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Preface

The Workshop on Geometric Methods in Physics, nowadays well known under the
colloquial name of the “Bialowieza Workshop”, is an annual conference organized
by the Department of Mathematical Physics at the Faculty of Mathematics and
Computer Science of the University of Biatystok in Poland. The idea of the confer-
ence is to bring together mathematical physicists, mathematicians, and physicists
to discuss in a mathematically precise way new developments and ideas which are
of relevance to theoretical physics, both on its classical and quantum sides.

By its very nature, the scope of the topics discussed and the mathematical
tools presented is very wide. It includes descriptions of non-commutative systems,
completely integrable systems, quantization, groups, supergroups and supersym-
metry, quantum groups, and many more.

The participation in the Workshop is open to every scientist and this makes
it truly international. As every year, also this year, there were participants from
almost all continents and many countries.

Bialowieza, the traditional site of the Workshop, is a small village in the east
of Poland at the border with Belarus. Bialowieza is a place of remarkable unspoiled
beauty. There the National Park with remnants of Europe’s last primeval forest
and the European bison reserve are of unique character. The natural surround-
ings help to create a friendly atmosphere for formal and informal discussions and
collaboration.

The Workshop in 2014, as in the previous years, was followed by the School on
Geometry and Physics. It consisted of several mini-courses by top experts aimed
mainly at young researchers and advanced students with the intention to help
them to enter current research topics.

The organizers of the Workshop gratefully acknowledge the financial support
from the University of Bialystok and the Belgian Science Policy Office (BELSPO),
IAP Grant P7/18 DYGEST.

Finally, we thank heartily the graduate students and young researchers from
the University of Bialystok for their indispensable help in the daily running of the
Workshop.

The Editors February 2015
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Traces of Holomorphic Families of

Operators on the Noncommutative Torus
and on Hilbert Modules

Sara Azzali, Cyril Lévy, Carolina Neira-Jiménez and Sylvie Paycha

Abstract. We revisit traces of holomorphic families of pseudodifferential op-
erators on a closed manifold in view of geometric applications. We then
transpose the corresponding analytic constructions to two different geomet-
ric frameworks: the noncommutative torus and Hilbert modules. These traces
are meromorphic functions whose residues at the poles as well as the con-
stant term of the Laurent expansion at zero (the latter when the family at
zero is a differential operator) can be expressed in terms of Wodzicki residues
and extended Wodzicki residues involving logarithmic operators. They are
therefore local and contain geometric information. For holomorphic families
leading to zeta regularised traces, they relate to the heat-kernel asymptotic
coefficients via an inverse Mellin mapping theorem. We revisit Atiyah’s L*-
index theorem by means of the (extended) Wodzicki residue and interpret the
scalar curvature on the noncommutative two torus as an (extended) Wodzicki
residue.

Mathematics Subject Classification (2010). Primary 47G30, 58J42, 35K08; Sec-
ondary 58B34,19K56.

Keywords. Pseudodifferential operators, zeta-regularised traces, Wodzicki
residue, index theory, noncommutative torus.

Introduction

The canonical trace TR(A(z)) of a holomorphic family A: z — A(z) of classi-
cal pseudodifferential operators of affine order —gz + a, ¢ > 0 acting on smooth
sections of a vector bundle over an n-dimensional closed manifold (n > 1), de-
fines a meromorphic function z — TR(A(z)) with a discrete set of simple poles
{d; = ‘”Zﬁj,j € Z>o}. The residue at a pole d; is proportional to the Wodz-
icki residue of the operator A(d;). These are well known results due to Wodzicki
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whose residue [39] is the only! (up to a multiplicative factor) trace on classical
pseudodifferential operators of integer order, Guillemin [17] who introduced the
notion of gauged symbols and Kontsevich and Vishik [20] whose canonical trace
TR corresponds to the unique linear extension to operators of non integer order
of the ordinary trace defined on operators of order < —n.

When A(0) is a differential operator, there is no pole at zero since the residue
vanishes on differential operators. It was later observed in [29] that the limit
lim,_,o TR(A(%)) is also proportional to a Wodzicki residue, namely to the ex-
tended Wodzicki residue Res (A’(0)), extended since the operator A’(0) given by
the derivative at zero is typically not a classical operator any longer. So the regu-
larised trace lim,_,o TR(A(z)) is then local as a consequence of the locality of the
Wodzicki residue.

If the meromorphic map ¢4: z — I'(2) TR(A(z)) corresponding to the
holomorphic family A: z — A(z) is the inverse Mellin transform of some func-
tion f4 : Ry — R, it follows from the inverse Mellin mapping theorem (see
Proposition 19) that f4 admits an asymptotic expansion at 0 given by

fa(t) = ; D a; (At +O(t),

J=0

for some appropriate 7. Its singular coefficients are Wodzicki residues (Theorem 23)
a; (A) = —2Res (A(dj)) for d; >0, (1)
and its constant term
a; (A) = —;Res (A(0)) for d; =0, ()

is an extended Wodzicki residue.

For holomorphic families A: z — A(z) = AQ~7 built from complex powers
Q% of some appropriate invertible elliptic operator (Q and a classical pseudodif-
ferential operator A, the canonical trace TR(A(z)) is called the (-regularised trace
C(A,Q)(z) of A with respect to the weight Q. It follows from the above discussion,
that if A(0) = A is a differential operator, then ((A4,Q)(0) is a local quantity
proportional to the extended Wodzicki residue

Res (Alog Q) = —;/ res; (A log Q) du,
M

where res; (A log Q) dz is the pointwise extended residue density involving the
logarithm of Q. When A = I is the identity operator, this is the logarithmic
residue Res (log Q) investigated in [28] and [35].

When @ = A + ma with A an elliptic differential operator to which we add
the orthogonal projection ma onto its kernel, making @ invertible, then A(z) =
A Q™% is the Mellin transform of the analytic family fl(t) = Ae tA+ma) If A is

Lwhen the dimension of the manifold is greater than one.
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nonnegative, the inverse Mellin transform of the meromorphic map z +— ((4, Q)(z)
is the Schwartz function

Fa b T (Aetaema)) = /M AK, (A + 7a) (2, 7) r/det(g)(x) da

on |0, +o0o[ where K; (A) (x, x) denotes the fibrewise trace at the point z of the ker-
nel of e~*4 restricted to the diagonal and det(g) the determinant of a Riemannian
metric g on the manifold M.

When applied to any multiplication operator A = ¢ given by a smooth func-
tion ¢ on M, this shows that both the constant and the singular coefficients in
the time zero asymptotic expansion of the kernel K;(A)(z,x)? can be expressed
as Wodzicki residues® (see Theorem 25):

K (A) (z,2) ~—0 — 9 ﬁi;);(x) [resx (logA) 5757[;]
+ Z F(;l —k) res, (Ak_g) tk_g]. (3)
kel0,5 [Nz

When integrated against ¢ € C°°(M), the heat-kernel expansion (3) yields
the following heat-operator trace expansion at zero

Tr (¢ e_m) ~i0 — (47;)2 Res (¢ log A) 62_[3]
+ > F(Z—k) Res(qSAk_g)tk_g]. (4)
ke[, 5 [Nz

That the singular coefficients of the heat-kernel (resp. heat-operator trace)
expansion are proportional to the Wodzicki residue is a well-known (see, e.g., [1,
19]) fact often held for folklore knowledge. It has been extended to noncommutative
geometry [5, Formula 1.5]) for the asymptotic expansion of the spectral action
(take f(A\) = e~**) whose non-constant coefficients arise as Dixmier traces. What
is lesser known, is that

e not only the singular coefficients in the heat-kernel expansion (resp. heat-
operator trace) but also the constant coefficient are (possibly extended)
Wodzicki residues (and hence local), a property that can be easily transposed
to other geometric frameworks in which the canonical trace of holomorphic
families of pseudodifferential operators can be built.

21t follows from Duhamel’s formula [4] that the time zero asymptotic expansions of
K¢ (A+ R) (z,z) and K¢(A)(x,z) coincide for every smoothing operator R and hence in partic-
ular for R = wa, a fact that will be implicitly used throughout the paper.

3Similarly, since the Wodzicki residue vanishes on smoothing operators, a perturbation of the
operator by a smoothing operator so in particular by the projection onto the kernel does not
modify the residue (see Corollary 9).
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e no previous knowledge on the heat-operator trace asymptotics is needed to ex-
press its coefficients in terms of Wodzicki residues, which is a purely analytic
procedure.

Since the Wodzicki residue of a logarithm is an algebraic expression involving the
jets of the first n homogeneous components of the symbol, we further recover other
known facts (see [15, Lemma 1.8.2]), that the coefficients of the heat-operator trace
expansion in (4) are

e functorial algebraic expressions in the jets of the homogeneous components of
the symbol of the operator A as a consequence of the corresponding property
of the Wodzicki residue.

e Consequently, if the operator A is of geometric nature, the coefficients are
functorial algebraic expressions of the jets of the underlying metric and con-
nection.

Thanks to the functoriality of the construction, we can transpose our approach
via inverse Mellin transforms to two different geometric contexts, applying it to

1. Holomorphic families of pseudodifferential operators on Hilbert modules: Let A
be an (essentially) nonnegative selfadjoint differential operator acting on a vector
bundle £ — M. One builds the operator Ay by twisting A by a flat connection
on a bundle H of Hilbert modules over a finite von Neumann algebra. One can
then implement the same constructions as above to Ay + R with R a smoothing
operator which makes the operator invertible (see Remark 43). The residue Res
is then replaced by the 7-residue Res” (47), the L2-trace (resp. canonical trace)
Tr (resp. TR) by Tr" (resp. TR"), where 7 is a finite trace on the von Neumann
algebra.

The corresponding heat-kernel 7-trace K7 (Ay)(z,z) at a point x reads
(see (63))

5-[3]

47) 3>
K (Ay) (2,2) ~i0 — ( )g . [res; (log Ay) 6

The above formula (5) follows from the following more general property (61)
relating the (extended) residue of locally equivalent differential operators A, A,
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respectively B, B’ (with some admissibility condition on the latter),
Res” (Alog B) = Res” (A’ log B)
Res™ (AB®) = Res” (A'B'™), a €R,

where for simplicity we have dropped the projections onto the kernels since they
are smoothing operators which are not “seen” by the residue. Atiyah’s L?-index
theorem then boils down to an easy consequence, see Corollary 50 of the first of
these two identities, using a Zy graded version of the (extended) residue. This
alternative proof, which is equivalent to Roe’s heat equation proof [31, Ch. 15],
is of pseudodifferential analytic nature and relies on the locality of the Wodzicki
residue.

2. Holomorphic families of pseudodifferential operators on the noncommutative
torus: We consider a conformal perturbation Aj, (parameterised by a conformal
factor h) of a Laplace-type operator A acting on the noncommutative n-torus
T4, where 0 is an antisymmetric real matrix encoding the noncommutativity. The
residue Res is then replaced by the f-residue Resy (see [14]), the L2-trace (resp.
canonical trace) Tr (resp. TR) by Try (resp. TRy, see [24]). The coefficients of the
Laurent expansions of traces of holomorphic families can be expressed in terms of
Wodzicki residues (Theorem 53) and the heat-kernel expansion formula (4) reads
for any a € Ay, the Fréchet algebra of “Schwartz functions” on the noncommuta-
tive torus T} (see (68))

Try (a e’tAh) ~ps0 — (47;) ’ Resg (a log Ap) 537[3]
n . k—1% k-7
v T Gy e ea): |
0 n

Going back to the setup of closed manifolds, for certain geometric operators A,
the coefficients of the heat-kernel expansion correspond to interesting geometric
quantities; e.g., when A is the Laplace—Beltrami operator on a closed Riemannian
manifold (M, g), the coefficient of ¢ is proportional to the scalar curvature. The fact
that the coefficient of ¢ in (6) provides an analogue in the noncommutative setup
of the scalar curvature on a noncommutative torus was exploited in [6], [7], [8],
[11], [12], [13] to compute a noncommutative analogue of the scalar curvature on
noncommutative tori. By means of the Wodzicki residue on the noncommutative
torus [14], we use (6) to define the scalar curvature s, as a Wodzicki residue; for
any a € Ag we set (compare with (69)

—67 Resy (a log Ay) if n=2
<5h7 >h - 3 n n k— g .
—5(4m)2 T (% — k) Resy (a Ay ) otherwise,

with (-, ), an adequate inner product on Ajg.
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The extensions (5) and (6) are possible thanks to the fact that Cauchy cal-
culus extends to Hilbert modules (see [3]) and to the noncommutative torus (see
[14], [24]). The analogies between the pseudodifferential calculi in these two frame-
works lead to the question whether the pseudodifferential calculus on N'Z"-Hilbert
module encompasses the Z"-invariant pseudodifferential calculus on R™ studied in
the more general context of global pseudodifferential calculus by Ruzhanski and
Turunen in [33]. The latter corresponds to the § = 0 case of the algebra W(T})
described in Section 4, which raises the further question, namely whether this issue
can be carried out to the noncommutative setup.

1. Traces of holomorphic families on closed manifolds
and their geometry

For the purpose of a later generalisation to the Hilbert module setting, we recall
the well-known basic setup to define the Wodzicki residue on closed manifolds and
extend it to logarithmic pseudodifferential operators.

1.1. The Wodzicki residue on pseudodifferential operators

Let (M, g) be a closed Riemannian manifold of dimension n, let p: E — M be
a vector bundle and let End(E) = E* ® E be the corresponding endomorphism
bundle.

A linear operator A: C* (M, E) — C* (M, E) is a (classical) pseudodiffer-
ential operator of order a € C, denoted A € U*(M, E), if in some atlas of E — M
it is of the form A = Z;]:l A; + R where

e R is a smoothing operator, namely a linear operator R: C* (M, E) —
C> (M, E) with Schwartz kernel given by a smooth section of the bundle
L(M xM,End(E)) of linear bounded operators whose fibre at (z,y) € M x M
is the Banach space of bounded linear operators from the fibre E, to the fi-
bre E,,

o the operators A; are properly supported operators (meaning that the canoni-
cal projections M x M — M restricted to the support of the Schwartz kernel
are proper maps) from C* (M, E) into itself such that in any coordinate
chart in a neighborhood U of a point € M the operators A; are of the form

u ! Y8 gz, 6) u
e R () ul) (7

for some symbol o € C* (U x R™, End(F)) which is asymptotically polyho-
mogeneous at infinity
J(x,f) NZW(&)UQ,Z‘((E,E), (8)
i=0
i.e., the components o,_; € C*° (T*U \ (U x {0}),End(F)) being positively
homogeneous of degree a —i with a the order of the operator. The asymptotic
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behaviour is to be understood as*

N-1
(N)(xg) =o0(z,§) - ZW ) 0a—i(2,§) (9)
is a symbol of order R(a) — N for any N € N. Also, w is a smooth function
on R™ which is zero in a neighborhood of zero and identically one outside the
unit ball.
Let us denote by S® (U, End(E)) the set of such symbols and by

S (U, End(E)) = (UaecS" (U, End(E)))
the algebra generated by all classical symbols of any complex order.
Finally, let us denote by ©(M, E) the subalgebra in U(M, E) of differential
operators.
Let tr, denote the fibrewise trace on End(FE) above a point € M. The pointwise
Wodzicki residue of the operator A with symbol o(A) at the point x defined as

res, (A) :z/ try (0(A)—n(x,§)) dsé, (10)
[€]-=1

vanishes on smoothing symbols so that it is independent of the choice of cut-off
function w chosen in (8). Here dg€ is the measure on the unit cotangent sphere
SEM ={£ € TrM, €], := 9.(§,&) = 1} induced by the one on the cotangent space
T*M to M at the point = given by a Riemannian metric g on M, ds denotes the
corresponding normalised measure dg€ = (2710” dsé.

Remark 1. Clearly the residue res, vanishes on differential and non-integer-order
operators.

An important result of Wodzicki is that res;(A4) dz defines a global density
[39]. The Wodzicki residue of the operator A is then defined by

Res(A) = /M res; (A) dx = /M dx /gl—l try (0—n(A4)(x,€)) ds€. (11)

1.2. Logarithms of pseudodifferential operators on closed manifolds
Definition 2. (see, e.g., [37], [36]) Let A be an operator in W(M, E). A real number
3 is a principal angle of A if there exists a ray Rg = {re’”’, r > 0} which is
disjoint from the spectrum of the End(E,)-valued leading symbol o, (A4)(x, &) for
any x € M, £ € TyM \ {0}.
Definition 3. We call an operator A € ¥(M, E) admissible with spectral cut  if
e its order is positive,
e [3is a principal angle for A.
Remark 4. An admissible operator is elliptic but not necessarily invertible. Admis-
sibility is a covariant condition, that is to say it is preserved under diffeomorphisms.

4The remainder depends on the choice of the cut-off function w which is not explicitly mentioned
here to alleviate the notation.
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Definition 5. We call weight an invertible admissible operator @ € ¥ (M, E).

As we shall see later, weights are used to regularise traces. Here is a useful
lemma which strongly uses the theory of elliptic operators on closed manifolds.

Lemma 6. If A € U(M,E) is an admissible operator with spectral cut [ then
there is an angle B’ arbitrarily close if not equal to B and a truncated solid angle
Agre : ={z2€ C\O0: |z| > ¢ argz € (B —¢€, 0 +¢€)} for some e > 0, outside of
which lies the spectrum of A.

If A is moreover invertible, i.e., if it is a weight, then its spectrum lies outside
the solid angle Vg :={2€ C\ 0 :argz € (8’ —¢,8' +¢€)} for some small € > 0.
The angle 8" is then called an Agmon angle.

Proof. Since A is admissible, it is elliptic. Since the order of A is positive, the man-
ifold M being closed, the operator has a purely discrete spectrum, which consists
of countably many eigenvalues with no accumulation point. So if the spectrum of
A meets the ray Rpg, there is a small perturbation 8’ of § such that the spectrum of
A does not meet Rg/ \ {0}. Being discrete, the spectrum of A actually lies outside
a truncated solid angle {z € C\0: |z| > ¢, argz € (8’ —¢, 3" +¢€)} for some € > 0
chosen small enough so that 0 is the only eigenvalue in the ball of radius € centered
at zero. If moreover A is invertible, then its spectrum lies outside the solid angle
{zeC\O:argze (8 —¢,3 +¢)} and §' is an Agmon angle for A. O

Let now A be a weight in W*(M, E) with spectral cut 8. Then for £(z) > 0,
its complex powers (see [37] for further details)

)
Af = A (A—A)"tax 12
R AP (12
and respectively the operators [36, Par. 2.6.1.2.]
Lo(A,2) = / logz A A° (A — A)~1 d), (13)
2 Tp

are bounded linear maps from any Sobolev closure H* (M, E) of C*°(M, E), s € R,
with values in H*~ %) (M, E) respectively in H*~*®(=)+¢ (M| E), for any € > 0.
Here T's is a closed contour in C\ {re?, r > 0} around the spectrum of A oriented
clockwise. These definitions extend to the whole complex plane

5= AF Ag_k , resp. Lg(A,z) = A¥ Lg(A, 2z — k), R(z) < k

for any k € N, A7 is an operator in W(M, E) of order az for any complex number
z, and the logarithm

logﬁ(A) = Lg(A,0)
of A is a bounded linear map from H* (M, E) to H"¢ (M, E), Ye > 0. One has by
construction logg A Af = Ag logg A, Vz € C.

Remark 7. Just as a complex power does, the logarithm depends on the choice of
a spectral cut 5. However, in order to simplify the notation we shall often drop
the explicit mention of 5.
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The logarithm of a classical pseudodifferential operator of positive order is
not classical. Indeed, in a local trivialisation, the symbol of logz A reads (see,

e.g., [36])

o(logg A)(2,€) = a log[¢|I + oa(logs A)(x,€) (14)
where a denotes the order of A and o (loggz A) is a classical symbol of order zero
with homogeneous components o_;(logz A) of degree —j,j € Zxo.
Moreover, the leading symbol oj(logs A) of oi(logg A) can be expressed in terms
of the leading symbol 0¥ (A) of A as

oi(log A)(z.£) = log, (aL<A> (x :

q
1.3. The local Wodzicki residue extended to logarithms

In spite of the fact that logarithms are not classical, the Wodzicki residue on
classical pseudodifferential operators does extend to logarithms.® As a first step
we extend to logarithms the local residue res, defined in (10). For a weight @ €
U (M, E) with spectral cut 8 we define the pointwise extended residue as

res, (logﬂ Q) = /5 ) try, (a,n(logﬂ Q)(x,{)) dsé.
By (14) this is a natural extension of the pointwise residue on classical symbols
since the integral over the sphere vanishes on the logarithm of the norm. The
fact that the n-form res, (logﬂ Q) dx defines a volume density will arise later as a
consequence of a local formula for the (-regularised trace.

The subsequent proposition shows the locality of the extended residue of
A log @ in so far as it only depends on a finite number of homogeneous components
of the symbols of A and @

)) V(z,€) € T*M \ M x {0}.  (15)

Proposition 8. For any weight Q € V(M, E) of order q,

1. (compare with [15, Lemma 1.8.2])
the local logarithmic residue at a point x € M which reads

wslor@ = o [ ([loere @070 m) ase (o)

where I is a contour around the spectrum of @ oriented clockwise, is an alge-
braic expression in the x-jets of the first n homogeneous components (taken in
decreasing order of homogeneity) of the symbol o(Q)(z,-) of Q at that point
given by the integral over the unit cotangent sphere of an algebraic expres-
sion in the (x,£)-jets of the first n homogeneous components of the symbol
a(Q)(z,-) of Q at that point. Here o_y_n(Q — \)~' is the (—q — n)th homo-
geneous component of the resolvent (Q — \)~1 of Q.

5This extended residue differs from the higher residue on log-polyhomogeneous operators intro-
duced in [21].
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2. (compare with [15, Lemma 1.9.1])
Given a differential operator A = 37, <, aa(z)D7 € O(M, E) of order a €
Z>o, then resy (Alog Q) is an algebraic expression in the coefficients aq of
A and in the x-jets of the first n + a homogeneous components of the symbol

a(Q)(x,-) of Q at that point.
In particular, if Q = Z\ﬂlﬁq bs(x)D? is a differential operator, then the local

residue res; (A log(Q)) is an algebraic expression in the coefficients a, and
in the x-jets of the coefficients bg.

Proof. Since

s = Y ) aou(4) 0201006 0)
|y +i+k=a+n ’
- ¥ <—z‘>7(j)aa<x>§a—78;a_k<logcz>,
[vl+k=a+n

the fact that res,, (Alog @) is an algebraic expression in the coefficients a,, of A and
in the z-jets of the first n + a homogeneous components of the symbol o(Q)(z, -)
follows from a similar statement for the homogeneous components o_(log Q) of
order —k € Z<p of the symbol of log@. Now, since log @ = 0.Q?|;=0, the ho-
mogeneous component o_(log @) is derived by differentiating the homogeneous
component oq,_x(Q?) of degree gz —k at zero of the complex power Q*. The latter
is obtained from the homogeneous component o_,_j of the resolvent (Q — \)~!
by means of the Cauchy formula

2_1 z _ -1
Q—%W/F)\(Q A)7HdA

where, as before, I" is a contour around the spectrum of () oriented clockwise. Thus
we find

74(lo5Q) = ! 0. ( [ror@-x7 dA)

In particular, setting k = n and integrating over the unit cotangent sphere we find

ellos@ = [ o ([ Yo @-nmta) s

[z=0

[2=0

which yields (16). Since o, (Q — A\)71(z,&) is an algebraic expression in the
(z,&)-jets of the first & homogeneous components

Uq_l(Q)(J?, 5)7 UQ—Q(Q)(J:? 5)7 s 7Uq—k(Q)($7 g)

of the symbol of @, so is o_;(log@Q)(z,£) an algebraic expression in the jets of
the first & homogeneous components. This for n = k yields the first assertion
(compare with Formula (8) in [25]). The second assertion follows in a similar
way after implementing the differential operator A and integrating over the unit
cotangent sphere. O
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The locality of the extended residue can also be seen from the fact that it
does not detect smoothing perturbations.

Corollary 9. Let A € (M, E) be an admissible operator. Let R, S be two smoothing
operators acting on C*°(M, E) such that the perturbed operators A+ R and A+ S
are invertible. They define weights and for any x € M we have

res; (log(A + R)) =res, (log(A+9)) . (17)

Proof. This follows from Proposition 8 and the fact that a smoothing perturbation
of an operator does not modify the homogeneous components of its symbol. [

Let A € ©(M,FE) be an admissible operator. Let E be equipped with a
Hermitian metric, which combined with a Riemannian metric on M induces an
inner product on C*° (M, E). It follows from the theory of elliptic operators on a
closed manifold (see, e.g., [15]) that the orthogonal projection ma onto the kernel
Ker (A) is a finite rank operator and hence smoothing. Consequently, the operator
Q@ := A+ 7 is a weight. On the grounds of Corollary 9, we define the pointwise
logarithmic residue of A as

res; (log A) :=res, (log(A + 7a)) Vo € M. (18)

As we shall see below, the local density res, (A log A) dz actually defines a global
density on the manifold, confirming the known fact that the residue extends to
logarithms [27-29].

1.4. The Wodzicki residue as a complex residue

Given a symbol o(z,£) € 8% (U,End(FE)) with 2 a point in M and U C M an
open neighborhood of z, the cut-off integral® is defined as the finite part

7[n tryo(x, &) d€ =1pp_ o /B(O © trpo(z,§) d€ (19)

Remark 10. Whereas the residue vanishes on symbols whose order has real part
smaller than —n, the cut-off integral coincides on those symbols with the ordinary
integral on R™. A straightforward computation shows that, like the local residue,
the cut-off integral also vanishes on polynomial symbols.

We need holomorphic families of classical pseudodifferential symbols first in-
troduced by Guillemin in [17] and extensively used by Kontsevich and Vishik in
[20]. The idea is to embed a symbol o in a family z — o(z) depending holomor-
phically on a complex parameter z.

Definition 11. Let U be an open subset of M. We call a family (0(2)), ., of symbols
in § (U, End(F)) parametrised by a domain 2 of C holomorphic at a point zy €
if, with the notation of (8) and (9) we have
1. o(2)(z,-) is uniformly in = on any compact subset of U, holomorphic at z
as a function of z with values in C*° (U x R™, End(E)),

6also called Hadamard finite part integral see, e.g., [36, Example 2 Chapter IT], and also [16].



14 S. Azzali, C. Lévy, C. Neira-Jiménez and S. Paycha

2. for any z in a neighborhood of zy there is an asymptotic expansion of the

type (8)
)~ Y Ga(a—s(2) (), (20)
j=0
with a(z) := —gz+a for some positive number ¢ and @ the order of o := ¢(0),
3. for any integer N > 1 the remainder
N-1
o) (2 Ta(z)-4(
7=0

is uniformly in  on any compact subset of U, holomorphic at zg as a function
of z with values in C*° (U x R",End(FE)) with kth z-derivative

o(m) (2) 1= 2 (o) (2)) (21)

a symbol on U of order a(z) — N + € for any € > 0 uniformly in x on
any compact subset of U and locally uniformly in z around zg, i.e., the kth
derivative 0%o(y)(z) satisfies a local uniform estimate in z around zg

107 ko) (2) (. €)| < Cp ()7~ N=P1 we e R, (22)
where || A := \/tr;(A*A) is the norm on £(M x M,End(E)) and where we
have set (¢) := /1 + |¢[2 with | - | the Euclidean norm of £.

Example 12. If ¢ € S(U,End(FE)) is a symbol of order «(0), then o(z)(x,§) =
o(x,€) (€)~* defines a holomorphic family of order a(z) = —z + «/(0).

The following assertion can be shown on direct inspection of the cut-off in-
tegral.

Proposition 13. For any holomorphic family o(z) of classical symbols parametrised
by C with affine order a(z) = —qz + a for some positive real number q and some
real number a,

1. the map
2 o o(2)(x, §)dg
Rﬂ,
is meromorphic with simple poles d; == a+27j, J € ZL>o.

2. [20] The complex residue at the point d; in C is given by:

Res. (]f ire0(2)(2.6) d‘f) = Lresa(o(dy) (23)

3. [29] The finite part at the pole d; differs from the cut-off reqularised integral
i trao(d;) (@, ) A€ by

toca, (f, o0 d) — f o) = Lresar@). 21



Traces of Holomorphic Families of Operators 15

Here the noncommutative residue is extended to the possibly non-classical
symbol T 7;(z,€) = o’ (d;)(x, &) using the same formula as in Equation (10)

resg (1) = /5 B tre (15)_,, (2, ) ds§.

We are now ready to introduce holomorphic families of pseudodifferential
operators.

Definition 14. Following [29, Definition 1.14] we call a family (A(z)), ., of opera-
tors in ¥ (M, E) parametrised by a domain € of C holomorphic at a point zy €
if, with the notation of Section 1.1, in each local trivialisation U of £ — M we

have
J

Alz) =) Aj(2) + R(2)
j=1
with
1. Aj(z) = Op(o;(z)), where 0;(z) is a holomorphic family of polyhomogencous
symbols on U,
2. R(z) is a smoothing operator with Schwartz kernel R(z,z,y) € C*°(Q2 x U x
U,End(E)) holomorphic in z.

Integrating the results of Proposition 13 over M yields the following theorem
which we quote without proof, referring the reader to [20] and [29]. Let us however
recall that the linear map TR introduced in the theorem below is the canonical
trace popularised in [20], i.e., the unique linear form (up to a multiplicative factor)
on the subset of U(M, E) consisting of non-integer-order classical pseudodifferen-
tial operators, which vanishes on commutators that lie in this set. It extends to
differential operators where it vanishes and it coincides with the L?-trace Tr on
trace-class operators, i.e., the real part of the order is smaller than —n.

Theorem 15. For any holomorphic family A(z) € (M, E) of classical operators
parametrised by C with holomorphic order —qz + a for some positive q and some
real number a,

L. the meromorphic map z — TR, (A(2)) = fp. trao(2)(x, £)dE integrates over

M to the map
z— TR (A(2)) :== / TR, (A(z)) dx
M
which is meromorphic with simple poles d; := a+2_j, Jj € Z>p.

2. [20] The complex residue at the point d; is given by:

Res,_g TR (A(2)) = ;Res(A(dj)). (25)

"The asymptotic expansion of 7;(z, ) as |£] — oo might present logarithmic terms log ||, which
vanish on the unit sphere and therefore do not explicitly arise in the following definition.
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3. [29] If A(d;) differs from a differential operator® by a trace-class pseudodiffer-
ential operator Tj, then A(d;) has a well-defined canonical trace TR(A(d;)) =
Tr(T};) and A'(d;) has a well-defined Wodzicki residue

Res(A(d;)) := / res, (A'(d;)) da
M
where
res, (A'(d))) = [ omn (X(d) (2, ds
‘5‘1‘:1
at the point d; and we have

b,y TR (A(2)) = Ta(T}) — ;Resm'(dj)). (26)

Remark 16. Formula (26) formally follows from (24) applied to the family 7;(z) =
U(zzigfdj) since 7;(d;) = o'(d;). However, 7;(z) not strictly speaking being a
holomorphic family of classical symbols since the two symbols o(z) and o(d;)
have different orders outside d;, which do not differ by an integer, the proof is
actually slightly more indirect.

Consequently, Res(A’(d;)) is the noncommutative residue extended to the

typically non-classical operator A’(d;).

1.5. {-regularised traces

Given a weight Q € U(M, E) of order ¢ € Ry and an operator A € U(M, E) (not
necessarily admissible) of order a € R, the map z — A(z) := AQ~* defines a holo-
morphic family. The subsequent theorem quoted from [29] follows from applying
Theorem 15 to this family.

Theorem 17. Given a weight Q € V(M,E) of order ¢ € Ry and an operator
A€ UM, E), the map

2 ((4,Q)(2) := TR(AQ™7) (27)

called the (-regularised trace of A with respect to the weight Q, is holomorphic on
a half-plane R(z) > ";r“, meromorphic on the whole complex plane with poles at
dj = “+Z_j,j € Z>o and the complex residue at this pole can be expressed as a

Wodzicki residue )
Res.—q,((A4,Q)(z) = qRes(A Q™ %4).

If A differs from a differential operator by a trace-class pseudodifferential operator
T, the n-form

res; (A log Q) dx := /|§| B o_n(AlogQ) (x,8) dsé dx.

8This yields another application of the results of [29] since only the case A(d;) differential was
considered in the examples given in that paper.
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defines a global density on M which integrates to the extended Wodzicki residue

Res(A log Q) := /M res, (A log Q) dx

of AlogQ.
The zeta function ((A, Q) is holomorphic at zero and we have

C(4.Q)(0) = lim ((4,Q)(=) = TH(T) ~ | Res(4 log Q). (28)

When A is a differential operator, its @-weighted (-regularised trace
C(A,Q)(0) is therefore proportional to the extended Wodzicki residue Res(Alog@).
So in that case, the (-regularised trace (A4, @)(0) is local since the extended Wodz-
icki residue is local in so far as it is expressed as an integral over M of the pointwise
extended residue (Proposition 8), which only depends on finitely many (here one)
homogeneous components of the symbol of A.

In particular, for A = I, we have as announced previously, that the logarith-
mic residue Res(log Q) is well defined, moreover the zeta function of @) at zero is
local

Ca(0) == ¢(1,Q)(0) = —;Resaog Q).

2. Heat-kernel expansions revisited

2.1. The heat-kernel expansion in terms of Wodzicki residues

We recall the definition and some properties of the Mellin transform following [9]
(see also [18]).

Definition 18. Let f(¢) be a locally Lebesgue integrable function over |0, +o0o[. The
Mellin transform of f(t) is defined as

M(f)(z) = / " foe .

The largest open strip a < R(z) < b in which the integral converges is called the
fundamental strip.

We recall the following well-known Inverse Mellin Mapping Theorem [9, The-
orem 4].

Proposition 19. Let f(t) be continuous in ]0,+oo| with Mellin transform ¢(z)
having a fundamental strip a < R(z) < b.

1. Provided
(a) &(z) admits a meromorphic continuation to the strip (v,b) for some
v < a with a finite number of poles in the strip, and is analytic on

R(z) =1,

(b) there exists a real number ¢ in (a,b) such that for some r > 1

d(2) = 0(]z|™"), when |z| = o0 iny < R(2) <c¢,
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(¢c) ¢ admits the singular expansion for z € (’y, a)

kl
ZZ vJ k+1’

>0 j>0
then f admits an asymptotic expansion at 0 given by
0= 5 S ogt 140070,
i>0 j>0
2. Provided

(a) &(z) admits a meromorphic continuation to the strip (a,v) for some
v > b with a finite number of poles in the strip, and is analytic on

5}%(2) =7
(b) there exists a real number ¢ in (a,b) such that for some r > 1
d(z) =0(]z|™"), when |z| = o0 inc < R(z) <7,

(¢) ¢ admits the singular expansion for z € (c v),

Fi !
ZZGW kit

>0 j>0
then f admits an asymptotic expansion at co given by
S S log e+ 06
i>0 >0
Remark 20. In particular, it follows from 2.c) that if ¢ is analytic in some half-
plane R(z) > ¢ then f(t) = O(t™7) for any v > ¢ and f is a Schwartz function.

Here is a useful example to keep in mind for what follows.

Example 21. For any A > 0 the map z — ¢(z) = I'(z) A™* satisfies the above
assumptions as a result of the properties of the Gamma function. Indeed, on the
one hand it is meromorphic on the complex plane with simple poles in Z<(. On the
other hand, it follows from Stirling’s formula (see, e.g., [10 Proposition IV:1.14])
which expresses the Gamma function as I'(z) = v/2r 22~ 2 e~ % (%) for some func-
tion H given by a series, that for any 0 < v < ¢ there is a positive constant Cy s
such that
¥ <R(z) <= T(2)| < Cys [S(2)] 72 77,

Since A~* is bounded from above by A7 this shows that Condition 1. b) is satisfied
for any r > 1. The inverse Mellin transform is f(¢) = e~** which defines a Schwartz
function on R;..

Combining these properties of the Gamma function with the results of The-
orem 15 yields the following useful properties.

Corollary 22. Let A(z) € (M, E) be a holomorphic family of affine order a(z) =
a — qz for some positive real number q; we set

¢(z) :=T(2) TR(A(2)) «:=Max{0;(a+n)/q}.
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1. The map ¢ is holomorphic on the half-plane R(z) > «, it is analytic on any
imaginary line R(z) = v for v > «, and (a, 00) is the largest open strip where
¢ is defined.

2. ¢ admits a meromorphic extension to the whole complex plane with countably
many simple poles {d; := a+2ﬁ,j € Z>0}tUZ<p

3. whenever z — TR (A(2)) is uniformly bounded in closed strips “Jg” <7<

R(z) <4, then for some r > 1 we have the following asymptotic behaviour of
¢ at infinity along imaginary lines

#(z) =O0(|z|™"), when |z| = o0 in a—iq—n <y <R(z) <0,

as a consequence of the corresponding property of the Gamma function de-
scribed above.
4. ¢ admits a singular expansion on any horizontally bounded strip
z) & ,
LOED DI 4
7=0
as a consequence of the second item.

Let as before, M be an n-dimensional closed manifold and E be a finite
rank vector bundle over M. The subsequent theorem follows from Proposition 19
applied to ¢(z) = T'(2) TR (A(2)).

Theorem 23. Let A: z — A(z) € U(M, E) be some holomorphic family of operators
of affine order a(z) = a — qz with g some positive real number corresponding to

the Mellin transform of some analytic family /T(t),t > 0 of trace-class operators in
U (M, E). Whenever z — TR (A(z)) is uniformly bounded on closed strips “Jg" <

v < R(z) < 6, then fa(t) = Tr (g(t)) admits an asymptotic expansion at 0
given by

]_ —a—n-+j
fat)~o > ait a (29)
15>0
with 1
aj:—qRes(A(dj)) for j>a-+n. (30)

If A(0) differs from a differential operator by a trace-class pseudodifferential oper-
ator T', the constant term in the expansion (29) which coincides with the constant
term in the Laurent expansion of TR(A(2)) reads

a; =Te(T) — ;Res (A'(0)), for j=a+n. (31)

Let Q € ¥(M, E) be a weight of positive order q. We further assume that it is
“close” to a positive operator, i.e., its spectrum is concentrated in a cone centered
around the positive real line; in particular, it has spectral cut § = .

The holomorphic family A : z — A(z) = AQ ™7 is the Mellin transform of the
analytic family Ae~*? ¢ > 0. Since the map z + TR (A(z)) is uniformly bounded
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on closed strips “J(;” < v < R(z) <0 we can apply Theorem 23, which yields the
following corollary.

Corollary 24. The inverse Mellin transform
fa(t):=Tr (Ae*tQ)
of pA(z) :==T(2)TR (AQ™*?) is a Schwartz function on ]0,+oo[, which admits an

asymptotic expansion at 0 given by

falt) ~o 75 agtn, (32)
7>0
where

1 —a—n+j
ajz—qRes(AQ q+> for j<a+n
and

1
Ga+n = ((A, Q)(0) = Tr(T) — qReS (A log Q) (33)
if A€ U(M,E) differs from a differential operator by a trace-class operator T'.

Let A € O(M,E) be an admissible operator and let F be equipped with
a Hermitian metric, which combined with a Riemannian metric on M induces a
(weak) inner product on C*°(M, E). We previously saw that the operator @ :=
A + ma defines a weight.
Notation convention: Integrating over M the pointwise residue in (16) gives rise
to the logarithmic residue of A defined as

Res(log A) := Res(log(A + 7a)). (34)
Similarly, for any z € M and o € R we set
res; (AY) :=res; (A +7a)"); Res(pA¥):=Res(¢ (A+7a)”).

We now specialise to the multiplication operator A = ¢ € C°°(M) and apply
Theorem 23 to the holomorphic family A(z) = ¢ (A +7a) ">

Theorem 25. For any smooth function ¢ € C°°(M) we have

T (607 2) mimn — 0 Res (61082) 8, _py
" Z r (Z —k) Res (pAF=3) th=5 | (35)
ke 0 "

The local heat-kernel trace Ki(A)(x, x) of the operator A at the point x is defined by

Tr ((be_tA) = y (@) Ky (A) (z, ) \/detg(z) de Vo € C(M)



Traces of Holomorphic Families of Operators 21

and therefore it has the following asymptotic expansion

Ki(A)(z,x) ~0 — ) \}jerggz(x) [resgu (log A) 627[3]
+ Z r (721 - k) resy (Akfg) tkgl. (36)
kelo, [Nz

Remark 26. Formula (35) compares with known formulae for the spectral action
(take f()\) = e~** in [5, Formula 1.5]), in which the non-constant coefficients arise
as Dixmier traces.

Proof. Tt follows from (28) that the constant term in the heat-kernel expansion
reads

fp,_oTr (qﬁ e*t(A“TA)) =((p,A+7a)(0) = ; Res (¢ logA).

Formula (35) then follows from Corollary 24 with ¢ = 2 (cf. footnote in the intro-
duction).
Since this holds for any smooth function ¢, formula (36) follows. g

Remark 27. Combining (34) with (16) applied to A

res, (log A) = 271”, /£ 3 /FlogAa,q,n(A+M — A" Hx, &) dMdsé,

yields
1
n(z)=— . logAo_g_n(A —N) "Nz, &) dNds€.
a; () 4im2t1/detg(x) /|§|m_1 /F 08AT—g—n(A +7a @) s¢

This compares with similar formulae in the literature as for example [3, (2.11)]
1 o0
ay ()=, / / 0 gD+ 7a = N) (@, €) dAdst.
‘f‘le 0

2.2. The case of geometric operators

We now single out a class of differential operators we call geometric differential op-
erators (also considered in [25]), i.e., differential operators A =}, <, aa(2) D7 €
O(M, E) where d is the order of the operator and whose coefficients a(z) are
given by an algebraic expression in terms of the jets at the point x of the metric
on M and a connection on F.

The Laplace—Beltrami operator A, on a closed Riemannian manifold (M, g)
is a geometric differential operator of order 2. Another example is the Bochner-
Laplacian

AV = Tr (VI'MEE o VE) € w(M, )
built from a connection VZ on E and the induced connection VI M®E on the

tensor product T*M ® E. Here the trace is taken over the two factors of T*M.
The square of a Dirac operator on a spin manifold (M, g), which differs from
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the corresponding Bochner-Laplacian by a term proportional to the scalar curva-
ture, is geometric. More generally, the square A = D? of a Dirac-type operator
D = 3" c(e;)VF is a geometric operator; here V¥ is a Clifford connection on
a Clifford bundle E over M, ¢ the Clifford multiplication and e;,7 = 1,...,n an
orthonormal frame of the cotangent bundle at a point x. All these examples fall
in the class of Laplace-type differential operators considered previously.

Proposition 28. Let A and A be two geometric differential operators in ©(M, E)
and let A be admissible. The extended local residue res, (A log A) at a point x and
for any real number «, the local residue res, (A A%), are algebraic expressions of
the jets of the metric and the connection.

Proof. That res, (A log A) is an algebraic expression in the z-jets of a finite number
of homogeneous components of the symbols follows from Proposition 8, which tells
us that the extended local residue is an algebraic expression in the z-jets of a finite
number of homogeneous components of the symbols of A and A combined with
the fact that these homogeneous components are themselves algebraic expressions
in the jets of the metric and the connection.

That res, (A A%) is an algebraic expression in the z-jets of a finite number of
homogeneous components of the symbols can be shown similarly. O

The case of the Laplace-Beltrami operator A, on an n-dimensional Riemann-
ian manifold (M, g) is particularly relevant for us since it enables to capture the
scalar curvature as a Wodzicki (possibly extended, depending on the dimension)
residue. Indeed, the scalar curvature s, is proportional to the coefficient by (z) in
the heat-expansion

Ky (Ag) (2,2) ~mo 778 ar(a) t2 =175 by(x) ¢, (37)
Jj=0 j=0
where we have set b; = ag; since the coefficients agj41 vanish [15], [31].
We have [26, Formula (5a)]
59 = 3 bl,

independently of the dimension n.

This combined with Theorem 25 leads to the following expressions of the
scalar curvature in terms of Wodzicki residues.

Proposition 29. When n = 2 we have
6T
. z (log A) . 38
59 (x) \/detg(x) res ( 0g ) ( )
If n > 2 then,

)

3 n
s9(®) = 2 (4m)2 T (2 Vdetg(z)

In dimension 2, which is the case we are going to focus on in the sequel, we
have

(59, 0)g = —6m Res (¢ logAy) Vo € C(M). (40)
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3. Holomorphic families on Hilbert modules

We carry out to pseudodifferential operators on bundles of von Neumann Hilbert
modules the constructions of Section 1 on closed manifolds.

3.1. Finite type Hilbert modules

We start out recalling the setup of finite type Hilbert modules closely following [3]
and [34]°.

Let A be a von Neumann algebra equipped with a finite trace 7: A — C.
This means that A is a unital C-algebra with a * operation, and the following
properties are satisfied:

1. (,-): Ax A — C, defined by (a,b) := 7(ab*) is a scalar product and the
completion Az with respect to this scalar product is a separable Hilbert space.

2. A is weakly closed when viewed as a subalgebra of the space £ (Az) of linear,
bounded operators on Az (identifying elements of A with the corresponding
left translations in £ (Az)).

3. The trace is normal, i.e., for any monotone increasing net, (a;);es such that

a; > 0 and a = sup;c;a; exists in A, one has tr,(a) = sup,;c;tr-(a;).

A right A-Hilbert module is a Hilbert space W with a continuous right A-action
that admits an A-linear isometric embedding into As ® H for some Hilbert space
H. The Hilbert module W is called of finite type if the space H can be chosen
finite-dimensional. We denote by £4(W) the von Neumann algebra of bounded
A-linear operators on W. The (unbounded) trace on £ 4(W) induced by 7 and by
the usual trace on £(H) is denoted tr.

Example 30. Let ' be a countable group and ¢2(I") be the Hilbert space of square
integrable complex-valued functions on I'. The von Neumann algebra N'T' consists
by definition of all bounded operators on ¢?(I') that commute with the left con-
volution action of I'. It contains CI' as a weakly dense subset, and on CI' the

canonical trace 7 is given by
T (Z av'y) = Qe

where e is the unit element in I'. Then W = ¢2(T') is a finite type NT-module,
indeed ¢2(T") ~ (NT)s.

Example 31. In particular, for I' = Z", the Fourier transform gives an isometric Z"-
equivariant isomorphism ¢?(Z") — L?(T"), where T™ is the n-dimensional torus.
Therefore NZ" coincides with the commutant £(L?(T™))%" of the Z,-action on
L?(T™), and one obtains an isomorphism NZ" ~ L% (T"). The canonical trace
7: L*(T") —» Cis

T(f)= | fdw, (41)

Tﬂ,

where p is the measure on T induced by the canonical Lebesgue measure on R".

9Note that in Schick’s paper these objects are called A-Hilbert spaces to distinguish them from
Hilbert C*-modules.
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On a manifold M, an A-Hilbert module bundle £ — M is a locally triv-
ial bundle with fibre a (finitely generated, projective) A-Hilbert module W, the
transition functions being isometries of A-Hilbert modules.

Remark 32. The space of L?-sections of an A-Hilbert module bundle & — M is an
A-Hilbert module. In fact, if U is a subset of M such that M \ U has measure zero
and &y ~ U xW (where W is the fibre), then L*(M, &) ~ L2(U, &) ~ L*(U)@W.
The set U can be chosen for example as being the union of the interiors of the
top-order cells of a triangulation of M.

Example 33. (Flat ANT-Hilbert module) Let M be a closed manifold with 71 (M) =
T, let «: M — M be a universal covering of M, with ' acting on the right by
deck transformations. Because the left I'-action and the right NT-action on ¢(T")
commute, H := M xp ¢%(T) is a finitely generated projective bundle of (right)
NT-Hilbert modules over M. Moreover, H is endowed with a flat structure since
the transition functions are locally constant.

The flat bundle H — M can be used to describe the analysis on the uni-
versal covering. In fact, there is a well-known correspondence between L2(M,H)
and L2(1\7 ), which translates twisted differential operators on one hand with T'-
invariant differential operators on the other. We refer for example to [34, 7.5] or
[30, Prop. E.6] for the complete dictionary for spaces, operators, and L?-invariants.
Let us illustrate this in the case of the n-torus discussed above.

Example 34. To the universal covering 7: R™ — T" with fundamental group Z"
corresponds the finitely generated projective bundle H := R™ x 7. £?(Z™) of (right)
L°°(T™)-Hilbert modules over T". In this correspondence L?-functions on R™ are
viewed as L2-sections of the bundle H over T" via the map which sends f to
fra— > ezn fym~ (@) @ [7 1 (x),7]. This induces an isometry

®: L*(R") ~ L*(T") @ £*(Z") — L*(T",H) (42)
which sends {f € C*(R") : }__ 7. |f(yz)]? < 0o Vo € R"} to C°(T", H).

3.2. Pseudodifferential operators on bundles of Hilbert modules

We describe pseudodifferential operators on bundles of Hilbert modules, following
[3, 2.2-4].
Let (M, g) be a closed Riemannian manifold of dimension n and let p: £ — M
be a bundle of finitely generated projective A-Hilbert modules with fibre WW.
A linear operator A: C*°(M,E) — C>°(M,E) is a (classical) pseudodifferential A-
operator of order a € C if in some atlas of £ — M it is of the form A = Z}']:1 Aj+R
where
e R: C®(M,E) — C*(M,E) is a smoothing operator, namely with Schwartz
kernel given by a smooth section of the bundle L4 — M x M of A-linear
bounded operators whose fibre at (z,y) € M x M is the Banach space of
A-linear operators from the fibre &, to the fibre &,,
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o the operators A; are properly supported operators (meaning that the canon-
ical projections M x M — M restricted to the support of the Schwartz kernel
are proper maps) from C*° (M, &) into itself. This implies in particular that
the A; send C§°(M, €) into itself. In any coordinate chart A; is therefore of
the form given in (7), for some symbol o € C* (U x R™, End4€) which is
asymptotically polyhomogeneous at infinity.

For a € C, let U%(M, £) be the set of classical pseudodifferential operators of order
a; then W=2°(M, &) := N, V*(M, E) corresponds to the smoothing operators, and
U (M,E) := Uy, ¥%(M,E). The subalgebra of differential operators will be denoted
O(M,¢€).

Remark 35. Going back to the example of the n-torus T" and its Z™-covering
m:R" = T", we know that Z™-invariant (i.e., Aot} =t o A for any a € Z" with
to(z) = x + a) differential operators on R"™ give rise to elements of © (M, H). This
raises the question how the algebra W(T™, H) relates to the algebra of Z"-invariant
classical pseudodifferential operators on R" studied by Ruzhanski and Turunen in
[33] or equivalently the § = 0 instance of the algebra ¥ (T} ) described in Section 4.

For any A € U*(M,€), a € R, A defines a bounded linear map on the H*-
Sobolev closure H® (M, E) of C™ (M, E) with values in H*~% (M, &), for any s € R.
We refer the reader to [3, §2.2] for Sobolev closures and to [3, Prop. 2.7] for the
property in the case s = a.

The notions of admissibility (Definition 3) and Agmon angle (Lemma 6) carry
out from the closed manifold case to the setup of pseudodifferential operators
on bundles of von Neumann Hilbert modules, taking into account that here the
spectrum is not necessarily purely discrete.

Definition 36. Let A be an operator in W*(M,E). For an angle S and for € > 0,
denote Vg :={2€ C :|z] <e}U{ze€ C\O : argz € (8 —¢,8+¢€)}. Then 3
is called an Agmon angle for A if there is some ¢ > 0 such that sp(A) N Vs . = 0,
where sp(A) stands for the spectrum of A.

In particular an operator with Agmon angle is elliptic and invertible.

Definition 37. We call weight an operator in W(M, &) of positive order that admits
an Agmon angle. We call admissible an operator A € ¥(M, ) which is a weight
modulo a smoothing perturbation, i.e., if it has positive order, and there exists a
smoothing operator R such that A + R has an Agmon angle.

The constructions of complex powers and the logarithm recalled in Section
1.2 extend word for word to the setting of Hilbert modules.
Let A be a weight in W% (M, E) with spectral cut 3. Then for R(z) > 0, its
complex powers (see [3, (2.8)] for further details, and compare with (12))
)
AZ = A (A—A)"tax 4
B on /F 5 ( ) ) (43)
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and respectively the operators (as in (13))
Ly(Az) =" / logs A A" (A — A)~1dA, (44)
27T Tp

are Well defined bounded linear maps from H*® (M,£), s € R, with values in
H5=R(2) (M, £) respectively in Hs~*R(=)*¢ (M €), for any ¢ > 0. Here T'5 is a
closed contour in C \ {re*’, r > 0} around the spectrum of A oriented clockwise.
These definitions extend to the whole plane inductively on k € N setting

5= AF Ag_k , respectively Lg(A,z) := AF Lg(A,z — k), for R(z) < k
Af is an operator in U (M, E) of order az for any complex number z, and the
logarithm
log(4) := Ls(4,0)
of A is a bounded linear map from H* (M,€) to H5¢ (M, &), Ve > 0. One has by
construction logg A Aj = Af logg A, Vz € C.

Remark 38. Using the same convention as in Remark 7, we usually drop the
explicit mention of the dependence of 3.

In a local trivialisation, the symbol of logs A reads (see, e.g., [36])
o(logg A)(z, &) = alog [§|T + oa(logs A)(z,€) (45)

where a denotes the order of A and o (log A) is a classical symbol of order zero
with homogeneous components o_;(log A) of degree —j,j € Z>o.

3.3. The extended 7-Wodzicki residue

Mimicking the definition of the pointwise residue (10) on closed manifolds, for any
A € U (M,E) with symbol ¢(A) in a local chart of M at a point z, we call

res; (A4) := / tr7(o_n(A))(x, &) dsé, (46)
¢lo=1

the pointwise 7-Wodzicki residue of A. As in the closed manifold case, one proves
that res?(c(A))dx defines a global density on M [39], so we can define the 7-
Wodzicki residue of A (compare with (11))

Res™ (A) = / resT (A) da = / do /m—l (0 n(A)(x,€) dgt.  (4T)

Remark 39. Definition (46) relates to the definitions of the Wodzicki residue by
Benameur—Fack [2, Def. 9] and Vassout [38] in the context of measured foliations.

The pointwise Wodzicki 7-residue extends to the logarithm log A of an ad-
missible invertible operator A € U(M, £). At a point z we set

resT (log A) i /|s| 7 (o5 ). (48)
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Mimicking the definition (18), for any admissible operator A € ¥(M, ), we set
res; (log A) :=res] (log(A+ R)) Vz e M, (49)

where R is any smoothing operator such that A + R has an Agmon angle.
In the subsequent paragraph, we show as in the closed manifold case, that
res? (log A) dz defines a global density.

3.4. The 7-Wodzicki residue as a complex residue

For holomorphic families of operators in W(M, &), whose explicit definition we omit
here since they are defined in the same manner as in the closed case (see Definition
14), we give the Hilbert-module counterpart of Theorem 15. For this we need as
in the case of operators on closed manifolds, the cut-off integral ][ trro(x, &) d¢

n

of a local symbol o of a classical operator, which is defined in the same way as in
(19), only replacing the fibrewise trace by tr”.

Proposition 40. For any holomorphic family A(z) € U (M, E) of classical operators
parametrised by C, with local symbols o(z) and holomorphic order —qz + a for
some positive q and some real number a,
1. the meromorphic map z — TR](A JC]RW tr” x,€)) d¢ integrates
over M to the map

z— TR (A(2)) :== /M TRI (A(z)) dx

which is meromorphic with simple poles d; := a+2_j ,J € Z>g.

2. [20] The complex residue at the point d; is given by:
1
Res.—q,TR" (A(z)) = qResT(A(dj)). (50)

3. [29] If A(d;) lies in ©(M, E), i.e., if it is a differential operator, then A'(d;)
which need not be a classical pseudadiﬁer@ntml operator, nevertheless has a
well-defined Wodzicki residue

Res™ (A'(d;)) := / resT (A'(d;)) da

M
where
el ()= [0 (0 (4100) (9 ds
at the pole d; and we have

fo.ma TR (A(2) = | Res”(4'(d)) (51)

As in Theorem 23 we deduce the asymptotic expansion of the inverse Mellin
transform of traces TR™(A(z)) of holomorphic families A(z). Substituting TR”
to TR in Theorem 23 tells us that, if f is continuous on |0, 4oco[ with Mellin
transform z — TR" (A(z)) for some holomorphic family A(z) € ¥(M,E) of affine
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order a(z) = a—qz with g some positive real number, then f admits an asymptotic
expansion at 0 given by

£(t) = ; Syt + 0@,

j=>0
with 1
a; = _qReST (A(dy)) for d; >0, (52)
and constant term
1
aj = —qResT (A’(0)) for dj =0. (53)

Theorem 17 extends in a straightforward manner.

Theorem 41. Given a weight Q € V(M,E) of order ¢ € Ry and any operator
A e U(M,E) (so not necessarily admissible) of order a € R, the map
z—=("(A,Q)(z) :=TRT(AQ™7) (54)

is holomorphic on the half-plane R(z) > ”;”‘ and defines a meromorphic map
on C called the (7 -regularised trace of A with respect to the weight @, with poles

at d;j = a+2_j, J € Zx>o. The complex residue at such a pole is related to the

Wodzicki T-residue of AQ™% by
1
Res.—q,¢"(4,Q)(z) = qReST(AQ_dj).

For any differential operator A € ©(M,E), the n-form resL(A log Q) dx defines a
global density on M which integrates to the extended Wodzicki T-residue of A log Q.
The (™ -reqularised trace (T (A, Q)(2) is holomorphic at zero and we have

C(A.Q0) = lim ¢ (A4.Q)(:) = - Res” (4105 Q). (5)

Remark 42. Let A, A be differential operators in O(M, £) with A admissible. Then
exactly as in Proposition 8 one can prove that the pointwise extended Wodzicki
residue res” (A4 log A) is an algebraic expression in the coefficients of A and in the
x-jets of the coefficients of A at that point.

3.5. The 7-index as an extended 7-residue

The above constructions extend to Zs-graded vector bundles. Let £ =&, @ E_ be
a Zs-graded bundle of finite type A-Hilbert modules over M and let

Dy: c* (M,gi) — C*® (M,gq:)

be two elliptic differential operators of positive order d. We assume that the op-
erators D, and D_ are formally adjoint to each other which we write D_ = D7 .

Hence
0 D_
b [0 2]
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D_D, 0

0 DyD_
ellipticity of D implies that the projection wa onto Ker A = Ker D is a smoothing
operator of finite 7-rank [3, 34]. Therefore one defines the 7-dimension of the .A-
Hilbert modules Ker Dy as

is essentially selfadjoint. Let A := D? = [ ] = Ay ® A_. The

dim, (Ker Dy) :=7(ra,) €R
and the difference
ind" D4 := dim,(Ker D) — dim,(Ker D_) € R (56)

is called the 7-index of the operator D. In the case A = C this is the usual
definition of the Fredholm index of the operator.

Remark 43. There exist smoothing perturbations R of the nonnegative selfadjoint
operator D? such that D?+ R is invertible. Since we are in a von Neumann algebraic
setting, this follows for example from [22, Proposition 2.10], see also [23].

Therefore there exist operators R, R’ such that D_Dy + R and Dy D_ + R’
are elliptic and nonnegative and hence so are their leading symbols nonnegative.
Thus A, A4, A_ define admissible operators with spectral cut 7.

Consequently, we can define the pointwise extended super T-residue of log A as
the difference of the pointwise extended residues of log A4 and log A_

sres], (log A) (z) :=res], (log (A4 + R')) —res], (log (A_ + R)).

It can be integrated over M to build the extended super 7-residue
1
sRes™ (log A) :== / sres), (log A) (z) dx.
@m)™ Ju

Corollary 44. The T-index of D4 is a local expression proportional to the extended
Wodzicki (super) T-residue of the logarithm of A

ind"™(D,) = _21d sRes” (log(A)) . (57)

Proof. The McKean—Singer formula combined with a Mellin transform yields for
any positive real number ¢ and for any complex number z

ind"(D4) =Tr" (eit(A++”A+)> —Tr" (eft(A*J”rA—))

= C£++7rA+ (Z) - C£_+7TA7 (Z)

1
:_Zd(

1
= —_ sRes” (logA). O
2dbRes (log A)

Res” (log (A4 +7a,)) — Res™ (log (A_ +7ma_)))



30 S. Azzali, C. Lévy, C. Neira-Jiménez and S. Paycha

3.6. The extended residue for locally equivalent operators
and Atiyah’s L2-index theorem

In the following, denote by (U;&,F) a triple where U is a manifold and &, F
are bundles of finitely generated projective A-Hilbert modules over U. Morphisms
between these objects are of the form o = (f;r,s): (U; &, F') — (X; &, F) where
f: U’ — U is an open embedding, r € Hom(&', f*&), s € Hom(f*F, F').

Given any linear map L: C§°(U, &) — C*°(U, F), a morphism

a: (UELNFY — (UE,F)

defines a map ofL: C§°(U', &) — C°(U’, F') that makes the following diagram
commute

cew,e) -

A

[ P

> (U, F)

*

Y
ceW', ey o, F)

where o denotes the composition of s with the map induced by the pullback, and
a, denotes the composition of r with the push-forward.

Definition 45. Let M, M’ be two manifolds and A € © (M,€), A’ € © (M',£’) be
differential operators acting on the sections of A-Hilbert modules bundles &, &’
over M and M’ respectively. The operators A and A’ are said to be locally equiv-
alent if

e there exists a local diffeomorphism ¢: M’ — M meaning that for any 2’
in M’ there is a neighborhood U’ of 2’ such that U = ¢(U’) is open and
Y,: U" — U is a diffeomorphism
e correspondingly, there are morphisms

a=(fir,s): (U Ep, &) = (U, v, )
with f = ¢Y,, and with 7, s isomorphisms such that
Ay = of(Ay) (58)
where we have denoted by Ay, the restriction of A’ to the open set U'.

Example 46 (Twists by flat bundles of Hilbert modules). Let M be closed, E — M
be a vector bundle, and B € (M, E) be a differential operator. Let F — M be a
flat bundle of finitely generated projective A-Hilbert modules, endowed with a flat
connection V z. Denote by W the fibre. Let W = M x W denote the trivial bundle
with fibre W. Because B is differential, one can consider on the one hand By to
be the trivial extension of B to £ ® VW and on the other hand Br the operator B
twisted by the flat connection on F. Then A = Byy on &’ = E®QW and A’ = Br on
£ = E®F are locally equivalent by taking 7 the identity map on M, and the local
morphisms given by local trivialisations of F which are parallel with respect to V .
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Example 47. As a particular case of the above (with W = ¢2(T")), let H = M xp.
¢%(T) be the bundle defined in Example 33, and /T = M x (*(I'). If A € ©(M, E)
is a differential operator, Ay is locally equivalent to Agzp.

Example 48. Specialising to the torus and using the notations of Example 34, for
any differential operator A on T", the local equivalence between Ay and Agr
translates to the well-known local equivalence of the lifted operator %A (with a
slight abuse of notation) on R™ with A.

Proposition 49. Let A, A’ and B, B’ be pairs of locally equivalent differential
operators in the sense of Definition 45. Moreover assume that B, B’ are admissible.
Then with the notation of Definition 45

17 (resI (Alog B) dx) = res], (A’ log (B')) da’, (59)
f* (ves] (AB®) dz) =res], (A" (B))") d2’ ,a €R (60)

for any point x' and any local diffeomorphism f = ¢Y,: U' — U on an open subset
U’ containing x', which when integrated over M’ yields

Res™ (Alog B) = Res” (A’ log (B")) (61)
Res™ (AB®) = Res” (A" (B)"), a€R. (62)

Proof. Since B and B’ are admissible, there are smoothing operators R, R’ such
that @ = B+ R and Q = B’ + R’ are weights. From Theorem 41 applied to the
operator A in O(M, ), we know that the n-form = — res] (Alog B) dx defines
a global density so it transforms covariantly under coordinate transformations.
Thus, the pull-back of this density by the local diffeomorphism f = ¢Y,: U" — U
reads

f* (ves? (Alog B) dx) = resT, (f*A log f*B) da’,
where 2/ = f~1(z). Now A’ = f#A and B’ = f!B, so we get the result. O

Specialising to (essentially) selfadjoint elliptic differential operators provides
an alternative proof of Atiyah’s L?-index theorem in the Hilbert module formula-
tion.

Corollary 50 (Atiyah’s L2-index theorem). Let D be an essentially selfadjoint

differential operator of positive order d acting on a Zso-graded vector bundle E+ @

E~ — M, and assume D is odd with respect to the grading, i.e., D := [DO %_} .
+

10 Dy —
Let DH = DH,JF 0

} be the twisted operator defined in Example 47 acting
on the bundle of NT-Hilbert modules E @ H. Then

indT(D’H}+) = 1nd(D+) .
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Proof. Recall that by Example 46 the operator D% is locally equivalent to the triv-
ial extension Djar acting on £2T' = M x £2(I). Using Remark 43, D% is admissible
(with 7 as a spectral cut), so we can apply Proposition 49 which yields'°

sRes” (log(D3,)) = sRes” (log(DZy)) -
By formula (57)

1
sRes” (log(D3,)) -

ind” (D) = —

Analogously,
1
ind(Dy) =ind" (Dper 1) = —QdSResT(log(szp))
where we have used that ind” (Dg2r 1) = ind(D), so that the equality follows. [

Remark 51. This is a self-contained pseudodifferential proof of Atiyah’s result,
which relies on the locality of the Wodzicki residue. It is very similar in spirit to
John Roe’s proof on coverings [31].

Let D be an essentially selfadjoint differential operator acting on a vector
bundle £ — M. Let Dy be the twisted operator defined in Example 47.

Since D3, is admissible (see Remark 43), the operator Q3 := D3, + R defines
a weight. Let us consider for any positive ¢ the associated heat-operator e t@*.
The corresponding heat-kernel 7-trace K7 (Q) (z,z) at a point z is defined by

Tr™ ((;Se_tQ“) = /M o(z) K] (Qn)(z,x)dx Vo e C°(M) .

Applying as in Section 2 an inverse Mellin transform to the holomorphic families
A(z) = ¢ Q3 and using Proposition 49 we find that

A7)
K{ (D) (¢,2) ~ — 2\/(det)g(x) [rESQ (log D3;) 0[]
©OX r(pen) m(oh
kelo0, %[Nz
(4m)

~ — 2 (logD?) 8, .
24/detg(x) lres (log D7) 5 —[3]
+ ST (Z - k) res, ((D?)""%) tk] (63)
kelo0,3 [Nz
Remark 52. It follows from the Duhamel formula [4] that the time zero asymp-
totics of K7 (D%,) (x,2) coincide with that of K] (D3, + R) (z,z). This is here

confirmed by the fact that the residues involved in the asymptotics are invariant
under perturbation by the smoothing operator R.

0Prop. 49 easily extends to the Zs-graded case replacing the 7-residue by the super 7-residue.
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4. The scalar curvature on the noncommutative two-torus

We want to define the scalar curvature on the noncommutative two-torus by means
of a Wodzicki residue in analogy to the formula (40) established for Riemannian
surfaces. We need a noncommutative analogue of Theorem 17 on the noncommu-
tative torus Tjy. Let us briefly recall the results of [24] we need for that purpose.

4.1. Pseudodifferential operators on the noncommutative torus

Let 6 be a symmetric n x n real matrix. The noncommutative deformation T} of
the commutative torus T™ ~ R"™/Z" is encoded in the C*-algebra Ap. An element
a € Ap decomposes as the convergent series a = ), ;. arpUy where the (Uy) are
unitaries in Ay that satisfy Uy = 1 and

Uk;Ul _ 6—27Ti (k,01) UlUk:~

Let Ag denote the algebra consisting of series of the form }, ;. axUy, where the
sequence (ag)r € S(Z™), the vector space of sequences (ay)r that decay faster
than the inverse of any polynomial in k. We shall also need the linear form t
on Ay which to an element a = ZkeZ" ar U} assigns the scalar term ag, and the
Laplace operator A = 3 j 5? defined in [24, Example 3.13] acting on Ay with
oy (Zkezn akU’f) = Zkezn kj arUk.

We refer to [24] for the construction of the corresponding algebra ¥(T}) of
classical toroidal pseudodifferential operators [24, Paragraph 3.2] on Tj. When
6 = 0, the noncommutative torus T} coincides with T", Ay with C°°(T") and
U(T}) with the algebra U(T™) of classical pseudodifferential operators on the
closed manifold T™ considered in the first section.

4.2. Holomorphic families of operators on the noncommutative torus

In [24] we defined holomorphic families in ¥(T}) and extended the canonical trace
to such families by

TRo(A(2)) == >t (Op; (A(2)))
o

where Op, is the one to one map which takes a toroidal symbol to a toroidal
operator. As seen in [24, Proposition 6.2], the Wodzicki residue Resg on Ay, is a
noncommutative analogue of the classical Wodzicki residue and (up to a multiplica-
tive factor) it is the only continuous linear form on (T ) vanishing on smoothing
operators [14] (see also [24] for a slightly different characterisation which does not
require continuity). In contrast to this, the canonical trace TRy is (up to a mul-
tiplicative factor) the only linear form on non integer operators in ¥ (T} ) whose
restriction to trace-class operators is continuous [24].

Theorem 53. For any holomorphic family A(z) € U(T}) of classical operators
parametrised by C with holomorphic order —qz + a for some positive q and some
real number a,

1. the map z — TRy (A(2)) is meromorphic with simple poles d; := “+Z_j,

J € Zxo,
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2. the complex residue at the point d; is given by:
1
Res.—q, TRy (A(2)) = qRese(A(dj)). (64)

3. If A(d;) is a differential operator, then A'(d;) has a well-defined Wodzicki
residue Resg(A'(d;)) and we have

fp,_o TR (A(2)) = ;Res(;(A’(dj)). (65)

It was shown in [24] how one can define via a Cauchy formula the logarithm
[24, Paragraph 7] log (A) of the Laplace operator and a noncommutative analogue
Co(4, Q) [24, Paragraph 7] of the Q-regularised (-trace of A with @ = 1+ A.
Applying Theorem 53 to the holomorphic family A(z) = A Q™% yields the following
extension of Theorem 17 to the noncommutative torus.

Theorem 54. Let ) := 1+ A and let A be a differential operator in ¥(T}). Then

1. the (g-regularised trace (g(A, Q) of A is holomorphic at zero,
2. the residue Resy extends to Alog @ and we have

(A, Q)(0) = —;RGSO(A log Q). (66)

4.3. The scalar curvature as an extended Wodzicki residue

We now want to define the scalar curvature on T3 by means of a noncommutative
analogue of (40). We work on a conformal deformation of the complexified two
torus using the notational conventions of [12].

Let 7 = 7 +imo with 7,72 € R. Let 9 = 61 4+ 7d2. Then 0* = §; + 7d2. The
operators 0, and 07 are the noncommutative counterparts of —i (9, + 70s,) and
—i (D, + 70,,) acting on Ag = C®(T?). Let h € Ay be selfadjoint and set k = e .
Let Hj, be the completion of Ay for the inner product

(a,b), = t(b*ak™2) = (ak™ ', bk~ = (Rj—2a,b)o

on Ay where Ry, : a +— ab stand for the right multiplication by b. The map
Ry : a— ak induces an isometry U : Hog — Hp.
The analogue of the space of (1,0)-forms on the ordinary two-torus is defined to

be the Hilbert space completion Hél’o) of the space of finite sums adb, a,b € Ay for

the inner product (a, b)g. We view 0 as an unbounded operator 9y, : Hj, — Hél’o).
Then
(0a,b)og = (a,0"b)og = (Ry2a,0"b)y, = (a, Rp20"b)},.

Thus its formal adjoint is given by
We consider the operator

[0 &) [0 Rueo*
o=, @)=l ™
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acting on the Zs- graded space ’;[vh =Hp @ Hél’o). Let
Ay = 6;;8h + 6;78;; = Ry2 070 + OR20",
which for 7; and h = 0 coincides with A.

Here is a corollary of Theorem 17 extended to this slightly more general framework.

Corollary 55. Let Q := Ay + wa,, where ma, is the orthogonal projection onto
the kernel of A and let a € Ag. Then

1. the (g-regularised trace (g(a, Q) of a is holomorphic at zero,
2. the residue Resg extends to alog @ and we have

¢o(a, Q)(0) = — ;Res(;(a log Q). (67)

Exactly as in the case of manifolds, if we specialise the holomorphic family to
the case A(z) = a Q ™%, where a is an element of the algebra of the noncommutative
torus, using the same arguments, we get the following result:

Theorem 56. For any a € Ay we have

Tr (a e—tAh) ~po — (4m)>

Res (a log Ay) 52_[n]

2

n O
+ Z F(2—k>ReS(aAh 2)t 21. (68)
ke[0,3 [Nz
The scalar curvature being associated to the a; coefficient of the heat kernel
expansion, Theorem 56 motivates the following definition:

Definition 57. The “scalar curvature” s; on the noncommutative two torus Tg
associated with the “metric” determined by the conformal factor h is defined as

—67 Resy (a log Ap) if n=2
S s f— n _n .
{sn, aj —3(4m)2 T (7 — k) Resy (a A: 2) otherwise,
which compares with the definitions in [7], [8], [11], [12].

(69)
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Abstract. A homotopy analogue of the notion of a triangular Lie bialgebra
is proposed with a goal of extending basic notions of the theory of quantum
groups to the context of homotopy algebras and, in particular, introducing a
homotopical generalization of the notion of a quantum group, or quantumee-

group.
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triangular Lie bialgebra, co-Poisson—Hopf algebra, quantization, quantum
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1. Introduction

1.1. Conventions and notation

We will work over a ground field % of characteristic zero. A differential graded (dg)
vector space V will mean a complex of k-vector spaces with a differential of degree
one. The degree of a homogeneous element v € V' will be denoted by |v|. In the
context of graded algebra, we will be using the Koszul rule of signs when talking
about the graded version of notions involving symmetry, including commutators,
brackets, symmetric algebras, derivations, etc., often omitting the modifier graded.
For any integer n, we define a translation (or n-fold desuspension) V[n] of V:
Vn)P := V"*P for each p € Z. For two graded vector spaces V and W, we define
grading on the space Hom(V, W) of k-linear maps V. — W by |f| := n —m for
f € Hom(V™ W™).

This work was supported by the World Premier International Research Center Initiative (WPI
Initiative), MEXT, Japan, the Institute for Mathematics and its Applications with funds provided
by the National Science Foundation, and a grant from the Simons Foundation (#282349 to A.V.).
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1.2. Quantum groups

Recall that a quantum group in the sense of Drinfeld and Jimbo is an associative,
coassociative Hopf algebra A subject to the condition of being quasitriangular [5].
The latter implies, in particular, the existence of a solution R to the quantum
Yang-Bazter equation RYZ?R1BR?? = RPRIPR!2 set up in A. More conceptually,
the quasitriangularity condition provides data needed to put a braided structure
on the monoidal category of left A-modules.

The most basic examples of quantum groups appear as quantizations or cer-
tain types of deformations (in the sense of Hopf algebras) of universal enveloping
algebras and algebras of functions on groups. In the first case, starting with a Lie
algebra g and a Hopf-algebra deformation Uy, (g) of its universal enveloping algebra
U(g), one passes to the “(semi)classical limit” 6(x) := Ah(m)_hAzp(x) thus equip-
ping U(g) with a co-Poisson—Hopf structure with ¢ : U(g) — U(g) ® U(g) being
the co-Poisson cobracket. In particular, the restriction §|; becomes a well-defined
cobracket on g turning it into a Lie bialgebra.

1.3. Quantization of triangular Lie bialgebras

The above process can be reversed: as it was shown in [13], any finite-dimensional
Lie bialgebra (g,[,],d) can be quantized, meaning that one can always come up
with a Hopf-algebra deformation Uy (g) whose classical limit, in the sense of the
above formula, agrees with 0. While a priori Uy(g) is just a Hopf algebra, one
would really be interested in having a quasitriangular structure on it. As a special
case, it was shown in [4] that such a structure exists, when g is a triangular Lie
bialgebra. This class of Lie bialgebras is defined as follows: let g be a Lie algebra
and r € g® g (“a classical r-matriz”) be a skew-symmetric element satisfying the
classical Yang—Baxter equation

[r12,713] + [r12,723] + [r23, 713] = 0,
which can be conveniently restated in the form of the Maurer—Cartan equation
[r,7] =0

taking place in the graded Lie algebra S(g[—1])[1] with respect to the Schou-
ten bracket for elements r of degree one: r € (S(g[-1))[1])! = (S(g[-1)))? =
S?(g[-1])[2] = g A g. Such an element 7, called a Maurer—Cartan element, gives
rise to a Lie cobracket on g in the form of the coboundary dcg(r) : g — g A g of
r taken in the cochain Chevalley—Filenberg complex of g with coefficients in g A g
(here, r is regarded as a 0-cocycle). The compatibility with the Lie-algebra struc-
ture on g is packed into the relation 8%E(r) = 0, thus guaranteeing that g with
such a cobracket is indeed a Lie bialgebra. The co-Jacobi identity, which could be
rewritten as

[8CE(T)7 8CE(T)] - 07 (1)
follows from the following statement, which is an odd version of the Hamilton-
ian correspondence in Poisson geometry, if one regards S(g[—1])[1] as the shifted
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Gerstenhaber algebra of functions on the odd Poisson manifold (g[—1])* and
Hom(g[—1], S(g[—1])) as the graded Lie algebra of vector fields on (g[—1])*.

Proposition 1. The linear map
dcm; S(g[—1])[1] — Hom(g[-1], S(g[-1]))
is a graded Lie-algebra morphism.

A triangular Lie bialgebra is a Lie algebra g provided with a Lie cobracket dcg(r)
coming out of an r-matrix r. A basic statement concerning this class of Lie bial-
gebras is that U(g) can be quantized to a triangular Hopf algebra Up(g). This
condition is stronger than being quasitriangular, and in particular, the category of
(left) modules over a triangular Hopf algebra turns out to be symmetric monoidal,
as opposed to just being braided.

1.4. The homotopy quantization program

The upshot of the above construction is that there is a source of quantum groups
coming from the data of a Lie algebra g and a solution of the Maurer—Cartan
equation in S(g[—1])[1]. The goal of our project is to promote this construction
to the realm of homotopy Lie algebras. In particular, this would generalize the
work [2] done for the case of Lie 2-bialgebras. Here is an outline of our program:

1. Develop the notion of a triangular L. -bialgebra extending the classical one.
In analogy with the classical case, the input data for this construction consists
of an L.-algebra g and a solution r of a generalized Maurer—Cartan equation
set up in an appropriate algebraic context;

2. Show that the universal enveloping algebra U(g) of a triangular L..-bialgebra
g admits a natural homotopy co-Poisson—-Hopf structure;

3. Extend the Drinfeld twist construction [5], which equips a cocommutative
Hopf algebra with a new, triangular coproduct, to the homotopical context.
Apply it to the case of universal enveloping algebra U (g) of the previous step
to obtain a quantume, group.

The current paper is dedicated to describing the first step of the construction,
which we believe might be interesting on its own.

The second step is work in progress. While the universal enveloping alge-
bra U(g) of an L.,-algebra g is a strongly homotopy associative (or A.-) alge-
bra that also turns out to be a cocommutative, coassociative coalgebra object in
Lada—Markl’s, see [10], symmetric monoidal category of A..-algebras, we would
be interested in verifying that U(g) is actually a Hopf, algebra, that is, possesses
an antipodal map satisfying certain compatibility conditions. We would also need
to translate an L.-bialgebra structure on an L.,-algebra g into a co-Poissone,
structure on the Hopfs, algebra U(g). This would result in providing U(g) with
the structure of a cocommutative co-Poisson,, coalgebra object in Lada—Markl’s
symmetric monoidal category of A,.-algebras.

Furthermore, we would like to develop deformation theory of homotopy Hopf
algebras and use it to quantize homotopy Lie bialgebras. A different approach to
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quantization of homotopy Lie bialgebras (using the framework of PROPs) was
taken in [12], in which a different notion of a homotopy Hopf algebra (or rather,
homotopy bialgebra) was used. That notion depends on the choice of a minimal
resolution of the bialgebra properad. The notion we outline above appears to be
more canonical.

In the future we would also be interested in investigating what this program
produces for L..-algebras arising in the geometric context, such as generalized
Poisson geometry, L,-algebroids, or BV -geometry.

2. The big bracket and L .-bialgebras

Recall that the structure of a (strongly) homotopy Lie algebra (or Lo, -algebra)
on a graded vector space g may be given by a codifferential, i.e., a degree-one,
square-zero coderivation D such that D(1) = 0, on the graded cocommutative
coalgebra S(g[1]) equipped with the shuffle comultiplication. The date given by D
is equivalent to a collection of “higher Lie brackets” I, : S*(g[1]) — g[1], k > 1, of
degree one obtained by restriction of D to the kth symmetric component of S(g[1])
followed by projection to the cogenerators. The condition D? = 0 is equivalent to
the higher Jacobi identities, homotopy versions of the Jacobi identity. Outside of
deformation theory, nontrivial examples of homotopy Lie algebras are known to
arise in the context of multisymplectic geometry [1,14], Courant algebroids [15],
and closed string field theory [7,11,17].

In order to discuss the structure of an L.-bialgebra on a graded vector
space g, we need to mix the graded Lie algebra Hom(S(g[1]), g[1]), used to define
the structure of an Le-algebra on g, with the graded Lie algebra Hom(g[—1]),
S(g[—1])), used to define the cobracket on g in the classical, Lie algebra setting in
Section 1.3. Consider the graded vector space

B= ] Hom(s™(al1]), 5" (o[~1]))(2

m,n>0

and provide it with the structure of a graded Lie algebra given by the graded
commutator, called the big bracket,

[f.gl=fog— (=1)1Vlgor
under the circle, or Uy product, cf. [6] and [16]:

(fog)(wr---xn)

= Z (D f(@o)  To() 9(To(kt1) " To(n)) (1) 9(To(ka1) ** To(n)) (2)s
o€Shy;
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where x1, ..., 2, € g[l],
f e [[ Hom(s**(g[1]), ™ (a[—1]))[2],
m>0
g € [] Hom(S"(g[1]), S™(g[-1]))[2],
m>0

n = k + | — otherwise we set (f o g)(z1---x,) = 0, Shy; is the set of (k,1)
shuffles: permutations o of {1,2,...,n} such that o(1) < 0(2) < --- < o(k) and
ok +1) < olk+1) < -~ < o(n), € = [za] + lgl{[zaqny| + - + 2o, (~1)/7
is the Koszul sign of the permutation of x1---x, to Ty -2, in S(g[l]),
and we use Sweedler’s notation to denote the result g1y ® g2y of applying to
g € S(g[—1])[2] the (shifted) comultiplication S(g[—1])[2] — S(g[—1])[2]®S(g]—1])
followed by the projection S(g[—1])[2] — g[1] onto the cogenerators in the first
tensor factor. This graded Lie algebra B, under the assumption that dim g < oo and
in a slightly different incarnation, was introduced by Y. Kosmann-Schwarzbach [8]
in relation to Lie bialgebras and later used by O. Kravchenko [9] in relation to
L.-bialgebras. The graded Lie algebra B has the property that its Maurer—Cartan
elements represent L., brackets and cobrackets on g, as well as mixed operations,
comprising the structure of an L-bialgebra on g. Here we adopt Kravchenko’s
approach and define an L., -bialgebra structure on g as a Maurer—Cartan element
w1 in the subalgebra

B+ = [ Hom(s™(gl1), 5" (al-1]))[2

of the graded Lie algebra B.! This means

n = Z Hmn s

m,n>1
o S™(a[1]) = S (g[—1])[2]  of degree 1, 2)
(1, 1] = 0.

3. roo-matrices and triangular L..-bialgebras

For an L.-algebra g, one can generalize the Schouten bracket to an L., structure
on S(g[—1])[1] by extending the higher brackets I on g as graded multiderivations
of the graded commutative algebra S(g[—1]). This Lo, structure may also be de-
scribed via higher derived brackets (in the semiclassical limit) on the BV -algebra
S(g[—1]), see [3, Example 3.4]. The Lo, structure can be naturally extended to
the completion

S(el=1)0] = [ s (al-1)[L].

n>0

IMaurer—Cartan elements in B would correspond to more general, curved Loo-bialgebras.
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While investigating the deformation-theoretic meaning of solutions r =
r(A) € AS(g[—1)[1][[\], where X is the deformation parameter, that is to say,
a (degree-zero) formal variable, of the generalized Maurer—Cartan equation

1
|lg(r®7‘) +

hr) + o

1
larOTOn) 4o =0, (3)

where © refers to multiplication in S(V) for V = S(g[—1])[2], certain analogies
can be drawn with basic constructions of the theory of quantum groups.

Note that an L.-algebra structure on g endows the graded Lie algebras
B and BT with the structure of a dg Lie algebra. Namely, bracketing with the

Maurer—Cartan element Iy + Iy + -+ € [] Hom(S™(g[1]), g[—1])[2], representing
m>1
the L..-algebra structure on g, creates a differential

dyi= [+l + 7]

on B and B, compatible with the “big” bracket.

An Loo-morphism ¢ from the Lo-algebra S(g[—1])[1] to the dg Lie alge-
bra BT, that is to say, a morphism S(S(g[—1])[2]) — S(BT[1]) of dg coalge-
bras mapping 1 to 1, amounts to defining a series of degree-zero linear maps
On S"(g(g[— 1))[2]) — BT[1] for all n > 1 satisfying the following compatibility
conditions:

1
Ty Z Z (=1 [pr(To) @ © To() ) Pr—k(To(ks1) @ © To(n))]
k=10€Shy n_y

= Z Z (_1)|IT|QPn*m+1(lﬂ1(xT(l) ©-0 xT(m,)) © Lr(m+1) ©-0 x‘r(n))v
m=17EShm n—m

where z1,...,2, € S(g[—1])[2] and € = |z.| + |To(1)| + -+ |[To()|. There is a
canonical Log-morphism ¢ : S(g[—1])[1] — B, which may be defined by the
maps

‘Pn(xl (ORRRNO) xn)(y) = ln+p($1 (ORRRNO¥ #%0) N(y))7

where @1,...,2n € S(al-1)[2], y € SP(gll]), N(y) € SPBlel-1)E, p > 1,
and N : S(g[ ]) S(S(g[— 1l)[ ]) is the graded-algebra morphism induced by the

obvious linear map g[1] < S(a[—1])[2] < S(S(a[—1])[2]). The following theorem
generalizes Proposition 1 to the L., setting.

~

Theorem 2. The above maps p,, n > 1, define an Lo, -morphism
v S(g[-1])1] — BT
from the Laso-algebra S(g[—1])[1] to the dg Lie algebra BT
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The proof of the theorem is a straightforward checkup that reduces the state-
ment to the higher Jacobi identities for the Lo, brackets on S(g[—1])[1]. This
theorem also generalizes Kravchenko’s result [9, Theorem 19|, which provides an
Loo-morphism from an L..-algebra g to the graded Lie algebra Hom(g, g).

An roo-matriz v is a (generalized) Maurer—Cartan element r = r(A) in the
Loo-algebra AS(g[—1])[1][[A]], i-¢., a degree-one solution of the generalized Maurer—
Cartan equation (3). Sending an r..-matrix to the subalgebra B of the big-bracket
dg Lie algebra B under an Loo-morphism ¢ : S(g[—1])[1] — Bt would yield a
Maurer—Cartan element p' = p/(\):

!’

w=pe") =¢1(r) + 21!902(7"@7") + ;!gog(rG)r@r) +oee
depending on the deformation parameter A, in the dg Lie algebra ABT[[)]]:
dy’ + ;
or, equivalently, a Maurer—Cartan element
p=p +lh+l+---
in the graded Lie algebra ABT[[\]]:

W', 1] =0,

[, 1] =0,

giving rise to an Lyo-bialgebra structure on g, as per Section 2, in analogy with
Ock(r) giving rise to an ordinary Lie cobracket in the classical, nonhomotopical
case, see also Example 3 below.

We call the L-bialgebra (g, ) produced out of an L..-algebra g and an
roo-matrix 7 by transferring it to a Maurer—Cartan element ' = p(e”) in BT via
the canonical L.,-morphism @, as above, a triangular L -bialgebra.

Example 3. In the case of a classical Lie algebra g, the graded Lie algebra
S(g[—1])[1] is just the completed graded Lie algebra of (right-)invariant multi-
vector fields on the corresponding local Lie group with the Schouten bracket (or,
equivalently, up to degree shift, functions on the formal odd Poisson manifold
(g[—1])*), and the canonical L..-morphism ¢ is just linear: ¢ = ¢1 = dcg, equal
to the Chevalley—Eilenberg differential of 0-cochains of the Lie algebra g with co-
efficients in the graded g-module §(g[— 1])[2]. The fact that ¢ is an Lo,-morphism
translates into being a dg Lie morphism, i.e., satisfying two compatibility condi-
tions

dp(z) =0,
[p(x), ()] = »([z,9]),

where d is the operator taking the big bracket with the Lie structure Iy €
Hom(5%(g[1]), o[-1])[2] C B*:

do := [la, a.
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The first condition means that dcg(p(z)) = 9&g(z) = 0, and the second
states that dcg is a Lie-algebra morphism, which is the assertion of Proposition 1.
An 7oo-matrix is a solution r € (S(g[—1])[1])* = (52(g[—1]))2 = g A g of the gener-
alized Maurer—Cartan equation (3), which turns into the classical Maurer—Cartan
equation [r,7] = 0 in this case, and thereby r is just a classical r-matrix. Thus,
the transfer p(e”) = ¢(r) of an r-matrix is a Lie cobracket ¢(r) on g, satisfying
the compatibility condition with the Lie bracket and the co-Jacobi identity (1),
resulting in the structure of a triangular Lie bialgebra on g. Here we ignored the
deformation parameter ), because S (g[—1])[1] is just a graded Lie algebra and the
generalized Maurer-Cartan equation in S(g[—1])[1] and the morphism ¢ have only
finitely many terms.

Example 4. When g is a dg Lie algebra, the picture is dramatically different from
the classical picture of Example 3. Now an r..-matrix r may have many more
components than just one in g A ¢:

re (SN = Slel-1)* = [T, " 6l-1)7 = [ _, (" (al-1)*

However, 5(g[—1])[1] is just a dg Lie algebra, and the generalized Maurer—Cartan
equation (3) is still classical,

dr + %[r,r] =0.

The Loo-morphism ¢ is still linear ¢ = @1, i.e., ¢ is a dg Lie-algebra morphism.
The transfer p/ = p(e") = ¢(r) of r via ¢ will result in a L.-bialgebra structure
on g with higher operations fi,,,, see (2), which are trivial for all pairs (m,n) but
those with m =1, n > 1 and m = 2, n = 1. Thus, even in the case of a dg Lie
algebra g, our construction creates a triangular L..-bialgebra, rather than just a
(dg) triangular Lie algebra.
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Normal Forms and Lie Groupoid Theory

Rui Loja Fernandes

Abstract. In these lectures I discuss the Linearization Theorem for Lie group-
oids, and its relation to the various classical linearization theorems for sub-
mersions, foliations and group actions. In particular, I explain in some detail
the recent metric approach to this problem proposed in [6].

Mathematics Subject Classification (2010). Primary 53D17; Secondary 22A22.

Keywords. Normal form, linearization, Lie groupoid.

Lecture 1: Linearization and normal forms

In Differential Geometry one finds many different normal forms results which share
the same flavor. In the last few years we have come to realize that there is more than
a shared flavor to many of these results: they are actually instances of the same
general result. The result in question is a linearization result for Lie groupoids,
first conjectured by Alan Weinstein in [17, 18]. The first complete proof of the
linearization theorem was obtained by Nguyen Tien Zung in [19]. Since then several
clarifications and simplifications of the proof, as well as more general versions of
this result, were obtained (see [3, 6]). In these lectures notes we give an overview
of the current status of the theory.

The point of view followed here, which was greatly influenced by an ongoing
collaboration with Matias del Hoyo [6-8], is that the linearization theorem can be
thought of as an Ehresmann Theorem for a submersion onto a stack. Hence, its
proof should follow more or less the same steps as the proof of the classical Ehres-
mann Theorem, which can be reduced to a simple argument using the exponential
map of a metric that makes the submersion Riemannian. Although I will not go at
all into geometric stacks (see the upcoming paper [8]), I will adhere to the metric
approach introduced in [6].

Let us recall the kind of linearization theorems that we have in mind. The
most basic is precisely the following version of Ehresmann’s Theorem:

Supported in part by NSF grants DMS 1308472 and DMS 1405671.
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Theorem 1 (Ehresmann). Let 7 : M — N be a proper surjective submersion.
Then 7 is locally trivial: for every y € N there is a neighborhood y € U C N, a
neighborhood 0 € V- C TN, and diffeomorphism:

o

V x w7 (y) > YU)c M
pr K
% N v
V - >~U.

One can also assume that there is some extra geometric structure behaving
well with respect to the submersion, and then ask if one can achieve “linearization”
of both the submersion and the extra geometric structure. For example, if one
assumes that w € Q?(M) is a closed 2-form such that the pullback of w to each
fiber is non-degenerate, then one can show that 7 is a locally trivial symplectic
fibration (see, e.g., [13]). We will come back to this later, for now we recall another
basic linearization theorem:

Theorem 2 (Reeb). Let F be a foliation of M and let Ly be a compact leaf of F
with finite holonomy. Then there exists a saturated neighborhood Lo C U C M, a
hol(Lg)-invariant neighborhood 0 € V' C vy, (Lo), and a diffeomorphism:

—~h o

Ly x V B ~UcM
hOl(Lo)

sending the linear foliation to F|u .

Here, Zgh — L denotes the holonomy cover, a hol(Lg)-principal bundle, and
the holonomy group hol(Lg) acts on the normal space v,,(Lg) via the linear holo-
nomy representation. By “linear foliation” we mean the quotient of the horizontal
foliation {Evoh X {t}, t € vy (L)}.

Notice that this result generalizes Ehresmann’s Theorem, at least when the
fibers of the submersion are connected: any leaf of the foliation by the fibers of 7
has trivial holonomy so hol(Lg) acts trivially on the transversal, and then Reeb’s
theorem immediately yields Ehresmann’s Theorem. For this reason, maybe it is
not so surprising that the two results are related.

Let us turn to a third linearization result which, in general, looks to be of a
different nature from the previous results. It is a classical result from Equivariant
Geometry often referred to as the Slice Theorem (or Tube Theorem):

Theorem 3 (Slice Theorem). Let K be a Lie group acting in a proper fashion on
M. Around any orbit Oy, C M the action can be linearized: there exist K -invariant
neighborhoods Oy, C U C M and 0yy € V' C 14y(Og,) and a K-equivariant
diffeomorphism:

Kxg,V =  >UcM
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Here K, acts on the normal space vy, (Oy,) via the normal isotropy repre-
sentation. If the action is locally free then the orbits form a foliation, the isotropy
groups K, are finite and hol(O,) is a quotient of K,. Moreover, the action of
K, on a slice descends to the linear holonomy action of hol(O,). The slice theo-
rem is then a special case of the Reeb stability theorem. However, in general, the
isotropy groups can have positive dimension and the two results look apparently
quite different.

Again, both in the case of foliations and in the case of group actions, we could
consider extra geometric structures (e.g., a metric or a symplectic form) and ask
for linearization taking into account this extra geometric structure. One can find
such linearization theorems in the literature (e.g., the local normal form theorem
for Hamiltonian actions [10]). Let us mention one such recent result from Poisson
geometry, due to Crainic and Marcut [4]:

Theorem 4 (Local normal form around symplectic leaves). Let (M, ) be a Poisson
manifold and let S C M be a compact symplectic leaf. If the Poisson homotopy
bundle G ~ P — S is a smooth compact manifold with vanishing second de
Rham cohomology group, then there is a neighborhood S C U C M, and a Poisson
diffeomorphism:

¢: (U nly) = (P xgg,m™).

We will not discuss here the various terms appearing in the statement of
this theorem, referring the reader to the original work [4]. However, it should be
clear that this result has the same flavor as the previous ones: some compactness
type assumption around a leaf/orbit leads to linearization or a normal form of the
geometric structure in a neighborhood of the leaf/orbit.

Although all these results have the same flavor, they do look quite different.
Moreover, the proofs that one can find in the literature of these linearization
results are also very distinct. So it may come as a surprise that they are actually
just special cases of a very general linearization theorem.

In order to relate all these linearization theorems, and to understand the sig-
nificance of the assumptions one can find in their statements, one needs a language
where all these results fit into the same geometric setup. This language exists and it
is a generalization of the usual Lie theory from groups to groupoids. We will recall
it in the next lecture. After that, we will be in shape to state the general lineariza-
tion theorem and explain how the results stated before are special instances of it.

Lecture 2: Lie groupoids

In this Lecture we provide a quick introduction to Lie groupoids and Lie algebroids.
We will focus mostly on some examples which have special relevance to us. A more
detailed discussion, along with proofs, can be found in [1, 12, 14]. Let us start by
recalling:

Definition 1. A groupoid is a small category where all arrows are invertible.
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Let us spell out this definition. We have a set of objects M, and a set of
arrows G. For each arrow g € G we can associate its source s(g) and its target
t(g), resulting in two maps s,t : G — M. We also write g : ¢ — y for an arrow
with source x and target y.

For any pair of composable arrows we have a product or composition map:

m:G? = G, (g, h) — gh.
In general, we will denote by G(™) the set of n strings of composable arrows:

G = {(g1,..,9n) :s(gi) = t(git1)}.

The multiplication satisfies the associativity property:
(gh)k = g(hk), ¥(g,h.k) € G

For each object x € M there is an identity arrow 1, and the identity property
holds:
li)g = 9= glsg), V9€G.
It gives rise to an identity section v : M — G, z +— 1.
For each arrow g € G there is an inverse arrow g~ € G, for which the inverse
property holds:
997" = lug, 9 '9=1sy, Y9G,

This gives rise to the inverse map ¢ : G — G, g+ g~ L.

Definition 2. A morphism of groupoids is a functor F : G — H.

This means that we have a map F : G — H between the sets of arrows and
amap f : M — N between the sets of objects, making the following diagram
commute:

¢ T-H
s t E t
'A% 'A%
M f>N

such that F(gh) = F(g)F(h) if g,h € G are composable, and F(1;) = 14, for
allz € M.

We are interested in groupoids and morphisms of groupoids in the smooth
category:

Definition 3. A Lie groupoid is a groupoid G = M whose spaces of arrows and
objects are both manifolds, the structure maps s, t, u, m, ¢ are all smooth maps and
such that s and t are submersions. A morphism of Lie groupoids is a morphism
of groupoids for which the underlying map F : G — H is smooth.

Before we give some examples of Lie groupoids, let us list a few basic prop-
erties.
e the unit map w : M — G is an embedding and the inverse ¢t : G — G is a
diffeomorphism.
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e The source fibers are embedded submanifolds of G and right multiplication
by g : x — y is a diffeomorphism between s-fibers

R, :s7'(y) — s M=), hw hg.

e The target fibers are embedded submanifolds of G' and left multiplication by
g :x — y is a diffeomorphism between t-fibers:

Ly:t ™ Hz) —t ' (y), hw gh.
e The isotropy group at x:
G, =sY(z)nt (x).

is a Lie group.
e The orbit through x:

(’)m::t(s_l(a:)):{yEM:Elg:x—>y}

is a regular immersed (possibly disconnected) submanifold.
e The map t : s~ (z) — O, is a principal G,-bundle.

The connected components of the orbits of a groupoid G = M form a (possi-
bly singular) foliation of M. The set of orbits is called the orbit space and denoted
by M/G. The quotient topology makes the natural map 7 : M — M/G into an
open, continuous map. In general, there is no smooth structure on M/G compat-
ible with the quotient topology, so M/G is a singular space. One may think of a
groupoid as a kind of atlas for this orbit space.

There are several classes of Lie groupoids which will be important for our
purposes. A Lie groupoid G = M is called source k-connected if the s-fibers s~!(z)
are k-connected for every x € M. When k£ = 0 we say that G is a s-connected
groupoid, and when k£ = 1 we say that G is a s-simply connected groupoid. We
call the groupoid étale if dim G = dim M, which is equivalent to requiring that
the source or target map be a local diffeomorphism. The map (s,t) : G — M x M
is sometimes called the anchor of the groupoid and a groupoid is called proper if
the anchor (s,t) : G — M x M is a proper map. In particular, when the source
map is proper, we call the groupoid s-proper. We will see later that proper and
s-proper groupoids are, in some sense, analogues of compact Lie groups.

Example 1. Perhaps the most elementary example of a Lie groupoid is the unit
groupoid M = M of any manifold M: for each object x € M, there is exactly
one arrow, namely the identity arrow. More generally, given an open cover {U;}
of M one constructs a cover groupoid |_|Z jer UsNU; = | ;e; Uis we picture an
arrow as (z,1) — (x,j) if € U; N Uj. The structure maps should be obvious.
In both these examples, the orbit space coincides with the original manifold M
and the isotropy groups are all trivial. These are all examples of proper, étale, Lie
groupoids. If the open cover is not second countable, then the spaces of arrows and
objects are not second countable manifolds. In Lie groupoid theory one sometimes
allows manifolds which are not second countable. However, we will always assume
manifolds to be second countable.
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Example 2. Another groupoid that one can associate to a manifold is the pair
groupoid M x M = M: an ordered pair (z,y) determines an arrow x — .
This is an example of tramsitive groupoid, i.e., a groupoid with only one orbit.
More generally, if K ~ P — M is a principal K-bundle, then K acts on the pair
groupoid P x P = P by groupoid automorphisms and the quotient P x x P =% M
is a transitive groupoid called the gauge groupoid. Note that for any x € M the
isotropy group G, is isomorphic to K and the principal G,-bundle t : s7!(z) — M
is isomorphic to the original principal bundle. Conversely, it is easy to see that
any transitive groupoid G = M is isomorphic to the gauge groupoid of any of
the principal G-bundles t : s~!(z) — M. It is easy to check that that the gauge
groupoid associated with a principal K-bundle P — M is proper if and only if K
is a compact Lie group. Moreover, it is s-proper (respectively, source k-connected)
if and only if P is compact (respectively, k-connected).

Example 3. To any surjective submersion @ : M — N one can associate the
submersion groupoid M x y M = M. This is a subgroupoid of the pair groupoid
M x M = M, but it fails to be transitive if N has more than one point: the orbits
are the fibers of w : M — N, so the orbit space is precisely V. The isotropy groups
are all trivial. The submersion groupoid is always proper and it is s-proper if and
only if 7 is a proper map.

Example 4. Let F be a foliation of a manifold M. We can associate to it the
fundamental groupoid I, (F) = M, whose arrows correspond to foliated homotopy
classes of paths (relative to the end-points). Given such an arrow [], the source and
target maps are s([v]) = v(0) and t([y]) = v(1), while multiplication corresponds
to concatenation of paths. One can show that II; (F) is indeed a manifold, but it
may fail to be Hausdorff. In fact, this groupoid is Hausdorff precisely when F has
no vanishing cycles. In Lie groupoid theory, one often allows the total space of a
groupoid to be non-Hausdorff, while M and the source/target fibers are always
assumed to be Hausdorff. On the other hand, we will always assume manifolds to
be second countable.

Another groupoid one can associate to a foliation is the holonomy groupoid
Hol(F) = M, whose arrows correspond to holonomy classes of paths. Again, one
can show that Hol(F) is a manifold, but it may fail to be Hausdorff. In general,
the fundamental groupoid and the holonomy groupoid are distinct, but there is an
obvious groupoid morphism F : II; (F) — Hol(F), which to a homotopy class of
a path associates the holonomy class of the path (recall that the holonomy only
depends on the homotopy class of the path). This map is a local diffeomorphism.

It should be clear that the leaves of these groupoids coincide with the leaves
of F and that the isotropy groups of II; (F) (respectively, Hol(F)) coincide with
the fundamental groups (respectively, holonomy groups) of the leaves. It is easy to
check also that IT; (F) is always s-connected. One can show that II; (F) (respec-
tively, Hol(F)) is s-proper if and only if the leaves of F are compact and have finite
fundamental group (respectively, finite holonomy group). In general, it is not so
easy to give a characterization in terms of F of when these groupoids are proper.



Normal Forms and Lie Groupoid Theory 55

Example 5. Let K ~ M be a smooth action of a Lie group K on a manifold M.

The associated action groupoid K x M = M has arrows the pairs (k,z) € K x M,

source/target maps given by s(k,x) = z and t(k,z) = kx, and composition:
(klvy)(k%x) = (klk%x)v lfy: kyix.

The isotropy groups of this action are the stabilizers K, and the orbits coincide

with the orbits of the action. The action groupoid is proper (respectively, s-proper)

precisely when the action is proper (respectively, K is compact). Moreover, this
groupoid is source k-connected if and only if K is k-connected.

Lie groupoids, just like Lie groups, have associated infinitesimal objects
known as Lie algebroids:

Definition 4. A Lie algebroid is a vector bundle A — M together with a Lie
bracket [, ]4 : T'(A) x T'(A) — T'(A4) on the space of sections and a bundle map
pa: A — TM, called the anchor, such that the Leibniz identity:

(X, fY]a = FIX,Y]a + pa(X)()Y, (1)
holds for all f € C*°(M) and X,Y € I'(A).

Given a Lie groupoid G = M the associated Lie algebroid is obtained as
follows. One lets A := kerdyss be the vector bundle whose fibers consists of the
tangent spaces to the s-fibers along the identity section. Then sections of A can
be identified with right-invariant vector fields on the Lie groupoid, so the usual
Lie bracket of vector fields induces a Lie bracket on the sections. The anchor is
obtained by restricting the differential of the target, i.e., pa := dt|a.

There is a Lie theory for Lie groupoids/algebroids analogous to the usual Lie
theory for Lie groups/algebras. There is however one big difference: Lie’s Third
Theorem fails and there are examples of Lie algebroids which are not associated
with a Lie groupoid ([2]). We shall not give any more details about this correspon-
dence since we will be working almost exclusively at the level of Lie groupoids. We
refer the reader to [1] for a detailed discussion of Lie theory in the context of Lie
groupoids and algebroids.

Lecture 3: The linearization theorem

For a Lie groupoid G = M a submanifold N C M is called saturated if it is a
union of orbits. Our aim now is to state the linearization theorem which, under
appropriate assumptions, gives a normal form for the Lie groupoid in a neighbor-
hood of a saturated submanifold. First we will describe this local normal form,
which depends on some standard constructions in Lie groupoid theory.

Let G = M be a Lie groupoid. The tangent Lie groupoid TG = TM is
obtained by applying the tangent functor: hence, the spaces of arrows and objects
are the tangent bundles to G and to M, the source and target maps are the
differentials ds, dt : TG — T'M, the multiplication is the differential dm : (T'G)? =
TG® — TG, ete.
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Assume now that S C M is a saturated submanifold. An important special
case to keep in mind is when S consists of a single orbit of G. Then we can restrict
the groupoid G to S:

Gs = t~1(8) =s~1(S),

obtaining a Lie subgroupoid Gg = S of G = M. If we apply the tangent functor,
we obtain a Lie subgroupoid TGg = TS of TG = TM.

Proposition 5. There is a short exact sequence of Lie groupoids:

1 >TGgs >TG >v(Gg) >1

B B Y'Y
0 >TSS >TM >v(9) > 0.

There is an alternative description of the groupoid v(Gg) =2 v(S) which
sheds some light on its nature. For each arrow g : + — y in Gg one can define
the linear transformation:

Ty v2(S) = vy(S), [v] — [dgt(D)],

where ¥ € TG is such that dys(?) = v. One checks that this map is independent
of the choice of lifting . Moreover, for any identity arrow one has T, =id,, s)
and for any pair of composable arrows (g, h) € G one finds:

Tgh = Tg OTh.

This means that Gg =% S acts linearly on the normal bundle v(S) — S, and one
can form the action groupoid:

Gs x v(S) = v(S).
The space of arrows of this groupoid is the fiber product Gg x g v(5), with source
and target maps: s(g,v) = v and t(g,v) = Tyv. The product of two composable
arrows (g,v) and (h,w) is then given by:
(g,v)(h,w) = (gh, w).
One then checks that:

Proposition 6. The map F : v(Gg) — Gs x v(S), vy = (g,[dgs(vg)]), is an
isomorphism of Lie groupoids.

Finally, let us observe that the restricted groupoid Gs = S sits (as the zero
section) inside the Lie groupoid v(Gg) = v(5) as a Lie subgroupoid. This justifies
introducing the following definition:

Definition 5. For a saturated submanifold S of a Lie groupoid G = M the local
linear model around S is the groupoid v(Gg) = v(S5).
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Example 6 (Submersions). For the submersion groupoid G = M xy M = M
associated with a submersion 7 : M — N, a fiber S = 771(2) is a saturated
submanifold (actually, an orbit) and we find that

Gs={(z,y) e M xM:7(z)=n(y) =2} =5xS5S=S.

is the pair groupoid. Notice that the normal bundle vj(.S) is naturally isomorphic
to the trivial bundle S x T, N. It follows that the local linear model is the groupoid:

SxSxT,N=SxT,N,

which is the direct product of the pair groupoid S x S — S and the identity
groupoid T, N = T, N. More importantly, we can view this groupoid as the sub-
mersion groupoid of the projection : S x T,N — T, N.

Example 7 (Foliations). Let F be a foliation of M and let L C M be a leaf.
The normal bundle v(F) has a natural flat F-connection, which can be described
as follows. Given a vector field Y € X(M) let us write Y € T'(v(F)) for the
corresponding section of the normal bundle. Then, if X € X(F) is a foliated
vector field, one sets:
VxY :=[X,Y].

One checks that this definition is independent of the choice of representative, and
defines a connection V : X(F) x I'(v(F)) — I'(v(F)), called the Bott connection
(also partial connection). The Jacobi identity shows that this connection is flat.

Given a path v : I — L in some leaf L of F, parallel transport along V

defines a linear map

Ty * Vy(0) (L) — V’y(l)(L)-
Since the connection is flat, it is clear that this linear map only depends on the
homotopy class [y]. One obtains a linear action of the fundamental groupoid II; (F)
on v(F). The restriction of II;(F) to the leaf L is the fundamental groupoid of
the leaf L and we obtain the linear model for II; (F) along the leaf L as the action
groupoid:

I (L) x v(L) = v(L).
The fundamental groupoid IT; (L) is isomorphic to the gauge goupoid of the uni-
versal covering space L — L, viewed as a principal 71(L)-bundle. Moreover,
v(L) is isomorphic to the associated bundle L Xy (L) Va(L). It follows that the
linear model coincides with the fundamental groupoid of the linear foliation of
I/(L) =L Xy (L,z) l/w(L)

The linear map 7, only depends on the holonomy class of v, since this maps
coincides with the linearization of the holonomy action along . For this reason,
there is a similar description of the linear model of the holonomy groupoid Hol(F)
along the leaf L as an action groupoid:

Hol(F)r x v(L) = v(L).

Also, the holonomy groupoid is isomorphic to the gauge goupoid of the holonomy
cover L" — L, viewed as a principal hol(L)-bundle and we can also describe the
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normal bundle v(L) as the associated bundle L" Xhol(L,z) Ve(L). The underlying
foliation of this linear model is still the linear foliation of v(L). However, the linear
model now depends on the germ of the foliation around L, i.e., on the non-linear
holonomy. Unlike the case of the fundamental groupoid, the knowledge of the Bott
connection is not enough to build this linear model.

Example 8 (Group actions). Let K be a Lie group that acts on a manifold M
and let K, be the isotropy group of some x € M. For each k € K, the map
P : M — M, y — ky, fixes x and maps the orbit O, to itself. Hence, d,®
induces a linear action of K, on the normal space v,(O,), called the normal
isotropy representation. Using this representation, it is not hard to check that we
have a vector bundle isomorphism:

V(O > K XKy VT(OJC)

z) -
\Ow /

where the action K, ~ K x v,(0,) is given by k(g,v) := (gk~!, kv). Moreover,
one has an action of K on v(0O,), which under this isomorphism corresponds to
the action:

K~ K xg, v,(0y), k[(K,v)] = [(kk',v)].
Now consider the action Lie groupoid K x M — M. One checks that the local

linear model around the orbit O, is just the action Lie groupoid K x v(0,) =
v(O;), which under the isomorphism above corresponds to the action groupoid:

K x (K XKy VI(OI)) = K XKy I/I(Om)

As we have already mentioned above, the Linearization Theorem states that,
under appropriate conditions, the groupoid is locally isomorphic around a sat-
urated submanifold to its local model. In order to make precise the expression
“locally isomorphic” we introduce the following definition:

Definition 6. Let G = M be a Lie groupoid and S C M a saturated submanifold.
A groupoid neighborhood of Gg = S is a pair of open sets U D S and U > Gs
such that U = U is a subgroupoid of G = M. A groupoid neighborhood U=U
is said to be full if U = Gu.

Our first version of the linearization theorem reads as follows:

Theorem 7 (Weak linearization). Let G = M be a Lie groupoid with a 2-metric
n®). Then G is weakly linearizable around any saturated submanifold S C M:
there are groupoid neighborhoods U=U of Gg = S in G = M and V=V of
Gg — S in the local model v(Gg) =2 v(S), and an isomorphism of Lie groupoids:

- b~
U=0)2(V=aV),
which is the identity on Gg.
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A 2-metric is a special Riemannian metric in the space of composable arrows
G, We will discuss them in detail in the next lecture. For now we remark that
for a proper groupoid 2-metrics exist and, moreover, every groupoid neighborhood
contains a full groupoid neighborhood. Hence:

Corollary 8 (Linearization of proper groupoids). Let G = M be a proper Lie

groupoid. Then G is linearizable around any saturated submanifold S C M : there

exist open neighborhoods S C U C M and S CV C v(S) and an isomorphism of
Lie groupoids

¢

(Gu=U) =

which is the identity on Gg.

(W (Gs)v = V),

This corollary does not yet yield the various linearization results stated in
Lecture 1. The reason is that the assumptions do not guarantee the existence
of a saturated neighborhood S C U C M. This can be realized for s-proper
groupoids, since for such groupoids every neighborhood U of a saturated embedded
submanifold S, contains a saturated neighborhood of S.

Corollary 9 (Invariant linearization of s-proper groupoids). Let G = M be an
s-proper Lie groupoid. Then G is invariantly linearizable around any saturated
submanifold S C M : there exist saturated open neighborhoods S C U C M and
S CcV Cv(S) and an isomorphism of Lie groupoids

¢
(Gu=U)=wGs)y V),
which is the identity on Gg.

Example 9. For a proper submersion m : M — N the associated submersion
groupoid M xny M = M is s-proper. Using the description of the local model
that we gave before, it follows that for any fiber 7=1(z) there is a saturated open
neighborhood 771(2) C U C M where the submersion if locally isomorphic to the
trivial submersion 771(z) x V — V, for some open neighborhood 0 € V' C T, N.
Hence, we recover the classical Ehresmann Theorem.

Example 10. Let F be a foliation of M whose leaves are compact with finite holo-
nomy. Then the holonomy groupoid Hol(F) = M is s-proper. Using the description
of the local model given before, it follows that for any leaf L there is a saturated
neighborhood L C U C M where the canonical foliation is isomorphic to the lin-
ear foliation of v(L) = L" Xhol(L,z) V', for some hol(L, z)-invariant, neighborhood
0 € V C v, (L). Hence, we recover the Local Reeb Stability Theorem.

Example 11. Let K x M — M be an action of a compact Lie group. Then the
the action groupoid is s-proper and we obtain invariant linearization. From the
description of the local model, it follows that for any orbit O, there is a saturated
open neighborhood O, C U C M and a K-equivariant isomorphism U ~ K x g,V
where 0 € V C v,(0,) is a K, -invariant neighborhood. Hence, we recover the
slice theorem for actions of compact groups. For a general proper action, the
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results above only give weak linearization, which does not allow to deduce the
slice theorem. However, due to the particular structure of the action groupoid,
every orbit has a saturated neighborhood and one has a uniform bound for the
injectivity radius of the 2-metric. This gives invariant linearization and leads to
the Slice Theorem for any proper action.

Example 12. Let (M, ) be a Poisson manifold. The cotangent bundle T*M has a
natural Lie algebroid structure with anchor p: T*M — T M given by contraction
by 7 and Lie bracket on sections (i.e., 1-forms):

[0, B] 1= L) B = Lp(gya — dm(a, B).

In general, this Lie algebroid fails to be integrable. However, under the assumptions
of the local normal form theorem stated in Lecture 1, this algebroid is integrable,
and then its source 1-connected integration is an s-proper Lie groupoid whose
orbits are the symplectic leaves. This groupoid can then be linearized around a
symplectic leaf, but this linearization does not yet yield the local canonical form
for the Poisson structure.

It turns out that the source 1l-connected integration is a symplectic Lie
groupoid, i.e., there is a symplectic structure on its space of arrows which is com-
patible with multiplication. One can apply a Moser type trick to further bring the
symplectic structure on the local normal form to a canonical form, which then
yields the canonical form of the Poisson structure. The details of this approach,
which differ from the original proof of the canonical form due to Crainic and
Marcut, can be found in [4].

Lecture 4: Groupoid metrics and linearization

Let us recall that a submersion 7 : (M, n) — N is called a Riemannian submersion
if the fibers are equidistant. The base N gets an induced metric 7,7 for which the
linear maps d,7 : (ker d,7)* — Tr(z)IN, * € M, are all isometries. More generally,
a (possibly singular) foliation in a Riemannian manifold M is called a Riemannian
foliation if the leaves are equidistant. This is equivalent to the following property:
any geodesic which is perpendicular to one leaf at some point stays perpendicular
to all leaves that it intersects.

A simple proof of Ehreshman’s Theorem can be obtained by choosing a metric
on the total space of the submersion 7 : M — N, that makes it into a Riemannian
submersion. A partition of unity argument shows that this is always possible. Then
the linearization map is just the exponential map of the normal bundle of a fiber,
which maps onto a saturated neighborhood of the fiber, provided the submersion
is proper. We will see that a proof similar in spirit also works for the general
linearization theorem (Theorem 7).

Let G = M be a Lie groupoid. Like any category, G' has a simplicial model:

el .. E6® M zGO | ~g©/GW)]
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where, for each n € N, the face maps ¢; : G — G~V 4 =0,...,n and the
degeneracy maps 0; : G — G"*tD i =1,... n, are defined as follows: for an
n-string of composable arrows the ith face map associates the (n — 1)-string of
composable arrows obtained by omitting the i-object:

g1 In 91 gigit1 9n
c. 2 S A ~ S

while the ith degeneracy map inserts into an n-string of composable arrows an
identity at the ith entry:

1.

2

g1 9n g1 g J 9n
K3

= . . . MO0 .

For a Lie groupoid there is, additionally, a natural action of S,+; on G): for a
string of n-composable arrows (g1, ..., g,) choose (n + 1) arrows (hg,...,hy), all
with the same source, so that:

ho ' I
h1 ho hn—1
.kgl\.z/gz .V A‘.‘gn,{‘.
Then the S,,;1-action on the arrows (hg,...,h,) by permutation gives a well-

defined S,,41-action on G, Notice that this action permutes the face maps ¢;,
since there are maps ¢; : Sp,+1 — S, such that:

€i 00 = ¢i(0) 0 €gj)-
Definition 7. An n-metric (n € N) on a groupoid G — M is a Riemannian metric

77(") on G™ which is Spy1-invariant and for which all the face maps ¢; : G —
G(=1) are Riemmanian submersions.

Actually, it is enough in this definition to ask that one of the face maps is a
Riemannian submersion: the assumption that the action of S,y is by isometries
implies that if one face map is a Riemannian submersion then all the face maps
are Riemannian submersions.

For any n > 1, the metrics induced on G("~1 by the different face maps
gi : G — G=1 coincide, giving a well-defined metric (=1, which is a (n—
1)-metric. Obviously, one can repeat this process, so that an n-metric on G
determines a k-metric on G®) for all 0 < k < n.

Example 13 (0-metrics). When n = 0 we adopt the convention that 7(®) is a metric
on M = G© which makes the orbit space a Riemannian foliation and is invariant
under the action of G on the normal space to the orbits, i.e., such that each arrow
T, acts by isometries on v(0O). Such 0-metrics were studied by Pflaum, Posthuma
and Tang in [16], in the case of proper groupoids. One can think of such metrics
as determining a metric on the (possibly singular) orbit space M/G. Indeed, it is
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proved in [16] that the distance on the orbit space determined by n(©) enjoys some
nice properties.

Example 14 (1-metrics). A l-metric is just a metric n™ on the space of arrows
G = GW for which the source and target maps are Riemannian submersions and
inversion is an isometry. These metrics were studied by Gallego et al. in [9]. A
l-metric induces a O-metric 7(® on M = G, for which the orbit foliation is
Riemannian.

Example 15 (2-metrics). A 2-metric is a metric 7 in the space of composable
arrows G?)| which is invariant under the Ss-action generated by the involution
(91,92) — (95", 97 ") and the 3-cycle (g1,92) + ((9192)"%, 1), and for which
multiplication is a Riemannian submersion. Hence, a 2-metric on G induces a
I-metric on G(V). These metrics were introduced in [6].

Notice that the first three stages of the nerve
L8t
G m ZG " IM
> t
T2
completely determine the remaining G, for n > 3. Hence, one should expect
that n-metrics, for n > 3, are determined by their 2-metrics. In fact, one has the
following properties, whose proof can be found in [7, 8]:

e there is at most one 3-metric inducing a given 2-metric and every 3-metric

has a unique extension to an n-metric for every n > 3.

e there are examples of groupoids which admit an n-metric, but do not admit

a n + l-metric, for n = 0,1, 2.

e uniqueness fails in low degrees: one can have, e.g., two different 2-metrics on

G® inducing the same l-metric on GV,

The geometric realization of the nerve of a groupoid G = M is usually
denoted by BG, can be seen as the classifying space of principal G-bundles (see
[11]). Two Morita equivalent groupoids G; = M; and Go = M; (see [5] or [14]),
give rise to homotopy equivalent spaces BG; and BGsy. An alternative point of
view, is to think of BG as a geometric stack with atlas G = M, and two atlas
represent the same stack if they are Morita equivalent groupoids. The following
result shows that one may think of an n-metric as a metric in BG:

Proposition 10 ([7, 8]). If G = M and H = N are Morita equivalent groupoids,
then G admits an n-metric if and only if H admits an n-metric.

In fact, it is shown in [7, 8] that it is possible to “transport” an n-metric
via a Morita equivalence. This construction depends on some choices, but the
transversal component of the n-metric is preserved. We refer to those references
for a proof and more details.

Since an n-metric determines a k-metric, for all 0 < k& < n, a necessary
condition for a groupoid G = M to admit an n-metric is that the orbit foliation
can be made Riemannian. This places already some strong restrictions on the class
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of groupoids admitting an n-metric. So one may wonder when can one find such
metrics. One important result in this direction is that any proper groupoid admits
such a metric:

Theorem 11. A proper Lie groupoid G =% M admits n-metrics for all n > 0.

Proof. The proof uses the following trick, called in [6] the gauge trick. For each n,
consider the manifold GI" € G™ of n-tuples of arrows with the same source, and
the map

7™ G 5 G (g by, k) — (hohT Y hahg Y, b1 b h).

The fibers of (™ coincide with the orbits of the right-multiplication action,

(hos .- h) -k = (hok, ..., huk).

GIntll A G X
/

and this action is free and proper, hence defining a principal G-bundle. The strat-
egy is to define a metric on G+ in such a way that 7(") becomes a Riemannian
submersion, and that the resulting metric on G is an n-metric.

The group Sn4+1 acts on the manifold GI"*! by permuting its coordinates,
and this action covers the action S,11 ~ G("), so the map (") ig Sn+1 equivariant.
On the other hand, there are (n + 1) left groupoid actions G ~ Gl each
consisting in left multiplication on a given coordinate.

o< [ ) [ ] [ ]
k w \* w
o< [} o< k o< ® o< Y

[ ) [ ) o< [ ]

These left actions commute with the above right action and cover (n + 1)-
principal actions G ~ G, with projection the face maps g; : G — G*—1),

Now for a proper groupoid one can use averaging to construct a metric on
G which is invariant under the left action of G on itself by left translations. The
product metric on GI"*1 is invariant both under the (n + 1) left G-actions above
and the S, 11-action. In general, it will not be invariant under the right G-action
G ~ Gt — G but we can average it to obtain a new metric which is
invariant under all actions. It follows that the resulting metric on G is an n-
metric. (]

Remark 12. The maps 7(") : GI"t1l — G(") n =0, 1,... that appear in this proof
form the simplicial model for the universal principal G-bundle = : EG — BG.
This bundle plays a key role in many different constructions associated with the
groupoid (see [7]).

Still, there are many examples of groupoids, which are not necessarily proper,
but admit an n-metric. Some are given in the next set of examples.
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Example 16. The unit groupoid M = M obviously admits n-metrics. The pair
groupoid M x M = M and, more generally, the submersion groupoid M xy M =
M associated with a submersion 7 : M — N, are proper so also admit n-metrics.
For example, if 7 is a metric on M which makes 7 a Riemannian submersion, then
one can take n(® = n, nV = pin+ psn — pinw, 1 = pin+psn + pin — 20NN,
etc.

Example 17. Let F be a foliation of M. Then Hol(F) and IT; (F) admit an n-metric
if and only if F can be made into a Riemannian foliation. We already know that
if these groupoids admit an n-metric, then the underlying foliation, i.e., F, must
be Riemannian. Conversely, if F is Riemannian then Hol(F) is a proper groupoid
(see, e.g., [15]), so it carries an n-metric. Since II;(F) is a covering of Hol(F), it
also admits an n-metric. Not that, in general, II; (F) does not need to be proper
(e.g., if the fundamental group of some leaf is not finite).

Example 18. Any Lie group admits an n-metric. More generally, the action Lie
groupoid associated with any isometric action of a Lie group on a Riemannian
manifold admits an n-metric. This can be shown using a gauge trick, similar to
the one used in the proof of existence of an n-metric for a proper groupoid sketched
above (see [6]). Note that an isometric action does not need not be proper (e.g., if
some isotropy group is not compact).

Finally, we can sketch the proof of the main Linearization Theorem, which
we restate now in the following way:

Theorem 13. Let G = M be a Lie groupoid endowed with a 2-metric n®, and let
S C M be a saturated embedded submanifold. Then the exponential map defines a
weak linearization of G around S.

Proof. One choses a neighborhood S C V' C v(S) where the exponential map of
n(© is a diffeomorphism onto its image, and set

V = (ds)~*(V) N (dt)~*(V) N Domain of exp, ) C v(Gs).

One shows that V = Vis a groupoid neighborhood of Gg = S in the linear model
v(Gs) = v(95) and that we have a commutative diagram:

~ ~  ©XP_(2)

VxyV ~G®?)

VIV exp gy vy
1% >G

YY €XP,(0) Y'Y

Vv >M
It follows that the exponential maps of (1) and 7(®) give the desired weak lin-
earization, i.e., a groupoid isomorphism

exp

(V=V) 2 (exp(V) = exp(V)). O
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Higher Braces Via Formal
(Non)Commutative Geometry

Martin Markl

Abstract. We translate the main result of [11] to the language of formal ge-
ometry. In this new setting we prove directly that the Koszul resp. Borjeson
braces are pullbacks of linear vector fields over the formal automorphism
o(a) = exp(a) — 1 in the Koszul, resp. ¢(a) = a(l —a)~! in the Bérjeson
case. We then argue that both braces are versions of the same object, once
materialized in the world of formal commutative geometry, once in the non-
commutative one.
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Introduction

Let A be a graded commutative associative algebra with a degree +1 differential
V : A — A which need not be a derivation. Koszul braces are linear degree +1
maps ®Y : A®" — A n > 1, defined by the formulas

oY (a) = V(a),
®Y (a1, a2) = V(aras) — V(ay)az — (—1)*%2V (az)ay,
®Y (a1, a2,a3) = V(arasas) — V(ayag)as — (—1)*9279) Y (a5a3)a,
- (—1)“3(“1+“2)V(a3a1)a2 + V(a1)asas
+ (1)1 219V (ag)azar + (—1)* T2V (a3)ayaz,

@X(al, cey Q) = Z (—1)"” Z e(@)V(ag) - Uo(i))Ao(it1) " Co(n)

1<i<n o

The author was supported by the Eduard Cech Institute P201/12/G028
and RVO: 67985840.
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for a,a1,as,as,... € A. The sum in the last line runs over all (¢, n — )-unshuffles
o, and €(0) = e(0;a1,...,a,) is the Koszul sign (recalled below). As proved for
instance in [3], these operations form an L..-algebra.

The above construction, attributed to Koszul [6], is sometimes called the
Koszul hierarchy, cf. also [1-4, 14]. Tt is, among other things, used to define higher-
order derivations of commutative associative algebras: the operator V: A — A
is an order r derivation, » > 1, if <I>TV+1 vanishes. Higher-order derivations are
crucial for the author’s approach to the BRST complex of the closed string field
theory [10, Section 4]; for this reason we believe that the braces might be interesting
also for physicists.

The assumption of commutativity of A is crucial. Although the operations
®Y make sense for general A, they do not form any reasonable structure if A is
not commutative.

The noncommutative analog of the Koszul hierarchy was found in April 2013
by Kay Borjeson [5] who also proved that the result is an A..-algebra; we recall his
braces {by },>1 in Subsection 2.2. Amazingly, Borjeson’s braces are very different
from the Koszul ones. While (I)TY consists of 2" —1 terms, b,Y is for each n > 3 the
sum of 4 terms only!

In [11] we proved that both the Koszul and Borjeson braces are the twistings
of a linear Loo- (resp. Aoo-) algebra determined by V. In this note we translate
this result to the language of formal (non)commutative geometry where Loo- resp.
Ao-algebras appear as homological vector fields. Namely, we show in Theorems 7
and 14 that both braces are pullbacks of the linear vector field V over a formal au-
tomorphism ¢ of the formal graded affine pointed manifold A. This automorphism
equals

p(a) = exp(a) — 1 (1a)

in the commutative (Koszul) case, and
pla) = (1b)

in the non-commutative (Borjeson) case. An important fact is that the Taylor
coeflicients of both automorphisms are encapsulated in the same formal sum

]1A_|_‘u[2]_|_‘u[3]+...

where ™ : A®™ — A n > 2, is the iterated multiplication in A. When interpreted
in formal commutative geometry, the associated formal automorphism is (1a) while
non-commutative geometry it is (1b). The Koszul resp. Borjeson braces are thus
versions of the same object!

As a pleasant by-product of our calculations, we get an important general
formula (23) stated without proof in [11].

Conventions. All algebraic objects will be considered over a field k of character-
istic zero. By 1y or simply by 1 when U is understood we denote the identity
automorphism of a vector space U. We will reserve the symbol n: A® A — A



Higher Braces 69

for the multiplication in an associative algebra A. The product u(a,b) of elements
a,b € A will usually be abbreviated as ab.

A grading will always mean a Z-grading though most of our results easily
translate to the Zs-graded setting, i.e., to the super world. To avoid problems
with dualization, we will assume that all graded vector spaces are of finite type.!
For graded vector spaces U and V' we denote by U ® V' their tensor product over
k, and by Lin(U, V) the space of degree 0 k-linear maps U — V.

A permutation o € ¥, and graded variables v4, ..., v, determine the Koszul
sign e(o;v1, ..., vy) € {—1,41} via the equation
VAN AVp=€(0501, ., Vn) Vo) N A Vg(n),
in the free graded commutative associative algebra S(vy,...,v,) generated by
Vi,...,Vn. We usually write e(o) instead of e(o;v1,...,1,) when the meaning
of v1,...,v, is clear. For integers u,v > 0, an (u,v)-unshuffle is a permutation

0 € Xyt satisfying
o)< - <o(u) and o(u+1)<--- <o(u+wv).

1. Recollection of formal geometry

In this section we recall basic concepts of formal (commutative) geometry. We
start with polynomial algebras, their completions and duals, and explain how they
are related to Taylor series of formal maps. We then interpret L. -algebras as
homological vector fields on formal graded pointed affine manifolds. All notions
recalled here are standard and appeared in various forms in the literature. Their
non-commutative variants are briefly addressed in Subsection 2.2.

1.1. Algebras and coalgebras of symmetric tensors
For a finite-dimensional vector space X denote by
S(X) =P st(x)
E>1

the symmetric (polynomial) algebra generated by X. To distinguish the multipli-
cation in S(X) from other products that may occur in this note we denote the
product of two polynomials p, g € S(X) by p ® q.
Let A = X™* be the linear dual of X. One has, for each n > 1, a non-degenerate
pairing
(—]—=):8"(X)®@S"(4) - k (2)

given by
(@10 Oaplar O Oan) =Y #1(ag))+ Tn(do(m)), (3)

o

1The general case can be controlled by a linear topology, but it would reach beyond the scope
of the present paper.
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where x1,...,2, € X, a1,...,a, € A, and the summation ranges over all permu-
tations o € ¥,,. As a particular case of (3) we get

(10 Oxp|a®---©a):=nl z1(a) - z,(a). (4)

Notice the factorial n! emerging there.
We will need also the completion

~

of 5(X); S(X) is the algebra of power series in X. The pairing (3) extends to a
non-degenerate pairing

(=) :S(X)®S(A) = k (5)
that identifies @(X ) with the linear dual of S(A). This identification is such that

the coalgebra structure on S(A) induced from the algebra structure of @(X ) is
given by the deconcatenation coproduct A : 5(A) — S(A) ® S(A) defined as

Aar 0 0a)= Y D (A1) @ O aa() ® (As(sn) @ O on)), (6)

1<j<n—-1 o

where a1, ...,a, € A and o runs through all (j,n — j) unshuffles. We denote S(A)
viewed as a coalgebra with this coproduct by S¢(A).

The algebra @(X ) is the free complete commutative associative algebra gen-
erated by X. Therefore, for each complete commutative associative algebra B and
a linear map w : X — B, there exists a unique morphism h : @(X) — B of
complete algebras such that the diagram

S(X)--"---B
LA w 7

X

in which ¢ : X — E\S\(X ) is the obvious inclusion, commutes. In particular, an
endomorphism ¢ : S(X) — 5(X) is determined by the composition

X <5 8(X) % §(x).

Likewise, the coalgebra S¢(A) is the cofree nilpotent cocommutative coasso-
ciative coalgebra cogenerated by A [12, Definition I1.3.72]. This means the follow-
ing. Let m : 5¢(A) — A be the obvious projection. Then for any nilpotent cocom-
mutative coassociative coalgebra C' and for any linear map p : C — A, there exists
exactly one coalgebra morphism ¢ : C' — S¢(A) making the diagram

C——-—>5¢4A)
P Vﬂ'
= A
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commutative. In particular, any endomorphism ¢ : 5¢(A) — 5¢(A) is determined
by the composition

5e(4) % 5°(4) & A.

1.2. Morphisms
Let A be a finite-dimensional vector space, A* its linear dual, S(A*) the symmetric
algebra generated by A*, and V another vector space. Elements of S(A*) @ V' are
polynomials with coefficients in V. Each p € S(4*) ® V' determines a (non-linear)
map f: A — V as follows.

The pairing (2) in the obvious manner extends to a linear map

(—]=):S"(A) @V @8"(A) — V.

We associate to every homogeneous polynomial p,, € S"(A*) ® V, n > 1, a map
fn i A—V defined as

fa(a) == {p,| D"(a)) € V, a € A, (7)
where DIl : A — S™(A) is the ‘diagonal’ given by

" 1
Dl(q) = a(a00a).
n times

The factorial n! in the definition of D" compensates the factorial in (4). Every
polynomial p € S(4*) ® V' is a finite sum

p=p1+p2+ps+-, ppn €S(ANRV, n>1,

of its homogeneous components. We define f : A — V corresponding to p as the
finite sum

f=h+fotfat+--, (8)

where f,,’s are, for n > 1, as in (7). If the vector space V' equals the ground field k,
S(A*) ® k is isomorphic to S(A*) and we obtain the standard identification of the
polynomial ring S(A*) with the algebra of regular functions on the affine space A.

We may formally extend the above construction to the space @(A*) ®V of
power series with coefficients in V. The sum in (8) corresponding to p € 5S4 eV
then may be infinite. In this way we interpret power series in @(A*) ® V as Taylor
coefficients of maps A — V.2

Example 1. Let k = R, A be the real affine line R with the basic vector e :=1 € A,
and x € A* be such that z(e) = 1. For a smooth map ¢ : A — A with ¢(0) =0
consider the power series
11 0 1" 0 R
90()2 SD()?) GS(A*)

pi=¢ (0)z+ g T H T g

2Since we work formally, we do not pay any attention to the convergence issue.
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in z. One then easily verifies that p € S°(A*) determines, via the above construc-
tion, a formal map f : A — A given by

©"(0) 5 ¢"(0)
o T g

i.e., the Taylor expansion at 0 of the smooth map .

flae) = ' (0)a+ a4 a€R, (9)

An equivalent representation of formal maps A — V is based on the identi-
fication

S(A*) ® V = Lin(S%(A), V) (10)
induced by the extended pairing (5). If ¢ : 5¢(A) — V corresponds, under (10), to
p € 5(A*)®V then f in (8) is, for n > 1, simply the composition

f=qo(@+DP 4+ DB .. (11)

Example 2 (Continuation of Example 1). Let A be again the real affine line R with
the basic vector e = 1 € R. Define ¢ : 5(A) — A by

. — pn)
A0 Oc)=¢"(0),
n times
where (") (0) is, for n > 1, the nth derivative of ¢ at 0. Clearly
¢ =& (0) 1 +¢"(0) " (0) ™ -, (12)

where ;[ :5"(A) — A denotes the iterated multiplication in A = R. With this
choice, (11) gives the Taylor expansion (9). Notice that (12) does not contain any
factorials.

Example 3. Suppose that A is a commutative associative algebra and V' = A. For
each n > 1 one has the map

pl™sm(4) » A

that takes a1 ® -+ ® a,, € S"(A) to the iterated product a; - -a, € A. Consider
the morphism

q=1+p? B 4. 504) - A (13)
Summation (11) is then the formal map
1 1
exp(a)—1:a+2'a2+3'a3+-~-,aeA, (14)
whose inverse clearly equals
(_1)k+1 A a2 a3 a4
n(a+1) Z p T =a— + 3 7 4 + (15)

k>1
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1.3. Formal manifolds

The previous constructions generalize to graded vector spaces. Then A is inter-
preted as a formal graded pointed affine manifold,? with §(A*) playing the role of
its ring of functions. The power series in @(A*) ® V represent morphism from A
to V, where V is interpreted as another formal graded manifold.

Since we work with graded objects, some expressions should acquire signs
dictated by the Koszul sign convention. For instance, the terms of the sum in the
right-hand side of (3) must be multiplied by the Koszul sign &(p) of the permuta-
tion

PiTilyeesTn, A1y oy Ap > X1, 05(1)) - -+ s Tny Qo (n)-
This is standard so we will pay no special attention to it. Some issues related to
dualization may also arise, but they are not the subject of this note.

Recall that a vector field x on a (classical) smooth manifold M is a section
of its tangent bundle. The crucial property of vector fields is that the assignment
f = x(f) is a derivation of the ring of smooth functions f : M — R. There is
a contravariant action x — ¢*x of diffeomorphisms ¢ : M — M on vector fields
characterized by the formula

"X (f)(¢(a)) = x(f o ¢)(a) (16)
in which f : M — R is a smooth function and a € M a point. We call ¢*x the
pullback of the vector field x over the diffeomorphism ¢. Let us translate the
pullbacks to the situation when we consider instead of M a formal affine graded
manifold A as follows.

Vector fields on A are defined as derivations of the algebra of formal functions
on A, i.e., derivations y of the algebra S(A*). An automorphism ¢ : A — A is
given by a power series p € S(A*) ® A, conveniently represented using the duality
by a map ¢ : A* — S(A*). The invertibility of ¢ is equivalent to the invertibility
of the composition

A % 8a%) % a4
Using the universal property of g(A*), we uniquely extend ¢ to an algebra au-
tomorphism ¢ : S(A*) — S(A*). If x is a vector field on A, i.e., a derivation of

~

S(A*), the action (16) is translated to the adjunction
P x =9t oxo.
1.4. L.-algebras as homological vector fields

Recall that an Ly.-algebra, also called sh or strongly homotopy Lie algebra, is
a graded vector space L equipped with linear graded antisymmetric maps A, :
L® — L, n > 1, deg(\,) = 2 — n, that satisfy a set of axioms saying that )\
is a differential, Ao obeys the Jacobi identity up to the homotopy A3, etc., see for
instance [7] or [8].

3We will sometimes omit ‘pointed’ or/and ‘formal’ to simplify the terminology.
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It will be convenient for the purposes of this note to work with the version
transferred to the desuspension A := | L. The transferred \;’s have degree +1,

are graded symmetric, and satisfy, for each aq,...,a, € A, n > 1, the axiom
Z 25(0))\] ()‘i(aa(l)v s 7aa(i))7 Ao (i41)y - - - 7aa(n)) =0, (17)
i+j=n+1 o

where o runs over (i,n — i)-unshuffles. In this guise, L.o.-algebra is an object
L = (4,1, A, Ag, ...) formed by a graded vector space A and degree +1 graded
symmetric linear maps A, : A®" — A, n > 1, satisfying (17) for each n > 1.

Let S°(A) be, as before, the symmetric coalgebra with the deconcatenation
coproduct (6). Thanks to the cofreeness of 5¢(A), each coderivation g of S°(A) is
determined by its components g,, := T o got,, n > 1, where 7 : 5¢(A) — A is the
projection and ¢, : S¥(A) < S¢(A) the inclusion. We write o = (o1, 02, 03, . . .).

In particular, let A := (A1, A2, As, ...) be a degree 1 coderivation of S°(A) de-
termined by the linear maps \,,. By a classical result [7, Theorem 2.3], (17) shrinks
to a single equation A\? = 0. Thus an L..-algebra is a degree +1 coderivation of
S¢(A) that squares to zero.

The linear dual of A : S¢(4) — S°%(A) is a degree —1 derivation 9 of the
algebra @(A*) such that 92 = 0. In the language of formal geometry, ¥ is a degree
—1 vector field on the formal affine manifold A that squares to zero. Such an object
is called a homological vector field. This is expressed by

Definition 4. L..-algebras are homological vector fields on formal pointed graded
affine manifolds.

Example 5. Linear vector fields on the classical affine pointed manifold R are
those of the form
0 0
flaxl ++fkaxk7
where f1,..., fr : R¥ — R are linear functions. The formal analog of linear vector
fields are derivations x of S(A*) such that x(A*) C A*.
In the dual setting, linear vector fields are represented by coderivations V of
5¢(A) for which the composition

522(A%)C - Se(A) =5%(A%) B A

where 522(A*) is the subspace of 5¢(A*) of polynomials with vanishing linear term,
is the zero map. Such a coderivation is determined by its restriction to A C S°(A).
This restriction is a linear map A — A which we denote V again.

Example 6. An important particular case is a linear homological vector field given
by a degree +1 differential V : A — A, or equivalently, by a ‘trivial’ L.,-algebra
(A,¥,0,0,...).
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2. The braces

We prove that the Koszul braces, as well as their non-commutative analogs recalled
in Subsection 2.2 below, are pullbacks of linear vector fields over specific automor-
phisms. Throughout this section, A will be a graded associative, in Subsection 2.1
also commutative, algebra, and V: A — A a degree +1 differential which is not
required to be a derivation. In Subsection 2.1 we interpret V as a homological
vector field on a (commutative) formal manifold or, equivalently, as a trivial L .-
algebra. In Subsection 2.2 we interpret V as a vector field on a non-commutative
formal manifold, or as a trivial A-algebra, cf. Examples 6 resp. 13 below.

2.1. Koszul braces

The aim of this subsection is to prove

Theorem 7. The Koszul braces recalled in the introduction are given by the pullback
of the linear homological field V over the formal diffeomorphism exp—1: A — A.

We will study pullbacks of V over more general diffeomorphisms and de-
rive Theorem 7 as a particular case. This generality would make the calculations
more transparent. As a bonus we obtain formula (23) given without proof in [11].
Consider therefore a formal diffeomorphism

ABG'—>80(G)=f1a+§ 2+f3 S fufefsek fL#0, (18)
having the inverse of the form
Aaa'—>w(a)=gla+g?a2+gj’ a4+, 91,92, 93, ... €k

Notice that g1 f1 = 1.
As in Example 3, one can easily check that ¢ is associated to the map ¢ :
S¢(A) — A given by
q:=fi+ fop? + fapll 4 189(A) — A (19)
Let us specify which map ¢ : A* — @(A*) corresponds to ¢ under the extended
pairing (5).
Since ¢ is an (infinite) sum of f,ul™’s, we determine first which map

bn : A* = S"(A*) corresponds to f,ul™ : S"(A) — A. Such a map ¢, is char-
acterized by the duality

which has to hold for any € A* and ay,...,a, € A. It is obvious that ¢,, must
equal f, A" with Al the iterated deconcatenation diagonal (6),

AN = (A0 120 (A 1% 3)0o...0A
where we put by definition Al!l := 1 4.. We therefore have by linearity
b= f1+ foA+ fAB 4 p AR 4
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The formula for the map 9 : A* — S¢(A*) associated to the inverse 1 of ¢ is
analogous, namely

,(/_} = +92A+93A[3] +g4A[4] 4+
The map ¢ : A* — S(A*) extends to a unique automorphism ¢ of S(A*) given by

$lar @ Ox) = > fiyo fi, V@) 00V (@), (20)

i17~~~yin21

x1,...,2, € A*. There is a similar obvious formula for the extension of 9, but we
will not need it.

It is however easier to work in the dual setting when vector fields appear as
coderivations of 5¢(A) or, equivalently, as linear maps S°(A) — A. To see how ¢
acts on vector fields in this setup, we need to co-extend the map ¢ : S°(4) — A
in (19) to a coalgebra morphism S¢(A) — 5¢(A). We denote this co-extension by ¢
again, believing this ambiguity will not confuse the reader. It actson a1 ®---®a,, €

S™(4) by

Plar ©--- O ay) (21)
B fiv - fin
=Y o) g (o) Aa(i) © - O (Aot otia+1) 7 Go(n)),
with the sum taken over all 1 < k <mn, all i1,...,i; > 1 such that iy +---+ip = n,

and all permutations o € ¥,, such that
o(l) <---<o(ir), ...,o(ir + - +ig—1+1) <--- <oa(n).
Formula (21) can be obtained either by dualizing (20) or directly, using the rule
Ap=(9®¢)A

describing the interplay between morphisms of coalgebras and coproducts.* The
role of k! in (21) is explained in Example 8 below.

Convention. To shorten the expressions, we will not write the Koszul signs explic-
itly as they can always be easily filled in. We will also use the shorter ¢(aq,...,a,)
instead of ¢(a; ® -+ ® ay,), ete.

Example 8. Formula (21) for a,b,c € A gives

fifa

¢(a,b,c) = fs(abc) + o1
f3
ty
= f3(abe) + fifalabOc+be®a+ca®b) + fLa®bOc).

(abOc+bcOa+ca®b+a®@bc+bOca+ c®ab)

(@ObOc+bOcOa+cOa®b+a®@cOb+cObOa+bOab)

The factorial in (21) therefore removes the multiplicities, so that each type of a
term appears only once.

4Formula (21) must be well known, but we were unable to locate a reference.
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Example 9. Let us compute some initial terms of the composition ¢)V¢ : S¢(A4) —
A. For a € A we have

bVé(a) = g1f1V(a) = V(a)
where we used that g1 f; = 1. For a,b € A,
UV(a,b) = PV (f2 ab+ ffa©b)
= [foV(ab) + f2(V(a) ©b+a®V(b))]
= g1f2V(ab) + g2 f1 (V(a)b + aV (b)),
and, finally, for a,b,c € A one has
YV(a,b,c) = LZ_JV(fgabc—i— fafi(@ab®c+bc®a+ ca®b) + ff’a@b@c)
=) [f;,»V(abc) + faf1(V(ab) ® ¢+ V(bc) ® a + V(ca) ©b)
+ fafi(ab® V(c) + bc®V(a) + ca® V(b))
+ 2 (V(e)@boc+ a@V(b)@cha@b@V(c))}
= g1f3V(abc) + g2 f2f1(V(ab)c + V(bc)a + V(ca)b)
+ (g93f7 + g2f211) (V(a)be + aV(b)c + abV(c)).
Example 10. For ¢(a) = exp(a) — 1, ¢ = In(a + 1) one has
hi=fh=f=-=1
and
gi=1,g0=-1,9g3=2 ..., go=(-1)"""(n—1)
With this particular choice, the calculations of Example 9 lead, up to implicit
Koszul signs, to the Koszul braces ®Y, ®Y and ®Y recalled in the introduction,
ie.,
YV O O ay) =BV (a1 O - O ay) (22)
forn=1,2,3.
Let us derive a general formula for V¢ : S¢(A) — A. Using (21), one obtains
@V(b(al, ceay an)

o fa

:'(/}VZ 1 k' k(aa(l)"'aa(il))@"'Q(aa(i1+~~+ik71+1)"'aa(n))
-~ fin i

= '(/}Z (llf _ 1)|k v(a’o'(l) T a’a(il)) @ e @ (aa(i1+~~~+ik,1+1) T aa(n))

fir o+ fi
=D o (h— 1)1 V(@) " Go(in)doiin) - Gotn):

The summations in the above display run over the same data as in (21). The
substitution ¢; — ¢ converts the last line into

d_)VQS(alv ) an) = Z Z Crfiv(aa(l)v s 7aa(i))aa(i+1) © Qo (n) (23)

1<i<n o
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where o runs over all (¢,n — ¢)-unshuffles, r = n — i+ 1, and

fiz -+ fir r!
=Y > e . (24)
E>2  dgte-tip=r (k= 1) ol !
sy 21
The integer
7!
il -y
is, for r = (ig + - - - +4x), the number of permutations o € ¥,, as in the sum (21)
with fixed values o(1),...,0(i1).

It is a simple exercise on manipulations with power series that

_ d"'(p(a))
e =
da”
Formula (23) is the one we gave without proof in [11, Section 2.4].

In the situation of Theorem 7, ¢(a) = exp(a)—1, ¢¥(a) = In(a+1), so ' (a) =
(1+a)!, thus ¢’ (p(a)) = e, therefore ¢, = (—1)" for » > 1. Since f; =1 for
each s > 1, formula (23) reproduces the Koszul braces in the introduction as direct
inspection shows, i.e., (22) holds for every n > 1. A combinatorial by-product of
our calculations is the equality

Z Z Ol l.r.!. A (=1)".

19!
k>2  dgetig=r 2
12,0050k 21

t=0

We do not know any elementary proof of this fact.

2.2. Borjeson braces

A non-commutative analog of Koszul braces was constructed by K. Borjeson. For
a graded associative, not necessarily commutative, algebra A and a degree +1 dif-
ferential V : A — A, he defined in [5] linear degree +1 operators by : A®™ — A by

by (a) = V(a),
by (a1, a2) = V(aias) — V(ar)ag — (—1)% a1V (az),
bgv(al,ag,ag) = V(araza3) — V(ajaz)as
— (=1D)*"a1V(agas) + (—1)"* a1 V(ag)as,
by (a1, as,a3,a4) = V(aiasasas)—V(aiazas)ay
—(=1)*a1V(agagas)+(—1)" a1 V(azas)ay,

bkv(al, cooyag) =V(arrag) —Viar - ag—1)ag
—(=1D)"a1V(ag---ar) + (—1)"a1V(ag - - ag—1)ag.
for a,aq,as,as, ... € A. He also proved that these operators form an A.-algebra.

In [11] we showed that Borjeson braces are, as their commutative counterparts, a
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twisting of V interpreted as a trivial A,.-algebra. In this subsection we put these
results into the context of non-commutative geometry.

Everything in fact translates verbatim with only minor modifications from
the commutative case analyzed in the previous parts of this note. For a finite-
dimensional vector space A we denote by

* k * k * * *
WM):@%MALT(Ay:§®;ﬁw£

k>1 k times

the tensor algebra of its dual. If V' is another finite-dimensional vector space,
then every homogeneous non-commutative polynomial p,, € T"(A*) @ V forn > 1
determines a map f, : A — V defined as in (7), with the only difference that the
‘diagonal’

n -

Dl(a) = (a0 -0a),
n times

now does not involve the factorial. Since every p € T(A*) ® V is a finite sum of
its homogeneous components, we can linearly extend the above construction and
assign to each p a map f: A — V. Passing to the completion

T(A") = J] T4,

k>1

we interpret non-commutative power series in ﬁ(A*) ® V as non-commutative
Taylor coefficients of maps A — V. Since we have, by duality, an isomorphism

T(A*) @V 2 Lin(T¢(A), V)
where T¢(A) is the tensor coalgebra with the deconcatenation coproduct, we may
equivalently represent non-commutative Taylor coefficients of maps f: A — V by

linear morphisms ¢ : T¢(A) — V. Let us give a non-commutative analog of Exam-
ple 3.

Example 11. Let A be an associative algebra. Then the morphism
gr=1+p? 4B Te4) - A (25)
represents the non-commutative Taylor series
) =a+ad’+a*+---,acA (26)
—a
whose inverse equals
a
1+a
Formal non-commutative differential geometry is build upon the above clas-
sical non-graded finite-dimensional affine spaces analogously as explained in Sub-
section 1.3 for the commutative case. That is, A is now a graded vector space
interpreted as a non-commutative formal affine pointed manifold with T(A*) its
non-commutative ring of regular functions. Given another formal non-commuta-
tive affine manifold V, the non-commutative power series in T(A*) @ V represent

=a—ad’+d®—---, acA
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formal maps f : A — V. By duality, the same formal maps can equivalently be
represented by linear morphisms ¢ : T¢(A) — A.

Vector fields on a formal non-commutative manifold A are derivations of
the complete algebra T(A*) or, equivalently, coderivations of the tensor coalge-
bra T¢(A). As in the commutative case, automorphisms act on vector fields by
adjunction.

A.-algebras are non-commutative versions of L-algebras recalled in Sub-
section 1.4, and their historical precursors [13]. They consist of a graded vector
space U together with degree 2 — n linear maps m,, : U®™ — U, n > 1, such that
m; is a differential, my is associative up to the homotopy ms, etc.

As in the case of L..-algebras, we transfer the maps m,, : U®" — U to the
desuspension A := [ U. These transferred m,,’s are all of degree +1 and satisfy

S>> ml(A§T em, @15 ) =0 (27)
utv=n+11<i<u
for each n > 1.

Since the tensor coalgebra T¢(A) is the cofree nilpotent coassociative coalge-
bra cogenerated by A, each coderivation g of T¢(A) is uniquely determined by its
components g, : A®™ — A, n > 1, defined as g,, := mogou,, where 7 : T¢(4) — A
is the projection and i, : A®™ < T¢(A) the obvious inclusion. We express this
situation by o = (01, 02, 03, - - -)-

One in particular has a degree +1 coderivation m = (mq,ma,ms,...) of
T¢(A) determined by the A-algebra above. As in the Loo-case, the system (27) is
equivalent to a single equation m? = 0. In other words, an A..-algebra is a degree
+1 coderivation of the tensor coalgebra T¢(A*) that squares to zero. Its linear dual
@ : T(A) — T(A) is a degree —1 derivation that squares to zero, i.e., a homological
vector field. We may therefore give the following analog of Definition 4:

Definition 12. A.-algebras are homological vector fields on formal non-commuta-
tive graded pointed affine manifolds.

The notion of linear vector fields translate verbatim from the commutative
case. Here is an analog of Example 6:

Example 13. A degree +1 differential V : A — A extends to a degree +1 derivation
of T¢(A), i.e., to a linear homological vector field on the formal non-commutative
affine pointed manifold A. In other words, it determines a ‘trivial’ A.-algebra

(A,V,0,0,...).
We finally formulate a non-commutative analog of Theorem 7:

Theorem 14. The Borjeson braces are given by the pullback of the linear homolog-
ical field V over the formal diffeomorphism

“ A= A
1—a

of the formal non-commutative pointed affine manifold A.
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The proof of this theorem is simpler than that of Theorem 7, since no sym-
metry enters. We leave it to the reader, as well as the non-commutative analog
of (24) as appeared in [11, Section 2.2].
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Conformally Rescaled
Noncommutative Geometries

Andrzej Sitarz

Abstract. Noncommutative geometry aims to provide a set of mathemati-
cal tools to describe spacetime, gravity and quantum field theory at small
scales. The paper reviews the idea that noncommutative spaces are described
in terms of algebras and their geometry, which is encoded as spectral triples.
The latter are basic ingredients of the new notion of Riemannian spin geom-
etry adapted to the language of operator algebras. Using this background we
propose a new idea of conformally rescaled and curved spectral triples, which
are obtained from a real spectral triple by a nontrivial scaling of the Dirac
operator. The obtained family is shown to share many properties with the
original spectral triple. We compute the Wodzicki residue and the Einstein—
Hilbert functional for such family on the four-dimensional noncommutative
torus.

Mathematics Subject Classification (2010). Primary 58B34; Secondary 46L87.

Keywords. spectral triples, noncommutative geometry.

1. Introduction

It is commonly believed that when approaching the smallest scale of physics,
Planck length, current image of space (or space-time) as a differentiable mani-
fold should break down. Still, is not clear whether this would call for a new notion
of space or whether we will only need a better consistent description of quantum
theory including the theory of quantum gravity. The latter, which is the long-
awaited dream of theoretical physics, is still unattainable despite various attempts
and huge efforts.

One of possible hints where to look for solutions is coming from simple phys-
ical considerations. Even though at the moment our limits of measurement are
still quite low when compared to the Planck length — we measure distances of
10~1%m, which is roughly the size of a proton, and time difference of the order

Partially supported by NCN grant 2011/01/B/ST1/06474.



84 A. Sitarz

of 10785, while the Planck length is 1073°m — the question about possible limits
of our measurement accuracy remains valid. Already in 1958 Salecker and Wigner
[29] suggested that quantum mechanics implies:

(5l2<hl) ,
me

which combined with the general relativity and Schwarzschild radius gives a rough
estimate

51> (I13)3,

where [, is Planck length.

As the uncertainty relations are linked to noncommutativity of the observ-
ables in quantum theory we should expect that positions itself should be a noncom-
mutative algebra. To link such a description with the classical tools of Riemannian
geometry we need to look for a more general mathematical theory, which would
imply both geometry as well a noncommutativity like in a quantum theory. The
Noncommutative Geometry is a proposition, which goes into this direction.

The paper is organised as follows: we briefly review basic ideas and dictio-
nary of noncommutative geometry and spectral triples (for a more comprehensive
introduction with details, examples and references see [26, 27]). Based on the in-
troduced notion we then propose a family of conformally rescaled geometries and
study their fundamental properties. As a particular example we present the result
of pure gravity functional (Einstein—Hilbert action) for the four-dimensional non-
commutative torus, computed first with the use of the Wodzicki residue on the
algebra of pseudodifferential symbols as well as using a “naive” approach based
on the formalism of moving frames adapted to the noncommutative setting.

2. From spaces and algebras

Classical geometry is based on the principle of describing spaces, which are sets of
points equipped with some additional structures. However, the notion of a function
(in particular a continuous function, if we have a topological space) appears to be
more fundamental. In quantum theory this is even more important, since the clas-
sical phase space (space of possible positions and momenta) of a physical object
is no longer a space. Moreover, what we usually describe as a state of a physi-
cal object corresponds to the expectations values of these operators for a given
state (a normalized vector) in the Hilbert space. However, the above picture lacks
one significant ingredient, the metric, the ability to measure the noncommutative
space. Noncommutative Geometry is the first sound mathematical concept, which
proposes a consistent way of creating a geometry of quantum-like spaces. Its long
term goal is to provide a meaningful definition of geometry, which would describe
both the fundamental interactions as we know them together with the notion of
quantised space (for some arguments and models see for instance [13]).
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2.1. The theorems behind it: Gel’fand—Naimark

The basic ideas of noncommutative geometry lie in the theorems, which demon-
strated that one can describe topological spaces using the algebra of continuous
functions. Such functions form an algebra, more precisely a C*-algebra. The lat-
ter is an involutive Banach algebra, that is, a complex normed algebra, which is
complete as a topological space in the norm, and for every element a € A:

llaa*|| = [lal[*.

It is easy to see that with the supremum norm on the space of continuous functions
C(X) for some topological space we have:

Remark 1. If X is a (locally) compact Hausdorff space and C(X) is the algebra of
continuous functions on X, then C'(X) is a commutative (non) unital C*-algebra.

However, a typical example of a C*-algebra comes from linear bounded op-
erators on a Hilbert space:

Remark 2. Take a separable Hilbert space H and B(#), the algebra of all bounded
operators on H (with the operator norm). It is a C* algebra. Any norm closed
subalgebra of B(H) is a C*-algebra.

What makes these two remarks interesting is the following pair of theorems:

Theorem 3 (Gel’fand—Naimark—Segal, [20]). Every abstract C*-algebra A is iso-
metrically x-isomorphic to a concrete C* algebra of operators on a Hilbert space
H. If the algebra A is separable then we can take H to be separable.

Theorem 4 (Gel’fand-Naimark [19]). If a C* algebra is commutative then it is an
algebra of continuous functions on some (locally compact, Hausdorff) topological
space.

So, shortly speaking — all C* algebras are subalgebras of bounded operators
on a Hilbert space and the commutative ones correspond 1 : 1 to locally compact
Hausdorff spaces. This makes all noncommutative C*-algebras perfect candidates
for noncommutative spaces, or spaces with singularities.

2.2. Dictionaries and examples

So far we had just given an idea that there exists a natural way to consider some
objects, which have no counterparts as topological spaces yet still share a lot of
common features with them. A simple example is given by a finite-dimensional
matrices (like M, (C)), which for n > 1 form a noncommutative algebra, or also,
their direct sums. A different, more sophisticated example (one of the best-known
ones), is, for instance the so-called noncommutative torus.

Example 1 (Irrational Rotation Algebra aka Noncommutative Torus).
Consider the Hilbert space L?(S') and the following operators:

Uf)(z) = 2f(2), (V)(z) = f(e*™72),
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where 0 < 6 < 1 is an irrational real number. We define T2 as a C*-algebra
generated by the unitary operators U, V,U*, V*. We easily check that:

UV =2y,

In fact one just takes the above relation as the defining relation of the non-
commutative torus. Although there is no geometric picture what this algebra cor-
responds to (as there is no space) a good intuition is that the algebra describes
the space of all possible leaves of Kronecker foliation (with the parameter 6) of
the usual torus. If @ is irrational then all leaves are homeomorphic to the real line
and the set of all leaves is not even Hausdorff. Yet passing to the algebra (one can
understand it as a certain groupoid algebra) we have a much better description
and can study it as a noncommutative manifold.

Remark 5. Let us note that although many of the “noncommutative spaces” (like
the noncommutative torus above) are described in terms of deformations of man-
ifolds (families of algebras, which for a certain value of a parameter give a com-
mutative algebra of functions on a manifold) this is not always the case.

In the previous sections we indicated an equivalence between commutative
C*-algebras and spaces. Following the standard literature we just want to point out
that this correspondence could be promoted to other topological constructions, like
continuous maps between spaces, Cartesian products etc. The following dictionary
provides the necessary links:

TOPOLOGY ALGEBRA
locally compact Hausdorff topological space nonunital C*-algebra
homeomorphism automorphism
continuous proper map morphism
compact Hausdorff topological space unital C*-algebra
open (dense) subset (essential) ideal
compactification unitization
Stone-Cech compactification multiplier algebra
Cartesian product tensor product (completed)

Of course, the above notions are (almost) purely topological and we would
like to extend them to more geometric objects. The noncommutative geometry is
a programme to establish such correspondence and use it to study objects in the
same way differential geometry is used to study spaces. Below is an approximate
version of the extended version of the dictionary of noncommutative geometry.
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DIFFERENTIAL GEOMETRY  NONCOMMUTATIVE GEOMETRY

vector bundle finitely generated projective module

differential forms
differential forms

de Rham cohomology
vector fields

group

Lie algebra

principal fibre bundle
measurable functions
infinitesimals

metric

spin® geometry

spin geometry

differential forms
Hochschild homology
cyclic cohomology
operators

Hopf algebra

Hopf algebra
Hopf-Galois extension
von Neumann algebra
compact operators
Dirac operator
spectral triple

real spectral triple

integrals exotic traces

3. Spectral triples and the Dirac operator

In differential geometry the recipe to construct the Dirac operator over a spin man-
ifold is rather easy. You start with a compact, closed Riemannian manifold with
a fixed metric ¢g. Then you find the Clifford algebra bundle, choose your favourite
spinor bundle, then lift the Levi-Civita metric connection to the spinor bundle. If
you compose it with the Clifford map then you obtain a first-order differential op-
erator on smooth sections of the spinor bundle. A nontrivial statements can then
be proven — that D is, in fact, an elliptic operator, extends to selfadjoint operator
on the square-summable sections of the spinor bundle, has compact resolvent and
hence a discrete spectrum.

However, a different approach is to use the operational definition. Take an
algebra of smooth functions C*° (M) represented on a Hilbert space of some sec-
tions of a suitable vector bundle over M and look for operators, which behave
like the Dirac operators. The crucial point is, of course, in the work “like”. What
we require is that D needs to be a first-order differential operator with compact
resolvent. Having that assured, one recovers the differential calculus (the bimodule
of differential one-forms) by setting:

df := [D7f]a fECOO(M)7

understood further as an operator on the Hilbert space. An arbitrary one-form
will be Y f[D, g]. Moreover, the following formula gives a nice way to recover the
metric on your manifold:

d(x,y) = sup If(x) = f(y)|, Yo,ye M.
D, £l <1, fEC™(M)
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These are just the examples — as from the spectral information about the
Dirac operator we can recover a lot of information about the additional struc-
tures on the manifold. Apart from the differential calculus and the metric we can
construct the measure and discover the dimension of the manifold.

3.1. The noncommutative generalisation

We are ready to define what is expected to replace Riemannian spin geometry in
the realm of noncommutative algebras. The idea of spectral triples is based on the
properties of Dirac operators and constructions we discussed earlier.

Definition 6 (see [3, 4]). A real (even) spectral triple is given by the data (A, ,
H, D, J, (7)), where A is an involutive algebra, 7 its faithful bounded star repre-
sentation on a Hilbert space H, D an selfadjoint operator with compact resolvent,
such that [D, 7(a)] is bounded for every a € A, v is (in the even case) a Hermitian
Zo grading, Dy = —yD, and J is an antilinear isometry such that:

[Jr(a)J ', m(b)] =0, Va,bc A,
and
[Jﬂ(a).]fl, [D,w(b)ﬂ =0, Va,be A

The latter requirement is called the order-one condition. The dimension of the real
spectral triple is defined as the integer n, such that there exists an n-Hochschild
cycle with coefficients in the bimodule A ® A°P,

ap@byRa1® - Qa, =c€ Zy(A AR AP),
for which
m(c) = m(ao) (Jm(bo)J ") [D,m(ar)] -+ [D, m(an)] = 7.
Moreover, one assumes further relations:
DJ=eJD, J*=¢€, Jy=¢"yJ

where €, €, €’ are +1 depending on n modulo 8 according to the following rules:

nmod8 0 1 2 3 4 5 6 7
€ + -+ + + -+ +
€ + + - - - - + +
e’ + - + -

If we do not assume existence of .J, we have a spectral triple without real
structure. If the spectral triple is odd then 7 as described above does not exist and
the cycle condition reduces to mp(c) = 1.

It is reasonable to assume always that the subalgebra of elements of A which
commute with D is C (in case of the unital algebra A). Otherwise the differential
algebra defined by D shall be degenerate, that is there shall be a nontrivial kernel
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of d in A. We call spectral triples such that [D,n(a)] = 0 implies a € C non-
degenerate, we always consider only such triples.

The following tells us that the motivating example of spin geometry with
Dirac operator is indeed described in this language:

Remark 7. If A = C°°(M), M a spin Riemannian compact manifold, H = L?(S)
is the Hilbert space of summable sections of the spinor bundle and D the Dirac
operator on M then to (A, H, D) is a spectral triple (with a real structure).

The above definition (which was shown more or less in this form) was pro-
posed by Connes in [2] then developed later by many authors. Details of the proof
of the above theorem could be found in [1].

In fact, spectral triples over commutative algebras (which satisfy some ad-
ditional requirements) are only of that type, thanks to Connes’ reconstruction
theorem [8]. In other words, commutative spectral triples are equivalent (in the
sense of 1:1 correspondence) to compact spin manifolds.

3.2. Examples of spectral triples

Several examples of genuinely noncommutative spectral geometries have already
been constructed. The list includes the noncommutative torus [2, 23], more general
0-deformations of manifolds (of which the NC Torus is a special case) [5], Moyal
deformation [18], finite matrix algebras: &;M,,(C) [22] as well as some specific
examples of quantum groups and quantum spaces [9, 12].

We shall review here very briefly the example of the spectral triple over the
noncommutative tori, which shall be later used to modify the Dirac operator and

introduce a new family of noncommutative metrics.

Example 2. We use the standard presentation of the algebra of d-dimensional
noncommutative torus as generated by d unitary elements U;, ¢ = 1,...,d, with
the relations

U;Uy = eQﬂeijkUj, 1<4,k<d,

where 0 < 6,;, < 1 is real and antisymmetric. The smooth algebra A(T) is then
taken as an algebra of elements
a= Z aglU B,

BeZ
where ag is a rapidly decreasing sequence and
vb=ul...ub pezl

The natural action of U(1)? by automorphisms, gives, in its infinitesimal
form, d linearly independent derivations on the algebra, which are determined by
the action on the generators:

5e(U;) = 6U;, Vi k=1,....d,

here 4, denotes the Kronecker delta.
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The algebra of the noncommutative torus A(T4) has a canonical trace:
t(a) = ao,

where 0 = {0,0,...,0} € Z?%. The trace is invariant with respect to the action of
U(1)%, hence it is closed,

t(0;(a)) =0, VYji=1,...,d,Va € A(TS).

By H we denote the Hilbert space of the GNS construction with respect to the
trace t on the C* completion of A(T%) and 7 the associated faithful representation.
The elements of the smooth algebra A(T4) act on H as bounded operators by left
multiplication, whereas the derivations §; extend to densely defined selfadjoint
operators on H with the smooth elements of the Hilbert space, A(T$), in their
common domain.

To construct a Dirac operator one usually restricts to the equivariant case
[25] postulating that the spectral triple has U(1)¢ as the global isometry group.
The equivariant Dirac operator (which we can also call flat) is defined over H®C",

where r = 2[2] as:
D=3 i,
i=1

and ~* are selfadjoint generators of the Clifford algebra:
Yivs + i = —20i;.

3.3. Getting numbers out of spectral triples

Having a spectral triple we have very little information on its geometry apart from
the data hidden in the properties of the Dirac operator. To recover this information
we use the spectrum of D.

Let T be a compact positive operator on a separable Hilbert space such that
for sufficiently large r > 0 the operator T is trace class. Therefore, the function:

(r(z) = Tr|T%,

is well defined and holomorphic for ®(z) > r. Taking the analytic continuation of
¢r(z) to the rest of the complex plane we obtain a function, which has (possibly)
some poles. We may then set for any d € R:

7(T) := Res,—q (r(2).

It appears that for a genuine Dirac-type or Laplace-type operator and most
of the known operators for spectral triples the residue is nonzero only for some
discrete subset of R. In fact, if D is the Dirac operator on a spin manifold of dimen-
sion n then the function ¢;p-1 (if D has a kernel it is certainly finite dimensional
and we can neglect it) may have only first-order poles only at integers on the real
axis not exceeding n and, in particular, has a nonzero residue at z = n (which is
proportional to the volume of the manifold). One usually shortens the notation
writing (p (meaning ¢|p|-1).
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Note, that the zeta function we may look at its poles which are located
generally in a half of the complex plane and are not necessarily real. The collection
of all points, which are the poles of the zeta function of the operator D from a
given spectral triple we call the dimension spectrum. So, the dimension is not a
number — it is a discrete set in a complex plane!

Remark 8. The dimension spectrum of a compact spin manifold M, given by
its spectral triple (C°°(M), L?(S), D) is contained in a set: {n,n — 1,n —2,...}
where n is the classical dimension of M. In fact, z = n is always in the dimension
spectrum, whereas not all of other the points of the set may belong to the dimension
spectrum.

Remark 9. The dimension spectrum may contain complex numbers (with nonzero
imaginary part) and any real numbers (for instance, if one considers fractals) see
[14], for an example.

3.4. Families of Dirac operators

A single Dirac operator is an interesting object in itself but it corresponds exclu-
sively (in the classical case) to one fixed metric and one chosen spin structure.
However, once we have such Dirac operator for a given spectral triple, we might
construct an entire family of them by taking all inner fluctuations of Dirac oper-
ators:

Da={D:D =D+ A},

where A is a self-adjoint one-form A = ) . a;[D,b;] and A = A*. Classically
this corresponds to the twisting of the Dirac operator by a (trivial in this case)
complex line bundle, or — using physics terminology — adding the U(1) gauge field.
A generalisation, which involves twisting by nontrivial line bundle is also possible.

Of course, one could ask a question whether the family we get depends on the
starting point (that is whether the family is the same if we start with the Dirac
already perturbed by a one-form) and it is very convenient that indeed the inner
fluctuation of inner fluctuation are inner fluctuations so the family we obtain is
not dependent on the initial choice. If we restrict ourselves to real spectral triples
then there is a huge difference between the classical (commutative situation) when
we have:

Lemma 10. Commutative real spectral triples (Dirac-type operators over spin mani-
folds) admit no fluctuations of the type A =Y. a;[D,b;], however, might admit
higher-order fluctuations if their dimension d > 2.

The proof is based on the relations from Definition 6 and the fact, that the real
structure for commutative spectral triples over spin manifolds is related to complex
conjugation: JfJ ! = f*. Therefore on the one hand side, a real fluctuation of
the Dirac operator must be:

Dia=D+A+eJAJ
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as only then JD4 = eD 4J. But since A is a selfadjoint one-form and the algebra
is commutative:

Ja[D,b)J ! = ea*[D,b*] = —£(a[D,b))* = —ea[D, b],

hence the fluctuation term identically vanishes. However, observe that this shall be
different once the “fluctuations” are allowed to be (more generally) higher-order
forms — as then the nontrivial commutation between one-forms will be significant.
In particular, in any odd dimensions one can “fluctuate” the Dirac operator of a
commutative real spectral triple by a scalar term &:

Dp=D+®, &=0"cA,

but only in dimension 3 this has a geometric interpretation of a torsion.

4. Conformally rescaled spectral triples

A completely different family of Dirac operators and spectral triples has been
suggested recently for noncommutative tori [6]. While originally the proposed setup
used twisted spectral triples, it has a natural formulation in the language of spectral
triples. In fact, the rephrasing of the original construction in the language, which
we present below fits amazingly well into the entire picture of spectral geometry.

Our starting point is a real spectral triple (A, D, H, J) and a positive element
h>0,heA.

Definition 11. A conformally rescaled Dirac operator D, = h°Dh® where h° =
JhJ~1 defines a conformally rescaled spectral triple over A: (A, H, Dy).

Note that the triple is not real. Below we verify that all crucial conditions
are satisfied. First of all, since h° is in the commutant of A, for every a € A:

[Dp,7m(a)] = h°[D,m(a)]h® € B(H).

Since h commutes with v so does H° and therefore if the spectral triple was even
v still provides the Zs grading for the conformally rescaled triple. The cocycle
condition is also satisfied. If c = a9 ® by ® a1 ® - - - ® a,, = c is the desired cycle for
D then ¢, = ag ® bo(h°) 2" ®a; ® - - ® a, is good for Dy:

7D, (cn) = m(ao) (Jw(bo)J ™) (Jr(h*™)J ') [Dp,w(ar)] - - - [Dn, w(ay)]
= m(ag) (J(bo)J ") (h®)7*"(h°[D, m(a1)]h?) -+ (h°[D, m(an)]h)
=7p(c).
Furthermore let us compute the resolvent:
(Dn =N = (k) HD = A(h?) 7))~ (h*) 7"

But (h°)~2 is also a positive bounded operator so the entire expression is compact
for A = £, for instance (which is sufficient).
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It is more complicated to check specific spectral properties of the conformally
rescaled Dirac operator, in particular the dimension spectrum. One may only state
the following:

Lemma 12. Let (H, A, D, J) be a real spectral triple of metric dimension n, that is
|D|’(”+€) is trace class for any € > 0. Then the conformally rescaled spectra triple
(A, Dy, H) has the same metric dimension.

The proof follows from a simple inequality between positive operators (we
assumed that h° is bounded positive and has a bounded inverse):

[[(h*)~HI72ID] < [k Dh°| < [[R°]1*| D).

Extending it to respective powers and taking trace we see that trace of (|h°Dh°|)®
will be estimated by a multiple of trace of |D|* from both sides.

4.1. The Fredholm module and K-homology class

A spectral triple is an object, which has a significant topological importance when
considered as an unbounded Fredholm module. Let us recall the definition of a
Fredholm module ofer an algebra .A:

Definition 13. A triple (A,H, F) is a Fredholm module iff FF = F*, F? = 1 on
‘H and for every a € A the commutator [F,w(a)] is compact on H. If there exists
a grading v = * such that 42 = 1 and Fy = —yF on H then we have an even
Fredholm module, otherwise we have an odd Fredholm module.

A properly defined relation based on homotopy between Fredholm modules
allows to introduce equivalence classes and show that these classes form an abelian
group with respect to natural operations. These groups are, in a sense, corre-
sponding dual objects to K-theory groups of the algebra A: Ky(A) and K;(A).
The Chern character (expressed easily for finitely summable Fredholm modules)
provides the standard pairing between the K-theory and K-homology groups and
factorizes through the classes in cyclic cohomology of the algebra A.

An unbounded Fredholm module (a spectral triple) immediately gives a Fred-
holm module by an assignment F' = sign(D). Having constructed a family of con-
formally rescaled triples we might want to check how it affects the topological
properties of the triple. Certainly the Fredholm module might not be the same,
however what matters is its class in K-homology. We have:

Lemma 14. The K-homology class of the Fredholm module obtained from the spec-
tral triple of a conformally rescaled Dirac operator Dy, does not depend on h.

As h > 0 we define s = logh by continuous functional calculus. Then
h(t) = e'® is a continuous path in B(H) and F; = sign(h(t)°Dh(t)°) will be a
continuous path of operators giving us the homotopy between the (A, H,sign(D))
and (A, H,sign(Dp)).
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4.2. The differential calculus

Assume that we have a real spectral triple and a conformally rescaled one. Sind D
establishes the first-order differential calculus we may ask a question whether the
calculus defined by Dy, is isomorphic to the original one.

Lemma 15. Let (A, D, H,J) be a real spectral triple and Dy, = h° Dh° be a confor-
mally rescaled Dirac operator. Then Qf,(A) = Qp, (A).

We define for any one-form w in Q},(A) the map ¢p,:
on(w) = h°wh?.

Since h is invertible it is a bijective, and since h° is in the commutant of A it
clearly is a bimodule isomorphism. It remains to verify that:

or(da) = dpa, Va € A,
where dj(a) = [Dp, m(a)]. But:
on(da) = h°[D,w(a)]h’ = [W°Dh°, 7(a)] = [Dp, 7(a)] = dpa.

4.3. Partial conformal rescaling

In special cases, where the Dirac operator can be presented as a sum of two (or
more) operators, which alone satisfy most of the spectral triple conditions we can
repeat the conformal rescaling but only partially. A typical example will be the
case of the product of two spectral triples.

Let us assume that (A, D, H,J) is a real spectral triple and D = Dy + Dy
and D1, D5 are Dirac operators for real spectral triples for the largest subalgebras
of A, which is not annihilated (respectively) by them.

Then we can have for h, k € A positive and such that inverses are bounded,
Dy, = h°D1h° + k°Dok®. This is an operator, which has again bounded commu-
tators and compact resolvent. Similar arguments as in the conformal case show
that again the metric dimension does not change.

An example of partial conformal rescaling with h arbitrary positive and k = 1
was studied for the noncommutative torus in [11].

Remark 16. Note that to obtain the isomorphisms between the respective bimod-
ules of one-forms one needs some additional requirement that the bimodule of
one-forms split as a direct sum of two bimodules.

4.4. Fluctuations of conformally rescaled geometries

As a next problem we look into the fluctuations — of the type described earlier but
this time with the operator Dj. We have:

Lemma 17. Fluctuations of the conformally rescaled Dirac operator are conformally
rescaled fluctuation of the original Dirac operator.
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Proof. Let us take D + A, where A =", m(a;)[D,n(b;)]. Then:

h°(D + A)h® = Dy, + h° (Z W(az‘)[DﬂT(bv:)]> h?
=D+ Y m(a;)[Dp,w(b;)]. U

(2

So, conformal rescaling does not change the family of possible fluctuactions.

5. The curvature and Einstein—Hilbert functional

One of the most interesting problems in all these examples appers to be the com-
putation of some “local” geometric objects like scalar curvature. So far, the only
approach that allowed to have an insight into such objects depends on the spe-
cific form of spectral triple for the noncommutative torus and explicit heat-trace
computations using the generalized version of the pseudodifferential calculus for
th noncommutative torus.

We shall review here some alternative approach, which is adapted to the case
of dimension 4 (most interesting from the point of view of physical applications)
and based on Wodzicki residue. We sketch the basic definitions and results below.

5.1. Wodzicki residue on noncommutative tori

In a series of papers [6, 7] and [15, 16] a conformally rescaled metric for the non-
commutative two and four-tori was studied. This led to the expressions of Gauss—
Bonnet theorem and formulae for the noncommutative counterpart of “dressed”
scalar curvature.

The computations used explicitly the possibility to write the Laplace-type
operators as pseudodifferential operators on the noncommutative torus with their
symbol expansion and the possibility to construct a parametrix for a given elliptic
operator.

As it has been shown [17] and more generally in [21] Wodzicki residue exists
also in the case of the pseudodifferential calculus over noncommutative tori. This
has been shown in full generality (in an explicit way, which follows directly from
the classical situation) to the d-dimensional case [28]. The symbol calculus defined
in [6] and developed further in [7] (see also [21]) is easily generalised to the d-
dimensional case and to the operators defined above. Let us recall that a differential
operator of order at most n is of the form

P = Z Z aﬁké’gk,

0<k<n |Bx|=k
where ag, are assumed to be in the algebra A(T$), 8 € Z% and:

|Bk| = B1 + -+ + Ba, 5Bk:61ﬁk,1”'6£k,d'
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Its symbol is:
pPY= > > ap &, where & =gl

0<k<n |Br|=k

On the other hand, let p be a symbol of order n, which is assumed to be a C*° func-
tion from R to A(T%), which is homogeneous of order n, satisfying certain bounds
(see [6] for details). With every such symbol p there is associated an operator P,
on a dense subset of H spanned by elements a € A(T%):

where ,
a,(UY) =€ °U®, o eRY acz
For two operators P, ) with symbols:

p(P) = pat® p(Q) = s’
we use the formula, which follows directly from the same computations as in the
case of classical calculus of pseudodifferential operators:

1
p(PQ) =Y 9 (p(P)5 (p(Q)), (1)
yend
where 4! = 41!+ - 94!. In [28] we have shown that

Proposition 18. Let p = 7. p;(§) be a symbol over the noncommutative torus
A(T4). Then the functional:

prr Wies(p) = [ t(p-al©)) .

is a trace over the algebra of symbols.

Then for family of conformally rescaled Laplace-type operators we have com-
puted the following functional:

S(h) = A Wres(D;,*) + Wres(D; ?).

and demonstrated that it is not a minimal operator. That signifies that there is no
single operator, which minimizes for a fixed h the second term (Einstein—Hilbert
functional). Classically the minimal point corresponds to the Laplace operator
obtained from the Levi-Civita (torsion free) connection.

5.2. Einstein—Hilbert functional for conformally rescaled Dirac in 4D

Let h € JA(T})J, h>0 from the commutatnt of the algebra. We know that for the
standard Dirac operator D the conformally rescaled Dirac D;, = h~'Dh™! defines
a spectral triple with the same metric dimension. For simplicity we denote by h
already the element from the commutant. Fixing the dimension of the NC torus
to be d = 4 and using the above-defined calculus of symbols of pseudodifferential
operators on the NC Torus we obtain:



Conformally Rescaled Noncommutative Geometries 97

Lemma 19. The action functional for the conformally rescaled Dirac over four-
dimensional noncommutative torus is

S(h) = At(h®) + t (hd;(h)d;(h)h + hd;(R)hd;(R)) .

The proof is a straightforward but tedious computation, which is a part of
computation made in [28]. It is interesting to compare it with the classical result.
Since the Dirac operator is rescaled by h~! from both sides in the commutative
case this means that its principal symbol is rescaled by h~2 and the metric rescaled
by h*. The curvature scalar of such metric is:

R(h) = —12h~° ((9;h)(8;h) + h(Ah)),

whereas the volume form is h®. It is easy to see that if h and its derivations
commute with each other the result is the classical one, as:

h3(AR) = 0, (h20,h) — 3h*(0ah)(d4h),

and since on the torus the integral is a closed trace with respect to derivations, we
have:

VIR = 24h*(9;h)(0;h).
’H‘4

Hence we might consider the operator D;, as truly the correct Dirac for a
conformally rescaled noncommutative geometry.

5.3. Derivations and moving frame formalism

Apart from the classical limit there is also another possibility to check whether
the above result makes sense. In [24] Rosenberg observed that conformal rescaling
of the metric could be translated into the rescaling of derivations, since one can
write the conformally rescaled metric tensor in the basis of dual space to derivations
(forms) as:

gn = Nap(ke?) @ (keb).

In his paper he studies the geometry and curvature tensors following standard
recipe, which can be naturally adapted to this case. Reformulating slightly his
approach and using the spin connection rather than Levi-Civita connection one
can repeat the computations in arbitrary dimensions.

We introduce, similarly as in the classical case, the spin connection:

wp = wp.(ke®).
Assuming metric compatibility and vanishing of the torsion:
0 = d(ke®) + wi(keb) = (0;k)e’e? + wikk?ece’.
we obtain the solution,
wit = 626, (k)k™2,
As the difference from the classical situation is only in the order of terms (as they

do not commute with each other) one can easily compute the two-form of the
curvature tensor:

Ry = 620u (k)™ e"e® + 698, (k)o, (k™1 )e e + 628, (k)k ™ 0y (k)k ™ ece?,
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and its contraction to the Ricci tensor:
Ricpe = —0pe(k)h ™" — 6 (k)Sc(E™) 4+ 6o (k) 6 (k)E ™1
Finally, one obtains a “naive” expression for the scalar curvature:
r=k"% (=80 (k)k" +26,(k)k™ 6, (k)E™T) .

We call the expression “naive generalization” of the classical scalar curvature as we
multiply the Ricci tensor by the conformal factor from the left when contracting it
with the metric. We could have done it symmetrically or we could have multiplied
from the right. Since later we compute the functional, which involves the trace, this
does not play any significant role. On the other hand we always need to remember
that this is not a curvature in the classical sense.

To compare with the result for the Dirac operator we need to set k = h™2,
then,

Sa(k) = —h 16, (h)h ™2 — h™26,(h)h ™!

and
Saa(k) = = B Gaa(h)h ™% = K™ 2640 (R)h ™!
+h 710, (h)h 100 (h)h ™2 + h™ 28, (R)h ™ 8a(h)h ™1
+ 778, (h) (R 0 (h)h ™2 + h™28,(h)h 1)
+ (R 8a(h)h™2 + K264 ()R ") 64 (R)h ™
= — h YWaa(h)h™2 — K280 (h)h ™" 4+ 2 (A8, (R)h 8, (h)h 2
+h7 0 (h)h?0a(h)h ™ + B 28, (R)h ™ 8a(R)h™Y) .
Therefore, at the end we have:
7(h) = 207 %6, (h)Sa(h) + h™%0aa(h)h + h™534q(h).
Finally, we can compute the Einstein—Hilbert functional,
t(h8r) = —2t (h25a(h)6a(h) + héa(h)hdq(h)) .
where we have used the cyclicity and closedeness of the trace:
t (h?64a(h)) =t (64 (R*64(h)) — 2h*64(h)S4(h) — hda(h)hSa(R)) .

It is surprising that (up to trivial rescaling) we obtain the same formula as this
arising from the Wodzicki residue of the Dirac operator.

6. Conclusions

Noncommutative geometry is a sound and well-motivated theory, which can pro-
vide excellent tools to study and describe the geometry of the world. At its current
stage, it still is focusing on some simple examples. The presented class of confor-
mally rescaled spectral triples is one of the first steps to go beyond single Dirac
operator or fluctuations of Dirac operator and study geometries in a similar man-
ner as we study classical manifold.
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As we have mentioned there are different approaches, which should merge
to provide a comprehensive picture of the geometries we study. First, we have
purely algebraic approach, when we could work with algebraic objects (at least in
some cases) like symmetries (also in the Hopf algebra sense), derivations or twisted
derivations, differential calculi etc. The second approach is based purely on spectral
properties of the Dirac and computation of some geometric quantities using heat-
trace expansion or natural traces like Wodzicki residue on an appropriate algebra
of (generalized) pseudodifferential operators.

Surprisingly, as shown in the above paper, there might be a link, even in the
noncommutative case between these two approaches. It is worth mentioning that
a spectacular link between the notion of connection for noncommutative U(1)
principal bundles and a new families of Dirac operators was established by the
author and L. Dabrowski in [10]. All these examples and further might be a sound
basis for a better understanding of geometry of quantum spaces.
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Abstract. As a natural extension of the affine groups of the reals and the com-
plexes, leading to one and two-dimensional wavelets, we look at the quater-
nionic affine group and its representations on both complex and quaternionic
Hilbert spaces. We then study the problem of coherent states and wavelets
built from these representations.
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1. Coherent states and wavelets

The aim of this note is to outline a recent construction of wavelets and coherent
states on both complex and quaternionic Hilbert spaces, using the recently intro-
duced quaternionic affine group [2]. Precursors of this work, involving quaternionic
coherent states and wavelets over quaternionic fields, may be be found in [7-9, 11].

We start with some group theoretical preliminaries (see, for example, [3, 4]).
Let G be a locally compact group du the left Haar measure on G and G 3 g —
U(g) a unitary irreducible representation of G on a complex (separable) Hilbert
space $). The representation U(g) is called square integrable if there exists a non-
zero vector ¢ € §) such that

/| (9)6 | 8)2 du(g) < oo.

In this case the vector ¢ is said to be admissible.
Given an admissible vector ¢, the set of vectors

ne =) 2U(9)p, geG (1)

are called coherent states of the group G for the representation U(g).
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The coherent states have many useful and interesting properties. In particular
they satisfy the resolution of the identity

/ 1m0} 1y dis(g) = I (2)
G

Furthermore,

e if the group G is unimodular and U(g) is square integrable, then every vector
in ) is admissible;

e if G is non-unimodular and U(g) is square integrable, then the set of admis-
sible vectors is only dense in $;

e in this case, the dense set is the domain of an unbounded operator C, called
the Duflo—Moore operator, i.e., if ¢ is admissible then

IC8|I* < 0.

For a square integrable representation U(g) one also has an orthogonality
relation. If m1, o are admissible vectors and ¢1, ¢ € § are arbitrary vectors then

/G U gy | 11U @)z | 62) dislg) = (Ca | Cin)igh | a). 3)

Suppose now that G = R x R*| i.e., the affine group of the line. A generic
element in it has the matrix representation

g;:(b,a)=<8 ?) a#£0, beR. 4)

On the Hilbert space $ = L?(R,dx) this group has the unitary irreducible repre-
sentation

W0 = a0 (7). 5)

This representation is irreducible and square integrable. Admissible vectors ¢
of this representation are such that their Fourier transforms ¢ satisfy the condition

|6(k)[?
/R k<o (6)

In the signal analysis and wavelet literature, these vectors are called mother
wavelets and the corresponding coherent states n; , are called wavelets.

A signal s is then is then identified with an element of the Hilbert space
$ = L*(R,dz) and the function

S(bv a) = <77b,a|8>7 (7)
is called its wavelet transform. The wavelet transform is a time-frequency trans-
form. One can also build two-dimensional wavelets and wavelet transforms using
the affine group of the complex plane

G=CxC"

Looked upon as a real group this group consists of all translations, dilations and
rotations of the two-dimensional plane. Our aim here is to look at the quaternionic
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affine group

Gy = H x H*, (8)
and try to construct coherent states and wavelets for it. It is expected that these
wavelets could, for example, be employed in the analysis of sterophonic or stereo-
graphic signals.

2. Some quaternionic facts

Quaternionic analysis is an active area of current research (see, for example, [5, 6,
10, 12] and references cited therein). Here we shall be using Hilbert spaces over
the quaternions and some elements of group representation theory on them. We
first list some useful facts about quaternions and the matrix representation of
quaternions, that we shall use.

Let H denote the field of all quaternions and H* the group (under quaternionic
multiplication) of all invertible quaternions. A general quaternion can be written as
q=qo+ @i+ g2+ gk, 0, 41,92, 93 € R,
where i, j, k are the three quaternionic imaginary units, satisfying i2=j?=k?>=—1
and ij = k = —ji, jk =i = —kj, ki = j = —ik. The quaternionic conjugate of q is
q=qo—iq1 — jg2 — kgs.

We shall use the 2 x 2 matrix representation of the quaternions, in which
i:\/—lol, j:—\/—lo'g, k:\/—lag,

and the o’s are the three Pauli matrices,

(01 (0 =i (10
g1 = 1 0/ 02 = i 0 ) 03 = 0 —1)°
to which we add
(10
opg = llg = 0o 1/

We shall also use the matrix-valued vector o = (01, —09,03). Thus, in this repre-
sentation,

: +igs —qo+i
d=wenriao= (D10 BT as@ew, O

with the quaternionic conjugate of q being given by q.
Introducing two complex variables, which we write as

z1 = qo + 1q3, zo = q2 + 1q1,

_ [~ —Z9
q= (zz . ) . (10)
This representation of a quaternion by two complex numbers will turn out to be
the most useful for our purposes.

we may also write
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3. The quaternionic affine group

Let us analyze the quaternionic affine group G or, what we shall call the quater-
nionic wavelet group. In the 2 X 2 matrix representation of the quaternions we
shall represent an element of GH:IH as the 3 x 3 matrix with quaternionic entries

g::(b,u):<0“T i’) acH*, beH 07 =(0,0). (11)

It can be shown that this group also has has only one irreducible unitary
representation on a complex Hilbert space, exactly as the real or complex affine
groups. The reason for this is that there is only one nontrivial orbit in the dual of H,
under the action of H* by right multiplication. In addition to this representation on
a complex Hilbert space, we shall also compute the UIR of Ggﬂﬂ on a quaternionic
Hilbert space.

The group GH:IH is non-unimodular. The left invariant measure is easily com-

puted to be
db da

d:u(bva) (det[a])47 ( )
and similarly, the right Haar measure is given by
db da
du,(b,a) = . 1
The modular function A, such that due(b, a) = A(b, a) du, (b, a), is
1
A = . 14
©:9= erial? (14)

As noted earlier, from the general theory of semi-direct products of the type
R™ x H, where H is a subgroup of GL(n,R), and which has open free orbits in the
dual of R", we know that GE has exactly one unitary irreducible representation
on a complex Hilbert space and moreover, this representation is square-integrable
(see, for example, [3, 4] for a detailed discussion).

Thus, using standard techniques, this representation can be realized on the
Hilbert space K¢ = L%(H, dr) over the quaternions. We define the representation
GE 3 (b,a) — Uc(b, a),

(Ue(b.0)f)(E) = , |

~ det/a]
The Duflo-Moore operator C' is given in the Fourier domain as the multiplication
operator

f@™l@—1)),  fe ke (15)

PN ~ o2
(Cf)e)=C(e)f(€), where C(¥)= LBJ ) (16)

The admissibility condition for a mother wavelet is now

T2
(2m)? /R4 |f|(éz| dt < oo,
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and for any two vectors 71,72 in the domain of C' and arbitrary fi, fo € K¢, one
has the orthogonality relation:

L 0 1 Vetb.a)m) 2 | U6, 0" o) die(6.0) = (Co | Con) (| £ (17)

aff

It is useful to write the orthogonality relation in its operator version:
/H Uc(b, a)|n)(n2|Uc(b, a)” due(b, a) = (Cnz | Cm)lsc (18)
Gaff

which in fact, expresses a generalized resolution of the identity. Indeed, for (Cns |
Cm) #0,
1
(Cnz [ Cmy)

Normalizing 1 so that ||Cn||> = 1, the family of complex coherent states or
wavelets of the quaternionic group are

Sc = {mv.a = Uc(b, @) | (b, a) € Gy}, (20)

and we have the associated resolution of the identity,

L]}I

afi

/GH Uc(b, @) (13| Uc (6, a)* djue(b, @) = I, - (19)

76,0) (Mo,a| dpee(b, @) = Ig. . (21)
f

4. UIR of GH;Iff in a quaternionic Hilbert space

As the next step, we construct a unitary irreducible representation of the quater-
nionic affine group G on a quaternionic Hilbert space following [2]. As might be
expected, this representation has an intimate connection with the representation
Uc(b,a) in (15) on R¢.

We consider the Hilbert space $y, of quaternionic-valued functions over the
quaternions. An element § € $y consists of two complex functions f; and fs and

has the form
_(fH®) —f(x)
)= (fz(zc) i) ) Fei (22

with the norm being given by

I, = [ 56650 de = [ o) e = [ [ ORGP+ 1507 ) de | o0 (29

It is clear that the finiteness of this norm implies that both f; and f2 have to be
elements of fc = LZ(H, dr), so that we may write

1715, = (AR + 120 ) oo

In view of this, we may also write $y = L2 (H, dr).
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It is possible to use the usual “bra-ket” notation of physicists. We adopt the

convention:
(BN g p o (M) —IF)
or =Gy ) mae =0 W) e

The scalar product of two vectors f,§f € Hy is

(Hﬂ=AmW@a

_ ((f,l | f1) e + (f2 | fa)se  —(fal fi)se + (f1 ] fz>m) (25)
(fo |l f)oe = (f1 ] fodoe  (fil f)ac + (f2 | f2)sre,

and thus,
G 1 =179
Multiplication by quaternions on $3y is defined from the right:

(9u x H) > (f,q) — fq, such that (fq)(x) = f(x)q,

i.e., we take $Hg to be a right quaternionic Hilbert space.
Note that this convention is consistent with the scalar product (25) in the
sense that
(Flfa)=@GF1F)a and (Fa|§)=a'(|F).
However, the action of operators A on vectors f € $y is taken to be from the left
(A, q) — Af. In particular, an operator A on f¢ defines an operator A on $y
in the manner,

_ (A —(Af)@)
(Af)(x) = ((Afg)(?) (Af)(x) ) .

Multiplication of operators by quaternions will also be from the left. Thus, gA
acts on the vector § in the manner

(qAf)(xr) = q(AF)(x)-

We shall also need the “rank-one operator”

r_ (1f) —|f2>) ( (1] <f,£|)
e = (7 ) Gl 3 .
:Ommumwa|m%vmw®_
= fal + )il [fO(Ful+ 1 f2)(f2]
Orthonormal bases in $y can be built using orthonormal bases in K¢c. We

indicated one simple way to do this. Let {¢,}>%, be an orthonormal basis of
fc = LZ(H, dr) and define the vectors

(1) e
'%*¢xwmwﬂ’ =02 (27)
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in $Hy. It is easy to check that these vectors are orthonormal in $)y. The fact that
they form a basis follows from the fact that the vectors {¢,}52, are a basis of
LZ(H, dy). Indeed, writing

A B e
D= <|f2> ) ) € Lu(H, dr),

we easily verify that
(o)
= |®)a,
n=0
where

q, = (‘I)n | f) _ 1 <<¢n | f1>~VJC - <¢n | f2>55cc _<f2 | d)n)YJC - <f1 | d’")ﬁc) .

V2 \{fal dn)oc + (Fildn)ae  (fil dn)ac — (fo | dn)ac

A representation of G on $y can be obtained by simply transcribing (15)
into the present context. We define the operators Uy(b, a) on $Hy:

(Uslo. D (E) = g o fla ' =0). Fe e (28)
which by (15) and (24) can also be written as
_ (1Uc(b,a)f1)  —|Uc(b,a)fy)
0o = (5 ety 2

This representation is both unitary and irreducible. The unitarity is easy to
verify, since

U (b, @)f|* == /H (I(Uc(b,a) f1)(®)|* + [(Uc(b, a) f2)(x)[*) dr oo,
which, by the unitarity of the representation Uc(b, a) on K¢ gives

I0u(b, a)ff, = (/1% + I/20%:) o0 = [l
Similarly, a straightforward argument, based on the irreducibility of Ug(b, a) on
R leads to the irreducibility of Ug(b, a).
Using the Duflo-Moore operator C' in (16) for the representation Uc(b, a)
(see (15)), we define the Duflo-Moore operator C for the representation Ug/(b, a):

CRE —CR)E)
(e = ((sz)(zc) (CF)E) ) '

We say that the vector f is admissible for the representation Uy(b, a) if it is in the
domain of C, i.e., if both f; and f; are admissible for the representation Uc(b, a).
It is then easy to see that the set of admissible vectors is dense in $y.

Let § and § be two admissible vectors. Then from (29), 26) and (18) we get

| 1o, (Us(o.af | du6.a) = a T, (30)

aff
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where q denotes the operator of multiplication from the left, on the Hilbert space
$Hm, by the quaternion

q— <<Cf{ | Cfi)ac +(Cf'2 | Cfa)ae (Cfa| Chi)ac —(Cf'y | Cf2>:oc> . (31)
(CHITCfR)se —(CFy | Ch)se (CF1ICf)se +(CF | Cla)se
Equation (30) expresses the square-integrability condition for the represen-
tation Uy(b, a).
In particular, with § = §, we get the resolution of the identity,

1T [ 1 Ul (Ul f | dato.) =, (32)

aff

5. Wavelets and reproducing kernels

Let m € $Hu be an admissible vector for the representation Uy(b, a), normalized
so that

[Cnll* = 1.
We define the quaternionic wavelets or coherent states of the quaternionic affine
group to be the vectors

S = {1y,c = Us(b, a)n | (b,a) € Gy}, (33)
By virtue of (30) they satisfy the resolution of the identity
[ 100 1l (0. ) = I, (34)

aff

There is the associated reproducing kernel K : Gty x GE — H],
K(bv a; b/v Cl/) = (nb,a | nb’}a’)f)H ) (35)

with the usual properties,
K(b,a; b’,a’) =K(b',a’; b,a), K(b,a; b,a) >0,

K(b,a; b”,a") K(b",a”; b',a') dus(b”,a”) = K(b,a; b',a’).
G];Iff
This kernel then defines a Hilbert space with properties very similar to reproducing
kernel Hilbert spaces over the complexes. In particular, the entire theory of the
wavelets and coherent states presented here may be formulated on such a Hilbert
space.

6. Conclusion

The idea of formulating quantum mechanics and other physical theories using
quaternions and quaternionic Hilbert spaces is an old one [1]. The present work
may be thought of as being an attempt to develop a signal analytic counterpart
of such theories. Interesting questions to pursue next could be:
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1. The problem of a unitary embedding of $ into L(GHy, dpe).

2. Extensions of the representation Uy/(b, a), e.g., by multiplying from the right
by the SU(2) part of a.

3. Physical applications of the wavelets and coherent states described here, par-
ticularly in the analysis of stereophonic and stereoscopic signals.

4. The problem of discretizing the continuous family of wavelets and of building
quaternionic wavelet frames.
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Supersymmetric Vector Coherent States
for Systems with Zeeman Coupling
and Spin-Orbit Interactions

I. Aremua, E. Baloitcha and M.N. Hounkonnou

Abstract. This work addresses a method for constructing supersymmetric vec-
tor coherent states (VCS) for a two-dimensional electron gas in a perpendicu-
lar magnetic field in the presence of both Rashba and Dresselhaus spin-orbit
(SO) interactions, with an effective Zeeman coupling. The model Hamilton-
ian, decomposed into two conveniently defined operators, acts on a tensor
product of two Hilbert spaces associated with corresponding chiral sectors.
Supersymmetric (SUSY) VCS, related to a SUSY pair of Hamiltonians, are
built. A generalized oscillator algebra is provided using quadrature operators.
Mean-values of position and momentum operators and uncertainty relation
in the SUSY VCS are obtained and discussed. Besides, the SUSY VCS time
evolution is also given.

Mathematics Subject Classification (2010). 35B05, 74F15, 81R30, 81Q60.

Keywords. Zeeman coupling; spin-orbit interactions; chiral sectors; supersym-
metric partner Hamiltonians; vector coherent states.

1. Introduction

Standard and nonlinear vector coherent states (VCS) were constructed in quantum
optics for nonlinear spin-Hall effect and for the Jaynes—-Cummings models [1, 2].
In the context of supersymmetric (SUSY) quantum mechanics, CS were studied

in some previous works, see for example [3-5] and references therein.

Our work deals with the construction of VCS for a Hamiltonian operator
describing a two-dimensional electron gas in a perpendicular magnetic field in
the presence of both Rashba and Dresselhaus spin-orbit (SO) interactions, with

effective Zeeman coupling [6].
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2. Preliminaries

The CS [7, 8] can be defined over complex domains in the Hilbert space $ =
span{ o, m € N} as [9, 10]

[ee)

2) = (N(|z]) "2
ERICCORD S

where {p(m)}52_, is a sequence of non-zero positive numbers chosen so as to ensure
the convergence of the sum in a non-empty open subset D of the complex plane,
N(Jz|) is the normalization factor ensuring that (z|z) = 1.

The resolution of the identity is given by

/ o)zl = 1, 2)
D

where dy is an appropriate chosen measure and I the identity operator on the
Hilbert space $).
For z; # 22, the overlap of two states |z1) and |z2) gives

(21]22) = € 7 0. (3)
From (2) and (3), the CS |z) constitute an overcomplete family of vectors in the
Hilbert space $).
From (2), for all &, ¥ € §,

[ @)1= (@, @
Matrix vector coherent states (MVCS) are defined [11, 12] with
Z = A(r)e®® (r k() e D=Rx K x[0,2n),

where A, © are two n X n matrix-valued functions, as

o0

Z,5) = WN(Z])" V2
1Z,7) = N(IZ2])) T;)W(m)

on the Hilbert space ) = C" @ § with orthonormal basis IV @om}y,i=1,2,...,
n,m=20,1,2,...,00.

Zm

m),  z=re”, (1)

2
; |z1—22]
121/\2267 2

m

W ®ém)y  j=L2...n (5

© is Hermitian, © = OT, (6)
@2 =L, [A7 9] =0, [A7 AT] =0. (7)
The MVCS (5) satisfy on C" ® $) the following resolution of the identity
> [ W(z)iz. iz dldu =1, 0 Ts. 0
j=1

du(r, k, () = dK(k)dR(r)d¢, where the density function W (|Z]) is provided by

2rW (2N AP
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3. Hamiltonian operators with Zeeman coupling
and spin-orbit interactions

3.1. Hamiltonian operator with Zeeman coupling

The Hamiltonian operator of a particle system with mass M and charge e with
Zeeman coupling ¢, in a magnetic field can be defined by

H= 234 (p_ iA(r))z—ggo~ B. (10)

The symbol p = efi/2M denotes the Bohr magneton, g the coupling factor related
to the particle and o = (0, 0y, 0,) = (01, 02, 03) the vector of Pauli spin matrices,

with
0 1 0 —i 1 0
Explicitly,
1 eB \? eB \° guB
= oM l(pg”_ 2cy> +<py+ 2cx) o9 % (12)

or, equivalently, in terms of annihilation and creation operators b’ and b'':

1
H = hw, (b’Tb’ + 2) 00 + hwbo., &= —guMc/2he, (13)
where
1 1
V= b, = b, oyt =1 14
V2 M hw, V2M hw, ¥, 67 (14)
with

B B
b=2iP, + 62 Z, bt =—2iP. + 62 Z,  [bbl]=2Mhw..  (15)
& &

The eigenvalues of H are given by
i 1
ES =hw.|n+ 9 F hw. (16)

The corresponding eigenstates, denoted by ( |(I)O”> ) , ( |<I? > ), span the
Hilbert space C2®$), with §) := span{|®,)}5°,}, |®,) corresponding to the number
operator N = b'ft/ orthonormalized eigenstates |n) = (1/v/n!)(b'1)?(0), and on
C?’®6H:

T ®®,) = ( |‘I:)n> ) N~ ®®,) = ( |<I?n> ),n:0,1,2,..., (17)

where xT and y~, given by xT = ( (1) ),X_ = ( (1) ), form an orthonormal
basis of C2.
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3.2. Hamiltonian operator with Zeeman coupling and spin-orbit interactions

The generalized Hamiltonian describing a 2D electron gas mixing with full Rashba
and Dresselhaus SO interactions, and effective Zeeman coupling in a perpendicular
magnetic field background is given by

oo — 1 _eB 2+ —|—€Bx2
SO = opr [\ P27 9. Y Py 9.

where Vgo stands for the generalized Rashba or Dresselhaus spin-orbit terms given
by [13]

_ guB

9 JZ+V50, (18)

/
Hp = hwey(tTo- + Vo) = hwey <b9T %) ) (19)
1t 44
Hp = hweB(i¥ oy —iblo-) = hw.s (_?b, i ) o= o)

where v and [ are dimensionless parameters defined by v = 7 \/ h%,l‘f and 8 =

ﬁo\/ ;331\56 with ~g, B9 being the Rashba and Dresselhaus coupling constants, re-
spectively.

For 8 = 0 and non vanishing Rashba SO interaction term [14], which couples
the up-spin level (®,,_1,0) to the down-spin state (0, ®,,),n > 1

L (cos0, P,y _ [(—sin0, P,
wn o ( siné,,®,, ) ’ wn a ( cos 0, P, ’ (21)
1)
B = hwen ® ) v/1+ dy2nh2d /62, (22)

in which § = fiw.(1 + 2¢).

In the weak Rashba SO coupling limit case (v negligible), we can expand
EF = Ef — EY using the approximation (14-¢)'/? ~ 1+¢/2,¢ < 1 and, by taking
h =1, get from (21)

& =wi(yn, wi(y) = we (1 T 22_796) : (23)

Define
pe(n) i= EEEE - EF (24)
with the increasing order £ < £F < --- < £*, such that

n

pi(n) = [] we(n)a = nl(ws ()" (25)

q=1

Provided the quantities in (25), before constructing the VCS, let us first perform
a change of basis as follows.
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Introduce the passage operators from the Hilbert space S with eigenbasis
{lvE)} in (21) to {|x* ® ®,)} and vice versa, xy* being the natural basis of C2,
given by

UT@Pa) = lvn), Ul = Ix* @ @), (26)
where U, Ut expand as
[ee] o0
U= D [ Fed.), U =D IxF @)W (27)
n=0,+ n=0,+

such that
o0 o0
U= XFoe)x 00, =Lely, UU = Y [i)vr|=1s, (28)
n=0,+ n=0,+

where I, ® Iy and Is are the identity operators on C2 ® §) and S, respectively.
Then, the Hamiltonian Hgo takes the following diagonal form:

HES =UTHsol = Y |xT @ 0,)E5 (x™ @ Dy. (29)
n=0,+

4. Supersymmetric VCS construction

In this section, we construct VCS by considering the physical Hamiltonian ngg
(29). A method similar to this latter has been developed in [15] generalizing some
previous constructions [16, 17]. Then, we provide a scheme of VCS definition for
the SUSY Hamiltonians.

4.1. H‘g% VCS construction

Using the supersymmetric expression of the harmonic oscillator part Hposc =
hw, (b’ Ty 4 g) of the spin-orbit Hamiltonian Hgp, we get

H® 0 Vi 0
HSUSY — ( 0 Hf> = hojc ( 0 b/b/T) s (30)

where the SUSY partner Hamiltonians, H® and H, corresponding to the bosonic
and fermionic Hamiltonians, respectively, are given by

hw, we
HbZHosc— 9 I, HfZHosc—|— 9 I (31)

We have HSYSY = {Qf Q}, with the supercharges
0 0 , $ 0 vt "t
Q=vVhoe |y o) =Vhwto, Q' =Vho (5 °y )= Vhwtlor. (32)

On the Hilbert space ) = 91 ® H_ = span{|n4,n_),ny € N}, assume that
HES = hwi ()N} 4+ hw_(7)N’ can be written as

HyS =Hy @ Ig + 15, @ H- = [hw (V)N ] @I+ 15, ® [hw_(7)N'] (33)
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with
nen =g e = L ehEe. e

Let C* @9, H = HL ®H% @ HL ©H2 be the Hilbert space with orthonormal
basis {|x’,n},n3,nt ,n)}; nln2 nt n? where nfy € Nyi = 1,2 and {x/}j_, is
the natural basis of C*. Each Hilbert subspace $%,i = 1,2 corresponds to the
Fock Hilbert space span{|n/.),n, € N} where by use of (33) we have H|n! ) =
hws (V)Nink) = hwe(y)ni|nk), i=1,2.

In this case, we consider the following diagonal Hamiltonian

HSUSY 0
Hp = ( +0 HSUSY) (35)

with
HSUSY = {Q1,Q+}, Qi = Vhwi(y)V, o, (36)

where the annihilation and creation operators, o/, bi for the chiral sectors have
been introduced.

On the Hilbert subspace % T ®$H!, the eigenvalues with associated eigenstates
In},nl) of the Hamiltonian HS expressed as in (33) are given by

w-(7) 1
Et gt =wil(y [nl + n_}, h=1. 37
bt = O ) (&)
1
Setting w = 1+ w;iv()j)'*, we define by fixing the Landau sector level n! the
quantity
1
Ve w-(y)n .
=T o+ T | = @y, )
- kl;[l w(7) *
- I"(nfr—t—w) .
where (w)ni = =) Is the Pochhammer symbol.
1
Let Tpt = p(pﬁ't)l), Vn}r > 1; xp = 0 by convention. Then,
+
a:,,,1+! =p(nl), nl >1 and 0! =

Let z; € C, z; = rje'%i, where we have r; > 0,0; € [0,27), j = 1,2,3,4,
Z1+—d1ag(z1 ,zé ,zé*,zi*).

With the above setup, we define the VCS given by

|Zl+7nivn£7n277j> (39)
o0
=N(Z,,n%,nt . n? Z 2Z +|X nk,n%,nl,n?),
nl =0
+

1

where R(n}) = (w4 (7)™ (@)1 L.
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Proposition 1. These vectors are normalized to unity as

4
1
Z Zl+,n+,n_,n_,j|Zl+,n+,n_,n_,]> =1
Jj=1

with the normalization factor

2

4 L

2 1,2y _ . ,(TJ>
N(Zl+,n+,n7,n7)—le1 1,@,

j=1
where 1y are the confluent hypergeometric functions.

Proof. We have

4

1 2
Z Zl+7n+7n—7n—7]|Zl+vn+v —7]>
J=1

N(Zl+,n+,n_,n IZ Z Z )] 1/2
nl =0

j=1 mi:

1
mi ;o1 92 1 2. mb i 1 2 1 2
X (Z1+ Xj,m+,n+,n_,n_|Z1+ X7 ny,ni,ns,n )cigs,
where

j 1 2 1 2 i1 2 1 2
<Xj7m+7n-ﬂ,—vn—vn—|XJ7n+7n+7n—7n—>c4®fj
1 2,1 2 1 2>
-

= <Xj|Xj>(C4<m}|-vn3-7n—vn— ny,n,,n_,n_

Then for all j =1,2,3,4, we have

4 s} [e%S)
> > D [Rmy)REL)]T?
j=1 m}*_:On}*_:O
><<Z1+ X, m}r,ni,nl n? |Z1+X n+,ni,n1 n2>c4®5
2
oo ot [ )
= Y [REMDITTe(1Z0, P =) R | Lo
nt =0 j:1 w+(7)
1=

because for all j =1,2,3,4, we get
nt . nt . 1 . .
(Z1 20 X e = (120, 1 X X ) e

such that (41) is obtained iff (40) holds.

119

(40)

(41)
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Proposition 2. They satisfy the partial resolution of the identity given by

Z/ |Zl+777‘3»7n£7n37j><Zl+7ni7n£7n37j|dM(Z1+7nivn£7n%)
D

= H4 & Ini,ni,n%v (46)

where In2 nl n2 18 the projector onto the subspaces indexed by Landau sectors

levels n* ,n%, n% , with Dy, = {(zi ,zé*,zé*,@l )€ CY |z <00, =1,2,3,4}
and the measure given by

4
1
dw(Zy, nZonton?) = - T[N (Zi, e el 2 )e(ry)drtdos. (47)

my LL :
The densities
2
1
T -1
14 (j ) 1) -1 -
Ly =9 - : r " 4
o) =20y =0 L ()T @) ) (48)
solve the moment problems
/O (rjl'+)2ni9(rgl’+)d = P( ) J=1234 (49)

Proof. The left-hand side of (46), after some algebra, leads to the following Stieltjes
moment problem:

o o ot nl4y-1
Lyyont o 1gy 5 1 i L)+ Ly
/0 (r; ") o(r T )dr;t = {/0 e (Q+u ) du; ]
14

X D)1 Q) 7, ) = <r§2 ) (50)
+

which provides
o0 1 1 L
| = @ Tl )T = @0 G (6D
O

Setting b/, = bl, the VCS |Z,n1,,n1,,n1_,n1_) as defined in (39) coincide
with the SUSY VCS of

HSUSY 0 N/ 0
< +0 HSUSY) ; HSUSY hw:l:(’}/) < Oi NQ: + H) (52)

denoted by |3+,n4,n_) where Z; = diag(z4, z+), given on the Hilbert space
C?®Hy ®H_ as a two-component vector

|3ivn+vn7>: |Zi7n+7n77:|:>+|Zi7n+7n77:F>7 (53)
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where
1 > 1
|ZL.np,n_,£) =N(Z4,ng) "2 Z R(ny) 22 * |ny,n_, &) (54)
nt+=0
and
(W (7)) (@)n 0 )
R(ny) = * " 55
) < 0 (W (7)== H (@)1 (55)
implying
o ri+ei"+9+
[Zpnpn ) =N(EZyn )2 Y [ Ve =@ | @ ng,n)  (56)
n+:0 0
and
oo 0

2y npn, =) =N(Zpn)72 Y [ et N @ g n) (57)
n+=0 \ /(@ ()" (@)n 41

with n_ labelling the degeneracy levels. The VCS |Z_,n4,n_,£) can also be
defined in the same way with the degeneracy levels labeled by n. .

Proposition 3. The vectors |21, ny,n_,+) are normalized to unity as

> (Zengn £ Zengno E) =1 (58)
+

with the normalization factor

2
N(Zine) =2 F (1;w; Lii%) ~1. (59)

Proof. See that of Proposition 1. O

Proposition 4. The following partial resolution of the identity
Z/ |2 np,no, 2N (2, ny,no, Hdu(Ze,ng) =L @ I, (60)
+ J/D+

is satisfied. On the Hilbert space C* @ $, @ $_, the resolution of the identity is
provided by

ZZ/ |Ze g e, £) (2o, g, ne, Hdu(Ze,ng) =l @ In, 0 . (61)
+ ngx Dy

The densities o(r+) = 2 exp {_(Yf()j)} (re)?" ! (T(@)) " Hw (7))~ solve

/ )2 olra)drs = p(ns) = (e ()™ (@) (62)



122 I. Aremua, E. Baloitcha and M.N. Hounkonnou

Proof. Dealing with the definitions (56) and (57), we obtain

Z |Ze,np,n_, £)(ZL,ny,n_, £
£

= N(Z+,n5) 2 N(Z+,mz) éz Z Z R(ms) 2 R(ny) 2
+=0n+=0

X |Zzi7”+7”—v :l:><Zi

= N(Z1,n3) 2N (2, ms) > Z Zz *R(m+) 2 21 R(ng) 2

m+=0n4+=0

X SN © sy n ) (my, .
+

Then

s My, N, |

Z Z/ |Z1,ne,n_, £)(Zy,ny,n_, £|du(Ze, ng)

+ nx=0

-y >

7?::;::071,3::0
2”1
fo (Wi(’Y))ﬂi(w)ﬂ o(re)dr 0
oo panEty
! Jo (wx (M) T (@)n 11 o(r+)dry

Taking the densities

(rs)”

o(ry) =2exp {_W:I:('Y

which lead to the Stieltjes moment problems

/000(7})2”i o(re)dry = p(ny) =

we get

X HQ ® |7’l+,7’l_><7’l+,7’l_|.

) } (re)™ (D(@)) ™ (ws (1)) 7"

(W ()" (@)ns

Z Z/ |Zy,ne,n_, £)(Zy,ny,n_, £|du(Ze, ng)

+ nx=0

=L® Z Z [Ny, n_

ny=0n4+=0

Ynpno | =b® I, g5

(63)

(67)
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For the Hamiltonian

B = huo () (N (68)
+ V0 N+

the SUSY VCS are obtained from (53) as

" ing 6y
'l"+ €

R V(@i ()™ (@)
134, n4,n_) =N(Z4,n_)"2 Z nytl ®@|ny,n_)  (69)
n4=0 r++ e~ inp+1)64

V@ ()" (@) 11

with the normalization factor N'(Z1,n_) given in (59), where n_ = 0,1,... labels
the degeneracy levels.

Proposition 5. These states satisfy, on the Hilbert space C? ® $H, ® $_, the reso-
lution of the identity given by

3 /D dp(Z4n_)dp(Z— 1) 34 mpn W3gnpn | =L ® In,gn.  (70)
+

where D =Dy x D_, Dy ={(ry,04)|0 <ry <oo, 0 <0y <27}

Proof. See that of Proposition 4. O

5. Generalized annihilation, creation and number operators
5.1. Generalized annihilation, creation and number operators
Consider a4, aTi, n4 on the Hilbert space C? ® 4 ® H_ by
ar|0,n_,£) =0, a_|ny,0,+) =0 (o = 0 by convention) (71)
and for n > 1,
ayng,n_, )= /rp, Iny —1n_, %), a|ny,n_,£)
=/Tn_|ng,n_ —1,%),
a1|n+,n_,:|:> = /Tn, q1lny +1,n_ &), (72)
a1|n+,n_,j:> = /Tn_q1|ng,n_ +1,%),
nplng,n_,£) =x,, |ny,n_, k), n_|ny,n_, &) =x,_[ng,n_, %)
with the following commutators actions:
oz, al ), o, %) = (@ns 1 — 20 ) g, e, £),
e, ai][ng,no, &) = —(¥py — Tny—1)ax|ng,no, &), (73)

L a;fl:”n-‘r? no, %) = (Tny+1 — xni)aT:t|n+v n_,%).
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The following relations
ap| 21, g, ne, =) = N(Z4,n-)"2 : i =
=0 V(W) (@ +ny ) (@)ny 1
X|ng —1,n_,—),
2 Z
2w () (@),

o~ 2w () (@ +ng — 1)
_1 +\Y +
n+|Z+7n+7n—7_>:N(Z+7n—) 2 Z 1 |n+7n—7_>
n4=0 \/er n++ )”++1

CII_|Z+,TL+,71,,—>:N(Z+,717)7 |n++17n*7_>7

(74)
hold.
5.2. Operator mean values and uncertainty relation
Let the quadrature operators Q4 and P+ be given on C?® HLR®H_ as
Q—l(a +al) P—l(a —al) (75)
+ \/2 + + /)5 + i \/2 + +/-

The mean values of the squared operators Qi and 773 are obtained as
(W () 5
(@izrmeniy =2 (Gatrycos2t, + 6. - 50 0n)) 0
+

(w +(7))

(P)izymym_ =) =75 <—g2,+(7“+) cos204 + Gy (ry) — 22

and the dispersions are derived as

g. <r+>) ()

(AQ+)|22+’M’”7’7> =13 (Go,4+(ry) cos 204 — 2912 L (ry)cos® 0

(we () 5

+ G4 (ry) — 22 Gi(ry)),
2 2 2 .2 (78)
(AP )z iy —y =15 (=G24 (r +)C0b 204 — 2G7 | (r4)sin” 04
wi () 5
+6.0) g )
+
where
A(mSD) ()
ng (T+) = (r4) ) ng (7‘+) = (rs) ) (79)
2, F (1 @; (,Y)) —1 2, F (1 @; (,Y)) —1
1 o +n T2(n++1)
gl,—i—(r-i-) = 2 Z \/ “ M : 41 )
2 (15 ) 1,52V @ 4 me 1@ 1@

(80)
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o) 1 min, e
2,+(T4+) = " .
2r (1w ) 2 Vw2 @ @

(81)
If we take G4 (r4) = G1 4 (r4) = Go 4 (r4) = G4 (ry) = 5, with r3 cos? . > ) and
7"3_ sin? 6, > é, the above relations can be simplified to yield:

r2 1 1
(AQ )z, pym oy = 2+ cos” 01 — 4w+(7) 4 (1 —w+(7)), (82)
ri . 9 1 1
(AP )z, ooy = o S0 — wi(v) 2 (1-wi(9)). (83)
Thereby, with wy (v) < 1, we arrive at
1 1
(AL ey BP oy 2 e (P2 o (8)

5.3. Time evolution

The VCS |Z4,n4,n_,+) can be equipped with a parameter 7 expressing their
time evolution as follows:

= —irEE
1Ze,np,n,£,7) = N(Ze,ng)"2 Y R(ng) 2 2% "% |ny n_, ), (85)

n4=0

where 5@ = wy (v)ng, relatively to the time evolution operator U(t) := e —iHHSS
that fulfills the property:

U Ze,ng,n_,4,7) = |ZL(t),ny,n_, £,7), ZL(t) :=e Mz (86)
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Energy and Stability
of the Pais—Uhlenbeck Oscillator

D.S. Kaparulin and S.L. Lyakhovich

Abstract. We study stability of higher-derivative dynamics from the view-
point of more general correspondence between symmetries and conservation
laws established by the Lagrange anchor. We show that classical and quantum
stability may be provided if a higher-derivative model admits a bounded from
below integral of motion and the Lagrange anchor that relates this integral
to the time translation.

Mathematics Subject Classification (2010). Primary 70H14; Secondary 70H50.

Keywords. Higher derivative-theories; Pais—Uhlenbeck oscillator; stability; La-
grange anchor.

Introduction

A notorious trouble appears when the Noether theorem [1] is applied to the theo-
ries with higher derivatives, the models whose Lagrangians depend on accelerations
and higher derivatives of generalized coordinates. In contrast to the lower-order
theories, where unboundedness of the canonical energy from below usually indi-
cates the presence of ghost states and instability of the model, in higher-derivative
theories the unboundedness of canonical energy is not necessary to have negative
impact on classical dynamics [2, 3]. The relationship between (un)boundedness
of canonical energy from below and (in)stability of higher-derivative theory was
subject of many works [4-8].

In this note, we consider a stability of higher-derivative dynamics from the
viewpoint of more general correspondence between symmetries and conservation
laws which is established by the Lagrange anchor. Following the ideas of [9, 10], we
show that the stability of higher-derivative theory may be provided if the model

The work is partially supported by the Tomsk State University Competitiveness Improvement
Program and the RFBR grant 13-02-00551-a. S.L.L. is partially supported by the RFBR grant
14-01-00489-a, D.S.K. is grateful for the support from Dynasty Foundation.
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admits a bounded from below integral of motion and a Lagrange anchor that
associates the integral of motion with translation in time. The general construction
is illustrated by the example of the Pais—Uhlenbeck oscillator.

The paper is organized as follows. In Section 1, we recall some basic facts
about the conservation laws of the Pais—Uhlenbeck (PU) oscillator. In Section 2, we
introduce the Lagrange anchor for the PU oscillator and establish a correspondence
between symmetries and conservation laws. The bounded integral of motion and
the Lagrange anchor that associates it to time translations are identified. Section 3
is devoted to the Pais—Uhlenbeck oscillator with equal frequencies. We show that
in unstable theory the bounded integral of motion exists, but it appears to be
unrelated to the time-translation symmetry.

1. Conservation laws of the PU oscillator

We consider the one-dimensional Pais—Uhlenbeck oscillator of order 2n [11], whose
action functional has the form

1 n d2

Sl(t)] = /dtL, L= eI (5

i=1

+w? )alt); (1)

here
O<w <wg <+ < wp
are the frequencies of oscillations. We assume that there is no resonance, so that all
the frequencies are different. We also introduced the dimensional constant € > 0
to provide the correct dimension of the action (1).
The corresponding equation of motion reads

68 1 yp/d?
6x591:[1(dt2+w?)x:0' @

It is convenient to introduce the wave operator that defines r.h.s. of the equation
of motion

1/ d? 5S
T = ( 2) , = T(z). 3
o Lll{ge T 5~ 1@ ®)
We will also use notation
. dx 5 A’z m_ d"x
S’ Cd?’ Cdtn

for the time derivatives of x.
The general solution of equation (2) is given by the sum of n oscillations with
frequencies w; with different amplitudes A; and phases ¢;

x(t) = Z x;(t), z;(t) = A; sin(w;t + ¢;) = Piz(t) . (4)
i=1
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Here, the operators
_ 1 d® 2
Pi= sz — w? (dt2 +wj>
VE g

have the sense of projectors to the subspaces of solutions with frequencies w;,
respectively. There are two obvious properties

—P-> [1 . _WQH wz H(dt2+wk)T

J#L T 1
In order to prove the first relation one can apply to it the Fourier transform:

F(é?’i—l ZH (w - 2)—1.

i=1 j#i J
Then the r.h.s. of the relation is a polynomial of degree 2n — 2 that has 2n roots
p = tw; and thus has to be equal to zero identically. The second relation follows

from identity
=P(1-Y7)
i

(5)

with account of notation (3).

Due to relations (5), formula (4) establishes a correspondence between the
solutions to the PU oscillator equation and the system of n independent harmonic
oscillators

08 d? 9
_ 2 (t) =0, =1,2,...,n.
5 (1) 0 =3 (dt2+wz)x() 0 i n (6)
From (6) it immediately follows that the PU oscillator has n independent integrals
of motion
1 1 2 2
I, = N [x + wzxz} =, [(’Pidc) + w? (sz) } . (7)

The general quadratic integral of motion is given by the linear combination
of integrals (7). Namely,

n
9 o\ 1 il
i (RN »
i=1  j#i
with «; being arbitrary real constants.
It is easy to see that expression I in (8) is conserved

dI 65 (2n—1) n
= s t,x,j:,..., x = — (Oélplj:)v 9
n=Qs  Q ) ; P (9)
where the coefficient @ is called the characteristic associated with the conservation
law I. It is known [12] that there is a one-to-one correspondence between integrals
of motion and characteristics. The last fact allows one to use characteristics for



130 D.S. Kaparulin and S.L. Lyakhovich

establishing a correspondence between the symmetries and conservation laws. The
simplest example is provided by the Noether theorem. The Noether theorem iden-
tifies the characteristic Q with the infinitesimal symmetry transformation of action

functional:
dI S

)
dt @ Sz’
The problem appears when a conservation law bounded form below is asso-
clated with the time translations. The general bounded conservation law (8) with
(—1)%a; > 0 corresponds to some symmetry of the action (1)

Sz = —sf: (an) , (11)
=1

while the infinitesimal time translation d.x = —eZ corresponds to the unbounded
conservation law with «; = 1. This is manifestation of general no-go statement
about unboundedness of energy in the theories with higher derivatives. Unless the
higher-derivative theory is highly constrained, the usual Noether theorem cannot
connect a positive conserved quantity to the time translation invariance, see for
instance discussion in [8] and references therein.

b.x=eQ, 6.S=0 & (10)

2. The Lagrange anchor for the PU oscillator

The generalization of the Noether theorem suggests that the correspondence be-
tween the symmetries and characteristics (and hence conservation laws) is estab-
lished by the linear differential operator!

ol (%) (2n—1) di
V= tx, @, ..., T A
, v )ahfz
=1
that associates the characteristic @ with the symmetry
-1

2n . i
oS0 a()
i=1

— (12)

Invariance of the equation of motion under transformation (12) implies certain
compatibility condition for the Lagrange anchor [12]. In the simplest case of lin-
ear equations 0S/0x = T(z) and the Lagrange anchor with no field and time
dependence,

(i)

V = const, 1=0,...,2n—1,
this compatibility condition takes the form [9]

VT — TV =0. (13)

IThe notation of this section is adapted for the case of the PU oscillator. For general definitions of
the Lagrange anchor and correspondence between symmetries and conservation laws see [12, 13].
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For a self-adjoint wave operator T = T* (which is always true for Lagrangian
theories) and a self-adjoint Lagrange anchor V' = V*, relation (13) takes even
more simple form

[V, T]=0. (14)
The obvious solution V' = 1 corresponds to the canonical Lagrange anchor which is
always admissible for Lagrangian theory. It establishes the Noether correspondence
between symmetries and conservation laws (10). The canonical Lagrange anchor
cannot connect bounded from below integral of motion with translation in time, we
have to be interested in the non-canonical Lagrange anchors. We have the following
n-parameter family of the Lagrange anchors for the PU oscillator of order 2n:

V= Z BiPi , (15)
i=1

with (; being arbitrary real constants. The details about derivation of this La-
grange anchor can be found in [9].

The Lagrange anchor (15) associates the general conservation law (8) with
the symmetry

0.2 = EV(Q) = —{-:En: (azﬁﬂ%x) + EQR(ai,ﬁj)T(x) , (16)
i=1
where
- 1 1 d? 9
R(ai, Bj) = Y (Oéiﬁz' - aiﬁj) 11 W 2 11 W w2 11 (dt2 +wk> .
i,j=1 r#i b T os#j S k#j,i

The second term in (16) is given by the linear combination of equations of motion
and their differential consequences, and thus should be considered as trivial. Below,
we will consider symmetries modulo trivial terms.

The crucial difference between Noether’s correspondence (10) and (16) is that
the symmetry (16) depends on n free parameters. We can use this ambiguity of the
Lagrange anchor to connect the general integral of motion (8) with translations in
time. Whenever «; # 0 the desired correspondence

V(Q) = —i + QR(a;, 1/a;)T () (17)
is established for )
fi= . (13)

In contrast to the Noether energy, the conservation law (8) can be bounded
or unbounded from below depending on the value of a’s. The bounded integrals of
motion (8) are associated with time translations by differential Lagrange anchor

V:Zaipi’ (—1)fe; > 0. (19)
=1

From the classical viewpoint the relationship (12) is as good as Noether’s one.
In particular, it allows one to define the generalization of the Dickey bracket of
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conservation laws and admits BRST-description [14]. Thus, the correspondence
between the bounded from below conservation law (8), the Lagrange anchor (19)
and the time translation (17) ensures the stability of the PU oscillator theory even
if the canonical energy is unbounded.

Let us give one more argument that makes analogy between the energy and
conservation law associated with the time translation more explicit. It is well
known that different Lagrange anchors result in different quantizations of one
and the same classical system [13, 15]. In the first-order formalism, the integrable?
Lagrange anchor always defines a Poisson bracket on the phase space of the system,
while the corresponding integral of energy becomes the Hamiltonian [13, 16, 17].
The canonical Lagrange anchor corresponds to the canonical Poisson brackets
and Hamiltonian that follows from the Ostrogradsky formalism [18, 19], while
non-canonical Lagrange anchors correspond to non-canonical Poisson brackets and
Hamiltonians.

3. The case of resonance

Let us consider the fourth order PU oscillator in the case of equal frequencies
w = w1 = wy. The equation of motion reads
1 d?

T(x) = (w g2 +w)2x= 0, T = (i} j; —I—w)2. (20)

The solutions to the equation of motion demonstrate runaway behavior with linear
time dependence of the oscillation amplitude

a(t) = Asin(wt + @o) + Btsin(wt + ¢1)

with A, B, ¢g and ¢ being arbitrary real constants. The system (20) still has two
impendent integrals of motion
1,1 .. 2 171 2
L = ( 2$+£ﬁ) + ( :'E'—l—wx) , I =
w 2\w

1 (&% - 2@
2

9 5 —923% — wzxz) .

w
The first integral is obtained from (7) by taking limit w; — we with special renor-
malization of the a-constants. The second one is just the Noether energy. In con-
trast to the case of unequal frequencies, it is impossible to find two independent
bounded from below quadratic integrals of motion. Only the integral of motion Iy
is bounded from below. However, an attempt to associate it with time translation
fails.
The characteristic for I; reads

dl 1 .. .
i =T, Q= (w2 i),

2See the definition of integrability in [12]. The field-independent Lagrange anchor (15) is auto-
matically integrable.
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There are two-parameter family of Lagrange anchors for PU oscillator (20)

By d?
V= w2 di2 + 1. (21)
The corresponding symmetry reads
V@)= ) + 7 (5 g (22)

In (22), the third derivative vanishes if and only if the symmetry (22) is trivial,
i.e., 1 = B2. In view of above, there is no time-independent bounded from below
conservation law that could be associated to time translation. This result demon-
strates the fact that has been already observed in [7], where it was found that
PU oscillator with resonance does not admit Hamiltonian formulation with any
bounded Hamiltonian.

Conclusion

We observe that for higher-derivative theories, the stability does not necessarily
require the Noether energy to be bounded from below. The classical stability can
be ensured by a weaker condition that the model admits a bounded integral of
motion. Once the equations of motion admit the Lagrange anchor such that maps
the bounded integral to the time translation, the theory can retain stability at
quantum level. Both the conserved quantity and the Lagrange anchor are not
uniquely defined by the equations of motion and may exist even in non-singular
models. This allows us to expand the stability analysis to the wide class of higher-
derivative theories, including non-singular ones. The general idea is exemplified
by the Pais—Uhlenbeck oscillator. Using the ambiguity of choice of the Lagrange
anchor and bounded conserved quantity, we demonstrate the stability of Pais—
Uhlenbeck oscillator when all the frequencies are different.
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Deformation Quantization with
Separation of Variables and Gauge Theories

Yoshiaki Maeda, Akifumi Sako, Toshiya Suzuki and Hiroshi Umetsu

Abstract. We construct a gauge theory on a noncommutative homogeneous
Kaéahler manifold by using the deformation quantization with separation of
variables for Kahler manifolds. A model of noncommutative gauge theory that
is connected with an ordinary Yang—Mills theory in the commutative limit is
given. As an examples, we review a noncommutative CPY and construct
a gauge theory on it. We also give details of the proof showing that the
noncommutative CPY constructed in this paper coincides with the one given
by Bordemann, Brischle, Emmrich and Waldmann [1].

Mathematics Subject Classification (2010). 53D55 , 81R60 .

Keywords. Noncommutative geometry, gauge theory.

1. Deformation quantization of Kihler manifolds

Let M be a Kéhler manifold with Kéhler form w and associated Poisson structure
{-,-}. We note that for the Kéhler manifold (M,w) we have a Kéhler potential ®
on any open subset given by the following.

0?0
97 = 9xigzi7
where g5 is a Hermitian metric. In this article, a noncommutative space is con-
structed by using deformation quantization which is defined as follows.

w = igi;dzi AdZ,

Definition 1. Let F be a set of formal power series of A:

F={r| =3 n fec=on}.
k

Y.M. was supported in part by JSPS KAKENHI No.23340018 and No.22654011, and by JSPS
Core to Core program on Foundation of a Global Research Cooperative Center in Mathematics
focused on Number Theory and Geometry. A.S. was supported in part by JSPS KAKENHI
No.23540117.
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A star product of f,g € F is defined as
frg=">_ Cr(f,g)h",

such that the product satisfies the following four conditions. (1). x is an associative
product. (2). Cy, is a bi-differential operator. (3). Cp and C; are defined as

Co(fvg):.fg7 Cl(.f7g)_01(gvf)zz{fvg}v
where {f, g} is the Poisson bracket. (4). f*1=1xf = f.

For Ké&hler manifolds Karabegov introduced a star product with the addi-
tional property of separation of variables [3]. Recall that x is called a star product
with separation of variables when

ax f=af, fxb=fb

for any function f, any local holomorphic function a and any local anti-holomorphic
function b. Karabegov showed that for an arbitrary w, there exists a star product
with separation variables [3]. The star product is constructed by a formal power
series of differential operators Ly for any f € C°°(M)[[h]] satisfying

Lyg:=f=xg.

Then Ly has the form Ly = > 7 A" A,, where A, = ano(f) ][], (D;) " with

Dt = gfjaj. We also use D' := gﬁaj in the following. It is required that Lj
satisfies

Lil=fx1=Ff, Ly(Lyh)=f*(g*xh)=(f*g)*h=Lg,4h
Ly is determined by the following condition,
[Ly,0;® + hd;] =0, (1)
and Ag = f.

2. Gauge theory

A differential calculus on noncommutative spaces can be constructed based on the
derivations of the algebra C'°°(M)[[h]] with its star product, where a derivation d
is a linear operator satisfying the Leibniz rule, i.e., d(f * g) =df g+ f xdg. In
a commutative space, vector fields are derivations. However first-order differential
operators in noncommutative spaces do not satisfy the Leibniz rule in general.
A derivation £ is called an inner derivation when P € C°°(M)[[A]] exists such
that L(f) = [P, f]« := P* f — f * P, for any f € C°°(M)[[R]]. Inner derivations
corresponding to vector fields play an important role, when we construct physical
field theories. Note that [P, f]. includes higher derivative terms of f for a generic
P. As for the characterization of inner derivation, we have the following.
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Proposition 2. [Miiller-Bahns and N. Neumaier] [5, 6] In deformation quantization
defined above, every inmer derivations given as the vector fields are the Killing
vector fields.

We construct a gauge theory on a noncommutative deformed homogeneous
Kéhler manifold M = G/H whose covariant derivatives are given as inner deriva-
tions corresponding to the Killing vector fields. In the following, we consider U(n)
gauge theories for simplicity. All following results can be applied for any matrix
groups. Proofs of theorems in this section are given in [5].

We introduce noncommutative U (n) transformations as deformations of uni-
tary transformations. If ¢ € U(n), then gfg = I, where g’ is the Hermitian
conjugate of g and I is the identity matrix. As a natural extension, we define

G := M, (C°(M)[[R)]) such that for U = h*U™ and UT =) UM e G,
k=0 k=0

[ee] n
Ut«U=>"h Y Uumisyt=m =1,
n=0 m=0
For an arbitrary U® : M — U(n) there exist U®) (k = 1,2,...) satisfying the
above condition by solving it recursively at each order.
In a homogeneous Kéahler manifold M = G/H, there are holomorphic Killing
vector fields £, = ¢ (2)0; + (. (2)0; corresponding to an isometry group, such that

[»Caa ﬁb] - Z.fabcﬁcv

where fupe is a structure constant of g and this g is the Lie algebra of G. As we
saw in the previous section, £, satisfies the Leibniz rule,

La(f*g) = (Laf)* g+ f*(Lag)-
The Killing vectors are normalized here as
NG =97, 0™GG =0, ™G =0,
where 7% is the inverse of the Killing form of the Lie algebra g.

On a commutative homogeneous Kéhler manifold M = G/H we introduce a

gauge connection ASP) by
AP = Ch AL = GA+ A,
where A; and A; are the gauge fields on M. The curvature is defined as ]-'ég) =
Ea.AgO) —Eb.AgO) —i[.AELO), Aéo)] —ifabc.AgO), where [A, B] = AB— BA. .7-"(52) is related
to the curvature of A, F),, = 0, A, — 0,4, —i[A,, A, as .7:(52) =(CHCE,. Tt is
shown that
nacnbd]:é(b))]:c(g) = g"g" F, Fyo.

Following the above observation, we consider a gauge theory on a noncom-

mutative space. For a gauge field A, := >~ hk.Agk), a gauge transformation is
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defined by
Ag = AL =iU % LU+ U5 Ay + UL
Let us define the curvature of A, by
Fab = LaAb — Ly Aq — i[Aa, Ap)s — i fapeAec.
Then Fgy transforms covariantly:
Fabp = Fly =U" % Fop 5 U.
Using this, we obtain a gauge invariant action.

Theorem 3. A gauge invariant action for the gauge field is given by
Sy = / frg tr (0" Fap * Fea)
G/H

where g is the trace density on G/H.

The gauge invariance of the action is obtained by the cyclic symmetry of
the trace density. The existence of the trace density, [, f* gug = [y, 9% fig, is
guaranteed by [4]. When we consider a noncommutative deformation of a homo-
geneous Kahler manifold which does not break its isometry group, it is expected
that the above action is the unique action on it which has a connection with the
Yang—Mills theory in the commutative limit.

3. Non commutative deformation of CP™N

In this section, we review a noncommutative CPY. The detailed derivations of the
following results are found in [5, 7).

Let z' (i = 1,2,...,N) be the inhomogeneous coordinates of CPY. Then,
the Kihler potential of CPY is given by

®=1In (1+|z|2), (|z|2=Zz’Zl)

The metric (g;7) and its inverse (¢*/) are derived from ® as
(1+ [2)d; — 277
L+ 7
Solving the recursion relation (1), we obtain an explicit star product for
arbitrary functions f and g:

95 = 0i0;® = g7 = (1 +2) (0 + 2'2") .

[es) o, B ‘ ‘ ) )
f * g = Z n(' )glel .. 'g.jn];n (DJI .. .DJnf) (Dlm . 'Dk"g),
n=0 .
Here o, (t) is defined as
T(l—m+ 1)
am(t) = ) t
r1+,)

This ., (t) is the generating function of the Stirling number of the second kind.
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By using this, we get
2wl =200, 2wzl =5 Fixzl =77 (2)
Zha 2 =22 + o (1 + |27)2Fy (1,11 — 1/ —|2[%)

ho. .
+ hzlzﬁu + |2[?)2 1 (1,2;2 = 1/h; —|2%) . (3)

For CHY, we have obtained similar results. (See [7].)

3.1. Inner derivations and gauge theory on noncommutative CP™

As an example, we study differentials in a noncommutative CPY. Note that the
isometry group of this CPY is SU(N + 1). We give concrete expressions of the
Killing vectors corresponding to the generators of su(N + 1), the Lie algebra of
SU(N + 1). Generators (Ty)ap of su(N + 1) in the fundamental representation
satisfy

[Tav Tb] = Z’fabcTc» Tr T, = 07 Tr 1,71, = 6ab7

(To)aB(To)ep = 0apdBc — d0aBICD,

N+1
where fup. is the structure constant of su(N + 1), a = 1,2,...,N? + 2N, and
A, B=0,1,...,N. Set

Lo=C0i+C0 = (Ta)oo (2'00 — 2'0;) + (Tu)oi (2'270; + ;)
+ (Ta)iO (—8i — Eifjaj) + (Ta)ij (—Zjai + ziaj) .

Then {L,} forms the generators of the isometry SU(N + 1) which satisfies
[La,Ls] = ifapeLe. For the noncommutative CPY trace density Ly is given by
the Riemannian volume form. The Yang—Mills type action is constructed as

Sy = \/gdzl coodZNdzt e dEN tr (.Fab * fcdnacnbd) , (4)

cPN
and all classical calculation of this Yang—Mills theory can be done by using the
Killing vectors given above. Similarly to the CPY, we can construct this type of
the Yang—Mills theory on a noncommutative CH™ with concrete expressions [5, 7].

4. Proof for equality of star products

In this section, we show that our star product for CPY coincides with the one
given by Bordemann et al. [1], which is a detailed version of the discussions in
[7]. Schlichenmaier also showed equivalences among various * products by using
rather different ways from our method [8, 9].
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A non-trivial part of star products in this paper is given as (3). We denote
by xp the star product in [1]. 2’ xp 27 is given as

Skml mk

zzJ—I—ZFLmZZ k‘ ! (|C|2)S

91k1

o (@) aenaen. (6)
OCAT ... 9CAs \ (0 ) O¢Ar .. 9¢A \ (O
=729 + hoi; (14 |21)G1(1 + |2%) + hz'27 (1 + |2[H)Ga(1 + |2)%).  (5)

Here, ¢* and ¢’ are the homogeneous coordinates and

oo m s+1 ﬁmslk‘m )m+1 k

G+ = 3 T R (6)

m=0 s=0 k=1
SN hms+1 'km( 1)m+1-k

b= SIS hr @

m=0 s=0 k=1
Comparing with (3), we will show
Gi(1+[2*) =2F1 (1,1;1 = 1/hs —|2[%) | (8)

G+ 22 = SR (1,22 1/B—|2]?). (9)

1-h
The proof for (8) and (9) contains the following two steps.
Step 1. o F (1,151 — 1/h; —|2[?) and oFy (1,2;2 — 1/h; —|2|?) satisfy

[2(1 —2)02 + (1 — 1/h— 32)0, — 1] 2 Fy (1,11 — 1/ 2) = 0, (10)

[2(1 — 2)02 + (2 — 1/h— 42)0, — 2] 2 F1 (1,2;2 — 1/ 2) = 0, (11)

where x := —|z|2. Therefore, for y := 1 —z = 1 + |2|?, we prove that G(y) and
Ga(y) satisfy

[y(1 —9); + (2 +1/h — 3y)d, — 1] Gi(y) = 0, (12)

[y(1 =)0 + (2+ 1/h — 4y)d, — 2] Ga(y) = 0. (13)

Step 2. The Gauss hypergeometric function behaves as

af

F(a,B;7v;2) =14 y x + O(z?), (14)
and thus we prove that
h
G+ Py =1+ " P+ O ((aP2). (15)
2 1 2h 2 212
Ga(1+2]7) = + [2” + O ((—21)%) - (16)

1—h ' (1—h)(1—2h)
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4.1. Proof
First we prove G1(1 + |2|%) = o F1 (1,151 — 1/h; —[2]?).
Step 1. We list each terms of the left-hand side of (12):

SNany s(s—1 (—1)m_k
_ 282G !
y°0, G ( Zys{mglg (51— k oy
+§:1h85(s—1)k5(—1)57k
S (s+1=R)!(k=1)! [
oco  s+1 —
hm S+1 Skm( )m k+1
|
o -Sra{ 35 ST
= h(s41)%s(s+2)m(—1)m st
Z;H (s+1)! ’
oo s+l m m m—k+1
2R (s +1)2k™ (—1)m—k+
|
TYCXUR ST 1D o SR
— 2h"(s+1)%(s+2)m(—1)m !
+ ;
P2 (s+1)
) €+1hm s+1 ka+1( 1)m k
8G y®s!
1) ZO mzmzl (s+2—k)!(k—1)!

0 hm 1 ) m+1 1)m—s 542 he 1 2k58+1 -1 s—k
s (s+1)*(s+2)" " (-1) S (s+1) (1) ,

it (s+1)! P (s+2—k)l(k—-1)!
oo s+l m m m—k
3h™ sk )
—3y0y,G1(y Zy s'{ Z Z
m=s+1k= 1 S+1 k )
s+1 k
3hSskS s—
+> 1y ,
2 (s 1 k)l(k—1)!
oo s+l m m m—k s+1 S 1.8 s—k
ik ) Boks (1)
_ |
USRI 3D S wANED ST s

It is easy to check that the y°,y! terms are 0. The vanishing of linear terms of
y®s! (s > 2) can be shown as

o s+l mpm(_1\m—k
mgl Z:l (S’i 5_(@!1()/@ ) [s(s —1)(s +2—k) — (s +1)%s — 2(s + 1)?

+(s+1)%k+3s(s +2—k)+ (s +2 — k)]
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N i A (s + 1)2(s 4 2)™(—=1)m~*

—s—24(s+2)
o (s+1)! [ ]
s+1
s (_l)kks
+(=h) {;_:1 (s4+1— k)l(k — 1S~ D F3s 4]

s+2
(_1)kks+1 B
+(s+1)2]; (s+2—k)!(k—1)!} =0

Here, we used

s+l (—1)kks

1 s+1
;(s—kl—k)( k- 1)) 'ZCUH = (=07
s+2 (= 1)kt | st

kZ:l (s +2—Fk)(k—1)! - T (s+ 1) kZ:Os+ICk(/€ 1) =

(17)

(=1 (18)

which are obtained from (A.3) in Appendix. Thus, G (1 + |2|?) satisfies the same

differential equation for o F} (1, 1;1—-1/h; —|z|2).

Step 2. Next, we show that the boundary condition of G1(1 + |2|?) coincides with
the one for o F (1,1;1 —1/R; —|z|2). The constant terms of Gy (1 + |z|2) are

co m s+1 h S'k

I I) SHEHIAINED 55 3) DM

m=0 s=0 k=1 m=0 k=0 s=k
Using (A.5), we obtain

m

st (m41)
Z (s—k)!  (k+1)(m—k)

s=k
Furthermore, (A.2) implies that

Z R (k4 1) (m + D (=1)m*

(k4 1)!(m — k)! = Om.0-

k=0
Then, we find that the constant term of G1(1 + |z|?) is given as

[ee]
> Gmo =1
m=0

Note that |z|? linear term in G1(1 + |2]?) is given by

oo m s+1 o m m

S e s

m=0 s=0 k=1 (s+1—k _1 =0 k=0 s=k (s —k
Using (A.5), we obtain

m

sls m+ 2)! m+1)!
3 _ ol )

s=k

(s—k)!  (E+2)(m—k)! (k+1)(m—k)!

(=TT
k)Ik!

(=1
k!
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From (A.2) and (A.4), the following formula is given:

p k! (k+2)(m—k)! ~ (k+1)(m— k)

Finally the |z|? linear term in G7(1 + |2|?) is given by

SR L) (1) = G0 = fo"— (20)
m=0

(19) and (20) show that the behavior of G (1+ |z| ) near the origin coincides with
2F1 (1, 1,1 — 1/h; —|2]?).
From Steps 1 and 2, we get G1(1 + |2[*) = 2Fy (1,1;1— 1/h; —[2]?).

Similarly, we can prove that Go(1 + [2|?) = oF1 (1,22 — 1/h; —|2]?).

1
These facts mean that z* x z7 = Z" xg z7. The relations of the other star products
between coordinates are trivial because of the star products with separation of
variables. Therefore, equality between the star product given in this paper and *p

in [1] is proved.

5. Summary

In the first half of this paper, we review a construction of a gauge theory on a non-
commutative homogeneous Kahler manifold. We use the deformation quantization
with separation of variables for Kahler manifolds. In particular, a noncommutative
CPN and its noncommutative gauge theory are given with explicit expressions. In
this paper, we omit the part about CH”Y, but a similar noncommutative defor-
mation and a gauge theory can be constructed. In the latter part of this paper,
we provided a detailed proof to show that the noncommutative CP" given in this
paper coincides with the one given by Bordemann et al. The proof is done by
directly comparing the concrete expressions of these two star products.

Appendix

Following formulas are given in p. 3 and p. 4 in [2].

(—1)F L, Chk™ = (—1)™m), (A1)
(-1)*,,Crk™ =0, (m > n), (A.2)

(—=D)*,Cr(a+ k)" = (=1)"n!, (A.3)

M= 1= T04: 112

(—DfNCrla+ k)" 1 =0, (N>n>1) (A.4)

=
I
o
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“ nl (m+1)!
;(n—k)! = (k4 1)(m — k) (A.5)
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Physics of Spectral Singularities

Ali Mostafazadeh

Abstract. Spectral singularities are certain points of the continuous spectrum
of generic complex scattering potentials. We review the recent developments
leading to the discovery of their physical meaning, consequences, and general-
izations. In particular, we give a simple definition of spectral singularities, pro-
vide a general introduction to spectral consequences of PT-symmetry (clar-
ifying some of the controversies surrounding this subject), outline the main
ideas and constructions used in the pseudo-Hermitian representation of quan-
tum mechanics, and discuss how spectral singularities entered in the physics
literature as obstructions to these constructions. We then review the transfer
matrix formulation of scattering theory and the application of complex scat-
tering potentials in optics. These allow us to elucidate the physical content of
spectral singularities and describe their optical realizations. Finally, we survey
some of the most important results obtained in the subject, drawing special
attention to the remarkable fact that the condition of the existence of linear
and nonlinear optical spectral singularities yield simple mathematical deriva-
tions of some of the basic results of laser physics, namely the laser threshold
condition and the linear dependence of the laser output intensity on the gain
coefficient.

Mathematics Subject Classification (2010). 34L25, 47A40, 7T8A60.

Keywords. Spectral singularity, complex potential, scattering, zero-width res-
onance, PT-symmetry, pseudo-Hermitian operator, laser, antilaser.

1. Introduction

The term ‘spectral singularity’ entered mathematical literature through the work
of Jack Schwartz [1] who coined this name for a mathematical object discovered
by Mark Aronovich Naimark in 1954 [2]. Naimark had come across spectral singu-
larities and worked out some of their consequences in his attempts at generalizing
the well-known spectral theory of self-adjoint Schrédinger operators,

d2

H=—
dx?

+ v(x), (1)
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defined on the half-line, i.e., for z € [0, 00), to situations where v(z) was a complex
scattering potential. This marks the starting point of a comprehensive study of
spectral singularities that has attracted the attention of mathematicians for over
half a century [3-10]. For further references, see [11].

Following the pioneering work of Naimark, the notion of spectral singularity
was generalized in various directions [3, 5, 6, 8-10]. In particular, Kemp [3] con-
sidered spectral singularities of the Schrodinger operators (1) defined on the full
line, i.e., z € R. These admit a simple description in terms of certain solutions of
the Schrédinger equation [11]

" (z) + v(2)(z) = B*Y(), z €R, (2)
called the Jost solutions.

Let v(x) be a real or complex scattering potential defined on R, and suppose
that |v(z)| — 0 as @ — £oo in such a manner that [3]

/oo (1+ [2])v(@)|dz < o. (3)

— 0o
Then for each k € R, the Schrodinger equation (2) admits a pair of solutions .+
fulfilling the asymptotic boundary conditions [3]:

i Ty () = 1, im TR (o) = Eik (4)

These are the celebrated Jost solutions of (2).

Definition 1. Let v : R — C be a function satisfying (3) and H be the Schrodinger
operator (1) that is defined by v on R. A real and positive number k2 is called
a spectral singularity of H or v, if the Jost solutions )y, + of (2) are linearly
dependent.

It is not difficult to see that the Jost solutions correspond to the scattering
states of the potential v(z). But as we shall see below, for real scattering potentials
they are always linearly independent. This is why physicists did not pay much
attention to spectral singularities throughout the twentieth century.

The situation began to change in 1998 by the discovery of a class of complex
potentials that possessed a real spectrum [12]. A well-known example is v(x) =
iz®, whose spectrum is discrete, real, and positive [13]. This unexpected result
was initially associated with the fact that the corresponding Schrédinger operator
(1) was invariant under the parity-time-reversal transformation, also known as
spacetime reflection [12],

V(@) — PTY(x) = (—2)", (5)
where 1 is an arbitrary square-integrable function, i.e., ¢ € L?(R), and P and T
are respectively the parity and time-reversal operators defined by

Py(x) = (), T () = ()" (6)

We postpone the discussion of the spectral implications of PT-symmetry to
Section 2. Here we suffice to mention that during the last 16 years there has been
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a great interest in the study of PT-symmetric potentials. A substantial amount of
the early work on this topic consisted of searching for other examples of complex
potentials possessing a real spectrum. A rather straightforward method of con-
structing such potentials is to generate them from real potentials via non-unitary
similarity transformations. The simplest example is a complex translation of the
form v(z) — v(x + 3), where 3 is a complex parameter [15]. To the best of our
knowledge, it was in this context that spectral singularities entered in the physics
literature.

In 2005 Boris Samsonov noted that the application of complex translations
on a real potential could yield complex scattering potentials supporting spectral
singularities [16]. He also proposed means of removing these spectral singularities
by performing certain supersymmetry transformations. In Samsonov’s words this
meant “curing” a “disease”, for he maintained that “Hamiltonians with spectral
singularities are ‘bad’.” This is a typical reaction when one encounters a ‘sin-
gularity’. However, the history of science teaches us that some of the greatest
discoveries of mankind have their root at unwanted ‘singularities’. One of the aims
of the present article is to show that the same applies to spectral singularities, as
they provide the mathematical basis for one of the most important discoveries of
all times, namely lasers.

2. PT -symmetry versus pseudo-hermiticity

Samsonov’s article [16] failed to provide the necessary incentive for the study of
the physical aspects of spectral singularities. But soon after, spectral singularities
were to reveal their presence in the study of a delta-function potential with an
imaginary coupling constant, i.e., v(x) = iad(x) with o € R, [17]. The motivation
for this study was provided by attempts at finding a set of necessary and sufficient
conditions for the reality of the spectrum of a non-Hermitian linear operator H. A
well-advertised claim is that PT-symmetry provides such a condition [18]. This is
certainly not true if we take (6) as the definition of P and T, for there are infinity
of examples of real potentials, such as v(x) = 2% + sinz, that do not commute
with P7 but have a real spectrum.

In order to ensure the validity of the above claim, we need to reinterpret
what we mean by P7T-symmetry or generalize it appropriately. First, we recall the
following obvious consequences of (6).

[P, T] =0, P2=T?=(PT)*=1, (7)

where [ stands for the identity operator. The following is a precise definition of
PT-symmetry.

Definition 2. Let P and 7 be the linear operators defined on L?(R) by (6). Then
a linear operator H acting in L?(R) is said to be PT -symmetric, if it commutes



148 A. Mostafazadeh

with PT, i.e., [H,PT] = 0. Moreover, suppose that H has a discrete and non-
degenerate spectrum, and there is a complete set! of eigenvectors t,, of H that
are also eigenvectors of P7T. Then H is said to have an unbroken or exact PT -
symmetry.

For the cases where H has an exact P7T-symmetry, there are ¢, € C such
that P71, = €,1,. Then, in view of (7), ¥, = (PT)?y, = PT(en;wn) = len|* .
This shows that €, = e** for some real number a,,. Now, setting v, := elom/ 2,
we find PT 4, = e~ /2PTap, = ein/24p, = 1),. Therefore, exact PT-symmetry
of H means the existence of a complete set of P7T-invariant eigenvectors of H.
This argument relies only on the fact that P7 is an antilinear operator? squaring
to I. Therefore, it applies to all such operators X.? We use this observation to
introduce the notion of exact antilinear symmetry.

Definition 3. Let H and & be respectively linear and antilinear operators acting
in a Hilbert space ¢, and I be the identity operator on J#. H is said to be X-
symmetric, if [X, H] = 0. Furthermore, suppose that H has a discrete spectrum
and X2 = I. Then H is said to have an exact X-symmetry if there is a complete
set of eigenvectors 1, of H that are invariant under X, i.e., X, = 1.

The following is a useful property of exact antilinear symmetry. Its application
to PT-symmetry is the reason for the claim that exact PT-symmetry implies the
reality of the spectrum.

Theorem 1. Figenvalues of every linear operator H that has an exact antilinear
symmetry are real.

Proof. Let E, be an eigenvalue of H and 1, be a corresponding X-invariant
eigenvector. Then, in view of the fact that X', =1, and [X, H] =0,
e OBV (Wl XEa) _ (| YHY,)
" (tnlton) (thn |tn) (thn |thn)

(¥nl¥n) (¥nl¥n)
This theorem suggests generalizing P7T-symmetry to the presence of an anti-
linear symmetry. In order to avoid using the same symbols for different concepts,
we use ‘PT-symmetry’ to refer to this generalization.

Definition 4. We say that H is PT-symmetric if it has an exact antilinear sym-
metry.

IThis means that the span of this set is dense in L2(R).

2 An antilinear operator X’ acting in a complex vector space V is one whose domain is a subspace
of V' and fulfills the antilinearity condition: X (a1v1 +a2v2) = af Xv1 +afXvs for all ar, a2 € C
and vi,vg € V.

3Because every antilinear operator acting in L?(R) can be expressed in the form Q7 for some
linear operator Q, a natural choice of notation for the antilinear operators X is Q7 [14].
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In view of this definition, Theorem 1 is equivalent to the statement that PT-
symmetry is a sufficient condition for the reality of the spectrum of H. The converse
can also be established if J# is finite dimensional or if we impose a further technical
condition* on H, [20]. Therefore, introducing the above notion of PT-symmetry
secures the validity of the claim that it is a necessary and sufficient condition for the
reality of the spectrum of a large class of linear operators. However the price one
pays for doing so is a clear distinction between PT-symmetry and the parity-time-
reversal (spacetime reflection) symmetry that we label by P7-symmetry. Indeed
unlike Hermiticity which is a sufficient condition for the reality of the spectrum,
PT-symmetry is both necessary and sufficient. But this PT-symmetry does not
mean spacetime reflection (P7) symmetry. Similarly to Hermiticity exact PT-
symmetry is a sufficient but not necessary condition for the reality of the spectrum
of a linear operator. Non-exact PT-symmetry, which can be immediately checked
for a given operator, is neither necessary nor sufficient.

A major difficulty with the above notion of PT-symmetry is that there does
not exist a universal choice for the antilinear symmetry appearing in Definition 4;
each PT-symmetric linear operator H has its own set of antilinear operators
X which make H exactly X-symmetric. If we denote this set by S, then PT-
symmetry of H is equivalent to the condition that Sy is nonempty. In practice, in
order to check if this is the case, one must determine an appropriate set of eigen-
vectors 1, of H, make sure that they form a complete set, and try to construct an
antilinear operator X that leaves v,,’s invariant and squares to I. This is generally
a difficult task.

The question of finding a necessary and sufficient condition for the reality of
the spectrum of a non-Hermitian operator has a more illuminating answer.

Theorem 2. Let H be a linear operator with a complete set of eigenvectors that
acts in a finite-dimensional inner-product space. Then H has a real spectrum if
and only if there is a positive-definite operator 0, intertwining H and its adjoint
HY ie.,

H'n, =nH, (8)
alternatively H' is related to H by the similarity transformation:
HY=n Hn . (9)

Conditions (8) and (9), that we call ‘n, -pseudo-Hermiticity’ of H, was derived
in Refs. [20, 22, 23] for a more general class of operators. These act in a possi-
bly infinite-dimensional Hilbert space 2, have a discrete spectrum, and possess a
complete biorthonormal eigensystem { (¢, ¢n)}, [19]. The latter means the exis-
tence of a sequence of complex numbers {E,,} and a pair of sequences of vectors,

4This is the condition of the existence of a set of eigenvectors of H that forms a Riesz basis, i.e.,
it can be mapped to an orthonormal basis by an invertible bounded operator [19].
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{tn} and {¢,,}, which satisfy
Hipy, = Epthn, H' ¢y = B}, (10)
Wmlon) = Gmn, D [a)(dal = 1. (11)

Here (-|-) stands for the inner product of .7#°. We use the term ‘diagonalizable’ to
mean that H admits a complete biorthonormal eigensystem.

Theorem 2 admits an infinite-dimensional generalization provided that we
impose further restrictions on H and 7, [19]. For pedagogical reasons we postpone
discussing these to the final three paragraphs of this section. For the moment,
we follow the physicists’ tradition of assuming that what we know about finite
dimensions is essentially valid in infinite dimensions. For example, we take the
following condition as the definition of a Hermitian or self-adjoint operator:

(O|HY) = (Holy),

where ¢ and v are arbitrary elements of 5 (hence neglecting domain issues).

A key observation made in [20, 22, 23] is that the reality of the spectrum of
H is related to the fact that we can turn it into a Hermitian operator by modifying
the inner product of J# properly. Using the term ‘Hermitizablility’ for the latter
property, we can say that a diagonalizable operator with a real spectrum need not
be Hermitian, but it is necessarily Hermitizable. Conversely, every Hermitizable
operator is diagonalizable and has a real spectrum. Therefore, Hermitizability is a
necessary and sufficient condition for the reality of the spectrum of H.>

The modified inner product that achieves the Hermitization of H is deter-
mined by the operator n, according to

<w7¢>77+ = <1/J|77+¢>7 (12)

where 1), ¢ € J are arbitrary. In other words, if 7%, labels the Hilbert space
obtained by endowing the set of vectors belonging to ¢ with the inner product
(*s*)ny, then H : 76, — 5, is Hermitian.

The operator 7, that defines the modified inner product (12) is usually called
a ‘metric operator.’” It is not difficult to show that its positive square root, p :=
/N, defines a unitary operator mapping 7, onto J¢ and that h := pHp~!
is a Hermitian operator acting in J#, [29]. This provides a direct evidence for
the reality of the spectrum of H, for H and h are isospectral. It also makes a
connection with an earlier work on quasi-Hermitian operators that is done in the
context of nuclear physics [30].

Another useful result of Refs. [20, 22, 23] is the following spectral represen-
tation of the metric operator.

ne=Y |6n)(dnl. (13)

5A rigorous extension of this result to infinite dimensions requires special care. In mathematics
literature, it is studied in the context of ‘symmetrizable’ [24] and ‘quasi-Hermitian operators’
[25]. For more recent developments, see [26-28].
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Because the eigenvectors ¢,, of HT are not unique, this equation signifies the non-
uniqueness of the metric operator [29, 31]. Different choices for {¢,} determine
different metric operators for H. Once such a choice is made, we can construct the
corresponding Hilbert space 47, and view H as a Hamiltonian operator acting
in J7,,. By construction H : 4, — 7, is a Hermitian operator. Therefore
(46, , H) determines a unitary quantum system. The pure states of this system are
represented by the rays in .77, , the observables are given by Hermitian operators
acting in 777, and the dynamics is governed by the time-dependent Schrédinger
equation defined by H in 577, .

Applications of the above method of constructing metric operators and the
modified inner products for various toy models have been explored in the literature.
A comprehensive list of references published prior to 2010 is given in the review
article [19]. Here we confine our attention to a very simple example that was
originally considered in [32].

Consider the case that v(z) = 0, i.e., H is the second derivative operator
acting in L?(R). It is well known that H is Hermitian and has a nonnegative
real continuous spectrum. We can easily check that it satisfies the 7, -pseudo-
Hermiticity relation (9) for

1, = e P = cosh(x)I — sinh(x)P, (14)

where k is an arbitrary real number, and P is the parity operator (6). Equation (14)
defines a genuine metric operator. Substituting it in (12) yields the following ex-
pression for the corresponding modified inner product.

(60, = cosh(e) [ " o) (x)dz — sinh(x) | @) (-a)dr.  (15)

For the standard position operator X, that is given by X (z) := a¢(x), we can
use (15) to show that

[ee]
(6, Xtp)p, — (X, 0)p, = ZSinh(n)/ x(x)* P(—x)dx.
—0o0
This quantity differs from zero for x # 0 and ¥(z) = 2¢(z) = ze~ . Therefore,
as an operator acting in 7, , X is not Hermitian, unless if £ = 0. The same holds
for the standard momentum operator, P := —i d‘i.
Clearly the positive square root of the metric operator (14) has the form
p = e "P/2 In view of this relation, it is easy to show that the operators X, and

P, defined by
X, =p ' Xp= n:lX = [cosh(k)I + sinh(k)P]X,
P, =p'Pp= 77:1P = [cosh(k)I + sinh(x)P]P,

are Hermitian operators acting in %, . Because [X,, , P, ] = iI, we can take
X,, and P, to represent the position and momentum observables of the system
defined by (74,4, H). For all real numbers &, this is just a free particle moving on a

straight line. But for different choices of k, we have different operators representing
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the position and momentum of the particle. This has some peculiar consequences.
For example, for x # 0, the spatially localized states of the particle correspond
to a linear combination of two Dirac delta-functions rather than a single delta-
function [32]!

When 47 is an infinite-dimensional Hilbert space the above constructions are
valid provided that we impose some additional technical conditions. Specifically,
the complete biorthonormal eigensystem { (¢, ¢»)} should be bounded [19]. This
is equivalent to the condition that {¢),} and {¢,} are Riesz bases of .7, which
means that they can be mapped to an orthonormal basis by a bounded invertible
operator [19, 35]. The boundedness of {(¢,, ¢, )} implies that the metric operator
n, must be a positive automorphism, i.e., a positive invertible operator that is
defined everywhere in 5 (which makes it bounded) and has a bounded inverse [19].

It turns out that if we define the Schrédinger operator for the potential iz3
as a linear operator (with maximal domain) acting in 5 := L?*(R), then we
cannot satisfy (8) or (9) using a bounded positive-definite operator 7, that is
inversely bounded. Therefore, strictly speaking, an appropriate metric operator
does not exist for this potential [33]. As we explain below this is a mathematical
technicality that can be circumvented by paying due attention to the role of the
linear operators representing physical observables in quantum mechanics.

Consider redefining the Hilbert space 7 and the operator H in such a way
that the new Hilbert space ' includes the eigenvectors of H and the new op-
erator H', which acts in 7, shares both the spectrum and eigenvectors of H,
[34]. Because we can only prepare state vectors which are superpositions of the
eigenvectors of the relevant observables, as far as H is concerned both . and
" include all the prepareable state vectors, and H and H' are equivalent as
representations of a quantum mechanical observable. As shown in Ref. [34], for
a given metric operator 7, , which may violate the conditions of boundedness or
inverse boundedness, it is possible to construct .57’ and H’ in such a way that they
have the above-mentioned properties and in addition H’ be a Hermitian operator.
Therefore although one cannot use (4, H) to define a unitary quantum system
directly, one can construct ##”’ and H’ which contain the same physically relevant
ingredients and use (7', H') to define a unitary quantum system.

3. Singularities of the metric operators

Consider the Hilbert space .7 obtained by endowing C? with the Euclidean inner
product. The elements of .7 and the linear operators acting in it can be respec-
tively represented by 2 x 1 and 2 x 2 matrices in the standard basis of C2. Using
the same symbol for the matrix representations and the corresponding vectors and
operators, we consider constructing the most general metric operator for

H— [3?2 ﬂ , (16)
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where x € R. It is easy to show that for this operator,

porcrn 5[] e L[]

where n = 1,2 and N,, are arbitrary nonzero complex coefficients possibly depend-
ing on x.

Inserting the last of Equations (17) in (13) and introducing a4 := (|Na| =2 &
|N1]72)/2, we find

N a_z7!
= [axl a+x2} ’
This relation identifies x = 0 with a singularity of all possible metric operators for
H. Note also that H loses the property of being diagonalizable precisely for this
value of z. This is an example of what is called an exceptional point [36, 37] or a
non-Hermitian degeneracy [38].
The term ‘exceptional point’ is introduced by Kato in his study of the effects

of perturbations of a linear operator on its spectral properties [39]. The following
is a widely used definition of this concept which differs slightly from Kato’s.

Definition 5. Let V' be a vector space, m be a positive integer, H(z) : V — V
be a linear operator depending on m real parameters 1, T, ..., T,. We identify
these with local coordinates of a point x of a parameter space (a smooth manifold)
M. Suppose that for each € M the eigenvalues of H(x) have finite geometric
multiplicity and form a countable set of isolated points of C that we denote by
E,(z). Here n is a spectral label taking values in a discrete set A/. Let u,(z) be
the geometric multiplicity of E,, (), i.e., the dimension of the span of eigenvectors
of H(z) that are associated with the eigenvalue E,, (z). A point xo of M is called
an exceptional point of H(x) if there are n € A/, ¢ € RT, and a parameterized
curve in M, i.e., a continuos function, «y : (—e,€) — M, such that v(0) = z¢ and

for all £ # 0, pn(v(t)) # pn (o).

For the case that V' is endowed with the structure of an inner-product space,
we can speak of the adjoint of H(z) and decide whether it is Hermitian. If for all
x € M, H(x) is a Hermitian operator, the geometric multiplicity of the eigenvalues
E,(z) do not undergo discontinuous changes and an exceptional point cannot
exist. Therefore, non-Hermiticity is a necessary condition for the emergence of an
exceptional point.

It turns out that exceptional points have a number of interesting physical
realizations. See for example [36-38, 40-42] and references therein. In particular,
they lead to certain geometric phases which have been the subject of intensive
theoretical [36-38, 40, 41, 43] and experimental studies [44-46] since the early
1990’s.

The two-dimensional model (16) can be easily generalized to higher-dimen-
sional matrix Hamiltonians H(x), [37]. If we choose the eigenvectors of H(x) in
such a way that they are nonsingular functions of , then exceptional points appear
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as the singularities of the eigenvectors of H(z)" and consequently the correspond-
ing metric operator (13).

Definition 5 introduces exceptional points in terms of a condition on the
eigenvalues of H(z). If this operator acts in a Hilbert space, we can speak of its
spectrum. This is a subset of C that in addition to the eigenvalues may contain
other numbers. The latter constitute two disjoint sets called the continuous and
the residual spectra of H(x) [47]. Hermitian operators have an empty residual
spectrum. The same is true for a large class of non-Hermitian operators.

A natural question that arises in the study of non-Hermitian operators with
a real spectrum is how to generalize the notions of diagonalizability and the metric
operator for operators whose spectrum includes a continuous part. The first step in
this direction was taken in Ref. [48]. It involved a direct extension of the approach
developed for operators with a discrete spectrum to the imaginary P7T-symmetric
barrier potential,

—i¢ for —1<z<0,
v(x) = i for O<ax<l, CeR. (18)
0 for |z <1,

To the best of our knowledge, this provided the first example of a PT-symmetric
potential which admitted an optical realization [49]. The next step was to carry
out the same analysis for the delta-function potential with a complex coupling
constant [17],

v(x) =36(x), 3€C. (19)

The treatment of (18) and (19) that was offered in [48] and [17] is perturbative
in nature. But there is an important difference; for imaginary values of 3 regardless
of how small |3] is, the perturbative calculation of the metric operator for (19) is
obstructed by the emergence of a singularity. In the remainder of this section,
we provide a general description of this phenomenon and its relation to spectral
singularities that was originally noticed in [17] and explored more thoroughly for
the double-delta-function potential in [50]:

v(z) =3-8(x +a)+ 34+ 6(z — a), 3+ €C, a e RT. (20)

Let v, : R — C be a scattering potential depending on complex parameters
21,29, -, Zm, that we collectively denote by z, i.e., z := (21, 22, . . ., Zm ). Suppose
that the Schrodinger operator H, := — d‘fz +v,(z) acts in L?(R) and has a real
and purely continuous spectrum given by [0, 00), i.e., its point and residual spectra
are empty. Then the nonzero elements of the spectrum of H, correspond to the
numbers k2 appearing on the right-hand side of the Schrondinger equation (2).
These are associated with a linearly independent pair of solutions of this equation
that we denote by wl(fc)l with a =1, 2;

H, ,ﬁf}t — k%,ﬁf}l. (21)
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Because z/;l(:c)l do not belong to L?(R), they are not eigenvectors of H,. We refer to
them as ‘generalized eigenfunctions’ of H,. Similarly, we can construct generalized

eigenfunctions of HJ := — d‘fz + v (z)* that we denote by (;5](:()1 These satisfy
HioP) = K20y, (22)

We can generalize the notlon of ‘diagonalizability’ for H,, by demanding the
existence of an eigensystem { (wk 0 ¢(z) )} which satisfy the following biorthonor-
mality and completeness relations [48]

2 o
GO 6E)) = bk — ), 3 / kW@ =1 (23)
a=1

Similarly we generalize the expression (13) for the metric operator:

Z / ak 162 (6] (24)

Now, we demand that vz(x)* = v, (x). Then it is easy to see that

z* d2 * z
le,i,a>=[— dx2+vz<x>} b = Hoti,) =20, (25)

Because for each k € R*, the Schrédinger equation Hlvy = k% has two linearly
independent solutions, Equations (22) and (25) imply that (b,(jt)l are linear combi-
nations of w,(j;), i.e., there are J,;(k) € C such that

2
o) =" TPkl (26)

b=1
It is also not difficult to show that <w,iza)|wézg ) is proportional to §(k — q), i.e
there are Kéz)(k‘) € C such that

(e 1042 = K (k)o(k — a). (21)
Inserting (26) in the first equation in (23) and making use of (27), we find [50]
306K (k) = 1, (28)

where J(*) (k) and K(*) (k) are 2 x 2 matrices having Jéi)(k‘) and Kéi)(k) as their
entries, and I is the 2 x 2 identity matrix. Similarly, using (24), (26), and (28), we
obtain

Z/ dk £ WD) WD, (20)

a,b=1

where Séz)(k) are entries of the matrix [K(*)(k)K®) (k)]
Equation (28) implies that det(K(*)(k)) # 0. But in general there is no
reason why this relation should hold for all k¥ and z. Explicit calculations for the
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potentials (19) and (20) show that the values of k2 for which det(K®)(k)) = 0 are
precisely the spectral singularities of the Schrodinger operator H,, [50]. We are
not aware of a proof of this statement for a general complex scattering potential.
The proof for the double-delta-function potential that was given in [50] revealed
a useful connection between spectral singularities and the transfer matrix M(k)
of scattering theory [51]. It turned out that det(K()(k)) was proportional to the
Moo (k) entry of M(k) with a nonzero proportionality factor. This provided the
key observation that immediately led to the explanation of the physical meaning
of a spectral singularity [52]. We give a detailed discussion of these developments
in the next section.

We close this section by noting that according to (29), spectral singularities
are also singularities of the metric operator. In this sense they are generalizations
of the phenomenon of exceptional points to the linear operators that possess a
nonempty continuous spectrum.

4. Scattering theory and spectral singularities

Consider a possibly complex scattering potential v(x) satisfying (3). The left- and
right-incident scattering solutions of the Schrodinger equation, that we respectively
denote by 1! (x) and ¥} (z), satisfy the following asymptotic boundary conditions.

(k) [e** + RU(k)e™**] as z— —o0,

e
vile) = { (k)T (k)etks as T — 09, (30)

(k)T (k)e~ e as T — —oQ,

Yr(z) — { " (k) [e,ikx + Rr(k)eikﬂ as & — 00, (31)

where 7!/7, RY/" and T'" are in general complex-valued functions. Because the
Schrédinger equation (2) is linear, the choice of @7*/" does not affect the physically
measurable quantities. This is not the case for RY/" and T%", which are known
as the left /right reflection and transmission amplitudes. Their modulus squared,
|RY/7|2 and |TY/"|?, determine the left /right reflection and transmission coefficients
that can be measured in experiments.’

A well known consequence of the linearity of the Schrodinger equation (2) is

that T = T, [52-54].” We therefore use T for T%/". Tt is also easy to see that wi/r

6Notice that some authors use the symbols R"/! and T7/! for reflection and transmission
coefficients.

"This arises from Wronskian identities [52, 54] and has nothing to do with the reality of the
potential as claimed in [55].
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coincide with the Jost solutions ¢+ for &7 (k)T (k) = 1;
T(k)=* [e™* + R'(k)e= =] as & — —o0,
ikx

Ve () = { e as T — 00, (32)
e~k as T — —o00,
'(/}kf (.’E) - { T(k)fl [efikw + Rr(k)eikw] as T — 00. (33)

The existence of the Jost solutions implies that T'(k) # 0, i.e., perfectly absorbing
potentials [56] do not exist.

The coefficients of the e**** that appear on the right-hand side of (32) and
(33) turn out to coincide with the entries of a 2 x 2 complex matrix known as the
transfer matrix.

Because v(xz) — 0 as x £ 0o, every solution 1(z) of the Schrédinger equation
(2) satisfy

P(z) = Ap(k)e™ + By(k)e ™ as  z — oo, (34)

where Ay (k) and B4 (k) are complex coefficients. The transfer matrix M(k) is

defined by the relation
A+<k>} [A—(k)}
=M(k .
{Bm ") 1 B_(k)
In light of (32), (33), and (34), we can relate the entries M;;(k) of the transfer
matrix M(k) with the reflection and transmission amplitudes. This results in [52]

R'R" R" R! 1
T ) 12 T ) 21 T ’ 22 T’

which, in particular, imply det M (k) = 1. Furthermore, we can use these relations
to express (32) and (33) in the form

My =T — (35)

Moo (k)e ™ — Moy (k)e™™** as x — —oo,

e (a) - § i o (36)
e~k as T — —oQ,

Ve (2) = { Moo (k)e™ ™ + Mya(k)e™™™ as  x — oo. (37)

The following characterization of spectral singularities is a direct consequence of
these equations.

Theorem 3. Let v : R — C and H be as in Definition 1, M(k) be the transfer
matriz of v, M;;j(k) be the entries of M(k), and k. be a positive real number.
Then k2 is a spectral singularity of H (or v) if and only if Mo (ky) = 0.

Proof. k2 is a spectral singularity of H whenever ¢, _ and 5, , are linearly
dependent. According to (36) and (37) and the fact that these equations determine
g+ uniquely, this happens if and only if My (k,) = 0. O

Combining the statement of Theorem 3 with Equation (35) yields the physical
meaning of spectral singularities, namely that spectral singularities are the real and
positive values of the energy k2 at which reflection and transmission amplitudes
diverge [52]. The latter is a characteristic property of resonances, for they satisfy
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the outgoing boundary conditions [57]. As seen from (36) and (37), for the cases
that k, corresponds to a spectral singularity and v, + become linearly dependent,
they also satisfy the outgoing boundary conditions.

The main distinction between the wave function for a resonance and the
Jost solutions 15, + at a spectral singularity k2 is that, unlike the latter, the
former satisfies the Schrodinger equation for a non-real value of k2. Because the
imaginary part of k2 for a resonance determines its width, we can identify spectral
singularities with the energies of certain zero-width resonances. Note, however,
that spectral singularities determine genuine non-decaying scattering states with
real and positive energy [52]. This distinguishes them from the bound states in the
continuum [58]. Although the latter are also associated with zero-width resonances,
their wave function is a square-integrable solutions of the Schréodinger equation.
For a discussion of other differences between spectral singularities and bound states
in the continuum, see [59].

The fact that the reflection and transmission amplitudes and consequently
the reflection and transmission coefficients |RY"(k)|? and |T(k)* diverge for a
resonance does not conflict with the well-known unitarity condition

[R"(R) + T (R)* = 1, (38)

because the k-value for a resonance is not real. For a spectral singularity, & is real
and (38) is violated. This provides a simple proof of the following result.

Theorem 4. Real potentials cannot support a spectral singularity.

In the standard formulation of quantum mechanics, the Hamiltonian operator
H is required to be Hermitian and the potential functions v are necessarily real-
valued. Therefore, they do not display spectral singularities. The same applies to
the pseudo-Hermitian representation of quantum mechanics [19] where H may not
be Hermitian but Hermitizable. This is because the presence of a spectral singular-
ities obstructs the existence of a metric operator that achieves the Hermitization
process. However, complex scattering potentials have a number of applications in
other areas of physics. The primary example is the optical potentials used in mod-
eling optically active material. This is the arena in which the role and implications
of spectral singularities have so far been studied. We devote the next section to a
brief description of the optical realizations of spectral singularities.

5. Spectral singularities in optics

Consider an isotropic charge-free linear medium whose electromagnetic properties
changes along one direction, that we take to be the z-axis in a Cartesian coordinate
system. We can encode these properties in the definition of the refractive index
of the medium n(x) which is a generally complex quantity. Suppose that we are
interested in the propagation of a linearly polarized time-harmonic electromagnetic
wave in this medium. If we choose our y-axis along the polarization direction, we
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can express the electric field in the form E(7, ) = e~ Wt & (r)é,, where 7 := (z,y, 2),
w is the angular frequency of the wave, &(7) is a solution of

[V? + k*n(z)?] £(7) = 0, (39)

é, is the unit vector along the positive y-axis, k := w/c is the wavenumber, and c
is the speed of light in vacuum [60].

Equation (39) admits solutions depending only on z; &(7) = ¢ (). In view
of (39), 1 (x) satisfies the Schrodinger equation (2) corresponding to the potential

v(z) == k*[1 —n(z)?]. (40)

If the medium is confined to a compact region in empty space, n(z) = 1 for
sufficiently large values of |x|. This together with the fact that n is a complex-
valued function imply that v(z) is a (finite-range) complex scattering potential.
Therefore, optical potentials (40) provide a fertile ground for the investigation of
the physical implications of spectral singularities. Ref. [52], which offers the first
such investigation, explores spectral singularities in a medium described by an
optical potential of the form (18).

The physical meaning of these spectral singularities is more easily understood
for a simpler model that consists of a homogeneous optically active infinite planar
slab of length L placed in vacuum [61, 62]. This corresponds to a complex barrier
potential,

<
R (G I T (s N (1)
where n stands for the refractive index of the slab.

Inside the slab, where |x| < L/2, the Schrodinger equation (2) admits a
solution of the form v(z) = &e™* ™*+L/2) where & is a constant. This corresponds
to a right-going plane wave

E(F, t) _ (g;oei[kn(a:+L/2)fwt]éy’ |.’E| < L/2

If we use n and k to respectively denote the real and imaginary parts of n, so that
n=rmn+ ik, we find
[E(7 ) = |&oPe * o+ 0 o) < L2,

In particular, as the wave travels through the slab, its intensity changes from |&p|?
to |&p|2e2k#L i.e., it undergoes an exponential loss or gain of intensity by a factor
of e72k%L depending on whether x > 0 or x < 0. Because of this a medium that has
a positive (respectively negative) value for k is called a lossy (respectively gain)
medium. The factor 2k|x| that determines the amount of the exponential loss (gain)
per unit distance traversed by the wave is called the attenuation (respectively gain)
coefficient. In terms of the wavelength, A := 27 /k, this quantity takes the form
4m|k|/A. In particular, the gain coefficient is given by [63]

47k
= — . 42
g N (42)
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Because the complex barrier potential (41) is exactly solvable, we can easily
determine its transfer matrix and explore its spectral singularities. This is done
in Refs. [61, 62]. Here we suffice to state that the relation Mas(k.) = 0, which
determines the spectral singularities k2 whenever k, € R, reduces to the following
complex transcendental equation [62].

2
e 2inkL (” N 1) . (43)

n+1

The right-hand side of this relation is a well-known quantity in optics called the
reflectivity R. If we compute the modulus (absolute-value) of both sides of (43)
and use (42) in the resulting expression, we obtain [62]

1 1

g=,,1

of n|R|2. (44)

This equation that is a consequence of the existence of a spectral singularity is
one of the basic relations of laser physics known as the laser threshold condition
[63]. The right-hand side of (44) is the minimum amount of gain necessary for a
(mirrorless) slab laser to begin emitting laser light. It is called the threshold gain
coefficient.

Every laser amplifies the background noise to sizable intensities and emits it
as coherent electromagnetic radiation. This is precisely what a spectral singular-
ity does, because it leads to infinite reflection and transmission coefficients that
are capable of amplifying extremely week background electromagnetic waves to
considerable intensities. The fact that the waves emitted from both sides of a slab
laser have the same intensity and phase (are coherent) also follows from (43). This
is indeed a general property of spectral singularities, because they are invariant
under the space reflection (parity) P. Under P the transfer matrix M(k) of every
scattering potential transforms as

M(k) <2 o1 M(k) Loy, (45)

where o7 is the first Pauli matrix, i.e., the 2 X 2 matrix with zero diagonal and unit
off-diagonal entries, [64, 65]. According to (45), Moz (k) is P-invariant. Therefore,
the same holds for the spectral singularities that are given by the real and positive
zeros of Maa (k).

In Ref. [66], we develop a nonlinear generalization of spectral singularities
that apply to nonlinearities that are confined in space (have compact support.)
It turns out that the mathematical relation describing these nonlinear spectral
singularities for the above simple slab model supplemented with a weak Kerr
nonlinearity yields an equation relating the output intensity I of the slab laser
to its gain coefficient [67]. For a typical optical gain medium [63], which satisfies
|k| < 1 < n, this equation takes the following form.

7= f)(g = gn)

46
0 gth ( )
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where f is a real-valued function taking strictly positive values, ¢ is the gain
coefficient (42), g4, is the threshold gain coefficient that is given by the right-hand
side of (44), and o is the Kerr coefficient which, for generic gain media, takes small
but positive values.

Because f(n) > 0, ¢ > 0, and I > 0, Eq. (46) implies that there is no
power emitted from a slab laser unless we have g > g, and for g > g4, the
intensity of emitted wave increases linearly as a function of g — g¢,. Both of these
statements are among the basic results of the physics of lasers. Here they follow
as logical consequences of the purely mathematical condition of the existence of
a nonlinear spectral singularity. Let us also mention that (46) has a more general
domain of validity. In Ref. [68], we explore the consequences of the emergence of
nonlinear spectral singularities for a weakly nonlinear P7 -symmetric bilayer slab.
This consists of a pair of adjacent infinite homogeneous planar slabs with complex-
conjugate refractive index, n & ik, so that one’s gain is balanced by other’s loss
[65, 69]. The laser output intensity computed using the condition of the appearance
of a nonlinear spectral singularity is also given by (46), albeit with a different choice
for the function f, [68].

Another interesting development having its root in optical spectral singular-
ities is the discovery of perfect coherent absorbers (CPA) which are also called
antilasers [64, 70-73]. These are optical devices that function as time-reversed
lasers, i.e., they completely absorb coherent electromagnetic waves.

Under the time-reversal transformation (6), scattering potentials v(z) and
their transfer matrix M(k) transform according to

v(z) <L v(z)*, M(k) <L+ oy M(k)* o1 (47)

In light of these relations, the time-reversal transformation 7 converts an optical
potential (40) describing a gain media into that of a lossy medium, and induces
the transformation:
My (k) <25 Moy (k)"

This, in particular, means that the spectral singularities of v(x) correspond to
the real values of the wavenumber k at which the Mj;(k) entry of the transfer
matrix of the time-reversed potential, v(z)*, vanishes. At this wavenumber the
optical system modeled by v(z)* serves as a CPA. In other words, CPA action is
a realization of the spectral singularities of the time-reversed (complex-conjugate)
optical potential [64, 65].

6. Concluding remarks

Spectral singularities were introduced by Naimark more than sixty years ago and
has since become a subject of research in operator theory. Given their interesting
mathematical implications, it is quite surprising that their relevance to scattering
theory and their physical meaning could not be understood earlier than in 2009. It
turns out that the optics of gain media offers various physical models in which this
concept can be realized. The study of the optical realization of spectral singularities
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shows that they form a mathematical basis for lasers. This observation could be
made much earlier, had the optical physicists knew about spectral singularities.
Indeed, the solution of the wave equations with outgoing boundary conditions,
which leads to spectral singularities for real wavenumbers, has been employed in
laser theory previously [74].

The discovery of the physical aspects of spectral singularities has boosted in-
terest in their study particularly among physicists. During the past five years there
have appeared a number of research publications on the subject. The following is
a list of those that we did not elude to above.

— Refs. [75-78] address some of the formal and conceptual aspects of the sub-
ject.

— Refs. [50, 65, 79-81] explore specific toy models supporting spectral singular-
ities.

— Refs. [82, 83] study the application of semiclassical approximation and per-
turbation theory for determining spectral singularities of non-homogeneous
gain media with planar symmetry.

— Refs. [84, 85] examine the optical spectral singularities in spherical and cylin-
drical geometries. In particular, [85] offers a detailed and careful treatment
of spectral singularities in the whispering gallery modes. These correspond
to the cylindrical and spherical lasers.

— Refs. [86, 87] discuss some of the applications of spectral singularities in
condensed matter physics.

— Refs. [88, 89] consider spectral singularities in certain optically active waveg-
uides and elaborate on their regularization due to the presence of nonlinear-
ities.

— Ref.[90] offers an extension of the analysis of [62] to waves with a non-normal
incidence angle.

— Refs. [91-93] are some other publications that discuss spectral singularities.

The recent development of a nonlinear generalization of spectral singular-
ities [66] has opened the way towards applications of this concept in the vast
territory of nonlinear waves. The fact that the simple applications in effectively
one-dimensional optical systems yield a mathematical derivation of the known be-
havior of the laser output intensity provides ample motivation for further study of
nonlinear spectral singularities in other areas of physics.
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On the Moduli Space of
Yang-Mills Fields on R*

Armen Sergeev

Abstract. We consider the problem of description of the structure of the mod-
uli space of Yang-Mills fields on R* with gauge group G. According to har-
monic spheres conjecture, this moduli space should be closely related to the
space of harmonic spheres in the loop space QG. Since the structure of the
latter space is much better understood, the proof of conjecture will help to
clarify the structure of the moduli space of Yang—Mills fields. We propose an
idea how to prove the harmonic spheres conjecture using the twistor methods.
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1. Yang—Mills fields and instantons

Let G be a compact Lie group (gauge group). A gauge potential on R* is a connec-
tion A in a principal G-bundle over R* identified with a 1-form on R* with values
in the Lie algebra g of G. In the case when G coincides with the group U(n) of
unitary (n X n)-matrices this form can be written as

4
A= Z A, (z)dz,
p=1
where z = (21,22, 3, 74) are coordinates on R* and coefficients A,,(x) are smooth
functions on R* with values in the algebra of skew-Hermitian (n x n)-matrices.
A gauge G-field F is the curvature of the connection A given by the 2-form
on R* with values in the Lie algebra g

F=DA=dA+ ;[A,A]
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Leading Scientific Schools program (grant NSh-2928.2012.1), and Scientific Program of Presidium
of RAS “Nonlinear dynamics”.



168 A. Sergeev

where D : Q1 (R*, g) — Q%(R*, g) is the exterior covariant derivative generated by
the connection A. In the case G = U(n) this form is written as

4
F=Y" _ Fu(@ds,Ads,
where
F:uu = 8[1,Al/ - 81/A/1. + [A/u Al/]

with 9, :=9/0x,, p=1,2,3,4.
Introduce the Yang—Mills action functional given by the formula

1
s = [ 1Pt
R4

where the norm || F|| is computed with the help of a given fixed invariant inner
product on the Lie algebra g. In the case G = U(n) one can take for such a product
(X,Y) := —tr(XY). In this case the formula for the action S(A) will be rewritten
in the form

S(A):—;/Rzltr(*F/\F)

where # is the Hodge star-operator on R*.

The functional S(A) is invariant under gauge transformations given by the
smooth mappings g : R* — G, tending to the unit e € G at infinity. Under the
action of these transformations gauge potentials and fields transform according to
the following formulas

Ar— Ay =g 'dg+g'Ag, g:Fr+—F,:=g 'Fg
where the group G acts on its Lie algebra g by the adjoint representation. In the
case G = U(1) the gauge transform is given by the multiplication by the gauge
factor g(z) = € so that the corresponding gauge potential transformation
coincides with the gradient transform A +— A — idf while the gauge field F' does
not change.

A gauge field F is called the Yang—Mills field if it is extremal for the action
functional S(A) and has finite Yang—Mills action S(A) < co. The corresponding
gauge potential A is called the Yang—Mills connection.

The Euler—Lagrange equations for the functional S(A) have the form

D*F =0

where D* : Q?(R*, g) — QY(R*,g) is the operator formally adjoint to D. In the
case R* it coincides with D* = — * Dx where * is the Hodge operator so that the
Euler—Lagrange equations for S(A) are rewritten in the form

DxF =0.

The obtained equation is called the Yang—Mills equation and is often supplemented
by the Bianchi identity
DF =0

which is automatically satisfied for gauge fields F'.
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A gauge field F' is called selfdual (resp. anti-selfdual) if
«xF'=F (resp. x FF'=—F).
The Bianchi identity implies immediately that solutions of the duality equations
*F =+F

satisfy automatically the Yang—Mills equation.
If we write down the form F' as the sum

F=F,+F_,
where Fiy = . (xF £ F), then the formula for the Yang-Mills action will rewrite as

1
y [ OE P+ IE ) .
R4

For the gauge fields F' with finite Yang—Mills action the quantity

1
= g2 [, CIFE + PP ata

turns out to be an integer-valued topological invariant called the topological charge
of the field F. If we extend, using the Uhlenbeck compactness theorem, the con-
nection A with finite Yang—Mills action to a connection in some associated vector
bundle E over the compactification S* of R* then this invariant will be expressed
in terms of Chern classes of this bundle. For example, in the case of G = SU(2) it
coincides with the 2-nd Chern class.

Comparing the above formulas for the action S(A) and topological charge
k(A), we arrive at the estimate

S(A) > 4m?[k(A)].

From the same formulas we see that the minimum of the action S(A) on the
topological class of gauge fields of gauge potentials with finite Yang—Mills action
and fixed topological charge k(A) = k is equal to 47%|k| and is attained for k& > 0
on anti-selfdual fields while for k£ < 0 it is attained on selfdual fields.

An anti-selfdual field with finite Yang—Mills action is called the instanton
and a selfdual field with finite Yang—Mills action is called the anti-instanton.

Instantons and anti-instantons realize the local minima of the action S(A),
however this functional has also non-minimal critical points (cf. [12-15]).

One of the main goals of the Yang—Mills theory is the investigation of the
structure of the moduli space My, of Yang—Mills fields with fixed topological charge
k given by the quotient

_ {Yang-Mills fields with fixed topological charge k}
N {gauge transforms} ’

S(A) =

k(A)

My,

We are still far from the complete understanding of the structure of this space,
however an analogous problem for the instantons, i.e., the description of the moduli
space of instantons on R*, was solved by Atiyah, Drinfeld, Hitchin and Manin with
the help of the twistor approach presented in the next Section.
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2. Twistor interpretation of instantons and Yang—Mills fields

Denote by S* the four-dimensional sphere identified with the one-point compact-
ification of R*. In the same way as the two-dimensional sphere S? is identified
with the Riemann sphere CP! the four-dimensional sphere S* can be identified
with the quaternion projective line HP!, consisting of pairs of quaternions g, ¢']
(not simultaneously equal to zero), defined up to multiplication (from the right)
by a non-zero quaternion. Quaternions ¢ € H may be written in the complex form
as ¢ = 21 + 29 where 21, zo are complex numbers and j is an imaginary unit,
anti-commuting with the usual imaginary unit ¢ € C.
Define the basic twistor bundle over S*

1
7 CP* 5 HP!
by the following tautological formula
[21, 22, 23, 24] — [21 + 22], 23 + 24]],

where the 4-tuple of complex numbers [21, 22, 23, z4] € CP? (not simultaneously
equal to zero) is defined up to multiplication by a non-zero complex number and the
pair of quaternions [z + 227, 23 + 247] € HP! is defined up to multiplication (from
the right) by a non-zero quaternion. The fibre of 7 coincides with the complex
projective line CP' invariant under the multiplication from the right by j, i.e.,
under the map

J i 21, 22, 23, 24] ¥ [—22, 21, —24, 23].

The constructed bundle may be considered as a complex version of the Hopf bundle
S3
ST 2 5t

generated by the projection S7 ¢ C* — CP3.

The restriction of 7 to the Euclidean space R* = §*\ {co} coincides with the
bundle

7 : CP®\ CPL, — R*

where the omitted complex projective line CP_ is identified with the fibre 7! (00)
at oo € S4.

This bundle admits the following nice geometric interpretation due to Atiyah
(cf. [2]). Namely, the space CP?\ CPL is foliated by parallel projective planes
CP? intersecting in CP? on the projective line CP . Consider the fibre 7=1(q)
of our bundle at an arbitrary point ¢ € R* With any point z € 771(q) of this
fibre we can associate a complex structure .J, on the tangent space T,R* = R4
by identifying (with the help of the tangent map =, ) this space with the complex
plane from our family, going through 2. Thus the fibre 7~1(g) of the twistor bundle
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at g is identified with the space of complex structures on the tangent space T,R*
compatible with the metric.

The moduli space N}, of instantons with the fixed topological charge k, which
is defined as

I\ {G-instantons on R* with topological charge k}
k p— bl

{gauge transforms}
admits the following interpretation in terms of the twistor bundle
CP?\ CP., — R*.

According to the theorem of Atiyah—Ward [5] there exists a one-to-one correspon-
dence between:

equivalence classes of based

{moduli Space ?Rf‘lG_} — {holomorphic GC-bundles over} .
mstantons on CP3, trivial on 7-fibers

Here, G is the complexification of the group G' and G®-bundle over CP? is called
based if it is provided with a fixed trivialization on CPL, = 771(c0).

Using this twistor interpretation of instantons, Atiyah, Drinfeld, Hitchin and
Manin gave a full description of the moduli space of instantons known now under
the name of ADHM-construction (cf. [3]).

In order to extend these results to arbitrary Yang—Mills fields we would like
to have the twistor interpretation of these fields. Such interpretation was proposed
in the papers by Manin [11], Witten [18] and Isenberg—Green—Yasskin [10]. To
formulate their construction denote by (CP3)* the dual projective space identified
with the space of complex projective planes CP? in CP3. Consider the space F of
flags in CPP? x (CPP3)*, consisting of pairs: (point; plane, containing this point). In
homogeneous coordinates ([2]; [€]) on CP3 x (CP3)* this space is identified with
the subspace

Q=A{(z}: €] : (2,6) =0}

where (-, -) denotes the natural pairing between CP? and (CP3)*. The twistor
construction, mentioned above, gives a description of holomorphic Yang—Mills
fields on the complexified space CS* identified with the Grassmann manifold
G1(CP3) = G5(C*). Namely, such fields correspond to the equivalence classes
of holomorphic G®-bundles over @, satisfying the following two conditions:

1) they are trivial on all quadrics of the form
Q(1) = {(point z; projective plane p) : z €l C p}

where [ is a projective line in CP?3;
2) they extend to holomorphic bundles on the 3rd infinitesimal neighborhood
Q® of the subspace @ in CP? x (CP?3)*.
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3. Atiyah—Donaldson construction and harmonic
spheres conjecture

There exists another twistor description of the moduli space of instantons given
by Atiyah [1] and Donaldson [7] which may be considered as a two-dimensional
reduction of the Atiyah—Ward theorem. According to Atiyah—Donaldson, there
exists a one-to-one correspondence between:

G-instantons on GC-bundles over CP! x CP!, trivial on
R* CPL, UCPL,

Here, G®bundle over CP* x CP' is called based if it is provided with a fixed
trivialization at (0o, 00) € CP! x CP! and we denote by CP._ UCP., the union of
two projective lines at infinity of the form

CP_ UCP. = (CP' x 0o) U (00 x CP').

{moduli space of} equivalence classes of based holomorphic
—

Atiyah has proposed an interpretation of the right-hand side of the correspon-
dence established by the Atiyah—Donaldson theorem in terms of the holomorphic
spheres in the loop space QG.

Recall that the loop space of a compact Lie group G is the homogeneous
space

QG =LG/G
where LG = C*°(S!, Q) is the loop group of G, i.e., the group of C*°-smooth maps
S! — @ with the pointwise multiplication and G in the denominator is identified
with the subgroup of constant maps S' — gy € G. The space QG is a Kihler
Frechet manifold with the complex structure induced from the representation of
QG as the homogeneous space of a complex Lie group:

OG = LG/ L G"

where LGC = C>(S', G®) is the complex loop group of G and L, G = Hol(A, G%)
is the subgroup of the loop group LGC, consisting of the maps extending to holo-
morphic maps of the unit disc A — LGC.

The theorem of Atiyah asserts that there exists a one-to-one correspondence
between:

GC-bundles over CP! x CP!, trivial on the spheres f : CP! —
union CPL, U CPL, QG

Here, a map CP! — QG is called based if it sends the point co € CP! into the
class [G] € QG.

The two given theorems of Atiyah and Donaldson imply that there exists a
one-to-one correspondence between:

{moduli space of G-} based holomorphic
instantons on R* spheres f : CP' — QG [~

equivalence classes of based holomorphic {based holomoprhic}
+— .
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Define the energy of a smooth sphere f : CP! — QG in the loop space QG
by the Dirichlet integral of the form
|dz A dZ|

1
B = [ 1@ (5 e

where the norm |[|df (z)|| is computed with respect to the Riemannian metric of the
loop space QG (recall that this space is Kéhler and so has a Riemannian metric
compatible with its complex structure), and the integral over the complex plane
C is taken with respect to the conformal metric on C. The critical points of the
energy functional are called the harmonic spheres in QG. The local minima of this
functional are given by the holomorphic and anti-holomorphic spheres in QG.

So the Atiyah—Donaldson theorem establishes a one-to-one correspondence
between the local minima of two functionals, namely:

{Yanngills action on gauge G—} and energy of smooth
fields on R* spheres in QG

with local minima given respectively by

{instantons and} holomorphic and anti-
anti-instantons holomorphic spheres

If we replace the local minima by the arbitrary critical points of the corresponding
functionals then we arrive at the harmonic spheres conjecture asserting that it
should exist a one-to-one correspondence between:

{moduli space of Yangf} PN based harmonic spheres
Mills G-fields on R* f:P = QG :

The described transition from the local minima to the critical points of the
functionals may be also considered as a kind of the “realification” procedure. In-
deed, if we replace the smooth spheres in the right-hand side of the correspondence
by smooth functions f : C — C then the described procedure will reduce to the
trivial transition from the holomorphic and anti-holomorphic functions to the ar-
bitrary harmonic functions (being the sums of holomorphic and anti-holomorphic
functions). In the case of smooth spheres in the loop space QG this transition from
holomorphic and anti-holomorphic spheres to harmonic ones becomes non-trivial
due to the non-linearity of the Euler—Lagrange equations for the energy functional
on smooth spheres.

Apart from the Atiyah—-Donaldson theorem and given heuristic considerations
there is one more evidence in favor of the harmonic spheres conjecture. Namely,
in the paper by Friedrich and Habermann [9] it is proved that there exists a
one-to-one correspondence between the moduli space of Yang—Mills fields on the
two-dimensional sphere S? and harmonic loops in QG being the critical points of
the energy functional on loops. Recall that the energy of a smooth loop v € QG
is given by the Dirichlet integral of the form

E(y) = ;/S [~ ) (V[P
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where || - || is the invariant norm on the Lie algebra g of the group G. The critical
points of this functional are called the harmonic loops in QG.

Representing the space R* as the product R? x R?, we can consider the
Friedrich—-Habermann’s result as a variant of the harmonic spheres conjecture ”at
a point” establishing a one-to-one correspondence between:

{moduli space of Yangf} {harmonic loops}
Mills G-fields on R? in QG '
So it is not surprising that the Friedrich-Habermann construction uses, in-

stead of the basic twistor bundle CP? — S4, being the complex analogue of the
Hopf bundle S” — 5%, another Hopf bundle S% — S2.

4. Twistor interpretation

Unfortunately, a direct extension of the Atiyah—Donaldson proof to the harmonic
case is impossible because this proof is based on the monad method and is purely
holomorphic. One can however try to reduce the proof of the harmonic spheres
conjecture to the holomorphic case by ”pulling-up” the both parts of the corre-
spondence in the conjecture to their twistor spaces.

The twistor description of the moduli space of Yang—Mills fields in terms of
the space of flags F' in CP? x (CP3)* was given above. There is also the twistor
description of harmonic spheres in the loop spaces which was proposed in our
papers (cf., e.g., [17]). It is based on the following considerations.

The loop space 2G can be isometrically embedded into the infinite-dimen-
sional Hilbert—Schmidt Grassmannian Gr(H), and the description of harmonic
maps into Gr(H) can be obtained by the generalization of the corresponding con-
struction for the finite-dimensional Grassmannian Gr(C™).

In the finite-dimensional case harmonic spheres in the Grassmannian Gr(C™)
coincide with the projections to Gr(C™) of holomorphic spheres in flag bundles
F1(C™) — Gr(C"), provided with some special almost complex structure. It implies
that harmonic spheres in Gr(C™) can be obtained from a trivial one with the
help of a Backlund-type procedure by successive adding of holomorphic and anti-
holomorphic spheres.

In the infinite-dimensional situation the role of flag bundles is played by
the so-called wirtual flag bundles FI(H) while the other part of the harmonic
spheres construction extends to the Grassmannian Gr(H) by analogy with the
finite-dimensional case.

It follows that the twistor version of the harmonic spheres conjecture should
establish a one-to-one correspondence between holomorphic bundles over CP3 x
(CP3)*, satisfying conditions 1),2) from Section 2, and holomorphic spheres in the
virtual flag bundles F1(H). Unfortunately, the descriptions of these two objects
are given in different terms (the first description uses the dual projective twistor
space while the second one not). So in order to prove the twistor version of the
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harmonic spheres conjecture one should first establish a correspondence between
these descriptions.

We note in conclusion that the harmonic spheres conjecture will imply the
existence of a Backlund-type procedure allowing to construct arbitrary Yang—Mills
fields from a trivial one by the successive adding of instantons and anti-instantons.
In particular, it would mean that there exist many more non-minimal Yang—Mills
fields than instantons and anti-instantons separately.

References
[1] M.F. Atiayh, Instantons in two and four dimensions. Comm. Math. Phys. 93 (1984),
437-451.

[2] MLF. Atiyah, Geometry of Yang—Mills fields. Lezioni Fermiane, Pisa: Scuola Normale
Superiore, 1979.

[3] M.F. Atiayh, V.G. Drinfeld, N.J. Hitchin, Yu.I. Manin, Construction of instantons.
Phys. Lett. 65A (1978), 185-187.

[4] MLF. Atiayh, N.J. Hitchin, I.M. Singer, Self-duality in four-dimensional Riemannian
geometry. Proc. Roy. Soc. London 362 (1978), 425-461.

[5] ML.F. Atiyah, R.S. Ward, Instantons and algebraic geometry. Commun. Math. Phys.
55 (1977), 117-124.

[6] F.E. Burstall, S. Salamon, Tournaments, flags and harmonic maps. Math. Ann. 277
(1987), 249-265.

[7] S.K. Donaldson, Instantons and geometric invariant theory. Comm. Math. Phys. 93
(1984), 453-460.

[8] J. Eells, S. Salamon, Twistorial constructions of harmonic maps of surfaces into
four-manifolds. Ann. Scuola Norm. Super. Pisa 12 (1985), 589-640.

[9] Th. Friedrich, L. Habermann, Yang-Mills equations on the two-dimensional sphere.
Commun. Math. Phys. 100 (1985), 231-243.

[10] J. Isenberg, Ph.B. Yasskin, P.S. Green, Non-self-dual gauge fields. Phys. Lett. 78B
(1978), 464-468.

[11] Yu.Il. Manin, Gauge field theory and complex geometry. Berlin: Springer-Verlag, 1988.

[12] T.H. Parker, Non-minimal Yang—Mills fields and dynamics. Invent. math. 107 (1992),
397-420.

[13] L.M. Sibner, R.J. Sibner, K. Uhlenbeck, Solutions to Yang—Mills equations that are
not self-dual. Proc. Natl. Acad. Sci. USA 86 (1989), 8610-8613.

[14] L. Sadun, J. Segert, Non-self-dual Yang—Mills connections with non-zero Chern num-
ber. Bull. Amer. Math. Soc. 24 (1991), 163-170.

[15] G. Bor, R. Montgomery, SO(3) invariant Yang-Mills fields which are not self-dual.
UC Berkeley, preprint, 1989.

[16] A. Pressley, G. Segal, Loop Groups. Clarendon Press, 1986.

[17] A.G. Sergeev, Harmonic spheres and Yang—Mills fields. In: Proc. of Conf. on Geom-
etry, Integrability and Optimization. Sofia: Avangard Prima, 2013; 1-23.



176 A. Sergeev

[18] E.Witten, An interpretation of classical Yang—Mills fields. Phys. Lett. 78B (1978),
394-398.

Armen Sergeev

Steklov Mathematical Institute
Department of Mathematical Physics
Gubkina 8

119991 Moscow, Russia

e-mail: sergeevOmi.ras.ru


mailto:sergeev@mi.ras.ru

Geometric Methods in Physics. XXXIII Workshop 2014

Trends in Mathematics, 177-186
(© 2015 Springer International Publishing Switzerland

On Covariant Poisson Brackets in Field Theory

A.A. Sharapov

Abstract. A general approach is proposed to constructing covariant Poisson
brackets in the space of histories of a classical field-theoretical model. The
approach is based on the concept of Lagrange anchor, which was originally
developed as a tool for path-integral quantization of Lagrangian and non-
Lagrangian dynamics. The proposed covariant Poisson brackets generalize
the Peierls’ bracket construction known in the Lagrangian field theory.
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1. Introduction

The least action principle provides the foundation for classical mechanics and field
theory. A distinguishing feature of the Lagrangian equations of motion among
other differential equations is that their solution space carries a natural symplectic
structure, making it into a phase space. The physical observables, being identified
with the smooth function(al)s on the phase space, are then endowed with the
structure of a Poisson algebra. There are at least two different ways for describing
this Poisson algebra. The first one is the standard Hamiltonian formalism, which
requires an explicit splitting of space-time into space and time and introduction of
canonical momenta. The main drawback of this approach is the lack of manifest
covariance, which causes some complications in applying it to relativistic field the-
ory. An alternative approach was proposed by Peierls in his seminal 1952 paper [1].
In that paper he invented what is now known as the Peierls brackets on the covari-
ant phase space. In contrast to the usual (non-covariant) Hamiltonian formalism,
where the phase space is identified with the space of initial data, the covariant
phase space is the functional space consisting of all the trajectories obeying the
Lagrangian equations of motion. Peierls’ paper opened up the way for constructing

This work was partially supported by the Tomsk State University Academic D.I. Mendeleev Fund
Program, the RFBR grant 13-02-00551 and the Dynasty Foundation.
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a fully relativistic theory of quantum fields [2]. For more recent discussions of the
Peierls brackets, on different levels of rigor, we refer the reader to [3-5].

In this paper, we explain how to extend the concept of covariant phase-space
to the most general (i.e., not necessarily Lagrangian) theories. Our approach is
based on the notion of Lagrange anchor, which was originally proposed in [6] as
a tool for path-integral quantization of Lagrangian and non-Lagrangian theories.
In most cases the existence of a Lagrange anchor appears to be less restrictive
condition for the classical dynamics than the existence of an action functional.
Furthermore, one and the same system of equations may admit a variety of different
Lagrange anchors leading to nonequivalent quantizations. In the next sections, we
will show that any Lagrange anchor gives rise to a Poisson structure in the space of
solutions to the classical equations of motion. The corresponding Poisson brackets
are fully covariant and reduce to the Peierls brackets in the case of Lagrangian
theories endowed with the canonical Lagrange anchor. It is pertinent to note that
for the mechanical systems described by ordinary differential equations in normal
form, a relationship between the Lagrange anchors and Poisson brackets has been
already established in [7].

Our exposition is mostly focused on the algebraic and geometric aspects of
the construction, while more subtle functional analytical details are either ignored
or treated in a formal way. These details, however, are not specific to our problem
and can be studied, in principle, along the same lines as in the case of conventional
Peierls’ brackets.

2. Classical gauge systems

2.1. Kinematics

In modern language the classical fields are just the sections of a locally trivial
fiber bundle B — M over the space-time manifold M. The typical fiber F' of B
is called the target space of fields. In case the bundle is trivial, i.e., B =M x F,
the fields are merely the mappings from M to F. In each trivializing coordinate
chart U C M a field ¢ : M — B is described by a collection of functions ¢*(z),
where € U and ¢’ are local coordinates in F. These functions are often called
the components of the field .

Formally, one can think of I'(B) — the space of all field configurations — as a
smooth manifold M with the continuum infinity of dimensions and ¢’(z) playing
the role of local coordinates. In other words, the different local coordinates ¢’ (z)
on M are labeled by the space-time point x € M and the discrete index . To
emphasize this interpretation of fields as coordinates on the infinite-dimensional
manifold M we will include the space-time point z into the discrete index i and
write ¢° for ¢’(z); in so doing, the summation over the “superindex” i implies
usual summation for its discrete part and integration over M for x. In the physical
literature this convention is known as DeWitt’s condensed notation [2].
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Proceeding with the infinite-dimensional geometry above, we identify the
“smooth functions” on the “manifold” M with the infinitely differentiable func-
tionals of field . These functionals form a commutative algebra, which will be
denoted by ®. If 6’ is an infinitesimal variation of field, then, according to the
condensed notation, the corresponding variation of a functional S € ® can be
written in the form

65 =S, 60", (1)

where the comma denotes the functional derivative.

The concepts of vector fields, differential forms and exterior differentiation
on M are naturally introduced through the functional derivatives, see, e.g., [13].
In particular, the variations ¢’ span the space of 1-forms and the functional
derivatives §/8p" define a basis in the tangent space T,,,M. So, we can speak of
the tangent and cotangent bundles of M.

The tangent and cotangent bundles are not the only vector bundles that can
be defined over M. Given a vector bundle E — M over the space-time manifold, we
define the vector bundle £ — M whose sections a smooth functionals of fields with
values in I'(E). In other words, a section ¢ € I'(€) takes each field configuration
¢ € M to a section {[p] € I'(E). Here we do not require the section &[¢] to be
smooth; discontinuous or even distributional sections are also allowed. We will
refer to £ as the vector bundle associated with E. The dual vector bundle £* is
defined to be the vector bundle associated with E*.

In order to justify our subsequent constructions some restrictions are to be
imposed on the structure of the underlying space-time manifold. Our basic as-
sumption will be that M is a globally hyperbolic manifold endowed with a volume
form. In the most of field-theoretical models both the structures come from a
Lorentzian metric on M. The globally hyperbolic manifolds is a natural arena for
the theory of hyperbolic differential equations with well-posed Cauchy problem.
By definition, each globally hyperbolic manifold M admits a global time function
whose level surfaces provide a foliation of M into space-like Cauchy surfaces N,
so that M ~ R x N. Using the direct product structure, one can cut M into the
“past” and the “future” with respect to a given instant of time ¢ € R:

M; = (—o0,t] x N, Mt =[t,00) x N, M = M; UM, .

Given a vector bundle £ — M, we define the following subspaces in the space
of sections I'(E):

To(E) ={{ € T(FE)|supp & is compact};

Ty (E) = {£ € T(F)|supp ¢ is spatially compact};
I'_(E) ={¢ € Ts(E)|supp £ C M, for some t};
[y (F) ={¢ €T (E)|supp & C M, for some t}.

Here the spatially compact means that the intersection M, N supp& N Mt'f' is
compact for any ¢ > t’. We will refer to the elements of I'_(E) and I'y (F) as the
sections with retarded and advanced support, respectively.



180 A.A. Sharapov

A differentiable functional A is said to be compactly supported if A,; €
To(T*M). For example, a local functional, like the action functional, is compactly
supported if it is given by an integral over a compact domain. The formally smooth
and compactly supported functionals form a subalgebra &y C ®. Let now & be
a vector bundle associated with E. We say that a section £ € T'(€) has retarded,
advanced or compact support if [p] € T'(E) does so for any field configuration
@ € M. The sections with the mentioned support properties form subspaces in
I'(€), which will be denoted by I'_(€), T'+(€), and T'g(E), respectively.

When dealing with local field theories it is also useful to introduce the sub-
space of local sections T'jo.(€) C T'(E). This consists of those sections of E whose
components are given, in each coordinate chart, by smooth functions of the field
o and its partial derivatives up to some finite order. For instance, the components
of the Euler-Lagrange equations S,; = 0 constitute a section of I'jo.(T*M).

2.2. Dynamics

The dynamics of fields are specified by a set of differential equations
Talg] = 0. (2)

Here a is to be understood as including a space-time point. According to our
definitions, the left-hand sides of the equations can be viewed as components of a
local section of some vector bundle £ over M. We call £ the dynamics bundle. Since
we do not assume the field equations (2) to come from the least action principle,
the discrete part of the condensed index a may have nothing to do with that
of i labeling the field components. In the special case of Lagrangian systems, the
dynamics bundle coincides with the cotangent bundle 7" M and the field equations
are determined by the exact 1-form (1), with S being the action functional.

Let ¥ denote the space of all solutions to the field equations (2). Geomet-
rically, we can think of ¥ as a smooth submanifold of M and refer to ¥ as the
dynamical shell or just the shell. For the Lagrangian systems the shell is just the
set of all stationary points of the action S. By referring to 3 as a smooth subman-
ifold we mean that the standard regularity conditions hold for the field equations
[8].

Given the shell, a functional A € @ is said to be trivial iff A|y; = 0. Clearly,
the trivial functionals form an ideal of the algebra ®y. Denoting this ideal by ®§1V,
we define the quotient-algebra ®3 = ®q/®5V. The regularity of the field equations
imply that for each trivial functional A € ®FV there exists a (distributional)
section § € I'(E*) such that A = £°T,. In other words, the trivial functionals
are precisely those that are proportional to the equations of motion and their
differential consequences. By definition, the elements of the algebra ®F are given
by the equivalence classes of functionals from ®(, where two functionals A and
B are considered to be equivalent if A — B € ®iV. In that case we will write
A =~ B. Formally, one can think of ®3 as the space of smooth, compactly supported
functionals on X.
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2.3. Gauge symmetries and physical observables

The first functional derivatives of the field equations (2) constitute the Jacobi
operator .J,
Jai =T . (3)
Geometrically, J defines a homomorphism from the tangent to the dynamics bun-
dle.
The field equations (2) are said to be gauge invariant if there exist a vector
bundle F — M together with a section R = {R!} of F* ® TM such that

JuR,~0 < R,T,=C:T,. (4)

In local field theory it is also assumed that R? [p] is the integral kernel of a differ-
ential operator R[p] : T'(F) — I'(T M) for each ¢ € M.

For the sake of simplicity we assume the bundle F to be trivial and consider
R = {R!} as a collection of vector fields on M. This vector fields are called the
gauge symmetry generators. The terminology is justified by the fact that for any
infinitesimal section € € T'g(F) the infinitesimal change of field ©* — ! + d.¢°,
where

5-¢" = Rie®,

maps solutions of (2) to solutions. In other words, the vector fields R, are tangent
to the dynamical shell ¥. The gauge symmetry transformations are said to be
trivial if R = 0. If the vector bundle F is big enough to accommodate all nontrivial
gauge symmetries, then we call F the gauge algebra bundle and refer to R, as a
complete set of gauge symmetry generators. It follows from the definition (4) that
the vector fields R, define an on-shell involutive vector distribution on M, i.e.,

[Ra Rs) ~ C14R, |

[e3

for some C’s. This distribution will be denoted by R and called gauge distribution.
A functional A € ®g is gauge invariant if

In that case we say that A represents a physical observable. The gauge invari-
ant functionals form a subalgebra ®'V C ®j. Two gauge invariant functionals A
and A’ are considered as equivalent or represent the same physical observable if
A ~ A’. So, we identify the physical observables with the equivalence classes of
gauge invariant functionals from ®y. This definition is consistent as the trivial
functionals are automatically gauge invariant and the property of being gauge in-
variant passes through the quotient ®'V/®HV. In what follows we will identify

inv

physical observables with their particular representatives in @

3. The Lagrange anchor

According to our definitions each classical field theory is completely specified by
a pair (£,T), where & — M is a vector bundle over the configuration space
of fields and T is a particular section of I'i,(€). The solution space ¥ is then
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identified with the zero locus of the section T'. Whereas the classical equations
of motion T,[p] = 0 are enough to formulate the classical dynamics they are
certainly insufficient for constructing a quantum-mechanical description of fields.
Any quantization procedure has to involve one or another additional structure.
Within the path-integral quantization, for instance, it is the action functional that
plays the role of such an extra structure. The procedure of canonical quantization
relies on the Hamiltonian form of dynamics, involving a non-degenerate Poisson
bracket and a Hamiltonian. Either approach assumes the existence of a variational
formulation for the classical equations of motion (the least action principle) and
becomes inapplicable beyond the scope of variational dynamics. The extension of
these quantization methods to non-variational dynamics was proposed in [6, 9].
In particular, the least action principle of the Lagrangian formalism was shown to
admit a far-reaching generalization based on the concept of a Lagrange anchor.

Like many fundamental concepts, the notion of a Lagrange anchor can be
introduced and motivated from various perspectives. Some of these motivations
and interpretations can be found in Refs. [6, 12, 13]. For our present purposes it
is convenient to define the Lagrange anchor V as a linear operator making the
on-shell commutative diagram

rarm)y 7 =1(E) (5)
A A
Vv %
NG S NGRSV

Here J* and V* denote the formal dual of the operators J and V. The on-shell
commutativity of the diagram means that

JoVaVioJr. (6)
Due to the regularity condition, the off-shell form of the last equality reads
JaiVii = Vidy = CHTy (7)

for some C’s.

In the case of Lagrangian theories £ = T* M and we can take V = 1. Then (7)
reduces to the commutativity of the second functional derivatives, J;; = S,;; = Jj;.
The operator V' = 1 is referred to as the canonical Lagrange anchor for Lagrangian
equations of motion. It should be noted that even for Lagrangian equations S,; = 0
there may exist non-canonical Lagrange anchors.

As with the generators of gauge symmetries, we can think of the Lagrange
anchor as a collection of vector fields V, = {V,!} on M. These generate a (singu-
lar) vector distribution V, which we call the anchor distribution. From the physical
standpoint, V defines the possible directions of quantum fluctuations on M. For
the Lagrangian theories endowed with the canonical Lagrange anchor V' =1 all di-
rections are allowable and equivalent. At the other extreme we have zero Lagrange
anchor, V' = 0, for which the corresponding quantum system remains pure classical
(no quantum fluctuations). In the intermediate situation only a part of physical
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degrees of freedom may fluctuate and/or the intensity of fluctuations around a
particular field configuration ¢ € M may vary with .

Unlike the gauge distribution R, the anchor distribution V is not generally
involutive even on shell. Nonetheless, using the regularity condition, one can derive
the following commutation relations [10]:

Vi, Vil' = Cay Vi + D3R, + Jug W' — Ty Wi,
[Ra, Val' = CouVy + DRl + Joj Wi

where the coefficients W’s are symmetric in ij and the C’s are defined by Rels. (4)
and (7). By definition, the coefficients C%, and CY, are given by the integral kernels
of trilinear differential operators, while the coefficients D’s and W’s may well be
non local. Locality of the latter coefficients will be our additional assumption.
It is automatically satisfied for the so-called integrable Lagrange anchors as they
were defined in [11]. We will not dwell here on the concept of integrability of the
Lagrange anchors referring the interested reader to the cited paper.

(8)

4. Covariant Poisson brackets

The cornerstone of our construction is an advanced/retarded fluctuation VljlIE caused
by a physical observable A. By definition, VljlIE is a vector field from T'L(TM)
satisfying the condition
VET, = V,A. (9)

It is not hard to see that the last equation defines Vlflt uniquely up to adding a
vector field from R and on-shell vanishing terms [10].

Now we define the advanced/retarded brackets of two physical observables
by the relation

{A,B}:*=ViB-VFA, VA Becolv. (10)

These brackets are well defined on shell as the ambiguity related to the choice of
the fluctuations,

VE = ViR, 4+ TLX, EelL(F), X°eli(TM), (11)

results in on-shell vanishing terms. Using Rels. (8) one can prove the following
main statement.

Proposition 1. Brackets (10) map physical observables to physical observables and
satisfy all the properties of Poisson brackets: antisymmetry, bi-linearity, the Leib-
nitz rule and Jacobi identity.

Proof. See [10]. O

In [10], it was also shown that the advanced and retarded fluctuations are
connected to each other by the following reciprocity relation:

ViB=ViA. (12)
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It just says that the retarded effect of A on B is equal to the advanced effect of B
on A, and vice versa. As an immediate consequence of (12) we obtain the on-shell
equality

{A,BY* ~ £V, B, (13)
where the difference V4 = V: — Vi is called the causal fluctuation.

Let us now compare the covariant Poisson brackets (10) with the usual Peierls’
brackets in Lagrangian field theory. In the latter case the dynamics of fields are gov-
erned by some action functional S[p]. As was explained in Sec. 3, the correspond-
ing equations of motion S,; [¢] = 0 admit the canonical Lagrange anchor given
by the unit operator V' =1 on T'(T*M). The definition of the advanced /retarded
fluctuation (9) takes the form

VS~ Ay (14)

In the absence of gauge symmetries this equation can be solved for Vjt with the
help of the advanced/retarded Green function G*%. By definition,

GES = SjnGT" =61 and G 7 =0=G"" if j>i. (15)

Here j > i means that the time associated with the index i lies to the past of the

time associated with the index j. Besides (15), the advanced and retarded Green

functions satisfy the so-called reciprocity relation G¥% = G¥/¢. In terms of the
Green functions the advanced/retared solution to (14) reads

Vit=GTA,; . (16)
and the causal fluctuation takes the form Vi = V" — V' = G¥A,;, where the

difference G = G+ —~G_ is lgnown as the causal Green function. In view of the
reciprocity relation, G¥ = —G7¢. Substituting (16) into (13), we get

{A,BY* =+4,,G"B,; . (17)

The antisymmetry of the brackets as well as the derivation property are obvious.
The direct verification of the Jacobi identity for (17) can be found in [2].

5. An example: the Pais—Uhlenbeck oscillator
The PU oscillator is described by the fourth-order differential equation

d? 9 d? 9
(£ (o) o

where the constants wy and ws have the meaning of frequencies. The advanced/
retarded Green function G*(ty —t1) for (18) is given by

Gi(t) . 92(:Ft)2 (sinwlt B sinwgt) 7
Wy — Wy w1 w2

with 0(t) being the Heaviside step function.
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Equation (18) admits the two-parameter family of the Lagrange anchors [14]

2

d
V—a—l—ﬁdtQ,

In this particular case the defining condition for the Lagrange anchor (7) reduces
to the commutativity of the operator V' with the fourth-order differential operator
defining the equation of motion (18). Notice that the equation of motion (18) is
Lagrangian and the canonical Lagrange anchor corresponds to a =1, 5 = 0.

The advanced Poisson brackets are given by

{z(tr), 2(t2)} " = VG(t:1 — t2)
(a - ﬁw%) sinwi (t1 —ta) (a — &u%) sinws(t; — to) .

2 2 2 2
w; — wi w1 Wi — Wi wo

a,feR. (19)

Differentiating with respect to t;, to and setting t; = to, we obtain the
following Poisson brackets of the phase-space variables z = (x, &, &, T'):

{j,‘,l‘}+:ﬁ, {Jb,jj}+={':b',x}+:a—ﬁ(w1+w2),
{2 ¥} = a(w! + wj) - Blwi +wiw; +wj),
and the other brackets vanish. For a = 1, 3 = 0, this yields the standard Poisson
brackets on the phase space of the PU oscillator.

With the Poisson brackets (20) the equations of motion (18) can be written
in the Hamiltonian form

P ={H,z2"}7T, i=1,2,34,

(20)

where the Hamiltonian is given by
1(% +w?i)? + wi(@ +wiz)? 1 (7 + wit)? + wi(i + wiz)?
2 (W} —wi)(a— fuwi) 2 (wf—wi)(a—puwi)

As was first noticed in [14], this Hamiltonian is positive definite whenever

H =

wi > S w3 . (21)
5
Clearly, the canonical Lagrange anchor (o« = 1,8 = 0) does not satisfy these

inequalities for any frequencies w; 2. On the other hand, in the absence of resonance
(w1 # wa), one can always choose the non-canonical Lagrange anchor (19) to meet
inequalities (21). Upon quantization the positive-definite Hamiltonian will have
a positive energy spectrum and a well-defined ground state. The last property is
crucial for the quantum stability of the system [14]. So, we see that non-canonical
Lagrange anchors may offer certain advantages over the canonical one, when the
issuers of quantum stability of higher-derivative systems are concerned.
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Weyl Group Orbit Functions
in Image Processing
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Abstract. Generalized Fourier transform and related convolution based on
Weyl group orbit functions transform can be used in spatial image filtering.
In this paper we use the family of E-orbit functions of As to provide an
example of such a filtering.
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1. Introduction

In [1] we described one of possible applications of Weyl group orbit functions
and their discretization in image processing. In standard digital data processing a
convolution of the image and a spatial filter is used to change a brightness value in
each point. Fourier transform changes the convolution into a simple multiplication
of Fourier images. We generalized this method using the orbit transform [2, 3].
In this paper we present an example of this technique applied to the family of
E-functions [4] of the Weyl group of As.

The paper is organized as follows. In Section 2 we provide a brief description of
spatial image filtering using the classical Fourier analysis and convolution. Sections
3 and 4 summarize some necessary terms from the theory of Weyl group orbit
functions and their discretization. In Section 5 we present our technique of using
FE-orbit convolution in image processing. The paper is concluded with an example
of image filtering and some remarks.

2. Spatial image filtering

The most simple technique of spatial filtering lies in the use of changing the in-
tensity level of the image in each point. The neighboring points (8 or 24) are used
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to change the central point. Mathematically, this is reached by convolution of the
image and 3 x 3 or 5 x 5 matrix, called the convolution kernel. Different values of
the entries of the kernel provide different types of filters, e.g., blurring, sharpening
and edge-detecting.
For defining the convolution in the case of the orbit convolution we proceed in
a similar way as for the discrete Fourier transform. For two-dimensional functions
f and g we have
l_l\/lz_lj LN2—1J
(fra)wy)= > > fle—ky—Dg(kl)
My Yy— Y
1 Mol o
S kx Ly
=y 3 S FN D Fg) (e (),
k=0 1=0
where M, N € 7Z, and F is the Fourier transform.
The standard convolution theorem then claims that the Fourier image of a
convolution is a multiplication of Fourier images of the functions,

F(f*g)(x,y) = (Ff)(z,y)(Fg)(z,y).

3. Even Weyl groups of simple Lie algebras of rank 2

Simple Lie algebras of rank two Ao, Cy and G5 are described by simple roots
A = {a1,a2} € R%. Coroots are defined as o = 2a/(a, o); weights w; are dual
to coroots, (), w;j) = d;;. We define the coroot lattice Q¥ = Zay + Zay and the
weight lattice P = Zwy + Zws.

Reflections 1 and ro with respect to the hyperplanes orthogonal to the simple
roots oy and ag generate the corresponding Weyl group W. The action of W on
simple roots gives a root system W (A) in R2. The affine Weyl group W2 is defined
as W = QY x W and its fundamental domain is denoted by F.

The even Weyl group W€ is defined as W¢ = {w € W | det(w) = 1}. Cor-
responding even affine Weyl group is denoted W2 and its fundamental domain
is given by F¢ = F U r;(int F'), where r; is a simple reflection and int F' de-
notes the interior of F'. Figure 1 shows root systems and fundamental domains of
AQ, CQ and GQ.

4. FE-orbit functions and E-orbit transform

For the rest of the paper we fix the Weyl group W to be the Weyl group of As.
Several families of Weyl group orbit functions can be defined in the context of the
group W. E-orbit functions are defined for every x € R? and )\ € P as

EA(Z‘): Z 627”:<U)(A),m>.

weWe



Weyl Group Orbit Functions in Image Processing 191

1w
241

@ @ 72 (int F), 7@2

ay 7 Q2

F1GURE 1. Root systems As, Co and Go. The grey triangle denotes the
fundamental domain of the corresponding affine Weyl group.

The E-orbit functions are described in detail in [4]. They are invariant with
respect to the even affine Weyl group, therefore, we restrict them on the domain F*©.

The method of discretization of E-orbit functions is described in detail in [3],
here we provide a brief summary for the case of As. We fix an integer M and define
a finite grid of points F;. We consider a scalar product of functions f, g sampled
on the grid,

(f,9)rg, = Y (@) f(2)g(x)
zEF,

where the weight function ¢(z) is given by the order of the even Weyl orbit of x,
ef(x) = ‘Stag‘[:;l(w)‘ . Finite family of orbit functions which are pairwise orthogonal
with respect to this scalar product is given by a grid of parameters A§,; labeling
the functions.

For every A\, N € A5, it holds that

<E)\, E)‘I>FI‘CI = C|W6|M2h§\\/5,\)\/,

where the coefficient h§” is the order of the stabilizer of A, ¢ is the determinant
of the corresponding Cartan matrix of W and |[W*| is the order of the even Weyl
group.

In the case of the Weyl group of A, the two grids are of the following form:

3 = {j\}UJY—FZs\;w%/|80,81,82EZZO,SO‘FSl‘f’SQZM}
M M
Ajew = {t1w1+t2w2|to,t1,t2 EZZO7tO+t1+t2 :M}
U{—tiwr + (t1 + ta)wa |to, t1,t2 € 7% tg + 11 +t2 = M}

—S S1+S
U{ 10‘)1/"' ' 2w¥|80781732€Z>0780+31+32:M}7 (1)

The orders of the two grids are the same and equal to . The values of

e°(x) and h§” are listed in Table 1.

(M+1)(M+2)
2
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zeFg  ef(x) AeAg, hsY
[80,81,32} 3 [to,tl,tﬂ 1
[so, s1,0] 3 [to, t1,0] 1
[s0,0, s2] 3 [to, 0, t2] 1
[0, 51, s2] 3 [0,t1,t2] 1
(0,0, s2] 1 (0,0, t2] 3
[0, s1,0] 1 [0, ¢1,0] 3
[s0,0,0] 1 [to, 0, 0] 3

TABLE 1. The coefficients £°(z) and h§Y of As. The variables s;,t;,
1 = 0,1,2, are non negative integers and have the same meaning as
in (1).

The discrete orthogonality allows us to perform a Fourier like transform,
called E-orbit transform. We consider a function f sampled on the points of F};.
We can interpolate it by a sum of E-functions

I]w(x): Z FAE)\(J?),

AEAS,

where we require f(z) = Ip(z) for every ¢ € Far. Therefore, the coefficients Fy
equal to

ENFRr SEYE G 2

TEFY,

P =

5. FE-orbit convolution and image filtering

The E-orbit convolution is defined for discrete functions f, g sampled on Fy, and
u € Fy, as

(frg)u) = Y (@) Y fla)glu—w(x).

zeFy, weWe

Then, the orbit convolution theorem holds:

(fxg)(w) = Y W MRS FAGAE(u), (3)
AEAS,

where F\ and G, are the E-orbit transforms of f and g given by (2).

Spatial filtering using the orbit convolution is proceed in the following way: a
digital image is sampled on a grid F'; for a suitable M. A filter is a discrete function
sampled on much smaller grid, different values of the filters have different result
on the image-edge detecting, blurring, edge enhancing, etc. Brightness values in
the new image are computed using the orbit convolution, applying the convolution
theorem (3).
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6. Example

We choose the family E-functions of Weyl group of A,. We define two filters, an
edge detecting filter and a blurring filter:

1
1 0 1 0 1
= 0 -1 = 0 1
YJedge 3 ( 3 ) y  gblu 48 0 1 1

We apply the filters to the image of Lena. The results are shown on Figures 2
and 3.

R
N ERRE

FIGURE 2. The original image on the left and the result of the edge
detection on the right.

FI1GURE 3. The image with added noise on the left and the result of the
bluring filter on the right.
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7. Conclusion

In this paper we used the family of E-orbit functions to provide processing of a
digital image using theory described in [1]. Compared to the method using the
family of C-functions [5], this one is more suitable to use in image processing,
mainly because of two reasons. The shape of fundamental domain corresponds
better to square images and the procedure is faster thanks to smaller number of
summands in the expression of orbit functions. However, the method is still slow
compared to the classical ones. In our future we are interested in modifying the
fast Fourier transform for orbit transforms to improve the speed of our procedure.
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Poisson and Fourier Transforms
for Tensor Products and an Overalgebra

Vladimir F. Molchanov

Abstract. For the group G = SL(2,R), we write explicitly operators inter-
twining irreducible finite-dimensional representations T}, with tensor products
T, ® Trn (we call them Poisson and Fourier transforms), they are differential
operators, and also we write explicit formulae for compositions of these trans-
forms with Lie operators of the overgroup G x G
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In this paper we present some results on tensor products of irreducible finite-
dimensional representations of the group G = SL(2,R). It is well known that the
tensor product 77 ® T, decomposes into the direct multiplicity free sum:

CTl & Tm = CZj|l—m,| + CZj|l—m,|—i—1 + -+ :rl+m71 + :rl+m .

We write explicitly operators intertwining 7; ®7T,,, and direct summands T}, we call
them Poisson and Fourier transforms. They turn out to be differential operators.
For the Poisson transform we give three variants. The Fourier transform coincides
up to a factor with Rankin-Cohen brackets [1,7].

Further, we write explicitly formulae for compositions of Poisson and Fourier
transforms with Lie operators of the overgroup G = G x G. It continues works
[2-6] on infinite-dimensional representations on homogeneous spaces. Now we deal
with finite-dimensional representations. Our approach does not need Plancherel
formulae.

In this paper we essentially use that the tensor product 7} ® T, is equivalent
to a representation of the group G in functions on the hyperboloid G/H of one
sheet in R? induced by a character of the diagonal subgroup H.

Supported by grants of Minobrnauki: 2014/285, No. 2476, the Russian Foundation for Basic
Research (RFBR): 13-01-00952-a and Russian Science Support Foundation.
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We use the following notation for “generalized powers”:
al=a@+1)(a+s—1), a9 =a(@—1)--(a—s+1),

here a is a number or an operator, s € N ={0,1,2,...}.

1. The group SL(2,R) and its representations

The group G = SL(2,R) consists of real matrices of the second order with unit

determinant:
[ a B _ _
g= < v 5 ) , ad—py=1.

Any irreducible finite-dimensional representation T} of the group G is labeled by
the number & (the highest weight) such that k € (1/2)N. It acts on the space Vj
of polynomials p(x) in x of degree < 2k (so that dim V3, = 2k + 1) by

(Ti(9) ) () = (o g) (3 + 0, w-g= 07T 1)

we consider that G acts from the right.
The Lie algebra g of the group G consists of real matrices of the second order
with zero trace. A basis in g consists of matrices:

A T AP B

The commutation relations are:
[Ly,L-]=-2Ly, [Ly,In]=—Ly, [L1,L-]=—-L_. (3)
Representations of g generated by representations of G we denote by the
same symbols.

Change in (1) @ <> 0 and 8 <> v, we obtain the contragredient representation

Ty, of the group G:

7 ~ 2k -~ o v

(Teto)e) @) = p(a-3) e+ ). 5= (5 ).

«

The representation Ty is equivalent to the representation Tj by means of the
map

PO 1
o 3, Pla) =1y <x> (4)
For basis elements (2) we have:
d d d
Ty(L-) = T(Ly) = —k, Tw(ly)= 2> | —2kax.
k(L) dz’ k(L1) xda: , Te(Ly) ==z dar x (5)

and Ty, (L+) = —Ty(L), Te(L1) = —Ti(Ly).
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2. Tensor products

Let us call the group G=GxG by the overgroup. It contains three subgroups
isomorphic to G: the diagonal G? consisting of pairs (g, g), and two component
subgroups 7 and G2 consisting of pairs (g, F) and (E, g) respectively, here E' is
the identity matrix, g € G.

The tensor product V; ® V,, consists of polynomials f(x,y) of degree < 2! in
x and degree < 2m in y. The representation Ty, = T} x T, of G acts on Vi®Vn
by

(Tim(g1,92)f) (2,y) = f(@- g1,y g2) - (Brz + 61)* - (Bay + 52)°™.

The restriction of Ty, to G? is the tensor product T; ® T}, of representations

T, and T, of G:

(Tr@ Tu)(9)f) (@) = flz-g,y-g)- (B +8)* - (By +8)>™.

Denote
r=m-—I. (6)
It is well known that T} ® T, decomposes into the direct multiplicity free
sum

T, @ Ty = Z Ty, (7)
k
where k ranges over the set

[rl, [7|+ 1, ..., 1+ m—=1,1+m. (8)
Respectively, V; ® V,,, decomposes into the direct sum

Vie V=Y Wi, 9)
k

Subspaces W), are invariant and irreducible with respect to 1; ® T,,. To simplify
writing, we do not show dependence on I, m — both on the right side of (9) and
later on. The restriction of T; ® T}, to W}, is equivalent to T}.

3. Poisson and Fourier transforms

Let k belong to the set (8). Denote
j=l+m-—Kk, (10)
so that 2l —j =k —r, 2m — j = k 4+ r. We consider operators My : Vi, — V, @ V,,
and Fy : V; ® V,,, — V} intertwining representations T; ® T;, and Ty, i.e.,
M, Ti(9) = (Ti @ Trn) (9) Mk,
Ti(9)Fr = Fi (1 ® T (9) 5

where g € G. We call operators M}, and F}, the Poisson and Fourier transforms,
respectively.

Since decomposition (7) is multiplicity free, the image of M}, is the subspace
Wy, and the transform Fj vanishes on all Wy except Wj. Therefore, transforms
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My, and F}, are defined uniquely up to a factor. The composition Fj M is a scalar
operator on Vj (multiplication by a number). First we construct M} and then we
normalize F}, such that Fy M = id, i.e., F}, on W}, is the inverse to My:

Fr=M_' on Wj. (11)

A polynomial f € V; ® V,, is reconstructed from its Fourier components F}, f
as follows:

F=> Myer, ¢r=Fif. (12)

Theorem 1. The Poisson transform My : Vi, — V; ® Vi, can be written in one of
the following three forms. Let ¢ € Vi,. Then

k47 k+r B d k+r—s
(M) (,9) = (k= 1) (5 — )" @, (3
k) (2,y Z;( S) y (dx> @
| (k4]
—w-a {0y thore) e, (14)
k+r
-t (0] e ), (15)

where r and j are given by (6) and (10).

Proof. First we prove (13). Now instead of the representation 7; ® T,, it is con-
venient to take the equivalent representation 1) ® T},. Instead of variables x,y we
take

=z, n= . (16)
The representation 7} ® Tm acts on V; ® V,,, by
(@@ Tu)9)f) (Em) = F(E-g.0-7) - (BE+0)* - (yn+a)*™

Let us “seat” T ®fm and V; ® V;,, on the hyperboloid of one sheet X in R3 defined
by equation —z% + 23 + 23 = 1. Realize X as the set of matrices
1 1— T3 o — T
= 17
t 2 ({EQ —+ 21 1+ 23 ( )
with determinant equal to 0. The group G acts on it: x + g~ 'xg, transitively. The
stabilizer of the point 2° = (0,0, 1) is the subgroup H of diagonal matrices

Ao
h= ( . A) |
Let us introduce on & horospherical coordinates &, n:

x:zlv (‘25 _177> N=1-¢. (18)
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The action of G in these coordinates splits: if a point = has coordinates £, 1, then
the point g~'xzg has coordinates £ = £ - g, 7 = 7 - g. The initial point x° has
coordinates £ = 0, n = 0. The element

9o = (1/£N "/1N) (19)

moves z¥ to the point o with coordinates &, . The map
D:f—F=N7"f feV®Vn, (20)

transfers V; ® V,,, to a space A;,, of some rational functions F of &, n. In virtue
of (17) and (18) these rational functions are polynomials in x1, xa, x3 on X. For
example, the polynomial f =1 in V; ® V;, goes to the polynomial ((zs + 1)/2)*™.
Denote By, = D(Wy,).

The map D intertwines T; ® Tm and the representation U, (recall that r =
m—1) of G induced by the character h — A~2" of the subgroup H. In horospherical
coordinates the representation U, is:

U-9)F)(&m) = F (1) (8¢ + )7

Let Z be the space of distributions on R concentrated at the point ¢ = 0. It
consists of linear combinations of the Dirac delta function 6(¢) and its derivatives
§®)(t). Formulae (5) define a representation of the Lie algebra g on Z, denote it
by T} again. Moreover, such a representation is defined not only for k € (1/2)N
but for arbitrary k& € R. We need k € (1/2)Z. In particular, the representation
T k1, k € (1/2)N, acts on 6®)(t) as follows:

T_j-1 (L1) 8P (t) = (k — p) 6P (1),

T 1 (Ly) 6 () = p(2h+1— p) 60D (1),

T_p_1(L_) 5@) (t) = 6(T’+1)(t) i
It has an invariant subspace spanned by 6®)(t), p > 2k + 1. The corresponding
factor space will be denoted by Z_j,_1, it is spanned by §P)(t), p < 2k. The factor

representation 7_p_q on Z_j_1 is equivalent to T}, hence it arises to the group G.
Let us consider a bilinear form on the product Z x Vj:

co=[ T Wyl dr (21)

It is invariant with respect to the pair (T_x_1,T%), i.e.,

(Tok1 (g C 0y =, Te(g)p), g€QG. (22)

The distribution 6*+7)(¢) (notice that k + r € N) is an eigenfunction for the
subgroup H with the eigenvalue A\?". Therefore, the map My, : Vi, — Aj,, defined by

(M) () = (~1F7 (T (91 6447, ),
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where g, is given by (19), intertwines T} with U,. Therefore, the image of this
map is just By. Because of (22), (21), (19) and (1) we get:

- k4 1t+§ .
() 0= () v %m (Tee1)™,

where z is a point of X with coordinates &, 7. A computation (for example, by
induction on k + r) gives

k+r

(T @ =30 ("T7) e (1) 0. 2)
s=0

Now we go back from the hyperboloid to the tensor product 7T; ® T, and
variables x,y, see (16), so that N = 1 — z/y. In virtue of (20) and (4) we multiply
the right-hand side of (23) by (Ny)?™. It gives (13).

After that, formulae (14) and (15) can be checked immediately, for example,
by induction. O

For f(x,y) we use notation
(ap) _ OTf
Ox® yb

Theorem 2. The Fourier transform Fy, : V; ® Vi, — Vi (recall that (11) holds) is
given by the following formula. Let f(x,y) be a polynomial in V; ® V,,,. Then

() (0) = e Z o (I () e, )

«@ j—

f

where j is given by (10),

szl — (Qk)(k+r)(2k =+ 2)[1] — 2k1—|— 1(1 Tmak+ 1)(2m+1).
Proof. Let us take decomposition (12). Differentiate f successively with respect to
y and put x = y = t, then from (13) we obtain that f(9)(t,¢), j =0,1,2,..., is a
linear combination of functions vy (t), @), (t), .. -, gol(i)m (t), where k = I+m—j. We
obtain a triangular system of equations for functions ¢ (¢) and their derivatives.
It shows that ¢ (t) is a linear combination of functions

O (g ), ¢ po5-1) 4\ o ay’
FOR@, O ) O, () )

and, therefore, @y (t) is a linear combination of functions fU=% ) (¢ t) where
a = 0,1,...,4. Thus, formula (24) means that a function p(¢) in Vj is a linear
combination of fU=* ) (¢, t), where f = Mjp. We have to show that coefficients
of this linear combination are just ones from (24). We see from (13) that only one
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term, namely the term with s = k + r, gives a non-zero contribution, the latter is
equal to

(k =+ D)FHT (-1 jlo(),
notice that the first factor here is (2k)**7]. Substitute it on the right-hand side of
(24). Then this right-hand side becomes

j .
TZ, 20-j+a\ (2m -«
c (2R ﬂ( a ) <J—a ) s
a=0

B (2ki2)b‘] ) (i) @2 —j+ D @m—j+ 1)V o) = o).

a=0

Here we apply the binomial formula for generalized powers. O

4. Interaction of Poisson and Fourier transforms
with the overalgebra

The Lie algebra of the overgroup G (“overalgebra”) is the direct sum g = g + g.
The Lie algebras g?, g1, go of the subgroups G, G1, Gy consist of pairs (X, X),
(X,0), (0, X) respectively, here X € g.

We find compositions of Lie operators T}, (X,Y) and transforms M}, and Fy,.
For pairs (X, X) € g¢ the answer is simple, since My, and F}, are intertwining oper-
ators. Therefore, it is sufficient to take pairs (X,Y") in a complementary subspace
for g¢. For such a subspace we take the subalgebra gs.

Let us introduce the following operators Si(X), k € N, and E(X) on the real
line R. They depend on X € g linearly, and on basis (2) they are given by

d2
E(L)=1, Sp(l-)= .,
By =t, Se)=t% @k
1) — 14, k 1) — dt2 dt,
2
B(Ly)=1t*, Si(Ly) :tthQ —2(2k + 1)ti + (2k + 1)(2k + 2).

Lemma 3. The following commutation relations hold:
Sk ([X,Y]) = Ti(X) S (Y) = Sk (Y) T2 (X))
E(X,Y]) = Ti(X) E(Y) = E(Y) Ti—1(X) .
Lemma 4. The operators Si(X) map Vi1 to V.
Indeed, Sk(X) act on monomials as follows:
Sk(L_)t* =s(s—1)-t72,
Sp(Ly)t* = s[s — (2k +2)] - 571
Sp(Lp)t® =[s— 2k +1)][s — (2k+2)] - t°.
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Further, introduce the following coefficients ax, Sk, Vi (as before, we do not
show dependence on [, m):
2m —k —r)(k — 1
o= Bk nE T D) (25)
2(k+1)(2k+1)

1 r@2m-—-r+1)

=y 2%k(k+1) (26)
_ CCmtk—r+1)(k+r)
= 2%(2k + 1) (27)

Theorem 5. The operator T,,(0,X), X € g, interacts with the Poisson transform
My, as follows:

T (0, X) My = ag - Myp1 E(X) + Br - M T (X) + v - Mi—1 Sk—1(X) . (28)
The last term is correct, see Lemma 4.

Proof. First we take X = L_. Then (28) is
0
dy

the prime means differentiation. We use (14), the commutation relation:

d [s] d d d [s]
{(y_x)dx —l—a} dr  dx {(y_x)dx —|—a—|—1}

and the equality

My oy =ag - Myy10+ Be - Mo+ - Mi—1¢", (29)

0 0
My, o+ ngO:ngOI.
dy or

which means that My, intertwines Ty (L_) and T, (L—, L_). It allows to check (29)
with coefficients (25), (26), (27).

For X = L1 and X = L; we use equality (28) with X = L_ already proved
and the commutation relations (3) — successively the first and the second ones,
and corresponding relations for operators Si(X) and F(X) from Lemma 3. [

Theorem 6. The operator Ti,,(0,X), X € g, interacts with the Fourier transform
Fy as follows:

Fe Tin (0, X) = Vet - Se(X) Froqa + Br - Te(X) Fiy + a1 - BE(X) Fr—r . (30)
Proof. Let us apply T, (0, X) to decomposition (12). By (28) we obtain
Tim(0,X) f =Y _{ar M1 B(X) pr + B My Te(X) o1
’ + Y Myg—1 Sk—1(X) 1 }-
Now we apply to it the Fourier transform F,. and use (12), it gives

I, Tlm(07 X) f=ac E(X) Ye—1 + Be TC(X) Pe + Vet1 SC(X) Pe+1 5
which is just (30). O
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Unipotent Flow on SL2(Z) \ SL2(R):
From Dynamics to Elementary Number Theory

Nikolay Moshchevitin

Abstract. In this paper we give a simple and elementary proof of a quantita-
tive density result for unipotent flow on SL2(Z) \ SL2(R).

Mathematics Subject Classification (2010). 11J70, 37A45, 37A17.
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titative density.

1. M. Ratner’s Orbit Closure Theorem and dynamics on
SL,,(Z) \ SLy(R)

One of the most important results in the modern Ergodic Theory is M. Rat-
ner’s Orbit Closure Theorem. It has many application in the theory of Dynamical
System itself, as well as in various problems related to Number Theory. Ratner’s
theorem states that given any Lie group G, any discrete subgroup I' C G with fun-
damental domain I'\ G of finite measure and any “flow” ¢ generated by unipotent
elements, the closure of every ¢-orbit is homogeneous. In particular the closure of
w-orbit is dense “modulo I in a certain closed subgroup S C G. For thr precise
definitions and formulations and the history we refer to a wonderful book [8] and
the bibliography therein, as well as to the original paper [10] by M. Ratner.

In the simplest case G = SLa(R) and I' = SLy(Z) Ratner’s theorem gives a
corollary that if the ratio 8/ is irrational then the orbit

10
A-(t 1), teR

A= (?y‘ g) 7’ (1)

is dense in the space SLo(Z) \ SL2(R) of two-dimensional lattices.

of the lattice

Research is supported by the grant RNF 14-11-00433.
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The main results of the present paper (Theorems 1,2 below) give a quan-
titative version of this density statement by means of an elementary approach
related to continued fractions and asymptotics for the number of solutions of the
congruence zy = 1 (mod p), modulo prime number p where x and y belong to
certain intervals of consecutive integers. Our continued fractions consideration is
connected to a paper by M. Laurent and A. Nogueira [3].

Certain results similar to our Theorem 1 below are due to A. Strémberg-
sson [12] and F. Maucourant and B. Weiss [7]. From their theorems a result of the
same form as our Theorem 1 follows immediately, but in the right-hand side of (6)
there will be O(t;%) with an effective positive § which is not calculated explicitly.
We do not compare our exponent to those from [7, 12]. The approach from [7, 12]
relies on the methods of Dynamical Systems.

It worth mentioning that in the case G = SL3(R) and I" = SL3(Z) Ratner’s
theorem provides a simple and clear proof for the famous theorem by Margulis [4-6]
(see also [2]) which establish the density of values of indefinite non-degenerate
quadratic @ forms in > 3 variables, provided that @ is not a scalar multiple
of a form with integer coefficients. Unfortunatly we are not able to extend our
elementary approach to this situation.

2. Two-dimensional lattices and 2 X 2 matrices
Suppose that p > 0. For reals A;, By we define
As = —pA;, Bo = —pBjy. (2)
Let r € (0,1) be a positive constant such that for any A;, By < @ the equation
xy —zw =1 (3)
has a solution z,y, z,w € Z with
A -Q <x<A+Q",B1—-Q <z<B1+Q",
A= Q" <y< A+ Q", B —Q" Zw< By +Q". (4)

Of course r does not depend on p. (We can take as r any number greater than
3/4, see Section 5).

Theorem 1. Suppose that we have two unimodular matrices

<g g)(i f?z)eng(R). (5)

Suppose that § # 0 and B/6 € Q. Then there exists a sequence of reals t, —
00, v — oo and a sequence of unimodular integer matrices

(d #)=(it) 3 ese@
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152 a
0 5)G D@D p)=om  ®

where the constant in O(-) may depend on the size of matrices (5).

Corollary. Consider A defined in (1) and suppose that 3/5 & Q. Let T’ € SLy(R) be
another unimodular matriz. Then there exists a sequence of reals t, — 0o, v — 00
such that for the lattice Ay, = A - (tl (1)> from the orbit of the lattice A in the
horocycle flow on SLa(Z) \ SL2(R) one has

dist(A, ,T) = O(|t,|"+1)

(here we consider the natural distance in the space of lattices (see [1])).

such that

Our next result deals with the situation when the ratio /4 is not very well
approximable by rationals. In this situation we establish a “uniform” bound.

Theorem 2. Consider a function ¥ (t) decreasing to zero as t — 400 and such that
¥(t) = O(t™1). Define p(t) to be the function inverse to the function t — 1/9(t).
Suppose that under the conditions of Theorem 1 one has

Then there exists a positive constant C' such that for any T > 1 there exists a
solution

1 2
(l% l;) €SLy(Z), teR
12 12

of the system of inequalities

1 t\ (a 7\ /1 P &1 &
0o 1)\p )\l 2) " \m;m m

Here || - || stands for the mazimum of absolute values of elements of a matriz.

< CT¥ Jp (Tlir) L 1<t <T. (8)

We should note here that if the series

oo
> (g
g=1
converges, then for almost all real numbers w one has
min [£g — p| > c(w)(q), Vq € Zs,
PEZ
with a certain positive ¢(w) depending on w.

Example. If ¢(t) = ¢, w > 1 then p(t) = t'/* and the right-hand side of (8) is
equal to
O (T 1-T-r_ w(11+r) ) X
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This bound is non-trivial provided w < r~!. Moreover in the case when 3/ is a
badly approximable number (that is, 1(t) = xt~! with a positive ) the right-hand

side of (8) is equal to T ; in this case we see that the result of Theorem 1 holds
uniformly.

Note that when r is close to 3/4 then the exponent :j& is close to —1/7.
We give all the proofs in Sections 3-5.

3. Lemmata

We consider Euclidean plane R? with coordinates (u,v). Suppose that |ad—3y| = 1
and put
M = 4max(|al, |B], 7], 18], [8]7")

_ (o
A_<6 5)22.

The following lemma is a simple result from continued fractions’ theory.

Consider the lattice

Lemma 1. Suppose that 5/5 ¢ Q. Let p,/q, and pyy1/q+1 be two consecutive
convergent fractions to /6. Then
v qu+1

i
() Pv Pv+1

(ii) wvectors
€] = (g) Qv — <g> Pv, €2 = (g) qu+1 — (g) Pr+1

form a basis of A;
(iii) the set

I, = {(u,v) €R?: |u| < Mqy41, |v| < Mq;il} c R?

= (_1)1/;

contains a fundamental domain with respect to A, and hence any its shift
e +1I,, e € R? contains at least one point of A.

Corollary 1. For any n and R € Zy the set
IL (7 R) = {(u,v) €R®: |u| < 2MRqy41, |v—1l <2MRq; [}
contains (2R + 1)? points of the lattice A of the form
e +lier+ e, l;€Z, |lj| <R, (9)
with some eg € A.

Lemma 2. There exist f1,fy € A such that
(i) f1,fs form a basis of A;
(H) fj € Hu(njvqg—i-l)? ] =1,2.
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Proof. Consider lattice points of the form (9) from Corollary 1 for parameters 7;
and 72. Let these lattice points be

e +lier +13es (10)
for parameter 7; and
el +13e1 + I3es (11)

for parameter 7. We may suppose that n; # 0. Put p = [n2/m|, @ = ¢u+1, R =

Q"= Qp+1 and
A17 A2 — ql/ qu+1 -1 0 0
By Bs —Pv —DPut1 mon2)
Then (2) is valid and 4; < Q.

-1
Under the multiplication by the matrix < i Qv+1 ) lattice points (10)
—Pv  —Pv+1

and (11) turn into integer points (3;) and <5}> respectively, satisfying (4). By

the definition of r there exist x,y, z, w satisfying (3). So there exist lf, i,7=1,2
such that two points (10) and (11) form a basis of A. O

Lemma 3. Suppose that

& & 2 B
= =1 12
m 1 H, H> (12)
Suppose that
max |H; — ;| < & (13)
7j=1,2
and Hy, Hy # 0. Then
B4 E2-& SE'(|§1|+|52|). (14)
H, H, |H1 Ho|

Proof. As
§1m2 — E1Ha — (a1 — E2Hy) = 0,
from (12) we see that
[(§&1 —E1)He — (& — E2)Hu| < e (|G] + &)

So (14) follows. O
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4. Proofs of theorems

Proof of Theorem 1. We take large v. Let vectors f; from Lemma 2 be of the form
f; = ( ;{JJ ), j =1,2. Then Hy, Hy # 0 and maxj—1 2 |H; —n;| < 2Mq£ﬁ and
max;—12|=;| < 2Mq, 1. Put t, = 51}}151. Then by (14) we have

=0(q)71).

Of course we have [t,| = O(g,1}). Now

1t (a Y\ [ 3 (1 t\[(E1 E
0 1)\pB 6)\u 3) \o 1)\H Hy)’
Lot (B E2) (& &\ _ A1
<0 1) (Hl Hz) (771 772) = Olg41).

So Theorem 1 follows. O

and

Proof of Theorem 2. Given real U > 1 put U, = p(U). By Minkowski’s convex
body theorem and condition (7) one can take the primitive point (g, p) € Z? such
that

U.<q<U |(B/8)-q—p|l<U. (15)

Then this point may be completed to a basis of Z2 by a point (¢’,p’) € Z? such
that

U.<q <2U. |(8/d) q—pl <U". (16)
From (15),16 we see that the rectangle
{(u,v) e R?*: |u] < MU, |v| < MU'} C R?

contains a fundamental domain for A. Now we follow the argument of the proof
of Theorem 1. We see that ¢ may be taken to be < U'*", and we establish the

bound
1 t a7y l% l% 51 52
0 1)\p )\ 5) \m m

By putting U = T+ we have

< UU L

UTUSt =Tk /p (TliT) ,

and Theorem 2 follows. O
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5. About admissible value of r

Here we show that any value r > 3/4 is good for our purpose. First of all we may
suppose that w = p is a prime number (here we use a well-known fact that between
Q and Q + Q%/* for large @ there exists a prime number, see [9]).

Then we apply the well-known fact that for any two intervals I, I3 of lengths
> p3/4%¢ there exist € I,y € I such that 2y = 1 (mod p) (see [11, 13]). This
result easily follows from A. Weil’s bounds for Kloosterman sums. Now z = #¥ !
will be an integer. Easy calculation shows that z,y, z, w will satisfy (4).
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Lie Superalgebras of
Krichever—Novikov Type

Martin Schlichenmaier

Abstract. Classically, starting from the Witt and Virasoro algebra important
examples of Lie superalgebras were constructed. In this write-up of a talk
presented at the Bialowieza meetings we report on results on Lie superalge-
bras of Krichever—-Novikov type. These algebras are multi-point and higher
genus equivalents of the classical algebras. The grading in the classical case is
replaced by an almost-grading. It is induced by a splitting of the set of points,
were poles are allowed, into two disjoint subsets. With respect to a fixed split-
ting, or equivalently with respect to a fixed almost-grading, it is shown that
there is up to rescaling and equivalence a unique non-trivial central extension
of the Lie superalgebra of Krichever—Novikov type. It is given explicitly.

Mathematics Subject Classification (2010). Primary: 17B56; Secondary: 17B68,
17B65, 17B66, 14H99, 81R10, 81T40.

Keywords. Superalgebra; Krichever—-Novikov type algebra; central extensions;
Witt algebra; Virasoro algebra; Lie algebra cohomology; conformal field the-
ory.

1. Introduction

In the context of conformal field theory (CFT) the Witt algebra and its universal
central extension, the Virasoro algebra, play an important role. These algebras en-
code conformal symmetry. To incorporate superconformal symmetry one is forced
to extend the algebras to Lie superalgebras. Examples of them are the Neveu—
Schwarz and the Ramond type superalgebras.

These algebras we call the classical algebras. They correspond to the genus
zero situation. Krichever—Novikov algebras are higher genus and multi-point ana-
logs of them. For higher genus, but still only for two points where poles are allowed,

Partial support by the Internal Research Project GEOMQ11, University of Luxembourg, and by
the OPEN scheme of the Fonds National de la Recherche (FNR) with the project QUANTMOD
013/5707106 is acknowledged.
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some of the algebras were generalised in 1986 by Krichever and Novikov [8-10].
In 1990 the author [13-16] extended the approach further to the general multi-
point case. These extensions were not straight-forward generalizations. The crucial
point was to introduce a replacement of the graded algebra structure present in
the “classical” case. Krichever and Novikov found that an almost-grading, see
Definition 2, will be enough to allow constructions in representation theory, like
triangular decompositions, highest weight modules, Verma modules and so on.
In [15, 16] it was realized that a splitting of the set A of points where poles are
allowed into two disjoint non-empty subsets A = I U O is crucial for introducing
an almost-grading. For every such splitting the corresponding almost-grading was
given. Essentially different splittings (not just corresponding to interchanging of
I and O) will yield essentially different almost-gradings. For the general theory
(including the classical case) see the recent monograph [20].

In the context of conformal field theory and string theory the Neveu-Schwarz
and the Ramond type superalgebras appear as superextensions of the classical
algebras. Some physicists also studied superanalogs of the algebra of Krichever—
Novikov type, but still only with two points where poles are allowed, e.g., [1-4, 21].
The multi-point case was developed by the author some time ago and recently
published in [19]. See also [20].

Starting from Krichever—Novikov type superalgebras interesting explicit in-
finite-dimensional examples of Jordan superalgebras and antialgebras can be con-
structed. In this respect, see the work of Leidwanger and Morier-Genoud [11, 12],
and Kreusch [7].

In this write-up we will recall the construction of the Krichever—Novikov
(KN) type algebras for the multi-point situation and for arbitrary genus. The
classical situation will be a special case. In particular, the construction of the Lie
superalgebra is recalled. Its almost-graded structure, induced by a fixed splitting
A=1TUQO, is given.

The main result presented here is the fact that up to rescaling the central
element and equivalence of extension, there is only one non-trivial almost-graded
central extension of the Lie superalgebra of KN type with even central element.
We stress the fact, that this does not mean that there is essentially only one cen-
tral extension. For an essentially different splitting we get an essentially different
central extension. For higher genus there are even central extensions not related
to any splitting. In the classical situation in this way uniqueness of the non-trivial
central extension is again obtained. Recall that “classical” means genus zero and
two points where poles are allowed.

We will give a geometric description for the defining cocycle, see (43). For
the two-point case the form of the cocycle was given by Bryant in [4], correcting
some omission in [1].

In the case of odd central elements we obtained that the corresponding central
extension of the Lie superalgebra will split. For the proofs we have to refer to the
original article [19], respectively to [20].
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2. The classical Lie superalgebra

For the convenience of the reader we start with recalling the definition of a Lie
superalgebra. Let S be a vector space which is decomposed into even and odd
elements § = S5 @ Sy, i.e., S is a Z/2Z-graded vector space. Furthermore, let [.,.]
be a Z/27Z-graded bilinear map S x & — S such that for elements z,y of pure
parity

[z,y] = —(=1)"[y, z]. (1)
This says that
(S5, So] € Sp, (S5, S1] € S, [S1,S1] € Sp, (2)

and [z, y] is symmetric for x and y odd, otherwise anti-symmetric. Furthermore, S
is a Lie superalgebra if in addition the super-Jacobi identity (z,y, z of pure parity)

(=12, [y, 2] + (=D [y, [z, 2]] + (=) [z, [, ] = 0 (3)

is valid. As long as the type of the arguments is different from (even, odd, odd) all
signs can be put to +1 and we obtain the form of the usual Jacobi identity. In the
remaining case we get

[x,[y,z]] + [yv[zvx]] - [z,[x,y]] =0. (4)
By the very definitions Sy is a Lie algebra.

In purely algebraic terms the Virasoro algebra )V is given by generators
{en(n € Z),t} with relations

1 —m -
12(n3 —n)o, ™ t, [t,en] =0. (5)

Without the central term ¢ we obtain the Witt algebra W.
For the classical (Neveu-Schwarz) Lie superalgebra we add an additional set
of generators {¢,, | m € Z + ;} and complete the relations to

[en,em] = (M —n)entm +

1 3 —-m
12 (n - n) 671, t’
n

[envsﬁm] = (m_ 2) Pm+n,

1 1 —m
[Qpnvwm] = €n+m — 6 <n2 - 4) 6, "t
[t,en] = [t,om] =0.

These algebras can be realized in a geometric manner by considering vector fields
and forms of weight —1/2 (see below) on the Riemann sphere S? (i.e., the Riemann
surface of genus zero). If we take the vector fields e,, = z"*! jz, the forms of weight
—1/2 given by ¢, = 2™T1/2(dz)~1/2, let the vector field e, act by taking the Lie
derivative, and set [©m, Yn] = @m - @n then we obtain the relations above without
central terms. The element ¢ is an additional element and the factors in front of

[en, em] = (M —n)emyn +
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it seem to be rather ad-hoc for the moment!. One verifies by direct calculations
that by our prescription we obtain indeed a Lie superalgebra.

3. Higher genus generalization

Starting from the geometric realization above we can extend this to arbitrary
genus. For the whole contribution let ¥ be a compact Riemann surface (without
boundary). We do not put any restriction on the genus g = g(2). Furthermore, let
A be a finite subset of ¥. Later we will need a splitting of A into two non-empty
disjoint subsets I and O, i.e., A=1TUO. Set N := #A, K := #I, M := #0, with
N = K + M. More precisely, let

I=(P,...,Pk), and O=(Q1,...,Qm) (7)

be disjoint ordered tuples of distinct points (“marked points”, “punctures”) on
the Riemann surface. In particular, we assume P; # @; for every pair (7,j). The
points in I are called the in-points, the points in O the out-points. Sometimes we
consider I and O simply as sets.

Our objects, algebras, structures, ... will be meromorphic objects defined on
3: which are holomorphic outside the points in A. To introduce them let K = Ky
be the canonical line bundle of 3, respectively, the locally free canonical sheaf.
The local sections of the bundle are the local holomorphic differentials. If P € X
is a point and z a local holomorphic coordinate at P then a local holomorphic
differential can be written as f(z)dz with a local holomorphic function f defined
in a neighborhood of P. A global holomorphic section can be described locally
for a covering by coordinate charts (U;, z;)ics by a system of local holomorphic
functions (f;)ics, which are related by the transformation rule induced by the
coordinate change map z; = z;(z;) and the condition f;dz; = f;dz;. This says

N\ L
n=n(52) )

With respect to a coordinate covering a meromorphic section of K is given as a
collection of local meromorphic functions (h;);e s for which the transformation law
(8) is true.
In the following A is either an integer or a half-integer. If A is an integer then

(1) KN = K& for A > 0,

(2) K°= O, the trivial line bundle, and

(3) KN = (K52 for X < 0.
Here as usual K* denotes the dual line bundle to the canonical line bundle. The
dual line bundle is the holomorphic tangent line bundle, whose local sections are
the holomorphic tangent vector fields f(z)(d/dz). If X is a half-integer, then we
first have to fix a “square root” of the canonical line bundle, sometimes called a
theta-characteristics. This means we fix a line bundle L for which L®2? = K.

1Below we will give for the factors a geometric expression.
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After such a choice of L is done we set K* = K3 = L®?*. In most cases we
will drop mentioning L, but we have to keep the choice in mind. Also the structure
of the algebras we are about to define will depend on the choice. But the main
properties will remain the same.

Remark. A Riemann surface of genus ¢ has exactly 229 non-isomorphic square
roots of K. For g = 0 we have K = O(—2) and L = O(—1), the tautological bundle
which is the unique square root. Already for ¢ = 1 we have 4 non-isomorphic ones.
As in this case K = O one solution is Lo = O. But we have also the other bundles
L;,i=1,2,3.

As above we can talk about holomorphic and meromorphic sections of K*.
In local coordinates z; we can write such sections as fidzi)‘, with f; being a local
holomorphic, respectively meromorphic function.

We set
FX = FMA) := {f is a global meromorphic section of K | ()
such that f is holomorphic over ¥\ A}.
Here the set of A is fixed and we drop it in the notation. Obviously, F* is an
infinite-dimensional C-vector space. Recall that in the case of half-integer \ ev-
erything depends on the theta characteristic L. We call the elements of the space

F> meromorphic forms of weight \ (with respect to the theta characteristic L).
Altogether we set

Fi= 7 (10)

\eSZ

4. Algebraic structure

4.1. Associative multiplication
The natural map of the locally free sheaves of rank one
KX x KY = KA @KV = MY, (s,1) = s @, (11)
defines a bilinear map
N O A (12)
With respect to local trivialisations this corresponds to the multiplication of the
local representing meromorphic functions

(sdz™tdz") v sdz - tdz” = st d2*. (13)
If there is no danger of confusion then we will mostly use the same symbol for the

section and for the local representing function.
The following is obvious

Proposition 1. The vector space F with operation - is an associative and commu-
tative graded (over %Z) algebra. Moreover, F° is a subalgebra.
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We also use A := FY. Of course, it is the algebra of meromorphic functions
on ¥ which are holomorphic outside of A. The spaces F* are modules over A.
4.2. Lie algebra structure

Next we define a Lie algebra structure on the space F. The structure is induced
by the map

FAx FV — FAVEL (s5,1) > [s,1], (14)
which is defined in local representatives of the sections by
dt d
(sdz* tdz") — [sd2?, tdz"] == <(—)\)st + thz) dz T (15)
and bilinearly extended to F.
Proposition 2.
(a) The bilinear map [.,.] defines a Lie algebra structure on F.

(b) The space F with respect to - and [.,.] is a Poisson algebra.
Proof. This is done by local calculations. For details see [17, 20]. O

Proposition 3. The subspace L := F~! is a Lie subalgebra with respect to the
operation [.,.], and the F*’s are Lie modules over L.

As forms of weight —1 are vector fields, £ could also be defined directly as the
Lie algebra of those meromorphic vector fields on the Riemann surface ¥ which are
holomorphic outside of A. The product (15) gives the usual Lie bracket of vector
fields and the Lie derivative for their actions on forms:

el = |e) g SO ] = (@ - F@E ) . o)

VAN = Ll =i = (D ARG o

4.3. Superalgebra of half-forms

(17)

Next we consider the associative product
CFMEN FTR S F = (18)
and introduce the vector space and the product
S=LaF 2 (o), (fv)=(eflte-veo=—f9). (19

Usually we will denote the elements of £ by e, f,..., and the elements of F~1/2
by @, 1, .. ..

Definition (19) can be reformulated as an extension of [.,.] on £ to a “super-
bracket” (denoted by the same symbol) on S by setting
de 1 de ~1/2
= — = . - - 2
el =l == (¢ = Joe ) @ (20)

and

[p, ] = ¢ - 9. (21)
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We call the elements of £ elements of even parity, and the elements of F~1/2

elements of odd parity. For such elements x we denote by # € {0, 1} their parity.
The sum (19)_can be described as § = S5 ® Si, where §; is the subspace of
elements of parity 1.

Proposition 4 ([19, Prop. 2.5]). The space S with the above introduced parity and
product is a Lie superalgebra.

Definition 1. The algebra S is the Lie superalgebra of Krichever—Novikov type.

Remark. The introduced Lie superalgebra corresponds classically to the Neveu-
Schwarz superalgebra. In string theory physicists considered also the Ramond
superalgebra as string algebra (in the two-point case). The elements of the Ramond
superalgebra do not correspond to sections of the dual theta characteristics. They
are only defined on a 2-sheeted branched covering of ¥, see, e.g., [1, 3]. Hence, the
elements are only multi-valued sections. As here we only consider honest sections
of half-integer powers of the canonical bundle, we do not deal with the Ramond
algebra.

The choice of the theta characteristics corresponds to choosing a spin struc-
ture on Y. Furthermore, this bundle is related to graded Riemann surfaces. See
Bryant [4] for more details on this aspect.

5. Almost-graded structure

Recall the classical situation. This is the Riemann surface P*(C) = S?, i.e., the
Riemann surface of genus zero, and the points where poles are allowed are {0, c0}.
In this case the algebras introduced in the last chapter are graded algebras. In the
higher genus case and even in the genus zero case with more than two points where
poles are allowed there is no non-trivial grading anymore. As realized by Krichever
and Novikov [8] there is a weaker concept, called an almost-grading which to a large
extent is a valuable replacement of an honest grading. Such an almost-grading is
induced by a splitting of the set A into two non-empty and disjoint sets I and O.
The (almost-)grading is fixed by exhibiting certain basis elements in the spaces
F* as homogeneous.

Definition 2. Let £ be a Lie or an associative algebra such that £ = $®,czL, is a
vector space direct sum, then £ is called an almost-graded (Lie-) algebra if

(i) dim £,, < oo,

(ii) There exist constants Ly, Ly € Z such that

n+m-+Lo
Lo LmwC P Ln, Inmel (22)
h=n+m—1L1

Elements in £,, are called homogeneous elements of degree n, and L, is called
homogeneous subspace of degree n.
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In a similar manner almost-graded modules over almost-graded algebras are
defined. Of course, we can extend in an obvious way the definition to superalge-
bras, respectively even to more general algebraic structures. This definition makes
complete sense also for more general index sets J. In fact we will consider the
index set J = (1/2)Z for our superalgebra. The even elements (with respect to the
super-grading) will have integer degree, the odd elements half-integer degree.

As already mentioned above the almost-grading for F* is introduced by ex-
hibiting certain elements fz‘%p € F*, p=1,..., K which constitute a basis of the
subspace F, of homogeneous elements of degree m. Here m € Jy with J) = Z (for
A integer) or J\ = Z 4 1/2 (for A half-integer). The basis elements f;), , of degree
m are required to have order

ordp, (f3,) = (n+1—X) — "

at the point P; € I, i =1,..., K. The prescription at the points in O is made in
such a way that the element ff,‘l,p is essentially uniquely given. For more details
on the prescription see [20, Chapter 4] or the original article [14]. In the classical
case we have deg(e,,) = n and deg(p,,) = m. Warning: The spaces F, depend on
the splitting of A.

For the property of being almost-graded the following result is crucial. It is
obtained by calculating residues and estimating orders.

Proposition 5 ([20, Thm. 3.8]). There exist constants Ry and Rs (depending on
the number and splitting of the points in A and of the genus g) independent of
n,m €J and A and v such that for the basis elements

A v _ A trv T
fn,p . fm,r - n+m,,r6p
n+m+R; K

(h.s) Mr ()
Y D anman Tt Yapyman €Cs
h=n+m+1 s=1

[f2 5 fna] = (= Am - wm) fo0E 06

(23)

n+m+Rs K

(h,s) Av+1 (h,s)
Y Dbt by € C-
h=n+m+1 s=1

The constants R; can be explicitly calculated (if needed).
As a direct consequence we obtain

Theorem 6. The algebras L and S are almost-graded Lie, respectively Lie super-
algebras. The almost-grading depends on the splitting of the set A into I and O.
More precisely,

= F  with dimF), =K. (24)

meJx
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and there exist Ry, Rs (independent of n and m) such that

n+m+R2 n+m+R3
Lo L] € B Lus  [SnSulC P Su
h=n+m h=n+m

Also from (23) we directly conclude

Proposition 7. For allm,n € Jy and r,p=1,..., K we have

[€n.ps€mr] = (M —n) - €npm.r 67 + h.d.t.
;L) “ Optm,r 6F + h.d.t. (25)
Onp * Pmr = €ntm,r OF + h.d.t.

€n,p - Pm,r = (M —

Here h.d.t. denote linear combinations of basis elements of degree between n+m+1
and n+m+ R;.

See (6) for an example in the classical case (by ignoring the central extension
appearing there for the moment).

Remark. Leidwanger and Morier-Genoux introduced in [11] also a Jordan super-
algebra based on the Krichever—Novikov objects given by

T =FaeF2=0o. (26)

Recall that FV is the associative algebra of meromorphic functions. The (Jordan)
product is defined via the algebra structure for the spaces F* by

fog:=f-g €F,
fop=f-p eF 2 (27)
pov=[py] €F
By rescaling the second definition with the factor 1/2 one obtains a Lie antialgebra.
See [11] for more details and additional results on representations. Using the results

presented here one obtains an almost-grading (depending on a splitting A = TUO)
of the Jordan superalgebra
P Tn (28)

mel/27

Hence, it makes sense to call it a Jordan superalgebra of KN type. Calculated for
the introduced basis elements we get (using Proposition 5)

An,p © Am,,r = An+m,r 6,{7 + h.d.t.
Anp © Qmyr = Prgm,r OF + hud.t. (29)

1
(m —n)Aptm,r0F +h.d.t.

Pn,p © Pm,r = 9
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6. Central extensions

A central extension of a Lie algebra W is defined on the vector space direct sum
W =C @ W. If we denote & := (0,z) and ¢ := (1,0) its Lie structure is given by

[@,9) = [,y] + @(x.y) -1, [LW]=0, zyecW. (30)
Then W will be a Lie algebra, e.g., fulfill the Jacobi identity, if and only if ® is
antisymmetric and fulfills the Lie algebra 2-cocycle condition

0= dQ(I)(xvy? Z) = @([a:,y], Z) + (I)([y7 Z],JT) + (D([z,x],y) (31)

There is the notion of equivalence of central extensions. It turns out that two
central extensions are equivalent if and only if the difference of their defining 2-
cocycles @ and @’ is a coboundary, i.e., there exists a ¢ : W — C such that

D(z,y) — ¥'(z,y) = dig(z,y) = ¢([z, y)). (32)
In this way the second Lie algebra cohomology H?(W, C) of W with values in the
trivial module C classifies equivalence classes of central extensions. The class [0]
corresponds to the trivial (i.e., split) central extension. Hence, to construct central
extensions of our Lie algebras we have to find such Lie algebra 2-cocycles.
For the superalgebra case central extension are obtained with the help of a
bilinear map
P:SxS—>C (33)
via an expression completely analogous to (30). Additional conditions for ® follow
from the fact that the resulting extension should be again a superalgebra. This
implies that for homogeneous elements z,y,z € S (S might be an arbitrary Lie
superalgebra) we need
D (r,y) = —(~1)(x,y). (34)
If x and y are odd then the bilinear map ® will be symmetric, otherwise it will be
antisymmetric. The super-cocycle condition reads in complete analogy with the
super-Jacobi relation as

(1) ®(z, [y, 2]) + (-1)"7"@(y, [z,2]) + (-1)7 (2, [z,y]) = 0.  (35)
As we will need it anyway, I will write it out for the different type of arguments.

For (even, even, even), (even, even, odd), and (odd, odd, odd) it will be of the
“usual form” of the cocycle condition

O(z, [y, 2]) + ®(y, [z, 2]) + (2, [z,4]) = 0. (36)
For (even, odd, odd) we obtain
(I)(x7[y7z])+q)(y7[zvx]) —(I)(Z,[J?,y]) = 0. (37)

Now we have to decide which parity our central element should have. In our con-
text, as we want to extend the central extension of the vector field algebra to the
superalgebra, the natural choice is that the central element should be even. This
implies that our bilinear form ® has to be an even form. Consequently,

O(z,y) = P(y,x) =0, for z=0,5=1. (38)
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In this case only (37) for the (even, odd, odd) and (36) for the (even, even, even)
case will give relations which are not trivially zero.
Given a linear form ¢ : § — C we assign to it

As in the classical case d1¢ will be a super-cocycle. A super-cocycle ® will be a
coboundary if and only if there exists a linear form ¢ : S — C such that ® = §;¢.
As ¢ is a linear form it can be written as ¢ = ¢g ® ¢7 where ¢ : Sg — C and
¢1 : S§ — C. Again we have the two cases of the parity of the central element.
Let @ be a coboundary d1¢. If the central element is even then ® will also be a
coboundary with respect to a ¢ with ¢7 = 0. In other words this ¢ is even. In the
odd case we can take ¢5 = 0 and ¢ is odd.
After fixing a parity of the central element we consider the quotient spaces

HZ(S,C) := {even cocycles}/{even coboundaries}, (40)
H2(S,C) := {odd cocycles}/{odd coboundaries}. (41)

These cohomology spaces classify central extensions of S with even (respectively
odd) central elements up to equivalence. Equivalence is defined as in the non-super
setting.

To define a super-cocycle we have to introduce the following objects.

Definition 3. Let (Ua,24)acs be a covering of the Riemann surface by holo-
morphic coordinates, with transition functions zg = fga(2a). A system of local
holomorphic functions R = (R, (z)) is called a holomorphic projective connec-
tion if it transforms as
) |4 3 /h 2

Roen) - (pal? = Ralia) 4505, vt sy =" =3 () (a2)
the Schwartzian derivative. Here ’ means differentiation with respect to the coor-
dinate z,.

It is a classical result [5, 6] that every Riemann surface admits a holomorphic
projective connection R. From the definition it follows that the difference of two
projective connections is a quadratic differential. In fact starting from one projec-
tive connection we will obtain all of them by adding quadratic differentials to it.

If we have a cocycle @ for the algebra S we obtain by restriction a cocycle for
the algebra £. For arguments with mixed parity we know that ®(e, 1) = 0. A naive
try to put just anything for ®(p, ) will not work as (37) relates the restriction of
the cocycle on £ with its values on F~1/2.

Proposition 8 ([19, Prop. 5.1]). Let C' be any closed (differentiable) curve on X
not meeting the points in A, and let R be any (holomorphic) projective connection,
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then the bilinear extension of

ventei )= gy [ (ST —erm - R @r-ep) as

Cc.r(e,9) ::_2417Ti/c(§0”'w—FSO'w//—R'QO'w)dz (43)

Ocrle, ) =0

gives a Lie superalgebra cocycle for S, hence defines a central extension of S. The
cocycle class does not depend on the chosen connection R.

A similar formula was given by Bryant in [4]. By adding the projective con-
nection in the second part of (43) he corrected some formula appearing in [1].
He only considered the two-point case and only the integration over a separating
cycle. See also [7] for the multi-point case, where still only the integration over a
separating cycle is considered.

The following remarks are in order. For the proof of the claims see [19].

1. Adding the projective connection is necessary to make the integrand a well-
defined differential.

2. Different R will yield cohomologous cocycles.

3. With respect to the curve C only its homology class in Hq (X\ A4, Z) is relevant
for the cocycle.

But a different cycle class will change the cocycle in an essential manner.
We cannot expect uniqueness if g > 0 or N > 2. We should not forget, that we
want to extend our almost-grading of S to the centrally extended Lie superalgebra
by assigning a degree to the central element. This only works if our cocycle is
“local” [8] in the following sense: There exists M7, My € Z such that

Vn,m: YW, Wp)#0 = M; <n+m < M.

What is local is defined in terms of the almost-grading and hence depends on the
splitting A =TUO.

If the integration path C in (43) is a separating cycle Cg, i.e., a cycle which
separates the points in I from the points in O, then the cocycle ®¢y g is local. A
special choice for Cg is the collection of circles around the points in I. This shows
that in this case the cocycle can be calculated via residues.

How about the opposite direction? Given a local cocycle, can it be described
as such a geometric cocycle? The answer is yes and this is the main result which
we present.

Theorem 9 ([19, Thm. 5.5]). Given a local (even) cocycle for the Lie superalgebra S
of Krichever—Novikov type then up to coboundary it is a multiple of ®c4 r. Hence,
up to rescaling and equivalence there is a unique non-trivial almost-graded central
extension of S.

Recall that the almost-grading is fixed by the splitting. We will only give
some general remarks on the proof.
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1. We start with a local cocycle for & and restrict it to £, the vector field

subalgebra.

This gives a local cocycle for the vector field algebra L.

3. For such local cocycles my earlier classification results [18] show that it is
unique (in the above sense) and can by given by an expression of the type
(I)CS,R for L.

4. This expression we extend to S by using the full expression of ®cy g.

5. The difference between the initial cocycle and the extended one vanishes if
restricted to L.

6. Next we show that each local cocycle of § which vanishes on £ vanishes in
total. This is done by some induction process using the almost-gradedness
and the locality (more precisely, the boundedness from above is enough).

o

Theorem 10 (19, Thm. 5.6]). All local cocycles of odd type are coboundaries. Hence,
there does not exist non-trivial almost-graded odd central extensions of S.
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On n-ary Lie Algebras of Type (,1)
E.G. Vishnyakova

Abstract. These notes are devoted to the multiple generalization of a Lie
algebra introduced by A.M. Vinogradov and M.M. Vinogradov. We compare
definitions of such algebras in the usual and invariant case. Furthermore, we
show that there are no simple n-ary Lie algebras of type (n — 1,1) for I > 0.
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1. Introduction

This paper is devoted to the study of the multiple generalization of a Lie algebra
introduced in [11]. More precisely in [11] A.M. Vinogradov and M.M. Vinogradov
proposed a two-parameter family of n-ary algebras that generalized Filippov n-
algebras and Lie n-algebras. V.T. Filippov [3] considered alternating n-ary algebras
V satisfying the following Jacobi identity:

{ah sy On—1, {bh v 7bn}} = Z{blv R bi*l{alv ceeyn—1, bi}7 ceey bn}7 (1)

i=1

where a;, b; € V. In other words, the linear maps {a1,...,ap—1,—}: V — V are
derivations of the n-ary bracket {b1,...,b,}. Another natural n-ary generalization
of the standard Jacobi identity has the following form:

S (0" ai,, . a ) a5, 0, =0, (2)

(1,7)

where the sum is taken over all ordered unshuffle multi-indexes I = (i1, ...,4,) and
J = (Jj1,--.,Jn—1) such that (I, J) is a permutation of the multi-index (1,...,2n—
1). We call alternating n-ary algebras satisfying Jacobi identity (2) Lie n-algebras.

The n-ary algebras of type (1) appear naturally in Nambu mechanics [9] in
the context of Nambu—Poisson manifolds, in supersymmetric gravity theory and

This work was supported by Fonds National de la Recherche Luxembourg.
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in supersymmetric gauge theories, the Bagger—Lambert—Gustavsson Theory, see
[1] for details. The n-ary algebras of type (2) were considered for instance by
P. Michor and A.M. Vinogradov in [8] and by P. Hanlon and M.L. Wachs [4].
The homotopy case was studied in [10] in the context of the Schlesinger—Stasheff
homotopy algebras and L,-algebras. Such algebras are related to the Batalin—
Fradkin—Vilkovisky theory and to string field theory [6].

The paper is structured as follows. In Section 2 we remind the definition of
the Nijenhuis—Richardson bracket on A V* ® V, where V is a finite-dimensional
vector space. In Section 3 we give a definition of Vinogradovs’ algebras. In Section
4 we compare definitions of usual Vinogradovs’ algebras and Vinogradovs’ algebras
with a symmetric non-degenerate invariant form. In Section 4 we show that there
are no simple n-ary Lie algebras of type (n — 1,1), { > 0. The case of n-ary Lie
algebras of type (n — 1,0) was studied in [7].

2. Nijenhuis—Richardson bracket

In this section we follow [11]. Let V be a finite-dimensional vector space over R or
C. We put I"™ := (1,...,n) and we denote by I and J the ordered multi-indexes
I = (i1,...,4) and J = (j1,...,Jk) such that i1 < --- < 4y and j; < -+ < Ji.
Let |I] := 1 and |J| := k. Assume that i, # j, for all p,q. Then we have the
non-ordered multi-index

(I,J) = (il,...,il,jl,...,jk).

We denote by I + J the ordering of the multi-index (7,.J) and by (—1)+/) the
parity of the permutation that maps (I, J) into I + J. We set

arn = (a1,...,an) ar:=(Gi,,...,0y), aj:=(aj,...,a;,).
Let us take L e A' V* @V and K € A* V* @ V. We define:
LiK)(apsen) = Y (=)D L(K(ar),a). (3)
I+J=1"+ht

Here we assume that |I| =k, |J|=1-1.

Definition 1. The Nijenhuis—Richardson bracket
I+k—1

LK e N\ vieVv,
of Le N'V*®@V and K € A\*V* @ V is defined by the following formula:
L, KN = (-1 VUL K] - KL,
For L € /\l V* @V, we denote by Lq, ... q, the following (I — p)-linear map:
Lay,.a,(b1,... bi—p) := L(a1,...,ap,b1,....b1—p),
where a;,b; € V.
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3. Vinogradovs’ algebras

In this subsection we recall the definition of n-ary algebras introduced by A.M. Vi-
nogradov and M.M. Vinogradov in [11]. The graded versions of such algebras are
studied in [12]. These n-ary algebras are a generalization of n-ary Lie algebras of
type (1) and of type (2) for even n. Let V be a finite-dimensional complex or real
vector space.

Definition 2. An n-ary algebra structure pp on V' is an n-linear map:

u:Yx~-><‘£—>V.

n times
An n-ary algebra is a pair (V, ).
Sometimes we will use the bracket notation {a1,...,a,} instead of u(ay,...,an).
Definition 3. An n-ary algebra is called skew-symmetric if
{at,...,ai,ai41, .- an}t = —{a1,...,aqi11,04, ..., 4} (4)
for any a, € V.

Definition 4 ([11]). Let (V,u) be an n-ary skew-symmetric algebra. We say that
(V, 1) is an n-ary Lie algebra of type (r,1) if the following holds:

[Mahm,amMbh.n,bz]NR =0, (5)

where a;,b; € V and 0 <1 <7 < n.

Example 1. Filippov n-ary algebras or n-ary algebras satisfying (1) are exactly
n-ary Lie algebras of type (n — 1,0). For even n, the n-ary Lie algebras satisfying
(2) are exactly n-ary algebras of type (1,0). (See [11] for details.)

Remark 5. The theory of Filippov n-ary algebras is relatively well developed.
For instance, there is a classification of simple real and complex Filippov n-ary
algebras and an analog of the Levi decomposition [7]. W.X. Ling in [7] proved
that there exists only one simple finite-dimensional n-ary Filippov algebra over
an algebraically closed field of characteristic 0 for any n > 2. The simple Filippov
n-ary superalgebras in the finite- and infinite-dimensional case were studied in
[2]. Tt was shown there that there are no simple linearly compact n-ary Filippov
superalgebras which are not n-ary Filippov algebras, if n > 2. A classification of
linearly compact n-ary Filippov algebras was given in [2].

Remark 6. The n-ary algebras of type (2) were studied for instance in [8] and [4].
In [13] the n-ary algebras of type (2) endowed with a non-degenerate invariant
form were considered.



230 E.G. Vishnyakova

4. Nijenhuis—Richardson and Poisson brackets on V'

Let V be a finite-dimensional vector space that is supplied with a non-degenerate
symmetric bilinear form (, ). Then AV possesses a natural structure of a Poisson
superalgebra defined by the following formulas:

[v,wy - wa] := [v,w1] - wa + (—=1)" " wy - [V, we],
[Uv w] = _(_l)vw [w7 U]v
where v, w, w; are homogeneous elements in A W. (See for example [5] or [13] for
details.) Let us take any element i € /\"'s'1 V. Then we can define an n-ary algebra
structure on V' in the following way:

{a1,...,an} = [ar,[...,[an, 1] .. ], a; €V. (6)

Definition 7. A skew-symmetric n-ary algebra structure is called invariant with
respect to the form () if the following holds:

(b,{a1,...,an}) = —(a1,{b,az,...,a,}) (7)
for any b,a; € V.
The following observation was noticed in [13]:

Proposition 8. Assume that V' is finite dimensional and () is non-degenerate. Any
skew-symmetric invariant n-ary algebra structures can be obtained by construction
(6). In other words, for any skew-symmetric invariant n-ary algebra structure p €
N'"V* @V, there exists fi € /\”Jr1 V' such that the map p coincides with the map
defined by the formula (6).

Assume that (V) p) is an n-ary Lie algebra of type (r,l) and the algebra
structure p is invariant with respect to (,). It follows from Proposition 8 that the
algebra (V, 1) has another n-ary algebra structure fi € /\"H(V). In this section
we study the relationship between these two n-ary algebra structures. Since p and
it define the same algebra structure on V', we have:

wla, ..., ar) =lag, ..., [a, f] ...

Let us take two skew-symmetric invariant n-ary algebra structures L &
AN V*®@V and K € A*V* @ V. It follows from (3) that
LIK](ar+r-1) = Z (_1)(17”[[@17}%]7[aJ7I~’H7 (8)
I4J=It+k=1
where |I| =k, |J| =1 — 1 and for simplicity we denote
lar, L) == [ai,, ..., [ai, L]...].
Proposition 9. Let us take two skew-symmetric invariant n-ary algebra structures
Le NV @V and K € \*V* @ V. Then we have:

[apicr-, [L, K] = —(=1)FDED (L KINB (g pens ).
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Proof. We set

are = (a1,...,ap); |am, @] :=[a1,...[ap, A]].
Furthermore, we have:
lapsn [L K] = 30 (=)D () I oy, K]
I+ J=]l+k—1
+ Y ()RR L) oy, K]
I/+J/:Il+k—1
> () DFEDE (g, L), [ay, K]

I+ J=Il+k—1
+ Y )Y, I fag, K]
I/+J/:Il+k—1
= Z (—1)(1’J)+(k+1)(l+1)[[a;,E], [aJ,f(]]
I+ J=]l+k—1
=+ Z _(_1)(J/7Il)[[a‘J'7K]7[aI’vi]]v

I/ =]t+k—1
where [I| =1, |J|=k—1and [I'| =1—1, |J;| = k. By equation (8), we get
lager-s, (L, K]] = (=) "DV KL (apn-1) = LK (agin-1)
= ()DL, KR (g ).

The proof is complete. U

Let L € /\t V*®V be a skew-symmetric invariant n-ary algebra structures.
Clearly,

La,....a, = cla, ..., [ap, f/]],
where ¢ # 0. Proposition 9 implies the following. If a skew-symmetric invariant
algebra (V, u) is given by an identity of type

[,Ual,...,am ,Uah...,al]NR =0,

then the same algebra can be given by the following relation:

([ar-fi), [ap ] = 0.
The result of our study is the following.

Theorem 10. Let V' be a finite-dimensional vector space with a non-degenerate
symmetric bilinear form (,) and p € N\" V* @V be an invariant algebra structure
on' V. Then (V, ) is an n-ary Lie algebra of type (r,1) if and only if the following
holds:

lar-], [apf]] = O
for all a;,b; € V.
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5. Algebras of type (n — 1,1)

In this section we consider n-ary algebras of type (n — 1,1), where 0 <1 <n — 1.
More precisely, we study n-ary skew-symmetric algebras satisfying (5) for k = n—1
and [ > 0.

Lemma 1. Jacobi identity (5) of type (n—1,1), where 0 <1 < n — 1, is equivalent
to the following identity:

bi,...,b " b b
{a,anoa, {by 0}y =D {bie fan o ann b bed (9)
Proof. We will need the following formula, see [11]:
(L, K] = [La, KIN® 4 (=)' VL, K]V,
1 k
where Le AV*®@V and K € AV*®@V. Let (V, u) is an n-ary Lie algebra of type

(n —1,1). Let us take a;,bj,c; € V and denote L := pq,... q0, and K = up, 5.
We have

[Lv K]é\iR,Ck = Z.(_l)kii[LCm KChnnéi:m,Ck]NR + [Lv KCI7~~~;Ci;~~~7Ck]NR

(2

n

where k = n — [. Further,
[L7 Kcl,...,ci,...,ck]NR - {a'17 e 70“1’7,717 {b17 e 7blvcl7 e ,Ck}};
[Lc,;yKcl,...,é,;,...,ck]NR = —{bl, ceey bl, Cly.-. ,(37;, ceey Cky {al, ey an_l}}.

It is clear that [L, K]N® = 0 if and only if [L, K]YV® = 0. The last equality is
equivalent to:

{al,...,an_l,{bl,...,bl,cl,...,ck}}

k .
= 2121(—1)k_1{b1, o ber, oo 6y Cky {al, .. .,an_l}},
{al,...,an_l,{bl, .. .,bl,cl, .. .,Ck}}
k
= 2121{1)1,...,@,61, .o .,{al, oo ,an_l}, oo ,Ck},
{al,. . .,an,l,{cl,. . .,Ck,bl, e ,bl}}
k
= Zi:l{cl" . .,{al, .. .,anfl},. . .,Ck,bl,. .. ,bl}.
The proof is complete. O

Example 2. For instance, 2-ary Lie algebras of type (1,1) are exactly the as-
sociative skew-symmetric algebras. Using the fact that these algebras are skew-
symmetric, it is easy to see that all such algebras have the following property:
{{a, b}, c} = 0. Therefore, this class is not reach.

Definition 11. A vector subspace W C V is called an ideal of a skew-symmetric
n-ary algebra (V,u) if u(V,..., VW) C W.

For example {0} and V are always ideals of (V,u). Such ideals are called
trivial.
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Definition 12. An n-ary Lie algebra of type (n — 1,1) is called simple if it is not
one-dimensional and it does not have any non-trivial ideals.

Theorem 13. Let V' be a Lie algebra of type (n—1,1), where 0 <1 <n—1, over C.
Assume that V' does not possess any non-trivial ideals. Then dimV = 1. In other
words, there are no simple algebras of type (n — 1,1), where 0 <1 <n — 1.

Proof. Assume that dimV' > 1 and V' does not possess any non-trivial ideals. Let

us interchange b,,_; and b,,_;11 and use (9). We get:

{ar,...;an—1,{b1,. .., bp_1—1,bn—141,bn—1,bn—i42,...,bn}}
n—Il—1

= Z {bl,...,{al,...,an_l,bi},...,bn}

i=1

+{b17--- n—Il— 17{a17---7an—17bn—l+1}7bn—labn—l+27---7bn}-
From this equation and (9), we have:

{bi,. .. bp_i—1,{a1, ..., an—1,bn—1}, bn_is1...,bs}

= {b17 sy ﬂ,—l? {a‘17 ceeyn—1, bn—l+1}7bn,—l+27 ... 7bn}-

Denote by L the vector subspace in End(V') generated by piq,.....q,_,, where a; € V.
Let D = pq,,....q,_, for some a; € V. We can rewrite (10) in the form:

{bh'" n—I— lvD(bnfl)vbnfl+17'~'vbn}
_{b17--- n— laD(bn—H—l)abn—l—i-Qy---7bn}-

The n-ary algebra (V, u) is skew-symmetric and equation (11) holds for any b;.
Hence, we can assume that the following equation holds

{b1,.. ., D(b;),big1y - sbn} ={b1,. .., b5, D(bit1),. .., by}
for any 7. Applying this formula several times, we get:
{b1,...,D(b;),bit1,.... b0} ={b1,...,bixj—1,D(birj),...,bn}
for all 7, j. Furthermore, let us take D1, Dy € L. First of all, we see:
{b1,..., D1(D2(b;)),bit1,---,bn} = {b1,... Dg(bi),...,Dl(biﬂ),...,bn}
={b1,...,bi,..., Da(D1(bi1;)),...,bn}.
We put B := Dy o Dy — Dy o D. Therefore,
{bi,...,B(bi),- -, bitj, .., b} = —{b1,...,bi,...,B(bit;), ..., by}
Furthermore,
{B(b1),b2,b3,...,bix1,...,0n} = —{b1, B(b2),bs, ..., bit1,...,bn}
= {b1,b2,B(b3),...,bix1,...,bn }
{B(bl),bg,bg,...,bi+1,...,bn}:—{bl,bQ,B(bg),. bigt, e, bat

Therefore,

(10)

(11)

{B(b1)7b27b37 . 7bn} =0
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for all b; € V. If B(b1) # 0, we see that (B(b1)) is a non-trivial one-dimensional
ideal in V. Hence, B(b1) = 0 for all by € V. Therefore, D1 0 Dy — Dy o D1 = 0 and
L is a usual abelian Lie algebra. Since, V' does not possess any non-trivial ideals,
the £-module V should be irreducible. By Schur’s Lemma £ C {aid} C End V
and dimV = 1. O

Example 3. The classification of simple complex and real Filippov n-ary algebras
or Lie algebras of type (n — 1,0) was done in [7]: there is one series of complex
Filippov n-ary algebras Ay, where k is a natural number, and several real forms for
each Ag. All these algebras have invariant forms and in terms of Poisson bracket
they are given by the top form of V.
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1. Introduction

In this paper we shall first recall the basics of the factorization method. We will
consider the class of second order (g, h)-difference operators with factorization into
first-order operators related to some generalization of the Hahn equation.

Recall that according to [10-12] ladders are the sequences of vector spaces
Vi and operators Af acting between them as follows

At A
k k+1
Vi < ¢ = Vi < i > Vierr - ..
Ak Ak+1

We will assume that the “commutator” of the ladder operators

qA,;rlAZ+1 —ALA; = ap — qapg, ke Z, (1)

is a scalar, a; € R. The operators
H; = AiA;Z tar=¢q (AI;HAZH + ak+1) (2)

are called loop operators (left and right loop operators). If the operators Hy, admit
the factorization given by (2) then the eigenproblem

Hypy = Mgy (3)
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can be rewritten in one of the following forms
ALALYE = (N — )y (4)
AIZ-HA;-leZ = ((fl)\ﬁ - ak+1)1/)l? . (5)

There exist some important classes of factorizations with the property A} = a. In
these cases any nonzero solution of the equation (ground state)

ALup=0 (6)

is automatically a solution of equation (3). Moreover (4) and (5) can be used to
construct new solutions

Ui = AL AL R, (7)
with eigenvalues
for any n € N.

Some results concerning the factorization method for the difference (g-differ-
ence in particular) equations were presented in papers [1-6, 8]. It is a generalization
of the well-known method for differential operators developed for example in [13,
15-18].

Our investigation will be based on (g, h)-discretization of real line (Section 2).
In place of standard h-discretization related to an arithmetic progression or g¢-
discretization related to the geometric progression we will use both. This method
leads to (g, h)-difference operators, which in the limit h — 0, ¢ — 1 correspond
to differential operators. Finally in Section 3, we shall present application of this
method to (g, h)-Hahn orthogonal polynomials. In the limit A — 0 we obtain the
g-Hahn orthogonal polynomials [7, 9, 14], which were considered in Ref. [5]. In the
limit h — 0, ¢ — 1 this corresponds to the classical orthogonal polynomials. In
Section 4 we consider an example, which leads to the discrete generalization of the
Hermite II polynomials.

2. The (g, h)-discretization

Let us consider the spaces Vj consisting of continuous functions defined on the
closure of (g, h)-interval

[a,blg.n :={q"a+ [n]gh: ne NU{0}}U{¢"b+ [n]¢h: ne NU{0}}, (9)
where 0 < ¢ < 1, h € R\ {0}, a,b € R. We use the following notation for g-number

1— qn
We recall the definition of (g, h)-shift operators S and S~—1 (see [11])

Sth(@) = wlqw + ), (11)
S™p(e) == (g — ¢ 'h) (12)
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and the (g, h)-derivative operator [9]

_ ¥(@) =gz +h) _ 1
Next, we define the (g, h)-integral on the (g, h)-interval [0, b, p
b oo
| v@ana = 32 (1= b= m " + nloh). (1)
n=0
In the case [a, b]4,, we have
b b a
d = d — d . 15
[ @ona = [ v@dye— [ o@ina (15)

We also introduce the scalar products using (g, h)-integral on the spaces Vj, in the
following way

b
Wloh = [ vle)e@on@)dya (16)
where o5 are weight functions. Then, we define the Hilbert spaces
Hi = {vx € Vi (Ur[thr)r < +oo}.

Let us present several basic properties which will be useful in the sequel

S((—q)e—n) = (1~ g —h), (7)
ST~ k) =g (1~ a)e— ), (19)
S 0la) = 0 (¢ + nlgh) (19)
oo =v(," ). (20)

where S (z) = limy, 00 S™P().

3. Factorization method in application to

(g, h)-Hahn orthogonal polynomials
In this section we consider the class of (g, h)-Hahn polynomials {P}'}>2,. We
shown that they are orthogonal with respect to the scalar product (16) given by
(g, h) analogues of Jackson’s integral

b
(PP PP = / P () P () 04 (2)dg 2 = 0 B, (21)

a

where o} is a constant.
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At the beginning we introduce lowering A, : Hp — Hi_1 and raising
operators Az : Hp—1 — Hy (called also annihilation and creation operators)

_ 1

AL =Dyn= o, 1-5). (22)

Al =—B(x)Dg S — Ag(x)
- (1 _Bq()i)_ h (571 - 1) - Ak(x)v (23)

where the polynomials B and Ay are of the form
B(x) = by (1= q)z — h)* + b1 (1 — g)z — h) + bo, (24)
Ag(z) = ¢~ (e1 = b2 (1= ¢°%)) (1 = g)x — h)

+q " (co—b1(1-¢)), (25)

the parameters bo, by, by, co, 1 € R. Let us note that the parameters bs, b1, bg, co,
¢1 can depend on ¢ and h. Then the (g, h)-Hahn ladder is given by

st a Al =-BDg STt — App
k >H k+1 q, +>H
k< k+1---

v = Pa,n A1 =Dgn

We can easily check that the commutator condition (1) is fulfilled if the
sequence {ay} is given by the recursion relation

ar=q tap_1 + (1 — q)q_% (cl — by (1 — q%)) . (26)
The explicit formula for aj is written as
ar =q Fag+ (1= ¢")g s+ (1= ") (" = %) ba. (27)

From equation (6) and A, defined in (22), we find that the ground state is
a constant function which we normalize to one

YR =1 (28)
Moreover we observe that (7) implies that the functions
Pl=AfA} - Azfnﬂl (29)
belong to the space Vj. The computation of the first three polynomials gives:
PP(z) =1, (30)
Py (z) = —Ax(z), (31)

PP (x) = Ap(2)Ap—1 () + (1 = q)g 2 (e = b2(1 — ¢*72))B(z).  (32)

The (g, h)-Hahn orthogonal polynomials satisfy the following the (g, h)-Hahn equa-
tion

ALAL P = NP, (33)
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where

N=q gy —ar = (" — 1) g Fer + (1 —¢") (¢ — ¢ ") b (34)

Finally, we present the action of the operators AZ and A, in the diagram

n
A

Af A3 A7
Ay Ay Az
1 1 1 1 > L
. b by 1
Note that if by = gs b1 = , 1 = and we put h = 0, then
(1-4q) l—q 1—g¢q

we get ¢g-Hahn orthogonal polynomials, see [5, 7, 9].
Now, we prove that the raising operators (23) are adjoint to lowering opera-
tors (22)

*

Af = (A7) (35)

with respect to the scalar product given by (16), where the weight function gy, is
defined by the (g, h)-Pearson equation

Dy (B(x)ok()) = Ag(z)or(x) (36)
and satisfies the recurrence relation

or(z) = S (B(x)er+1(z)) .- (37)
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Furthermore, from relations (36) and (37) we arrive at

or-1(T) _ z)—((1—-q)x — x

o (1) = B(z) — (1 — q)z — h) Ap(), (38)
or—1(7) - "

or(qr+h) B(qx + h). (39)

Moreover, we assume that the integration interval [a,b], s is obtained from the
conditions

From the definition of the adjoint operator we calculate
(A7) Yr—1ler)e = Wr—1| AL or)e—1

b
. / Vee1(2) (D upn(@)) o1 (x)dg e

b
:A (( 1/%71(:16) h) (1 — S) ka(x)gkfl(x)dq,hx

_ /" Ye-i(z)  ora(x)
o (L=q)z—h) o)

= > Ui1(@"b+ [n]h)er(a" b+ [0+ Lgh)or—1(q"b + [n]h)

or(z) ok (7)dg,n

+ > koa(qa+ [nlgh)er(q" a + [n+ 1)gh)or—1(q"a + [n]yh)

_ /b Ye-1(z) o1 ()
o« (1=q)z—h) ox()

=Y k1 (g b+ [0 — 1gh)er(g"b + nlgh)ok—1(¢" b+ [n — 1]gh)
n=1

or(z) ok (x)dq,hx

+ Zwkq(qnfla + [ — 1)) or(g"a + [n]oh)or1(g" " a + [n — 1],h)
_ b wk—l(x) Qk—l(a?)
B /a (L =q)z —h) or(z) o (x) ok (z)dg na
_/b or_1(qg te —q h) (S~ 1 (2)) on(@)ex (2)d

o 0e(z) (1 —q)z —h) k—1(2)) pr(x)or(x)dg,nx

(o lpos -0 - aw) i) )
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see also [8]. Note that we used above the properties (38), (39), (40) and (41).
Formula (42) immediately implies that the operators are mutually adjoint A" =
(Ay)

Finally, we show that the polynomials (29) are orthogonal. If we assume
n > m then

(P Pg")y = <AZA;—1 o 'A;—n+11|A;A;—1 T A;—m+11>k
= (qimak—m + ak) <AL1A;2 T A:7n+11|AL1Az72 e A$7m+11>k_1

m

=... = (qieriilakfm + ak7i+1) Onms (43)
i—1

where we used (1), (6), (33) and (34).

4. Example
In this section we consider the case when
b2:b1260:0 and b():l. (44)
The polynomials (24) and (25) become
B(z) =1, (45)
Ap(z) = ¢ e (L —q)z — h). (46)
The lowering and raising operators have the form
1
A = 1-S 47
k (1 o q)x —h ( ) ) ( )
1
Af=— ST'—1) —q¢ e (1—q)x—h). 48
= e 7 ) e (e ) (45)

The (g, h)-Hahn equation in this case is the equation for the discrete (g, h)-generali-
zation of the Hermite II polynomials

(1= (=g =1 g er) P(gr +h)
— (1 +q—((1—q)x— h)2 q_2k01> Pl (z) +qP(q e —q'h) (49)

= (1=¢") (1 =gz =)’ g *er P (),

because in the limit ¢ — 1 we obtain the ¢-Hermite II orthogonal polynomials
[5, 7]. These polynomials are orthogonal with respect to the scalar product, where
the weight function is specified by the expression

a 1

@ =11, (1 - oy ome,

(50)
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The computation of the first four polynomials gives:

Pl(x) =1,
Pp(z) =

PP(x) = g 2!
Pl(z)= —q

x (1= a+ e (1 - gz —)°) |

Cl (1_(])‘1:_ )7

(1—gq)z—h)

The operators satisfy the following commutator relations

gA; STt =STTAL |,
AfS =qSA},,
gA; ST =5"1A |,
A, S =qSAL,,.

We present the above in the diagram

n
A

3
P3_

—3g-1

33

3 “PsT! 3
> >
PP sg Py <

q73571

(

—2k+1 2
Cl(l q+q cl((l—Q)x—h)),
_4k+1C

> Pé’)
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5. Conclusions

Let us note that if we introduce the operator

s =u(o+ " ). (59)

1—gq

then we have the following relations between (g, h)-analysis and g-analysis
Dypn=8"'oD,008, /dmhx =s! O/d(boﬂ? oS. (60)

These identities reduce (g, h)-calculations to g-calculations, see [19]. However, the
motivation for the use of the (g, h)-calculations is the possibility of a simple tran-
sition between difference calculations and g¢-difference calculations.
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Examples of Hamiltonian Systems on the
Space of Deformed Skew-symmetric Matrices

Alina Dobrogowska and Tomasz Golinski

Abstract. We consider a dual space to a Lie algebra of deformed skew-sym-
metric matrices equipped with two compatible Poisson brackets: the Lie—
Poisson bracket and the frozen bracket. We obtain a bi-Hamiltonian integrable
system. As an example we present a case of a system on a two-dimensional
quadric which can be seen as a generalization of the Neumann system.

Mathematics Subject Classification (2010). 37J35, 17B80, 53D17.

Keywords. Integrable systems, Neumann system, contraction of Lie algebras,
bi-Hamiltonian structures.

1. Introduction

The aim of this paper is to present a particular example of the integrable system
on the Lie—Poisson space related to the space of deformed skew-symmetric n x n
matrices Aqy . an_1-

We start by briefly recalling basic definitions and facts about spaces of de-
formed symmetric n X n matrices S, ... .a,,_, and skew-symmetric n X n matrices
Aai....an_.- The deformation is described by a sequence of parameters a, ..., an—1.
By a certain choice of parameters we can get Lie algebras so(n), so(p, q), e(n — 1)
or the Lie algebra of the Galilean group.

These deformed sets were introduced in paper [11] where it was shown that
Ay, an_, is a Lie algebra with respect to the standard matrix commutator. Var-
ious integrable systems in that case were studied in a series of papers [3-6]. In
paper [2] another Lie structure on Aq, .. 4, , Was investigated, see (4), leading to
generalizations of the Euler rigid body and the Clebsh system.

Interesting cases are related to situations when some parameters are put equal
to zero or change signs. In this way we can consider Lie algebra contractions, see
[7]. For example in [9, 14] the one-parameter family of Lie algebras containing
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5[(2,R), so0(3) and e(2) is presented. The Lie algebra Ag, .. 4, , can be seen as a
multi-parameter generalization of that situation.

The next section of the paper is also based on the paper [2] and is devoted to
the investigation of the Lie-Poisson structure on the dual space Ly to Aq, . ...a,_1-
Moreover we consider a frozen Poisson bracket on L, see formula (21), which is
compatible with the Lie—Poisson bracket. It allows us to use the Magri method to
obtain a family of functions in involution, see [1, 8], — Casimirs for one of those
brackets are in involution with respect to the other bracket. Thus we are able to
obtain a Hamiltonian system with a rich family of integrals in motion.

In the last section we discuss an example for n = 5. We choose a certain
fixed element py and diagonal matrix S € S,,... 4, ,. It turns out that a generic
symplectic leaf for a frozen Poisson bracket can be identified with R®. We introduce
convenient coordinates on L, and obtain an integrable system on the tangent
bundle to a quadric surface. If this quadric is a sphere we can interpret this system
as a version of the Neumann system, see [10, 12, 13].

2. Lie algebra A,, .. of deformed skew-symmetric matrices

9An—1

Let us recall basic definitions and properties of objects considered throughout the
paper. For more details, see [11] or [2].
Let us choose a sequence of real numbers aq, . . ., a,—1 and define the following

sets of n x n real matrices
sQn—1 = {X :(xl]) € Matan(R) |
Tij = —Q5 - Aj—1Tj; fOI‘j > 1, T = 0}

(1)

and
8a17~~~7an—1 = {S = (Sij) € Matnxn(R) | Sij = Qi Aj—1545 for j > 7,} (2)

These sets consist of skew-symmetric and symmetric matrices deformed in such a
way that elements above diagonal are multiplied by terms a; - - - a;_1. For example
an element of A,, . , looks like this:

0  —a17r21 —aijasr3r —a10203T4 ... —QA102 - Ap_1Tpl
T21 0 —a2X32 —a20a37T42 c.. Q203 An—-1Tn2
31 32 0 —a3T43 S —a304 - Gp—1Tn3
T41 T42 T43 0 . —asas - apqmeg |- (3)
Tnl Tn2 Tn3 Tnd o 0

These sets were introduced in Ref. [11] in the context of operators acting on a
Hilbert space. The set A,, ... 4, _, was endowed with the Lie algebra structure with
the normal commutator. Subsequently in paper [2] it was shown that Ag, . 4, ,
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possesses another Lie algebra structure with respect to the Lie bracket given as a
deformed commutator

[X,Y]g:= XSY —YSX (4)

for X,Y € Aq,,...a, , and a fixed S € Sq,,... a,_,- In the generic case (i.e., for all
parameters a; # 0) we obtain a Lie algebra isomorphic to so(n) or so(p, ). However
when we admit the case that one or more parameters assume value zero, we get
different Lie algebras which may be considered as Wigner—Inonii contractions, see,
e.g., [7].

To facilitate the work with elements of Aq,, . 4, , and Su, .. a,_, the follow-
ing notation was introduced. Let P; denote the projector onto [ + 1,...,n vectors
of the canonical basis of R™:

A= 1)l (5)

i=l+1
and by ¢; we will denote the matrix
o=+ 1) I+ 1]+ Z arpraiye a1 i) (il (6)
i=1+2
which has the following block form
O O
1 0 0 . 0
0 aj41 0 0
6l = O 0 0 aj+1aj4+2 ... 0 . (7)
0 0 0 oo Q1014200 Qp—1
Moreover let us denote by ki, ..., kx the indices of all parameters a; equal
to zero, namely
ag, =+ =agy =0, (8)
where the sequence k1, ...,ky is chosen to be strictly increasing. In order to be

able to write formulas in a consistent way we put additionally kg = 0 and ky41 = n
(thus we have Py = Py, = 1 and 0y, = 0p = Pry,, = P =0).
The following obvious relations hold:

(51%.ij =0, Pkiij = ij for Jj > (9)
and
5,0k, = 0 (10)

for @ # j. Moreover all Py, and dx;, commute and the matrices dx, are invertible
when restricted to the range of the projectors Py, — Py, ,. We will denote that
pseudoinverse elements by ¢(dy, ):

L(dlﬁ)(;kz = 6k1L(5kL) = sz - Pki+1' (11)
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It can be shown that a matrix X is an element of Ag, . 4, , iff the following
system of equations holds:

6, X Py, + P, XT6, =0,  i=0,1,2,...,N (12)
and a similar condition can be given for a matrix S to belong to Sa, ... 4, ;:
63, SP, — Py, ST6,, =0, i=0,1,2,...,N. (13)

These conditions imply that the elements of Aq,, . 4, , and Sa, .. 4, , have
the following “stairs-diagonal” block form:

Xo O - O
X = . (14)
* * XN
So O O
« S - O

where X; € Aaki+17---7aki+1—17 S; € Sak,;+17---7aki+1—1 for i =0,..., N and * denotes
arbitrary matrices of suitable sizes. Formally it can be formulated as the following
proposition:

Proposition 1. For X € A, 4., and S € So, ... a,_, the following equalities are
valid:
(1 — Py, )XPi, =(1—Pg,)SP, =0, (16)
Py, XPy,, = XPy,, Py, SP; =5P, (17)
fori=0,...,N.
For the proofs of aforementioned facts we refer the reader to [2]. Using these

propositions it is straightforward to prove that A, . 4,_, is indeed a Lie algebra
with respect to the bracket (4).

3. Integrable systems on (Aqg,,.. 4, )"

We intend to investigate the Lie-Poisson bracket on the dual space to Aq, .. q._,-
In order to do it let us identify (Aqg,,. . .a, ,)* with a space of upper-triangular
matrices L

Ly = {p = (pij) € Matyxn(R) | pi; = 0 for i > j}. (18)
This identification is given by the following natural pairing
(o3 X) = Tr(pX), (19)

where p € Ly and X € Ay, 4, ., see [11].
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Canonical Lie-Poisson brackets on L are defined by the well-known formula

{f.9}s(p) = (p; [Df(p), Dg(p)]s), (20)

where f,g € C*°(Ly), p € Li. The derivative Df(p) here is considered as an
element of Ag, . a4, ;-

One may consider { -, - }5 as a family of compatible Poisson brackets on L
parametrized by S € Su,....a,_,, see [2]. However here we will consider a different
situation. In order to get a bi-Hamiltonian structure we will introduce a frozen
Poisson bracket

{£,9}p0(p) = (po 5 [Df(p), Dg(p)]s), (21)

where pg is a fixed element of L. It is a known fact that frozen bracket is compat-
ible with Lie—Poisson bracket in the sense that their arbitrary linear combination
is again a linear bracket.

For the purpose of this paper we will choose pg to be

010 ... 0

000 ... 0
==l (22)

000 ... 0

In this case we can write down a formula for { -, - },, explicitly in coordinates:

v of dg  dg af)
{f79}po(0) = kZIBCLQ ak—15k2 <8p12 Opor  Op1a Opon

” of g dg Of )
4 g —
kZ:BCH Hho1okL (8/)12 Opir  Op12 Opik

- af a9  dg Of )
+ e _
kzzgaz k1 Sk <8p1k Opar  Opak Op1k

n—1 n
of 0g dg Of
+ G- - G159k _
Z;k:zp—:i-l ’ S (aplk Opar  Opak Op1k

of 09y Jdg 8f). (23)

8p1p 8p2p B 8p2p 8p1p
Moreover if we choose matrix S to be diagonal (see [2] for the description of

isomorphisms which allow to do it without loss of generality if all parameters a;
are non-zero), the preceding formula (21) simplifies to

N\ af dg g 8f>
{f,g}po(p)—kzzgaz 1ok (aplk 30% 3,0% 3,01k ’

(24)

Note that this Poisson bracket depends only on coordinates pi3, pi4, ...,
Pin, P23, P24, - - -5 P2n SO the dynamics happens in fact in a 2(n — 2)-dimensional
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subspace. We may thus consider a Poisson inclusion

Matay (n—2)(R) — L. (25)
Note that if S =1 and a3 = ---a,—1 = 1 we get a canonical Poisson bracket on
T*Rn_Q.
Casimirs for the Lie—Poisson bracket { -, - }s were computed in paper [2]:
1
C'(p) = o, Tr ((p—67"pT)5 ™)™, (26)

in the case when all parameters a; are non-zero. Since for any choice of an element
po, the Lie-Poisson bracket { -, - } 5 and the frozen bracket { -, -},, are compat-
ible, these Casimirs are in involution with respect to the frozen bracket { -, - },,,
namely:

{ct,c*y,, =o. (27)
The situation a; = --- = a,—1 =1, S = 1 was investigated in [6] and the situation
a; = -+ =ap—1 = 1 with arbitrary S — in [5].

4. Examples

Let us consider a case n = 5 with a matrix S = diag(sl_l,32_1,83_1,521,85_1). In
this case the frozen Poisson bracket { -, - },, (see (21)) can be expressed as

(f.q} ()_a2<af 99 Of ag>+a2a3<8f dg  of 89)
IS palP 53 8,013 8,023 3,023 3/)13 S4 3/)14 3/)24 3,024 3,014

+a2a3a4 ( 8f 89 _ 8f 89)
S5 0p1s Opas Opas Op1s )

Explicit formulas for the Casimirs for the Lie—Poisson bracket {-, - }s are

the following:
1
Ci(p) = — — (a2a3a4slsgp%2 + a3045183P15 + Q45154074

2 2 2 2
+ $185p15 + @103045283P53 + A1A45254P54 + 415255055

+ a1a2a48334p§4 + a1a28385p§5 + a1a2a38485pi5), (29)
L 1 2
Cs (P) = C'1 2 (81828485(015024 — p14p25 + a2a3/)12,045)

B aja3a3ay

+ a251535455(P15p34 — P14P35 + A3P13045)°
+ azays1525354(p14p23 — p13p24 + a2p12p34)°
+ azs1525385(p23p1s — p13p2s + G2012P35)2

+ a1a252535455(p34p25 — P24P35 + A3P23P45)° ). (30)
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Let us introduce the following vector notation to simplify the formulas for
Casimirs:

= (P13, P14, P15); (31)

q = (p23, P24, P25), (32)

¢ = (azpas, —p3s, P34), (33)

V' = diag(s4ss, 35355, 03045354), (34)

W = diag(azasss, assa, s5) = azasszsassV . (35)

From the formula for the frozen Poisson bracket (28) it is obvious that com-
ponents of ¢ and py2 are Casimirs. Thus we can now consider the frozen Poisson
bracket {-, -},, as a Poisson bracket on RS > (p,q). In a generic case it is a
symplectic leaf for that Poisson structure.

In the new variables the Casimirs C; and Cs assume the form (up to trivial
transformations)

él (ﬁ, q‘) = a2a3a48182,0%2 + a;CLQ (VE’) -C+ alsg(WQ) -q+ Sl(Wﬁ) 7 (36)

Co(p, §) = azsisssass (P ©)° + arazsasasass (7 &)
+ s152(V (7 % P) + a2p12VE) - (7 X P+ azp120). (37)
Note that for a Hamiltonian system with respect to the frozen bracket { -, - },,

with a Hamiltonian either C; or Cy we need one additional functionally indepen-
dent integral of motion to integrate it. This additional integral can be chosen as

Dy(p,q) = (VE) - (7 x p). (38)
It can be seen as a generalization of integral of motion considered in papers [6]
and [5].
Combining Casimirs 6’1, Cy and the integral of motion D; we can obtain a
simpler family of functionally independent functions in involution on R:

- 1 o 5
hl(pvq_> = 2(&182(W(T) 'Q"_sl(Wﬁ) 'p)v (39)
- 1 R R
ha (P, q) = N (azs18384(p+ €)% + arassaszsass (- ©)°
+s152(V(7 % P)) - (T D)) (40)
and D1.
Let us put a; = 0 and take as a Hamiltonian the function hq
- 1 R R R
ha(p, @) = 9 (a2818384(29 : 5)2 +s182(V (7% p)) - (¢ % ﬁ)) . (41)

In this case Hamilton’s equations with respect to the frozen Poisson bracket
{-, - }p, assume the following form

{]j': —a2a38182(Wﬁ) X (iX ]5')

L 2. (> - S (42)
d=a3s1(p- )V E— asazs1s2(Wq) x (7% P)
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We can reduce this system of equations by restricting to the level set hi'(s1/2).
By direct calculation we get p- Wp = 1. By introducing new coordinates we
can consider this system as a system on the tangent bundle to a quadric surface

TQ > (7,y)

Z-Wi=1, Z-Wy=0, (43)
where the new coordinates are defined as follows
=p, (44)
§ = —azazsis2(q— (0 Wq)p). (45)
In the new coordinates using triple vector product expansion
(@xb)xé=(C-a)b— (¢-b)a (46)

Hamilton’s equations (42) can be rewritten as

=y
{y = —a3azstso(T - OVE— (- WHT + adazsise(T-¢)(F - V)T

81

(47)

1

In the case when W = 1 (or at least it is positive definite) we obtain a system
on the sphere with a quadratic Hamiltonian. It can be viewed as a version of a
Neumann system, see [10, 12, 13]. In the general case we get a system on a general
two-dimensional quadric, e.g., on a one- or two-sheeted hyperboloid.

5. Conclusions

We have shown that the Magri method applied to the Lie algebra A,, . ., .
leads to interesting integrable systems. In this paper using the frozen bracket
approach we were able to obtain a version of a Neumann system, and in paper
[2] we have shown how to get Clebsh and Euler equations in a similar setting. We
have restricted our attention to the low-dimensional n = 5 case. It is possible also
to obtain similar results in higher dimensions using methods analogous to the ones
used in the paper [6].

References
[1] A.V. Bolsinov, A.V. Borisov: Compatible Poisson brackets on Lie algebras. Math.
Notes, 72:10-30, 2002.

[2] A. Dobrogowska, T. Goliniski: Lie bundle on the space of deformed skew-symmetric
matrices. J. Math. Phys., 55:113504, 2014.

[3] A. Dobrogowska, A. Odzijewicz: Integrable relativistic systems given by Hamiltoni-
ans with momentum-spin-orbit coupling. Regul. Chaotic Dyn., 17:492-505, 2012.

[4] A. Dobrogowska, A. Odzijewicz: Integrable systems related to deformed so(5).
SIGMA, 10, 2014.



Examples of Hamiltonian Systems on the Space. .. 255

[5] A. Dobrogowska: Integrable Hamiltonian systems generated by antisymmetric ma-
trices. J. Phys.: Conf. Ser.: XXlIst International Conference on Integrable Sys-
tems and Quantum Symmetries (ISQS21), (012015), 2013. doi:10.1088/1742-6596/
474/1/012015.

[6] A. Dobrogowska, T.S. Ratiu: Integrable systems of Neumann type. J. Dyn. Diff.
Equat., 2013. doi:10.1007/s10884-013-9314-5.

[7] E. In6nii, E.P. Wigner: On the contraction of groups and their representations. Proc.
Natl. Acad. Sci. USA, 39:510-524, 1953.

[8] F. Magri: A simple model of the integrable Hamiltonian equation. J. Math. Phys.,
19:1156-1162, 1978.

[9] J.E. Marsden, T.S. Ratiu: Introduction to Mechanics and Symmetry, Texts in Applied
Mathematics, volume 17. Springer-Verlag, New York, second edition, 1999.

[10] C. Neumann: De problemate quodam mechanica, quod ad primam integralium ultra-
ellipticorum classem revocatur. Reine u. Angew. Math., 56:54—66, 1859.

[11] A. Odzijewicz, A. Dobrogowska: Integrable Hamiltonian systems related to the
Hilbert—Schmidt ideal. J. Geom. Phys., 61:1426-1445, 2011.

[12] T.S. Ratiu: The C. Neumann problem as a completely integrable system on an
adjoint orbit. Trans. Amer. Math. Soc., 264:321-329, 1981.

[13] V.V. Trofimov, A.T. Fomenko: Algebra and Geometry of Integrable Hamiltonian
Differential Equations. “Factorial”, Moscow (in Russian), 1995.

[14] A. Weinstein: The local structure of Poisson manifolds. J. Differential Geom., 18:523—
557, 1983.

Alina Dobrogowska and Tomasz Goliriski

University of Bialystok

Institute of Mathematics

Ciotkowskiego 1M

PL-15-245 Bialystok, Poland

e-mail: alaryzko®@alpha.uwb.edu.pl
tomaszg@alpha.uwb.edu.pl


mailto:alaryzko@alpha.uwb.edu.pl
mailto:tomaszg@alpha.uwb.edu.pl

Geometric Methods in Physics. XXXIII Workshop 2014

Trends in Mathematics, 257-272
(© 2015 Springer International Publishing Switzerland

Matrix Beta-integrals: An Overview
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Abstract. First examples of matrix beta-integrals were discovered in 1930-50s
by Siegel and Hua and in the 60s Gindikin obtained multi-parametric series
of such integrals. We discuss beta-integrals related to the symmetric spaces,
their interpolation with respect to the dimension of a ground field, and adelic
analogs; also we discuss beta-integrals related to flag spaces.
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1. Introduction. The Euler and Selberg integrals

1.1. Euler beta-function

Recall the standard formulas for the Euler beta-function:

. L, D(@)r(p)
27 (1= @) e = uler
/o -z T'(a+ B) (Euler)
dx B 22—/L—V7TF(M - 1) -
/]R (1 4iz)r(1 —iz)” D(p)T(v) (Cauchy)
/DQ ot _ T(a)T(0 —a)
o (I+a) (o)
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T . I'(1 ;
/ (sint) e™tdt = T +(u ) . eimv/? (Lobachevsky)  (4)
0 21 I+ ”2 )1+ Hz )

The integral (3) is obtained from (1) by the substitution = = ¢/(1 + t). Replacing
the segment [0, 1] in (1) by the circle |x| = 1, after simple manipulations we get (4).
Considering the stereographic projection of the circle to the line, we come to (2).
1.2. Beta-integrals

‘Beta-integral’ is an informal term for integrals of the type
/ (Product) = Product of Gamma-functions. (5)

First, we present two nice examples. The De Branges [1]-Wilson integral
(1972, 1980) is given by

/’H] 1 Dlaj +iz) ’ o’ H1<k<l<4 I'(ar + a;)
2 I'(2ix) L(ai 4+ a2 +as + a4)’

Recall that the integrand is a weight function for the Wilson orthogonal polyno-
mials, which occupy the highest level of the Askey hierarchy [2] of hypergeometric
orthogonal polynomials.

The second example is the Selberg integral, [3] (1944),

1 1 n
/O"'/O Ht?_l(l—tj)ﬂfl 1T 1t = dty---dt,

1<k<I<n

ﬁ (a+(G—=1)MTB+ G — 1)) T +47)
0 Tla+B+m+j—27)T0+7)

As the Euler integral, the Selberg integral has several versions, for instance

/O /0 H x?‘l(l + xj)fafﬂf%(nfl) H |z, — 2% day - - - day,

1<E<I<n
ﬁ (@+ (G =DNTB+ G-I (1+j7v)
L T(a+B+(n+i—27)T(1+7)

— 9—(a+p)ntyn(n-1)+n ﬁ F(a +6- (n +J - 2)7 - 1)F(1 + ]7) ( )
- D(a— G = DB == Dy)I(+7)

There exists a large family of beta-integrals (5), including one-dimensional
integrals (see an overview of Askey [4]), multi-dimensional integrals, g-analogs,
elliptic analogs; some collection of references is [2, 5-8, 10].

Below we discuss matrix analogs of integrals (1)—(4), (6)—(8).

J

n
H 1—ixe) (1 +izg)” p H |xk—xl|27dx1-~dxn
k=1 1<k<I<n

Slﬁ\g

j=1
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1.3. Notation

K denotes R, C, or quaternions H, 9 := dim K.

[X], is the left upper corner of a matrix X of size p x p;

X*, Xt are the adjoint matrix and the transposed matrix;

X > 0 means that a matrix X is self-adjoint and strictly positive definite,
X > Y means that X —Y > 0;

|| X|| denotes the norm of a matriz, precisely the norm of the corresponding
linear operator in the standard Euclidean space.

Mat,, ,(K) is the space of all matrices of size p x g over K;

Herm,, (K) is the space of all Hermitian matrices (X = X*) of size n;
Symm,, (K) is the space of all symmetric matrices (X = X?) of size n.

The Lebesgue measure on such spaces is normalized in the most simple way.
For instance, for Mat,, ,(C), we write

dZ = H d@?zkl d%zkl.
1<k<p, 1<I<q

2. The Hua integrals

2.1. The Hua integrals
The famous book [11] Harmonic analysis of functions of several complex variables
in classical domains by Hua, 1958, contains calculations of a family of matrix
integrals. We present two examples.

Consider the space B,, ,, of complex m x n matrices Z with || Z|| < 1. The
following identity holds

[, T+ )T FCX+J)ﬂnm
[12" T+ ) '

Next, consider the space Symm,, (R) of all real symmetric matrices of size n.
The following identity holds

/ det(1— 22" dZ = )
Z7Z*<1

dT 7L(7L4+1)F —n/2 H 204_ n+=7)/2)

= (10)
/Symmn(]R) det(l + T2)a

(20— j)

2.2. Comments: spaces and integrands
We can consider the following 10 series of matrix spaces

p X q matrices over R;

symmetric n X n matrices (X = X*) over R;
skew-symmetric n x n matrices (X = —X*) over R;
p X g matrices over C;

symmetric n X n matrices over C;

skew-symmetric n X n matrices over C;

Hermitian n x n matrices (X = X*) over C;

p X q matrices over Hi
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e Hermitian n x n matrices (X = X*) over Hi
e anti-Hermitian n X n matrices (X = —X*) over H.

For any space in this list, we consider a matriz ball X X* < 1.
Integrals for all ‘matrix spaces’ and all ‘matrix balls’ !

/det(l + XX YdX; (11)

/ det(1 — XX*)'dX (12)
XX*<1

are long products of gamma-functions as (9)—(10). Actually, Hua evaluated 1/3
of these 20 integrals. Apparently, there is no text where all these integrals are
evaluated (and a reason, which does not justify this, is explained in the next
subsection).

The domain of integration B,, , C C" in (9), i.e., the matrix ball || Z] < 1,
is a well-known object in differential geometry, representation theory, and complex
analysis, since it is an Hermitian symmetric space?, B, 4 = U, 4/(U, x U,). The
pseudounitary group U, 4 acts on this domain by linear-fractional transformations:

(Ccl g) 1 Z U= (a+ Zc) b+ Zd). (13)

The remaining 9 series of ‘matrix balls’” X X* < 1 are also Riemannian sym-
metric spaces®. Up to a minor inaccuracy, all Riemannian noncompact symmetric
spaces admit ‘matrix ball’ models. The group of isometries consists of certain
linear-fractional transformations (see tables of symmetric spaces in [12, Adden-
dum DJ).

The meaning of the integrand det(1 — ZZ*)® is less obvious*. However, any
mathematician who has dealt with the unit circle |z| < 1 could observe that the
expression (1 — zz)® quite often appears in the formulas. The same holds for
det(1 — ZZ*)“ in the case of the matrix balls. We only point out a nice behavior
of the expression under linear-fractional transformation (13):

det(1 — UU)® = det(1 — ZZ*)*| det(a + z¢)| 2.

Thus integrals (12) are integrals of some reasonable expressions over non-compact
symmetric spaces.

Integrals (11) are integrals over compact symmetric spaces written in coordi-
nates. For instance, in (10) we integrate over the space Symm,, (R). But Symm,, (R)
is a chart on the real Lagrangian Grassmannian (recall that if an operator T :
R™ — R™ is symmetric, then its graph is a Lagrangian subspace in R™ & R™, see,

IRecall the definition of the determinant det(X) = dety(X) of a quaternionic matriz X. Such
matrix determines a transformation H" — H™ and therefore an R-linear transformation Xp :
R* — R*. We set detg(X) := {/det(Xg).

2The spaces By 4 also are known as Cartan domains of type L.

3below a ‘symmetric space’ means a semisimple (reductive) symmetric space.

4Hua Loo Keng evaluated the volumes of Cartan domains and some compact symmetric spaces
and observed that the calculations survive in a greater generality.
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e.g., [12, Sect. 3.1]). The Lagrangian Grassmannian is a homogeneous (symmet-
ric) space U,, /Oy, see, e.g., [12, Sect. 3.3]. All other ‘matrix spaces’ defined above
are open dense charts on certain compact Riemannian symmetric spaces. Up to a
minor inaccuracy, all compact symmetric spaces admit such charts (see tables of
symmetric spaces in [12, Addendum D]).

2.3. Integration over eigenvalues

Consider the space Herm,,(K) of all Hermitian matrices® over K = R, C, or Hj
equip this space with the standard Lebesgue measure. To a matrix X € Herm,, (K),
we assign the collection of its eigenvalues

Thus we get a map X +— A from Herm,, (K) to the wedge (14). The distribution
of eigenvalues is given by the formula

Cn(K) H1<k<l<n A = NP dAs - dAn,

where C),(K) is a certain (explicit) constant, @ = dim K. This can be reformulated
as follows. Let F' be a function on Herm,, (K) invariant with respect to the unitary
group U(n, K)°,

FuXu™)=FX), ueUnK).
Such F' is a function of eigenvalues, F'(X) = f(\1,...,A,). Then the following
integration formula holds

/ F(X)dX
Herm,, (K)

:Cn(K)/ FOr a0 e = MPda--dh,. (15)
)\12)\22"'2)\n

1<k<I<n
The formula is a relative of the Weyl integration formula, see derivations of several
formulas of this kind in [11].
In the Hua integral (10), the integrand is

det(1+ T2~ = H" 1+ X)) = Hé'

i j:1(1+2)\j)7 (1 —iX;)™ .
Applying the integration formula (15) we reduce the Hua integral (10) to a special
case of the Selberg integral (8). Moreover, we get also an explicit evaluation of a

more general integral
/det(l +4T)* det(1 — iT)P dT.
5Herm,, (R) is Symm,, (R).

6U(n,R) is the orthogonal group O(n), U(n,C) is the usual unitary group U(n), U(n,H) is the
compact symplectic group Sp(2n).
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Next, consider the space of all complex matrices of size m x n, where m < n.
To each matrix we assign a collection of its singular values”

Pl = o 2= 2 oy 2 0.

The distribution of singular values is given by

2(n—m)+1 2 2\2
ngkgn o H1<k<l<m,(uk i) ngkgn dpt.

The integrand in the Hua integral (9) is [T(1—p3)%. After the substitution zy = u3,
this integral also is reduced to the Selberg integral (8).
All 20 integrals (11)—(12) are reduced to the Selberg integrals in this way®.

2.4. An application of Hua calculations: projective systems of measures

Let us return to integral (10). Represent a matrix T as a block matrix of size

(n—1)+1,
=5 3)

Consider a function f on Symm,(R) depending only on S = [T],,—1. Then the
following identity holds

2\ —«
/ f(S)det<1+ (5; p) ) dS dpdg
Symm,, (R) pq

n—1 n F(QO{ + ntl )F(Oé — 1)
=2"2 73 2 2 / f(S)det(1 + 52)Y/272ds. (16
M@)o 1) Jsym, ) ) 9HEES) (16)

This formula can be extracted from the original Hua calculation (the formula (16)
also implies (10)).
Now fix o > —1/2 and consider a measure v, on Symm, given by

Van = San det(1 + TQ)_"‘_(”H)/QdT,

where the normalizing constant s, , is chosen to make the total measure = 1.
Consider the chain of projections

++««— Symm,, _;(R) +— Symm, (R) «— --- |

where each map sends a matrix X € Symm,, (R) to its left upper corner [X],,—1(R).
In accordance with (16), this map sends the measure s, , to the measure sq p—1.
By the Kolmogorov consistency theorem (see, e.g., [13, §2.9]) there is a measure v,
on the space Symm_(R) of infinite symmetric matrices whose image under each
map X — [X], is va,n.

Next, consider the group of finitary” orthogonal (co + o) block matrices
having the structure (_“b 2) This group is isomorphic to the group Uy, of finitary

7 Singular values of a matrix Z are eigenvalues of v/ ZZ*.

8In all these cases the parameter v in the Selberg integrals is 1/2, 1, 2. For some exceptional
symmetric spaces distributions of invariants give v = 4.

9We say that a matrix g is finitary, if g — 1 has finite number of nonzero matrix elements
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unitary matrices. It acts on Symm__(R) by linear-fractional transformations (13),
note that this formula makes sense. It is easy to show that the measure v, is
quasi-invariant with respect to such transformations, and there arises a problem
of decomposition of the space L2. We also can regard our limit space as the inverse
limit of the chain of Lagrangian Grassmannians,

B Un—l/on—l — Un/On -
Such construction exists for any series of compact symmetric spaces and leads to
an interesting harmonic analysis on the limit objects, see [14-17].
2.5. Remarks

1. The construction of inverse limits does not admit an extension to non-compact

symmetric spaces (i.e., to matrix balls). Of course, the chain of projections
of sets

= Bpg = Bprigr1 «— Bpragro -

is well defined. We can consider normalized probabilistic measures
st odet(l — Zz%) 2k

a,p,q,

on By qg+%. However, for sufficiently large k£ the integral

/ det(1 — Zz*)* 2, dz
Bptk.q+k

is divergent.
2. Projective limits exist for p-adic Grassmannians, see [18].

3. Beta-functions of symmetric spaces

3.1. The Gindikin beta-function of symmetric cones

Consider the space Pos, (K) of positive definite n x n matrices over K. The cone
Pos,, (K) is a model of the symmetric space GL,,(K)/U,(K), the group GL, (K)
acts on Pos, (K) by transformations g : X — ¢*Xg.

Gindikin [19], 1965, considered a matrix I-function given by

L[s] := / e "X T det[X]7 ™%+ - det X272 g
Pos,, (K) j=1

n(n—1)0 - 0
:(27T) (n—1) /413:‘[11_‘(810_(]{;_1)2)' (17)

Here sj € C, sp41 := 0; [X], denotes upper left corners of size p of a matrix X.
The expressions s; — s;11 are written by aesthetic reasons, we can write

n )\j
Hj:1 det[X]]
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with arbitrary A;. The factor det X®*/272/2+1 can be included to the latter prod-
uct, but it is the density of the GL,, (K)-invariant measure on Pos, (K) and it is
reasonable to split it from the product.

To evaluate the integral, Gindikin considers'® the substitution X = S*S,
where S is an upper triangular matrix with positive elements on the diagonal.
After this the integral splits into a product of one-dimensional integrals.

Also the following imitation of the beta-function take place:

Bls, t] ::/ H(det[ ]54 Sj+1 det[l_X].;j*tj#»l)
0<X <1,

L[s| I'[t]
Lls+t]
A proof in [19] is an one-to-one imitation of the standard evaluation of the Euler
beta-integral.

These integrals extend some results of 1920-30s (Whishart, Ingham, Siegel,
see [21]).

x det X°/270/2H1 qeg(1 — X)Pn/270/2H gy — (18)

3.2. Beta functions of Riemannian non-compact symmetric spaces

The domain of integration 0 < X < 1 in (18) is itself the symmetric space

L, (K)/U, (K). Indeed, the matrix ball ZZ* < 1 in the space of Hermitian matri-
ces is a model of the symmetric space GL,(K)/U,(K)). The inequality ZZ* < 1
is equivalent to —1 < Z < 1, and we substitute Z = —1 + 2X.

Analogs of integrals (18) for 7 remaining series of Riemannian non-compact
symmetric spaces were obtained in [22]'!. We give two well-representative exam-
ples.

In the first example we consider a symmetric space, which can be realized
as a matrix wedge. Let W,, be the domain (Siegel upper half-plane) of n x n
complex symmetric matrices Z with ®Z > 0. This is a model of a symmetric
space Sp,,, (R)/U,,. We write Z = T+ iS5, where T, S are real symmetric matrices.
Then

n det [T}~

H et[1 + T +iS]7 ™7+ det[l + T — iS]7 7+

T=Tt>0,5=S*
x det T~ ("*14T dS

B H 227‘7’“77’“+n7k7rk1_‘()\k — (TL + k)/2)1“(ak + T — A — (TL - k)/2) (19)
Pt L(or — (n—k)/2)T (1 — (n — k)/2)
(We set )\j+1 =0j4+1 = Tj4+1 = 0)
There are also noncompact symmetric spaces, which do not admit realizations
as convex matrix cones and convex matrix wedges. As an example, we consider the

10See also, [20].
HFor the case of tubes SOg(n,2)/SO(n) x SO(2), which is slightly exceptional, see [23].
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space O, 4/0, x O,. Let ¢ > p. We realize this space (for details, see [22], Sect.3)
as the space of real block matrices of size (¢ — p) + p having the form

_(1 0 ¢
R_<2L K)’ R+ R > 0.

We represent K as K = M + N, where M is symmetric and K is skew-symmetric.
Then the dissipativity condition R + R! > 0 reduces to the form

t
(1 3)>0

or equivalently M — LL! > 0. We have the following integrals in coordinates L,
M, K:

/ ﬁ t[M — LLYY N+
- 1+M+N]0-J70-J+1
M=M'>0,N=—N* 7=
M—LL'*>0

x det(M — LLY)~(PTD/24M dN dL =

_ ﬁ ,/Tk—(q—p)/Q—lr()‘k - (q + k)/2 + 1)F(0k A (p - k)/Z) )

L(ok —p+k) (20)

3.3. Remarks

1. Integrals (19)—(20) were written to obtain Plancherel measure for Berezin
representations of classical groups, see [22, 24].

2. T do not know perfect counterparts of the integrals (19)—(20) for compact
symmetric spaces. Some beta-integrals over classical groups SO(n), U(n),
Sp(n) were considered in [15], extensions to over compact symmetric spaces
are more-or-less automatic. However, they depend on a smaller number of
parameters.

3. On analogs of the T'-function. To be definite, consider the space Mat,, ,,(C).
Consider a distribution

p(Z) = H:Zl | det[Z];]% det[Z]?-Q

where p; € Z, A\; € C. This expression is homogeneous in the following sense:
for an upper triangular matrix A and a lower triangular matrix B,

p(BZA) H|an bjj|k<i M (ayzbj5) ki P (7).

The Fourier transform @ of ¢ must be homogeneous. For \; in a general
position this remark allows to write  up to a constant factor. This factor
(it is a product of Gamma-functions and sines) can be regarded as a matrix
analog of Gamma-function. See Stein [25], 1967, Sato, Shintani [26], 1974. T
do not know an exhausting text on this topic.
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4. Zeta-functions of spaces of lattices

Non compact symmetric spaces have p-adic counterparts, namely Bruhat—Tits
buildings (see, e.g., [12, Chapter 10]). Since this topic is not inside common knowl-
edge, we will discuss an adelic variant of matrix beta-integrals.

4.1. Space of lattices

A lattice in Q™ is a subgroup isomorphic to Z™. Denote by Lat,, the space of lattices
in Q™. The group GL,(Q) acts on the space Lat,,, the stabilizer of the standard
lattice Z™ is GL,(Z). Thus Lat,, is a homogeneous space

Lat,, ~ GL,(Q)/GL,(Z).
4.2. Analog of beta-integrals

We consider two coordinate flags
0cZcZ?*c.--Cz™ 0cQcQ?®c---cQ™
Consider intersections of a lattice S with these flags, i.e.,
SNzF c SnQF c R~

For a lattice S C R* we denote by v (S) the volume of the quotient R¥/S. The
following identity holds [27]:

Z H k(S NQF)~ArHBrers ¢ (8 N ZF) ket ki
S€Lat, (Q) j=1
_ ﬁ C(=(85+7 = 1)) C(aj + B —n+ )
j=1 C(aj —n+7)

where ( is the Riemann (-function,

4.3. On Berezin kernels

It seems that holomorphic discrete series representations of semisimple Lie groups
have no p-adic analogs. However, in [27] there were obtained p-adic analogs of the
Berezin kernels and of the Berezin—Wallach set. Let us explain this in our minimal
language. We define a Berezin kernel on Lat,, by

(Un(R) Un(S))
(Un(R ns ))a

This kernel is positive definite if and only if « = 0,1,...,n — L,or a >n — 1.

Positive definiteness of the kernel means that there exists a Hilbert space H, and

a total system of vectors 05 € H,, where S ranges in Lat,,, such that

(0s,07)m, = Ko(S,T).

a/2
Ko(S,T) :=
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The group GL,,(Q,) acts in the spaces H,. Further picture is parallel to the theory
of Berezin kernels over R (see [24]). Formula (21) allows to obtain the Plancherel
formula for this representation.

4.4. Remarks

1. An analog of I'-function is the Tamagawa zeta-function [28], see also [29]. It

is the sum
ST sz osrens
k=1

over sublattices is Z™. It can be obtained from (21) by a degeneration.
2. Certainly, analogs of (21) for symplectic and orthogonal groups must exist.
As far as I know they are not yet obtained.

5. Non-radial interpolation of matrix beta-integrals

5.1. Rayleigh tables

Again, K = R, C, or quaternions H, ? = dim K. Consider Hermitian matrices of
order n over K.
Consider eigenvalues of [X], for each p,

)\pl < )\p2 g < )\pp~
We get a table L

)\11
/\21 /\22
/\31 )\32 /\33

/\nl /\n2 /\n3 cee )\n(n72) An(nfl) Ann
with the Rayleigh interlacing condition'?

TS Gk S Ak S A (R S

This means that the numbers \p; increase in ‘north-east’ and ‘south-east’ direc-
tions.

Denote by R,, the space of all Rayleigh tables (22).

Note that for K = R the number of variables Ay, coincides with dim Herm,, (R)
(but generally there are 27("~1)/2 matrices X with a given £).

Now consider the image of the Lebesgue measure on Herm,, (K) under the map
Herm,, (K) — R,. In other words, consider the joint distribution of eigenvalues of

12This statement also is called the Rayleigh-Courant-Fisher theorem.
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all [X],. It is given by the formula

o 10/2—1
I1 IAG-1)a = Ajpl”/
2<j<n 1<a<i—1, 1<p<y

dpo(L) = Cp ()"
Aig — Aja)02
2<j<n—1 1<al;[ﬁ<j( 38~ Ao

< I Gua =) ] IT e (23)

1<p<gsn I<isn 1Iagy

where

7.rn(nfl)b/él

Cn(a) = Fn(n—l)/Q(D/Q).

Notice that for K = C we get a total cancellation in the expression (23). History
of this formula is not quite clear. It seems that ideologically it is contained in book
[30] by Gel'fand, Naimark (see evaluation of spherical functions of GL(n, C)). The
measure (23) is used in integral representation of Jack polynomials in paper [31] by
Olshanski and Okounkov. A formal proof is contained in [32], see also [33] and [34].

5.2. Interpolation

Now we can assume that 0 is an arbitrary complex number and interpolate matrix
beta-integrals

n—1

[ TTawifxg) oo/ i) 2
Herm,, (K) -4
o — o I1r..)
x det(1+1X) 7" det(l —¢X) ™dX =
(1+X) =7 det(1 — iX) e )

with respect to 0 = dim K:

/ H H 1+2)\ja —ojtoj41— 0/2(1_2)\ ) Tj+Tjt+1—0/2

n j=1 a=1

H (14 iXnp) 7" (1 — iAnp) "™ dpo(A)

_ pn(n—1)0/44n H Ploj+7—1-( - 1)0/2).

e I(0)T(75)

Here integration is taken over the space of all Rayleigh tables and the measure
dpy(A) is given by (23).
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However, the proof [32] of the latter formula remains to be valid for a wider
family of integrals,

n—1 J

JILTL+ inja) oo -ton (1 = i) 40
j=1 a=1
< T+ iXp) ™7 (1= idgy) ™
p=1
i 1<a< 11_[< < 1|)\ja _)\(j+1)p|9m*1
<agy, I<p<j+
X Ang — Anp) dA
cr — )\ V0iat05—2 H (mz np
j=1 [T (Mg —Aja) p 1<p<a<n

1I<a<f<y

n
2n— 3" (0;+7;)
=q"2 =t

"o+ —1 =57 0 1.
[I r. [0 e o),
j=1

1<a<i<n—1 I'(o;)0(75)

Now the parameter 9 is replaced by (n — 1)n/2 parameters 6,

5.3. Remark

The Gindikin beta-integrals admit an interpolation in the same spirit [32]. For
beta-integrals (19)—(20) over wedges and more general domains an interpolation
is unknown.

6. Beta-integrals over flag spaces

6.1. Beta-integrals

Now we consider upper-triangular matrices Z = {z;;} over K, z;; = 1, z;; = 0
for i > j. Denote the space of all upper-triangular matrices by Triang,, (K). Recall
that the space of upper-triangular matrices is a chart on a flag space.

Let [Z],q be left upper corners of Z of size p x ¢, denote

spq(Z) = det([Z]pq [Z];q)'

The following identity [35] holds
T —-0/2
/ H qu(Z)_Am d7 — qn(n—=1)/4 H (Vpg / )’
Trian K F(V )
ang,, (K) 1<) La<n 1<p<g<n pa
where the integration is taken over the space of upper-triangular matrices, and

1
Vpq ::_2((]_17_1)0"‘ Z A

k,m: p<k<q, g<m<n
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6.2. Projectivity
Consider the map Z +— [Z],—1 from Triang, (K) to Triang, ,(K). Consider a

measure .
H Spn(2) " dz 1M}
p=1

on Triang, (K). Assume

1
Ap+Ap+1+"'+)\n—1> 2

Then the pushforward of this measure under the forgetting map is

el H FAp+---+ A — (n—p)0/2)
1p<n—1 T(Ap 4+ -+ Ay — (n—p+1)0/2)

x H:;lz Sp(nfl)([Z]n—l)i)\p d[Z)y-1.

(n—p)o for all p.
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Differential Equations on Complex Manifolds

Anton Savin and Boris Sternin

Abstract. We discuss linear partial differential equations with constant coeffi-
cients on complex manifold C". Using the Sternin—Shatalov integral transform
we solve complex Cauchy problem and consider two applications: describe the
singularities of the solution of the Cauchy problem and solve a physical prob-
lem of sweeping the charge inside the domain (balayage inwards problem).

Mathematics Subject Classification (2010). Primary 58J32; Secondary 58J47,
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Keywords. complex theory of differential equations, Cauchy problem, balayage
inwards, propagation of singularities, Landau manifold, integral transform.

1. Complex Cauchy problem. Examples
In the complex space C" with coordinates z = (z!,...,2™) consider the partial

differential operator of order m with constant coefficients
I 0 Z a\" L (i1, i ) i ltiind (1)
— = ao | — , where a = (1,19, ...,1,) is a multiindex,
85E = (e 8{E 1,02 n
al<m

while |o| = )", ix. The characteristic polynomial

H(p) = Z aap”

is called the Hamiltonian, while its top degree component is denoted by H,,(p).

Let us pose the Cauchy problem for the operator (1) with data on a hypersur-
face X C C™, which we assume to be irreducible analytic manifold of codimension
one.

The authors were supported in part by RFBR grant Nr. 12-01-00577. The first author would like
to acknowledge support from Simons foundation.
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Definition 1. The Cauchy problem for operator (1) is a system of the form

(= g0 ) o) = 1(0), o

u(x) vanishes to order m on X,

where the right-hand side f(z) and the unknown wu(z) are analytic functions. (Re-
call that a function is analytic if it has no singularities except ramifications and
poles.)

Here we consider for simplicity the Cauchy problem with zero initial data on X.

Let us make several remarks concerning Cauchy problem (2).

Simple examples show that the solution of the Cauchy problem can have
singularities even if X and the right-hand side f(x) have no singularities.

Example. Consider the Cauchy problem

Oty =1,

u(x,t) =0.

r=t2
The solution u(x,t) =t — /x is a ramifying function.
Example. In C? consider the Cauchy problem for the Laplacian
0%u 0%u
+ =1,
A(x1)2 " 9(a?)2 )
u(x) vanishes to order 2 on X.

The solution of this Cauchy problem is equal to

7“2

1 1
u(x) = 5 Inr+ "t where 7 = \/(21)2 + (22)2,
and is a ramifying function with ramification along the lines x! + iz? = 0.

These examples show that in the complex case the solution of a differential
equation has singularities and is a ramifying function.

Let us now formulate the Cauchy—Kovalevskaya theorem for the system (2).
Theorem 2 (Cauchy-Kovalevskaya). In a neighborhood of a point xog € X there
exists a unique holomorphic solution of the Cauchy problem (2), provided that f(x)
is holomorphic at xg and xg is not a characteristic point.

Recall the definition of characteristic point, which appears here.

Definition 3. A point 2o € X is characteristic (with respect to the Hamiltonian

H), i
Hp (gi ($0)> =0,
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where s(z) = 0 is a local equation of X. Geometrically, this condition means that
the normal vector of the surface lies on the characteristic, which is defined by the
equation Hp,(p) = 0.

Note one essential difference between the complex and real theories: in com-
plex theory any(!) differential equation has characteristics, since the equation
H,,(p) = 0 always has a solution by the main theorem of algebra. Hence, any
Cauchy problem has characteristic points!

We should note that the Cauchy-Kovalevskaya theorem gives only the ezis-
tence and does not give an explicit formula for the solution. Moreover, this theorem
does not describe singularities of the solution on X (at the characteristic points),
and does not describe the solution far from X. To solve these problems, a more
precise and fine apparatus is necessary.

In real theory, such apparatus is the Fourier transform, which plays a funda-
mental role in modern theory of differential equations (in real domain!). In the first
place, this ows to the fact that it algebraizes equations with constant coefficients.
More precisely, in Fourier coordinates operators of differentiation are written as
operators of multiplication by independent variables and one has the commutation
relation

.0
]:x—>p o <_Z 8%) =po ]:ac—>p7 (5)

where F,_,, is the Fourier transform.
Unfortunately, the Fourier transform does not extend to complex theory for
the following reasons:

1) in complex theory functions can have arbitrary growth rate at infinity, so
that the integral over a noncompact cycle of the form R"™ is always divergent;

2) in complex theory the functions are as a rule ramified, so that in the trans-
form we cannot use a fixed cycle of integration, but rather have to choose a
cycle, which avoids singularities of the function and lies on the corresponding
Riemannian surface.

An integral transform, which satisfies the commutation relation (5) and is de-
fined using integration over compact cycles, was obtained by Sternin and Shatalov
in 1985 [1, 2], see also [3].

Below we recall the definition of the Sternin—-Shatalov integral transform,
solve complex Cauchy problem for equations with constant coefficients, and then
consider two applications: describe the singularities of the solution of the Cauchy
problem and solve one problem from physics — problem of sweeping the charge
inside the domain (balayage inwards problem).

2. Sternin—Shatalov integral transform

In this section, we recall the definition of the Sternin—Shatalov transform and de-
scribe its properties. First, the transform is defined for homogeneous functions. At
the end of the section, we show how to define the transform for arbitrary functions.
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Naturally, for applications to differential equations one uses the transform for non-
homogeneous functions. However, we start the exposition with the transform of
homogeneous functions, since in this case the formulas are more natural.

2.1. Transform of homogeneous functions (F-transform)

1. Definition of the transform. Consider the complex projective space CP".
Let f(x) be a homogeneous function of order k € Z on C"*!, i.e., we have

fz) = N f(x), for all A # 0.

Definition 4. The Sternin—Shatalov transform of a function f(z) is the function
(Fyspf)(p) = f(p), which is defined by the formula

n f(@)w(x) :
B (-1) +k(n+k)!/h(p) P%ES (wp)Hh+1 ifn+k+1>1,
z)w(z)(zp)” T if )
s kg L SEREE D, k<0

Here
o zp=2apy+alpr +---+ 2", is tkf\phase function;
o w(x) = Zj(—l)jxjdxo Adxt A---Adzi A---Ada™ is the Leray form on C*HL;
o L, ={z | zp = 0} C CP" is the zero set of the phase function; this is a
hyperplane depending on the parameter p;
e Resy, stands for the Leray residue of a differential form on the hyperplane
Lyt
The integration in (6) is over special homology classes h(p) and hi(p), which will
be defined below. Let us show that the integrand in (6) is defined essentially
canonically:
e first, any differential form of degree n on CP" is proportional to the Leray
form, hence, the integrand naturally contains the Leray form;
e second, similar to the Fourier transform, the integrand depends on p through
the phase function zp only;
e third, the fraction of the form

f(@)w(z)
(zp)’
is homogeneous of order zero in x (i.e., it defines a form on CP™) if and only
if the order of homogeneity of the numerator (k+n+ 1) is equal to the order
of homogeneity [ of the denominator, i.e., the power in the denominator in
(6) is chosen canonically;

1We recall that the Leray residue of a closed form with first-order pole can be computed explicitly:

dz
Res ( N @reg + wreg) = Wreg‘z:O:
z2=0 z

where @reg, Yreg are regular forms in a neighborhood of the hyperplane z = 0. For computation
of the Leray residue in the general case see [4, 5].
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FIGURE 1. Vanishing cycle h(p) in spaces of dimension two and three.

e finally, if n + k + 1 > 1 we have to take residue, since the form has a pole at
the plane L.

2. Construction of the homology classes h(p) and h1(p). The transformation (6)
is a relative transformation, i.e., to define it, we have to choose a codimension one
submanifold X € CP", which is assumed to be analytic and irreducible. This is
quite natural from the point of view of the theory of differential equations, where
X is just the space on which we pose Cauchy data.

Let xg € X be a regular point on X, which we assume to be nondegenerate
in the sense that X and the tangent plane L,, C CP" at this point have tangency
of order two. Then for p close to pg we have the so-called vanishing cycle (see
Figure 1)

h(p) € Hp—1(Lyp, X), (7)

which lies on the secant plane L, while its boundary lies in X. This cycle is called
vanishing since this cycle contracts to z¢p as p — pg. Similarly, one defines the
vanishing cycle

hi(p) € Hy(CP", L, U X), (8)

which lies in the ambient space CP", while its boundary lies in the union L, U X
(see Figure 2).

This defines classes h(p) and hq(p) only for p close to py (in other words, for
the secant planes L, close to the tangent plane L,,). However, using the Thom
triviality theorem [6] one can show that these classes uniquely extend to all p € CP"
as ramifying homology classes.

3. Spaces of ramified analytic functions. Consider the following question: what
are the natural classes of functions for the transform (6)7 Before we answer this
question, let us make two remarks.

First, since the transform is defined by a ramifying integral, the result of
applying this transform to an analytic (and even holomorphic!) function is a ram-
ifying analytic function. Second, since the transform is defined by integrals over
cycles with boundary in X, for the integrals to converge, it is necessary that the
function f(x) satisfies some conditions on this set.
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FIGURE 2. Vanishing cycle hq(p) in spaces of dimension two and three.

So, the transform (6) should be considered in spaces of ramifying analytic
functions, which satisfy some conditions on the submanifold X. Let us give the
corresponding definition.

Definition 5. The Weighted space A’; (X)) consists of ramifying analytic functions
f(x) homogeneous of order k such that:

1) they are holomorphic off X UY C CP};, where Y = Y} denotes some analytic
set, which depends on f;
2) given a regular point z € X\Y, near this point we have

| f(z")] < C|s(z")|?, with some constant C, 9)
here X is locally defined by the equation s(a’) = 0.
It follows from this definition that the functions in A’; (X) are zero on X for

all ¢ > 0.
One can show that the mapping (6) acts as

FE,, ARX) — A GO (LX) for all g > —1,

where LX C CP} is the Legendre transform of manifold X:

LX = {p| L, is tangent to X at a regular point x € X}

the closure of tangent planes to X at regular points. Let us note that the Legendre
transform is easy to compute in examples. For instance, the Legendre transform
of the quadric X = {22 = (21)?} is the quadric £LX = {p? = 4pop2}.

4. Properties of the transform.

Theorem 6. The transform (6) has the properties

L. (invertibility) The mapping Fy_,, : A%(X) — A{;_(ﬁflz;r_&)l)m (LX) is an iso-
morphism for all ¢ > max (—1,k; + ";1 — 1). The inverse transform corre-

sponds to the set LX and is equal to

. n—1 .
(—1)_k_1_€ < ' ) F_("+k+1), where € = 0, if —k—-221
2 pe 1, if —k—2<0.
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2. (commutation relations) Given a function f € A’; (X) and g > 0 we have

_ 0
pj- Falcv—m(f) = Fa]cﬁ—é) <_8fo> >
0
Ip;

(10)
(FrL,f)=FiiL (@ f).

2.2. Transform of arbitrary functions (R-transform)

For applications to differential equations we need arbitrary, i.e., nonhomogeneous,
functions, defined in C™. One can extend the transform (6) to such functions, if
we consider C™ as an affine chart in CPP". Let us describe the obtained transform.

1. Definition. To a function f(z!,...,2") on C", we assign the homogeneous func-
tion in CPt1:
1 2 n
_ xx x
@ (T st ) (1)

Somewhat surprising (at first glance) is the factor (z°)~" in this formula, which
is responsible for the order of homogeneity. Actually, the choice of order equal to

—n gives the simplest expression for the transform R (see formula (12) below).

Definition 7. R-transform of function f(x!,... 2") is the result of applying the
transform F,_,, to the function (11). A direct computation shows that

(#9)0) = [ Tes fleyde Ao N da? (12)

(» L» po+pizl 4.+ puan

2. Properties of the transform R. All the properties of the R-transform follow
from those of the F-transform. We briefly formulate these properties.
The R-transform acts in the spaces

R: A (X) — qun,l (LX),

where A,(X) stands for the space of ramifying analytic functions on C™, which
satisfy near X estimates (9). The R-transform is invertible. Finally, we note that
the commutation relations in this case are

R(= )0 ) =p g RO, for e AX), 40
and differ from those in (10) in that they contain the derivative 9/0po. Hence, un-
like the real theory, in which the Fourier transform converts differential equations
with constant coefficients into algebraic equations, in complex theory R-transform
converts partial differential equations with constant coefficients into ordinary dif-
ferential equations. Meanwhile, the corresponding ordinary differential equations
are easy to solve. So, there are no difficulties here.
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3. Example. Let us consider an example of the R-transform for a function of two
variables.

Let f(x) = 1 and X be the complex quadric {(z!)? + (2?)? = 1}. Let us
compute the function }v: R(1). This function is homogeneous of order —1, hence,
it suffices to compute its values say for p; = 1. We have

~ dxz' A dx?
f(p07 17p2) = / Res 1 2 .
h(po,1,p2) L PO T+ T7p2
The residue is equal to
dz' A da?
Res 1 5 =
Lp po~+ "+ x°p2
Note that it follows from the equation L, = {po + ! + 2?py = 0} that 22 can be
considered as a coordinate on L,. Hence, we have

f(p07 17p2) = / de'
h(po,1,p2)

Let us compute the homology class h(po, 1, p2). To this end, we compute the
intersection L, N X. It consists of two points

xzzpopzﬂ:\/l—kpg—]?%
p3+1

and therefore the vanishing cycle of the corresponding quadric is just the segment,
which joins these two points. Hence

7 2/1+ p} — p
1 = .
f(pov 7p2) 1+p§

dz?.

Taking into account the homogeneity of f, we obtain finally

o) = 2\/pt +p3 — g
P +pi

The latter function has singularities of two types: ramification in the nominator
and polar singularities due to the denominator.

3. Solution of the Cauchy problem

Consider the Cauchy problem for an equation of order m

(= 5 ) o) = 1(0),

u(x) vanishes to order m on X

with zero data on the submanifold X of codimension one.
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Below we apply the Sternin—Shatalov transform and show that the Cauchy
problem is uniquely solvable in spaces of ramifying functions; we also give an
explicit formula for the solution of the Cauchy problem as a ramifying integral;
finally, we describe the singularity set of the solution. Note that these results are
global, i.e., valid in the entire space.

3.1. Theorem on the solvability of the Cauchy problem

We saw in the first section that even for a holomorphic right-hand side the solu-
tion of the Cauchy problem should be sought in the space of ramifying functions.
Further, the condition that u(z) vanishes to order m on the submanifold X can be
restated as u € A, (X), where A,,(X) is the weighted space of ramifying functions,
which was defined earlier.

So, to the problem (13) we assign the operator

0
or, more generally, operator
H <_aa ) : Aq+m(X) — Aq()()7 defined for ¢ > —1 (15)
x

acting in the scale of spaces A4 (X).
To study the operator (15), we apply the Sternin—Shatalov transform.

Theorem 8 ( [5]). The operator (15) is invertible provided that X is not totally
characteristic.

Proof. 1. Consider the commutative diagram

H(—8/0z)

Agm(X) > Aq(X) (16)
R R
v Y
—1 1
Aq—i—m—i—(n—l)/Q(’CX) H(pd/dpo) >Aq+(n_1)/2(£X),

where £X is the Legendre transform of X.

Since the R-transform is invertible, it follows from (16) that the invertibility
problem for the initial operator reduces to the same problem for the family of
ordinary differential equations with constant coefficients

d
H (pd ) ,  where p = (p1,p2,---,Pn), (17)
Po

in the spaces A;l.
2. Tt follows from the properties of the function spaces in (16) that we should
seek the solutions of the equation

H <pdzo) W(po,p) = f(po.p), (18)
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that have a zero of order m on £LX. Suppose that the equation of LX is py = po(p),
then it follows that the function u(po,p) should satisfy the conditions

d\’ _
u
<dp0>

i.e., it has zero Cauchy data for the ordinary differential equation (18). In other
words, the operator H(pcl/dpg)_1 is the inverse of the operator in the lower row
in (16) and coincides with the resolving operator of the Cauchy problem for the
equation (18) with zero Cauchy data (19) on X. The solution of this Cauchy
problem can be constructed using the Green function. Straightforward estimates
show that this operator acts in the spaces in question.

3. Now we can write out the inverse operator for H(—9/0x) as the composi-

tion L .
a\ d\
H <— 833) =R "oH <pdp0> oR, (20)

i.e., we obtain an explicit solution of Cauchy problem in the form

=0, forall j <m—1, (19)
Po=po(p)

u=R'H (de())l(Rf) . (21)
O

3.2. Sternin—Shatalov formula for the solution of the Cauchy problem

If we substitute explicit expressions for the integral transforms R, R~! and the
integral operator H (pd/ dpo)f1 in (21), we obtain an explicit expression for the
solution of Cauchy problem (13) in terms of an iterated integral. It turns out,
however, that this integral can be simplified, namely, it can be reduced to a double
integral and one obtains a simple formula for the solution of the Cauchy problem,
which was obtained by Sternin and Shatalov?. Let us describe this formula.

We assume for simplicity that the Hamiltonian H is a homogeneous function
and consider the submanifolds

S ={(p,y) | p(x —y) = 0} C CPp~" x CP},
char H = {(p,y) | H(p) =0} C C}P’Z_l x CPy.

Theorem 9 ([5]). If X is not totally characteristic, then the solution of the Cauchy
problem is equal to

(Y Ty nwp) o
=t 0 (5r) Lo B oty e 7 "
22

2In real theory, reductions of an iterated integral to a double integral are based on the Fubini
theorem. However, in complex analysis the Fubini theorem does not work! More precisely, the
relation between the iterated and double integral is described in terms of a certain spectral
sequence (this is studied in detail in the paper [7]). Hence, the described reduction is a nontrivial
step forward.
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ifn <m,

(23)

(= T F@)(p(y —x))™ "dy Aw(p)
R (%) /W) Hip) ’

where w(p) = Z?Zl(—l)jpjdpl Ao A @j A -+« ANdpy, 1s the modified Leray form,
while
h(z) € Hop—2(X; \ char H, X) (24)

hi(x) € Hyp—1(CP)~" x CPy \ char H, %, U X) (25)

are special ramified homology classes.

Remark 10. For completeness, we give the definitions of the ramified homology
classes in Theorem 9. The class (24) is defined as a vanishing cycle of the family
of quadrics £, N X C X,. The class (25) is defined by the equality Ohy(z) = h(x),
where 0 is a boundary map in homology.

3.3. Localization of singularities

We can use formulas (22) and (23) for the exact solution of the Cauchy problem,
to study the localization problem for the singularities of the solution. Namely, (22)
expresses the solution as a ramified integral depending on a parameter. Integrals
of this form originally appeared in physics as Feynman integrals (e.g., see [8]).
Moreover, singularities of such integrals lie on special submanifolds called Landau
manifolds. The Landau manifold for the integral (22) can be explicitly calculated
and we therefore obtain localization of singularities of the integral and, hence, of
the solution of the Cauchy problem. Let us formulate the resulting formula under
the following assumptions:

e the right-hand side f(x) is an entire function;
e the manifold X and the characteristic char H = {p | Hp,(p) = 0} C (C]P’;’_1
have no singularities;
e X is transverse to the set of points at infinity in CP".
To localize the singularity set, we denote the set of characteristic points on
X by char X. Then we consider solutions of the Hamiltonian system

.o,
= o

 0H,
P=" oz =0

The projections of the solutions to the z-space are called bicharacteristics. Obvi-
ously, they are straight lines

teC. (26)

Theorem 11 ([5]). The singularity set singu of the solution of the Cauchy problem
is contained in the union of bicharacteristics of the Hamiltonian H originating
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from the characteristic points of X, including characteristic points at infinity:
0H,
singu C U {a:—i—t m} (27)
dp
zcchar X

Remark 12. Since the bicharacteristics of equation with constant coefficients are
straight lines (26), it follows that the set on the right-hand side in (27) is a union
of straight lines. This set is called the characteristic conoid of the Cauchy problem.
Example. Consider the Cauchy problem
0? 0?
U 45 uo 1.
a(z)2 d(x2)2
u has zero of order 2 on X,
where X = {(2)? + (2%)? = 1} and f is holomorphic in C2.
Let us localize the singularities of the solution of this Cauchy problem. The
Hamiltonian is H(p) = p? + 5p3, the characteristic is
char H = {p? + 5p3 = 0}.
Characteristic points are obtained as the solutions of the system of equations
(1) + (2%)% =1, (', 2?) € X,
p?+5p3 =0, (p1,p2) € char H,
p1 = 2z', py = 222 p = 0s/0x.

(28)

This system has 4 solutions (z!,2%) = 1(£+/5,=£i). Projections of bicharacter-

istics, which pass through these 4 points, are equal to (z!,2?) = ;(:I:\/5,:I:i)
+t(£1, 4i+/5). Hence, the singularities of the solution lie on the union of 4 lines

Vol +iz? = £2.
So, the singularities of the Cauchy problem (28) lie on these 4 lines.

Example. Let us now get back to Example 1 in the first section. A computation
shows that there are no characteristic points in the affine chart C2 ¢ CP%. But the
solution has singularities. The question is: where do these singularities come from?
Theorem 11 gives an answer to this question: the singularities are generated by
characteristic points at infinity. A computation, which we omit here, shows that
this is indeed the case.

4. Application. Balayage inwards
4.1. Statement of the problem

The classical balayage problem was introduced by Poincaré and was studied in
several settings since then.

Here we consider the following statement (see monograph by H.S. Shapiro
[9]) known as “balayage inwards” problem:
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Given a density of charges f supported in a domain €, find a density of

charges w with smaller support suppw € €1, whose potential coincides

with the potential of the original distribution f outside €.
Of course, it is natural to try to make the support suppw of the new density of
charges in a certain sense minimal.

Here we recall that the potential, induced by the charges with density f, is
equal to

Ul (z) = / @) Enl — ) dy. (20)
Q

Here E,,(€) is the fundamental solution of the Laplace equation in R™:
1 1

_VISnfl ' n72’n
B =] Vel
27T1n|€|,n=2

(Vol(S™~1) is the volume of the unit sphere in R™.)

> 2,

Example. Let € be a ball with center at the origin with uniform distribution of
charges: f|o = 1. It is well known (I. Newton), that in this case the same potential
is obtained, if we place the uniform charge on an arbitrary smaller ball with the
same center. Moreover, one can even place the charge at the center of the ball.
This means that the solution of balayage inwards problem in this case is given
by the distribution w(x) = Cd(x) proportional to the Dirac delta-function at the
origin.

This example shows that it is natural to search for the desired distribution of
charges w in the class of distributions supported in 2. The corresponding potential
in this case is defined by convolution (cf. (29)).

Remark 13. There are other problems in physics similar to balayage problem. Let
us mention two such problems.

1. In geophysics, there is a problem of describing gravitationally equivalent
bodies (motherbody problem): Given a body D with known mass distribution,
find a smaller body D1, which produces the same gravitational field outside D.
Obviously, this problem can be reformulated as a balayage problem. However,
there is one difference: a distribution of masses has to be a nonnegative function.
For more details see [10].

2. In radiophysics, there is a problem of optimization of antenna sizes. We
can consider antenna as a given distribution of currents in a domain D (domain
occupied by the antenna). To construct antenna of a smaller size, means to find a
distribution of currents which is supported in a smaller domain D; and produces
the same electro-magnetic field outside D. Similar to the previous examples, this
problem reduces to the study of properties of solutions of Helmholz equations (or,
more generally, of Maxwell equations). For more details see [11].
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Method of investigation of the problem. Note that in all three problems the min-
imal size of the object under construction is determined by the singularities of the
solution of the corresponding equation inside the domain. Hence, study of such
problems reduces to finding singularities of solutions of the corresponding equa-
tions. To study singularities of these equations (recall that the equations are de-
fined in the real domain!) we complexify the problem, i.e., consider these equations
in complex domain. The reason, why it is necessary to complexify the equation
to study singularities of its solution lies in the very nature of elliptic equations.
Indeed, we would like to study singularities of the solution. However, as is well
known, singularities of solutions of differential equations propagate along char-
acteristics. Meanwhile, elliptic equations have no real characteristics. This shows
that singularities of the solution originated somewhere in the complex domain
and propagate along (complex) characteristics into the real domain. Figuratively
speaking, the singularities of the solution are obtained as a “complex rain”, which
falls down on the real space from some points in the complex space. Thus, to
study singularities of the solution of real problems, one should follow the following
scheme:

e pose the complex problem, which corresponds to the real problem,;
e study the singularities of the solution of the complex problem;
e intersect the singularity set with the real space.

Below we realize this approach and solve the balayage inwards problem.

4.2. Solution of the problem

Main assumptions. In this section we give (following [12]) the solution of the
balayage inwards problem using the methods of complex theory of differential
equations under the assumption that the boundary 02 and the original charge
distribution f extend to the complex domain, namely:

1. The boundary 99 of  is an irreducible algebraic hypersurface without sin-
gularities. The domain €2 is assumed to be bounded. Denote by X the com-
plexification of ). This is an algebraic set in C™.

2. The function f(z) is real analytic in © and admits analytic continuation
to the compactification CP™ of C™ as a (possibly ramifying) function with
singularities over analytic sets in CP".

Reduction to a complex Cauchy problem. Let w be a distribution, which gives a
solution of balayage problem. Consider the difference

u(z) = Ul (z) — U (x). (30)

Then using properties of the potentials, one can show that the function (30) is a
solution of the following (real!) Cauchy problem:

{Au(x) = f(x) for x € Q\ supp w,

(31)
u(x) vanishes to order 2 on 0.
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FicUrREe 3. Complex rain gives real singularities.

Consider the complexification of (31), i.e., the problem
{Au(x) = f(x), for z € C",

(32)
u(x) vanishes to order 2 on X.

Under our assumptions the solution of the real problem (31) is obtained from the
solution of the complex problem (32) as the restriction to the real space R™ C C™
and is, as a rule, ramifying analytic function. Restricting this function to real x € Q2
and cutting it off (to obtain a univalued function) one can obtain the solution of
(31) and, correspondingly, the solution of the balayage problem. Let us formulate
this result.

Solution of balayage inwards problem. The solution of the problem can be ob-
tained as follows:

1. The solution u(z) of the complex Cauchy problem can be written out ex-
plicitly as a ramifying integral. We also know that the singularities of the
solution lie on Landau manifold, which we denote by L (see Figure 3).

2. (“complex rain”) Let Lg = LN be the real part of the singularity set, which
lies inside € (see Figure 3). Note that this set lies compactly inside €, since
the solution u(z) has no singularities near 0f2.

3. By item. 2 the function u(x) has no singularities on the complement €\ L.
However, it might have ramifications. To obtain a univalued function, we
choose a system of cuts Z C Q with boundary in Lg (see Figure 4) such that
u(z) admits a univalued branch over Q\ Z. Denote by w(z) this branch and
extend u(zx) as zero outside 2. By construction, we have

ue CHR™\ Z), Au=fin Q\ Z. (33)

4. Suppose that u, which is defined in 2\ Z, admits a regularization to a dis-
tribution in 2. We claim that the solution of the balayage problem is given
by the distribution

w=AU' —u), suppw C Z
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Ly R

Z

F1GURE 4. Cuts Z are necessary to obtain univalued function.

(we differentiate here in the sense of distributions). Indeed: 1) (33) implies
that suppw C Z; 2) outside 2 the potential U™ coincides with the original
potential U/:

U*(z) = U’ () — u(z) = U'(2), for x € R™\ Q.
The balayage inwards problem is now solved.

4.3. Example
1. Ellipse. Consider the balayage problem for the domain bounded by the ellipse
(z')? | (2*)?
Qz{ o2 + b2 <lp, a>b>0.
Let us assume throughout the following that the initial distribution of charges is

defined by an entire function.
Complex Cauchy problem:

Au = f in C?, 12 22
; P s
u vanishes to order 2 on X,

Let us compute the singularity set.

Hamiltonian: H(p1,p2) = p? + p3,

Characteristic: char H = {p1 = xip2} = {(4,1)} U {(—i,1)} C CPy .
Conormal bundle:

. (x1)2 (x2)2 xl £E2
NX:{ 2 b =L pPl=png

There are four characteristic points:

a2 b2 a2 b2
: i1 ) bud (£ L i 1)
{<¢\/a2—62 Va2 — b2 >} {< Vaz —b2" Va2 — b2 >}

Four bicharacteristics passing through these points
! +ix? = :I:\/a2 — b2,
Hence, the characteristic conoid is just the union of these four lines

L={z"+iz? = +va? — b2}.
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A

FIGURE 5. Singularities for ellipse.

Complex rain gives the real singularity set
Lp = LNR? = {z' = +\/a2 — 12,22 = 0}.

which coincides with the focal points of the ellipse (see Figure 5).

One cut is necessary: for example, one can cut along the interfocal segment.
It can be shown that the solution is indeed ramifying at the focal points and
therefore the cut is necessary.

2. Paraboloid of revolution. Consider the balayage problem for the domain bounded
by the paraboloid of rotation

O = {.133 Z (.131)2 =+ (.132)2}.

A direct computation gives the localization of singularities of the complex Cauchy
problem.

Lemma 14. The singularities of the solution of the complex Cauchy problem with
zero data on the surface

X = {.233 — ($1)2+($2)2} C(CS

and entire right-hand side are contained in the set
1\2
L= {(x1)2+(x2)2+ <x3— 4) :O}U{(x1)2+(x2)2 =0}. (34)

Complex rain gives localization of the real singularity set:
Lg=LNR}={2' =2? =0} u{a! =2 =0,2° = 1/4},

which is just the vertical line divided by the point (0,0,1/4) (the focal point of
the paraboloid) into two rays.

In addition, since u has no singularities on 912, it follows that the singularity
set of the solution actually lies on the ray

{a' =2? =0,2% > 1/4}.

The complement of this ray is simply-connected, hence, the solution is single-valued
in this complement and, hence, no cuts are necessary (see Figure 6).
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1/,
LR

FIGURE 6. Singularities for paraboloid.

3. Ellipsoid of revolution. Consider the balayage problem for the domain bounded
by the ellipsoid of rotation

<1}, a# 1.

Here, as before, we assume that the original distribution of charges is defined by
an entire function.

Lemma 15. The singularities of the solution of the complex Cauchy problem with
zero data on the surface

X = {(xl)Q + (],‘2)2 + (x3)2/a2 _ 1}

and entire right-hand side are contained in the set
2
L= {(x1)2 (@) + (xg + /a2 - 1) - o} U{(})?+ @22 =0}.  (35)

In this case there are two possibilities.
1. Let a > 1 (prolate ellipsoid, see Figure 7). In this case complex rain gives
the real singularity set

Lp=LNR*={z' =2 =0} U{a' =2 =0,2° = +/a® — 1}.

This set is a union of the vertical line, which is divided by two points into two
rays and a segment. Since the solution has no singularities on 02, the singularity
set is actually contained in the segment

{z' =22 =0,]2*| < Va2 —1}.

The complement of this segment is a simply-connected domain and no cuts are
needed.

2. Let 0 < a < 1 (oblate ellipsoid, see Figure 8). In this case complex rain
gives the real singularity set

Lg =LNR*={z' =2 =0} U{(z")* + (2*)* =1 — a*,2* = 0}.
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L

FIGURE 7. Singularities for prolate ellipsoid.

Ly

F1cURE 8. Singularities for oblate ellipsoid.

In addition, since u has no singularities on 90X, the singularities lie on the circle
{2 + (2*)? =1—a? 2° = 0}.

Making a cut along the disc, which bounds this circle, we obtain a simply-
connected domain. The solution is a single-valued function in this domain.
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Asymptotic Properties of Solutions of Neutral
Type Difference System with Delays

Ewa Schmeidel, Joanna Zonenberg and Barbara Lupinska

Abstract. We consider a three-dimensional nonlinear difference system with
deviating arguments of the following form

A(xn +pnxn—‘r) = anf(ynfl)
Ayn = bng(wn*m)v
Awy, = dcnh(Tn_k)

where the first equation of the system is a neutral type difference equation.
First, the classification of nonoscillatory solutions of the considered system
is presented. Next, we present the sufficient conditions for boundedness of a
nonoscillatory solution. The obtained results are illustrated by examples.
Mathematics Subject Classification (2010). 39A10, 39A11, 39A12.

Keywords. Difference equation, neutral type, nonlinear system, nonoscillatory,
bounded, unbounded solution.

1. Introduction

We consider a nonlinear three-dimensional difference system of the form
A(xn +pnxn—7') = anf(yn—l)

Ayn - bng(wn—m,)a (1)

Aw,, = deph(Tn—_k)
where A denotes the forward difference operator Az, = 2,11 — 2z, for any real
sequence (zp,), n € N, = {no,no+1,...}, no = max{l,m,k, 7}, [,m,k,7 are
non negative integers, (p,) is a real sequence and § = +1. Here sequences (a,),
(bn): N = Ry U {0}, (cn): N = R,, where N, R, R, denote the set of positive
integers, real numbers and the set of positive real numbers, respectively. Moreover

ianzibnzoo. (2)
n=1 n=1
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Assume that f,g,h: R — R are functions such that there exist positive, different
constants My, Ms, M3 such that
h(u)

OB M, 9 S A and
u U u
Set M = min {Ml, MQ, Mg}
By a solution of the system (1) we mean a real sequence

(xvy7w) = ((Jﬁn), (yn)7 (wn))

which is defined for all n € N and satisfies (1) for all n € N,,,. A solution (x, y, w) of
the system (1) is called nonoscillatory if all its components are nonoscillatory (that
is either eventually positive or eventually negative). Otherwise it is called oscilla-
tory. A solution (z,y,w) of the system (1) is called bounded if all its components
are bounded. Otherwise it is called unbounded.

If the sequences (ay),(b,) are positive, f,g are linear functions and [ =
0, m = 0, the system (1) reduces to the third-order neutral type difference equation

A ( ! (A ! A(zy, +pn$n—7>) = dcnh(Tn—k)-

by an

Such equations and their special cases have been studied by many authors, see for
example, [1-4] and the references cited therein.

The background for difference systems can be found in the well-known mono-
graphs, see, for example, Agarwal [5], Agarwal, Bohner, Grace and O’Regan [6],
Kocié and Ladas [7]. Usually, they consider two-dimensional difference systems
(see, for example, [8-12]). Oscillatory results for three-dimensional system are in-
vestigated by Schmeidel in [13-15], Thandapani and Ponnammal in [16]. Results
which are presented in this paper partially answered the open problem stated in
[16].

> M; for u # 0. (3)

In 2011, Schmeidel considered system (1) under less restrictive assumptions
on (py ), namely nh_)ngo pn =p € R, |p| # 1. In Ref. [15] classification of the compan-
ion sequence of (z,), and sequences (wy,), (y,) was obtained. Here, we present a
classification of components of solution of system (1). In [15], the author considered
two cases: that sequences (z,,) and its companion sequence have the same sign and
that they have opposite sign. In the present paper only the first case is considered.
The presented theorems are obtained under more restrictive assumption on (p,)
but less restrictive assumptions on sequence (x,,) then in [15].

2. Some Basic Lemmas

Set

Zp = Tp + PnTn—r- (4)
The sequence (z,) is called companion sequence of the sequence (z,,) relative
to (pn)-
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We begin with some lemmas which will be useful for proving the main result
of this paper. In 2005, Migda and Migda presented the following result (see [17,
Lemma 1]).

Lemma 1. Let (z,), (pn) be real sequences and (z,) be a sequence defined by (4),
for n > 1. Assume that (x,) is bounded, lim z, =1 € R, lim p, = p € R. If
B ) . n—roo . n—roo
|p| # 1, then (x,,) is convergent and nl;rréo Tn =15

In [18] Jankowski, Schmeidel and Zonenberg presented the following two Lem-
mas:

Lemma 2. Assume that z: N — R and

lim p, =p where |p|<1.

n—oo

If sequence (z,) defined by (4) is bounded, then sequence () is bounded too.
Lemma 3. Assume that

lim p,=p and p>0

n—oo

in (4). If im z, = co then lim z, = co.
n—oo n—oo

The following Lemmas will be used.

Lemma 4. Assume that condition (3) is satisfied. Let (x,y,w) be a solution of the
system (1) such that sequence () is nonoscillatory. Then (x,y,w) is nonoscilla-
tory and sequences (yn) and (wy,) are monotonic for sufficiently large n.

Lemma 5. Assume that

lim p, =p and p >0 (5)

n—oo

and condition (3) is satisfied. Let (z,y,w) be a solution of the system (1) and let
sequence (yn) (or (wy)) be nonoscillatory. Then there exists limit of sequence (x,)
and exactly one of the following two cases holds

1. (z,y,w) is nonoscillatory and sequences (zy,), (yn) and (w,) are monotonic
for sufficiently large n
2. lim z, =0.
n—oo
Lemma 6. Assume that conditions (2), (3) and (5) are satisfied. Let (x,y,w) be a
solution of the system (1). If () is nonoscillatory and
lim z, € R,

n—oo

then

lim y, = lim w, =0.
n—oo n—oo
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Lemma 7. Assume that conditions (2), (3) and (5) are satisfied, and (v,y,w) is a
nonoscillatory solution of the system (1). Then exactly one of the following three
cases holds

(I) sgnx, = sgny, = sgnwy,,
(II) sgnx, = sgnw, # sgnyy,
(ITI) sgnax,, = sgny, # sgnwy,,
for large n. Moreover, if 6 = —1 in the system (1), then every nonoscillatory

solution of (1) fulfills condition (I) or (II), if § = 1, then every nonoscillatory
solution of (1) fulfills condition (1) or (III).

For the proofs of Lemmas 4-7 see [15].

3. Main Results

Theorem 8. Assume that conditions (2), (3) and (5) are satisfied. Then every
nonoscillatory solution (x,y,w) of the system (1) fulfilling condition (1) is un-
bounded.

Proof. Let (x,y,w) be a nonoscillatory solution of the system (1) for which con-
dition (I) is satisfied. Without loss of generality, assume that x,, > 0, y, > 0 and
wy > 0 for large n, say n > ny. From these and from the second equation of the
system (1), we see that sequence (y,,) is eventually increasing. Summing the first
equation of the system (1) from ny =nq + 1 to n — 1 we have

n—1

Zn = Zn, + Z a;f(yi—1), for n > no.

1=ng

Since y,, > 0 for n > nq, by the first equation of the system (1) and condition (3),

we get that sequence (z,) is monotonic. Then there exists lim z,. Since x,, > 0
n—oo

for sufficiently large n and by condition (3), we get lim 2, = L* > 0. Therefore,
n—oo

there exists an integer ny > ng such that z, > L;, for n > mo. From that, by
positivity of y,, and by (3), we obtain

" n—1
Zn 2 5 T M,y Z aiYi—i-
1=n2
Since (yy,) is nondecreasing then
L* n—1
w2 o+ Miyn, Z a;.
1=n9
Taking n to infinity, using (2), we obtain that lim z, = co. From the above and
n—oo
by Lemma 3, we see that lim z,, = co. Hence, every solution of the system (1)

n—oo

which fulfills (I) is unbounded. O
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Example 1. Let us consider the following system of difference equations

1
A <{En + 2nxn3) = 8Yp_2
Ay, = 16w,_3, n € Ngs. 6)

Awn = Tnp-2

Here p, = an — 0. All assumptions of Theorem 8 are satisfied. Then every

unbounded solution of this system satisfies condition (I). It is easy to see that
(27, 27%2 2m) is one of such solutions.

Example 2. Let us consider the following system of difference equations

3 n 3/,7,
A(xn + <2> xn—4) - (2 + 2n+2) Yn—1
Ay = 2w, 9, n € Ny. (7)

Awn = 4Z‘n_ 1

Here p, = (S)n — 00. All assumptions of Theorem 8 are satisfied. Then every

unbounded solution of this system satisfies condition (I). It is easy to see that
(2n,27,27+1) is one of such solutions.

Theorem 9. Assume that conditions (2), (3) and (5) are satisfied. Then every non-
oscillatory solution (x,y,w) of the system (1) fulfilling condition (II) is bounded.

Proof. Assume that (z,y,w) is a nonoscillatory solution of the system (1) which
satisfies condition (II). (Notice that, by Lemma 7, this system has such solution
if and only if 6 = —1.) Without loss of generality, we assume that x,, > 0, y, <0
and w,, > 0 for large n. Hence, from the first equation of the system (1), sequence
(2n) is decreasing. Taking it into account, by (5), we get that (z,,) is positive too.
We conclude that sequence (z,) is bounded. In virtue of Lemma 1, we obtain that
sequence (x,) has also finite limit. By Lemma 6, the sequence (wy,) is bounded
too. So, also the thesis holds. O

Example 3. Let us consider the following system of difference equations

1 22n 3
A Ty + Tpn-1 | = ((ynfl) +yn71)

2 14220
Ayp = Wy, n € N. (8)
Aw, = —2"32,
Here § = —1. We notice that all assumptions of Theorem 9 are satisfied. Thus

every unbounded solution of this system satisfies condition (7). It is easy to see
that (27", —27"~127"=2) is one of such solutions.

Theorem 10. Assume that conditions (2), (3) and (5) are satisfied, and

S e = o )
n=1
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Then system (1) has no nonoscillatory solution (x,y,w) which fulfilled condi-
tion (III).

Proof. Assume to the contrary that (x,y,w) is a nonoscillatory solution of system
(1) which satisfied condition (IIT). Notice that, by Lemma 7, this system has such
solution if and only if that § = 1 in the third equation of the system. Without
loss of generality x,, > 0 for large n, say n > ns. Hence by Lemma 7 we have
yn > 0 and w,, < 0 for large n. Therefore by x,, > 0 and (5) we have that (z,) is
eventually positive. With the first equation of system (1) we obtain, that sequence
(zn) is nondecreasing and with the third equation of system (1) we obtain that
(wy,) is increasing. Since w, < 0 we have that li_>m w, = L** < 0. Suppose that

n (o]
lim w, = L** < 0. Then there exists ny € N such that w, < L** for n > ny.
n—oo

Summing the second equation of system (1) from ns = max{ns + k,ns + m} to

n — 1 we obtain
n—1

Yn = Yns + Z big(w;—p,) for n > ns.
i=ns
Hence, by negativity of sequences (w.,), (3), we get
n—1 n—1

Yn < Yng + Mo Z biwi —m < Yng + Mo L™ Z bi,

i:n5 i:ns
for n > ns. Letting n to infinity and using (2) we obtain lim y,, = —oo. This
n— oo
contradicts positivity of sequence (y,,). So, lim w, = 0.
n—oo

Summing the third equation of system (1) from ng = ns + k& to n— 1, we have

n—1
Wy, = Wng + Z cih(z;—i) for n > ng.
1=ng
Then, by (3), we obtain
n—1
Wy, > Wy + M3 Z CiTi -
i=ng

Since (z,) is nondecreasing and z, > 0, there exists lim z, > 0. Hence, by (5)
n—oo

and Lemma 5 obtain that there exists lim =z, = L*** > 0 too. Then there exists
n— o0

sufficiently large n, say n > n; such that z,, > L2 for n > ny. Hence

MaL* 2
Wy, > W + ) ¢; for n>max{ng,nr}.
i:ng

The left-hand side of the above inequality tends to zero whereas the right-hand
side, by (9), tends to infinity. This contradiction ends the proof. O

As an immediate consequence of Lemma 7, Theorem 8 and Theorem 10 we
get the following result.
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Corollary 11. Let § = 1. Assume that conditions (2), (3), (5) and (9) are satisfied.
Then every nonoscillatory solution of system (1) is unbounded.

Remark 12. Corollary 11 may be formulated as follows. Let § = 1. Assume that
conditions (2), (3), (5) and (9) are satisfied. Then every bounded solution of system
(1) is oscillatory.

Example 4. Let us consider the following system of difference equations

1 3
A (xn + xnl) = 8yn71

4
3 23n,—3 3 10
Ayn = 22n 4 23n—2 (wn-1)’ +wp-1), neN, (10)
Awn = Tn-1

4
with § = 1. All assumptions of Remark 12 are satisfied. Then every bounded
solution of this system is oscillatory. It is easy to see that ((;}L)n, (;L)n, (;L)n) is

one of such solutions.

Example 5. Let us consider the following system of difference equations

A N 1 2n? +4n +1
Tn T, | = .
n n?4+n Yn-1
Ayp = 2wy, _1, n €N, (11)

Aw,, = 2Tp_1

where § = 1. We notice that all assumptions of Remark 12 are satisfied. Then
every bounded solution of this system is oscillatory. So,((—1)™, (=1)",(—1)") is
one of such solutions.

The next theorem shows that if 6 = —1 system (1) can have oscillatory
bounded solutions, too.

Theorem 13. Let § = —1. Assume that conditions (2), (3) and (5) are satisfied.
Let (x,y,w) be a bounded solution of (1) with (yy) (or (w,)) bounded away from
zero. Then the solution (x,y,w) is oscillatory.

Proof. For the sake of contradiction, let (z,y,w) be a nonoscillatory, bounded
solution of (1). Then (z,), (y,) and (w,) are nonoscillatory and bounded. By
Lemma 7 and Theorem 8, such solution is of type (I1). Let x,, < 0, y, > 0 and
wy, < 0 for n > ng. Summing the first equation of system (1) from n = ng ton —1
and using (4), we get

n—1
I = 2ng + 3 aif (Yic1)-

i:ng
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By condition (3), we obtain
n—1

Zn 2 Zng + Ml Z ailYi—1- (12)

i:ng
Since (y,,) is positive and bounded away from zero, there exists a constant € > 0
such that y, > ¢ for all n. Then, by (12), we get

n—1

Zn 2> Zng + M€ Z a;.

i:ns
Letting n to infinity and using (2) we obtain lim 2z, = co. Hence, by Lemma 3,
n—oo
we get lim x,, = co. This contradicts the boundedness of (x,,). If (w,,) is bounded
n—oo
away from zero, then summing the second equation of the system (1) and using
similar arguments we get a contradiction. This completes the proof. O

Similarly, we can prove the next theorem.

Theorem 14. Let § = —1. Assume that conditions (2), (3), (5) and (9) are satisfied.
Let (z,y,w) be a bounded solution of (1) with (z,,) bounded away from zero. Then
the solution (x,y,w) is oscillatory.

Example 6. Let us consider the following system of difference equations

Aot ™ ~ 2(4n® +10n 4 5)
"Top41™ )T a1 U
4(n +2)
Ay, = . 13
Yn on +3 W, n €N, (13)
2n+6
A n — n

v @2n+5)@2n+7)"

where § = —1. We notice that all assumptions of Theorem 14 are satisfied. Hence,

every bounded solution of system (13), with first component bounded away from

1\t 1\m
zero, is oscillatory. One such solution is (2(—1)”, (2:3_%, , (2n25 )

Note that if one component of the solution of system (1) is oscillatory, then
other components of this solution are oscillatory, too.
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Orbits of Darboux Groupoid for
Hyperbolic Operators of Order Three

Ekaterina Shemyakova

Abstract. Darboux transformations are viewed as morphisms in a Darboux
category. Darboux transformations of type I which we defined previously,
make an important subgroupoid. We describe the orbits of this subgroupoid
for hyperbolic operators of order three.

We consider the algebras of differential invariants for our operators. In
particular, we show that the Darboux transformations of this class can be
lifted to transformations of differential invariants (which we calculate explic-
itly).
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Keywords. Darboux groupoid, Darboux transformations, Laplace transfor-

mations, differential invariants, invertible Darboux transformations, Darboux
transformations of type 1.

1. Introduction

Darboux transformations are discrete symmetries of linear differential equations,
ordinary or in partial derivatives, and are also the basis of Biacklund transforma-
tions of the non-linear theory. A description of all Darboux transformations for a
given equation is an open problem. For the current state of the art see [3-5, 7, 14,
17, 18].

The best studied Darboux transformations are those that are obtained from a
number of linearly independent solutions through the Wronskian formulas. In this
way one can construct Darboux transformations for equations of a very general
form [6]. For practical purposes one would want to have other types of Darboux
transformations too, since 1) the transformations of Wronskian type are not invert-
ible; 2) the other popular special case of Darboux transformations — two Laplace
transformations — is not in this class (in particular they are invertible).

Recall that the Laplace transformations are two transformations defined for
a very special type of equations, namely, second-order hyperbolic equations in
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two independent variables. They are related to factorizations of the corresponding
operator. The known Laplace transformation method is based on the fact that
Laplace transformations can be described by transformations of the corresponding
gauge invariants. After a long history [1, 2, 8, 10, 11, 13, 19, 20], the hypothesis that
can be traced back to Darboux was proved [14] that the Darboux transformations
of any order for such equations are either of Wronskian type, or can be decomposed
into a product of Laplace transformations.

In [12] it was first noted that 1) there are a number of examples of operators
of third order of two independent variables where the “Wronskian” method fails;
2) there are a number of examples of operators of third order of two independent
variables which admit invertible Darboux transformations. In this case we cannot
pose the question whether these invertible transformations are a product of Laplace
transformations or not, since Laplace transformations are only defined for the
equation mentioned above.

In [11] we suggested an algebraic formalism for Darboux transformations.
In [15] for operators of arbitrary orders and depending in arbitrary number of
independent variables we singled out a class of invertible Darboux transformations
— the Darbouz transformations of type I. The inverse of Darboux transformations
of type I can be described by compact formulas at the operators level. Following
an analogy with Laplace transformations, in this paper we describe the orbits of
Darboux transformations of type I in terms of differential invariants.

We consider Darboux transformations of type I for hyperbolic operators L of
order three in two independent variables. We obtain the following results:

1. If we fix the principal symbol of auxiliary operator M (for example, o(M) =
p.) and consider all possible Darboux transformations of the type I with
M = 0, + m, where m is a parameter, then all of them just transform L
into operators that differ by a gauge transformations. We obtained the exact
formulas in terms of differential invariants using the generating set found
in [9, 16].

2. We observed that Darboux transformations of the type I have their own
invariants that can be given in terms of the gauge invariants of L.

3. We discovered the first example of a family of operators of order three for
which there is an analogue of the Laplace infinite chain, and which we can
solve using our method, while the major Computer Algebra Systems cannot.

4. We obtained a number of examples of orbit with non-trivial topological struc-
ture.

Overall, this work announces the first interesting progress on the orbits of
Darboux groupoid.
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2. Groupoid of Darboux transformations

Our approach is algebraic: we let K be a differential field of characteristic zero
with commuting derivations 9,,0,, and K[D] = K[D,, D,] be the corresponding
ring of linear partial differential operators over K, where D,, D, correspond to
derivations 0, 0y.

Definition 1. Consider category Dar(S):

1. The objects of Dar(S) are operators from K[D] with the same arbitrary but
fixed principal symbol S.
2. Pair (M, N) is a morphism with source L and target L; if

NL=LiM up to equivalence (M,N)~ (M + AL ,N + L,A),

where A € K[D] is arbitrary. Another notation for this morphism indicating
(M,N)
the source and target, is L — L.

3. Consecutive morphisms can be composed:
(M,N)-(My,N1) = (M1 M,N1N).
4. For any object L the identity morphism is 1, = (1,1).
The morphisms are called Darboux transformations.

In [11] it was proved that the composition of morphisms is well defined. It
follows that if a Darboux transformation (M, N) with source L and target L, has
an inverse (M’, N'), then for some A, G € K[D] the following equalities hold:

M'M =1+ AL, (1)
MM =1+ GL,, (2)
N'N=1+LA, (3)
NN' =1+ L,G. (4)

In [15] we showed that auxiliary operators A and G are related:
GN =MA,

and that two of the four conditions above are redundant: (3) and (4) follow from (1)
and (2).

In general case, the automorphisms in this category are not trivial.

Example. For a given L € K[D], most of M € K[D] does not correspond to any
Darboux transformation. Here are some known examples of Darboux transforma-
tions:
1. For any L € K[D] there is always a trivial Darboux transformation: N = L,
and M = L, that is the intertwining relation becomes L1 L = L1 L. Those are
clearly non-invertible by, e.g., failing condition (1).
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2. The famous two Laplace transformations are defined for operators of the
form L = 0,0, + a0, + b0y, + ¢, a,b,c € K only. They are defined by setting
M = 0,+bor M = 0, + a (then the corresponding N, L; can be found
easily). They can be applied if quantities known as Laplace invariants, h and
k are not zero, respectively. This condition implies that the transformations
are invertible.

3. For different types of L € K, one takes ¢ € K[D,,D,], L(x)) = 0 and
constructs M = 9, — 1, /. This M often leads to a Darboux transformation.

4. The fact that M = 0, — /1 not always lead to a Darboux transformations
was first discovered in [12].

3. Darboux transformations of type I

In [15] we singled out a class of Darboux transformations which can be completely
described on the level of operators: it consists of Darboux transformations (M, N)
with source L such that

L=CM+f, feK.

Here L, M € K[D]. These transformations are always invertible, and the explicit
formulas for the target Ly, N and its inverse (M’, N') are

Li=MYIc+f, N=M"' M = —Jlfc, N’ = —C} ,
and the auxiliary operators from (1) and (2) are A = G = 1/f. We shall refer to
such (M, N) as to Darbouz transformations of type I.
This class is large enough. Indeed, Laplace transformations, and every in-
vertible Darboux transformation of first order (where the order of a Darboux
transformation (M, N) is the order of M and N) is of type 1.

4. Darboux transformations for gauge differential invariants

For operators of the form
L= 83081,(830 + 8y) + awaiﬁf/ s (5)

where we use multi-index notation, a;; € K, i,7 = 0,1,2 under gauge transfor-
mations L — e 9Led, g € K \ {0}, a generating set for differential invariants is
known [9, 16]:

I = —2a20 + a11 — 2a02,

Iy = 0,(az) — 0y(aoz) ,

I3 = ayo + azo(az — ai1) + 9y(az — air),

Iy = ao1 + ap2(aoz — a11) + 0z (ao2 — a11),

Is = apo — ap1a20 — a10a02 + ap2a20a11+

+ (2a02 — a11 + 2a20)0xz(a20) + Ozy(a20 — a11 + ao2) -
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Lemma 2. Operator of form (5) has an invertible Darboux transformation
1. With some M = 0, + m if and only if Iy + 215 = I1,;
2. With some M = 0y +m if and only if Iy + 2o = I3;
3. With some M = 0y + 0y +m if and only if I3 — Iy = I5.
Here m € K.
Lemma 3. Invertible Darboux transformations for (5) with M of the form M =

O + m can be lifted to gauge invariants: (I1,Ia, 14,14, I5) — (J1,J2, Js, Ju, J5),
where

J=hL-T,,

Jo =1 + Ty,

J3 =13+ 1y + Tyy,
J1=0,

J5:f_I4y/2+I3w_I2y+Twwy/2v
where f =I5 — I1 1o — 14,/2, T = In(f). Here f # 0 and L = CM + f for some
C e K[D].
With M of the form M = 0, + m:

Ji=hL—-T,,
JQZIQ_Txyv
J3:07

Jy =1 — b +T,,
J5 = III2 - IlTa:y - IZTy - I?mv/2 + IZw + I4y + Twyy/2 + TwyTy + fv

where f =I5 — Is,, T =1n(f). Here f #0 and L = CM + f for some C € K|D].
With M of the form M = 0, + 0y +m:

=L +T,+T,,

Jo =1,

Jyg = =14+ 2034+ L1y + Ty + Ty,

Jo =T, +2I — I3+ Ty + Ty,

Js = Iy + I3y + T1ay /2 — Ily — Tody — Tyly + Towy/2 + Toyy /24
where f =I5 + [1 14 + L4y /2, T = In(f). Here f #0 and L = CM + f for some
C e K[D].

Lemma 4. The following are invariants of invertible Darboux transformations:
Ay =1+ 1y, incase o(M)=p,,
Ay =1, -1y, incase o(M)=np,,
I,, incase o(M)=ps+py.
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5. New integrable PDE(s) of third order

From conditions above, it follows that if an infinite sequence of Darboux transfor-
mations of type I with (M) = p, exists, then starting from at least the second
term of the sequence Iy = 0, and therefore, 215 = I,.

For example, we set Iy = 0, 2l = L1, and [} = 2¢ —y, I, = I3 = 1,
Is = 0. In particular, Ly = 0,0, (0; + 0y) — Y020y + (= — y)aj — 224+ 2y — 1 be-
longs to this gauge equivalence class. This operator has two different factorizations
into three factors each. The factors have symbols py, pa, o +py and pa, P +py, Dy,
reading from the left to the right. Thus, the partial differential equation corre-
sponding to Lg is easy to solve provided we know how to solve first-order partial
differential equations in our setting.

On the other hand, there is an infinite chain of invertible Darboux transfor-
mations with (M) = p, starting at this operator. The nth term, n > 0, of this
chain has invariants

I =2z —y—2n/(2z —y),

I =1+2n/(2x —y)?,

I =n+1+n(n+1)/(2z —1y)?,

Iy =0,

I' = —2nx +ny — 4n*/(2x — y)3,
where 7 is an index.

1. Any partial differential equation having the corresponding values of five in-
variants can be solved in quadratures using our method.

2. Starting from the second term in the chain none of the corresponding opera-
tors are factorizable, so we are getting equations of a new, more complicated
type.

3. For a specific equations, let us consider, for example, one of the simplest that
correspond to the values of invariants obtained on step two (corresponds to
n = 1 in the formulas above):

2 2
u$$y+umyy+<x_y_2x_y)uyy_ (y+2x_y>uw
Y 2
+uw+(xy—x2+2x_y>uy—x—2x_y20.

The latest version of one of the leading Computer Algebra System MAPLE [18]
cannot solve this equation.
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6. Orbits structures examples

The structure of the orbit of the famous Laplace transformations is just one chain,
infinite or finite. Their analogues for operators of higher order — Darboux trans-
formations of type I appear to generate much more interesting structures.

Below we show a number of examples. In the vertices of the graphs below
are the values of the five gauge invariants. Over the arrows we indicate the prin-
cipal symbol of the auxiliary operator M. If there is no arrow then there is no
corresponding Darboux transformation. In other words, all invertible Darboux
transformations of order one are shown here.

I. Orbits of finite length:

Py Dy Py

A A A

Pz Pz
(gx7 0’ 07 Yz eg(I)) - (O’ 07 Oa 07 eg(z)) - (79:67 07 07 07 eg(z))

\_/\/

Pz + Dy Dz + Dy
by Dy Py

0 A g

(1/1‘7070, _1/:1;275(:) (p—> (0,0,0,0,Jf) L} (—1/13,0,0,071')

‘ ~_

Pz + Dy
(=1/y +1/x,0,0, -1/ xy) —— (~1/y,0,0,0,2y) —— (~1/2 — 1/y,0,0,0,zy)
Pz + Dy
Py Py Py
Pz + Dy
Da Dz
(1/2,0,0,-1/2% 2y) ——— (0,0,0,0, zy) —————— (—1/2,0,0,0, zy)
by Py Py
Pz + Dy Pz + Dy

p. .
(1/£U + 1/y707 71/y271/x2~xy) — (1/y7071/y27071‘y) I (1/y - 1/I707 71/y270~$y>
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II. Infinite orbits:

j2 P, P, P,
3 (1,0,0,0,6" ) ———3(0,0,0,0, ") —————5 (~1,0,0,0, ") ————— ..
e e Pr e

Pe 0y Po+ Py Do+ Dy

Pz Pz Pz

(0,0,I,O,l)—> (0707I>0?2)—> (07071'7073)—)”.

(=d.2d%,0,-2d* x + y) LN (~2d,0,0,0,2 + y + 2d%)

Py Py
Pz + Dy P+ Dy

(d,d?,0,-3d? 2 +y + 4d*) LI (0,0,0,0,z +y) LN (—d.—d?,—d?,0,z +y + d*)

b,
Pz + Py Pa + Dy

o Pz .
(24,0, ~2d2, —2d%, & + y + 2d%)'5 (d, —d?, —3d2, 0, + y + 3d°)

Pzt Dy

(4d, 0, —6d%, —6d%,  + y + 20d")

Pr+ Py

(6d,0, —12d%,—12d2, & + y + 66d°%)

Pz + Dy
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From Nicolaus Copernicus’ Economic Law
up to the Present Day Economic Disasters
(Report of a Dilettante)

Bogdan Mielnik

Abstract. The commercial phenomena described by an almost unknown
N. Copernicus treatise on money prepared in the XVIth century on request
of the Polish king Sigismund I. the Old turn out relevant for the present day
economic situation.

Why dilettante? Since the usual economy publications in scientific journals are
dedicated to some narrow problems or just their narrow sections and are so satu-
rated by specialist data that are practically unreadable even for a highly interested
reader. Worse: they are deadly boring!

Why Copernicus? Almost everybody knows about Nicolaus Copernicus contribu-
tion to astronomy. Less known were the details of his frustrated life, described,
e.g., in “Sleepwalkers” by Arthur Koestler [1] who considered Copernicus as a kind
of hard working but intimidated clergyman, always careful not to antagonize the
church, afraid also about his personal reputation (he had a concubine). The exten-
sive volume of his work was finally prepared only thanks to the firm persistence of
his younger follower, a protestant who had not the best opinion in catholic clergy
circles. Copernicus himself had a strong support of two Polish bishops (one was
his relative), yet he was terribly afraid of possible errors in his theory. His unde-
cidability delayed so much the publication of the book, that he saw it, perhaps
without understanding, some hours before his death due to the brain hemorrhage.
Almost unknown for the first 300 years, then commented, criticized but widely ac-
cepted, his “De revolutionibus orbium coelestium” turned out one of key steps of
our cosmology. Though, in fact, for a long time unwelcome by the church. Enough
to mention that it was in the “Index Librorum Prohibitorum” until 1828.

The law of two Nicolai. Much less known is the fact that at the beginning of his
career, still as a young man, Copernicus was the author of an important economic
treaty. The first draft of “De estimacione monetae”, written already in 1517 con-
tained an observation that ‘the bad coins’ push out of the market the good ones.
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The law was again formulated in the famous “De monetae cudendae ratione” in
1526 on the request of the Polish king Sigismund I the Old and it was presented
personally, by the young canon to the town council of Grudziadz. Some concepts
introduced in his work, such as the difference between the use value and exchange
value were applied by Adam Smith, though they were known already to Aristotle.
Some years after, an equivalent law was discovered by Sir Thomas Gresham and
since then it is referred to as the Gresham-Copernicus law (why Gresham first?
After all, he was Sir!).

Curiously, the law was noticed much earlier by another Nicolaus, Nicole
Oresme a medieval bishop, interested as well in cosmology! ! Yet, the bishop’s work
on cosmology was dedicated to a mathematical proof that the celestial spheres ro-
tate around the Earth which is the fixed center of the universe, so I have more
confidence to both laws of the second Nicolaus. However, why was the Copernicus
law so important? Basically, his thesis described the metal coins, their contents of
gold or silver. Yet, it seems that its validity obeys no such limits. . .

The great crisis. To illustrate this, let us make a jump from 1517 up to 1928, when
the money were not necessarily coins. The great crisis affected even the most pow-
erful people. Some of them, including bankers, were suiciding themselves jumping
from the high floors of their banks. There seemed to be no remedy, certainly not
the humorous but cruel advice of the famous Argentinian writer, Ramén Gémez
de la Serna:

If you decide to commit a suicide jumping from a skyscraper, don’t
choose a too high one, so that you won’t change your mind in the middle
of your flight

Curiously, a more helpful idea belonged to the known British economist John
Maynard Keynes. Aware of the role of unemployment in the crisis, he advised his
government; “Just make great investments to assure that people will have jobs, in-
vest and invest, spend your money, even if you don’t have it”. Paradoxically, what
seemed a joke, helped to restore an equilibrium before the World War I1. The Key-
nesian economy centers appeared in many American and European universities.
Can the 1928 crisis contribute to the present day economical knowledge?. ..

The following paper “Economics — Physics of Social Sciences or Art?” by
L. Hardt introduces the present day view upon economics, but we must remember
that the roots of economy lay far away in the past. ..

References

[1] A. Koestler, The Sleepwalkers: A History of Man’s Changing Vision of the Universe,
Hutchinson (1959)

[2] R.K. Merton, Am. Soc. Rev. 22, 635-659 (1957)

1 According to some historians, the parallel discoveries of important laws are not an exception
but the rule in science; cf. Robert K. Merton [2]



From Nicolaus Copernicus’ Economic Law. .. 317

Bogdan Mielnik

Departamento de Fisica

Centro de Investigacion y de Estudios Avanzados del IPN
Avenida Instituto Politécnico Nacional 2508

07369 México D.F., Mexico

e-mail: bogdan@fis.cinvestav.mx


mailto:bogdan@fis.cinvestav.mx

Geometric Methods in Physics. XXXIII Workshop 2014

Trends in Mathematics, 319-326
(© 2015 Springer International Publishing Switzerland

Economics — Physics of Social Sciences
or Art?

Economic talk at the XXXIII Workshop on Geometric Methods in Physics

Lukasz Hardt

Abstract. Some questions about the nature of economics are raised, e.g., the
one whether economics can give us universal laws describing the workings of
the market. The discussion here presented refers also to the debate on the
state of the economic theory in the wake of the recent global financial crises.
The paper concludes that economics is unable to give us such explanations
of real economic processes that do not need further investigations. Also, the
author claims that due to the extensive use of metaphors and economists’
creativity in modeling economic phenomena economics is close to art, and
thus one can even talk about the beauty of the science of Adam Smith.

Keywords. Methodology of economics, economic laws and models, metaphors,
economics and physics.

Introduction

In the wake of the post 2008 financial crisis many ask about the nature of economics
—is it a real science or just a rhetorical device used by its practitioners to persuade
policy makers and their fellow citizens? The debate on the state of economic theory
was so intense in the first months of the recession that many leading economists
proclaimed that the science of Adam Smith as such is in crisis. Take, for instance,
the following opinion by Paul Krugman (2008 Nobel Prize winner):
[...] the economics profession went astray because economists, as a
group, mistook beauty, clad in impressive-looking mathematics, for
truth [1].
Or, the one by David Colander and his co-authors:

In our hour of greatest need, societies around the world are left to grope
in the dark without a theory. That, to us, is a systemic failure of the
economics profession [2, p. 250].

On the other hand, many popular jokes about economics have been circulating
since the collapse of the Lehman Brothers and the resulting panic in the global
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financial market. JokEc web-page gives, for instance, such a joke:

“Economics is the only field in which two people can get a Nobel Prize

for saying the opposite thing”, or even stronger: “Economics is the only

field in which two people can share a Nobel Prize for saying opposing

things”.
The rationale behind the above joke could be the question of what is the nature of
economic laws or is it possible to compare conclusively different economic theories
or, in other words, whether we are condemned to constantly hear the battles such
as the one between Keynesians and monetarists, and hence having Nobel Prize
winners sharing the same prize for saying opposing things. These questions matter
since economic theory is often used to legitimize economic policy. So, referring now
metaphorically to physics one can conclude that economic theory is in entangle-
ment state with economic policy (my fellow physicist readers, please excuse me
if T am using this metaphor incorrectly). This brings our attention to the prob-
lem of reflexivity in social sciences, including economics, where an observer is also
a participant in a system and there is a two-way feedback between the observer
(here: economist) and the system (here: economy) [3, p. 331]. This is an old prob-
lem whether an agent deeply rooted in the system can access the information an
agent outside the system would have. Many philosophers argue for impossibility
of God’s-eye view (e.g., W. Quine) while others, more metaphysically oriented, do
not deny such a possibility (e.g., T. Lawson in economics). Although these issues
are of great importance, I do not want to investigate them in details, but what I
would like to do is to come back to the opening question whether we can know
for sure the workings of the economy (economics as physics of social sciences) and
thus instruct politicians how they should regulate markets, or we are just in a
position of artists who contemplate the world (here: economy) and try to describe
metaphorically its beauty and immense complexity with little hope to understand
its internal logic.

Why physics?

One would ask me — why your economics as physics of social sciences stands for
economics giving you the truth about the workings of the market, and why not
comparing economics to biology or chemistry? Even on a very brief inspection of
the language of modern neoclassical economics each physicist is to immediately
notice that economics is dominated by mechanistic and not organismic thinking.
If you do not believe me, please run a quick check on JSTOR database and ask
how many papers in American Economic Review contain references to mecha-
nisms in its titles and how many to organisms. The answer: mechanistic titles —
51; organismic titles — zero'. Such a mechanistic world-view of economics is due to
its emergence in the seventeenth and eighteenth century European thought which

L AER is one of the most prestigious journals in economics. I ran my experiment on papers from
this journal since its establishment in 1911 till 2009.
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was under the influence of Descartes-the-Mechanician. For him, the human body
is “just a statue or a machine made of earth” (in: The Treaty on Man) and its
functioning is due to mechanical principles giving rise to “clocks, artificial foun-
tains, mills, and other machines” (ibid.). Next, Adam Smith — Adam and Smith
of modern economics, influenced by Cartesian thought and Humean empiricism,
started to conceptualize the market as a machine. Please let me cite some of his
remarks:

“[...] a machine [educated worker] which abridges labour, and which,
though it costs a certain expence, repays that expence with a profit”
(Wealth of Nations, Book II, Chapter I, no 17);

“[...] the immense machine of the universe” (Theory of Moral Senti-
ments, Part IV, Chapter II, no 48);

“[...] the whole machine of the world” (Theory of Moral Sentiments,
Part VII, Chapter II, no 41).

In his History of Ancient Physics he is even more explicit about his mechanistic
philosophy:
[...] the universe was regarded as a complete machine, as a coherent
system, governed by general laws, and directed to general ends, viz. its
own preservation and prosperity, and that of all the species that are in it.

After nearly one hundred years since A. Smith, the economics of the late 19th
century was even closer to Newtonian physics. L. Walras, one of the founding
fathers of neoclassical economics, made the following point in 1874: “[...] eco-
nomics is a science which resembles the physico-mathematical sciences in every
respect” [4, p. 71]. This is a triumph of I. Newton and realization of his dream of
“[...] deriving all the phenomena of nature by the same kind of reasoning from
mechanical principles” (in: Introduction to Principles). So, please do not be sur-
prised by the words of Edgeworth: “the maximum of pleasure in psychics being
the effect or a concomitant of a maximum physical energy” [5, p. 89]. The inflow
of concepts taken from physics into economics was eased by the fact that at the
leading universities in England in 19th century economic students took the same
courses in mathematics as the physic students did. Moreover, in order to obtain
the final degree in economics students were obliged to write the same exam in
mathematics as their fellow colleagues from physics departments were required to
pass. This exam was called the Tripos and lasted usually for eight days. Alfred
Marshall — the author of The Principles of Economics (1890), the fundamental
work in neoclassical economics, was obliged to solve, for instance, the problem of
the following kind while studying at Cambridge:

Determine the initial motion of a rigid body which receives a given
impulse; and find the screw round which it will begin to twist. A rough
inelastic heavy ring rolls, with its plane vertical, down an incline plane,
on which lie a series of pointed obstacles which are equal and at equal
distance from each other, and which are sufficiently high to prevent
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the ring from touching the plane. If the rings start from rest from a
position in which it is in contact with two obstacles, prove that its
angular velocity as it leaves the (n + 1)th obstacle is given by
4n
w? = 2g sin i sin y cos 7 L= cos ’y’
a 1 —costy
where a is the radius of the ring, ¢ is the inclination of the plane to the
horizon, and 2¢/a is the angle which two adjacent obstacles subtend at

the center of the ring when it is in contact with both [6, p. 78].

After being exposed to such problems no one should be surprised why eco-
nomists educated at Cambridge put economics into conceptual framework of New-
tonian physics. They also started to believe that economic models can give precise
insights into the workings of the market in the same vein as experiments in physics
reveal fundamental laws of nature. Such an approach was reinforced by populariza-
tion of distinctively mathematical explanations in economics (I am to comment on
it more extensively later in this essay). So, as Mirowski [7] rightly stressed it, eco-
nomics in the late 19th century started its way towards becoming a cyborg science
without place for moral reasoning and uncertainties in formulating economic laws.
Therefore, economics as physics of social sciences follows, but is it really the case?

Economics is producing beliefs not laws

Many economists still treat the claims they are producing as universal regularities
in the form of if X, then (always) Y, or, more often, they add the ceteris paribus
clause and claim that in unchanged circumstances X is to (always) produce Y. 1 do
not believe in such an interpretation of economic laws. Let me explain. Economists
use models to produce theoretical claims. So, they construct artificial worlds by
isolating given phenomena and processes. Such worlds usually take the form of
mathematically structured entities. For instance, while modelling the price be-
haviour of firms, economists assume that the price of a given good is determined
by the cost of production, precisely p equals the first derivative of cost function
(i.e., marginal cost /MC/). They are conscious that other factors are also at play
but the cost is the most important one and hence they strip off the target of its
irrelevant features, thus obtaining a model. We can have multiple models for one
target, the models of completely different character and operating in distinct con-
ceptual spaces. For instance, the workings of the economy can be represented by
a real machine, e.g., the Phillips-Newlyn hydraulic analogue of U.S. money flow,
which can be depicted using diagrams (e.g., Morgan [8, p. 35]), and the diagrams
as such can be explained in verbal terms as a fable. Therefore, the model builder
acts as an artist, since they both use creativity and imagination in building the
artificial worlds. As Frigg [9, p. 251] puts it clear “models share important as-
pects in common with literary fiction” or in Cartwright’s words “a model is a
work of fiction” [10, p. 153] and an “intellectual construction” (ibid., p. 144). So,
one can model price behaviour of consumers using the artificial world of Tolkien’s



Economics — Physics of Social Sciences or Art? 323

Middle-earth, however, Hobbits in such a model should make economic decisions in
accordance with neoclassical principle of maximizing utility. So, economic models
are neither pure isolations, nor pure constructions, but believable worlds depicting
structures that enable the workings of mechanisms that refer to the ones operating
in the real world. But such structures can be represented using models of different
ingredients, forms, contents, and proprieties.

Theoretical insights produced by models are not directly applicable to the real
world. Such insights are always true within models but have the status of beliefs
if applied to describe the real economic phenomena, e.g., in economic models p is
always to equal M C, however, one cannot anticipate that in the real world this
will be always the case, since other factors can be at play, so one can only believe
that p is to tend to MC. Thus, we do not test the model as such vis-a-vis the
real world, but just “an application of a model, a hypothesis stating that certain
elements of a model are approximately accurate or good enough representations
of what goes on in a given empirical situation” [11, p. 219]. Next, he adds: “The
fact that a model turns out not to work under certain circumstances does not
count as a refutation of the model but only as a failed test of its applicability
in a given domain”’ [11, p. 220]. Therefore, the closer a given empirical domain
to the model’s structure is, the higher probability that the model’s insights are
to correctly explain the workings of such a domain. For instance, in neoclassical
models we assume that shops can freely set prices thus such models’ insights will
be more appropriate in free markets (e.g., in the US) than in highly regulated
market environments — it is for sure unreasonable to expect North Korean shops
to behave in a manner described by models taken from neoclassical economics.

Let me now comment on another factor moving economics closer to art,
namely the similarities between modelling and metaphorizing economic phenom-
ena. First, as in the case of isolating a given set of explaining items while building a
model the goal is to isolate the most important ones, the same is with metaphors,
since the choice of the metaphor (e.g., Aristotelian saying that Achilles is a lion)
is such as to capture the crucial characteristic of the primary subject (Achilles)
by equalizing it to the secondary one (lion). As in the case of isolation, the choice
of a given metaphor depends on the researcher’s needs. For instance, in describing
Southeast Asian economies, one can say ‘South Korea is a tiger’, if one wants to
underline the dynamism, courage, and risk-loving culture of Korean entrepreneurs,
or one can just proclaim that ‘South Korea is a hidden dragon’, if the goal is to
focus on the role of consciously built state interventionist economic policy. As in
the case of isolation where we do not have a complete isomorphism between the
target and the model, the same is with metaphors, since, for instance, saying that
‘South Korea is a tiger’ means that it is like and is not a tiger. So, models, in this
respect, have some similarities with metaphors.

Therefore, modelling economic phenomena is a creative process requiring
researchers to build artificial credible worlds capable of representing mechanisms
and processes operating in the real markets. Models do not make themselves. They
are made by economists. They are made in order to explain, but “forming models
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is not driven by purely logical process but rather involves the scientist’s intuitive,
imaginative, and creative qualities” (Morgan [8, p. 25]). So, model builder acts as
an artist. The belief produced by a given model is similar to a moral of a fable.
Therefore, economics cannot be accused of producing imprecise descriptions of the
real world, since this imprecision is given by the very nature of the way economists
explain. However, some of them should be criticized for believing in the universal
laws of economics. Such laws do not exist. Paradoxically, Krugman is right that
economists do not search for truth, however, they try to construct credible beliefs
about the real world. On the other hand, Colander and his co-authors are not right
in claiming that economists do not offer credible theories — they do it, but their
theoretical claims are valid only vis-a-vis these domains that have the structures
similar to the ones of the models producing them. For instance, many theoretical
insights of labour market models are valid in countries with elastic labour law
(e.g., U.S.) and not valid in many overregulated European markets.

Economics is beautiful

In the above section of my paper I stated that economists while building models
act as artists. Now, I would like to go even further and claim that economics as
such is beautiful not only because it describes the beautiful world but also because
its method and language are beautiful. Here I agree with Samuelson and Nordhaus
that “Economics is part of both these cultures, a subject that combines the rigors
of science with the poetry of humanities” [12, p. 5]. It is worth to mention that
also many physicists have an impression that both the world and its mathematical
descriptions are beautiful. Heisenberg’s words are worth to be mentioned here (I
hope my physicists readers will forgive me such a lengthy quotation):

In fact, the last few weeks were full of excitement for me. And per-
haps I can best illustrate what I have experienced through the analogy
that I have attempted, an as yet unknown ascent to the fundamental
peak of atomic theory, with great efforts during the past five years. And
now, with the peak directly ahead of me, the whole terrain of interrela-
tionships in atomic theory is suddenly and clearly spread out before my
eyes. That these interrelationships display, in all their mathematical ab-
straction, an incredible degree of simplicity, is a gift we can only accept
humbly. Not even Plato could have believed them to be so beautiful.
For these interrelationships cannot be invented; they have been there
since the creation of the world [13, p. 22].

For sure, the status of economic laws is distinct from the laws of physics, and
one cannot claim that economic laws have been there since the creation of the
world, however, the presence of mathematics in economics make some economic
explanations universal and robust to every possible changes in the context. Let me
give a very simple example. As L. Robbins defined the economics as “the science
which studies human behaviour as a relationship between ends and scarce means
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which have alternative uses”, economists have invested a lot of energy in analysing
human decision making. So, the story is the following:

Imagine that mother has three children and twenty-three apples. She
would like to give the same amount of apples to each child without
cutting any?.

She cannot do it since twenty-three cannot be divided evenly by three. So, what
explains here is the appeal to essential mathematical proprieties. Moreover, what
explicates is the mathematics as such and not its use. In other words, the ex-
planation consists here of mathematically necessary facts (Lange [14, p. 506]).
Such distinctively mathematical explanations are simple and thus beautiful, since
“mathematics is the archetype of the beautiful” (Kepler). Simplex sigillum veri.
Pulchritudo splendor veritatis.

So, let me recapitulate the above arguments for the beauty of economics.
First, economists use metaphors in constructing economic models, so they act as
poets, however, they are constraint by the existence of the external reality which
they try to comprehend. Here, I disagree with a well-known Medawar’s thesis
that when science arrives, it expels literature. Second, the use of mathematics en-
ables economists to dig deeply into the internal (and maybe eternal) structure of
the reality. Third, as artists do their works after having been fascinated by cer-
tain proprieties of the world, the same holds for scientists, including economists.
Thus the resulting vagueness of economics cannot be treated as its drawback, but
rather as a result of the immense complexity of the world. In many cases econom-
ics deals with this complexity quite well, however, its explanations will never be
complete, since “There can be no explanation which is not in need of further ex-
planation” [15, p. 195]. This holds for both economics and physics. So, criticizing
a given science for its incompleteness is deeply unscientific. However, what links
particular sciences and art is a fundamental question — why such an infinite com-
plexity of the world exists and why science works and why art successfully gives us
beautiful accounts of the world? So, at the very fundamental level the questions
of science, including economics and physics, as well as art converge towards es-
sentially philosophical dilemmas. In such a perspective economics is both physics
of social sciences and art. Last but not least, even being solely physics of social
sciences economics would not give us final and conclusive explanations about the
workings of the market, since each physicist is probably deeply conscious that such
all-encompassing explanations do not exist. But this nonexistence is per se beau-
tiful and fascinating, since “As long as a branch of science offers an abundance of
problems, so long is it alive” (Hilbert [16, p. 438]). So, science will live forever!
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