2
= i |1〉. (2.6)

The intermediate step of the calculationwas displayed on purpose.We can see that the
paths described by |0〉 algebraically cancel, which can be interpreted as a destructive
interference, while the |1〉-paths interfere constructively. The final result shows that
the photon that took path B remains, going directly to the detector 2. Therefore,
quantummechanics predicts that 100% of the photons will be detected by detector 2.



2.3 Composite Systems 11

2.3 Composite Systems

The postulate of composite systems states that the state space of a composite system
is the tensor product of the state space of the components. If |ψ1〉, . . ., |ψn〉 describe
the states of n isolated quantum systems, the state of the composite system is |ψ1〉 ⊗
· · · ⊗ |ψn〉.

An example of a composite system is the memory of a n-qubit quantum computer.
Usually, the memory is divided into sets of qubits, called registers. The state space of
the computer memory is the tensor product of the state space of the registers, which
is obtained by the repeated tensor product of the Hilbert space C2 of each qubit.

The state space of the memory of a 2-qubit quantum computer is C4 = C
2 ⊗ C

2.
Therefore, any unit vector in C

4 represents the quantum state of two qubits. For
example, the vector

|0, 0〉 =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦, (2.7)

which can be written as |0〉 ⊗ |0〉, represents the state of two electrons both with spin
up. Analogous interpretation applies to |0, 1〉, |1, 0〉, and |1, 1〉. Consider now the
unit vector in C

4 given by

|ψ〉 = |0, 0〉 + |1, 1〉√
2

. (2.8)

What is the spin state of each electron in this case? To answer this question, we have
to factor |ψ〉 as follows:

|0, 0〉 + |1, 1〉√
2

= (
a|0〉 + b|1〉) ⊗ (

c|0〉 + d|1〉). (2.9)

We can expand the right-hand side and match the coefficients setting up a system of
equations to find a, b, c, and d. The state of the first qubit would be a|0〉 + b|1〉 and
second would be c|0〉 + d|1〉. But there is a big problem: The system of equations
has no solution, that is, there are no coefficients a, b, c, and d satisfying (2.9). Every
state of a composite system that cannot be factored is called entangled. The quantum
state is well-defined when we look at the composite system as a whole, but we cannot
attribute the states to the parts.

A single qubit can be in a superposed state, but it cannot be entangled because its
state is not composed of subsystems. The qubit should not be taken as a synonym of
a particle because it is confusing. The state of a single particle can be entangled when
we are analyzing more than a physical quantity related to it. For example, we may
describe both the position and the rotation state. The position state may be entangled
with the rotation state.



12 2 The Postulates of Quantum Mechanics

Exercise 2.1. Consider the states

|ψ1〉 = 1

2

(|0, 0〉 − |0, 1〉 + |1, 0〉 − |1, 1〉),

|ψ2〉 = 1

2

(|0, 0〉 + |0, 1〉 + |1, 0〉 − |1, 1〉).
Show that |ψ1〉 is not entangled and |ψ2〉 is entangled.
Exercise 2.2. Show that if |ψ〉 is an entangled state of twoqubits, then the application
of a unitary operator of the form U1 ⊗U2 necessarily generates an entangled state.

2.4 Measurement Process

In general,measuring a quantumsystem that is in the state |ψ〉 seeks to obtain classical
information about this state. In practice, measurements are performed in laborato-
ries using devices such as lasers, magnets, scales, and chronometers. In theory, we
describe the process mathematically in a way that is consistent with what occurs in
practice.Measuring a physical system that is in an unknown state, in general, disturbs
this state irreversibly. In those cases, there is no way to know or recover the state
before the measurement. If the state was not disturbed, no new information about it is
obtained. Mathematically, the disturbance is described by an orthogonal projector.
If the projector is over a one-dimensional space, it is said that the quantum state
collapsed and is now described by the unit vector belonging to the one-dimensional
space. In the general case, the projection is over a vector space of dimension greater
than 1, and it is said that the collapse is partial or, in extreme cases, there is no change
at all in the quantum state of the system.

The measurement requires the interaction between the quantum system with a
macroscopic device, which violates the state space postulate because the quantum
system is not isolated at this moment. We do not expect the evolution of the quantum
state during the measurement process to be described by a unitary operator.

2.4.1 Measurement Postulate

A projectivemeasurement is described by aHermitian operator O , called observable,
which acts on the state space of the system being measured. The observable O has
a diagonal representation

O =
∑

λ

λPλ, (2.10)



2.4 Measurement Process 13

where Pλ is the projector on the eigenspace of O associated with the eigenvalue λ.
The possible results of the measurement of the observable O are the eigenvalues λ.
If the system state at the time of measurement is |ψ〉, the probability of obtaining the
result λ will be ‖Pλ|ψ〉‖2 or, equivalently,

pλ = 〈ψ|Pλ|ψ〉. (2.11)

If the result of the measurement is λ, the state of the quantum system immediately
after the measurement is

1√
pλ

Pλ|ψ〉. (2.12)

Notes

1. There is a correspondence between the physical layout of the devices in a physics
lab and the observable O . When an experimental physicist measures a quantum
system, he or she gets real numbers as result. Those numbers correspond to the
eigenvalues λ of the Hermitian operator O .

2. The states |ψ〉 and eiφ|ψ〉 have the same probability distribution pλ when one
measures the same observable O . The states after the measurement differ by
the same factor eiφ. The term eiφ multiplying a quantum state is called global
phase factor , whereas a term eiφ multiplying a vector of a sum of vectors, such
as |0〉 + eiφ|1〉, is called relative phase factor. The real number φ is called phase.

Since the possible outcomes of ameasurement of observable O obey a probability
distribution, we can define the expected value of a measurement as

〈O〉 =
∑

λ

pλ λ, (2.13)

and the standard deviation as

ΔO =
√

〈O2〉 − 〈O〉2. (2.14)

It is important to remember that the mean and standard deviation of an observable
depend on the state that the physical system was in just before the measurement.

Exercise 2.3. Show that 〈O〉 = 〈ψ|O|ψ〉.
Exercise 2.4. Show that if the physical system is in a state |ψ〉 that is an eigenvector
ofO , thenΔO = 0, that is, there is no uncertainty about the result of themeasurement
of the observable O . What is the result of the measurement?

Exercise 2.5. Show that
∑

λ pλ = 1 for any observable O and any state |ψ〉.
Exercise 2.6. Suppose that the physical system is in an arbitrary state |ψ〉. Show
that

∑
λ p2λ = 1 to an observable O if and only if ΔO = 0.



14 2 The Postulates of Quantum Mechanics

2.4.2 Measurement in the Computational Basis

The computational basis of space C2 is the set
{|0〉, |1〉}. For one qubit, the observ-

able of the measurement in the computational basis is the Pauli matrix Z , whose
spectral decomposition is

Z = (+1)P+1 + (−1)P−1, (2.15)

where P+1 = |0〉〈0| and P−1 = |1〉〈1|. The possible results of the measurement are
±1. If the state of the qubit is given by (2.1), the probabilities associatedwith possible
outcomes are

p+1 = |a0|2, (2.16)

p−1 = |a1|2, (2.17)

whereas the states immediately after the measurement are |0〉 and |1〉, respectively.
In fact, each of these states has a global phase that can be discarded. Note that

p+1 + p−1 = 1,

because state |ψ〉 has unit norm.
Before generalizing to n qubits, it is interesting to reexamine the process of mea-

surement of a qubit with another observable given by

O =
1∑

k=0

k|k〉〈k|. (2.18)

Since the eigenvalues of O are 0 and 1, the above analysis holds if we replace +1
by 0 and −1 by 1. With this new observable, there is a one-to-one correspondence in
the nomenclature of the measurement result and the final state. If the result is 0, the
state after the measurement is |0〉. If the result is 1, the state after the measurement
is |1〉.

The computational basis of the Hilbert space of n qubits in decimal notation is the
set

{|0〉, . . . , |2n − 1〉}. The measurement in the computational basis is associated
with observable

O =
2n−1∑
k=0

k Pk, (2.19)

where Pk = |k〉〈k|. An arbitrary state of n qubits is given by

|ψ〉 =
2n−1∑
k=0

ak |k〉, (2.20)



2.4 Measurement Process 15

where amplitudes ak satisfying the constraint

∑
k

|ak |2 = 1. (2.21)

Themeasurement result is an integer k in the range 0 ≤ k ≤ 2n − 1with a probability
distribution given by

pk = 〈
ψ

∣∣Pk∣∣ψ〉
= ∣∣ 〈k∣∣ψ〉 ∣∣2
= |ak |2. (2.22)

Equation (2.21) ensures that the sum of the probabilities is 1. The n-qubit state
immediately after the measurement is

Pk |ψ〉√
pk

	 |k〉. (2.23)

For example, suppose that the state of two qubits is given by

|ψ〉 = 1√
3

(|0, 0〉 − i |0, 1〉 + |1, 1〉) . (2.24)

The probability that the result is 00, 01, or 11 in binary notation is 1/3. Result 10
is never obtained because the associated probability is 0. If the measurement result
is 00, the system state immediately after will be |0, 0〉, similarly for 01 and 11. For the
measurement in the computational basis, it makes sense to say that the result is state
|0, 0〉 because there is a one-to-one correspondence between eigenvalues and states
of the computational basis.

The result of the measurement specifies on which vector of the computational
basis state |ψ〉 is projected. The result does not provide the value of coefficient ak ,
that is, none of the 2n amplitudes ak describing state |ψ〉 are revealed. Suppose we
want to find number k as a result of an algorithm. This result should be encoded as
one of the vectors of the computational basis, which spans the vector space to which
state |ψ〉 belongs. It is undesirable, in principle, that the result itself is associated
with one of the amplitudes. If the desired result is a noninteger real number, then
the k most significant digits should be coded as a vector of the computational basis.
After a measurement, we have a chance to get closer to k. A technique used in
quantum algorithms is to amplify the value of ak making it as close as possible to
1.A measurement at this point will return k with high probability. Therefore, the
number that specifies a ket, for example, number k of |k〉 is a possible outcome
of the algorithm, while the amplitudes of the quantum state are associated with
the probability of obtaining a result.



16 2 The Postulates of Quantum Mechanics

The description of the measurement process of observable (2.19) is equivalent to
simultaneous measurements or in a cascade of observables Z , that is, one observable
Z for each qubit. The possible results ofmeasuring Z are±1. Simultaneousmeasure-
ments, or in a cascade of n qubits, result in a sequence of values±1. The relationship
between a result of this kind and the one described before is obtained by replacing
+1 by 0 and −1 by 1. We will have a binary number that can be converted into a
decimal number which is one of the values k of (2.19).

For example, for three qubits the result may be (−1,+1,+1), which is equiv-
alent to (1, 0, 0). Converting to base-10, the result is number 4. The state after the
measurement is obtained using the projector

P−1,+1,+1 = |1〉〈1| ⊗ |0〉〈0| ⊗ |0〉〈0|
= |1, 0, 0〉〈1, 0, 0| (2.25)

over the state system of the three qubits followed by renormalization. The renormal-
ization in this case replaces the coefficient by 1. The state after the measurement is
|1, 0, 0〉. When using the computational basis, for both observables (2.19) and Z ’s,
it makes sense to say that the result is |1, 0, 0〉 because we automatically know that
the eigenvalues of Z in question are (−1,+1,+1) and the number k is 4.

A simultaneous measurement of n observables Z is not equivalent to measure
observable Z ⊗ · · · ⊗ Z . The latter observable returns a single value, which can be
+1 or −1, whereas measuring n observables Z , simultaneously or not, we obtain
n values ±1. Measurements on a cascade are performed with observable Z ⊗ I ⊗
· · · ⊗ I , I ⊗ Z ⊗ · · · ⊗ I , and so on. They can also be performed simultaneously.
Usually, we use a more compact notation, Z1, Z2, successively, where Z1 means that
observable Z was used for the first qubit and the identity operator for the remaining
ones. Since these observables commute, the order is irrelevant and the limitations
imposed by the uncertainty principle do not apply. Measurement of observables of
this kind is called partial measurement in the computational basis.

Exercise 2.7. Suppose that the state of a qubit is |1〉.
1. What are the mean value and standard deviation of the measurement of observ-

able X?
2. What are themean value and standard deviation of themeasurement of observable

Z? Compare with Exercise 2.4.

2.4.3 Partial Measurement in the Computational Basis

The termmeasurement in the computational basis of n qubits implies a measurement
of all n qubits. However, it is possible to perform a partial measurement—tomeasure
some qubits. The result in this case is not necessarily a state of the computational



2.4 Measurement Process 17

basis. For example, we can measure the first qubit of a system described by the state
|ψ〉 of (2.24). It is convenient to rewrite that state as follows:

|ψ〉 =
√
2

3
|0〉 ⊗ |0〉 − i|1〉√

2
+ 1√

3
|1〉 ⊗ |1〉. (2.26)

We can see that the measurement result is either 0 or 1. The probability of obtaining
1 is 1/3 because the only way to get 1 for a measurement of the first qubit is to obtain
1 as well, for the second qubit. Therefore, the probability of obtaining 0 is 2/3, and
the state immediately after the measurement in this case is

|0〉 ⊗ |0〉 − i|1〉√
2

.

Only the qubits involved in themeasurement are projected on the computational basis.
The state of the remaining qubits is in superposition in general. In this example, when
the result is 0, the state of the second qubit is a superposition, and when the result is
1, the state of the second qubit is |1〉.

If we have a system composed of subsystems A and B, a partial measurement of
subsystem A is ameasurement of the observable OA ⊗ IB , where OA is an observable
of system A and IB is the identity operator of system B. Physically, this means that
themeasuring apparatus interacted only with the subsystem A. Equivalently, a partial
measurement interacting only with subsystem B is a measurement of the observable
IA ⊗ OB .

If we have a register of m qubits together with a register of n qubits, we can
represent the computational basis in a compact form

{|i, j〉 : 0 ≤ i ≤ 2m − 1, 0 ≤
j ≤ 2n − 1

}
, where i and j are both represented in base-10. An arbitrary state is

represented by

|ψ〉 =
2m−1∑
i=0

2n−1∑
j=0

ai j |i, j〉. (2.27)

Suppose we measure all qubits of the first register in the computational basis, that
is, we measure observable OA ⊗ IB , where

OA =
2m−1∑
k=0

kPk . (2.28)

The probability of obtaining k so that 0 ≤ k ≤ 2m − 1 is

pk = 〈ψ| (Pk ⊗ I ) |ψ〉

=
2n−1∑
j=0

∣∣akj ∣∣2 . (2.29)



18 2 The Postulates of Quantum Mechanics

The set
{
p0, . . . , p2m−1

}
is a probability distribution and therefore satisfies

2m−1∑
k=0

pk = 1. (2.30)

If the measurement result is k, the state immediately after the measurement will be

1√
pk

(Pk ⊗ I ) |ψ〉 = 1√
pk

|k〉
⎛
⎝2n−1∑

j=0

akj | j〉
⎞
⎠ . (2.31)

Note that the state after the measurement is a superposition of the second register.
Ameasurement of observable (2.28) is equivalent tomeasure observables Z1, . . ., Zm .

Exercise 2.8. Suppose that the state of two qubits is given by

|ψ〉 = 3

5
√
2
|0, 0〉 − 3 i

5
√
2
|0, 1〉 + 2

√
2

5
|1, 0〉 − 2

√
2 i

5
|1, 1〉. (2.32)

1. Describe completely themeasurement process of observable Z1, that is, obtain the
probability of each outcome and the corresponding states after the measurement.
Suppose that, after measuring Z1, we measure Z2. Describe all resulting cases.

2. Now invert the order of the observables and describe the whole process.
3. If the intermediate quantum states are disregarded, is there a difference when

we invert the order of the observable? Note that the measurement of Z1 and Z2

may be performed simultaneously. One can move the qubits without changing
the quantum state, which may be entangled or not, and put each of them into a
measuring device, both adjusted to measure observable Z , as in Fig. 2.1.

4. For two qubits, the state after the measurement of the first qubit in the com-
putational basis can be either |0〉|α〉 or |1〉|β〉, where |α〉 and |β〉 are states of
the second qubit. In general, we have |α〉 
= |β〉. Why is this not the case in the
previous items?

Further Reading

The amount of good books about quantum mechanics is very large. For the first
contact, we suggest [126, 257, 287]. Reference [287] uses the Dirac notation since
the beginning, which is welcome in the context of quantum computation. For a
more complete approach, we suggest [84]. For a more conceptual approach, we
suggest [96, 252]. For those who are only interested in the application of quantum
mechanics to quantum computation, we suggest [170, 234, 248, 272, 276].



Chapter 3
Introduction to QuantumWalks

Quantum walks are interesting for many a reason: (1) They are useful to build new
quantum algorithms, (2) they can be directly implemented in laboratories with-
out using a quantum computer, and (3) they can simulate many complex physical
systems.

A quantum walk takes place on a graph, whose vertices are the places the walker
may step and whose edges tell the possible directions the walker can choose to move.
Space is discrete but time can be discrete or continuous.

In the discrete-time case, the motion consists in stepping from one vertex to the
next over and over. Each step takes one time unit and it takes a long time to go far. The
walker starts at some initial state and the dynamic in its simplest form is described
by a unitary operator Ut , where U is the evolution operator and t is the number of
steps. At the end, a measurement is performed to determine the walker’s position.

In the continuous-time case, there is a transition rate controlling the jumping
probability, which starts with a small value and increases continually so that the
walker eventually steps on the next vertex. The dynamic is described by the unitary
operator U (t) = exp(it H), where t is time and H is a Hermitian matrix, whose
entries are nonzero only if they correspond to neighboring vertices.

In this chapter, we briefly review the area of classical random walks with a focus
on the expected distance from the origin. Next, we give a gentle introduction to the
coined quantum walk model and analyze the expected distance in the quantum case.
The probability of finding the walker away from the origin is larger in the quantum
case. We also give an introduction to the continuous-time Markov chain, which is
used to obtain the continuous-time quantum walk model.

3.1 Classical Random Walk on the Line

One of the simplest examples of a random walk is the classical motion of a particle
on the integer points of a line, where the direction is determined by an unbiased
coin. Flip the coin, if the result is heads, the particle moves to the next vertex to the

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_3

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_3&domain=pdf


20 3 Introduction to Quantum Walks

t
n

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 1

1 1
2

1
2

2 1
4

1
2

1
4

3 1
8

3
8

3
8

1
8

4 1
16

1
4

3
8

1
4

1
16

5 1
32

5
32

5
16

5
16

5
32

1
32

Fig. 3.1 Probability of the particle being at the position n at time t , assuming the walk starts at the
origin. The probability is zero in empty cells

right, and if it is tails, the particle moves to the next vertex to the left. This process
is repeated over and over. We cannot know for sure where the particle will be at a
later time, but we can calculate the probability p of being at a given point n at time
t . Suppose the particle is at the origin at time t = 0. Then p(t = 0, n = 0) = 1, as
shown in Fig. 3.1. For t = 1, the particle can be either at n = −1with probability 1/2
or at n = 1 with probability 1/2. The probability of being at n = 0 becomes zero.
By repeating this process over and over, we can confirm all probabilities described
in Fig. 3.1.

The probability is given by (Exercise3.1)

p(t, n) = 1

2t

(
t

t+n
2

)
, (3.1)

where
(a
b

) = a!
(a−b)!b! . This equation is valid only if t + n is even and n ≤ t . If t + n

is odd or n > t , the probability is zero. For fixed t , p(t, n) is a binomial distribution.
For relatively large values of fixed t , the probability as a function of n has a familiar
shape. Figure3.2 depicts three curves that correspond to t = 72, t = 180, and t =
450. Strictly speaking, the curves are envelopes of the actual probability distribution
because the probability is zero for odd n when t is even. Another way to interpret
the curves is as the sum p(t, n) + p(t + 1, n), that is, we have two overlapping
distributions.

Note that the width of the curve increases and the height of the midpoint decreases
when t increases. It is interesting to determine the expected distance from the origin.
It is important to determine how far away from the origin we can find the particle
as time goes by. The expected distance is a statistical quantity that captures this idea
and is equal to the position standard deviation when the probability distribution is
symmetrical. The average position (or expected position) is



3.1 Classical Random Walk on the Line 21

Fig. 3.2 Probability distribution of a classical random walk on a line for t = 72, t = 180 and
t = 450

〈n〉 =
∞∑

n=−∞
n p(t, n).

Using the symmetry p(t, n) = p(t,−n), we obtain

〈n〉 = 0. (3.2)

Then, the standard deviation σ(t) is

√〈
n2
〉− 〈n〉2 =

√√√√ ∞∑
n=−∞

n2 p(t, n).

Using (3.1), we obtain (Exercise3.2)

σ(t) = √
t . (3.3)

Another way to calculate the standard deviation is to convert the binomial dis-
tribution into an expression that is easier to handle analytically. By expanding the
binomial factor of (3.1) in terms of factorials, and using Stirling’s approximation
for large t , the probability distribution of the random walk can be approximated by
expression (Exercise3.3)

p(t, n) � 2√
2π t

e− n2

2t . (3.4)



22 3 Introduction to Quantum Walks

For a fixed t , p(t, n)/2 is the normal distribution (also known as Gaussian dis-
tribution). Now, the calculation of the standard deviation is simpler because after
converting the sum into an integral the standard deviation is the square root of

1√
2π t

∫ ∞

−∞
n2 e− n2

2t dn.

The normal distribution has two inflection points, which are the solutions of the
equation ∂2 p(t, n)/∂n2 = 0. The distance between the inflection points is 2

√
t . The

standard deviation is the distance between the midpoint and an inflection point.

Exercise 3.1. The goal of this exercise is to help to obtain (3.1). First show that at
time t , the total number of possible paths of the particle is 2t . At time t , the particle
is at position n. Suppose that the particle has moved a steps to the right and b steps
to the left. Find a and b as functions of t and n. Now focus on the steps towards
the right direction. In how many ways can the particle move a steps to the right in t
units of time? Or, equivalently, we have t objects, in how many ways can we select
a objects? Show that the probability of the particle being at the position n is given
by (3.1).

Exercise 3.2. The goal of this exercise is to help the calculation of the sum of (3.3).
Change the dummy index to obtain a finite sum starting at n = 0 and running over
even n when t is even and running over odd n when t is odd. After this manipulation,
you can use (3.1). Rename the dummy index in order to use the identities

t∑
n=0

(
2t

n

)
= 22t−1 + 1

2

(
2t

t

)
,

t∑
n=0

n

(
2t

n

)
= t22t−1,

t∑
n=0

n2
(
2t

n

)
= t222t−1 + t22t−2 − t2

2

(
2t

t

)

and simplify the result to show that

∞∑
n=−∞

n2 p(t, n) = t.

Exercise 3.3. Show that (3.4) can be obtained from (3.1) using Stirling’s approxi-
mation, which is given by

t ! ≈ √
2πt t t e−t ,

when t 	 1.
[
Hint: Use Stirling’s approximation and simplify the result trying to

factor out the fraction n/t . Take the natural logarithm of the expression, expand the
logarithm, and use the asymptotic expansion of the logarithm. Note that the terms of
the type n2/t2 are much smaller than n2/t . At the end, take the exponential of the
result.

]



3.2 Classical Discrete-Time Markov Chains 23

3.2 Classical Discrete-Time Markov Chains

A classical Markov chain is a stochastic process that assumes values in a discrete set
and obeys the following property: The next state of the chain depends only on the
current state—it is not influenced by the past states. The next state is determined by
some deterministic or random rule based only on the current state.

The Markov chain can be viewed as a directed graph where the states are repre-
sented by vertices and the transitions between states are represented by arcs. Note that
the set of states is discrete, whereas the evolution time can be discrete or continuous.
Then, the term discrete or continuous used here refers only to time.

Let us start by describing the classical discrete-time Markov chain. At each step,
the Markov chain has an associated probability distribution. After choosing an order
for the states, we describe the probability distribution with a vector. Let Γ (X, E)

be a graph with set of vertices X = {x1, . . . , xn} (|X | = n) and set of edges E . The
probability distribution is described by a vector

⎡
⎢⎣
p1(t)

...

pn(t)

⎤
⎥⎦ ,

where pi (t) is the probability of the walker being on vertex xi at time t . If the
process begins with the walker on the first vertex, we have p1(0) = 1 and pi (0) = 0
for i = 2, . . . , n. In a Markov chain, we cannot tell precisely where the walker will
be at future time steps. However, we can determine the probability distribution if we
know the transition matrix M , also called probability matrix or stochastic matrix.

If the probability distribution is known at time t , we obtain the distribution at time
t + 1 using

pi (t + 1) =
n∑
j=1

Mi j p j (t). (3.5)

To be sure that pi (t + 1) is a probability distribution, matrix M must satisfy the
following properties: (1) The entries are nonnegative real numbers, and (2) the sum
of the entries of any column is equal to 1. Using the vector notation, we have


p(t + 1) = M 
p(t). (3.6)

M is called left stochastic matrix. There is a corresponding description that uses a
transposed vector of probabilities (row vector) and matrix M is on the right-hand
side of 
p(t). In this case, the sum of the entries of each line of M must be 1.

If thewalker is on vertex x j , the probability to go to vertex xi isMi j . An interesting
case using undirected graphs is

Mi j = 1

d j
,



24 3 Introduction to Quantum Walks

where d j is the degree of vertex x j and Mi j = 0 if there is no edge linking x j and xi .
In this case, the walker goes to one of the adjacent vertices with equal probability
because the transition probability is the same for all vertices in the neighborhood
of x j . The stochastic matrix M and the adjacency matrix A obey equation Mi j =
Ai j/d j . The adjacency matrix of an undirected graph is a symmetric Boolean matrix
specifying whether two vertices xi and x j are connected (entry Ai j is 1) or not (entry
Ai j is 0).

Let us use the complete graph with n vertices as an example. All vertices are con-
nected by undirected edges. Then, the degree of each vertex is n − 1. The vertices
do not have loops, so Mi i = 0 for all i . The stochastic matrix is

M = 1

n − 1

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

. (3.7)

If the initial condition is a walker located on the first vertex, the probability distribu-
tions during the first steps are


p(0) =

⎡
⎢⎢⎢⎣
1
0
...

0

⎤
⎥⎥⎥⎦ , 
p(1) = 1

n − 1

⎡
⎢⎢⎢⎣
0
1
...

1

⎤
⎥⎥⎥⎦ , 
p(2) = 1

(n − 1)2

⎡
⎢⎢⎢⎣
n − 1
n − 2

...

n − 2

⎤
⎥⎥⎥⎦ .

The probability distribution at an arbitrary step t is (Exercise3.4)


p(t) =

⎡
⎢⎢⎢⎣
fn(t − 1)
fn(t)

...

fn(t)

⎤
⎥⎥⎥⎦ , (3.8)

where

fn(t) = 1

n

(
1 − 1

(1 − n)t

)
. (3.9)

Note that when t → ∞ the probability distribution goes to the uniform distribution,
which is the limiting distribution of this graph.

As amotivation for introducing the next section,weobserve that (3.6) is a recursive
equation that can be solved and written as


p(t) = Mt 
p(0), (3.10)



3.2 Classical Discrete-Time Markov Chains 25

where 
p(0) is the initial condition. This equation encodes all possible ways the
walker can move after t steps. Note that only one possible way actually occurs in
reality. A similar matrix structure is used in the next section to describe the quantum
evolution. However, the vector of probabilities is replaced by a vector of amplitudes
(complex numbers) and the stochastic matrix M is replaced by a unitary matrix.
The physical interpretation of what happens in reality is clearly different from the
stochastic process since in the quantum case it is not correct to say that only one of
the possible ways occurs.

Exercise 3.4. The goal of this exercise is to obtain expression (3.8). By inspecting
the stochastic matrix of the complete graph, show that p2(t) = p3(t) = · · · = pn(t)
and p1(t + 1) = p2(t). Considering that the sum of the entries of the vector of
probabilities is 1, show that p2(t) satisfies the following recursive equation:

p2(t) = 1 − p2(t − 1)

n − 1
.

Using that p2(0) = 0, solve the recursive equation and show that p2(t) is given by
fn(t), as in (3.9).

Exercise 3.5. Obtain an expression for Mt in terms of function fn(t), where M is
the stochastic matrix of the complete graph. Using Mt , show that 
p(t) obeys (3.8).
Exercise 3.6. Consider a cycle with n vertices and take as the initial condition a
walker located on one of the vertices. Obtain the stochastic matrix of this graph.
Describe the probability distribution for the first steps and compare with the values
inFig. 3.1.Obtain the distribution at an arbitrary time andfind the limiting distribution
for the odd cycle.

[
Hint: To find the distribution for the cycle, use the probability

distribution of the line.
]

Exercise 3.7. Let M be an arbitrary stochastic matrix. Show that Mt is a stochastic
matrix for any positive integer t .

3.3 Coined Quantum Walks

The construction of quantum models and their equations is usually performed by a
process called quantization. Momentum and energy are replaced by operators acting
on a Hilbert space, whose size depends on the degree of freedom of the physical
system. If a quantum system is totally isolated from interactionswith themacroscopic
world around, its state is described by a vector in the Hilbert space and its evolution
is driven by a unitary operation. If the system has more than one component, the
Hilbert space is the tensor product of the Hilbert spaces of the components. There is
no room for randomness since the evolution of isolated quantum systems is unitary.
Then, in principle, the name quantum random walk is contradictory. In the literature,



26 3 Introduction to Quantum Walks

the term quantum walk has been used instead, but the evolution of quantum systems
that are not totally isolated from the environment has some stochasticity. In addition,
at some point we measure the quantum system to obtain macroscopic information
about it. The description of this process uses probability distributions. It is natural to
use the term “quantum walk” for unitary evolution and the term “quantum random
walk” for non-unitary evolution.

3.3.1 Coined Walk on the Line

The first model of quantization of classical random walks that we discuss is the
discrete-time coined quantum walk model or simply coined model. We use the line
(a one-dimensional lattice) as a first example. In the quantum case, the walker’s
position n on the line is described by a vector |n〉 in a Hilbert space HP of infinite
dimension, the computational basis of which is

{∣∣n′〉 : n′ ∈ Z
}
. The evolution of the

walk depends on a quantum “coin.” If one obtains “heads” after tossing the “coin”
when the position of the walker is described by |n〉, then the next position is described
by |n + 1〉. If the result is “tails,” the next position is described by |n − 1〉. How do
we include the “coin” in this scheme? We can think in physical terms. Suppose an
electron is the walker and it is on a vertex of the line. The state of the electron is
described not only by its position but also by the value of its spin, which may be
up or down. The spin can determine the direction of the motion. If the position of
the electron is |n〉 and its spin is up, it goes to |n + 1〉; if its spin is down, it goes to
|n − 1〉. The Hilbert space of the system is H = HC ⊗ HP , where HC is the two-
dimensional Hilbert space associated with the “coin,” whose computational basis is{|0〉, |1〉}. We can now define the “coin” as any unitary matrix C with dimension 2,
which acts on vectors in Hilbert space HC . C is called coin operator.

The shift from |n〉 to |n + 1〉 or |n − 1〉 must be described by a unitary operator,
called the shift operator S. It acts as follows:

S|0〉|n〉 = |0〉|n + 1〉, (3.11)

S|1〉|n〉 = |1〉|n − 1〉. (3.12)

If we know the action of S on the computational basis of H, we have a complete
description of this linear operator, and we obtain

S = |0〉〈0| ⊗
∞∑

n=−∞
|n + 1〉〈n| + |1〉〈1| ⊗

∞∑
n=−∞

|n − 1〉〈n|. (3.13)

We can re-obtain (3.11) and (3.12) by applying S to the computational basis.
The quantum walk starts when we apply the operator C ⊗ IP to the initial state,

where IP is the identity operator of the Hilbert space HP . This is analogous to
tossing a coin in the classical case. C changes the coin state and the walker stays at



3.3 Coined Quantum Walks 27

the same position. If the coin state is initially described by one of the states of the
computational basis, the result is a superposition of states assuming that the coin is
nontrivial. Each term in this superposition generates a shift in one direction. Consider
the particle initially located at the origin |n = 0〉 and the coin state with spin up |0〉,
that is,

|ψ(0)〉 = |0〉|n = 0〉, (3.14)

where |ψ(0)〉 denotes the state of the quantum walk at t = 0 and |ψ(t)〉 denotes the
state at time t .

The most used coin is the Hadamard operator

H = 1√
2

[
1 1
1 −1

]
. (3.15)

One step consists of applying H to the coin state followed by the shift operator S, in
the following way:

|0〉 ⊗ |0〉 H⊗I−→ |0〉 + |1〉√
2

⊗ |0〉
S−→ 1√

2

(|0〉 ⊗ |1〉 + |1〉 ⊗ |−1〉). (3.16)

After the first step, the position of the particle is a superposition of n = 1 and n = −1.
The superposition of positions is the result of the superposition generated by the coin
operator. Note that the coin H is unbiasedwhen applied to |0〉 because the probability
to go to the right is equal to the probability to go to the left. The same is true if we
apply H to |1〉. There is a difference between the signs of the amplitudes, but the
sign plays no role in the calculation of the probability in this case. So we call H an
unbiased coin.

In the quantum case, if we want to know the particle’s position, we need to mea-
sure the quantum system when it is in state (3.16). If we perform a measurement
in the computational basis, we have a 50% chance of finding the particle at n = 1
and a 50% chance of finding it at n = −1. This result is the same as the first step of
the classical random walk with an unbiased coin. If we repeat this procedure over
and over, that is, (1) we apply the coin operator, (2) we apply the shift operator, and
(3) we perform a measurement in the computational basis, we obtain a classical ran-
dom walk. Our goal is to use quantum features to obtain new results, which cannot
be obtained in the classical context. When we measure the particle position after the
first step, we destroy the correlations between different positions. On the other hand,
if we apply the coin operator followed by the shift operator over and over without
intermediary measurements, the quantum correlations between different positions
generate constructive or destructive interference, creating a behavior characteris-
tic of quantum walks that is different from the classical behavior. In this case, the
probability distribution is not the normal distribution and the standard deviation is
not

√
t .



28 3 Introduction to Quantum Walks

The quantum walk dynamics are driven by the unitary operator

U = S (H ⊗ I ) (3.17)

with no intermediarymeasurements. One step consists in applyingU one time, which
is equivalent to applying the coin operator followed by the shift operator. In the next
step, we applyU again without measurements. After t steps, the state of the quantum
walk is given by

|ψ(t)〉 = Ut |ψ(0)〉. (3.18)

Let us calculate the first few steps explicitly in order to compare with the first steps
of a classical random walk. We take (3.14) as the initial condition. The first step is
equal to (3.16). The second step is calculated using |ψ(2)〉 = U |ψ(1)〉 and the third
using |ψ(3)〉 = U |ψ(2)〉:

|ψ(1)〉 = 1√
2

(|1〉|−1〉 + |0〉|1〉),
|ψ(2)〉 = 1

2

(
− |1〉|−2〉 + (|0〉 + |1〉)|0〉 + |0〉|2〉

)
, (3.19)

|ψ(3)〉 = 1

2
√
2

(
|1〉|−3〉 − |0〉|−1〉 + (2|0〉 + |1〉)|1〉 + |0〉|3〉

)
.

These few initial steps have already revealed that the quantum walk differs from
the classical random walk in several aspects. We have used an unbiased coin, but
the state |ψ(3)〉 is not symmetric with respect to the origin. Figure3.3 shows the
probability distribution up to the fifth step. Besides being asymmetric, the probability
distributions are not concentrated around the origin. Compare with the probability
distributions of Fig. 3.1.

We would like to find the probability distribution for a number of steps larger than
5. However, the calculation method we are using is not good enough. Suppose we
want to calculate the probability distribution p(100, n) after 100 steps. We cannot
calculate |ψ(100)〉 by hand.We have to rely on some computational implementation.

t
n − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5

0 1

1 1
2

1
2

2 1
4

1
2

1
4

3 1
8

1
8

5
8

1
8

4 1
16

1
8

1
8

5
8

1
16

5 1
32

5
32

1
8

1
8

17
32

1
32

Fig. 3.3 Probability of finding the quantum particle on vertex n at time t , assuming that the walk
starts at the origin with the quantum coin in state “spin up”



3.3 Coined Quantum Walks 29

An efficient way of implementing quantum walks is to use recursive formulas for
the amplitudes. The arbitrary state of the quantum walk in the computational basis
is

|ψ(t)〉 =
∞∑

n=−∞

(
An(t)|0〉 + Bn(t)|1〉

)|n〉, (3.20)

where the amplitudes satisfy the constraint

∞∑
n=−∞

|An(t)|2 + |Bn(t)|2 = 1, (3.21)

which means that |ψ(t)〉 has norm 1 at all steps. In Sect. 5.1 on p.69, we show
that when applying H ⊗ I followed by the shift operator to (3.20), we obtain the
following recursive formulas for the amplitudes A and B:

An(t + 1) = An−1(t) + Bn−1(t)√
2

,

Bn(t + 1) = An+1(t) − Bn+1(t)√
2

.

Using the initial condition

An(0) =
{
1, if n = 0;
0, otherwise,

and Bn(0) = 0 for all n, we can calculate iteratively An(t) and Bn(t) for t from 1 to
100. The probability distribution is obtained using

p(t, n) = |An(t)|2 + |Bn(t)|2 . (3.22)

This approach is suitable to be implemented in the mainstream programming lan-
guages, such as C, Fortran, Java, Python, or Julia.

A secondmethod to implement quantumwalks is based on the explicit calculation
of matrix U . We have to calculate the tensor product H ⊗ I using the formula
described in Sect.A.15 on p.263. The tensor product is also required to obtain a
matrix representation of the shift operator as defined in (3.13). These operators act
on vectors in an infinite vector space. However, the number of nonzero entries is
finite. Then, these arrays must have dimensions slightly larger than 200 × 200 in
order to calculate |ψ(100)〉. After calculating U , we calculate U 100, and the matrix
product of U 100 and the initial condition |ψ(0)〉, written as a column vector with
a compatible number of entries. The result is |ψ(100)〉. Finally, we can calculate
the probability distribution. This method can be implemented in computer algebra
systems, such as Mathematica, Maple, or Sage, and is inefficient in general.



30 3 Introduction to Quantum Walks

Fig. 3.4 Probability distribution after 100 steps of a quantum walk with the Hadamard coin start-
ing from the initial condition |ψ(0)〉 = |0〉|n = 0〉. The points where the probability is zero were
excluded (n odd)

This method becomes more efficient if the programmer uses techniques to deal with
sparse matrices and parallel programming.

Note that there is an alternate route that is to download a package for quantum
walk simulations. In Sect. 5.3 on p.85, we describe the main available packages, and
we provide references that may help the user to obtain the desired results quicker
than implementing by oneself.

By employing any of the above methods, the probability distribution after 100
steps depicted in Fig. 3.4 is eventually obtained. Analogous to the plot of the proba-
bility distribution of the classical random walk, we ignore the points corresponding
to probabilities equal to zero. For instance, at t = 100, the probability is zero for all
odd values of n—these points are not shown. If we observe the plot, we notice that
the probability distribution is asymmetric. The probability of finding the particle on
the right-hand side of the origin is larger than on the left-hand side. In particular,
there is a peak for n around 100/

√
2 and the probability at the peak is more than 10

times larger than the probability at the origin. The peak is always there, even for large
t . This suggests that the quantum walk has a ballistic behavior, which means that the
particle can be found away from the origin as if it is in a uniform rightward motion. It
is natural to ask whether this pattern holds when the distribution is symmetric around
the origin.

In order to obtain a symmetrical distribution,wemust understandwhy the previous
example has a tendency to go to the right. The Hadamard coin introduces a negative
sign when applied to state |1〉. This means that there are more cancellations of terms
when the coin state is |1〉 than of terms when the coin state is |0〉. Since the coin state
|0〉 induces a motion to the right and |1〉 to the left, the final effect is the asymmetry



3.3 Coined Quantum Walks 31

Fig. 3.5 Probability distribution after 100 steps of a Hadamard quantum walk starting from the
initial condition (3.23)

with larger probabilities on the right-hand side of the origin. We would confirm
this analysis if we calculate the resulting probability distribution when the initial
condition is

|ψ(0)〉 = −|1〉|n = 0〉.

In this case, the number of negative terms is greater than the number of positive terms
and there are more cancellations of terms when the coin state is |0〉. The final result
is a probability distribution that is the mirror image of the one depicted in Fig. 3.4. To
obtain a symmetrical distribution, we must superpose the quantum walks resulting
from these two initial conditions. This superposition should not cancel terms before
the calculation of the probability distribution. The trick is to multiply the imaginary
unit number to the second initial condition and add to the first initial condition in the
following way:

|ψ(0)〉 = |0〉 − i|1〉√
2

|n = 0〉. (3.23)

The entries of the Hadamard coin are real numbers. When we apply the evolution
operator, terms with the imaginary unit are not converted into terms without the
imaginary unit and vice versa. There are no cancellations of terms of the walk that
goes to the right with the terms of the walk that goes to the left. At the end, the
probability distributions are added. In fact, the result is depicted in Fig. 3.5. Note
that the probability distribution is spread in the range

[− t/
√
2, t/

√
2
]
, while the

classical distribution is a Gaussian centered at the origin and visible in the range[− 2
√
t, 2

√
t
]
.



32 3 Introduction to Quantum Walks

Fig. 3.6 Standard deviation of the quantum walk (crosses) and the classical random walk (circles)
as a function of the number of steps

If the probability distribution is symmetric, the expected value of the position is
zero, that is, 〈n〉 = 0. The question now is how the standard deviation σ(t) behaves
as a function of time. The formula for the standard deviation when 〈n〉 = 0 is

σ(t) =
√√√√ ∞∑

n=−∞
n2 p(t, n), (3.24)

where p(t, n) is the probability distribution of the quantum walk with the initial con-
dition given by (3.23). The analytical calculation is quite elaborate and is performed
in another chapter. For now, we calculate σ(t) numerically using a computational
implementation. Figure3.6 depicts the standard deviation as a function of time for
the quantum walk (cross-shaped points) and classical random walk (circle-shaped
points). In the classical case, we have σ(t) = √

t . In the quantum case, we obtain a
line with slope 0.54 approximately, that is, σ(t) = 0.54 t .

It is remarkable that the position standard deviation is proportional to t . Compare
with the following extreme situation. Suppose that the probability of the particle to go
to the right is exactly 1. After t steps, it will certainly be found at n = t . This is called
the ballistic case. It is the motion of a free particle with unit velocity. The standard
deviation in this case is obtained by replacing p(t, n) by δt n in (3.24). The result is
σ(t) = t . The Hadamard quantum walk is ballistic, though its speed is almost half
of the speed of the free particle. However, after a measurement the quantum particle



3.3 Coined Quantum Walks 33

can be found either on the right-hand side or on the left-hand side of the origin, which
is not possible in a classical ballistic motion.

Exercise 3.8. Obtain states |ψ(4)〉 and |ψ(5)〉 by continuing the sequence of the
states of (3.19) and check that the probability distribution coincides with the one
described in Fig. 3.3.

3.4 Classical Continuous-Time Markov Chains

The coined quantum walk model is not the only way to quantize classical random
walks. In the next section, we describe another quantum walk model that does not
use a coin. In this section, we describe the classical continuous-time Markov chain,
which is used as the base model for the quantization.

When time is a continuous variable, thewalker can go fromvertex x j to an adjacent
vertex xi at any time. Oneway to visualize the dynamics is to consider the probability
as if it is a liquid seeping from x j to xi . At the beginning, the walker is on vertex x j

and it is likely to be found there during a short period. As time goes by, the probability
of being found on one of the neighboring vertices increases and the probability of
staying on x j decreases, and eventually thewalkermoves ahead.We have a transition
rate denoted by γ, which is constant for all vertices (homogeneous rate) and for all
times (uniform rate). Then, the transition between neighboring vertices occurs with
a probability γ per unit time. To address problems with continuous variables, we
generally use an infinitesimal time interval, set up the differential equation of the
problem, and solve the equation. If we take an infinitesimal time interval ε, the
probability of the walker to go from vertex x j to xi is γε. Let d j be the degree of the
vertex x j , that is, vertex x j has d j neighboring vertices. It follows that the probability
of the walker to be on one of the neighboring vertices after time ε is d jγε. Then,
the probability of staying on x j is 1 − d jγε. In the continuous-time case, the entry
Mi j (t) of the transition matrix at time t is defined as the probability of the particle,
which is on vertex x j , to go to vertex xi during the time interval t . Then,

Mi j (ε) =
{
1 − d jγε + O(ε2), if i = j;
γε + O(ε2), if i �= j .

(3.25)

Let us define an auxiliary matrix, called generating matrix given by

Hi j =
⎧⎨
⎩
d jγ, if i = j;
−γ, if i �= j and adjacent;
0, if i �= j and non-adjacent.

(3.26)

It is known that the probability of two independent events is the product of the
probability of each event. The same occurs in a Markov chain because the next state
of a Markov chain depends only on the current configuration of the chain. We can



34 3 Introduction to Quantum Walks

multiply the transition matrix at different times. Then,

Mi j (t + ε) =
∑
k

Mik(t)Mkj (ε). (3.27)

The index k runs over all vertices; however, this is equivalent to running only over the
vertices adjacent to x j . In fact, if there is no edge linking x j and xk , then Mkj (ε) = 0.

By isolating the term k = j and using the (3.25) and (3.26), we obtain

Mi j (t + ε) = Mi j (t)Mj j (ε) +
∑
k �= j

Mik(t)Mkj (ε)

= Mi j (t)(1 − εHj j ) − ε
∑
k �= j

Mik(t)Hkj .

By moving the first term on the right-hand side to the left-hand side and dividing by
ε, we obtain

dMi j (t)

dt
= −

∑
k

Hkj Mik(t). (3.28)

The solution of this differential equation with initial condition Mi j (0) = δi j is

M(t) = e−Ht . (3.29)

The verification is simple if we expand the exponential function inTaylor series.With
the transition matrix in hand, we can obtain the probability distribution at time t . If
the initial distribution is 
p(0), we have


p(t) = M(t) 
p(0). (3.30)

It is interesting to compare this form of evolution with the one for the discrete-time
Markov chain, given by (3.10).

Exercise 3.9. Show that the uniform vector is a 0-eigenvector of H . Use this to show
that the uniform vector is a 1-eigenvector of M(t). Show that M(t) is a stochastic
matrix for all t ∈ R.

Exercise 3.10. What is the relationship between H and the Laplacian matrix of the
graph?

Exercise 3.11. Show that the probability distribution satisfies the following differ-
ential equation:

dpi (t)

dt
= −

∑
k

Hki pk(t).



3.5 Continuous-Time Quantum Walks 35

3.5 Continuous-Time QuantumWalks

In the passage from the classical random walk model to the coined model, we use the
standard quantization process, which consists in replacing the vector of probabilities
by a state vector (a vector of probability amplitudes) and the transition matrix by a
unitary matrix. It is also necessary to extend the position Hilbert space with the coin
Hilbert space, which is accomplished with the tensor product because we need to
obey the postulates of quantum mechanics.

In the passage from the continuous-time Markov chain to the continuous-time
quantum walk model, we use again the standard quantization process. Note that the
continuous-time Markov chain has no coin. Then, we simply convert the vector that
describes the probability distribution to a state vector and the transition matrix to an
equivalent unitary operator. We must pay attention to the following detail: Matrix H
is Hermitian and matrix M is not unitary in general. There is a simple way to make
M unitary, which is to replace H by iH , that is, to multiply H by the imaginary unit.
Let us define the evolution operator of the continuous-time quantum walk as

U (t) = e−iHt . (3.31)

If the initial condition is |ψ(0)〉, the quantum state at time t is

|ψ(t)〉 = U (t)|ψ(0)〉 (3.32)

and the probability distribution is

pk = ∣∣ 〈k∣∣ψ(t)
〉 ∣∣2, (3.33)

where k is a vertex label or a state of the Markov chain and |k〉 is the state of the
computational basis corresponding to the vertex k.

3.5.1 Continuous-Time Walk on the Line

As a first application, let us consider the continuous-time quantum walk on the line.
The vertices are integer points (discrete space). Equation (3.26) reduces to

Hi j =
⎧⎨
⎩
2γ, if i = j;
−γ, if i �= j and adjacent;
0, if i �= j and non-adjacent.

(3.34)

Then,
H |n〉 = −γ |n − 1〉 + 2γ |n〉 − γ |n + 1〉. (3.35)



36 3 Introduction to Quantum Walks

Fig. 3.7 Probability distribution at t = 100 with γ =
(
2
√
2
)−1

of a continuous-time quantum

walk with initial condition |ψ(0)〉 = |0〉

Fig. 3.8 Script in Mathematica that generates the probability distribution of the continuous-time
quantum walk of Fig. 3.7

Fig. 3.9 Script inMaple that
generates the probability
distribution of the
continuous-time quantum
walk of Fig. 3.7

The analytical calculation of operatorU (t) is guided in Exercise3.12. The numerical
calculation of this operator is relatively simple. Figure3.7 shows the probability

distribution of the continuous-time quantum walk at t = 100 for γ = 1/
(
2
√
2
)

with the initial condition |ψ(0)〉 = |0〉. This plot can be generated by the programs
of Fig. 3.8 or Fig. 3.9.



3.5 Continuous-Time Quantum Walks 37

The comparison of the curve of Fig. 3.7 with the curve of Fig. 3.5 is reveal-
ing. There are many common points between the evolution of discrete-time and
continuous-time quantum walks; however, they differ in several details. From the
global point of view, the probability distribution of the continuous-time walk has
two major external peaks and a low probability near the origin, which is similar to
the discrete-time case. In the coined walk, these features can be amplified or reduced
by choosing an appropriate coin or changing the walker’s initial condition. In the
continuous-time walk, the dispersion is controlled by the constant γ. If one decreases
γ, the distribution shrinks around the origin, maintaining the same pattern.

Themost relevant comparison in this context refers to the standard deviation. How
does the standard deviation of the continuous-time walk compare with the discrete-
time walk? The probability distribution of the continuous-time walk is symmetric
with respect to the origin in this case. Then, the expected position is zero, that
is, 〈n〉 = 0. The standard deviation σ(t) is given by (3.24), where the probability
distribution p(t, n) is

p(t, n) = ∣∣〈n|U (t)|ψ(0)〉∣∣2. (3.36)

As before, we can calculate σ(t) numerically. Figure3.10 depicts the standard devi-
ation as a function of time for the continuous-time quantum walk (solid line) and
for the coined quantum walk (cross-shaped points). In the continuous-time case, we
obtain a line with slope 0.5 approximately, or σ(t) = 0.5 t . In the coined case, it is
also a line with slope 0.54 approximately. Again, these values change if we change
γ or the coin. What really matters is that the standard deviation is linear, that is, σ(t)
is proportional to t , contrasting with the classical case where σ(t) is proportional
to

√
t .

Fig. 3.10 Standard
deviation as a function of
time of the continuous-time
quantum walk with

γ =
(
2
√
2
)−1

(solid line)

and the discrete-time
quantum walk analyzed in
Sect. 3.3 (cross-shaped
points)



38 3 Introduction to Quantum Walks

After analyzing two quantization models of classical randomwalks, the following
question naturally arises: Are the coined and continuous-time models equivalent? In
several applications, these models have very similar behavior. Both models have
standard deviations that depend linearly on t and, with respect to algorithmic appli-
cations, they improve the time complexity for many problems when compared with
classical algorithms. However, when we consider the smallest details, these models
are not equivalent. We give references that address this issue in the Further Reading
section.

Exercise 3.12. Show that for any real time t , matrix H of the continuous-time quan-
tum walk on the line obeys

Ht |0〉 = γt
t∑

n=−t

(−1)n
(

2t

t − n

)
|n〉.

From this expression, computeU (t)|0〉 in terms of two nested sums. Invert the sums,
use the identity

e−2 i γ t J|n| (2 γ t) = e
πi
2 |n|

∞∑
k=|n|

(−iγt)k

k!
(

2 k

k − n

)
,

where J is the Bessel function of the first kind with integer n, to show that the wave
function of the continuous-time walk on the line at time t is

|ψ(t)〉 =
∞∑

n=−∞
e

πi
2 |n|−2 i γ t J|n| (2 γ t) |n〉.

Show that the probability distribution is

p(t, n) = ∣∣J|n| (2 γ t)
∣∣2 .

Use this result to depict the probability distributions with the same parameters of
Fig. 3.7, both for continuous and discrete n.

3.5.2 Why Must Time be Continuous?

It is interesting to ask why a Hamiltonian walk must be continuous in time. The
answer is related to locality. By definition, the dynamic of a quantum walk on a
graph G must be local with respect to G. This means that the walker is forbidden to
jump from vertex v1 to v2 if these vertices are non-adjacent. The walker must visit
all vertices of a chain that links v1 to v2 before reaching v2. Consider the expansion

e−iHt = I − iHt + (−it)2

2! H 2 + (−it)3

3! H 3 + · · · .



3.5 Continuous-Time Quantum Walks 39

Note that the action of Ha for a ≥ 2 is non-local. For instance, if the walker is on
vertex v, the action of H 2 moves the walker to the neighborhood of the neighborhood
of v. One way to cancel out the action of Ha for a ≥ 2 is to use an infinitesimal time
because e−iHt will be close to (I − iHt), which is local. This explains why timemust
be continuouswhen H is definedby (3.26). Exercise3.13 suggests an alternative route
to explore this issue by restricting the choices of H .

Exercise 3.13. Try to convert the continuous-time model into a discrete-time model
by using evolution operators e−iH̄ t with Hermitian operators H̄ that obeys

H̄ 2 = aI + bH̄ ,

where a, b ∈ R.

1. Show that e−iH̄ t is a local operator for any t ∈ Z.
2. Show that if the quantum walk starts with a walker on vertex v, then the walker

never goes beyond the neighborhood of v using the evolution operator e−iH̄ t with
t ∈ Z.

3. Conclude that (1) the attempt has failed and (2) we need more than one local
operator in order to define a nontrivial discrete-time quantum walk model.

Further Reading

The concept of quantum walk was introduced in [9] from the physical viewpoint and
in [133, 255] from themathematical viewpoint. From the historical viewpoint, we can
find precursor ideas dating back to 1940 in Feynman’s relativistic chessboardmodel,1

which connects the spin with the propagation of a particle in a two-dimensional
spacetime. From now on we give references to the modern description of quantum
walks.

A detailed analysis of coined quantum walks on the line is presented in [17, 247].
Coined quantum walks on arbitrary graphs are addressed in [8]. The link between
universal quantum computation and coined quantum walks is addressed in [216].
A good reference for an initial contact with the coined quantum walk is the review
article [172]. The most relevant references on quantum walks published before 2012
are provided by the review papers [13, 172, 175, 183, 274, 320] or by the review
books [229, 319]. Some recent papers analyzing coined quantum walks are [31, 69,
124, 158, 239, 330, 348]. More references are provided in the next chapters.

The continuous-time quantum walk was introduced in [113]. The continuous-
time quantum walk on the line was studied in [81]. The link between universal
quantumcomputation and continuous-time quantumwalks is addressed in [78].Good
references for an initial contact with the continuous-time quantum walk are the
review article [246] or the review book [229]. The connection between the coined
and continuous-timemodels is addressed in [79, 98, 99, 260, 294, 306]. Some recent
papers analyzing continuous-time quantum walks are [39, 66, 86, 105, 117, 162,
163, 210, 212, 283, 310, 334, 339].

1https://en.wikipedia.org/wiki/Feynman_checkerboard.

https://en.wikipedia.org/wiki/Feynman_checkerboard


40 3 Introduction to Quantum Walks

Classical discrete-time Markov chains are described in [90, 240]. Classical ran-
dom walks are addressed in many books such as [114, 154, 155]. Identities with
binomial expressions used in Exercise3.2 are described in [123] or can be deduced
from the methods presented in [125]. Stirling’s approximation is described in [114].



Chapter 4
Grover’s Algorithm and Its
Generalization

Grover’s algorithm is a search algorithm originally designed to look for an element
in an unsorted quantum databasewith no repeated elements. If the database elements
are stored in a random order, the only available method to find a specific element is
an exhaustive search. Usually, this is not the best way to use databases, especially
if it is queried several times. It is better to sort the elements, which is an expensive
task but performed only once. In the context of quantum computing, storing data in
superposition or in an entangled state for a long period is not an easy task. Because
of this, Grover’s algorithm is described in this chapter via an alternate route, which
shows its wide applicability.

Grover’s algorithm can be generalized in order to search databases with repeated
elements. The details of this generalization when we know the number of repetitions
beforehand are worked out in this chapter since it is important in many applications.
We also show that Grover’s algorithm is optimal up to a multiplicative constant, that
is, it is not possible to improve its computational complexity. If N is the number of
database entries, the algorithm needs to query the database O(

√
N ) times in order

to find the marked element with high probability using O(log N ) storage space. We
describe a quantum circuit that shows that Grover’s algorithm can be implemented
with O(

√
N log N ) universal gates.

At the heart of Grover’s algorithm lies a technique called amplitude amplifica-
tion, which can be used in many quantum algorithms. The amplitude amplification
technique is presented in detail at the end of this chapter.

Grover’s algorithm can be seen as a quantum-walk-based search on the complete
graph with N vertices. The details are described in Sect. 9.5 on p.195.

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_4&domain=pdf


42 4 Grover’s Algorithm and Its Generalization

4.1 Grover’s Algorithm

Let N be 2n for some positive integer n and suppose that f : {0, . . . , N − 1
} →

{0, 1} is a function whose image is f (x) = 1 if and only if x = x0 for a fixed x0, that
is,

f (x) =
{
1, if x = x0,
0, otherwise.

(4.1)

Suppose that point x0 is unknown and we do wish to find it. It is allowed to evaluate
f at any point in the domain. The problem is to find x0 with the minimum number of
evaluations. Function f is called oracle and point x0 is called marked element.This
is a search problem whose relation to a database search is clear.

Let us start by analyzing this problem from the classical viewpoint. We are not
interested in the implementation details of f . On the contrary, we want to know how
many times we need to apply f in order to find x0. Supposing it is known no detail
about f , our only option is to perform an exhaustive search by applying f to all
points in the domain. Then, the time complexity of the best classical algorithm is
Ω(N ) because each evaluation costs some time, and we need at least N evaluations
in the worst case.

A concrete way to describe this problem is to ask a programmer to select point x0
at random and implement f using a programming language in a classical computer
with a single processor. The programmer must compile the program to hide x0—it
is not allowed to read the code. The function domain is known to us and there is the
following promise: Only one image point is 1, all others are 0. A program that solves
this problem is described in Algorithm1.

Algorithm 1: Classical search algorithm
Input: N and f as described in Eq. (4.1).
Output: x0.

for x = 0 to N − 1 do
if f (x) = 1 then

print x
stop

Now let us return to the quantum context. It is striking to know that Grover’s
algorithm is able to find x0 by evaluating f less than N times, in fact, it evaluates⌊

π
4

√
N
⌋
times, which is asymptotically optimal. There is a quadratic gain in the

time complexity in the transition from the classical to the quantum context. How can
we put this problem concretely in the quantum context? Can we write a quantum
program equivalent to Algorithm1?

In the quantum context, we must use a unitary operatorR f that plays the role of
the function f . There is a standard method to build R f . The method can be used
to implement an arbitrary function. The quantum computer has two registers: The



4.1 Grover’s Algorithm 43

|1 |1

|0 |0

|1 |1

|0 |1

Fig. 4.1 Circuit of operator R f when x0 = 5 and n = 3. The bits of x0 determine which control
bits should be empty andwhich should be full. Only the programmer knowswhich quantum controls
are empty and full. The goal of Grover’s algorithm is to find out the correct configuration of the
empty and full controls

first stores the domain points, and the second stores the image points. A complete
description of R f is given by its action on the computational basis, which is

R f |x〉|i〉 = |x〉|i ⊕ f (x)〉, (4.2)

where operation⊕ is the binary sum or bitwise xor. The standard method is based on
the following recipe: (1) Repeat x to guarantee reversibility, and (2) add the image of
x to the value inside the ket of the second register. For any function f , the resulting
operator is unitary. For the oracle (4.1), the first register has n qubits and the second
has one qubit and the associated Hilbert space has (2N ) dimensions. If the state of
the first register is |x〉 and the state of the second register is |0〉, R f evaluates f (x)

and stores the result in the second register, that is,

R f |x〉|0〉 =
{ |x0〉|1〉, if x = x0,

|x〉|0〉, otherwise.
(4.3)

Now we ask a quantum programmer to implement R f . The programmer uses a
generalized Toffoli gate. For example, the circuit of Fig. 4.1 implements R f when
x0 = 5 and n = 3. Note that the state of the second register will change from |0〉 to
|1〉 only if the entry of the first register is 5, otherwise it remains equal to |0〉 (see
Sect.A.16 on p.265).

Similar to the classical setting, we are not allowed to look at any implementation
detail about R f , but we can apply this operator as many times as we wish. What is
the algorithm that determines x0 using R f the minimum number of times?

Grover’s algorithm uses a second unitary operator defined by

RD = (
2 |D〉〈D| − IN

)⊗ I2, (4.4)

where

|D〉 = 1√
N

N−1∑

j=0

| j〉,



44 4 Grover’s Algorithm and Its Generalization

that is, |D〉 the diagonal state of the first register (see Sect.A.16 on p.265). The
evolution operator that performs one step of the algorithm is

U = RD R f . (4.5)

The initial condition is
|ψ0〉 = |D〉|−〉, (4.6)

where |−〉 = (|0〉 − |1〉)/2. The algorithm tells us to apply U iteratively
⌊

π
4

√
N
⌋

times. Then, measure the first register in the computational basis and the result is x0
with probability greater than or equal to 1 − 1

N (see Algorithm2).

Algorithm 2: Grover’s algorithm
Input: N and f as described in Eq. (4.1).
Output: x0 with probability greater than or equal to 1 − 1

N .

1. Use a 2-register quantum computer with n + 1 qubits;
2. Prepare the initial state |D〉|−〉;
3. Apply U t , where t =

⌊
π
4

√
N
⌋
and U is given by (4.5);

4. Measure the first register in the computational basis.

4.2 Quantum Circuit of Grover’s Algorithm

Figure4.2 depicts the circuit of Grover’s algorithm. To check the correctness of this
circuit, we have to show thatRD has been correctly implemented.Weuse the equation

|D〉 = H⊗n|0〉,

in order to show that

RD = − (
H⊗n

(
I − 2 |0〉〈0|) H⊗n

)⊗ I2.

The action of the operator
(
I − 2 |0〉〈0|) on |x〉 is −|0〉 if x = 0, and |x〉 if x �= 0.

This action is equal to the action of R f when the marked element is x0 = 0. Then,
we can implement

(
I − 2 |0〉〈0|) with a generalized Toffoli acting on (n + 1) qubits

with n empty controls. There is a minus sign in the definition of RD in terms of(
I − 2 |0〉〈0|). We disregard this minus sign because it is a global phase with no
effect on the result. This shows that this is a correct implementation of Grover’s
algorithm and with high probability the output (i1, . . . , in) is x0 in base-2.



4.2 Quantum Circuit of Grover’s Algorithm 45

⌊
π
4

√
N

⌋

|0〉1 H H H i1

|0〉n H H H in

|−〉

Rf

|−〉

Fig. 4.2 Circuit of Grover’s algorithm. The first register has n qubits initially in state |0〉. The
second register has 1 qubit always in state |−〉. The dashed box is iterated

⌊
(π/4)

√
N
⌋
times and

its input is |D〉|−〉. At the end, the first register is measured and the output is the binary digits
i1, . . . , in , which are with high probability the digits of x0 in base-2

From the circuit of Fig. 4.2, it is clear that the query complexity is O(
√

N ). To be
more precise, the number of queries is exactly the floor of (π/4)

√
N because this is

the number of timesR f is used in the circuit. Note that in the quantum case, instead
of counting the number of times f is evaluated, we count the number of times R f

is used, which is equivalent to the number of times the quantum database is queried.
The time complexity is a bit larger than the query complexity. A generalized

Toffoli gate with n controls can be implemented with O(n) universal gates as
shown in Sect.A.16 on p.265. Then, the time complexity of Grover’s algorithm
is O(

√
N log N ).

Exercise 4.1. Use Fig. 4.2 to depict the circuit of Grover’s algorithm for the case
n = 3 (N = 8) when the marked element is x0 = 5 in the following cases:

1. Using generalized Toffoli gates.
2. Using Toffoli gates (no generalized gate is allowed).
3. Using universal gates (CNOT, X , H , T , and T †).

Implement the version using universal gates on a quantum computer.

4.3 Analysis of the Algorithm Using Reflection Operators

The evolution operator and the initial condition of Grover’s algorithm have real
entries. This means that the entire evolution takes place in a real vector subspace
of a (2N )-dimensional Hilbert space. We can give a geometric interpretation to
the algorithm and, in fact, visualize the evolution as a rotation of a vector on a
two-dimensional vector space over the real numbers. The key to understanding the



46 4 Grover’s Algorithm and Its Generalization

algorithm is to note that the evolution operator U is the product of two reflection
operators. It is easier to show this fact after noting that the state of the second
register does not change during the algorithm. Initially, this state is |−〉 and it does
not change under the action ofRD as can be seen from (4.4). It does not change either
under the action of R f because if the state of the first register is |x〉 with x �= x0,
from the definition of R f — Eq. (4.3), the state |x〉|−〉 does not change. If x = x0,
the action of R f on |x0〉|−〉 is

R f |x0〉|−〉 = R f |x0〉|0〉 − R f |x0〉|1〉√
2

= |x0〉|1〉 − |x0〉|0〉√
2

= −|x0〉|−〉.

There is a sign inversion, but the minus sign can be absorbed by the state of the first
register and then the state to the second register is still |−〉. The state of the second
register is always |−〉 if we give a proper destination to the minus sign when the
input of the first register is |x0〉.

On the one hand, the second register is necessary for the algorithm because it is the
only way to defineR f . On the other hand, we can discard it for the sake of simplicity
in the analysis of the algorithm. We define the reduced versions R f and RD that act
on the Hilbert spaceHN and replaceR f andRD, respectively. The definitions of the
reduced operators are

R f = −|x0〉〈x0| +
∑

x �=x0

|x〉〈x | (4.7)

and
RD = 2 |D〉〈D| − IN . (4.8)

The input to the algorithm is |D〉, which is the reduced version of |D〉|−〉, and the
reduced version of the evolution operator is

U = RDR f . (4.9)

Note that the action of the reduced version R f on |x〉 is the same as R f on |x〉|−〉
for all x in the computational basis of HN .

Let us check that R f is a reflection. Define the following vector spaces over the
real numbers:

A = span{|x0〉},
B = span{|x〉 : x �= x0}.

Note that dim A = 1, dim B = N − 1, and A ⊥ B. In other words, B is the real
subspace ofHN that is orthogonal to the vector space spanned by |x0〉. We state that



4.3 Analysis of the Algorithm Using Reflection Operators 47

Fig. 4.3 The initial condition of Grover’s algorithm is state |D〉. After applying operator R f , state
|D〉 is reflected through the hyperplane orthogonal to vector |x0〉, represented by the horizontal line.
After applying operator RD, vector R f |D〉 is reflected through |D〉. That is, one application of U
rotates the initial vector through angle θ about the origin toward vector |x0〉

R f is a reflection through B. The proof is the following: Let |ψ〉 be a real vector in
HN . Then, there are |ψa〉 ∈ A and |ψb〉 ∈ B such that |ψ〉 = |ψa〉 + |ψb〉. The action
of R f on |ψ〉 inverts the sign of |ψa〉 and preserves the sign of |ψb〉. The geometric
interpretation of this action is a reflection through B, that is, −|ψa〉 + |ψb〉 is the
mirror image of |ψa〉 + |ψb〉 and the mirror is the vector space B. The mirror is
always the vector space that is invariant.

Let us check that RD is also a reflection. Using (4.8), we obtain RD|D〉 = |D〉 and
RD

∣∣D⊥〉 = −∣∣D⊥〉, where
∣∣D⊥〉 is any real vector orthogonal to |D〉. Let D be the

vector space spanned by |D〉. D is invariant under the action of RD and any vector
orthogonal to |D〉 inverts its sign under the action of RD. Then, RD is a reflection
through D.

From Fig. 4.3, we see that the action of U on the initial state |D〉 returns a vector
that is in the vector space spanned by |x0〉 and |D〉. This is checked in the following
way: Note that |D〉 is almost orthogonal to |x0〉 if N is large. Start by considering
the initial condition |D〉 in Fig. 4.3, then apply R f , then apply RD, and then con-
vince yourself that U |D〉 is correctly represented. The same argumentation holds for
successive applications of U . Therefore, the entire evolution takes place in a real
two-dimensional subspace W of HN , where W = span

{|D〉, |x0〉
}
.

We can further simplify the interpretation of R f . Let
∣∣x⊥

0

〉
be the unit vector

orthogonal to |x0〉 that is in W and has the smallest angle with |D〉. The expression
for

∣∣x⊥
0

〉
in the computational basis is

∣∣x⊥
0

〉 = 1√
N − 1

∑

x �=x0

|x〉. (4.10)

Set
{∣∣x⊥

0

〉
, |x0〉

}
is an orthonormal basis ofW . For vectors inW , R f can be interpreted

as a reflection through the one-dimensional vector space spanned by
∣∣x⊥

0

〉
.



48 4 Grover’s Algorithm and Its Generalization

Let (θ/2) be the angle between vectors
∣∣x⊥

0

〉
and |D〉, that is, (θ/2) is the comple-

ment of the angle between |x0〉 and |D〉. So,

sin
θ

2
= cos

(
π

2
− θ

2

)

= 〈
x0
∣∣D
〉

= 1√
N

. (4.11)

Angle θ is very small when N � 1, i.e., when the function f has a large domain.
Solving (4.11) for θ and calculating the asymptotic expansion, we obtain

θ = 2√
N

+ 1

3 N
√

N
+ O

(
1

N 2

)
. (4.12)

Starting from the initial condition |D〉, one application of U rotates |D〉 through
approximately 2/

√
N radians about the origin toward |x0〉. This application makes

little progress, but definitely a good one because it can be repeated. At the time step
(running time)

trun =
⌊π

4

√
N
⌋
, (4.13)

|D〉 will have rotated through approximately π/2 radians. In fact, it will have rotated
a little less, because the next term in the expansion (4.12) is positive. The probability
of obtaining x0 when we measure the first register is

px0 =
∣∣∣〈x0|U trun |D〉

∣∣∣
2
. (4.14)

The angle between |x0〉 and the final state is about 2/
√

N and is at most θ/2. Then,

px0 ≥ cos2
(

θ

2

)
. (4.15)

Using (4.11), we obtain

px0 ≥ 1 − 1

N
. (4.16)

The lower bound for the success probability shows that Grover’s algorithm has a
very high success probability when N is large.

To summarize,we have used the fact thatU is a real operator and the product of two
reflections to perform the algorithmanalysis as an evolution in a real two-dimensional
subspace of the Hilbert space. U is a rotation matrix on a two-dimensional vector
space and the rotation angle is twice the angle between the vector spaces that are



4.3 Analysis of the Algorithm Using Reflection Operators 49

invariant under the action of the reflection operators. The marked state |x0〉 and
initial condition |D〉 are almost orthogonal when N is large. The strategy of the
algorithm is to rotate the initial condition through π/2 radians about the origin and
to perform a measurement in the computational basis. Since the angle between the
final state and the marked state is small, the probability of obtaining x0 as a result of
the measurement is close to 1.

Exercise 4.2. Show that the success probability of Grover’s algorithm is exactly
121/128 when N = 8 and is exactly 1 when N = 4 using a single iteration.

Exercise 4.3. Calculate the probability of Grover’s algorithm returning x such that
x �= x0, when N � 1. Check out that the sum of the probabilities, when we consider
all cases x �= x0 and x = x0, is asymptotically equal to 1.

Exercise 4.4. After discarding the second register, show that operator R f given by
(4.7) can be written as

R f = I − 2 |x0〉〈x0|, (4.17)

or equivalently as
R f = 2

∑

x �=x0

|x〉〈x | − I.

Exercise 4.5. Thegoal of this exercise is to show that,whenwe analyze the evolution
of Grover’s algorithm inW , operator R f can be replaced by

R′
f = 2

∣∣x⊥
0

〉〈
x⊥
0

∣∣− IN ,

which keeps
∣∣x⊥

0

〉
unchanged and inverts the sign of a vector orthogonal to

∣∣x⊥
0

〉
.

Show that the actions of R′
f and R f are the same if we restrict their actions to real

vectors inW .

Exercise 4.6. The analysis of Grover’s algorithm presented in this section is heavily
based on Fig. 4.3. On the other hand, it is known that on real vector spaces the action
of two successive reflections on a real vector |ψ〉 rotates |ψ〉 through an angle that
is twice the angle between the invariant spaces. The goal of this exercise is to show
algebraically in the specific setting of Grover’s algorithm that one application of the
evolution operator rotates the current state counterclockwise through angle θ, that
is, toward the marked vector.

Show algebraically that the product of reflections (RD R f ) rotates an arbitrary
unit vector in the real plane spanned by |x0〉 and

∣∣x⊥
0

〉
through angle θ that is twice

the angle between the invariant spaces, i.e., arccos
〈
D
∣∣x⊥

0

〉
. Show that the direction

of the rotation depends on the order of the reflections. Show that (RD R f ) rotates
counterclockwise. [Hint: Take an arbitrary unit vector of the form |ψ〉 = a

∣∣x⊥
0

〉+
b|x0〉, where a2 + b2 = 1. Calculate cos θ = 〈ψ|RD R f |ψ〉. Use the trigonometric
identity cos(θ/2) = √

1 + cos θ/
√
2.]



50 4 Grover’s Algorithm and Its Generalization

Exercise 4.7. Show that the entries of matrix R f given by (4.7) are (R f )k� =
(−1)δkx0 δk� and for matrix RD given by (4.8) are (RD)k� = 2

N − δk�. Show that the
entries of U are

Uk� = (−1)δ�x0

(
2

N
− δk�

)
.

4.4 Analysis Using the Two-Dimensional Real Space

There is an alternate route to analyze Grover’s algorithm by considering orthogonal
operators acting on R2.

Let us start with the initial condition. Define the unit vector

|d〉 =
√

N − 1√
N

|0〉 + 1√
N

|1〉,

which is the two-dimensional version of |D〉. Vector |0〉 plays the role of ∣∣x⊥
0

〉
and

|1〉 plays the role of |x0〉. Using (4.11), we obtain

|d〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉. (4.18)

The two-dimensional version of RD is

rd = 2|d〉〈d| − I2,

and, using the definition of |d〉 and trigonometric identities, we obtain

rd =
[
cos θ sin θ
sin θ − cos θ

]
.

The two-dimensional version of R f is

r f =
[
1 0
0 −1

]

and the two-dimensional version of U is

u = rd r f =
[
cos θ − sin θ
sin θ cos θ

]
, (4.19)

which is an orthogonal rotation matrix that rotates any vector counterclockwise
through angle θ. Using induction on t and trigonometric identities, we obtain (Exer-
cise4.8)



4.4 Analysis Using the Two-Dimensional Real Space 51

ut =
[
cos(θt) − sin(θt)
sin(θt) cos(θt)

]

for any positive integer t and

ut |d〉 = cos

(
θt + θ

2

)
|0〉 + sin

(
θt + θ

2

)
|1〉.

The running time of Grover’s algorithm is the time step that maximizes the ampli-
tude of |1〉, that is, it is trun such that

sin

(
θtrun + θ

2

)
= 1.

We have to solve the equation θtrun + θ/2 = π/2, which yields

trun = π

2θ
− 1

2
.

Using that θ ≈ 2/
√

N , we obtain the running time

trun =
⌊π

4

√
N
⌋

.

The success probability, using the previous expressions of trun and θ, is

psucc = sin2
(

π

2
+ 1√

N

)
,

whose asymptotic expansion is

psucc = 1 − 1

N
+ O

(
1

N 2

)
.

The mapping defined in Exercise4.10 establishes a correspondence between the
calculations in R2 and the calculations in HN .

Exercise 4.8. Show by induction on t that

ut =
[
cos(θt) − sin(θt)
sin(θt) cos(θt)

]

for any positive integer t .

Exercise 4.9. Show that r f and rd are Hermitian and unitary operators. Can we
conclude that (rd r f ) is Hermitian? Show that any nonHermitian real unitary operator



52 4 Grover’s Algorithm and Its Generalization

has at least two nonreal eigenvalues. Show that the nonreal eigenvalues come in
complex conjugate pairs.

Exercise 4.10. A vector |ψ〉 = a |0〉 + b |1〉 in W corresponds to a vector |�〉 in
HN , whose definition is

|�〉 = a
∣∣x⊥

0

〉+ b |x0〉.

This correspondence is established by a linear transformation from W to HN so
that |0〉 corresponds to ∣∣x⊥

0

〉
and |1〉 to |x0〉. Show that if |ψ〉 is an eigenvector of u

with eigenvalue λ, then the corresponding vector |�〉 is an eigenvector of U with
eigenvalue λ. Show that there are eigenvectors of U that cannot be obtained from u.

Exercise 4.11. Define a linear mapping φ : W �→ H2N so that

φ
(
a |0〉 + b |1〉) = (

a
∣∣x⊥

0

〉+ b |x0〉
)⊗ |−〉

fora, b ∈ C. Convince yourself that by usingφwecanbypass the analysis ofGrover’s
algorithm described in Sect. 4.3 and prove its correctness using only the method of
this section.

4.5 Analysis Using the Spectral Decomposition

Anotherway to analyze the evolution ofGrover’s algorithm is via the spectral decom-
position of u, given by (4.19). Instead of using R

2, we have to use H2 (see Exer-
cise4.9). If we use the method described in Exercise4.10, we obtain some eigenvec-
tors of U from the eigenvectors of u. We cannot obtain all eigenvectors of U from u,
but this is no problem because not all eigenvectors of U matter, and in fact the ones
that matter are obtained from u. The remaining eigenvectors have no overlap with
the initial condition.

The characteristic polynomial of u is

|λI − u| = λ2 − 2λ cos θ + 1, (4.20)

and then the eigenvalues of u are e±iθ, where

cos θ = 1 − 2

N
. (4.21)

A unit eigenvector of u associated with eiθ is

|α1〉 = |0〉 − i |1〉√
2

, (4.22)

and a unit eigenvector associated with e−iθ is



4.5 Analysis Using the Spectral Decomposition 53

|α2〉 = |0〉 + i |1〉√
2

. (4.23)

Set
{|α1〉, |α2〉

}
is an orthonormal basis ofH2.

To analyze the evolution of Grover’s algorithm, we must find the expression of
the initial condition |d〉 in the eigenbasis of u. Using (4.18), we obtain

|d〉 = 1√
2

(
e

iθ
2 |α1〉 + e− iθ

2 |α2〉
)

. (4.24)

The action of ut on |d〉 can be readily calculated when |d〉 is written in the eigenbasis
of u.1 The result is

ut |d〉 = 1√
2

(
ei(θt+ θ

2 )|α1〉 + e−i(θt+ θ
2 )|α2〉

)
. (4.25)

The probability of finding x0 as a function of the number of steps is

p(t) = ∣∣〈1|ut |d〉∣∣2

= 1

2

∣∣∣ei(θt+ θ
2 )
〈
1
∣∣α1

〉+ e−i(θt+ θ
2 )
〈
1
∣∣α2

〉∣∣∣
2

= sin2
(

θt + θ

2

)
. (4.26)

From now on, the calculation is equal to the one in the previous section. The running
time is

trun =
⌊π

4

√
N
⌋

and the asymptotic expansion of the success probability is

psucc = 1 − 1

N
+ O

(
1

N 2

)
.

4.6 Optimality of Grover’s Algorithm

Grover’s algorithm finds the marked element by querying the oracle O
(√

N
)
times.

Is it possible to develop an algorithm faster than Grover’s algorithm? In this section,
we show that Grover’s algorithm is optimal, that is, no quantum algorithm can find
the marked element with less than Ω

(√
N
)
evaluations of f using space O(n) and

with success probability greater than or equal to 1/2.

1The calculation of ut here is simpler than the calculation performed in Sect. 4.4 because there the
solution of Exercise4.8 is required.



54 4 Grover’s Algorithm and Its Generalization

This kind of proof should be as generic as possible. We use the standard quantum
computing model in which an arbitrary algorithm is a sequence of unitary operators
acting iteratively, starting with some initial condition, followed by a measurement
at the end. We want to show that if the oracle is queried less than Ω

(√
N
)
times,

the marked element is not found. Let us assume that to query the oracle we use
R f = I − 2|x0〉〈x0| as given by (4.17), where x0 is the marked element. This is no
restriction because the oracle must somehow distinguish the marked element, and in
order to have other forms of oracles, let us allow the use of any unitary operators Ua

and Ub that transform R f to Ua R f Ub during the execution of the algorithm. More
than that, Ua and Ub may change at each step.

Let |ψ0〉 be the initial state. The state of the quantum computer after t steps is
given by

|ψt 〉 = Ut R f . . . U1R f U0|ψ0〉, (4.27)

where U1, . . . , Ut are arbitrary unitary operators. There is no restriction on the effi-
ciency of these operators. The strategy of the proof is to compare the state |ψt 〉 with
state |φt 〉 = Ut . . . U0|ψ0〉, (4.28)

that is, the equivalent state without the application of the oracles. To make this
comparison, we define the quantity

Dt = 1

N

N−1∑

x0=0

∥∥|ψt 〉 − |φt 〉
∥∥2, (4.29)

which measures the deviation between |ψt 〉 and |φt 〉 after t steps. The sum over x0
is to average over all possible values of x0 in order to avoid favoring any particular
value. Note that |ψt 〉 depends on x0 and, in principle, |φt 〉 does not so depend. If Dt is
too small after t steps, we cannot distinguish the marked element from the unmarked
ones.

We will show that
c ≤ Dt ≤ 4 t2

N
, (4.30)

where c is a strictly positive constant. From this result, we conclude that if we take
the number of steps t with a functional dependence on N smaller than Ω

(√
N
)
,

for example, N
1
4 , the first inequality is violated. This discordant case means that Dt

is not big enough to allow us to distinguish the marked element. In the asymptotic
limit, the violation of this inequality is more dramatic showing that, for this number
of steps, a sequence of operators that distinguishes the marked element is equivalent
to a sequence that does not so distinguish.

Let us start with inequality Dt ≤ 4 t2/N . This inequality is valid for t = 0. By
induction on t , we assume that the inequality is valid for t and show that it is valid
for t + 1. Note that



4.6 Optimality of Grover’s Algorithm 55

Dt+1 = 1

N

N−1∑

x0=0

∥∥Ut+1R f |ψt 〉 − Ut+1|φt 〉
∥∥2

= 1

N

N−1∑

x0=0

∥∥R f |ψt 〉 − |φt 〉
∥∥2

= 1

N

N−1∑

x0=0

∥∥R f (|ψt 〉 − |φt 〉) + (R f − I )|φt 〉
∥∥2. (4.31)

Using the square of the triangle inequality

∥∥|α〉 + |β〉∥∥2 ≤ ∥∥|α〉∥∥2 + 2 ‖|α〉‖ ‖|β〉‖ + ∥∥|β〉∥∥2, (4.32)

where
|α〉 = R f (|ψt 〉 − |φt 〉)

and

|β〉 = (R f − I )|φt 〉
= −2

〈
x0
∣∣φt
〉 |x0〉,

we obtain

Dt+1 ≤ 1

N

N−1∑

x0=0

(∥∥|ψt 〉 − |φt 〉
∥∥2 + 4

∥∥|ψt 〉 − |φt 〉
∥∥ ∣∣〈x0

∣∣φt
〉∣∣

+ 4
∣∣〈x0

∣∣φt
〉∣∣2
)
. (4.33)

Using the Cauchy–Schwarz inequality
∣∣〈α
∣∣β
〉∣∣ ≤ ‖|α〉‖ ‖|β〉‖ (4.34)

in the second term of inequality (4.33), where

|α〉 =
N−1∑

x0=0

∥∥|ψt 〉 − |φt 〉
∥∥ |x0〉

and

|β〉 =
N−1∑

x0=0

∣∣〈x0
∣∣φt
〉∣∣ |x0〉

and also using the fact that



56 4 Grover’s Algorithm and Its Generalization

N−1∑

x0=0

∣∣〈x0
∣∣φt
〉∣∣2 = 〈

φt

∣∣φt
〉 = 1,

we obtain

Dt+1 ≤ Dt + 4

N

(
N−1∑

x0=0

∥∥|ψt 〉 − |φt 〉
∥∥2
) 1

2
⎛

⎝
N−1∑

x ′
0=0

∣∣〈x ′
0

∣∣φt
〉∣∣2
⎞

⎠

1
2

+ 4

N

≤ Dt + 4

√
Dt

N
+ 4

N
. (4.35)

Since we are assuming that Dt ≤ 4 t2/N from the inductive hypothesis, we obtain
Dt+1 ≤ 4 (t + 1)2/N .

Wenow show the harder inequality c ≤ Dt . Let us define two new quantities given
by

Et = 1

N

N−1∑

x0=0

∥∥|ψt 〉 − |x0〉
∥∥2, (4.36)

Ft = 1

N

N−1∑

x0=0

∥∥|φt 〉 − |x0〉
∥∥2. (4.37)

We obtain an inequality involving Dt , Et , and Ft as follows:

Dt = 1

N

N−1∑

x0=0

∥∥∥ (|ψt 〉 − |x0〉) + (|x0〉 − |φt 〉)
∥∥∥
2

≥ Et + Ft − 2

N

N−1∑

x0=0

∥∥|ψt 〉 − |x0〉
∥∥ ∥∥|φt 〉 − |x0〉

∥∥

≥ Et + Ft − 2
√

Et Ft

=
(√

Ft −√
Et

)2
, (4.38)

where, in the first inequality, we use the square of the reverse triangle inequality

∥∥|α〉 + |β〉∥∥2 ≥ ∥∥|α〉∥∥2 − 2 ‖|α〉‖ ‖|β〉‖ + ∥∥|β〉∥∥2 (4.39)

and, in the second inequality, we use the Cauchy–Schwarz inequality with vectors

|α〉 =
N−1∑

x0=0

∥∥|ψt 〉 − |x0〉
∥∥ |x0〉,



4.6 Optimality of Grover’s Algorithm 57

|β〉 =
N−1∑

x0=0

∥∥|φt 〉 − |x0〉
∥∥ |x0〉.

We now show that

Ft ≥ 2 − 2
1√
N

.

Define θx0 as the phase of
〈
x0
∣∣φt
〉
, that is,

〈
x0
∣∣φt
〉 = eiθx0

∣∣〈x0
∣∣φt
〉∣∣ .

Define the state

|θ〉 = 1√
N

N−1∑

x0=0

eiθx0 |x0〉. (4.40)

So,

〈
θ
∣∣φt
〉 = 1√

N

N−1∑

x0=0

e−iθx0
〈
x0
∣∣φt
〉

= 1√
N

N−1∑

x0=0

∣∣〈x0
∣∣φt
〉∣∣ . (4.41)

Using the Cauchy–Schwarz inequality, we obtain
∣∣〈θ
∣∣φt
〉∣∣ ≤ 1 and

N−1∑

x0=0

∣∣〈x0
∣∣φt
〉∣∣ ≤ √

N . (4.42)

To reach the desired result, we use the above inequality and the fact that the real part
of
〈
x0
∣∣φt
〉
is smaller than or equal to

∣∣〈x0
∣∣φt
〉∣∣:

Ft = 1

N

N−1∑

x0=0

∥∥|φt 〉 − |x0〉
∥∥2

= 2 − 2

N

N−1∑

x0=0

Re
{〈

x0
∣∣φt
〉}

≥ 2 − 2

N

N−1∑

x0=0

∣∣〈x0
∣∣φt
〉∣∣

≥ 2 − 2√
N

. (4.43)



58 4 Grover’s Algorithm and Its Generalization

Nowwe show that Et ≤ (2 − √
2).After t steps, the state of the quantumcomputer

after the action of the oracles is |ψt 〉. Similar to the calculation used for Ft , we have

Et = 1

N

N−1∑

x0=0

∥∥|ψt 〉 − |x0〉
∥∥2

= 2 − 2

N

N−1∑

x0=0

Re
{〈

x0
∣∣ψt
〉}

.

Let us assume that the probability of a measurement to return x0 is greater than or
equal to 1/2, that is,

∣∣〈x0
∣∣ψt
〉∣∣2 ≥ 1/2 for all x0. Instead of using 1/2, we can choose

any fixed value between 0 and 1 (Exercise4.12) and instead of using the computa-
tional basis, we use basis {eiα0 |0〉, . . . , eiαN−1 |N − 1〉},where αx0 for 0 ≤ x0 < N is
defined as the phase of

〈
x0
∣∣ψt
〉
. This basis transformation does not change the inequal-

ities that we have obtained so far and it does not changemeasurement results either. In
this new basis (tilde basis),

〈
x̃0
∣∣ψt
〉
is a real number, that is, Re

{〈
x̃0
∣∣ψt
〉} = ∣∣ 〈x̃0

∣∣ψt
〉 ∣∣.

Therefore,

Et = 2 − 2

N

N−1∑

x0=0

∣∣〈x̃0
∣∣ψt
〉∣∣

≤ 2 − 2

N

N−1∑

x0=0

1√
2

= 2 − √
2. (4.44)

Using inequalities Et ≤ (2 − √
2) and Ft ≥ 2 − 2/

√
N , we obtain

Dt ≥
(√

Ft −√
Et

)2

≥
(√

2 − 2√
N

−
√
2 − √

2

)2

=
(√

2 −
√
2 − √

2

)2

+ O

(
1√
N

)
. (4.45)

This completes the proof of inequality c ≤ Dt for N large enough. Constant c must
obey

0 < c <

(√
2 −

√
2 − √

2

)2

.

We conclude that an algorithm that is able to find the marked element must obey
the inequalities (4.30). Therefore, cN ≤ 4t2 or equivalently t = Ω

(√
N
)
.



4.6 Optimality of Grover’s Algorithm 59

Exercise 4.12. Show that if the probability of measurement to return x0 is greater
than or equal to p, then the constant c must obey

0 < c <

(√
2 −

√
2 − 2

√
p

)2

.

To achieve a success probability close to 1, the algorithm must be run 1/p times.
Since p is constant, this does not change the total cost of Ω

(√
N
)
.

Exercise 4.13. Instead of assuming that
∣∣〈x0

∣∣ψt
〉∣∣2 ≥ 1

2 for all x0, suppose that the
uniform average probability is greater than or equal to 1/2. Show that one still needs
to query the oracle Ω

(√
N
)
times.

Exercise 4.14. In (4.27) and (4.28), unitary operators U0, . . ., Ut can also distin-
guish the marked element. Is the proof valid if Ui = U ′

i R f for all i?

Exercise 4.15. What is the value of
∥∥|α〉 − |β〉∥∥2 for orthogonal states |α〉 and |β〉?

Can you give an interpretation for Ft and explainwhy it is so close to 2? Is it important
that Et be smaller than 2?

4.7 Search with Repeated Elements

Grover’s algorithm solves the following problem: Given a Boolean function f , find
x0 such that f (x0) = 1 assuming that x0 is the only domain point whose image is
1. In this section, we address a generalized version. Let f be a Boolean function
as before, but the image of m domain points is 1. The case m = 1 is equal to the
previous case. Let M be the set of points whose image is 1. The problem is to find
an element in M by evaluating f . How many times f must be evaluated?

We can also put this version in a concrete way. We ask a quantum programmer
to choose m points in the domain of f without telling us which are the points. We
know m, but we do not know the points. For example, if the programmer chooses
points 5 and 6, two generalized Toffoli gates are needed as shown in the circuit of
Fig. 4.4. Note that the state of the second register changes from |0〉 to |1〉 only if the
input of the first register is 5 or 6, otherwise the state remains unchanged.

The optimal quantum algorithm that solves this problem is a straightforward
generalization of Grover’s algorithm. As before, we use two registers, the first has n
qubits and the second has 1 qubit, whose state is always |−〉. The form of operator
R f is similar to the one described in (4.3) and is defined by

R f |x〉|0〉 =
{ |x〉|1〉, if x ∈ M,

|x〉|0〉, otherwise.
(4.46)

OperatorRD does not change and is givenby (4.4). Each step is drivenbyU = RD R f

and the initial condition is |D〉|−〉, the same as before. The number of times operator



60 4 Grover’s Algorithm and Its Generalization

|1 • |1
|0 • |0
|1 |1
|0 |1

Fig. 4.4 Circuit that implements R f for the case f (5) = 1, f (6) = 1, f (x) = 0 otherwise. Only
the quantum programmer knows where the full and empty controls are. However, we know the
number of generalized Toffoli gates that was used, in this case m = 2

U is applied is

trun =
⌊

π

4

√
N

m

⌋

.

At the end, we measure the first register in the computational basis and the result is
an element in M with probability greater than or equal to 1 − m

N .

4.7.1 Analysis Using Reflection Operators

The analysis of the algorithm when m > 1 is similar to the analysis of Grover’s
algorithm. We discard the second register because its state is always |−〉 and we
define R f , which acts on HN , as

R f = −
∑

x∈M

|x〉〈x | +
∑

x /∈M

|x〉〈x |. (4.47)

We splitHN into two subspaces:M = span{|x〉 : x ∈ M} andM⊥ = span{|x〉 : x /∈
M}. R f is a reflection through M⊥. We define two unit vectors in these subspaces,
which are

|M〉 = 1√
m

∑

x∈M

|x〉, (4.48)

∣∣M⊥〉 = 1√
N − m

∑

x /∈M

|x〉. (4.49)

The evolution of the algorithm takes place in the two-dimensional vector space
spanned by |M〉 and

∣∣M⊥〉. These vectors play the same role as |x0〉 and
∣∣x⊥

0

〉
in

Grover’s algorithm.
Let (θ/2) be the angle between the initial condition |D〉 and ∣∣M⊥〉. Then,



4.7 Search with Repeated Elements 61

θ = 2 arccos
〈
M⊥∣∣D

〉
.

Using (4.49), we obtain

θ = 2 arccos

√
1 − m

N
.

Using trigonometric identities, we obtain

θ = arccos

(
1 − 2m

N

)
. (4.50)

The asymptotic expansion when N � m yields

θ = 2

√
m

N
+ O

(
1

N

)
. (4.51)

Vector |D〉 lies in the two-dimensional vector space spanned by |M〉 and ∣∣M⊥〉 and
is written as

|D〉 = cos
θ

2

∣∣M⊥〉+ sin
θ

2
|M〉.

The evolution operator U = RD R f is a product of two reflections and rotates
the initial condition counterclockwise through angle θ about the origin. We apply
U repeatedly until the initial vector is rotated through π/2 radians. The number of
times trun we apply U obeys θ trun + θ/2 = π/2. When N � m, we obtain

trun =
⌊

π

4

√
N

m

⌋

.

The success probability is calculated in the same way as before: The angle between
the final state and |M〉 is almost (θ/2) because the final state is almost orthogonal to
|D〉. Then,

psucc ≥ cos2
(

θ

2

)

= 1 − m

N
. (4.52)

Exercise 4.16. Show that

U t |D〉 = sin

(
t θ + θ

2

)
|M〉 + cos

(
t θ + θ

2

) ∣∣M⊥〉,



62 4 Grover’s Algorithm and Its Generalization

where θ is given by (4.51). From this expression, find the best stopping point trun for
the algorithm and show that the success probability psucc obeys (4.52).

Exercise 4.17. Show that U t |D〉 is orthogonal to |D〉 for t = π
2θ .

Exercise 4.18. What is the computational complexity in terms of the number of
evaluations of function f of the best classical algorithm that finds an element in set
M with probability p ≥ 1

2 .

Exercise 4.19. Show that if m = N
2 , a marked element is found with probability 1

using a single iteration. Find the best success probability when m = N
4 .

Exercise 4.20. Analyze the algorithm when m ≥ N
2 . What happens to the number

of steps and the success probability? Can we efficiently solve this problem with a
classical algorithm?

4.7.2 Analysis Using the Reduced Space

Since the evolution of the algorithm when m > 1 takes place in the two-dimensional
vector space spanned by |M〉 and

∣∣M⊥〉, we define the reduced unitary operators
rD and r f that act on a two-dimensional Hilbert space. The initial condition in the
reduced space is

|d〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉, (4.53)

where θ is given by (4.50). Note that |d〉 is the same as the one in Eq. (4.18) except
that θ has been redefined. Then, the evolution operator acting on the reduced space
is

u =
[
cos θ − sin θ
sin θ cos θ

]
, (4.54)

which is the same as the one described in Eq. (4.19) except that θ has been redefined.
The optimal running time canbe found either by using induction on t or byperforming
the spectral decomposition, yielding

trun = π

2θ
− 1

2
,

whose asymptotic expansion when N � m is

trun = π

4

√
N

m
+ O

(
1√
N

)
.

The success probability is calculated in the same way as before.



4.7 Search with Repeated Elements 63

Exercise 4.21. Show that the eigenvectors ofU = RD R f associated with the eigen-
values e±iθ are ∣∣M⊥〉∓ i|M〉√

2
,

where |M〉 and ∣∣M⊥〉 are defined in (4.48) and (4.49), respectively.

4.8 Amplitude Amplification

The technique called amplitude amplification used in quantum algorithms is con-
trasted with the technique called probability amplification used in classical random-
ized algorithms. An algorithm is said to be randomized if, during its execution,
it chooses a path at random, usually employing a random number generator. The
algorithm can output different values in two separate rounds, using the same input
on each round. For example, a randomized algorithm that outputs a factor of num-
ber N may return 3 when N = 15 and, in a second round with the same input, may
return 5. This never happens in a deterministic algorithm. One of the reasons we need
randomized algorithms is that in some problems in which we are faced with several
options, it is best to take a random decision instead of spending time analyzing what
is the best option.

The two most common classes of randomized algorithms are the Monte Carlo
and Las Vegas algorithms. A brief description of these classes is as follows: Monte
Carlo algorithms always return an output in a finite predetermined time, but it may
be wrong. The probability of correct response may be small. Las Vegas algorithms
return a correct output or an error message, but the running time may be long or
infinite. It is usually required that the expected running time is finite. Monte Carlo
algorithms can be converted into Las Vegas algorithms if a procedure that checks
the correctness of the output is known. Las Vegas algorithms can be converted into
Monte Carlo algorithms using the Markov’s inequality.2

Here we deal with the class ofMonte Carlo algorithms. Let p be the probability of
returning the correct value. If a procedure that checks the correctness of the output is
known, then we can amplify the success probability by running the algorithm many
times with the same input each time. We have a collection of outputs, and we want
to be sure that the correct result is in the collection. If the algorithm runs n times,
the probability of returning a wrong result every time is (1 − p)n . Therefore, the
probability of returning at least one correct result is 1 − (1 − p)n . This probability
is approximately np if p � 1. In order to achieve a success probability close to 1
and independent of p, we must take n = 1/p as a first approximation. To analyze the
complexity of aMonteCarlo algorithm that returns the correct outputwith probability
p, we must multiply the running time by 1/p. If p does not depend on the input size,

2Markov’s inequality provides an upper bound for the probability that a nonnegative function of a
random variable is greater than or equal to some positive constant.



64 4 Grover’s Algorithm and Its Generalization

then multiplying by 1/p does not change the time complexity. Otherwise, this factor
must be considered.

4.8.1 The Technique

In the quantum case, we amplify amplitudes and consequently the number of rounds
is 1/

√
p, that is, quadratically smaller compared with the method of probability

amplification.
The technique of amplitude amplification can be described as follows:

Initial Setup

Supposewe have a quantumalgorithmdescribed by the unitary operator A, which can
be implemented in a quantum computer with at least n qubits (main register) and aims
to find a marked element. A marked element x is a point in the domain of a Boolean
function f : {0, 1}n → {0, 1} such that f (x) = 1. Suppose that this algorithm is not
good enough because if we perform a measurement in the computational basis when
the state of the quantum computer is A|ψin〉, we obtain a marked element with a
small probability p, where |ψin〉 is the best initial state of the algorithm A. We wish
to improve the success probability.

The Amplification

Using f and possibly some extra registers, we define operator U f , whose action on
the computational basis of the main register is

U f |x〉 = (−1) f (x)|x〉. (4.55)

There is a quantumprocedure that allows us to find amarked element using O
(
1/

√
p
)

applications of U f and A, with the success probability approaching 1 when n → ∞.
The amplitude amplification technique can be described as follows: Apply U trun

to state |ψ〉 and measure the main register in the computational basis, where

U = (2 |ψ〉〈ψ| − I ) U f , (4.56)

and
|ψ〉 = A|ψin〉, (4.57)

and

trun =
⌊

π

4
√

p

⌋
. (4.58)

Note that there are no intermediary measurements. The evolution operator of the
new algorithm is U , which must be iterated trun times. In the quantum case, A is
repeated around 1/

√
p times, and we measure the first register only one time at the

end.



4.8 Amplitude Amplification 65

An Example

Grover’s algorithm is the simplest example that employs the amplitude amplification
technique. In this case, A is H⊗n , |ψin〉 is |0〉⊗n , and A|0〉⊗n is |D〉. If we measure
the main register when it is in state |D〉, we obtain a marked element with probability
p = m/N , which is very bad when N � m. We wish to improve this probability.
Then, we use the amplitude amplification technique, which turns out to be the same
as the generalized Grover algorithm. The number of times we employ U f and A to
find a marked element is O(1/

√
p) = O

(√
N/m

)
.

In this example, A does not evaluate f . Then, the number of queries depends only
on the number of times U f is used.

Analysis

The analysis of the amplitude amplification technique is very similar to the analysis
of the generalized version of Grover’s algorithm. Let us disregard any extra register
that is necessary to implement operator U f . Suppose that |ψ〉 — see (4.57) — is

|ψ〉 =
∑

x∈{0,1}n

αx |x〉. (4.59)

The probability of finding a marked element after running algorithm A is

p =
∑

f (x)=1

∣∣αx

∣∣2. (4.60)

For now, let us assume that 0 < p < 1. Define states

|ψ0〉 = 1√
1 − p

∑

f (x)=0

αx |x〉, (4.61)

|ψ1〉 = 1√
p

∑

f (x)=1

αx |x〉. (4.62)

Using (4.59), we obtain

|ψ〉 = cos
θ

2
|ψ0〉 + sin

θ

2
|ψ1〉, (4.63)

where

sin
θ

2
= √

p (4.64)

and θ ∈ (0,π).
One step is obtained by applying the evolution operator

U = RψU f , (4.65)



66 4 Grover’s Algorithm and Its Generalization

where Rψ = 2 |ψ〉〈ψ| − I . The initial condition is |ψ〉 = A|ψin〉, where |ψin〉 is the
initial state of the original algorithm. Let us focus on how many times we have
to apply U f to find a marked element with certainty when n → ∞. The overall
efficiency of the amplitude amplification technique depends on operator A, which
must be considered eventually.

The evolution of the amplitude amplification technique takes place in the real
plane spanned by vectors |ψ0〉 and |ψ1〉, which plays the same role as vectors

∣∣M⊥〉

and |M〉 of Sect. 4.7.1. As in Exercise4.16 on p.61, the state of the quantum computer
after t steps is given by

U t |ψ〉 = cos

(
t θ + θ

2

)
|ψ0〉 + sin

(
t θ + θ

2

)
|ψ1〉. (4.66)

As before, we choose t thatmaximizes the amplitude of |ψ1〉, that is, t = π/2θ − 1/2.
We assume that p tends to zero when n increases. Using (4.64), the asymptotic
running time is

trun =
⌊

π

4
√

p

⌋
. (4.67)

The number of applications of U f is asymptotically the order of 1/
√

p. The success
probability is

psucc ≈ sin2
(π

2
+ √

p
)

= 1 − p + O(p2). (4.68)

The success probability is 1 in the asymptotic limit (large n).

Further Reading

The original version of Grover’s algorithm is described in the conference paper [128]
and in the journal paper [130]. References [129, 131] are also influential. The gener-
alization of the algorithm for searching databases with repeated elements and a first
version of the counting algorithm are described in [57]. The version of the counting
algorithm using phase estimation is described in [244]. The geometric interpretation
of Grover’s algorithm is described in [7]. The analysis using spectral decomposition
is discussed in [244] and its connection with the abstract search algorithm is briefly
described in [19]. The proof of optimality of Grover’s algorithm is presented in [42].
A more readable version is described in [57], and we have closely followed the
proof presented in [248]. Reference [344] presents a more detailed proof. The role of
entanglement in Grover’s algorithm is addressed in [237]. The method of amplitude
amplification is addressed in [59, 151, 170, 285].

Experimental proposals and realizations of Grover’s algorithm are described
in [47, 103, 110, 116, 167, 203, 325, 340]. Quantum circuit designs for Grover’s
algorithm are addressed in [25, 100, 132]. A modified version of Grover’s algorithm
that searches a marked state with full successful rate is presented in [214]. How



4.8 Amplitude Amplification 67

Grover’s algorithm depends on the entanglement of the initial state is addressed
in [49]. A quantum secret-sharing protocol based on Grover’s algorithm is described
in [153]. Study of dissipative decoherence on the accuracy of the Grover quan-
tum search algorithm is addressed in [351]. Improvements in Grover’s algorithm
using phase matching are described in [206, 207]. Decoherence effects on Grover’s
algorithm using the depolarizing channel are presented in [288]. The geometry of
entanglement of Grover’s algorithm is addressed in [160].

Quantum secret-sharing protocol and quantum communication based on Grover’s
algorithm are presented in [137, 322]. Quantum search with certainty is discussed
in [165, 311]. A workflow of Grover’s algorithm using CUDA and GPGPU is
described in [218]. Applications of quantum search to cryptography are described
in [197, 343]. Quantum algorithms to check the resiliency property of a Boolean
function are addressed in [71]. Quantum error correction for Grover’s algorithm is
presented in [55]. The entanglement nature of quantum states generated by Grover’s
search algorithm is investigated by means of algebraic geometry in [149]. Improve-
ments on the success probability of Grover’s algorithm are addressed in [219].
Quantum coherence depletion in Grover’s algorithm is investigated in [298]. Refer-
ence [65] presents a generalized version of Grover’s Algorithm for multiple phase
inversion.

Grover’s algorithm is described in many books, such as [30, 40, 43, 97, 140, 146,
170, 178, 209, 230, 234, 248, 276, 303, 328].



Chapter 5
Coined Walks on Infinite Lattices

The coined quantum walk on the line was introduced in Sect. 3.3 on p. 25 in order
to highlight features that are strikingly different from the classical random walk. In
this Chapter, we present in detail the analytic calculation of the state of the quantum
walk on the line after an arbitrary number of steps. The calculation is a model for
the study of quantum walks on many graphs, and the Fourier transform is the key to
the success of this calculation.

We also analyze coined quantum walks on the two-dimensional infinite lattice.
Since the evolution equations are very complex in this case, the analysis is performed
numerically. Among new features that show up in the two-dimensional case, we
highlight the fact that there are nonequivalent coins, which generate a wide class of
probability distributions.

On infinite graphs, the quantum walk spreads indefinitely. One of the most inter-
esting physical properties is the expected distance from the origin, which is measured
by the standard deviation of the probability distribution. Both the line and the two-
dimensional lattice have a standard deviation that is directly proportional to the
number of steps in contrast to the standard deviation of the classical random walk,
which is proportional to the square root of the number of steps.

Quantum walks can also be defined in higher dimensions, such as the three-
dimensional infinite lattice. The standard deviation is also a linear function of time,
and the quadratic speedup over the behavior of classical random walk is maintained.

5.1 Hadamard Walk on the Line

Consider a coined quantum walk on the integer points of the infinite line. The spatial
part has an associated Hilbert spaceHP of infinite dimension, whose computational
basis is

{|x〉 : −∞ ≤ x ≤ ∞}
. The coin spaceHC has two dimensions and its com-

putational basis is
{|0〉, |1〉} corresponding to two possible directions of motion,

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_5

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_5&domain=pdf


70 5 Coined Walks on Infinite Lattices

rightward or leftward. The full Hilbert space associated with the quantum walk is
HC ⊗ HP , whose computational basis is

{| j, x〉 : j ∈ {0, 1} : x ∈ Z
}
, where j = 0

means rightward and j = 1 means leftward.1

The state of the walker at time t is described by

|Ψ (t)〉 =
1∑

j=0

∞∑

x=−∞
ψ j,x (t)| j, x〉, (5.1)

where the coefficients ψ j,x (t) are complex functions, called probability amplitudes,
which obey for any time step t the normalization condition

∞∑

x=−∞
px (t) = 1, (5.2)

where
px (t) = ∣∣ψ0,x (t)

∣∣2 + ∣∣ψ1,x (t)
∣∣2 (5.3)

is the probability distribution of a position measurement at the time step t in the
computational basis.

The shift operator is

S =
1∑

j=0

∞∑

x=−∞

∣∣ j, x + (−1) j
〉〈 j, x |. (5.4)

After one application of S, x is incremented by one unit if j = 0, whereas x is
decremented by one unit if j = 1. Equation (5.4) is equal to Eq. (3.13) of Sect. 3.3
on p. 25, as can be checked by expanding the sum over index j .

Let us use the Hadamard coin

H = 1√
2

[
1 1
1 −1

]
. (5.5)

Applying the evolution operator of the coined model

U = S (H ⊗ I ) (5.6)

to state |Ψ (t)〉, we obtain

1Note that we use the order coin-position in | j, x〉, which is called the coin-position notation.
There is an alternate order which is position-coin written as |x, j〉, which is called the position-coin
notation. The notation’s choice is a matter of taste.



5.1 Hadamard Walk on the Line 71

|Ψ (t + 1)〉 =
∞∑

x=−∞
S
(
ψ0,x (t)H |0〉|x〉 + ψ1,x (t)H |1〉|x〉)

=
∞∑

x=−∞

ψ0,x (t) + ψ1,x (t)√
2

S|0〉|x〉 + ψ0,x (t) − ψ1,x (t)√
2

S|1〉|x〉

=
∞∑

x=−∞

ψ0,x (t) + ψ1,x (t)√
2

|0〉|x + 1〉

+ψ0,x (t) − ψ1,x (t)√
2

|1〉|x − 1〉.

After expanding the left-hand side in the computational basis, we search for the
corresponding coefficients on the right-hand side to obtain the walker’s evolution
equations

ψ0,x (t + 1) = ψ0,x−1(t) + ψ1,x−1(t)√
2

, (5.7)

ψ1,x (t + 1) = ψ0,x+1(t) − ψ1,x+1(t)√
2

. (5.8)

Our goal is to calculate the probability distribution analytically. However, (5.7)
and (5.8) cannot be easily solved at least in the way they are presently described.
Fortunately, in this case, there is an alternative way to address the problem. There
is a special basis called Fourier basis that diagonalizes the shift operator. This will
help in the diagonalization of the evolution operator.

Exercise 5.1 Instead of using operator H as coin, use the Pauli matrix X . Obtain
the evolution equations of the walker on the line, and solve analytically taking as
the initial condition a walker on the origin with an arbitrary coin state. Calculate the
standard deviation.

5.1.1 Fourier Transform

The Fourier transform of a discrete function f : Z → C is a continuous function
f̃ : [−π,π] → C defined by

f̃ (k) =
∞∑

x=−∞
e−ikx f (x), (5.9)

where i = √−1. The inverse transform is given by



72 5 Coined Walks on Infinite Lattices

f (x) =
∫ π

−π

eikx f̃ (k)
dk

2π
. (5.10)

This is a special case of a more general class of Fourier transforms, which is useful
in our context. Note that if x had units (e.g., meters), k should have the inverse unit
(1/meters), since (kx) is the argument of the exponential function and therefore must
be dimensionless. The physical interpretation of the variable k is the wave number.

In (5.1), the coefficients ψ j,x (t) are discrete functions of variable x . The Fourier
transform of ψ j,x (t) is

ψ̃ j (k, t) =
∞∑

x=−∞
e−ikxψ j,x (t), (5.11)

where k is a continuous variable defined in the interval [−π,π]. The goal now is to
obtain the evolution equations for ψ̃ j (k, t). If we solve these new equations, we can
obtain ψ j,x (t) via the inverse Fourier transform.

There is another way to use the Fourier transform. Instead of transforming the
function f : Z → C, we transform the computational basis of HP . We use the for-
mula

∣∣k̃
〉 =

∞∑

x=−∞
eikx |x〉 (5.12)

to define vectors
∣∣k̃
〉
, where k is a continuous variable defined in the interval [−π,π],

as before. Note that we are using the positive sign in the argument of the exponential.
The problem with this method is that the norm of

∣∣k̃
〉
is infinite. This can be solved

by redefining
∣∣k̃
〉
as follows

∣∣k̃
〉 = lim

L→∞
1√

2L + 1

L∑

x=−L

eikx |x〉. (5.13)

The same change should be applied to (5.11) for the sake of consistency. Since the
normalization constant is not relevant, wewill continue to use (5.12) as the definition
of
∣∣k̃
〉
and (5.11) as the definition of ψ̃ j (k, t) to simplify the calculation. The Fourier

transform defines a new orthonormal basis
{| j〉∣∣k̃〉 : j ∈ {0, 1}, −π ≤ k ≤ π

}
called

(extended) Fourier basis. In this basis, we can express the state of the quantum walk
as

|Ψ (t)〉 =
1∑

j=0

∫ π

−π

ψ̃ j (k, t) | j〉∣∣k̃〉 dk
2π

. (5.14)

Note that in the above equation |Ψ (t)〉 is written in the Fourier basis, while in
Eq. (5.1), |Ψ (t)〉 is written in the computational basis.



5.1 Hadamard Walk on the Line 73

Exercise 5.2 Show that (5.1) and (5.14) are equivalent if the Fourier basis is defined
by formula (5.12).

Let us calculate the action of the shift operator on the new basis, that is, the action
of S on | j〉∣∣k̃〉. Using (5.12) and the definition of S, we have

S| j〉∣∣k̃〉 =
∞∑

x=−∞
eikx S| j, x〉

=
∞∑

x=−∞
eikx | j〉∣∣x + (−1) j

〉
.

Renaming index x so that x ′ = x + (−1) j , we obtain

S| j〉∣∣k̃〉 =
∞∑

x ′=−∞
ei k (x ′−(−1) j )| j〉∣∣x ′〉

= e−i k (−1) j | j〉∣∣k̃〉. (5.15)

The result shows that the action of the shift operator S on a state of the Fourier basis
only changes its phase, that is, | j〉∣∣k̃〉 is an eigenvector associated with the eigenvalue
e−ik(−1) j. The next task is to find the eigenvectors of the evolution operator U . If we
diagonalize U , we will be able to find an analytic expression for the state of the
quantum walk as a function of time.

Applying U to vector
∣∣ j ′
〉∣∣k̃
〉
and using (5.15), we obtain

U
∣∣ j ′
〉∣∣k̃
〉 = S

⎛

⎝
1∑

j=0

Hj, j ′ | j〉
∣∣k̃
〉
⎞

⎠

=
1∑

j=0

e−i k (−1) j Hj, j ′ | j〉
∣∣k̃
〉
. (5.16)

The entries of U in the Fourier basis are

〈
j, k̃
∣∣U
∣∣ j ′, k̃ ′〉 = e−i k (−1) j Hj, j ′ δk,k ′ . (5.17)

For each k, we define operator H̃k , whose entries are

H̃ j, j ′ = e−i k (−1) j Hj, j ′ . (5.18)

In the matrix form, we have



74 5 Coined Walks on Infinite Lattices

H̃k =
[
e−i k 0
0 ei k

]
· H

= 1√
2

[
e−i k e−i k

ei k −ei k

]
. (5.19)

Equation (5.17) shows that the nondiagonal part of operatorU is associated with the
coin space. The goal now is to diagonalize operator H̃k . If |αk〉 is an eigenvector of
H̃k with eigenvalue αk , then |αk〉

∣∣k̃
〉
is an eigenvector ofU associated with the same

eigenvalue αk . To check this, note that (5.16) can be written as

U | j〉∣∣k̃〉 = (
H̃k | j〉

)∣∣k̃
〉
. (5.20)

The action of the shift operator S has been absorbed by H̃k when U acts on | j〉∣∣k̃〉.
If |αk〉 is an eigenvector of H̃k with eigenvalue αk , we have

U |αk〉
∣∣k̃
〉 = (

H̃k |αk〉
)∣∣k̃
〉

= αk |αk〉
∣∣k̃
〉
. (5.21)

Therefore, |αk〉
∣∣k̃
〉
is an eigenvector of U associated with the eigenvalue αk . This

result shows that the diagonalization of the evolution operator reduces to the diago-
nalization of H̃k . U acts on an infinite-dimensional Hilbert space, while H̃k acts on
a two-dimensional space.

The characteristic polynomial of H̃k is

pH̃k
(λ) = λ2 + i

√
2λ sin k − 1. (5.22)

The eigenvalues are the solutions of pH̃k
(λ) = 0, which are

αk = e−iωk , (5.23)

βk = ei (π+ωk ), (5.24)

where ωk is an angle in the interval [−π/2,π/2] that satisfies the equation

sinωk = 1√
2
sin k. (5.25)

The normalized eigenvectors are

|αk〉 = 1√
c−

[
e−i k√

2 e−iωk − e−i k

]
, (5.26)

|βk〉 = 1√
c+

[
e−i k

−√
2 eiωk − e−i k

]
, (5.27)

where



5.1 Hadamard Walk on the Line 75

c± = 2
(
1 + cos2 k

)± 2 cos k
√
1 + cos2 k. (5.28)

The spectral decomposition of U is

U =
∫ π

−π

(
e−iωk

∣∣αk, k̃
〉〈
αk, k̃

∣∣+ ei (π+ωk )
∣∣βk, k̃

〉〈
βk, k̃

∣∣
) dk

2π
. (5.29)

The t th power of U is

Ut =
∫ π

−π

(
e−iωk t

∣∣αk, k̃
〉〈
αk, k̃

∣∣+ ei (π+ωk ) t
∣∣βk, k̃

〉〈
βk, k̃

∣∣
) dk

2π
, (5.30)

because a function applied to U is by definition applied directly to the eigenvalues
when U is written in its eigenbasis. In this case, the function is f (x) = xt (see
Sect. A.13 on p. 260).

5.1.2 Analytic Solution

Suppose that initially the walker is at the origin x = 0 and the coin state is |0〉. The
initial condition is

|ψ(0)〉 = |0〉|x = 0〉. (5.31)

Using (5.30) we obtain

|ψ(t)〉 = Ut |ψ(0)〉
=
∫ π

−π

(
e−iωk t

∣∣αk, k̃
〉 〈

αk, k̃
∣∣0, 0

〉

+ ei (π+ωk ) t
∣∣βk, k̃

〉 〈
βk, k̃

∣∣0, 0
〉) dk

2π
. (5.32)

Using (5.12), (5.26), and (5.27), we obtain

〈
αk, k̃

∣∣0, 0
〉
= ei k√

c− , (5.33)

〈
βk, k̃

∣∣0, 0
〉
= ei k√

c+ . (5.34)

Then,

|ψ(t)〉 =
∫ π

−π

(
e−i (ωk t−k)

√
c− |αk〉 + ei (π+ωk ) t+i k

√
c+ |βk〉

) ∣∣k̃
〉 dk
2π

. (5.35)



76 5 Coined Walks on Infinite Lattices

The state of the walk is written in the eigenbasis of U . It is better to present it in
the computational basis. As an intermediate step, we write the eigenvectors |αk〉 and
|βk〉 in the computational basis using (5.26) and (5.27) keeping intact vectors

∣∣k̃
〉
,

which yields

|ψ(t)〉 =
∫ π

−π

(
e−i (ωk t−k)

c−

[
e−i k√

2 e−iωk − e−i k

]

+ei (π+ωk ) t+i k

c+

[
e−i k

−√
2 eiωk − e−i k

]) ∣∣k̃
〉 dk
2π

. (5.36)

Using (5.14), coefficients ψ̃ j (k, t) are given by

ψ̃0(k, t) = e−iωk t

c− + ei(π+ωk )t

c+ , (5.37)

ψ̃1(k, t) =
e−iωk t+ik

(√
2 e−iωk − e−i k

)

c−

−
ei(π+ωk )t+ik

(√
2 eiωk + e−i k

)

c+ . (5.38)

To simplify these expressions, it is convenient to use the identities

1

c± = 1

2

(
1 ∓ cos k√

1 + cos2 k

)
(5.39)

and √
2 e±iωk ± e−i k = c±

2
√
1 + cos2 k

. (5.40)

We obtain

ψ̃0(k, t) = 1

2

(
1 + cos k√

1 + cos2 k

)
e−iωk t

+ (−1)t

2

(
1 − cos k√

1 + cos2 k

)
eiωk t , (5.41)

ψ̃1(k, t) = eik

2
√
1 + cos2 k

(
e−iωk t − (−1)teiωk t

)
. (5.42)

Coefficient ψ j,x in the computational basis is given by

ψ j,x (t) =
∫ π

−π

eikx ψ̃ j (k, t)
dk

2π
. (5.43)

Using Eqs. (5.41) and (5.42) and simplifying the integrals (Exercise5.3), we obtain



5.1 Hadamard Walk on the Line 77

Fig. 5.1 Probability distribution of the quantum walk on the line after 100 steps obtained from the
analytic expressions (5.44) and (5.45). The diagonal crosses × correspond to integer values of x

ψ0,x (t) =
∫ π

−π

(
1 + cos k√

1 + cos2 k

)
e−i (ωk t−kx) dk

2π
, (5.44)

ψ1,x (t) =
∫ π

−π

eik√
1 + cos2 k

e−i (ωk t−kx) dk

2π
(5.45)

when n + t is even and ψ0,x (t) = ψ1,x (t) = 0 when n + t is odd.
For numerical values of x and t ,we calculateψ0,x (t) andψ1,x (t) throughnumerical

integration, and using (5.3) we calculate the probability distribution. The plot of
Fig. 5.1 shows the probability distribution after 100 steps. Only the even points are
displayed because the probability is zero at odd points. This curve is the same as the
curve generated numerically with the same initial condition in Sect. 3.3 on p. 25.

Exercise 5.3 Show that the integrals

(±1)t
∫ π

−π

(
1 ± cos k√

1 + cos2 k

)
e−i(±ωk t−kx) dk

2π

are real numbers and equal to each other when n + t is even and have opposite signs
when n + t is odd. Show the same for the integrals

(±1)t+1
∫ π

−π

eik√
1 + cos2 k

e−i(±ωk t−kx) dk

2π
.

Use these facts to obtain (5.44) and (5.45) from (5.41) and (5.42).

Exercise 5.4 Calculate analytically the probability amplitudes of the Hadamard
quantum walk with initial condition

|ψ(0)〉 = |0〉 + i|1〉√
2

|x = 0〉.



78 5 Coined Walks on Infinite Lattices

Depict the plot of the probability distribution and verify that it is symmetric about
the origin. Let fx (t) be the following function:

fx (t) =
⎧
⎨

⎩

2

πt
(
1− x2

t2

)√
1− 2x2

t2

, |x | ≤ t√
2
;

0, t√
2

< |x |.

Plot of fx (t) together with the probability distribution for some values of t and
check that fx (t) is a good approximation, disregarding the rapid oscillation of the
probability distribution.

5.1.3 Other Coins

A question that naturally arises is how general the results of the last section are. The
evolution operator of the coined quantum walk isU = S(C ⊗ I ), where S is the shift
operator (5.4). The only degrees of freedom are the coin operator C and the initial
condition. For the quantum walk on the line, these choices are not independent. An
arbitrary coin operator, disregarding a global phase, has the form

C =
[ √

ρ
√
1 − ρ eiθ√

1 − ρ eiφ −√
ρ ei(θ+φ)

]
, (5.46)

where 0 ≤ ρ ≤ 1 and 0 ≤ θ,φ ≤ π.
The coin state |0〉 induces a motion to the right, while |1〉 to the left. Note that

C |0〉 = √
ρ|0〉 +√

1 − ρ eiθ|1〉. (5.47)

Therefore, depending on ρ, the coin can increase the probability associated with
“go to right” or “go to left.” Angles θ and φ play no role in this probability. The
unbiased coin is obtained by taking ρ = 1/2. The Hadamard coin is an example of an
unbiased coin and the simplest one. An unbiased coin does not guarantee a symmetric
probability distribution, because there is still freedom in the initial condition. The
initial condition starting from the origin has the form

|Ψ (0)〉 = (
cosα |0〉 + eiβ sinα |1〉) |0〉, (5.48)

so we have two control parameters: α and β.
Considering unbiased coins and repeating the calculation of the quantum state for

an arbitrary time using an arbitrary initial condition, we conclude that the change
produced by parameters θ and φ can be fully achieved through appropriate choices of
parameters α and β. In fact, the result is more general because if we fix the coin as a
real operator (θ = φ = 0, ρ arbitrary), we can obtain all possible quantum walks by
choosing an appropriate initial condition (Exercise5.7). For some of these choices,



5.1 Hadamard Walk on the Line 79

the probability distribution is symmetric, assuming that the walker starts from the
origin. If we restrict ourselves to unbiased coins, the Hadamard walk with arbitrary
initial condition encompasses all cases.

Exercise 5.5 Find a coin that generates a symmetric probability distribution using
the initial condition

|ψ(0)〉 = |0〉 + |1〉√
2

|x = 0〉.

Exercise 5.6 In the classical random walk, we can have a walker on the line that can
move to the left, to the right, or stay in the same position.What is the quantum version
of this classical walk? Find the shift operator and use the Grover coin to calculate
the first steps using the initial condition |Ψ (0)〉 = |D〉|0〉. Obtain the answer in the
computational basis. [Hint: Use a three-dimensional coin.]

Exercise 5.7 Using operator (5.46) as coin, show that the operator C̃k associated
with the Fourier space is given by

C̃k =
[ √

ρ e−ik √
1 − ρ ei(−k+θ)√

1 − ρ ei(k+φ) −√
ρ ei(k+θ+φ)

]
.

Verify that the operator (5.19) can be obtained by a suitable choice of parameters
ρ, θ, and φ. Find the eigenvalues and eigenvectors of C̃k . Show that in the Fourier
space, we can write ∣∣Ψ̃k(t)

〉 = (C̃k)
t
∣∣Ψ̃k(0)

〉
,

where
∣∣Ψ̃k(0)

〉
is obtained from theFourier transformof |Ψ (0)〉, givenby (5.48). Show

that parameters θ and β only appear in the expression of
∣∣Ψ̃k(0)

〉
in the form θ + β.

Therefore, we can take θ = 0 and any possibility can be reproduced by choosing
an appropriate β. Show that parameter φ plays the role of a global phase and is
eliminated when we take the inverse Fourier transform. Conclude that by taking
θ = φ = 0, that is,

C =
[
cosλ sin λ
sin λ − cosλ

]
,

where λ is an angle, all one-dimensional quantum walks are obtained by a suitable
choice of the initial condition. If we restrict to unbiased coins, the Hadamard walk
with arbitrary initial condition encompasses all cases.

5.2 Two-Dimensional Lattice

Consider a quantum walk on the nodes of the infinite two-dimensional lattice. The
spatial part has an associated Hilbert space HP of infinite dimension, whose com-
putational basis is

{|x, y〉 : x, y ∈ Z
}
. If the walker is on a lattice node, it has four



80 5 Coined Walks on Infinite Lattices

options to move and the coin decides which one. There are two ways to implement
the coin: (1) It can be a single quantum systemwith four levels (a qudit) or (2) a com-
posite quantum system each onewith two levels (two qubits).We use the secondway.
The coin space HC has four dimensions, and its computational basis is denoted by
{∣∣ix , iy

〉 : 0 ≤ ix , iy ≤ 1}. The total Hilbert space associated with the quantum walk
is the coin-position space, which is given by HC ⊗ HP . We use the coin-position
notation.

The state of the walker at time t is described by

|Ψ (t)〉 =
1∑

ix ,iy=0

∞∑

x,y=−∞
ψix ,iy ; x,y(t)

∣∣ix , iy
〉|x, y〉, (5.49)

where the coefficientsψix ,iy ; x,y(t) are complex functions that obey the normalization
condition

1∑

ix ,iy=0

∞∑

x,y=−∞

∣∣ψix ,iy ; x,y(t)
∣∣2 = 1, (5.50)

for any time step t . The probability distribution is given by

px,y(t) =
1∑

ix ,iy=0

|ψix ,iy ; x,y(t)|2. (5.51)

The action of the shift operator S on the computational basis is described by

S
∣∣ix , iy

〉|x, y〉 = ∣∣ix , iy
〉∣∣x + (−1)ix , y + (−1)iy

〉
. (5.52)

If ix = 0 and iy = 0, x and y are incremented by one unit, which means that if the
walker leaves position (0, 0), it will go to (1, 1), that is, it goes through the main
diagonal of the lattice. If ix = 0 and iy = 1, x is incremented by one unit, while y
is decremented by one unit, indicating that the walker goes through the secondary
diagonal to the right. Similarly, for cases ix = iy = 1 and ix = 1, iy = 0. If ix and
iy are equal, the walker goes through the main diagonal. Otherwise, it goes through
the secondary diagonal.

Applying the standard evolution operator

U = S (C ⊗ I ) (5.53)

to the state at time t , we obtain

|Ψ (t + 1)〉 =
1∑

jx , jy=0

∞∑

x,y=−∞
ψ jx , jy ; x,y(t) S

(
C
∣∣ jx , jy

〉|x, y〉
)



5.2 Two-Dimensional Lattice 81

=
1∑

jx , jy=0

∞∑

x,y=−∞
ψ jx , jy ; x,y(t) S

⎛

⎝
1∑

ix ,iy=0

Cix ,iy ; jx , jy
∣∣ix , iy

〉|x, y〉
⎞

⎠

=
1∑

ix ,iy , jx , jy=0

∞∑

x,y=−∞
ψ jx , jy ; x,y(t)Cix ,iy ; jx , jy

∣∣ix , iy
〉∣∣x + (−1)ix , y + (−1)iy

〉
.

By renaming x + (−1)ix , y + (−1)iy to x , y, we obtain

|Ψ (t + 1)〉 =
1∑

ix ,iy , jx , jy=0

∞∑

x,y=−∞
Cix ,iy ; jx , jy

×ψ jx , jy ; x−(−1)ix , y−(−1)iy (t)
∣∣ix , iy

〉|x, y〉. (5.54)

After expanding the left-hand side of the above equation in the computational basis,
we search for the corresponding coefficients on the right-hand side in order to obtain
the walker’s evolution equation

ψix ,iy ; x,y(t + 1) =
1∑

jx , jy=0

Cix ,iy ; jx , jy ψ jx , jy ; x+(−1)ix , y+(−1)iy (t). (5.55)

This equation is too complex to be solved analytically for an arbitrary coin. In the next
chapter, exact solutions are obtained using Fourier transform for the flip-flop quantum
walk with the Grover coin on the finite two-dimensional lattice, which can be used to
obtain information about the behavior of quantum walks on the infinite lattice. Here,
we analyze (5.55) numerically by choosing three important nonequivalent coins:
Hadamard, Fourier, and Grover.

Exercise 5.8 Show that if the coin operator is the tensor product of two operators
C = C1 ⊗ C2, then the evolution operator (5.53) can be factorized as the tensor
product of two operators.

5.2.1 The Hadamard Coin

The Hadamard coin is C = H ⊗ H , and its matrix representation is

C = 1

2

⎡

⎢⎢
⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥⎥
⎦ . (5.56)

Let us use the initial condition



82 5 Coined Walks on Infinite Lattices

-100-75 -50 -25 0 25 50 75100
x

-100-75 -50 -25 0 25 50 75 100

y

0
0.001
0.002
0.003
0.004
0.005
0.006

p

Fig. 5.2 Probability distribution of the quantum walk on the two-dimensional lattice with the
Hadamard coin after 100 steps

|Ψ (0)〉 = |0〉 + i|1〉√
2

⊗ |0〉 + i|1〉√
2

⊗ |x = 0, y = 0〉, (5.57)

which is based on the initial condition used in Sect. 3.3 on p. 25 to obtain a symmetric
probability distribution for theHadamard coin. The plot of the probability distribution
after 100 steps is shown in Fig. 5.2.

The dynamic in this example is equivalent to two diagonal uncoupled quantum
walks. The analytic results obtained for the one-dimensional Hadamard walk do
apply in this case. A detailed analysis of Fig. 5.2 shows the characteristics of the
one-dimensional walk analyzed before.

5.2.2 The Fourier Coin

The entries of the N -dimensional Fourier coin are [FN ]k� = ωk�/
√
N , where ω =

exp(2πi/N ). In the four-dimensional case, we have C = F4 and its matrix represen-
tation is

F4 = 1

2

⎡

⎢⎢
⎣

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤

⎥⎥
⎦ . (5.58)

Let us use the initial condition



5.2 Two-Dimensional Lattice 83

-100 -75 -50 -25
25

25

50

50

75

75 100

x
-100100 -75 -50 -25 y

0
0.0005

0.001
0.0015

0.002
 0.0025

0.003
0.0035

0.004

p

0 0

Fig. 5.3 Probability distribution of a quantumwalk on the two-dimensional lattice with the Fourier
coin

|Ψ (0)〉 = 1

2

(
|00〉 + 1 − i√

2
|01〉 + |10〉 − 1 − i√

2
|11〉

)
|x = 0, y = 0〉. (5.59)

The plot of the probability distribution after 100 steps is shown in Fig. 5.3.
The plot is invariant under a rotation through 180◦, but it is not invariant under

a rotation through 90◦. The walk is symmetric in each direction, but the evolution
toward the direction x is different from the evolution toward the direction y.

5.2.3 The Grover Coin

At last, we use the Grover coin given by

G = 2|D〉〈D| − I , (5.60)

where |D〉 = 1
2

∑1
ix ,iy=0

∣∣ix , iy
〉
is the diagonal state ofHC . Thematrix representation

is

G = 1

2

⎡

⎢⎢
⎣

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤

⎥⎥
⎦ . (5.61)

The initial condition which has the largest standard deviation for the Grover coin is
the state



84 5 Coined Walks on Infinite Lattices

-100 -75 -50 -25
250

x
-100-75 -50 -25  0 y

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

p

50 75100

25 50 75 100

Fig. 5.4 Probability distribution of the quantum walk on the two-dimensional lattice with the
Grover coin

|Ψ (0)〉 = 1

2

(|00〉 − |01〉 − |10〉 + |11〉)|x = 0, y = 0〉. (5.62)

The plot of the probability distribution after 100 steps is shown in Fig. 5.4. The plot
is invariant under a rotation through 90◦, showing that the directions x and y are
equivalent.

In Sect. 5.1.3, we have shown that all real coins in the one-dimensional case
are equivalent in the sense that one can use the Hadamard coin and can obtain all
alternative real-coined walks by changing the initial condition. This is not true in the
two-dimensional case. The three coins that we analyzed are independent. They fall
into three distinct classes.

5.2.4 Standard Deviation

The formula of the position standard deviation of the one-dimensional case was
described in Sect. 3.3 on p. 25. In the two-dimensional case, the natural extension is

σ(t) =
√√√√

∞∑

x,y=−∞

(
x2 + y2

)
px,y(t), (5.63)

which is valid when the average or expected value of the position is zero. The three
lines in Fig. 5.5 are the standard deviation of the Hadamard (dashed line), Fourier
(dotted line), and Grover (continuous line) coins as a function of t . Note that the
Grover coin has the largest slope among the three coins. The Grover coin has some



5.2 Two-Dimensional Lattice 85

Fig. 5.5 Standard deviation
of the quantum walk on the
two-dimensional lattice for
Hadamard, Fourier, and
Grover coin as a function of
the number of steps

advantages over the Fourier and Hadamard coins, besides the gain in the standard
deviation, which can be useful in algorithmic applications. The Grover coin can
be used in any dimension and is nontrivial for dimension greater than two. The
Hadamard coin can only be used in dimensions that are a power of 2. It is interesting
to use a coin that is somehow distant from the identity operator. The Grover coin is
more distant from identity than the Fourier coin (Exercise5.11).

The position standard deviation is σ(t) = at asymptotically, where a is the slope.
The choice of the initial condition can change a but cannot change the linear depen-
dence σ as a function of t . Different from what was displayed in the previous exam-
ples, we can generate probability distributions strongly centered around the origin
by choosing an appropriate initial condition.

Exercise 5.9 Are Fourier and Grover coins biased?

Exercise 5.10 Show that the standard deviation of the one- and two-dimensional
Hadamard walks are equal.

Exercise 5.11 Use the distance formula based on the trace (see Sect. A.14 on p. 262)
to show that the distance of the N -dimensional Grover coin to the identity operator
is ‖G − I‖ = 2

√
N − 1 and the distance of the N -dimensional Hadamard coin to

the identity operator is ‖H⊗ log2 N − I‖ = √
2N if N is a power of 2 and the distance

of the N -dimensional Fourier coin to the identity operator is ‖FN − I‖ = √
2N if

N is a multiple of 4 plus 2.

5.3 QuantumWalk Packages

In this section, we list some packages that can be used to simulate quantum walks
on graphs. It is necessary to spend some time to implement and to learn the basic
commands of those packages. The user must judge whether it is better to spend time
implementing one of them or to spend time developing codes.



86 5 Coined Walks on Infinite Lattices

QWalk [231]

QWalk aims to simulate the coined quantum walk dynamics on one- and two-
dimensional lattices. The package is written in C and uses Gnuplot to plot the prob-
ability distribution. The user can choose the coin and the initial condition. There is
an option to simulate decoherent dynamics based on broken links—also known as
percolation [251, 280]. The links of the lattice can be broken at random at each step
or the user can specify which edges will be missing during the evolution. QWalk
allows the user to simulate quantum walks on any graph that is a subgraph of the
two-dimensional lattice. Some plots in this section were made using QWalk. The
package can be obtained from the Computer Physics Communications library.2

QwViz [46]

QwViz aims at plotting graphics for visualizing the probability distribution of quan-
tum walks on graphs. The package is written in C and uses OpenGL to generate
two- or three-dimensional graphics. The user must enter the adjacency matrix of the
graph, and the package simulates the dynamics of the coined model to calculate the
probability distribution. By default, the walker starts at vertex 1 with the coin in
uniform superposition. The initial location can be changed by the user. It is possible
to specify marked vertices, which tell the package to use quantum-walk-based search
procedures starting from a uniform superposition of all vertices and using the Grover
coin on the unmarked vertices and (−I ) on the marked vertices. The package can be
obtained from the Computer Physics Communications library.3

PyCTQW [161]

PyCTQW aims to simulate large multi-particle continuous-time quantum walks
using object-oriented Python and Fortran. The package takes advantage of mod-
ern HPC systems and runs using distributed memory. There are tools to visualize
the probability distribution and tools for data analysis. The package can be obtained
from the Computer Physics Communications library.4

Hiperwalk [201]

Hiperwalk (high-performance quantum walk) aims to simulate the quantum walk
dynamics using high-performance computing (HPC). Hiperwalk uses OpenCL to
run in parallel on accelerator cards, multicore CPU, or GPGPU. It is not required any
knowledge of parallel programming, but the installation of the package dependencies
is tricky, in special, OpenCL. Besides, Hiperwalk uses the Neblina programming
language.5 In the CUSTOM option, the input is an initial state |ψ0〉 and a unitary
operatorU , which must be stored in two different files (only nonzero entries in order
to take advantage of sparsity). Hiperwalk calculates Ut |ψ0〉 for integer t using HPC
and saves the output in a file. There are extra commands for the coined and staggered

2http://cpc.cs.qub.ac.uk/summaries/AEAX_v1_0.html.
3http://cpc.cs.qub.ac.uk/summaries/AEJN_v1_0.html.
4http://cpc.cs.qub.ac.uk/summaries/AEUN_v1_0.html.
5http://qubit.lncc.br/neblina.

http://cpc.cs.qub.ac.uk/summaries/AEAX_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AEJN_v1_0.html
http://cpc.cs.qub.ac.uk/summaries/AEUN_v1_0.html
http://qubit.lncc.br/neblina


5.3 Quantum Walk Packages 87

models. The Hiperwalk manual6 has a detailed description of the installation steps
and some examples of applications.

QSWalk [112]

QSWalk is aMathematica package that aims to simulate the time evolution of quan-
tum stochastic walks on directed weighted graphs. The quantum stochastic walk is
a generalization of the continuous-time quantum walk that includes the incoherent
dynamics [327]. The dynamic uses the Lindblad formalism for open quantum sys-
tems using density matrices [61]. The package can be obtained from the Computer
Physics Communications library.7

QSWalk.jl [120]

QSWalk.jl is a Julia package that aims to simulate the time evolution of quantum
stochastic walks on directed weighted graphs. The authors claim that is faster than
QSWalk [112]when used in large networks. Besides, it can be used for nonmoralizing
evolution, which means that the evolution takes place on a directed acyclic graph and
does not change to an evolution on the correspondingmoral graph [104]. The package
can be downloaded from GitHub.8

Further Reading

The seminal article to analyze quantumwalks on the line is [247].A thorough analysis
is presented in [17, 68, 182, 190]. Reference [222] is one of the first to analyze walks
in dimensions greater than one. Reference [313] performed an extensive examination
of possible coins for walks on the two-dimensional lattice. The first papers about
decoherence of coined quantum walks on the line are [176, 222, 280] and on the
two-dimensional lattice are [191, 251]. The most relevant references on quantum
walks on infinite graphs published before 2012 are provided by the review papers [13,
172, 175, 183, 274, 320] or by the review books [229, 319].

A partial list of recent references of quantum walks on lattices is as follows. An
experimental investigation of Anderson localization of entangled photons is pre-
sented in [91]. Quantum walks on the Apollonian network are analyzed in [299].
The return probability of the open quantum random walk is described in [21]. Spa-
tially dependent decoherence and anomalous diffusion are investigated in [258].
Survival probability with partially absorbing traps is analyzed in [122]. Renormal-
ization group for quantum walks and the connection between the coined walk and
persistent randomwalk is analyzed by Boettcher et al. in [51]. Environment-induced
mixing processes are studied in [202]. Anderson localization with superconducting
qubits is analyzed in [119]. Entanglement and disorder are investigated in [321].
Quantum percolation and transition point are analyzed in [74]. Decoherence models
and their application to neutral atom experiments are described in [10]. History-
dependent quantum walks as quantum lattice gas automata are analyzed in [296].

6http://qubit.lncc.br/qwalk/hiperwalk.pdf.
7http://dx.doi.org/10.17632/8rwd3j9zhk.1.
8https://github.com/QuantumWalks/QSWalk.jl.

http://qubit.lncc.br/qwalk/hiperwalk.pdf
http://dx.doi.org/10.17632/8rwd3j9zhk.1
https://github.com/QuantumWalks/QSWalk.jl


88 5 Coined Walks on Infinite Lattices

Reference [277] shows that quantumwalks falsify the idea of classical trajectories by
analyzing the transport of cesium atoms on a one-dimensional optical lattice. Limit
distributions of four states on the two-dimensional lattice are addressed in [221].
Localization and limit laws of three-state quantum walks on the two-dimensional
lattice are analyzed in [220]. Ramsauer effect in the one-dimensional lattice with
defects is presented in [198]. Quantum walks under artificial magnetic fields on
lattices are addressed in [338]. Implementations in optical lattices are presented
in [271]. Quantum walk on a cylinder is addressed in [62]. Analysis of the dynam-
ics and energy spectra of aperiodic quantum walks is presented in [134]. Stationary
amplitudes on higher-dimensional lattices are addressed in [181]. Analysis of phase
disorder, localization, and entanglement are presented in [345]. Analysis of coher-
ence on lattices is presented in [142]. Quantum walk with position-independent coin
is addressed in [208].Anderson localization of quantumwalks on the line is addressed
in [95]. Note that Anderson’s seminal paper “Absence of diffusion in certain random
lattices” is reference [22].

Besides the packages described in Sect. 5.3, there are some papers addressing the
simulation of quantum walks, for instance, GPU-accelerated algorithms for many-
particle continuous-time quantum walks [262], a simulator for discrete quantum
walks on lattices [278], and Quandoop: a classical simulator of quantum walks on
computer clusters [300].



Chapter 6
Coined Walks with Cyclic Boundary
Conditions

In this chapter, we address coined quantum walks on three important finite graphs:
cycles, finite two-dimensional lattices, and hypercubes: A cycle is a finite version
of the line; a finite two-dimensional lattice is a two-dimensional version of the cycle
in the form of a discrete torus; and a hypercube is a generalization of the cube to
dimensions greater than three.

These graphs have spatial symmetries and can be analyzed via the Fourier trans-
formmethod. We obtain analytic results that are useful in other chapters of this book.
For instance, here we describe the spectral decomposition of the quantum walk evo-
lution operators of two-dimensional lattices and hypercubes. The results are used
in Chap.9 in the analysis of the time complexity of spatial search algorithms using
coined quantum walks on these graphs.

There are some interesting physical quantities of quantum walks on finite graphs
that have different properties when compared with walks on infinite graphs, such as
the limiting distribution,mixing time, and hitting time. The number of vertices is used
as a parameter to describe bounds on the mixing and hitting times. Such number is
not available in the infinite case.

6.1 Cycles

Suppose that the place on which the walker moves is the set of vertices of an N -
cycle. If the walker moves N steps clockwise, it reaches the departure point. The
same is true for the counterclockwise direction. The spatial part has associated an
N -dimensional Hilbert spaceHN with computational basis

{| j〉 : 0 ≤ j ≤ N − 1
}
,

where j is the vertex label. Vertex j is a neighbor of vertices j−1 and j+1 and only
of them. The coin space has two dimensions because the walker can move clockwise
or counterclockwise. Thus, the Hilbert space associated with the quantum walk is
H2 ⊗HN, whose computational basis is

{|s, j〉 : 0 ≤ s ≤ 1, 0 ≤ j ≤ N − 1
}
, where

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_6&domain=pdf


90 6 Coined Walks with Cyclic Boundary Conditions

we set s = 0 as clockwise and s = 1 as counterclockwise. Under these conventions,
the shift operator is

S|s, j〉 = ∣∣s, j + (−1)s
〉
. (6.1)

After one application of S, j is incremented by one if s = 0, and j is decremented
by one if s = 1. Arithmetic operations with variable j are performed modulo N .

The state at time t is described by

|Ψ (t)〉 =
N−1∑

j=0

ψ0, j (t)|0, j〉 + ψ1, j (t)|1, j〉, (6.2)

where coefficients ψ0, j (t) and ψ1, j (t) are complex functions that obey the normal-
ization condition ∣∣ψ0, j (t)

∣∣2 + ∣∣ψ1, j (t)
∣∣2 = 1, (6.3)

for any time step t .
Let us use the Hadamard coin operator

H = 1√
2

[
1 1
1 −1

]
. (6.4)

Applying the standard evolution operator of the coined model

U = S (H ⊗ I ) (6.5)

to the state at time t , we obtain

|Ψ (t + 1)〉 =
N−1∑

j=0

S
(
ψ0, j (t)H |0〉| j〉 + ψ1, j (t)H |1〉| j〉)

=
N−1∑

j=0

ψ0, j (t) + ψ1, j (t)√
2

S|0〉| j〉 + ψ0, j (t) − ψ1, j (t)√
2

S|1〉| j〉

=
N−1∑

j=0

ψ0, j (t) + ψ1, j (t)√
2

|0, j + 1〉 + ψ0, j (t) − ψ1, j (t)√
2

|1, j − 1〉.

Using (6.2) on the left-hand side of the above equation, that is, expanding the left-hand
side in the computational basis, and equating with the corresponding coefficients on
the right-hand side of the equation, we obtain the evolution equations



6.1 Cycles 91

ψ0, j (t + 1) = ψ0, j−1(t) + ψ1, j−1(t)√
2

,

ψ1, j (t + 1) = ψ0, j+1(t) − ψ1, j+1(t)√
2

.

These equations are very difficult to solve. However, they can be used for computa-
tional simulations, which help us to obtain quick results and to have a general idea
about the behavior of the quantum walk. For instance, we can obtain numerically the
probability distribution, which is given by

p j (t) = ∣∣ψ0, j (t)
∣∣2 + ∣∣ψ1, j (t)

∣∣2 , (6.6)

and satisfies
N−1∑

j=0

p j (t) = 1

for any time step t .

6.1.1 Fourier Transform

The analytic expression of the quantum walk state on the N -cycle can be obtained
when we use the Fourier transform. The Fourier transform of the spatial part of the
computational basis is

∣∣k̃
〉 = 1√

N

N−1∑

j=0

ω
jk
N | j〉, (6.7)

where ωN = e
2πi
N and the range of k is the same as j . The Fourier transform defines

an orthonormal basis
{∣∣k̃
〉 : 0 ≤ k ≤ N − 1

}
ofHN, which can be extended into the

Hilbert spaceH2⊗HN as the orthonormal basis {|s〉∣∣k̃〉 : 0 ≤ s ≤ 1, 0 ≤ k ≤ N−1}
called (extended) Fourier basis. In this new basis, the state of the walker is

|Ψ (t)〉 =
1∑

s=0

N−1∑

k=0

ψ̃s,k(t) |s〉∣∣k̃〉, (6.8)

where the coefficients are given by

ψ̃s,k = 1√
N

N−1∑

j=0

ω
− jk
N ψs, j . (6.9)



92 6 Coined Walks with Cyclic Boundary Conditions

The interpretation of this last equation is that the amplitude of a state on the Fourier
basis is the Fourier transform of the amplitudes in the computational basis.

The vectors of the Fourier basis are eigenvectors of S. In fact, using (6.7) the
action of S on |s〉∣∣k̃〉 is

S|s〉∣∣k̃〉 = 1√
N

N−1∑

j=0

ω
jk
N S|s, j〉

= 1√
N

N−1∑

j=0

ω
jk
N |s〉∣∣ j + (−1)s

〉
.

Renaming the dummy index j so that j ′ = j + (−1)s , we obtain

S|s〉∣∣k̃〉 = 1√
N

N−1∑

j ′=0

ω
( j ′−(−1)s )k
N |s〉∣∣ j ′〉

= ω−(−1)s k
N |s〉∣∣k̃〉. (6.10)

This result confirms our statement. However, our main goal is to diagonalize U ,
which depends on the coin operator.

Applying U to vector
∣∣s ′〉∣∣k̃

〉
and using (6.10), we obtain

U
∣∣s ′〉∣∣k̃

〉 = S
((

H
∣∣s ′〉) ∣∣k̃

〉)

= S

(
1∑

s=0

Hs,s ′ |s〉∣∣k̃〉
)

=
1∑

s=0

ω−(−1)s k
N Hs,s ′ |s〉∣∣k̃〉.

The entries of U in the extended Fourier basis are
〈
s, k̃

∣∣∣U
∣∣∣s ′, k̃ ′

〉
= ω−(−1)s k

N Hs,s ′ δkk ′ . (6.11)

For each k, define operator H̃ (k), whose entries are

H̃ (k)
s,s ′ = ω−(−1)s k

N Hs,s ′ . (6.12)

In the matrix form, we have



6.1 Cycles 93

H̃ (k) =
[
ω−k
N 0
0 ωk

N

]
· H

= 1√
2

[
ω−k
N ω−k

N

ωk
N −ωk

N

]

. (6.13)

Equation (6.11) shows that the nondiagonal part of U is associated with the coin
space. For each k, we have a reduced evolution operator H̃ (k). The goal now is to
diagonalize H̃ (k). If |αk〉 is an eigenvector of H̃ (k) with eigenvalue αk , then |αk〉

∣∣k̃
〉

is an eigenvector of U associated with the same eigenvalue αk (Exercise 6.2).
The characteristic polynomial of H̃ (k) is

pH̃ (λ) = λ2 + √
2 iλ sin κ − 1,

where

κ = 2 π k

N
. (6.14)

By solving the equation pH̃ (λ) = 0, we obtain the eigenvalues e−iθk and ei(π+θk ),
where θk is a solution of

sin θk = 1√
2
sin κ. (6.15)

The normalized eigenvectors are

|αk〉 = 1
√
c−
k

⎡

⎣
1

(√
1 + cos2 κ − cosκ

)
eiκ

⎤

⎦ , (6.16)

|βk〉 = 1
√
c+
k

⎡

⎣
1

−
(√

1 + cos2 κ + cosκ
)
eiκ

⎤

⎦ , (6.17)

where
c±
k = 2

√
1 + cos2 κ

(√
1 + cos2 κ ± cosκ

)
. (6.18)

The spectral decomposition of U is

U =
N−1∑

k=0

(
e−i θk

∣∣∣αk, k̃
〉〈

αk, k̃
∣∣∣+ ei (π+θk )

∣∣∣βk, k̃
〉〈

βk, k̃
∣∣∣
)

. (6.19)

The t th power of U is

Ut =
N−1∑

k=0

(
e−i θk t

∣∣∣αk, k̃
〉〈

αk, k̃
∣∣∣+ ei (π+θk )t

∣∣∣βk, k̃
〉〈

βk, k̃
∣∣∣
)

. (6.20)



94 6 Coined Walks with Cyclic Boundary Conditions

Exercise 6.1. Show the following properties of the Fourier transform:

1.
∣∣0̃
〉
is the diagonal state of Hilbert space HN .

2.
{∣∣k̃
〉 : 0 ≤ k ≤ N − 1

}
is an orthonormal basis for Hilbert space HN .

3. |0〉 = 1√
N

∑N−1
k=0

∣∣k̃
〉
.

4. | j〉 = 1√
N

∑N−1
k=0 ω

− jk
N

∣∣k̃
〉
.

Exercise 6.2. Show that if |αk〉 is an eigenvector of H̃ (k) with eigenvalue αk , then
|αk〉

∣∣k̃
〉
is an eigenvector of U associated with the same eigenvalue αk .

Exercise 6.3. Show that
{∣∣αk, k̃

〉
,
∣∣βk, k̃

〉 : 0 ≤ k < N
}
is an orthonormal basis of

Hilbert space H2 ⊗ HN .

6.1.2 Analytic Solutions

Consider initially a particle on vertex 0 with the coin pointing clockwise. The initial
condition in the computational basis is

|ψ(0)〉 = |0〉|0〉. (6.21)

Using (6.20), we obtain

|ψ(t)〉 = Ut |ψ(0)〉

=
N−1∑

k=0

(
e−i θk t

∣∣∣αk, k̃
〉 〈

αk, k̃
∣∣∣0, 0

〉
+ ei (π+θk )t

∣∣∣βk, k̃
〉 〈

βk, k̃
∣∣∣0, 0

〉)
.

Using (6.16), (6.17), and (6.7), we obtain

〈
αk, k̃

∣∣∣0, 0
〉
= 1
√
N c−

k

, (6.22)

〈
βk, k̃

∣∣∣0, 0
〉
= 1
√
N c+

k

. (6.23)

Therefore,

|ψ(t)〉 = 1√
N

N−1∑

k=0

⎛

⎝e−i θk t

√
c−
k

|αk〉 + (−1)t ei θk t
√
c+
k

|βk〉
⎞

⎠
∣∣k̃
〉
. (6.24)

To calculate the probability of finding the walker on any vertex of a cycle, we
have to express the quantum state in the computational basis. Using (6.16), (6.17),



6.1 Cycles 95

and the identity
1

c±
k

= 1

2

(
1 ∓ cosκ√

1 + cos2 κ

)
, (6.25)

we obtain

|ψ(t)〉 = 1√
N

N−1∑

k=0

[
Ak(t)

Bk(t)

]
∣∣k̃
〉
, (6.26)

where

Ak(t) = cos θk t − i cosκ sin θk t√
1 + cos2 κ

, (6.27)

Bk(t) = − i eiκ sin θk t√
1 + cos2 κ

, (6.28)

which is valid when t is even. Using (6.7), we obtain

|ψ(t)〉 = 1

N

N−1∑

j=0

[∑N−1
k=0 Ak(t)ω

jk
N

∑N−1
k=0 Bk(t)ω

jk
N

]

| j〉. (6.29)

Using (6.6), we obtain the probability distribution

p j (t) = 1

N 2

∣∣∣∣∣

N−1∑

k=0

Ak(t)ω
jk
N

∣∣∣∣∣

2

+ 1

N 2

∣∣∣∣∣

N−1∑

k=0

Bk(t)ω
jk
N

∣∣∣∣∣

2

. (6.30)

This equation is valid for any N , but only for even t . Exercise 6.4 gives us hints that
help us to obtain Ak(t) and Bk(t) when t is odd. When j + t is odd and N is even,
the probability distribution is zero. When N is odd, the probability distribution is
nonzero for all vertices (for large enough t). Exercise 6.6 gives us hints that help us
to prove those facts.

Consider j in the interval [N/2, N − 1]. If we shift j by (−N ), the probability
distribution of the N -cycle is equal to the probability distribution of the walk on
the line when t ≤ N . This can be seen from the plot of the probability distribution
(blue line) in Fig. 6.1 for the cycle with N = 200. Note that for j in the interval
[0, N/2], the plot of Fig. 6.1 is equal to the one of Fig. 5.1 of Sect. 5.1.2 on P.75.
If the remaining part of the plot is shifted leftward, the new plot becomes entirely
equal to the plot of the quantum walk on the line.

On the line, the wavefronts move to opposite directions and go away forever. On
even cycles, thewavefrontsmove toward each other, are close to each other at t around
N/2, and collide, as can be seen in Fig. 6.1. On odd cycles, the wavefronts move
toward each other but do not collide and, instead, they intertwine because there is an
inverse relationship between the parity of j and the nonzero values of the probability.



96 6 Coined Walks with Cyclic Boundary Conditions

Fig. 6.1 Probability distribution of the quantum walk on the 200-cycle after 100 steps (blue line)
and 130 steps (red line) with the initial condition |ψ(0)〉 = |0, 0〉. Odd values of j are not shown
because the probability is zero

These facts show that quantumwalks on odd and even cycles have different behavior.
A confirming evidence comes from the form of the limiting distribution, which
is uniform for odd cycles for all initial conditions, while nonuniform and initial
condition-dependent for even cycles. In terms of the graph structure, even cycles are
bipartite graphs. The asymptotic behavior of classical random walks on bipartite
graphs is different from the behavior on nonbipartite graphs. Part of this difference
is inherited by the quantum context.

On the line, all unbiased quantum walks can be obtained from the Hadamard coin
through a suitable choice of the initial condition. On a cycle, this is true for a period
while there is no interference of the wavefronts. When the wavefronts collide or
travel the whole circle, relative phase factors can produce constructive or destructive
interference. These phase factors are introduced through the evolution operator and
cannot be reproduced by choosing initial conditions.

Exercise 6.4. Show that, to obtain valid expressions for Ak(t) and Bk(t) for odd t ,
we have to interchange cos θk t by −i sin θk t in (6.27) and (6.28).

Exercise 6.5. Show that
1

N

N−1∑

j=0

ei j (κ−κ′) = δκκ′ .

Using the above identity and (6.30), show that

N−1∑

j=0

p j (t) = 1

for any even number of steps t . Using Exercise 6.4, show also for odd t .

Exercise 6.6. Consider N even. If t is even, show that



6.1 Cycles 97

|ψ(t)〉 = 1

N

N−1∑

j=0

(
1 + (−1) j

)
[∑N/2−1

k=0 Ak(t)ω
jk
N

∑N/2−1
k=0 Bk(t)ω

jk
N

]

| j〉.

From this result, show that p j (t) = 0 for odd j . Using Exercise 6.4, show that when
t is odd, p j (t) = 0 for even j . How can this result be interpreted in terms of the
parity of N and the properties of the shift operator?

Exercise 6.7. The flip-flop shift operator is defined as

S|s, j〉 = ∣∣s ⊕ 1, j + (−1)s
〉
,

where ⊕ is the binary sum modulo 2. Obtain the eigenvalues and eigenvectors of the
evolution operator with the flip-flop shift operator and the state of the quantum walk
|ψ(t)〉 at any time step t , and compare the results with the results obtained with the
standard shift operator.

6.1.3 Periodic Solutions

In some cases, the evolution of a quantum walk can be periodic, that is, there is an
integer T such that |ψ(t + T )〉 = |ψ(t)〉 for any time step t . To obtain a periodic
solution, we can use (6.20) that completely determines the state of the quantum walk
at time t once given the initial condition. We must find T such that UT = I . This
implies that

e−iθk T = ei(π+θk )T = 1, (6.31)

for all k. Therefore, T must be even and

cos θkT = 1,

sin θkT = 0,

that is, θkT = 2π jk , where each jk must be an integer. Using (6.15), we obtain

sin
2π jk
T

= 1√
2
sin

2πk

N
, (6.32)

which must be valid for 0 ≤ k ≤ N − 1. This equation can be solved by exhaustive
search, and we find solutions for N = 2 and T = 2; N = 4 and T = 8; N = 8 and
T = 24.

Figure6.2 shows the probability at vertex v = 0 as a function of time for the
cycle with eight vertices. Note that the probability is periodic. The same holds for
any other vertex.



98 6 Coined Walks with Cyclic Boundary Conditions

Fig. 6.2 Probability at vertex v = 0 as a function of time for the 8-cycle. The probability has period
T = 24. The plot shows only the probability at even t

6.2 Finite Two-Dimensional Lattices

Suppose that N is a perfect square and consider the
√
N × √

N square lattice with
periodic boundary conditions, that is, a lattice with the shape of a torus. If the walker
moves

√
N steps toward x-direction, it returns to original position. The same holds

for the y-direction. The vectors of the computational basis of the spatial part are
|x, y〉, where x, y ∈ {0, . . . ,√N − 1}. The coin space has four dimensions. The
vectors of the computational basis of the coin space are |d, s〉, with 0 ≤ d, s ≤ 1,
where d determines the direction of movement: d = 0 stands for x-direction and
d = 1 stands for y-direction, and s determines the direction sign: s = 0 stands for
positive direction and s = 1 stands for negative direction.

Under these conventions, we write the shift operator as

S|d, s〉|x, y〉 = |d, s ⊕ 1〉∣∣x + (−1)sδd0, y + (−1)sδd1
〉
, (6.33)

where the arithmetic operations with variables x and y are performed modulo
√
N .

After one application of S, x is incremented by one and y remains unchanged if
d = 0 and s = 0. When x changes, y remains unchanged, and vice versa. Note
that the coin state changes from |d, s〉 to |d, s ⊕ 1〉, that is, the direction is inverted
after the shift. This inversion in the coin value is important for speeding up search
algorithms on the two-dimensional lattice. This issue will be addressed in Sect. 9.3
on P.186. Shift operators that invert the coin are called flip-flop.

We use the Grover coin, which is given by

G = 2|D〉〈D| − I, (6.34)

where |D〉 = 1
2

∑1
d,s=0 |d, s〉 is the diagonal state ofH2 ⊗H2. Thematrix represen-

tation of G is

G = 1

2

⎡

⎢⎢
⎣

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤

⎥⎥
⎦ . (6.35)



6.2 Finite Two-Dimensional Lattices 99

The state of the walker at time t is described by

|Ψ (t)〉 =
1∑

d,s=0

√
N−1∑

x,y=0

ψd,s; x,y(t)|d, s〉|x, y〉, (6.36)

where the coefficients ψd,s; x,y(t) are complex functions that obey the normalization
condition

1∑

d,s=0

√
N−1∑

x,y=0

∣∣ψd,s; x,y(t)
∣∣2 = 1, (6.37)

for any time step t .
Applying the standard evolution operator

U = S (G ⊗ I ) (6.38)

to the state at time t , we obtain

|Ψ (t + 1)〉 =
1∑

d ′,s ′=0

√
N−1∑

x,y=0

ψd ′,s ′; x,y(t) S
(
G
∣∣d ′, s ′〉|x, y〉

)

=
1∑

d ′,s ′=0

√
N−1∑

x,y=0

ψd ′,s ′; x,y(t) S

(
1∑

d,s=0

Gd,s; d ′,s ′ |d, s〉|x, y〉
)

=
1∑

d,s,d ′,s ′=0

√
N−1∑

x,y=0

ψd ′,s ′; x,y(t)Gd,s; d ′,s ′

|d, s ⊕ 1〉∣∣x + (−1)sδd0, y + (−1)sδd1
〉
.

We can rename the dummy indices of the sum from x + (−1)sδd0, y + (−1)sδd1,
s ⊕ 1 to x , y, s. Then,

|Ψ (t + 1)〉 =
1∑

d,s,d ′,s ′=0

√
N−1∑

x,y=0

Gd,s⊕1; d ′,s ′

× ψd ′,s ′; x−(−1)s⊕1δd0, y−(−1)s⊕1δd1(t)|d, s〉|x, y〉.

Expanding the left-hand side of the above equation in the computational basis and
equating coefficients alike, we obtain the evolution equation

ψd,s; x,y(t + 1) =
1∑

d ′,s ′=0

Gd,s⊕1; d ′,s ′ ψd ′,s ′; x+(−1)sδd0, y+(−1)sδd1(t). (6.39)



100 6 Coined Walks with Cyclic Boundary Conditions

This equation is too complex to be solved theway it is written. In the one-dimensional
case, we have learned that by taking the Fourier transform on the spatial part, we
can diagonalize the shift operator. This allowed us to find analytically the state of
the quantum walk at any time step. The same technique works here.

6.2.1 Fourier Transform

The Fourier transform of the spatial part of the computational basis is

∣∣k̃, �̃
〉 = 1√

N

√
N−1∑

x,y=0

ωxk+y�|x, y〉, (6.40)

where ω = e
2πi√
N and the ranges of variables k and � are the same as x and y. The

Fourier transform is the tensor product of the Fourier transform of each coordinate.

The Fourier transform allows us to define a new orthonormal basis
{
|d, s〉∣∣k̃, �̃〉 :

0 ≤ d, s ≤ 1, 0 ≤ k, � ≤ √
N − 1

}
called the Fourier basis.

Let us calculate the action of the shift operator S on |d, s〉∣∣k̃, �̃〉. Using (6.40), we
have

S|d, s〉∣∣k̃, �̃〉 = 1√
N

√
N−1∑

x,y=0

ωxk+y�S|d, s〉|x, y〉

= 1√
N

√
N−1∑

x,y=0

ωxk+y�|d, s ⊕ 1〉 ⊗
∣∣x + (−1)sδd0, y + (−1)sδd1

〉
.

To simplify the last equation,we rename the dummy indices so that x ′ = x+(−1)sδd0
and y′ = y + (−1)sδd1. Then,

S|d, s〉∣∣k̃, �̃〉 = 1√
N

√
N−1∑

x ′,y′=0

ω(x ′−(−1)sδd0)k+(y′−(−1)sδd1)�

× |d, s ⊕ 1〉∣∣x ′, y′〉

= ω−(−1)s (δd0k+δd1�)|d, s ⊕ 1〉∣∣k̃, �̃〉. (6.41)

In the flip-flop case, the vectors of the Fourier basis are not eigenvectors of S. How-
ever, the result (6.41) is useful to diagonalize the evolution operator because we can
factor out vector

∣∣k̃, �̃
〉
leaving a four-dimensional subspace.



6.2 Finite Two-Dimensional Lattices 101

Applying U to vector
∣∣d ′, s ′〉∣∣k̃, �̃

〉
and using (6.41), we obtain

U
∣∣d ′, s ′〉∣∣k̃, �̃

〉 = S

(
1∑

d,s=0

Gd,s; d ′,s ′ |d, s〉∣∣k̃, �̃〉
)

=
1∑

d,s=0

ω−(−1)s (δd0k+δd1�)Gd,s; d ′,s ′ |d, s ⊕ 1〉∣∣k̃, �̃〉

=
1∑

d,s=0

ω(−1)s (δd0k+δd1�)Gd,s⊕1; d ′,s ′ |d, s〉∣∣k̃, �̃〉.

The entries of U in the Fourier basis are
〈
d, s, k̃ ′, �̃′

∣∣∣U
∣∣∣d ′, s ′, k̃, �̃

〉
= ω(−1)s (δd0k+δd1�)Gd,s⊕1; d ′,s ′ δkk ′δ��′ . (6.42)

For each k and �, we define operator G̃ with entries

G̃d,s; d ′,s ′ = ω(−1)s (δd0k+δd1�)Gd,s⊕1; d ′,s ′ . (6.43)

The matrix representation is

G̃ =

⎡

⎢⎢
⎣

0 ωk 0 0
ω−k 0 0 0
0 0 0 ω�

0 0 ω−� 0

⎤

⎥⎥
⎦ · G. (6.44)

Equation (6.42) shows that the nondiagonal part of operatorU is associated with the
coin space. The goal now is to diagonalize operator G̃. If |ν〉 is an eigenvector of G̃,
then |ν〉∣∣k̃, �̃〉 is an eigenvector of U associated with the same eigenvalue.

If k = 0 and � = 0, matrix G̃ reduces to

G̃
(k=0,�=0) = 1

2

⎡

⎢⎢
⎣

1 −1 1 1
−1 1 1 1
1 1 1 −1
1 1 −1 1

⎤

⎥⎥
⎦ . (6.45)

The determinant
∣∣λI − G̃

(k=0,�=0)

∣∣ is (λ − 1)3 (λ + 1). Therefore, the eigenvalues are
(+1) with multiplicity 3 and (−1) with multiplicity 1. The eigenvectors associated
with eigenvalue (+1) are



102 6 Coined Walks with Cyclic Boundary Conditions

∣∣ν1a
00

〉 = 1

2

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦ ,

∣∣ν1b
00

〉 = 1√
2

⎡

⎢⎢
⎣

1
−1
0
0

⎤

⎥⎥
⎦ ,

∣∣ν1c
00

〉 = 1√
2

⎡

⎢⎢
⎣

0
0
1

−1

⎤

⎥⎥
⎦ . (6.46)

The (−1)-eigenvector is

∣∣ν−1
00

〉 = 1

2

⎡

⎢⎢
⎣

1
1

−1
−1

⎤

⎥⎥
⎦ . (6.47)

Note that
∣∣ν1a

00

〉 = |D〉. The set of these eigenvectors is an orthonormal basis.
If k �= 0 or � �= 0, the determinant of (λI − G̃) is

∣∣∣λI − G̃
∣∣∣ = (

λ2 − 1
) (

λ2 −
(
cos

2πk√
N

+ cos
2π�√
N

)
λ + 1

)
. (6.48)

Therefore, the eigenvalues of G̃ are

λ =
{±1,
e±iθk� ,

(6.49)

where

cos θk� = 1

2

(
cos

2πk√
N

+ cos
2π�√
N

)
. (6.50)

Eigenvectors |ν〉 = (a, b, c, d) are found as follows:We calculate vector (G̃−λI )|ν〉
and equate each entry to zero. We have a system of four equations in variables
a, b, c, d. We eliminate one of the equations, for example, the last one, and solve the
system of equations in the three variables a, b, c. After that, choose d that normalizes
the vector. This procedure for eigenvalue (+1) yields eigenvector

∣∣ν+1
k�

〉 = 1

n(+1)

⎡

⎢⎢⎢⎢⎢
⎣

ωk
(
ω� − 1

)

1 − ω�

ω�
(
1 − ωk

)

ωk − 1

⎤

⎥⎥⎥⎥⎥
⎦

. (6.51)

For eigenvalue (−1), we have



6.2 Finite Two-Dimensional Lattices 103

∣∣ν−1
k�

〉 = 1

n(−1)

⎡

⎢⎢⎢⎢⎢
⎣

−ωk
(
1 + ω�

)

− (
1 + ω�

)

ω�
(
1 + ωk

)

1 + ωk

⎤

⎥⎥⎥⎥⎥
⎦

. (6.52)

Variables n(±1) are normalization constants. For the other eigenvalues (±θk� �= ±1),
we denote the eigenvectors by

∣∣ν±θ
k�

〉
. The expression for the +θ case is

∣∣ν+θ
k�

〉 = i

2
√
2 sin θk�

⎡

⎢⎢⎢⎢⎢
⎣

e−iθk� − ωk

e−iθk� − ω−k

e−iθk� − ω�

e−iθk� − ω−�

⎤

⎥⎥⎥⎥⎥
⎦

. (6.53)

To obtain the fourth eigenvector, we replace θ by −θ. Remember that θ depends on
k and �. The expression for sin θk� can be obtained from (6.50).

If k = � or k = √
N − �, the eigenvectors simplify to the following expressions:

∣∣ν+θ
k,k

〉 = 1√
2

⎡

⎢⎢
⎣

1
0
1
0

⎤

⎥⎥
⎦ ,

∣∣ν−θ
k,k

〉 = 1√
2

⎡

⎢⎢
⎣

0
1
0
1

⎤

⎥⎥
⎦ ,

∣∣∣ν+θ

k,
√
N−k

〉
= 1√

2

⎡

⎢⎢
⎣

1
0
0
1

⎤

⎥⎥
⎦ ,

∣∣∣ν−θ

k,
√
N−k

〉
= 1√

2

⎡

⎢⎢
⎣

0
1
1
0

⎤

⎥⎥
⎦ . (6.54)

Note that if
√
N is even and k = � =

√
N
2 , (6.50) implies that θ = π. In this case,

the eigenvectors of (6.54) have eigenvalue (−1). The basis is complete when we take
the eigenvectors of (6.51) and (6.52). The eigenvalue (−1) has multiplicity 3 and
eigenvalue 1 has multiplicity 1. Matrix G̃ is the negative of the matrix described in
(6.45).

The union of sets
{∣∣ν+1

k�

〉∣∣k̃, �̃
〉
,
∣∣ν−1

k�

〉∣∣k̃, �̃
〉
,
∣∣ν±θ

k�

〉∣∣k̃, �̃
〉 : 0 ≤ k, � <

√
N ,

(k, �) �= (0, 0)
}
and

{∣∣ν1a
00

〉∣∣∣0̃, 0̃
〉
,
∣∣ν1b

00

〉∣∣∣0̃, 0̃
〉
,
∣∣ν1c

00

〉∣∣∣0̃, 0̃
〉
,
∣∣ν−1

00

〉∣∣∣0̃, 0̃
〉}

is an orthonor-

mal eigenbasis of U for Hilbert space H2⊗ H2⊗ H
√
N⊗ H

√
N . The associated

eigenvalues are ±1 and e±iθk� .

Exercise 6.8. Show the following properties of the Fourier transform:

1.
∣∣∣0̃, 0̃

〉
is the diagonal state of Hilbert space H

√
N ⊗ H

√
N .



104 6 Coined Walks with Cyclic Boundary Conditions

2.
{∣∣k̃, �̃

〉 : 0 ≤ k, � ≤ √
N − 1

}
is an orthonormal basis for Hilbert space H

√
N ⊗

H
√
N .

3. |0, 0〉 = 1√
N

∑√
N−1

k,�=0

∣∣k̃, �̃
〉
.

Exercise 6.9. Show that the norm of
∣∣ν±1

k�

〉
is

n(±1) = 2
√
2
(
1 ∓ cos θk�

) 1
2 .

Obtain expressions n(+1) = 4 sin θk�
2 and n(−1) = 4 cos θk�

2 .

Exercise 6.10. Show that
∣∣ν1a

00

〉
is orthogonal to

∣∣ν±1
k�

〉
.

Exercise 6.11. Verify that
∣∣ν+θ

k�

〉
given by (6.53) is a unit vector. Show that

∣∣ν+θ
k�

〉
is

an eigenvector of G̃ associated with eigenvalue eiθk� .

Exercise 6.12. Vector
∣∣ν−θ

k�

〉
is the complex conjugate of

∣∣νθ
k�

〉
?

Exercise 6.13. Show that

1. |D〉 = |νθ
k�〉+|ν−θ

k� 〉√
2

,

2.
〈
ν±θ
k�

∣∣D
〉 = 1√

2
,

3. 〈D|G̃|D〉 = cos θk�.

6.2.2 Analytic Solutions

Let us calculate the state of the quantumwalk at an arbitrary time step. Let us consider
the initial state

|Ψ (0)〉 = |D〉|0, 0〉, (6.55)

that is, a walker is initially located at vertex (0, 0) and its coin state is the diagonal
state.

Let us use the following notation for the eigenvalues and eigenvectors of U :∣∣∣ν j
k�

〉∣∣∣k̃, �̃
〉
, where the eigenvalues are ν

j
k� with 1 ≤ j ≤ 4. Then,

U =
4∑

j=1

√
N−1∑

k,�=0

ν
j
k�

∣∣∣ν j
k�, k̃, �̃

〉〈
ν
j
k�, k̃, �̃

∣∣∣. (6.56)

At time t , the state of the quantum walk will be given by

|Ψ (t)〉 = Ut |Ψ (0)〉

=
4∑

j=1

√
N−1∑

k,�=0

(ν
j
k�)

t
〈
ν
j
k�, k̃, �̃

∣∣∣Ψ (0)
〉 ∣∣∣ν j

k�

〉∣∣∣k̃, �̃
〉
, (6.57)



6.2 Finite Two-Dimensional Lattices 105

The state of the quantum walk at time t can be calculated explicitly. The task is
reduced to calculate the entries of the initial condition in the eigenbasis of U and,
after that, to calculate the t th power of the eigenvalues. We have already obtained
explicit expressions for the eigenvalues and eigenvectors of U .

Using (6.57), we obtain

|Ψ (t)〉 =
4∑

j=1

√
N−1∑

k,�=0

(ν
j
k�)

t
〈
ν
j
k�

∣∣∣D
〉 〈
k̃, �̃

∣∣∣0, 0
〉 ∣∣∣ν j

k�

〉∣∣∣k̃, �̃
〉
. (6.58)

Using (6.40), we have
〈
k̃, �̃

∣∣0, 0
〉 = 1/

√
N . Among all eigenvectors of G̃, only

∣∣ν1a
00

〉

and
∣∣ν±θ

k�

〉
are not orthogonal to |D〉. Therefore, the above equation reduces to

|Ψ (t)〉 = (+1)t√
N

∣∣ν1a
00

〉∣∣∣0̃, 0̃
〉
+ 1√

N

√
N−1∑

k, � = 0
(k, �) �= (0, 0)

(
eiθk�

)t 〈
νθ
k�

∣∣∣D
〉 ∣∣νθ

k�

〉∣∣∣k̃, �̃
〉

+(e−iθk�
)t 〈

ν−θ
k�

∣∣∣D
〉 ∣∣ν−θ

k�

〉∣∣∣k̃, �̃
〉
. (6.59)

Since
〈
ν±θ
k�

∣∣∣D
〉
= 1/

√
2, it follows that the state of the quantum walk at time t is

|Ψ (t)〉 = 1√
N

|D〉|D〉+ 1√
2N

√
N−1∑

k, � = 0
(k, �) �= (0, 0)

(
eiθk�t

∣∣νθ
k�

〉+ e−iθk�t
∣∣ν−θ

k�

〉) ∣∣∣k̃, �̃
〉
,

(6.60)

where
∣∣k̃, �̃

〉
, θk�, and

∣∣ν±θ
k�

〉
are given by (6.40), (6.50), and (6.53), respectively.

Exercise 6.14. Show that (6.60) reduces to (6.55) when t = 0.

Exercise 6.15. The goal of this exercise is to analyze the quantum walk on a finite-
dimensional lattice with a shift operator that does not invert the coin, usually called
as moving shift operator.

1. Obtain the shift operator analogous to (6.41) without inverting the direction of
the coin.

2. Show that the matrix G̃, analogous to (6.43), is

G̃ =

⎡

⎢⎢
⎣

ωk 0 0 0
0 ω−k 0 0
0 0 ω� 0
0 0 0 ω−�

⎤

⎥⎥
⎦ · G. (6.61)



106 6 Coined Walks with Cyclic Boundary Conditions

3. Obtain the eigenvalues and eigenvectors of this new matrix G̃.
4. Use (6.55) as the initial condition. Find the state of the quantum walk |Ψ (t)〉 at

time t , analogous to (6.60).

6.3 Hypercubes

The n-dimensional hypercube is a regular graph of degree n with N = 2n vertices.
The labels of the vertices are binary n-tuples. Two vertices are adjacent if and only
if their corresponding n-tuples differ only by one bit, that is, theirHamming distance
is equal to 1. The edges also have labels, which specify the entry of the tuples that
has different bits, that is, if two vertices differ in the ath entry, the label of the edge
connecting these vertices is a. The Hilbert space associated with a quantum walk on
the n-dimensional hypercube is H = Hn ⊗ H2n . Vectors |a〉|�v〉, where 1 ≤ a ≤ n
and �v are binary n-tuples, form the computational basis of H. Vector |a〉 is a coin
state associated with the edge of label a, specifying the direction of movement. In
this section, we use vector |1〉 as the first vector of the computational basis of the
coin space. Vector |�v〉 is in the computational basis of H2n and specifies on which
vertex the walker is.

Exercise 6.16. Make a sketch of the three-dimensional hypercube (cube) and label
all vertices and edges.

The shift operator should move the walker from state |a〉|�v〉 to |a〉|�v ⊕ �ea〉, where
�ea is the binary n-tuple with all entries zero except the ath entry, the value of which is
1. Operation⊕ is the binary sum (bitwise xor). This shift has the following meaning:
If the coin value is a and the walker position is �v, the walker will move through edge
a to the adjacent vertex |�v ⊕ �ea〉. The coin is unchanged after the shift, characterizing
a flip-flop shift operator because in binary arithmetic the inverse of a is a (a⊕a = 0).
Then,

S|a〉|�v〉 = |a〉|�v ⊕ �ea〉. (6.62)

An equivalent way of writing the shift operator is

S =
n∑

a=1

2n−1∑

�v=0

|a, �v ⊕ �ea〉〈a, �v|. (6.63)

The range of variable �v (in the sum) is written in base-10. For example, the notation
�v = 2n − 1 means �v = (1, . . . , 1). We will use the decimal notation if its meaning
is clear from the context.

We use the Grover coin, which is

G = 2|D〉〈D| − I , (6.64)



6.3 Hypercubes 107

where |D〉 = 1/
√
n
∑n

a=1 |a〉 is the diagonal state of the coin space. The matrix
representation is

G =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

2
n − 1 2

n · · · 2
n

2
n

2
n − 1 · · · 2

n
...

...
. . .

...

2
n

2
n · · · 2

n − 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (6.65)

The entries of G are Gi j = 2
n − δi j . The Grover coin is invariant under permutation

of directions. That is, if the labels of edges were interchanged (keeping the labels
of the vertices), the Grover coin would drive the walker along the same path. This
is equivalent to keep the labels and to swap the rows and columns of G correspond-
ing to the permutation of labels. The Grover matrix is unchanged by simultaneous
permutation of rows and columns.

The state of the walker at time t is described by

|Ψ (t)〉 =
n∑

a=1

2n−1∑

�v=0

ψa,�v(t)|a, �v〉, (6.66)

where coefficients ψa,�v(t) are complex functions that obey the normalization condi-
tion

n∑

a=1

2n−1∑

�v=0

∣∣ψa,�v(t)
∣∣2 = 1. (6.67)

Applying the standard evolution operator

U = S (G ⊗ I ) (6.68)

to the state at time t , we obtain

|Ψ (t + 1)〉 =
n∑

b=1

2n−1∑

�v=0

ψb,�v(t) S
(
G|b〉|�v〉

)

=
n∑

b=1

2n−1∑

�v=0

ψb,�v(t) S
( n∑

a=1

Gab|a〉|�v〉
)

=
n∑

a,b=1

2n−1∑

�v=0

ψb,�v(t)Gab|a〉|�v ⊕ �ea〉.

Renaming the dummy index �v to �v ⊕ �ea , we obtain



108 6 Coined Walks with Cyclic Boundary Conditions

|Ψ (t + 1)〉 =
n∑

a,b=1

2n−1∑

�v=0

Gab ψb,�v⊕�ea (t) |a〉|�v〉. (6.69)

Writing |Ψ (t + 1)〉 in the computational basis and equating coefficients alike, we
obtain the evolution equation

ψa,�v(t + 1) =
n∑

b=1

Gab ψb,�v⊕�ea (t). (6.70)

This equation is too complex to be solved the way it is written. For cycles and finite
two-dimensional lattices, we have learned that we can diagonalize the shift operator
by taking the Fourier transform of the spatial part. This technique has allowed us to
analytically solve the evolution equation. The same technique works here.

6.3.1 Fourier Transform

The spatial Fourier transform for the n-dimensional hypercube is given by

∣∣β�k
〉 = 1√

2n

2n−1∑

�v=0

(−1)
�k·�v|�v〉, (6.71)

where �k · �v is the inner product of binary vectors �k and �v. The range of variable �k is the
same as variable �v. The Fourier vectors satisfy 〈β�k

∣∣β�k ′
〉 = δ�k�k ′ . As before, the Fourier

transform defines a new orthonormal basis
{
|a〉∣∣β�k

〉 : 1 ≤ a ≤ n, 0 ≤ �k ≤ 2n − 1
}

called the (extended) Fourier basis.
We show that the shift operator is diagonal in the Fourier basis, that is, |a〉∣∣β�k

〉
is

an eigenvector of S. In fact, using (6.71), we have

S|a〉∣∣β�k
〉 = 1√

2n

2n−1∑

�v=0

(−1)
�k·�v S|a, �v〉

= 1√
2n

2n−1∑

�v=0

(−1)
�k·�v |a, �v ⊕ �ea〉

= 1√
2n

2n−1∑

�v=0

(−1)
�k·(�v⊕�ea) |a, �v〉

= (−1)
�k·�ea |a〉∣∣β�k

〉
. (6.72)



6.3 Hypercubes 109

The inner product �k · �ea is the ath entry of �k, which we denote by ka . Therefore,
(−1)ka is the eigenvalue associated with eigenvector |a〉∣∣β�k

〉
.

We have shown that S is a diagonal operator in the extended basis, but this does
not imply that the evolution operator is diagonal in this basis. If the coin operator
is not diagonal, the evolution operator is not diagonal either. However, we want to
diagonalize the evolution operator to explicitly calculate the state of the quantum
walk at an arbitrary time t .

Applying U to vector |b〉∣∣β�k
〉
and using (6.72), we obtain

U |b〉∣∣β�k
〉 = S

(
n∑

a=1

Gab |a〉∣∣β�k
〉
)

=
n∑

a=1

(−1)kaGab |a〉∣∣β�k
〉
. (6.73)

In the extended Fourier basis, the entries of U are

〈
a,β�k ′

∣∣U
∣∣b,β�k

〉 = (−1)kaGab δ�k�k ′ . (6.74)

Let us define operator G̃ with entries G̃ab = (−1)kaGab for arbitrary vectors �k and
�k ′.

The goal now is to diagonalize operator G̃. Let us start with the simplest case,
which is �k = �0 = (0, . . . , 0). In this case, operator G̃ reduces to the Grover operator
G. First, note that G2 = I . So, the eigenvalues are ±1. We know that |D〉 is a
1-eigenvector of G. Let us focus now on the (−1)-eigenvectors. We must look for
vectors |α〉 such that (G + I )|α〉 = 0. Using (6.65), we conclude that G + I is a
matrix with all entries equal to 2/n. It follows that any vector

∣∣∣α
�0
a

〉
= 1√

2
(|1〉 − |a〉) , (6.75)

where 1 < a ≤ n, is an eigenvector of G associated with eigenvalue (−1). Counting

the number of vectors, it follows that set
{∣∣∣α�0

a

〉
: 1 ≤ a ≤ n

}
, where

∣∣∣α�0
1

〉
= |D〉, is

a nonorthogonal eigenbasis of G.
Let us calculate the spectral decomposition when �k = (1, . . . , 1). In this case, we

have G̃ = −G and the (−1)-eigenvectors of G are (+1)-eigenvectors of G̃ and vice
versa. In summary, eigenvectors

∣∣∣α
�1
a

〉
= 1√

2
(|a〉 − |n〉) , (6.76)

where 1 ≤ a ≤ n − 1, are associated with eigenvalue (+1) and
∣∣∣α�1

n

〉
= |D〉 is

associated with eigenvalue (−1).



110 6 Coined Walks with Cyclic Boundary Conditions

Now let us consider a vector �k with Hamming weight 0 < k < n, that is, with k
entries equal to 1 and (n − k) equal to 0. Matrix G̃ is obtained from G by inverting
the signs of the rows corresponding to the entries of �k that are equal to 1. Therefore,
k rows of G̃ invert signs compared to G. To find the (±1)-eigenvectors, we split the
Hilbert space as a sum of two vector spaces, the first associated with the rows that
have not inverted the sign and the second associated with the rows that have inverted
the sign. By permutating rows and columns, matrix G̃ assumes the following form:

G̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2
n − 1 2

n · · ·
2
n

2
n − 1 2

n
...

. . .

− 2
n + 1 − 2

n · · ·

− 2
n − 2

n − 2
n + 1

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (6.77)

where the first diagonal block is a (n − k)-square matrix and the second block is
a k-square matrix. To find the 1-eigenvectors, we look for vectors |α〉 such that
(G̃ − I )|α〉 = 0. Note that

G̃ − I =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2
n − 2 2

n · · ·
2
n

2
n − 2 2

n
...

. . .

− 2
n − 2

n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (6.78)

Therefore, vector1 |α〉 = (0, . . . , 0 | 1,−1, 0, . . . , 0)/
√
2 is a 1-eigenvector. Vector

|α〉 has zero entries except at two positions corresponding to sign-inverted rows, the
first position with (+1) and the second with (−1). We can build k − 1 vectors in
this way. Following the same method, but using (G̃ + I ), we can find (n − k − 1)
(−1)-eigenvectors with zero entries except for two positions corresponding to rows
that have not inverted sign, with (+1) and (−1). The total number of eigenvectors
found so far is (k − 1) + (n − k − 1) = n − 2 with eigenvalues (±1). Therefore, it
is missing two eigenvectors associated with the complex nonreal eigenvalues.

1The vertical bar separates the first (n − k) entries from the last k entries.



6.3 Hypercubes 111

The remaining two eigenvectors can be found as follows: If a matrix has the
property that the sum of the entries of a row is invariant for all rows, a vector with
entries equal to somenumber a is an eigenvector. In the case ofmatrix G̃, this property
is valid for blocks of size (n−k) and k. Therefore, the form of the eigenvector should
be |α〉 = (a, . . . , a | b, . . . , b), that is, the first (n − k) entries must have some a,
and the k remaining entries must have some b. Without loss of generality, we take
b = 1. Let eiωk be the corresponding eigenvalue. Note that the eigenvalue depends
on k (the Hamming weight of �k), but it does not depend explicitly on �k. We solve the
matrix equation

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2
n − 1 − eiωk 2

n · · ·
2
n

2
n − 1 − eiωk 2

n
...

. . .

− 2
n + 1 − eiωk − 2

n · · ·

− 2
n − 2

n + 1 − eiωk − 2
n

...
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a

...

a
1
...

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= 0,

which reduces to
⎧
⎨

⎩

(
1 − 2k

n − eiωk
)
a + 2k

n = 0,

−2
(
1 − k

n

)
a + 1 − 2k

n − eiωk = 0.
(6.79)

Solving this system of equations, we obtain

⎧
⎪⎪⎨

⎪⎪⎩

a = ±i
√

k
n√

1− k
n

,

eiωk = 1 − 2k
n ∓ 2i

√
k
n

(
1 − k

n

)
.

(6.80)

Then, ⎧
⎪⎨

⎪⎩

cosωk = 1 − 2k
n ,

sinωk = ∓2
√

k
n

(
1 − k

n

)
.

(6.81)

Normalizing, the eigenvector associated with eigenvalue eiωk is written as



112 6 Coined Walks with Cyclic Boundary Conditions

∣∣∣α̃
�k
1

〉
= 1√

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−i√
n−k
...
−i√
n−k

1√
k
...
1√
k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (6.82)

and eigenvector
∣∣∣α̃�k

n

〉
associated with eigenvalue e−iωk is the complex conjugate of

vector
∣∣∣α̃�k

1

〉
.

These eigenvectors were described by separating the rows that inverted sign from
the rows that have remained unchanged. We must permute the entries of the eigen-
vectors to match the rows in their original positions. The variable that points out
which rows have inverted sign is �k. If entry ka is zero, it means that there was no sign
inversion in the ath row, and if ka = 1, then there was an inversion. The eigenvectors∣∣∣α̃�k

1

〉
and

∣∣∣α̃�k
n

〉
associated with eigenvalues e±iωk are written in the original basis as

∣∣∣α̃
�k
1

〉
= 1√

2

n∑

a=1

(
ka√
k

− i
1 − ka√
n − k

)
|a〉, (6.83)

∣∣∣α̃
�k
n

〉
= 1√

2

n∑

a=1

(
ka√
k

+ i
1 − ka√
n − k

)
|a〉, (6.84)

for 0 < k < n.
We now redefine eigenvectors

∣∣∣α̃�k
1

〉
and

∣∣∣α̃�k
n

〉
in order to change a global phase.

Using (6.83) and (6.84), we have

〈
D
∣∣∣α̃

�k
1

〉
= 1√

2

(√
k

n
− i

√

1 − k

n

)

, (6.85)

〈
D
∣∣∣α̃

�k
n

〉
= 1√

2

(√
k

n
+ i

√

1 − k

n

)

. (6.86)

From now on we use the eigenvectors

∣∣∣α
�k
1

〉
= eiθ√

2

n∑

a=1

(
ka√
k

− i
1 − ka√
n − k

)
|a〉, (6.87)



6.3 Hypercubes 113

Table 6.1 Eigenvalues and eigenvectors of U for the hypercube, where ωk is given by Eq. (6.82)
and ca is the coefficient of |a〉 in Eq. (6.87)

Hamming wgt Eigenval Eigenvec ⊗∣∣β�k
〉

Index a′ Multiplicity

|k| = 0 −1 (|0〉 − ∣∣a′〉)/
√
2 a′ ∈ [1, n − 1] n − 1

1
∑n−1

a=0 |a〉/√n n 1

1 ≤ |k| < n −1 (|0〉 − ∣∣a′〉)/
√
2 a′ ∈ [1, n − |k| − 1] n − |k| − 1

1 (|n−|k|〉−|a′+1〉)√
2

a′ ∈ [n − |k|, n − 2] |k| − 1

eiωk
∑n−1

a=0 ca |a〉 n 1

e−iωk
∑n−1

a=0 c
∗
a |a〉 n − 1 1

|k| = n 1 (|0〉 − ∣∣a′〉)/
√
2 a′ ∈ [1, n − 1] n − 1

−1
∑n−1

a=0 |a〉/√n n 1

∣∣∣α
�k
n

〉
= e−iθ

√
2

n∑

a=1

(
ka√
k

+ i
1 − ka√
n − k

)
|a〉, (6.88)

for 0 < k < n, where cos θ = √
k/n and ka = �k · �ea is the ath entry of �k. For

0 < k < n, we have 〈
D
∣∣∣α

�k
1

〉
=
〈
D
∣∣∣α

�k
n

〉
= 1√

2
. (6.89)

We conclude that set
{∣∣∣α�k

a

〉∣∣β�k
〉 : 1 ≤ a ≤ n, 0 ≤ �k ≤ 2n − 1

}
is a nonorthogonal

eigenbasis ofU . The eigenvalues are±1 and e±iωk . Vectors
∣∣∣α�k

a

〉
in the computational

basis are given by (6.75), (6.76) for k = 0 and k = n; and
∣∣∣α�0

1

〉
=
∣∣∣α�1

n

〉
= |D〉 are

particular cases. For 0 < k < n, a = 1 or a = n,
∣∣∣α�k

a

〉
are given by (6.87) and

(6.88). Vectors
∣∣β�k
〉
are given by (6.71). Table 6.1 compiles the list of eigenvalues

and eigenvectors.

Exercise 6.17. Show the following properties of the Fourier transform:

1.
∣∣β�0
〉
is the diagonal state of Hilbert spaceH2n .

2.
{∣∣β�k

〉 : 0 ≤ �k ≤ 2n − 1
}
is an orthonormal basis for the Hilbert spaceH2n .

3.
∣∣�0〉 = 1√

2n

∑2n−1
�k=0

∣∣β�k
〉
.

Exercise 6.18. Show that the eigenvectors of (6.87) and (6.88) are unit vectors.



114 6 Coined Walks with Cyclic Boundary Conditions

Exercise 6.19. Show explicitly that
{∣∣∣α�k

1

〉∣∣β�k
〉
,
∣∣∣α�k

n

〉∣∣β�k
〉 : 1 ≤ �k ≤ 2n − 2

}
together

with |D〉∣∣β�0
〉
and |D〉∣∣β�1

〉
is an orthonormal eigenbasis of U with eigenvalues e±iωk ,

1, and (−1), respectively, for the eigenspace orthogonal to |D〉∣∣�0〉.
Exercise 6.20. Obtain explicit expressions for eigenvectors

∣∣∣α�k
a

〉
when 0 < k < n

and 0 < a < n associated with eigenvalues e±iωk .

6.3.2 Analytic Solutions

Now we calculate the state of the quantum walk at an arbitrary time step. Let us use
state

|Ψ (0)〉 = |D〉∣∣�0〉, (6.90)

as initial condition, that is, initially the walker is located at vertex �v = �0 with the
diagonal state in the coin space. This initial condition is invariant under permutation
of edges. Suppose that φa,�k is an eigenvalue associated with eigenvector

∣∣φa,�k
〉
and

suppose that the set of eigenvectors
∣∣φa,�k

〉
is an orthonormal basis. Using the spectral

decomposition of U , we have

U =
∑

a,�k
φa,�k

∣∣φa,�k
〉 〈

φa,�k
∣∣. (6.91)

At time t , the state of the quantum walk will be given by

|Ψ (t)〉 = Ut |Ψ (0)〉
=
∑

a,�k
φt
a,�k

〈
φa,�k

∣∣∣Ψ (0)
〉 ∣∣φa,�k

〉
. (6.92)

The eigenvectors of U that have nonzero overlap with |Ψ (0)〉 are
∣∣∣α�k

1

〉∣∣β�k
〉
for 0 ≤

�k < 2n − 1, where
∣∣∣α�0

1

〉
= |D〉, which have eigenvalues eiωk , and

∣∣∣α�k
n

〉∣∣β�k
〉
for

0 < �k ≤ 2n − 1, where
∣∣∣α�1

n

〉
= |D〉, which have eigenvalues e−iωk . The set of

those eigenvectors is an orthonormal basis for the eigenspace orthogonal to |Ψ (0)〉
(Exercise 6.19). Then, (6.92) reduces to

|Ψ (t)〉 =
2n−2∑

�k=0

(eiωk )t
〈
α

�k
1

∣∣∣D
〉 〈

β�k
∣∣∣�0
〉 ∣∣∣α

�k
1

〉∣∣β�k
〉+

2n−1∑

�k=1

(e−iωk )t
〈
α

�k
n

∣∣∣D
〉 〈

β�k
∣∣∣�0
〉 ∣∣∣α

�k
n

〉∣∣β�k
〉
. (6.93)



6.3 Hypercubes 115

Using (6.71), we have
〈
β�k
∣∣�0
〉

= 1/
√
2n . Using that

∣∣∣α�0
1

〉
= |D〉 (1-eigenvector),

∣∣∣α�1
n

〉
= |D〉 ((−1)-eigenvector), and Eqs. (6.89), the state of the quantum walk on

the n-dimensional hypercube at time t is

|Ψ (t)〉 = 1√
2n

(
|D〉∣∣β�0

〉+ (−1)t |D〉∣∣β�1
〉)

+ 1√
2n+1

2n−2∑

�k=1

eiωk t
∣∣∣α

�k
1

〉∣∣β�k
〉

+ 1√
2n+1

2n−2∑

�k=1

e−iωk t
∣∣∣α

�k
n

〉∣∣β�k
〉
. (6.94)

It is remarkable that we obtain an analytic expression for the quantum state at any
time. This result allows us to obtain several other results such as the limiting dis-
tribution and the mixing time on the hypercube. The analytic result was obtained
because we have used the Fourier transform. Note that only the eigenvectors that
are nonorthogonal to |D〉 ⊗ I are used to obtain the expression of |Ψ (t)〉. This fact
depends on the choice of initial condition. If the initial condition is in a subspace
spanned by some eigenvectors of U , the state will remain in this subspace during
the evolution. In the case of |Ψ (t)〉, the dimension of the subspace is 2n+1 − 2

and is spanned by the orthonormal basis
{∣∣∣α�k

1

〉∣∣β�k
〉 : 0 ≤ �k < 2n − 1,

∣∣∣α�k
n

〉∣∣β�k
〉 :

0 < �k ≤ 2n − 1
}
. We will show in the next section that the evolution of the quantum

walk with initial condition |D〉∣∣�0〉 uses a much smaller subspace.

6.3.3 Reducing a Hypercube to a Line Segment

Note the walker starts on vertex �0 and its coin state is the diagonal state. After the
first step, the state is

|Ψ (1)〉 = S (G ⊗ I )|D〉∣∣�0〉

= 1√
n

n∑

a=1

|a〉|�ea〉

= 1√
n

(
|1〉|1, 0, . . . , 0〉 + · · · + |n〉|0, . . . , 0, 1〉

)
. (6.95)

The quantumwalk is described by a state that has the same amplitude for the vertices
with the same Hamming weight. Since the Grover coin is not biased, it is interesting
to ask whether this property will remain the same in the next steps. Applying U to
|Ψ (1)〉, we obtain



116 6 Coined Walks with Cyclic Boundary Conditions

|Ψ (2)〉 = 2 − n

n
|D〉∣∣�0〉+ 2

n
√
n

n∑

a, b = 1
a �= b

|a〉|�ea ⊕ �eb〉. (6.96)

The terms with Hamming weight equal to zero have coefficient (2−n)/n. The terms
with Hamming weight 2 have coefficient 2/n

√
n. Again, the amplitudes are equal

for the vertices with the same Hamming weight. However, in the next step we obtain

|Ψ (3)〉 = 2 − n

n
√
n

n∑

a=1

|a〉|�ea〉 + 2(4 − n)

n2
√
n

n∑

a, b = 1
a �= b

|a〉|�eb〉

+ 4

n2
√
n

n∑

a, b, c = 1
a �= b �= c �= a

|c〉|�ea ⊕ �eb ⊕ �ec〉. (6.97)

The termswithHammingweight 3 have coefficient 4/n2
√
n, and the termswithHam-

ming weight 1 are divided into two blocks, the first with coefficient (2 − n)/n
√
n

corresponding to terms with vertices that satisfy va = 1 and with coefficient
2(4− n)/n2

√
n corresponding to terms that satisfy va = 0. Since the n-dimensional

hypercube and the evolution operator are symmetric under permutation of edges, it
is interesting to ask again if the amplitudes corresponding to vertices |a〉|�v〉 with the
same Hamming weight belonging to the block va = 0 will remain equal to each
other in the next steps and the same regarding the amplitudes corresponding to the
terms belonging to the block va = 1.

A formal way of showing that |Ψ (t)〉 has the symmetry above described is
to consider the following permutation operation: A vector in the computational
basis has the form |a〉|v1, . . . , vn〉, where 1 ≤ a ≤ n, and �v = (v1, . . . , vn) is a
binary vector. The permutation of i and j is defined as follows: It converts vector
|a〉∣∣v1, . . . , vi , . . . , v j , . . . , vn

〉
into vector |a〉∣∣v1, . . . , v j , . . . , vi , . . . , vn

〉
and vice

versa if a �= i and a �= j . If a is equal to i or j , a should also be permuted. If |Ψ (t)〉
is invariant under such a permutation for all i and j , then the coefficients in block
va = 0 are equal and the same is true for the coefficients in block va = 1. Vice versa:
If the coefficients are equal, |Ψ (t)〉 is invariant under such permutations for all i and
j . In other words, this kind of permutation preserves the blocks, that is, a vector of a
block does not move to another block and vice versa. Take, for example, these two
states for n = 2:

|ψ〉 = 1√
2

(|1〉|1, 0〉 + |2〉|0, 1〉),

|φ〉 = 1√
2

(|1〉|0, 1〉 + |1〉|1, 0〉).



6.3 Hypercubes 117

State |ψ〉 is invariant. On the other hand, |φ〉 is not invariant since the permutation
of 1 and 2 converts |φ〉 into (|2〉|1, 0〉 + |2〉|0, 1〉)/√2.

Let us define a basis of invariant vectors under those permutations. This basis
will span an invariant subspace Hinv ⊂ H. The basis of Hinv is obtained as follows:
Select an arbitrary vector in the computational basis of Hilbert spaceH, for example,
vector |1〉|1, 0, 0〉, which is associated with a three-dimensional hypercube. Apply
all allowed permutations to |1〉|1, 0, 0〉. The resulting set is {|1〉|1, 0, 0〉, |2〉|0, 1, 0〉
|3〉|0, 0, 1〉}. Add up all these vectors and normalize. The result is

|λ1〉 = 1√
3

(|1〉|1, 0, 0〉 + |2〉|0, 1, 0〉 + |3〉|0, 0, 1〉). (6.98)

By construction, vector |λ1〉 is invariant under the permutation operation. Now select
another vector in the computational basis ofH that is not in the previous set and repeat
the process over and over until you have exhausted all possibilities. The resulting set
is an invariant basis ofHinv. This basis has vectors |ρ0〉, . . ., |ρn−1〉 and vectors |λ1〉,
. . ., |λn〉, defined by

|ρv〉 = 1
√

(n − v)
(n
v

)
∑

a, �v
|�v| = v

va = 0

|a, �v〉, (6.99)

|λv〉 = 1
√

v
(n
v

)
∑

a, �v
|�v| = v

va = 1

|a, �v〉, (6.100)

where the sum runs over the vertices of the same Hamming weight v with the fol-
lowing constraint: |a, �v〉 is in |ρv〉 if ath entry of �v is 0, otherwise it is in |λv〉. As
usual,

(n
v

)
is the binomial expression n!/(n − v)!v!. The basis described by (6.99)

and (6.100) is orthonormal and has 2n elements, which shows that the dimension of
Hinv is 2n.

Exercise 6.21. Obtain expressions (6.96) and (6.97) by applying U = S(G ⊗ I ) to
|Ψ (1)〉.
Exercise 6.22. Obtain all vectors invariant under permutation in a three-dimensional
hypercube following the method used to obtain (6.98). Divide the set of vectors into
two blocks: right and left. Vectors |a〉|�v〉 in block right have the property va = 0, and
vectors in block left have the property va = 1. The names of the vectors should use
ρ for vectors in block right, λ in block left, and the Hamming weight of the vertices
v as a subindex. Verify the results of this process with vectors of (6.99) and (6.100).

Exercise 6.23. Show that:



118 6 Coined Walks with Cyclic Boundary Conditions

1. |ρ0〉 = |D〉∣∣�0〉.
2. |λn〉 = |D〉∣∣�1〉.
3. Vectors |ρv〉, 0 ≤ v ≤ n − 1, and |λv〉, 1 ≤ v ≤ n are orthonormal.

The initial condition |D〉∣∣�0〉 is in the vector space spanned by |ρv〉 and |λv〉 because
|D〉∣∣�0〉 is equal to |ρ0〉. Oneway to show that the state of the quantumwalk remains on
the space spanned by |ρv〉 and |λv〉 during the evolution is to show that the evolution
operator can be written only in terms of |ρv〉 and |λv〉. First, we show that the shift
operator can be written in this basis. Let us calculate the action of S on vector |ρv〉.
Using (6.99), we have

S|ρv〉 = 1
√

(n − v)
(n
v

)
∑

a, �v
|�v| = v

va = 0

S|a, �v〉

= 1
√

(n − v)
(n
v

)
∑

a, �v
|�v| = v + 1

va = 1

|a, �v〉

Note that the action of S on |a, �v〉 replaces ath entry of �v from 0 to 1. Therefore, the
Hamming weight of this vertex increases one unit. Using the binomial expression,
we show that (n − v)

(n
v

) = (v + 1)
( n
v+1

)
. Using this equation, we obtain

S|ρv〉 = 1
√

(v + 1)
( n
v+1

)
∑

a, �v
|�v| = v + 1

va = 1

|a, �v〉

= |λv+1〉. (6.101)

Similarly, we obtain
S|λv〉 = |ρv−1〉. (6.102)

Therefore, the shift operator can be written as

S =
n−1∑

v=0

|λv+1〉〈ρv| +
n∑

v=1

|ρv−1〉〈λv|. (6.103)

The physical interpretation of the shift operator shows that the quantum walk
takes place in the one-dimensional lattice with n+1 vertices, with the position being
specified by v. The chirality is specified by ρ and λ and determines the direction of



6.3 Hypercubes 119

the movement. Operator S shifts |ρv〉 rightward and inverts the chirality; and S shifts
|λv〉 leftward and inverts the chirality. The boundary conditions are reflective since
at v = 0 the walker has no overlap with |λ0〉 and at v = n it has no overlap with |ρn〉.

The coin operator can also be expressed in terms of basis |ρv〉 and |λv〉. Actually,
the following results are valid:

G ⊗ I |ρv〉 = cosωv|ρv〉 + sinωv|λv〉, (6.104)

G ⊗ I |λv〉 = sinωv|ρv〉 − cosωv|λv〉, (6.105)

where

cosωv = 1 − 2v

n
, (6.106)

sinωv = 2

√
v

n

(
1 − v

n

)
. (6.107)

The proof of this result is oriented in Exercise 6.25. Equations (6.104) and (6.105)
show that the action of the coin operator on the quantumwalk on the one-dimensional
finite lattice is a rotation through angleωv , which depends on point v. This is different
from the standard quantum walk.

Exercise 6.24. Show that (6.102) is true.

Exercise 6.25. The goal of this exercise is to prove that the action of the Grover
coin on basis |ρv〉 and |λv〉 is the one described in (6.104) and (6.105).

Show that ∑

a, �v
|�v| = v0
va = 0

〈
D, �v′∣∣a, �v

〉
= (n − v0)√

n
δv0 v′ .

[
Hint: Show that if | �v′| �= v0, the result is zero. Fix a transposed vector

〈
D, �v′

∣∣∣ with

| �v′| = v0 and expand the sum. There are (n − v0) values of a satisfying va = 0 and

|�v〉 =
∣∣∣ �v′
〉
. The

√
n in the denominator comes from 〈D|a〉.] Use this result to show

that
〈
D, �v′∣∣ρv

〉
=
√
n − v

n
(n
v

) δvv′ .

Show also that

|D〉
∑

|�v|=v

|�v〉 =
√
n − v

n

(
n

v

)
|ρv〉 +

√
v

n

(
n

v

)
|λv〉.



120 6 Coined Walks with Cyclic Boundary Conditions

Use expressions G = 2|D〉〈D| − In and I2n = ∑
�v′

∣∣∣ �v′
〉〈 �v′

∣∣∣ to calculate G ⊗ I2n |ρv〉
and compare the result with (6.104). Use the previous identities.

Using a similar procedure, show that (6.105) is true.

Exercise 6.26. From (6.104) and (6.105), obtain an expression for G ⊗ I . Can this
expression be factored out inHinv? Define the computational basis ofHinv as

{|0, v〉,
|1, v〉, 0 ≤ v ≤ n

}
, where {|0〉, |1〉} ∈ H2 and |v〉 ∈ Hn such that |0, v〉 = |ρv〉,

|1, v〉 = |λv〉. Obtain operator Cv ∈ H2 such that the coin operator has the form∑n
v=0 Cv ⊗ |v〉〈v|. Give a physical interpretation for the action of the coin operator

on this expression.

Using (6.103)–(6.105), we obtain the following expression for the evolution oper-
ator in basis |ρv〉 and |λv〉:

U = S(G ⊗ I )

=
n−1∑

v=0

− cosωv+1|ρv〉〈λv+1| + sinωv+1|ρv〉〈ρv+1|

+
n∑

v=1

sinωv−1|λv〉〈λv−1| + cosωv−1|λv〉〈ρv−1|. (6.108)

Therefore, Hinv is an invariant subspace under the action of U . Since the initial
condition |ρ0〉 = |D〉∣∣�0〉 belongs toHinv, the state of the quantumwalk |Ψ (t)〉will be
in Hinv during the evolution. The orthonormal basis |ρv〉, |λv〉 allows us to interpret
physically the quantum walk on a hypercube as a quantum walk on the points of a
finite line. From the state vector on the line, we can recover the state vector on the
hypercube. However, the basis |ρv〉, |λv〉 is not the best one to obtain the evolution of
the quantumwalk because |ρv〉 and |λv〉 are not eigenvectors of the reduced evolution
operator.

The strategy now is to find the spectral decomposition of U on Hinv. The goal
is to find (2n) linearly independent eigenvectors of U that are in the reduced space

Hinv. We know that
{∣∣∣α�k

1

〉∣∣β�k
〉
,

∣∣∣α�k
n

〉∣∣β�k
〉 : 0 < �k ≤ 2n − 1

}
is an eigenbasis of U

for a subspace where the quantum walk takes place. The associated eigenvalues are{
eiωk , e−iωk

}
, where ωk satisfies

cosωk = 1 − 2k

n
.

Eigenvectors |D〉∣∣β�0
〉
and |D〉∣∣β�1

〉
are in the space spanned by |λv〉 and |ρv〉 (see

Exercises 6.27 and 6.28). However, the remaining eigenvectors are not. For example,∣∣∣α�k
1

〉∣∣β�k
〉
explicitly depends on �k and is not invariant under permutation of the entries

of �k, as the ones described at the beginning of this section. Note that all eigenvectors
of the kind

∣∣∣α�k
1

〉∣∣β�k
〉
with the same Hamming weight k have the same eigenvalue



6.3 Hypercubes 121

eiωk . Since the sum of the eigenvectors with the same Hamming weight is also an
eigenvector, we can generate a new eigenvector, which is invariant under permutation
of the entries of �k and, therefore, it will be in the subspace spanned by |ρv〉 and |λv〉.
So, we define

∣∣ω+
k

〉 = 1
√(n

k

)
∑

|�k|=k

∣∣∣α
�k
1

〉∣∣β�k
〉
, (6.109)

for 0 ≤ k < n. Similarly, we define

∣∣ω−
k

〉 = 1
√(n

k

)
∑

|�k|=k

∣∣∣α
�k
n

〉∣∣β�k
〉
, (6.110)

for 0 < k ≤ n associated with eigenvalue e−iωk . These eigenvectors are in Hinv.

The number of eigenvectors is the same as the dimension of Hinv. Thus, set
{∣∣ω+

k

〉 :
0 ≤ k ≤ n − 1,

∣∣ω−
k

〉 : 1 ≤ k ≤ n
}
is an orthonormal eigenbasis of U for Hinv

associated with eigenvalues
{
eiωk , e−iωk

}
.

The initial condition |D〉∣∣�0〉 can be expressed in this new eigenbasis if there are
coefficients ak and bk such that

|D〉∣∣�0〉 =
n−1∑

k=0

ak
∣∣ω+

k

〉+
n∑

k=1

bk
∣∣ω−

k

〉
. (6.111)

Since the eigenbasis is orthonormal, it follows that

ak =
〈
ω+
k

∣∣D, �0
〉
,

bk =
〈
ω−
k

∣∣D, �0
〉
.

Using that
〈
αk
1

∣∣D
〉 = 〈

αk
n

∣∣D
〉 = 1/

√
2, (6.109) and (6.110), we obtain

ak =
√

1

2n+1

(
n

k

)
,

bk =
√

1

2n+1

(
n

k

)
,

for 0 < k < n. Using (6.85) and (6.86), we obtain a0 = bn = 1/
√
2n . So,



122 6 Coined Walks with Cyclic Boundary Conditions

|Ψ (0)〉 = 1√
2n
(∣∣ω+

0

〉+ ∣∣ω−
n

〉)

+ 1√
2n+1

n−1∑

k=1

√(
n

k

)(∣∣ω+
k

〉+ ∣∣ω−
k

〉)
. (6.112)

Then, the state of the quantum walk at time t is

|Ψ (t)〉 = 1√
2n
(∣∣ω+

0

〉+ (−1)t
∣∣ω−

n

〉)

+ 1√
2n+1

n−1∑

k=1

√(
n

k

)(
eiωk t

∣∣ω+
k

〉+ e−iωk t
∣∣ω−

k

〉)
. (6.113)

Exercise 6.27. Show that

∣∣∣α
�0
1

〉∣∣β�0
〉 = |D〉 ⊗ 1√

2n

2n−1∑

�v=0

|�v〉

= 1√
2n

(
n−1∑

v=0

√(
n − 1

v

)
|ρv〉 +

n∑

v=1

√(
n − 1

v − 1

)
|λv〉

)

.

Exercise 6.28. Show that

∣∣∣α
�1
n

〉∣∣β�1
〉 = |D〉 ⊗ 1√

2n

2n−1∑

�v=0

(−1)v|�v〉

= 1√
2n

(
n−1∑

v=0

(−1)v
√(

n − 1

v

)
|ρv〉 +

n∑

v=1

(−1)v
√(

n − 1

v − 1

)
|λv〉

)

.

[
Hint: Use the first identity of Exercise 6.25.

]

Exercise 6.29. Show that
{∣∣ω+

k

〉 : 0 ≤ k ≤ n − 1,
∣∣ω−

k

〉 : 1 ≤ k ≤ n
}
is an

orthonormal basis ofHinv with eigenvalues e±iωk .

Further Reading

One of the seminal papers that has analyzed the quantum walk on cycles is [8].
References [35, 36, 313] are also useful. Periodic solutions were obtained in [312,
313]. The quantum walk on two-dimensional lattices was analyzed in [222, 313].
Periodic solutions can also be found on the two-dimensional lattice; see [302, 313].
Some earlier papers analyzing quantum walks on the n-dimensional hypercube are
[233, 241]. Reference [173] showed that the quantum hitting time between two
opposite vertices of a hypercube is exponentially smaller than the classical hitting
time. More references about quantum walks in finite graphs published before 2012



6.3 Hypercubes 123

are provided by the review papers [13, 172, 175, 183, 274, 320] or by the review
books [229, 319].

Some recent references of quantum walks on cycles are as follows. Bounds
for mixing time are addressed in [169]. Topological phases and bound states are
addressed in [26]. Localization induced by an extra link in cycles is analyzed in [337].
Quantum walks with memory are presented in [118, 192]. Quantum state revivals
are addressed in [106]. Lively quantum walks are studied in [286]. Transient tem-
perature and mixing times are presented in [101]. Coherent dynamics are analyzed
in [141]. Experimental proposals and implementations are presented in [48, 242].
Teleportation is studied in [324]. The topological classification of one-dimensional
quantum walks is presented in [70].

Quantum walks on hypercubes are addressed in [227, 228]. Quantum walks on
two-dimensional lattices are addressed in [27, 109, 143, 180]. Integrated photonic
circuits for quantum walks on lattices are analyzed in [50]. Analysis of coined quan-
tum walks on hierarchical graphs using renormalization is addressed in [52].



Chapter 7
Coined QuantumWalks on Graphs

In the previous chapters, we have addressed coined quantum walks on specific
graphs of wide interest, such as lattices and hypercubes. In this chapter, we define
coined quantumwalks on arbitrary graphs. The concepts of graph theory reviewed in
AppendixB are required here for a full understanding of the definition of the coined
quantum walk. We split the presentation into class 1, and class 2 graphs. Class 1
comprises graphs whose maximum degree coincides with the edge-chromatic num-
ber and class 2 comprises the remaining ones. For graphs in class 1, we can use
the standard coin-position or position-coin notation, and we can give the standard
interpretation that the vertices are the positions and the edges are the directions.
For graphs in class 2, on the other hand, we can use neither the coin-position nor
position-coin notation; we have to use the arc notation and replace the simple graph
by an associated symmetric digraph, whose underlying graph is the original graph.
In this case, the walker steps on the arcs of the digraph. After those considerations,
we are able to define formally coined quantum walks.

The quantum walk dynamic is determined by a time-independent evolution oper-
ator and an initial quantum state. The state of the quantumwalk as a function of time
is obtained from the repeated action of the evolution operator, starting from the ini-
tial state. In finite quantum systems, there is a quasi-periodic pattern during the time
evolution, preventing the convergence to a limiting distribution. The quasi-periodic
behavior is generated by eigenvalues of the evolution operator, whose arguments are
noninteger multiples of 2π.

Perfect state transfer is a rare phenomenon that has applications for quantum
transport. We give the definition of perfect state transfer not only for the coined
model, but also for the continuous-time and staggered models.

We also address the concepts of limiting probability distribution and mixing time
of quantum walks on finite regular graphs. A possible way to obtain limiting config-
urations is to define a new distribution called average probability distribution, which
evolves stochastically and does not have the quasi-periodic behavior. We describe

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_7

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_7&domain=pdf


126 7 Coined Quantum Walks on Graphs

the limiting distribution of quantum walks on cycles, finite lattices, and hypercubes
using the evolution operators and the initial conditions studied in previous chapters.

7.1 QuantumWalks on Class-1 Regular Graphs

Let G(V, E) be a finite d-regular graph in class 1 with N = |V | vertices. The labels
of the vertices are 0 to N − 1, and the labels of the edges are 0 to d − 1, which
correspond to an edge coloring. For graphs in class 1, the edge-chromatic number
of G is �(G) and, for d-regular graphs, �(G) = d. Regular graphs with an odd
number of vertices are not included in class 1.

TheHilbert space associatedwith a coined quantumwalk onG isH = Hd ⊗ HN ,
where Hd is the coin space and HN is the position space. The computational basis
of H is the set of vectors {|a, v〉 : 0 ≤ a ≤ d − 1, 0 ≤ v ≤ N − 1}. We use the
coin-position notation. For graphs in class 1, we can assume that the walker steps
on the vertices and we can interpret |a, v〉 as the state of a walker on position v with
direction a.

The evolution operator of the coined quantum walk is

U = S (C ⊗ IN ), (7.1)

where C is the coin operator, which is a d-dimensional unitary matrix, and S is the
flip-flop shift operator (S2 = I(dN )), which is defined by

S|a, v〉 = ∣
∣a, v′〉, (7.2)

where vertices v and v′ are adjacent and incident to edge a, that is, the label of the
edge {v, v′} is a.

The coin-position or position-coin notations can be used for graphs in class 1 that
are nonregular, but in this case the coin is not separable as a tensor product of the
form (C ⊗ I ).

When we consider the graph embedded in a Euclidean space, we can define
global directions for the motion, such as right or left, up or down, clockwise or
counterclockwise. In these cases, we can define a shift operator with a subjacent
physical meaning, called moving shift operator, which keeps the direction and S2 �=
I . Examples are provided in Chap.5. The quantum walk with moving shift operator
can be converted into a quantum walk with flip-flop shift operator by redefining the
coin operator.

The evolution operator (7.1) employs a homogeneous coin, that is, the same coin
for all vertices. This can be generalized so that the coin may depend on the vertex.
In this case, the coin is not separable as a tensor product (C ⊗ I ). Nonhomogeneous
coins are used in quantum-walk-based search algorithms.



7.1 Quantum Walks on Class-1 Regular Graphs 127

Exercise 7.1. For graphs in class 1, define the action of an edge a on a vertex v as
a(v) = v′, where v and v′ are adjacent and incident to edge a. Note that a(a(v)) = v.
This notation is consistent for regular graphs. In this notation, the shift operator is
defined as

S|a, v〉 = |a, a(v)〉,

where 0 ≤ a < d and 0 ≤ v < N . If C is the Grover coin, show that

U |a, v〉 =
(
2

d
− 1

)

|a, a(v)〉 + 2

d

∑

a′ �=a

∣
∣a′, a′(v)

〉

.

Exercise 7.2. Analyze whether nonequivalent edge colorings produce nonsimilar
evolution operators of quantum walks on d-regular graphs in class 1.

7.2 Coined Quantum Walks on Arbitrary Graphs

For graphs in class 2, such as regular graphs with an odd number of vertices, the arc
notation reflects the quantum walk dynamic better than the coin-position notation
(or the position-coin notation) used for graphs in class 1 in the previous section. One
cannot label the edges of d-regular graphs in class 2 with d colors. This means that to
use the coin-position notation and to assign directions, one must give different labels
for the pairs of symmetric arcs. If v and v′ are adjacent, the label (v, v′) means from
v to v′ and the label (v′, v)means from v′ to v. Then, the concept of a simple graph is
not adequate and some underlying arc notation, belonging to directed graphs, must
be used. In this case, the physical interpretation of the actual position of the walker
must change in order to match the mathematical description. Instead of walking on
vertices, the walker steps on arcs, and instead of using a simple graph, we must
use a symmetric digraph. For graphs in class 1, we have two set of labels, which
can be used to represent the walker’s positions (vertices) and the directions (edges).
For graphs in class 2, the concept of a simple graph is not enough, and we need to
consider the associated symmetric digraph, which has only one set of labels (v, v′)
representing both position and direction.

Let G(V, E) be a simple graph with vertex set V and edge set E and let N = |V |
be the number of vertices. An edge is denoted by an unordered set {v, v′}, where v

and v′ are adjacent. An arc is denoted by an ordered pair (v, v′), where v is the tail
and v′ is the head. Let �G(V, A) be a directed graph such that (v, v′) and (v′, v) are
in A( �G) if and only if {v, v′} ∈ G. �G and G have the same vertex set, and �G is a
symmetric digraph, whose underlying graph is G.

A coined quantum walk cannot be intrinsically defined on a simple graph G in
class 2. The best we can do is to define the coined quantum walk on the symmetric
digraph �G, whose underlying graph is G. The Hilbert space associated with the
coined walk on �G is spanned by the arc set, that is,



128 7 Coined Quantum Walks on Graphs

H2|E | = span
{∣
∣(v, v′)

〉 : (v, v′) ∈ A( �G)
}

.

Since each edge of G is associated with two arcs of �G, we have |A| = 2|E |. The
notation

∣
∣(v, v′)

〉

is called arc notation.
The evolution operator of the coined quantum walk on �G is

U = S C, (7.3)

where S is the flip-flop shift operator defined by

S
∣
∣(v, v′)

〉 = ∣
∣(v′, v)

〉

(7.4)

and C is the coin operator defined by

C =
⊕

v∈V
Cv, (7.5)

where Cv is a d(v)-dimensional unitary matrix and d(v) is the degree of v. To write
C as a direct sum, we are decomposing H2|E | as

H2|E | =
⊕

v∈V
span

{∣
∣v, v′〉 : (v, v′) ∈ A( �G)

}

.

S is called flip-flop because S2 = I . To demand that S2 = I is no loss of generality
because the coin operator is a direct sum of arbitrary unitary operators. In fact, a
coined quantum walk using the moving shift operator can be converted into the flip-
flop case by defining a new coin C ′ = PCPT, where P is a permutation matrix. The
coin operator C acts on H2|E | and in general is not separable as a tensor product of
smaller operators, unless the graph is regular and all Cv are equal. We can choose an
ordering of the elements of the computational basis so that C is block diagonal. Let
V = {0, . . . , N − 1} be the vertex set and let us use the following ordering of the
arc set: Take two different arcs (v1, v2) and (v3, v4). Arc (v1, v2) comes before arc
(v3, v4) if v1 ≤ v3 and when v1 = v3 if v2 < v4. The ordering of the vectors of the
computational basis must change accordingly. On the other hand, the shift operator
is not block diagonal. We can reverse the process, that is, we choose an ordering of
the elements of the computational basis so that S is block diagonal while C is not
block diagonal. In this case, S = X⊗|E |. In many applications, one can simply ignore
such details.

Exercise 7.3. Show that |A| = dN for d-regular graphs with N vertices.

Exercise 7.4. The goal of this exercise is to show that the coin-position notation
cannot be used for graphs in class 2. Try to use the coin-position notation for a coined
quantum walk on a triangle, which is a 2-regular graph in class 2. The dimension
of the Hilbert space is 6. There is no problem to label the three vertices: v1, v2, v3.



7.2 Coined Quantum Walks on Arbitrary Graphs 129

Fig. 7.1 Labeling of the left-hand graph is unfitting because each edge has two labels. The labeling
of the right-hand digraph is appropriate

Now we have to give labels for the edges. We expect to give one label for each edge.
Convince yourself that it is not possible to use only two labels (coin labels 0 and
1) because adjacent edges cannot have the same label (see the left-hand graph of
Fig. 7.1 with an unfitting attempt). What can we do? We can use a notation based
on the direction, such as 1 → 2, which means the walker on v1 would move to
v2. Then, the computational basis would be |1 → 2, v1〉, |1 → 3, v1〉, |2 → 1, v2〉,
|2 → 3, v2〉, |3 → 1, v3〉, |3 → 2, v3〉. Convince yourself that this is a disguised arc
notation and is equivalent to the notation of the right-hand digraph of Fig. 7.1.

7.2.1 Locality

Is the evolution operator of the coinedmodel a product of local operators? To answer
this question, we have to define formally the concept of local operator so as it
coincides, as much as possible, with the intuitive notion that the walker must move
only to neighboring vertices (class 1) or neighboring arcs (class 2).1 The problem is
the following. For graphs in class 1, we assume that the walker steps on the vertices.
Then, the coin operator does nothing to the walker’s position. The usual escape is to
say that the walker has an inner space, which is a useful interpretation for graphs in
class 1, such as infinite lattices. For graphs in class 2, as we have pointed out, it is not
possible to obtain an edge coloringwith�(G) colors and there is no intrinsic way of
describing the possible directions for thewalker’s shift unless we give different labels
for the pairs of symmetric arcs. Note that the arc notation applies to both classes.

In a formal interpretation valid for any simple graph G, we define the coined walk
on its associated symmetric digraph �G, whose underlying graph is G, and demand
that the walker step on the arcs of �G. Both operators (coin and shift) move the walker.
If thewalker is on an arc (v, v′), the coin operator spreads thewalker’s position across
the arcs whose tails are v, and the shift operator moves the walker to the opposite

1It is also allowed to stay put.



130 7 Coined Quantum Walks on Graphs

arc. Two arcs are neighbors if they are opposite or if their tails coincide. In this
interpretation, the definition of local operators in the coined model is as follows.

Definition 7.1. An operator H on the Hilbert space spanned by the arc set of graph
�G is local when

〈

(v3, v4)
∣
∣H
∣
∣(v1, v2)

〉 �= 0 only if the pair of arcs (v1, v2) and (v3, v4)

are neighbors.

Note that the shift S and the coin C are local operators. On the other hand,
the evolution operator U is nonlocal. Note that U is usually a sparse matrix in the
computational basis because

〈

(v3, v4)
∣
∣U
∣
∣(v1, v2)

〉 = 0when (v3, v4) is not a neighbor
of a neighbor of (v1, v2).

7.2.2 Grover Quantum Walk

The Grover quantum walk is an important subcase when the coin operator is the
direct sum of Grover operators, that is, each matrix Cv has entries

(Cv)k� = 2

d(v)
− δk�. (7.6)

In the operator notation, the full coin matrix acts as

C |a〉 =
∑

a′∈A( �G)
tail(a′)=tail(a)

(
2

d(tail(a))
− δa,a′

)
∣
∣a′〉, (7.7)

where |a〉 is a vector of the computational basis and a ∈ A( �G). The interpretation of
this coin, which is the Grover coin in the arc notation, is as follows. If the walker is
on arc a, the coin spread the walker’s position across the arcs whose tails are tail(a).

The shift operator moves the walker to the set of arcs whose heads are tail(a). In
this compact notation, the shift operator is

S|a〉 = |ā〉, (7.8)

where ā is the opposite arc, that is, if a = (v, v′), then ā = (v′, v). The Grover walk
is extensively used in quantum-walk-based search algorithms.

Exercise 7.5. Show that the evolution operator of the Grover quantum walk in the
arc notation is

U =
∑

a′∈A( �G)

∑

a∈A( �G)
tail(a)=tail(a′)

(
2

d(tail(a′))
− δa,a′

)

|ā〉〈a′∣∣.



7.2 Coined Quantum Walks on Arbitrary Graphs 131

Show that for regular graphs in class 1, the above evolution operator reduces to
the evolution operator of Exercise7.1, by converting the arc notation into the coin-
position notation. Use initially the conversion

∣
∣(v, v′)

〉 → ∣
∣{v, v′}, v〉.

7.2.3 Coined Walks on Cayley Graphs

Cayley graphs �(G, S), where G is a group and S is a symmetric generating set, are
interesting examples of regular graphs in which the arc notation comes naturally. If
we consider the symmetric digraph �G, the labels of the arcs are (g, g · s),where g ∈ G
and s ∈ S. It is possible to use a kind of coin-position notation because |(g, g · s)〉 can
be denoted by |s, g〉 and |(g · s, g)〉 by ∣∣s−1, g · s〉. In this case, the vertex labels are
the group elements g ∈ G and the arc labels can be guessed by the notation |s, g〉.2

The action of the flip-flop shift operator is

S|s, g〉 = ∣
∣s−1, g · s〉,

and of the Grover coin is

C |s, g〉 =
(
2

d
− 1

)

|s, g〉 + 2

d

∑

s ′∈S
s ′ �=s

∣
∣s ′, g

〉

,

where d = |S|. From those definitions, the action of the evolution operatorU = SC
on the computational basis is

U |s, g〉 =
(
2

d
− 1

)
∣
∣s−1, g · s〉+ 2

d

∑

s ′∈S
s ′ �=s

∣
∣(s ′)−1, g · s ′〉.

If all generators in S have the property s = s−1, the Cayley graph is in class 1 and
the true coin-position notation can be used and the generators s ∈ S are edge labels.
Note that this is not the only case in which the Cayley graph is in class 1.

The quantum walk on hypercubes analyzed in Sect. 6.3 on p. 106 is an explicit
example of a walk on a Cayley graph of order N = 2n of the abelian groupZn

2 with n
canonical generators (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1). Hypercubes are
in class 1.

Quantum walks on odd cycles are examples of Cayley graphs of the group ZN

with generating set S = {1,−1}, which are in class 2.

2Note that the generators s ∈ S cannot be used as edge labels in general. For instance, take the
triangle, which is a Cayley graph �(Z3, {±1}), and see Exercise7.4.



132 7 Coined Quantum Walks on Graphs

7.2.4 Coined Walks on Multigraphs

The coined model achieves its full generality only on multigraphs. Coined quantum
walk on simple graphs cannot describe instances of 2-tessellable quantum walks
(see the definition in Chap. 8) on simple graphs that are the line graphs of bipartite
multigraphs (with at least one multiple edge).

The definition of the coined model on multigraphs is very similar to the definition
for graphs in class 2, but we need to give labels for all arcs without using the notation
(v, v′), and we have to consider the symmetric multidigraph �G. The Hilbert space is
spanned by the arc set, that is,

H = span
{|a〉 : a ∈ A( �G)

}

.

The evolution operator is
U = S C, (7.9)

where S is the flip-flop shift operator defined by

S |a〉 = |ā〉, (7.10)

where ā is the arc opposite to a, and C is the coin operator defined by

C =
⊕

v∈V
Cv, (7.11)

where Cv is a d(v)-dimensional unitary matrix under the decomposition

H =
⊕

v∈V
span

{|a〉 : tail(a) = v
}

.

Exercise 7.6. Given a regular graph G in class 2, there are two ways to define a new
graph G ′ that does not need the arc notation: (1) by adding a loop to each vertex of
G, or (2) by adding a leaf to each vertex of G. Show that in both cases it is possible
to assign (�(G) + 1) labels for the edges of G ′ and conclude that the coin-position
notation can be used in a coined quantum walk on G ′. Is the quantum walk dynamic
on G ′ equivalent to the one on G?

7.3 Dynamics and Quasi-periodicity

In the last section, we have defined the evolution operator of the coined quantum
walk. This section addresses the quantumwalk dynamic.Most of the discussion from
now on assume that G is a d-regular connected graph in class 1 with N vertices. We



7.3 Dynamics and Quasi-periodicity 133

use the coin-position notation because it is widespread in literature. However, the
results apply to arbitrary graphs and to discrete-time quantum walks in general. It
would not apply to the continuous model, which can have a noninteger time.

Suppose that the initial condition of a coined quantumwalk is |ψ(0)〉. The dynamic
of the coined model, or any discrete-time quantumwalk, is described by the repeated
action of the evolution operator. The state of the walker at time t is

|ψ(t)〉 = Ut |ψ(0)〉, (7.12)

where U is the time-independent evolution operator.
Onemaywonderwhether state |ψ(t)〉 tends to a stationary statewhen t approaches

infinity, that is, does limt→∞ |ψ(t)〉 exist? This limit does not exist because the norm
∥
∥ |ψ(t + 1)〉 − |ψ(t)〉∥∥ is constant for all t , in fact,

1

2

∥
∥|ψ(t + 1)〉 − |ψ(t)〉∥∥2 = 1

2

∥
∥Ut (U − I )|ψ(0)〉∥∥2

= 1 − �(〈ψ(0)|U |ψ(0)〉).

The result is time-independent because operator U is unitary. Since the real part of
〈ψ(0)|U |ψ(0)〉 is constant and strictly smaller than 1 for a given nontrivial evolution
operator U , the above norm is a nonzero constant. The time-dependent state |ψ(t)〉
cannot tend toward a stationary state because the left-hand side would approach zero,
which is a contradiction.

The probability of finding the walker on vertex v is given by

pv(t) =
d−1
∑

a=0

∣
∣
〈

a, v
∣
∣ψ(t)

〉∣
∣
2
. (7.13)

When we consider all vertices of the graph, we have a probability distribution pv(t),
which satisfies

N−1
∑

v=0

pv(t) = 1.

Wemay ask ourselves again whether there is a limiting probability distribution in the
general case, since the argumentation of the preceding paragraph does not directly
exclude this possibility. Another way to answer such a question is by showing that
the dynamics of quantum walks on finite graphs are quasi-periodic.

Quasi-periodic dynamic in the quantum walk literature is used with the meaning
that there are an infinite number of time steps such that the quantum state is close to
the initial state; besides, the repetitive structure is over varying timescales. Since this
concept is an extension of the periodic behavior, let us start by defining the latter.



134 7 Coined Quantum Walks on Graphs

Fig. 7.2 Probability of finding the walker on vertex v = 0 as a function of t for a quantum walk
on a 10-cycle

Definition 7.2 (Periodic dynamics). The dynamic (7.12) based on the repeated
action of an evolution operator is periodic if there is a fundamental period t0 ∈ Z

+
and an angle α such that Ut0 = eiα I .

It follows from this definition that
∣
∣
〈

ψ(nt0)
∣
∣ψ(0)

〉∣
∣
2 = 1 for all positive integer n

and for any choice of the initial state |ψ(0)〉. The simplest extension of Definition7.2
is as follows.

Definition 7.3 (Quasi-periodicdynamics). Thedynamic (7.12) basedon the repeated
action of an evolution operator is quasi-periodic if for any positive number ε there
is a time step t such that

∥
∥Ut − I

∥
∥ ≤ ε.

Using the norm of linear operators (see Sect.A.14 on p. 262), this definition
implies that, for any fixed positive ε, there is a time step t such that

∣
∣
〈

ψ(t)
∣
∣ψ(0)

〉 ∣
∣ ≥

1 − ε (Exercise7.7). Definition7.3 also implies that there are an infinite number of
time steps such that

∣
∣
〈

ψ(t)
∣
∣ψ(0)

〉 ∣
∣ ≥ 1 − ε. In fact, if there is one such a t , then

choose a new ε, for instance,

ε′ = 1 − ∣
∣
〈

ψ(t)
∣
∣ψ(0)

〉∣
∣

2
.

By Definition7.3, there is a time step t ′ �= t such that
∣
∣
〈

ψ(t ′)
∣
∣ψ(0)

〉 ∣
∣ ≥ 1 − ε′. This

process can be repeated over and over. If t is the smallest time step such that
∣
∣
〈

ψ(t)
∣
∣ψ(0)

〉 ∣
∣ ≥ 1 − ε, then t ′ > t .

Figure7.2 shows the probability of finding the walker on the initial vertex as a
function of the number of steps of a Hadamard walk on a 10-cycle. Note that the
probability approaches 1 at many time steps, for instance, at time t = 264.

Let us show that the quantum walk dynamics on finite graphs are quasi-periodic.
Suppose that

∣
∣λa

k

〉

for 0 ≤ a ≤ d − 1 and 0 ≤ k ≤ N − 1 is an orthonormal eigen-
basis of U with eigenvalues e2πiλ

a
k , where 0 ≤ λa

k < 1. The spectral decomposition
of U is

U =
d−1
∑

a=0

N−1
∑

k=0

e2πiλ
a
k
∣
∣λa

k

〉〈

λa
k

∣
∣. (7.14)



7.3 Dynamics and Quasi-periodicity 135

The initial state can be written in the eigenbasis of U as

|ψ(0)〉 =
d−1
∑

a=0

N−1
∑

k=0

cak
∣
∣λa

k

〉

, (7.15)

where cak = 〈

λa
k

∣
∣ψ(0)

〉

. Then,

|ψ(t)〉 =
d−1
∑

a=0

N−1
∑

k=0

cak e
2πiλa

k t
∣
∣λa

k

〉

. (7.16)

For a given evolution operatorU and initial condition |ψ(0)〉, the only time-dependent
term in the last equation is e2πiλ

a
k t . Then, the spectrum of U determines whether the

dynamic is periodic or quasi-periodic.

Theorem 7.4 The discrete-time quantum walk dynamic on finite graphs with evo-
lution operator U is periodic if the arguments of the eigenvalues of U are rational
multiples of 2π.

Proof We use the eigenbasis of U to show that there is a t0 such that Ut0 = I .
If the phases3 of the eigenvalues of U are λa

k = nak/d
a
k for coprime integers nak ,

da
k for a finite number of values a and k, then the fundamental period is the least
common multiple of the denominators da

k , that is, t0 = lcm{da
k : 0 ≤ a < d, 0 ≤ k <

N } because exp(2πiλa
k t0) = 1 for all a and k. �

The condition of the theorem is sufficient but not necessary because we have not
addressed the global phase (Exercise7.8). Let us move on to quasi-periodicity, which
is the main topic of this section.

Before addressing arbitrarily large finite Hilbert spaces, let us start with the two-
dimensional case. In the eigenbasis of U , a two-dimensional U is similar to

[

e2πiλ1 0
0 e2πiλ2

]

,

where 0 ≤ λ1,λ2 < 1 are the phases of the eigenvalues. If λ1 and λ2 are rational,
say λ1 = n1/d1 and λ2 = n2/d2 for integers n1, n2, d1, and d2, then U is periodic
becauseU (d1d2) = I . If the numerators and denominators are coprime, then the least
common multiple of d1 and d2 is the fundamental period. In general, λ1 and λ2

are real numbers. We can use the continued fraction approximation to find rational
approximations n1/d1 and n2/d2 for λ1 and λ2 up to some digits. Then, U (d1d2) is
close to the identity up to some digits. If we choose a really small ε in Definition7.3,
then the rational approximations must be really tight.

Now we state some key lemmas.

3Here phase means the argument of a unit complex number over 2π. Note that in many papers the
term phase is used as a synonym of argument of a unit complex number.



136 7 Coined Quantum Walks on Graphs

Lemma 7.5 Given a unit complex number eiθ, where 0 ≤ θ < 2π, and a positive
number ε, there exists t ∈ Z

+ such that
∣
∣eitθ − 1

∣
∣ ≤ ε.

Proof If θ is a rationalmultiple of 2π, then t is any integermultiple of the denominator
of θ/2π. To show the statement when θ is an irrational multiple of 2π, let n be an
integer such that n ≥ 2π/ε and, given any positive integer j , define 0 ≤ θ( j) < 2π
such that j θ ≡ θ( j) mod 2π.4 There exist two different integers j1 and j2 smaller
than or equal to n such that |θ( j1) − θ( j2)| ≤ 2π/n ≤ ε because if we divide the unit
circle into identical sectors such that each sector has angle ε (except possibly for one
smaller sector) and if we take n different integers j , for instance, j = 1, 2, . . . , n,
then there is a sector with more than one θ( j). Then, θ(| j2 − j1|) ≤ ε and the integer
number t = | j2 − j1| obeys θ(t) ≤ ε. Using that

∣
∣eitθ − 1

∣
∣ = √

2
√
1 − cos θ(t) ≤√

2
√
1 − cos ε ≤ ε, we conclude the proof. �

In the proof of Lemma7.5, we use a sequence j = 1, 2, . . . of consecutive integer
numbers in order to find j1 and j2 with the desired property θ(| j2 − j1|) < ε. The
proof works just as well if we use a sequence j = i1, i2, . . . of increasing integer
numbers, not necessarily consecutive, that is, we are still able to find integers j1 and
j2 with the desired property if we take n large enough. Another important fact is that
if eitθ is (ε/n)-close to 1 for a positive integer n, then each unit complex number of
the sequence ei�tθ for � = 1, 2, .., n is at most ε-close to 1. We show this fact in the
next lemma.

Lemma 7.6 Given a positive number ε and unit complex numbers eiθk for 1 ≤ k ≤ N
and N ∈ Z

+, there exists t ∈ Z
+ such that

max
k

∣
∣eitθk − 1

∣
∣ ≤ ε.

Proof (By induction on N ) Lemma7.5 shows that the statement is true for N = 1.
Now suppose it is true for N .

Given ε > 0, let n be a positive integer such that n ≥ 2π/ε. Using the recursive
condition, there exists t ∈ Z

+ such that
∣
∣eitθk − 1

∣
∣ ≤ ε

2n , where k is the index of

the maximum of
∣
∣eitθk′ − 1

∣
∣ for 1 ≤ k ′ ≤ N . Using that5 |θk (t)|

2 ≤ ∣
∣eitθk − 1

∣
∣ when

−π < θk(t) ≤ π, we have n|θk(t)| ≤ ε. Then,

∣
∣ei�θk (t) − 1

∣
∣ ≤ ε

for � = 1, . . . , n. We have described an arbitrarily large finite sequence of integer
numbers �t for � = 1, . . . , n such that

∣
∣ei�tθk − 1

∣
∣ ≤ ε.

Now we have to include the unit complex number eiθN+1 in the previous set {eiθk :
1 ≤ k ≤ N }. Using the proof of Lemma7.5, we are able to find an integer number

4The notation a ≡ b mod 2π means that b (which can be an irrational number) is the remainder
of the division of a by an integer multiple of 2π.
5Here we change the convention and we use −π < θ(t) ≤ π instead of 0 ≤ θ(t) < 2π.



7.3 Dynamics and Quasi-periodicity 137

t ′ = |�2t − �1t | where �1, �2 ≤ n (�1t and �2t play the role of j1 and j2 in the proof
of Lemma7.5) such that

∣
∣eit

′θN+1 − 1
∣
∣ ≤ ε. We conclude that

max
k=1...N+1

∣
∣
∣eit

′θk − 1
∣
∣
∣ ≤ ε,

which means that the statement of this lemma is true for N + 1. �

Theorem 7.7 Discrete-time quantum walk dynamics on finite graphs are quasi-
periodic.

Proof On a finite graph with N vertices, the dynamic is obtained by the repeated
action of a N -dimensional unitary operatorU . In the eigenbasis ofU ,U is described
by N unit complexnumbers eiθk for 1 ≤ k ≤ N .UsingDefinition7.3, Lemma7.6, and
the norm of linear operators described in Sect.A.14, we conclude that the dynamic
is quasi-periodic. �

Note that not only discrete-time quantum walks are quasi-periodicity but also any
finite quantum system that is driven by a time-independent evolution operator.

Exercise 7.7 Show that if
∥
∥Ut − I

∥
∥ ≤ ε, then

∣
∣
〈

ψ(t)
∣
∣ψ(0)

〉 ∣
∣ ≥ 1 − ε.

Exercise 7.8 Improve the statement of Theorem7.4 in order to describe a necessary
and sufficient condition for periodic dynamics and prove the resulting proposition.

7.4 Perfect State Transfer and Fractional Revival

Perfect state transfer (PST) was analyzed in detail on spin chains, which is a row
of qubits that interact with their neighbors via some time-independent Hamiltonian.
Intuitively, PST means to transfer the state of a qubit in the chain at some point in
time to another qubit at a future point in time. Fractional revival is a related concept,
which is important for entanglement generation in spin chains.

These concepts have been naturally adapted to the area of quantum walks on
graphs. However, the definitions depend on which quantumwalk model one is using.
Let us start by defining PST and fractional revival in the context of the continuous-
time quantum walk (CTQW). The evolution operator in the continuous-time model
on a graph �(V, E) acts on the Hilbert space spanned by the graph vertices and is
usually defined as U (t) = exp(−it A), where A is the adjacency matrix of �. There
are alternative definitions, such as U (t) = exp(−it L), where L is the Laplacian
matrix of �. In any case, the definition of perfect state transfer is as follows.

Definition 7.8 (Perfect state transfer in CTQW). LetU (t) be the evolution oper-
ator of a continuous-time quantum walk on a graph �(V, E). There is a perfect state
transfer from vertex v to v′ �= v at time t0 ∈ R

+ if
∣
∣
〈

v′∣∣U (t0)
∣
∣v
〉∣
∣ = 1.



138 7 Coined Quantum Walks on Graphs

Note that if thewalker is initially on vertex v, that is, |v〉 is the initial state,U (t0)|v〉
is the walker’s state at time t0 and

∣
∣
〈

v′∣∣U (t0)
∣
∣v
〉∣
∣
2
is the probability of finding the

walker on vertex v′ at time t0. Graph � admits PST from vertex v to v′ at time t0 if
this probability is 1.

The definition of fractional revival is as follows.

Definition 7.9 (Fractional revival in CTQW). Let U (t) be the evolution operator
of a continuous-time quantum walk on a graph �(V, E). There is a fractional revival
at vertices v and v′ �= v at time t0 ∈ R

+ if U (t0)|v〉 = α|v〉 + β
∣
∣v′〉 for complex

scalars α and β �= 0 with |α|2 + |β|2 = 1.

The definitions of PST and fractional revival for the staggered quantum walk are
similar to the ones for CTQWbecause the Hilbert space of bothmodels is spanned by
the graph vertices. A 2-tessellable quantum walk is defined by the evolution operator

U = eiθ1H1eiθ0H0 ,

where θ0, θ1 ∈ R, H0 and H1 are Hamiltonians associated with two tessellations of
a tessellation cover (see Chap.8 for details). Since θ0 and θ1 are real parameters,
they can be adjusted in order to create the conditions that admit PST and fractional
revival.

Definition 7.10 (Perfect state transfer in the staggered model). Let U be the
evolution operator of a staggered quantum walk on a graph �(V, E). There is a
perfect state transfer from vertex v to v′ �= v at time t0 ∈ Z

+ if
∣
∣
〈

v′∣∣Ut0
∣
∣v
〉∣
∣ = 1.

Definition 7.11 (Fractional revival in the staggered model). Let U be the evolu-
tion operator of a staggered quantum walk on a graph �(V, E). There is a fractional
revival at vertices v and v′ �= v at time t0 ∈ Z

+ ifUt0 |v〉 = α|v〉 + β
∣
∣v′〉 for complex

scalars α and β �= 0 with |α|2 + |β|2 = 1.

The definitions of PST and fractional revival in the coined model are the most
complex ones.

Definition 7.12 (Perfect state transfer in the coined model). Let U be the evo-
lution operator of a coined quantum walk on a d-regular graph �(V, E) in class 1
described in the coin-position notation. There is a perfect state transfer from vertex
v to v′ �= v at time t0 ∈ Z

+ if

d−1
∑

a′=0

d−1
∑

a′=0

∣
∣
〈

a′, v′∣∣Ut0
∣
∣a, v

〉∣
∣ = 1.

Next definition uses the partial inner product.

Definition 7.13 (Fractional revival in the coined model). Let U be the evolution
operator of a coined quantum walk on a graph �(V, E) in class 1 described in the



7.4 Perfect State Transfer and Fractional Revival 139

coin-position notation. There is a fractional revival at vertices v and v′ �= v at time
t0 ∈ Z

+ if there is a coin value 0 ≤ a < d such that

d−1
∑

a=0

〈

a′∣∣Ut0
∣
∣a, v

〉 = α|v〉 + β
∣
∣v′〉

for complex scalars α and β �= 0 with |α|2 + |β|2 = 1.

We give at the end of this chapter references that describe graphs that admit perfect
state transfer for all these definitions and graphs that admit fractional revival in the
continuous-time case.

Exercise 7.9 Define perfect state transfer and fractional revival for coined quantum
walks on graphs in class 2.

7.5 Limiting Probability Distribution

Classical randomwalks on connected nonbipartite graphs have limiting or stationary
distributions that do not depend on the initial condition. In the quantum context, it
is interesting to ask whether there is a stationary probability distribution when the
quantum walk evolves up to t → ∞. If there is, how does the limiting distribution
depend on the initial condition?

We have shown in Sect. 7.3 that there is a time t > 0 such that |ψ(t)〉 is arbitrarily
close to the initial condition. Due to the cyclic nature of the evolution, the same
procedure can be used to find an infinite number of times such that the quantum state
is close to the initial condition. Since this is a characteristic of discrete-time quantum
walks on finite graphs, we can ask ourselves if there is some way to define limiting
distributions.

The average probability distribution is defined as

p̄v(T ) = 1

T

T−1
∑

t=0

pv(t). (7.17)

Note that p̄v(T ) is a probability distribution because 0 ≤ p̄v(T ) ≤ 1 and

N−1
∑

v=0

p̄v(T ) = 1

for all T .We can give the following physical interpretation for p̄v(T ). Take an integer
t randomly distributed between 0 and T − 1. Let the quantum walk evolve from the
initial condition until that time t . Perform a measurement in the computational basis
to determine the position of the walker. Keeping T fixed, repeat the process over and



140 7 Coined Quantum Walks on Graphs

over. Analyzing the results, we can determine how many times the walker has been
found on each vertex. Dividing these values by the total number of repetitions, we
obtain a probability distribution close to p̄v(T ), which can be improved by increasing
the number of repetitions.

The interpretation of p̄v(T ) uses projective measurements. Therefore, p̄v(T )

evolves stochastically. Now we have a good reason to believe that p̄v(T ) converges
to a limiting distribution when T tends to infinity. Define

π(v) = lim
T→∞ p̄v(T ). (7.18)

This limit exists and can be explicitly calculated once given the initial condition.
We can obtain a useful formula for calculating the limiting distribution and at the
same time prove its existence for regular graphs in class 1.

Using (7.13) and (7.17), we obtain

p̄v(T ) = 1

T

T−1
∑

t=0

d−1
∑

b=0

∣
∣
〈

b, v
∣
∣ψ(t)

〉∣
∣
2
.

Using (7.16), we obtain

p̄v(T ) = 1

T

T−1
∑

t=0

d−1
∑

b=0

∣
∣
∣
∣
∣

d−1
∑

a=0

N−1
∑

k=0

cak e
2πiλa

k t
〈

b, v
∣
∣λa

k

〉

∣
∣
∣
∣
∣

2

.

After some algebraic manipulations, we obtain

p̄v(T ) =
d−1
∑

a,a′,b=0

N−1
∑

k,k ′=0

cak
(

ca
′

k ′
)∗ 〈

b, v
∣
∣λa

k

〉 〈

λa′
k ′

∣
∣
∣b, v

〉

× 1

T

T−1
∑

t=0

e2πi(λ
a
k −λa′

k′ )t . (7.19)

To obtain the limiting distribution, we have to calculate the limit

lim
T→∞

1

T

T−1
∑

t=0

(

e2πi(λ
a
k −λa′

k′ )
)t

.

Using the formula of the geometric series, we obtain

1

T

T−1
∑

t=0

(

e2πi(λ
a
k −λa′

k′ )
)t =

⎧

⎪⎨

⎪⎩

e
2πi(λak −λa

′
k′ )T −1

T

(

e
2πi(λak −λa

′
k′ )−1

) , if λa
k �= λa′

k ′ ;

1, if λa
k = λa′

k ′ .

(7.20)



7.5 Limiting Probability Distribution 141

If λa
k �= λa′

k ′ , the result is a complex number, whose modulus obeys

∣
∣
∣
∣
∣
∣

e2πi(λ
a
k −λa′

k′ )T − 1

T
(

e2πi(λ
a
k −λa′

k′ ) − 1
)

∣
∣
∣
∣
∣
∣

2

= 1

T 2

1 − cos 2π(λa
k − λa′

k ′ )T

1 − cos 2π(λa
k − λa′

k ′ )

≤ 1

T 2

1

1 − cos 2π(λa
k − λa′

k ′ )
.

Taking the limit T → ∞, we obtain that the modulus of this complex number is
zero. Then,

lim
T→∞

1

T

T−1
∑

t=0

(

e2πi(λ
a
k −λa′

k′ )
)t =

{

0, if λa
k �= λa′

k ′ ;
1, if λa

k = λa′
k ′ .

(7.21)

Using this result in (7.19), we obtain the following expression for the limiting dis-
tribution:

π(v) =
d−1
∑

a,a′=0

N−1
∑

k,k ′=0
λa
k =λa′

k′

cak
(

ca
′

k ′
)∗

d−1
∑

b=0

〈

b, v
∣
∣λa

k

〉 〈

λa′
k ′

∣
∣
∣b, v

〉

. (7.22)

The sum runs over the pairs of indices (a, k) and (a′, k ′) that correspond to equal
eigenvalues λa

k = λa′
k ′ . If all eigenvalues are different, that is, λa

k �= λa′
k ′ for all (a, k)

and (a′, k ′), the expression of the limiting distribution simplifies to

π(v) =
d−1
∑

a=0

N−1
∑

k=0

|cak |2 pa,k(v), (7.23)

where

pa,k(v) =
d−1
∑

b=0

∣
∣
〈

b, v
∣
∣λa

k

〉∣
∣
2
. (7.24)

Note that the limiting distribution depends on cak , which are the coefficients of the
initial state in the eigenbasis of U . Therefore, the limiting distribution depends on
the initial condition in the general case.

Exercise 7.10 Let U be the evolution operator of a quantum walk as discussed in
Sect. 7.1. Suppose that the limiting distribution is the same for any initial condition
of type |a, v〉. Show that the limiting distribution is uniform on the vertices of the
graph.



142 7 Coined Quantum Walks on Graphs

7.5.1 Limiting Distribution Using the Fourier Basis

In the previous chapters, we have been successful in analyzing quantum walks using
theFourier basis, whichwe denote by

∣
∣k̃
〉

, because the evolution operator can bewrit-
ten using a reduced operator, which acts on the coin space. If

{∣
∣αa,k

〉}

is an orthonor-
mal eigenbasis with eigenvalues αa,k of the reduced operator, then

{∣
∣αa,k, k̃

〉}

is an
orthonormal eigenbasis of the evolution operator, which replaces {∣∣λa

k

〉} in (7.14)–
(7.16) and the eigenvalues of the evolution operator are αa,k , the same as the reduced
operator.

In the Fourier basis, the expression of the limiting distribution is simpler. When
all eigenvalues are different, (7.24) reduces to

pa,k(v) =
d−1
∑

b=0

∣
∣
〈

b
∣
∣αa,k

〉∣
∣
2
∣
∣
∣

〈

v
∣
∣k̃
〉∣
∣
∣

2
. (7.25)

If the term
∣
∣
∣

〈

v
∣
∣k̃
〉∣
∣
∣

2
is equal to 1/N , we use the fact that

d−1
∑

b=0

∣
∣
〈

b
∣
∣αa,k

〉∣
∣
2 = 1

because each vector
∣
∣αa,k

〉

has unit norm, to conclude that pa,k(v) = 1/N for all v.
Using this result in (7.23) and that the initial condition has unit norm, we obtain the
uniform distribution

π(v) = 1

N
. (7.26)

Among all graphs we have analyzed in Chap.6, only cycles with odd number of
vertices have distinct eigenvalues. Therefore, the limiting distribution is uniform in
cycles with odd number of vertices, regardless of the initial condition.

Let us return to (7.22), which is valid in the general case in the Fourier basis.
Renaming the original eigenvectors, we obtain

π(v) =
d−1
∑

a,a′=0

N−1
∑

�k,�k ′=0
αa,�k=αa′ ,�k′

ca,�k c
∗
a′,�k ′

d−1
∑

b=0

〈

αa′,�k ′
∣
∣b
〉〈

b
∣
∣αa,�k

〉〈

v
∣
∣k̃
〉〈

k̃ ′∣∣v
〉

. (7.27)

Using the completeness relation, we obtain

π(v) =
d−1
∑

a,a′=0

N−1
∑

�k,�k ′=0
αa,�k=αa′,�k′

ca,�k c
∗
a′,�k ′

〈

αa′,�k ′
∣
∣αa,�k

〉〈

v
∣
∣k̃
〉〈

k̃ ′∣∣v
〉

. (7.28)



7.5 Limiting Probability Distribution 143

We will use this equation to calculate the limiting distribution of quantum walks on
even cycles, two-dimensional finite lattices, and hypercubes.

Exercise 7.11 Show that the expression of π(v) in (7.28) satisfies

N−1
∑

v=0

π(v) = 1.

7.5.2 Limiting Distribution of QWs on Cycles

In this section, we compute the limiting distribution of coined quantum walks on
cycles. We need the expressions of the eigenvalues and eigenvectors of the evolution
operator in order to use (7.28). For the Hadamard coin, the eigenvalues are

α0,�k = e−iθk , (7.29)

α1,�k = ei(π+θk ) = −eiθk , (7.30)

where θk is a solution of equation

sin θk = 1√
2
sin

2πk

N
, (7.31)

as described in Sect. 6.1.1 on p. 91. The analysis of eigenvalue collisions for different
values of k plays an important role in determining the sum in the expression of π(v).

Figure7.3 shows the eigenvalues for cycles with N = 13 and N = 14. The eigen-
values are confined to two regions of the unit circle. In fact, from (7.31), we have

| sin θk | ≤ 1√
2
.

Then, θk ∈ [− π
4 , π

4 ] or θk ∈ [ 3π4 , 5π
4 ]. If −θk is a solution of (7.31), then π + θk also

is, since sin(π + θk) = sin(−θk). Each eigenvalue of the form e−iθk in the first sector
[−π

4 , π
4 ] matches another (different) eigenvalue of the form ei(π+θk ) symmetrically

opposite in the second sector.
The behavior of the eigenvalues depends on the parity of N . Two eigenvalues are

equal if

sin
2πk

N
= sin

2πk ′

N
.

This equation implies that k = k ′ or k + k ′ = N
2 or k + k ′ = 3N

2 . If N is odd, only
the first of these equations is satisfied and hence all eigenvalues are different. If N is



144 7 Coined Quantum Walks on Graphs

Fig. 7.3 Eigenvalues of the evolution operator for cycles with N = 13 and N = 14

even, there are 2 equal eigenvalues with different k’s, unless k = N/4 or k = 3N/4;
this only occurs when 4 divides N .

Since all eigenvalues are different for cycles with odd number of vertices, the
limiting distribution is uniform for any initial condition. In the rest of this section,
we address the case N even.

The eigenvectors of the reduced operator are
∣
∣α0,�k

〉 = |αk〉 and
∣
∣α1,�k

〉 = |βk〉,
which are given by (6.16) and (6.17), respectively. Using

∣
∣k̃
〉

given by (6.7), we
obtain

〈

v
∣
∣k̃
〉〈

k̃ ′∣∣v
〉 = ωv(k−k ′)

N

N
.

To adapt (7.28) for the cycle, we must take d = 2. Expanding the sum over vari-
ables a and a′, we obtain

π(v) = 1

N

N−1
∑

k,k ′=0
e−iθk = e−iθk′

c0,k c
∗
0,k ′

〈

αk ′
∣
∣αk
〉

ωv(k−k ′)
N

+ 1

N

N−1
∑

k,k ′=0
ei(π+θk ) = ei(π+θk′ )

c1,k c
∗
1,k ′

〈

βk ′
∣
∣βk
〉

ωv(k−k ′)
N . (7.32)

The cross terms a = 0, a′ = 1, and vice versa do not contribute to any term because
the eigenvalues e−iθk and ei(π+θk ) are never the same for any values of k and k ′, since
e−iθk is either in quadrant I or quadrant IV, as we can see in Fig. 7.3, while ei(π+θk′ )

is quadrant II or quadrant III. On the other hand, e−iθk is equal to e−iθk′ , if k ′ = k



7.5 Limiting Probability Distribution 145

or k ′ = N/2 − k, as discussed in Sect. 6.1.1. Therefore, the double sums in π(v)

reduces to simple sums each generating three terms: k ′ = k, k ′ = N/2 − k mod N ,
and k = N/2 − k ′ mod N . When k ′ = k, the sums can be easily calculated, using
that |αk〉, |βk〉, and |ψ(0)〉 are unit vectors, generating term 1/N in (7.33). The
sums under the constraints k ′ = N/2 − k mod N and k = N/2 − k ′ mod N are
complex conjugate to each other. They can be simplified using the symmetries of
the eigenvalues. Moreover, we can always take an initial condition such that c0,k and
c1,k are real numbers because the phase factors of c0,k and c1,k can be absorbed in
the eigenvectors. Eventually, (7.32) reduces to

π(v) = 1

N
+ 1

N
�

⎛

⎜
⎜
⎝

N−1
∑

k=0
k �= N

4 , 3N4

c0,k c0, N
2 −k

〈

α N
2 −k

∣
∣αk

〉

ω
v(2k− N

2 )
N

⎞

⎟
⎟
⎠

+ 1

N
�

⎛

⎜
⎜
⎝

N−1
∑

k=0
k �= N

4 , 3N4

c1,k c1, N
2 −k

〈

β N
2 −k

∣
∣βk

〉

ω
v(2k− N

2 )
N

⎞

⎟
⎟
⎠

, (7.33)

where�( ) is the real part and the subindices must be evaluated modulo N to include
case k > N/2. Note that if 4 divides N , we delete the terms k = N/4 and k = 3N/4,
since the eigenvalue is unique for these values of k.

Using that ωN = exp(2πi/N ), we obtain

ω
v(2k− N

2 )
N = (−1)ve

4πikv
N . (7.34)

Using (6.16) and (6.17), we obtain

〈

α N
2 −k

∣
∣αk

〉

=
〈

β N
2 −k

∣
∣βk

〉

= 1 − e
4πik
N

2
√

1 + cos2 2πk
N

. (7.35)

Substituting this result into (7.33), we obtain the limiting distribution of the quantum
walk on the cycle with (real) initial conditions

π(v) = 1

N
+ (−1)v

2N

N−1
∑

k=0
k �= N

4 , 3N4

(

c0,k c0, N
2 −k + c1,k c1, N

2 −k

)

×cos 4πkv
N − cos 4πk(v+1)

N
√

1 + cos2 2πk
N

. (7.36)



146 7 Coined Quantum Walks on Graphs

Fig. 7.4 Limiting probability distribution of the quantum walk on a cycle with N = 102 using the
Hadamard coin and initial condition |ψ(0)〉 = |0〉|0〉

This expression is general in the sense that any limiting distribution of a coined walk
on the cycle with the Hadamard coin can be obtained from it. The subindices are
evaluated modulo N .

The last step is to find coefficients c0,k and c1,k of the initial condition in the
eigenbasis of the evolution operator. Taking t = 0 in (6.24), we obtain

|ψ(0)〉 =
N−1
∑

k=0

⎛

⎝
1

√

Nc−
k

|αk〉
∣
∣k̃
〉+ 1

√

Nc+
k

|βk〉
∣
∣k̃
〉

⎞

⎠ . (7.37)

Therefore,

c0,k = 1
√

Nc−
k

,

c1,k = 1
√

Nc+
k

.

Using (6.18), we obtain

c0,k c0, N
2 −k + c1,k c1, N

2 −k = 1

N
√

1 + cos2 2πk
N

. (7.38)

Therefore, the limiting distribution of the quantum walk on the cycle with the
Hadamard coin and initial condition |ψ(0)〉 = |0〉|0〉 is

π(v) = 1

N
+ (−1)v

2N 2

N−1
∑

k=0
k �= N

4 , 3N4

cos 4πkv
N − cos 4πk(v+1)

N

1 + cos2 2πk
N

. (7.39)



7.5 Limiting Probability Distribution 147

Figure7.4 shows the limiting probability distribution π(v) of the quantum walk
on a cycle with N = 102. The central peak pointing downward is typical for even
N , that are nondivisible by 4. When N is divisible by 4, the peak points upward.

Exercise 7.12 Show that

cos
4πkv

N
− cos

4πk (v + 1)

N
= 2 sin

2πk

N
sin

2πk

N
(2v + 1).

From this equality, obtain an equivalent expression for π(v).

Exercise 7.13 Show that the expression of π(v) in (7.39) satisfies

N−1
∑

v=0

π(v) = 1.

Exercise 7.14 Show that

π(0) �
√
2

N
,

when N � 1.

Exercise 7.15 Show that

π(v) � c1(v)
√
2 − c2(v)

N
,

when v � N and 1 � N , where

c1(v) = 2 + √
2

4
(d+)v + 2 − √

2

4
(d−)v,

c2(v) = 3 (d+)2 v + 1 + √
2

2
√
2 (d+)

v − 3 (d−)2 v + 1 − √
2

2
√
2 (d−)

v − 1,

and d± = 3 ± 2
√
2.

7.5.3 Limiting Distribution of QWs on Hypercubes

The spectral decomposition of the evolution operator for the hypercube is described
in Sect. 6.3 on p. 106. If the initial condition is

|ψ(0)〉 = |D〉|�v = 0〉,



148 7 Coined Quantum Walks on Graphs

the state of the quantum walk at time t is given by (6.94). Replacing t = 0 into this
equation, we obtain the initial condition in the eigenbasis of the evolution operator

|ψ(0)〉 = 1√
2n

(

|D〉∣∣β�0
〉+ |D〉∣∣β�1

〉)

+ 1√
2n+1

2n−2
∑

�k=1

(∣
∣
∣α

�k
1

〉∣
∣β�k
〉+

∣
∣
∣α

�k
n

〉∣
∣β�k
〉)

. (7.40)

Therefore,

c1,�k = cn,�k =
{

1√
2n

, �k = 0, �k = n;
1√
2n+1

, 0 < �k < n,
(7.41)

and all other values are zero. Equation (7.28) assumes the form

π(�v) =
N−1
∑

�k,�k ′=0
k=k ′

c1,�kc1,�k ′

〈

α
�k ′
1

∣
∣α

�k
1

〉 〈�v∣∣β�k
〉 〈

β�k ′
∣
∣�v〉

+
N−1
∑

�k,�k ′=0
k=k ′

cn,�kcn,�k ′

〈

α
�k ′
n

∣
∣α

�k
n

〉 〈�v∣∣β�k
〉 〈

β�k ′
∣
∣�v〉 . (7.42)

Note that parameter a starts at 1 and goes up to n in the convention used in the
description of the hypercube in Sect. 6.3. The cross terms do not appear because
〈

α
�k ′
n

∣
∣α

�k
1

〉

= 0. The collision between the eigenvectors is guaranteed by restricting

k = k ′ in the sum, where k is the Hamming weight of �k.
Using (6.83) and (6.84), we obtain

〈

α
�k ′
1

∣
∣α

�k
1

〉

=
〈

α
�k ′
n

∣
∣α

�k
n

〉

= n (�k · �k ′) + k(n − 2k)

2k(n − k)
. (7.43)

Using (6.71), we obtain
〈�v∣∣β�k

〉 = 1√
2n

(−1)
�k·�v. (7.44)

Using these results in (7.42), we obtain

π(�v) = 2

22n
+ 1

22n

2n−1
∑

�k,�k ′=0
(k=k ′ �=0,n)

(−1)(
�k+�k ′)·�v n (�k · �k ′) + k(n − 2k)

2k(n − k)
. (7.45)



7.5 Limiting Probability Distribution 149

Fig. 7.5 Limiting distribution of the coined quantum walk on the hypercube with N = 25. The
labels of the vertices are in the decimal notation

Figure7.5 depicts the limiting distribution of the coined quantum walk on the
hypercube with N = 32 vertices, obtained from (7.45). Note that the distribution
has the same value for different vertices. In particular, the distribution is equal for
all vertices of the same Hamming weight. This suggests that π depends only on the
Hamming weight of �v. We can see that the graph is symmetric with respect to the
central vertical axis. This suggests that the limiting distribution has the following
invariance: π(v) = π(2n − 1 − v), which can be confirmed with all points on the
graph.

Since the limiting distribution depends only on the Hamming weight of the ver-
tices, we can define a new probability distribution of a walk on the line. The new
expression is

π(v) =
(
n

v

)

π(�v). (7.46)

The binomial coefficient gives the number of vertices that have the same Hamming
weight. The new distribution satisfies

n
∑

v=0

π(v) = 1.

Figure7.6 depicts the distribution of the quantum walk on the hypercube with 232

vertices.

Exercise 7.16 Show that



150 7 Coined Quantum Walks on Graphs

Fig. 7.6 Limiting distribution as function of the Hamming weight on the hypercube with N = 232,
given by (7.46)

π (0) = 1

4n
+ Γ

(

n + 1
2

)

2
√

π n Γ (n)

= 1

4n

(

1 + (2n)!
2(n!)2

)

where Γ is the gamma function.

7.5.4 Limiting Distribution of QWs on Finite Lattices

A two-dimensional finite lattice is an interesting example where the limiting dis-
tribution can be found analytically. The details of the calculation of the spectral
decomposition of the evolution operator are presented in Sect. 6.2 on p. 98. If the
initial condition is

|ψ(0)〉 = |D〉|x = 0, y = 0〉,

the state of the quantum walk at time t in the eigenbasis of the evolution operator is

|ψ(t)〉 = 1√
N

|D〉|D〉

+ 1√
2N

√
N−1
∑

kx ,ky=0
(kx ,ky)�=(0,0)

(

eiθt
∣
∣
∣νθ

kx ,ky

〉

+ e−iθt
∣
∣
∣ν−θ

kx ,ky

〉) ∣
∣
∣k̃x , k̃y

〉

.



7.5 Limiting Probability Distribution 151

From this expression,we can see that the eigenvectors ofU that generate the subspace

where the quantum walk evolves are |D〉|D〉,
∣
∣
∣ν±θ

kx ,ky

〉∣
∣
∣k̃x , k̃y

〉

, 0 ≤ kx , ky ≤ √
N − 1,

(kx , ky) �= (0, 0).
Equation (7.22) assumes the form

π(x, y) = ∣
∣c0,0

∣
∣
2

(
1
∑

d,s=0

∣
∣
〈

d, s
∣
∣D
〉 ∣
∣
2

)

∣
∣
〈

x, y
∣
∣D
〉∣
∣
2

+
√
N−1
∑

kx ,ky=0
(kx ,ky)�=(0,0)

√
N−1
∑

k ′
x ,k

′
y=0

(k ′
x ,k

′
y)�=(0,0)
θ=θ′

c+
kx ,ky

(

c+
k ′
x ,k

′
y

)∗

×
1
∑

d,s=0

〈

d, s
∣
∣νθ

kx ,ky

〉 〈

νθ′
k ′
x ,k

′
y

∣
∣d, s

〉 〈

x, y
∣
∣k̃x , k̃y

〉 〈

k̃ ′
x , k̃

′
y

∣
∣x, y

〉

+c−
kx ,ky

(

c−
k ′
x ,k

′
y

)∗

×
1
∑

d,s=0

〈

d, s
∣
∣ν−θ

kx ,ky

〉 〈

ν−θ′
k ′
x ,k

′
y

∣
∣d, s

〉 〈

x, y
∣
∣k̃x , k̃y

〉 〈

k̃ ′
x , k̃

′
y

∣
∣x, y

〉

, (7.47)

where θ′ = θ(k ′
x , k

′
y). Note that we have simply rewritten the terms of (7.22) without

performing simplifications. The label a in (7.22) is converted to d, s. The index k of
eigenvectors is converted to kx , ky . The sumover the new indices is restricted to terms
with nonzero ckx ,ky . Coefficients ckx ,ky are obtained by taking t = 0 in the equation
of |ψ(t)〉 because for t = 0 we have the decomposition of the initial condition in the
eigenbasis of the evolution operator. Then, we obtain

c0,0 = 1√
N

, (7.48)

c+
kx ,ky

= c−
kx ,ky

= 1√
2N

. (7.49)

Using the completeness relation I4 = ∑1
d,s=0 |d, s〉〈d, s|, we obtain

1
∑

d,s=0

〈

d, s
∣
∣ν±θ

kx ,ky

〉 〈

ν±θ′
k ′
x ,k

′
y

∣
∣d, s

〉

=
〈

ν±θ′
k ′
x ,k

′
y

∣
∣ν±θ

kx ,ky

〉

. (7.50)

Using (6.40), we obtain

〈

x, y
∣
∣k̃x , k̃y

〉

= 1√
N

ωxkx+yky , (7.51)



152 7 Coined Quantum Walks on Graphs

where ω = e
2πi√
N .

Using these partial results in (7.47) and simplifying, we obtain

π(x, y) = 1

N 2
+ 1

N 2

√
N−1
∑

kx ,ky=0
(kx ,ky)�=(0,0)

√
N−1
∑

k ′
x ,k

′
y=0

(k ′
x ,k

′
y)�=(0,0)

θ(k ′
x ,k

′
y)=θ(kx ,ky)

〈

νθ′
k ′
x ,k

′
y

∣
∣νθ

kx ,ky

〉

× e
2πi√
N

(

x(kx−k ′
x )+y(ky−k ′

y)

)

. (7.52)

We have used
〈

νθ′
k ′
x ,k

′
y

∣
∣νθ

kx ,ky

〉

=
〈

ν−θ′
k ′
x ,k

′
y

∣
∣ν−θ

kx ,ky

〉

, which can be verified using (6.53). The

first term is absorbed in the sum. In the double sum, (kx , ky) need not be equal to
(k ′

x , k
′
y), but the combination of values must be such that θ′ = θ. Using that cos θ′ =

cos θ, we obtain

〈

νθ′
k ′
x ,k

′
y

∣
∣νθ

kx ,ky

〉

= 1 − 2 cos2 θ(kx , ky) + cos θ(kx − k ′
x , ky − k ′

y)

2 sin2 θ(kx , ky)
. (7.53)

The simplification of this equation requires detailed knowledge of the collisions of
the eigenvalues, that is, the relations about k ′

x , k
′
y such that θ(k

′
x , k

′
y) = θ(kx , ky).

7.6 Distance Between Distributions

If we havemore than one probability distribution of quantumwalks on a graphwith N
vertices, it is interesting to define the notion of closeness between them. To use terms
close or far, we have to define ametric. Let p and q be two probability distributions,
that is, 0 ≤ pv ≤ 1, 0 ≤ qv ≤ 1, and

N
∑

v=1

pv =
N
∑

v=1

qv = 1. (7.54)

The definition that is usually used for distance is

D(p, q) = 1

2

N
∑

v=1

|pv − qv| , (7.55)

known as total variation distance or L1. This definition satisfies

1. 0 ≤ D(p, q) ≤ 1,
2. D(p, q) = 0 if and only if p = q,
3. D(p, q) = D(q, p), (symmetry)



7.6 Distance Between Distributions 153

Fig. 7.7 Distance between the distribution pv(t) and the limiting distribution πv as a function of
time for a cycle with 102 vertices. The graph has a quasi-periodic pattern

Fig. 7.8 Distance between the average distribution p̄v(t) and the limiting distribution πv as a
function of time for a cycle with 102 vertices

4. D(p, q) ≤ D(p, r) + D(r, q). (triangle inequality)

We can improve our understanding of the unitary evolution by analyzing the
distance between distribution pv(t) and the limiting distribution πv . Figure7.7 shows
the typical behavior of this distance as a function of time for an even cycle with
102 vertices and initial condition |ψ(0)〉 = |0〉|0〉. The plot shows the quasi-periodic
behavior discussed in Sect. 7.5 manifesting in the distance between the instantaneous
and the limiting distribution.

It is much more interesting to analyze the distance between the average distri-
bution p̄v(t) and the limiting distribution πv as a function of time because we have
a notion of convergence, since the limiting distribution is reached from the aver-
age distribution in the limit t → ∞. Figure7.8 shows D( p̄(t),π) as a function of
time for a cycle with 102 vertices using the Hadamard coin and initial condition
|ψ(0)〉 = |0〉|0〉. The curve does not have a quasi-periodic pattern, in fact, disregard-
ing the oscillation, we have the impression that the curve obeys a power law such
as 1/ta , where a is a positive number. This kind of conjecture can be checked by
plotting the curve using the axes in a log scale. If the result is a straight line, the slope



154 7 Coined Quantum Walks on Graphs

is a. Suppose that

D( p̄(t),π) = b

ta

for some b. Taking the logarithm of both sides, we obtain

log D( p̄(t),π) = −a log t + log b.

If the conjecture is true and we plot log D( p̄(t),π) as a function of log t , we obtain a
straight line with negative slope. The base of the logarithm plays no role if wewant to
check the conjecture. It is only relevant when we wish to obtain b. Figure7.9 shows
the log–log plot of D( p̄(t),π) as a function of t . It seems that the curve oscillates
around a straight line. To find the line equation, we select the two representative
points, for instance, (10, 0.7) and (104, 0.0007). Then,

a � − log 0.0007 − log 0.7

log 104 − log 10
� 1.0,

and b can be easily found. The line equation is 7.0/t approximately.
In the nontrivial cases, we can analytically show that D( p̄(t),π) has a dominant

inverse power law behavior for any graph. Using (7.19) and (7.21), we obtain

p̄v(t) − π(v) =
d−1
∑

a,a′,b=0

N−1
∑

k,k ′=0

cak
(

ca
′

k ′
)∗ 〈

b, v
∣
∣λa

k

〉 〈

λa′
k ′
∣
∣b, v

〉

×
(

1

t

t−1
∑

t=0

e2πi(λ
a
k −λa′

k′ )t − δλa
k ,λa′

k′

)

.

The terms of the sum corresponding to λa
k = λa′

k ′ vanish. Using (7.20) and (7.55), we
obtain

D( p̄(t),π) = 1

2 t

N
∑

v=1

∣
∣
∣
∣
∣
∣
∣
∣
∣

d−1
∑

a,a′=0

N−1
∑

k,k ′=0
λa
k �=λa′

k′

cak
(

ca
′

k ′
)∗ e2πi(λ

a
k −λa′

k′ )t − 1

e2πi(λ
a
k −λa′

k′ ) − 1

×
d−1
∑

b=0

〈

λa′
k ′
∣
∣b, v

〉 〈

b, v
∣
∣λa

k

〉

∣
∣
∣
∣
∣
. (7.56)

The factor 1/t is responsible for the inverse power law. The only term that depends on

t in the sum is e2πi(λ
a
k −λa′

k′ )t − 1, the modulus of which is a bounded periodic function.
The linear combination of terms of this kind produces the oscillatory pattern around
the straight line shown in Fig. 7.9.



7.6 Distance Between Distributions 155

Fig. 7.9 Log–log plot of the distance between the average distribution p̄v(t) and the limiting
distribution πv as a function of time for the cycle with 102 vertices up to t = 104. The equation of
the dashed line is 7.0/t

Exercise 7.17 Show that in odd cycles, the distance between the limiting distribution
and the initial distribution starting from any vertex is

D
(

p(0),π
) = 1 − 1

N
. (7.57)

Note that when N � 1 this distance is close to the maximum distance.

Exercise 7.18 Simplify (7.56) for walks that can be analyzed in the Fourier basis.

Exercise 7.19 Obtain an explicit expression for (7.56) for walks on (odd and even)
cycles with theHadamard coin using the initial condition |ψ(t)〉 = |0〉|0〉. Reproduce
Fig. 7.8 using the analytical result.

7.7 Mixing Time

We have learned that the average distribution p̄v(t) tends to the limiting distribution
πv . Usually, the approach is not monotonic, but there is a moment, that we denote
by τε, such that the distance between the distributions is smaller than or equal to the
threshold ε and does not become larger.

Formally, the quantum mixing time is defined as

τε = min
{

T | ∀t ≥ T, D
(

p̄v(t),πv

) ≤ ε
}

, (7.58)

which can be interpreted as the number of steps it takes for the probability distribution
to approach its final configuration. The quantum mixing time depends on the initial
condition in general.

The mixing time captures the notion of the velocity in which the limiting distribu-
tion is reached. A small mixing time means that the limiting distribution is quickly



156 7 Coined Quantum Walks on Graphs

Table 7.1 Quantum and classical mixing times for the N -cycle, the two-dimensional lattice, and
the hypercube with N vertices

τε N -cycle 2D lattice Hypercube

Quantum O
(
N log N

ε

)

O
(√

N log N
ε

)

O
(
log N

ε

)

Classical O
(

N 2 log 1
ε

)

O
(

N log 1
ε

)

O
(

log N log log N
ε

)

reached. Themixing time τε depends on parameter ε. If D
(

p̄v(t),πv

)

obeys an inverse
power law as a function of time, then τε obeys an inverse power law as a function of
ε. Parameter ε is not the only one. In finite graphs, the number of vertices is a key
parameter to assess the characteristics of the mixing time. It is interesting to compare
the quantum mixing time with the classical mixing time of a classical random walk
on the same graph. The definition of the classical mixing time is the same as (7.58),
but instead of using the average probability distribution of the quantum walk the
definition employs the probability distribution of the classical random walk.

In general, it is not possible to obtain closed analytical expressions for the mixing
time in terms of the number of vertices. We can obtain upper or lower bounds or
we can analyze numerically. Table7.1 summarizes some results about quantum and
classical mixing times for comparison. The quantum mixing times were obtained
using numerical methods. The N -cycle with even N , the (

√
N × √

N )-lattice with
even

√
N , and hypercubes are bipartite graphs. The classical random walk in those

cases must be the lazy random walk, which is defined in such way that the walker
moves to one of its nearest neighbors or stays fixed with equal probability. This
guarantees that there is a classical limiting distribution, which is uniform for those
graphs.

The logarithm term in the classicalmixing time shows that the limiting distribution
is reached surprisingly rapidly by the classical random walk for a fixed N . On the
other hand, the scaling with the graph size for cycles and lattices is smaller for the
quantum mixing time.

7.7.1 Instantaneous Uniform Mixing (IUM)

The uniform probability distribution is interesting because it allows unbiased sam-
pling from the vertex set. In general, such distribution cannot be obtained except
instantaneously. Now we formally define instantaneous uniform mixing for the
continuous-time, staggered, and coined models.

Definition 7.14 (IUM in the CTQW). Let U (t) be the evolution operator of a
continuous-time quantum walk on a graph �(V, E). There is an instantaneous uni-
form mixing at time t0 if all entries of U (t0) have the same absolute value.



7.7 Mixing Time 157

Definition 7.15 (IUM in the staggered model). LetU be the evolution operator of
a staggered quantum walk on a graph �(V, E). There is an instantaneous uniform
mixing at time t0 if all entries of Ut0 have the same absolute value.

Definition 7.16 (IUM in the coined model). Let U be the evolution operator of a
coined quantum walk on a graph �(V, E) in class 1 described in the coin-position
notation. There is an instantaneous uniform mixing at time t0 if the entries of matrix

Mvv′ =
d(v)−1
∑

a=0

d(v′)−1
∑

a′=0

〈

a′, v′∣∣Ut0
∣
∣a, v

〉

have the same absolute value.

We give at the end of this chapter references that describe graphs that admit
instantaneous uniform mixing. This concept is closely related to the concept of
perfect state transfer.

Further Reading

The definition of the coined quantum walk on graphs presented in this chapter is
based on many references, especially on [8, 193, 194, 275]. Reference [8] is one
of the earliest papers presenting the definition of quantum walks on graphs and to
draw attention to this area. References [193, 194] have given key contributions by
calling attention to the importance of the edge colorability and Ref. [275] to the arc
notation and to the underlying symmetric digraph. The contributions of early papers
on the coined quantum walk on graphs were reviewed in [13, 172, 175, 183, 229,
274, 320], which provide relevant references.

Perfect state transfer on spin chains was introduced by Bose [54] in the context
of quantum communication. His goal was to analyze how a state placed on one spin
of the chain would be transmitted and received later on a distant spin. Usually, the
fidelity between those states is smaller than 1, but it is interesting to analyze which
kind of array would admit fidelity equal to 1 [83, 177]. The relation of PST in spin
chains and Anderson localization was addressed in [281]. This problem has found
a fertile ground in the area of quantum walks, especially, in the continuous-time
case [12, 23, 33, 45, 67, 85, 87, 88, 156, 166, 174, 253, 352]. There some results
on PST in the coined model [32, 171, 216, 301, 346] and one recent result on PST
in the staggered model [89]. Fractional revival was analyzed in Refs. [44, 73, 106].

Reference [8] has provided a definition of the limiting distribution and thequantum
mixing time. The limiting distribution of coined quantum walks on cycles was calcu-
lated in [8, 35, 36, 286, 336], on hypercubes in [169, 233], and on two-dimensional
finite lattices in [232]. The mixing time in cycles was analyzed in [8, 202], in hyper-
cubes in [233, 241]. Classical mixing times are analyzed in [240], which has a
detailed study of the classical mixing time of random walks on hypercubes.

Reference [275] established a connection between coinedwalks on graphs and the
Ihara zeta function. Reference [188] also analyzed the connection with zeta function.



158 7 Coined Quantum Walks on Graphs

Many relevant topics are analyzed using coined quantumwalks on graphs. A short
list is the following:walks onCayley graphs [194], numerical quasi-periodicity [279],
graph isomorphism [63, 284], localization [186, 295, 341], hitting time [227, 228],
quantum transport [27, 56], walks on Möbius strip [205], quantum walks using
quaternions instead of complex numbers [185], quantum walk with memory [204],
abelian quantum walk [92].



Chapter 8
Staggered Model

The staggered model is the set of quantum walks based on the notion of graph
tessellation, which is a new concept in graph theory. The evolution operator of
a staggered quantum walk is obtained from a graph tessellation cover. A graph
tessellation is a partition of the vertex set into cliques, and a graph tessellation cover
is a set of tessellations whose union covers the edge set. A clique is a subset of the
vertex set that induces a complete subgraph. Two vertices in a clique are neighbors,
and the cliques of a tessellation specify which vertices are reachable after one local
step once given the location of the walker.

In this chapter, we formally define the concept of graph tessellation cover and
describe how to obtain the evolution operator of the staggered model. As a concrete
example, we describe a staggered quantum walk on the line. Using the staggered
Fourier transform, we diagonalize the evolution operator and calculate analytically
the standard deviation of the walker’s position.

8.1 Graph Tessellation Cover

Let G(V, E) be a connected simple graph, where V (G) is the vertex set and E(G)

is the edge set. A clique of G is a subset of the vertex set that induces a complete
subgraph. For example, consider the Hajós graph depicted in Fig. 8.1 (first graph).
The set of vertices {0, 1, 2} is a clique of size 3, denoted by 3-clique, but set {0, 1, 2, 4}
is not a clique because it is missing an edge connecting vertices 1 and 4.A clique can
have two vertices, such as {0, 1}, or a single vertex, such as {0}. The latter examples
are notmaximal cliques. On the other hand, set {0, 1, 2} is a maximal clique because
it is not contained in a larger clique.

A partition of the vertex set into cliques is a collection of disjoint cliques
so that the union of these cliques is the vertex set. For example, the set T1 =

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_8

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_8&domain=pdf


160 8 Staggered Model

Fig. 8.1 Hajós graph and the depiction of three tessellations

{{0, 1, 2}, {3, 4}, {5}} is a partition of the Hajós graph into cliques because {0, 1, 2} ∪
{3, 4} ∪ {5} is the vertex set and the cliques are nonoverlapping sets.

Definition 8.1. A graph tessellation T is a partition of the vertex set into cliques.
An edge belongs to the tessellation T if and only if its endpoints belong to the same
clique in T . The set of edges belonging to T is denoted by E(T ). An element of the
tessellation is called a polygon (or tile). The size of a tessellation T is the number of
polygons in T .

Set T1 = {{0, 1, 2}, {3, 4}, {5}} is a tessellation of the Hajós graph. This tessella-
tion contains the following set of edges E(T1) = {{0, 1}, {0, 2}, {1, 2}, {3, 4}}. The
trivial tessellation is the tessellation with cliques of size 1. The trivial tessellation of
the Hajós graph is Ttrivial = {{0}, {1}, {2}, {3}, {4}, {5}} and E(Ttrivial) = ∅. A tessel-
lation has size 1 only if G is complete, and in this case, the tessellation contains all
edges.

Definition 8.2. Given a graph G with edge set E(G), a graph tessellation cover of
size k of G is a set of k tessellations T1, . . . , Tk , whose union covers the edges, that
is, ∪k

i=1 E(Ti ) = E(G).

A tessellation cover of the Hajós graph is {T1, T2, T3}, where

T1 = {{0, 1, 2}, {3, 4}, {5}},
T2 = {{1, 3, 4}, {2, 5}, {0}},
T3 = {{2, 4, 5}, {0, 1}, {3}}.

Note that E(T1) ∪ E(T2) ∪ E(T3) is the edge set as can be seen in Fig. 8.1, which
describes each tessellation separately with their respective edges.

Definition 8.3. A graph G is called k-tessellable if there is a tessellation cover of
size at most k. The size of a smallest tessellation cover of G is called tessellation
cover number and is denoted by T (G).

We have provided a tessellation cover of size 3 for the Hajós graph. Then, it is 3-
tessellable. An exhaustive inspection shows that it is not possible to find a tessellation
cover of size 2 or 1. Then, T (Hajós) = 3.



8.1 Graph Tessellation Cover 161

Exercise 8.1. Find the maximal cliques of a N -cycle, and show that this graph is
2-tessellable if N is even and is 3-tessellable if N is odd. Find the clique graph of a
N -cycle, and show the clique graph is 2-colorable if N is even and is 3-colorable if
N is odd.

Exercise 8.2. Show that one maximal clique is contained in no tessellation of any
minimum tessellation cover of the Hajós graph. Show that the clique graph of the
Hajós graph is 4-colorable.

Exercise 8.3. Let G be a triangle-free graph. Show that if the edge-chromatic num-
ber χ′(G) of G is 3, then G is 3-tessellable.

Exercise 8.4. Let G be a graph. Show that T (G) ≤ χ′(G).

Exercise 8.5. Thewheel graph is the graphWn forn > 2with vertex set {0, 1, 2, . . . ,
n} and edge set {{0, n}, {1, n}, . . . , {n − 1, n}, {0, 1}, {1, 2}, . . . , {n − 2, n − 1},
{n − 1, 0}}. Show that Wn is (n/2)-tessellable if n is even. Show that the chromatic
number of the clique graph K (Wn) is n. By adding new edges to Wn , try to provide
examples of graph classes that are (n/3)-tessellable such that the chromatic number
of the clique graph of graphs in this new class is still n. By adding new edges to Wn ,
can you provide an example of a 3-tessellable graph class with the chromatic number
of the clique graph equal to n?

8.2 The Evolution Operator

Let G(V, E) be a connected simple graph so that |V | = N . Let HN be the N -
dimensional Hilbert space spanned by the computational basis

{|v〉 : v ∈ V
}
, that

is, each vertex v ∈ V is associated with a vector |v〉 of the computational basis. In
the staggered model, there is a one-to-one correspondence between the set of vertex
labels and states of the computational basis. There is neither coin space nor any other
auxiliary space.

How do I obtain the evolution operator of the staggered model? The first step is
to find a tessellation cover of G. From now on we suppose that a tessellation cover{
T1, . . . , Tk

}
of size k is known. There is a method to associate a tessellation T with

a Hermitian operator H acting on HN . Suppose that tessellation T has p polygons
each one denoted by α j , that is, T = {α j : 1 ≤ j ≤ p}. We associate a unit vector
with each polygon as follows

∣∣α j
〉 = 1

√∣∣α j

∣∣

∑

�∈α j

|�〉, (8.1)

where
∣∣α j

∣∣ is the number of vertices in polygonα j . TheHermitianoperator associated
with T is defined by



162 8 Staggered Model

H = 2
p∑

j=1

∣∣α j
〉〈
α j

∣∣ − I. (8.2)

For instance, the polygons of tessellation T1 = {{0, 1, 2}, {3, 4}, {5}} of the Hajós
graph are associated with the vectors

|α1〉 = 1√
3

(|0〉 + |1〉 + |2〉) ,

|α2〉 = 1√
2

(|3〉 + |4〉) ,

|α3〉 = |5〉,

and tessellation T1 is associated with the Hermitian operator

H1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

− 1
3

2
3

2
3 0 0 0

2
3 − 1

3
2
3 0 0 0

2
3

2
3 − 1

3 0 0 0

0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

The evolution operator of the staggered model1 associated with a tessellation
cover

{
T1, . . . , Tk

}
is

U = eiθk Hk . . . eiθ1H1 , (8.3)

where θ j for 1 ≤ j ≤ k are angles and Hj is associated with tessellation T j for each
j . Note that eiθ j Hj is unitary because Hj is Hermitian. Besides, since H 2

j = I , each
term in (8.3) can be expanded as

eiθ j Hj = cos θ j I + i sin θ j Hj . (8.4)

The evolution operator of any quantum walk model on a graph G must be the
product of local operators with respect to G. The formal definition of local operator
in the staggered model is as follows.

Definition 8.4. A linear operator H is local with respect to a graph G when〈
v2
∣∣H

∣∣v1
〉 = 0 if vertices v1 and v2 (v1 	= v2) are nonadjacent.

Let us show that operator H given by (8.2) associated with tessellation T is a local
operator. Suppose that v1 and v2 are nonadjacent. A vertex belongs to exactly one
polygon of a tessellation T . If v1 belongs to polygonα1 ∈ T , then v2 does not belong

1In the literature, when at least one angle θ j is not π/2, the model is called staggered model with
Hamiltonians.



8.2 The Evolution Operator 163

to polygonα1 because v2 is not adjacent to v1. Then,
〈
v2
∣∣H

∣∣v1
〉 = 2

〈
α1

∣∣v1
〉 〈

v2
∣∣α1

〉 −〈
v2
∣∣v1

〉 = 0. Using (8.4), we conclude that the same argumentation is true for eiθH .
Then, U given by (8.3) is a product of local unitary operators.

A staggered quantum walk based on a tessellation cover of size k (or on a k-
tessellable graph) is called k-tessellable quantum walk.

Exercise 8.6. Show that if vectors
∣∣α j

〉
given by Eq. (8.1) are associated with poly-

gons α j of a tessellation T , then
〈
α j

∣∣α j ′
〉 = δ j j ′ . Show that operator H defined in

Eq. (8.2) is Hermitian and unitary. Show that H 2 = I .

Exercise 8.7. Prove that if H 2 = I , then exp(iθH) = cos(θ) I + i sin(θ) H .

Exercise 8.8. Consider the complete graph KN . Let T a tessellation of KN consist-
ing of a single set that covers all vertices. Show that operator H defined in Eq. (8.2)
is the Grover operator.

Exercise 8.9. Show that the (+1)-eigenvectors |ψx 〉 of H , given by (8.2), obey the
following properties: (1) If the i th entry of |ψx 〉 for a fixed x is nonzero, then the i th
entries of the other (+1)-eigenvectors of H are zero, and (2) vector

∑
x |ψx 〉 has no

zero entry.

Exercise 8.10. Let {T1, . . . , Tk} be a graph tessellation cover of graphG(V, E). Let
G j (V, E j ) be a subgraph of G(V, E), where E j = E(T j ) for 1 ≤ j ≤ k.

1. Show that an entry of the adjacency matrix A j of G j is zero if and only if the
corresponding entry of H , given by (8.2), is zero.

2. Define the operator W by

W = eiθk Ak . . . eiθ1A1 ,

where θ j are angles. Show thatW is the product of local unitary operators. Conclude
that W is the evolution operator of a well-defined discrete-time quantum walk.

8.3 Staggered Walk on the Line

One of the simplest examples of a 2-tessellable staggered quantumwalk is on the one-
dimensional infinite lattice. A minimum tessellation cover of the one-dimensional
lattice is the set of two tessellations depicted in Fig. 8.2. The first tessellation is
T0 = {αx : x ∈ Z} where α = {2x, 2x + 1}, and the second is T1 = {βx : x ∈ Z}
where βx = {2x + 1, 2x + 2}. Note that the union of the cliques is the vertex set for
each tessellation, that is,

∞⋃

x=−∞
αx =

∞⋃

x=−∞
βx = Z,



164 8 Staggered Model

Fig. 8.2 One-dimensional lattice with two tessellations α (red) and β (blue). For a fixed x , polygon
αx = {2x, 2x + 1} is the set of vertices incident to the red edge with label αx . Polygon βx =
{2x + 1, 2x + 2} is the set of vertices incident to the blue edge with label βx

and, very importantly, the tessellation cover {T0, T1} covers the edge set because the
red edges are in tessellation T0 and the blue edges are in T1, as can be seen in Fig. 8.2.
This shows that the one-dimensional lattice is 2-tessellable.

The evolution operator for the case with θ0 = θ1 = θ is given by

U = eiθH1eiθH0 , (8.5)

where

H0 = 2
∞∑

x=−∞
|αx 〉〈αx | − I, (8.6)

H1 = 2
∞∑

x=−∞
|βx 〉〈βx | − I, (8.7)

and

|αx 〉 = |2x〉 + |2x + 1〉√
2

, (8.8)

|βx 〉 = |2x + 1〉 + |2x + 2〉√
2

. (8.9)

U acts on Hilbert space H, whose computational basis is
{|x〉 : x ∈ Z

}
.

We start the analysis of this walk by calculating the probability distribution after
t time steps, which is given by

p(x, t) = ∣∣〈x
∣∣ψ(t)

〉∣∣2 , (8.10)

where
|ψ(t)〉 = Ut |ψ(0)〉, (8.11)

and |ψ(0)〉 is the initial state. To calculate p(x, t), we split the vertex set into even
and odd nodes, so that

|ψ(t)〉 =
∞∑

x=−∞

(
ψ2x (t) |2x〉 + ψ2x+1(t) |2x + 1〉), (8.12)



8.3 Staggered Walk on the Line 165

where ψ2x (t) are the amplitudes at even nodes and ψ2x+1(t) at odd nodes. Then,

p(2x, t) = |ψ2x (t)|2 ,

p(2x + 1, t) = |ψ2x+1(t)|2 .

Now we obtain recursive equations for ψ2x (t) and ψ2x+1(t). Note that

ψ2x (t) = 〈
2x

∣∣U
∣∣ψ(t − 1)

〉

and using the expression of U and Eq. (8.12), we obtain

ψ2x (t) =
∑

x ′
ψ2x ′(t − 1)

〈
2x

∣∣eiθH1eiθH0
∣∣2x ′〉+

∑

x ′
ψ2x ′+1(t − 1)

〈
2x

∣∣eiθH1eiθH0
∣∣2x ′ + 1

〉
.

Using the completeness relation

I =
∑

x ′′

(∣∣2x ′′〉〈2x ′′∣∣ + ∣∣2x ′′ + 1
〉〈
2x ′′ + 1

∣∣
)

between eiθH1 and eiθH0 , we obtain

ψ2x (t) =
∑

x ′x ′′
ψ2x ′(t − 1)

〈
2x

∣∣eiθH1
∣∣2x ′′〉 〈2x ′′∣∣eiθH0

∣∣2x ′〉+
∑

x ′x ′′
ψ2x ′(t − 1)

〈
2x

∣∣eiθH1
∣∣2x ′′ + 1

〉 〈
2x ′′ + 1

∣∣eiθH0
∣∣2x ′〉+

∑

x ′x ′′
ψ2x ′+1(t − 1)

〈
2x

∣∣eiθH1
∣∣2x ′′〉 〈2x ′′∣∣eiθH0

∣∣2x ′ + 1
〉+

∑

x ′x ′′
ψ2x ′+1(t − 1)

〈
2x

∣∣eiθH1
∣∣2x ′′ + 1

〉 〈
2x ′′ + 1

∣∣eiθH0
∣∣2x ′ + 1

〉
.

Exercise 8.11. Show that H0|2x〉 = |2x + 1〉 and H1|2x〉 = |2x − 1〉. Using H 2
0 =

H 2
1 = I , calculate H0|2x + 1〉 and H1|2x − 1〉.
Using Eqs. (8.6)–(8.9) and Exercise 8.11, we obtain

〈
2x

∣∣eiθH0
∣∣ 2x ′〉 = 〈

2x + 1
∣∣eiθH0

∣∣ 2x ′ + 1
〉 = cos θ δxx ′ ,

〈
2x

∣∣eiθH0
∣∣ 2x ′ + 1

〉 = 〈
2x + 1

∣∣eiθH0
∣∣ 2x ′〉 = i sin θ δxx ′ ,

for the local operator of the red tessellation and



166 8 Staggered Model

Fig. 8.3 Probability
distribution after 50 steps
with θ = π/3 and initial
condition (|0〉 + |1〉)/√2

〈
2x

∣∣eiθH1
∣∣ 2x ′〉 = 〈

2x + 1
∣∣eiθH1

∣∣ 2x ′ + 1
〉 = cos θ δxx ′ ,

〈
2x

∣∣eiθH1
∣∣ 2x ′ + 1

〉 = i sin θ δx,x ′+1,
〈
2x + 1

∣∣eiθH1
∣∣ 2x ′〉 = i sin θ δx,x ′−1,

for the local operator of the blue tessellation. Replacing those results in the last
expression of ψ2x (t), we obtain

ψ2x (t) = cos2 θ ψ2x (t − 1) − sin2 θ ψ2x−2(t − 1)+
i cos θ sin θ

(
ψ2x+1(t − 1) + ψ2x−1(t − 1)

)
. (8.13)

Analogously, the recursive equation for the amplitudes at the odd sites is

ψ2x+1(t) = i cos θ sin θ
(
ψ2x (t − 1) + ψ2x+2(t − 1)

)+
cos2 θ ψ2x+1(t − 1) − sin2 θ ψ2x+3(t − 1). (8.14)

Let us choose the initial condition

|ψ(0)〉 = |0〉 + |1〉√
2

, (8.15)

that is, the only nonzero amplitudes at t = 0 are ψ0(0) = ψ1(0) = 1/
√
2. Using

Eqs. (8.13) and (8.14), we obtain the probability distribution depicted in Fig. 8.3.

Exercise 8.12. Obtain Eq. (8.14).



8.3 Staggered Walk on the Line 167

8.3.1 Fourier Analysis

In order to find the spectral decomposition of the evolution operator, we perform a
basis change that takes advantage of the system symmetries. The general method is
the following. The first step is to find a graph tessellation cover. The next step is
to split the vertex set into subsets of equivalent vertices. For example, vertex 0 and
vertex 2 on the line are equivalent because both have a red polygon to the right and
a blue polygon to the left, as can be seen in Fig. 8.2. In fact, all even vertices are
equivalent and the same holds for the odd vertices. The final step is to add up the
computational basis vectors corresponding to the vertices of each subset using the
Fourier amplitudes.

Let us define the Fourier basis by the vectors

∣∣∣ψ̃k
0

〉
=

∞∑

x=−∞
e−2xki |2x〉, (8.16)

∣∣∣ψ̃k
1

〉
=

∞∑

x=−∞
e−(2x+1)ki |2x + 1〉, (8.17)

where k ∈ [−π,π]. For a fixed k, those vectors define a plane that is invariant under
the action of each local evolution operator, which is confirmed in the following way.
There are k-dependent parameters a(k), b(k), c(k), d(k) so that

H0

∣∣∣ψ̃k
0

〉
= a(k)

∣∣∣ψ̃k
0

〉
+ b(k)

∣∣∣ψ̃k
1

〉
,

H0

∣∣∣ψ̃k
1

〉
= c(k)

∣∣∣ψ̃k
0

〉
+ d(k)

∣∣∣ψ̃k
1

〉
.

This means that in the subspace spanned by
∣∣∣ψ̃k

0

〉
and

∣∣∣ψ̃k
1

〉
, H0 reduces to a two-

dimensional matrix

H̃ k
0 =

[
a(k) c(k)
b(k) d(k)

]
.

The k-dependent parameters a(k), b(k), c(k), d(k) can be obtained by acting H0 on∣∣∣ψ̃k
0

〉
and

∣∣∣ψ̃k
1

〉
. After some algebraic manipulations, we obtain

H̃ k
0 =

[
0 e−ik

eik 0

]
. (8.18)

Analogously, we can repeat the process for H1 in order to obtain a two-dimensional
matrix H̃ k

1 . After the algebraic manipulations, we conclude that H̃ k
1 = H̃ (−k)

0 .

The plane spanned by
∣∣∣ψ̃k

0

〉
and

∣∣∣ψ̃k
1

〉
for a fixed k is also invariant under the action

ofU0 = eiθH0 andU1 = eiθH1 . The reduced 2 × 2matrices Ũ k
0 and Ũ

k
1 can be obtained



168 8 Staggered Model

by using the fact that (H̃ k
0 )2 = (H̃ k

1 )2 = I . In fact, Ũ k
0 = cos θ I2 + i sin θ H̃ k

0 , and
then

Ũ k
0 =

[
cos θ i sin θ e−ik

i sin θ eik cos θ

]
(8.19)

and Ũ k
1 = Ũ (−k)

0 . Finally, the reduced version of the full evolution operator U is
obtained from the expression Ũk = Ũ k

1 Ũ
k
0 , yielding

Ũk =
[
cos2 θ − sin2 θ e2ik i sin 2θ cos k

i sin 2θ cos k cos2 θ − sin2 θ e−2ik

]
. (8.20)

The connection between the two-dimensional reduced space and the original Hilbert
space is established by

U
∣∣∣ψ̃k

�

〉
=

1∑

�′=0

〈
�′∣∣Ũk

∣∣�
〉 ∣∣∣ψ̃k

�′

〉
, (8.21)

or in the operator form

U =
∫ π

−π

(
1∑

�,�′=0

〈
�′∣∣Ũk

∣∣�
〉 ∣∣∣ψ̃k

�′

〉〈
ψ̃k

�

∣∣∣

)
dk

2π
. (8.22)

Since all information conveyed by U can be obtained from Ũk for k ∈ [−π,π], we
can calculate the eigenvalues and eigenvectors ofU from the eigenvalues and eigen-
vectors of Ũk . In fact, the eigenvalues ofU are the eigenvalues of Ũk (Exercise 8.13).

The eigenvalues of Ũk are e±iλ, where

cosλ = cos2 θ − sin2 θ cos 2k. (8.23)

The nontrivial normalized eigenvectors of Ũk are

∣∣v±
k

〉 = 1√
C±

(
sin 2θ cos k

sin2 θ sin 2k ± sin λ

)
, (8.24)

where
C± = 2 sin λ (sin λ ± sin2 θ sin 2k). (8.25)

The normalized eigenvectors of the evolution operatorU associated with eigenvalues
e±iλ are

∣∣V±
k

〉 = 1√
C±

(
sin 2θ cos k

∣∣∣ψ̃k
0

〉
+ (sin2 θ sin 2k ± sin λ)

∣∣∣ψ̃k
1

〉)
, (8.26)

and we can write



8.3 Staggered Walk on the Line 169

U =
∫ π

−π

(
eiλ

∣∣V+
k

〉〈
V+
k

∣∣ + e−iλ
∣∣V−

k

〉〈
V−
k

∣∣) dk

2π
. (8.27)

If we take |ψ(0)〉 = |0〉 as the initial condition, the quantum walk state at time t
is given by

|ψ(t)〉 =
∞∑

x=−∞
(ψ2x (t) |2x〉 + ψ2x+1(t) |2x + 1〉) , (8.28)

where (Exercise 8.15)

ψ2x (t) = sin2 2θ
∫ π

−π

cos2 k

(
ei(λt−2kx)

C+ + e−i(λt+2kx)

C−

)
dk

2π
, (8.29)

and

ψ2x+1(t) = i sin 2θ
∫ π

−π

cos k sin λt

sin λ
e−i(2x+1)k dk

2π
. (8.30)

The probability distribution is obtained by calculating p2x (t) = |ψ2x (t)|2 and
p2x+1(t) = |ψ2x+1(t)|2. The probability distribution is asymmetric in this case
(localized initial condition).

Exercise 8.13. Show that the eigenvalues of U are the eigenvalues of Ũk and if |ν〉
is an eigenvector of Ũk , then

1∑

�=0

〈
�
∣∣ν
〉 ∣∣∣ψ̃k

�

〉

is an eigenvector of U .

Exercise 8.14. Use Eq. (8.22) to show that

Ut =
∫ π

−π

(
1∑

�,�′=0

〈
�′∣∣Ũ t

k

∣∣�
〉 ∣∣∣ψ̃k

�′

〉〈
ψ̃k

�

∣∣∣

)
dk

2π
.

Exercise 8.15. Using ψ2x (t) = 〈
2x

∣∣Ut
∣∣0
〉

and ψ2x+1(t) = 〈
2x + 1

∣∣Ut
∣∣0
〉
,

Eqs. (8.16), (8.17), and (8.23)–(8.27), obtain (8.29) and (8.30).

8.3.2 Standard Deviation

Let X be a random variable that assumes values in a sample space S. X has an
associated probability distribution p, so that X assumes value x ∈ S with probability
p(X = x). In probability theory, the characteristic function ϕX (k) is an alternative



170 8 Staggered Model

way of describing X and is defined as the expected value of eikX , that is

ϕX (k) = E
[
eikX

]
.

The nth moment of X can be calculated by differentiating ϕX (k) n times at k = 0
(Exercise 8.16), that is

E[Xn] = (−i)n
dnϕX (k)

dkn

∣∣∣∣
k=0

. (8.31)

In the context of the staggered quantum walk on the line, if X is the position
operator, then X |x〉 = x |x〉, that is, |x〉 is an eigenvector of X , whose eigenvalue is
x (the walker’s position). If the quantum state of the walker at time t is |ψ(t)〉, X has
an associated probability distribution given by

p(X = x) = ∣∣〈x
∣∣ψ(t)

〉∣∣2 .

Since X is Hermitian, we can define the unitary operator exp(ikX), which plays the
role of the characteristic function and can be used to calculate the nth moment of the
quantum walk.

In quantum mechanics, if the state of the system is |ψ(t)〉, the expected value of
operator eikX at time t is

E[eikX ]∣∣t = 〈
ψ(t)

∣∣eikX
∣∣ψ(t)

〉
.

Using |ψ(t)〉 = Ut |ψ(0)〉, the above equation simplifies to

ϕX (k)
∣∣∣
t
= 〈

ψ(0)
∣∣(U †)teikxU t

∣∣ψ(0)
〉
.

From now on we assume that the initial condition is localized at the origin, that
is,

|ψ(0)〉 = |0〉. (8.32)

Using Eqs. (8.16) and (8.17), we show that
〈
ψ̃k

�

∣∣0
〉
= δ� 0 for any k. Using Exer-

cise 8.14, we obtain

Ut |0〉 =
∫ π

−π

1∑

�=0

〈
�
∣∣Ũ t

k ′
∣∣0
〉 ∣∣∣ψ̃k ′

�

〉 dk ′

2π
. (8.33)

Using Eqs. (8.16) and (8.17) again, we show that eikx
∣∣∣ψ̃k ′

�

〉
=

∣∣∣ψ̃(k ′−k)
�

〉
. Then,



8.3 Staggered Walk on the Line 171

eikxU t |0〉 =
∫ π

−π

1∑

�=0

〈
�
∣∣Ũ t

k ′
∣∣0
〉 ∣∣∣ψ̃(k ′−k)

�

〉 dk ′

2π
. (8.34)

The complex conjugate of Eq. (8.33) is

〈0|(U †)t =
∫ π

−π

1∑

�′=0

〈
0
∣∣(Ũ t

k ′′)
†
∣∣�′

〉 〈
ψ̃k ′′

�′

∣∣∣
dk ′′

2π
. (8.35)

Multiplying Eqs. (8.35) and (8.34), using
〈
ψ̃k ′′

�′
∣∣ψ̃(k ′−k)

�

〉
= δ��′ δ(k + k ′′ − k ′), where

δ(k + k ′′ − k ′) is the Dirac delta function, and using

∫ π

−π

〈
�
∣∣Ũ t

k ′
∣∣0
〉

δ(k + k ′′ − k ′)
dk ′

2π
=

〈
�
∣∣Ũ t

k+k ′′
∣∣0
〉
, (8.36)

we obtain the characteristic function at time t

ϕX (k)
∣∣∣
t
=

∫ π

−π

〈0|(Ũ t
k ′)

†Ũ t
k+k ′ |0〉 dk ′

2π
. (8.37)

Using Eq. (8.31) and the fact that

d f (k + k ′)
dk

∣∣∣∣
k=0

= d f (k ′)
dk ′ ,

we obtain an expression for the nth moment at time t

E
[
Xn

] ∣∣∣
t
= (−i)n

∫ π

−π

〈0| (Ũ t
k)

† d
nŨ t

k

dkn
|0〉 dk

2π
. (8.38)

Let �k =
[∣∣v+

k

〉
,
∣∣v−

k

〉]
be the matrix of the normalized eigenvectors of Ũk . Then,

Ũk = �k D
[
e±iλ

]
�

†
k,

where D
[
e±iλ

]
is the 2 × 2 diagonal matrix of the eigenvalues of Ũk . Likewise,

Ũ t
k = �k D

[
e±iλ t

]
�

†
k

because�
†
k�k = I . The derivative of Ũ t

k with respect to k would produce three terms

(product rule) but we consider only the term with the derivative of D
[
e±iλ t

]
, that is



172 8 Staggered Model

dnŨ t
k

dkn
= �k

dnD
[
e±iλ t

]

dkn
�

†
k + O

(
tn−1

)
,

because the derivative of �k with respect to k does not depend of t and can be disre-

garded for large t when compared with the derivative of D
[
e±iλ t

]
. Since D

[
e±iλ t

]

is a diagonal matrix, the last equation reduces to

dnŨ t
k

dkn
= �k

[
intn

(
dλ
dk

)n
eiλ t 0

0 (−i)ntn
(
dλ
dk

)n
e−iλ t

]
�

†
k + O

(
tn−1

)
.

Again, we are keeping only the dominant term for large t . When n is even, the last
equation reduces to

dnŨ t
k

dkn
= intn

(
dλ

dk

)n

Ũ t
k + O

(
tn−1

)
.

Replacing in (8.38), we obtain

E
[
X2n]

∣∣∣
t
= t2n

∫ π

−π

(
dλ

dk

)2n dk

2π
+ O

(
t2n−1) . (8.39)

Using (8.23), we obtain
dλ

dk
= −2 sin2 θ sin 2k

sin λ
. (8.40)

The second moment is

E
[
X2

] = 4
(
1 − | cos θ |) t2 + O(t). (8.41)

The odd moments are given by (Exercise 8.17)

E
[
X2n−1

] = 1

2t
E
[
X2n

] + O
(
t2n−2

)
. (8.42)

The standard deviation is defined as

σ =
√
E[X2] − E[X ]2. (8.43)

Using (8.42), we obtain

σ =
√
E[X2]

√

1 − E[X2]
4 t2

. (8.44)

It simplifies asymptotically to



8.3 Staggered Walk on the Line 173

Fig. 8.4 Plot of the
asymptotic slope of the
standard deviation as a
function of θ

σ = 2
√| cos θ |√1 − | cos θ | t. (8.45)

The standard deviation is proportional to t asymptotically, and the slope depends
on θ. It is interesting to find θ that corresponds to the maximum slope. Figure8.4
shows that there are two critical values θmax = π/3 and 2π/3, which are found by
calculating the derivative of σ(t)/t with respect to θ and equating to zero, yielding
equations cos(θmax) = ±1/2. The slope is 1 when θ is equal to the critical values.

When θ = 0, π/2, and π, the standard deviation does not depend on t . These are
limiting cases that result in no spreading of the wave function. Either the walker stays
put (θ = 0 or π) or the walker moves but the first and second moments are equal.

Exercise 8.16. Use theTaylor expansionof the exponential function and the linearity
of the expectation operator E to obtain Eq. (8.31).

Exercise 8.17. The goal of this exercise is to calculate the odd moments. Use
Eqs. (8.24) and (8.40) to show that

〈0|�k

[
1 0
0 −1

]
�

†
k |0〉 = 1

2

dλ

dk
.

Using this result to show that

〈0|
(
Ũ t

k

)† d2n−1Ũ t
k

dk2n−1
|0〉 = i2n−1t2n−1

(
dλ

dk

)2n

+ O
(
t2n−2

)
.

Use this result, Eqs. (8.38) and (8.39), to obtain Eq. (8.42).



174 8 Staggered Model

Further Reading

Earlier papers that addressed the idea of having a coinless quantum walk are [20,
111, 135, 236, 256, 266, 293, 307]. The staggered model, which is based on the
concept of graph tessellation, was introduced in [269]. Staggered quantum walks
on graphs were analyzed in [264], which characterized 2-tessellable graphs. The
version with Hamiltonians was presented in [267], and an experimental proposal
using superconducting resonators was presented in [243]. Search algorithms on
two-dimensional finite lattices using the staggered model with Hamiltonians was
addressed in [268]. The spectrum of the evolution operator of 2-tessellable walks
was analyzed in [184, 189]. The connection among the discrete-time models (stag-
gered, coined, and Szegedy’s model) was addressed in Refs. [187, 263, 270]. The
connection between the continuous-time and staggeredmodelswas addressed in [89],
which shows that for some graphs there is a discretization of the continuous-time
evolution operator into a product of local operators that corresponds to a tessellation
cover of the original graph. Using this connection, [89] presented graphs that admit
perfect state transfer in the staggered model.

The definition of graph tessellation cover encompasses at the same time the sets
of vertices and edges in a dual way, and besides, it employs the concept of clique
widely studied in graph theory. For that reason, graph theorists may have interest
in addressing this issue. For instance, Ref. [5] analyzed the graph tessellation as a
problem in graph theory and obtained results regarding characterization, bounds, and
hardness.



Chapter 9
Spatial Search Algorithms

An interesting problem in the area of algorithms is the spatial search problem, which
aims to find one or moremarked points in a finite physical region that can bemodeled
by a graph, for instance, a two-dimensional finite lattice, so that the vertices of the
graph are the places one can search and the edges are the pathways one can use to
move from one vertex to an adjacent one. The quantum version of this problem was
analyzed byBenioff in a very concrete way. He imagined a quantum robot that moves
to adjacent vertices in a time unit. The position of the robot can be a superposition
of a finite number of places (vertices). How many steps does the robot need to take
in order to find a marked vertex with high probability? In this problem, we suppose
that the robot only finds the marked vertex by stepping on it and the robot has no
hint about the direction of the marked vertex and no compass and no memory.

We compare the time that the quantum robot takes to find amarked vertex with the
time a classical random robot takes. In the classical case, if the robot is on a vertex
and there are d incident edges, a d-sided dice is tossed to determine which edge
to use as the pathway to the next vertex. After reaching the next vertex, the process
starts over. This means that the classical robot wanders aimlessly around the graph in
hoping to step on a marked vertex. The dynamic is modeled by a random walk: The
initial condition is usually the uniform probability distribution and the average time
to find amarked vertex is called the hitting time. For instance, on the two-dimensional
lattice (or grid) with N vertices and cyclic boundary conditions,1 if there is only one
marked vertex, the hitting time is O(N ln N ). If the walker departs from a random
vertex walking at random on the lattice, the walker will visit on average O(N ln N )

vertices before stepping on the marked vertex.
On a finite two-dimensional lattice, a quantum robot can do better. It can find

a marked site quicker than the classical random robot. In fact, the quantum robot
finds a marked site taking O(

√
N ln N ) steps when the dynamic is described by a

quantum walk, which replaces the role performed by the classical random walk. In

1A two-dimensional lattice with cyclic boundary conditions has the form a discrete torus.

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_9

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_9&domain=pdf


176 9 Spatial Search Algorithms

the quantum case, besides calculating the number of steps, we need to calculate the
success probability, which usually decreases when the system size increases.

In this chapter, we describe in detail how to build quantum algorithms for the
spatial search problem on graphs based on discrete-time quantum walks and how to
analyze their time complexity. Coined quantum walks on two-dimensional lattices
and on hypercubes are used as examples. At the end, we show that Grover’s algorithm
can be seen as a spatial search problem on the complete graph with loops using the
coined model and on the complete graph without loops using the staggered model.

9.1 Quantum-Walk-Based Search Algorithms

Consider a graph �, where V (�) is the set of vertices and |V (�)| = N . Let HN be
the N -dimensional Hilbert space associated with the graph, that is, the computational
basis ofHN is {|v〉 : 0 ≤ v ≤ N − 1}. We use the state space postulate of quantum
mechanics to make this association because the vertices are the possible places the
particle can be in the classical sense. Then, each location is associated with a vector
from an orthonormal basis. The postulate states that the “position” of the particle
when the system is isolated from the environment can be a superposition of the basis
vectors.

Howdowemark vertices in a graph?Borrowing the idea fromGrover’s algorithm,
we have to use the unitary operator that acts as the identity on the states corresponding
to the unmarked vertices and inverts the sign of the states corresponding to themarked
vertices. Let M be the set of marked vertices. Then, the unitary operator we need is

R = I − 2
∑

v∈M
|v〉〈v|. (9.1)

This operator plays the same role of the oracle of Grover’s algorithm, as described in
Chap.4. We focus on the case with only one marked vertex because the multimarked
case depends heavily on the arrangement of the marked vertices even on translation-
invariant graphs. There is no loss of generality by choosing the label of the marked
vertex as 0 because we can mark an arbitrary vertex and choose the labels of the
vertices after. In this case, the oracle is written as

R = I − 2|0〉〈0|. (9.2)

The next step is to build an evolution operator U associated with the graph. We
suppose at this stage that no vertex is marked. A quantum walk model is a recipe
to build this kind of unitary operator U and, in this case, U is a product of local
operators. The dimension ofU in the coined model is larger than N . We address this
issue later on when we consider two-dimensional lattices. For now, we suppose that
U is defined on Hilbert space HN .

The evolution operator U ′ of a quantum-walk-based search algorithm is



9.1 Quantum-Walk-Based Search Algorithms 177

Fig. 9.1 Eigenvalues of U
(blue points) and U ′ (red
crosses) for the
two-dimensional lattice with
25 vertices. Note that the
eigenvalues are interlaced.
The eigenvalues eiλ and eiλ

′

are the closest to 1 and they
tend to 1 when N increases

U ′ = UR, (9.3)

which is calledmodified evolution operator to distinguish fromU . In this context, the
walker starts at an initial state2 |ψ(0)〉 and evolves driven byU ′, that is, the walker’s
state after t steps is |ψ(t)〉 = (U ′)t |ψ(0)〉.

Summing up, the spatial search algorithm on a graph uses a modified evolution
operatorU ′ = UR, whereU is the standard evolution operator of a quantum walk on
the graph with no marked vertex and R is the unitary operator that inverts the sign
of the marked vertex, given by Eq. (9.2). There is a slight variation of this method,
which employs the modified evolution operator U ′ = UaR, where a is an integer
that may depend on N . This variation is employed in the algorithm for solving the
element distinctness problem, which is described in Chap.10.

Most spatial search algorithms can be described asymptotically (large N ) using
only two eigenvectors of the modified evolution operator U ′. One of them is asso-
ciated with the eigenvalue with the smallest positive argument. Let exp(iλ1), ...,
exp(iλk) be the eigenvalues U ′ such that λ1, ...,λk ∈ [−π,π]. Select the smallest
positive element of the set {λ1, ...,λk}. Let us call this smallest element by λ and
the unit eigenvector by |λ〉, that is, U ′|λ〉 = exp(iλ)|λ〉 and 〈λ∣∣λ〉 = 1. Eigenvalue
eiλ is shown in Fig. 9.1 for the two-dimensional lattice with 25 vertices. Now select
the largest negative element of the set {λ1, ...,λk}. Let us call this largest negative
element by λ′ and the unit eigenvector by

∣∣λ′〉, that is, U ′∣∣λ′〉 = exp(iλ′)
∣∣λ′〉 and〈

λ′∣∣λ′〉 = 1. In most spatial search algorithms, λ′ = −λ and vectors |λ〉 and ∣∣λ′〉 are
the only eigenvectors ofU ′ that we need to analyze the performance of the algorithm.
If the graph on which the quantum walk takes place is simple enough, such as the
complete graph, we can calculate λ and λ′ without much effort. For an arbitrary
graph, we describe a technique we call principal eigenvalue technique, which allows

2The uniform superposition is the most used initial state because it is an unbiased one.



178 9 Spatial Search Algorithms

to find λ and λ′. This technique requires the knowledge of the eigenvectors ofU that
have nonzero overlap with the marked vertex. Besides, the technique can be applied
only if three conditions, described in the next section, are fulfilled.

9.2 Analysis of the Time Complexity

The complexity analysis of the spatial search algorithm is based on two quantities:
The running time and the success probability. The expression of the probability of
finding the marked vertex 0 after t steps is

p(t) = ∣∣〈0
∣∣ψ(t)

〉∣∣2 , (9.4)

where |ψ(t)〉 is the state of the search algorithm after t steps. Since |ψ(t)〉 =
(U ′)t |ψ(0)〉, where |ψ(0)〉 is the initial state, we have

p(t) = ∣∣〈0
∣∣(U ′)t

∣∣ψ(0)
〉∣∣2 . (9.5)

The goal now is to determine the optimal number of steps topt, which is the one that
maximizes p(t). The running time is topt and the success probability is p(topt).

We will not attempt to calculate the spectral decomposition of U ′ but instead we
focus on the eigenvectors |λ〉 and ∣∣λ′〉. The eigenspace spanned by the other eigen-
vectors will be disregarded, which cause some supposedly small error. If the error is
large, we cannot use the principal eigenvalue technique. The spectral decomposition
of U ′ would be

U ′ = eiλ|λ〉〈λ| + eiλ
′ ∣∣λ′〉〈λ′∣∣+Utiny, (9.6)

where Utiny acts nontrivially only on the subspace orthogonal to the plane spanned
by
{|λ〉, ∣∣λ′〉}. After raising the previous equation to power t we obtain

(U ′)t = eiλt |λ〉〈λ| + eiλ
′t ∣∣λ′〉〈λ′∣∣+Ut

tiny. (9.7)

Now we do the sandwich with vectors |0〉 and |ψ(0)〉, obtaining

p(t) =
∣∣∣eiλt

〈
0
∣∣λ
〉 〈

λ
∣∣ψ(0)

〉+ eiλ
′t 〈0

∣∣λ′〉 〈λ′∣∣ψ(0)
〉+ ε

∣∣∣
2
, (9.8)

where ε =
〈
0
∣∣Ut

tiny

∣∣ψ(0)
〉
. The principal eigenvalue technique can be applied when

|ε| is much smaller than the absolute value of the remaining terms in the asymptotic
limit (large N ). From now on we will disregard ε and in the applications for specific
graphs, we show that the above condition is fulfilled by proving that limN→∞ |ε| = 0.

We need to find λ,λ′, the inner products
〈
0
∣∣λ
〉
,
〈
λ
∣∣ψ(0)

〉
, and their primed versions.

We focus our attention on the calculation of λ because λ′ and the inner products



9.2 Analysis of the Time Complexity 179

will be obtained as a byproduct. Our goal now is to find λ supposing that we have
already obtained the spectral decomposition of U , that is, we suppose that the set of
vectors |ψk〉 is an orthonormal eigenbasis of U and exp(iφk) are the corresponding
eigenvalues, that isU |ψk〉 = exp(iφk)|ψk〉. Then, we have I = ∑

k |ψk〉〈ψk |.Making
the sandwich with vectors |0〉 and |λ〉, we obtain

〈
0
∣∣λ
〉 =

∑

k

〈
0
∣∣ψk
〉 〈

ψk

∣∣λ
〉
, (9.9)

where the sum runs over all values of k. Using expression
〈
ψk

∣∣U ′∣∣λ
〉 = 〈

ψk

∣∣UR
∣∣λ
〉
,

we obtain (Exercise9.1)
〈
ψk

∣∣λ
〉 = 2

〈
0
∣∣λ
〉 〈

ψk

∣∣0
〉

1 − ei(λ−φk )
, (9.10)

which is valid if λ 
= φk . Using the above equation in (9.9), we obtain

∑

k

2
∣∣〈0
∣∣ψk
〉∣∣2

1 − ei(λ−φk )
= 1. (9.11)

The sum must be restricted to k such that φk 
= λ. For simplicity, we assume that
φk 
= λ for all k and leave the general case as an exercise. Using that 2/(1 − eia) =
1 + i sin a/(1 − cos a), the imaginary part of Eq. (9.11) implies that

∑

k

∣∣〈0
∣∣ψk
〉∣∣2 sin(λ − φk)

1 − cos(λ − φk)
= 0. (9.12)

If the eigenvectors of U that have nonzero overlap with |0〉 are known, we can
calculate λ using the last equation, at least via numerical methods.

To proceed analytically, we suppose that λ � φmin when N � 1, where φmin is
the smallest positive value of φk . We can check the validity of those assumptions in
specific applications, confirming the process in hindsight. We have to split the sum
(9.12) into two parts:

∑

φk=0

∣∣〈0
∣∣ψk
〉∣∣2 sin λ

1 − cosλ
+
∑

φk 
=0

∣∣〈0
∣∣ψk
〉∣∣2 sin(λ − φk)

1 − cos(λ − φk)
= 0, (9.13)

corresponding to the sum of terms such that φk = 0 and φk 
= 0, respectively. Since
we are assuming that λ � 1 for large N , the Maclaurin expansion of the term in the
first sum is

sin λ

1 − cosλ
= 2

λ
+ O(λ). (9.14)

Assuming λ � φmin for large N , the Taylor expansion of the term in the second sum
is



180 9 Spatial Search Algorithms

sin(λ − φk)

1 − cos(λ − φk)
= − sin φk

1 − cosφk
− λ

1 − cosφk
+ O(λ2), (9.15)

which is valid if φk 
= 0.
Using those expansions, Eq. (9.13) reduces to

A − B λ − C λ2 = O(λ3), (9.16)

where

A = 2
∑

φk=0

∣∣〈0
∣∣ψk
〉∣∣2 , (9.17)

B =
∑

φk 
=0

∣∣〈0
∣∣ψk
〉∣∣2 sin φk

1 − cosφk
, (9.18)

C =
∑

φk 
=0

∣∣〈0
∣∣ψk
〉∣∣2

1 − cosφk
. (9.19)

We can find λ by solving Eq. (9.16), since all quantities necessary to calculate A, B,
and C are supposedly known.

Our goal now is to find
〈
0
∣∣λ
〉
. Making a sandwich with |λ〉 on both sides of

I = ∑
k |ψk〉〈ψk |, we obtain 1 = ∑

k

∣∣〈ψk

∣∣λ
〉∣∣2. Using (9.10), we obtain

1
∣∣〈0
∣∣λ
〉∣∣2

=
∑

k

4
∣∣〈0
∣∣ψk
〉∣∣2

∣∣1 − ei(λ−φk )
∣∣2

. (9.20)

Without loss of generality, wemay assume that
〈
0
∣∣λ
〉
is a positive real number. In fact,

if
〈
0
∣∣λ
〉 = a eib, where a and b are real numbers and a is positive, we redefine |λ〉 as

e−ib|λ〉. We are allowed to do this redefinition because a multiple of an eigenvector
is also an eigenvector and in this case the norm of the eigenvector does not change.
After this redefinition and using that

∣∣1 − eia
∣∣2 = 2(1 − cos a), we obtain

1〈
0
∣∣λ
〉 =

√√√√∑

k

2
∣∣〈0
∣∣ψk
〉∣∣2

1 − cos(λ − φk)
, (9.21)

which shows that we have attained our goal since all quantities on the right-hand side
of the previous equation are known. This expression can be simplified further. In fact,
splitting the sum into two parts, one sum of terms such that φk = 0 and another sum
of terms such that φk 
= 0, expanding in Taylor series and using Eqs. (9.17)–(9.19),
we obtain 〈

0
∣∣λ
〉 = |λ|√

2
√
A + Cλ2

+ O(λ). (9.22)



9.2 Analysis of the Time Complexity 181

Our goal now is to find
〈
λ
∣∣ψ(0)

〉
. We choose |ψ(0)〉 as an eigenvector of U with

eigenvalue 1.3 In this case, we can replace in Eq. (9.10) |ψk〉 by |ψ(0)〉 and φk by 0
to obtain

〈
ψ(0)

∣∣λ
〉 = 2

〈
0
∣∣λ
〉 〈

ψ(0)
∣∣0
〉

1 − eiλ
. (9.23)

Using 2/(1 − eiλ) = 1 + i sin λ/(1 − cosλ), we obtain

〈
ψ(0)

∣∣λ
〉 = 〈

ψ(0)
∣∣0
〉 〈
0
∣∣λ
〉 (

1 + i sin λ

1 − cosλ

)
, (9.24)

which can be simplified further by using Eq. (9.14). All quantities on the right-hand
side of the previous equation are known. In fact,

〈
0
∣∣λ
〉
is given by Eq. (9.22) and λ is

given by Eq. (9.16).
The same procedure described in the last paragraphs can be used to calculate

λ′,
〈
0
∣∣λ′〉, and

〈
ψ(0)

∣∣λ′〉, completing our main goal, which is to obtain all quantities
required to calculate p(t) [see Eq. (9.8)].

Exercise 9.1 The goal of this exercise is to obtain Eq. (9.10).

1. Show that if there is only one marked vertex with label 0, then R|λ〉 = |λ〉 −
2
〈
0
∣∣λ
〉 |0〉.

2. Show that 〈ψk |U = eiφk 〈ψk |.
3. Using 1. and 2. show that

〈
ψk

∣∣UR
∣∣λ
〉 = eiφk

(〈
ψk

∣∣λ
〉− 2

〈
0
∣∣λ
〉 〈

ψk

∣∣0
〉)
.

4. Show that
〈
ψk

∣∣U ′∣∣λ
〉 = eiλ

〈
ψk

∣∣λ
〉
.

5. Using the previous items and
〈
ψk

∣∣U ′∣∣λ
〉 = 〈

ψk

∣∣UR
∣∣λ
〉
, obtain Eq. (9.10).

Exercise 9.2 Show that
2

1 − eia
= 1 + i sin a

1 − cos a

for any angle a 
= 0 and ∣∣1 − eia
∣∣2 = 2(1 − cos a)

for any angle a.

Exercise 9.3 Show that there is one and only one eigenvalue λ. Extend this result
to λ′. [Hint: Let f (λ) be the left-hand side of Eq. (9.12). Show that limλ→0+ f (λ) =
+∞ and limλ→φ−

min
f (λ) = −∞, where φmin is the positive argument of the eigen-

value ofU nearest to 1. Next show that f (λ) is a monotonically decreasing function.]

3If the dimension of the 1-eigenspace ofU with nonzero overlap with |0〉 is greater than one, |ψ(0)〉
is the diagonal state of this 1-eigenspace.



182 9 Spatial Search Algorithms

9.2.1 Case B = 0

If the eigenvalues of U come in complex-conjugate pairs, that is, both eiφk and e−iφk

are eigenvalues, and the corresponding values of
∣∣〈0
∣∣ψk
〉∣∣ are equal, for instance,

when the eigenvector associated with e−iφk is the complex conjugate of the eigen-
vector associated with eiφk , B is zero because Eq. (9.18) contains sin(φk), which is
an antisymmetric function.

When B = 0, Eq. (9.16) reduces to

λ = −λ′ =
√
A√
C

, (9.25)

Equation (9.22) reduces to

〈
0
∣∣λ
〉 = 〈

0
∣∣λ′〉 = 1

2
√
C

, (9.26)

and Eq. (9.24) reduces to

〈
ψ(0)

∣∣λ
〉 = 〈

λ′∣∣ψ(0)
〉 = 〈

ψ(0)
∣∣0
〉 ( 1

2
√
C

+ i√
A

)
. (9.27)

Substituting those results into Eq. (9.8), we obtain

p(t) =
∣∣〈0
∣∣ψ(0)

〉∣∣2

AC
sin2 λt. (9.28)

The running time is the optimal t , which is

topt =
⌊ π

2λ

⌋
(9.29)

and the asymptotic success probability is

psucc =
∣∣〈0
∣∣ψ(0)

〉∣∣2

AC
. (9.30)

An important case is when |ψ(0)〉 is the diagonal state and the only (modulo a
multiplicative constant) (+1)-eigenvector ofU that has nonzero overlap with |0〉. In
this case, A = 2

∣∣〈0
∣∣ψ(0)

〉∣∣2 = 2/N and the running time is

topt =
⌊

π
√
NC

2
√
2

⌋
, (9.31)



9.2 Analysis of the Time Complexity 183

and the success probability is

psucc = 1

2C
. (9.32)

In this case, the complexity of the algorithm is determined by C . For the two-
dimensional lattice,C = O(ln N ). The running time is O

(√
N ln N

)
and the success

probability is O(1/ ln N ). The best scenario we can hope for is C = O(1), which
achieves the Grover lower bound, that is, the running time is topt = O

(√
N
)
with

constant success probability.

Exercise 9.4 Show that if U has real entries, then B = 0.

Exercise 9.5 Use the amplitude amplification technique to show that it is possible
to obtain a quantum circuit that outputs the marked element with success probabil-
ity O(1) in O(C

√
N ) steps when |ψ(0)〉 is the diagonal state and the only (+1)-

eigenvector of U that has nonzero overlap with |0〉.

9.2.2 Tulsi’s Modification

Tulsi described a modification of quantum-walk-based search algorithms that is use-
ful when the success probability tends to zero when N increases. The goal of Tulsi’s
modification is to define a new evolution operator that on the one hand has the same
running time of the original algorithm and on the other hand has a constant success
probability by obtaining a new C so that CNEW = O(1).

Augment the Hilbert space by one qubit, that is,HNEW = H2 ⊗ HN and define a
new evolution operator

U ′′ = UNEWRNEW, (9.33)

where
UNEW = (Z ⊗ IN )C0(U ), (9.34)

Z is the Pauli matrix σz , C0(U ) is the controlled operation that appliesU to the state
of the second register only if the control (first register) is set to 0, and

RNEW = I2N − 2
∣∣0NEW

〉〈
0NEW

∣∣, (9.35)

where ∣∣0NEW
〉 = |η〉|0〉 (9.36)

and |η〉 is a 1-qubit state given by

|η〉 = sin η |0〉 + cos η |1〉, (9.37)



184 9 Spatial Search Algorithms

where η is a small angle that will be tuned to amplify the success probability. The
new initial condition is ∣∣ψNEW(0)

〉 = |0〉|ψ(0)〉. (9.38)

The principal eigenvalue technique can be employed because oracle RNEW has
the same form of oracle R. To calculate ANEW, BNEW, and CNEW, which are given
by Eqs. (9.17)–(9.19), we need to know the eigenvalues and eigenvectors of UNEW

that have nonzero overlap with
∣∣0NEW

〉
. It is straightforward to check that

UNEW|0〉|ψk〉 = eiφk |0〉|ψk〉, (9.39)

UNEW|1〉|ψk〉 = −|1〉|ψk〉, (9.40)

where vectors |ψk〉 are the eigenvectors of U . Then, {|0〉|ψk〉, |1〉|ψk〉 : 0 ≤ k < N }
is an orthonormal eigenbasis ofUNEW. Note that the (+1)-eigenvectors ofUNEW are
|0〉|ψk〉 for all k such that φk = 0, that is, |ψk〉 is a (+1)-eigenvector of U .

Suppose that BNEW = 0 (see Exercise9.9 for the case BNEW 
= 0). The new values
of A and C are

ANEW = 2 sin2(η)
∑

φk=0

∣∣〈0
∣∣ψk
〉∣∣2 , (9.41)

CNEW = cos2(η)

2

∑

all k

∣∣〈0
∣∣ψk
〉∣∣2 + sin2(η)

∑

φk 
=0

∣∣〈0
∣∣ψk
〉∣∣2

1 − cosφk
. (9.42)

It is expected that η be small to counteract the increase of the second term as a
function of N . In this case, we have

ANEW = η2A + O
(
η3
)
, (9.43)

CNEW = 1

2
+ η2C + O

(
η3
)
. (9.44)

The new running time topt is π/2λNEW, which reduces to

topt = π

2

√
C

A
+ 1

2 η2A
. (9.45)

Using Eq. (9.30) and
〈
0NEW

∣∣ψNEW(0)
〉 = sin(η)

〈
0
∣∣ψ(0)

〉
, the new success probability

reduces to

psucc = 2
∣∣〈0
∣∣ψ(0)

〉∣∣2

A
(
1 + 2η2C

) . (9.46)

If there is only one (+1)-eigenvector ofU with nonzero overlap with |0〉 (modulo
a multiplicative constant), we have A = 2

∣∣〈0
∣∣ψ(0)

〉∣∣2. For this case, η that minimizes



9.2 Analysis of the Time Complexity 185

topt/psucc is

η = 1

2
√
C

, (9.47)

and the running time would be

topt =
⌊

π
√
3

2

√
C

A

⌋
(9.48)

and the asymptotic success probability

psucc = 2

3
.

As a final step, one would amplify the probability by running Tulsi’s algorithm
(1/psucc) times (with intermediate measurements) in order to boost the final success
probability.

An alternate strategy is to find η thatminimizes topt/
√
psucc, which is η = 1/

√
2C

yielding the running time

topt =
⌊

π
√
2

2

√
C

A

⌋
(9.49)

and success probability psucc = 1/2. As a final step, one would use the amplitude
amplification technique to boost the final success probability, which means that
Tulsi’s algorithm would be repeated (1/

√
psucc) times (with no intermediate mea-

surements).
A bad strategy would be to adjust η in order to obtain a success probability very

close to 1. The strategy is bad because the running time would increase too much.

Exercise 9.6 Show all the details needed to obtain Eqs. (9.41) and (9.42) from
Eqs. (9.17) and (9.19) when B = 0.

Exercise 9.7 Find η so that the success probability is psucc = 3/4 when there is only
one (+1)-eigenvector of U that has nonzero overlap with |0〉; find the running time
and compare to (9.48).

Exercise 9.8 Show that the circuit of Fig. 9.2 describes the unitary operator (9.33)
(case B = 0).

Exercise 9.9 Show that the circuit of Fig. 9.3 describes amodification of the original
evolution operatorU ′ when B 
= 0 that finds the marked element with a new running
time close to the running time of the original algorithm and new success probability
O(1).



186 9 Spatial Search Algorithms

Iterate topt times

|0〉
R

NEW

σz |1〉

|ψ(0)〉 / U / |0〉

Fig. 9.2 Tulsi’s modificationwhen B = 0. The first register has one qubit and the second represents
a N -dimensional Hilbert space. The output |1〉|0〉 ∈ H2 ⊗ HN is obtained with probability O(1),
where |0〉 represents the market vertex

Iterate topt times

|0〉

R
NEW

σz |1〉

|+〉 • |+〉

|ψ(0)〉 / U U † / |0〉

Fig. 9.3 Tulsi’s modification when B 
= 0. The first and the second registers have one qubit (each
one) and the third register represents a N -dimensional Hilbert space. The output |1〉|+〉|0〉 ∈ H2 ⊗
H2 ⊗ HN is obtained with probability O(1), where |0〉 represents the market vertex

9.3 Finite Two-Dimensional Lattices

As an application of the previous results, we analyze the search for a marked vertex
in the

√
N × √

N square lattice with periodic boundary conditions. The evolution
operator of a coined quantum walk with no marked vertex is

U = S (G ⊗ I ), (9.50)

where G is the Grover coin and S is the flip-flop shift operator. The details are
described in Sect. 6.2 on p.98.

A search algorithm on the lattice is driven by the modified evolution operator

U ′ = UR′, (9.51)

where
R′ = I − 2

∣∣0′〉〈0′∣∣ (9.52)

and ∣∣0′〉 = |DC 〉|0, 0〉, (9.53)



9.3 Finite Two-Dimensional Lattices 187

when there is only one marked vertex with label (0, 0). The principal eigenvalue
technique can be employed because oracle R′ has the same form of oracle R. Note
that here the Hilbert space is larger because it has been augmented by the coin space.

The initial state |ψ(0)〉 is the uniform superposition of all states of the computa-
tional basis, that is,

|ψ(0)〉 = |DC 〉|DP〉, (9.54)

where |DC 〉 is the diagonal state of the coined space and |DP〉 is the diagonal state
of the position space. This state can be generated by O

(√
N
)
steps (Exercise9.10).

The results of Sect. 9.2 can be readily employed as soon as we calculate A, B, and
C given by Eqs. (9.17)–(9.19). We need to know the eigenvalues and eigenvectors of
U that have nonzero overlap with

∣∣0′〉. An orthonormal eigenbasis of U is described
in Sect. 6.2 on p.103. We list the eigenvectors that have nonzero overlap with

∣∣0′〉.
The only eigenvector with eigenvalue 1 is

∣∣ν1a
0,0

〉∣∣∣0̃, 0̃
〉
, which is equal to the initial

condition |ψ(0)〉. The remaining eigenvectors are
∣∣ν±θ

k�

〉∣∣∣k̃, �̃
〉
for 0 ≤ k, l <

√
N and

(k, l) 
= (0, 0), where

∣∣ν±θ
k�

〉 = i

2
√
2 sin θk�

⎡

⎢⎢⎢⎢⎢⎣

e∓iθk� − ωk

e∓iθk� − ω−k

e∓iθk� − ω�

e∓iθk� − ω−�

⎤

⎥⎥⎥⎥⎥⎦
, (9.55)

which have eigenvalues e±iθk� , where θk� are given by

cos θk� = 1

2

(
cos

2πk√
N

+ cos
2π�√
N

)
, (9.56)

and ω = e
2πi√
N . Vector

∣∣∣k̃, �̃
〉
is the Fourier transform given by Eq. (6.40) on p.100.

Note that the eigenvalues and eigenvectors ofU come in complex-conjugate pairs,
this means that B = 0. Converting the notation of Sect. 9.2 into the notation of the

two-dimensional lattice, φk → θk�, |ψk〉 → ∣∣ν±θ
k�

〉∣∣∣k̃, �̃
〉
,
∑

k → ∑
k�, and using that〈

0′∣∣ = 〈DC |〈0, 0|, we obtain

A = 2
∣∣〈0′∣∣ψ(0)

〉∣∣2 ,

B = 0,

C =
√
N−1∑

k,�=0
(k,�)
=(0,0)

(∣∣〈DC

∣∣ν+θ
k�

〉∣∣2 + ∣∣〈DC

∣∣ν−θ
k�

〉∣∣2
) ∣∣∣
〈
00
∣∣k̃�̃
〉∣∣∣
2

1 − cos θk�
.



188 9 Spatial Search Algorithms

From Exercise6.13 on p.104, we have

∣∣〈DC

∣∣ν±θ
k�

〉∣∣2 = 1

2
, (9.57)

and, from the definition of the Fourier transform, we have

∣∣∣
〈
0, 0

∣∣k̃, �̃
〉∣∣∣
2 = 1

N
. (9.58)

Using the above equations, (9.54), and (9.56), we obtain

A = 2

N
,

B = 0,

C = 1

N

√
N−1∑

k,�=0
(k,�)
=(0,0)

1

1 − 1
2

(
cos 2πk√

N
+ cos 2π�√

N

) .

Using Exercise9.11, we have

C = c ln N + O (1) , (9.59)

where c is a number bounded by 2/π2 ≤ c ≤ 1. Numerical calculations show that
c = 0.33 approximately. Since B = 0, the probability of finding the marked vertex
as a function of the number of steps is given by Eq. (9.28). For the two-dimensional
square lattice with odd

√
N , Eqs. (9.28) and (9.25) reduce to

p(t) = 1

2c ln N
sin2

( √
2 t√

c
√
N ln N

)
. (9.60)

The running time is

topt =
⌊

π
√
c
√
N ln N

2
√
2

⌋
(9.61)

and the success probability is

psucc = 1

2c ln N
+ O

(
N−1) . (9.62)

Note that the running time is good enough because it is the square root of the classical
hitting time. On the other hand, the success probability seems disappointing because
it tends to zero when N increases. Since it goes to zero logarithmically in terms of
N , the situation is not too bad and can be saved.



9.3 Finite Two-Dimensional Lattices 189

Exercise 9.10 Show that the uniform state |ψ(0)〉 = |DC 〉|DP〉 of the two-
dimensional lattice can be generated with O

(√
N
)
steps using local operators.

Exercise 9.11 The goal of this exercise is to calculate asymptotic bounds for

SN =
√
N−1∑

k,�=0
(k,�)
=(0,0)

1

1 − 1
2

(
cos 2πk√

N
− cos 2π�√

N

) .

Using that
1 − cos a

2
= sin2

a

2
,

show that

SN =
n−1∑

k,�=0
(k,�)
=(0,0)

1

sin2 πk
n + sin2 π�

n

,

where n = √
N . Using the symmetries of the expression inside the sum, show that

SN = 4
� n

2�∑

k,�=0
(k,�)
=(0,0)

1

sin2 πk
n + sin2 π�

n

+ O(N )

when n is odd. Using that
4a2

π2
≤ sin2 a ≤ a2,

for 0 ≤ a ≤ π/2, show that

4
(
k2 + �2

)

n2
≤ sin2

πk

n
+ sin2

π�

n
≤ π2

(
k2 + �2

)

n2

and

4n2

π2

� n
2�∑

k,�=0
(k,�)
=(0,0)

1

k2 + �2
≤ SN ≤ n2

� n
2�∑

k,�=0
(k,�) 
=(0,0)

1

k2 + �2

when n is odd up to O(N ) terms.
The goal now is to find bounds for

� n
2�∑

k,�=0
(k,�)
=(0,0)

1

k2 + �2
.



190 9 Spatial Search Algorithms

Using that 0 ≤ (k − �)2, show that 2k� ≤ k2 + �2 and then

(k + �)2

2
≤ k2 + �2 ≤ (k + �)2.

From those inequalities, show that

� n
2�∑

k,�=0
(k,�)
=(0,0)

1

(k + �)2
≤

� n
2�∑

k,�=0
(k,�)
=(0,0)

1

k2 + �2
≤

� n
2�∑

k,�=0
(k,�) 
=(0,0)

2

(k + �)2
.

Using tables of series,4 one can find that

� n
2�∑

k,�=0
(k,�)
=(0,0)

1

(k + �)2
= γ + π2

6
+ 2�

(
n + 3

2

)
+ (n + 1)�

(
1,

n + 3

2

)
−

n� (1, n + 1) − 2�

(
1,

n + 1

2

)
− � (n + 1) ,

where � is the polygamma function. Show that the asymptotic expansion of the
right-hand side of the last equation for odd n is

� n
2�∑

k,�=0
(k,�)
=(0,0)

1

(k + �)2
= ln (n) + 1 + γ + π2

6
− 2 ln (2) + O

(
n−1

)
,

where γ is the Euler number.
Using the above results, show that

2

π2
N ln N ≤ SN ≤ N ln N

up to O (N ) terms.

Exercise 9.12 The goal of this exercise is to show that the three required conditions
for employing the principal eigenvalue technique described in Sect. 9.2 are fulfilled
for the two-dimensional lattice.
1. Show that |ψ(0)〉 is an eigenvector of U with eigenvalue 1.
2. Show that the dominant term in the asymptotic expansion of θk� is

θk� =
√
2 π

√
k2 + l2√
N

+ O
(
N−1

)
.

4http://www-elsa.physik.uni-bonn.de/~dieckman/InfProd/InfProd.html.

http://www-elsa.physik.uni-bonn.de/~dieckman/InfProd/InfProd.html


9.3 Finite Two-Dimensional Lattices 191

Use this expansion to show that the smallest positive argument among the eigenvalues
of U is φmin = θk=0,�=1. Show that λ � φmin for large N .
3. Show that ∣∣〈ψ(0)

∣∣λ
〉∣∣2 + ∣∣〈ψ(0)

∣∣λ′〉∣∣2 = 1 + O
(
N−1

)
.

Use this result to show that ε (see Eq. (9.8)) can be disregarded for large N .

Exercise 9.13 The goal of this exercise is to show that the modified evolution opera-
torU ′ can be seen as the evolution of a coined quantumwalkwith a nonhomogeneous
coin. Show that Eq. (9.51) can be written as U ′ = SC ′, where S is the flip-flop shift
operator and C ′ is a nonhomogeneous coin operator, which is the Grover operator G
on unmarked vertices and (−I ) on the marked vertex.

Exercise 9.14 Use the results of Exercise6.15 and the principal eigenvalue tech-
nique to show that a quantum walk on the two-dimensional lattice with the moving
shift operator (no inversion of the coin after the shift) needs �(N ) time steps to find
a marked vertex. Can Tulsi’s modification improve this case?

9.3.1 Tulsi’s Modification of the Two-Dimensional Lattice

Augment the Hilbert space of the two-dimensional lattice by one qubit, that is,
HNEW = H2 ⊗ H4 ⊗ HN and define a new evolution operator

U ′′ = UNEWRNEW, (9.63)

where
UNEW = (Z ⊗ IN )C0(U ), (9.64)

U is given by Eq. (9.50), and

RNEW = I2N − 2
∣∣0NEW

〉〈
0NEW

∣∣, (9.65)

where ∣∣0NEW
〉 = |η〉|DC 〉|0, 0〉 (9.66)

and |η〉 is a 1-qubit state given by

|η〉 = sin η |0〉 + cos η |1〉, (9.67)

where

sin η = 1

2
√
c ln N

. (9.68)

The new initial condition is



192 9 Spatial Search Algorithms

∣∣ψNEW(0)
〉 = |0〉|DC 〉|DP〉. (9.69)

Using the results of Sect. 9.2.2, the success probability as a function of the number
of steps is

p(t) = 2

3
sin2

( √
2 t√

3 c N ln N

)
. (9.70)

The running time is

topt =
⌊

π
√
3c

2
√
2

√
N ln N

⌋
(9.71)

and the success probability is psucc = 2/3 + O
(
N−1

)
.

9.4 Hypercubes

As a second application of the principal eigenvalue technique, we analyze the search
for a marked vertex in the n-dimensional hypercube, which has N = 2n vertices
whose labels are �v, for 0 ≤ v ≤ N − 1. The evolution operator of a coined quantum
walk with no marked vertex is

U = S (G ⊗ IN ), (9.72)

where G ∈ Hn is the Grover coin and S ∈ Hn ⊗ HN is the flip-flop shift operator,
which was described in Sect. 6.3 on p.106.

A search algorithm on the n-dimensional hypercube is driven the modified evo-
lution operator

U ′ = UR′, (9.73)

where
R′ = I − 2

∣∣0′〉〈0′∣∣ (9.74)

and ∣∣0′〉 = |DC 〉
∣∣∣�0
〉
, (9.75)

when there is only one marked vertex with label �0 = (0, ..., 0). The principal eigen-
value technique can be employed because oracle R′ has the same form of oracle R.
Note that here the Hilbert space is larger because it has been augmented by the coin
space.



9.4 Hypercubes 193

The initial state |ψ(0)〉 is the uniform superposition of all states of the computa-
tional basis, that is,

|ψ(0)〉 = |DC 〉|DP〉, (9.76)

where |DC 〉 is the diagonal state of the coined space and

|DP〉 = 1√
N

N−1∑

�v=0

|�v〉

is the diagonal state of the position space. State |ψ(0)〉 can be generatedwith O(√N
)

steps (Exercise9.15).

Exercise 9.15 Show that the uniform state |ψ(0)〉 = |DC 〉|DP〉 of the n-dimensional
hypercube can be generated with O

(√
N
)
steps using local operators.

The results of Sect. 9.2 can be readily employed as soon as we calculate A, B,
and C given by Eqs. (9.17)–(9.19). To calculate those quantities, we need to know
the eigenvalues and eigenvectors ofU that have nonzero overlap with

∣∣0′〉. An eigen-
basis of U is described in Sect. 6.3.1 on p.112. From Exercise6.19, we know that

an orthonormal basis of eigenvectors ofU for the eigenspace orthogonal to |D〉
∣∣∣�0
〉
is

{∣∣∣α�k
1

〉∣∣β�k
〉
,
∣∣∣α�k

n

〉∣∣β�k
〉 : 1 ≤ �k ≤ 2n − 2

}
together with |D〉∣∣β�0

〉
and |D〉∣∣β�1

〉
with eigen-

values e±iωk , 1, and (−1), respectively, where
∣∣β�k
〉
is given by

∣∣β�k
〉 ≡ 1√

2n

2n−1∑

�v=0

(−1)
�k·�v|�v〉, (9.77)

and

∣∣∣α�k
1

〉
= eiθ√

2

n∑

a=1

(
ka√
k

− i
1 − ka√
n − k

)
|a〉, (9.78)

∣∣∣α�k
n

〉
= e−iθ

√
2

n∑

a=1

(
ka√
k

+ i
1 − ka√
n − k

)
|a〉, (9.79)

and cos θ = √
k/n and ka = �k · �ea is the a-th entry of �k and cosωk = 1 − 2k/n.

Note that there is only one eigenvector with eigenvalue 1, which is the uniform
superposition |DC 〉∣∣β�0

〉
, implying that A = 2/N . Besides, the eigenvalues and eigen-

vectors ofU come in complex-conjugate pairs, implying that B = 0. Converting the
notation of Sect. 9.2 into the notation of the n-dimensional hypercube, φk → ωk ,

|ψk〉 →
∣∣∣α�k
〉∣∣β�k

〉
,
∑

k = ∑N−1
�k=0

, and using that
〈
0′∣∣ = 〈DC |

〈�0
∣∣∣, we obtain



194 9 Spatial Search Algorithms

A = 2

N
,

B = 0,

C =
N−2∑

�k=1

(∣∣∣
〈
D
∣∣α�k

1

〉∣∣∣
2 +

∣∣∣
〈
D
∣∣α�k

n

〉∣∣∣
2
) ∣∣∣
〈�0∣∣β�k

〉∣∣∣
2

1 − cosωk
+
∣∣∣
〈�0∣∣β�1

〉∣∣∣
2

2
.

Equation (6.89) on p.113 states that

〈
D
∣∣α�k

1

〉
=
〈
D
∣∣α�k

n

〉
= 1√

2
. (9.80)

Besides, using Eq. (9.77)we have
〈�0∣∣β�k

〉
= 1/

√
N for all �k. SimplifyingC , we obtain

C = n

2N

n∑

k=1

1

k

(
n

k

)
. (9.81)

From Exercise9.16, we have

C = c

2
+ O

(
N−1

)
, (9.82)

where c is a number bounded by 1 ≤ c ≤ 4. Numerical calculations show that c = 2
approximately. Since B = 0, the probability offinding themarkedvertex as a function
of the number of steps is given by Eq. (9.28) and, since there is only one (+1)-
eigenvector, the success probability as a function of the number of steps is

p(t) = 1

c
sin2

(
2 t√
c N

)
. (9.83)

The running time is

topt =
⌊

π
√
c N

4

⌋
(9.84)

and the success probability is

psucc = 1

c
+ O

(
n−1) . (9.85)

Note that the running time is O(
√
N ), achieving the Grover lower bound with con-

stant success probability.

Exercise 9.16 The goal of this exercise is to calculate asymptotic bounds for C
given by Eq. (9.81). Show that



9.4 Hypercubes 195

1

n

(
n

k

)
≤ 1

k

(
n

k

)
≤ 2

n

(
n + 1

k + 1

)

for 1 ≤ k ≤ n. Use
n∑

k=1

(
n

k

)
= N − 1

to conclude that

1 + O

(
1

N

)
≤ n

N

n∑

k=1

1

k

(
n

k

)
≤ 4 + O

( n

N

)
.

Exercise 9.17 Show that all conditions for employing the principal eigenvalue tech-
nique described in Sect. 9.2 are fulfilled for hypercubes.

Exercise 9.18 Show that Eq. (9.73) can be written asU ′ = SC ′, where S is the flip-
flop shift operator and C ′ is a nonhomogeneous coin, which is the Grover operator
G on unmarked vertices and (−I ) on the marked vertex. Conclude that the modified
evolution operator U ′ can be seen as the evolution of a coined quantum walk with a
nonhomogeneous coin.

Exercise 9.19 Explain why the algorithm described in this section cannot be
improved by using Tulsi’s modification.

9.5 Grover’s Algorithm as Spatial Search on Graphs

In this section, we describe Grover’s algorithm as a coined quantum walk on the
complete graphwith loops and as a staggered quantumwalk on the loopless complete
graph. We also use the principal eigenvalue technique to describe an alternate way
to analyze the complexity of Grover’s algorithm.

9.5.1 Grover’s Algorithm in terms of the Coined Model

Grover’s algorithm can be seen as a spatial search algorithm on the complete graph
with loops. All vertices of the complete graph are connected by undirected edges as
shown by the left-hand complete graph of Fig. 9.4, which has N = 3 vertices and
labels 0, ..., N − 1. In order to define a coined quantum walk on the complete graph
with loops, we have to convert each undirected edge as two opposing arcs (directed
edges) and to label the arcs using the notation (v1, v2), for 0 ≤ v1, v2 ≤ N − 1,
where v1 is the tail and v2 is the head. In terms of the coined model, v1 is the position



196 9 Spatial Search Algorithms

Fig. 9.4 Complete graph with N = 3 vertices. The left-hand graph has undirected edges. The
right-hand graph has 9 arcs the labels of which are (v1, v2), where v1 is the tail and v2 is the head

and v2 is the coin value, which coincides with the label of the next vertex following
the arc.

The Hilbert space associated with the graph is spanned by the arcs, that is,

HN 2 = span{|v1, v2〉 : 0 ≤ v1, v2 ≤ N − 1}.

Weuse the interpretation of |v1, v2〉 in which v1 is the position and v2 is the coin value
and in terms of the coined model, we are using the position-coin notation instead of
the arc notation because the loops allow to specify N directions unambiguously on
complete graphs with odd (or even) number of vertices. The flip-flop shift operator
is defined as

S|v1, v2〉 = |v2, v1〉 (9.86)

and the coin operator is
C = IN ⊗ G, (9.87)

where G = 2|D〉〈D| − I is the N -dimensional Grover coin and |D〉 is the diagonal
state of the coin space. The evolution operator of the coined quantum walk on the
complete graph with loops and no marked vertex is

U = S (I ⊗ G). (9.88)

Suppose now that vertex 0 is marked. The oracle is

R′ = (IN − 2|0〉〈0|) ⊗ IN . (9.89)

This oracle is equivalent to

R′ = IN 2 − 2
∑

v

|0, v〉〈0, v|, (9.90)



9.5 Grover’s Algorithm as Spatial Search on Graphs 197

which can be interpreted as an operator that marks all arcs leaving vertex 0 including
the loop. The modified evolution operator is

U ′ = UR′, (9.91)

which can be written as
U ′ = S (R ⊗ G), (9.92)

where R = IN − 2|0〉〈0|.
The initial state of the spatial search algorithm is |ψ(0)〉 = |DP〉|DC 〉, where |DP〉

is the diagonal state of the position space and |DC 〉 is the diagonal state of the coin
space. Following step-by-step, we can show that after an even number of steps (2t),
we have

(U ′)2t |ψ(0)〉 = (GR)t |DP〉 ⊗ R(GR)t−1|DC 〉. (9.93)

Note that the operator (GR) and the initial state |DP〉 are the evolution operator and
the initial state used in Grover’s algorithm.We can obtain the same result of Grover’s

algorithm by taking t =
⌊

π
4

√
N
⌋
and measuring the walker’s position. In the coined

case, the running time of the quantum-walk-based algorithm is twice the running
time of Grover’s algorithm.

Exercise 9.20 Show thatU ′|ψ(0)〉 = |D〉 ⊗ R|D〉 and (U ′)2|ψ(0)〉 = GR|D〉 ⊗ R|D〉.
Using induction, obtain Eq. (9.93).

Exercise 9.21 Show that Eq. (9.92) can be written as U ′ = SC ′, where C ′ is a non-
homogeneous coin, which is the Grover operator G on unmarked vertices and (−G)

on the marked vertex.

Exercise 9.22 Take the initial condition |ψ(0)〉 = |DP〉|φ〉, where |φ〉 is the state of
the coin space. Show that the same result of Grover’s algorithm is reobtained.

Exercise 9.23 Show that a quantum walk driven by evolution operator (9.88) is
periodic. What is the fundamental period?

9.5.2 Grover’s Algorithm in terms of the Staggered Model

Grover’s algorithm can be seen as a spatial quantum search using the staggered
quantum walk model on the complete graph. To show this fact, we employ a two-
step procedure. First, we find the evolution operator of the staggered quantum walk
on the complete graph with N vertices. The complete graph is the only connected
graph that is 1-tessellable. The tessellation cover has only one tessellation, which
has only one polygon containing all vertices. The vector associated with this polygon
is



198 9 Spatial Search Algorithms

|D〉 = 1√
N

N−1∑

v=0

|v〉, (9.94)

which belongs to the Hilbert spaceHN and is the diagonal state of the computational
basis {|v〉 : 0 ≤ v ≤ N − 1}. The computational basis has a one-to-one correspon-
dence with the set of vertex labels. Choosing θ = π/2, Eq. (8.3) on p. 162 describes
the following evolution operator, modulo a global phase,

U = 2|D〉〈D| − I. (9.95)

Second, we multiply U by oracle R obtaining a modified evolution operator

U ′ = U R, (9.96)

where
R = IN − 2|0〉〈0|. (9.97)

Note that the operator U ′ and the initial state |D〉 are the evolution operator and the
initial state used in Grover’s algorithm. We can obtain the same result of Grover’s

algorithm by taking t =
⌊

π
4

√
N
⌋
, applying (U ′)t to the initial state, and measuring

the walker’s position.

9.5.3 Complexity Analysis of Grover’s Algorithm

To use the principal eigenvalue technique for Grover’s algorithm (as a staggered
quantum walk on the complete graph), we must be able to find the eigenvectors ofU
that have nonzero overlap with |0〉.U is given by Eq. (9.95) and, sinceU 2 = I ,U has
only two eigenvalues: (+1) with multiplicity 1 and (−1) with multiplicity N − 1.
The eigenvector associated with (+1) is |ψ0〉 = |D〉 and the eigenvectors associated
with (−1) are orthogonal to |ψ0〉. Since we need only the eigenvectors ofU that have
nonzero overlap with |0〉 (we suppose that the marked vertex has label 0), the only
eigenvector with eigenvalue (-1) that we need is

|ψ1〉 =
√
N − 1√
N

|0〉 − 1√
N (N − 1)

N−1∑

j=1

| j〉. (9.98)

Eigenvectors of U that are orthogonal to |ψ0〉 and |ψ1〉 have no overlap with |0〉
(Exercise9.24).

Now we calculate A, B, and C given by Eqs. (9.17)–(9.19) using that φ0 = 0,
φ1 = π, and

〈
0
∣∣ψk
〉 = 0 for k ≥ 2. The result is



9.5 Grover’s Algorithm as Spatial Search on Graphs 199

A = 2

N
,

B = 0, (9.99)

C = 1

2
− 1

3N
.

Since B = 0, we use Eqs. (9.25)–(9.30) and |ψ(0)〉 = |D〉 to obtain

topt =
⌊π

4

√
N
⌋

(9.100)

and
psucc = 1 + O

(
N−1

)
, (9.101)

which coincide with the results of Grover’s algorithm.

Exercise 9.24 Check that U |ψ1〉 = −|ψ1〉 and
〈
ψ1

∣∣ψ1
〉 = 1, where U by Eq. (9.95)

and |ψ1〉 is given byEq. (9.98). Show that if |ψ〉 is an eigenvector ofU with eigenvalue
(−1) and

〈
ψ1

∣∣ψ
〉 = 0, then

〈
0
∣∣ψ
〉 = 0.

Exercise 9.25 Show that the three required conditions for employing the principal
eigenvalue technique described in Sect. 9.2 are fulfilled for the analysis of Grover’s
algorithm, that is:
1. Show that |ψ(0)〉 is an eigenvector of U with eigenvalue 1.
2. Show that λ � φmin for large N .
3. Show that ∣∣〈ψ(0)

∣∣λ
〉∣∣2 + ∣∣〈ψ(0)

∣∣λ′〉∣∣2 = 1 + O
(
N−1

)

and use this result to show that ε (see Eq. (9.8)) can be disregarded for large N .

Exercise 9.26 Explain whyGrover’s algorithm cannot be improved by using Tulsi’s
modification without using the argumentation that Grover’s algorithm is optimal.

Further Reading

The idea of spatial search algorithms started with Benioff [41], who showed that a
direct application of Grover’s algorithm does not improve the time complexity of a
searching algorithm on lattices compared to classical algorithms. A more efficient
algorithm was presented by Aaronson and Ambainis [1], who used a “divide-and-
conquer” strategy that splits the grid into several subgrids and searches each of
them. Shenvi, Kempe, andWhaley [297] described a search algorithm on hypercubes
using coined quantum walks, which is one of the first contributions in the area of
quantum-walk-based search algorithms together with Ambainis’s algorithm for the
element distinctness problem [14]. Tulsi [316] created a modification of quantum-
walk-based search algorithms that improves the success probability and described
those algorithms comprehensively.

Many important quantum-walk-based algorithms were analyzed on the two-
dimensional square lattice with N vertices and one marked vertex. Ambainis



200 9 Spatial Search Algorithms

et al. [19] described an algorithmwith time complexityO
(√

N log N
)
andTulsi [315]

described an algorithmwith time complexityO
(√

N log N
)
by adding an extra qubit.

Ambainis et al. [18] described an algorithm with time complexity O
(√

N log N
)

that does not use the amplitude amplification technique but requires classical post-
processing. Hein and Tanner [144] analyzed quantum search on higher dimensional
lattices. Search algorithms on the hexagonal and triangular lattices are described
in [3, 4].

Relevant earlier references on quantum-walk-based algorithms are reviewed
in [13, 183, 229, 274, 320]. A short list of important recent results for lattices
and graphs in general based on the coined quantum walk model is the following:
Errors in quantum-walk-based search algorithms were analyzed in [349]. Hamilton
et al. [136] proposed experimental implementation using many walkers. Wong [330,
331] analyzed quantum-walk-based search on two-dimensional lattices with self-
loops using his previous work [329] on lackadaisical quantum walks. Multimarked
search is addressed byYu-Chao et al. [350] Hoyer andKomeili [152].Wong and San-
tos analyzed quantum search on cycles with multiple marked vertices [333]. Reitzner
et al. [273] (see also [179]) used the scattering quantum walk model to search a path
in graphs. Xi-Ling et al. [335] used the scattering quantum walk model to develop
search algorithm on strongly regular graphs. Lovett et al. analyzed factors affecting
the efficiency of coined quantum walk search algorithms in [217].

There are many results using the continuous-time quantumwalk model and a very
short list is the following: Childs and Goldstone [82] analyzed search on lattices
using the continuous-time quantum walk model. Agliari, Blumen, and Mülken [6]
analyzed quantumwalk searching on fractal structures using continuous-timemodel.
Quantum search on hexagonal lattices was described in [115]. Quantum search on
trees was analyzed in [261]. General results on searching using the continuous-time
quantum walk model are presented in [72, 238, 249, 329, 332].

Results using alternative models are described in [108, 317].



Chapter 10
Element Distinctness

The element distinctness problem is the problemof determiningwhether the elements
of a list are distinct. For example, suppose we have a list x with N = 9 elements,
which are in the range [20, 50], such as x = (25, 27, 39, 43, 39, 35, 30, 42, 28). Note
that the third and the fifth elements are equal. We say that the elements in positions 3
and 5 collide. As a decision problem, the goal is to answer “yes” if there is a collision
or “no” if there is no collision. In order to simplify the description of the quantum
algorithm that solves this problem, we assume that there is either one 2-collision or
none. If there is a collision, then there are indices i1 and i2 such that xi1 = xi2 . With
a small overhead, we can find explicitly the indices i1 and i2 when the algorithm
returns “yes.”

We use the quantum query model to measure the hardness of this problem. In this
model, we are interested in the number of timeswe have queried an element of the list,
or equivalently, given a black box function f : {1, . . . , N } → X , where X is a finite
set, we want to determine whether there are two distinct inputs i1, i2 ∈ {1, . . . , N }
such that f (i1) = f (i2). Given an index i , each time we check xi or we use f , it
counts one query. To solve this problem in a classical computer, we need to query
all elements, one at a time in a serial processor, which takes �(N ) queries. In the
quantum case, we need O(N 2/3) queries, which is the best we can do.

Exercise 10.1. Show that the element distinctness problem is as hard as unstructured
search. [Hint: Consider the following problem, which is easier than the element
distinctness problem. Suppose that if there is a colliding pair {i1, i2}, then xi1 is the
first element of the list. Search for xi2 in the remaining list.]

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_10

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_10&domain=pdf


202 10 Element Distinctness

10.1 Classical Algorithms

The best-known classical algorithm using the minimum number of queries has the
following steps:

1. Query all elements of list x and store in the memory.
2. Sort the elements.
3. Traverse the sorted list checking whether any entry is repeated.

Step 1 requires exactly N queries. Step 2 takes O(N ln N ) time steps. Step 3 takes
O(N ) time steps. Then, the classical algorithm solves the element distinctness prob-
lem with N queries for lists with N entries. The time complexity is O(N ln N ).

10.2 Naïve Quantum Algorithms

Before describing the optimal quantum algorithm, which is the main part of this
chapter, let us address simpler attempts.

Using Grover’s Algorithm

Let us use Grover’s algorithm to solve the element distinctness problem. The search
space is the set of all pairs {i, j} for 0 ≤ i < j < N . A pair is marked if xi = x j . The
size of the search space is O(N 2), and there is at most one marked element. Using
Grover’s algorithm, we need O(N ) queries to find a collision.

Using Amplitude Amplification

There is an algorithm with query complexity of O(N 3/4) combining Grover’s algo-
rithm with the amplitude amplification technique. Let us partition the set of indices
into sets S1 and S2 with sizes n and N − n, respectively, where n will be determined
later, for now, consider n � N when N � 1. Suppose that the elements of S1 were
selected at random from the set of indices {1, . . . , N } and S2 is the complement of S1.
In the first step, query all xi for i ∈ S1. In the second step, use Grover’s algorithm to
search for a colliding index on S2, that is, find j ∈ S2 such that x j = xi . The first step
takes n queries, and the second step takes (π/4)

√
N − n queries, which is around√

N queries. To balance the number of queries in each step, we set n = √
N . The

number of queries in the two-step algorithm is around 2
√
N . The algorithm succeeds

only if the colliding indices are in different sets. For large N , the success probability
is around 2/

√
N (Exercise10.2).

We can boost the success probability to O(1) by using the amplitude amplification

method. We have to run the two-step algorithm
√√

N/2 times. The total number of

queries is O
(√

N
√√

N
) = O

(
N 3/4

)
.

Exercise 10.2. Let N be a perfect square, S1 ⊆ {1, . . . , N } such that |S1| = √
N ,

and S2 = {1, . . . , N } \ S1. Select two different elements i1, i2 ∈ {1, . . . , N }. If the



10.2 Naïve Quantum Algorithms 203

elements of S1 are chosen at random, show that the probability that the two elements
belong to different sets is around 2/

√
N .

10.3 The Optimal Quantum Algorithm

The algorithm we describe in this section uses an extensive notation, which requires
extra attention from the reader. Let us start with a list of basic definitions:

• [N ] = {1, . . . , N }
• r =

⌊
N

2
3

⌋

• Sr = set of all r -subsets of [N ]
• V = {(S, y) : S ∈ Sr , y ∈ [N ] \ S}
• H = span {|S, y〉 : (S, y) ∈ V}
Note that |Sr | = (N

r

)
and |V| = (N

r

)
(N − r), where

(N
r

)
is the binomial coefficient.

Let us provide an example of those definitions. If the number of elements in the list
is N = 4, then

[N ] = {1, 2, 3, 4},
r = 2,

Sr = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}},
V =

{({1, 2}, 3), ({1, 2}, 4), ({1, 3}, 2), ({1, 3}, 4), ({1, 4}, 2), ({1, 4}, 3),
({2, 3}, 1), ({2, 3}, 4), ({2, 4}, 1), ({2, 4}, 3), ({3, 4}, 1), ({3, 4}, 2)

}
,

H = span
{
|{1, 2}, 3〉, |{1, 2}, 4〉, |{1, 3}, 2〉, |{1, 3}, 4〉, |{1, 4}, 2〉, |{1, 4}, 3〉,
|{2, 3}, 1〉, |{2, 3}, 4〉, |{2, 4}, 1〉, |{2, 4}, 3〉, |{3, 4}, 1〉, |{3, 4}, 2〉

}
.

The Hilbert space H is spanned by |V| vectors. We use the notation |S, y〉 for the
vectors of the computational basis, where S is a set in Sr and y is in [N ] but not in S.
Note that we have not given the list of elements yet. In fact, [N ] is simply the set of
indices. Let us consider x = (39, 45, 39, 28), which means that the colliding indices
are i1 = 1 and i2 = 3. An element (S, y) ∈ V is called marked if {i1, i2} ⊆ S. Indices
i1, i2 are also called marked indices. In the example,

({1, 3}, 2) and ({1, 3}, 4) are
the marked elements; 1 and 3 are the marked indices.

Let �(V, E) be the graph where each vertex has label (S, y) ∈ V and vertices
(S, y) and (S′, y′) are adjacent if and only if S = S′ or S ∪ {y} = S′ ∪ {y′}. When
N = 4, graph � is depicted in Fig. 10.1. If two vertices are adjacent because S = S′,
the edge incident to these vertices has the blue color and if the vertices are adjacent
because S ∪ {y} = S′ ∪ {y′}, the edge has the red color.



204 10 Element Distinctness

Fig. 10.1 Graph �(V, E)

when N = 4. Vertices (S, y)
and (S′, y′) such that S = S′
are linked by blue edges and
vertices such that
S ∪ {y} = S′ ∪ {y′} are
linked by red edges

Let us focus on the set of blue edges. We start by defining a subset of vertices that
are adjacent by blue edges. For each S ∈ Sr , define

αS = {(S, y) ∈ V : y ∈ [N ] \ S}. (10.1)

We state that αS is a clique of size (N − r). In fact, a subset of vertices is a clique
if all vertices in the subset are adjacent. By definition, αS is a subset of vertices and
all vertices in αS are adjacent because they share the same S. The size of the clique
is (N − r) because the cardinality of set [N ] \ S is (N − r).

Each αS is a clique, and it is straightforward to check that the union of αS for all
S in Sr is the vertex set V , that is,

V =
⋃
S∈Sr

αS.

Besides, αS ∩ αS′ = ∅ if S �= S′. In the terminology of the staggered quantum walk
model, the set

Tα = {αS : S ∈ Sr }

is a tessellation of �. The size of tessellation α is |Tα| = (N
r

)
. The blue edges in

Fig. 10.1 are in Tα.
For each S ∈ Sr , define the α-polygon vector

|αS〉 = 1√
N − r

∑
y∈[N ]\S

|S, y〉. (10.2)

It is straightforward to check that
〈
αS

∣∣αS′
〉 = δSS′ . Now define



10.3 The Optimal Quantum Algorithm 205

Uα = 2
∑
S∈Sr

|αS〉〈αS| − I, (10.3)

which is the unitary and Hermitian operator associated with tessellation α.
Now we focus on the set of red edges. We start by defining a subset of vertices

that are adjacent by red edges. Define a decomposition of the vertex set V induced
by the equivalence relation ∼, where (S, y)∼(S′, y′) if and only if S ∪ {y} = S′ ∪
{y′}. An equivalence class is defined by [S, y] = {

(S′, y′) ∈ V : (S′, y′)∼(S, y)
}

and the quotient set by V/∼ = {[S, y] : (S, y) ∈ V}. Note that the cardinality of
each equivalence class is (r + 1) and of the quotient set is

( N
r+1

)
. For each element

[S, y] in the quotient set, define

β[S,y] = {(S′, y′) ∈ V : (S′, y′)∼(S, y)}. (10.4)

Set β[S,y] is obtained from a cyclic rotation of the elements of S ∪ {y}. We state that
β[S,y] is a clique of size (r + 1). In fact, all vertices (S′, y′) in β[S,y] are adjacent
because S′ ∪ {y′} = S ∪ {y}. The size of β[S,y] is (r + 1) because the cardinality of
set S ∪ {y} is (r + 1).

Each β[S,y] is a clique, and it is straightforward to check that the union of β[S,y]
for all [S, y] in quotient set V/∼ is the vertex set V , that is,

V =
⋃

[S,y]∈V/∼
β[S,y].

Besides, β[S,y] ∩ β[S′,y′] = ∅ if [S, y] �= [S′, y′]. In the terminology of the staggered
quantum walk model, the set

Tβ = {β[S,y] : [S, y] ∈ V/∼}

is a tessellation of �. The size of tessellation β is
∣∣Tβ

∣∣ = ( N
r+1

)
. The red edges in

Fig. 10.1 are in Tβ .
For each [S, y] ∈ V/∼, define the β-polygon vector

∣∣β[S,y]
〉 = 1√

r + 1

∑
y′∈S∪{y}

∣∣S ∪ {y} \ {y′}, y′〉. (10.5)

Note that
∣∣β[S,y]

〉
is the uniform superposition of the equivalence class that contains

(S, y). It is straightforward to check that
〈
β[S,y]

∣∣β[S′,y′]
〉 = δ[S,y],[S′,y′]. Define

Uβ = 2
∑

[S,y]∈V/∼

∣∣β[S,y]
〉〈
β[S,y]

∣∣ − I, (10.6)

which is the unitary and Hermitian operator associated with tessellation β.



206 10 Element Distinctness

One step of the staggered quantum walk on graph � (with unmarked vertices) is
driven by the evolution operator

U = UβUα. (10.7)

To search amarkedvertex,weneed todefine a reflectionoperator Rwith the following
property:

R|S, y〉 =
{

−|S, y〉, if (S, y) is marked,

|S, y〉, otherwise.
(10.8)

A vertex (S, y) is marked if {i1, i2} ⊆ S, where {i1, i2} is the colliding pair of indices,
that is, xi1 = xi2 . We assume that there is either one collision or none. The only way
to implement this operator is by querying elements of the list, which can be stored
in extra registers. We postpone the discussion about the number of queries, which
is presented in Sect. 10.3.2 in order to simplify the description of the core of the
algorithm. Define

R = I − 2
∑

(S,y)∈V
{i1,i2}⊆S

|S, y〉〈S, y|. (10.9)

The evolution operator that solves the element distinctness problem is

U = Ut2 R, (10.10)

where

t2 = π
√
r

2
√
2
. (10.11)

Since t2 must be an integer, we round the result and take the nearest integer. The
initial condition is the uniform superposition of all vertices

|ψ(0)〉 = 1√(N
r

)
(N − r)

∑
(S,y)∈V

|S, y〉. (10.12)

Before measuring, one must apply U t1 to the initial condition where

t1 = π

4

√
r , (10.13)

which needs to be rounded. The final state is

|ψ(t1)〉 = (
Ut2 R

)t1 |ψ(0)〉. (10.14)



10.3 The Optimal Quantum Algorithm 207

After measuring the position of the walker, the result is a basis state |S, y〉 so that
{i1, i2} ⊆ S with probability 1 − O

(
1/N 1/3

)
. As a final step, we use the classical

algorithm to check whether there is a 2-collision in S.

Exercise 10.3. The size of tessellation α is denoted by |Tα|. A polygon in this
tessellation has size (N − r). Show that the product of |Tα| and the polygon size is
the number of vertices of �.

Exercise 10.4. Show that Uα given by Eq. (10.3) can be expressed as

Uα =
(

2

N − r
− 1

)
I + 2

N − r

∑
S∈Sr

∑
y,y′∈[N ]\S

y �=y′

∣∣S, y′〉〈S, y|. (10.15)

Exercise 10.5. Show that the size of tessellation β is
∣∣Tβ

∣∣ = ( N
r+1

)
and the size of a

polygon in this tessellation is (r + 1). Show that the product of the polygon size and
the tessellation size is the number of vertices of �.

Exercise 10.6. Show that Uβ given by Eq. (10.6) can be expressed as

Uβ = 1 − r

1 + r
I + 2

r + 1

∑
S∈Sr

∑
y′∈S,

y∈[N ]\S

∣∣S ∪ {y} \ {y′}, y′〉〈S, y|. (10.16)

Exercise 10.7. Show that αS and β[S,y] are maximal cliques.

Exercise 10.8. The goal of this exercise is to build part of the graph �(V, E) when
N = 5. Show that r = 2. Start with vertex ({1, 2}, 3) and obtain all blue-adjacent
vertices and link them with blue edges. This set of vertices is a maximal clique.
Now take one vertex of this maximal clique and obtain all red-adjacent vertices and
link them with red edges. Repeat this process for all vertices of the first clique. At
this point, the graph has one blue maximal clique and three red maximal cliques.
Convince yourself that this process can be repeated over and over until the full graph
is obtained.

10.3.1 Analysis of the Algorithm

The probability of finding a marked vertex as a function of the number of steps t is

p(t) =
∑

(S,y)∈V
{i1,i2}⊆S

∣∣〈S, y
∣∣ψ(t)

〉∣∣2 , (10.17)

where



208 10 Element Distinctness

Fig. 10.2 Plot of the probability distribution of |ψ(t1)〉 with N = 9, r = 4, and marked elements
{i1, i2} = {2, 5}. The probability has 5 values (×10−3): 7.57, 1.07, 0.43, 0.32, and 0.083

|ψ(t)〉 = (
Ut2 R

)t |ψ(0)〉, (10.18)

U is given by (10.7), and R by (10.9). Parameter t2 will be determined in this section.
Figure10.2 shows the probability distribution of |ψ(t = 2)〉 with N = 9, r = 4, and
marked elements {i1, i2} = {2, 5}. Note that the probability distribution has only 5
values. For instance, there are 105 values 0.0076 approximately and they correspond
to the marked vertices. This pattern is the same for any number of steps and any
N , which strongly suggests that the vertices can be grouped according to some
characteristic. Now we show that the analysis of the algorithm can be performed
in a five-dimensional subspace of the original Hilbert space, that is, we will define
five-dimensional reducedmatricesURED and RRED that are able to describe the action
of U and R.

Let {i1, i2} be the indices of the elements that are equal, that is, xi1 = xi2 , which is
the only collision. We call i1 and i2 as marked indices. Define 5 types of sets (subsets
of V) in the following way:

η0 – Set of vertices (S, y) such that S has exactly 2 marked indices.
η1 – Set of vertices (S, y) such that S has no marked index and y is not a marked

index.
η2 – Set of vertices (S, y) such that S has no marked index and y is a marked index.
η3 – Set of vertices (S, y) such that S has exactly 1 marked index and y is not a

marked index.
η4 – Set of vertices (S, y) such that S has exactly 1 marked index and y is a marked

index.

Table10.1 has a short description of sets η� for 0 ≤ � ≤ 4 and their cardinalities.
Define 5 unit vectors



10.3 The Optimal Quantum Algorithm 209

Table 10.1 Short description of sets η� for 0 ≤ � ≤ 4 and their cardinalities

Set Cardinality

η0 |S ∩ {i1, i2}| = 2 y /∈ {i1, i2} |η0| = (N−2
r−2

)
(N − r)

η1 |S ∩ {i1, i2}| = 0 y /∈ {i1, i2} |η1| =(N−2
r

)
(N − r − 2)

η2 |S ∩ {i1, i2}| = 0 y ∈ {i1, i2} |η2| = 2
(N−2

r

)

η3 |S ∩ {i1, i2}| = 1 y /∈ {i1, i2} |η3| =
2
(N−2
r−1

)
(N − r − 1)

η4 |S ∩ {i1, i2}| = 1 y ∈ {i1, i2} |η4| = 2
(N−2
r−1

)

|η�〉 = 1√|η�|
∑

(S,y)∈η�

|S, y〉. (10.19)

Note that
〈
ηk

∣∣η�

〉 = δk� because sets η� are nonintersecting. Those vectors define a
five-dimensional subspace of the Hilbert space, which is invariant under the action
of U , that is, there are 25 entries (URED)k j such that

U |η�〉 =
4∑

k=0

(URED)k�|ηk〉, (10.20)

where

URED =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r−3
r+1 0 0 4

√
2
√
r−1

√
a−1

(r+1)a
2
√
2
√
r−1(2−a)

(r+1)a

0 a−4
a

2
√
2
√
a−2

a 0 0

0 2
√
2(1−r)

√
a−2

(r+1)a
(r−1)(a−4)

(r+1)a
2
√
r(a−2)

(r+1)a
4
√
r
√
a−1

(r+1)a

0 4
√
2
√
r
√
a−2

(r+1)a
2
√
r(4−a)

(r+1)a
(r−1)(a−2)

(r+1)a
2(r−1)

√
a−1

(r+1)a

2
√
2
√
r−1

r+1 0 0 2(3−r)
√
a−1

(r+1)a
(r−3)(a−2)

(r+1)a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and a = N − r (Exercise10.9). A vector |v〉 = [v0, v1, v2, v3, v4]T in the five-
dimensional subspace spanned by {|0〉, |1〉, |2〉, |3〉, |4〉} is mapped to the large
Hilbert space as |V 〉 = v0|η0〉 + v1|η1〉 + v2|η2〉 + v3|η3〉 + v4|η4〉, that is,

|V 〉 =
4∑

�=0

〈
�
∣∣v〉 |η�〉. (10.21)

The eigenvalues of URED are eigenvalues of U , and the eigenvectors of URED are
mapped to eigenvectors ofU (Exercise10.12). The converse is not true, that is, there
are eigenvalues ofU that are not eigenvalues ofURED and there are eigenvectors ofU



210 10 Element Distinctness

that cannot be obtained from eigenvectors ofURED . The space reduction is useful only
if the initial state of the algorithm comes from a reduced vector. Using Eq. (10.19), we
can check that the sum of vectors

√|η�| |η�〉 is the uniform superposition of vectors
of the computational basis of the large Hilbert space. Using the normalization factor
of vector |ψ(0)〉 given by Eq. (10.12), define vector

|ψ0〉 =
4∑

�=0

〈
�
∣∣ψ0

〉 |�〉 (10.22)

in the five-dimensional reduced space, where

〈
�
∣∣ψ0

〉 =
√|η�|√(N
r

)
(N − r)

. (10.23)

It is straightforward to check that |ψ0〉 is mapped to |ψ(0)〉 (Exercise10.13). This
means that the action ofU on |ψ(0)〉 can be obtained from the action ofURED on |ψ0〉.

The goal now is to find the spectral decomposition of URED . The characteristic
polynomial of URED is

∣∣λI5 −URED

∣∣ = (λ − 1)
(
λ2 − 2λ cosω1 + 1

) (
λ2 − 2λ cosω2 + 1

)
, (10.24)

where

cosω1 = 1 − 2 N

(r + 1)(N − r)
, (10.25)

cosω2 = 1 − 4 (N − 1)

(r + 1)(N − r)
. (10.26)

The eigenvalues of URED are 1, eiω1 , eiω2 , eiω3 , and eiω4 , where ω3 = −ω1 and ω4 =
−ω2.

The (+1)-eigenvector is

|ψ0〉 = 1√
N

√
N − 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
r
√
r − 1

√
N − r − 2

√
N − r − 1

√
2

√
N − r − 1

√
2
√
r
√
N − r − 1

√
2
√
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10.27)

which coincides with vector |ψ0〉 given by Eq. (10.22) (Exercise10.14), that is, the
initial state in the reduced space is a (+1)-eigenvector of URED . The eigenvector
associated with eiω1 is



10.3 The Optimal Quantum Algorithm 211

|ψ1〉 = 1

2
√
a
√
N

√
N − 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 a
√
r − 1

−2
√
r
√
a − 2

√
a − 1 + 2 i

√
N

√
a − 2

−2
√
2
√
r
√
a − 1 − i

√
2
√
N (a − 2)

√
2
√
a − 1 (N − 2 r) + i

√
2
√
r
√
N

√
2 (N − 2 r) − i

√
2
√
r
√
N

√
a − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where a = N − r . The eigenvector associated with eiω3 is the complex conjugate of
|ψ1〉 that is, |ψ3〉 = |ψ1〉∗. The eigenvector associated with eiω2 is

|ψ2〉 = 1

2
√
a
√
N − 1

√
N − 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 a

√
a − 1

√
2
√
r
√
a − 2

√
r − 1 − 2 i

√
r
√
N − 1

2
√
r
√
r − 1 + i

√
2
√
r
√
N − 1

√
a − 2

2 (1 − a)
√
r − 1 + i

√
2
√
a − 2

√
N − 1

−√
2
√
a − 1

(√
2
√
r − 1 + i

√
a − 2

√
N − 1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigenvector associated with eiω4 is |ψ4〉 = |ψ2〉∗. This completes the spectral
decomposition of URED . It can be checked (Exercise10.15) that the eigenvectors
satisfy the completeness relation I5 = ∑4

j=0

∣∣ψ j
〉〈
ψ j

∣∣ and

URED = |ψ0〉〈ψ0| +
4∑
j=1

eiω j
∣∣ψ j

〉〈
ψ j

∣∣. (10.28)

It is still missing to check the effect of R on a vector that comes from a reduced
vector in order to confirm that R maintains invariant the subspace. The reduction
schemeworks only if Rmaps the initial state |ψ(0)〉 into a vector that can be obtained
from a vector in the reduced space. R inverts the sign of the marked states, which
are states |S, y〉 such that |S ∩ {i1, i2}| = 2. R does nothing on the other states. Set
η0 comprises the marked vertices, then R|η0〉 = −|η0〉 and R|η�〉 = |η�〉 if � �= 0.
Then, R preserves the structure of the reduced space. The reduced version of R is

RRED = I5 − 2|0〉〈0|. (10.29)

The evolution operator of the algorithm in the original Hilbert space is U = Ut2 R.
On the five-dimensional subspace, the reduced evolution operator is

URED = (URED)
t2 RRED (10.30)

and can be written as



212 10 Element Distinctness

Fig. 10.3 Eigenvalues of
URED (blue point) and URED

(red cross) for N = 50. The
eigenvalue of URED with the
smallest positive argument is
denoted by eiλ

URED =
(
|ψ0〉〈ψ0| +

4∑
j=1

eit2ω j
∣∣ψ j

〉〈
ψ j

∣∣)RRED , (10.31)

where RRED is given by (10.29). To obtain the state in the reduced subspace that is
mapped to the full final state |ψ(t1)〉, we have to calculate

∣∣ψ f
〉 = (

URED

)t1 |ψ0〉, (10.32)

where |ψ0〉 is the initial state in the reduced space. Note that |ψ0〉 is not an eigenvector
of URED . The success probability is (Exercise10.16)

psucc = ∣∣〈0∣∣ψ f
〉∣∣2 . (10.33)

Figure10.3 shows the eigenvalues of URED (blue point) and URED (red cross) for N =
50. The eigenvalues that are not real tend to 1 when N goes to infinity, and they
are interlaced for all values of N . It is interesting to compare the behavior of those
eigenvalues with the behavior of the complex eigenvalues of the evolution operator
of Grover’s algorithm.

To calculate the success probability,we employ theprincipal eigenvalue technique
described in Sect. 9.2 on p. 178, which requires the fulfillment of three conditions
(Exercise10.17). The coefficients A, B, and C given by Eqs. (9.17)–(9.19) on p. 180
are



10.3 The Optimal Quantum Algorithm 213

A = 2
∣∣〈0∣∣ψ0

〉∣∣2 , (10.34)

B = −
4∑

k=1

∣∣〈0∣∣ψk
〉∣∣2 sin (ωk t2)

1 − cos(ωk t2)
, (10.35)

C =
4∑

k=1

∣∣〈0∣∣ψk
〉∣∣2

1 − cos(ωk t2)
. (10.36)

Note that the nontrivial eigenvalues of (URED)
t2 are eiωk t2 for 1 ≤ k ≤ 4. Using that

ω3 = −ω1 and ω4 = −ω2, we obtain B = 0. Simplifying Eqs. (10.34)–(10.36), we
obtain

A = 2 r (r − 1)

N (N − 1)
, (10.37)

B = 0, (10.38)

C = N − r

N − 2

(
N − r − 1

(N − 1)(1 − cos(ω2t2))
+ 2 (r − 1)

N (1 − cos(ω1t2))

)
. (10.39)

Using Eq. (9.28) on p. 182, the success probability as a function of the number
of steps t is given by

p(t) =
∣∣〈0∣∣ψ0

〉∣∣2
AC

sin2 λt, (10.40)

where

λ =
√
A√
C

. (10.41)

The largest success probability is obtained by taking t = 2π/λ and choosing t2 that
minimizes C . Recall from Sect. 9.2 that the minimization of C plays a key role to
improve the algorithm’s efficiency. Since the last term of C in (10.39) tends to 0
for large N , we discard the last term, and the best t2 is the one that maximizes
(1 − cos(ω2t2)), which is t2 = π/ω2. Using (10.26), the asymptotic expansion of
π/ω2 yields

t2 = π

ω2
= π

√
r

2
√
2

+ O (1) . (10.42)

Using this value of t2 and calculating the asymptotic expansion of C , we obtain

C = 1

2
+ cot2

(
π

2
√
2

)
1√
r

+ O
(
r−1

)
(10.43)

and the probability as a function of time reduces to



214 10 Element Distinctness

p(t) =
(
1 − cot2

(
π

2
√
2

)
2√
r

)
sin2

(
2t√
r

)
. (10.44)

The optimal t is

t1 = π

4

√
r + O(1) (10.45)

and

psucc = 1 − cot2
(

π

2
√
2

)
2√
r

+ O
(
r−1

)
. (10.46)

Exercise 10.9. Use matrices uα from Exercise10.10 and uβ from Exercise10.11 to
find URED .

Exercise 10.10. The goal of this exercise is to find a five-dimensional matrix asso-
ciated with Uα.

Use Eq. (10.2) to show that

〈
αS

∣∣η�

〉 = c�√|η�|
√
N − r

,

where c0 = (N − r)δ|S∩{i1,i2}|=2, c1 = (N − r − 2)δ|S∩{i1,i2}|=0, c2 = 2δ|S∩{i1,i2}|=0,
c3 = (N − r − 1)δ|S∩{i1,i2}|=1, c4 = δ|S∩{i1,i2}|=1, where δ|S∩{i1,i2}|= j is equal to 1 if
|S ∩ {i1, i2}| = j and 0 otherwise.

Show that

∑
S∈Sr|S∩{i1,i2}|=0

|αS〉 = 1√
N − r

(√|η1| |η1〉 + √|η2| |η2〉
)

and find similar equations when |S ∩ {i1, i2}| = 1 and |S ∩ {i1, i2}| = 2.
Use the above equations and Eq. (10.3) to find the entries (uα)k j of

Uα|η�〉 =
4∑

k=0

(uα)k�|ηk〉.

Check your results with

uα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 a−4
a

2
√
2
√
a−2

a 0 0

0 2
√
2
√
a−2

a
4−a
a 0 0

0 0 0 a−2
a

2
√
a−1
a

0 0 0 2
√
a−1
a

2−a
a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,



10.3 The Optimal Quantum Algorithm 215

where a = N − r .

Exercise 10.11. The goal of this exercise is to find a five-dimensional matrix asso-
ciated with Uβ . Show that

〈
β[S,y]

∣∣η�

〉 = d�√|η�|
√
r + 1

,

where d0 = (r − 1)δk2, d1 = (r + 1)δk0, d2 = δk1, d3 = rδk1, d4 = 2δk2, where k =
|(S ∪ {y}) ∩ {i1, i2}|.

Define the following sets

Dk = {[S, y] ∈ V/∼ : |(S ∪ {y}) ∩ {i1, i2}| = k}

for 0 ≤ k ≤ 2 and show that

∑
[S,y]∈D0

∣∣β[S,y]
〉 = 1√

r + 1

√|η1| |η1〉,
∑

[S,y]∈D1

∣∣β[S,y]
〉 = 1√

r + 1

(√|η2| |η2〉 + √|η3| |η3〉
)

,

∑
[S,y]∈D2

∣∣β[S,y]
〉 = 1√

r + 1

(√|η0| |η0〉 + √|η4| |η4〉
)

.

Use those equations and (10.6) to find the entries (uβ)k� of

Uβ |η�〉 =
4∑

k=0

(uβ)k�|ηk〉.

Check your results with

uβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r−3
r+1 0 0 0 2

√
2
√
r−1

r+1

0 1 0 0 0

0 0 1−r
r+1

2
√
r

r+1 0

0 0 2
√
r

r+1
r−1
r+1 0

2
√
2
√
r−1

r+1 0 0 0 3−r
r+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Exercise 10.12. Use Eqs. (10.20) and (10.21) to show that the eigenvalues of URED

are eigenvalues of U and the eigenvectors of URED are mapped to eigenvectors of U .

Exercise 10.13. Show that η�1 ∩ η�2 = ∅ if �1 �= �2 and∪4
�=0η� = V . Use those facts

and Eq. (10.21) to show that |ψ0〉 is mapped to |ψ(0)〉.



216 10 Element Distinctness

Exercise 10.14. Show that vector |ψ0〉 given by Eq. (10.27) is equal to the vector
described by Eqs. (10.22) and (10.23).

Exercise 10.15. Show that the eigenvectors ofURED satisfy the completeness relation
I5 = ∑4

j=0

∣∣ψ j
〉〈
ψ j

∣∣ and Eq. (10.28).

Exercise 10.16. Show that psucc given by Eq. (10.33) is equal to psucc given by
Eq. (10.17).

Exercise 10.17. Show that the principal eigenvalue technique can be applied to the
algorithm of element distinctness, that is, check or show that:

1. The initial condition is a (+1)-eigenvector of the nonmodified evolution operator.
2. The phaseλ of the principal eigenvalue eiλ of themodified evolution operatorURED

ismuch smaller than the phase of the principal eigenvalue eiω1t2 of the nonmodified
evolution operator URED , that is, λ � ω1t2 when N � 1.

3. Show that ∣∣〈ψ0

∣∣λ〉∣∣2 + ∣∣〈ψ0

∣∣λ′〉∣∣2 = 1 − O
(
1/

√
r
)

and use this result to show that |ε| (see Eq. (9.8) on p. 178) can be disregarded for
large N .

10.3.2 Number of Queries

The complexity analysis of Sect. 10.3.1 does not take into account the number of times
the list of elements is queried. In order to fill this gap,we give the complete description
of the algorithm and highlight the steps that perform queries. The algorithm uses two
registers. A vector of the computation basis has the form

|S, y〉 ⊗ ∣∣x ′
1, . . . , x

′
r+1

〉
,

where (S, y) is a vertex label and x ′
i ∈ [M], whereM is an upper bound for the values

of the list elements. The Hilbert spaces of the registers have
(N
r

)
(N − r) and Mr+1

dimensions, respectively.

Initial Setup

The initial condition is
|ψ(0)〉|0, . . . , 0〉, (10.47)

where |ψ(0)〉 is given by Eq. (10.12). The first step is to query each xi for i ∈ S.
Suppose that S = {i1, . . . , ir }, then the next state is

1√(N
r

)
(N − r)

∑
(S,y)∈V

|S, y〉∣∣xi1 , . . . , xir , 0
〉
, (10.48)



10.3 The Optimal Quantum Algorithm 217

where xi is the i th element of the list. The elements of S and the first r slots of the
second register are in one-to-one correspondence. The number of queries in this step
is r , and it is performed only once.

Main Block

1. Repeat this block of two steps the following number of times: t1 =
⌊

π
4

√
r
⌉
, where

�·� is the nearest integer.
(a) Apply a conditional phase flip operator R that inverts the phase of

|S, y〉∣∣x ′
1, . . . , x

′
r+1

〉
if and only if both marked indices i1 and i2 are in S, that

is,

R|S, y〉∣∣x ′
1, . . . , x

′
r+1

〉 =
{

−|S, y〉∣∣x ′
1, . . . , x

′
r+1

〉
, if i1, i2 ∈ S,

|S, y〉∣∣x ′
1, . . . , x

′
r+1

〉
, otherwise.

(b) Repeat Subroutine 1 the following number of times: t2 =
⌊

π
√
r

2
√
2

⌉
.

2. Measure the first register and check whether S has a 2-collision using a classical
algorithm.

Subroutine 1

1. Apply operator Uα given by (10.3) to the first register.
2. Apply oracle O defined by

O|S, y〉∣∣x ′
1, . . . , x

′
r+1

〉 = |S, y〉∣∣x ′
1, . . . , x

′
r+1 ⊕ xy

〉
,

which queries element xy and adds xy to x ′
r+1 in the last slot of the second register.

3. Apply operator U
EXT

β , which is an extension of (10.6), defined by

U
EXT

β = 2
∑

x ′
1,...,x

′
r+1

∑
[S,y]∈V/∼

∣∣∣βx ′
1,...,x

′
r+1

[S,y]
〉〈

β
x ′
1,...,x

′
r+1

[S,y]
∣∣∣ − I,

where

∣∣∣βx ′
1,...,x

′
r+1

[S,y]
〉

= 1√
r + 1

∑
y′∈S∪{y}

∣∣S ∪ {y} \ {y′}, y′〉∣∣π(x ′
1), . . . ,π(x ′

r+1)
〉

(10.49)
and π is a permutation of the slots of the second register induced by the permu-
tation of the indices of the first register.

4. Apply oracle O.

Note that when the input is given by (10.48), the output of step 2 of Subrou-
tine 1 has the elements of S and the first r slots of the second register in one-to-one



218 10 Element Distinctness

correspondence and the last slot of the second register is xy . This one-to-one corre-
spondence is maintained for each term in sum (10.49) and π(x ′

r+1) = xy′ . This means
that for the analysis of the algorithm the second register is “redundant” in the sense
that it can be reproduced if we know S and y in the state |S, y〉 of the first register.
When we eliminate the second register, as we have done earlier, U

EXT

β becomes Uβ

and Uα ⊗ I becomes Uα.
The number of quantum queries is the number of times oracle O is used plus the

number of queries in the initial setup. This yields (2 t1t2 + r), which is O
(
N 2/3

)
.

There is an overhead of r classical queries after the measurement, which is also
O

(
N 2/3

)
.

Note that no queries are required in the action of the conditional phase flip R.
This is a central point in the algorithm because oracle O updates the information in
the second register by querying only one element. When the walker moves from one
vertex (S, y) to the next (S′, y′), under the action of either Uα or Uβ , sets S and S′
differ by one element at most. This setup minimizes the number of queries. Operator
Uα plays the role of a coin by diffusing the values of y that are not in S and operator
Uβ plays the role of the shift by moving the new values of y into S.

Exercise 10.18. Use the approximation

ln

(
N

r

)
≈ r ln

N

r

valid when N � r � 1 to show that the algorithm uses O (r (ln N + lnM)) qubits
of memory.

Exercise 10.19. The goal of this exercise is to apply Tulsi’s modification described
in Sect. 9.2.2 on p. 183 in order to propose a new optimal algorithm for the element
distinctness problem.

Set t2 = 1, that is, use the evolution operator

U0 = UR,

and show that the success probability as a function of the number of steps tends to
zero when N increases. Show that Tulsi’s modification of U0 with η ≈ 1/(2

√
r) can

enhance the success probability to O(1) by taking O(r) steps. Show that the number
of queries is O(N 2/3). Check that the three conditions are fulfilled.

10.3.3 Example

The algorithm presented in this chapter is so complex that an example is welcome.
Take the list x = (39, 45, 39, 28) with N = 4 elements. Then, r = 2. Let us focus
on Subroutine 1. Consider state



10.3 The Optimal Quantum Algorithm 219

|ψ0〉 = |{1, 2}, 3〉|39, 45, 0〉,

which belongs to the initial state (10.48). Let us start with Step 1 of Subroutine 1,
that is, apply Uα. The action of Uα on |S, y〉 keeps the same S and outputs a sum of
all y /∈ S, that is

|ψ1〉 = c0|{1, 2}, 3〉|39, 45, 0〉 + c1|{1, 2}, 4〉|39, 45, 0〉.

In this case, c0 = 0 and c1 = 1 because the blue polygons in Fig. 10.1 have two
vertices only. Next step applies oracle O, which outputs

|ψ2〉 = |{1, 2}, 4〉|39, 45, 28〉.

At this point, the entire first and second registers are in one-to-one correspondence
at a cost of one query only.

Next step is to apply U
EXT

β to |ψ2〉. The action of U
EXT

β on |{y1, . . . , yr }, y〉
outputs all cyclic permutations of ({y1, . . . , yr }, y), that is, |{y, y1, . . . , yr−1}, yr 〉,
|{yr , y, y1, . . . , yr−2}, yr−1〉, and so on.1 Besides, the elements in the slots of the
second register also permute. Then,

|ψ3〉 =c0|{1, 2}, 4〉|39, 45, 28〉+
c1|{1, 4}, 2〉|39, 28, 45〉+
c2|{2, 4}, 1〉|45, 28, 39〉,

where c1 = −1/3 and c1 = c2 = 2/3. Note that the one-to-one correspondence is
kept because the second register was also permuted. We have to query one more time
to clear the last slot of the second register before applyingUα. Apply oracleO again,
which outputs

|ψ4〉 =c0|{1, 2}, 4〉|39, 45, 0〉+
c1|{1, 4}, 2〉|39, 28, 0〉+
c2|{2, 4}, 1〉|45, 28, 0〉.

That is exactly what we need to go back to Step 1 of Subroutine 1, which applies
Uα, and Step 2, and so on t2 times.

Let us analyze the Main Block. If we apply the conditional phase flip R to |ψ4〉,
nothing changes because there are no states with repeated entries in the second
register. On the other hand, if we apply Subroutine 1 to state

∣∣ψ′
0

〉 = |{1, 2}, 4〉|39, 45, 0〉,

1Set S must be stored in a unique way independent of how it was created by choosing a suitable
data structure. In the example, we display S sorted in increasing order, that is, after performing the
cyclic permutation, S is sorted.



220 10 Element Distinctness

the output of Step 4 prime will be (4 → 3 and 28 → 39 in Step 4)

∣∣ψ′
4

〉 =c′
0|{1, 2}, 3〉|39, 45, 0〉+
c′
1|{1, 3}, 2〉|39, 39, 0〉+
c′
2|{2, 3}, 1〉|45, 39, 0〉,

and the action ofR will invert the sign of term |{1, 3}, 2〉|39, 39, 0〉. Notice that the
same result is obtained by applying R given by Eq. (10.9) to the first register.

This example helps to understand why we can disregard the second register in the
analysis of Sect. 10.3. Oracle O is necessary for querying the elements of the list,
which allows operatorR to invert the phase of the marked states. If we suppose that
operator R as described by Eq. (10.9) is available, we can calculate the running time
and the success probability by disregarding the second register, that is, by eliminating
O and by replacing R by R.

Further Reading

The element distinctness problem has a long history. In classical computing, the
optimal lower bound for the model of comparison-based branching programs was
obtained by Yao [342]. Classical lower bounds have been obtained in general models
in Refs. [34, 127].

A related problem is the collision problem, where a two-to-one function f is
given and we have to find x and y such that f (x) = f (y). Quantum lower bounds
for the collision problem were obtained by Aaronson and Shi [2] and by Kutin [196].
Brassard, Høyer, and Tapp [60] solved the collision problem in O(N 1/3) quantum
steps achieving the lower bound. If the element distinctness problem can be solved
with N queries, then the collision problem can be solved with O(

√
N ) queries [2].

Quantum lower bounds for the element distinctness problem were obtained by
Aaronson and Shi [2] and Ambainis [15]. Buhrman et al. [64] described a quantum
algorithm that uses O(N 3/4) queries. Ambainis’s optimal algorithm for the element
distinctness problem firstly appeared in [14] and was published in [16]. Ambainis’s
algorithm used a new quantum walk framework on a bipartite graph, which was
generalized by Szegedy [307]. In a strict sense, Ambainis’ quantum walk is not is
not an instance of Szegedy’s model, because the graph employed by Ambainis is
a nonsymmetric bipartite graph.2 On the other hand, a new efficient algorithm for
the element distinctness problem was described by using an instance of Szegedy’s
model on the duplicated graph of the Johnson graph by Santha [290]. None of those
versions have obtained the optimal values for t1 and t2, which were given for the
first time in [265]. The material of this chapter was based on [265], which addressed
the general case (k-collision). Since Szegedy’s model is entirely included in the
staggered model, the version using the Johnson graph can also be converted into
a 2-tessellable staggered quantum walk using the line graph of the bipartite graph
obtained from the duplication of the Johnson graph.

2It is important to stress that Ambainis’s algorithm employs a quantum walk on a bipartite graph
that is neither a Johnson graph nor the duplication of a Johnson graph.



10.3 The Optimal Quantum Algorithm 221

Ambainis’s algorithm was used to build a quantum algorithm for triangle finding
by Magniez, Santha, and Szegedy [226] and to subset finding by Childs and Eisen-
berg [80]. Santha [290] surveyed the application of Szegedy’s quantum walk to the
element distinctness problem and for other related search problems, such as matrix
product verification and group commutativity. Tani [309] described implementa-
tions of quantum-walk-based algorithms for claw finding. Childs [79] described
the element distinctness algorithm in terms of the continuous-time quantum walk
model [113]. Belovs [37] applied learning graphs to present quantum algorithms
with a smaller number of queries for the k-distinctness problem. Belovs et al. [38]
presented quantum walk algorithms for the 3-collision element distinctness problem
with O(N 5/7). Rosmanis [282] addressed quantum adversary lower bounds for the
element distinctness problem. Kaplan [168] used the element distinctness algorithm
in the context of quantum attacks against iterated block ciphers. Jeffery, Magniez,
and de Wolf [164] analyzed parallel quantum queries for the element distinctness
problem. Abreu et al. [94] described a useful simulator for Ambainis’s algorithm.

The description of the evolution operator of the element distinctness algorithm in
the staggered model [264, 269] appeared in Abreu’s master thesis [93].



Chapter 11
Szegedy’s Quantum Walk

In this chapter, we describe Szegedy’s model, which is a collection of discrete-time
coinless quantum walks on symmetric bipartite digraphs. A symmetric bipartite
digraph can be obtained from an underlying digraph by a duplication process. The
underlying digraph defines a classicalMarkov chain , and Szegedy’smodel is usually
said to be the quantized version of this Markov chain.

Before entering the quantum context, we review some relevant classical concepts,
which are the discrete-time classical Markov chains and the hitting time. The most
known formula for calculating the classical hitting time uses the stationary distri-
bution. However, there is an alternative formula that does not rely on the stationary
distribution and requires the use of sinks, which are vertices with outdegree zero.
This formula can be generalized to the quantum context.

We start by describing Szegedy’s model on symmetric bipartite graphs, which are
obtained from underlying simple graphs via a duplication process. Then, we address
digraphs that have at least one sink (or marked vertex). The duplication process
produces a bipartite digraph. Szegedy’s quantum walk takes place on the bipartite
digraph, and the quantum hitting time is defined using this quantum walk. We show
how the evolution operator is obtained from the stochastic matrix of the underlying
digraph, and we exemplify the whole scheme using the complete graph.

11.1 Discrete-Time Markov Chains

In this section, we review discrete-time Markov chains in a way that complements
the topics addressed in Sect. 3.2 on p.23. A detailed review of the classical hitting
time is left to Appendix C. A classical discrete-time stochastic process is a sequence
of random variables X0, X1, X2, . . . denoted by {Xt : t ∈ N}. Xt is the state of the
stochastic process at time t and X0 is the initial state. We suppose that the state space

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0_11

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97813-0_11&domain=pdf


224 11 Szegedy’s Quantum Walk

S is discrete, for instance, S = N. A Markov chain is a stochastic process, whose
future depends only on the present state, that is,

Prob(Xt+1 = j | Xt = i, Xt−1 = in−1, . . . , X0 = i0) = Prob(Xt+1 = j | Xt = i)

for all t ≥ 0 and i0, . . . , i, j ∈ S. Define pi j = Prob(Xt+1 = j | Xt = i) and assume
that pi j does not depend on t (time-homogeneous Markov chain). Matrix P with
entries pi j for i, j ∈ S is called the transition matrix (or right stochastic matrix) of
the chain and has the following properties: pi j ≥ 0 and

∑
j∈S pi j = 1 for all i ∈ S.

Any time-homogeneous Markov chain can be represented by a digraph (directed
graph) �(V, A), where the vertex set V is the state space S and A is the arc set. Arc
(i, j) is in A if and only if pi j > 0. If the transition matrix is symmetric, then the
digraph representing the Markov chain reduces to a simple graph. A random walk
on � can be cast into the Markov chain formalism.

A state i is called absorbing if pii = 1. In this case, pi j = 0 for all j �= i , which
means that if the Markov chain reaches state i , it will be stuck there forever because
the probability to go to any other state different from i is zero. In terms of graph
representation, an absorbing state is represented by a sink, which is a vertex that has
outdegree equal to zero.

11.2 Markov Chain-Based Quantum Walk

Szegedy’s quantum walk is defined on a bipartite digraph obtained by duplicating a
digraph (called underlying digraph) associated with a discrete-time Markov chain.
For simplicity, in this section we address the case with no marked vertices, which
has only simple graphs. Figure11.1 shows an example of a bipartite graph (second
graph) obtained from the simple graph (first graph) of a Markov chain with three
states S = {0, 1, 2}. If x1 is adjacent to x2 and x3 in the underlying graph, then x1
must be adjacent only to y2 and y3 in the bipartite graph. The same must hold for x2
and x3. The description of the duplication process in a general setting is as follows.
Each edge {xi , x j } of the underlying graph, which connects the adjacent vertices xi

x1

xx3 x2

x1

x2

x3

y1

y2

y3

Fig. 11.1 Example of an underlying graph with three vertices and the bipartite graph generated
by the duplication process. In this case, there is no marked vertex. The classical random walk is
defined on the first graph and the quantum walk is defined on the second graph



11.2 Markov Chain-Based Quantum Walk 225

and x j , corresponds to two edges {xi , y j } and {yi , x j } in the bipartite graph. The
reverse process can also be defined, that is, we can obtain the underlying graph from
the bipartite graph.

Consider a bipartite graph with sets X and Y of equal cardinalities obtained from
the duplication process. Let x and y be vertices of X and Y , respectively. Define pxy
as the inverse of the degree of vertex x , if y is adjacent to x , otherwise pxy = 0. For
example, if x is adjacent to only two vertices y1 and y2 in set Y , then pxy1 = pxy2 =
1/2. Analogously, we define qyx as the inverse of the degree of vertex y. The entries
pxy and qyx satisfy

∑

y∈Y
pxy = 1 ∀x ∈ X, (11.1)

∑

x∈X
qyx = 1 ∀y ∈ Y. (11.2)

Note that pxy = qxy and pxy are symmetric since the bipartite graph is undirected
and there is an identification between X and Y .

The quantum walk on the bipartite graph has an associated Hilbert space Hn2 =
Hn ⊗ Hn , where n = |X | = |Y |.1 The computational basis of the first factor is

{|x〉 :
x ∈ X

}
and of the second is

{|y〉 : y ∈ Y
}
. The computational basis ofHn2 is

{|x, y〉 :
x ∈ X, y ∈ Y

}
. Instead of using probabilitymatrices P and Q of the classical random

walk, the entries of which are pxy and qyx , we define operators A : Hn → Hn2 and
B : Hn → Hn2 as follows:

A =
∑

x∈X
|αx 〉〈x |, (11.3)

B =
∑

y∈Y

∣
∣βy
〉〈y|, (11.4)

where

|αx 〉 = |x〉 ⊗
⎛

⎝
∑

y∈Y

√
pxy |y〉

⎞

⎠ , (11.5)

∣
∣βy
〉 =

(
∑

x∈X

√
qyx |x〉

)

⊗ |y〉. (11.6)

The dimensions of A and B are n2 × n. Another way to write (11.3) and (11.4) is

1The sizes of X and Y need not necessarily be equal. The terminology bipartite quantum walk
would be more precise to describe this case.



226 11 Szegedy’s Quantum Walk

A|x〉 = |αx 〉, (11.7)

B|y〉 = ∣
∣βy
〉
, (11.8)

that is, multiplying matrix A by the x th vector of the computational basis of Hn is
the x th column of A. Therefore, the columns of matrix A are the vectors |αx 〉 and the
columns of matrix B are the vectors

∣
∣βy
〉
. Using (11.5) and (11.6) along with (11.1)

and (11.2), we obtain

〈
αx

∣
∣αx ′

〉 = δxx ′ , (11.9)
〈
βy

∣
∣β′

y

〉 = δyy′ . (11.10)

Then, we have

ATA = In, (11.11)

BTB = In. (11.12)

These equations imply that the actions of A and B preserve the norm of vectors. So,
if |μ〉 is a unit vector inHn , then A|μ〉 is a unit vector inHn2 . The same regarding B.

Let us investigate the product in the reverse order. Using (11.3) and (11.4), we
obtain

AAT =
∑

x∈X
|αx 〉〈αx |, (11.13)

BBT =
∑

y∈Y

∣
∣βy
〉〈
βy

∣
∣. (11.14)

Using (11.11) and (11.12), we have (AAT)2 = AAT and (BBT)2 = BBT. So, let us
define the projectors

ΠA = AAT, (11.15)

ΠB = BBT. (11.16)

Equations (11.13) and (11.14) show that ΠA projects a vector in Hn2 on subspace
A = span

{|αx 〉 : x ∈ X
}
and ΠB projects on subspace B = span

{∣
∣βy
〉 : y ∈ Y

}
.

After obtaining the projectors, we can define the associated reflection operators,
which are

RA = 2ΠA − In2 , (11.17)

RB = 2ΠB − In2 . (11.18)

RA reflects a vector inHn2 through subspace A. We can check this in the following
way:RA leaves invariant any vector in A, that is, if |ψ〉 ∈ A, thenRA|ψ〉 = |ψ〉, as
can be confirmed by (11.17). On the other hand, RA inverts the sign of any vector



11.2 Markov Chain-Based Quantum Walk 227

orthogonal toA, that is, if |ψ〉 ∈ A⊥ or |ψ〉 is in the kernel ofA, thenRA|ψ〉 = −|ψ〉.
A vector inHn2 can be written as a linear combination of a vector in A and another
one in A⊥. The action of RA leaves the component in A unchanged and inverts the
sign of the component in A⊥. Geometrically, this is a reflection through A, as if A
is the mirror andRA|ψ〉 is the image of |ψ〉. The same is true forRB with respect to
subspace B.

Now let us analyze the relation between subspaces A and B. The best way is to
analyze the angles between vectors in basis

{|αx 〉 : x ∈ X
}
and vectors in

{∣
∣βy
〉 :

y ∈ Y
}
. Define the inner product matrix C so that Cxy = 〈

αx

∣
∣βy
〉
. Using (11.5) and

(11.6), we can express the entries of C in terms of the transition probabilities as
Cxy = √

pxyqyx . In matrix form, we write

C = ATB, (11.19)

which can be obtained from (11.3) and (11.4). C is a n-dimensional matrix called
discriminant, which is not normal in general. The eigenvalues and eigenvectors
of C do not play an important role in this context. On the other hand, the singular
values and vectors of C , which are quantities conceptually close to eigenvalues and
eigenvectors, do play. They coincide with the ones of the Markov chain transition
matrix for the symmetric case and will be analyzed ahead.

Exercise 11.1. The goal of this exercise is to generalize the formulas of this section
when the cardinality of set X is different from the cardinality of set Y . Let |X | = m
and |Y | = n. What are the dimensions of matrices A, B, and C in this case? What
formulas of this section explicitly change?

Exercise 11.2. Consider the complete bipartite graph when X has a single element
and Y has two elements. Show thatRA is the Pauli matrix σx andRB is the identity
matrix I2.

11.3 Evolution Operator

Weare now ready to define a bipartite quantumwalk associatedwith transitionmatrix
P of the underlying graph. Let us define the evolution operator as

WP = RB RA, (11.20)

where RA and RB are the reflection operators given by (11.17) and (11.18). At
time t , the state of the quantum walk is (WP)t applied to the initial state. Note that
the structure of this walk is different from the structure of the coined quantum walk,
which employs a coin and a shift operator. The new definition has some advantages.
In particular, the quantum hitting time can be naturally defined as a generalization
of the classical hitting time. It can be shown that the quantum hitting time for this



228 11 Szegedy’s Quantum Walk

quantum walk on a finite bipartite graph is quadratically smaller than the classical
hitting time of a random walk on the underlying graph.

The analysis of the evolution of the quantum walk can be performed if we know
the spectral decomposition of WP . The spectral decomposition associated with the
nontrivial eigenvalues can be calculated in terms of the singular values and vectors
of matrix C defined by (11.19), as discussed in the following sections.

Exercise 11.3. The goal of this exercise is to determine the conditions that makes
state

|ψ(0)〉 = 1√
n

∑

x ∈ X
y ∈ Y

√
pxy |x, y〉

be a 1-eigenvector of WP . Show that the action ofRA leaves |ψ(0)〉 invariant. Does
the action of RB leave |ψ(0)〉 invariant? Under what conditions?

11.4 Singular Values and Vectors of the Discriminant

The singular value decomposition theorem states that there are unitary matrices U
and V such that

C = UDV †, (11.21)

where D is a n-dimensional diagonal matrix with nonnegative real entries. Usually,
the diagonal elements are sorted with the largest element occupying the first posi-
tion. These elements are called singular values and are uniquely determined once
given matrix C . In the general case, matrices U and V are not uniquely determined.
They can be determined by applying the spectral theorem to matrix C†C . C†C is a
positive semidefinite Hermitian matrix, that is, its eigenvalues are nonnegative real
numbers. Then, C†C admits a spectral decomposition and the square root

√
C†C is

well defined.Written on the basis of eigenvectors ofC†C ,
√
C†C is a diagonalmatrix

where each diagonal element is the square root of the corresponding eigenvalue of
C†C .

Let λ2
i and |νi 〉 be the eigenvalues and eigenvectors of C†C . Assume that

{|νi 〉 :
1 ≤ i ≤ n

}
is an orthonormal basis. Then,

C†C =
n∑

i=1

λ2
i |νi 〉〈νi | (11.22)

and √
C†C =

n∑

i=1

λi |νi 〉〈νi |. (11.23)



11.4 Singular Values and Vectors of the Discriminant 229

Now we show how to find U and V . For each i such that λi > 0, define

|μi 〉 = 1

λi
C |νi 〉. (11.24)

Using Eqs. (11.11), (11.12), and that
{|νi 〉 : 1 ≤ i ≤ n

}
is an orthonormal basis, we

obtain 〈
μi

∣
∣μ j
〉 = δi j , (11.25)

for all i, j such thatλi andλ j are positive. For the eigenvectors in the kernel of
√
C†C ,

define
∣
∣
∣μ′

j

〉
= ∣
∣ν j
〉
. However, with this extension we generally lose the orthogonality

between vectors |μi 〉 and
∣
∣
∣μ′

j

〉
. We can apply the Gram–Schmidt orthonormalization

process to redefine vectors
∣
∣
∣μ′

j

〉
such that they are orthogonal to the vectors that do

not belong to the kernel, and we call them
∣
∣μ j
〉
. In the end, we can obtain a complete

set satisfying orthonormality condition (11.25). With vectors |νi 〉 and |μi 〉, we obtain
U and V using equations

U =
n∑

i=1

|μi 〉〈i |, (11.26)

V =
n∑

i=1

|νi 〉〈i |. (11.27)

|νi 〉 and |μi 〉 are the singular vectors, and λi are the corresponding singular values.
They obey the following equations:

C |νi 〉 = λi |μi 〉, (11.28)

CT|μi 〉 = λi |νi 〉, (11.29)

for 1 ≤ i ≤ n. Note that |μi 〉 and |νi 〉 have a dual behavior. In fact, they are called
the left and right singular vectors, respectively.

By left multiplying (11.28) by A and (11.29) by B, we obtain

ΠA B|νi 〉 = λi A|μi 〉, (11.30)

ΠB A|μi 〉 = λi B|νi 〉. (11.31)

We have learned earlier that the action of operators A and B preserves the norm of
the vectors. Since |μi 〉 and |νi 〉 are unit vectors, A|μi 〉 and B|νi 〉 are also unit vectors.
The action of projectors either decreases the norm of vectors or maintains it invariant.
Using (11.30), we conclude that the singular values satisfy inequalities 0 ≤ λi ≤ 1.
Therefore, λi can be written as λi = cos θi , where 0 ≤ θi ≤ π/2. The geometric
interpretation of θi is the angle between vectors A|μi 〉 and B|νi 〉. In fact, using
(11.19) and (11.28) we obtain that the inner product of A|μi 〉 and B|νi 〉 is



230 11 Szegedy’s Quantum Walk

λi = cos θi = 〈μi |AT B|νi 〉. (11.32)

Exercise 11.4. Show that U and V given by (11.26) and (11.27) are unitary. Show
that (11.21) is satisfied for these U and V .

Exercise 11.5. Show that if λi �= λ j , then the vector space spanned by A|μi 〉 and
B|νi 〉 is orthogonal to the vector space spanned by A

∣
∣μ j
〉
and B

∣
∣ν j
〉
.

Exercise 11.6. The objective of this exercise is to use matrix CC† instead of C†C
to obtain the singular values and vectors of C .

1. Show that if |ν〉 is an eigenvector of C†C associated with the eigenvalue λ2, then
C |ν〉 is an eigenvector of CC† with the same eigenvalue.

2. Use C† to define vectors |μi 〉 in (11.24) and interchange the roles of |μi 〉 and |νi 〉
to define U and V .

3. Show that the new matrices U and V are unitary and satisfy (11.21).

11.5 Eigenvalues and Eigenvectors of the Evolution
Operator

Recall that A and B are the vector spaces spanned by vectors |αx 〉 and
∣
∣βy
〉
, respec-

tively. Note that the set of vectors A
∣
∣μ j
〉
for 1 ≤ j ≤ n is an orthonormal basis ofA

and the set of vectors B
∣
∣ν j
〉
for 1 ≤ j ≤ n is an orthonormal basis of B. Let us start

with the spectrum of WP .

Lemma 11.1. (Konno, Sato, Segawa) The characteristic polynomial of WP is

det(λIN − WP) = (λ − 1)N−2n det
(
(λ + 1)2 In − 4λCTC

)
.

Proof. Exercise11.7 �
Lemma11.1 shows that there are at least (N − 2n) (+1)-eigenvalues and the

remaining 2n eigenvalues of WP can be obtained from equation

det
(
(λ + 1)2 In − 4λCTC

) = 0.

Using that In = ∑n
j=1

∣
∣ν j
〉〈
ν j

∣
∣ and Eq. (11.22), we obtain

det

⎛

⎝
n∑

j=1

(
(λ + 1)2 − 4λλ2

j

)∣
∣ν j
〉〈
ν j

∣
∣

⎞

⎠ = 0.

Then,
n∏

j=1

(
λ2 − 2 (2λ2

j − 1)λ + 1
) = 0.



11.5 Eigenvalues and Eigenvectors of the Evolution Operator 231

For each j , we obtain two eigenvalues of WP , which are

λ = (2λ2
j − 1) ± 2λ j

√
λ2
j − 1.

Using that λ j = cos θ j , we obtain

λ = e±2iθ j .

This result shows that the eigenvalues of the evolution operator WP are either (+1)
or can be obtained from the transition matrix of the underlying graph.

The next lemmas are also useful.

Lemma 11.2. 1. If |ψ〉 ∈ A ∩ B + A⊥ ∩ B⊥, then WP |ψ〉 = |ψ〉.
2. If |ψ〉 ∈ A ∩ B⊥ + A⊥ ∩ B, then WP |ψ〉 = −|ψ〉.
Proof. If |ψ〉 ∈ A ∩ B, then |ψ〉 is invariant under the action of both RA and RB

and is a (+1)-eigenvector of WP . If |ψ〉 ∈ A⊥ ∩ B⊥, then both RA and RB inverts
the sign of |ψ〉, which is therefore a (+1)-eigenvector of WP . If |ψ〉 ∈ A ∩ B⊥, then
|ψ〉 is invariant under the action ofRA and inverts the sign underRB and is a (−1)-
eigenvector of WP . If |ψ〉 ∈ A⊥ ∩ B, then |ψ〉 is invariant under the action of RB

and inverts the sign under RA and is a (−1)-eigenvector of WP . �

Lemma 11.3. Let dim(A ∩ B) = k. Then,

dim(A⊥ ∩ B⊥) = N − 2n + k.

Proof. Using thatH = (A + B) ⊕ (A + B)⊥ and (A + B)⊥ = A⊥ ∩ B⊥, we obtain
dimH = dim(A + B) + dim(A⊥ ∩ B⊥). Then, N = 2n − dim(A ∩ B) +
dim(A⊥ ∩ B⊥). The result follows when we use dim(A ∩ B) = k. �

The following theorem holds.

Theorem 11.4. (Szegedy) The spectrum of WP obeys:

1. The eigenvalues ofWP with 0 < θ j ≤ π/2 are e±2iθ j for j = 1, . . . , n − k,where
k is the multiplicity of singular value 1. The corresponding normalized eigen-
vectors are ∣

∣
∣θ±

j

〉
= 1√

2 sin θ j

(
A
∣
∣μ j
〉− e±iθ j B

∣
∣ν j
〉)

. (11.33)

2. A ∩ B + A⊥ ∩ B⊥ is the (+1)-eigenspace of WP.A ∩ B is spanned by A
∣
∣μ j
〉
,

where
∣
∣μ j
〉
are the left singular vectors of C with singular value 1.

3. A ∩ B⊥ + A⊥ ∩ B is the (−1)-eigenspace of WP.A ∩ B⊥ is spanned by A
∣
∣μ j
〉
,

where
∣
∣μ j
〉
are the left singular vectors of C with singular value 0, and A⊥ ∩ B

is spanned by B
∣
∣ν j
〉
, where

∣
∣ν j
〉
are the right singular vectors of C with singular

value 0.



232 11 Szegedy’s Quantum Walk

Proof. Let us start with Item 1. Let 1 ≤ j ≤ n − k be a fixed integer and assume that
0 < θ j ≤ π/2. This means that vectors A

∣
∣μ j
〉
and B

∣
∣ν j
〉
are noncollinear. Using the

definition of WP , we obtain

WP A
∣
∣μ j
〉 = −A

∣
∣μ j
〉+ 2λ j B

∣
∣ν j
〉
,

WP B
∣
∣ν j
〉 = −2λ j A

∣
∣μ j
〉+ (4λ2

j − 1)B
∣
∣ν j
〉
.

Using that 2λ j = (
eiθ j + e−iθ j

)
, we have

4λ2
j − 1 = e2iθ j + e−2iθ j + 1.

Using the above equations, we obtain

WP
(
A
∣
∣μ j
〉− e±iθ j B

∣
∣ν j
〉) = e±2iθ j

(
A
∣
∣μ j
〉− e±iθ j B

∣
∣ν j
〉)

.

Now we check that

∥
∥A
∣
∣μ j
〉− e±iθ j B

∣
∣ν j
〉∥
∥2 = (〈

μ j

∣
∣AT − e∓iθ j

〈
ν j

∣
∣BT

) (
A
∣
∣μ j
〉− e±iθ j B

∣
∣ν j
〉)

= 2 − e±iθ j
〈
μ j

∣
∣ATB

∣
∣ν j
〉− e∓iθ j

〈
ν j

∣
∣BTA

∣
∣μ j
〉

= 2 sin2 θ j .

Then,
∣
∣
∣θ±

j

〉
are unit eigenvectors of WP with eigenvalues e±2iθ j . From Lemma11.1,

e±2iθ j with 0 < θ j < 1 are the only eigenvalues with nonzero complex part. The
corresponding eigenvectors do not belong to the intersecting spaces described in
Items 2 and 3. On the other hand, if θ j = π/2 (singular value 0), then the correspond-
ing eigenvectors are in A ∩ B⊥ + A⊥ ∩ B because A

∣
∣μ j
〉
and B

∣
∣ν j
〉
are orthogonal

(Exercise11.8). The remaining eigenvectors have eigenvalue 1 (θ j = 0).
Let us address Item 2. Using Lemma11.2, we know that any vector in A ∩ B +

A⊥ ∩ B⊥ is a (+1)-eigenvector. The reverse is also true. In fact, using the proof of
Item 1, we know that there are k (+1)-eigenvectors inA ∩ B and from Lemma11.3,
there are (N − 2n + k) (+1)-eigenvectors in A⊥ ∩ B⊥. Then, A ∩ B + A⊥ ∩ B⊥
is the (+1)-eigenspace of WP . If A

∣
∣μ j
〉 ∈ A ∩ B, then A

∣
∣μ j
〉 = B

∣
∣ν j
〉
and θ j = 0

(λ j = 1). There are exactly k linearly independent vectors A
∣
∣μ j
〉
, where k is the

multiplicity of singular value 1 and k = dim(A ∩ B). Those vectors span A ∩ B.
Let us address Item 3. Using Lemma11.2, we know that any vector inA ∩ B⊥ +

A⊥ ∩ B is a (−1)-eigenvector. The reverse is also true. In fact, using the proof
of Item 1, all (−1)-eigenvectors have θ j = π/2 and belong either to A ∩ B⊥ or to
A⊥ ∩ B. Then,A ∩ B⊥ + A⊥ ∩ B is the (−1)-eigenspace ofWP . The set of vectors
A
∣
∣μ j
〉
spans A ∩ B⊥ and the set of vectors B

∣
∣ν j
〉
spans A⊥ ∩ B. �

Table11.1 summarizes the results of the spectral decomposition of WP obtained
viaTheorem11.4.There are 2(n − k)-eigenvectors ofWP associatedwith eigenvalues
e±2iθ j when θ j > 0. The expressions of those eigenvectors are given by Eq. (11.33).



11.5 Eigenvalues and Eigenvectors of the Evolution Operator 233

Table 11.1 Eigenvalues and normalized eigenvectors ofWP obtained from the singular values and
vectors of C , where k is the multiplicity of the singular value 1 of C and n is the dimension of C

Eigenvalue Eigenvector Range

e±2iθ j

∣
∣
∣θ±

j

〉
= A|μ j 〉−e± iθ j B|ν j 〉√

2 sin θ j
1 ≤ j ≤ n − k

1
∣
∣θ j
〉 = A

∣
∣μ j
〉

n − k + 1 ≤ j ≤ n

1
∣
∣θ j
〉 = no expression 2n − k + 1 ≤ j ≤ n2

Angles θ j are obtained from the singular values λ j using cos θ j = λ j . The eigenvectors
∣
∣θ j
〉
, for

2n − k + 1 ≤ j ≤ n2, cannot be obtained by the method described in this section, but we know
that they have eigenvalue 1

Note that Theorem 11.4 can be used to find eigenvectors of the evolution operator
WP only when the singular values and vectors of the discriminant matrix can be
explicitly found. Inmost cases, the calculation of the singular values and vectors is too
difficult a task. Besides, the above theorem does not describe the (N − 2n + k) (+1)-
eigenvectors that span A⊥ ∩ B⊥. However, the (+1)-eigenvectors are not needed in
the calculation of the quantum hitting time.

Exercise 11.7. The goal of this exercise is to prove Lemma11.1. Two properties of
the determinant are useful here: (1) det(λM) = λn det(M) for any n × n matrix M
and any scalar λ, (2) det(λIn − M1M2) = det(λIm − M2M1) for any n × m matrix
M1 and m × n matrix M2.

Using the definition of WP , show that

det(λI − WP) = (λ − 1)n
2
det

(

I − 2BBT (2AAT − I )M−
λ − 1

)

det(M+),

where

M± = In2 ± 2

λ ∓ 1
AAT ,

and (show this)
M+M− = In2

and (show this too)

det(M+) =
(

λ + 1

λ − 1

)n

.

Using those results to show that

det(λI − WP) = (λ − 1)n
2−n(λ + 1)n det

(

I − 2

λ − 1
BBT

(
2λ

λ + 1
AAT − I

))

.

To conclude the proof, use Eq. (11.19) and property (2) described in the beginning
of this exercise.



234 11 Szegedy’s Quantum Walk

Exercise 11.8. Show that if the singular value λ j is equal to 0, then A
∣
∣μ j
〉
and B

∣
∣ν j
〉

are orthonormal (−1)-eigenvectors of WP . Show that the (−1)-eigenvectors that
span A ∩ B⊥ + A⊥ ∩ B can be written as

A
∣
∣μ j
〉± iB

∣
∣ν j
〉

√
2

.

11.6 Quantum Hitting Time

The quantum walk defined earlier does not search any specific vertex because we
have not marked any vertex yet. This section is devoted to describing how Szegedy’s
quantum walk finds a marked vertex. There are two tasks: (1) Some vertices must be
marked (let M be the set of marked vertices) and (2) a running time must be defined.

The empty vertex of the first graph in Fig. 11.2 is calledmarked vertex because it
is a sink with a loop. To obtain the bipartite digraph (second graph), we follow the
same duplication process described at the beginning of Sect. 11.2. All edges incident
to a marked vertex are incident arcs, and an extra edge connecting twin marked
vertices is added.

The quantumhitting time is defined usingSzegedy’s quantumwalk on the bipartite
digraph, and it is driven by the evolution operator WP ′ , where P ′ is the modified
stochastic matrix given by

p′
xy =

{
pxy, x /∈ M;
δxy, x ∈ M,

(11.34)

where pxy are the entries of the stochastic matrix P of the bipartite simple graph and
M is the set of marked vertices. When we use operator WP ′ on the bipartite digraph,
the probabilities associated with the marked vertices increase periodically. To find a
marked vertex, we must measure the position of the walker as soon as the probability
of being in M is high. The quantum hitting time tells when we measure the walker’s
position.

x1

xx3 x2

x1

x2

x3

y1

y2

y3

Fig. 11.2 Example of the duplication process with a marked vertex. A marked vertex is a sink
in the underlying digraph with a self loop. The bipartite digraph is generated by the duplication
process. The classical hitting time defined on the first digraph can be compared with the quantum
hitting time of a Szegedy’s quantum walk on the second digraph



11.6 Quantum Hitting Time 235

The initial condition of Szegedy’s quantum walk is

|ψ(0)〉 = 1√
n

∑

x ∈ X
y ∈ Y

√
pxy |x, y〉. (11.35)

Note that |ψ(0)〉 is defined using the stochastic matrix of the underlying graph with
unmarked vertices and is invariant under the action of WP , that is, |ψ(0)〉 is a 1-
eigenvector of WP . However, |ψ(0)〉 is not an eigenvector of WP ′ in general. Now
let us define the quantum hitting time.

Definition 11.5 (Quantum Hitting Time). The quantum hitting time HP ′,M of a
quantum walk on the bipartite digraph with the associated evolution operator WP ′

starting from the initial condition |ψ(0)〉 is defined as the smallest number of steps
T such that

F(T ) ≥ 1 − m

n
,

where m is the number of marked vertices, n is the number of vertices of the under-
lying digraph, and

F(T ) = 1

T + 1

T∑

t=0

∥
∥
∥|ψ(t)〉 − |ψ(0)〉

∥
∥
∥
2
, (11.36)

where |ψ(t)〉 is the quantum state at step t , that is, |ψ(t)〉 = (WP ′)t |ψ(0)〉.
Value (1 − m/n) is taken as reference because it is the distance between the uni-

form probability distribution and the uniform probability distribution on the marked
vertices. This distance can be confirmed by using (7.55) of Sect. 7.6 on p.152.

The quantum hitting time depends only on the eigenspaces of WP ′ that are asso-
ciated with eigenvalues different from 1. Or, similarly, the quantum hitting time
depends only on the singular values of C different from 1. Let us show this fact.
Table11.1 summarizes the results on the eigenvalues and eigenvectors of the evolu-
tion operator. Using the notation of this table, we can write the initial condition of
the quantum walk in the eigenbasis as follows:

|ψ(0)〉 =
n−k∑

j=1

(
c+
j

∣
∣
∣θ+

j

〉
+ c−

j

∣
∣
∣θ−

j

〉)
+

n2−n+k∑

j=n−k+1

c j
∣
∣θ j
〉
, (11.37)

where coefficients c±
j are given by

c±
j =

〈
θ±
j

∣
∣ψ(0)

〉
, (11.38)

and satisfy the constraint



236 11 Szegedy’s Quantum Walk

n−k∑

j=1

(∣
∣c+

j

∣
∣2 + ∣

∣c−
j

∣
∣2
)

+
n2−n+k∑

j=n−k+1

∣
∣c j
∣
∣2 = 1. (11.39)

Applying Wt
P ′ to |ψ(0)〉, we obtain

|ψ(t)〉 =
n−k∑

j=1

(
c+
j e

2iθ j t
∣
∣
∣θ+

j

〉
+ c−

j e
−2iθ j t

∣
∣
∣θ−

j

〉)
+

n2−n+k∑

j=n−k+1

c j
∣
∣θ j
〉
. (11.40)

When we take the difference |ψ(t)〉 − |ψ(0)〉, the terms associated with the eigen-
value 1 are eliminated.

Since vectors
∣
∣
∣θ±

j

〉
are complex conjugates and |ψ(0)〉 is real, it follows from

(11.38) that
∣
∣c+

j

∣
∣2 = ∣

∣c−
j

∣
∣2. We will denote both

∣
∣c+

j

∣
∣2 and

∣
∣c−

j

∣
∣2 by

∣
∣c j
∣
∣2 such that

the subindex j characterizes the coefficient. Using (11.37) and (11.40), we obtain

∥
∥
∥|ψ(t)〉 − |ψ(0)〉

∥
∥
∥
2 = 4

n−k∑

j=1

∣
∣c j
∣
∣2
(
1 − T2t (cos θ j )

)
, (11.41)

where Tn is the nth Chebyshev polynomial of the first kind defined by Tn(cos θ) =
cos nθ. F(T ) defined in (11.36) can be explicitly calculated. The result is

F(T ) = 2

T + 1

n−k∑

j=1

∣
∣c j
∣
∣2
(
2 T + 1 −U2T (cos θ j )

)
, (11.42)

where Un are the Chebyshev polynomials of the second kind defined by

Un(cos θ) = sin(n + 1)θ

sin θ
.

Function F(T ) is continuous, and we can select a range [0, T ] containing point 1 −
m/n where F(T ) can be inverted to obtain the quantum hitting time by employing
the following equation:

HP,M =
⌈
F−1

(
1 − m

n

)⌉
. (11.43)

In principle, it is not necessary to define the hitting time as an integer value since it
is an average. If we remove the ceiling function from the above equation, we have
a valid definition. In the example using a complete graph in Sect. 11.8, we use this
alternative definition.



11.7 Searching Instead of Detecting 237

11.7 Searching Instead of Detecting

The quantum walk defined by the evolution operatorWP ′ was designed such that the
probability of finding a marked element increases during some time. Since the evo-
lution is unitary, the probability of finding a marked element will have an oscillatory
pattern. Then, determining the running time (execution time) of the algorithm is
crucial. If the measurement is delayed, the success probability may be very low. The
quantum hitting time must be close to the time tmax where the probability reaches
the maximum for the first time.

In order to determine tmax and calculate the success probability, we need to find
the analytical expression of |ψ(t)〉. Subtracting (11.40) of (11.37), we obtain

|ψ(t)〉 = |ψ(0)〉 +
n−k∑

j=1

(
c+
j

(
e2iθ j t − 1

) ∣∣
∣θ+

j

〉
+ c−

j

(
e−2iθ j t − 1

) ∣∣
∣θ−

j

〉)
. (11.44)

The probability of finding a marked element is calculated with the projector on the
vector space spanned by the marked elements, which is

PM =
∑

x∈M
|x〉〈x | ⊗ I

=
∑

x∈M

∑

y

|x, y〉〈x, y|. (11.45)

The probability at time t is given by 〈ψ(t)|PM |ψ(t)〉.
In this context, we highlight: (1) The problem of determining whether the set

of the marked elements is empty, called detection problem and (2) the problem of
finding a marked element, called finding problem. In the general case, the detection
problem is simpler than the finding problem because it does not require calculating
the probability of finding a marked element. The detection problem only requires the
calculation of the hitting time. The calculation of the probability of finding a marked
element requires the knowledge of |ψ(t)〉, while the calculation of the hitting time
requires knowledge of |ψ(t)〉 − |ψ(0)〉. In the latter case, we need not calculate the
(+1)-eigenvectors.

11.8 Example: Complete Graphs

The purpose of this section is to calculate the quantum hitting time using complete
graphs as the underlying graph. Let n be the number of vertices. All vertices are
adjacent in a complete graph. If the walker is in one vertex, it can go to n − 1 vertices.
Therefore, the stochastic matrix is



238 11 Szegedy’s Quantum Walk

P = 1

n − 1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (11.46)

Multiplying P by (n − 1), we obtain a matrix with all entries equal to 1 minus the
identity matrix. Therefore, we can write P as follows:

P = 1

n − 1

(
n
∣
∣u(n)

〉〈
u(n)

∣
∣− In

)
, (11.47)

where
∣
∣u( j)

〉
is defined by

∣
∣u( j)

〉 = 1√
j

j∑

i=1

|i〉. (11.48)

We number the vertices from 1 to n, such that in this section the computational basis
of the Hilbert space Hn is

{|1〉, . . . , |n〉}. We suppose that the marked vertices are
the last m vertices, that is, x ∈ M if and only if n − m < x ≤ n.

In the definition of the quantum hitting time, the evolution operator uses the
modified stochastic matrix P ′ defined in (11.34) instead of the underlying matrix P .
The entries of matrix P ′ are

p′
xy =

{ 1−δxy
n−1 , 1 ≤ x ≤ n − m;

δxy, n − m < x ≤ n.
(11.49)

All vectors and operators in Sect. 11.2 must be calculated using P ′. Operator C in
(11.19) is important because their singular values and vectors are used to calculate
some eigenvectors of the evolution operator WP ′ . In Sect. 11.2, we have learned that
the entries Cxy are given by

√
p′
xyqyx . Here we are setting qyx = p′

yx . In a complete
graph, we have pxy = pyx . However, p′

xy �= p′
yx , if x and y are in M . Using (11.49)

and analyzing the entries of C , we conclude that

C =
[
PM 0
0 Im

]

, (11.50)

where PM is the matrix obtained from P by eliminating m rows and m columns
corresponding to the marked vertices. We find the singular values and vectors of C
through the spectral decomposition of PM .

The algebraic expression of PM is

PM = 1

n − 1

(
(n − m)

∣
∣u(n−m)

〉〈
u(n−m)

∣
∣− In−m

)
, (11.51)



11.8 Example: Complete Graphs 239

where
∣
∣u(n−m)

〉
is obtained from (11.48). Its characteristic polynomial is

det(PM − λI ) =
(

λ − n − m − 1

n − 1

)(

λ + 1

n − 1

)n−m−1

. (11.52)

The eigenvalues are n−m−1
n−1 with multiplicity 1 and −1

n−1 with multiplicity n − m − 1.
Note that if m ≥ 1, then 1 is not an eigenvalue of PM . The eigenvector associated
with eigenvalue n−m−1

n−1 is

|νn−m〉 := ∣
∣u(n−m)

〉
(11.53)

and the eigenvectors associated with the eigenvalue −1
n−1 are

|νi 〉 := 1√
i + 1

(∣
∣u(i)

〉− √
i |i + 1〉

)
, (11.54)

where 1 ≤ i ≤ n − m − 1. The set
{|νi 〉, 1 ≤ i ≤ n − m

}
is an orthonormal basis of

eigenvectors of PM . The verification is oriented in Exercise11.9.

Exercise 11.9. The objective of this exercise is to explicitly check the orthonormal-
ity of the spectral decomposition of PM .

1. Use (11.51) to verify that PM

∣
∣un−m

〉 = n−m−1
n−1

∣
∣un−m

〉
.

2. Show that
〈
u(n−m)

∣
∣νi
〉 = 0, for 1 ≤ i ≤ n − m − 1. Use this fact and (11.51) to

verify that PM |νi 〉 = −1
n−1 |νi 〉.

3. Show that
〈
u(i)
∣
∣i + 1

〉 = 0 and conclude that
〈
u(i)
∣
∣u(i)

〉 = 1, for 1 ≤ i ≤ n − m −
1. Use this fact to show that

〈
νi
∣
∣νi
〉 = 1.

4. Suppose that i < j . Show that
〈
u(i)
∣
∣u( j)

〉 =
√

i
j and

〈
u(i)
∣
∣ j + 1

〉 = 0. Use these

facts to show that
〈
νi
∣
∣ν j
〉 = 0.

Matrix C is Hermitian. Therefore, the nontrivial singular values λi of C defined
in (11.23) are obtained by taking the modulus of the eigenvalues of PM . The right
singular vectors |νi 〉 are the eigenvectors of PM , and the left singular vectors are
obtained from (11.24). If an eigenvalue of PM is negative, the left singular vector is the
negative of the corresponding eigenvector of PM . These vectors must be augmented
with m zeros to have the dimension compatible with C . Finally, submatrix Im in
(11.50) adds to the list the singular value 1 with multiplicity m and the associated
singular vectors | j〉, where n − m + 1 ≤ j ≤ n. Table11.2 summarizes these results.

Eigenvalues and eigenvectors ofWP ′ that can be obtained from the singular values
and vectors of C are described in Table11.1. Table11.3 reproduces these results for
a complete graph. It is still missing n2 − 2n + m 1-eigenvectors.

The initial condition is given by (11.35), which reduces to

|ψ(0)〉 = 1√
n(n − 1)

n∑

x,y=1

(1 − δxy)|x〉|y〉. (11.55)



240 11 Szegedy’s Quantum Walk

Table 11.2 Right and left singular values and vectors of matrix C

Singular value Right singular vector Left singular vector Range

cos θ1 = 1
n−1

∣
∣ν j
〉 −∣∣ν j

〉
1 ≤ j ≤ n − m − 1

cos θ2 = n−m−1
n−1 |νn−m〉 |νn−m〉 j = n − m

cos θ3 = 1 | j〉 | j〉 n − m + 1 ≤ j ≤ n

Vectors |νn−m〉 and |νi 〉 are given by (11.53) and (11.54). Angles θ1, θ2, and θ3 are defined from
the singular values

Table 11.3 Eigenvalues and normalized eigenvectors of WP ′ obtained from the singular values
and vectors of C

Eigenvalue Eigenvector Range

e±2iθ1
∣
∣
∣θ±

j

〉
= −

(
A+e±iθ1 B

)|ν j 〉√
2 sin θ1

1 ≤ j ≤ n − m − 1

e±2iθ2
∣
∣θ±

n−m

〉 =
(
A−e±iθ2 B

)
|νn−m 〉√

2 sin θ2
j = n − m

1
∣
∣θ j
〉 = A| j〉 n − m + 1 ≤ j ≤ n

Only the eigenvectors of WP ′ that are not orthogonal to the initial condition |ψ(0)〉
play a role in the dynamic. Exercise11.10 guides the proof that the eigenvectors

∣
∣θ j
〉
,

n − m + 1 ≤ j ≤ n, are orthogonal to the initial condition. Exercise11.11 guides

the proof that the eigenvectors
∣
∣
∣θ±

j

〉
, 1 ≤ j ≤ n − m − 1, are also orthogonal to

the initial condition. The remaining eigenvectors are
∣
∣θ±

n−m

〉
, associated with the

positive eigenvalue of PM , and the 1-eigenvectors, which has not been addressed
yet. Therefore, the initial condition |ψ(0)〉 can be written as

|ψ(0)〉 = c+∣∣θ+
n−m

〉+ c−∣∣θ−
n−m

〉+ |β〉, (11.56)

where coefficients c± are given by (see Exercise11.12)

c± =
√
n − m

(
1 − e∓iθ2

)

√
2n sin θ2

, (11.57)

where θ2 is defined by

cos θ2 = n − m − 1

n − 1
. (11.58)

Vector |β〉 is the component of |ψ(0)〉 in the 1-eigenspace. The calculation of a basis
of eigenvectors for this eigenspace is hardworking; we postpone this calculation for
now.

Exercise 11.10. To show that
〈
θ j

∣
∣ψ(0)

〉 = 0 when n − m + 1 ≤ j ≤ n, use the
expression for A given by (11.3) and the expression for |αx 〉 given by (11.5), where
pxy and qxy are given by (11.49). Show that



11.8 Example: Complete Graphs 241

〈
θ j

∣
∣ψ(0)

〉 =
∑

x∈M

〈
αx

∣
∣ψ(0)

〉
.

Use (11.55) to show that
〈
αx

∣
∣ψ(0)

〉 = 0 if x ∈ M .

Exercise 11.11. To show that
〈
θ±
j

∣
∣ψ(0)

〉
= 0, for 1 ≤ j ≤ n − m − 1, use the

expressions of A and B given by (11.3) and (11.4), and the expressions for |αx 〉
and

∣
∣βy
〉
given by (11.5) and (11.6), where pxy and qxy are given by (11.49). Equa-

tion (11.54) and Exercise11.9 must also be used. The expression of |ψ(0)〉 is given
by (11.55).

Exercise 11.12. The purpose of this exercise is to guide the calculation of coeffi-
cients c± in (11.56), which are defined by

c± = 〈
θ±
n−m

∣
∣ψ(0)

〉
.

Using (11.55) and (11.64), cancel out the orthogonal terms and simplify the result.

Applying Wt
P ′ to |ψ(0)〉—given by (11.56)—using that

∣
∣θ±

n−m

〉
are eigenvectors

associated with eigenvalues e±2iθ2 , and |β〉 is in the 1-eigenspace, we obtain

|ψ(t)〉 = Wt
P ′ |ψ(0)〉

= c+e2iθ2t
∣
∣θ+

n−m

〉+ c−e−2iθ2t
∣
∣θ−

n−m

〉+ |β〉, (11.59)

Using the expression of |ψ(t)〉 and (11.36), we can calculate F(T ). The difference
|ψ(t)〉 − |ψ(0)〉 can be calculated as follows: Using (11.56) and (11.59), we obtain

|ψ(t)〉 − |ψ(0)〉 = c+(e2iθ2t − 1)
∣
∣θ+

n−m

〉+ c−(e−2iθ2t − 1)
∣
∣θ−

n−m

〉
(11.60)

and using (11.57), we obtain

∥
∥
∥|ψ(t)〉 − |ψ(0)〉

∥
∥
∥
2 = ∣

∣c+(e2iθ2t − 1)
∣
∣2 + ∣

∣c−(e−2iθ2t − 1)
∣
∣2

= 4(n − 1)(n − m)

n(2n − m − 2)

(

1 − T2t

(
n − m − 1

n − 1

))

,

where Tn are the Chebyshev polynomials of the first kind. Taking the average and
using

T∑

t=0

T2t

(
n − m − 1

n − 1

)

= 1

2
+ 1

2
U2T

(
n − m − 1

n − 1

)

(11.61)

we obtain

F(T ) = 2 (n − 1) (n − m)
(
2 T + 1 −U2T

(
n−m−1
n−1

))

n (2 n − m − 2) (T + 1)
, (11.62)



242 11 Szegedy’s Quantum Walk

Fig. 11.3 Graph of function
F(T ) (solid line), the line
1 − m

n (dashed line), and the

line 4(n−1)(n−m)
n(2 n−m−2) (dotted line)

for n = 100 and m = 21.
The quantum hitting time is
the time T such that
F(T ) = 1 − m

n , which is
about 1.13

where Un are the Chebyshev polynomials of the second kind. The graph in Fig. 11.3
shows the behavior of function F(T ). F(T ) grows rapidly passing through the dashed
line, which represents 1 − m/n, and oscillates about the limiting value 4(n−1)(n−m)

n(2 n−m−2) .
For n � m, we obtain the hitting time HP,M by inverting the Laurent series of

the equation F(T ) = 1 − m
n . The first terms are

HP,M = j−1
0

(
1
2

)

2

√
n

2m
−

√

1 − 1
4 j−1

0

(
1
2

)2

1 + 2
√

1 − 1
4 j−1

0

(
1
2

)2
+ O

(
1√
n

)

, (11.63)

where j0 is a spherical Bessel function of the first kind or the unnormalized sync
function, and j−1

0

(
1
2

)
is approximately 1.9.

Exercise 11.13. The purpose of this exercise is to obtain (11.61). Use the trigono-
metric representation of Tn and convert the cosine into a sum of exponentials of
complex arguments. Use the formula of the geometric series

∑T
t=0 a

t = aT+1−1
a−1 to

simplify the sum. Convert the result to the form of Chebyshev polynomials of the
second kind.

11.8.1 Probability of Finding a Marked Element

The quantum hitting time is used in search algorithms as the running time. It is
important to calculate the success probability when we use the hitting time. The
calculation of the probability of finding a marked element as a function of time
is more elaborated than the calculation of the hitting time because we explicitly
calculate |ψ(t)〉, that is, we calculate the vectors ∣∣θ±

n−m

〉
and |β〉 that appear in (11.59).

Using (11.3) and (11.4), we obtain



11.8 Example: Complete Graphs 243

∣
∣θ±

n−m

〉 = 1√
2 sin θ2

(
A − e±iθ2B

)∣
∣u(n−m)

〉

= 1√
2(n − m) sin θ2

⎛

⎝
n−m∑

x=1

|αx 〉 − e±iθ2
n−m∑

y=1

∣
∣βy
〉
⎞

⎠.

Using (11.5), (11.6), and (11.49), we obtain

∣
∣θ±

n−m

〉 = 1√
2(n − 1)(n − m) sin θ2

⎛

⎝
(
1 − e±iθ2

) n−m∑

x,y=1

(
1 − δxy

)|x〉|y〉

+
n−m∑

x=1

n∑

y=n−m+1

|x〉|y〉 − e±iθ2
n∑

x=n−m+1

n−m∑

y=1

|x〉|y〉
⎞

⎠ . (11.64)

Using (11.57) and (11.58), the expression for the quantum state at time t reduces to

|ψ(t)〉 = 1√
n(n − 1)

⎛

⎝
2(n − 1)T2t

(
n−m−1
n−1

)

2 n − m − 2

n−m∑

x,y=1

(
1 − δxy

)|x〉|y〉

+
(

(n − 1)T2t
(
n−m−1
n−1

)

2 n − m − 2
−U2t−1

(
n − m − 1

n − 1

)) n−m∑

x=1

n∑

y=n−m+1

|x〉|y〉

+
(

(n−1)T2t
(
n−m−1
n−1

)

2 n − m − 2
+U2t−1

(
n − m − 1

n − 1

)) n∑

x=n−m+1

n−m∑

y=1

|x〉|y〉
⎞

⎠

+|β〉. (11.65)

Vector |β〉 can be determined from (11.56), since we know |ψ(0)〉 and
∣
∣θ±

n−m

〉
.

The result is

|β〉 = 1√
n(n − 1)

⎛

⎝ −m

2n − m − 2

n−m∑

x,y=1

(
1 − δxy

)|x〉|y〉

+ n − m − 1

2n − m − 2

n−m∑

x=1

n∑

y=n−m+1

(|x〉|y〉 + |y〉|x〉)

+
n∑

x,y=n−m+1

(
1 − δxy

)|x〉|y〉
⎞

⎠ . (11.66)

The probability of finding a marked element pM(t) after performing a measure-
ment with projectorsPM and I − PM , wherePM is the projector on the vector space
spanned by the marked elements



244 11 Szegedy’s Quantum Walk

Fig. 11.4 Graph of the
probability of finding a
marked vertex as a function
of time for n = 100 and
m = 21. The initial value is
m
n , and the probability has
period π

θ2

PM =
n∑

x=n−m+1

|x〉〈x | ⊗ I

=
n∑

x=n−m+1

n∑

y=1

|x, y〉〈x, y|, (11.67)

is given by 〈ψ(t)|PM |ψ(t)〉. Using (11.65), we obtain

pM(t) = m(m − 1)

n(n − 1)
+ m(n − m)

n(n − 1)

(
n − 1

2 n − m − 2
T2t

(
n − m − 1

n − 1

)

+ U2t−1

(
n − m − 1

n − 1

)

+ n − m − 1

2n − m − 2

)2

(11.68)

the graph of which is shown in Fig. 11.4 for n = 100 and m = 21.
We can determine the critical points of pM(t) by differentiating with respect to

time. The first maximum point occurs at time

tmax =
arctan

(√
2n − m − 2√

m

)

2 arccos

(
n − m − 1

n − 1

) , (11.69)

the asymptotic expansion of which is

tmax = π

4

√
n

2m
− 1

4
+ O

(√
m

n

)

. (11.70)



11.8 Example: Complete Graphs 245

Using (11.68), we obtain

pM(tmax) = 1

2
+
√

m

2 n
+ O

(m

n

)
. (11.71)

For any n or m, the probability of finding the marked vertex is greater than 1
2 if the

measurement is performed at time tmax. The time tmax is less than the hitting time—

see (11.63) because π
4
√
2

≈ 0.56 and
j−1
0 ( 1

2 )
2
√
2

≈ 0.67. The success probability of an
algorithm that uses the quantum hitting time as the running time will be smaller than
the probability at time tmax. Evaluating pM at time HP,M and taking the asymptotic
expansion, we obtain

pM(HP,M) = 1

8
j−1
0

(
1

2

)2

+ O

(
1√
n

)

. (11.72)

The first term is about 0.45 and does not depend on n or m. This shows that the
quantum hitting time is a good parameter for the running time of the searching
algorithm.

Exercise 11.14. Using (11.68), show that

1. pM(0) = m
n .

2. pM(t) is a periodic function with period π
θ2
.

3. the maximum points for t ≥ 0 are given by

t j = 1

2θ2
arctan

(
1 + cos θ2

sin θ2

)

+ jπ

2θ2
,

where j = 0, 1, . . ..

Exercise 11.15. Show that in the asymptotic limit n � m, the expression of the
success probability is

pM(t) = 1

2
sin2(2tθ2) + O

(
1√
n

)

.

Further Reading

The quantum walk model described in this chapter was introduced by Szegedy
in [307]. The definition of the quantum hitting time presented in Sect. 11.6 was
based on [307]. Reference [308] is also useful. Lemma11.1 was proved by Konno,
Sato, and Segawa [189]. The theory of classical Markov chains is described in many
references, for instance, [11, 215, 235, 245].

Szegedy’s quantum walk has many points in common with the bipartite quantum
walk introduced by Ambainis to obtain the optimal algorithm for the element dis-
tinctness problem [14]. Despite the overlap, Ambainis’ quantumwalk cannot be con-
sidered an instance of Szegedy’s model in a strict sense because the graph employed



246 11 Szegedy’s Quantum Walk

by Ambainis is a nonsymmetric bipartite graph and the searching uses an oracle,
while the searching in Szegedy’s model uses sinks in symmetric bipartite digraphs.
It is more precise to state that Ambainis’ quantum walk is an instance of a bipartite
quantum walk. Szegedy’s model on the duplicated graph of the Johnson graph was
used by Santha [290] to obtain a new alternate algorithm for the element distinct-
ness problem. A new version of the element distinctness was described in [265] by
converting the original Ambainis’ algorithm into an instance of a 2-tessellable stag-
gered quantumwalk. The new version is simpler and describes the optimal values for
obtaining an asymptotic 100% success probability. Since Szegedy’s model is entirely
included in the staggered model [269], the version using the Johnson graph can also
be converted into a 2-tessellable staggered quantum walk by using the line graph
of the bipartite graph obtained from the duplication of a Johnson graph.

An extension of Szegedy’s model for ergodic Markov chains was introduced
in [195, 224, 225]. The main problem that these references address is to show that
the hitting time is of the order of the detection time. Reference [224] uses Tulsi’s
modification [315] to amplify the probability of finding a marked element, but can
only be applied to symmetrical ergodic Markov chains. Reference [195] proposed
a more general algorithm which is able to find a marked element with a quadratic
speedup. Szegedy’s model helped the development of new quantum algorithms faster
than their classical counterparts. Reference [226] presented an algorithm for finding
triangles in a graph. Reference [223] described an algorithm to test the commutativity
of black box groups. The calculation of the quantum hitting time in complete graphs
was presented in [292]. Master’s thesis [159] presented an overview of the Szegedy’s
hitting time and the algorithm to test the commutativity of groups.

Quantum circuits for Szegedy’s quantumwalks were presented in References [77,
213]. Large sparse electrical networks were analyzed in [323] using Szegedy’s quan-
tum walk. Reference [157] analyzed a quantum walk similar to Szegedy’s quantum
walk on the path. Chiang and Gomez [76] analyzed the hitting time with perturba-
tions. References [211, 254] used Szegedy’s walk to the quantum Pagerank algo-
rithm for determining the relative importance of nodes in a graph. Segawa [295]
analyzed recurrent properties of the underlying random walk and the localization of
the corresponding Szegedy’s quantum walk. Higuchi et al. [145] analyzed the rela-
tion between a twisted version of Szegedy’s model with the Grover walk. Dunjko
and Briegel [107] analyzed mixing times in Szegedy’s model. Santos [291] ana-
lyzed Szegedy’s searching model with queries (oracle-based instead of sink-based
searching). Ohno [250] addressed the unitary equivalence of one-dimensional quan-
tum walks and presented a necessary and sufficient condition for a one-dimensional
quantum walk to be a Szegedy walk. Wong [330] used Szegedy’s model to obtain a
coined quantum walk on weighted graphs. Ho et al. [147] derived the time-averaged
distribution of Szegedy’s walk in relation to the Ehrenfest model. Reference [29]
analyzed limiting probability distribution of Szegedy’s quantum walk.



Appendix A
Linear Algebra for Quantum Computation

The goal of this appendix is to compile the definitions, notations, and facts of linear
algebra that are important for this book. Quantum computation has inherited linear
algebra from quantum mechanics as the supporting language for describing this
area. It is essential to have a solid knowledge of the basic results of linear algebra
to understand quantum computation and quantum algorithms. If the reader does not
have this base knowledge, we suggest reading some basic references recommended
at the end of this appendix.

A.1 Vector Spaces

A vector space V over the field of complex numbersC is a nonempty set of elements
called vectors together with two operations called vector addition and multiplication
of a vector by a scalar in C. The addition operation is associative and commutative
and satisfies the following axioms:

• There is an element 0 ∈ V , such that, for each v ∈ V , v + 0 = 0 + v = v (exis-
tence of neutral element).

• For each v ∈ V , there exists u = (−1)v in V such that v + u = 0 (existence of
inverse element).

0 is called zero vector. The scalar multiplication operation satisfies the following
axioms:

• a.(b.v) = (a.b).v (associativity),
• 1.v = v (1 is the neutral element of multiplication),
• (a + b).v = a.v + b.v (distributivity over sum of scalars),
• a.(v + w) = a.v + a.w (distributivity over vector addition).

where v, w ∈ V and a, b ∈ C.
A vector space can be infinite, but in most applications in quantum computation,

finite vector spaces are used and are denoted by C
n , where n is the number of

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0

247



248 Appendix A: Linear Algebra for Quantum Computation

dimensions. In this case, the vectors have n complex entries. In this book, we rarely
use infinite spaces, and in these few cases, we are interested only in finite subspaces.
In the context of quantum mechanics, infinite vector spaces are used more frequently
than finite spaces.

A basis for Cn consists of exactly n linearly independent vectors. If {v1, . . . , vn}
is a basis for Cn , then an arbitrary vector v can be written as

v =
n∑

i=1

aivi ,

where coefficients ai are complex numbers. The dimension of a vector space is the
number of basis vectors and is denoted by dim(V ).

A.2 Inner Product

The inner product is a binary operation (·, ·) : V × V �→ C, which obeys the fol-
lowing properties:

1. (·, ·) is linear in the second argument

(
v,

n∑

i=1

aivi

)
=

n∑

i=1

ai (v, vi ) .

2. (v1, v2) = (v2, v1)
∗.

3. (v, v) ≥ 0. The equality holds if and only if v = 0.

In general, the inner product is not linear in the first argument. The property in
question is called conjugate-linear.

There is more than one way to define an inner product on a vector space. In C
n ,

the most used inner product is defined as follows: If

v =
⎡

⎢⎣
a1
...

an

⎤

⎥⎦ , w =
⎡

⎢⎣
b1
...

bn

⎤

⎥⎦ ,

then

(v, w) =
n∑

i=1

a∗
i bi .

This expression is equivalent to the matrix product of the transpose–conjugate vector
v† and w.



Appendix A: Linear Algebra for Quantum Computation 249

Two vectors v1 and v2 are orthogonal if the inner product (v1, v2) is zero. We
also introduce the notion of norm using the inner product. The norm of v, denoted
by ‖v‖, is defined as

‖v‖ = √(v, v).

A normalized vector or unit vector is a vector whose norm is equal to 1. A basis is
said orthonormal if all vectors are normalized and mutually orthogonal.

A finite vector space with an inner product is called a Hilbert space and denoted
byH. In order to an infinite vector space be a Hilbert space, it must obey additional
properties besides having an inner product. Since we deal primarily with finite vector
spaces, we use the term Hilbert space as a synonym for vector space with an inner
product. A vector subspace (or simply subspace) W of a finite Hilbert space V is
also a Hilbert space. The set of vectors orthogonal to all vectors of W is the Hilbert
space W⊥ called orthogonal complement. V is the direct sum of W and W⊥, that
is, V = W ⊕ W⊥. A N -dimensional Hilbert space is denoted byHN to highlight its
dimension. A Hilbert space associated with a system A is denoted byHA or simply
A. If A is a subspace of H, then H = A + A⊥, which means that any vector in H
can be written as a sum of a vector in A and a vector in A⊥.

Exercise A.1. LetA andB be subspaces ofH. Show that dim(A + B) = dim(A) +
dim(B) − dim(A ∩ B),

(A + B)⊥ = A⊥ ∩ B⊥, and
(A ∩ B)⊥ = A⊥ + B⊥.

Exercise A.2. Give one example of subspacesA andB ofC3 such that (A ∩ B)⊥ �=
A ∩ B⊥ + A⊥ ∩ B + A⊥ ∩ B⊥.

A.3 The Dirac Notation

In this review of linear algebra, we use the Dirac or bra–ket notation, which was
introduced by the English physicist Paul Dirac in the context of quantum mechanics
to aid algebraic manipulations. This notation is very easy to grasp. Several alternative
notations for vectors are used, such as v and �v. The Dirac notation uses |v〉. Up to this
point, instead of using boldface or an arrow over letter v, we put letter v between a
vertical bar and a right angle bracket. Ifwe have an indexed basis, that is, {v1, . . . , vn},
in the Dirac notation we use the form {|v1〉, . . . , |vn〉} or {|1〉, . . . , |n〉}. Note that if
we are using a single basis, letter v is unnecessary in principle. Computer scientists
usually start counting from 0. So, the first basis vector is usually called v0. In the
Dirac notation we have

v0 = |0〉.

Vector |0〉 is not the zero vector; it is only the first vector in a collection of vectors.
The zero vector is an exception, whose notation is not modified. Here we use the
notation 0.

Suppose that vector |v〉 has the following entries in a basis



250 Appendix A: Linear Algebra for Quantum Computation

|v〉 =
⎡

⎢⎣
a1
...

an

⎤

⎥⎦ .

The dual vector is denoted by 〈v| and is defined by

〈v| = [a∗
1 · · · a∗

n

]
.

Vectors and their duals can be seen as column and row matrices, respectively. The
matrix product of 〈v| and |v〉, denoted by

〈
v
∣∣v
〉
, is

〈
v
∣∣v
〉 =

n∑

i=1

a∗
i ai ,

which coincides with (|v〉, |v〉). Then, the norm of a vector in the Dirac notation is

∥∥|v〉∥∥ =
√〈

v
∣∣v
〉
.

If {|v1〉, . . . , |vn〉} is an orthonormal basis, then

〈
vi
∣∣v j
〉 = δi j ,

where δi j is the Kronecker delta. We use the terminology ket for the vector |v〉 and
bra for the dual vector 〈v|. Keeping consistency, we use the terminology bra–ket for〈
v
∣∣v
〉
.

It is also very common to see the matrix product of |v〉 and 〈v|, denoted by |v〉〈v|,
known as the outer product, whose result is a n × n matrix

|v〉〈v| =
⎡

⎢⎣
a1
...

an

⎤

⎥⎦ · [a∗
1 · · · a∗

n

]

=
⎡

⎢⎣
a1a∗

1 · · · a1a∗
n

. . .

ana∗
1 · · · ana∗

n

⎤

⎥⎦ .

The key to the Dirac notation is to always view kets as column matrices, bras as
row matrices, and recognize that a sequence of bras and kets is a matrix product,
hence associative, but noncommutative.



Appendix A: Linear Algebra for Quantum Computation 251

A.4 Computational Basis

The computational basis of Cn is {|0〉, . . . , |n − 1〉}, where

|0〉 =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ , . . . , |n − 1〉 =

⎡

⎢⎢⎢⎣

0
0
...

1

⎤

⎥⎥⎥⎦ .

This basis is also known as canonical basis. A few times we use the numbering
of the computational basis beginning with |1〉 and ending with |n〉. In this book,
when we use a small-caption Latin letter within a ket or bra, we are referring to the
computational basis. Then, the following expression is always valid

〈
i
∣∣ j
〉 = δi j .

The normalized sum of all computational basis vectors defines vector

|D〉 = 1√
n

n−1∑

i=0

|i〉,

which we call diagonal state. When n = 2, the diagonal state is given by |D〉 = |+〉,
where

|+〉 = |0〉 + |1〉√
2

.

Exercise A.3. Calculate explicitly the values of |i〉〈 j | and
n−1∑

i=0

|i〉〈i |

in C3.

A.5 Qubit and the Bloch Sphere

The qubit is a unit vector in vector space C2. An arbitrary qubit |ψ〉 is represented
by

|ψ〉 = α |0〉 + β |1〉,

where coefficients α and β are complex numbers and obey the constraint



252 Appendix A: Linear Algebra for Quantum Computation

Fig. A.1 Bloch sphere. The
state |ψ〉 of a qubit is
represented by a point on the
sphere

θ

φ

|ψ〉

x

y

z
|0〉

|1〉

|α|2 + |β|2 = 1.

The set {|0〉, |1〉} is the computational basis of C2, and α, β are called amplitudes
of state |ψ〉. The term state (or state vector) is used as a synonym for unit vector in
a Hilbert space.

In principle, we need four real numbers to describe a qubit, two for α and two for
β. The constraint |α|2 + |β|2 = 1 reduces to three numbers. In quantum mechanics,
two vectors that differ from a global phase factor are considered equivalent. A
global phase factor is a complex number of unit modulus multiplying the state. By
eliminating this factor, a qubit can be described by two real numbers θ and φ as
follows:

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉,

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π . In the notation above, state |ψ〉 can be rep-
resented by a point on the surface of a sphere of unit radius called Bloch sphere.
Numbers θ and φ are spherical angles that locate the point that describes |ψ〉, as
shown in Fig. A.1. The vector showed there is given by

⎡

⎣
sin θ cosφ

sin θ sin φ

cos θ

⎤

⎦ .

When we disregard global phase factors, there is a one-to-one correspondence
between the quantum states of a qubit and the points on the Bloch sphere. State |0〉
is the north pole of the sphere because it is obtained by taking θ = 0. State |1〉 is the
south pole. States

|±〉 = |0〉 ± |1〉√
2



Appendix A: Linear Algebra for Quantum Computation 253

are the intersection points of the x-axis and the sphere; states (|0〉 ± i|1〉)/√2 are
the intersection points of the y-axis with the sphere.

The representation of classical bits in this context is given by the poles of the
Bloch sphere, and the representation of the probabilistic classical bit, that is, 0 with
probability p and 1 with probability 1 − p, is given by the point on z-axis with
coordinate 2p − 1. The interior of the Bloch sphere is used to describe states of a
qubit in the presence of decoherence.

Exercise A.4. Using the Dirac notation, show that opposite points on the Bloch
sphere correspond to orthogonal states.

Exercise A.5. Suppose you know that the state of a qubit is either |+〉 with proba-
bility p or |−〉 with probability 1 − p. If this is the best you know about the state of
the qubit, where on the Bloch sphere would you represent this qubit?

A.6 Linear Operators

Let V and W be vector spaces, {|v1〉, . . . , |vn〉} a basis for V , and A a function
A : V �→ W that satisfies

A
(
∑

i

ai |vi 〉
)

=
∑

i

aiA(|vi 〉),

for any complex numbers ai . A is called a linear operator from V to W . The
term linear operator on V means that both the domain and codomain of A are
V . The composition of linear operators A : V1 �→ V2 and B : V2 �→ V3 is also a
linear operator C : V1 �→ V3 obtained through the composition of their functions:
C(|v〉) = B(A(|v〉)). The sum of two linear operators, both from V to W , is defined
by formula (A + B)(|v〉) = A(|v〉) + B(|v〉).

The identity operator I on V is a linear operator such that I(|v〉) = |v〉 for all
|v〉 ∈ V . The null operator O on V is a linear operator such that O(|v〉) = 0 for all
|v〉 ∈ V .

The rank of a linear operator A on V is the dimension of the image of A. The
kernel or nullspace or support of a linear operator A on V is the set of all vectors
|v〉 such that A(|v〉) = 0. The dimension of the kernel is called the nullity of the
operator. The rank–nullity theorem states that rank(A) + nullity(A) = dim(V ).

Fact

If we specify the action of a linear operatorA on a basis of vector space V , the action
of A on any vector in V can be determined by using the linearity property.



254 Appendix A: Linear Algebra for Quantum Computation

A.7 Matrix Representation

Linear operators are represented by matrices. Let A : V �→ W be a linear operator.
Let {|v1〉, . . . , |vn〉} and {|w1〉, . . . , |wm〉} be orthonormal bases for V and W , re-
spectively. Thematrix representation ofA is obtained by applyingA to every vector
in the basis of V and expressing the result as a linear combination of basis vectors
of W , as follows:

A (∣∣v j
〉) =

m∑

i=1

ai j |wi 〉,

where index j run from 1 to n. Therefore, ai j are entries of am × n matrix, which we
call A. In this case, expressionA (∣∣v j

〉)
, whichmeans functionA applied to argument∣∣v j

〉
, is equivalent to the matrix product A

∣∣v j
〉
. Using the outer product notation, we

have

A =
m∑

i=1

n∑

j=1

ai j |wi 〉
〈
v j

∣∣.

Using the above equation and the fact that the basis of V is orthonormal, we can
verify that the matrix product of A and

∣∣v j
〉
is equal to A (∣∣v j

〉)
. The key to this

calculation is to use the associativity of matrix multiplication:

(|wi 〉
〈
v j

∣∣)|vk〉 = |wi 〉
( 〈

v j

∣∣vk
〉 )

= δ jk |wi 〉.

In particular, the matrix representation of the identity operator I in any orthonor-
mal basis is the identity matrix I and the matrix representation of the null operator
O in any orthonormal basis is the zero matrix.

If the linear operator C is the composition of the linear operators B and A, the
matrix representation of C is obtained by multiplying the matrix representation of B
with that of A, that is, C = BA.

When we fix orthonormal bases for the vector spaces, there is a one-to-one corre-
spondence between linear operators and matrices. In C

n , we use the computational
basis as a reference basis, so that the terms linear operator and matrix are taken as
synonyms. We also use the term operator as a synonym for linear operator.

Exercise A.6. Suppose B is an operator whose action on the computational basis
of the n-dimensional vector space V is

B| j〉 = ∣∣ψ j
〉
,

where
∣∣ψ j
〉
are vectors in V for all j .

1. Obtain the expression of B using the outer product.
2. Show that

∣∣ψ j
〉
is the j th column in the matrix representation of B.



Appendix A: Linear Algebra for Quantum Computation 255

3. Suppose that B is the Hadamard operator

H = 1√
2

[
1 1
1 −1

]
.

Redo the previous items using operator H .

A.8 Diagonal Representation

Let A be an operator on V . If there exists an orthonormal basis {|v1〉, . . . , |vn〉} of V
such that

A =
n∑

i=1

λi |vi 〉〈vi |,

we say that A admits a diagonal representation or, equivalently, A is diagonalizable.
The complex numbers λi are the eigenvalues of A and |vi 〉 are the corresponding
eigenvectors. A vector |ψ〉 is an eigenvector of A if there is a scalar λ, called eigen-
value, so that

A|ψ〉 = λ|ψ〉.

Any multiple of an eigenvector is also an eigenvector. If two eigenvectors are asso-
ciated with the same eigenvalue, then any linear combination of these eigenvectors
is an eigenvector. The number of linearly independent eigenvectors associated with
the same eigenvalue is the multiplicity of that eigenvalue. We use the short notation
“λ-eigenvectors” for eigenvectors associated with eigenvalues λ.

If there are eigenvalues with multiplicity greater than one, the diagonal represen-
tation is factored out as follows:

A =
∑

λ

λPλ,

where index λ runs only on the distinct eigenvalues and Pλ is the projector on
the eigenspace of A associated with eigenvalue λ. If λ has multiplicity 1, Pλ =
|v〉〈v|, where |v〉 is the unit eigenvector associated with λ. If λ has multiplic-
ity 2 and |v1〉, |v2〉 are linearly independent unit eigenvectors associated with λ,
Pλ = |v1〉〈v1| + |v2〉〈v2| and so on. The projectors Pλ satisfy

∑

λ

Pλ = I.

An alternative way to define a diagonalizable operator is by requiring that A is
similar to a diagonal matrix.Matrices A and A′ are similar if A′ = M−1AM for some
invertible matrix M . We have interest only in the case when M is a unitary matrix.



256 Appendix A: Linear Algebra for Quantum Computation

The term diagonalizable used here is narrower than the one used in the literature
because we are demanding that M be a unitary matrix.

The characteristic polynomial of a matrix A, denoted by pA(λ), is the monic
polynomial

pA(λ) = det(λI − A).

The roots of pA(λ) are the eigenvalues of A. Usually, the best way to calculate the
eigenvalues of a matrix is via the characteristic polynomial. For a two-dimensional
matrix U , the characteristic polynomial is given by

pU (λ) = λ2 − tr(U ) λ + det(U ).

IfU is a real unitary matrix, the eigenvalues have the form e±iω and the characteristic
polynomial is given by

pU (λ) = λ2 − 2λ cosω + 1.

Exercise A.7. Suppose that A is a diagonalizable operator with eigenvalues ±1.
Show that

P±1 = I ± A

2
.

A.9 Completeness Relation

The completeness relation is so useful that it deserves to be highlighted. Let {|v1〉, . . .,
|vn〉} be an orthonormal basis of V . Then,

I =
n∑

i=1

|vi 〉〈vi |.

The completeness relation is the diagonal representation of the identity matrix.

Exercise A.8. If {|v1〉, . . . , |vn〉} is an orthonormal basis, it is straightforward to
show that

A =
m∑

i=1

n∑

j=1

ai j |wi 〉
〈
v j

∣∣

implies

A
∣∣v j
〉 =

m∑

i=1

ai j |wi 〉.

Prove the reverse, that is, given the above expressions for A
∣∣v j
〉
, use the completeness

relation to obtain A. [Hint: Multiply the last equation by
〈
v j

∣∣ and sum over j .]



Appendix A: Linear Algebra for Quantum Computation 257

A.10 Cauchy–Schwarz Inequality

Let V be a Hilbert space and |v〉, |w〉 ∈ V . Then,

∣∣ 〈v
∣∣w
〉 ∣∣ ≤

√〈
v
∣∣v
〉 〈

w
∣∣w
〉
.

A more explicit way of presenting the Cauchy–Schwarz inequality is

∣∣∣∣∣
∑

i

viwi

∣∣∣∣∣

2

≤
(
∑

i

|vi |2
)(
∑

i

|wi |2
)

,

which is obtained when we take |v〉 =∑i v
∗
i |i〉 and |w〉 =∑i wi |i〉.

A.11 Special Operators

Let A be a linear operator on Hilbert space V . Then, there exists a unique linear
operator A† on V , called adjoint operator, that satisfies

(|v〉, A|w〉) = (A†|v〉, |w〉) ,

for all |v〉, |w〉 ∈ V .
The matrix representation of A† is the transpose–conjugate matrix (A∗)T . The

main properties of the dagger or transpose–conjugate operation are

1. (A B)† = B†A†

2. |v〉† = 〈v|
3.
(
A|v〉)† = 〈v|A†

4.
(|w〉〈v|)† = |v〉〈w|

5.
(
A†
)† = A

6.
(∑

i ai Ai
)† =∑i a

∗
i A

†
i

The last property shows that the dagger operation is conjugate-linear when applied
on a linear combination of operators.

Normal Operator

An operator A on V is normal if A†A = AA†.

Spectral Theorem

An operator A on V is diagonalizable if and only if A is normal.

Unitary Operator

An operator U on V is unitary if U †U = UU † = I .



258 Appendix A: Linear Algebra for Quantum Computation

Facts about Unitary Operators

Unitary operators are normal. They are diagonalizable with respect to an orthonormal
basis. Eigenvectors of a unitary operator associated with different eigenvalues are
orthogonal. The eigenvalues have unit modulus, that is, they have the form eiα , where
α is a real number . Unitary operators preserve the inner product, that is, the inner
product ofU |v1〉 andU |v2〉 is equal to the inner product of |v1〉 and |v2〉. The action
of a unitary operator on a vector preserves its norm.

Hermitian Operator

An operator A on V is Hermitian or self-adjoint if A† = A.

Facts about Hermitian Operators

Hermitian operators are normal. They are diagonalizable with respect to an orthonor-
mal basis. Eigenvectors of a Hermitian operator associated with different eigenvalues
are orthogonal. The eigenvalues of a Hermitian operator are real numbers. A real
symmetric matrix is Hermitian.

Orthogonal Projector

An operator P on V is an orthogonal projector if P2 = P and P† = P .

Facts about Orthogonal Projectors

The eigenvalues are equal to 0 or 1. If P is an orthogonal projector, then the orthog-
onal complement I − P is also an orthogonal projector. Applying a projector to a
vector either decreases its norm or maintains invariant. In this book, we use the term
projector as a synonym for orthogonal projector. We use the term nonorthogonal
projector explicitly to distinguish this case. An example of a nonorthogonal projector
on a qubit is P = |1〉(〈0| + 〈1|). Note that P is not normal in this example.

Positive Operator

An operator A on V is said positive if
〈
v
∣∣A
∣∣v
〉 ≥ 0 for any |v〉 ∈ V . If the inequality

is strict for any nonzero vector in V , then the operator is said positive definite.

Facts about Positive Operators

Positive operators are Hermitian. The eigenvalues are nonnegative real numbers.

Exercise A.9. Consider matrix

M =
[
1 0

1 1

]
.

1. Show that M is not normal.
2. Show that the eigenvectors of M generate a one-dimensional space.



Appendix A: Linear Algebra for Quantum Computation 259

Exercise A.10. Consider matrix

M =
[
1 0

1 −1

]
.

1. Show that the eigenvalues of M are ±1.
2. Show that M is not unitary nor Hermitian.
3. Show that the eigenvectors associated with distinct eigenvalues of M are not

orthogonal.
4. Show that M has a diagonal representation.

Exercise A.11. 1. Show that the product of two unitary operators is a unitary
operator.

2. The sum of two unitary operators is necessarily a unitary operator? If not, give
a counterexample.

Exercise A.12. 1. Show that the sum of two Hermitian operators is a Hermitian
operator.

2. The product of two Hermitian operators is necessarily a Hermitian operator? If
not, give a counterexample.

Exercise A.13. Show that A†A is a positive operator for any operator A.

A.12 Pauli Matrices

The Pauli matrices are

σ0 = I =
[
1 0
0 1

]
,

σ1 = σx = X =
[
0 1
1 0

]
,

σ2 = σy = Y =
[
0 −i
i 0

]
,

σ3 = σz = Z =
[
1 0
0 −1

]
.

These matrices are unitary and Hermitian, and hence their eigenvalues are equal to
±1. Putting in another way: σ 2

j = I and σ
†
j = σ j to j = 0, . . . , 3.

The following facts are extensively used:

X |0〉 = |1〉, X |1〉 = |0〉,



260 Appendix A: Linear Algebra for Quantum Computation

Z |0〉 = |0〉, Z |1〉 = −|1〉.

Pauli matrices form a basis for the vector space of 2 × 2 matrices. Therefore, an
arbitrary operator that acts on a qubit can be written as a linear combination of Pauli
matrices.

Exercise A.14. Consider the representation of the state |ψ〉 of a qubit on the Bloch
sphere. What is the representation of states X |ψ〉, Y |ψ〉, and Z |ψ〉 relative to |ψ〉?
What is the geometric interpretation of the action of the Pauli matrices on the Bloch
sphere?

A.13 Operator Functions

If we have an operator A on V , we ask whether it is possible to calculate
√
A, that

is, to find an operator whose square is A? It is more interesting to ask ourselves
whether it makes sense to use an operator as an argument of an arbitrary function
f : C �→ C, such as the exponential or logarithmic function. If f is analytic, we use
the Taylor expansion of f (x) and replace x by A. This will not work for the square
root function. There is an alternate route for lifting f if operator A is normal. Using
the diagonal representation, A can be written in the form

A =
∑

i

ai |vi 〉〈vi |,

where ai are the eigenvalues and the set {|vi 〉} is an orthonormal basis of eigenvec-
tors of A. We extend the application of a function f : C �→ C to the set of normal
operators as follows. If A is a normal operator, then

f (A) =
∑

i

f (ai )|vi 〉〈vi |.

The result is an operator defined on the same vector space V .
If the goal is to calculate

√
A, first A must be diagonalized, that is, we must

determine a unitary matrix U such that A = UDU †, where D is a diagonal matrix.
Then, we use the fact that

√
A = U

√
DU †, where

√
D is calculated by taking the

square root of each diagonal element.
IfU is the evolution operator of an isolated quantum systemwhose state is |ψ(0)〉

initially, the state at time t is given by

|ψ(t)〉 = Ut |ψ(0)〉.

Usually, the most efficient way to calculate state |ψ(t)〉 is to obtain the diagonal
representation of the unitary operator U , described as



Appendix A: Linear Algebra for Quantum Computation 261

U =
∑

i

λi |vi 〉〈vi |,

and to calculate the t th power of U , which is

Ut =
∑

i

λt
i |vi 〉〈vi |.

The system state at time t will be

|ψ(t)〉 =
∑

i

λt
i

〈
vi
∣∣ψ(0)

〉 |vi 〉.

The trace of a matrix is another type of operator function. In this case, the result
of applying the trace function is a complex number defined as

tr(A) =
∑

i

aii ,

where aii is the i th diagonal element of A. In the Dirac notation,

tr(A) =
∑

i

〈vi |A|vi 〉,

where {|v1〉, . . . , |vn〉} is an orthonormal basis of V . The trace function satisfies the
following properties:

1. (Linearity) tr(aA + bB) = a tr(A) + b tr(B),

2. (Commutativity) tr(AB) = tr(BA),

3. (Cyclic property) tr(A B C) = tr(CA B).

The third property follows from the second one. Properties 2 and 3 are valid when A,
B, and C are not square matrices (AB, ABC , and CAB must be square matrices).

The trace function is invariant under the similarity transformation, that is,
tr(M−1AM) = tr(A), where M is an invertible matrix. This implies that the trace
does not depend on the basis choice for the matrix representation of A.

A useful formula involving the trace of operators is

tr(A|ψ〉〈ψ |) = 〈ψ∣∣A∣∣ψ 〉 ,

for any |ψ〉 ∈ V and any A on V . This formula is easily proved using the cyclic
property of the trace function.

Exercise A.15. Using the method of applying functions to matrices described in
this section, find all matrices M such that



262 Appendix A: Linear Algebra for Quantum Computation

M2 =
[
5 4

4 5

]
.

Exercise A.16. If f is analytic and A is normal, show that f (A) using the Taylor
expansion is equal to f (A) using the spectral decomposition.

A.14 Norm of a Linear Operator

Given a vector space V over the complex numbers, a norm on V is a function
‖ ‖ : V → R with the following properties:

• ‖a|ψ〉‖ = |a| ‖|ψ〉‖,
• ‖|ψ〉 + ∣∣ψ ′〉‖ ≤ ‖|ψ〉‖ + ‖∣∣ψ ′〉‖,
• ‖|ψ〉‖ ≥ 0,
• ‖|ψ〉‖ = 0 if and only if |ψ〉 = 0,

for all a ∈ C and all |ψ〉, ∣∣ψ ′〉 ∈ V ,
The set of all linear operators on a Hilbert spaceH is a vector space over the com-

plex numbers because it obeys the properties demanded by the definition described
in Sect. A.1. It is possible to define more than one norm on a vector space, and let
us start with the following norm.

Let A be a linear operator on a Hilbert space H. The norm of A is defined as

‖A‖ = max〈
ψ

∣∣ψ
〉
=1

∣∣〈ψ
∣∣A
∣∣ψ
〉∣∣ ,

where the maximum is over all normalized states |ψ〉 ∈ H.
The next norm is induced from an inner product. The Hilbert–Schmidt inner

product (also known as Frobenius inner product) of two linear operators A and B is

(A, B) = tr
(
A†B

)
.

Now, we can define another norm (trace norm) of a linear operator A on a Hilbert
space H as

‖A‖tr =
√
tr
(
A†A

)
.

In a normed vector space, the distance between vectors |ψ〉 and ∣∣ψ ′〉 is given by
‖|ψ〉 − ∣∣ψ ′〉‖. Then, it makes sense to speak about distance between linear operators
A and B, which is the nonnegative number ‖A − B‖.
Exercise A.17. Show that ‖U‖ = 1 if U is a unitary operator.

Exercise A.18. Show that the inner product (A, B) = tr(A†B) satisfies the proper-
ties described in Sect. A.2.



Appendix A: Linear Algebra for Quantum Computation 263

Exercise A.19. Show that ‖U‖tr = √
n if U is a unitary operator on Cn .

Exercise A.20. Show that both norms defined in this section satisfy the properties
described at the beginning of this section.

A.15 Tensor Product

Let V and W be finite Hilbert spaces with basis {|v1〉, . . ., |vm〉} and {|w1〉, . . .,
|wn〉}, respectively. The tensor product of V and W , denoted by V ⊗ W , is a (mn)-
dimensional Hilbert space with basis {|v1〉 ⊗ |w1〉, |v1〉 ⊗ |w2〉, . . . , |vm〉 ⊗ |wn〉}.
The tensor product of a vector in V and a vector in W , such as |v〉 ⊗ |w〉, also
denoted by |v〉|w〉 or |v,w〉 or |v w〉, is calculated explicitly via the Kronecker
product, defined ahead. An arbitrary vector in V ⊗ W is a linear combination of
vectors |vi 〉 ⊗ ∣∣w j

〉
, that is, if |ψ〉 ∈ V ⊗ W , then

|ψ〉 =
m∑

i=1

n∑

j=1

ai j |vi 〉 ⊗ ∣∣w j
〉
.

The tensor product is bilinear, that is, linear with respect to each argument:

1. |v〉 ⊗ (a |w1〉 + b |w2〉
) = a |v〉 ⊗ |w1〉 + b |v〉 ⊗ |w2〉,

2.
(
a |v1〉 + b |v2〉

)⊗ |w〉 = a |v1〉 ⊗ |w〉 + b |v2〉 ⊗ |w〉.
A scalar can always be factored out to the beginning of the expression:

a
(|v〉 ⊗ |w〉) = (

a|v〉)⊗ |w〉 = |v〉 ⊗ (a|w〉).

The tensor product of a linear operator A on V and B on W , denoted by A ⊗ B,
is a linear operator on V ⊗ W defined by

(
A ⊗ B

)(|v〉 ⊗ |w〉) = (
A|v〉)⊗ (B|w〉).

In general, an arbitrary linear operator on V ⊗ W cannot be factored out as the
tensor product of the form A ⊗ B, but it can be written as a linear combination of
operators of the form Ai ⊗ Bj . The above definition is easily extended to operators
A : V �→ V ′ and B : W �→ W ′. In this case, the tensor product of these operators is
(A ⊗ B) : (V ⊗ W ) �→ (V ′ ⊗ W ′).

In quantum mechanics, it is very common to use operators in the form of external
products, for example, A = |v〉〈v| and B = |w〉〈w|. The tensor product of A and B
is represented by the following equivalent ways:



264 Appendix A: Linear Algebra for Quantum Computation

A ⊗ B = (|v〉〈v|)⊗ (|w〉〈w|)
= |v〉〈v| ⊗ |w〉〈w|
= |v,w〉〈v,w|.

If A1, A2 are operators on V and B1, B2 are operators on W , then

(A1 ⊗ B1) · (A2 ⊗ B2) = (A1 · A2) ⊗ (B1 · B2).

The inner product of |v1〉 ⊗ |w1〉 and |v2〉 ⊗ |w2〉 is defined as

(|v1〉 ⊗ |w1〉 , |v2〉 ⊗ |w2〉
) = 〈

v1
∣∣v2
〉 〈

w1

∣∣w2
〉
.

The inner product of vectors written as a linear combination of basis vectors is
calculated by applying the linear property to the second argument and the conjugate-
linear property on the first argument of the inner product. For example,

((
n∑

i=1

ai |vi 〉
)

⊗ |w1〉 , |v〉 ⊗ |w2〉
)

=
(

n∑

i=1

a∗
i

〈
vi
∣∣v
〉
)
〈
w1

∣∣w2
〉
.

The inner product definition implies that

∥∥ |v〉 ⊗ |w〉 ∥∥ = ∥∥ |v〉 ∥∥ · ∥∥ |w〉 ∥∥.

In particular, the tensor product of unit norm vectors is a unit norm vector.
When we use matrix representations of operators, the tensor product is calculated

explicitly via the Kronecker product. Let A be am × n matrix and B a p × q matrix.
Then,

A ⊗ B =
⎡

⎢⎣
a11B · · · a1n B

. . .

am1B · · · amn B

⎤

⎥⎦ .

The dimension of the resulting matrix is mp × nq. The Kronecker product is used
for matrices of any dimension, particularly for two vectors,

[
a1
a2

]
⊗
[
b1
b2

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

⎡

⎣
b1

b2

⎤

⎦

a2

⎡

⎣
b1

b2

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1b1

a1b2

a2b1

a2b2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



Appendix A: Linear Algebra for Quantum Computation 265

The tensor product is an associative and distributive operation, but noncommu-
tative, that is, |v〉 ⊗ |w〉 �= |w〉 ⊗ |v〉 if v �= w. Most operations on a tensor product
are performed term by term, such as

(A ⊗ B)† = A† ⊗ B†.

If both operators A and B are special operators of the same type, as the ones defined
in Sect. A.11, then the tensor product A ⊗ B is also a special operator of the same
type. For example, the tensor product of Hermitian operators is a Hermitian operator.

The trace of a Kronecker product of matrices is

tr(A ⊗ B) = trA trB,

while the determinant is

det(A ⊗ B) = (det A)m (det B)n,

where n is the dimension of A and m of B.
If the diagonal state of the vector space V is |D〉V and of space W is |D〉W , then

the diagonal state of space V ⊗ W is |D〉V ⊗ |D〉W . Therefore, the diagonal state of
space V⊗n is |D〉⊗n , where V⊗n means V ⊗ · · · ⊗ V with n terms.

Exercise A.21. Let H be the Hadamard operator

H = 1√
2

[
1 1
1 −1

]
.

Show that

〈i |H⊗n| j〉 = (−1)i · j√
2n

,

where n represents the number of qubits and i · j is the binary inner product, that is,
i · j = i1 j1 + · · · + in jn mod 2, where (i1, . . . , in) and ( j1, . . . , jn) are the binary
decompositions of i and j , respectively.

A.16 Quantum Gates, Circuits, and Registers

A quantum circuit is a pictorial way to describe a quantum algorithm. The input lies
on the left-hand side of the circuit and the quantum information flows unchanged
through thewires, from the left to right, until finding aquantumgate, which is a square
box with the name of a unitary operator. The quantum gate represents the action of
the unitary operator, which transforms the quantum information and releases it to
the wire on the right-hand side. For example, the algebraic expression |+〉 = H |0〉



266 Appendix A: Linear Algebra for Quantum Computation

is represented by the circuit1

|0〉 H |+〉.

If a measurement is performed, the representation is

|0〉 H

{
0,

1.

A meter represents a measurement in the computational basis, and a double wire
conveys the classical information that comes out of the meter. In the example, the
state of the qubit right before the measurement is (|0〉 + |1〉)/√2. If the qubit state
is projected on |0〉 after the measurement, the output is 0, otherwise 1.

The controlled NOT gate (CNOT or C(X)) is a 2-qubit gate defined by

CNOT |k〉|�〉 = |k〉Xk |�〉,

and represented by the circuit
|k〉 • |k〉
|�〉 Xk |�〉.

The qubit marked with the black full point is called control qubit, and the qubit
marked with the ⊕ sign is called the target qubit.

The Toffoli gate C2(X) is a 3-qubit controlled gate defined by

C2(X) | j〉|k〉|�〉 = | j〉|k〉X jk |�〉,

and represented by the circuit
| j〉 • | j〉
|k〉 • |k〉
|�〉 X jk |�〉.

The Toffoli gate has two control qubits and one target qubit.
These gates can be generalized. The generalized Toffoli gate Cn(X) is a (n + 1)-

qubit controlled gate defined by

Cn(X) | j1〉...| jn〉| jn+1〉 = | j1〉...| jn〉X j1... jn | jn+1〉.

When defined using the computational basis, the state of the target qubit inverts if
and only if all control qubits are set to one. There is another case in which the state
of the target qubit inverts if and only if all control qubits are set to zero. In this case,
the control qubits are depicted by empty controls (empty white points) instead of full
controls (full black points), such as

1The circuits were generated with package Q-circuit.



Appendix A: Linear Algebra for Quantum Computation 267

| j〉 | j〉
|k〉 |k〉
|�〉 X jk |�〉,

whose algebraic representation is

| j1〉| j2〉| j3〉 �−→ | j1〉| j2〉X (1− j1)(1− j2)| j3〉.

It is possible to mix full and empty controls. Those kinds of controlled gates are
called generalized Toffoli gates.

A register is a set of qubits treated as a composite system. In many quantum
algorithms, the qubits are divided into two registers: one for the main calculation
from where the result comes out and one for the draft (calculations that will be
discarded).

Suppose we have a register with two qubits. The computational basis is

|0, 0〉 =

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦ |0, 1〉 =

⎡

⎢⎢⎣

0
1
0
0

⎤

⎥⎥⎦ |1, 0〉 =

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ |1, 1〉 =

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦ .

An arbitrary state of this register is

|ψ〉 =
1∑

i=0

1∑

j=0

ai j |i, j〉

where coefficients ai j are complex numbers that satisfy the constraint

∣∣a00
∣∣2 + ∣∣a01

∣∣2 + ∣∣a10
∣∣2 + ∣∣a11

∣∣2 = 1.

To help to generalize to n qubits, it is usual to compress the notation by converting
the base-2 notation to the base-10 notation. The computational basis for a two-qubit
register in the base-10 notation is {|0〉, |1〉, |2〉, |3〉}. In the base-2 notation, we can
determine the number of qubits by counting the number of digits inside the ket; for
example, |011〉 refers to three qubits. In the base-10 notation, we cannot determine
what is the number of qubits of the register. The number of qubits is implicit. At any
point, we can go back, write the numbers in the base-2 notation, and the number of
qubits will be clear. In the compact notation, an arbitrary state of a n-qubit register
is

|ψ〉 =
2n−1∑

i=0

ai |i〉

where coefficients ai are complex numbers that satisfy the constraint



268 Appendix A: Linear Algebra for Quantum Computation

2n−1∑

i=0

∣∣ai
∣∣2 = 1.

The diagonal state of a n-qubit register is the tensor product of the diagonal state of
each qubit, that is, |D〉 = |+〉⊗n .

A set of universal quantum gates is a finite set of gates that generates any unitary
operator through tensor and matrix products of gates in the set. Since the number of
possible quantum gates is uncountable even in the 1-qubit case, we require that any
quantum gate can be approximated by a sequence of universal quantum gates. One
simple set of universal gates is CNOT, H , X , T (or π/8 gate), and T †, where

T =
[
1 0
0 e

iπ
4

]
.

To calculate the time complexity of a quantum algorithm, we have to implement a
circuit of the algorithm in terms of universal gates in the best way possible. The time
complexity is determined by the depth of the circuit.

For instance, Fig. A.2 shows the decomposition of the Toffoli gate into universal
gates. The right-hand circuit has only universal gates (15 gates) and depth 12.

A Toffoli gate with empty controls can be decomposed in terms of a standard
Toffoli gate and X gates as depicted in the right-hand circuit of Fig. A.3.

Figure A.4 shows the decomposition of a 6-qubit generalized Toffoli gate with
five full controls into Toffoli gates. If the generalized Toffoli gate has n controls, we
use (n − 2) ancilla2 qubits initially in state |0〉. The ancilla qubits are interlaced with
the controls starting from the second control.

Exercise A.22. Show that the diagonal state of a n-qubit register is |D〉 = |+〉⊗n or
equivalently |D〉 = H⊗n|0, . . . , 0〉.

• • • • T •

• = • • T T †

H T † T T † T H

Fig. A.2 Decomposition of a Toffoli gates into universal gates

Fig. A.3 Converting empty
controls into full controls

X • X

= X • X

2Ancilla means auxiliary.



Appendix A: Linear Algebra for Quantum Computation 269

• • •
• • •

− − −− |0〉 • • |0〉
• • •

− − −− = |0〉 • • |0〉
• • •

− − −− |0〉 • |0〉
• •

Fig. A.4 Decomposition of a generalized 6-qubit Toffoli gate intoToffoli gates. This decomposition
can be easily extended for generalized Toffoli gates with any number of control qubits

Exercise A.23. Let f be a function with domain {0, 1}n and codomain {0, 1}m .
Consider a 2-register quantum computer with n andm qubits, respectively. Function
f can be implemented by using operator U f defined in the following way:

U f |x〉|y〉 = |x〉|y ⊕ f (x)〉,

where x has n bits, y has m bits, and ⊕ is the binary sum (bitwise xor).

1. Show that U f is a unitary operator for any f .
2. If n = m and f is injective, show that f can be implemented on a 1-register

quantum computer with n qubits.

Exercise A.24. Show that the circuits of Fig. A.4 are equivalent. Find the number
of universal gates in the decomposition of a generalized Toffoli gate with n1 empty
controls and n2 full controls. Find the depth of the circuit.

Exercise A.25. Show that the controlled Hadamard C(H) can be decomposed into
universal gates as depicted in the following circuit.

• •=
H T † T † H T † T H T T

Further Reading

There are many good books on linear algebra. For an initial contact, Refs. [24, 28,
200, 305] are good options; for a more advanced approach, Refs. [148, 150, 199] are
good options; for those who have mastered the basics and are only interested in the
application of linear algebra to quantum computation, Ref. [248] is recommended,
especially for the decomposition of unitary gates into universal gates. Linear algebra
for quantum algorithms is addressed in [209]. The Dirac notation is clearly and
comprehensively presented in [287].



Appendix B
Graph Theory for Quantum Walks

Graph theory is a large area of mathematics with a wide range of applications,
especially in computer science. It is impossible to overstate the importance of graph
theory for quantum walks. In fact, graph theory for quantum walks is as important
as linear algebra for quantum computation.

In the quantum walk setting, the graph represents positions and directions for the
walker’s shift. It is not mandatory to use the graph vertices as the walker’s position.
Any interpretation is accepted if it employs the graph structure so that the physical
meaning reflects the graph components. For example, it makes no sense to have a
quantum walk model in which the walker can jump over some vertices, for instance,
a model on the line in which the walker can jump from vertex 1 to vertex 3, skipping
vertex 2. If it is allowed to jump from vertex 1 to vertex 3, it means that there is an
edge or arc linking vertex 1 to vertex 3 and the underlying graph is not the line.

A solid basis on graph theory is required to understand the area of quantum walk.
This appendix focuses on the main definitions of graph theory used in this work with
some brief examples and should not be used as the first contact with graph theory.
At the end of this appendix, introductory and advanced references for starters and
for further reading are given.

B.1 Basic Definitions

A simple graph 
(V, E) is defined by a set V (
) of vertices or nodes and a set
E(
) of edges so that each edge links two vertices and two vertices are linked by
at most one edge. Two vertices linked by an edge are called adjacent or neighbors.
The neighborhood of a vertex v ∈ V , denoted by N (v), is the set of vertices adjacent
to v. Two edges that share a common vertex are also called adjacent. A loop is an
edge whose endpoints are equal. Multiple edges are edges having the same pair of
endpoints. A simple graph has no loops nor multiple edges. In simple graphs, the
edges can be named by the endpoints like an unordered set {v, v′}, where v and v′
are vertices.

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0

271



272 Appendix B: Graph Theory for Quantum Walks

The degree of vertex v is the number of edges incident to the vertex and is denoted
by d(v). The maximum degree is denoted by �(
), and the minimum degree is
denoted by δ(
). A graph is d-regular if all vertices have degree d, that is, each
vertex has exactly d neighbors. The handshaking lemma states that every graph has
an even number of vertices with odd degree, which is a consequence of the degree
sum formula ∑

v∈V
d(v) = 2|E |.

A path is a list v0, e1, v1, . . . , ek , vk of vertices and edges such that edge ei has
endpoints vi−1 and vi . A cycle is a closed path.

Agraph is connectedwhen there is a path between every pair of vertices; otherwise
it is called disconnected. An example of connect graph is the complete graph, which
denoted by KN where N is the number of vertices, and is a simple graph in which
every pair of distinct vertices is connected by an edge.

A subgraph 
′(V ′, E ′), where V ′ ⊂ V and E ′ ⊂ E , is an induced subgraph of

(V, E) if it has exactly the edges that appear in 
 over the same vertex set. If
two vertices are adjacent in 
, they are also adjacent in the induced subgraph. It is
common to use the term subgraph in place of induced subgraph.

A graph 
 is H-free if 
 has no induced subgraph isomorphic to graph H . Take
for instance a diamond graph, which is a graph with four vertices and five edges
consisting of a K4 minus one edge or two triangles sharing a common edge. A graph
is diamond-free if no induced subgraph is isomorphic to a diamond graph.

The adjacency matrix M of a simple graph 
(V, E) is the symmetric square
matrix whose rows and columns are indexed by the vertices and whose entries are

Mvv′ =
{
1, if {v, v′} ∈ E(
),

0, otherwise.

The Laplacian matrix L of a simple graph 
(V, E) is the symmetric square matrix
whose rows and columns are indexed by the vertices and whose entries are

Lvv′ =

⎧
⎪⎨

⎪⎩

d(v), if v = v′,
−1, if {v, v′} ∈ E(
),

0, otherwise.

Note that L = D − A, where D is the diagonal matrix whose rows and columns
are indexed by the vertices and whose entries are Dvv′ = d(v)δvv′ . The symmetric
normalized Laplacian matrix is defined as Lsym = D−1/2LD−1/2.

Most of the times in this book, the term graph is used in place of simple graph.
We also use the term simple graph to stress that the graph is undirected and has no
loops nor multiple edges.



Appendix B: Graph Theory for Quantum Walks 273

B.2 Multigraph

A multigraph is an extension of the definition of graph that allows multiple edges.
Many books use the term graph as a synonym of multigraph. In a simple graph, the
notation {v, v′} is an edge label. In a multigraph, {v, v′} does not characterize an
edge and the edges can have their own identity or not. For quantum walks, we need
to give labels for each edge (each one has its own identity). Formally, an undirected
labeled multigraph G(V, E, f ) consists of a vertex set V , an edge multiset E , and
an injective function f : E → �, whose codomain � is an alphabet for the edge
labels.

B.3 Bipartite Graph

A bipartite graph is a graph whose vertex set V is the union of two disjoint sets
X and X ′ so that no two vertices in X are adjacent and no two vertices in X ′ are
adjacent. A complete bipartite graph is a bipartite graph such that every possible
edge that could connect vertices in X and X ′ is part of the graph and is denoted by
Km,n , where m and n are the cardinalities of sets X and X ′, respectively. Km,n is the
graph that V (K ) = X ∪ X ′ and E(K ) = {{x, x ′} : x ∈ X, x ′ ∈ X ′}.
Theorem B.1. (König) A graph is bipartite if and only if it has no odd cycle.

B.4 Intersection Graph

Let {S1, S2, S3, . . .} be a family of sets. The intersection graph of this family of
sets is a graph whose vertices are the sets and two vertices are adjacent if and only
if the intersection of the corresponding sets is nonempty, that is, G(V, E) is the
intersection graph of family {S1, S2, S3, . . .} if V = {S1, S2, S3, . . .} and E(G) =
{{Si , Sj } : Si ∩ Sj �= ∅} for all i �= j .

B.5 Clique, Stable Set, and Matching

A clique is a subset of vertices of a graph such that its induced subgraph is complete.
Amaximal clique is a clique that cannot be extended by including one more adjacent
vertex, that is, it is not contained in a larger clique. A maximum clique is a clique of
maximum possible size. A clique of size d is called a d-clique. A set with one vertex
is a clique. Some references in graph theory use the term “clique” as synonym of
maximal clique. We avoid this notation here.



274 Appendix B: Graph Theory for Quantum Walks

A clique partition of a graph 
 is a set of cliques of 
 that contains each edge of

 exactly once. A minimum clique partition is a clique partition with the smallest
set of cliques. A clique cover of a graph 
 is a set of cliques of 
 that contains each
edge of 
 at least once. A minimum clique cover is a clique cover with the smallest
set of cliques.

A stable set is a set of pairwise nonadjacent vertices.
A matching M ⊆ E is a set of edges without pairwise common vertices. An edge

m ∈ M matches the endpoints of m. A perfect matching is a matching that matches
all vertices of the graph.

B.6 Graph Operators

Let C be the set of all graphs. A graph operator O : C −→ C is a function that maps
an arbitrary graph G ∈ C to another graph G ′ ∈ C.

B.6.1 Clique Graph Operator

A clique graph K (
) of a graph 
 is a graph such that every vertex represents
a maximal clique of 
 and two vertices of K (
) are adjacent if and only if the
underlying maximal cliques in 
 share at least one vertex in common.

The clique graph of a triangle-free graph G is isomorphic to the line graph of G.

B.6.2 Line Graph Operator

A line graph (or derived graph or interchange graph) of a graph 
 (called root
graph) is another graph L(
) so that each vertex of L(
) represents an edge of 


and two vertices of L(
) are adjacent if and only if their corresponding edges share
a common vertex in 
.

The line graph of amultigraph is a simple graph. On the other hand, given a simple
graph G, it is possible to determine whether G is the line graph of a multigraph H ,
for instance, via the following theorems:

Theorem B.2. (Bermond and Meyer) A simple graph G is a line graph of a multi-
graph if and only if there exists a family of cliques C in G such that

1. Every edge {v, v′} ∈ E(G) belongs to at least one clique ci ∈ C.
2. Every vertex v ∈ V (G) belongs to exactly two cliques ci , c j ∈ C.

A graph is reduced from a multigraph if the graph is obtained from a multigraph
by merging multiple edges into single edges.



Appendix B: Graph Theory for Quantum Walks 275

Theorem B.3. (Bermond andMeyer)A simple graph is a line graph of a multigraph
H if and only if the graph reduced from H is the line graph of a simple graph.

It is possible to determine whether G is the line graph of a bipartite multigraph
via the following theorem.

Theorem B.4. (Peterson) A simple graph G is a line graph of a bipartite multigraph
if and only if K (G) is bipartite.

B.6.3 Subdivision Graph Operator

A subdivision (or expansion) of a graph G is a new graph resulting from the sub-
division of one or more edges in G. The barycentric subdivision subdivides all
edges of the graph or a multigraph and produces a new bipartite simple graph. If
the original graph is G(V, E), the barycentric subdivision generates a new graph
BS(G) = 
(V ′, E ′), whose vertex set is V ′(
) = V (G) ∪ E(G) and an edge {v, e},
where v ∈ V and e ∈ E , belongs to E ′(
) if and only if v is incident to e.

B.6.4 Clique–Insertion Operator

The clique–insertion operator replaces each vertex v of a graph G by a maximal
d(v)-clique, creating a new graph C I (G). Figure B.1 shows an example of a clique
insertion, which replaces a vertex of degree 5 by a 5-clique. Note that the new clique
is a maximal clique. Using the degree sum formula, the number of vertices of the
clique–inserted graph is |V (C I (G))| = 2|E(G)|.

There is a relation between the clique–inserted graph and the line graph of the
subdivision graph (called para-line graph).

Fig. B.1 Example of a clique insertion.A degree-5 vertex (left-hand graph) is replaced by a 5-clique
(right-hand graph)



276 Appendix B: Graph Theory for Quantum Walks

Theorem B.5. (Sampathkumar) The para-line graph of G is isomorphic to the
clique–inserted graph C I (G).

B.7 Coloring

A coloring of a graph is a labeling of the vertices with colors so that no two vertices
sharing the same edge have the same color. The smallest number of colors needed to
color a graph 
 is called chromatic number, denoted by χ(
). A graph that can be
assigned a coloring with k colors is k-colorable and is k-chromatic if its chromatic
number is exactly k.

Theorem B.6. (Brooks) χ(
) ≤ �(
) for a graph 
, unless 
 is a complete graph
or an odd cycle.

The complete graph with N vertices has χ(
) = N and �(
) = N − 1. Odd
cycles have χ(
) = 3 and�(
) = 2. For these graphs the bound χ(
) ≤ �(
) + 1
is the best possible. In all other cases, the bound χ(
) ≤ �(
) is given by Brooks’
theorem.

The concept of coloring can be applied to the edge set of a loop free graph. An
edge coloring is a coloring of the edges so that no vertex is incident to two edges of
the same color. The smallest number of colors needed for an edge coloring is called
the chromatic index or edge-chromatic number, denoted by χ ′(
).

Theorem B.7. (Vizing) A graph 
 of maximal degree �(
) has edge-chromatic
number �(
) or �(
) + 1, that is, �(
) ≤ χ ′(
) ≤ �(
) + 1.

Since at least �(
) colors are always necessary for edge coloring, the set of
all graphs may be partitioned into two classes: (1) class 1 graphs for which �(
)

colors are sufficient and (2) class 2 graphs for which �(
) + 1 colors are necessary.
Examples of graphs in class 1 are: complete graphs KN for even N , bipartite graphs.
Examples of graph in class 2 are: regular graphs with an odd number of vertices
N > 1 (includes complete graphs KN for odd N ≥ 3), Petersen graph. To determine
whether an arbitrary graph is in class 1 is NP-complete. There are asymptotic results
in literature showing that the proportion of graphs in class 2 is very small.

Given a graph 
 in class 2, we describe two ways to modify the graph in order
to create a new graph in class 1: (1) Add a leaf to each vertex of 
, or (2) make an
identical copy of 
 and add edges connecting the pairs of identical vertices.

B.8 Diameter

The geodesic distance (simply distance) between two vertices in graph G(V, E) is
the number of edges in a shortest path connecting them. The eccentricity ε(v) of a



Appendix B: Graph Theory for Quantum Walks 277

vertex v is the greatest geodesic distance between v and any other vertex, that is, it is
how far a vertex is from the vertex most distant from it in the graph. The diameter d
of a graph is d = maxv∈V ε(v), that is, it is the maximum eccentricity of any vertex
in the graph or the greatest distance between any pair of vertices.

B.9 Directed Graph

A directed graph or digraph G is defined by a vertex set V (G), an arc set A(G), and
a function assigning each arc an ordered pair of vertices. We use the notation (v, v′)
for an ordered pair of vertices, where v is the tail and v′ is the head, and (v, v′) is
called directed edge or simply arc. A digraph is a simple digraph if each ordered
pair is the head and tail of at most one arc. The underlying graph of a digraph G is
the graph obtained by considering the arcs of G as unordered pairs.

If (v, v′) and (v′, v) are in A(G), the set with (v, v′) and (v′, v) is called a pair
of symmetric arcs. A symmetric directed graph G or symmetric digraph is a digraph
whose arc set comprises pairs of symmetric arcs, that is, if (v, v′) ∈ A(G), then
(v′, v) ∈ A(G). Figure B.2 depicts an example of a symmetric digraph G and its
underlying simple graph H .

The outdegree d+(v) is the number of arcs with tail v. The indegree d−(v) is the
number of arcs with head v. The definitions of out-neighborhood, in-neighborhood,
minimum and maximum indegree and outdegree are straightforward generalizations
of the corresponding undirected ones. A local sink or simply sink is a vertex with
outdegree zero, and a local source or simply source is a vertex with indegree zero.
A global sink is a vertex which is reached by all other vertices. A global source A is
a vertex which reaches all other vertices.

A directed cycle graph is a directed version of a cycle graph, where all edges are
oriented in the same direction. A directed acyclic graph is a finite directed graph with
no directed cycles. The moral graph of a directed acyclic graph G is a simple graph
that is obtained from the underlying simple graph of G by adding edges between all
pairs of vertices that have a common child (in G).

Fig. B.2 Example of a symmetric digraph G and its underlying simple graph H



278 Appendix B: Graph Theory for Quantum Walks

B.10 Some Named Graphs

B.10.1 Johnson Graphs

Let [N ] be the set {1, . . . , N }. There are
(N
k

)
k-subsets of [N ], where a k-subset

is a subset of [N ] with k elements. Let us define the Johnson graph J (N , k). The
vertices of J (N , k) are the k-subsets of [N ], and two vertices are adjacent if and only
if their intersection has size (k − 1). If k = 1, J (N , 1) is the complete graph KN .
J (N , k) and J (N , N − k) are the same graphs after renaming the vertices. J (N , k)
is a regular graph with degree k (N − k). The diameter of J (N , k) is min(k, N − k).

B.10.2 Kneser Graphs

Let [N ] be the set {1, . . . , N }. A k-subset is a subset of [N ] with k elements. The
Kneser graph KGN ,k is the graph whose vertices are the k-subsets, and two vertices
are adjacent if and only if the two corresponding sets are disjoint. If k = 1, KGN ,1 is
the complete graph KN . KGN ,k is a regular graph with degree

(N−k
k

)
. The diameter

of KGN ,k is �(k − 1)/(N − 2k)� + 1. The Petersen graph, depicted in Fig. B.3, is
a Kneser graph KG5,2. It is in class 2 because it is 3-regular and its edge-chromatic
number is 4.

B.10.3 Cayley Graphs

ACayley graph
(G, S) encodes the structure of a groupG described by a generating
set S in the context of abstract algebra.

Definition B.8. A group is a nonempty set G together with a binary operation ·
(called product), which satisfies the following requirements:

• (Closure) For all a, b in G, a · b is also in G.
• (Associativity) For all a, b, c in G, (a · b) · c = a · (b · c).

Fig. B.3 Petersen graph



Appendix B: Graph Theory for Quantum Walks 279

• (Identity) There exists an identity element e in G such that, for every element a in
G, a · e = e · a = a.

• (Inverse) For eacha inG, there exists an element b inG, such thata · b = b · a = e,
where e is the identity element. Element b is denoted by a−1.

The order of a group is its number of elements. A group is finite if its order is
finite. A group is commutative or abelian if the binary operation is commutative. A
generating set of a group G is a subset S ⊂ G such that every element of G can be
expressed as the product of finitely many elements of S and their inverses. From now
on, we suppose that S is finite. S is called symmetric if S = S−1, that is, whenever
s ∈ S, s−1 is also in S.

A subgroup of a group G is a subset H of G such that H is a group with the same
product operation of G. No proper subgroup of group G can contain a generating set
of G.

The Cayley graph 
(G, S) is a directed graph defined as follows. The vertex set
V (
) is G, and the arc (a, b) is in A(
) if and only if b = a · s for some s ∈ S,
where a, b ∈ G.

If S is symmetric and e �= S, the Cayley graph 
(G, S) is a |S|-regular simple
graph. It is a difficult problem to decide whether a Cayley graph of a group described
by a symmetric generating set is in class 1 or class 2. There is a remarkable conjecture
studied over decades:

Conjecture B.9. (Stong) All undirected Cayley graphs of groups of even order are
in class 1.

Further Reading

Graph theory has many applications, and it is easy to get lost and waste time after
taking some wrong direction. No danger comes from those introductory books [53,
139, 314, 326]. Before starting to read an advanced book, check whether it is really
necessary to go further. In the context of quantum walks, the survey [58] is use-
ful. Harary’s book [138] is excellent (there is a new edition by CRC Press). Other
suggestions are [75, 102, 121]. Wikipedia (English version) is an excellent place to
obtain quickly the definition or the main properties of a concept in graph theory, and
http://www.graphclasses.org is a Web site used by researchers in graph
theory. Some results compiled in this Appendix are described in papers [259, 289,
304, 318, 347].



Appendix C
Classical Hitting Time

Consider a connected, nondirected, and non-bipartite graph Γ (X, E), where X =
{x1, . . . , xn} is the vertex set and E is the edge set. The hitting time of a classical
random walk on this graph is the expected time for the walker to reach a marked
vertex for the first time, once given the initial conditions. We may have more than
one marked vertex defined by a subset M ∈ X . In this case, the hitting time is the
expected time for the walker to reach a vertex in M for the first time.

If px x ′(t) is the probability of the walker to reach x ′ for the first time at time t
having left x at t = 0, the hitting time from vertex x to x ′ is

Hx x ′ =
∞∑

t=0

t px x ′(t). (C.1)

Define Hx x = 0 when the departure and arrival vertices are the same.
For example, the probability px x ′(t) at time t = 1 when x �= x ′ for the complete

graph with n vertices is 1/(n − 1), because the walker has n − 1 possible vertices
to move in the first step. To arrive at vertex x ′ at time t = 2 for the first time, the
walker must visit one of n − 2 vertices different from x and x ′. The probability
is (n − 2)/(n − 1). After this visit, it must go directly to vertex x ′, which occurs
with probability 1/(n − 1). Therefore, px x ′(2) = (n − 2)/(n − 1)2. Generalizing
this argumentation, we obtain px x ′(t) = (n − 2)t−1/(n − 1)t . Then,

Hx x ′ =
∞∑

t=0

t
(n − 2)t−1

(n − 1)t
.

Using the identity
∑∞

t=0 tα
t = α/(1 − α)2, which is valid for 0 < α < 1, we obtain

Hx x ′ = n − 1. (C.2)

Usually, the hitting time depends on x and x ′, but the complete graph is an exception.
In the general case, Hx x ′ can be different from Hx ′x .

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0

281



282 Appendix C: Classical Hitting Time

The notion of hitting time from a vertex to a subset can be formalized as follows:
Suppose that M is a nonempty subset of X with cardinality m and define pxM(t) as
the probability that the walker reaches any of the vertices in M for the first time at
time t having left x at t = 0. The hitting time from x to M is

HxM =
∞∑

t=0

t pxM(t). (C.3)

Again, we define HxM = 0 if x ∈ M .
Let us use an extended notion of hitting time when the walker starts from a

probability distribution. In the former case, the probability to depart from vertex x
is 1 and the probability to depart from any other vertex is 0. Suppose that the walker
starts with a distribution σ , that is, at the initial time the probability of the walker to
be at vertex x is σx . The most used initial distributions are the uniform distribution
σx = 1/n and the stationary distribution, which is defined ahead. In any case, the
initial distribution must satisfy

∑
x∈X σx = 1. The hitting time from σ to M is

HσM =
∑

x∈X
σx HxM . (C.4)

That is, HσM is the expected value of the hitting time HxM from x to M weighted
with distribution σ .

Exercise C.1. Show that for the complete graph

HxM = n − 1

m

if x /∈ M .

Exercise C.2. Show that for the complete graph

HσM = (n − m)(n − 1)

mn

if σ is the uniform distribution. Why HσM ≈ HxM for n � m?

C.1 Hitting Time Using the Stationary Distribution

Equations (C.1) and (C.3) are troublesome for the practical calculation of the hitting
time of random walks on graphs. Fortunately, there are alternative methods. The
best-known method uses a recursive method. Let us illustrate this method using the
complete graph. We want to calculate Hx x ′ . The walker departs from x and moves
directly to x ′ with probability 1/(n − 1) spending one time unit. With probability



Appendix C: Classical Hitting Time 283

(n − 2)/(n − 1), the walker moves to vertex x ′′ different from x ′ and therefore it
spends one time unit plus the expected time to go from x ′′ to x ′, which is Hx x ′ . We
have established the following recursive equation:

Hx x ′ = 1

n − 1
+ n − 2

n − 1

(
1 + Hx x ′

)
, (C.5)

the solution of which is equal to (C.2).
This method works for an arbitrary graph. If Vx is the neighborhood of x , the

cardinality of Vx is the degree of x denoted by d(x). To help this calculation, we
assume that the distance between x and x ′ is greater than 1. So, the walker will depart
from x and will move to the neighboring vertex x ′′ with probability 1/d(x) spending
one time unit. Now, we must add this result to the expected time to move from x ′′ to
x ′. This has to be performed for all vertices x ′′ in the neighborhood of x . We obtain

Hx x ′ = 1

d(x)

∑

x ′′∈Vx

(
1 + Hx ′′ x ′

)
. (C.6)

Equation (C.5) is a special case of (C.6), because for the complete graphd(x) = n − 1
and Hx ′′ x ′ = Hx x ′ unless x ′′ = x ′. The case x ′′ = x ′ generates the first term in (C.5).
The remaining n − 2 cases generate the second term. This shows that (C.6) is general
and the distance between x and x ′ need not be greater than 1. However, we cannot
take x = x ′ (distance 0) since the left-hand side is zero and the right-hand side is not.

The goal now is to solve (C.6) in terms of the hitting time Hx x ′ . This task is
facilitated if (C.6) is converted to the matrix form. If H is a square n-dimensional
matrix with entries Hx x ′ , the left-hand side will be converted into H and the right-
hand side must be expanded. Using that

px x ′ =
{ 1

d(x) , if x ′ is adjacent to x;
0, otherwise,

(C.7)

we obtain the following matrix equation:

H = J + PH + D, (C.8)

where J is a matrix with all entries equal to 1, P is the right stochastic matrix, and
D is a diagonal matrix that should be introduced to validate the matrix equation for
the diagonal elements. P is also called transition matrix or probability matrix, as we
have discussed in Chap. 3.

The diagonal matrix D can be calculated using the stationary distribution π ,
which is the distribution that satisfies equation πT · P = πT . It is also called limiting
or equilibrium distribution. For connected, nondirected, and non-bipartite graphs
Γ (X, E), there is always a limiting distribution. By left multiplying (C.8) by πT , we
obtain



284 Appendix C: Classical Hitting Time

Dx x = − 1

πx
,

where πx is the x th entry of π .
Equation (C.8) can be written as (I − P)H = J + D. When we try to find H

using this equation, we deal with the fact that (I − P) is a noninvertible matrix,
because 1 is a 0-eigenvector of (I − P), where 1 is the vector with all entries equal
to 1. This means that equation (I − P)X = J + D has more than one solution X .
In fact, if matrix X is a solution, then X + 1 · vT is also a solution for any vector v.
However, having at hand a solution X of this equation does not guarantee that we
have found H . There is a way to verify whether X is a correct solution by using that
Hx x must be zero for all x . A solution of equation (I − P)X = J + D is

X = (I − P + 1 · πT
)−1

(J + D), (C.9)

as can be checked by solving Exercise C.3. Now we add a term of type 1 · vT to
cancel out the diagonal entries of X , and we obtain

H = X − 1 · vT , (C.10)

where the entries of vector v are the diagonal entries of X , that is, vx = Xx x .

Exercise C.3. Let
M = I − P + 1 · πT .

1. Show that M is invertible.
2. Using equations πT · P = πT , P · 1 = 1, and

M−1 =
∞∑

t=0

(I − M)t ,

show that

M−1 = 1 · πT +
∞∑

t=0

(
Pt − 1 · πT

)
.

3. Show that solution (C.9) satisfies equation (I − P)X = J + D.
4. Show that matrix H given by (C.10) satisfies Hx x = 0.

Exercise C.4. Find the stochastic matrix of the complete graph with n vertices.
Using the fact that the stationary distribution is uniform in this graph, find matrix X
using (C.9) and then find matrix H using (C.10). Check the results with (C.2).



Appendix C: Classical Hitting Time 285

C.2 Hitting Time Without the Stationary Distribution

There is an alternative method for calculating the hitting time that does not use the
stationary distribution. We describe the method using HσM as defined in (C.4). The
vertices in M are called marked vertices. Consider the symmetric digraph whose
underlying graph is Γ (X, E). Now we define a modified digraph, which is obtained
from the symmetric digraph by converting all arcs leaving the marked vertices into
loops, whilemaintaining unchanged the incoming ones. This means that if the walker
reaches a marked vertex, the walker will stay there forever. To calculate the hitting
time, the original undirected graph and the modified digraph are equivalent. How-
ever, the stochastic matrices are different. Let us denote the stochastic matrix of the
modified graph by P ′, whose entries are

p′
xy =

{
pxy, x /∈ M;
δxy, x ∈ M.

(C.11)

What is the probability of finding the walker in X\M at time t before visiting M?
Let σ (0) be the initial probability distribution on the vertices of the original graph
viewed as a row vector. Then, the distribution after t steps is

σ (t) = σ (0) · Pt . (C.12)

Let 1 be the column n-vector with all entries equal to 1. Define 1X\M as the column
n-vector with n − m entries equal to 1 corresponding to the vertices that are in X\M
and m entries equal to zero corresponding to the vertices are in M . The probability
of finding the walker in X\M at time t is σ (t) · 1X\M . However, this expression is not
useful for calculating the hitting time, because the walker has already visited M . We
want to find the probability of the walker being in X\M at time t having not visited
M . This result is obtained if we use matrix P ′ instead of P in (C.12). In fact, if the
evolution is driven by matrix P ′ and the walker has visited M , it remains imprisoned
in M forever. Therefore, if the walker is found in X\M , it has certainly not visited
M . The probability of finding the walker in X\M at time t without having visited
M is σ (0) · (P ′)t · 1X\M .

In (C.3), we have calculated the average time to reach a marked vertex for the
first time employing the usual formula for calculating weighted averages. When the
variable t assumes nonnegative integer values, there is an alternative formula for
calculating this average. This formula applies to this context because time t is the
number of steps. Let T be the number of steps to reach a marked vertex for the first
time, and let p(T ≥ t) be the probability of reaching M for the first time for any
number of steps T equal to or greater than t . If the initial condition is distribution σ ,
the hitting time can be equivalently defined by formula

Hσ M =
∞∑

t=1

p(T ≥ t). (C.13)



286 Appendix C: Classical Hitting Time

To verify the equivalence of this new formula with the previous one, note that

p(T ≥ t) =
∞∑

j=t

p(T = j), (C.14)

where p(T = t) is the probability of reaching M for the first time with exactly t
steps. Using (C.14) and (C.13), we obtain

Hσ M =
∞∑

j=1

j∑

t=1

p(T = j)

=
∞∑

j=1

j p(T = j). (C.15)

This last equation is equivalent to (C.3).
We can give another interpretation for probability p(T ≥ t). If the walker reaches

M at T ≥ t , then in the first t − 1 steps it will still be in X\M , that is, it will be on one
of the unmarked vertices without having visited M . We have learned in a previous
paragraph that the probability of the walker being in X\M at time t without having
visited M is σ (0) · (P ′)t−1 · 1X\M . Then,

p(T ≥ t) = σ (0) · (P ′)t−1 · 1X\M . (C.16)

Define PM as a square (n − m)-matrix obtained from P by deleting the rows and
columns corresponding to vertices ofM . DefineσM and1M using the sameprocedure.
Analyzing the entries that do not vanish after multiplying the matrices on the right-
hand side of (C.16), we conclude that

p(T ≥ t) = σ
(0)
M

· Pt−1
M

· 1M . (C.17)

Using the above equation and (C.13), we obtain

Hσ M = σ
(0)
M

·
( ∞∑

t=0

Pt
M

)
· 1M

= σ
(0)
M

· (I − PM

)−1 · 1M . (C.18)

Matrix (I − PM) is always invertible for connected, nondirected, and non-bipartite
graphs. This result follows from the fact that 1 is not an eigenvector of PM , and hence
(I − PM) has no eigenvalue equal to 0.

The strategy used to obtain (C.18) is used to define the quantum hitting time in
Szegedy’s model.



Appendix C: Classical Hitting Time 287

Exercise C.5. Use (C.18) to find the hitting time of a random walk on the complete
graph with n vertices, and compare the results with Exercises C.1 and C.2.

Further Reading

The classical hitting time is described inmany references, for instance, [11, 215, 235,
245]. The last chapter of [235] describes in detail the Perron–Frobenius theorem,
which is important in the context of this appendix.



References

1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Theory of Computing,
pp. 200–209 (2003)

2. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness
problems. J. ACM 51(4), 595–605 (2004)

3. Abal, G., Donangelo, R., Forets, M., Portugal, R.: Spatial quantum search in a triangular
network. Math. Struct. Comput. Sci. 22(03), 521–531 (2012)

4. Abal, G., Donangelo, R., Marquezino, F.L., Portugal, R.: Spatial search on a honeycomb
network. Math. Struct. Comput. Sci. 20(6), 999–1009 (2010)

5. Abreu, A., Cunha, L., Fernandes, T., de Figueiredo, C., Kowada, L., Marquezino, F., Posner,
D., Portugal, R.: The graph tessellation cover number: extremal bounds, efficient algorithms
and hardness. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018.
Lecture Notes in Computer Science, vol. 10807, pp. 1–13. Springer, Berlin (2018)

6. Agliari, E., Blumen, A., Mülken, O.: Quantum-walk approach to searching on fractal struc-
tures. Phys. Rev. A 82, 012305 (2010)

7. Aharonov, D.: Quantum computation - a review. In: Stauffer, D. (ed.) Annual Review of
Computational Physics, vol. VI, pp. 1–77. World Scientific, Singapore (1998)

8. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceed-
ings of the 33th STOC, pp. 50–59. ACM, New York (2001)

9. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2),
1687–1690 (1993)

10. Alberti,A.,Alt,W.,Werner, R.,Meschede,D.:Decoherencemodels for discrete-time quantum
walks and their application to neutral atom experiments. New J. Phys. 16(12), 123052 (2014)

11. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs (2002). http://
www.stat.berkeley.edu/~aldous/RWG/book.html

12. Alvir, R., Dever, S., Lovitz, B., Myer, J., Tamon, C., Xu, Y., Zhan, H.: Perfect state transfer
in laplacian quantum walk. J. Algebr. Comb. 43(4), 801–826 (2016)

13. Ambainis, A.: Quantumwalks and their algorithmic applications. Int. J. Quantum Inf. 01(04),
507–518 (2003)

14. Ambainis, A.: Quantumwalk algorithm for element distinctness. In: Proceedings 45th Annual
IEEESymposium on Foundations of Computer Science FOCS, pp. 22–31.Washington (2004)

15. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: collision and
element distinctness with small range. Theory Comput. 1, 37–46 (2005)

16. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1),
210–239 (2007)

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0

289

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html


290 References

17. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum
walks. In: Proceedings of the 33th STOC, pp. 60–69. ACM, New York (2001)

18. Ambainis, A., Bačkurs, A., Nahimovs, N., Ozols, R., Rivosh, A.: Search by quantum walks
on two-dimensional grid without amplitude amplification. In: Proceedings of the 7th TQC,
Tokyo, Japan, pp. 87–97. Springer, Berlin (2013)

19. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms SODA, pp. 1099–1108
(2005)

20. Ambainis, A., Portugal, R., Nahimov, N.: Spatial search on grids with minimum memory.
Quantum Inf. Comput. 15, 1233–1247 (2015)

21. Ampadu, C.: Return probability of the open quantum random walk with time-dependence.
Commun. Theor. Phys. 59(5), 563 (2013)

22. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505
(1958)

23. Angeles-Canul, R.J., Norton, R.M., Opperman, M.C., Paribello, C.C., Russell, M.C., Tamon,
C.: Quantum perfect state transfer on weighted join graphs. Int. J. Quantum Inf. 7(8), 1429–
1445 (2009)

24. Apostol, T.M.: Calculus, Volume 1: One-Variable Calculus with an Introduction to Linear
Algebra. Wiley, New York (1967)

25. Arunachalam, S., De Wolf, R.: Optimizing the number of gates in quantum search. Quantum
Inf. Comput. 17(3–4), 251–261 (2017)

26. Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quan-
tum walk. Phys. Rev. B 86, 195414 (2012)

27. Asbóth, J.K., Edge, J.M.: Edge-state-enhanced transport in a two-dimensional quantumwalk.
Phys. Rev. A 91, 022324 (2015)

28. Axler, S.: Linear Algebra Done Right. Springer, New York (1997)
29. Balu, R., Liu, C., Venegas-Andraca, S.E.: Probability distributions for Markov chain based

quantum walks. J. Phys. A: Math. Theor. 51(3), 035301 (2018)
30. Barnett, S.: Quantum Information. Oxford University Press, New York (2009)
31. Barr, K., Fleming, T., Kendon, V.: Simulation methods for quantum walks on graphs applied

to formal language recognition. Nat. Comput. 14(1), 145–156 (2015)
32. Barr, K.E., Proctor, T.J., Allen, D., Kendon, V.M.: Periodicity and perfect state transfer in

quantum walks on variants of cycles. Quantum Inf. Comput. 14(5–6), 417–438 (2014)
33. Bašić,M.: Characterization of quantum circulant networks having perfect state transfer. Quan-

tum Inf. Process. 12(1), 345–364 (2013)
34. Beame, P., Saks, M., Sun, X., Vee, E.: Time-space trade-off lower bounds for randomized

computation of decision problems. J. ACM 50(2), 154–195 (2003)
35. Bednarska, M., Grudka, A., Kurzynski, P., Luczak, T., Wójcik, A.: Quantum walks on cycles.

Phys. Lett. A 317(1–2), 21–25 (2003)
36. Bednarska, M., Grudka, A., Kurzynski, P., Luczak, T., Wójcik, A.: Examples of non-uniform

limiting distributions for the quantumwalk on even cycles. Int. J. Quantum Inf. 2(4), 453–459
(2004)

37. Belovs, A.: Learning-graph-based quantum algorithm for k-distinctness. In: IEEE 53rd An-
nual Symposium on Foundations of Computer Science, pp. 207–216 (2012)

38. Belovs, A., Childs, A.M., Jeffery, S., Kothari, R., Magniez, F.: Time-efficient quantum walks
for 3-distinctness. In: Proceedings of the 40th International Colloquium ICALP, Riga, Latvia,
2013, pp. 105–122. Springer, Berlin (2013)

39. Benedetti, C.,Buscemi, F.,Bordone, P., Paris,M.G.A.:Non-Markovian continuous-timequan-
tum walks on lattices with dynamical noise. Phys. Rev. A 93, 042313 (2016)

40. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation And Information:
Basic Tools And Special Topics. World Scientific Publishing, River Edge (2007)

41. Benioff, P.: Space Searches with a Quantum Robot. AMS ContemporaryMathematics Series,
vol. 305. American Mathematical Society, Providence (2002)



References 291

42. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weaknesses of quan-
tum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

43. Bergou, J.A., Hillery, M.: Introduction to the Theory of Quantum Information Processing.
Springer, New York (2013)

44. Bernard, P.-A., Chan, A., Loranger, É., Tamon, C., Vinet, L.: A graph with fractional revival.
Phys. Lett. A 382(5), 259–264 (2018)

45. Bernasconi, A., Godsil, C., Severini, S.: Quantum networks on cubelike graphs. Phys. Rev.
A 78, 052320 (2008)

46. Berry, S.D., Bourke, P., Wang, J.B.: QwViz: visualisation of quantum walks on graphs. Com-
put. Phys. Commun. 182(10), 2295–2302 (2011)

47. Bhattacharya, N., van Linden van den Heuvell, H.B., Spreeuw, R.J.C., : Implementation of
quantum search algorithm using classical Fourier optics. Phys. Rev. Lett. 88, 137901 (2002)

48. Bian, Z.-H., Li, J., Zhan, X., Twamley, J., Xue, P.: Experimental implementation of a quantum
walk on a circle with single photons. Phys. Rev. A 95, 052338 (2017)

49. Biham, O., Nielsen, M.A., Osborne, T.J.: Entanglement monotone derived from Grover’s
algorithm. Phys. Rev. A 65, 062312 (2002)

50. Boada, O., Novo, L., Sciarrino, F., Omar, Y.: Quantum walks in synthetic gauge fields with
three-dimensional integrated photonics. Phys. Rev. A 95, 013830 (2017)

51. Boettcher, S., Falkner, S., Portugal, R.: Renormalization group for quantum walks. J. Phys.
Conf. Ser. 473(1), 012018 (2013)

52. Boettcher, S., Li, S.: Analysis of coined quantum walks with renormalization. Phys. Rev. A
97, 012309 (2018)

53. Bondy, A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics. Springer, London
(2011)

54. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91,
207901 (2003)

55. Botsinis, P., Babar, Z., Alanis, D., Chandra, D., Nguyen, H., Ng, S.X., Hanzo, L.: Quantum
error correction protects quantum search algorithms against decoherence. Sci. Rep. 6, 38095
(2016)

56. Bougroura, H., Aissaoui, H., Chancellor, N., Kendon, V.: Quantum-walk transport properties
on graphene structures. Phys. Rev. A 94, 062331 (2016)

57. Boyer,M., Brassard, G., Høyer, P., Tapp,A.: Tight bounds on quantum searching. Forstschritte
Der Physik 4, 820–831 (1998)

58. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)
59. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estima-

tion. Quantum Computation and Quantum Information Science. AMS Contemporary Math-
ematics Series, vol. 305, pp. 53–74. American Mathematical Society, Providence (2002)

60. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions.
In: Proceedings of the 3rd Latin American Symposium LATIN’98, pp. 163–169. Springer,
Berlin (1998)

61. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University
Press, Oxford (2002)

62. Bru, L.A., de Valcárcel, G.J., di Molfetta, G., Pérez, A., Roldán, E., Silva, F.: Quantum walk
on a cylinder. Phys. Rev. A 94, 032328 (2016)

63. Bruderer, M., Plenio, M.B.: Decoherence-enhanced performance of quantum walks applied
to graph isomorphism testing. Phys. Rev. A 94, 062317 (2016)

64. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.:
Quantum algorithms for element distinctness. SIAM J. Comput. 34(6), 1324–1330 (2005)

65. Byrnes, T., Forster, G., Tessler, L.: Generalized Grover’s algorithm for multiple phase inver-
sion states. Phys. Rev. Lett. 120, 060501 (2018)

66. Cáceres, M.O.: On the quantum CTRW approach. Eur. Phys. J. B 90(4), 74 (2017)
67. Cameron, S., Fehrenbach, S., Granger, L., Hennigh, O., Shrestha, S., Tamon, C.: Universal

state transfer on graphs. Linear Algebra Appl. 455, 115–142 (2014)



292 References

68. Carteret, H.A., Ismail, M.E.H., Richmond, B.: Three routes to the exact asymptotics for the
one-dimensional quantum walk. J. Phys. A: Math. Gen. 36(33), 8775–8795 (2003)

69. Carvalho, S.L., Guidi, L.F., Lardizabal, C.F.: Site recurrence of open and unitary quantum
walks on the line. Quantum Inf. Process. 16(1), 17 (2016)

70. Cedzich, C., Geib, T., Grünbaum, F.A., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.:
The topological classification of one-dimensional symmetric quantum walks. Ann. Henri
Poincaré 19(2), 325–383 (2018)

71. Chakraborty, K., Maitra, S.: Application of Grover’s algorithm to check non-resiliency of a
boolean function. Cryptogr. Commun. 8(3), 401–413 (2016)

72. Chakraborty, S., Novo, L., Di Giorgio, S., Omar, Y.: Optimal quantum spatial search on
random temporal networks. Phys. Rev. Lett. 119, 220503 (2017)

73. Chan, A., Coutinho, G., Tamon, C., Vinet, L., Zhan, H.: Quantum fractional revival on graphs
(2018). arXiv:1801.09654

74. Chandrashekar, C.M., Busch, T.: Quantum percolation and transition point of a directed
discrete-time quantum walk. Sci. Rep. 4, 6583 (2014)

75. Chartrand, G., Lesniak, L., Zhang, P.: Graphs&Digraphs. Chapman&Hall/CRC, BocaRaton
(2010)

76. Chiang, C.-F., Gomez, G.: Hitting time of quantum walks with perturbation. Quantum Inf.
Process. 12(1), 217–228 (2013)

77. Chiang, C.-F., Nagaj, D., Wocjan, P.: Efficient circuits for quantum walks. Quantum Inf.
Comput. 10(5–6), 420–434 (2010)

78. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)
79. Childs, A.M.: On the relationship between continuous- and discrete-time quantum walk.

Commun. Math. Phys. 294(2), 581–603 (2010)
80. Childs, A.M., Eisenberg, J.M.: Quantum algorithms for subset finding. Quantum Inf. Comput.

5(7), 593–604 (2005)
81. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and

classical random walks. Quantum Inf. Process. 1(1), 35–43 (2002)
82. Childs, A.M., Goldstone, J.: Spatial search and the Dirac equation. Phys. Rev. A 70, 042312

(2004)
83. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin

networks. Phys. Rev. Lett. 92, 187902 (2004)
84. Cohen-Tannoudji, C., Diu, B., Laloe, F.: QuantumMechanics. Wiley-Interscience, New York

(2006)
85. Connelly, E., Grammel, N., Kraut, M., Serazo, L., Tamon, C.: Universality in perfect state

transfer. Linear Algebra Appl. 531, 516–532 (2017)
86. Coutinho, G.: Quantum walks and the size of the graph. Discret. Math. (2018).

arXiv:1802.08734
87. Coutinho, G., Godsil, C.: Perfect state transfer in products and covers of graphs. Linear

Multilinear Algebra 64(2), 235–246 (2016)
88. Coutinho, G., Godsil, C.: Perfect state transfer is poly-time. Quantum Inf. Comput. 17(5–6),

495–502 (2017)
89. Coutinho,G., Portugal, R.: Discretization of continuous-time quantumwalks via the staggered

model with Hamiltonians. Nat. Comput. (2018). arXiv:1701.03423
90. Cover, T.M., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)
91. Crespi, A., Osellame, R., Ramponi, R., Giovannetti, V., Fazio, R., Sansoni, L., De Nicola,

F., Sciarrino, F., Mataloni, P.: Anderson localization of entangled photons in an integrated
quantum walk. Nat. Photonics 7(4), 322–328 (2013)

92. D’Ariano, G.M., Erba, M., Perinotti, P., Tosini, A.: Virtually abelian quantum walks. J. Phys.
A: Math. Theor. 50(3), 035301 (2017)

93. de Abreu, A.S.: Tesselações em grafos e suas aplicações em computação quântica. Master’s
thesis, UFRJ (2017)

94. de Abreu, A.S., Ferreira, M.M., Kowada, L.A.B., Marquezino, F.L.: QEDS: A classical sim-
ulator for quantum element distinctness. Revista de Informática Teórica e Aplicada 23(2),
51–66 (2016)

http://arxiv.org/abs/1801.09654
http://arxiv.org/abs/1802.08734
http://arxiv.org/abs/1701.03423


References 293

95. Derevyanko, S.: Anderson localization of a one-dimensional quantum walker. Sci. Rep. 8(1),
1795 (2018)

96. d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Westview Press, Boulder
(1999)

97. Desurvire, E.: Classical and Quantum Information Theory: An Introduction for the Telecom
Scientist. Cambridge University Press, Cambridge (2009)

98. Dheeraj, M.N., Brun, T.A.: Continuous limit of discrete quantum walks. Phys. Rev. A 91,
062304 (2015)

99. diMolfetta, G., Debbasch, F.: Discrete-time quantumwalks: continuous limit and symmetries.
J. Math. Phys. 53(12), 123302 (2012)

100. Diao, Z., Zubairy, M.S., Chen, G.: A quantum circuit design for Grover’s algorithm. Z. Natur-
forsch. A 57(8), 701–708 (2002)

101. Díaz, N., Donangelo, R., Portugal, R., Romanelli, A.: Transient temperature andmixing times
of quantum walks on cycles. Phys. Rev. A 94, 012305 (2016)

102. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, New York
(2012)

103. Dodd, J.L., Ralph, T.C., Milburn, G.J.: Experimental requirements for Grover’s algorithm in
optical quantum computation. Phys. Rev. A 68, 042328 (2003)

104. Domino, K., Glos, A., Ostaszewski, M.: Superdiffusive quantum stochastic walk definable on
arbitrary directed graph. Quantum Info. Comput. 17(11–12), 973–986 (2017)

105. Du, Y.-M., Lu, L.-H., Li, Y.-Q.: A rout to protect quantum gates constructed via quantum
walks from noises. Sci. Rep. 8(1), 7117 (2018)

106. Dukes, P.R.: Quantum state revivals in quantum walks on cycles. Results Phys. 4, 189–197
(2014)

107. Dunjko, V., Briegel, H.J.: Quantum mixing of Markov chains for special distributions. New
J. Phys. 17(7), 073004 (2015)

108. Ellinas, D., Konstandakis, C.: Parametric quantum search algorithm as quantum walk: a
quantum simulation. Rep. Math. Phys. 77(1), 105–128 (2016)

109. Endo, T., Konno, N., Obuse, H., Segawa, E.: Sensitivity of quantum walks to a boundary of
two-dimensional lattices: approaches based on the CGMVmethod and topological phases. J.
Phys. A: Math. Theor. 50(45), 455302 (2017)

110. Ermakov, V.L., Fung, B.M.: Experimental realization of a continuous version of the Grover
algorithm. Phys. Rev. A 66, 042310 (2002)

111. Falk, M.: Quantum search on the spatial grid (2013). arXiv:1303.4127
112. Falloon, P.E., Rodriguez, J., Wang, J.B.: QSWalk: a mathematica package for quantum

stochastic walks on arbitrary graphs. Comput. Phys. Commun. 217, 162–170 (2017)
113. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928

(1998)
114. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York

(1968)
115. Foulger, I., Gnutzmann, S., Tanner, G.: Quantum walks and quantum search on graphene

lattices. Phys. Rev. A 91, 062323 (2015)
116. Fujiwara, S., Hasegawa, S.: General method for realizing the conditional phase-shift gate and

a simulation of Grover’s algorithm in an ion-trap system. Phys. Rev. A 71, 012337 (2005)
117. Galiceanu, M., Strunz, W.T.: Continuous-time quantum walks on multilayer dendrimer net-

works. Phys. Rev. E 94, 022307 (2016)
118. Mc Gettrick, M., Miszczak, J.A.: Quantum walks with memory on cycles. Phys. A 399,

163–170 (2014)
119. Ghosh, J.: Simulating Anderson localization via a quantum walk on a one-dimensional lattice

of superconducting qubits. Phys. Rev. A 89, 022309 (2014)
120. Glos, A., Miszczak, J.A., Ostaszewski, M.: QSWalk.jl: Julia package for quantum stochastic

walks analysis (2018). arXiv:1801.01294
121. Godsil, C., Royle, G.F.: Algebraic Graph Theory. Graduate Texts in Mathematics, vol. 207.

Springer, New York (2001)

http://arxiv.org/abs/1303.4127
http://arxiv.org/abs/1801.01294


294 References

122. Gönülol, M., Aydner, E., Shikano, Y., Müstecaplolu, Ö.E.: Survival probability in a quantum
walk on a one-dimensional lattice with partially absorbing traps. J. Comput. Theor. Nanosci.
10(7), 1596–1600 (2013)

123. Gould, H.W.: Combinatorial Identities. Morgantown Printing and Binding Co., Morgantown
(1972)

124. Goyal, S.K., Konrad, T., Diósi, L.: Unitary equivalence of quantum walks. Phys. Lett. A
379(3), 100–104 (2015)

125. Graham,R.L.,Knuth,D.E., Patashnik,O.:ConcreteMathematics:AFoundation forComputer
Science. Addison-Wesley, Reading (1994)

126. Griffiths, D.: Introduction to Quantum Mechanics. Benjamin Cummings, Menlo Park (2005)
127. Grigoriev, D.: Karpinski, M., auf der Heide, F.M., Smolensky, R.: A lower bound for random-

ized algebraic decision trees. Comput. Complex. 6(4), 357–375 (1996)
128. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of

the 28th Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. New
York (1996)

129. Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query.
Phys. Rev. Lett. 79(23), 4709–4712 (1997)

130. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
Lett. 79(2), 325–328 (1997)

131. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation.
Phys. Rev. Lett. 80(19), 4329–4332 (1998)

132. Grover, L.K.: Trade-offs in the quantum search algorithm. Phys. Rev. A 66, 052314 (2002)
133. Gudder, S.: Quantum Probability. Academic Press, San Diego (1988)
134. LoGullo,N.,Ambarish, C.V., Busch, T.,Dell’Anna, L., Chandrashekar, C.M.,Chandrashekar,

C.M.: Dynamics and energy spectra of aperiodic discrete-time quantum walks. Phys. Rev. E
96, 012111 (2017)

135. Hamada, M., Konno, N., Segawa, E.: Relation between coined quantum walks and quantum
cellular automata. RIMS Kokyuroku 1422, 1–11 (2005)

136. Hamilton, C.S., Barkhofen, S., Sansoni, L., Jex, I., Silberhorn, C.: Driven discrete time quan-
tum walks. New J. Phys. 18(7), 073008 (2016)

137. Hao, L., Li, J., Long, G.: Eavesdropping in a quantum secret sharing protocol based on Grover
algorithm and its solution. Sci. China Phys. Mech. Astron. 53(3), 491–495 (2010)

138. Harary, F.: Graph Theory. Addison-Wesley, Boston (1969)
139. Hartsfield, N., Ringel, G.: Pearls in Graph Theory: A Comprehensive Introduction. Dover

Books on Mathematics. Dover Publications, New York (1994)
140. Hayashi, M., Ishizaka, S., Kawachi, A., Kimura, G., Ogawa, T.: Introduction to Quantum

Information Science. Springer, Berlin (2014)
141. He, Z., Huang, Z., Li, L., Situ, H.: Coherence of one-dimensional quantum walk on cycles.

Quantum Inf. Process. 16(11), 271 (2017)
142. He, Z., Huang, Z., Li, L., Situ, H.: Coherence evolution in two-dimensional quantum walk on

lattice. Int. J. Quantum Inf. 16(02), 1850011 (2018)
143. He, Z., Huang, Z., Situ, H.: Dynamics of quantum coherence in two-dimensional quantum

walk on finite lattices. Eur. Phys. J. Plus 132(7), 299 (2017)
144. Hein, B., Tanner, G.: Quantum search algorithms on a regular lattice. Phys. Rev. A 82(1),

012326 (2010)
145. Higuchi, Y., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover

walks on crystal lattices. J. Funct. Anal. 267(11), 4197–4235 (2014)
146. Hirvensalo, M.: Quantum Computing. Springer, Berlin (2010)
147. Ho, C.-L., Ide, Y., Konno, N., Segawa, E., Takumi, K.: A spectral analysis of discrete-time

quantum walks related to the birth and death chains. J. Stat. Phys. 171(2), 207–219 (2018)
148. Hoffman, K.M., Kunze, R.: Linear Algebra. Prentice Hall, New York (1971)
149. Holweck, F., Jaffali, H., Nounouh, I.: Grover’s algorithm and the secant varieties. Quantum

Inf. Process. 15(11), 4391–4413 (2016)
150. Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)



References 295

151. Høyer, P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62, 052304
(2000)

152. Høyer, P., Komeili, M.: Efficient quantum walk on the grid with multiple marked elements.
In: Vollmer, H., Vallée, B. (eds.) Proceedings of the 34th Symposium on Theoretical Aspects
of Computer Science STACS, vol. 66, pp. 42:1–14. Dagstuhl, Germany (2017)

153. Hsu, L.-Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68,
022306 (2003)

154. Hughes, B.D.: RandomWalks and Random Environments: Voloum 1 RandomWalks. Oxford
University Press, Oxford (1995)

155. Hughes, B.D.: RandomWalks and Random Environments: Volume 2 Random Environments.
Oxford University Press, Oxford (1996)

156. Hush, M.R., Bentley, C.D.B., Ahlefeldt, R.L., James, M.R., Sellars, M.J., Ugrinovskii, V.:
Quantum state transfer through time reversal of an optical channel. Phys. Rev. A 94, 062302
(2016)

157. Ide, Y., Konno, N., Segawa, E.: Time averaged distribution of a discrete-time quantum walk
on the path. Quantum Inf. Process. 11(5), 1207–1218 (2012)

158. Innocenti, L., Majury, H., Giordani, T., Spagnolo, N., Sciarrino, F., Paternostro, M., Ferraro,
A.: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys.
Rev. A 96, 062326 (2017)

159. Itakura, Y.K.: Quantum algorithm for commutativity testing of a matrix set. Master’s thesis,
University of Waterloo, Waterloo (2005)

160. Iwai, T., Hayashi, N., Mizobe, K.: The geometry of entanglement and Grover’s algorithm. J.
Phys. A: Math. Theor. 41(10), 105202 (2008)

161. Izaac, J.A., Wang, J.B.: PyCTQW: a continuous-time quantum walk simulator on distributed
memory computers. Comput. Phys. Commun. 186, 81–92 (2015)

162. Izaac, J.A., Wang, J.B.: Systematic dimensionality reduction for continuous-time quantum
walks of interacting fermions. Phys. Rev. E 96, 032136 (2017)

163. Izaac, J.A., Zhan, X., Bian, Z., Wang, K., Li, J., Wang, J.B., Xue, P.: Centrality measure based
on continuous-time quantum walks and experimental realization. Phys. Rev. A 95, 032318
(2017)

164. Jeffery, S.,Magniez, F., deWolf, R.:Optimal parallel quantumquery algorithms.Algorithmica
79(2), 509–529 (2017)

165. Jin, W., Chen, X.: A desired state can not be found with certainty for Grover’s algorithm in a
possible three-dimensional complex subspace. Quantum Inf. Process. 10(3), 419–429 (2011)

166. Johnston, N., Kirkland, S., Plosker, S., Storey, R., Zhang, X.: Perfect quantum state transfer
using Hadamard diagonalizable graphs. Linear Algebra Appl. 531, 375–398 (2017)

167. Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a
quantum computer. Nature 393(6683), 344–346 (1998)

168. Kaplan, M.: Quantum attacks against iterated block ciphers. Mat. Vopr. Kriptogr. 7, 71–90
(2016)

169. Kargin, V.: Bounds for mixing time of quantum walks on finite graphs. J. Phys. A: Math.
Theor. 43(33), 335302 (2010)

170. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford Uni-
versity Press, New York (2007)

171. Kedon, V.M., Tamon, C.: Perfect state transfer in quantumwalks on graphs. J. Comput. Theor.
Nanosci. 8(3), 422–433 (2011)

172. Kempe, J.: Quantum random walks - an introductory overview. Contemp. Phys. 44(4), 302–
327 (2003)

173. Kempe, J.: Discrete quantum walks hit exponentially faster. Probab. Theory Relat. Fields
133(2), 215–235 (2005). arXiv:quant-ph/0205083

174. Kempton, M., Lippner, G., Yau, S.-T.: Perfect state transfer on graphs with a potential. Quan-
tum Inf. Comput. 17(3–4), 303–327 (2017)

175. Kendon, V.: Decoherence in quantum walks - a review. Math. Struct. Comput. Sci. 17(6),
1169–1220 (2007)

http://arxiv.org/abs/quant-ph/0205083


296 References

176. Kendon, V., Sanders, B.C.: Complementarity and quantum walks. Phys. Rev. A 71, 022307
(2005)

177. Kirkland, S., Severini, S.: Spin-system dynamics and fault detection in threshold networks.
Phys. Rev. A 83, 012310 (2011)

178. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. American
Mathematical Society, Boston (2002)

179. Koch, D., Hillery, M.: Finding paths in tree graphs with a quantum walk. Phys. Rev. A 97,
012308 (2018)

180. Kollár, B., Novotný, J., Kiss, T., Jex, I.: Percolation induced effects in two-dimensional coined
quantum walks: analytic asymptotic solutions. New J. Phys. 16(2), 023002 (2014)

181. Komatsu, T., Konno, N.: Stationary amplitudes of quantum walks on the higher-dimensional
integer lattice. Quantum Inf. Process. 16(12), 291 (2017)

182. Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1(5), 345–354
(2002)

183. Konno, N.: Quantum walks. In: Franz, U., Schürmann, M. (eds.) Quantum Potential Theory.
Lecture Notes in Mathematics, vol. 1954, pp. 309–452. Springer, Berlin (2008)

184. Konno, N., Ide, Y., Sato, I.: The spectral analysis of the unitary matrix of a 2-tessellable
staggered quantum walk on a graph. Linear Algebra Appl. 545, 207–225 (2018)

185. Konno, N., Mitsuhashi, H., Sato, I.: The discrete-time quaternionic quantum walk on a graph.
Quantum Inf. Process. 15(2), 651–673 (2016)

186. Konno, N., Obata, N., Segawa, E.: Localization of the Grover walks on spidernets and free
Meixner laws. Commun. Math. Phys. 322(3), 667–695 (2013)

187. Konno, N., Portugal, R., Sato, I., Segawa, E.: Partition-based discrete-time quantum walks.
Quantum Inf. Process. 17(4), 100 (2018)

188. Konno, N., Sato, I.: On the relation between quantum walks and zeta functions. Quantum Inf.
Process. 11(2), 341–349 (2012)

189. Konno, N., Sato, I., Segawa, E.: The spectra of the unitary matrix of a 2-tessellable staggered
quantum walk on a graph. Yokohama Math. J. 62, 52–87 (2017)

190. Košík, J.: Two models of quantum random walk. Central Eur. J. Phys. 4, 556–573 (2003)
191. Košík, J., Bužek, V., Hillery, M.: Quantum walks with random phase shifts. Phys. Rev. A 74,

022310 (2006)
192. Krawec, W.O.: History dependent quantum walk on the cycle with an unbalanced coin. Phys.

A 428, 319–331 (2015)
193. Krovi, H., Brun, T.A.: Quantum walks with infinite hitting times. Phys. Rev. A 74, 042334

(2006)
194. Krovi, H., Brun, T.A.: Quantum walks on quotient graphs. Phys. Rev. A 75, 062332 (2007)
195. Krovi, H., Magniez, F., Ozols, M., Roland, J.: Finding is as easy as detecting for quantum

walks. Automata, Languages and Programming. Lecture Notes in Computer Science, vol.
6198, pp. 540–551. Springer, Berlin (2010)

196. Kutin, S.: Quantum lower bound for the collision problem with small range. Theory Comput.
1, 29–36 (2005)

197. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster using quantum
search. Des. Codes Cryptogr. 77(2), 375–400 (2015)

198. Lam, H.T., Szeto, K.Y.: Ramsauer effect in a one-dimensional quantum walk with multiple
defects. Phys. Rev. A 92, 012323 (2015)

199. Lang, S.: Linear Algebra. Undergraduate Texts in Mathematics and Technology. Springer,
New York (1987)

200. Lang, S.: Introduction to Linear Algebra. Undergraduate Texts inMathematics. Springer, New
York (1997)

201. Lara, P.C.S., Leão, A., Portugal, R.: Simulation of quantum walks using HPC. J. Comput. Int.
Sci. 6, 21 (2015)

202. Lehman, L.: Environment-induced mixing processes in quantum walks. Int. J. Quantum Inf.
12(04), 1450021 (2014)



References 297

203. Leuenberger, M.N., Loss, D.: Grover algorithm for large nuclear spins in semiconductors.
Phys. Rev. B 68, 165317 (2003)

204. Li, D., Mc Gettrick, M., Gao, F., Xu, J., Wen, Q.-Y., Wen, Q.-Y.: Generic quantum walks with
memory on regular graphs. Phys. Rev. A 93, 042323 (2016)

205. Li, D., Mc Gettrick, M., Zhang, W.-W., Zhang, K.-J., Zhang, K.-J.: Quantum walks on two
kinds of two-dimensional models. Int. J. Theor. Phys. 54(8), 2771–2783 (2015)

206. Li, P., Li, S.: Phase matching in Grover’s algorithm. Phys. Lett. A 366(1), 42–46 (2007)
207. Li, P., Li, S.: Two improvements in Grover’s algorithm. Chin. J. Electron. 17(1), 100–104

(2008)
208. Lin, J.-Y., Zhu, X., Wu, S.: Limitations of discrete-time quantum walk on a one-dimensional

infinite chain. Phys. Lett. A 382(13), 899–903 (2018)
209. Lipton, R.J., Regan, K.W.: Quantum Algorithms via Linear Algebra: A Primer. MIT Press,

Boston (2014)
210. Liu,C., Balu,R.: Steady states of continuous-time open quantumwalks.Quantum Inf. Process.

16(7), 173 (2017)
211. Loke, T., Tang, J.W., Rodriguez, J., Small, M., Wang, J.B.: Comparing classical and quantum

pageranks. Quantum Inf. Process. 16(1), 25 (2016)
212. Loke, T., Wang, J.B.: Efficient quantum circuits for continuous-time quantum walks on com-

posite graphs. J. Phys. A: Math. Theor. 50(5), 055303 (2017)
213. Loke, T., Wang, J.B.: Efficient quantum circuits for Szegedy quantum walks. Ann. Phys. 382,

64–84 (2017)
214. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307

(2001)
215. Lovász, L.: Random walks on graphs: a survey. Comb. Paul Erdös Eighty 2, 1–46 (1993)
216. Lovett, N.B., Cooper, S., Everitt,M., Trevers,M.,Kendon,V.:Universal quantumcomputation

using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)
217. Lovett, N.B., Everitt, M., Heath, R.M., Kendon, V.: The quantum walk search algorithm:

factors affecting efficiency. Math. Struct. Comput. Sci. 67, 1–141 (2018)
218. Lu, X., Yuan, J., Zhang, W.: Workflow of the Grover algorithm simulation incorporating

CUDA and GPGPU. Comput. Phys. Commun. 184(9), 2035–2041 (2013)
219. Ma, B.-W., Bao, W.-S., Li, T., Li, F.-G., Zhang, S., Fu, X.-Q.: A four-phase improvement of

Grover’s algorithm. Chin. Phys. Lett. 34(7), 070305 (2017)
220. Machida, T., Chandrashekar, C.M.: Localization and limit laws of a three-state alternate

quantum walk on a two-dimensional lattice. Phys. Rev. A 92, 062307 (2015)
221. Machida, T., Chandrashekar, C.M., Konno, N., Busch, T.: Limit distributions for different

formsof four-state quantumwalks on a two-dimensional lattice.Quantum Inf.Comput.15(13–
14), 1248–1258 (2015)

222. Mackay, T.D., Bartlett, S.D., Stephenson, L.T., Sanders, B.C.: Quantum walks in higher
dimensions. J. Phys. A: Math. Gen. 35(12), 2745 (2002)

223. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. Algorithmica
48(3), 221–232 (2007)

224. Magniez, F., Nayak,A., Richter, P., Santha,M.:On the hitting times of quantumversus random
walks. In: Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms (2009)

225. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proceedings of
the 39th ACM Symposium on Theory of Computing, pp. 575–584 (2007)

226. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM
J. Comput. 37(2), 413–424 (2007)

227. Makmal, A., Tiersch,M., Ganahl, C., Briegel, H.J.: Quantumwalks on embedded hypercubes:
nonsymmetric and nonlocal cases. Phys. Rev. A 93, 022322 (2016)

228. Makmal, A., Zhu, M., Manzano, D., Tiersch, M., Briegel, H.J.: Quantum walks on embedded
hypercubes. Phys. Rev. A 90, 022314 (2014)

229. Manouchehri, K., Wang, J.: Physical Implementation of QuantumWalks. Springer, NewYork
(2014)



298 References

230. Marinescu, D.C., Marinescu, G.M.: Approaching Quantum Computing. Pearson/Prentice
Hall, Michigan (2005)

231. Marquezino, F.L., Portugal, R.: The qwalk simulator of quantum walks. Comput. Phys. Com-
mun. 179(5), 359–369 (2008)

232. Marquezino, F.L., Portugal, R., Abal, G.: Mixing times in quantumwalks on two-dimensional
grids. Phys. Rev. A 82(4), 042341 (2010)

233. Marquezino, F.L., Portugal, R., Abal, G., Donangelo, R.: Mixing times in quantum walks on
the hypercube. Phys. Rev. A 77, 042312 (2008)

234. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press,
New York (2007)

235. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2001)
236. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5),

551–574 (1996)
237. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014–

2017 (2000)
238. Meyer, D.A., Wong, T.G.: Connectivity is a poor indicator of fast quantum search. Phys. Rev.

Lett. 114, 110503 (2015)
239. Mlodinow,L., Brun, T.A.:Discrete spacetime, quantumwalks, and relativisticwave equations.

Phys. Rev. A 97, 042131 (2018)
240. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, New York

(2011)
241. Moore, C., Russell, A.: Quantum walks on the hypercube. In: Proceedings of the 6th Interna-

tionalWorkshop on Randomization andApproximation Techniques RANDOM, pp. 164–178.
Springer, Berlin (2002)

242. Moqadam, J.K., Portugal, R., de Oliveira, M.C.: Quantum walks on a circle with optome-
chanical systems. Quantum Inf. Process. 14(10), 3595–3611 (2015)

243. Khatibi Moqadam, J., de Oliveira, M.C., Portugal, R., Portugal, R.: Staggered quantum walks
with superconducting microwave resonators. Phys. Rev. B 95, 144506 (2017)

244. Mosca, M.: Counting by quantum eigenvalue estimation. Theor. Comput. Sci. 264(1), 139–
153 (2001)

245. Motwani, R., Raghavan, P.: Randomized algorithms.ACMComput. Surv. 28(1), 33–37 (1996)
246. Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on

complex networks. Phys. Rep. 502(2), 37–87 (2011)
247. Nayak, A., Vishwanath, A.: Quantum walk on a line. DIMACS Technical Report 2000-43

(2000). arXiv:quant-ph/0010117
248. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge

University Press, New York (2000)
249. Novo, L., Chakraborty, S., Mohseni, M., Neven, H., Omar, Y.: Systematic dimensionality

reduction for quantum walks: optimal spatial search and transport on non-regular graphs. Sci.
Rep. 5, 13304 (2015)

250. Ohno, H.: Unitary equivalent classes of one-dimensional quantum walks. Quantum Inf. Pro-
cess. 15(9), 3599–3617 (2016)

251. Oliveira, A.C., Portugal, R., Donangelo, R.: Decoherence in two-dimensional quantumwalks.
Phys. Rev. A 74, 012312 (2006)

252. Omnès, R.: UnderstandingQuantumMechanics. PrincetonUniversity Press, Princeton (1999)
253. Pal, H., Bhattacharjya, B.: Perfect state transfer on gcd-graphs. Linear Multilinear Algebra

65(11), 2245–2256 (2017)
254. Paparo,G.D.,Müller,M., Comellas, F.,Martin-Delgado,M.A.:QuantumGoogle in a complex

network. Sci. Rep. 3, 2773 (2013)
255. Parthasarathy, K.R.: The passage from random walk to diffusion in quantum probability. J.

Appl. Probab. 25, 151–166 (1988)
256. Patel, A., Raghunathan, K.S., Rungta, P.: Quantum random walks do not need a coin toss.

Phys. Rev. A 71, 032347 (2005)
257. Peres, A.: Quantum Theory: Concepts and Methods. Springer, Berlin (1995)

http://arxiv.org/abs/quant-ph/0010117


References 299

258. Pérez, A., Romanelli, A.: Spatially dependent decoherence and anomalous diffussion of quan-
tum walks. J. Comput. Theor. Nanosci. 10(7), 1591–1595 (2013)

259. Peterson, D.: Gridline graphs: a review in two dimensions and an extension to higher dimen-
sions. Discret. Appl. Math. 126(2), 223–239 (2003)

260. Philipp, P., Portugal, R.: Exact simulation of coined quantum walks with the continuous-time
model. Quantum Inf. Process. 16(1), 14 (2017)

261. Philipp, P., Tarrataca, L., Boettcher, S.: Continuous-time quantum search on balanced trees.
Phys. Rev. A 93, 032305 (2016)

262. Piccinini, E., Benedetti, C., Siloi, I., Paris, M.G.A., Bordone, P.: GPU-accelerated algorithms
for many-particle continuous-time quantum walks. Comput. Phys. Commun. 215, 235–245
(2017)

263. Portugal, R.: Establishing the equivalence between Szegedy’s and coined quantum walks
using the staggered model. Quantum Inf. Process. 15(4), 1387–1409 (2016)

264. Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016)
265. Portugal, R.: Element distinctness revisited. Quantum Inf. Process. 17(7), 163 (2018)
266. Portugal, R., Boettcher, S., Falkner, S.: One-dimensional coinless quantum walks. Phys. Rev.

A 91, 052319 (2015)
267. Portugal, R., deOliveira,M.C.,Moqadam, J.K.: Staggered quantumwalkswithHamiltonians.

Phys. Rev. A 95, 012328 (2017)
268. Portugal, R., Fernandes, T.D.: Quantum search on the two-dimensional lattice using the stag-

gered model with Hamiltonians. Phys. Rev. A 95, 042341 (2017)
269. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantumwalk

model. Quantum Inf. Process. 15(1), 85–101 (2016)
270. Portugal, R., Segawa, E.: Connecting coined quantum walks with Szegedy’s model. Interdis-

cip. Inf. Sci. 23(1), 119–125 (2017)
271. Preiss, P.M., Ma, R., Tai, M.E., Lukin, A., Rispoli, M., Zupancic, P., Lahini, Y., Islam, R.,

Greiner, M.: Strongly correlated quantum walks in optical lattices. Science 347(6227), 1229–
1233 (2015)

272. Preskill, J.: Lecture Notes on Quantum Computation (1998). http://www.theory.caltech.edu/
~preskill/ph229

273. Reitzner, D., Hillery, M., Koch, D.: Finding paths with quantum walks or quantum walking
through a maze. Phys. Rev. A 96, 032323 (2017)

274. Reitzner, D., Nagaj, D., Buz̆ek, V.: Quantum walks. Acta Phys. Slov. 61(6), 603–725 (2011)
275. Ren, P., Aleksić, T., Emms, D., Wilson, R.C., Hancock, E.R.: Quantum walks, Ihara zeta

functions and cospectrality in regular graphs. Quantum Inf. Process. 10(3), 405–417 (2011)
276. Rieffel, E., Polak, W.: Quantum Computing, a Gentle Introduction. MIT Press, Cambridge

(2011)
277. Robens, C., Alt, W., Meschede, D., Emary, C., Alberti, A.: Ideal negative measurements

in quantum walks disprove theories based on classical trajectories. Phys. Rev. X 5, 011003
(2015)

278. Rodrigues, J., Paunković, N., Mateus, P.: A simulator for discrete quantum walks on lattices.
Int. J. Mod. Phys. C 28(04), 1750055 (2017)

279. Rohde, P.P., Fedrizzi, A., Ralph, T.C.: Entanglement dynamics and quasi-periodicity in dis-
crete quantum walks. J. Modern Opt. 59(8), 710–720 (2012)

280. Romanelli, A., Siri, R., Abal, G., Auyuanet, A., Donangelo, R.: Decoherence in the quantum
walk on the line. Phys. A 347, 137–152 (2005)

281. Ronke, R., Estarellas, M.P., D’Amico, I., Spiller, T.P., Miyadera, T.: Anderson localisation in
spin chains for perfect state transfer. Eur. Phys. J. D 70(9), 189 (2016)

282. Rosmanis, A.: Quantum adversary lower bound for element distinctness with small range.
Chic. J. Theor. Comput. Sci. 4, 2014 (2014)

283. Rossi, M.A.C., Benedetti, C., Borrelli, M., Maniscalco, S., Paris, M.G.A.: Continuous-time
quantum walks on spatially correlated noisy lattices. Phys. Rev. A 96, 040301 (2017)

284. Rudinger, K., Gamble, J.K., Bach, E., Friesen, M., Joynt, R., Coppersmith, S.N.: Compar-
ing algorithms for graph isomorphism using discrete- and continuous-time quantum random
walks. J. Comput. Theor. Nanosci. 10(7), 1653–1661 (2013)

http://www.theory.caltech.edu/~preskill/ph229
http://www.theory.caltech.edu/~preskill/ph229


300 References

285. Sadgrove,M.: Quantum amplitude amplification by phase noise. Europhys. Lett. 86(5), 50005
(2009)

286. Sadowski, P., Miszczak, J.A., Ostaszewski, M.: Lively quantum walks on cycles. J. Phys. A:
Math. Theor. 49(37), 375302 (2016)

287. Sakurai, J.J., Napolitano, J.: Modern Quantum Mechanics. Addison-Wesley, Reading (2011)
288. Salas, P.J.: Noise effect on Grover algorithm. Eur. Phys. J. D 46(2), 365–373 (2008)
289. Sampathkumar, E.: On the line graph of subsivision graph. J. Karnatak Univ. Sci. 17, 259–260

(1972)
290. Santha, M.: Quantum walk based search algorithms. In: Proceedings of the 5th International

Conference, TAMC 2008, Xi’an, China, 2008, pp. 31–46. Springer, Berlin (2008)
291. Santos, R.A.M.: Szegedy’s quantum walk with queries. Quantum Inf. Process. 15(11), 4461–

4475 (2016)
292. Santos, R.A.M., Portugal, R.: Quantum hitting time on the complete graph. Int. J. Quantum

Inf. 8(5), 881–894 (2010)
293. Santos, R.A.M., Portugal, R., Boettcher, S.: Moments of coinless quantum walks on lattices.

Quantum Inf. Process. 14(9), 3179–3191 (2015)
294. Schmitz, A.T., Schwalm, W.A.: Simulating continuous-time hamiltonian dynamics by way

of a discrete-time quantum walk. Phys. Lett. A 380(11), 1125–1134 (2016)
295. Segawa, E.: Localization of quantumwalks induced by recurrence properties of randomwalks.

J. Comput. Theor. Nanosci. 10(7), 1583–1590 (2013)
296. Shakeel, A., Meyer, D.A., Love, P.J.: History dependent quantum random walks as quantum

lattice gas automata. J. Math. Phys. 55(12), 122204 (2014)
297. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm. Phys. Rev.

A 67(5), 052307 (2003)
298. Shi, H.-L., Liu, S.-Y., Wang, X.-H., Yang, W.-L., Yang, Z.-Y., Fan, H.: Coherence depletion

in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)
299. Souza, A.M.C., Andrade, R.F.S.: Discrete time quantum walk on the Apollonian network. J.

Phys. A: Math. Theor. 46(14), 145102 (2013)
300. Souza, D.S., Marquezino, F.L., Lima, A.A.B.: Quandoop: a classical simulator of quantum

walks on computer clusters. J. Comput. Int. Sci. 8, 109–172 (2017)
301. Stefaňák, M., Skoupý, S.: Perfect state transfer by means of discrete-time quantum walk on

complete bipartite graphs. Quantum Inf. Process. 16(3), 72 (2017)
302. Stefaňák, M., Kollár, B., Kiss, T., Jex, I.: Full revivals in 2D quantum walks. Phys. Scr.

2010(T140), 014035 (2010)
303. Stolze, J., Suter, D.: QuantumComputing, Revised andEnlarged:AShort Course fromTheory

to Experiment. Wiley-VCH, New York (2008)
304. Stong, R.A.: On 1-factorizability of Cayley graphs. J. Comb. Theory Ser. B 39(3), 298–307

(1985)
305. Strang, G.: Linear Algebra and Its Applications. Brooks Cole (1988)
306. Strauch, F.W.: Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A

74(3), 030301 (2006)
307. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the

45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 32–41.
Washington (2004)

308. Szegedy, M.: Spectra of quantized walks and a
√

δε rule (2004). arXiv:quant-ph/0401053
309. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci. 410(50), 5285–

5297 (2009)
310. Tödtli, B., Laner, M., Semenov, J., Paoli, B., Blattner, M., Kunegis, J.: Continuous-time

quantum walks on directed bipartite graphs. Phys. Rev. A 94, 052338 (2016)
311. Toyama, F.M., Van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified

Grover algorithms: optimum choice of parameters. Quantum Inf. Process. 12(5), 1897–1914
(2013)

312. Travaglione, B.C., Milburn, G.J.: Implementing the quantum random walk. Phys. Rev. A
65(3), 032310 (2002)

http://arxiv.org/abs/quant-ph/0401053


References 301

313. Tregenna, B., Flanagan,W., Maile, R., Kendon, V.: Controlling discrete quantumwalks: coins
and initial states. New J. Phys. 5(1), 83 (2003)

314. Trudeau, R.J.: Introduction to Graph Theory. Dover Books on Mathematics. Dover Publica-
tions, Mineola (2013)

315. Tulsi, A.: Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev.
A 78(1), 012310 (2008)

316. Tulsi, A.: General framework for quantum search algorithms. Phys. Rev. A 86, 042331 (2012)
317. Tulsi, A.: Robust quantum spatial search. Quantum Inf. Process. 15(7), 2675–2683 (2016)
318. Valencia-Pabon, M., Vera, J.-C.: On the diameter of Kneser graphs. Discret. Math. 305(1),

383–385 (2005)
319. Venegas-Andraca, S.E.: QuantumWalks for Computer Scientists. Morgan and Claypool Pub-

lishers (2008)
320. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process.

11(5), 1015–1106 (2012)
321. Vieira, R., Amorim, E.P.M., Rigolin, G.: Entangling power of disordered quantum walks.

Phys. Rev. A 89, 042307 (2014)
322. Wang, C., Hao, L., Song, S.Y., Long, G.L.: Quantum direct communication based on quantum

search algorithm. Int. J. Quantum Inf. 08(03), 443–450 (2010)
323. Wang, G.: Efficient quantum algorithms for analyzing large sparse electrical networks. Quan-

tum Inf. Comput. 17(11&12), 987–1026 (2017)
324. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf.

Process. 16(9), 221 (2017)
325. Waseem, M., Ahmed, R., Irfan, M., Qamar, S.: Three-qubit Grover’s algorithm using su-

perconducting quantum interference devices in cavity-QED. Quantum Inf. Process. 12(12),
3649–3664 (2013)

326. West, D.B.: Introduction to Graph Theory. Prentice Hall, Englewood Cliffs (2000)
327. Whitfield, J.D., Rodríguez-Rosario, C.A., Aspuru-Guzik, A.: Quantum stochastic walks: a

generalization of classical randomwalks and quantumwalks. Phys. Rev. A 81, 022323 (2010)
328. Williams, C.P.: Explorations in Quantum Computing. Springer, Berlin (2008)
329. Wong, T.G.: Quantum walk search with time-reversal symmetry breaking. J. Phys. A: Math.

Theor. 48(40), 405303 (2015)
330. Wong, T.G.: Coined quantum walks on weighted graphs. J. Phys. A: Math. Theor. 50(47),

475301 (2017)
331. Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17(3), 68

(2018)
332. Wong, T.G., Ambainis, A.: Quantum search with multiple walk steps per oracle query. Phys.

Rev. A 92, 022338 (2015)
333. Wong, T.G., Santos, R.A.M.: Exceptional quantum walk search on the cycle. Quantum Inf.

Process. 16(6), 154 (2017)
334. Wong, T.G., Tarrataca, L., Nahimov, N.: Laplacian versus adjacency matrix in quantum walk

search. Quantum Inf. Process. 15(10), 4029–4048 (2016)
335. Xi-Ling, X., Zhi-Hao, L., Han-Wu, C.: Search algorithm on strongly regular graphs based on

scattering quantum walk. Chin. Phys. B 26(1), 010301 (2017)
336. Xu, X.-P., Ide, Y.: Exact solutions and symmetry analysis for the limiting probability distri-

bution of quantum walks. Ann. Phys. 373, 682–693 (2016)
337. Xu, X.-P., Ide, Y., Konno, N.: Symmetry and localization of quantum walks induced by an

extra link in cycles. Phys. Rev. A 85, 042327 (2012)
338. Yalçinkaya, I., Gedik, Z.: Two-dimensional quantum walk under artificial magnetic field.

Phys. Rev. A 92, 042324 (2015)
339. Yalouz, S., Pouthier, V.: Continuous-time quantum walk on an extended star graph: trapping

and superradiance transition. Phys. Rev. E 97, 022304 (2018)
340. Yamaguchi, F., Milman, P., Brune, M., Raimond, J.M., Haroche, S.: Quantum search with

two-atom collisions in cavity QED. Phys. Rev. A 66, 010302 (2002)



302 References

341. Yang-Yi, H., Ping-Xing, C.: Localization of quantum walks on finite graphs. Chin. Phys. B
25(12), 120303 (2016)

342. Yao, A.C.C.: Near-optimal time-space tradeoff for element distinctness. In: Proceedings of
the 29th Annual Symposium on Foundations of Computer Science, pp. 91–97 (1988)

343. Yoon, C.S., Kang, M.S., Lim, J.I., Yang, H.J.: Quantum signature scheme based on a quantum
search algorithm. Phys. Scr. 90(1), 015103 (2015)

344. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751
(1999)

345. Zeng, M., Yong, E.H.: Discrete-time quantum walk with phase disorder: localization and
entanglement entropy. Sci. Rep. 7(1), 12024 (2017)

346. Zhan, X., Qin, H., Bian, Z.-H., Li, J., Xue, P.: Perfect state transfer and efficient quantum
routing: a discrete-time quantum-walk approach. Phys. Rev. A 90, 012331 (2014)

347. Zhang, F., Chen, Y.-C., Chen, Z.: Clique-inserted-graphs and spectral dynamics of clique-
inserting. J. Math. Anal. Appl. 349(1), 211–225 (2009)

348. Zhang, R., Qin, H., Tang, B., Xue, P.: Disorder and decoherence in coined quantum walks.
Chin. Phys. B 22(11), 110312 (2013)

349. Zhang,Y.-C., Bao,W.-S.,Wang,X., Fu,X.-Q.: Effects of systematic phase errors on optimized
quantum random-walk search algorithm. Chin. Phys. B 24(6), 060304 (2015)

350. Zhang, Y.-C., Bao, W.-S., Wang, X., Fu, X.-Q.: Optimized quantum random-walk search
algorithm for multi-solution search. Chin. Phys. B 24(11), 110309 (2015)

351. Zhirov, O.V., Shepelyansky, D.L.: Dissipative decoherence in theGrover algorithm. Eur. Phys.
J. D 38(2), 405–408 (2006)

352. Zhou, J., Bu, C.: State transfer and star complements in graphs. Discret. Appl. Math. 176,
130–134 (2014)



Index

A
Abelian group, 131, 279
Absorbing state, 224
Abstract algebra, 278
Abstract search algorithm, 66
Adjacency matrix, 24, 163, 272
Adjacent, 106, 203, 225, 271
Adjoint operator, 257
Amplitude amplification technique, 41, 63–

66, 183, 185, 200, 202
Arc, 23, 127, 195, 277, 285
Arc notation, 125, 128, 131, 157, 196
Argument, 135
Average distribution, 153, 155
Average position, 20
Average probability distribution, 125, 139

B
Ballistic, 30, 32
Barycentric subdivision, 275
Basis, 248
Benioff, 175
Bilinear, 263
Binary sum, 43, 106
Binary vector, 108
Binomial, 40
Binomial coefficient, 203
Binomial distribution, 20
Bipartite digraph, 223, 234
Bipartite graph, 220, 273
Bipartite multigraph, 274, 275
Bipartite quantum walk, 225
Bitwise xor, 43
Black box group, 246
Bloch sphere, 252
Block diagonal, 128

Bound, 156
Bra-ket notation, 249, 250

C
Canonical basis, 251
Cardinality, 204
Cauchy–Schwarz inequality, 55, 257
Cayley graph, 131, 278
Ceiling function, 236
Characteristic function, 169
Characteristic polynomial, 52, 230
Chebyshev polynomial, 236, 241
Chirality, 118
Chromatic index, 276
Chromatic number, 276
Class 1, 125, 127, 276
Class 2, 125, 127, 276
Classical algorithm, 62
Classical bit, 253
Classical discrete-time Markov chain, 23
Classical hitting time, 223, 227, 234
Classical Markov chain, 23, 223
Classical mixing time, 156
Classical physics, 9
Classical random robot, 175
Classical random walk, 19, 35, 40, 69, 139,

156, 281
Class NP-complete, 8
Clique, 174, 204, 205, 273
Clique cover, 274
Clique graph, 161, 274, 275
Clique–insertion operator, 275
Clique partition, 274
Cliques, 159
Closed physical system, 8
Coined model, 176, 195

© Springer Nature Switzerland AG 2018
R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, https://doi.org/10.1007/978-3-319-97813-0

303



304 Index

Coined quantum walk, 78, 125, 126, 128,
157, 227

Coined quantum walk model, 19, 26
Coinless, 174, 223
Coin operator, 26, 126, 128, 132
Coin space, 114
Coin-position notation, 125–127
Collapse, 12
Collision problem, 220
Colorable, 161
Coloring, 276
Commutative group, 279
Complete bipartite graph, 273
Complete graph, 24, 176, 195, 197, 223, 237,

272, 281
Completeness relation, 142, 256
Complex number, 141
Composite system, 11
Computational basis, 14, 89, 251
Computational complexity, 41
Computer Physics Communications library,

86, 87
Conjugate-linear, 248, 257, 264
Connected graph, 197, 272
Continued fraction approximation, 135
Continuous-time Markov chain, 19, 33, 35
Continuous-time model, 39, 125
Continuous-time quantum walk, 35, 39, 137
Continuous-time quantum walk model, 19
Counting algorithm, 66
Cycle, 89, 126, 143, 272

D
Dagger, 257
Decision problem, 201
Decoherence, 253
Degree, 24, 106, 128, 272, 283
Degree sum formula, 272
Derived graph, 274
Detection problem, 237
Detection time, 246
Diagonalizable, 255, 256
Diagonalize, 92
Diagonal representation, 12, 255
Diagonal state, 44, 98, 107, 114, 251, 265,

268
Diameter, 277
Diamond-free graph, 272
Diamond graph, 272
Digraph, 277
Dimension, 248
Dimensionless, 72

Dirac notation, 18, 269
Directed acyclic graph, 277
Directed cycle graph, 277
Directed edge, 277
Directed graph, 127, 277
Disconnected graph, 272
Discrete model, 26
Discrete-time classical Markov chain, 223
Discrete-time Markov chain, 40
Discrete-time quantum walk, 223
Discriminant, 227
Distance, 152
Duplication process, 223, 224, 234

E
Eccentricity, 276
Edge, 19, 127
Edge-chromatic number, 125, 126, 161, 276
Edge-colorability, 157
Edge coloring, 126, 276, 129
Eigenvalue, 228, 255
Eigenvector, 228, 255
Electron, 6
Element distinctness problem, 177, 201,

202, 245
Entangled, 11
Equilibrium distribution, 283
Euler number, 190
Evolution equation, 71, 99
Evolution operator, 44, 70, 118, 126, 128,

132, 227
Expansion, 275
Expected distance, 19, 20, 69
Expected position, 20
Expected time, 281
Expected value, 13, 84, 170, 282

F
Fidelity, 157
Finding problem, 237
Finite lattice, 126
Finite vector space, 247
Flip-flop shift operator, 81, 126, 128, 132,

196
Fortran, 29
Fourier, 81
Fourier basis, 71, 72, 91, 100, 108, 142
Fourier transform, 69, 71, 89, 91, 92, 108
Fractional revival, 137, 138, 157
Fundamental period, 134, 197



Index 305

G
Gamma function, 150
Gaussian distribution, 22
Generalized Toffoli gate, 43, 59, 266
Generating matrix, 33
Generating set, 278, 279
Geodesic distance, 276
Geometric series, 242
Global phase factor, 13, 252
Global sink, 277
Global source, 277
Gram–Schmidt process, 229
Graph, 19, 125, 272, 281
Graph tessellation, 159, 160, 174
Graph tessellation cover, 159, 160, 167, 174
Graph theory, 159
Grid, 175
Group, 278
Group order, 279
Grover, 66, 81
Grover coin, 98, 106, 115
Grover matrix, 107
Grover operator, 163
Grover quantum walk, 130
Grover’s algorithm, 41, 195, 197, 199

H
Hadamard, 27, 81
Hadamard coin, 70
Hajós graph, 159
Half-silvered mirror, 9
Hamiltonian walk, 38
Hamming distance, 106
Hamming weight, 110, 115, 148
Handshaking lemma, 272
Head, 127, 195, 277
Hermitian, 19
Hermitian operator, 258
H-free, 272
Hilbert space, 249
Hiperwalk, 86
Hitting time, 246, 281
Homogeneous coin, 126
Homogeneous rate, 33
Hypercube, 89, 106, 126, 143, 176, 199

I
Identity operator, 253
Imaginary unit, 35
Indegree, 277
Induced subgraph, 272

Infinitesimal, 33
Infinite vector space, 248
Inflection point, 22
Initial condition, 139
In-neighborhood, 277
Inner product, 248
Inner product matrix, 227
Instantaneous uniform mixing, 156, 157
Interchange graph, 274
Intersection graph, 273
Invariant, 83, 84
Inverse Fourier transform, 79
Isolated physical system, 7

J
Java, 29
Johnson graph, 220, 246
Julia, 29

K
Kernel, 227, 229, 253
Ket, 15
Kneser graph, 278
Kronecker delta, 250
Kronecker product, 264

L
Language C, 29
Laplacian matrix, 272
Las Vegas algorithm, 63
Latin letter, 251
Lattice, 199
Laurent series, 242
Law of excluded middle, 7
Lazy random walk, 156
Leaf, 132, 276
Learning graph, 221
Least common multiple, 135
Left singular vector, 229
Left stochastic matrix, 23
Limiting distribution, 24, 89, 96, 115, 125,

139, 153, 155, 157, 283
Limiting probability distribution, 125
Linear operator, 253
Line graph, 132, 220, 246, 274
Locality, 38, 129
Local operator, 129, 130, 162, 163
Local sink, 277
Local source, 277
Loop, 24, 195, 234, 271, 285
Loopless complete graph, 195



306 Index

M
Maple, 29, 36
Marked element, 42, 64
Marked vertex, 175, 176, 178, 181, 186, 191,

192, 194, 198, 200, 223, 234, 285
Markov chain, 224
Markov’s inequality, 63
Matching, 274
Mathematica, 29, 36
Matrix representation, 98, 254
Maximal clique, 159, 207, 273
Maximum degree, 125, 272
Maximum indegree, 277
Measurement, 14, 16
Metric, 152
Minimum clique cover, 274
Minimum clique partition, 274
Minimum degree, 272
Minimum indegree, 277
Mixing time, 89, 115, 125
Modified evolution operator, 177
Moment, 170
Monte Carlo algorithm, 63
Moral graph, 277
Moving shift operator, 126, 128, 191
Multigraph, 132, 273, 275
Multiple edge, 132, 271
Multiplicity, 255
Multiset, 273

N
Natural logarithm, 22
Neighbor, 130, 271
Neighborhood, 271, 283
Non-bipartite, 139
Non-homogeneous coin, 126, 191, 195, 197
Non-orthogonal projector, 258
Norm, 134, 137, 249
Normal, 257
Normal distribution, 22
Normalization condition, 70, 80, 107
Normalization constant, 72
Normalized vector, 249
Normal matrix, 227
North pole, 252
NP-complete, 276
Nullity, 253
Null operator, 253
Nullspace, 253

O
Observable, 12

Optimal algorithm, 41, 53
Optimality, 66
Oracle, 42
Orthogonal, 249
Orthogonal complement, 249, 258
Orthogonal projector, 12, 258
Orthonormal, 249
Orthonormal basis, 91
Outdegree, 223, 224, 277
Outer product, 250
Out-neighborhood, 277

P
Pair of symmetric arcs, 277
Para-line graph, 275
Parity, 95, 97
Partial inner product, 138
Partial measurement, 16
Partition, 159
Path, 272
Pauli matrices, 259
Perfect matching, 274
Perfect state transfer, 125, 137, 138, 157, 174
Periodic, 134, 197
Periodic boundary condition, 98
Perron-Frobenius theorem, 287
Persitent random walk, 87
Petersen graph, 278
Phase, 13, 135
Phase estimation, 66
Polygamma function, 190
Polygon, 160, 197
Position-coin notation, 125, 127, 196
Position standard deviation, 20
Positive definite operator, 258
Positive operator, 258
Postulate of composite systems, 11
Postulate of evolution, 8
Postulate of measurement, 12
Principal eigenvalue technique, 177, 178,

184, 187, 190, 192, 195, 198, 199,
212, 216

Probabilistic classical bit, 253
Probability amplification, 63
Probability amplitude, 70, 77
Probability distribution, 13
Probability matrix, 23, 283
Probability theory, 169
Program QWalk, 86
Projective measurement, 12, 140
Projector, 237, 243
Promise, 42



Index 307

PyCTQW, 86
Python, 29

Q
Q-circuit, 266
QSWalk, 87
QSWalk.jl, 87
Quantization, 25
Quantize, 33
Quantum algorithm, 9, 19
Quantum computation, 18, 247
Quantum computer, 19
Quantum database, 41
Quantum hitting time, 223, 227, 233–235,

245, 286
Quantum mechanics, 170, 176, 248
Quantum mixing time, 155–157
Quantum query model, 201
Quantum random walk, 25
Quantum robot, 175
Quantum transport, 125
Quantum-walk-based search algorithm, 126,

176, 199
Quantum walk dynamic, 125
Quantum walks, 19
Quasi-periodic, 125, 134, 153
Quasi-periodic behavior, 125
Quasi-periodic dynamic, 133
Qubit, 11, 251
Query complexity, 45
QwViz, 86

R
Randomness, 25
Random number generator, 63
Random variable, 169
Random walk, 175, 224
Rank, 253
Rank-nullity theorem, 253
Recursive equation, 24
Reduced evolution operator, 93, 120, 142
Reflection, 227
Reflection operator, 46, 226
Register, 11, 43, 267
Regular graph, 106, 125, 126, 272
Relative phase factor, 13
Relativistic chessboard model, 39
Renormalization, 16
Renormalization group, 87
Reverse triangle inequality, 56
Reversibility, 43
Right singular vector, 229

Right stochastic matrix, 224, 283
Root graph, 274
Running time, 48, 178, 183, 220, 237

S
Sage, 29
Sample space, 169
Schrödinger equation, 9
Schrödinger’s cat, 8
Search algorithm, 41
Self-adjoint operator, 258
Shift operator, 26, 70, 90, 98, 105, 106
Similar, 255
Similarity transformation, 261
Simple digraph, 277
Simple graph, 159, 271, 272
Singular value, 227, 228
Singular value decomposition, 228
Singular vector, 227, 228
Sink, 223, 224, 234, 277
Source, 277
South pole, 252
Spatial search algorithm, 177, 199
Spatial search problem, 175
Spectral decomposition, 52, 114, 134, 167,

228
Spherical Bessel function, 242
Spin, 6
Spin chain, 137
Spin down, 6
Spin up, 6
Stable set, 274
Staggered model, 125, 159, 174, 176, 220
Staggered model with Hamiltonians, 162
Staggered quantum walk, 138, 246
Staggered quantum walk model, 197, 204,

205
Standard deviation, 13, 69, 84
Standard evolution operator, 90, 99, 107
State, 5, 223, 252
State space, 7, 223
State space postulate, 7, 12, 176
State vector, 7, 252
Stationary distribution, 139, 223, 282, 283
Stirling’s approximation, 22, 40
Stochastic, 26, 140
Stochastic matrix, 23, 223
Stochastic process, 223
Subdivision, 275
Subgroup, 279
Subset finding, 220, 221
Subspace, 249



308 Index

Success probability, 176, 178, 183, 199, 220
Support, 253
Symmetric, 279
Symmetrical, 153
Symmetric arc, 127, 129
Symmetric bipartite digraph, 223
Symmetric bipartite graph, 223
Symmetric digraph, 125, 127, 277, 285
Symmetric directed graph, 277
Symmetric generating set, 131
Symmetric multidigraph, 132
Symmetric probability distribution, 78
Sync function, 242
Szegedy’s model, 220, 286

T
Tail, 127, 195, 277
Taylor series, 34
Tensor product, 11, 263
k-tessellable, 160
k-tessellable quantum walk, 163
1-tessellable, 197
2-tessellable, 220
2-tessellable quantum walk, 132, 138
Tessellation, 138, 197
Tessellation cover, 138, 197
Tessellation cover number, 160
Three-dimensional infinite lattice, 69
Tile, 160
Time complexity, 42, 45
Time evolution, 8
Time-homogeneous Markov chain, 224
Time-independent evolution operator, 125,

133
Torus, 89, 98, 175
Total variation distance, 152
Trace, 261
Transition matrix, 23, 224, 227, 283
Transition rate, 19, 33
Transpose-conjugate, 257
Triangle finding, 220, 221
Triangle-free graph, 274, 275
Triangle inequality, 55, 153

Trivial tessellation, 160
Tulsi’s modification, 183, 191, 218, 246
Two-dimensional infinite lattice, 69
Two-dimensional lattice, 89, 143, 175, 199
Two-dimensional spacetime, 39

U
Unbiased coin, 78
Uncertainty principle, 16
Uncoupled quantum walk, 82
Underlying digraph, 224
Underlying graph, 277
Underlying symmetric digraph, 157
Undirected edge, 195
Undirected labeled multigraph, 273
Uniform distribution, 282
Uniform rate, 33
Unit vector, 249, 251
Unitary operator, 257
Unitary transformation, 8
Universal gates, 41, 45, 268, 269
Universal quantum computation, 39
Unstructured search, 201

V
Vector space, 247
Vertices, 19

W
Wavefront, 95
Wave number, 72
Wheel graph, 161

X
Xor, 269

Z
Zero matrix, 254


	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 The Postulates of Quantum Mechanics
	2.1 State Space
	2.1.1 State Space Postulate

	2.2 Unitary Evolution
	2.2.1 Evolution Postulate

	2.3 Composite Systems
	2.4 Measurement Process
	2.4.1 Measurement Postulate
	2.4.2 Measurement in the Computational Basis
	2.4.3 Partial Measurement in the Computational Basis


	3 Introduction to Quantum Walks
	3.1 Classical Random Walk on the Line
	3.2 Classical Discrete-Time Markov Chains
	3.3 Coined Quantum Walks
	3.3.1 Coined Walk on the Line

	3.4 Classical Continuous-Time Markov Chains
	3.5 Continuous-Time Quantum Walks
	3.5.1 Continuous-Time Walk on the Line
	3.5.2 Why Must Time be Continuous?


	4 Grover's Algorithm and Its Generalization
	4.1 Grover's Algorithm
	4.2 Quantum Circuit of Grover's Algorithm
	4.3 Analysis of the Algorithm Using Reflection Operators
	4.4 Analysis Using the Two-Dimensional Real Space
	4.5 Analysis Using the Spectral Decomposition
	4.6 Optimality of Grover's Algorithm
	4.7 Search with Repeated Elements
	4.7.1 Analysis Using Reflection Operators
	4.7.2 Analysis Using the Reduced Space

	4.8 Amplitude Amplification
	4.8.1 The Technique


	5 Coined Walks on Infinite Lattices
	5.1 Hadamard Walk on the Line
	5.1.1 Fourier Transform
	5.1.2 Analytic Solution
	5.1.3 Other Coins

	5.2 Two-Dimensional Lattice
	5.2.1 The Hadamard Coin
	5.2.2 The Fourier Coin
	5.2.3 The Grover Coin
	5.2.4 Standard Deviation

	5.3 Quantum Walk Packages

	6 Coined Walks with Cyclic Boundary Conditions
	6.1 Cycles
	6.1.1 Fourier Transform
	6.1.2 Analytic Solutions
	6.1.3 Periodic Solutions

	6.2 Finite Two-Dimensional Lattices
	6.2.1 Fourier Transform
	6.2.2 Analytic Solutions

	6.3 Hypercubes
	6.3.1 Fourier Transform
	6.3.2 Analytic Solutions
	6.3.3 Reducing a Hypercube to a Line Segment


	7 Coined Quantum Walks on Graphs
	7.1 Quantum Walks on Class-1 Regular Graphs
	7.2 Coined Quantum Walks on Arbitrary Graphs
	7.2.1 Locality
	7.2.2 Grover Quantum Walk
	7.2.3 Coined Walks on Cayley Graphs
	7.2.4 Coined Walks on Multigraphs

	7.3 Dynamics and Quasi-periodicity
	7.4 Perfect State Transfer and Fractional Revival
	7.5 Limiting Probability Distribution
	7.5.1 Limiting Distribution Using the Fourier Basis
	7.5.2 Limiting Distribution of QWs on Cycles
	7.5.3 Limiting Distribution of QWs on Hypercubes
	7.5.4 Limiting Distribution of QWs on Finite Lattices

	7.6 Distance Between Distributions
	7.7 Mixing Time
	7.7.1 Instantaneous Uniform Mixing (IUM)


	8 Staggered Model
	8.1 Graph Tessellation Cover
	8.2 The Evolution Operator
	8.3 Staggered Walk on the Line
	8.3.1 Fourier Analysis
	8.3.2 Standard Deviation


	9 Spatial Search Algorithms
	9.1 Quantum-Walk-Based Search Algorithms
	9.2 Analysis of the Time Complexity
	9.2.1 Case B=0
	9.2.2 Tulsi's Modification

	9.3 Finite Two-Dimensional Lattices
	9.3.1 Tulsi's Modification of the Two-Dimensional Lattice

	9.4 Hypercubes
	9.5 Grover's Algorithm as Spatial Search on Graphs
	9.5.1 Grover's Algorithm in terms of the Coined Model
	9.5.2 Grover's Algorithm in terms of the Staggered Model
	9.5.3 Complexity Analysis of Grover's Algorithm


	10 Element Distinctness
	10.1 Classical Algorithms
	10.2 Naïve Quantum Algorithms
	10.3 The Optimal Quantum Algorithm
	10.3.1 Analysis of the Algorithm
	10.3.2 Number of Queries
	10.3.3 Example


	11 Szegedy's Quantum Walk
	11.1 Discrete-Time Markov Chains
	11.2 Markov Chain-Based Quantum Walk
	11.3 Evolution Operator
	11.4 Singular Values and Vectors of the Discriminant
	11.5 Eigenvalues and Eigenvectors of the Evolution Operator
	11.6 Quantum Hitting Time
	11.7 Searching Instead of Detecting
	11.8 Example: Complete Graphs
	11.8.1 Probability of Finding a Marked Element


	A Linear Algebra for Quantum Computation
	A.1  Vector Spaces
	A.2  Inner Product
	A.3  The Dirac Notation
	A.4  Computational Basis
	A.5  Qubit and the Bloch Sphere
	A.6  Linear Operators
	A.7  Matrix Representation
	A.8  Diagonal Representation
	A.9  Completeness Relation
	A.10  Cauchy–Schwarz Inequality
	A.11  Special Operators
	A.12  Pauli Matrices
	A.13  Operator Functions
	A.14  Norm of a Linear Operator
	A.15  Tensor Product
	A.16  Quantum Gates, Circuits, and Registers

	Appendix B Graph Theory for Quantum Walks
	B.1  Basic Definitions
	B.2  Multigraph
	B.3  Bipartite Graph
	B.4  Intersection Graph
	B.5  Clique, Stable Set, and Matching
	B.6  Graph Operators
	B.6.1  Clique Graph Operator
	B.6.2  Line Graph Operator
	B.6.3  Subdivision Graph Operator
	B.6.4  Clique–Insertion Operator

	B.7  Coloring
	B.8  Diameter
	B.9  Directed Graph
	B.10  Some Named Graphs
	B.10.1  Johnson Graphs
	B.10.2  Kneser Graphs
	B.10.3  Cayley Graphs


	Appendix C Classical Hitting Time
	C.1  Hitting Time Using the Stationary Distribution
	C.2  Hitting Time Without the Stationary Distribution

	Appendix  References
	

	Index



