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Preface

The combination of the concept of asymmetry of the wave-vector space of charge
carriers in semiconductors with modern techniques of fabricating nanostructured
materials such as MBE, MOCVD and FLL in one, two and three dimensions (such
as quantum wells (QWs), doping superlattices, accumulation and inversion layers,
quantum well superlattices, carbon nanotubes, quantum wires, quantum wire
superlattices, magnetic quantization, magneto size quantization, quantum dots,
magneto accumulation and inversion layers, magneto NIPIs, magneto quantum
well superlattices, quantum dot superlattices and other field aided low-dimensional
systems) spawns not only useful quantum effect devices but also unearths new
concepts in the realm of low-dimensional solid-state science and related
disciplines. These semiconductor nanostructures occupy a central position in the
entire arena of condensed matter science in general, by their own right and find
extensive applications in quantum registers, quantum switches, quantum sensors,
quantum logic gates, quantum well and quantum wire transistors, quantum cascade
lasers, heterojunction field-effect transistors, high-speed digital networks,
high-frequency microwave circuits, high-resolution terahertz spectroscopy,
superlattice photo-oscillator, advanced integrated circuits, superlattice photocath-
odes, resonant tunneling diodes and transistors, thermoelectric devices, superlat-
tice coolers, thin film transistors, intermediate-band solar cells, micro-optical
systems, high performance infrared imaging systems, band-pass filters, thermal
sensors, optical modulators, optical switching systems, single electron electronics,
molecular electronics, nanotube-based diodes and other nanoelectronic devices.
Knowledge regarding these quantized structures may be gained from original
research contributions in scientific journals, various patents, personal communi-
cations, proceedings of the conferences/seminars, review articles and different
research monographs [1] respectively. In this context, it may be noted that the
available reports on the said areas cannot afford to cover even an entire chapter
regarding the Einstein Relation (ER) for the diffusivity-mobility ratio of carriers in
heavily doped (HD) two-dimensional (2D) quantized structures and the single first
book on ER [2] does not contain even a paragraph regarding this important
specialized topic of research and, after 30 years of continuous effort, we see that
the complete investigations of the ER comprising the whole set of materials and
allied sciences is really a sea and is a permanent member of the domain of
impossibility theorems.

vii
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It is well known that the ER occupies a central position in the whole field of
solid-state device electronics and the related sciences since the diffusion constant
(a quantity very useful for device analysis where exact experimental determination
is rather difficult) can be obtained from this ratio by knowing the experimental
values of the mobility. The classical value of the ER is equal to (kz7/|e|), (kg, T and
le| are Boltzmann’s constant, temperature and the magnitude of the carrier charge
respectively). This relation in this form was first introduced by Einstein to studythe
diffusion of gas particles and is known as the Einstein relation [2, 3]. It appears that
the ER increases linearly with increasing 7 and is independent of electron con-
centration. This relation is applicable for both types of charge carriers only under
nondegenerate carrier concentration although its validity has been suggested
erroneously for degenerate materials [4]. Landsberg first pointed out that the ER for
degenerate semiconductors is essentially determined by their energy band struc-
tures [5, 6]. This relation is useful for semiconductor homostructures [7, 8],
semiconductor—semiconductor heterostructures [9, 10], metals—semiconductor
heterostructures [11-19] and insulator—semiconductor heterostructures [20-23].
The nature of the variations of the ER under different physical conditions has been
studied in the literature [1-3, 5, 6, 24-49]. Incidentally, A. N. Chakravarti
(a recognized leading expert of ER in general) and his research group are still
contributing significantly under his able leadership regarding this pinpointed
research topic on ER from 1972 [2, 24, 25-28, 34, 39-49] and some of the
significant features, which have emerged from these studies, are:

(a) The ER increases monotonically with increasing carrier concentration in bulk
semiconductors and the nature of these variations is significantly influenced by
the band structures of different materials.

(b) The ER increases with the increasing quantizing electric field as in inversion
layers.

(c) The ER oscillates with the inverse quantizing magnetic field under magnetic
quantization due to the Shubnikov-de Haas effect.

(d) The ER shows composite oscillations with the various controlled quantities of
semiconductor superlattices.

(e) In ultrathin films, quantum wires and other field assisted low-dimensional
systems, the value of the ER changes appreciably with the external variables
depending on the nature of quantum confinements of different materials.

The ER depends on the density-of-states (DOS) function, which, in turn, is
significantly affected by the different carrier energy spectra of different semicon-
ductors having various band structures. In recent years, various energy wave-
vector dispersion relations of carriers of different materials have been proposed
[50], which have created interest in studying the ER in HD 2D-quantized struc-
tures. It is well known that heavy doping and carrier degeneracy are the keys to
unlock the important properties of semiconductors and they are especially
instrumental in dictating the characteristics of Ohmic and Schottky contacts
respectively [11-19, 51]. It is an amazing fact that although heavily doped
semiconductors (HDS) have been investigated in the literature the study of carrier
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transport in such materials through proper formulation of the Boltzmann transport
equation which needs, in turn, the corresponding HD carrier energy spectra is still
one of the open research problems.

It is well known that band tails are being formed in the forbidden zone of the
HDS and can be explained by the overlapping of the impurity band with the
conduction and valence bands [52]. Kane [53] and Bonch Bruevich [54] have
independently derived the theory of band tailing for semiconductors having
unperturbed parabolic energy bands. Kane’s model [53] was used to explain the
experimental results on tunneling [55] and the optical absorption edges [56, 57] in
this context. Halperin and Lax [58] developed a model for band tailing applicable
only to the deep tailing states. Although Kane’s concept is often used in the
literature for the investigation of band tailing [59, 60], it may be noted that this
model [53, 61] suffers from serious assumptions in the sense that the local impurity
potential is assumed to be small and slowly varying in space coordinates [60]. In
this respect, the local impurity potential may be assumed to be a constant. In order
to avoid these approximations, we have developed in this book, the electron energy
spectra for HDS for studying the ER based on the concept of the variation of the
kinetic energy [52, 60] of the electron with the local point in space coordinates.
This kinetic energy is then averaged over the entire region of variation using a
Gaussian-type potential energy. On the basis of the E-k dispersion relation, we
have obtained the electron statistics for different HDS for the purpose of numerical
computation of the respective ERs. It may be noted that a more general treatment
of many-body theory for the DOS of HDS merges with one-electron theory under
macroscopic conditions [52]. Also, the experimental results for the Fermi energy
and others are the average effect of this macroscopic case. So, the present treat-
ment of the one-electron system is more applicable to the experimental point of
view and it is also easy to understand the overall effect in such a case [62]. In a
HDS, each impurity atom is surrounded by electrons, assuming a regular distri-
bution of atoms and it is screened independently [59, 61, 63]. The interaction
energy between electrons and impurities is known as the impurity screening
potential. This energy is determined by the inter-impurity distance and the
screening radius (popularly known as the Debye screening length). The screening
length changes with the band structure. Furthermore, these entities are important
for HDS in characterizing the semiconductor properties [64, 65] and the modern
electronic devices [59, 66]. The works on Fermi energy and the screening length in
an n-type GaAs have already been initiated in the literature [67], based on Kane’s
model. Incidentally, the limitations of Kane’s model [53, 60], as mentioned above,
are also present in their studies.

At this point, it may be noted that many band tail models are proposed using
Gaussian distribution of the impurity potential variation [53, 60]. From the very
start, we have used Gaussian band tails to obtain the exact E-k dispersion relations
for HD nonlinear optical, III-V, II-VI, IV-VI, stressed Kane-type semiconductors,
Te, GaP, PtSb,, Bi,Te;, Ge and GaSb respectively. Our method is not related with
the DOS technique as used in the aforementioned works. From the electron energy
spectrum, one can obtain the DOS but the DOS technique, as used in the literature
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cannot provide the E-k dispersion relation. Therefore, our study is more funda-
mental than those in the existing literature, because the Boltzmann transport
equation, which controls the study of the charge transport properties of the
semiconductor devices, can be solved if and only if the E-k dispersion relation is
known. We wish to note that many authors have used the Gaussian function for the
impurity potential distribution. It has been widely used since 1963 when Kane first
proposed it and we will use the Gaussian distribution for the present study.

This book contains ten chapters where the Appendices A to E are placed
chronologically in chapters five to ten respectively, is partially based on our
ongoing researches on the ER of HDS from 1990, and an attempt has been made to
present a cross section of the ER for wide range of HDS and their quantized-
structures with varying carrier energy spectra under various physical conditions.
The first chapter deals with the influence of quantum confinement on the ER in
non-parabolic HDS. First, we study the ER in QWs of HD nonlinear optical
materials on the basis of a generalized electron dispersion law introducing the
anisotropies of the effective masses and the spin orbit splitting constants,
respectively, together with the inclusion of the crystal field splitting within the
framework of the k.p formalism. We observe that the appearance of the complex
electron dispersion law in HDS instead of real one occurs from the existence of the
poles in the finite complex plane of the corresponding electron energy spectrum in
the absence of band tails. It may be noted that the complex band structures have
already been studied for bulk semiconductors and superlattices without heavy
doping [69] and bears no relationship to the complex electron dispersion law as
formulated in this book. The physical picture behind the existence of the complex
energy spectrum in HD nonlinear optical semiconductors is the interaction of the
impurity atoms in the tails with the splitting constants of the valance bands. The
more the interaction, the more the prominence of the complex part than the other
case. In the absence of band tails, there is no interaction of impurity atoms in the
tails with the spin orbit constants and, consequently, the complex part vanishes.
Besides, the complex spectra are not related to same evanescent modes in the band
tails and the conduction bands. In this context it is worth remarking that the
concept of effective electron mass (EEM) is one of the basic pillars in the whole
set of materials science in general [68]. One important consequence of the HDS
forming band tails is that the EEM exists in the forbidden zone, which is impossible
without the effect of band tailing. In the absence of band tails, the effective mass in
the band gap of semiconductors is infinity. Besides, depending on the type of the
unperturbed carrier energy spectrum, the new forbidden zone will appear within
the normal energy band gap for HDS. The results of HD III-V (e.g., InAs, InSb,
GaAs etc.), ternary (e.g., Hg,.«Cd,Te, etc.), quaternary (e.g., In,,Ga,As; P,
lattice matched to InP, etc.) compounds form a special case of our generalized
analysis under certain limiting conditions. The ER in HD QWs of II-VI, IV-VI,
stressed Kane-type semiconductors, Te, GaP, PtSb, Bi,Te;, Ge and GaSb has
been investigated by formulating the respective appropriate HD energy band
structure. The importance of the aforementioned semiconductors has been
described in the same chapter. As a collateral study we shall observe that the EEM
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in such QWs becomes a function of size quantum number, the Fermi energy, the
scattering potential and other constants of the system which is the intrinsic
property of such 2D electrons.

With the advent of modern experimental techniques of fabricating nanomate-
rials, it is possible to grow semiconductor superlattices (SLs) composed of alter-
native layers of two different degenerate layers with controlled thickness [70].
These structures have found wide applications in many new devices such as
photodiodes [71], photo-resistors [72], transistors [73], light emitters [74], tun-
neling devices [75], etc. [76-87]. The investigations of the physical properties of
narrow gap SLs have increased extensively since they are important for opto-
electronic devices and because of the quality of heterostructures involving narrow
gap materials have been improved. It may be noted in this context that the doping
superlattices are crystals with a periodic sequence of ultrathin film layers [88, 89]
of the same semiconductor with the intrinsic layer in-between together with the
opposite sign of doping. All the donors are positively charged and all the acceptors
negatively. This periodic space charge causes a periodic space charge potential
which quantizes the motions of the carriers in the z-direction together with the
formation of the subband energies. The electronic structures of the doping su-
perlattices differ radically from the corresponding bulk semiconductors as stated
below:

(a) Each band is split into mini-bands;

(b) The magnitude and the spacing of these mini-bands may be designed by the
choice of the superlattices parameters; and

(c) The electron energy spectrum of the nippy crystal becomes two-dimensional
leading to the step functional dependence of the DOS function.

In the second chapter, the ER in doping superlattices of HD nonlinear optical,
III-V, II-VI, IV-VI and stressed Kane-type semiconductors has been investigated.
In this case we note that the EEM in such doping supper-lattices becomes a
function of nipi subband index, surface electron concentration, Fermi energy, the
scattering potential and other constants of the system which is the intrinsic
property of such 2D-quantized systems.

In recent years, there has been considerable interest in the study of the inversion
layers, which are formed at the surfaces of semiconductors in metal-oxide-semi-
conductor field-effect transistors (MOSFET) under the influence of a sufficiently
strong electric field applied perpendicular to the surface by means of a large gate
bias. In such layers, the carriers form a two-dimensional gas and are free to move
parallel to the surface while their motion is quantized in the direction perpen-
dicular to it leading to the formation of electric subbands [90]. Although consid-
erable work has already been done regarding the various physical properties of
different types of inversion layers having various band structures, nevertheless, it
appears from the literature that there lies scopes in the investigations made while
the interest for studying different other features of accumulation layers is
becoming increasingly important. In the third chapter, the ER in accumulation
layers of HD nonlinear optical, III-V, II-VI, IV-VI, stressed Kane-type
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semiconductors and Ge, have been investigated. For the purpose of relative
comparisons, we have also studied the ER in inversion layers of the aforemen-
tioned materials. It is interesting to note that the EEM in such layers is a function
of electric subband index, surface electric field, Fermi energy, the scattering
potential and other constants of the system which is the intrinsic property of such
2D electrons.

Chapter four suggests the experimental determinations of 2D and 3D ERs for
HDS and contains six related applications of the content of this book. Our sug-
gestion for the experimental determination of the ERs and the theoretical formula
for degenerate tetragonal compunds (e.g., CdszAs;) based on our generalized
analysis incorporating all types of anisotropies of the energy band structure agree
well with each other and are discussed in this chapter. Chapter five contains the
conclusion and the scope for future research.

It may be noted that the effects of quantizing magnetic field (B) on the band
structures of compound semiconductors are more striking than the parabolic one
and are easily observed in experiments. A number of interesting physical features
originate from the significant changes in the basic energy wave-vector relation of
the carriers caused by the magnetic field. The valuable information could be
obtained from experiments under magnetic quantization regarding the important
physical properties such as Fermi energy and effective masses of the carriers,
which affect almost all the transport properties of the electron devices [91] of
various materials having different carrier dispersion relations [92]. The ER in the
presence of magnetic quantization is a tensor quantity and we take that particular
element of the ER which is in the direction of magnetic field only (D/u)...
Appendix A studies the ER in HD nonlinear optical, III-V, IV-VI, stressed com-
pounds, n-Te, n-GaP, PtSb,, n-Ge, II-V semiconductors and Lead Germanium
Telluride under magnetic quantization respectively. In this appendix weobserve
that the EEM depends on Landau quantum number in addition to Fermi energy
and the other system constants due to the specific band structures of the HD
materials together with the fact that EEM exists in the band gap due to the
presence of finite scattering potential as noted already.

It is well known that Keldysh [93] first suggested the fundamental concept of a
superlattice (SL), although it was successfully experimental realized by Esaki and
Tsu [94]. The importance of SLs in the field of nanoelectronics has already been
described in [95-97]. The most extensively studied III-V SL is that consisting of
alternate layers of GaAs and Ga;_,Al,As owing to the relative ease of fabrication.
The GaAs layers form quantum wells and Ga;_ Al As form potential barriers. The
III-V SLs are attractive for the realization of high speed electronic and opto-
electronic devices [98]. In addition to SLs with usual structure, SLs with more
complex structures such as II-VI [99], IV-VI [100] and HgTe/CdTe [101] SLs
have also been proposed. The IV-VI SLs exhibit quite different properties com-
pared to the III-V SL due to the peculiar band structure of the constituent materials
[102]. The epitaxial growth of II-VI SL is a relatively recent development and the
primary motivation for studying the mentioned SLs made of materials with large
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band gap is in their potential for optoelectronic operation in the blue [102].
HgTe/CdTe SLs have aroused a great deal of attention since 1979 as promising
new materials for long wavelength infrared detectors and other electro-optical
applications [103]. Interest in Hg-based SLs has been further increased as new
properties with potential device applications were revealed [103, 104]. These
features arise from the unique zero band gap material HgTe [105] and the direct
band gap semiconductor CdTe that can be described by the three-band mode of
Kane [106]. The combination of the aforementioned materials with specified
dispersion relation makes HgTe/CdTe SL very attractive, especially because of the
possibility to tailor the material properties for various applications by varying the
energy band constants of the SLs. In addition, for effective mass SLs, the elec-
tronic subbands appear continually in real space [107].

We note that all the aforementioned SLs have been proposed with the
assumption that the interfaces between the layers are sharply defined, of zero
thickness, i.e., devoid of any interface effects. The SL potential distribution may be
then considered as a one-dimensional array of rectangular potential wells. The
aforementioned advanced experimental techniques may produce SLs with physical
interfaces between the two materials crystallographically abrupt; adjoining their
interface will change at least on an atomic scale. As the potential form changes
from a well (barrier) to a barrier (well), an intermediate potential region exists for
the electrons. The influence of finite thickness of the interfaces on the electron
dispersion law is very important, since the electron energy spectrum governs the
electron transport in SLs.

In Appendix B, we study the ER under magnetic quantization in III-V, II-VI,
IV-VI, HgTe/CdTe and strained layer HD SLs with graded interfaces. We also
investigate the ER in III-V, II-VI, IV-VI, HgTe/CdTe and strained layer effective
mass HD SLs in the presence of quantizing magnetic field respectively. This
appendix explores the fact that the EEM becomes a function of the Fermi energy,
Landau quantum number, scattering potential and the magnetic field in all the
cases which are the characteristic features of such superlattices. We present a
simplified analysis of the ER in superlattices of HD nonparabolic semiconductors
under magnetic quantization, which is a huge topic of research by its own right.

It is worth remarking that the influence of crossed electric and quantizing
magnetic fields on the transport properties of semiconductors having various band
structures are relatively less investigated compared with the corresponding mag-
netic quantization, although the crossfields are fundamental with respect to the
addition of new physics and the related experimental findings. It is well known that
in the presence of electric field (E,) along x-axis and the quantizing magnetic field
(B) along z-axis, the dispersion relations of the conduction electrons in semicon-
ductors become modified and for which the electron moves in both z and y
directions. The motion along y-direction is purely due to the presence of E, along x-
axis and in the absence of electric field, the effective electron mass along y-axis
tends to infinity which indicates the fact that the electron motion along y-axis is
forbidden. The effective electron mass of the isotropic, bulk semiconductors having
parabolic energy bands exhibits mass anisotropy in the presence of crossfields and
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this anisotropy depends on the electron energy, the magnetic quantum number, the
electric and the magnetic fields, respectively, although the effective electron mass
along z- axis is a constant quantity. In 1966, Zawadzki and Lax [108] formulated
the electron dispersion law for III-V semiconductors in accordance with the two-
band model of Kane under crossfields configuration which generates the interest to
study this particular topic of solid-state science in general [109]. Appendix C
investigates the ER under crossfield configuration in HD nonlinear optical, III-V,
1I-VI, IV-VI, stressed Kane-type semiconductors and their ultrathin films coun-
terparts. This appendix tells us that the EEM in all the cases is a function of the size
quantum number, the finite scattering potential, the magnetic quantum number and
the Fermi energy even for HD semiconductors whose bulk electrons in the absence
of band tails are defined by the parabolic energy bands.

With the advent of nano-devices, the build-in electric field becomes so large
that the electron energy spectrum changes fundamentally instead of being
invariant and Appendix D investigates the ER under intense electric field in bulk
specimens of HD III-V, ternary and quaternary semiconductors. This appendix
also explores the influence of electric field on the ER based on HD new dispersion
law under magnetic quantization, size quantization, accumulation layers, HD
doping superlattices and effective mass HD superlattices under magnetic quanti-
zation. It is interesting to note that the EEM depends on the strong electric field
(which is not observed elsewhere) together with the fact that the EEM in accu-
mulation layers, HD doping superlattices and effective mass HD superlattices
depend on the respective quantum numbers in addition to the Fermi energy, the
scattering potential and other system constants which are the characteristics fea-
tures of such heterostructures.

With the advent of nano-photonics, there has been considerable interest in
studying the optical processes in semiconductors and their nanostructures in the
presence of intense light waves [110]. It appears from the literature that investi-
gations in the presence of external intense photo-excitation have been carried out
on the assumption that the carrier energy spectra are invariant quantities under
strong external light waves, which is not fundamentally true. The physical prop-
erties of semiconductors in the presence of strong light waves which alter the basic
dispersion relations have relatively been much less investigated in [111, 112] as
compared with the cases of other external fields needed for the characterization of
low-dimensional semiconductors. Appendix E of this book studies the influence of
light waves on the ER in HD opto-electronic semiconductors by formulating new
electron dispersion relation within the framework of k.p formalism. The same
appendix explores the opto ER for HD opto-electronic materials under magnetic
quantization, crossfields configuration, size quantization, doping superlattices and
effective mass superlattices respectively. It is interesting to note that the EEM is a
function of incident light intensity and wave length (not observed elsewhere)
together with the fact that the EEM in superlattices and crossfields configuration
depend on quantum numbers, Fermi energy, scattering potential and other system
constants which are the characteristic features in this case. In these appendices, no
graphs together with results and discussions are presented since we strongly feel



Preface xv

that the readers should not lose a chance to enjoy the complex computer algorithm
to investigate the ER in the respective cases generating new physics and thereby
transforming each Appendix into a monograph by considering various materials
having different dispersion relations.

It is needless to say that this monograph is based on the ‘iceberg principle’
[113] and the rest of which will be explored by researchers from different
appropriate fields. Since there is no existing report devoted solely to the study of
ER for HD 2D-quantized structures to the best of our knowledge, we hope that this
book will be a useful reference source for the present and the next generation of
readers and researchers of solid-state and allied sciences in general. Since the
production of an error-free first edition of any book from every point of view is a
permanent member in the domain of impossibility theorems, therefore in spite of
our joint concentrated efforts for a couple of years together with the seasoned team
of Springer, the same stands very true for this monograph also. Various expres-
sions and a few chapters of this book appear for the first time in printed
form.Suggestions from readers for the development of the book will be highly
appreciated for the purpose of inclusion in future editions, if any. In this book,
from chapter one till the end, we have presented 200 open research problems for
graduate students, Ph.D. aspirants, researchers and engineers in this pinpointed
research topic. We strongly hope that alert readers of this monograph will not only
solve the said problems by removing all the mathematical approximations and
establishing the appropriate uniqueness conditions, but will also generate new
research problems both theoretical and experimental and, thereby, transform this
bried monograph into a solid book. Incidentally, our readers after reading this book
will easily understand how little is presented and how much more is yet to be
investigated in this exciting topic which is the signature of coexistence of new
physics, advanced mathematics combined with the inner fire for performing cre-
ative research in this context from young scientists, since like Kikoin [114] we feel
that A young scientist is no good if his teacher learns nothing from him and gives
his teacher nothing to be proud of. We emphatically stress that the problems
presented here form an integral part of this book and will be useful for readers to
initiate their own contributions on the ER in HDS and their quantized counterparts,
since like Sakurai [115] we firmly believe The reader who has read the book but
cannot do the exercise has learned nothing. It is nice to note that if we assign the
alphabets A to Z, the positive integers from 1 to 26, chronologically, then the word
ATTITUDE receives the perfect score 100 and is the vital quality needed from the
readers since attitude is the ladder on which all the other virtues mount.

In this monograph, we have investigated various dispersion relations of dif-
ferent HD quantized structures and the corresponding carrier statistics to study the
concentration dependence of the ER in HD quantum confined materials. Besides,
the expressions of effective electron mass and the subband energy have been
formulated throughout this monograph as a collateral study, for the purpose of in-
depth investigations of the said important pinpointed research topics. Thus, in this
book, readers will get much information regarding the influence of quantization in
HD low-dimensional materials having different band structures. For the
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enhancement of the materials aspect, we have considered various materials having
the same dispersion relation to study the influence of energy band constants of the
different HDS on ER. Although the name of the book is extremely specific, from
the content one can easily infer that it should be useful in graduate courses on
condensed matter physics, materials science, modern physics of materials, solid-
state electronics, nano-science and technology and solid-state sciences and devices
in many universities and institutions in addition to both Ph.D. students and
researchers in the aforementioned fields. Last but not the least, we do hope that our
humble effort will kindle the desire to delve deeper into this fascinating and deep
topic by anyone engaged in materials research and device development either in
academics or in industry.
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Chapter 1
The ER in Quantum Wells of HD
Non-parabolic Semiconductors

1.1 Introduction

Inrecent years, with the advent of fine lithographical methods [1, 2] molecular beam
epitaxy [3], organometallic vapor-phase epitaxy [4], and other experimental tech-
niques, the restriction of the motion of the carriers of bulk materials in one (QWs,
doping super-lattices, accumulation, and inversion layers), two (nanowires) and
three (quantum dots, magneto-size quantized systems, magneto inversion layers,
magneto accumulation layers, quantum dot super-lattices, magneto QW super-lat-
tices, and magneto doping superlattices) dimensions have in the last few years,
attracted much attention not only for their potential in uncovering new phenomena
in nano-science but also for their interesting quantum device applications [5-8]. In
QWs, the restriction of the motion of the carriers in the direction normal to the film
(say, the z direction) may be viewed as carrier confinement in an infinitely deep 1D
rectangular potential well, leading to quantization [known as quantum size effect
(QSE)] of the wave vector of the carriers along the direction of the potential well,
allowing 2D carrier transport parallel to the surface of the film representing new
physical features not exhibited in bulk semiconductors [9-13]. The low-dimen-
sional hetero-structures based on various materials are widely investigated because
of the enhancement of carrier mobility [14].These properties make such structures
suitable for applications in QWs lasers [15], hetero-junction FETs [16, 17], high-
speed digital networks [18-21], high-frequency microwave circuits [22], optical
modulators [23], optical switching systems [24], and other devices. The constant
energy 3D wave-vector space of bulk semiconductors becomes 2D wave-vector
surface in QWs due to dimensional quantization. Thus, the concept of reduction of
symmetry of the wave-vector space and its consequence can unlock the physics of
low-dimensional structures. In this chapter, we study the ER in QWs of HD non-
parabolic semiconductors having different band structures in the presence of
Gaussian band tails. At first we shall investigate the ER in QWs of HD nonlinear
optical compounds which are being used in nonlinear optics and light emitting
diodes [25]. The quasi-cubic model can be used to investigate the symmetric
properties of both the bands at the zone center of wave vector space of the same

K. P. Ghatak and S. Bhattacharya, Heavily-Doped 2D-Quantized Structures 1
and the Einstein Relation, Springer Tracts in Modern Physics 260,
DOI 10.1007/978-3-319-08380-3_1, © Springer International Publishing Switzerland 2015
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compound. Including the anisotropic crystal potential in the Hamiltonian, and
special features of the nonlinear optical compounds, Kildal [26] formulated the
electron dispersion law under the assumptions of isotropic momentum matrix ele-
ment and the isotropic spin-orbit splitting constant, respectively, although the
anisotropies in the two aforementioned band constants are the significant physical
features of the said materials [27-29]. In Sect. 1.2.1, the ER in QWs of HD non-
linear optical semiconductors has been investigated on the basis of newly formu-
lated HD dispersion relation of the said compound by considering the combined
influence of the anisotropies of the said energy band constants together with the

inclusion of the crystal field splitting respectively within the framework of k- P
formalism. The III-V compounds find applications in infrared detectors [30],
quantum dot light emitting diodes [31], quantum cascade lasers [32], QWs wires
[33], optoelectronic sensors [34], high electron mobility transistors [35], etc. The
electron energy spectrum of III-V semiconductors can be described by the three- and
two-band models of Kane [36-38], together with the models of Stillman et al. [39],
Newson and Kurobe [40] and, Palik et al. [41] respectively. In this context it may be
noted that the ternary and quaternary compounds enjoy the singular position in the
entire spectrum of optoelectronic materials. The ternary alloy Hg, yCdTe is a
classic narrow gap compound. The band gap of this ternary alloy can be varied to
cover the spectral range from 0.8 to over 30 um [42] by adjusting the alloy com-
position. Hg,_,Cd,Te finds extensive applications in infrared detector materials and
photovoltaic detector arrays in the 8—12 um wave bands [43]. The above uses have
generated the Hg, ,Cd,Te technology for the experimental realization of high
mobility single crystal with specially prepared surfaces. The same compound has
emerged to be the optimum choice for illuminating the narrow sub-band physics
because the relevant material constants can easily be experimentally measured [44].
Besides, the quaternary alloy In;_,Ga,As,P_, lattice matched to InP, also finds wide
use in the fabrication of avalanche photo-detectors [45], hetero-junction lasers [46],
light emitting diodes [47] and avalanche photodiodes [48], field effect transistors,
detectors, switches, modulators, solar cells, filters, and new types of integrated
optical devices are made from the quaternary systems [49]. It may be noted that all
types of band models as discussed for III-V semiconductors are also applicable for
ternary and quaternary compounds. In Sect. 1.2.2, the ER in QWs of HD III-V,
ternary and quaternary semiconductors has been studied in accordance with the
corresponding HD formulation of the band structure and the simplified results for
wide gap materials having parabolic energy bands under certain limiting conditions
have further been demonstrated as a special case in the absence of heavy doping and
thus confirming the compatibility test. The II-VI semiconductors are being used in
nano-ribbons, blue green diode lasers, photosensitive thin films, infrared detectors,
ultra-high-speed bipolar transistors, fiber optic communications, microwave
devices, solar cells, semiconductor gamma-ray detector arrays, semiconductor
detector gamma camera and allow for a greater density of data storage on optically
addressed compact discs [50-57]. The carrier energy spectra in II-VI compounds are
defined by the Hopfield model [58] where the splitting of the two-spin states by the
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spin-orbit coupling and the crystalline field has been taken into account.
Section 1.2.3 contains the investigation of the ER in QWs of HD II-VI compounds.

Lead Chalcogenides (PbTe, PbSe, and PbS) are IV-VI non-parabolic semi-
conductors whose studies over several decades have been motivated by their
importance in infrared IR detectors, lasers, light-emitting devices, photo-voltaic,
and high temperature thermo-electrics [59-63]. PbTe, in particular, is the end
compound of several ternary and quaternary high performance high temperature
thermoelectric materials [64—68]. It has been used not only as bulk but also as
films [69-72], QWs [73] super-lattices [74, 75] nanowires [76] and colloidal and
embedded nano-crystals [77-80], and PbTe films doped with various impurities
have also been investigated [81-88]. These studies revealed some of the inter-
esting features that had been seen in bulk PbTe, such as Fermi level pinning and, in
the case of superconductivity [89]. In Sect. 1.2.4, the 2D ER in QWs of HD IV-VI
semiconductors has been studied taking PbTe, PbSe, and PbS as examples. The
stressed semiconductors are being investigated for strained silicon transistors,
quantum cascade lasers, semiconductor strain gages, thermal detectors, and
strained-layer structures [90-93]. The ER in QWs of HD stressed compounds
(taking stressed n-InSb as an example) has been investigated in Sect. 1.2.5. The
vacuum deposited Tellurium (Te) has been used as the semiconductor layer in
thin-film transistors (TFT) [94] which is being used in CO, laser detectors [95],
electronic imaging, strain sensitive devices [96, 97], and multichannel Bragg cell
[98]. Section 1.2.6 contains the investigation of ER in QWs of HD Tellurium. The
n-Gallium Phosphide (n-GaP) is being used in quantum dot light emitting diode
[99], high efficiency yellow solid state lamps, light sources, high peak current
pulse for high gain tubes. The green and yellow light emitting diodes made of
nitrogen-doped n-GaP possess a longer device life at high drive currents [100-
102]. In Sect. 1.2.7, the ER in QWs of HD n-GaP has been studied. The Platinum
Antimonide (PtSb,) finds application in device miniaturization, colloidal nano-
particle synthesis, sensors and detector materials and thermo-photovoltaic devices
[103-105]. Section 1.2.8 explores the ER in QWs of HD PtSb,.Bismuth telluride
(Bi,Te;) was first identified as a material for thermoelectric refrigeration in 1954
[106] and its physical properties were later improved by the addition of bismuth
selenide and antimony telluride to form solid solutions. The alloys of Bi,Tes are
useful compounds for the thermoelectric industry and have been investigated in the
literature [107—111]. In Sect. 1.2.9, the ER in QWs of HD Bi,Te; has been con-
sidered. The usefulness of elemental semiconductor Germanium is already well
known since the inception of transistor technology and, it is also being used in
memory circuits, single photon detectors, single photon avalanche diode, ultrafast
optical switch, THz lasers and THz spectrometers [112—115]. In Sect. 1.2.10, the
ER has been studied in QWs of HD Ge. Gallium Antimonide (GaSb) finds
applications in the fiber optic transmission window, hetero-junctions, and QWs.
A complementary hetero-junction field effect transistor in which the channels for
the p-FET device and the n-FET device forming the complementary FET are
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formed from GaSb. The band gap energy of GaSb makes it suitable for low power
operation [116—-121]. In Sect. 1.2.11, the ER in QWs of HD GaSb has been
studied. Section 1.3 contains the result and discussions pertaining to this chapter.
The last Sect. 1.4 contains open research problems.

1.2 Theoretical Background

1.2.1 The ER in QWs of HD Non-Linear Optical
Semiconductors

The form of Kk.p matrix for nonlinear optical compounds can be expressed
extending Bodnar [27] as

_|H H
HL—[H; fh] (1.1)
where,
E, O Psz 0 0 —f+ O f-
go— |0 (=24y/3) (V2AL/3) 0| L _|f+ O 00
= k. (V2A (541 2= 0o 0 0 0
Pik; (V2AL/3) —(0+354)) 0
0 0 0 0 fv O 0 0

in which Eg is the band gap in the absence of any field, P and P, are the
momentum matrix elements parallel and perpendicular to the direction of crystal
axis respectively, 0 is the crystal field splitting constant, Ay and A, are the spin-
orbit splitting constants parallel and perpendicular to the C-axis respectively,
f+ = (PL/V2)(k, £ iky)andi = v/—1. Thus, neglecting the contribution of the
higher bands and the free electron term, the diagonalization of the above matrix
leads to the dispersion relation of the conduction electrons in bulk specimens of
nonlinear optical semiconductors as

V(E) = fil(E)K; +fa(E)K (1.2)

where

2 2
WE) = E(E+ Eq) | (E + Eg)(E+ Egy + 8)) + 3( + Eg, +5 4) +5 (4] = A2)

E is the total energy of the electron as measured from the edge of the conduction
band in the vertically upward direction in the absence of any quantization,
ke =k 4k,
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thﬁu (Ego + Al) N 1 2 1 2 2
o (e (o3t = 6 ) (£ 30 ) 5 (44|
1°Eg, (Eq, + A))

[2’"\\( % +%AH)] {(E+Eg°)<E+Eg° J%A”)} h = h/2r,

fi(E)

h(E) =

h is Planck’s constant and my and ) are the longitudinal and transverse effective

electron masses at the edge of the conduction band respectively.

Thus the generalized unperturbed electron energy spectrum for the bulk spec-
imens of the nonlinear optical materials in the absence of band tails can be
expressed following (1.2) as

2mi " \bycy) 2my (qE+1) e (cE+1)

R\ [ (bre\[(5 A=A\ o (o [A-A) ¢
7(%){(ZC_H>KE+ 6A; JoyE+1\2 | 64 CE+1 (1.3)

where, b”_l/( +AH) 1/(Eg+%AL),bLE1/(Eg+AL),CHEl/(Eg
+32A)) and 2 = 1/E,
The Gaussian distribution F(V) of the impurity potential is given by [122, 123]

we <ﬂc_i> R {E(o:E+ DBE+1) | oby [0“ (- Ai)] —@) by (a1 - Ai)}

F(V)= (nr/i)_l/z exp (—Vz/né) (1.4)

where, 7, is the impurity scattering potential. It appears from (1.4) that the vari-
ance parameter 1, is not equal to zero, but the mean value is zero. Further, the
impurities are assumed to be uncorrelated and the band mixing effect has been
neglected in this simplified theoretical formalism.

We have to average the kinetic energy in the order to obtain the E-k dispersion
relation in nonlinear optical materials in the presence of band tails. Using the (1.3)
and (1.4), we get

B2 E by e, 1Pk E E A(E = V) +1][by(E-V) +1]
Lm /o F(V)dv} + {(lnq) ;i"fi,!c F(V } { l - +V)+H1 1 v
TN S

|
N [ e[ (s A-8\ [ Fwav 5 A AT [ EW)av
<M>{<Ec_>{<f 6h, “JZ WE-V)+1 (27 " 6a C”;Z qE-—V) T

(1.5)

The (1.5) can be rewritten as [124-128]
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(%)I(I)Jr (Z—E‘CD Zr’llz(l) = {1 () + % [51( )+ Z(Aﬁ Az)l(l)] - <§>%”(Aﬁ —Ai)lﬁ(cu)}

R (i o)

(1.6)
where,
I(1) = /F(V)dV (1.7)
‘ E—V)o(E-=V)+1][bj(E—-V)+1

L(c)) = /( )1 [c|(E)_+V)H+1(} s ]F(V)dV (1.8)
I(4) = / (E—-V)F(V)dv (1.9)

_ ‘ F(V)dv
I(oc):/ m (1.10)

Substituting E — V = xand x/n, = to we get from (1.7)

11) = (exp( Ez/ng )V /exp + (2Eto/n,) | dto
0

Thus,

o= [ B )

5 (1.11)

where, Erf(E/n,) is the error function of (E/n,).
From (1.9), one can write
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E
1(4) = (1/n,v/7) / (E — V)exp(~V2/i)dv
- (1.12)

(1 + Erf (E/ng)] — Vexp(=V2/n;)dv

E 1 /
2 L

After computing this simple integration, one obtains
Thus,

1(4) = n, exp(~E/) (2/m) 42 (14 Ef(E/n,) = 10(E, ) (113)

From (1.10), we can write

exp Vz/ng dV
/ (1.14)
/m7 a(E—V)+1]
When, V — +o0, m — 0 and exp(—Vz/ni) —0
Thus (1.14) can be expressed as
oo
(o) = (1/om /) / exp(—1*) (u — 0N~ dr (1.15)
v _ — (1toE
where, h = tandu = ( o )
It is well known that [129, 130]
[o@]
W(Z) = (i/n) / (Z — 1) exp (—12)dr (1.16)

In which i = v/—1 and Z, in general, is a complex number. We also know [129,
130],

W(Z) = exp(—Z?)Erfc(—iZ) (1.17)

where, Erfc(Z) =1 — Erf(Z).
Thus, Erfc(—iu) = 1 — Erf(—iu)
Since, Erfc(—iu) = —Erf (iu)
Therefore, Erfc(—iu) = 1 + Erf (iu).
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Thus,
I(x) = [—iﬁ/ang} exp (—uz)[l + Erf(iu)] (1.18)

We also know that [129, 130]

Erf(x +iy) = Erf(x) + (827;) (1 — cos(2xy)) + isin(2xy) +=¢ Zeﬁi +l;x/;]t
[ (5. ) + igp (x, ) + (x, )]
(1.19)

where,

fp(x,¥) = [2x — 2x cosh(py) cos(2xy) + p sinh(py) sin(2xy)],
gp(x,) = [2xcosh(py) sin(2xy) + psinh(py) cos (2xy)], e(x,y)| ~ 107" |Erf (x + iy)|

Substituting x = 0 and y = u in (1.19), one obtains,
- —p-/4
Erf(iu) ( )Z {exp '/ )smh(pu)} (1.20)
=1

Therefore, one can write

I(2) = Cyi (o, E, ny) — Dy (2, E, 11,) (1.21)

where,

_ |2 2|~ fexp(=p*/4)
e (o, E, my) = [W] exp(—u?) [Z {fsmh(pu)}]

andD21(oc, E, ng) = lgexp(—uz)].
g

The (1.21) consists of both real and imaginary parts and therefore, () is
complex, which can also be proved by using the method of analytic continuation
of the subject Complex Analysis.

The integral I3 (CH) in (1.8) can be written as
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s = (o (282 £ (- 2) -
7{%\\ (1 7%) (1 7%“‘)’(%)} (1.22)

where
E
1(5) = / (E—V)*F(V)dV (1.23)
From (1.23) one can write

—V? -V —Vv?
/exp v — 2E/ Vexp > |dV + / V2 exp 5 |dV
. ’7g U g

—00 —00 —00

2

1(5) = ! {EZ
Hﬂg

The evaluations of the component integrals lead us to write

nE —E? 1 ( ) 2)
1(5) = —=—= — | +- +2F
©) ZﬁeXp< i ) "allk

Thus combining the aforementioned equations, I3 (CH) can be expressed as

1+Erf<n£>] = 0o(E, n,) (1.24)

Ii(c)) = A (E, n,) + iBx (E, ny) (1.25)

where,

Azl(Ev"g):{af [zf ( “3li+2e) {1+E'f<"£>H

+Ciu( CH)( ci‘> [+ Edf (E/n)]

fn (20w S )

and B (E,1,) = C{}Z (1 - CEH) (1 _ ﬂ) exp (u%)} .

|

4 |Fetbiey —oby buCu —ab)

1+CH

€)M
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Therefore, the combination of all the appropriate integrals together with
algebraic manipulations leads to the expression of the dispersion relation of the
conduction electrons of HD nonlinear optical materials forming Gaussian band
tails as

n*k2 n*k2

=1 1.26
2mT‘T21(E, ﬂg) 2mLT22(E ng) ( )

where, T3 (E, n,) and Tx(E, 1,) have both real and complex parts and are given
by

T23(E7 ’71,’)
TS(E7 Vlg) '

Ta(E.n,) = [Aﬂ(E ng>+—[om<E ) + ;(Aﬁ—Ai)[HErf(E/ngn]

Bt ]

G (E, n,) = 2 exp(—uf i: {exp /4 )smh(pul)}7 Ts(E, n,) = 3 [1+ Eif (E/n,)],

Tou(E, n,) = [T (E, n,) +iTas(E, n,)], T (E, 1) =

gV =
(To(E, 1,) 2ab)
Tn(E, n,) = T254(E, '75) s Tu(E, n,) = {le (E, n,) +9 ‘ (Aﬁ A’ )HZI (e, E, Ug)},
Hai (e, E.ny) = K\/CEHBXP(*M%) . Tn(E,n,) = [Tw(E,n,) +iT30(E, n,)]
Too(E,n,) = To3(E, 1) Tos (E. ) — Toa(E, 1g) Tas (E, 1)
h [(Tos(E.n))+ (T (E:1,))]
- I biei\1 E biei\ (o A‘z\
Tos(E,n,) = (ECT\) 2 1 +E’f<’1—g> + (ECT\) <§+ { 6A, o Ca1 (), E,11,)

bie\ (6 [A] A%
lln (e G En,) |,
+( bL ) <2 + 6AH 2 (aH7 V’g)
_| 2 o [ ~exp(=p*/4) .
Cai(o,E,ny) = L—nngexp(—”) ;Zl:fsmh(ﬂu) ;
bie\ (s A —A bie, (6 A —A?
_ e Il L [ I L
T (E =|l—|=z—- D E, —— H. E
26( ,ng) (fu C><2 6A, o 21(% ,ng)+ b, \2 6A| 21(C\|7 771,3)

T24(E ng)T25 (E ”g) +T23(E y’g)TZG(E7 Vlg)

[(Tos(E,n))*+ (T (Eom,))]

And T3 (E, 1,)

From (1.26), it appears that the energy spectrum in HD nonlinear optical
semiconductors is complex. The complex nature of the electron dispersion law
in HD semiconductors occurs from the existence of the essential poles in the
corresponding electron energy spectrum in the absence of band tails. It may be
noted that the complex band structures have already been studied for bulk
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semiconductors and super lattices without heavy doping [131, 132] and bears no
relationship with the complex electron dispersion law as indicated by (1.26). The
physical picture behind the formulation of the complex energy spectrum in HDS is
the interaction of the impurity atoms in the tails with the splitting constants of the
valance bands. More is the interaction; more is the prominence of the complex part
than the other case. In the absence of band tails, Ny — 0, and there is no interaction
of the impurity atoms in the tails with the spin orbit constants. As a result, there
exist no complex energy spectrum and (1.26) gets converted into (1.2) when
11, — 0. Besides, the complex spectra are not related to same evanescent modes in
the band tails and the conduction bands.

It is interesting to note that the single important concept in the whole spectra of
materials and allied sciences is the effective electron mass which is in disguise in
the apparently simple (1.26), and can, briefly be described as follows:

Effective electron mass: The effective mass of the carriers in semiconductors,
being connected with the mobility, is known to be one of the most important
physical quantities, used for the analysis of electron devices under different
operating conditions [133]. The carrier degeneracy in semiconductors influences
the effective mass when it is energy dependent. Under degenerate conditions, only
the electrons at the Fermi surface of n-type semiconductors participate in the
conduction process and hence, the effective mass of the electrons corresponding to
the Fermi level (EEM) would be of interest in electron transport under such
conditions. The Fermi energy is again determined by the electron energy spectrum
and the carrier statistics and therefore, these two features would determine the
dependence of the effective electron mass in degenerate n-type semiconductors
under the degree of carrier degeneracy. In recent years, various energy wave vector
dispersion relations have been proposed [134—151] which have created the interest
in studying the effective mass in such materials under external conditions. It has,
therefore, different values in different materials and varies with electron concen-
tration, with the magnitude of the reciprocal quantizing magnetic field under
magnetic quantization, with the quantizing electric field as in inversion layers,
with the nano-thickness as in UFs and nano wires and with superlattice period as in
the quantum confined superlattices of small gap semiconductors with graded
interfaces having various carrier energy spectra [152—184].

The transverse and the longitudinal EEMs at the Fermi energy (Er,) of HD
nonlinear optical materials can, respectively, be expressed as

m (Erng) = mi {To(Em) Y| (127)
“h
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and

mi(Er,.ng) = mi{Tx (E,n,) }/‘E:E,-h (1.28)

where Ep, is the Fermi energy of HDS in the presence of band tails as measured
from the edge of the conduction band in the vertically upward direction in the
absence of band tails and the primes denote the differentiations of the differen-
tiable functions with respect to Fermi energy in the appropriate case.

In the absence of band tails , — 0 and we get

i (Ep,0) == l%(E){wl(E)}’— 2 §E>{w2<E>}’] (1.29
2 {(E)}
and
2 - !
i(Er,0) =17 128 ){%(E){ip 2({;@@)}{%@)} (130

where Er is the Fermi energy as measured from the edge of the conduction band in
the vertically upward direction in the absence of any perturbation, V,(E) =
Y(E), Wa(E) = fi(E) and y3(E) = f(E).

Comparing the aforementioned equations, one can infer that the effective
masses exist in the forbidden zone, which is impossible without the effect of
band tailing. For semiconductors, in the absence of band tails the effective
mass in the band gap is infinity .

The DOS function is given by

2gym’ \ [2m;

NHD (E’ ’78) = 3ﬂ2h3

Ri1(E, n,) cos [y, (E, n,)] (1.31a)

where,

Rui(E,ng) = |[{T9 (E,n,) }\/7 T Ezﬂl{;—j L —{Tx(E, ’73 }\/—E—T LED EZVIV({E} :)’7*)}:|

= N =

E 11q T7 E 17g {Tz7 E M, } +{sz E ’7;;)} ]

2172
+|:{T2) E Mg } \/_ TZ‘J E ’Ig/_{v E)W +{Tsn E '75 }\/_—E—i— Tm i”i({EX :)"g)}:| :| s

V(B P {Ta(En) Y - ooy

E17q =

and
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¥ (E,n,) = tan™! {{{ng (E.n, NERVALl iz;i+{qu (E.n, VY A/x(En,) 7"320\{/)6% }
{{TZQ (E,ng)} \/x(E I E\"/*{xiE”* —{T30(E,n,) Y/ T’;\{/v}(ii':) } }

The oscillatory nature of the DOS for HD nonlinear optical materials is
apparent from (1.31a). For,/, (E, ng) > m, the cosine function becomes negative
leading to the negative values of the DOS. The electrons cannot exist for the
negative values of the DOS and therefore, this region is forbidden for electrons,
which indicates that in the band tail, there appears a new forbidden zone in
addition to the normal band gap of the semiconductor.

The use of (1.31a) leads to the expression of the electron concentration as

2g,m’| Zm"*|
3n2h’

nyg =

Ill(EFkvng)+iL(r)[Ill(EFha’7g)}‘| (131b)

r=1

where, 111 (Er,,1,) = [T29 (Er, ) \/X(EF,, 1) — T30(Er,, 1) y(EF,,,’?g)} ,

L(r) = 2(ksT)™ (1 — 2'2)¢(2r) m r is the set of real positive integers

whose upper s and £(2r) is the Zeta function of order 2r [129, 130].
The ER for HD semiconductors is given by

D 0
— = % Real part of [$
O(Er, — Ena)

-1
; | | ] (1.31c)

where, Ej, is the electron energy within the band gap, as measured from k = 0 and
should be obtained from the dispersion relation of the HD semiconductors under
the conditions E = Ej; when k = 0.

For HD non-linear optical semiconductors, Ej,; is the smallest negative root of
the equation.

[T27(Ena; 1) T20 (Ena, ng) — Tas (Enas ng) T30 (Enas )] = 0 (1.31d)

Therefore, the ER can be numerically evaluated by using (1.31b), (1.31c),
(1.31d) and the allied definitions.

For dimensional quantization along z- direction, the dispersion relation of the
2D electrons in this case can be written following (1.26) as

? (nzn/dz)z hzksz
2mi T (E.n,)  2m' T (E, 1)

=1 (1.32)
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where, n,(=1,2,3,...) and d; are the size quantum number and the nano-thick-
ness along the z-direction respectively.

The general expression of the total 2D DOS (N,pr(E)) can, in general, be
expressed as

2g, =% 0A(E, n,)

n:l

Nopr(E) = H(E —E,.) (1.33)

where, g, is the valley degeneracy, A(E, n,) is the area of the constant energy 2D
wave vector space and in this case it is for QWs, H(E — E,,.) is the Heaviside step
function and E,, is the corresponding sub-band energy. Using (1.32) and (1.33),
the expression of the Nopr(E) for QWs of HD nonlinear optical semiconductors
can be written as

m v
N2DT 7;5 ZTlD E 77g>nz (E_Enle) (1'34)
n.=1
where, Tip(E,n,,n;) = [1 %} T (E,n,) and the sub band energies

E,.p1 in this case is given by the following equation

hz(”zn/dz)z
2m’ﬁT21 (Enle ; ﬂg)

=1 (1.35)

Thus we observe that both the total DOS and sub-band energies of QWs of HD
nonlinear optical semiconductors are complex due to the presence of the pole in
energy axis of the corresponding materials in the absence of band tails.

The EEM in this case is given by

m*(Epinp, 1, n;) = m’; [Real partof T{,,(Er1up, 1, 1.)] (1.36)

Thus, we observe that the EEM is the function of size quantum number and the
Fermi energy due to the combined influence of the crystal filed splitting constant and
the anisotropic spin-orbit splitting constants respectively. Besides it is a function of
11, due to which the EEM exists in the band gap, which is otherwise impossible.

Combining (1.34) with the Fermi-Dirac occupation probability factor, inte-
grating between E, p; to infinity and applying the generalized Sommerfeld’s
lemma [185], the 2D carrier statistics in this case assumes the form

r=1

s
Where, TZD(EFIHDanganz) = ZL(}’)[T]D(E]:U-ID,l’]g,nz”7 EFIHD is the Fermi
r=1

energy in the presence of size quantization of the QWs of HD non-linear optical
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materials as measured from the edge of the conduction band in the vertically
upward direction in the absence of any perturbation.
The ER of QWs of HDS can, in general, be expressed as

D

r ‘ ‘ (1.38)

6 71
2P Real part of {$}
O(Erup — En.p)

where, Epyp is the Fermi energy in HD sized quantized 2-D materials as measured
from the edge of the conduction band in the vertically upward direction in the
absence of any perturbation and E,  is the corresponding sub-band energy.

Therefore combining (1.37) and (1.38) we can study the ER in this case.

In the absence of heavy doping, the 2D dispersion relation the EEM in the x-y
plane at the Fermi level, the total 2D DOS, the electron concentration and the ER
for QWs of non-linear optical materials in the absence of band tails can, respec-
tively, be written as

Vi(E) = Y (E)K; + W3(E) (nem/d.)? (1.39)

o B = (5 ) a2

n,m 2
{%(EFS)}{{wl(EFs)}/{%(Eﬁ)}/( ) }

n,m

- {llll(EFx) lﬁ% EF& (L}

)
Nopr(E) = (5_7”) Z [y l {{Wl —{s(E)Y (ndzn>2}

}{lpz Ery) ] (1.40)

—{%(E)— ) (& ] (E—E,) (1.41)
l//1 (Enzl) = wZ (Enzl ) (nzTC/dz)z (142’)
nop = i—; Zm: [T51(Ers, nz) + Ts2(Ery, nz)] (1.43)

_ |€| Zn i [{TSI(EFs,nZ)} +{T52(EEs7nZ)}/] (1.44)

where, , (E) = Y(E), VL (E) = fi(E),V3(E) = f2(E), E,,, are the sub band ener-
gies, Er, is the Fermi energy in the 2-D sized quantized material in the presence of
size quantization and in the absence of heavy doping as measured from the edge of
the conduction band in the vertically upward direction in the absence of any
quantization,

D 1 Zn " [Ts1(Ers, nz) + Ts2(Efs, n;))
U
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V1 (Ers) — Y3(EFy) (”Zﬂ/dz)z
lpz(EFS)

T51 (EFs; nz) = and

Tsy(Er, n.) ZL )[T51(Epy, n.)).

It may be noted that the expanded form of (1.44) was derived for the first time
by A.N. Chakravarti et al. [122, 123].

In the absence of heavy doping, the DOS for bulk specimens of non-linear
optical semiconductors is given by

Dy(E) = 8,(37%) ', (E) (1.45)

wmg_wwwwWJMWWMWQywmwwwz
! 2 Yo (E)VU(E)  Wa(EVUE) 2 g, (E)ys(E)
W (E) = {(ZE +E )W, (E)[E(E + E,)] ' +E(E + Eg) (2E + 2E, + 0 + AH)} :

)

[ (E)]

2mj_< += Al” [WE, (E +AL)][5+2E+2Eg+§A|}

and [y/3(E)]' = :2m*|< +3 m)} E¢+A))] [2E+2Eg+§Al}

Combining (1.45) with the Fermi-Dirac occupation probability factor and using
the generalized Sommerfeld’s lemma, the electron concentration can be written as

no = g (37%) " [M(EF) + N(Er)] (1.46a)

3
where, M(Ef) = — WnEDP , Er is the Fermi energy of the bulk specimen in
V2(Er)\/ V3 (Er)

the absence of band tails as measured from the edge of the conduction band in the
vertically upward direction and

Erp) = i:L(r)M E
r=1

The ER in this case can, in general, be expressed as

D o no al’lo -

Thus using (1.46a) and (1.46b), the ER assumes the form
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D _ 1  [M(Ep)+N(EF)]
wo lel [{M(Er)Y+{N(Er)Y] (1.47)

It may be noted that the expanded form of (1.47) was derived for the first time
by A.N. Chakravarti et al. [152-154].

1.2.2 The ER in QWs of HD III-V Semiconductors

The dispersion relation of the conduction electrons of III-V compounds are
described by the models of Kane (both three and two bands) [37, 38, 161-163],
Stillman et al. [39] and Palik et al. [41] respectively. For the purpose of complete
and coherent presentation and relative comparison, the ER in QWs of HD III-V
semiconductors have also been investigated in accordance with the aforemen-
tioned different dispersion relations as follows:

(a) The Three Band Model of Kane
Under the conditions, 6 = 0, Aj = A = A (isotropic spin orbit splitting constant)
and m‘*| = m’, = m, (isotropic effective electron mass at the edge of the conduction
band), (1.2) gets simplified as

K _ E(E+Ey)(E + Ey, + A)(Eg, +34)

= 1,1(E), I (E) =
2m, 1(E), Iu(E) Eg (Eq, + A) (E + Eg, +2A)

(1.48)

which is known as the three band model of Kane [37, 38] and is often used to
investigate the physical properties of III-V materials.

Under the said conditions, the HD electron dispersion law in this case can be
written from (1.26) as

R k2
2m,

= T3l (E7 ”g) + iT32 (Ea ng) (149)

where,

T51(E, n,) = (W) [%[)HO(E’ ) + [MH:#} Po(E; 1) +%(1 7%) (l 7§>%

,é (1 —%) (1 —g) ﬁexp(—u%) [ieﬂa(;&sinhgmz)ﬂ b= (E, +A)71, c= (E,J +%A>7l~

=1

1+ cE 2 1 b
te and T (E ny) = | ———77 —(l —E) (1 ——) ﬁexp(—u%).
ci, L+ Erf(E/n,) ) ¢ c c) eng

Thus, the complex energy spectrum occurs due to the term 7T3,(E, #,) and this
imaginary band is quite different from the forbidden energy band.
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The EEM at the Fermi level is given by

m* (Eryo ) = me{ T (E, n,) Y| (1.50)

E=Ep,

Thus, the EEM in HD III-V, ternary and quaternary materials exists in the band
gap, which is the new attribute of the theory of band tailing.
In the absence of band tails, 7, — 0 and the EEM assumes the form

m*(Er) = m{In(E)Y |, (1.51)

The DOS function in this case can be written as

o\ 32
N (1) =25 (25) " Rt (B, ) sl (B )] (152
where,
e e En T [ En)y]
) = ) 4By
(B = 5 T (B ) (T (B ) Y+ (B n) P

3T (E, 1) (T (£, )} { T (. ) Y.
) =5 [V o) P (Tl )7 = () and

{ﬁll(E’ ng)}, “II(E’ ng)]
{o11 (E, ﬂg>}/ Bii(E, ng)

) ”g) = [{T31(E’ ng)}3_3T31(E’ "g){T32(E’ ng)}z}’
[

2921(E, ng) =tan !

Thus, the oscillatory DOS function becomes negative for 1, (E, r/g) >mnand a
new forbidden zone will appear in addition to the normal band gap.
The electron concentration can be expressed as

s

no = £ <%>3/2 [jllle(EFh, n,) + > L(r)[11e(Er,, ng)]} (1.53)

r=1

where

Iine(Er,, mg) = {72(EF, ”g)}3/2
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In this case, Ejy is given by
Ts1(Ena,n,) =0 (1.54)

The numerical evaluation of the ER has been done by using (1.53), (1.31c),
(1.54) and the allied definitions.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.49) as

n (nzn/dz)z h2(ks)2
+
2m, 2m,

= T31(E7 rlg) + iT32<Ea ng) (]55)

The expression of the Nppr(E) in this case assumes the form

megy 7z max
Napr(E) = 750> Tip(E. g, m)H(E — Ey.ps) (1.56)

n,=1

where, Tsp(E, n,,n;) = [T31(E, n,) + iT(E, n,) — R (n,m/d.)*(2m,)""] and the
sub band energies E, ps in this case given by

{hz(nz/dzy}(zmﬂ)il = T31(EnZDS; ’/Ig) (1.57)

Thus we observe that both the total DOS in QWs of HD III-V compounds and
the sub band energies are complex due to the presence of the pole in energy axis of
the corresponding materials in the absence of band tails.

The EEM in this case is given by

m* (EFlHDa ’1g7nz) = me [Tgl(EFlHDy ﬂg;"z)} (1-58)

Therefore under the same conditions as used in obtaining (1.48) from (1.2), the
2D carrier statistics in this case can be written by using the same conditions from
(1.37) as

Mgy
nop = n—; [Real part of [Tsp (Eriup, g, n:) + Tep (Eriap, g, n:)]] - (1.59)

n,=1

where, Top (Eriap; g,n:) = Y L(r)[Tsp(Er1ap, 1, nz)],
r=1

Therefore combining (1.38) and (1.59) we can study the ER in this case.

In the absence of band tails, the 2D dispersion relation, EEM in the x-y plane at
the Fermi level, the total 2D DOS, the sub-band energy, the electron concentration
and the ER for QWs of III-V materials assume the following forms
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Rk N "
2m.  2m,

(n.m/d.)*= I1(E) (1.60)

m*(Ers) = m{l1 (Er,)}’ (1.61)

It is worth noting that the EEM in this case is a function of Fermi energy alone
and is independent of size quantum number.

mmww=0“§§fﬁmeME—my} (1.62)

2
nh n,=1

where, the sub-band energies E,  can be expressed as

2

h
m@gﬁwmmz (1.63)
me V”zmax
nop = nhg2 Z [Ts3(EFs; nz) + Tsa(Eps, )] (1.64)

n,=1

D_1 S [T53(Eps, ) 4 Tsa(Ers; 1)) (1.65)
1o el Sopms [{Ts3(Ers,ng) Y +{Tsa(Ers, n2)}| '

2 n. 2 S
where Ts3(Epy, 1) = {IU (Ery) — 12 (d—”) } and Ts(Epg,n,) = 3. L(F)Ts3(Epy, 1),
) r=1

The expanded form of (1.65) was formulated for the first time by Chakravarti
et al. [157, 158].

In the absence of band tails, the DOS function, the electron concentration, and
the ER in bulk III-V, ternary and quaternary materials in accordance with the
unperturbed three band model of Kane assume the following forms

o\ 32
Dy(E) = 4ng, (2]12> I (E) |1}, (E)] (1.66)
o 32
=5 (5) e + (B (1.67)

and



1.2 Theoretical Background 21

% - é M (Er) + Ny (ER)] [{M (Er)Y +{N (Er)}] (1.68)

where,

1 1 1 1
—+ + + ,
E E+E, E+Ey,+A E+Ey,+3A

1,(E) = In(E)

Mi(Er) = [Li(Ep)]"

and Ny (Ep) = S L(r)M, (Er)

r=1

The expanded form of (1.68) was formulated for the first time by Chakravarti
et al. [152-154].
Under the inequalities A > E, or A < Eg, (1.48) can be expressed as

R K2
2m,

E(1 4 oE) = (1.69)

where o = (Ego)7l and is known as band non-parabolicity.

It may be noted that (1.69) is the well-known two band model of Kane and is
used in the literature to study the physical properties of those III-V and opto-
electronic materials whose energy band structures obey the aforementioned
inequalities.

The dispersion relation in HD III-V, ternary and quaternary materials whose
energy spectrum in the absence of band tails obeys the two band model of Kane as
defined by (1.69), can be written as

R k2
2m,

=n(E,n,) (1.70)

where, 7,(E, 1,) = {#@/m} [10(E, ) + 200 (E, n,)].
The EEM in this case can be written as

' (Eron) = me{n(E.n) Y | (17)

E=Ep,

Thus, one again observes that the EEM in this case exists in the band gap.
In the absence of band tails, Ne — Oand the EEM assumes the well-known form

m*(Ep) = m{1 + 20E} |,y (1.72)
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The DOS function in this case can be written as

v [ 2m, 3/2
Min(E.n) = 25 (55) ) ey 07

Since, the original two band Kane model is an all zero and no pole function
with respect to energy, therefore the HD counterpart will be totally real and the
complex band vanishes.

The electron concentration at low temperatures is given by

no — g (2m, 32
0 37-52 h2

illl(EFlﬂ'/Ig) +iL(V)[1111(EFh7ﬂg)]] (174)

r=1

where,

_ 3/2
Illl(EFhang) = {yZ(EFM']g)} /

In this case, Ejq is given by
72 (Enasng) =0 (1.75)

One can numerically compute the ER by using (1.74), (1.75), (1.31c) and the
allied definitions in this case.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.70) as

R (n/d) 1 (k)
+
2m, 2m,

= 2(E, 1) (1.76)

the expression of the Nopr(E) in this case can be written as

Mz max

Z T3p(E, 1g,n:)H(E — Ey p7) (1.77)

n.=1

me8y

Nopr(E) = s

where, Trp(E, n,n.) = [y, (E, n,) — h*(n.m/d.)*(2mc) "],
The sub-band energies E,,_p; in this case given by

{#er/d)* bme) " = p2(Enr. ) (1.78)

Thus, we observe that both the total DOS and sub-band energies of QWs of HD
III-V compounds in accordance with two band model of Kane are not at all
complex since the dispersion relation in accordance with the said model is an all
zero function with no pole in the finite complex plane.



1.2 Theoretical Background 23
The EEM in this case is given by
m*(Eriup, Mg n) = mc[)/z (EFIHDv Mg nz)] (1.79)

Therefore under the same conditions as used in obtaining (1.48) from (1.2), the
2D carrier statistics in this case can be written by using the same conditions from
(1.77) as

Mz max

Z [T70 (ErF1ap, Mg, 0:) + Tsp (EF1ap, n,, 1) ] (1.80)

n,=1

P mcgy
2D =—0>
nh?

)
where, Tsp (Eriap, g 0:) = - L(r) [Tip (Eriap, 1y, 0:) ]
r=1

Therefore, combining (1.38) and (1.80) we can get the ER in this case.
Under the inequalities A >E, or A <E,,, (1.60) assumes the form

2 2 2
E(1 + o) :Zf+2’;€ (”d”) (1.81a)
The EEM can be written from (1.81a) as
m*(Epg) = m¢(1 + 20EF,) (1.81b)
The total 2D DOS function assumes the form
Nopr(E) = =<8 Zm: (14 20E)H(E — E, ) (1.82)
mh

n,=1
where, the sub-band energy (E,_ ) can be expressed as

2

2m,

(n.m/d.)* = E, (1+E,) (1.83)

The 2D electron statistics can be written as

n

Mgy X r 1+ 2aE)dE
map = 80y / (1 +20E)dE

wh = 1 +ex (ﬂ>
n;= p
nzy ks (1.84)
mckB Tgv Mzmax
=TS [(+ 29, ) Fon,,) + 2kaTF ()|
n,=1

where, 1, = (Ery — Ey,,)/kpT and Fj(n) is the one parameter Fermi-Dirac inte-
gral of order j which can be written [186] as
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Fitn) = <F(il+ 1))/1+e§;6(1i—n)’ /=l (183)

0

or for all j, analytically continued as a complex contour integral around the
negative x-axis

. +0 i »
- (E2) [ ety o

—X

where 7 is the dimensionless parameter and x is independent variable,
Therefore in this case the ER can be written as

) szﬁ"ﬁ [(1 +20E,, )F,l (M) + 20ksTFo (1, )} (1.87)

D tpr St [(1429E., ) Foln,,) + 20k5TF (1)
u

The (1.87) was formulated for the first time by Chakravarti et al. [157, 158].

The forms of the DOS, the electron statistics and the ER for bulk specimens of
III-V materials in the absence of band tails whose energy band structures are
defined by the two-band model of Kane can, respectively, be written as

m,\ >
Du(E) = 4, (5) VB () (1.88)
m\ 32
ng = 38;_:2 (2;126) [My(EF) + N2 (EF)] (1.89)
and
D 1 . -
o = T M2 Er) - No(Er)] [ (M2 ()Y +{Na(Er)] | (1.90)

where, 11.(E) = E(1 + oE), I}, (E) = (1 +22E), Ms(Er) = [In.(Er)]”*  and
Ny (EF) = X;L(r)Mz(EF)

(c) Under the constraints A > E, orA < E, together with the inequality
«Er< 1, the (1.89) and (1.90) assumes the forms as

= e Fyat) + (520 o) (191)

and
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D _ |:kBT:| lﬂ/z(ﬂ) + (B2 0) F35(n) (1.92)
u

F—1/2('7) + (%)Flﬂ(’?)

where, N, = 2(—2"”;;"”)3/ *and y = £

It may be noted that (1.91) and (1.92) were derived for the first time by Nag and
Chakravarti [187, 188].

The dispersion relation in HDS whose energy spectrum in the absence of band
tails obeys the parabolic energy bands is given by

K2k?
2m,

= 73(E, n,) (1.93)

where, 7;(E, ng) = {(IJFE”?(E/%))] 0(E, Wg)~

Since the dispersion relation in accordance with the said model is an all zero
function with no pole in the finite complex plane, therefore the HD counterpart
will be totally real, which is also apparent form the expression (1.93).

The EEM in this case can be written as

m (1) = me{3(Ep,mg) } (1.94)
In the absence of band tails, n, — 0 and the EEM assumes the form
m*(Ep) = m, (1.95)

It is well-known that the EEM in unperturbed parabolic energy bands is a
constant quantity in general excluding cross-fields configuration. However, the
same mass in the corresponding HD bulk counterpart becomes a complicated
function of Fermi energy and the impurity potential together with the fact that
the EEM also exists in the band gap solely due to the presence of finite 1,.

The DOS function in this case can be written as

m 3/2 !
Nup(E,n,) = % (2h26> \/73(E, ”Ig){“/,% (E, ’Ig)} (1.96)

The electron concentration is given by

w2 s )
ny = 322 (2h20> l[]l.% (EFha 77g) + ZL(F) [1]13(Eph, ﬂg)]‘| (1.97)

where
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_ 3/2
1113(EFha’7g) = {y3(EFh717g)} /

In this case, Ejq is given by

73 (Ena,ng) =0 (1.98)

One can numerically compute the ER by using (1.97), (1.98), (1.31c) and the
allied definitions in this case.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.93) as

2 2
W (n,m/d.) N 72 (ky)

2mc 2mc = '))3(E, ng) (199)

the expression of the Nopr(E) in this case can be written as

Nzmax

Z TéD(E7 77g7 nZ>H(E - EnzD9) (1100)

n,=1

mC v
Nopr(E) = nhg2

where, Top (E, . 1,) = [y3(E,n,) — F*(n.m/d.)* (2me) .
The sub band energies E, po in this case given by

{h(nm/d.)*}(2me) ™" = 33(Enpo.1,) (1.101)
The EEM in this case can be written as
m* (Er1up; Mg, nz) = me[y3(Eriap, )] (1.102)

Therefore under the same conditions as used in obtaining (1.48) from (1.2), the
2D carrier statistics in this case can be written by using the same conditions from
(1.77) as

1z max

Z [Top (Er1ap, gs12) + Tiop (Eriap, Mg, 1) ] (1.103)

n,=1

megy
h?

mp =

s
where, Top (Er1ap, g, 0:) = Y L(r)[Top (Eriap, Mg, 02) ]
r=1

Therefore combining (1.38) and (1.80) we can get the ER in this case.

Under the condition o — 0, the expressions of total 2D DOS, for semicon-
ductors without forming band tails whose bulk electrons are defined by the
isotropic parabolic energy bands can, be written from (1.82) as
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Nopr (E —mchZHE E.) (1.104)

n,=1

The sub-band energy ( ) the n,p and the ER can, respectively, be expressed

as

h2 ) 2
Enzl, = m (nc}n> ( 1.1 05)
¢ Z

mck T N Lzmax
nop = L8 ZFO () (1.106a)

n,=1

(1.106b)

It may be noted that (1.106b) was derived for the first time by Chakravarti et al.
[37, 38].

Converting the summation over n, to the integration over n, (1.106b) gets
transformed to the well-known relation as [37, 38]

% - "|—|T (Fspan) /F 1) (1.106¢)

This indirect test not only exhibits the mathematical compatibility of our for-
mulation but also shows the fact that our simple analysis is a more generalized one,
since one can obtain the corresponding results for relatively wide gap 2D materials
having parabolic energy bands under certain limiting conditions from our present
derivation.

(b) The Model of Stillman et al.

In accordance with the model of Stillman et al. [39], The dispersion relation of
III-V materials assumes the form

E =1k* —T)2k* (1.107)
< .7 m )2 "2 2 2A?
where, 7 =4t = (1-2) (£)7[(3E, + 48+ 2) {(E, + 4) 24

+3E,,)} '] and my is the free electron mass
In the presence of band tails, (1.107) gets transformed as
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R2k?
2m,

= In(E.n,) (1.108)

ol—

Where, 112(E, 1’]g) = 6111[1 — (1 — 6112”))3(E, }’]g))
The EEM can be written as

— (K _ 4
],a”:( l—I)Cli’ldtllzz 12

4m, ty f—

m*(Er,.1,) = m{I2 (Er,.n,) } (1.109)

The DOS function in this case can be written as

v (2m\ 2
Nup(E,n,) = 2gn2< ) \/112 E g {112 E '7g (1.110)

The electron concentration is given by

gv (2m 32
T3 (h_z)

no

7121(EF;(77Ig> +§:L(}’)[7121 (EFh,l/]g)}‘| (1.111)

where

- 32
L1 (Er,, 1) = {12 (Er,y5m,) } /

In this case, Ejy is expressed through the equation

73 (Enas ) =0 (1.112)

One can numerically compute the ER by using (1.111), (1.112), (1.31c¢) and the
allied definitions in this case.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.108) as

2 2
Pr/de) | I (k,)

=1p(E 1.11
zmc 2mc 12( 7ng) ( 3)

the expression of the N,p{(E) in this case can be written as

ZTIID (E, ng,n)H(E — E, p11) (1.114)

n.=1

mtgv

Nopr(E

where, T, D(E, ng,nz) = [IIZ(E, ng) — hz(nzn/dz)z(ch)fl],
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The sub band energies E, pi; in this case given by

{(An.m/d.)*}(2me) ™" = La(Enprisn,) (1.115)
The EEM in this case assumes the form
m"* (Epiup, g, ;) = mc[liz(EFlHDanganz)] (1.116)

The 2-D electron statistics in this case can be written as

Zzmax

Z T11p(Eriap, Mg, 02) + Tiap (EFiap, g, 0:) | (1.117)

n.=1

megy

nop =
nh2

where, Ti2p (Eriap, g, n:) = ZL(V) [Tv1p(EFiap, ng,12) ]
r=1

Therefore combining (1.117) and (1.38) we can get the ER in this case.
For unperturbed material, the 2-D EEM can be expressed as

m*(Ers) = me{112(Er,)} (1.118)

where I12(E) = ay[1 — (1 — alz(E))%]

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.

The total 2D DOS function in the absence of band tails in this case can be
written as

veor ()= () 3 (et e -5} (L19)

2
mh n.=1

where, the sub band energies E,_can be expressed as

h2
(B, = 5, (nem /) (1.120)

The 2D electron concentration assumes the form
Mz max
nop = h2 Z Tss(Ers, nz) + Tse(EFs, nz)] (1.121)
n,=1
2 s
where T55 (EFS, I’lz) = |:I|2(EF3) %ZL <nd_1I> :| and T56(EFs, I’lz) = Z L(I”)TSS (E}r:s7 nz)
h r=1

Using (1.121), the ER in this case is given by
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D_ 1 2™ [Tss(Epy, nz) + Tso(Epy, )] (1.122a)
fo el Z:";“i [{Ts5(Eps, n,) Y +{Ts6(Ers,n)}] '
The expression of electron concentration for bulk specimens of III-V semi-
conductors (in the absence of band tails) can be written in accordance with the
model of Stillman et al. as

L 2m\
"023&;2 (7) (M, (EF) + Na, (Er)] (1.122b)

where, My, (Er) = [[12(Er)]"* and Ny, (Er) = 3 L(r)[(Ma, Er)]
r=1
The ER in this case can be expressed as

% = é M}, (Er) + Ny, (Ep)] ™ [Ma, (Er) + Na, (Er)] (1.122¢)

(c) Model of Palik et al.

The energy spectrum of the conduction electrons in III-V semiconductors up to the
fourth order in effective mass theory, taking into account the interactions of heavy
hole, light hole and the split-off holes can be expressed in accordance with the
model of Palik et al. [41] as

R K2
- 2m,

E — Bk (1.123)

A ‘ 1 2 ! ,
ot 30 = o] 1] 0 = 1 ()] i 2

The (1.123) gets simplified as

-=13(E) (1.124)

where 113(E> = [;12 |:6_112 — ((512)2—4EB11) ]/2:| s 6_112 = (%) CmdBlz [2%—112]}
Under the condition of heavy doping forming Gaussian band tails, (1.124)
assumes the form
nk?
2m,

2113(E, Hg) (1125)
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where, I13(E, n,) = biola, — ((@n)* — 4By (E, T’g))l/z}
The EEM can be written as

m* (Eg,,m,) = mc{113 (EFW) }' (1.126)

The DOS function in this case can be expressed as

o (2m\ /
Man(En) = () mEn) o)y ()

Since, the original band model in this case is a no pole function, in the finite
complex plane therefore, the HD counterpart will be totally real and the complex
band vanishes.

The electron concentration is given by

- & (2m, 3/2
"7 32 \ 2

7123(EFh717g) +XS:L(T)[1123(EFMT18)}] (1.128)

r=1

where,

_ 32
Li3(EF,,n,) = {IIS(EF/,vng)} /
In this case, Ejq is given by

73(Enasng) =0 (1.129)

One can numerically compute the ER by using (1.128), (1.129), (1.31c) and the
allied definitions in this case.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.108) as

hz(nzn/dz)z h2(ks)2
+
2m, 2m,

= I13(E, n,) (1.130)

the expression of the Nopr(E) in this case can be written as

Nzmax

ZTISD (E,ng,n;)H(E — E, p13) (1.131)

mcgv

Nopr(E

where, Ti3p(E, n,,n;) = [I13(E, n,) — K (n.m/d.)*(2m:) "],
The sub band energies E, p;3 in this case given by
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{fi(nn/d;)*} (2m.) " = I3(Enp13,Mg) (1.132)
The EEM in this case can be expressed as
m*(Epiap, g, n:) = me[li3(Eriap, g, nz)] (1.133)

The 2-D electron statistics in this case can be written as

zmax

Z T13p (Eriaps g,02) + Tiap (Eriap, g, n;) | (1.134)

n.=1

megy
hZ

nyp =

N
where, Tiap (EFiap, g, 0:) = Y L(r) [T1ap (EFiap, g, 0:)] s
r=I1

Therefore combining (1.134) and (1.38) we can get the ER in this case.
The 2D electron dispersion relation in the absence of band tails this case
assumes the form

mk: "
2m, 2mc(

n/d.)*= I3(E) (1.135a)

The EEM in this case can be written from (1.135a) as
m*(Efy) = me[13(Eg)) (1.135b)

The total 2D DOS function can be written as

'z max

Nopr(E) (m‘g”> S {Ls(E)H(E - E,,)} (1.136)

2
nh e

where, the sub band energiesE, can be expressed as

n? 2
115 (En, ) = 5 (nomf ) (1.137)

The 2D electron concentration assumes the form

mc v nzmax
mp = n—hgz [T57(EFs, n:) + Tss(Ers, n2)] (1.138)

n,=1

r=1

2 s
where Ts7(EFy, n;) = [113(EF3) Z (ndi) ] and Tsg(Epy,n;) = 3~ L(r)Ts7(Eps, n)
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Using the appropriate equations, the ER in this case can be written as

Nzmax

> [T37(Ers,n;) + Tag(Epy, n;)]
D_1_n= (1.139)

L2max

eSS g (Epom) Y {Tss (Erno )Y

n,=1

1.2.3 The ER in QWs of HD II-VI Semiconductors

The carrier energy spectra in bulk specimens of II-VI compounds in accordance
with Hopfield model [58] can be written as

E=d k> +b k> =+ ik 1.140
oS 0z

where @, = 1?/2m* | b, = i?/ 2mj, and /o represents the splitting of the two-spin
states by the spin orbit coupling and the crystalline field.

Therefore the dispersion relation of the carriers in HD II-VI materials in the
presence of Gaussian band tails can be expressed as

73(E,n,) = aLki + k2 + Joky (1.141)

Thus, the energy spectrum in this case is real since the corresponding E-k
relation in the absence of band tails as given by (1.141) is a no pole function in the
finite complex plane.

The transverse and the longitudinal EEMs masses are, respectively, given by

Jo
m’ (Er,n,) = m" {y3(E;n,) }' |1+ —— (1.142)
\/( 0) + Clo’))?,( Y ’/’g) E:EFh
and
m)(Er,,n,) = mj{73(E, ng)}’] (1.143)

E=Ey,

Thus the transverse EEM in HD II-VI semiconductors is a function of electron
energy and is double valued due to the presence of /, and due to heavy doping the
same mass exists in the band gap.

In the absence of band tails, n, — 0, we get
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m’ (Ep,) =m’ |1+ Az (1.144)
()L ) +4a E
E—Ep
and
m|(EF) = m (1.145)

The volume in k-space as enclosed (1.141) can be expressed as

an 30 mEg) (3 G, Jo)? 73(E, 1)
{n(Emn,) }/ ai,i 1T ?’3<E7’Ig)+(4a, sin”! — Y GF
0 Vo 0 73(E, 1) +d

V(E,n,) =

WT’
(1.146)

Therefore, the electron concentration can be written as

37125\/19_’[124(155’ M) +ZL 1124(EFh717g)j|‘| (1.147)
0

where,

3/2 3 (;10)2 V3 (EFk7 ’7g)

7124(1':'1':;17’/]4&;) = {VS (EFNV’A’)} +§ /
4y

In this case, Ejq is given by

{73(Enar mg) } =0 (1.148)

Thus, one can numerically evaluate the ER by using (1.147), (1.31c), (1.148)
and the allied definitions in this case.
The dispersion relation of the conduction electrons of QWs of HD II-VI

materials for dimensional quantization along z-direction can be written following
(1.141) as

2
n,
73 (E, ng) = agk; + bjy (dz> + Joks (1.149)

The EEM can be expressed following (1.149) as
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(2o )V’g(EmHD,?’Ig)
[(70)? — dayby, (n n) +4ayy; (Eriup,1,)] 1/2
(1.150)

*

m* (EFIHD;nmng) = mj_[l +

Thus we observe that the doubled valued effective mass in 2-D QWs of HD
II-VI materials is a function of Fermi energy, size quantum number and the
screening potential respectively together with the fact that the same mass exists in
the band gap due to the sole presence of the splitting of the two-spin states by the
spin orbit coupling and the crystalline field.

The sub-band energy in this case is given by

2
n
73 (En.p14,1) = b0< d1> (1.151)
Z

The surface electron concentration at low temperatures assumes the form

*n ax

Z (V% Erup, ﬂg) E.pia+ (Zo)zmj_h%) (1.152)
-

Therefore combining (1.152) and (1.38) we can get the ER in this case.

The dispersion relation of the conduction electrons of QWs of II-VI materials
for dimensional quantization along z-direction in the absence of band tails can be
written following (1.140) as

K\ -
E—agkf_—kb{)(r; ) + ok, (1.153)

Z

Using (1.153), the EEM in this case can be written as

(i)

m*(Efps,n;) =m’| |1F 3 12 (1.154)
[(io) — 4agyb;, (" n) +4a0EFY}
The sub-band energy E,  assumes the form
E,, = by(n.n/d.)* (1.155)

The area of constant energy 2D quantized surface in this case is given by
where

As(E,n.) = {W {(10)2 + 2d) (E - E) + 7o [(710)2 + 4d) (E - E)} ”
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The surface electron concentration can be expressed in this case as

where f;(E) is the Fermi-Dirac occupation probability factor.
From (1.156) we get

gmekBT n;max

mp = ———>— Z F() }’]n (1157)

nh? =l

T\2 4o _
where My, = (EFs —Ep,_ + (Ao) mi ki 2)(kBT) !
Therefore the ER is given by

b kBT(i:mFo( ))(%Fl(rl8>>l (1.158)

n,=1 n,=1

1.2.4 The ER from QWs of HD IV-VI Semiconductors

The dispersion relation of the conduction electrons in IV-VI semiconductors can
be expressed in accordance with Dimmock [189] as

2 2my 2my

212 3272 212 3232
Bo Ik Tk } [ B 1 kj i kj} =Pk +Pik; (1.159)
2 2my  2my
where,  is the energy as measured from the center of the band gap E,,, m;" and m;"
represent the contributions to the transverse and longitudinal effective masses of
the external L and L, bands arising from the k.p perturbations with the other
bands taken to the second order.

Substituting, P = (*E,/2m;), P} = (

and mj are the transverse and the longitudinal effective masses at k = 0), (1.159)
gets transformed as

@) and &= [E + (%)] (where, m;

m

h2k2 h2k2
[E e (1.160)
1

1

2 Rk RAE RPKE
1 E s r4 — S 4
H LR +°‘2m,+} 2m " 2m;

From (1.160), we can write
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ah*kt 1 1 1 1 ah?k?
h2 k2 E _ Z
dmfm - {(2 * th* ) o (2’": 2m,+> + 4ml_mt+}

k2 h2k2 oF 1 1 ali*k?
z R ——— ) +— —E(14+aE)| =0
K >+2 Z(m; m,*>+4mfm, (”)]

(1.161)

Using (1.161), the dispersion relation of the conduction electrons in HD IV-VI
materials can be expressed as

ah ke

dmtm

= Zo(E. 1) + 12K 71 (E, )k + I (E, )| (1.162)

l

[173(E7 ng)kzz + )V74(Ea ng)kzz - /175(E7 ng):l =0

where, Zo(E, n,) =} [1 +Erf(,%)} I70(E\ny) = 5520 (E, 1)

imEny = [ )+ z(E )
71 717g = -4m;ml+ 0 ang 4mfmt+ 0 7’7g )

i (E )—_ : : Zo(E,n,) + o : : 0(E,n,)
72\E5Ng) = I me zmt 0 Mg th, 2mz+ Yo\E>Mg) |
[(h* W oh? 1

A3 (E = Zy(E — E

73( 7ng) _(2"’!7 2ml> 0( 7’1g) + ) (ml zml >y0( ng>:|
, o' Zo (E, A

/“74(E7 ”g) = M and /“75(E7 ng) = [VO(E7 ng) + ae(Ev ng)]

4m; m;

Thus, the energy spectrum in this case is real since the corresponding dispersion
relation in the absence of band tails as given by (1.162) is a pole-less function with
respect to energy axis in the finite complex plane.

The respective transverse and the longitudinal EEMSs’ in this case can be written as

my (EF/.""g) = {220 (E, ’75') }72

Z(E.n,) [{mw-w}#zw —{2o(En)Y [~in(En) +\imEny) }

a8 (E, '7g)

E=Ey,
(1.163)

where,
)~78 (E; ng) = [4&70(E, '/Ig) }~75 (E7 ’/Ig)}

and
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mi (Er,,n,) = TZTQ —{Aga(E,m) Y+ U1} A (E, nzg)  onlE, )}
\/(/lgo,(E, 178)> +4)VS5 (Ea r]g)

E=EF,

(1.164)

. . 73 (E, J75(E,n
in which, Ag4(E, n,) = )Z:((EZ:)) and gs(E, n,) = AZEEJE;

Thus, we can see that the both the EEMs’ in this case exist in the band gap.
In the absence of band tails, n, — 0, we get

i as11{T511(E)}
m (Ep) == l—{all(E)},—FSzH{TS“(E)}] (1.165)
5(E) | |pp,
where
2mtm; 1 oFE 14 aF 2mtm;
E)=—"15"! E EYy=|——+— =—1tt
o1 (E) ) a11(E), 0211 (E) [Zm;‘ 2t 2m; ], 511 s w11
1/2
ocz[ 1 1 r o w311 (E)
) = |— + — , I3 (E) = ——~,
(on) [16 mrmt  mymt| Am;mimym n(E) (o)
oE(1 + aF) 1 oFE (14 aE)]?
E=|—]T—"7F4+|7—- —
@311 (E) mtm; + {Qm;‘ (me)Jr 2m;
and
mH(EF)i & ﬁ_ﬂ +5 1 1+oE £ %, «E(1+E) 2
B
E=Ep
(1.166)

The volume in k-space as enclosed by Eq. (1.162) can be written through the
integral as

s6(E, Vl,,:)

V(E,n,) =2n / [ Do (B 1)K + dso(Eon)] + \f s (Esn ke + s (B, K2 + s (Esm) ke

(1.167)
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where,

12
2
[)~84(E,7’I )] +42s5(E,ng) — Asa(E, ) ‘n(E,ny)
)“86(E7 ng) \/ ¢ 2 ¢ ¢ ) /179(E7 ng) £

2h220 (E7 ng)

Ja6(E, 1) 2, 2
I(E ) = —F———, J(E,n,) = [Mn(Eng)|"  Az(E.ng) = [Jni(E,n,)
81( g) 4h4 [ZO(E, ng)]Z 76 8 [ 71 g ] 4 [ 8 }

I71(E.ng) = [2471(E, n,) A2 (E, n) — 43a0(E,n,)A73(E, ) — 470(E, n) 2a4(E, m,)]

/178(E7;7 )
;\.83 (E, ng) 47”
Ot [Zo(E, n,)]

and ;.,78(E, ng) = [4-/17()(E7 ﬂg);u75(E, 115,)}

Thus,

Z86(E, 1)

V(E,n,) = [Zs1(E,n,)] / {\/k? + Ass (E, g )kZ + Aso(E, 1,) — Aoo(E, 1) | dk;
0

(1.168)
where,
Jg1(E,ny) =27y /281 (E, 1),
Ag2(E, 1)
Ags(E = " 5
ss(E;1,) T (Eony)’
83(E, 1)
Ago(E =—__—*°2
89( 7ng) /LSI(E ’7 )
and
3
)V79(E7'/I ) ;‘86(Ea’1 )
/19()(E7 ”g) =2n g {3 § } —‘y—)»go(E, ng))vgg(E, ng) .
The (1.168) can be written as
V(E,n,) = [7s1(E,ng)20s(E,n,) — Zoo(E, )] (1.169)

in which,
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295 (E, 113) = {M [_Ei [193 (E, Vlg)v Jo4(E, ”g)]

[{/191 (E, ﬂg)}z + {/9a(E, %)}2 +2{/n(E, ﬂg)}2Fi [403(E, n,), Z04(E, ;/Ig)}]

+ (L) [ + Gl B+ 20,

1/2

HUQI (E, ”g)}z + {4s6(E, Wg)}z] [{/192(E7 ﬂg)}z + {6 (E, ﬂg)}z} _I/ZH )

1 ) ) , ,
{201 (E, ﬂg)}ZEE {\/{iss(ﬂ Wg)}2—4/u89(E7 Ng) + A8 (E, Ug)} E;[03(E, Ng)s 294(E, Wg)}
is the incomplete elliptic integral of the 2nd kind and is given by Abramowitz and
Stegun [129] and Gradshteyn and Ryzhik [130],

293 (E,1g)

ElinEng imEng) = [ 1= UatEongy s ¢} o
0

¢ is the variable of integration in this case,

1

5 {/192(E, V[g)}ZE E |:/]vgg(E, l7g) - \/{)»gg(E, ng)}2—4/189(E, ng):| 5

86(E; 1)
292(E, 1)

-1

/193(E7 r’g) =tan

\/{’191 (E7 '7g)}27{/192(E7 ng)}z

J94(E,n,) = Tt (En) s Fi203(E, ), J04(E,1,)]
2 Mg

is the incomplete elliptic integral of the Ist kind and is given by Abramowitz and
Stegun [129] and Gradshteyn and Ryzhik [130],

203(E ) /
) ) 2 . ~1/2
Fi[03(E, Ng)s 4o4(E, ng)} = / {{1 — {04 (E, ng)} sin’ f} ]di.
0
The DOS function in this case is given by

Nup (E.1;) = 255 [ {7 (E,m,)} s (B.1g) + {205 (E.mp) Y o (E.ng) = {0 (E.)} |
(1.170)

Therefore the electron concentration can be expressed as
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41
ng = 4’% Tios (Eg,, ) + rXSI:L(r)[I125 (Eryy 1, )] (1.171)
where,
L5 (Er,, M) = [{ M7 (Er,» ) }os (Br, M) — {0 (Er,, M) }]
In this case, Eyg is given by
{795 (Enasng) } =0 (1.172)

Thus, one can numerically evaluate the ER by using (1.31c), (1.171) and
(1.172) and the allied definitions in this case.

The 2D dispersion relation of the conduction electrons in QWs of IV-VI

materials in the absence of band tails for the dimensional quantization along z
direction can be expressed as

k2 72k 2 1\ 2 k2 2k
E(1+ocE)+ocE( L2 L aE (nn) —(1 4+ «E) 2

a2 | T 4 2 2x
R A R o R R\ R (nr)? R (nm\?
_oc<2x1 +2_x;~> (2_x4+2_x5> _“<2_xl+2_xz>2_x@<d_z) —(1+aE)2—x$(dz)
2
3

2 (na\? (2 RE B (na\2 R (nm\? B2 RKE R (nn\?
—q— Z X+_y —— z - Z — ~"+_~V+_ Z
2x3 \ d; 2x4 2x5 2x3 \ d; ) 2x6 \ d; 2my  2mp  2m3 \ d,

4

(1.173)
h o4 o m,JUer,Jr _ 3m; m R _om +2m; _ 3m/m;
Werex4_mt7-x5_ 3 7-x6_zml+—+mr+’-xl_m1)x2_ 3 7x3_2m;+m;’
R _om2my _ 3mm;
my = my;,my =—=—"and m3 = 2

Therefore, the HD 2-D dispersion relation In this case assumes the form

. L s N 2 X . e
12(E,ng) + ay3(E, 1) 2 +27x5 +ap;( 777g)276 & —(1+oy3(E,n,)) 20 +

2x>

B RN (R RR (R AW SR R (nn\’
B RK\ (R B RI\ 2 e\ :
“<2x1 AT A T Tl R (T T 2x6<dz> (1+o3(Eom)) 5 0 <dz>

R (nm\? (22 Rk B (na\> K (n\* Bk R R (nr\?
— o Tt — | —oa—— (= — =) ="t —+— = s
2)63 dz 2X4 2)65 2)C3 d: ZJC(, dz 2"’1] 2m1 2"’13 d,

r4

(1.174)

Substituting, k, = rCos 0 and k, = rSind (where r and 0 are 2D polar coordinates
in 2D wave vector space) in (1.174), we can write
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4 2Cos?0  K*Sin*0\ [H*Cos?0  h*Sin*0 R*Cos®0  K*Sin*0
r a( + + +1? +
X1 X X4 X5 2 my my

ahz FzZCosze 712311129 h2C0520 WSin*0\ #* (n.m 2
2x3 d X2 2x6 d,

00520 Sn20 Cos?0  Sin%0
+12(1 + a3 (E, 1e)) < ! ) oy, (E, g ( " + ! )

4

L (ndi) N1 (7)2_a(4;16 (7)) -0
(1.175)

The area A(E, n;) of the 2D wave vector space can be expressed as

A(E,I’lz):jl —72 (1176)
where
/2
— C1
Ji 52/ —do (1.177)
by
0
and
n/2 )
- ac
Ja zz/ b—;de (1.178)
1
in which
[ (h“) <C0520 Sin20> <C0S20 SinZOH
a=|a|— + + )
4 X1 X2 X4 X5

B2\ | (Cos?0  Sin%0 A\ (n.m\* (Cos*0  Sin®0
by =(— + +ol— )= +
4 my my 2x3 d, X4 X5
A\ [nm\? (Cos®0  Sin0
af — ) (== +
2X6 dz ny X2

+ (4 an(E 1) Cos?0 n Sin%0 () Cos?0 n Sin%6
V3 L, ng X X V3L, ng X4 x5

and
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B\ (n.m 2 1w\ (n.n 2 I n.m 4
= V2(E7ng) +O(",’3(E7V]g) E{) d_7 _(] +“}'3(E7 ng)) 2_)(3 d_7 —& 4x3x6 d_7

The (1.177) can be expressed as

n/2
7 :2/ t31(E7nZ)d0
' A1 (E,n;)cos? 0 + By, (E, n;) sin® 0
0
where,
hZ
t31(Eanz) =1, AII(E7nZ) = Trnltll(E7nZ)7
1ol (nn\? ok [(na\> 1+op(En,) ap(En,)
(E-n) = |1 S (T il A T Al
11( ,I’L) +m X4 2X3 (dz) +2x1x6<dz> + X] X4

h2
By (E,n;) =—1(E,n;) and

2I’I12
Othz (I’lﬂl’) 2 O(h2 (nzn) 2+ 1+ Y3 (E7 ng) Y3 (E7 ng)

2.XI3)C5 2)62)66

1231 (E, I’lz) = p
4

14+my

d;

X2 X5

Performing the integration, we get
.71 = TEI31(E, nz)[A“(E, l’lZ)Bll(E, nz)]_]/z (1179)
From (1.178) we can write

a3, (E, n)ht

Jr = (1.180)
2B3,(E,n;)
where,
o 2 2\4 A (E
[ = / (al + asz )2(a3 —|—3614Z ) Z7 (ﬁ 2 _ ( 11( 7”2)), (1181)
, [(a) +Z2] Bll(E7nZ)
in which a; Exi], a Exiz, z=tan0,0 is a new variable, a3 Eﬁ, as Ei and

_\2 _ (A(En.)
@ = (3):
The use of the Residue theorem leads to the evaluation of the integral in (1.181) as
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1:4%[ala4+3a2a4], (1.182)

Therefore, the 2D area of the 2D wave vector space can be written as

E 1 /1 E n)rt
AHD(E, nz> _ 7'Ct3]( anZ) |:1 - (_ + i) O(t3]2( anZ) :| (1 183)
VA (E,n,)By (E,n,) X5 x2) 8B (E,n,)

The EEM for the HD QWs of IV-VI materials can thus be written as

72
' (E.n2) == [0sno (E, ) (1.184)
E=Er\up
where,
1 /1 3\ at(E n)i* .
Osup(E,n.) =1 —— [ —+ = ) ——2"_|[A1\(E, n.)By| (E, n,
s (E; ) { X5 (Xl XZ)S[BII(Ean)]Z (B, ne)Bu (B, m)

B“ (E nz):| 12

{\/Anw, n)B (B no) {1 (E.m)Y —ta (E, nz>{§{Au<E,nz>}’ e

3 BuEny [prE 3]/}

1 t31(E, n.)ai* 1 ( 1

KR TP
A1 (E,n.)By, (E, n.) Xs +x>[B||(E, ]

(811 (E.n) Y {51 (B )Y =281 (B, n) (B (B, )Yt (E, ).

X1

Thus, the EEM is a function of Fermi energy and the quantum number due to
the band non-parabolicity.
The total DOS function can be written as

(1.185)

<THD )

Nopr(E) = (%) > Osup(E,n)H(E — E,
n,=1

where the sub-band energy (Enm) in this case can be written as

i (n.m 2 i (n.m 2
72 (E”Z7HD’11K> + ay3 (E"Z7HD”/IA’> 27)(«'6 TZ _<1 + Y3 (EnZ7HD”1g)) 27)C3 d.
I (nem\ R (nem\T | R (nem\F)
2)63 dz 2x6 dz 2m3 dz B

(1.186)
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The use (5.61) leads to the expression of 2D electron statistics as

1z max

8v
np =5 Z (Tss up(Er1ap: nz) + Tse uip(Eriap, 1)) (1.187)

n,=1

— Anp(Er1 ap 1)
where T55 HD(EFIHD7 l’lz) = and

T
5
Tssup(Eriap,nz) = Y L(r)Tssup(Er1ap, nz)-
r=1

In the absence of heavy doping the EEM in QWs of IV-VI materials can be
written as
2

m*(E,n;) = % [05(E, n.)] (1.188)

E=EF,

where,

o n 4
05(E7 nz) = |:1 — xi5 ()Cil+)%) %} [A]()(E7 nZ)Bl()(E, nz)}_l

w112
[JAm(E,nz)Bm(E, s ) i "z){;{Alo(E ny [es]

1 / Alo(E,nZ) 1/2
+§{310(E,nz)} [m} H
1 t30(E, n.)ahi* 1 <1 . 3) 4
— | [Bio(E, n.)]

8 /Aw(E.n)Bro(E,m) ¥s \x1 | x2
{{BIO(E, 1) Y {130 (E, )Y — 2B1o(E, n) {Bio(E, n) Y 130 (E, n)}

where

130(E, n;) = co,

Cco =

E(1 + oE) + ocE(f—jﬁ) (%)2
(30 () (@) ()

hZ
A(E,n;) = =—to(E,n;), tio(E, ny)

2m1
1 ah? (n.n 2+ ah® (n.m 2+ 1+aE oF
x4 2x3 \ d, 2x1x6 \ d, X x|’

1 +m
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2

B][)(E, nz) = 27,,”2

1o (E, nz) and t (E7 I’lz)

ah® (n.m 2+ ah® (n.m 2+ 14+aE oF
2x3x5 \ d, 2x2x6 \ d; X X5
Thus, the EEM is a function of Fermi energy and the quantum number due to

the band non-parabolicity.
The total DOS function can be written as

1+my

Mz max

Nopr(E (g”) 205 (E,n,)H(E —E,_) (1.189)

where the sub-band energy (E":7) in this case can be written as

R (n.m\? " 2

E”Z7(1+aE":7)+aE"”2_)c6<dz) (14, ) 5 (d_>
(R e\ [ ]
ZX3 dz 2)((, dz 2m3 dz N

In the absence of heavy doping, the expression of 2D electron statistics can be
written as

(1.190)

1z max

nop = -— Z Tsso(EFs, nz) + Tseo(EFs, nz)] (1.191)
n =1
where, Tsso(Eps, n;) = 22 Ay (Ep, n) = Amgﬁoﬁ;ij(am [1 ~% ()‘Ll +x%)

N n 4 s
“;’;‘%(j—E,ﬁ’i)] » and Tseo(Efs, nz) = > L(r)Tsso(Ers, ;)
h r=1

Thus, the expression for the 2D DMR in QWs of IV-VI compounds assumes the
form

Mzmax

1 Z [TSS (EFS7 nz) + T56(EFX7 nZ)]
_ 1 = (1.192)

S (e (o)

=10

For bulk specimens of IV-VI materials, the expressions of electron concen-
tration and the ER assume the forms
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mo = () Mas(Er) + Nau(E,)] (1.193)
D 1 , ) -1
= oM (En) + Na (B )] [, (Er,) + Ny, (Er,)| (1.194)
where
o
M (Er) = [5Ja, (Er,) — 23 (Er,eu, (Er,) — 5 Foa,(Er,).
2mm;
ds = ) @4, |
wr — w2 [ 1 N 1 7? o2
Y 116 mym omimt| Amfmomm |
By =MER) 2 p B2(Er,))E(2 2B2(Ep,)F(J
JA]( Fb)_ 3 [ ( A( Fb)+ A( Fh)) (/“aCI)—i_ A( Fh) (/“aCI)]

+ BB (2 (81,483 (Er,) + 283 )|

(A3 + 3, )] BB + 7 )]

A:tan—lz\!(EF,,) . { A (Er, )EFI)S A (Er, 1 A(Er) = [ (Er) + /3, (Er) 74T§I(E,.-h)}]/2/ﬁ,

4 (Er,)
1/2 wa, (E wa, (E
Ba(ER,) = [ (Er,) = /74, (Er,) — 414, (EF, } V2,0, (ER,) = % 4, (ER,) = %
Ay A
a.EF, l+xEF 1 1 o 1 o.EF, 1 + a.Ep,
(E _ b b _ b b
@r.(Er) { [Zm* 2m, 2m; | mymf -‘—ml’m;r m; m; 2m, + 2m; + 2my
4EF, (1 + aEF 1 wEp, 1+0Ep]? 1 aEp, 1+aEp
E b b _ b b Ep) = _ b b
s (Er,) |: m,* 2m;" + 2my; 2 (Er,) 2m: 2m;t 2m;

£

1 1
377[m mf +m,m,]

1z 2 1212
n (Er) = {Zm,*ml} [7[ 1 +1+ocEFh7(prh]+HL+l+aEF,,7aEF,,] +0(Eph(l+o:EF,,)} }

ah? 2my m; 2m; 2my mj 2m;" mfmy;

E(Z, g) is the in complete Elliptic integral of second kind, F(4, g) is the
incomplete Elliptic integral of first kind and Ny, (Er,) = >_,_, L(r)[Ma,(EF,)].
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1.2.5 The ER from QWs of HD Stressed Kane Type
Semiconductors

The electron energy spectrum in stressed Kane type semiconductors can be written
[190-192] as

) (i) (o)
_ Y L Y =1 1.195
(ao(E)) wiE) T\aE (1.193)
_ R = 202 FM 3E! .
where, [aO(E)]2 = /ﬁ%, Ko(E) = [E —Cie— 32, } (ﬁ), C, is the

conduction band deformation potential, ¢ is the trace of the strain tensor ¢ which
can be written as

& &y O
E= &y &y 0 |,
0 0 e

C, is a constant which describes the strain interaction between the conduction and
valance bands, E[’s, = E, + E — Cy¢,B; is the momentum matrix element,

- (ﬁo + Cl) " 3[308XX _ Bo&‘
Eg, ZE;; ZE;,

1, _ 1 - - 2n
ao = —— (b 2m), bp ==(l—m), dy = —
do 3( o + 2m), by 3( m), do ek

o~

,m,n are the matrix elements of the strain perturbation operator,
= A _ Ky(E - 2__ Ko(E 7 —
Dy(E) = (dV3%).  o(EN'= 5ptfs [olEP= 12 and  Lo(E) =
[ (@+C1) +Cl) _|_3b£/a _ 51052}

The use of (1.195) can be written as
(E— o)k + (E— o)k + (E—oa)kl = hE> —E* + E+1,  (1.196a)

where
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I 3 b -
o = Eg*CIE*(6_10+C1)8+§b0£”*§8+ <\/§/2>8xyd():|7

[ 3 b _
= |E; — Cie — (ap+ Ci)e + Ebosxx — 708 — (ﬁ/z)sx\,do} ,

o3

[ 3. b
Eg - C]E* (Elo + C1)8+§b08u *§S:|,

(3/235)7 h= (1/235) [6(E, — Cie) +3Cad],

ty = (1/233) B(E, — Ci¢)> + 6C1e(E, — Cr) — 2C3¢] and

141

= (I/ZB%) [-3Ci18(E, — Cy e): + 2C§sf,y].

The (1.196a) can be written as
El* — ik} — Tork; — Tyik? = [qerE> — RerE” + VerE + p] (1.196b)
where, T17 = oy, Toy = o, T37 = o3, t; = g7, t» = Rg7, 13 = V7 and t4 = pgy
Under the condition of heavy doping, (1.196b) can be written as
1(4)k* — Tyl (1)k; — Tord (1)k; — Tx7kZ1(1)

= [gs71(6) — Re71(5) + VerI(4) + pgr1(1)] (1.196c¢)
where,
16) = / (E— VP F(V)av (1.197)

The (1.197) can be written as

1(6) = E*I(1) — 3E%I(7) + 3EI(8) — I(9) (1.198)
In which,
1(7) = / VF(V)dV (1.199)
E
1(8) = / V2E(V)dv (1.200)

109) = / V3F(V)dV (1.201)
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Using (1.4), together with simple algebraic manipulations, one obtains

E2
I(7) = 2\/_ ( > (1.202)

1, E
1(8)22 1+ Erf 71_ (1.203)

g

and
_ng 7] E2
109) = ﬁexp <—§> 1+ 11—§ (1.204)
Thus (1.197) can be written as
B E , 3 —E? )

1(6) = 1+Erf<n—g> [E += ng} +2\/_exp< >[4E +n} (1.205)

Thus, combining the appropriate equations, the dispersion relations of the
conduction electrons in HD stressed materials can be expressed as

Py (E 0 ki + Qi (E n )k + S (E n k2 =1 (1.206)
where,
Pll(E n ) _ V()(Ev ”g) - (T17/2) [1 +E’ff(E/ng)]
& Al4(E7 ”g)

{E2+3n] 2\/_exp< E2)[4E2+ng]}

E E
Aw(E,n,) = l5167{2 1+E’f<”lg>
Pe7

—Re700(E, 11,) + Vsr70(E, 1) +7[ + Erf(E/ng)l|.

] e -
Su(E,n) = V()(E7’7g)_(E:éz)[nl;-E’f(E/ng)] |

Thus, the energy spectrum in this case is real since the dispersion relation of the
corresponding materials in the absence of band tails as given by (1.195) is a pole-
less function in the finite complex plane.
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The EEMs along x, y and z directions in this case can be written as

2

m;x(EFw ng) = ? [VU(EFh7 ”g) - (T17/2) [1 + Erf(EFh/'/lg)H 72'

[{8aErn)} [o(Erong) = (T /2) (1 + Exf (Er, /)]

Er \| _ ) T —E,
SGIRE

(1.207)

1
_A14(EFh7 ”g) )

h2

myy(Erong) = 5 | [0(Ensmg) = (T /2) [1+ Ef (Er, /)]

[{Ara(Er )Y [o(Eryong) = (T /2)[1 + Ef(Er /)] |

o) e ()

(1.208)

—A14(EFE,, 1,) 3

and

2
m:z(EFm’/’g) :% l[VO(EFh7ng) - (T37/2) [1 + E’f(EFh/rlg)]]iz'

[{Ara(Er )Y [o(Erong) = (T /2)[1 + Exf (Er /)]
E T —EZ
()] e G

(1.209)
Thus, we can see that the EEMs in this case exist within the band gap.
In the absence of band tails, Ne — 0 we get

1
—A14(EF,, 1,) 3

m (Er) = Pao(Er){ao(Er)} (1.210)

m} (Er) = I*bo(Er){bo(Er)} (1.211)
and

m(Er) = 12¢o(Er) {co(Er)Y. (1.212)

The DOS function in this case can be written as
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Nio(E.p) = 55 {Ais(Ean) ) E{Alsw, 1) by A (En ) {Awa(Eonp) Y —{Ara(E.m) ) {Ass(E. m}’}
(1.213)

where,

Ais(E,n) = [[olE.ng) — (Tia/2) [1 + Erf (E/n)]] [30(Esnp) — (T /2)[1 + Enf (E/n,)]]
[0(E,ng) — (T /2)[1 + Exf (E/n,)]]] .

Using (1.213), the electron concentration at can be written as

o = SV
07 32

L6 (Er, 1) + iL(V) [7126(EF“713)}1 (1.214)

r=1

where,

TR | CLL AU}
126 \EF 5 Mg Ais(Er,,1,)

In this case, Ejq is given by

{A14(Ehd7’7g)} =0 (1215)

Thus, one can numerically evaluate the ER by using (1.214), (1.215), (1.31c)
and the allied definitions in this case.

The dispersion relation of the conduction electrons in HD QWs of stressed
Kane type semiconductors can be written as

P (E, k2 + On (E o)k + Si1(E,n,) (nn./d;)* = 1 (1.216)

The EEM can be expressed as

2

m*(Epiap, g nz) = 714/56 (Eriap: 14, n2)

where,

n[l — Su(E, ng)(nzn/dz)z}

\/PII(E; 1g)Q11(E, 1)

(1.217)

Ase(E,ng,n;) =

From (1.217), it appears that the EEM is a function of Fermi energy, and size
quantum number and the same mass exists in the band gap.



1.2 Theoretical Background 53

Thus, the total 2D DOS function can be expressed as

Mzmax

Nopr(E) = (i—;) ZA/S6(EF1HD77]g7nz) (1.218)

n.=1

The sub band energies (E, ,np) are given by
Sll(EnngDvng)(ﬂ:nZ/dZ)z = 1 (1219)

The 2D surface electron concentration per unit area for QWs of stressed HD
Kane type compounds can be written as

Mzmax

nap = i—; Z [Ts710 (Ersitps gs 11z) + Tssrp (Ersiaps g nz) | (1.220)

n,=1

where,

Ts1(Eriup, Mg, 1) = Ase (EFiup, g, 12)

and

Tssup (EFiap, Mg, nz) = Z L(r)Tsiup (EFiap, g, 11z) -

r=1

In the absence of band tails, the 2D electron energy spectrum in QWs of
stressed materials assumes the form

K2 k; 1

27
w®"  BoEr  wep e ! (1221)

The area of 2D wave vector space enclosed by (1.221) can be written as

A(E,n;) = TCPZ(E, n;)ao(E)bo(E)
where PX(E, n,) = [1 - [nzn/dza)(E)f]
From (1.221), the EEM can be written as
2

' (B ) = P (Er, n)ao (Er, Vo (Er, )] (1222)

Thus, the total 2D DOS function can be expressed as

Zmax

Nopr(E) = (g—n) > O6(E,n)H(E — E,,,) (1.223)

n
n,=1
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in which, 06(E,n;) = {ZP(E n){P(E,n.)} ao(E)bo(E) + {P(E,n.)}*{ao(E)}'bo

(8) + (P(E.n) P bo(E)Y an(E)|
The sub band energies (E,,,) are given by
¢o(En,,) = n,n/d, (1.224)

The 2D surface electron concentration per unit area for QWs of stressed Kane
type compounds can be written as

n

Zmax

nap =553 [Toi(Ersn) + Tea(Epy, )] (1.225)

n,=1

where
Te1(Ers, n;) = [P*(EFs,n;)ao(Ery)bo(Ers)]

and
Teo(Eps,n;) = Zi:l L(r)Te1 (EFs, 1)

The ER in this case assumes the form

9 B i ZZ”";‘X] [Tm (EFs, nz) + TGZ(EFM I’ZZ)] (1 226)
1 1el S [(Tor (Ersy )+ (Tea (B, ) |

The DOS function for bulk specimens of stressed Kane type semiconductors in
the absence of band tail can be written as
Dy(E) = g,(37°) ™" [ao(E)bo(E)[co(E)]' + ao(E) [bo(E)] e (E) + [ao(E)) bo(E)eo(E)]
(1.227)

Combining (1.227) with the Fermi-Dirac occupation probability factor and
using the generalized Sommerfeld lemma the electron concentration in this case
can be expressed as

no = gv(31%) ' [M4(Er) + Nu(Er)] (1.228)

Where, M4(EF) = [ao(EF)Bo(EF)Z‘()(EF)] and N4(EF) = Zi:l L(V)M4(EF)
The ER in this case is given by
D 1 [My(Er)+ N4(EF)]

u lel [(Ma(Er)Y + (Na(Er)Y ] 1229
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1.2.6 The ER from QWs of HD Te

The dispersion relation of the conduction electrons in Te can be expressed as [193]
E =y k2 + yok? + [p22 + g2k ? (1.230)

where, the values of the system constants are given in Table 1.1.
The carrier energy spectrum in HD Te can be written as

13(E,ng) = Y k2 + Yok £ [Y3K2 + y3k2] (1.231)

The EEMs along k, and k, directions assume the forms

. w W
m(Ep,, 1) = W 1-—= 3 V5 (Er, ) (1.232)
! \/‘//3 +4W]V3(EF;,37'Ig)
and
) n ¥
m; (EF,,n,) =0, - —= 4 V3(Ery 1) (1.233)
2 \/W4 + 4'//27)3 (EFha ’1g)

The investigations of EEMs require the expression of electron concentration,
which can be written from (1.231) as

ng = % (tiap(EF, s ) + taup (Er, , 1,)] (1.234a)

where, t1p(Ep,, 1) = [3Wspp(Ery, 1) Usun (Erys ) — W6 3up (Erys )]s Wsmp
v3(Ery) | 03 _ Va4 (Ery ) _
(EFh7 ng) = [% + %;%} P 1—‘3HD(EF117 ”g) - %s lp6 - l//_; and
tup(Er,,Mg) = >y L(r)tiun(EF,, 1)
In this case Ej, is given by
{73(Enasng)} =0 (1.234b)
Therefore by using (1.38), (1.234a) and (1.234b) we can study the ER in this case
The 2D electron energy spectrum in HD QW of Te can be written using (1.230) as
1/2

2 2
ks2 = Ysup(E, ’7g) — e <%) +ys lp%HD(Ev ’7g) - (%) ] (1.235)
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1.2 Theoretical Background 59

w w 4 4 E, 2 4 2.2
where, ; = 45{2_' and lﬁéHD(E7 ;78) = [’/’“ “(4";?‘);”2;‘%“ ‘”2'”3}

The EEM in this case is given by

2

i I Ysup (Er1an, Ng)Wspp (EFtap, g)
m (EFIHD777g7nz) 27 WSHD(EFmDﬂ?g) + D AR =

VW Errso.n,) — (an/d.)?

(1.236)
The total DOS function in this case can be expressed as
g Nz max
N2DT(E) = ; Z erSHD(Ev ng)H(E - E'lz59HD) (1237)
where E, ., is the lowest positive root of the equation
.\’ .\ 1z
2 4
lpSHD(E”zs%rD? ng) - l//6 (d_1> + l//7 WSHD(EHZS(JHD7 17g) - ( d ) ] =0
Z Z
(1.238)
The surface electron concentration is given by
nop = % Z [t1mpe (EF1ap, Mg, 1) + t2p7e (EF1HD, Mgy 12)] (1.239)
Nz=1
where,
2
nn,
tiapte(EFiap; Mg nz) = |Vsup(EF1HD, Mg, 1) — Y6 <d_) ]
Z
and

torpte (EF1HD; Mg, Nz) = Zi:l L(r)[tiupre(EF1mD, g5 112)]

Thus using (1.239) and (1.38) we can study the ER in this case.
The 2D electron energy spectrum in QWs of Te in the absence of band tails
assumes the form

12
2 2
€ =us(e) - s () v | wiee) - () ] (1.240)
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2 4 2 2.2
where, 5(E) = {%4—2%} and y3(E) = [7’/’#4%?[’//:24;;’/’2‘/’3}

Thus, the total 2D DOS function can be expressed as

Noor (E) = (£) 3 thg(E,n ) H(E - Epr2) (1.241)
n,=1
1/2

where, t40(E,n;) = llps(E) — g <%>2i v {‘pé(E) - (?)2} 1/2]

The sub-band energies(E,,,,) are given by

E,, = l//l(nzn/dz)z +5(n.m/d;) (1.242a)
Using (1.240) the EEM can be expressed as

h2
m' (Er,nz) = 5 tyo(EF, nc) (1.242b)

The 2D surface electron concentration per unit area for QWs of Te can be
written as

Mzmax

o =503 ltao(Epgn2) + a1 (Epy, o) (1.243)

n,=1

where 141 (Epg,n;) = > 1y L(r)tao(Eps, ;).
The ER in this case is given by
-1

Nz max

D 1 Nz max
e > [tao(Er, ne) + t41(EFY,"z)]] [Z [t30(Er,, n2) + 14y (EF,, n;)

ne—1 Nz=1

(1.244)

The electron concentration and the ER for bulk specimens of Te in the absence
of band tails can, respectively, be expressed as

np = 3771'62 [Mg(EF) +N9(EF)] (1245)
and

D 1 [My(Er) + No(EF)

e |MY(Er) + Ny(Er) (1:240)
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where,  Mo(Er) = [3s(Er)Ts(Er) — T3 (Er)], s (Er) = [EF+2¢2] and

Is(Er) = (2] [\/w3+4w EF—wg] and No(Er) = S, L(r)Mo(Er)

1.2.7 The ER from QWs of HD Gallium Phosphide

The energy spectrum of the conduction electrons in n-GaP can be written as [194]

1/2
+Vel  (1.247)

- 1 k2
] - [

PR

2m’ 2mﬁ

E= (2 +K2) + Vo]

where, ko and |Vg| are constants of the energy spectrum and A’ = 1.
The dispersion relation of the conduction electrons in HD n-GaP can be
expressed as

2.2 2 472 1/2
n(Eng) = s a2 k2] — | ) el | (vl
PN oy o T T mz ¢ ¢
(1.248)
The EEMs assume the forms as
* h2“// (EF,a n
m?(E,, ) = 3T’g) [1+ (C + bD)[C* + 4bD* + 4bCy; (Er, , 1)
— 4bCD + 4b*)5(Eg,, n,)D] "]
(1.249)
and
2
m): (EFh7 ng) = 7 [tllyg (EFh’ ng) - t41t/5 (EF/H ng)] (1 250)
where, b = 2h_’;ﬁ’ C = (hzko/mﬁ) |V(;| [a31 —% 2m +Ab 4 = \2/(;2_,
= (4abc + 4‘120)7 tg(EFha ng) = [82 - 4aC“/3(EFM7Ig)](gS) 17 82 = (4a2b2+
C? +4aCD)

The electron concentration can be expressed as
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n _gV
0=
TC2

4

L27(Eg,, 1) + XS:L(F)[1127(EF,,,7’Ig)]] (1.251)

r=1

where,

L27(EF,, 1) = [Miap(EF,, 1)),

Miup(EF,,ng) = [2(1‘11%(5@,%) + 1)y /181 + 19173 (EF, 1)

T (131 / 30 (Er,y) + (121/2) [6,,<Eﬁ, N\ (Er,.ng) + 15(En, )

—\/t5(EF,n,) | + (141l5(EF,,a’7g)/2)

| 0«,* (EFh7 ”g) + \/92_ (EF/H ng) +15 (EFh7 ”g)
n )

5 (EF;,a ng)

by =45 g1 = —(C +2aD), t; = [t} + 463101131 + (4,13,82)(g3) '], a1 =2,
tor = [4tnt163, + 8ty — (1683,3,aC)(g3) '], 0-(Er,,n,) = (51v2) " [te1 +
t173(Er,, Ng) — \/tgl + 19173(EF,, 1g)], te1 = (3, + 2tat31) and 17, = (2111131)
The Ej,4 in this case is given by the equation
73(Ena; g) = 0 (1.252)

Therefore using (1.251), (1.252), and (1.31c) we can study the ER in this case.
The 2D dispersion relation in QW of HD GaP can be expressed following
(1.248) as
1/2
(1.253)

2
n
(d_z> +t§ (E7 ng)
¢4

The EEM in this case can be written following (1.253) as

2
n

k2 = t11y3(E, ng) + ty — t31 (d—z> — 4
Zz

2

. h
m*(EFiup, g, nz) = > [ley;(EFlHDa'/’g)

) —1/2
nn,
— tat5(EFiup, Ng)t5(Erimp; 1) [(d_) + 13(Erinp, ﬂg)] ]
Z

(1.254)

The total DOS function assumes the form
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gv 1z max
N2DT(E7 77g> = % Z [tllyé(Ea ”g) — la11s (E7 ng>t/5<E7 ng)
nz=1
L (1.255)
]H(E - E”zSTHD)

[(nd—izyﬂﬁ(ﬂ n,)

is given by the equation

where, E, ..,

b ) 1/2
nn, nn
t1173(En;3THD717g) + 1 — 131 ( d ) —In [( dZ) + tg(EnZSTHD’ ng)] =0
z 4
(1.256)

The surface electron concentration in QW of HD n-GaP can be written as

Nzmax

ng = %Z [131DGap(EF1HD, gy 1) + tarnGap (EFiap, Mg, 1) (1.257)

n—

2
where, t1upGap(EF1HD, Mg, 12) = 11173 (EF1HD, Mgy 1)+ t1 — 131 (ZL) —ta

5 12
{(%) + 2(Erup, ngvnz):| and  taupGar (Er1ap, Mg, 1z) = Y _r—y L(r)[t3uDGap

(EF1up; Mg: 12)]

Thus using (1.257) and (1.38) we can study the ER in this case.

The 2D electron dispersion relation in size-quantized n-GaP in the absence of
band tails assumes the form

2 2 2 2 2] 1/2
E = ak® + C(mn/d,)> + |Vg| — [Dks + |V6P+D(nyn/dy) } (1.258)
The sub-band energy (E,,,) are given by
2 2 21/2
En = Clane /o)’ + Vo] = [V +D(mn. /d.)’] (1.259)

The (1.258) can be expressed as

k> = tp(E, n) (1.260)

in which, 14 (E,n,) = [{Za(E — 1))+ D} — {2a(E — 1)) + D] — 4a*[(E — 1)~

tz}}l/z], f = |Vg| + Cnn,/d,)* and 1, = |V +D(an,/d.).
The total DOS function is given by
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Zmax

2 n
N2DT(E) = A2 Z [I:Q(Ev nZ)]H(E - Eﬂm) (1261&)
n,=1

Using (1.260) the EEM can be expressed as

2

h
m*(EFwnZ) - ?t:tZ(Eanz) (1261b)

The electron statistics in QWs in n-GaP assumes the form

nop = l(i) z"‘”f [I42(EF5, n;) + taz(Ery, nz)]‘|
n.= (1.262)

143 (EFw nz) = ZL(I‘) [t42(EF.ra nz)}

r=1

where, t43(Ery, ;) = 32, L(r)[ta2(Ery, 1)
The ER in this case is given by

Mzmax

nlmax 71
%: (é) [Z (4 (EFg,n2) + let3(EFsa”z)]] lz

n.=1 n.=1

(tsa(Epgy ;) + t43(Ery, ”z))]
(1.263)

The EEMs in bulk specimens of n-GaP in the absence of band tails can be
written as

h2
m(Ep) = 5 [ = tnt5(Ep)] (1.264)
and
h2
m(Er) = [1 — C[4bCEF + 4p*D* + C* — 4bCD) V] (1.265)

1/2
where #5(EF) = {gz—zﬁ}

The electron concentration and the ER in this case assume the forms

8v

ng = W[Ml (EF) +N1 (EF)] (1266)

%ZE[MI(EF) + Ny (EF)][M} (Er) + Ny (Er)] ™! (1.267)
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where MI(EF) = [2(ZHEF +1‘21)\/t9|Ep+l‘81 +%¢3(EF) -‘r%[d)(Ep) (bz(EF) +t5(E1:)

/12
+l41152(EF> [1n plEt \/q;(f:;HS(EF) H» ¢(EF) = (l31\/§)71[f61 + Erpt7) — [t81 + o1
Ef]'?] and N1 (Ep) = 3200, [L(r)M, (Er)]

1.2.8 The ER in QWs of HD Platinum Antimonide

The dispersion relation for the n-type PtSb, can be written as [195]

(12 (12 a2 (12 a4
E+dg—k> — U= |E+ 09 —v—k> —n'k>—| =1 — |k* 1.268
+0 S4H+o g kS 16 (1.268)
The (1.268) assumes the form
[E+ 01k + 02k] [E + 80 + 03k — 04k?] = I (K2 + K2)° (1.269)
1 a? a*

where W) = [io‘j‘—z—l—l%, Wy = }u()%,a)g =4 —vy], 0= v%, I :I(%z)z,

20,1, 00,v,n’ and a are the band constants.
The carrier dispersion law in HD PtSb, can be written as

Tik} — k(T2 (E, n,) — T31kZ] + [Turk? — Tsi (E,n, )k — Tei (E,n,)] =0
(1.270)

where, T = (I — 0203), Ta1(E, n,) = [@100 + 0175(E, 1) + 0373(E, 1))
T3] = [2[1 —+ W4 — w2w3], T41 = [2«1] + 602(1)4], TSI(Ea ”Ig) = [w2y0(E7 17g) -
W473 (Ea ng) +CO2'))3(E, ng)]’ Tﬁl(Ea ng) = [VS(Ev ng) +'))O(E, ng)'y?}(Ev ng)] and

7s(E.n1g) = 200 (E,n)[1+ Erf (E/ng)] ™
The EEMs are given by

. i (T21(EF,, n,) T3, (EF,,ng) + 2T Ty (EF,, 1,)
ms(EFIM;/Ig):F Tél(EFm’/Ig)‘i‘ /2g 21 n g 61 nr'lg
1 \/TZI(EF;,ang) +4T11T61 (EF/nng)
(1.271)
and
h2
m:(EFlH "g) = (m)[Tgl(EFwng) + [T51(EFM ng)Tgl(EFm ng) (1 272)

+ 2T41Té1 (EFh7 ng)][TSZI (EFh7 ”g) +4TuTe (EFh7 rlg)]il/z]
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The electron concentration assumes the form

ng = % I1og (EFhﬂ?g) + ZL(’”) [7128 (EFh7 ”Ig)] (1.273a)

r=1
Where’ 7128 (EF;,a ng) = [MGHD(EFw;/Ig)]?

p%HD(EFhv ng)
Msup(Er,n,) = [Torap(EF,, 1) P21p (EF,» 1) — Tho B E—
- TI IJS(EFM ng)]a

TZI(EF}M ng)

Toup(Er,,n,) = T

Pan(Eryy ) = [(2Ta1) ' [Ts1(Er, . m,) + \/T521 (Erys 1) + 4T Toy (Er, )]/
Tior = [T31/2T11],

P20 (EF, 1)
J3 (EFM ng) = % [[AgHD(EF/n rlg) + B%HD(EFM ng)]EO(n(EFw ng)?

t(EF/n ﬂg)) - [AgHD(EFm rlg) - B%HD(EFM ng)]F()(yl(EFhv ng)? t(EF/n ng))}

P10 (EFy 11,)
+ % [(AgHD(EFm ’7g) - p%HD(EFw ”g))(BgHD(EF/n ’7g)

2
- p%HD(EFM r’g))]l/ )

Eo(n(EF,,ng),t(EF,,n,)) and Fo(n(EF,,n,),t(EF,,n,)) are the incomplete elliptic
integrals of second and first respectively,

1 _
A%HD(EF;.’ rlg) = 5 [TIZ(EFM ng) + \/TIZZ(EFm”g) - 4T13(Eang)]’ TIZ(Eang) = [T7 (EFwng)/Tﬁl}

T = [T3, — 4T1Ta), T2(Ep,,n,) = 2T51T21(EF,, n,) — 4T11 Ts1 (Er,, 1),
T13(EF/,7 71;;) = (TS(EF/M '7g)/T8)~,
Ts(Er, ny) = [T3,(Er, ny) + 4T1iTe1 (Er,, 1)),

1 _ —
Biup(Er,,ng) = 5 T2(Er, mg) — \/sz(EFh»ﬂg) — 4T13(EF,,n,)), Tir = [V T61/2Tn1]

. 1P (Ean )
t(EFM ng) = [33(EFM ’1g)/A3(EFm rlg)]r’(EFhr’g) = s ! [Bi(Th’nz)
The Ej,; in this case is given by the equation
Te1(Ena;ny) = 0 (1.273b)

Using (1.273a), (1.273b), and (1.38), we can study the ER in this case.
From (1.270) the dispersion relation in QWs of HD PtSb, can be expressed as
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Ti1k§ — Piap(E,ng, n.)k; + Poup(E, 1, n;) =0 (1.274)
where,

Piup(E, ng,n;) = [T21(EF,, 1) — T3y (nn,/d.)’]
Ponp(E, ’1g7nz) = [Tu (nnz/dz)4 — Ts1(EF,, Wg)(nnz/dz)2 — Te1(EF,, ”g)]

(1.274) can be written as
k? :AGO(Ea ”Ig,”z) (1275)

where,

Aco(E, g, 1) = [P1ap(E, ng,n;) — \/P%HD<E7 Ng>Nz) — 4T11Paup(E, 1y, 1))

The EEM assumes the form

2

¥ h
m*(Eriup, g, ;) = EA/60<EF1HDa Ng» 1) (1.276)

The surface electron concentration is given by

gv llfﬂlﬂx
ny = Z [A60(EF1uD, g, ) + Boo(EF1HD, g5 112)] (1.277)

ne—1

where,

S0
Boo(Erinp: Mg n:) = »_ L(r)[Aeo(Epiap, g, 12)]

r=1

From (1.269), we can write the expression of the 2D dispersion law in QWs of
n-PtSb, in the absence of band tails as

K =ty (E, n,) (1.278)

where,

taa(E, ) = [240]7 (A1 (B, ) + /A (B, ne) + 44011 (E, )]

;)\ >
3E + w14 E+ 0 — wy A
Z

Ag = [11 + w1w3], Alo(E, nz) =

2 4
+ s () 21, (2) ]
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and

A]l(E7 I’lz) = |E

nn; 2 TN, 2
E+50—0)4 75 + wy dz

The area of k, space can be expressed as

A(E,n;) = ntaa(E, n;) (1.279)
The total DOS function assumes the form

Nzmax

Nopr(E) = f—; > [ (En)H(E — E,,) (1.280)

n.=1

where the quantized levels E, , can be expressed through the equation
-1 n, ? n; g nn; : mn, 2’
E”:M = (2) — | W2 71 + 50 — Wy 71 () 71 -+ 50 — (W4 71
mn 4 m 4 ™ 2 1/2
L= ZZ2) w5 [ ==
l(dz)+w2w4(dz> a)20<dz>]}

_|_

+ 4
(1.281a)
Using (1.278), the EEM in this case can be written as
hZ
m*(Ep,,n;) = itﬁm(EF”nz) (1.281b)
The electron statistics can be written as
g Mzmax
np = 5" > [taa(Erg,n2) + tas(Erg, ne)] (1.282)

n,=1

where 1,45 (EFS, I’ZZ) = Zle L(r) [I44(EFS, nz)]
The ER in this case is given by

n Nzmax

-1
D 1 Zmax
1 e Z [t14(EFs, n) + t45(Ers, nz)]‘| : lz [taa(EFs,n) + tas(EFy, 1))
n.=1 n,=1

(1.283)
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1.2.9 The ER from QWs of HD Bismuth Telluride

The dispersion relation of the conduction electrons in Bi,Te; can be written as
[196-198]

T e
E(1 + aE) = 1k + woky + 03k + 204k:ky (1.284)

e e L= o
where @) = 3201, 0y = 5,002, M3 = 3,-033, 04 = 5,03 in which &y, %2, 033

and o3 are system constants.
The dispersion relation in HD Bi,Te; assumes the form

12(E 1) = 01k; + ok + dsk? + 2aakk, (1.285)

The EEMs can, respectively, be expressed as

2

\ h
my(EF,1g) = 2—v—vl7),2(EFha 1) (1.286)
h2
my(EF,; 1) = T%V;(EFM ) (1.287)
h2
m_(EF,;1g) = ﬁ)/z(EF,,, M) (1.288)

The DOS function in this case is given by

2 \/72(Esng)va(E,my)
N(E) = 4ng, (=32 ‘ - (1.289)
h Vo033 — dogjo3,

Thus combining (1.289) with the Fermi Dirac occupation probability factor, the
electron concentration can be written as

g 2my
_ (_

=322 )3/2(061106220633 - 4“11“%3)71/2[U1HD(EF/,3 ng) + Uanp(EF,, 1,)]

(1.290a)

no

where,

UlHD(EFh) ng) = [YZ(EF}M ng)]3/27 UZHD(EF/H ng) = Ei:] L(r)[UlHD(EFh7 ng)]
The E}, in this case is given by the equation

72(Enay1g) = 0 (1.290b)

Using (1.290a), (1.290b), and (1.38), we can study the ER in this case.
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The dispersion relation in QWs of HD Bi,Te; can be expressed as

Ty _ _ _
12(E ) = @ ( y )2 + @ok? + @3k2 + 24k, (1.291)
The EEM can be expressed as
* Mo /
m*(Epinp,1y) = ——===="2(Er1p, 1) (1.292)
A/ X11%33 — 40(23
The surface electron concentration can be written as
g\) 7z max
mp =5 nZ] Reo(Er1mp: Mg, 1z) + Ret (EFip, g, z) (1.293)
1 2m0y2(Ep1HD,ng) 2 21’)’[0 TNy o _
Reo(E Moy Ny) = W ——(—)a
60( F1HD ng Z) m hz ( dx ) 11]

and
N

Re1(Eriap; gsn) = > L(r)[Reo(Erinn, Mg, n2)]

r=1

Using (1.293) and (1.38) we can study the ER in this case.
The 2D electron dispersion law in QWs of Bi,Te; in the absence of band tails

assumes the form
E(1 + o) = &, (";”

X

)2 + @ok? + W3k? + 2Bak-ky (1.294)

The area of the ellipse is given by

— @y (—)? (1.295)

2moE(1 E
A(Eny) = T {mo (1 +aFE)

Voits3 — 403, n
The total DOS function assumes the form

My max

8vino Z
TEh2\ /Olpr0l33 — 4&%3 ny=1

where, (E,,,;) can be expressed through the equation

(1 +24E)H(E — E,,) (1.296)

Nopr(E) =

N, T
d,

E, (14 0E,,;) =0 (=) (1.297a)
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The EEM in this case assumes the form as

m* (Ep,) = mo(1 + 20(EF,))

s = — =)
\/ 022033 — 4053

The electron concentration can be written as

(1.297b)

k T ) m My max
_ kaTg 0 S [(1+20Ey, ) Foli,) + 20k5TF (1)

nyp = 2
h \/ Oy 033 — 4&%3 ny=1

(1.298)
Using (1.298) the ER in this case is given by
~1
D Mzmax kBT
o >, [(7) (1 + 2nz,5)F71('1n,5) + ZBTFO(WIHS)H
L (1.299)
[Z |:<1 + Z“En;ls)FO(’?n,S) + 20kpTF, (n1115):|]
n,=1
where, 1, . = Er ‘*‘];I;“HS

1.2.10 The ER from QWs of HD Germanium

It is well known that the conduction electrons of n-Ge obey two different types of
dispersion laws since band non-parabolicity has been included in two different
ways as given in the literature [199-201].

(a) The energy spectrum of the conduction electrons in bulk specimens of n-Ge
can be expressed in accordance with Cardona et al. [199], Gibson [200] as

E, R [Eg 2 \1"7?
E=—tdg ot {?*Egok3(7>] (1.300)
1

I
where in this case m and m are the longitudinal and transverse effective masses

along <111> direction at the edge of the conduction band respectively
The (1.300) can be written as
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2
hzkz h2k2 h2k2
2m’f =E(l1+aE)+ “<2mi —(1 +20E) Zmi (1.301)
1 \ I

The dispersion relation under the condition of heavy doping can be expressed
from (1.301) as

2
h2k2 2k2 h2k2
S =y, (E 2l —(14+2 E —= 1.302
o Pa( ,ng)+fx<2m*| (1 + 2ay3(E,m,)) 2 ( )
The EEMs can be written as
my(Epn,n,) = m' 75 (Ern, 1) (1.303)

and

[V3(Ern, ng)[1 + 203 (Epn, g)] — 75 (Ern, 1))

]
I+ 2003 B, n ) = 4y (Er, )

m:(EFI’H ng) = m|*\ [V/3 (EFha ng) -

(1.304)
The electron concentration can be written as
8ng,m’ 2mﬁ - s B
ng = T 1129 (E]:h7 ng) + ZL(F) [1129 (E]:h7 ng)] (13058)
r=1
where,
Lo (EF,.1n,) = [Msup(Er,,n,)],
1/2 o
M3HD(EFh7 ﬂg) = [VB (EFh7 ng)} / [VZ(EFIH ”g) + 57)% (EFh7 ng)]
73(Er,s 1)
- # [1 + 20(“/3 (EF/m ng)]]
The Ej,4 in this case is given by the equation
72(Ena,1g) = O (1.305b)

Thus by using (1.305a), (1.305b) and (1.38), we can study the ER in this case.
In the presence of size quantization, the dispersion law in QW of HD Ge can be
written following (1.302) as
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2

h2k2 R (n.n/d.)* R (n.n/d.)*

s — o, (E — T (14 204(E, ) — = (1.306
2mj VZ( ang) —|—0€< zm‘*‘ ( + OC'V3( 77’g)) m ‘*‘ ( a)

The EEM assumes the form

. . oal® n.m
my(Epiap, g, n:) = m' [ (Eriap, M) — — (dL)ZVQ(EFh,ﬂg)] (1.306b)
Il <

The surface electron concentration per unit area is given by

% Mzmax

N
nop = gnhzl > Ri(Erian, g n2) + S1(Eriap, ng, 12 (1.307)

n.=1

2
12 n,m/d; 2
where, Ri (Ep11p, g, 12) = [72(EFiap, Ng) + 0‘<%> — (1 +20093(EF1up, 1))

%] and $1 (Erinp, g, ) = 32,y L(r)[Ry (B, fg, 2]

Thus using (1.307) and (1.38) we can study the ER in this case.

In the presence of size quantization along k, direction, the 2D dispersion
relation of the conduction relations in QWs of n-Ge in the absence of band tails
can be written by extending the method as given in [193] as

2k
TN B 1.308
2m " 2m3 /(E,ne) (1.308)

m +2mﬁ

2
where, mi =mi, my =—=5—L, y(E,n;) = |E(1+aE) — (1 +20E) 5= (%) +

i {zhnjz () 2} 21

3mim’
1L

and m; = T

The area of ellipse of the 2D surface as given by (1.308) can be written as

2 [k
AE,n) = TV 0 ) (1.309a)

The EEM in this case can be written as

m’(Er,,n:) = (v/mim3)[y(Er,,n:)| (1.309b)

The DOS function per sub-band can be expressed as
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ISP (L (A (1.310)
2m; \ d, '

The total DOS function is given by
.\
(2

(1.311)

Nap() = VI

h2

Mzmax

N2DT \/m mzz

n.=1

1+ 20F — 2oc<

where, E,  is the positive root of the following equation

i (nn, 2 W (nn, 2\’
E‘n216 (l + OCEan) — (l + 20¢E,,:m) % 7 =+ o Zm* 7 = 0
3 z 3 4

(1.312)

Thus combining (1.311) with the Fermi Dirac occupation probability factor, the
2D electron statistics in this case can be written as

4 /mimkT ey
n2p = 1—232 [(Al (nz) + ZOCEnzlfJ)FO(En;IG) + 20kpTF, (Enzlﬁ)] (1313)

2
h Py

where A;(n,) = {1 + 2a(h/2m§)(nnz/dz)2} and 1, = LT [Ery — Ep).

The ER in this case is given by

D keT Nz=max
; B [ Z [(A[ (Vlz) + 2O(E"Z1e )F_l (E"zlg,) + 2OCkBTFO (E"fls )]

. (1.314)
[Z [(A1(n;) + 20E,, )Fo(En,, ) + 20kgTF(E,, )]

The expressions of EEMs’ in bulk specimens of Ge in the absence of band tails
can be written following (1.301) as

m (Er) = m] (1.315)
m’ (Ep) = m’, (1 + 20Ep) (1.316)

The DOS function for bulk specimens of Ge in the absence of band tails can be
written following (1.301) as
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3 2 .
2my\2| . 5 3 18a [m] 7 N 3
N(E) = 47'Egv <h_2D) [E — EOCE'i + ? ( h121> 2‘| i mp = (mLZ mH)3

(1.317)

Using (1.317), the electron concentration in bulk specimens of Ge can be
written as

ny = Nej

5 189 mj kg
Fg(’l)*zakBTF%(ﬂ)JrT kBT< 1% )F7(’7) ;

2rmiksT\ ?
No = 2g, (#B)
The use of (1 3186’ leads to the expression of ER in this case as

(1.318)

[Fy(n) — 3aka TF(n) + 182 oy T ("7 "Fo )]
_ ksl Vs : - (1.319)
[F_y(n) — SakaTFy() + 12 s T (12827 ) "Fy ()]

=10
&
ﬂ

(b) The dispersion relation of the conduction electron in bulk specimens of n-Ge
can be expressed in accordance with the model of Wang and Ressler [201]
can be written as

2
e R\ AN B2
E——= s _ g s ) _g s ) (222 — 3 : 1.320
2 T o, T (Zm*i) * (2mj> omi |~ %\ am (1.320)

where, @, = B, (24t = ) By = 1.4Ps,

okt

4m’ my,
Bs = lm) ™" = (mo) P, 35 = a(—

h4

), 07 = 0.8f35
Zmﬁ )
The energy spectrum under the condition of heavy doping can be written as
h2k2 h2k2 h2k2 2 h2k2 h2k2 h2k2
ey =5+ (58] o (50 ) (1) -
& 2m mj  2m| 2m’ 2m’ ) \ 2m) 2m”

(1.321a)
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The (1.321) can be expressed as

i < _ _ _ 1
S = oy — dok: — o[k + ank: + aa(E,n,)] 2 (1.321b)
2m’]
where
_ _ s 2 2 — —
gy = ﬁ, by = 2"74(%”), % = 2;4 (2%)’ Ja% — 4040,
_ 2my [ 45.—27 _ 2my 1—4a,y5(E,
=5 (2] and a(E.ny) = (1) {w]
The EEMSs’ can be written as
*Vg(EFh; n )
m*(Egn, 1) = | ” : (1.322)
/1= 46 (Enn,)
. m’ Y3 (Epn, 1)
mL(EFhvng) = L z (1323)

V1 = 439 (Epi, )

The electron concentration in HD Ge in accordance with the model of Wang
and Ressler can be expressed as

*
mj_gv
2

np = [13 (EFh7 nv) + 14(EF/M ”v)] (] 3243)

where

_ 0y _
L(EF,,n) = |:Oc8p10(EFh’ ny) — = Pio(Er,> 1) — @i0d10(Er,, ns):|)

3

l

P10(EF,,Mg) _% {—} [1 - \/1 40663’3(EF,,7’7g)J]

o

Kl (EF,7'7 ) 9
% [_E()(/“(EFW r’g)? Q(EF;,7 ng))

2 =2 = N
[ I(EFm ng) + Bl (EFM rlg)} + 23%(EFM ng)FO(/L(EFw ﬂg)7 q(EF/M Ug))]

Al (EFh7 ng) [
3

Ji(Er,,n,) =

_2 —
p%O(EFw ng) +AI (EFM ’1g) + 23%(EF/17 ng)]

+

1

—2

AI(EFwng) + p%O(EFh:"]g) ’
=2

B] (EFha ng) + p%O(EFw ng)
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- 1 _ . - - 1
AL(Ep,,n,) = 3 @11 + /a3, — 4a3,(EF,.n,)], B (EF,,n,) = 3 (211 + — 453, (EF, 1)),
, _ plO( Fio 1 ) A7 (EFh n ) (EFM” )
MEF,, tan~ [ 8 4(EF,, = d g
( F ”g) [BI(EFh777g)] q( Fp ng) A (EF;,»ﬂg)
S
and 14(EFha ’1g) = Z L(}") [13(EFM ﬂg)]
r=1
The Ejq in this case is given by the equation
72(Enasg) =0 (1.324b)

Thus using (1.324a), (1.324b), and (1.38) we can study the ER in this case.
The dispersion relation in QW of HD Ge can be written as

12
k> n,T, > n,T 4

5 — oy — to(—)" — E, 1.325
2t B 069(dz) %10 (dz) +0<11(dz) +on(Eng) | 5 ( )

The (1.325) can be expressed as

Rk?
2m’,

_A75(E nganz) (1326)
where, A7s(E, 1,,n;) = [ag — 5!9(%)2 o[ (F ) + o1 (= ) + a2 (E, )]
The EEM is given by
mf (Er1mp, ﬂgﬂlz) = mjA'75 (Er1mp, "g?nz) (1.327)

The electron concentration per unit area assumes the form

mp =3 Z [A75(EFiup, Mg, nz) + A6 (Epiap, g, 112)] (1.328)

n.=1

where, Az6(EFiup, Mg, nz) = Y L(r)[A75(EFiap, Ny, 2]
r=1

Using (1.328) and (1.38) we can study the ER in this case
The 2D dispersion law in the absence of band tails can be expressed as

E = As(n.) + Ag(n.)f — a4 (1.329)

where, As(n;) = 2’;‘;; (’Zl) - %(th (2 ) ], Ag(n;) = [1 - &5(27;)(7;1)2} and
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e 1k

=G s
The (1.329) can be written as
e Pk
X ==L (E 1.330

where, 1) (E, n,) = (284) ' [Ag(n.) — [A2(n.) — 454 E + dasAs(n.)]"?)
From (1.330), the area of the 2D k,-space is given by

21 /mint
A(E,n) =Y _21(E n,) (1.331a)

2
Using (1.331a) in this case can be expressed as
m’ (Er,,n) = (\/mim3) 1 (Er,,n.)] (1.331b)
The DOS function per sub-band can be written as

* o %
4 mim;
hZ

Nap(E) = {h(E,n.)Y (1.332)

where {I; (E, nz)}/ = % [, (E,n;)]
The total DOS function assumes the form

Nap(E) = Y/ mzif{ll E,n)YH(E — E,,) (1.333)

n,=1

where, the sub-band energy (E,_,,) are given by

" TN, 2 R .,
o = () () [~ (1339

The electron statistics can be written as

4 /m*m* Mzmax
# Z [t46(EF€7 ) + [47(EFw }’lz)] (1335)

n,=1

nyp =

N

Where t46(EFS7 nz) = Il (EFS7 nz)a t47 (EFS? nz) = Z L(l") (t46(EFS7 nz))

r=1



1.2 Theoretical Background 79
Using (1.335), the ER in this case is given by

Mz=max

-1
- > [ss(Ersine) +f§6(Eanz)]] [Z [t55(EFs, n2) + ts6 (EFs, n2)]

¢ n,=1

=10

n,=1

(1.336)

1.2.11 The ER from QWs of HD Gallium Antimonide

The dispersion relation of the conduction electrons in n-GaSb can be written as

[202]
k2 E. FE 2Pk (11 :
2my 2 2 Ey, \mc mg
where E;,, = [Eg, + %]EV
The (1.337) can be expressed as
nk?
= I3(E 1.338
2m, w(E) ( )

where

Is(E) = [E + Eyg — (me/mo) (Ey/2) — [(Eyo/2)
+[((E)*/2)(1 = (me/mo))] + [(Ego/2)(1 = (me/mo))]* + EEj(1 — (mc/mo))]"?]

Under the condition of heavy doping (1.338) assumes the form

R K>
. 2136(E, ﬂg) (1339)
where,
El
me
ISG(Eang):[y3<E717g)+Ejg_nTo'7g
E E m E m
8\2 g c\12 8\2 / c\11/2
— (= —= (1 —— =) (1 —— E E (1——
(G + 0= 297 + (G0 =29 s (B ) Ey (1 =29 )
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The EEM can be written as
/
m*(Er,,ny) = me{ I (Er,, 1) } (1.340)

The DOS function in this case can be written as

3/2
8v 2m,
Nup(E,Ng) =5 5 (7> 16 (E ) {Iss (E.m,) Y (1.341)

Since, the original band model in this case is a no pole function, therefore, the
HD counterpart will be totally real, and the complex band vanishes.
The electron concentration is given by

. (2m, 3/2
"°=3gnz(hz> {Bs(Er, )} (1.342)

In this case, Ejq is given by
136(Ehd7 ng) =0 (1343)

One can numerically compute the ER by using (1.342), (1.343) and (1.31c) and
the allied definitions in this case.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in QWs of HD GaSb can be written following (1.339) as

hz(nzn/dz)z hz(ks)z
_|_
2m, 2m,

= L6 (E, 1) (1.344)

The expression of the N>pr(E) in this case can be written as

Nz max

Z Tiiop(E, UM n,)H(E — E, pi19) (1.345)

n,=1

megy

Nopr(E) = )

where, Ti1op(E, 1, 0;) = [I36(E, 1) — h*(n;m/d;)*(2m,) "],
The sub band energies E,_pi19 in this case given by

{hz(nzn/daz}cmc)‘l=136<Enzmlg, ) (1.346)
The EEM in this case assumes the form

m*(Ep1up, ’1g7nz) = mc[1§6(EF1HD, Mg, n)] (1.347)
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The 2-D electron statistics in this case can be written as

1z max

Z [T119p(Epiap, Mg, 02) + Th2op (Er1ap; g, )] (1.348)

n,=1

megy

nyp =
nh?

where, Ti2op(Erimp, Mg, 02) = > L(r)[T11op(EFiap, My, 12)),
r=1

Therefore combining (1.348) and (1.38) we can get the ER in this case.
The total 2D DOS function in the absence of band tails in this case can be
written as

mc v m1x
Nopr(E) <nhg2 > > {ls6(E)'H(E = Ey,)} (1.349)
n,=1

where, the sub-band energies E,l_3 can be expressed as

hZ

S (nn,/d.)? (1.350a)

ISé(EnZ44 ) -

The EEM in this case can be written as

m*(Er,) = (m.)[l6(EF,)] (1.350b)

The 2D carrier concentration assumes the form

mc . Mmax _ _
oo = (2252} 3% Tss(Braone) + Tl o) (1351)
n,=1
where
Tss(Ers,n;) = [I6(Ers) — (T[nz/d) Jand Tsg(Epy, n.) = > L(r)[Tss(Eps, n:)]
r=1

Using (1.351), the ER in this case is given by

D _ 1 Zn " [Tss(Eps, nz) + Ts6(Erg, n;)]
u |€| Zn T)i [{TSS (EFSan)} +{TS6(EFS7nz)}I]

(1.352)

The expression of electron concentration for bulk specimens of GaSb (in the
absence of band tails) can be expressed as

32

mo =2 (i?) [Ma,o(Er) + Na,y (Er)] (1.353)
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where, My, (Er) = [I36(Er)]*> and Na,, (Er) = 3 L(r)[Ma,, (Er)]
r=1
The ER in this case can be expressed as

% - é [M;\m (EF) +NA10(EF)]71 [MAIO (EF) + NAlo(EF)} (1354)

Thus, we can summarize the whole mathematical background in the following way.

In this chapter, we have investigated the 3D and 2D ERs in HD bulk and QW's of
non-linear optical materials on the basis of a newly formulated electron dispersion
law considering the anisotropies of the effective electron masses, the spin orbit
splitting constants and the influence of crystal field splitting within the framework of
k.p formalism. The results for 3D and 2D ERs for HD bulk and QWs of I1I-V, ternary
and quaternary compounds in accordance with the three and two band models of
Kane form a special case of our generalized analysis. We have also studied the ER in
accordance with the models of Stillman et al. and Palik et al. respectively since these
models find use to describe the electron energy spectrum of the aforesaid materials.
The 3D and 2D ERs has also been derived for HD bulk and QWs of II-VI, IV-VI,
stressed materials, Te, n-GaP, p-PtSb,, BiTes, n-Ge and n-GaSb compounds by
using the models of Hopfield, Dimmock, Seiler, Bouat and Thuillier, Rees, Emtage,
Kohler, Cardona, Wang et al. and Mathur et al. respectively on the basis of the
appropriate carrier energy spectra. The well-known expressions of the ERs in the
absence of band tails for wide gap materials have been obtained as special cases of
our generalized analysis under certain limiting conditions. This indirect test not only
exhibits the mathematical compatibility of our formulation but also shows the fact
that our simple analysis is a more generalized one, since one can obtain the corre-
sponding results for relatively wide gap materials having parabolic energy bands
under certain limiting conditions from our present derivation.

1.3 Result and Discussions

Using the appropriate equations and taking the values of the energy band constants
from Table 1.1, we have plotted, in Figs. 1.1 and 1.2, the normalized 2D ER at low
temperatures, where the quantum effects become prominent for the QWs of HD n-
Cd;As, and n-CdGeAs, as functions of nano-thickness. The curves (a) and (b)
corresponds to 6 # 0 and 6 = O respectively for the purpose of assessing the
influence of crystal field splitting on the 2D ER in HD QWs of tetragonal and
nonlinear optical materials. We have plotted the curve (c) in accordance with the
HD three band model of Kane. The curve (d) and (e) have been in accordance with
the HD two band model of Kane and that of the parabolic energy band models
respectively.

The influence of quantum confinement is immediately apparent from all the
curves of Figs. 1.1 and 1.2, since, the 2D ER in HD QWs depends strongly on the
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Fig. 1.1 Plot of the normalized 2D ER as a function of film thickness for the QWs of HD
n-Cd;As; in accordance with a the generalized HD band model with J # 0, b the generalized HD
band model with ¢ = 0, ¢ the simplified HD three band model of Kane, d the HD two band model
of Kane and e the HD parabolic energy bands
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Fig. 1.2 Plot of the normalized 2D ER as a function of film thickness for the QWs of HD
n-CdGeAs, for all cases of Fig. 1.1

nano-thickness, which is in direct contrast with the corresponding bulk specimens
(graphs for bulk HD materials have also been drawn for the purpose of relative
comparison) and exibits the signature of quantum confinement. It appears from the
said Figs. that the 2D ER decreases with the increasing film thickness in a step like
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manner as considered here although the numerical values vary widely and deter-
mined by the constants of the energy spectra. The oscillatory dependence is due to
the crossing over of the Fermi level by the size quantized levels. For each coin-
cidence of a size quantized level with the Fermi level, there would be a discon-
tinuity in the DOS function resulting in a peak of oscillations. With large values of
film thickness, the height of the steps decreases and the ER decreases with
increasing film thickness in non-oscillatory manner and exhibit monotonic
decreasing dependence.

The height of step size and the rate of decrement are totally dependent on the band
structure. The influence of crystal field splitting is immediately apparent by the
comparing the curves (a) and (b) of Figs. 1.1 and 1.2. The crystal field splitting
enhances the numerical values of the 2D ER in both the cases. The numerical values
of the 2D ER in accordance with the three band model of Kane are different as
compared with the corresponding two band model, which reflects that fact that the
presence of the spin orbit splitting constant changes the magnitude of the 2D ER. It
may be noted that the presence of the band non-parabolicity in accordance with the
two-band model of Kane further changes the peaks of the oscillatory 2D ER for all
cases of quantum confinements. The appearance of the humps of the respective
curves is due to the redistribution of the electrons among the quantized energy levels
when the quantum numbers corresponding to the highest occupied level changes
from one fixed value to the others. With varying electron concentration, a change is
reflected in the 2D ER through the redistribution of the electrons among the quantized
levels. Although the 2D ER varies in various manners with all the variables in all the
limiting cases as evident from all the curves of Figs. 1.1 and 1.2, the rates of vari-
ations are totally band-structure dependent.

In Figs. 1.3 and 1.4, we have plotted the HD 2D ER as a function of surface
electron concentration per unit area for all cases of Figs. 1.1 and 1.2 respectively.
It appears that the HD 2D ER increases with increasing carrier degeneracy and also
reflects the signature of the 1D confinement through the step like dependence with
the HD 2D electron statistics. This oscillatory dependence will be less and less
prominent with increasing carrier concentration and ultimately, for bulk specimens
of the same material, the ER will be found to increase continuously with increasing
electron concentration in a non-oscillatory manner. We have plotted the normal-
ized HD 2D ER as functions of nano-thickness for QWs of HD GaAs, InAs and
InSb in Figs. 1.5, 1.6 and 1.7, where, the curve (a), (b) and (c) correspond to the
HD three and the two band models of Kane together with the parabolic energy
band respectively. The dependence of the 2D ER on the surface electron con-
centration per unit area for all the said cases is shown in Figs. 1.8, 1.9, and 1.10
respectively.

Using the same set of equations as for III-V materials, we have plotted the
normalized 2D ER for QWs of HD Hg;_,.Cd,Te and In,.,Ga,As,P;_, as a function
of nano-thickness and 2D electron statistics as shown by Figs. 1.11, 1.12, 1.13 and
1.14 respectively in which, the curve (a), (b) and (c) corresponds to the HD three
and the two band models of Kane together with the parabolic energy bands
respectively. The numerical values of the HD 2D ER depend on the energy band
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Fig. 1.3 Plot of the normalized HD 2D ER as a function of surface electron concentration per
unit area for the QWs of HD n-Cd;As; in accordance with a the HD generalized band model with
0 # 0, b the generalized HD band model with § = 0, ¢ the simplified HD three band model of
Kane, d the HD two band model of Kane and e the HD parabolic energy bands
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Fig. 1.4 Plot of the normalized HD 2D ER as a function of surface electron concentration per
unit area for the QWs of HD n-CdGeAs, for all cases of Fig. 1.3

constants of different materials. The Figs. 1.15 and 1.16 exhibit the dependence of
the 2D ER as a function of alloy composition for all the cases of the QWs of HD
ternary and quaternary materials as considered above. The ER decreases with
increasing alloy composition. We have investigated the normalized 2D ER, for



86 1 The ER in Quantum Wells of HD Non-parabolic Semiconductors

n-GaAs
Concentration : 10" m”

‘:q: I

”"l la)

Normalized 2D ER

10 15 20 25 30 35 40 45 50
Film thickness (nm)

Fig. 1.5 Plot of the normalized HD 2D ER as a function of film thickness for the QWs of HD
n-GaAs in accordance with a the simplified HD three band model of Kane, b the HD two band
model of Kane and ¢ the HD parabolic energy bands
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Fig. 1.6 Plot of the normalized HD 2D ER as a function of film thickness for the QWs of HD
n-InAs for all cases of Fig. 1.5

QWs of HD p-CdS materials as functions of nano-thickness and surface electron
concentration in Figs. 1.17 and 1.18 respectively, where, the curve (a) refers to
J0 # 0 and the curve (b) refers to 4y = 0, which has been used for the purpose of
assessing the influence of the splitting of the two-spin states by the spin orbit
coupling and the crystalline field in this case.

It appears from Figs. 1.17 and 1.18, that the influence of the term A is the
reduction of the quantum jumps of the oscillatory 2D ER in QWs of HD II-VI
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Fig. 1.7 Plot of the normalized HD 2D ER as a function of film thickness for the QWs of HD
n-InAs for all cases of Fig. 1.5
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Fig. 1.8 Plot of the normalized HD 2D ER as a function of surface electron concentration per
unit area for the QWs of HD GaAs in accordance with a the simplified HD three band model of
Kane, b the HD two band model of Kane and ¢ the HD parabolic energy bands

materials for both the variables. Using the appropriate equations we have plotted in
Figs. 1.19 and 1.20, the normalized 2D ER for the QWs of HD Te, GaP, PtSb, and
Bi,Tes as functions of nano-thickness and surface electron concentration per unit
area as shown by the curves (a), (b), (c) and (d) respectively. It appears from both
the Figs. 1.19 and 1.20 that the numerical magnitudes of the 2D E R are due to the
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Fig. 1.9 Plot of the normalized HD 2D ER as a function of surface electron concentration per
unit area for the QWs of HD n-InAs for all cases of Fig. 1.8
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Fig. 1.10 Plot of the normalized HD 2D ER as a function of surface electron concentration per
unit area for the QWs of HD n-InSb for all cases of Fig. 1.8

influences of the energy band constants of the respective material as considered
here. The Figs. 1.21 and 1.22 exhibit the normalized 2D ER for the QWs of HD
IV-VI materials as functions of nano-thickness and surface electron concentration
respectively. The curves (a), (b) and (c) correspond to PbTe, n-PbSnTe and n-Pb,_
wSn,Se respectively.

The influence of the energy band constants on the ER in both the cases is
apparent for all the three different materials as considered here. The normalized 2D
ER for QWs of HD stressed Kane type n- InSb has been plotted in Figs. 1.23 and
1.24 as functions of nano-thickness and surface electron concentration respectively
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Fig. 1.11 Plot of the normalized HD 2D ER as a function of film thickness for the QWs of HD
n-Hg; ,Cd,Te in accordance with a the simplified HD three band model of Kane, b the HD two
band model of Kane and ¢ the HD parabolic energy bands
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Fig. 1.12 Plot of the normalized HD 2D ER as a function of film thickness for the QWs of HD
n-In,_ As,GayP,_, for all cases of Fig. 1.11

as shown in plot (a) in the presence of stress while the plot (b) exhibits the same in
the absence of stress for the purpose of assessing the influence of stress on the 2D
ER in QWs of HD of stressed n-InSb. In the presence of stress, the magnitude of
the 2D ER is being increased as compared with the same under stress free



90 1 The ER in Quantum Wells of HD Non-parabolic Semiconductors

Hg, ,Cd.Te ¢
Film Thickness : 10 nm
5 5
= &
Q4 4 3
? N
S s
a e
E 3 ] 3 g
-] =
= (a) _
—
2 2
(h)
e
1 - v + v - v - 1
10[5 w]é ‘ol? 101! ‘°l9

Concentration (in m°)

Fig. 1.13 Plot of the normalized HD 2D ER as a function of surface electron concentration for
the QWs of HD n-Hg;_Cd,Te in accordance with a the simplified HD three band model of Kane,
b the HD two band model of Kane and ¢ the HD parabolic energy bands
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Fig. 1.14 Plot of the normalized HD 2D ER as a function of surface electron concentration for
the QWs of HD n-In;_4As,Ga,P_, for all cases of Fig. 1.13

condition. It may be noted that with the advent of modern experimental tech-
niques, it is possible to fabricate quantum-confined structures with an almost
defect-free surface. If the direction normal to the film was taken differently
from that as assumed in this work, the expressions for the 2D ER in quasi
two-dimensional structures would be different analytically, since the basic
dispersion laws of many important materials are anisotropic.
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Fig. 1.15 Plot of the normalized HD 2D ER as a function of alloy composition (x) for the QWs
of HD n-Hg,_,Cd,Te in accordance with a the simplified HD three band model of Kane, b the HD
two band model of Kane and ¢ the HD parabolic energy bands
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Fig. 1.16 Plot of the normalized HD 2D ER as a function of alloy composition (x) for the QWs
of HD n-In;_,As,Ga,P,_, for all cases of Fig. 1.15

It may be noted that under certain limiting conditions, all the results for all the
models as derived here get simplified to have transformed into the well-known
expressions of 3D and 2D ERs. This indirect test not only exhibits the mathe-
matical compatibility of the present formulation but also shows the fact that our
simple analysis is a more generalized one, since one can obtain the corresponding
results for relatively wide gap 2D materials having parabolic energy bands under
certain limiting conditions from the present generalized analysis. Thus, the present
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Fig. 1.17 Plot of the normalized HD 2D ER for as a function of film thickness for QWs of HD
p- CdS in accordance with a Hopfield model with b Hopfield model with 29 = 0
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Fig. 1.18 Plot of the normalized HD 2D ER for as a function of surface electron concentration
for QWs of HD p-CdS in accordance with @ Hopfield model with /o # 0 b Hopfield model with
Ao=0

investigations cover the study of 2D ER for QWs of HD nonlinear optical, III-V,
ternaries, quaternaries, II-VI, IV-VI, stressed compounds, Te, GaP, PtSb,, Bi,Tes,
Ge and GaSb having different band structures.

One striking understanding as a collateral study as considered here, is that, the
EEM becomes a function of the size quantum number, the Fermi energy and other
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Fig. 1.19 Plot of the normalized HD 2D ER for QWs of HD a Te, b GaP, ¢ PtSb2 and d Bi,Te;
as a function of film thickness
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Fig. 1.20 Plot of the normalized HD 2D ER for QWs of HD a Te, b GaP, ¢ PtSb,_and d Bi,Tes
as a function of electron concentration per unit area

energy band constants depending on the respective HD 2D dispersion laws as
formulated already in the respective theoretical background of this chapter toge-
ther with the fact that the EEMs exists in the band gap, a phenomena which is
impossible without the concept of band tailing. It must be mentioned that a direct
research application of the quantized materials is in the area of band structure. The
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Fig. 1.21 Plot of the normalized HD 2D ER as a function of film thickness for QWs of HD
a n-PbTe, b n-PbSnTe and ¢ n-Pb,_,Sn,Se
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Fig. 1.22 Plot of the normalized HD 2D ER as a function of surface electron concentration for
the QWs of HD a PbTe, b n-PbSnTe and ¢ n-Pb;_ Sn,SeN-Pb1-xSnxSe

theoretical results as derived in this chapter can be used to determine the 2D
diffusivity and the 3D diffusivity of the constituent HD bulk materials in the
absence of quantum effects and this simplified formulation exhibits the basic
qualitative features of 2D ER for different quantum confined materials.
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Fig. 1.23 Plot of the normalized HD 2D ER as a function of film thickness for the QWs of HD
stressed n- InSb in which the curve a shows the 2D ER in the presence of stress while the curve
b is applicable in the absence of the stress
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Fig. 1.24 Plot of the normalized HD 2D ER as a function of surface electron concentration for
the QWs of HD stressed n-InSb in which the curve a shows the 2D ER in the presence of stress
while the curve b is applicable in the absence of the stress

For the purpose of relative comparison, the 3D ER has been numerically
computed for HD n-Cd3As, as a function of electron concentration as shown in
curve (a) of Fig. 1.25. The curve (b) corresponds to 6 =0 and the curve
(c) exhibits the dependence of the ER on ng in accordance with the HD three-band
model of Kane, respectively. The plots (d) and (e) correspond to the HD two-band
model of Kane and that of parabolic energy bands respectively. By comparing the
curves (a) and (b) of Fig. 1.25, one can assess the influence of crystal field splitting
of the ER in HD nonlinear optical compounds. The Fig. 1.26 represents all cases
of Fig. 1.25 for heavily n-CdGeAs,. It appears from Figs. 1.25 and 1.26 that, the
ER in HD n-Cd3As, and n-CdGeAs, increases with increasing carrier degeneracy
as expected for degenerate materials without band tails.
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Fig. 1.25 The plot of the normalized ER in the HD n-Cd;As, as function of electron

concentration in accordance with a the generalized band model, b é = 0, ¢ the three band model
of Kane, d the two band model of Kane and e the parabolic energy bands
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Fig. 1.26 The plot of the normalized ER in the HD n-CdGeAs, as function of electron
concentration in accordance with a the generalized band model, b é = 0, ¢ the three band model
of Kane, d the two band model of Kane and e the parabolic energy bands

One can numerically evaluate the ER as a function of electron concentration in
HD III-V compounds by using n-InAs, and n-InSb as examples as shown in
Figs. 1.27 and 1.28 by curves (a), (b) and (c) respectively, in accordance with the
HD three and two band models of Kane together with the model of parabolic
energy bands . Using n-Hg;_,Cd,Te as an example of HD ternary compounds, the
ER has been numerically plotted for all the band models as a function of electron
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Fig. 1.27 The plot of the normalized ER in HD n-InAs as function of electron concentration in

accordance with a the three band model of Kane, b the two band model of Kane and ¢ the
parabolic energy bands
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Fig. 1.28 The plot of the normalized ER in HD n-InSb as function of electron concentration in
accordance with a the three band model of Kane, b the two band model of Kane and ¢ the
parabolic energy bands

concentration as shown in Fig. 1.29. It appears from the Fig. 1.29 that the ER
in both cases of HD ternary compounds increases with increasing electron
concentration as usual for the degenerate compounds without band tails. Taking
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Fig. 1.29 The plot of the normalized ER in HD n-Hg, ,Cdy Te as function of electron
concentration in accordance with a the three band model of Kane, b the two band model of Kane
and c the parabolic energy bands

n-In;_,Ga,As,P,_, lattice matched to InP as an example of HD quaternary com-
pounds, the ER has been further been plotted as a function of electron concentration
as shown in Fig. 1.30 in accordance with the three and two band models of Kane
together with the isotropic parabolic energy band model for both the cases. It appears
that the ER increases with increasing carrier degeneracy as usual. From Figs. 1.29
and 1.30, one can assess the influence of energy band constants on the ER for HD
ternary and quaternary materials respectively. The ER has been plotted for the HD p-
CdS, as a function of hole concentration py as shown by curves (a) and (b) in Fig. 1.31
for which A9 # 0and o = O respectively. This has been presented for the purpose of
assessing the influence of the splitting of the two spin states by the spin-orbit coupling
and the crystalline field on the ER.

In Fig. 1.32, the ER has been plotted for the HD (a) n-PbTe, (b) n-PbSnTe and
(c) n-Pb;_,Sn,Se as a function of electron concentration in accordance with the HD
Dimmock model. For relatively low values of electron concentration, the values of
the ER for the three materials exhibit convergence behavior where as for relatively
large values of n, the numerical values differ widely from each other. Our present
analysis is also valid for p-type IV-VI compounds with the proper change in the
energy band constants.

In Fig. 1.33, the ER has been plotted for the HD stressed n-InSb as a function of
electron concentration. For the purpose of assessing the influence of stress on the
ER in bulk specimens of stressed HD n-InSb, the plot (a) exhibits the ER in the
presence of the stress while the plot (b) shows the same in the absence of the stress.
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Fig. 1.33 The plot of the normalized ER in HD stressed n-InSb as a function of electron
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In the presence of the stress, the magnitude of the ER is being increased as
compared with the same under stress free condition for both the cases. One
important concept of this chapter is the presence of poles in the finite complex
plane in the dispersion relation of the materials in the absence of band tails creates
the complex energy spectrum in the corresponding HD samples. Besides, from the
DOS function in this case, it appears that a new forbidden zone has been created in
addition to the normal band gap of the semiconductor. If the basic dispersion
relation in the absence of band tails contains no poles in the finite complex plane,
the corresponding HD energy band spectrum will be real, although it may be the
complicated functions of exponential and error functions and deviate considerably
from that in the absence of band tailing.

Another important point in this context is the existence of the effective mass
within the forbidden zone, which is impossible without the formation of band tails.
It is an amazing fact that the study of the carrier transport in HD quantized
materials through proper formulation of the Boltzmann transport equation which
needs in turn, the corresponding HD carrier energy spectra is still one of the open
research problems.

It is already noted that with the advent of MBE and other experimental tech-
niques, it is possible to fabricate quantum-confined structures with an almost
defect-free surface. In formulating the generalized electron energy spectrum for
non-linear optical materials, we have considered the crystal-field splitting
parameter, the anisotropies in the momentum-matrix elements, and the spin-orbit
splitting parameters, respectively. In the absence of the crystal field splitting
parameter together with the assumptions of isotropic effective electron mass and
isotropic spin orbit splitting, our basic relation as given by (1.2) converts into
(1.48). The (1.48) is the well-known three-band Kane model and is valid for III-V
compounds, in general. It should be used as such for studying the electronic
properties of n-InAs where the spin-orbit splitting parameter (A) is of the order of
band gap (E,). For many important materials A > E, and under this inequality,
(1.48) assumes the form E(1 + EE;I) = Ii?k? /2m, which is the well-known two-
band Kane model. Also under the condition, E, — co, the above equation gets
simplified to the well-known form of parabolic energy bands as E = h*k*/2m,. It
is important to note that under certain limiting conditions, all the results for all the
models as derived here have transformed into the well-known expression of the 2D
ER for size quantized materials having parabolic bands. We have not considered
other types of compounds or external physical variables for numerical computa-
tions in order to keep the presentation brief. With different sets of energy band
constants, we shall get different numerical values of the 2D ER though the nature
of variations of the 2D ER as shown here would be similar for the other types of
materials and the simplified analysis of this chapter exhibits the basic qualitative
features of the 2D ER for such compounds.

By mapping, the discrete quantum state energies as a function of film thickness
is a given crystal direction, information about the effective masses and the dis-
persion relations may be derived. We must note that the study of transport
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phenomena and the formulation of the electronic properties of HD nano-com-
pounds are based on the dispersion relations in such materials. The theoretical
results of our chapter can be used to determine the 2D ER and the constituent
heavily-doped bulk materials in the absence of size effects It is worth remarking
that this simplified formulation exhibits the basic qualitative features of 2D ER for
nano-materials. The basic objective of this chapter is not solely to demonstrate the
influence of quantum confinement on the 2D ER for QWs of non-parabolic
materials but also to formulate the appropriate electron statistics in the most
generalized form, since the transport and other phenomena in HD nano-materials
having different band structures and the derivation of the expressions of many
important electronic properties are based on the temperature-dependent electron
statistics in such compounds.

Our method is not at all related to the DOS technique as used in the literature.
From the E-k dispersion relation, we can obtain the DOS, but the DOS technique
as used in the literature cannot provide the E-k dispersion relation. Therefore, our
study is more fundamental than those of the existing literature because the
Boltzmann transport equation, which controls the study of the charge transport
properties of semiconductor devices, can be solved if and only if the E-k disper-
sion relation is known. We wish to note that we have not considered the many
body effects in this simplified theoretical formalism due to the lack of availability
in the literature of proper analytical techniques for including them for the gen-
eralized systems as considered in this chapter. Our simplified approach will be
useful for the purpose of comparison when methods of tackling the formidable
problem after inclusion of the many body effects for the present generalized
systems appear. It is worth remarking in this context that from our simple theory
under certain limiting conditions we get the well-known result of the DSL for wide
gap materials having parabolic energy bands. The inclusion of the said effects
would certainly increase the accuracy of the results, although the qualitative
features of the 2D ER in QWs of HD materials discussed in this chapter would not
change in the presence of the aforementioned effects. The influence of energy band
models and the various band constants on the ER for different materials can also be
studied from all the figures of this chapter.

The numerical results presented in this chapter would be different for other
materials but the nature of variation would be unaltered. The theoretical results as
given here would be useful in analyzing various other experimental data related to
this phenomenon. Finally, we can write that the analysis as presented in this
chapter can be used to investigate, the Burstein Moss shift, the carrier contribution
to the elastic constants, the specific heat, screening length, activity coefficient,
reflection coefficient, Hall coefficient, plasma frequency, various scattering
mechanisms and other different transport coefficients of modern HD non-parabolic
quantum confined HD devices operated under different external conditions having
varying band structures.
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1.4 Open Research Problems

The problems under these sections of this monograph are by far the most
important part for the readers and few open research problems are presented
from this chapter till end. The numerical values of the energy band constants for
various semiconductors are given in Table 1.1 for the related computer

simulations.

(R.1.1)  Investigate the ER for the HD bulk semiconductors whose respective
dispersion relations of the carriers in the absence of band tails and any
externally applied field are given below:

(a) The electron dispersion law in n-GaP can be written as [203]

(b)

E

PR e A 2
— Z s :F _ i
2m|’“ 2mY 2

N\ 2
A
(E) +P\kZ + DKk (R1.1)

where, A =335meV, P; =2 x 10719 eVm, D, = Pyja; and
a; =54 x 107" m.

The dispersion relation for the conduction electrons for IV-VI
semiconductors can also be described by the models of Cohen
[204], McClure and Choi [205], Bangert et al. [206] and Foley
et al. [207] respectively.

®

(i)

In accordance with Cohen [204], the dispersion law of the
carriers is given by

2 2 2 4 2

p; | p;  OEDy oapy py
E(1+aE)=-"+_—"— - : — (1 4+ oF
(14 oE) 2m1+2m3 2m, + 4mymy +2m2( + oE)

(R1.2)

where m;, m, and m; are the effective carrier masses at the
band-edge along x, y and z directions respectively and m) is
the effective- mass tensor component at the top of the valence
band (for electrons) or at the bottom of the conduction band
(for holes).

The carrier energy spectra can be written, following McClure
and Choi, [205] as

2 2 2 2

Dy Dy P; Py m
E(140oE) = — Y aEl1— [ =
(1+aE) 2m1+2m2+2m3+2m20C ml

4 2.2 2.2
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- — _

dmym,  Amymy  4moms

(R1.3)
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(iii)

@iv)
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In accordance with Bangert and Kastner [206], the dispersion
relation is given by

[(E) = Fi(E)k; + FA(E)K; (R1.4)

where, T(E)=2E, F\(E)= Rf%+

= E+E, Fz(E) =

A’ +E1E, E+E )

2¢3 ($1401)°
E+E, E+4

R? =23 x107"(eVm)*, C2 = 0.83 x 107'°(eVm)*, 02
= 1.3R?, S7 = 4.6R;, A, =3.07¢V, A" =3028¢V  and
g, = 4. It may be noted that under the S; =0, Q; =0,

2
R} = %, Ci= ;;ff, (R1.4) assumes the form E(1 + aE) =
nK2
2m

&l
The carrier energy spectrum of IV-VI semiconductors in

accordance with Foley et al. [207] can be written as
1/2

E
E+7g:E_(k)+

E 2
[E+ (k) + ﬂ +PL K + Pk

(R1.5)

h

N K R
where, Ey (k) =5+ 45+, E_(k) =5,~ = 2m‘ represents the
L I

contribution from the interaction of the conductlon and the
valance band edge states with the more distant bands and the
free electron term —i =1 [L + L} L=1 [i + L} ,
L

Mye my, 7l’l’lH mye myy,
For n-PbTe

P, =461 x 10"%eVm, P| = 4.61 x 10"eVm, < = 10.36,
my,
M _ 075, ™0 — 1136, =120, andg, = 4
My My Myy

(c) The hole energy spectrum of p-type zero-gap semiconductors
(e.g. HgTe) is given by [208]

k
ko

R 36 2F
=+ T8 k- ( 3)1 (R1.6)

C2mr o 128e.,

where m} is the effective mass of the hole at the top of the valence

band, Ep = hz 2 " and ko = ’"U“’
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(d) The conduction electrons of n-GaSb obey the following two dis-
persion relations:
1. In accordance with the model of Seiler et al. [209]
[ E  E a2 | CofPKE | Vofi(k)R | wofs (k)R
L T T U Rt Pt e et oy
(R1.7)

where oy = 4P*(E, +2A) [Eg(Eg + A)} 71, P is the isotropic
momentum matrix element, fi(k) = k=2 [k)%kf + k)z,kg + kzzkﬂ
represents the warping of the Fermi surface, f>(k) = [{k* (kfk}z, +
k)z,kz2 + K2k2) — Qkfk)%kf}l/ k'] represents the inversion asym-
metry splitting of the conduction bandand ¢, vy and g represent

the constants of the electron spectrum in this case.
2. In accordance with the model of Zhang et al. [210]

E= B+ EP Ky 10+ [E + B K |10

3)

+ [E + EQ Ky + B K | (R1.8)

KAk 4k K222
where K4’IE%\/21|:‘ o *—%},Kﬁ,l E\/“g#{#-i-

| (kAR 3 1 . :
35 o —3) — W]’ the coefficients are in €V, the values of

k are 10() times those of k in atomic units (a is the lattice
constant), E\ =1.0239620, E) =0, E" = —1.1320772,
EY =0.05658, E.) =1.1072073, E =—0.1134024 and
EY) = —0.0072275.

(e) In addition to the well-known band models of III-V semiconduc-

tors as discussed in this monograph, the conduction electrons of
such compounds obey the following three dispersion relations:

1. In accordance with the model of Rossler [211]

27,2
E= a0k + B[Pk + K2k* + K2k
2’nc"‘OCIO +ﬂ10[x y+ y : Tk x} (R1.9)
£ 91 P (K22 + K22 + K2K2) — 9k2k2k2)

where, @19 = 11 + 02k, fig = By + Pk and g =7+
91k, in which, & = —2,132 x 107*%eVm®*, &, = 9,030x
107%eVm’, f;; = —2,493 x 107 eVm*, f,, = 12,594 x
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107%evVvm®, 7, =30x 107¥eVm® and 7y, = —154x
107% eVm*.
2. In accordance with Johnson and Dickey [212], the electron

energy spectrum assumes the form

i 2 (E)
E=-5S+B8[Le L]+ 511488 EJ

mg nyp

, 5 [ (E+2) _ (Ee+A) (E+E+R)
where, 7 = P { EM)] Fi(E) = e oy

-1
m'. = 0.139my and m,, = [L _ L] .

m, ny
3. In accordance with Agafonov et al. [213], the electron energy
spectrum can be written as

p_N—Ec| 1K |DV3-3B k4 Ky + kS
2 2nm, 2(%) k4
(R1.10)
12 _ R
where, = (Eg + §P2k2) ,B=-21 2’?70 and

D= —40(2"—;0).

(f) The dispersion relation of the carriers in n-type Pb, Ga,Te with
x = 0.01 can be written following Vassilev [214] as

[E — 0.606k; — 0.0722k2|[E + E, + 0.411k7 + 0.0377k7]
= 0.23k7 + 0.02&2 £ [0.06E, + 0.061k> + 0.0066k2 ]k,
(RL.11)

where, E,(= 0.21eV) is the energy gap for the transition point, the
zero of the energy E is at the edge of the conduction band of the I
point of the Brillouin zone and is measured positively upwards, k.
k, and k, are in the units of 10° m™!

(g) The energy spectrum of the carriers in the two higher valance
bands and the single lower valance band of Te can, respectively, be
expressed as [215]

— 1/2 _
E = Aok + Biok; + [A%o + (ﬁlokz)z} and E
= A+ A1ok? + Biok] & fiok: (R1.12)

where, E is the energy of the hole as measured from the top of the
valance and within it, A;p = 3.77 x 107 eVm?, By = 3.57x
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)

®

@

k)

1079eVm?, Ajp =0.628¢eV, (f,0)° =6 x 1072 (¢Vm)® and
A =1,004 x 103 eV are the spectrum constants.

The dispersion relation in graphite can be written following Brandt
[216] as

1 1 2, 0]
EZE[EZ +E;5)+ |:Z(E2—E3) + nzk (R1.13)

where,

E;, = A = =27, cos ¢y + 275 cos® ¢y, dg = 5=, E3 = 27, cos® ¢
and 1, = (‘?) as (7o + 27,4 cos ¢) in which the band constants are
A, 90, 71, 72, Tas 75 asand cg respectively.

The dispersion relation of the conduction electrons in Antimony in
accordance with Ketterson [217] can be written as

2moE = oy1p; + oppy + 433p2 + 2023pyp: (R1.14)

and

2moE = ap; + dzP§ + asp? + aspyp £ aspxp; + aspapy
(R1.15)

where, a :%(om + 30p2), a = %(oczz +3041), a3 = o33, ag =
33, das = \/§ and ag = \/5(0622 — 0611) in which 11, 022,
o33 and o3 are the system constants.

The dispersion relation of the holes in p-InSb can be written in
accordance with Cunningham [218] as

_ 1
E = cy(1 44k &3 2V2/e4\/16 + 57, VEugak] - (R1.16)

where, ¢4 = %0 +04, 0,=47 %, V4 = i’,—j, by =3bs + 20,4,
bs=24 %, = 1[sin® 20 + sin* 0sin® 2¢], 0 is measured from
the positive z-axis, ¢ is measured from positive x-axis, g4 =
sin 0[cos? 0 4 Lsin* Osin® 2] and E4 =5 x 10~*eV.

The energy spectrum of the valance bands of CuCl in accordance
with Yekimov et al. [219] can be written as

h2k?

e (R1.17)

E, = (76— 277)

and
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(R.1.2)

(R.1.3)

(R.1.4)

(R.1.5)

1 The ER in Quantum Wells of HD Non-parabolic Semiconductors

Bk A
E, = p)— — =L 4
s = (Vs +77) g 2

12
A2 R (RN
Ly A — 7
2 T 12m0+9( 2 )

(R1.18)
where, 7, = 0.53, y; = 0.07, A; = 70 meV.

() In the presence of stress, y along <001> and <111> directions,
the energy spectra of the holes in semiconductors having diamond
structure valance bands can be respectively expressed following
Roman et al. [220] as

E=Aek® + [B2k* + 62 + B1oo(2k2 — 13)]'? (R1.19)
and
- D 1/2
E = Agk® + [B% + 67+ %57(2@3 - kf)} (R1.20)

where, Ag, B7, Dg and Cg are inverse mass band parameters in
which d¢ = I7(S11 — Si2) 16, Sij are the usual elastic compliance

— 2
constants, B% = (B% —|—%6) and 6; = (‘g‘jgf) %e- For gray tin,

dg = —4.1eV, I; = =23 eV, Ag = 192/ B; = 2631 Dg =

2my’ 2my’
2 2 _ "
312_'"0 and C6 = 71112?110
(m) The dispersion relation of the carriers of cadmium and zinc di-

phosphides are given by [221]
E = |:ﬂ1 + ﬁZﬁ?(k):| k2 + { |:ﬁ4ﬁ3(k)X(ﬁ5 _ ﬁ2ﬁ3(k)>k2:|

864 8B4
2 2
183 (1 - B — g, (1 - B0y
2+k2—2K2
where f81, 2, 4 and fs are system constants and (k) = “—r—

Investigate the ER for bulk specimens of the heavily-doped semicon-
ductors in the presences of Gaussian, exponential, Kane, Halperian, Lax
and Bonch-Burevich types of band tails [37, 38] for all systems whose
unperturbed carrier energy spectra are defined in R1.1.

Investigate the ER for QWs of all the HD semiconductors as considered
in R1.2.

Investigate the ER for HD bulk specimens of the negative refractive
index, organic, magnetic and other advanced optical materials in the
presence of an arbitrarily oriented alternating electric field.

Investigate the ER for the QWs of HD negative refractive index,
organic, magnetic and other advanced optical materials in the presence
of an arbitrarily oriented alternating electric field.
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(R.1.6)
(R.1.7)
(R.1.8)
(R.1.9)
(R.1.10)

R.1.11)

(R.1.12)

(R.1.13)

(R.1.14)
(R.1.15)
(R.1.16)
(R.1.17)
(R.1.18)
(R.1.19)
(R.1.20)

(R.1.21)

(R.1.22)

(R.1.23)

Investigate the ER for the multiple QWs of HD materials whose
unperturbed carrier energy spectra are defined in R1.1

Investigate the ER for all the appropriate HD low dimensional systems
of this chapter in the presence of finite potential wells.

Investigate the ER for all the appropriate HD low dimensional systems
of this chapter in the presence of parabolic potential wells.

Investigate the ER for all the appropriate HD systems of this chapter
forming quantum rings.

Investigate the ER for all the above appropriate problems in the pres-
ence of elliptical Hill and quantum square rings.

Investigate the ER for parabolic cylindrical HD low dimensional sys-
tems in the presence of an arbitrarily oriented alternating electric field
for all the HD materials whose unperturbed carrier energy spectra are
defined in R1.1.

Investigate the ER for HD low dimensional systems of the negative
refractive index and other advanced optical materials in the presence of an
arbitrarily oriented alternating electric field and non-uniform light waves.
Investigate the ER for triangular HD low dimensional systems of the
negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric
field in the presence of strain.

Investigate the ER in HD quantum wires of non-parabolic semicon-
ductors as discussed in this chapter.

Investigate the ER for all the problems of (R1.14) in the presence of
arbitrarily oriented magnetic field.

Investigate the ER for all the problems of (R1.14) in the presence of
alternating electric field.

Investigate the ER for all the problems of (R1.14) in the presence of
alternating magnetic field.

Investigate the ER for all the problems of (R1.14) in the presence of
crossed electric field and quantizing magnetic fields.

Investigate the ER for all the problems of (R1.14) in the presence of crossed
alternating electric field and alternating quantizing magnetic fields.
Investigate the ER for HD quantum wires of the negative refractive
index, organic and magnetic materials.

Investigate the ER for HD quantum wires of the negative refractive
index, organic and magnetic materials in the presence of alternating
time dependent magnetic field.

Investigate the ER for HD quantum wires of the negative refractive
index, organic and magnetic materials in the presence of in the presence
of crossed alternating electric field and alternating quantizing magnetic
fields.

(a) Investigate the ER for HD low dimensional systems of the negative
refractive index, organic, magnetic and other advanced optical materials
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in the presence of an arbitrarily oriented alternating electric field con-
sidering many body effects.

(b) Investigate all the appropriate problems of this chapter for a Dirac
electron.

(R.1.24) Investigate all the appropriate problems of this chapter by including the

many body, image force, broadening and hot carrier effects respectively.

(R.1.25) Investigate all the appropriate problems of this chapter by removing all

the mathematical approximations and establishing the respective
appropriate uniqueness conditions.
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Chapter 2
The ER in Doping Super Lattices of HD
Non-parabolic Semiconductors

2.1 Introduction

The technological importance of super-lattices in general, and specifically doping
super-lattices [1-51] has already been stated in the preface and also in the refer-
ences of this chapter. In Sect. 2.2.1, of the theoretical background, the ER in
doping superlattices of HD non-linear optical semiconductors has been investi-
gated. The Sect. 2.2.2 contains the results for doping superlattices of HD III-V,
ternary and quaternary semiconductors in accordance with the three and the two
band models of Kane together with parabolic energy bands and they form the
special cases of Sect. 2.2.1. Sections 2.2.3, 2.2.4 and 2.2.5 contain the study of the
ER for doping superlattices of HD II-VI, IV-VI and stressed Kane type semi-
conductors respectively. Sections 2.3 and 2.4 contain the results and discussion
and the open research problems for this chapter.

2.2 Theoretical Background

2.2.1 The ER in Doping Superlattices of HD Non-linear
Optical Semiconductors

The dispersion relation of the conduction electrons in doping superlattices of HD
nonlinear optical materials can be expressed by using (1.2) and following the
method as given in [19-51] as

1 21,2
(}’l,’ + E) n k?
—— =~ wsup(E,Ng) + ————F———— =1 (2.1)
WTyy (E, 1) (.m,) 2m T (E, 1,)
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12
2
where wspup (E,n,) = Real part of % , ni(=0,1,2...) is the
0Ese mH Mg

mini-band index for nipi structures and d, is the mini-band index for nipi structures
and dy is the superlattice period.
The EEM in this case assumes the form

2
m" (Egump, nif)y) = Real part of <7> G} (Epnmp, i) (2.2)
2m’ T (En, ni+1L = .
where, Ga11p (E, 1, n;) = — 2;2( le) [1 _ hTil (;231 )d)SHD(Ea ng)} and Ep,up is the

Fermi energy in the present case as measured from the edge of the conduction
band in vertically upward direction in the absence of any quantization.

From (2.2), we observe that the EEM is a function of the Fermi energy, nipi
subband index, scattering potential and the other material constants which is the
characteristic feature of doping superlattices of HD non-linear optical materials.

The subband energy (E\,up) can be written as

(mi +5)
__ Ty Eunss 1) = 1 2.3
hTZl (ElniHDa ng) ngD( it rlg) ( )

The DOS function for doping superlattices of HD non-linear optical materials
can be expressed as

Mimax

NmszD E ’7g - gv ZGleD E ”Ig7 ) (E_Eln,»HD) (24)
n/—()

The electron concentration, can be written as

Nzmax

napN = 2—Real part sz G210 (Epntp; Mg, 1) + Goorip (Epneip, Mg, mi)] - (2.5)

n,=1

N

where, Gasup (Enin; g, 1) = > L(r)Gaiup(Eparp, g, 1)

r=1

The ER of doping superlattices of HDS can, in general, be expressed as

D 0
= _ [2DN0 peal part of [ fabNo - (2.6)
n ‘€| 6(EF()HD EF]()HD)

where, the aforementioned physical variables are applicable only for electric
quantum limit. Thus by combining (2.5) and (2.6) we can study the ER in this case.
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The dispersion relation of the conduction electrons in doping superlattices of
nonlinear optical materials in the absence of band tails assumes the form

2m;;
D(E) = Ua(E)E +05(E) (i 3) T on(E) 2.7)

2 1/2 , ,
= Mole — 1 JUEWE)] - (E)[Ys(E)
where wg(E) = (W) and 0, (E) :g{ A(E)Y, h)b]j(E)]l2 s ( ]}

The EEM in this case can be written as

h2
m*(Epy,n;) = <7> R (E, n;)

E=Ep,
where,

2m|

) = 02802 patB {10 B (50 s (s Yo = (310 () (4 3 mo )
i

=@ (1) st (3 )lon(e wa(e) |

and Ep, is the Fermi energy in the present case as measured from the edge of the
conduction band in vertically upward direction in the absence of any quantization.
The subband energy (E1,;) can be written as

2 *
Y1 (Erni) = W3(Erni) (ni + %) %wS(Elni) (2.9)

The DOS function for doping superlattices of nonlinear optical materials can be
expressed as

Mimax

Noipi (E) = ;’—;ZRSI (E,ni)H(E — E;) (2.10)
}1,’:0

the electron concentration, can be written as

ny = —Z [Ts1(Epu, i) + Ts2(Epu, )] (2.11)

n;=!

*

where, Tgi (Efy, i) = [1//1(Fp,,) — Y3 (Epn) (ni +1) zr:” CUS(EFH):| [%(E@:)]ﬂ and

ng(EF,” n,-) = Z L(’")TSI (EFna ni)'

r=1
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The electron concentration for the doping superlattices in quantum limit can be
expressed as

*
A

ny = {g_ﬂ [l/fl(EFO) — Y3(Ero) n; a)g(EFo)] (Vs (Ero)] " (2.12)

2n

where, Efq is the Fermi energy in the present case in the quantum limit and

_ wle?  \"’
s(Ero) = (m) :

The ER at the electric quantum limit for doping superlattices in the absence of
band tails can be written as

_ _ —1
D_1n {_ano} (2.13)
u e [0(Erpo — Eo)

where, 71 is the electron concentration, Erg is the Fermi energy and Ej is the sub-
band energy at the electric quantum limit respectively.
In this case, Ejp can be determined from the equation as given by

*

Y1 (En) = '//3(E10)%WS(E10) (2.14)

Thus using (2.12), (2.13) and (2.14) we can study the ER in doping superlattices
of non-linear optical materials in the absence of band tails.

2.2.2 The ER in Doping Superlattices of HD III-V, Ternary
and Quaternary Semiconductors

(a) The electron energy spectrum in doping superlattices of HD III-V, ternary
and quaternary materials can be expressed from (2.1) under the conditions
Aj=AL=A,0=0and mj =m] =me, as

Rk

2m,

- [TM(E, 1) +iTs(E, n,) — <n,- + %) hwonp (E, ng)] (2.15)

| |2 1/2
nople
where @omn (£, 1) = (dos T3, (B, >m>

SC 1g c
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The EEM in this case assumes the form

* hz
m*(Epanp, ni,1,) = Real Part of (7) Ghspp(Eratip, Mg, i) (2.16)

where  Gasup (Epump, g, i) = 2"1‘ [T31 (B, ) + iT32(Brun, ) — (i +3)
Tiworp (Epnmp, 1))
The subband energy E,pup can be written as

. 1
(751 (E2n,mp, 1) + 1T32(Banmps 1) — <”i + 5) haopp (Eanupsng)] =0 (2.17)

The DOS function for doping superlattics of HD III-V, ternary and quaternary
materials can be expressed as

Mimax

ZGBHD E, g, ni)H(E — Eip) (2.18)

n,f

gvmc

NmptHD (E ﬂg

The electron concentration, can be written as

Nimax

"¢ Real part ofz [Gasup (Epnmp, N> i) + Goarp (Epnnn, Mg 1)
n;=0

nypN =
nh

(2.19)

where, Gaunp (Ernin; g, 1) = Y L(1)Ga3up (Epurin, Mg 1)
r=1

Using (2.6) and (2.19) at the electric quantum limit, we can study the ER in this
case.

In the absence of band tails, the dispersion relation in this case assumes the
form

1 n2k?
In(E) = (i +5 hoo(E) + . (2.20)
where w9(E) = <7doasj;jlf(|1;)trlc)'
The EEM in this case can be written as
m*(Epn, ni) = mcRss (E, i) |, (2.21)

in WhiCh, Rgz(E, I’l,') = {[I]l(E)]/—(I’li +%)h[w19(E)]l}
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From (2.21), we observe that the EEM in this case is a function of the Fermi
energy, nipi subband index and the other material constants which is the charac-
teristic feature of doping superlattices of III-V, ternary and quaternary compounds
whose bulk dispersion relations is defined by the three band model of Kane.

The subband energies (E,,;) can be written as

51 (Egi) = (ni + %) ha1o(Eani) (2.22)

The DOS function in this case can be expressed as

Nimax
> " Rsy(E,ni)H(E — E) (2.23)
n,':0

ngV
NniPi(E) = T

The use of (2.23) leads to the expression of the electron concentration as

Nimax

megy _ _
=75 [Tso(Epuund) + Tsa (Ern)] (2.24)
n,:O

no

where Tg3(Fpn,n,-) = [III(FFn) — (l’l,‘ —‘r%)h&)]g(ﬁpn)] and T84(Epn,n,~) = ZL(}’)

r=1
T33(Epn, ;).
Using (2.24), the electron concentration in the electric quantum limit for doping
superlattices of III-V, ternary and quaternary materials can be written as

m
= (25 (B) — {01 /2)01o(Ea) (225)
where, Ejg is determined from the equation
1
I11(Ez) = 5 hos(Ex) (2.26)

Using (2.13) and (2.26) we can study, the ER in this case.

(b) The electron energy spectrum in doping superlattics of HD III-V, ternary and
quaternary materials whose energy band structures in the absence of band
tails are described by the two band model of Kane can be expressed from
(2.15) under the conditions A > E, or A < E,, as

R2k?
2m,

= [12(E;ng) — <”i +%> i roup (E, 1,)] (2.27)

2 1/2
_ nole|
where W10HD (E) = (dogﬂ.y’z (E,ng)mc)
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The EEM in this case assumes the form

h2
m* (EFnHD7 ni, ng) = (7) G,QSHD (EF11HD7 nga ni) (228)

where Gasup (EFamp; Mg, i) = zhlz [72(Ernrip; 1) — (ni + 3)io1onp (Eputip s 1) |
The subband energy Es,mp can be written as

1
aEsnaoong) ~ (13 Yo B =0 (229

The DOS function in this case is given by

Mimax

gvime
ZG25HD (E,ng,ni)H(E — E3nnp) (2.30)

NmleD (E ng

The electron concentration, can be written as

Mimax

Z (Gastip (Enip; gs 1) + Gasrp (Brarn, 1, 1i)] (2.31)
n;=0

8y

MpN = ——>~
h?

where, Gsup (Erump, g ni) = 3 L(r)Gasup (Erunp, g n;)
r=1

Using (2.31) and (2.6) at the electric quantum limit, we can study the ER in this
case.

In the absence of band tails, the dispersion relation in this case assumes the
form

1 1 k>
E(1+aE)=mn +§ hano(E) + 5 z (2.32)
_ no\e\z 1/2
where wy(E) = (7‘103“ a HaE)mC) .
The EEM in this case can be written as
m*(EF,,,ni) = mchgz(E, ni)|E:EFn (233)

in which, Rig(E,n;) = {[1 4 20E] — (n; +3)hlwi9(E)]'}.

From (2.33), we observe that the EEM in this case is a function of the Fermi
energy, nipi subband index and the other material constants which is the charac-
teristic feature of doping superlattices of III-V, ternary and quaternary compounds

whose bulk dispersion relations is defined by the three band model of Kane.
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The subband energies (Es,;) can be written as
1
E3m'(1 + OCE3m') = (n,- + E) hwzo(E3m') (234)

The DOS function in this case can be expressed as

Fimax

Nmpl = m(gv Zngz E I’l E — E3m') (235)

The use of (2.35) leads to the expression of the electron concentration as

nlm ax

ngV
T Z Tss EFm + TSG(Eanzﬂ (2.36)
where Tss(Epny i) = [Epa(1 + 0Epn) — (ni + 5) oo (Epy) | and

T36(Epn,ni) = Y, L(r)Tss(Ern, ni).
r=I1

Thus using (2.36) in the electric quantum limit, we can study the ER in this
case.

(c) The electron energy spectrum in nipi structures of HD III-V, ternary and
quaternary materials whose energy band structures in the absence of band
tails are described by the parabolic energy bands can be expressed as

Rk 1
om, V3(E,ng) — it honp (B, 1) (2.37)

. ng\e\z 1/2
where wi1up(E) = ( gmnEnm

The EEM in this case assumes the form

. i
m (EFnHDania Ng) = (?)Glsz(EF"HDv ”g’nl) (2.38)

where G7up(Efurp; g, i) = Zhiz = [73(Eputins ng) — (ni 4 3)ho11p (Brnns 1) ]
The subband energy Ea4,,zp can be expressed as

1
[Vs (EamupsNg) — (ni + E) lio1ap (Eantp, Wg)] =0 (2.39)
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The DOS function in this case is given by

Nimax

Z Gorup(E, Hg, 1L n;))H(E — Esnip) (2.40)
n,:O

&M
h?

anleD (E ng)

The electron concentration, can be written as

Mimax

z (Ga100 (Erntins s 1) + Gasep (Epuan, Mg, i) (2.41)
n;=0

EvMe

MpN = ——>
nh?

where, Gagup(Erup, g, ni) = Y- L(r)Gazup (Brunp, 1, i)
r=1

Using (2.41) and (2.6) at the electric quantum limit, we can study the ER in this
case.
In the absence of band tails, the dispersion relation in this case assumes the form

1 R
E = h 242
< 2> “2F 2 (2.42)

nolel* 12
where w,; = (0—) .

doescme

The EEM in this case can be written as
m* (Epy,n;) = m, (2.43)

Thus the EEM in this case is a constant quantity.
The subband energies (E4y,;) can be written as

1
Eypi = (ni + E) hway (2.44)

The DOS function in this case can be expressed as

Mimax

Nuipi(E) = "B"N " H(E — Ey) (2.45)
nh oy

The use of (2.45) leads to the expression of the surface electron concentration as

Mimax

Fo(ns;) (2.46)
n=0

e megvkpT
0 Th?

where N4 = (EFn - E4n )/(kBT)
Thus using (2.46) in the electric quantum limit, we can study the ER in this case.
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2.2.3 The ER in Doping Superlattices of HD II-VI
Semiconductors

The 2D electron dispersion law in doping superlattices of HD II-VI semicon-
ductors can be expressed as

1 _
73(B ) = agk; + (ni + E) ficono (B, ng) £ Aoks, w30(E, 1)

ef? 1/2

nole

=" 2.47
<d0y§ (E, ”8)85"mﬁ> (247)

The EEM in this case assumes the form as

12
* « = | =2 1
m* (Epunp, niy 1) = mL{ 120 [(/10) +4agy3(Bpnnp, 1) — 4aq <n1 + 5) T30 (Epurip, %)] }V’g(EFﬂHD«, M)

(2.48)
The subband energy can be written as
1
73(Eentp; Mg) = | ni + 3 hso(Eenup; Mg) (2.49)
The surface electron concentration per unit area in this case is given by
mpN = 45—;622 [G30tip (Efntin, Mg, i) + G3160 (Bt 11, 1i) | (2.50)
n;=0

where

_ — 1 — —
Gioup (Epnnp, g, i) = [(7»0)2 - 206{ (ni + 5) 1230 (Bpntip, Mgs i) — V3 (Brutin, Mg, nz)H

and G311 (Epntin, Mg, ni) = Y L(1)Gaonp (Eparin, Mg, i)
r=1

Using (2.50) and (2.6) at the electric quantum limit, we can study the ER in this
case.

In the absence of band-tails, the carrier dispersion law in doping superlattices of
II-VI compounds can be expressed as

1
1 - 2\’
E = agks2 + (ni + E)hwlo =+ Aoks, Wi = ( n0|e| *> (251)
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Using (2.51), the EEM in this case can be written as

—-1/2
m* (Epp,n;) = m’, {1 — o |:(Zo>2+4a(,)EFn — 4ay, <n,~ + %) mm] } (2.52)

Thus, the EEM in this case is a function of the Fermi energy, the nipi subband

index number and the energy spectrum constants due to the only presence of Ag.
The subband energies (Es,;) assume the form as

1
Egni = (ni + E) hawno (2.53)

The DOS function in this case can be expressed as

m*gvnimux as;
Nyini(E) = —= l———_|H(E — Egy 2.54
in(E) =" E[ | HE—Bw) (259

. . 7 _ =2 _
m Wthh, agy = 2\/035 and bg] (I’l,) = [ﬁ |:(/10) —4(16 (I’l,‘ + %)h(})]():H
The use of the (2.54) leads to the electron concentration as

\/u]% [2<\/ ngy + cs1(ni) — v/ Cm("i))D 22 -2 2' (2 )M}

(11 + cs1 ()™

(2.55)

bgi(n )+Eaam
T

Using (2.55) in the electric quantum limit we can study the ER in this case.

where, g, = % and cg; (n;) =

2.2.4 The ER in Doping Superlattices of HD IV-VI
Semiconductors

The 2D electron dispersion law in this case is given by

kg = 515(Ea rlg7 ni) (256)

where §5(E, e, 1i) = [2012(E, 713)]71[—512(15» N> 1) + \/5%3(E= g i) — 4012(E, 115)014(E, g, )],
ahi*Z (En

012(E,n,) = 4,,107,,17 513(E, g, ni) = B [791(E, 1) 611 (E, g, ni) + A1a(E, )],

014(E, ng,mi) = [A73(E, %)511(& Ng> i) + 274 (E, ﬂg)5?1(E7 N> i) — Z74(E, 1)),

. . o 12

11 (Esngymi) = 3mip (0,m,) (ni + 3) [WDU(E&,)]
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2

and m;ID(Ea ;/Ig) = [2;“74(E7 ’7g){_;L,73 (E7 rlg)

4),%6(E, fe)
+ /173 (E7 V/g)j';S(Ev ng) + 2/1/74(E7 '/]g))‘75(Ev ng) + 2174(E7 ng)}“;S(Ev ng)
VBB ) + 44 (B s (o)

- 2;”l74(E7 ng){_)“73(E> ;/Ig) + \//“33 (E7 '/Ig) + 4/174(E7 ;/Ig);"75 (Ev ng)}]
The EEM in this case assumes the form

}

h2
m*(EanD,ni,ng) = (7) 5/15(EF11HD711g7ni) (257)

The sub-band energy Ey, yp can be expressed as in this case as
0 = 615(Eonup; Mg, 1i) (2.58)

The surface electron concentration in this case is given by

nopN = s (G320 (Brntips Mg, 1) + G33up (EFutip, 1, 17)] (2.59)
2n 8 §
n;=0

where

G31ip (Epnmp, g, ni) = 515(EFnHD7 Mg, i) and Ga3up (Epump, g, 1i)

= ZL )G3260 (Epntip; 1, 1)

r=1

Using (2.59) and (2.6) at the electric quantum limit, we can study the ER in this
case.

The carrier energy spectrum in doping superlattices of IV-VI compounds in the
absence of band tails can be written as

kg = (h2519)—1 |:—Sg()(E, n,-) + \/S%O(E’ n,') + 4519521(E, n,)] (260)

in which, Sj9 = (ﬁ)ﬂzo(ﬂn,‘) = {%_ ( ) + 1n+le+ 2m —
2 (i + 3)T(E))

2m; my

— (i + T(E)+
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1(8) =22 5),m(0) = (m"’f’m) on(E) = (d,'n(E)>
= () E%{(%)—( 0 G eor=3 G- ()

oER* 1 i 1
E n) = |E(1 E)+——(n+=|TE)+=—|nm+=|TE)(1 E
Sea(Bm) = [ Q1+ o8) 4 5 (5 )1(E) 3= (43 ) TCE + 28)

il (s3]

Using (2.60) the EEM in this case can be written as

m*(Epn, ni) = Rea(E,mi) | p_p, (2.61)

where,

Sz()(E n')[Szo(E n,-)]/+ 2519[521(E ni)]/
1/2
|:{[S20 E n } +4S19521(E I’l)

Rea(E, i) = (2819) " | —(S0(E, mi))' +

Thus, one can observe that the EEM in this case is a function of both the Fermi
energy and the nipi subband index number together with the spectrum constants of
the system due to the presence of band non-parabolicity.

The subband energies (Ejo,;) can be written as

2

ni ni i ni ni l
10 2)”]7 10 2 10 2”11 10 2

_ [% T(Evon) (”f * %)}

(2.62)
The DOS function in this case assumes the form as
Nupi(E) = 25> Raa(E.m)H(E ~ Evon) (2.63)

n;=0
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The use of (2.63) leads to the expression of the electron concentration as

Mimax

8v = =
= Tss(Epa,1;) + Tsg(Epn, 1i 2.64
a5y Sy T Erm )+ Tos(Ers ) (2.64)

no

where, Tgs(Epy,ni) = |:_S20(EFn7ni) + \/[SZO(EFnani)]2+4SIQSZI(EFnani):| and

Ts6(Epn,ni) = Y, L(r)Tss(Ern, ni).
r=1

The electron concentration at the quantum limit can be defined through the
equation

g = #;S]g [520 (Ero,0) + \/[Szo (EFO,O)]2+4519521 (EF070):| (2.65)

2.2.5 The ER in Doping Superlattices of HD Kane Type
Semiconductors

The 2D dispersion relation in this case is given by
P (E, )k + Qui(E )k + Sii(E,ng)010(E, ng,ni) = 1 (2.66)

where

1/2
I’lo€2

dossemz (E, 1)

2 . 1
519(E; ’/Igv ni) = ﬁmzz(o’ ng) (l’l,‘ + 5)

and the expression for m.(E,1,) has already been given in (1.209) of Chap. 1.
The EEM in this case assumes the form

2

h
m*(EFn[-[D,ni,V]g) = (7) 5/20(EF11HD7ng7ni) (267)

(1 = S11(Epunp; 1) 019(EFntip, g, 1i)]
where 620(Epnup; Mg, i) = s s
\/PII(EFnHD;ng)Qll(EFnHDarlg)

The sub-band energy Ejs,,zp can be expressed as in this case as

S11(E1sntp; 1g)019 (Ersnap; Mg, i) = 1 (2.68)
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The surface electron concentration in this case is given by

Mimax

napN = 5—;2 (G34110 (BFntin, Mg i) + Gasap (Epump, g, 1)) (2.69)
n,:O

where  Gsapp (Epump, gy Mi) = 020 (Eputin, ng,ni) and  Gsspp (Erntin, fg: i) =
s —

> L(t)Gaaup (Epump, g, 1)

r=1

Using (2.69) and (2.6) at the electric quantum limit, we can study the ER in this
case.

The electron dispersion law in the doping superlattices of stressed Kane type
semiconductors can be written as

k K2 Lm0 (1N
[aO(E)f*@O(E)]er[EO(E)]z h <,+2) 12(E) = (2.70)

= no\e|2 % * = 2= Q C
where w1, (E) = T (E) and m}(E) = h°co(E) 5z [co(E)].

The use of (2.70) leads to the expression of the EEM as

. "
mI(Eani) = (?)R%(E, I’l,') (271)
E=Ep,
where,
Fus(Em) = h@o(E))/b"(E) + (EO(E»/%(E)] - [Eo(lE)]zzm?O) (ni+%>(012(E)}
_ |@(EYbo(E) 2m(0) (1Y 1, [aEhEEE o) (1)
|: [E()(E ]2 i ( i+ 2)[ )]Z(E)]:| + [ [EO(E)]3 7 < i + 2)[0]2(E)]
(2.72)

Thus, the EEM is a function of the Fermi energy and the nipi subband index due
to the presence of stress and band non-parabolicity only.
The subband energies (E»s,;) can be written as

1 2m§(0) < 1>
— ni +—= wlz(E25m') =1 (273)
[ (Ezsm'ﬂ2 h 2
The DOS function can be written as
Nupi(E) = 23> Ras(E.m)H(E — Exsy) (2.74)

n,-:O
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Thus, using (2.74), the electron concentration in doping superlattices of stressed
compounds can be expressed as

ny = —Z C3(Epn, ni) + Cs(Epn, n;) (2.75)

where C3 (Epn, I’li) =q (Epn)g()(Epn) |:1 — Zmi(O) (I’li + %) (li)lzéEF’)x;z] and C4(Epn, ni)
Co\LFn

= gL(}’)C3(Eani)

The use of (2.75) leads to the expression of the electron statistics at the electric
quantum limit and at low temperatures as

o = 50 (B, o (B, [1 - #@;)hw(ﬁ) (2.76)

Using (2.76), we can study the ER in this case.

2.3 Result and Discussions

Using the appropriate equations together with the energy band constants as given
in Table 1.1, the ER in the quantum limit has been plotted for the doping
superlattices of HD tetragonal compounds (taking HD Cds;As, as an example) as a
function of electron concentration as shown in curve (a) of Fig. 2.1. The curve (b)
corresponds to ¢ = 0 and the curve (c) exhibits the dependence of the ER on ng in
accordance with the HD three-band model of Kane, respectively. The plots (d) and
(e) correspond to the HD two-band model of Kane and that of HD parabolic energy
bands. By comparing the curves (a) and (b) of Fig. 2.1, one can assess the influ-
ence of crystal field splitting of the ER in doping superlattices of HD Cd;As,.
Figure 2.2 represents all cases of Fig. 2.1 for doping superlattices of HD nonlinear
optical materials taking HD CdGeAs, as an example. It appears from Figs. 2.1 and
2.2 that, the ER in doping superlattices of HD nonlinear optical materials increases
with increasing carrier degeneracy as expected for degenerate materials.

Using the appropriate equations one can numerically evaluate the ER in the
quantum limit as a function of electron concentration in doping superlattices of
HD III-V compounds by using the HD InAs, and InSb as shown in Figs. 2.3 and
2.4 by curves (a), (b) and (c) respectively, in accordance with three and two band
models of Kane together with the model of parabolic energy bands.

Taking doping superlattices of HD Hg; ,Cd,Te as an example of HD ternary
compounds, the ER has been plotted for both the structures as a function of
electron concentration as shown in Fig. 2.5 for all cases of the Fig. 2.3. It appears
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Fig. 2.1 The plot of the ER in the quantum limit for doping superlattices of HD Cd;As, as a
function of electron concentration in accordance with a the generalized band model, b § = 0,
¢ the three band model of Kane, d the two band model of Kane and e the parabolic energy bands
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2

1

Fig. 2.2 The plot of the ER in the quantum limit for doping superlattices of HD CdGeAs, as a
function of electron concentration in accordance with a the generalized band model, b § = 0,
c the three band model of Kane, d the two band model of Kane and e the parabolic energy bands

from the Fig. 2.5 that the ER in the quantum limit in both cases of doping

superlattices of ternary compounds increases with increasing electron concentra-
tion as usual for the degenerate compounds. Taking doping superlattices of HD
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Fig. 2.3 The plot of the ER in the quantum limit for doping superlattices of HD InAs as a
function of electron concentration in accordance with a the three band model of Kane, b the two
band model of Kane and ¢ the parabolic energy bands
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Fig. 2.4 The plot of the ER in the quantum limit for doping superlattices of HD InSb as a
function of electron concentration in accordance with a the three band model of Kane, b the two
band model of Kane and ¢ the parabolic energy bands

In,_,Ga,As,P,_, lattice matched to HD InP as an example of quaternary com-
pounds the ER in the quantum limit has been further been plotted as a function of
electron concentration as shown in Fig. 2.6 in accordance with the three and two
band models of Kane together with the isotropic parabolic energy band model for
both the cases. It appears that the ER increases with increasing ngy as usual. From
Figs. 2.5 and 2.6, one can assess the influence of energy band constants on the ER
for doping superlattices of ternary and quaternary materials respectively. Using the
appropriate equations, the ER in the quantum limit has been plotted for the doping



2.3 Result and Discussions 135

4
3.51 Zi
x 3 /
E 2.5 - |
s o {hl e
= 2. '/ i - {a)
i © >
1.5
1 : . :
1 2 3 4 5 6 7 8 9 10 11

19 2
Concentration X 10 m

Fig. 2.5 The plot of the ER in the quantum limit for doping superlattices of HD Hg;_,Cd,Te as a

function of electron concentration in accordance with a the three band model of Kane, b the two
band model of Kane and ¢ the parabolic energy bands
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Fig. 2.6 The plot of the ER in the quantum limit for doping superlattices of HD In;_ Ga,As,P_,
lattice matched to InP as a function of electron concentration in accordance with a the three band
model of Kane, b the two band model of Kane and c¢ the parabolic energy bands

superlattices of CdS, as a function of carrier concentration as shown by curves (a)
and (b) in Fig. 2.7 for both Ay # 0 and /o = O respectively. This has been pre-
sented for the purpose of assessing the influence of the splitting of the two spin
states by the spin-orbit coupling and the crystalline field on the ER for doping
superlattices of II-VI materials. In Fig. 2.8, the ER in the quantum limit has been
plotted for the HD doping superlattices of (a) PbTe, (b) PbSnTe and (c) Pb;_,Sn,Se
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Fig. 2.7 The plot of the ER in the quantum limit for doping superlattices of HD CdS as a
function of carrier concentration in accordance with a Ao #0and b =0
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Fig. 2.8 The plot of the ER in the quantum limit as a function of electron concentration for the
doping superlattices of HD a PbTe, b PbSnTe and ¢ Pb; ,Sn,Se

as a function of electron concentration in accordance with the Dimmock model.
For relatively low values of electron concentration, the values of the ER for the
three materials exhibit convergence behavior whereas for relatively large values of
ny, the numerical values differ widely from each other in this case. In Fig. 2.9, the
ER in the quantum limit has been plotted for the doping superlattices of stressed
HD InSb as a function of electron concentration.
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Fig. 2.9 The plot of the ER in the quantum limit as a function of electron concentration for the
doping superlattices of stressed HD InSb in which the curve a is in the presence of stress and
curve b is under absence of stress

The plot (a) of Fig. 2.9 exhibits the ER for the doping superlattices of stressed
HD InSb in the presence of the stress while the plot (b) shows the same in the
absence of the stress. In the presence of the stress, the magnitude of the ER is
being increased as compared with the same under stress free condition.

2.4 Open Research Problems

R.2.1 Investigate the ER in the presence of an arbitrarily oriented non-quan-
tizing magnetic field for nipi structures of HD nonlinear optical semi-
conductors by including the electron spin. Study all the special cases for
HD III-V, ternary and quaternary materials in this context.

R.2.2 Investigate the ERs in nipi structures of HD IV-VI, II-VI and stressed
Kane type compounds in the presence of an arbitrarily oriented non-
quantizing magnetic field by including the electron spin.

R.2.3 Investigate the ER for nipi structures of all the materials as stated in R.2.1.

R.2.4 Investigate the ER for all the problems from R.2.1 to R.2.3 in the presence
of an additional arbitrarily oriented electric field.

R.2.5 [Investigate the ER for all the problems from R.2.1 to R.2.3 in the presence
of arbitrarily oriented crossed electric and magnetic fields.
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Chapter 3
The ER in Accumulation and Inversion
Layers of Non-parabolic Semiconductors

3.1 Introduction

It is well known that the electrons in bulk semiconductors in general, have three
dimensional freedom of motion. When, these electrons are confined in a one
dimensional potential well whose width is of the order of the carrier wavelength,
the motion in that particular direction gets quantized while that along the other two
directions remains as free. Thus, the energy spectrum appears in the shape of
discrete levels for the one dimensional quantization, each of which has a contin-
uum for the two dimensional free motion. The transport phenomena of such one
dimensional confined carriers have recently studied [1-34] with great interest. For
the metal-oxide-semiconductor (MOS) structures, the work functions of the metal
and the semiconductor substrate are different and the application of an external
voltage at the metal-gate causes the change in the charge density at the oxide
semiconductor interface leading to a bending of the energy bands of the semi-
conductor near the surface. As a result, a one dimensional potential well is formed
at the semiconductor interface. The spatial variation of the potential profile is so
sharp that for considerable large values of the electric field, the width of the
potential well becomes of the order of the de Broglie wavelength of the carriers.
The Fermi energy, which is near the edge of the conduction band in the bulk,
becomes nearer to the edge of the valance band at the surface creating accumu-
lation layers. The energy levels of the carriers bound within the potential well get
quantized and form electric subbands. Each of the subband corresponds to a
quantized level in a plane perpendicular to the surface leading to a quasi two
dimensional electron gas. Thus, the extreme band bending at low temperature
allows us to observe the quantum effects at the surface. Though considerable work
has already been done, nevertheless it appears from the literature that the ER in
accumulation layers of non-parabolic semiconductors has yet to be investigated in
details. For the purpose of comparison we shall also study the ER for inversion
layers of non-parabolic compounds.

In what follows in Sect. 3.2.1, of the theoretical background, the ER in accu-
mulation and Inversion layers of nonlinear optical semiconductors has been

K. P. Ghatak and S. Bhattacharya, Heavily-Doped 2D-Quantized Structures 141
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DOI 10.1007/978-3-319-08380-3_3, © Springer International Publishing Switzerland 2015
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studied under weak electric field limit. The Sect. 3.2.2 contains the results for
accumulation and Inversion layers of III-V, ternary and quaternary semiconduc-
tors for the weak electric field limit whose bulk electrons obey the three and the
two band models of Kane together with parabolic energy bands and they form the
special cases of Sect. 3.2.1. The Sect. 3.2.3 contains the study of the ER for
accumulation and Inversion layers of II-VI semiconductors, which is valid for all
values of electric field. The Sects. 3.2.4 and 3.2.5 contain the study of the ER in
accumulation and Inversion layers of IV-VI and stressed semiconductors
respectively. The Sect. 3.2.6 contains the study of the ER in accumulation and
Inversion layers of Ge. The Sect. 3.3 contains the results and discussion of this
chapter. The last Sect. 3.4 contains open research problems of this chapter.

3.2 Theoretical Background

3.2.1 The ER in Accumulation and Inversion Layers
of Non-linear Optical Semiconductors

In the presence of a surface electric field F along z direction and perpendicular to
the surface, (1.26) assumes the form

Wk2 h?k2 To1 (E — |e|Fozn,)
Zmﬁ 2m* T (E — |e|Fsz,n,)

= T51(E — |e|[Fsz, n,) (3.1)

where, for this chapter, E represents the electron energy as measured from the edge
of the conduction band at the surface in the vertically upward direction.
The quantization rule for 2D carriers in this case, is given by [5]

2

/ k.dz =

0

(802 (3.2)

W N

where, z, is the classical turning point and S; is the zeros of the Airy function
(Ai (=S;) = 0).

Using (3.1) and (3.2) leads to the dispersion relation of the 2D electrons in
accumulation layers of HD non-linear optical materials under the condition of
weak electric field limit as

Le(E, i, n,) (3.3a)
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2/3
. T21(E7]1 ) - L?(Evlvn ) . 2/3 h|€‘F
where L(E,i,n,) = 8 & L5(E,i,n,) = S:|T, (E, —_—
o(E, i 11,) Ly(E.i,n,) o(E: b tg) = SilT (B o
and
. _ [Ta(Em,) T (E1g) 2 [Tu(Eny)  Ty(Eng)
L4(E, L ’7g) = [TZ(E ng) +Ls (Ev L 'ig) T; (E,zr;g)Tzz(E,ng) 3 {Tz:(E,qz) - Tiz(E,ni)H
The EEM in this case can be written as
( ‘fr a’/’g)*mH Realpartof[ ( ‘fr 711g)] (33b)
The sub-band energy E; can be determined from the equation
0 = Real part of Le(E;,i,1,) (3.3c)

The surface electron concentration in the regime of very low temperatures
where the quantum effects become prominent can be written as

ny = 2g, Real part of the Z H mLz L,
— L12nh

[T22(EFang) T21(EFBJ7g)H

where 1; = % , Eimax 1s the root of the Real part of the equation

T21 (EimaX; ng) - L3 (Eimaxa imam ng) =0 (35)

E; =eVy — ¢ides 4 Erp, V, is the gate voltage, ny is the surface electron con-

centration, d,, is the thickness of the oxide layer, ¢,, is the permittivity of the oxide
layer, F; = ii , & 18 the semiconductor permittivity and Epp should be determined

from the equation

2 2mL,/2m‘
ng = (271)37’!43 Real part of |:T22(EFB;'7g) T21(EFs, 1,) (3.6)

where np is the bulk electron concentration.
The ER in this case is given by

-1
b_ = Real part of [L}
Il le| [0(Er — E")
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where, Ej. is the Fermi energy and E’ is the sub-band energy at the electric
quantum limit respectively.

Thus using (3.4), (3.7) and the allied definitions in the electric quantum limit,
we can study the ER in this case.

In what follows, we shall discuss the ER in accumulation layers of non-linear
optical materials for the purpose of relative comparison. In the presence of a
surface electric field F along z direction and perpendicular to the surface, the (1.2)
assumes the form

U1 (E — le|Fsz) = o (E — |e|Fs2)k] + i3 (E — le| Fi2)k: (3-8)

where 1, (E) = y(E), ¥»(E) = fi(E) and y5(E) = f(E).

Using (3.2) and (3.8), under the weak electric field limit, one can write,

[ VAE D e = ) (39)
0

in which, A;(E) = [W} D1(E) = [B1(E) — A+(E)C5(E)],

L(E) =, (E)'k? b3 (E
B;(E) = {(l//( ))%((Z)z( ) } and C;(E) = [(“/ﬁz(( )))}

Thus, the 2D electron dispersion law in inversion layers of nonlinear optical
materials under the weak electric field limit can approximately be written as

¥ (E) = P1(E, i)k} + Qs (E, i) (3.10)
where,
26(E) ol F 23
P7(E, i) [‘Pz( ) <3[z (E)]‘”)lh( )Si(le|Fy)
_ |aB) 2 (E)[Y5(E)]
“BWM><[WM )’
_ @] (E)sE) an ; . 2/3

t(E) 0 (E) < Ua(E)] )1 d Q7(E, i) = Si5(E)[le|Fst1 (E)]

The EEM in the x—y plane can be expressed as

m* (Egip, 1) = (h;) Gy (E, i) (3.11)

E=Epiy
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where,  Gy(E. i) = [P1(E, )] [P1(E,i){ (Y, (E)) — (Q1(E. )} — {1 (E) — (Q(E, i)}
(P7(E,i))] and Ep;, is the Fermi energy under the weak electric field limit as
measured from the edge of the conduction band at the surface in the vertically
upward direction. Thus, we observe that the EEM is the function of subband index,
the Fermi energy and other band constants due to the combined influence of the
crystal filed splitting constant and the anisotropic spin-orbit splitting constants
respectively.
The subband energy (E,,, ) in this case can be obtained from (3.10) as

V1(Eny) = Q1(En ) (3.12)

The general expression of the 2D total DOS density-of-states function in this
case can be written as

Nao, (E) = ngZZaE (EH(E - E,)] (3.13)

where, A(E,i) is the area of the constant energy 2D wave vector space for
inversion layers and E,, is the corresponding subband energy.

Using (3.10) and (3.13), the total 2D DOS function under the weak electric
field limit weak electric field limit can be expressed as

imax

iz (G (E,i)H(E — E,,,)] (3.14)

Nap, (E) =

(2)

Using (3.14) and the Fermi-Dirac occupation probability factor, the 2D surface

electron concentration in inversion of tetragonal materials under the weak electric
field limit (nyp,,) can be written as

Imax

nopw = 8,(21) " Z [P7w(EFiw, i) + Q7w (EFiw, )] (3.15)
i=0

Where» P7W(EF1'W7 l) = [lpl (EFiwa l) - Q7 (EFiW7 l)]{P7 (EFiw; i)}71 and Q7W(EF1'W7 l) =
Zi:l {L(r) [P7(EFiwa l)}} and

‘ e ‘ n2pw
Esc

F, =

Thus the surface electron concentration under the weak electric field quantum
limit assumes the form

Mpy = gv(Zn)A [P7W(EFW7 0)] (316)

where, Ep, is the Fermi energy under the weak electric field quantum limit as
measured from the edge of the conduction band at the surface.



146 3 The ER in Accumulation and Inversion Layers

The ER in this case can be written as

D ﬁZDw |: aﬁZDW :| -
= 3.17
5(Epy — Em) (3.17)

u - |€| E,FW —E

where E,, is the electric sub-band energy at the electric quantum limit by using
(3.16), (3.17) and the allied definitions, we can study ER in inversion layers of
non-linear optical materials at the electric quantum limit and extreme degeneracy.

3.2.2 The ER in Accumulation and Inversion Layers
of I1I-V, Ternary and Quaternary Semiconductors
(a) Using the substitutions 6 =0,A; =A, = A and m‘*‘ =m\ =m., (3.3a)
under the condition of weak electric field limit, assumes the form

2/3
w2k | AlelF[Too(E,n,)]
Too(Eng) =75+ E/W o) (3.18)

where, Too(E, n,) = T31(E, n,) + iT32(E, n,).

(3.18) represents the dispersion relation of the 2D electrons in accumulation layers
of HD III-V, ternary and quaternary materials under the weak electric field limit
limit whose bulk electrons obey the HD three band model of Kane. Since the
electron energy spectrum in accordance with the HD three-band model of Kane is
complex in nature, the (3.18) will also be complex. The both complexities occur
due to the presence of poles in the finite complex plane of the dispersion relation of
the materials in the absence of band tails.

The EEM can be expressed as

m*(Ef,i,1n,) = m. Real part of Pyyp(Ey,i,1,) (3.19)

HlelF. 'y 2/3
where, Pyup(Ef, i,1,) = |:T9()(Ejlc, Ng) — Si {W} ]

Thus, one can observe that the EEM is a function of the sub-band index, surface
electric field, the Fermi energy and the other spectrum constants due to the
combined influence of E, and A.

The sub-band energy E;; is given by

0 = Real part of |Too(Ei1,1,) — Si[l|e|Fs[Too(Eir, 77g)],-(2’716-)_1/2]2/3 (3.20)
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The DOS function can be written as

Imax

— > [Paun(E, i,n ) H(E — En)] (3.21)
i=0

Nap, (E) = P

Thus the DOS function is complex in nature.
The surface electron concentration is given by

imax m ) 1 2m 3/2 3/2
ny = g, Real part of the Z |:|:—CP3HD(E},Z,1’]&,):| +1 ( C) t:[Too(Es, 1) ] /

i=0 h’ 32 \ B2
(3.22a)
where Epg should be determined from the following equation
8v 2mc 3/2 32
=35\ Real part of [Too(Egg, 1,)] (3.22b)

Thus using (3.7), (3.22b) and the allied definitions, we can study the ER in this
case in the electric quantum limit.

Using the substitutions 6 =0, Ay = A; = A and mﬁ =m} = m,, (3.10) under
the condition of weak electric field limit, assumes the form

i w} 8 (323)

Ih(E) = o +Si|:

2m,
(3.23) represents the dispersion relation of the 2D electrons in inversion layers of
III-V, ternary and quaternary materials under the weak electric field limit whose
bulk electrons obey the three band model of Kane.

The EEM can be expressed as

m* (Epiy, i) = m[P3(E, i)]|E:Eﬁw (3.24)

where, Py2,0) = { I (B - {35, (242 i B} (@)1} }.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the
combined influence of E, and A.

The subband energy (E,,,) in this case can be obtained from the (3.23) as

Hle|Fy[I (B, )1
Ii(En,) =S [M} (3.25)

2m,
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Thus the 2D total DOS function in weak electric field limit can be expressed as

Imax

N, (E) = ":Th N [Ps(E,)H(E — Ey,,)] (3.26)
i=0

Using (3.26) and the occupation probability, the n;p,, in the present case can be
written as

Imax

Mpw = gv . Z P4w EFM? )+ Q4W(EFIW7 )] (327)

. 2/3 ,
where, P4W(Epiw, l) = {11 1 (Epiw) — Si [M} } and Q4(EF[W, i) = Zi:l {L(r)

V2m,
[P4W(EF1'W7 l)]}
The surface electron concentration under the weak electric field quantum limit
assumes the form

VmC
Mpy = gTCh [P4w (EFwa O)] (328)

Using (3.17), (3.28) and the allied definitions, we can study the ER in this case.

(b) Using the constraints A > E, or A < E,, the (3.18) under the low electric
field limit assumes the form

242 Tile|Fy[p, (E, n,)] 23

E =
yZ( ang) m + 2mc

c

The (3.29) represents the dispersion relation of the 2D electrons in accumula-
tion layers of HD III-V, ternary and quaternary materials under the weak electric
field limit whose bulk electrons obey the HD two band model of Kane.

The EEM can be expressed as

m’ (Ey i ?ng) chHm( & 5’/’g) (3.30)

, lelFifys (B ) 72/
where, P3up1 (Ef,i,1,) = |72(Ef,n) — Si|— 52— — .
Thus, one can observe that the EEM is a function of the sub-band index, surface
electric field, the Fermi energy and the other spectrum constants due to the
combined influence of E, and A.
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The sub-band energy E;; is given by

0- {yz(E,-z, 1) — Si[Alel 2 (Enu)) -2mo) ] 3] (3.31)

The DOS function can be written as

i [P,3HD1 (Ea i7 Wg)H(E - EiZ)] (332)
i=0

meg&y
NZDi (E) = 2

Thus the DOS function is complex in nature.
The surface electron concentration is given by

Imax

me : 1 [(2m\*? 3/2
ns = gy Z [{$P3HDI (Ef i, ”Ig)] t3a (h—zc) ti[72(Egs, 1) 2l (3.3%)
i=0

where Eppg should be determined from the following equation

g (2m 32 3/2
Thus using (3.7), (3.33b) and the allied definitions, we can study the ER in this
case in the electric quantum limit.
Using the constraints A > E, or A < E,, the (3.23) under the low electric field
limit assumes the form

B2 K> hle|F (1 + 20E)] %>
E(1+0E) =52+, {W] (3.34)

For large values of i, S; — [%” (i + %)]2/3 [5], and the (3.34) gets simplified as

2k [3nhile|F 3\ (1 +20E)]*3
E(1+E) = 2>+ [ r |2e| : <i+Z) %} (3.35)

The (3.35) was derived for the first time by Antcliffe et al. [3].
The EEM in this case is given by

' (Eri, 1) = melPo(E, )| pp,, (3.36)

where, Ps(E,i) =< 1 4+ 20E 4aS AlelFy 2/3{1 +20<E}71/3
s 1) = — T i .
6 3 \/2m,
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Thus, one can observe that the EEM is a function of the subband index, surface

electric field and the Fermi energy due to the presence of band non-parabolicity only.
The subband energies (E,, ) are given by

(3.37)

izeug(14-2a5¢w)]2“

2m,

nn3<1 + O(Enms) = Si|:

The total 2D DOS function can be written as

1+2E——ShMFZBU+m®*“H@—E )
37 Vo, s

(3.38)

Under the condition «F < 1, the use of (3.38) and the Fermi-Dirac integral
leads to the expression of nyp,, as

vmck T imax
= () S0+ Dy 2 V) + 2 TF 1)) (339
i=0

h?
2/3
_ 4as; (hle|Fy _ |Eriw—En, 5
Where D 3 (\/m and Niy = T |"

For all values of aEF;,, the nyp,, can be written by using (3.39) as

Vmc iﬂ!ﬂX . R
Mpyw = (gﬂ:hz > Z [PSW(EFiWJ l) + QSW(EFiW7 l)] (340)
i=0

2/3
where, Ps,,(Eriy, i) = [Epiwu + tErin) = ;255 (1 + 24| ]

and Qs (Eriw, i) = >_,_y L(r)Psu(Epiw, i)-
The electron concentration under the weak electric field quantum limit assumes
the form

V2m,

Using (3.17), (3.41) and the allied definitions, we can study the ER in this case.

&Me | = - h|e‘FS 2/3 - 2/3
Nopyw = W Epw(l + (XEFW) o (l + ZOCEFW) : (341)

(c) Using the constraints oo — 0, the (3.29) under the low electric field limit
assumes the form

RK?

hle|Fy|y
VS(E7 ;/Ig) = om

/
—————%7:::————lw (3.42)

+Sz

(o
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The (3.42) represents the dispersion relation of the 2D electrons in accumula-
tion layers of HD III-V, ternary and quaternary materials under the weak electric
field limit whose bulk electrons obey the HD parabolic band model.

The EEM can be expressed as

( ‘f a”’g) _m6P3HD2( ‘fr ang) (343)

: elF s (B, )
Where’ P3HD2( fa a;/]g) = y3(Ef7’1g) - St T

Thus, one can observe that the EEM is a function of the sub-band index, surface
electric field, the Fermi energy and the other spectrum constants due to the
combined influence of E, and A.

The sub-band energy E;; is given by

0= [Vs (Eiz, ”Ig) = Si [ﬁ|e|F5 [V3(Ei2, Wg)}l'(zmc)_]/z} 2/3} (3.44)

The DOS function can be written as

imax

mC vV
Nop,(E) =<8 Z [Py (Ey iy n)H(E — Ei)] (3.45)

The surface electron concentration is given by
= . 1 (2m\*? 3/2
ng = gy Z H 2 > P3upo }7 L 'lg)} + 32 (7> l [V3(EFB7 ﬂg)] / (3.46a)

i=0

where Eppg should be determined from the following equation

_ & (2 g 32 3.46b
=3\ 2 [73(Ers, 1,)] (3.46b)

Thus using (3.7), (3.46a) and the allied definitions, we can study the ER in this
case.

For « — 0, as for inversion layers, whose bulk electrons are defined by the
parabolic energy bands, from (3.34), we can write,

E =

2,2 2/3
Mk s, {h |€|F‘] (3.47)

2m, 2m,

The (3.47) is valid for all values of the surface electric field [1].
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The electric subband energy (E,,) assumes the form, from (3.47) as

hle|F,]*?
71,4 = S |: o :| (348)

The total DOS function can be written using (3.48) as

Nop(E _mcngHE E,,) (3.49)

The use of (3.49) leads to the expression of nyp; as [1]

Imax

S o) (3.50)
=0

gvmckBT
h?

mp; =

2/3
where, 1, = (k,gT)’1 [EF,- - S; [@;—%} ], Ep; is the Fermi energy as measured

from the edge of the conduction band at the surface.
Thus by using (3.50), (3.17) and the allied definitions at the electric quantum
limit we can study the ER in this case.

3.2.3 The ER in Accumulation and Inversion Layers
of II-VI Semiconductors

The use of (1.140) and (3.2) leads to the expression of the quantization integral as

Zm*
1/2 2
v / n(En,) el (o) — a5 (olk] e =S (5972 (351)

—1 —
where, z, = ([e|Fsy5(E ) [173(Esn,) — aph? F (Zo)ks).
Therefore, the 2D electron dispersion law for accumulation layers of HD II-VI
semiconductors can be expressed as

2/3
hle|Fsy5(E. n,)

13(E.ng) = apk? + (Zo)ks + S
Zm‘*‘

(3.52)
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The area of the 2D surface as enclosed by the (3.52) can be expressed as

. s .
A(E,n,,i) = ?Alo(E, Ng» 1)
0

where
2/3
. - heFyy3(E,n,)
Ao(E, 0y, i) = (o) = 2d,{ —y5(E, 1) +Si s el (3.53)
2m‘*‘
The EEM in this case assumed the form
m*(Ejﬁ, Mg, i) = mjA’lO(Eji, Mg»1) (3.54)
The sub-band energy E;» can be written as
2/3
hlelFs‘V/ (Ei2> n )
73(Bia ) = S | —— =5 (3.55)
Zm‘*l
The surface electron concentration can be written as
L (M [a e y
ng _gvz W AIO(Efvl717g) +A11(Ef7l71/’g)
=0 (3.56)

3 _

t; kBT 2 b6 Erp (20)2 Erp
il 20 | g, (2FB F. (2B
+2(nbg> (%) %(kBT)+2angT 2 \ksT

The Epp can be determined from the following equation

3 7 \2
g (ksT\? (b}, Erp (40) Erp
_&» 20V g (2B F.|—= 3.57
) (nb6> (a6 W) " 20kt kT (3.57)
All (Ej/ﬁ i7 ;/Ig) = ZL(V) |:A10 (E}’ i’ i’lg)]
r=1

Thus using (3.7), (3.56) and the allied definitions, we can study the ER in this
case.

The use of (1.140) and (3.2) leads to the expression of the quantization integral
in this case as
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2m‘ It B
[ [ ez — a5 k]
0

K

2
gy = S8 (3.58)

where, z, = ([e|F,) ™" [E — apk? F (Z0)ky].
Therefore, the 2D electron dispersion law for inversion layers of II-VI semi-
conductors can be expressed for all values of Fy as

2/3
hle|Fy

2m|’“

E = ajk* + (J0)ks + Si (3.59)

The area of the 2D surface as enclosed by the (3.59) can be expressed as

2/3
*\2 2 2
- 2h hle|F 2n°E
A, i) =2 g 2 (Rl | 2
h my 2mm my
23 12 (3.60)
N 21 | Hle|F, 2R’E
—2(%0) | (o) — ==, [elF: +=
my 2m|*| my
The EEM is given by
* . * P71
m* (Epj, i) =m| |1l — ——— 3.61
(Er ) L{ \/EFi+p72] (3.61)

where, Ep; is the Fermi energy in this case, p; Eziﬁ and p;, = [(p71)2
0

2/3
file| Fy
( 2m*) ] '

Thus, the EEM depends on both the Fermi energy and the subband index due to

the presence of the term /.
The subband energy (E,,) can be written as

2/3
hle|Fy

2m|*|

(3.62)
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The total 2D DOS function can be written as

imax

Nap, (E) = ’"thv ; { [1 - \/E”%pn] H(E - E)} (3.63)

The surface electron concentration assumes the form

gvmjkBT I j(]f7 (EF,', l)
OV LB Fo(n,) — { 2420 3.64
nap s {Z o(m;) {2 angT ( )

i=0
where, n; = [EF';;Tn } f1(Epi,i) = {2[\/ N +0n — Vo] +3, {21 -2""%)
o)

(ni+872)°

(An)
aj kpT *

The electron concentration in the electric field quantum limit can be obtained by

and 572 =4

1/2
EO] (3.65)

Using (3.65), (3.17) and the allied definitions at the electric quantum limit we
can study the ER in inversion layers of II-VI semiconductors.

3.2.4 The ER in Accumulation and Inversion Layers
of IV=-VI Semiconductors

The dispersion relation of the conduction electrons in bulk specimens of IV-VI
semiconductors in accordance with the model of Bangert and Kastner is given by

o[ @ 65 @
ek [Egou +uE) | A1+ 0E) | AL(1+ )
(A)? (S+0)
R B B T A1+ ) e

where  (R)? =23 x 107%ev,)?, () =4.6(R)?, s =2, tp =&, o3 =

Eg A,
A" =3.28ev, Al =3.07ev, (0)> = 1.3(R)*, (A)* = 0.8 x 107*(ev,,)".
The electron energy spectrum in heavily doped IV-VI materials in accordance
with this model can be expressed by using the methods as given in Chap. 1 as

L
"
AL‘
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2 . [®R) . )
21(4) = k2 |{c1 (o1, E, Eg) — iDy (011, E, Eg)}E—+ {e2(o2, E, Eg) — iDy (o2, E, E) } N
80 c
\2
+{c3<a3,E,Eg)fiDz(aa,E,Eg)}(f?/ +R P (10, BB - 1o E ) (3.67)
C 80
+<SZ,,Q {¢3(03,E, E,) — iD3(03,E, E, ) }
where
1 1 1 1+ oE
oL = — o = — U = —5 ui :—,
1 Ega 2 A/C; 3 Ai‘” ﬂgai
2 o0
ci(w, E,n,) = exp(—u?) x exp(—p*/4)(sinh(pw;)) }p~!
0= o > }
i=1,2,3 Di(oy,E,n,) = VT exp(—u?),
O![ﬂg

Therefore (3.67) can be written as,

Fi(E, n )k + F2(E, n, )k =1 (3.68)
where,
Fi(E,n,) = [2yo(E,;7g)}’1 %{C (o1,E, Eg) — iDy (o1, E, Ep) } + {Cz %, E,Ey) — iDa (2, E, Eg) }
(A,, {C3(a3, E, Eg) — iD3(03,E, E;) }

and

- 2(})2

FZ(Ea ng) = [ZVO(Ev ng)} (“hEa ng) - iDl(o‘I:Ea ng)}

S+ .
+( A//Q {C"4 o3, E, r/g) lD3(°‘3!E7 ”g)}:|

Since Fy(E,n,) and F»(E,n,) are complex, the energy spectrum is also com-
plex in the presence of Gaussian band tails.

The 2D electron dispersion relation in accumulation layers of IV-VI semi-
conductors can be written as

01(E, i,n ks + 02(E, i,no)k; = 0(E, i,n,) (3.69)
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where

01(E, i, ”g) = [Fi(E, Vlg) + Si(eFsa (E, ng))2/3F2(E7 ng)]

ai(E,n,) = Fo(E.n,) ;ﬁg: Zi; Fi(E,n,) — Fi(E, ”g)-
0o(E, i,n,) = | |Fi(E,n,) +§ZTEE Z;; (eFyar (B, Sy (Eon,) }
a(E,n,) = Fz(lz}, ™ gi Zi; Fi(E,n,) — F{(E, ng):
03(E,i,n,) = |1 +§;:1((l; Zi)) S;(eF,a; (E, ﬂg))2/3F2(E’ ng)] and C(E, 1,) = [gz((g:zi))]

The EEM can be expressed as
2

w (i) = 0, o) (3.70)
93(E/aiang)

\/01( f >ng)02( f7 LN )
The subband energy E;; is given by

03(Ei37i7 r,g) :O (371)

where 04(Ef,i,1,) =

The 2D electron concentration in accumulation layer of [IV-VI materials under
the condition of extreme degeneracy and low electric field limit can be written as

Imax

-1
ng = &y Real part Of Z |:04(Ej,”7 i7 '15) |:F1 (EFB7 7’5) F2(EFB7 ng):| :| (372)
i=0

3 2.2
where Erp can be determined from the equation

1 1
ng = g, Real part Of[ [Fl(EFB,ﬂg) F>(EFrg,1,) } (3.73)

Thus using (3.7), (3.72) and the allied definitions in the electric quantum limit,
we can study the ER in this case.

The 2D electron dispersion relation of the inversion layers of IV-VI semi-
conductors in the low electric field limit can be written using (3.2) and (3.66) as

K = B5(E,i) (3.74)

ﬂl(Eai)

where f5(E,i) = B,(E. 1)’
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Dy [eEvaE) _ | 2@ (S+0° |,
AED = 1= [T Sl ) = | 3 | 20
| EVAEN o 2VRE) [VIE)WVA(E) _ Vi(E)
RE = |NE Vi) SO Ve e
and
|o@®r (57 @) o
Vl (E) a _Ego(l + OCIE) A;(l + OCQE) A/C,(l + OC3E) (ZE)
The EEM can be expressed as
2
m(Epiyi) = = B3(Epi, i) (3.75)
The subband energy (E;) can be written as
0 = B3 (Eis, 1) (3.76)

The surface electron concentration under the condition of extreme degeneracy
assumes the form

Imax

Papi = %Z By(Ero, i) (3.77)

i=0

Using (3.17), (3.77) and the allied definitions we can study the ER in this case
in the electric quantum limit.

3.2.5 The ER in Accumulation and Inversion Layers
of Stressed III-V Semiconductors

The 2D electron dispersion relation in accumulation layers of stressed III-V
semiconductors can be written as

0v3(E,i,ng)k; + 0s3(E, i,n,)k; = 033(E, i, n,) (3.78)
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where

Ons(E.in,) = [A(E,n) + Si(eFsann(E,n))f(E )|

ai3(E, 1) Zﬁ(; ) ﬁg ijl (E,ng) — f1(E,ny)

s(Esin,) = [ B + 5 s (R (E,) S (E ]
ax(E, n,) f3(E111g) fIEE ng;fz(E Me) = f1(E )
053 (E, iy n,) = [ 523(( )) (erals(E7ng))2/33(E7ng)]

C3(Eang = [ ]

fl (Ea ”g)a fZ(Ev '/Ig)a f3(E7 '/Ig)a Pll (Ev '/Ig)a Qll(Ev ”g) and Sll (Ea '/Ig) are defined in
(1.206) respectively.
The EEM can be expressed as

and

2

o h .
n(Ep, i) = = Ol (Ep.i,11,) (3.79)
;. 033(Ey,i )
where 943(Ef,l, 'lg) NnGETRGETe,
The subband energy E;33 is given by
033(Ei33,i,11,) = 0 (3.80)

The 2D electron concentration in accumulation layers of stressed III-V mate-
rials under the condition of extreme degeneracy and low electric field limit can be
written as

Imax

. I -1/2
ny = g, Real part of Z [943(E}, i,n,) + ﬁ 1(Eps,ng)f2(Erp, ng)fs(Erg, 1)) / }
i=0

(3.81)
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The Erg can be determined from the following equation

~1/2

np = % 1(Erg, n,)f2(Ers, no)fs (Erp, )] (3.82)

Thus using (3.7), (3.81) and the allied definitions in the electric quantum limit,
we can study the ER in this case.
The (1.195) can be written as

(E - Otl)ki +(E—- Otg)k}z, +(E—- 063)]{ = tlE’*S lez +86E+ 1t (3.83)
where

[ 3_ b —
oy = |E, — Cie— (G + C1)8+§b08m Dy (\/g/z)sxydo],

2
[ 3_ b —
o = |E, —Cie— (G + Cl)8+§b08xx —708 — (\/g/2>8xydo],
b
2

0
_8}7

- 5
E, —Cie — (ap + Ci)e + = boe,, —

o3 )

N
=
|

(3/232)
= (1/232) (E, — Cr&) +3Ci],
2= (Yag2) [3(E, — C12)° + 6Cia(E, — Cie) —2€32 | and

4= (1/235) [—3C1£(Eg — Cie)® +2C%¢ XV}

The use of (3.69) and (3.2) leads to the expression of the dispersion relation of
the 2D electrons in inversion layers of stressed III-V materials under the low
electric field limit as

[Ts7(E, i)]K; + [Ter (E, i)Jk; = T (E, i) (3.84)
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where,
N 2/3
Ts7(E,i) = |E — oy + 3S <|8e| ) (n2pw) ™ Li7 (E) | ,
B i (E—a) PN Y “1/3
S [y T e
- [ r ( ps(E)
Ta(e)] = |(esie)y - (212,
r N 2/3
Ts1(E,i) = |E—T, +§Si <|:|> (n2pw)* Loy (E) |,
N L (E— )"
Ly;(E) = (- )z/z 1/3 ([747(E)]1/3>17
T77(E7 l) = < ) nZDw 2/ L37(E> ’
L(E) = dﬁ—ag)l“ (E)
and

ps(E) = [nE®

— t2E2 +rE+ l4]

The area of the 2D surface under the weak electric field limit can be written as

A(E,i) =

The sub-band energies (E,

Niwg

Ty7(En,s) = Si(

The expression of the EEM in this case can be written as

m* (Epiy, 1)

T77(E,i
T 77F 7l) . (385)
T57(E, l)T67 (E7 l)
) in this case are defined by
e\
e
6 ) (n2)* Ly (En,) (3.86)
SC
h2
= ?L47 (Ev i)‘E:EF[W (3-87)
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where,

Ly (E i) = [ M)

. v l, .
T57(E, i)T67(E’ l):| |:{T77(E7 )} [T57(E, )T67(E7 )] < 5

Y2 57(E, i 12
{{nﬂE,i)}{%} +{T67(E’i)}/[;67$ l;] H

The total 2D DOS function can be expressed as

Imax

N2D(E) :%Z{L‘W(Ea i)H(E_Eni»v(S)} (388>
i=0

The surface electron concentration under the weak electric field quantum limit
assumes the form

Imax
8v . ;
w — P W E Wiy w E Wiy 3.89
np 27 {;_0[ sw(Erwi, 1) + Osw(ER l)]} ( )
L — T77(Epwi, ©) ) = ; "
where, P, (Epyi,i) = O and Qg (EFin, i) = El L(r)Psy (EFiw, 1)-

Using (3.75), the expression of the 2D surface electron concentration under the
weak electric field quantum limit can be written as

_ & T77(EFy, 0)
27 \/Ts7(Epw, 0)T67(Ery, 0)

MaDw (3.90)

3.2.6 The ER in Accumulation and Inversion Layers of Ge

The 2D dispersion relation in accumulation layers of Ge can be written as

R Rk

* *
2my  2m;

= 710(E, i,1,) (3.91)
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where

2
heFsy(E,n,) }

V10(Eyiyng) = |73(E;ng) [1+ op3(E,m,)] = Si V- (14 2ap3(E, n,)]

29 2
3

heFsy,(E, ng)

*

—+o S,‘
2mj

The EEM can be expressed as

m*(Epi,n,) = /mim[yo(E. i11,)] (3.92)
The band non-parabolicity and heavy doping makes the mass quantum number

dependent.
The sub band energy E; 4 can be written as

le(EiMaia ng) =0 (393)

The surface electron concentration in accumulation layers can be written as

imax [ /me;

ns = 8&v [VIO(E;Jv ”g)}

= |

.94
Y (3.94)

L Il 3 4o

i3 [293(Erp,n,)]* |1 4*45*V3(15F3’ﬂg)
where Epp can be determined from the following equation

8mm’ \ Jmj| ; 4o

ng = 8y e [27)3 (EFB7 ng):l 1+ ?’V?) (EFB> ng) (395)

Using (3.7), (3.94) and the allied definitions at the electric quantum limit and
under the condition of extreme carrier degeneracy we can study the ER in this
case.

The 2D electron dispersion law in inversion layers of Ge can be expressed as

R Rk

2m1 21’}’l2

= [E(1 + 0E) 4+ aEpy — Epo(1 + 24E)] (3.96)

2/3
where, Eing = S; (\%%) .
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The area of 2D space is

2\ /mimy
A= — [E(1 + 0E) 4 aEpy — Eno(1 + 20E)] (3.97)

The EEM assumes the form
m*(EF,‘w, l) = \/mlmz[l + 20EFp;, — E,»202a] (398)

Thus the EEM is the function of both Fermi energy and quantum number due to
band nonparabolicity.
The DOS function is given by

2¢g, 27r‘/m i
Nap(E) = (2i) ‘ Z 20E — 20EpH(E — Eng) (3.9

The surface electron concentration is given by

kT /mim ima
npy =& nB : h; ZZ [Fo(ny) + 20kpTF1(n4)] (3.100)

where, n, = (kgT)~ [EFW — Epo)
Using (3.17), (3.100) and the allied definitions under the conditions of extreme
degeneracy and electric quantum limit, we can study the ER in this case.

Fig. 3.1 The plot of the 8
normalized ER in the
accumulation layers of 7
CdsAs, under weak electric
field quantum limit as a (e) 6 &«
function of surface electric
field in accordance with (a) 5 E
(a) the generalized band s
model, (b) 5 = 0, (c) the three (b), 4 £
band model of Kane, (d) the // ]
two band model of Kane and 3 =
(e) the parabolic energy
bands (d) 2

= 1

0.01 0.1 1

Electric Field, X 103 (Volt m")



3.3 Result and Discussions 165

Fig. 3.2 The plot of the 8
normalized ER in the
accumulation layers of
CdGeAs, under weak electric
field quantum limit as a
function of surface electric
field in accordance with

(a) the generalized band
model, (b) 6 = 0, (c) the three
band model of Kane, (d) the
two band model of Kane and
(e) the parabolic energy
bands 001 0.1 1

Electric Field, X 105 (Volt m'")

Normalized ER

Fig. 3.3 The plot of the 8
normalized ER in the
accumulation layers of InAs

under weak electric field © 6 o
quantum limit as a function of -
surface electric field in 5 E
accordance with (a) the three 4 =
band model of Kane, (b) the E
two band model of Kane and b 13 2
(c) the parabolic energy () 3

bands

0.1 1
Electric Field, X 10° (voit mi")

3.3 Result and Discussions

Using the appropriate equations and the numerical values of the energy band
constants as given in Table 1.1, the plot for the normalized ER for n-channel
accumulation layers of Cd;As, under weak electric field limit as a function of
surface electric field has been shown in curve (a) of Fig. 3.1. The curve (b)
corresponds to 6 = 0 and the curve (c) exhibits the dependence of the ER on the
surface electric field in accordance with the three-band model of Kane,
respectively.

The plots (d) and (e) correspond to the two-band model of Kane and that of
parabolic energy bands respectively. By comparing the curves (a) and (b) of
Fig. 3.1, one can assess the influence of crystal field splitting of the ER in accu-
mulation layers of tetragonal compounds. It appears from Fig. 3.1 that, the ER
increases with increasing surface electric field and the numerical values of the ER
are totally band structure dependent. In Fig. 3.2 the ER for accumulation layers of
CdGeAs, have been drawn as function of surface electric field for weak electric
field limit respectively for all the cases of Fig. 3.1
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Fig. 3.4 The plot of the
normalized ER in the
accumulation layers of InSb
under weak electric field
quantum limit as a function of
surface electric field in
accordance with (a) the three
band model of Kane, (b) the
two band model of Kane and
(c) the parabolic energy
bands

3 The ER in Accumulation and Inversion Layers

0.01

Electric Field, X 10° (Volt mi')

Normalized ER

The trend of variation of the ER for accumulation layers of CdGeAs, is more or
less the same with different numerical magnitudes as compared with accumulation

layers of Cd;As, for both the limits.

Using the appropriate equations the Fig. 3.3 exhibits the normalized ER in
accumulation layers of InAs for weak electric field quantum limit and the curves
have been drawn as function of surface electric field in accordance with (a) the
three band model of Kane, (b) the two band model of Kane and (c) the parabolic
energy bands respectively. In Fig. 3.4 all cases of Fig. 3.3 have been drawn as
function of surface electric field for accumulation layers of InSb for weak electric

Fig. 3.5 The plot of the
normalized ER in the
accumulation layers of Hg
Cd,Te under weak electric
field quantum limit as a
function of surface electric
field in accordance with

(a) the three band model of
Kane, (b) the two band model
of Kane and (c) the parabolic
energy bands

Fig. 3.6 The plot of the
normalized ER in the
accumulation layers of In;.
xGa,As P,y lattice matched
to InP under weak electric
field quantum limit as a
function of surface electric
field in accordance with

(a) the three band model of
Kane, (b) the two band model
of Kane and (c) the parabolic
energy bands

0.01

Electric Field, X 10° (Volt mi")

0.01

0.1 1
Electric Field, X 10° (Volt m")

Normalized ER

Normalized ER
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Normalized ER
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Fig. 3.7 The plot of the normalized ER in the accumulation layers of Hg;_, Cd,Te under weak
electric field quantum limit as a function of alloy composition in accordance with (a) the three
band model of Kane, (b) the two band model of Kane and (c¢) the parabolic energy bands

field limit. In Fig. 3.5, the normalized ER in accumulation layers of Hg;_Cd,Te
have been drawn for both the weak electric field limits as functions of surface
electric field for all the cases of Fig. 3.4. In Fig. 3.6 the normalized ER in accu-
mulation layers of In;_,Ga,As,P,., lattice matched to InP have been drawn for
low electric field limit as functions of surface electric field for all the cases of
Fig. 3.5. It appears from Figs. 3.3, 3.4, 3.5 and 3.6 that the ER for accumulation
layers of InAs, InSb, Hg, Cd,Te and In;,Ga,As,P;. lattice matched to InP
increases with increase in surface electric field with different numerical values and
the influence of the energy band constants can also be assessed from the said Figs.
In Figs. 3.7 and 3.8, the normalized ER for accumulation layers of Hg;_,Cd,Te
and In;_,Ga,As,P,_, lattice matched to InP have been drawn as a function of alloy
composition under weak electric field limit in accordance with the three and two

11
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Normalized ER
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416 042 0426 043 0.435 044 04456 046 04565 046 0465 047

Alloy Composition, x

Fig. 3.8 The plot of the normalized ER in the accumulation layers of In, Ga,As,P,_, lattice
matched to InP under weak electric field quantum limit as a function of alloy composition in
accordance with (a) the three band model of Kane, (b) the two band model of Kane and (c) the
parabolic energy bands
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Fig. 3.9 The plot of the 11
normalized ER in the 10

p-channel accumulation
layers of CdS as function of
surface electric field in @
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Fig. 3.11 The plot of the 26
normalized ER in
accumulation layers of
stressed InSb under weak
electric field quantum limit as
a function of surface electric
field in which the curve (a) is
in the presence of stress and 5
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band models of Kane together with parabolic energy bands respectively. It appears
from Figs. 3.7 and 3.8 that the ER decreases with increasing alloy composition
although the rate of decrease is determined by the respective energy band con-
stants of the ternary and quaternary materials.

Using appropriate equations, the Fig. 3.9 exhibits the plot of the ER in
p-channel accumulation layers of CdS as function of surface electric field in
accordance with (a) Zo %0 and (b) 2o =0. The presence of the crystal field
splitting enhances the numerical values of the ER for relatively large values of the
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surface electric field. Using appropriate equations, the Fig. 3.10 exhibits the plots
of the normalized ER in the accumulation layers of PbTe, PbSnTe and Pb,_Sn,Se
for weak electric field limits as a function of surface electric field respectively. It
appears that the ER increases with increasing surface electric field with a diverging
nature for relatively large values of the electric field. The numerical values of the
ER are greatest for accumulation layers of PbTe and least for the corresponding
Pb,_.Sn,Se.

Using the appropriate equations, Fig. 3.11 exhibits the ER in accumulation
layers of stressed n-InSb for weak electric field limit as a function of surface
electric field, in which the curve (a) is valid in the presence of stress whereas the
curve (b) shows the stress free condition respectively. It appears from Fig. 3.11
that the ER exhibits the increasing dependence with increasing surface electric
field and the stress enhances the value of the ER for relatively large value of the
electric field.

In this chapter, we have investigated the ER in accumulation layers of tetrag-
onal materials for under weak electric field limit on the basis of the generalized
electron energy spectrum as given by (1.2). The results for the accumulation layers
of ITII-V, ternary and quaternary materials whose bulk electrons obey the three and
two band models of Kane together with parabolic energy bands form a special case
of our generalized analysis. The ER for accumulation layers of II-VI has been
studied on the basis of Hopfield model for all values of surface electric field. The
ER has been investigated in accumulation layers of IV-VI and stressed materials
on the basis of the model of Bangert and Kastner for weak electric field limit. For
the purpose of relative comparison we have also discussed the ERs in the inversion
layers of the aforementioned semiconductors.

It may be noted that if the direction of application of the surface electric field
applied perpendicular to the surface be taken as either k, or k, and not as k, as
assumed in the present work, the ER would be different analytically for both the
limits. Nevertheless, the arbitrary choice of the direction normal to the surface
would not result in a change of the basic qualitative feature of the ER in accu-
mulation layers of semiconductors. The approximation of the potential well at the
surface by a triangular well introduces some errors, as for instance the omission of
the free charge contribution to the potential. This kind of approach is reasonable if
there are only few charge carriers in the accumulation layer, but is responsible for
an overestimation of the splitting when the accumulation carrier density exceeds
that of the depletion layer. It has been observed that the maximum error due to the
triangular potential well is tolerable in the practical sense because for actual
calculations, one need a self consistent solution which is a formidable problem, for
the present generalized systems due to the non availability of the proper analytical
techniques, without exhibiting a widely different qualitative behavior [1, 3]. The
second assumption of electric quantum limit in the numerical calculation is valid
in the range of low temperatures, where the quantum effects become prominent.
The errors which are being introduced for these assumptions are found not to be
serious enough at low temperatures [3, 4]. Thus, whenever the condition of the
electric quantum limit has been applied, the temperature has been assumed to be
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low enough so that the assumption becomes well grounded because at low tem-
perature, one can assume that nearly all electrons are at the lowest electric subband
[3, 4]. We wish to note that the many body effects, the hot electron effects, the
formation of band tails, arbitrary orientation of the direction of the electric
quantization and the effects of surface of states have been neglected in our sim-
plified theoretical formalism due to the lack of availability in the literature of the
proper analytical techniques for including them for the generalized systems as
considered in this paper. Our simplified approach will be useful for the purpose of
comparison, when, the methods of tackling of the aforementioned formidable
problems for the present generalized system appear. The inclusion of the said
effects would certainly increase the accuracy of our results, and the qualitative
features of the ER as discussed in this chapter would not change in the presence of
the aforementioned influences.

3.4 Open Research Problems

R.3.1 Investigate the ER in the presence of an arbitrarily oriented electric
quantization for accumulation layers of tetragonal semiconductors.
Study all the special cases for III-V, ternary and quaternary materials
in this context.

R.3.2 Investigate the ER in accumulation layers of IV-VI, II-VI and
stressed Kane type compounds in the presence of an arbitrarily ori-
ented quantizing electric field.

R.3.3 Investigate the ER in accumulation layers of all the materials as stated
in R.2.1 of Chap. 2 in the presence of an arbitrarily oriented quan-
tizing electric field.

R34 Investigate the ER in the presence of an arbitrarily oriented non-
quantizing magnetic field in accumulation layers of tetragonal
semiconductors by including the electron spin. Study all the special
cases for III-V, ternary and quaternary materials in this context.

R.3.5 Investigate the ER in accumulation layers of IV-VI, II-VI and
stressed Kane type compounds in the presence of an arbitrarily ori-
ented non-quantizing magnetic field by including the electron spin.

R.3.6 Investigate the ER in accumulation layers of all the materials as stated
in R.2.1 of Chap.2 in the presence of an arbitrarily oriented
non-quantizing magnetic field by including electron spin.

R.3.7 Investigate the ER in accumulation layers for all the problems from
R.3.1 to R.3.6 in the presence of an additional arbitrarily oriented
electric field.

R.3.8 Investigate the ER in accumulation layers for all the problems from
R.3.1 to R.3.3 in the presence of arbitrarily oriented crossed electric
and magnetic fields.
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R.3.9 Investigate the ER in accumulation layers for all the problems from
R.3.1 to R.3.8 in the presence of surface states.

R.3.10 Investigate the ER in accumulation layers for all the problems from
R.3.1 to R.3.8 in the presence of hot electron effects.

R.3.11  Investigate the ER in accumulation layers for all the problems from
R.3.1 to R.3.6 by including the occupancy of the electrons in various
electric subbands.

R.3.12  Investigate the problems from R.3.1 to R.3.11 for the appropriate p-
channel accumulation layers.
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Chapter 4

Suggestion for Experimental
Determinations of 2D and 3D ERs
and Few Related Applications

4.1 Introduction

In this book we have discussed many aspects of ER based on the dispersion
relations of different technologically important semiconductors. In this chapter we
discuss regarding the suggestions for the experimental determinations of 3D and
2D ERs in Sect. 4.2. We shall also discuss few applications on the basis of the
content of this monograph in this context in Sect. 4.3.

4.2 Suggestion for the Experimental Determinations
of the 3D and 2D ERs for HDS Having Arbitrary
Dispersion Laws

It is well-known that the thermoelectric power of the carriers in HDS in the
presence of a classically large magnetic field is independent of scattering mech-
anisms and is determined only by their energy band spectra [1-9]. The magnitude
of the thermoelectric power G can be written as [1-9]

o

G- 7 (& - Er)R(E) |- o

B le|Tng

—00

]dE (4.1)

where R(E) is the total number of states. The (4.1) can be written under the
condition of carrier degeneracy [10-23] as
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The use of (1.31¢) and (4.2) leads to the result

212
b_ (” k§T> (4.3)
K 3le|"G

Thus, the ER for degenerate materials can be determined by knowing the
experimental values of G.

(a) The suggestion for the experimental determination of the ER for degenerate
semiconductors having arbitrary dispersion laws as given by (4.3) does not contain
any energy band constants. For a fixed temperature, the ER varies inversely as
G. Only the experimental values of G for any material as a function of electron
concentration will generate the experimental values of the ER for that range of ng
for that system. Since G decreases with increasing n, from (4.3) one can infer that
the ER will increase with increase in n,. Besides, under magnetic quantization,
crossed fields configuration, and super-lattices under quantizing magnetic field,
the same (4.3) holds good. This statement is the compatibility test so far as the
suggestion for the experimental determination of ER for HDS and degenerate
materials are concerned.

(b) For quantized 2D systems under the condition of electric quantum limit, it
can be proved that same (4.3) is again true. For quantum wires and heterostructures
with small charge densities, the relation between D/u and G is thus given by the (4.3)
[24]. Thus (4.3) is independent of the dimensions of quantum confinement. We
should note that the present analysis is not valid for totally k-space quantized systems
such as quantum dots, magneto-inversion and accumulation layers, magneto size
quantization, magneto nipis, quantum dot superlattices and quantum well superlat-
tices under magnetic quantization. Under the said conditions, the electron motion is
possible in the broadened levels. The experimental results of G for degenerate
materials will provide an experimental check on the ER and a technique for probing
the band structure of degenerate compounds having arbitrary dispersion laws.

Using n — CdsAs, as an example of A3,B; compounds for the purpose of
numerical computations and using the (1.46a) and (1.47) together with the energy
band constants at T = 4.2 K, as given in Table 1.1, the variation of the ER as a
function of electron concentration has been shown in curve (a) of Fig. 4.1. The
circular points exhibit the same dependence and have been obtained by using (4.3)
and taking the experimental values of the thermoelectric power in n — Cd3As; in
the presence of a classically large magnetic field [25]. The curve (b) corresponds to
0 = 0. The curve (c) shows the dependence of the ER on ng in accordance with the

three-band model of Kane using the energy band constants as E, = 0.095 eV
m* = (mj +mY)/2 and A = (A + AL )/2. The curves (d) and (e) correspond to
two-band model of Kane and that of the parabolic energy bands. By comparing the
curves (a) and (b) of Fig. 4.1, one can easily assess the influence of crystal field
splitting on the ER in nonlinear optical compounds.

It appears from Fig. 4.1 that, the ER in nonlinear optical compounds increases
with increasing carrier degeneracy as expected for degenerate semiconductors and
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Fig. 4.1 The plot of the ER in the bulk specimens of n-Cd;As, as a function of electron
concentration in accordance with a the generalized band model; b 6 = 0; ¢ the three band model
of Kane; d the two band model of Kane and e the parabolic energy bands. The dotted circular
points show the same dependence which have been obtained by using (4.3) and taking the
experimental values of the thermoelectric power of the electrons in bulk n-Cd;As, in the presence
of a classically large magnetic field [25]

agrees well with the suggested experimental method of determining the same ratio
for materials having arbitrary carrier energy spectra. It has been observed that the
nonlinear optical crystal field affects the ER of the electrons quite significantly in
this case. The dependence of the ER is directly determined by the band structure
because of its immediate connection with the Fermi energy. The ER increases non-
linearly with the electron concentration in other limiting cases and the rates of
increase are different from that in the generalized band model.

4.3 Different Related Applications

The content of this book finds six applications in the field of materials science and
related disciplines in general.

1. Carrier contribution to the elastic constants: The knowledge of the carrier
contribution to the elastic constants is important in studying the mechanical
properties of the materials and has been investigated in the literature [26-35].
The electronic contribution to the second and third order elastic constants can
be written as [26-35]
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G2 6?10

ACy—=—20__ 90 4.4
“ 9 O(Er, — Ena) (4.4)
and
3 62
ACys6 = Y% __Om (4.5)

27 0(Er, — Ena)’’
where Gy is the deformation potential constant. Thus, using (4.2), (4.4) and
(4.5), we can write

ACyy = [—noGile|G/ (3n*kzT)] (4.6)
and
oG
ACus6 = (nole|GoG*/ (3n*kyT)) (1 +n_G06_nO)' (4.7)

Thus, again the experimental graph of G versus n, allows us to determine the
electronic contribution to the elastic constants for materials having arbitrary
spectra.

2. Measurement of Band-gap in the presence of Light Waves: With the advent
of nano-photonics, there has been considerable interest in studying the optical
processes in semiconductors and their nanostructures in the presence of intense
light waves [36-44]. It appears from the literature, that the investigations in
the presence of external intense photo-excitation have been carried out on the
assumption that the carrier energy spectra are invariant quantities under
strong external light waves, which is not fundamentally true. The physical
properties of semiconductors in the presence of strong light waves which alter
the basic dispersion relations have relatively been much less investigated in
[45] as compared with the cases of other external fields needed for the char-
acterization of the low dimensional semiconductors.

With the radical change in the dispersion relation, it is evident that the band gap
will also change and in this section we study the normalized incremental band gap
(AE,) as functions of incident light intensity and the wave length respectively in
the presence of strong light excitation.

Using (10.41-10.43), the AE, has been plotted as a function of normalized /, (for a
given wavelength and considering red light for which 4 = 660 nm) at T = 4.2 K in
Figs. 4.2 and 4.3 for n-Hg,.,Cd,Te and n-In,_,Ga,As,P_, lattice matched to InP in
accordance with the perturbed three and two band models of Kane and that of
perturbed parabolic energy bands respectively. In Figs. 4.4 and 4.5, the normalized
incremental band gap has been plotted for the aforementioned optoelectronic com-
pounds as a function of A. It is worth remarking that the influence of an external
photo-excitation is to change radically the original band structure of the material.
Because of this change, the photon field causes to increase the band gap of
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Fig. 4.2 Plots of the normalized incremental band gap (AE,) for n-Hg,_Cd,Te as a function of
normalized light intensity in which the curves a and b represent the perturbed three and two band
models of Kane respectively. The curve c¢ represents the same variation in n-Hg; ,Cd,Te in
accordance with the perturbed parabolic energy bands
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Fig. 4.3 Plots of the normalized incremental band gap (AE,) for In;_Ga,As,P;_, lattice matched
to InP as a function of normalized light intensity for all cases of Fig. 4.2
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Fig. 4.5 Plots of the normalized incremental band gap (AE,) for In-;Gs,As,P,., lattice
matched to InP as a function of wavelength for all cases of Fig. 4.2

semiconductors. We propose the following two experiments for the measurement of
band gap of semiconductors under photo-excitation.

(a) A white light with colour filter is allowed to fall on a semiconductor and the
optical absorption coefficient (o) is being measured experimentally. For
different colours of light, (&) is measured and (dg) versus 7w (the incident
photon energy) is plotted and we extrapolate the curve such that %y — O at a
particular value hcw;. This hw; is the I, unperturbed band gap of the
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semiconductor. During this process, we vary the wavelength with fixed. From
our present study, we have observed that the band gap of the semiconductor
increases for various values of /2 when [ is fixed (from Figs. 4.4 and 4.5).
This implies that the band gap of the semiconductor measured (i.e. hiw, = Eg)
is not the unperturbed band gap E, but the perturbed band gap E,; where
E, =E, + AE, AE, is the increased band gap at 7iew;. Conventionally, we
consider this E, as the unperturbed band gap of the semiconductor and this
particular concept needs modification. Furthermore, if we vary I, for a
monochromatic light (when / is fixed) the band gap of the semiconductor will
also change consequently (Figs. 4.2 and 4.3). Consequently, the absorption
coefficient will change with the intensity of light [45]. For the overall
understanding, the detailed theoretical and experimental investigations are
needed in this context for various materials having different band structures.

(b) The conventional idea for the measurement of the band gap of the semi-
conductors is the fact that the minimum photon energy Av (v is the frequency
of the monochromatic light) should be equal to the band gap E, (unper-
turbed) of the semiconductor, i.e.,

hv = Eq (4.8)

In this case, 4 is fixed for a given monochromatic light and the semiconductor is
exposed to a light of wavelength 1. Also the intensity of the light is fixed. From
Figs. 4.4 and 4.5, we observe that the band gap of the semiconductor is not
hv = E, (for a minimum value of hv) but E,, the perturbed band gap. Thus, we

can rewrite the above equality as

hv = E, (4.9)

Furthermore, if we vary the intensity of light (Figs. 4.2 and 4.3) for the study of
photoemission, the minimum photon energy should be

hvy = Eg (4.10)

where E, is the perturbed band gap of the semiconductor due to various intensity

of light when v and v, are different.
Thus, we arrive at the following conclusions:

(a) Under different intensity of light, keeping A fixed, the condition of band gap
measurement is given by

hvi = Ey = E + AE, (4.11)
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(b) Under different colour of light, keeping the intensity fixed, the condition of
band gap measurement assumes the form

hv = E, = Eg, + AE, (4.12)

and not the conventional result as given by (4.8).

3. Diffusion Coefficient of the Minority Carriers:
This particular coefficient in quantum confined lasers can be expressed as

D;/Dy = dE;/dEp (4.13)

where D; and Dy are the diffusion coefficients of the minority carriers both in
the presence and absence of quantum confinements and Er; and Ef are the
Fermi energies in the respective cases. It appears then that, the formulation of
the above ratio requires a relation between Er; and Er, which, in turn, is
determined by the appropriate carrier statistics. Thus, our present study
plays an important role in determining the diffusion coefficients of the
minority carriers of HD quantum-confined lasers with materials having
arbitrary band structures. Therefore in the investigation of the optical
excitation of the HD optoelectronic materials which lead to the study of the
ambipolar diffusion coefficients the present results contribute significantly.

4. Nonlinear Optical Response: The nonlinear response from the optical exci-
tation of the free carriers is given by [46]

oo

—e? Ok, -
0

where w is the optical angular frequency, N(E) is the DOS function. From
the various E-k relations of different HD materials under different physical
conditions, we can formulate the expression of N(E) and from band
structure we can derive the term (k. %iE) and thus by using the DOS
function as formulated, we can study the Z; for all types of materials as
considered in this monograph.

5. Third Order Nonlinear Optical Susceptibility: This particular susceptibility
can be written as [47]

( | noe* ()
Anp\D1, W2, W3) =
NP 24 (,1)1602(1)3(601 —+ ()] —+ 603)h4

(4.15)
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4.

where ng(et) = (TO%ATEN(E)fO dE and the other notations are defined in

[47]. The term (%475) can be formulated by using the dispersion relations of

different HD materials as given in appropriate sections of this monograph.
Thus one can investigate the yyp(w1, w2, w3) for all materials as considered
in this monograph.

Generalized Raman Gain: The generalized Raman gain in optoelectronic
materials can be expressed as [48]

- 16722 I &2 2
Ro=1—————) (2L — 2R? 4.16
¢ (hwpgw%nsnp> ( F) (mcz) " ( )

where, I =Y [fo(n, k; 1) — fo(n, k; )], fo(n, k; 1) is the Fermi factor for spin-

n.t,

up Landau levels, fy (n, k; |)is the Fermi factor for spin down Landau levels,
nis the Landau quantum number and the other notations are defined in [48].
It appears then the formulation of Ry is determined by the appropriate
derivation of the magneto-dispersion relations. By using the different
appropriate formulas as formulated in various HD materials in different
chapters of this monograph R can, in general, be investigated.

4 Open Research Problem

R.4.1 Investigate experimentally the diffusivity for all the HD systems as dis-

cussed in this monograph in the presence of arbitrarily oriented strain.
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Chapter 5
Conclusion and Scope for Future
Research

This monograph deals with the ER in various types of low dimensional HD
materials. The external photo excitation, quantization and strong electric field alter
profoundly the basic band structures, which, in turn, generate pinpointed knowl-
edge regarding ER in various HDS and their nanostructures having different carrier
energy spectra. The in-depth experimental investigations covering the whole
spectrum of solid state and allied science in general, are extremely important to
uncover the underlying physics and the related mathematics. The ER is basically
the motion dependent phenomena and we have formulated the simplified
expressions of ER for few HD quantized structures together with the fact that our
investigations are based on the simplified k.p formalism of solid-state science
without incorporating the advanced field theoretic techniques. In spite of such
constraints, the role of band structure behind the curtain, which generates, in turn,
new concepts are truly amazing and discussed throughout the text.

We present the set of few open research problems in this pin pointed topic of
research of modern physics.

(R5.1) Investigate the ER in the presence of a quantizing magnetic field under
exponential, Kane, Halperin, Lax and Bonch-Bruevich band tails [1] for
all the problems of this monograph of all the whose unperturbed carrier
energy spectra are defined in Chap. 1 by including spin and broadening
effects.

(R5.2) Investigate all the appropriate problems after proper modifications
introducing new theoretical formalisms for the problems as defined in
(R5.1) for HD negative refractive index, macro molecular, nitride and
organic materials.

(R5.3) Investigate all the appropriate problems of this monograph for all types of
HD quantum confined p-InSb, p-CuCl and semiconductors having dia-
mond structure valence bands whose dispersion relations of the carriers in
bulk materials are given by Cunningham [2], Yekimov et al. [3] and
Roman et al. [4] respectively.
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(R5.4) Investigate the influence of defect traps and surface states separately on
the ER of the for all the appropriate problems of all the chapters after
proper modifications.

(R5.5) Investigate the ER of the under the condition of non-equilibrium of the
carrier states for all the appropriate problems of this monograph.

(R5.6) Investigate the ER for all the appropriate problems of this monograph for
the corresponding HD p-type semiconductors and their nanostructures.

(R5.7) Investigate the ER for all the appropriate problems of this monograph for
all types of HD semiconductors and their nanostructures under mixed
conduction in the presence of strain.

(R5.8) Investigate the ER for all the appropriate problems of this monograph for
all types of HD semiconductors and their nanostructures in the presence of
hot electron effects.

(R5.9) Investigate the ER for all the appropriate problems of this monograph for
all types of HD semiconductors and their nanostructures for nonlinear
charge transport.

(R5.10) Investigate the ER for all the appropriate problems of this monograph for
all types of HD semiconductors and their nanostructures in the presence of
strain in an arbitrary direction.

(R5.11) Investigate all the appropriate problems of this monograph for strongly
correlated electronic HD systems in the presence of strain.

(R5.12) Investigate all the appropriate problems of this chapter in the presence of
arbitrarily oriented photon field and strain.

(R5.13) Investigate all the appropriate problems of this monograph for all types of
HD nanotubes in the presence of strain.

(R5.14) Investigate all the appropriate problems of this monograph for various
types of pentatellurides in the presence of strain.

(R5.15) Investigate all the appropriate problems of this monograph for HD
Bi,Tes—Sb,Te; super-lattices in the presence of strain.

(R5.16) Investigate the influence of temperature-dependent energy band constants
for all the appropriate problems of this monograph.

(R5.17) Investigate the influence of the localization of carriers on the ER in HDS
for all the appropriate problems of this monograph.

(R5.18) Investigate ER for HD p-type SiGe under different appropriate physical
conditions as discussed in this monograph in the presence of strain.

(R5.19) Investigate ER for different metallic alloys under different appropriate
physical conditions as discussed in this monograph in the presence of
strain.

(R5.20) Investigate ER for different intermetallic compounds under different
appropriate physical conditions as discussed in this monograph in the
presence of strain.

(R5.21) Investigate ER for HD GaN under different appropriate physical condi-
tions as discussed in this monograph in the presence of strain.
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(R5.22) Investigate ER for different disordered HD conductors under different
appropriate physical conditions as discussed in this monograph in the
presence of strain.

(R5.23) Investigate ER for various semi metals under different appropriate
physical conditions as discussed in this monograph in the presence of
strain.

(R5.24) Investigate all the appropriate problems of this monograph for HD
Bi,Te;_,Se, and Bi,_,Sb,Te; respectively in the presence of strain.

(R5.25) Investigate all the appropriate problems of this monograph for all types of
skutterudites in the presence of strain.

(R5.26) Investigate all the appropriate problems of this monograph in the presence
of crossed electric and quantizing magnetic fields.

(R5.27) Investigate all the appropriate problems of this monograph in the presence
of crossed alternating electric and quantizing magnetic fields.

(R5.28) Investigate all the appropriate problems of this monograph in the presence
of crossed electric and alternating quantizing magnetic fields.

(R5.29) Investigate all the appropriate problems of this monograph in the presence
of alternating crossed electric and alternating quantizing magnetic fields.

(R5.30) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented pulsed electric and quantizing magnetic fields.

(R5.31) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented alternating electric and quantizing magnetic fields.

(R5.32) Investigate all the appropriate problems of this monograph in the presence
of crossed in homogeneous electric and alternating quantizing magnetic
fields.

(R5.33) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented electric and alternating quantizing magnetic fields
under strain.

(R5.34) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented electric and alternating quantizing magnetic fields
under light waves.

(R5.35) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented pulsed electric and alternating quantizing magnetic
fields under light waves.

(R5.36) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented inhomogeneous electric and pulsed quantizing
magnetic fields in the presence of strain and light waves.

(R5.37) (a) Investigate the ER for all types of of this monograph in the presence
of many body effects strain and arbitrarily oriented respectively.

(b) Investigate all the appropriate problems of this chapter for the Dirac
electron.

(c) Investigate all the problems of this monograph by removing all the
physical and mathematical approximations and establishing the
respective appropriate uniqueness conditions.
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The ER is the consequence of motion induced phenomena of solid state science
and all the assumptions behind the said phenomena are also applicable to ER. The
formulation of ER for all types of and their quantum confined counter parts
considering the influence of all the bands created due to all types of quantiza-
tions after removing all the assumptions and establishing the respective appro-
priate uniqueness conditions is, in general, an extremely difficult problem. 200
open research problems have been presented in this monograph and we hope that
the readers will not only solve them but also will generate new concepts, both
theoretical and experimental. Incidentally, we can easily infer how little is pre-
sented and how much more is yet to be investigated in this exciting topic which is
the signature of coexistence of new physics, advanced mathematics combined with
the inner fire for performing creative researches in this context from the young
scientists since like Kikoin [5] we firmly believe that “A young scientist is no
good if his teacher learns nothing from him and gives his teacher nothing to be
proud of”. In the mean time our research interest has been shifted and we are
leaving this particular beautiful topic with the hope that (R5.37) alone is sufficient
to draw the attention of the researchers from diverse fields and our readers are
surely in tune with the fact that “Exposition, criticism, appreciation is the work
for second-rate minds” [6].
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Chapter 6
Appendix A: The ER in HDS Under
Magnetic Quantization

6.1 Introduction

It is well known that the band structure of semiconductors can be dramatically
changed by applying the external fields. The effects of the quantizing magnetic
field on the band structure of compound semiconductors are more striking and can
be observed easily in experiments [1-67]. Under magnetic quantization, the
motion of the electron parallel to the magnetic field remains unaltered while the
area of the wave vector space perpendicular to the direction of the magnetic field
gets quantized in accordance with the Landau’s rule of area quantization in the
wave-vector space [39-67]. The energy levels of the carriers in a magnetic field
(with the component of the wave-vector parallel to the direction of magnetic field
be equated with zero) are termed as the Landau levels and the quantized energies
are known as the Landau sub-bands. It is important to note that the same con-
clusion may be arrived either by solving the single-particle time independent
Schrodinger differential equation in the presence of a quantizing magnetic field or
by using the operator method. The quantizing magnetic field tends to remove the
degeneracy and increases the band gap. A semiconductor, placed in a magnetic
field B, can absorb radiative energy with the frequency (wo = (|e|B/m.)). This
phenomenon is known as cyclotron or diamagnetic resonance. The effect of energy
quantization is experimentally noticeable when the separation between any two
consecutive Landau levels is greater than kz7. A number of interesting transport
phenomena originate from the change in the basic band structure of the semi-
conductor in the presence of quantizing magnetic field. These have been widely
been investigated and also served as diagnostic tools for characterizing the dif-
ferent materials having various band structures [68—72]. The discreteness in the
Landau levels leads to a whole crop of magneto-oscillatory phenomena, important
among which are (i) Shubnikov-de Haas oscillations in magneto-resistance; (ii) De
Haas-van Alphen oscillations in magnetic susceptibility; (iii) magneto-phonon
oscillations in thermoelectric power, etc.
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In Sect. 6.2.1 of the theoretical background, the ER has been investigated in
HD non linear optical semiconductors in the presence of a quantizing magnetic
field. Section 6.2.2 contains the results for HD III-V, ternary and quaternary
compounds in accordance with the three and the two band models of Kane. In the
same section the ER in accordance with the models of Stillman et al. and Palik
et al. have also been studied for the purpose of relative comparison. Section 6.2.3
contains the study of the ER for HD II-VI semiconductors under magnetic
quantization. In Sect. 6.2.4, the ER in HD IV-VI materials has been discussed in
accordance with the models of Cohen, Lax, Dimmock, Bangert and Kastner and
Foley and Landenberg respectively. In Sect. 6.2.5, the magneto-ER for the stressed
HD Kane type semiconductors has been investigated. In Sect. 6.2.6, the ER in HD
Te has been studied under magnetic quantization. In Sect. 6.2.7, the magneto-ER
in n-GaP has been studied. In Sect. 6.2.8, the ER in HD PtSb, has been explored
under magnetic quantization. In Sect. 6.2.9, the magneto-ER in HD Bi,Te; has
been studied. In Sect. 6.2.10, the ER in HD Ge has been studied under magnetic
quantization in accordance with the models of Cardona et al. and Wang and
Ressler respectively. In Sects. 6.2.11 and 6.2.12, the magneto-ER in HD n-GaSb
and II-V compounds has respectively been studied. In Sects. 6.2.13 the magneto
ER in HD Pb;_,Ge,Te has been discussed. The last Sect. 6.3 contains 52 open
research problems for this chapter.

6.2 Theoretical Background

6.2.1 The ER in HD Nonlinear Optical Semiconductors
Under Magnetic Quantization

The dispersion relation under magnetic quantization in non-linear optical materials
can be written as

K2 Wi2 eBRE,  (Ey +A)) Aj = AL
YE) = —=2f(E) + —=f1(E) £ B2 [E+Eg + 06—
(6.1)
where
E,(E; + A 2 1
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3
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and
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Therefore, the dispersion relation of the conduction electrons in heavily doped
non-linear optical semiconductors in the presence of a quantizing magnetic field B
can be written following the methods as developed in Chap. 1 as

72k2
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The EEM at the Fermi Level can be written from (6.3a) as
m’, (Epgup, nyng) = m{Uy ,(Epgup,n,1,) (6.3b)

where Eppyp is the Fermi energy in this case.

Therefore the double valued EEM in this case is a function of Fermi energy,
magnetic field, quantum number and the scattering potential together with the fact
that the EEM exists in the band gap which is the general characterstics of HD
materials.

The complex density of states function under magnetic quantization is given by

NB(E) = NBR(E) + iNB](E)
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and x’ and y are the differentiations of x and y with respect to energy E.
Therefore, from (6.4a) we can write
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The electron concentration under the condition of extreme carrier degeneracy is
given by
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The ER in this case can be written as

o = Reat part of (o) (55— ) ] (6.6)

Erpup —

where E,qp is the complex Landau sub-band energy which can be obtained from
(6.3a) by substituting k, = 0 and E = E,gp.
Thus using (6.6), (6.5) and (6.3a) we can study the ER in this case.

6.2.2 The ER in HD Kane Type II1I-V, Ternary
and Quaternary Semiconductors Under
Magnetic Quantization

(a) The electron energy spectrum in III-V semiconductors under magnetic
quantizaion is given by
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H(C,E,n,) = [Cinzexp(—uz)}
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(6.9)

Therefore the dispersion relation is given by

n*k?
e = Us+(E,n,n,) + iUy +(E,n,) (6.10a)
where
1 -1
Ugvi(E,n,I’]g) = [%00([’:, }’]g) X {w}
-1
+ <“C+lz+ab>yo(ﬂ n,) x {w}
1 + Erf(E -1
+%(1 fg)(l —g) — (n+%)hwo + g+ {w] G(C,E, ng)}
and
1 +Erf(E -
Uy (E n,) = {M} H(C,E,n,)

The complex Landau energy E,yp; in this case can be obtained by substituting
k, =0 and E = E,yp in (6.10a).
The EEM at the Fermi Level can be written from (6.10a) as

m’, (Epgup, nyng) = mUs  (Eppup, n,1,) (6.10b)

Thus the EEM is a function of Fermi energy, Landau quantum number and
scattering potential together with the fact it is double valued due to spin.
The complex density of states function under magnetic quantization is given by

Np(E) = NBR/(E) + iNpyi (E)

2h2 Fi { 2?;1}]] (6.11a)
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where

V WUs2(Eonn)) + (Ua e (Eonn)) + (Us.e (Eomony)
2 )

WU (Emn)) + (Us s (Eym, ) = (Us e (E.mn,)
yi= 5

X1 =

and x| and y] are the differentiations of x and y with respect to energy E.
From (6.11a) we can write

eB+\/2m, &
AR pr \/_

Npri(E) = (6.11b)

and

_ eB /2m Mmax y

6.11c
CAmRt ( )

Ng (E)

n()

The electron concentration under the condition of extreme degeneracy is
given by

Nmax

v N Us.s(Erpa, . 1,))* + (Us 2 (Ersip, n.1,))?

gveB
2m2K%

ny =

1/2
+ (U3 +(Efsup, n, ng))} (6.12)

Thus using (6.6), (6.12) and the allied definitions we can study the ER in this
case.

(b) Two band model of Kane
The magneto-dispersion law in this case is given by

R2k?

1 1
Vi —g* 1B 6.13
. + 2)hwo F 58" 1o (6.13a)

2 2

= yZ(Ea ng) - (n
where g~ is the magnitude of the effective g factor at the edge of the conduction
band and p is the Bohr magnetron.

The EEM at the Fermi Level can be written from (6.13a) as

m*(Eppup, ) = meVy(Ersap, 1) (6.13b)
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Thus EEM is independent of quantum number.
The electron concentration under the condition of extreme degeneracy is
given by

Nmax

Ve Z Us,+(Ergup, n, Vlg))% (6.14)

n=0

_ &eB
2 ﬁ2

where

1 1
Us +(Ersrp, n,1g) = 72(Brsup,n,) — (n + E)hwo F Eg*HOB

Thus using (6.6), (6.14) and the allied definitions we can study the ER in this
case.

(c) Parabolic Energy Bands
The magneto-dispersion law in this case is given by

h2k?

2m,

1 1,
= 13(Esng) = (n+2)hoo F 58" oB (6.15a)

The EEM at the Fermi Level can be written from (6.15a) as
m*(Erpp, 1y) = me)3(Ergup; 1) (6.15b)

Thus the EEM in heavily doped parabolic energy bands is a function of Fermi
energy and scattering potential whereas in the absence of heavy doping the same
mass is a constant quantity invariant of any variables.

The electron concentration under the condition of extreme degeneracy is
given by

1
Mmax

.eB 2
=£ \/mcz <U6i Ersup, n, %)) (6.16)

2R

where, Us +(Erpup, n,1,) = 73(Ersup, n,) — (n +3)hwo F 18 1B
Thus using (6.6), (6.16) and the allied definitions we can study the ER in this case.

(d) The model of Stillman et al.

The (1.107) under the condition of band tailing assumes the form

[?11 - \/(fn)2 — 4ty (E, ng)

K= -
2ty

(6.17)
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Therefore the magneto dispersion law is given by
k2 = Uy(E,n,n,) (6.18a)

where

Un(i o) = [ {t“ - \/(fu);;tlm(E, Vlg)} ) Z%B(n N %)]

The EEM at the Fermi Level can be written from (6.18a) as

2

h
—U;(EFBHDJ’Z,V]g) (618b)

m*(Erpup,Ng) = >

The electron concentration under the condition of extreme degeneracy is
given by

1

VeB Tmax 2
=& (U7(EFBHDa n, ’1g)> (6.19)

hy =

2
m°h pard

Thus by using (6.6), (6.19) and the allied definitions we can study the ER in this
case.

(e) The model of Palik et al.

To the fourth order in effective mass theory and taking into account the interac-
tions of the conduction, light hole, heavy-hole and split-off hole bands, the electron
energy spectrum in III-V semiconductors in the presence of a quantizing magnetic
field B can be written as

Pk 1 m,

1
E=1J h T4 (=<
31+(n+2) wo—I-ZmC 4(m0

1
Vhawogy £ ksoo(n + 5)(%’0)2

2

1\ 7k
) + k3o |:h600 <n + 5) + 2mz:| (620)

h2 2
+ k310(hw0(2

C

where

1
J31 = *Eahwo[(l —yn)/(2 er“)z} -J32,
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= {50 =00 - @] @) s 50 =R a0
-2{1- [ 52}
ko = (1 = yi1)(1 —x”){ <2+%x11 +x%1> ((21;7;1‘1‘))2 _gy“},

1 1 2 A -1 me
ks = — Kl +§xf1)/<l +§x11)} (1=yn)" xn=[1+ (E—g)} and yi; = o
Under the condition of heavy doping, the (6.20) assumes the form
J34k? + J35,i(l’l)k22 + J36¢(I’l) — ’))3(E, 17g) =0 (621)

where

) 2 w? w? " 1
J3q = O(k32 (h /2mc) s J35_i(n) = m + ock31hw0 . % —+ o<k32ha)0 . ﬁ (n + 5) R

1 m, . 1 1
J36i(n) = ]3] + Z (m—o)hwogo + k300((h600)2(7’l + z) + k320![(7l(0())(n + 5)]2:|

The (6.21) can be written as
k2 = Asspp = (E,n,n,) (6.22a)

where

Assup = (E,n,ny) = (2J54) " [_JSSi(”) + \/(135,i(n))2 — 434 [ T35+ (n) = 73(E, 11,)]

The EEM at the Fermi Level can be written from (6.22a) as

2

m*i (EFBHDa n, rlg) = EASSHD_i (EFBHDa n, ng) (622b)

Thus, the EEM is a function of Fermi energy, Landau quantum number and the
scattering potential.
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The electron concentration is given by
B eBgv Mmax

T 2m2h —

no |:Y34HD (Errp; n,Mg) + Zsarp(Erprp, 1, Hg)} (6.23)

where  Y3aup(Erpup, 1, 1,) = l:\/A35HD7+(EFBHD7n7’7g> +A35HD,(EFBHDana’1g):|
and

Zsanp(Ersup, 1, 1) = Y vy Lo(r) [Yaaup (Ersup, n, 1)) -

Thus by using (6.6), (6.23) and the allied definitions we can study the ER in this
case.

6.2.3 The ER in HD II-VI Semiconductors Under
Magnetic Quantization

The magneto dispersion relation of the carriers in heavily doped II-VI semicon-
ductors are given by

1

2¢B 1 - | 2eB 1.12
13(E,n,) :a{)% <n+§) +b6kfiig[%(n+§)} (6.24)

The (6.24) can be written as
kZ2 = USi(E7n7ng) (6253)

- 2eBa 3 e
where USj:(Evnv ng) = (bi)) lbjg(Ev ng) ~ T . (I’l + %) + AO[% (n + %)]

The EEM at the Fermi Level can be written from (6.25a) as

J

2

h
m*(Eppup, 1) = > Us.. (Epsrp, 1, 1) (6.25b)

The electron concentration is given by
Tmax

Z [Y35HD(EFBHD,n» Ng) + Zssup(Erpup, 1, ”Ig)} (6.26)
n=0

_ ¢Bs,
T2k

no

where

Y3sup(Erpup, 1, 1,) = |:\/U8+(EFBHDa n,n,) + \/US—(EFBHDa n,in,)




6.2 Theoretical Background 199

and
Zssup(Ergup, ny 1) = " Lg(r) [YBSHD (Ergup, 1, ﬂg)} .

Thus by using (6.6), (6.26) and the allied definitions we can study the ER in this
case.

6.2.4 The ER in HD IV-VI Semiconductors Under
Magnetic Quantization

The electron energy spectrum in IV-VI semiconductors are defined by the models
of Cohen, Lax, Dimmock and Bangert and Kastner respectively. The magneto ER
in HD IV-VI semiconductors is discussed in accordance with the said model for
the purpose of relative comparison.

(a) Cohen Model

In accordance with the Cohen model, the dispersion law of the carriers in IV-VI
semiconductors is given by

P aEp;  py(1 + oE) N opy

E(1 E) = —
(1+«E) 2m;  2m3  2m) 2my 4mym

(6.27)

where, p; = hk;, i = x,y,z, m;,m;, and m5 are the effective carrier masses at the
band-edge along x, y and z directions respectively and n), is the effective-mass
tensor component at the top of the valence band (for electrons) or at the bottom of
the conduction band (for holes).

The magneto electron energy spectrum in IV-VI semiconductors in the presence
of quantizing magnetic fieldB along z-direction can be written as

1 1 3 1 k2
E(1 +oE) = — E) +-g*u B+ =of n? —\Ko?(E) +—=2 (6.28a
(14 aE) (n+2)hw( ) 58 lo +8oc(n +n+2)hw( )+2m3 ( )

le|B 1/2
where, o(E) = —2= {1 + acE(l _ %)} '
2

Therefore the magneto dispersion law in heavily doped IV-VI materials can be
expressed as
n*k2
—=Us(E 6.28b
s 16,4 (E,n, 1) ( )
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where
Ut B = [1aBng) = (14 5) 1% "o
Vs 2
30, , 1.( heB \’
—g(n +n+3)<\/m)
“Eng 55 (1-2)

+3%2(n2+n+%)<\/iz_il2>2(1 _%)H

The EEM at the Fermi Level can be written from (6.28b) as
m’; (Ergup; 0, 11g) = m3Ulg o (Ergup, 0, 1) (6.28¢)

Thus, the EEM is a function of Fermi energy, Landau quantum number and the
scattering potential.

The carrier statistics under the condition of extreme degeneracy in this case can
be expressed as

1

(Ulﬁ,i(EFBHD; n, Wg)) (6.29)

Nmax

_ &weB
= V2

Thus by using (6.6), (6.29) and the allied definitions, we can study the ER in
this case.

(b) Lax Model

In accordance with this model, the magneto dispersion relation assumes the form

1 P o1,
E(1+aE)=(n+ E)hw%(E) + me + 7 Ho8 B (6.30)
where, w3 (E) = \/rf%.

The magneto dispersion relation in heavily doped IV-VI materials, can be
written following (6.30) as

1 21,
72(En,) = (”"‘5)50}03(]5) + 2m% iig HoB (6.31)

Equation (6.31) can be written as
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n*k?
72m3 = Upr+(E,n,n,) (6.32a)

where

1 -
)hoo3(E) + = ¢ 1B

Ul7.:t(E7n7ng) = yZ(E7 ng) - (I’l + 2 2

The EEM at the Fermi Level can be written from (6.32a) as
m*(Erpup, Mg) = m3U\; 1 (Ergap, n, 1) (6.32b)

The electron concentration under the condition of extreme degeneracy can be
written as

Mmax

veB 1
_$ Vm Z Ui7,+(EFBrp; 1y 1,) )? (6.33a)

2h?

Thus by using (6.6), (6.32a), (6.32b) and the allied definitions, we can study the
ER in this case.

(c) Dimmock Model

The dispersion relation under magnetic quantization in HD IV-VI semiconductors
can be expressed in accordance with Dimmock model as

N 1 w1 1
Vz(Eaﬂg)+°‘V3(E77Ig) ( + ) ( m>+OCV3(E,7’]g)X2 <+_)

' myn
2 2 4 4 4
_Rk PRk Lo K? /0 SO (0 S (0 7 S N
2my  2my  2mp o 2my 4m

2¢B 1L.w /1 1 w1 1
= ( ) — =t ===
2 \m: m; 2 \mj m

cm o dmym) o Ammp o Amymf

ey i ZeB( +1) 2+ hi*eB N hi*eB (+1)+ AN
—(=m+= X n+-)+-—x
dm;mt \ h 2 2m m;h  2mim;h 2" dmymf

(6.33b)
where

2
x=k;.

Therefore the magneto dispersion relation in heavily doped IV-VI materials,
whose unperturbed carriers obey the Dimmock Model can be expressed as
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k2 = Uy (E,n,n,) (6.34)
where

1
Uns(E.myng) = o)™ [=a9(E,m ) + [a3(E,n, 1) + 4poRo(E, o)

(6.35)
_ ali*
po = dm;ym;’

R 1 1. aii’eB 1,1 1 1 1
qo(E,n,n,) = |:E(m_; m_f) +T("+§)(W W) — o3 (E, ﬂg)(m_f_m_[)}
and

1 1 1
Ro(E,n,mg) = 172(Esng) + aeBys (B, ) (n + S)h(— +—)
mS  m,
lieB( Jrl)(l + ! ) o’ eB( +1) 2 (6.36a)
— n+-)(—+—) — n+— .
2 mr om7 mymy) 2
The EEM at the Fermi Level can be written from (6.34) as
h2
m"(Ersup, 1, 1) = — U7 (Epgap, n, 1) (6.36b)

2

Thus, the EEM is a function of Fermi energy, Landau quantum number and the

scattering potential.
The electron concentration under the condition of extreme degeneracy can be

written as

o=

Mmax

gveB
no =
07 22

(v B, (637)

n=0
Thus by using (6.6), (6.35) and the allied definitions, we can study the ER in
this case.
(d) Model of Bangert and Kastner
In accordance with this model [73], the carrier energy spectrum in HD IV-VI
semiconductors can be written following (3.68) as
2
e, K
p%l(Evng) p%Z(Evng)

=1 (6.38)
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where
P(Eny) =~ pralEin) = e
11\ Mg SI(E’ ng)a 12\ Hg Sz(E’ ng)7
SI(E7 ng) = |:2'))0(E, ng)]_l[% {Cl(“laE7Eg) - iDl(alvE’Eg)}
<\2
—+ (iz {Cz(O!z,E, Eg) — iDz(O!z,E, Eg)}
)2
+ (ii)/ {C3(O!3,E,Eg) — iD3(OC3,E,Eg)}:|
and
7\2
S2(E,m,) = {2V0(Evﬂg)]l[2(EAg) {Cl(OCl,EJIg) iDl(“l,EJ?g)}

3 2
(Z—//Q) {03(0(37E7 ng> - iD3(OC3,E, ”g)}:l

+

Since S1(E, n,) and S2(E, 1,) are complex, the energy spectrum is also complex
in the presence of Gaussian band tails.

Therefore the magneto dispersion law in the presence of a quantizing magnetic
field B which makes an angle 6 with k, axis can be written as

k2 = Uis(E,n,ny) (6.39a)
where

UIS(E7 n, '/Ig) = [,0%1 (E7 ng) Sinz 0+ p%Z(E7 ng) C052 6]
I:ZEB 1

= (43| (P (E ) pia(Eo )~ (o (B sin® 0

+p%,(E, 1g) cos? 0}7]]

The EEM at the Fermi Level can be written from (6.39a) as

2

h
m* (EFBHD7 n, 178) = 7 Realpart Of [U[g(EFBHD, n, 1’]8)]/ (639b)

Thus, the EEM is a function of Fermi energy, Landau quantum number and the
scattering potential and the orientation of the applied quantizing magnetic field.
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The electron concentration under the condition of extreme degeneracy can be
written as

nmax

n,n,))? (6.40)

n= 0

Thus by using (6.6), (6.40) and the allied definitions, we can study the ER in
this case.

(e) Model of Foley and Langenberg

The dispersion relation of the conduction electrons of IV-VI semiconductors in
accordance with Foley et al. can be written as [74]

1

E E
E+7g:E_(k)+ HE+(1<)+;] + Pik*+ P} kz] (6.41)
where E, (k) = + —|— ! k2 , E_(k) = 2ml represents the contribution from the

interaction of the conductlon and the valence band edge states with the more

distant bands and the free electrons term, - = 1[-L + L] L =1L 4 L]
my Mye M7 ) 2 Umy, my,

Following the methods as given in Chap. 1, the dispersion relation in heavily
doped IV-VI materials in the present case is given by

2
2
K ekl
+ +
2m7y - 2my

E

2
Rk Rk E;
N o _ s b4 — 80
[/S(E’ ) + 2 } lsz + 2mﬁ

4

n*k2 N n*k2
2m’ Zm‘J‘r

+ E,, Pﬁ k2 + Pk

(6.42)

Therefore the magneto-dispersion relation in heavily doped IV-VI materials can
be written as

E; heB, 1. hx
2
AEn) + 5+ Es(Eung) + |22 o 2>+f} ~2ns(En)
heB(n+3)  hx heB(n+1)  mx 1? heB 1
+—gH — + }—{ =+ —(n+5)
2 my 2m;; mi ZmW gl mt 2
x 2 2B, 1

where k? =X.
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Therefore the magneto dispersion relation in IV-VI heavily doped materials,
where unperturbed carriers follow the model of Foley et al. can be expressed as

k2 = Uo(E,n,n,) (6.44)
where
_ 1
U19(E7 n, ng) = [2P91] ! [_q91(E1 n, ng) + {qgl (Ea n, ng) + 4P91R91 (E7 n, ’/Ig)}z]
N T S U
po1 = 4 (mr‘r 2 (mi)z ’
i*eB 1 , WE, WeB(n+1) E,
() = {mm (r+3) +ri+ i wm mp () +5:) | an
2heB E 1
R91(E7 ’/Igvn) = [V%(E ng) +Eg“/3(E7 ng) - <V3(E7 ng) +_g) <I’l +_>
my 2 2
— E hcj +1 _P2 Zci +l ]
s \"T2) T T T2
The EEM at the Fermi Level can be written from (6.44a) as
2
m"(Ersup, 1, 1) = — Ulo(Epgap, n, 1) (6.44b)

2

Thus, as noted already in this case also the EEM is a function of Fermi energy,
Landau quantum number and the scattering potential.

The electron concentration under the condition of extreme degeneracy can be
written as

1

Nmax
gveB

3
n="5 Z <U19(EFBHD,n,ng)) (6.45)

n=0

Thus by using (6.6), (6.45) and the allied definitions, we can study the ER in
this case.

6.2.5 The ER in HD Stressed Kane Type Semiconductors
Under Magnetic Quantization

The dispersion relation of the conduction electrons in heavily doped Kane type
semiconductors can be written following (1.206) as

2
L -

+ ~1
ai(B,n,)  bj(B.n,)  cfi(E,my)
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where

1 1 1
(B, n,) = ———=, by(E,n,) = ——= and ¢ (E,1,) = ———

(6.46)

The electron energy spectrum in heavily doped Kane type semiconductors in
the presence of an arbitrarily oriented quantizing magnetic field B which makes an
angle %, B, and 7, with k,, k, and k, axes respectively, can be written as

(K.)> = Uqi (E,n,n,) (6.47a)
where
Usi(E,n,n,) = L(E,n,)[1 — I3(E,n,n,)]
L(E,ng) = [laii (B, n,)]* cos® @ + [bi (E, )] cos® By + [en1 (B, n,)]* cos” 7]

and

L(E,n,n,) = ZeTB (n + %) [a11(E, 1,)b11(E, ng)cni (E, Wg)]il[Iz(E; ’/Ig)]l/z

The EEM at the Fermi Level can be written from (6.47a) as

2

) Uy (Ersrp, 1, 1,) (6.47b)

m*(Ergrp,n,1,) =

From (6.47b) we observe that the EEM is a function of Fermi energy, Landau
quantum number, the scattering potential and the orientation of the applied
quantizing magnetic field.

The electron concentration under the condition of extreme degeneracy can be
written as

1

B gveB Mmax
=" ; <U41(EF3HD7n7’1g)) (6.48)

Thus by using (6.6), (6.48) and the allied definitions, we can study the ER in
this case.
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6.2.6 The ER in HD Tellurium Under Magnetic
Quantization

The magneto dispersion relation of the conduction electrons in HD Te can be
expressed following (1.231) as

k2 = Ups(E,n,n,) (6.49a)

where

s B = @) [{2rsEonw 03 = 4w (43 ) |

4 2 8eB Lo 2 2
- {u B + S DR - v}

The EEM at the Fermi Level can be written from (6.49a) as

my (Erup, 1, ’7g) = b Uzltzi (ErgHp, 1, 77g) (6.49b)
Thus from (6.49b) we note that the EEM is a function of three variables namely
Fermi energy, Landau quantum number and the scattering potential.
The electron concentration under the condition of extreme degeneracy can be
written as

1
2

(U42,i(EFBHDa n, ﬂg)> (6.49c¢)

Mmax

_ &weB
T 22k e

no

Thus by using (6.6), (6.49) and the allied definitions, we can study the ER in
this case.

6.2.7 The ER in HD Gallium Phosphide Under
Magnetic Quantization

The magneto dispersion relation in HD GaP can be written following (1.248) as

k2 = Ug(E,n,n,) (6.50a)
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where

B 1
Up(E,n,n,) = 2p*)~! H2y3(E, Ng)b + ¢ —2Db — 4ab% <n + 2) }

+ {[c2 + 4bcys(E, n,) + 4D°b* — 4cDb]

8B 1
— % (n+ E)(2ab2D +493(E, n,)ba

1/2
+ abc — 2b%ay;(E, n,) — bzc} }

The EEM at the Fermi Level can be expressed from (6.50a) as

2

h
m* (EFBHDa n, rlg) = 7 UA,B (EFBHD> n, ng) (650b)

Thus, from (6.50b) it appears that the EEM is the function of Fermi energy,
Landau quantum number and the scattering potential.

The electron concentration under the condition of extreme degeneracy can be
written as

1

veB :
ng = g Z <U43 (EFBHD7 n, i’[g)) (650C)

2
nh n=0

Thus by using (6.6), (6.50c) and the allied definitions, we can study the ER in
this case.

6.2.8 The ER in HD Platinum Antimonide Under Magnetic
Quantization

The magneto dispersion relation in HD PtSb, can be written following (1.270) as
i = Us(E, n,my) (6.51a)

where

1
Uu(E,n,n,) = T [T71(E7n717g) + \/T721 (E,n,ng) + 4Ty T71(E,n,1,) |,

2eB 1
T71(E7”777g) = |:T51(E7 ﬂg) —Ts h (” +2>:|
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and

2¢eB 1 2eB 1
T72(E,n,n,) = |Te1(E, n,) + To1(E, 1) e (” + 5) - TII(T (n + 5) )2} :

The EEM at the Fermi Level can be written from (6.51a) as

h2
m*(Ergup,n,1,) = > Uy (Ergap; 1, 1,) (6.51b)
Thus, from the above equation we infer that the EEM is a function of Landau
quantum number, the Fermi energy and the scattering potential.
The electron concentration under the condition of extreme degeneracy can be
written as
B gve B Mmax

o ="75 (Usa(Erpup, n, Wg))% (6.52)

n=0

Thus by using (6.6), (6.52) and the allied definitions, we can study the ER in
this case.

6.2.9 The ER in HD Bismuth Telluride Under
Magnetic Quantization

The magneto dispersion relation in HD Bi,Te; can be written following (1.285) as

K} = Uss(E, ng,n) (6.53a)
where
UuEon n):“/z(EJIg)*(nJr%)% and My M
e ] (0033 — 7(&3:)2)%

The EEM at the Fermi Level can be written from (6.53a) as

2

h
m*(EFBHD,ﬂg) = EUQS(EFBHD’n’ng) (653b)

The electron concentration under the condition of extreme degeneracy can be
written as


http://dx.doi.org/10.1007/978-3-319-08380-3_1
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1
2

eB L=
=8 <U45 (Ersap, 1, Wg)) (6.54)

ny = >5—
2
nhn:O

Thus by using (6.6), (6.54) and the allied definitions, we can study the ER in
this case.

6.2.10 The ER in HD Germanium Under Magnetic
Quantization

(a) Model of Cardona et al.

The magneto dispersion relation in HD Ge can be written following (1.300) as

K2 = Uss(E, 1,n) (6.552)
where
o E EX, E,22B, 1112
I g0 go | Lgoll 2€
46( 7n71’]g) hz V3( ?rlg) + 2 4 + mi h (n+2):|:|

The EEM at the Fermi Level can be written from (6.55a) as

2

h
m*(Eppp,n,1g) =~ Uys(Errp, n,1,) (6.55b)

From (6.55b) it appears that the EEM is a function of Fermi energy and Landau
quantum number due to band non-parabolicity.

The electron concentration under the condition of extreme degeneracy can be
written as

1

Mmax

o gveB 2
=" ; <U46(EFBHD,nJ1g)) (6.56)

Thus by using (6.6), (6.56) and the allied definitions, we can study the ER in
this case.

(b) Model of Wang and Ressler

The magneto dispersion relation in HD Ge can be written following (1.321) as

i = Uy (E,n,my) (6.57a)


http://dx.doi.org/10.1007/978-3-319-08380-3_1
http://dx.doi.org/10.1007/978-3-319-08380-3_1

6.2 Theoretical Background 211

where

m' 1
U47(Ean7 ;/’g) = (hzi%) |:l - &5(}’1 + E)hwl_ - {97(’1) - 4&6])3(]57 r]g)}l/z )

eB

;
my

W) =
and
T N
0r(n) = |1+ )P+ o) = sl + s
o - T
+ 40(6(1’1 + E)ham_ — 40(6054{(71 + E)hwj_}

The EEM at the Fermi Level can be written from (6.57a) as

* hz
m’(Erpp,n,1g) = — Uy, (Ergap, n,1,) (6.57b)
From (6.57b) we note that the mass is a function of Fermi energy and quantum
number due to band non-parabolicity.
The electron concentration under the condition of extreme degeneracy can be
written as

1
veB Mmax 2
ny = gﬂ;zh ; <U47(EFBHD,n,r]g)) (658)

Thus by using (6.6), (6.58) and the allied definitions, we can study the ER in
this case.

6.2.11 The ER in HD Gallium Antimonide Under
Magnetic Quantization

The magneto dispersion relation in HD GaSb can be written following (1.338) as
& = Uss(E.nn) (6.59)

where


http://dx.doi.org/10.1007/978-3-319-08380-3_1
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h 2

2 (F )4 = \351/2
— o %o(Eg) — o o9oo(E,g)
~{5E2 + T oo (B (o + 2L,

o
—2eB 1 _ — O(l()(E )
sl = | 5 (w3 ) + @) ({2 + Bl + 0

" 2h2< 11 )
g==—— and oypg==|———
2mq E,

The EEM at the Fermi Level can be written from (6.59a) as
2
m"*(Eppup,1g) = > U,s(Ersap,n, 1) (6.59b)

The electron concentration under extreme degeneracy can be written as

1
Mmax 2

veB
ny = 8 Z <U48(EFBHD,n, Vlg)) (660)

2
nh n=0

Thus by using (6.6), (6.60) and the allied definitions, we can study the ER in
this case.

6.2.12 The ER in HD II-V Materials Under
Magnetic Quantization

The dispersion relation of the holes are given by [75-77]

E = 01k} + 02k} + 03k7 + Saky F [{05k% + Ock; + 07k7 + S5k, }? (6.61)
: ' 6.61
+ G+ A £ A

where, k., k, and k; are expressed in the units of 10'° mfl,

1 1 1 1

0, :7(a1 +b1), 0, :7(a2+b2), 05 :7((13 +b3), 04 :7(A+B),
2 2 2 2
1 1 1 1

0s —5(01 —by), Os —E(az —by), 07 —E(as — b3), s fE(A - B),
a; (i=1,2,3,4),b;,A, B, G5 and A; are system constants

The hole energy spectrum in HD II-V semiconductors can be expressed fol-
lowing the method of Chap. 1 as


http://dx.doi.org/10.1007/978-3-319-08380-3_1
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"/3(E, ng) = le)% + 02]()2] + 03](22 + 04k, F |:{95k§ + Hﬁk)z + 97k12 + 55kx}2

| (6.62)
+§H+N]i&
the magneto dispersion law in HD II-V semiconductors assumes the form
ky = Uso +(E,n, 1) (6.63a)

where,

1

Uso+(E,n,n,) = {135“/3(]5 ng) + Be.+(n) £ [73(B.n,) + 73(E, o).+ (n) + I3.1(n) |

L3 . (n)

o (n) = 25—,
2(0, - 05)

s = b2
(03— 62)
Ly.(n) = (402)7" [4021337i(n) + 805131 1. (n) — 9§131,i(n)} ,
Pl = (403)" [y o) + 403020 — 40300
I i(n) = _Gg + 2053 (n) — 2021317i(n)} ,

Lys(n) = |Gy .(n) + A3 — I+ (”)} ;

I ()——(+l)h 52iA
31,:\:”—_” 2 3] 40, 3|,

r 2
132(1’1) = (n —+ 1)hw32 — i:|

2 40
» eB o eB M ?
3| = e, ON = —F———, M31 =,
VM3 M3, VM33M3, 20,
i i e
M32 = M’;3 = — andM34 = —

20, P T 20,
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The EEM at the Fermi Level can be written from (6.63a) as

m’ (Erup, n, 1) = > Ui+ (Erprp, 1, 1) (6.63b)
From (6.63b) we note that the EEM is a function of Fermi energy, Landau
quantum number and the scattering potential.
The electron concentration under extreme degeneracy can be written as

1

Mmax

.eB 2
ny =2 Z <U49.:t(EFBHD>n> ﬂg)> (6.64)

2
nh n=0

Thus by using (6.6), (6.60) and the allied definitions, we can study the ER in
this case.

6.2.13 The ER in HD Lead Germanium Telluride Under
Magnetic Quantization

The dispersion relation of the carriers in n-type Pb; _,Ga,Te with x = 0.01 can be
written following Vassilev [78] as

[E — 0.606k; — 0.0722k:] [E 4 E, + 0.411k; 4 0.0377k’]
= 0.23k? + 0.02k2 + [0.06E, + 0.061k; + 0.0066k?] k, (6.65)

where, E,(=0.21€V) is the energy gap for the transition point, the zero of the
energy E is at the edge of the conduction band of the I" point of the Brillouin zone
and is measured positively upwards, k,, k, and k_ are in the units of 10° m™".

The magneto dispersion law in HD Pb,_,Ge,Te can be expressed following the
methods as given in Chap. 1 as

200(E,1’[g) — eB 1
W(E/ﬂg) +73(E, 7]g) [Egg —0.345x — 0.39()? (n +§):|

_ 0.46eB
O

— 0.822¢B
+ Eg0+ _h

1 — eB 1 2¢B 1.\?
(n +§) +0.02x+ {0‘06Eg0+0.122?(n+5) +0.0066x] (7 (n +§)>

1.212eB
h

(n +%) +0.377x] [ (n—f—%) —&—0.7224 (6.66)
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Equation (6.66) assumes the form
k2 = Uso+(E,n,n,) (6.67a)
where

1
U50A¥(E7 n, ﬂg) = (21710) ! [Q10(E7 n, ’7g) - [q%()(E7 n, ”g) + 4p10R10;(E7 n, ”g)] 2i|

pio = (0.377 x 0.722), q10(E, n,n,) = [0.02 +0.345);(E, n,)
1
2B/ 1))\ 1.212¢B 1
£0. iy (A . -
00066< = <n+2>) +0.377 x ~= (n+2>
_ B 1
+0.722 {Egg +0.8225 (n+ E)” and
eB

h
200(E, n,) -~ |
T+ Eof (E/ny) © 73(E;11,) [Ego +0.390— (n + E)}

1
— eB 1 2¢B 11)\2
F <0.06Eg0+0.1227 <n+§>> (7 <n+§>>
— eB 1 1.212eB 1 0.46¢B 1

The EEM at the Fermi Level can be written from (6.67a) as

RIOEF(E’ n, r]g) = |:

hZ
m’(Erpup; 1,) = ?UgO,JF(EFBHDanaﬂg) (6.67b)
Thus from (6.67b) we note that the EEM is a function of the Fermi energy,
Landau quantum number and the scattering potential.
The electron concentration under extreme degeneracy can be written as

g eB Mmax
= 2v 7 Z (Uso,+ (Erpup, 1, 1,))
n n=0

l—

o (6.68)

Thus by using (6.6), (6.68) and the allied definitions, we can study the ER in
this case.
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6.3 Open Research Problems

(R.6.1)

(R.6.2)

(R.6.3)

(R.6.4)

(R.6.5)

(R.6.6)

(R.6.7)

(R.6.8)

(R.6.9)

(R.6.10)

(R.6.11)

(R.6.12)

Investigate the ER in the presence of an arbitrarily oriented quantizing
magnetic field for all the materials as given in problems in R.1.1 of
Chap. 1 in the presence of the Gaussian type band tails.

Investigate the ER in the presence of an arbitrarily oriented quantizing
magnetic field in HD nonlinear optical semiconductors by including
broadening and the electron spin. Study all the special cases for HD
II-V, ternary and quaternary materials in this context.

Investigate the ERs for HD IV-VI, II-VI and stressed Kane type com-
pounds in the presence of an arbitrarily oriented quantizing magnetic
field by including broadening and electron spin.

Investigate the ER for all the materials as stated in R.1.1 of Chap. 1 in
the presence of an arbitrarily oriented quantizing magnetic field by
including broadening and electron spin under the condition of heavily
doping.

Investigate the ER in the presence of an arbitrarily oriented quantizing
magnetic field and crossed electric fields in HD nonlinear optical
semiconductors by including broadening and the electron spin. Study all
the special cases for HD III-V, ternary and quaternary materials in this
context.

Investigate the ERs for HD IV-VI, II-VI and stressed Kane type com-
pounds in the presence of an arbitrarily oriented quantizing magnetic
field and crossed electric field by including broadening and electron
spin.

Investigate the ER for all the materials as stated in R.1.1 of Chap. 1 in
the presence of an arbitrarily oriented quantizing magnetic field and
crossed electric field by including broadening and electron spin under
the condition of heavy doping.

Investigate the 2D ER in QWs of HD nonlinear optical, III-V, II-VI,
IV-VI and stressed Kane type semiconductors.

Investigate the 2D ER for HD QWs of all the materials as considered in
problems R.1.1.

Investigate the 2D ER in the presence of an arbitrarily oriented non-
quantizing magnetic field for the QWs of HD nonlinear optical semi-
conductors by including the electron spin. Study all the special cases for
III-V, ternary and quaternary materials in this context.

Investigate the ERs in QWs of HD IV-VI, II-VI and stressed Kane type
compounds in the presence of an arbitrarily oriented non-quantizing
magnetic field by including the electron spin.

Investigate the 2D ER for HD QWs of all the materials as stated in R.1.1
of Chap. 1 in the presence of an arbitrarily oriented magnetic field by
including electron spin and broadening.


http://dx.doi.org/10.1007/978-3-319-08380-3_1
http://dx.doi.org/10.1007/978-3-319-08380-3_1
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(R.6.13)

(R.6.14)

(R.6.15)

(R.6.16)

(R.6.17)

(R.6.18)

(R.6.19)

(R.6.20)

(R.6.21)

(R.6.22)

(R.6.23)

(R.6.24)

(R.6.25)

(R.6.26)

Investigate the ER for all the problems of R.1.1 under an additional
arbitrarily oriented electric field in the presence of heavy doping.
Investigate the ER for all the problems of R.1.1 under the arbitrarily
oriented crossed electric and magnetic fields in the presence of heavy
doping.

Investigate the 2D ER for all the problems in R.1.1 the presence of finite
potential well under the conditions of formation of band tails and applied
external parallel magnetic field.

Investigate the 2D ER for all the problems in R.1.1 the presence of
parabolic potential well under the conditions of formation of band tails
and applied external parallel magnetic field.

Investigate the 2D ER for all the problems in R.1.1 the presence of
circular potential well under the conditions of formation of band tails
and applied external parallel magnetic field.

Investigate the 2D ER for accumulation layers of HD nonlinear optical,
MI-V, IV-VI, II-VI and stressed Kane type semiconductors in the pres-
ence of an arbitrary electric quantization.

Investigate the 2D ER in accumulation layers of all the materials as
stated in R.1.1 of Chap. 1 under the condition of heavy doping and in the
presence of electric quantization along arbitrary direction.

Investigate the 2D ER in the presence of an arbitrarily oriented electric
quantization for accumulation layers of HD nonlinear optical semicon-
ductors. Study all the special cases for III-V, ternary and quaternary
materials in this context.

Investigate the 2D ERs in accumulation layers of HD IV-VI, II-VI and
stressed Kane type compounds in the presence of an arbitrarily oriented
electric quantization.

Investigate the 2D ER in accumulation layers of all the materials as
stated in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented
quantizing electric field under the conditions of formation of band tails
and applied external parallel magnetic field.

Investigate the 2D ER in the presence of an arbitrarily oriented magnetic
field in accumulation layers of HD nonlinear optical semiconductors by
including the electron spin. Study all the special cases for HD III-V,
ternary and quaternary materials in this context.

Investigate the 2D ERs in accumulation layers of HD IV-VI, II-VI and
stressed Kane type compounds in the presence of an arbitrarily oriented
non-quantizing magnetic field by including the electron spin.
Investigate the 2D ER in accumulation layers of all the materials as
stated in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented
non-quantizing magnetic field by including electron spin and heavy
doping.

Investigate the 2D ER in accumulation layers for all the problems from
R.A4.22 to R.A4.26 in the presence of an additional arbitrarily oriented
electric field.


http://dx.doi.org/10.1007/978-3-319-08380-3_1
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(R.6.27)

(R.6.28)
(R.6.29)

(R.6.30)

(R.631)

(R.6.32)

(R.6.33)

(R.6.34)

(R.6.35)

(R.6.36)

(R.6.37)
(R.6.38)

(R.6.39)

(R.6.40)

(R.6.41)
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Investigate the 2D ER in accumulation layers for all the problems from
R.A4.22 to R.A4.26 in the presence of arbitrarily oriented crossed
electric and magnetic fields.
Investigate the 2D ER in accumulation layers for all the problems from
R.A4.22 to R.A4.26 in the presence of surface states.
Investigate the 2D ER in accumulation layers for all the problems from
R.A4.22 to R.A4.26 in the presence of hot electron effects.
Investigate the 2D ER in accumulation layers for all the problems
from R.A4.22 to R.A4.26 by including the occupancy of the electrons in
various electric subbands.
Investigate the 2D ER in Doping superlattices of HD nonlinear optical,
III-V, TI-VI, IV-VI and stressed Kane type materials.
Investigate the 2D ER in Doping superlattices of all types of materials as
discussed in problem R.1.1 as given in Chap. 1 under the conditions of
formation of band tails and applied external parallel magnetic field.
Investigate the 2D ER in the presence of an arbitrarily oriented non-
quantizing magnetic field for Doping superlattices of HD nonlinear
optical semiconductors by including the electron spin. Study all the
special cases for HD III-V, ternary and quaternary materials in this
context.
Investigate the 2D ERs in Doping superlattices of HD IV-VI, II-VI and
stressed Kane type compounds in the presence of an arbitrarily oriented
non-quantizing magnetic field by including the electron spin.
Investigate the 2D ER for Doping superlattices of all the materials as
stated in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented
non-quantizing magnetic field by including electron spin under the
conditions of formation of band tails and applied external parallel
magnetic field.
Investigate the 2D ER for all the problems from R.A4.32 to R.A4.35 in
the presence of an additional arbitrarily oriented non-quantizing electric
field.
Investigate the 2D ER for all the problems from R.A4.32 to R.A4.35 in
the presence of arbitrarily oriented crossed electric and magnetic fields.
Investigate all the problems from R.A4.1 to R.A4.37, in the presence of
arbitrarily oriented light waves and magnetic quantization.
Investigate all the problems from R.A4.1 upto R.A4.37 in the presence
of exponential, Kane, Halperin and Lax and Bonch-Bruevich band tails
[79].
Investigate all the problems of this chapter by removing all the mathe-
matical approximations and establishing the uniqueness conditions in
each case.
(a) Investigate the ER in all the bulk semiconductors as considered in
this appendix in the presence of defects and magnetic quantization.


http://dx.doi.org/10.1007/978-3-319-08380-3_1
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(R.6.42)

(R.6.43)

(R.6.44)

(R.6.45)

(R.6.46)

(R.6.47)

(R.6.48)

(R.6.49)

(b) Investigate the ER as defined in (R.A2.1) in the presence of an
arbitrarily oriented quantizing magnetic field including broadening
and the electron spin (applicable under magnetic quantization) for
all the bulk semiconductors whose unperturbed carrier energy
spectra are defined in Chap. 1.

Investigate the ER as defined in (R.A2.1) in the presence of quantizing

magnetic field under an arbitrarily oriented (a) non-uniform electric field

and (b) alternating electric field respectively for all the semiconductors
whose unperturbed carrier energy spectra are defined in Chap. 1 by
including spin and broadening respectively.

Investigate the ER as defined in (R.A2.1) under an arbitrarily oriented

alternating quantizing magnetic field by including broadening and the

electron spin for all the semiconductors whose unperturbed carrier

energy spectra as defined in Chap. 1.

Investigate the ER as defined in (R.A2.1) under an arbitrarily oriented

alternating quantizing magnetic field and crossed alternating electric field

by including broadening and the electron spin for all the semiconductors

whose unperturbed carrier energy spectra as defined in Chap. 1.

Investigate the ER as defined in (R.A2.1) under an arbitrarily oriented

alternating quantizing magnetic field and crossed alternating

non-uniform electric field by including broadening and the electron spin
whose for all the semiconductors unperturbed carrier energy spectra as

defined in Chap. 1.

Investigate the ER as defined in (R.A2.1) in the presence and absence of

an arbitrarily oriented alternating quantizing magnetic field under

exponential, Kane, Halperin, Lax and Bonch-Bruevich band tails [69]

for all the semiconductors whose unperturbed carrier energy spectra as

defined in Chap. 1 by including spin and broadening (applicable under
magnetic quantization).

Investigate the ER as defined in (R.A2.1) in the presence of an arbitrarily

oriented quantizing magnetic field for all the semiconductors as defined

in (R.A2.6) under an arbitrarily oriented (a) non-uniform electric field
and (b) alternating electric field respectively whose unperturbed carrier

energy spectra as defined in Chap. 1.

Investigate the ER as defined in (R.A2.1) under an arbitrarily oriented

alternating quantizing magnetic field by including broadening and the

electron spin for all semiconductors whose unperturbed carrier energy

spectra as defined in Chap. 1.

Investigate the ER as defined in (R.A2.1) under an arbitrarily oriented

alternating quantizing magnetic field and crossed alternating electric

field by including broadening and the electron spin for all the semi-
conductors whose unperturbed carrier energy spectra as defined in

Chap. 1.


http://dx.doi.org/10.1007/978-3-319-08380-3_1
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(R.A.50) Investigate all the appropriate problems of this section under magnetic

quantization after proper modifications introducing new theoretical
formalisms for functional, negative refractive index, macro molecular,
organic and magnetic materials.

(R.A.51) Investigate all the appropriate problems of this section for HD p-InSb,

p-CuCl and stressed semiconductors under magnetic quantization having
diamond structure valence bands whose dispersion relations of the car-
riers in bulk semiconductors are given by Cunningham [79], Yekimov
et al. [80] and Roman et al. [81] respectively.

(R.A.52) Investigate all the problems of this section by removing all the mathe-

matical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 7

Appendix B: The ER in Superlattices
of HD Non-parabolic Semiconductors
Under Magnetic Quantization

7.1 Introduction

In recent years, modern fabrication techniques have generated altogether a new
dimension in the arena of quantum effect devices through the experimental real-
ization of an important artificial structure known as semiconductor superlattice
(SL) by growing two similar but different semiconducting compounds in alternate
layers with finite thicknesses [1-33]. The materials forming the alternate layers
have the same kind of band structure but different energy gaps. The concept of SL
was developed for the first time by Keldysh [34] and was successfully fabricated
by Esaki and Tsu [35-38]. The SLs are being extensively used in thermal sensors
[39, 40], quantum cascade lasers [41—43], photodetectors [44, 45], light emitting
diodes [46—49], multiplication [50], frequency multiplication [51], photocathodes
[52], thin film transistor [53, 54], solar cells [55, 56], infrared imaging [57],
thermal imaging [58], infrared sensing [59, 60] and also in other microelectronic
devices.

The most extensively studied III-V SL is the one consisting of alternate layers
of GaAs and Ga;_ Al As owing to the relative easiness of fabrication. The GaAs
and Ga;_ Al As layers form the quantum wells and the potential barriers respec-
tively. The III-V SL’s are attractive for the realization of high speed electronic and
optoelectronic devices [61]. In addition to SLs with usual structure, other types of
SLs such as II-VI [62], IV-VI [63] and HgTe/CdTe [64] SL’s have also been
investigated in the literature. The IV-VI SLs exhibit quite different properties as
compared to the III-V SL due to the specific band structure of the constituent
materials [65]. The epitaxial growth of II-VI SL is a relatively recent development
and the primary motivation for studying the mentioned SLs made of materials
with the large band gap is in their potential for optoelectronic operation in the blue
[65]. HgTe/CdTe SL’s have raised a great deal of attention since 1979, when as
a promising new materials for long wavelength infrared detectors and other
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and the Einstein Relation, Springer Tracts in Modern Physics 260,
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electro-optical applications [66]. Interest in Hg-based SL’s has been further
increased as new properties with potential device applications were revealed
[66, 67]. These features arise from the unique zero band gap material HgTe [68]
and the direct band gap semiconductor CdTe which can be described by the three
band mode of Kane [69]. The combination of the aforementioned materials with
specified dispersion relation makes HgTe/CdTe SL very attractive, especially
because of the tailoring of the material properties for various applications by
varying the energy band constants of the SLs.

We note that all the aforementioned SLs have been proposed with the
assumption that the interfaces between the layers are sharply defined, of zero
thickness, i.e., devoid of any interface effects. The SL potential distribution may be
then considered as a one dimensional array of rectangular potential wells. The
aforementioned advanced experimental techniques may produce SLs with physical
interfaces between the two materials crystallographically abrupt; adjoining their
interface will change at least on an atomic scale. As the potential form changes
from a well (barrier) to a barrier (well), an intermediate potential region exists for
the electrons [70]. The influence of finite thickness of the interfaces on the electron
dispersion law is very important, since; the electron energy spectrum governs the
electron transport in SLs. In addition to it, for effective mass SLs, the electronic
subbands appear continually in real space [71].

In this chapter, we shall study the ER under magnetic quantization in III-V, II-
VI, IV-VI, HgTe/CdTe and strained layer, HDSLs with graded interfaces in
Sects. 7.2.1-7.2.5 respectively. From Sects. 7.2.6-7.2.10, we shall investigate the
same in I1I-V, II-VI, IV-VI, HgTe/CdTe and strained layer, HD effective mass SLs
The last Sect. 7.3 contains open research problems.

7.2 Theoretical Background

7.2.1 The ER in HD III-V Superlattices with Graded
Interfaces Under Magnetic Quantization

The electron dispersion law in bulk specimens of the heavily doped constituent
materials of HD III-V SLs whose unperturbed energy band structures are defined
by three-band model of Kane can be expressed as

k2
T = Ty (E,Aj, Egjing) + 1Ty (E, Aj, Egj ) (7.1)
cj
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where
j=1,2, T;(E,A;, Eg,n,;)
= (2/(1+ Erf (E/ng))[(2b/ ;) -00(E, ngs) + [(2i¢; + bjc; — a5by) /<]
X 0 (E,ng) + {(1/@)(1 = (/) (1 = (bj/Cj))% (1 + Erf (E/ng)]
— (1/¢))(1 = (/) (1 = (bi/c;))(2/ (cjngv/)]
X exp (ﬂtf) [i (exp(—p*/4)/p) sinh@u,»)” ,
b= (Eg+A) ", ¢= (Egi +§Aj>l7
y = LT GE
g My
and
EAE. Y= 2 YL e\ bV e
sz(E, AjaEgn”gj) = (1 +Erf(E/11g])> Cj < Cj) <1 Cj) Mg CXP( uj)'

Therefore, the dispersion law of the electrons of heavily doped III-V SLs with
graded interfaces can be expressed as

k? = Gs + iHs (7.2)
where

C2_D2
G8:|: z 2 77k52:|a
LO

Cr = cos™(@7), w7 = (2)7 {(1 ~ G —Hj) — \/(1 G- M) +4GE|

G7 = [G1 + (p5G2/2) — (peH2/2) + (A0 /2){psHa — psH3 + poHs — p1oHa
+ p1iHs — p1oHs + (1/12)(p1,Gs — p14Hs) },

Gy = [(cos(h1))(cosh(h2))(cosh(g1))(cos(g2))
+ (sin(hy))(sinh(h2))(sinh(g1))(sin(g2))],

hy :el(bo—Ao), e :2%(\/l%+l%+t1) s

= [(2m:l/h2)'Tll(EvEgl7A17ngl) - k3,
= [(2m:1/h2)T21(E7Egl>Al7’1g1)]7

=

1

_ 2
hy 282([70—A0), 4] :271(\/l%+l%—11) s
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- 3
g1 =di(ay— No), di = 27](\/)6% +y? +x1> )

x1 = [—(2m}y /W*). T (E — Vo, Ega, Mg, 1) + k71,
yi = [(2my /BTy (E — Vo, Ega, Ao, )],

B 2
g =dr(ag — No),dr = 271(\/)6% + i —xl) )

-1
ps = (p3 +p3)" [P1P3 — Papal;

P = [d% —|—€§ - d% - e%]vPS = [d]@] +d2€2]7
Py =2[d\dy + ejer], py = [d1er — e1ds],
G, = [(sin(/1))(cosh(h2))(sinh(g1))(cos(g2))

+ (cos(h))(sinh(/2))(cosh(g1))(sin(g2))],
-1

pe = (03 + P2 [P1p4 + P2p3);
Hy = [(sin(hy))(cosh(hy))(sin(g2))(cosh(g1))

— (cos(h1))(sinh(/2))(sinh(g1))(cos(g2))],
= (e} +€3) '[er(d] — d3) — 2d\drea] — 3ey],
[(sin(h1))(cosh(hz))(cosh(g1))(cos(g2))

+ (cos(h1))(sinh(h2))(sinh(g1))(sin(g2))],
ps = [(&2 4 €2) '[ea(d® — d3) + 2d1dre)] + 3ea),
Hj = [(sin(hy))(cosh(h2))(sin(g2))(sinh(g1))
— (cos(hy))(sinh(/2))(cosh(g1))(cos(g2))],
py = [(d} +d3) "' [di (€3 — e]) + 2eadrer] + 3dy],
Gy = [(cos(h1))(cosh(/2))(cos(g2)) (sinh(g1))
— (sin(f1))(sinh(h2))(cosh(g1))(sin(g2))],
pro = [—(d} + d3) " '[da(—€3 + €}) + 2eadser] + 3],
Hy = [(cos(h1))(cosh(hz))(cosh(g1))(sin(g2))
+ (sin(h1))(sinh(h2)) (sinh(g1))(cos(g2))],
pi =2[d} + & —d; — €],
Gs = [(cos(/1))(cosh(/2))(cos(g2)) (cosh(g1))
— (sin(f1))(sinh(h2))(sinh(g1))(sin(g2))],
pp = 4ldid> + ere2],
Hs = [(cos(hy))(cosh(h2))(sinh(g1))(sin(g2))
+ (sin(h1))(sinh(h2))(cosh(g1))(cos(g2))],
pis = [{5(die] = 3ere3dy) + 5da(e] — 3ejea) }(d} + d3) ™" + (]
+ ) 5(eid} — 3dyé3dy)
+5(d3er — 3didrer)} — 34(die; + drer)],

P7
G;
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Ge = [(sin(h1))(cosh(h2))(sinh(g1))(cos(g2))
+ (cos(h1))(sinh(/2)) (cosh(g1))(sin(g2))],
prs = [{5(dre] = 3esetdy) + 5dy(—e] + 3ezer) }(d +d3) ™"
+ (el +3){5(—erd3 + 3didsey)
+5(—diey + 3d3d1e2)} + 34(dies — dhey )],
He = [(sin(1))(cosh(hz))(cosh(g1))(sin(g2))
— (cos(hy))(sinh(h2))(sinh(g1))(cos(g2))];
Hy = [Hi + (psH2/2) + (p6G2/2) + (8o/2){psG3 + p7H3
+ p10Ga + poHa + p13Gs + pyHs + (1/12)(p14Ge + p13He) ],
Hy = [(sin(h1))(sinh(h2))(cosh(g1))(cos(g2))
+ (cos(hy))(cosh(hz))(sinh(g1))(sin(g2))],
D; = sinh™(@7), Hy = (2C7D7/L})

The simplified dispersion relation of heavily doped II-V superlattices with
graded interfaces under magnetic quantization can be expressed as

k? = Gggn + iHge, (7.3a)

where

Sl
G8E,n = 7C7E‘n = COS (w7EJ1)7

C%E,niD%E,ni 25£ n+l
Iz h 2

=1
WIEn = (2) ? |:(1 - G%E,n - H%E,n) - \/(l - G%E,n - 7E n) + 4'G7E n

1

2

Gien = [Gien + (Ps£,Goen/2) — (Pep.aH2En/2)

+ (Do/2){psenH2En — PsEnH3EN + PopnHaEn — P10E HAEN

+ pneaHsen — PropaHsen + (1/12)(01252GoEn — Prag nHokn) Y,
Gign = [(c0s(hig,))(cosh(hagq))(cosh(gie)) (cos(826.))

+ (Sin(hlE,n))(Sinh(th,n))(Sinh(glE.,n))(Sin(ngn))]

hign = eien(bo — Ao), €1en = 2%1(\/ a5+ tlEn)
2eB 1
ten = |(2m}) /). T1\ (E, Eg1, Ay ) — {7 < +§) H
n = [(zmzl/hz)T21 (Ea Eg17 Al7 77g1)]7
1

—1 2
hogn = e2p.0(bo — Ao), €250 =27 (\/I%EJ, +15— l1E‘n> ,
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1
- 2
81En = dlE,n(a() - AO), dlE,n = 27](\/;%;”.:;.% +XIE’H>  ¥1En
* 2¢B 1
_ [—(chz/hz)Tll(E — Vo, Ep, Ao, ’7g2) + {T (n +§> H '
= [(2my /)T (E — Vo, Eq2, Do, o)), 260 = doen(do — Do) dagn

1
_1 2
R 2 2
2 (\/xlEn +3 _xlE,n) » PSEn

2
i
=(n3 3En + p4En) (P1EnP3ER — P2EAPAER) PIEA
[d}
2

2 2 _
1Eqx T eZEn d2En - elEn] P3En = [dlE,nelE.,n + d2E,ne2E.,nL P2En

[dlE ndZE N + €1En€2E n] p4E n [dlE,neZE,n - elE,ndZE,n]y G2E,n
[(sin(h1£))(cosh(hog q)) (sinh(g1e,)) (cos(826.n))
+ (cos(hig))(sinh(hop,))(cosh(g1£4)) (sin(g2£.n))]; Porn

-1
= (ng,n + péztEn) [plE,np4E,n + p2E,nP3E,n]’

Hapn = [(sin(hig,))(cosh(hag ) (sin(g2e,0)) (cosh(giea))
— (cos(hig))(sinh(hag,,) ) (sinh(g1£,)) (c08(826.))],
P1EN = [(e%E.n + e%E,n)71 [elE.,n (d%E,n - d%E,n)
— 2dig ndrE €26 0) — 3€1E,),
Gsgn = [(sin(higa))(cosh(hyg ) (cosh(giza)) (cos(gaz.n))
+ (cos(hig,)) (sinh(hag,)) (sinh(g1£,)) (sin(g2e.))],
psen = (€lp, + €p,) leaen(dis, — Bg,) + 2diEndae nera) + 3e2eal,
Hig, = [(sin(higq))(cosh(hae ) (sin(g2e,,)) (sinh(g1z,))
— (cos(hig.))(sinh(hag,)) (cosh(g1£.x)) (cos(g2£.n))],
Porn = (dip, + dop,)  dien(€3g, — €p,) + 2028 ndorneira] + 3diza),
Gagn = [(cos(hign))(cosh(hag ) (cos(g2e.)) (sinh(gi£.))
— (sin(h1g,))(sinh(h2g,n)) (cosh(gie,n)) (sin(826,))],
PloEn = [*(de,n + d%E,n)71 [dzE‘n(*egEﬁ + e%E,n) + 2e25 nhE neiEn) + 3d2g ),
Hagn = [(cos(hig,))(cosh(hagq)) (cosh(gie,q)) (sin(g2k.))
+ (sin(hig,)) (sinh(hag ) (sinh(g1£.4)) (cos(g2£.))],
PLEn = Z[d%E,n + e%En - d%En e%E,n]v
Gsen = [(cos(hign))(cosh(hag ) (cos(g2e)) (cosh(gien))
— (sin(hig,)) (sinh(hag.q) ) (sinh(g1£,4) ) (sin(g2e.))],
Pr2en = HdiEndoEn + €1E0€2E ],
Hsgn = [(cos(hign))(cosh(hag,)) (sinh(g1e,)) (sin(g2e.0))
+ (sin(/1,4)) (sinh(h2g 1)) (cosh(g1)) (cos(g2))],
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pr3en = {5(dien€is, — 3€1En€5 ,d1E )
+ 5d2E,n(e§E,n - 36%E,n62Eﬂ)}(d%E,n + d%E,n)
+ (€lp, + €p,)  {S(e1padiy, — 3dknely dirn)
+ 5(d35,n€2E7n - 3d%E,nd2E,n62E7n)} —34(digpeien + dagneren)),

-1

Goen = [(sin(hiE ) (cosh(hag »)) (sinh(g1£,)) (c0s(g2E.))
+ (cos(fig,)) (sinh(hop,,)) (cosh(gr)) (sin(g2))],

pragn = [{5(diEn€ip, — 3e2en€1p 4drER)
+ SdzEan(_e?En + SE%E nelE n)}(dle N/ + d%E n)
+ (e%En + e%En) {5(—eipad 2En + 3dlEnd2E”elEVl)

-1

+ 5(—dig peren + 3dig ydiEne2n) }
+ 34(d\gperen — doeneien),
Hse = [(sin(hign))(cosh(hag ) (cosh(gie.q)) (sin(g2e.))
— (cos(hig,))(sinh(hag.,) ) (sinh(g1£,)) (c08(826.0))]:
Hippn = [Hign + (PsgaHoen/2) + (P6gnGoen/2)
+ (8o/2){PsEnG3En + P7E.H3ER + P10ERGaER + Pop nHAE N
+ P128aGsEn + PrigaHsen + (1/12)(0145,0GoEn + P13e.aHoEn) s
Hign = [(sin(hign))(sinh(h2g,)) (cosh(g1£)) (c08(g2£.0))
+ (cos(/1g,n)) (cosh(hag,q)) (sinh(g1E,)) (sin(g2e.))],
Dig, = sinh™ (@7z,,), Hsgn = (2CiED7E0/LG)

The EEM can be written as

hz
m*(Efpy,n,n,,B) = 7Real part of [Gsg,, | (7.3b)

where Er; is the Fermi energy in this case.
Thus, from (7.3b) we can infer that the EEM in this case is a function of Fermi

energy, Landau quantum number, magnetic field and scattering potential in rather

complicated way.
The electron concentration is given by

Nmax

gveB

no =502 [$1c(Eri,n) + dac(Ep1,n)] (7.4)

n=0



230 7 Appendix B: The ER in Superlattices of HD Non-parabolic Semiconductors

where

12
¢1C(EF1an) = [<G8EF|J1 + \/ GéEphn - HsEmﬁ) /2:| )

. B aZr
¢2C(EF17n) = 027,1[¢1C(EF1’n)]7 92?,1' = 2(k3T)2 (1 - 21 zr)c(zr) aEZr
=1 Fi
and i =1,2,3,...
The ER in this case can be written as
D no 6no ]l
— =— Realpartof |———— (7.5)
B e partof |:6(EFi — €ij)

where Ep; is the Fermi energy in this case and e;; is the corresponding Landau level
energy.
Thus using (7.3a), (7.3b), (7.4) and (7.5) we can study the ER in this case.

7.2.2 The ER in HD II-VI Superlattices with Graded
Interfaces Under Magnetic Quantization

The electron energy spectra of the heavily doped constituent materials of II-VI SLs
are given by

i I
E — s Z 4 k: .
73 (E; 1g1) | + ey Co (7.6)
and
i2K?
sz =Tn (E7 A2> Eg27 ng) +iTx (E7 AZ: Eg27 r’g2) (77)

where m’ | and mj , are the transverse and longitudinal effective electron masses

respectively at the edge of the conduction band for the first material.
Thus, the energy-wave vector dispersion relation of the conduction electrons in
heavily doped II-VI SLs with graded interfaces can be expressed as

k2 = Gi9 + iHyo (7.8)



7.2 Theoretical Background 231

where

c?, —D?
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T (E, ks) = ka1 (E, k) (bo — Ao),
2

2
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(B, k) = [ d k21(E7ks)d2:|
2O T k(B k) T &+ d3
Gz = ([Q3(E, ks)(cosh g1)(cos g2) — Qu(E, k) (sinh g1)(sin g2)](sin 7y, (E, ks)))
[ d2 d2
Q3 (E:7 k\) m - 3k21 (E k ):|
[ 2d,d,
(B k) = ka1 (E, ks):|

G1a = ([Qs(E, k) (sinh g1)(cos g2) — Q6(E, k) (sin g1 ) (cosh g2)](cos yy, (E, ky))).
Qs(E, ks) = |3d, — & ¢ d2 ——— k3, (E, k, )}

Q6(E, ky) = |3dy + ——

— ((E. k )(coshgl)(cosgz) — Quo(E, ky)(sinh g1)(sin g2)](cos y11 (E, k)))
[Zdz 25 — K3y (E, ko),

= ([Q k;)(sinh g1)(cos g2) — Qs(E, k;)(sin g1)(cosh g2)](sin y, (E, k) /12)),
| S(d} —3d3dy)

= K, (E, ks — 34ky (E, ky)d, |,
dz + dz 2| ) k21 (E7 ks) 21( 3 ) 1]
5d, 5(dg —3d3d,)
= K (E, ky) + =-2——2"2 | 34k, (E, k,)d
d2+d2 2l ) k21(E7ks) + 21( ) ) 2

s

Hig == [Hi1 + Hia + Ao(Hiz + His) + Ao(His + Hig),

[\J

H“ 2(sinh g; sin g, cos y;,(E, ky)),
= ([ (E, k) (sinh g1)(cos g2) + Qi (E, k;)(sin g2) (cosh g1)](sinyy, (E, k))),
([Qu4(E. ks)(cosh g1)(cos g2) + Q3 (E, ks ) (sinh g1) (sin g2)](sin yy (E, &s))),



232 7 Appendix B: The ER in Superlattices of HD Non-parabolic Semiconductors

= ([Q6(E, ky)(sinh g1)(cos g2) + Qs (E, k;)(sin g1 ) (cosh g2)] (cos yy; (E, ks))),
([Q10(E, ks)(cosh g1 )(cos g2) + Qo(E, k) (sinh g1)(sin g2)](cos yy; (E, ky))),
(

Hl(, = ([Qs(E, ks)(sinh g1 )(cos g2) + Q7 (E, k) (sin g1 ) (cosh g2)](sin ,, (E, k) /12)),
2C18D
Hyo — 132 18:|
L
and

D,g = sinh™! (ayg)

The simplified dispersion relation in heavily doped II-VI superllatices with
graded interfaces under magnetic quantization can be expressed as

k? = Gog,n + iH9g, (7.9a)

where

Clsgn — Disea _ (2B, n 1
2 7 2

Giogn =

I

-1

Cisen = cos™ (wisgn), 013, = (2)7[(1 — G%SEn - H%SE.n)
- \/ ~ Glyg, — Hisp) + 4Gl

Gigen = 2 [GuE,n + Gi2en

+ Ao(Gizen + Guagn) + Ao(Gisen + Gisen)),
Glig, = 2(005(g|E,n))(COS(ng‘n))(COS 11 (E, ”))7
1(E,n) = ka1 (E,n)(bo — Ao)

B (2B 1 2eB NEEECA R
fnEom) = lEna) =g T\t g = O 7 (Mg R
1,1

Gioen = ([Qi(E,n)(sinh giE,,)(cos gag.u)
— O (E, n)(sin g2£,,) (cosh g1£,)] (sin yy4 (E, n)))

Qu(En) = |-DEn__ ka1 (E,n)dygn
1(E, ka(E,n)  dip, +d3g,
O (E,n) = drgn | ko (E;n)dog
2 (E, kn(E,n) &, +d3,

Gy = ([Q3(E,n)(cosh gig,)(cos g2n)
— Qu(E, n)(sinh g1£,)(sin g2e,)|(sinyy (E, n)))
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O« (E d%E,n - d%E,n 3k (E

3( Jl)— W— 21( 7’1) )
2dlEndZEn:|

Qu(E,n) = |—1En2En

4( I’l) |:k21(E,l’l)

Guaen = ([Qs(E,n)(sinh g1£,)(cos g2£.)
— Q(E, n)(sin g1£,) (cosh g )] (cos y11 (E, n))).

dign
Qs(E,n) = [3d157,,—d2 ‘E’dz K (E,n)|,
lEn 2E.n
Qo(E,n) = |3doz, + #kﬁl(E,n)
' dlEn+d2En

Gisen = ([Qo(E,n)(cosh gi1£,)(cos g2e.n)
— Qio(E, n)(sinh g1£,)(sin g25,1)](cos 11, (E, n)))
Qy(E,n) = [Zd%E,n - 2d§E.n - k%l (E,n)],
Qio(E,n) = [2d1E‘nd2E,n]
Gisen = ([Q7(E, n)(sinh g1£,,)(cos g2e.)
— Qg(E, n)(singi,) (cosh gag,)] (sin yy, (E, n) /12)),

Sd]Evn S(d%En - 3d§E,nd1EJI)
O(E,n) = &y + doy ki (E,n) + ’k21(E, ) — 34ky (E,n)d g |,
QuEm) = | 2P o (g 4 2B = Meahen) gy g
8= - ’ 21 ) 2E.n
d%En + d%E,n 2 ky, (E,n)

1
= [Higa + Hiogn + Ao(Hizgn + Hiagn) + Ao(Hisen + Hieen)),

2

Hiign = 2(sinh g1£,)(sin g2g4)(cos yy, (E, n))),

Hig, = ([Q(E, n)(sinh g1£,)(cos g2e,4) + Qi (E, n)(sin g2 ) (cosh g1.)
Hizg, = ([Q4(E, n)(cosh g1g,4)(cos g2p.4) + Q3 (E, n)(sinh g1£,) (sin g2g.n)
Hyup, = ([Q6(E,n)(sinh g1,,)(cos g28,4) + Qs(E, n)(sin g1g,) (cosh g2 )
Hisg, = ([Q10(E, n)(cosh g1£,)(cos g26.4) + Qo(E, n)(sinh g1£,) (sin g2,

Hioen = ([Qs(E,n)(sinh g1£,)(cos g2e,) + Q7(E, n)(sin g1£,)(cosh g2g )

Higppn =

|(sinyy (E,n))),
|(sinyy (E,n)))
|(cos 11 (E,n))),
)(cos yy1 (E,n))),
|(sinyy (E,n)/2)),

I

2C18E.nD18E.n

Hiogn = 12 } and Dgp, = sinh ™" (w1s£,)
0

The EEM can be written as

2

—Real part of [GlgE,,z,n]/ (7.9b)

m*(EF2>n>”gaB) = D)
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where Ef, is the Fermi energy in this case

Thus from (7.9b) it appears that the EEM is a function of Fermi energy, Landau
quantum number, scattering potential and magnetic field.

The electron concentration is given by

gveB Mmax
n="7 > " [bsc(Era,n) + bac(Era, )] (7.10)
n=0
where
12
¢3c(Ep2,n) = [(GIOEFz,n + \/ Glog,,n —H 19En,n) / 2}
and

Gac(Ep2,n) = Z 02r2[@3c(E2, 1)
r=1
Thus using (7.5), (7.9a), (7.10) and the allied definitions we can study the ER in
this case.
7.2.3 The ER in HD IV-VI Superlattices with Graded

Interfaces Under Magnetic Quantization

The E-k dispersion relation of the conduction electrons of the heavily doped
constituent materials of the IV-VI SLs can be expressed as

ol—

K2 = [2p0) " [~ G0 (E. ks ng) + [[04(E. ksg))” + 4PoiRo i (E, ksng)]?]  (7.11)

where

poi = (o) /(mpmt), 1= 1,2, Goi(E, k) = [(#/2)((1/m) + (1/my;))
+ou (1 JAK (1 /mifmy;) + (1 /mygmig ) — aip3 (B, ) (1 /mg;) = (1/mg )]

and

Ro(E, ksgi) = [72(E, i) + 73 (E, ngy) [(H /2) 06k (1 /)
= (1/mg )] = [(72 /203 (1 /mg) + (1/mg;))] = oa(R® J4)KS (1 /migmy;))]
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The electron dispersion law in heavily doped IV-VI SLs with graded interfaces
can be expressed as

cos(L,k) = %CDZ(E, k) (7.12)

where
O, (E, ky) = [2cosh{f,(E, ks)} cos{y,(E, ks)} + & (E, ks) sinh{ S, (E, ks) } sin{y,, (E, ks) }

YA <W 3K (E, kx)> cosh{ B, (E, k;)} sin{ym (E, k;)}

2
+ <3K112(E7 ks) — %) sinh{ S, (E, k) } cos{y» (E, ks)}]

+ 80 2({Kuna(E. k) (Koo (E. k)Y ) cosh{ Ba(E. k) cos (raa(E. ko) }

1 S{KIIZ(E7ks)}3 S{KZIZ(E7ks)}3
— — 34Ky15(E, k)K 112 (E, ks
= 34K>12(E, ks)K112(E, k)

12| Kyo(E k) Ki12(E, k)
sinh{,(E, k;) } sin{y» (E, ks) }]],

ﬂ2(Ea kY) = K112(E7 k‘Y)[aO - A()],
k1o (E.ks) = [2po2] ' [0 (E — Vo, kony)
— 2 _ = 1
- [[CI9,2 (E — Vo, ks 1g2)]” +4p92Ro 2 (E — V07ks,7]g2)]2:| ;
122(E, ks) = Ka12(E, ks ) [bo — Ao,
k§12(E7 k) = [2139,1]_1[_@971(E7 ks,”lgl)
[0 (B, ks )1 + 4D, Ro. (E ks 1))

ol—

]

and

Kin(E k)  Koio(E, k)
E = — .
e2(E. k) [K212(E7 k)  Kia(E, k)

The simplified dispersion relation in heavily doped IV-VI superllatices with
graded interfaces under magnetic quantization can be expressed as

1 (1 2 2¢B 1
kf—ﬁ[cos l{id)z(E,n)H —T<n+§> (7.13a)
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where

O, (E, n) =[2cosh{p,(E,n)} cos{y,(E,n)} + &(E,n) sinh{f,(E, n)} sin{y,, (E,n)}
+ Ao[({K112(E, n) Y /Kaia(E, m)) — 3Kaa(E, n)) cosh{ B, (E,n)} sin{yy (E,n)}
2

; <3K112<E, n) - W) sinh{ B(E, n)} cos{rn(E,n)}]

+ 8 [2({Kin2(E.m) Y= {Kara(E,m) ) cosh{By (. n)} cos{n (E.n)}
1 5{K112(E,n)}3+5{K2|2(E,n)}3
12 K212(E,n) K]]Q(Eﬂ’l)

sinh{,(E, n)} sin{y5,(E, n)}]],

— 34K212(E, n)K“z(E, }’l)

B2(E,n) = Ki12(E, n)[ao — Aol

k%lZ(E7 I’l) = [2139,211]71[—59,2;1(E - V07 ngz)
— 1
- [[69,2n(E - Vo, ﬂgz)]z + 4P9 2nR9 20 (E — Vo, ”gz)]zy

2l = Vo) = 0 2)((1 )+ () + (8 /4) 268 (4.3 (1)
(1) — ol — Vo) (1) — (1),

Roan(Euta) = (B = Vaung) +5(8 ~ Vang (7D 25 (n-43) (1)

— (1 /m)] ~ [0 /2)I((1 /i) + (1 /)]
2
(i) 52 (w4 )| o /mima
VZ(E7 }’L) = K2|2(E7 I’l)[bo - A0}>k§12(E’ I’l) = [2ﬁ9‘ln]7l[_q9ﬁln(Ea ngl)
o+ [[@9,10 (. 10T + 4p0.1,Ro,10(E, g1 )1
- 2 * - 44, 2¢B 1 +—
doan(E) = (02 /20((1 /i) 4 (1) + 8425 (43 (1 /o)
(1)) = s (B ) (1) — (1)
Roa (1) = 1)+ (B [0 20 (2B 1) (4 3) (1)
= (/m )] = [(12 /2)k5o((1/miy) + (1/my,)]
2
o nf4) (et (- 5) ) (1)
and

_ Kllz(E,n) KQIQ(E,I’[)
82(E7 n) = |:K212(E, I’l) B I(]]Q(E7 I’l):| '
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and

s (E,n) = Kio(E,n)  K>in(E,n)
2T Ko (En) Ki2(E,n)|

The EEM can be written as

m*(Er3,n,1,, B) = I* Real part of [¢sc(Ers, n)dsc(Er3,n)] (7.13b)

where Efs is the Fermi energy in this case and

¢sc(Ers,n) = [ng [cosl {;‘Dz(Em, n)}] - Z%B <n -+ ;)1 12

From (7.13b) we observe that the EEM in this case is a function of Fermi
energy, Landau quantum number, scattering potential and magnetic field.
The electron concentration is given by

max

 gveBy

ny = [sc(EF3,n) + ¢oc(Er3,n) (7.14)

2
nh n=0

where

Poc(Erp3,n) = Z 02r3[psc(Ers, n)]
r=1

Thus using (7.5), (7.13a), (7.14) and the allied definitions we can study the ER
in this case.

7.2.4 The ER in HD HgTe/CdTe Superlattices with Graded
Interfaces Under Magnetic Quantization

The electron energy spectra of the constituent materials of HgTe/CdTe SLs are
given by

» _ |B} +4A\E — By \/B}, +4A\E
K= T (7.15)
1
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and

n2k? ,
o Ty (E, A27Eg27ng2) +iTxn (E, Ay, Eg, ’7g2) (7.16)
c2

where By = (3|e|2/1288m), A= (h2/2mzl) - &1 18 the semiconductor per-

mittivity of the first material.
The energy-wave vector dispersion relation of the conduction electrons in
heavily doped HgTe/CdTe SLs with graded interfaces can be expressed as

k2 = Gio + iH 9 (7.17)
where

G = [((C%sz - D%xz)/Lg) - kf],

1

Cigr = cos™ (w12), w152 = (2)7 {(1 - G182 H%&z) - \/(1 — Gig, — H182) + 4G132} )

1
Gz, = 2 [G112 + Gizz + Ao(Gi32 + Gia2) + Ao(Gis2 + Gie2)],
G112 = 2(cos(g12))(cos(g22)) (cos 5 (E, k)

1
B}, +4A\E — Boi/B}, +4A\E kz} 2

V8(E k) = ks(E, ks)(bo — Do), ks(E k) = A2
1

Gin = ([Q1z(E,ks)(sinhg12)(cos gzz) — sz(E7 ks)(sin gzz)(coshglz)](sin ys(E, ks)))

dpp ks (E, ks)d2

Qi (E, k) =

dn ks (E, ks)d22:|
- . Qn(E ks
i ) R = [
Gz = ([Q32(E, ky)(cosh g12) (cos g22) — Qua (E, k) (sinh g12) (sin g22)](sin yg(E, ky))),
[d?, — d? 2d,,d
Qn(E k) = | 72— = 3ks(E, k)|, Qua(E,k, 2
B k) = |FEp = I (E, J] (B, k) = [kS(EkJ

G142 = ([Q52(E, kx)(sinh glz)(COS 822) — Q52 (E7 kx)(sm glz)(COSh 822)} (COS Vs (E, k;))),
dis
S 2Bk )}
dyy +d3, di, +d3,
Gis2 = ([Qo2(E, ks)(cosh g12)(cos g22) — Quoa(E, k) (sinh g12) (sin g22)](cos 75 (E, k)
Qoo (E, ky) = 2d3, — 2d3, — K3 (E, k)],  Quoa(E, k) = [2d12dn),
G162 = ([Q72(E7 ks)(sinh glz)(COS 822) — ng (E, kx)(SiIl glz)(COSh 822)} (sin VS(Ev /{;)/12))7

Qu(E,k) = |3dis — k%Ek)} Qe (E, k) = {34122-1—

5dy, 5(d3, — 3d%,d»
Qn(E k) = [mkg(E,kx)+('Ii(E7kz§)—34k8(E,kx)dlz ,
12 22 8 ) g
5dy 4 5(d3, — 3d3,d12) }
Qo (E k) = |—2 k3 (E, k) + —22——22712 | 34k (E, k)d-
82( ) {dlzz‘i'd%z 8( ) kg(EJCS) g( ) 22
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1
H182:§[

H112 = 2(sinh 812 sin 822 COS “/g(E, ks)),
)

Hijo+ Hi + Ao(Hizz + Hian) + Ao(Hisz + Higr)],

Hiz = ([Qu2(E, k) (sinh g12)(cos g22) + Q2 (E, k) (sin g22) (cosh g12)](sin yg (E, ks))),
Hiz = ([Qu2(E, ks )(cosh g12) (cos g22) + Q32 (E, k) (sinh g12) (sin g22)](sin yg(E, ks))),
Hisn = ([Qe2(E, ks )(sinh g12)(cos g2) + Qs2(E, k) (sin g12) (cosh g20)](cos ys (E, k),
His2 = ([Quo2(E, ks)(cosh g12)(cos g22) + Qoo (E, k) (sinh g12) (sin g22)](cos y5(E, k5))),
Hie2 = ([Qs2(E, k) (sinh g12)(cos g22) + Q2 (E, k) (sin g12) (cosh g20)](sin yg (E, k5) /12)),
Hig» = [((2C 3,D),)/L5)] and Dy, = sinh™! (@12

The simplified dispersion relation in heavily doped HgTe/CdTe superlattices
with graded interfaces under magnetic quantization can be expressed as

(k:)* = Groogn + iH92 (7.18a)

where

GiooEn =

2
G 82En
2
L

D%SZE
% — (2eB/h)(n+ (1/2))|,
Cigoop = cos™! (182E.0),

-1
o186 = (2)7 {(1 — Gigopn — Higoe,)

1

*\/(1 - G%ng,n - H1282E,n) +4Glgyp n:| )

1
Gigren = 5 (G126 + Gi22En + Ao(Gi3260 + Grazen) + Ao(Gisoen + Gieoen)],
Gii2en = 2(c0s(g12))(cos(g22))(cos 5 (E, n)),  75(E,n) = ks(E,n)(bo — Ao)

12
B2, 4+ 4AE — By /B2, + 4A\E
o 22 o —(2eB/m)(n+(1/2))|

kg(E, n) =

Gioop = ([Qu2(E, n)(sinh g12£,,)(cos g20£.)
— Q) (E, n)(sin g22£,,)(cosh gi2g,,)| (sin yg(E, n))),
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dign  ks(E,n)dizgn
ks(E,n)  diyg, + g, |’

dnEn ks(E, n)dyE
Q E — 9! k)
22( ’ n) |:k8 (E? I’l) - d%ZE,n + d%ZE,n ’

ng(E, n) =

Gi320p = ([Q32(E, n)(cosh gi2g,,)(cos g22g,1)
— Qup(E,n)(sinh g12¢,) (sin g22g,, )| (sin yg(E, n))),

d%ZEn - d%E,n
Q32(E, I’l) = W - 3k8(E, i’l) ;

2d1 2E.nd22E n
Qu(E,n) = [W}a

Giaop = ([Qs2(E, n)(sinh g12£.,)(cos g22e,n)
— Qg (E, n)(sin g12.,) (cosh g2k )] (cos y5(E, n))),

dl2E,n

———k3(E,n) |,
d%ZE n + d%ZE n

Qs (E,n) = [361125," -

den

e k3(E,n)|,
d%ZE n + d%ZE n

Qe (E,n) = |:3d22E<n +

Gis20p = ([Qo2(E, n)(cosh g12£,)(c0s 822£.1)
— Q2 (E, n)(sinh g12£,,) (sin g22£.4 )] (cos y5(E, 1)),
Qor(E,n) = [2d122E.n - 2d§2E,n - ké (E,n)],
Quoa(E,n) = [2d5z ,drog ]
Gisaen = ([Q72(E, n)(sinh g12£.,,) (cOs g22£.n)
— Qg2 (E, n)(sin g12g.) (cosh gaae )| (sin ygop (E, 1) /12)),

5dioen 5(diag, — 3d3og ,d12E n)
Qn(E,n) = [761%25 -, ké (E,n) + ’n k(Eom) d — 34kg(E, n)d2g |,
Sdygn, 3 5(drag — 3d3pg u 126 )
Qgg(E, n) = | 5——"—k% (E7 n) + : g + 34k (E, n)dzzg7 ,
d%ZE‘n + d%ZE,n ’ k8 (E7 n) § "

1
Hygp, = 3 [Hi2gn + Hinzgn + Ao(Hi32E0 + His2en) + Ao(Hi5260 + Hi2e )],

Hit2g,n = 2(sinh g12g ) (8in 8225, ) (cos 75 (E, n))),
(

Hizop = ([Qa2(E, n)(sinh g12.,) (08 g22n) + Qu2(E, 1) (8in 8224 ) (cosh g12g.,)] (sin 5 (E, n))),
Hizogn = ([Qa2(E, n)(cosh g1ag.1)(cos g2£.) + Qa2 (E, n)(sinh g12,,) (sin goog.)] (sin y5(E, n))),
Hispn = ([Qe2(E, n)(sinh g12£.,)(c0s g22,n) + Qs2(E, 1) (sin 12, ) (cosh gaog )] (cos y5 (E, 1)),
His20p = ([Qi02(E, n)(cosh g12£,,) (cos g2£.n) + Qoa (E, n)(sinh g12£ ) (sin g22£.)](cos 15 (E, 1)),
Higomn = ( J(sinyg(E,n)/2)),

n
[Qs2(E, n)(sinh g1oz,,)(c0s g22£.n) + Q72(E, 1) (sin g12£,) (cosh g22,n)
Higgn = [((ZCI82E,nD182E‘n)/LO)} and Dy, = sinh™' (01826.0)
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The EEM can be written as

2
m*(Ef4,n,1,,B) = > Real part of [Giozky,n] (7.18b)

where Ep,4 is the Fermi energy in this case.

From (7.18b) we observe that the EEM in this case is a function of Fermi
energy, scattering potential, magnetic field and Landau quantum number.

The electron concentration is given by

gveB Mmax
no =" 5p Z [p7c(EFa,n) + ¢sc(Ers,n)] (7.19)
n=0
where
12
¢7c(Epa,n) = |:(G192Ep4,n + \/G%ngm,, - H192EF4J1)/2]
and

dsc(Eran) = 3 Oayaldrc(Ery, )
r=1

Thus using (7.5), (7.18a), (7.19) and the allied definitions we can study the ER
in this case.

7.2.5 The ER in HD Stained Layer Superlattices with Graded
Interfaces Under Magnetic Quantization

The dispersion relation of the conduction electrons of the constituent materials of
the starined layer super lattices can be expressed as

[E = Tuilki + [E = Tolk; + [E = T3k = ¢;E> = RE> + VE+( (7.20)



242 7 Appendix B: The ER in Superlattices of HD Non-parabolic Semiconductors

where
. . 3 big; 3d;eyy;
TU = 6,', 9[ = Eg,' — C?S,‘ — ((1,‘ -+ C(l-)S,' +—b,’8)m' — —+b 5
! ! 2 2 2
3 bjg; 3d;xyi
i = w;, w; = |:Egi — Ciei — (ai + Cf,)e + Ebigxxi - 76 - \/_2& : } ;

. 3 bie;
T3 = 0;, 0; = |:Egi — Ciei 4 (ai + CF,)ei + Ebiszzi - i]

3
R = qi[24i + Ciei], 4i = 507, Al = Eg — Cii,
2By;

Vi =d{i |:A12 - + ZAiCTiS[:| s Ci = (qi |: 3 — C€,81A12:|

Therefore the electron energy spectrum in heavily doped stressed materials can
be written as

Pi(E, 0y )k + Qi(E, o)k} + Si(E,ng k2 = 1

where
B E n,)—ITi;
Pi(Eyngi):[VO( _,ngl) : 1},
A[(Evngi)
3 2 2
B —qiTy; —E E
A(E ) = |2 oo (ZEV 1+ E| — Rio (B,
(E,n,0) NG exp<n§i> z 0 (E. 1)
. E
+Vi“/o(E"7gi)+é 1+Erf<—> 17
2 ngi
1 — [“/0 (E ) ”gi) — IOTzi]
Iy = [1+Eif (E/ng)], Qi(E,ng) = ===
0 2[ + Erf( /"gl)]’Q( ﬂg) Ai(E’ngi)
and
B E.n,:) — T3
Si(Evngi) _ [Vo( JIgz) 0 3}

A(E, ng)

The energy-wave vector dispersion relation of the conduction electrons in
heavily doped strained layer SLs with graded interfaces can be expressed as

cos(Lok) = %¢_6(E7 ky) (7.21)
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where

b6(E, ks) = [2cosh[T4(E, )] cos[Ts(E,ng)]] + [T6(E, k)] sinh [T4 (E, n,)] sin[T5(E, n,,)]

e [("5 (Btg) 3y, ng1)> cosh[T4 (E, n,2)] sin[Ts (E, g0 )]

K(E 1)

 (btEne) - ) sonlr n) el )|

+ Ay [2(k(2)(E, ’1g2) — k’z(E, ng1)> cosh [T4(E7 ’7g2)] cos [Ts (E, ’7;;1)]}

L S (Eng) Sk (E,ng)
k/(E '7;;1) kO(E= '71:2)

—34ko (E, 1)K (E,n,,)) sinh [T4(E, n,,)] sin[T5(E, n,,)] ﬂ

(E ']gZ) [aU - AO]?

[Ta(E, )] =

ko (E,1,2) [ 2(E Vo, )] [Pz(E ~ Vo 2) K2 + 02 (E — Vo, 102 — 1]T,
(E r’gl) ) bo - AO]

K (E,ng) [§(E )] [1 — Pi(E, 10 )k — 01 (E, 0y ) rdnd

ko(E.ng) _ K(E,ng)
k/(E7 ngl) kO(E’ ”gZ)

T() (E1 k:)

Therefore the dispersion relation of the conduction electrons in heavily doped
strained layer QDSLs with graded interfaces can be expressed as

cos(Loko) = %d)_ﬁ(E, n) (7.22a)
where

cos[T5 E n ’751)}]

¢6(E,n) = [2cosh[T4(E,n,n,)]
(E,n, g2)] Sm[T5(E’n7'7glﬂ

+ [T6(E,n)] sinh [Ty

]
(k(% (E n '7g2)

+ Ay & (B 3k0’(E,n,17g1)> cosh[T4(E,n, Wgz)] sin [T (E,n,ngl)}
kg (E,n,n .
(ttemn) - S o) 1) |

+40[2 ( 0 (Esmy1g2) = Koy (E. . y1)) cosh[T4(Esm, o) | cos [Ts (Eomo )]

1 (5 S(E;nng)  Sko'3(E n7’7g1)
12 kO (E nng)  ko(E,nngp)
sinh [T4(E, n,1,,) ] sin[T5(E, n,n,)]

_34k0 (E7 n, r]gZ)kO, (E7 n, ng))
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[T4(E,n,ng)] = ko(E,n,n)[a0 — Ao

2

]
(B 1) = [S2(E = Vo,n))™ [[(n+ 1/2)1eB/ (+/p, ) pa(E))| — 1]
(E) = 2/(2P_2(E V0717g2))7
(E) = 2/(2_2(E Vo, ﬂgz))a Ts (E,I’l, ng) = k()/(E,l’l, ng)[bo - AO]v
K (B ) = [51(Eomng )17 [1 = [0+ 1/2)eB/ (Vo (E)pa(ED)] |
p3(E) = 12/ (2P1(E,ng1)), pa(E) = 12/ (201 (E, ),
O(E n 77g2) kO/(E’n’ngl)
T6(E7 n) l (E7n717g1) kO(Evn’ng2)]

The EEM can be written as

m*(Ere,n, 1, B) = h* Real part of [¢oc(Ere, n)doc(Ere,n)] (7.22b)

where Erg is the Fermi energy in this case and

N 1 > 2B N
o (Erg,n) = le {cos {ECDG(EFG,n)H —7<n+§>]

From (7.22b) we note that the EEM is a function of Fermi energy, scattering
potential, Landau quantum number and magnetic field.
The electron concentration is given by
g.e B Mmax

2
m2h —

ny = [oc(EFs,n) + ¢1oc(Ers,n)] (7.23)

where
®sc(Ere,n) Zezm ®1¢(EFe,n)]

Thus using (7.5), (7.22a), (7.23) and the allied definitions we can study the ER
in this case.
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7.2.6 The ER in HD III-V Effective Mass Superlattices
Under Magnetic Quantization

Following Sasaki [70], the electron dispersion law in III-V heavily doped effective
mass superlattices (EMSLs) can be written as

K= é {cos™ (far (E, ky, k) )2 =K2 (7.24)
0
In which

fo1(E ky k;) = ay cos[agCay (E, ki, 1)) + boDai (E, ki, ng)]
— ay cos[agCoy (E ki ,ng1) — boDai (E ki, ng)], K =k + k2,

1 -1

r 1/2
4 M2 (OvngZ)
Ml (Ovngl) 7

2r 1/27
[ M2(0717g2) ‘| <M2(0717g2)>
ar = |y [ | (g s ,
M,

M, (0717331)

ibi oi 1 iCi ibi_ ibi
)+z{°‘ " +_(°<C+C—2“)
¢ 2 ¢
L lfﬁ 17@ ,l ]7ﬁ 17ﬁ
Ve Ci Ci Ci Ci €
X 2 —_2 exp _
<p| ——
CillgV/T | citly; cig
+exp S iexp(l)icogh -
o )\ 4 4 ) g Cifly; ’
i Mo oici + bic; — ;b\ Mgi 1 %i bi
T N o |%lillsi (0t bici = b\ Mei L (o) [y b
(0,1,) { ¢ 4 * ( c? ) 2\/5+2Ci ( Ci) ( Ci)

1

1 ; ; 2 1\ —p*/4
) (1-8) 2 ) S 2]
Ci Ci Ci Ciﬂgiﬁ Cillsi ) =1 p Cillgi

R SN——
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Ca1 (E ki n,) = e1 +ies, Dyy (E ki n,) = e3 + ey,

e = (B +B+0)/2F, e2=[((\/B+3—n)/2)P,

2m* 2m’

Hh= hfl Tii(E, A1 g1, Eq) — ki}, = hzcl o1 (E, Aty g1, Egt),
A 12 12

3 = 2 ’ 2

3= 75262 T12(E, Aoy g, Eg2) — kd’ “= ;1262 Tn(E, b2, 12, Eg2),

Therefore (7.24) can be expressed as
2 =57 +ids (7.25)
where

1
5y = {L—% (65— &%) — ki], ds = cos” ! ps,

12

1= 82— 52—\ (1 - 83— 03 +40]
2 b

Ps

03 = (aj cos Aj cosh Ay — a; cos Az cosh Ay),
04 = (a1 sin A; sinh A, — a; sin Az sinh Ay),
Ar = (aper + boes), Ay = (ages + boes),

Az = (ape) — boes), Ay = (aper — boes),

d¢ = sinh™! ps and dg = [25556/L%]

Therefore the electron dispersion relation in heavily doped III-V QDSL
assumes the form

(k:)*= 070 + i03E. (7.26a)
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where

07En = _Li% (6§En - 52E‘n) - {ZeTB (n+ %) H , Osgn = €08~ Psp,

_ 5 12
= 03— 0 ) (1~ 9~ 0h) 403,

P5En = 5 )

d3en = (a1 cos Ay, cosh Agg, — ay cos Az, cosh Ay,

d4pn = (a1 sin Ay, sinh A, — as sin Azg, sinh Ayg ),

Mg, = (aveign + boesgn), M = (a0esrn + boearn),

Asg, = (aoeign — boesgn), Mg = (a0e2en — boearn),

d6gn = sinh™! Pse, and Ogpn = [205£.0065.0/ Lgl,

e1en = [(\/ B + B+ 1w /2P, €250 = (/B + B — 120)/2)],

) 12 12
\/ Bpn T 14+ BEn \/Ben + 13— BER
€3En = 5 y €4En = ) )
om?, 2B, 1
HEn = W T11(E, A1, 01, Eqt) —7(”+§)}7
"2m, 2B, 1
BEn = W T12(E, Ay, 10, Egr) — T(” + E)}
The EEM can be written as
hZ
m*(Ep7,n,1,,B) = 5 Real part of (07, ) (7.26b)

where Er; is the Fermi energy in this case
Thus, from (7.26b) we can conclude that the EEM in this case is a function of
the Fermi energy, scattering potential, magnetic field and the Landau quantum
number.
The electron concentration is given by
gveB e
"= e
—

(11 (EF7,1n) + 12 (Ep7,1)] (7.27)
0
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where
12
e[+ o)/

¢12(Ep7,n) 292r7 ¢11(EF7,n)]

Thus using (7.5), (7.26a), (7.27) and the allied definitions, we can study the ER
in this case.

7.2.7 The ER in HD II-VI Effective Mass Superlattices
Under Magnetic Quantization

Following Sasaki [70], the electron dispersion law in heavily doped II-VI EMSLs
can be written as

kzz = A3 + Ay, (728)
where

Az = 72 (A%l A%z) - k%

L5

12

, 1 83— A% — /(1 83— A7) +44%,
Ayp = cos™ ps, ps = 2 )
Ag = (@y cos Ag cosh A7 — @; cos Ag cosh A7),
Ao = (a7 sin Ag sinh A7 + @; sin Ag sinh A7),
Ag = [agCn (E, ks, 1g1) + boes], Ar = boes, Ag = [aoCa (E, ks, 1) — boes],

12
[2m? 2 k
CZZ(E>ks7ngl) = hg {/3( '7;,1) m }} )

[ M S0\ ] 2
= 0, g2 ”gZ 7171(07,1g1) :mz]<1 ——),

L M 0, gl O ngl T

- 1727 !
@G = M O ngZ O ngZ

| Ml (0,141) M; (0, 'igl

2A11A12

Apy = cos™' ps, Ay = ——
Ly
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The electron dispersion law in heavily doped II-VI QDSL can be written as

(k2)2: A13E‘n + iA14E,;17 (7293)

where

1 2eB 1
Azpn = Lz <A%]Ezz A%z&;:) - {7 (n +§)H

1- ASE,n - A%OE,n - \/(1 - A;En - AlOE n) +4A10E n
) >

12

-1
Ayigqy = cOS™ Pei PeeEn =
Aog,, = (@i cos A, cosh Az, — @z cos Agg,, cosh Azg ),
A]()E n ((T sin A()E n sinh A7E ntaz sin AgE,,, sinh A7E,”)7
Asen = [a0Co2en(EEns Ng1) + bo€sen], Arn = boeapn,

Asen = [a0Co2en (EEns 1) — boesga),

2mj,, #o(aes, 1 [2en, 112"
Coen(EgnsNg1) = { /‘12‘ {)’3(55,»17%1) *E{Y("+§)} F o HT("JFE)H H )

2A nA n
Appgn = ¢S pegu, Mgy = %
0
The EEM can be written as
hZ
m*(Epg,n,n,, B) = > Real part of [A13g.n] (7.29b)

where Efg is the Fermi energy in this case

From (7.29b) we note that the EEM is the function of Fermi energy, scattering
potential, magnetic field and the Landau quantum number.

The electron concentration is given by

gveB Mmax
n =3z [¢15(Ers, n) + ¢14(Ers, n)] (7.30)
n=0
where
12
¢13(EF87 ) - |:(A13EF8’1 + \/AHEFSn A14EF8J1> /2:| ’
and

$14(EFs, n) ZQZN ¢13(Ers,n)]

Thus using (7.5), (7.29a), (7.30) and the allied definitions, we can study the ER
in this case.
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7.2.8 The ER in HD IV-VI Effective Mass Superlattices
Under Magnetic Quantization

Following Sasaki [70], the electron dispersion law in IV-VI, EMSLs can be written as
1 _ 2
@ [L_%{cos i (E. ks o))} —kf} (731)

where

fo3(E ke ky) = as cos[aoCas (E, ke, ky, 1g1) + boDa3 (E, ke, ky, g1 )]
— a4 cos [00C23 (E, ky, ky, Vlgz) — boD23 (E, ky, ky, '7g2)}7

2 127!
oo ol [t
2 1/27 !
o [l [sfne)”
M;(0,n,) = (4p5;) " Hai(l %) (#—%)} [@1(0,n,)]
s (2 (4o o228

ol Pl G (11
S UM W U L (R S U L) G S I
Poi Amlim;; %3 (0:1) |:2 <mzri+m,’_i> va\ml; omp )|’

2
- Ngi | %iMlg;
R(),i (0, ’Tg,') = |:ﬁ + 72 s

C23(E-,kxaky:'7g]) = UZIT.ITI[*CIT,I(E,knkwﬂg]) + [{E(Evkxskyv”gl)}z

_ 12
+ ()R Bk k)] 2]

D23 (E-,kx-,ky-,”gz) = “217‘2}71[7(17,2(1::; kxsk)"s"]gz) + [{W(E k)h,kv*,”gZ)}z

12

R 1

+(4p92)Ro2 (E, ke, ky, 1) ] QH )

__ w1 Y 1
Bkl = {7 (nz ’ mT) at ( s mLm&)

1 1
—ai75(E, Mgi) ”T;r - ”Tf )
N N

_ s 1 1
Roi(E, ke, ky, ni) = [12(E, ng1)+75 (E, ﬂgi)%?kf <m+ - ,)

i i

e 1 1 7ok 5
1 Pl e WO Y S
2 0 \mi; omy 4 mm; ny
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Therefore the electron dispersion law in heavily doped IV-VI, EMSLs under
magnetic quantization can be written as

0 = [0/ o5 e - (%04 3))| (7.320)

where

f23(E,n) = az cos[aoCozg.n(E,n, 1) + boDsg .y (Es 1,1, )]
— a4 COS [a0C23EY,1 (E, n, ’182) - b0D23E,n (E, n, ”gZ)} 5
C23 (E7 n, ngl) = _[Z}Tl] - [*QTJ(E, n, ngl) + |:{qTJ(Ea n, ngl) }2
_ 12
+(4m)R91(Eanangl)]IQ:|:| )
Das(E.mng) = [Pl s mne) + [{z(Emng)

() ()] 2]

— ) 2 (1 NIRRT i* [2eB 1 Lo,
i\E, 1 gi) = | — iT |\ (nt5 e plr—
q9, Mg 2 \mj; " my; 4\ K 2 mymy; m;f,-ml"i

1 1
—&7)3 (E7 ngz) (W - m_;>] )

_ W (2eB 1 1 1
R9.5(E7 n, ng) = [Vz (Ea ﬂgi)+V3 (E» ngi)a[? (% <n + 5 <—+ - —>
B

n* (2eB L] 11 oh® (28 (n+1)
2\ \""2))\m, ) T A

The EEM can be written as

_|_

m*(Epg,n,1,,B) = 12 Real part of [¢,5(Ero, n)¢'s(Erg,n)] (7.32b)

where Er is the Fermi energy in this case and

d15(Epo,n) = L{ L1 > 2B 1 12
15(Ero,n) = L«Z) cos {2f23(EF97n)H ; <n+2>]

The (7.32b) tells us that the EEM in this case is a function of Fermi energy,
scattering potential, magnetic field and the Landau quantum number.
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The electron concentration is given by

8B 15(Eroun) + bi(Ero.n)] (733)

n=0

ny =
where

®16(Ero, 1) ZGZrG ¢15(Ero, )]

Thus using (7.5), (7.32a) and (7.33) we can study the ER in this case.

7.2.9 The ER in HD HgTe/CdTe Effective Mass
Superlattices Under Magnetic Quantization

Following Sasaki [70], the electron dispersion law in heavily doped HgTe/CdTe
EMSLs can be written as

kzz = Ay +iAug (734)

where

1
A = {F

(8~ 82— ]
0

12

-1
Ayt = cos™" pen, Pen =

)

{1 — Ay = A= (1 = A2y — Aly) +4A,OH]
2

Aoy = (@1 cos Asy cosh Agy — dapr cos A7y cosh Agyr ),
Ayon = (a1g sin Asy sinh Agy + Gzp sin A7y sinh Agy ),

Asy = [a0Coon (E, ks, 1) + boes]

Aen = boes, Ay = [aoCaori (E, ks, 1) — boes],
[B2, + 2A1E — Bo1 (B, + 4AE) B
ZA% s

2 1271
M2(07 ’7g2) +1 4 M2(07ng2)
mg mg 7
2 127 1
M, (07’75’2) 1 4 M2(077’g2)
mg g,

2A11HA
L

CZZH (E7 ks7 ngl) =

B
Y
I

)
I
=

|

-1
Aoy = cos™ perr, Avan =
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The electron dispersion law in heavily doped HgTe/CdTe EMSLs under
magnetic quantization can be written as

(k:)* = Avstign + iDranEn (7.35a)
where

2e¢B 1
e = (01/3) (B — ) = 2 (3]

—1
A\tHER = COS™ " P6HE PeHEn =

1
5 2
|:<(1 - AgHE,n - A%OHE,H - \/(1 - AgHE.n - A%OHEJI) +4A%OHE,)1> /2>:|

Aopg, = (alH cos Aspg,, cosh Ay, — Gop €08 Aqpg , cosh A6HE.n)7

Avoren = (arm sin Aspg., sinh Aeyg , + @ sin A sinh Agyg ),
Aspp, = [ZIOszHE,n (EE,m Vlg1) + bo€3}7 A6tEn = boea, Atug
= [a0Coatign (EgnsMg1) — boes),

12
B2, + 2A,Eg, — Boi1 (B2, 4+ 4A Ek , 2eB 1
C22HEJ1(EE,m7]g1) = a IZE, 2A021( o1 1ZE )— |:7 (n-}—z):” ,
1

2A 11 HEnA12HE 0

-1
AinE, = cos PG6HE n, A14HE,n =

L
The EEM can be written as
* hz !
m*(Eri0,1,1,,B) = 5 Real part of [A13HE 0] (7.35b)
where Efjois the Fermi energy in this case.
The electron concentration is given by
gveB Mmax
no =3 [#17(EF10,1) + ¢15(EF10,1)] (7.36)
n=0

where

12
¢17(EF107n) = |:(A13HEFIO:” + \/A%3HEF10,H - A14HEF10J1> /2:|

and
¢13(Eri0,n) = E 027[¢17(EF10,1)]
r=1

Thus using (7.5), (7.35a) and (7.36) we can study the ER in this case.
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7.2.10 The ER in HD Stained Layer Effective Mass
Superlattices Under Magnetic Quantization

The dispersion relation of the constituent materials of heavily doped III-V super
lattices can be written as

Pi(Ev ngt)k)zc + Qi(Ea ngt)k}zv + Si(E7 ng)kzz =1 (737)
where

Pi(E, ng) = (30(E, ngt) = IoTii) (Ai(E,ng)) ™" To = (1/2)[1 + Exf (E/ny,)],

Ty = [Eg — CSi6i — (ai + C\)éi 4+ (3/2)bicxi — (hiei/2) + (V3ditnyi/2)],

A(E, 1) = [(—qimy/2v/7) exp(—(E* /) [1 + (E* /m3)] = RiOo(E, ny;) + Vi (E, my;)
+ (G/2)[1 + Erf (E/n,)|]sqi = (3/2B3), Ri = qi2Ai + Cia), A; = Egi — Ciie,

Vi = qi[A? — (2C3:64i/3) + 2A:CS61), & = @i (2C3:6i/3) — CS A7),

Oi(E,ny) = (1o(E,ng) — IoTai) (A(E, n)) ™' Toi = [Egi — Ciii — (@i + C5,)er + (3/2)biew — (biei/2)
— (V3dieni/2)], Si(E,0g:) = (3o(Engs) — IoT5:) (Ai(E, )~

T3 = [Ey — Ciei + (ai + C}))ei + (3/2)biez — (biei/2)),

The electron energy spectrum in heavily doped strained layer effective mass
superlattices can be written as

K2 = % {cos™ (fao (E. ke k) ) }z—kf} (7.38)
0
where

f40 (Ea kxa ky) = dapo COS [aOC40 (E7 kxakyv ngl) + b0D40 <E7 kx7 k}'7 ngl)}
— dp1 COS [a0C40 (Ea kxa kya ’1g2) - b0D40 (E7 kx7 kyv ngZ)} )

- Mv2 (07 ’7g2) ’ MYZ (05 ngZ) 2 B
ay = [ My (0,1,,) - ]1 [4 (Msl (0, ng)) ] 7
M (O»ng) = (1/2)p;(ng)

pi(ng) = [(ng/2v/m) = (T51/2)] 7 % [{(ni/2v/7)
= (T5/2)H(Vi/2) = (Ring/ V) + (Li/ngiv/m) }
= ((1/2) = (T3i/nivVm){(G/2) + (Ving/2v/7)
- (Ri’7§i/4) - (‘Ii’?ii/z\/%)”
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4 My (0, ”Igz) 2 ’
Msl (07 ngl)
(0 ’7g2)
(0 ”gl)
C40(Ea kxakyyngl) = [1 _PI(E7 ngl)k)% - QI(E7 ngl)ki] & [Sl (E7 ngl)]_l/z
(B, 1)k = Oa(E o)) 2 [S2(E, )] 2

Therefore, the electron dispersion law in heavily doped strained layer effective
mass superlattices under magnetic quantization can be expressed as

(k) = Lig {cos™" (fuo(E, n)) }*— <2%B <n + %))} (7.39)

where

fao(E,n) = azg cos[agCao(E, n,1,1) + boDao (E,n, 1) ]
— ap1 COS [a0C40 (E7 n, ngZ) - b0D40 (E; n, ’7g2)] )

heB Liy12rc “1)2
C E7n717 = 1_7(11—’—_ S E’n ) )
40( 1) = [ Foo o) P ISUE, ng1)]
$so(E, ’7g1 \/‘Pso E, Mg Wi (E, '1g1)
"2 "2

VsolEna) = 55 gy Vo Ee) = 35 5y

ﬁ(ru_ )]1/2[32(&%2)]71/2

bso1 (E ’7g2 \/‘ﬁsm (E Wgz)‘//sn(E Wgz)

n? /i
s ¥ n o
PalEong) Vo) =00 5 )

D40(E,”,’7g2) = [1 - 5

Yso1 (E, 17g2) =

The EEM can be written as

m*(Epi1,n, 1y, B) = h* Real part of [¢9(Epi1,n)$lg(Eri1,n)] (7.39b)

where Ef; is the Fermi energy in this case and

$19(Ep11,n) = [22 {cos 1{%f40(EF117")H2—2$<n+%>]1/2
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The electron concentration is given by

g eB Nmax
v

2
wh ‘=

ny = [¢19(EF11,1) + ¢o(EF11,1)] (7.40)

where

¢20(Er11,n) Zezre d19(Er11,n))

Thus using (7.5), (7.39a) and (7.40) we can study the ER in this case.

7.3 Open Research Problem

(R.B.1) Investigate the ER for all types of HD super-lattices under alternating
magnetic field.
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Chapter 8

Appendix C: The ER in HDS and Their
Nano-Structures Under Cross-Fields
Configuration

8.1 Introduction

The influence of crossed electric and quantizing magnetic fields on the transport
properties of semiconductors having various band structures are relatively less
investigated as compared with the corresponding magnetic quantization, although,
the cross-fields are fundamental with respect to the addition of new physics and the
related experimental findings. In 1966, Zawadzki and Lax [1] formulated the
electron dispersion law for III-V semiconductors in accordance with the two band
model of Kane under cross fields configuration which generates the interest to
study this particular topic of semiconductor science in general [2-38].

In Sect. 8.2.1 of theoretical background, the ER in HD nonlinear optical
materials in the presence of crossed electric and quantizing magnetic fields has
been investigated by formulating the electron dispersion relation. The Sect. 8.2.2
reflects the study of the ER in HD III-V, ternary and quaternary compounds as a
special case of Sect. 8.2.1. The Sect. 8.2.3 contains the study of the ER for the HD
II-VI semiconductors in the present case. In Sect. 8.2.4, the ER under cross field
configuration in HD IV-VI semiconductors has been investigated in accordance
with the models of the Cohen, the Lax nonparabolic ellipsoidal and the parabolic
ellipsoidal respectively. In the Sect. 8.2.5, the ER for the HD stressed Kane type
semiconductors has been investigated. The Sects. 8.2.6-8.2.10 discuss the ERs’ in
QWs of the above HD semiconductors in the presence of cross-fields configuration
respectively. The last Sect. 8.3 contains three open research problems.

K. P. Ghatak and S. Bhattacharya, Heavily-Doped 2D-Quantized Structures 259
and the Einstein Relation, Springer Tracts in Modern Physics 260,
DOI 10.1007/978-3-319-08380-3_8, © Springer International Publishing Switzerland 2015
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8.2 Theoretical Background

8.2.1 The ER in HD Nonlinear Optical Semiconductors
Under Cross-Fields Configuration

The (1.2) of Chap. 1 can be expressed as

2 2

ps pz -1
Ty (E = + T (E T (E 1
2 717g) 2m " 2M| 2 ( 71/’g)[ 21( Jlg)] (8.1)

where, p;, = hk, and p, = hk,.
We know that from electromagnetic theory that,

B=VxA (8.2)

where, A is the vector potential. In the presence of quantizing magnetic field
B along z direction, the (8.2) assumes the form

ij ok
0i+0j+Bk=|2 & 2 (83)
Ac Ay A

where i, j and k are orthogonal triads. Thus, we can write

0A, 0A,

ERCE

0A, B 0A, _ (8.4)
0z Ox

0A, 0A,

o dy

This particular set of equations is being satisfied for A, =0, Ay = Bx and
A, =0.

Therefore in the presence of the electric field E, along x axis and the quantizing
magnetic field B along z axis for the present case following (8.1) one can
approximately write,

) 5o BA 2 ~D
P 1 |i} LR (8.5)
2m’ 2m?, 2a(E, n,)

T22 (Ea ng) + |e|E0-§Cp(E7 ng) =
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where

p(E) = - [T, )| and a(E, 1) = mi T E, )]~ [T (o, )

Let us define the operator 0 as

m' E,p(E,n,)

0=—p Bi —
Py + le|Bx B

(8.6)

Eliminating the operator x, between (8.5) and (8.6) the dispersion relation of the
conduction electron in tetragonal semiconductors in the presence of cross fields
configuration is given by

B 1 [fik, (E)) E,hkyp(E, n,) M p*(E,n,)E2
Ta(E,ng) = ((n+§)hwo1) " <2a(E7 77g)> - ( B ) - ( 2B )]
(8.7)
where,
Wy = |e|* (8.8a)
1

The EEMs along Z and Y directions can, respectively be expressed from (8.7) as

m? (Erpup, Ny, n, Eo) = Real part of {a’ (Erprp: 1) |:T22(EFBHD7 M)

1 M, p*(Erpup,n,)E3
— —\n i it LA
(n + 2) o1+ B

_ _ M p(Ergup, )P (Ersup, 1) Eg
+a(EFBHD777g)|:T£2(EFBHD’118)+ y =

BZ
(8.8b)
and
_ B\? _ 3 _
m; (Erpp, g, n, Eo) = (E_o) Real part of [p(Erpup;1,)] [TZZ(EFBHD»ng)‘
1 M p*(Ersup, 1) Eg
— (n + 5) hwm + B
{ {P (Erup; 1) {Téz (Erp, 1)
M p(Erprip; 1) p'(Ersip; 1) Eg -
+ ng £ - T2 (Ersup, 1,)
1 M p*(Epprp,ng)EG] , -
_<n +§>hw01 + B =2 o' (Ersp, 1)

(8.8¢c)
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where Epppp is the Fermi energy in the presence of cross-fields configuration and
heavy doping as measured from the edge of the conduction band in the vertically
upward direction in the absence of any quantization.

When Ey — 0,m} (Ergpp, 1, 1, Eg) — 0o, which is a physically justified result.
The dependence of the EEM along y direction on the Fermi energy, electric field,
magnetic field and the magnetic quantum number is an intrinsic property of cross
fields together with the fact in the present case of heavy doping, the EEM exists in
the band gap. Another characteristic feature of cross field is that various transport
coefficients will be sampled dimension dependent. These conclusions are valid for
even isotropic parabolic energy bands and cross fields introduce the index
dependent anisotropy in the effective mass.

The formulation of ER requires the expression of the electron concentration
which can, in general, be written excluding the electron spin as

-8y Mmax ﬁ)
b= 1(E,n,) =2 dE 8.9
=y [ 1En G (8.9)
Ey

where L, is the sample length along x direction, E; is determined by the equation

I(E()a ng) =0
where
xn(E.ng)
1(E,n,) = / k. (E)dk, (8.10)
x(En,)
in which, x,(E,n,) = %};}(Ewg) and x,(E,n,) = |e|§L* +xi1(E, n,).
Thus we get

213
ile m' E§[p(E,n,)
Tzz(E,'vg)—< +2> MelB | eeoLp(E.n,) - %

H an

B 5 thOP(Ev ’7g)

I(E,ny) = : {73 il {

2

1 7ile|B ”letzJ[p(Ev"’g)}

_\ro(E _ Z _ LTolPA gl
{22( +le) (" 2) m, 28

Therefore the electron concentration is given by

2¢ B Nmax _ _
(3Lg7vrz?;§; ) Real part of ; [Ta1ap (n, Ersps 1) + Taorp (n, Epsap, 1) |

(8.12)
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where

_ \/a(EFBHDan ) _ 1
Ty (I/l7 EFBHD77/Ig) = m |:|:T22 (EFBHD,VIg) — <I’l +§> M,
Mg

"

m’lE(Z) [P (EFBHD7 N

+ lelEoL.p (Erprp. 1) —

2B2
_ 3/2
_ 1\ hle|B mE}|p(Ersup,n, 2
— | To2(Ersap, n,) — <”+§> ’|n£ - — ol <2B2 o)

where Epgyp is the Fermi energy in this case and

S

Ta2up (n, Erpup, 1) = Z [L(r)Ts11p (1, Ersup, 1) ]

r=1

The ER in this case can be written as

D - no ano -
ﬁ = Real part of [— {ﬁ} ] (8.13)

le] Ergap — €”

where ¢” is the Landau sub-band energy under cross-fields configuration.
Thus using (8.12), (8.13) and the allied definitions we can study the ER in this
case.

8.2.2 The ER in HD Kane Type III-V Semiconductors Under
Cross-Fields Configuration

(a) Under the conditions 6 = 0, Ay = A, = A and mﬁ =m’ = m,, (8.7) assumes
the form

, mB[{rs(En) Y]

E
_gohky{Tﬁ (Emg) } - B2 (8-14a)

where

T3 (E,n,) = T31(E, n,) +1iT5(E, ny)

The use of (8.14a) leads to the expressions of the EEMs’ along z and y
directions as
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m (Erpp, g, 1, Eo) = m. Real part of [{T33(EFBHDJ1g)}”

mcE3{T33(Ergup, 1) }/ {T53(Ersp, n,) }//
+ B

(8.14b)

]

—1

* (T B ? o '
my(EFBHDa ﬂg,’%EO) = <E_) Real part of |:{T33(EFBHD7 ”g)} }
0

mcE} |:{T33(EFBHD7 ﬂg)}l} 2}

= 1
|:T33(EFBHDa ) — (n + 5) fiwg + S

{Ts3(Ermup, n,)}" 1
{g T33(Ersup; 1) — nts hag

[{T33(Ersup, Wg)}/}

2
meE2 {{ng (Erai, ng)}'}

2B?

m E{T53(Erpup, ) }

+ +1+ P } (8.14c¢)

The Landau energy (E,, ) can be written as

mCEO [{T’B( n s ng)}/]z

2B?

_ 1
T33(En],1’]g) = (n +§>ha)0 — (815)

The electron concentration in this case assumes the form

2 VB Mimax
;: n;éi;“ Realpartofz [T43up (n, Eps, 1) + Taarip (n, Erp, ;)] (8.16)

ng =
where,

[{Tn EFB7'1g)} ]2

_ _ 1 mcE,
Ty3up(n, Errp, 1) = |[T33(EFs, 1) — nts hao — R

—+ |e|E()Lx [{T33(EF87 ”Ig)},H3/2_ |:T33 (EF37 ng) - (l’l + %) hwo

» REL 1
o5 [{T33 (Erp. 1)} ] ] } [{T3(

3(Ers, Ug)}/]

and

s

Taanp (n7EFBHD77]g) = Z [L(r)T43HD (n7EFBHD7 '7g)]-
r=1
Thus using (8.13), (8.16) and the allied definitions we can study the ER in this
case.
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(b) Under the condition A > E,, (8.14a-8.14c) assumes the form

1 Ey meE> 2, [nk.(E)]*
VZ(Ev ng) = <n+2)hw0 *Ehky"//z(Ea ﬂg) 232 ( (E ng)) ;7”1(
(8.17a)

The use of (8.17a) leads to the expressions of the EEMs’ along z and y
directions as

m;(EFBHDJ/’ganvEO) =mc {Vz(EFBHD,’?g)}

” mcE(z) {Vz (EFBHD7 ﬂg) }/ {Vz (EFBHD7 ﬂg) }N]
+ B

(8.17b)

SERE S
my(EFBHD Mg, 1 L0) = \ = | 77—~ | V2\EFBHD, Hg) — | 1 5 |10
Y 8 Ey [{V2(EFBHD77’g)}I] : § 2
— 2 —
meE3[{,(Epsrp. ) Y] | | = {02 Ersap.n,)}” B
2B ~ 12 P2(ErpHD, Mg)-
[{VZ(EFBHDv ﬂg)} ]

meE[{7,(Ersnp, ?
—(n+%)ﬁwo+ L[ {2 "g)}]]

2B?

meEg {12 (Erpnp, 1)}
4102 BFZBH” 8 (8.17¢)
The Landau energy (E,,) can be written as
_ 1 m.E} 2
Vz(E”zvng) = <n +§)ha}0 - 2320 (72( nzang)) (8.18)

The expressions for ng in this case assume the forms

2g,By/2m; 4o

ny = ILRE, Z [Tazun (n, EFBHD7’1g) + Tugup (1, EFBHD,ng)] (8.19)

where

_ _ 1 _
Ty7up (1, Ergrp, ) = [|:72(EFBHD7 Ng) — (” + 5) Iy + |e|EgLy (VIQ(EFBHm ﬂg))

m.E2 ) 3/2 ]
c = —
_ 2320 (v2(Ersup,ny)) ] - |:(V2(EFBHD7"]g)) - (n +§) Ry

mCE 2
2B?

1 1
(VZ(EFBHDJ?J) } }[V/Z(EFBHDJ?&:)T
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and

N

Tasup (n, Ersap, 1) = Z L(r) [Tu7up (n, Erprp, ) |
r=0

Thus using (8.13), (8.19) and the allied definitions we can study the ER in this
case.

(¢) For a — 0 and we can write,

1 Eo m.Ej 2 [ik(E)J?
(8.20a)

The use of (8.20a) leads to the expressions of the EEMs’ along z and y
directions as

m(Epprp, Mg, 1, Eo) = m, {'V3(EFBHD7’/Ig)}//

(8.20b)

mcE(2) {V3 (EFBHD> ﬂg) }/ {“/3 (EFBHD7 ”Ig) }U
+ B

1

e B\? [ I
my(Erprp, g, n, Eo) = )T o 3(Erpup, 1) — n+ 5 |hoo.
0 [{73(E1~‘BH1)>’1g)}] L

+mCE(2) {{V3(EFBHD7'1g)}/}2_ {{ {/z EFBHD»’I;,)}

2
2B {“/3 Ersip, ﬂg)} }

1
/3(EFBHD f’]g) <n + E) FLOJ().

2
m.E} {{73(EFBHD7'12)}/} 1 m.E3{3(Erpip, 1 )}"
8 c 4 s Hg
The Landau energy (E,,) can be written as

_ 1 me E2 - 2
Eas) = (3 ) on = 522 (4B, (8.21)

The expressions for ng in this case assume the forms

2 VB maX
8Bv2 (8.22)

ny = 3an2h2E Z T49HD(n EFBHD7’7g) —|—T50HD(n EFBHD,’?g)]
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where

_ _ 1 _
Taonp(n, Ergup, 1) = HVg(EFBHm Ng) — (Vl + 5) hawo + le|EoLy (75 (Ersrp, 1))

mCE% B ) 3/2 ~ |
Y (v3(Ersup, ) ] *{(Vs(EFBHDwg)) - (n+§)hw0

m.E} - 21 = -1
Y (v3(Ersup,ny)) ] }[V;(EFBHDJ//g)]

and
N

Tsoup (n, Ersap, 1) = Z L(r) [Taorip (n, Errp, 1) | -
r=0

Thus using (8.13), (8.22) and the allied definitions we can study the ER in this
case.

8.2.3 The ER in HD II-VI Semiconductors
Under Cross-Fields Configuration

The electron energy spectrum in HD II-VI semiconductors in the presence of
electric field Ey along x direction and quantizing magnetic field B along z direction
can approximately be written as

* 2 )
Eo miEg 2 [Pk (E)]
73(E;ng) = Bu(n, Eo) =y (E.ng) = — g (15(Eo ) +217mﬁ (8.23a)
where
12
1 Ezm* 1 EZm* |€|B
=[5 o] e (S} -2
and

D= :N:L0 v2m

h

The use of (8.23a) leads to the expressions of the EEMs’ along z and y
directions as

= - m*E%{Vs(EFBHD n )}I{%(EFBHDJI )}H
m; (Ergup, g, n, Eo) = m] {v3(Erup.n,)}" + I : 22 ¢

(8.23b)
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2

= 1 _
i (Ergrp, g, 1, Eo) = <*> 73(EFsap, My) — B1(n, Eo)
Y ¢ Eo) [{n( ¢

Erprp, Wg)}/}

+ miEg [{r3(Erprp,n,)Y'] 2}

"

*{)’3(EFBHDJ1:)} 7
£ 5 | v3(EFBHD; 11,)

[{V,% (ErsHp, ﬂg)}/}

* I3 2 * 7
mHEé [{73(EFBHD777g)}I} :| +1 +mE(2){V3(EFBHD777g)}”:|

2B?

- ﬁl (n7E0)+

2B? B
(8.23¢)
The Landau energy (E,,) can be written as
= mﬁEﬁ ' E 2
V3(En4»’7g) = py(n, Ep) — 2B (VS(EHM’/’g)) (8.24)

The expression for ng in this case assumes the form

2g,B ., [2m} npu

Il - _
Z (Tssup (n, Ergup, ) + Tsanp (n, Ersap, 1) | (8.25)

ny———F>—
O 3L R E,

where

Ts3up(n, Ersup, ) = | | 73(Ersup, ng) — Bi(n, Eo) + le|EoLy (v5(Ersap, 1))

* 2
B m”EO
2B?

3/2
(y;(EFBHDang))Z] — | (v3(Ersup,n,)) — By (n, Eo)

* 2
B m”EO
2B

3/2
(V’3 (EFBHD7 'lg))2] [“//3 (EFBHDa ”Ig)} -

and

s

Tssrp (n, Ergap, 1) = Z L(r) [Ts3up (n, Erprp, 1) | -
r=0

Thus using (8.13), (8.25) and the allied definitions we can study the ER in this
case.
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8.2.4 The ER in HD IV-VI Semiconductors
Under Cross-Fields Configuration

The (3.68) can be written as

p2 [72
o T = 8(Em 8.26a
2]Wl (E7 ;/Ig) 2M3(E7 Hg) ( g) ( )
where
. (R)* . (5)? ,
Mi(E,n) = | =g —fer(a1, B, Ey) = iDi (o1, B, Eg)} + =1 {c2(0, E, By) — iDs (02, E, Ey)}
4 L.
(0 -
"’A—/({C‘,%(O%E,Eg) —iD3(u3,E, E,)}
71\2 = =\2 -1
M(E.n,) = [2(1?) fer(on, B, y) — iy (o, 5 B} + © Z,,Q) {e3(o3, E, Ey) — iD3 (a3, E, Eq) }
8 C
and

g*(E7 ng) = 2h2V0(Ea ng)

In the presence of quantizing magnetic field B along z direction and the electric
field along x-axis, from above equation one obtains

P2 N (py — le|B%)? P
OM{(E,n,)  2M(E,n,) — 2M3(E,n,)

= & (E,ny) + le|Eokpy (E, 1)

(8.26b)
where
* a *
Let us define the operator 0 as
R 1(E,n,)Eo M (E,
0= —py+ |e|Bx — PilE ) 0[ il ”g)] (8.27)

B

Eliminating , between the above two equations, the dispersion relation of the
conduction electrons in HD stressed Kane type semiconductors in the presence of
cross fields configuration can be expressed as


http://dx.doi.org/10.1007/978-3-319-08380-3_3
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8 ( 717g) =1|n 2 Wi ;’/Ig 2M§(E, ng) B pl 711g y
. 2
— 257 [P1(Es )| "M (E.my) (8.28a)

where
o (E,n,) = eBIM;(E,n,)] "'

The use of (8.28a) leads to the expressions of the EEMs’ along z and y
directions as

_ _ L N,
m (Ersrp, g, 1, Eo) = Real part of [Mﬁ(EFBHDJ?g)]’ {g (Erap, 1y) — (n +§> it (Ersrp; 1g)
E(z) * (T 20 k(T * (T * (T !
+ﬁ (0} (Ersrps 1)) "M (Ersrp, 1) | + [M3(Ersup, 1)) [[g (Ersp, )]
| P - B 2(0r (B /
—(n +§)h[(UiI(EFBHDv7'Ig)] Top “/’1( Faips )| (M (Ersup, 1)) }
+ 2[M;(Erprp, n,)] [P} (Erups 1)) [0} (Ersup, '73)}/”

(8.28b)
and

_ _ L N,
M (EppHD, g: 1 Eo) = (B/Ey)? Real part of (01 (Ersrp, 1) ’lg (Ersrp, 1) — <n +§>h(0il(EFBHD7ng)

+ ﬁ [0} (EFsap, "Ig)]zM1 (Erpn, 1)|1[0} (Ersrps n))[8* (Ersan, 1))

[ E} - e
(1 3 ) B )+ s 5 B 1 B )

_ _ N, __ -
— [0 (Ersup, 1)1 " (Ersup, ) — <" + 5) kit (Ergrp; 1)

ES (uir “(E
+ ﬁ (03 (Ers, 1) "M (Ergan, n,)]]

(8.28c¢)
The Landau level energy (E,9) in this case can be expressed through the
equation

2

* 1 T Ei * *
8 (Eng7 ﬂg) = (l’l + E)hwil (En97 ;/’g) - 2_302 [,01 (En9v ﬂg)]le (En97 ng) (828d)

The electron concentration can be written as

2B Nmax o o
ny = SL2E Real part of nz:; (Ta131up(n, Ergap, Mg) + Tara1uap (1, Eppup, 1,)]

(8.28e)
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where
2M; (Ergnp, 71g)

Tuiz1up(n, Eppup, n,) = — |:[T51(n7EFBHD777 )
¢ pi(Erap,1g) ¢

3
2

Ey . _ .
+ Eopl (ErsHD, ﬂg)hXhHDl (ErgHp, 7’Ig)P] (EFsup, ﬂg)]

_ Eo . -
- TSI(”7EFBHD7"Ig)+Ep1(EFBHD>17g)

ol

hxiup1 (Ergap, M) Py (ErsHp, ﬂg)]} ;

_ - N,
TS](naEFBHDyng) = {g (EFBHD,i’Ig) - (n +_>hwil(EFBHDy”Ig)

2
M; (Epgup,n,)ES ., — 2
+ Tg [P1 (EFBHD7 ﬂg)]

= —M; (Egip, 1y)Eolpi (Erpup, 1,)] =
i1 (Ergip, M) = —— £ 3 ] =, w1 (Erup, 1)

B |e|BL,

+ Xiup1 (EFBHD, Wg)

and

S
Tuiarap (n, Ersup,1,) = Z L(r)Ts1310p (1, Ersap, 1)

r=1

Thus using (8.13), (8.28¢) and the allied definitions we can study the ER in this
case.

8.2.5 The ER in HD Stressed Semiconductors Under
Cross-Fields Configuration

The use of (2.48) can be written as

P ; % )
2mi(E,n,) * 2m;(E, 1,) + amy(Eny) G'(E.n,) (8.28f)
where
P = B < HT T = (B o+ €0 Shne = S (V)]
m3(E,ng) = 20 [o(E,np) = I()Tr]]™!, T = {Eg ~ Cre— (ay+ Cr)e + %508” B %8 - (\/%)&y[_lu] |
miy(E,ng) = Ry (E,n,) — I()Tx)] ™, Ty = {Eg o (@ 4 Ch)e +§Eosa B %8]

and the other symbols are written in (1.196a) of Chap. 1.


http://dx.doi.org/10.1007/978-3-319-08380-3_8_2
http://dx.doi.org/10.1007/978-3-319-08380-3_1
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In the presence of quantizing magnetic field B along z direction and the electric
field along x-axis, from (8.28d) one obtains
. . 22
P 1B P2
2m; (E, r]g) 2m}(E, ng) 2m;(E, ng)

= G"(E,n,) + |e|Eox p*(E,ng) (8.29)

where
* a *
p (E7ng) :@[G (E717g)]

Let us define the operator 0 as

Rol—

R “(E Eo|\mi(E S(E
0:7ﬁy+|e‘327p ( 7’7g) O[ml(ang)mZ( 717g)] (830)

Eliminating , between the above two equations, the dispersion relation of the
conduction electrons in HD stressed Kane type semiconductors in the presence of

cross fields configuration can be expressed as

1 h*k?
G'(E,n,) = (n +—)hwi(Ew )ty
g 2 ¢ 2m3(E, n,)

[

Ej 20t (E, 1) (8.31a)

where
1

@i(E,n,) = eB[mj(E, n,)m;(E,n,)]

The use of (8.31a) leads to the expressions of the EEMs’ along z and y

directions as
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_ _ _ 1 _
m: (Ersup, g, 1, Eo) = [[m5(Ersup, 1)) [G* (Ersup, 1) — (” +§) i (Ergap, 1)
B
2B
_ _ 1. — _
+ [m3(Erups 1) |[[G* (Erprp, n)]" — (n + E)h[wi(EFBHD: n)l'
E(Z) * (I * (T !/ * (I
+ﬁ[2[P (Erup; M) [0 (Ersrp; )] [m] (Ersrp, 1))
+ [m} (EFsnp, ﬂg)]/[ﬂ* (EFsrip, ’7g)ﬁ“

+ 525 0" (Esap, ﬂg)]zmT (Ersap 1))

(8.31b)
mf (Ergup, Ngs 1, Eo) :(B/EO)2 [mZ(EFBHm ﬂg)]_3 (G (ErsHp, ﬂg)

N
- <n + 2) @i (Ergrp, Ng)
2

E * [T * (T * (T
+ 2—;2 (0" (Ergup, n)]°m; (Ersup, n,)][[m} (Ersup, )]

((G*(Ersup,n,)] — (n + %)h[wi(EFBHDv ne)

E2 * [ T 27 % (T
+2_B()2 [[o*(Erap, 1,)] [ml(EFBHDaVIg)H

¥ (T e | -
— [m(Ersup, n,)] [G* (Epsup, n,) — (n+ E)hwi(EFBHD; Mg)
2
E
2B2

+ [0 (EFsap, Wg)]2mT (Ersrp,ny))]

(8.31¢)

where

_ 1
mi(Ersup, ”Ig)] ’

m(Epprp, 1) = | 0" (Ersap, ;)] [m;(EFBHD )
Mg

The Landau level energy (E,)in this case can be expressed through the
equation

* 1 — E2 * 2 4
G (E”S’ng) = <n+§)hwi(E"8’n8) _2_l;)2 [,0 (Ensang)} ml(Enwng) (831(1)
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The electron concentration can be written as

2B Mmax o o
ny=——— T. nE , + T. nE , 8.31e
0 3an2h2E0;[ w1310 (1, Ergrp ﬂg) w1410 (1, EFprp ﬂg)] ( )
where

2my(Ersrp, ’1g)

Ta13up (1, Ergap, ) = | |([Ts(n, Ersup, 1)

0" (Ersrp, 1)

3

Ey . - _ . :
+§OP (ErpaD; o) hxnup (EFprp, Ng) p* (EFBHD, M)
_ Eo . - _
— [Ts(n, Eppup, ng) +EOP (Erup, Ng)hXiup (EFBHD, 1)
.= 3
p* (Errp, )],

— _ 1 _
Ts(n, Erpup, y) = |G (EFup, 1g) — (n + E) 1@;(EFsrp, Ng)

i m} (Erpup, ”Ig)E(%
2B2
—mi(Ersup; Ng)Eo[p* (Erpup, 1))
B )

(o (FFBHDa ﬂg)]2]

xitp(EFBHD, '1g) =

— |e|BLy —
Xniip(ErBap, Mg) = 7 + Xiip (ErBHD, Mg)

and

N
Ta1aup (n, Erpup, 1) = Z L(r)Ts13up (1, Ersap, 1)

r=1

Thus using (8.13), (8.31¢e) and the allied definitions we can study the ER in this
case.

8.2.6 The ER in Ultrathin Films of HD Nonlinear Optical
Semiconductors Under Cross-Fields Configuration

The dispersion relation of the conduction electrons in HD ultrathin films of non-
linear optical material in the presence of cross-fields configuration can be written as
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( (n N %) hwm) N < % > <%>2_(E(,nky,;a n3)> - (Mfg;ng)gg)}

(8.31f)

Tn(E,n,) =

The use of (8.31f) leads to the expression of EEM along y direction as

my (€1, My, 1, Eo,nz) = Real part of (B/Eo) Tao(ep1, g, ) [Tao (g1, 1, 122)]'
(8.31g)

where ey is the Fermi energy in this case and

Tao(epi, g nz) = [Taa(emr,m,)] — K(n +%)hw01>

) () (5 i

The investigation of the ER in this case requires an expression of electron statistics
which, in turn, can be written as

, B Nmax "zmax
ng = § ; Real part of [Z ZF—I(’?Al) (8.32a)
n n=0 n,=1
where 11, = P and e4; is defined by the following equation
1 ) N2 (E,lik, M, M, p*(ear,n,)E
ng(eAhng) = <(n+5)hw0]> —+ <%> (%) _< ,péeAl ’7;)) _ < 1p (;;12 ng) >:|
s Hg 4

(8.32b)

The ER in this case can be written as

() = reaaror () [ 2] )

where egy; is the Fermi energy level e,; is the subband energy.
Thus using (8.32a), (8.32¢) and the allied definitions we can study the ER in this
case.
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8.2.7 The ER in Ultrathin Films of HD Kane Type III-V,
Ternary and Quaternary Semiconductors Under
Cross-Fields Configuration

(@) Under the conditions 6 =0, A=A, =A and m‘*‘ =m| =m., (8.31f)

assumes the form
2
N, (5]
Ts3(E,ng) = nts fieoo + 2m,

~ meES[{T33(E,n,)} ] ’
2B?

E
_ E‘)hky{T33 (E,n)Y

(8.33a)

The use of (8.33a) leads to the expression of EEM along y direction as

my (€12, 1, 11, Eg, n;) = Real part of (B/Eo)’Tso(eg2, g 1:)[Ts0(epa2, 1, 12)]'
(8.33b)

where ey, is the Fermi energy in this case and

1
Tso(ema, 1gs 1) = [733 (epa2, 1) — (n + 5) haog

2

mn; 2

B [h T,] N mcE§ [{T33(epm2, ﬂg)}/]
2m, 2B?

} [{Ts3(ep2, ”Ig)}/rl

The electron concentration is given by

Mmay

gveB Zmax
no == Real part of [Z ZFl(nAZ)] (8.34a)

n n=0 n,=1

where 17,, = %477 and ey, is defined by the following equation

2
1 [h ZL} m.E} [{T33 (ea2, ﬂg)}/]z
T33(eaz;n,) = (n + E) hawo + e B (8.34b)

Thus using (8.32b), (8.34a, 8.34b) and the allied definitions we can study the
ER in this case.
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(b) HD two band model of Kane

Under the condition A >> E,, (8.33a) assumes the form

! Eo mcE} 2 [k (E)J?
VZ(E’ 178) = (I’l + E) hwo - Ehk}'})IZ(E7 7’Ig) - W (VIZ(Ev 7’/g)) +217mt
(8.35a)

The use of (8.35a) leads to the expression of EEM along y direction as
my (€43, Mg, 1y Eoynz) = (B/Eo)’Tsi (€3, My, 12) [Ts1 (€43, Mg, 11| (8.35b)

where eg3 is the fermi energy in this case and
1
Tsi(ems, g nz) = |v2(ems, ng) — —i—5 Ty

2
h% me 2145 €143, 7 -
- [2:;} N Ej [{/22(5{23 Wg)}] ] [{’yz(efA37ng)}] 1

The electron concentration is given by

Mzmax

gveB Mmax
= F_ 8.36
=" 2 r; 1(143) (8.36a)
where 143 = %% and e,3 is the lowest positive root of the following equation
1 mCE% ’ 2
valeas,ng) = (n+ 3 Jhoo = =3 (vh(eas ) (8.36b)

Thus using (8.32¢), (8.36b) and the allied definitions we can study the ER in
this case.

(c) HD Parabolic energy bands

The dispersion relation, the EEM and the electron statistics for this model under
this condition
o — 0 can be written as

[k (E)]®
2m,
(8.37a)

1 Ey m.Eg 2
71 (E7 ng) = <I’l +2) Fl(,l)() _fhk\’yll(Ev ng) - ZBZO (yll(Ev ng)) +
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The use of (8.37a) leads to the expression of EEM along y direction as

m; (epaa, Mg, 1, Eo,n) = (B/Eo) Tsa(epa, Ny, 1) [Tsa(epas g, )] (8.37b)

where €4 is the Fermi energy in this case and

P2] memslnen )T

1
Tsy(egaa, ﬂg,"z) = | 73(epa, Wg) - <n + §> hao —

2m, 2B
[{“/3 (efA4a Wg)}/} -
The electron concentration is given by
=53 Z Fr() (8.38)
where 1,y = eﬂ‘,;# and ey4 1s the lowest positive root of the equation
71(eaa;ng) = (n + %) hao — n;ﬁ% (71 (eas, ”Ig))2 (8.38b)

Thus using (8.32c), (8.38b) and the allied definitions we can study the ER in
this case.

8.2.8 The ER in Ultrathin Films of HD II-VI
Semiconductors Under Cross-Fields Configuration

The dispersion relation in this case in ultrathin films of HD II-VI semiconductors
can be written as

* 2
miE
[0

2B?

Ey 2

The use of (8.39a) leads to the expression of EEM along y direction as

my(es, g, 1, Eo,n;) = (B/Eo)*Ts3(eps, Mg 12)[Ts3 (€45, Mg n)]' (8.39b)
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where egs is the Fermi energy in this case and

Ts3(es, ’7g7nz) = l%(efASa ’7g) — Bi(n, Eo)

2
hﬂ m*EZ {q ( 7 g)}/ 2 -
B {2:1*} 4 ol /32;@‘5 "} ] [{73(egs,me) )]

The electron concentration per unit area in this case assumes the form

Mmax Meme
gveB max max

o =" Y Foalias) (8.3%)
n=0 n,=1
where 17,5 = %57 and e,s is determined from the equation
mWE(% . )
V3(6A5717g) = ﬁl(naEO) - 232 <y3(eA5717g)) (839(1)

Thus using (8.32c), (8.39¢) and the allied definitions we can study the ER in this
case.

8.2.9 The ER in Ultrathin Films of HD IV-VI
Semiconductors Under Cross-Fields Configuration

The dispersion relation in this case is given by

?(7) &

—_ T(E hk
() B

* 1 —
8 (Ev ng) = <I’l—|—§)hw,1(E, ng) +
2

Ey ¢ . 2.
*2—1;’2 [P1(E,n,)] " M7 (E,n,) (8.40a)

The use of (8.40a) leads to the expression of EEM along y direction as

my (a6, g, 1, Eo, n;) = Real part of (B/E0)2T54(efA67nganz)[TM(efAéa Mg nz)]'
(8.40b)
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where ey is the Fermi energy in this case and

* 1 —
Tag (a6, Mgy 1z) = 8" (€pa6,11y) — (n + E)ha)il (ea6: 1)

hz(%)z E(z) * ZM* * -1
- m + 2B [ (€ra6, ﬂg)] 1 (efa6, Vlg)][Pl(efA& ﬂg)]

The surface electron concentration in this case assumes the form

Mmax Mzmax

ny = g:;B Real part of [Z Z F_1(146)] (8.40¢)

n=0 n,=1

where 17,4 = 2% and e, is defined by the following equation

kgT
2
2 (nm
)= (- Diortsn g )
8 eAévrlg =\n 2 i eA6717g 2M§(6A67ng)
2

E % 2.
~ 55 1P (ea, 1) M (eas ) (8.41)

Thus using (8.32c), (8.40c) and the allied definitions we can study the ER in this
case.

8.2.10 The ER in Ultrathin Films of HD Stressed
Semiconductors Under Cross-Fields Configuration

The dispersion relation in this case assumes the form

— 0 [ (E )| mii (E,m,) (8.42a)

The use of (8.42a) leads to the expression of EEM along y direction as



8.2 Theoretical Background 281

m; (efA7a Mgy 1,y Ey, nz) = Realpart Of (B/EO)ZTSS (efA77 Ure nz) [TSS (efA77 Ure nz)]/
(8.42b)

where ey is the Fermi energy in this case and

1\,
G*(efr,1g) — (" + 2> i (efar, 1)
PE R

NP0
2m§ (efA7, ﬂg) 232

Tss(efar, g, 1) =

[P*(efA%Wg)]zmT(QfA%ﬂg) I:mz(efA77ng):|_l

The electron concentration can be written as

Mmax "zmax
gveB

7 Z F_1(1a7) (8.42c)

n=0 n,=1

no

_ 7 —e

where 14, o7 and ey is defined by the following equation

PED R

* 2 x
2t (€A7 n ) - 252 [p (eA77 ng)] m (€A7, ’/Ig)
3 vl g

1
G'(ear,ny) = (n + )lii(ear, ng) +
(8.43)

Thus using (8.32c), (8.42c) and the allied definitions we can study the ER in this
case.

8.3 Open Research Problems

R.C.1 Investigate the ER in the presence of an arbitrarily oriented quantizing
magnetic and crossed electric fields in HD tetragonal semiconductors by
including broadening and the electron spin. Study all the special cases for
HD III-V, ternary and quaternary materials in this context.

R.C.2 Investigate the ERs for all models of HD IV-VI, II-VI and stressed Kane
type compounds in the presence of an arbitrarily oriented quantizing
magnetic and crossed electric fields by including broadening and electron
spin.

R.C.3 Investigate the ER for all the materials as stated in R.2.1 of Chap. 2 in the
presence of an arbitrarily oriented quantizing magnetic and crossed
electric fields by including broadening and electron spin.


http://dx.doi.org/10.1007/978-3-319-08380-3_2
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Chapter 9

Appendix D: The ER in HD III-V,
Ternary and Quaternary Semiconductors
Under Strong Electric Field

9.1 Introduction

In the investigation of transport properties of nano-devices under electric field, we
assumed that the electron energy spectrum becomes an invariant quantity, which is
not true specially in the presence of strong electric field. In nano-devices the in-built
electric field is so large that the electron dispersion relation changes fundamentally
and in this appendix we shall investigate the influence of intense electric field on the
ER under various physical conditions in III-V, ternary and quaternary materials. In
Sect. 9.2.1 of theoretical background Sect. 9.2, we shall study the ER under strong
electric field in HD said semiconductors. The Sect. 9.2.2, explores the ER in the
presence of quantizing magnetic field under strong electric field in HD said
materials. In Sect. 9.2.3, we study the ER in ultrathin films of HD III-V, ternary and
quaternary materials under strong electric field. In Sect. 9.2.4, the ER has been
investigated in accumulation layers of HD III-V, ternary and quaternary materials.
In Sect. 9.2.5, the ER in doping superlattices of HD III-V, ternary and quaternary
materials under strong electric field has been studied. In Sect. 9.2.6, the magneto
ER in effective mass superlattices of HD said materials under strong electric field
has been investigated. In Sect. 9.2.7, the electro ER in ultrathin films of HD
aforementioned compounds under cross fields configuration has been investigated.
The last Sect. 9.3 contains 43 open research problems.

9.2 Theoretical Background

9.2.1 The ER Under Strong Electric Field in HD III-V,
Ternary and Quaternary Materials

In the presence of strong electric field F, along x direction, the electron energy
spectrum in Kane type III-V semiconductors whose unperturbed conduction
electrons obey the three band models of Kane can be expressed following [1] as

K. P. Ghatak and S. Bhattacharya, Heavily-Doped 2D-Quantized Structures 283
and the Einstein Relation, Springer Tracts in Modern Physics 260,
DOI 10.1007/978-3-319-08380-3_9, © Springer International Publishing Switzerland 2015
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h2k2 _
= {eIE“ + e2E® + e3F* + e4E + e5 —%Jra(l + CE) 2] (9.1)
where

. I A
e1 = Qrwy, QO = %E;‘ [se_ng*2 — 6G; + 7th;4}, m, <= (— + —) )

me m,

is the reduced mass, m,, is the effective heavy hole mass at the edge of the valance
band, €f = AfPf,

A = [FRE,(E, — 8)]*m, (6m.,2,(5’)4) )

F = eF, F; is the electric field along x direction.

AE? 1 11
5/:7g7 X:6E§+9AE&,+4A27 — = (——}——)7 Gf:ef(45/+Cf),

m, m. m,

2 /
_ 2 / 2 o (Eg—0

o= [0+ 85+ 20)|

2 6 2 \1? , B
0=73, 1= L{ (Eg+3A)} , by =(45'esC)(By)”', Br=(P+0Q)
ab 1

Py :E;3(€fE;2 7Gf+th;4), w :a%, ap :?, a:E_’
8

1 2 \!
h=— =(E,+2A
E,+ A’ ¢ (g+3 ) ’

e = Qf(Ug, Wy = 2611]91, b1 = (c)_z(ac + bc — ab),
e3 = (1 — Pf)al —+ QfCOg,7 w3 = (b% + 261161),

= [i (1 _g) (1 —bﬂ, es = [(1 = Py)b1 + Qrwa],

c

1 ——>7 w4 = 2bicy,

es = [(1 = Pr)cy + Qrws], s = (C% —2c1by),
e7 =0rw7, 7= C%, e = [(1 — Pf)cl — waﬁL
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Using (9.1) and (1.4) we get

—00

E
k> 4
. F(v)dv = e; (E—=v)"F(v)dv + e,

E

/ (E—v/}FOW)dv + e /E (E = v F(v)dv

—00

+ ey /E (E—v)F(v)dv + es /E F(v)dv— e

—00

F(v)dv ¢
/ T+c(E—v) + e / F(W)av[l 4+ c(E —v)]*  (9.2)

—00

Let us put /(11) = / (E —v)*F(v)dv

=

E E
= / F(v)dv + / Vv F(v)dv + 6E? / V2F(v)dy

E E
—2F° / vF(v)dv — 4E / VF(v)dv

9.3)
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E
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3 2 2
n —F E
/V3F(v)dv:2\/%exp<7> 1+F (97)
K g g
Thus
4 E 3, E\ 21 —E?
I11) =— |1+ Erf| = || + 2 |1 +Erf| = | — Zexp| —
(11) (%) 81 Mg 3£ P n§
3 2 E
—(E 1+ Erf| —

N E3ng _E? N 2E11§ _E2
exp exp
v e VT n;

In Chap. 1 we have proved that

E 2
F(v)d 2 SN
(o, E,ng) = / (v)dv = e nginh(pu) - iﬁf"z
L+e(E—v) cn,on p cn,

% p=1
(9.9)
where u = IZ“T“E
The theorem of differentiation under the sign of integration tells us
o g an 0B(x) QA(x)
X X
— F — )dy + F| x,B(x)——=) — F| x,A(x) ——=
2] Py Py + 7 (150 25 - F (%)
A(x) A(x)
(9.10)

where the notations have their usual meaning and the integrals are convergent.
Using (9.9) and (9.10) and differentiating (9.9) with respect to E we get

—c [ F(v)dv ! ex £ :Le’”2 ul ooL%zsin u
/[ +c(E—v)? \/> p(%) clgV/m zﬂg[;p h(p)]

2 2 1 ﬁ 2 1
+——e" E e Cosh(pu)—t e " 2u—
Cﬂg\/_ ngp C'Ig rlg
F(v)dv
_ T (E,n,. )+ iDsy(E,,, 9.11
[ e = ) D 0 9.11)
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where

_E? 2

1 dye" & —p )
c3(E,ng,c) = | eXP( ) - [> _exp(——)p~ sinh(pu)]
R v D Bl

>, i 2 coship)]
- " ~4 cosh(pu
cznﬁ\/ﬁ =
2u ) 1+ cE
D3(E717gac) :%exp(—u )7 u—= cn,
Again (9.9) can be written as
F(v)dv .
/ m:CI(C7E7’1g)_lCZ(C7E7ng) (9.12)
00 =
[ZE Ty
where ¢ (¢, E,1,) = ﬁe’”z [ZTSmh(pu)] and ca(c, E,n,) = %e ’
=
We know that
r E E 3 L
3 _ 2 2 Ne  ~Ziam2 | 2
/ (E—v)’F(v)dv = ) 1—|—Erf<n—g> [E —|—§ng} +me “(4E° + 1)

Therefore the dispersion relation in heavily doped III-IV semiconductors whose
unperturbed conduction electrons obey the three band models of Kane in the
presence of an electric field along x axis can be expressed as

= J4(E,c,n,) (9.14)

where J4(E, c,n,) = JI(E, c,n,) +il2(E, c,n,),

-1
E
Ji (Ev ¢, ng) =2|1+Erf <'7_>:| [81@0(E, "]g) + 62(pl(E> ”g) + 6390(E7 ”g) + 64“/0(E, ng)
8
E
+ g(%) I+ E’f I’]_ — €6C| (Ea c, ng) + 6763(E7 C, ng)
8

and JZ(Eacang) = 2|:1 +E'f(;1_i):| [€6C2(E, ¢ 71g> + €7D3<E, ¢, ’7g>]
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For two band model of Kane, the dispersion relation in the presence of electric
field F along x direction is given by

n*k>
m :Plle(1+O(E) —Q”f (915)

where Py = {1 + (Q11r) (ri”;‘:g

»

2
)}, Quiy = —l(zrff)Eg
Therefore under the condition of heavy doping (9.15) assumes the form

=Js(E,n,) (9.16a)

Where JS(E, ﬂg) = P]]f’))z(E, I’]g) — Q][f.

Thus (9.14) and (9.16a) are key equations for investigating the electronic
properties in III-V Kane type heavily doped semiconductors in the presence of a
strong electric field.

The EEM in III-V Kane type heavily doped semiconductors in the presence of a
strong electric field whose energy band structures in the absence of any pertur-
bation are defined by three and two band models of kane can be written from
(9.14) and (9.16a) as

m*(Epg, F) = m, Real part of [J4(Erg, c,n,)| (9.16b)
and
m*(EpE,F) = mc[Js(EpE,i’]g)]/ (916C)

where Epg is the Fermi energy in the present case for this chapter.
Thus following (9.14) electron concentration is given by

3
v [2m.\?
ny = 35;2 < p=; ) Real part of [Js(Epg,c,n,) +J7(Epg,c,n,)] (9.17)
where

Jo(ErE, ¢,My) = [Ja(ErE, ¢,n,)]? and J7(EFg, ¢, ) = >°)_ ) L(r)J6(EFe, ¢, 1)
The ER in this case is given by

D Real no Ong h 9.18
;_ eal part of (?) (m) (9.18)

where e} is the energy when k = 0 in the dispersion relation.
Thus using (9.17), (9.18) and the allied definitions, we can study the ER in this
case.
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For the dispersion relation (9.16a) the corresponding electron concentration can
be written as

3
v [2m.\?
nyp = 3gnz ( "2 ) []S(EFEa ’/Ig) +J9(EFE7 l’]g)] (9.19)

where Jg(Erg, n,) = [J5(Ere,n,)]> and Jo(Erg,n,) = > _; L(r)J3(EFe, ).
Thus using (9.18), (9.19) and the allied definitions, we can study the ER in this
case.

9.2.2 The ER in the Presence of Quantizing Magnetic Field
Under Strong Electric Field in HD III-V, Ternary
and Quaternary Materials

The electron energy spectrum under magnetic quantization can be written as

n*k? 1

2mc + | n+ E hwo = J4(E, C, ﬂg) (920)
h*k? 1

ij + (n + E) hao = J5(E, ny) (9.21a)

The EEM in this case can be written using (9.20) and (9.21a) as
m* (Erpgp, F) = m. Real part of [J4(Ergs, c, ng)]/ (9.21b)
and
m*(Eggg, F) = me[Js(Epgs, )] (9.21c¢)

where Epgp is the Fermi energy in the present case
The electron concentration for the dispersion relation (9.20) is given by

eBg,\/2m, T
ny = gnva Real part ofz0 [V10(ErEp, ¢, Mg, 1) + J11(Eres, ¢, Mg, 1)) (9.22)
n=

1
where Jo(Epgg, c,n,,n) = \/\]4(EFEB:Cv Mg 1) — <n+§>hw0 and Ji1(Epgs, ¢, 1y, n) =

> 1 L(r)J10(ErEs, €, 1y, 1)
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The ER in this case can be written as

D no an() -

where €} is the Landau sub band energy in this case.

Thus, using (9.22), (9.23) and the allied definitions we can study the ER in this
case.

The electron concentration for the dispersion relation (9.21) is given by

eBg,\/2m, &
:fﬂ?z V12(EFes, g, n) + J13(EFgs, g, n)] (9.24)
n=0

no

where le(EpEB,i’]g,l’l) = \/Jj(EFEB,l’]g,l’l) — (l’l +%)hw0 and .113(EFEB,17g,n) =

> vt L(r)J12(ErEs, g, 1)
Thus using (9.22), (9.24) and the allied definitions, we can study the ER in this
case.

9.2.3 The ER in Ultrathin Films of HD III-V, Ternary
and Quaternary Materials Under Strong Electric Field

For ultrathin films in the presence of size quantization, the 2D dispersion laws for
(9.14) and (9.16a) assume the forms

kW (m

2
i ) = J4(E,c,n,) (9.25)

2m,  2m,

and

I S <nzn

2
4. ) =Js5(E,n,) (9.26a)

2m,  2m,
The EEM in this case can be written using (9.25) and (9.26a) as
m* (EFESQ> F) = m, Real part Of [J4(EFESQ» c, V]g)]/ (926b)

and

m* (Ergsg, F) = mc[Js5(Ergsg, ﬂg)]/ (9.26c¢)

where Efpgsg is the Fermi energy in this case.
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The 2D electron concentration for (9.25) can be written as

g

¢ nganZ) +‘IIS(E‘FESQ7C nganZ)] (927)

> b3

2
where Ji7(Ergso, ¢, Mg, 1) = [-]4(EFESQaca Ng) ~ (”7) } and Jig(EFresg, €, 1,5
ny) = >0 L(r)[J17(Ereso; ¢, Mg, 1)

The ER in this case is given by

-1
D o ano
Z_R e/ \0(Ereso — €ipgo) ’
7 calpart of (e) (6(EFESQ - e%FSQ)> o

where ejg, is the subband energy in this case.

Thus, by using (9.27), (9.28) and the allied definitions we can study the ER in
this case.

The 2D electron concentration for (9.26a) can be written as

Zmax

Z J19(EFESQ; €; Mgy z) + J20(EFESQ, €5 Mg 1)) (9.29)

n,=1

mcgv

nyg =

where J19(EFesg, ¢, g, 1) = [J5(ErEsg; ¢, 1,) — % ("d—n)z] and Jxo(Ergsg, ¢, Mg, 12)
= > o1 L(n9(Eresg, ¢, 1, 12)]

Thus by using (9.28), (9.29) and the allied definitions, we can study the ER in
this case.

9.2.4 The ER in Accumulation Layers of HD III-V, Ternary
and Quaternary Materials

The 2D dispersion relations corresponding to (9.14) and (9.16a) are given by

Rk? lieF
Jo(E,c,n,) = Py — 45 <WJ’ (E,c ng)> (9.30)
and
R heF, 3

where F is the surface electric field along Z-direction.
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Using (9.30) and (9.31a), the EEMs can be expressed as

m*(EpgiL, ¢, ,, 1) = mc Real part of [J1 (ErgiL, ¢, 1, i)' (9.31b)

m* (EpgiL, g, i) = melJos (Epgiw, g, 1)) (9.31c¢)

where Epgyy is the Fermi energy in this case, J21 (Ergr, ¢, Nes i) = [J4(EFE1L, c, ng)
2

—=S; (%JA(EFEIL,C,%))S] and  Jo3(ErgmL, g, i) = [JS(EFEIL7Ug> =i (%%J;
2,
(ErEmw,n,))*]-

The 2D electron concentration for (9.30) can be written as

mC v imax . o
no = Real part of [nh% Z [[J21(ErEiw, ¢, g, i) 4 Jo2(EpgiL, ¢, 1,1

i=0
3
g (2m.\?
+3n2 (7> tiJa(EFE, c, ﬂg)]

where Jy(Ergi, ¢, 1y, i) = Yo L(r)[J21 (Ereiw, ¢, g, i)]and Epg is determined
from (9.17).

(9.32)

The ER in this case is given by

D o no a}’l() -
; = Real part Of [(?) <m) ‘| (933)

where ¢}, is the subband energy in this case.

Thus, by using (9.32), (9.33) and the allied definitions we can study the ER in
this case.

The 2D electron concentration for (9.31a) can be written as

mC v . .
no = Real part of [nhé; Z [[/23(EFew, Mgy 1) + Jos(EFEiL, Mg, i)

i=0
g (2m, :
taa (7) tJs(Ere, %)H (9.34)

where Jos(Epgin, g, 1) = >y L(r)[J23(EFgmw, g, i)]and Epg is determined from
(9.19).

Thus by using (9.33), (9.34) and the allied definitions we can study the ER in
this case.
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9.2.5 The ER in Doping Super lattices of HD III-V, Ternary
and Quaternary Materials Under Strong Electric Field

For doping super lattices the 2D dispersion relations corresponding to (9.14) and
(9.16a) assume the forms

Rk 1

Ja(E,c,n,) = . + (ni +§)hw1(E, M) (9.35)
R k> 1

J5(E\ng) = . + ni+§ iy (E, ) (9.36a)

where n; = (0,1,2,...) is the mini-band index, do is the superlattice period,

nye* % . nye* %
(1)1(E,C, ng) = (z:s(doJi(E.c,ng)) and COQ(E, ’7g) - (:;MdUJ;(E,ﬂg)) :
Using (9.35) and (9.36a), the EEM can be written as

m" (EFEDSLy CyMgs I’l,‘) =m, Realpart Of [J25 (EFEDSL; € Mgs n,‘)]/ (9361))
m* (ErEpst, Mg, 1i) = Me[J27(EFEpst, Mg, )]’ (9.36¢)
where Epgpsy is the Fermi energy in this case,
1
J25(Erepse, ¢, Mg, i) = [Ja(Erepse, ¢, 1,) — (ni + E)hwl(EFEDSLa ;1))
and

1
J27(EFepsts g, i) = [Js(Ereps, 1) — (n; +§)hw2(EFEDSL777g)]

The electron statistics for (9.35) can be written as

njmax
mcgy
ng = nhgz Realpartof Z [J25(EFED5L,C,I’[g,I’li) +J26(EFEDSL,C;7’Ig7ni)} (937)
n;=0

where
[J26(EFEDSLy €5 Mgy i) = D L(r)[Jas(ErpEpse, €5 Mg, )]
r=1

The ER in this case is given by

) )"
e’ “0(Erepst — €grpst) . (9.38)
where €}, is the sub-band energy.

D
— = Real part of [(
U

Using (9.37), (9.38) and the allied definitions, we can study the ER in this case.
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For (9.36a) the electron statistics can be written as

n;max

Z [J27(Erepst, g, ni) + Jas(Epepse, g, i) (9.39)
I’L,‘ZO

- mcgy
0=
7h?

where Jog(EFepse; Mg, i) = S L(r)[Ja7 (Ergpst., Mgs 1i)]
r=1
Using (9.38), (9.39) and the allied definitions, we can study the ER in this case.

9.2.6 The Magneto ER in Effective Mass Superlattices
of HD III-V, Ternary and Quaternary Materials
Under Strong Electric Field

The electron dispersion law in III-V effective mass super lattices can be written as

1 _ 2
K2 = [ﬁ [Cos™ {fup(E, c,ng, ky, k.)}] —ki} (9.40)
0

where fup(E, c,n,,ky, k;) = [a1apCos[aoCiup(E, g1, c1, k1) + boD1ap(E, 1, €2,k 1)]]—

2
me2J}(0,¢2,1,,)
[a2upCoslaoCimp (E, g1, ¢1,k1) = boDiap(E, N, 2,k 1)]], @1ap = [ mcljz(o 1 ﬂgl) 1
sClhllg
2 —1
me2Jy (0,¢2,1,7) . —
|:4 miz»ljz(oﬁfiﬂi-ﬂ — 1:| . |:4 y CIHD(E7 ngl yCl, ki) -

(20 T4 (E, gy, 1) = K2 | and Dup (B c1,k1) = (2804 (B, e2) = k3],

meJy(0,¢2,1,,)

me2J}(0,¢2,,)
me1Jy(0,c1,1,1)

1 Q2HD = [ me1 3 (0.c1,g1)

In the presence of a quantizing magnetic field B along k, direction, the magneto
electron energy spectrum can be written as

k; = oup(E, 1y, c,n) (9.41a)

— 2 e
where wHD(E7 ﬂg,C, n) = |:LL6 [COS l{fHD(E7C,7]g7n)H —ZTB (n _|_%):|’
fHD(E; C, ﬂg,n) = [[(l]HDC()S[a()ClHD(E, ngl’ Cl,n) + bODlHD(E> nng C27n)]]

— [a2upCos[aoCiup(E, Ny, c1,1) — boD1up(E, Ny, €2, n)]]],
2mcl 2eB 1
Cia(E; g1, €1,n) = {714(5, Mg1:C1) T <n +§)}
and
2m02 1

2eB
Diup(E; s c1,n) = [714(15, g2, C2) —7(n+§)]
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The EEM in this case can be written from (9.41a) as
2

h
m’ (ESLv nga C, n) = 7 Realpart Of [CUHD(ESLa ’7g7 ¢, I’l)], (941b)

where Egp is the Fermi energy in this case.
The electron concentration is given by

veB Mmax
no = gm Realpartof » _ [Jao(Es.,0g,n) + Jar (Es, g, n)] (9.42)
n=0

where

i \)
J40(E5La Mg, I’l) = [wHD(ESLa Hgs €, I’l)]2 and Jy (ESL7 Ngs n) = Z;:l L(l”) [‘,40(ESL, Hgs n)]
The ER in this case is given by

D M geal part of [ ono ]_1 (9.43)
— = —Realpartof | =m———— .
p e A(Es, — )

where o, is the sub-band energy in this case.
Using (9.42), (9.43) and the allied definitions, we can study the ER in this case.
The electron dispersion law in III-V effective mass super lattices whose con-
stituent materials obey (9.16a) can be expressed as

K= [Lié [Cos™ {fups (E, 1y, ky )} — kﬂ (9.44)
where fups(E, 1y, ky, k;) = [[a1ups CoslaoCiups(E, gy, k1) + boD1ups (E, g, k1)]] — [ang5
S ColanCrnps(E et k) ~ Do Bk s = | 2622 41

- [2212” Js(E,ngy) —kﬂ and Dipps (E, g, k1) = [Z;EZJS(E’ Ng2:) _kﬂ

In the presence of a quantizing magnetic field B along k, direction, the magneto-
electron energy spectrum can be written as

K} = opps(E, 1y, n) (9.45a)
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where
1 2¢B 1
opps(E, Hg,ﬂ) = |73 [Cos’l{fHDS(E, ng,n)}]z — T n+=
Ly h 2
fups(E,ng,n) = [[aiupsCos[aoCiups (E, g1, 1) + boDiaps (E, 1y, n)]]
— laanps CoslaoCiups (E, g1, 1) — boDiaps (E, g2, n)]]],

2mc 2eB 1
ClHDS(E’ 1781’”) = [#JS(Ev ngl) - 7 <I’l +§):|

and

2meo 2eB 1
Diups(E, Ngy,n) = 715(157%2) T n+§

The EEM in this case can be written from (9.45a) as
. i ,
m*(Esp, 1y, n) = > [wnps (EsL, g, )] (9.45b)

The electron concentration is given by

Nmax

gveB
="7 > [so(Esesng,n) + Jsi (Ese g, n)] (9.46)
n=0

where

1
J50(Esz, g, ) = [0ups(EsL, Ny, n)]? and Js1 (Es, 1, 1)

= 3" L) Uso(Ese g, )]

Using (9.43), (9.46) and the allied definitions, we can study the ER in this case.

9.2.7 The Electro ER in Ultrathin Films of HD III-V,
Ternary and Quaternary Materials Under Cross Fields

Configuration

In the presence of an crossed electric field Eq along x axis and quantizing magnetic
field B along z axis, (9.14) and (9.16a) assume the forms

mCE%[J!l(E’ C, "g)]z

2
W?k2(E)
2B?

1
J4(E, c, 1’]g) = (I’l + E)h())o + 5 (947)

Ey
- Ehky[Jélt(E7 ¢ ng)] -

c
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and

hzkz( ) EO mLE(z) [Jg (Ea c, ng)]z
2;1(_ - 7ﬁk [JS(E ¢ ng)] 2RB2

1
—hwo +

JS(Ea C, ng) = (l’l + 2

(9.48)

For ultra thin film under crossed field configuration we get

1 2\ /n.\* Eo
Ja(E,eny) = (n+—)hwo + (2m> (d—> 3 4B c.n,)]

”;CB O [I(E con)P (9.49)

J5(E,ng) = (”*%)hwo + (zi) (Z_i)z l;,ohk V5(E ng)] — n;Bz V5(E,n,)I°

(9.50a)

Using (9.49) and (9.50a), the respective EEMs can be written as

m*(Erupur, ¢, Mg, 1, ;)
B\? /
= Real part of E_o T99(EFHDUL,C,7’]g7n7nz)[T99(EFHDULaCv']gananz)]
(9.50b)
m* (Epgpur, Ng, 1, nz)

B\?2
= (E_> T100(ErrpuL, Mg> 1y 1z) [Troo(Epmpur, Mg, nynz)] (9.50¢)
0

where Epppyy, is the Fermi energy in the present case,

J4(E ) Vi — () (7 2
4\EFHDUL, C, Mg n 3 0 2m, ) \d.

Too(ErnpuL, ¢, g, 1, 1z) =

mCE2 _
t5m (T4 (Erupue, ;1)) ][JQ(EFHDUL,Q )] ']
and
1 i n, 2
T100(ErupuL; Ngs 1, nz) = |Js(Ermpu, Mg) — nts hao — )\
m.E2 _
+ 2320 [Jg(EFHDULa’/Ig)]z] 5(Erupuc 1)) ]
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The electron statistics for (9.49) and (9.50a) assume the forms

n

Mmax "'zmax

RealpartonZF_l(mHD) (9.51)

n=0 n,=1

_ &eB
~nh

no

and

gveB Mmax "zmax
T ik ZFfl(HZHD) (9.52)

n=0 n,=1

no

Erspur—E! . . .
W, Erpgpyr is the Fermi energy in the present case,

Elypyy 1s the subband energy obtained by substituting k, = 0 and E = E}yp,,. in

where #nyp =

(949), mpp = %%B%TE%”“UL and Efypy. is the subband energy obtained by
substituting k, = 0 and E = E},;p,,, in (9.50a).
The ER in this case is given by

D

0 _
Z_m Real part of o :
u e

9.53
[a(EFHDUL — €FHDUL) ( )

where epypyy is the Fermi energy in the present case.
Thus by using (9.51),(9.52), (9.53) and the allied definitions, we can study the
ER in this case.

9.3 Open Research Problems

(R.D.1) Investigate the ER for the HD bulk materials whose respective dis-
persion relations of the carriers in the absence of any field is given in
Chap. 1 in the presence of intense electric field which change the
original band structure and consider its effect in the subsequent study in
each case.

(R.D.2) Investigate the ER as defined in (R.D.1) in the presence of an arbitrarily
oriented non-uniform light waves for all the HD materials as considered
R.D.1.

(R.D.3) Investigate the ER as defined in (R.D.1) in the presence of an arbitrarily
oriented non-quantizing alternating non-uniform electric field for all the
cases of R.D.1.

(R.D.4) Investigate the ER as defined in (R.D.1) for all the materials in the
presence of arbitrarily oriented non-quantizing non-uniform electric
field for all the appropriate cases.

(R.D.5) Investigate the ER as defined in (R.D.1) for all the materials in the
presence of arbitrarily oriented non-quantizing alternating electric field
for all the appropriate cases of problem R.D.4.


http://dx.doi.org/10.1007/978-3-319-08380-3_1

9.3 Open Research Problems 299

(R.D.6)

(R.D.7)

(R.D.8)

(R.D.9)

(R.D.10)

(R.D.11)

(R.D.12)

(R.D.13)

(R.D.14)

(R.D.15)

(R.D.16)

(R.D.17)

(R.D.18)

(R.D.19)

(R.D.20)

Investigate the ER as defined in (R.D.1) for the negative refractive
index, organic, magnetic and other advanced optical materials in the
presence of arbitrarily oriented electric field.

Investigate the ER as defined in (R.D.1) in the presence of alternating
non-quantizing electric field for all the problems of R.D.6.

Investigate the ER as defined in (R.D.1) for all the quantum confined
HD materials (i.e., multiple quantum wells and wires) whose unper-
turbed carrier energy spectra are defined in R.D.1 in the presence of
arbitrary oriented quantizing magnetic field by including the effects of
spin and broadening respectively.

Investigate the ER as defined in (R.D.1) in the presence of an additional
arbitrarily oriented alternating quantizing magnetic field respectively
for all the problems of R.D.8.

Investigate the ER as defined in (R.D.1) in the presence of arbitrarily
oriented alternating quantizing magnetic field and arbitrary oriented
non-quantizing non-uniform electric field respectively for all the
problems of R.D.8.

Investigate the ER as defined in (R.D.1) in the presence of arbitrary
oriented alternating non- uniform quantizing magnetic field and addi-
tional arbitrary oriented non-quantizing alternating electric field
respectively for all the problems of R.D.8.

Investigate the ER as defined in (R.D.1) in the presence of arbitrary
oriented and crossed quantizing magnetic and electric fields respec-
tively for all the problems of R.D.8.

Investigate the ER as defined in (R.D.1) for all the appropriate HD low-
dimensional systems of this chapter in the presence of finite potential
wells.

Investigate the ER as defined in (R.D.1) for all the appropriate HD low-
dimensional systems of this chapter in the presence of parabolic
potential wells.

Investigate the ER as defined in (R.D.1) for all the appropriate HD
systems of this chapter forming quantum rings.

Investigate the ER as defined in (R.D.1) for all the above appropriate
problems in the presence of elliptical Hill and quantum square rings
respectively.

Investigate the ER as defined in (R.D.1) for multiple HD carbon nano-
tubes.

Investigate the ER as defined in (R.D.1) for multiple HD carbon nano-
tubes in the presence of non-quantizing non-uniform alternating light
waves.

Investigate the ER as defined in (R.D.1) for multiple HD carbon
nano-tubes in the presence of non-quantizing non-uniform alternating
magnetic field.

Investigate the ER as defined in (R.D.1) for multiple HD carbon nano-
tubes in the presence of crossed electric and quantizing magnetic fields.
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(R.D.21)

(R.D.22)

(R.D.23)

(R.D.24)

(R.D.25)

(R.D.26)

(R.D.27)

(R.D.28)

(R.D.29)

(R.D.30)

(R.D.31)

(R.D.32)

(R.D.33)
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Investigate the ER as defined in (R.D.1) for HD semiconductor nano-
tubes for all the materials whose unperturbed carrier dispersion laws are
defined in Chap. 1.

Investigate the ER as defined in (R.D.1) for HD semiconductor nano-
tubes in the presence of non-quantizing alternating light waves for all
the materials whose unperturbed carrier dispersion laws is defined in
Chap. 1.

Investigate the ER as defined in (R.D.1) for HD semiconductor nano-
tubes in the presence of non-quantizing alternating magnetic field for
all the materials whose unperturbed carrier dispersion laws are defined
in Chap. 1.

Investigate the ER as defined in (R.D.1) for HD semiconductor nano-
tubes in the presence of non-uniform light waves for all the materials
whose unperturbed carrier dispersion laws are defined in Chap. 1.
Investigate the ER as defined in (R.D.1) for HD semiconductor nano-
tubes in the presence of alternating quantizing magnetic fields for all
the materials whose unperturbed carrier dispersion laws are defined in
Chap. 1.

Investigate the ER as defined in (R.D.1) for HD semiconductor nano-
tubes in the presence of crossed electric and quantizing magnetic fields
for all the materials whose unperturbed carrier dispersion laws are
defined in Chap. 1.

Investigate the ER as defined in (R7.1) for all the appropriate nipi
structures of the HD materials whose unperturbed carrier energy
spectra are defined in Chap. 1.

Investigate the ER as defined in (R.D.1) for all the appropriate nipi
structures of the HD materials whose unperturbed carrier energy
spectra are defined in Chap. 1, in the presence of an arbitrarily oriented
non-quantizing non-uniform additional electric field.

Investigate the ER as defined in (R.D.1) for all the appropriate nipi
structures of the HD materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of non-quantizing
alternating additional magnetic field.

Investigate the ER as defined in (R.D.1) for all the appropriate nipi
structures of the HD materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of quantizing alternating
additional magnetic field.

Investigate the ER as defined in (R.D.1) for all the appropriate nipi
structures of the HD materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of crossed electric and
quantizing magnetic fields.

Investigate the ER as defined in (R.D.1) for HD nipi structures for all
the appropriate cases of all the above problems.

Investigate the ER as defined in (R.D.1) for the appropriate accumulation
layers of all the materials whose unperturbed carrier energy spectra


http://dx.doi.org/10.1007/978-3-319-08380-3_1
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(R.D.34)

(R.D.35)

(R.D.36)

(R.D.37)

(R.D.38)

(R.D.39)
(R.D.40)

(R.D.41)

(R.D.42)

(R.D.43)

are defined in Chap. 1 in the presence of crossed electric and quantizing
magnetic fields by considering electron spin and broadening of Landau
levels.

Investigate the ER as defined in (R.D.1) for quantum confined HD
II-V, II-VI, IV-VI, HgTe/CdTe effective mass super-lattices together
with short period, strained layer, random, Fibonacci, poly-type and
saw-tooth super-lattices

Investigate the ER as defined in (R.D.1) in the presence of quantizing
magnetic field respectively for all the cases of R.D.35.

Investigate the ER as defined in (R.D.1) in the presence of non-
quantizing non-uniform additional electric field respectively for all
the cases of R.D.35.

Investigate the ER as defined in (R.D.1) in the presence of non-
quantizing alternating electric field respectively for all the cases of
R.D.35

Investigate the ER as defined in (R.D.1) in the presence of crossed
electric and quantizing magnetic fields respectively for all the cases of
R.D.35.

Investigate the ER as defined in (R.D.1) for heavily doped quantum
confined super-lattices for all the problems of R.D.35.

Investigate the ER as defined in (R.D.1) in the presence of quantizing
non-uniform magnetic field respectively for all the cases of R.D.40.
Investigate the ER as defined in (R.D.1) in the presence of crossed
electric and quantizing magnetic fields respectively for all the cases of
R.D.40.

Investigate the ER as defined in (R.D.1) for all the systems in the
presence of strain.

Investigate all the problems of this chapter by removing all the math-
ematical approximations and establishing the respective appropriate
uniqueness conditions.

Reference
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Chapter 10
Appendix E: The ER for HD III-V,

Ternary and Quaternary Semiconductors
Under External Photo-Excitation

10.1 Introduction

With the advent of nano-photonics, there has been a considerable interest in
studying the optical processes in semiconductors and their nanostructures [1]. It
appears from the literature, that the investigations have been carried out on the
assumption that the carrier energy spectra are invariant quantities in the presence
of intense light waves, which is not fundamentally true. The physical properties of
semiconductors in the presence of light waves which change the basic dispersion
relation have relatively less investigated in the literature [2—12]. In this chapter we
shall study the ER in HD III-V, ternary and quaternary semiconductors on the basis
of newly formulated electron dispersion law under external photo excitation.

In Sect. 10.2.1 of the theoretical background Sect. 10.2, we have formulated the
dispersion relation of the conduction electrons of HD III-V, ternary and quaternary
materials in the presence of light waves whose unperturbed electron energy
spectrum is described by the three-band model of Kane in the absence of band
tailing. In the same section, we have studied the dispersion relations for the said
HD materials in the presence of external photo-excitation when the unperturbed
energy spectra are defined by the two band model of Kane and that of parabolic
energy bands in the absence of band tails respectively for the purpose of relative
comparison. In Sect. 10.2.2, we have studied the ER for all the aforementioned
cases. In Sect. 10.2.3, we have studied the opto ER in the said HD materials under
magnetic quantization. In Sect. 10.2.4, we have studied the opto ER in the pres-
ence of crossed electric and quantizing magnetic fields. In Sect. 10.2.5, we have
studied the opto ER in the presence of size quantization. In Sect. 10.2.6, we have
studied the opto ER in HD doping superlattices. In Sect. 10.2.7, we have studied
the opto ER in the accumulation layers. The Sect. 10.3 contains the open research
problems.

K. P. Ghatak and S. Bhattacharya, Heavily-Doped 2D-Quantized Structures 303
and the Einstein Relation, Springer Tracts in Modern Physics 260,
DOI 10.1007/978-3-319-08380-3_10, © Springer International Publishing Switzerland 2015
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10.2 Theoretical Background

10.2.1 The Formulation of the Electron Dispersion Law
in the Presence of Light Waves in III-V, Ternary
and Quaternary Semiconductors

The Hamiltonian (H) of an electron in the presence of light wave characterized by
the vector potential A can be written following [11-13] as

i= U(ﬁ+ |e|A’)‘2/2m} V() (10.1)

in which, p is the momentum operator, V(7) is the crystal potential and m is the
free electron mass. Equation (10.1) can be expressed as

H=H,+H (10.2)
where,

H, —ﬁ+V(*) and =15 (10.3)
7 om g T 2m P '

The perturbed Hamiltonian A’ can be written as

i = <%n|f|> (A’ : v) (10.4)

where, i = v/ —1 and p = —ihV
The vector potential (A') of the monochromatic light of plane wave can be
expressed as

A = AgE, cos(5y - 7 — ot) (10.5)

where A is the amplitude of the light wave, & is the polarization vector, 5y is the
momentum vector of the incident photon, 7 is the position vector, w is the angular

frequency of light wave and 7 is the time scale. The matrix element of I:I,’d between
initial state, y,(g,7) and final state y, (l?, ?) in different bands can be written as
ryl |e|

lz,> (10.6)
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Using (10.4) and (10.5), we can re-write (10.6) as

iy = (Y [( (a9l + { (o)

(10.7)

The first matrix element of (10.7) can be written as

(nk|e® 19 |ig) = / T i (K, 7)u(G. )l

n / (il 7) (,—57 ?) V(G P)dr (10.8)

*

The functions u;u; and u;, Vu, are periodic. The integral over all space can be
separated into a sum over unit cells times an integral over a single unit cell. It is
assumed that the wave length of the electromagnetic wave is sufficiently large so

that if k and ¢ are within the Brillouin zone, (Ej + 5o — E) is not a reciprocal lattice

vector.
Therefore, we can write (10.8) as

<nlz‘e(’-§‘”?>V‘le> = {(233} {iqé (zj 50— 12) Sut + 5@ +5— /2) / i (1?, ?)Vu,(?j, ?)dsr}

cell

{5(q+§0—12) / u;(/?,?)vu,(w)d%} (10.9)

(2n)’
o

cell

-

where, Q is the volume of the unit cell and [ u;, (k, P)uy(§, P)d*r = 6(G — k)3 = O,
since n # 1.

The delta function expresses the conservation of wave vector in the absorption
of light wave and s is small compared to the dimension of a typical Brillouin zone
and we set § = k.

From (10.8) and (10.9), we can write,

2 ‘e‘AO

W= E Pu(K)(G — k) cos(wr) (10.10)

where, p(k) = —ili [ wNudr = [u:(k, 7)pu(k, 7F)d>r.
Therefore, we can write

N A -
rJeMos o B (10.11)

nl — m

where, € = & cos wt.



306 10 Appendix E: The ER for HD III-V, Ternary and Quaternary Semiconductors

When a photon interacts with a semiconductor, the carriers (i.e., electrons) are
generated in the bands which are followed by the inter-band transitions. For
example, when the carriers are generated in the valence band, the carriers then
make inter-band transition to the conduction band. The transition of the electrons

within the same band i.e., I:I,/m = <nE|H’|nE> is neglected. Because, in such a case,

i.e., when the carriers are generated within the same bands by photons, are lost by
recombination within the aforementioned band resulting zero carriers.
Therefore,

(k| |nk) = 0 (10.12)

With n = ¢ stands for conduction band and [ = v stand for valance band, the
energy equation for the conduction electron can approximately be written as

2>av (10.13)

, .
() <g-ﬁcv(k)
In(E) = (2mc) + EC(E) *Ev(]_é)

where, I)(E)=E(@E+1)(bE+1)/(cE+ 1), a=1/E,, E, is the un-perturbed

L2
band-gap, b=1/(E, +A), c=1/(E, +2A/3), and <’§-[)w(k)‘ > represents
the average of the square of the optical matrix element (OME).

For the three-band model of Kane, we can write,
= Ee(k) — Ey(K) = (E2 + Eg, 1K fm,)'/? (10.14)

where, m; is the reduced mass and is given by m ! = (m(.)_1 +m !, and m, is the
effective mass of the heavy hole at the top of the valance band in the absence of
any field.

The doubly degenerate wave functions u; (1_5, 7) and uz(lz, 7) can be expressed as
[12]

ui (K, 7) = ary [(is) '] + bis X \;;Y " + ez )] (10.15)
and
(6, 7) = a_[(is) 1] — b | \gY Ul + ez 1) (10.16)

s is the s-type atomic orbital in both unprimed and primed coordinates, |’ indicates
the spin down function in the primed coordinates,
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ks = BEey = (oxe) (Bey — )] (Egy + 8) 2],
B= [(6(Eq, +28/3)(Eg, +A) /7],
L= (6E§,O +9E, A+ 4A2)’
o (Eix F Eg,)
Yok+ = {m}
S = EC(/:) — Ev(l?) =E,, [1 +2(1 +) -

& = (E;A) ) X, Y, and Z'

are the p-type atomic orbitals in the primed coordinates, 1’ indicates the spin-up

function in the primed coordinates, byt = pygs, P = (4A2 / 3)()1/2, Crt = Yops
1/2

and 1 = [6(Eg0 +2A/3)2/X] .

We can, therefore, write the expression for the optical matrix element (OME) as

OME = je, (1}’) - <u1(1€, ?)|plus (, ?)> (10.17)

Since the photon vector has no interaction in the same band for the study of
inter-band optical transition, we can therefore write

(SplS) = (X|p|X) = (Y|p|Y) = (Z|p|Z) = 0O
and
(X|p|Y) = (Y|p|Z) = (Z|p|X) = 0

There are finite interactions between the conduction band (CB) and the valance
band (VB) and we can obtain

where, i, ] and k are the unit vectors along X, y and z axes respectively.
It is well known [12] that

- [y “rad]ll]
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and
X cosfcos¢p cosfsing —sing | |[X
Y| =|—sing cos ¢ 0 Y
7' sinfcos¢ sinfsing cosl Z

Besides, the spin vector can be written as

—

i o 1] o - I
$=39 Where"’x_{l o}"’y_{i o]a“d(’z_[o —1}

From above, we can write
pev(k) = <u1 (1? 7) 1Pl (12 7)>

- <{ak+ [(iS) '] + bx. [(%) T’] +o,[Z l’]}f’lak[(is) 1]

Using above relations, we get

pev (k) = (m (£.7) 1Plus(%.7) )

b"*“" [ = ) PUSY(1 [ 1)} + ce.an {(Z1PLS)(L [ 1)}

- sz {GSIPIOC + V)1 1))+ aw,cx {GSIPZ)L | 1)}
(10.18)
From (10.18), we can write
(X' —iY")|P|iS)y = ((X)|P|iS) — ((iY")|P]iS)
= i/u;;,ﬁS—/—m;,PiuX =i(X'|P|S) — (Y'|P|S)
From the above relations, for X', Y’ and Z’, we get

|X") = cos 0 cos ¢p|X) + cos Osin p|Y) — sin 0|Z)
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Thus,
<X’|13|S> = cos 0 cos p(X|P|S) + cos Osin p{Y|P|S) — sin 0(Z|P|S) = Pry
where, 7 = icos 0cos ¢ + jcos 0sin ¢ — ksin 0
|Y') = —sin $|X) + cos ¢|Y) + 0|Z)
Thus,

(Y'|P|S) = — sin ¢(X|P|S) + cos ¢(Y|P|S) + 0(Z|P|S) = Pi,

where 7, = —isin ¢ +j’cos qb
so that <( lY’)|P|S> P(ify — 1)
Thus,
e (!~ i PISY(11) = B bl — i) (117) (10.19)
V2 V2
Now since,

(iS|P|(X' +iY")) = i(S|P|X") — (S|P|Y") = P(if1 — #»)

We can write,

. 4 AR A, Dk_ ¢, .. N
A Gtstoton + v 03] = = [ = 1 1)
Similarly, we get
|Z') = sin 0 cos ¢ |X) + sin 6 sin ¢ |Y) + cos 0|Z)
So that,
(Z'\PiS) = i(Z'|P|S) = iP{sin 0 cos ¢ i+ sin 0 sin ¢pj + cos Ok} = iPF3

where, 75 = i sin 0 cos ¢ 4 sin 0 sin ¢ + k cos 0
Thus,

cr.ar (Z'|PliSY()" | 1) = cx, ar_iPP(]" | 1) (10.21)
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Similarly, we can write,
cear, (iS|P|Z'Y( | 1) = cx_ax, iPis(]" | 1) (10.22)

Therefore, we obtain

N | D / / +b — ! ! / /
{< —iV)[PIS)Y(T" [ 1)} - akfk {GSIPI(X"+iy)(1" [ 1)}
=§( i, bi {1 V) + @b (1] 1)) (i — 72)
(10.23)
Also, we can write,
cr ax (Z|PliS)(T' | 1) + ckfak+<iS|I3|Z'><l’|T’>
=ip(ck.ar +cear)is[( | 1")] (10.24)
Combining (10.23) and (10.24), we find
pev(k) = jzfﬁ’l - ;’2){(bk+ak,)<T/‘T,> — (bea. )(l"| l/>}
+ P (ck ar. — e ar, ) (| 1) (10.25)
From the above relations, we obtain,
1= e/ cos(0/2) T +¢%/?sin(0/2) | (10.26)
['= —e79/25in(0/2) 1 +e'*/%>cos(0/2) | '
Therefore,
TN — o —ip 2
(V1= =sin(0/2) cos(@/2){T | Dre o@D 1D, (oo

— e sin?(0/2)(1 | |),+sin(0/2) cos(0/2)(] | 1),

But we know from above that

(TIM=0,(LIT)= (lIT)Z—aHdUIl)—O
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Thus, from (10.27), we get
<l’|T’> _! [e”"l5 cos?(0/2) — € sin*(0/2)]
% [(cos ¢ — isin ) cos*(6/2) — (cos ¢ + isin ¢) sin*(6/2)]
%[cosqﬁcos@ — isin @] (10.28)

Similarly, we obtain

1= [zcosq’)—i—smd)cos(?]and(l |11),= %[—sin@]
Therefore,
W) =AY TR 1),
= %{(cos 0cos ¢ — isin )i + (icos ¢ + sin ¢ cos 0)j — sin ()IE}
= % [{(cos 0 cos )i + (sin ¢ cos 0)] — sin Ok} + i{—isin + jcos ¢ }]
D T IFU
= E[rl + iR = —gz[zrl — 1)
Similarly, we can write

<T’|T> [tsmecosqﬁ—+—]sm9sm¢)+kcose] 2A3 and ("] l'>:—1A

Using the above results and following (10.25) we can write

pev (B) = s it =) (o b )V 1) = (b ) (| 1)

+iP{ (e ar —crar )L [ 1)}

_ 123?3(1?1 - f"g){ (“" De. B a"*)}
}

+

|

;’3(1'?1 —?2){(ck ar +cr ak+)
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Thus,

AN by br
k) - - 2k Ok 10.29
pCV( 2”3(”1 Vz){ak+ (\/E+Ck> + ay_ (\/E+Ck+)} ( )
We can write that,
71| = |#2| = |3 = 1,also, Pi = Py sin 0 cos ¢i + P, sin 0'sin ¢j + P cos Ok

where, P = <

= (8|P|Y) = (s|P|z),
(s|p|x) = / (0, F)Puyx (0, /)d’r = Peyx(0) and  (S|P|Z) = Pcyz(0)

Thus,

P = Pcyx(0) = Peyy(0) = Peyz(0) = Pey(0)
where, Pcy(0) = [u?(0,7)Puy(0,7)d’r = P

For a plane polarized light wave, we have the polarization vector & = k, when
the light wave vector is traveling along the z-axis. Therefore, for a plane polarized

light-wave, we have considered & = k.
Then, from (10.29) we get

g-pev(k)) =k- E s(ify — 72) |A(K) + B(k) | cos ot (10.30)
2

and
A(R) = a (1’}+ck+)
B0 — (T£+Ck) (10.31)
Thus,
z-ﬁw(l‘c’) k. 1; lify — i [ A(R) B(/‘c’)} cos? wr
1

2
’P cos@‘ [ +B(k)} cos® wt (10.32)
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N2
So, the average value of ‘? “Pev (k) ‘ for a plane polarized light-wave is given by

<§-P0V<I§> 2>av:§|pz|Z[A(k) +B(l€)} quﬁo/ncoszﬁsinﬁdﬂ (%)

27 4

- 12
= 1P [AGR) + B(R)|
(10.33)
) — 2
where |P.| = (%)’kopcv(O)‘ and
2
‘E-ﬁcv(o)‘z— By (B +4) (10.34)

- dm, (Egn + %A)

We shall express A(K) and B(K) in terms of constants of the energy spectra in
the following way:

Substituting ay, , by, , ¢, and yp, in A(K) and B(k) in (10.31) we get

E, — o\
— 80 10.35
a0 =p(r SN (o) -dd (255) ) 00

oo (E =0\ 10.36
B _ N 80 .
( {(E;,n T ) Yoko — Yok, Vor_ <Eg0 T 5/>} ( )

: : 2 Su—Ey :l _ EK0+5I 2 SutEy 1 Ego_(s/
in which, 7o, =355 =2 |- (Gw )| andooe = =21 (G

Substituting x = & + ¢’ in 93, ., we can write,

< c N 1/2
o p E,, 1 Eg+ 6 1 (Eg — &' Eg+ 6 Eg, — &
A(k) = = —(1- —= 1— 1
(k) ﬁ<t + \/§> { <Ego + ()’) 2 X 4 Ego + (S/ x + x

Thus,
1/2
p 2a9 | a
t ] ——+—=
(=)

where, ay = (Eé%0 + 5/2) (Eq + 5')71 and ay = (Eg, — 5')2.

A(K) =

Nlh
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After tedious algebra, one can show that

A(F) —E(r+L> (Eg, - 50{ Lo ]1/2 L (B, 4]
= 2 \/i 80 é]k + 5/ égo +5/ é]k +5/ (Ego _ 5/)
(10.37)

Similarly, from (10.36), we can write,

1/2
N P Eg, 1 E;:o_‘S, 1 Egn_a/ Egn+‘;/ Egn_é/
BO=rr2) e, va )2 T alg, v U U T
ﬂ gn+ g”+

So that, finally we get,

B(R) = g <r + \p@) (1 + W) (10.38)

Using (10.33), (10.34), (10.37) and (10.38), we can write

SR NOE
m E.

(k) — E, (k) 2m ) 3

/?-pa,(o)f%z (z +\%)2

1 E, — 0 1 IR | E, +0 1" ’
= 1+ygo_/)+Eo_5/ |:v 7 /] P 7 =
Sk ( E+90 (Eq ) St Egt+0 S +0 (Ego—é’)2
(10.39)
Following Nag [12], it can be shown that
122
A2=— " 10.40
07 21263, feeto ( )

where, 7 is the light intensity of wavelength A, & is the permittivity of free space
and c is the velocity of light. Thus, the simplified electron energy spectrum in
III-V, ternary and quaternary materials in the presence of light waves can
approximately be written as

R k2
2m, -

Bo(E,2) (10.41)

where, fy(E, A) = [11(E) — 0o(E, 1)),
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1/2}2
. 1/2
and ¢y (E) = Eg, (1 + 2(1 + m—) 'f‘éif))

Thus, under the limiting condition k— 0, from (10.41), we observe that E # 0
and is positive. Therefore, in the presence of external light waves, the energy of the

|e\2 1% Ego(Ego"‘A)ﬁ:( IJ)2 1
4 bo(E)

00(E, 7)) = V2
o(E,2) 96m,mc® \fescto (Egy +32A)

MY

E, — & 1 112 1 E, + 0
1 2 _5 - )
{ ( ’ bo(E) + 5/) + B =) |:¢0(E) +0 B+ 5,] [‘f’o(E) +0 (B, - 9)

electron does not tend to zero when k — 0, where as for the un-perturbed three
band model of Kane, I;;(E) = [A*k?/(2m.)] in which E — 0 for k — 0. As the
conduction band is taken as the reference level of energy, therefore the lowest
positive value of E for k—0 provides the increased band gap(AEg) of the
semiconductor due to photon excitation. The values of the increased band gap can
be obtained by computer iteration processes for various values of I and A
respectively.

Special Cases:

1. For the two-band model of Kane, we have A — 0. Under this condition,
In(E) — E(1 +aE) =22 Since, f— 1,1 — 1, p— 0, &' — 0 for A — 0,
from (10.41), we can write the energy spectrum of III-V, ternary and quater-

nary materials in the presence of external photo-excitation whose unperturbed
conduction electrons obey the two band model of Kane as

=19(E, 1) (10.42)
where, 19(E, A) = E(1 + «E) — By(E, 1),

elI2Ey 1 o 1 17)?
BolE, 4) = 384%C3mr\/gg‘;55 ¢1(E) { (1 N (f’le)) * Eeo [¢(E) - Ego] } » $1F)
om, 1/2
= go{l—i— - aE(l+aE)} .

2. For relatively wide band gap semiconductors, one can write, a — 0, b — 0,
¢ — 0 and 111(E) — E.
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Thus, from (10.42), we get,

k2
2m, -

h (E,))=E el 122 4 (2 e o
where, AN=E———"— ey, .
Po 9673 m,+/esc 0

po(E, 4) (10.43)

10.2.2 The ER in the Presence of Light Waves in HD III-V,
Ternary and Quaternary Semiconductors

The (10.40), (10.41) and (10.42) can approximately be written as

1 k?
S = Ui (E) = P; (10.44)
mC
k>
5 = E + 1B =0, (10.45)
and
1 k?
P 1E—9; (10.46a)
where
Ui (14 00.0,= (1 B0 oo 1 TBE0 A F ) b
a P A T AT T D6, Joeto (B +2A) 4 2
me 2B BC;

G: = [(A+5/)3 - (A—F;S/)]
Ci = (B +)"" + (Byo +8) (B — 8) "4 +8) !

C
Py ==20;,J; = (D; +2(Eg — )VFo),

mv’

A
2(Ego — &) 1 1
D,=(1+—5—2)f, =] + -G,
S e e
3m. 1 12
= (1+ - %6;), 00 =——,0; = el and 1, = aty,

my En’ " 96m,mc3\/es 80
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Under the condition of heavy doping, following the methods as developed in
Chap. 1, the HD dispersion relations in this case in the presence of light waves can
be written as

K2k?
5= Ti(E, 1, 2) (10.46b)
R2k?
= T>(E, 1y, 2) (10.47)
K2k?
= T5(E, 1y, 2) (10.48)

where

Ty (E, ng, 4) = [Us[T31(E, ny) + iT52(E, n,)] — Py,
Ta(E. 0y, 2) = [tv3(Bang) + (£22)200(E, n,)[1 + Exf(E/n,)] " — 6]

and
T3(E, ng, 4) = [t1,75(E.ny) — 03]

The EEM can be expressed in this case by using (10.46a, 10.46b), (10.47) and
(10.48).

m*(Erupr, 0, 2) = me Real part of [Ty(Epupr, 1y, 2)]' (10.49)
m* (Eupr; N, 2) = me[Ta(Epupr, g, )] (10.50)
m" (Epupr, g, 4) = mC[T3(EFHDL77'Ig>/1)]/ (10.51)

The electron concentration at low temperatures is given by

v ch 3 a2
o = 3&;2< P )? Real part of [T1(Epupr, Ny, /)] (10.52)
2me. 3 3
no = 37'52( hz )Z[TZ(EFHDLa ’/’g7 ;“)]2 (1053)
2mc 3 %
no = 3n2( P VIT3(Erupe, g, 4)]° (10.54)

where Epypy is the Fermi energy in HD III-V semiconductors in the presence of
light waves as measured from the age of the unperturbed conduction band in the
vertically upward direction. The ER in this case is given by
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D noy an() :|_1
— | = Real 1 — 10.55
(#)L eal part of [6 [a(EFHDL — Eoupt) ( )

where Eoypr can be obtained by substituting k = 0 and E = Eygpr in (10.46Db),
(10.47) and (10.48) respectively.

Using (10.52)—(10.55) and the allied definitions, we can study the ER in the
presence of light waves in HD III-V semiconductors whose unperturbed conduc-
tion bands are described by three and two band models of Kane together with
parabolic energy bands respectively.

10.2.3 The Opto ER Under Magnetic Quantization in HD
II1-V, Ternary and Quaternary Semiconductors

(i) Using (10.46b), the magneto-dispersion law, in the absence of spin, for HD
III-V, ternary and quaternary semiconductors, in the presence of photo-
excitation, whose unperturbed conduction electrons obey the three band
model of Kane, is given by

1 k2
T\(E,n,) = (n —|—§ hwo + —= (10.56)

2m,
Using (10.52), the DOS function in the present case can be expressed as

Dy(E,n,, 4) = g"‘ewmnf {{Tl (E,n,, ).)}’{Tl (E,ng, 7) — <n + %) hwo}il/zH(E —E, )}

272
2n*hs =

(10.57)

where, E,, is the Landau sub-band energies in this case and is given as

, 1
T, (Enlmnga/L) = (l’l +§)hw0 (1058)
The EEM in this case assumes the form

m*(EpHDLB, Ng) /L) = m, Real part Of {T] (EFHDLB; Ngs ;L)}/ (1059)

where, Ergprp 1S the Fermi energy under quantizing magnetic field in the
presence of light waves as measured from the edge of the conduction band in
the vertically upward direction in the absence of any quantization. Combining
(10.57) with the Fermi-Dirac occupation probability factor and using the
generalized Sommerfeld’s lemma [13], the electron concentration can be
written as
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el s
| |2h2 Z Mi3(Ertpig, g, 4) + Ni3(ErppLs, g, )] (10.60)
where,
, , 1/2
My3(ErnpLa, g, 4) = Real part of [Ty(Epuprs, Ny, ) — (n+ ) ko] /
and

N3 (Eppia, g, 4) = Y LM (Errpes, g, 7).

r=1

The ER in this case is given by

D ano :| -1
— = Real t 10.61
(#) LB eal part of [ |:6(EFHDLB — EonpLp) 1 ( )

where, Egyp g can be obtained from the magneto dispersion law under
the conditions k = 0 and E = Egyprp.

Thus by using (10.56), (10.60), (10.61) and the allied equations, we can study
the ER in this case.

(i) Using (10.47), the magneto-dispersion law, in the absence of spin, for HD III-
V, ternary and quaternary semiconductors, in the presence of photo-excita-
tion, whose unperturbed conduction electrons obey the two band model of
Kane, is given by

1 22
— Z
TH(E,n,) = <n+§)hwo+ .

Using (10.62), the DOS function in the present case can be expressed as

(10.62)

Do, 1, 1) = gv|e|¢—Z

th {T2 E ngv }{T2 E ’/Igv

_ <n + %) hwo}l/zH(E - E)]

(10.63)

where, E,, is the Landau sub-band energies in this case and is given as

R 1
T5(E,,, MNes A) = (n + 2) fiog (10.64)
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(iii)
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The EEM in this case assumes the form

m*(ErnpLa, Mg, 4) = mATo(ErupLp, Ngs )»)}/ (10.65)

where, Eryprp is the Fermi energy under quantizing magnetic field in the
presence of light waves as measured from the edge of the conduction
band in the vertically upward direction in the absence of any quantiza-
tion. Combining (10.65) with the Fermi-Dirac occupation probability
factor and using the generalized Sommerfeld’s lemma, the electron
concentration can be written as

vle|By/2me & ,
nyg = %Z [Ma3(ErupLa; g, ) + Noa(Ernpis, Mg, #)] - (10.66)
n=0

1/2

where, M>; (EFHDLBa Ngs )v) = [Tz (EFHDLB7 Ngs /1) — (n + %) h(,l)()] and

No3(ErupLe, g, ) = > r_1 L(r)My3(Erupis, N> 2)-

Using (10.61), (10.66) and the allied definitions, we can study the ER in

this case, where Eyyprp can be obtained from the magneto dispersion law
under the conditions k = 0 and E = Eyyp;p in (10.47).
Using (10.48), the magneto-dispersion law, in the absence of spin, for HD III-
V, ternary and quaternary semiconductors, in the presence of photo-excita-
tion, whose unperturbed conduction electrons obey the parabolic energy
bands, is given by

2k2

1
T, (E, ﬂg) = (i’l + E) hawo + (10.67)

2m,
Using (10.62), the DOS function in the present case can be expressed as

Tiax -1/2
DalEsn, 7) = SIS {{m: e {Ts(Bon )~ (w3 Y| e Eﬂ
n=0

2m2? 2
(10.68)
where, E,,, is the Landau sub-band energies in this case and is given as
, 1
T3 (En/27 nga /“) = (I’l + 5) hCO() (1069)

The EEM in this case assumes the form

m* (EupLs, Mg, ) = me{ Ts(ErupLa; g, 4)} (10.70)

where, Ergprp 18 the Fermi energy under quantizing magnetic field in the
presence of light waves as measured from the edge of the conduction band in
the vertically upward direction in the absence of any quantization. Combining
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(10.69) with the Fermi-Dirac occupation probability factor and using the
generalized Sommerfeld’s lemma, the electron concentration can be written
as

. B\/2 "~ Imax
no:g|€| v mLZ

oy [M33(ErtpLa; g, ) + N3z (Ernps, Mg, 2)] - (10.71)

n=0
where,

1/2
M33(ErupLe, Mg, /) = [T3 (ErupLB, Mgy /) — (n + E) hﬂ)o}

and
5

N33(ErupLs, g, ) = Z L(r)M33(ErupLs; g; 4)-

r=1

Using (10.61), (10.71) and the allied definitions, we can study the ER in this
case, where, Eggprp can be obtained from the magneto dispersion law under
the conditions k = 0 and E = Eyyp;p in (10.48).

10.2.4 The ER in the Presence of Cross-Field Configuration
Under External Photo-Excitation in HD III-V,
Ternary and Quaternary Semiconductors

(i) The electron dispersion law in the present case is given by

2
Ti(E,ng, A) = <n + ;) Ao + % — %hky{ﬂ (E, ng, Y
m EZ[{T\(E,n,, 1)}
_ { 0 o } (10.72)

The use of (10.72) leads to the expressions of the EEMs’ along z and y
directions as

m; (Erypes 1y Eo, B, ) = Real part of m l{Tl (EFymes Mgy /l)}”

+ ’nFE(ZJ{T1 (EFRLHI)C7 Ngs ;“)},{Tl (EFBLHI)C7 rs ;“)},,
B2

(10.73)
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13 (EFyy e, 1y EoB, A) = Real part 0f VUT1 Eres s A YT 1 oo Ngs 2) — ("+2)hw0

mE2{T\(E, Moy 2 Ty (E, ey MY 1
N ST (B s YT AT Ergives s )} (T2 (Ermes g ) — (0 -+ Doy

28 U B 2T 2
+mCE(Z)[{TI(E;Z;l)('vy’gﬁ;‘>}/]2}+1+mcEé{T|<Ef;f;;Hn("'7;;1)')}”}
(10.74)
where, Ef,,,,. is the Fermi energy in this case.
The Landau energy (E,,,) can be written as
1 mEG{T (B g YT
T, (Em41 ) 77g, /1) = (n + E)hwo - { - 2;21 g } (1075)

The electron concentration in this case assume the forms

2ng\/’_—' Mmax

nyg = 3L 77:2FZ2E Z M16HDC(EFBLygc7 ng’ /1) +N16HDC(EFBLHDC7 ng, )]
(10.76)

where,

) 1
M]GHDC(EFBLHDC7 Ngs A) = Real part Of[[T] (EFBLHDC7 Ng» ;L) - (n + z)hwo - 2B2 [{Tl Efpue Ngs 4 )} ]2
3 ,
+ |e|E0LX[{T1 (EFBLHD(‘? Mg, j'}/H 2 [Tl (EFBLHDF7 Ngs /“)

[{Tl EF[J‘LIIDL s Mgy 4 )}/]2]3/2] !

[{T] (EFBLHDC7 Mg, ;L)}/]

1
—(n+ z)h(oo - 2B2

and
Ni6upC (EFye Mgs ) = Real part OfZ (NMi6tpc (EFge Mg> 2) -

The ER in this case can be written as

D no 6n0 !

(H)LB = Real part of [e |:6(EFBLHDC — EOHDLBC)] 1 (10.77)
where, Eogprac can be obtained from 10.72 under the conditions kK =0
and E = Eonprac.

Thus by using (10.77), (10.76), (10.72) and the allied definitions, we can
study the ER in this case.
(i) Similarly, the electron dispersion law in this case is given by



10.2 Theoretical Background 323

Tz(E7 ﬂg,;t) = (n + l)ha)o Ohky{Tz(E, ”ga/ﬂh)}/ _ 232 [{TZ(E T’]g7})}/]
I (E)?

2m,
(10.78)

The use of (10.78) leads to the expressions of the EEMs’ along z and y
directions as

m: (EFRLHI)C7 n, EO? Bv }) = me [{Tz (EFBLHDC? nga j')}”

+ mCE(2){T2 (EFBLHDC7 Ngs )°) }/{TZ (EFBLHDC7 Ngs )‘) }//
B2

(10.79)

* ) B, 1 1
my (EFBLHDC7 n7E037 /“) = (E_O) [{TZ(EFBLHDcv Mg, ’1)} ] [TZ(EFBLHDC7 Mg, )°) - (I’l + E)hwo

) 2
WlLE(z)HT2 (EFHLHDC7 Ngs /“) }l} 1T {Tz(EFRLHDC’ Mg, )”)}/l [Tz (EF n /u)
1L 12 BLHDC )
2B HTZ (EFBLHDC7 Mg, /“}l] ¢

1 m E2{T>(Er,,. ..., 2) Y]
—(}’l—l—i)hwo—F 0[{ 2( gzzl)c Ng )}} ]+1

mL'E(z){TZ (EFBLHDC 1 Ng» )“)}H]
+ B |

(10.80)

where, Ep,,,,. is the Fermi energy in this case.
The Landau energy (E,,,) can be written as

mCE(% [{T2 (Eﬂm yHgs )”) }/]2

1
T2( n142717g7;“) - ( E)hwo - { B2 } (1081)

The electron concentration in this case assume the forms

_ 2g,By/2m; e

3L 7'52th Z M26HDC(EFBLHDc?rIg7;“)

+N26HDC(EFRLHD(<7 Mg, )] (10.82)



324 10 Appendix E: The ER for HD III-V, Ternary and Quaternary Semiconductors

where,

M26HDC (EFBLHDC I rlg7 ;L)

1 m.E?
= HTZ(EFELHDC7 Ngs j') - (n + E)hwo - 2CBQO [{TZ(EFELHDC’ urs /1)},]2
+ |e|E0Lx[{T2 (EFBLHI)C’ Mg )“}l]]S/Z - [TZ (EFRLHI)C7 Ngs /1)
1 m.E} N1127132 1
— (n 4 2)hwy — T>(E N/ : -
(n 2) 0 232 [{ 2( FpLupc ng A’)}] ] ] [{TZ(EFBLHDC77’g,/L)}/}

Thus by using (10.77), (10.78), (10.82) and the allied definitions, we can
study the ER in this case.
(iii) Similarly, the electron dispersion law in this case is given by

1 E /
Ta(E,7) = (143 how — Sk 3B, 1)

- mE} [fik,(E)]?
2m,

{T3(E,n,, A)Y] + (10.83)

2B?

The use of (10.78) leads to the expressions of the EEMs’ along z and y
directions as

"

m; (EFBLHI)C7 n, EOa Bv j') = mc l{T3 (EFBLHDC7 nga ;“)}

4

+ mCE(z){T3 (EFBLHDC7 Ng» ;L)}/{T3 (EFBLHDC7 P ;“)}
B2

(10.84)

% N B 2 -1 N 1
m,, (EFHLHDC’n7EOB’A‘) = (E()) [{T3 (EFBLHnmngJ")} ] [T3 (EFBLHDca”/ga/“) - (nJrE) “hag
_|_mCE(2) [{T3 (EFBI_HDC711g’ /1)},]2] r {TS (EFBLHDC ) ’1g7})}/
t 2
282 [{T3 (EFBLHDO”gv;“}/]

mCE(% [{T3 (EFBLHDC Mgs )‘) }/]2
2B

[T3 (EFBLHDC Mg )‘)

1
f(n+§)"hw0+ ]+1

mCE(%{TS (EFBLHDC Mg /“) },
+ B

] (10.85)

where, Ef,,,,. is the Fermi energy in this case.
The Landau energy (E,,,) can be written as
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1 mE3[{T5(Eyp g )}
T3(Enys 1y, ) = (n 4 5)harg — {——2 s b (10.86)
2 2B
The electron concentration in this case assume the forms
2g‘B\/_ Mmax
o = 3L, TEZBZE Z M36HDC(EFBLHDC7 Hgs )
+N36HDC(EFBLHDC7 Ng: A)] (10.87)

where,

1

ge E2 2
Msenpc (EFELIIDC7 Ngs /1) = HT3 (EFELIIDC7 Mg, )“) - (n + E)hw ) 20 [{T3 (EFBLIIDC’ Mg, ))},]

, 1
+ ‘€|E()L [{T3 (EFRI,HDC7 Mg, A}/]P/z - [T3 (EFRI,HD(,‘7 Mg, /L) - (I’l + E)hwo
m(E2 1
2B? [{ T3 (EFBLHDC7 Hgs /1)}/]

[{TZ(EFBLIID(“?”g? )}] ]3/2}

Thus by using (10.77), (10.83), (10.87) and the allied definitions, we can
study the ER in this case.

10.2.5 The ER in Ultrathin Films of HD III-V, Ternary
and Quaternary Semiconductors Under External
Photo-Excitation

(1) The 2D electron energy spectrum in ultra-thin films of HD III-V, ternary and
quaternary materials, whose unperturbed band structure is defined by the
three band model of Kane, in the presence of light waves can be expressed
following (10.46b) as

h2k2 hZ 2
; (—) — T\(En,. ) (10.88)

2m.  2m. \ d,

The sub band energies (E,,,,) can be written as

2

S (n,n/d.)? (10.89)

Tl (EnnHDa ’7g7 i) =
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The expression of the EEM in this case is given by
m* (EpapLaps 1, 4) = me Real part of {T\(EpapLap, Mg, 4)} (10.90)

where, Empryp 1s the Fermi energy in the present case as measured from
the edge of the conduction band in the vertically upward direction in
absence of any quantization.

The DOS function can be written as

mC v g b
Nop(E,n,, 7) = ( nhg2 ) Z [T1(E, ng, 2)) H(E — Eunep) (10.91)

n,=1

Combining (10.91), with the Fermi Dirac occupation probability factor, the
two dimensional electron concentration can be expressed as

Mzmax

Z [Misp(nz, Epaprap), g, 2)

n.=1

+Nigup (12, EpapLin, g, 4)] (10.92a)

ngV
Th?

np =

where,

, W (nm 2
Misup(nz, EpapLip, My: #) = Real part of | T1(Ep2prup, g, /) ~m ( ' ) }
C
s
Nigup(nz, EpapLup, g, ) = E L(r)Misup(nz, EpapLap; g 2),

r=1
The ER in this case can be written as

no r 6n0
|

(%)LS = Real part of | e 5 171 (10.92b)

Eraprap — Eoupis)

where, Eoyprs is obtained from (10.88) by substituting k&, =0 and
E = Eonprs.

Thus using (10.92a), (10.92b), (10.88) and the allied definitions, we can study
the ER in this case.

(i) The 2D electron energy spectrum in ultra-thin films of HD III-V, ternary and
quaternary materials, whose unperturbed band structure is defined by the two
band model of Kane, in the presence of light waves can be expressed fol-
lowing (10.47) as

27,2 2 2
L (—) — T,y ) (10.93)

2m.  2m. \ d,
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(iii)

The sub band energies (E,,,,) can be written as
n )
TZ(En/ana Ure /1) = ﬁ (nzn/dz) (1094)

The expression of the EEM in this case is given by
m*(Epaprup, Nz, 4) = me{ T2 (Epapap; g, 4)}' (10.95)

The DOS function can be written as

Mgy Mzmax ,
NZD(E; ngv A) = ( TEhg2 ) Z [TQ(E, ngv )“)} H(E - Enlsm)) (1096)

n.=1

Combining (10.96), with the Fermi Dirac occupation probability factor, the
two dimensional electron concentration can be expressed as

n

Zmax

Z [Myoup (nz, Epaprup), Mg, ) + Nionp (1, EpapLap, g, 2)]

n,=1

n mL‘gV
D= —0>
7h?

(10.97)

where

, W (nm 2
Miorp(nz, EFaprip, g 4) = | T2(ErapLap, g, 4) — o\ )
C 4

s

Nioup (nz, EFaprap, g, 4) = Z L(r)Mionp(nz; EpapLup; Mg, 4),

r=1

Thus using (10.97), (10.93) and the allied definitions, we can study the ER in
this case.

The 2D electron energy spectrum in ultra-thin films of HD III-V, ternary and
quaternary materials, whose unperturbed band structure is defined by the
parabolic energy bands, in the presence of light waves can be expressed
following (10.48) as

Pk R (nm
2m,  2m,

2
d) — Ty(E,n,, ) (10.98)
Z

The sub band energies (E,,,,) can be written as

2

h
19HD ”Ig7 ’1) =5 (nzn/dz)z (1099)

T3 (E,
3( 2m,
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The expression of the EEM in this case is given by
m*(Epaprip: nz, ) = m{ T3(Epaprap g, 2) ) (10.100)

The DOS function can be written as

megy Mzmax
Nw@%@(£;>21nwmwmﬁ@mwg (10.101)

n,=1

Combining (10.101), with the Fermi Dirac occupation probability factor, the
two dimensional electron concentration can be expressed as

Nzmax

Z [Maorp (nz, ErapLap, Mg, ) + Naown (nz, ErapLap, g, 4)]

n.=1

ngV
nh?

np =
(10.102)

where

, i (nm 2
Moonp (nz, Erapiap, g, 2) = | T3(Er2pLap g, 4) — e\ ;
C 4

N

Naoup (nz, Epaprup, g, ) = ZL(V)MZOHD(nszFZDLHDa Mgs A)s

r=1

Thus using (10.98), (10.102) and the allied definitions, we can study the ER
in this case.

10.2.6 The ER in Doping Superlattices of HD III-V, Ternary
and Quaternary Semiconductors Under External
Photo-Excitation

(i) The electron energy spectrum in doping superlattices of HD III-V, ternary
and quaternary materials in the presence of external photo-excitation whose
unperturbed electrons are defined by the three band model of Kane can be
expressed following (10.46b) as

2k
2m,

1
T (E7 N )») = (l’li + —) h(j)ngD(E, Ngs )L) + (10103)

2

2 1/2
— nole|
where wg1up(E, 1y, 4) = (dgachl’(E,ng,/l)mC) '
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(i)

The sub band energies (E,,,,,) can be written as
1
Tl (En“OHD, ng, )») = (ﬂ,‘ + z) ha)91HD(En,]OHD> 17g, j.) (10104)

The expression of the EEM in this case is given by

m* (EFZDLHDD; V]g, ),, l’li) = mC{M4OHD(EFZDLHDD’ V]g, )v, I’l,')}/ (10 105)
where,

Muorp (ErapLepD, g, 4, 1) = Real part of {Ti(Er2pLupp, g, /)

1
- (ni + 2> Tiwo1p (EFapLipn, Ngs 4) }

and Erprypp 1s the Fermi energy in the present case as measured from
the edge of the conduction band in the vertically upward direction in
absence of any quantization.

The DOS function can be written as

meg, Mzmax

Nap(E,ng, 2) = < nhé; ) Z [Maonp(E, 1y, 2)) H(E — Epypy)  (10.106)
n,=1

Combining (10.106), with the Fermi Dirac occupation probability factor, the

two dimensional electron concentration can be expressed as

Mimax
mcg
"= < n(hzv) Z [Maorp(Epaprapp, Mg, 1) + Naorp (EpapLupp, g, 7 1i) |

ni=1

(10.107)

where Naoup (Er2pLupp; Ngs 4, i) = S5 L(r)Maosp(ErapLapp, Mg 2y 1),

The ER in this case can be written as

no : Ongy

(%)LS = Real part of[e 17 (10.108)

O(Er2pLupp — Eonprsps)

where Eoyprsps 18 obtained from (10.103) by substituting k; =0 and
E = Eoupisps-

Thus using (10.103), (10.107), (10.108) and the allied definitions, we can
study the ER in this case.

The electron energy spectrum in doping superlattices of HD III-V, ternary
and quaternary materials in the presence of external photo-excitation whose
unperturbed electrons are defined by the two band model of Kane can be
expressed following (10.47) as
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1 wk2
TQ(E7 ﬂg,)») =|(n+= ha)ggHD(E, ﬂg,)») + S (10109)
2 2m,
no\e\z 1/2
where woup(E, 1y, 4) = (7110&;51; (E,ng,i)mc) :
The sub band energies (E,,,,,) can be written as
1
TZ(En,»“Hm Mg» )‘) =|(n+ E hw92HD(E"illHD7 Mg, A‘) (101 10)

The expression of the EEM in this case is given by

m* (Epaprunp; Mg, A1) = me{Ma1up (Er2pLipp, Mg, 4, 1:) ) (10.111)
where

Muiup(EF2mLpD, Mg 4 1) = {T2(EF2pLEDD, Mg, 4)

1
- (ni + E) hoorrip (EFapLapps Mg, 4)

and Erprypp is the Fermi energy in the present case as measured from
the edge of the conduction band in the vertically upward direction in
absence of any quantization. The DOS function can be written as

) Mgy Mzmax )

Nop(E,ng, 7) = ( nhé; > Z [Maizip(E,ng, 1) H(E = Epyypp) - (10.112)
n.=1

Combining (10.112), with the Fermi Dirac occupation probability factor, the

two dimensional electron concentration can be expressed as

Himay
megy
nyp = ( . ) Z [Mara(Epaprapp, Mg, 1) + Navap(EpapLupp, g, 7 1i) |

ni=1

(10.113)

where, Natup(Eraprup, g, 2 1i) = Y op_y L(r)Marap(ErapLupp, g, 411,
Thus using (10.108), (10.109) and (10.113), we can study the ER in this case.
The electron energy spectrum in doping superlattices of HD III-V, ternary
and quaternary materials in the presence of external photo-excitation whose
unperturbed electrons are defined by the two band model of Kane can be
expressed following (10.48) as
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nk?
E i’lg, (Vl, )hw93HD(E ﬂg,)) + s (10114)
2m,
rolef? 1/2
where wo3pp(E, 1, /) ( T OE ™ ) .
The sub band energies (En,,ZHD) can be written as
1
T3 (E”ilem ng, )») = (n,- + E) ha)93HD(EanD, 17g, j.) (101 15)

The expression of the EEM in this case is given by
m* (EpapLamp, g, i) = Me{Mazup (EpapLipp; 1gs 2, mi) Y (10.116)

where  Muup(Erniop, gs i) = {T3(Er2pLapp: g, ) — (ni + 1) howosup
(Eraprapp, Mg, #)} and Epaprupp is the Fermi energy in the present case
as measured from the edge of the conduction band in the vertically
upward direction in absence of any quantization.

The DOS function can be written as

mcgy
h?

Nap(E,ng, 4) = ( > > [Maauin(E, ng, 1)) H(E = Ey,,,) - (10.117)
n,=1

Combining (10.117), with the Fermi Dirac occupation probability factor, the
two dimensional electron concentration can be expressed as

Nimay

megy

nop = ( nchz‘) E [Mazeip(Epaprapp, Mg, 1) + Naoep (EpapLapp, g, 7 1i) |
ni=1

(10.118)

where, Naup (EpapLunp, g, 7 1) = Y n_y L(r)Mazup(ErapLapp, g, 7, 11)
Thus using (10.108), (10.114), (10.118) and the allied definitions, we can
study the ER in this case.

10.2.7 The Magneto ER in Effective Mass Superlattices
of HD III-V, Ternary and Quaternary
Semiconductors Under External Photo-Excitation

(a) Following Sasaki [9.15], the electron dispersion law in HD III-V effective
mass superlattices (EMSLs) in the presence of light waves, the dispersion
relations of whose constituent materials in the absence of any perturbation are
defined by the three band model of Kane can be written as.
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k)% |:L2 {COS l(fHDl (E7 k)'7k27 ;v))}z - ki:| (10.119)

in which, fupi(E, ky, k., A) = aiupi cos[aoCiupi (E, k1) + boDiupi (E, k)]
—axpi cos{aoCrupi (E, k1) — boDiup1 (E, k1)), kT = k3 + k2, Lo = ao + bo,

. B mey Real part of [T1(0,1,, 2 “)] + .
DY\ et Real part of [T1(0,1,,4)

2

me Real part of [T1(0,1n,,4)

mey Real part of [T1(0,1,,, A
appr = |—1+
me Real part of [T;(0, ’7g17)~

1

mey Real part of [T1(0,1,,4)
me Real part of [T1(0,n,,4)

A (mcz Real part of [T1(0,1,,,4) ]
)]
)]

N 2mcl s 2 1/2
Ciapi(E k1 2) = [( P )Tl(E, Mgt 4) _kL:|

and

2m,.
DlHDl(E,kJ_;L,) = |:< h 2

1/2
)TI(E ”g272> _kiil :

In the presence of an external magnetic field along x-direction, the simplified
magneto dispersion law in this case can be written as

k; = [panp1 (0, E. 2)] (10.120)
in which, pyyp (n, E, ) = ng[cosil(fHDl(naEa i))]z—{¥ (n+ %)},

fupi(E,n, 2) = aippi cos[aoCiupi (E, n, A) + boDigp1 (E, n, 1))
— aoupi c08[agCrup1 (E, n, A) + boDupi (E, n, 1))

2m 2le|B N1
Ciupi (E,n,2) = K h;l)Tl(E’ng")”) —{ |h‘ <n+§> H
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(b)

and

. 2m, ) 2le|B N\1"72
DlHDl(E,n,/L) = |:( hzz)Tl(E,ﬂgz,A) _{ |h| (n—l—E) }] .

The EEM in this case assumes the form

A W
m* (n, EfSLHDBa /L) = Realpart Of? [:04HD(n7 EfSLHDBa )y)y (10 121)

where Egppp is the Fermi energy in this case.

The EEM in III-V EMSLs under magnetic quantization depends on both the
Fermi energy, magnetic quantum number and wavelength which is the
intrinsic property of such SLs.
The Landau Subband energies (E,

"SLSHD) can be written as

Parp1 (1 Eng g5 ) = 0 (10.122)

The electron concentration in this case can be expressed as

e B , Nmax
ny = (| 7|zzif ) Real part of » _ [Tooup1 (n, Epsiaps, ) + Torunt (m, Egsiips, 2)]
n=0
(10.123)
where, Tooup1 (1, Efsrupss 2) = \/ Parp1 (0, EfsLons, 2)
and Toionpi (n, Epscaps, 4) = Y vy L(r) [Toorpi (1, EfsLeps; 1))
The ER in this case is given by
& Real part of [ [——2" ] (10.124)
= = Real part of [—[—————— )
pu/ ESEHD! P e O(EsLaps — Agy)

where Agg is obtained by substituting k, = 0 and E = Ayy in (10.120)
Thus using (10.120), (10.123), (10.124) and the allied definitions, we can
study the ER in this case.

Following Sasaki [9.15], the electron dispersion law in HD III-V effective
mass superlattices (EMSLs) in the presence of light waves, the dispersion
relations of whose constituent materials in the absence of any perturbation are
defined by the two band model of Kane can be written as.

k21

x = P{Cos_l(fHD2(E7 ky7kZ7)“))}2 - ki (10125)
0
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In which

Sup2(E, ky, k;A) = aippa coslaoCiup2 (E, k1) + boDiup2(E, k1))
— azup2 c08[aoCrap2 (E, k1) — boDiup2 (E, k1)),

[ ) 2 1/27 !
i = | [0 D) flT2(0, 1, 1)

mei[T2(0, 11, 2) 020,10, 0]) |

[ 2 1/27 !
aoor = |14 (220, D1 fme2[T2(0, 10, 2)]
2HD2 _ me1[T2(0, 1, 4)] me1[T2(0, 1y, 2)]

o 12
Cip2(E k1) = ( h21>T2(E7 N> A) — ki]

and

chz

1/2
Digp(E ko 2) = {(7) T2(E Ny, 4) — ki} .

In the presence of an external magnetic field along x-direction, the simplified
magneto dispersion law in this case can be written as

k; = [Panpo(n, E, 2)] (10.126)
in which, pypn(n, E, 2) = s lcos™ (fapa(n, £, 1)) —{ 252 (n+1) }.

fup2(E,n, ) = aippa cos[agCiup2(E, n, ) + boDigpr (E, n, 1))
— arupn €08[agCrapa (E, n, A) — boDipp2 (E, n, 1))

_ | (2ma 2le|B 1 12

Cumteon )= [ (G teon, ) = {555 (3}
, 2m, . 2le|B 1 1/2
Dinp2(E,n, 2) = K ’;z)Tz(E, Mgys 4) —{ |;| (n+§> H .

and
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(©)

The EEM in this case assumes the form

LR
m* (n, Efsi1pa, L) = 5 [Parpa (1, EfsiHps, ﬂ)}’ (10.127)

where Egrppp is the Fermi energy in this case.

The EEM in III-V EMSLs under magnetic quantization depends on both the
Fermi energy, magnetic quantum number and wavelength which is the
intrinsic property of such SLs.

The Landau Subband energies (E,,,,) can be written as

p4HD2(n7 EYLSL5H[)27 )“) = O (10128)

The electron concentration in this case can be expressed as

e B Nmax

ny = (| izgv) Z (Tooup2 (1, Efscaps, ) + Toromp2 (1, Efspaps, )] (10.129)
n=0

where, Toorpa (1, Epscaps, ) = v/ Pagpa(n, Epseos, 4) and Toioupa (n, EfsLaps,

2) = Y00y L(r) [Tooupa (n, Egsps, 1)) -

Thus using (10.124), (10.128), (10.129) and the alied definitions, we can
study the ER in this case.
Following Sasaki [9.15], the electron dispersion law in HD III-V effective
mass superlattices (EMSLs) in the presence of light waves, the dispersion
relations of whose constituent materials in the absence of any perturbation are
defined by the parabolic energy bands can be written as.

1
= [ teos G,k )P - 2 (10.130)
0

In which

fup3(E, ky, k1) = aiups cos[agCiup3 (E, k1) + boDipp3 (E, k)]
— aopp3 c0s[agCiup3 (E, k1) — boDiups3(E, k1)),

_ [ mea[T3(0, 7,9, 4)] ’ M [T3(0, 15, )]
by = _\/mz-l [T3(07 "IglaJV)} * 1:| |:4 (mcl[ O 17517)”)]> :| ’

_ ; |
app3 = |—1+ mea[T5(0, g2 2 |:4 (mcﬂ 3(0, g2, )]) 1/2:|

ey [T3(O’ ’1g1’;~)} mtl[ (Ovnglv )]

2mc1
hZ

. 12
Cip3(E k. 2) = < >T3(E7 Nels ) — ki]

and
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2 1/2

Diup3(E ki 2) = {( P >T3(E,'7g277~) — ki

In the presence of an external magnetic field along x-direction, the simplified
magneto dispersion law in this case can be written as

k= [panps(n, E, 2)] (10.131)

in which,

Parp3(n, E, 2) = l% [Cosil(fym(”,Ev /1))]2{2'2']3 (” + %) }7

0
Sup3(E,n, ) = aiups cos[aoCiups (E, n, 1) + boDiup3 (E, n, 1)]
— arpp3 €08[agCiap3 (E, n, A) — boDipp3(E, n, 1))

2mey 2le|B 1 1/2

CIHD3(E7n7)“) = |:</&12> T3(E7 7’5’17;“) - { h (l’l +2> }:|
n 2m, .~ [2le|B N1
Dipp3(E,n, 1) = K%) T3(E, g, 4) = { |;| (n +§> H .

The EEM in this case assumes the form
2

. N B
m"(n, Egsiipg, 4) = 7[:04HD3(”7EJ‘SLHDB7 A (10.132)

and

where Esrppp is the Fermi energy in this case.

The EEM in III-V EMSLs under magnetic quantization depends on both the
Fermi energy, magnetic quantum number and wavelength which is the
intrinsic property of such SLs.

The Landau Subband energies (E,;,,,) can be written as

p4HD3 (n7 EnSLs HD3 ) j') = O (10133)

The electron concentration in this case can be expressed as

eB . Fmax
ny = (| 7|127§ )Z (Toorps (1, Efscaps, 1) + To1oup3 (1, Efsiaps, )] (10.134)
n=0

where,  Tooups (n, Exsiups, 4) = \/ Panps (1 Egseups, 4) and Towomps (1, Efszrps; 4)

= >0 L(r) [Toorps (n, EgsLups, 4)-
Thus using (10.124), (10.133), (10.134) and the allied definitions, we can
study the ER in this case.
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10.3 Open Research Problems

(R.E.1) Investigate the ER in the presence of intense external light waves for all

the HD materials whose respective dispersion relations of the carriers in
the absence of any field are given in R 1.1.

(R.E.2) Investigate the ER for the heavily—doped semiconductors in the presences

of Gaussian, exponential, Kane, Halperian, Lax and Bonch-Burevich
types of band tails [16] for all systems whose unperturbed carrier energy
spectra are defined in (R 1.1) in the presence of external light waves.

(R.E.3) Investigate the ER in the presence of external light waves for bulk

specimens of the negative refractive index, organic, magnetic and other
advanced optical materials in the presence of an arbitrarily oriented
alternating electric field.

(R.E.4) Investigate all the appropriate problems of this chapter for a Dirac

electron.

(R.E.5) Investigate all the appropriate problems of this chapter by including the

many body, broadening and hot carrier effects respectively.

(R.E.6) Investigate all the appropriate problems of this chapter by removing all

the mathematical approximations and establishing the respective appro-
priate uniqueness conditions.
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Material Index

A
Antimony, 3, 58, 107

B
Bismuth, 3, 69, 209
Bi,Te;, 3, 69, 70, 93

C

CdsAs,, 175

Cadmium arsenide, 56
Calcium diphosphide, 58
CdS, 86, 92, 98, 99, 136, 168
CdGeAs,, 83, 132, 165, 166
CdSb,

Cu(Cl, 107, 220

G

GaAs, 84, 86, 87, 223

GaAs/Ga;_,AlAs, 223

GaP, 3, 61-64, 82, 87, 92, 93, 103, 188, 207
GaSh, 3, 4, 79-82, 92, 104, 188, 211
Germanium, 3, 56, 58, 71, 210, 214
Graphite, 107

Gray tin, 108

I
InAs, 84, 86—88, 96, 97, 101, 134, 165—167
InSb, 84, 88, 95-98, 100, 107, 134, 137,
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