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Supervisor’s Foreword

When we think about solids or fluids, we have an intuition about how they should
behave: solids are materials that keep their shape and support weight; fluids easily
deform and flow under shear to fill the shape of their container. These classifi-
cations are reinforced by experience with the world around us and, given many of
the materials we are familiar with from daily life, we usually have no reason to
rethink these categories.

Not all materials are so easily categorized, however. It turns out that there are
large classes that behave neither quite like traditional crystalline solids nor like
simple amorphous fluids. One important example are glasses, which respond to
applied stress as if they were rigid solids, despite the fact that they are structurally
indistinguishable from liquids. Furthermore, in the area of soft condensed matter
physics, there has been a realization that more often than not materials defy
traditional categorization with complex behavior that lies somewhere between
fluid- and solid-like. At the root of this is that soft materials can easily been driven
far from equilibrium or often get stuck far from equilibrium when left to relax.
Understanding and controlling what happens far-from-equilibrium comprises one
of the grand challenges in condensed matter physics today.

Among the conceptually simplest systems with which to probe far-from-equi-
librium behavior is a liquid to which solid particles have been added. Adding small
glass spheres to oil is one example; another is adding cornstarch particles to (cold)
water. As worked out by Einstein over 100 years ago, a small amount of particles
increases the liquid’s flow resistance, or viscosity, in proportion to the volume
fraction occupied by the particles, but otherwise leaves the overall character
unchanged. Something altogether new happens once the volume fraction gets
sufficiently large that particles start to interact. Now the viscosity of the fluid can
become strongly dependent on the strength of the applied shear, and the resulting
behavior can either lead to a decrease in flow resistance (shear thinning) or an
increase (shear thickening) with forcing.

Shear thickening, in particular, is a striking and highly counter-intuitive
phenomenon; in many ways, it is prototypical of the intriguingly complex behavior
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encountered far from equilibrium. Here is a situation where a particle-laden fluid
can be completely liquid-like at rest, but when forced increases its flow resistance
to the point where the material can abruptly turn solid-like and even fracture, only
to morph back into its liquid-like state once the forcing is removed.

Earlier attempts to model shear thickening, starting in the 1970s within the
rheology community, focused on the changes of viscosity due to an order-disorder
transition in the particle arrangement. Hydrodynamically induced clustering of
particles during shear flow was predicted in the mid-1980s to produce a significant
viscosity increase beyond that calculated by Einstein. Such ‘‘hydroclusters’’ were
subsequently observed by scattering techniques and very recently, by direct
imaging using fast confocal microscopy. However, there is now a consensus that
an ordered flow configuration does not have to precede shear thickening and that
hydroclusters cannot account for the very large, orders of magnitude increases in
viscosity observed experimentally in highly concentrated particle suspensions.

While the hydrocluster scenario starts conceptually from the liquid as the key
ingredient that mediates the local interaction among particles, the opposite point of
view is embodied in a granular scenario. Here, frictional interactions among
particles in direct contact dominate the behavior, and the liquid plays a secondary
role. In the granular scenario, the relation between shear and normal stresses
becomes nonlocal and boundary conditions such as confinement become key
players, determining whether shear thickening can be observed and with what
magnitude. Over the last years’ work, several groups, including ours at Chicago,
have demonstrated that such granular scenario can indeed explain the strong and
quite abrupt thickening observed in steady-state shearing experiments.

However, neither scenario can explain the most spectacular aspect of stress
response in these systems: impacting the surface of a dense suspension will
transform the material and generate enormous normal stresses, at least temporarily
preventing the impacting object from sinking and potentially letting it bounce off
as if it had hit a solid. In fact, the magnitude of these stresses is large enough to
support the weight of a grown person running across a pool filled with the fluid. In
prior work, this behavior had typically been interpreted as arising from a viscosity
increase due to strong shear. What had been missed is that the required increase
would need to be orders of magnitude larger than possible solely via a shear-based
mechanism.

The main finding of this thesis is the discovery of a new mechanism that can
generate extremely large normal stresses under non-steady-state conditions. Using
high-speed imaging and X-ray techniques, systematic experiments revealed that
impact triggers a rapidly moving solidification front. As it sweeps through the
system, this front converts liquid-like suspension into a quickly growing solid
region, which then takes up the impact momentum. Rather than being based on
shear, this solidification involves a slight compression of the particle sub-phase
inside the suspension, bringing particles into closer contact until they collectively
undergo a ‘‘jamming transition.’’ This occurs once the network of frictional
interparticle contacts prevents relative particle movement and the compressed
region turns rigid.
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The dynamic jamming process introduced in this thesis for the first time is a
direct consequence of far-from-equilibrium behavior in systems of hard particles.
The new physics discovered emerged from the process of transformation between
fluid and amorphous, glassy solid in response to applied stress. It extends prior
work within the community of soft matter researchers, which investigated
jamming and the associated onset of rigidity in amorphous solids under quasi-
static forcing. The advancing jamming fronts probed here are, in many ways,
similar to shock fronts, spreading from the spot of impact at speeds that can easily
reach ten times those of the impact itself. While the thesis focuses on cornstarch/
water suspensions as a model system, the phenomenon is shown to be quite
general, occurring in its most basic form also in two-dimensional systems of dry
particles prepared close to, but below, the jamming transition.

As a whole, this work has significantly advanced our understanding of dense
suspensions, a prototypical far-from-equilibrium system. In particular, the thesis
developed a whole new scenario for stress generation in response to impact. And
in doing so, it introduced the new concept of dynamic jamming fronts to both the
soft matter physics and rheology communities.

Chicago, USA, June 2014 Prof. Heinrich Jaeger
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Abstract

Liquids typically offer little resistance to impacting objects [1–4]. Surprisingly,
dense suspensions of liquids mixed with micron-sized particles can provide
tremendous impact resistance [5], even though they appear liquid like when left at
rest or perturbed lightly. The most well-known example is a dense mixture of
cornstarch and water, which can easily provide enough impact resistance to allow
a full-grown person to run across its surface. Previous studies have linked this so-
called ‘‘shear thickening’’ to experiments carried out under steady state shear and
attributed it to hydrodynamic interactions [6, 7] or granular dilation [8, 9].
However, neither of these explanations alone can account for the stress scales
required to keep a running person above the free surface. This thesis investigates
the mechanism for this impact resistance in dense suspensions. We begin by
studying impact directly and watching a rod as it strikes the surface of a dense
suspension of cornstarch and water. Using high-speed video and embedded force
and acceleration sensing, we show that the rod motion leads to the rapid growth of
a solid-like object below the impact site. With X-ray videography to see the
dynamics of the suspension interior and laser sheet measurements of the surface
profile, we show how this solid drags on the surrounding suspension, creating
substantial peripheral flow and leading to the rapid extraction of the impactor’s
momentum. Suspecting that the solidification below the rod may be related to
jamming of the particle sub-phase, we carry out 2D experiments with macroscopic
disks to show how uniaxial compression of an initially unjammed system can lead
to dynamic jamming fronts. In doing so, we show how these fronts are sensitive to
the system’s initial packing fraction relative to the point at which it jams and also
discover that the widths of these fronts are related to a diverging correlation length.
Finally, we take these results back to the suspension, where we perform careful,
speed-controlled impact to probe the packing fraction dependence. The solidifi-
cation we observe in these experiments is consistent with what we see in the 2D
experiments, giving further support that the impact response of dense suspensions
is caused by dynamic jamming fronts.
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Chapter 1
Introduction

In its simplest definition, a suspension is a mixture of macroscopic, undisolved, hard
particles in a liquid. The particles are “macroscopic” in the sense that room tem-
perature thermal energy is not enough to prevent them from sinking. Consequently,
if left alone for a long time a suspension will separate into a liquid region sitting
atop a dense sedimented region, and in practical applications this has to be avoided
by constant mixing or agitation. This feature distinguishes suspensions from col-
loids, where the particles are small enough (typically less than ∼1µm) to prevent
sedimentation.

Anyone who has ever used a product that reminds to “shake well before using”
has likely done so to prevent the sedimentation just mentioned. This is a reflection
of the fact that, while it may not seem obvious, suspensions surround us in our
daily lives. As a cup of coffee left too long on a desk can attest to, coffee particles
eventually begin to accumulate on the cup bottom while the liquid color slowly turns
lighter (this is especially true for French press, Turkish, or Greek coffee). A more
useful example comes in pharmaceuticals, where dispersing small drug particles in
a carrier fluid allows for more efficient delivery and often more pleasant intake. For
example, the thick, “powdery” consistency of milk of magnesia or Pepto-Bismol �
is caused by the presence of small, undisolved particles. Other products, such as
shampoo, also use the same strategy to deliver their active ingredients. Paints are
also typically suspensions, but for very different reasons. Pigment, nothing more
than finely ground, colored material, is added not only to change the color, but also
to change the “flowability” of the mixture. On a much larger scale, oil extracted from
the ground is actually full of dirt particles from which the liquid must be extracted.

Despite the fact that suspensions are found everywhere and made of seemingly
simple component parts, they exhibit complex behaviors that are not seen in materials
comprised of liquids or particles alone. In particular, the resistance of a suspension to
flow can change dramatically depending on how strongly it is driven. This behavior
can be both useful and detrimental. It is advantageous in paints, for example, which
are designed to flow easily when brushed but then resist flow while left still to
dry. In oil extraction, it can be detrimental as over-sedimentation and the resultant
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resistance to flow can cause a transport pipes to clog. Other materials show the
opposite behavior and become more resistive when driven strongly. This behavior
have inspired researchers to investigate the use of suspensions in applications ranging
from ballistic woven fabrics [1] for “liquid body armer” to pipe cloggers [2] for “top
kill” operations in overflowing oil wells (such as the BP Deepwater Horizon spill in
the Gulf of Mexico in 2010). The study of suspensions is therefore important to be
able to control their behavior, taking advantage of it when it is useful and preventing
it if it is unwanted.

Beyond their practical importance, suspension behavior is inherently interesting
to scientists and laypeople alike because it often defies our intuition. As a short search
on YouTube reveals, a normally liquid-like suspension of cornstarch and water can
be poured onto a vibrating loudspeaker to produce “cornstarch monsters”, stable,
fingerlike protrusions that seem to come alive and reach upwards to escape their
container (see Fig. 1.1). Perhaps the best known phenomenon, and the topic of this
thesis, is the ability of cornstarch and water suspensions to support very large normal
stresses to impacting objects and allow, for example, a full-grown person to run across
their surface without sinking (see Fig. 1.2). A back of the envelope calculation of how
much stress is required to support a running person of average weight reveals that
this normally liquid material actually pushes upward with stresses exceeding 50 kPa.
Although this crowd pleasing “trick” has been repeated in countless elementary

Fig. 1.1 Cornstarch monsters. Solid, growing protrusions created from an initially liquid-like sus-
pension of cornstarch and water as it is vibrated on a loudspeaker. Photo taken from YouTube (http://
www.youtube.com/watch?v=3zoTKXXNQIU)

http://www.youtube.com/watch?v=3zoTKXXNQIU
http://www.youtube.com/watch?v=3zoTKXXNQIU
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Fig. 1.2 Running on cornstarch and water. Image of a person running across a suspension of
cornstarch and water just as the foot leaves the surface. The initially liquid-like suspension seems
to solidify during impact, supporting the weight of the person and preventing them from sinking.
Photo credit Benjamin Allen

school science classes and even on television shows such as the Discovery Channel’s
MythBusters, the physical explanation for such a large normal stress has remained
unclear.

Part of the reason for our lack of understanding is that suspensions, despite their
deceptively simple components, are inherently complex systems. By definition, they
are systems made of liquids and macroscopic particles, which means that they are
inherently not in thermal equilibrium. Consequently, how a suspension responds to
driving is sensitive to small changes in the particle configuration, and this can lead
to strong hysteretic effects. Furthermore, suspensions are highly dissipative systems,
which gives rise to complicated transient behavior. Most studies are performed in
the steady state where the suspension is continually driven until a stable response
is observed, even though this pragmatic approach restricts us to understanding only
a certain subset of phenomena. Finally, and this is especially true for very dense
suspensions such as those studied here, they are extremely sensitive to the particle
packing fraction φ (defined as the volume of particles divided by the total volume
of particles plus liquid). Small spatial heterogeneities can lead to large changes in
behavior and that the underlying constitutive equations are not necessarily spatially
independent.

Most of what we know about suspension rheology, i.e. the study of how these
materials flow, comes from steady state experiments in which the shear stress τ is
measured as a function of the applied shear rate γ̇. The viscosity of the suspension
is then defined as
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ηs = dτ

dγ̇
. (1.1)

(Note we will use ηs to denote the suspension viscosity while η we reserve for the
viscosity of the suspending liquid.) For so-called “Newtonian” liquids, such as water,
the viscosity is independent of γ̇. For most suspensions, however, more exotic, “non-
Newtonian” behaviors are the norm. In shear thinning suspensions, the viscosity
decreases with shear rate. As might be guessed, shear thickening suspensions show
the opposite behavior where the viscosity increases as a function of shear rate. These
characterizations are useful for quickly generalizing the most recognizable behavior
of a given suspension. In practice, however, suspensions are even more complicated
still, often exhibiting all three of these types of behavior in different shear rate
regimes.

The behavior of dense suspensions like cornstarch and water is often associated
with shear thickening [3–12], which comes in two varieties. In continuous shear
thickening, the suspension packing fraction is generally low and the increase in ηs

with γ̇ is subtle [3–5, 9, 11, 13–19]. On the other hand, in discontinuous shear
thickening the packing fraction is high and the viscosity can rise by orders of magni-
tude over very small changes in γ̇ [7, 8, 10, 12, 20]. Independent models have been
developed to explain each of these types of shear thickening. In the case of contin-
uous shear thickening, the most widely accepted explanation frames the viscosity
rise as a bulk effect in which increasing shear rate produces groups of particles, or
hydroclusters, that increase the resistance to flow. For discontinuous shear thicken-
ing, recent experimental work has shown that the elevated response can be attributed
to frustrated dilation. While these explanations both have success in describing the
phenomena seen in the particular, steady state experiments from which they were
developed, they cannot explain suspension impact response. In the following sec-
tions, we will give more thorough introductions to these models and experiments
and show why they fall short.

1.1 Continuous Shear Thickening

In situations where the particle packing fraction is low, the increase in ηs with γ̇
is subtle and, consequently, the thickening behavior is known as continuous shear
thickening. This type of behavior is illustrated qualitatively in Fig. 1.3, where typi-
cally one observes a Newtonian regime for low shear rates, a shear-thinning regime
for intermediate shear rates, and finally a shear-thickening regime for high shear
rates. Two models have been proposed to explain this behavior. The first involves an
order-to-disorder transition in the particle arrangement [5, 13–15], while the second
involves the formation of particle clusters held together by hydrodynamic forces [9,
11, 16–19]. While the order-to-disorder transition model had traction into the late
1990s, most researchers today tend to focus on the hydrocluster picture. Given this
trend, our focus here will be the same.
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Fig. 1.3 Qualitative graph illustrating the moderate rise in the viscosity ηs versus shear rate γ̇ for
a continuous shear-thickening suspension

As is well known, particles immersed in a liquid will exert a force on each other if
they have relative motion. This force arises from the fact that the motion of a single
particle causes liquid flow, which in turn influences other particles. In the simplest
scenario, one can imagine two spherical particles of equal diameter d immersed in a
liquid with viscosity η moving directly toward or away from each other with velocity
vrel and with interstitial spacing δ � d. In this case, the force between the spheres
is exactly solvable [21] and given by

Fl = 3πηd2vrel

8δ
. (1.2)

Thus, when two spheres are in close proximity it becomes increasingly difficult to
pull them apart. For more complicated relative motion, e.g. when particles shear past
each other, this force can actually lead to stable “orbits” in which the particles are
bound together [9].

The transition to continuous shear-thickening behavior has been outlined by
Wagner and Brady [9]. At low shear rates, particle motion is dominated by thermal
diffusion and the microstructure is essentially random. In this regime, the rheology
is Newtonian. As the shear rate is increased, the particles first undergo a layering
transition, which tends to reduce the viscosity (i.e. the suspension becomes shear
thinning). Eventually, as the shear rate is increased further still, the shearing forces
begin to overcome the entropic ones. In this regime bound groups of particles, i.e.
hydroclusters, begin to form, and the suspension viscosity rises. This transition can
be characterized as a competition between diffusion and advection, and as such the
transition to thickening behavior depends on the dimensionless Péclet number. In the
context of a shear-driven suspension, the Péclet number compares the shear rate of
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a flow to the rate at which particles diffuse over the length of one particle diameter,
i.e.

Pe = γ̇tD = ηγ̇d3

kB T
, (1.3)

where tD is the diffusive timescale, kB is Boltzmann’s constant, and T is the tem-
perature.

For suspensions with moderate packing fractions, the hydrocluster model has
experimental validation. In particular, experiments with small angle neutron scatter-
ing have shown an increase in density fluctuations, indicative of groups of particles
intermixed with regions that are largely particle free, that is concurrent with thick-
ening behavior [18, 19]. More recently, Cheng et al. used a high-speed, confocal
rheometer to image the microstructure of a shear thickening suspension [11]. By
directly observing growth in the particle cluster size distribution, they were able to
show the increase in viscosity occurred in conjunction with hydrocluster formation.

While these data do support the hydrocluster picture for continuous shear thick-
ening in moderately packed suspensions, they do not show how continuous shear
thickening can account for the large stresses generated during surface impact. The
biggest issue is that the increase in viscosity is just too small. This has been seen in
experiments and simulations [11, 22], but can also be argued quantitatively. Using
lubrication theory, the suspension viscosity can be estimated by assuming laminar
squeeze flow between layers of particles [23], which results in ηs ≈ ηd/δ. However,
the continuum model for the liquid will break down when the gap size δ is on the order
of 2 molecular layers [24], which means the maximum increase over the suspend-
ing liquid viscosity is limited by the ratio of the particle diameter to the molecular
diameter. For cornstarch particles in water, this translates into a factor of ∼104, or a
maximum suspension viscosity of 10 Pa s. If we model a person running on the sus-
pension surface as a sphere (with “foot diameter” 15 cm) moving at 1 m/s through a
liquid with this viscosity, the maximum stress we would expect to see is ∼800 Pa. As
mentioned earlier we can make a conservative, back of the envelope estimate for the
stress required to support a person running across a suspension surface by dividing
the weight of a typical person (700 N) by the area of a typical foot (200 cm2), which
requires a minimum of ∼50 kPa (note this is an underestimate because the upward
pressure on the foot must exceed this if the suspension is to decelerate the person).

1.2 Discontinuous Shear Thickening

When the packing fraction is high, experiments show that the increase in ηs with γ̇
can appear to diverge [7, 8, 10, 12, 20, 25, 26]. Appropriately the effect is called dis-
continuous shear thickening. Typical behavior is illustrated qualitatively in Fig. 1.4.
As with continuous shear thinning, one often encounters a Newtonian regime and
perhaps even a shear thinning regime at lower shear rates. At higher shear rates,
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Newtonian shear thinning shear thickening

Fig. 1.4 a Qualitative graph illustrating the divergent rise in the viscosity ηs versus shear rate γ̇
for a discontinuous shear thickening suspension. b Qualitative graph illustrating the shear stress τ
versus shear rate γ̇ for a discontinuous shear thickening suspension. c The stress is limited to be
less then τmax ≈ σ/d, i.e. the stress associated with particles of diameter d poking into the surface
of suspending fluid with surface tension σ
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however, the viscosity suddenly rises by orders of magnitude. Fall et al. associated
this behavior with a re-entrant jamming transition of the particle sub-phase, arguing
that the onset of dilatancy during shear could lead to a system wide jamming and a
sudden perceived increase in the viscosity [7].

More recently, Brown and coworkers have taken this idea further and showed that
the elevated shear stress in this situation is actually caused by the interaction of the
particle sub-phase as it dilates and pushes into the system boundaries, specifically
the liquid-air interface [8, 10, 20], as illustrated in the cartoon of Fig. 1.4c. As can
be argued on dimensional grounds, the pressure provided in this situation scales like

τmax ∝ σ

d
, (1.4)

where σ is the surface tension of the suspending liquid. By collecting data throughout
a wide range of the shear thickening literature, Brown et al. showed that this idea is
on the right track over nearly three orders of magnitude in both surface tension and
particle diameter [10].

Another feature of discontinuous shear thickening is that the normal stress and
shear stress are seemingly coupled by friction, further supporting a granular pic-
ture. Orellana et al. used an electrorheological suspension to show that the normal
stress on the plates of a parallel-plate rheometer is proportional to the shear stress
[26]. More recently, Brown et al. showed that the exact same behavior could be
observed for dry grains in a rheometer (confined by solid walls in the absence of
a suspending liquid) [26]. Beyond experiments, Seto et al. have recently performed
simulations that include both hydrodynamic interactions and frictional contacts [22].
Their results indicate that while hydrodynamic interactions alone can lead to contin-
uous shear thickening, frictional contact among the suspended particles is necessary
for producing discontinuous shear thickening.

While the rise in viscosity and stresses encountered in discontinuous shear thick-
ening are much larger than those seen in continuous shear thickening, it still is
unable to explain how an object crashing into a suspension surface feels such a large
resistive force. Once again, the primary reason for this is that the upper stress limit
provided by the free boundary, as discussed above, is just too small. The average
particle diameter for cornstarch is d ∼15µm, while the surface tension of water is
σ ≈ 0.08 N/m. Thus, according to Eq. 1.4 the maximum stress one would expect to
see under steady state conditions for a suspension with free boundaries would be on
the order of ∼5 kPa. As we discussed in the previous section, the minimum stresses
involved in running on the surface are on the order of ∼50 kPa. Discontinuous shear
thickening, like continuous shear thickening, just doesn’t produce enough stress to
explain impact.
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1.3 Compressive Experiments with Shear
Thickening Suspensions

While the studies in the previous two sections dealt with suspensions under steady
state shear, there are some experiments that have investigated these materials under
transient, compressive situations, i.e. conditions more similar to impact. Lim et al. and
Jiang et al. [27, 28] studied the transient, compressive response of silica particles
suspended in polyethylene glycol with the split Hopkinson bar technique, which
essentially consists of sandwiching a thin layer of suspension between two metal
rods instrumented with strain gauges and accelerating the rods into each other at high
speeds. Although they measured extraordinarily large stresses (up to ∼50 MPa), by
far the largest reported in the literature, it should be noted that their samples were fully
confined, i.e. there was no liquid-air interface. Nonetheless, their results suggested
that the suspension, which was liquid-like at rest, suddenly became solid-like during
the compression.

More relevant to this thesis, two other recent experiments have studied suspensions
under compression with free boundaries. In the first of these experiments, Liu et al.
[29] studied the stress transmission below a sphere immersed in a cornstarch and
water suspension as it was suddenly pushed at a constant velocity toward the lower
boundary of the container holding the suspension. By putting a slab of clay below
the sphere, they were able to see how stress was transmitted through the suspension
to the opposing boundary via the clay deformation. Perhaps surprisingly, they found
that rather than spreading the force on the sphere over a larger area, virtually all the
force was concentrated on a spot roughly the size of the sphere directly below it.
This, of course, also depended on other factors, such as the speed with which the
sphere was pushed and the distance from the clay bottom. Liu et al. interpreted this
behavior as arising from a jammed region of suspension transmitting stress directly
to the container bottom, but did not address how this jammed region forms.

In the other series of experiments, von Kann et al. studied the dynamics of a sphere
as it sank via gravity through a dense suspension of cornstarch and water [30]. As
the sphere approached the bottom of the container, they observed oscillations in the
sphere velocity in which it would accelerate at nearly g, come to a sudden stop for a
few tens of milliseconds, and then accelerate again. In agreement with Liu et al., von
Kann et al. interpreted this behavior in the context of jamming. However, they took
one step further by thinking about how the jammed region under the sphere develops.
As their argument goes, the motion of the sphere toward the wall uniformly increases
the packing fraction in the column of suspension below it. Eventually, the particles
in this column become jammed and the interaction of the sphere with the boundary
through this jammed column causes it to suddenly stop. In the absence of sphere
motion, the jammed region has a chance to “melt” with a timescale set by the Darcy
flow of liquid back into this region, after which the sphere begins to move again.
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1.4 Preview of Our Work

The work presented in this thesis began with experiments designed to understand how
an object crashing into a suspension surface is slowed down. In Chap. 2 , we elaborate
and expand upon the study we published in Nature [31], where we shoot a rod into a
dense suspension of cornstarch and water. Our measurements show that the normal
stresses on the face of the impacting rod can be as high as 1 MPa, much larger than
the 10 kPa limit in shear thickening. We find that the impact response is not sensitive
to the suspending liquid viscosity or the surface tension, further differentiating it
from the existing shear thickening models. In agreement with von Kaan et al. [30]
and Liu et al. [29], we find evidence that some region of the suspension solidifies in
response to compression. However, we show that the primary slowing during impact
is associated with the growth of this region, not necessarily an interaction with a
boundary.

In Chap. 3, we elaborate and expand on a study we published in Europhysics Let-
ters [32], where we develop a model for the suspension solidification with a macro-
scopic system of binary-sized disks sitting on a plane and uniaxially compressed
with a rake. The compression of the initially unjammed system creates a dynamic
jamming front that travels ahead of the rake, leaving regions behind it jammed while
regions in front of it remain uncompacted. We show how the speed of these fronts
depends on the speed of the rake as well as how close the initial disk configuration is
to jamming. Using disk conservation in conjunction with an assumed upper bound
to the packing fraction at jamming, we account for the front speed as a function of
packing fraction with a simple equation. We also find that the width of these jam-
ming fronts seems to diverge as the initial packing density is increased. Interestingly,
the growth of the front width is reminiscent of diverging lengthscales seen in other
jamming systems.

Finally, in Chap. 4 we take the results from the model system of Chap. 3 and
test them in the suspension. By performing speed-controlled impact of a rod into
the suspension with an Instron materials testing device, we make more accurate
measurements of how fast the suspension solidifies. We show how the solidification
rate depends on the suspending liquid viscosity, impact velocity, and packing fraction.
In particular, we show that if the product of the viscosity and velocity is too low, then
the front growth disappears. Alternatively, if the product of these two quantities is
sufficiently large, then the speed of the front depends only on packing fraction. The
dependence of the speed of the front on packing fraction in this regime is consistent
with the results of Chap. 3, which suggests that the impact response in cornstarch
and water suspensions is mediated by dynamic jamming.

http://dx.doi.org/10.1007/978-3-319-09183-9_2
http://dx.doi.org/10.1007/978-3-319-09183-9_3
http://dx.doi.org/10.1007/978-3-319-09183-9_4
http://dx.doi.org/10.1007/978-3-319-09183-9_3
http://dx.doi.org/10.1007/978-3-319-09183-9_3
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Chapter 2
Freely Accelerating Impact into
Cornstarch and Water Suspensions

2.1 Introduction

While the experiments described in the previous chapter primarily focused on
rheological measurements of dense suspensions, the focus of this thesis is surface
impact. As a number of studies have shown, liquids and granular media typically flow
around and provide little resistance to intruding objects [1–11], while suspensions
can provide normal stresses that are large enough to support a person running across
their surface. As discussed previously, this impact response has been attributed to
suspension response under shear, linking it to hydrodynamic interactions [12–17] or
a combination of granular dilation and jamming [18–24], but neither of these mecha-
nisms alone can produce enough normal stress to explain impact. In this chapter, we
describe a series of experiments designed specifically to study impact into dense sus-
pensions. With techniques ranging from high-speed videography to embedded force
sensing and X-ray imaging, we capture the detailed dynamics of the impact process
as a metal rod strikes the surface of a dense cornstarch and water suspension. The
data reveal that the impactor motion causes the rapid growth of a solid-like region
directly below the impact site. These findings are in agreement with von Kann et al.
but we go one step further by showing that this is mediated by “solidification fronts”
and that no boundaries are necessary for the suspension to provide large normal
stresses. Instead, as this solid moves and grows, it pulls on the surrounding suspen-
sion creating a quickly growing peripheral flow. Using the concept of added mass,
we make a model that relates the sudden extraction of the impactors momentum to
the growth of this flowing solid/peripheral region.

2.2 Experimental Setup

In Fig. 2.1a we show a schematic of the experimental apparatus. An aluminum rod
(mass mr = 0.368 kg, radius rr = 0.93 cm) is shot into the surface of a cornstarch
and water suspension by gravity or by slingshot. Vertical motion is maintained by

© Springer International Publishing Switzerland 2015
S.R. Waitukaitis, Impact-Activated Solidification of Cornstarch and Water Suspensions,
Springer Theses, DOI 10.1007/978-3-319-09183-9_2
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Fig. 2.1 a Freely accelerat-
ing impact experiment. An
aluminum rod (rr = 0.93 cm,
mr = 0.368 kg) is acceler-
ated toward the surface of
a cornstarch and water sus-
pension (suspending liquid
viscosity η, packing fraction
φ0, fill height H ) via gravity
or a slingshot. A high-speed
camera focused on the region
indicated in the figure tracks
the rod to measure the impact
velocity v0. An embedded
accelerometer measures the
rod’s instantaneous acceler-
ation ar . Directly below the
impact site, a force sensor
records any stress transmis-
sion through the suspen-
sion to the container bottom.
b Preparing ∼20 L of corn-
starch and water suspension
with a cement mixer
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gently cradling the rod between stainless steel guide rails. A lightweight, miniature
accelerometer (Omega ACC104A) housed inside the rod is connected to a computer
via USB data acquisition interface (labVIEW USB-6009) and records the rod’s accel-
eration in real time at a data rate of 24,000 samples per second. As the rod hits the
surface, a high speed camera (Phantom v9.1, Vision Research) records video (in the
region indicated in the figure) at a typical frame rate of 10,000 frames per second.
A laser trigger just above the suspension surface (not shown in the figure) initiates
the camera. To measure any stress transmission to the container bottom, we place a
high-speed force sensor (DLC101-10, DLC101-50, DLC101-50, or DLC101-500)
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in a waterproof container directly beneath the rod (like the accelerometer, this sensor
is also connected to the USB interface recording at 24,000 samples per second).

The cornstarch and water suspension is characterized by its packing fraction φ0,
the suspending liquid viscosity η, the suspending liquid surface tension σ , and the fill
height H . The first step in preparing the suspensions involves creating a suspending
liquid with the desired viscosity. This is achieved by mixing tap water and glycerin
(McMaster Carr 3190K293) with a wire wisk. We then measure the viscosity of this
mixture with a capillary viscometer (Cannon Instrument Company, ratings 50–400).
After measuring the suspending liquid viscosity, we extract ∼25 mL and measure
the density with a volumetric measurement from a graduated cylinder and a mass
measurement from a scale. (For these experiments, we do not density match the
suspending liquid as the sheer volume required makes it prohibitively expensive.
We prevent suspension settling by continually relayering the suspension throughout
the day with a garden shovel.) We determine the necessary mass Mcs of cornstarch
by first deciding on the desired packing fraction φ0 and then using the equation

Mcs = ρcs

ρl
Ml

φ0

1 − φ0
, (2.1)

where Ml is the total mass of the suspending liquid and ρcs is the specific gravity
of the cornstarch particles (i.e. the density of the material itself, not the perceived
density of the powder plus air). The value for ρcs varies throughout the literature from
about 1.55 [21] to 1.68 [25]; here, we do not make any measurements ourselves, but
instead use a value in the middle of this range ρcs = 1.59 [19]. We measure the total
mass of cornstarch with a scale and then slowly added it into the suspending liquid
in an industrial cement mixer, as in Fig. 2.1b. We used the cement mixer because the
thickening behavior of the suspension makes it extremely difficult to mix “by hand”.
Adding the cornstarch slowly prevents unwanted clumping and the formation of air
bubbles in the suspension. Once all of the cornstarch is added, we let the mixer run
for approximately one half hour until the suspension consistency is highly uniform.

2.3 Characterization of Impact

Figure 2.2 shows images before and after the aluminum rod strikes the surface of a
deep (H = 20.5 cm) cornstarch and water suspension (φ0 = 0.49, η = 1.0 cP) with
impact velocity v0 ∼1.0 m/s. Rather than penetrating, as would typically happen
during impact into liquid or particles alone, the rod pushes the suspension surface
downward, creating a rapidly growing depression whose boundary travels away from
the impact site. The absence of splashing indicates that the impact is a highly dissipa-
tive since none of the incoming kinetic energy is recovered and redirected to ejecta
(indeed the collision in a deep container such as this appears almost “inelastic”).
Only after the rod has been slowed to a near stop does it begin to actually sink and
penetrate into the suspension. We are concerned with the phenomena before this
penetration and sinking occurs.
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(a)

(b)

rod

2 cm

surface
depression

Fig. 2.2 Visual characteristics of suspension impact. Images of an aluminum rod before (a) and
after (b) it strikes the surface of a cornstarch and water suspension (φ0 = 0.49, η = 1.0 cP) at
v0 ∼1.0 m/s. Rather than penetrating and creating a splash, the rod seems to push the surface down,
creating a large depression that travels radially outward from the impact site. The pockmarked
appearance may be a signature of dilation causing particles to poke into the liquid-air interface

Given the complex force laws involved during impact into liquids or particles alone
[1–11], one might expect the force law for an object impacting into a suspension to
be similarly complex. Surprisingly, this is not the case. Figure 2.3 shows the rod’s
instantaneous acceleration ar as measured by the embedded accelerometer plotted
against time t (upward acceleration is defined as positive). As the plot shows, the
rod’s acceleration starts out at minus g before impact (t < 0). Just after impact, the
acceleration steadily grows to some peak value apeak at time tpeak and then slowly
decays to some near-zero or slightly negative value. The existence of peaks in the
ar versus t curves indicates that the force law responsible for slowing the rod is a
competition between both time-increasing and time-decreasing contributions, and we
can use the behavior of these peaks to characterize each impact. As might be guessed
from experience, a primary factor that affects the peaking behavior is the impact
velocity v0; higher impact velocities lead to larger peaks that occur at earlier times,
as shown in Fig. 2.4a. It is also worth noting here that high velocity impacts can lead
to incredibly large pressures on the rod face [Ppeak = mr apeak/(πr2

r )], up to as much
as 1 MPa and thus far exceeding the maximum stress (∼5 kPa) encountered in steady
state shear experiments [24]. For the highest impact velocities (above about 3.0 m/s),
the rod begins to penetrate into the suspension. This transition is especially apparent
in the plot of tpeak versus v0 (Fig. 2.4b). Before the transition, tpeak decreases with v0,
but beyond it actually begins to increase. (Although we do not at present understand
the physics of this transition to penetration, we provide some experimental results
concerning it in Appendix A and show that it is sensitive to rr .)
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Fig. 2.3 Impact dynamics. a Acceleration ar versus time t for the aluminum rod striking the surface
of a cornstarch and water suspension (φ0 = 0.49, η = 1.0 cP) at impact velocity v0 = 1.18 m/s. The
impact produces a peak of value apeak occurring at time tpeak , indicating an underlying competition
in the force law. b Impactor velocity vr versus t , showing impact nearly brings rod to a complete
stop before gravity reaccelerates it downwards and it slowly sinks into suspension (not shown).
c Rod position zr versus t

Also in accordance with experience, the impact response is highly sensitive to
the particle packing fraction φ0, with more densely packed suspensions leading to
higher values of apeak and smaller values of tpeak (at a given impact velocity v0, also
shown in Fig. 2.4). In densely packed suspensions, an increase of just a few percent
in φ0 can cause the peak accelerations to double or triple. This creates practical
limitations for conducting experiments. Below φ0 ∼ 0.46, the effect becomes so
small that it is difficult to detect. At the other extreme, suspensions with packing
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Fig. 2.4 Parameters affecting peaking behavior. a Peak accelerations apeak versus impact velocity
v0 for experiments with following parameters: η = 1.0 cP and φ0 = 0.46 (open circles), φ0 = 0.49
(solid squares), φ0 = 0.52 (solid diamonds), η = 12.4 cP and φ0 = 0.49 (open squares), and
η = 1.0 cP and φ0 = 0.49 with a water layer approximately 1 cm deep on the suspension surface
(solid triangles). b Time to peak acceleration tpeak versus impact velocity v0 with same symbols as
in (a). The vertical dashed line indicates the crossover region to the right of which the rod begins
to pierce the suspension surface

fractions above ∼0.52 are so sensitive to perturbations that their relaxation time for
reaching a liquid state can take hours. Consequently, our work is restricted to the
regime 0.46 < φ0 < 0.52.

While the peaking behavior is strongly sensitive to the impact velocity and packing
fraction, it is surprisingly insensitive to the properties of the liquid. Changing the
viscosity by more than a factor of 10 has no observable effect on the peaks (although
it does slow the post-impact sinking behavior). Furthermore, completely removing
the effects of surface tension by adding a layer of water (∼1 cm deep) to the top of
the suspension shows that the response is not associated with particles poking out of
the liquid-air interface. As mentioned in Chap. 1, the viscosity of a suspension that

http://dx.doi.org/10.1007/978-3-319-09183-9_1
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exhibits continuous shear thickening does scale with the suspending liquid viscosity
[26–28], while the stresses of a discontinuous shear thickening suspension is limited
by surface tension effects [24]. The irrelevance of both viscosity and surface tension
reemphasizes that impact response cannot be explained by existing shear thickening
models.

2.4 Boundary Effects

To see what role, if any, is played by the opposing boundary during impact, we
changed the suspension height H and looked for corresponding changes in the ar

versus t curves, as in Fig. 2.5. For the deepest suspension, tpeak ∼ 10 ms, but a second,
weaker peak is just visible near t ∼ 75 ms. Lowering H causes this secondary peak
to intensify and move to earlier times. Interestingly, however, the first peak remains
largely unchanged. For the smallest H , a third peak emerges as a consequence of the
impulse on the rod being so large that it bounces upward off of the surface, freely
accelerates downward at minus g for a few milliseconds, and then hits the surface
again (as indicated in the lowest panel of Fig. 2.5). For the lowest two values of H ,
the response becomes dominated by this second peak and the character of impact
changes completely. Rather than appearing inelastic, the impact can actually be quite
elastic, with as much as 25 % of the impactor’s initial speed recovered in the recoil
(see Fig. 2.6). Additionally, we see that the coefficient of restitution ε, defined as
the recoil velocity divided by the impact velocity, is largely independent of impact
velocity until v0 ∼ 3.0 m/s, i.e. near the transition to the penetration regime.

One might guess that the second peak, which occurs while the rod is still in
contact with the suspension surface, might arise from the transmission and reflection
of waves to the opposing boundary. If this were the case, then one would expect to
see a strong, peak-like signal on the force sensor at the container bottom at half the
time of the second peak in the accelerometer. Surprisingly, as the bottom panel of
Fig. 2.5 shows, the peak on the force sensor occurs at the same time as the second
peak. This is actually a signature of the solidification suspected by Liu et al. [29] and
von Kann et al. [30], but these measurements have several key, new implications:
first, the primary response (i.e. the original acceleration peak) is not the result of
stress transmission to the boundary; second, the suspension does indeed solidify, but
the solidification process requires a finite amount of time to propagate through the
suspension; third, once solidification reaches the bottom boundary, forces propagate
with little delay through the solid-like region back towards the impactor; and fourth,
this solid can bear stress and store energy, allowing, for example, the bounce of the
impactor.

These implications are more fully appreciated in Fig. 2.7, which shows the force
on the rod (Fr = mr ar ) and the force on the container bottom for system parameters
(H = 11.5 cm, v0 = 2.0 m/s, φ0 = 0.49 and η = 1.0 cP) that prevent the rod from
bouncing and separating from the suspension surface (like the bouncing in Fig. 2.5,
which removes the solid-coupling between the rod and container bottom). A slow
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Fig. 2.5 Effect of lower boundary. Rod acceleration ar versus time t for impact with η = 1.0 cP,
φ0 = 0.49, v0 = 0.49 ± 0.04 m/s and suspension fill heights H = 20.5, 18.5, 16.5, 14.5, 10.5, and
8.5 cm (top to bottom, as indicated). The dashed line in the bottom panel is the force on the sensor
at the container bottom Fb

initial buildup of the force measured on the container bottom Fb is followed by an
abrupt jump (over ∼1.5 ms) to its maximum value of ∼7 N at t ∼ 7.5 ms. Before
this, Fb and Fr show no correspondence. After this, however, it is clear that the
spur on the latter part of Fr has the same shape Fb. This further indicates that the
transmission of stress between the rod at the top of the suspension and the force
sensor at the bottom is solid-like. What is more, these data suggest that the solid-like
region is concentrated in a column almost directly below the rod, in agreement with
the clay-witness experiments of Liu et al. [31]. Noting that the area of the force
sensor is ∼1.13 cm2 and, assuming the pressure on the bottom is roughly constant,
we estimate that the total force on the rod is recovered over an area ∼10 cm2. This is
much smaller than the full area of the container bottom (900 cm2), and if we imagine
the stress propagates through the suspension in a cone this corresponds to an angle
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Fig. 2.6 Restitution coefficient. Coefficient of restitution ε ≡ vrecoil/v0 (where vrecoil is the
velocity with which the rod bounces upward off of the surface) for a suspension with φ0 = 0.49,
η = 1.0 cP, and H = 8 cm. The existence of the bounce indicates that the region of suspension
below the rod stores elastic energy just like a solid
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Fig. 2.7 Details of stress transmission to container bottom. Force on rod Fr versus time t (solid
curve, left axis) and simultaneously measured force on container bottom directly below rod Fb
versus t (dashed curve, right axis) for suspension with H = 11.5 cm, φ0 = 0.49, η = 1.0 cP and
impact velocity v0 = 2.0 m/s. The time of the peak in Fb (or equivalently, time of 2nd peak in
Fr ) can be interpreted as time required for solid-like growth to reach bottom. The rise time to the
peak (especially pronounced for these impact parameters) can be used to show that the width of the
solidification front in this realization is approximately v0�t ∼ 4 mm

of about 10◦ (though this may underestimate the cone angle given that the pressure
is presumably highest directly below the rod).

These data suggest that the timing of the 2nd peak in the rod acceleration (or
equivalently the timing of the first peak on the force sensor below) can be inter-
preted as the time t∗ required for the front of a solid-like column to grow from the
suspension surface to the bottom boundary. By measuring t∗ at several different
H (as we did in Fig. 2.5), we can plot the trajectory of the solidification front as it
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Fig. 2.8 Trajectory of solidification front. Time of the second peak of the rod’s acceleration t∗
versus suspension fill height H for impact velocities v0 = 0.49 ± 0.04 m/s (squares) and 0.9 ±
0.1 m/s (diamonds)

develops, as in Fig. 2.8. Close inspection of these data reveals two points. First, higher
impact velocities produce fronts that travel with higher initial speeds. Second, these
trajectories have the same qualitative features of the rod trajectories, i.e. two straight
line regions connected by a soft bend (see for example Fig. 2.3c). What’s more, the
timing of the bends in the front trajectories (∼10–15 ms) is very close to the timing
in the trajectories of the rod itself.

The resemblance of the rod trajectory in Fig. 2.3c and the front trajectory in Fig. 2.8
suggests that the growth of the solid may be related to the displacement of the rod.
To test this directly, we plot the size of the solidified region h f at t∗ versus the
distance travelled by the rod at the same instant z∗

r in Fig. 2.9 for the same data as in
Fig. 2.8. (Note the position of the front below the original surface at t∗ is z f = −H .
More often, we will refer to the vertical extent of the front h f = H − z∗

r .) Doing so
collapses the data for the two different impact speeds onto what is nearly a straight
line of given by h f = kz∗

r with k ≈ 12.2. We define the proportionality constant k
as the relative front growth rate of the suspension. Throughout the rest of this thesis,
we will refer to k often as it turns out to be an important parameter for characterizing
the suspension behavior.

Going back to Fig. 2.7, we can use the rise time in the force measured on the
container bottom to estimate the width of the solidification front. As the figure shows,
�t ∼ 1.5 ms. Given that the front crashes into the bottom with the speed of the rod,
its width is approximately vr�t ∼ 4 mm. This shows that, relative to the size of the
solidified column or even the size of the rod, the solidification front can be extremely
well-defined. (As we will show in this chapter and Appendix B, the front width may
depend on both the particle packing fraction and the viscosity of the suspending
liquid, though we did not experimentally probe these dependencies in great detail.)

These behaviors are reminiscent of shocks in granular systems above jamming
[32, 33] or solidification fronts in supercooled glass-forming liquids [34–37].
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Fig. 2.9 Solid growth versus rod motion. a Cartoon of solid growth below impact site. b Vertical
extent of solidified region hf at instant front hits container bottom plotted against distance below
surface travelled by rod at same instant z∗

r for impact velocities v0 = 0.49◦ æ 0.04 m/s (squares)
and 0.9◦ æ 0.1 m/s (diamonds). Fit is of the form hf = kz∗

r with k = 12.2

However, with granular shocks above jamming the front propagates through an
already-jammed medium and its speed is governed by elastic energy stored in par-
ticles [32, 33]. Although supercooled liquids, like the system here, are initially
unjammed, their solidification fronts propagate at a constant, thermodynamically
favored speed [37]. The data in Fig. 2.9 show that the fronts here seem to work like a
“snowplow”, where the extent of moving snow (suspension) is proportional to how
far the shovel (rod) has pushed. As will be shown in this chapter and Chap. 3, this
behavior can be tied to jamming of the initially unjammed particle sub-phase as it is
compressed by the impacting rod.

http://dx.doi.org/10.1007/978-3-319-09183-9_3
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2.5 Surface Dynamics

The previous section describes what happens directly below the impact site, but it
is not immediately apparent how this relates to the features seen on the suspension
surface (e.g. Fig. 2.2). Qualitatively, one can argue that the solidified region must
cause this surrounding suspension to flow because the lubrication forces described by
Eq. 1.2 act as a kind of “glue” between the closely packed particles. In order measure
the depression dynamics, we shine a laser sheet across the suspension surface in
the field of view of the high speed camera, as in Fig. 2.10. This allows us to make
space-time plots of the depth of the surface depression zs versus radial coordinate r
and time t . A typical result is shown in Fig. 2.11. This plot shows more clearly how,
for the region to the left of the dashed line in Fig. 2.4, the rod pushes the suspension
surface down rather than penetrating into it (note the continuous color spectra across
the dashed line indicating the rod/suspension boundary). The plot also shows how
regions outside of the depression (i.e. beyond the zs = 0 mm contour in the blue area)
actually swell upward slightly to conserve volume. Interestingly, the trajectory of the
zs = 0 mm contour, like the solid front below the rod, is approximately proportional
to the total distance travelled by the rod (and with a proportionality factor very close
to the relative front growth rate, k = 12.2, as indicated by red dashed line in the
figure).

2.6 Displacements of Suspension Interior

In order to see what happens inside the suspension, we used a C-arm dental X-ray
(Orthoscan High Definition Mini C-Arm, Model 1000-0004) to take video (30 frames
per second) of a tracer particles in a vertical plane of the suspension interior directly
below the impact site, as shown in Fig. 2.12a. (For technical reasons, we had to make
a few changes from the setup in Sects. 2.2–2.4. These changes slightly altered the rod
dynamics, as discussed in Appendix B. Even so, the salient features of the impact
process remained the same.) The tracer particles consisted of small metal objects
(e.g. metal spheres, nuts, screws, bolts, nails, and washers) that slowly sank into (and
then out of) the field of view of the X-ray apparatus. While the tracers were in the field
of view, we released the rod in free-fall from a fixed height allowing it to impact into
the suspension (v0 ≈ 0.5 m/s) while simultaneously capturing X-ray video. Given
the frame rate was limited to 30 frames per second and the typical impact only lasts
∼20 milliseconds, these videos give a “before and after” look into the suspension.
As the field of view of the X-ray videos was limited to ∼5 × 5 cm2, we took videos in
four separate regions (the boundaries of which can be seen in Fig. 2.12b) and stitched
them together.

We used particle imaging velocimetry (PIV) to determine the displacement field of
the suspension interior for each video (code in Mathematica written by Justin Burton).
Sinking made it difficult to load the tracer particles uniformly, and it was necessary to

http://dx.doi.org/10.1007/978-3-319-09183-9_1
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Fig. 2.10 Laser sheet measurements of surface depression. a A laser sheet is used to generate a
bright line on the suspension surface in the field of view of the camera. b Image of laser line on
surface just before impact. Rod is outlined in green. c Image of laser line on surface about 15 ms
after impact
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Fig. 2.11 Space-time plot of surface depression. Depth of surface depression zs (color axis) ver-
sus radial coordinate r and time t (with parameters η = 1.0 cP, φ0 = 0.49, and v0 = 0.49±0.01 m/s).
The blue part of the figure corresponds to regions outside the conical depression (not there is slight
upswell in this region to conserve volume). The black dashed line indicates the boundary between
the rod and suspension, and the smooth color gradient across this line indicates the rod does not
penetrate but instead pushes the surface downward. Contours are drawn for every 1 mm. The red
dashed line corresponds to the rod trajectory multiplied by factor k = 12.2, the same factor found
for the solid growth below the rod

take several videos in each field of view, ignore the PIV data corresponding to regions
that lacked particles, and then average the results from different videos together to fill
in the gaps. A final displacement field is shown in Fig. 2.13. The first striking feature
of these data is the large region of suspension that moves downward, extending
approximately 6 cm below the rod and 5 cm to the side (red to green in the figure).
What makes this especially remarkable is that all of this movement is a result of
the rod moving a mere 5 mm below the original surface level. To the side of this
downward moving region, the PIV data make it clear that the suspension flows
upward. As mentioned in Sect. 2.4, where the same upward motion was seen with
the laser sheet measurements (Fig. 2.11), this must occur because the suspension
as a whole is incompressible and the vacated volume of the depression has to be
compensated for by an upswell on the periphery. These observations give a quick,
qualitative answer to how the rod is slowed down during impact. In brief, even a very
small amount of rod motion creates a vastly larger region of flow in the suspension.
The mechanism for the slowing of the impactor is the transfer of momentum to this
growing, moving region.

The PIV data also provide a second opportunity to quantitatively confirm the
relationship between the growth of the solid front relative to the displacement of the
rod. We start with the following simple assumption: if a segment of suspension has
been solidified, it moves rigidly with the rod, whereas if it has not been solidified then
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Fig. 2.12 X-ray measurements of interior dynamics. a X-ray emitter shines through suspension
toward detector. The plane of the suspension directly below the impacting rod is laden with metal
particles to act as tracers in the X-ray video. b X-ray image of tracer particles in the suspension
interior just after rod strikes the surface at v0 ≈ 0.5 m/s. Note that the container extends equally
to the right and left of the rod, but imaging was performed primarily to the right side, hence the
asymmetry in the figure
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Fig. 2.13 Suspension interior displacement field. Displacement field of suspension in a plane
directly below impact site calculated via particle imaging velocimetry (PIV) of X-ray images taken
before and after impact. The large downward moving region (red to green in the figure), which
extends nearly 6 cm below and away from the rod, develops after the rod itself moves only ∼5 mm.
Outside of this downward moving region, the suspension moves upward to conserve volume globally

it does not move all. If the rod moves a total distance |zr | beyond the original surface
between two X-ray images, then the edge of the front will reach a depth |zr |(k + 1)

below the surface, so beyond this depth all displacements �z should be zero. Above
this depth, a segment of the solidified column at depth |z| will move however far the
rod moved after it was picked up, i.e.

|�z | = |zr | − |z|
k + 1

. (2.2)

In Fig. 2.14 we plot the vertical displacements |�z | of the suspension below the rod
as a function of |z|. The data have the qualitative shape predicted by Eq. 2.2, starting
out by decreasing linearly and then coming to (nearly) zero displacement. Fitting the
linear region to Eq. 2.2, we find |zr | = 5.0 ± 0.2 mm and k = 13.1 ± 0.9, very close
to the value found from varying the suspension height H (Fig. 2.9).
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Fig. 2.14 Vertical displacements of suspension directly below impact site. Experimental data (dia-
monds) and model prediction (black line). As discussed in the text, the “snowplow” model for
solidification predicts that the displacements should be zero beyond the distance |z| = (k + 1)|zr |
and should decrease like |�z | = |zr | − |z|/(k + 1) before this distance. Fitting to this proposed
form gives the relative front growth rate k = 13.1 ± 0.9, close to the value found in Sect. 2.2

2.7 Added Mass Model for Impact

The results of the previous three sections paint a picture in which the seed of the
suspension response to impact is the dynamic growth of the solid below the impact
site. As this solid grows and is forced to move with the rod, it causes flow in the
surrounding, still liquid-like suspension. The interplay between this growing region
of moving suspension and the slowing of the rod is the competition mechanism
responsible for the observed peaks in the rod deceleration. We can capture the essence
of this behavior using the concept of added mass, as is frequently done for surface
impact in regular liquids [2, 4, 38]. The key idea is to think of the impact as an
inelastic collision between the rod and a growing mass, ma . The rod dynamics are
captured by force balance:

(mr + ma)ar = dma

dt
vr + Fext . (2.3)

where Fext accounts for other forces not associated with momentum transfer to the
added mass, e.g. the force of gravity on the rod mrg and the buoyant force from the
displaced liquid in the depression (from Fig. 2.5, this is ∼ 1/3πg(rr + k|zr |)2|zr |).
With normal liquids, ma is typically limited by the density of the liquid and the
size of the impactor, for example, ma < C(4/3)πρl(rr )

3 for the impact of a disk of
radius rr into a liquid of density ρl [2]. The factor C is the “added mass coefficient”
and accounts for the fact that the liquid does not actually move like a solid object
(consequently, C is typically less than 1). The suspension is capable of responding
so dramatically because the solidification below the rod leads to rapid, effectively
unlimited growth of ma . We can estimate its size from Figs. 2.9 and 2.11, which
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Fig. 2.15 Comparison of added mass model with experimental results. Experimental (left column)
and numerical (right column) results for acceleration (a), velocity (b) and position (c) of rod
impacting into suspension with η = 1.0 cP, φ0 = 0.49, and impact velocities v0 = 1.50 m/s
(solid line), 1.18 m/s (dots), 0.96 m/s (small dash), 0.63 m/s (large dash) and 0.28 m/s (alternating
small/large dash). Numerical results are Mathematica solutions to Eqs. 2.3 and 2.4 with parameters
mr = 0.368 kg, k = 12.5, rr = 0.93 cm and ρs = 1295 kg/m3 and initial conditions vr (0) = −v0
and zr (0) = 0

show that the impact creates substantial flow in a region that extends k|zr | below
and radially away from the rod. Approximating these points as bounding a cone-like
region gives ma the form:

ma = C
1

3
ρsπ(rr + k|zr |)2k|zr |, (2.4)
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where ρs is the density of the suspension. Using this in Eq. 2.3 with the initial condi-
tions vr (0) = −v0 and zr (0) = 0 allows us to solve numerically for the rod dynamics.
With the average measured value for the relative front growth rate (k = 12.5) and
leaving the coefficient C as the only adjustable parameter, this minimal model repro-
duces the important features impact response surprisingly well over the whole range
of initial velocities tested (Fig. 2.15). We find the best agreement for C ≈ 0.37,
similar to what is encountered for disk impact into regular liquids [4]. (In Appendix
C, we extract ma directly from our data and confirm the scaling with |zr | as given by
Eq. 2.3. In Appendix D, we show how similar behaviors can arise if the growing solid
column below the rod experiences viscous drag from the surrounding suspension.)
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Chapter 3
Dynamic Jamming Fronts
in a Model 2D System

3.1 Introduction

In the previous chapter, and in particular in Sects. 2.3 and 2.6, it was shown that the
behavior of the suspension directly below the rod suggests that the rod motion causes
it to “solidify” in the sense that this region moves rigidly with the rod and can bear
stress and store elastic energy. We found that the vertical extent of this solidified
region below the rod was proportional to the distance travelled by the rod below the
original surface level, i.e. h f = kz∗

r (with the relative front growth rate k ≈ 12.5
for φ0 = 0.49 in the cornstarch and water suspension). Loosely, we characterized
this behavior as being reminiscent of a “snowplow.” In this chapter, we focus on the
physics of this snowplow solidification. We use a model 2D system of macroscopic
disks that allows us to see the details of front formation on at individual particle
level. We find that the snowplow solidification is intimately related to the concept
of jamming. Although the jamming transition has been studied extensively in exper-
iments and simulations [1–9], most studies have focused on the time-independent,
bulk characteristics of the jammed state at fixed, uniform packing fraction. However,
the front growth we are interested in here concerns dynamic features related to jam-
ming when the packing fraction is not uniform in space or time. In the following
chapter, we will use these results to predict how the front growth rate should depend
on the cornstarch packing fraction in suspension.

3.2 Experimental Setup

The experiment consists of initially unjammed, binary-sized disks sitting on a plane
that are forced toward jamming by uniaxial compression via a rake, as shown in
Fig. 3.1. Laser-cut, black acrylic disks are randomly arranged at an initial packing
fraction φ0 on an acrylic tray that is backlit from below and recorded from above
with a video camera. The disks are cut to sizes dl = 1.34 cm and ds = 0.93 cm
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Fig. 3.1 2D model experiment for dynamic jamming. Black acrylic binary-sized disks (diameters
ds = 0.93 cm and dl = 1.34 cm) in an initially unjammed state are compressed toward jamming by
a rake. The rake is pushed at constant speed by a linear actuator. Flourescent lights shine through
the opaque, white acrylic tray below the disks while the camera above records video

(i.e. dl/ds ≈ √
2) and are present in equal number Nl = Ns in order to prevent

crystallization [10–14]. The disks are then pushed from the left with a rake connected
to a linear actuator that extends at constant velocity v0. As can be seen from the images
in Fig. 3.2, this leads to the formation of a stable densification front that travels ahead
of the rake along x . Behind this front, the particles move with the velocity of the rake
and are left in a jammed state with final packing fraction φJ .

Frames from a video of the experiment are shown in Fig. 3.2. We analyze the
videos by first binarizing and watershedding the images in ImageJ [15] in order to
separate disks in close proximity. We determine the disk positions by locating all
of the unique black domains (excluding the rake/actuator) within each image and
calculating their centers of mass. Individual disk trajectories are acquired with the
IDL tracking code developed by Crocker and Grier [16]. From these, we calculate
the instantaneous disk velocities vx,i and vy,i by subtracting disk positions between
frames and multiplying by the frame rate (usually ∼10 frames per second). We
use the Voronoi tessellation (obtained with Voro++ [17]) to calculate the local,
instantaneous packing fraction of each disk φi (defined as the disk’s area divided by
the area of its Voronoi cell). In order to extract velocity and packing fraction profiles,
we reduce the problem to one dimension and define the coarse-grained velocity field
V (x, t) and packing fraction φ(x, t) by binning the individual disk measurements at
a given t along x (binsize 2dl ) and calculating the bin averages. The variability of in
φ0 along these bins is ∼0.01.
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Fig. 3.2 Images from
dynamic jamming. Images
correspond to φ0 =
0.611 ± 0.003, rake veloc-
ity v0 = 2.50 cm/s at times
t = 0.00 s (a), 1.33 s (b),
2.66 s (c), 4.00 s (d), and
5.33 s (e)

x
t  = 0.00 s

t  = 1.33 s

t  = 2.66 s

t  = 4.00 s

t  = 5.33 s

~70 cm
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(d)
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3.3 Characterization of the Relative Front Growth Rate

Figure 3.3 shows a snapshot of an initially uncompacted system (as in the right of
the images) a short while after the rake has begun to move. By rendering images
of the disks colored by their instantaneous velocity (Fig. 3.3a) and packing fraction
(Fig. 3.3b), we are able to see the microscopic details of front formation. While disks
near to the rake generally move with velocity v0 and disks far ahead are stationary,
we find velocities over the entire range [0, v0] in the transition region between
these extremes. In the same region, one sees that the velocities are not constant
along the transverse direction, but instead create fingerlike chains of particles that
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Fig. 3.3 Snapshot of a jamming front. a Rendering of disks colored by instantaneous axial velocity
vx,i at t = 4.00 s in experiment with φ0 = 0.611±0.003 and rake velocity v0 = 2.50 cm/s. b Same
as (a) but with disks colored by local, instantaneous packing fraction φi

give roughness to the front. When we plot the coarse-grained velocity V versus x
(Fig. 3.4a), however, these rough protrusions average into to a smooth profile with a
soft transition from the rake velocity V = v0 behind the front to V = 0 beyond the
front. We find empirically that the these profiles are generally well-approximated by
the equation

V (x) = v0

1 + e(x−x f )/� f
, (3.1)

where x f is the location of the center of the front and � f is the width. We see
similar profiles for φ(x) (Fig. 3.4b), which can be fit by the related equation φ(x) =
φ0(1 − 1/(1 + e(x−x f ))) + φJ .

Fitting V (x) to Eq. 3.1 allows us to extract measurements of the front position x f

and width � f for each time t of the experiment. In Fig. 3.5a, we plot x f versus t for
several different values of φ0 at a rake speed v0 = 1 cm/s. As the plot shows, the fronts
move at constant velocities, which we can measure by fitting to x f = v f t . Plotting
v f /v0 versus φ0 shows that the front speed appears to diverge as the packing fraction
is increased. This kind of behavior arises from the requirement of disk conservation
in combination with the fact that the disks cannot easily be compressed beyond
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jamming. To see how this works, we start with the conservation equation

dφ

dt
+ d

dx
(V φ) = 0. (3.2)

As is often done [18], we assume an ad hoc constitutive equation for φ and V , in this
case the simple linear relationship

φ − φ0

φJ − φ0
= V

v0
≡ U, (3.3)

where the dimensionless variable U scales between 0 and 1. This form effectively
assumes that if the disks are at φJ , they must also be moving at speed v0, which is
reasonable given that the step-like increase of the bulk modulus at jamming [5, 9, 19]



38 3 Dynamic Jamming Fronts in a Model 2D System

0 5 10 15
0.0

0.2

0.4

0.6

t (s)

x f (
m

)

0.0 0.2 0.4 0.6 0.8
100

1.0

101

102

103

0

J
=

 0
.7

81
±

0.
00

1

10 10 10 10 10
10

10

10

10

100

vr (m/s)

v f
(m

/s
) 0 = 0.611 ± 0.003

v f  
/ v

r

(a)

(b)
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Dashed line is fit to Eq. 3.9 with fit parameter φJ = 0.781 ± 0.001. Plot of vf versus v0 at fixed
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will tend to prevent further compaction and cause disks to move rigidly with the rake.
In Fig. 3.6, we confirm this is a very good approximation for our system. With Eq. 3.3,
we can rewrite Eq. 3.2 in terms of U

d

dt

(
U (φJ − φ0) + φ0

)
+ d

dx

(
Uv0

(
U + φ0

φJ − φ0

))
= 0 (3.4)

Which after a little rearrangement results in the Riemann formulation [20] of the
inviscid Burgers equation,

dU

dt
+ d

dx

(
Uv0

(
U + φ0

φJ − φ0

))
= 0. (3.5)
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We can find the speed of the solidification front by using the boundary equations of
our system in conjunction with the assumption that the solutions are traveling waves
of the form U (x, t) = U (x − v f t) = U (X). This allows us to write both the spatial
and time derivatives in terms of X , i.e.

v f
dU

d X
= d

d X

(
Uv0

(
U + φ0

φJ − φ0

))
. (3.6)

We now integrate this equation with respect to X ,

v f

∞∫
−∞

dU

d X
d X =

∞∫
−∞

d

d X

(
Uv0

(
U + φ0

φJ − φ0

))
d X (3.7)

v f (U |∞ − U |−∞) = v0

(
U

(
U + φ0

φJ − φ0

)∣∣∣∣∞ − U

(
U + φ0

φJ − φ0

)∣∣∣∣−∞

)
.

(3.8)

Finally, using the boundary conditions for our system U |∞ = 0 and U |−∞ = 1, we
arrive at the Rankine-Hugoniot jump condition [20] for the front speed,

v f = v0

(
1 + φ0

φJ − φ0

)
. (3.9)

As we pointed out in Chap. 2, the proportionality between v f and v0 is markedly
different from the behavior of systems above jamming, where one encounters shock
speeds that are either independent of the driving speed (weak shocks) or scale like
v

1/5
0 (strong shocks) [21, 22]. Both above and below jamming, the distance to φJ

plays a critical role in determining the front speed. Here we see that the reason for

http://dx.doi.org/10.1007/978-3-319-09183-9_2
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this in systems below jamming essentially boils down to mass conservation, whereas
with the shocks above jamming the dependence arose from the increase in the system
pressure with packing fraction.

The relationship between the front velocity and rake velocity in Eq. 3.9 is closely
related to the relative front growth rate discussed in Chap. 2. In particular, integrating
Eq. 3.9 with respect to time yields

x f = xr

(
1 + φ0

φJ − φ0

)
, (3.10)

whre xr is the displacement of the rake. This is identical to the relationship h f =
|z f | − |zr | = k|zr | encountered in Chap. 2, provided the relative front growth rate
has the form

k = φ0

φJ − φ0
. (3.11)

This has the potential to explain both why the front growth in the suspension is
proportional to the displacement of the rod and why the response is so sensitive to
the particle packing fraction. In the following Chapter, we will test this predicted
form for k with a speed-controlled impact experiment into a cornstarch and water
suspensions.

For the system of disks here, fitting the data of Fig. 3.5b to Eq. 3.9 yields φJ =
0.781 ± 0.001. It is clear from the fit, however, that there is a discrepancy at higher
values of φ0 as the fitted curve falls to the left of the data. As we are able to measure
the final packing fraction for each experiment, we see that this actually arises because
there is a trend such that higher φ0 have higher φJ (Fig. 3.7b). This variability may
arise because of finite system size [5], but could also arise in part from the increased
pressure at the front interface at higher v0. Nonetheless, we achieve better agreement
if we use the values of φJ measured from each experiment individually. Doing so in
conjunction with Eq. 3.9 accurately describes the front speed over nearly 2 decades
in φJ − φ0 (note the dashed line in Fig. 3.7a is a prediction with no fit parameters).
The range of values we find for φJ (∼0.76–0.79) is consistent with the results of
recent simulations of frictional disks with identical size and number ratios [10, 11].

3.4 Anomalous Front Width

While disk conservation seems like the most natural starting point for modeling
this system, it is incapable of predicting the fact that the fronts have finite widths
(e.g. Fig. 3.3c). This is a robust feature of the system; the widths develop quickly after
the rake begins to move and remain stable over time. Phenomenologically, this can
be accounted for by the inclusion of diffusion, which results in the viscous Burgers
equation given by

http://dx.doi.org/10.1007/978-3-319-09183-9_2
http://dx.doi.org/10.1007/978-3-319-09183-9_2
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dU

dt
+ d

dx

(
Uv0

(
U + φ0

φ j − φ0

))
= D

d2U

dx2 , (3.12)

where D is a diffusion coefficient (note that Eq. 3.1 is a solution). Equation 3.12
predicts that the width of the front is given by � f = D/v0. In principle, the right
hand side of Eq. 3.12 could be related either to viscous behavior, i.e. diffusion of
momentum, or to the physical diffusion of particles. Dimensionally, D, which has
units of length over time squared, can be interpreted as the product of a characteristic
velocity and lengthscale. The only velocity scale in our system is the speed of the
rake, which we have already shown affects the front speed, and, as we show in
Fig. 3.8a, also sets the scale of the velocity fluctuations δV (see also Fig. 3.8b, which
shows the fluctuations are insensitive to φJ − φ0). First guesses for the lengthscale
might included the disk diameter, the tray width, or the mean free path. However,
as we show in Fig. 3.9a, the width of the front dramatically increases as the system
density is increased, while these lengthscales remain constant or approach zero.

On the other hand, recent simulations of driven systems just below the jamming
transition have shown the presence of a divergent lengthscale associated with the
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percolation of particle motion. In particular, O’Hern et al. showed that the lateral
extent of moving particles via the insertion of an intruder diverges on approach to
jamming [5]. (This result was confirmed in more detail by Reichhardt and coworkers
[13]). More recently, Olssen and Teitel showed that the same-time transverse velocity
correlation length for a sheared system of binary disks has similar divergent behavior
[12]. In all cases, the authors found power law behavior for the lengthscale, i.e. ξ ∝
(φJ − φ0)

ν , with ν between ∼0.6 and 0.7. (We mention that Vågberg et al. [23]
found ν ≈ 1 in a similar binary-disk system by including finite size effects in the
analysis. Here we use a more rudimentary analysis that should be compared with
the exponents found by the other authors mentioned.) In Fig. 3.9b, we plot our � f

versus φJ − φ0 on a log-log graph to look for similar behavior. The data exhibit
deviations from a straight line on the log-log graph, but if we assume they follow a
power law, we see they are consistent with an exponent around 0.65, i.e. in the same
range as the previous studies. This is suggestive that the growing front width we see
here may be a signature of the divergent lengthscale seen more generally in jamming
systems.

To test this directly, we measure the equal-time longitudinal velocity correlation
function of our system. Symmetry dictates that the only position relative to which we
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Fig. 3.9 Diverging front width. a Front width � f versus φ0 shows strong growth. b � f versus φJ −
φ0 on log–log graph (note individually measured values of φJ are used). Dashed line is a power
law with exponent −0.65 drawn as a guide to the eye (see text). c Longitudinal velocity correlation
length ξ versus front width � f . Fit is linear with coefficient ∼1.6 and offset 0

can calculate a meaningful correlation function is at the center of the front (calculating
it at positions behind the front will yield a correlation length that grows with time,
and beyond it yields zero). We therefore define the correlation length here as
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ξ = 1

v2
0

( x f∫
−∞

V (x f )V (x f − x)dx +
∞∫

x f

V (x f )V (x − x f )dx

)
. (3.13)

We do this calculation on both sides of the front because we find there is a slight
tendency for the upstream value to be higher than the downstream value, indicating
a slight asymmetry in the front shape. In Fig. 3.9c, we plot ξ versus � f , which
shows that they are indeed related by a simple linear scaling. If we look at Eq. 3.1
more closely, this shouldn’t come as a surprise. Performing the above calculation
(Eq. 3.13) with that profile shows that the correlation length and the width are related
by the relation ξ = ln(2)� f (we actually measure a slope of ∼1.6, very close to
2ln(2) ≈ 1.4). This strongly suggests that the front width seen in dynamic jamming
may be related to the diverging lengthscales seen in static jamming. Furthermore,
while the experiments here concerned a 2D system of particles, the description is quite
general and we expect similar, well-defined propagating fronts to develop generically
in other systems, such as the cornstarch and water. We go on to discuss this more
fully in this chapter.
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Chapter 4
Speed-Controlled Impact into Cornstarch
and Water Suspensions

4.1 Introduction

In Chap. 2, we performed experiments in which a rod was shot or allowed to fall via
gravity into a cornstarch and water suspension and then freely accelerate in response
to the forces acting on it. Our focus was on understanding why the rod slowed down,
and we found evidence that this slowing was associated with the dynamic growth
of a solid region below the impact site. In Chap. 3, we used a model system to
show how the growth of a solid feature in a macroscopic system of hard disks is
related to the jamming transition. In that system, we found that the relative front
growth rate, k, strongly depends on the closeness to jamming φJ −φ0. If we assume
that the suspension is made up of rigid cornstarch particles that are in an initially
uncompacted state and that the interstitial fluid does not dramatically change the front
behavior, it is easy to imagine that the same mechanism might account for the solid
growth in suspension. (Although we do not know how to definitively validate these
assumptions, we have taken steps to support them by showing that the cornstarch
particles remain intact and hard after long term exposure to room temperature water
(see Appendix E) and that, for a 1D system that exhibits dynamic jamming fronts,
the only effect of a viscous interstitial liquid is to broaden the front (Appendix F).)

This proposition is in qualitative agreement with the fact that the peak acceleration
during impact, apeak , grows very rapidly with φ0 (e.g. Fig. 2.4). However, freely
accelerating impact is not the ideal situation for pulling out the details of front growth
in the suspension. For one, the freely-impacting rod is continually slowing. Although
the relative front growth rate of the disk experiment of Chap. 3 is independent of the
push speed v0, there is some speed dependence in the suspension (as we shall show
shortly). In particular, the solid can “melt” before it reaches the bottom if the rod
slows too much, or the rod can detach from the suspension surface if the impulse
imparted to it is too great. In this chapter, we describe how we overcome these
obstacles with speed-controlled impact into cornstarch and water suspensions. We
use an Instron materials testing device, typically meant for stress-strain tests, to push
a rod into the suspension surface with a constant velocity. Pushing the rod with a
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constant velocity produces a much clearer signal to latch on to when the front hits the
container bottom, leading to more precise measurements of k. We discover that in
suspension, k is only independent of velocity for “fast push speeds,” while at lower
speeds the solidification vanishes. The crossover speed at which this occurs is set by
the suspending liquid viscosity, with more viscous liquids enabling maximal front
growth at smaller velocities. Ultimately, we find that the increase in the saturation
values of k as a function of φ0 is consistent with the results of Chap. 3 (i.e. Eq. 3.9),
strongly suggesting that the impact thickening behavior in suspensions is intimately
related to jamming.

4.2 Experimental Setup

We perform speed-controlled impact into cornstarch and water suspensions with an
Instron 5586 materials testing device, as illustrated in Fig. 4.1. The Instron allows us
to push a metal rod (radius rr = 0.93 cm, as with the experiments of Chap. 2) into
the suspension surface at a constant speed and simultaneously record its position zr ,
velocity v0, and the force exerted on it Fr . The suspension is again characterized
by the suspending liquid viscosity η, the particle packing fraction φ0, and the fill
height H . We did not see viscosity or velocity dependence in the freely accelerating
impact experiments, but the Instron allows (and constrains) us to operate at much
slower speeds where the dependence on these parameters becomes apparent. (The
maximum speed of the Instron is 8 mm/s, more than 25 times slower than the slowest
speeds probed with the slingshot or free fall. We found it necessary to increase the
suspension viscosity to work in this regime.)

Fig. 4.1 Speed-controlled impact experiment. Image showing how the Instron 5586 materials
testing device pushes a metal rod into the surface of a cornstarch and water suspension at a constant
velocity v0 while simultaneously recording its instantaneous position zr and the force exerted on it
Fr . The suspension is characterized by its packing fraction φ0, viscosity η, and fill height H . With
the 500 N force transducer used with the Instron in these experiments, we had a force resolution of
∼2×10−3 N and a displacement resolution of 100µm. Image of the actual experiment

http://dx.doi.org/10.1007/978-3-319-09183-9_3
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Given that we performed many experiments at very slow push speeds (as low as
0.01 mm/s in some instances, leading to runtimes of over one hour for a single exper-
iment), it was necessary to density match the suspending liquid with the cornstarch
particles to prevent sedimentation. The process of mixing the suspending liquid was
similar to that described in Chap. 2, but with additional steps for density matching.
First, we mixed water with glycerin to achieve a liquid with the desired viscosity
(exactly as in Chap. 2, Sect. 2). Next, we increased the density of this water/glycerin
mixture by dissolving cesium chloride into it. The rough proportions necessary for
this were extracted from the measurements taken by Johnson [1]. However, as data for
the exact proportions of water, glycerin, and cesium chloride necessary to produce a
desired viscosity and density were unavailable, we had to repeatedly add cesium chlo-
ride in small amounts and measure the density until we reached the desired result. For
the data in this chapter, all suspending liquids had a density ρl = 1590 ± 10 kg/m3.

4.3 Characterization of Force Curves

A typical result for the force-displacement curve resulting from a speed-controlled
impact in which there is front formation is shown in Fig. 4.2. Before the rod hits
the suspension surface no force is measured. Once it reaches the surface, the force

Fig. 4.2 Typical
force-displacement curve.
a Force on rod Fr versus
distance below surface |zr | for
suspension with η = 14.0 cP,
φ0 = 0.50, and H = 4.8 cm
and v0 = 4.0 mm/s. The
slowly rising initial region
comes primarily from buoy-
ant forces, while the quickly
rising second region is caused
by the jammed solid interact-
ing with the container bottom.
b Same as (a) but on log-log
graph to show the strikingly
different force scales in the
two regimes
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Fig. 4.3 Speed-controlled
failure. a Full force-
displacement curve for
suspension with η = 8.84 cP,
φ0 = 0.49, H = 4.46 cm and
v0 = 6 mm/s. The suspen-
sion fails after displacement
|zr | ∼ 0.75 cm, causing the
force on the rod to plummet.
b Image of the suspension
surface shows that failure is
associated with cracks that
shoot radially outward from
the rod
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2 cm

begins to increase slowly (e.g. before about 2.2 cm in Fig. 4.2a), growing at a rate
of less than 1 N/cm. At this stage, although the jammed solid column is growing
below the rod and the surrounding liquid is moving as well, the speed of the rod is
so low that the added mass effect is small. [We can estimate from the added mass
model of Chap. 2 (Eqs. 2.3 and 2.4) that the force caused by the growing solid at
|zr | = 2.2 cm in Fig. 4.2a is no more than ∼0.2 N, only about half of what we see
in the figure.] Instead, the force here arises just as much from the buoyancy of the
liquid displaced by the rod and surrounding depression. A little later, however, the
force curve turns upward very quickly (after |zr | ∼ 2.2 cm in Fig. 4.2a), growing at
a rate of ∼50 N/cm. As the zoomed out view in Fig. 4.2b shows, this sudden rise can
lead to extraordinarily large forces and pressures on the rod (for the rr = 0.93 cm
rod, the maximum force is on the order of ∼100 N, equating to a maximum pressure
of ∼0.5 MPa).

This is the signature of the solidified region of suspension interacting with the
container bottom. If we allow the rod to keep pushing, the stress at the rod/suspension
interface continues building and eventually the suspension “fails.” An example of
this is shown in the force curve of Fig. 4.3a, which shows a sudden drop off in the
force after |zr | ∼ 0.75 cm. Before this, the rod pushes the surface of the suspension
downward rather than penetrate into it, as with the impact experiments (e.g. Fig. 2.2).
After this, however, the rod penetrates significantly. The turnover in the force is
accompanied by the sudden growth of cracks that shoot radially outward from the
rod along the surface. These behaviors may be related to the cracking observed by
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Fig. 4.4 Disappearance of front formation at low speeds. Force-displacement curves for speed-
controlled impact into suspension (φ0 = 0.48, η = 10.1 cP, and fill height H = 4.10 cm) with
push speeds (left to right) v0 = 8, 4, 2, 1, 0.4, and 0.01 mm/s. The dashed line is the buoyant force
arising from the weight of the suspension the rod displaces ρsgπr2

r |zr |

Roché et al. [2] . While they are not our main focus here, this system provides a
natural platform for studying the criterion for their onset.

Unlike freely accelerating impact, the control provided by the Instron allows us
to push at speeds so slow that front formation ceases all together. In Fig. 4.4, we plot
several force-displacement curves for increasingly slow speeds and show how this
happens. At the highest push speed (v0 = 8 mm/s), the effect of the bottom is seen
when the rod has only travelled ∼5 mm even though the fill height of the container
is H = 4.12 cm. At this speed we see all of the visual features discussed previously,
i.e. pushing rather than penetration and the growing depression around the impact
site. As we slow the push speed, the story begins to change. In the force curves, the
displacement at which the container bottom is felt becomes larger and larger until
eventually at v0 = 0.01 mm/s the front formation ceases all together and the uptick in
Fr is felt only when the rod reaches the container bottom. On the suspension surface,
these changes are accompanied by the rod beginning to penetrate into the suspension
and the absence of the surface depression. In other words, the suspension begins to
act more like a regular liquid. In doing so, the force on the rod (prior to the front
hitting bottom) is also more liquid-like, arising solely from buoyancy. Following
Archimedes principle, the dashed line in Fig. 4.4 is the weight of the suspension
displaced by the rod ρsgπr2

r |zr |, which shows this is the case.

4.4 Characterization of the Relative Front Growth Rate

Like the secondary peaks in the acceleration curves of the freely-impacting rod (see
Figs. 2.8 and 2.9), the timing of the sudden increase in the force-displacement curves
here changes with the suspension fill height H . This is shown in Fig. 4.5a, where
we plot the curves for varying heights H with all other parameters held constant.
As H is decreased, the upturn occurs at smaller |zr |. In order to extract information

http://dx.doi.org/10.1007/978-3-319-09183-9_2
http://dx.doi.org/10.1007/978-3-319-09183-9_2
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Fig. 4.5 Dependence of
force-displacement curves
on speed and fill height. a
Force-displacement curves
(left to right) for suspension
with φ0 = 0.49 and η =
12.4 cP, rod push speed v0 =
8.0 mm/s and fill heights
H = 0.8, 2.5, 4.0, 6.5, and
7.9 cm. b Force-displacement
curves (left to right) for same
suspension parameters as in
(a), fixed height H = 7.9 cm
and push speeds v0 = 1.0,
2.0, 4.0, and 8.0 mm/s
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about the front growth from these data, we use a technique from solids testing that
is commonly used to determine the yield stress of a material (although here what we
are measuring is somewhat the opposite to yielding). The technique is illustrated in
Fig. 4.6a, and consists of fitting both sides of the uptick in the force-displacement
curve to lines and then determining where these fitted lines intersect. We define the
position of the intersection as z∗

r . Similarly, we define the distance the front has grown
during this time as h f = H − z∗

r .
Being able to measure both the size of the jammed column h f and the distance

moved by the rod z∗
r allows to calculate the relative front growth rate k = h f /z∗

r ,
as defined in Chap. 2 and discussed in the context of dynamic jamming in Chap. 3.
For all k calculations in the rest of this chapter, we do this with a fixed suspension
fill height H = 8.5 ± 0.1 cm. This value is chosen to be large enough to ensure that
when the front forms, h f � rr , and to avoid using too much of the (prohibitively
expensive) cesium chloride. In Fig. 4.7a, we show the speed dependence of k for a
suspension with η = 8.5 cP and φ0 = 0.49. For high velocities (above v0 ∼ 2 mm/s),
k seems to come close to saturating. At smaller velocities, however, we see that k
becomes smaller with decreasing velocity (consistent with the data in Fig. 4.4).

These measurements are qualitatively similar to the “melting” discussed at in
the work of von Kann et al. [3]. While we do not at present fully understand the
mechanism at play in this melting, we do know that it is related to the suspending
liquid viscosity, as shown in Fig. 4.7b and c. For smaller viscosities, the k values at a
given velocity are also smaller, presumably because the growing solid melts faster.

http://dx.doi.org/10.1007/978-3-319-09183-9_2
http://dx.doi.org/10.1007/978-3-319-09183-9_3
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Fig. 4.6 Analysis of
force-displacement curves. a
Example force-displacement
curve showing how the point
of the upturn in force is deter-
mined by fitting the legs of
the curve to two lines. The
distance travelled by the rod
at this point is defined as z∗

r .
b Cartoon illustrating how the
length of the jammed region
is determined via the equation
h f = H − z∗
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Comparing the curves for η = 13.4 cP (squares) and η = 8.5 cP (circles) shows
that the saturation value for k is seemingly independent of the suspending liquid
viscosity. (Presumably the data for η < 8.5 cP also saturate, but we were not able to
go fast enough with the Instron to see this. However, the impact data from Chap. 2
with η = 1 cP water also suggest this is the case since we found the same value for
k at v0 = 0.5 and 1.0 m/s.) In Fig. 4.7c, we plot k versus the product of η and v0,
which collapses all the data onto a single curve. As the figure shows, the saturation
value for this curve is consistent with what was seen in the impact experiments of
Chap. 2, i.e. ksat ≈ 12.5. We can make a hand-waving argument for why the data
collapse when plotted against ηv0 by thinking of the “growth rate” of the solid as
being proportional to v0 while the “melting rate” is evidently proportional to 1/η.
The behavior transitions from primarily melting to primarily solidification when
these two rates are equal, which leads to the product ηv0.

Physically, k is a measure of the degree to which particles directly below the rod
participate in solid growth. If k is small, no solid forms and the particles below the
rod move laterally out of its way as would a normal liquid. If k is large, however,
virtually all particles below the rod participate in front growth. This explains why k
has a saturation value, which occurs when all the particles below the rod participate
in solid growth. If this is correct, then the dependence of the saturation value of the
relative front growth rate on the suspension packing fraction should be identical to the

http://dx.doi.org/10.1007/978-3-319-09183-9_2
http://dx.doi.org/10.1007/978-3-319-09183-9_2
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Fig. 4.7 Dependence of
relative front growth rate on
suspending liquid viscosity.
a Relative front growth rate
k versus impact velocity v0
for a suspension with η =
8.5 cP and packing fraction
φ0 = 0.49. b Same as (a)
but with data for η = 13.4 cP
(squares), 6.5 cP (diamonds),
and 1.0 cP (triangles). c k
data from (b) plotted against
product of η and v0 collapses
to a single curve. Dashed line
indicates the value of k found
in Chap. 2 with the impact
experiments
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results encountered in Chap. 3 because the system, although it is 3D, actually reduces
to a 1D problem in the region below the rod. In Chap. 3 (in particular Eq. 3.11), it
was found that the relative front growth rate should scale with φ0 like

k = φ0

φJ − φ0
, (4.1)

In Fig. 4.8 we test this idea by plotting all the k values we measured (without speci-
ficity to v0 or η) versus φ0. At a given packing fraction, changing the rod speed
can vary k by more than an order of magnitude. Even so, the maximum values for
different packing fractions, regardless of widely varying v0 and η, do exhibit a clear

http://dx.doi.org/10.1007/978-3-319-09183-9_2
http://dx.doi.org/10.1007/978-3-319-09183-9_3
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Fig. 4.8 Dependence of
relative front growth rate on
packing fraction. a Plot of
relative front growth rate k
versus packing fraction φ0 for
suspensions with suspending
liquid viscosities η = 80.1 cP
(I), 13.4 cP (open diamonds),
6.4 cP (solid circles) and
1.0 cP (open squares). The
different points at each φ0
value correspond to different
speeds v0. b Same as (a) but
with log y-axis, showing that
k varies by over 2 orders of
magnitude. Dashed line in
(a) and (b) is fit to saturation
values at each φ0 (excluding
the data at the lowest φ0)
Eq. 4.1 with φJ ≈ 0.53
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trend. Although the range of φ0 we were able to work with was limited, the saturation
values of k in the region we did explore are consistent with Eq. 4.1 given that the
packing fraction at which the suspension jams is φJ ≈ 0.53. This number is com-
parable to but smaller than random loose packing for spheres and other values for
random loose packing of cornstarch reported in the literature, which typically range
from 0.55 to 0.57 [4, 5] (although those experiments are either carried out dry or
with other suspending liquids). A simple explanation of this could be the uncertainty
in the specific density of the grains. For example, if the density were 1.55 kg/l, as
determined by Merkt et al. [6], φJ could actually be as high as 0.54. Alternatively,
this could also be caused be absorption of the suspending liquid by the starch (a
worry of many authors [1, 6]), which would make the actual value of φJ higher than
what we report. It is also possible that an effect of the suspending liquid is to cause
the suspension to seem to jam at lower values than it would otherwise.

Interestingly, we are not able to produce any front formation below φ0 ∼ 0.46,
no matter what viscosity of suspending liquid we use. This could arise for a variety
of reasons. One possibility is that we simply did not use liquid that was sufficiently
viscous to see the effect. (Note we could not make a proper suspension with viscosities
beyond ∼100 cP as the mixing became increasingly difficult and we could not rid
the suspension of air bubbles, which actually seemed to cause it to shear thin.)
Alternatively, if we believe the granular picture that our data support, this effect could
arise from properties of the particle packing. For example, recent experimental work
by Bi et al. with dry grains shows that there is a critical packing fraction below φJ
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associated with so-called shear jamming [7]. Concisely put, a shear jammed state is
one in which a granular material with φ < φJ develops solid like properties, such as a
bulk and shear modulus, as a result of the application of a finite amount of shear. This
kind of behavior was seen by Seto et al. [8] in simulations of sheared suspensions that
included frictional interactions between the particles, where the authors showed that
discontinuous shear thickening only occurred beyond some critical packing fraction
(also below φJ ). If the solid development arising from impact is associated in any
way with shear jamming, this could explain why we see an onset packing fraction
below φJ at φ ∼ 0.46.
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Chapter 5
Results and Conclusions

The resistance of dense suspensions to intruding objects has typically been associated
with shear thickening. However, there are a number of incompatibilities between
existing shear thickening models and what occurs during impact. The most important
inconsistency is that none of the shear thickening models can account for the stress
scales observed in impact. In continuous shear thickening, the viscosity rise is just
too mild. In discontinuous shear thickening, although the rise in viscosity can be very
large, the stresses in the system are bounded by compliance of the weakest boundary,
typically the liquid-air interface, limiting the stress to at least one order of magnitude
smaller than what is required to keep a person running on the surface dry. Aside from
this physical limitation, there are also a number of conceptual difficulties. For one,
the prevalent models are only well-understood in the steady state, whereas impact
is an inherently transient phenomenon. Additionally, these models were developed
with strictly shear experiments, whereas impact involves both compressive and shear
stresses.

A number of experiments studied suspensions under transient, compressive
situations. While the split Hopkinson bar experiments led to stresses on the order of
50 MPa, these systems had no free boundaries. At least two experiments in the physics
literature studied cornstarch and water suspensions in compressive situations with
free boundaries, but these experiments did not study impact and instead worked with
immersed spheres. Both found evidence for strong interaction between the immersed
sphere and the container bottom. Although they interpreted this interaction as arising
from a jammed region of suspension, their models failed to completely address the
question of how this jammed region forms. By ignoring the jamming process, their
models deemed the lower boundary as necessary for creating a large stress on the
immersed sphere.

From the beginning, our approach has been to take a fresh look at this phenomenon
and build an experiment that focused on studying impact directly. As a first step, we
carried out a series of experiments in which we shoot a metal rod into a suspension
of cornstarch and water. We see qualitative features of suspension impact that set it
apart from impact into liquid or particles alone. With our high-speed camera focused
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on the surface we see that, rather than penetrating into the suspension surface, the
impacting rod pushes it downward as if it were a solid object. This occurs in con-
junction with a rapidly growing surface depression that grows radially outward from
the impact site. Furthermore, the absence of any splashing and the arrest of the sus-
pension and rod motion once impact is over shows that this is a highly dissipative
process.

These qualitative differences in what suspension impact looks like are accompa-
nied by quantitative differences in the impactor dynamics. In particular, curves of the
rod acceleration versus time in very deep suspensions exhibit smooth, well-defined
peaks, which tell us that the force exerted by the suspension on the rod has both
time-increasing and time-decreasing contributions. In agreement with our intuitive
understanding of the material, we find that the scale of these acceleration peaks
grows with impact velocity. For the highest speed impacts, this leads to pressures on
the rod face exceeding 1 MPa, i.e. nearly 100 times larger than the upper bound in
stress encountered in steady state discontinuous shear thickening experiments. Also
in agreement with intuition, we find that these peaks become larger with increasing
packing fraction. Surprisingly, however, they are insensitive to the suspending liquid
viscosity and surface tension. The independence with respect to viscosity reempha-
sizes that suspension impact is not related to continuous shear thickening, where
the suspension viscosity at a fixed packing fraction is simply proportional to the
suspending liquid viscosity. The irrelevance of surface tension reemphasizes that the
stress limitation in discontinuous shear thickening does not play a role during impact.

We probed for interactions between the impacting rod and the container bottom by
changing the fill height H of the container. This leads to the emergence of secondary
peaks in the rod acceleration versus time, indicative of the previously reported solid-
like development in the suspension. We took this interpretation further by using our
system to probe the growth of this solid region and in the process showing that a
boundary interaction is not necessary for large compressive stresses. Our data show
that the vertical extent of this solid region is proportional to how far the rod has
pushed down the suspension surface. We defined the proportionality constant as the
relative front growth rate k. With the aid of high-speed video of a laser sheet on the
suspension surface to reveal the details of the depression growth and X-ray video
to see the suspension interior’s displacement field, we reconfirmed the proportional
growth of this solid region and showed that is accompanied by a very large peripheral
flow. Ultimately we were able to use the concept of added mass along with our
measurements of the size of the moving region as a function of the rod displacement
to make a simple model for how the rod is slowed during impact.

Suspecting the solid growth below the impacting rod might be related to jamming,
we built a model 2D system comprised of macroscopic disks sitting on a plane
and uniaxially compressed toward jamming with a rake. This simple system also
produced solidification fronts whose extent beyond the impacting rake was pro-
portional to the rake’s displacement. We were able to show how this behavior is
related to disk conservation in conjunction with the effective upper limit to the disk
packing fraction at jamming. This allowed us to relate the relative front growth rate
directly to the packing fraction. Interestingly, we also found that the widths of the
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jamming fronts in this system diverge on approach to jamming. This observation
may be related to recent simulations of nearly identical disk systems that revealed a
divergent lengthscale associated with the same-time velocity correlation function.
The similarity suggests that some of the features characteristic of “static jamming”
might have vestiges in dynamic jamming.

We were able to take what we learned from the model 2D system and look for
similar packing fraction dependence in the 3D suspension. With speed-controlled
impact experiments using essentially a stress strain test, we made more precise mea-
surements of the relative front growth rate k as a function of both the packing fraction
and suspending liquid viscosity. While the freely accelerating impact experiments of
Chap. 2 suggested that the viscosity and velocity have no role in front development,
the speed control of these experiments allowed us to see how these parameters come
into play. We saw that at a fixed viscosity, k was constant at high v0, but diminished to
zero as v0 was reduced. The location of this crossover changed with the suspending
liquid viscosity, occurring at higher v0 for less viscous suspensions. Additionally, we
could collapse different k curves by plotting them against the product v0η, suggest-
ing that the “melting rate” of the suspension is proportional to 1/η. Finally, we were
able to show that the dependence of the saturation value of the relative front growth
rate in suspension is consistent with the predicted form from the 2D experiments,
provided that the cornstarch particles in suspension jam at φJ ∼ 0.53.

In regard to the physics of suspensions, our work has a few major implications.
First, we were able to show that it is the transient behaviors that lead to the interesting
physics of dense suspensions during impact. While the typical approach in the past
had been to drive suspensions until they reached a steady state response, it is now
clear that we might gain a great deal of understanding from focusing on the behaviors
before this stable response is reached. For example, it now seems very relevant to ask
whether or not the viscosity of a sheared suspension depends on the shear strain (not
just the shear rate, as has been previously assumed). Similarly, we can also wonder to
what degree the properties of suspensions depend on system size, as we showed that
the behavior of impact changed dramatically if the growing solid reached the lower
boundary. Second, our work gives one of the first predictive connections between
suspension behavior and jamming. Specifically, we showed that the growth of the
saturation value of the relative front growth rate is consistent with the theoretical
form we deduced from our dynamic jamming experiments with disks. Along with
the proportionality between normal and shear stresses found in rheological measure-
ments, this strongly encourages us to look at the physics of very dense suspensions
with jamming in mind.

Outside of the physics of suspensions, our work points in a new direction for the
jamming community, namely dynamic jamming. As we mentioned previously, most
experiments in jamming have been concerned with static properties of the jammed
state, such as the bulk modulus, shear modulus, or the specific value of φJ . The
jamming fronts we observe in suspension and in the 2D disk system show that there
is a variety of fascinating behaviors associated with time-dependent process through
which a jammed system is formed. We showed that the point at which a system jams
can be determined experimentally by looking at the speed of jamming fronts. We also
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discovered an emergent lengthscale, the width of the jamming front, that diverges on
approach to jamming. The growth of this lengthscale on approach to φJ is reminiscent
to other divergent lengthscales measured in simulations of static granular systems,
strongly suggesting the two may be related. More work needs to be done to concretize
this connection, but if shown to be the case this has the important implication that
some of the elusive features predicted in the “static jamming” literature may have
more easily accessible vestiges in dynamic jamming.

While we feel that the contributions we have made are important, we have uncov-
ered just as many important questions along the way. In suspension, these mostly
have to do with the role of the suspending liquid. Specifically, we wonder what sets
the timescale for whether or not dynamic jamming occurs? Why do particles get
caught up in the front rather than moving out of the way laterally, as a normal liquid
would? What role does the liquid viscosity and particle packing fraction have on the
jamming front width? What is the failure criterion that leads to penetration behav-
ior in suspension? And why does the suspension seem to jam at a slightly lower
value than might be expected? In regard to dynamic jamming itself, our questions
are focused on the nature of the front width. Can we predict how the front width
should grow with packing fraction? What changes would occur in the absence of
interparticle friction? Or if the particle motion is not damped by inelasticity and
external friction?

Answering these questions promises to be a lot of fun.



Appendix A
Penetration Regime in Freely
Accelerating Impact

For sufficiently high speeds, the impact behaviors discussed in Chap. 2 change
dramatically. In particular, rather than pushing the suspension surface downward and
creating the surrounding depression, the rod penetrates into the suspension. As with
the failure for speed-controlled impact discussed in Chap. 4, we also see cracks shoot
out from the impact site, which may be related to the fracture seen by Roché et al.
[1]. The penetration of the rod is especially evident in the surface depression mea-
surements we make with the laser sheet, as in Fig. A.1, where we show how the rr =
0.93 cm rod penetrates into the suspension surface when it hits with an impact speed of
4.0 m/s (note from Fig. 2.4b that the penetration transition occurs near v0 ∼ 3.0 m/s).
Whereas the corresponding data for an impact velocity of ∼0.5 m/s in Chap. 2 showed
a continuous color gradient across the rod-suspension boundary (indicating the rod
did not penetrate), here we see a large difference in color across the boundary. At
∼8 ms, for example, the rod has cut into the suspension by nearly a full centimeter.

As discussed in regard to Fig. 2.4, we can see the transition to the penetration
regime in the plots of apeak and tpeak versus v0. In Fig. A.2, we show how this
behavior becomes more pronounced as the rod radius rr is decreased. For the largest
rod radius, rr = 0.93 cm, we see that before v0 ∼ 3.0 m/s, tpeak is a decreasing
function of v0, while after this point it begins to curve upward slightly. At the same
velocity, apeak begins to grow less quickly with v0. If we decrease the radius of the
rod, this transition occurs at smaller v0. Beyond the transition, the apeak values for
the smaller rods are smaller, while the tpeak values are larger. Interestingly, before
the transition the curves for different radii are nearly the same.

Finally, we can also see the changes of the penetrating regime in the individual
ar versus t curves, as shown in Fig. A.3. For an impact in the pushing regime (e.g.
Fig. 2.11, where rr = 0.93 cm and v0 = 1.0 m/s), we see the smooth characteristic
peak discussed at length in Chap. 2. On the other hand, deep into the penetration
regime (e.g. Fig. A.3, where rr = 0.21 cm and v0 = 3.9 m/s) , the peak becomes
almost unrecognizable. Rather than a soft, parabolic shaped peak, we see slow growth
to an extended peak followed by an abrupt fall off. This shows that the mechanism
for the rod slowing in the penetration regime is very different, and likely much more
complicated, than what we see in the pushing regime.
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Fig. A.1 Space-time plot of surface depression in penetration regime. Depth of surface depression
zs (color axis) versus radial coordinate r and time t (with parameters η = 1.0 cP, φ0 = 0.49, and
v0 = 4.0 ±0.1 m/s). The black dashed line indicates the boundary between the rod and suspension.
In contrast with Fig. 2.11, the discontinuous color scale across the boundary here shows that the rod
penetrates significantly into the suspension

Fig. A.2 Increased
penetration with smaller rod
radii. a Peak acceleration
apeak versus impact velocity
v0 for rod radii rr = 0.93 cm
(solid squares), 0.48 cm (open
squares), and 0.21 cm (open
diamonds). Suspension has
η = 1.0 cP and φ0 = 0.49.
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Fig. A.3 Changes to
acceleration curves in
penetration regime. a Rod
acceleration ar versus t for
rod radii rr = 0.93 cm and
impact speed v0 = 1.0 m/s,
i.e. in the pushing regime.
Note the smooth, inverted
parabola character to the peak.
b ar versus t for rr = 0.21 cm
and v0 = 3.9 m/s, i.e. deep in
the penetration regime. The
peak of the curve flattens out
and then abruptly drops to
zero
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Appendix B
Details of X-ray Experiments

We captured X-ray video of the effect of impact on the suspension interior using a
dental X-ray apparatus (Orthoscan High Definition Mini C-Arm, Model 1000-0004).
The sensitivity of this system was too low to allow us to see changes in the packing
fraction directly (as was possible with recent experiments involving the impact of a
steel sphere into a granular bed using high-speed videography and high-luminosity
synchrotron radiation [2]). Instead, we chose to investigate the suspension dynamics
by loading it with metal tracer particles. These tracers were inserted by placing them
in a line along the surface of the suspension below the rod and letting them sink into
the field of view. We used a suspending liquid viscosity η ∼ 7 cP to help the tracers
sink slowly (recall changing the viscosity has little effect on the impact dynamics).
The frame rate was limited to 30 frames per second, giving us “before” and “after”
images of the impact with a typical time separation of �t ∼ 60 ms, as in Fig. B.1. We
used particle imaging velocimetry (PIV) to calculate the local displacements between
these images (Mathematica code written by Justin Burton). The algorithm we used
had difficulty determining displacements near the suspension/air interface. However,
the shape of the depression is easily seen from the images Fig. B.1b, and this allowed
us to add “artificial” tracers (i.e. small squares of saturated pixels along the interface
to help the algorithm in this region). The variability associated with letting the tracer
particles sink into the field of view required us to take many videos in each field
of view, reject PIV data from regions in which no tracer particles were present, and
average the remaining results. The final data are the result of this procedure in four
fields of view, the boundaries of which can be seen in Fig. B.1.

The X-ray apparatus was not powerful enough to image through the large
(30 × 30 × 30 cm3) vat used for most of our experiments, and consequently we were
forced to use a smaller (10 × 19 × 30 cm3) container. The nearness of the walls to
the impactor in this container had a measurable effect on the motion of the rod,
increasing the total impulse given to it. We show this in Fig. B.2, where we plot ar ,
vr , and zr versus t for impact speeds v0 ≈ 1 m/s in the large and small containers.
As the figure shows, the values of apeak are similar for both containers, but the width
of the peak is larger in the smaller container. This leads to a subtle bounce in the
smaller container (note vr > 0 m/s for ∼11 ms � t � 28 ms) and a subsequent

© Springer International Publishing Switzerland 2015
S.R. Waitukaitis, Impact-Activated Solidification of Cornstarch and Water Suspensions,
Springer Theses, DOI 10.1007/978-3-319-09183-9

65



66 Appendix B: Details of X-ray Experiments

Fig. B.1 Before and
after images from X-ray
experiments. Tracer particles
in suspension before (a) and
∼25 ms after (b) impact. Each
image is composed from four
fields of view. Although more
suspension was imaged prefer-
entially to the right of the rod,
the container extends equally
on both sides. PIV analysis
between images such as these
were averaged to obtain the
impact displacement field

2 cm(a)

(b)

“pull” from the suspension as the rod moves upward (a < −g starting at t ∼ 20 ms).
Despite these differences, the overall rod dynamics remain qualitatively similar, and
the qualitative features of the displacement field from the smaller container are in
agreement with what can be observed externally in the larger container (via the laser
sheet measurements).
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Fig. B.2 Changes in impact
dynamics caused by smaller
X-ray container. a Acceler-
ation ar versus time t for
30 × 30 × 30 cm3 (dashed
line) 10 × 19 × 30 cm3 (solid
line) containers. The small
and large containers have sim-
ilar values for apeak , but the
smaller container causes ar to
remain larger for an extended
period of time. b vr versus
t with coloring same as in
(a). The increased impulse
leads to a subtle bounce of the
rod (vr > 0 m/s2 for ∼11 ms
� t � 28 ms). c zr versus t
with linestyles same as in (a)
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Appendix C
Detailed Discussion of Added Mass

The collision of a solid object with a liquid is often modeled with the concept of added
mass [3–5]. The key idea is to treat the loss of momentum of the impactor as resulting
from an inelastic collision with an object whose mass ma grows throughout the
collision. This allows one to use Newton’s laws and write the simple force equation

(mr + ma)
d2zr

dt2 = −dma

dt
vr + Fext , (C.1)

where Fext accounts for all other forces not directly related to impact. Realistically,
the situation is more complicated; the flowing region of liquid does not all move with
one velocity but is instead varies smoothly with a velocity field. Nonetheless, the scale
of the velocities involved in the liquid flow are set by the speed of the impacting object,
and the added mass concept takes advantage of this by assuming constant liquid veloc-
ity (that of the impactor) over a finite region. The impact problem is therefore reduced
to determining an appropriate form for the added mass. Typically, this will be a func-
tion of the geometry of the impactor and the distance it has moved since impact [4, 5].

In the case of suspension impact, the data from Chap. 2 (specifically Figs. 2.9
and 2.13) show that the suspension is primarily moving downward in a region extend-
ing k|zr | below the rod and k|zr | radially around the rod. Although this is caused by
the formation of the solid column below the rod in the suspension, we can trick a
regular liquid into behaving similarly. In Fig. C.1, we show how a wide-angle cone
impacting into water or glycerine can lead to similar slowing via added mass. We
choose an opening angle 2α such that the radial extent of the cone that is interacting
with the liquid is the same as the extent of the depression in the cornstarch and water
suspension (for φ0 = 0.49, as in Fig. 2.11a), i.e.

tan(α) = k|zr |
|zr | = 12.5. (C.2)

Given the small changes in the liquid density and keeping the mass of the impactor
fixed, the impact response of the cone into these liquids is strikingly similar to the
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Fig. C.1 Added mass effect
with cone impact into regular
liquids. a Diagram illustrating
similarity between solid plug
induced flow field in the sus-
pension and conical impactor
induced flow field in a regular
liquid. b Measurements of
acceleration ar versus time t
for rod impact (v0 = 0.5 m/s)
into suspension (red line)
compared to cone impact into
water (blue points) and glyc-
erol (purple points). The cone
opening angle 2α is chosen to
match that of the depression
(tan(α)= k = 12.5)
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rod into the suspension. Both produce peaks occurring at ∼7 ms which then slowly
decay, and the heights of the peaks are both approximately 25 m/s2. The only major
difference is the existence of the second peak in the suspension impact, the signature
of the solidified column reaching the container bottom. This of course is not apparent
in the liquid experiments given they do not actually solidify.

If the force, displacement, and velocity of the impactor are known at all times,
then we can extract the form of the added mass empirically from the impact data of
Chap. 2. This is accomplished by using the momentum balance

(mr + ma)vr = mrv0 +
t∫

0

Fext dt ′ (C.3)

→ ma = mrv0 + ∫ t
0 Fext dt ′

vr
− mr . (C.4)

We can take advantage of this to directly compare the added mass required to produce
our acceleration curves to the form we have assumed in our model. In our experiment,
the external forces are the gravitational pull on the rod Fg = −mrg, the buoyant force
of the liquid displaced in the depression Fbuoy ≈ 1/3πρsg(rr + k|zr |)2|zr |, and any
residual friction between the rod and guiderails F f . Thus, we can extract the added
mass from our experimental data via the equation

ma = mrv0 − mrgt + F f t + ∫ t
0

1
3πρsg(rr + k|zr |)2|zr |dt ′

vr
− mr . (C.5)
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We find that the frictional term is only important for the lowest velocity impacts
(v0 < 0.5 m/s), where releasing the rod from rest a few millimeters above the surface
makes the rod susceptible to stick-slip just as it begins to move. We can estimate
the scale of the friction by looking at the acceleration of the rod before t = 0,
where it is generally constant and with a magnitude slightly smaller than g. In the
v0 = 0.28 m/s impact, for example, the friction is approximately constant with a
magnitude of 1/3mrg.

We plot ma versus t for several v0 in Fig. C.2a. The added mass grows more
rapidly for higher v0, but in all cases grows large enough to exceed the rod mass
(horizontal dashed line) and far exceeds the maximum added mass that would be
encountered in a regular liquid, ∼2/3πρsr3

r ≈ 2 × 10−3 kg [6, 7]. If instead we plot

Fig. C.2 Emperically
calculated added mass.
a Added mass ma versus time
t for a φ0 = 0.49, η = 1 cP
suspension with impact
velocities v0 = 1.50 m/s
(squares), 1.18 m/s (circles),
0.96 m/s (diamonds), 0.63 m/s
(triangles) and 0.28 m/s
(crosses). The horizontal
dashed line indicates the mass
of the rod. b ma versus |zr |
with same color scheme as in
(a). The black line is the form
used in the model, i.e. Eq. 2.4.
c ma versus |zr | for impact
speeds of ∼0.5 m/s in the large
(30 × 30 × 30 cm3, circles)
and small (10 × 19 × 30 cm3,
crosses) containers. The
smaller container leads to
a larger (divergent) spike in
ma at the end of the impact
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ma versus |zr |, as in Fig. C.2b, the data collapse. Furthermore, the hypothesized form
of the added mass (black line) closely follows the experimental data.

Toward the end of each impact, ma undergoes a slight increase followed by an
abrupt decrease. This is likely the signature of external forces that we have not
accounted for or phenomena that cannot be encapsulated with added mass. One
possibility is direct force transmission to the container boundaries, which would cause
the added mass to increase abruptly as the impactor suddenly begins to push against
infinitely large mass of the earth. Although we have tried to avoid this by making our
container sufficiently deep, this can also arise if the flow approaches the sidewalls,
which remains a possibility (note the radial extent of the depression is ∼12.5 cm when
|zr | = 1 cm, leaving the wall a mere 2.5 cm away). Technical difficulties prevent us
from using substantially larger containers to eliminate this effect, but we can verify it
is present by showing it is much more pronounced in smaller containers, such as the
one used for the X-ray measurements. In Fig. C.2c we plot the calculated added mass
for impact speeds of v0 ≈ 0.5 m/s in the 30 × 30 × 30 cm3 and 10 × 19 × 30 cm3

containers, which shows that the increase in the added mass is much larger, and in
fact diverges, in the smaller container (this can be explained by looking at Fig. B.2,
where we see that vr approaches zero and causes the empirically calculated ma to
diverge).



Appendix D
“Viscous” Model for Impact

The added mass model discussed in Chap. 2 and Appendix C shows how the slowing
of the rod is associated with the transfer of momentum to a growing region of moving
suspension. What is particularly insightful about this model is that it shows exactly
why no boundaries are necessary for large impact response. At the same time, it is
essentially a statement of conservation of momentum combined with empirical data
relating the size of the flowing region to the motion of the rod. To gain a little more
physical insight, we show in this appendix how similar dynamics (which are fully
solvable) can arise if we assume that the force on the rod arises from viscous drag
on the growing solid column below the impact site.

We begin by assuming that the jammed column below the impacting rod (whose
extension below the surface is h f = k|zr |) experiences viscous drag from the sur-
rounding suspension. On dimensional grounds, the drag force is

Fr = −αηsh f vr = αηskzrvr , (D.1)

where α is a coefficient of order unity. (Note we have assumed zr < 0 and vr < 0 as
there can be a sign change if we assume otherwise.) In the early stages of impact when
h f is smaller than or comparable to than rr , we expect that Fr might deviate from
this simple form. However, as the front grows very quickly, h f < rr only briefly.
In principle the coefficient α may depend on rr , but here we focus our attention
on fixed rr . This force is acting to slow both the rod and the solidified column
of suspension. However, throughout the impact process the mass of the rod we
use (mr = 0.368 kg) is much larger than the mass of the solidified column alone
(πr2

r h f < 0.1 kg if h f = 20 cm), therefore we can approximate the left hand side
of Eq. D.1 as Fr = mr ar . Next, rewrite the equation as

mrvr
dvr

dz
= αηskzrvr . (D.2)
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We can integrate this equation to solve for the velocity as a function of the rod
position, which gives

vr − v0 = αkηs

2mr
z2

r , (D.3)

This can be rewritten as the differential equation

dzr

dt
= v0 + αkηs

2mr
z2

r , (D.4)

which we can integrate to find

zr∫
0

1

v0 − αηs k
2mr

z′
r

2
dz′

r =
t∫

0

dt ′. (D.5)

The solution to this equation is the inverse hyperbolic tangent. After some rearrange-
ment, we find

zr (t) = −
√

2v0mr

αkηs
tanh

(√
αkηsv0

2mr
t

)
. (D.6)

With this in hand, we differentiate to find the rod acceleration and velocity

vr (t) = −v0sech2
(√

αkηsv0

2mr
t

)
(D.7)

ar (t) =
√

2αkηs

mr
v

3/2
0 sech

(√
αkηsv0

2mr
t

)2

tanh

(√
αkηsv0

2mr
t

)
. (D.8)

Working with the expression for ar (t), we can differentiate and set to zero to find
expressions for peak apeak and tpeak .

tpeak =
√

mr

2αkηsv0
Log(2 + √

3) (D.9)

apeak =
√

2αkηs

mr
v

3/2
0 sech2(

1

2
Log(2 + √

3))tanh(
1

2
Log(2 + √

3)). (D.10)

To determine the appropriate coefficient α, we performed experiments in which
we push the aluminum rod of radius rr = 0.93 cm with constant velocity v0 into the
surface a high viscosity silicone oil (Clearco pure silicone fluid, η = 9,77,000 cP,
ρl = 0.977 kg/L). Figure D.1a shows the force on the rod Fr as a function of the
insertion depth |zr | for a few different velocities. As can be seen, the force on the
rod grows linearly with |zr | for all velocities, but grows faster as v0 is increased.
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Fig. D.1 Viscous force on
a submerged rod. a Force
Fr versus distance of rod
edge below surface |zr | for
rod of radius rr = 0.93 cm
and silicone oil with density
ρl = 977 kg/m3 and viscosity
η = 9,77,000 Pa s. Curves
have push speeds (top to
bottom) v0 = 8.0, 6.0, 4.0, 2.0,
1.0, 0.5 and 0.1 mm/s. b Slope
of curves in (a) Fr /|zr | versus
v0. Dashed line fit is linear
with offset 2.6 N/m and slope
410 Ns/m2
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Comparing the curves for v0 = 8.0 and 4.0 mm/s, however, shows that the slope of
these lines is not strictly linear with the velocity. This is because at these slow speeds
we also have to account for the buoyant force on the submerged rod (an effect we
can ignore during impact because |vr | is much higher). The full force on the rod in
these measurements should be given by

Fr = πr2
r ρlg|zr | + αη|zr |v0, (D.11)

which shows the slope of the curves, Fr/|zr |, should have the form

Fr/|zr | = πr2
r ρlg + αηv0. (D.12)

In Fig. D.1b, we plot the slopes of the force displacement curves versus the push
speed v0. Fitting these data to Eq. D.12, we find an offset of 2.7 N/m (close to the
predicted what we would predict from buoyancy πr2

r ρlg ≈ 2.6 N/m) and a slope that
is consistent with α = 0.42.

With the prefactor α, we can now test the “viscous rod” model against the impact
data in Chap. 2. In Fig. D.2, we again present the data for apeak and tpeak versus v0
for a suspension with φ0 = 0.49 and η = 1.0 cP (as in Fig. 2.4). The dashed lines
are fits to Eq. D.10, which show that the growth apeak is consistent with the scaling

v
3/2
0 as is tpeak with the scaling v

−1/2
0 (in the velocity range 0.3–3.0 m/s, i.e. after

http://dx.doi.org/10.1007/978-3-319-09183-9_2
http://dx.doi.org/10.1007/978-3-319-09183-9_2
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Fig. D.2 Peak scalings in
“viscous” model. a Peak
acceleration apeak versus v0
for suspension with φ0 = 0.49
and η = 1.0 cP. Fit is ∝ v

3/2
0 ,

as in Eq. D.10, with free para-
meter ηs = 2650 ± 60 Pa s.
b Time to peak tpeak versus v0
for same suspension parame-
ters as in (a). Fit is ∝ v

−1/2
0 ,

as in Eq. D.10, with fit para-
meter ηs = 1,900 ± 100 Pa s.
Fits in a and b are only per-
formed with data for 0.3 m/s
< v0 < 3.0 m/s
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gravity becomes irrelevant but before the rod begins to penetrate). Given we know
ρs , k, and α, the only free parameter in these fits is the effective viscosity of the
suspension ηs . Fitting for both tpeak and apeak separately yields an average value
ηs = 2260 ± 390 Pa s (note we get values ηs = 2650 ± 60 Pa s and 1900 ± 100 Pa s
for the individual apeak and tpeak fits, respectively).

As we did with the added mass model in Chap. 2, we present the ar , vr , and zr

versus t curves for the experiment next to the results for the “viscous” model in
Fig. D.3. We go beyond the simple law in Eq. D.1 (which we kept simple for the
sake of determining scaling relations) to also include the effect of gravity on the rod,
the buoyant force from the depression, and the added mass effect arising from the
growing column, giving rise to a full force law

(mr + πρsr2
r k|zr |)d2zr

dt2 = αkηs zr
dzr

dt
− mrg + 1

3
πρsg|zr |(rr + k|zr |)2. (D.13)

We use the previously calculated values for all parameters (ηs = 2260 Pa s, α = 0.42,
and k = 12.5) and solve the equation numerically. As can be seen, this compares
perhaps even more favorably than the added mass model, reproducing very well
both the height and the timing of the peaks. The model only seems to fail at large
t , where the slowing is overestimated. This may be caused either by the melting of
the solid, which would tend to reduce all slowing forces, or by disconnection of the
rod from the suspension surface (which would have a similar effect). We remark

http://dx.doi.org/10.1007/978-3-319-09183-9_2
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Fig. D.3 Comparison of “viscous” model with experimental results. Experimental (left column) and
numerical (right column) results for acceleration (a), velocity (b) and position (c) of rod impacting
into suspension with η = 1.0 cP, φ0 = 0.49, and impact velocities v0 = 1.50 m/s (solid lines),
1.18 m/s (dots), 0.96 m/s (small dash), 0.63 m/s (large dash) and 0.28 m/s (alternating small/large
dash). Numerical results are Mathematica solutions to Eq. D.13 with parameters mr = 0.368 kg,
k = 12.5, rr = 0.93 cm, ρs = 1295 kg/m3, α = 0.42, ηs = 2260 Pa s and initial conditions
vr (0) = −v0 and zr (0) = 0

that the value for ηs is surprisingly close to the “geometric viscosity” of similarly
packed cornstarch and water suspensions as measured just before the system reaches
τmax [8]. Interestingly, the data in Fig. 2.4 suggest this effective viscosity is still
independent of the suspending liquid viscosity. This could be a consequence of
the particle interactions transitioning from liquid (viscous) dominated to particle
(friction) dominated, as proposed by [9] and seen in simulations by Seto et al. [10].

http://dx.doi.org/10.1007/978-3-319-09183-9_2


Appendix E
Cornstarch Particle Modulus

Much of our work suggests that when cornstarch particles are immersed in water, they
remain essentially hard particles that interact primarily through steric repulsion. To
test this proposition, and noting that there is little literature on the physical properties
of cornstarch as a material (aside from the food science literature, which tends to
focus on its gelatinization at higher temperatures [11–13]), we decided to study
them using an atomic force microscope (AFM, Veeco Multimode 8 with ScanAsyst).
This not only allowed us to take a detailed look at the surface morphology of the
particles, it also enabled us to measure the material’s Young’s modulus. We performed
measurements on dry particles, but we also looked for softening effects by soaking
the particles in water overnight (∼12 h), blowing the excess water off the particles,
and then quickly putting them under the microscope.

Figure E.1 shows a schematic of the measurement operation. We glue individual
cornstarch particles to a microscope slide. Then, we probe the particle surface by
bringing the AFM cantilever (Tap525A, P/N MPP-13120-10, nominal spring con-
stant ∼200 N/m) into contact with the particle surface, which causes it to deflect.
From the deflection of the laser on the upper side of the cantilever, we are able to
measure both the vertical position of the cantilever as well as the force exerted on it
as it pushes into the cornstarch particle.

Figure E.2 shows a typical plot of the force on the AFM cantilever Fc as a function
of the displacement of the cantilever from the particle surface δc (δc > 0 indicates
the cantilever is above the surface). During the approach (black curve), virtually no
force is felt until the cantilever is within 2 nm of the surface, at which point it feels
a slight attraction. Once it begins to physically press against the surface, it feels a
strong repulsive force, which is also seen on the withdraw from the surface. Finally,
as it is pulled away, it feels a slight “stickiness” as the surface tries to hold onto it.

In practice, these force-displacement curves are taken with respect to an arbitrary
vertical lab coordinate. The location of the surface and transition the variable δc is
determined from the curve as the average position of the minima of the approach and
retraction curves. Determining the height of the surface this way while scanning the
cantilever over a large area of the particle allows us to generate a height profile of the
surface, a typical example of which is shown in Fig. E.3. These data show that the

© Springer International Publishing Switzerland 2015
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positioning laser

AFM cantilever

cornstarch grain

microscope slide
glue

Fig. E.1 Probing cornstarch as a material with an AFM. Individual cornstarch particles are glued
to a microscope slide. We measure their surface properties by poking them with an AFM cantilever,
which gives us high spatial frequency access to the particle height profile and local modulus. Note
this figure is not to scale
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Fig. E.2 Typical AFM force-displacement curve. Force measured on AFM cantilever Fc versus
distance of cantilever from particle surface δc. The solid curve corresponds to the approach toward
the particle, while the dashed curve corresponds to the retraction. The thick black line on the
retraction curve indicates where the fit to extract the Young’s modulus is performed (Eq. E.1). The
adhesive “sticking force”, Fadh , is also indicated

cornstarch particles are remarkable smooth, with fluctuations in the height of only
∼30 nm over a lateral scale of 1µm.

We can also use the force curves to determine the cornstarch Young’s modulus. If
we model the cantilever/particle interaction as an infinitely hard sphere (the cantilever
tip) being pressed against a compliant plane (the particle surface), we can extract the
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Fig. E.3 AFM 2D map of cornstarch surface height. Height profile of cornstarch particle over 1µm2

as determined by scanning AFM cantilever in tapping mode over particle surface. The profile reveals
the particle is very smooth, with height fluctuations of only ∼30 nm on a lateral scale of 1µm

Young’s Modulus by fitting the force-displacement curve to the prediction of the
Derjaguin, Muller, and Toropov model [14], given by the equation

Fc = 4

3
E

√
rtδ3

c + Fadh, (E.1)

where rt is the radius of curvature of the AFM tip and Fadh is the maximum adhesive
force on the cantilever as it retracts from the surface. Before each set of measurements,
we measured the tip radius by pressing the cantilever into a sample of known modulus,
typically finding rr ≈ 5 nm. The adhesive force Fadh is the minimum of the force
curve during the retraction and is determined for each tap in real time, as indicated
in Fig. E.2. Finally, we note that this fitting is only performed for a particular section
of retraction curve, as indicated by the bold portion of the curve in Fig. E.2. This
ensures that there is mechanical contact throughout the measurement.

As with the height data, we can perform a 2D scan with the cantilever to generate
plots of the modulus over large areas of the particle surface. In Fig. E.4, we show such
2D modulus maps for a dry particle and a particle that has been soaked overnight in
water (examined within 1/2 h of being submerged). The maps reveal that the modulus
changes slightly over the surface, ranging from an approximate lower bound of
∼1.0 GPa to a maximum value of ∼9.0 GPa. Additionally, we see that the variation
is not noise but actually changes systematically from one region of the particle to the
next. (Although this is likely not true for the particularly soft regions that appear to
meander in vein-like structures, which show spatial correspondence with crevasses
in the height profile.) Surprisingly, the results for the water submerged particles are
not that different from the dry particles. In Fig. E.5, we plot the average modulus
(defined as the average value of all the data in the 2D map) for 20 different particles
(10 wet and 10 dry). These data show that dry particles are only slightly harder than
wet particles, with moduli averaged over all particles of 4.9 and 3.5 GPa, respectively.
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Fig. E.4 AFM 2D map of
cornstarch modulus. Young’s
modulus E as determined
from Eq. E.1 over a 1µm2

area of the surface for (a) a
dry particle and (b) a particle
∼1/2 h after being fully sub-
merged in water for ∼12 h
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Fig. E.5 Average dry and
soaked particle moduli.
Spatially averaged Young’s
modulus E for dry particles
(solid diamonds) and soaked
particles (open circles) for 10
different particles. Averages
over different particles are
E = 4.9 GPa for the dry
particles and 3.5 GPa for the
wet particles
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These numbers compare favorably with the results of Lionetto et al. [15] and Johnson
[16], who determined the bulk modulus via speed of sound measurements to be
approximately ∼5 and ∼10 GPa, respectively (note the bulk and Young’s modulus
should be related by a constant of order unity). For comparison, these numbers
indicate that the particles are approximately as hard as ABS plastic (made to use a
typical cell phone casing, for example).



Appendix F
1D Model of Particles Immersed
in a Viscous Liquid

In Chap. 3, we showed that for the 2D model system of disks sitting on a plane, the
relative front growth rate k was solely a function of the system packing fraction and
the rake velocity. In Chap. 4, we showed that although there was speed dependence for
the front growth in the cornstarch and water suspension, the increase in the saturation
value as a function of packing fraction was consistent with this result (with the only
difference being a different φJ for the 3D system). This is interesting given that
the particles in suspension are surrounded by a viscous liquid which, according to
Eq. 1.2, causes their interaction to differ from the simple steric repulsion of the disk
system. In this appendix, we investigate this point by computationally exploring the
role lubrication forces in a simple, 1D system of particles.

We perform numerical simulations in which we dynamically calculate the posi-
tion, velocity, and acceleration for a line of 1,000 particles (diameter d, initial inter-
stitial spacing δ0) in a liquid with dynamic viscosity η pushed from one end with a
velocity v0, as illustrated in Fig. F.1. As discussed in Chap. 2, the immersion of the
particles in the liquid leads to lubrication forces between neighboring particles even
before they are in contact. In the limit where the particle diameter is much larger
than the interstitial spacing, the force on the i th particle is

Fi = 3πηd2

8

(
vi−1 − vi

δi−1
+ vi+1 − vi

δi

)
, (F.1)

where vi is the velocity of the i th particle and δi is the spacing xi − xi−1 [17]. The
system begins with all vi = 0 m/s except for the leftmost particle, whose velocity is
fixed at 1 m/s throughout the simulation. Subsequent values of xi , vi , and ai for the
rest of the particles ares found by using Newton’s laws and an Eulerian time stepping
algorithm with timestep �t = 1 × 10−10 s. To avoid numerical issues as the spacing
between particles approaches zero, we cutoff this interaction once two particles have
a surface separation less than d/1,000 and force these particles to move with v0,
similar to what might be expected for particles with finite roughness.
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d 0
v0

Fig. F.1 Schematic of dynamic jamming fronts with liquid-immersed particles in 1D. Liquid-
immersed particles of diameter d are aligned with initial interstitial spacing δ0 and pushed from
one end with a constant velocity v0. The dynamic viscosity of the liquid is η, leading to lubrication
forces between particles before physical contact

Figure F.2a shows the velocity profiles generated from simulations with d =
10µm, δ0 = 1µm, ρ = 1590 kg/m3, v0 = 1 m/s, and η = 1.0 cP (red), 10 cP
(orange), 50 cP (green) and 100 cP (blue) at two times t1 = 0.34 ms and t2 = 0.68 ms.
After a brief initialization, these profiles translate laterally at a constant velocity
without changing shape. We define the solid front as the position where vi is closest
to 0.5 v0. As can be seen from Fig. F.2b, this point is independent of η throughout
the simulation. In fact, the front speed is identical to the results found in Chap. 3
(Eq. 3.9) with the initial packing fraction φ0 = d/(d + δ0) and final packing fraction
φJ = 1.0 (black dashed line in Fig. F.2b.

The independence of the front speed on the viscous interaction might seem surpris-
ing, especially in light of the results for shocks in granular systems above jamming
[18, 19] where the speed is directly tied to the Hertzian force law between over-
lapping particles. In that case, however, the particle-particle interaction was largely
conservative (although damping can be included, Gomez et al. showed it had little
effect), whereas here the interaction is purely dissipative and strongly dependent on
the relative velocity. This difference has dimensional implications. In particular, the
Hertzian constant of the particles in shocks above jamming, which is proportional
to the material’s assumed Young’s modulus E (units Kg m−1 s−1), makes it possible
to construct a velocity scale that is independent of the push velocity (i.e. the linear
sound speed). In the present case, however, the absence of any spring-like interaction
means that all velocity scales are set by v0 and geometry.

Although the viscosity of the suspending liquid does not affect the front speed, it
does affect the front width (as can be seen in Fig. F.2a). In Fig. F.2c, we zoom in on
the features to show that as the viscosity is increased, so too is the front width. This
effect is independent of the front broadening discussed in Chap. 3 which occurred
because of the disordered nature of the system (here the “jammed” state is actually
a crystal). Although we could not see the effects of this in the freely accelerating

http://dx.doi.org/10.1007/978-3-319-09183-9_3
http://dx.doi.org/10.1007/978-3-319-09183-9_3
http://dx.doi.org/10.1007/978-3-319-09183-9_3
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Fig. F.2 Front features with
liquid-immersed particles
in 1D. a Particle velocities
vi versus positions xi for
times 0.34 and 0.68 ms
(simulation parameters
d = 10µm, δ0 = 1µm,
ρcs = 1,590 kg/m3,
v0 = 1 m/s, and η = 1.0 cP
(red), 10 cP (orange), 50 cP
(green) and 10 cP (blue).
b Solid front trajectory x f
versus t . Colors are the same
as in (b). The front moves
with velocity (relative to the
lab frame) x f = v0(d/δ0 +1)t
(black dashed line). c Closeup
of front profiles show that front
width grows with increasing
viscosity
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impact experiments of Chap. 2 or the speed-controlled impact experiments of Chap. 4,
characterizing the relative importance of viscous broadening versus broadening
brought on by disorder in liquid immersed dynamic jamming is a topic with rel-
evance to many other phenomena and should be investigated.
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