Advances in Experimental Medicine and Biology 725

Monika Fuxreiter
and Peter Tompa Editors

Fuzziness

Structural Disorder in Protein Complexes

LANDES

BIOSCIENCE @ Springer




Fuzziness: Structural Disorder in Protein Complexes



ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY

Editorial Board:

NATHAN BACK, State University of New York at Buffalo
IRUN R. COHEN, The Weizmann Institute of Science

ABEL LAJTHA, N.S. Kline Institute for Psychiatric Research
JOHN D. LAMBRIS, University of Pennsylvania

RODOLFO PAOLETTI, University of Milan

Recent Volumes in this Series

Volume 717
KAINATE RECEPTORS: NOVEL SIGNALING INSIGHTS
Antonio Rodriguez-Moreno and Talvinder S. Sihra

Volume 718
BRAIN INSPIRED COGNITIVE SYSTEMS 2010
Ricardo Sanz, Jaime Gomez and Carlos Hernandez

Volume 719
HOT TOPICS IN INFECTION AND IMMUNITY IN CHILDREN VIII
Nigel Curtis

Volume 720
HUMAN CELL TRANSFORMATION
Johng S. Rhim and Richard Kremer

Volume 721
SPHINGOLIPIDS AND METABOLIC DISEASE
L. Ashley Cowart

Volume 722
RNA INFRASTRUCTURE AND NETWORKS
Lesley J. Collins

Volume 723

RETINAL DEGENERATIVE DISEASES
Matthew M. LaVail, Joe G. Hollyfield, Robert E. Anderson, Christian Grimm
and John D. Ash

Volume 724
NEURODEGENERATIVE DISEASES
Shamim I. Ahmad

Volume 725
FUZZINESS: STRUCTURAL DISORDER IN PROTEIN COMPLEXES
Monika Fuxreiter and Peter Tompa

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume
immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact
the publisher.



Fuzziness

Structural Disorder in Protein Complexes

Edited by

Monika Fuxreiter, PhD
Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences,
Budapest, Hungary

Peter Tompa, PhD
Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences,
Budapest, Hungary

Springer Science+Business Media, LL.C

Landes Bioscience



Springer Science+Business Media, LLC
Landes Bioscience

Copyright ©2012 Landes Bioscience and Springer SciencetBusiness Media, LLC

All rights reserved.

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopy, recording, or any information storage and retrieval system, without permission in writing
from the publisher, with the exception of any material supplied specifically for the purpose of being entered
and executed on a computer system; for exclusive use by the Purchaser of the work.

Springer Science+Business Media, LLC, 233 Spring Street, New York, New York 10013, USA
http://www.springer.com

Please address all inquiries to the publishers:

Landes Bioscience, 1806 Rio Grande, Austin, Texas 78701, USA
Phone: 512/ 637 6050; FAX: 512/ 637 6079
http://www.landesbioscience.com

The chapters in this book are available in the Madame Curie Bioscience Database.
http://www.landesbioscience.com/curie

Fuzziness: Structural Disorder in Protein Complexes, edited by Monika Fuxreiter and Peter Tompa. Landes
Bioscience / Springer Science+Business Media, LLC dual imprint / Springer series: Advances in Experimental
Medicine and Biology.

ISBN: 978-1-4614-0658-7

While the authors, editors and publisher believe that drug selection and dosage and the specifications and usage
of equipment and devices, as set forth in this book, are in accord with current recommendations and practice
at the time of publication, they make no warranty, expressed or implied, with respect to material described
in this book. In view of the ongoing research, equipment development, changes in governmental regulations
and the rapid accumulation of information relating to the biomedical sciences, the reader is urged to carefully
review and evaluate the information provided herein.

Library of Congress Cataloging-in-Publication Data

Fuzziness : structural disorder in protein complexes / edited by Monika Fuxreiter, Peter Tompa.
p.; cm. -- (Advances in experimental medicine and biology ; no. 725)
Includes bibliographical references and index.
ISBN 978-1-4614-0658-7
1. Proteins--Conformation. 2. Protein folding. 3. Protein binding. 4. Fuzzy systems. I. Fuxreiter, Monika,
1969- 11. Tompa, Peter. II1. Series: Advances in experimental medicine and biology ; no. 725. 0065-2598
[DNLM: 1. Protein Conformation. 2. Protein Denaturation. QU 55.9]
QP551.F99 2011
572°.633--dc23
2011021158



DEDICATION

To our future generation



FOREWORD

For more than 40 years following the determination of the first protein structure,
molecular biology was guided by two central dogmas which posited that the ordered
three dimensional structure of a protein is intimately linked to its biological function and
that binding of a protein to ligands or to other protein molecules is exquisitely specific.
It therefore came as a surprise when, in the latter half of the 1990s, experimental work
on several regulatory proteins and bioinformatics surveys performed on a genomic scale
showed that regions of conformational disorder are common in eukaryotic proteins
involved in cellular regulation and signaling. Such intrinsically disordered proteins
(IDPs) frequently function as central hubs in protein interaction networks, binding
multiple protein partners. IDPs often contain short amphipathic motifs that fold into
ordered structures upon binding to their targets. However, in many cases, the IDP remains
disordered even in the bound state—a phenomenon aptly named “fuzziness” by Peter
Tompa and Monika Fuxreiter, the editors of this volume.

Detailed characterization of fuzzy interactions will be of central importance for
understanding the diverse biological functions of intrinsically disordered proteins in
complex eukaryotic signaling networks. In this volume, Peter Tompa and Monika
Fuxreiter have assembled a series of papers that address the issue of fuzziness in molecular
interactions. These papers provide a broad overview of the phenomenon of fuzziness
and provide compelling examples of the central role played by fuzzy interactions in
regulation of cellular signaling processes and in viral infectivity. These contributions
summarize the current state of knowledge in this new field and will undoubtedly stimulate
future research that will further advance our understanding of fuzziness and its role in
biomolecular interactions.

Peter Wright, PhD

Department of Molecular Biology and
Skaggs Institute for Chemical Biology
The Scripps Research Institute

La Jolla, California, USA
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PREFACE

For almost four decades proteins were thought to function as entities with well-defined
structures, and to each biological task a unique conformation was assigned. A decade
ago it was recognized however, that some proteins do not obey this rule and act as a
heterogeneous ensemble of conformations. These proteins were termed as intrinsically
unstructured or intrinsically disordered proteins (IUPs or IDPs). IDPs brought a new flash
into structural biology urging to change our deterministic one sequence-one structure-one
function concept to a one sequence-multiple structures-one function paradigm. Many
IDPs serve in molecular recognition processes, and upon targeting different partners
they often adopt a well-defined three-dimensional structure. It gives the impression that
although IDPs have extensive conformational freedom in the unbound state in solution
they behave as ‘regular’ proteins upon fulfilling their functions. This view however, is
misleading. The structured image of bound IDPs only reflects experimental difficulties
in characterizing conformational ensembles of complexes. Indeed, many parts of IDPs
preserve their structural heterogeneity even upon interacting with other molecules. Some
biochemical studies demonstrate that these parts often coincide with functionally critical
regions. The two statements together signify that structural disorder in complexes is
important for various biological roles. This phenomenon is termed fuzziness. Structural
ambiguity in complexes expands the capacity of proteins to perform multiple functions
and also provides an additional level of versatility for regulation. The existence of fuzzy
complexes calls for the ultimate reassessment of the classical one structure-one function
paradigm and converts it to a one sequence-multiple structures-multiple functions
paradigm. This book is dedicated to this new concept and via many examples introduces
a new view on protein functionality.

Monika Fuxreiter, PhD

Peter Tompa, PhD

Institute of Enzymology, Biological Research Center
Hungarian Academy of Sciences, Budapest, Hungary
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CHAPTER 1

FUZZY COMPLEXES:

A More Stochastic View of Protein Function

Monika Fuxreiter and Peter Tompa

Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
Emails: monika@enzim.hu; tompa@enzim.hu

Abstract:

Intrinsically disordered proteins (IDPs) are widespread in eukaryotic proteomes
and challenge the classical structure-function paradigm that equates a folded
3-D structure with protein function. However, IDPs often function by molecular
recognition, in which they bind a partner molecule and undergo “induced folding”
or “disorder-to-order transition” upon binding, which apparently suggests thatin a
functional context IDPs become ordered. Whereas this observation would restore
the “prestige” of the classical structure-function paradigm, a closer inspection
of the complexes of IDPs reveals that they do not always become fully ordered,
but preserve functionally significant disorder in the complex with their binding
partner(s). This phenomenon, which we termed “fuzziness”, is the ultimate
extension of structural disorder to the functional native state of proteins. In this
introductory chapter, we outline the most important aspects of fuzziness, such as
its structural categories, molecular mechanisms of function it mediates and the
biological processes, in which it plays a distinguished role. As confirmed by all
the other chapters of the book, we will show that new cases of fuzziness pop up
at an accelerating pace, underscoring that this phenomenon presents a widespread
novel paradigm of protein structure and function.

INTRODUCTION AND OVERVIEW

Our classical view of protein function is engraved in a stable three- dimensional
architecture of amino acids arranged in a given order. For many decades an unambiguous
relationship between sequence and a well-defined three-dimensional structure has been
assumed, the latter underlying a given biological task. In case of enzymes, for example,

Fuzziness: Structural Disorder in Protein Complexes, edited by Monika Fuxreiter and Peter Tompa.
©2012 Landes Bioscience and Springer Science+Business Media.



2 FUZZINESS: STRUCTURAL DISORDER IN PROTEIN COMPLEXES

the protein provides a scaffold for the active site, where side chains participating in the
chemical reaction are located and ideally oriented to interact with the substrate. To achieve
high catalytic rates, the enzymatic environment must be complementary to the transition
state of the reaction, which requires a given arrangement of dipoles, i.c., a given fold.'
Although the importance of protein dynamics has been recognized in many biological
processes at all levels, ranging from variations in sidechain rotamers during enzymatic
catalysis®* or to more substantial conformational rearrangement in allosteric proteins,’
they still could be interpreted within the framework of the classical structure-function
paradigm, as variations around an optimal structure.

Multiple, independent evidence demonstrates, however that proteins can exist
simultaneously in different, yet functionally relevant conformations.*® Such degree of
structural diversity, i.e., interconversion of proteins between many conformations, is in
apparent contradiction with our classical view of one structure-one function relationship.
The number of experimentally observed protein examples that lack a well-defined
three-dimensional structure increases exponentially (http://www.disprot.org).’ Intrinsically
disordered proteins or regions (IDPs/IDRs) are represented in all three kingdoms of life,
with increasing propensity in more complex organisms.'*'> More than 50% of eukaryotic
proteins have at least one long (>30 aa) IDR. Partial or local disorder is observed in
almost every protein, but it seems to be more abundant in certain protein classes.'* Protein
disorder enables complex regulatory functions, illustrated by high abundance of IDPs in
transcription,' cell-cycle regulation or signal transduction.'>!¢

IDPs are distinguished in molecular recognition functions.!” They are considered
to have high specificity in target selection and fast association/dissociation rates upon
interaction with the partner. Equilibrium among many conformations of the ensemble can
be modulated by binding of a partner, leading to binding of multiple, unrelated ligands.®
Binding of IDPs to a partner is often accompanied by adopting a well-defined structure.”®
This coupled folding-binding process can occur between an IDP and a globular partner, but
also between two IDPs, with the resulting complexes being amenable to structural studies.
This gives the impression that even though the free state of IDPs cannot be characterized
by aunique structure, their functional state is conformationally unambiguous. Furthermore,
some structural elements of IDPs are biased for partner recognition/binding.” Thus,
structural data on a few dozen IDP complexes argues that the classical structure-function
paradigm can also be extended to IDPs, if their bound state is considered. In this sense,
IDPs represent a special class of proteins, where structural multiplicity is beneficial for
partner selection, but behave as “traditional” proteins after binding.

Why would, however, nature limit the capabilities of IDPs after they attain the
bound state? In other functions, like entropic springs/bristles, IDPs preserve their
conformational freedom in all circumstances.” It would be a twisted logic not to exploit
these beneficial features after interacting with the primary partner. Hence, it is possible
that the complexed state of IDPs be considered in a way similar to IDPs themselves 15
years ago and look for structural properties not properly recognized/represented in their
bound states. Hence we were seeking for cases, where structural disorder is a functionally
essential property of an IDP complex. Indeed upon an initial survey, 26 such complexes
were found, where structural polymorphism or disorder was present in the bound state
with significant contribution to function.?? Similarly to fuzzy logic in mathematics, the
terminology fuzzy complex was used.

Structural disorder in fuzzy complexes, such as protein disorder in the free state
comprises many different states along a wide spectrum, ranging from local to global disorder,
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from compact to extended states. Fuzziness was classified into four major categories. In
polymorphic complexes at least one of the partners adopts a few or multiple alternative
conformations. In flanking and clamp complexes the disordered segment neighbors or
connects ordered binding region(s). The random complexes are extreme cases of fuzziness,
where binding does not induce ordering of the interacting regions. These categories are
not distinct they can also overlap as illustrated by the examples below. The phenomenon
of sequence independence in protein-protein interactions was also related to fuzziness.

The recognition of the biological relevance of disordered bound states motivated the
investigation of such ‘unorthodox’ associations. Complexes reported to be fuzzy up to
date are summarized in Table 1. Accumulation of structural data did not only provide a
more detailed view on how conformational heterogeneity is realized in the bound state,
but also revealed those novel mechanisms, which could be mediated by fuzziness. In
the following we review how polymorphism or disorder in protein complexes can be
exploited in a variety of biological processes. The chapter will be organized as follows.
In the following section, basic definitions of the categories of fuzziness will be given
with a few illustrative examples. Additional sections discuss the types of interactions in
fuzzy complexes, biological processes where fuzziness plays a distinguished role, and
the importance of fuzzy complexes in molecular biology.

FIVE CATEGORIES OF FUZZINESS
Polymorphic Complexes

Alternative conformations (one/multiple) are observed in the complex that can
also underlie different biological functions. Structural variability in these cases could
be resolved, like upon binding nuclear localization signals (NLSs) to a-importin. NLS
peptides primarily bind via two clusters of basic residues connected by a linker, which is
variable in length.?* The same NLS peptide exhibits different side-chain conformations
enabling its association with different cargo proteins.

Different side-chain conformations can also lead to alternative set of interactions
between two molecules, as seen upon binding T-cell factor 4 (Tcf4) transcription factor
to B-catenin. Tcf4 binds to B-catenin in an extended conformation, where the middle
highly acidic segment forms alternative salt bridges with the partner.* Diminishing any
of these contacts impairs binding affinity, indicating that variability in charge-charge
interactions is required for the optimal complex.

Alternative contacts may impart different morphology on larger assemblies. For
example, actin polymerization is regulated by various proteins containing tandem repeats of
WH2 domains (e.g., thymosine, ciboulot, Spire, Cordon bleu).? Binding of the regulators
to the disordered subdomain-2 of actin induces their folding. The variable interactions
of the WH2 C-terminal tail affects the spacing between the ordered parts of the different
WH2 domains and thereby the organisation of the actin polymer.

Whereas direct structural evidence is missing in most cases, different biological
outcomes mightresult from alternative conformations. A disordered loop of dihydropyridine
receptor (DHPR) can bind to ryanodine receptor (RyR) with different affinities, resulting
in activation or inhibition of RyR channel opening.?® The opposite effects are likely due
to alternative interactions between the disordered peptide and gating residues of the
receptor that can block the passage of chloride ions.
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Table 1. Fuzzy complexes

Model IDP Partner Evidence Ref.
Static S
Polymorphic ~ NLS o-importin S 23

Msp90 MEEVD Ppp5 TPR domain B 77
Tcf4 CBD B-catenin B 24
RyR DHPR B 26
CFTR R domain CFTR B 52
Inhibitor 2 Protein phosphatase 1 B 78
Prion Prion amyloid B 47
RNase 1 RNase inhibitor S 79
WH2 Actin S 25
Myelin Actin S 56
Dynamic
Clamp Ste5 Fus3 S 27
Oct-1 trans. fac. Ig-k promoter S 28
NLS o-importin S 23
Cellulase E Cellulose B 80
Myosin VI Actin filament S 23
L7 L12 B 68
UPF1 UPF2 S 59
Flanking Hsp25 a-acrystalline S 81
RNAPII CTD mRNA maturation factors S 61
Measles virus nucloprotein ~ Phosphoprotein S 71
CREB KID CBP KIX S 32
Proline rich peptides SH3 domain S 36
IA; inhibitor Aspartic acid protease S 35
SF1 splicing factor U2AF S 33
FnBP Fn3 domain S 82
SP1 trans. fac Transcription preinitiation B 83
complex (PIC)
B-catenin APC B 62
p27 Cdk—cyclin 54
Ebola virus nucleoprotein VP35 and VP24 B 72
Ubx homeodomain DNA S 34
SSB DNA S 40
Ets-1 DNA S 84
Random T cell receptor zeta chain T cell receptor zeta chain S 39
Elastin Elastin S 85
Sicl Cdc4 S 49
UmuD2 UmuD2 S 38
Sequence independent
GCN4 PIC B 41
Gal4 PIC B 42
EFP PIC B 43
Linker histone HI CTD DFF40 B 45
Core histone H4 NTD nucleosome B 46
Ure2 prion Ure2 prion B 86
Sup35 prion Sup35 prion B
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Clamp Complexes

Many IDPs interact with their partners in a bi-partite manner, with the linker region
lacking permanent contacts and remaining disordered. The length of the linker is critical as
this segment modulates the separation of the clamps and is responsible to correctly position
specificity determining interactions. The scaffolding protein Ste5 contacts the fusion protein
3 (Fus3) by two distinct segments connected by an 8 residue long linker. Only simultaneous
binding of the two ordered regions provides measurable affinity that requires the presence
of the connecting segment that dynamically interchanges among many conformations.?’
The involvement of two such segments connecting three binding regions has been observed
in the case of inhibitor-1c in complex with protein phosphatase 2B (Fig. 1A).

Figure 1. Fuzziness and function in protein-protein interactions. Three examples demonstrate the functional
involvement of fuzzy regions of protein complexes. The figure shows the structure of three complexes,
with fuzzy parts remaining disordered in the bound state. The partner (dark grey) binds and IDP (light
grey), which undergoes limited induced folding. A significant part of the IDP remains disordered, and
contributes to function. A) The complex of Inhibitor-1c with protein phosphatase 2B (PP2B, pdb 208G).
The inhibitor binds its partner via three discontinuous binding segments, with the intervening regions
contributing to post-translational regulatory modifications. B) C-terminal domain (CTD) of RNA polymerase
IT (RNAP II) bound to its partner, mRNA guanylyltransferase (pdb 1P16). Large part of the CTD, which
is about 350 amino acids long, remains disordered in the complex, and mediates interactions with many
other factors involved in mRNA maturation. C) WH2 domain of WASP in complex with G-actin (pdb
2A3Z). The adjacent Pro-rich domain of the IDP remains disordered, and mediates interaction with
G-actin sequestering proteins (e.g. profilin) to release G-actin for actin polymerization.
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Disordered linkers often have excess of charged residues, which provide transient,
nonspecific electrostatic contacts with the partner. The octamer binding factor 1 (Octl)
has two separate DNA binding module, each recognizing a 4-5 base pair sequence. For
optimal affinity and specificity, a 23 aa long linker region is required; mutating some of
its charged residues or shortening it causes severe drop in selectivity.®

Flexible/disordered linkers may also enable processivity of binding, as exemplified
by movements along a polymeric partner. Myosin VI has two heads, separated by a
80-residue linker, which can interact with actin polymer. In each step, the head performs
a diffusive search promoted by electrostatic interactions between the disordered part of
the linker region and the actin polymer.?

Flanking Complexes

IDPs often utilize a short recognition element to establish specific contacts with their
partners. Indeed, many protein-protein interactions are mediated by short recognition
elements (‘linear’ motifs).3*3! The disordered environment in which the motifis embedded,
not only imparts plasticity to localize the target site, but may also promote complex
formation via transient, nonspecific interactions. Shortening the flanking region results
in gradual decrease in binding affinity. The kinase inducible domain (KID) of CREB
interacts with the KIX domain of CBP via 29 amino acid residues.* Doubling the size
of the flanking regions results in a five-fold decrease of the dissociation constant. The
binding affinity of splicing factor 1 (SF1) to U2 small nuclear RNA auxiliary factor also
increases two-fold upon inclusion of noncontacting residues in the motif and five-fold
for the full-length protein.** The interaction of Drosophila Hox protein Ultrabithorax
with cognate DNA is primarily mediated by a Hox domain, whereas a long disordered
N-terminal tail contributes many additional, transient regulatory interactions which either
activate or inhibit the primary Hox-DNA interaction. Thus, this fuzzy region presents
an intricate interplay of intra- and intermolecular interactions that fine-tune specificity
of DNA recognition.**

Flanking regions may also induce formation of secondary structure required for
binding. The yeast A3 inhibitor has subnanomolar potency against yeast aspartic protease.
The inhibitor is disordered in isolation, while 30 residues adopt an a-helical conformation
upon interaction with the protease. Deletion or mutation of inhibitor residues that are not
in physical contact significantly compromises binding* due to decreased electrostatic
stabilization of the helix. Similarly, upon interaction of Src SH3 domain with a proline-rich
peptide, only two prolines make direct contacts with the partner, the rest contribute to
the formation of the left-handed PPII helix required for recognition.*

Disordered flanking regions (‘tails”) often play importantrole in target site localization
of DNA-binding proteins. The N-terminal tail of homeodomains is a crucial factor in
selectivity and remains partly unstructured in the complex.’’

Random Complexes

These are the most bizarre examples of fuzziness, when the IDP interacts with the
partner only via transient contacts, which apparently do not induce its (even partial)
folding. By a variety of biophysical techniques, these IDPs behave similar to their free
form and show no signs of an ordered structure.
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The UmuD2 gene product is a dimer that can undergo autocleavage. The resulting
proteins, shortened by 24 residues each, form a stable homodimer, but show arandom-coil
signal in CD at physiologically relevant concentrations.®® According to various
spectroscopical methods, T-cell receptor C chains also lack secondary structure upon
homodimerization.?* Random behavior is not limited to protein-protein interactions.
Binding of single-stranded DN A binding protein to DN A does not induce disorder-to order
transition of the protein, which keeps fluctuating among several alternative conformations.*

Sequence Independent Interactions

Some IDPs can form a full-affinity complex even if their sequence is shuffled. Most
probably, the variability of specific contacts is responsible for this phenomenon, which
can result in structural heterogeneity in the bound state. In most cases, structural evidence
is available for the disordered state of such segments (missing coordinates from crystal
structures, CD) but no detailed view of such interactions could be obtained.

The classical observation is that in transcription factors the acidic transactivator
segments can be replaced by random acidic sequences without compromising transcriptional
response.**?In Ewing’s sarcoma fusion proteins the repeat units can be freely interchanged
or even reversed without impairing function.*

The C-terminal domains (CTD) of linker histones are highly variable in sequence, but
show stable amino acid composition.* Binding of the linker histone H1 CTD to DFF40
is resistant to scrambling of the repeat units with respect of the globular domain.** The
redundant function of H2 and H4 core histone N-terminal domain (NTD) in chromatin
condensation could also be mediated by the multiplicity of conformations rather than a
single state.*

INTERACTIONS IN FUZZY COMPLEXES
Alternating Interactions

Conformational heterogeneity can result in alternative permanent or transient contacts
with the partner. Variations in permanent interactions can lead to different morphologies
in large assemblies, like in prions, where different hydrogen bonding patterns lead to
different packing of f3 strands.*’ Plasticity of structures might also explain why amyloid
formation is not sensitive to sequence changes.*®

Alternative contacts are often formed by electrostatic interactions that generate a
conformational ensemble of the complex. The cyclin dependent kinase inhibitor Sicl
contains 9 recognition sites for the cell-division cycle protein 4 (Cdc4), which can interact
with a single site of the receptor. Interactions are induced by phosphorylation that causes
transient, local ordering around the motifs.* The whole complex, however, remains
dynamic, which makes the phosphorylated sites interchangeable.

Interactions Induced by Posttranslational Modifications

Disordered regions are the preferred sites of posttranslational modifications®
even when some parts are bound to a partner. Phosphorylation can induce formation
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of transient local ordering, further posttranslational modifications or contacts with
other partners. The degree of phosphorylation can be utilized to fine-tune the strength
of interaction in the complex via long-range electrostatic interactions as seen in the
Sic1-Cdc4 complex.’!

Multiple phosphorylation in the disordered regulatory R domain of the cystic fibrosis
transmembrane-conductance regulator (CFTR) induces formation of transient a-helices.*
These fluctuating secondary structure elements establish dynamic contacts with the
nucleotide binding domains (NBD) of CFTR and thereby prohibit their dimerization.
This couples the phosphorylation of R domain to the mechanism of channel opening.

Phosphorylation may induce further interactions that can can mediate a functional
outcome distinct from that of the original binding. The cyclin dependent kinase inhibitor
p27%P! binds to cyclin A-Cdk complex and blocks the progression from G1 to S phase in
the cell cycle.” The flexibility of the molecule allows phosphorylation of T88 causing
its exclusion from the ATP binding pocket of Cdk2. This process re-activates the kinase
enabling its action on T187, located in the long, disordered C-terminal tail of p27.34
Phosphorylation of T187 initiates its interactions with the SCF/Skp2 that polyubiquitinates
p27 leading to its degradation and progression to the S phase.

Interactions with Alternative Partners (Promiscuity)

Plasticity of disordered regions often enables the adaptation of the same motif to
different partners or a variable arrangement of the recognition motifs, which can mediate
interactions with alternative partners. The proline-rich segment of myelin basic protein
(MBP) can bind to several SH3 domain-containing proteins, e.g., Yes1, PSD95, cortactin,
PexD, Abl, Fyn, c-Src, Itk.% Besides the direct contacts with the proline residues, all these
complexes are facilitated by long-range electrostatic interactions between the disordered
region of myelin outside the binding context and the partner.*

Disordered charged tails are utilized to fine-tune binding strength ofhomeodomains to
different DNA sequences.**>’ Although the disordered tail primarily serves as anonspecific
anchor via transient electrostatic interactions, it can also establish a few specific contacts
without adopting an ordered structure.’®

Simultaneous Interactions with Different Partners

Disordered bound segments may contain recognition sites for other proteins thatcan be
targeted even in the complex. Nonsense-mediated decay factors UPF1 and UPF2 interact
in a bipartite manner, leaving the connecting segment disordered.” This binding mode
is not only required for full affinity, but also promotes association with the translation
termination factor eRF3 and initiates complex formation with the ribosome and the exon
junction complex (EJC).

A considerable fraction of the general transcription factor TFIIF remains unstructured
upon binding to RNAP IL.%° These regions are highly charged, sensitive to proteolysis
(exposed) and also interact with the Mediator, thereby contributing to the assembly of
the preinitiation complex (PIC). The C-terminal domain of RNAP II is highly disordered
and serves as a scaffold for complexes participating transcription termination and mRNA
maturation:®' most of the CTD remains disordered in any of the complexes with its
multitude of partners (Fig. 1B), thereby mediating further regulatory interactions.
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BIOLOGICAL PROCESSES DISTINGUISHED BY FUZZINESS

Structural disorder correlates in general with signaling and regulation and contributes
to the function of these IDPs in molecular recognition. Fuzziness is most often seen in these
physiological processes and when protein function fails, also in pathological processes.

Signaling

Efficient information flow requires large sensitivity for environmental signals and rapid
response. Thisisnormally achieved via transient contacts among molecules or conformational
rearrangements that alter the interaction pattern. Ligand-dependent conformational
equilibrium and dynamically fluctuating interactions of fuzzy complexes offer efficient
means for molecular communication. Many fuzzy examples are associated with signalling
pathways. For example, f-catenin is a transcription co-activator that also plays role in
Wnt signalling pathway. It is bound to a multi-protein complex including the Adenomatus
Polyposis Coli (APC) protein, axin and protein phosphatase 2. Phosphorylation of APC is
responsible for turning the Wnt signals on and off by changing the affinity of the 3-catenin
binding. As B-catenin remains partly disordered in the complex it can also interact with
the ubiquitination machinery without dissociating from APC.?? A similar fuzzy signaling
complex has been observed between the WH2 domain of Wiskott-Aldrich syndrome protein
(WASP) and G-actin (Fig. 1C), in which the Prorich region of WASP remains disordered
and available for further interactions, with actin-sequestering profilin, for example.

Transcription and Translation Regulation

Transcription regulation involves various multi-protein complexes that act in a given
spatial and temporal order. Many of these complexes interact via disordered regions that
may remain disordered even in the bound state.'* For example, C-terminal tails of linker
histones and of core histones are critical for organizing chromatin assemblies and are
invisible in the nucleosome complex.®® Their macromolecular interactions (e.g., with
chromatin remodelling complexes) are modulated by posttranslational modifications,
which alter local structure and dynamics.* Function of histone tails is also insensitive to
sequence shuffling, indicating a variability of interactions.*** Hub-behavior of architectural
transcription factors is also linked to their highly disordered state in complex that
facilitates simultaneous interactions with many partners.® Low-resolution structural data
reflect significant structural disorder in the pre-initiation complex in co-activators (e.g.,
Mediator complex®), in some RNAP bound GTFs (e.g., TFIIF¢” and TFIIB) and also in
CTD of RNAPII. The function of RNAPII CTD depends on the degree of phosphorylation
modulating the shape and interactions of this molecular scaffold.®’

mRNA maturation involves various proteins with long disordered regions, the
dynamics of which in the complex mediate further interactions (e.g., UPF2 in complex
with UPF1 in nonsense-mediated decay, NMD?*). The length of interdomain region in
ribosomal proteins (L7/L12) was also shown to be critical for function.®®

Cell-Cycle Regulation

Tuning the cell-cycle requires ultrasensitive regulatory devices. Interactions between
cyclin-dependent kinases and their inhibitors can be influenced by different regions of the
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inhibitor and also by posttranslational modifications, both linked to structural disorder
in the complex. The interaction of cyclin dependent kinase inhibitor Sicl with Cdc4 is
gradually tuned by phosphorylation. Although only one out of several phosphorylated
Cicl sites can interact with the target receptor, phosphorylation of the rest interferes with
local ordering and dynamics of the complex.**s! In addition, long-range electrostatic
interactions also contribute to affinity. In the case of p27¥!, phosphorylation of a distant
site of the inhibitor is utilized as a switch for G1 to S transition. The phosphorylation
occurs in a probabilistic manner depending on the exclusion of the primary p27 contact
site (T88) from the active pocket of Cdk.*

Viral Assemblies

Viral nucleoproteins are responsible for encapsidating the viral genome such as single
stranded RNA and influence its replication via complex interactions. The measles virus
nucleoprotein utilizes a conserved region (Box2) to interact with the phosphoprotein,
which is affected by the C-terminal segment that does not establish direct contacts with
the phosphoprotein. While Box2 adopts an a-helical structure in the bound form, the
C-terminal region remains disordered in the complex.”7! The Ebola virus nucleoprotein
also preserves disordered features upon associating with other virus-like particles.”

Amyloid Formation

In amyloid formation proteins are converted from their normal physiological state
to a highly ordered fibrillar aggregate, with physiological (e.g., physiological prions) or
pathological (systemic and tissue-specific disorders) consequences.” The 3D structure of
several amyloids is recently solved at residue-level resolution by solid-state NMR and EPR
spectroscopy.’*” The defining and unifying feature of these amyloids is a highly-ordered
parallel B-sheet core, in which individual polypeptide chains are stacked in register,
running perpendicular to the major axis of the fibril. Invariably, however, part of the
polypeptide chain in the amyloid remains intrinsically disordered and thus it is excluded
from the ordered core.” These fuzzy regions (e.g., in the amyloids of a-synuclein, Ap
peptide, the yeast prion HET-s and Ure2p), have characteristic amino acid composition
and higher predicted disordered value than segments incorporated into the cross-f core.
Because these region serve different functions, such as the accommodation of destabilizing
residues and the mediation of secondary interactions between protofibrils, they represent
a special case of fuzziness.

CONCLUSION AND FUTURE IMPLICATIONS

The concept of fuzzy complexes has only been recently established,? yet the number
of supporting examples is growing rapidly. Whereas detailed structural data is still
sparse, the idea of conformational heterogeneity in the bound state is in sharp contrast
with the classical view of one structure-one protein function. As briefly illustrated in
this chapter, fuzziness extends the functional capacity of proteins by enabling diverse,
yet very specific interactions. Posttranslational modifications in the complexed state
offer an additional and versatile device for regulation. With the recognition that many
IDPs function by molecular recognition, in which they undergo induced folding, it has
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been temporarily thought that IDPs can be brought under the umbrella of the classical
structure-function paradigm. Now, with the recognition of fuzziness, the basic idea is
clear: the deterministic relationship between sequence and function has to be replaced
by a more probabilistic view. The underlying structural and functional details however,
await to be elucidated. This book collects representative and functionally interesting
cases from diverse biological processes. Based on the abundance of IDRs in complex
systems and the benefits of fuzziness, we anticipate this type of interaction to be very
common in eukaryotic proteomes. The highlighted examples demonstrate that even
if high-resolution structural studies are not feasible, low-resolution techniques and/or
biochemical approaches may provide valuable information. In the near future, more data
has to be collected to obtain a comprehensive picture of how fuzzy complexes function.
If we succeed to develop a more stochastic formalism between sequence and function,
it can be used to reinterpret the functional readout of protein-protein interactions. This
will ultimately have a thorough impact on our ability to describe all cellular processes
at the molecular level.
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Abstract: Linker histones are multi-domain nucleosome binding proteins that stabilize higher
order chromatin structures and engage in specific protein-protein interactions.
Here we emphasize the structural and functional properties of the linker histone
C-terminal domain (CTD), focusing on its intrinsic disorder, interaction-induced
secondary structure formation and dynamic fuzziness. We argue that the fuzziness
inherent in the CTD is a primary molecular mechanism underlying linker histone
function in the nucleus.

INTRODUCTION

Linker histones (e.g., H1, HS) comprise a large family of chromatin associated
proteins. All eukaryotes contain at least one gene encoding a linker histone. Humans
have 11 histone H1 isoforms that are developmentally regulated.'* Linker histones are
small proteins (~21 kDa) that have three distinct domains. The N-terminal ~35 residues
lack secondary structure, the middle ~65 residues fold into a well defined structure
and the C-terminal ~100 residues also are unstructured (Fig. 1). The unique molecular
properties of the linker histone C-terminal domain (CTD) are the focus of this chapter.
Specifically, we discuss evidence that the linker histone CTD is intrinsically disordered
and dynamically fuzzy. Moreover, we speculate that the fuzziness and plasticity inherent
in CTD interactions with other macromolecules allow H1 to be a multifunctional “hub”
protein in the nucleus.

The chapter first briefly reviews chromatin fiber dynamics to provide the background
needed to understand linker histone function. We then present evidence that the linker
histone CTD is intrinsically disordered and fuzzy when it binds to DNA. The notion of

Fuzziness: Structural Disorder in Protein Complexes, edited by Monika Fuxreiter and Peter Tompa.
©2012 Landes Bioscience and Springer Science+Business Media.
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CTD

NTD GD

100A

Figure 1. Illustration of linker histone tripartite domain organization drawn to scale. The image was
constructed by starting with the PDB file of the HI GD (1GHC). Amino acid residues from core histone
H2B (from the crystal structure of the nucleosome®) were concatamerized using COOT,” resulting in
an extended polypeptide chain (3.5 A per residue). 30 and 100 residues were then added to the N- and
C-terminus of the GD, respectively, to model the length of the intrinsically disordered NTD and CTD
of the H1 protein.

CTD fuzziness is reinforced by our concluding discussions of a well characterized linker
histone CTD-protein interaction and the effects of phosphorylation on CTD function.

CHROMATIN FIBER STRUCTURE AND DYNAMICS

As organisms have evolved and become more complex, their genomes have also
become more complex. The complete genome of a typical eukaryotic cell is nearly two
meters in length yet is constrained within a ~10 micrometer nucleus. Despite being in this
highly condensed state, the genomic DNA must be available to be used for functional
processes such as DNA replication, transcription and damage repair. To achieve a high
level of chromosomal compaction and couple compaction with closely controlled genomic
access, metazoans have evolved a specific set of chromosomal proteins termed the core
and linker histones.

The bulk of genomic DNA is bound to octamers made up of two each of the core
histone proteins, H2A, H2B, H3 and H4.* 147 bp of genomic DNA is wrapped in ~1.75
superhelical turns around the histone octamer in each nucleosome, forming the first
level of DNA condensation. Nucleosomes are spaced between 10-60 bp apart along
the chromosomal DNA, forming nucleosomal arrays. The intervening DNA between
nucleosomes is called linker DNA. Nucleosomal arrays containing bound linker histones
are called chromatin fibers. Nucleosomal arrays and chromatin fibers make up the next
levels of DNA compaction. In higher eukaryotes, linker histones are present in nearly
stoichiometric amounts with nucleosomes.’> The primary function of linker histones
has long been believed to influence the higher order structural transitions of condensed
structures of chromatin fibers.

Chromatin fibers are conformationally dynamic. Typically, there are two defining
salt-dependent condensation transitions seen in vitro: folding and oligomerization
(for reviews see refs. 6-11). In the absence of salts, chromatin fibers are in extended,
beads on a string-like conformation, with no or few nucleosome-nucleosome interactions.
However, under more physiological conditions (such as in 1-2 mM Mg2* or 100-200
mM NaCl) chromatin fibers fold into a thickened 30 nm diameter fiber. Folding involves
short-range, intrafiber, nucleosome-nucleosome interaction.'*'® Salt also induces chromatin
fibers to reversibly self-associate into large (>100S), soluble, oligomeric assemblages.
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Oligomerization of short chromatin fiber fragments in vitro is thought to be reflective of
longer ranger fiber-fiber interactions that occur in long chromosomal fibers.>!!

EFFECTS OF LINKER HISTONES ON CHROMATIN DYNAMICS

Linker histones affect chromatin dynamics in several ways. The first recognized
benchmark of linker histone binding to chromatin fibers was that 168 bp of DNA was
protected from nuclease digestion in an H1-bound fiber,'** compared to the 147 bp of
protection afforded by the nucleosome alone. This suggested that linker histones (1)
bind near the entry-exit sites of DNA on the nucleosome and (2) interact with 20 bp of
linker DNA and protect it from nuclease accessibility. Later studies using nucleosomal
arrays and chromatin fibers confirmed that linker histones decrease the angle of the
DNA as it enters and exits the nucleosome, forming what is known as the apposed
stem motif.2!2* Apposition causes the two DNA strands (one entering and one leaving
the nucleosome) to come in close physical contact. The results from many studies over
the years are consistent with the conclusion that a major function of linker histones is
to bind to and deform linker DNA (see for example, refs. 5,24-29).

In terms of higher order chromatin fiber dynamics, several important early papers
defined a critical role for linker histones in the formation and maintenance of folded
chromatin fibers.?*3¢ Specifically, at physiological salt concentrations, endogenous
H1-containing chromatin folded into 30-50 nm thick super-helical fibers with a 10 nm
pitch and between 6-10 nucleosomes per helical turn. Nucleosomal arrays alone
condensed, but not to the same degree as Hl-containing chromatin fibers. It was
thus proposed that H1 functions to induce the formation of the folded ~30 nm fiber.
Subsequent studies of defined nucleosomal array and chromatin fiber model systems
performed over a 20 year period have firmly documented that nucleosomal arrays
alone can fold in the absence of bound H1, but that linker histones are required for
stability of the 30 nm fiber.>#373 Another characteristic of linker histone action is that
the salt concentrations needed to induce condensation decrease significantly when
linker histones are bound to nucleosomal arrays.®*>*° This presumably results in part
from electrostatic screening of the DNA during linker histone binding, which in turn
facilitates more stable nucleosome-nucleosome interactions.

There has been much debate regarding the higher-order structures of linker
histone-stabilized chromatin, specifically the architecture of the canonical 30 nm fiber
(for reviews see refs. 8,38,40). Two main models have been proposed. In the first, the
chromatin fiber forms a twisted ribbon-like structure based on a two start helix.>#!-
Different linker DNA lengths are accommodated by varying the diameter of the fiber.
The second model is built upon a coiling of successive nucleosomes along the fiber,
forming a one-start solenoid six nucleosomes in circumference with bent linker DNA 3744
In addition, in the solenoid model the linker DN A must be long enough to accommodate
H1 binding and the subsequent alteration of the linker DNA path.

Regardless of the specific structure(s) that equate to the 30 nm fiber, there is widespread
agreement that linker histones perform at least three key functions during chromatin
condensation: They bind to nucleosomal particles, they bind to and alter linker DNA
structure and they stabilize the folded and oligomeric conformations of chromatin fibers.
The remainder of the chapter focuses on the protein chemistry of linker histones and the
fuzziness of the intrinsically disordered linker histone CTD during linker histone action.
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LINKER HISTONE DOMAIN PROPERTIES

To appreciate how linker histones influence chromatin fiber structure and stability, it
is important to understand the unique features and functions of the linker histone domains.
As mentioned previously (Fig. 1), linker histones have a tripartite domain organization,
with long unstructured N- and C-terminal “tails” and a central folded globular domain
(GD).* Below we discuss key structural features of these three domains.

The Linker Histone Globular Domain Binds Nucleosomes

The 3-dimensional structures for the GDs of histone H1 and H5 have been
determined.**® The GD folds into a classical winged-helix motif (Figs. 1,2), with two
distinct DNA binding regions.*’ Nucleosome binding by the GD is asymmetric, in that
binding occurs between the final superhelical turn of the DNA and the histone octamer.>*>?
It has been proposed that the shorter linker histone NTD protects 0-5 bp on one side
and the longer CTD protects 15-20 bp on the opposite side, of the nucleosome.*” The
globular domain is primarily responsible for the increase in nuclease protection from
146 to 168 bp!** and has been shown to be sufficient for binding to nucleosomes.>!
However, the GD alone is unable to stabilize condensed chromatin, a function that resides
in the linker histone CTD**-® (see below).

Chromatin

Condensaty

Binding to other proteins
¢ = involves other specific CTD
regions

DFF40/CAD
Binding and
Activation

Figure 2. Model of linker histone CTD fuzziness. Shown schematically on the left is an unbound linker
histone, in which the CTD is in a fully disordered state. Numbers refer to the CTD regions that were
sequentially deleted in the experiments of Lu and Hansen 2004 and Widlak et al 2005. Thickened lines
indicate the region of the CTD that are functional for the processes indicated.
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The Linker Histone NTD and CTD Have Unique Amino Acid Compositions
and Undergo DNA-Dependent Disorder to Order Transitions

The linker histone NTD is typically ~35 amino acids in length. No specific role in
chromatin condensation has been elucidated for the NTD, though it has been proposed
toassistin locating and anchoring the GD to the nucleosome.? The extensive posttranslational
modification of the NTD suggests it also may serve as a binding platform for other proteins.'
The NTD has been shown to be extensively disordered in aqueous solution. However, the
NTDs of two H1 isoforms (H1o and Hle) form a-helix in the presence of long DNA and
the solvent triflouroethanol (TFE).*° The NTD is rich in basic residues (21% arginine and
lysine in mouse H10). The overall amino acid complexity is low; besides the arginine and
lysine, only glycine, alanine, proline and serine/threonine are well represented. Thus, the
linker histone NTD has the properties of an intrinsically disordered domain.

The linker histone CTD is ~100 residues long, binds to linker DNA and stabilizes
folded and oligomeric chromatin fibers.?*** Data indicate that the linker histone CTD
also is intrinsically disordered. The CTD is devoid of secondary structure in aqueous
solution.®!** The addition of TFE or perchlorate ions (NaClO4) effectively increases the
helical content within full length peptides or shorter peptides derived from the linker
histone CTD.®'** Perchlorate ions are thought to mimic the charge on the phosphates
of the DNA backbone.®? A short CTD peptide corresponding to the N-terminal most
residues that abut the GD (aa 99-121) was shown to contain up to 45% a-helix in 90%
TFE, using a combination of CD and proton NMR.* The resulting helix spans residues
99-117 and is amphipathic, with six positively charged residues on one face and three
valines on the opposing face. When this same short peptide was bound to DNA, both
helical and turn components were more prevalent, relative to the free peptide.® A recent
study of full-length CTD peptides derived from Hlo (somatic isoform) and H1t (germ
line specific isoform) used CD and IR spectroscopy to study the peptide structure when
free in aqueous solution and when bound to DNA.% In solution, CD showed that both
peptides were essentially random coil, with a component of ‘turns’, which was suggested
to correlate with a nascent helix.®” However, increases in all types of secondary structure
were observed for both the Hlo and H1t CTDs when bound to DNA. Interestingly,
shifting the peptides from low (10 mM) to a more physiological NaCl concentration
(140 mM) eliminated any contribution to the CTD-DNA spectrum from random coil,
with concomitant increases in all secondary structures. Thus, when bound to DNA, the
linker histone CTD becomes most ordered under ionic conditions where chromatin is
stably folded into 30 nm fibers.

The CTDs of the H1 isoforms have a unique amino acid composition, in that they are
highly enriched in lysine (~40%), alanine (~20-30%) and proline (~13%) and contain only
a few other types of amino acids (e.g., threonine/serine, glycine and valine). Noticeably
absent from the isoform CTDs are substantive amounts of 13 of the common amino
acids, particularly the acidic and hydrophobic residues (reviewed in ref. 68). There is no
sequence conservationamong the various H1 isoform CTDs,*7! yet the unique amino acid
composition signature is retained. Moreover, in most isoform CTDs the lysine residues
are almost uniformly distributed along the length of the peptide,”?> which would lead to
formation of induced secondary structures with nearly uniform positive charge density.
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THE LINKER HISTONE C-TERMINAL DOMAIN IS DYNAMICALLY FUZZY

The concept of “fuzziness” in macromolecular interactions has recently been
discussed in detail.”>™ Two classes of fuzziness have been proposed. In “static fuzziness”
aregion of a protein exists in more than one stable conformation and hence these regions
tend to be absent from atomic structures. The second class is “dynamic fuzziness”, where
a region of a protein exists in an ensemble of equilibrating conformations and disorder
may remain present in the bound state. As discussed below, all available evidence
suggests that the CTD forms dynamic fuzzy complexes while functioning to both stabilize
condensed chromatin fibers and mediate specific protein-protein interactions. Furthermore,
the fuzziness of the linker histone CTD appears to be modulated by posttranslational
modifications such as phosphorylation.

Linker Histone CTD-DNA Interactions

An in vivo study using fluorescence recovery after photobleaching showed that the
CTD is nearly as important as the GD for stabilizing the binding of the linker histone to
chromatin in vivo.” Early studies of native chromatin fibers bound to trypsin-truncated
linker histones showed that the CTD is absolutely required for stabilization of folded
chromatin structures.?**-® The importance of the CTD was recently confirmed using
chromatin fiber model systems assembled with truncated recombinant H10.** The
recombinant studies went even further, making uniform ~24 residue truncations beginning
from the extreme C-terminus. This effectively divided the Hlo CTD into four regions
(Fig. 2) having approximately equal charge density and amino acid composition. These
constructs were then used to test whether the entire CTD was needed for H1 o function. The
rather surprising answer is that it was not, as region 4 could be deleted without affecting
chromatin condensation. Deletions of regions 3 and 4 led to a partial disruption of folding,
indicating that region 3 participates in stabilization of the folded fiber. A truncated Hlo
protein that had regions 2, 3 and 4 removed behaved the same as the mutant with only
regions 3 and 4 removed, indicating no condensing functions resided in region 2. Finally,
all of the remaining functions of the CTD relating to condensation were lost when all
four regions were deleted, leaving only the NTD fused to the GD. Thus, even though the
Hlo CTD is 97 residues long, only the discontinuous 24-residue regions 1 and 3 were
necessary to mediate CTD function during chromatin condensation (Fig. 2).

Anevenmore unexpected result was obtained from experiments that shuffled the order
of CTD regions 1-4 identified in the earlier studies;’”® when functional region 1 (Fig. 2;
residues 96-121) was replaced by either “nonfunctional” region 2 or 4, wild-type ability to
condense chromatin fibers was maintained. Additionally, scrambling the primary sequence
of region 1 also had no affect on function. Finally, all mouse somatic H1 isoforms could
condense chromatin fibers equally well in vitro.” The conclusion from these experiments
was that the functional CTD regions were defined less by primary sequence than by amino
acid composition and position relative to the winged helix GD. These results further suggest
that strategic portions of the CTD are engaged with linker DNA in strategic locations
while stabilizing folded and oligomeric chromatin fibers. Presumably, the unique amino
acid composition of the CTD allows formation of secondary structure in those regions
bound to linker DNA, while the nonfunctional regions remain disordered and unbound.
Thus, the linker histone CTD appears to display dynamic fuzzy behavior while binding
to linker DNA and stabilizing condensed chromatin fibers.
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Linker Histone CTD-Protein Interactions

The chromatin condensation results raise an intriguing question. Why are linker
histone CTD lengths conserved at around 100 residues if only 75 residues are needed
to stabilize condensed chromatin fibers? At least part of the answer is that the terminal
residues of the CTD in some cases are required for H1 to recognize with protein
surfaces.”””® Linker histones are increasingly being shown to interact with many different
cellular proteins,” although in general the H1 domains responsible for mediating the
protein-protein interaction have not been determined. Two exceptions are the chromosomal
protein, BAF1 and the apoptotic nuclease, DFF40/CAD. Using pull-down approaches
in combination with truncation mutants, BAF1 was shown to bind specifically and with
micromolar affinity to the entire CTD of the H1.1 isoform.”” The interaction of DFF40/
CAD with the H1 CTD has been examined in great detail using CTD peptides and the
same Hlo truncation mutants used to study chromatin condensation.** The truncation
studies indicated that successive deletion of CTD regions 4, 3 and 2 led to successive
disruption of DFF40/CAD activation by H1. However, deletion of region 1 had little further
affect (Fig. 2). Thus, for the H1 CTD-DFF40/CAD interaction, region 4 was functional
while region 1 was not. This is opposite of the result obtained for H1 CTD function in
chromatin condensation. Consistent with the truncation results, peptide studies indicated
that residues 146-193 (i.e., the most C-terminal 47 residues) were as effective as the full
CTD (residues 97-193) or the full-length protein. Interestingly, a CTD peptide that was
only 24 residues in length failed to activate DFF40/CAD, indicating the minimal length
needed for function was between 27 and 47 residues. These results demonstrate that the
linker histone CTD can recognize and stably bind specific protein surfaces. They also
showed that the region(s) needed to bind DFF40/CAD overlap with, but are distinct from,
the CTD regions involved in chromatin condensation. Of note, all six mouse somatic
isoforms activated the enzyme equally.” Thus, amino acid composition, position of key
CTD regions relative to the GD and length of the functional CTD regions also are key
molecular factors in the recognition of protein surfaces by the H1 CTD.

Fuzzy Interactions and CTD Posttranslational Modifications

The fuzziness of the linker histone CTD can be modulated by posttranslational
modifications. Certain specific CTD residues can be phosphorylated, acetylated, methylated,
ubiquitinated and formylated (see refs. 1,3 for excellent reviews). Phosphorylation
is the best characterized CTD modification. Phosphorylation of H1 by one or more
cyclin-dependent kinases occurs at the conserved KS/TPXK or KS/TPK motifs found
exclusively in the unstructured NTD and CTD.* The number and utilization of the
phosphorylation motifs is isoform specific. For example, the human linker histone present
in differentiated cells (H1o) lacks these consensus sites, while the somatic H1.1-H1.5
isoforms have up to eight sites in their CTDs.? Interestingly, in the case of the CTD, most
phosphorylation sites are clustered in the middle of the domain,' i.e., corresponding to
regions 2 and 3 above (Fig. 2).

Atthe molecular level, phosphorylation of even a single CTD residue can have several
significant effects on the properties of the domain. For example, phosphorylation converts
Ser/Thr into highly negatively charged residues, which are almost completely absent from
the CTDs of all the linker histone isoforms.®® Thus, in the vicinity of a phosphorylation
site the amino acid composition changes significantly and the uniform positive charge
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density of the CTD will be disrupted. These changes are likely to affect the local fuzziness
of the CTD. Indeed, model studies have demonstrated that phosphorylation alters the
secondary structure content of DNA-bound CTD peptides, but not peptides that are free
in solution.®® Moreover, the extent of secondary structure alteration was dependent on the
isoform CTD used. The unphosphorylated linker histone binds DNA more tightly than
the highly phosphorylated form.*'#? Thus, the effects of phosphorylation are coupled to
both the CTD disorder to order transition(s) and macromolecular recognition.

CTD phosphorylation clearly is an important regulator of linker histone function in
vivo. H1 phosphorylation is very high in rapidly proliferating cells and almost undetectable
in quiescent cells, suggesting a role in regulating cell-cycle transitions (for review see
refs. 83). Consistent with these results, linker histones are phosphorylated in a cell-cycle
dependent manner, with highest levels detected in S and G2 phases and lowest levels at the
end of mitosis.***” Recently, Thiriet and Hayes* showed that DNA replication is strongly
dependent on linker histone phosphorylation and phosphorylation correlates with H1
eviction from chromatin and more rapid progression through replication. Using fluorescence
recovery after photobleaching (FRAP), phosphorylation has been suggested to decrease
the residency time of H1 on chromatin.®® These results are consistent with a role for linker
histone phosphorylationinloosening protein-DNA interactions during interphase. In seeming
contradiction, the stability of metaphase chromosomes requires H1 hyperphosphorylation.*
One possible explanation for these results is that hyperphosphorylation causes adoption of
aDNA-induced secondary structure that stabilizes metaphase chromosomes. Analternative
hypothesis is that hyperphosphorylation helps dissociate the HI CTD from DNA, thereby
creating a chromatin fiber structure that can be more easily molded into a supercondensed
metaphase chromosome by other macromolecules.

Importantly, phosphorylation of any one of the four phosphate acceptor residues on
the H1b CTD disrupts interaction of H1 with heterochromatin protein 1 (HP1).*! This
implies that the unmodified CTD is involved in the HP1-H1 interaction and that regulation
of CTD fuzziness by phosphorylation extends to H1-protein interactions.

CONCLUSION

The linker histone CTD is an intrinsically disordered protein domain that can
recognize both DNA and protein surfaces. Molecular determinants of function appear
to be amino acid composition, the position of strategic CTD region(s) with respect to
the GD and region length. Although the CTD has been maintained throughout evolution
at ~100 residues, only portions of the complete domain are required for macromolecular
recognition. In the cases examined thus far, the regions of the CTD that function in DNA
recognition are different than those that function in protein recognition. These properties
indicate that the linker histone CTD is a dynamically fuzzy protein domain. By all accounts
the fuzziness of the CTD allows linker histones to be multifunctional regulatory hubs in
the nucleus, not just single-function proteins involved in chromatin architecture.
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Abstract:

It is now widely recognized that intrinsically disordered (or unstructured) proteins
(IDPs, or IUPs) are found in organisms from all kingdoms of life. In eukaryotes,
IDPs are highly abundant and perform a wide range of biological functions, including
regulation and signaling. Despite increased interest in understanding the structural
biology of IDPs, questions remain regarding the mechanisms through which
disordered proteins perform their biological function(s). In other words, what are
the relationships between disorder and function for IDPs? Several excellent reviews
have recently been published that discuss the structural properties of IDPs.'* Here,
we discuss two IDP systems which illustrate features of dynamic complexes. In
the first section, we discuss two IDPs, p21 and p27, which regulate the mammalian
cell division cycle by inhibiting cyclin-dependent kinases (Cdks). In the second
section, we discuss recent results from Follis, Hammoudeh, Metallo and coworkers
demonstrating that the IDP Myc can be bound and inhibited by small molecules
through formation of dynamic complexes. Previous studies have shown that
polypeptide segments of p21 and p27 are partially folded in isolation and fold further
upon binding their biological targets. Interestingly, some portions of p27 which bind
to and inhibit Cdk2/cyclin A remain flexible in the bound complex. This residual
flexibility allows otherwise buried tyrosine residues within p27 to be phosphorylated
by nonreceptor tyrosine kinases (NRTKs). Tyrosine phosphorylation relieves
kinase inhibition, triggering Cdk2-mediated phosphorylation of a threonine residue
within the flexible C-terminus of p27. This, in turn, marks p27 for ubiquitination
and proteasomal degradation, unleashing full Cdk2 activity which drives cell cycle
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progression. p27, thus, constitutes a conduit for transmission of proliferative signals
via posttranslational modifications. Importantly, activation of the p27 signaling
conduit by oncogenic NRTKSs contributes to tumorigenesis in some human cancers,
including chronic myelogenous leukemia (CML)® and breast cancer.'’ Another IDP
with important roles in human cancer is the proto-oncoprotein, Myc. Myc is a DNA
binding transcription factor which critically drives cell proliferation in many cell
types and is often deregulated in cancer. Myc is intrinsically disordered in isolation
and folds upon binding another IDP, Max and DNA. Follis, Hammoudeh, Metallo
and coworkers identified small molecules which bind disordered regions of Myc
and inhibit its heterodimerization with Max. Importantly, these small molecules—
through formation of dynamic complexes with Myc—have been shown to inhibit
Myc function in vitro and in cellular assays, opening the door to IDP-targeted
therapeutics in the future. The p21/p27 and Myc systems illustrate, from different
perspectives, the role of dynamics in IDP function. Dynamic fluctuations are
critical for p21/p27 signaling while the dynamic free state of Myc may represent a
therapeutically approachable anticancer target. Herein we review the current state
of knowledge related to these two topics in IDP research.

INTRODUCTION: INTRINSICALLY DISORDERED (OR UNSTRUCTURED)
PROTEINS

Many proteins, which play a wide range of biological roles, either entirely lack
secondary and/or tertiary structure, or possess long segments that lack secondary
and/or tertiary structure, under physiological conditions.>''"* These are commonly
termed intrinsically disordered (or unstructured) proteins, abbreviated IDPs (or IUPs).
Bioinformatics analyses of whole genome sequences using disorder predictors'>!®
indicated that 6-33% of proteins in bacteria and 35-51% of proteins in eukaryotes contain
disordered regions of 40 or more consecutive residues.'>!” The greater abundance of IDPs
in the latter was proposed to be due to the greater need for protein-mediated signaling,
regulation and control in eukaryotes.!” It is now widely recognized that IDPs play broad
biological roles in all kingdoms of life.!”!

Functions of Disordered Proteins

IDPs are involved in many cellular functions, including regulation of cell division,
transcription and translation, signal transduction, protein phosphorylation, storage of small
molecules, chaperone action, transport and regulation of the assembly or disassembly of
large multi-protein complexes, amongst many others.'** Indeed, the majority of transcription
factors®! and proteins involved in signal transduction® in eukaryotes are predicted to be
disordered or contain long disordered segments. In general, it has been shown that the
expression of IDPs is exquisitely tightly regulated at many stages, including transcription,
translation and degradation.? It is thought that such tight regulation is required to maintain
regulatory IDPs atrelatively low levels to prevent deleterious interactions with their diverse
biological targets. Disruption of this tight regulatory system can have dire consequences.
For example, 79% of human cancer-associated proteins (HCAPs) have been classified as
IDPs, compared to 47% of all eukaryotic proteins in the SWISS-PROT database.?” Further,
a large fraction of human oncoproteins known to exert their tumorigenic effects through
over-expression, including Myc (discussed later), are enriched in disordered segments
which mediate promiscuous signaling interactions.* The latter observations highlight the
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importance of disorder in the function of proteins that regulate processes often dysregulated
in cancer such as cell proliferation, apoptosis and DNA repair.

Although many IDPs function by folding into an ordered conformation upon binding
their biological targets, for many others, disordered conformations mediate biological
function. For example, disordered segments serve as linkers in many IDPs (e.g., between
folded domains in multi-domain proteins such as p53).% In other cases, IDPs function as
entropic bristles (e.g., NF-M and NF-H which serve arepulsive spacers in neurofilaments),
springs (e.g., titin, which induces passive tension inmuscle filaments)?” and semi-permeable
barriers (FG-domains within nucleoporins of the nuclear pore complex).?® In these
examples, disordered polypeptide segments often occur in conjunction with other folded
or partially folded domains.

Folding-upon-Binding

While IDPs are disordered in isolation under physiological conditions, they often perform
their biological functions by binding specifically to other biomolecules through the process
offolding-upon-binding. In general, folding-upon-binding reactions are enthalpically driven
to overcome the accompanying large and unfavorable entropies of binding, as shown for
protein-DNA interactions® and protein-protein interactions.***' Due to the extended nature
of many IDPs which fold upon binding their targets, the magnitudes of both the favorable
enthalpy change for binding (AH) and unfavorable entropy change for binding (AS) are
approximately proportional to the length of the disordered polypeptide segment involved in
binding.*' This allows a range of different size binding sites to be targeted by IDPs through
evolutionary tuning of the binding favorability and structural complementarity of IDPs and
the protein surfaces they target. While the loss of conformational freedom due to folding upon
binding (AS.) is entropically unfavorable, it is partially compensated by the entropically
favorable release of bound water molecules (ASyg) upon binding of an IDP to a protein
surface (the hydrophobic effect). While some segments of the polypeptide backbone of
IDPs involved in specific protein-protein interactions may become rigid after folding upon
binding, other segments may remain dynamic within complexes,** mitigating to some extent
the unfavorable AS,. Further, the methyl groups of either IDPs and/or their binding targets,
that mediate intermolecular hydrophobic interactions, may experience motional restriction
to different extents upon binding, providing an additional mechanism for modulating AS of
binding.** These two mechanisms allow tuning of the affinity of interactions (AG) through
evolutionary variation of the associated entropy changes. Consequently, the values of
dissociation constants (K;) observed for IDPs binding their biological targets span a wide
range, from low nanomolar values (tight binding; e.g., p27 binding to Cdk2/cyclin A)*!
to high micromolar values (weak binding; e.g., WASP binding to Cdc42).3* As a general
rule, weak interactions involving IDPs involve relatively small amounts of buried surface
area and tight interactions involve the burial of very large surfaces.

Functional Advantages of Disorder

The inherent flexibility of IDPs is thought to confer certain functional advantages
over more highly structured proteins. First, some IDPs bind specifically to more than one
biological target and thus exhibit diverse biological functions, often with involvement in
signaling and regulation.® For instance, p21 binds and regulates the catalytic activity of
several cyclin-dependent kinase (Cdk)/cyclin complexes, an early example of “binding
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promiscuity”.* p21 and p27 also bind additional partners in both the cell nucleus and
cytoplasm, extending their functions to include regulation of apoptosis, cell motility and
transcription (37 and references therein). Another example is the p53 tumor suppressor
protein. While the DNA binding and tetramerization domains are folded, the N- (residues
1-97) and C-terminal domains (residues 363-393) of p53 are intrinsically unstructured
in isolation and mediate interactions with numerous binding partners that modulate p53
activity in diverse ways (38 and references therein). Promiscuous binding activities allow
p53toregulate diverse cellular processes such as cell division, apoptosis and DNA repair.*®
Finally, it has been suggested that IDPs are specialized to function as hubs in protein
interaction networks due to their propensity for promiscuous interactions;* however, the
generality® and validity*' of this general concept has been challenged.

Second, because a large fraction of residues within IDPs are solvent exposed,
even within multi-protein assemblies, these sites are accessible for posttranslational
modification (PTM), allowing control of protein function, localization and turnover. For
example, the majority of known phosphorylation, acetylation and ubiquitination sites in
p53 occur within the disordered N- and C-terminal domains and modification of these
sites alters the function, localization and turnover of p53.4> PTM sites are often clustered
within disordered polypeptide segments, affording accessibility not only to modification
enzymes but also to other proteins that interact specifically with the modified sites to
transduce biological signals. An example of this is the phosphorylation/ubiquitination
cascade that regulates p27 function.*

Third, disordered polypeptide segments within proteins, which are often highly
susceptible to proteolytic cleavage in vitro, may influence the rate of IUP degradation in
cells. However, arecent study by Tompa and coworkers of>3,000 yeast proteins showed that
protein disorder was a poor predictor of the in vivo rate of protein turnover; hence, while it
is intuitively obvious that polypeptide disorder is associated with proteolytic susceptibility,
protein degradation in vivo is highly regulated and influenced by many other factors.* For
example, Shaul and coworkers have shown that p53 is degraded by the 20S proteasome via
a ubiquitination-independent “default” pathway. These authors proposed that disordered
segments of p53 and other proteins,* are signals for 20S proteasome-mediated degradation
and that the formation of multi-protein assemblies masks these signals and guards against
degradation.*® A class of proteins referred to by Shaul and coworkers as “nannys” are
thought to interact with un-complexed IDPs and mediate their direct degradation by the
20S proteasome.?” This may represent a mechanism for sensing imbalances in the levels
of subunits within multi-subunit assemblies, allowing subunits present in excess to be
degraded by default.*#” Thus, the physical properties of disordered polypeptide segments
allow proteins to be extensively regulated by PTM and provide the opportunity for rapid
turnover and possibly quality control during assembly of multi-protein complexes.

Finally, the noncompact nature of IDPs may facilitate biomolecular interactions
by increasing intermolecular association rates. Wolynes and coworkers*® postulated
that disordered proteins have a greater “capture radius” than compact, folded proteins.
According to their so called “fly-casting” mechanism, a segment of an extended, unfolded
protein first binds relatively weakly to the surface of a target, followed by folding to
reel in the target. By being extended, IDPs sample larger solution volumes, in a sense
reducing the dimensionality of the search for their partners.*® For example, p27 binds via
a sequential mechanism to Cdk2/cyclin A, with an extended domain at the N-terminus
binding first to a compact surface on cyclin A, followed by extensive folding of p27 and
remodeling of Cdk2 as the inhibited p27/Cdk2/cyclin A complex is fully assembled.’!
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This fly-casting-like mechanism may facilitate assembly of Cdk/cyclin complexes under
the low concentration conditions found in cells. Another example of this mechanism
was revealed recently by Wright and coworkers® in studies of the phosphorylated KID
(pKID) domain of CREB binding to the KIX domain of the CREB binding protein
(CBP). Intrinsically unstructured pKID was shown to initially dock nonspecifically on
the surface of KIX, allowing rapid searching of the KIX surface for the specific binding
site, followed finally by folding into the specific, high-affinity complex.*” However the
benefits of the fly-casting mechanism were shown in a recent computational study to be at
least partially counter-balanced by the effect of extended IDP conformations on diffusion
rates in solution; these considerations would affect the initial rate of encounters between
IDPs and their targets but not that of the subsequent, reduced dimensionality search
for a specific binding site through surface scanning. In addition to a role for disordered
domains in recognition events, Hilser and Thompson have proposed that linking ligand
binding with disordered domain folding provides a mechanism for optimizing allosteric
coupling in multi-domain proteins.>!

INTRINSICALLY DISORDERED PROTEINS IN MAMMALIAN CELL
CYCLE REGULATION

In eukaryotes, cyclin-dependent kinases (Cdks) are the master time keepers of cell
division.’> Many proteins regulate the Cdks, both directly and indirectly and, in turn, the
catalytic activity of the Cdks regulates the activity of myriad downstream targets.>*>* While
many of these regulatory proteins are folded, many others are intrinsically unstructured.
In this chapter, we focus on a small subset of these IDPs: the cyclin-dependent kinase
regulators (CKRs) p21, p27 and p57%¥#? (p57)*: that regulate cell division through direct
interactions with Cdk/cyclin complexes (Fig. 1A). Through binding promiscuity,> the
CKRs regulate Cdk/cyclin complexes that control 1) entry into G, phase (Cdk4 and Cdk6
paired with D-type cyclins) and 2) progression from G, to S phase (Cdk2 paired with A-and
E-type cyclins).* Further, p21 and p27 exhibit functional diversity by having seemingly
opposite effects on these different Cdk/cyclin complexes, promoting the assembly and
catalytic activity of some (e.g., Cdk4 paired with D-type cyclins) and potently inhibiting
others (e.g., Cdk2 paired with A- and E-type cyclins).” In the following sections, we
discuss results from our laboratory and others on the structural and dynamic features
of the CKRs and the relationship of these features to their diverse biological functions.

Domain Structure of CKRs

The CKRs p21, p27 and p57 contain a conserved, 60 residue-long N-terminal kinase
inhibitory domain (KID, residues 28-90 in p27) (Fig. 1B) and several nuclear localization
signals (NLSs)**¢ within their C-terminal domains (Fig. 1C). p21 and p57 also contain
a PCNA-binding domain within their C-termini that, when bound, inhibits the ability of
PCNA to stimulate DNA synthesis.’’® Further, p27 and p57 possess a C-terminal QT
domain that contains a critical threonine residue (T187 in p27 and T310 in p57) that,
when phosphorylated by Cdk2, triggers ubiquitination of p27°%% and p57¢' by SCF/Skp2.
Human and mouse p57 have an additional domain comprised of multiple Pro-Ala repeats
and mouse p57 contains a segment rich in acidic residues; these domains were proposed
to mediate protein-protein interactions.*
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Figure 1. Regulation of the eukaryotic cell division cycle. A) Illustration of various stages of the cell
division cycle and Cdk/cyclin complexes that play key roles in regulating progression through the different
stages are indicated. Initiation of cell division in G, phase requires the activity of Cdk4/cyclin D and
Cdk6/cyclin D and progression into S phase (when DNA synthesis or replication occurs, “S”) requires
Cdk2/cyclin E and Cdk2/cyclin A (and similar complexes with Cdkl). The activity of Cdkl/cyclin B
and Cdkl/cyclin A are required for entry into mitosis (“M”). While initially thought to be universal
inhibitors of these Cdk/cyclin complexes, p21 and p27 have been show to activate Cdk4/cyclin D and
Cdk6/cyclin D under certain circumstances (indicated by arrow). B) Alignment of sequences of the
kinase inhibitory domains (KID) of p27, p21 and p57. The boundaries of sub-domains D1 (blue), LH
(black), D2 (red) and 3, (green) are indicated, as is the “RxXxLF” motif which is recognized by cyclin
A. C) Illustration of the domain structure of p21, p27 and p57. PCNA, PCNA binding domain; NLS,
nuclear localization signal; QT, QT domain which contains one or more QT motifs that are either known
or putative phosphorylation sites. PAPA, domain with multiple repeats of PAPA motif. The locations of
known phosphorylation sites, Y74, Y88 and T187 in p27 and T310 in p57, are also indicated. Reproduced
from Galea CA et al. Biochemistry 2008; 47(29):7598-609, with permission from the American Chemical
Society. A color version of this image is available at www.landesbioscience.com/curie.

The Structure of p27 Bound to Cdk2/Cyclin A

The crystal structure of the p27/Cdk2/cyclin A ternary compex showed that the KID of
p27 binds in a highly extended conformation to both proteins of the Cdk2/cyclin A complex
(Fig. 2), burying over 2,000 A2 of solvent exposed surface.®> Several sub-domains of the
disordered p27-KID, which possess many residues conserved among p21, p27 and p57
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Figure 2. Structure of p27-KID bound to Cdk2/cyclin A. Crystal structure of p27-KID/Cdk2/cyclin A
determined in 1996 by Pavletich and coworkers.’” The sub-domains of p27, D1, LH, D2 and 3, are
indicated using the color scheme of Figure 1. Reproduced from Galea CA et al. Biochemistry 2008;
47(29):7598-609, with permission from the American Chemical Society. A color version of this image
is available at www.landesbioscience.com/curie.

(Fig. 1B), adopt secondary structure in the Cdk2/cyclin A-bound state (Fig. 2): sub-domain
D1, containing the conserved “RxL” motif,* binds in an extended conformation on the
surface of cyclin A; sub-domain LH forms a 22 residue-long a-helix that spans the nearly 40
A gap between Cdk2 and cyclin A; sub-domain D2 forms a f-hairpin and an intermolecular
[-sheet (with Cdk2) on the surface of the N-terminal lobe of Cdk2; and sub-domain 3,
forms a 3,,-helix that inserts into the ATP binding pocket of Cdk2. p27 inhibits Cdk2 1)
by inserting sub-domain 3, into the active site and blocking access to ATP and 2) by
remodeling the catalytic cleft through displacement of a $-strand of Cdk2 by sub-domain
D2 of p27.% Further, sub-domain D1 of p27 blocks the substrate binding site on cyclin A
whichrecognizes Cdk2 substrates possessing a RxL motif.* Ithas been proposed that similar
mechanisms are ultilized by all CKRs to regulate the Cdks that control the G,/S transition
during cell division.>'%> However, due to the inherent limitations of X-ray crystallography
this structural model does not provide insights into the role of the intrinsic flexibility of p27
and other CKRs in recognizing and binding to Cdk/cyclin complexes.

The CKRs are IDPs

Analysis using proteolysis, CD and NMR spectroscopy showed that p21, p27 and
p57 are largely disordered, with ~15-20% a-helical content.*' #6567 Secondary structure?'
and disorder prediction (using FoldIndex,*® ITUPred® and PONDR)™ also indicated that
these proteins are predominantly disordered. 2D 'H-'"N HSQC NMR spectra for p21,
p27 and p57 exhibited limited resonance dispersion (backbone amide protons resonate
between 7.8 and 8.5 ppm), a feature typical of intrinsically unstructured proteins.3!-36:6¢
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However, despite being disordered, these proteins were shown to be potent inhibitors of
various Cdks in vitro’'"” and in vivo.> As early as 1996, structural data for p21%¢ and the
previously identified heat-resistant nature of p277 strongly suggested that polypeptide
disorder was associated with the biological function of the CKRs.

The CKRs Exhibit Partially Populated Secondary Structure in Solution

Although p21, p27 and p57 can be categorized as IDPs based on their lack of tertiary
structure, CD spectra indicated the presence of a small amount of a-helical secondary
structure®'*%067 within the KID of each protein.’¢%” Subsequently, we used NMR
spectroscopy to localize this secondary structure within p27-KID. Analysis of secondary
13C, chemical shift values (A3"*C,) indicated that the small amount of a-helical secondary
structure observed using CD was localized to sub-domain LH (~30% a-helical) while other
sub-domains of p27-KID appeared to lack secondary structure.’! To probe the dynamics
of p27-KID, we measured {'H}-'>N heteronuclear NOE (hetNOE) values; this NMR
relaxation parameter is sensitive to fluctuations of amide groups on the high picosecond to
low nanosecond timescale. The hetNOE values observed for p27-KID indicated that the
polypeptide backbone experiences intermediate dynamics, being less rigid than a folded
protein but more rigid than a random coil. Interestingly, partially restricted motions were
observed not only for sub-domain LH, but also for most residues in sub-domains D2 and 3 ,.
In contrast, residues within sub-domain D1 (residues 27-35) exhibited negative or near zero
hetNOE values, consistent with a high degree of flexibility.

Morerecently, we probed the structure and dynamics of p27-KID using anovel approach
that utilized amide proton-amide proton (‘Hy-'"Hy) NOE data from NMR spectroscopy and
molecular dynamics (MD) computations to provide insights into how structure fluctuates
with time.” Interestingly, these studies revealed that several segments of p27-KID exhibited
discreet structures which we termed intrinsically folded structural units (IFSUs). The IFSUs
occurred within sub-domains LH, D2 and 3, which also exhibited positive hetNOE values.
Sub-domain LH adopted helical structure, as expected from chemical shift analysis. While
sub-domain D2 formed a 3-hairpin and nascent helical structure and sub-domain 3,, formed
a single turn of helix. These results indicated that p27-KID is quite rich in transient, discrete
structures, in contrast to the picture which first comes to mind for an IDP. Importantly, with
the exception of the nascent helical segment of sub-domain D2, these structural features
resemble those observed when p27-KID is bound to Cdk2/cyclin A.

Finally, we recently characterized the solution structure of the ~100 residue-long
C-terminal domain of p27 using NMR spectroscopy.” This domain contains several
phosphorylation sites, including T187 mentioned earlier and threonine 157 (T157) within
the NLS which is phosphorylated by Akt in breast cancer,’ and several lysine residues
that are likely sites of ubiquitination. Earlier results from CD and NMR suggested that this
segment of p27 is highly disordered;’! these results were confirmed by the recent NMR
studies which showed that this domain lacks tertiary and secondary structure on the basis
of A8"C,, and hetNOE values.”

The CKRs Fold Sequentially upon Binding Specific Cdk/Cyclin Complexes

In 1996, Kriwacki and Wright demonstrated that sub-domains D2 and 3,, of p21
folded upon binding to Cdk2 using NMR spectroscopy and, through proteolytic mapping,
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deduced that sub-domain D1 bound to cyclin A within the Cdk2/cyclin A complex.3¢
Later in the same year, Pavletich and coworkers demonstrated that p27-KID adopted a
highly extended, folded conformation when bound to Cdk2/cyclin A.® As noted earlier,
several of the IFSUs detected in p27-KID prior to binding were also observed in the
Cdk2/cyclin A bound state. For example, one part of sub-domain D2 and sub-domain
3, maintained their B-hairpin and helical conformations, respectively, when bound to
Cdk2. Importantly, the single turn of helix observed for apo sub-domain 3,, occupied
the ATP binding site of Cdk2 within the ternary complex, with tyrosine 88 (Y88)
bound in place of the purine ring of ATP.% Sub-domain LH formed a 22 residue long
a-helix that linked sub-domains D2 and D1, which were bound to Cdk2 and cyclin A,
respectively. Sub-domain D1 exhibited a high degree of disorder and flexibility in the
free state and adopted an extended, rigid conformation upon binding to a pocket on the
surface of cyclin A that is conserved in many cyclins that regulate cell division.3!:63:63
Finally, another part of sub-domain D2, which exhibited nascent helical features prior
to binding, adopted an extended conformation and formed an intermolecular -sheet
upon binding to the N-terminal domain of Cdk2.

While the crystal structure defined the Cdk2/cyclin A-bound conformation of
p27 and provided key insights into the molecular basis of specific recognition of Cdk/
cyclin complexes,® it does not explain why the CKRs have evolved to be disordered
or how disorder plays a role in their biological functions. Answers to these questions
came from studies that probed the mechanism through which p27 binds to Cdk2/
cyclin A.*' Isothermal titration calorimetry (ITC) was used to determine values of
thermodynamic parameters (AG, AH and AS) associated with p27 binding to Cdk2/
cyclin A and to quantitatively characterize the polypeptide folding which accompanies
binding.?® Further, surface plasmon resonance (SPR) was used to analyze the kinetics
of p27 association with and dissociation from Cdk2/cyclin A. Results from these two
methods, coupled with our knowledge of structure and dynamics, indicated that the
sub-domains of p27 bind to Cdk2/cyclin A via a sequential mechanism,; first the highly
flexible sub-domain D1 binds cyclin A, followed by docking of helical sub-domain
LH and finally by docking and folding of sub-domains D2 and 3,, to Cdk2 (Fig. 3).
In addition, other studies® suggested that sub-domain D1 rapidly scans the surfaces
of protein complexes for a conserved binding pocket, as found on cyclin A and
other cyclins that regulate cell division. When sub-domain D1 encounters the cyclin
pocket, p27 transiently binds, providing time for other sub-domains to sequentially
dock and fold into the final, inhibited ternary complex with Cdk2/cyclin A. Amino
acids that comprise the cyclin A docking site for p27 are highly conserved in Cdk/
cyclin complexes that directly regulate cell division and are inhibited by p21 and p27.
However, these residues are not conserved in Cdk/cyclin complexes involved in other
biological functions. Therefore, we proposed that the intrinsic disorder of p21 and
p27 evolved to allow specific molecular recognition through sequential folding upon
binding.’'*> The extended character of p27 when bound to Cdk2/cyclin A has evolved
to accommodate the large distance (40 A) between the specificity determining site on
cyclin A and the site of inhibition (ATP binding pocket) on Cdk2. It is possible that
simultaneously engaging these two sites through interactions with the two ends of
an extended polypeptide chain provided evolutionary advantages over an alternative
scheme involving interactions mediated by multiple, folded protein domains.
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Figure 3. The sub-domains of p27 sequentially fold and bind Cdk2/cyclin A. Results from NMR, ITC
and SPR support a scheme in which the “RxLF” motif within sub-domain D1 of p27 binds first to
cyclin A (“17), followed by folding and docking of sub-domain LH, followed by binding of sub-domain
D2 to Cdk2 (with extensive remodeling of Cdk2, followed finally by binding of sub-domain 3, in the
ATP binding pocket of Cdk2 (“2”). This sequential scheme provides a mechanism for specificity toward
Cdk/cyclin complexes which preserve the binding site for the “RxLF” motif within sub-domain D1 of
p27. Reproduced from Galea CA et al. Biochemistry 2008; 47(29):7598-609, with permission from the
American Chemical Society. A color version of this image is available at www.landesbioscience.com/curie.

Regulation of p27 Function through Posttranslational Modification:
The Importance of Flexibility in Signaling

Posttranslational modifications regulate the localization, turnover and activity of
p27 (77 and references therein). For example, Akt-mediated phosphorylation of T157
within p27°s NLS in breast cancer cells prevents its interactions with the nuclear import
machinery and leads to cytoplasmic localization. p27, normally located in the nucleus,
encounters new targets in the cytoplasm and exhibits a gain of oncogenic function. In
a further example, phosphorylation of p27 on Ser 10 promotes its interaction with the
shuttling protein, CRM1, leading to export from the nucleus. Finally, cells entering the
division cycle contain super-stoichiometric levels of p27 (with respect to Cdk/cyclin
complexes) and phosphorylation-dependent ubiquitination and degradation of p27 by
the 26 S proteasome is required for Cdk/cyclin complexes to be activated, allowing
progression through the cell division cycle.

p27 degradation is regulated by two E3 ubiquitin ligases during cell division, KPC1
in the cytoplasm in G1 phase and SCF%? in the nucleus in S and G2 phases (43 and
references therein). While KPC1 ubiquitinates unphosphorylated and free p27, SCFsk?2
targets p27 that is phosphorylated on T187 and which is bound to Cdk2/cyclin E or Cdk2/
cyclin A. Ubiquitinated p27 is degraded by the 26S proteasome. Active cyclin E/Cdk2 can
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phosphorylate cyclin/Cdk-bound p27 on T187. However, while nonp27-bound, active Cdk2/
cyclin phosphorylates Cdk-bound p27 efficiently (because T187 is within the C-terminal
regulatory domain of p27 that does not participate in direct interactions with Cdk2/cyclin
complexes), structural and biochemical studies have demonstrated that p27-bound Cdk2
is catalytically inactive.’' This presented an apparent paradox since elimination of p27
appeared to require the activity of the enzyme (Cdk2) that it was known to potently inhibit.
However, studies by Hengst, Kriwacki and coworkers* demonstrated that phosphorylation
of p27 ata previously uncharacterized site within the p27/Cdk2/cyclin A complex provided
a mechanistic “missing link” leading to a solution to this conundrum.

A key finding was that p27 was phosphorylated on tyrosine 88 (Y 88) within the kinase
inhibitor domain (KID) by nonreceptor tyrosine kinases, including Abl*, Lyn* and Src'?.
Phosphorylation of residue Y88 on p27 bound to Cdk2/cyclin A was enabled by local
flexibility within the 3,,-helix containing Y88, relieved inhibition of Cdk2 and promoted
Cdk2-mediated phosphorylation of T187 via a pseudo uni-molecular reaction mechanism.*
NMR studies showed that phosphorylation of Y88 (pY 88) within the Cdk2 binding domain of
p27 by Abl kinase led to ejection of the inhibitory 3,,-helix of p27 (sub-domain 3 ) from the
ATP binding pocket of Cdk2 while leaving other interactions between p27 and Cdk2/cyclin
A unperturbed (Fig. 4, “Step 17). Surprisingly, Cdk?2 retained significant catalytic activity
even though pY88-p27 remained tightly bound to the Cdk/cyclin complex.** Consequently,
residue T187 within the intrinsically unstructured and highly dynamic C-terminal domain
of p27 could then be phosphorylated by the partially reactivated Cdk2 within the same
pY88-p27/Cdk2/cyclin A ternary complex* (Fig. 4, “Step 2”). Although Cdk2 within this
phosphorylated ternary complex exhibited sub-maximal catalytic activity, tethering of p27
to cyclin A/Cdk2 strongly promoted the phosphorylation of T187 through the uni-molecular
mechanism (Fig. 4B). p27 that has been phosphorylated on both Y88 and T187 (pY88/
T187-p27) can be poly-ubiquitinated by the SCFS%2 ubiquitin ligase and degraded, resulting
in complete reactivation of Cdk2/cyclin A. The accumulation of free, active cyclin A/Cdk2
may further promote Thr187 phosphorylation of p27 within remaining p27/Cdk2/cyclin A
complexes and accelerate progression from G, to S phase of the cell division cycle.

We propose that the intrinsic disorder and flexibility of p27 are evolutionarily
advantageous by enabling the structural fluctuations (also termed “fuzziness”) and
posttranslational modifications associated with the phosphorylation/poly-ubiquitination
cascade that regulates p27 turnover at the G,/S boundary during cell division. First,
segmental flexibility between the sub-domains D2 and 3, allows Y 88 within sub-domain
3, to fluctuate between ATP pocket-bound and solvent exposed conformations. This
so-called molecular fuzziness allows Abl and other NRTKSs to access and phosphorylate
otherwise occluded Y88. Notably, in addition to targeting Y88, Src also phosphorylates
p27 on tyrosine 74 (Y74). This implies that the 3-hairpin secondary structure harboring
Y74 within p27 sub-domain D2 (Fig. 4A) also exhibits fuzziness by fluctuating between
bound and solvent exposed conformations so as to provide Srcaccess to Y 74. Second, after
Y88 (and sometimes Y 74) has been phosphorylated and sub-domain 3, has been ejected
from the Cdk2 active site, the extreme flexibility of the p27 C-terminus allows T187 to
approach the substrate binding site of Cdk2 and be phosphorylated. This flexibility also
ensures that phosphorylated T187 is accessible for recognition by SCFS*2, Interestingly,
T187 phosphorylated p27 is recognized by SCF*? only when bound to Cdk2/cyclin A
(or cyclin E). Third, the p27 C-terminus contains six lysine residues that are likely sites
for poly-ubiquitination by SCFS*2, Intrinsic flexibility within this polypeptide segment
will not only make these sites accessible for poly-ubiquitination, but also ensures that
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Figure 4. The p27 molecule is a signaling conduit. A) A single snap-shot from a 13 ns molecular
dynamics trajectory illustrating the structure of p27 bound to Cdk2/cyclin A (cyan and magenta,
respectively).®® The 100 residue-long C-terminal domain of p27 (yellow tube), which contains T187
(orange), is intrinsically unstructured and highly dynamic in this trajectory. Also illustrated are two
critical tyrosine residues, Y74 and Y88 (red and green, respectively), which are phosphorylated by
nonreceptor tyrosine kinases (NRTKs). Phosphorylation of Y88 (“Step 1) and possibly Y74, ejects
sub-domain 3,, from the ATP binding pocket of Cdk2 (indicate by white arrow), allowing T187 within
the flexible C-terminal domain to encounter the Cdk2 active site (“Step 2”, indicated by grey arrow)
and be phosphorylated by Cdk2. B) Scheme illustrating the two-step p27 phosphorylation mechanism
involving Y88 and T187 which triggers p27 poly-ubiquitination and 26S proteasomal degradation in
both normal and cancer cells. The pseudo-uni-molecular nature of step 2 is illustrated. Reproduced from
Galea CA et al. Biochemistry 2008; 47(29):7598-609, with permission from the American Chemical
Society. A color version of this image is available at www.landesbioscience.com/curie.

covalently linked poly-ubiquitin chains are accessible for processing by the 26S proteasome
and its various accessory proteins.” Notably, ubiquitinated p27, within Cdk2/cyclin
complexes, is selectively degraded by the 26S proteasome, leading to release of fully
active Cdk2/cyclin complexes in the nucleus. Thus, the intrinsic flexibility of p27 critically
mediates each step of this multi-step, posttranslational modification cascade. In view of
this, we have proposed that p27 acts as a molecular signaling conduit which integrates
proliferative signals from NRTKSs (through phosphorylation on Y74 and Y 88), participates
in the processing of these signals (through reactivation of Cdk2 and phosphorylation of
T187) and finally transduces these signals by triggering its own poly-ubiquitination and
degradation (through phospho-T187-dependent interactions with SCFS?), While p27
exhibits modular structure within the kinase inhibitory domain when free in solution, the
segments connecting these modules are highly flexible, allowing the individual modules
to function independently as part of this signaling conduit. The flexibility and modularity
which enable this structural independence allow signals to flow through the p27 conduit
as a consequence of these sequential phosphorylation and ubiquitination modifications.
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INHIBITION OF Myc-DEPENDENT CELL PROLIFERATION: TARGETING
INTRINSICALLY DISORDERED REGIONS WITH SMALL MOLECULES

Myc Drives Cell Proliferation in Response to Mitogenic Signals

The protein product of the MYC gene, Myc, is an intrinsically disordered transcription
factor of the basic helix-loop-helix leucine zipper family (b HLHZip) that broadly controls
cell proliferation through protein-DNA and protein-protein interactions. Importantly, Myc
function is deregulated in the majority of human cancers.”®! Deregulation can arise from
missense point mutations,* insertional mutagenesis,®»* chromosomal translocation®>%
and gene amplification.’”®® Alternatively, perturbation of upstream and downstream
signaling pathways can deregulate Myc function through alteration of protein expression,
posttranslational modification and/or degradation.®°* The Myc protein, which normally
has a very short half-life and is subject to tight regulation, is a potent proliferative agent,
promoting or silencing the expression of a large number of genes,”>* leading to cell cycle
progression®® and proliferation.**-*®

The Myc isoform c-Myc is comprised of 439 amino acids and is intrinsically
disordered in the absence of its binding partners. Two critical domains within c-Myc
include the N-terminal transcriptional activation domain (residues 1-143)°>!% and a
C-terminal basic, helix-loop-helix leucine zipper (bHLHZip) DNA binding domain
(residues 350-439).51%! The transactivation domain mediates interactions with proteins
involved in regulating chromatin structure and gene expression, including TRAPP, INI1,
RNA polymerase IT and PTEFb.'">'* The bHLHZip domain mediates heterodimerization
with a similar domain within a partner protein, Max and, when paired with Max, mediates
specific binding to E-box DNA sites with the conserved sequence, 5'-CACGTG-3'.10¢-10%8
The bHLHZip domains of c-Myc and Max are intrinsically disordered in isolation and
cofold upon heterodimerization, which promotes further cofolding of basic residues
within the bHLHZip domain upon specific binding to E-box DNA sites.>'* The HLH
portion of the c-Myc/Max heterodimer (Fig. SA) forms a four-helix bundle structure
which extends at the C-termini into a left handed coiled-coil formed by the two leucine
zipper motifs. Interhelical hydrophobic interactions stabilize this heterodimeric structure.
In the presence of E-box DNA, the two N-terminal basic regions form a-helices which
extend from the N-termini of the HLH/four-helix bundle and bind symmetric sites within
the major grooves of the palindromic DNA double-helix. The DNA-bound c-Myc/Max
heterodimeric complex further mediates interactions with proximal transcription factor/
DNA complexes, resulting in repression of gene expression.'”

Inhibition of c-Myc Activity through Disruption of Myc/Max Heterodimers:
From Dominant-Negative Protein Domains to Small Molecules

Because c-Myc function is very commonly deregulated in human cancers, significant
consideration has been given to therapeutic strategies to limit cancer cell proliferation
through inhibition of c-Myc function. Several approaches toward inhibition of c-Myc
function have been attempted.®!:!'"1Y Due to the dependence of c-Myc activity on
heterodimerization with Max, a widely explored approach has involved disruption of
c-Myc/Max dimers.®!116-119 The therapeutic promise of this approach has subsequently
been validated.'?'?? In particular, a landmark study was performed by Evan and coworkers
using a mouse model of lung cancer in which Myc plays a role in tumorigenesis.'?> Myc
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Figure 5. Inhibition of Myc function through disruption of Myc/Max dimers. A) Crystal structure of
the Myc/Max heterodimer bound to target E-box DNA, containing the palindromic recognition sequence
CACGTG (PDB: 1nkp®). B) Inhibitors of Myc/Max heterodimer formation first reported by Yin et al''
and ‘Mycro’ compound reported by Kiessling et al.'"* A color version of this image is available at
www.landesbioscience.com/curie.

inhibition was achieved through chromosomal insertion of a doxycycline-inducible gene
for a dominant-negative, modified Myc bHLHZip domain (termed Omomyc) which binds
all Myc isoforms (c-Myc, n-Myc and L-Myc), prevents heterodimerization with Max
and inhibits Myc function.'”® While tumors developed in the lungs of untreated mice,
tumors did not develop or regressed from lungs of mice in which Myc function was
systemically inhibited through doxycycline-induced, Omomyc expression.'*? Importantly,
Myc inhibition was associated with relatively mild and reversible side-effects in highly
proliferative tissue types.'?

In contrast to many current drug targets, Myc is not a receptor or enzyme and therefore
does not possess a rigidly defined active site that can be occupied by inhibitory small
molecules. Further, Myc lacks secondary and tertiary structure when not complexed with one
of its biological targets'?* and therefore does not exhibit well-defined surface features that
potentially could be targeted by small molecules to inhibit protein-protein or protein-DNA
interactions. Thus, Myc, as an intrinsically disordered protein, represents a novel type of
drug target. Despite the fundamental challenges associated with “drugging” an intrinsically
disordered protein, several groups performed screens to identify small molecules that inhibit
c-Myc/Max heterodimerization using in vitro, fluorescence-based assays''"'7!'"° and a yeast
two-hybrid assay.® These screens of combinatorial or diversity oriented libraries of low
molecular weight compounds identified numerous molecules which exhibited K; values
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in the low micromolar range. Interestingly, the so-called “hit” compounds from different
studies exhibited low structural similarity. These initial successes motivated studies into
the mechanism(s) by which small molecules inhibited Myc-Max dimerization.

“Hit” Molecules Bind to the Intrinsically Disordered c-Myc Monomer

An initial hypothesis was that inhibitory small molecules bound either to disordered
c-Myc or Max and thus prevented their cofolding and heterodimerization. Yin, et al,?
tested this hypothesis by determining the ability of seven initial hit compounds to disrupt a
variety of homomeric and heteromeric HLH, HLHZip or leucine zipper transcription factor
complexes, including Myc/Max and the Max homodimer. Interestingly, the seven compounds
selectively disrupted Myc/Max heterodimers, suggesting that they interacted specifically
with Myc. Further studies based on measurements of intrinsic fluorescence anisotropy for
two of the seven original compounds, 10058-F4 and 10074-G5, demonstrated specific
interaction with the bHLHZip domain of monomeric c-Myc but not p21 Max (which does
not form homodimers).!?® The binding stoichiometry for Myc bHLHZip was 1:1%!2° and
K4 values were 5.3 + 0.7 uM and 2.8 + 0.7 uM for 10058-F4 and 10074-G5, respectively.®

Small Molecules That Bind Myc Display Weak Structure-Activity Relationships

Analysis of ~70 synthesized derivatives of compound 10058-F4 revealed weak
structure-activity relationships, with most compounds displaying binding to Myc at
concentrations up to 50 uM.'?>26 This unusual behavior may reflect the influence of dynamics
of the disordered Myc polypeptide chain on interactions with small molecules; intrinsic
flexibility within the IDP binding site may allow structural rearrangement to accommodate
small molecule ligands with different functional groups and structural features.

Small Molecules Bind to Multiple Sites within Intrinsically Disordered Myc

Initially, it was unknown whether Myc inhibitors belonging to different structural
classes bound to the same or different sites within the Myc bHLHZip polypeptide chain.®’
Two distinct binding sites, for the structurally unrelated, fluorescent compounds 10058-F4
and 10074-G5 were identified using a fluorescence polarization assay and a series of
truncated or mutated variants of the Myc bHLHZip domain.® The two binding sites
(Sites I and II) were further delineated through binding assays with synthetic peptides;
short peptides displayed binding affinities similar to those observed with full-length Myc
bHLHZip domain, demonstrating that these sites were of limited length and independent.*
Further, competition binding assays showed that several nonfluorescent inhibitors also
bound to either Site [ or I1.” A third binding site (Site III) for the nonfluorescent compound
10074-A4, which could not displace either of the fluorescent inhibitors from the Myc
bHLHZip domain, was identified using a circular dichroism (CD)-based binding assay
and the Myc bHLHZip variants.” The three binding sites identified within Myc bHLHZip
are summarized in Figure 6A.

Small Molecule Binding Sites within Myc Display Similar Sequence Features

Disordered proteins are generally depleted in hydrophobic residues and enriched
in hydrophilic and charged residues, with some dependence of disorder on the relative
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numbers of hydrophobic versus charged residues.'?’” Sequence analysis algorithms have
been developed to accurately predict the location of disordered regions within polypeptide
sequences.” Analysis of the sequence of the Myc bHLHZip domain using the disorder
prediction algorithm PONDR provided insights into the features of Sites I-III relative
to other regions that do not interact with small molecules (Fig. 6B). Each of the small
molecule binding regions exhibits a small cluster of hydrophobic residues, which cause
inflections in the plot of disorder probability versus residue number. This observation
suggests that sites in IDPs that exhibit relatively high hydrophobicity, which correlates
withreduced disorder probability, have the potential to bind small molecules. Interestingly,
these sites may coincide with regions that mediate functionally important protein-protein
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Figure 6. Location and sequence characteristics of inhibitor binding sites on Myc. A) Summary of
inhibitor binding sites based on direct binding studies between fluorescent inhibitors and mutated or
truncated variants of c-Myc bHLHZip domain and from competition studies between fluorescent and
nonfluorescent inhibitors. The protein constructs employed for structural studies are outlined at the
bottom of the panel. B) Disorder probability for the c-Myc bHLHZip domain assessed with the PONDR
VSL2B algorithm'*. Regions containing hydrophobic clusters and nonconserved residues are overlaid on
the plot. Nonconserved residues found within regions involved in inhibitor binding are highlighted in
darker grey. Inhibitor binding sites are located in segments characterized by high hydrophobic content,
reduced disorder probability and presence of nonconserved residues. A color version of this image is
available at www.landesbioscience.com/curie.
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interactions.'?® Additionally, the sequences of Sites I-IIT are poorly conserved in n-Myc
and MAX, providing a basis for binding specificity (Fig. 6B).

Structural Features of Small Molecule Binding Sites within Myc

CD was used to monitor the effects of Myc-binding compounds on the secondary
structure of Myc-derived polypeptides. While the effects of binding could not be detected
using the full-length c-Myc bHLHZip domain, compounds 10058-F4 and 10074-GS5
did cause significant changes in CD spectra of shorter peptides corresponding to Sites
I and 11, respectively.® It was further confirmed that small-molecule binding may occur
simultaneously on all sites within full-length c-Myc bHLHZip.” NMR spectroscopy was
also used to study Myc peptide/small molecule interactions.®’ Limited analysis of 'H and
natural abundance *C spectral parameters indicated that small molecule binding restricted
peptide dynamics to a very limited extent. For example, 'Ha secondary chemical shift
values, which are a sensitive measure of secondary structure, of residues within Sites
I-IT in the context of synthetic peptides or full-length c-Myc bHLHZip were slightly
but reproducibly perturbed in the presence of the respective, specific small molecule
binding partner (Fig. 7A). In addition to chemical shift perturbations, a limited number
of intermolecular, small molecule/Myc peptide "H-"H NOEs were observed for several
of the complexes. Computational methods were used to generate structural models of
these complexes (Fig. 7B-G). It should be noted that these models are static views of
complexes that are believed to be highly dynamic due to fluctuations amongst myriad
conformations. Conformational fluctuations cause averaging of NMR parameters; thus,
these structural models are likely to reflect average conformations of highly dynamic
small molecule/peptide complexes. Despite these limitations, these models are useful
for deriving initial insights into how small molecules interact with specific binding sites
within the intrinsically disordered Myc polypeptide. In each of the models illustrated
(Fig. 7E-G), side chains of hydrophobic residues cluster around hydrophobic portions of the
small molecules. These apolar interactions are complemented by electrostatic and H-bond
interactions. Thus, these results suggest that small molecules can bind sites in disordered
proteins that are slightly enriched in hydrophobic residues and that the mechanism of
binding involves, at least in part, hydrophobic collapse which is associated with partial
polypeptide folding-upon-binding. The accompanying intermolecular electrostatic and
H-bond interactions may mediate the specificity of the interactions. Importantly, these
studies suggest that the polypeptide/small molecule complexes remain highly dynamic
even as these interactions occur. This phenomenon is reminiscent of interactions between
the IDP, Sicl and the folded globular protein, CDC4. In this system, Sicl remains highly
dynamic when interacting with CDC4,!12-130

CONCLUSION

It is now well recognized that IDPs are highly abundant and that they play critical
functional roles in biological systems, with many mediating signaling and regulation.
Bioinformatics studies have dramatically increased awareness of IDPs and their properties.
However, structural, biophysical and biochemical studies of IDPs have progressed at a
slower pace, creating gaps in our knowledge of the relationship between the physical
properties of these proteins and their wide ranging biological functions. Our studies of
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Figure 7. Simultaneous binding of multiple inhibitors to the full-length c-Myc bHLHZip domain.
A) 'Ha chemical shift index values for the partially assigned resonances of c-Myc353-437 (only the
363-412 segment is displayed). Values for the free peptide are represented by black bars while colored
bars correspond to residues that display changes in chemical shift (>0.02 ppm) upon binding of each
inhibitor according to the following scheme: green, 10074-GS5; blue, 10074-A4; red, 10058-F4. Values
for residues that remain unchanged upon complex formation are indicated as white bars. Secondary
chemical shifts for the bound state were deduced from protein spectra acquired in the presence of all
three inhibitors; the color-coding for this plot is deduced from the observed changes in chemical shift
upon sequential addition of these compounds. Residues that displayed changes in chemical shift upon
addition of both 10074-G5 and 10074-A4 (Phe374/375, Asp379 and Ile381) are indicated in shaded
blue-green. B-D) Modeled average conformations of binding site peptides in the absence (dark grey)
and presence (light grey) of their respective ligand (B: c-Myc363-381, 10074-GS5; C: c-Myc370-409,
10074-A4; D: c-Myc402-412, 11058-F4). E-G). Models of each individual inhibitor-peptide complex
(in the same order as above). (Adapted from Follis et al. Chem Biol 2008; 15:1149-1155,% ©2008
with permission from Elsevier; and Hammoudeh et al. J Am Chem Soc 2009; 131:7390-7401,7 with
permission of the American Chemical Society). A color version of this image is available at www.
landesbioscience.com/curie.

the cell cycle regulators, p21 and p27, have revealed many interesting, often unexpected,
results that have established important concepts that are likely to apply to many other
uncharacterized IDPs. These concepts include the existence of both highly disordered
and partially folded modules within IDPs prior to interacting with their biological targets;
the participation of these modules in highly specific, sequential binding events; the role
of posttranslational modification (PTM) of residues within these modules in regulating
IDP function; and the dynamic linkage of multiple PTMs within individual IDPs into
signaling conduits. While IDPs play critical biological roles in cells, their functions are
often altered in association with human disease. The expression of IDPs is known to be
tightly regulated in eukaryotes® and deregulation leading to elevated levels of IDPs is
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often associated with cancer in humans.>* A notable example is the proto-oncoprotein
Myec, which is overexpressed in a wide range of human cancers. Studies by Evan and
coworkers'? showed that inhibition of Myc function in mice either prevented formation
of or cause regression of tumors in a lung tumor model. The work of Follis, Hammoudeh,
Metallo and coworkers has demonstrated that it is possible to inhibit Myc function in
cells with small molecules. The success of these studies provides incentive to pursue
more potent small molecule Myc inhibitors in the future and to fully explore their clinical
potential as antiproliferative agents. In conclusion, studies of IDPs have and will continue
to provide novel insights into the molecular mechanism which govern protein functions
and, in addition, hold great potential as druggable therapeutic targets to combat diseases
such as cancer and neurodegenerative diseases.

ACKNOWLEDGEMENTS

Due to space limitations, we could not discuss or cite many important reports related
to IDPs; we apologize to authors whose work was overlooked. The authors acknowledge
members of the Kriwacki laboratory for stimulating discussions during the preparation of
this manuscript. We gratefully acknowledge the American Lebanese Syrian Associated
Charities (ALSAC) and NCI (2R01CA082491 to RWK; 5P30CA021765 to St. Jude
Children’s Research Hospital) for financial support.

REFERENCES

—_

. Receveur-Brechot V, Bourhis JM, Uversky VN et al. Assessing protein disorder and induced folding.
Proteins 2006; 62:24-45.

2. Mittag T, Forman-Kay JD. Atomic-level characterization of disordered protein ensembles. Curr Opin Struct
Biol 2007; 17:3-14.

3. Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005;
6:197-208.

4. Obradovic Z, Peng K, Vucetic S et al. Exploiting heterogeneous sequence properties improves prediction
of protein disorder. Proteins 2005; 61 Suppl 7:176-182.

5. Nair SK, Burley SK. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of
regulation by proto-oncogenic transcription factors. Cell 2003; 112:193-205.

6. Follis AV, Hammoudeh DI, Wang H et al. Structural rationale for the coupled binding and unfolding of the
c-Myc oncoprotein by small molecules. Chem Biol 2008; 15:1149-1155.

7. Hammoudeh DI, Follis AV, Prochownik EV et al. Multiple independent binding sites for small molecule
inhibitors on the c-Myc oncoprotein. ] Am Chem Soc 2009; 131:7390-7401.

8.Yin X, Giap C, Lazo JS et al. Low molecular weight inhibitors of Myc-Max interaction and function.
Oncogene 2003; 22:6151-6159.

9. Clark SS, McLaughlin J, Crist WM et al. Unique forms of the abl tyrosine kinase distinguish Ph1-positive
CML from Phl-positive ALL. Science 1987; 235:85-88.

10. Chu I, Sun J, Arnaout A et al. P27 Phosphorylation by src regulates inhibition of cyclin E-Cdk2. Cell
2007; 128:281-294.

11. Kiessling A, Sperl B, Hollis A et al. Selective inhibition of c-Myc/Max dimerization and DNA binding by
small molecules. Chem Biol 2006; 13:745-751.

12. Dunker AK, Brown CJ, Lawson JD et al. Intrinsic disorder and protein function. Biochemistry 2002;
41:6573-6582.

13. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-533.

14. Uversky VN. Nativelyunfolded proteins: a point where biology waits for physics. Protein Sci2002; 11:739-756.

15. Oldfield CJ, Cheng Y, Cortese MS et al. Comparing and combining predictors of mostly disordered proteins.

Biochemistry 2005; 44:1989-2000.



20.

21.
22.
23.
24.
25.
26.

27.
. Alber F, Dokudovskaya S, Veenhoff LM et al. The molecular architecture of the nuclear pore complex.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.

42

44,
45.

46.
. Tsvetkov P, Reuven N, Shaul Y. The nanny model for IDPs. Nat Chem Biol 2009; 5:778-781.

FUZZINESS: STRUCTURAL DISORDER IN PROTEIN COMPLEXES

. A list of currently available disorder predictors is available on the DisProt web site at http://www.disprot.

org/predictors.php.

. Dunker AK, Obradovic Z, Romero P et al. Intrinsic protein disorder in complete genomes. Genome Inform

Ser Workshop Genome Inform 2000; 11:161-171.

. Ward JJ, Sodhi JS, McGuffin LJ et al. Prediction and functional analysis of native disorder in proteins from

the three kingdoms of life. ] Mol Biol 2004; 337:635-645.

. Xie H, Vucetic S, lakoucheva LM et al. Functional anthology of intrinsic disorder. 1. Biological processes

and functions of proteins with long disordered regions. J Proteome Res 2007; 6:1882-1898.

Vucetic S, Xie H, lakoucheva LM et al. Functional anthology of intrinsic disorder. 2. Cellular components,
domains, technical terms, developmental processes and coding sequence diversities correlated with long
disordered regions. J Proteome Res 2007; 6:1899-1916.

Liu J, Perumal NB, Oldfield CJ et al. Intrinsic disorder in transcription factors. Biochemistry 2006;
45:6873-6888.

Takoucheva LM, Brown CJ, Lawson JD et al. Intrinsic disorder in cell-signaling and cancer-associated
proteins. J Mol Biol 2002; 323:573-584.

Gsponer J, Futschik ME, Teichmann SA et al. Tight regulation of unstructured proteins: from transcript
synthesis to protein degradation. Science 2008; 322:1365-1368.

Vavouri T, Semple JI, Garcia-Verdugo R et al. Intrinsic protein disorder and interaction promiscuity are
widely associated with dosage sensitivity. Cell 2009; 138:198-208.

Ayed A, Mulder FA, Yi GS et al. Latent and active p53 are identical in conformation. Nat Struct Biol
2001; 8:756-760.

Hoh JH. Functional protein domains from the thermally driven motion of polypeptide chains: a proposal.
Proteins 1998; 32:223-228.

TskhovrebovaL, TrinickJ. Titin: properties and family relationships. Nat Rev Mol Cell Biol 2003; 4:679-689.

Nature 2007; 450:695-701.

Spolar RS, Record MT Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science
1994; 263:777-784.

Demarest SJ, Martinez-Yamout M, Chung J et al. Mutual synergistic folding in recruitment of CBP/p300
by p160 nuclear receptor coactivators. Nature 2002; 415:549-553.

Lacy ER, Filippov I, Lewis WS et al. P27 binds cyclin-CDK complexes through a sequential mechanism
involving binding-induced protein folding. Nat Struct Mol Biol 2004; 11:358-364.

TompaP, Fuxreiter M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions.
Trends Biochem Sci 2008; 33:2-8.

Frederick KK, Marlow MS, Valentine KG et al. Conformational entropy in molecular recognition by
proteins. Nature 2007; 448:325-329.

Leung DW, Rosen MK. The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and
allosteric equilibria of Wiskott-Aldrich syndrome protein. Proc Natl Acad Sci USA 2005; 102:5685-5690.

Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function
paradigm. J Mol Biol 1999; 293:321-331.

Kriwacki RW, Hengst L, Tennant L etal. Structural studies of p2 1 (waf1/cip1/sdil) in the free and Cdk2-bound
state: Conformational disorder mediates binding diversity. Proc Natl Acad Sci USA 1996;93:11504-11509.

Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008;
14:159-169.

Joerger AC, Fersht AR. Structural Biology of the Tumor Suppressor p5S3. Annu Rev Biochem 2008;
77:557-582.

Dunker AK, Cortese MS, Romero P et al. Flexible nets. The roles of intrinsic disorder in protein interaction
networks. Febs J 2005; 272:5129-5148.

Kim PM, Sboner A, Xia Y et al. The role of disorder in interaction networks: a structural analysis. Mol
Syst Biol 2008; 4:179-185.

Schnell S, Fortunato S, Roy S. Is the intrinsic disorder of proteins the cause of the scale-free architecture
of protein-protein interaction networks? Proteomics 2007; 7:961-964.

. Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4:793-805.
43.

Grimmler M, Wang Y, Mund T etal. Cdk-inhibitory activity and stability of p27(Kip1) are directly regulated
by oncogenic tyrosine kinases. Cell 2007; 128:269-280.

Tompa P, Prilusky J, Silman I et al. Structural disorder serves as a weak signal for intracellular protein
degradation. Proteins 2007; 71:903-909.

Tsvetkov P, Asher G, Paz A et al. Operational definition of intrinsically unstructured protein sequences
based on susceptibility to the 20S proteasome. Proteins 2007; 70:1357-1366.

Lavin MF, Gueven N. The complexity of p53 stabilization and activation. Cell Death Differ 2006; 13:941-950.



INTRINSIC PROTEIN FLEXIBILITY IN REGULATION OF CELL PROLIFERATION 47

48.

49.

50.

51

52

54.

55.

56.

57.

58.

59.

60.

61.

62

63.

64

66.
67.
68.
69.

70.
. Harper JW, Elledge S, Keyomarsi K et al. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell

71

72.

73.

74.

75.

76

78.

79.
80.

Shoemaker BA, Portman JJ, Wolynes PG. Speeding molecular recognition by using the folding funnel:
the fly-casting mechanism. Proc Natl Acad Sci USA 2000; 97:8868-8873.

Sugase K, Dyson HJ, Wright PE. Mechanism of coupled folding and binding of an intrinsically disordered
protein. Nature 2007; 447:1021-1025.

Huang Y, Liu Z. Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process:
a critical assessment of the “fly-casting” mechanism. J Mol Biol 2009; 393:1143-1159.

Hilser VJ, Thompson EB. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins.
Proc Natl Acad Sci USA 2007; 104:8311-8315.

. Morgan DO. Principles of CDK regulation. Nature 1995; 374:131-134.
53.

Sherr CJ, Roberts JM. Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes
Dev 1999; 13:1501-1512.

Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev 2004;
18:2699-2711.

Poon RY, Hunter T. Expression of a novel form of p21Cip1/Wafl in UV-irradiated and transformed cells.
Oncogene 1998; 16:1333-1343.

Reynisdottir I, Massague J. The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory
interactions with cdk4 and cdk2. Genes Dev 1997; 11:492-503.

Waga S, Hannon GJ, Beach D et al. The p21 inhibitor of cyclin-dependent kinases controls DNA replication
by interaction with PCNA. Nature 1994; 369:574-578.

Watanabe H, Pan ZQ, Schreiber-Agus N et al. Suppression of cell transformation by the cyclin-dependent
kinase inhibitor p5S7KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci USA
1998; 95:1392-1397.

Montagnoli A, Fiore F, Eytan E et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation
and trimeric complex formation. Genes Dev 1999; 13:1181-1189.

Nguyen H, Gitig DM, Koff A. Cell-free degradation of p27(kip1), a G1 cyclin-dependent kinase inhibitor,
is dependent on CDK2 activity and the proteasome. Mol Cell Biol 1999; 19:1190-1201.

Kamura T, Hara T, Kotoshiba S etal. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation.
Proc Natl Acad Sci USA 2003; 100:10231-10236.

. Matsuoka S, Edwards MC, Bai C et al. PS7KIP2, a structurally distinct member of the p21CIP1 Cdk

inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995; 9:650-652.
Russo AA, Jeffrey PD, Patten AK et al. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor
bound to the cyclin A-Cdk2 complex. Nature 1996; 382:325-331.

. Harper JW, Adams PD. Cyclin-dependent kinases. Chem Rev 2001; 101:2511-2526.
65.

Lacy ER, Wang Y, PostJ et al. Molecular Basis for the Specificity of p27 Toward Cyclin-dependent Kinases
that Regulate Cell Division. J Mol Biol 2005; 349:764-773.

Adkins JN, Lumb KJ. Intrinsic structural disorder and sequence features of the cell cycle inhibitor pS7Kip2.
Proteins 2002; 46:1-7.

Bienkiewicz EA, Adkins JN, Lumb KJ. Functional consequences of preorganized helical structure in the
intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 2002; 41:752-759.

Prilusky J, Felder CE, Zeev-Ben-Mordehai T et al. FoldIndex: a simple tool to predict whether a given
protein sequence is intrinsically unfolded. Bioinformatics 2005; 21:3435-3438.

Dosztanyi Z, Csizmok V, Tompa P et al. [UPred: web server for the prediction of intrinsically unstructured
regions of proteins based on estimated energy content. Bioinformatics 2005; 21:3433-3434.

Romero P, Obradovic Z, Li X et al. Sequence complexity of disordered protein. Proteins 2001; 42:38-48.

1995; 6:387-400.

Polyak K, Lee MH, Erdjument-Bromage H et al. Cloning of p27Kipl, a cyclin-dependent kinase inhibitor
and a potential mediator of extracellular antimitogenic signals. Cell 1994; 78:59-66.

Hengst L, Dulic V, Slingerland JM et al. A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc
Natl Acad Sci USA 1994; 91:5291-5295.

Sivakolundu SG, Bashford D, Kriwacki RW. Disordered p27(Kip1) Exhibits Intrinsic Structure Resembling
the Cdk2/Cyclin A-bound Conformation. J Mol Biol 2005; 353:1118-1128.

Galea CA, Nourse A, Wang Y et al. Role of intrinsic flexibility in signal transduction mediated by the cell
cycle regulator, p27(Kip1). J Mol Biol 2007; 376:827-838.

. Blain SW, Massague J. Breast cancer banishes p27 from nucleus. Nat Med 2002; 8:1076-1078.
77.

Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and
relevance to anticancer therapy. Nat Rev Cancer 2008; 8:253-267.

Prakash S, Tian L, RatliffKS etal. Anunstructured initiation site is required for efficient proteasome-mediated
degradation. Nat Struct Mol Biol 2004; 11:830-837.

Prochownik EV. c-Myec: linking transformation and genomic instability. Curr Mol Med 2008; 8:446-458.

Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8:976-990.



48

81
82.

83.

84.

85.

86.

88.

89.

90.

91.

92.

93.

95.

96.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

FUZZINESS: STRUCTURAL DISORDER IN PROTEIN COMPLEXES

. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev 2008; 22:2755-2766.

Bahram F, von der Lehr N, Cetinakaya C et al c-Myc hot spot mutations in lymphomas result in inefficient
ubiquitination and decreased proteasome-mediated turnover. Blood 2000; 95:2104-2110.

Neel BG, Hayward WS, Robiinson HL et al. Avian leukosis virus-induced tumors have common proviral
intregration sites and synthesize discrete new RNAs: oncogenesis by promoter. Cell 1981; 23:323-334.

Steffen D. Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc Natl
Acad Sci USA 1984; 81:2097-2101.

Crews S, Barth R, Hood L et al. Mouse c-myc oncogene is located on chromosome 15 and traslocated to
chromosome 12 in plasmacytomas. Science 1982; 218:1319-1321.

Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene 2001; 20:5595-5610.

. Collins S, Groudine M. Amplification of endogenous myc-related DNA sequences in a human myeloid

leukaemia cell line. Nature 1982; 298:679-681.

Alitalo K, Shwab M, Lin CC et al. Homogeneously staining chromosomal regions contain amplified copies
of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human
colon carcinoma. Proc Natl Acad Sci USA 1983; 80:1707-1711.

Leder A, Pattengale PK, Kuo A et al. Consequences of widespread deregulation of the c-myc gene in
transgenic mice: multiple neoplasms and normal development. Cell 1986; 45:485-495.

Weng AP, Millholland JM, Yashiro-Ohtani Y et al. C-Myc is an important direct target of Notch1 in T-cell
acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20:2096-2109.

Hann SR. Role of posttranslational modifications in regulating c-Myc proteolysis, transcriptional activity
and biological function. Sem Cancer Biol 2006; 16:288-302.

Vervoorts J, Luscher-Firzlaff JM, Luscher B. The ins and outs of MYC regulation by posttranslational
mechanisms. J Biol Chem 2006; 281:34725-34729.

Dang CV. c-Myctarget genes involved in cell growth, apoptosis and metabolism. Mol Cell Biol 1999; 19:1-11.

. Dang CV,O’Donnell KA, Zeller Kl etal. The c-Myc target gene network. Sem Cancer Biol 2006; 16:253-264.

Obaya AJ, Mateyak MK, Sedivy JM. Mysterious liaisons: the relationship between c-Myc and the cell
cycle. Oncogene 1999; 18:2934-2941.
Luscher B, Eisenman RN. New light on Myc and Myb. Part I. Myc. Genes Dev 1990; 4:2025-2035.

. Marcu KB, Bossone SA, Patel AJ. Myc function and regulation. Annu Rev Biochem 1992; 61:809-860.

Grandori C, Gomez-Roman N, Felton-Edkins ZA et al c-Myc binds to human ribosomal DNA and stimulates
transcription of RNA genes by RNA polymerase 1. Nat Cell Biol 2005; 7:311-318.

Stone J, de Lange T, Ramsay G etal. Definition of regions in human c-myc that are involved in transformation
and nuclear localization. Mol Cell Biol 1987; 7:1697-1709.

Kato GIJ, Barrett J, Villa-Garcia M et al. An amino-terminal c-myc domain required for neoplastic
transformation activates transcription. Mol Cell Biol 1990; 10:5914-5920.

Blackwell TK, Kretzner L, Blackwood EM et al. Sequence-specific DNA binding by the c-Myc protein.
Science 1990; 250:1149-1151.

McMahon SB, Wood MA, Cole MD. The essential cofactor TRRAP recruits the histone acetyltransferase
hGCNS5 to c-Myc. Mol Cell Biol 2000; 20:556-562.

Grace Cheng SW, Davles KP, Yung E et al. C-MYC interacts with INI1/hSNF5 and requires the SWI/
SNF complex for transactivation function. Nat Genet 1999; 22:102-105.

Eberhardy SR, Farnham PJ. C-Myc mediates activation of the cad promoter via a postRNA polymerase
II recruitment mechanism. J Biol Chem 2001; 276:48562-48571.

Eberhardy SR, Farnham PJ. Myc recruits P-TEFb to mediate the final step in the transcriptional activation
of the cad promoter. J Biol Chem 2002; 277:40156-40162.

Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific
DNA-binding complex with Myc. Science 1991; 251:1211-1217.

Blackwood EM, Kretzner L, Eisenman RN. Myc and Max function as a nucleoprotein complex. Curr
Opin Genet Dev 1992; 2:227-235.

Amati B, Brooks MW, Levy N et al. Oncogenic activity of the c-Myc protein requires dimerization with
Max. Cell 1993; 72:233-245.

Lavigne P, Crump MP, Gagne SM et al. Insights into the mechanism of heterodimerization from the
1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. ] Mol Biol 1998;281:165-181.

Mao DY, Watson JD, Yan PS et al. Analysis of Myc bound loci identified by CpG island arrays shows
that Max is essential for Myc-dependent repression. Curr Biol 2003; 13:882-886.

Wang YH, Liu S, Zhang G et al. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor
cells growth in vitro and in vivo. Breast Cancer Res 2005; 7:R220-R228.

Balaji KC, Koul H, Mitra S et al. Antiproliferative effects of c-myc antisense oligonucleotide in prostate
cancer cells: a novel therapy in prostate cancer. Urology 1997; 50:1007-1015.



INTRINSIC PROTEIN FLEXIBILITY IN REGULATION OF CELL PROLIFERATION 49

113.

114.

115.

116.

117.

118.

119.

120.
121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

Siddiqui-Jain A, Grand CL, Bearss DJ et al. Direct evidence for a G-quadruplex in a promoter region
and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 2002;
99:11593-11598.

Mo H, Henriksson M. Identification of small molecules that induce apoptosis in a Myc-dependent manner
and inhibit Myc-driven transformation. Proc Natl Acad Sci USA 2006; 103:6344-6349.

Claasen G, Brin E, Crogan-Grundy C et al. Selective activation of apoptosis by a novel set of
4-aryl-3-(3-aryl-1-oxo0-2- propenyl)-2(1H)-quinolinones through a Myc-dependent pathway. Cancer
Lett 2008; 274:243-249.

Giorello L, Clerico L, Pescarolo MP et al. Inhibition of cancer cell growth and c-Myc transcriptional activity
by a c-Myc helix 1-type peptide fused to an internalization sequence. Cancer Res 1998; 58:3654-3659.
Berg T, Cohen SB, Desharnais J et al. Small-molecule antagonists of Myc/Max dimerization inhibit
Myc-induced transformation of chicken embryo fibroblasts. Proc Nat Acad Sci USA 2002; 99:3830-3835.
Xu'Y, ShilJ, Yamamoto N et al. A credit-card library approach for disrupting protein-protein interactions.
Bioorg Med Chem 2006; 14:2660-2673.

Kiessling A, Wiesinger R, Sperl B etal. Selective inhibition of c-Myc/Max dimerization by a pyrazolo[1,5-a]
pyrimidine. ChemMedChem 2007; 2:627-630.

Prochownik EV. c-Myc as a therapeutic target in cancer. Expert Rev Anticanc 2004; 4:289-302.
Ponzielli R, Katz S, Barsyte-Lovejoy D et al. Cancer therapeutics: targeting the dark side of Myc. Eur J
Cancer 2005; 41:2485-2501.

Soucek L, Whitfield J, Martins CP et al. Modelling Myc inhibition as a cancer therapy. Nature 2008;
455:679-683.

Soucek L, Helmer-Citterich M, Sacco A et al. Design and properties of a Myc derivative that efficiently
homodimerizes. Oncogene 1998; 17:2463-2472.

Takoucheva LM, Brown CJ, Lawson JD et al. Intrinsic disorder in cell-signaling and cancer-associated
proteins. J Mol Biol 2002; 323:573-584.

Wang H, Hammoudeh DI, Follis AV et al. Improved low molecular weight Myc-Max inhibitors. Mol
Cancer Ther 2007; 6:2399-2408.

Mustata G, Follis AV, Hammoudeh DI et al. Discovery of novel myc-max heterodimer disruptors with a
3-dimensional pharmacophore model. ] Med Chem 2009; 52:1247-1250.

Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic
conditions? Proteins 2000; 41:415-427.

Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition,
regulation and cell signaling. J Mol Recognit 2005; 18:343-384.

Mittag T, Orlicky S, Choy WY et al. Dynamic equilibrium engagement of a polyvalent ligand with a
single-site receptor. Proc Natl Acad Sci USA 2008; 105:17772-17777.

Mittag T, Kay LE, Forman-Kay JD. Protein dynamics and conformational disorder in molecular recognition.
J Mol Recognit 2010; 23:105-116.



CHAPTER 4

INTERPLAY BETWEEN PROTEIN ORDER,
DISORDER AND OLIGOMERICITY
IN RECEPTOR SIGNALING

Alexander B. Sigalov

SignaBlok, Inc., Shrewsbury, Massachusetts, USA
Email: sigalov@signablok.com

Abstract:

Receptor-mediated signaling plays an important role in health and disease.
Recentreports have revealed that many proteins that do not adopt globular structures
under native conditions, thus termed intrinsically disordered, are involved in cell
signaling. Intriguingly, physiologically relevant oligomerization of intrinsically
disordered proteins (IDPs) has been recently observed and shown to exhibit unique
biophysical characteristics, including the lack of significant changes in chemical
shift and peak intensity upon binding. On the other hand, ligand-induced or -tuned
receptor oligomerization is known to be a general feature of various cell surface
receptors and to play a crucial role in signal transduction. In this work, I summarize
several distinct features of protein disorder that are especially important as related
to signal transduction. I also hypothesize that interactions of IDPs with their protein
or lipid partners represent a general biphasic process with the electrostatic-driven
“no disorder-to-order” fast interaction which, depending on the interacting partner,
may or may not be accompanied by the hydrophobic-driven slow formation of a
secondary structure. Further, I suggest signaling-related functional connections
between protein order, disorder and oligomericity and hypothesize that receptor
oligomerization induced or tuned upon ligand binding outside the cell is translated
across the membrane into protein oligomerization inside the cell, thus providing a
general platform, the Signaling Chain HOmoOLigomerization (SCHOOL) platform,
for receptor-mediated signaling. This structures our current multidisciplinary
knowledge and views of the mechanisms governing the coupling of recognition to
signal transduction and cell response. Importantly, this approach not only reveals
previously unrecognized striking similarities in the basic mechanistic principles
of function of numerous functionally diverse and unrelated surface membrane
receptors, but also suggests the similarity between therapeutic targets, thus opening
new horizons for both fundamental and clinically relevant studies.
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INTRODUCTION

Cell surface receptors are integral membrane proteins and, as such, consist of three
basic domains: Extracellular (EC) ligand-binding domains, transmembrane (TM) domains
and cytoplasmic (CYTO) signaling (or effector) domains. Upon recognition and binding
of a specific ligand, cell surface receptors transmit this information into the interior of
the cell, activating intracellular signaling pathways and resulting in a cellular response
such as proliferation, differentiation, apoptosis, degranulation, the secretion of preformed
and newly formed mediators, phagocytosis of particles, endocytosis, cytotoxicity against
target cells, etc. The importance of receptors in health and disease' makes the molecular
understanding of signal transduction critical in influencing and controlling this process,
thus modulating the cell response.

Ligand-induced receptor oligomerization is frequently employed as a key factor in
receptor triggering.”* For many receptors, oligomerization is mediated by homointeractions
between folded and well-ordered domains, representing a signaling-related functional
link between protein order and oligomericity. On the other hand, intrinsic disorder serves
as the native and functional state for many signaling proteins® with phosphorylation, one
of the critical and obligatory events in cell signaling, occurring predominantly within
intrinsically disordered regions (IDRs).¢ Inaddition, long IDRs preferentially reside on the
CYTO side of many human TM proteins.”® In this context, the recently reported surprising
ability of intrinsically disordered CYTO domains of immune receptor signaling subunits
to form specific dimers®'' represents a functional link between protein intrinsic disorder
and oligomericity. This phenomenonresolves a long-standing puzzle of receptor-mediated
signaling and has important fundamental and clinical applications.

Here, I summarize our knowledge on the recently reported distinct features of
signaling-related intrinsically disordered proteins (IDPs), including the lack of folding
upon binding to protein and lipid partners. I also hypothesize that receptor oligomerization
induced or tuned upon ligand binding outside the cell is translated across the membrane
into protein oligomerization inside the cell, thus providing a general platform, the Signaling
Chain HOmoOLigomerization (SCHOOL) platform, for receptor-mediated signaling. I
also demonstrate how our improved understanding of the recently suggested functional
link between protein intrinsic disorder and oligomericity as a key and missing element of
transmembrane signal transduction provides novel insight into the molecular mechanisms
of cell signaling and has important applications in biology and medicine.

INTRINSICALLY DISORDERED PROTEINS

By definition, IDPs are proteins that lack a well-defined ordered structure under
physiological conditions in vitro.'? To predict whether a given protein or protein region
assumes a defined fold or is intrinsically disordered, several computational methods
have been developed.'*'® Experimentally, protein disorder can be detected by far-UV
circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. CD
spectroscopy allows the estimation of the secondary structure content of a protein in
solution. However, while for an ordered protein the CD signal gives information about
each molecule in the sample, because nearly all the molecules are in the same structural
state, it is different for an IDP that consists of a broad ensemble of molecules each having
a different conformation.!' In this context, NMR is unparalleled in its ability to provide
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detailed structural and dynamic information on IDPs and has emerged as a particularly
important tool for studies of IDP folding and interactions.?**! NMR chemical shifts and
line widths are extremely sensitive to subtle changes in protein conformational ensembles
and are indispensable for detecting protein disorder (poor proton chemical shift dispersion
and broad lines are indicative of disorder) and determining propensities of secondary
structure formation on a residue-by-residue basis in unfolded and partly folded proteins.

Despite the fact that the existence of IDPs and IDRs has been recognized for many
years, their functional role in crucial areas such as transcriptional regulation, translation
and cellular signal transduction has only recently been reported due to progress in
biochemical methodology.””?* IDPs and IDRs are involved in various signaling and
regulatory pathways, via specific protein-protein, protein-nucleic acid and protein-ligand
interactions.?>?+262832 Many of those post-translational modifications that rely on the low
affinity, high specificity binding interactions (for example, phosphorylation) are associated
primarily with IDPs and IDRs.%2527

The major functional benefits of protein intrinsic disorder include increased binding
specificity at the expense of thermodynamic stability, increased speed of interaction
and the ability to recognize and bind multiple distinct partners without sacrificing
specificity. 222327283132

Binding with Folding

The generally accepted view is that upon binding to their interacting partners
and targets, IDPs undergo transitions to more ordered states or fold into stable
secondary or tertiary structures—that is, they undergo coupled binding and folding
processes (Fig. 1A).2333:3¢

Protein Partner

Currently, the most characterized examples of folding being driven by binding
are protein complexes formed by IDPs with their folded (ordered) protein partners
(Fig. 1A). This subject has been addressed in detail in many recent reviews and
other articles.!?21-23:28303234 A clagsic example is binding of the kinase-inducible
transcriptional-activation domain (KID) of cyclic AMP response element-binding protein
(CREB) to CREB-binding protein (CBP). Upon binding to CBP, the intrinsically disordered
KID polypeptide®”*® folds with the formation a pair of orthogonal helices.** Coupled
binding and folding can involve just a few residues** or an entire protein domain.*

Specific complex formation between IDPs is quite unusual, but not unprecedented.®
Homodimerization of IDPs was first reported in 2004 for a novel class of signaling-related
IDPs’ and later confirmed for other IDPs** extending the phenomenon to different
classes of IDPs and suggesting physiological relevance. It should be noted that in most
of these studies, dimerization is accompanied by a mutual or “synergistic”* folding of
two IDP molecules at the interaction interface (Fig. 1A). Thus, interactions between the
constituents of such homodimers represent specific interactions between folded regions
involved in complex formation.
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Binding of intrinsically disordered proteins

Intrinsically disordered protein

A. Folding upon binding B. No folding upon binding
PROTEIN PARTNER
Disordered partner Ordered partner Disordered partner Ordered partner

LIPID PARTNER
(shown for TCR;W.; similar: C.‘.T):Js':],r and FCaRﬁfcy,)

Micelles Unstable lipid bilayers Stable lipid bilayers

Figure 1. Binding of an intrinsically disordered protein (IDP) to its target. Upon binding, an IDP may
(A) or may not (B) fold on its interacting partner. A) Binding of an IDP to another IDP or to a folded
and well-ordered protein is coupled to secondary structure induction (left upper panel). In this widely
observed scenario, interactions at the binding interface that mediate specific complex formation represent
the interactions between folded domains (induction of helices is shown for illustrative purposes). Helical
structure induction upon binding of an IDP to micelles or unstable lipid bilayers (left bottom panel) has
been also widely reported.’>*¢3!52 B) Binding of an IDP to another IDP or to a folded and well-ordered
protein is not accompanied by a disorder-to-order transition (right upper panel). In the recently discovered
surprising scenario of IDP homooligomerization,”!! interactions at the binding interface that mediate a
specific oligomer formation represent the interactions between disordered domains making these interactions
unusual and intriguing. The lack of secondary structure induction upon binding of an IDP to a folded
and well-ordered protein has been also reported.’® Binding of an IDP to stable lipid bilayers without a
disorder-to-order transition (right bottom panel) has been also demonstrated.”’ Images were created using
PyMol (www.pymol.org) from PDB file IAVV for the HIV-1 Nef core domain (shown as an example
of a folded interacting partner) and using arbitrary idealized structural elements to represent the ensemble
of unfolded conformations of an IDP. Polar head groups and hydrophobic tales of detergent and lipid
molecules are denoted by gray filled circles and lines, respectively. Adapted from Sigalov AB. Mol Biosyst
20105 6(3):451-61;° ©2010, with permission of The Royal Society of Chemistry; and from Sigalov AB et
al. Biochem Biophys Res Commun 2009; 389:388-393;%! ©2009, with permission from Elsevier.
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Lipid Partner

Prevalence of IDRs in the CYTO domains of many human TM proteins in general,”®
and in particular, in the CYTO domains of signaling-related proteins (Table 1),>!**° raises
the question if these regions exert membrane-binding activity and if affirmed, whether
this activity has a physiological role. Recent studies of the intrinsically disordered
CYTO domains of the T and CD3e signaling subunits (T, and CD3e,,, respectively)
of the T-cell receptor (TCR) have demonstrated that these proteins bind to acidic
dimyristoylphosphatidylglycerol (DMPG) vesicles and undergo a helical folding transition
upon binding.***¢ ., and CD3e.,, contain an immunoreceptor tyrosine-based activation
motif (ITAM), tyrosines of which are phosphorylated upon receptor triggering and the
authors®*>2®hypothesized that helical folding of ITAMs upon membrane binding represents
a conformational switch to control TCR activation.

On the other hand, it has been shown that binding of T, and CD3e, as well
as ITAM-containing CYTO domain of FceRI receptor y subunit, FceRy,,, to acidic
phospholipid vesicles is mediated by clusters of positively charged amino acids but not
the ITAM residues.!®*3! In contrast, helical folding of ITAMs observed in the presence
of DMPG vesicles*%2 can be also promoted by physiologically irrelevant helical
inducers such as trifluoroethanol and detergents.*>3¢525 This supports a hypothesis that
the association of these IDPs with negatively charged membranes is a biphasic process
with a fast rate for an electrostatic-driven protein-liposome interaction and a slow rate for
the hydrophobic-driven formation of an amphipathic helix.'*' Similar biphasic process
has been reported recently for binding of the HIV-1 Nef protein to model membranes.>

Lipid bilayers are self-assembled structures, the mechanical properties of which
are derived from noncovalent forces such as the hydrophobic effect, steric forces and
electrostatic interactions. In this context, the electrostatic force is of special interest
because biological membranes are rich in anionic lipids®® and are therefore charged in
aqueous solution. Importantly, electrostatic interactions play the critical role in membrane
stability.’ Thus, considering that net charges of C.,, CD3e,, and FceRy,, are +5, +11
and +3 (Table 1), respectively, binding of these proteins to acidic phospholipids can
potentially destabilize and disrupt lipid bilayers.

Inlipid binding studies of T, and CD3g,,,*>*¢ the authors used DMPG vesicles to mimic
the cell membrane. However, the lipid bilayers of these vesicles are not sufficiently stable
and fuse upon binding T, as recently confirmed by dynamic light scattering (DLS) and
electron microscopy (EM) experiments,’' suggesting that the observed hydrophobic-driven
helical folding of the ITAMs of Ty, CD3e,. and FceRy.,,, likely occurs in the membrane
stalk intermediates of fusion (Fig. 1A) and is similar to that promoted by physiologically
irrelevant helical inducers such as trifluoroethanol and detergents (Fig. 1A).353651-53
This not only questions the utility of micelles, detergents and unstable lipid vesicles
(i.e., DMPG vesicles) as an appropriate model of the cell membrane but also highlights
the importance of ensuring the integrity of model membranes upon protein binding in
protein-lipid experiments in general and in particular, in studies of IDP-lipid interactions.

Binding without Folding
IDPs are often referred to as “remaining predominantly disordered” or “largely

unfolded” upon dimerization or interaction with other proteins or lipids,337-434649
meaning that the protein regions flanking the interaction interface but not the interface
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itself remain disordered. Recently, it has been suggested to term this mode of interaction
“the flanking fuzziness” in contrast to “the random fuzziness” when the IDP remains
entirely disordered in the bound state.’” In this context, “the flanking fuzziness” is a part
of the “coupled binding and folding” paradigm. Recent studies of a novel class of IDPs
demonstrated that binding of IDPs is not necessarily accompanied by a disorder-to-order
transition even within the interaction interface,”!'!!*® thus going beyond the classical
paradigm. The latter proteins are directly involved in receptor-mediated signaling, which
makes these findings particularly interesting and important.

Protein Partner

Little structural information is available for complex formation of IDPs with disordered
or ordered partners that is not accompanied by a disorder-to-order transition both outside
and within the interaction interface (Fig. 1B). First example of this unusual phenomenon
was reported in 2004° when using a variety of biophysical and biochemical techniques,
the ITAM-containing CYTO domains of immune receptor signaling subunits namely,
TCRC,, CD3¢,,, CD3d,,,and CD3y,,,, B-cell antigen receptor Iga,and Igf., and FceRl1y,,,
all were shown to form specific homodimers without a disorder-to-order transition
upon dimerization, thus revealing for the first time the existence of specific interactions
between disordered protein molecules. Interestingly, for C.,,, the oligomerization behavior
is best described by a two-step monomer-dimer-tetramer fast dynamic equilibrium
with dissociation constants in the order of approximately 10 uM (monomer-dimer) and
approximately 1 mM (dimer-tetramer).’ In contrast to the other ITAM-containing proteins,
Iga,, forms stable dimers and tetramers even below 10 uM.? Phosphorylation of the €y,
and FceRly.,. ITAM Tyr residues neither significantly alters their homooligomerization
behavior nor is accompanied by folding.” As shown by CD and NMR spectroscopy for
random coil T, this IDP does not undergo a transition between disordered and ordered
states upon dimerization and remains unfolded both outside and within the interaction
interface(s) in the C., dimer.”" Since its discovery in 2004, the unusual biophysical
phenomenon of IDP homooligomerization has become of more and more interest to
biophysicists and biochemists,***® and one can expect that further multidisciplinary
studies will shed light on the possible structural basis of these interesting IDP features.

Later, NMR studies of a direct, physiologically relevant interaction between C,, and
the well-structured core domain of the simian immunodeficiency virus (SIV) Nef protein
revealed that random coil T, bound to Nef with micromolar affinity remains unfolded
at the interaction interfaces in the 1:1 C.,-Nef complex,*® thus extending the “binding
without folding” mode observed in IDP-IDP complexes to interactions of IDPs with
folded partner proteins (Fig. 1B).

Intriguingly, NMR studies of T, dimer®'' and C.,,-Nef complex*® revealed a new,
previously unknown NMR phenomenon—the lack of significant changes in chemical
shift and peak intensity upon a specific protein complex formation.*!'*® No chemical
shift changes and significant changes in peak intensities are observed in the 'H-"N
heteronuclear single quantum coherence (HSQC) spectra of '"N-labeled T, upon
dimerization (Fig. 2A)"" or binding to the Nef protein (Fig. 2B).>® Importantly, while
the T, dimerization interface is not yet known, the amino acid residues of T, involved
in the T.,-Nef interaction are well-established,® but also do not exhibit chemical shift
changes upon binding (Fig. 2B; cross-peak positions of SNID residues are marked).®
'H-N HSQC spectra represent a fingerprint of the protein backbone and are widely
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Figure 2. Intrinsically disordered cytoplasmic domain of T-cell receptor ¢ chain (C.,) does not fold
upon binding to its unfolded (A) or folded (B) protein target. The 'H-"N heteronuclear single quantum
correlation (HSQC) spectra of '*N-labeled T, at 298 K (A) or 283 K (B) in the absence (blue) or
presence (red) of its interacting partner, another C., molecule (A) or the well-folded and ordered SIV
Nef protein (B). In both scenarios, a new, previously unobserved NMR phenomenon, the lack of
significant changes in chemical shift and intensity upon a specific protein complex formation, has been
reported.”!*8 Cross-peak positions of the SIV Nef interaction domains (SNIDs) residues are marked
to highlight the lack of chemical shift changes for these residues upon binding to Nef. Adapted with
permission from Sigalov AB et al. Biochimie 2007; 89:419-421;!'' ©2007 Elsevier; and Sigalov AB
et al. Biochemistry 2008; 47:12942-12944;> ©2008 American Chemical Society.
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used as a quick, informative probe of changes in backbone conformation, particularly
as it relates to structural studies of IDPs and their complexes.?**' Thus, the unique and
unprecedented NMR phenomenon observed®!!8 likely highlights an unusual nature of
specific interactions of IDPs upon binding without folding on their targets and opens a
new line of research in the field of IDPs.

Lipid Partner

In 2000, it has been shown that a-helical folding transition of random coil C., upon
bindingto acidic phospholipids prevents ITAM phosphorylation. The authors concluded that
this folding transition can represent a conformational switch to regulate TCR triggering,*
Later, the other group of investigators extended these findings to intrinsically disordered
CD3¢,,, and showed that binding of this protein to acidic phospholipids is accompanied
by folding of ITAM, leading to inaccessibility of the ITAM tyrosines for phosphorylation
in vitro.* This led the authors***! to the conclusion that the conformational model of TCR
activation previously suggested for C.*® can be extended to CD3g,,. On the contrary,
in other studies, it has been shown that binding of ., CD3e,, and FceRy,, to acidic
phospholipids is notaccompanied by a disorder-to-order structural transition.'” In contrast
to micelles and DMPG vesicles,*%*? intrinsically disordered C,,, CD3¢., and ., have
been shown to bind to acidic 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) vesicles
without folding.'

A molecular explanation for this paradox was reported in 2009°' when two different
membrane binding modes for ., CD3e,, and FceRy,,, were shown, depending on the
bilayer stability: (mode I) coupled binding and folding (Fig. 1A) and (mode II) binding
without folding (Fig. 1B). It has been suggested®' that in both modes, initially, clusters of
basic amino acids in the regions outside ITAMs bind to polar heads of acidic phospholipids
while the ITAM residues do not contribute to binding at this stage. Then, in micelles
(mode I), hydrophobic interactions between ITAMs and detergent tails promote folding
of ITAMs, thus making ITAM tyrosines inaccessible for kinases as it has been shown
for C./lysomyristoylphosphatidylglycerol (LMPG) micelles system.***? In vesicles,
depending on the bilayer stability, initial protein binding to the membrane may (mode I)
or may not (mode II) induce vesicle fusion and rupture and promote formation of ITAM
helixes stabilized by hydrophobic interactions with lipid tails in ruptured bilayers.
As shown by DLS and EM, in the POPG vesicles used, protein binding does not disturb
the lipid bilayer structure and does not cause vesicle fusion, thus explaining the lack of
a disorder-to-order transition.!®! Interestingly, phosphorylation of two and six ITAM
tyrosines in FceRly,, and ., respectively, reduces the corresponding net charges from
+3t0-0.5 for FceRly,, and from +5 to-5.5 for T, but does not abrogate binding to POPG
vesicles,!® further confirming a hypothesis that not only does the overall net charge
but also the presence of clustered basic amino acid residues prove to be important for
lipid-binding activity of these IDPs.!?

Thus, these findings!®>! clearly demonstrate that binding to IDPs can induce membrane
fusion and rupture in the lipid bilayer vesicles unstable under the experimental conditions
used. Importantly, as shown,’' the destructive effect of protein binding on bilayer lipid
membrane is not dependent on vesicle size (small versus large unilamellar vesicles;
SUV or LUV, respectively) or technique of SUV preparation (sonication vs. extruding).
The membrane rupture is known to result in monolayer fusion of the membranes, i.e., in
the formation of a bridge connecting the monolayers, which is usually named the stalk or
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hemifusion intermediate.®? Interestingly, tight coupling between the loop-to-helix structural
transition and stalk formation as a result of deformation of the target and viral membranes
has beenreported for influenza hemagglutinin.®* Thus, protein binding-induced membrane
perturbation and disruption can represent a molecular basis for the observed formation of
the ITAM helixes in the presence of DMPG vesicles.*>3¢ It should be also noted that in
mode II, ITAMs do not participate in binding to lipid bilayers®' and the ITAM tyrosines
are therefore likely to be easily accessible for phosphorylation (Fig. 1B).

Thus, theuse of notonly micelles butalso lipid vesicles canresult in opposite conclusions
regarding membrane-binding activity of IDPs and its physiological relevance. This highlights
the importance of the choice of an appropriate membrane model in studies of protein-lipid
interactions, particularly as it relates to IDPs. This also challenges the field of NMR studies
where many lipid bilayer models cannot be used because of the particle size.

Summary

As widely discussed in the literature,?2%33-36575%65 [DPs often function through
molecular recognition and binding to their folded or unfolded protein partners which
is accompanied by induced folding of the IDP interaction (recognition) interface, the
coupled folding and binding (or disorder-to-order transition) scenario (Fig. 1 A). Another
scenario, the “conformational selection” model, in which IDPs bind and fully fold through
conformational selection following a two-state model, has been also proposed.® In the
consensus synergistic model,* conformational selection has been proposed to play the
most important role in the specific encounter, while coupled folding and binding has been
suggested to be essential for the formation of the fully-bound complexes.

Recently discovered functionally relevant binding of IDPs to unfolded and folded
proteins without folding on the interacting partner®!''*® revealed a novel insight into
IDP interactions, thus demonstrating the existence of two different modes of IDP
binding to their protein partners: with and without folding (the “disorder-to-order”
and “no disorder-to-order” scenarios). In the context of signal transduction, the “no
disorder-to-order” IDP interactions have been suggested as a novel therapeutic target for
a variety of diseases,>**%*7 thus making studies of the basis of the interactions not only
of fundamental scientific importance but also of great clinical value. These interactions
of low affinity in the micromolar range®*® could be of a electrostatic nature, which has
been proposed to be exploited in IDPs by generating a “polyelectrostatic effect”.’*™

The existence of two different modes of IDP binding to lipid bilayer membranes®'
raises an important question: Which mode of action is of physiological relevance?
Considering that a-helical folding of ITAMs of signaling-related IDPs is not observed in
the presence of those vesicles that are stable upon protein binding, this folding transition
is unlikely to play a significant role in transmembrane signaling and cell activation.
However, it does not necessarily mean that mode II (binding without folding) is also
physiologically irrelevant. For example, within the SCHOOL model,** homointeractions
between CYTO domains of the ITAM-containing receptor signaling subunits are suggested
to be necessary and sufficient to trigger the receptor. Thus, membrane binding of T,
CD3k,,, and FceRy,, might prevent homooligomerization of these CYTO domains’ in
receptor clusters on the surface of resting cells and during random encounters of receptors
diffusing in the cell membrane. Considering the reported prevalence of IDRs in the
CYTO domains of many other human TM proteins,”® one can expect that the distinctive
features of the ITAM-containing IDRs observed in membrane binding studies!®' can be
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found for other CYTO IDRs, as well. Further studies will have to test this hypothesis of
potential physiological significance.

Summarizing, [ suggest a novel mechanistic hypothesis that describes interactions
of IDPs with their protein or lipid partners as a general biphasic process with a fast rate
for the electrostatic-driven “no disorder-to-order” Phase I interaction and a slow rate for
the hydrophobic-driven (“disorder-to-order”) Phase 11 formation of a secondary structure
(e.g.,an amphipathic helix). Within this hypothesis, a Phase Il may (folding upon binding)
or may not (binding without folding) follow a Phase I depending on the interacting partner.

RECEPTOR SIGNALING
Structural Classification of Receptors

Based on location of binding and signaling (effector) domains, functionally diverse
and unrelated cell surface receptors can be structurally classified into two main families:
Those in which binding and signaling domains are located on the same protein chain, the
so-called single-chain receptors (SRs, Fig. 3) and those in which binding and signaling
domains are intriguingly located on separate subunits, the so-called multichain receptors
(Fig. 4).2506727576 Because many multichain activating receptors are immune receptors, they
are all commonly referred to as multichain immune recognition receptors (MIRRs).%7073

Assuming that the similar structural architecture of the receptors dictates similar
mechanisms of receptor triggering and subsequent transmembrane signaling, one can
suggest that the targets revealed by these mechanisms are similar in seemingly unrelated
diseases. This builds the structural basis for the development of novel pharmacological
approaches as well as the transfer of clinical knowledge, experience and therapeutic
strategies between various disorders.

Protein Intrinsic Disorder and Receptors

Signaling subunits of MIRRs contain in their cytoplasmic domains the ITAM or the
YxxM motif, found in the DAP10 subunit (Fig. 4). Ligand binding results in phosphorylation
ofthe ITAM/YxxM tyrosines, triggering the intracellular signaling cascade. Extracellular
structure of signaling subunits varies from the short sequences found in T, y, DAP10
and DAP12 to the Ig-like folds present in CD3e, CD39, CD3y, Iga and Igp (Fig. 4). In
contrast, as revealed by computational methods, CD and NMR spectroscopy, most of
their cytoplasmic domains, namely, Cey, Yeyr, CD3€cyi, CD38¢y1, CD3Yeye, 1801y, and Igfey
represent a novel class of IDPs (Table 1).°!! Interestingly, for DAP10,,, and DAP12,,
secondary structure prediction using the hierarchical neural network algorithm'® exhibits
high (about 80%) percentage of random coil conformation (Table 1).*° Disorder prediction
using the algorithm of Uversky et al'? reveals the boundary <H> values of 0.101 and
0.039 for DAP10,,, and DAP12,,, respectively.’® These values are characteristic for IDPs
and close to those calculated for other ITAM-containing sequences (Table 1).!° Thus,
the cytoplasmic domains of signaling subunits of many different receptors expressed on
various cells are surprisingly all intrinsically disordered (Fig. 4). This fits with recent
findings that IDRs are prevalent in the cytoplasmic domains of human transmembrane
proteins’ and that protein phosphorylation predominantly occurs within IDRs,* further
suggesting an important role of intrinsic disorder in receptor-mediated signaling.
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Single-chain receptors: Organization
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Figure 3. Single-chain receptors (SRs). The extracellular portion of the receptors is on top and the
cytoplasmic portion is on bottom. The lengths of the receptors as shown are only approximately
to scale. The inset shows SR domain organization. Abbreviations: EpoR, erythropoietin receptor;
G-CSF-R, granulocyte colony-stimulating factor receptor; TGFp, transforming growth factor-beta;
TNF, tumor necrosis factor; JAK, Janus kinase; EGFR, epidermal growth factor receptor; InsR, insulin
receptor; IGFIR, insulin-like growth factor I receptor; IRR, insulin receptor-related receptor; PDGFR,
platelet-derived growth factor receptor; CSFIR, colony-stimulating-factor 1 receptor; FGFR, fibroblast
growth factor receptor; MuSK; muscle-specific receptor tyrosine kinase; Eph, ephrin; DDR, discoidin
domain receptor; Fltl, KDR and Flt4, vascular endothelial growth factor (VEGF) receptors. Adapted

with permission from Sigalov AB. Self/Nonself 2010; 1(1):4-39.
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Multichain immune recognition receptors: Assembly
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Figure 4. Multichain immune recognition receptors. Schematic presentation of the MIRRs expressed on
many different immune cells including T and B-cells, natural killer cells, mast cells, macrophages, basophils,
neutrophils, eosinophils, dendritic cells and platelets. The inset shows MIRR assembly. Cytoplasmic domains
of the MIRR signaling subunits represent a novel class of intrinsically disordered proteins and are shown
to be dimeric. Curved line depicts protein disorder. Abbreviations: ITAM, immunoreceptor tyrosine-based
activation motif; BCR, B-cell receptor; DAP-10 and DAP-12, DNAX adapter proteins of 10 and 12 kD,
respectively; DCAR, dendritic cell immunoactivating receptor; GPVI, glycoprotein VI; ILT, Ig-like transcript;
KIR, killer cell Ig-like receptor; LIR, leukocyte Ig-like receptor; MAIR-II, myeloid-associated Ig-like
receptor; MDL-1, myeloid DAP12-associating lectin 1; NITR, novel immune-type receptor; NK, natural
killer cells; SIRP, signal regulatory protein, TCR, T-cell receptor; TREM receptors, triggering receptors
expressed on myeloid cells. Adapted with permission from Sigalov AB. Self/Nonself 2010; 1(1):4-39.

Receptor and Protein Oligomericity

Binding of multivalent but not monovalent ligand and subsequent receptor clustering
are required for induction of the signaling cascade.>>%78 This raises the question: What
is the molecular mechanism by which clustering of the extracellular binding domains
leads to the generation of the activation signal by intracellular signaling domains? For
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many receptors, ligand-induced clustering is known to result in oligomerization of
receptor transmembrane and cytoplasmic domains.”>7*#! The subsequent formation of
competent signaling oligomers in cytoplasmic milieu provides the necessary and sufficient
event to trigger the receptor. However, for receptors that signal through ITAM/YxxM
modules (Fig. 4), this mechanism has been a long-standing open issue until recently,
when formation of ITAM-containing cytoplasmic signaling oligomers was suggested
to play a crucial role in transmembrane signaling mediated by these receptors.3*670.7273
Interestingly, the homooligomerization of these IDPs is best described by a two-step
monomer-dimer-tetramer fast dynamic equilibrium with monomer-dimer dissociation
constants in the micromolar affinity range.>!" These findings are in line with the known
dependence of the overall binding affinity between proteins on the function of the protein
complex. For example, obligate homodimers are strongly associated with nano- or
picomolar binding affinity while, in contrast, proteins that associate and dissociate in
response to changes in their environment, such as the majority of signal transduction
mediators, tend to bind more weakly.

Asmentioned, the firstevidence of an IDP’s propensity for specific homodimerization
distinct from nonspecific aggregation behavior seen in many systems® has been recently
reported’® and suggested to play an important role in transmembrane signaling.®7%7? Later,
other IDPs have also been found to form specific homodimers** and shown to function
through dimer formation,*** further demonstrating a direct functional link between
protein intrinsic disorder and oligomericity. In the context of receptor-mediated signal
transduction, this link represents a key and missing element in our understanding of
transmembrane signal transduction. One can suggest that for the vast majority of receptors,
receptor oligomericity (clustering upon binding of multivalent ligand) is translated across
the membrane into protein oligomericity (formation of competent cytoplasmic signaling
oligomers), thus providing a general platform for receptor-mediated signaling (Fig. 5).%°7

Single-Chain Receptor Signaling: Functional Link between Protein Order
and Oligomericity

Single-chain receptors (SRs) are receptors with binding and signaling domains
located on the same protein chain (Fig. 3). Importantly, EC, TM and CYTO regions of
these receptors represent folded and well-ordered domains.

Examples of SRs include receptor tyrosine kinases (RTKs) that are TM glycoproteins
consisting of a variable EC N-terminal domain, a single membrane spanning domain and a
large CYTO portion composed of a juxtamembrane domain, the highly conserved tyrosine
kinase domain and a C-terminal regulatory region (Fig. 3).8> RTKs activate numerous
intracellular signaling pathways, leading to a variety of cell responses. These receptors
are triggered by the binding of their cognate ligands and transduce the recognition signal
to the cytoplasm by phosphorylating CYTO tyrosine residues on the receptors themselves
(autophosphorylation) and on downstream signaling proteins. The proteins of the tumor
necrosis factor (TNF) receptor superfamily® are a group of SRs critically involved in the
maintenance of homeostasis of the immune system (Fig. 3). Triggered by their corresponding
ligands, these receptors either induce cell death or promote cell survival of immune cells.
Transforming growth factor-f (TGF-p) is a potent regulatory cytokine which inhibits the
development of immunopathology to self or nonharmful antigens without compromising
immune responses to pathogens.® The TGF-f superfamily functions via binding to Type [
and II TM serine/threonine kinase receptors that belong to the SR family (Fig. 3).
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SCHOOL principles of receptor signaling
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Figure 5. SCHOOL principles of receptor signaling. Single- (A) or multichain (B) receptor oligomerization
(clustering) induced upon ligand binding outside the cell is translated across the membrane into protein
oligomerization inside the cell with cytoplasmic homointeractions representing the major driving force
of receptor triggering. For SRs (A), small solid black and gray arrows indicate specific inter-unit
homointeractions between transmembrane and cytoplasmic domains, respectively. For MIRRs (B), small
solid black and gray arrows indicate specific inter-unit hetero- and homointeractions between transmembrane
and cytoplasmic domains, respectively. Circular arrow indicates ligand-induced receptor re-orientation.
Curved line depicts disorder of the cytoplasmic domains of MIRR signaling subunits (B). Phosphate
groups are shown as dark circles. Abbreviation: SCHOOL, signaling chain homooligomerization. Adapted
with permission from Sigalov AB. Self/Nonself 2010; 1(1):4-39.

According to the SCHOOL platform, signaling chain homooligomerization and
formation of competent signaling oligomers in CYTO milieu provides the necessary
and sufficient event to trigger receptors and induce cell activation (Fig. 5A).%0"17
Within the consensus model of SR signaling, multivalent ligand binding results in
receptor re-orientation and dimerization (oligomerization) and subsequent formation
of competent signaling oligomers in the cytoplasm and trans-autophosphorylation at
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defined cytoplasmic tyrosines.>307L73.778186-8 Same SR, such as members of the tumor
necrosis factor (TNF) receptor superfamily,® exist as pre-assembled oligomers on the
cell surface. In this scenario, multivalent ligand binding results in re-orientation of
individual receptors in the pre-assembled oligomers to adopt an inter-unit geometry
permissive for promotion of homointeractions between receptor CYTO domains and
further receptor activation.3%7!-73:8

Thus, in terms of SR signaling, there exists the principal functional link between
protein order and oligomericity in CYTO milieu.

MULTICHAIN RECEPTOR SIGNALING: FUNCTIONAL LINK
BETWEEN PROTEIN DISORDER AND OLIGOMERICITY

Functionally diverse members of the MIRR family are expressed on many different
immune cells, including T and B-cells, natural killer (NK) cells, mast cells, macrophages,
basophils, neutrophils, eosinophils, dendritic cells (DCs) and platelets.>’*7> Figure 4
shows typical examples of MIRRs including the T-cell receptor (TCR) complex, the
B-cell receptor (BCR) complex, Fc receptors (e.g., FceRI, FcaRI, FeyRI and FeyRIID),
NK receptors (e.g., NKG2D, CD94/NKG2C, KIR2DS, NKp30, NKp44 and NKp46),
immunoglobulin (Ig)-like transcripts and leukocyte Ig-like receptors (ILTs and
LIRs, respectively), signal regulatory proteins (SIRPs), dendritic cell immunoactivating
receptor (DCAR), myeloid DNAX adapter protein of 12 kD (DAP12)-associating lectin
1 (MDL-1), blood DC antigen 2 protein (BDCA2), novel immune-type receptor (NITR),
myeloid-associated Ig-like receptor (MAIR-II), triggering receptors expressed on myeloid
cells (TREMs) and the platelet collagen receptor, glycoprotein VI (GPVI). For more
information on the structure and function of these and other MIRRs, I refer the reader
to recent reviews.>?!110

The MIRR ligand-binding subunits are integral membrane proteins with small
CYTO domains that are themselves inert with regard to signaling. Signaling is achieved
through the association of the ligand-binding chains with signal-transducing subunits
that contain in their CYTO domains one or more copies of the ITAM regions with
two appropriately spaced tyrosines (YxxL/IxssYxxL/I; where x denotes nonconserved
residues)'!" or the YxxM motif,!'">!3 found in the DAP10 CYTO domain'"® (Fig. 4).
The association of the MIRR subunits in resting cells is driven mostly by the noncovalent
TM interactions between recognition and signaling components (Fig. 4) and plays a key
role in receptor assembly, integrity and surface expression.’®79%101.106.109.114:125 Pyegpite
extensive studies in the field, the molecular mechanism linking extracellular clustering
of MIRR binding subunits to intracellular phosphorylation of ITAM/YxxM tyrosines
has been a long-standing mystery.

The intriguing ability of the intrinsically disordered ITAM-containing CYTO
domains of MIRR signaling subunits to homooligomerize’ led to the development of a
novel model of MIRR signaling, the Signaling Chain HOmoOLigomerization (SCHOOL)
model 23%6%73.7 The model suggests that formation of competent signaling subunit oligomers
mediated by homotypic interactions in the cytoplasm, rather than receptor clustering/
oligomerization per se, is necessary and sufficient to trigger the receptors and induce the
downstream signaling sequence (Fig. 5B). Similar to SRs, some MIRRs such as TCR
and major platelet collagen receptor glycoprotein VI (GPVI), can exist as pre-assembled
oligomers on the cell surface.'?*'?7 In these oligomers, multivalent ligand binding results
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in re-orientation of receptors to adopt an inter-unit geometry permissive for promotion of
homointeractions between MIRR signaling subunit CYTO domains and further receptor
activation (Fig. 5B).

Thus, in terms of MIRR signaling, there exists the principal functional link between
protein disorder and oligomericity in CYTO milieu.

SCHOOL PLATFORM OF RECEPTOR SIGNALING

According to the SCHOOL platform, signaling chain homooligomerization and
formation of competent signaling oligomers in CYTO milieu provides the necessary
and sufficient event to trigger receptors of both structural families (SRs and MIRRs) and
induce cell activation (Fig. 5). Within the platform, receptor oligomerization induced or
tuned upon ligand binding outside the cell is translated across the membrane into protein
oligomerization in CYTO milieu, thus providing a general platform for receptor-mediated
signaling (Fig. 5).

The necessity and sufficiency of formation of competent signaling oligomers mediated
by homointeractions between well-structured (SRs) or intrinsically disordered (MIRRSs)
cytoplasmic signaling domains to trigger receptor function dictates several important
mechanistic principles of receptor signaling:

« sufficient interreceptor proximity in receptor dimers/oligomers,

e correct (permissive) relative orientation of the receptors in receptor dimers/
oligomers,

* longenough duration of the receptor-ligand interaction that generally correlates
with the strength (affinity/avidity) of the ligand, and

» sufficient lifetime of an individual receptor in receptor dimers/oligomers.

These general principles are common for SRs and MIRRs and thus link mechanistically
numerous structurally and functionally diverse receptors.

Further, because of the ubiquitous nature of protein-protein interactions and the
knowledge that inappropriate protein-protein binding can lead to disease, the specific
and controlled inhibition and/or modulation of these interactions provides a promising
novel approach for rational drug design. A number of recent reviews have addressed this
topic.!?13% Suggesting important role of TM interactions that mediate ligand-induced
SR dimerization (oligomerization) and homointeractions between CYTO domains that
result in formation of competent signaling oligomers (Fig. 5A), the SCHOOL model of
SR signaling reveals these interactions as important points for intervention to modulate
SR signaling. 377331132 Similarly, considering MIRR triggering as the result of the
ligand-induced interplay between (1) intrareceptor TM interactions that stabilize and
maintain receptor integrity and (2) interreceptor homointeractions between the CYTO
domains of MIRR signaling subunits that lead to formation of competent signaling
oligomers (Fig. 5B), the SCHOOL models reveals these interactions as important points
for intervention to modulate MIRR signaling.’%70-7313L132 Importantly, these are common
targets for all members of the MIRR family, which means that a general pharmaceutical
strategy may be used to treat seemingly disparate disorders such, for example, as
T-cell-mediated skin diseases and platelet disorders.%70-73131-133
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APPLICATIONS IN BIOLOGY AND MEDICINE

By revealing specific protein-protein interactions critically involved in
receptor-mediated signaling, current SCHOOL models that are based on functional
connections between protein order (SRs), disorder (MIRRs) and oligomericity provide
molecular explanations for many biological phenomena and processes, represent
powerful tools for fundamental and applied research and suggest novel avenues for drug
diSCOVery.Z’SO’ﬁg-B’B1_134

T-Cell Receptor Signaling

Despite TCR being one of the most studied MIRRs, many of the models of TCR
signaling suggested to date are descriptive and often fail in trying to explain most of the
known immunological data.

Structurally, TCR is a member of the MIRR family (Fig. 4) with its o and f
antigen-binding subunits bound by TM interactions with three signaling homo- and
heterodimers: CT,CD3gd and CD3ey.!"> Within the SCHOOL model, distinct TCR signaling
is achieved through the T and CD3 signaling oligomers,**®7%7273 and interreceptor TM
interactions represent not only a promising therapeutic target but also an important point
of viral attack.70-7131.133

The TCR core peptide (CP), a synthetic peptide corresponding to the sequence
of the TCRa transmembrane domain, is capable of inhibiting antigen-mediated T-cell
activation, whereas T-cell activation via anti-CD3 antibodies is not affected by CP.!3¢
However, despite extensive studies, the mode of action of this clinically relevant peptide
had not been elucidated until 2004 when the SCHOOL model was first introduced.®

Recently, inhibition of antigen- but not anti-CD3-stimulated T-cell activation has
been reported for the fusion peptide (FP) found in the N terminus of the HIV envelope
glycoprotein 41 (gp41).""” However, the mode of action of this peptide had remained
unknown until 2006 when the SCHOOL model was first applied to this area.” Within
the model, the molecular mechanisms of action for TCR CP and HIV gp4l FP are
similar. Briefly, CP and FP compete with TCRa for binding to CD3d¢ and CC, resulting
in functional disconnection of these subunits.”%!31:135.138

In summary, our current understanding of TCR signaling, together with the lessons
learned from the viral pathogenesis,>7!3131:132.135 can be used not only for further fundamental
research but also for rational drug design.

Glycoprotein VI Signaling

Activation of circulating platelets by exposed vessel wall collagen is a primary
step in the pathogenesis of thrombotic diseases. Despite intensive research efforts in
antithrombotic drug discovery, uncontrolled hemorrhage still remains the most common
side effect. Intriguingly, the selective inhibition of the GPVI collagen receptor may inhibit
thrombosis without affecting hemostasis.? However, the mechanism of GPVI signaling
has remained unknown until recently,!**!** therefore hindering the further development
of this promising antithrombotic strategy. GPVI belongs to the MIRR family (Fig. 4)
and signals through the associated ITAM-containing y subunit. The application of the
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SCHOOL model’"7>13! resulted in the development of novel mechanistic concept of
platelet inhibition and the invention of new platelet inhibitors,”!:133134139

NKG2D Signaling

Despite advances in immune disorder research, there is still a great need for additional
targets and agents for effectively reducing inflammatory bowel diseases (IBDs), namely
ulcerative colitis (UC) and Crohn’s disease (CD) and affect millions of people worldwide.
In 2007, a unique subset of CD4+ NKG2D+ T-cells was identified in IBD patients.'*
Later, inhibition of NKG2D, a member of the MIRR family (Fig. 4) that triggers through
the associated YxxM motif-containing DAP10, has been proven to be of key importance
in successful treatment of UC and CD.'""" Uncovering the molecular mechanisms of
NKG2D signaling, the SCHOOL model suggests the NKG2D-DAP10 transmembrane
interactions as a promising point of intervention in IBD treatment.”*7%131:132 Further studies
will have to test this concept.

CONCLUSION AND PERSPECTIVES

The crucial role of receptor-mediated signaling in health and disease assumes that
our understanding of the underlying molecular mechanisms and methods to modulate
the cell response through control of TM signal transduction can contribute significantly
towards the improvement of existing therapies and the design of new therapeutic strategies
for a diverse set of disorders. For structurally related members of the MIRR family,
the functional link between protein intrinsic disorder and oligomericity represents a
missing piece of the long-standing puzzle of signaling and reveals striking similarities in
the basic mechanistic principles of function of most SRs and MIRRs. In this context, the
SCHOOL model of MIRR signaling is similar to the consensus model of SR signaling in
regards to both models suggesting that formation of competent signaling oligomers mediated
by homointeractions between well-structured (SRs) or intrinsically disordered (MIRRSs)
CYTOsignaling (effector) domains is necessary and sufficient to trigger receptor function.
This raises an interesting question: Why for MIRRs, where the recognition and signaling
domains are located on separate protein chains, nature selected to use a functional link
between protein disorder and oligomericity? One can expect that further multidisciplinary
studies will clarify this question of great interest and practical utility.

In conclusion, recent fundamental advances uncovering the molecular
mechanisms of receptor-mediated signaling have been accompanied by our improved
understanding of unexplained biological phenomena. This opens new horizons in further
fundamental and clinical research, research-based education and innovative drug design
and discovery.
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CONSEQUENCES OF FUZZINESS IN THE
NFkB/IxkBa INTERACTION
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Abstract: This chapter provides ashortreview of various biophysical experiments thathave been
applied to the inhibitor of kappa B, IkBa and its binding partner, nuclear factor kappa
B, or NFkB. The picture that emerges from amide hydrogen/deuterium exchange,
NMR and binding kinetics experiments is one in which parts of both proteins are
“fuzzy” in the free-state and some parts remain “fuzzy” in the NFxB-IkBa complex.
The NF«B family of transcription factors responds to inflammatory cytokines with
rapid transcriptional activation, in which NF«kB enters the nucleus and binds DNA.
Just as rapidly as transcription is activated, it is subsequently repressed by newly
synthesized IxkBa that also enters the nucleus and removes NFkB from the DNA.
Because IkBa is an ankyrin repeat protein, it’s “fuzziness” can be controlled by
mutagenesis to stabilized the folded state. Experimental comparison with such
stabilized mutants helps provide evidence that much of the system control depends
on the “fuzziness” of IxBa.

INTRODUCTION

The nuclear factor kB (NFkB) pathway transduces extra-cellular signals from various
receptors to regulate patterns of gene expression.' Although originally discovered in
B-cells because it strongly activates the immunoglobulin kappa-chain gene expression,?
the pathway is ubiquitous and has been implicated in a variety of cellular functions such as
cell growth, proliferation, apoptosis and stress responses and is missregulated in numerous
diseases.>* The family of NFxB proteins includes p65 (RelA), RelB, c-Rel, p50 and p52
subunits, which form homo- and heterodimers® (Fig. 1A). The most prevalent form in
most cell types is a p5S0/p65 heterodimer and the crystal structure of this form bound to a
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canonical kB DNA sequence has been solved® (Fig. 1B). The inhibitors of NFkB activity,
IkBs, include isoforms IxBa, [kBf and IxBe, which block the nuclear localization and
transcriptional activity of p65 and c-Rel-containing NFxB dimers® and others that act in
different pathways such as IkBd.” In resting cells, approximately 100,000 NFxB dimers
are nearly all bound to IkBs which keep the NFkB in the cytoplasm by sequestering the
NF«B nuclear localization signal (NLS).*? The way in which the IxBa binds NFkB was
revealed from crystal structures of the NFkB-IxBo..!*!!

When a cell receives an extracellular signal such as a viral insult or cytokine,
extracellular receptors activate the assembly of the IkB kinase (IKK), which in turn
phosphorylates the N-terminal signal response domain of NFxB-bound IkBa, leading
to subsequent ubiquitination and degradation of the IkBa by the proteasome.'? NFkB
dimers then translocate to the nucleus, bind DNA and regulate transcription of numerous
NF«B target genes.!*> NFkB activated genes show widely varying transcription levels,
activation kinetics and post-induction repression, but how this single system results in so
many different transcription effects is not well understood.'*!> The gene coding for IkBa
is one of the strongly NFkB-activated genes.!*!® When NF«B transcription is activated,

A DNA binding
p65/RelA I N-terminal domain I Dimerization Domain NLS Transactivation Domain I
\

|
NFichIxB binding
p | |

Ub
IkBoa| spp  far1 JAR2 N AR3 | AR4 [ ARS IARG | pesT]

Figure 1. A) Schematic diagram of NFkB(p65) one of the most abundant NFkB family members in
the cell and of IkBa, the key member of the inhibitor family. B) LEFT: The crystal structure of IxkBa
(blue) bound to NFkB(p50, green; p65, red).!" RIGHT: The crystal structure of NFkB(p50, green; p65,
red) bound to kB site DNA (gold).” (Figure prepared using PyMOL).* A color version of this image
is available at www.landesbioscience.com/curie.
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the resulting newly synthesized IkBa translocates to the nucleus, binds to NF«xB and the
complex is exported from the nucleus."

Free IkBa is rapidly degraded by a proteasome-dependent but ubiquitin-independent
mechanism, with a half-life is less than 10 min. On the other hand, NFkxB-bound IkBa is
incredibly stable, with an intracellular half-life of many hours consistent with the binding
constant of the complex, of 40 pM.*>? The IxkBa in complex with NFkB is only degraded
if itis first phosphorylated, then ubiquitinated and finally degraded by the proteasome in a
ubiquitin-dependent fashion resulting in free, active NFkB. A wealth of experimental data
now suggests that the various functions of IkBo depend on the partially folded character
or “fuzziness” of parts of NFkB and IkBa. These functions include the rapid degradation
of the free protein, its tight binding to NF«kB and its ability to dissociate NFkB from the
DNA. This chapter will briefly summarize the evidence for “fuzziness” and show the
functional consequences of “fuzziness” in the NFkB signaling system.

EXPERIMENTAL EVIDENCE OF IkxBa “FUZZINESS”
NMR Evidence of IkBo. “Fuzziness”

NMR studies of the entire 6-AR ARD of IxkBa, residues 67-287, revealed that most
of the cross peaks for ARS and AR6 were missing, which likely indicated conformational
exchange processes.”! In contrast, all of the resonances could be assigned for the 4-AR
fragment containing residues 67-206.*'%> When the chemical shift values for these residues
were compared to those of the NFkB-bound IkBa(67-287), they were nearly identical
indicating that the structure of this part of IkBa is nearly identical in the free and bound
states.?! In addition, backbone dynamics experiments indicated that this part of the IkBa
ARD is rigidly structured.?"?? Residual dipolar coupling (RDC) measurements were also
performed on this fragment. RDCs predicted from the crystal structure of this part of [kBa
bound to NFkB did not agree well with the measured values and we surmised that this
might be because RDCs report on motions from microseconds to hundreds of milliseconds
(Fig. 2A).”2 Indeed, RDCs computed for an ensemble of structures of the IkBa(67-206)
generated from accelerated molecular dynamics simulations agreed much better with the
experimental data (Fig. 2B). Thus, RDC measurements combined with AMD simulations
might more realistically represent the solution ensemble in all its “fuzziness”.

Amide Hydrogen/Deuterium Exchange of the IkBa ARD

Full-length IxBa is composed of three regions; an N-terminal signal response region
of ~70 amino acids, where phosphorylation and ubiquitination occur, an ankyrin repeat
domain (ARD) of ~220 amino acids and a C-terminal PEST sequence that extends from
residues 275-317.1%!! The NFkB binding activity is localized to the ARD and PEST
regions, for which high resolution crystal structures were obtained only when in complex
with NFkB. Sequence analyses predict intrinsic disorder in both the N-terminal domain
and the PEST region of IxkBa as well as in a good portion of the ARD (Fig. 3A).2%%
IxBao has resisted all attempts to crystallize it in the unbound state and its biophysical
behavior is consistent with a native state that does not adopt a unique compact fold.> It is
interesting to note the qualitative agreement between the the predicted disorder (Fig. 3A)
and the native state amide exchange (plotted as percent exchanged at 2 min) (Fig. 3B).
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Figure 2. A) Observed vs. theoretical residual dipolar couplings measured by the program PALES for
IxBa(67-206) (closed symbols) and SVD (open symbols) using the crystal structure of the IkBa-NFxB
complex (PDB accession code 11K).!" B) Observed vs. AMD-calculated residual dipolar couplings for
IkBa(67-206). The RDCs were measured as previously described.?
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BOTH IxkBa AND NFkB FOLD ON BINDING
The NFxB NLS Folds on Binding to IxBa

NF«B family members such as the canonical member of the family, Rel A, contain three
main domains, the N-terminal domain, the dimerization domain and the transactivation
domain. [kBa binds primarily to the dimerization domain whereas DNA binds in between
the N-terminal and dimerization domains (Fig. 1 A). The crystal structure ofthe NFxB-IkBa.
complex shows that IkBa. binds to NF«B in a head-to-tail fashion and the small sequence
of NFkB containing the nuclear localization signal (NLS) forms two short helices that lay
over the top of AR1 of IkBa (Fig. 1B).!*!! The NLS connects the dimerization domain
to the transactivation domain in the full length NF«B(p65) protein. In between the two
helices is the KRKR sequence, which constitutes the minimal NLS."" Theoretical studies
of the binding of the NLS polypeptide (residues 291-325) of NFkB(p65) to IxkBa also
suggested that this segment of NFkB folds on binding to IkBo..2 NMR heteronuclear single
quantum coherence spectra of the NLS (residues 289-321 of NFkB(p65) clearly show
that in the free-state the chemical shifts of the NLS backbone NHs are not well-dispersed
and are mostly at random coil chemical shift values. In contrast, when bound to IkBa,
the chemical shifts are well-dispersed and at values expected for helical structure (Fig. 4)
(Cervantes et al).?” It has been experimentally observed that this segment binds with a 1
uM K, to IkBa’ and with a large ACs o, for IkBa binding to this NLS segment (-1.30
£ 0.03 kcal mol™' K™') that could not be accounted for by burial of polar and nonpolar
surface area calculations derived from the crystal structures.”* Thus, the thermodynamic
signatures of the binding interaction cannot be accounted for by merely docking the
individual static structures and larger structural re-arrangements must be implicated, as
is often observed for protein-DNA interactions.?’ Chemical shift values in the random
coil region are a good indicator of lack of persistent structure in the free NLS, which
must, therefore, be more “fuzzy” in the free-state than in the bound state where persistent
helical structure is observed. Thus, the “head” of IkBa (ARs 1-3) appears to be folded
based on H/D exchange experiments and the “tail” of NF«B (the NLS polypeptide) folds
upon binding to it.

IxBa Folds on Binding to NFxB

Native state amide H/D exchange experiments revealed that the fifth and sixth
ARs exchange all of their amides within 2 minutes whereas the f-hairpins of AR2 and
AR3 were remarkably resistant to exchange. (Fig. 5).> The decrease in the number of
exchanging amides could not be accounted for just by interface protection suggesting
that IkBa undergoes a folding transition upon binding. Amide exchange is an interesting
probe of “fuzziness”. Although the rate of amide exchange depends on many factors
that often cannot be teased apart, it can reliably report on relative differences. Thus, it
is possible to compare the -turns of each AR relative to one another as we did for the
free protein and it is also possible to compare the p-turn of a particular AR in the free vs.
NF«B-bound state. To separate the decrease in amide exchange due to decreased solvent
accessibility at the protein-protein interface from the decreased solvent accessibility
due to folding of IkBa upon binding, we compared the solvent accessible surface areas
calculated from the crystal structure of the NFxB-IkBa complex to the results from amide
exchange. These comparisons revealed that whereas the difference in exchange between
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Figure 4. The HSQC spectra of A) free and B) IkBoa-bound p65(293-321). The secondary chemical
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Figure 5. A) Native state amide H/D exchange data for the region of IkBa corresponding to the p-turn
of AR5 (TOP) and ARG (bottom) in the free-state (open circles) and in the NFkB-bound state (closed
circles). B) Structural summary of the amide H/D exchange data (red is highly exchanging and blue is
slowly exchanging) for IxBa in the free state (LEFT) and in the NFkB-bound state (RIGHT) showing
that exchange is similar for most of the IxkBa molecule in each state, except for the p-turns of ARS
and ARG that are exchanging much less in the bound state. A color version of this image is available
at www.landesbioscience.com/curie.

bound and free was some 10 amides, the solvent accessible surface area was expected
to change only by 2-3 amides if the two folded proteins were brought together into the
bound complex (Fig. 5).* The large difference in amide exchange upon binding should
therefore be attributed to folding of the “fuzzy” parts of the free protein upon binding.

REMAINING FUZZINESS IN THE NF«B-IxkBoo COMPLEX

At the other end of the IkBa ARD, deletion of the PEST sequence (residues
276-287) reduces the NFxB binding by some 5 kcal/mol.* Taken together, the binding
affinity losses due to deletion at the ends of the interface are more than enough to
account for the entire binding energy of complex formation. The PEST region does
not become completely ordered upon binding to NFkB according to high resolution
NMR spectroscopy data.’ The native state of the NFkB-IkBa complex thus retains
regions with high dynamic character.

NMR experiments on the NFkB-IkBa complex revealed another interesting feature.
Although amide exchange was very low in AR2 and AR3,NMR relaxation experiments on
IkBa(67-206) indicated that the backbone of AR3 was more dynamic than was observed
for the other ARs.”> NMR experiments further revealed that the dynamics observed in
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AR3 of free IkBa become even more excentuated upon binding to NF«B. In the complex,
many of the cross peaks for AR3 are not observed indicating strong conformational
exchange to a range of chemical shift values making the peaks so broad as to become
unobservable under the conditions of the experiment.?' These results strongly support the
idea that while some parts of [kBa (ARS and AR6) become less “fuzzy” in the complex,
other parts become more “fuzzy”.

FUNCTIONAL CONSEQUENCES OF FUZZINESS
IN THE NF«xB-IkBa COMPLEX

Tight Binding to Multiple Partners

NFkB is a family of homo and heterodimeric molecules made of at least five different
proteins. While the most prevalent form in many cell types is NFkB(p50/p65), under certain
conditions, the homodimeric form NFxB(p65/p65) also becomes prevalent.*® The structure
of this form of NFxB bound to IkBf has been solved and it is remarkably similar to the
structure of NFkB(p50/p65) bound to IkBa.*” This is despite the fact that the sequences
are not that similar. Kinetic and thermodynamic measurements of binding affinity show
that IkBa binds to NFkB(p50/p65) with nearly the same affinity as to NFxB(p65/p65).°

“Fuzziness” Determines the Degradation Rate of IxkBa

Free IxBa, which is marginally stable, has a very short intracellular half-life of
less than 10 minutes.?**® This rapid degradation rate depends in part on the presence of
the C-terminal PEST sequence.’**' The degradation of the free protein appears to be
independent of ubiquitinylation, since all of the Lys residues in IkBa can be mutated
without changing the degradation rate of the free protein.* In addition, although free
IkBa can be phosphorylated and ubiquitinylated, its degradation rate is not different in
TKK-/- cells indicating that ubiquitin-independent degradation is the primary route for
free IkBa..?°

To further probe how “fuzziness” was related to free [kBo degradation rate, we
prepared a mutant in which two residues in AR6 were mutated to more commonly-found
residues at those positions in other AR sequences. Taking advantage of the single
tryptophan residue in IkBa at position 258, we showed that in the wild-type protein,
W258 did not show a co-operative folding transition whereas in the mutant it did (Fig.
6A.B). This is a strong indication that ARG is not part of the co-operatively folding
ARD in wild-type IkBa, but the mutations stabilize AR6 so that now the fluorescence
signal from W258 follows the major co-operative transition (Fig. 6B). Importantly, the
Y254L, T257A mutant [kBa is degraded more slowly than wild-type IkBa both in vitro
by the 20S proteasome and in vivo suggesting that in addition to the PEST sequence,
the “fuzzy” ARG of IxBa is important for rapid ubiquitin-independent degradation
(Fig. 6C).* In contrast to the marginally-stable free IkBa, the IkBa-NFxB complex
has a very long intracellular half-life of the complex, which is completely stable in the
absence of IkB kinase (IKK) phosphorylation and subsequent ubiquitinylation (>12
hrs). Thus, IkBa “fuzziness”, controlled by binding to NFkB, switches its degradation
mechanisms.*'
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Figure 6. A) Sequence of IkBo compared to the consensus sequence showing sites of consensus mutations
(in bold). B) Equilibrium unfolding experiments with wild type IkBa and (B) Y254L,T257A mutant
IkBa. The insets show the change in fluorescence of W258, a naturally-occurring Trp258 in ARG6. In the
wild type protein, this residue does not change fluorescence appreciably with denaturant, however in the
stabilized mutant, its fluorescence changes in a manner similar to the CD signal indicating it follows
the major co-operative folding transition of the protein. C) Degradation of IkB isoforms in cells after
stimulation of NFxB signaling were measured by quantitative western blot.

“Fuzziness” is Important for Rapid Signal Repression by IxkBa

A key feature of the NFkB negative feedback is the rapidity with which the
transcriptional activation is subsequently repressed (Fig. 7A).! Rapid post-induction
repression is partly explained by the fact that the gene for IkBa is strongly induced by
NFkB, so activation of NFkB immediately produces newly synthesized [kBo.. However,
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Figure 7. A) Quantitative western blot of nuclear NFkB after stimulation of cells with tumor necrosis
factor a. The nuclear NF«kB increases after stimulation due to release from inhibition by IkBa and then
is rapidly recycled out of the nucleus by newly synthesized IkBa. B) Real-time SPR binding experiment
in which kB-site DNA was bound to the streptavidin chip at t = 0, then NFxkB(p5019.363/p65(1.325) Was
allowed to associate with the DNA and finally varying concentrations of IkBa were injected through the
second sample loop and the dissociation rate constant (k) was measured.* A schematic of the binding
events is shown below the graph. C) Dissociation rate constants for active dissociation are plotted as
a function of IkBa variant concentration.

the new IkBa must still escape proteasome degradation, enter the nucleus and compete
for binding to NFxB with the very large number of kB sites in the DNA. We recently
discovered an intriguing kinetic phenomenon in which IxBa is able to markedly increase
the rate of dissociation of NF«kB from the DNA.#* The phenomenon was initially
discovered by flowing nanomolar concentrations of IkBa over the NFkB-DNA complex
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in a co-injection step in an SPR experiment (Fig. 7B). IkBa is remarkably efficient at
increasing the dissociation rate (k;) of NFkB from the DNA; the apparent second order
rate constant for the IkBa-mediated dissociation is 106 M~ s! (Fig. 7C). Several mutant
forms of IkBa were also tested for their ability to mediate dissociation of NFkB from
the DNA. The mutations had a variety of effects on NF«B binding, some bound with the
same affinity and some showed decreased affinity, up to 100-fold. However, all of the
thermodynamically stabilized mutants, even the ones that bound with the same affinity,
were less able to mediate dissociation of NFkB from the DNA.* Thus, an important
function of the “fuzzy” AR6 in IkBa may be to facilitate dissociation of NFkB from the
DNA to rapidly repress post-induction transcriptional activation.

CONCLUSION

The NF«B signaling regulates many genes and therefore is highly controlled.
Biophysical experiments, including amide H/D exchange and NMR reveal that parts of
both proteins are “fuzzy”. From these experiments, we see that “fuzziness” comes in many
flavors and only some parts of each protein are “fuzzy”. In addition, the “fuzziness” of
IkBa is reduced in some regions and increased in other regions upon binding to NFkB.
More importantly, we have used biochemical experiments to show that “fuzziness” in
IkBa provides kinetic control of dynamic regulatory processes, including its degradation
through Ub-dependent and independent pathways. An important function of the “fuzzy”
region of IkBa is to rapidly remove NF«B from transcription sites.
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CHAPTER 6

ROLES FOR INTRINSIC DISORDER
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Abstract: Surprisingly few transcription factors drive animal development relative to the number
and diversity of final tissues and body structures. Therefore, most transcription
factors must function in more than one tissue. In a famous example, members of
the Hox transcription factor family are expressed in contiguous stripes along the
anterior/posterior axis during animal development. Individual Hox transcription
factors specify all tissues within their expression domain and thus must respond
to cellular cues to instigate the correct tissue-specific gene regulatory cascade. We
describe how, in the Drosophila Hox protein Ultrabithorax, intrinsically disordered
regions implement, regulate and co-ordinate multiple functions, potentially enabling
context-specific gene regulation. The large N-terminal disordered domain encodes
mostofthe transcription activation domain and directly impacts DNA binding affinity
by the Ubx homeodomain. Similarly, the C-terminal disordered domain alters DNA
binding affinity and specificity, interaction with a Hox binding protein and strongly
influences both transcription activation and repression. Phosphorylation of the
N-terminal disordered domain and alternative splicing of the C-terminal disordered
domain could allow the cell to both regulate and co-ordinate DNA binding, protein
interactions and transcription regulation. For regulatory mechanisms relying on
disorder to continue to be available when Ubx is bound to other proteins or DNA,
fuzziness would need to be preserved in these macromolecular complexes. The
intrinsically disordered domains in Hox proteins are predicted to be on the very
dynamic end of the disorder spectrum, potentially allowing disorder to persist when
Ubx is bound to proteins or DNA to regulate the function of these “fuzzy” complexes.
Because both intrinsically disordered regions within Ubx have multiple roles, each
region may implement several different regulatory mechanisms identified in fuzzy
complexes. These intrinsic disorder-based regulatory mechanisms are likely to be
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critical for allowing Ubx to sense tissue identity and respond by implementing a
context-specific gene regulatory cascade.

INTRODUCTION

Surprisingly few transcription factors promote animal development relative to the
complex array of tissues and organs that must be generated. Consequently, individual
transcription factors must function in multiple tissues, implementing the specific gene
regulatory cascade that is uniquely appropriate for each context. The ability of these
transcription factors to reliably sense and correctly respond to tissue identity is critical,
since incorrect regulation would create catastrophic defects in the developing organism.
The need to implement many specific and reliable functions imposes several functional
challenges on the transcription factors that drive animal development: (i) they must
incorporate mechanisms to sense multiple cellular signals, (ii) they must functionally
integrate these signals into a unique spatiotemporal specific response and (iii) they must
use these integrated signals to co-ordinate the activities of disparate modular functional
domains (e.g., DNA binding, transcription activation and transcription repression domains).

INTRINSIC DISORDER AND CONTEXT-SPECIFIC GENE REGULATION

All of these logistical problems can potentially be elegantly solved using intrinsically
disordered protein sequences. A key attribute of intrinsic disorder is that it provides a
mechanism to expand the functionality of a protein, allowing variations on a central
function, or, in extreme cases, entirely different functions to be mediated by the same
protein sequence.!* For instance, intrinsically disordered regions can be used to bind
multiple proteins, yielding complexes with unique functionalities.!* Furthermore, intrinsic
disorder facilitates amino acid sequence alterations, such as alternative mRNA splicing
or post-translational modifications, to further expand functionality.>>”

By combining sequences for alternative splicing, phosphorylation, conformational
changes, protein interaction, or ubiquitination/degredation, intrinsically disordered
regions also provide a mechanism by which multiple signals could be integrated to elicit
a tissue-specific response.®'" For instance, phosphorylation could facilitate or enable
protein interactions, placing two input requirements (phosphorylation and protein binding)
on the output—unique function of the protein complex. The reverse case, in which protein
binding precedes phosphorylation, may also occur, but requires the disordered region
retain flexibility (fuzziness) in the protein complex.?

Finally, transcription factors that regulate multiple genes must bind different factors or
assemble different multiprotein-DNA complexes at each enhancer/promoter. The flexibility
of their disordered domains may allow these transcription factors to generate multiple
macromolecular complexes with different geometries. Taken together, it is perhaps not
surprising that more than 90% of all transcription factors contain intrinsically disordered
regions.'>!® Given the variety of potential regulatory mechanisms, the categorization of
fuzzy complexes proposed by Tompa and Fuxrieter'* is extremely valuable in discussing,
comparing and categorizing how intrinsically disordered regions of transcription factors
enable context-specific transcription regulation.
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Potential Roles for Fuzzy Complexes in Transcription Regulation

When a regulatory mechanism relies on intrinsic disorder, any processe that
removes a disordered region or triggers stable folding of the intrinsically disordered
segment inactivates the regulatory mechanism. For a transcription factor that relies
on multiple disorder-based regulatory mechanisms, the adaptability and the potential
of the protein to integrate multiple cellular signals would also be lost. Consequently,
a significant level of disorder is likely to be retained even when the protein engages
in protein-DNA or protein-protein complexes. In a recent paper, Tompa and Fuxreiter
classified different types of macromolecular complexes containing disorder—generally
termed “fuzzy complexes”—and discussed the role of disorder in these complexes.'* Given
the potential of intrinsically disordered regions to impart context-specific function, one
would expect many examples of fuzziness to occur in transcription factor complexes,
particularly those involved in animal development. Since transcription factors have a
modular domain structure and are often composed of both structured and disordered
domains, one would also expect such context-specific functions to require extensive
interplay between structured and disordered regions of the protein. Many such regulatory
functions enabled by intrinsically disordered regions have been observed in the Hox
protein Ubx, a transcription factor that specifies and maintains tissue identity during
animal development. In this chapter, we will describe the roles of intrinsic disorder in
modulating the formation of macromolecular complexes by the Drosophila Hox protein
Ultrabithorax to ultimately create a tissue-specific response.

ULTRABITHORAX, A HOX TRANSCRIPTION FACTOR,
AS A MODEL SYSTEM

Role of Hox Proteins in Animal Development

In all bilaterally symmetric animals, Hox proteins operate during development
to generate unique tissues, organs and appendages from serially repeated structures.
Individual members of the Hox transcription factor family are expressed in contiguous,
non-overlapping regions along the anterior-posterior axis, where they specify the fate of
structures in every tissue layer. These functions are remarkably conserved in vertebrates
and invertebrates.'>!® The basal role of Hox proteins in determining tissue fate allows
misexpression of a Hox protein to transform one structure or region of the body into
another,'”" revealing dramatic phenotypes that underscore the requirement for reliable
Hox function in vivo.

A given Hox protein specifies the fate of multiple body structures. Consequently,
Hox proteins must sense and respond to their environment to regulate different subsets of
their target genes in order to generate unique fates for each tissue, organ, or appendage in
which the Hox protein is expressed.'*?°2? For instance, the Drosophila melanogaster Hox
protein Ubx specifies the posterior-most legs, the halteres (balancing organs used during
flight) and the posterior aorta, as well as portions of the midgut, ectoderm, musculature
and central and peripheral nervous systems.!”?*% To correctly guide development of
each structure, each Hox protein must regulate a distinct subset of its own downstream
targets in each tissue or region within a tissue in which that Hox protein is expressed.?*2!26
This phenomenon, termed “context-specific gene regulation”, requires different DNA
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sequences to be bound by the same Hox protein in each cellular context. Furthermore,
once bound, the Hox protein must determine whether to activate or repress the downstream
gene in a tissue-dependent manner. For instance, Ubx activates the gene decapentaplegic
in the midgut, but represses this same gene in the developing haltere.?”? Therefore,
understanding Hox function in animal development requires elucidating how a single
Hox protein senses spatio-temporal information to instigate a variety of context-specific
transcription cascades. Intrinsically disordered regions in Hox proteins appear crucial
for these processes.

Alternative Splicing in Ubx

This chapter will primarily focus on the Drosophila melanogaster Hox protein
Ultrabithorax (Ubx), for which the most regulatory mechanisms, protein interactions
and gene targets have been described.*!*2%30-33 [ntrinsically disordered regions that flank
a structured or functional domain can still influence function.!* This phenomenon occurs
several times within the Ubx protein, but for the C-terminal disordered region there
is an added twist: This region is also alternatively spliced, providing the potential for
tissue-specific mRNA splicing to contribute to context-specific Hox function.

Different Ubx mRNA splicing isoforms are produced in a stage- and tissue-specific
manner by alternative splicing of three microexons (Fig. 1). Isoforms containing the
9-a.a. “b element” are a minor component in all tissues.* Inclusion of the two 17 a.a.
microexons—ml and mII—is determined by tissue identity, germ layer and developmental
stage. Based on these complex expression patterns, alternative splicing may be a source of
contextual information for directing different Ubx functions.* Indeed, ectopic expression
of Ubx isoforms differentially transforms the peripheral nervous system.>>3 Furthermore,
Ubx isoforms differ in their ability to activate the Ubx target gene decapentaplegic and
generate the correct muscle development patterns.’” Among Drosophilid species, the
amino acid sequence of the optional microexons, as well as isoform-specific expression
patterns are remarkably conserved.’® Furthermore, key amino acids in this same region
N-terminal to the homeodomain are conserved in Hox paralogue groups in vertebrates.®

Identification of Intrinsically Disordered Regions in Ubx

Ubx is also the only Hox protein in which predicted intrinsically disordered regions
have been experimentally validated.” Whereas 7% of a typical protein sequence is the
flexible amino acid glycine,*** the Ubx sequence is 17% glycine and its activation
domain is 27% glycine. This extremely high glycine content, combined with the few
proline residues, strongly suggested portions of Ubx are intrinsically disordered. Indeed,
computational algorithms predicted much of the Ubx protein is intrinsically disordered
(Fig. 1A).° The existence and location of the disordered domains were experimentally
verified by native state proteolysis.” Since proteases can only cleave sites embedded
in at least 10 unstructured, solvent-exposed amino-acids,* protease cleavage marks
unstructured or disordered regions within a protein. Ubx is much more protease-sensitive
than ApoMb or unliganded Lac Repressor, both proteins with a well-characterized
disordered region. Proteolytic fragments were identified by size and epitope content of
the resulting peptide fragments.”*>4¢ In general, cleaved sites were located within regions
predicted to be disordered, whereas protected sites occurred within regions expected to
have structure. Ubx contains several intrinsically disordered regions, including much of
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Figure 1. Alternative splicing influences both the sequence and disorder content of Ubx. A) Schematics
of alternative splicing isoforms of Ubx produced in vivo. Ubx Ia and Ubx Ib are produced primarily
in the embryonic mesoderm, Ubx Ila and Ubx IIb are generated in larval imaginal discs—tissues that
will develop into appendages and Ubx IVa is the only isoform produced in the central nervous system
in embryos and larva.*** Microexons removed by alternative splicing are depicted by a dashed line.
B) The microexon region in general is intrinsically disordered, although IUPred predicted disorder
scores vary between individual microexons.’

the transcription activation domain and the alternatively spliced microexons. Disordered
regions are frequently involved in protein or ligand interactions. These regions can also be
post-translationally modified or alternatively spliced.>>*" Thus, the intrinsically disordered
regions in Ubx have potential regulatory functions. Extensive experimental studies have
demonstrated that these regions in Ubx do indeed mediate or regulate protein interactions,
transcription activation and DNA binding (see below refs. 9,10,33).

In fact, Ubx has fewer predicted disordered amino acids than any other Drosophila
Hox protein (Fig. 2A). Furthermore, the magnitude of these scores is generally higher
for other Drosophila Hox proteins, suggesting a larger degree of disorder similar than
Ubx. These disordered regions can be located on either or both sides of the structured
homeodomain. Although the position and the degree of predicted disorder varies
significantly between Hox homologues, these features are remarkably conserved among
Hox orthologues (Fig. 2B).

Human Hox proteins are also predicted to be significantly disordered, with the
length and magnitude varying significantly between proteins (Fig. 3). Disorder scores for
selected human Hox proteins linked to skeletal defects and carcinogenesis are mapped onto
sequence in Figure 3A. The extent of intrinsic disorder score varies significantly between
human Hox proteins, ranging from 18% for Hox D13 to 85% for Hox A3. The portion
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Figure 2. Variations in the content, magnitude and location of IUPred predicted intrinsic disorder in
Hox proteins. Each bar represents a protein sequence, in which regions predicted to have a disorder
score of 0.5 to 0.75 are shaded grey and regions predicted to be very disordered (score 0.75 to 1.0)
are in black. Protein schematics are aligned by the conserved homeodomain, which is indicated by a
black box. A) The eight Hox proteins in Drosophila melanogaster, arranged by increasing numbers
of disordered amino acids, all have extensive intrinsically disordered regions. B) The Drosophila Ubx
(DmUbx) orthologues from mosquito (AgUbx), red flour beetle (TcUbx), butterfly (JcUbx), brine shrimp
(AfUbx) and velvet worm (AkUbx) reflect 540 million years of evolution. Predictions were generated
using [UPred. Evolutionarily conservation of disordered regions (grey boxes) suggests the disorder
mediated regulation observed in Ubx may be based on ancient regulatory mechanisms.

of the sequence predicted to be disordered is more consistent between Hox paralogues
(~21% for Hox A13, ~30% disordered for Hox B13, ~36% for Hox C13 and 18% for
Hox D13) (Fig. 3B). Consequently, not only are disorder-based regulatory mechanisms
still likely to be active in human Hox proteins, but variation in disorder content may also
contribute to differential function within the Hox protein family.

Experimental Approaches to Studying Intrinsic Disorder in Ubx In Vitro

Identifying functions or regulatory processes mediated by intrinsically disordered
regions is a challenging task, since the logic and experimental approaches typically used to
identify functional or regulatory roles for portions of structured proteins cannot be easily
applied to intrinsically disordered regions. First, since intrinsically disordered regions
often mediate protein interactions, conditions must be identified that maintain soluble
protein monomers. For Ubx, a filter-based aggregation assay was used to rapidly screen
for buffers that maintain solubility.*® Second, since structural information is frequently
unavailable for intrinsically disordered regions and is only available for less than one
fifth of the Ubx sequence,* a guide is lacking to probe function by point mutagenesis.
Furthermore, intrinsically disordered regions are generally insensitive to mutation. As a
result, most experiments on Ubx exploited a series of truncation mutants to progressively
define functional or regulatory regions.’%3 The start sites for N-terminal truncations
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Figure 3. Human Hox proteins are also significantly intrinsically disordered. A) Disorder schematics
for human Hox proteins with known roles in developmental malformations or carcinogenesis. Whereas
Drosophila have one cluster of Hox genes, humans have four clusters, each represented by a different letter,
which arose by genome duplication. Hox proteins at similar positions in different clusters (paralogues,
with the same number) have related functions during human development. B) For each paralogue group,
e.g., Hox A4, Hox B4, Hox C4 and Hox D4, the average predicted percent of intrinsically disordered
residues is depicted. Most Hox paralogue groups are approximately 50% disordered, however some
groups are significantly more (Hox group 3 and 4) or less (Hox group 6 and 13) disordered. The extent
of disorder is generally well conserved within a Hox paralogue group.

and the end points for C-terminal truncations were chosen based on the location of
evolutionarily conserved sequences, predicted structured and disordered domains
and regions enriched in particular amino acids. The resulting truncation mutants were
tested for both solubility and activity prior to use in experiments.**** To ensure gross
structural re-arrangements would not generate false results, conclusions based on data
from truncation mutants were verified in full-length Ubx using small internal deletions
and, when possible, point mutants.

ROLES FOR INTRINSIC DISORDER IN IMPLEMENTING
OR REGULATING Ubx FUNCTION

A critical role of intrinsically disordered regions in Ubx is to communicate positional
information from the cell and to co-ordinate the activity of several functional domains.
Nearly every region of Ubx impacts the function of many other regions of Ubx. To describe
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multiple complex regulatory functions, we will first discuss identification of each functional
domain and subsequently describe the regulatory interactions that modulate their activity.

DNA Binding

The Hox protein family was firstdiscovered in Drosophila. Using DNA from homeotic
mutants, in which entire regions of the body partially or completely develop as different
body regions,* chromosome walk experiments discovered a series of genes in region
of the genome responsible for these transformations in the body plan.'®*'> Subsequent
DNA hybridization experiments revealed that these genes all shared a very similar DNA
sequence, termed the homeobox, in the protein coding region.> The portion of the protein
encoded by the homeobox was called the homeodomain.** Homeodomain-containing
Hox proteins are present in all bilaterally symmetric animals.>*

An individual Hox protein determines the expression of hundreds, if not thousands
of genes,>” which, in turn, direct the patterns of growth, differentiation, proliferation
and apoptosis specific to that region of the developing organism.!”2%262%38 Hox proteins
bind their target DNA sequences via a 60 amino acid homeodomain (Fig. 2), in which
the C-terminal helix contacts the major groove of DNA and the disordered N-terminal
arm binds the minor groove. Due, in part, to charge-charge interactions between the
extremely positively charged homeodomain (net charge of +11 in Ubx) and the phosphate
backbone of DNA, the isolated homeodomain of a Hox protein binds DNA with extremely
high affinity (~60 pM).>!® Most Hox homeodomains prefer to bind the DNA sequence
5'-TAAT-3",¢" although base substitutions are permitted at multiple positions.?” DNA
sequences outside this 4 bp motif only have moderate effects on affinity,*>% perhaps
because the homeodomain*DNA interface tolerates significant structural heterogeneity.%
Consequently, the DNA binding specificity of Hox homeodomains is notoriously poor
and anticipated to be insufficient to distinguish cognate and noncognate target sequences
in vivo.®% While chromatin remodeling will limit the total number of exposed binding
sites,” the breadth of target sequences bound by Hox proteins implies a significant number
ofnoncognate binding sites remain exposed. Thus protein regions outside the homeodomain,
most of which are intrinsically disordered, must contribute to DNA binding specificity.

INTRINSICALLY DISORDERED REGIONS MODULATE DNA BINDING
AFFINITY BY THE STRUCTURED UBX HOMEODOMAIN

The Ubx homeodomain (UbxHD) has a 2.5-fold higher affinity for the optimal Ubx
DNA binding sequence than full-length Ubx. Consequently, amino acid sequences outside
the homeodomain, which are primarily disordered, must impact DNA recognition. The
location of sequences thatimpact DNA binding was determined using N- and/or C-terminal
truncation mutants. Sequential removal of each section tested whether a region enhances,
inhibits, or has no effect upon DNA binding and revealed three regions that alter binding
affinity (Fig. 4).° The I1 region, located between amino acids 235 and 286 and containing
the YPWM motif and adjacent microexon region, weakly inhibits binding, whereas the
12 region (a.a. 174-216, located in the core activation domain) strongly inhibits binding.
Binding is restored by the R region (a.a. 1-174) in a manner that is linearly dependent
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on the length of R (Fig. 4), a feature consistent with this region’s intrinsically disordered
character. These data reveal several key points:’

i.  Mostofthe nonhomeodomain regions ofthe Ubx protein are capable of impacting
DNA binding (83%).

ii.  Over half of the regions that regulate DNA binding are intrinsically disordered
(51%) (Fig. 4).

iii. Regions that regulate affinity include sequences that are post-translationally
modified™ or alternatively spliced,**** potentially allowing cellular factors to
impact DNA affinity.

iv. The Exd interaction motif and the activation domain both directly impact DNA
binding affinity, potentially allowing Exd binding and transcription regulation
to influence or be influenced by DNA interactions.

Experimentally defined disorder
A ﬂj:“:_:)

Regulation of DNA binding

Coordination by the disordered activation domain

=

Figure 4. Intrinsically disordered regions contribute to regulatory mechanisms and long-range
communication in Ubx. A) A schematic of Ubx shading gray the experimentally defined borders of
intrinsically disordered regions.” B) The regions of Ubx that impact DNA binding affinity to an optimal
DNA binding site.” The R region (black shading) restores most of the loss of affinity by the homeodomain
(stippled) caused by the I1 and 12 regions (grey shading). Subsections of the 11 region, which includes
the YPWM Exd-interaction motif and the alternatively spliced microexons, directly impacts DNA binding
specificity and also modulate regulation of binding by other subsections. C,D) Schematics of Ubx
depicting communication between functional domains mediated by intrinsic disorder. ADE, Activation
domain enhancer; ADC, activation domain core; Y, YPWM motif used for Exd binding; b, mI and mlI,
alternatively spliced microexons; HD, homeodomain; RD, a partial repression domain. C) cellular factors
(grey arrow), by phosphorylating sites located within the N-terminal disordered region (bracketed area),
could regulate the function of this region in mediating transcription activation, altering DNA binding
specificity, or regulating the balance between transcription activation and repression (open arrows).
Reciprocally, DNA sequences bound by the homeodomain influence transcription activation (black
arrow). D) Cellular factors which regulate spatio-temporal-dependent alterantive splicing by Ubx (grey
arrow) alter the microexon content of the protein, which, in turn, impacts transcription activation, Exd
binding, DNA binding and transcription repression (open arrows).
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Intrinsically Disordered Regions Directly Contact the Homeodomain
to Alter Binding

Intrinsically disordered regions might inhibit DNA binding either by (i) preventing
DNA from approaching the homeodomain via dynamic conformational fluctuations
through the space surrounding the homeodomain or (ii) specifically interacting with
the homeodomain to alter its structure or dynamics.’ The first mechanism should be
independent of DNA sequence and therefore is unlikely to contribute to context-specific
DNA site selection.

To determine which mechanism is used to modulate affinity by each deleted region,
we exploited an environmentally sensitive ionizable residue in the homeodomain.® DNA
binding by UbxHD is enhanced 20-fold at pH = 6.0.”' Point mutagenesis revealed this
enhancement is not due to histidine, the only amino acid with a pK, near 6.0.° Therefore, an
ionizable residue whose pK, is shifted by the local environment must cause this improved
binding. Since binding by full-length Ubx is independent of pH, nonhomedomain regions
of Ubx must interact with the homeodomain to perturb the environment around this
amino acid, shifting its pK, back towards its solution value. Repeating truncation mutant
binding studies at pH = 6.0 enabled location of the regions of Ubx that interact with the
homeodomain to alter this pK, and hence impact homeodomain structure or dynamics.
Two regions were identified that restore DNA binding affinity—one overlapping the 11
inhibitory domain and one in the middle of the N-terminal half of the protein.’ These two
regions directly modulate DNA binding affinity by altering homeodomain structure or
dynamics and thus are excellent candidates for regions thatimpact DN A binding specificity.

The YPWM Motif and the Intrinsically Disordered Alternatively Spliced
Microexons Modulate DNA Binding Specificity by Ubx

Given the DNA binding specificity of the Ubx homeodomain is likely insufficient
to recognize the appropriate target genes in vivo,**® could full-length Ubx bind with
greater specificity than UbxHD? This possibility was examined by binding full-length
Ubx and UbxHD to DNA oligos based on a variety of natural Ubx binding sites utilized
in vivo that differ in DNA sequence and the number and spacing of Ubx binding sites,
the developmental stage and tissue in which Ubx regulates the gene, the requirement
for interacting proteins to bind DNA and the consequence (activation vs. repression) of
binding (Table 1). A large variation in the binding affinity for these sequences reflects
high sequence specificity, whereas similar affinities for all DNA sequences indicates
low specificity.

A comparison of the DNA binding affinities of full-length Ubx and UbxHD for these
DNAs revealed striking differences in binding specificity. UbxHD bound with similar
high affinities to all DNAs, including the DIl binding site which is bound in vivo in
conjunction with the Hox cofactor Exd. In contrast, Ubx exhibited a more than 10-fold
difference in affinity for binding to these same sequences.!® Thus a significant portion of
DNA binding specificity information is clearly encoded in amino acid sequences outside
the homeodomain.

The search for determinants of DNA binding specificity began in the I1 region
because it directly alters DNA binding affinity,’ it is necessary for d// regulation in vivo,”
and it is located close to the N-terminal arm of the homeodomain, which forms most
of the base-specific contacts with DNA.* A series of internal deletion mutants within
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this region, combined with point mutants within the YPWM motif, identified several
interesting trends (Fig. 4):

i.  Inthe Ubxla splicing isoform, the YPWM motif inhibits DNA binding only to
composite DNA sequences normally bound by both Ubx and Exd.! Thus, this
motif may act as a “policeman” to prevent inappropriate Ubx monomer binding
and mis-regulation. The analogous motifin a severe truncation mutant of another
Drosophila Hox protein, Labial, inhibits DNA binding affinity,” suggesting this
may be a general Hox regulatory mechanism.

ii. Theregion surrounding the YPWM motif independently alters DNA specificity:
Internal deletions in this region cause DNA binding affinity to change ina DNA
sequence-dependent manner. One of these deletions removes a portion of the
ml microexon.

iii. If the 14 amino acids surrounding the YPWM motif are removed, the YPWM
gains the capacity to inhibitbinding to all DNA sequences examined. The deleted
region included part of the mI microexon and also affects binding affinity and
specificity.

Together, these data suggest that alternative splicing modulates Ubx*DNA binding
affinity and also alters the requirement for Exd to bind to Ubx and relieve inhibition by
the YPWM motif. Thus, tissue-specific alternative splicing and Exd availability may
combine to target Ubx to a subset of its DNA binding sites.

Transcription Regulation

Unlike the highly conserved homeodomain, the sequence and activity of transcription
activation domains vary significantly between Hox proteins.**’ The search for the Ubx
activation domain relied on the yeast one-hybrid approach, in which a LexA-Ubx fusion
binds to a series of tandem LexA DNA recognition sites, positioning the Ubx activation
domain to stimulate transcription of a $-galatosidase reporter gene.** Screening a series of
Ubx N- and/or C-terminal truncation mutants in yeast revealed the extent to which each
variant retained the ability to activate transcription. Because DNA binding is mediated
by LexA, the Ubx homeodomain could be deleted without compromising the assay. The
results indicated the activation domain is divided into two functional regions: The core
domain is the minimal element capable of transcription activation, albeit at ~50% of
the strength of full-length protein, whereas the enhancing domain boosts the activity of
the core to levels comparable to the full-length protein.** Most of the activation domain
is intrinsically disordered, a common feature in transcription factors.'>”> However, a
region at the C-terminus of the core activation domain is predicted to form an a-helix
and is required for activity in yeast. To determine whether this helix is also required for
activation by full-length Ubx in its native context, point mutations were examined using
a promoter-reporter assay in Drosophila S2 cells using a genomic promoter regulated
by Ubx in vivo.”® The strength of activation correlates with the predicted stability of this
a-helix: Alanine mutations stabilize the helix, thus creating hyper-active Ubx, whereas
proline mutations disrupt helical structure and abrogate transcription activation without
impeding DNA binding or transcription repression.** To our knowledge, this is the first
reported instance of a structural element regulating the activity of a large (>150 amino
acid) disordered region.
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By generating chimeras between Drosophila Ubx and its orthologues, both the
McGinnis and Carroll labs simultaneously located a partial repression domain near
the C-terminus of Ubx.”””® This region, also predicted to form a helix, is sufficient to
mediate transcription repression, although removal of this domain from Ubx does not
completely abrogate repression. Evolution of this region correlates with the functional
complexity of Ubx.

Mechanisms for the Cellular Context to Regulate Transcription by Ubx

Many regulatory events have the potential to impact transcription regulation by
Ubx in a cell context-dependent manner, including phosphorylation, alternative splicing,
protein interactions and DNA binding. Ubx is phosphorylated atleast five times, with most
of these phosphorylation sites lying in the transcription activation domain.” Although
a functional role has not been ascribed to these phosphorylation events, the overlap of
these sites with the activation domain suggested that phosphorylation has the potential
to modulate transcription regulation by Ubx. If the factors that phosphorylate Ubx are
differentially available in various cell contexts, then phosphorylation could regulate
transcription activation by Ubx in a tissue-specific manner. Phosphorylation is one of
the few Ubx-related activities not affected by alternative splicing.”

Ubx mRNA is alternatively spliced in a tissue-specific manner during development
and the resulting Ubx protein isoforms activate and repress transcription to different
degrees.”® Ubx Ib, Ubx la and Ubx Ila all activate and repress transcription with similar
efficiencies, whereas Ubx IIb and Ubx [Va activate transcription to a much greater degree
but are less able to repress transcription. Thus the microexon content of Ubx, which is
regulated in a stage- and tissue-specific manner during development, can also influence
the strength of both transcription activation and repression.

Protein interactions also alter the ability of Ubx to activate or repress transcription.
The double stranded RNA binding protein DIP1 binds the C-terminal half of the Ubx
sequence.’® Although this region of Ubx does not contain any portion of the activation
domain, DIP1 binding inhibits transcription activation by Ubx. Likewise, interaction with
the general Hox cofactor Exd can either enhance or suppress transcription activation by
Hox proteins, with the effect likely dependent on the identity of the Hox protein as well
as on the tissue in which the interaction takes place.”®' Exd binds two small motifs in
the C-terminal half of Ubx.32#

Finally, a single Hox splicing isoform can both activate and repress transcription,
even in a single tissue. Consequently, once Ubx binds the target DNA sequence, the
DNA must subsequently have some mechanism of communicating to Ubx whether to
activate or repress the gene. One obvious possibility is that heterologous transcription
factors which also bind the enhancer determine this balance, either by binding Ubx and
altering its function®32%3% or by providing additional activation or repression domains
to enhance or compete with transcription regulation by Ubx.”%

While such protein interactions undoubtedly can have a major impact on Ubx
activity, the DNA sequence also influences the choice between transcription activation
and repression. In both Drosophila S2 cells and in vitro assays in which known Hox
binding proteins are absent, DNA sequence alone is sufficient to determine whether
Ubx activates or represses transcription.’* Activation-deficient mutants repress
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transcription from an “activating” DNA sequence in cell culture,’ suggesting activation
and repression compete for dominance and the DNA sequence favors one mode of
transcription regulation. Therefore, both Ubx domains and target DNA sequences
bound by the homeodomain contribute to the ability to activate or repress a gene, a
process that requires long-range communication between opposite ends of the protein
sequence (Fig. 4).

Protein Interactions

Interactions with heterologous proteins, especially other transcription factors, have
long been hypothesized to be a major source of context-specific information for Hox
proteins.?!30-32848687 Dyring development, the availability of Hox partners in the nucleaus
can depend on the developmental stage, tissue identity, or position within the tissue. For
instance, nuclear localization of Exd, as well as cell-signaling regulated Hox partners such
as Armadillo and the Smad family are regulated during development.?'3!%-% Furthermore,
if two Hox-interacting proteins bind the same surface of a Hox protein, their relative
concentrations and affinities at that position would determine the dominant complex
assembled. As described above, both DNA site selection and transcription regulation by
Hox proteins can be significantly influenced by such protein interactions.

Alternative Splicing Alters Exd Interaction

A key Hox binding protein in Drosophila is Exd, which is homologous to Pbx
proteins in vertebrates. The Exd/Pbx family of transcription factors expands Hox function
by expanding the variety of DNA sites recognized as well as influencing the decision to
activate or repress transcription.’>”*838 The best characterized Hox-interacting protein
is Extradenticle. In many Hox proteins, including Ubx, the YPWM/hexapeptide motif is
separated from the DNA-binding homeodomain by the alternatively spliced microexons.
Given this proximity, it is perhaps not surprising that alternative splicing impacts the
ability of Ubx to bind Extradenticle.’! Isoforms containing the b-element interact markedly
less well with Exd. However, inclusion or exclusion of the mI and mII microexons have
no impact on Exd binding. Furthermore, regions flanking the YPWM motif alter Exd
interaction with Hox proteins in general.”? Reciprocally, alternative splicing of the Exd/
Pbx protein family may alter complex function with Hox proteins. In mammals, the ability
of the Pdx-Pbx complex (similar to Hox-Exd in Drosophila) to repress transcription is
dependent on the identity of the Pbx isoform.”

Other Protein Interactions

Due to their hypothesized importance, an increasing number of Ubx-interacting
proteins have been identified, including transcription factors regulated by cell signaling
cascades which sub-divide Ubx-specified tissues.’*32% Although the regions of Ubx
bound by these proteins is unknown, the high number of interacting proteins suggests
intrinsically disordered regions may be involved in partner binding. Indeed, disordered
regions are frequently found in the most interactive proteins.*
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INTEGRATING INFORMATION USING INTRINSIC DISORDER IN LIGHT
OF THE FUZZY COMPLEX MODEL

Putting all of these regulatory mechanisms together reveals significant cross-domain
interactions in Ubx that use intrinsically disordered regions (Fig. 4). In Ubx, intrinsically
disordered domains not only implement or regulate a single function, they appear to
co-ordinate multiple functions. These regulatory opportunities offer multiple chances for
cellular information not only to impact the function of individual domains, but also to
alter communication between that domain and distant regions of the protein. For instance,
the transcription activation domain in Ubx is phosphorylated within its intrinsically
disordered sequence,” and consequently, this phosphorylation may enhance or supress
the ability of Ubx to activate transcription. However, since this region also directly
impacts DNA binding by the homeodomain,’ phosphorylation could also regulate DNA
binding. Likewise, alternative splicing impacts DNA binding affinity and specificity,
protein interactions and transcriptional regulation.

These types of interactions have the potential to also enhance a particular mode of
regulation to increase the reliability of transcription regulation. For example, interaction
with a subset of DNA binding sites favors transcription activation over transcription
repression. Since the activation domain can directly impact DNA affinity, stimulation
of transcription activation may stabilize Ubx interaction with a favorable DNA sequence
or destabilize interactions with poor sequences. In a second example, the YPWM motif
specifically inhibits Ubx interaction with Hox-Exd DNA binding sites, but not sites bound
by Ubx monomers.'®” This inhibition, which prevents mis-regulation of composite sites
by Hox monomers, is relieved when Exd binds the YPWM motif.”

Grouping these regulatory interactions by similar features is an important step in
understanding how they function as well as determining the breadth of mechanisms
enabled by the presence of intrinsic disorder. Many intrinsically disordered proteins
fold upon complex formation and the crucial role of intrinsic disorder is to modulate the
energy of the final complex®°>% or to provide a scaffold for assembly of a multi-protein
complex.”” In contrast, other intrinsically disordered regions remain disordered in the
bound state, creating fuzzy complexes." These residual disordered regions also have
regulatory potential.'

Due to their length and extremely disordered character, Hox proteins likely form
fuzzy complexes with DNA and most, if not all, interacting proteins. All of the regulatory
interactions described above rely on or are significantly influenced by the intrinsically
disordered regions of Ubx. Consequently, preservation of intrinsic disorder in Hox-DNA
complexes is likely to be important in maintaining these regulatory interactions as well
as to permit additional regulation. Although structural data for full-length Ubx or its
protein or DNA complexes is unavailable, the region linking the YPWM motif and the
homeodomain lacks density in a crystal structure of the ternary complex formed by the
Exd homeodomain, a Hox-Exd DNA binding sequence and the Ubx homeodomain with
additional N-terminal residues including the YPWM motif. The absence of structure in
the region linking the YPWM motif and the Ubx homeodomain suggests this region,
which includes alternatively spliced microexons in full-length Ubx, remains disordered
even in protein and DNA complexes. Therefore, disorder is likely to be retained at least
in complexes formed by Hox truncation mutants.*” The high disorder scores and the
glycine-rich sequence of the N-terminal intrinsically disordered region in Ubx further
suggests this region may also remain flexible when bound to DNA or other proteins.
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Analysis and comparison of the mechanisms by which fuzzy complexes function is
crucial to define commonalities between systems, establish the variety of mechanisms
available and to predict the mode of regulation based on comparison with known fuzzy
complexes. In their review, Tompa and Fuxreiter classified known fuzzy complexes
into groups depending on the placement and dynamics of the disordered region in the
protein complex.'* These classifications will be especially helpful in comparing regulatory
mechanisms among disordered proteins.

Participation of Disorder in Protein Interaction Domains

The large N-terminal intrinsically disordered domain in Ubx forms the majority of
the activation domain and thus must interact with components of the general transcription
apparatus. Without any sort of structural information for these interactions, we cannot
know for certain whether this extremely disordered region manages to fold (or at least
immobilize) upon binding or forms a static or dynamic polymorphic complex, although
the extremely high level of disorder’ suggests some type of dynamic complex is likely.
The large number of proteins known to bind Ubx suggests the intrinsically disordered
regions of Ubx may be directly involved in binding these proteins as well.3*3!

Ubx-Exd-DNA: A Ternary Clamp That Allows Variation in DNA Binding Sites

In the parlance of Tompa and Fuxreiter, a clamp protein interaction domain consists
of two structured, or at least static, regions separated by a region that remains intrinsically
disordered in the bound form." This architecture allows the protein to accommodate a variety
of target macromolecules by adjusting both the orientation and the distance between two
structured regions. Although Ubx-Exd is a protein complex, rather than a single protein,
its DNA bound form retains many of the features as well as the function of dynamic clamp
complexes. Both Ubx and Exd have structured DNA-binding homeodomains, which in the
complex generates a bipartite DNA recognition sequence. Since the region between the Ubx
YPWM motif, which mediates interaction with Exd, and the homeodomain is intrinsically
disordered, this portion of Ubx resembles the disordered segment linking the structured
DNA binding domains in the Ubx-Exd clamp. As is typical for clamp complexes, the
Ubx-Exd complex can recognize a variety of DNA binding sites and even accommodate
variation in the distance between the Ubx and Exd recognition sequences (Table 1). In
an interesting twist on the clamp functional theme, the linking intrinsically disordered
region is alternatively spliced, providing an opportunity for the cell to dramatically alter
the length of this linker (8 to 51 amino acids) and thus potentially dictate the range of
DNA sequences that can be recognized by the Ubx-Exd complex.’!2

Long-Range and Short-Range Regulation by Flanking Disordered Regions

An alternate way to view the microexon region is as a disordered region that
independently flanks both the DNA binding homeodomain and the Exd binding YPWM
motif. In general, disordered regions that flank a structured binding site can also influence
binding in the absence of other factors.!* Perhaps not surprisingly, both DNA and Exd
interactions are influenced by this flanking disordered region. Alternative splicing of
this Ubx region is known to impact Exd interaction independent of DNA binding.”!*?
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Likewise, alternative splicing in Ubx has been hypothesized to alter DNA binding,
independent of Exd interaction.'®

In Ubx, both large intrinsically disordered regions alter the function of distant
regions of the Ubx sequence, although in the folded protein these regions may be more
proximate. The disordered alternatively spliced region impacts the function of the large
activation domain, in which the closest edge is 6 residues away,**** and the repression
domain, which is separated by 76 residues.’*”’ Likewise, the disordered activation domain
directly influences the homeodomain to alter DNA binding affinity.’ It is not yet known
what mechanism or mechanisms underlie these long-range interactions, or whether they
share any features with regulation by short-range flanking regions.

CONCLUSION

Due to their need to implement a variety of tissue-specific functions in a reliable
manner, transcription factors in animal development require a high degree of internal
regulatory mechanisms to sense tissue identity, co-ordinate a response among multiple
functional domains and reinforce this response to ensure the correct regulatory pathway
is consistently activated. As described for Ubx, the high degree of cellsprotein and
domainedomain communication requires individual regions of a Hox protein to have
multiple functional and regulatory roles, a feat facilitated by exploiting intrinsic disorder
in both Hox monomers and in Hox complexes with DNA and other proteins.
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Abstract:

Interactions between Intrinsically Disordered Protein Regions (IDRs) and their
targets commonly exhibit localised contacts via target-induced disorder to order
transitions. Other more complex IDR target interactions have been termed “fuzzy”
because the IDR does not form a well-defined induced structure. In some remarkable
cases of fuzziness IDR function is apparently sequence independent and conferred
by amino acid composition. Such cases have been referred to as “random fuzziness”
but the molecular features involved are poorly characterised. The transcriptional
activation domain (EAD) of oncogenic Ewing’s Sarcoma Fusion Proteins (EFPs)
is an ~280 residue IDR with a biased composition restricted to Ala, Gly, Gln, Pro,
Ser, Thr and Tyr. Multiple aromatic side chains (exclusively from Try residues)
and the particular EAD composition are crucial for molecular recognition but there
appears to be no other major geometrically constrained requirement. Computational
analysis of the EAD using PONDR (Molecular Kinetics, Inc. http://www.pondr.
com) complements the functional data and shows, accordingly, that propensity
for structural order within the EAD is conferred by Tyr residues. To conclude,
molecularrecognition by the EAD is extraordinarily malleable and involves multiple
aromatic contacts facilitated by a flexible peptide backbone and, most likely, a
limited number of weaker contributions from amenable side chains. I propose to
refer to this mode of fuzzy recognition as “polyaromatic”, noting that it shares some
fundamental features with the “polyelectrostatic” (phosphorylation-dependent)
interaction of the Sicl Cdk inhibitor and Cdc4. I will also speculate on more
detailed models for molecular recognition by the EAD and their relationship to
native (non-oncogenic) EAD function.
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INTRODUCTION

Aberrant genomic fusion of members ofthe TET family'* (TAF15, EWS and TLS) to
several different cellular partners, gives rise to the Ewing’s family of oncogenic proteins
(EWS-Fusion-Proteins, or EFPs)*> and associated tumors (EFTs) (see Fig. 1). EFPs are
potent gene-specific activators with the n-terminal ~250 residues of EWS providing a
transcriptional activation domain (EWS-Activation-Domain, or EAD) and the fusion
partner conferring DNA-binding/promoter specificity and hence tumor phenotype.’
Aberrant transcriptional activation by EFPs is most likely central to EFT oncogenesis but
other effects of EFPs, including gene-specific transcriptional repression* or perturbation
of pre-mRNA splicing,* may also be important. Detailed molecular studies of the EAD
may offer additional opportunities for therapeutic targeting of the entire family of
currently fatal EFTs.°

Progress in determining structure/functionrelations for the EAD has been challenging
for several reasons. First, comparative studies have yielded few pointers concerning how
the EAD may work because, despite similarities, the EAD is not obviously related to
known Transcriptional Activation Domains (TADs). Likewise native TET family members
have not been informative for the EAD because (in contrast to EFPs) TETs only weakly
activate transcription.”® Second, the EAD is an Intrinsically Disordered Protein Region

TET Protein Family

EWS [ EAD(SYGQQS) | RGG | RRM [RGG [z] RGG | EWSRI

s EAD | rec | rem [Re6 [z] ReG | (FUS/Pigpen)

TAFIS | EAD [ RGG | rem [RGG [z] RGG | (RBPS56/TAF68)

EFPs

EWS/ATF1 | EAD (EWS) | AT | Clear Cell Sarcoma

TLS/CHOP [ TLS | cHop | Liposarcoma

TAF15/CHN | TAFI5 | cWN | Chondrosarcoma
| EAD | DNA-binding |

Transcriptional Activation Phenotype

Figure 1. TET protein family. The TET protein family contains three members (TAF15 [TBP-Associated
Factor 15], EWS [Ewing’s Sarcoma oncoprotein] and TLS [Translocated in Liposarcoma]). TETs
are a sub-family of RNA-binding proteins containing an N-terminal region referred to here as the
EWS-Activation Domain (EAD, purple boxes) and a C-terminal RNA-binding domain (RBD). The EAD
is described in detail Figure 3. The RBD contains two elements [an RNA-Recognition Motif (RRM)
and RGG boxes] commonly found in RNA-binding proteins and a C2—C2 zinc finger (Z). The RRM
harbors unique features that define the TET sub-family.'* EFP protein family. EWS-Fusion Proteins
(EFPs) are oncoproteins that arise due to aberrant chromosomal translocations involving a TET protein
and a transcription factor partner. Three representative EFP (and their associated malignancies, right)
are shown. All EFPs contain the EAD (at least residues 1-264 in the case of EWS) and a DNA-binding
domain contributed by the fusion partner. EFPs are potent EAD-dependent transcriptional activators and
the DNA-binding function largely determines tumor type. A color version of this image is available
at www.landesbioscience.com/curie.
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(IDR) and is not amenable to classical structural analysis. Third, the EAD probably
interacts with a complex array of proteins’ as a network hub®!® or scaffold protein’
although functionally relevant EAD-interacting proteins have yet to be characterised. This
latter limitation is largely due to the extended and repetitive EAD sequence and resulting
lack of informative EAD mutants, a problem only recently addressed'? via application
of gene synthesis technology. A final barrier to molecular characterization of the EAD
is the surprising lack of a cell free assay."

Detailed definition of molecular recognition by IDRs has commonly been achieved
only upon identification of IDR/target complexes that allow the induced structure of the
bound IDR to be revealed. The models for molecular recognition by the EAD presented
herein are based solely on functional and computational data and are necessarily
speculative. I will describe the experimental approaches employed, results obtained and
some plausible working models for molecular recognition by the EAD.

TET PROTEINS

Three genes (TAF15, EWS and TLS) encode the TET family of proteins' that
represent a sub-family of RNA-binding proteins (Fig. 1). The N-terminal region (NTR)
of TETs functions as a potent transcriptional activation domain in the context of EFPs
and in EWS the NTR is referred to as the EWS-Activation Domain (EAD). Molecular
recognition by the EAD and the role that this plays in transcription and cancer is the
focus of this chapter. The RNA-binding domain of TETs (not present in EFPs) resides
in the C-terminal region and the function of the EAD in native TET proteins is poorly
understood. TETs are implicated in remarkably diverse cellular functions®> and EWS
forms the hub of a protein interaction network, potentially contacting perhaps ~80
different proteins.’ Molecular recognition by TETSs is clearly of interest to many fields
of study in molecular and cellular biology. Hub proteins are often highly disordered'
and accordingly, computation of disorder using the Predictor of Naturally Disordered
Regions!> (PONDR) shows EWS to be ~80% disordered (Fig. 2).

With respect to molecular recognition by the EAD it is important to stress that the
function ofnative EWS/TET proteins is profoundly different from that of oncogenic EFPs.
Firstly the EAD is indirectly affected by the different cellular locations and processes
characteristic of TETs versus EFPs.? Secondly, although this remains to be verified,
it has been suggested that the EAD interacts intramolecularly with the Arg rich EWS
RNA-binding domain, thus accounting for differential interaction of TETs and EFPs with
distinct partners.'® Thirdly, transcriptional activation by the EAD is strongly repressed
by the TET RNA-binding domain in native EWS.%!7!® and thus the transcriptional role
of the EAD within TETSs remains enigmatic.

EAD PRIMARY STRUCTURE

EAD primary structure is summarised in Figure 3. The fully functional EAD is
~280 residues long and has a repetitive and highly restricted amino acid composition
(enriched in Tyr, Gln, Ser/Thr, Ala, Gly and Pro) resulting largely from the presence of
~30 Degenerate Hexapeptide Repeats (DHRs consensus SYGQQS). DHRs and minimal
spacers accounts for ~85% ofthe EAD sequence and two longer spacers (S1 and S2, Fig. 3)
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[ EAD [ RGG

RRM |RGG [Z
1.0 :
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Figure 2. PONDR Analysis of EWS. Computation of disorder was performed using the Predictor of
Naturally Disordered Regions'® (PONDR). Intact EWS is shown to be a highly disordered protein
(PONDR scores well above 0.5) including the EAD region. The exception is the RNA Recognition
Motif (RRM) that has a well characterised conserved folded structure. A color version of this image
is available at www.landesbioscience.com/curie.
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Figure 3. Primary EAD structure. The diagram shows EAD residues 1-287 from EWS. Most Tyr residues
(purple boxes) are present within a Degenerate Hexapeptide Repeat (DHR consensus SYGQQS) with
absolutely conserved Tyr (position 2) and well conserved Gln (position 4). Multiple conserved SH2-binding
sites (grey circles) and SH3-binding sites (PxxP, black triangles) are also indicated. Seven additional
nonDHR Tyr residues are dispersed throughout the EAD. DHRs constitute 70% of the EAD sequence,
spaced typically by 0-3 residues (except for S1 [12 residues] and S2 [25 residues]). DHR substitutions
(table) and differing spacers produce regional variations in amino acid composition. Horizontal colour
bars show the location of enriched amino acids (nonTyr) labeled with the one letter code (A, G, P, Q,
S, T). The location of two specific EAD peptides (A and B, black boxes) and their relative activity
(high/low) are shown. Other sequences are as follows: m1 and m2 correspond to peptide A with all
DHRs converted to consensus SYGQQS (m1) or AYGQQS (m2); syn is a synthetic peptide containing
only consensus DHR (except for a single A residue) and no spacers.
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have no major effect on activity.'>! DHR degeneracy results in regional variations in
sequence composition within the EAD and this impacts activity (see later).

A number of SH2/SH3 interaction motifs and Tyr phosphorylation sites are present and
evolutionarily conserved (between humans and frogs). Compositional bias (lack of order
promoting Cys, Val, Leu, Ile, Met and enrichment in disorder promoting Gln, Ser, Pro,
Ala and Gly) indicate that the EAD is an Intrinsically Disordered Protein Region (IDR).
The severe lack of charged residues within the EAD is however strikingly atypical for
an IDR.? CD spectrometry,”’ computational'? and functional analysis'? all demonstrate
that the EAD is an IDR (see Figs. 2 and 7).

TET/EAD EVOLUTION

Inrelating evolution of EAD structure to function it is crucial to emphasise that EAD
activity in EFPs is an out of context function that is not manifest in normal TET proteins.’
Self evidently the functional properties of EFPs relevant to oncogenesis/transcriptional
activation have not undergone evolutionary selection and accordingly, several conserved
EAD structural features are dispensable for the EFP activity.'? The implications of this
intriguing observation must be kept in mind in relation to models of molecular recognition
by the EAD in the context of normal TET proteins.

TET proteins arose fairly late during evolution of chordates and for EWS boththe EAD
and the RNA-binding domain are strikingly conserved between frogs and mammals with
70% dispersed identity. Conservation within the EAD includes almost all Tyr residues,
several Tyr phosphorylation sites and multiple SH2/SH3 binding motifs (Fig. 3) and
points to a crucial and specialised biological role in higher animals. Strong conservation
in chordates and between different mammalian TET proteins (Fig. 1) together with
structural and functionally independence indicate that the EAD can be considered to be
a disordered protein domain.?

A high proportion of IDRs, such as the EAD, exhibit reiterated sequences. DNA
sequence analysis suggests that the EAD was created by expansion (probably via gene
conversion events) of a primordial minisatellite encoding the SYGQQS motif. Typical
of reiterated sequences in the human proteome, the EAD is rich in Ser, Ala, Gly and Gln.
Repeat expansions readily undergo divergent evolution and this is apparent by comparison
of different TETs and also within the EAD of EWS (Fig. 3). For EWS mutation of the
presumptive SYGQQS minisatellite together with replication slippage can account for
the observed substitutions/spacing that result in concentration of contiguous consensus
DHRs in the C-terminal region and diverged DHRs with spacing in the N-terminal region
(Fig. 3). Interestingly the above regions markedly differ in activity (see later and Fig. 3)
and this provides some insight into molecular recognition determinants (see later).

IDRs containing repetitive elements are thought to have evolved in three ways.?
Type I has multiple repeats that interact with the same target, Type II has diversified
repeats that interact with different targets and Type I1I has novel functions resulting from
repeat expansion and/or divergence. Within the above framework our studies indicate that
the EAD represents a novel variation of Type III in which repeat evolution has created
an extended molecular recognition interface that is not related to the repeat sequence
per se but rather to overall evolved amino acid composition.'? Repetitive IDRs often
function as flexible linkers or entropic chains that facilitate molecular recognition by
other elements. In cases such as the EAD however the repeat sequence forms an extended
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domain®? with a direct and autonomous molecular recognition function (albeit as part of
a larger protein). Significantly it appears that the function of such extended disordered
domains is refractory to mutation because only a small and dispersed proportion of the
residues are critical for activity and, critically, the domain is likely to remain unstructured
when bound to its target protein(s). This concept is crucial for understanding molecular
recognition by the EAD.

EAD TRANSCRIPTIONAL ACTIVITY

In the context of a rudimentary reporter assay in cultured mammalian cells, several
properties of the EAD have been established. The intact EAD of ~280 residues is
required for full function®* and contains multiple dispersed elements that synergise to
create a potent activation domain.!>?* The above is to be expected in light of the highly
repetitive EAD structure. Small EAD sub-regions containing as few as four DHRs
(EADS8-40 [Fig. 8]) functionally cooperate (or synergise) to produce high levels of
activity either when linked in cis within a single protein'®? or in trans on a promoter
containing multiple activator binding sites? (see also Fig. 4). Overall there is sound
evidence that the EAD harbours reiterated, cooperative and flexible functional elements
that are related to DHRs.

Trans-activation

—|BSAP> |[4.9

BSAP/— 5.1

Figure 4. Trans-cooperation by minimal EAD peptides. 57Z protein contains EAD residues 1-57
(harboring six DHR Tyr residues) fused to the EBV Zta dimeric DNA-binding domain. A reporter
promoter containing seven Zta binding sites is activated ~20 fold more than one with three Zta sites,
demonstrating an ~10 fold synergistic/cooperative effect. A protein containing EAD1-57 that binds
to DNA as a monomer (57BSAP) exhibits cooperativity (5-fold) on a two site versus one site BSAP
reporter but only when the two BSAP sites are very close together. Distance dependent trans-cooperation
by EADI-57 monomers suggests that the two monomers physically cooperate. The data shown in this
figure for 57Z is published in Oncogene (see ref. 26). A color version of this image is available at
www.landesbioscience.com/curie.
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The ability to assay minimal EAD peptides® facilitates analysis of specificity
determinants but some constraints apply when extrapolating to the intact EAD. Specifically
57Z protein contains EAD1-57 (including six DHRs) but it binds to DNA as a dimer
(through the EBV Zta DNA-binding domain) and might therefore exhibit geometrically
constrained synergy between two monomers (and thus dependence on twelve DHRs).
Alternatively synergy might simply reflectkinetic as opposed to structural synergy between
monomeric EAD1-57 peptides (i.e., a nonlinear response to increasing concentration of
promoter bound EAD1-57 peptide). Testing of monomeric activators (obtained by fusion
of EAD1-57 to BSAP which binds DNA as a monomer)?” addresses the above limitation
(Fig. 4). Two promoter bound 57BSAP monomers exhibit strong synergy when close to
each other but none when separated by just 10 more base pairs (Fig. 4). This raises the
possibility that the minimal effective target binding by the EAD may involve more than
six DHRs although they need not be covalently linked, again indicating a high degree
of flexibility. The above features are incorporated in potential models for molecular
recognition by the EAD (Fig. 9).

ANALYSIS OF REPETITIVE EAD SEQUENCES

To characterise repetitive elements in the intact EAD total gene synthesis was
exploited for creation of mutant proteins and subsequent testing of transcriptional
activation (trans-activation). A well established assay (in the context of EWS/ATF 1, Fig. 1)
that yields ~250 fold EAD-dependent trans-activation was employed.'*** Conservation
of DHR Tyr residues (Fig. 3) suggests a critical function and thus extensive Tyr to Ala
substitutions were initially tested for the effect on trans-activation (Fig. 5). Since the
N-terminal EAD1-176 exhibits higher activity than the remaining C-terminal region'*"
(see also Fig. 3) mutations were restricted to the N-terminal 176 residues of the EAD.
Changing all 17 DHR Tyr to Ala within EAD1-176 (mutant DA, DHR Tyr changed to
Ala) abolished activity (<1.6% of wt (Fig. 5). Significantly the 7 nonDHR Tyr residues
also contributed similarly to activity."”

The mutational burden imposed on DA is quite high and to evaluate the specificity
of such gross Tyr to Ala conversions, similar numbers of alternative (nonTyr) residues
were changed. QA has all conserved Gln residues at position 4 of the DHR (Fig. 3)
substituted by Ala and STA has a total of 16 Ser/Thr residues substituted by Ala. In
contrast to DA both QA and STA proteins retained activity, demonstrating that the effect
of Tyr to Ala changes is specific (Fig. 5). Additional mutants also established that the
changes present in DA do not cause a general protein malfunction or dominant inhibitory
effect.> Multiple Tyr residues in the EAD (including DHR and nonDHR) are therefore
crucial for trans-activation by the EAD.

To scrutinise the Tyr side chain requirements a mutant protein was produced (DF,
all DHR Tyr change to Phe) that is equivalent to DA except that Ala is replaced by Phe
(Fig. 5). DF protein retained activity (as did a protein in which every Tyr residue in the
entire EAD is changed to Phe, see ref. 12) demonstrating that the hydroxyl group of
the Tyr side chain is not critical for EAD function. Additional substitutions of Tyr with
aromatic, heterocyclic or hydrophobic residues showed that side chains containing an
aromatic ring (Tyr, Phe and Trp) supported function while others (Ala, Ile and His) were
less active or inactive (Fig. 5 and see also ref. 12). Thus that the aromatic ring of multiple
Tyr side chains is critical for transcriptional activity of the EAD.
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SEQUENCE INDEPENDENT EAD FUNCTION

DHRs account for 70% of the EAD sequence suggesting that they might be sufficient
for EAD activity. Consistent with this a protein called MSP (mutant spacer, in which
all the spacers are changed) retained activity (Fig. 5). Similarly a protein called SCR
(scrambled) in which the positions of all DHRs present in EAD1-176 were rearranged,
alsoretained activity, indicating that DHRs are functionally interchangeable. The above
observations are consistent with the existence of a small repetitive functional element
(the DHR) in the EAD. A second possibility however is that EAD function is conferred
not by specific peptide sequences but instead by multiple Tyr residues embedded in a
permissive overall composition. Three findings support this latter possibility. First, a
protein called REV (Fig. 5) has all peptide sequences between consecutive EAD Tyr
residues inverted and retains function. Second, the conserved Gln residues in position 4
of DHRs are not required for activity (Fig. 5). Third, all Tyr residues, not just those
within DHRs, contribute equally to activity.'? To examine the effect of EAD mutations
in a different context and for a different EFP, the effect on cellular transformation by
EWS/Fl1i12 was tested. The relative activity of corresponding EWS/Flil and EWS/
ATF1 mutants was well correlated'? indicating that the above findings can be expected
to apply to the broader EFP family.
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Figure 5. Functional analysis of the EAD. Transcriptional activity of WT and mutant proteins was
determined by cotransfection of Jeg3 cells with vectors for EWS/ATF1 and an ATF-dependent CAT
reporter.'>?* EAD mutants: all proteins contain the DNA-binding domain of ATFI1 (not shown).
WT is an EWS/ATF1 fusion containing the intact EAD (residues 1-287). DHR Tyr residues
(purple boxes) and nonDHR Tyr residues (dark gray) are shown. Tyr to Ala changes (DA and
CA, yellow), Tyr to Phe (DF, green), Tyr to Ile (DI, brown) Gln to Ala (QA, black) are shown.
Ser/Thr to Ala changes (STA, orange) include one change in each DHR within EADI1-176. SCR
protein has the positions of all 17 DHRs present in EAD1-176 exchanged in a random manner.
REV protein has the peptide sequence between adjacent Tyr residues in EAD1-176 inverted. MSP
protein has all spacers (white) between DHRs converted to two residues (either AQ, TT, AP or
SG). Data reproduced from: Ng KP et al, Proc Natl Acad Sci USA 2007; 104:479-484;'2 ©2007
National Academy of Sciences.
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EAD AMINO ACID COMPOSITION

In addition to the specific role of Tyr residues the overall amino acid composition of
the EAD is highly biased and most likely plays a facilitating role in molecular recognition.
Accordingly regions of the EAD with a composition reflecting consensus DHRs' or
synthetic proteins containing only DHRs' have very low activity (see peptide B and syn,
Fig. 3) whereas enrichment in Ala/Thr and concomitant depletion of Ser significantly
increases activity (see peptide A versus B, Fig. 3). The effect of Ser to Ala changes in
position 1 of multiple SYGQQS consensus DHRs? provides direct evidence that Ala
substitution of Serincreases activity (see mutants m1 and m2, Fig. 3). Similarly enrichment
of Gln does not appear to be crucial'? although it should be noted that the Gln-depleted
proteins examined retain are high Gln content. In summary the enrichment of particular
amino acids (excepting Tyr) reflecting consensus DHR composition is not particularly
favourable but Gly and Gln mostlikely provide a permissive environment and Ala produces
a less polar interface compared with Ser. Lack of significant net charge is atypical for
IDRs? but it should be noted that Ser phosphorylation could compensate for this.

The effect of Pro content for the intact EAD is difficult to assess because Pro depletion
results in poor expression (KL. unpublished data). However the most active region of
the EAD has only minimal Pro content (Fig. 3) suggesting that Pro is not crucial. High
Pro (and Gly) might act indirectly to support a favourable native EAD conformation for
example by preventing amyloid type aggregation.?? The PxxP motif can form a structure
called the polyproline IT (PPII) helix* but three out of four PxxP motifs present in
EAD1-176 can be mutated without effect (see MSP, SCR and REV Fig. 5) suggesting
that PPII helices do not contribute to EAD activity.'? To conclude, in addition to the
specific Tyr side chain requirement, the restricted amino acid composition of the EAD
(reflecting enrichment with Ala, Gly, Gln, Pro and Ser) most probably provides a flexible
and polar/neutral environment thus facilitating molecular recognition.

Many natural Tyrosine Enriched Protein Regions (TEPRs, Fig. 6) occur in other
transcription factors and share several features with the EAD, including (1) degree of
Tyr enrichment; (2) general polar/neutral composition; (3) marked compositional bias
and; (4) predicted highly disordered nature. Significantly however, the selected TEPRs
are also quite varied in their overall charge and particular amino acid content and exhibit
markedly different transcriptional activity (Fig. 6). Perhaps significantly, none of the
TEPRs tested are more active than the EAD and some are almost inactive. Overall it is
apparent that, in addition to the specific role of Tyr, the overall biochemical nature of
the EAD interface is significantly constrained.

EAD POSTTRANSLATIONAL MODIFICATIONS

Several Tyr residues within the EAD are phosphorylation sites and the EAD contains
many SH3/SH2 interaction motifs (Fig. 3). Accordingly the EAD exhibits significant Tyr
phosphorylation in vivo’' and both c-Abl and v-Src phosphorylate the EAD and in the
latter case modestly augment trans-activation.?? The above affects may be significant for
TET proteins or in some circumstances for EFPs but the finding that a Phe substituted
EAD is active' (see Fig. 5) rules out a general role for Tyr phosphorylation in EFP
function. The EAD has several SH2 (YxxP) and SH3 (PxxP) interaction motifs (Fig. 3).
Interaction of SH2 domains with YxxP motifs requires Tyr phosphorylation and EAD/
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Figure 6. Tyrosine Enriched Protein Regions (TEPRs). Many natural TEPRs exist in other transcription
factors and share several features with EAD57 (includes EAD residues 1-57) including size, degree of Tyr
enrichment, general polar/neutral composition, marked compositional bias and highly disordered nature. In
contrast TEPRs are also quite varied in their overall charge and particular amino acid content. The graph
for TEPR composition (A) indicates relative proportions (>5%) of the amino acids shown in the chart
(bottom). Transcriptional activity of TEPRs (B) is markedly different (note that most TEPRs are expressed
at much higher levels than EAD1-57) indicating that the particular composition of the EAD (excluding
Tyr) is required for function. A color version of this image is available at www.landesbioscience.com/curie.

SH2 interactions therefore appear not to be critical for molecular recognition by the EAD
(in the context of EFPs).

The EAD is extensively phosphorylated on Ser but not Thr*'*? in vivo and while not
mapped it is certainly possible that Ser phosphorylation impacts molecular recognition.
Phosphorylation is also commonly associated with IDRs.** Ser is not prevalent in the
most active region of the EAD and is enriched in the inactive region (Fig. 3) suggesting
that any effect of Ser phosphorylation would be negative. The EAD is also modified by
O-GlcNAcylation on Ser/Thr* and since no consensus sequence for O-GIcNAcylation
has been defined it is possible that several Ser/Thr residues are affected and this might,
in turn, modulate molecular recognition by the EAD.

COMPUTATION OF EAD DISORDER

IDRs can be evaluated by various algorithms® including Predictors of Natural
Disordered Regions (PONDR see ref. 15). PONDR is a set of neural network predictors
based on local amino acid composition, flexibility, hydropathy and coordination number.
PONDR VL3 is highly sensitive and combines predictions of 30 neural networks for the
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entire protein sequence, trained using circular dichroism, limited proteolysis and other
physical data from more than 150 IDRs.*¢ Propensity for order within IDRs is identified by
lower PONDR scores and dips in the PONDR curve within generally disordered regions
traditionally identify small localised inducible elements that have been referred to Molecular
Recognition Elements (MoREs, see ref. 37), Molecular Recognition Features (MoRFs,
see ref. 38), Preformed Structural Elements (PSEs; see ref. 39) or primary contact sites.*’

To assess the potential for induced structure in the EAD (Fig. 7) predictions were
performed using the PONDR VL3 predictor (access provided by Molecular Kinetics,
Inc. http://www.pondr.com). PONDR VL3 analysis of wt and mutated EAD sequences
(functionally tested, Fig. 5) shows that all the proteins are generally disordered (PONDR
curves mostly above the 0.5 threshold) but PONDR scores are generally higher (lower
order propensity) for Tyr/Ala, Tyr/Ile and Tyr/His changes. In contrast Tyr/Phe changes
only marginally shifts the PONDR curve towards disorder. The PONDR curve for other
active EAD mutants (QA, STA, SCR and REV) also resembles the wt EAD. REV looks
similar to wt EAD (because at a resolution of ~10 residues they are similar) while SCR
differs from wt EAD (because particular sub-regions are different) but retains overall
propensity for order similar to wt. For alternative disorder predictors (RONN, see ref. 41;
IUPred, see ref. 42; FoldIndex, see ref. 43) results for the wt EAD are comparable with
PONDR overall.”> With respect to EAD mutants, RONN and [UPred broadly agree
with PONDR but are less sensitive while FoldIndex appears insensitive.'* In conclusion
predictions of order propensity using PONDR are quite sensitive and well correlated
with activity for a range of EAD mutants. This strongly suggests that the potential for
Tyr-dependent structural perturbations is crucial for EAD activity.
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Figure 7. Analysis of WT and EAD mutants by PONDR VL3. Higher PONDR scores reflect propensity
for disorder and lower scores propensity for order. For (Y/A), (Y/I), (Y/H) and (Y/F) all EAD Tyr are
changed to Ala, Ile, His, or Phe, respectively. Color code is as follows: black, WT EAD; green, Y/A;
red, Y/I; yellow, Y/H; blue, Y/F. PONDR plots derived for EAD mutants REV (dark green), SCR
(purple), STA (dashed gray) and QA (dashed light blue) also are shown. Reproduced from: Ng KP
et al, Proc Natl Acad Sci USA 2007; 104:479-484;'2 ©2007 National Academy of Sciences. A color
version of this image is available at www.landesbioscience.com/curie.
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MINIMAL FUNCTIONAL ELEMENTS OF THE EAD

The ability to test small EAD sub-regions®® enables a higher resolution mutational
analysis. Forapeptide EAD8-40 (Fig. 8) simultaneously changing four Tyrresiduesto Ala
(A1-4) reduced trans-activation to almost background levels (1% of wt), while changing
any two Tyrresidues (A12, A23 A13, A24 and A14) also greatly reduced trans-activation
(average 4% of wt) and changing one Tyr alone (A1, A2, A3 and A4) had a significant
but much smaller effect in each case (average of 25% wt). Since the effect of altering
any combination of Tyr residues is quantitatively similar this indicates that each Tyr is
functioning similarly. In addition, the Tyr residues strongly synergise with each other.
In a contrast to the lack of effect of Tyr to Phe for intact EAD'? partial Phe substitution
of Tyr (F12) does moderately reduce activity of EAD8-40. A reasonable interpretation
of this is that the function of small trans-cooperating peptides (such as EAD8-40) is not
quite optimal and thus allows detection of minor contributions to molecular recognition
that do not, however, impact the native EAD.

Similar to the intact EAD!'? there is a positive correlation between activity and order
propensity for EAD8-40 (Fig. 8) although the effect of multiple Tyr to Ala changes on
order propensity is additive and not cooperative. Tyr to Ala changes result in global
decreases in order propensity suggesting that a higher order structure of EAD8-40 may
be important for target interaction. A model for molecular recognition by EAD8-40 is
shown (Fig. 8) and invokes multiple cooperative contacts with Tyr. In the model proposed,
efficient functioning of a minimal EAD peptide (containing only 33 residues and five Tyr
residues) implies lack of a requirement for long-range cis-interactions for the intact EAD.

MOLECULAR RECOGNITION BY THE EAD

Together the functional and computational data and theoretical considerations are
highly indicative of a “random” model for molecular recognition* in which the EAD
remains unstructured when bound to its target(s). This mode of interaction applies to
several other IDRs, including the T-cell receptor Cchain,* self-associating elastin?®4¢ and
dimerisation of E. Coli SOS response protein umuD.¥’

There are two general possibilities for overall EAD structure and these may be dynamic
and not mutually exclusive. In one scenario the EAD is an extended and highly flexible rope
like structure with multiple Tyr residues accessible for target contact (see models A-D).
Alternatively a hydrophobic centre with shielded Tyr residues could produce an interaction
surface with other neutral/polar residues exposed to the target (not shown). The latter
possibility may not be excluded (note that it also shares similarity with model C) and the
ability of the EAD to undergo weak homotypic interactions*® may support it. However
theoretical considerations and some experimental evidence appears not to be in favor.
First, in contrast to globular proteins IDRs commonly utilize exposed hydrophobic residues
much more than polar residues to contact partners.* Second, the severely biased amino
acid composition of the EAD (particularly enrichment in Gly, Ala, Gln and Pro) supports
flexibility and has low potential for backbone self-interactions required to form a compact
core. Third, reducing overall entropy (via intramolecular constraints in the unbound state)
would compromise the entropic chain potential central to the random model* for target
binding. Finally, for small but highly active EAD peptides (EADS8-40, Fig. 8) the high
energy barrier to acute backbone folding and would probably be prohibitive.
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Figure 8. A) Transcriptional activity of a minimal EAD peptide. Activity was determined using the
seven-site Zta reporter described in Figure 4 and EAD8-40 fused to the Zta DNA-binding domain.
The EAD&8-40 sequence is shown (WT) and Tyr to Ala or Phe are indicated in red. The data shown
is published.?* B) PONDR VL3 analysis. Changing one Tyr to Ala (A2 and A3), two Tyr (A23 and
A24) or all four Tyr (Al-4) incrementally increases disorder in a global manner. C) Speculative
model. Peptides with four Tyr residues are able to effectively recognise the target protein (although
because the protein tested is dimeric this might correspond to eight Tyr residues, see Fig. 4). Each
Try contributes equally to activity (target recognition) suggesting that individual Tyr residues contact
the target. Strong activity (target recognition) involves higher order interactions as reflected by high
cooperativity and thus low activity of peptides containing only two out of four Tyr residues. The
data shown in this part A of this figure is published in Oncogene (see ref. 26).
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OVERALL MODEL

Several potential models of molecular recognition are presented (Fig. 9). Excepting
model C these models share the same core feature involving a number of Tyr-dependent
contacts embedded in a highly flexible unstructured but chemically/physically permissive
environment. The models are distinguished by the number or configuration of the Tyr
contacts (model A versus B), the number of contacts on the target (model C) and the
number of target proteins (model D).

Strong interactions may be achieved by simply reaching a threshold number of Tyr
contacts (model A) or by separate Try clusters with each cluster making an independent
contact (model B). The discontinuous interaction in Model B would be dictated by target
geometry and resembles clamp type fuzziness*° except that the bound elements and
not just the linker remain unstructured. Inherent in each model is the likelihood that a
dynamic ensemble of alternative interactions occur (involving subsets of Tyr contacts)
for each of different (and numerous) protein targets.

A proportion of residues between Tyr contacts are likely to engage in hydrogen
bonding with the target with others being looped out (Fig. 9). In this way the EAD peptide
backbone partially follows the contours of the target but this would not correspond to
structure in the regular sense. Rather this putative mode of interaction might best be
described as “gratuitous shaping” and particularly because the function under scrutiny
has not experienced evolutionary guidance. With respect to computation of structure as
predicted by PONDR such predictions might coincide with the ability of the EAD to
form a diverse shape continuum that does not correspond to any generalised structure.
Gratuitous shaping would represent the most extreme form of random fuzziness* and
would extend the observation that IDR/target interfaces exhibit a greater degree of
complementary than for globular proteins.

AFFINITY DETERMINANTS

The molecular recognition models proposed (Fig. 9) invoke cooperative effects of
multiple low affinity contacts to produce a strong interaction. Given the length of the EAD,
multivalent recognition, lack of sequence constraints and EAD flexibility, the productive
interaction surface is probably quite large and this tends to increase infinity.*! For IDRs that
conform to the random model, stabilisation would also be engendered by conformational
freedom (of the bound IDR) rather than in entropically penalized preformed structural
elements.® In the gratuitous shaping scenario only rotational/translational entropy would
be lost upon binding but even this might be minimized either due to dynamic changes
reflecting closely related alternative interaction surfaces. Besides specific Tyr contacts
EAD target interaction is likely to be stabilized by the significant hydrogen bonding
capacity of other prevalent amino acids in the EAD. Thus peptide sequences between Tyr
residues are also proposed to make partial contacts with the target. Tyr itself frequently
participates in intermolecular hydrogen bonding at protein-protein interfaces®? and this
could also contribute to stable interaction.

Cooperative multivalentbinding is similar to many classical biomolecular interactions and
is also an emerging feature of molecular recognition by IDRs that remain unstructured when
bound. Several examples resemble the EAD and might offer instructive guides. In yeast
the WD40 domain of Cdc4 interacts with Sicl via nine suboptimal phosphopeptide motifs
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Model A

Figure 9. Models for molecular recognition by the EAD. In model A the EAD is shown as a flexible
rope like structure with several Tyr residues (pink circles) contacting the target protein. Some of
the other residues (white and grey circles) are proposed to weakly contact the target. Model B is
variation of model A in which clusters of Tyr residues each form a low affinity recognition element
but more than one cluster is required for binding. Model C differs in that multiple Tyr coalesce by
cation-rt interaction around a single Arg/Lys residue (green circle) in the target with intervening EAD
sequences (including other Tyr residues) looped out. For model D the potential mode of target binding
is included in models A-C but multiple target proteins (T1-3) are simultaneously bound by the EAD.
T1-3 may also interact with each other (indicated by two-way arrows) thus further stabilising complex
formation. See text for discussion. A version of model D was published in Lee KAW. Cell Research
2007; 17:286-288. ©2007 the National Academy of Sciences, USA.
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(CPDs)andbinding is triggered uponreaching a threshold level of CPD phosphorylation.>>*
Based on therelationship between net charge and binding, a polyelectrostatic model has been
proposed to account for Cdc4/Sicl interaction. A second example is the Arg/Ser-rich (R/S)
domain of splicing enhancer factors that can be reconstituted by twenty one RS di-peptides
but not by seven.* Thirdly, elastin self association is driven by multiple minimal binding
motifs/scattered hydrophobic interactions and a small degree of hydrogen bonding with
high Pro/Gly content providing flexibility and antagonizing ordered structure.”

SPECIFICITY DETERMINANTS

While molecular recognition by other sequence independent IDRs (VP16 TAD,
Linker histone CTDs and Prion Sup35p) shares broad similarity with the EAD the
specificity determinants are probably distinct. The VP16 TAD has several Phe residues
but hydrophobicity rather than the aromatic ring appears to be important. The amino
acid composition of linker histone CTDs (which bind the apoptotic protein DFF40) bares
little resemblance to the EAD being composed of 75% Lys/Ala and a small proportion
of Val as the only hydrophobic residue.’” The proposed structure for Sup35p and related
prions involves B-sheet formation®® which is not indicated for the EAD.

What is the precise nature of individual Tyr-dependent contacts made by the
EAD? These might be related to a class of recognition elements called Linear Motifs or
LMs>*4 that can be small (3-10 residues) but with only a few specificity residues that
are generally aromatic (similar to the EAD) or Pro.* LMs are often functional as single
copies with typically low affinities but multiple cooperative LMs some times produce
higher affinity interactions.’® Unlike the most active regions of the EAD (Fig. 3) LMs
tend to be depleted in Ala and Gly and enriched in Pro. In addition there is a remarkable
lack of any spatially constrained (relative to Tyr) specificity residues in the EAD since
even the relatively conserved Gln in position 2 of the DHR (Fig. 3) is not required for
function (Fig. 5 and see ref. 12). Overall it appears that specificity elements within the
EAD may not be related to LMs or may represent extremely minimal LMs.

An interaction with high potential as a contact element for the EAD is the electrostatic
cation-r interaction between aromatic and basic amino acids.*>¢! Arg is a very common
and versatile interface residue and Tyr/Arg pairing is one of the most frequent cation-nt
interactions at protein—protein interfaces. Furthermore single cation-n interactions are
proposed as specificity elements involved in the encounter stage of recognition followed
by rapid reorientation of the remaining interface to the optimal binding configuration.
The majority of cation-rt pairs are also involved in intermolecular hydrogen bonding.5>¢!
The above characteristics, namely Tyr specific contacts and multiple hydrogen bonding
interactions, fit very well with the proposed models for molecular recognition by the EAD
(Fig. 9). Studies of Aspergillus niger glucoamylase demonstrate an intriguing alternative
interaction model involving cation-rt interactions. In the fungal glucoamylase a cluster of
four cation-r interactions involving a single Lys residue and four Trp/Tyr residues form
a very stable interaction.*? Such a model involving Tyr clustering and looping out of the
intervening flexible sequences is depicted for the EAD (Fig. 9 model C). A feature of this
potential mode of recognition is thatit could facilitate EAD promiscuity by greatly reducing
the complexity (number of contact residues) of the target interface. The disadvantage
is that the EAD would become compacted, thus incurring a significant entropic penalty
that might antagonise a random mode of interaction.*
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MULTIPLE EAD TARGET PROTEINS

InModel D efficient and promiscuous action by the EAD involves recruitment of several
transcriptional components although the core mode of molecularrecognition remains similar
to single target models. The available biological, biochemical and computational data point
towards the multiple target model as follows. First, the EAD is known to contact a number
of transcriptional components including the co-activator CBP,*2% multiple TAFs'® and the
RNA PollI sub-units rpb7'¢5465 and rpb5.' Second, similar to other long and malleable IDRs,
the EAD most likely interacts with a complex array of proteins as a network hub®!° or as
a scaffold protein.!' The EAD may resemble HMGA (of the HMG family of architectural
transcription factors) whichis highly unstructured® and interacts with numerous transcription
factors.* Third, the EAD shares properties with other TADs which are highly flexible and
generally lack structure (PONDR predicts TADs are 73-94% disordered).% Current models
for TAD function also invoke multiple weak contacts between TADs and their targets,
resembling a “molecular Velcro”.®” Considering the above framework, the size, number
of potential recognition elements and malleability of the EAD could readily account for
the promiscuity and potency of EAD-mediated trans-activation.

CONCLUSION

Future progress can come from finer biochemical definition of the EAD interface
using the methodology described.'? However direct structural assessment of target-bound
EAD is a prerequisite for further progress and thus identification of cognate functional
EAD partners is the essential next step. The panel of functionally characterised EAD
mutants described'? are indispensable tools for the above task.

The EAD should continue to provide a valuable model for complex extended IDRs
with minimal sequence requirement and that employ the “random” mode of interaction.*
The fact that EFP function is aberrant and not evolutionarily constrained suggests that
studies of the EAD in this context may provide unique insights into molecular recognition
by IDRs. In addition uncovering the basis for differential EAD function/molecular
recognition for EFPs versus native EWS/TETs, might ultimately provide an avenue for
development of EFP-specific therapeutic agents.

Notwithstanding the obvious differences between EFPs and TETs it seems inevitable
that the core mode of molecular recognition by the EAD (as proposed here) will impact
native TET function. It will be of great interest to determine how evolutionarily conserved
modifications (such Tyr phosphorylation) or structural impositions (linkage to the
TET RNA-binding domain) impact EAD function. The malleable and flexible nature
of molecular recognition by the EAD is surely pivotal in allowing EWS to spread its
tentacles so broadly within the human proteome interaction network and across the far
reaches of mammalian cells.
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CHAPTER 8

THE MEASLES VIRUS Ny, -XD COMPLEX:

An Illustrative Example of Fuzziness

Sonia Longhi

Architecture et Fonction des Macromolécules Biologiques, Universités d’Aix-Marseille I et II, Marseille, France
Email: Sonia.Longhi@afmb.univ-mrs.fr

Abstract: In this chapter, I focus on the biochemical and structural characterization of the
complex between the intrinsically disordered C-terminal domain ofthe measles virus
nucleoprotein (N4, ) and the C-terminal X domain (XD) of the viral phosphoprotein
(P). I summarize the main experimental data available so far pointing out the
prevalently disordered nature of N,y even after complex formation and the role
of the flexible C-terminal appendage in the binding reaction. I finally discuss the
possible functional role of these residual disordered regions within the complex in
terms of their ability to capture other regulatory, binding partners.

INTRODUCTION

The nonsegmented, single-stranded RNA genome of measles virus (MeV) is
encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate
used by the viral polymerase for transcription and replication. The viral polymerase consists
of the large (L) protein and of the phosphoprotein (P), with this latter being an essential
polymerase cofactor in that it recruits the L protein onto the nucleocapsid template (for
reviews on transcription and replication see refs. 1-4) (Fig. 1A).

In the course of the structural and functional characterization of MeV replicative
complex proteins, we discovered that the N and P proteins contain long disordered regions
that possess the sequence and biochemical features that typify intrinsically disordered
proteins (IDPs).* " Intrinsically disordered proteins (IDPs) are functional proteins that lack
highly populated secondary and tertiary structure under physiological conditions in the
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absence of a partner and rather exist as dynamic ensembles of interconverting conformers
(for recent reviews on intrinsically disordered proteins see refs.15-18.)

Indeed, the P protein was shown to have a modular organization, being composed of
alternating structured and disordered regions, with the N-terminal domain (PNT, P'->)
being the largest disordered domain®” (see Fig. 1B).

Like the P protein, the N protein has a mixed structural nature, being composed of
a structured N-terminal domain, Neore (N'#%), containing all the regions necessary for
self-assembly and RNA-binding'® and of a disordered C-terminal domain Ny (N#'525)°
that protrudes from the globular body of Ncore and that is exposed at the surface of the
viral nucleocapsid'® (Fig. 1A).

One of the functional advantages of disorder is related to an increased plasticity that
enables disordered regions to bind to numerous structurally distinct targets.?*?> Hence,
intrinsic disorder is a distinctive and common feature of “hub” proteins, with disorder
serving as a determinant of protein interactivity.2*?

The disordered nature of Ny, and its exposure at the surface of the viral
nucleocapsid confer to this domain a large flexibility enabling the establishment of a broad
molecular partnership with various viral and cellular proteins. Indeed, beyond serving
as a tethering anchor for the P-L polymerase complex®?-? (see Fig. 1A), Ny, interacts
with the matrix protein®® and with cellular proteins, including the major inducible heat
shock protein 70 kDa (hsp70),”*® the interferon regulatory factor 3 (IRF3),%-° the cell
protein responsible for the nuclear export of N,*' as well as cell receptors involved in
MeV-induced immunosuppression.*** Likewise, the PNT domain has been reported to
interact with N3¢ and cellular proteins.?’

THE DISORDERED Ny,;, DOMAIN AND ITS INTERACTION WITH XD

Computational, biochemical and spectroscopic analyses showed that N, ;; belongs to
the family of IDPs.¢ Although Ny, is primarily unfolded in solution, it nevertheless retains
a certain degree of compactness based upon its Stokes radius (27 A) and ellipticity values
at 200 and 222 nm.® Altogether, these characteristics indicate that N+, is a premolten
globule,*® i.e., it has a conformational state intermediate between a random coil and a
molten globule.*®** In solution, premolten globules possess a certain degree of residual
compactness due to the presence of residual and fluctuating secondary and/or tertiary
structures. It has been proposed that the residual intramolecular interactions that typify the
premolten globule state may enable a more efficient start of the folding process induced
by a partner by lowering the entropic cost of the folding-coupled-to-binding process.**+

That N1,y does indeed undergo induced folding was documented by far-UV circular
dichroism (CD) studies, where Np,; was shown to undergo an a-helical transition in the
presence of the C-terminal region of P (PCT, P?!-97) ¢ Using computational approaches,
an a-helical Molecular Recognition Element (a-MoRE, N*¥-4) has been identified within
one (namely Box2) out of three N,y regions (referred to as Box1, Box2 and Box3) that
are conserved within viruses belonging to the same genus of MeV* (see Fig. 1C). MoREs
are short, order-prone regions within IDPs that have a certain propensity to bind to a
partner and thereby to undergo induced folding.**#” The role of the «-MoRE in binding
to P and in the a-helical induced folding was further confirmed by spectroscopic and
biochemical experiments carried out on a truncated Np,; form devoid of the 489-525
region, where removal of Box2 was shown to both impair the ability of N,y to bind to
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P and reduce the gain of a-helicity in the presence of the secondary structure stabilizer
2,2,2 trifluoro ethanol (TFE).®

The PCT region responsible for the interaction with and induced folding of Ny
has been mapped to the C-terminal X domain of P (XD, P*°3%7) and the crystal structure
of this domain has been solved®® (see Fig. 1B). A model of the interaction between
the triple a-helical bundle of XD and the a-MoRE of Ny, was then proposed* and
thereafter experimentally validated* by the determination of the crystal structure of
a chimeric construct consisting of XD and of N*¢3% (Fig. 2). In both the proposed
and experimentally observed structure of the complex, N,y is embedded in a large
hydrophobic cleft delimited by helices 02 and a3 of XD thus leading to a pseudo-four
helix arrangement that occurs frequently in nature (Fig. 2A). Burying of hydrophobic
residues of the a-MoRE in the hydrophobic cleft of XD (see Fig. 2B) is thought to provide
the driving force to induce the folding of the a-MoRE, in agreement with the findings by
Meszaros and coworkers who reported that the binding interfaces of protein complexes
involving IDPs are often enriched in hydrophobic residues.®

Small angle X-ray scattering (SAXS) studies provided a low-resolution model of
the Npa-XD complex, which showed that most of Ny (residues 401-488) remains
disordered within the complex (Fig. 3).” As such, the Ny, -XD complex provides an
illustrative example of “fuzziness,” where this term has been recently coined by Tompa
and Fuxreiter to designate the persistence of conspicuous regions of disorder, often playing
a functional role in binding, within protein complexes implicating IDPs.”!

In the Ny -XD complex, the lack of a protruding appendage corresponding to the
extreme C-terminus of N, suggests that, beyond Box2, Box3 could also be involved

) ¢

A

Figure 2. Crystal structure of the chimeric construct between XD and the a-MoRE of Ny (N#86504)
dark grey, ribbon representation) (pdb code 1T60).* XD is shown by a ribbon (A) or surface (B)
representation. In panel B, the hydrophobic residues of XD and of the a-MoRE are shown in white.
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0-MORE %% A

Figure 3. A) Global shape of the Ny, -XD complex as derived by small angle X-ray scattering studies.’
The circle points to the lack of a protruding shape from the globular body of the model. The crystal
structure of the chimera between XD and the Ny, region encompassing residues 486-504 (pdb code
1T60)% is shown. The picture was drawn using Pymol.*® B) Low resolution model of the Ny, -XD
complex showing that (i) the 401-488 region of N,y is disordered and exposed to the solvent, (ii) the
a-MoRE is packed against XD and (iii) the C-terminus of Ny, (Box3) does not protrude from the
globular part of the model. Data were taken and modified from reference 9.

in binding to XD.’ To directly assess the possible implication of the C-terminus of Ny,
in binding to XD, truncated N,y constructs have been designed and purified from the
soluble fraction of E. coli® (Fig. 4). Far-UV CD studies showed that Box2 plays a key
role in the a-helical transition triggered by either XD or TFE, contrary to Box3 that
does not affect the folding potential of Ny, .° In agreement, heteronuclear NMR studies
(HN-NMR) showed that while the addition of XD to '"N-labeled Ny (or to Noyajas,
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Figure 4. Schematic representation of the truncated Ny, constructs used in SPR studies. The location
of the peptides used in these studies is indicated. The white and black boxes represent the hexahistidine
tag and the flag, respectively. The inset shows the calculated equilibrium dissociation constants (Kp)
between XD and Ny, proteins and peptides using SPR. Data were taken from references 9 and 14.
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i.e., Nrap lacking Box3) triggered a-helical folding of Box2, it does not promote gain
of regular secondary structure within Box3 although this latter undergoes a significant
magnetic perturbation®*? (Fig. 5).

In further support of a role of Box3 in binding to XD, surface plasmon resonance
(SPR) studies showed that removal of either Box3 alone or Box2 plus Box3 results in
a strong increase (three orders of magnitude) in the equilibrium dissociation constant,
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Figure 5. A) Total 'H and "N chemical shift differences in Hz for free and bound forms of Ny, . The
Nran. concentration in both free and bound sample was 0.3 mM, while that of XD was 0.6 mM. In
panel (B), the scale has been reduced so as to highlight smaller, yet significant, chemical shift changes.
Dashed grey line is at 2 times the digital resolution (10 Hz). Stars show residues in the N-terminal half
of N that have resonance overlap with residues in the C-terminal half (where 459 overlaps with 518
and 461 overlaps with 516). Grey circles correspond to proline residues and empty circles show the
position of unassigned resonances in the Ny, -XD complex that probably have large chemical shifts
changes. Box2 and Box3 regions are shaded. Data were modified from reference 52.
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with the K, increasing from 80 nM to either 12 uM or 41 uM, respectively® (see inset
in Fig. 4). Conversely and as expected from the low-resolution model inferred from
SAXS data and from CD studies carried out on Nraya; (i.€., Ny devoid of Box1) in
the presence of XD, SPR studies showed that Box1 does not contribute to binding to
XD (see inset in Fig. 4). When synthetic peptides mimicking Box1, Box2 and Box3
were used, Box2 peptide (N*¥97), was found to display an affinity for XD (K of 20
nM) that was similar to that between XD and Ny, (Kp of 80 nM) consistent with a role
of Box2 as the primary binding site (see inset in Fig. 4). Surprisingly however, Box3
peptide (N*%5-%%) exhibits an insignificant affinity for XD (K;, of approximately 1 mM)
(see inset in Fig. 4). In the same vein, HN-NMR experiments using *N-labeled XD
pointed out lack of magnetic perturbation within this latter upon addition of unlabeled
Box3 peptide, consistent with the lack of stable contacts between XD and Box3.%* The
discrepancy between the data obtained with Ny, truncated proteins and with peptides
could be accounted for by assuming that Box3 would act only in the context of N, and
not in isolation. Consistent with this hypothesis, both Ny and Nyapas (i.€., Npan devoid
of Box3) trigger slightly more pronounced chemical shift variations within *N-labeled
XD than Box2 peptide alone, indicating that the region downstream Box2 (either Box3
itself or the region connecting Box2 to Box3) contributes to binding to XD, although only
when acting in concert with Box2.** Thus, according to this model, Box3 and Box2 would
be functionally coupled in the binding of Ny, to XD: the burying of the hydrophobic
side of the a-MoRE in the hydrophobic cleft formed by helices a2 and o3 of XD could
provide the primary driving force in the N, -XD interaction, with Box3 acting to further
stabilize the bound conformation.

Inview of unraveling the precise boundaries of the Ny, region undergoing a-helical
folding, as well as the impact of XD binding on Box3, the Ny, -XD interaction has been
also investigated by using site-directed spin-labeling (SDSL) electron paramagnetic
resonance (EPR) spectroscopy. The basic strategy of SDSL involves the introduction of
a paramagnetic nitroxide side chain through covalent modification of a selected protein
site. This is usually accomplished by cysteine-substitution mutagenesis, followed by
covalent modification of the unique sulfydryl group with a selective nitroxide reagent,
such as the methanethiosulphonate derivative (for a review see ref. 54). From the EPR
spectral shape of a spin-labeled protein one can extract information in terms of radical
mobility, which reflects the local mobility of residues in the proximity of the radical.
Variations in the radical mobility can therefore be monitored in the presence of partners,
ligands, or organic solvents.

Fourteen single-site N, cysteine variants were designed, purified and labeled, thus
enabling grafting of a nitroxide paramagnetic probe on 12 sites scattered in the 488-525
region and on two sites located outside the reported region of interaction with XD3%¢
(see diamonds in Fig. 6). EPR spectra were then recorded in the presence of either TFE
or XD in both 0 and 30% sucrose.

Different regions of Ny, were shown to contribute to a different extent to the
binding to XD: while the mobility of the spin labels grafted at positions 407 and 460 was
unaffected upon addition of XD, that of spin labels grafted within the 488-502 and the
505-522 regions was severely and moderately reduced, respectively*® (Fig. 6). Furthermore,
EPR experiments in the presence of 30% sucrose (i.e., under conditions in which the
intrinsic motion of the protein becomes negligible with respect to the intrinsic motion of
the spin label), allowed precise mapping of the N, region undergoing a-helical folding
to residues 488-502.% The drop in the mobility of the 505-522 region upon binding to
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Figure 6. Mobility (expressed as h(+1)/h(0) ratios, see ref. 54) of the spin-labeled Ny, proteins free
and in the presence of either saturating amounts of XD or 20% TFE as a function of spin-label position.
Note that the h(+1)/h(0) ratio of the spin-labeled S491C variant was not indicated, as it is not a reliable
indicator of the mobility of this spin label because of a highly restricted mobility (see ref. 56). The
schematic representation of the N, variants is shown on the top. Modified from references 55 and 56.

XD was shown to be comparable to that observed in the presence of TFE (Fig. 6). This
observation suggests that the restrained mobility that the Box3 region experiences upon
binding to XD is due neither to a steric hindrance exerted by XD nor to a direct interaction
with XD and rather only arises from a-helical folding of the neighboring Box2.

The mobility of the 488-502 region was found to be restrained even in the absence
of the partner (see Fig. 6 and refs. 56,57), a behavior that could be accounted for by the
existence of a transiently populated folded state. That the Ny, region spanning residues
491-499 adopts an a-helical conformation in about 50% of the conformers sampled by
unbound N4, has been recently experimentally confirmed by HN-NMR >

These findings are in agreement with previous reports that showed that the
conformational space of MoREs* in the unbound state is often restricted by their
inherent conformational propensities. Noteworthy, the lack of a rigid 3D structure
is thought to allow IDPs to establish interactions that are characterized by a high
specificity and a low affinity: while the former is ensured by the very large surface area
that is generally buried in complexes involving IDPs, the low affinity arises from an
unfavorable entropic contribution associated to the disorder-to-order transition.?%>%-%
In practice however, the extent of the entropic penalty is tightly related to the extent
of conformational sampling of the prerecognition state, i.e., on the degree to which
MoREs are preconfigured in solution prior to binding: the occurrence of a partly
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preconfigured MoREs in the unbound state in fact reduces the entropic cost of binding
thereby enhancing affinity.*0-42464767 Ag such, IDPs exhibit a wide binding diversity,
with some of them binding their partners with strong affinities. This is for instance
the case of the Ny, -XD complex, whose rather high affinity (K;, of 80 nM) probably
arises from a reduced entropic penalty related to the occurrence of the partly preformed
MOoRE prior to binding.

Although a strong Ny, -XD affinity explains the relatively long half life (well over
6 hours) of active P-L transcriptase complexes tethered on the nucleocapsid template,®
as well as the ability to readily purify nucleocapsid-P complexes using rather stringent
techniques such as CsCl isopycnic density centrifugation,® 7 a stable XD-Nr,; complex
would be expected to hinder the processive movement of P along the nucleocapsid
template. In agreement with this model, the elongation rate of MeV polymerase was
found to be rather slow (three nucleotides/s)®® and Ny, amino acid substitutions that
lower the affinity towards XD result in enhanced transcription and replication levels, as
well as in increased polymerase rate (Oglesbee, Gerlier and Longhi, unpublished data).

Nevertheless, despite the rather strong affinity of the N4, -XD binding reaction, EPR
equilibrium displacement experiments showed that the XD-induced folding of Ny, is
a reversible phenomenon.*>¢ These results, beyond representing the first experimental
evidence indicating that Ny, adopts its original premolten globule conformation after
dissociation from XD, point out the dynamic nature of the association and dissociation of
the Ny -XD couple. This latter point is particularly relevant taking into consideration that
the contact between XD and Ny, within the replicative complex has to be dynamically
made and broken to allow the polymerase to progress along the nucleocapsid template
during both transcription and replication.’*!* As we will see in the next paragraph,
modulation of the strength of the N4, -XD interaction can also rely on the intervention
of cellular cofactors that can compete out XD by binding to residual disordered regions
of Nrap in the Nopay -XD complex.

FUNCTIONAL ROLE OF RESIDUAL DISORDER WITHIN THE Ny, -XD
COMPLEX

What is the functional role of the flexible Ny, appendages within the Nypay-XD
complex? The prevalently disordered nature of N, even after complex formation may
serve as a platform for the capture of other binding partners.

Flow cytofluorimetry studies carried out on truncated forms of Ny, allowed mapping
to Box1 the N,y region responsible for the interaction with the cellular receptor NR,
where this interaction occurs in the extracellular compartment following apoptosis of
infected cells.*** Given the rather high affinity between Ny, and XD, it is conceivable
that released nucleocapsids are decorated by P (and P-L) complexes. The considerable
flexibility of the 401-480 Ny, region even in the P-bound form, would allow the
nucleocapsid to bind to NR without the requirement for XD to dissociate. In agreement,
flow cytofluorimetry studies showed that neither hsp70 nor XD are able to competitively
inhibit binding of N, to NR.*

In the same vein, the C-terminus of Ny, has been shown to retain a certain
flexibility in the complex, despite the reduction in its conformational freedom arising
from the XD-induced a-helical folding of the neighboring Box2. Strikingly, although
the C-terminus of Nr,y; does not establish stable contacts with XD, it was shown to play



136 FUZZINESS: STRUCTURAL DISORDER IN PROTEIN COMPLEXES

an important regulatory role in transcription and replication. Indeed, not only Box3 was
shown to affect the affinity of XD for Ny, (see inset in Fig. 4 and ref. 9), but also was
it found to inhibit viral transcription and replication.?”

Thus, Box3 would dynamically control the strength of the Ny -XD interaction,
by stabilizing the complex probably through several weak, nonspecific contacts with
XD. Removal of Box3 would reduce the affinity of N1,y for XD which would stimulate
transcription and replication by promoting successive cycle of binding and release of the
polymerase that are essential to polymerase movement along the nucleocapsid template.
Modulation of N1, -XD binding affinity could also be dictated by interactions between
Nrar and cellular and/or viral cofactors that could act by modulating the strength of the
interaction between the polymerase complex and the nucleocapsid template. Indeed, in
MeV, viral transcription and replication are enhanced by hsp70 and this stimulation relies
on interaction with Ny, .2%737 Two binding sites for hsp70 have been identified within
Nrap: While high affinity binding (K, of 10 nM) is supported by the a-MoRE,?® a second
low-affinity binding site is present within Box3.2"77 As hsp70 was shown to competitively
inhibit binding of XD to Nya;,2® hsp70-dependent stimulation of viral transcription and
replication has been proposed to be due to a reduced stability of P-N+,;;, complexes (see
Fig. 1A). This reduction would rely on competition between hsp70 and XD for binding
to Nyap through (i) competition for binding to the a-MoRE (and this would occur at low
hsp70 concentrations) and (ii) neutralization of the contribution of the C-terminus of
Nrar to the formation of a stable P-Nr,;; complex (and this would occur in the context
of elevated cellular levels of hsp70).%

CONCLUSION

In conclusion, using a panel of various physico-chemical approaches, the interaction
between Ny, and XD was shown to lead to the formation of a “fuzzy” complex, in
which the region upstream the a-MoRE remains disordered and the C-terminus retains
a considerable flexibility. Complex formation implies the stabilization of the helical
conformation of the a-MoRE, which is otherwise only transiently populated in the
unbound form. The occurrence of a transiently populated a-helix even in the absence of
the partner, suggests that the molecular mechanism governing the folding of Ny, induced
by XD could rely on conformer selection (i.e., selection by the partner of a pre-existing
conformation).”#’ Recent data based on a quantitative analysis of NMR titration studies™
suggest however that the binding reaction may also imply a binding intermediate in the
form of a weak, nonspecific encounter complex and hence may also occur through a “fly
casting” mechanism®! (Fig. 7).

Stabilization of the helical conformation of the a-MoRE is also accompanied by a
reduction in the mobility of the downstream region. The lower flexibility of the region
downstream Box2 is not due to gain of a-helicity, nor can it be ascribed to a restrained
motion due to the presence of XD or to the establishment of stable contacts with this
latter. Rather, it likely arises from a gain of rigidity brought by a-helical folding of
the neighboring Box2 region that results in a reduced Box3 conformational sampling.
The reduced conformational freedom of Box3 may favor the establishment of weak,
nonspecific contacts with XD (Fig. 7). At present, the exact role that Box3 plays in the
stabilization of the N, -XD complex remains to be unraveled. Indeed, if recent data
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Figure 7. Model for Ny, -XD complex formation that utilizes both conformer selection and nonspecific
encounter complex formation (modified from ref. 52).2 The helix, corresponding to the primary
binding site for XD, is partly preformed in the absence of XD. In the nonspecific binding model, a
weak encounter complex may also form between Np,; and XD. This encounter complex is converted
to a tightly bound complex by the folding of the a-MoRE. It is unclear if this folding occurs during
the lifetime of the encounter complex. In the conformer selection model, the preformed helix interacts
with XD to form a tightly bound complex. In both cases, following a-helical folding of Box2, Box3
becomes more rigid. The four conformers that are contoured by a dotted line schematically represent
the final stage in complex formation, which consists of an ensemble of conformers in which Box3 has a
reduced conformational freedom that may favor the establishment of weak, nonspecific contacts with XD.

clearly indicate that transient long-range tertiary contacts between Box2 and Box3 are
unlikely,*? it is still unclear whether Box3 contributes to binding to XD through weak
(transient) nonspecific contacts with this latter or rather through another unknown
mechanism. The possibility that Box3 may act by reducing the entropic penalty of the
binding-coupled-to-folding process®' seems to be unlikely: indeed replacement of the
Box3 region by an irrelevant, 8-residues long Flag sequence (DYKDDDDK) led to a
dramatic drop (two orders of magnitude) in the affinity towards XD, contrary to what
would be expected for a nonbinding region contributing to the overall entropy of the
system (cfr. Nrarpn and Nrap s in inset of Fig. 4).

Irrespective of the mechanism by which Box3 participates to binding to XD, the
occurrence of this flexible appendage within the complex provides a scaffold for the
capture of other, regulatory partners, such as hsp70.
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Abstract: Nucleocapsid proteins are the molecular jacks-of-all-trades of small RNA viruses
because they play pivotal roles in viral genomic RNA selection and packaging,
regulate genome replication and virus budding and at the same time orchestrate a
complex, dynamic interaction network with host cell proteins contributing to viral
persistence and pathogenecity. These promiscuous interactions are made possible by
the intrinsic flexibility of viral nucleocapsid proteins, facilitating either simultaneous
or sequential binding to a plethora of structurally unrelated substrates, resulting in
flexible, ever-changing multiprotein, RNA-protein and lipid-protein complexes
during the viral replicative cycle. In this chapter, we examine the flexibility and
multifunctionality of the assemblages formed by the nucleocapsid proteins of two
important human pathogens, hepatitis C virus and human immunodeficiency virus.

INTRODUCTION

An abundance of proteins containing long intrinsically unstructured regions
has recently been recognized as a common feature in the proteomes of eukaryotic
organisms.'? Flexible protein regions play important roles in molecular recognition,
signal transduction and protein-protein and protein-RNA interactions, while they are
relatively rare in enzymes.** As a consequence, intrinsically unstructured proteins (IUPs)
or protein domains are especially widespread among highly connected (“hub”) proteins
in cellular interaction networks.®’ This notion is particularly pertinent for RNA viruses,
whose coding capacity is limited by the low-fidelity replication associated with RNA- or
DNA-dependent RNA polymerases. Indeed, only a handful of proteins account for the
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replication, assembly and spread of these viruses, at the same time orchestrating subversion
of varied cellular processes and fighting elimination by the host’s restriction and immune
responses. Although viral proteins with enzymatic activity—similarly to their cellular
counterparts—are usually folded in a well-defined three-dimensional structure, a large
number of regulatory and structural proteins belong to the IUP class. Well-characterized
examples in pathogenic human viruses include the nucleocapsid (NCp7), Tat and Vif
proteins of HIV-1, the nucleoprotein (N) and phosphoprotein (P) of measles virus and
nucleocapsid proteins of flavi- and coronaviruses.*'¢ As discussed in detail below, the
core protein of hepatitis C virus and the nucleocapsid protein of HIV-1 show a number
of analogous features, chaperoning RNA-RNA interactions and orchestrating dynamic
multi-component interaction networks regulating viral replication, assembly and budding.
Thus flexible regions in such isolated viral proteins and probably in fuzzy replication
complexes play central roles in the viral life cycle.

THE CORE PROTEIN OF HEPATITIS C VIRUS

Hepatitis C virus (HCV) is a small, enveloped virus belonging to the Flaviviridae
family of positive-stranded RNA viruses, together with other clinically important,
emerging human pathogens, including West Nile virus and the dengue viruses.!” More than
120 million people, corresponding to a world-wide prevalence of ~2%, are chronically
infected with HCV,'® presenting an ever-growing health and socio-economic concern
despite declining infection rates.' Hepatitis C accounts for substantial morbidity and
mortality due to its propensity to establish a chronic infection, resulting in progressive
liver disease associated with life-threatening sequelae, including liver cirrhosis, steatosis
and hepatocellular carcinoma.? In addition to liver pathology, a variety of extrahepatic
disorders, affecting the endocrine, nervous and immune systems, are linked with
chronic infection.?"?

The genome of HCV contains a single long open reading frame (ORF), flanked by
highly conserved and structured untranslated regions (UTRs) that constitute cis-acting
RNA elements regulating viral translation and replication (reviewed in refs. 23,24).
Translation of the ORF yields a precursor polyprotein of ~3000 amino acids, which is
co and posttranslationally processed by cellular and viral proteases into at least 10 viral
proteins (Fig. 1A). The structural proteins of HCV comprise the core (capsid) protein
and the envelope glycoproteins E1 and E2, which are followed by the small viroporin
p7 and the nonstructural proteins and enzymes (NS2 to NS5B), involved in genome
replication (Fig. 1A).

The core (capsid) protein, located at the N-terminal region of the polyprotein precursor,
isreleased in its mature form by the sequential action of the host-encoded signal peptidase
(SP) and signal peptide peptidase (SPP) enzymes.?>?* The mature core protein consists of
two distinct domains distinguished by markedly different amino acid compositions and
hydrophobicity profiles (Fig. 1B).?” The N-terminal domain D1 contains the majority of
the core basic residues, arranged in three highly charged amino acid clusters. The isolated
D1 domain preserves the RNA binding® and RNA chaperoning activities® of the full
length protein, as well as its capacity to form virus-like particles in vitro in the presence
of structured RNA molecules.*3! All these varied functions are carried out in the absence
of a well-defined three-dimensional structure of D1, as shown by a variety of biophysical
methods, including proteinase digestion,* circular dichroism (CD) spectroscopy**~** and
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Figure 1. A) Genome organization of hepatitis C virus. The ORF encoding the viral polyprotein is
flanked by highly conserved and structured untranslated regions. The structural proteins are released
from the precursor by cellular proteases (black scissors), while the nonstructural region is processed by
virus-encoded enzymes (gray scissors). B) Domain organization of hepatitis C virus core protein. The
mature core protein consists of an RNA-binding and a lipid-binding domain (D1 and D2, respectively).
The heat map illustrates the predicted disorder in core protein, with highly flexible segments in black
and well-folded domains in white. Computer prediction of disordered regions was obtained using the
DisProt VL3-H predictor.'”® An amino acid with a disorder score above or equal to 0.5 is considered
to be in a disordered environment, while below 0.5 in an ordered environment.

chemical shift indexing,* confirmed functionally by deletion analysis.*® The C-terminal
region (D2 domain) of core protein is mostly hydrophobic and it serves as a targeting
signal, mediating the attachment of core to cellular lipid droplets—the proposed sites
for the interaction of structural proteins with the viral replication complex—Ileading to
nucleocapsid assembly.?”’

VIRAL PARTICLE MORPHOGENESIS: CRYSTAL GROWTH VS.
‘FUZZINESS’

Viral particle assembly is often envisaged as a straightforward process of nucleation
followed by self-assembly, completely determined and governed by the same, simple laws
of physics as inanimate crystal formation. Although this is certainly an over-simplification,
it might apply as a working model for simple, non-enveloped viruses. Indeed, in the case
of tobacco mosaic virus (TMV), the example regularly used in textbooks to illustrate viral
assembly, the rod-shaped particle is assembled in a well-defined succession of intermediate
complexes from 2130 subunits of the coat protein binding to the viral RN A.33*° Importantly,
purified TMV coat protein and the viral genomic RNA spontaneously assemble in vitro
under appropriate conditions to form fully infectious viral particles.*’
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However, virion morphogenesis in most clinically important human viruses is an
infinitely more complex and dynamic process. Since nucleocapsid proteins of enveloped
viruses establish the link between viral replication and egress, they have to interact with
components of the viral replication machinery, as well as with viral and cellular proteins
involved in the budding process. Homo-oligo/multimerization of capsid proteins, as well
as their sequential interaction with cellular membranes, the viral genomic RNA and
the envelope glycoproteins are essential for the formation of infectious viruses. Thus,
in sharp contrast to crystal formation, HCV core functions in a highly regulated and
dynamic fashion, organizing a sophisticated network of interactions with viral proteins
and components of various cellular pathways (Fig. 2). Although information on the
dynamics, exact composition, stoichiometry and structure of the resulting protein-RNA,
protein-protein and protein-lipid complexes is extremely limited at present, there is
accumulating evidence suggesting that the intrinsic flexibility of the core protein, partially
retained in the various complexes, is important for its functions.?* Thus, a model based on
a succession of dynamic, fuzzy complexes*' might provide a better description of HCV
capsid function and assembly than the simplistic nucleation/self-assembly paradigm.

HCV CORE PROTEIN IN VIRAL PARTICLE FORMATION

Owing to its propensity to form heterogeneous, high molecular weight aggregates
in aqueous solutions, the structure of the full-length core protein is still unresolved.*
Far-UV CD measurements on core have shown a single ellipticity minimum at ~200
nm, suggesting that it is mostly unstructured in its unliganded form, with less than
10% alpha-helical content.** However, core protein is thought to undergo (partial)
disorder-to-order transitions in the course of the sequential binding reactions during its
intracellular targeting and nucleocapsid formation.

Fromits synthesis to virion budding, core protein is associated with cellular membrane
structures, trafficking along the lipid bilayer from the endoplasmic reticulum to lipid
droplets.*> Membrane association is mediated by the formation of two putative short
amphipathic a-helices in the D2 domain of core, separated by a flexible hydrophobic loop
region.* Lipid binding induces conformational changes not only in the D2 domain but leads
to partial a-helical folding of the N-terminal region, as evidenced by CD measurements
on core in membrane-mimetic environments.* In addition, membrane binding and
protein conformation may be further regulated by posttranslational modifications, as
palmitoylation of cys-172 was reported to be required for proper intracellular localization
of core and infectious virion production.* Membrane-induced folding is also important
for the stabilization of core protein, since mutants deficient in membrane association—and
thus probably largely unfolded—are rapidly degraded by the proteasome.*?

The D1 domain of core is additionally stabilized upon RNA binding, as evidenced
by its increased resistance to proteinase digestion.* Since RNA binding and nucleocapsid
formation are intimately interrelated in HCV, particle formation has so far precluded the
structural characterization of the RNA-induced folding reaction.* Besides coating and
protecting the viral genomic RNA, core protein is also endowed with nucleic acid chaperone
activities, i.e., it can promote RNA structural rearrangements, leading to the formation
of the most stable RNA structure.??*3 RNA binding and chaperoning are carried out
by the intrinsically unstructured N-terminal region of core protein and probably involve
mutual induced folding of the interacting partners.*>** RNA chaperones in diverse virus
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families, including retroviruses, coronaviruses and several distinct members of flaviviruses
employ disordered regions to modulate RNA structure.*** Indeed, intrinsic disorder is
prevalent in both viral and cellular RNA chaperones and might even be a prerequisite
of ATP-independent chaperone action, as implied by the ‘entropy exchange model’ of
Tompa and Csermely.*

Will the successive conformational changes in HCV core protein upon membrane-
and RNA-binding lead to the formation of an ordered viral nucleocapsid shell? The
organization of HCV nucleocapsid remains elusive to date. However, inrelated flaviviruses,
cryo-electron microscopy based reconstruction of immature and mature particle structures
suggests that the nucleocapsid is poorly ordered or that its symmetry does not match that
of the outer glycoprotein layer.** A disordered nucleocapsid organization has also been
suggested for bovine viral diarrhoea virus, a member of the closely related pestivirus
genus.*® These studies suggest the possibility that fuzziness may be a conserved feature
in the nucleocapsids of all three genera of the Flaviviridae family.

CORE PROTEIN: A PROMISCUOUS DATE HUB WITH A CENTRAL ROLE
IN HCV PATHOGENESIS

Transgenic mice expressing the core protein of HCV develop progressive steatosis,
insulin resistance and hepatocellular carcinoma,’ - the hallmarks of chronic infection in
human patients. Although the observed phenotype may depend on the genetic background
of the mouse strains and on the expression constructs used,” core protein expression
undoubtedly accounts for varied and serious physio-pathological manifestations.
This is achieved by perturbation of a large number of cellular processes, including
regulation of cellular transcription, signal transduction, apoptosis, lipid metabolism and
immunomodulation (Figs. 2A, 2B; reviewed in refs. 56, 57). Yeast two-hybrid screens
and co-immunoprecipitation experiments have identified close to hundred cellular
proteins directly interacting with HCV core (Fig. 2A).5%% Of particular relevance for HCV
pathogenesis is the major perturbation of the insulin-JAK/STAT-TGFp (IJT) network
through direct interactions between core and a number of proteins participating in and
connecting the signalling cascades (Fig. 2A),* ultimately resulting in insulin resistance
and fibrogenesis in chronic infection.® Interestingly, the same pathways were shown to
be activated in patients who do not achieve sustained virological response upon interferon
therapy,® linking the effect of core protein to treatment failure. Another key mechanism
mediating the action of core is its binding to nuclear hormone receptors, including retinoid
X receptor (RXRa) and peroxisome proliferator-activated receptor (PPAR«), leading
to transcriptional regulation of a number of genes involved in cellular lipid metabolism,
cell differentiation and proliferation.? These changes in the gene expression pattern,
ultimately dependent on the upstream regulator proteasome activator PA28y, are essential
for HCV-associated insulin resistance, steatosis and carcinogenesis.®%

As expected, most of the mapped core-cellular protein interactions involve the
N-terminal, intrinsically unstructured region of core protein, which provides a large,
accessible surface area and might adopt different conformations to allow high specificity/
low affinity interactions with multiple, structurally heterogeneous substrates.® Indeed,
highly connected (hub) proteins in eukaryotic interactomes are characterized by a
higher amount of disorder than proteins with fewer interaction partners.*’ In addition to
constituting a major hub itself, core protein tends to interact with cellular hubs and with
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proteins that function as key connectors of different pathways (bottlenecks),’® a shared
feature of many proteins from viral and bacterial pathogens.®’ Interestingly, a number of
core-interacting human proteins, like the histone acetyltransferase EP300, the p53 tumour
suppressor protein or the double-stranded RNA-activeted kinase PKR, are targeted by
a large number of pathogenic viruses, underlying their importance in the subversion of
cellular processes and/or immune evasion.®’

HIV-1 AND ITS NUCLEOCAPSID PROTEIN

The human immunodeficiency virus Type 1 (HIV-1) is a small, enveloped virus
belonging to the Retroviridae family, which possesses unique features such as two copies of
the positive strand genomic RNA% together with the viral enzymes reverse transcriptase
(RT), integrase (IN) and protease (PR).”” HIV-1 is a member of the Lentivirus genus
together with other pathogenic viruses such as HIV-2, FIV (feline immunodeficiency
virus), BIV (bovine immunodeficiency virus) and Visna/CAEV (caprine arthritis
encephalitis virus). HIV-1 is the causative agent of the acquired immunodeficiency
syndrome (AIDS) and according to WHO estimates has caused the death of about 25
million since its discovery some 28 years ago (ref. 74 and references therein). HIV-1
is mainly transmitted through sexual contacts and by contaminated syringes among
intravenous drug users. At present about 35 million persons world-wide are living with
the AIDS virus and unfortunately only a small proportion of them benefit from therapeutic
treatments among which are the highly active antiretroviral therapies (HAART) targeting
the viral enzymes RT, IN and PR.” Although HAART proved to be very effective by
causing a nearly complete reduction of the virus load in the blood, none of the available
treatments can yet cure the disease and eliminate the virus from infected persons.

The HIV-1 genome contains nine open reading frames (ORF) coding for the virion
structural proteins (Gag), enzymes (Pol) and envelope glycoproteins (Env) and for
viral factors notably those required for proviral DNA transcription (Tat) and viral RNA
export and translation (Rev). The other regulatory factors include Nef which modulates
the immune responses targeting virus-infected cells, Vif which counteracts the host
restriction factor APOBEC 3G, Vpr involved in the nuclear import of the newly made
viral DNA and Vpu acting at the level of virus budding. The genomic RNA is flanked by
5’ and 3’ untranslated regions (UTR), that are highly structured and constitute cis-acting
genetic elements playing key roles throughout the virus replication cycle,”®”” notably
during reverse transcription of the genomic RNA by RT assisted by the nucleocapsid
protein (NC) and in genomic RNA dimerization and packaging in the course of virion
formation®7®” (reviewed in ref. 80).

NC protein is located at the C-terminus of the Gag polyprotein precursor, which is
released in its mature form called NCp7, together with the matrix Map17, capsid Cap24
and p6 proteins, by the sequential cleavage of Gag by the viral protease during virus
morphogenesis in the infected cell (Fig. 3). The nucleocapsid structure is in the interior of the
mature globular viral particle of about 115 nm in diameter and is made up of approximately
1500 molecules of NCp7 coating the genomic RNA of positive sense which alike other
retroviral genomes is in a dimeric 60S complex (see refs. 79,81,82 and references therein).
In addition, 80-100 molecules of the viral enzymes RT, IN and PR are present in the virion
nucleocapsid together with 100-200 molecules of the viral protein Vpr (reviewed in ref. 79).
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Signals important for HIV-1 assembly in MA and NC regions of GAG
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Figure 3. Signals important for HIV-1 assembly in the MA and NC regions of GAG. Simple scheme
showing signals in the matrix (MA) and nucleocapsid (NC) regions important for the nucleation of Gag
polyprotein assembly in infected cells. 1-The M-domain or plasma membrane-binding domain includes
a posttranslational modification corresponding to a myristate linked to glycine residue at position 2 and
the downstream 32 residues of MA sequence, notably a stretch of basic residues. The M-domain targets
the Pr55Gag molecules to microdomains of the plasma membrane enriched in cholesterol, glycolipids and
sphingolipids, called lipid rafts.!"*!?* The M-domain also recruits the viral envelope during assembly by
interacting with the cellular factor TIP47."?' 2-The interacting I-domain directs Gag oligomer formation
via Gag-RNA and Gag-Gag interactions where the RNA is essential to start assembly via a nucleation
process. It overlaps the C-terminal subdomain (CTD) of the CA structural domain and NC domain with
its two zinc fingers (Zf) and the flanking basic residues. The NC zinc fingers, which form a hydrophobic
plateau (see text), are major determinants for Gag-NC directed packaging of the genomic RNA in a
dimeric form.”®78$2122 The Zfs are also important signals for vesicular trafficking and virus budding
via interactions with ALIX'"'% as well as for the recruitment of Vpr'> and the overall architecture of
the nucleocapsid in mature virions (see Fig. 4 and ref. 112). 3-The nucleocapsid NCp7 of HIV-1 is a
72-residue basic protein in its mature form, with two zinc fingers of the CCHC type flanked by basic
residues. NC is essential for virus particle assembly and the selection, dimerization and packaging of
the genomic RNA. Later NC assists RT throughout the reverse transcription reaction (reviewed in refs.
78,79,81,82,86,124). 4-The p6 late L-domain is required for the release of newly formed viral particles
and has been mapped to the conserved proline-rich (PT/SAPP) motif in p6 (reviewed in ref. 120).
Molecular and cellular studies showed that the L-domain recruits the cellular factor TSG101 to the
virus assembly site at the plasma membrane. TSG101, which is the product of a tumor susceptibility
gene, is a homologue of ubiquitin-conjugating (E2) enzyme involved in the vacuolar protein sorting
machinery. TSG101 interacts with the p6 PTAPP motif, causing the recruitment of ESCRT-I (endosomal
sorting complex required for transport-I) and associated factors to the site of assembly and budding
(refs. 125,126 reviewed in ref. 120). Another cellular endosomal sorting factor, called ALIX, interacts
with the L domain and plays a significant role in the release of retroviral particles.'””"'” 5-SP1 and
SP2 are the spacer peptides 1 and 2 which regulate, at least in part, the binding of NC to RNA and
Gag processing by the viral protease (PR), respectively.!?:128

Moreover, molecules of cellular origin are incorporated in the virion nucleocapsid such as
ribosomal RNAs, actin and tRNAs, notably primer tRNALys,3.%

HIV-1NCp7isasmall basic protein characterized by two copies ofa highly conserved
CCHC zinc finger motif (ZF), both being flanked by basic residues. Each ZF motif
coordinates one zinc ion with high affinity via CCHC—Zn*" interactions, which act as
the main driving force to provide a well-defined three dimensional structure to this very
small peptidic domain®** (reviewed in ref. 79). The proximal and distal ZFs are linked
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together by the basic sequence 29-RAPRKKG, which may induce a close proximity of
the two ZFs due to the proline kink and contribute to the formation of a hydrophobic
plateau.®*# In contrast, the N- and C-terminal domains of NCp7 appear to adopt a flexible
conformation, which can be viewed as instrinsically disordered (Fig. 3) according to NMR
analyses. The role of NC in HIV-1 replication has been the subject of a large number
of investigations and, taken together, findings demonstrate that both the structured ZFs
with the hydrophobic platform and the flexible basic sequences are absolutely required
for virus formation and infectivity as well as nucleocapsid structure. 78¢5

Similarly to HCV core protein, HIV-1 NC belongs to a growing class of nucleic acid
binding proteins (NABP) endowed with RNA chaperoning properties. These proteins called
RNA chaperones are ubiquitous and abundant in all living organisms and viruses where
they play essential roles such as regulation of gene transcription and RNA translation in
cells and genome replication and virion morphogenesis in RNA viruses.®

HIV-1 PARTICLE MORPHOGENESIS, THE ROLE OF GAG-NC
AND FUZZINESS

As mentioned above (cf. crystal growth vs fuzziness), viral particle formation in
enveloped viruses, including HIV-1, is much different from crystal growth governed by
simple laws of physics. There are two distinct series of players in HIV particle assembly
in infected cells, the viral components among which Gag is the major one, on the one
hand and host machineries hijacked by the virus, on the other hand.*

The HIV-1 Gag polyprotein precursor of 55 kDa is formed of structural domains
and contains specific signals necessary and sufficient for viral particle assembly and
thus is the major viral player in the process of virus assembly, from protein synthesis to
viral particle budding (reviewed in refs. 91, 92 and references therein). In infected cells,
the full length viral RNA has two fates, either directed to function as a mRNA for Gag
and Gag-Pol synthesis by the host translational machinery,” or as a viral genome to be
selected and packaged into assembling particles. NC, as part of the newly made Gag
precursor, may actually bind its own mRNA and in turn act as a switch from viral RNA
translation to particle assembly (Fig. 4).” Yet the different fates of the genomic RNA
may well coexist with a translation-packaging balance varying according to the levels
of viral DNA transcription and RNA translation, both regulated by Tat which is another
essential viral factor member of the intrinsically unstructured protein family (IUPs).*

How Does Gag-NC Recognize the Genomic RNA to Nucleate Assembly?

This molecular recognition is most probably directed by NC binding to stem-loop
structures (SL) in the 5' UTR of the viral RNA, encompassing the internal ribosome entry
signal (IRES) which pilots viral RNA translation.’* But NC can also bind any sequence along
the genomic RNA showing only moderate sequence specificity for the 5' SL structures in
vitro.”” These findings favour the notion that the nucleation event proceeds via different
modes of Gag-NC binding to the genomic RNA. In addition, Gag-NC binding causes
dimerization of the RNA genome by chaperoning RNA-RNA interactions via the dimer
linkage structure in the 5'UTR,* meaning that two genomic RNAs should be recognized
at a time by Gag-NC. Then the dimeric genome functions as a nucleation platform or a
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Figure 4. Dynamic molecular interactions during HIV assembly. This simple scheme illustrates essential
molecular interactions taking place in the course of virus assembly. Although genetic and biochemical
studies have been able to draw a rather well-defined picture of each individual interaction, overall
understanding of these interactions, their dynamics and the structure of Gag-NC/RNA and NC/RNA
nucleoprotein complexes is probably more than vague. The newly made full length viral RNA is translated
by an IRES mechanism to produce the Gag and Gag-Pol polyprotein precursors (reviewed in ref. 93).
As shown here, Gag-NC recruits the viral RNA in a cis-acting manner to nucleate assembly. At the
very end of assembly the viral protease (PR) processes Gag and Gag-Pol polyproteins in the form of
oligomers in the particle. This maturation reaction seems to be facilitated by Gag-NC binding to the
viral RNA,'?® and in turn activates core condensation'”” and RTion.'** NC oligomers coat the dimeric
genome in the particle and assist RT throughout viral DNA synthesis and subsequently its integration
by the viral enzyme IN into the genome of the newly infected cells (for more detail see text). White
ovals represent viral and cellular machineries pertaining to viral particle formation in infected cells.
Light gray circles and ovals show viral and cellular molecules essential for the formation of infectious
virions. Dark gray ovals point to molecules that can combat HIV-1 replication and dissemination
(reviewed in refs. 130,131), notably HAART treatments.” 32133

IMMUNITY

scaffold®®to recruit more Gag-NC molecules via RNA-Gag and Gag-Gag interactions.”
At the same time, NC can recognize cellular RNA sequences, which are in a vast excess
over that of the viral RNA in infected cells. In fact, cellular tRNAs and ribosomal RNAs
represent roughly half of all RNAs incorporated in virions.”s”

All in all, the start of virus assembly corresponds to a nucleation event, where NC
in the Gag precursor has a major contribution in recruiting the genomic RNA. This
essential reaction conducted by Gag-NC seems to proceed via several modes, namely
specific and nonspecific binding to the viral RNA which chaperones its dimerization and
nonspecific binding to cellular RNAs, as well as different routes, in cis and in trans, in a
fuzzy manner. Such a flexible pathway early in assembly is fundamental to the formation
of viruses with two distinct viral genomes, that will fuel the genetic variability of HIV-1
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upon recombination during the reverse transcription reaction in newly infected cells
(Fig. 4) (see refs. 68,69; reviewed in refs. 70,79 and references therein). Furthermore,
this flexible pathway is currently used to generate hundreds of Lentiviral vectors for gene
transfer in cells and animals as well as gene therapy (GT) trials.””%

Gag-NC/RNA Interactions and the Myristyl Switch

An important consequence of the nucleation event is the targeting of the Gag-NC/
RNA ribonucleoprotein complex to cellular membranes. In fact, the N-terminal matrix
domain (MA) contains a myristate (myr), which amidifies the N-terminal glycine
residue of MA. The myristyl group is buried in a cavity of MA in the Gag monomer and
undergoes a conformational switch once Gag forms oligomeric structures upon RNA
binding directed by NC.*1®° This in turn allows the Gag RNP to be targeted to cellular
membranes, either the plasma membrane of infected TCD4+ cells or the endosomal/MVB
membrane of macrophages.!?"1% Subsequently, interactions between the Gag RNP and
cellular membranes, notably the phosphoinositide phosphatidylinositol (4,5) bisphosphate
(P1(4,5)P,), are stabilized by N-terminal basic clusters of Matrix.!+105

At the end of the assembly process, viral particles are released from infected cells by
budding. To this end Gag engages components of the ESCRT (endosomal sorting complex
required for transport) pathway, such as the cellular proteins TSG101 and ALIX, via
late-assembly signals present in Gag-p6 (reviewed in refs. 106,107; see also references
therein). Recruitment of the ESCRT machinery by Gag is also ensured by interactions
between ALIX and Gag-NC.'%81%

Taken together, the findings briefly summarized above clearly indicate that the
NC domain plays key roles in orchestrating Gag assembly from the nucleation event to
particle budding.

ROLE OF HIV-1 NC, OLIGOMER FORMATION AND FUZZINESS

The multiple roles of NC in particle morphogenesis are most probably accomplished
through the action of NC oligomers, which can be easily visualized in vitro by electron
microscopy.'® In these oligomeric structures of different sizes and forms, extensive
molecular interactions such as NC-RNA, NC-NC and RNA-RNA, are taking place as
indicated by biochemical and genetic analyses.”’*%2 These NC-RNA structures appear
to be porous because oligonucleotides complementary to the RNA sequence are getting
access to the RNA and are hybridized to the RNA by the NC annealing activity (reviewed
in refs. 78,79). Along this line, the heterogeneity and dynamics of these nucleocapsid
structures are probably essential to promote other molecular interactions, notably with
the cellular factor ALIX to facilitate virus budding!®®!® and with RT so that the enzyme
gains access to the RNA and performs cDNA synthesis with high efficiency.!'*!'2 Taken
together, these findings favor the notion that NC-RNA ribonucleoprotein structures
resemble fuzzy assemblages essential to perform diverse biological functions.

The highly dynamic nature of such fuzzy molecular assemblages is illustrated
by investigations on the functionality of viral RNA-NC complexes mimicking HIV-1
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nucleocapsid (ref. 110; reviewed in ref. 78). Under these conditions, reverse transcription
(RTion) of a viral RNA representing the 5' and 3' UTR sequences of the genome was
found to experience the two strand transfers necessary to generate the long terminal repeats
(LTR) allowing the reaction to go to completion. In these reconstituted nucleocapsids, NC
oligomers are playing multiple roles to ensure a faithful and efficient viral DNA synthesis
by chaperoning the DNA strand transfers and, at the same time, providing the RT enzyme
with excision-repair activities.'"* At the end of the RTion reaction, NC-oligomers bind
the newly made viral DNA, which contributes to maintain its integrity and facilitates the
integration reaction according to in vitro and in vivo data.''":!"¢

The functionality of such fuzzy nucleocapsid assemblages is also illustrated by the
dimeric nature of the genomic RNA, which provides the basis for multiple forced and
unforced recombinationreactions during vDNA synthesis by RT.!"* These recombinations
are chaperoned by NC and fulfill two functions, formation of a complete viral DNA by
RT in conditions where each RNA monomer contains nicks and reassortments of specific
genetic traits when the two monomers are different, which contributes to a high level
of genetic diversity resulting in a quasispecies population in HIV-1 infected persons.

CONCLUSION

In conclusion, the fuzzy assemblage of NC oligomers evenly coating the genomic
RNA, which interact with RT and IN, forms the viral replication machinery. This fuzzy
macromolecular assemblage is essential to ensure faithful and efficient DNA synthesis and
integration and thus HIV-1 replication and at the same time to permit sufficient genetic
diversity for the virus to escape HAART treatments and specific immune responses.
Such a vaguely ordered fuzzy replication machinery probably holds true also for the
alpharetroviruses (e.g., avian leukosis virus) and gammaretroviruses (e.g., murine leukemia
viruses) that are widespread in birds and rodents, respectively.”#

On a more general basis, intrinsic disorder may confer numerous functional
advantages to viral nucleocapsid proteins, providing the driving force for RNA structural
rearrangements upon RNA chaperoning during genome replication, as well as facilitating
nucleocapsid assembly and promiscuous interactions with a large number of cellular
target molecules. A complex array of simultaneous and sequential interactions with
other viral constituents, cellular lipids and proteins may induce various amounts (and
possibly type) of structure in the context of macromolecular assemblies. Determination
of the structural changes in the dynamic interaction networks is of pivotal importance in
order to identify potential druggable sites in nucleocapsid proteins or in the interacting
protein network. 16117
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Abstract: An emerging class of disordered proteins underlies the elasticity of many biological
tissues. Elastomeric proteins are essential to the function of biological machinery
as diverse as the human arterial wall, the capture spiral of spider webs and the
jumping mechanism of fleas. In this chapter, we review what is known about the
molecular basis and the functional role of structural disorder in protein elasticity.
In general, the elastic recoil of proteins is due to a combination of internal energy
and entropy. In rubber-like elastomeric proteins, the dominant driving force is the
increased entropy of the relaxed state relative to the stretched state. Aggregates of
these proteins are intrinsically disordered or fuzzy, with high polypeptide chain
entropy. We focus our discussion on the sequence, structure and function of five
rubber-like elastomeric proteins, elastin, resilin, spider silk, abductin and ColP.
Although we group these disordered elastomers together into one class of proteins,
they exhibit a broad range of sequence motifs, mechanical properties and biological
functions. Understanding how sequence modulates both disorder and elasticity will
help advance the rational design of elastic biomaterials such as artificial skin and
vascular grafts.

INTRODUCTION

Elasticity is the intrinsic ability of a material to return to its original shape after
being deformed by an external force.' Elastic recoil is a property of many different
materials, familiar examples of which include steel, rubber, silicon and lycra. Flexible
elastomers, such as rubber, are stretched or compressed with minimal force. Extensible
elastomers, including lycra, can be stretched significantly before rupturing. Resilient
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elastic materials are often used as components in mechanical devices because of their
ability to undergo stretching and relaxation reversibly, dissipating minimal elastic
energy as heat.'? Thus, different elastomers are suited to different functions because
of their unique set of elastic properties.

Accordingly, elastomeric proteins fulfill essential roles in species throughout
the animal kingdom. In vertebrates, elastin is responsible for the elastic recoil of
arteries, skin, lung alveoli and uterine tissue.*> Elastin’s mechanical properties are
remarkably similar to those of resilin, an elastic insect protein.' Diverse insect tissues
use resilin deposits to store elastic energy, including the wing joints of dragonflies®
and the jumping mechanism of fleas.” Also found in arthropods, spider silks are a
class of elastomeric materials with a wide range of elastic properties; rigid and strong
silks are used for encasing eggs and restraining trapped prey, while flexible silks are
used to construct webs.® Molluscs (scallops and mussels) have two well-characterized
elastomeric proteins: abductin and ColP. Abductin forms the flexible hinge of the
scallop’s shell. When the scallop is ‘swimming’, the opening and closing motion of
the shell propels the scallop through water.*'" Other molluscs, including mussels, are
stationary and require elastomeric threads to tether their shells to underwater surfaces.
The elastomeric protein ColP permits these threads to be stretched by the force of tides
without breaking.'? Taken together, these examples demonstrate that the biological
roles of elastomeric proteins are remarkably diverse. Accordingly, elastomeric proteins
exhibit a wide range of elastic properties: dragline spider silk is one of the toughest
materials ever discovered, resilin is more resilient than the best synthetic rubbers,"
and elastin exhibits remarkable durability."

The wide range of elastic mechanical properties of biological tissues is dictated
by the molecular structure of their constituent elastomeric proteins. Because of their
desirable mechanical properties, the study of elastomeric proteins is motivated by their
potential use in biomedical engineering and materials science. A detailed understanding
of the sequence, structure and function of these proteins provides a framework for the
rational design of novel biomaterials.

Importantly, some elastomeric proteins have well-defined secondary and tertiary
structures, while others are intrinsically disordered. This dichotomy in structural
tendencies is embodied by collagen and elastin. Although both are elastomeric proteins,
they have very different structural properties. Collagen is the protein responsible for
the strength and elasticity of tendon. In fact, collagen has more than 10 times the elastic
energy storage capacity of steel.! Collagen has been shown by X-ray crystallography
to adopt a highly ordered, triple helix structure.'> By contrast, elastin’s structure is
characterized by a high degree of conformational disorder,'®!” which makes it flexible
and easily stretched.'® Due to intrinsic differences in the degree of structural order of
elastin and collagen, very little force is required to stretch blood vessels compared
to the force required to stretch tendon. Other examples of elastomeric proteins with
well-defined molecular structures include spectrin, keratin,'*** and a protein recently
discovered in the egg capsule of the marine snail.>' Structurally-ordered elastomeric
proteins have been reviewed in detail elsewhere!*?° and are beyond the scope of the
present discussion. In this chapter, we focus on intrinsically disordered, “fuzzy”
elastomeric proteins.

The purpose of this chapter is to review what is currently known about the molecular
basis for the elastic properties of rubber-like elastomeric proteins. We introduce the
relationship between intrinsic disorder and elasticity in the following section, with a



STRUCTURAL DISORDER AND PROTEIN ELASTICITY 161

brief background on rubber-like elasticity and its associated mechanical properties.
We then provide a detailed description of elastomeric proteins that require structural
disorder to function, including elastin, resilin, spider silk, abductin and ColP. Finally,
we review the essential sequence features of these proteins and we present an emerging
unified model of the sequence, structure and function of disordered elastomeric proteins.

ELASTICITY AND ELASTIC MECHANICAL PROPERTIES
Disorder and Elasticity

Elastic materials exhibitabroad spectrum of mechanical properties due to fundamental
differences in their molecular mechanisms of elasticity. The driving force of elastic
recoil, f, is the sum of two contributions: an entropic component, f;, and an internal
energy component, f,:3?

f=f, +f,

Changes in internal energy occur when an applied force distorts the material’s
underlying molecular structure. In this case, the driving force for elastic recoil arises
from the tendency of the molecular structure to return to the state of lowest potential
energy upon removal of the external force. Stiff materials, like steel, store elastic energy
in changes in internal energy (i.e., f, > f;). In contrast, entropic elastomers, like rubber,
store elastic energy in the difference in entropy between the stretched and relaxed states
(i.e., f, > f.).? Entropic elastomers have a disordered molecular structure (Fig. 1). Because
there are many more ways of arranging a recoiled polymer chain than a stretched one,
stretching a disordered polymer lowers the chain entropy, which is restored upon release
of the strain. Compressing an entropic elastomer has the same effect as stretching: in
both cases, the entropy of the relaxed state is higher than that of the deformed state,
resulting in elastic recoil. In summary, there are two general mechanisms of elastic recoil:

Elastic Recoil
Stretched Relaxed

= S I o U 85,
SIS /@g%\
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extended by external force o flexible polymer
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Figure 1. Entropy-driven elastic recoil. The driving force for elastic recoil in a rubber-like elastomer
is the increased entropy of the relaxed state relative to the stretched state. The relaxed state has
higher entropy because there are many more ways of arranging a collapsed polymer chain than a
stretched polymer chain. The effect of an external force is to decrease the entropy, which is recovered
when the force is removed and the material recoils to its relaxed state. Cross-links are essential to
this mechanism of elastic recoil because they prevent the chains from sliding past each other during
stretching. A color version of this figure is available online at www.landesbioscience.com/curie.



162 FUZZINESS: STRUCTURAL DISORDER IN PROTEIN COMPLEXES

(1) due to internal energy, in a structurally-ordered elastomer, and (2) due to entropy, in
a structurally-disordered elastomer.

Rubber-Like Elasticity

The molecular driving force of rubber-like elasticity is the increased entropy of
the relaxed state relative to the stretched state (Fig. 1).! Due to their entropy-driven
elastic restoring force, rubber-like materials exhibit near-perfect recovery of stored
elastic energy following deformation.?* The term rubber-like refers only to the elastic
properties of a material, and does not imply that the chemical composition is similar to
that of natural rubber.® However, it is important to note that there are three molecular
characteristics common to rubber-like materials: (1) sufficient polymer chain length, (2)
high chain flexibility, and (3) the presence of interchain cross-links.>?* Chain length and
flexibility are necessary for elastic recoil: long and flexible polymer chains have many
energetically-accessible spatial configurations, and the vast majority of these configurations
are compact, resulting in the difference in entropy between the stretched and relaxed
states. In turn, covalent or noncovalent cross-links maintain the structural integrity of the
network by preventing the polymer chains from being pulled apart during extension.>*2*
Thus, in order for proteins to exhibit rubber-like elasticity, their amino acid sequence
must encode a sufficiently flexible structure to give rise to entropy-driven elastic recoil,
and must contain amino acid residues capable of forming interchain cross-links. The
mechanical properties of rubber-like elastomeric proteins are modulated by the flexibility
ofthe disordered regions, the nature of the cross-links and the spacing between cross-links.

Experimentally, rubber-like materials are identified by their unique thermoelastic
behaviour: when held at a constant force, a rubber-like elastomer shrinks with increasing
temperature.? Similarly, if held at constant extension, its elastic restoring force increases
in proportion to the temperature.” Underlying both of these thermoelastic properties is
the enhancement of molecular motion at higher temperature, which results in an increased
tendency of the system to populate states of higher entropy.>** Raising the temperature
increases the contribution of entropy to the free energy of the system. In addition to being
entropically-favourable, the relaxed state of an elastomer has a lower potential energy
than the stretched state due to stabilizing interactions between polymer chains, such as
hydrogen bonds. The relative contributions of entropy (f;) and potential energy (f.) to
the elastic restoring force can be determined using thermoelastic (force-temperature)
measurements.” In natural rubber, 82% of the elastic restoring force is due to entropy
and 18% is due to energetic stabilization of the relaxed state.”® Similarly, the internal
energy component of the elastic force is 13% for the synthetic rubber polybutadiene
(used in tires).?

Measures of Elasticity

In order to fully understand the biological role of elastomeric proteins, and
furthermore, to use them effectively in novel biomaterials, measurements of their elastic
mechanical properties are required. These measurements are typically performed on a
small biomaterial sample using a specialized mechanical testing apparatus.® Mechanical
(force-deformation) tests produce stress-strain curves. Stress is the applied force normalized
by the cross-sectional area of the material (in units of pascals, Pa). An applied stress
induces a strain, which is the change in length of the material normalized by the initial
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length.!*?* A typical stress-strain curve for a rubber-like elastomeric protein is shown in
Figure 2, along with illustrations of several elastic mechanical properties.'?

Two types of measurements are performed to measure mechanical properties:
(1) extending the elastomer until it ruptures (Fig. 2A), and (2) allowing the elastomer to
relax before it reaches its breaking point (Fig. 2B). The stress and strain at the point of
rupture are a measure of the material’s strength and extensibility, respectively. Integrating
the area under the stress-strain curve is a measure of the work needed to perform a given
deformation. The work required to rupture the material is a measure of its toughness.
If the elastomer is stretched and allowed to return to its relaxed state, the hysteresis
between the two stress-strain curves is a measure of the elastic energy lost to heat. The
corresponding mechanical property is resilience, which is the initial work minus the lost
heat, normalized by the initial work done to strain the material.?’” An elastomer’s stiffness
is a measure of how easily it is deformed; stiffness is quantified by the elastic modulus,
which is the slope in the linear regime of the stress-strain curve.’ Taken together, the
strength, extensibility, toughness, resilience and elastic modulus provide a description
of the elastic behaviour of a material.

RUBBER-LIKE ELASTOMERIC PROTEINS

Here, we review what is currently known about the sequence features, structural
characteristics, mechanical properties and biological roles of five rubber-like elastomeric
proteins: elastin, resilin, spider silk, abductin and ColP. In addition, we summarize recent
advances in other elastomeric proteins.

Thermoelastic measurements have been performed on elastin, resilin, abductin and
hydrated major ampullate spider silk. The internal energy components of the recoil force
of elastin and major ampullate spider silk are 26%>!%?* and 14%,¢ respectively. On the
basis of these measurements, the thermoelastic behaviour of rubber-like elastomeric
proteins is consistent with entropic elasticity.>*>% It is essential to note that elastomeric
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Figure 2. Measurements of elastic mechanical properties. Shown here are stress-strain curves for a
rubber-like elastomer in two types of mechanical tests. A) In the first type of experiment, an elastomer
is stretched past its breaking point. This experiment measures strength, which is the stress at the rupture
point, and extensibility, which is the strain at the rupture point. Toughness is the work required to
rupture the material, which is the area below the stress-strain curve. B) In the second type of experiment,
the material is allowed to return to its relaxed state without being stretched to its rupture point. The
elastic modulus is the slope in the linear regime of the stress-strain curve. The work done to stretch
the material is the area under the top curve (W). When the material is allowed to relax, it follows a
stress-strain curve below the original curve. The area between the stretch curve and the relax curve is
the elastic energy lost to heat (H). Resilience is the difference between W and H, normalized by W.
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proteins are rubber-like only when hydrated or in polar solvents.? Water is thought to act
as a ‘plasticizer’ by forming direct interactions with the polypeptidic backbone, resulting
in elastic mechanical properties.'®

Measurements of mechanical properties for the elastomeric proteins described in
this chapter are provided in Table 1. Elastomeric proteins exhibit a remarkable diversity
of elastic properties, which may differ by orders of magnitude. Different biological roles
demand different combinations of extensibility, resilience, strength and stiffness, which
are all ultimately determined by structural properties. The elastic properties of proteins
are modulated by the primary sequence, the domain organization and the spacing between
adjacent cross-links; these features are reviewed below.

Elastin

Human life is entirely dependent on the elastic properties of elastin. Together with
other structural proteins, elastin forms the fabric of extensible tissues, including skin, blood
vessels and elastic ligaments, and provides the elasticity required for proper physiological
function.? Elastin is a major component of large arteries; bovine aorta is composed of
nearly 50% elastin.*® The aorta expands when the heart contracts (during systole), and
recoils elastically when the heart refills with blood (during diastole).>'** In the walls of
the aorta, elastin functions in tandem with collagen to produce a “J-shaped” stress-strain
curve.*? Elastin is responsible for the initial low stiffness region of the curve, while collagen
confers increased stiffness at higher strains. Thus, collagen provides the strength required
to prevent rupture due to high blood pressure, while the resilience and extensibility of the
aorta imparted by elastin minimize the energetic demands on the heart and ensure smooth
blood flow to tissues throughout the body.?!*

In addition to extensibility and resilience, elastin possesses remarkable durability:
once laid down in tissue during development, elastin does not turn over at an appreciable
rate.'" In order to sustain a lifetime of breaths and heartbeats, elastin must therefore undergo
billions of stretching-relaxation cycles without damage or permanent deformation. Unlike
elastin in blood vessels and lungs, elastin in the uterus is degraded and replaced during
adulthood.?® In order to accommodate the rapid growth and motion of the fetus, the uterus
requires significant extensibility. Accordingly, during pregnancy, uterine elastin content
increases by more than 500%, the majority of which is quickly degraded post partum.’ As
a result of elastin’s impressive diversity of biological roles and exceptional mechanical
properties, it is the best-characterized rubber-like elastomeric protein.

It is now possible to mimic the elastic properties and self-assembly of elastin using
smaller recombinant polypeptides, which can be used to fabricate materials suitable for
stress-strain measurements.'*** Both elastin and elastin-derived peptides self-aggregate
upon heating to form an organized fibrillar structure in a process known as coacervation.
Remarkable durability and intrinsic capacity for self-organization make elastin an ideal
biomimetic model in the development of synthetic biomaterials. Biomaterials composed
of either elastin or elastin-derived peptides have desirable elastic mechanical properties:
low stiffness, high resilience and high extensibility (refer to Table 1 for measurements)."!4

Elastin’s mechanical properties are encoded in its amino acid sequence, which fulfills
the essential requirements for rubber-like elasticity. The sequence of tropoelastin, the
monomeric precursor of elastin, is composed of alternating cross-linking and hydrophobic
domains. The covalent cross-linking of elastin monomers imparts strength and stability to
the polymeric matrix, while the hydrophobic domains are thought to confer the propensities
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for self-aggregation and extensibility.* More than 80% of the sequence of the hydrophobic
domains consists of proline, glycine, valine and alanine.* The hydrophobic domains of elastin
have a pseudo-periodic, low complexity sequence, with repeat motifs PGVGVA, PGV
and PGVGV.! There are several excellent reviews of elastin’s biochemistry and structural
properties.***3 Here, we briefly review what is currently known about the structural features
of elastin’s hydrophobic domains.

For several decades, the elastin field was plagued by controversy surrounding the
structure of elastin and, correspondingly, the molecular mechanism of its elastic recoil.
Models of elastin structure and function were simplistic and largely incompatible with
each other.”” Urry postulated that elastin’s repetitive sequence must encode a perfectly
repetitive structure: the B-spiral.* In this model, an ordered spiral consists of consecutive
Type-II B-turns with PG motifs forming the corners of the turn. Elasticity was thought to
arise from the “librational motions” of the B-spiral.*® The B-spiral was also postulated as the
structure of other elastomeric proteins, including wheat gluten, spider silk and resilin.?*3’
In contrast to the ordered view of the 3-spiral model, Flory and Gosline put forth models
of elastin as a random, rubber-like structure.?®3® Thus, models of elastin structure ranged
from ordered to predominantly random coil.

In support of rubber-like elasticity and a highly disordered structure, force-temperature
measurements on elastin indicate that internal energy contributes between 10% and 26% to
the elastic restoring force, with entropy being the dominant molecular driving force.*!8283
Consistent with these macroscopic measurements, solid-state NMR has provided significant
insight, suggesting the absence of a-helix and 3-sheet and a high degree of dynamic disorder.!”
In addition, *C NMR studies demonstrated that the hydrated state of elastin has significant
structuralmobility, which decreases as wateris removed.* Taken together, the thermoelasticity
and NMR evidence indicates that the polypeptide chains of elastin are highly mobile, and
therefore possess high configurational entropy. These observations are inconsistent with
models requiring conformationally-restricted structures, such as the B-spiral.’

However, the random network model of elastin is too simplistic to account for
experimental data consistent with the presence of B-turns and polyproline II (PPII) structure.
Circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) have provided
limited structural data suggesting a high degree of conformational flexibility, together
with a measurable propensity to adopt f-turns and PPII conformations.*#!#* It should be
noted that only qualitative interpretations of CD spectra of elastin are possible because
the reference databases used by CD deconvolution programs consist primarily of globular
proteins.** Given these limitations, it is not possible to obtain information about equilibrium
populations of either PPII or -turn structures using CD.

Similarly to many other intrinsically disordered proteins (IDPs), the insolubility,
conformational heterogeneity and intrinsic flexibility of elastin have precluded the use
of conventional high-resolution structural determination methods, including X-ray
crystallography and solution NMR.!” In contrast to experimental approaches, molecular
dynamics (MD) simulations are not hindered by conformational disorder, and have therefore
proven useful in obtaining atomic-level descriptions of the conformational ensembles of
elastin-like peptides.'®*4¢ Molecular simulations provide information that can be used
to characterize the ensemble of IDPs.*” This is because MD simulations provide time
trajectories containing information on the dynamics of all particles in the system. Due to
limited computing power, MD simulation studies of elastin were until recently restricted
to short time scales (nanoseconds)* or small oligopeptides (only eight residues).*
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However, two recent studies from our laboratory have dramatically extended the scope
of simulations of elastin-like peptides: it is now possible to reach the microsecond time scale
for peptides of similar size to a hydrophobic domain (35 residues).!4*4” Using all-atom MD
simulations with explicit water, we obtained a disordered conformational ensemble for the
elastin-like peptide (GVPGV),.*#" In order to effectively sample many conformational states,
we employed a novel enhanced sampling method.* The structure of elastin-like peptides is
flexible and disordered, which indicates that the underlying energy landscape is defined by
conformations thatare very similar in energy, and these conformations exchange rapidly with
one another. For this reason, it is relatively easy to obtain meaningful structural information
and compute thermodynamic averages from molecular simulations.

The (GVPGV), peptide populates a heterogeneous ensemble of conformations (Fig. 3).
A selection of conformations from the simulation is shown, which represent a very small
subset of the possible conformations of this peptide. Here, we illustrate the ability of MD
simulations to provide an atomic-resolution description of a disordered state ensemble. The
monomeric peptides (Fig. 3B) adopt collapsed, water swollen conformations reminiscent
of the unfolded ensemble of globular protein domains.* The structures exhibit a highly
flexible polypeptide backbone, with exchanging conformations and overall structural
disorder. Although these structures contain no o-helix or extended B-sheet, they are not
random coils. Ordered structure is observed predominantly in the form of PPII content and
hydrogen-bonded turns, both of which are local. In agreement with recent studies of peptides
modeling the unfolded state of proteins,* the PPII structure observed is not extensive but is
instead confined to one or two consecutive residues. Consistent with spectroscopic studies,
the structures populated by an elastin-like peptide in solution are disordered, but not random.

In addition, we show a snapshot from a simulation of an aggregate of eight (GVPGV),
peptides (Fig. 3A). Consistent with solid state NMR data indicating a lack of p-sheet
structure in the aggregated state of elastin,'’” the aggregate of this elastin-like sequence
is intrinsically disordered and highly hydrated. Retention of structural disorder in the
aggregated state is analogous to the phenomenon of “fuzziness” in protein-protein
interactions; the “bound” (aggregated) state of elastin retains both static and dynamic
disorder in the same way that some IDPs remain disordered in complex with their binding
partners.”' While there was significant controversy surrounding the structural tendencies
of elastin, it is now clear based on simulations, solid-state NMR data and CD spectra
that elastin should be classified as an IDP.*#75? The emerging consensus is a new model
of elastin structure in which the hydrophobic domains form water-swollen, disordered
aggregates characterized by an ensemble of many degenerate conformations devoid of
any regular secondary structure. Local structure, in the form of turns and PPII, is present
and is transiently populated as conformations rapidly interconvert on the nanosecond
timescale. Further structural insight from our studies is reviewed below.

Resilin

Another rubber-like elastomeric protein with very similar mechanical properties
to elastin is the insect cuticle protein, resilin. First discovered in the elastic tendon of
dragonflies,* resilin is found in many arthropod species and is important to insect flight,
locomotion and sound production.®’* The tymbal mechanism of the cicada utilizes
resilin as an energy storage device. When the tymbal is compressed, elastic energy is
stored in resilin and the subsequent release of this energy is accompanied by the cicada’s
characteristic sound.** Resilin in the cuticle of ticks facilitates the dramatic expansion of
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Figure 3. Configurations of the elastin-like peptide (GVPGV),;. A) Aggregate of 8 chains; B) 16 unique
configurations of a monomer. These configurations are only a small subset of the thousands of configurations
generated by the simulations and are shown to illustrate the structural heterogeneity of this peptide. The
peptide retains a water-swollen, disordered structure in both monomeric and aggregated states. There
are, on average, 0.73 water molecules bound to each hydrogen-bonding backbone group.'® For both the
monomer and aggregate, MD simulations were conducted using the STDR method® in explicit water
(which is not shown for clarity) for a total simulation time of 70 us (monomer) and 110 us (aggregate).
Snapshots from 300 K are shown with a cartoon representation of the backbone, licorice representation of
sidechains and a solvent-excluded surface (rendered using the visualization program UCSF Chimera’’). The
cartoon representation is coloured by residue (proline in yellow, glycine in purple and valine in orange).
A color version of this figure is available online at www.landesbioscience.com/curie.

the cytoskeleton during feeding, a property not found in most other insects that shed their
cytoskeleton before significant growth can occur.” Another biological role of resilin is
as an energy storage device in the jumping mechanism of of fleas: muscle contraction
alone is incompatible with the timescale of energy release (less than one millisecond)
and the necessary power output.” Accordingly, the cuticle of fleas contains a resilin pad,
the size of which correlates with jumping ability.’

Unlike elastin, which is challenging to isolate and purify,* the resilin pads and tendons
in insects are isotropic and easily isolated, and therefore convenient for experimental
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characterization.® However, in order to produce sufficient amounts of resilin to manufacture
biomaterials, several groups utilize recombinantexpression systems. %57 A resilin-like protein
(rec] resilin) was cloned and expressed in E. coli.'**® Large quantities of soluble recl resilin
were produced and cast into rods and strips. Importantly, synthetic rec1 resilin materials have
the same resilience (90-92%) as elastic tendon isolated from dragonfly wing (92%). Recl
resilin strips have a resilience of 97% in solution, dissipating only 3% of elastic energy as
heat. Thus, resilin’s resilience is greater than that of polybutadiene, a high resilience rubber,
and is unmatched by any other elastomeric protein."”* Furthermore, synthetic resilin can be
stored in a dehydrated state and recover the same resilience upon rehydration." Besides its
high resilience, resilin also has a high extensibility. Synthetic resilin strips can be stretched
to more than three times their original length without permanent deformation,' and elastic
tendons composed of resilin can be compressed by a factor of one-third.®

In addition to these exceptional elastic properties, resilin has a high durability. It is
deposited in the insect cuticle during the pupal stage'® and remains in place throughout
the adult lifetime. While insects generally have much shorter life spans than vertebrates,
their resilin deposits have similar durability requirements as elastin. For example, the
resilin deposit in the cicada’s tymbal is compressed hundreds of millions of times in sound
production, necessitating a high durability.** Taken together, resilin’s high extensibility,
high resilience, high durability and low stiffness make it ideal for a wide variety of
biomaterials applications. To this aim, aresilin-like sequence was recently combined with
a cell binding domain in a designed recombinant protein. The resulting biomaterial has
a high extensibility (up to 200%) and is capable of cell adhesion. This study represents
an important first step towards tissue engineering because fibroblast cells were able to
adhere and proliferate on the extensible resilin-like scaffold.*

Based on their similar mechanical properties, it is not surprising that the sequences
of elastin and resilin share a number of similar features. Both have a high content of
proline and glycine and are highly repetitive (see Table 1 for specific repeat motifs).!657-58
However, unlike the predominantly nonpolar sequence of elastin, the sequence of resilin
is depleted of large hydrophobic residues like valine and isoleucine and has a significantly
enhanced content of hydrophilic residues.’” Towards the development of a resilin-inspired
biomaterial, Tamburro and coworkers recently identified PGGGN as a putative minimal
repeat motif for resilin-like properties.>” Peptides based on this motif were found to readily
self-assemble into fibrillar structures.’” In contrast to the regular alternance of cross-linking
and hydrophobic domains in elastin, the sequence of resilin has no specific cross-linking
domains; instead, tyrosine residues are interspersed throughout the elastic repeat motifs,
and form di- and tri-tyrosine cross-links. It is estimated that 20% of tyrosine residues are
covalently cross-linked, " with a spacing 0f 40 to 60 residues between cross-links.* Thus,
the sequence of resilin is compatible with the requirements for rubber-like elasticity, with
cross-links separated by flexible polymeric chains.

Resilin was the first elastomeric protein to be identified as rubber-like on the basis
of thermoelasticity experiments.” In agreement with an entropy-driven mechanism of
elastic recoil, CD, NMR and Raman spectra of a resilin-like protein are all consistent with
a heterogeneous and dynamic structure.® Vicinal coupling constants from NMR indicate
an absence of either a-helix or B-sheet structure, while chemical shifts are consistent
with “random coil” values.® Sequential and medium range NOEs indicate the presence
of B-turn conformations, with PG, GG and PS motifs forming the corners of the turn.’’
Similarly, CD spectra are consistent with the presence of PPII structure and p-turns.*
X-ray diffraction measurements indicate that resilin does not attain any significant ordered
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structure, even when stretched to three times its length or when dried.>® Although the
B-spiral structure has also been proposed for resilin,*® all of the experimental evidence
obtained to date is incompatible with this model. Instead, a common thread emerges: the
polypeptide chain of resilin is highly flexible and intrinsically disordered.

Spider Silk

In order to construct their intricate webs, spiders utilize silks with diverse elastic
mechanical properties. Using a complex spinning and extrusion process, spiders finely
tune the elastic properties of the silk proteins (spidroins) produced in their abdomen.*'
The best-characterized spidroins belong to spiders from the family Araneoidea. Known
for their orb-shaped webs, araneid spiders include the common garden spider, Araneus
diadematus, and the golden orb-weaver, Nephilia clavipes. Araneid spiders produce seven
unique types of silk, which are named after the specialized abdominal glands in which
they are synthesized: (1) major ampullate silk is spun into fibres forming both the dragline
and the radial threads of the web; (2) minor ampullate silk reinforces the dragline and
web frame; (3) flagelliform silk forms the capture spiral; (4) aggregate silk is an aqueous
‘glue’ coating the capture spiral; (5) the ‘cement-like’ silk from the piriform gland is
used to attach the web to a surface; (6) aciniform silk is used to restrain captured prey;
and (7) tubuliform/cylindriform silk is used to protect the egg sac.%6263

While spiders make use of silk for a wide range of purposes, the most familiar use
is in the construction of the spider web. A web is an incredibly efficient insect-catching
device: a spider can produce a web covering nearly 1 m? using only 180 ug of protein.®
Although the threads of the web are very thin, they exhibit toughness greater than the best
synthetic materials, including Kevlar®. It is for this reason that the web does not break upon
impact with an incoming insect, or when a trapped insect scrambles to get free.® Orb-web
spiders construct their webs using a combination of two silks with complementary elastic
mechanical properties.®* The threads forming the radial frame of the web are stiff and
extremely tough; they are composed of both major and minor ampullate silk. The capture
spiral connecting the radial threads is sticky, highly extensible and easily stretched; it is
composed of flagelliform silk, with stickiness and hydration provided by “glue” silk from
the aggregate gland. Both major ampullate silk and flagelliform silk have low resilience
(roughly 30%). This is essential for two reasons: (1) the elastic energy stored in the web
by the impact of an incoming insect is dissipated as heat, preventing the insect from
bouncing off the web and (2) the dissipation of elastic energy contributes to the overall
toughness of the web, preventing the strands from breaking.®

Here, we are particularly interested in the two types of spider silk possessing
rubber-like elasticity: major ampullate silk and flagelliform silk. Both major ampullate
and flagelliform silk contract when immersed in water, but the effect is much more
pronounced for major ampullate silk, and is called “supercontraction”.%* Thermoelastic
measurements indicate that major ampullate silk exhibits rubber-like elasticity, but only
in the supercontracted, hydrated state. The internal energy component of the elastic force
is only 14%.%® When hydrated, major ampullate silk has an elastic modulus three orders
of magnitude smaller than in the dry state (107 Pa compared to 10" Pa).® A biological
function has not yet been identified for the supercontracted, hydrated state of major
ampullate silk.®* The structure of major ampullate silk is thought to consist of alternating
crystalline and amorphous domains. The crystalline regions are short polyalanine stretches
of 8 to 10 residues, which form f3-sheets oriented parallel to the fibril axis.®*% Because the
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B-sheets are intermolecular, they effectively act as noncovalent cross-links,* while the
conformational entropy of the amorphous domains results in elastic recoil.?® As a result,
the structure of major ampullate silk resembles a rubber with “crystalline inclusions”.?

The mechanical properties of flagelliform silk are qualitatively similar to those of
supercontracted major ampullate silk.? In contrast to elastin and resilin, flagelliform silk
has a relatively low resilience, which is essential to its functional role: if it returned the
stored elastic energy efficiently, insects that fly into a spider web would immediately
bounce off.®® In order to effectively trap insects in the web, flagelliform silk must be
coated in a sticky mixture of hygroscopic peptides and glycoproteins, which are produced
in the aggregate gland.®® Flagelliform silk is a very promising biomaterial by virtue
of its unusually high strength (0.5 GPa), which is approximately ten times that of any
other rubber-like elastomer.®> However, the cannibalistic and territorial nature of spiders
precludes the possibility of directly harvesting sufficient quantities of silk to manufacture
materials.*® An additional complication arises from the importance of the effect of spinning
on mechanical properties. Even if silk can be recombinantly expressed, mimics of the
spider’s spinnerets are essential to obtain strong and extensible fibres.

Compared to elastin and resilin, there is relatively little high-resolution structural
information on flagelliform silk. A recent solid-state NMR study of the flagelliform-like
sequence (GPGGA)G demonstrated that the motif GPGG has a high propensity to
form a B-turn.” In addition, *C chemical shifts and Raman spectra are consistent with a
“random-coil” structure.”*8 These results are inconsistent with the 3-spiral structure, which
was proposed for flagelliform silk because the sequence encodes repetitive pentapeptide
motifs.®? While cross-links are necessary to explain the remarkable strength of flagelliform
silk, the residues involved in cross-linking have not yet been identified.®

Abductin

Abductin is an elastomeric protein that forms the hinge ligament of the bivalve
mollusc shell.?” In molluscs of the family Pectinidae, the shell opens and closes three
times per second to facilitate swimming.”” The name of abductin is derived from its
biological role: the hinge composed of abductin acts as an abductor, an antagonist to the
adductor muscle in the opening and closing motion of the shell.**® The adductor muscle
stores elastic energy in the abductin hinge by compressing it as the shell closes. The shell
opens when the adductor muscle relaxes and the energy stored in the abductin hinge is
released to oppose the force of the surrounding water.>” In order to minimize the energy
required by the mollusc for swimming, the energy stored in the abductin hinge must be
recovered to open the shell. Thus, high resilience is essential to abductin’s biological
function.” Mechanical tests on abductin demonstrated its resilience to be between 82 and
96%, with significant variation between mollusc species.?’ Interestingly, an analysis of
the amino acid composition of abductin from several species revealed that resilience is
correlated with glycine content. In fact, the sequence of abductin is characterized by
an unusually high glycine content (nearly 70% in fast-swimming mollusc species).”
Glycine content is therefore a fundamental determinant of the rubber-like mechanical
properties of abductin.

Since abductin’s biological function demands a high resilience, it is not surprising
that its amino acid sequence and its structural properties are similar to those of both elastin
and resilin. Thermoelasticity measurements on abductin place it among the rubber-like
elastomeric proteins, with a primarily entropy-driven elastic restoring force.” Like
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elastin, resilin, major ampullate silk and flagelliform silk, abductin exhibits rubber-like
elasticity only when hydrated.'® Accordingly, the abductin hinge ligament is composed of
approximately 50% water.’ The amino acid sequence of abductin is highly repetitive, with
aconsensus repeat motif GGFGGMGGGX.”' Although the complete sequence of abductin
from scallops has been determined, the residues involved in cross-linking have not been
unambiguously identified.”’ CD and NMR spectra of abductin-like sequences are consistent
with the presence of both PPII structure and f-turns,**” but no high-resolution structural
studies have been performed to date. Abductin’s high resilience and compressibility
make it an interesting biomaterial worthy of further structural and mechanical studies.

ColP from Byssal Threads

Marine mussels use byssal threads to attach themselves to solid substrates, such as
rocks and harbour walls.”>” Since a secure attachment is vital to their survival,” byssal
threads require both strength and extensibility. In addition, the low resilience of byssal
threads effectively dissipates elastic energy like a damped spring, preventing the mussel
from hitting the hard surface to which it is attached.!'? The mechanical properties of the
byssal thread vary along its length:" the distal end (near the point of attachment to the
surface) is stiff and strong, while the proximal end (near the shell) has a high extensibility
and low elastic modulus.'>"

The byssal thread’s continuum of mechanical properties is the result of a protein
gradient along its length. The distal end is primarily composed of the protein ColD,
whereas the proximal end is primarily composed of ColP, and the intermediate region
contains a mixture of both ColP and ColD.!%" The protein ColP is itself a hybrid: it
is the firstknown example of a block copolymer containing both elastic and collagen-like
domains.” The collagen-like domain is predicted to adopt a triple helix structure, while
the elastic domains are enriched in hydrophobic residues and contain many instances
of the PG motif.”” Based on sequence similarity between ColP’s elastic domains and
the repeat motifs of elastin and flagelliform silk, it has been proposed that ColP confers
elasticity and extensibility on byssal threads.” As a consequence of combining these
two types of sequences, proximal byssus has mechanical properties intermediate
between those of elastin and collagen. Compared to collagen, it has higher toughness
and extensibility, at the cost of reduced strength.”? The extensibility of the proximal
region is similar to that of elastin and resilin, with a significantly lower resilience and
an elastic modulus that is an order of magnitude greater.'* The hybrid nature of the
byssal thread endows it with the remarkable strength and flexibility to maintain surface
attachment against powerful tides.”>"

Very little is known about the structural properties of ColP. X-ray fibre diffraction
studies of intact byssal threads indicate a gradual decrease in structural order along the
length of'the thread (in the distal to proximal direction). Diffraction patterns are consistent
with the presence of ordered collagen-like structure in the distal region, gradually giving
way to increased structural disorder in the proximal region.” While structural studies on
intact byssal threads are a useful first step, higher-resolution structural studies, ideally
on ColP or its elastic domains in isolation, are essential to elucidate the connection
between structural disorder and elastic properties. Strictly speaking, ColP has not yet
been demonstrated to be a rubber-like elastomer with thermoelasticity measurements,
but here we group its elastic domains with the other rubber-like elastomeric proteins on
the basis of high sequence similarity.
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Other “Fuzzy” Elastomeric Proteins

Interestingly, some proteins that form rubber-like biomaterials in vitro do not
require rubber-like elasticity to fulfill their biological role. The sequence signatures of
disordered elastomeric proteins were recently found in a domain of the transcription
factor Ultrabithorax (Ubx) from Drosophila melanogaster. The sequence of Ubx is
enriched in glycine and contains multiple GGX and GXXP elastin-like motifs. In
vivo, Ubx interacts directly with DNA to regulate transcription; it is not known to
form aggregates as part of its biological function.”®”” Remarkably, however, Ubx was
recently found to self-assemble in vitro into elastic materials with several morphologies,
including films, fibres and sheets.” Ubx ‘ropes’ were found to have an extensibility
approximately one-third that of elastin. Similar to the rubber-like elastomeric proteins,
Ubx materials are only extensible when hydrated and become brittle when desiccated.
The identification of Ubx as an elastomeric protein suggests an interesting research
direction: the identification of sequences with similar features to known elastomeric
proteins as possible novel rubber-like elastomers.

In addition to looking for new elastomeric proteins through sequence similarity to
known elastomeric proteins, it is also essential to investigate the protein constituents
of extensible and soft biological tissues. It is likely that many more rubber-like
elastomeric proteins exist that have not yet been discovered. For example, studies
on octopus aorta revealed the presence of a rubber-like elastomeric protein.”® The
“octopus arterial elastomer” (OAE) performs the same biological role as elastin in
vertebrate arteries. Like the other rubber-like elastomeric proteins, its elastic recoil is
predominantly entropy-driven. However, the amino acid composition of OAE is very
different than that of elastin, resilin or abductin. More than 33% of the sequence consists
of charged residues, and there is significantly less proline and glycine. OAE is stiffer,
less extensible and less resilient than elastin and abductin.”® Although both elastin
and OAE are responsible for the elastic recoil of the aorta, their sequence features are
quite different. Thus, in developing a toolkit of elastomeric proteins for incorporation
in biomaterials, it is valuable to study proteins from the myriad of elastic tissues that
exist in nature. As a first step, we require information on the sequence determinants
of rubber-like elasticity.

SEQUENCE FEATURES OF DISORDERED ELASTOMERIC PROTEINS
Low Sequence Complexity

The sequences of elastomeric proteins have very little sequence homology'® and are
instead characterized by a common ‘style’ of sequence. Elastomeric domains typically
have low complexity sequences with repeat motifs (refer to examples in Table 1).> These
repeat motifs often contain PG and GG dipeptides, which preferentially form p-turns.*”
For several decades, it was thought that the repetitive sequences of elastomeric proteins
must encode a repetitive molecular structure (the p-spiral).?* However, a wealth of
experimental evidence indicates the absence of a well-defined or repetitive structure, which
is corroborated by computational results. The observation that a repetitive sequence leads
toadisordered structure is notunexpected, given the well-established connection between
low sequence complexity and structural disorder.*® In general, tandem repeats are more
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common in the sequences of IDPs when compared to all sequences in the Swiss-Prot
database.?! In this sense, elastomeric proteins are prototypical IDPs. Our studies have
uncovered an important sequence feature that is common to all rubber-like elastomeric
proteins, which we describe in the next section.

Proline and Glycine Control Self-Aggregation of Elastomeric Proteins

Rubber-like elastomeric proteins require a high level of structural disorder for
entropy-driven elastic recoil. In addition, they must self-aggregate in order to form an
elastomeric network. Their sequence must therefore preclude the possibility of forming
well-structured protein aggregates. In particular, elastomers must avoid the formation of
amyloid fibrils, which are characterized by a cross-f3 quaternary structure, with -strands
running perpendicular to the main axis of the fibril.*>%* The deposition of amyloid fibrils
is associated with more than forty tissue-degenerative pathologies, including Alzheimer’s
disease and Type I diabetes.®*35 However, amyloid fibrils are not necessarily toxic,** and
have even been found to have essential functional roles in both humans and bacteria.®*%’
Furthermore, it has been proposed that the amyloid fibril represents an inherent form of
organization potentially accessible to all polypeptide chains under appropriate conditions.®
Highly hydrophobic sequences, such as that of elastin, are, in principle, susceptible to
forming amyloid. For example, exon 30 of human elastin forms amyloid-like fibrils
when removed from the context of the full-length protein.*® Elastin-like peptides with
repeat motifs PGVGVA and PGVGV form biomaterials with mechanical properties
similar to native elastin, but mutations of the tandem repeats to GGVGVA, GGVGV,
or GVA promote the formation of amyloid fibrils under certain solution conditions.'¢**
Thus, it is important to understand how the hydrophobic domains of elastin, and indeed
all self-associating elastomeric proteins, manage to avoid the amyloid fate.

To investigate how sequence modulates the ability of polypeptides to self-assemble
into elastin-like or amyloid-like fibrils, we performed comparative molecular dynamics
simulations of a model set of peptides based on elastin-like motifs PGV, GV, GVA and
GGV, in both monomeric and aggregated states.'® Elastin-like peptides are characterized
by a higher hydration of the peptidic backbone and low peptide-peptide hydogen-bonding
propensities. The opposite is true of amyloid-like peptides, which form the extended
B-sheets that characterize amyloid fibrils. Moreover, the comparison of structural
properties demonstrated that elastin-like and amyloidogenic peptides are separable in
terms of backbone hydration and conformational disorder, and that these properties are
modulated by proline and glycine. Why do elastin sequences combine the two extremes
ofbackbone flexibility? Proline and glycine conspire to keep the backbone disordered and
hydrated, but for opposite reasons: proline, because it is too constrained to form secondary
structure, and glycine, because in water it is too flexible and entropically-disinclined to do
so. Proline is the primary determinant: its conformationally-restricted main chain induces
a significant propensity for PPII structure and a reduced ability to form -sheet. Both
proline and glycine favour conformational disorder of the backbone over the formation
of self-interactions. '

The generalization of this finding to the structure and function of elastomeric proteins
was confirmed by our observation of an approximate threshold in combined proline and
glycine content separating the composition of known amyloidogenic sequences from
those of known elastomeric proteins (see the PG diagram, Fig. 4). Remarkably, the
compliance with a PG composition threshold is not limited to the hydrophobic domains
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Figure 4. The PG Diagram. Elastomeric proteins from diverse organisms obey a simple design principle:
their combined fractional content of proline and glycine is above a defined threshold. In contrast,
amyloidogenic proteins have combined proline and glycine compositions below this threshold. Separating
elastomeric and amyloidogenic proteins is a coexistence region (shaded in gray) where both types of
protein self-aggregation are possible. Adapted from Rauscher et al, Structure 2006; 14(11):1667-1676;'¢
©2006 with permission from Elsevier. A color version of this figure is available online at www.
landesbioscience.com/curie.

of elastin, but is also observed for the elastic domains of ColP, abductin, resilin and
spider silk. The fact that approximately two glycines are equivalent to one proline at this
threshold confirms the role of proline as the primary determinant of elastin’s properties.
The transition in composition space between elastomers and amyloids does not appear
to be an abrupt one. Rather, a coexistence region includes sequences that are either
elastomeric, amyloidogenic, or both.'* Additional factors, such as the compositions of
other residues and solution conditions, are expected to contribute to the modulation of
protein aggregation tendencies.*

Insupport of the role of proline as the primary determinant of elastomeric properties,
proline content is the main sequence difference separating major ampullate silks with
or without rubber-like elasticity.®**° The major ampullate silks of orb-weavers Araneus
diadematus and Nephilia clavipes have nearly the same glycine content (40% and 45%,
respectively) but significantly different proline content (16% and 3.5%, respectively).
The composition of Araneus silk places it well above the PG composition threshold,
while Nephiliasilk isnear the lower boundary of the coexistence region. The differences
in proline content between these two species result in opposite mechanisms of elastic
recoil: Araneus silk has entropically-driven elastic recoil, while the elastic recoil of
Nephiliasilkis almost entirely due to internal energy. On the basis of both thermoelasticity
and birefringence measurements, it is thought that the molecular structure of Araneus
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silk is highly disordered, while that of Nephilia silk contains energetically-stable
secondary structure.®*®® In addition, based on a study of major ampullate silks from a
wide range of species, increased proline content is strongly correlated with decreased
stiffness, increased extensibility and increased capacity to shrink (supercontract).”! Thus,
proline content is an essential factor in determining the thermoelastic and mechanical
properties of spider silk.

In support of the crucial role of glycine content in elasticity, Dicko et al observed that
increasing glycine content correlates with increasing structural disorder for the various
silks produced by Nephilia edulis.®" In this study, structural disorder was quantified by a
folding index, defined as the ratio of CD ellipticities at 220 nm and 200 nm; the folding
index is a measure of the ratio of folded to unfolded structures. Interestingly, glycine-rich
silks, such as major ampullate and flagelliform silks, have a significantly lower folding
index than glycine-poor silks, such as aciniform, piriformand cylindriform.®! These results
are consistent with the view that increasing glycine content increases structural disorder,
and therefore is correlated with the onset of elastomeric properties.

UNIFIED MODEL OF RUBBER-LIKE ELASTOMERIC STRUCTURE
AND FUNCTION

The PG diagram (Fig. 4) points to a direct relationship between amino acid composition,
conformational disorder and elastomeric properties of self-assembling elastomeric
proteins. Significantly, the incompatibility of amyloid and elastomeric protein organization
suggests that avoiding the formation of a water-excluding core involving extensive
self-interactions is not only a fundamental requirement, but may very well constitute
the single most essential design principle of self-assembling elastomeric proteins. The
functional state of an elastomer may thus be described as a water-swollen, disordered
aggregate characterized by an ensemble of many degenerate conformations (Fig. 3) that
cannot form an ordered structure and are incompatible with the amyloid state. In this
loosely-aggregated, hydrated state, the polypeptide chains can readily extend under strain.

This analysis leads to a simple, unified model of elastomeric structure and function.
Like the native state of globular proteins, the structure of amyloids is characterized by a
water-excluding core and extensive backbone self-interactions. In contrast, the unfolded
state of proteins is a large ensemble of relatively disordered conformational states
similar to that depicted in Figure 3B. At sufficient concentrations, unfolded proteins
are prone to self-aggregation, which often results in the formation of amyloid fibrils.
The PG diagram suggests that elastomeric proteins are designed to avoid both folding
and amyloid formation, and that chain entropy and hydration play a central role in their
function, consistent with rubber-like elasticity. Two major entropic forces are at play
in the folding and aggregation of elastomeric proteins: polypeptide chain entropy and
hydrophobicity. Chain entropy opposes both folding and full extension of the polypeptide
chain since both events dramatically decrease the number of accessible conformations.
Hydrophobic forces drive the emergence of collapsed states of polypeptide chains.
Elastomeric chains remain hydrated and disordered even after aggregation because
their polypeptide backbone is inherently unable to form extensive self-interactions.
The relative contributions of chain entropy and entropy due to hydrophobic packing are
likely to be highly sequence-dependent. In particular, both resilin and elastin exhibit
very similar elastic properties, but have very different sequence hydrophobicities.
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CONCLUSION AND PERSPECTIVES

There is an emerging consensus that rubber-like elastomeric proteins are intrinsically
disordered, and therefore exhibit entropy-driven elastic recoil. Although a fundamental
requirement for elastomeric domains is to remain disordered even when aggregated, they
are not “random coils”. Spectroscopic evidence and computational studies both point to
the presence of significant amounts of transiently populated hydrogen-bonded turns and
PPII structure. Importantly, the work reviewed above shows that the study of rubber-like
elastomeric proteins benefits greatly from a synergy of theoretical and experimental
approaches. Molecular simulations offer high-resolution structural information that is
complementary to data obtained using spectroscopic approaches, including CD, FTIR and
solid-state NMR. However, despite significant progress in the structural characterization
of disordered states, there is at present very little insight into how the global effect
of chain entropy relates to the fine balance of microscopic properties resulting in the
distribution of conformations of the polypeptide chain and various side chains, their
hydration, aggregation and extension. Such detailed understanding is required to explain
why the mechanical properties of rubber-like elastomers exhibit significant variation.
Understanding the structural properties of rubber-like elastomeric proteins is a necessary
prerequisite to their effective use in biomaterials applications, and furthermore, to the
rational design of novel elastomeric proteins.

Thus far, the majority of detailed studies on elastomeric proteins have focussed on
elastin, and more recently, on spider silks. This is likely because biological science is
driven to achieve advances that directly impact human health, which often narrows the
focus of investigations to proteins related to specific human diseases. While there are
advantages to such a focussed approach, namely, the wealth of structural data on elastin
and elastin-derived peptides, we have demonstrated in this chapter that there are many
similarities between elastin and the other rubber-like elastomeric proteins, all of which
have tremendous potential in biomaterials development. For the most part, biomaterials
scientists have not yet exploited the emerging knowledge of the myriad of elastomeric
proteins that are adapted to various functional roles in nature. Thus, it is essential to obtain
more detailed structural and mechanical characterization of resilin, abductin, ColP and other
rubber-like elastomeric proteins. Simultaneous to fundamental structural investigations,
hypotheses regarding essential sequence features can be tested by recombinantly producing
elastomeric materials. These studies will provide complementary information to our
knowledge of elastin and spider silks.

Thus, as a next step, our toolkit of rubber-like elastomers needs to be dramatically
expanded. It is likely that many more rubber-like elastomeric proteins can be discovered
by characterizing the proteins responsible for elastic recoil in biological tissues, which is
the approach that led to the discovery of the octopus arterial elastomer. Once the essential
sequence features of rubber-like elastomers have been identified, we can search genomic
databases based on sequence similarity. It is likely other proteins, like Ubx, self-assemble
to form elastomeric materials even though elastic properties have no known relevance
to their role in vivo.

Many of the elastomeric biomaterials reviewed in this chapter exhibit a common
design theme: the combination of elastomers with diverse mechanical properties in
hybrid materials tuned to fulfill a particular biological role. Combinations of elastomers
are found in byssal threads, which unite collagen-like and elastin-like sequences; the
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spider orb-web, which combines stiff and strong major ampullate silk with sticky and
extensible flagelliform silk; and mammalian arterial walls, which achieve resilience
and strength with a combination of elastin and collagen fibrils. In addition to designs
incorporating elastomeric domains with differing mechanical properties, itis also possible
to incorporate other biologically-active domains, such as those facilitating cell adhesion.>
Furthermore, even the sequence of elastin exhibits duality in its alternating cross-linking
and hydrophobic domains. Only after we understand the sequence determinants of
elasticity for elastomers in isolation will it be possible to effectively combine different
elastomers in hybrid materials, which represent a clear next step in biomimetic materials.

Through sequence, structure and mechanical studies of rubber-like elastomeric
proteins, recent advances have led to the development of a framework for the rational
design of self-assembling biomaterials. These studies will advance the development
of biomimetic materials for a variety of applications, including vascular grafts, tissue
replacements and scaffolds for tissue regeneration.
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Abstract: Some historical background is given for appreciating the impact of the empirical
construct known as the cellular protein-protein interactome, which is a seemingly
de novo entity that has arisen of late within the context of postgenomic systems
biology. The approach here builds on a generalized principle of “fuzziness” in
protein behavior, proposed by Tompa and Fuxreiter.! Recent controversies in the
analysis and interpretation of the interactome studies are rationalized historically
under the auspices of this concept. There is an extensive literature on protein-protein
interactions, dating to the mid-1900s, which may help clarify the “fuzziness” in the
interactome picture and, also, provide a basis for understanding the physiological
importance of protein-protein interactions in vivo.

INTRODUCTION: PROTEINS IN MOTION

Fuzzy: “Notfirmorsoundinsubstance, frayedintoloosefibres; blurred; indistinct”
—Oxford English Dictionary

There is no better descriptor of the physical aura of proteins than the oh-so-noble
expression, “fuzzy”! Under defined laboratory conditions, proteinaceous macromolecules
display a rich diversity of fluctuational motions, spanning a wide range of timescales,
about some average “structure.” The significance of such behavior in our understanding
of the functionality of proteins led to the rise of the subfield of biophysical chemistry
known as “protein dynamics” in the latter part of the 20th century. As an indication of
the timeliness today, Science® devoted a special issue to the subject of protein dynamics

Fuzziness: Structural Disorder in Protein Complexes, edited by Monika Fuxreiter and Peter Tompa.
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and it is featured recently in an “Insight” supplement on “Proteins to Proteomes” in
Nature® (for reviews of the older literature see refs. 4-6). Vinson® described the character
of the protein-dynamical picture aptly, as follows: “The view that has emerged is that
of an intricate ballet. Individual proteins are in constant motion, sampling an ensemble
of different conformations and perhaps changing interaction partners as they play
their part in a particular biological process. How do these dynamics affect function?
The conformational space that a protein can explore can be described by an energy
landscape, in which different conformations are populated based on their energies
and rates of interconversion are dependent on the energy barriers between states. The
landscape and thus the relative populations of conformational states, can be modulated,
for example, by interactions with other proteins or by covalent modifications such as
phosphorylation.” Considering the complexity of such internal motions, across so
many timescales and internal degrees of freedom, it is a wonder that proteins manifest
such defined properties as ligand binding, enzyme catalysis, etc. From a physiological
viewpoint, it stands to reason that the thermal sampling of conformational substates
within proteins cannot be a completely random walk; that is, there must be constraint on
the ergodic trajectories in the phase space of conformational dynamics.” As discussed
of late by Henzler-Wildman and Kern,* “Because biological function is the property
selected by evolution, [the] conformational substates sampled by a protein and the
pathways between them, are not random but rather a result of the evolutionary selection
of states that are needed for protein function... In other words, the dynamic landscape is
an intrinsic property (or ‘personality’) of a protein and is encoded in its fold.” The idea
that protein fluctuations entail such a “personality” was proposed long ago,>’ and recent
studies® have lended support thereto. Quite simply, proteins act as “energy funnels.”

Thus, it has come to be acknowledged that functionality, as well as adaptability
and evolvability, in proteins is linked to protein dynamics.’” Various changes in the
traditional, static view of protein structure-and-function have ensued. For example, it
is now recognized that there are classes of proteins with “designed” disordered states—
what have been dubbed “intrinsically unstructured proteins”.!®!! Importantly, Tompa
and Fuxreiter' have extended this notion of structural disorder and polymorphism to
the description of interacting protein systems—in the process, introducing (what they
call) the principle of “fuzziness” into vernacular of protein biochemistry. Here, I wish to
give some historical background to the general idea of “fuzziness” in our understanding
of enzyme-enzyme interactions in living cells—within the context of the postgenomic
concept of the interactome.

THE SOCIAL LIFE OF PROTEINS IN THE CELL

Most proteins are by nature gregarious entities; they prefer to be with their
own kind. One of the oldest tricks-of-the-trade in laboratory biochemistry is the
necessity, in many cases, for the addition of a “neutral” protein (e.g., bovine serum
albumin) to a purified enzyme preparation in order to stabilize or enhance catalytic
activity. Sometimes artificial polymeric agents (e.g., polyethylene glycol) will do the
trick. We now know that these in vitro effects are indicative of the reality of dense,
heterogeneous microenvironments in vivo, wherein most individual enzymes operate
in close proximity (or are bound) to protein (or lipoprotein) arrays.'? Protein-protein
and protein-cytomatrix associations in living cells pervade the multienzyme systems
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in most metabolic pathways, as well as such processes as signal transduction, cell
trafficking, DNA replication, transcription and translation.'*"' There is a vast body of
work in this area, incorporating a range of experimental approaches, dating from the
mid 1900s. The physiological function(s) of organized enzyme states has been widely
examined.'® The social life of proteins (particularly enzymes) in situ is a far cry from
that observed in dilute aqueous solution in vitro.

Interest (and, one might argue, awareness) of the importance of enzyme organization
in biochemistry waned in the latter part of the 20th century, with the coming of the
genomic age. At the turn of the new millennium (and the rise of the postgenomic
era), large-scale, high-throughput experimental methods began to generate massive
amounts of data relating to all facets of cellular operation—via an expanding hierarchy
of empirical portals known as “-omes” that reflect the defined levels of complexity.
Indication of the widespread existence of protein-protein interactions in living cells
has rapidly mounted in this period, relying heavily on such analytical detection tools as
the yeast two-hybrid technique and affinity purification (for a review of the methods,
see ref. 17). Whole cellular interactomes (with associated protein-protein interaction
maps) have been published for a variety of organisms. The attempt to integrate the
“-omic” information into a holistic picture of cellular function today falls under the
rubric of “systems biology.” The newfound attention to the role of supramolecular
organization in the cell features prominently in this new field. As remarked in a recent
Nature editorial," “How are innumerable protein functions integrated so that a living
cell interacts coherently with its environment? This question is central to an emerging
science of biological information processing—systems biology.”

Study of the cellular interactome—both experimentally and theoretically—is
now a major research enterprise, as observed by the dramatic rise of publications and
scientific conferences on the subject in the last decade. Analogies and metaphors from
various fields of knowledge abound, in the struggle to make sense of this observational
construct. Sociology is a particularly evocative discipline of interest lately. In a “News
Feature” commentary in Nature entitled “Proteomics: The Society of Proteins,” Abbott"
pointed to “an emerging biological concept, that proteins do not work alone.” Recently,
Robinson, Sali and Baumeister® highlighted this consideration of protein-protein
interactions in a treatise labeled as “The Molecular Sociology of the Cell.” The
application of concepts from sociology to the description of protein-protein interactions
is, in fact, well known in the older, pregenomic-era literature on cellular organization
(for review see refs. 21, 22). The conception of (what have been termed) “social sites”
on globular protein surfaces? has even led to the proposal for the formal establishment
of a fifth (“quinary”) level of protein structure, in order to include the assortment of
heterogeneous interactions that relate to the organized life of most proteins in vivo.*

It was appreciated ecarly in the study of interacting protein systems that the
functional association of the macromolecular partners has been achieved via highly
specific binding sites, where the aggregation process is often subject to the subtleties
of regulatory and microenvironmental effects in vivo.'®?! Looking at the surface
characteristics of typical globular proteins, Anderson** argued from a fundamental
immunological perspective of “self-recognition” that the protein-protein interaction
patterns must be limited and sharply defined in functionality. Such conditions involve
a great degree of conservatism in the evolutionary landscape of specifically-integrated
cellular proteins.?* This early impression has become reified in the observed network
properties of the newly-emerging interactome mappings.?
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From the cytosociological standpoint, today’s interactome studies would seem
to represent prima facie the fulfillment (or perhaps the culmination) of an older
chronological train of thought on the organizational character of protein molecules in
the living cell. However, there are conceptual gaps, between this historical legacy and
the empirical approach presently being taken to understand protein-protein interactions
in vivo, which demand resolution.

THE INTERACTOME: WHAT IS REAL AND NOT REAL?

Critical questions regarding the characterization and interpretation of the cellular
protein—protein interactome have been raised by a growing number of observers. Such
concerns, for my purpose, are well illustrated in a recent string of communications
in Trends in Biochemical Sciences (summarized in ref. 27). Much of the attention
centers on the nature of the detection methods. Mackay, Sunde, Lowry, et al® claimed
that many reports of protein interactions are founded on “insufficient data,” and that
it is becoming “dangerously acceptable” to conclude that proteins interact based on
questionable results and limited methodologies. Chatr-aryamontri et al*’ defended the
importance of extant protein-interaction databases (e.g., the Molecular INTeraction
database [MINT], http://mint.bio.uniroma2.it/mint/Welcome.do) in revealing
biologically relevant information, while affirming “that no single experimental
approach has maximum sensitivity (i.e., no false negative) and specificity (i.e., no
false positive) and that confidence can only be built on the integration of orthogonal
experimental evidence.” Mackay et al*® further warned that the common experimental
detection methods are carried out with cell lysates in an “uncompartmentalized soup,”
in a molecular environment that is rife with “promiscuous stickiness.” On another
note, Wilkins and Kummerfeld®' questioned the static picture of the interactome that
has emerged from published protein-interaction network models, with regards to the
possible physiological variability in the properties of the protein constituents of such
networks in vivo. In this same sequence of correspondences, Tompa and Fuxreiter'
added their aforementioned argument that the occurrence of dynamic structural disorder
in protein complexes must play a role in depictions of the interactome.

Let us consider the question of the referential context for the large-scale,
high-throughput interactome experiments and the interpretation of ensuing results.
Without giving an exhaustive list of the manifold publications in this area, it is fair to
say that many of the summary reports of cellular interactomes cite the commentary
paper by Alberts,* entitled “The cell as a collection of protein machines: preparing the
next generation of molecular biologists,” as the point of reference for the biological
importance of the interactome concept. This banner article highlights the properties of
large protein complexes involved in such functions as the cell cycle, RNA processing
and DNA replication and transcription. The fact that many of the aggregates in such
processes are isolable in stable form might be leading to a false sense that protein-protein
interactions represent a simple binary occurrence in living cells and that the associations
can be readily (and universally) identified experimentally by the detection methods that
are currently used in the interactome determinations. This simplistic (mis)perception
would seem to be evident, for example, in the quest for so-called “gold standard”
methodologies for ascertaining the reliability of the protein interactions (for example,
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see refs. 28, 29). Jansen and Gerstein®® cast this mission in the view that “there is a
degree of uncertainty related to the ultimate goal of functional genomics,” owing to
the circumstance that “the concept of ‘protein function’ is rather ‘fuzzy’ because it
is often based on whimsical terms or contradictory nomenclature.” Curiously, those
authors further asserted that “unlike protein function, protein—protein interactions are
relatively clearly defined.” In truth, it is “fuzziness” in the latter notion, historically,
that belies the validity of today’s interactome network models!

Although one might debate the singular motivational influence that Alberts’s
seminal paper®? has had on interactome studies, the fact is that attention has focused
heavily on such processes as cell signaling, the cell cycle, membrane trafficking and
DNA replication and transcription (e.g., see http://www.reactome.org). These systems
are, without doubt, of great biological (and biomedical) importance. Notwithstanding, as
discussed above, there is a vast literature on the subject of macromolecular interactions
that long predates the “-~ome/-omic” era. Indeed, multienzyme complexes are in great
abundance in the metabolic pathways of the living cell. Moreover, the role of these
aggregates as “molecular machines” has long been recognized (for review see ref.
34). Notably, these supramolecular systems are defined by a wide range of binding
strengths, engendering a large and diverse assortment of weak-to-stable functional
aggregates.'>!? The interaction modality itself is often modulated in living cells via the
protein-conformational effects of regulatory ligands and microenvironmental factors in
situ.** These macromolecular assemblages are known for their sensitivity to extraction
conditions and artifacts of the isolation procedure (both false negatives and false
positives) are a notorious characteristic of the in vitro analysis of these systems.!>!¢
Accordingly, the caveats discussed in such writings as references 1, 27-31 represent
noteworthy concerns that are supported by a long, established record of observations
on protein complexes.

The large-scale interactome experiments aside, the ensuing curation efforts for such
interactomic databases as MINT?® have produced an impressively large (and growing)
number of protein-protein interactions, spanning many organisms and canvassing a
widening array of detection methods.!” There is every reason to presume that, as a
long-term goal, the consonance of the postgenomic protein-interaction datasets with
the historical record of published studies on specific proteins is (or will be) of direct
interest to those laboring in the curation activity. Continued mining of the substantial
data on protein interactions from the pregenomic past (accessible, for example, through
such portals as ref. 16) will most certainly help to advance this occupation. In the
meantime, those of us on the outside looking in should be patient and optimistic as
to the future successes of this vital curation work. Perkel*® has summarized the status
of the interactome situation rather fittingly as follows, “Many researchers ask, ‘If the
studies are so comprehensive, then why isn’t my interaction there?’ Well, for starters,
it’s probably because investigators haven’t gotten to it yet. Also, interactome mapping
is still a primitive science. For all their colorful nodes and edges, these maps could
well warn, ‘Here, there be dragons.” That’s not to say they are without value... By
revealing potential functional linkages, they suggest molecular explanations to biological
phenomena and provide avenues for follow-up. The information is useful when viewed
with an informed mind. Many of the principals involved in these projects compare the
state of the field today with DNA sequencing technology in the late 1970s: immature,
error-prone, yet filled with promise.”
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CONCLUSION: THE INTERACTOME AND PHYSIOLOGY

A fundamental empirical problem in the large-scale interactome studies at this
point, as stated by Legrain, Wojcik and Gauthier,”’ is that the protein-interaction maps
reflect “technology-driven experiments rather than hypothesis-driven experiments.”
So much of the work in systems biology these days is devoted to advancement in the
analytical technology per se and to the manipulation of incomprehensibly large datasets.
As eloquently discussed by Kell and Oliver® scientific knowledge discovery in the
postgenomic era requires both hypothesis-driven and technology-led approaches (what
the authors symbolize as “Ideas” and “Data,” respectively) and, moreover, demands that
they be “complementary and iterative partners.” It is apparent from some of the more
recent interactome studies that the physiological “Ideas” are, indeed, operating iteratively
with the “Data”—as evidenced, for example, in the extension of interactome analyses to
in vivo conditions.** Moreover, such in situ techniques as electron tomography'”?° offer
great promise. The historical literature base on protein interactions'*’ provides a wealth of
“Ideas” as to the physiological rationale for the organizational state, in addition to a large
(and untapped) database on specific systems. The myopia of the data deluge in today’s
systems biology has created a blinding sense of the Present without an appreciation of
the Past. A studied reflection of the historical ideas leads convincingly to the conclusion
that systems biology only has meaning when it connects to physiology.*'

Finally, it must be borne in mind that the protein-interaction mapping for a given
cell-type—even when obtained under the most reliable of experimental conditions—
represents a relative and variable thing. As trite as it might be to say, the interactome (like
all“~-omes” downstream from the genome) is a dynamic entity, the structure-and-function of
whichis constantly subject to intra- and extracellular physiological influences. Pregenomic
systems biology has made it all too evident that the interactome is an observationally
“fuzzy,” yet seductively attractive, object of curiosity.
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