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Foreword

In 1965, a bright undergraduate at Cornell University named Arthur Winfree
undertook an experimental study for his senior thesis. He wired 71 neon tube
oscillators together into a contraption that he called the firefly machine. At a time
when the theory of nonlinear oscillations was largely confined to two and three
oscillators, Winfree was venturing out to study dozens of them. To allow the
oscillators to feel one another’s influence, he connected them all to a common
terminal through a small capacitor, so that each oscillator interacted equally with all
the others, and he grounded that terminal through a larger variable capacitor. This
setup enabled him to easily adjust the coupling strength between the oscillators.

He found that in the absence of coupling, the neon tubes blinked on and off in an
uncoordinated, incoherent fashion. That was to be expected; their natural periods
varied by about 10%. As Winfree slowly dialed up the coupling, the oscillators
remained incoherent until it reached a critical coupling strength. Above that
threshold, all the neon tubes began discharging in unison, much like the famous
congregations of synchronously flashing fireflies of Thailand, Malaysia, and other
parts of Southeast Asia. Winfree had discovered the sudden onset of synchro-
nization in a population of nonlinear oscillators.

Winfree’s inspiration had always been biology—not just fireflies with their rapid
flash rhythms, but the much slower rhythms in sleep and wake and body temper-
ature of mammals, the nearly 24-hour rhythms known as circadian rhythms. The
early 1960s were the heyday of research into circadian rhythms. With his firefly
machine, Winfree opened up a theoretical avenue for studying such rhythms.

At the time, Winfree was a college student majoring in engineering physics. His
training in solid-state theory led him to approach the question of biological syn-
chronization from a perspective that only a physicist would have. He realized that
an infinite-range approximation, in which each oscillator interacted equally with all
the others, offered the best hope of making progress on this daunting, nonlinear,
nonequilibrium, many-body problem. That was why he coupled all the oscillators
through a common capacitor. He was doing the electronic counterpart of mean-field
theory.

vii



Next, Winfree abstracted his firefly machine into a set of differential equations
that he could simulate on the university’s mainframe computer. At the time,
computer simulations were a rarity in science. One had to go to a computing center
and feed punch cards into a room-sized behemoth. To simplify the differential
equations, Winfree assumed that his model oscillators were weakly coupled,
compared to their attraction to their limit cycles in state space. He realized intu-
itively that under that assumption, each oscillator could be represented by its phase
alone as it moved along its limit cycle; amplitude variations could be neglected. In a
now-celebrated paper published in Journal of Theoretical Biology in 1967, Winfree
showed that his mathematical model could do what his firefly machine had done: it
could spontaneously synchronize. As the coupling strength between the oscillators
was increased, or as the variance of oscillators’ natural frequencies was decreased,
the oscillators abruptly switched from an incoherent, desynchronized state to an
ordered state in which a macroscopic fraction of the system was locked in fre-
quency. In this 1967 paper, he explicitly noted a remarkable connection to ther-
modynamic phase transitions. He wrote:

Disguised in the literature of solid-state physics under an interchange of spatial for temporal
coordinates, the phenomenon of ferroelectric crystallization is strikingly analogous: the
oscillators are replaced by a population of electric dipoles at crystal lattice points; the
orientation of their phase vectors […] becomes the angular orientation of dipoles under a
communally-generated electric field, to which they contribute […] according to orientation;
the spread of synchronized phases […] due to the spread of natural frequencies […]
becomes the distribution of dipole angles due to thermal buffeting; and the threshold [of
synchronization] is mirrored in the Curie temperature for ferroelectric transition.

About a decade later, the Japanese statistical physicist Yoshiko Kuramoto refor-
mulated Winfree’s work and recast it as a beautifully elegant system of differential
equations, now known as the Kuramoto model. Using an ingenious self-consistency
argument, and retaining Winfree’s assumptions of a mean-field model of
phase-only oscillators, but using the more tractable form of coupling between the
oscillators, Kuramoto was able to find his synchronization transition analytically
and to calculate the extent of order above the synchronization threshold.

In the half a century since Winfree’s landmark work, the study of collective
synchronization has mainly been approached through nonlinear dynamics and
computer simulation. The connection to statistical physics, though always present,
has tended to play a subordinate role. The present monograph rectifies this situation.
Shamik Gupta, Alessandro Campa, and Stefano Ruffo do a wonderful job of
summarizing earlier work on the Kuramoto model and enlarging it to embrace the
insights of statistical physics, using concepts like H-theorems, Fokker–Planck
equations, and the breakdown of detailed balance. The problems they tackle are
difficult and fascinating, both from the standpoint of nonlinear dynamics and from
that of statistical physics, because of their nonequilibrium and many-body char-
acter. Furthermore, the authors explore the effects of inertia, always an important
physical consideration, but one that has been given relatively little attention in the
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nonlinear dynamics literature. This is a very valuable addition to the literature of
dynamical systems and nonequilibrium statistical physics. I hope you’ll enjoy
reading it as much as I did.

Ithaca, New York, USA Prof. Steven Strogatz
Department of Mathematics

Cornell University
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Preface

A remarkable phenomenon common in nature is that of spontaneous synchronization,
whereby a large population of coupled oscillating units of diverse frequencies spon-
taneously evolve to operate in unison. Such a cooperative effect commonly occurs in
physical and biological systems over length and time scales of several orders of
magnitude. Examples are flashing of fireflies, animal flocking behavior, audience
clapping in concert halls, pedestrians on footbridges, and a variety of experiments
involving electrochemical and electronic oscillators, metronomes, Josephson junctions,
and laser arrays. Besides its necessity in firing of cardiac cells that keeps the heart
beating and life going, synchrony is desired in man-made systems, e.g., in parallel
computing, whereby computer processors must coordinate to finish a task on time, and
in electrical power grids, whereby generators must run in synchrony to be locked in
frequency to that of the grid. Synchrony could also be hazardous, e.g., in neurons,
leading to impaired brain functions in, e.g., epilepsy. Collective synchrony among
oscillators has attracted immensely the attention of physicists and applied mathemati-
cians, and finds applications in many fields, from quantum electronics to electro-
chemistry, from bridge engineering to social science, and others.

Synchronizing systems may be viewed from two contrasting perspectives,
namely, that of dynamical systems theory and statistical physics. To summarize in
one sentence the characterizing aspects of the two perspectives, one could say that
in the former, spontaneous synchronization occurs as a bifurcation in the dynamical
behavior of the system as a function of the strength of interaction between the
oscillating units, while in the latter, it represents a phase transition between different
forms of statistical distribution of the dynamical variables of the system con-
stituents. Until now, the approach based on dynamical systems theory has received
much more attention. This could be partly due to the fact that synchronizing
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systems have mostly been investigated using models not belonging to any class of
Hamiltonian systems, the latter constituting the prominent subject of study in
mainstream statistical physics. The use of mainly models with first-order dynamics
(only very recently are models with second-order dynamics being studied) has been
one other reason for the abundance of studies employing tools of dynamical
systems theory.

Viewed from the perspective of statistical physics, the following characteristics
of synchronizing systems may be noted. Presence of long-range interactions in
synchronizing systems allows the use of mean-field models, which may be seen as a
major simplifying feature for extensive analytical treatments. The mean-field
analysis becomes exact in the limit of a very large number of units (in particular, in
the thermodynamic limit, which is naturally achieved in synchronizing systems) for
systems where the interaction is the same between every pair of constituents. The
latter feature is not always prevalent in real systems, as there are cases where the
interaction, although long-ranged, decays slowly with the distance between the
constituents; nevertheless, also in this case, the mean-field analysis is a very useful
first approximation, and corrections can in principle be evaluated systematically.
Another essential feature of synchronizing systems is the presence of diverse nat-
ural frequencies. In the language of statistical physics, diverse frequencies may be
interpreted as quenched disordered random variables; the randomness implies the
necessity to average observable quantities over the distribution of natural fre-
quencies. Probably, the most notable feature of synchronizing systems is the fact
that the stationary states to which the dynamics settles to after a transient are not
equilibrium ones (in technical terms, such states do not satisfy detailed balance).
Thus, synchrony is necessarily a nonequilibrium phenomenon, which therefore
cannot be described by equilibrium statistical mechanics. There is as yet no theory
akin to the latter that can treat and make predictions on general terms for
nonequilibrium systems, thus necessitating the study of representative model sys-
tems so as to gain valuable insights into the physics of synchronizing systems.
Summarizing, synchronizing systems involve the study of statistical physics of
long-range systems with quenched random variables settling into nonequilibrium
steady states. This brief monograph aims to present from this perspective a study of
synchronizing systems.

Extensive studies of synchronizing systems over the years have led to the
introduction of novel theoretical concepts in nonlinear science such as the chimera
states. Chimeras are broken-symmetry states occurring in identical, symmetrically
coupled oscillator ensembles in which synchronized and desynchronized subpop-
ulations coexist. These states have been observed in a variety of experimental
situations involving, e.g., chemical and mechanical oscillators. Dynamical phe-
nomena such as chimeras have been studied analytically using the approach of
dynamical systems theory. Our focus in this monograph is on statistical physics
approach to synchronization, and interpreting chimeras, etc., within this approach is
still largely an open issue. Hence, we will not dwell on such dynamical phenomena,
interesting in their own right, in this brief monograph.
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Chapter 1
Synchronizing Systems

Abstract In the first section, we give a concise introduction to synchronizing sys-
tems, followed by a qualitative discussion in the next section of their representation
in terms of interacting limit-cycle oscillators. In sections three and four, we dis-
cuss how each oscillating unit, either in isolation or in interaction with other units,
may be effectively described with a phase variable having a first-order dynamics
in time, and then deriving the form of interaction in terms of differences of phases
between the oscillators. We also introduce the celebrated Kuramoto model, whose
study constitutes the bulk of this monograph. In sections five and six, we consider
in turn an interpretation of general synchronizing systems as statistical mechanics
systems, and a discussion of tools and advantages of such an interpretation. In section
seven, we then briefly derive analytical results on emergence of synchronization in
the Kuramoto model, using the methods of Kuramoto, and Ott and Antonsen. In the
final section, we address the behavior of the dynamics of oscillators with second-
order dynamics in time, which is achieved when the oscillators have finite inertia; we
provide a comparison of the behavior of isolated oscillators with and without inertia
to demonstrate how the former may introduce significant effects on the dynamics.

Keywords Synchronization · Limit-cycle oscillators · Phase description
Oscillators in interaction · Kuramoto model
Statistical mechanics interpretation · Kuramoto and Ott-Antonsen solution
Effects of inertia

1.1 Introduction

Spontaneous collective synchronization is a remarkable phenomenon commonly
observed in nature, whereby a sufficiently large population of single units that have
themselves an oscillatory behavior tend to adjust their rhythm to oscillate at a com-
mon frequency. Indeed, the term synchronization arises from a combination of two
Greek words, namely, syn, meaning same/common, and chronos, meaning time. A
commonplace example of synchrony is observed in a group of dancers executing the
same series of movements. The choreography could require that all dancers do the

© The Author(s) 2018
S. Gupta et al., Statistical Physics of Synchronization,
SpringerBriefs in Complexity, https://doi.org/10.1007/978-3-319-96664-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96664-9_1&domain=pdf


2 1 Synchronizing Systems

same movement at the same time, or, that the second moves with a short time lag
with respect to the first, the third with the same time lag with respect to the second,
and so on. In either case, we would have no hesitation in concluding that the dancers
are synchronized. The latter is true regardless of the specific movement that each
dancer performs. In this book, we are interested in a particular kind of dynamics of
single units, namely, a periodic dynamics. In the aforementioned example of dancers,
such a dynamics would be represented by a choreography in which, e.g., each dancer
repeats many times the same movement.

In a dynamical system undergoing a periodic motion, each dynamical variable
attains the same value at intervals of time T called the period of the periodic motion.
A paradigmatic example is that of the undamped harmonic oscillator, in which the
position and the velocity vary in time with a period T characteristic of the oscilla-
tor. Another example is that of the undamped pendulum, in which, contrary to the
harmonic oscillator, the period T depends on the amplitude of oscillation of the pen-
dulum. If we have several different periodic dynamical systems, they are evidently
synchronized only if they all have the same period T . Of course, the period being
equal does not imply that the different systems are at every time instant in the same
dynamical state. For example, in the motion of two harmonic oscillators with the
same period, one of the two could have a delayed motion with respect to the other,
with the delay being independent of time. Thus, we should speak of synchroniza-
tion of two or more periodic dynamical elements, either similar or diverse, when
they share a common period T . Rather than T , one uses its inverse, the frequency
ν ≡ 1/T , or, more often, the pulsation or angular frequency ω ≡ 2πν = 2π/T . The
use of ω is so common in the literature on synchronization that by abuse of notation,
one usually refers to it as the frequency; we will conform to this usage, assuming no
possibility of confusion. Also, for most parts of this book, we will refer to the peri-
odic dynamical elements as oscillators, especially when their specific nature is not
relevant. However, it must not be forgotten that these dynamical elements themselves
are complex systems, as we emphasize below. The phenomenon of synchronization
occurs when a collection of oscillators, which taken individually would have their
own natural frequencies, interact with each other and adjust their frequencies so that
a large fraction (or, all) of them share a common frequency. When all the oscillators
acquire the same frequency, we have complete (or full) synchronization; otherwise,
when a sizeable fraction is in synchrony, one has partial synchronization.

Perhaps the first documented observation of synchronization was made by Chris-
tiaan Huygens in 1665, about ten years after his invention of the pendulum clock. He
observed that two identical pendulum clocks hanging from the same support and set
to oscillations differently would soon synchronize perfectly with one another, and
in fact, the two would move all the time in opposite directions (when one pendulum
reaches the leftmost position, the other would reach the rightmost position). On the
face of it, one might argue that being identical, the two clocks are expected to even-
tually evolve to a state when they would share a common frequency and thus execute
a motion in which there is a constant difference among their phases. However, one
must realize that however identical they might be, there would be some small and
unavoidable construction difference between the two that would result in each clock
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having its own oscillation frequency. The differences in the frequencies would be
sufficiently small so as to guarantee an unprecedented time-keeping precision of each
clock, but these would inevitably show up while comparing the oscillations of the
two clocks. In the latter case, the phase difference would not be constant in time, so
that the two clocks initiated, e.g., in antiphase, would show after a while a different
phase relation among them. This is what Huygens himself observed when the two
clocks were placed at a distance from one another in the same room. But on being
suspended from the same support gave rise to an imperceptible interaction between
the two clocks that led to synchronization. A lively description of Huygens’ obser-
vations is in Strogatz’s book [1], where an engrossing and qualitative exposition of
several instances of synchronization in physical and biological systems is offered.
More examples and a mathematical theory of synchronizing systems are in the fun-
damental book by Pikovsky, Rosenblum and Kurths [2]; other relevant references
are [3–5].

As amatter of fact, it has become evident that synchronization ismore pervasive in
nature than one might anticipate. To give a set of examples for illustrative purposes,
we start from biological systems, mentioning first what is perhaps the most famous
example, namely, that of fireflies living in some regions of Southeast Asia that are
capable of emitting light signal at regular intervals. It is observed that a swarm of
male fireflies gather on trees at night, and, while starting off blinking at individual
frequencies, soon begin to flash on and off in perfect synchrony. Another example is
the synchronized chirping of crickets. As spectacular as these manifestations might
be, one could probably be struck at a deeper level by the realization of how impor-
tant synchronization is for our own survival. Indeed, the pacemaker cells of the heart
must contract in synchrony for its proper functioning. Perhaps the most pervasive
rhythmic behavior is the one connected to the circadian rhythm, which is present in
the whole of the living world, from plants to simple animals and humans: the adjust-
ment of rhythms of the various functions in an organism is a fascinating example of
synchronization. Moving on to physical systems, we may mention the synchronized
oscillation of voltage in arrays of Josephson junctions and of the concentration of
reagents in a chemical solution. A desired instance of synchronization from everyday
life is the one occurring in power-grid networks of distribution of electrical energy, in
which generators run in synchrony to be locked in frequency to that of the grid. It is
important to realize that, as in the example of the two pendulum clocks of Huygens’,
the individual elements that synchronize must have in all cases natural frequencies
that are distributed in a range of values, even when ideally they should have exactly
the same frequency. Such a diversity in natural frequencies is understandably more
pronounced in biological systems.

As suggested by the title of this monograph, we will use tools of statistical physics
to develop and discuss the mathematical theory of spontaneous synchronization in
large population of interacting oscillators. In the framework of the theory of dynami-
cal systems, a great deal has been achieved in the investigation of the behavior of two
(or, a few) interacting oscillators. In some cases, when the interaction is the same for
every pair of oscillators, analytical results have been obtained also for a relatively
large population of oscillators. However, in the general case of many interacting
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oscillators, a complete analytical characterization of the dynamics is not possible,
and one has to resort to statistical tools in order to evaluate the properties of the pop-
ulation. As we go along, we will consider this argument in more detail. Before we
proceed, let us briefly summarize the main characteristics of individual oscillators
and of the nature of their interaction that can synchronize them.

1.2 The Oscillators and Their Interaction: A Qualitative
Discussion

Wemust nowbegin to bemore precise about the nature of oscillators that can synchro-
nize. It is clear from the foregoing that they are dynamical units, which individually
are capable of exhibiting oscillations with a characteristic waveform, amplitude and
frequency of oscillation. The latter features depend of course on the physical mani-
festation of the unit: the heart does not beat the same way as a firefly flashes on and
off. Moreover, these characteristic oscillations are such that any (slight) perturba-
tions away from them would soon return the motion to the oscillatory behavior. The
dynamics of the individual units should therefore be such as to allow for oscillations
that have a characteristic waveform independent of any typical initial condition of
the dynamics. The oscillating units should moreover be such that when in interac-
tion with one another, they keep performing a periodic motion, but under suitable
conditions may change their frequencies and adjust to a common value. These facts
make us conclude that interpreted as dynamical systems, individual oscillators are
dissipative, nonlinear systems. We now discuss these aspects.

As mentioned, we have each oscillating unit capable of exhibiting oscillations
with a characteristic waveform independent of initial conditions, in the sense that
after a transient, the oscillators when starting from any initial state (obviously not
completely arbitrary, but included in a given region of the dynamical phase space
of the oscillator) will settle into the same motion that has a given frequency. One
may then anticipate (correctly) that the dynamics ought to have suitable dissipation
and energy-pumping mechanisms so that oscillations that tend to become too large
are effectively damped down by dissipation, just as the ones that tend to become
too small are suitably pumped up by a supply of energy. Indeed, in the absence of
energy supply, a dissipative system would lose its energy, as in the movement of a
solid body contrasted by friction. In a pendulum clock, the source of energy is the
potential energy of weights that transfer energy to the pendulum through a ratchet-
wheel mechanism. In more complex systems, like the biological ones, there might
be feedback mechanisms for supply of energy. Due to the two competing tendencies
of loss of energy by dissipation and gain through supply of energy, oscillations of
a characteristic form, for which pumping and damping effects balance each other,
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are only sustained. The presence of damping at once precludes the possibility for
the underlying dynamics to be conservative, i.e., a dynamics given by the Hamilton
equations of motion corresponding to a suitable system Hamiltonian. Consequently,
the state that the dynamics relaxes to at long times would be a generic nonequilib-
rium state [6]. One may recall that the basic tenet of classical equilibrium statistical
mechanics is a dynamics due toHamilton equations ofmotion derived from a suitable
Hamiltonian.

That the dynamics of the individual oscillating units are not derived from an
underlying Hamiltonian may also be understood in the following manner. Consider
a generic Hamiltonian dynamical system with more than one degree of freedom, and
in particular, consider its behavior in the neighborhood of a stable fixed point. The
time evolution in the neighborhood of the fixed point, determined by the dynamics
linearized around the point, is multiperiodic with frequencies that are in general
rationally independent. If nonlinear terms are also taken into account, one has to
include harmonics of the basic frequencies, which depend on the initial condition
(this is easily seen in, e.g., systems that can be analyzed in action-angle variables). In
any case, we should expect a time behavior that is not a simple periodic motion, i.e.,
characterized by a single frequency. Therefore, we have to preclude our oscillators
from being Hamiltonian systems, a conclusion that may be inferred from another
consideration. The examples of systems given above clearly refer to quite complex
systems. A Hamiltonian description would require their representation as systems
with a large number of (microscopic) degrees of freedom. This is almost always a
formidable task (think for example to undertake a similar task for a firefly or for a
pacemaker cell!). The only hope to represent such systems with equations of motion
is to introduce an effective description, with a few effective degrees of freedom and
effective interactions. At this level, the equations of motion are not Hamiltonian, and
would generically have dissipative terms.

The dynamical properties of the oscillators that we have described above are those
pertaining to a limit cycle, and in fact limit cycles often characterize the dynamics
of nonlinear dissipative systems. Therefore we have reached the conclusion that the
periodic motion of our oscillators should be the limit cycle of a nonlinear dissipative
system. Synchronization of a collection of oscillators is a consequence of their inter-
action. We will refer generally to such a collection as a synchronizing system. As
will be shown in more details in the following, the interaction can not be arbitrary,
since it must not destroy the oscillatory behavior of the single oscillators.

In the next section, we discuss the characterization of the motion of individual
oscillating units in terms of what are known as limit cycles [7]. We start off the
section with a brief reminder of the concept of limit cycles.



6 1 Synchronizing Systems

1.3 Oscillators as Limit Cycles

In order to introduce the concept of limit cycles, we must begin with recalling some
relevant features of dynamical systems. A generic autonomous1 dynamical system
in Rn is described by equations of motion of the form

dxi
dt

= Fi (x1, x2, . . . , xn;μ); i = 1, 2, . . . , n, (1.1)

where, typically, one has n � 1, and we have included a possible dependence of the
functions Fi on a parameter μ. A solution xi (t), i = 1, 2, . . . n, defines an orbit in
the n-dimensional phase space of the system spanned by the xi ’s. For generic Fi ’s,
such a solution is obtained either through analytic approximation or by performing
numerical integration of (1.1). Let us discuss the properties of two important classes
of possible solutions.

A first class of relevant solutions is given by those for which xi (t) ∀ i equals
a time-independent constant, i.e., solutions given by the fixed points (also called
equilibrium points) of the dynamics. The latter are defined as points at which all the
Fi ’s vanish. These points are obviously a function of μ. A fixed point is said to be
stable if an initial condition in a sufficiently small neighborhood of it remains in such
a neighborhood during the dynamical evolution and possibly tends asymptotically
to such a point at long times.2 In other words, a sufficiently small perturbation of a
stable fixed point remains in its neighborhood during the dynamical evolution.

Another class of solutions, relevant for the scope of this monograph, corresponds
to a periodic motion in the phase space. In this case, we have xi (t + T ) = xi (t) ∀ i ,
where T is the period of the periodic motion. Thus, the orbit is a closed one-
dimensional path in the phase space. For this class of solutions, one has to also
address the issue of stability. It may happen that an orbit starting sufficiently close to
the periodic orbit tends asymptotically to it at long times, in which case the periodic
orbit is said to be stable.3

Stable fixed points and stable periodic orbits to which orbits starting nearby tend
asymptotically during their evolution are examples of attractors. The justification

1A dynamical system is said to be autonomous if the functions Fi do not depend explicitly on time.
Consequently, if xi (t), i = 1, 2, . . . n, is a particular solution, then also xi (t + t0) is a solution for
any choice of t0, i.e., the origin of time is not relevant. Physically, such a scenario occurs when
one of the following two conditions is realized: either the motion depends only on the interaction
between the dynamical variables of the system and has no external influence, or, even when there
is an external influence, it does not depend explicitly on time.
2In Hamiltonian systems, in which time evolution preserves volumes in phase space, the orbit
around a stable fixed point remains close to it but can never tend to it as time progresses. In generic
nonconservative systems, however, both situations may occur; if the orbit tends to the stable fixed
point (which is the more common case), the latter is called asymptotically stable.
3Again, the behavior of Hamiltonian systems is different. Conservation of phase-space volumes
prevents the occurrence of orbits that tend to a periodic orbit, whereas one has the common sit-
uation of different periodic orbits filling densely the neighborhood of a fixed point. In generic
nonconservative systems, the most common situation is that of an isolated periodic orbit.



1.3 Oscillators as Limit Cycles 7

behind the name is clear: orbits starting close to a fixed point or a periodic orbit
get “attracted” towards the latter as the dynamics proceeds in time. An attracting
periodic orbit is what is called a limit cycle, since it is a cycling orbit that is also the
limit of orbits starting close to it. In Appendix 1, we show the example of a simple
two-dimensional dynamics having a limit cycle as an attractor.

We note that there may be other types of attractors [8]. For example, an attrac-
tor could be a subset of the phase space with dimensionality larger than 1, e.g., a
torus. Another very interesting and important case is that of the so-called “strange
attractors” that occur, e.g., when the dynamics is chaotic, i.e., if it has a positive
Lyapunov exponent. Here we are not concerned with these more complex cases, and
will instead consider only limit cycles. In Appendix 2, we provide a brief reminder
of the definition of Lyapunov exponents.

An orbit starting sufficiently close to a limit cycle will after a while get extremely
close to the cycle, although mathematically speaking, it will never reach it due to
the uniqueness of solutions of the dynamics. However, from the practical point of
view, the orbit will be indistinguishable from the limit cycle. The limit cycles are
the periodic motions that characterize the dynamics of the units of synchronizing
systems, and their attracting property implies that a small perturbation away from
the cycle will soon be damped in time, so that the dynamics will practically coincide
with that of the periodic orbit.

Our discussions thus far make us conclude that the periodic motion of the individ-
ual oscillators of synchronizing systems should be the stable limit cycle of a dissipa-
tive, nonlinear system. Indeed, one can argue quite easily that these cycles can occur
only in nonlinear dynamical systems. A linear dynamics dxα/dt = ∑

α,β Aαβxβ can
of course generate periodic orbits, but since with every periodic orbit {xα(t)}, one
may associate a family of periodic orbits {cxα(t)} with c a parameter, such an orbit
would not be isolated but be surrounded by an infinite number of periodic orbits
obtained by varying c. The issue of which one among the orbits is chosen by the
dynamics is set by its initial condition, unlike the independence of the form of a limit
cycle with respect to initial conditions. Also, any slight perturbation away from such
a closed orbit will unlike a limit cycle not return the motion to the orbit, but will take
it to a neighboring closed orbit.

In the case of synchronizing systems, even if the initial conditions of the individual
oscillators are not on the limit cycles, but are in their “basin of attraction” (the region
in the phase space alluded to above), the oscillatorswill approach the limit cycles very
fast in time, and the subsequent dynamicswill be virtually indistinguishable from that
on the limit cycles themselves. Since different limit cycles corresponding to different
oscillators have in general different oscillation frequency, synchronization among a
collection of such oscillators is then possible only as a result of their interaction.
The interaction cannot be arbitrary; it must not destroy the oscillatory behavior of
the single oscillators, yet give rise possibly to a shift of the frequency so that the
oscillators may synchronize. In case of full or partial synchronization, the shift is
common to many or all oscillators. The projection of the orbit of the synchronizing
system onto the phase space of an individual oscillator is not expected to be very
different from the limit cycle of the individual oscillator, a scenario that occurs when
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the oscillators interact sufficiently weakly. We will see that the latter feature has
important consequences on the nature of interaction.

Summarizing, the oscillators of synchronizing systems are nonlinear, dissipative
dynamical systems that follow a limit cycle. The frequencies characterizing the limit
cycles of the oscillators are distributed within a range of values. The interaction
among the oscillators is not strong enough to modify in a substantial way their
individual dynamics, but nevertheless can prove to be sufficiently strong to make the
oscillators move in unison.

Let us now justify the characterization of the dynamics on a limit cycle in terms of
uniform motion of a phase variable, by invoking some simple concepts of dynamical
systems theory. To this end, let us consider the periodic orbit representing the limit
cycle, and introduce its description with a phase variable. For any solution of the
equations of motion (1.1), it is possible to introduce a coordinate given by the length
of the curve in the phase space representing the orbit, as

s(t) ≡
∫ t

0
dt

√
√
√
√

n∑

i=1

(
dxi
dt

)2

. (1.2)

The freedom one has in choosing the origin of time translates to the freedom in the
choice of the origin of the curve. For a limit cycle of period T , we have s(nT ) =
ns(T ), or, more generally, s(nT + t) = s(t) + ns(T ). As follows from Eq. (1.2), the
time rate of variation of s along the path is not generally constant along the path. It
proves convenient to parametrize the path in terms of a new variable θ ≡ θ(s), such
that its rate of variation in time is a constant, which we will identify with the natural
frequency ω = 2π/T of the oscillator. Using the definition

θ(s) ≡ 2π

T

∫ s

0

ds ′
(
ds
dt

)
(s ′)

, (1.3)

one obtains the desired property: dθ/dt = (dθ/ds)(ds/dt) = 2π/T = ω.Moreover,
defining s0 ≡ s(T ), one easily finds that θ(s0) = 2π . Thus, at the end of one period,
the value of θ increases by 2π , corresponding to the traversal of a complete orbit. A
schematic of the usefulness of the transformation from s to θ is shown in Fig. 1.1.

On the basis of the above discussion, we conclude that a limit-cycle oscillator is
completely characterized by a phase θ that changes uniformly in time with period T
and frequency ω, according to the equation

dθ

dt
= ω. (1.4)

From Eq. (1.4), it follows that the phase θ is a neutrally stable variable; any pertur-
bation to it neither grows nor decays in time.

It turns out that one can use a similar phase description even for orbits that are
sufficiently close to the limit cycle, by invoking the concept of isochrones, as we now
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Fig. 1.1 For a hypothetical
limit cycle represented by
the closed curve, the figure
shows different curve lengths
Δs1 and Δs2 traversed in the
same time interval. By virtue
of the transformation (1.3),
the phase change
nevertheless is the same in
both cases

Δs2 < Δs1

Δs1

Δθ1

Δθ2 = Δθ1

discuss. Consider an initial phase-space point sufficiently close to the limit cycle.
The point traverses a path in the phase space, and we consider its successive positions
observed at times t = kT ; k = 1, 2, 3, . . ., where T is the period of the limit cycle.
From the properties of the limit cycle, it is evident that the limit of this sequence
of points as k → ∞ is a point on the limit cycle, which according to the discussion
above has a given value of the phase θ . One then associates this latter value of θ

with the sequence of points, which are now said to lie on an isochrone, a (n − 1)-
dimensional hypersurface [2]. In this way, we can associate a phase θ to each point of
the phase space lying in the neighborhood of the limit cycle. By this construction, Eq.
(1.4) remains valid also in the neighborhood of the limit cycle. Such a construction
proves to be particularly useful in discussing the case of many oscillators interacting
weakly with one another that we discuss in the next section.

1.4 Interacting Limit-Cycle Oscillators

We now consider the case of two limit-cycle oscillators of frequencies ω1 and ω2,
which are interacting weakly with one another. We consider the frequencies to sat-
isfy min(ω1, ω2) � |ω1 − ω2|, a situation typically encountered in synchronizing
systems. The governing dynamical equations are

dx (1)
i

dt
= F (1)

i (x (1)
1 , . . . , x (1)

n1 ) + εG(1)
i (x (1)

1 , . . . , x (1)
n1 , x (2)

1 , . . . , x (2)
n2 ); i = 1, 2, . . . , n1,

dx (2)
i

dt
= F (2)

i (x (2)
1 , . . . , x (2)

n2 ) + εG(2)
i (x (1)

1 , . . . , x (1)
n1 , x (2)

1 , . . . , x (2)
n2 ); i = 1, 2, . . . , n2, (1.5)

where n1 and n2 refer to the dimensionalities of the phase space of the two oscillators,
and the functions G(1)

i and G(2)
i describe the interaction between the two oscillators,

with ε being the coupling constant that is assumed to be small: |ε| � 1. To ease
the notation, we have here suppressed any possible dependence of the functions on
external parameters. We are interested in the dynamics of the two oscillators close
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to the respective limit cycles associated with their isolated (ε = 0) dynamics. The
smallness of ε guarantees that starting from phase-space points sufficiently close to
these limit cycles, subsequent evolution remains close to them even in the presence
of interaction. We can therefore exploit the concept of isochrones discussed in the
preceding section, and associate such points with values of the phase given by θ1 and
θ2 on the respective isolated limit-cycles of the two oscillators. The chain rule gives

dθk
dt

=
nk∑

i=1

∂θk

∂x (k)
i

dx (k)
i

dt
; k = 1, 2. (1.6)

Using Eq. (1.5) to substitute for dx (k)
i /dt , and exploiting the fact that Eq. (1.4) is

valid also in the neighborhood of the limit cycle, we get

dθk
dt

= ωk + ε

nk∑

i=1

∂θk

∂x (k)
i

G(k)
i (x (1)

1 , . . . , x (1)
n1 , x (2)

1 , . . . , x (2)
n2 ); k = 1, 2. (1.7)

To leading order in ε, we can now replace the x (k)
i ’s on the right hand side with the

values on the limit cycle belonging to the isochrones characterized by θ1 and θ2. We
then arrive at the two equations

dθk
dt

= ωk + εQk(θ1, θ2); k = 1, 2. (1.8)

We now show that the overwhelming contribution to the functions Q1 and Q2

comes from a dependence on the difference of the two phases. Introducing the centre-
of-mass coordinates

Θ ≡ θ1 + θ2

2
, Φ ≡ θ1 − θ2, (1.9)

we rewrite Eq. (1.8) as

dθk
dt

= ωk + εQk(Θ,Φ); k = 1, 2, (1.10)

where we may expand Qk in a Fourier series in Θ as Qk(Θ,Φ) = ∑
p Q̃ p(Φ)eipΘ .

Next, averaging Eq. (1.10) over a time τ satisfying 1/|ω1 − ω2| � τ � 1/min
(ω1, ω2) (which is a somewhat stronger condition than assuming that min(ω1, ω2) �
|ω1 − ω2|), we get

〈
dθk
dt

〉

≡ 1

τ

∫ τ

0
dt

dθk
dt

= ωk + ε

τ

∫ τ

0
dt

∑

p

Q̃ p(Φ)eipΘ ; k = 1, 2. (1.11)
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We may now evaluate the right hand side to leading order in ε, by substituting4

Θ ≈ (ω1 + ω2)t/2, to get

〈
dθk
dt

〉

= ωk + ε

τ

∫ τ

0
dt Q̃0(Φ); k = 1, 2, (1.12)

since the terms with p 
= 0 give a vanishing contribution. While the left hand side
is by definition the averaged time derivative, the integrand on the right hand side is
practically constant over the interval [0, τ ] due to our choice of τ , which is the time
window chosen to compute the average.We thus arrive at the time-averaged equation

dθk
dt

= ωk + εQ(θ1 − θ2); k = 1, 2, (1.13)

where we have dropped the angular brackets on the left hand side and the tilde and
the subscript on the right hand side for brevity of notation.

The above treatment may be generalized to the case of any number N ≥ 2 of
weakly-interacting oscillators, allowing to derive for every pair of oscillators an
interaction of a form that depends on their phase difference. In order to do such a
derivation, we have to assume as in the above that for every pair (i, j), there exists
a time τ satisfying 1/|ωi − ω j | � τ � 1/min(ωi , ω j ). For a large number N � 1
of interacting oscillators, which will be our case of interest, we will consider the
natural frequencies to be extracted from a given distribution g(ω). In such a case, let
[ωmin, ωmax] denote the range of values ofω over which g(ω) is appreciably different
from zero. The above derivation holds under the assumptions that this range does
not include the origin and that there is a time τ satisfying 1/|ωmax − ωmin| � τ �
1/min(|ωmin|, |ωmax|). We thus have for a system of N interacting oscillators the
following equation of motion for the i-th oscillator:

dθi
dt

= ωi + ε

N∑

j=1

′Qi j (θi − θ j ); i = 1, 2, . . . , N , (1.14)

where we have accounted for the fact that the function Q for a pair of oscillators
may depend on the pair under consideration. Here, the prime on the summation sign
is to imply that the term with j = i is excluded in the sum.

To summarize, we have seen in this section that even in presence of interaction, the
dynamics of oscillators can be described in terms of their phases only. Physically, this
could be possible in view of the fact that while weak perturbations do not appreciably
affect the dynamics in a direction transversal to the limit-cycles of the individual
oscillators, they nevertheless strongly affect the dynamics of their phases. This is
because the motion along the limit cycle is neutrally stable.

4The integral in the right hand side of Eq. (1.11) is preceded by ε. So, to have a term of order ε, it is
sufficient that the integral is evaluated at zeroth order. The interaction term in Eq. (1.8) is of order
ε, so at zeroth order Θ is given by (ω1 + ω2)t/2.
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In this monograph, we will exclusively consider the case in which every oscillator
in a collection of N interacting oscillators is coupled equally to every other. As a
result, one may perform a change of notation f ≡ εQi j to write (1.14) as

dθi
dt

= ωi + K

N

N∑

j=1

′ f (θi − θ j ), (1.15)

where we have also introduced a common coupling constant K and a prefactor of
1/N in the second term on the right hand side. In this way, the strength of the
interaction between the oscillators is normalized with their total number N . This
normalizing procedure, called “Kac’s prescription”, allows to have a well-defined
limit of the associated term as N → ∞ [9]. The reader may object that this procedure
sounds unphysical, since the strength of interaction between any pair of oscillators
is not expected to change with the number of oscillators. Although this objection
is perfectly justified, nevertheless the procedure is convenient and useful to obtain
results pertaining to a system where this normalization is not introduced. In fact, as
will be clear in the next chapters, with this normalization one obtains at the point
of transition between synchronized and unsynchronized states relations between
the parameters of the system (e.g., the width of the frequency distribution and the
coupling constant K ) that do not contain N , as long as N is very large. In other words,
the transition occurs at points of the so-called thermodynamic phase space that are
independent of N . The transition points for a system where the 1/N normalization
has not been done can then be simply obtained by scaling back, by using the concrete
value of N under consideration.

Equation (1.15) would from now on be our main equations of motion for the
study of interacting oscillators. The celebrated Kuramoto model, which is a proto-
type model for a system of interacting oscillators exhibiting spontaneous synchro-
nization [10–15], is obtained from Eq. (1.15) with the particular choice f (θi − θ j ) =
− sin(θi − θ j ). The Kuramoto equations of motion are thus

dθi
dt

= ωi − K

N

N∑

j=1

sin(θi − θ j ); i = 1, 2, . . . , N , (1.16)

where the frequencies ωi ’s for the different oscillators are extracted independently
from a common distribution g(ω) with the normalization

∫ ∞
−∞ dω g(ω) = 1. Note

that the prime in the sum appearing in Eq. (1.15), implying that the term j = i is
not to be included in the sum, need not be put explicitly in Eq. (1.16) as the sine
interaction automatically takes care of this constraint.
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1.5 Synchronizing Systems as Statistical Mechanics
Systems

Synchronization in a large number of oscillators in interaction is a remarkable exam-
ple of an emergent behavior. Since the natural frequencies of the oscillators are
different, the dynamical attainment of a common frequency by all or a large portion
of them may be compared to the spontaneous attainment of common orientation of
interacting spins in a magnetic system. In fact, we will see that in simple models of
synchronizing systems, e.g., the Kuramoto model, one introduces an order param-
eter for the amount of synchronization that is quite similar to the magnetization of
magnetic systems.

As we have anticipated, an exact analytical characterization of the dynamics of
a large number of interacting oscillators is not quite possible in general. A fortiori
this is true when we consider the stochastic fluctuations that are present in the oscil-
lators, which can affect their dynamical parameters. We remind that we are going to
use an effective description of real concrete synchronizing systems; a few degrees
of freedom represent each oscillator, which in reality is quite a complex system.
Introducing stochastic fluctuations in the parameters of the effective description, in
particular, of the natural frequency of the oscillator, takes somewhat into account
the complexity of the real oscillator. Moreover, the synchronizing system should
often be considered as not isolated, but subject to external noise. The introduction
of stochastic fluctuations in the models can represent in an effective way all sources
of variability.

The study of many-body systems subject to stochastic fluctuations is the common
ground of statistical physics. Let us establish the framework within which synchro-
nizing systems are treated. We do this in steps, beginning with the case of a single
oscillator. The following is a short review of theoretical tools that are probably
already known to most readers. However, since we will use them in most of the
analysis contained in subsequent chapters, we find it useful to give a self-contained
presentation.

1.5.1 A Single Oscillator with Noise

We have already seen that the oscillators constituting a synchronizing system can
be effectively described with only one degree of freedom, i.e., the phase θ . Let us
consider a single such oscillator evolving according to Eq. (1.4). Although the trivial
solution of this equation,

θ(t) = θ(0) + ωt, (1.17)

gives an unbounded increase of θ(t) (or, of |θ(t)| ifω is negative), one has to consider
that physically the phase is defined modulus 2π .
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We now introduce noise in the dynamics, by adding to the equation of motion
(1.4) a stochastic term, thus obtaining the Langevin equation

dθ

dt
= ω + η(t). (1.18)

The noise η(t) is a stochastic variable with its average equal to 0 and having delta
correlation in time:

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2Dδ(t − t ′), (1.19)

with D determining the intensity of the noise, and angular brackets denoting averages
over noise realizations. The Langevin equation (1.18) is trivially integrated to yield

θ(t) = θ(0) + ωt +
∫ t

0
dt ′ η(t ′). (1.20)

By averaging over noise realizations, we obtain the diffusive behavior of the phase
with respect to its perfectly periodic behavior (1.17), as

〈(θ(t) − θ(0) − ωt)2〉 = 2Dt. (1.21)

The constant D is therefore called the diffusion coefficient. As is well known, the
physical meaning of the average over noise realizations is the computation of the
average of the observable between angular brackets (in this case, the mean-squared
displacement with respect to the perfectly periodic behavior) over many realizations
of the same dynamics. If the noise is not delta correlated as in the second equation in
(1.19), but 〈η(0)η(t)〉 is a smooth function of time, then D can be defined as half of
the integral, from t = −∞ to t = +∞, of the correlation function 〈η(0)η(t)〉. Then,
for t large with respect to the decay time of the correlation, the phase diffusion is
still given by Eq. (1.21).

If the oscillator is subject to an external field F(θ), the equation of motion without
noise becomes

dθ

dt
= ω + F(θ). (1.22)

With a slight abuse of notation, we will refer to the field as a force. In a synchronizing
system, the external field will be the result of interactions with other oscillators (and
would therefore depend also on their phases). Provided they exist, the values of θ

for which ω + F(θ) = 0 denote fixed or equilibrium points of the oscillator. An
equilibrium point at θ0 is stable if the derivative of F(θ) is negative at θ0. On the
other hand, if ω + F(θ) does not vanish for any value of θ , then the phase increases
(or decreases) monotonically, although not at a uniform rate. With the inclusion of
noise, we have the Langevin equation in presence of F(θ), as
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dθ

dt
= ω + F(θ) + η(t). (1.23)

Although in many cases, depending on the functional form of F(θ), this equation
can be integrated, some qualitative features can be inferred without solving it. If
ω + F(θ) is of definite sign, the noise adds diffusion to the nonuniform monotonic
variation of the phase, quite similarly to the case without external force. On the other
hand, if there are equilibrium positions in the noiseless case, the noise would not
allow the oscillator to remain in them, and we will have a diffusive behavior of θ

determined both by the size of D and by the shape of F(θ) around the equilibrium
point. A clarifying example is presented in Sect. 1.5.1.1.

The statistical description of the Langevin equation (1.23) is obtained by intro-
ducing the distribution function ρ(θ, t), whose meaning is the following: if we have
a large number of oscillators, each one performing a realization of the dynamics
(1.23), the quantity ρ(θ, t)dθ gives the fraction of oscillators at time t that are found
to have phases between θ and θ + dθ . The evolution of the distribution function
ρ(θ, t) obeys a partial differential equation, i.e., a Fokker-Planck equation given by

∂ρ

∂t
= − ∂

∂θ
[(ω + F(θ)) ρ] + D

∂2ρ

∂θ2
. (1.24)

The passage from the Langevin equation of motion to the Fokker-Planck equation
for the distribution function is described in detail in textbooks dedicated to stochastic
differential equations (see, e.g., [16]). It is shown that in the case of a delta-correlated
noise, there is no approximation in this passage if the noise has a Gaussian distribu-
tion; we will therefore assume here that the noise has a Gaussian distribution.5

The Fokker-Planck equation can be written in the form

∂ρ

∂t
= LFP(θ)ρ, (1.25)

where LFP(θ) is the linear differential Fokker-Planck operator

LFP(θ) ≡ − ∂

∂θ
(ω + F(θ)) + D

∂2

∂θ2
. (1.26)

5For other noise distributions, there are in generally additional terms with higher order derivatives
of ρ(θ, t) with respect to θ , resulting in a partial differential equation of higher order than the
Fokker-Planck equation. However, on physical grounds we can expect that in the more general
case, the picture would not be different, apart from small quantitative differences. As a matter of
fact, the Fokker-Planck equation is by far the most used tool in the study of stochastic phenomena.
Actually, if the noise distribution has compact support, i.e., if the noise is strictly bounded, then,
e.g., the escape from a potential well, which with a Gaussian noise has always a probability different
from zero (although it could be extremely small), might be impossible, depending on the maximum
size of the noise, the height of the potential well and its slope. We do not consider this subtle point
here, and stick to the usual case of Gaussian noise.
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Given the distribution ρ(θ, 0) at time t = 0, the formal solution of the Fokker-Planck
equation is

ρ(θ, t) = exp [LFP(θ)t] ρ(θ, 0). (1.27)

Solving this equation is not any simpler than solving the Langevin equation (1.23).
However, we are mainly interested in stationary solutions, which from Eq. (1.25) are
obtained by solving

LFP(θ)ρ = 0. (1.28)

We expect that a stationary solution gives the distribution function at sufficiently long
times, i.e., the distribution one has after a transient. This expectation is justified by
the fact that under mild conditions on the function(s) appearing in the Fokker-Planck
operator (in our case, we have just the single function F(θ)), the stationary solution
is unique, and at long times, any solution (identified by the initial condition ρ(θ, 0))
approaches the stationary solution [16].

1.5.1.1 The Stationary States in a Representative Case

A stationary solution of the Fokker-Planck equation is said to represent a stationary
state of the system. Here we discuss the stationary state in a particular case. We will
not show the details of the computation, which although simple will be deferred to
the next chapter. Our purpose in this section is just to give a flavor of the role of the
various quantities appearing in the equation.

The external force F(θ) is a 2π -periodic function. For our example, we choose
the simple function F(θ) = − sin θ : it represents a force that attracts the oscillator
phase to θ = 0. For definiteness, we assume that ω is positive. In the noiseless case,
we see from Eq. (1.22) that the equilibrium points, when they exist, are the points
θ0 for which sin θ0 = ω. Clearly, for ω > 0, such values of θ0 exist only if ω ≤ 1; in
that case, there are two solutions for θ0 (for ω strictly smaller than 1): one between
θ = 0 and θ = π/2, and one between θ = π/2 and θ = π . However, only the former
is stable. On the other hand, if ω > 1, there is no equilibrium point, and θ increases
monotonically with time at a nonuniform rate, which is minimum for θ = π/2 and
maximum for θ = 3π/2. Going now to the case with noise, we need to consider the
Fokker-Planck equation

∂ρ

∂t
= − ∂

∂θ
[(ω − sin θ) ρ] + D

∂2ρ

∂θ2
. (1.29)

The stationary state is obtained by solving the ordinary differential equation that one
gets by equating to zero the right hand side. The explicit solution will be given in
Chap.2 while treating synchronizing systems. Our aim here is only to show the plots
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Fig. 1.2 Stationary
distribution of the
Fokker-Planck equation
(1.29) for ω = 1.2 and three
different values of the
diffusion coefficient D:
D = 0 (full line), D = 0.3
(dot-dashed line), and D = 2
(dashed line)
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of the stationary state for some values of the natural frequency ω and the diffusion
coefficient.6

Let us begin with the case ω > 1. In Fig. 1.2, we show the stationary distribution
for ω = 1.2 and three different values of the diffusion coefficient D, i.e., D = 0,
D = 0.3 and D = 2.0. The first value refers to the noiseless situation; since there is
no equilibrium position and θ increasesmonotonically with time, it is no surprise that
the equilibrium distribution spreads all over [0, 2π ], see the full line in Fig. 1.2. The
probability to find the oscillator is maximum for θ = π/2, when the rate of variation
of θ is minimum. Introducing the noise with D > 0 flattens the distribution, as can be
seen from the other two curves in Fig. 1.2. It is interesting to note that the maximum
of the distribution varies with D, and that it does not remain in the position it had for
D = 0.

We now turn our attention to the case ω < 1. In Fig. 1.3, we plot the stationary
distribution forω = 0.5 and two different values of the diffusion coefficient, D = 0.3
and D = 2. Since the noiseless case has now an equilibrium position for θ = π/6,
the stationary distribution in this case is a delta function centered at this value of θ ;
in the plot, this is indicated with a vertical line at the corresponding position. We see
that even a very small amount of noise is sufficient to have a stationary distribution
that is different from zero in the whole range of values of the phase; obviously, for
very small D, the distribution will be sharply peaked. Also in this case, we note that
the maximum of the distribution varies with D.

6We do not lose generality by assuming that the coefficient of the sinusoidal external force is unity;
in fact, if it had a given value a > 0, the stationary state would depend on the ratios ω/a and D/a.
The assumption a = 1 could be made also in the study of the transient behavior (i.e., of the time
evolution of ρ(θ, t) towards the stationary state), by simply rescaling the time.
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Fig. 1.3 Stationary
distribution of the
Fokker-Planck equation
(1.29) for ω = 0.5 and two
different values of the
diffusion coefficient D:
D = 0.3 (full line), and
D = 2 (dashed line). The
vertical line at θ = π/6
represents the delta
distribution that occurs for
D = 0
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1.5.2 Oscillators in Interaction

It is with the study of interacting oscillators that the usefulness of the statistical
approach becomes more evident. In this case, the force acting on each oscillator
is quite generally due to its interaction with all the other oscillators. The coupled
Langevin equations for the noisy dynamics of a system of N interacting oscillators,
assuming for the moment that the natural frequency is the same for each, are

dθi
dt

= ω + K

N

N∑

j=1

′ f (θi − θ j ) + ηi (t) , i = 1, 2, . . . , N , (1.30)

where ηi is the stochastic noise acting on the i-th oscillator. One usually considers
ηi (t) to be a Gaussian, white noise, chosen independently for each oscillator, so that
similar to Eq. (1.19), one has

〈ηi (t)〉 = 0, 〈ηi (t)η j (t
′)〉 = 2Dδi jδ(t − t ′). (1.31)

Similar to the single-oscillator case, one may in the present situation obtain under
some conditions a Fokker-Planck equation for the distribution function ρ(θ, t). As
we have remarked, the distribution function ρ(θ, t) describes for the single oscil-
lator the outcome of many realizations of the dynamics (1.23): since the noise is a
stochastic variable, the distribution of the phases of the oscillators (each one follow-
ing one realization of the dynamics) at time t is given by ρ(θ, t). The interpretation
of the distribution function is the same for a system of interacting oscillators, i.e.,
it is the average over many realizations of the dynamics. However, especially when
confronted with the results of numerical simulations, we always make a comparison
between ρ(θ, t) as obtained by solving the Fokker-Planck equation and the aver-
age over the oscillators of the system in the simulation of a single realization of the
dynamics. The conceptual difference should be clear, although it is often overlooked.
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In Appendix 3, we make some more comments concerning this issue, which are in
general also relevant to the study of many-body systems.

In the present situation, it may be shown that one obtains an equation of the same
form as Eq. (1.24), but where the force F(θ) is no more an external force, but rather
a time-dependent function given by

F(θ, t) =
∫ 2π

0
dθ ′ f (θ − θ ′)ρ(θ ′, t). (1.32)

We thus have the corresponding Fokker-Planck equation

∂ρ

∂t
= − ∂

∂θ
[(ω + F(θ, t)) ρ] + D

∂2ρ

∂θ2
. (1.33)

The derivation of this equation (and of its generalization shown just in the next
paragraph) from an N -body Fokker-Planck equation will be given and justified in
Chap.2. We note an important difference of Eq. (1.33) with respect to the one for a
single oscillator subject to an external force given by Eq. (1.24): in the former, the
distribution ρ(θ, t) appears implicitly in the force term F(θ, t), so that the equation
is no more linear. This fact has another consequence: The conditions of the theorem
that asserts the uniqueness of the stationary state, together with the property that any
initial distribution ρ(θ, 0) converges at long times to such stationary distribution,
are no longer verified. In fact, one condition is that the drift coefficient, i.e., the
expression multiplying ρ in the first term on the right hand side of the Fokker-Planck
equation (1.33), is a given function of θ and of time t ; in our case, it is a function
of ρ itself, so that, e.g., two different solutions have at a given time t different drift
coefficients. However, it is expected that at long times, the distribution ρ(θ, t) will
nevertheless converge to a stationary distribution (if and when it exists), and Eq.
(1.33) is the key tool for the study of interacting oscillators that are described only
by their phases.7

In contrast to the case of the same natural frequency of all the oscillators treated
above, we will more generally be concerned with synchronizing systems in which
the natural frequencies are different among the oscillators, i.e., with the frequencies
distributed according to a given distribution g(ω). Treating such a case requires a
generalization of Eqs. (1.32) and (1.33). In fact, the distribution functions will now
depend also on ω, or, in other words, we need a distribution for each value of ω

included in the support of g(ω). The Fokker-Planck equation will have the same
form as in Eq. (1.33), which now reads

∂ρ(θ, ω, t)

∂t
= − ∂

∂θ
[(ω + F(θ, t)) ρ(θ, ω, t)] + D

∂2ρ(θ, ω, t)

∂θ2
. (1.34)

7Actually, we will see in the next Chapter that a stationary distribution representing a synchronized
state exists only after making a simple time-dependent change of variables.
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Mathematically, one has a system of such equations for each value of ω that are
coupled through the force term

F(θ, t) =
∫

dω
∫ 2π

0
dθ ′ g(ω) f (θ, θ ′)ρ(θ ′, ω, t). (1.35)

We remind that the frequency distribution g(ω) is normalized:

∫

dω g(ω) = 1. (1.36)

1.6 The Features of a Statistical Physics Description

The Fokker-Planck equation is the principal tool of choice for theoretical study of
a collection of oscillators in interaction in the presence of noise. In fact, it appears
more manageable than the system of Langevin equations (1.30). Its main utility is
probably in the determination of stationary distributions ρ(θ, ω), which are obtained
by setting the left hand side of Eq. (1.34) to zero. In this case, also the force term
F(θ, t) given by Eq. (1.35) is time independent, just as ρ(θ, ω, t) will be.

Although, as mentioned, there is no theorem guaranteeing the approach to a sta-
tionary state, nevertheless this occurs in most situations. It is in the stationary states
that we look for the occurrence of synchronization. Let us see qualitatively what
we expect when the system of oscillators synchronizes and when it does not. For
this, we assume that the interaction f (θ1 − θ2) (see Eq. 1.30) is such that it tends
to equalize their phases. We can be guided by the example above in which a single
oscillator with natural frequency ω is subject to an external force equal to − sin θ ,
which tends to make the phase equal to 0. We see from Figs. 1.2 and 1.3 that as a
result of the interplay between the driving due to ω and the external force, a station-
ary state develops, in which some regions of θ are more probable than others. The
difference in probability depends on the level of noise.

We begin by considering the simple case of two oscillators with different natural
frequencies ω1 and ω2, with an interaction between them that tends to make their
phases equal. For definiteness, we assumeω1 > ω2 > 0 and f1(θ1, θ2) = − sin(θ1 −
θ2) = − f2(θ1, θ2), where fi is the force on the i-th oscillator due to interaction. In
absence of noise, we have the equations of motion

dθ1
dt

= ω1 − sin (θ1 − θ2) ,
dθ2
dt

= ω2 + sin (θ1 − θ2) . (1.37)

With the change of variables θT ≡ θ1 + θ2 andφ ≡ θ1 − θ2, we obtain the two uncou-
pled equations

dθT
dt

= ω1 + ω2,
dφ

dt
= Δω − 2 sin (φ) , (1.38)
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with Δω ≡ ω1 − ω2 > 0. The first equation shows that the “center of mass” of
the two oscillators moves at a uniform rate; the second equation is the same as
Eq. (1.22) with the substitutions θ → φ and F(θ) → −2 sin φ. From the analysis in
Sect. 1.5.1.1, we know that in the stationary state, φ has a definite value if Δω < 2,
while it has a distribution in [0, 2π ] if Δω > 2. In the first case, we see that the two
oscillators keep a constant phase difference equal to the definite value of φ, and that
they move according to Eq. (1.38) with the same frequency ω0 ≡ (ω1 + ω2) /2. This
“frequency locking” and the consequent “phase locking” (i.e., the constant phase
difference between the two oscillators) are trademarks of synchronization. Because
of interaction, the oscillators adjust and equalize their natural frequencies, the one
with the larger one adjusting by decreasing it, the other by increasing it. In the case
Δω > 2, the locking does not occur, although φ does have a larger probability for
certain values, while without interaction, the distribution of φ would be uniform. If
the oscillators are noisy, with noise terms η1(t) and η2(t), Eq. (1.38) is replaced by

dθT
dt

= ω1 + ω2 + ηT (t),
dφ

dt
= Δω − 2 sin (φ) + Δη(t), (1.39)

where ηT (t) = η1(t) + η2(t) and Δη(t) = η1(t) − η2(t), with 〈ηT (t)ηT (t ′)〉 =
〈Δη(t)Δη(t ′)〉 = 4Dδ(t − t ′). Again, from Sect. 1.5.1.1, we see that with the noise,
there is never a real “frequency locking”, (or “phase locking”), since the phase dif-
ference φ has a distribution in the stationary state that is different from 0 in the whole
of the range [0, 2π ]. The physical reason behind this can be understood easily. In
the presence of noise, we cannot even for a single oscillator with a constant natural
frequency speak of a uniform variation of the phase; the fluctuations and the diffusion
caused by the noise transform the natural frequency to an average frequency, i.e., the
natural frequency itself has fluctuations (we remind that the noise has been intro-
duced primarily just to reproduce these fluctuations common in concrete systems
[17]). If the natural frequencies of two interacting oscillators have fluctuations, we
expect that also the frequency associated to their phase difference φ has fluctuations.
Therefore, the locking concept is in a sense smoothed: we can talk of synchronization
when the average frequency of the phase difference (average with respect to the noise
distribution) is very small in absolute value; then, the phases θ1 and θ2 will be for
most of the times “locked”, with jumps from time to time. This approximate locking
will be more and more pronounced the smaller the noise and the smaller Δω is; for
an intensity of the force different from unity, the relevant quantities will be the ratios
of Δω and of D with the force intensity.

We are now in a position to understand qualitatively what can happen when there
are many oscillators in interaction. We assume that the force between any pair of
oscillators tends to equalize their phases. Suppose we have a configuration at a given
time in which the oscillators are distributed more or less uniformly on [0, 2π ]; then,
it is easy to see that the total force acting on each oscillator will be small. On the other
hand, if a large proportion of oscillators happen to have quite similar phases, then the
rest of the oscillators will experience a force tending to pull their phase towards that
of the group. If the number of oscillators with nearly equal phases increases, the force
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on the remaining oscillators will be even stronger, favoring further grouping. The
dynamics might cause an alternation between the two situations, but we can expect
that on increasing the intensity of the pair force, the tendency to group increases.
Then, by increasing the pair force intensity, we expect to arrive at a situation of
phase locking, although in the approximate sense explained above for the presence
of noise. In Chap.2, we will quantitatively formalize these issues.

1.6.1 The Advantages of the Fokker-Planck Equation

As we have already remarked, the main use of the Fokker-Planck equation (1.34) is
in the determination of the stationary states ρ(θ, ω). To obtain the same information
from the equations of motion, one would have to obtain numerically the solution of
the system of coupled Langevin equations (1.30) (where now ω would be replaced
withωi , since each oscillator would have a natural frequency extracted from the given
distribution g(ω)), and study the long time behavior of this solution. This solution
is what is actually obtained in numerical simulations (see Appendix 3 at the end of
the chapter for the interpretation of the comparison between theory and numerical
simulations); however, it is conceptually satisfying to have an analytical theory that
allows to obtain an evaluation of this long-time behavior.

From the operative point of view, the passage from the coupledLangevin equations
to the Fokker-Planck equation can be seen as the passage from the study of an N -body
dynamics to a single-particle dynamics, since the distribution ρ(θ, ω, t) depends on
a single variable θ . The price that we pay for this is the passage from ordinary
differential equations to partial differential equations; however, while the former are
stochastic, the latter are deterministic, with the diffusion due to the noise accounted
for by the second-order derivative with respect to θ . It should also be stressed that
once a stationary solution of the Fokker-Planck equation has been obtained, one
has to study its stability with respect to perturbations, since only stable stationary
solutions are physically acceptable representation of stationary states. The study of
the stability of a stationary solution is not always easy, although in important cases,
e.g., for homogeneous solutions, the analysis is relatively simple.

The force term as given by Eq. (1.35) is rightfully termed a mean-field force,
since it is the average force on an oscillator due to the distribution of phases of all
the oscillators. It is not obvious that a mean-field force is a good approximation for
a closed equation for the one-particle distribution function. As a matter of fact, very
often the approximation of a mean-field term is a bad approximation, and one has
to resort to other approximate closed equations for the single-particle distribution
function; perhaps the most widely known equation of this type is the Boltzmann
equation, which is suitable for dilute gases. However, there is a case in which the
mean-field approximation is a very good one, namely, the case of long-range inter-
actions. The interaction generally adopted in synchronizing systems of oscillators,
with any pair of oscillators interacting with the same force expression, falls in this
case. This will be exploited in the derivation of the Fokker-Planck equation from
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the N -body Fokker-Planck equation in the next chapter, assuming N � 1. Although
the approximation worsens if N is not very large, or, if the interaction between the
oscillators cannot be considered as long-range, the Fokker-Planck equation is still a
good starting point for the study of the behavior of the system.8

The evaluation of stable stationary distributions as a function of the parameters
(e.g., the noise intensity, the intensity of the interaction, the width of the frequency
distribution g(ω)) allows to find the values of these parameters forwhich the behavior
changes qualitatively; these relevant points in the parameter space denote phase
transitions. The passage from a synchronized state to a non-synchronized state can
be viewed as a phase transition in a statistical system.

The reader may wonder why up to now we have always talked about the force and
have never discussed the aspect of a potential energy; after all, the force including the
natural frequency term, given by ω − sin θ , can be derived from a potential energy
equal to − (ωθ + cos θ). The problem with this approach is that such a potential is
not 2π periodic, which has important consequences. We know that the stationary
state of the Fokker-Planck equation (1.24) when the force term ω + F(θ) is replaced
with minus the derivative of a 2π -periodic potential, i.e., with− (∂U (θ)) / (∂θ)with
U (θ + 2π) = U (θ), is simply given up to a normalizing factor by exp [−U (θ)/D].
This is no more the case if such a periodic U (θ) does not exist, which in our case
is due to the presence of the natural frequency ω. This fact makes the search for the
stationary states more difficult than for systems with physically meaningful potential
energy. This has also the physical consequence that the stationary states cannot be
classified as thermodynamic equilibrium states.9

Finally, we note that the case of noiseless systems can be obtained in the limit
of vanishing noise. Mathematically, this may not be a well defined procedure, since
the degree of the Fokker-Planck equation changes for D = 0. However, it is found
in most cases that the limit reproduces numerical and analytical results. Concerning
this point, we want to discuss in the next section some results that have been obtained
for the solution of the equations of motion in the noiseless case.

1.7 Some Results for Noiseless Interacting Oscillators

In this section, we present two results concerning the noiseless Kuramoto model,
Eq. (1.16). In the remaining of this section, we are going to study two different
problems related to the equations of motion (1.16): (i) the long-time behavior of the
system of oscillators for a unimodal distribution g(ω) that is symmetric about the
average frequency ω0 = ∫

dω ωg(ω); (ii) the dynamical evolution determined by
Eq. (1.16) for a particular distribution g(ω). Since the number N of oscillators is

8This can be paralleled with the elementary study of magnetic systems: although magnetic units
generally interact only at distances on atomic scale, a mean-field approximation can be employed
to obtain easily their qualitative behavior.
9This in turn is due to the absence of detailed balance (see Appendix 1 of Chap.3).
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typically very large, which in principle could be even infinite, use is made of the
distribution function ρ(θ, ω, t), but the treatment of this noiseless case does not use
concepts of statistical physics.

1.7.1 The Kuramoto Solution

Let us suppose that the distribution g(ω) satisfies g(ω0 + ω) = g(ω0 − ω), and that
for any pair (ω1, ω2) such that 0 ≤ ω1 ≤ ω2, we have g(ω0 + ω1) ≥ g(ω0 + ω2).
These relations imply that g(ω) is symmetric about the average frequency ω0 and
that it is unimodal, i.e., it is not increasing for ω ≥ ω0 (and thus not decreasing for
ω ≤ ω0).

As a first step of our analysis, we make a transformation of coordinates that
corresponds to a passage in the frame of observation, from the laboratory frame
to a frame of reference that rotates uniformly at frequency ω0 with respect to the
laboratory frame: θi = θ ′

i + ω0t for each i . Defining ω′
i ≡ ωi − ω0, the equations

of motion with the new primed variables are identical to Eq. (1.16), but now the
distribution g(ω′) is symmetric about the average frequency ω = 0, having been
obtained by shifting g(ω) byω0. From now on, we remove the primes in the variables
in order not to overload the notation.

As a second step, it is convenient to think of the oscillator phases as a collection
of points moving on a unit circle. Then, at any time t , one may associate a vector
of unit length to each point, take a vector sum, and divide by N , to get a vector of
length r(t) inclined at an angle ψ(t) with respect to a reference axis [11, 12]:

r(t)eiψ(t) ≡ 1

N

N∑

j=1

eiθ j (t). (1.40)

Here, ψ(t) gives the average angle, while r(t) measures the amount of phase coher-
ence or synchrony in the system at time t (thus serving the role of an order parameter).
Indeed, if the phases are scattered around randomly on the circle, one has r(t) = 0,
while, by contrast, if the oscillator phases are clustered together on the circle, we
have r(t) > 0. In the extreme case when all the oscillator phases have the same value,
r(t) attains its maximum possible value of unity.

Multiplying both sides of Eq. (1.40) by e−iθi and taking the imaginary part, we
obtain the equality

r sin(ψ − θi ) = 1

N

N∑

j=1

sin(θ j − θi ). (1.41)

Substituting in the equations of motion (1.16), we obtain

dθi
dt

= ωi − Kr sin(θi − ψ); i = 1, 2, . . . , N . (1.42)
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These equations look as though the N oscillators are uncoupled, but actually of
course they are coupled through r andψ that depend on all the θ ’s. Nevertheless, the
above form is useful for analytical treatment as it evidently illustrates that during the
dynamical evolution, each oscillator is attracted towards the average phase ψ , with
a strength that for a given K is proportional to the modulus r of the order parameter.

Both the modulus and the phase of the order parameter depend on time through
the time dependence of the phases of the oscillators. In his analysis of the model [10,
11], Kuramoto argued that the dynamics of the oscillators would settle at long times
into a state in which r andψ become time independent. Correspondingly, one would
have the phase of the order parameter rotating uniformly in the laboratory frame of
reference at the frequency ω0. In other words, one would have a stationary state in
the rotating frame. By redefining, if necessary, the origin of the phases, we may set
ψ to zero. Therefore, the stationary-state dynamics reads

dθi
dt

= ωi − Kr sin θi ; i = 1, 2, . . . , N , (1.43)

where the quantity r in the above equation is to be considered time independent.
We have already encountered the problem represented by Eq. (1.43) in Sect. 1.5.1.1,
although in that example, the term proportional to− sin θ was due to an external field.
We know that there are two possible behaviors depending on the relative magnitude
of ωi and Kr . For |ωi | < Kr , the phase θi reaches a stable fixed point: of the two

fixed points given by θ(ωi ) = arcsin(ωi/Kr); cos θ(ωi ) = ±
√
1 − ω2

i K
2/r2, it is

easily seen that the stable fixed point is the one with a positive cosine.10 We thus have

the stable fixed-point value θ(ωi ) = arcsin(ωi/Kr); cos θ(ωi ) =
√
1 − ω2

i K
2/r2.

For |ωi | > Kr , Eq. (1.43) does not admit a fixed point, but nevertheless, a stationary
state for the systems of oscillators can be found by invoking the following argument.

First, Kuramoto invokes at this stage the use of the distribution ρ(θ, ω) to char-
acterize the stationary state by considering the system of oscillators in the limit
N → ∞; the quantity ρ(θ, ω)dθ gives among those oscillators with frequency ω the
fraction that have their phase between θ and θ + dθ . The oscillators with |ωi | > Kr
do not settle into a fixed point, but continue to rotate at a nonuniform rate (they
are referred to as “drifting” oscillators). Concomitantly, on the unit circle, the cor-
responding phase points would be buzzing around the circle, spending naturally
longer duration at locations that allow for a smaller local velocity v(θ, ω) and zip-
ping through locations that have a larger local velocity (Here, v(θ, ω), the local
velocity at position θ of oscillators that have natural frequency equal to ω, may be
read off from Eq. (1.43) to be v(θ, ω) = ω − Kr sin θ ). Consequently, the density of
this group of “drifting” oscillators would for most times be peaked around locations

10A fixed point exists also for the particular case |ωi | = Kr , for which θ(ωi ) = π/2 or θ(ωi ) =
3π/2 depending on the sign of ωi . However, this fixed point is not stable. In the language of
dynamical systems theory, ωi = Kr that marks the boundary between two different behaviors
corresponds to a saddle-node bifurcation. Since we are considering a continuum of frequencies
distributed according to g(ω), the behavior for a single value of ω is not relevant for the final result.
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with small local velocities, thus leading to a stationary density for this group that is
inversely proportional to the local velocity:

ρdr(θ, ω; r) ∝ 1

|ω − Kr sin θ | . (1.44)

The subscript reminds that this form is valid only for |ω| > Kr . The constant of
proportionality, which may be computed by imposing the normalization of ρ, is
equal to

√
ω2 − (Kr)2/(2π). However, the factor of normalization is not necessary

for our further steps, aswill soon be clear. As remarked, the oscillatorswith |ω| < Kr
will assume phase values equal to the fixed-point value θ(ω) defined above. These
oscillators are “locked”; in fact, recalling the argument presented in Sect. 1.6, we
realize that the corresponding phases maintain a constant phase difference among
them (“phase locking”), while evolving in time at a common frequency (“frequency
locking”) equal to 0 in the rotating frame and equal to ω0 in the laboratory frame.
The important point to note is that the overall distribution of the oscillators depends
implicitly on the yet undetermined modulus r of the order parameter, and for this
reason, we have added the parametric dependence on r in Eq. (1.44). The value of r
has to be determined in a self-consistent way; the procedure goes as follows.

In the continuum description we are using, the relation (1.40) giving the order
parameter becomes

reiψ =
∫

dω
∫ 2π

0
dθ g(ω)eiθρ(θ, ω; r). (1.45)

Let us first consider the contribution to this integral from frequencies with modulus
larger than Kr ; It is given by

∫

|ω|>Kr
dω

∫ 2π

0
dθ g(ω)eiθρdr(θ, ω; r). (1.46)

The above expression vanishes due to the assumed symmetry of the frequency dis-
tribution, g(ω) = g(−ω), and due to the relation ρdr(θ + π,−ω; r) = ρdr(θ, ω; r),
which can be easily deduced from Eq. (1.44). For the contribution of frequencies
with modulus smaller than Kr , we use the fact that for each such oscillator, θ is fixed
at a value that depends univocally on its frequency; we have

reiψ =
∫

|ω|<Kr
dω g(ω)eiθ(ω), (1.47)

where θ(ω) = arcsin(ω/Kr). With a change of integration variable, we get

reiψ = Kr
∫ π

2

− π
2

dθ cos θ g(Kr sin θ)eiθ . (1.48)
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The imaginary part of the integral on the right hand side vanishes due to the symmetry
of g(ω), thus giving ψ = 0. The real part is the final self-consistent relation for r

r = Kr
∫ π

2

− π
2

dθ cos2 θ g(Kr sin θ). (1.49)

The self-consistent equation (1.49) has a solution r = 0 that is always possible.
From Eq. (1.44), we see that in this case, ρ(θ, ω) is constant in θ for any ω; normal-
ization requires that this constant is equal to 1/2π . Another solution, namely, r 
= 0,
to the self-consistent equation exists if the equation

1 = K
∫ π

2

− π
2

dθ cos2 θ g(Kr sin θ) (1.50)

is satisfied for 0 < r ≤ 1. It is not difficult to evaluate the range of K for which
this solution exists, and to understand its behavior. First of all, by taking the limit of
the right hand side of Eq. (1.50) for r → 0+, we obtain that the solution bifurcates
continuously from the solution r = 0 at

Kc = 2

πg(0)
. (1.51)

Furthermore, denoting with A(K , r) the right hand side of Eq. (1.50), we obtain the
following relations:

A(K , 1) = K
∫ π

2

− π
2

dθ cos2 θ g(K sin θ) =
∫ K

−K
dx

(

1 − x2

K 2

) 1
2

g(u) < 1, (1.52)

Ar (K , r) = K 2
∫ π

2

− π
2

dθ cos2 θ sin θ g′(Kr sin θ) < 0, (1.53)

AK (K , r) =
∫ π

2

− π
2

dθ cos2 θ
[
g(Kr sin θ) + sin θ g′(Kr sin θ)

]

=
∫ π

2

− π
2

dθ sin2 θ g(Kr sin θ) > 0. (1.54)

In these equations, the prime denotes the derivative with respect to the argument,
while the subscripts in A indicate partial derivatives. The first relation, A(K , 1) < 1,
comes from the normalization of g; the same relation shows that A(K , 1) tends to 1
as K → ∞. The second relation, Ar (K , r) < 0, is a consequence of the fact that g is
unimodal. The third relation, AK (K , r) > 0, is evident. Taken together, the relations
prove that Eq. (1.50) has a solution in r for K ≥ Kc, that this solution is equal to 0
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for K = Kc, that it increases with K , and that it approaches r = 1 as K → ∞. For
K close to Kc, one can obtain an explicit expression of r : By power expanding Eq.
(1.50) for small r , we have

1 = K
∫ π

2

− π
2

dθ

[

g(0) cos2 θ + 1

2
K 2r2g′′(0) cos2 θ sin2 θ

]

+ O(r4)

= K

Kc
+ 1

16
πK 3r2g′′(0) + O(r4), (1.55)

where the expression (1.51) for Kc has been used in obtaining the second equality.
By defining ΔK ≡ K − Kc, one obtains at lowest order in ΔK the result

r = 4

K 2
c

√

− ΔK

πg′′(0)
, (1.56)

(we note that for the class of functions g(ω) considered here, the second derivative
at ω = 0 is negative11). In the following chapter, treating the more general case with
noise, wewill show that the solution r = 0 is unstable for K > Kc, when the solution
r > 0 is present.

1.7.2 The Ott-Antonsen Solution

In this section, we discuss an alternative analytical treatment of the Kuramoto model
via the introduction and the implementation of the so-called Ott-Antonsen (OA)
Ansatz [18, 19], which allows to rewrite in the thermodynamic limit the dynam-
ics of coupled networks of phase oscillators in terms of a few collective variables.
Specifically, in the context of the Kuramoto model (1.16) with a Lorentzian distri-
bution of the oscillator frequencies, the ansatz studies the evolution in phase space
by considering in the space D of all possible phase-space distributions ρ(θ, ω, t)
a particular class defined on and remaining confined to a manifold M in D under
the time evolution of the phases. As a result of the choice of the particular class
of ρ(θ, ω, t), one obtains a single first-order ordinary differential equation for the
evolution of the synchronization order parameter r(t). The power and the usefulness
of the ansatz lies in its remarkable ability to capture precisely and quantitatively
through this single equation all, and not just some, of the order parameter attrac-
tors and bifurcations of the dynamics (1.16) (which may be obtained by performing
numerical integration of the N coupled nonlinear equations (1.16) for N � 1 and
evaluating r(t) in numerics), for a Lorentzian g(ω). The success of the approach has

11Actually, it could be equal to 0. We will consider this case in the next Chapter when treating a
uniform distribution.
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led to hundreds of publications in applied mathematics and physics; a few recent
ones are Refs. [20–23].

We begin the discussion by considering the case of a Lorentzian frequency dis-
tribution

g(ω) = a

π

1

a2 + ω2
, (1.57)

where a gives the width of the distribution. Substituting in Eq. (1.50), we have

1 = Ka

π

∫ π
2

− π
2

dθ cos2 θ
1

a2 + K 2r2 sin2 θ
= K

aπ

∫ 1

−1
dy

√
1 − y2

1 + b2y2
, (1.58)

where in the second integral, we have made the change of variable y = sin θ , and
have defined b = Kr/a. The last integral can be computed in closed form, using the
indefinite integral expression

∫

dy

√
1 − y2

1 + b2y2
=

√
1 + b2

b2
arctan

y
√
1 + b2

√
1 − y2

− 1

b2
arcsin y. (1.59)

We thus obtain

1 = a

Kr2

(√

1 + K 2r2

a2
− 1

)

, (1.60)

which can be solved for r to give

r =
√

1 − 2a

K
=

√

1 − Kc

K
, (1.61)

since Eq. (1.51) in this case gives Kc = 2a. We thus see that in this particular case,
the order parameter can be obtained in closed form for any K ≥ Kc.

However, the main purpose of this section is to show that under certain assump-
tions and for a Lorentzian frequency distribution, the full time-dependent dynamics
of r(t) can be determined. The procedure, introduced by Ott and Antonsen, goes as
follows: Using from the start the continuum description of the Kuramoto dynamics
via the distribution function ρ(θ, ω, t), the equations of motion (1.16) corresponds to
a continuity equation that describes the conservation under the dynamical evolution
of the total number of oscillators with a given frequency:

∂ρ(θ, ω, t)

∂t
= − ∂

∂θ
[(ω + F(θ, t)) ρ(θ, ω, t)] , (1.62)

with

F(θ, t) = K
∫

dω
∫ 2π

0
dθ ′ g(ω) sin(θ ′ − θ)ρ(θ ′, ω, t). (1.63)
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Using the complex order parameter r̃ = reiψ given in the continuum limit by

r̃ =
∫

dω
∫ 2π

0
dθ g(ω)eiθρ(θ, ω, t), (1.64)

(where the time dependence of r̃ is not explicitly indicated), the continuity equation
may be written as

∂ρ(θ, ω, t)

∂t
= − ∂

∂θ

{[

ω + K

2i

(
r̃ e−iθ − r̃∗eiθ

)
]

ρ(θ, ω, t)

}

, (1.65)

where the star denotes complex conjugation.
Since ρ(θ, ω, t) is 2π -periodic in θ for all ω and t , we may perform a Fourier

series expansion of ρ(θ, ω, t):

ρ(θ, ω, t) = 1

2π

+∞∑

n=−∞
ρ̃n(ω, t)einθ , (1.66)

with ρ̃−n(ω, t) = ρ̃∗
n (ω, t) following from the fact that ρ(θ, ω, t) is real, and with

ρ̃0(ω, t) ≡ 1 because of the normalization of ρ. Substituting in Eq. (1.65), we get a
system of equations

∂ρ̃n(ω, t)

∂t
+ inωρ̃n(ω, t) + K

2
n

(
r̃ ρ̃n+1(ω, t) − r̃∗ρ̃n−1(ω, t)

) = 0, (1.67)

with

r̃ =
∫

dω g(ω)ρ̃∗
1 (ω, t). (1.68)

Thebrilliant step introducedbyOtt andAntonsen is to study the systemof equation
under the ansatz

ρ̃n(ω, t) = αn(ω, t); n ≥ 0. (1.69)

One has to assume also that α(ω, t) ≤ 1, in order to have convergence of the Fourier
series, Eq. (1.66). The system of equation then reduces to the single equation

∂α(ω, t)

∂t
+ iωα(ω, t) + K

2

(
r̃α2(ω, t) − r̃∗) = 0, (1.70)

with

r̃ =
∫

dω g(ω)α∗(ω, t). (1.71)

Obviously the functions satisfying Eq. (1.69) are a restricted class, but Eq. (1.70)
shows that if at time t = 0, a function belongs to this class, the subsequent evolution
governed by the continuity equation continues to have the function in the same class.
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It is also important that the property α(ω, t) ≤ 1 is preserved by the dynamics.12

The physical justification to study this class is that the stationary states studied in
the previous section belong to it. In fact, by performing the summation on the right
hand side of Eq. (1.66) by using Eq. (1.69), we get using the known expression for
the summation of geometric series the result

ρ(θ, ω, t) = 1

2π

1 − |α|2
(1 − |α|)2 + 4|α| sin2 (

θ−φ

2

) , (1.72)

where α(ω, t) = |α|e−iφ (with the dependence on ω and t not explicitly shown in
the modulus and the phase).

It is not difficult to see that the drifting solution of Eq. (1.44) is obtained for

φ = π/2 and |α|2 =
[
2 − d2 − 2

√
1 − d2

]
/d2, where d = (Kr)/ω. In particular,

we have |α| = 0 for r = 0, and the uniform distribution 1/(2π) is recovered. On the
other hand, for |α| → 1, the distribution (1.72) tends to a δ-function in θ = φ, which
describes the locked oscillators.

To proceed, Ott andAntonsenmake further assumptions. The first is that the initial
condition α(ω, 0) can be analytically continued to the whole of the complex-ω plane,
and that this continuation has no singularity in the lower-half complex-ω plane, with
α(ω, 0) tending to 0 when the imaginary part of ω tends to −∞. The second is
that the distribution g(ω) has only a finite (actually only a small) number of poles
in this lower-half plane when considered as a function of complex ω. They prove
that the dynamics (1.70) conserves these properties for α(ω, t). Then, the theorem
of residues applied to the integral in Eq. (1.71) allows to express r̃ in terms of the
values of α(ω, t) at the poles of g(ω) in the lower-half complex-ω plane. In the case
of a Lorentzian, Eq. (1.57), g(ω) has only one pole in the lower-half plane, and we
easily obtain

r̃(t) = α∗(−ia, t). (1.73)

Writing Eq. (1.70) for ω = −ia, taking the complex conjugate, and using r̃ =
reiψ , the imaginary part gives dψ/dt = 0, while the real part gives

dr(t)

dt
+ ar(t) + K

2

(
r3(t) − r(t)

) = 0. (1.74)

We see that the assumptions that have been introduced allow to obtain a single ordi-
nary differential equation for the order parameter. Equation (1.74) may be integrated
to get

12The reader is referred to the original work by Ott and Antonsen, Refs. [18, 19], for the proof of
this property.
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r2(t) = (K − 2a) r2(0)
(
K − 2a − Kr2(0)

)
e(2a−K )t + Kr2(0)

; K 
= 2a (1.75)

r2(t) = r2(0)

1 + 2atr2(0)
; K = 2a. (1.76)

These equations show that for K > Kc = 2a, the order parameter r(t) tends expo-
nentially fast to the stationary-state value found in the previous section, Eq. (1.61),
while for K < Kc, it tends exponentially fast to 0 (a power-law relaxation occurs for
K = Kc).

1.8 The Oscillators with Inertia

Until now we have considered a first-order dynamics for the interacting oscillators,
of the type (1.30). As we have explained, the interacting oscillators of synchronizing
systems are complex dynamical systems that have the dynamics of a limit cycle, and
the effective description with first-order dynamics is the natural one in this case.

Since we are using an effective description of complex systems, thus introducing
a series of approximations, it is possible that some features are lost, especially in
the process that leads the system from an initial state to a synchronized state. In
particular, it has been observed that the approach to synchronization is often slower
than that predicted by the simplified models. A possible route to obtain a slower
approach to the synchronized state is to elevate the order of the dynamics, from
equations of motion that are first order in time to those that are second order in time.
Before treating the specific case of the oscillators of synchronizing systems, let us
compare in general a first-order and a second-order dynamics by considering the
damped motion of a particle of massm moving on a circle of unit length, and subject
to a torque τ and a restoring force to θ = 0. The equation of motion is

m
d2θ

dt2
= −γ

dθ

dt
+ γω − γ sin θ, (1.77)

where γ is the friction coefficient. The reason why we have chosen the intensity of
the restoring force to be numerically equal to the friction coefficient will be clear in
a moment. For the same reason, we also pose τ ≡ γω. If the mass m is very small,
the acceleration of θ is very large, unless the right hand side of Eq. (1.77) is also very
small. Therefore, we expect that starting from a generic initial condition specified
by the initial values of θ and θ̇ ≡ dθ/dt , the motion will soon approach a region of
the dynamical phase space where the right hand side of the equation is small. In the
limiting case of m = 0, the equation of motion becomes first-order in time:

dθ

dt
= ω − sin θ. (1.78)
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Fig. 1.4 The dynamics θ(t)
determined by Eq. (1.77)
with ω = 0.5 and γ /m equal
to 0.2 (dotted line), 0.5
(dot-dashed line), and 1.0
(dashed line). The initial
condition is θ(0) = 0 and
θ̇ (0) = 0. The full curve is
the dynamics determined by
Eq. (1.78) with ω = 0.5 and
initial condition θ(0) = 0.
The horizontal full line
shows the asymptotic fixed
value equal to π/6
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To seewhat happenswith the introduction ofmass, we now compare the numerical
solution of Eq. (1.78) with that of Eq. (1.77) for three different values of γ /m, i.e.,
γ = 0.2, 0.5 and 1.0; the larger this value, the smaller is the mass. For definiteness,
we choose ω = 0.5. We have seen before that in this case, the dynamics determined
by Eq. (1.78) tends to a fixed point equal to π/6 (this is why we have put a coefficient
equal to γ in the restoring force in Eq. (1.77), which allows to compare with the case
already studied). In Fig. 1.4, we plot the dynamics determined by Eq. (1.77) for the
three mentioned values of γ /m and for the initial condition given by θ(0) = 0 and
θ̇ (0) = 0, and the dynamics (1.78) determined by Eq. (1.78) for the initial condition
θ(0) = 0. The figure shows that in all cases, the dynamics approaches the asymptotic
fixed-point value equal to π/6, with the overdamped (m = 0) dynamics being faster
in reaching the fixed value, andwith the time needed to approach this value increasing
with the increase of mass. Physically, a larger mass, i.e., a larger inertia, causes a
slower approach towards the fixed point.

We may hope this aforementioned slower response occurs also with respect to
the approach to synchronization. Let us then consider the case of two oscillators
in interaction with the dynamics given by Eq. (1.37). We compute the numerical
solution of those equations together with that of the corresponding dynamics when
the oscillators have an inertia. Thus, we consider the equations of motion

m
d2θ1
dt2

= −γ
dθ1
dt

+ γω1 − γ sin (θ1 − θ2) , m
d2θ2
dt2

= −γ
dθ2
dt

+ γω2 + γ sin (θ1 − θ2) . (1.79)

For simplicity, we have assumed the same mass for the two oscillators. In this exam-
ple, we take the valuesω1 = 1 andω2 = 1.1. In Fig. 1.5, we plotφ(t) ≡ θ1(t) − θ2(t)
determined by these equations for the three cases with γ /m equal to 0.2, 0.5 and
2.0, together with φ(t) as determined by Eq. (1.37).

In all cases, φ(t) tends to the asymptotic value φ∗ = arcsin [(ω1 − ω2) /2]
= − arcsin(0.05); the phase difference between the two oscillators locks at this
value, and the oscillators get synchronized, rotating with the same frequency
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Fig. 1.5 The time evolution of φ(t) = θ1(t) − θ2(t) determined by Eq. (1.79) with ω1 = 1.0 and
ω2 = 1.1, with γ /m equal to 0.2 (dotted line), 0.5 (dot-dashed line), and 2.0 (dashed line). The
initial condition θ(0) and θ̇ (0) have been chosen randomly in each case. The full curve is φ(t)
determined by Eq. (1.37), again with random initial condition θ(0). The horizontal full line shows
the asymptotic fixed value equal to − arcsin(0.05)

ω0 = (ω1 + ω2)/2. The plot shows that the synchronization is faster for the case
without inertia (m = 0), while it becomes slower and slower by increasing the mass.

It is then plausible that even in systems with many oscillators, the introduction
of an inertia can slow down the approach to synchronization. It is important to keep
in mind that the introduction of inertia has to be considered only as an operative
approach that is useful in the study of synchronizing systems. However, we have
emphasized that each oscillator of a synchronizing system is actually a complex
system that is represented by a single dynamical degree of freedom under an effec-
tive description that by its very nature is approximate. Therefore, it is operationally
justified to implement a simple procedure, e.g., introducing inertia, if this has as a
consequence a better agreement of the model with the dynamics of the approach to
synchronization.

Although the procedure is conceptually simpler, it can have important effects
on the nature of the transitions from an unsynchronized to a synchronized state,
changing the transition from second order to first. This will be studied in details in
Chap.3 devoted to systems with second-order dynamics. As for systems with first-
order dynamics, we will consider synchronizing systems with noise that we will
study with tools of statistical physics.
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Appendix 1: A Two-Dimensional Dynamics
with a Limit-Cycle Attractor

Let us consider the following example of a two-dimensional dynamics that represent
the so-called Stuart-Landau model:

dx1
dt

= μx1 − ωx2 − β(x21 + x22 )x1,
dx2
dt

= ωx1 + μx2 − β(x21 + x22 )x2, (1.80)

where ω and β are fixed parameters, while μ represents a parameter that can be
tuned. It is evident that (0, 0) is a fixed point of the dynamics (1.80). Its stability is
studied by linearizing Eq. (1.80) about the fixed point. The linearized equations read

dx1
dt

= μx1 − ωx2,
dx2
dt

= ωx1 + μx2. (1.81)

The eigenvalues of the associated linear time-evolution operator are λ = μ ± iω. We
conclude that the fixed point (0, 0) is stable for μ < 0 and is unstable for μ > 0.
To study the case μ > 0, we may choose to go to the polar coordinates (r, φ), and
rewrite the equations as

dr

dt
= μr − βr3,

dφ

dt
= ω. (1.82)

From the above equations, it is evident that φ is a neutrally-stable variable, while
the dynamics of r has two fixed points: r = 0, which is unstable, and r = √

μ/β,
which is stable. We thus have a limit cycle, which in the present situation is a circle
of radius equal to

√
μ/β. We conclude that this circle is an attractor: all orbits

(excepting the one staying exactly on the unstable origin) will be attracted to this
circle by the dynamics. Readers acquainted with dynamical systems theory have
surely recognized in this example the standard description of a Hopf bifurcation [7],
which occurs in the passage fromμ < 0 toμ > 0, and which marks the change from
a situation with a stable fixed point to one in which the fixed point becomes unstable
and a stable limit cycle appears.

Appendix 2: The Lyapunov Exponents

The Lyapunov exponents of a dynamical system characterize the rate of separation in
timeof initially infinitesimally-close trajectories in the phase space of the system [24].
For an n-dimensional dynamical system dxi/dt = Fi (x1, x2, . . . , xn), one has the
spectrum of Lyapunov exponents λ1, λ2, . . . , λn . For such a system, two trajectories
in phase space with an initial separation equal to d(0) would separate out in time,
with the separation at long times behaving typically as
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d(t) ≈ eλt d(0), (1.83)

where λ is the so-called maximal Lyapunov exponent, defined as the maximum of
the n Lyapunov exponents. In general, λ (as also the whole spectrum) depends on
the initial phase-space points of the trajectories. A positive λ implies chaoticity. The
trajectories close and tending to the limit cycle have all but one negative Lyapunov
exponents, while the maximum exponent is zero. These trajectories are thus not
chaotic. As for any dynamics, the zero exponent is associated with perturbations
along the trajectory, which for a limit cycle corresponds to a perturbation of the
phase.

Appendix 3: The One-Body Distribution Function
in an N-Body System

In this appendix, we clarify the issue of the interpretation of the one-body distribution
function that is generally employed when a comparison is made with the results of a
numerical simulation or with the results of an experimental measurement. The issue
is common to the study of any systemwith a large number of components irrespective
of the properties of interaction between the components. Therefore, we choose to
consider the case of an isolated Hamiltonian system, and for simplicity, we consider
the particles to be moving in one dimension to avoid vector notations (our argument
is independent of the embedding dimension).

We assume to have a system of N particles moving in one dimension that are
described by the canonical coordinates {qi , pi }, where qi is the Cartesian coordinate
of the i-th particle and pi is its momentum. In the statistical approach, we have an N -
body distribution function ρN (q1, . . . , qN , p1, . . . , pN , t) representing an ensemble
of such systems. The distribution function evolves according to theLiouville equation

∂ρN

∂t
+

N∑

i=1

[
∂ρN

∂qi

∂H

∂pi
− ∂ρN

∂pi

∂H

∂qi

]

= 0, (1.84)

where H(q1, . . . , qN , p1, . . . , pN ) is the Hamiltonian of the system. Most important
of all are the so-called reduced distribution functions, the simplest of which being
the one-body distribution function ρ(q, p, t), defined by

ρ(q, p, t) =
∫

dq2 . . . dqNdp2 . . . dpN ρ(q, q2, . . . , qN , p, p2, . . . , pN , t).

(1.85)
This definition exploits the invariance of the Hamiltonian with respect to particle
permutations that is generally assumed. It turns out that for a generic system, the
time-evolution for an s-body reduced distribution function depends explicitly on the
(s + 1)-body distribution function, thus forming a coupled chain of infinite number
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of equations that goes under the name of the so-called Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY)hierarchy [25].Here,we are not interested in the equation
that describes the time evolution of ρ(q, p, t), since there are several such equations
resulting from different approximations of closing the hierarchy that are suitable for
different classes of systems. Here, instead, we are interested in the interpretation of
the function ρ(q, p, t).

According to the meaning of an ensemble of systems, it follows that choosing a
given particle of the system, e.g., the one labeled by i , the function ρ(q, p, t) gives
the distribution at time t , over the members of the ensemble, of the position and
momentum of the i-th particle. The fact that this distribution is the same for any i is a
consequence of the permutation invariance of the Hamiltonian. As a result, if h(q, p)
is a function of the position and momentum of a particle, its ensemble average is
given by

〈h〉(t) =
∫

dqdp ρ(q, p, t)h(q, p). (1.86)

However, if one obtains ρ(q, p, t) from its evolution equation, and at the same time
performs a numerical experiment in which one realization of the dynamics of the
system is simulated, the comparison that is generally done is between 〈h〉(t) and

hm(t) = 1

N

N∑

i=1

h(qi (t), pi (t)), (1.87)

where the subscript in hm(t) denotes the average over the N particles of the system.
The quantities 〈h〉(t) and hm(t) are in principle different quantities: the former is
the ensemble average of the function h(q, p) computed for a given particle, while
the latter is the arithmetic average over all the particles of only one member of the
ensemble of systems. Nevertheless, they are usually compared, for example when
a numerical simulation is performed and the accuracy of a theoretical evaluation
is investigated.13 A similar thing occurs in a comparison between theory and an
experimental measurement, where operatively what is measured is hm(t). This iden-
tification is done also in the very important case of a stationary distribution ρ(q, p),
where a theoretical evaluation is considered satisfactory if the time-dependent quan-
tity hm(t) has actually only very small fluctuations around a value, the latter in turn
being very close to the time-independent quantity 〈h〉.

As a very simple example, we can consider the evaluation related to the quantity
h = 1/(2M)

(
p2x + p2y + p2z

)
, where M is the mass of a particle (for a concrete

example, we go back to a three-dimensional system). This is of course related to
the determination of the average kinetic energy of a particle, which in turn is related
to the temperature of the system. Assume for example an almost ideal gas of N

13Sometimes the quantity hm(t) is obtained by further averaging over numerical simulation of
several realizations of the dynamics, thus going in the direction of performing an ensemble average.
This does not affect our argument, since this further average is employed to decrease the statistical
fluctuations, but the main averaging procedure is the one over the N � 1 particles of the system.
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particles, so that the potential energy is very small compared to the kinetic energy.
If we consider an isolated system at energy E , then we expect that in the stationary
state, we have 〈h〉 = E/N . Running a simulation and evaluating hm(t), we will find
that, possibly after a transient, this quantity will remain close to E/N , with very
small fluctuations around this value.

The property that hm(t) and 〈h〉(t) are very close, actually coinciding with prob-
ability one when N goes to infinite, is called self-averaging. There are situations in
which it does not hold, especially in disordered systems. Further comments on this
issue are outside the scope of this monograph.
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Chapter 2
Oscillators with First-Order Dynamics

Abstract In the first section, we derive the Fokker-Planck equation that determines
the dynamics of the one-body distribution function associated with a system of inter-
acting oscillators with distributed natural frequencies. In the second section, we dis-
cuss the celebrated Kuramoto model; most results have been obtained for this model,
which constitutes the basic model studied in this monograph. Introduced originally
in the noiseless case, we study it in the presence of noise. In the third section, we
study the Kuramoto model in the case where the frequency distribution is symmetric
and unimodal. In the fourth section, we take up the case of a bimodal yet symmetric
frequency distribution, and show that there is a much richer set of possible long-time
states of the dynamics. In the fifth and final section, we describe the results that
have been obtained in models that extend and generalize the Kuramoto model, by
considering generic interactions between the oscillators.

Keywords Oscillators · First-order dynamics · Fokker-Planck equation
Order parameter · Unimodal frequency distribution · Critical coupling constant
Bimodal frequency distribution

In this chapter, we begin with our analysis of a collection of interacting oscillators
subject to noise. As we have seen in Chap.1, each oscillator may be effectively
described with a phase variable, not only when it is isolated, but also when it is in
interaction with other oscillators, provided that the interaction is weak enough so that
its effectmaybe reduced to amodification of the phase dynamics. In addition,wehave
seen that the interaction between each pair of oscillators may be accounted for by a
function of the difference of their phases. Assuming furthermore that the interaction
is the same for each pair of oscillators, we have thus arrived at the equations of
motion (1.15).

Our purpose in this chapter is to consider such coupled equations in the presence of
noise. In Eq. (1.30), we have written the corresponding coupled Langevin equations
in the case in which all the natural frequencies are equal; now we study the general
case in which the natural frequencies are distributed according to a given distribution
function. Our first task is to obtain the Fokker-Planck equation for the one-body
distribution function, which, as emphasized earlier, is the main tool for our statistical
physics description of synchronizing systems.

© The Author(s) 2018
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2.1 The Oscillators with Distributed Natural Frequencies

Let us start with the coupled Langevin equations for the dynamics of noisy interacting
oscillators given by

dθi
dt

= ωi + K

N

N∑

j=1

′ f (θi − θ j ) + ηi (t), i = 1, 2, . . . , N , (2.1)

where ηi (t) is the stochastic noise; as noted at the beginning of Sect. 1.5, it may be
regarded to account for the stochastic fluctuations of the frequencies in time. Here,
the prime in the sum indicates the fact that the term with i = j is to be excluded
while performing the sum. The natural frequencies ωi ’s for the different oscillators
are extracted independently from a given distribution function g(ω)with the normal-
ization

∫∞
−∞ dω g(ω) = 1. The noise ηi (t)’s for the different oscillators are taken to

be independent, and we consider them to be Gaussian distributed at a given time and
uncorrelated between different times. Thus, the noise has the following expectation
values:

〈ηi (t)〉 = 0, 〈ηi (t)η j (t
′)〉 = 2Dδi jδ(t − t ′). (2.2)

2.1.1 Derivation of the Fokker-Planck Equation

A description of a given Langevin dynamics via a Fokker-Planck equation involves
considering at a conceptual level an average of the dynamics over its many real-
izations, i.e., over many realizations of the noise [1]. This description is obtained
with the introduction of a time-dependent distribution function of the phases of the
oscillators, and is most appropriate in the case when the number N of oscillators is
extremely large, ideally as N → ∞.

For a finite but very large number of oscillators, let us consider the distribution
function ρN (θ1, θ2, . . . , θN , t), defined as the probability density at time t to have
the phase of the first oscillator equal to θ1, the phase of the second oscillator equal
to θ2, the phase of the third oscillator equal to θ3, and so on. The natural frequency
of each oscillator is extracted from the distribution function g(ω), and by relabeling
the oscillators, if necessary, we may take the first n1 of them to have their natural
frequency equal to ω1, the next n2 of them to have their natural frequency equal to
ω2, and so on, up to the last np number of oscillators that have their natural frequency
equal to ωp. Of course, we have1 n1 + n2 + · · · + np = N . We take the function ρN

to be normalized, i.e.,

1With a finite yet large number of oscillators, we will obviously have a discrete set of frequency
values extracted from g(ω).
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∫ 2π

0
dθ1

∫ 2π

0
dθ2 . . .

∫ 2π

0
dθN ρN (θ1, θ2, . . . , θN ) = 1, (2.3)

and to be symmetric with respect to permutations of the θ ’s within each group with
a given natural frequency. The evolution of the function ρN is given by the N -body
Fokker-Planck equation that may be written down straightforwardly from Eq. (2.1)
using standard procedure as [1]

∂ρN

∂t
= −

N∑

i=1

ωi
∂ρN

∂θi
− K

2N

N∑

i=1

N∑

j=1

(
∂

∂θi
− ∂

∂θ j

) [
f (θi − θ j )ρN

]+ D
N∑

i=1

∂2ρN

∂θ2
i

.

(2.4)
From Eq. (2.4), we want to obtain an equation for the one-body distribution

function that characterizes the probability density to obtain any of the θ ’s within a
given group to assume a given value at a given time. To this end, we introduce the so-
called reduced distribution functions [2], which are obtained from ρN by integrating
out a subset of the θ ’s, thereby yielding a function of the remaining θ ’s. For example,
for k = 1, 2, . . . , p, by integrating out (nk − sk) number of θ variables belonging
to the group with natural frequency ωk , we get a reduced distribution function that
depends on the sk number of θ variables in the group.With Nk ≡∑k

r=1 nr , the formal
expression for the reduced distribution function reads

ρs1,s2,...,sp (θ1, . . . , θs1 , θN1+1, . . . , θN1+s2 , θN2+1, . . . , θNp−1+sp , t)

=
[

p∏

r=1

(
nr !

(nr − sr )!nsrr
)]

×
∫

dθs1+1 . . . dθN1dθN1+s2+1 . . . dθN2 . . . dθNp−1+sp+1 . . . dθN ρN (θ1, . . . , θN , t).

(2.5)

Here, we have adopted an often used factor of proportionality in the second line of
the expression that guarantees the normalization of the reduced distribution function.
The symmetry of ρN with respect to permutations of the θ ’s within each of the p
groups makes it irrelevant with respect to which of the (nk − sk) variables of the k-th
group, k = 1, 2, . . . , p, do we perform the integration. The evolution equation of the
reduced functions are obtained by integrating suitably Eq. (2.4).

In the following, we are interested in the evolution equation of one-body reduced
distribution functions. For example, considering a variable of the first group, we are
interested in the evolution of

ρ1,0,...,0(θ1, t) =
∫

dθ2 . . . dθN ρN (θ1, . . . , θN , t). (2.6)

Note that this function and other one-body reduced functions are all normalized
to unity. In the following computation, we will also require the two-body reduced
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distribution functions, which may describe the probability density for obtaining two
θ ’s of the same group or two θ ’s belonging to two different groups to assume given
values at a given time. For example, we have

ρ2,0,...,0(θ1, θ2, t) = n1 − 1

n1

∫
dθ3 . . . dθN ρN (θ1, . . . , θN , t), (2.7)

ρ1,1,0,...,0(θ1, θn1+1, t) =
∫

dθ2 . . . dθn1dθn1+2 . . . dθN ρN (θ1, . . . , θN , t). (2.8)

Let us now derive the evolution equation for the one-body reduced functions. By
integrating the Fokker-Planck equation (2.4) with respect to θ2, . . . , θN , we get the
equation for ρ1,0,...,0(θ1, t). The integration of the left hand side and of the first and
the last term on the right hand side of Eq. (2.4) are trivial, and we get

∂

∂t
ρ1,...,0(θ1, t) = −ω1

∂

∂θ1
ρ1,...,0(θ1, t) + interaction terms + D

∂2

∂θ2
1

ρ1,...,0(θ1, t).

(2.9)
By integrating the middle term on the right hand side of Eq. (2.4) (in Eq. (2.9), we
have referred to the result of integration as “interaction terms”), the only terms of the
sum that give a non-vanishing contribution are those in which either i or j is equal
to 1. We thus obtain from the integration of the middle term on the right hand side
of Eq. (2.4) the following expression:

− K

N

N∑

j=2

∫
dθ2 . . . dθN

∂

∂θ1

[
f (θ1 − θj)ρN (θ1, . . . , θN , t)

]
. (2.10)

By exploiting the symmetry of ρN with respect to permutations of the θ ’s within the
same group, we may express the last expression as

−K

N
(n1 − 1)

∫
dθ2 . . . dθN

∂

∂θ1

[
f (θ1 − θ2)ρN (θ1, . . . , θN , t)

]

−K

N

p−1∑

r=1

nr+1

∫
dθ2 . . . dθN

∂

∂θ1

[
f (θ1 − θNr+1)ρN (θ1, . . . , θN , t)

]
. (2.11)

By invoking the definition of the reduced distribution function, we rewrite the last
expression as

−K

N
n1

∫
dθ2

∂

∂θ1

[
f (θ1 − θ2)ρ2,0,...,0(θ1, θ2, t)

]

−K

N

p−1∑

r=1

nr+1

∫
dθNr+1

∂

∂θ1

[
f (θ1 − θNr+1)ρ1,0,...,0,1,0,...,0(θ1, θNr+1, t)

]
, (2.12)

where in the last line the second “1” in the subscript is in the (r + 1)-th position.
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We may now use the approximation of neglecting two-body correlations to write

ρ2,0,...,0(θ1, θ2, t) ≈ ρ1,0,...,0(θ1, t)ρ1,0,...,0(θ2, t), (2.13)

ρ1,0,...,0,1,0,...,0(θ1, θNr+1, t) ≈ ρ1,0,...,0(θ1, t)ρ0,...,0,1,0,...,0(θNr+1, t). (2.14)

This approximation is expected to be exact in the limit N → ∞, and is a rather
good approximation for large N . Moreover, this approximation is the simplest one
may invoke to close the infinite hierarchy (the so-called Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy) arising from the fact that the equation for
an s-particle reduced distribution function includes the (s + 1)-particle distribution
function, thus forming a coupled chain of infinite number of equations [2]. Substi-
tuting Eqs. (2.13) and (2.14) in Eq. (2.12), we get the expression in the latter as

−K

N
n1

∂

∂θ1

{[∫
dθ2 f (θ1 − θ2)ρ1,0,...,0(θ2, t)

]
ρ1,0,...,0(θ1, t)

}

−K

N

p−1∑

r=1

nr+1
∂

∂θ1

{[∫
dθNr+1 f (θ1 − θNr+1)ρ0,...,1,...,0(θNr+1, t)

]
ρ1,0,...,0(θ1, t)

}
.

(2.15)

We now adopt a more convenient notation for one-body distribution functions that
are the only distribution functions appearing in the last expression. More precisely,
instead of using the subscripts that from now onwe do not write anymore, we specify
the natural frequency to which the subscripts refer. The last expression then becomes

−K

N
n1

∂

∂θ1

{[∫
dθ2 f (θ1 − θ2)ρ(θ2, ω1, t)

]
ρ(θ1, ω1, t)

}

−K

N

p−1∑

r=1

nr+1
∂

∂θ1

{[∫
dθ2 f (θ1 − θNr+1)ρ(θ2, ωnr+1, t)

]
ρ(θ1, ω1, t)

}
.

(2.16)

We have almost arrived at the final expression. Note that the fraction nr/N of oscil-
lators with natural frequency equal to ωr , in the limit N → ∞ will be equal to the
probability of occurrence of that frequency. Then, we may extend the last expression
to the case of a continuum of frequencies distributed according to g(ω), by writing
it as

−K
∂

∂θ1

{[∫
dω g(ω)

∫
dθ2 f (θ1 − θ2)ρ(θ2, ω, t)

]
ρ(θ1, ω1, t)

}
. (2.17)

The final expression, giving the Fokker-Planck equation for the one-body distribution
function, is then obtained by substituting the last expression in Eq. (2.9), thus leading
to
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∂

∂t
ρ(θ, ω, t) = −ω

∂

∂θ
ρ(θ, ω, t) + D

∂2

∂θ2
ρ(θ, ω, t)

−K
∂

∂θ

{[∫
dω′g(ω′)

∫
dθ ′f (θ − θ ′)ρ(θ ′, ω′, t)

]
ρ(θ, ω, t)

}
, (2.18)

where we have removed the subscript attached to the variables θ and ω. The above is
actually a set of Fokker-Planck equations, one for eachω, which are coupled through
the interaction term. For each ω, the distribution ρ(θ, ω, t) is normalized at all times
(note that normalization is conserved by the Fokker-Planck equation), as

∫ 2π

0
dθ ρ(θ, ω, t) = 1. (2.19)

2.2 The Kuramoto Model

We now begin our study of the synchronization of coupled oscillators subject to
noise, by focusing on the model that is by far the most celebrated one: the Kuramoto
model. It was introduced in 1975 in its original noiseless version, andwe have already
considered it in Sect. 1.7 that was dedicated to the exposition of some results of
noiseless systems. In the Kuramoto model, the interaction term, e.g., in the equations
of motion (2.1), is given by posing f (θ) = − sin θ . It is the simplest odd periodic
function, i.e., such that f (−θ) = − f (θ). The most general function should be a
Fourier serieswith all possible odd terms: sin θ, sin(2θ), sin(3θ), . . .. However, study
of the synchronization transition in the general case is considerably more difficult
than for the Kuramoto model. As a result, the vast majority of studies reported in
the literature have focussed on the simple sin θ interaction. There are however some
important works for the general case, and we will give some information in this
regard towards the end of this chapter.

It is convenient for later reference to write explicitly the equations of motion (2.1)
for the Kuramoto model, as [3]

dθi
dt

= ωi − K

N

N∑

j=1

sin(θi − θ j ) + ηi (t), i = 1, 2, . . . , N , (2.20)

where the prime in the summation that was there in Eq. (2.1) is no more necessary,
since the sine term vanishes anyways for i = j . Let us also write down the Fokker-
Planck equation (2.18) with f (θ) = − sin θ , which now reads

∂

∂t
ρ(θ, ω, t) = −ω

∂

∂θ
ρ(θ, ω, t) + D

∂2

∂θ2
ρ(θ, ω, t)

+K
∂

∂θ

{[∫
dω′g(ω′)

∫
dθ ′ sin(θ − θ ′)ρ(θ ′, ω′, t)

]
ρ(θ, ω, t)

}
. (2.21)
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As in Sect. 1.7, we adopt here the use of the order parameter r , which is the basic
variable for the description of the synchronization transition:

r(t)eiψ(t) =
∫

dω
∫ 2π

0
dθ g(ω)eiθρ(θ, ω, t) . (2.22)

Here, we have explicitly indicated the time dependence of r(t) and its phase ψ(t).
More precisely, these two quantities are functionals of the distribution ρ(θ, ω, t).
With this definition, we have

∫
dω′g(ω′)

∫
dθ ′ sin(θ − θ ′)ρ(θ ′, ω′, t) = −r(t) sin(ψ(t) − θ), (2.23)

so that we may write down our Fokker-Planck equation as

∂

∂t
ρ(θ, ω, t) = − ∂

∂θ
[(ω + Kr(t) sin(ψ(t) − θ)) ρ(θ, ω, t)] + D

∂2

∂θ2
ρ(θ, ω, t).

(2.24)
The nonlinear nature of this equation is now hidden in the dependence of r(t) and
ψ(t) on the function ρ itself. The solution will depend on r(t) and ψ(t), and hence,
has to satisfy Eq. (2.22), which therefore becomes a self-consistent equation.

Wewill not be concernedwith the general time-dependent solutions of the Fokker-
Planck equation, but only with its stationary solutions. To be more precise about this
point, in particular, to give a reasonable physical meaning to the search for stationary
solutions, let us stress the following things.

The first point concerns the existence itself of one or many stationary solutions of
Eq. (2.24). We remind the reader that in Chap.1, while deriving the representation
of the dynamics of interacting oscillators in terms of equations of motion containing
only the phases, as in Eq. (2.1), we have assumed that the range of frequencies
constituting the support of the distribution g(ω) does not include the origin and that
its size is sufficiently small with respect to the value of the frequencies in its support.2

These assumptions do not allow in general for the occurrence of time-independent
solutions. To see this, let us analyze the simple case in which g(ω) = δ(ω − ω0), so
that we need to consider Eq. (2.24) for only ω = ω0. It is more convenient to make
a change of variable: θ → θ̃ = θ − ω0t . In this new variable, the Fokker-Planck
equation (2.24) becomes

∂

∂t
ρ(θ̃, ω0, t) = − ∂

∂θ̃

[
Kr(t) sin(ψ(t) − θ̃ − ω0t)ρ(θ̃ , ω0, t)

]+ D
∂2

∂θ̃2
ρ(θ̃, ω0, t).

(2.25)

2In the following, we will often consider distributions g(ω) with a non-compact support, which is
incompatible with these assumptions. However, while the choice of a non-compact support may
give some mathematical advantages, the important thing from the physical point of view is that the
mentioned assumptions hold when we consider only the frequencies where g(ω) is not negligibly
small.
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Before proceeding, let us remark that the change of variable corresponds to the
passage in the point of observation, from the “laboratory” frame to a frame rotating
with frequency ω0 with respect to the laboratory frame.We now search for a solution
of the last equation for which ψ(t) = ω0t . It is then not difficult to see that the
normalized solution is

ρ(θ̃, ω0, t) = e
Kr
D cos θ̃

∫ 2π
0 dθ ′e Kr

D cos θ ′ , (2.26)

which is actually time independent. In the original variable θ , the solution reads

ρ(θ, ω0, t) = e
Kr
D cos(θ−ω0t)

∫ 2π
0 dθ ′e Kr

D cos θ ′ . (2.27)

We now have to satisfy the self-consistent equation (2.22), which in particular has
to confirm that ψ(t) = ω0t . The latter is effectively verified, while r(t) is time-
independent and has to satisfy

r =
∫ 2π
0 dθ cos θe

Kr
D cos θ

∫ 2π
0 dθ e

Kr
D cos θ

. (2.28)

Of course, the solution (2.27) exists only if this last equation admits a solution
for positive r . We conclude that a stationary nontrivial solution may exist in the
rotating frame but surely does not exist in the laboratory frame. However, we do also
have a stationary solution, represented by the homogeneous distribution ρ(θ, ω0) =
1/(2π), which corresponds to the case with r = 0. The existence of more than one
stationary state (in the θ̃ variable), the nontrivial one and the homogeneous one,
confirms what we have discussed in Chap.1, namely, that for our nonlinear Fokker-
Planck equation, the uniqueness of the stationary solution is not guaranteed. From the
foregoing discussion, we may expect that also for general g(ω), nontrivial stationary
solutions do not exist. In spite of this, wewill see thatwith a change of variable similar
to the one adopted for our simple example, we can obtain stationary solutions.

The second point concerns the approach at long times of the time-dependent
solution of the Fokker-Planck equation to one of the stationary states. As underlined
in Chap.1, since the drift coefficient in Eq. (2.24) depends on the function ρ, the
conditions of the theorem that guarantees this approach are not verified. Actually,
for the above example with a single frequency ω0, a sort of H -theorem, known from
equilibrium statistical physics [2], exists. However, it cannot be extended to the case
of a general g(ω); see Appendix 1. In spite of this fact, the system of oscillators
converges in general to a stationary state (in terms of suitable variables), as may also
be confirmed by numerical simulations.

In the following section, we study the Kuramoto model in its most-considered
setting, i.e., in which the frequency distribution g(ω) is unimodal and symmetric
with respect to the frequency value at which the distribution attains its maximum.
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2.3 Unimodal Symmetric g(ω)

We study here the Kuramoto model in the case in which the frequency distribution
g(ω) has the following properties: it has a single maximum at ω = Ω with respect to
which it is symmetric. The latter fact may be expressed as g(Ω + ω1) ≥ g(Ω + ω2)

if |ω1| ≤ |ω2|, together with g(Ω + ω) = g(Ω − ω). These properties imply that Ω
is the average frequency of the distribution. We have already considered this case
in Chap.1 while analyzing the noiseless Kuramoto model. Let us go to a moving
frame that rotates with frequency Ω with respect to an inertial frame. Defining
θ̃ = θ − Ωt , ψ̃(t) = ψ(t) − Ωt and ω̃ = ω − Ω , the Fokker-Planck equation (2.24)
when expressed in these new variables reads

∂

∂t
ρ(θ̃,Ω + ω̃, t) = − ∂

∂θ̃

[(
ω̃ + Kr(t) sin(ψ̃(t) − θ̃ )

)
ρ(θ̃,Ω + ω̃, t)

]

+ D
∂2

∂θ̃2
ρ(θ̃,Ω + ω̃, t). (2.29)

From now on (except in Appendix 1), we drop for convenience the tilde for the
quantities defined in the rotating frame, but the reader must remember that we are
working in such a frame. We also drop the indication of the average frequency Ω in
the distribution ρ. Hence, the Fokker-Planck equation may be written as

∂

∂t
ρ(θ, ω, t) = − ∂

∂θ
[(ω + Kr(t) sin(ψ(t) − θ)) ρ(θ, ω, t)] + D

∂2

∂θ2
ρ(θ, ω, t).

(2.30)
The frequency distribution g(ω) is now unimodal and symmetric: g(ω1) ≥ g(ω2) if
|ω1| ≤ |ω2|, and g(ω) = g(−ω).

We now assume that there is a stationary solution of the Fokker-Planck equation,
which therefore implies that both r(t) and ψ(t) are time independent. Redefining if
necessary the origin of the angle θ , we may set the time-independent value of ψ to
zero without any loss of generality, and are therefore led to consider the equation

− ∂

∂θ
[(ω − Kr sin θ) ρ(θ, ω)] + D

∂2

∂θ2
ρ(θ, ω) = 0. (2.31)

The above is an ordinary differential equation that may be integrated to obtain [3]

ρ(θ, ω; r) = Ce
Kr cos θ+ωθ

D

[
1 +

(
e− 2πω

D − 1
) ∫ θ

0 dθ ′e− Kr cos θ ′+ωθ ′
D

∫ 2π
0 dθ ′e− Kr cos θ ′+ωθ ′

D

]
, (2.32)

whereC = ρ(0, ω; r) exp(−Kr/D) is the normalization constant. In the above equa-
tion, we have indicated the parametric dependence of ρ on the order parameter r that
has to be determined self-consistently. It may be verified that the function ρ(θ, ω; r)
is periodic in θ , as it should be, i.e., ρ(θ + 2π,ω; r) = ρ(θ, ω; r) for each θ .
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For the solution (2.31) to be acceptable, the self-consistent equation

r =
∫

dω
∫ 2π

0
dθ g(ω)eiθρ(θ, ω; r) (2.33)

must be satisfied. The imaginary part of the right hand side vanishes because of the
property that we have ρ(−θ,−ω; r) = ρ(θ, ω; r), see Eq. (2.31). Then, we are left
with the self-consistent equation

r =
∫

dω
∫ 2π

0
dθ g(ω) cos θρ(θ, ω; r). (2.34)

We may easily see that the homogeneous distribution ρ(θ, ω) = 1/(2π), for which
r = 0, is always an acceptable solution of the above equation; in the following
subsection,wewill study its dynamical stability.On the other hand, the self-consistent
equation (2.34) does not always admit a solution with r > 0.

We see that for K = 0, the only acceptable solution to the self-consistent equation
is the homogeneous one. This is to be expected, since without any interaction, the
oscillators will not have a tendency to synchronize with one another and form a state
with a positive order parameter. In the study of the noiseless case in Chap.1, we
have seen that a solution with r > 0 exists only for K larger than a threshold value
Kc, which bifurcates at Kc from the homogeneous state. On physical grounds, we
may guess that for a given coupling constant K and a given frequency distribution
g(ω), the value of the order parameter r of the stable stationary state decreases on
increasing the constant D. Thus, we may expect that also for the noisy case, the
solution with r > 0 exists only for K above a given threshold, and that this threshold
increases with increase of D.

To find the bifurcation value of K , we study the solution (2.32) in the limit r → 0,
by making a power series expansion in r of the solution, and consequently, of the
self-consistent equation (2.34). One may argue that the right hand side of Eq. (2.34)
contains only odd powers of r . Performing the power series expansion and keeping
only the first two terms, one arrives at the following expression:

r = Kr

2

∫
dω g(ω)

D

ω2 + D2
− K3r3

4D

∫
dω g(ω)

[
1

ω2 + 4D2
− ω2

(
ω2 + D2

)2

]

= Kr

2

∫
dω g(Dω)

1

ω2 + 1
− K3r3

4D2

∫
dω g(Dω)

[
1

ω2 + 4
− ω2

(
ω2 + 1

)2

]
, (2.35)

where in the second line, obtained from the first line with the trivial change of
integration variableω → Dω, we have an expression that will prove somewhat more
convenient for a study of the limit of small noise.

Apart from the trivial solution r = 0, Eq. (2.35) can admit another real solution
with r > 0. We are going to prove that for a given D, this solution exists for K above
a certain threshold. First, we determine this threshold that defines the value of K at
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which the solution r > 0 bifurcates from the trivial solution r = 0. The threshold Kc

is the value of K for which the coefficient of r on the right hand side of Eq. (2.35)
is equal to 1. We get

Kc = 2

[∫
dω g(ω)

D

ω2 + D2

]−1

= 2

[∫
dω g(Dω)

1

ω2 + 1

]−1

. (2.36)

Deriving the right hand side with respect to D shows that Kc increases with D, as
one would have expected. However, this may not be true for non-unimodal frequency
distributions, as we will see later.

Equation (2.35) has a positive solution for r for K > Kc. This may be seen as
follows: The expression in square brackets in the second term on the right hand side
vanishes when integrated with respect to ω. On the other hand, the expression itself
is positive for |ω| < D/

√
2 and negative otherwise. This means that the integral

extended to |ω| > D/
√
2 is negative, but equal, in absolute value, to the integral

extended to |ω| < D/
√
2. Then, multiplying the expression in square brackets for

a unimodal and symmetric g(ω), the integral extended to |ω| > D/
√
2 attains a

negative value that in modulus is smaller than the integral extended to |ω| < D/
√
2.

We conclude that the integral in the second term on the right hand side of Eq. (2.35)
is positive. As a consequence, a real solution in r exists only for K > Kc. Using the
integral expressions in the second line of Eq. (2.35), the solution is given by

r = 2D√
K 3

√√√√√√

K
2

∫
dωg(Dω) 1

ω2+1 − 1
∫
dωg(Dω)

[
1

ω2+4 − ω2

(ω2+1)
2

] . (2.37)

We remind that this expression may be used for small values of r , because it has been
derived from Eq. (2.35), which in turn is valid for small r as it contains only the first
two terms of a power series expansion in r . For K = Kc + ΔK with 0 < ΔK � Kc,
which is the range of its validity, the above expression may be written at first order
in ΔK as

r = 2D

K 2
c

√√√√√
ΔK

∫
dωg(Dω)

[
1

ω2+4 − ω2

(ω2+1)
2

] . (2.38)

It is interesting to see what happens in the limit of vanishing noise, i.e., as D → 0.
First, by posing D = 0 in Eq. (2.36), we obtain Kc = 2/(πg(0)), which coincides
with Eq. (1.51). Second, a power expansion in D of the denominator of the square
root in Eq. (2.38) gives −D2πg′′(0)/4. Thus, in the limit D → 0, we obtain

r = 4

K 2
c

√

− ΔK

πg′′(0)
, (2.39)

which coincides with Eq. (1.56).



50 2 Oscillators with First-Order Dynamics

On the basis of the abovediscussions,we thus conclude that a continuous transition
is obtained on increasing the coupling constant K for a given value of D, from the
incoherent solutionwith r = 0 at low-K values to a statewith r > 0 at high-K values.
The reader could object that the incoherent solution with r = 0 exists for any value
of K , as we have remarked after Eq. (2.34). However, we will shortly see that for
K > Kc, such a solution is dynamically unstable, leaving the state with r > 0 as the
only stable one.

Before proceeding to a study of the dynamical stability of the r = 0 solution,
we analyze the synchronization properties of the system when one has r > 0. In
Chap.1, we have seen that the phase locking that can occur in the noiseless case
is expected to be only approximate when there is noise: the phases of the different
oscillators are never strictly locked to have a constant difference due to the presence
of noise. Nevertheless, synchronization occurs in an average sense, thus still giving
rise to a positive r . A perfect synchronization of an oscillator would require it to have
zero frequency and to have come to a standstill in the rotating frame in which we
are working. Its actual (average) frequency in the state with r > 0 may be obtained
from the time-independent Fokker-Planck equation (2.31) by plugging its normalized
solution (2.32). In fact, from the theory of the Fokker-Planck equation, we know that
it may be written in the form [1]

∂

∂t
ρ(θ, ω, t) = − ∂

∂θ
S(θ, ω, t), (2.40)

where S(θ, ω, t) is the probability current. In the stationary state, the current is then
independent of θ and t . From Eq. (2.31), we see that the current is given by

S(ω) = (ω − Kr sin θ) ρ(θ, ω) − D
∂

∂θ
ρ(θ, ω), (2.41)

with ρ(θ, ω) given by Eq. (2.32). This expression for the current is of course valid
also in the r = 0 homogeneous state with ρ(θ, ω) = 1/(2π). In this case, we have
S = ω/(2π). This is what we would have expected, since for r = 0, each oscillator
makes independent uniform rotation at its own natural frequency. For the general
case with r > 0, we cannot write an expression simpler than Eq. (2.41). However,
we may have an idea of the average frequency of each oscillator for small r , by
resorting to a power series expansion in r of Eq. (2.41). We obtain to lowest order
in r the result

S(ω) = 1

2π

[
ω − K 2r2

2

ω

ω2 + D2

]
. (2.42)

Then, in the partially coherent statewith r > 0 (but small), the oscillatorswith natural
frequency ω acquire an average frequency

ω′ = ω − K 2r2

2

ω

ω2 + D2
. (2.43)
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This expression does not vanish for3 ω 
= 0. Thus, there is no oscillator that acquires a
vanishing frequency, i.e., no oscillator is perfectly phase locked, although the shift is
towards having synchronization, since |ω| decreases, so that ω′ is closer to zero than
ω. This situation has to be compared with that occurring in the noiseless case, where
we have seen that the oscillators with natural frequencyω < Kr are perfectly locked,
while the remaining ones continue to drift. However, also the drifting oscillators feel
some effects. In fact, from the integration of Eq. (1.43) for ω > Kr , we find that
the motion of such oscillators is periodic with a period equal to 2π/

√
ω2 − (Kr)2.

Thus, their frequency is shifted to ω′ = √ω2 − (Kr)2. We note that the power series
expansion of the last expression gives at lowest order in r the expression in Eq. (2.43)
for D = 0.

2.3.1 The Stability of the Incoherent State

The homogeneous stationary state ρ(θ, ω) = 1/(2π) exists for any value of the
coupling constant K . However, it is dynamically unstable for K > Kc. The stabil-
ity analysis is performed by studying the linearized Fokker-Planck equation that is
obtained by expanding ρ(θ, ω, t) as

ρ(θ, ω, t) = 1

2π
+ δρ(θ, ω, t), (2.44)

with δρ � 1, substituting in Eq. (2.21), and keeping only the terms that are at most
linear in δρ. We then obtain the linear equation

∂

∂t
δρ(θ, ω, t) = −ω

∂

∂θ
δρ(θ, ω, t) + D

∂2

∂θ2
δρ(θ, ω, t)

+ K

2π

∫
dω′g(ω′)

∫
dθ ′ cos(θ − θ ′)δρ(θ ′, ω′, t). (2.45)

To study the last equation, we make a Fourier expansion of δρ:

δρ(θ, ω, t) =
+∞∑

k=−∞
δ̂ρk(ω, t)eikθ . (2.46)

Substituting this expansion in Eq. (2.45), we get the following equation for the k-th
Fourier component:

3Actually, it vanishes for ω2 = (Kr)2/2 − D2, if this expression is positive. However, this requires
(Kr)/D to be of order 1, making the power series expansion in r , which is in (Kr)/D, no
longer suitable: The power series expansion at the lowest order is good for (Kr)/D small with
respect to 1.
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∂

∂t
δ̂ρk(ω, t) = −ikωδ̂ρk(ω, t) − Dk2δ̂ρk(ω, t)

+ K

2

(
δk,1 + δk,−1

) ∫
dω′g(ω′)δ̂ρk(ω

′, t), (2.47)

where δi, j is the Kronecker delta symbol. For k 
= ±1, there is no contribution from
the integral term, and we have

∂

∂t
δ̂ρk(ω, t) = −ikωδ̂ρk(ω, t) − Dk2δ̂ρk(ω, t), (2.48)

which shows that for k 
= ±1, there is an exponential decay of δ̂ρk(ω, t) with rate
Dk2. Actually, one has a continuous spectrum of stable modes,4 identified by the
values of ω in the support of g(ω).

For the study of the Fourier components with k = ±1, we pose

δ̂ρ±1(ω, t) = δ̃ρ±1(ω, λ)eλt . (2.49)

Substituting in Eq. (2.47), we obtain

(λ ± iω + D) δ̃ρ±1(ω, λ) = K

2

∫
dω′g(ω′)δ̃ρ±1(ω

′, λ). (2.50)

Also in this case, we have a continuous spectrum of stable modes, one for each ω

value in the support of g(ω). If ω0 is one such value, the corresponding stable mode
for δ̃ρ±1 has λ = −D ∓ iω0, while δ̃ρ±1, normalized so that the right hand side of
Eq. (2.50) is equal to 1 (since Eq. (2.50) is linear, we may choose the normalization
that is more convenient), is given by

δ̃ρ±1(ω,−D ∓ iω0) = ∓iP
1

ω − ω0
+ c±1(ω0)δ(ω − ω0), (2.51)

where

c±1(ω0)g(ω0) = 2

K
± iP

∫
dω′ g(ω′)

ω′ − ω0
, (2.52)

and where P indicates the principal value.5

4The Fourier component with k = 0 would be linearly neutrally stable in this framework. However,
such a component vanishes identically due to the normalization of ρ: from Eq. (2.44), one finds
that the integral in θ of δρ must vanish.
5From the mathematical point of view, Eqs. (2.48) and (2.50) may be considered also for ω outside
the support of g(ω), i.e., for those values of ω, if any, for which g(ω) = 0. In this case, nothing
changes as regards the solution of Eq. (2.48), while the solution of Eq. (2.50) for g(ω0) = 0 is
δ̃ρ±1(ω, ω0) = δ(ω − ω0) (in this case the right hand side of this equation cannot be made equal
to 1).
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On the other hand, there is also a discrete spectrum. The corresponding values of
λ may be found by rewriting Eq. (2.50) as

δ̃ρ±1(ω, λ) = K

2 (λ ± iω + D)

∫
dω′g(ω′)δ̃ρ±1(ω

′, λ). (2.53)

By imposing again the normalization for which the right hand side of Eq. (2.50) is
equal to 1, we obtain from the last equation the dispersion relation

K

2

∫
dω

g(ω)

λ ± iω + D
= 1. (2.54)

It is not difficult to see that the last equation can have only real solutions for λ.
If λr and λi are the real and the imaginary part of λ, then the real and the imaginary
parts of Eq. (2.54) give

K

2

∫
dω g(ω)

λr + D

(λr + D)2 + (λi ± ω)2
= 1, (2.55)

∫
dω g(ω)

λi ± ω

(λr + D)2 + (λi ± ω)2
= 0. (2.56)

The second equation can be satisfied only for λi = 0; in fact, with the change of
variable ω ± λi = x , it may be written as

∫
dx g(x ∓ λi)

x

(λr + D)2 + x2
= 0. (2.57)

It is a simple exercise to see that for λi 
= 0, the left hand side cannot be equal to
zero, since g(ω) is symmetric and unimodular. On the other hand, for λi = 0, the
equation is trivially satisfied. We are thus left with the equation (with λ ≡ λr)

K

2

∫
dω g(ω)

λ + D

(λ + D)2 + ω2
= 1, (2.58)

valid for both k = 1 and k = −1. The left hand side is positive for λ ≥ −D, so that
a solution in λ of this equation, if it exists, must satisfy this bound. In case such
a solution does not exist, the uniform state is stable, since all the eigenvalues of
the continuous spectrum have a negative real part equal to −Dk2 for k = 1, 2, . . . .
Stability occurs also if Eq. (2.58) does have a solution, but this solution is negative;
on the other hand, if the solution is positive, the uniform state is unstable.

It is not difficult to find the range of K for which the uniform state is unsta-
ble. With the change of variable ω = (λ + D)x , Eq. (2.58) may be written for
λ ≥ −D as

K

2

∫
dx g[(λ + D)x] 1

1 + x2
= 1. (2.59)
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The left hand side decreases with increasing λ, as may be seen by its derivative with
respect to λ, given by

K

2

∫
dx g′[(λ + D)x] x

1 + x2
, (2.60)

which is clearly negative; furthermore, it tends to 0 for λ → ∞. Therefore, there
can be at most one solution for Eq. (2.59); this solution is positive if the value of the
left hand side is larger than 1 for λ = 0. Consequently, the uniform state is unstable
when K is larger than

Kc = 2

[∫
dx g(Dx)

1

1 + x2

]−1

. (2.61)

We note that this is exactly the same threshold found above for the existence of the
state with r > 0. Thus, as soon as the r > 0 state exists, the incoherent uniform state
becomes unstable.

2.3.1.1 The Noiseless Limit

The result that the threshold for the existence of the state with r > 0 coincides with
the instability threshold of the uniform state is valid also in the noiseless limit D → 0.
In that case, we have Kc = 2/(πg(0)). However, we note a peculiarity: For K < Kc,
there is no eigenvalue with a positive real part, and in fact, all the eigenvalues have
a vanishing real part: the real part, equal to −Dk2, goes to 0 as D → 0. Then, we
conclude that the uniform state is never linearly stable, but at most neutrally stable.
However, it may be proved in spite of this that for K < Kc, a state that initially has
r > 0 decays to the uniform state. The interested reader may find a proof of this fact
in the brief review by Strogatz [4], where it is put in evidence that this behavior is
mathematically similar to the Landau damping in plasmas.6

2.3.2 Examples of r(K ): Computations and Simulations

We now consider in more detail two examples of the distribution g(ω), namely, a
Gaussian and a Lorentzian. Let us make some general considerations about the form
of the function r(K ). Firstly, we note the following point: Studying the solution of
the self-consistent equation (2.34) for K close to the threshold Kc, we have seen
by using the power expansion in Eq. (2.35) and obtaining Eq. (2.38) that a solution
with (small) positive r exists for K larger than Kc, but not for K smaller than Kc (in
the theory of bifurcations, this phenomenon is called a supercritical transition [5]).

6The mathematically oriented reader will also appreciate that the tendency to 0 of r has to be
intended in the weak topology.
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Considering the function r(K ) for general K , and not just for K close to Kc, we
expect a behavior of the type sketched with the full line in Fig. 2.1. At K = Kc, the
curve starts with an infinite derivative, in agreement with Eq. (2.38) that shows that
for small K − Kc, the quantity r is proportional to (K − Kc)

1/2. Then, by increasing
K , we have amonotonic increase of r that tends to 1 as K → ∞ (the negative second
derivative in the full range of this illustrative curve is used only for simplicity). The
approach of r to unity at large K may be argued on physical grounds to occur for any
distribution g(ω), and it may be proved by studying the large K limit of Eq. (2.32).
On the other hand, for symmetric bimodal frequency distributions, we may expect
other types of r(K ) curves, as, e.g., the dashed line in Fig. 2.1. In fact, now that the
denominator of the term under square root in Eq. (2.38) can be negative, a solution
can exist for K smaller than Kc. In the noiseless limit, this is what surely occurs,
since in Eq. (2.39), the term g′′(0) is positive. Although for a symmetric unimodal
distribution, the dashed line cannot occur as the power series expansion (2.38) has
a solution only for K > Kc, one could however envisage functions of the forms
depicted with the dot-dashed and the dotted line in Fig. 2.1. These curves satisfy the
requirement that for K close to Kc a small positive r occurs only for K larger than
Kc, but have properties that are different from those of the full line. In particular,
the dot-dashed curve has a range of K where, as for the dashed curve, there is more
than one possible r for a given K ; in principle, the re-entrance of the dot-dashed line
could be even more pronounced than shown in the figure, for example, it may extend
to the region K < Kc.

On the other hand, the dotted line has one value of r for each K > Kc, but r(K )

does not increase monotonically with K . In the noiseless case, we have proved in
Chap. 1 that the function r(K ) is of the form represented by the full line, since there
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Fig. 2.1 Full line: sketch of the guessed form of the function r(K ) for a symmetric unimodal
frequency distribution. Dashed line: possible form of r(K ) for a symmetric bimodal frequency
distribution; for K close to Kc the function starts towards the left (subcritical bifurcation). Dot-
dashed line and dotted line: other possible forms for a symmetric unimodal frequency distribution;
in the text it is guessed that these forms never occur (see also Appendix 2)



56 2 Oscillators with First-Order Dynamics

is only one possible value of positive r for each K > Kc. We do not have a similar
proof here for the noisy case.7

Nevertheless, we expect that, also in the noisy case, for symmetric unimodal
distributions, there is only one positive solution for r for K > Kc, with r increasing
monotonically with increasing K . Then the form of the function r(K ) is expected to
be always the one represented by the full line in Fig. 2.1. InAppendix 2, a justification
of this fact, although not a real proof, is given. The argument presented makes use
of some of the results described in the next subsection dedicated to the study of
a uniform frequency distribution g(ω); therefore, before reading Appendix 2, it is
useful to go through the next subsection.

Now we turn to discussing results obtained for two particular distributions, a
Gaussian and a Lorentzian. To this end, we consider the following frequency distri-
bution functions:

g(ω) = 1√
2πσ 2

e− ω2

2σ2 , (2.62)

g(ω) = σ

π

1

ω2 + σ 2
. (2.63)

The parameter σ characterizes the width of the distributions. While for the Gaussian
σ is equal to the standard deviation, i.e., to the square root of the expectation value
of ω2, this is not the case for the Lorentzian that has an infinite standard deviation.

As a first step of our analysis, we compute the threshold value Kc of the coupling
constant by using Eq. (2.36). The corresponding integrals may be computed in closed
form, since we have

1√
2πσ 2

∫ +∞

−∞
dω e− ω2

2σ2
D

ω2 + D2
=
√

π

2σ 2
e

D2

2σ2

[
1 − erf

(
D√
2σ 2

)]
, (2.64)

σ

π

∫ +∞

−∞
dω

1

ω2 + σ 2

D

ω2 + D2
= 1

σ + D
, (2.65)

where in the case of the Gaussian, we have used the error function erf(x) defined by

erf(x) ≡ 2√
π

∫ x

0
dy e−y2 . (2.66)

7Earlier we have proved that in the case of a unimodal symmetric distribution, the incoherent state is
dynamically stable for K < Kc, but also this does not disallow in principle for the occurrence of the
dot-dashed curve with a re-entrance that extends to the region K < Kc. The situation is analogous
to the existence of metastable states in thermodynamics. Such states realize local minima of the free
energy, and a sufficiently small perturbation does not destroy them; however, the global minimum
of the free energy occurs for the equilibrium state, and the system when given sufficient time for
evolution leaves the metastable state to eventually reach the equilibrium state. As we have already
remarked, our systems do not possess a free energy, and such evaluations cannot be done; the linear
stability analysis can only tell us if a state is dynamically stable or not. Even if stable, there can
be other stable states that the system prefers, analogously to the preference of the equilibrium state
with respect to the metastable state. We will come back to this point in Chap.3.
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Fig. 2.2 Full line: the function r(K ) for a zero mean and unit width (σ = 1) Gaussian frequency
distribution and for D = 1, obtained by numerically solving the self-consistent equation (2.34).
Circles: values of r(K ) obtained from the numerical simulation of the equations of motion (2.20).
The computation in the latter case is explained in the text

The function r(K ) is obtained by numerically solving the self-consistent equation
(2.34); this function will further depend on D and on σ . From the structure of the
function ρ(θ, ω; r) given in Eq. (2.32), it is clear that the dependence will be through
K/D andσ/D; therefore,wedonot loose generality by studying the casewithD = 1.
In our example, we also make the choice σ = 1; the structure of the function r(K )

does not change on choosing other values of σ . Using Eqs. (2.64) and (2.65), after
posing D = 1 and σ = 1, in Eq. (2.36), we then obtain the following values for the
threshold coupling constant Kc:

Kc =
√

8

πe

1

1 − erf
(

1√
2

) ≈ 3.0503; (Gaussian), (2.67)

Kc = 2
1
2

= 4; (Lorentzian). (2.68)

In Fig. 2.2, we show the function r(K ) for the Gaussian frequency distribution
function, obtained by solving numerically Eq. (2.34). Appendix 3 gives the details
of how this numerical solution is obtained. In the same plot, we show the value of r
obtained in numerical simulations of the equations of motion (2.20) for some values
of K . The equations ofmotion are of the Langevin type, and contain a stochastic term,
related to the Gaussian white noise. There is a standard procedure for the numerical
integration of these stochastic equations; we prefer to defer a brief explanation of
this procedure to Chap.3, where it is applied to the case of oscillators with inertia
with a dynamics governed by equations of motion that are second order in time. The
procedure for first-order dynamics may be simply deduced from the more-general
second-order case in Chap.3.
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As explained previously, the value of the order parameter r pertaining to a sta-
ble stationary solution of the Fokker-Planck equation is expected to be achieved at
large times following the evolution of the system from a generic initial condition.
Accordingly, for each simulation, we let the system evolve for a sufficiently long
time until the order parameter r does not show any monotonic trend of change in
its values and the fluctuations stabilize to a roughly constant amplitude. We remind
that in the simulation of the N -body system, the instantaneous order parameter r
is computed through Eq. (1.41). In this example, we have performed simulations
with N = 5 × 105 oscillators, and in the stationary state, the fluctuations of r are
quite small. The initial state is characterized by a uniform distribution of the phases
θi ’s of the oscillators, for which r ≈ 0. The simulation results shown with circles
in Fig. 2.2 give the value of the practically stationary value of r , averaged over the
very small fluctuations, in the asymptotic state. The agreement between the results
obtained from simulations and from the stationary states of the Fokker-Planck equa-
tion is quite good. Not reported here are simulation results for the case K < Kc that
confirm a vanishing r .

Going now to the Lorentzian frequency distribution, Fig. 2.3 shows the func-
tion r(K ) obtained by solving the self-consistent equation (2.34), together with the
results of the numerical simulations of the equations of motion (2.20). The num-
ber of oscillators used in the simulations is again N = 5 × 105, and the criterion
to evaluate the stationary order parameter r is the same as for the Gaussian distri-
bution reported above. From the figure, it may be seen that the agreement for the
three smaller simulated values of K is not extremely good, although quite satisfy-
ing (the relative difference is about 3% for K = 4.1, about 2% for K = 4.3, and
about 1% for K = 4.5). This small disagreement could be due to the relative weight
of the very large frequencies in dictating the dynamics, which is more important
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Fig. 2.3 Full line: the function r(K ) for a Lorentzian frequency distribution with σ = 1 and for
D = 1, obtained by numerically solving the self-consistent equation (2.34). Circles: values of r(K )

obtained from the numerical simulation of the equations of motion (2.20). The computation in the
latter case is explained in the text
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for the Lorentzian than for the Gaussian: their contribution could not be evaluated
perfectly in the numerical solution of the self-consistent equation (see also
Appendix 3), while in the simulations, their approach to the stationary state could be
very slow and not yet perfectly achieved during the time of the simulation runs. In
spite of these technical subtleties, we are fully justified to conclude that also for the
Lorentzian, the simulation results agree very well with the evaluations of r obtained
from the Fokker-Planck equation.

We conclude this section with the following remark. We have proved that for
K < Kc, the uniform state is stable, while for K > Kc, it is unstable; we have also
shown that for K > Kc, the system approaches the partially synchronized state with
r > 0; this is a very strong evidence that the latter state is stable. However, we must
be aware that mathematically, the stability of this state has not been proved, although
we are ready to accept it on physical grounds.

2.3.3 Uniform g(ω)

The case of a uniform distribution of frequencies is very interesting. The function
g(ω) is equal to a constant between ω = −ω1 and ω = +ω1, where ω1 is a given
positive number, and vanishes elsewhere; for reasons of normalization, the uniform
value of g(ω) where it does not vanish is equal to 1/(2ω1). Equation (2.39) shows
that the power expansion that should give r for K close to Kc does not work in the
noiseless case for an uniform distribution, since g′′(0) for the latter vanishes. But
before dealing with this fact, we consider the general noisy case.Wemay take D = 1
as before without loss of generality.

We start our analysis by computing the threshold value of the coupling constant,
Kc. From Eq. (2.36), we obtain

Kc = 2

[
1

2ω1

∫ +ω1

−ω1

dω
1

ω2 + 1

]−1

= 2ω1

arctanω1
. (2.69)

For our numerical study, we choose the value ω1 = 0.5. The above equation then
gives Kc = 1/(arctan 0.5) ≈ 2.1568. The numerical solution of the self-consistent
equation (2.34) gives the function r(K ) shown in Fig. 2.4, where we also show the
results obtained from numerical simulations of the equations of motion of a system
with N = 5 × 105 oscillators and for chosen values of K . As in the Gaussian and
the Lorentzian case discussed above, here too we observe a very good agreement
between the results of the N -body simulations and of the Fokker-Planck equation.
Furthermore, qualitatively, the behavior of the system is not different from the cases
with the Gaussian and the Lorentzian frequency distribution: at a certain threshold
value Kc, there is a continuous (or, second-order) synchronization transition from a
state with vanishing order parameter to a state with r > 0. However, we now show
that this situation changes in the limit of vanishing noise.
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Fig. 2.4 Full line: the
function r(K ) for a uniform
frequency distribution with
ω1 = 0.5 and for D = 1,
obtained by numerically
solving the self-consistent
equation (2.34). Circles:
values of r(K ) obtained
from the numerical
simulation of the equations
of motion (2.20). The
computation in the latter case
is explained in the text  0
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Fig. 2.5 Full lines: the
function h(r), defined by the
right hand side of Eq. (1.50),
for three different values of
K (denoted close to each
curve), two below and one
above the threshold value
Kc = 2/π . The dashed line
indicates the height equal
to 1
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In the limit of vanishing noise, the threshold value of the coupling constant is
according to Eq. (1.51) given by Kc = 2/(πg(0)) = 2/π ≈ 0.6366 (we remind
that we are taking ω1 = 0.5). The function r(K ) is obtained by computing from
Eq. (1.50) the positive solutions for r . To this end, we plot in Fig. 2.5 the right hand
side of Eq. (1.50) as a function of r for three different values of K , two below and
one above the threshold value Kc. In the figure, this function is denoted by h(r);
it may be expressed in terms of elementary functions, but its explicit expression is
not important here. In all cases, the function h(r) is constant for r smaller than a
K -dependent value; this range of r includes all its possible values between 0 and 1
if K is smaller than 0.5. We see that as long as we have K < Kc, there is no positive
solution of Eq. (1.50) (as for any symmetric unimodal distribution function), since
we have h(r) < 1 in the whole range. However, as soon as one has K > Kc, the
function h(r) intersects the horizontal line at height 1 at a finite positive value of r .
It is simple to find that for K → K+

c , this value of r is equal to π/4 (incidentally,
this last value is the same for any choice of ω1, while obviously Kc depends on ω1).

The conclusion of this analysis is the presence in the noiseless case of a first-order
synchronization transition, whereby r jumps from 0 to the value r = π/4 at K = Kc.
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Fig. 2.6 Full line: the
function r(K ) for a uniform
frequency distribution with
ω1 = 0.5 and for D = 0,
obtained by solving the
self-consistent equation
(1.50). Circle: values of r(K )

obtained from the numerical
simulation of the equations
of motion (1.16) for K = 0.7
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It is then obvious that Eq. (1.56), based on a power expansion, cannot provide a small
positive value of r for K close to Kc. In Fig. 2.6, we plot the solution of Eq. (1.50)
with the results of simulations for K = 0.7, a value slightly larger than Kc.

2.4 Nonunimodal g(ω)

As soon as the frequency distribution g(ω) is no more symmetric and unimodal, the
analysis becomes more difficult, and the set of possible stable states of the system
gets richer. As a matter of fact, at least for noisy synchronizing systems, much less
work has been done,while some results have been obtained for noiseless (i.e., D = 0)
systems. In this section,we briefly consider the study of noisyKuramoto systemswith
a particular symmetric bimodal frequency distribution, while we dismiss altogether
the study of even more general g(ω). We hope that this example, for which although
only some possible features will be presented here, will give a flavor of the behavior
of the system for frequency distributions not belonging to the class of symmetric
unimodal functions.

Let us consider a frequency distribution given by the superposition of two Gaus-
sians of equal width, one centered at a positive frequency ω1 and the other centered
at the corresponding negative frequency −ω1:

g(ω) = 1

2
√
2πσ 2

[
e− (ω−ω1)2

2σ2 + e− (ω+ω1)2

2σ2

]
. (2.70)

The function g(ω) is bimodal if we have ω1 > σ ; in that case, there is a minimum at
ω = 0 and two symmetric maxima at ±ωM , with the value of ωM < ω1 depending
on σ and ω1. On the other hand, if ω1 < σ , there is only a single maximum at ω = 0,
and g(ω) falls in the class of unimodal functions.
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Fig. 2.7 The bimodal
frequency distribution given
by Eq. (2.70) for σ = 1 and
ω1 = 1.5
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A first hint of the greater complexity resulting from a bimodal distribution comes
from the fact that now we have more parameters that play a role in the behavior of
the system. While for a unimodal distribution, we had K , σ and D, which actually
entered into the analysis through the two quantities K/D and σ/D, we now have K ,
σ , ω1 and D, and, by normalizing three of the parameters using the fourth one, we
are left with three quantities. In our analysis, we take σ = 1, which is tantamount
to considering the behavior of the system as a function of K/σ , ω1/σ and D/σ .
However, we also fix the value of ω1, choosing ω1 = 1.5. Doing things this way
of course does not let us explore the whole parameter space, but nevertheless will
suffice to show the various different types of behavior of the system. In Fig. 2.7, we
plot g(ω) for the case σ = 1, ω1 = 1.5. We are going to analyze the behavior of the
system for several values of the parameter D. The critical coupling constant Kc is
obtained, as before, from Eq. (2.36), while the self-consistent equation (2.34) allows
to compute as a function of K , when it exists, the value of the order parameter r for
the stationary solutions of the Fokker-Planck equation (we remind that the numerical
solution of Eq. (2.34) can be obtained with the method described in Appendix 3).

In Fig. 2.8, we show the results obtained for five different values of D, i.e., D = 0,
D = 0.1, D = 0.5, D = 1 and D = 1.5. The full thin line shows the function for the
noiseless case, D = 0. The form of the curve for K close to Kc, in particular, the fact
that a positive r exists for K < Kc, is what is expected on the basis of Eq. (2.39),
since g′′(0) is positive. This feature is retained for small noise (D = 0.1, dotted
line, and D = 0.5, dashed line) and also for the case with D = 1 (dot-dashed line,
although in the figure, the feature is hardly visible). On the other hand, for the highest
value of noise considered, D = 1.5 (full thick line), the function r(K ) has a shape
similar to the unimodal case; in particular, for K close to Kc, the order parameter
r is positive for K > Kc. We see that, except for D = 1.5, in the cases considered,
there is a range of K to the left of Kc where there are two values of the stationary
order parameter r ; furthermore, the value of Kc has a nonmonotonic behavior with
respect to D. We comment on these facts below.
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Fig. 2.8 The function r(K ), giving the value of the order parameter r for the stationary solutions of
the Fokker-Planck equation for the bimodal frequency distribution (2.70) with σ = 1 andω1 = 1.5,
for five different values of the parameter D, namely, D = 0 (full thin line), D = 0.1 (dotted line),
D = 0.5 (dashed line), D = 1 (dot-dashed line), D = 1.5 (full thick line). The values of the critical
coupling constant are: Kc ≈ 4.915 for D = 0, Kc ≈ 4.792 for D = 0.1, Kc ≈ 4.701 for D = 0.5,
Kc ≈ 5.016 for D = 1, Kc ≈ 5.548 for D = 1.5. For the first four values of D, the minimum
values Km of the corresponding curves are: Km ≈ 3.755 for D = 0, Km ≈ 3.898 for D = 0.1,
Km ≈ 4.432 for D = 0.5, Km ≈ 5.007 for D = 1

However, what we mention above is not the end of the story, since the situation
is more complex with respect to the case with a unimodal frequency distribution
also as regards the stability of the incoherent state. For the unimodal distribution, we
have found that the incoherent state (we remind that it exists as a stationary state of
the Fokker-Planck equation for any value of K ) is unstable exactly for those values
of K for which a stationary state with a positive r exists, i.e., for K > Kc. With a
function like the full thin curve in Fig. 2.8, one has to determine if the incoherent
state is stable or unstable also for K smaller than Kc. To study this problem, one has
to compute the solution of the dispersion relation (2.54), or, equivalently, of the two
equations (2.55) and (2.56), giving the real and the imaginary part of the dispersion
relation, respectively. However, contrary to the case of a unimodal distribution, now
the solution λ can be complex, so that we are not left with Eq. (2.58) and the search
for its real solutions.

The incoherent state is unstable when the solution of Eq. (2.54) has a positive
real part. Equation (2.55) shows that if the dispersion relation has a solution, then
its real part λr must be larger than −D; then the incoherent state is stable if we have
−D < λr < 0, and in particular, we have observed that for the noiseless case D = 0,
this implies that the incoherent state is at most neutrally stable.
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Fig. 2.9 The solution of the dispersion relation (2.54) for the bimodal frequency distribution (2.70)
with σ = 1 and ω1 = 1.5, in the noiseless case D = 0. The full line gives the real part, while the
dashed line shows the imaginary part (for values of K for which the imaginary part does not vanish,
there are two complex conjugate solutions, and in the figure, we show without loss of generality the
solution with positive imaginary part). For K smaller than a value ≈3.55, the dispersion relation
has no solution, and the incoherent state is neutrally stable. The imaginary part of λ vanishes for K
larger than a value ≈4.68; correspondingly, there is a kink in the curve for the real part

2.4.1 The Noiseless Case, D = 0

Let us begin the aforementioned stability analysis with the noiseless case, for which
the function r(K ) is shown with the thin full line in Fig. 2.8. In Fig. 2.9, we plot the
solution λ of the dispersion relation as a function of K . We see that for K > Ku ≈
3.55, the incoherent state is unstable. However, for K < Km ≈ 3.755 (see caption
of Fig. 2.8), there is no stationary state with positive order parameter r . So, what is
happening? In Fig. 2.10, we plot the results of a simulation of the noiseless system
with K = 3.7, starting from the unstable uniform initial condition. We may observe
that the system settles to what looks like a periodic nonstationary state. We thus
conclude that in this range of K , i.e., for Ku < K < Km, there is no stable stationary
state, and the system settles asymptotically to a periodic state.

The situation is even more interesting for K slightly larger than Km. In this case,
as in the range Km < K < Kc, for a given K , there are two solutions of the dispersion
relation, i.e., two stationary states with a positive r . In analogy with what happens
for subcritical transitions, one could guess that only one of such stationary states
is stable,8 the one with larger r . In Fig. 2.11, we plot the results of two simulations
performed at K = 3.85; the initial state of one simulation is the uniform state, while
the initial state of the other is one with large r . The plot clearly shows that there are
different asymptotic states, namely, a periodic state and a stable partially coherent

8We emphasize that our analytical stability analysis concerns only the incoherent state; the stability
analysis of a partially coherent state is generally a much harder task. However, if the system studied
by numerical simulations settles to such a state, we may infer that it is stable.
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Fig. 2.10 Simulation of the system (2.20) with bimodal frequency distribution in the noiseless case
D = 0, and with K = 3.7. The system, initially prepared in the unstable uniform state, settles to
what seems to be a periodic state
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Fig. 2.11 Two simulations of the system (2.20) with bimodal frequency distribution in the noiseless
case D = 0, and with K = 3.85. If the system is initially prepared in the unstable uniform state, it
settles to a periodic state (lower curve); on the other hand, if the initial state has a high value of r
(upper curve), the system goes to a stable stationary state with positive r . The latter simulation has
been shorter, and for this reason the upper curve is plotted only up to a certain time

state. The system selects one of the two depending on its initial state. These results
also confirm that the stationary state with smaller value of r is unstable. For larger
values of K , although still smaller than Kc, the periodic state disappears, and only the
stable partially coherent state remains.Wehave not performed simulations to evaluate
the approximate value of K where this change occurs, but have only determined that
it is smaller than the value of K where the imaginary part of λ vanishes (see Fig. 2.9
and its caption). On further increase of K , the situation does not change anymore
(except that at K = Kc, the unstable stationary state with positive r disappears, but
obviously this is not seen in simulations).
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We emphasize that a complete analysis of the noiseless case with a bimodal
symmetric frequency distribution is performed in Ref. [6] for the case where the
distribution is a superposition of two Lorentzians, rather than two Gaussians. A tech-
nique similar to that described in Sect. 1.7.2 allows to reduce the infinite dimensional
dynamical problem to a four-dimensional problem (just as for a unimodal Lorentzian,
the technique allowed to reduce it to a one-dimensional dynamics). Then, the differ-
ent dynamical regimes in the (ω1, σ ) parameter space are found to be separated by
several types of bifurcations of the low-dimensional dynamical problem. In the same
work, it is guessed that an analogous picture holds with two Gaussians, although in
that case, much less can be obtained analytically. The interested reader is referred
to that work for full details.9 In our example, where we have chosen a fixed value
σ = 1, we have not explored the full parameter space. However, further comments
on this are given when we consider the noisy cases with D > 0.

2.4.2 The Noisy Cases

We now analyze the noisy cases. We have already noted that, as in Fig. 2.8, the value
of Kc does not have a monotonic behavior with respect to D. However, and this is
what we expect on physical grounds, the figure shows also that for any given K , the
value of r of the stable partially coherent state decreases monotonically with D.

Considering first the case with small noise, i.e., D = 0.1, we show in Fig. 2.12 the
solution λ of the dispersion relation. For K smaller than a value≈3.54, the dispersion
relation has no solution, and the incoherent state is stable. It remains stable up to a
value Ku ≈ 3.87, when the real part of λ becomes positive. We have found that the
different dynamical regimes and the associated transitions are similar to the noiseless
case. In particular, for Ku < K < Km ≈ 3.898 (see caption of Fig. 2.8), the system
settles to a periodic state; for K larger than Km up to a given value less than Kc,
the system can settle either to the periodic state or to a stable stationary state with
positive r . Increasing further the value of K , the periodic state disappears, and only
the stable partially coherent state remains (as for the noiseless case, we have not
determined the approximate value where this last transition occurs).

For larger noise, the situation changes. In Fig. 2.13, we plot the solution λ of
the dispersion relation for D = 0.5 and D = 1. Now the solution, when it exists,
is always real, and there is no need to plot the vanishing imaginary part. In both
cases, the dispersion relation has no solution for K smaller than a value ≈4.68; in
this range of values of K , the incoherent state is stable. However, it is stable up to
the value of K where λ becomes positive, which for both the values of D coincides
with the critical value Kc that is about 4.701 for D = 0.5 and about 5.016 for D = 1.

9Just to anticipate some information to the interested reader, we note that our transition at K = Ku,
with the appearance of the periodic state, corresponds to a Hopf bifurcation; the transition at Km,
where a stable stationary state appears, corresponds to a saddle-node bifurcation;while the transition
where the periodic state disappears corresponds to a homoclinic bifurcation.
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Fig. 2.12 The solution of the dispersion relation (2.54) for the bimodal frequency distribution
(2.70) with σ = 1 and ω1 = 1.5, in the case with D = 0.1. The meaning of the full line and dashed
lines is as in Fig. 2.9. For K smaller than a value ≈3.54, the dispersion relation has no solution,
and the incoherent state is stable. The real part of λ becomes positive at a value of K = Ku ≈ 3.87,
where the incoherent state becomes unstable. The imaginary part of λ vanishes for K larger than a
value equal to about 4.68; correspondingly, there is a kink in the curve for the real part
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Fig. 2.13 The solution of the dispersion relation (2.54) for the bimodal frequency distribution (2.70)
with σ = 1 and ω1 = 1.5, in the cases with D = 0.5 (full line) and D = 1 (dashed line). Only the
real part of λ is plotted, since the imaginary part vanishes identically. For both the values of D, and
for K smaller than a value ≈4.68, the dispersion relation has no solution, and the incoherent state
is stable. It becomes unstable when λ becomes positive, which occurs K = Kc, i.e., at K ≈ 4.701
for D = 0.5 and K ≈ 5.016 for D = 1

Therefore, contrary to what happens for smaller noise, there is a K range, namely,
Km < K < Kc, where both the incoherent state and the partially coherent state are
stable (we remind that for K < Km, the partially coherent state does not exist). This
range is very small for D = 1, when one has Km ≈ 5.007, but it is more extended for
D = 0.5, when one has Km ≈ 4.432 (see caption of Fig. 2.8). So, now, on increasing
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Fig. 2.14 The solution of
the dispersion relation (2.54)
for the bimodal frequency
distribution (2.70) with
σ = 1 and ω1 = 1.5, when
D = 1.5. Only the real part
of λ is plotted, since the
imaginary part vanishes
identically. For K smaller
than a value ≈4.68, the
dispersion relation has no
solution, and the incoherent
state is stable. It becomes
unstable when λ becomes
positive, which occurs
K = Kc, i.e., at K ≈5.548
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the value of K , we have a first transition where the stable partially coherent state
appears, and then a second transition where the incoherent state becomes unstable.

We finally consider the case with D = 1.5. The solution of the dispersion relation
is plotted in Fig. 2.14. Similar to the previous two cases, the solution λ, when it
exists, is always real, and becomes positive at K exactly equal to Kc. However, now
the curve r(K ) is similar to that found with unimodal frequency distributions (see
Fig. 2.8). Therefore, also concerning the transitions, we have a similarity: at K = Kc,
the incoherent state becomes unstable and a stable partially coherent state appears.

2.4.3 Final Remarks

At the end of this brief description of the transitions that occur with a bimodal
Gaussian frequency distribution, some remarks are in order.

The most interesting thing concerns the comparison of the noiseless case and the
noisy case. We have noted above that we have not explored the whole parameter
space, since we have a fixed variance for all the value of ω1 that determines the
centers of the two superimposed Gaussian. In Ref. [6], where the noiseless case with
two superimposed Lorentzians is studied, we may consider fixed the value of the
noise at D = 0, while the ranges of the other parameters are fully considered. As a
consequence, for D = 0, we have found only some of the possible transition types.
However, and this is the interesting feature, what we have missed at D = 0 reappears
for large noise. We are referring in particular to the situation in which both the
incoherent and the partially coherent states are stable, and to the casewhere the system
behaves as if the frequency distribution was unimodal. For D = 0, this would occur
by gradually increasing the width σ with respect toω1; instead, we have obtained this
by gradually increasing the noise D at fixed σ and ω1. In other words, as an increase
of σ at fixed ω1 “softens” the bimodal character of the distribution, an increase of D



2.4 Nonunimodal g(ω) 69

at fixed σ andω1 has the same effective result.10 This may be understood on physical
grounds: the noisemakes the proper frequency of each oscillator “fluctuate”, themore
so the larger the noise, and at sufficiently large noise, this fluctuation is comparable to
the distance between the two superimposed Gaussians; this is physically equivalent
to increasing σ with respect to ω1.

Another remark concerns a technical point. The reader may have noticed that a
value of K ≈ 4.68 occurs for all cases considered. For D = 0 and D = 0.1, it is the
value where the imaginary part of λ becomes zero, while for D = 0.5, D = 1 and
D = 1.5, where the dispersion relation has only real solutions, it is the value below
which such solution does not exist. This feature may be understood by looking at
Eq. (2.55). For λi = 0, we see that in this equation, only the combination λr + D
appears, and therefore, if for D = D1, there is a solution λr, then for D = D2, the
solution is given by λr + D1 − D2. This implies that when the solution λ is real,
there is a constant difference, varying K , for the various values of D (this may be
observed by comparing Figs. 2.9, 2.12, 2.13 and 2.14), and also that the appearance
of a real solution occurs at the same value of K .

2.5 Beyond the Kuramoto Model

One may ask about the behavior of the system when the interaction f (θ) in the
equations of motion (2.1) and the distribution of frequencies g(ω) are both generic.
This more general case has received much less attention, and it is no doubt consid-
erably more difficult to treat than the Kuramoto model. Pioneering work has been
done by Daido for the noiseless case [7–10]. The extension to the case with noise
has been studied by Crawford [11, 12], with the attention focussed on the scaling
behavior of the order parameter near the onset of the synchronization transition. In
this section, we discuss some of the results that have been obtained, without any
claim of completeness. The interested reader may consult the cited bibliography for
more details.

In our brief description, we are not going to consider themore general case, that is,
with both f (θ) and g(ω) completely generic. Interesting new features appear even if
we restrict to a unimodal symmetric frequency distribution function. Therefore, for
definiteness, we will concentrate on the case of a generic interaction f (θ) (although
posing a requirement, as explained shortly) with a unimodal symmetric distribution
function g(ω).

The most generic interaction in the equations of motion (2.1) may be written in
the form of the Fourier expansion

10Again, for the interested reader, the transition occurring at D = 0.5 and D = 1 at K = Km, where
the partially coherent state appears, is the analogous of a saddle-node bifurcation at D = 0 (as for
smaller noise, but with the difference that it occurs with the presence of a stable incoherent state),
while the transition where the incoherent state becomes unstable at K = Kc is an example of a
transcritical bifurcation.
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f (θ) =
+∞∑

k=−∞
cke

ikθ , (2.71)

where k is restricted to integer values in order that f (θ) is 2π -periodic, and where
convergence of the infinite series on the right hand side is obviously assumed. The
coefficient c0 may be put equal to 0 without loss of generality, by redefining ωi , if
necessary. The condition that f (θ) is real requires that we should have c−k = c∗

k
(where we remind that the star denotes complex conjugation). However, we will
impose a further requirement, namely, that ck is purely imaginary; this is equivalent to
restricting to an interaction function that contains only terms proportional to sin(kθ)

and not terms proportional to cos(kθ). This requirement means that we want to
consider only interactions that can be derived from a potential, although the analysis
could be performed in themore general case. For theKuramotomodel, where f (θ) =
− sin θ , we have c1 = −c−1 = i/2, while all the other ck’s vanish. Now, by defining
ck = −c−k = ibk/2, the interaction becomes

f (θ) = −
∞∑

k=1

bk sin θ. (2.72)

We require that b1 is positive, and although one could consider the case in which
the other Fourier coefficients can be of either sign, we restrict to the case in which
we have bk ≥ 0 for each k > 1; in other words, all the Fourier components of the
interaction are attractive. The equations of motion then become

dθi
dt

= ωi − K

N

∞∑

k=1

bk

N∑

j=1

sin(kθi − kθ j ) + ηi (t); i = 1, 2, . . . , N , (2.73)

with the statistical properties of the noise ηi (t) given by Eq. (2.2).
As for theKuramotomodel, onemaywrite down the correspondingFokker-Planck

equation corresponding to the Langevin dynamics (2.73), as

∂

∂t
ρ(θ, ω, t) = −ω

∂

∂θ
ρ(θ, ω, t) + D

∂2

∂θ2
ρ(θ, ω, t)

+ K
∞∑

k=1

bk
∂

∂θ

{[∫
dω′g(ω′)

∫
dθ ′ sin(kθ − kθ ′)ρ(θ ′, ω′, t)

]
ρ(θ, ω, t)

}
.

(2.74)

It is possible to extend the analogy of the procedure adopted for the Kuramoto model
by defining complex order parameters by

rk(t)e
ikψk (t) =

∫
dω
∫ 2π

0
dθ g(ω)eikθρ(θ, ω, t); k = 1, 2, . . . , (2.75)
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so that the Fokker-Planck equation may be rewritten as

∂

∂t
ρ(θ, ω, t) = − ∂

∂θ

[(
ω + K

∞∑

k=1

bkrk(t) sin(kψk(t) − kθ)

)
ρ(θ, ω, t)

]

+ D
∂2

∂θ2
ρ(θ, ω, t). (2.76)

We assume the existence of a stationary solution of the above Fokker-Planck
equation, to which the distribution function ρ(θ, ω, t) tends asymptotically in time.
In this stationary state, all the complex order parameters are time independent, i.e.,
rk(t) and ψk(t) tend to asymptotic values rk and ψk . The equation determining the
stationary distribution is

− ∂

∂θ

[(
ω + K

∞∑

k=1

bkrk sin(kψk − kθ)

)
ρ(θ, ω)

]
+ D

∂2

∂θ2
ρ(θ, ω) = 0. (2.77)

Redefining if necessary the origin of θ , we may assume that ψ1 = 0 when we have
r1 > 0. On physical grounds, we may assume that also all the other ψk’s for k > 1
will be equal to 0 when we have the corresponding rk > 0. On these premises, the
time-independent Fokker-Planck equation may be rewritten as

− ∂

∂θ

[(
ω − K

∞∑

k=1

bkrk sin(kθ)

)
ρ(θ, ω)

]
+ D

∂2

∂θ2
ρ(θ, ω) = 0. (2.78)

This equation generalizes Eq. (2.31) that was for the Kuramoto model. Its solution
for given values of the order parameters rk may be written in a convenient form by
introducing the function

V (θ) ≡ K
∞∑

k=1

bk
k
rk cos(kθ), (2.79)

which is just the negative of the potential from which the interaction can be derived.
Then, the 2π -periodic solution of Eq. (2.78) is given by

ρ(θ, ω; {rk}) = Ce
V (θ)+ωθ

D

[
1 +

(
e− 2πω

D − 1
) ∫ θ

0 dθ ′e− V(θ ′)+ωθ ′
D

∫ 2π
0 dθ ′e− V(θ ′)+ωθ ′

D

]
, (2.80)

whereC = ρ(0, ω; {rk}) exp(−V (0)/D) is the normalization constant. This solution
is acceptable when the self-consistent equations

rk =
∫

dω
∫ 2π

0
dθ g(ω) cos(kθ)ρ(θ, ω; {rk}); k = 1, 2, . . . (2.81)
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are satisfied. The homogeneous solution ρ = 1/(2π) always exists, in which all the
order parameter rk’s vanish, but, as for the Kuramoto case, we expect it to be unstable
for sufficiently large K .

To proceed in amanner analogous to theKuramoto case, we should nowdetermine
as a function of the coupling coefficient K when the order parameters rk’s become
positive. It is not feasible to give a general answer to this question without having
some additional information on the Fourier coefficients bk . In the following, we will
show how the value of the critical coupling coefficient Kc at which the synchronizing
transition takes place depends on the Fourier coefficients bk .

For K sufficiently small, we expect that the only stationary solution is the homo-
geneous one, and that on increasing K , there is a synchronizing transition in which
the order parameters become positive.11 When the Fourier coefficients bk for k > 1
are sufficiently small with respect to b1, we expect that the system behaves in a way
not completely different from the Kuramoto model in which only b1 is different from
0. Then, at the synchronization transition, r1 acquires a positive value (together, in
general, with all the others rk , as argued in footnote 11). However, for general Fourier
coefficients bk , things could be different. It is not difficult to see that the critical value
Kc of the coupling coefficient is given by an expression very similar to that obtained
in the Kuramoto model. To this end, we may proceed as follows.

We first compute the expansion of the solution (2.80) containing only the terms
that are of first order in the order parameters rk . One obtains

ρ(θ, ω; {rk}) =

= C

⎧
⎨

⎩1 + K

D

∞∑

k=1

rkbk
k

ω2 + k2D2 cos(kθ) + kωD sin(kθ)

ω2 + k2D2

⎫
⎬

⎭+ O({r2k }), (2.82)

where the last term on the right hand side denotes loosely all terms of higher order.12

Plugging this expression in the self-consistent equations (2.81), we obtain at first
order the equation

rk = 1

2
Krkkbk

∫
dω

g(ω)

ω2 + k2D2
= 1

2
Krkkbk

∫
dω

g(Dω)

ω2 + k2
; k = 1, 2, . . . .

(2.83)
For any k, this expression gives a value of the coupling coefficient K , let us call it
K (k)

c , that could potentially be the critical value of the synchronizing transition; it
is the value for which the factor multiplying rk in the right hand side is equal to 1.
Then, we have

11We note the following. As soon as a given rp in the solution (2.80) is positive, we expect that in
general, provided the corresponding bk does not vanish, the right hand side of Eq. (2.81) will be
different from 0 not only for k = p, but for all k that are multiples of p; in particular, if we have
r1 > 0, the right hand side of (2.81) will not vanish in general for any k.
12Actually,mathematical rigorwould require to expand also the normalization constantC . However,
since the integral of cos(pθ) multiplied by the expression in curly brackets in Eq. (2.82) does not
contain zeroth-order terms, the expansion of C is not necessary.
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K (k)
c = 2

[∫
dω g(Dω)

kbk
ω2 + k2

]−1

. (2.84)

Clearly, the real critical coupling coefficient Kc will be the smallest of these val-
ues. Consider, for example, Fourier coefficients bk such that kbk decreases when k
increases. From Eq. (2.84), we see that this condition is sufficient to have that K (k)

c
increases with k. In this case, the critical coupling coefficient Kc is K (1)

c , i.e., it is
determined by the first Fourier coefficient b1. We expect that at the synchronization
transition, all the order parameters rk acquire a positive value.13 On the other hand,
if, e.g., the Fourier coefficient b2 is much larger than all the others, we expect that the
critical coupling coefficient Kc is given by K (2)

c . In that case, at the synchronization
transition, we expect that r2 acquires a positive value, with r1 remaining equal to 0
for K sufficiently close to Kc.

We now study in analogy with the Kuramoto model the stability of the incoherent
state. The procedure is very similar to that adopted for the Kuramoto model. To
linearize the Fokker-Planck equation (2.74), we write

ρ(θ, ω, t) = 1

2π
+ δρ(θ, ω, t), (2.85)

assuming that δρ(θ, ω, t) � 1, which we substitute in the Fokker-Planck equation,
and then keep only the terms linear in δρ. We obtain

∂

∂t
δρ(θ, ω, t) = −ω

∂

∂θ
δρ(θ, ω, t) + D

∂2

∂θ2
δρ(θ, ω, t)

+ K

2π

∞∑

k=1

kbk

∫
dω′g(ω′)

∫
dθ ′ cos(kθ − kθ ′)δρ(θ ′, ω′, t). (2.86)

Using the Fourier expansion

δρ(θ, ω, t) =
+∞∑

k=−∞
δ̂ρk(ω, t)eikθ , (2.87)

we obtain the following equation for the k-th Fourier component:

∂

∂t
δ̂ρk(ω, t) = −ikωδ̂ρk(ω, t) − Dk2δ̂ρk(ω, t)

+ K

2
kbk

∫
dω′g(ω′)δ̂ρk(ω

′, t). (2.88)

Unlike the Kuramoto model, now there is a contribution from the interaction for
any Fourier component (unless the corresponding bk vanishes), but we have the

13This was the situation studied by Daido in the noiseless case [7, 8].
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simplifying property that the equations of the different components decouple from
one another. By posing

δ̂ρk(ω, t) = δ̃ρk(ω, λ)eλt, (2.89)

we obtain upon substituting in Eq. (2.88) the result

(
λ + ikω + Dk2

)
δ̃ρk(ω, λ) = K

2
kbk

∫
dω′g(ω′)δ̃ρk(ω

′, λ). (2.90)

From this equation, one can obtain besides the continuous spectrum of stable modes
decaying with rate Dk2 also the discrete spectrum. To this end, we rewrite the last
equation as

δ̃ρk(ω, λ) = Kkbk
2
(
λ + ikω + Dk2

)
∫

dω′g(ω′)δ̃ρk(ω
′, λ). (2.91)

Multiplying both sides byg(ω), and then integrating,weobtain the dispersion relation

K

2

∫
dω

kbkg(ω)

λ + ikω + Dk2
= 1. (2.92)

Following exactly the same argument as adopted for Eqs. (2.55), (2.56) and (2.57),
we can show that the solutions λ of Eq. (2.92) can be only real. Then, the dispersion
relation may be rewritten as

K

2

∫
dωg(ω)

kbk(λ + Dk2)
(
λ + Dk2

)2 + k2ω2
= 1. (2.93)

Following now the same argument as was used for Eqs. (2.59) and (2.60), we may
prove that Eq. (2.93) can have at most one solution, which it is necessarily larger
than −Dk2. Then, the instability threshold is given by the value of K for which the
solution of the equation is λ = 0. We thus obtain

K (k)
c = 2

[∫
dωg(Dω)

kbk
ω2 + k2

]−1

, (2.94)

which is same as Eq. (2.84).
For the class of unimodal symmetric frequency distribution functions g(ω), we

have thus obtained a result that is very similar to the one obtained for the Kuramoto
model: the instability threshold K (k)

c coincides with the value of K related to the
onset of a positive value of the order parameter rk . However, we must be careful!
We have emphasized earlier that the synchronizing transition occurs at the smallest
value of K among the K (k)

c ’s, which is denoted with Kc that contains no superscript.
According to the last result on the instability thresholds, the incoherent state will be
unstable for any K larger than Kc. The additional information provided by this last
result is that for K < K (k)

c , the incoherent state is stable with respect to perturbation
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modes with wavenumber k, but if at the same time we have K > Kc, there will
be at least a wavenumber such that the incoherent state is unstable with respect to
perturbation modes with that wavenumber.

We conclude by just citing the result related to the scaling of the order parameters
for K close to Kc. The interested reader can find full details in the works of Crawford
[11, 12].We remind that in the Kuramotomodel, we found that for K close to Kc, the
order parameter r scales as (K − Kc)

1/2, and that this scaling behavior occurs both
in the noisy case (D > 0) as well as in the noiseless case (D = 0). For the case of
generic interaction, the study of the scaling behavior is more difficult. Crawford was
able to analyze it through the application of the center manifold reduction [13]. To
cite the result, let us consider for definiteness a case in which the instability threshold
Kc is given by K (1)

c , and the interaction has also the second Fourier component, i.e.,
b2 > 0. Then the result is that for K sufficiently close to Kc, the scaling of the order
parameter r1 for D > 0 is as (K − Kc)

1/2; but this behavior does not go over to
the D = 0 case where the scaling is as (K − Kc). From the practical point of view,
when the noise D is small, one has to go extremely close to Kc to observe a crossover
from a scaling with exponent 1 to a scaling with exponent 1/2. When D tends to
0, one should go infinitely close to Kc, so that the scaling remains with exponent 1
up to Kc. This behavior stems from a singularity in the cubic term of the amplitude
equation arising from the center manifold reduction; the singularity arises as soon
as one has b2 > 0. In this sense, the scaling with exponent 1/2 found for D = 0 in
the Kuramoto model is non-generic.

A final remark: For the Kuramoto model with a bimodal frequency distribution
g(ω), we have found that for certain ranges of the parameters (the coupling constant
K , the noise intensity D, the distance between the peaks of the bimodal distribution),
the distribution function ρ(θ, ω, t) does not tend asymptotically to a stationary distri-
bution, but rather to a distribution with periodic evolution. We expect that such cases
will be present also with generic interaction functions when we relax the requirement
of a unimodal frequency distribution.

Appendix 1: An H-Theorem for a Particularly Simple Case

Wehave seen in Sect. 2.2 that when all the oscillators have the same natural frequency
ω0, the passage to a rotating frame of reference allows to write a Fokker-Planck
equation in the form that for convenience we rewrite here:

∂

∂t
ρ(θ̃, ω0, t) = − ∂

∂θ̃

[
Kr(t) sin(ψ(t) − θ̃ − ω0t)ρ(θ̃ , ω0, t)

]+ D
∂2

∂θ̃2
ρ(θ̃, ω0, t).

(2.95)
The corresponding Langevin equations are
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dθ̃i
dt

= −K

N

N∑

j=1

sin(θ̃i − θ̃ j ) + ηi (t) , i = 1, 2, . . . , N . (2.96)

We note that the above equations are the noisy version of the dynamics of a
system of oscillators that interact according to the interparticle potential energy
U = −(K/(2N ))

∑
i, j cos(θ̃i − θ̃ j ).Wemay express the energy of the systemat time

t using the one-body distribution function ρ(θ̃, ω0, t), by using the same approxi-
mation as was employed in the derivation of the Fokker-Planck equation for ρ,
i.e., neglect of correlations between the oscillators. We may simply obtain (without
writing from now on the unnecessary ω0 dependence in order not to overload the
notation14

u(t) ≡ U (t)

N
= −K

2

[(∫ 2π

0
dθ̃ cos θ̃ ρ(θ̃ , t)

)2

+
(∫ 2π

0
dθ̃ sin θ̃ ρ(θ̃ , t)

)2
]

= −K

2

[
r2x (t) + r2y (t)

]
, (2.97)

where in the second line, we have indicated the two components of the order parame-
ter in the rotating frame.With the time evolution of ρ(θ̃, t) determined by Eq. (2.95),
we may study the evolution of the free energy per particle f (t) = u(t) − Ds(t),
where s(t) is the entropy per particle [2] given by15

s(t) = −
∫ 2π

0
dθ̃ ρ(θ̃ , t) ln ρ(θ̃, t). (2.98)

In the rotating frame, the phase of the order parameter is ψ̃(t) = ψ(t) − ω0t , so
that we may write down the Fokker-Planck equation (2.95) as

∂

∂t
ρ(θ̃, t) = ∂

∂θ̃

[
K
(
rx (t) sin θ̃ − ry(t) cos θ̃

)
ρ(θ̃, t)

]+ D
∂2

∂θ̃2
ρ(θ̃, t). (2.99)

Using this equation and the expressions (2.97) and (2.98), it is straightforward to
obtain

d f

dt
= −

∫ 2π

0
dθ̃

[
Krx (t) sin θ̃ − Kry(t) cos θ̃ + D

ρ(θ̃, t)

∂ρ(θ̃ , t)

∂θ̃

]2
ρ(θ̃, t) ≤ 0.

(2.100)
Thus, f (t) can only decrease. Moreover, since it may be easily seen that f (t) is
bounded from below, the evolution will stop when the expression in the square
brackets in the integral on the right hand side of the last equation vanishes. We

14Although unnecessary, we maintain the tilde also when θ̃ is an integration variable, just as a
reminder that we are considering the dynamics in the rotating frame of reference.
15The parameter D plays the role of the temperature.



2.5 Beyond the Kuramoto Model 77

therefore conclude that the normalized distribution functionρ will tend to (we remind
that the Fokker-Planck equation conserves the normalization)

ρ(θ̃) = Ae
K
D [rx cos θ̃+ry sin θ̃], (2.101)

obtained by setting the expression in the square brackets in Eq. (2.100) to zero.
Here, A is the normalization constant, while rx and ry have to satisfy self-consistent
equations. Without loss of generality, we may choose the origin of the angle θ̃ such
that ry = 0; we then obtain the expression (2.26) for ρ(θ̃), with rx = r satisfying
Eq. (2.28).

The derivation of this H -theorem is based on the possibility to write an expression
of a potential energy u for the system. For this particular casewith only one frequency
ω0, this may be done in the rotating frame of reference, where the equations of
motion may be written in the form (2.96). In the general case with distributed natural
frequencies, the frequencies will appear in any frame of reference (except for those
oscillators with a frequency equal to that of the rotating frame). This prevents the
possibility to have a potential energy in the formU = −(K/(2N ))

∑
i, j cos(θ̃i − θ̃ j ),

and there will be a contribution ∼ ωiθi for those oscillators that have a nonzero
frequency in the rotating frame. In fact, the expression ωθ is not an acceptable
energy, since it is not 2π -periodic. As a consequence, the approach of the distribution
ρ(θ, ω, t) to a particular asymptotic state cannot be proved in themanner done above.
Nevertheless, in the analyses presented in this chapter, it is assumed that such an
approach occurs anyways (this may be directly verified in simulations).

Appendix 2: Form of the Function r(K ) for Symmetric
and Unimodal Frequency Distributions in the Kuramoto
Model

The function r(K ) is obtained by computing for each K the solution for r of the
self-consistent equation (2.34). For concreteness, let us refer to the right hand side
of this equation as M(r) when seen as a function of r . We know the derivative at
r = 0 of the right hand side of equation (2.34): it is given by the coefficient of r
in the first term on the right hand side of Eq. (2.35) (either the first or the second
line). This positive derivative increases proportionally to K , and Kc is the value for
which it is equal to 1. We also know on physical grounds (but it may also be proved
analytically) that M(1) tends to 1 as K → ∞. If we could prove that for any K , the
function M(r) has a negative second derivative for any r > 0, this would show that
there is for each K > Kc only one solution of Eq. (2.34), and that this solution r(K )

increases with K , tending to 1 as K → Kc. Such a behavior would be similar to what
happens for the noiseless case, where we could prove the aforementioned properties.
If these properties hold, then, for any symmetric unimodal distribution g(ω), r(K )

would have the behavior indicated by the full line in Fig. 2.1, as we have found in
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Fig. 2.15 Full lines: the
function M(r), defined by
M(r) = rh(r), where h(r) is
the right hand side of Eq.
(1.50), for three different
values of K , two below and
one above the threshold
value Kc. The dashed line
indicates the bisectrix
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simulations for the Gaussian, the Lorentzian and the uniform distribution. It is not
difficult to see that a negative definite second derivative of M(r) is sufficient for our
purpose. First, the derivative of M(r) is positive for r = 0 and for r sufficiently large
(since M(r) must tend asymptotically to 1 from below). Then, a negative definite
second derivative implies that the first derivative is always positive. Second, since
M(r) depends on r only through the product Kr , a negative definite second derivative
and a positive definite first derivative imply that the equality M(r) = r , i.e., the self-
consistent Eq. (2.34), can be satisfied for only one value of r such that 0 < r < 1
(for K > Kc), and that this value increases with K (the last property arising from
the fact that if for a particular value K = K1, we have M(r) = r for r = r1, then for
K > K1, it will be M(r1) > r1, so that M(r) = r will be satisfied for a value of r
larger than r1).

Now, we give the argument in favor of the fact that the second derivative of M(r)
is negative definite. By defining with M(r, ω) the function obtained by integrating
the right hand side Eq. (2.34) with respect to θ only, we may write

M(r) =
∫

dω g(ω)M(r, ω). (2.102)

Let us consider what happens for a uniform distribution equal to 1/(2ω1) between
ω = −ω1 and ω = ω1. When ω1 becomes very large, we expect that the presence
of the noise with a finite coefficient D has very little influence, since most of the
proper frequencies are very large, and their contribution to the equations of motion
is much stronger than that of the noise. Practically, we expect that M(r) will behave
for sufficiently large ω1 as if one has D = 0. But we know what is M(r) for D = 0:
referring to the function h(r) plotted in Fig. 2.5, it will be M(r) = rh(r). This may
be inferred from the fact that the self-consistent equation (1.50) was obtained by
dividing by r both members of Eq. (1.49), since in the latter equation, r was a
common factor in both the members. Then we obtain the plots in Fig. 2.15.
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Here we have not denoted the values of K for each curve, since it depends on the
concrete value ofω1. However, we have found that for K < ω1 (that was equal to 0.5
in Sect. 2.3.3), we are in the situation of the lowest of the three curves in Fig. 2.15,
which is a straight line, thus with vanishing second derivative. But whenω1 increases
without limits, any finite K will be smaller than ω1. We conclude that if we pose
g(ω) equal to a constant in Eq. (2.102), M(r) is a straight line.

Now, here comes the crucial assumption, which we could verify numerically,
but for which we have no proof. We assume that for any given r , M(r, ω) has a
negative second r -derivative for |ω| < ω∗(r) and a positive second r -derivative for
|ω| > ω∗(r) (we know that for ω = 0, the second r -derivative is negative, since
M(r, 0) is the ratio of the modified Bessel functions of argument (Kr/D) of first and
zeroth order, respectively). Then, for a symmetric unimodal g(ω), we may write

d2M(r)

dr2
=
∫

dω g(ω)
∂2M(r, ω)

∂r2

<

∫

|ω|<ω∗(r)
dω g(ω∗(r))

∂2M(r, ω)

∂r2
+
∫

|ω|>ω∗(r)
dω g(ω∗(r))

∂2M(r, ω)

∂r2

= g(ω∗(r))
∫

dω
∂2M(r, ω)

∂r2
= g(ω∗(r)) × 0 = 0; (2.103)

This inequality is what we wanted to obtain.

Appendix 3: The Numerical Solution of Eq. (2.34)

The numerical solution of Eq. (2.34) would involve the discretization of the two
integrations with respect to θ and ω. In order to avoid the integration in θ , we have
preferred to employ a Fourier expansion in θ , since this allows a faster computation.
Let us then start from the time independent Fokker-Planck equation (2.31) that we
write in the equivalent form given by Eq. (2.41). The equation is rewritten here for
convenience:

(ω − Kr sin θ) ρ(θ, ω; r) − D
∂

∂θ
ρ(θ, ω; r) = S(ω), (2.104)

where S(ω) is the constant and uniform probability current in the stationary state,
and ρ(θ, ω; r) is the normalized stationary distribution function given in Eq. (2.32).
However, we would not need the last explicit expression, since we will only use the
expression ∫ 2π

0
dθ eipθρ(θ, ω; r) = 〈eipθ 〉(ω; r) (2.105)
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of the expectation value (which depends on ω and r ) of the function eipθ for the
distribution ρ(θ, ω; r), where p is any positive integer.

Multiplying Eq. (2.104) by eipθ and integrating over θ , we obtain for any given
ω the following system of equations:

(ω + iD) 〈eiθ 〉(ω; r) + i
Kr

2
〈ei2θ 〉(ω; r) = i

Kr

2
(2.106)

(ω + ipD) 〈eipθ 〉(ω; r) + i
Kr

2
〈ei(p+1)θ 〉(ω; r)

−i
Kr

2
〈ei(p−1)θ 〉(ω; r) = 0 , p = 2, 3, . . . (2.107)

Solving this system, one obtains 〈eipθ (ω; r)〉 for each p. Then, the self-consistent
equation (2.34) may be written as

r =
∫

dω g(ω)Re
[〈eiθ (ω; r)〉] . (2.108)

Therefore, we first solve the systems of Eqs. (2.106)–(2.107); thenwe use the solution
in Eq. (2.108), thus performing only one numerical integration (in ω). This proce-
dure is considerably faster than numerical integration with a discrete integration
step; however, like the latter, it also introduces an approximation, i.e., the trunca-
tion of the system at a convenient value of p. In our computations, we have trun-
cated the system at p = 50; we have checked that higher truncation did not change
in any appreciable way the value of the quantity eiθ (ω; r), which is the one used
in Eq. (2.108) to compute r .
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Chapter 3
Oscillators with Second-Order Dynamics

Abstract In the first section, we introduce the generalized Kuramoto model with
inertia and noise, and discuss in turn its connection to electrical power distribution
networks, its interpretation as a long-range interacting system driven out of equi-
librium and its dynamics written in a dimensionless form convenient for further
analysis. In section two, we discuss our recent numerical results on very interesting
nonequilibrium phase transitions exhibited by the model in the stationary state for
the case of unimodal frequency distributions: the system shows a phase transition
between a synchronized and an incoherent stationary state. Section three is devoted
to an analytical treatment of the observed phase transitions, in which we discuss both
the incoherent stationary state and its linear stability and the synchronized stationary
state of the dynamics. In section four, we take up the issue of comparing and inter-
preting simulation results for a finite system vis-à-vis our derived analytical results
in the thermodynamic limit, thereby providing interesting insights into the (slow)
relaxation properties of the dynamics.

Keywords Oscillators with inertia and noise · Second-order dynamics
Nonequilibrium phase transitions · Kramers equation
Incoherent stationary state and linear stability · Synchronized stationary state
Slow relaxation

Until now we have studied synchronizing systems constituted by interacting limit-
cycle oscillators that have a first-order dynamics in time.We have seen in Chap. 1 for
the case of an isolated oscillator how introduction of inertia leads to a second-order
dynamics in time, thus resulting in significant differences in the dynamical properties
with respect to the first-order dynamics.

In this chapter, we focus on a rather interesting and relevant generalization of the
Kuramoto dynamics (1.16) that includes stochastic noise, as considered in Chap. 2,
but, more significantly, inertial terms parametrized by a moment of inertia [1–10].
Inclusion of inertia elevates the first-order Kuramoto dynamics to one that is second
order in time, while as discussed in Chap. 1, noise effectively accounts for stochastic
fluctuations of the dynamical parameters in time. The generalized model reduces in
specific limits to the Kuramoto model with and without noise, and furthermore has
the merit of offering the possibility to explore the issue of emergence of spontaneous
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synchronization in a wider space of parameters than that of the first-order dynamics.
Moreover, the generalized model gives even with a unimodal natural frequency dis-
tribution with a non-compact support a rather rich phase diagram that includes both
equilibrium and nonequilibrium phase transitions. We may remind the reader that
with such a frequency distribution, the first-ordermodel shows only a nonequilibrium
second-order phase transition, as discussed in Chap. 1.

Besides proliferation in behavior with the inclusion of inertia, the generalized
model offers a rather remarkable bridge between two apparently disconnected
research areas, namely, the area of spontaneous synchronization pursued by dynam-
ical physicists and that of statistical physics studies, in both in and out of equilibrium
regimes, of so-called long-range interacting systems pursued within the community
of statistical physicists. Indeed, it turns out that two different limits of the general-
ized model have been studied extensively over the years, albeit with not much over-
lap and inter-community dialogue, by the communities of dynamical and statistical
physicists. As we will demonstrate in this chapter, the dynamics of the generalized
Kuramoto model describes a long-range interacting system of particles moving on
a unit circle under the influence of a set of external drive in the form of quenched
external torques acting on the individual particles and in presence of stochastic noise.
With the noise, but without the external torques, the resulting model is the so-called
Brownian mean-field (BMF) model [11], introduced as a generalization of the cel-
ebrated Hamiltonian mean-field (HMF) model that serves as a prototype to study
statics and dynamics of long-range interacting systems [12].

In recent years, there has been a surge in interest in studies of systems with
long-range interactions. In these systems, the inter-particle potential in d dimensions
decays at large separation r as r−α , with 0 ≤ α ≤ d [13–17]. Examples are grav-
itational systems, plasmas, two-dimensional hydrodynamics, charged and dipolar
systems, etc. Unlike systems with short-range interactions, long-range interacting
systems are generically non-additive, implying that dividing the system into macro-
scopic subsystems and summing over their thermodynamic variables such as energy
do not yield the corresponding variables of the whole system. Non-additivity leads
to many significant thermodynamic and dynamical consequences, such as nega-
tive microcanonical specific heat, inequivalence of statistical ensembles, and others,
which are unusual with short-range interactions [15].

In addition to the aforementioned merits of the generalized model, the latter finds
its relevance in addressing a problem of practical interest. As mentioned in Chap.
1, an early motivation behind studying analytically the phenomenon of synchro-
nization, for which the Kuramoto model serves as the prototype, was to explain the
spectacular phenomenon of spontaneous synchronization among fireflies. Namely,
the phenomenon observed in parts of south-east Asia of thousands of male fireflies
gathering in trees at night and flashing on and off in unison. It was revealed in a
study due to Ermentrout that among fireflies of a particular species (the Pteroptyx
mallacae), the approach to synchronization from an initially unsynchronized state
is faster in the Kuramoto setting than in reality [18]. Ermentrout proposed a route
to reconciliation that involves accounting for finite inertia of the Kuramoto oscil-
lators, which elevates the first-order dynamics of the Kuramoto model to the level
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of second-order dynamics.1 Including also a Gaussian noise term that accounts for
the stochastic fluctuations of the natural frequencies in time [19], one arrives at the
generalized Kuramoto model including inertia and noise. We will discuss below a
proof that the resulting dynamics leads to a nonequilibrium stationary state (NESS)
at long times.

Study of NESSs is a very active area of research of modern day statistical mechan-
ics [20]. These states are characterized by a violation of detailed balance, thereby
leading to a net non-zero probability current around a closed loop in the configura-
tion space. A primary challenge in this field is to formulate a tractable framework
to analyze nonequilibrium systems on a common footing, similar to the one due to
Gibbs and Boltzmann that exists for equilibrium systems.

3.1 Generalized Kuramoto Model with Inertia and Noise

The generalized Kuramoto dynamics constitutes the dynamical variable of angular
velocity v j assigned to each oscillator in addition to its phase θ j . The equations of
motion are given by [2, 3]

dθ j

dt
= v j , m

dv j
dt

= −γ v j + γω j − ˜Kr sin(θ j − ψ) + η̃ j (t), (3.1)

where m is the common moment of inertia of the oscillators, γ > 0 is a parameter
that plays the role of a damping constant, ˜K is the strength of coupling between the
oscillators, while η̃ j (t) is a Gaussian, white noise satisfying

〈̃η j (t)〉 = 0, 〈̃η j (t )̃ηk(t
′)〉 = 2˜Dδ jkδ(t − t ′). (3.2)

Here, ˜D ≥ 0 is a parameter that sets the strength of the noise. The quantity r in
Eq. (3.1) is the usual Kuramoto order parameter defined in Eq. (1.40) of Chap. 1.
Note that reiψ being a complex number, see Eq. (1.40), we may resolve it along the
real (or the x-) axis and the imaginary (or the y-) axis, thus obtaining the quantities

rx (t) ≡ r(t) cosψ(t) = 1

N

N
∑

j=1

cos(θ j (t)),

ry(t) ≡ r(t) sinψ(t) = 1

N

N
∑

j=1

sin(θ j (t)),

r(t) =
√

r2x (t) + r2y (t), ψ(t) = tan−1(ry(t)/rx(t)). (3.3)

1That inertia may have significant effect on relaxation properties was already seen in Chap. 1 for
the case of a single oscillator.
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We consider the frequency distribution g(ω) to be unimodal with a non-compact
support and symmetric about the mean 〈ω〉 = 0. We will denote the width of the
distribution by σ . Note that any non-zero value of 〈ω〉 can be trivially gotten rid
off by viewing the dynamics in a frame rotating uniformly with frequency 〈ω〉 with
respect to the laboratory frame.

In the limit of overdamped motion (m → 0 at a fixed γ 	= 0), the dynamics (3.1)
reduces to

γ
dθ j

dt
= γω j − ˜Kr sin(θ j − ψ) + η̃ j (t). (3.4)

Then, defining K ≡ ˜K/γ and η j (t) ≡ η̃ j (t)/γ so that D = ˜D/γ 2, the dynamics
(3.4) for D = 0 becomes that of the Kuramoto model, Eq. (1.16), and for D 	= 0 that
of its noisy version given by the dynamics (2.20).

3.1.1 Relation to Electrical Power Distribution Networks

It turns out that the dynamics (3.1) without the noise term, studied in [1], also arises
in the context of electrical power distribution networks comprising synchronous
generators (representing power plants) and motors (representing
customers) [21, 22]; the dynamics arises in the approximation in which every node
of the network is connected to every other. We discuss this connection to power
networks in the present subsection.

The basic elements of a power distribution network or grid are synchronous gen-
erators located at power plants and motors located with the consumers. A generator
converts mechanical (or other forms of energy, e.g., nuclear energy) into electrical
energy, while the reverse is true for a motor. Let P denote the power, which being
generated is a positive quantity for a generator and being consumed is negative for
a motor. Either a generator or a motor basically consists of a rotating turbine whose
state for the j-th unit is represented by its phase

θ j (t) = Ωt + φ j (t), (3.5)

where Ω is the standard supply frequency, Ω = 50/60 Hz typically, while φ j (t)
is the deviation from uniform rotation. From considerations of energy conser-
vation, we easily see that the generated or consumed power Psource

i of the i-th
element has to equal the sum of the power P trans

i exchanged with the grid, the
power Pacc

i = (I/2)(d/dt)(dθi (t)/dt)2 accumulated in the turbine, and the amount
Pdiss
i = κ(dθi (t)/dt)2 dissipated in overcoming friction. Here, I is the moment of

inertia of the turbine, while κ is the friction constant. The power transmitted between
two elements j and i that are connected by a transmission line would depend on the
phase difference across the ends of the transmission line, and may be shown to be
given by Pmax; j i sin(θ j − θi ), where Pmax; j i is the maximum capacity of the trans-
mission line. With P trans

i = ∑

j Pmax; j i sin(θ j − θi ), we then arrive at the equation
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P source
i = I

2

d

dt

(dθi (t)

dt

)2 + κ
(dθi (t)

dt

)2 −
∑

j

Pmax; j i sin(θ j − θi ). (3.6)

With the assumption that |dφ/dt | 
 Ω , one then obtains the dynamics [21, 22]

d2φi (t)

dt2
= Pi − γ

dφi

dt
+
∑

j

K ji sin(φ j − φi ), (3.7)

where we have

Pi = P source
i − κΩ2

IΩ
, (3.8)

γ = 2κ

I
, (3.9)

K ji = Pmax; j i
IΩ

. (3.10)

In the mean-field approximation in which every unit i is connected to every other
unit j with equal strength and K ji = K/N , where N is the total number of nodes in
the network, Eq. (3.7) may be reduced to the form

d2φi (t)

dt2
= Pi − γ

dφi

dt
+ K

N

∑

j

sin(φ j − φi ). (3.11)

Let us note that the Pi ’s are intrinsic to the units and would vary in general from
one unit to another, so that they may be regarded as quenched random variables. The
above dynamics is similar to the generalized Kuramoto model dynamics (3.1) in the
absence of noise ηi (t), which may be additionally considered also in the dynamics
(3.11) as accounting for random ambient noise.

3.1.2 The Model as a Long-Range Interacting System

We now show that in a different context than that of coupled oscillators, the dynam-
ics (3.1) describes a long-range interacting systemof particlesmoving on a unit circle,
with each particle acted uponby a quenched external torque ω̃ j ≡ γω j . Recent explo-
ration of long-range interacting systems, and in particular, of their static and dynamic
properties, has focussed on an analytically tractable and representative model called
the Hamiltonian mean-field (HMF) model [12].

The HMF model consists of N particles of mass m that are moving on a unit
circle and are interacting through a long-range interparticle potential that is of the
mean-field type: every particle is coupled to every other with equal strength. The
Hamiltonian of the HMF model is given by [12]
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H =
N
∑

j=1

p2j
2m

+ ˜K

2N

N
∑

j,k=1

[

1 − cos(θ j − θk)
]

, (3.12)

where θ j ∈ [−π, π ] is the position of the j-th particle on the circle, while p j = mvj
is its conjugated angular momentum, with v j being the angular velocity. The time
evolution of the system within a microcanonical ensemble takes place following the
deterministic Hamilton equations of motion:

dθ j

dt
= v j , m

dv j
dt

= −˜Kr sin(θ j − ψ). (3.13)

The dynamics evidently conserves the total energy and momentum, and moreover
leads at long times to an equilibrium stationary state in which, depending on the
energy density ε ≡ H/N , the system could be in one of two possible phases. Namely,
for ε smaller than a critical value εc = 3˜K/4, the system is in a clustered phase in
which the particles are close together on the circle, while for ε > εc, the particles are
uniformly distributed on the circle, thus characterizing a homogeneous phase [15].
A continuous phase transition between the two phases is characterized by a positive
value of stationary-state r , denoted by rst, in the clustered phase and a zero value in
the homogeneous phase.

It is natural to invoke a generalization of the microcanonical dynamics (3.13) to
account for interaction with an external heat bath at temperature T . The resulting
model, which goes by the name of the Brownian mean-field (BMF) model, has thus
a canonical-ensemble dynamics given by [11].

dθ j

dt
= v j , m

dv j
dt

= −γ v j − ˜Kr sin(θ j − ψ) + η̃ j (t), (3.14)

where η̃ j (t) is as in Eq. (3.2). We may employ the fluctuation-dissipation relation to
express the strength ˜D of the noise in terms of the temperature T and the damping
constant γ as ˜D = γ kBT [20]. We will set the Boltzmann constant kB to unity in the
rest of the chapter for reasons of convenience. The canonical dynamics (3.14) also
leads to a long-time equilibrium stationary state in which a generic configuration
C ≡ {θ j , v j }1≤ j≤N that has energy E(C) occurs with the Gibbs-Boltzmann weight:
Peq(C) ∝ exp[−E(C)/T ]. The phase transition in the HMF model observed within
the microcanonical ensemble now occurs within the canonical ensemble as one tunes
the temperature across the critical value Tc = ˜K/2. The derivation of this result is
discussed in Sect. 3.3.1.

We now consider a set of quenched external torques {ω̃ j ≡ γω j } acting on each
of the particles, thereby pumping energy into the system. In this case, the second
equation in the canonical dynamics (3.14) is augmented by the term ω̃ j on the right
hand side. The resulting dynamics becomes exactly the same as the dynamics (3.1)
of the generalized Kuramoto model.
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3.1.3 Dynamics in a Reduced Parameter Space

We will find it convenient to reduce the number of parameters in the dynamics given
by Eq. (3.1). To achieve this, note that the effect of σ may be made explicit by
replacing ω j in the second equation by σω j . We will thus from now on consider the
dynamics (3.1) with the substitution ω j → σω j . In the resulting model, g(ω) is then
to be regarded as having zero mean and unit width. Moreover, we will consider in
the dynamics (3.1) the parameter ˜D to be ˜D = γ T , see our discussions above.

For m 	= 0, in terms of dimensionless quantities [5, 6]

t ≡ t
√

˜K/m, v j ≡ v j

√

m/˜K , 1/
√
m ≡ γ /

√

˜Km, σ ≡ γ σ/˜K ,

T ≡ T/˜K , η j (t) ≡ η̃ j (t)/˜K , (3.15)

the equations of motion (3.1) take the form

dθ j

dt
= v j ,

dv j

dt
= − 1√

m
v j − r sin(θ j − ψ) + σω j + η j (t), (3.16)

where we have

〈η j (t)ηk(t
′
)〉 = 2

T√
m

δ jkδ(t − t ′). (3.17)

For m = 0, defining the dimensionless time t ≡ t (˜K/γ ), with σ and T as defined
above, the dynamics has the form of an overdamped motion:

dθ j

dt
= σω j − r sin(θ j − ψ) + η j (t), (3.18)

with 〈η j (t)ηk(t
′
)〉 = 2T δ jkδ(t − t ′). We thus consider from now on instead of

the dynamics (3.1) involving five parameters given by m, γ, ˜K , σ, T the reduced
dynamics (3.16) (or (3.18) in the overdamped limit) that involves three dimension-
less parameters given by m, T , σ . We will drop the overbars over various symbols
for brevity of notation. With σ = 0 (i.e. g(ω) = δ(ω)) the dynamics (3.16) becomes
that of the BMFmodel with an equilibrium stationary state. For other choice of g(ω),
we show in Appendix 1 that the dynamics (3.16) violates detailed balance leading to
a NESS [5].
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3.2 Nonequilibrium First-Order Synchronization Phase
Transition: Simulation Results

Here, we report simulation results on a very interesting nonequilibrium phase transi-
tion that occurs in the stationary state of the dynamics (3.16). In the three-dimensional
space spanned by the parameters (m, T, σ ), we first locate the phase transitions in
the Kuramoto model, Eq. (1.15), and in its noisy extension, Eq. (2.20).

The phase transition of the Kuramoto dynamics (m = T = 0, σ 	= 0) corresponds
to a continuous transition from a low-σ synchronized to a high-σ incoherent phase
occurring across the critical point given by

σc(m = 0, T = 0) = πg(0)

2
, (3.19)

which is obtained using Eq. (1.51), see Ref. [6]. Extending the Kuramoto dynamics
to T 	= 0 (the noisy Kuramoto model studied in Chap. 2), the critical point (3.19)
becomes a second-order critical line on the (T, σ )-plane,which is obtained by solving
the equation

2 =
∫ ∞

−∞
dω

g(ω)T

T 2 + ω2σ 2
c (m = 0, T ))

, (3.20)

as may be seen by rewriting appropriately Eq. (2.36) [6]. The transition in the BMF
dynamics (m, T 	= 0, σ = 0) corresponds now to a continuous transition at the crit-
ical temperature Tc = 1/2, a result proved in Sect. 3.3.1.

Figure3.1a shows schematically the complete phase diagram of the model (3.16),
in which the red second-order critical lines denote the continuous transitions men-
tioned above [5, 6]. For general non-zero values of m, σ, T , however, the synchro-
nization transition becomes first order, occurring across the shaded blue transition
surface shown in the figure. The surface is bounded by the second-order critical
lines on the (T, σ ) and (m, T ) planes, and also by a first-order transition line on
the (m, σ )-plane. We remind the reader that all phase transitions for σ 	= 0 are in
NESSs.

That the phase transition for general non-zero values of m, T, σ is first order
becomes evident on analyzing results of N -body simulations of the dynamics (3.16)
for a representative g(ω), for example, a Gaussian distribution g(ω) = exp(−ω2/2)/√
2π [5, 6]. For details on the simulation procedure, we refer the reader to Appendix

2. For given values ofm and T , and an initial state with all the oscillators at θ = 0 and
with their angular velocities sampled from a Gaussian distribution with zero mean
and standard deviation ∝ T , we first allowed the system to equilibrate at σ = 0.
The state was subsequently allowed to evolve under the condition of σ increasing
adiabatically to high values and back in a cycle. Figure3.2a shows the behavior of
r for several values of m at a fixed value of T smaller than the BMF transition
point Tc = 1/2. In the figure, one may observe sharp jumps and hysteresis behavior
that are hallmarks of a first-order transition. With the decrease of m, the jumps in
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Fig. 3.1 Panel (a) shows the schematic phase diagram of the model (3.16) in the three-dimensional
space spanned by the parameters, the dimensionless moment of inertia m, the temperature T , and
the width of the frequency distribution σ . In the figure, the shaded blue surface denotes a first-order
transition surface, while the thick red lines are second-order critical lines. The surface and the lines
are such that the system has a synchronized stationary state inside the region bounded by the surface,
and has instead an incoherent stationary state in the region outside the surface. In the figure, we also
show the transitions of the noiseless and the noisy Kuramoto model and the BMF model. The blue
surface in (a) is bounded from above and below by the dynamical stability thresholds σ sync(m, T )

and σ inc(m, T ) that correspond respectively to the synchronized and the incoherent phase. These
thresholds are estimated in N -body simulations, in particular, from hysteresis plots of the type
shown in Fig. 3.2. The surfaces σ sync(m, T ) and σ inc(m, T ) obtained in numerical simulations for
N = 500 andwith aGaussian g(ω)with zeromean and unit width are displayed in panel (b). https://
doi.org/10.1088/1742-5468/14/08/R08001 c©SISSA Medialab Srl. Reproduced by permission of
IOP Publishing. All rights reserved.

r become less sharp, and the hysteresis loop area decreases, both features lending
credence to the fact that the transition becomes second-order-like as m → 0, see
Fig. 3.1a. For m = 1000, we show in Fig. 3.2a the approximate stability thresholds
for the incoherent and the synchronized state, denoted respectively by σ inc(m, T )

and σ sync(m, T ). The actual phase transition point σc(m, T ) lies in between the two

https://doi.org/10.1088/1742-5468/14/08/R08001
https://doi.org/10.1088/1742-5468/14/08/R08001
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Fig. 3.2 For the model (3.16), the figure shows in (a) r as a function of adiabatically-tuned σ for
different values of m at T = 0.2 < Tc = 1/2 (with Tc being the BMF transition point), and also
the stability thresholds, σ inc(m, T ) and σ sync(m, T ), for m = 1000, and in (b) r as a function of
adiabatically tuned σ for different temperatures T ≤ Tc = 1/2 at a fixedmoment of inertiam = 10.
For a givenm in (a), the branch of the plot to the right (left) corresponds to σ increasing (decreasing);
for m = 1, note that the two branches almost overlap. For a given T in (b), the branch of the plot to
the right (left) corresponds to σ increasing (decreasing); for T ≥ 0.45, the two branches almost fall
on top of one another. The data are obtained from numerical integration of the dynamics (3.16) for
N = 500 and for a Gaussian g(ω) with zero mean and unit width. https://doi.org/10.1088/1742-
5468/14/08/R08001 c©SISSA Medialab Srl. Reproduced by permission of IOP Publishing. All
rights reserved.

thresholds. We note from the figure that both the thresholds decrease and approach
zero with the increase ofm. Figure3.2b shows hysteresis plots for a Gaussian g(ω) at
a fixedm and for several values of T ≤ Tc. Onemay observe from the figure that with
T approaching Tc, the hysteresis loop area decreases, jumps in r become less sharp,
and moreover, the jumps occur between smaller and smaller values that approach
zero. Moreover, the r value at σ = 0 decreases as T approaches Tc, reaching zero at
Tc. From these findings, we conclude that the thresholds σ inc(m, T ) and σ sync(m, T )

coincide on the second-order critical lines, as expected, andmoreover, the lines come
asymptotically close together and approach zero as m → ∞ at a fixed T . For given
values of m and T and σ satisfying σ inc(m, T ) < σ < σ sync(m, T ), we show in
Fig. 3.3a the dependence of r on time in the stationary state. The figure evidently
shows a bistable behavior, in which the system switches back and forth between

https://doi.org/10.1088/1742-5468/14/08/R08001
https://doi.org/10.1088/1742-5468/14/08/R08001
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Fig. 3.3 For the dynamics (3.16) at m = 20, T = 0.25, N = 100, and for a Gaussian g(ω) with
zero mean and unit width, panel (a) shows at σ = 0.185, which is the numerically estimated first-
order phase transition point, the quantity r versus time in the stationary state. On the other hand,
panel (b) shows the distribution P(r) at several σ ’s around 0.185. The data are obtained from
numerical integration of the dynamical equations (3.16) with N = 100. https://doi.org/10.1088/
1742-5468/14/08/R08001 c©SISSA Medialab Srl. Reproduced by permission of IOP Publishing.
All rights reserved.

incoherent (r ≈ 0) and synchronized (r > 0) states. Concomitantly, the distribution
P(r) shown in Fig. 3.3b is bimodal with a peak around either r ≈ 0 or r > 0 as σ

varies between σ inc(m, T ) and σ sync(m, T ). Figure3.3 is consistent with the phase
transition being first order [23].

3.3 Analysis in the Continuum Limit: The Kramers
Equation

In this section, we discuss analytical characterization of the dynamics (3.16) in the
continuum limit N → ∞. Similar to what was done for both the noiseless and the
noisy Kuramoto model in Chaps. 1 and 2, let us define a single-oscillator density
f (θ, v, ω, t) that gives at time t and for each ω the fraction of oscillators that have
angle θ and angular velocity v. The density f is 2π -periodic in θ , and obeys the

https://doi.org/10.1088/1742-5468/14/08/R08001
https://doi.org/10.1088/1742-5468/14/08/R08001
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normalization
∫ π

−π
dθ

∫ +∞
−∞ dv f (θ, v, ω, t) = 1 ∀ ω, t . We show in Appendix 3 that

the time evolution of f (θ, v, t) is given by the so-called Kramers equation [3, 5, 6,
24]

∂ f

∂t
= −v

∂ f

∂θ
+ ∂

∂v

( v√
m

− σω + r sin(θ − ψ)
)

f + T√
m

∂2 f

∂v2
, (3.21)

with r(t)eiψ(t) = ∫

dθdvdω g(ω)eiθ f (θ, v, ω, t).
As in previous chapters, we will be interested in the stationary state solutions of

the Kramers equation, which are obtained by setting the left hand side of Eq. (3.21)
to zero. As already mentioned, the stationary state is a NESS, unless σ = 0. In the
stationary state, the quantities r and ψ have their stationary-state values given by rst
and ψst, respectively. The stationary-state single-oscillator density fst(θ, v, ω) thus
satisfies

0 = −v
∂ fst
∂θ

+ ∂

∂v

( v√
m

− σω + rst sin(θ − ψst)
)

fst + T√
m

∂2 fst
∂v2

. (3.22)

Similar to what was done in Chap. 1, we may set ψst to zero by choosing suitably
the origin of the phase, which corresponds to having the stationary values ry,st = 0
and rx,st = rst. Consequently, one has

rst =
∫

dθ dvdω g(ω) cos θ fst(θ, v, ω). (3.23)

From now on, we will consider the stationary-state Kramers equation with ψst = 0.

3.3.1 σ = 0: Stationary Solutions and the Associated Phase
Transition

For σ = 0, the stationary-state single-oscillator density is given by the Gibbs-
Boltzmann measure corresponding to canonical equilibrium [6]:

fst(θ, v) = exp[−v2/(2T ) + (rst/T ) cos θ ]√
2πT

∫ π

−π
dθ exp[(rst/T ) cos θ ] , (3.24)

where the denominator ensures that one has
∫∞
−∞ dv

∫ π

−π
dθ fst(θ, v) = 1. It may be

easily checked by direct substitution that the above form2 satisfies Eq. (3.22) with
σ = 0 and with ψst = 0. Using Eqs. (3.23) and (3.24), we arrive at

2Note that with σ = 0, all the oscillators have the same natural frequency equal to 〈ω〉, and con-
sequently, the need to group the oscillators based on their natural frequencies, as was done while
defining the density f (θ, v, ω, t), is no longer there. As a result, one has the stationary-state single-
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rst =
∫

dθdv cos θ fst(θ, v) =
∫ π

−π
dθ cos θ exp[(rst/T ) cos θ ]

∫ π

−π
dθ exp[(rst/T ) cos θ ] . (3.25)

The self-consistency Eq. (3.25) has a trivial solution rst = 0 valid at all temperatures,
while it may be shown that a non-zero solution exists for T smaller than a critical
value Tc = 1/2 [15]. Reverting to dimensional temperatures on using Eq. (3.15), we
obtain the critical temperature of the BMF model as Tc = ˜K/2, as we had promised
to show towards the end of Sect. 3.1.2.

3.3.2 σ �= 0: Incoherent Stationary State and Its Linear
Stability

For σ 	= 0, the θ -independent solution characterizing the incoherent phase, for which
rst = 0, is given by [3]:

f incst (θ, v, ω) = 1

2π

√

1

2πT
exp

[

− (v − σω
√
m)2

2T

]

, (3.26)

which may be seen by direct substitution into Eq. (3.22).
As is usual, the linear stability analysis of the incoherent state (3.26) is carried out

by expanding f (θ, v, ω, t) as f (θ, v, ω, t) = f incst (θ, v, ω) + eλtδ f (θ, v, ω), with
|δ f | 
 1, substituting in Eq. (3.21) with ψ = ψst = 0 (since we are interested in
studying fluctuations in the stationary state), and then keeping terms to linear order
in δ f . The linearized Kramers equation is given by

λδ f + v
∂δ f

∂θ
− ∂

∂v

( v√
m

− σω
)

δ f − T√
m

∂2δ f

∂v2

= −∂ f incst

∂v

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
dφdvdω g(ω)δ f (φ, v, ω) sin(φ − θ). (3.27)

Since f and f incst are normalized, we have

∫ π

−π

∫ ∞

−∞
dθdv δ f (θ, v, ω) = 0. (3.28)

On substituting

δ f (θ, v, ω) =
∞
∑

n=−∞
bn(v, ω, λ)einθ (3.29)

oscillator density fst(θ, v) defined as the fraction of oscillators that have angle θ and angular velocity
v in the stationary state.
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in Eq. (3.27), we get

d2bn
dv2

+ 1

T

(

v − σω
√
m
)dbn
dv

+ 1

T

(

1 − λ
√
m − inv

√
m
)

bn

=
√
m

T

∂ f incst

∂v
π(iδn,1 − iδn,−1)〈1, bn〉, (3.30)

where we have the scalar product

〈ϕ,ψ〉 ≡
∫ ∞

−∞

∫ ∞

−∞
dvdω g(ω)ϕ∗(v, ω)ψ(v, ω), (3.31)

with ∗ denoting complex conjugation. Since δ f is real, we have b−n = b∗
n , while

Eq. (3.28) gives b0 = 0. We can then focus our attention on only n ≥ 0. Next, Eq.
(3.30) may be transformed into a nonhomogeneous parabolic cylinder equation by
the transformations

bn(v, ω, λ) = exp
[

− (v − σω
√
m)2

4T

]

βn(z, ω, λ), (3.32)

z = 1√
T

(v − σω
√
m + i2nT

√
m), (3.33)

which when used in Eq. (3.30) yields

d2βn

dz2
+
[

1

2
− z2

4
− √

m(λ + inσω
√
m + n2T

√
m)

]

βn

= iπ
√
m

∂ f incst

∂v
e

1
4 (z−2i

√
mT )2 〈1, e− 1

4 (z−2i
√
mT )2β1〉 δn,1. (3.34)

For n 	= 1, the right hand side of the above equation is zero, thereby giving the
eigenvalues

λp,n(ω) = − p√
m

− n2T
√
m − inσω

√
m, p = 0, 1, 2, . . . , (3.35)

and the corresponding eigenfunctions

βp,n(z, ω, λp,n) = Dp(z) = 2− p
2 e− z2

4 Hp

( z√
2

)

, (3.36)

which do not depend on n and ω. Here, the quantities Dp(z) and Hp(x) are respec-
tively the parabolic cylinder function and the Hermite polynomial of degree p [25].
The eigenvalues λp,n(ω) form a continuous spectrum. They all have negative real
parts, thus leading to linear stability of the incoherent state (3.26), for n = 2, 3, . . .
and p = 0, 1, 2, . . .. For n = 0, the eigenvalues have also negative real parts unless
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we consider those with p = 0, which have a vanishing real part. They would corre-
spond to neutrally stable modes; however, we see that the modes with n = 0 have
zero amplitude due to the normalization condition (3.28).

For n = 1, solving Eq. (3.30), we get

β1(z, ω, λ) = −iπ〈1, e−( z
2 −i

√
mT)

2

β1〉

×
∞
∑

p=0

∫∞
−∞ dz1 e(

z1
2 −i

√
mT)

2

Dp[ f incst ]′
√
2π p!

(

p√
m

+ λ + iσω
√
m + T

√
m
)Dp(z), (3.37)

where

[ f incst (v)]′ = ∂ f incst
∂v

∣

∣

∣

∣

∣

v=σω
√
m−i2T

√
m+√

T z

= − (z − 2i
√
mT )

(2π)
3
2 T

e−
1
2 (z−2i

√
mT )2

, (3.38)

Using the last expression to compute 〈1, e−( z
2 −i

√
mT)

2

β1〉, we obtain from the result-
ing self-consistent equation an eigenvalue equation for λ given by [3]:

2T

emT
=

∞
∑

p=0

(−mT )p(1 + p
mT )

p!
∞
∫

−∞

g(ω)dω

1 + p
mT + i σω

T + λ

T
√
m

. (3.39)

In Appendix 4, we prove that the above equation has one and only one solution for
λ with a positive real part, and when this single solution exists, it is necessarily real
[5, 6]. A positive (respectively, negative) λ implies that the incoherent state (3.26) is
linearly unstable (respectively, stable).Wemay then conclude that at the point of neu-
tral stability, we have λ = 0, which when substituted in Eq. (3.39) gives σ inc(m, T ),
the stability threshold of the incoherent stationary state, to be given by the following
equation:

2T

emT
=

∞
∑

p=0

(−mT )p(1 + p
mT )2

p!
∞
∫

−∞

g(ω)dω

(1 + p
mT )2 + (σ inc)2ω2

T 2

. (3.40)

In the (m, T, σ ) space, the above equation defines the stability surface σ inc(m, T ).
There will also be the stability surface σ sync(m, T ) for the stability threshold of the
synchronized stationary state. We refer the reader to Fig. 3.1b that shows the two
surfaces obtained in N -body simulations for N = 500 for a Gaussian g(ω).

The two surfaces, σ inc(m, T ) and σ sync(m, T ), coincide on the critical lines on
the (T, σ ) and (m, T ) planes where the transition becomes continuous. On the other
hand, outside these planes, the surfaces enclose the first-order transition surface
σc(m, T ), that is, σ sync(m, T ) > σc(m, T ) > σ inc(m, T ), see Fig. 3.1a. Let us now
show by taking suitable limits that the surface σ inc(m, T ) meets the critical lines on
the (T, σ ) and (m, T ) planes. Along the way, we will also obtain the intersection
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of this surface with the (m, σ )-plane. On considering m → 0 at a fixed T , and
on noting that only the p = 0 term in the sum in Eq. (3.40) contributes, we get
limm→0,T fixed σ inc(m, T ) = σc(m = 0, T ), with the implicit expression of σc(m =
0, T ) given by Eq. (3.20). One also finds that lim

T→T−
c ,m fixed

σ inc(m, T ) = 0, that is, on

the (m, T ) plane, the transition line is given by Tc = 1/2. As T → 0 at a fixed m,
we get σ inc

noiseless(m) ≡ lim
T→0,m fixed

σ inc(m, T ), with [5, 6].

1 = πg(0)

2σ inc
noiseless

− m

2

∫ ∞

−∞
dω

g(ω)
[

1 + m2(σ inc
noiseless)

2ω2
] . (3.41)

3.3.3 σ �= 0: Synchronized Stationary State

For σ 	= 0, the existence of the synchronized stationary state is borne out by our
simulation results displayed in Figs. 3.2 and 3.3. For general σ , we may expand the
single-oscillator density for the synchronized stationary state as [9]

f syncst (θ, v, ω) = Φ0

(

v√
2T

) ∞
∑

n=0

bn(θ, ω)Φn

(

v√
2T

)

. (3.42)

Here, the functions bn satisfy bn(θ, ω) = bn(θ + 2π,ω) in order that f syncst is 2π -
periodic in θ . On the other hand, Φn(ax) is the Hermite function: Φn(ax) =
√

a/(2nn!√π) exp(−a2x2/2)Hn(ax), with Hn(x)’s being the n-th degree Hermite
polynomial. The functions Φn are orthonormal:

∫

dx Φm(ax)Φn(ax) = δmn . Nor-
malization of f syncst (θ, v, ω) gives

∫ π

−π
dθ b0(θ, ω) = 1, while the self-consistent

values of the parameters rst are given by

rst =
∫

dω g(ω)

∫ π

−π

dθ b0(θ, ω) cos θ . (3.43)

Furthermore, using
∫

dx xΦ0(ax)Φn(ax) = 1/(
√
2a)δn,1, we obtain the result that

∫

dv v f syncst (θ, v, ω) = √
Tb1(θ, ω). Integrating the stationary-state Kramers equa-

tion (3.22) over v, we obtain that
∫

dv v f syncst (θ, v, ω) and, hence, that b1(θ, ω) does
not depend on θ . In choosing the Hermite functions in the expansion (3.42), we
are motivated by the fact that for σ = 0, the density f syncst (θ, v, ω) has the Gibbs-
Boltzmann form, f syncst (θ, v, ω) ∼ exp[−v2/(2T ) + rst cos θ ], cf. Equation (3.24).
As may be easily seen [9], the expansion coefficients bn for this case satisfy
b0(θ, 0) ∼ exp[rst cos θ ], bn(θ, 0) = 0 for n > 0, so that only the n = 0 term in
the expansion (3.42) has to be taken into account. Then, with Φ0(x) ∼ exp(−x2/2),

the product Φ0

(

v/
√
2T

)

Φ0

(

v/
√
2T

)

appearing in the expansion correctly gives

the velocity-part of the density ∼ exp[−v2/(2T )].
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On plugging Eq. (3.42) into the stationary-state Kramers equation (3.22), on using
the known recursion relations for the Hermite polynomials, and on equating to zero
the coefficient of each Φn , we get [9]

√
nT

∂bn−1(θ, ω)

∂θ
+ √

(n + 1)T
∂bn+1(θ, ω)

∂θ

+ n√
m
bn(θ, ω) +

√

n

T
bn−1(θ, ω)[rst sin θ − σω] = 0 (3.44)

for n = 0, 1, 2, . . . (with the understanding that b−1(θ, ω) ≡ 0). The equation for
n = 0 allows to recover the result that b1(θ, ω) is independent of θ . Noting the scaling
of the various terms in Eq. (3.44) with m, we may expand bn(θ, ω) as [9]

bn(θ, ω) =
∞
∑

k=0

(
√
m)kcn,k(θ, ω) , (3.45)

which may be shown to be an asymptotic expansion in
√
m [9], thus requiring a

proper numerical evaluation of the sum on the right hand side by invoking the so-
called Borel summation method [26], see Appendix 6. Now, using Eq. (3.45), we
conclude that b1(θ, ω) being independent of θ implies that so will be c1,k(θ, ω) ∀ k.
The only constraint on b0(θ, ω) being

∫ π

−π
dθ b0(θ, ω) = 1, we may without losing

generality choose c0,k≥1(0, ω) = 0. We now use Eq. (3.45) in Eq. (3.44) and equate
the coefficient of each power of

√
m to zero. The term proportional to

(√
m
)−1

gives ncn,0(θ, ω) = 0, implying cn,0(θ, ω) = 0 for n > 0. The coefficient of the term

proportional to
(√

m
)k

yields [9]

√
nT

∂cn−1,k(θ, ω)

∂θ
+ √

(n + 1)T
∂cn+1,k(θ, ω)

∂θ

+√
nTa(θ, ω)cn−1,k(θ, ω) + ncn,k+1(θ, ω) = 0 (3.46)

for n, k = 0, 1, 2, . . . (with c−1,k(θ, ω) ≡ 0), where a(θ, ω) ≡ [rst sin θ − σω]/T .
The system of equations (3.46) can be solved recursively. The details of solving these
equations may be found in Appendix 5, while we quote here only the nonvanishing
solutions:

c0,0(θ, ω) = c0,0(0, ω)e−h(θ,ω)

[

1 +
(

eh(2π,ω) − 1
)

∫ θ

0 dθ ′eh(θ ′,ω)

∫ π

−π
dθ ′eh(θ ′,ω)

]

, (3.47)

c1,1(ω) = √
T
c0,0(0, ω)

(

1 − eh(2π,ω)
)

∫ π

−π
dθ ′eh(θ ′,ω)

, (3.48)

cn,n(θ, ω) = −
√

T

n

[

∂cn−1,n−1(θ, ω)

∂θ
+ a(θ, ω)cn−1,n−1(θ, ω)

]

, (3.49)

c0,2k(θ, ω) = √
2

∫ π

−π
dθ ′ ∂c2,2k (θ ′,ω)

∂θ ′ eh(θ ′,ω)

∫ π

−π
dθ ′eh(θ ′,ω)

e−h(θ,ω)

∫ θ

0
dθ ′eh(θ ′,ω)
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−√
2e−h(θ,ω)

∫ θ

0
dθ ′ ∂c2,2k(θ ′, ω)

∂θ ′ eh(θ ′,ω), (3.50)

c1,1+2k(ω) = −√
2T

∫ π

−π
dθ ′ ∂c2,2k (θ ′,ω)

∂θ ′ eh(θ ′,ω)

∫ π

−π
dθ ′eh(θ ′,ω)

, (3.51)

c2,2+2k(θ, ω) = −
√

T

2
a(θ, ω)c1,1+2k(ω) −

√
3T

2

∂c3,1+2k(θ, ω)

∂θ
, (3.52)

cn,n+2k(θ, ω) = −
√

T

n

[

∂cn−1,n−1+2k(θ)

∂θ
+ a(θ, ω)cn−1,n−1+2k(θ, ω)

]

−
√

(n + 1)T

n

∂cn+1,n−1+2k(θ, ω)

∂θ
n ≥ 3, (3.53)

with k = 1, 2, . . . . Here, we have defined h(θ, ω) ≡ ∫ θ

0 dθ ′a(θ ′, ω).
Figure3.11 (Appendix 5) shows in a schematic manner the flow of the solution

up to n = k = 6, while that for higher values proceeds in an analogous manner. As
shown in the figure, the system (3.46) computes progressively each element of the
main diagonal, followed by the elements of the second upper diagonal, each one
being determined by the knowledge of two previously determined elements, and so
on. Each element of the matrix is proportional to c0,0(0, ω), the latter being fixed by
the normalization of f syncst :

∑∞
k=0

∫ π

−π
dθ (

√
m)2kc0,2k(θ, ω) = 1. The values of rst

have to be determined self-consistently by using Eqs. (3.43) and (3.45).
In order to illustrate an application of the aforementioned scheme, let us choose

a representative g(ω), namely, a Gaussian: g(ω) = 1/(
√
2π) exp(−ω2/2), and

obtain in the synchronized phase the marginal θ -distribution, defined as n(θ) ≡
∫ ∞

−∞
dω g(ω)

∫ ∞

−∞
dv f syncst (θ, v, ω). We also obtain a quantity proportional to

the local pressure [27], given by p(θ) ≡
∫ ∞

−∞
dω g(ω)

∫ ∞

−∞
dv v2 f syncst (θ, v, ω).

Orthonormality of the Hermite functions implies that

n(θ) =
∫ ∞

−∞
dω g(ω)b0(θ, ω) , (3.54)

p(θ) = T
∫ ∞

−∞
dω g(ω)

(√
2b2(θ, ω) + b0(θ, ω)

)

. (3.55)

To evaluate n(θ) and p(θ), wewould thus need the coefficients b0(θ, ω) and b2(θ, ω),
whose evaluation requires truncating the expansion (3.45) at suitable values ktrunc
of k. Figure3.11 (Appendix 5) implies that knowing c2,2k allows to compute c0,2k ,
and so it is natural to choose the same ktrunc for both b0(θ, ω) and b2(θ, ω).

In Figs. 3.4 and 3.5, we demonstrate an excellent agreement between theory and
simulations for n(θ) and p(θ), for given values of (m, T, σ ). From the figure, we
observe that our analytical approach works very well for both small and large values
of m.

The ratio p(θ)/n(θ) gives the temperature T (θ). In the equilibrium state of a sys-
tem, one necessarily has a spatially uniform temperature profile, i.e., T (θ) equals the
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Fig. 3.4 Density n(θ) for
the dynamics (3.16) in the
stationary state for a
Gaussian g(ω), with
m = 0.25, T = 0.25,
σ = 0.295, ktrunc = 12 for
the upper panel, and
m = 5.0, T = 0.25,
σ = 0.2, ktrunc = 2 for the
lower panel. The simulations
results are denoted by points
and are obtained for
N = 106 number of
oscillators, while theoretical
predictions are denoted by
lines. https://doi.org/10.
1088/1742-5468/2015/05/
P05011 c©SISSA Medialab
Srl. Reproduced by
permission of IOP
Publishing. All rights
reserved.
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temperature T , independent of θ , where T is the temperature of the heat bath that the
system is in equilibrium with. The spatially non-uniform temperature profile shown
in the lower panel of Fig. 3.5 is a further evidence of the fact that the synchronized
state we are dealing with is a NESS. The figure also shows a density-temperature
anticorrelation, i.e., the temperature is peaked at a value of θ at which the density
is minimum, and vice versa. This phenomenon of temperature inversion has been
argued to be a generic feature of and been observed in long-range interacting systems
in NESSs [28–30].

3.4 Phase Diagram: Comparison with Numerics

In this section, we provide a comparison between results for phase transitions
obtained from finite-N simulations and theoretical results in the thermodynamic
limit discussed above. To this end, let us choose the values of the dimensionless
moment of inertia and temperature as m = 20 and T = 0.25, for which Eq. (3.40)
gives σ inc(m, T ) ≈ 0.10076. Our discussion in the preceding section and in partic-
ular, our interpretation of the quantity σ inc(m, T ) makes us expect the following
scenario. For these values of m and T and for a chosen value of σ , on preparing the

https://doi.org/10.1088/1742-5468/2015/05/P05011
https://doi.org/10.1088/1742-5468/2015/05/P05011
https://doi.org/10.1088/1742-5468/2015/05/P05011
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Fig. 3.5 In the upper panel
is shown the pressure p(θ)

for the same parameters as
for the upper panel of
Fig. 3.4. Simulation results
are depicted by points and
correspond to number of
oscillators N = 106, while
theoretical predictions are
denoted by lines. In the
lower panel, we show the
local temperature
T (θ) = p(θ)/n(θ) and its
anticorrelation with the
density n(θ). https://doi.org/
10.1088/1742-5468/2015/
05/P05011 c©SISSA
Medialab Srl. Reproduced by
permission of IOP
Publishing. All rights
reserved.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  1  2  3  4  5  6
p(

)

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  1  2  3  4  5  6

n(
) T(

)

(b)

n( )
T( )

system in an initial state chosen to be the incoherent stationary state at these values
of m, T, σ so that r has the initial value of zero, the dynamical evolution will relax
r to its stationary-state value corresponding to the synchronized phase, provided
that the chosen σ is less than about 0.10076. On the other hand, for σ larger than
0.10076, when the initial incoherent stationary state is linearly stable, r remains zero
for all times. We now compare the above continuum-limit predictions with N -body
simulations, by monitoring in the latter the evolution of r in time while starting
from the incoherent stationary state. To discuss the results from the perspective of
statistical physics, let us employ the standard picture of phase transitions as phe-
nomena occurring dynamically due to dissipative relaxation of the order parameter
towards the minimum of an underlying phenomenological Landau free energy [31].
For a first-order phase transition, we show schematically in Fig. 3.6 the correspond-
ing schematic free energy F(r) versus r for fixed values of m and T at different σ ’s.
Let us note in passing the very important point that for non-zero σ , one ought to have
considered instead of the free-energy the landscapes of the so-called large-deviation
functional, which are direct analogs of free-energy in out-of-equilibrium situations
[32]. In the discussions pursued here, we assume that the landscape picture of phase

https://doi.org/10.1088/1742-5468/2015/05/P05011
https://doi.org/10.1088/1742-5468/2015/05/P05011
https://doi.org/10.1088/1742-5468/2015/05/P05011


3.4 Phase Diagram: Comparison with Numerics 101
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Fig. 3.6 The figure shows schematic Landau free-energy F(r) as a function of r for first-order
transitions at fixed m and T while varying σ . A general discussion of forms of such landscapes
for first-order transitions may be found in Ref. [23]. Here, panels (i) and (vii) correspond to the
synchronized and the incoherent phase being at the globalminimum. In panel (iii) (respectively, (v)),
the synchronized (respectively, incoherent) phase is at the global minimum, while the incoherent
(respectively, synchronized) phase is at a local minimum, thus representing a metastable phase.
Panel (iv) corresponds to the first-order transition point, namely, a point where the synchronized
and the incoherent phases coexist at two minima of equal heights

transitions will also hold in the case of large-deviation functions.3 The utility of
invoking the landscape picture lies in its ability to explain, e.g., the flips in r in
Fig. 3.3, which correspond to dynamics at σ close to σc, when the system switches
back and forth between the two almost stable synchronized and incoherent states,
see Fig. 3.6iv.

To proceed with the discussion, let us investigate the dynamics for σ around
σ inc(m, T ). Figure3.7a–d show simulation results for r as a function of time for
four values of σ , two chosen to be below and two above σ inc(m, T ) (we have, as
mentioned earlier, the values of m and T as m = 20 and T = 0.25). In each case,
we display the dependence of r on time for 10 realizations of the initial incoherent
stationary state and for three values of N . Figure3.7a for σ < σ inc(m, T ) clearly
shows that the system while starting from the unstable incoherent state relaxes in
time to the stable synchronized state; this corresponds to a dynamics on the landscape
sketched in Fig. 3.6i. The relaxation of r from its initial value to its final synchronized-

3Obtaining analytical forms of large-deviation functionals for many-body interacting systems turns
to be a rather formidable task, and only limited success for very specific model systems has been
achieved until now [32].
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Fig. 3.7 Panels a–d show r
as a function of time at
m = 20, T = 0.25 for four
values of σ , two below (a:
σ = 0.09, b: σ = 0.095),
and two above (c: σ = 0.11,
d: σ = 0.12) the theoretical
threshold
σ inc(m, T ) ≈ 0.10076, see
Eq. (3.40). The data have
been obtained by performing
N -body simulations of the
dynamics (3.16) for a
Gaussian g(ω) with zero
mean and unit width
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Fig. 3.8 a The figure shows simulation results (points) demonstrating exponentially-fast relax-
ation ∼eλt of r from its initial incoherent state value to its final synchronized state value for
σ < σ inc(m, T ) ≈ 0.10076 for a Gaussian g(ω) with m = 20, T = 0.25, N = 104. In this figure,
the black solid lines denote exponential growth with theoretically computed growth rates λ obtained
from Eq. (3.39) for a Gaussian g(ω) with zero mean and unit width. The simulation data have been
obtained by performing N -body simulation of the model (3.16) for a Gaussian g(ω)with zero mean
and unit width. b Theoretical λ as a function of σ for the samem and T values as in (a); in particular,
λ attains the value of zero at the stability threshold σ inc(m, T )

state value occurs exponentially fast in time as eλt ; the growth rate λ is obtained from
Eq. (3.39) after substituting aGaussian distribution for g(ω). Figure3.8 demonstrates
a match of λ obtained in theory and simulations.

In Fig. 3.7b, plotted for σ larger than its value in (a) but below σ inc(m, T ) ≈
0.10076, one observes similar to (a) that the system relaxes at long times to the
synchronized state for all realizations. This is despite that fact that some of the
realizations tend to stay at short times close to the initial incoherent state due to
finite-N effects that could not be captured by our continuum-limit theory. For σ >

σ inc(m, T ), but σ < σc(m, T ), the landscape sketched in Fig. 3.6iii predicts that the
system should relax at long times to the globally stable synchronized state, while
should for finite times remain trapped in the metastable incoherent state. This is
indeed borne out by the plots in Fig. 3.7c, which shows that while most realizations
relax to synchronized states for small N , the number of realizations staying close
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Fig. 3.9 For m = 20, T = 0.25, σ = 0.11, the figure shows the fraction η of realizations of initial
incoherent state relaxing to synchronized state within the fixed time of observation t = 200, for a
value of σ above σ inc(m, T ), for which the incoherent phase is linearly stable in the continuum
limit. It is evident from the figure that η for large N decreases exponentially fast with increase of
N . The data are obtained in N -body simulations of the dynamics (3.16) for a Gaussian g(ω) with
zero mean and unit width

to the initial incoherent state for a finite time increases with increase of N . It may
be shown that the fraction η of realizations relaxing to synchronized state within a
fixed and finite time decreases exponentially fast in N for large N , see Fig. 3.9. This
plot implies that for the fixed and finite time of observation, a system size larger than
those shown in Fig. 3.7c exists for which all realizations stay close to the incoherent
state during the dynamical evolution for the time of observation.

A further insight into this last behavior may be obtained by considering the noisy
dynamics of a single particle on a potential landscape. In this case, the typical time
to get out of a metastable state is given in the weak-noise limit by the Kramers time,
i.e., given by a time that is an exponential in the ratio of the potential energy barrier
to come out of the metastable state to the strength of the noise [33]. In the case
of the dynamics of the order parameter on a free-energy landscape for mean-field
systems (similar to the setup of our system), the escape time out of a metastable
state obeys Kramers formula with the value of the free-energy barrier replacing the
potential energy barrier, but with an additional of N multiplying the barrier height
[34]. The factor of N makes the relaxation inmean-field systems quite a slow process
compared to short-range systems.4 It is this last feature that explains the plots in
Fig. 3.7c and the behavior of η. Figure3.7d, plotted for σ larger than σ inc(m, T )

than in (c), shows that in comparison to (c), more realizations stay close to the
initial incoherent state for longer times, since now one has a higher barrier between
the incoherent and synchronized state. Based on the above discussions, we may
conclude that our theoretical predictions are borne out by our simulation results, but

4Slow relaxation is a hallmark of long-range interactions, and mean-field interaction is the extreme
limit of long-range interaction [15].
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one has to exercise caution and correct physical intuition in understanding the finite-
N simulation results vis-à-vis continuum-limit theory valid in the limit N → ∞. Let
us note that the simulation results for N = 500 suggest the stability threshold of the
incoherent state to lie between σ = 0.095 and σ = 0.11, and this range evidently
includes its continuum-limit value (≈0.10076).

Appendix 1: Proof that the Dynamics (3.16) Does Not Satisfy
Detailed Balance

In this appendix, we prove that the dynamics (3.16) does not satisfy detailed balance
unless g(ω) = δ(ω), that is, unless σ is zero. For simplicity, we discuss the proof here
for the case of two distinct natural frequencies, that is, for a particular bimodal g(ω)

made of two distinct delta peaks. Note that we need at least two different frequencies
to have a non-zero σ for the underlying distribution.

Consider a given realization of g(ω) inwhich there are N1 oscillatorswith frequen-
cies ω1 and N2 oscillators with frequencies ω2, with N1 + N2 = N . Define the N -
oscillator distribution function fN (θ1, v1, . . . , θN1 , vN1 , θN1+1, vN1+1, . . . , θN , vN , t)
as the probability density at time t to observe the system around the values
{θi , vi }1≤i≤N . In the following, we prefer to use the shorthand notations zi ≡ (θi , vi )

and z = (z1, z2, . . . , zN ). Note that fN satisfies the normalization
∫

(

∏N
i=1 dzi

)

fN (z, t) = 1. We assume (i) that fN is symmetric with respect to permutations of
dynamical variables within the same group of oscillators, and (ii) that fN , together
with the derivatives ∂ fN/∂vi ∀ i , vanish on the boundaries of the phase space.

The evolution of fN follows the Fokker-Planck equation that may be straightfor-
wardly derived from the equations of motion (3.16), to get

∂ fN
∂t

= −
N
∑

i=1

[

vi
∂ fN
∂θi

− 1√
m

∂(vi fN )

∂vi

]

− σ

N
∑

j=1

(

ΩT
)

j

∂ fN
∂v j

+ T√
m

N
∑

i=1

∂2 fN
∂v2i

− 1

2N

N
∑

i, j=1

sin(θ j − θi )
[∂ fN

∂vi
− ∂ fN

∂v j

]

. (3.56)

Here, the N × 1 column vector Ω is such that its first N1 entries equal ω1 and the
following N2 entries equal ω2, and where the superscript T denotes matrix transpose
operation: ΩT ≡ [ω1 ω1 . . . ω1 ω2 . . . ω2].

In order to prove that the dynamics (3.16) does not satisfy detailed balance unless
σ = 0, we first rewrite the Fokker-Planck equation (3.56) as

∂ fN (x)
∂t

= −
2N
∑

i=1

∂(Ai (x) fN (x))
∂xi

+ 1

2

2N
∑

i, j=1

∂2(Bi, j (x) fN (x))
∂xi∂x j

, (3.57)
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where we have

xi =
{

θi ; i = 1, 2, . . . , N ,

vi−N ; i = N + 1, . . . , 2N ,
(3.58)

and

x = {xi }1≤i≤2N . (3.59)

In Eq. (3.57), the drift vector Ai (x) is given by

Ai (x) =

⎧

⎪

⎨

⎪

⎩

vi ; i = 1, 2, . . . , N ,

− 1√
m
vi−N + 1

N

∑N
j=1 sin(θ j − θi−N )

+σ
(

ΩT
)

i−N
; i = N + 1, . . . , 2N ,

(3.60)

while the diffusion matrix is

Bi, j (x) =
{ 2T√

m
δi j ; i, j > N ,

0, Otherwise.
(3.61)

It may be shown that the dynamics described by the Fokker-Planck equation of
the form (3.57) satisfies detailed balance if and only if the following conditions are
satisfied [35]:

εiε j Bi, j (εx) = Bi, j (x), (3.62)

εi Ai (εx) f sN (x) = −Ai (x) f sN (x) +
2N
∑

j=1

∂Bi, j (x) f sN (x)
∂x j

, (3.63)

where f sN (x) is the stationary solution of Eq. (3.57). Here, εi = ±1 is a constant
that denotes the parity with respect to time reversal of the variables xi s: Under
time reversal, the latter transform as xi → εi xi , where εi = −1 or +1 depending on
whether xi is odd or even under time reversal. In our case, θi s are even, while vi s are
odd.

On using Eq. (3.61), we find that the condition (3.62) is trivially satisfied for our
model. In order to check the other condition, we formally solve Eq. (3.63) for f sN (x),
and ask if the solution solves Eq. (3.57) in the stationary state. From Eq. (3.63), we
see that for i = 1, 2, . . . , N , the condition is obtained as

εi Ai (εx) f sN (x) = −Ai (x) f sN (x), (3.64)

which on using Eq. (3.60) is obviously satisfied. For i = N + 1, . . . , 2N , we have

vk f
s
N (x) = − T ∂ f sN (x)

∂vk
; k = i − N . (3.65)
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Solving Eq. (3.65), we get

f sN (x) ∝ d(θ1, θ2, . . . , θN ) exp
[

− 1
2T

∑N
k=1 v

2
k

]

, (3.66)

where d(θ1, θ2, . . . , θN ) is a yet undetermined function. Substituting Eq. (3.66) into
Eq. (3.57), and requiring that it is a stationary solution, we arrive at the conclusion
that σ has to be equal to zero, and that the factor d(θ1, θ2, . . . , θN ) is given by

d(θ1, θ2, . . . , θN ) = exp
(

−1/(2NT )
∑N

i, j=1

[

1 − cos(θi − θ j )
]

)

. Thus, for σ = 0,

when the dynamics reduces to that of the Brownian mean-field model, we get the
stationary solution as

f sN ,σ=0(z) ∝ exp
[

− H

T

]

. (3.67)

where H is the Hamiltonian (expressed in terms of dimensionless variables that were
introduced in the main text). The demonstration of the lack of detailed balance for
σ 	= 0 obviously extends to any distribution g(ω).

Appendix 2: Simulation Details for the Dynamics (3.16)

In this appendix, we describe a method to simulate the dynamics (3.16) for given
values of m, T, σ (note that we have dropped the overbars appearing in Eq. (3.16)
for not wanting to overload the notation), and for a given realization of ωi ’s. We
employ a numerical integration scheme discussed in Refs. [5, 6]. Suppose we want
to simulate the dynamics over a time interval [0 : T ]. Let us first choose a time step
size 0 < Δt 
 1. Next, we set tn = nΔt as the n-th time step of the dynamics, where
n = 0, 1, 2, . . . , Nt , and Nt = T /Δt . In our numerical scheme, we first discard at
every time step the effect of the noise (i.e., consider 1/

√
m = 0), and employ a

fourth-order symplectic algorithm to integrate the resulting symplectic part of the
dynamics [36]. This is followed by adding the effects of noise to the dynamical
evolution through implementing an Euler-like first-order algorithm to update the
dynamical variables. To summarize, one step of the numerical scheme accounting
for evolution between times tn and tn+1 = tn + Δt involves the following updates of
the dynamical variables for i = 1, 2, . . . , N : For the symplectic part, we have, for
k = 1, . . . , 4,

vi
(

tn + kΔt

4

)

= vi
(

tn + (k − 1)Δt

4

)

+ b(k)Δt
[

r
(

tn + (k − 1)Δt

4

)

sin
{

ψ
(

tn + (k − 1)Δt

4

)

− θi

(

tn + (k − 1)Δt

4

)}

+ σωi

]

;

r
(

tn + (k − 1)Δt

4

)

=
√

r2x + r2y , ψ
(

tn + (k − 1)Δt

4

)

= tan−1 ry
rx

,
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rx = 1

N

N
∑

j=1

sin
[

θ j

(

tn + (k − 1)Δt

4

)]

, ry = 1

N

N
∑

j=1

cos
[

θ j

(

tn + (k − 1)Δt

4

)]

,

(3.68)

θi

(

tn + kΔt

4

)

= θi

(

tn + (k − 1)Δt

4

)

+ a(k)Δt vi
(

tn + kΔt

4

)

, (3.69)

where the constants a(k)’s and b(k)’s are obtained from Ref. [36] as

a(1) = 0.5153528374311229364, a(2) = 0.085782019412973646,

a(3) = 0.4415830236164665242, a(4) = 0.1288461583653841854,

b(1) = 0.1344961992774310892, b(2) = 0.2248198030794208058,

b(3) = 0.7563200005156682911, b(4) = 0.3340036032863214255.

(3.70)

At the end of the updates (3.68) and (3.69), we have the set {θi (tn+1), vi (tn+1)}. We
then include the effect of the stochastic noise by keeping the values of the θi (tn+1)’s
unchanged, but by updating vi (tn+1)’s as

vi (tn+1) → vi (tn+1)
[

1 − 1√
m

Δt
]

+
√

2Δt
T√
m

ΔX (tn+1). (3.71)

Here,ΔX is aGaussian distributed randomnumberwith zeromean and unit variance.

Appendix 3: Derivation of the Kramers Equation

In this appendix, we derive the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy equations for the dynamics (3.16) for any number N of oscillators. This
would allow us to then derive in the limit N → ∞ the Kramers equation (3.21)
discussed in the main text. Again, as in Appendix 1, we first discuss the derivation of
the BBGKY equations for a bimodal g(ω)made of two distinct delta peaks, and then
generalize the derivation to a general g(ω). Our starting point is the Fokker-Planck
equation, Eq. (3.56). To proceed, we follow standard procedure [27], which was also
invoked in Chap. 2, and define the so-called reduced distribution function fs1,s2 , with
s1 = 0, 1, 2, . . . , N1 and s2 = 0, 1, 2, . . . , N2, as

fs1,s2 (z1, z2, . . . , zs1 , zN1+1, . . . , zN1+s2 , t) =
N1!

(N1 − s1)!Ns1
1

N2!
(N2 − s2)!Ns2

2

∫

dzs1+1 . . . dzN1dzN1+s2+1 . . . dzN fN (z, t). (3.72)

Note that the following normalizations hold for the single-oscillator distribution
functions:

∫

dz1 f1,0(z1, t) = 1, and
∫

dzN1+1 f0,1(zN1+1, t) = 1.



3.4 Phase Diagram: Comparison with Numerics 109

Using Eq. (3.56) in Eq. (3.72), we get the BBGKY hierarchy equations for oscil-
lators with frequencies ω1 as

∂ fs,0
∂t

+
s

∑

i=1

[vi∂ fs,0
∂θi

− 1√
m

∂

∂vi
(vi fs,0)

]

+ σ

s
∑

i=1

ω1
∂ fs,0
∂vi

− T√
m

s
∑

i=1

∂2 fs,0
∂v2i

= − 1

2N

s
∑

i, j=1

sin(θ j − θi )
[∂ fs,0

∂vi
− ∂ fs,0

∂v j

]

−N1

N

s
∑

i=1

∫

dzs+1 sin(θs+1 − θi )
∂ fs+1,0

∂vi

−N2

N

∫

dzN1+1

s
∑

i=1

sin(θN1+1 − θi )
∂ fs,1
∂vi

, (3.73)

and similar equations for f0,s for oscillators of frequencies ω2. The first equations
of the hierarchy are

∂ f1,0(θ, v, t)

∂t
+ v∂ f1,0(θ, v, t)

∂θ
− 1√

m

∂

∂v
(v f1,0(θ, v, t))

+σω1
∂ f1,0(θ, v, t)

∂v
− T√

m

∂2 f1,0(θ, v, t)

∂v2

= −N1

N

∫

dθ ′dv′ sin(θ ′ − θ)
∂ f2,0(θ, v, θ ′, v′, t)

∂v

−N2

N

∫

dθ ′dv′ sin(θ ′ − θ)
∂ f1,1(θ, v, θ ′, v′, t)

∂v
, (3.74)

and

∂ f0,1(θ, v, t)

∂t
+ v∂ f0,1(θ, v, t)

∂θ
− 1√

m

∂

∂v
(v f0,1(θ, v, t))

+σω2
∂ f0,1(θ, v, t)

∂v
− T√

m

∂2 f0,1(θ, v, t)

∂v2

= −N2

N

∫

dθ ′dv′ sin(θ ′ − θ)
∂ f0,2(θ, v, θ ′, v′, t)

∂v

−N1

N

∫

dθ ′dv′ sin(θ ′ − θ)
∂ f1,1(θ, v, θ ′, v′, t)

∂v
. (3.75)

In the limit of large N , we may write

g(ω) =
[N1

N
δ(ω − ω1) + N2

N
δ(ω − ω2)

]

, (3.76)
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and express Eqs. (3.74) and (3.75) in terms of g(ω).
To generalizeEqs. (3.74) and (3.75) to the case of a continuous g(ω), we denote for

this case the single-oscillator distribution function as f (θ, v, ω, t). The first equation
of the hierarchy is then obtained as

∂ f (θ, v, ω, t)

∂t
+ v∂ f (θ, v, ω, t)

∂θ
− 1√

m

∂

∂v
(v f (θ, v, ω, t))

+σω
∂ f (θ, v, ω, t)

∂v
− T√

m

∂2 f (θ, v, ω, t)

∂v2

= −
∫

dω′g(ω′)
∫

dθ ′dv′ sin(θ ′ − θ)
∂ f (θ, v, θ ′, v′, ω, ω′, t)

∂v
. (3.77)

In the continuum limit N → ∞, we may neglect two-oscillator correlations (as
we have done in Chap. 2) and approximate f (θ, v, θ ′, v′, ω, ω′, t) as

f (θ, v, θ ′, v′, ω, ω′, t) = f (θ, v, ω, t) f (θ ′, v′, ω′, t), (3.78)

neglecting terms that are sub-dominant in N . Using the last equation in Eq. (3.77)
reduces the latter to the Kramers equation (3.21), thereby achieving the goal of this
appendix.

Appendix 4: Nature of Solutions of Eq. (3.39)

In this appendix, we analyze in detail the nature of solutions of Eq. (3.39).We rewrite
the equation as

F(λ;m, T, σ ) ≡ emT

2T

∞
∑

p=0

(−mT )p
(

1 + p
mT

)

p!

×
∫

g(ω)dω

1 + p
mT + λ

T
√
m

+ i σω
T

− 1 = 0, (3.79)

where g(ω) is unimodal. The incoherent state will be unstable if there is a λ with
a positive real part that satisfies the above eigenvalue equation. We will now prove
that depending on the parameters appearing in the above equation, there can be at
most one such λ that can be only real. Moreover, for the case of a Gaussian g(ω), we
will obtain the general shape of the surface in the (m, T, σ ) space that defines the
instability region of the incoherent state.

Consideringm and T strictly positive, we multiply for convenience the numerator
and denominator of Eq. (3.79) by mT to arrive at
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F(λ;m, T, σ ) = emT

2T

∞
∑

p=0

(−mT )p (p + mT )

p!

× g(ω)dω

mT + p + √
mλ + iσmω

− 1 = 0. (3.80)

We now look for pure imaginary solutions of this equation. Separating into real and
imaginary parts the last equation, we have

Re [F(iμ;m, T, σ )] = emT

2T

∞
∑

p=0

(−mT )p

p!

×
∫

dω g(ω)
(p + mT )2

(p + mT )2 + (

mσω + √
mμ

)2 − 1 = 0, (3.81)

Im [F(iμ;m, T, σ )] = −emT

2T

∞
∑

p=0

(−mT )p

p!

×
∫

dω g(ω)
(p + mT )

(

mσω + √
mμ

)

(p + mT )2 + (

mσω + √
mμ

)2 = 0. (3.82)

In the second equation above, let us make the change of variables mσω + √
mμ =

mσ x , and exploit the parity in x of the sum. We get

Im [F(iμ;m, T, σ )] =
−mσ

∫ ∞

0
dx
{

[

g

(

x − μ√
mσ

)

− g

(

−x − μ√
mσ

)]

×x
∞
∑

p=0

(−mT )p

p!
p + mT

(p + mT )2 + m2σ 2x2

}

= 0, (3.83)

where it may be shown that the sum on the right-hand side is positive definite for any
finite σ . Furthermore, for the class of g(ω) considered in the main text, one may see
that the term in square brackets is positive (respectively, negative) definite for μ > 0
(respectively, forμ < 0). As a result, the last equation is never satisfied forμ 	= 0 and
finite, and therefore, the eigenvalue equation does not admit pure imaginary solutions
(the proof holds also for the particular case g(ω) = δ(ω), as may be checked).

Wemay also conclude that there can be atmost one solutionwith positive real part.
In fact, if in the complex λ-plane, we consider the loop depicted in Fig. 3.10, panel
(a) (where the points A and C represent Imλ → ±∞, respectively, and the radius
of the arc extends to ∞), we obtain correspondingly in the complex-F(λ) plane
due to the sign properties of Im [F(iμ;m, T, σ )] just described the loop represented
schematically in Fig. 3.10, panel (b). The point F = −1 in panel (b) is obtained for
λ in panel (a) at points A and C and in the whole of the arc extending to infinity. The
position of the point B in the complex-F plane is determined by the value of F(0),
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Fig. 3.10 The loop in the complex F-plane, (b), corresponding to the loop in the complex λ-plane,
(a), as determined by the function F(λ) given in Eq. (3.80)

which is given by

F(0;m, T, σ ) = emT

2T

∞
∑

p=0

(−mT )p

p!

×
∫

dω g(ω)
(p + mT )2

(p + mT )2 + (mσω)2
− 1. (3.84)

From the well-known theorem of complex analysis on the number of roots of a
function in a given domain of the complex plane [37], we arrive at the result that for
F(0;m, T, σ ) > 0, there is one and only one solution of the eigenvalue equationwith
positive real part; on the other hand, for F(0;m, T, σ ) < 0, there is no such solution.
When the single solution with positive real part exists, it is necessarily real, since
a complex solution would imply the existence of its complex conjugate. The value
of F(0;m, T, σ ) may be seen to equal 1/(2T ) − 1 for σ = 0. For positive σ , the
value will depend on the specific form of the distribution function g(ω). However,
one can prove that the value is always smaller than 1/(2T ) − 1, consistent with
the physically reasonable fact that if the incoherent state is stable for σ = 0, which
happens for T > 1

2 , it is all the more stable for σ > 0.
The surface delimiting the region of instability in the (m, T, σ ) phase space is

implicitly defined by Eq. (3.84) (i.e. F(0;m, T, σ ) = 0), which in principle can be
solved to obtain the threshold value of σ (denoted by σ inc) as a function of (m, T ):
σ inc = σ inc(m, T ). On physical grounds, we expect that the latter is a single valued
function, and that for any given value of m, it is a decreasing function of T for
0 ≤ T ≤ 1/2, reaching 0 for T = 1/2. We are able to prove analytically these facts
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for the class of unimodal distribution functions g(ω) considered in the main text that
includes the Gaussian case. However, we can prove for any g(ω) that σ inc(m, T )

tends to 0 for m → ∞. This is done using the integral representation

∞
∑

p=0

(−mT )p

p!
(p + mT )2

(p + a)2 + (mσω)2
= e−mT

− (mσω)

∫ ∞

0
dt exp

[−mT
(

t + e−t
)]

sin (mσωt) ; (3.85)

For σ > 0 and m → ∞, one may see that the term within the integral in the last
equation tends to e−mT . We thus obtain by examining Eq. (3.84) that F(0;m →
∞, T > 0, σ > 0) = −1. Combinedwith the fact that F(0;m, T, 0) = 1/(2T ) − 1,
this shows that σ inc(m → ∞, 0 ≤ T ≤ 1

2 ) = 0.
We now turn to the Gaussian case, g(ω) = 1/

√
2π exp

[−ω2/2
]

. Denoting with
a subscript g this case, and using Eq. (3.85), we have

Fg(0;m, T, σ ) = 1

2T
− 1 − emT

2T
√
2π

∫

dω e− ω2

2 (mσω)

∫ ∞

0
dt exp

[−mT
(

t + e−t
)]

sin (mσωt) . (3.86)

The integral in ω may be easily performed: Making the change of variablemσ t = y,
we arrive at the equation

Fg(0;m, T, σ ) = 1

2T
− 1

− 1

2T

∫ ∞

0
dy ye− y2

2 exp
[

mT
(

1 − y

mσ
− e− y

mσ

)]

. (3.87)

The equation Fg(0;m, T, σ ) = 0 defines implicitly the function σ inc(m, T ), which
we can show to be a single-valued functionwith the properties ∂σ inc

∂m < 0 and ∂σ inc

∂T < 0.
We show these by explicitly computing the partial derivatives of Fg(0;m, T, σ )with
respect to m and σ , and by evaluating the behavior with respect to changes in T by
adopting a suitable strategy.

We begin by computing the derivative with respect to σ . From Eq. (3.87), we
obtain

∂

∂σ
Fg(0;m, T, σ ) = − 1

2σ 2

∫ ∞

0
dy y2e− y2

2

(

1 − e− y
mσ

)

× exp
[

mT
(

1 − y

mσ
− e− y

mσ

)]

, (3.88)

which is clearly negative. Secondly, the derivative with respect to m gives
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∂

∂m
Fg(0;m, T, σ ) = −1

2

∫ ∞

0
dy ye− y2

2

×
(

1 − e− y
mσ − y

mσ
e− y

mσ

)

exp
[

mT
(

1 − y

mσ
− e− y

mσ

)]

. (3.89)

This derivative is negative, since 1 − e−x − xe−x is positive for x > 0. From the
implicit function theorems, we then derive the result ∂σ inc

∂m < 0. The study of the
behavior with respect to a change in T is more complicated. Since we are considering
T > 0, we multiply Eq. (3.87) by 2T to obtain

2T Fg(0;m, T, σ ) = 1 − 2T

−
∫ ∞

0
dy ye− y2

2 exp
[

mT
(

1 − y

mσ
− e− y

mσ

)]

. (3.90)

Consider the integral on the right-hand side

∫ ∞

0
dy ye− y2

2 exp
[

mT
(

1 − y

mσ
− e− y

mσ

)]

; (3.91)

Since 1 − x − e−x is negative for x > 0, we conclude that the T derivative of this
expression is negative, while its second T derivative is positive. Then the right-hand
side of Eq. (3.90) can be zero for T > 0 for at most one value of T . Furthermore,
since for fixed y and m, the value of y/(mσ) decreases if σ increases, we conclude
that the T value for which Fg(0;m, T, σ ) = 0 decreases for increasing σ at fixed
m. This concludes the proof. Furthermore, for what we have seen before, we have
σ inc(m, 1/2) = 0 and limm→∞ σ inc(m, T ) = 0 for 0 ≤ T ≤ 1/2.

From the above analysis, it should be evident that the proof is not restricted to the
Gaussian case, but would work for any g(ω) such that

β

∫

dx g(x)x sin(βx), (3.92)

is positive for any β. However, on physical grounds, we are led to assume that the
same conclusions hold for any unimodal g(ω).

Appendix 5: Solution of the System of Eqs. (3.46)

In this appendix, we give details of the solution, Eqs. (3.47)–(3.53), to the system of
Eqs. (3.46).

Let us first consider Eq. (3.46) with n = 0, from which we obtain that c1,k(θ, ω)

is independent of θ for each k. Next, consider Eq. (3.46) for k = 0 and n = 2, 3, . . . .
Since we have cn,0(θ, ω) = 0 for n > 0, we find that cn,1(θ, ω) = 0 for n > 1. Next,
Eq. (3.46) for k = 1 and n = 3, 4, . . . gives cn,2(θ, ω) = 0 for n > 2; for k = 2 and
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c0,0 0

0

0 0

0

0

0 0

0

c0,2 c0,4 c0,6

c1,1 c1,3 c1,5

c2,2 c2,4 c2,6

c3,3 c3,5

c4,4 c4,6

c5,5

c6,6

0 0 0

Fig. 3.11 Flow diagram for the evaluation of the expansion coefficients cn,k(θ, ω); n, k =
0, 1, 2, . . . , 6 by using Eq. (3.46). Starting from the main diagonal, arrows and different colors
denote subsequent flows (see text). The elements below the main diagonal are all zero. https://
doi.org/10.1088/1742-5468/2015/05/P05011 c©SISSA Medialab Srl. Reproduced by permission
of IOP Publishing. All rights reserved.

n = 4, 5, . . . , we get cn,3(θ, ω) = 0 for n > 3, and so on.We are thus led to conclude
that cn,k(θ, ω) = 0 ∀ k < n. Figure3.11 displays the coefficients cn,k in a matrix that
is seen to be upper triangular on the basis of the result just obtained. Hence, to
obtain all the non-zero elements of the matrix, we should consider Eq. (3.46) for n =
1, 2, . . . and k ≥ n − 1, or, equivalently, for k = 0, 1, 2, . . . and n = 1, 2, . . . , k +
1. To this end, we will first obtain the elements of the main diagonal, cn,n(θ, ω), then
the elements of the first upper diagonal, cn,n+1(θ, ω), then the elements of the second
upper diagonal, cn,n+2(θ, ω), and so on.

Let us begin by studying the case of n = 1 and k = 0; we have

√
T

∂c0,0(θ, ω)

∂θ
+ √

2T
∂c2,0(θ, ω)

∂θ
+ √

Ta(θ, ω)c0,0(θ, ω) + c1,1(ω) = 0. (3.93)

Here, we have c2,0(θ, ω) = 0, while c1,1(ω) is independent of θ . We thus end up
with a first-order differential equation for c0,0(θ, ω) with an unknown constant. The
condition c0,0(θ, ω) = c0,0(θ + 2π,ω) fixes the value of this constant, and we get

c0,0(θ, ω) = c0,0(0, ω)e−g(θ,ω)

[

1 + (

eg(2π,ω) − 1
)

∫ θ

0 dθ ′eg(θ ′,ω)

∫ 2π
0 dθ ′eg(θ ′,ω)

]

, (3.94)

c1,1(ω) = √
T
c0,0(0, ω)

(

1 − eg(2π,ω)
)

∫ 2π
0 dθ ′eg(θ ′,ω)

, (3.95)

where g(θ, ω) = ∫ θ

0 dθ ′a(θ ′, ω), and c0,0(0, ω) has to be fixed at the end by the
normalization of b0(θ, ω). Now that we have determined c0,0(θ, ω) and c1,1(ω), we
may obtain recursively the main diagonal elements by considering Eq. (3.46) for
n = 2, 3, . . . and k = n − 1; we get

https://doi.org/10.1088/1742-5468/2015/05/P05011
https://doi.org/10.1088/1742-5468/2015/05/P05011
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√
nT

∂cn−1,n−1(θ, ω)

∂θ
+ √

(n + 1)T
∂cn+1,n−1(θ, ω)

∂θ

+√
nTa(θ, ω)cn−1,n−1(θ, ω) + ncn,n(θ, ω) = 0. (3.96)

Since we have cn+1,n−1(θ, ω) = 0, we get

cn,n(θ, ω) = −
√

T

n

[

∂cn−1,n−1(θ, ω)

∂θ
+ a(θ, ω)cn−1,n−1(θ, ω)

]

(3.97)

for n = 2, 3, . . . . In particular, for n = 2, the first term within the square brackets is
absent as c1,1(ω) is independent of θ . Let us note that all the functions cn,n(θ, ω) are
proportional to c0,0(0, ω).

Now, we determine the elements of the first upper diagonal. Consider Eq. (3.46)
for n = 1 and k = 1:

√
T

∂c0,1(θ, ω)

∂θ
+ √

2T
∂c2,1(θ, ω)

∂θ
+ √

Ta(θ, ω)c0,1(θ, ω) + c1,2(ω) = 0. (3.98)

The last equation has exactly the same structure as Eq. (3.93), since c2,1(θ, ω) = 0,
and c1,2(ω) is a constant independent of θ . Now, we use the fact that c0,k(0, ω) = 0
for k ≥ 1, so that the solution of Eq. (3.98) is simply c0,1(θ, ω) = c1,2(ω) ≡ 0. Next,
by considering Eq. (3.46) for n = 2, 3, . . . and k = n, and proceeding similarly, we
may obtain that all the functions cn,n+1(θ, ω), i.e., the elements of the first upper
diagonal of Fig. 3.11, are zero.

Our next task is to determine the elements of the second upper diagonal, which
we begin by considering Eq. (3.46) for n = 1 and k = 2:

√
T

∂c0,2(θ, ω)

∂θ
+ √

2T
∂c2,2(θ, ω)

∂θ
+ √

Ta(θ, ω)c0,2(θ, ω) + c1,3(ω) = 0. (3.99)

In the above equation, c2,2(θ, ω) is known from Eq. (3.97). Then, from the require-
ment of periodicity of c0,2(θ, ω), and on using c0,2(0, ω) = 0, we arrive at the solu-
tions

c0,2(θ, ω) = √
2

∫ 2π
0 dθ ′ ∂c2,2(θ ′,ω)

∂θ ′ eg(θ
′,ω)

∫ 2π
0 dθ ′eg(θ ′,ω)

e−g(θ,ω)

∫ θ

0
dθ ′eg(θ

′,ω)

−√
2e−g(θ,ω)

∫ θ

0
dθ ′ ∂c2,2(θ

′, ω)

∂θ ′ eg(θ
′,ω), (3.100)

c1,3(ω) = −√
2T

∫ 2π
0 dθ ′ ∂c2,2(θ ′,ω)

∂θ ′ eg(θ
′,ω)

∫ 2π
0 dθ ′eg(θ ′,ω)

. (3.101)

Again, these functions are proportional to c0,0(0, ω). Now that we have determined
c0,2 and c1,3, we obtain recursively the elements of the second upper diagonal, i.e.,
the functions cn,n+2, from Eq. (3.46) by considering n = 2, 3, . . . and k = n + 1:
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√
nT

∂cn−1,n+1(θ, ω)

∂θ
+ √

(n + 1)T
∂cn+1,n+1(θ, ω)

∂θ

+√
nTa(θ, ω)cn−1,n+1(θ, ω) + ncn,n+2(θ, ω) = 0. (3.102)

With the main diagonal elements already determined, we get

cn,n+2(θ, ω) = −
√

T

n

[

∂cn−1,n+1(θ, ω)

∂θ
+ a(θ, ω)cn−1,n+1(θ, ω)

]

−
√

(n + 1)T

n

∂cn+1,n+1(θ, ω)

∂θ
, (3.103)

for n = 2, 3, . . . . In particular, for n = 2, the first term within the square brackets is
absent, as c1,3(ω) is independent of θ . Also, note that these functions are proportional
to c0,0(0, ω).

We now show that the elements of the third upper diagonal vanish. Considering
Eq. (3.46) for n = 1 and k = 3, we get

√
T

∂c0,3(θ, ω)

∂θ
+ √

2T
∂c2,3(θ, ω)

∂θ
+ √

Ta(θ, ω)c0,3(θ, ω) + c1,4(ω) = 0.

(3.104)
Here, c2,3 has been previously determined to be vanishing identically, so that the
solution of the last equation is simply obtained as c0,3(θ, ω) = c1,4(ω) ≡ 0. Then,
considering Eq. (3.46) for n = 2, 3, . . . and k = n + 2, we conclude that all the
elements of the third upper diagonal, cn,n+3, vanish.

By now, the procedure of determining the coefficients cn,k’s should be clear. All
the elements of the upper diagonals of odd order vanish, being equivalent to the
fact that in the portion of each row above the main diagonal, one element every two
vanishes, i.e., cn,n+1+2k ≡ 0 for n, k = 0, 1, 2, . . . . All the nonvanishing elements
are proportional to c0,0(0, ω). The expressions for the main diagonal elements are
given by Eqs. (3.94), (3.95) and (3.97). On the basis of the analysis above, we may
write down the general expressions for the nonvanishing non-diagonal elements as

c0,2k(θ, ω) = √
2

∫ 2π
0 dθ ′ ∂c2,2k (θ ′,ω)

∂θ ′ eg(θ
′,ω)

∫ 2π
0 dθ ′eg(θ ′,ω)

e−g(θ,ω)

∫ θ

0
dθ ′eg(θ

′,ω)

−√
2e−g(θ,ω)

∫ θ

0
dθ ′ ∂c2,2k(θ

′, ω)

∂θ ′ eg(θ
′,ω), (3.105)

c1,1+2k(ω) = −√
2T

∫ 2π
0 dθ ′ ∂c2,2k (θ ′,ω)

∂θ ′ eg(θ
′,ω)

∫ 2π
0 dθ ′eg(θ ′,ω)

, (3.106)

c2,2+2k(θ, ω) = −
√

T

2
a(θ, ω)c1,1+2k(ω) −

√
3T

2

∂c3,1+2k(θ, ω)

∂θ
, (3.107)

cn,n+2k(θ, ω) = −
√

T

n

[

∂cn−1,n−1+2k(θ)

∂θ
+ a(θ, ω)cn−1,n−1+2k(θ, ω)

]
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−
√

(n + 1)T

n

∂cn+1,n−1+2k(θ, ω)

∂θ
n ≥ 3, (3.108)

with k = 1, 2, . . . .

Appendix 6: Convergence Properties of the Expansion (3.45)

In this appendix, we discuss the convergence properties of the expansion (3.45)
involved in obtaining the density n(θ), see Eq. (3.54). To this end, let us first consider
an asymptotic power series in the real variable x given by

A(x) =
∞
∑

k=0

akx
k . (3.109)

We define the partial sum

An(x) ≡
n
∑

k=0

akx
k . (3.110)

Then, being asymptotic means that at any given x 	= 0, one has An(x) → ∞ as
n → ∞. In this case, one employs the so-called Borel summation method to sum
the series, by defining the Borel transform of A(x) as [26]

BA(t) ≡
∞
∑

k=0

ak
k! t

k . (3.111)

IfBA(t) converges for any positive t , or, if it converges for sufficiently small t to an
analytic function that can be analytically continued to all t > 0, and if the integral

∫ ∞

0
dt exp(−t)BA(t x) (3.112)

exists and equals AB(x) (here, the subscript B stands for Borel), we say that the Borel
sum of the series on the right hand side of Eq. (3.109) is AB(x). One may observe
that if the original series converges, i.e., if limn→∞ An(x) = A(x) < ∞, then one
has AB(x) = A(x). Applying the above formalism to Eq. (3.45), we get

b0B(θ, ω) =
∫ ∞

0
dt exp(−t)

∞
∑

k=0

c0,k(θ, ω)

k! (t
√
m)k

= 1√
m

∫ ∞

0
dy exp(−y/

√
m)

∞
∑

k=0

c0,k(θ)

k! yk . (3.113)
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Fig. 3.12 Density n(θ) in
the dynamics (3.16) for a
Gaussian g(ω), and with
m = 0.25, T = 0.25,
σ = 0.295. Panel a refers to
theoretical predictions using
the Borel summation method
with ktrunc = 38, while b
refers to estimates obtained
by using direct summation
with ktrunc = 22
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The last integral needs to be computed numerically. One is required to truncate the
series at a certain order k = ktrunc, and to extend the integral over y up to a given
value yM , chosen such that the integrand is negligible for y > yM . However, contrary
to what happens in the original series, we found that the sum in the last integral
converges, at least for all y-values smaller than yM that are necessary to compute the
integral. We do not know the function to which our Borel transform converges and
the corresponding radius of convergence. Nevertheless, our numerical results show
that our series is Borel summable. Figure3.12a shows the result of computing the
density

n(θ) =
∫ ∞

−∞
dω g(ω)b0B(θ, ω) (3.114)

for the same conditions as in Fig. 3.4, where we truncate the sum in Eq. (3.113) at
ktrunc = 38; the plot coincideswith the one shown inFig. 3.4a.On the other hand, sum-
ming the series (3.45) for n = 0 without resorting to the Borel summation method,
and then computing the density n(θ), the result that we show in Fig. 3.12b clearly
demonstrates that instabilities for truncation order ktrunc = 22 of the series that get
worse and worse with further increase of the truncation order. In this regard, the
reader is referred to Table3.1, where we list the truncation order kmax versus m
up to which one observes a perfect agreement of the density n(θ) between theory
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Table 3.1 For the dynamics (3.16) with a Gaussian g(ω), the table shows the maximum truncation
order kmax in the computation of the density n(θ) as a function of m at a given representative
(σ, T ) ≡ (0.295, 0.25) for which one observes a perfect agreement of the density n(θ) in theory
and simulations, as in Fig. (3.4). The agreement worsens on increasing the truncation order beyond
kmax

m 0.0625 0.125 0.25 0.5 1.0

kmax 60 32 18 10 6

and simulations, for the same representative (σ, T ) ≡ (0.295, 0.25) as in Fig. (3.4).
We conclude from the analysis presented in this appendix that the series (3.45) is
asymptotic, but is effectively summable by the Borel summation method.
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