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Preface

Semiconductor physics is a very interesting field for both applied and fundamental
research. The physical properties of materials are often studied by applying per-
turbations to a sample and studying the results of these perturbations. Then, if one
wants to understand the observed effects in detail, one has to simulate the experi-
mental conditions carefully. We are here especially interested in the understanding
of experimental findings, reflecting the electronic or excitonic fine structure of
crystalline semiconductors.

The detailed interpretation of perturbations applied to a material needs a theo-
retical modeling of the system. This task can be much simplified if the system is
described through an effective Hamiltonian, which reproduces the physical prop-
erties of the system. It is important that this model Hamiltonian is invariant under
the same symmetry operations as the system. It is the aim of this book to discuss the
construction of such effective Hamiltonians describing the electronic elementary
excitations of simple crystalline semiconductors (called “excitons”), give some
examples of its parameterized form, and discuss the role of symmetry-breaking
effects. In this book, we concentrate on excitons in direct-gap bulk semiconductors
with zinc blende or wurtzite structure and on the fine structure of the exciton ground
state.

We construct an effective Hamiltonian of a semiconductor system starting from
angular momentum operators, acting on electron states of the conduction or valence
bands. Their eigenfunctions are adapted to the crystal point-group symmetry. We
now consider some symmetry-breaking interactions in this angular momentum
subspace of electron states as an example. Then, the electron spin is considered
through building the product space of the angular momentum eigenstates and the
spin states. The resulting spin orbitals are eigenstates of the total angular
momentum operator, and they were again adapted to the crystal symmetry. The
effective Hamiltonian, defined in this product space, determines the multiplet
structure of states in the presence of “spin—orbit” or “crystal-field” interaction. The
full Hamiltonian may show (when compared to the former subspaces) new
symmetry-breaking interaction terms, which have their origin in the spin—orbit
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coupling. They manifest themselves, e.g., in the electronic dispersion, in Stark or
Zeeman effect, or in a dependence on applied strain.

Exciton states are then formulated in the product space of conduction- and
valence-band states where the exciton-binding energy and the electron-hole
exchange interaction show up in a parameterized form. Spin—orbit, crystal-field,
and exchange interaction may lead to an energy shift of the multi-component
exciton ground state and lift its degeneracy. These energy variations depend
strongly on the symmetry of the considered exciton state and that of the interaction
term. In addition, similar to spin—orbit coupling, exchange interaction can give rise
to new, symmetry-breaking interaction terms in the effective Hamiltonian. Their
relative importance can be estimated by comparing the strength of the spin—orbit
coupling to that of the exchange interaction.

If exciton states are dipole active, they give rise to interesting quasiparticles that
can be studied in optical experiments. Such “exciton polaritons” (the resulting
coupled light-matter excitations) exhibit nicely in their energy dispersion the
symmetry-breaking effects to which excitons are subject. The determination of
exciton—polariton dispersion relations provides a powerful tool for understanding
the influence of external or internal perturbations on the physical properties of
semiconductors.

This textbook is written for graduate students or young scientists, who want to
understand and simulate experimental findings reflecting the electronic or excitonic
fine structure of crystalline semiconductors. The level of presentation throughout
this book has been chosen to be intelligible to graduate university students. Of
course, a basic knowledge of solid-state physics (crystalline structure, energy-band
structure, reciprocal space, elements of group theory) is required, but principle
concepts are recalled in the appendices of this book.

We would like to mention the intense and fruitful discussions that we had over
the years of cooperation with our colleagues M. Gallart and P. Gilliot (Strasbourg)
and J. Kocka, P. Maly, and J. Valenta (Prague), which we gratefully acknowledge.
We also highly appreciate the creative atmosphere in the “Département d’Optique
Ultrarapide et de Nanophotonique” at the “Institute de Physique et Chimie des
Matériaux de Strasbourg (IPCMS)” and in the “Department of Thin Films and
Nanostructures” of the “Institute of Physics,” Academy of Sciences of the Czech
Republic as well as the inspiring long-term tradition of solid-state physics research
in the “Department of Chemical Physics and Optics” at the “Faculty of
Mathematics and Physics” of Charles University in Prague, Czech Republic. Part
of the results presented here was obtained within project P108/12/G108 of the
“Czech Science Foundation.” Support through the Ministry of Education, Youth
and Sports of the Czech Republic via the research infrastructure “Laboratory of
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Nanostructures and Nanomaterials,” project LM2015087, is also greatly acknowl-
edged. One of the authors (I. P.) thanks the IPCMS for kind hospitality during
numerous visits in this institution. In addition, we are indebted to the IPCMS for the
technical and instrumental assistance and support, which it has afforded to us.

Strasbourg, France Bernd Honerlage
Prague, Czech Republic Ivan Pelant
December 2017
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Chapter 1 ®)
Introduction Check for

1.1 Influence of Symmetry Breaking on the Physical
Properties of Semiconductors

This textbook deals with the electronic properties of bulk semiconductors. In the
narrower sense of the word, it sets itself the task of explaining how symmetry of the
crystal lattice and its breaking due to various external and internal perturbations are
reflected in the physical (predominantly optical) properties of semiconductors. The
level of presentation throughout the book is based on matrix formulation of quantum
mechanics, on at least partial knowledge of group theory, and, of course, on solid
state physics basic concepts such as energy-band structure and reciprocal space. All
these disciplines might seem to be quite difficult, but one should keep in mind all the
time that they have been developed in order to help us to make up proper experiments
and to understand the replies we receive in the form of their results. To elucidate the
motivation behind writing this book, let us now discuss a few selected experimental
results from the field of semiconductor physics, in order to show where and why
the concept of symmetry is helpful if not indispensable for understanding and/or
designing the electronic properties of solids.

Non-contact optical probing belongs among the most frequent techniques being
applied to gather information about electronic states in solids. Photoluminescence
and reflectance measurements in the optical frequency range are usually very sensi-
tive to optical excitation of electrons across the band gap. A typical photolumines-
cence set-up is shown in Fig. 1.1 as adapted from [1]. A c.w. laser beam, focused
by the lens L, is used to excite a sample fixed in a liquid He-cryostat. The pho-
toluminescence radiation is collected by the lens L, and sent to a monochromator.
The dispersed luminescence radiation is detected by a photomultiplier tube (PMT).
(Nowadays, the PMT is often replaced by a charge-coupled device (CCD) detector.)
An electrical signal is then fed into a photon counter and displayed on a screen.
Alternatively, the laser light can be switched on and off to reveal photoluminescence
decay times at a fixed wavelength.

© Springer International Publishing AG, part of Springer Nature 2018 1
B. Honerlage and 1. Pelant, Symmetry and Symmetry-Breaking

in Semiconductors, Springer Tracts in Modern Physics 279,
https://doi.org/10.1007/978-3-319-94235-3_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94235-3_1&domain=pdf

2 1 Introduction

A pulse
drive gen.

PMT Zmonoch. A/ laser

'

photon = personal - spectral
counter ——| computer / \’VL distribution
| I =
gate LL
{ ¥
interval "N .
p t
TR %, ime decays

signal averager

Fig. 1.1 Typical experimental arrangement for photoluminescence study. A c.w. laser beam,
focused by the lens L, is used to excite a sample fixed in a liquid He-cryostat. The photolumines-
cence radiation is collected by the lens L and sent to a monochromator. Dispersed luminescence
radiation is detected by a photomultiplier tube (PMT). (Nowadays, the PMT is often replaced by
a charge coupled device (CCD) detector.) Electrical signal is then fed into a photon counter and
displayed on a screen. Alternatively, the laser light can be switched on and off to reveal photolumi-
nescence decay times at a fixed wavelength. Adapted from Ref. [1]

A variety of experiments can be performed using photoluminescence spec-
troscopy, comprising both the spectral and temporal resolutions. An advantage of
photoluminescence spectroscopy is that, in principle, samples of irregular shape and
requiring (in most cases) no special care of their surface can be used for measure-
ments. On the other hand, photoluminescence itself is extremely sensitive to the
presence of unintentional perturbations as impurities, which can sometimes make
the interpretation of experimental results ambiguous [2]. The same set-up as shown
in Fig. 1.1 can be used, after proper modifications (consisting in replacing the exci-
tation laser by e.g. a broadband lamp) to measure reflectance, i.e. to take spectra of
radiation reflected from the sample surface. In this case, however, the surface should
either be freshly cleaved or carefully polished, or high-quality thin films deposited
on smooth substrates have to be used. Usually the spectra are acquired at very low
temperatures (7" = 2—10 K) since in this case the spectral features are neat and sharp,
as they are got rid of the influence of crystal lattice vibrations.

An example of outputs from reflectance and photoluminescence measurements
is shown in Fig. 1.2. At low temperatures, the principal response of a semiconductor
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to exciting radiation with photon energy close to the band gap is driven by the
creation and annihilation of bound electron-hole pairs: the so-called excitons. These
quasiparticles are treated in detail in the Chaps. 4, 5, and 7 of the present book. Their
resonances manifest themselves, if explained in a simplified fashion, either as an
“oscillation” or a “wobbling” in the reflectance spectrum (see Fig. 1.2, upper curve)
or as a corresponding narrow line in the photoluminescence emission spectrum (see
Fig. 1.2, lower curve) [3].

Now let us turn finally our attention to situations where a certain knowledge of
symmetry principles is required if one wishes to interpret correctly all details of
the experimental outputs. One of the most investigated semiconductors during the
last decades seems to be gallium nitride GaN and its alloys (especially InGaN and
AlGaN). This is since super-bright ultraviolet (UV), blue, green, and white light-
emitting diodes and injection lasers based on these materials have been achieved.
Their development was acknowledged by rewarding the Nobel Prize to three Japanese
researchers (S. Nakamura, I. Akasaki, and H. Amano) in 2014. This means that
predominantly the optical properties of GaN have found very successful applications
in everyday life. Many prominent laboratories worldwide have been involved in
research of GaN luminescence properties; in terms of the mission of this book it will
be of interest to discuss and compare selected experimental results.

Figure 1.3 displays low-temperature photoluminescence (upper two curves) and
reflectance spectra (lower two curves) of several GaN thin films in the exciton spectral
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range, i.e. in the near UV region around 350 nm (photon energy ~ 3.5 eV). It should
be noted here that GaN can crystallize in both, cubic zincblende (7, point-group
symmetry) and hexagonal wurtzite (Cg, ) structure. By far the most common appears
to be the hexagonal wurtzite structure and the spectra in Fig. 1.3 are obtained with this
GaN modification. X 4 and Xz denote inter-band transitions associated with A- and
B- excitons, respectively. The lowest curve characterizes a film grown on bulk GaN
substrate, the remaining curves were acquired on films grown on sapphire substrates.
Thicknesses of the films vary between 1.5 and 10 wm. The curves are adapted after
[4-7].

Figure 1.4 shows the band structure of wurtzite GaN around the center of the first
Brillouin zone (i.e. around the electron wave-vector Q = 0) according to Ref. [8].
The conduction band minimum (CBM) transforms like I';. There are three valence
bands with maxima (VBM) located also at @ = 0. They are transforming like I'o,
I'7, and I'7, respectively. The holes (and associated excitons) in these bands are called
A-, B-, and C-type holes/excitons.

Free excitons manifest themselves in luminescence and reflectance (as outlined
above) through distinct spectral maxima and wavy-like singularities, respectively. We
focus our attention on the features denoted in Fig. 1.3 as X 4 and X 5. As indicated in
Fig. 1.4, the observed structures are associated with excitonic transitions from the two
uppermost valence-band maxima (VBM) A and B to the conduction band minimum
(CBM), having I'; symmetry. The spectra in Fig. 1.3 were acquired in different
laboratories but the spectral positions of the mentioned intrinsic exciton features are,
of course, expected to be essentially (within the experimental accuracy) the same.
However, a glimpse on Fig. 1.3 reveals that this is not the case. The experimental
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Fig. 1.4 Band structure of wurtzite GaN around the center of the first Brillouin zone Q@ = 0. The
conduction band minimum (CBM) transforms like I'7. There are three valence bands transforming
like I'g, I'7, and I'7 with maxima (VBM) located also at Q = 0. The holes (and associated excitons)
in these bands are called A-, B-, and C-type holes/excitons. Ay denotes the so-called “crystal-field
splitting”, E, the band-gap energy, AEap and A Epc the energy differences between A- and B-
and B- and C-type holes, respectively. Q| and Q| denote the wave-vector directions parallel and
perpendicular to the crystallographic c-axis, respectively. According to Ref. [8]

accuracy of spectral devices in the near UV range is usually in the order of ~0.1 nm
while the spectral positions of X4 and Xz vary over more than 2 nm.

What is, then, the origin of the obvious diversity in the experimental data? Disre-
garding from experimentalists’ errors and temperature dependence of optical proper-
ties (which is known to be unimportant in GaN in the temperature range 1-10 K), one
possibility remains only: mechanical strain inherently present in the thin films. Such
films (with usual thickness of the order of 1 pum) must be grown on bulk substrates in
order to assure their mechanical stability. Substrate materials with lattice constants
close to that of epitaxially grown films are requested to make sure that the resulting
films will be of good crystalline quality. Nevertheless, even a small lattice mismatch
(a few percent) results in considerably strained films. Strain can be relaxed only in
sufficiently thick films (>100 pm), usually by cracking, which deteriorates the film
quality. The importance of strain thus varies with film thickness. Both compressive
and tensile strain affect electronic and optical properties of solids due to symmetry
breaking. The samples in Fig. 1.3, being grown on different substrates (bulk GaN and
sapphire) with different thicknesses (1-10 pm), thus naturally exhibit different spec-
tral manifestations of excitonic features. To evaluate properly the effect of strain (or
mechanical deformation), detailed theoretical understanding of how the symmetry
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breaking modifies the physical properties of semiconductors is indispensable. This
book is dedicated to a systematic exposition of such phenomena.

Here, a practical note for experimentalists is in order. Similar effects as above
can enter the play when (before starting the experiment) fixing samples (as well in
the case of thin films or bulk samples) to a holder. Excessive careless tightening of
fixing screws/pads can stress the sample in an uncontrollable way and could make
any measured results incorrect! The same problem can occurs if samples are fixed
to a holder and temperature is varied, sample and holder having different dilatation
coefficients. The list of possible sources of errors is long in experimental physics
and (beside extremely careful operation) it is important to know the origin of errors
in measurements that may show up.

The strain effects just discussed above can be called “unintentional”. However,
semiconductors can be strained intentionally to engineer their electronic band struc-
ture. For instance in silicon or germanium (indirect band gap materials) a properly
applied mechanical stress modifies the many-valley band-structure, affecting the
conduction- and valence-band degeneracy factors d, and dj,, respectively.

Figure 1.5a shows a schematic of the well-known band structure of bulk silicon.
In unstressed Si there are six equivalent ellipsoidal conduction-band minima along
[100] directions (A-line), close to the Brillouin-zone boundary X. When neglecting
the spin-orbit split-off band, the uppermost valence band I'y is located at Q = 0. It
consists of two parabolic bands with different curvature. The structure is thus denoted
as [d., di] = [6,2]. Applying (via an external contact) stress along the crystal [100]
axis, the number of equivalent conduction band minima decreases: only two of six
are now the lowest ones. At the same time the valence band maximum splits into
two bands (“heavy” and “light” holes). In many optical experiments only the upper
band is involved and, consequently, this “stressed” structure is denoted as [2,1].

These stress-induced band structure modifications of silicon manifest themselves
in a quite dramatic way in low-temperature photoluminescence spectra: In optically
excited indirect gap semiconductors stability of electron-hole liquid (EHL) (a dense
system of unbound free electrons and holes) with respect to free excitons (FE) is
substantially enhanced by the multiplicity of the bands. This is because the multiple
valleys delocalize the conduction-band electrons and thus tend to lower the kinetic
energy of photo-carriers and thereby to increase the binding energy of EHL. Per-
turbing the crystal with an applied stress (i.e. removing the band degeneracy) makes
the material less favorable for the existence of EHL, which is nicely seen in exper-
iments as shown in Fig. 1.5b (adapted after [9]). At zero stress the recombination
radiation from electron-hole pairs in droplets of EHL represents a broad band at
1.083 eV (1.145 wm) while a small peak at 1.098 eV (1.129 pm) is due to FE lumi-
nescence. Energy separation between these two lines gives the binding energy of
EHL. This separation decreases with increasing stress, which indicates that the EHL.
binding energy relative to FE decreases, indeed. This observation correlates with an
increased intensity of the FE line (meaning that more free excitons occur around
the EHL droplets) while at the same time the EHL band gets narrower (meaning
that equilibrium density of electron-hole pairs in the liquid state is reduced). Fur-
ther increase of stress and a corresponding increase in density of the FE gas lead
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Fig. 1.5 (a) Schematic diagram of silicon conduction- and valence-band extrema and the effect of
[100] stress. In unstrained Si there are six conduction-band minima and two degenerate valence-
band maxima ([6,2] structure). With sufficient [100] stress a [2,1] structure is achieved. (b) Low-
temperature photoluminescence spectra of bulk crystalline silicon under increasing [100] stress, the
values of which are shown at each curve. FE, EHL, and EM denote emission lines of free exciton,
electron-hole liquid, and excitonic molecule, respectively; see text. Adapted after Ref. [9]

then to an additional interaction: a substantial number of excitonic molecules (EM)
or biexcitons can be created and, consequently, a new emission peak EM emerges,
which naturally entails reduction in the FE gas density, as signalized by a reduced
FE line intensity. Excitonic molecules are quasi-particles consisting of two electrons
and two holes. They may originate via a fusion of two excitons when the density of
the FE gas is sufficiently high.

It is obvious that in order to architect and interpret similar type of sophisticated
experiments a deep understanding of symmetry-breaking influence on electronic
states in semiconductors is essential.
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1.2 Transformation Properties in Time and Space
of Hamiltonian Operators

As we have seen in the preceding paragraph one is often confronted in experimental
solid-state physics with the problem to understand the physical properties of a specific
sample in detail. This is not always an easy task since the effects may largely depend
on the intrinsic properties of the material under consideration (as e.g. its electronic
band structure or phonon dispersion) or on extrinsic parameters (e.g. impurities,
scattering processes, perturbation by fields, energy or phase relaxation processes,
etc.).

To obtain a better understanding of the material properties, one often applies exter-
nal perturbations (as electric or magnetic fields, strain or stress etc.) to the samples.
This is for example necessary if one wants to modify or optimize different physical
properties. Another important point is the detailed interpretation of the results, which
depend also on the applied measuring process (linear or nonlinear optical processes,
electrical, acoustical etc.). Such detailed interpretations need a thorough theoretical
modeling of the system. This task can be much simplified if important system param-
eters can be extracted from the experimental results by describing the system through
an effective Hamiltonian, which reproduces the physical properties of the system.
It is important that this model Hamiltonian is invariant under the same symmetry
operations as the system under consideration. This procedure is known as “Invari-
ant Expansion of Effective Hamiltonians” [10-14]. Before starting to construct such
effective Hamiltonians in Chap. 2, let us first discuss the general symmetry properties
of a Hamiltonian in more detail.

Following Ref. [15] we consider a point-like free particle in the frame of non-
relativistic classical mechanics. The particle is supposed to move without any inter-
action in an inertial system, i.e. a system, in which time is homogeneous and space
isotropic and homogeneous. Since space and time are homogeneous, the Lagrange
function L of the particle is independent of the position vector r and of time ¢. The
Lagrange function can thus only depend on the particle velocity v, which is defined
as the variation of r with time:

e v=dr/dr.

Since the space is isotropic, however, L can only depend on the absolute value of
|v], i.e.

o L =L1%.
. .. oL
Since L is independent of r, ((9_ )=0or
r

o didr (%£)=0.

Integrating this with respect to time results in

° g—l‘ = const
v
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for the Lagrange function. Since (g—ﬁ) is independent of the direction of the particle
motion and since it depends only on the absolute value of | v |, this results in v =
const. This means that the motion of a free particle in an inertial system is described
by a constant value of the velocity, which is in a fixed direction.

On the other hand, the Lagrange function determines the equations of motion
of the particle, which have to have the same form in all possible inertial systems.
Considering two different inertial systems, which move with the infinitesimal small
velocity to each other, and transforming the coordinates of the mass point from one
system to the other, one finds:

o L = Av:=mv?/2

where the constant A = m /2 is positive and m denotes the mass of the particle. This
defines the kinetic energy

o T =mv?/2

of the particle. If we have a system containing many particles, their Lagrangians add
up. If the particles are not interacting, we obtain

2
L= Z <m%> (1.2.1)

anda =1, ..., n; where “a” indexes the particle and “n” is their total number. If the
particles are interacting in-between themselves but not with other objects outside the
system, and if the interaction is independent of time, the system is closed. Then, the
Lagrange function can be given by adding a function U (ry, ..., r,) depending only
on the particle coordinates r, to the Lagrange functions of the free particles

2
L=Z<m%> U, .. ) (1.2.2)

where T =Y m,v2/2and U (ry, ..., r,) denote the total kinetic and potential energy
of the system, respectively. The same form of the Lagrange function is obtained if a
particle is moving in a time independent field. Since the time is homogeneous, the
Lagrange function L does not explicitly depend on time. Then, the energy E

2
E:Z(m%) T U ... 1) (1.2.3)

of the system is a constant of motion and is a conserved quantity. The total energy
of the system is given by the sum of the kinetic energy, which is a function of the
masses and velocities of the particles, and the potential energy, which is a function
of the particle coordinates only. This equation is equivalent to the Hamilton function
H (which is here expressed by coordinates and velocities of the mass points, and not
through generalized coordinates and generalized momenta) describing a conservative



10 1 Introduction

system of particles. It is important to notice that energy and therefore the Hamilton
function are scalar functions.

The form of the Lagrange function shows also that time is not only homogeneous
but also isotropic: The Lagrange function or the Hamilton function are invariant if
one changes + — (—t). This means that if a motion is possible, the reverse motion
is also possible.

Energy conservation in a closed system or for a particle in a temporally constant
field that is discussed above results from the fact that time is homogeneous and the
interactions are independent of time (see Ref. [15]). (The Hamilton function does
not explicitly depend on time, i.e. %—’f = 0.) Such conservation laws are well known
and are obtained in field theory from Noether’s theorem. In our case it states that, if
the Lagrange function is invariant with respect of infinitesimal shifts of its variables
the corresponding conjugated generalized variables are conserved.

Besides energy conservation in systems, where the Lagrange function does not
explicitly depend on time, conservation laws are also valid (Ref. [15]) for momen-
tum components if the system is invariant against infinitesimal displacements along
a coordinate axis. Let us consider an example taken from classical mechanics in
order to discuss the result of an inhomogeneity or anisotropy in space. If space is
homogeneous and isotropic and a particle is not accelerated, its movement is uni-
form and rectilinear, i.e. v = const. as discussed above. If, however, the space is
inhomogeneous the movement is no longer uniform:

Consider aball that is reflected by a flat wall orientated on the (z, y) plane. Then the
momentum components parallel to the wall (p., p,) are conserved during the reflec-
tion since the space is homogeneous in these two directions (z, y). The momentum
component perpendicular to the wall p,, however, is inverted after reflection: Since
space is not homogeneous in the (x) direction, the momentum component p, after
the reflection is undetermined. It can be derived, however, from energy conservation.
The equation

E = p*/2m = pi/(Zm) + pi/(Zm) + p?/(Zm) = const.

allows two solutions for p, after the reflection process: p, and —p, such that the
absolute value of the momentum | p | and therefore the energy are conserved. p, =
const. being excluded since the ball is reflected from the wall leads to the change
px — — py after reflection in our example.

The same argumentation holds for the angular momentum components (I, [, [;)
if the system is invariant against infinitesimal rotations around any axis (x, y, 2).
Other examples concerning the Hamiltonian of a system are also given in [10].

We will mainly restrict here to electronic excitations in crystalline semiconductors
and semiconductor structures, but the procedure can also be applied to other problems
since it is quite general. As mentioned above, conservation laws are obtained in field
theory from Noether’s theorem, which is very useful whenever considering the effect
of continuous transformation groups since it relates the symmetry properties of a
physical system to these conservation laws [16].
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In general, Lagrange and Hamilton functions depend explicitly on time. In clas-
sical mechanics the Hamilton function H determines entirely the mechanical state
of the system. The total energy E then reads

E=H(q1,92,---,4qs; P1, P2y -+, Ps; 1) (1.2.4)

where H(q1, q2, ---,4s; P1, P2, - - - » Ps; t) depends on the generalized coordinates
q; and the generalized momenta p; in configuration space and on time. The number
of degrees of freedom is indicated by “s”. In addition, the equations of motion, which
connect accelerations with the generalized coordinates ¢; (which define the position
vectors r, witha = (1, ..., n)) and the generalized momenta p,,, allow to calculate
the evolution of the system. In quantum mechanics the state of the system can be

determined solving the Schrodinger equation, which can be formally written as

., OV

lhﬁ =H(@q1,q2,...,qs; )V (1.2.5)
In Eq. (1.2.5) h=h/(2 ), where h is Planck’s constant. W (g1, qa, . . ., g; t) denotes
the wave function of the system, defined in configuration space and H is the Hamilton
operator or Hamiltonian of the system. It can be derived from the classical Hamilton
function using the correspondence principle. But, when doing this, care has to be
taken [17] in order to ensure the validity of the Schrodinger equation under coordinate
transformations:

First, one uses normally Cartesian coordinates where the generalized coordinates

g; are maintained and the generalized momenta p; are replaced [17]. The correspon-
dence principle involves the following substitutions:

o E= ilid/ot
and
e pi = (h/i)0/0q;

where (i = 1,2,...,s). (Throughout the book we use the same font i both for
the imaginary unit and also to denote consecutive subscripts/indexes. We believe,
however, that confusion is excluded.) The use of Cartesian coordinates is not arbitrary
but ensures the invariance of the Schrédinger equation under rotation of axes. One
can remove this restriction and formulate the correspondence principle in a covariant
form (see [17, 18]) but this generalization is beyond the scope of this book.

Second, a difficulty occurs if different generalized variables appear in an interac-
tion term of the Hamilton function simultaneously, whose corresponding quantum
mechanical operators do not commute (as e.g. p; and g;). In this case, the interaction
term has to be symmetrized.

Let us consider an example [17]: in Cartesian coordinates the classical Hamilton
function of interacting particles is assumed to be the sum of a quadratic expression
in the generalized momenta p; (which is completely independent of coordinates), a
function, which depends only on the coordinates ¢g; of the particles, and a function
containing the generalized momenta p; in a linear form, typically
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> . pifilgi.q2 ..., q5)

where fi(q1, q2, - .., gs) depends on the coordinate g;. If this is the case, the forms
e > . pi filgi.q2, ..., q5)
and

e > . filqi.q2,....q5) pi

are no longer equivalent after the substitution according to the correspondence
principle since after the operators have been applied to the wave function
V(q1, g2, ...,qs; t) the results are different. In such cases, the interaction term has
to be replaced by its symmetric expression

o (112)Y, [pi filq1.q2.---.q9) + fi(q1. @2, - - . q5) il

before the correspondence principle is applied to this symmetrized expression. As
discussed in [17] this procedure removes the ambiguity resulting from the order
of the quantum mechanical operators and secures that the statistical interpretation
of the wave function remains consistent. The same symmetrization procedure has
to be adopted in Chaps. 3—7 when interaction terms of effective Hamiltonians are
constructed from matrix operators which do not commute.

Up to now, we have discussed how the Hamiltonian describing a quantum mechan-
ical system is obtained from the classical Lagrange function

2
L=Z<ma%) — U@ 1) (1.2.6)

and that, if U(ry, ..., r,) does not depend explicitly on time, the energy E is a
constant of motion given by

2
E= (m%) S UG ). (1.2.7)
a

p?
H = (—) + Uy, ..., 1) (1.2.8)
F Zmi

withi = (1, ..., s) denoting the degrees of freedom and p; = (h/i ) 9/0q;. Equiv-
alently, this reads

H==>"1/@m)A;+U(r,....1.) (1.2.9)
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with (a = 1, ..., n) if n particles of mass m, are considered, A, being the Laplace
operator acting on the a'" particle. The Schrodinger equation reads in its time inde-
pendent form:

H(gi,q,....q;)V(q1,92,....q95) = EY(q1,92, ..., qs), (1.2.10)

the total kinetic and potential energies of the system being given by

o > —(R/2my)A,

and
e U(ry,...,ry),
respectively.
It is important to mention at this point that the kinetic energy term has spherical
symmetry and that the potential U (ry, ..., r,) contains all the inhomogeneities and

anisotropies of the system under consideration. It follows from group theory that,
since the energy E is a real scalar quantity, the Hamiltonian H has to be a scalar
operator. As we will discuss later, it then transforms according to the one dimensional
identity representation I} of the symmetry group under consideration [11, 16] and in
the case that is interesting for us it has to be invariant under time reversal as indicated
by K.

1.3 Examples for Symmetry-Breaking Effects in Systems
with Spherical Symmetry

Let us at this stage discuss some examples concerning possible terms, which can or
cannot be present in a Hamiltonian. We consider for simplicity a single electron of
mass m in a 3-dimensional attractive spherical potential V (r). We denote by p and
r the momentum and position vectors of the electron, respectively. The unperturbed
Hamiltonian H of the particle then reads

Hy = p?/Q2m) + V(r). (1.3.1)
Let us now consider different perturbations H; in the total Hamiltonian:
H = Hy + H;. (1.3.2)
As discussed above, terms of the form
H =ap (1.3.3)

or
H2 = axr (134)
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where the coefficients a; are real numbers or real functions cannot occur in a Hamil-
tonian since H; and H, are no scalar expressions. A term of the form

H; = V3(r) (1.3.5)

on the contrary, is possible if V3(r) is a scalar function.
Possible forms of H; involving vectors would be an electric field E, which interacts
with an electric dipole moment g (describing the Stark effect)

H4 = a4 - E (136)
where the dot designs the scalar product between p and E, or
Hs =asm - B (1.3.7)

where m and B denote the magnetic moment and the magnetic field, respectively. Hs
is at the origin of the Zeeman effect or can be used to explain the spin-orbit coupling.

E (B) are even (odd) functions under time reversal, their symmetry being indicated
by KT (K ™), respectively. Products of two functions being both even or odd under
time reversal are even functions; the product of an even and an odd function results
into an odd function under time reversal. Therefore, o (m) has to be even (odd), too,
such that the product in Hy (Hs) is invariant with respect to time reversal.

This is seen for example if we consider the form of the orbital magnetic moment
m,,;, in detail: We have m,,;, = 7.l where 7, is the gyromagnetic ratio of the electron
and I the angular momentum operator. Using the definitions I = r x p (where the
vector product is indicated by “x”) and p = m v we find that [ is also an odd
function under time reversal. When multiplied with a magnetic field B, the resulting
perturbation operator Hs is an even function under time reversal, which can be present
in a Hamiltonian.

On the other hand, the dipole moment g scales linearly with the position vector r
(i.e. pp o< r). Thus, i and E appearing in Hy are even functions with respect to time
reversal and can be present in a Hamiltonian when only their time-reversal symmetry
is considered.

One can also notice that a term

H¢ = asp - B (1.3.8)

is in principle possible when constructing a Hamiltonian (Hg is a scalar operator and
invariant under time reversal since p and B are odd functions with respect to time
reversal) but it turns out that ag = 0 since a charge moving parallel to the magnetic
field is not accelerated, i.e. the Lorentz force is = 0. Then, the velocity component
parallel to the magnetic field is constant and for the other components the scalar
product is equal to zero.

We see from these examples that the symmetry properties of the considered prob-
lem give information on whether an interaction term can be present in a Hamiltonian
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or not. It does not, however, give information about its absolute value, which has to
be determined separately.

Effects of higher orders in p, r, E, or B and terms, which involve products of
these variables, can be constructed in the same way. Such perturbation terms are
in the following called “Symmetry-Breaking Effects” [12—14] and it is the aim of
this study to discuss their form and the consequences on the dispersion relation of
electronic excitations, which are considered as quasi particles.

1.4 Some Considerations about Symmetry Properties
of Crystalline Semiconductors and about Electron
Band Structure

We are here mainly interested in semiconductor crystals. A crystal is characterized
through a periodical arrangement of atoms or elementary building blocks of atoms,
called “basis”, in one, two, or three dimensions (dimension n= (1, 2, or 3)). These
building blocks are attached to abstract “lattice points” that are arranged in such a
way that they form a “Bravais lattice”. The Bravais lattice is characterized by the fact
that, if some well defined discrete spatial translations are applied to the lattice points,
the environment of the point remains invariant under these translations. (Note that
a periodic arrangement of points does not form necessarily a Bravais lattice.) Since
the environment of a lattice point of the Bravais lattice has the same form for all
points, the crystal structure can be decomposed into the (abstract) “lattice” and the
(real) “basis”. “Lattice” and “basis” fully describe together the crystal structure and
determine the physical properties of the crystal. It is evident that such a perfect crystal
takes into account only spatially periodic structures. Local (not periodic) structures
as impurities or crystal imperfections are not considered here.

The shortest translation vectors, which fulfill this condition, are called “funda-
mental lattice vectors a;” (i = 1 to n) in direct space. These fundamental lattice
vectors define the volume V of the unit cell, which is given by V = a; - (a; X a3)
in three dimensions.

The translation vectors R given by

R=> ma (1.4.1)

span the Bravais lattice in direct space. In Eq. (1.4.1) the m; are integer numbers
(m; =0, £1, £2, £3, ...) and the Bravais lattice has thus an infinite extension and
is not limited by boundaries. In three dimensions there exist seven crystal systems
which form 14 different kinds of Bravais lattices. These crystal classes and Bravais
lattices are:

e Cubic: simple cubic, body-centered cubic, face-centered cubic
e Tetragonal: simple tetragonal, centered tetragonal
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e Orthorhombic: simple orthorhombic, body-centered orthorhombic, face-centered
orthorhombic, base-centered orthorhombic

Monoclinic: simple monoclinic, centered monoclinic

Triclinic: simple triclinic

Trigonal: trigonal (or rhombohedral)

Hexagonal: simple hexagonal.

Associated to the fundamental lattice vectors a; are the “fundamental recipro-
cal lattice vectors b;”, which are defined through b; = 27 (a; x a3)/V and cyclic
permutations of the indexes “i” for b, and b3. They generate the vectors

G =) Mb, (1.4.2)

(with M; integer numbers M; = 0, =1, 2, £3, ...), which span the reciprocal lat-
tice. This reciprocal lattice is also a Bravais lattice.

The discrete translation vectors given in Eqs. (1.4.1) and (1.4.2) span Bravais
lattices. When applied to a system the resulting operations are called “symmetry
operations”: A symmetry operation acting on an object leaves the object apparently
unchanged. As mentioned above, this is fulfilled for example for the fundamental
translation vectors of the crystal, but a crystal may be invariant under other, addi-
tional symmetry operations. When excluding translations, these symmetry operations
define the “point-group symmetry” of the material. These operations leave at least
one well defined point, line, or plane fixed. Together with the translations of the Bra-
vais lattice they determine partly the space group of the crystal. For many physical
properties of the crystal the point-group symmetry is very important and we will
discuss it in detail in the following.

Let us first consider the consequences of translational invariance of crystals in
solid state physics. As defined above, b and G are wave-vectors and /b and hG the
corresponding quasi momenta. In this context, momentum conservation corresponds
to the conservation of wave-vectors. As mentioned in connection with Noether’s theo-
rem, energy conservation remains valid in a crystal if the Hamiltonian is not explicitly
time dependent. But, since the translations vectors R and the quasi momenta AG,
under which the system is invariant, are discrete and not infinitesimal vectors, wave-
vector is not strictly conserved in crystals. It is only conserved modulo a reciprocal
lattice vector G.

As discussed in more detail in [10], a similar problem arises in solid-state physics
for the components of the angular momentum operatorl = (I, [, I.). If the Hamilto-
nian has spherical symmetry (as for example in simple atoms), it is invariant against
infinitesimal rotations around any axis (x, y, z). Then, /> and one of the compo-
nents of / are conserved under rotation. In crystals, depending on the point-group
symmetry, only some rotations around discrete axes and for well defined angles are
possible symmetry operations, i.e. they leave the system invariant. Taking also the
spin s of the particle into account, these statements remain valid if the total angular
momentum j = (jy, jy, j;) (wWith j =1 & s) is considered. Therefore, in general,
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angular momentum and total angular momenta are no longer conserved quantities
in crystals. This also means that / and j are no longer good quantum numbers. We
will see, however, that angular momentum can still be used in special cases in order
to characterize crystal properties [10].

If we neglect translations, there are 5 other symmetry operations, which may leave
an object invariant. To each operation belong symmetry elements, which specify the
fixed points. The symmetry operations and symmetry elements are in general denoted
by:

E: The identity operation in which no action is applied to the object

e C,: An n-fold rotation, i.e. the symmetry element is a rotation by 27 /n around an

axis, which is called the “symmetry axis” of the system

o A reflection on a mirror plane which has to be defined

e i: The inversion with respect to one point, which is called the “center of inversion”.
Taken as the origin, the coordinates r of a point are changed into —r

e S,: An n-fold improper rotation, i.e. the symmetry element is a rotation C, by

27 /n around an axis, followed by a reflection on a plane perpendicular to this

rotation axis

These symmetry operations are discussed in detail in Appendix D of this work.

Let us now consider the wave functions and energy levels in crystals in more
detail. We have already stated that the crystal Hamiltonian remains invariant when
applying the different translations of the Bravais lattice R to the system. Depending
on the point group of the crystal under consideration, the Hamiltonian may also
remain invariant under the other symmetry operations given above: e.g. rotations
around axes or reflections on mirror planes etc. All axis, planes and points are well
defined and are specific for a certain point group. Following the discussion in [10],
we thus see that there exists a group of operators P;, which transform the Hamiltonian
H into itself. Accordingly, the Hamiltonian commutes with the operators P;. Then,
H and P; have common eigenfunctions, corresponding to the same eigenvalues. The
eigenvalues may be degenerate, i.e. they may be identical for different eigenfunctions.

Since all eigenvalues and eigenfunctions of H are supposed to be known, the
eigenfunctions of P; are linear combinations of those determined for H. Therefore,
one may choose eigenfunctions, which are adapted to the crystal symmetry. They are
said to transform according to a certain representation of the group. Such symmetry
adapted eigenfunctions are very useful since they allow to make predictions about
selection rules for transitions, level splittings, and degeneracies etc. when perturba-
tions are applied to the system.

Before explaining the invariant expansion of a crystal Hamiltonian we will first
consider the symmetry properties, which characterize in general a Hamilton operator.
As discussed above, the Hamiltonian has to be a scalar operator with real eigenvalues.
The symmetry of such an operator is labeled “T";” in all crystal systems. If it does
not explicitly depend on time, it has to be invariant under time reversal, i.e. it does
not change if one considers t = (—t). Then, energy is conserved and is a constant of
motion. The operation of time reversal is called “Kramers’ conjugation”. In general,
if an operator remains invariant under Kramers’ conjugation its symmetry is denoted
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by KT, if the operator changes its sign, it is denoted by K ~. In the language of group
theory, one says that the Hamiltonian transforms as (I';, K).

There is a further symmetry property: parity is a good quantum number if the
system possesses a center of inversion. Even parity of an operator is indicated as 't
odd parity by I'". The full symmetry of a Hamiltonian is then denoted by (I'}", K+)
in crystal structures having a center of inversion. Starting from these symmetry
properties, it is possible to give the general form of a Hamiltonian and the possible
structure of the interactions.

As was stated above, we will construct an effective Hamiltonian, which shall
model special properties of a semiconductor crystal in which we are interested.
This effective Hamiltonian has to have the same symmetry properties as the system,
which it approximates [11-13]. In the beginning, we are most interested in simple
inorganic semiconductors (I-VII, II-VI, III-V compounds) with a direct energy band
gap at the center of the Brillouin zone (the I'-point ). These semiconductors have
mostly zincblende or wurtzite crystal structure, i.e. they have T, or Cg, point-group
symmetry, respectively. Diamond structure (Oj, point-group symmetry) is similar to
T, structure. Both differ only by an additional center of inversion in O;, point-group
symmetry such that parity is a conserved quantity. Therefore, a number of results
obtained for 7 structure apply also for O;, symmetry.

To simplify the problem further, we will consider a certain subset of states we are
interested in. Then, the Schrodinger equation can be written in matrix form with a
finite dimension, corresponding to the number of states considered. These states are
then coupled to each other due to different perturbations, which mix the states if the
point-group symmetry is broken. The perturbations (as electric or magnetic fields,
a finite wave-vector, strains, etc.) are then considered to different orders, which can
have different symmetries. Taking into account the perturbations, the secular equation
corresponding to the Schrodinger equation has to be diagonalized in order to find
the eigenvalues and eigenvectors of the system. This approach is only reasonable if
the perturbations are small and if the subset of states describes sufficiently well the
considered physical properties of the semiconductor. In general, this is possible if
the subset of states is energetically well separated from all other states. In that case,
a small perturbation does not considerably mix the retained subset of states with the
neglected ones.

In order to explain the technique of constructing the effective Hamiltonian in
detail we will follow the procedure already described in Ref. [14]. It is, however,
less general than that of Ref. [12] but perhaps easier to apply to a special problem.
In both cases, we have first to specify the crystal structure and the subset of states,
which we want to consider. It is essential to remind that the whole analysis, which
follows now, has to be revised if a different crystal structure or subset of states is
studied.
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Chapter 2 )
Symmetry-Breaking in Spin-Degenerate e
Conduction-Bands of Zincblende-Type

Crystals

Most of simple binary crystalline semiconductors have either zincblende (7, face-
centered cubic point-group symmetry) or hexagonal closed packed wurtzite structure
(Cgy point-group symmetry). They are derived from a cubic (fcc) or a hexagonal (hep)
structure. As discussed in detail in Refs. [1, 2] fcc and hep structures are very similar
to each other. This becomes apparent when regarding a simple model: We consider
an ensemble of identical hard spheres that represent the unit cells, which will be
used to build the crystal. The spheres can be arranged on a plane surface in a single
closest-packed layer by surrounding each sphere by 6 other spheres. This gives rise
to the hexagonal structure of the layer that is either the basal plane in the hcp structure
or the (111) plane in the fcc structure. Let us note the positions of the spheres by “A”.
Then, the crystal is formed by placing the spheres of a second layer, identical to the
first one, at the position of the holes of the first layer. Each sphere of the second layer
touches thus 3 spheres of the first one. The positions of the spheres of the second
layer are labeled “B”. There are now two possibilities to position the third layer of
spheres: either the new spheres are placed exactly above those of the first layer, i.e.
at positions “A”. When continuing the construction of a crystal in a periodic way,
the positions of the spheres show the sequence “ABABAB...”, which is the pile-up
pattern of hcp crystals.

The second possibility to place the third layer is the position above the holes of
the first layer, which are not occupied by the second layer. Calling this position “C”,
the pile-up sequence in the crystal growth becomes “ABCABC...”. This structure is
realized by (111) planes in fcc crystals. Both structures give rise to the same maximum
volume-filling factor of the system. It is important to notice here that these structures
(although similar) correspond, however, to different point-group symmetries of the
crystals. The different positions in the pile-up procedure [3] are shown in Fig. 2.1
for the case of wurtzite (Cg, point-group symmetry, position “a”) and zincblende
structure (7, point-group symmetry, position “b”).

Let us first consider a direct semiconductor with zincblende structure, i.e. with
T, point-group symmetry. A typical one-electron band structure (i.e. the energy E
of an electron state as a function of its wave-vector Q) in the vicinity of the I"-point
is shown in Fig. 2.2. The semiconductor has an empty conduction band (index “c”),
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Fig. 2.1 The different positions in the pile-up procedure of wurtzite (Ce, point-group symme-
try, position “a”) and zincblende structure (7 point-group symmetry, position “b”). Adapted
from Ref. [3]

which, in most I-VII, II-VI or III-V compounds, is made up from spin-degenerate
atomic s-orbitals. The symmetry adapted conduction-band states then transform as
I'¢ at the I"-point [4, 5] when employing the double-group notation. We use in the
following Cartesian coordinates, defined along the cubic axis (x, y, z).

The orbital part of the uppermost filled valence-band states (index “v’’) is mostly
originating from atomic p-orbitals, which may have some admixture of atomic d-
orbitals. These states are three-fold degenerate, described by an angular momentum
[ = 1. When including the electron spin, there are six degenerate valence-band states
at the I'-point. All other atomic states are supposed to be largely separated in energy
from these states such that the considered subset of states describes the optical and
electronic properties of the semiconductors close to the band gap.

Concerning the uppermost valence bands, as we will discuss in more detail, the
degeneracy is partly lifted by spin-orbit interaction, giving rise to an energy splitting
between a set of four-fold degenerate states, transforming as I's, and the two-fold
degenerate I'; states [4, 5]. The band with I'; symmetry is called the “split-off
band” and the energy separation between the I's and the I'; states is the “spin-
orbit splitting” A} . Usually, AY > 0, i.e. the energy of the electron states with I'g
symmetry is higher than that of the I'; states. But, as for example in CuCl crystals,
which have zincblende structure under normal conditions, the order can be reversed
when compared to the other copper halides because of a different amount of admixture
of atomic p- and d-orbitals in the crystal-wave functions.
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Fig. 2.2 Typical electron
band structure (energy E as a
function of wave-vector Q)

of a direct semiconductor ¢ \
with T point-group
symmetry in the vicinity of
the I'-point. The direction of
the wave-vector Q is not
specified. Index “c”: )F """
conduction band, index “v”: v { AV =0 7—
valence bands, A},: Energy }

splitting of the valence band i 7"

due to spin-orbit coupling.
r 0

l/ﬂf T

Adapted from Ref. [9]

As we will see, a finite wave-vector Q breaks the 7,; point-group symmetry. Then
the band with I's symmetry at the center of the Brillouin zone is decomposed into
a “heavy-hole” and a “light-hole band” at finite wave-vectors due to the dispersive
terms varying as Q (see Fig. 2.2).

We will first consider a single, completely isolated electron in the lowest conduc-
tion band. All other electron states are neglected for the moment. The electron is
described by an effective Hamiltonian H,, acting only in the subspace of the lowest
conduction-band electron states (index “e”). Due to the electron spin, this subspace
is of dimension p = 2. Then, H, can be written in matrix form as

H, = <““ “12) 2.0.1)

az) ax

where the matrix-elements a;; are functions of physical quantities, which have well
defined symmetry properties with respect to translation, rotation, reflection etc. and
time reversal.

2.1 Transformation Properties of Effective Hamiltonians
in Crystalline Structures

As stated in the introduction, it is important to mention that, since the energy E is a
real scalar quantity, the Hamiltonian H has to be a scalar operator. The Hamiltonian is
compatible with the full point-group symmetry of the crystal, i.e. it is invariant under
all symmetry operations. Therefore, it transforms as the one-dimensional identity
operation. This operation corresponds to the irreducible representation, which is
labeled “I";” in all symmetry groups [6, 7].

In addition, the Hamiltonian in which we are interested is not explicitly depend-
ing on time, i.e. we look here only for stationary states whose energies are constants
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of motion. The electron wave-functions that are solutions of the Hamiltonian are
Bloch functions, i.e. functions that are periodic on the crystal lattice multiplied by
plane waves. The phase of the plane-wave part may fluctuate in time but the Bloch
functions are time independent. Then, the squares of the electron eigenfunctions of
the Hamiltonian are time-independent and the Hamiltonian itself is invariant under
time reversal (that is labeled by K ™). This is a second necessary condition, which
has to be fulfilled by any Hamiltonian considered in the following. These two sym-
metry conditions are the fundamental requirements of any invariant expansion by an
effective Hamiltonian.

2.2 Effective Hamiltonians Involving Interaction Matrices
Possessing the full Point-Group Symmetry

Because of the restrictions imposed onto the Hamiltonian, the different matrix-
elements a;; in Eq. (2.0.1) are not independent of each other but they are inter-
connected and this interconnection depends on the sub-states considered. The eigen-
functions of H, are the pseudo-Bloch functions «, and 8, where « and 3 denote the
spin up- and down-states, respectively. The matrix H, = (a;;) can be decomposed
into n = p? linearly independent basis matrices A”:

H, = ZA;'. (2.2.1)

This decomposition is arbitrary but the matrices A” have to be linearly independent
of each other in order to span the subspace for the total Hamiltonian. One could
choose for example the following matrices A”:

10 01 00 00
A; =dai (0 0>;A§=a12 (O 0);A2=a21 (1 0);A§=d22 <0 1) (222)

The advantage of another choice lies in the fact that one knows the transforma-
tion properties of angular-momentum operators in systems with a given point-group
symmetry [5-9]. We therefore introduce an effective “pseudo-spin operator” o, with
0. = 1/2, which only operates on the conduction-band spin-states. We choose for
this two-dimensional problem the Pauli-spin matrices O’é with i = (x, y, z) as basis

matrices:
e (O1Y. ,_(0—=i) . (10
O’e—<1 0),Ue_<l. O)’J‘)_(O—l)' (2.2.3)

These basis matrices transform like the components of an angular-momentum oper-
ator, i.e. like the irreducible representation I'y in systems with 7, point-group sym-
metry [5-9]. In addition, since they describe components of an angular-momentum
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operator, they involve first-order time-derivatives and transform therefore as K~
under time reversal. When decomposing H, into the Pauli-spin matrices we obtain

H, =(1/2)(an + ax)le + (1/2)(a12 + az1)o;,

) | (2.2.4)
+ (i/2)(a12 — az)o) + (1/2) (a1 — ax)os
where the unit matrix 1, is given by:
lo= ((1) ?) = /3@ + @ + @] = (3@’ 225)

If interactions with the physical system are considered, the first term of H, of
Eq. (2.2.4) may contain all interaction terms, which are diagonal in the considered
states and have the same value for both states. This means that they do not couple
the pseudo-Bloch functions «, and (., which are eigenstates of the Hamiltonian
H,. The first term of Eq. (2.2.4) only shifts the energies of the states but does not
split them, i.e. the states remain degenerate in energy. The corresponding interaction
terms remain unchanged under all symmetry operations compatible with the point
group of the crystal. In addition, since the matrix 1, does not depend on time, these
interaction terms have to be invariant under time reversal and their overall symmetry
is (T, K1).

As shown above, 1, may also be constructed from the Pauli matrices by calcu-
lating 1/3(o)?. Concerning time-reversal symmetry one has to recall that operators
transforming as K ~ under time reversal (as e.g. o) give rise to operators having K+
symmetry when taken to even orders, as it is the case for the operator 1,.

We shall first consider the case that the coefficients a;; are time independent real
numbers or functions. Then, the term o (1/2)(a;; + ax)1. in Eq. (2.2.4) fulfills
the above symmetry requirements and such interaction terms may be present in
H,, (a;1 + a») being real. The interaction matrix 1, possesses the full point-group
symmetry, i.e. it does not mix the spin states and only shifts the eigenvalues. The
corresponding interaction terms determine the energy of the spin-degenerate electron
states in the conduction band at the center of the Brillouin zone.

Let us now discuss the three components in Eq. (2.2.4), which are directly propor-
tional to Pauli’s spin matrices. As stated above and given in Table 2.1, these matrices
transform as I'y4 in crystals with 7; point-group symmetry [4, 5] and are K~ under
time reversal. Thus, when only multiplied by complex numbers or functions, they
cannot be present in an effective Hamiltonian since they do not fulfill the above
symmetry requirements. We thus find that

® djp =dax
and
® dip = ay] =0.

In conclusion, we have found that the matrix

H, = a,l, (2.2.6)
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(a. being a real number or function) is the only form a Hamiltonian can take in its
matrix representation if we restrict ourselves to a two-level system and preserve the
full T, point-group symmetry in the interaction matrix. Concerning the eigenvalues
E,, and Eg, of the eigenvectors a, and 3., Eq. (2.2.6) implies the relation E,, = Eg,.
The special form of H, is thus the reason why the conduction band in a simple
semiconductor is always spin degenerate at the I" point.

2.3 Construction of Effective Hamiltonians Containing
Symmetry-Breaking Perturbations

Equation (2.2.4) shows that only symmetry-breaking perturbations can lead (when
combined with the Pauli-spin matrices) to perturbation terms, which may lift the
degeneracy of the states in the two-level system. In order to discuss the action of
perturbations on electron states under 7, point-group symmetry we have to analyze
their symmetry properties. As shown in [4, 5] there exist only 5 symmetry classes or
irreducible representations in 7, point-group symmetry, into which all perturbations
can (and have to be) decomposed. The irreducible representations are enumerated in
Table 2.1 and labeled from I'; to I's. Table 2.1 gives also the denominations of the
different components together with their transformation properties.

Let us denote by I = (I, [,,[;) an angular momentum operator and by r =
(x, y, z) the position vector. With these operators we can work out the compo-
nents belonging to the different irreducible representations, which are adapted to
the symmetry of the crystal. The transformation properties of these objects (e.g.
functions, operators, their matrix representations of the interacting states etc.) are
indicated in square brackets in Table 2.1. As it is usual in group theory, I'; denotes
the symmetry of the identity operation, which is given in its matrix form by the
unit matrix 1. Objects that have I'; symmetry are spherically symmetric and trans-
form as [r? = x? 4+ y? + z2]. They are labeled “S” in the following. Objects with
I', symmetry are labeled “7”. The irreducible representation I'; is likewise I';, an
unidimensional representation.

Objects that transform as I'5 are labeled “(U, V) and they transform as [V3(x2 —
y?), 222 — x> — y?], respectively. The elements of I, are labeled “(P, Q, R)” and
transform as [I,, [, [;], respectively. I's elements are called “(X, Y, Z)” and they
transform as the components of the position vector r, i.e. as [x, y, z], respectively. It
follows also from Table 2.1 that the components of I, (7') and those of T'y (P, O, R)
transform as K~ under time reversal (Kramers’ conjugation), the others have K+
symmetry.

Table 2.2 gives the transformation properties of several perturbations under T,
point-group symmetry. Following [4, 9] we consider for example the transforma-
tion properties of a magnetic field B, a finite wave-vector @, electric field effects
(proportional to E or E?), or strain components e; ; (with (i, j) = (x, y, 2)) and give
their properties with respect to Kramers’ conjugation (K ~, K ™).



2.3 Construction of Effective Hamiltonians Containing Symmetry-Breaking ... 27

Table 2.1 Notation of symmetry adapted operators or perturbation components in 7, point-group
symmetry. Their transformation properties are given in square brackets. (K —, K*) give the trans-
formation properties with respect to Kramers’ conjugation. From Refs. [4, 8]

T (S [1]or [r? = x% + y2 + 2] Kl
I : (T) [xl + yly + 2] 1K~
Iy : (U, V) [V3(x2 — y?),27% — x2 — 2] K
Iy : (P,O,R) U, Iy, Il or [0F, 00, 0] K|
I's : (X,Y,2) [x, ¥, z] K+

Table 2.2 Transformation properties of perturbation components as magnetic field B, wave vector
0, electric field effects (proportional to E or E 2), and strain tensor components ¢;; (with (i, j) =
(x, y, z)) in Ty point-group symmetry. From Refs. [4, 9]

K K Kt Kt Kt

.S E? €xx T €yy + €2
Fz . T
r; . U V3(E; - ED) V3(exx — €yy)

Vv 3Ez2 — E? 26z, — €xx — €yy
'y : P B,

0 By

R B,
I's : X Oy E, E\E; €yz

1Y 0Oy E, E E, €2x

7 0, E, E',CEy Exy

Very important information is contained in the multiplication scheme for the
components of Table 2.1, which is given in Table 2.3 for 7; point-group symmetry.
The Table follows directly from the multiplication Table 2.4 [4, 5] . When using
Table 2.3 successively, perturbation components of higher order can be generated,
which are adapted to the crystal symmetry. As we will see, when combined with the
matrix components of the subspace of states one may then construct perturbation
terms, which can be present in a Hamiltonian [4].

Let us discuss in detail the construction of interaction terms, which are present in
a Hamiltonian, i.e. which have the full point-group symmetry and thus transform as
I';. Table 2.4 concerns the spatial part of the multiplication of objects in crystals with
T, point-group symmetry. Inspecting Table 2.4 one remarks that one can only form
an object transformation as I'; from two objects with transformation properties (I";)
and (I";) if (i = j). In addition, the combination of the different object components
has to be carefully chosen in order to be adapted to the crystal symmetry.

Thus, the general strategy will be to construct from the components of symmetry-
breaking interactions symmetry-adapted combinations that have the same symmetry
as the matrix components of the subspace of states with which they are combined.
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Table 2.4 Multiplication table for irreducible representations in crystals with 7, point-group sym-
metry

I I I3 Iy I's I's Iy I'
I I I, I; Iy I's Te Iy I'
Iy I I3 Ts Ty ry T I'g
s Fi+T+03 | Ty+Ts I'y4+Ts I'g I's TFe+I7+Tg
Iy M +03+04+0s | Io+3+0g+0s | Tg+Tg | I'7+Tg | T'g+I7+2I0g
Ts I +03+404+05 | 74T | Tg+Tg | T'e+T7+20g
Te Ty +T0g [ To+0s5 | I'34T4+Ts
I, M +Ty | T3+T4+Ts
I's M+ +I3+

2Ty + 25

This condition is very helpful and will be often used in the following. It is important to
notice at this point that this procedure enables one to reproduce all possible interaction
terms that may exist for different types of symmetry-breaking perturbations.

Let us now discuss how perturbations may influence the eigenvalues of the
conduction-band electron-states and eventually lift the spin degeneracy by symmetry-
breaking effects. The interaction matrix then shows, which states are mixed and which
type of perturbation may be involved.

In our example, in order to obtain a splitting of the spin-degenerate states of the
conduction band, one needs a perturbation that transforms as the Pauli-spin matri-
ces do, i.e. which transform according to Table 2.1 as (I'y, K ). Then, following
Table 2.3, the components of this perturbation can be combined with the corre-
sponding Pauli-spin matrices to form interaction terms, which are compatible with
the overall symmetry of a Hamiltonian.

This symmetry postulate defines in a general way the procedure of the invariant
expansion by terms, which break the point-group symmetry of a system. The effect
of the perturbations can be twofold:

e They may differently change the energies of the states and thus lead to a splitting
of degenerate states of the unperturbed Hamiltonian. This is the case if the pertur-
bation matrix is a diagonal matrix (in the basis of the unperturbed Hamiltonian).

e They may couple the different states of the unperturbed Hamiltonian and thus mix
the eigenvectors. This implies that the perturbation matrix is a non-diagonal matrix
(in the basis of the unperturbed Hamiltonian).

We see from Table 2.2 that the magnetic field B is a possible candidate to obtain
such a coupling: It has the required symmetry properties and its components can be
combined with the Pauli-spin matrices to give rise to a finite energy splitting and to
a mixing of the unperturbed states: While o7 is a diagonal matrix, which may lead
to different energies of the spin up- and down states if a magnetic field is applied.
0¥ and o} are non-diagonal matrices and if they are present in the interaction matrix
these terms couple the spin up- and down states, leading in addition to a mixing of
the eigenstates of the unperturbed Hamiltonian.
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Or, in order to explain the construction of a perturbation interaction term in detail:

e identify from Table 2.1 the Pauli-spin matrices [o7, oy, o] with the expressions

(P, Q.R)

e chose from Table 2.2 a perturbation that is (as the spin matrices) also an odd
function K~ under time reversal. Let us consider the magnetic field B = (By, B,,
B.) and label with (P’, Q’, R’) the field components

e It then follows from Table 2.3 that the product (PP’ + QQ’ + RR’) has the
required spatial symmetry (I'1) and is an even function (K *) under time reversal.

Explicitly, following Table 2.3, a term o< B leads to
Hp =agy B -0, =ay (B0, + Byo] + B.o.) 2.3.1)

which corresponds to the linear Zeeman effect. Removing of the degeneracy can be
seen immediately if we consider B = (0, 0, B;). Then, Eq. (2.3.1) reduces to

e e z 10
Hp = ap B -0, = (ap B,)o; = (ap B,) (0 —1)

indicating two different energy eigenvalues of the diagonal matrix corresponding
to Hj, while the eigenstates of the unperturbed Hamiltonian c, and 3, remain
unchanged.

For arbitrarily chosen field directions where B, or B, # 0 Eq. (2.3.1) leads to a
splitting of the initially spin-degenerate conduction-band states o, and (3, as

E,, = —Ej =aj}B. (2.3.2)

The parameter a%, of our development is given by ay, = —(1/2)upg® where g°¢ is
the “electron g-factor” (or “Landé factor”) and pp represents the electron magneton
of Bohr. In general, as we will see, «, and (3, are now no longer eigenstates of the
perturbed Hamiltonian, but the new eigenstates are given by a linear combination of
the states a, and S,.

2.4 Shift and Splitting of States: Examples of Perturbations
in Effective Hamiltonians

Let us consider another example of the application of external fields. As given in
Table 2.2 the components (E,, Ey, E;) of an electric field E transform like (I's, K ).
Because of its temporal symmetry properties, E”" (E taken to all possible orders n)
have K symmetry. Therefore, in order to contribute to the Hamiltonian and thus
change the eigenvalues of the states, they can only be combined with the unit matrix
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1.. Because of the different time-reversal symmetry of the Pauli-spin matrices and
the electric field components it follows immediately that an electric field cannot split
the different spin states nor mix them.

In addition, a term

aElEle = aEl(Exle + Eyle + Ezle)

(where according to Eq. (2.2.5) 1, is the unit matrix in the subspace of conduction-
band electron-states) is not allowed (although it has the required K+ temporal sym-
metry) since ag; E 1, is not a scalar operator but is transforming like the position
vector r (see Table 2.2).

We see that a linear Stark effect is forbidden at the I'-point for the subspace
considered here, and only higher orders in E" can lead to a Stark shift of the states.
An example is the quadratic Stark effect, which results in a perturbation of the form

Hgr = apE* 1, 2.4.1)

with
E*=E;+E, +E, (2.4.2)

ag, being a real constant. As it can be seen in Table 2.3, no other combinations
of electric field components up to second order can exist in the Hamiltonian. One
then finds for the energy shift due to an applied electric field in its lowest order the
quadratic Stark shift

Ea, =Eg = ap E?. (2.4.3)

Since the electric field components (taken to arbitrary orders) can only be combined
with the unit matrix in the subspace of conduction-band electron-states but not with
the Pauli-spin matrices, an electric field can only lead to an energy shift of the states
but not to their splitting.

One should remark here that we have only determined the symmetry properties
of possible interaction terms but not the value of the matrix elements. They have to
be calculated separately and it may turn out that they are equal to zero.

A result similar to that of Eq. (2.4.1) is found for strain in zincblende-type semi-
conductors. Let us denote by €;; (i = x, y, z) the diagonal components of the strain
tensor in the following. The combination (€., + €,y + €;;) transforms like the electric
field E* as (I';, K*) in crystals with T; point-group symmetry and can be present in
the Hamiltonian. All other combinations are excluded and no linear strain splitting
but only a shift is obtained for the isolated conduction-band states at the I'-point.
Thus, neither electric fields nor mechanical strain can remove the degeneracy of the
conduction-band states.

Let us now discuss several other examples of such symmetry-breaking effects:
Similar to the electric field, all second order terms in B are even functions under
time reversal. Combining them with the unit matrix, 1, leads to the quadratic Zeeman
effect, which takes here the form
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Hj, = ay,B*1, with B> = B} + B} + B_. (2.4.4)

This term is also compatible with the overall symmetry of a Hamiltonian. H, leads
to an energy shift of the states but not to an additional splitting. Together with Eq.
(2.3.2) we find for the spin-splitting in a magnetic field up to second order:

Eq, = ag B +apB® and Eg = —af B + ap, B2, (2.4.5)

e
As for electric fields, one can continue the development of interaction terms in a
power series in higher orders of B.

Itis interesting to notice at this point that we were not obliged up to now to specify
the direction of the magnetic field with respect to the cubic axes. In this special case
the amount of shift and splitting of the states is independent of the field direction.
This is due to the spherical symmetry of the s-type conduction-band wave-functions.
Then, the direction of the quantization axis (the z-axis) can be arbitrarily chosen (i.e.
(z || B) is a possible choice) and spin up and down states remain eigenstates of the
perturbed Hamiltonian. This can be different when considering mixed perturbations
due to different fields.

One easily checks with Table 2.3 that mixed terms of E and B combined with the
Pauli-spin matrices can in principle fulfill the symmetry requirements of a Hamilto-
nian. This does not mean, however, that such terms are relevant. We mention here
only for completeness such a term:

HBE = aBE[(ByEZ — BzEy)CTj + C.p.] (246)

(where “c. p.” stands for “cyclic permutations”). When inspecting the symmetry
of this mixed perturbation one notices that the mutual orientations of electric and
magnetic fields are important. Parallel components of both fields have no influence
on energy corrections due to Eq. (2.4.6), while crossed fields may lead to such a
“magnetic-field induced linear-Stark shift” discussed above. If one considers for
example B = (0, B,,0) and E = (0,0, E) the eigenvalues ngg and Egzg of Eq.
(2.4.6) are given by
Ep)y = —Eg) = agp(B,E.),

which vary linearly with B, and E.. The related eigenfunctions \I!g; and wf;g are
given by a superposition of spin up and down states o, and 3., which are here given by

Wi = (0 + 0)/V2 and Wiy = (e — )/ V2.
In this simple case these energy eigenvalues and the related eigenfunctions of the

perturbed Hamiltonian can be determined easily “by hand” by solving Eq. (2.4.6) as
we show now as an example:
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To find the eigenvalues of Hpp, we first write down Eq. (2.4.6) in its explicit
matrix form, which reads

i 01 0  ape(B,E
Hpp = app(ByE;)o, = app(ByE;) <1 O) = <GBE(B E.) BE(O’v Z)> ,
yLEz

taking into account that all field components are = 0 except B, and E .. Determination
of the eigenvalues consists in diagonalization of the above matrix, which can be
accomplished using an equation analogous to Eq. (A.6) (see Appendix A). This
equation reads in our particular case

—Epg  app(B,E;)
ape(ByE;) —Egg

=0

or
E%’E - (aBEByEz)2 = O»

which leads immediately to the requested eigenvalues:
EY? = +agp(ByE.).

One now finds the corresponding eigenfunctions by applying an equation analo-
gous to Eq. (A.6) into which one injects the calculated eigenvalues. In the case of
the positive eigenvalue E l(;}g =apg(By E;) this equation then reads

—app(ByE;)S1 +apep(ByE;)S1, =0
aBE(ByEz)Sll - aBE(ByEz)SIZ =0
or

St = S(=9).

Hence, if we take into consideration Eq. (A.1), the eigenfunction \Ilf;g concerning the
eigenvalue £ g}g is given by a linear combination of the basis functions «, and 3, as

W) = S(a + o)

if we remember that the basis functions of the conduction band are the spin up and
down states «a, and (,, respectively.

The value of S follows from the normalization condition of wave functions. It can
be obtained using an equation analogous to Eq. (A.13) to

SllSi“l + Slefz =1
282 =1lorS=1/v2
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and thus
Wk = (o + B)/V2.

For \I-fl(gzg the expression

W = (a, — B)/V2

can be obtained in the same way.

The procedure discussed above to generate perturbation Hamiltonians is very
powerful and versatile and may be used to analyze many different physical properties
of samples. The method is, however, only easy to handle if the number of states
considered in the subspace is small and if one can restrict oneself to low orders in
the power expansion of the perturbation. Otherwise, the procedure may become very
clumsy and cumbersome.

One sees already with these simple examples the importance of the orientations of
the fields and of the order, up to which these fields have to be considered. In addition,
if different fields have the same transformation properties they act in the same way
on the physical system. The observed effects depend, however, also on the states,
which are involved in the experiment since they determine the interaction matrices,
which have to be considered.

2.5 Dispersion Relation of Spin-Degenerate
Conduction-Band States

Applying electric or magnetic fields in well defined directions is an important tool in
order to study physical properties of semiconductor crystals. We have discussed how
these extrinsic symmetry-breaking effects manifest themselves in the eigenvalues
of the conduction-band states. Besides external fields the finite wave-vector Q of
a quasi particle is an additional but intrinsic symmetry-breaking perturbation that
affects the dispersion relation E(Q) of the states, which can often be determined
experimentally.

Let us discuss the dispersion relation of the conduction-band states in more detail.
On the contrary to external fields, for which often the axes of the fields can be chosen
arbitrarily with respect to the cubic crystal axes, the quasi-particle propagation is
defined with respect to the crystal axes. Thus the amount of shift and splitting of the
states will depend on these directions for an anisotropic energy dispersion.

According to Table 2.2 the wave-vector components Q; (i = (x, y, z)) transform
like (T's, K ™). Because of their temporal symmetry interaction terms proportional to
Q" (n taken to all odd orders) can appear in a Hamiltonian only in combination with
the Pauli-spin matrices aé. On the contrary, as in Eq. (2.4.1), even order terms can
only be combined with the unit matrix 1. Therefore, even orders n of Q" may lead
to an energy shift of the states (i.e. they may be responsible for the curvature of the
conduction band outside of the I"-point) and only odd orders may lead to their energy
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splitting: The pseudo-Bloch functions «, and (3, are eigenstates of the Hamiltonian
H, given in Eq. (2.2.6) but no longer eigenstates of the full Hamiltonian if it contains
symmetry-breaking effects. Taken to odd orders r, finite wave-vectors may thus lead
to a coupling of the states and a mixing of the pseudo-Bloch functions «, and (3,
outside of the I"-point.

Concerning terms linear in @, the multiplication scheme in Table 2.3 shows that
no interaction term transforming as I'; can be constructed and Q-linear terms do
not occur in the energy dispersion of the spin-degenerate conduction band. The band
structure is then given in its lowest order by

HQ2 =aQ2Q216 (251)

with
Q°=01+0;+ 02 (2.5.2)

where the constant value in Eq. (2.5.1) is given by ag, = h?/(2m*).

The effective-electron mass m* is isotropic in this case. It is defined in terms
of the curvature of the two-fold degenerate conduction band close to its minimum.
The effective mass m* is an important parameter since it influences the transport
and the optical properties of semiconductors. As stated above, anisotropic Q?-terms
that show up in a Hamiltonian must have the same transformation properties as the
Pauli matrices. Such terms are nevertheless forbidden in our case because of their
wrong time-reversal symmetry of the resulting product. In addition, Table 2.3 shows
that anisotropic terms of I'y symmetry can in principle be constructed in second
order from components of objects transforming as I's. But such terms are all = 0
since wave-vector components commute with each other, i.e. objects as (Y Z — ZY)
appearing in Table 2.3 vanish if (¥, Z) denote wave-vector components.

It is interesting to notice, however, that higher than second order terms in Q can
give rise to intrinsic perturbations transforming as (I'4, K ~). They can then be com-
bined with the Pauli matrices aé, which have the same transformation properties, in
order to construct an interaction term compatible with the requirements of a Hamil-
tonian. This leads, depending on the crystal direction, to a lifting of the conduction-
band spin-degeneracy [10, 11]. This is important for problems concerning transport
of electrons in different spin states and for spin-dephasing and spin-relaxation pro-
cesses [12]. Since this wave-vector dependent perturbation has the transformation
properties of a magnetic field B it can be looked upon as an intrinsic effective mag-
netic field. The effect is, however, a pure consequence of the symmetry breaking due
to the wave-vector.

Let us consider as an example the construction of such a term in third order of
Q. Starting from the wave-vector components Q; (i = (x, y, z)), which transform
according to Table 2.2 as (x, y, z) and are labeled (X, Y, Z) we first construct com-
binations of them in second order, which transform also as (x, y, z). We see from
Table 2.3 that

X' =(0,0: + 0:0,) = 2(0,0.) (2.5.3)
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is the right combination. Similarly, we find

Y'=2(0:0x) (2.5.4)

and
Z' =2(0:0y). 2.5.5)

Using again Table 2.3, we construct combinations of third-order wave-vector com-
ponents, which transform as (I'y, K ~) and are labeled (P’, Q’, R"). We obtain:

P =20,(0:0y) —20:(0:0,) =20.(Q; — 02) (2.5.6)
and similarly
Q' =20,(0:- 07 (2.5.7)
and
R =20.(07 - Q). (2.5.8)

Combining (P’, Q', R') with (67, 07, %), which we denote as (P, Q, R), Table 2.3
leads to:
Hpos = aBQ3[Qx(Q§ - Q?)U? +c.p] (2.5.9)

where “c. p.” stands for “cyclic permutation”.

Table 2.3 shows that another combination to construct third-order components
(P, Q', R") from the wave-vector components (X, Y, Z) is possible: One constructs
first objects “U” and “V” from (X, Y, Z) in second order and then the (P’, Q’, R')
objects by multiplying the (U, V') objects symmetry adapted with the corresponding
(X, Y, Z) wave-vector components. This procedure results, however, in the same
third-order objects as given in Egs. (2.5.6)—(2.5.8).

When considering arbitrary low symmetry crystal directions one sees that this
symmetry-breaking perturbation leads to an anisotropic dispersion (warping) and to
a splitting of the very simple, spin-degenerate conduction band. Concerning the high
symmetry directions [100] and [111] the perturbation Hp 3 of Eq. (2.5.9) does not
contribute to the dispersion. This is more complicated in the (101)-plane. Taking for
example Q = [Q,, 0, O.] the perturbation takes the form

Hyos = apgs[Q«(— 020 + Q:(Q)o?l. (2.5.10)

One sees that the high symmetry direction [101] of a cubic crystal with zincblende
structure is influenced by the warping effect. Using O, = Q., Eq. (2.5.9) leads
(after solving the eigenvalue problem in a way entirely parallel to that applied to the
diagonalization of the Hamiltonian Hpg of Eq. (2.4.6)) to an energy difference with
respect to the parabolic contribution of Eq. (2.5.1) given by

M2 = £(V2apg3 03). (2.5.11)
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Then, the spin states \11{101] and \IJEOI] that diagonalize the perturbed Hamiltonian in
the [101]-direction are given as

wliot (—«/50@/(2\/2 —V2) + (\/2 —V2)8./2

wlion (ﬁae)/(z\/z ++/2) + (\/2 ++2)8,/2

for the eigenvalues
i = (V2app303) and 12 = —(V2a0303),

respectively.

Figure 2.3 gives the dispersion (i.e. the energy E as a function of wave number Q)
of conduction-band electron-states in the vicinity of the I"-point, including terms up
to third orderin Q forthe [111]and [101] directions. «and (3 denote different electron
states, respectively. While the states remain degenerate in the [111] direction, Fig.
2.3 clearly shows how the splitting of the electron states \111[101] and \115101] increases
with increasing wave-vector.

Let us consider the splitting of the two spin states induced by the coupling given
in Eq. (2.5.9) in more detail. The absolute value of the wave-vector Q is taken fixed
and its direction varied in the (101)-plane, the component Qﬁ of the wave-vector
squared being taken as variable. The energy deviations v; 2(Q,) of the two electron
states from the value obtained when considering dispersive terms up to second order
only are given by

M2(Q:) = £aps\(Q.) 07, (2.5.13)

where A\(Q,) is illustrated in Fig. 2.4. A(Q,) determines the anisotropic dispersion
of the conduction-band electrons.

Similar to the anisotropic dispersion of conduction-band electrons the hybridiza-
tion of the spin states is also induced by the coupling given in Eq. (2.5.9). Then, the
electron-wave functions are defined as

\Ill(]m) = —ajo, + blﬁe
and (2.5.14)
vy = bioe + anf..

Figure 2.5 shows the mixing coefficients a; and b; of the spin states a, and (3,
in the (101)-plane. The absolute value of the wave-vector @ is taken fixed and its
direction varied in the (101)-plane, the wave-vector component squared Q2 / Q2
being taken as variable in the calculation of a; and b, as in the case of the parameter
A given in Fig. 2.4.

Itis interesting to discuss also the coupling given in Eq. (2.5.9) in the (110)-plane,
i.e. the directions L to the z-axis. Proceeding as above, the same values as those
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Fig. 2.3 Dispersion D;j; (energy E as a function of wave number Q) of conduction-band electron-
states of a semiconductor with 7; point-group symmetry in the vicinity of the I'-point. [ijk] are
the Miller indexes, specifying the crystal direction. D includes terms up to third order in Q for the
[111] and [101] directions. « and 3 denote the electron spin up and down states, respectively. The
graphs are determined with arbitrarily chosen parameter values ag> and apg3 in Egs. (2.5.1) and

(2.5.10), respectively

Fig. 2.4 The anisotropic
dispersion of
conduction-band electrons of
semiconductors with 7y
point-group symmetry in the
vicinity of the I'-point is
determined by A(Q). The
absolute value of the
wave-vector | Q | is taken
fixed and its direction varied
in the (101)-plane, the
wave-vector component
squared Q)%/ 0? being taken
as variable
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shown in Fig. 2.4 are obtained for \(Q,) when @ is varied in the (110)-plane. The
hybridization given by the mixing coefficients a, and b, of the spin states is, however,
different from those obtained for the variation in the (101)-plane: the absolute values
of a, and b, are equal to 1/+/2, independent of Q2. One of the coefficients being

real, the second is complex with an arbitrary phase.
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Fig. 2.5 Mixing coefficients 104
ay and by of the spin states «
and /3 due to the anisotropic
dispersion of
conduction-band electrons of
semiconductors with Ty
point-group symmetry. The
absolute value of the
wave-vector | @Q | is taken
fixed and its direction varied
in the (101)-plane, the 0.2+
wave-vector component

squared Q)%/ Q? being taken : . ' 3
as variable 0.0 0.5 ©0./0 1.0
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As pointed out by Dresselhaus [10] a Hpps-term may appear in crystals with
zincblende structure. It is interesting to notice that such terms do not appear in
diamond structure: In O), symmetry the parity “+4” (indicated by the superscript in
(Fi+ )) has to be conserved and Hamiltonians transform according to (I';", K*). Here,
the wave-vector Q transforms as (I's’, K~) and the pseudo-spin o, as (FI, K).
Therefore, the transformation properties of the considered product (involving the
third-order wave-vector component 0% are (T » K1), which is not compatible with
an interaction term in a Hamiltonian.

Similar to the approach leading to Eq. (2.5.9) one could also construct invariant
terms bilinear in Q and E. It would have a similar form as Eq. (2.4.6):

Hpr = agel(QyE. — Q.Ey)o +c.p.] (2.5.15)

(where “c. p.” stands again for “cyclic permutations’). We thus notice that a linear
Stark effect can occur when considering conduction-band states outside of the center
the Brillouin zone. This can be important for the analysis of optical transitions in
semiconductors, which may have a high density of states outside the I"-point or in
the study of indirect semiconductors.

Higher order terms in (E, Q) can also be constructed in the same way. One
concludes that the spin degeneracy of a simple conduction band can be lifted at finite
wave-vectors in the presence of an electric field.
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Chapter 3 ®)
Symmetry-Breaking Effects in Valence i
Bands of Zincblende-Type Crystals

As we have mentioned above, the uppermost valence band of simple semiconductors
with zincblende structure is mainly built from atomic p-orbitals that are three-fold
degenerate. In addition, electrons are spin (1/2)-particles such that each p-orbital can
accept two electrons with different spins. Therefore six spin-orbitals make up the
uppermost valence band at the I"-point in these simple semiconductors.

In the absence of spin-orbit coupling and spin-scattering processes, the space of
valence-band electrons is decomposed into two subspaces of electron states, one
for the spin-up states and the other containing only the spin-down states. These
two subspaces are completely decoupled from each other and the interaction within
each of the subspaces is identical. In a matrix formulation of the Hamiltonian this
results into two identical diagonal block matrices of dimension three and all matrix
elements coupling both blocks are = 0. One has to solve therefore only a problem
for threefold degenerate states with the same spin orientation. One then obtains the
complete solution by adding at the end the solution where the spin is reversed. Here,
one has only to pay attention if the action of perturbations on the electron spin is
explicitly considered, since they may differ for the two spin states.

When analyzing the valence band we will proceed similar to the case of the con-
duction band: We will first establish (Sect. 3.1) a basis for the interaction matrix of
the valence-band orbital-states. In this subspace some symmetry-breaking interac-
tion terms are constructed. Then the basis is extended (Sect. 3.2) by including the
valence-electron spin. Because of the multiplication procedure spin-orbit coupling
shows directly up and new symmetry-breaking interaction terms can be constructed.
Thus, when comparing to Sect. 3.1, terms that have their origin in spin-orbit cou-
pling can be easily identified. In Sects. 3.3 and 3.4 we present developments of the
interacting states in the reduced valence-band subspaces of I';- and I'g-symmetry,
respectively. Comparing to Sect. 3.2 we show that an important part of possible
interactions within the complete valence band is already accounted for in the differ-
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ent subspaces. Therefore, a detailed knowledge of the coupling scheme between the
different subspaces is often of minor importance.

3.1 Three-Fold Degenerate Valence Band without Spin

Let us for the moment neglect the electron-spin: then, the valence-band states are
three-fold degenerate and are eigenfunctions of the z-component [/, of the angular-
momentum operator I with / = 1. |m ;) denote the eigenfunctions of /; obeying to

lz|m_,~)=mj|mj) Withn’Ij Z(I,O,—l) (311)

Equivalently, one may also use the symmetry properties of p orbitals, which
transform like the components of the position vector r = (x, y, z) and express |m ;)
in this basis. One then obtains:

1) = —(x +iy)/v2
|0) =z (3.1.2)
| —1) = (x — iy)/V2.

As discussed above, one knows the transformation properties of angular-
momentum operators, which transform like the irreducible representation I'y in
systems with 7, point-group symmetry. As a starting point we now choose the
angular-momentum matrices /; with i = (x, y, z) as three of the basis matrices for
the construction of the valence-electron subspace:

010 0—i 0 100
L=/ V2101 ], =0//2) i 0 —i];.=]000 |. (313
010 0i 0 00—1

From these matrices /; we construct the other basis matrices, which are neces-
sary to span the three-dimensional subspace of the valence-band states. Forming
the product I'y ® I'y we obtain, according to the multiplication scheme given in
Table 2.4:

My =T @l3®Ty®Is. (3.1.4)
The nine matrices resulting from Eq. (3.1.4) may be used to form a basis of our

system since they are linearly independent. In addition, they will be adapted to the
crystal symmetry. According to Table 2.3 we introduce the following components:
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S=101+ li + 12 & transforming as < (I'y, K™T)
U.V)= (31 —1),22 =12 —1}) & (I3, K™)

(3.1.5)
(Pv Qa R) = (l)m ly’ lz) < (F47 Kﬁ)
(X,Y,2) = ({lylz}a {lzlx}a {lxl)}) < (I's, K+)7
where
L}y = (1/2)(Uyl + L.L). (3.1.6)

Inspecting Eq. (3.1.5), we see that all basis functions are even functions with
respect to time reversal (indicated by K 1), except the matrices (P, Q, R)=(l,, 1 v 1),
which are given by the components of the angular-momentum operator and trans-
form as K~. The basis matrices spanning our subspace are thus obtained from
Eq. (3.1.5). We obtain explicitly the following matrices together with their trans-
formation properties:

100
s=21010] & T, K

001

001 100
U=+v3[000];:v=[0-20|« T3k

100 001

010 0—i 0 100
P=1/Y)l101);0=0/v2)|i 0 —i|;R=[000 | & T4, K)

010 0i 0 00—1

0—i0 01 0 00 —i
X=W2/8[i 0il;vy=w2/4|10 -1|:Z2=01/2)|00 0 | & @5, KT).

0—i0 0-10 i00
(3.1.7)

Since the matrices of Eq. (3.1.7) are a basis of the valence-band electron-subspace,
all possible interaction terms in-between the valence-band electron-states can now
be formulated in the frame of these matrices. The number of considered states being
finite, one can work out all desired interaction terms up to a given order of the
perturbation.

The matrices S, V, and R are diagonal matrices. S is proportional to the unit matrix
and a perturbation, which involves this basis matrix transforming as I"; leads only to
a uniform energy shift of the states but does not lift their degeneracy. Perturbations
involving the basis matrices V and R may lead in addition to a splitting of the
states, but they will not mix the states in-between themselves. This is different for
perturbations transforming like (U) € I';, (P, Q) € I'y or (X, Y, Z) € T's, which
mix the different angular-momentum states |m ;). Thus, the states [m ;) will no longer
be eigenstates of the complete Hamiltonian if it includes perturbations that have the
above symmetries.
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Concerning the multiplication scheme of Table 2.4, we recall that the product
of two objects with transformation properties (I';, K Yy and (T i K 1y with (i, j) e
(1,...,8) and (k, ) € (+, —) can only form an object transformation as (I'y, K*)
if (i = j) and (k = /). This condition is very helpful when constructing interaction
terms that may appear in a Hamiltonian.

Let us consider as an example the dispersion of the valence band, which is three-
fold degenerate at the I'-point. We have seen that the wave-vector Q is a symmetry-
breaking perturbation, which transforms as (I's, K ~) in zincblende structure. Then,
because of time-reversal symmetry, the only basis matrices that could be combined
with a Q-linear perturbation would be the matrices (P, Q, R), which also trans-
form according to (K ™). All other basis matrices have (K ) symmetry and their
combination with a @-linear term is forbidden in a Hamiltonian. The basis matrices
(P, Q, R) transform, however, as ' in zincblende structure. As shown in Table 2.3
no product of the basis matrices given in Eq. (3.1.5) with the wave-vector compo-
nents (Q,, Qy, Q;) = (X, Y, Z) can be constructed such that the result transforms
as I'y. Therefore, Q-linear terms cannot exist in our example where the electron spin
is neglected.

The situation becomes different when considering perturbations that vary in sec-
ond order with wave-vector Q. Such terms have K+ symmetry under Kramers’
conjugation. Possible perturbations must transform as the basis matrices I'y, I'3, and
I's do, which have also K+ symmetry. Therefore interaction terms varying as Q>
can be present in a Hamiltonian. Using the multiplication Table 2.3 we can construct
three different interaction terms, which vary as Qz. The first term is given by

02+ Q2 + Q? 0 0
H{p, = ajp, 0’S = 2aj 9y 0 0: + Q§ + 0? 0
0 0 0:+0;+02
(3.1.8)

Indeed, the factor aj 5, corresponds to an (isotropic) effective mass of the valence
band. Since the matrix labeled “S” in Eq. (3.1.7) has the full point-group symmetry,
the angular-momentum states |m ;) are also eigenstates of Hamiltonians, including
this perturbation.

A second term varying as Q? (and transforming according I';) takes the form

Higy = a3y (V3(03 = 0DU + 202 - 02 - 01)V)

0 00}-0? 202 - 02 - Q2 0 0
=a§Q2(3( 0 0 0 )+( 0 -220?-02-0%) 0 ))
0i-0j0 0 0 0 202- 020}
202 - 07 - 0} 0 302 - 02)
=ajp, ( 0 —402+20% +20?) 0 ) .
307 -0 0 202 - 02 - 0?

(3.1.9)
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€9

Let us consider the Schrodinger equation corresponding to a perturbation “p”,
formulated in the basis of the wave functions of Eq. (3.1.2):

Hy|W,) = Ep|V)p). (3.1.10)

Let further H; be given by Eq. (3.1.9) and E;3Q2(i) =E, with (i) € (1, 2, 3) denote

the eigenvalues of Eq. (3.1.10). Then, Eq. (3.1.10) can be solved for a§Q2 # 0 and

arbitrary values of Q° = (Q2 + Q3 + ©2). This solution consists in diagonalization
of the matrix (3.1.9), the wanted eigenvalues being then the diagonal terms. This
procedure is described in detail in Appendix A. One then obtains the following
eigenvalues and eigenfunctions [W,302(i)):

Elgr(1) = aly, (—40% +203 +207)

with eigenfunction |W,302(1)) = (1/\/5) (=D +]=1)
E}s0a(2) = g, (207 +20; —40?)

with eigenfunction [W,302(2)) = [0)
E;00(3) = ajp, (20; - 4Q§ +20?)

with eigenfunction [W,302(3)) = (1/+/2) (|1) + | — 1)).

(3.1.11)

We see that the valence-band states, which are degenerate at @ = 0, remain
degenerate for finite wave-vectors only in the [111]-direction. If only (Q)2C = Q%)
the energy dispersion of [, = %1 states remain degenerate but are different from that
of the [, = O states. In arbitrary (i.e. not high-symmetry) directions the states are
split in energy for finite Q-values and the parabolic dispersion is no longer isotropic,
i.e. the energy dispersion depends on the direction of the wave-vector and shows a
“warping”. Then, if (Q)zc # Qi) the [, = %1 states become mixed at finite Q-values.

Inspecting Table 2.3 we see that combinations of wave-vector components in
second order of Q with the basis matrices (X, Y, Z) can give rise to a third parabolic
contribution to the dispersion of the valence band. Using again Table 2.3 and Eq.
(3.1.7), we find for this contribution to the Hamiltonian

Hpy =208, (0y0:X + 0:0,Y + 0. 0,7)

0 —iQ,0. © 0 0.0, 0
=2alp, | V2/H [i0y0. 0 0,0 |+W2/H 0.0 0 —0:.0.|+

0 —-iQyQ. 0 0 -0:0. 0
0 0-i0:0y
+(1/2) 0 0 0
i0:0,0 0
0 0:0,—i0,0: —iv20.0,
= (V2/2)alp, [ 0:0: +i0,0: 0 -0.0.+i0,0:|.
ivV20:0, —0Q.0.-i0,0; 0

(3.1.12)



46 3 Symmetry-Breaking Effects in Valence Bands of Zincblende-Type Crystals

Proceeding as above and treating Hs),, as a symmetry-breaking perturbation, we
introduce E s Q2(i ) and |W,502(i)) as eigen-values and eigen-functions of the per-
turbed system, respectively. One sees that this interaction also mixes the different
states, depending on the direction of the wave-vector. This mixing of states is, how-
ever, much more sensible than the one given in Eq. (3.1.11), since now all three
states are mixed and the amount of mixing depends on the wave-vector components.
Therefore, we will give here only results for three high-symmetry directions.

Starting with the [001]-direction one obtains that the perturbation is =0. For the
[110]-direction we find

Elson(1) = (1/2)ad 5, 0* with eigenfunction |W,s0(1)) = (1/3/2) (=i[1) + — 1))

EZSQZ(Z) = 0 with eigenfunction |¥,502(2)) = |0)
EJs 2 (3) = —(1/2)ad 5, 0% with eigenfunction [Wy502(3)) = (1/3/2) (i]1) +] — 1))
(3.1.13)
The (at @ = 0 degenerate) states split into three parabolic bands with different
energy dispersion and the splitting increases with increasing wave-vector.
For the [111]-direction one obtains
Ejs00(1) = —(2/3)asp, Q? with eigenfunction |W,502(1))
= /3 (il + VD = D10y +1 - 1)
Els0,(2) = (1/3)ak,, Q* with eigenfunction |W,s0,(2))
= (1/v2) (=il1) + | = 1))
E;’SQZ(S) = (1/3’)(1§’Q2 Q2 with eigenfunction |W,502(3))

= (VD (V21 = D)1} +10))

(3.1.14)

where the states |W,502(2)) and |W,502(3)) are degenerate and can be orthogonal-
ized if needed. In this direction we obtain only two parabolic bands with different
curvatures (effective masses).

Comparing the results for the different crystal directions we see that the crystal
dispersion is not isotropic but shows a “warping”. All combinations of wave-vector
Q? components with the basis matrices (P, Q, R) being forbidden in a Hamiltonian,
Egs. (3.1.8), (3.1.9), and (3.1.12) give all possible quadratic contributions to the
dispersion of the valence band in our model.

Equations (3.1.11)—(3.1.14) show also that eigenvectors, which diagonalize the
Hamiltonian are different, depending on the crystal direction (i.e. they are expressed
by different combinations of the angular momentum eigen-functions). This mixing
of states is a typical signature of symmetry-breaking effects.

The above discussion concerning symmetry-breaking effects varying in second
order with the wave-vector components remains valid if one studies the effects of an
electric field E considered in second order. The same statement holds for the strain
tensor components ¢;; with (i, j) = (x, y, z) when studied in first order. This is due
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to the fact that these perturbations have the same temporal and spatial transformation
properties. But it is self-evident that the constant factors in the different interaction
terms are completely free and not related to each other.

Similarly, our discussion concerning the third-order dispersive terms of the con-
duction band can be directly applied to the three-fold degenerate valence band. One
has only to replace the matrices (o', ol o})inEqgs. (2.5.9) and (2.5.10) by the angu-
lar momentum matrices (I, /,, [;), which are basis matrices for the valence band as
given in Eq. (3.1.3). This is again possible since both sets of matrices have the
same transformation properties (I'y, K 7). In addition, the components of the angular
momentum operator I = (I, [, I.) form the only set of basis matrices for the valence
band, which is odd under time reversal and can therefore be associated to combina-
tions of wave-vector components in third order. If other sets of basis matrices with
K~ symmetry would exist, other additional combinations should be considered.

Concerning other symmetry-breaking effects, the above argumentation applies for
example also for perturbations linear in the magnetic field (linear Zeeman effect).
Following Table 2.3 and Eq. (2.3.1), a term (x B) leads to

HY, =a% B -1 =a} (Bl + By, + B.L). (3.1.15)

This interaction term has the required symmetry properties and leads to a splitting of
the degenerate valence band states. It is the only possible term of the valence band
varying linearly with B.

Let us consider as in Eq. (3.1.10) the Schrédinger equation corresponding to an
applied magnetic field B as a perturbation and E} , (i) = E,, denote the eigenvalues.
Different from the electron-dispersion problem, there is no direction privileged in this
problem, i.e. the perturbation is expressed in components of the angular momentum
operator. We can therefore choose the direction of the magnetic field as quantization
axis and label it “z”. Then, Eq. (3.1.10) can be solved and one obtains the following
eigenvalues and eigenfunctions |W,p;(i)) characterizing the linear Zeeman effect:

E}g (1) = ap, B, with eigenfunction |V, (1)) = |1)
E} 5, (2) = 0 with eigenfunction |W¥,5;(2)) = |0) (3.1.16)
E}p (3) = —ay, B; with eigenfunction |W,5,(3)) = | — 1).

Similar to the wave-vector, all second order terms in B are even functions
under time reversal (K+ symmetry). Combining them with matrices S, (U, V) and
(X, Y, Z) may lead to quadratic Zeeman shifts of the valence band. We find for
example as in Eq. (2.4.4) and similar to Eq. (3.1.8) (which concerns the wave-vector

0)
H{g, = ajy,B’S, (3.1.17)

which is also compatible with the overall symmetry of a Hamiltonian. H, leads to
an energy shift of the states but not to an additional splitting.
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Comparing in Table 2.3 the construction of perturbation terms from wave-vector
components Q = (Qy, Q,, Q) and magnetic-field components B = (B,, By, B;) in
second order, one sees that one has only to perform in Egs. (3.1.9) and (3.1.12) the
following substitutions:

QX - BX
Qy, — By (3.1.18)
Q. — B

in order to obtain functions, which have the same transformation properties. There-
fore, one can directly determine from these relations the symmetry-breaking inter-
actions quadratic in B. In second order in B one thus obtains the additional terms

Hypy = asp, (\/g(Bf —B)U + (2B} — B} — Bi)v)
and (3.1.19)
Hsp, = 2asy, (BszX + B;B,Y + BxByZ)

where ajy,, a3y, , and aiy, are the three parameters, which determine the strengths
of these symmetry-breaking effects. The corresponding interaction matrices are
obtained from Eqs. (3.1.8), (3.1.9) and (3.1.12) after the substitutions Eq. (3.1.18)
have been performed.

In the example discussed above and leading to Eq. (3.1.16) we have chosen only
B, # 0. Concerning the quadratic Zeeman effect, we see that the perturbation term
H{y, has no influence since it vanishes for B, = B, = 0. Then the solutions of the
Schrodinger equation treating an applied magnetic field up to second order in B
(linear and quadratic Zeeman effect) are given by

E'go(1) = aj, B + (aly, + 2ayz,) B* with eigenfunction [W,z12(1)) = |1)
EY;1,(2) = (aly, — 4a¥y,) B* with eigenfunction |¥,512(2)) = |0)
E'p12(3) = —ay, B + (a} g, + 2a%y,) B> with eigenfunction [W,512(3)) = | — 1).
(3.1.20)
Figure 3.1 shows a typical Zeeman splitting as function of the magnetic field for B ||
[001]-direction. If B cannot be chosen || to the quantization axis “z” the Schrodinger
equation has to be solved using the full matrices given in Eq. (3.1.19).

Itis interesting to discuss the linear Stark effect and to see, which states are coupled
by a linear external electric field E = (Ey, Ey, E;). In order to do this, it is only
necessary to replace in Eq. (3.1.12) the wave-vector components 2Q,; Q; ((i, j) =
X, y, z) by the corresponding components of the electric field that are characterized
by the same label (here: (X, Y, Z)). This is possible since the different functions
have the same transformation properties (I's, K ™).

According to Table 2.3 the product (Y Z' + ZY’) transforms as I's. In compliance
with Table 2.2 this combination may be obtained by e.g. 0, 0. + 0.0, =20,0.
(having K T-symmetry with respect to time reversal). According to the first column
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Fig. 3.1 Typical linear and
quadratic Zeeman splitting
as function of the magnetic v E(3) 10 +
field B || [001]-direction. %
E(1), E(2), and E(3) denote %
the energies of the states .
(1),10), | = 1)), Y
respectively. The graphs are : 5+
solutions of Eq. (3.1.20) with B
arbitrarily chosen parameter “
values ag,, ajp,, and ajp, N

E(1)

magnetic field B

of Table 2.3, the same symmetry reveals (apart from other terms) the product SX’, or
E,. We thus obtain directly from Eq. (3.1.12) for the coupling of the valence-band
states to the electric field the interaction Hamiltonian H},:

0 E,—iE, —iv2E,
HY = (V2/4)as, | Ey +iE, 0 —E, +iE, |. (3.1.21)
iv2E, —E,—iE, 0

To find the corresponding energy eigenvalues E., (i) withi = (1 to 3), the matrix
(3.1.21) has to be diagonalized, which is achieved by establishing a characteristic
determinant (see Appendix A). This leads to the polynomial

(E%)* — (1/9)(Ex)(ap)*(EX + E2 + E2) + (1/4) (@}’ ExEyE. = 0
(3.1.22)
the solution of which gives the energies of the valence-band states E};, (i).

Since the matrix form of the Hamiltonians given in Eq. (3.1.12) for wave-vector
components and in Eq. (3.1.21) for the linear Stark effect are identical, the solutions
of the respective Schrodinger equations (the resulting wave-functions and the eigen-
values with exception of the constant factors) are the same. Then, in the results for the
eigenvalues given in Eq. (3.1.13) for the high symmetry directions [110] the energy
factor as, 07 has only to be replaced by al,;, E. Concerning the [111] direction the
substitution consists in replacing in Eq. (3.1.14) (2/ 3)a§Q2 Q%by (1/ «/§)a§ nkE.

The Stark effect is also # 0 if the electric field is orientated parallel to the [001]
direction. Similar to Eq. (3.1.20) we obtain here:

EYsg (1) = (1/2)aly E with eigenfunction [Wosg1 (1)) = (1//2) (=i[1) + | — 1))
Ezlz)SEl (2) = 0 with eigenfunction |¥,5£1(2)) = |0)

E's 1y (3) = —(1/2)aly E with eigenfunction |W,5£1(3)) = (1/v/2) (i]1) + | — 1)).
(3.1.23)
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We have seen that the application of an external field or the finite wave-vector may
mix the different states and lift their degeneracy. If these perturbations are in arbitrary
directions, the amount of mixing depends on the material dependent factors, and if
several perturbations are present it is important to know their respective orientations.

3.2 Six-Fold Degenerate Valence Band Including
Electron Spin

‘We can now continue our invariant development of the Hamiltonian describing com-
pletely the semiconductor valence band. Since an electron is a spin 1/2 particle, the
valence-band states with orbital angular momentum /, = 1 are also two-fold spin
degenerate. In the following, the orbital angular momentum [, operates only on
the orbital part of the valence-band states. Similar to the conduction band case, we
consider spin degeneracy by introducing in addition an effective spin operator o,
with o, = 1/2, which now only operates on the valence-band spin-states. The matri-
ces describing this effective valence-electron spin transform again as (I'y, K~) in
zincblende-type material. We calculate now the direct product (or Kronecker prod-
uct) of the angular momentum matrices (which span a subspace of dimension 3 and
are given in Eq. (3.1.7)) with the spin matrices, i.e. we calculate the productl, ® o ,.
Here, the spin matrices o, = (o}, oy, o) together with the two-dimensional unit
matrix 1, describe the spin subspace of dimension 2. We thus build the product
space of dimension six in which the valence-band states are defined. The valence-
band eigenfunctions can be equally well determined using the Clebsch-Gordan coef-
ficients for a system with angular momentum /, = 1 coupled to a spin with o, =
1/2. The eigenstates of the system can be classified according to the total-angular
momentum j, = I, @ o, and its projection component j. onto the z-axis. Following
this scheme, states with a total-angular momentum j, = 3/2 and j, = 1/2 can be
constructed.

Using the above convention for the matrix products, valence-band electron-wave
functions v} are given in the new basis by

v/ = aii|l)a + aiz|1)B + ai3|0)a +a; 410)B + a; 5| — o +aigl — 1)B
i=1,..,6),
3.2.1)
where |m ;) denote the eigenfunctions of the angular-momentum operator-component
I, as defined in Eq. (3.1.1) and « and g the electron spin up and down states, respec-
tively.

Concerning the angular momentum, we start with the matrices (S; U, V; P, Q,
R; X,Y,Z), which are obtained from the components (I, !/, ;) of the angular
momentum and are given in Egs. (3.1.5) and (3.1.7). They transform as (I'; I's;
I'4; I's), respectively. They are multiplied with the valence-electron spin-matrices,
i.e. the two-dimensional unit matrix 1, and the Pauli matrices (o, oy, o}), which
transform as (I';, K1) and (T4, K ™), respectively. These matrices are defined in the
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same way as in Egs. (2.2.5) and (2.2.3) for the electrons in the conduction band. (For
clearness, matrices defined in the angular-momentum subspace are denoted in the
following discussion by capital Latin letters as in Eq. (3.1.7), those defined in the
spin-subspace by a prime ('), and matrices in the product space by a double quotation
mark (). This convention will, however, not systematically be adopted throughout
all this work.) We denote the spin matrices in the following by

(1/3)(0,)* =1, > §'
oy —> P
(3.2.2)

y /
o, = 0

ol > R

Since the transformation properties of the angular momentum and that of the
spin matrices are known, we can now construct by successive use of Table 2.3 the
symmetry adapted basis matrices giving the symmetries of all possible interactions,
which can act within the valence-band states. We thus obtain the thirty-six symmetry
adapted basis matrices:

(S;U,V;P,O, R X, Y, 2)®S & transforming as < (I'y, K+; I's, K+; Iy, K™; s, K*)

(P,Q,R®(P,Q,R)& T ®I3&T4® s, KT)

X,Y,2)@ (P, 0 \R)& T ®I3@I1®dTs5,K7)

U, V)P, Q,R)& (T4@Ts,K7)

()R (P, Q. R) & (I'y. K7).

(3.2.3)

According to Table 2.4 we obtain in total fifteen sets of symmetry adapted matrices.

2 sets transform as (I'y, KT), 1 as (', K7), 2 as (I's, K1), 1 as ('3, K7), 1 as (T's,

K™),4as (I'y, K7),2as (I's, K™), and 2 as (I's, K ). They fully account for all
possible interactions in between the valence-band states.

It is convenient to enumerate these basis matrices explicitly since they can directly
be used to establish (together with the perturbing field components) the different
contributions to a Hamiltonian. The spatial transformation properties of the basis
matrices are noted according to our convention in Eq. (3.1.5), they are classified
according to their time reversal properties, and indicated by (). Since different basis
matrices may have the same spatial symmetry but arise from different components
of the angular-momentum and spin operators, we indicate their origin by subscripts,
where the first number indicates the irreducible representation to which the angu-
lar momentum components belong and the second that of the spin component. For
example the matrix P34” characterizes the matrix P (one of the components trans-
forming as I'4 in the six-dimensional product space) obtained from the direct product
of angular-momentum matrices transforming as I'; with spin components transform-
ing as ['4. As given in Eq. (3.2.3) it has K~ time-reversal’ symmetry. For shortness
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we write in the following (as in Table 2.3) the matrix product S;;” = S ® S’ in the
form S1;” = SS’. We thus obtain the following matrices that transform
as K under time reversal :
S” =88 (I',KY);
Usi”=US", V31" =VS (T3, K");
Xs1”=XS,Ys1”=YS,Zs;" =28 (I's,K");
Su”=PP + Q0 +RR (I',K");
Uu”=~3(PP' = QQ'), Vs’ =2RR' — PP' = QQ' (I's,K");
Py’ = QR — RQ', Qs = RP'— PR, Ry’ = PQ — QP (I'y,K");
X4 = QR +RQ',Yyy”=RP + PR, Zyy”=PQ' + QP (I's,K");
and for those transforming as K~ :
Py’ =PS, Q4" =08, Ru”"=RS (I's,K7);
Tss” =XP' +YQ +ZR (T2, K7);
Uss” =2ZR — XP' —YQ', Vss” =V3(=XP' +YQ) (I's,K7);
Psy,"=YR +ZQ, 05 =ZP + XR,Rsy" =XQ +YP (T4, K);
Xss"=—YR' +Z2Q",Yss" = —ZP + XR',Zsy”" = —XQ +YP' (I's,K7);
Py’ = (V3U = V)P, 03" = —(V3U + V)Q', Ry’ =2VR' (T4, K7);
X' = —(V3V+U)P V3" = (V3V - U)Q' Z3" =2UR (I's, K7);
P14” — SP/, Q14” — SQ/, R14” — SR/ (F4, K_) .
(3.2.4)
Let us consider the construction of these matrices in more detail: Table 2.3 shows
thate.g. the symmetry adapted basis matrices (U, V) and (P’, Q’, R") multiplied with
each other can give rise again to symmetry adapted matrices in the product space if the
correct combinations are chosen. Namely, one can construct from the direct product
of (U,V) and (P’, Q', R') six linearly independent, symmetry-adapted matrices
which are:

U, V)@(P',Q'.R) = Py ® Q034" ® R3s” D X34" D Yas" B Z3s”. (3.2.5)

Since the final matrices (P34”, Q34”, R34”) and (X347, Y34”, Z34”") are linearly inde-
pendent they can form together with the other matrices of Eq. (3.2.3) a basis of the
six-dimensional product space of the valence-band states.
Let us calculate as an example the matrix Ps4”. As indicated in Table 2.3 it is
given by
Py = (v3U - V)P (3.2.6)

Using the definitions given in Egs. (3.1.7) and (3.2.2) for U, V, and P’
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001 100 01
U=+31000].v=[0-20 ,andP/zoj:<10>0neobtains:
100 001
0 —-1000 3
001\ 100\ o [ 5050 0
P34”=(3 000} —-10-20 >®<10>= 0 0200 0 . (3277
100 001 0 3000 —I
3 000-10

The other matrices enumerated in Eq. (3.2.4) can be determined in the same way and
thus a symmetry-adapted basis for the valence-band states is obtained. It is important
to notice here that (according to the formation of the direct matrix product) the rows
and columns of the matrix elements of P34 (and of all other matrices in this section)
are ordered according to the states (|1)a, |1)8, [0)«, |0)8, | — 1)e, | — 1)B). This
allows one to analyze, which states are coupled within the matrices given in Eq.
(3.2.4).

Itis interesting to mention at this point that the first line of Eq. (3.2.3) describes all
interaction terms, which are already present if only the angular momentum states of
| =1 are considered. For each state the spin variable is added, but the spin does not
change the interaction between the states. This is expressed by the fact that the matrix
S’ is proportional to the unit matrix in the spin subspace. Similarly, the interaction
terms of the last line of Eq. (3.2.3) act only on the spin part of the wave functions
and the angular momentum of the actual product state is not influenced, S being
proportional to the unit matrix of the angular-momentum subspace. All interactions
within the pure spin and angular-momentum subspaces discussed in Chap. 2 and
Sect. 3.1 can be described by these twelve matrices.

Interestingly, in the product space of spin and angular-momentum variables new
matrices (allowing to construct new interaction terms) appear, which may have differ-
ent symmetries (transformation properties) than the ones defined in the isolated spin
and angular-momentum subspaces. They are thus due to spin-orbit coupling within
the valence-band states and will be discussed in the following. It is very important
to realize that in physical systems, which show no or only small spin-orbit coupling
the interaction terms that are resulting from these matrices have also to vanish.

Let us now discuss the Hamiltonian of the valence band. We start with the terms,
which have the full crystal symmetry at the ['-point and define the Hamiltonian H".
Using the valence-band electron-wave functions v} given in Eq. (3.2.1) these terms
can be formulated in form of a matrix. They are characterized by the fact that only
scalar functions multiply the matrices of Eq. (3.2.3). Inspection of Eq. (3.2.4) shows
immediately that only two products are compatible with interaction terms that may
appear in a Hamiltonian, i.e. products transforming as (I';, K ). They are given by

S =5S®S and S =PRP +0®0Q +RSR. (3.2.8)
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Therefore, the Hamiltonian H" can be decomposed into
H'=H]+H =a)S\” + a,,S”. (3.2.9)

The two terms in Eq. (3.2.9) are the only terms of a Hamiltonian that have the full
point-group symmetry.

Following Egs. (3.1.7) and (3.2.2) the matrix S;;” =S ® S’ =2 - 1” is propor-
tional to the six-dimensional unit matrix 1”. Then, the direct term Hj = ajSy;” is
given by the product of a real scalar value 2a; and the unit matrix 1”. It determines
the energy of the six-fold degenerate valence-band states, which can be taken in
the following as the origin of the energy scale. H; does not depend on the spin or
angular-momentum structure of these states.

A second term, denoted H = a;,S44”, describes the spin-orbit interaction in-
between these states. After calculation of S44” from Eq. (3.2.8) (by using explicitly the
expressions for the matrices (P, Q, R) given in Eq. (3.1.7) and those for (P’, Q’, R')
given in Eq. (2.2.3), H}, takes the matrix form

10 0 0 00
0-1420 00
0420 0 00
HY =a’ Si” = a’ 2.1
50 asoS44 ag, 00 0 O ﬁo ’ (3 O)
00 0 +2-10
00 0 0 01

where the constant a;, indicates the strength of the spin-orbit interaction. It depends
on the strength of the electric potential, to which the electrons are exposed, and on the
atomic orbitals, which give rise to the valence-band states. (Spin-orbit coupling is a
relativistic effect and increases as discussed in atomic physics (o« Z*) with increasing
atomic charge number Z. Therefore, spin-orbit interaction is more important in atoms
with higher nucleus charges than in those with lower charges. This consideration
remains important in semiconductor physics.).

The spin-orbit interaction H, can be diagonalized and one finds in zincblende

structure that the eigenvalues ¢; (withi = 1, ..., 6) of Eq. (3.2.10) are given by

e =al (=2, -2,1,1,1,1). (3.2.11)

N

The corresponding normalized eigenvectors of the valence band are given by the
columns of v}

0 0 00 0 1
0 —v6/30 0 +/3/30
v _ 0 V3/30 0 +6/30
T -v35 0 0463 0 0 (3:2.12)
V6/3 0 043/3 0 0
0 0 1 0 0 0
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Let us in the following consider the total angular momentum j, = [, @ o, and its
projection component j, onto the z-axis. In the double-group representation, which
has to be used if the spin and the orbital-angular momentum of the electron are
considered, the valence-band states transform as I'; (v{ and v} ; two-fold degenerate)
and T'g (v} to v¢; four-fold degenerate), respectively [2, 4, 8]. We also use the
notation |j, m ;) for indexing the valence-band states, where the quantum numbers
(j, m;) recall the total angular momentum j and its projection m; onto the z-axis
of the states. Because of the implicit use of the symmetry properties of the wave
functions this notation is more convenient when discussing the matrices describing
the effective Hamiltonians. Taking into account the ordering of the basis functions
Eq. (3.2.1) the eigenvectors of the valence band are now explicitly given by

W = (—]0)B + V2| — Da) /3 = [1/2,—1/2)
vy = (10)a — v2/1)8) /3 = 1/2,1/2)
v =|—1)B=13/2,-3/2)
(3.2.13)
v = (V2|08 + | — )a)/v/3 =13/2,—1/2)
= (V2|0)a + [1)8)/~/3 = 13/2,1/2)
ve = [ = [3/2,3/2).

Usually, one considers rather the transformation properties of the p orbitals in
Cartesian coordinates, which are given in Eq. (3.1.2). The basis functions of the
valence-band states then read:

vf = (—2B + (x = in)a)/V/3 = |ge)

= G+ (x +i)B)/V3 = |¢s)

= (= iy)p/V2 = |g)

vy = (ZZﬁ + (x — iy)a)/V6 = |¢s)

vy = <2za — (x +iy)B)/V6 = I¢2)
= —(x +ina/N2=1¢1).

(3.2.14)

The notation of the states (|¢;)) (with i = 1, .., 6) has been introduced in Ref. [1],
which is recalled here. It is also used to define electron-hole pair states as will be
discussed in the chapter concerning excitons.

As given in Eq. (3.2.11) and indicated schematically in Fig. 2.2 we see that the
degenerate valence band is split by the spin-orbit interaction into two bands that are
four- and two-fold degenerate at the I"-point, respectively. The spin-orbit splitting of
the valence-band states A?, is now obtained from Eq. (3.2.11) to be

AY =3a} (3.2.15)

N .SO
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energy (eV)

wave vector (0||[[110]

Fig. 3.2 Valence-band dispersion of zincblende GaSb single crystals along the I' — ¥ — K direction
of the first Brillouin zone. The spin-orbit splitting AY ) = 0.8 eV at the valence-band maximum (the
I"-point) is clearly seen. This splitting (being a relativistic effect) is particularly large in GaSb due
to the large atomic number of Sb. Symbols indicate various experimental points, smooth curves
represent theoretical band-dispersion calculations. According to Ref. [2]

The spin-orbit coupling of a valence band is illustrated in Fig. 3.2 that displays the
valence bands of zincblende-type GaSb semiconductors (Ref. [2]). The spin-orbit
splitting A} = 0.8 eV at the valence-band maximum (the I"-point) is clearly seen. It
is particularly large in GaSb because of the high atomic number of Sb.

The band having I'; symmetry is also called the “split-off band”. Usually, the
spin-orbit interaction is positive in simple semiconductors and the valence band with
I's symmetry has a higher energy than that with I'; symmetry. But, as mentioned
above, there are some exceptions (as for example CuCl). This unusual behavior is due
to different admixtures of atomic d- and p-electron states to the uppermost valence-
band states of the crystals. In addition, the contributions of atomic-electron states to
the valence-band states may change with temperature and the spin-orbit splitting of
the valence bands becomes temperature dependent.

As discussed above, symmetry-breaking interactions can now be considered in
detail and it can be analyzed, in which way they modify the energy structure of
the valence-band states and how they mix different states. The procedure is the
same as the one, which we have adopted above: we develop the symmetry-breaking
perturbation in a power series, use Table 2.3 to construct symmetry-adapted product-
functions and, after being multiplied with the basis matrices of Eq. (3.2.4), search
for interaction terms that are invariant under the symmetry operations of the crystal,
i.e. that transform as (I';, K). These terms may then appear in a Hamiltonian and
contribute to the energy of the valence-band states.
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Concerning the spatial symmetry properties of a system, we know from group
theory (and it can also be seen in Table 2.4) that products of two irreducible rep-
resentations of a group contain terms transforming as I'y if, and only if, the two
members of the product have the same transformation properties. Furthermore, in
this case a term of I'; symmetry appears only once. Or, to put it differently, only
products of the form I'; ® I'; contain a representation transforming as I'y (and only
once) if i = j. As we have seen in Eq. (3.2.3), the basis matrices can be decomposed
into fifteen different irreducible representations. This means that, when applying an
arbitrary perturbation to the valence band, it can give rise to at maximum fifteen
symmetry breaking interactions.

Let us as a first example discuss the linear Stark effect and its relation to spin-
orbit coupling in the semiconductor valence band. As discussed with Egs. (3.1.21)—
(3.1.23), when neglecting the electron spin, a linear Stark effect is already present
in the valence band because of the orbital angular momentum. Including the spin
and employing the matrices in Eq. (3.2.3), this interaction Hamiltonian Hp, , (cor-
responding to H}, given in Eq. (3.1.21)) takes now the form

Hpy, = ag [XS'E;+YSE, + ZS'E;] = (3.2.16)
=ap,[Xs1”Ex + Y51"E, + Z5,"E_]. o

The inclusion of the spin leads, however, to an additional, second interaction term,
that is also linear in the electric field E = (E,, E,, E;). This term has its origin in the
increase of the number of considered basis states, i.e. its influence on the valence-
band electron-states is due to the spin-orbit coupling. In its matrix form the new
interaction term H ), is proportional to a weight factor aj;,, that has to vanish if the
spin-orbit coupling vanishes. We obtain for this additional term linear in the electric
field explicitly:

Hiy, = ag[(QR'+ ROVE, + (RP'+ PRE, + (PQ' + QP)E.] =

=ap [ Xas Ex + Ya"Ey + Z4s E ..
(3.2.17)
Let us consider the matrix form of both terms in detail. We choose as an example
the direction of the electric field E parallel to the z-direction, which is the quantization

axis. Then, we obtain for Hy,, the coupling matrix

0 0 00-i3/2 O
0 0 00 O —i3/2
v v » v , v 0 0 00 O 0
Hgy, = ag,Zs1"E] = ap,(ZS)E; = ag,,E; 0 0 00 0 0
i3/72 0 00 O 0
0 i3/200 O 0
(3.2.18)

The order of eigenvectors of the valence band used to establish the matrix in Eq.
(3.2.18) has been discussed in connection with Eq. (3.2.7). In a Hamiltonian non-
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diagonal matrix elements correspond to a mixing of the basis states in which the
Hamiltonian is expanded (see e.g. Appendix A). We thus see from the matrix form
of Hy,, that the electric field component £, mixes the states |1)or and | — 1)a as well
as the states 1) and | — 1) 8, while the states |0)« and |0) 8 states are not affected
by this field component. This means that, when conserving the spin, £, may act only
on the orbital angular momentum and mix states with A/, = £2.

Hp,, has a different structure than the linear Stark effect of Hy,

000 —iv/20 0
000 0 0 O
v S, e 000 0 0-iv2
Hpy, = ap|Zaa”E ) = ag,(RR)E; = ag,, E; iv20 0 0 0 0
000 0 0 O
0 0iv/2 0 0 0
(3.2.19)

When considering the matrix form of Hp,, given in Eq. (3.2.19) we see that the
electric field component £, mixes the states |1)« and |0)8 and the states |0)« and
| — 1)B. In this case the total angular momentum j is used to classify the states and
one finds that states with A j, = +2 become mixed (see Eq. (3.2.19). The value of the
mixing is, however, different from that of H},, since the factors a},, and ay,, are
independent from each other. Similar, but more complicated mixing schemes occur
if the field components E, and E, are # 0. In any case, an electric field of arbitrary
strength and direction leads to a splitting of the sixfold degenerate valence-band

states.

In view of the “Pseudo-Spin Development of the Valence Band” that we will
discuss in the next sections, it is not so interesting to consider the thirty-six basis
matrices given in Eq. (3.2.4), which are only adapted to the crystal symmetry. The
rows and columns of these matrices are defined using the eigen-vectors of the valence
band, ordered according to (|1)«, [1)8, |0)a, |0)B, | — 1), | — 1)B). Instead, one
better transforms the complete Hamiltonian to the set of valence-band states in which,
in addition, the spin-orbit coupling is diagonal. This set of eigenstates v} to vg consists
of a linear combination of the states (|1)« to | — 1)8) and is given in Eq. (3.2.13) or
Eq. (3.2.14). In order to obtain the new symmetry adapted matrices, we transform the
matrices of Eq. (3.2.4) onto these normalized eigenvectors. We indicate the resulting
matrices by the additional subscript “so”. Then the matrix Ps4” given in Eq. (3.2.7)
becomes for example:

0 100 0 3 0 —8/3 —v6/3 0 J2/3 0
-1 0003 0 -8/3 0 0 —v2/3 0 6/3
|0 0020 0f —J6/3 0 0 —v3/3 0 3  p
=10 0200 0 0 —v2/3-3/3 0 7/3 o | e
0 3000 -1 V273 0 0 7/3 0 —3/3
3 000-10 0 \f6/3 3 0 _ﬁ/:; 0

(3.2.20)
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(Concerning mathematical details, see Appendix B.)

For the above example of an electric field applied in the z-direction E = (0, 0, E,),
we obtain instead of Eq. (3.2.18) the coupling matrix

H}?la = agla [XSISD”EX + YSlso”Ey + ZSISO”EZ]

0 0 0 0 0 iv6/2
0 0 iv6/2 0 0 0
—d E 0 —iv6/2 0 0 iv/3/2 0 (3.2.21)
Ela™z 0 0 0 0 0 iv3)2
0 0 —iv3/2 0 0 0
—iv6/2 0 0 —iv/3/2 0 0

and instead of Eq. (3.2.19) for H},,:

HE”, = a%]b[x44su”Ex + Y44.r0”Ey + Z44so”Ez]

0 0 0 0 0 —iv6/3
0 0 —iv6/3 0 0 0
. 0 iv6/3 0 0 i2v3/3 0 (3.2.22)
=ag,E; . )
0 0 0 0 0 i2/3/3
0 0 —i2v/3/3 0 0 0
iv6/3 0 0 —i2v/3/3 0 0

where the 2 x 2 block in the left, upper corner of the matrix concerns the interaction
between the [';-states and the 4 x 4 block in the right, lower corner the interacting
I"g-states.

The coupling schemes of both interaction terms given in Egs. (3.2.21) and (3.2.22)
are very similar to each other: Within the blocks, states transforming as I'; are not
coupled directly with each other but the same states transforming as I'g are coupled
in both cases. These states are split into two doublets when applying an electric field.

Concerning the non-diagonal blocks, as shown in Egs. (3.2.21) and (3.2.22), the
same valence-band states with I'; and I's symmetry are coupled through the E.-
linear terms. E, thus mixes the irreducible representations of different symmetry. It
is interesting to notice that the coupling strengths in these non-diagonal blocks and
within the block of I'g-symmetry are different.

As we will discuss in the next sections, the mixing of the irreducible represen-
tations by the electric field can be neglected if the spin-orbit coupling is strong
compared to the Stark effect. In order to show an intermediate situation and the
competition between Stark effect and spin-orbit coupling, we have calculated the
energy of the states resulting from the interaction Hamiltonian H},, of Eq. (3.2.18)
and Hyp,, of Eq. (3.2.19) as a function of E.. It might be of importance to note that
Figs. 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 display the expected phenomena in a qualitative
way (i.e. in relative units) only; the symmetry-based approach itself is not able to
predict the magnitude of the effects.
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Fig. 3.3 Energy of the valence-band states at the I'-point (given in units of a;,, = A} /3 ) as a
function of Elgs—; = (ay,, E; )/ag,, where the interaction energy (ay;, E) is measured in units of
the spin-orbit coupling energy a;,. The electric field E || [001]-direction. E1, E2, and E3 denote
the energies of the states. For E, = 0 the energies of the I'g and I'7 states are situated at (+1a},

SO
and (—2a;,) energy units, respectively

Fig. 3.4 Energy of the
valence-band states at the
I"-point (given in units of
aj, =AY, /3)asa

function of El4q_111 =
(agp,p, E;)lag,, where the
interaction energy (ay,, E-)
is measured in units of the
spin-orbit coupling energy
ay,. The electric field

E || [111]-direction. E1, E2,
and E3 denote the energies
of the states. For E,=0 the
energies of the I'g and I';
states are situated at (+1a},)
and (—2ay,) energy units,
respectively

Figure 3.3 shows the energy of the valence-band states at the I"-point as func-
tion of a dimensionless energy Ely_. =(ay,, E; )a;,, i.e. the interaction energy
(aj,, E.) is measured in units of the spin-orbit coupling energy a;, . The notation
Elys_; =(ay,, E; )/a;, reminds that the basis matrices with the indexes “44” are at
the origin of the interaction and that the coupling is induced by the z-component of
the electric field.

We observe in Fig. 3.3 three doublets; the branches are labeled E1, E2, and E3,

respectively. The branches change their spectral position with increasing electric
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Fig.3.5 Influence of the @-linear dispersion term: Left panel: Dispersion of the valence-band states
in the “effective-mass approximation” including second-order dispersive terms and the valence-band
spin-orbit splitting A} . This dispersion has to be modified in the presence of Q-linear terms. Right
panel: Resulting energy corrections (given in units of a;, = A} /3) in the [100]-direction as a
function of Qls4_100 = (a“Q1 o @)/ ag,, where the interaction energy (a”Ql . @) and the energy
corrections are measured in units of the spin-orbit coupling energy ag,. E1, E2, and E3 denote
the energies of the twofold degenerate states, E gives the zero of energy. For Q = 0 the energies
of the I'g and I'; states are situated at (+1a;,) and (—2a;,) energy units, respectively. The twofold
degenerate branches E'1 and E2 are strongly coupled and show an anti-crossing behavior. Note the
different scales in Figs. 3.5, 3.6 and 3.7

field and, in addition, the character of the states changes due to their increasing
mixing. Since the branches are strongly coupled, the branches E1 and E3 show
an anti-crossing behavior at positive values of E144_,. Similarly, the anti-crossing
behavior between the branches E'1 and E?2 is important at negative values of El44_.
This is significant when the interaction energy (ay,, E.) is comparable to the spin-
orbit splitting A} = 3ag,. Similar to the discussion in Sect. 3.1 the same energy
variation with increasing electric field of the branches is obtained when the field is
orientated along the [110]-direction. However, as shown in Fig. 3.4 (i.e. the energy
of the valence-band states as a function of Elys_111 = (ay,, E; )/a;,) it differs for a
[111]-orientation of the electric field.

These results remain qualitatively the same when the interaction Hamiltonian
Hp,, of Eq. (3.2.18) as a function of E is considered. Similar to the interaction
Hamiltonian Hp,,, the energy variation of an electric field || [110] is the same as
that || [001]. Compared to the interaction Hamiltonian Hp,, the numerical values
of the energies change, however, since the coupling coefficients in Eq. (3.2.22) are
slightly smaller than in Eq. (3.2.21). In addition, the coupling strengths between
the blocks with I'7- and I'g-symmetry are different in both interaction terms. This
becomes evident when comparing the coupling coefficients in Egs. (3.2.21) and
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Fig.3.6 Influence of the Q-linear dispersion term: Left panel: Dispersion of the valence-band states
in the “effective-mass approximation” including second-order dispersive terms and the valence-
band spin-orbit splitting A} . This dispersion has to be modified in the presence of Q-linear terms.
Right panel: Resulting energy corrections (given in units of a}, = A? /3) in the [110]-direction as

SO (2
a function of Qls4_110 = (a“Q1 « @)/ aj,, where the interaction energy (a"Q1 o Q) and the energy

corrections are measured in units of the spin-orbit coupling energy a;,. E1to E6 denote the energies
of the states, which are not degenerate, E gives the zero of energy. For Q = 0 the energies of the
I'g and I'7 states are situated at (4+1ay,) and (—2ay,) energy units, respectively. The branches (E1
and E5) as well as (E2 and E4) are mutually strongly coupled and show an anti-crossing behavior.
Note the different scales in Figs. 3.5, 3.6 and 3.7

(3.2.22), which are given using the basis matrices in which the spin-orbit coupling
is diagonal.

As shown in Figs. 3.3 and 3.4 the branches remain spin degenerate. This is due
to the time reversal symmetry required for a Hamiltonian and the transformation
properties of an electric field: Both quantities are time independent (symmetry K ),
while the spin state changes under time reversal. Therefore, when applying an electric
field as a perturbation to the system, the different spin states must have the same
energy. This is different when considering perturbations, which change their sign
under time reversal as the wave-vector Q or a magnetic field B.

An interesting example for a symmetry-breaking effect is the finite wave-vector Q
=(Qx, Qy, @), which transforms as (I's, K ~) in zincblende structure. We have seen
in Chap. 2 and Sect. 3.1 that Q-linear terms cannot exist in a Hamiltonian describing
only a spin-degenerate conduction band or a valence band, characterized by an angu-
lar momentum [ = 1 but without spin. Therefore, neither the spin-degeneracy of the
conduction band nor that of states with angular momentum / = 1 is lifted. Inspection
of Table 2.3 shows, however, that combining Q-linear terms with basis matrices that
transform also as (I's, K ) can lead to terms possessing the transformation proper-
ties, required for a Hamiltonian. We see in Eq. (3.2.3) that (if the spin is included in
the valence band) some basis matrices fulfill this condition. We can thus construct
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Fig.3.7 Influence of the @-linear dispersion term: Left panel: Dispersion of the valence-band states
in the “effective-mass approximation” including second-order dispersive terms and the valence-
band spin-orbit splitting A} . This dispersion has to be modified in the presence of Q-linear terms.
Right panel: Resulting energy corrections (given in units of aj, = A} /3) in the [111]-direction
as a function of Qlsy_111 = (a”Ql « @)lag,, where the interaction energy (anla Q) and the energy
corrections are measured in units of the spin-orbit coupling energy a;,,. E1, E2, E3, and E4 denote
the energies of the states, E gives the zero of energy. For Q =0 the energies of the I'g and I'; states
are situated at (+1a},) and (—2a},) energy units, respectively. The branch E1, originating from
the split-off band with I'; symmetry at Q = 0 remains (as well as the branch E?2 originating from
the states of the I'g band) doubly degenerate, while the upper and lower I'g bands (E3 and E4) are
degenerate no more. The twofold degenerate branches E1 and E?2 are strongly coupled and show
an anti-crossing behavior. Note the different scales in Figs. 3.5, 3.6 and 3.7

two Q-linear terms, coupling the valence-band states. They read explicitly in terms
of the matrices defined in Eqs. (3.2.4) and (3.2.2):

Hpiy = ap[(ZQ' = YR) Q. + (XR = ZP)Q, + (Y P' = X0 Q.1 =
= ap1,[X54”0x + V54" Qy + Zs4” Q]
(3.2.23)
and

Hpyy = aby,[—(V3V + U)P' Qs + (V3V = U)Q'Q, +2UR'Q,] =

(3.2.24)
= ap [ X347 0« + Y347 Q) + Z347 Q..

It follows from the above discussion that these Q-linear terms are only possible
here because of the spin-orbit coupling, i.e. products of the type (ZQ' — Y R’) etc.
in Eq. (3.2.23) arise since the basis of the valence-band states has been increased
by considering the electron spin. In the case of a vanishing spin-orbit coupling, the
effective Hamiltonian would be given by the direct product of the unit matrix defined
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in the angular momentum subspace multiplied by the unit matrix defined in the spin
subspace. Spin and orbital momentum would not see each other and the coefficients
aqua’ which connecte.g. “Z” and “Q” in Eq. (3.2.23) would be = 0. Then the matrix
Xs4” would not give rise to any symmetry breaking effect and the Q-linear terms
would vanish.

In general, such additional interaction terms discussed above may always appear
if the number of considered states is increased corresponding to an increase of the
dimension of the basis, on which the Hamiltonian is defined. For example, instead of
considering the spin as additional variable, an increase of the basis is also achieved
when respecting additional valence- or conduction-band states to which the former
states are coupled.

In order to lift the spin degeneracy of states, the Hamiltonian matrix has to contain
explicitly the spin-orbit coupling of Eq. (3.2.10) and the symmetry-breaking terms
of Eq. (3.2.23) or Eq. (3.2.24). Both terms have to be diagonalized simultaneously
if one wants to discuss remaining degeneracies. As discussed above, in the absence
of spin-orbit coupling all angular momentum states would remain spin degenerate.
Considering spin-orbit coupling leads in the presence of the dispersive terms to a
symmetry-breaking interaction, which may lift the degeneracy of the states. As indi-
cated in Eqgs. (3.2.23) and (3.2.24) its value depends on the wave-vector components
and can lead to an anisotropy of the dispersion.

In order to demonstrate possible degeneracies of the states and the anisotropy of
dispersion due to the @-linear terms we have calculated the valence-band dispersion
resulting from the term H("zla for the high-symmetry directions [100], [110], and
[111], including spin-orbit coupling. The result is shown in Figs. 3.5, 3.6, and 3.7
where the interaction energy (ag,, Q) is measured again in units of the spin-orbit
coupling-energy a;,. Concerning the [100]-direction, shown in Fig. 3.5, each of the
three branches labeled (E'1, E2, E3) is doubly degenerate. Again, hybridization is
clearly observed when branch E2 gets close to branch E1 with increasing Q1s54—100
= (aléla Q )/asvo'

As shown in Fig. 3.6, concerning the [110]-direction, the branches are only degen-
erate at Q = 0. Otherwise the degeneracy is completely lifted by the coupling of
the states. A pronounced anti-crossing behavior is observed at finite wave-vectors
between branches E'1 and ES as well as between E2 and E4.

In the [111]-direction (see Fig. 3.7) the split-off band (having I';-symmetry at
Q = 0 and giving rise to branch E1) and two of the states originating from the I'g
band (branch E2) remain doubly degenerate, while the upper and lower I'g bands are
not degenerate. The twofold degenerate branches E1 and E?2 are strongly coupled
and show an anti-crossing behavior.

Again, it is less interesting to discuss the dispersion in the frame of the thirty-
six basis matrices, which are only adapted to the crystal symmetry, but rather to
consider the set of basis matrices, in which the spin-orbit coupling is diagonal. When
the matrices of Eq. (3.2.4) are transformed onto the normalized eigenvectors of the
valence band given in Eq. (3.2.12) the @-linear term of the valence-band states given
in Eq.(3.2.23) takes the matrix form:
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Héla = aUQla [X5430”Qx + Y54s0”Qy + Z54s0”Qz] =

0 0 J6/12 0  J2/4 0
0 0 0 —v2/4 0 —6/12
a0 V6/12 0 0 —v3/6 0 —1)2 N
Tl o 24 V36 0 1)2 0
V2/4 0 0 12 0 —3/6
0 —V6/12 —1/2 0 —=V3/6 0
0 0  iV6/12 0 —iv2/4 0
0 0 0 —iv2/4 0 iV6/12
) —i6/12 0 0 iv/3/6 0 —i/2
Tl gt A i 0 —ip o | T
i2/4 0 0 i/2 0 iV/3/6
0 —iv6/12 )2 0 —iv3/6 0
0 0 0 0 0 —6/6
0 0 —V6/6 0 0 0
) 0 —V6/6 0 0 —v/3/3 0
g Q| 0 0 0 0 33
0 0 —3/3 0 0 0
—v6/6 0 0 3/3 0 0
(3.2.25)

If we consider for simplicity the [100]-direction (i.e. Qy = Q. = 0), the second
Q-linear term given in Eq. (3.2.24) takes the matrix form

Hélb = aUth[X34m”Qx + Y34m”Qy + ZS4so”Qz]

0 0 —v20 -6 0
0 0 0 V6 0 2
—ab 0 V20 0 -1 0 -3 (3.2.26)
en=xl 0 V6 -1 0 3 '
V60 0 V3 0 -1
0 V2-V30 -1 0

For both interaction terms one remarks that the first two states transforming as
I'; are not coupled directly with each other by the Q-linear terms. Only the states
transforming as I'g experience such a direct coupling. Their coupling scheme is—
with the exception of an unimportant phase factor—the same for both Q-linear terms.
This statement remains valid when considering the Q, and Q. components of the
wave-vector Q.

As shown in Eqgs. (3.2.25) and (3.2.26) the valence-band states with I'; and I'g
symmetry are (as in the case of the Stark effect) coupled with each other in the
same way through the two different Q-linear terms, which thus mix the irreducible
representation at finite wave-vectors. The coupling strength between the states are
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again different in both terms, leading to different energy variations with wave-vector.
Both @-linear terms lead, however, to the same mixing scheme of the states. In order
to determine the entire anisotropic dispersion of the states Eqgs. (3.2.25) and (3.2.26)
have to be solved numerically.

We also obtain (quite similar to the Q-linear terms) the additional linear terms
for the magnetic field B:

Hy, =ay [(ZQ'+YR)B, + (XR + ZP)B, + (YP' + XQ")B.] =
= ap [ Psa” By + Q54" By + Rs4” B, ]
(3.2.27)
and

Hpyy = ay[(v3U = V)P'B, — (v3U + V)Q'B, +2VR'B.] = (32.8)

= ag [ P34” By + Q34”By + R34”B.] , o
which are also different from the linear Zeeman terms discussed in Eq. (3.1.15). The
terms obtained from Eq. (3.1.15) take now the forms:

Hp,, = ap,[PS'B: + QS'By + RS'B.] = (3.2.29)
= ap,[Ps1” By + Qa1”By + Ra1”B.] -

and

Hy,, = cj}i,lb[SP’Bx +SQ'By+ SR'B.] = (32.30)

=ag,[P14” By + Q14”B, + Ri4”B.] ,

respectively. The degeneracy of the valence-band states is completely lifted in the
presence of amagnetic field and their mixing and energy depends on the field direction
with respect to the cubic axes. The simplest case is found if B || [001]. In this case,
the wave functions remain similar to those given in Eq. (3.2.13), which have the form
|j, m;). Only the factors multiplying the spin orbitals depend on the strength of the
magnetic field but the mixing scheme remains the same.

Let us as an example demonstrate the action of the B-linear terms Hy, , to
Hy,, (given in Egs. (3.2.27)—(3.2.30)) on the energy of the valence-band states for
B || [001] and including spin-orbit coupling. If the field has other components the
coupling scheme is much more complex. Figure 3.8 shows the result where the inter-
action energies aj;, , B are measured again in units of the spin-orbit coupling-energy
a;,. As mentioned above the notation

Bl41,001 = aglaBZ/afo (3231)

indicates for example that the basis matrices with the indexes “41” are at the ori-
gin of the interaction. Furthermore, the interaction term is linear in the magnetic
field (indicated by “B1”") with B || [001]. The branches resulting from this perturba-
tion when varying the magnetic field B are labeled E'1 to £6. The numbers i =(1-6)
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Fig.3.8 Energy of the valence-band states (given inunits of a;,, = A}, /3)as afunction of B141_go1
= (ap,, B )laj, if the magnetic field B is applied in the [001]-direction. The interaction energy

(ap,, B)is measured in units of the spin-orbit coupling energy ay,, A}, being the spin-orbit splitting

of the valence band. E1 to E6 denote the energies of the valence-band states, including spin-orbit
interaction. Hybridization of states is observed when branches (E1 and E4) or (E2 and ES)) are
getting close to each other in energy when varying the magnetic field strength. For B=0 the energies

of the I'g and T'; states are situated at (4-1a;,) and (—2ay,) energy units, respectively

correspond to the eigenfunctions v} given in Egs. (3.2.13) and (3.2.14), which diago-
nalize the spin-orbit Hamiltonian in the absence of an external magnetic field. In this
case the valence-band states are split into six branches, whose splitting increases with
increasing magnetic field strength. The branches (2 and 5) and (1 and 4) are coupled,
leading to hybridization of the states while branches (2 and 3) are not coupled and
cross with increasing field strength. Hybridization of states is clearly observed when
branches with m ; = £1/2 (i.e. branches (E1 and E4) and (E2 and EYS)) are getting
close to each other in energy when varying the magnetic field strength.

It is interesting to notice that the perturbation terms Hp, , and Hp,, describe the
direct action of a magnetic field on the angular momentum and the spin, respectively.
On the other hand, the terms H},. and Hp,, describe the modification of the spin-
orbit coupling, induced by the magnetic field. In perturbation theory, this would be
a higher-order process and it should be less important than the direct terms if the
spin-orbit coupling is small.

According to Table 2.4, symmetry-adapted perturbations transforming as (I', '3,
I'y, and I's) can be constructed from perturbations (x B, o« E, or < Q) when they
are taken to second order. The resulting symmetry-breaking interactions are then all
transforming as K. It follows from Eq. (3.2.3) and the foregoing discussion that
the perturbation Hamiltonians H 3, (where A denotes E, Q, or B, respectively) have
the form
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Hjy = afp,[S17 (A + AT + AD] + ajp, [Su™ (AT + AT + AD ]+
@} [Us"V3(A] = AD) + V3 "(2A7 — AT — A1+
talogUn™V3(A2 — A2) 4+ V(242 — A2 — AD)+ (3232)
+al, [Xs51"2AyA; + Ys1"2A Ay + Zs12A Ay ]+
tap, ([ Xaa"2AyA; + Yaa"2A, Ay + Zaa"2A A ]

Table 2.3 shows that terms quadratic in the perturbation components and trans-
forming as (4, KT) are all = 0. A detailed numerical analysis is now necessary
to decide, which of the remaining terms given in Eq. (3.2.32) are important and
which can be omitted. Other perturbations, involving arbitrarily different symmetry-
breaking properties can be constructed in the same way, considering their transfor-
mation properties under time reversal and combining them with the corresponding
basis matrices of Eq. (3.2.3).

3.3 Pseudo-Spin Development of the I'; Subspace
of Valence-Band States

We have learned in the preceding chapters how to develop an effective Hamiltonian,
which is adapted to the crystal symmetry. This development is more or less compli-
cated depending on the number of electron states involved. It becomes complex if
a large basis of interacting states has to be considered. The technique is interesting,
however, if only a few, almost degenerate states are present, which are well separated
in energy from other states. In the example discussed in the foregoing section one can
simplify the situation if one takes advantage from the fact that the split-off valence-
band states, which transform as I'7, are separated due to the spin-orbit coupling from
the other valence-band states that transform as I's. As stated above, the two blocks
of valence-band states can be coupled by symmetry-breaking effects. If, however,
the energy due to this coupling is small compared to the spin-orbit splitting, the two
blocks are not considerably mixed by the perturbation. Then, it is sufficient to con-
sider the influence of the symmetry-breaking effects only within the blocks and to
neglect the coupling between different blocks. In this case, the Hamiltonian describ-
ing the valence-band states is block diagonal and different effective Hamiltonians
can be developed in order to describe each of them separately.

Let us discuss first the simplest but rather atypical case in which the highest
valence subband is only two-fold degenerate and has I'; symmetry (see Fig. 3.9 and
Ref. [3]). All other bands (including the valence subband with I's symmetry, which
is separated by spin-orbit interaction from the considered states) and the conduction
band are neglected. As discussed above, besides the spin contribution, the wave
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functions of the valence-band electrons contain an angular-momentum part with /,
= 1, transforming as (x, y, z). The spin states are labeled o and § and indicate the
spin-up and down states, respectively. The eigenvectors (v} and vy) of the valence
band have been given in Eq. (3.2.14) by

V= (—]0)B + V2| — Da) /3 = (—zB + (x — iy)a)/V/3

3.3.1
v = (100 — V2|1)B)/V/3 = (za + (x +iy)B)//3. (3D
Considering the total angular momentum j, = I, @ o, and its projection component
onto the z-axis j: these functions are eigenfunctions of the total angular momentum
J» = 1/2 of the valence-band states, with eigenvalues for j = F 1/2, respectively.
Conduction band and valence band are both two-fold degenerate. As discussed in
Chap. 2, because of this two-fold degeneracy, we had chosen the Pauli-spin matrices
0, , 0., and o,: and the unit matrix 1, as a basis to span the matrix describing the
conduction-band states. We now construct an effective valence-band pseudo-spin
Hamiltonian in the same way: This Hamiltonian describes the two-fold degenerate
valence subband. The effective Hamiltonian shall remain invariant under all sym-
metry operations of the point group of the crystal and transform as a scalar (I'; ). In
addition, it is an even function under time reversal (K *). Proceeding as in the case of
the conduction band, in order to describe the I'; valence-band states and their mutual
interactions, we use the Pauli-spin matrices o7, oy, and o and the unit matrix 1, as
a basis to span the matrix of the valence subband, i.e.

x_(O01y. , (0=} . (1 OY . (10
= (o= (O )= (0 0) = (30). eaa
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This set of matrices operates only on the valence-sub-band states v] and vj3.
We can now define in this subspace all symmetry-breaking interactions. Since the
dimension of the conduction-band states and that of the valence sub-band are the
same and since the symmetry of the basis matrices used to develop the pseudo-spin
Hamiltonians are identical, the effective pseudo-spin Hamiltonian H; describing
the split-off valence-band takes exactly the same form as the one discussed for the
conduction band in Chap. 2. Only the parametrized constants giving the strengths of
interactions between the states due to internal or external perturbations are different
for both Hamiltonians. This reflects the fact that the wave functions, used to calculate
the interaction matrix elements, are different in both cases.

One can thus summarize from Chap. 2 that Q-linear terms and a linear Stark
effect do not exist here. This point shows also up in Egs. (3.2.25) and (3.2.26) by
the fact that the valence-sub-band states v{ and v3 are not coupled with each other.
The valence-band dispersion also varies quadratically with the wave-vector of the
valence-band electron, giving rise to an effective valence-band mass. This effective
mass is isotropic and characterized by only one constant value. In the third order, the
wave-vector components can be used to construct an effective intrinsic magnetic field
that lifts the degeneracy of this valence sub-band, which remains degenerate at the I"-
point. Similar to the spin degenerate conduction band, effects varying quadratically
with an electric or magnetic field or bilinear in the magnetic and electric field can
also be constructed.

As shown already in connection with Eq. (2.3.2) for the magnetic field B, a linear
Zeeman Effect is present if the I'; subspace is considered alone. It lifts the degeneracy
of the I'; sub-band states. The corresponding Hamiltonian Hp,, is given by

Hg\; =ap ;B -0, =ay;(B.o;, + Byo) + B.o}) (3.3.3)

where the coefficient a}; ; characterizes the influence of the magnetic field on the I';7
valence band and leads to a splitting of the initially spin-degenerate states o and .
When comparing to Sect. 3.2, aj,, is resulting from the coefficients aj,, to ag,, in
Egs. (3.2.27)—(3.2.30), which all contribute to the linear splitting of the I'; valence
band. Considering now the split-off band separately, the different contributions lifting
the spin-degeneracy are simulated by one single term.

It is interesting to mention explicitly that the full treatment of the valence band
including spin-orbing coupling leads to anisotropic @-linear and effective-mass
dispersion-terms not only for the states with ['g-symmetry at the I"-point but also for
the split-off band with I';-symmetry. This anisotropy vanishes if the spin-orbit cou-
pling is first diagonalized and the coupling between the valence bands with different
symmetry neglected. This indicates that in the case of the split-off band a possible
anisotropy of the dispersion is due to symmetry breaking, i.e. a coupling of states from
different irreducible representations, which have still the full point-group symmetry.
In addition, hybridization effects (as observed in Fig. 3.5 to Fig. 3.7) are eliminated if
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the spin-orbit coupling is only approximately considered as discussed above. Thus,
the restriction to valence-band subspaces can introduce a modification of the energy
dispersion and a loss of the fine-structure of the states under consideration.

3.4 Pseudo-Spin Development of the I's Subspace
of Valence-Band States

Similarly to the split-off valence band discussed above we will now consider the
remaining states of the valence band that give rise to the I'g subspace. Due to spin-
orbit splitting the split-off I'; valence band has a significantly different energy than
the I's valence band and is not further considered. Again, all other bands including
the lowest lying conduction band are also neglected. Then, only the valence-band
states v3 to vg of Eq. (3.2.13) or Eq. (3.2.14) are considered in the following. They
are eigenstates of the angular-momentum operator with j, = 3/2. This situation is
realized in most simple binary III-V, II- VI, and I-VII semiconductors with zincblende
structure (as e.g. GaAs, ZnSe, ZnTe or CuBr etc.) where the I'g states represent the
highest valence subband and the spin-orbit splitting is large compared to symmetry-
breaking interactions, see also Fig. 3.2 and Ref. [5].

In order to construct the invariant representation of the Hamiltonian, which acts
in the four-fold degenerate subspace of valence-band states with I's symmetry, we
construct first the projection components onto the x-, y- , and z-axis of the total
angular-momentum operator j, = 3/2. The valence-band states v3 to v¢ are eigen-
functions of j, and j. Following Ref. [4] we find for j¥, ji, and j? in this basis

0 V32 0 0
. _ V3/2 0 1 0
v 0 1 0 V3121

0 0 +3/2 0

0 V32 0 0

P e (34.1)

0 —i 0 iv3)2

0 0 —iv3/2 0
-3/2 0 0 0

. | o =120 o0
=1 0 0 120

0 0 0 32
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The matrices given above can be used to construct the unit matrix 1,g of the subspace
of the valence-band states having I's symmetry. When calculating explicitly it follows
from Eq. (3.4.1) that

1000
0100
0010
0001

(G54 G+ (GHD = Sug = (15/4) 1,5 = (15/4)

which can be seen as an analogy to Eq. (2.2.5).

From the matrices j,ﬂ with i = (x, y, z) we construct the other basis matrices,
which are necessary to span the four-dimensional subspace of the valence band and
which are adapted to the crystal symmetry. We first form the product (I's ® I's).
From the multiplication scheme given in Table 2.4 we obtain

N@Is=T 1@ @I3@2I'1 P25 (3.4.2)

From Table 2.3 we may calculate the sixteen matrices, which form a basis of our
system. Accordingly we denote:

Sus = (G2 + GO + (j5)? © transforming as < (I'y, KT)
Tos = GX{jl. ji) +c.p) & (T2, K7)
(Uss, Vig) = (V3D = GDH. 20D = GDH* = GDHH & (T3, K ™)
(Pyg, Qug. Rug) = (jy . ji . J3) © (T4, K7)
(Plg. Qg Rig) = (G G, (D)) & (T, K7)
(Xos, Yos. Zug) = (G, J5h UGS, 32 UE. 73D & (Ts K )
Xy Yigs Zog) = (U, (G)P = GDHL 1) (GD? = GDDL U (G2 = GDHD & (D5, K7)
(3.4.3)
where
(). asy = /Gy js + Jsiy) (3.4.4)

and “c.p.” denotes “cyclic permutation”. We have added the subscript “8” to the
matrix nomenclature in order to indicate that we are restricting the discussion to the
I'g subspace of the valence band.

Inspecting Eq. (3.4.3), we see that the basis matrices with I';, I'3, and one with
['s symmetry are even functions with respect to time reversal (indicated by K ), the
others transform as K ~. The matrices given in Eq. (3.4.3) are linearly independent of
each other. They can therefore be used as symmetry-adapted basis-matrices to span
our subspace of the I'g valence-band states. We obtain explicitly for these matrices
the following set:
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1000
0100
Syg = (15/4) 0010
0001
00 —i0
00 0 i
Tis=GV3/M |, o oo
0-i 00
0010 10 00
0001 0-100
Us =311 000]""=30 0 —10
0100 00 01
0 V32 0 0 0 iv3/2 0 0
P V3/2 0 1 0 0 —i3/2 0 i 0
WEL 0 1 0 V32| T 0 —i o 32|
0 0 V32 0 0 0 —iv3/2 0
-3 000
0 —-100
Ryg = (1/2) 0 010
0 003
0 7v3/8 0  3/4 0 7Y3i/8 0 —3i/4
b 7v3/8 0 52 0 O = —7J3i/8 0 5i/2 0 )
w0 52 0 74/3/8] Fv8 T 0 —5i/2 0 7V3i/8 |
3/4 0 7Y3/8 0 3i/4 0 —7V3i/8 0
—27 000
0 —100
Ryg = (1/8) 0 010
0 0 027
0—i 00 0 —-100 0 0i0
i 000 -1 000 0 00i
W=D 0 o s =0B2 0 oz = o,
00 —i0 0 010 0 —i00
0 —v3 0 -3 0
-3 0 3 0 7«/707310
Xig=(1/4 Yig =(1/4 ;
w=UL 0 5 g e =AMy o
-3 0 —/3 0 30 =3 0
00-10
;o 0001
Zyg =3/ -10 00
0100
(3.4.5)

The symmetry-breaking interactions can now be constructed in the I'g valence-
band subspace. The procedure is the same as discussed above: the symmetry-breaking
perturbations are developed in a power series, multiplied by the basis matrices given
in Eq. (3.4.5), and interaction terms invariant under the symmetry operations of the
crystal and under time reversal are considered for the Hamiltonian.



74 3 Symmetry-Breaking Effects in Valence Bands of Zincblende-Type Crystals

Let us consider in detail the effect of a finite wave-vector Q = (Q, Q,, Q.),
which transforms as (I'5, K7) in zincblende structure. When all valence-band states
are considered, we have seen in Egs. (3.2.23) and (3.2.24) that two Q-linear terms
exist. In the reduced subspace of valence-band states with I'g symmetry, we see in
Eq. (3.4.3) that only the basis matrices

(X\gs Vi, Zho) = (Ui, (G2 = GO Ui s (GD? = GO UE (GDH? = G

fulfill the required condition and transform as (I's, K ~). They can thus give rise to
a Q-linear term, which reads explicitly:

Hps = agl X 0x + Y0y + Z150.]
0 —V3/4 0 —3/4

_ -J3/4 0 3/4 0
= (lQ]vSQx 0 3/4 0 _ﬁ/4 +
—-3/4 0 —3/4 0
0 iv3/4 0 —i3/4
v —iv/3/4 0  —i3/4 0 (3.4.6)
+anv8QY 0 13/4 0 l\/§/4 +

i3/4 0 —iv3/4 0

0 0 —3/2 0

) 0 0 0 /32
g _ 30 0 0 0
0 V32 0 0

When comparing the block of I'g valence-band states in Eq. (3.2.25) or Eq. (3.2.26)
for the Q,-component (and neglecting the split-off band with I'; symmetry) with
Eq. (3.4.6), we see that the @-linear term has exactly the same form in both cases.
The numerical treatment of the interaction is, however, much easier in the subspace
of states with I's symmetry than treating the entire valence-band.

The second Q-linear term of Egs. (3.2.25) and (3.2.26) is mainly important for the
modification of the coupling between the blocks. The coupling between states with
different symmetry is, however, neglected here. This is a good approximation if the
spin-orbit splitting is large compared to the considered symmetry-breaking effect.
The Schrodinger equation corresponding to Eq. (3.2.26) and the resulting dispersion
relation for different crystal directions are shown in Figs. 3.5, 3.6 and 3.7 when
restricting to the subspace of states with I'g symmetry for small values of Q15400
to Qlsq 111

As stated above, Q-squared terms are even terms under Kramers’ conjugation.
Inspecting Eq. (3.4.3) shows that three Q-squared terms can be constructed in the
block of I'g valence-band states. (This has to be compared to the six terms existing in
the six-fold degenerate valence band of Sect. 3.2.) The corresponding Hamiltonian
defined in the I'g-subspace of valence-band states then reads
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Hipus = 2 /2m0) 11 Q% Sus + v2 (V3(02 = 0D Uss + 202 = 02 — 02 Vis) +

+2y3 (Q_VQZXUS + 0:0:Y8 + Ox QyZv8)] s
(3.4.7)
where y), y», and y3 denote the Luttinger parameters [6—8] and m the free electron
mass. In the absence of any Q-linear terms (a situation that is considered usually
in literature) the dispersion of the valence bands may be calculated analytically and
one obtains

E}, = E§ + (h*/2mg) (Vl 0’ + 2\/V22(Q}‘ + 03+ 0H +304 —y)(QI03 + 0302 + Q%Q,%)) .

(3.4.8)
At finite wave-vectors, if the parameters y, or ys are different from zero, the four-
fold degenerate valence bands are split into two spin-degenerate bands of different
curvature, which are usually called the “heavy”- and “light”’-hole bands. (See as an
example Fig. 3.2 or the left panels of Figs. 3.5-3.8.) They are characterized by the
heavy and light hole effective masses my; and my;,, respectively. If the Luttinger
parameters ), and y3 are different from each other, the dispersion is anisotropic,
leading to a “warping”. In the case that ), and y3 are equal, one obtains [6]

mpp = mo/(y1 — 2y2) and my, = mo/(y1 +2y2) . (3.4.9)

The above discussion of symmetry breaking remains valid if a small externally
applied electric field is considered. In this case the basis matrices (X3, Y3, Zy3) =
(i, 23 LGS, J5, (E, jo}) transform as the electric field components E = (E,, Ey,
E.) as (I's, K™) and can be used to describe the linear Stark effect acting in the I'g
subspace of the valence-band states. For E, = E, = 0 the electric field terms give
now rise to the effective Hamiltonian

Hpyys = ap sl XsEx + YisEy + Zis E;]

0 0 iv/3/2 0
g 0 0 0 iv3)2 (3.4.10)
EW8™=2 _iJ3/2 0 0 0o |
0 —iv3/2 0 0

The same matrix form is obtained when considering strain effects. When comparing
Eq. (3.4.10) with Eq. (3.2.21) and Eq. (3.2.22), we see that this coupling scheme is
the one obtained within the I'g-block when using the valence-band basis-functions in
which the spin-orbit coupling is diagonalized. In this approximation, the effect of the
applied electric field is isotropic, i.e. the splitting of the two doublets is independent
of the orientation of the electric field with respect to the crystal axes. We conclude
that a possible anisotropy is due to a modification of the mixing of the valence-band
states with I'7 and ['g symmetry by the electric field.

A linear magnetic field (causing the symmetry breaking terms of Eqs. (3.2.27)—
(3.2.30)) gives now rise to two contributions:
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nglv&z = a%lea[PUSBx + QUSBy + Rv8Bz] (3411)

and
Hpyusp = apiosp[ Pog By + Qg By + RigB.1, (3.4.12)

respectively. Depending on the direction of the magnetic field, the degeneracy of the
valence-band states can again be completely lifted. The pseudo-angular momentum
matrices (Pyg, Qus, Ryg) and (Pjg, Q5. R,¢) are given in Eq. (3.4.5). The terms
in Egs. (3.4.11) and (3.4.12) correspond to the parameters k and ¢ introduced by
Luttinger [8]

v —
Apiv8a = _ZIU“BK

) (3.4.13)
aprysy = —2M1BYG

where 1 p represents the electron magneton of Bohr. These terms have the required
symmetry properties and lead to a linear Zeeman splitting of the I'g valence-band.

We have seen in this section that the pseudo-spin development reproduces exactly
the coupling of states within the diagonal blocks of the complete system if the wave
functions v} to v¢ of Eq. (3.2.13), in which the spin-orbit coupling is diagonalized,
are used. As in Sect. 3.3, when applying this method, only the mixing of states from
different irreducible representations is neglected while the mixing within the states
belonging to same irreducible representation is correctly described. The procedure
discussed above allows to determine the detailed fine-structure of states that are
otherwise almost degenerate.
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Chapter 4 ®)
Exciton Ground State in e
Zincblende-Type Semiconductors

4.1 Exciton Ground-State Energy

We are now interested in the following problem: Let us consider the ground state
of an ideal direct gap semiconductor at low temperature, i.e. at 7 = 0 K, containing
N electrons. As indicated in Fig. 2.2 the semiconductor is characterized by the
presence of an energy gap between the lowest lying conduction band (noted “c”) and
the uppermost valence band (noted “v”). In addition the semiconductor is supposed
to possess only one conduction and one valence band and the states are defined
by spin-orbitals. The N electrons occupy all electronic valence-band states and all
conduction-band states are unoccupied. This system shows no electric conductivity
(or it behaves as an insulator) since, when applying a small electric field to it, no
electric current can flow. The sample can be polarized by the field but no free electric
charges can move in the material. This situation characterizes the crystal-ground
state whose energy and charge distribution is supposed to be known.

When adding some energy (e.g. thermally, optically, by applying strong electric or
magnetic fields, etc.) electrons can be excited from the valence band to the conduction
band. Then, electronic states of the valence band are unoccupied (these states are
in the following called “defect-electron states” and noted by the subscript “v”’) and
some states in the conduction band are occupied by electrons (subscript “e”). Instead
of using spin-orbitals, the occupied and unoccupied states can be fully characterized
by their wave-vectors and spins, i.e. the variables (k,, 0,,) and (k,, o,), respectively.

We want to describe now the situation when only one single electron is excited
from the valence band to the conduction band, leaving behind a defect electron in
the valence band. We are interested in the electronic excitation, which has the lowest
energy. We call this excited state of the crystal the “exciton ground state”. Its energy
is evidently superior to that of the crystal-ground state since for the excitation of the
electron to the conduction band some energy has to be supplied to the crystal. In
order to determine this energy, one can proceed in the following way:
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Let us first consider the calculation of the one-particle electron-band structure of
the conduction band. When calculating this energy as function of wave-vector k, one
considers one additional conduction-band electron in the presence of the N electrons,
which occupy all the valence-band states. This is an (N + 1)-particle problem. The
additional conduction-band electron has a spin g, and interacts via Coulomb interac-
tion with the valence-band electrons. This interaction has two different contributions:
First, there is the direct Coulomb interaction between the charged particles. Since the
electrons have the same charge, the Coulomb interaction is repulsive and the energy
one has to pay is of the order of the energy separation between the conduction and
valence band. Second, electrons are indiscernible fermions, i.e. they are spin 1/2
particles. This leads to an exchange interaction between the additional electron and
the electrons in the valence band if they have the same wave-vector and are in the
same spin state.

The problem to describe an excited state of a semiconductor (corresponding to
the N-particle problem), where one electron occupies a state in the conduction band
instead of a valence-band state, can now be approximately solved using the one-
particle band-structure calculation of the conduction band described above. The
energy of this state, which is taken as reference, has to be reduced by the additional
interactions, which show up in the (N + 1)-particle problem when compared to N-
particle problem for the excited excited state:

If, due to the excitation, only one defect electron is created in the valence band but
if otherwise the charge distribution of the valence-band electrons remains unchanged,
the additional interaction is the Coulomb interaction between the conduction-band
electron that interacts with the defect electron, characterized by the variables (k,, o).
All other two-particle interactions are the same in both problems. Since the resulting
energy is subtracted from the energy of the (N + 1)-particle system (given by the
energy of the conduction-band electron), this resembles to an attractive Coulomb
interaction between conduction-band electron and defect electron. This leads to the
fact that the energy of the exciton ground state is smaller than the reference energy,
namely the band gap between the conduction band and valence band. This energy
difference is called the “exciton-binding energy”.

The dispersion of the valence band and the solution of the (N + 1)-particle prob-
lem describing the conduction band being supposed to be known, the exciton problem
is treated in the framework of the Hartree-Fock approximation. In this approach, after
integration of the variables describing the (N — 1) valence-band electrons, which
are not involved in the transition, the remaining matrix elements depend only on the
wave-functions of the additional electron and of the defect-electron state. One thus
obtains an effective two-particle Hamiltonian, which has to be solved to determine the
exciton-binding energy. In the most simple case, when neglecting exchange interac-
tion and details of the band structure, the problem becomes similar to that of hydrogen
atom. Therefore, we expect to obtain bound states, called “excitons”, whose ener-
gies follow more or less a Rydberg series and, apart from these, “continuum states”
corresponding to free electrons in the conduction band and free defect-electrons in
the valence bands.
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The procedure outlined above shows that the model is quite crude and neglects a
number of effects, which are due to the fact that the charge distribution of the valence-
band electrons in the crystal-ground state and the exciton problem are not the same.
But the model shows the physical origin of the observed exciton features. It also
indicates that excitons are not only characterized by the conduction- and valence-
band electron-wave functions, but, in addition, they posses an “envelope function”.
It describes the spatial correlation between conduction- and valence-band electrons
and corresponds to the bound electron wave function in the “hydrogen atom model”.

Since excitons are defined as quasi-particles within a crystal, the exciton states
(and namely their envelope functions) have to be compatible with the crystal symme-
try. Therefore, all functions are Bloch functions, i.e. periodic, delocalized functions
respecting the full crystal symmetry. The envelope function is constructed from a
wave packet of conduction- and valence-band states, from which the exciton is build.
At the I"-point (see Ref. [1, 2]) the total symmetry of exciton states I, is now given
by the symmetry of the envelope function (labeled I',.,,,,) multiplied by the symmetry
of the valence-band (I",) and by the symmetry of the conduction-band states (I",),
ie. Ioxy =Ty @ Ty ® T, gives the total symmetry of exciton states.

We will consider in the following only the exciton ground state. Its envelope
function has spherical symmetry (i.e. it transforms as I"). As we have discussed in
the foregoing chapters, the conduction-band states transform as I'¢ and the valence-
bands as I', = (I's, ['7). Since the valence-band states with I's and I'; symmetry
are no longer degenerate, two exciton series split in energy and featuring differ-
ent symmetries are expected. The symmetry properties of their ground-states are
givenby [,y = @Iy @ =Ts @Iy @Iand ey =T Q7@ e=Ts @ I'y,
respectively. This situation characterizes the exciton states, which we will discuss
now.

If one is mainly interested in wave-vector regions k close to the maximum (mini-
mum) of the valence (conduction) band, the dispersion of the conduction and valence
band are mainly parabolic (we will see this and also some deviations from this rule
more precisely in the following). This leads to the fact that the dispersions may be
described by “effective masses”. As known from hydrogen atom, relative and center-
of-mass motion can be separated in two-particle problems. Since the center-of-mass
motion is translational invariant this quantity is a constant of motion and the center-
of-mass wave-vector is a good quantum number. The relative motion, i.e. the electron
and defect-electron wave-vectors being not constants of motion in the two-particle
problem, the exciton function has to be developed using a superposition of prod-
ucts of electron and defect-electron Bloch functions. Their wave-vectors define the
exciton center-of-mass wave-vector Q according to

0=k —k,. “.1.1)

For the discussion of exciton properties it is now possible and convenient to
introduce instead of the term “defect-electron” (describing the fact that a place is
vacant in an otherwise filled valence band) a new quasi-particle, a “hole”. Its state is
denoted by the index “A”. Then, instead of solving the N-particle problem within the
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Hartree-Fock approximation, one considers a two-particle problem that is equivalent
to it. This is possible since coordinates of the other (N — 1) particles have been
integrated in the Hartree-Fock approximation. Their influence persist only in the
electron and hole Bloch wave-functions. One has to bear in mind, however, that the
exciton treated in this approach is resulting from an N-particle problem. This point
is e.g. important when discussing screening effects.

In this approach the hole state is derived from that of the defect-electron valence-
band state (characterized by (k,, 0,)). It turns out that it is obtained from it by
Kramers’ conjugation, i.e. by time reversal of the defect-electron state. In our case
this results in the fact that the one-particle Bloch wave-functions have to be replaced
by their complex conjugated functions and the wave-vectors k, — by —kj,. (This
approach is slightly different from the term “Defektelektron”, which has been used
in Ref. [3] to denote the vacant electron state in the valence-band.)

In particular, for the valence-band states described by Eq. (3.1.2) the approach
used throughout this book implies the replacements

1) = —(x +iy)/vV2 = —(x —iy)/V2 =~ - 1)

and

| = 1) =@ —iy/V2 = @ +in/V2= ).
Introducing holes and considering the two-particle system, Eq. (4.1.1) reads
0=k, +kp. 4.1.2)

Kramers’ conjugation affects also spinors, which change their signs if the
Kramers’ conjugation operator is applied two-times to them. Then, concerning spins,
the spin-up state of the defect-electron «, is replaced by the spin-down state of the
hole B, i.e. @y — B, and the spin-down state 8, — —aj,.

Excitons and holes are “quasi-particles”, i.e. these wave packets are during a
certain time coherent excitations, which are characterized by an ensemble of quantum
numbers and posses a certain energy, angular momentum, polarization, etc. During
this time they behave like particles, which interact with their environment before
they decay: their coherence can be destroyed through scattering before their energy
is dissipated and the crystal returns to its ground state.

To summarize: the quasi particles named “holes” posses the following properties:
A hole describes an unoccupied state in an otherwise filled valence band. The state is
obtained by Kramers’ conjugation of the valence-band state, i.e. by time reversal of
the valence-band wave-function. A hole has a positive elementary charge +e and an
effective mass that is given by the curvature of the dispersion of the valence band. The
effective mass is positive for negative band curvatures. In addition, matrix elements
involving valence band states are replaced by (—1) times its complex conjugated
term [1, 4] in the electron-hole representation. Since the hole state has its origin in
the defect-electron state, hole states may be degenerate and electrons and holes may
also interact due to exchange interaction. These points will differentiate the exciton



4.1 Exciton Ground-State Energy 81

problem from a simple hydrogen atom. Bound electron-hole pairs (the excitons) do
not lead to electric conductivity since they are neutral with respect to their total
charge. The pairs have to be broken to lead to free charges, which can then move
from one occupied state to another, unoccupied one, and an electric current can be
observed.

Applying the Kramers’ conjugation operator to the set of basis electron-wave
functions v; of the valence band at the I'-point given in Eq. (3.2.14) creates a similar
set for the hole states. Using the replacements discussed above, the valence-band
states now become:

o) = oy + (x +i)B)/V3 = |¢f)

- —(—zﬁh +(x —iy)a)/V3 = |¢
— —(x + iy)ap/V2 =

vy — —<2zah — (x +iy)B)/V6 = |}

V! > (2zﬁh + (x — iy)ay) /N6 = |$h

= —(x —iy)B/V2 = |9}).

5
(4.1.3)
3

)
)
)
)

Here the index “A” has been introduced to indicate that we are dealing with the
“hole” representation for the valence-band states. Or, using the angular momentum
functions for the hole states, one equally obtains, by applying Eq. (3.1.2), instead of
Eq. (4.1.3):

#1) = =1 = 1)Ba

#5) = (V210) By + | = D) /v/3

104) = —(v/2(0)es + 1) B1)/V/3

l¢y) = [y

|B4) = —(=10)Bs + V2| — ) /v/3

19%) = (10)a, — V211)81) /3.

(4.1.4)

Comparing Egs. (4.1.3) and (4.1.4) with the definition given in Eq. (3.2.14) and
dropping the index “A” in the spin assignment, we see that the |¢>{’) hole states
withi = (1, ..., 6) are given essentially by the valence band states v;. One obtains
explicitly the identification:

p7) = —v} = —13/2,-3/2)
|5y = v} =13/2,—1/2)
|3) = —v§ = —13/2,1/2)
)

)

4.1.5
|#4) = vg = 13/2,3/2 1

p¥) = —v} = —[1/2,-1/2
lpf) = vy =1/2,1/2).
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This correspondence is useful to know if one wants to construct symmetry-adapted
exciton-wave functions from electron-hole states following Ref. [2]. Equation (4.1.5)
shows that hole states may differ from valence-band states by a phase factor, which
appears due to Kramers’ conjugation of the spinors. Using Eq. (4.1.5) one can for-
mulate the exciton states in the electron-hole representation starting from symmetry
adapted products of electron- and valence-band states.

As has already been mentioned, we are in the following interested in the exciton
ground state. When compared to the simple hydrogen atom, a detailed discussion
of excitons requires sometimes that care has to be taken concerning the following
points:

e The states of this many-particle system are characterized by several quantum num-
bers. The main quantum number “n” is, to a large extent, analogous to that of the
hydrogen atom. n = 1 denotes the exciton ground state; n = 2, n = 3, etc. indi-
cate exciton excited states ; n — o0 denotes the electron-hole continuum. Other
quantum numbers will be introduced in the following. The quantum numbers may
develop in time due to relaxation processes.

e Exciton states are not eigenstates of the Hamiltonian describing free electrons or
holes. Their wave functions are developed on the basis of electron and hole states
and involve therefore many of these states. Then, besides internal or external
perturbations, the full band structure and dispersion of conduction and valence
bands (degeneracy, splitting, warping, etc.) has to be considered.

e There exists an exchange interaction between electron and defect-electron states,
if the states are characterized by the same quantum numbers. This exchange inter-
action has no parallel in the simple model of a hydrogen atom and has sometimes
to be considered in the exciton problem.

e Excitons are made of charges that polarize the material, in which they exist. Then,
Coulomb interaction leads to a rearranging of the charge distribution, which can
sometimes be approximated by screening effects. Screening is, however, different
for direct and exchange interaction since the exchange interaction is a contact
interaction while the Coulomb potential is of long range.

e Electrons, holes, and excitons may interact with each other and different other
elementary excitations. For instance, two excitons may be bound together to form
an excitonic molecule (in analogy to hydrogen molecule, see Fig.4.1). - etc.

The points mentioned above can be incorporated into our invariant development of
the effective Hamiltonian. It can thus describe excitons in semiconductors, including
the electron spin and the crystal symmetry.

Let us first consider the symmetry of exciton states at the ['-point [1, 2]. In order
to describe electron states characterized by spin and orbital-angular momentum,
one has to use the double-group representation. As mentioned above, conduction-
band states are made up from s-type atomic orbitals and are only spin degenerate in
zincblende-type material. They transform as I's.

Concerning the matrices spanning the conduction-band electron subspace in the
pseudo-spin formalism we will use similar to Eq. (3.2.2) the following notation:
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Fig. 4.1 Experimental illustration of how excitons (Z3-series) manifest themselves in low-
temperature luminescence spectra of CuCl crystals. Panel (a) displays energy levels of a CuCl
excitonic molecule, i.e. a quasi-particle composed of two electrons and two holes (two excitons
bound together). The molecule state labeled Ff’wl decays radiatively, one electron-hole pair recom-
bining with emission of a luminescence photon while leaving the second exciton to survive. These
radiative transitions terminate on the exciton levels I's* (longitudinal (L) and transverse (T') exciton
states). These excitons, recoiled in the recombination act, are the ones that posses a dipole moment.
Corresponding experimental emission lines M and M7 are displayed in panel (b). Notice that
there is no emission line that could be ascribed to the transition l"i"”l — I'$* at ~ 3.174 V. Simi-
larly, panel (c¢) shows luminescence lines originating in (single) exciton resonance radiative decays
I'$* — TI'y to the crystal ground state. Here, also a weak line due to partially allowed (owing to
crystal imperfections) I'S*-exciton radiative decay at ~ 3.20 eV seems to be present. Concerning
the emission at ~ 3.209 eV attributed to a not dipole-active I'S* (L) recombination, a possible expla-
nation may be as follows: The crystal is not perfect (the lattice can be deformed or one is close to
a surface or a dislocation, etc.) and therefore the exciton wave-vector @ is not well defined. Then
longitudinal excitons, which have definitely been created by the biexciton recombination (see the
strong—here even stimulated—A/;, emission line in panel (c)) perceive this perturbation (which is
localized and not delocalized, contrary to free excitons) and recombine radiatively, even if in an
ideal infinite bulk crystal they are not dipole-active. In these cases, however, unlike the situation
shown in panel (b), unambiguous identification of the lines is not straightforward because of the
presence of reabsorption/polariton effects (see Chap. 8). Adapted after Ref. [5-7]
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Fig. 4.2 Energy level scheme of excitons arising from holes in the valence bands with I'7 and I'g
symmetry and conduction-band electrons with I'g-symmetry in zincblende-type semiconductors.
Ap and AY) denote the exciton binding energy (determined with respect to the minimum of the
continuum of electron-hole states) and the spin-orbit coupling energy, respectively. The spin-orbit
coupling separates the (I's ® I's)* -exciton block from the so-called “split-off” exciton block with

(T ® T'1)X -symmetry. Splitting within the blocks (indicated by A g xc) is induced by the different
exchange interactions, including the analytic, the non-analytic, and the cubic exchange. See text
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3.1, > S,
X
% Fe (4.1.6)
o) = 0,
ol = R,.
As mentioned before, S, transforms according to (I'y, K ) and (P,, Q., R.) represent
the pseudo-spin matrices that transform as (I'y, K 7).

As we will see, it is convenient in our invariant expansion to construct exciton-
wave functions first from conduction-band states and the valence-band electron
states. Excitons are in this approach the eigenstates of an effective Hamiltonian, given
in a matrix representation. The eigenvectors of this exciton matrix are obtained by
the Kronecker product of conduction-band electron states and valence-band states
|j, mj). This approach allows to identify the exciton states easily. Then, hole-wave
functions defined above are introduced only at the end of the discussion of symmetry-
breaking effects using Eq. (4.1.5). They can then be used when determining the values
of the interaction-matrix elements.

Similarly to the procedure, which we have introduced when considering the spin-
orbit interaction of the valence-band states, let us first discuss the exciton-energy
structure in the case of the full point-group symmetry, i.e. in the absence of any
symmetry-breaking effect. The uppermost filled valence-band states are six-fold
degenerate at the I'-point. They are made up from atomic p-orbitals with some
admixtures of d-orbitals. Their degeneracy is partly lifted by spin-orbit interaction,
giving rise to a set of four-fold degenerate states, transforming as I's, and the two-fold
degenerate ' states, [1, 2] as discussed in Sect. 3.2 and displayed in Figs. 2.2 and 3.2.
In order to construct exciton states, we calculate again the Kronecker product of the
valence-state matrices (which are given in Eq. (3.2.3)) with the pseudo-spin matrices
0. =(0;, 0., o}) and I,. If one limits oneself to excitons with envelope functions of
spherical symmetry, one obtains with Table 2.4 two exciton series (labeled Z;, and
Z3 in copper halides), namely

Zip > Te@Ig=T30T1PTs
and 4.1.7)
Z3—>F6®F7=F2®F5.

The electron-hole product-space, in which the exciton ground state is defined, is of
dimension twelve, and all direct, exchange and symmetry-breaking perturbations can
now be formulated in this subspace and calculated within a good approximation.
According to the transformation properties of the valence-state matrices given in
Egs. (3.2.3) and (3.2.4) and the electron-state matrices (Eq. (4.1.6)), we see that the
two-particle Hamiltonian H* describing the exciton ground state at the I"-point may
have three different contributions, transforming as (I'1, K™):
H® =H+HS +HS, . (4.1.8)

ech
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The first
H =ai"S11"® S, 4.1.9)

and the second term
Hse(f = le:fS44” ® S, (4.1.10)

are the direct term Hj* (describing the Coulomb interaction between electron and
hole) and the spin-orbit interaction H¢) of the valence band, which shows also up
in the exciton problem. Since electron and hole have different charges, Hj* is an
attractive interaction. Since the conduction-band states are made from s-type atomic
orbitals, H; is originating only from the hole in the six-fold degenerate valence
band. The electron spin, and therefore the indiscernibility of electrons does not play
any role in these two terms.

The last contribution H;, in Eq. (4.1.8) is due to the exchange interaction between
the electron in the conduction band and the hole in the valence band. It affects the
exciton fine structure and modifies not only the direct electron-hole interaction but
also the spin-orbit coupling. The resulting level scheme is sketched in Fig. 4.2, where
Ap and A¢} denote the exciton-binding energy and the spin-orbit coupling energy,
respectively. The binding energy is measured with respect to the energy minimum of
the electron-hole continuum. Agx ¢ stands for the different electron-hole exchange
energies, which further split the energies of the exciton states with ['s-symmetry and
may separate in energy the exciton states with '3 and I'y-symmetry.

It might be useful to stress here that admittedly both the spin-orbit coupling
and the electron-hole exchange interaction give rise to the energy level scheme of
Figs.4.3 and 4.4, but while the spin-orbit coupling is already present in an unexcited
semiconductor, the exchange interaction becomes relevant only in an electronically
excited material.

As will be discussed below, four different exchange interaction terms of the exci-
ton Hamiltonian can now be constructed from the matrices in Eqgs. (3.2.4) and (4.1.6).
These terms determine completely the energy fine structure of the twelve-fold degen-
erate exciton ground state in zincblende-type semiconductors. Let us now discuss
the different terms.

4.2 Direct Electron-Hole Interaction, Spin-Orbit Coupling,
and Symmetry-Adapted Exciton-Wave Functions

The direct term Hj* and the spin-orbit splitting H; of the exciton states give the
contributions of the kinetic energy and the Coulomb interaction to the exciton binding
energy. After coupling, the term Hj* gives a constant contribution to all exciton
states. Due to H{; the exciton ground state preserves the same energy fine structure
as the valence band with the energies given in Eq. (3.2.11). When compared to the
valence-band states, the exciton states are now doubly degenerate, however, reflecting
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the spin degeneracy of the conduction-band states. Using the basis matrices for
conduction and valence-band states given in Egs. (2.2.5) and (3.2.10), respectively,
one calculates their Kronecker product Eq. (4.1.10). One then explicitly obtains for
the matrix describing the exciton spin-orbit coupling :

300 0 0 0O 0 O 0 0 00
030 0 0 0 0 O 0 0 00
00-3 03/20 0 0 0 000
00 0 =3 03/20 0 0 0 00
0032 0 0 0 0 0 O 0 00

o |00 0320 0 0 0 0 0 00

Ho =4 1000 0 0 0 0 032 0 00 4.2.1)
000 0 0 0O 0 0 0 3/200
00 0 0 0 0 3/20 -3 0 00
000 0 0 0 0 3/2 0 =300
000 0 0 O O O 0 0 30
000 0 0 O O O O 0 03

As discussed in the previous chapter in connection with Eq. (3.2.1) we use again
the convention for the matrix products, and exciton states are expanded as products
of the angular-momentum valence-band electron wave-functions |m ), valence-band
electron spin (o« or B) and the conduction-band electron spin (¢, or B.). The exciton
states v{* are given in this basis in the form

vt = a; | Daoe 4+ a;is|Dafe + a;3|1) Bae + aj4|1) BPe + a;5|0) e+ 422)
+aiol0apfe + - +ainpl — 1) G=1,...,12).

In order to be more explicit, we first remember that the rows and columns
of the basis matrices (given in Eq. (3.2.4)) describing the interactions in-between
the valence-band states were ordered according to ( |1)e, [1)8, |0)a, |0)B, | — 1),
| — 1)B). In the exciton problem, their direct product with the conduction-band
electron-states («, and B, ) is formed, and the rows and columns of the corresponding
exciton matrices of dimension 12 are ordered as indicated in Eq. (4.2.2). Remember-
ing this convention, Eq. (4.2.1) directly shows, which exciton-basis states are coupled
through the spin-orbit coupling. This coupling is now diagonalized by a well-defined
linear combination of the exciton-basis states. In other words: One can diagonalize
the Hamiltonian Eq. (4.2.1) by making use of the recipe explained in Appendix A
(which, of course, can hardly be done now “by hand”) and finding simultaneously
the corresponding eigenfunctions (i.e. Eq. (4.2.3)) as being linear combinations of
the basis functions |1)aa,, |1)af,, |1)Bae, ..., | — 1)BBe.

One then obtains for the exciton ground state the following set of normalized
exciton-wave functions v{* (with i = 1to 12):
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0 0 0 0 00 0 0O O 0 01
0 0 0 0 00 0 0O 0 0 10
0 0 0 —v6/300 0 0 0 +3/300
0 0 —v/6/3 0 00 0 0 3/3 0 00
0 0 0 V3/300 0 0 0 +6/300
. 0 0 3/3 0 00 0 0 6/3 0 00
v =
, 0 —v3/3 0 0 00 0 63 0 0 00
-V3/3 0 0 0 0046/3 0 0 0 00
0 6/3 0 0 00 0 3/3 0 0 00
V6/3 0 0 0 00+3/3 0 0 0 00
0 0 0 0 01 0 0O O 0 00
0 0 0 0 10 0 0 0 0 00
(4.2.3)

This set of exciton-wave functions is explicitly given by:

vf* = (—=[0)B + V2| — D) Be/~/3 = v{ B,
V5" = (—[0)B + V2| — Da)ete /v/3 = vl
v = (I0)a — V2[1)B)Be /N3 = v} Be

v = (10)a — V2[1) B /3 = via,

v = | = 1)BB. = vif

v = — 1)Ba, = vie,

v = (V2(0)8 + | — Da)Be/~/3 = v}
vg" = (V20008 + | — Do), /v/3 = vja,
v = (V2|0)e + [1)B)Be//3 = viB.

viy = (V2(0)e + [1)B)ae/v/3 = via,

vif = [hefe = v

vi; = [Daa, = vga,.

(4.2.4)

The result on the right hand side of Eq. (4.2.4) is easy to understand: The
valence-band wave-functions v/ with i =(1 to 6) given in Eq. (3.2.13) diagonal-
ize the valence-band spin-orbit interaction. Equally, o, and B, are eigenstates of the
conduction-band electron-states, which are not influenced by the spin-orbit coupling.
Therefore, their direct products of the forms (v} «.) and (v/ B.) lead to a basis for
exciton states, in which the direct electron-hole as well as the spin-orbit interaction
are diagonalized. As we will see this situation changes as soon as the electron-hole
exchange-interaction is included in the exciton problem.

Because of the spin-orbit splitting of the valence band one obtains two exciton
series. The eigenvalues of the four states obtained from the direct product of the
conduction-band states with that of the valence band with I';-symmetry (v{* states
with i =1 to 4) are given by —6ay;. This is the ground-state energy of an exciton
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series originating from the “split-off” valence band. For the eight states obtained from
the the conduction-band states and the valence-band states having I's-symmetry (v;*
states with i = 5 to 12) one obtains an exciton ground state having the eigenvalue

ex
3al}.

At this point it is useful to give explicitly the exciton-wave functions defined for
the conduction- and valence-band basis together with those given in the electron-
hole basis. Substituting the hole states as defined in Eq. (4.1.5) into Eq. (4.2.4) one
obtains:

v = (—10)B + V2| — Do) B /N3 = vl B = —|¢!) B = —|®3)
v§' = (—10)B + V2| — Na)ae/V3 = via, = —|¢l)a, = —|®))
v§' = (10 — V2[1)B)Be/3 = viBe = |p¢)Be = |P4)

Vi = (10 — V2[1)B)ate /3 = viae = oo = |2)

v§' = | — 1)BB. = viBe = —|¢]) B = —|Ws5)

ve == 1)Bae = via, = —|¢} ). = —|¥)

(4.2.5)
= (V2[00B + | — Da)Be/V3 = viB. = |¢%) B = |

W)

e = (V200)B + | — Da)ae/V3 = via. = |¢h)a. = 1)
v = (V2[00 + [1)B)Be /N3 = vife = —|¢}) e = —|W7)
v = (V2|00 + 1) B)ae/v/3 = via, = —|¢h)a, = —|W3)
Vil = [DeBe = viBe = 164) e = |Ws)

viy = [Daae = vgare = |9 )ote = [Wa).
In addition, we have introduced the following notations labeled |¥;) and |®;):

W) = —vie, = |p})ae = —[3/2, —3/2)ct,
W) = via, = [$h)a, = 13/2, —1/2)e
|W3) = —via, = [¢3)ae = —[3/2,1/2),
W) = vioe = [])ate = 13/2,3/2)exe

Ws) = —v3Be = [o])Be = —13/2. =3/2)B.
|We) = v} Be = |93)Be = 13/2. —1/2)B.
(W7) = —viBe = |93) B = —13/2,1/2)B.
Ws) = vgBe = |¢4)Be = 13/2,3/2)P..

(4.2.6)

where the exciton states (|W;) to |Wg)) result from the direct product of the electrons
in the conduction band and the holes in the valence band, which transforms along
I'g. On the other hand one has:
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1) = —viee = [p!)a. = —[1/2, —1/2)ax.
|®2) = via, = |dg)ee = 11/2,1/2)a,
|®3) = —v} B, = |¢!)Be = —1/2, —1/2) B,
|@4) = V3B = I¢g)Be = 11/2,1/2) ..

4.2.7)

These exciton states (|®) to |Dy4)) are obtained from the valence-band states trans-
forming as I';7. The notations (|\W;) to |Wg)) and (|®;) to |Py4)) were introduced in
Ref. [1] and are commonly used for the exciton states.

Using the exciton basis functions of Eq. (4.2.5) the direct electron-hole interaction
and the spin-orbit coupling are diagonalized. (W) to |Ws)) and (|@) to |D4)) give
two exciton blocks, the latter being called the split-off exciton series. These two
exciton blocks are separated in energy by the value

AS =9a) (4.2.8)
as shown in Fig.4.2. One should mention here that the valence-band spin-orbit split-
ting A?, given in Eq. (3.2.15) is at this stage equal to the exciton spin-orbit splitting
A¢Y, since including the electron spin and forming excitons does not modify the
spin-orbit coupling and the energetic separation of the valence bands. (A results
from Eq. (4.1.10) where, according to Eq. (4.1.6), the matrix S, = 3 - 1,.. Since S,
is not the unit matrix one finds the parameter a{, = (1/3) a;, when comparing Eq.

(4.2.8) to Eq. (3.2.15).) In general, A{} can, however, be slightly different from A},
since the splitting can be modified by the electron-hole exchange interaction, which
will be discussed in the following. This possibility is accounted for by the fact that

a}, and a$; are parameters in the formalism of invariant expansion.

4.3 Electron-Hole Exchange Interaction

The last contribution in Eq. (4.1.8) H;, concerns the exchange interaction between

the electron in the conduction band and the hole in the valence band. According to
their transformation properties (Eqgs. (3.2.4) and (4.1.6)) four different terms can be
constructed in zincblende type semiconductors. They are:

Hy = ay,(Py” ® Pe+ 041" ® Q. + Ryy” ® R,)
Hlp = gy (Psa” @ P+ 054" ® O, + Rsa” ® R,)
HSyy = a),(Py” ® P+ 034” ® Q. + Ry” ® R,)
Hy=al, (Pl ® Po+ 014”® Q. + Ris” @ R,).

(4.3.1)

As discussed in connection with Egs. (3.2.3) and (3.2.4) the interaction matrices
(P41”, Q41”, Ra1”) and (P47, Q14”, R14”) are directly originating from the valence-
band spin- or angular-momentum matrices, while the matrices (Ps4”, Qs4”, Rs4”") and
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(P34”, Q34”, R34”) are generated through the spin-orbit coupling. The importance
of the terms H.),, and H}>, , should therefore diminish with decreasing spin-orbit
coupling.

Let us discuss the physical origin of the different exchange-interaction terms. As
can be seen from Eq. (4.3.1) together with Eq. (3.2.4), HZ),, describes the direct
exchange interaction between valence-band and conduction-band electrons, which
are in the same spin state. It is important to notice that the angular momentum
of these states is not involved. On the other hand, H.,, describes the spin-orbit
coupling that comprises the angular momentum of the valence band, which interacts
directly with the spin of the conduction-band electron. This term is the signature
of the indiscernibility of electrons: if a spin-orbit coupling exists for valence-band
electrons, the spin-orbit coupling also influences the electrons in the conduction
band.

One could point out here that H;,, and H/ , are normally the most important
contributions to the electron-hole exchange interaction H_,. The other terms are
of higher order and involve the exchange interaction and the spin-orbit coupling
simultaneously. This is obvious in the terms H,,, and H;,;: In their case the total
angular momentum of the valence-band states j, has first to be formed through spin-
orbit coupling. Then, the spin part of the total angular momentum couples through
exchange interaction to the spin of the electron o, in the conduction band. Since this
is a higher order process, it is less important for the determination of the exciton
energies. Both terms have cubic symmetry since they involve the orientation of the
total angular momentum with respect to the cubic axes.

Let us now consider the exchange interaction in detail. According to Eq. (4.3.1)
we calculate the Kronecker product of the matrices described by Eqs. (3.2.4) and
(2.2.3). After transformation to the basis given in Eq. (4.2.3), i.e. the exciton states,
in which the spin-orbit interaction is diagonalized, we obtain for H_7,, the matrix
form

Heec)‘ch4 =Aoch

—2/3 0 0 0  04v6/3 -4v2/3 0 0 0 0 0
0 2/3  —4/3 0 0 0 0 4v2/3 -4J2/3 0 0 0

0 —4/3 273 0 0 0 0 4v2/3 —442/3 0 0 0

0 0 0 —2/3 0 0 0 0 0 4v2/3 —46/3 0

0 0 0 0 2 0 0 0 0 0 0 0
44/6/3 0 0 0 0 —2 4/3/3 0 0 0 0 0
—4y2/3 0 0 0 04v3/3 2/3 0 0 0 0 0
0 4273 42/3 0 0 0 0 -2/3  8/3 0 0 0

0 —4v2/3-442/3 0 0 0 0 8/3 —2/3 0 0 0

0 0 0 442/3 0 0 0 0 0 2/3  43/3 0

0 0 0 —4V6/30 0 0 0 0 4v3/3 -2 0

0 0 0 0 0 0 0 0 0 0 0o 2

43.2)
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ex .
and for H}:

2 0 0 0 0-v6+2 0 0 0 00
0 -2 4 0 0 0 0 —/2v2 0 0 0
0 4 -2 00 0 0 —/2v2 0 00
0 0 0 2 00 0 0 0—-/2+60
0O 0 0O 030 O 0 0 0 00
e gl -6 0 0 0 0 -32/3 0 0 0 00
echl =%ech | /3 00 0 0 023 1 0 0 0 00
0 —v2-v2 00 0 0 —-1 4 0 00
0 V2 v2 00 0 0 4 -1 0 00
0 0 0 —J/20 0 0 0 0 1 2J30
0 0 0 60 0 0 0 0 2/3 =30
o 0 0 00O O O O O 03
(4.3.3)

In the matrices given in Eqs. (4.3.2) and (4.3.3) the blocks of four rows and
columns in the upper left corner determine the coupling within the split-off exciton
states having

Fe®@I7=T2&Ts

symmetry. The block of rows and columns 5 to 12 in the lower right corner determine
that within the exciton block of

e @Tg =T34 DT

symmetry. The remaining non-diagonal blocks give the interaction between states of
the different exciton blocks obeying to different irreducible representations.

It is an important point to remark that the product of electron- and hole-wave func-
tions given in Eqgs. (4.2.6) and (4.2.7) are no longer eigenfunctions of the exciton
Hamiltonian (i.e. they diagonalize no longer the Hamiltonian describing the exciton
ground state) if the electron-hole exchange interaction is included. The modification
is twofold: First, within the different exciton blocks (formed due to the spin-orbit
coupling) the exchange interaction may lead to energy splittings between the dif-
ferent irreducible representations of the blocks as evoked in Eq. (4.1.7). Then the
eigenfunctions of the exciton Hamiltonian are linear combinations of the electron-
hole wave functions Egs. (4.2.6) and (4.2.7). Second, the exchange interaction leads
to a coupling in-between the different exciton blocks that are separated by the spin-
orbit coupling, giving rise to a mixing of their states. In zincblende type material, the
exchange interaction is, however, much smaller than the spin-orbit coupling. There-
fore, one works in general with the basis given by the wave functions of Eq. (4.2.6)
or Eq. (4.2.7) and treats—if necessary—the non-diagonalized part of the exchange
interaction as a perturbation.

When comparing Eqgs. (4.3.2) and (4.3.3) we see that the terms H.),; and H.,

C
have in their matrix representation the same structure, giving rise to the same coupling
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scheme of the exciton states. The coefficients a!, and a*, are, however, different
and both matrices are linearly independent: a elCh and ajch enter with different signs
and weights into the two diagonal blocks, which are derived from the valence-band
states with I'; and I's-symmetry, and into the non-diagonal blocks, which describe
a coupling of exciton states belonging to these different blocks.

1 ex ex ex
Let us now consider H;, , and H,",,. H.,, has the form

H@X

ech2 —
—2/3 0 0 0 0 —/6/62/6 0 0 0 0 0
0 2/3 —4/3 0 0 0 0 —/2/6v2/6 0 0 0
0 —4/3 2/3 0 0 0 0 —2/62/6 0 0 0
0 0 0 -2/3 0 0 0 0 0 —/2/6 V6/6 0
0 0 0 0 0 0 0 0 0 0 0 -1
2 —J/6/6 0 0 0 0 0 33 0 0 0 0 0
ech | /2/6 0 0 0 0 3/3 2/3 0 0 0 0 0
0 —/2/6-v2/6 0 0 0 0 —2/3 —-1/3 0 0 0
0  V2/6 V2/6 0 0 0 0 —1/3 =2/3 0 0 0
0 0 0 —v2/6 0 0 0 0 0 2/3 J3/30
0 0 0 V6/6 0 0 0 0 0 V33 0 0
0 0 0 0 -1 0 0 0 0 0 0 0
(4.3.4)
and H,, reads explicitly
Heegh3 = uzch
—8/3 0 0 0 0 -2v6/3 2v2/3 0 0 0 0 0
0 8/3 —16/3 0 0 0 0 —2v2/32J2/3 0 0 0
0 —16/3  8/3 0 0 0 0 —2v2/32J2/3 0 0 0
0 0 0 —8/3 0 0 0 0 0 —2v2/3 246/3 0
0 0 0 0 2 0 0 0 0 0 0 6
-246/3 0 0 0 0 -2 =233 0 0 0 0 0
2v2/3 0 0 0 0-2v3/3 —10/3 0 0 0 0 0
0 -2v2/3-2v2/3 0 0 0 0 10/3 143 0 0 0
0 2V2/3 24273 0 0 0 0 14/3  10/3 0 0 0
0 0 0 —2v2/30 0 0 0 0 —10/3 —2v3/30
0 0 0 2J6/3 0 0 0 0 0 -23/3 -2 0
0 0 0 0 6 0 0 0 0 0 0o 2
(4.3.5)

The exchange interaction terms H;>,, and H.7, have a similar but slightly dif-
ferent structure than H;,, and H.7 ,:

Concerning the non-diagonal exciton blocks, all four interaction terms lead exactly
to the same coupling scheme in-between the states of the two exciton blocks. The
states become thus mixed in the same way by the four electron-hole exchange inter-
action terms H;,, to HZ,,.

Concerning the diagonal blocks, it is interesting to notice that the terms H),, and
H}7, -, show in their matrix representation not exactly the same coupling structure as

H;,, and H7,,. An important exception is that the diagonal elements of H.,, and
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H}?, ; for the states vs™ and v{; are modified and that these states are now coupled. As
we will see, this coupling leads to a modification of the energy fine structure of the
exciton states of the block, derived from the valence-band states with I'g-symmetry. It
gives rise to an energy splitting between the exciton states with I'3 and I"y symmetry.

Let us first discuss the coupling in-between the two exciton blocks (i.e. the non-
diagonal exciton blocks) in more detail. As mentioned above, the non-diagonal exci-
ton blocks given in Eq. (4.3.2) to Eq. (4.3.5) have identical structure, leading to the
same mixing of states. In all cases the split-off exciton states (states v{* to v;") are
coupled to the same states (v¢* to v{;) from the I's ® I's-exciton block. This may
be easily understood when remembering that the exchange interaction has its origin
in the indiscernibility of electrons. This means that matrix elements involving two
different exciton wave functions and the Coulomb interaction between electron and
hole may be different from zero. This is possible if the two wave functions have the
electron spin indexes [(«, and «) and/or (B, and B)] exchanged and if they involve
the same eigenfunctions of the angular-momentum operator.

Let us consider as an example the exciton wave-function

vit = (=10)8 + V2| — ), /3
We remember (Eq. (4.2.4)) that

v = —1)Bp.

ve = | — 1)Ba

V¥ = (V2(0)B + | — a)Be/V/3
Ve = (V201008 + | — D) /v/3
v = (V2|0)a + [1)B)B./V/3
vis = (V2(0)ar + [1)B)at/v/3
vi} = [1)ap,

vi; = [Daa,.

In order to take into account the indiscernibility of electrons we drop the subscript
“e”. We now see that the combination |0) 88 of v{* is also present in v5* but not in
the other exciton wave functions. Similarly, | — 1)« becomes (after the electron-
spin of the conduction-band and of the valence-band states are exchanged) | — 1) Ba.
This function appears only in v¢* and nowhere else. Therefore, due to the exchange
interaction, the exciton wave-function v{* is coupled to the states v¢* and v5* but not
to the other exciton wave-functions. In addition, it results from the wave functions
that the coupling to the state v¢* is by a factor V/3 stronger than to vs*. All other
couplings between the different states given in the matrices Eq. (4.3.2) to Eq. (4.3.5)
may be interpreted in the same way.

Let us now consider the two diagonal exciton blocks, resulting from the spin-
orbit splitting of the valence-band states. We first consider the subspace of exciton
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states, originating from the electron and hole states transforming as I'¢ and I'7,
respectively. (This is the so-called “split-off exciton block™.) These exciton states
belong to the irreducible representations I'¢ ® I'; = I', @ I's. Since the exchange
interaction couples the conduction and valence-band states, the wave functions given
in Eq. (4.2.5) are no longer eigenfunctions of the exciton Hamiltonian, but the exciton
states are given by a linear combination of these functions.

As shown in Eq. (4.3.2) to Eq. (4.3.5), all exchange interactions have the same
coupling structure within the split-off exciton subspace and lead to an energy splitting
of the split-off exciton states. It turns out that the different exchange interaction
terms and the spin-orbit coupling can be diagonalized by the following exciton-wave
functions:

10,0). = (v — v5%)/V2 (4.3.6)
and
11, 1) = vf*
1,00, = (v§" +v5")/V2 4.3.7)

11, —1), = vS*.

In these equations we have used the convention that usually exciton states are
classified according to the system’s total angular momentum J = j, @ o, and its
projection component onto the z-axis, J,. The exciton states are then characterized
by the exciton quantum numbers J and M, and denoted by |J, M,).

Defining for simplicity

Qoen = 2a} ., — (2/3)a>, — (8/3)a’, — (2/3)al, (4.3.8)

the energies of the four split-off exciton states (and thus the fine structure of this
exciton block) are given by

Ejs = aeen(=3,1,1,1) 4.3.9)

with i = (1 to 4), respectively.

The irreducible representation with I'; symmetry is a one-dimensional repre-
sentation (i.e. it contains only one exciton state), I's is a 3-dimensional represen-
tation. As given in Eq. (4.3.9) the degeneracy of the split-off exciton states is
lifted by the exchange interaction. Since the Hamiltonian does not contain any
symmetry-breaking interactions, its eigenfunctions (i.e. the exciton-wave func-
tions) must have the full crystal symmetry and belong to irreducible representa-
tions. We can therefore identify the exciton state (v§* — v5*)/ V/2 having the energy
E)s = —3a,c;, with the exciton state of ', symmetry. It is given in Eq. (4.3.6). The
states (vg*, (v5* + v5%)/ V2, and v{") given in Eq. (4.3.7) are then the I's states that
are triply degenerated in energy, namely E3s = E3s = E35 = dech.

The symmetry adapted exciton-wave functions can also be obtained by calculating
the product states |1/2, £1/2)«, and |1/2, £1/2) B, of Eq. (4.2.7), using the multi-
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plication Tables of Ref. [2]. One has only to remember that the valence-band states
|1/2, £1/2) have I'; symmetry and the conduction-band states (¢, = |1/2, +1/2)
and B8, = [1/2, —1/2)) have I's symmetry. Up to an insignificant phase factor appear-
ing in the product states (i.e. the exciton states) with I's symmetry the functions given
in Ref. [2] are identical to those given in Egs. (4.3.6) and (4.3.7).

Using the notation |J, M) the state |0, 0). with [, symmetry is a state with total
angular momentum J = 0. The states (|1, 1).; |1, 0).; |1, —1).) are J = 1 exciton
states. It is now convenient to define exciton states in the electron-hole representation
by using the correspondence between valence-band and hole states given in Eq.
(4.2.5). The wave functions Egs. (4.3.6) and (4.3.7) then transform into

10, 0), = (|Pg) + |®1))/2 (4.3.10)
and
11, 1) = |®2)
I11,0). = (|®g) — [®1))/2 (4.3.11)
11, 1), = —|®3).

Following Ref. [1, 4] or Eq. (3.1.2) (x, y, z) polarized pair states can be easily
constructed from Eq. (4.3.11) and one obtains:

IX)e = (—=|1, D)o 41, = 1)) /+/2
IV)e = i(J1, 1)e + 1, =1))/+/2 (4.3.12)
[z)e = |1, 0),.

Equation (4.3.12) shows that such J = 1 states have a dipole moment. They are of
I's symmetry in zincblende-type crystals. (It is interesting to notice that according to
Ref. [2] the vectors (x, y, z) are the basis functions of the irreducible representation
of I's symmetry. Therefore, it is important to stress at this point that excitons with I's
symmetry are the only excitons, which have a dipole moment. All other excitons with
a different symmetry do not transform as the vectors (x, y, z).) In zincblende-type
crystals the electric-dipole transition from the crystal ground state is non-vanishing
only to J = 1 exciton states and the exciton states of Eq. (4.3.12) have non-vanishing
transition-dipole matrix elements with linearly (x, y, z)-polarized light. J = 1 states
are said to be “dipole active” since they couple within the dipole approximation to
the electromagnetic radiation field, which is also characterized by a dipole moment
[1, 4]. As we will see in detail in Chap. 8, these exciton states are said to carry a
finite “oscillator strength”.

Let us now consider the block of exciton states originating from conduction-band
electrons of I'¢ symmetry and the hole states transforming as I's. As discussed in
the foregoing Sect.4.2 this I's ® ['g exciton-block is separated in energy from the
split-off exciton ground state by 9a¢; due to the spin-orbit interaction. One can now
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identify the symmetry of the exciton states and their energy by applying the same
procedure as detailed above for the split-off exciton states.

Concerning the I'¢ ® I's excitons one considers again only the diagonal block
of the exciton-exchange interaction matrices defined through the states v¢* to v{3.
The exciton states transform as I'¢ ® I's = I'3 @ I'y @ I's. The symmetry adapted
exciton-wave functions can be obtained using the multiplication tables of Ref. [2]
and calculating the product states |3/2, £3/2)«,, |3/2, £1/2)c,, |3/2, £3/2) B, and
|3/2, £1/2) B, of Eq. (4.2.6). In the electron-hole representation these exciton states
are characterized by a total angular momentum J = 2 and J = 1, respectively.

As discussed above, the J = 1 exciton states can be identified to have I's symme-
try. These states are triply degenerate in energy. The J = 2 states posses a quadrupole
moment and may in principle be five-fold degenerate. The J = 1 states being identi-
fied also within the I'¢ ® I'g exciton-block as states with I's symmetry, the remaining
J = 2 states must be formed from states having I'5 and 'y symmetry.

We first consider the exchange interactions matrices resulting from H;, and
H}’, .. Treating the I's ® I'g-exciton block separately from the split-off exciton block
(see Eq. (4.3.2) and Eq. (4.3.3)), we see that these exchange interaction matrices are
linearly dependent on each other, i.e. the reduced matrix of H., , is obtained from
H?7,, by multiplying it by a factor of (2/3). Therefore, both terms describe the same
exchange interaction within this approximation.

In the basis of conduction-band and valence-band electron states v{* of Eq. (4.2.3),
the reduced exchange-interaction term H;",; of Eq. (4.3.3) can be diagonalized by

the following normalized basis of exciton states v{,; (with i = 5 to 12):

0 0 0 00 0 0 1
0 0 —v3/20 0 0 1/20
0 0 12 0 0 0 +/3/20
e —| 0 —v2/2 0 0 0 V2/2 0 0 43.13)
el 0 V22 0 0 0 V2/2 0 0 -
-1/2 0 0 032 0 0 0
V3/2 0 0 012 0 0 0
0 0 0 1.0 0 0 0
One obtains from Eq. (4.3.3) the eigenvalues
Eevie1 = al, (=5, -5,-5,3,3,3,3,3). (4.3.14)

As mentioned before, the exchange interaction matrix H;),, is diagonalized by the
same set of wave functions and leads to the same energy-level scheme having the
energies

Epvies = (2/3)al, (=5, -5,-5,3,3,3,3,3). (4.3.15)

Equations (4.3.14) and (4.3.15) show that the exchange interactions H;7,, and
H}, 4 lift partly the degeneracy of the I's ® I's-exciton block. The states v<); to v},
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are triply degenerate and thus correspond to the J = 1 states. The states vg}; to v{3,,
are fivefold degenerate and are separated in energy from the J = 1 exciton states by
8(a elch +(2/3) ajch). These J = 2 states have partially mixed I'; and I"y symmetry, i.e.
these states are not yet symmetry adapted. After having diagonalized the exchange
interaction terms H,, and H_), we obtain for the J =1 states when using the

electron-hole notation of Eq. (4.2.5):

11, 1) = (|¥3) + /3] W) /2
11,0) = —(|¥) + |W7)/V/2 (4.3.16)
11, —1) = (|W6) + V3|W1))/2

and for the J = 2 states

12,2) = |Wy)
12, 1) = (|Ws) — /3| W3))/2

12,0) = (|W2) — |W7))/v/2 (4.3.17)
12, —1) = (V3]W5) — [¥1))/2
12, —2) = —|Ws).

These states are the same as those introduced in Ref. [1, 4]. The J = 1 states
[1,1),]1,0),and |1, —1) have the same characteristics as the states (|1, 1).;
[1, 0).; |1, —1).) of the split-off band discussed above, i.e. they are dipole active.
The J = 2 states remain degenerate when considering only H;”,, and H;., ,. As we
will show now, inclusion of the exchange interaction terms H., and H., , results
in an energy separation between states with I'; and I'y-symmetry. The exciton wave
functions given in Eq. (4.3.17) are then used to construct the missing symmetry-
adapted exciton states.

Let us consider for example the reduced exchange-interaction matrix H;,, of
Eq. (4.3.4). It can be diagonalized using the following normalized basis of the v{;,
exciton states (with i = 5 to 12) of Eq. (4.2.2):

V2/2 00 0 0 —v2/2 0 0
0O 0 0 0 —v3/2 0 0 172
0 0 0 0 1/2 0 0 32

. 0 V2/2 0 —v2/2 0 0 0 0 (43.18)

0 +2/2 0 22 0 0 0 0
0 0 —-1/2 0 0 0 32 0
0 0 V3/2 0 0 0 12 0

V2/2 00 0 0 V2/2 0 0
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and one obtains from Eq. (4.3.4) the eigenvalues
E i = afch(—l, —-1,-1/3,—-1/3,—-1/3, 1, 1, 1). (4.3.19)

(Attention has to be payed to the fact that the order of the states given in Eq. (4.3.18)
is different from that of Eq. (4.3.13) and that they are labeled v}, withi = 5to 12in
the following.) As it is immediately seen in Eq. (4.3.19), the states v<), and vg,, are
doubly degenerate. Since the exchange-interaction matrix H;.,, has the full point-
group symmetry and since the states vg,, and vg}, belong to the I's ® I'g-exciton
block, these J = 2 states correspond to states with I'; symmetry.

The states v5, to vg), are the triply degenerate J = 1 states with I's symmetry,
which we have already discussed above in connection with H;?, ; and which are given
in Eqgs. (4.3.13) and (4.3.16). The exchange interaction term H,, under considera-
tion has no further influence on the wave functions and the degeneracy of these states
but may only shift them together in energy.

States v{},, to v¢3,, are triply degenerate and are separated by Ass =2a?,, inenergy
from the states with I's symmetry. Following the same argumentation as above, these
remaining J = 2 states have to be the states with I'y symmetry. The v{), states are
now fully adapted to the crystal symmetry and we see that some of the states given
in Eq. (4.3.18) are different from those of Eq. (4.3.13). The exchange interactions
H},, and H7, 5 both act differently on exciton states with I'; and I'y symmetry and
may partially lift their degeneracy. They give rise to the so-called “cubic exchange
interaction”.

Using the notation introduced in Ref. [1, 4] one finds for the symmetry-adapted
I'; states:

12,4) = (12,2) + 12, =2))/vV/2 = (|Wa) — |W5))/¥/2

(4.3.20)
12,0) = (W) — |W7))/+/2

and for those with I'y symmetry

I, 4) = —(12, 1) + 12, = 1))/vV2 = —((1¥8) — V(3)W¥3))/2 + (V3| W6) — [¥1))/2)/v2
IL, =) = i(12, =1) — 12, 1))/v/2 = i (V/3]We) — [1))/2 — (1Ws) — v/3|W3))/2)/v2 (4.3.21)
12, =) = (12,2) — 12, =2))/v/2 = (1%4) + |¥s))/+/2.

As stated above, the reduced exchange interaction H.,, is diagonalized by the
same wave functions as those of HZ),, given in Eq. (4.3.18). They lead to the same
energy level scheme and exciton fine structure as given above, only the coupling
coefficients are different from those obtained from H;’,,. The eigenvalues are given

in this case by

Eeries = asch(& 8,—4/3,—-4/3,—-4/3, -4, -4, —4) (4.3.22)
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for the multiplets having I's, I's, and 'y symmetry, respectively.

We have seen that the electron-hole exchange interaction couples states, which
belong to different exciton blocks and mixes their wave functions. In the example
discussed above in connection with the Hamiltonian described by Eq. (4.3.4) the
exciton state v{* = (—|0)8 + V2| = Da) Be/ V3 couples to the exciton states v¢* and
v5*. This means that the states |1, —1), = —|®3) and |1, —1) = (|W¢) + V3W)/2
are coupled. The same result is found for the exciton state |1, 0). which is coupled to
the state |1, 0) while the state |1, 1), is coupled to |1, 1). These are the non-diagonal
exciton blocks which are responsible for this coupling. An important consequence
of the coupling is that oscillator strength of dipole-active excitons is transferred
by the electron-hole exchange interaction in-between excitons, originating from the
valence band with I'; and that with I's symmetry if they are characterized by J = 1
and the same J, quantum number. As mentioned above, the exchange interaction
is generally much smaller than the spin-orbit coupling. Therefore, one can work
with the basis given by the wave functions of Eq. (4.2.6) or Eq. (4.2.7) and treat the
non-diagonalized part of the exchange interaction as a perturbation.

Let us neglect in the rest of this chapter the non-diagonal blocks, which we have
just discussed. Then the matrices H.%,, to H., , reduce to two block matrices, which
can be diagonalized using the states indicated in (Eq. (4.3.10) and Eq. (4.3.11)), and
in (Eq. (4.3.16), Eq. (4.3.20), and Eq. (4.3.21)).

We will first discuss the nature of the exchange interaction for the split-off exciton
ground state, i.e. the exciton block arising from the electrons and holes that transform
as I'¢ and I'7, respectively. The calculation of the exchange interaction energy is
discussed in detail in Ref. [1]. It turns out that its value depends on the dipole
moment of the state. The exciton states with I’ symmetry have no dipole moment
and are therefore not at all affected by exchange interaction. On the other hand,
as given in Eq. (4.3.12) for zincblende-type semiconductors, exciton states with
I's symmetry have a dipole moment and experience exchange interaction. If we
take “z” as the direction of propagation characterizing the wave-vector Q, the I's-
exciton states (|1, 1), and |1, —1).) have (as follows from Eq. (4.3.12)) their dipole
moments orientated perpendicular to “z” and they are called “transverse excitons”.
The dipole moment of the |1, 0). exciton state is orientated parallel to “z”, i.e. it
is a “longitudinal” exciton. The exchange interaction can now be divided into two
parts: first, the analytic part, which is independent of the orientation of the dipole.
It influences in the same way transverse and longitudinal I's-exciton states and lifts
the degeneracy between excitons with I'; and I's symmetry. Second, the exchange
interaction has a non-analytic contribution. This part of the exchange interaction
depends on the orientation of the dipole moment with respect to the direction of
propagation of the exciton. The non-analytic part of the exchange interaction acts
only on the longitudinal-exciton state and thus lifts the degeneracy of the longitudinal
and transverse states. We clearly see in this fact that the finite center-of-mass wave-
vector of excitons (which defines the terms “longitudinal” and “transverse”) is a
symmetry-breaking perturbation.
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Up to now we have identified exciton states by their total angular momentum and
discussed, whether excitons were dipole active or not, i.e. whether excitons couple to
the electromagnetic radiation field. This approach is interesting since excitons often
show up in the optical properties of semiconductors. Historically, excitons were first
discussed as being analog to atoms or small molecules and the symmetry of their
spin-orbitals was considered separately from their total angular momentum. In this
context expressions like“singlet-"" and “triplet-" or “ortho-"" and “para-" excitons are
then used.

In order to clarify these expressions let us consider for the moment a simple atom
or molecule, e.g. a He-atom or H,-molecule. It is immersed into an electromag-
netic radiation field (a photon field) and a transition from an occupied electronic
state to an unoccupied state is studied. The electromagnetic radiation field is a trans-
verse field, characterized by its dipole moment, and has a total angular momentum
J = 1. If we take again “z” as direction of propagation, a photon corresponds to a
quasi-particle, characterized by |J = 1, M; = +£1). A photon can induce an optical
transition between two electron states characterized by AL = £1 and AM; = %1
(L being the quantum number of the orbital-momentum operator and M, that of its
magnetic moment, respectively). On the other hand, a photon does not change the
spin state of the considered electron. Then, in an optical transition, the spin of the
electron in its initial state and in its excited state are the same: i.e. the spins of the
excited electron and of the missing electron are parallel.

In the language used in the preceding chapters for semiconductors this signifies
that the spin-states of the electron in the conduction band and of the generated defect-
electron in the valence band are the same. Excitons are defined, however, as electron-
hole pair states, where the hole state is obtained from the defect-electron state by
Kramer’s conjugation. (Using this description in terms of “electron” and “hole”
one easily understands the resulting electron-hole attraction, leading to bound states
of excitons situated within the energy gap of the semiconductor.) Since Kramer’s
conjugation reverses the spin-state of the defect-electron in the valence band when
forming the hole, optically excited excitons are characterized by the fact that electron
and hole spins are in opposite states. The electron-hole pair states have anti-parallel
spins (with a total spin S = 0) and these excitons are called in analogy with atomic
physics “spin-singlet excitons” or in short “singlet excitons”. This nomenclature was
later also applied to characterize dipole-active J = 1 exciton states or excitons with
I's symmetry in zincblende-type semiconductors since they can be optically excited.

If the electron in the conduction band or the hole in the valence band undergoes
after the excitation by the light field a spin-flip, electron and hole spins are parallel
and have a total spin S = 1. Such excitons are called “spin-triplet excitons” or in short
“triplet excitons”. Similar to the atomic or molecular model the singlet-exciton states
have a higher energy than the triplet state due to the exchange interaction. In general,
the expression “triplet excitons” characterizes exciton states that have no dipole
moment as for example the state |0, 0), given in Eq. (4.3.6), which transforms as I';.
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But attention has to be payed to the fact that this exciton state is non-degenerate and it
is not a multiplet. In addition, neither the total spin S nor the total angular momentum
J are good quantum numbers in semiconductors. They thus do not indicate the
multiplicity of a subgroup of states.

In some materials also the nomenclature “para” and “ortho” exciton is used instead
of “singlet” or “triplet excitons” (e.g. in Cu,O or other semiconductor oxides). In
these materials transitions to exciton states with S-type envelope functions are dipole
forbidden and an optical transition is accompanied with a spin-flip process of an
electron. (This situation is somewhat similar to the excitation of electrons in He
atoms.) If there an electron and a hole are created to build an exciton by resonant
one-photon absorption, they have parallel spins. Thus, such excitons are in these
substances (unlike to zincblende material) the ortho (= triplet) excitons rather than
the para (= singlet) excitons. To crown the confusion the ortho-excitons have in Cu,O
and related substances higher energy than the optically forbidden para-excitons.
One must therefore be very cautious when using the terms “singlet” and “triplet”
excitons because their behavior and properties might be very different in different
semiconductors.

Since excitons with I'; symmetry and longitudinal I's excitons (i.e. the |1, 0),
exciton states) do not couple to the electromagnetic radiation field they are also
called “dark” exciton states . This nomenclature is used in opposition to “bright”
excitons that couple to the light field and are observed e.g. in photoluminescence. This
distinction, however, cannot be taken literally. Perturbations, which destroy the point-
group symmetry, can transfer oscillator strength from dipole-active exciton-states to
dipole-forbidden states, which may thus also show up (weakly) in luminescence
measurements (see e.g. panel (c) in Fig.4.1). In any case, attention has to be payed
when using these expressions since they use atomic models to describe exciton states,
which have a much more complex structure.

Let us come back to the exchange interaction of the split-off exciton-ground state
and its fine structure. As discussed with Egs. (4.3.8) and (4.3.9) the four exchange

interaction terms H.>,, to HZ, , are diagonalized by the exciton states in Egs. (4.3.6)

ec,
and (4.3.7). These interaction terms influence the split-off exciton states in exactly the
same way. When considering only their analytical parts by introducing, in accordance

with Eq. (4.3.8),

al, = 2ally — (2/3)a’, — (8/3)aly — (2/3)a} (4.3.23)

ech ech ech ech

one obtains for the eigenvalues of the split-off states

Egi =alt,(=3,1,1,1) (4.3.24)

ech

with i = (1 to 4), respectively.
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The triplet exciton state |0, 0). with I'; symmetry has the lowest energy of —3a?,
and the singlet states, i.e. (|1, 1)¢; |1, 0)c; |1, —1).), which transform as I's, are
shifted to higher energies by a?,. Thus, the exchange-interaction terms H%,, to
H}, 4 lift the degeneracy between singlet and triplet states. One therefore introduces
the singlet-triplet splitting A, between exciton states with I's and with I', symmetry

as
Ay = 4dal,. (4.3.25)

The degeneracy of dipole active exciton states is further lifted by the non-analytical
electron-hole exchange interaction (Ref. [1, 4]) that shifts longitudinal excitons to
higher energies by aV# and does not influence the other states. This energy separation
is called the “longitudinal-transverse splitting energy* Ay r = aﬁﬁ of dipole active
excitons. The resulting energy scheme is shown in Fig.4.3 where the quantization
axes is taken parallel to the center-of-mass wave-vector Q. Various means of I'g ®
I'7-exciton luminescence manifestation in CuCl crystals, illustrating experimentally
the above discussion are shown in Fig.4.1.

Figure 4.4 shows the scheme of exciton levels, arising from the holes in the valence
band with ['g-symmetry and conduction-band electrons in zincblende-type semicon-
ductors. The z-axis of quantization, which is used to identify the |J, M) states,
is parallel to the wave-vector Q. Similar to the split-off band, splitting and a fine
structure of the exciton states is induced by the different exchange interactions given
in Eq. (4.3.1). Schematically, the exchange interaction terms a, and a*, sepa-
rate the J =1 and J = 2 states by an energy difference As4s. Then, the cubic
exchange interaction terms aezch and agch shift the I's-states and lifts the degeneracy
of exciton states with '3 from those with I'y-symmetry by the amount of As4. As
discussed above, this “cubic-exchange” term is small compared to the terms a,,,
and ajch since it has its origin in the modification of the spin-orbit coupling through
the electron-hole exchange-interaction. It is therefore usually neglected. In addition,
the longitudinal-transverse splitting A, 7 is induced by the nonanalytic parts of the
exchange interactions on the dipole active J = 1 exciton states. All these features
are documented by the experimental reflectance curve of a CuBr crystal in Fig.4.5.

The energies E(I";) of the states with symmetry I'; (with j = 3,4,5T,5L) are
given in terms of the exchange interactions a’ , (with i = 1 to 4) by

ech

E(F3) = 3aelch - azch + 8a3€h + Zajch
E(F4) = 3aelch + agch - 4a3€h + Zajch
E(Tsp) = —5al, — (1/3)a2, — 4/3)a’, — (10/3)a’,

E(Tsy) = —5al, — (1/3)a?, — (4/3)a’, — (10/3)a’, + Arr.

ech

(4.3.26)
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Fig. 4.3 Energy level scheme of excitons arising from holes in the valence band with I'7 symmetry
and conduction-band electrons with I's symmetry in zincblende-type semiconductors. Two modes
of manifestation of the exchange interaction are visualized. The singlet-triplet energy splitting A,
within this “split-off” exciton block (I's ® I'7)¥ is induced by the analytic (index “A”) exchange
interaction afl,h. The energies of the states and their dependence on the different contributions to
the exchange interactions are given in Eq. (4.3.24) and Eq. (4.3.23), respectively. The non-analytic
exchange interaction gives rise to the longitudinal-transverse splitting Ay 7. |1, +1). and |1, —1),
denote the two transverse exciton states, which are dipole-active and thus couple to the electromag-
netic radiation field. |1, 0). labels the longitudinal exciton state. The z-axis of quantization, which
is used to identify the |J, M), states, is parallel to the wave-vector Q. See text

In order to summarize the properties of the I'g ® I'g exciton states: When using the
wave functions v{;, given in Eq. (4.3.18) or Egs. (4.3.20) and (4.3.21), an effective
exciton Hamiltonian formed from electrons in the conduction band transforming
as g and holes in the valence band with I'g symmetry is described by a diagonal
matrix. It includes the spin-orbit coupling and all different exchange interactions. The
exciton ground state has still the full crystal symmetry, to which the wave functions
are adapted. The same statement is valid for the split-off I'¢ ® I'; exciton states
when using the states in Eq. (4.3.6) and Eq. (4.3.7). One has to remember, however,
that some non-diagonal matrix elements due to the exchange interaction couple in
principle the different exciton blocks. This coupling was neglected above and can be
considered using perturbation theories. For dipole-active excitons such a coupling
can lead to a transfer of oscillator strength between both exciton series.
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Fig. 4.4 Energy level scheme of excitons arising from holes in the valence band with I'g symmetry
and conduction-band electrons with I'¢ symmetry in zincblende-type semiconductors. The energy
splitting is induced by the different exchange interactions, giving rise to a separation As4 5 of states
with (I'3 or I'4) and I's symmetry, the non-analytic (giving rise to the longitudinal-transverse splitting
ArT), and the cubic exchange (A34 splitting). The energies of the states and their dependence on
the different contributions to the exchange interactions are given in Eq. (4.3.26). Concerning the
states with I's symmetry, |1, +1) and |1, —1) denote the two transverse exciton states, which are
dipole-active and thus couple to the electromagnetic radiation field. |1, 0) labels the longitudinal
exciton state. The z-axis of quantization, which is used to identify the |J, M) states, is parallel to
the wave-vector Q. See text. In particular, for the notation of the I'3 or I's states see Egs. (4.3.20)
and (4.3.21)

Fig. 4.5 Normal reflectance wavelength (nm)
spectrum of CuBr in the 419.0 418.0 417.0
I'e ® I'g exciton region.
Here Ag; = 1.1 meV means
the singlet-triplet

[(T's — (I'3, T'4)] splitting
due to exchange interaction.
Besides, it can be seen that
the “cubic-exchange” terms
and the corresponding
splitting A3y of exciton
states with I'3 and I'y4
symmetry are negligible. On
the other hand, the
longitudinal-transverse
splitting Ap7 = 12.3 meV of
the I's (i.e. J = 1) state is 20
considerably larger here than

in most of the common

semiconductors. After Ref.

[8]. See text
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Chapter 5 )
Pseudo-Spin Development of the Exciton | oo
Ground State in Zincblende-Type
Semiconductors

We have seen in the foregoing chapters that the development of an effective Hamil-
tonian, which is adapted to the crystal symmetry, is an efficient tool to describe
electronic excitations in semiconductors. The development procedure becomes, how-
ever, quite tedious and inefficient if a large basis of electron states is considered when
describing a system. On the contrary, this technique is interesting if only a couple
of almost degenerate states, which are well separated in energy from other states,
has to be analyzed. This is the case for example in the exciton problem that has
been discussed in the previous chapter. Here, the split-off exciton states (resulting
from electrons and holes that transform as I'¢ and I';, respectively) are separated
by the spin-orbit coupling from the exciton block obtained from electrons and holes
that transform as I'¢ and I'g, respectively. As we have already discussed, the two
exciton blocks are coupled by the electron-hole exchange interaction, which is, how-
ever, small compared to the spin-orbit coupling. In this case, the exciton blocks are
approximately decoupled and different effective Hamiltonians that are independent
from each other can be developed for the two exciton blocks. This will be done in the
present chapter. We understand this as a “Pseudo-Spin Development” of excitons in
a subspace of almost degenerated states.

5.1 The I'¢ ® I'7 Subspace of the Exciton Ground State

Let us now discuss the simplest case of a two-band bulk semiconductor, where the
lowest conduction band of I'¢ symmetry is only spin degenerate. As we have seen in
Sect. 3.3, the sixfold degenerate highest valence band is split by spin-orbit interaction
into two bands having I'; and I's symmetry. Let the uppermost valence band be the
band with I'; symmetry, which is also only twofold degenerate. The semiconductor
has zincblende structure (7; point-group symmetry) and a direct band gap at the
center of the Brillouin zone. This situation is realized in CuCl to which our discussion
fully applies.
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In copper halides the considered exciton series is labeled the “Z3-exciton series”.
The spin degenerate lowest conduction band and the highest valence band with I';
symmetry are considered in the following, all other bands (including the valence
band with I's symmetry together with the appertaining (I'¢ ® ['s) exciton series
called “Z; »-exciton series”) are neglected. The overall situation relevant for optical
transitions is sketched in the right half panel of Fig. 3.9, where the left half presents
part of the corresponding excitonic absorption spectrum of a high-quality CuCl thin
film.

In the case considered here the electron states in the conduction band are made
up from s-type spin orbitals, i.e. they have an angular momentum [, = 0. The total-
angular momentum of the electron states is therefore fully determined by the electron
spin. Because of this twofold degeneracy, the total angular momentum operator
Je = 1/2 is now used for the pseudo-spin development of the conduction-band
electron-subspace. The eigenfunctions of its z-component jZ are the electron spin-up
and down states «, and 3., respectively.

As discussed above, the wave functions of the valence-band electrons contain,
besides the spin contribution, an angular-momentum part transforming as (x, y, z).
This originates from the fact that the valence band is due to atomic-spin orbitals with
a spin o, = 1/2 and an angular momentum /,, = 1. The spin states are labeled « and 3
and indicate again the spin-up and down states of the valence-band defect-electrons,
respectively. The eigenvectors (v] and vj) of the valence band transforming as I';
are given in Eq. (3.3.1) by

V= (—]0)8 + V2| — /3 = (=284 (x —iy)a)/V/3

5.1.1

vy = (10)a — V2[1)B)/V3 = (za + (x +iy)B)/V/3. oD
Considering the total-angular momentum j, = [, @ o, and its projection compo-
nent onto the z-axis j°, the functions Eq. (5.1.1) are also eigenfunctions of the
total-angular momentum operator j, of the valence-band states with j: = F 1/2,
respectively. By analogy to the conduction band discussed above, because of its
twofold degeneracy, the total angular-momentum operator j, = 1/2 is now used for
the pseudo-spin description of the valence-band subspace. Using Eq. (4.1.3) or Eq.
(4.1.4) we can then introduce hole states and establish their correspondence to the
valence-band states of the split-off band using Eq. (4.1.5).

As discussed in Chap. 4, excitons are formed in the direct product space of electron
and hole states, i.e. we build the Kronecker product j, ® j,. The exciton ground
state is thus only fourfold degenerate. We now construct in this subspace an effective
exciton Hamiltonian, which has the same symmetry properties as the full Hamilton
operator, i.e. which remains invariant under all symmetry operations of the point
group of the crystal. It transforms as a scalar (which has I'; symmetry) and is an
even function under time reversal (K ). Since the conduction band is only twofold
degenerate, we choose, as discussed in Chap. 2, the Pauli-spin matrices, which are
the j = 1/2 matrices o7, o., and o’ together with the unit matrix 1, as a basis to
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span the matrix describing the interacting conduction-band states. These matrices
are given in Egs. (2.2.3) and (2.2.5) by

01 ' 0—i 10 10
X . y . z . —
06—(10)’%_(1'0)’%_(0—1)’1”_(01)' (5.1.2)

We proceed likewise in order to describe the I'; valence-band states and use for
these states the Pauli-spin matrices o7, 037, and cffﬁ and the unit matrix 1,7 as basis
matrices, i.e.

« _(O01\. y (0= . (1L OY) ., (10
= (O0)ion= ()= (0 O) 1= (30). s

These two sets of Pauli matrices operate only on the conduction (subscript “e”)
or valence (subscript “v7”) split-off band states, respectively. The transformation
properties of these matrices are (I'y, K ™) in the case of the unit matrix and (I'y,
K ™) for the Pauli matrices, respectively. The Kronecker product of conduction- and
valence-band electron-states spans a basis of the fourfold degenerate exciton ground
state.

Excluding all symmetry breaking interactions, the effective exciton Hamiltonian
H7* now reads in this pseudo-spin space:

H7ex = Ayl ® 1, + A17(O'j7 ® O'j + 057 ® O'z + 0§7 ® 05). (5.14)

Equation (5.1.4) gives the only terms that can contribute to the Hamiltonian in this
subspace, which has a lower dimensionality compared to that treated in Sect. 4.1. No
other terms that have the required transformation properties (I';, K ™) for a Hamilto-
nian under the symmetry operations of the point group and under time reversal can
be constructed from the basis matrices given in Egs. (5.1.2) and (5.1.3). In analogy
with Egs. (4.1.8) and (5.1.4) gives the fine structure of the split-off exciton states in a
parametrized form. It depends only on two parameters: The first one, A7, accounts
for the exciton binding energy. Itis determined by H;* of Eq. (4.1.9) and a part of H}
of Eq. (4.1.10), since now the spin-orbit interaction is already considered. Similarly,
the second parameter A7 stands for the different electron-hole exchange interaction
terms discussed in Sect. 4.3. One remarks that only one parameter describes the
electron-hole exchange interaction now, which acts within the states of the split-off
band.

Explicitly, the Hamiltonian describing the conduction- and valence-band electron-
exchange interaction

ex  __ X X y z ¥4
Hech7 - A17(0—1}7 ® O, + Oy7 ® Ug] + Oy7 ® Ue)

takes (as can be easily calculated by using Egs. (5.1.2) and (5.1.3)) the matrix form
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0 0
2

—_

Hexh7 — A17

ec

(5.1.5)

—
- o O O

[N ool S

2 _
0 0

It is important to notice that the matrix form of H.,, given in Eq. (5.1.5) repro-
duces exactly (up to constant factors) the matrix forms of the diagonal I'; exciton
blocks of the full Hamiltonians H;,, to H.7,, that are given in Egs. (4.3.2)—(4.3.5).
This means that to include all valence-band states when treating the electron-hole
exchange interaction introduces only a coupling between the different diagonal
blocks. The additional terms of the exchange interaction do not, however, change the
internal structure of the exciton block, which is separated from the other block by
the spin-orbit coupling.

As we have seen, the excitons transform like I';, and I's, respectively. As discussed
in connection with Eq. (4.3.9) for the split-off exciton block, the exchange interaction
given in Eq. (5.1.5) can be diagonalized. As in Eq. (4.3.9) one then obtains the
eigenvalues

Egin = A17(=3,1,1,1) (5.1.6)

with i = (1 to 4), respectively. The factor A7 of E,;;7 in Eq. (5.1.6) has a different
meaning than the coefficient a.., in Eq. (4.3.8): In Sect. 4.3 a,.; is given in terms
of the different electron-hole exchange interaction terms of the full exciton states.
Here, A7 is a parameter defined only in the electron-hole subspace considered: the
split-off exciton ground state.

The exciton states in Eq. (5.1.6) can be classified according to their total angular
momentum (or pseudo-spin) J = 0 and J = 1. The spin-triplet-exciton state, which
does not carry a dipole moment, corresponds to the eigenstate of pseudo-spin J = 0
and is not degenerate. The spin-singlet exciton states correspond to eigenstates with
a pseudo-spin J = 1 and are threefold degenerate.

According to Egs. (4.3.10) and (4.3.11) and using the notation | J, M), one obtains
again for these exciton states in the electron-hole representation:

10, 0)7 = (|®4) + |®1))/+/2 (5.1.7)
and
[1, I)e7 = |D2)
11,0)7 = (|®g) — |@1))/~/2 (5.1.8)

11, =1)e7 = —|P3).

The calculation of the energies E;,;7 was discussed in detail in Sect. 4.3. We
have mentioned that their values depend on the dipole moment of the state and its
orientation relative to the direction of the exciton propagation, given by their center-
of-mass wave-vector Q. Let us take this direction as quantization axis “z”. The
exciton states with I'; symmetry do not carry a dipole moment and are not affected
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by exchange interaction. Concerning the J = 1 exciton states with I's symmetry,
which posses a dipole moment, the analytical part of the exchange interaction is
independent of the orientation of the dipole and lifts only the degeneracy between
excitons with I'; and I's symmetry, i.e. induces the singlet-triplet splitting. The non-
analytic contribution of the exchange interaction, however, affects only longitudinal
excitons and lifts the degeneracy of the longitudinal and transverse I's states [1, 2].

Let us separate the exchange interaction term A7 into its analytic part A{, and
the longitudinal-transverse splitting A%/ in the form

Ay =AY+ AL (5.1.9)

When using the symmetry-adapted exciton-basis functions (|0, 0).7, |1, 1).7,
[1,0)¢7, |1, —1)¢7) given in Egs. (5.1.7) and (5.1.8), the exciton state |1, 0).7 cor-
responds (as it has been explained in Sect. 4.3) to the longitudinal exciton. The
Hamiltonian given in Eq. (5.1.5) is diagonal in this basis and takes the matrix form:

Aoy 0 0 0
ex __ 0 Ag7 +4A7, 0 0
By = 0 0 Ag7 +4A%, + A1L7T 0 (5.1.10)
0 0 0 A + 44,

Using the present approach one obtains for the singlet-triplet splitting A7
between exciton states
Ay = 4A(117 (5111)

from the analytical part of the exchange interaction. The splitting between longitudi-
nal and transverse states is resulting from its non-analytical part. As in simple atoms,
the electron-hole exchange interaction is a repulsive interaction in this subspace and
therefore A{, and ALl are > 0.

Comparing with Sect. 4.3 one sees from this discussion that the reduction of the
number of valence band states has simplified a lot the determination of the effective
Hamiltonian, while the energy level scheme remains the same as given in Fig. 4.3.
The Hamiltonian describes, however, only a reduced exciton subspace.

5.2 Symmetry-Breaking Effects in the I'¢ ® I'7 Exciton
Ground State

Let us discuss now symmetry-breaking effects on the exciton ground state, which
is defined in the I'¢ ® I'; electron-hole subspace as introduced in the preceding
section. We have mentioned that direct, exchange, and spin-orbit interactions between
electrons and holes possess the full crystal symmetry. These interactions can be
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accounted for by using symmetry-adapted exciton-wave functions as basis functions
in which the exciton Hamiltonian is diagonal.

In general an exciton Hamiltonian depends, however, on an additional set of physi-
cal quantities, which break the full point-group symmetry of the crystal. Changing the
value of these quantities modifies not only the exciton eigenvalues and the exciton-
fine structure, but also the exciton-wave functions.

The procedure to develop the exciton Hamiltonian may now be continued, consid-
ering symmetry-breaking perturbations. Such perturbations can be treated in detail
in the frame of the pseudo-spin formalism. One thus obtains an insight in the effect of
the perturbations on the different exciton states: Symmetry-breaking perturbations
can mix the exciton states and lead to a shift of their energies.

Let us consider in the following some of these physical quantities and discuss the
influence of their symmetry properties on the exciton states.

5.2.1 Magnetic-Field Dependence

According to the transformation properties (I'y, K ~) of the magnetic field B in Ty
point-group symmetry, the linear magnetic-field dependence of the Hamiltonian,
labeled Hg}” in the T's ® I'; electron-hole subspace, takes the form

Hy =g 17® (B -0 +9" (B o) @1, =
= ¢°1,7 ® (Bx0} + By0} + B.o)) + ¢ (B.oy; + Byoy; + B.oyy) ® Lo,
(5.2.1)
where ¢¢ and ¢"7 are the Landé (or g-)factors of electrons and holes, respectively. The
energy shifts that they induce correspond to the linear Zeeman effect. The interaction
terms have the required symmetry properties of a Hamiltonian and lead to a splitting
of the degenerate conduction and valence bands.

Since the operators B, o, and o, have all odd symmetry under time reversal,
their product (B - 0, ® o.) has also odd time-reversal symmetry and, consequently,
does not appear in Eq. (5.2.1). Thus, the electron-hole exchange interaction cannot
depend linearly on the magnetic field and it does not influence the linear Zeeman
effect when restricting to this subspace. This indicates that measurements of the
exciton Zeeman effect lead directly to a combination of the electron and hole Landé
factors, which are not modified by the exchange interaction. Terms linear in B couple
to the electron or hole-spin states and can lead to a spin flip of one of the carriers,
while the other particle remains in its former state.

All second order terms in B are symmetric under time reversal (K™ symmetry).
They contain direct and exchange interactions according to
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Hg = 3B’ ® 1.+ 1B (0}, ® 0} + 0}, ® 0) + 057, ® 02) +
+ al3(0}; ® 0} — 0}, ® 0))(B; — B))+

205, ® 0L — 0l ® 0, — 00, ®0)) (2B — BY — Bf,)] +

+ Bsl(0); ® 0% + 0%, ® 0))ByB, + c.p.],

(5.2.2)

where c. p. stands for cyclic permutation. The coefficients [3; are constants.

Hp| + Hp; describe all interactions varying up to the second order in the mag-
netic field B. The term proportional to 3, gives rise to the quadratic Zeeman effect,
the terms proportional to (31 to (33 are due to the magnetic field dependence of the
exchange interaction. While the term proportional to (3; is independent of the field
orientation with respect to the crystal axis, the symmetry is broken by the terms pro-
portional to 3, and (35. These terms may mix different exciton states at finite magnetic
fields and depend on the orientation of the magnetic field with respect to the crystal
axis. They then describe a simultaneous spin-flip of electrons and holes, induced by
the terms quadratic in B. Similarly, all odd orders of B lead to one-particle spin flips,
all even orders to simultaneous electron-hole spin flips. In addition, all higher order
terms lead to the same coupling schemes between the states as those given in Eqgs.
(5.2.1) and (5.2.2).

5.2.2 Wave-Vector Dependent Interactions

Concerning the wave-vector Q dependent terms (transforming as (I's, K 7)) or its
power of n-th order noted Q", their structure and importance are discussed in detail
in Ref. [3]. We give it here for completeness. A term linear in @ is absent in the
Hamiltonian since it is forbidden by symmetry. The term quadratic in Q2 reads:

HYY =GoQ* 1y ® 1.+ 610 (0, ® 0% + 00, ®0) + 0% @ 02) +
+6[3(0%; ® 0f — 0l ® a)(Q2 — Q%) +

205 ® 07 — 0y, ® 0, — 037 ® 02)(207 — 07 — QD1+

+03[(0); ® 0+ 05, ® 00,0, + c.p.].

(5.2.3)

The direct exciton effective mass is isotropic, but an anisotropy may arise due to
the wave-vector dependence of the exchange interaction. The exciton center of mass
motion is governed by the effective exciton mass M., , which is simply given by the
sum of the electron effective mass in the conduction band (m,.) and the effective hole
mass (my). Thus Gy is given by

Go = W )2M,, = K*/2(m, + my). (5.2.4)
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Itis interesting to notice that, although B and Q have different spatial transformation
properties, the interaction terms given in Egs. (5.2.2) and (5.2.3) have the same
structure, leading therefore to the same coupling scheme of the exciton states.

Similar to (3, and 3, the point-group symmetry is broken by the exchange-
interaction terms proportional to 6, and 63. These terms describe simultaneous spin-
flips of electrons and holes, which are induced by the finite wave-vector and depend
on the propagation direction of the exciton.

Similar to the electron or hole g-factor, the term discussed in Eq. (2.5.6) is a term
cubic in @, which reads

HEY = K ((Q7 — 03)Q:0%; +¢.p) ® Lo + K17 ® ((QF — 03)Q:0% + c.p.),

(5.2.5)
K. and K7 being again arbitrary constants. As pointed out by Dresselhaus in Ref.
[4] this term is due to the wave-vector dependence of the spin-orbit coupling in
crystals with zincblende structure. For a fixed wave-vector Q Eq. (5.2.5) has the
same structure as Eq. (5.2.1). Therefore, the Q% and @ terms in Eqs. (5.2.3) and
(5.2.5) may be looked upon as an effective magnetic field. In contrast to H §§7,
however, the Hg"; terms lead to an intrinsic coupling of the different hole- (and
therefore) exciton-spin states.

5.2.3 Electric-Field and Strain-Dependent Interactions

Let us denote by ¢;; the components of the strain tensor. They transform, similar to
electric fields components, as (I's, K*) in crystals with T, point-group symmetry.
Since the Pauli-spin matrices o7 and o, are odd functions under time reversal (K ~),
interaction terms proportional to only one of the spin matrices 0,7 or o, and linear
in E or ¢;; (withi # j ) cannot occur. Thus, single spin-flip processes cannot show
up but the exciton spin has to be returned in a block by linear electric-field or strain
perturbations. Again, the electron-hole exchange-interaction leads to terms, which
have the same structure as Eq. (5.2.3). That is, in the case of strains

H2§7 = Yo(€xx + €yy + €2) 117 @ Lo + Yi(€xx + €y + €,.) (03, @ 0, +
0y ®0) + 05 ® ) +

+ 730} @ 0f — 017, ® o)) (exx — €yy) +  (5.2.6)
2o, @0 — o0y, @0, — UZ7 ® 0))(2e;; — €xx — €)1+

+7l(0); ® 02 + 0% ® ey, +c.p.].

Fig. 5.1 demonstrates the effect of applied stress on the I'¢ ® I'7 excitons in CuCl.
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Fig. 5.1 Splitting of the wavelength (nm)
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Since E; E; and ¢;; have the same transformation properties, the interaction terms
quadratic in E? have the same structure as those given in Eq. (5.2.6) for the com-
ponents of the strain tensor. One has only to replace the strain-tensor elements ¢;;
by E; E ;. The corresponding constants are named ;. In addition, there exists a term
linear in E, which takes the form

HE = as[(0), ® 02 + 0%, @ 0))E, + c.p.]. (5.2.7)

Notice that, as discussed above, a similar term linear in the wave-vector Q does
not show up. The difference is due to the different transformation properties of both
interactions under time reversal. Thus, the exchange interaction may vary linearly
with an external or internal electric field. The experimentally observed effect of an
external electric field on optical absorption spectra of CuCl is shown in Fig.5.2.

Equations (5.2.6) and (5.2.7) give the complete set of perturbations linear in E
and ¢;; and quadratic in E; E;. Obviously, there exist also exchange terms bilinear
in wave-vector, magnetic field, electric field, and strain, etc., in which we are not
further interested here.
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Fig. 5.2 Electric-field photon energy (eV)
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5.3 The I'¢ ® I's Subspace of the Exciton Ground State

Analogously to the split-off excitons discussed above we will now consider the
remaining states of the exciton ground state that are defined in the I'g ® I'g subspace.
We recall that the spin degenerate lowest conduction band has I'q symmetry and the
uppermost valence band I's symmetry. The split-off valence band is supposed to have
an energy very different from that of the I'g valence band and is not further considered.
Again, all other bands are also neglected. o, and /3, denote the electron spin-up and
down states, respectively, and only the valence band states v3 to v¢ of those in Eq.
(3.2.13) or Eq. (3.2.14) are considered in the following. They are eigenstates of
the angular momentum operator with j, = 3/2. The exciton ground state is formed
from theses states. This situation is realized in most simple binary III-V, II-VI, and



5.3 The I'e ® I's Subspace of the Exciton Ground State 117

Fig. 5.3 Calculated energy
band structure of GaAs and
ZnSe crystals along the
principal symmetry
directions in the first
Brillouin zone. According to
Ref. [10]
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I-VII semiconductors with zincblende structure (as e.g. GaAs, ZnSe, ZnTe or CuBr
etc.). Two examples (for GaAs and ZnSe) are shown in Fig.5.3. In copper halides
this exciton series is called the “Z,-exciton series” to which this discussion nicely
applies since the spin-orbit splitting is large compared to the exchange interaction.

The valence-band wave-functions (v3 to v¢) are eigenfunctions of the total angular
momentum operator j, = 3/2, with eigenvalues for ji = F 1/2 and j: = F 3/2,
respectively. As already repeatedly stressed, using Eq. (4.1.3) or Eq. (4.1.4) one can
introduce hole states and establish their correspondence to the valence-band states
by Eq. (4.1.5).

We first construct the invariant representation of the effective exciton Hamiltonian,
which acts in the eightfold degenerate subspace that is spanned by the valence-band
states with I's symmetry and the conduction-band states with I'¢ symmetry. We start
from the symmetry adapted matrices given in Eq. (3.4.5) for the valence-band states
and the set of Pauli matrices given in Eq. (5.1.2) for the conduction-band states,
respectively. The transformation properties of the basis matrices for the valence-
band states are given in Eq. (3.4.3), those for the conduction band are (I';, K) in
the case of the unit matrix 1, and (I'y, K ) for the Pauli matrices. The two sets of
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matrices operate only on the valence- and conduction-band states, respectively, and
span a basis of both electron- and defect-electron subspaces. As above, we build their
possible Kronecker products, which remain invariant under all symmetry operations
of the point group of the crystal and which are even functions with respect to time
reversal, i.e. which transforms as (I'y, K ™).

The effective Hamiltonian of the exciton ground states Hg” reads in this pseudo-
spin subspace:

H = Aglys® 1.+ A(jy ® o, + j) @ o) + ji @ ol)+ (53.1)
+205 [’ ® 0L + ()’ @0l + () ® 0] h
where 1,5 denotes the four-dimensional unit matrix of the valence sub-band with I'g
symmetry. It is given by 4/15 of the matrix S,g in Eq. (3.4.3).

Equation (5.3.1) gives all terms that have the full point-group symmetry and can
contribute to the exciton Hamiltonian in the I's ® I'g subspace. As we have seen,
the exciton states transform like I';, 'y and I's. Hg* has a reduced dimensionality
when compared to the full exciton Hamiltonian given in Eq. (4.1.8). It gives the
fine structure of these exciton states in a parametrized form. It depends only on
three parameters: Agg that accounts for the exciton binding energy (including now
a contribution from the spin-orbit interaction) and Ag and A,g, which stand for
the different electron-hole exchange interaction terms discussed in Sect. 4.3. One
remarks that two parameters describe the electron-hole exchange interaction here
while four are necessary to describe it using the complete set of valence-band states.
Explicitly, the Hamiltonian describing the conduction- and valence-band electron
exchange interaction H. ¢ = HJ) s + HZ) 55 1s given by

H e = Al Qo) + j) ®@0) + ji Q) (5.3.2)

and
Hps = As [ @0t + ()’ @ o) + ()’ ®@ o] (5.3.3)

Let us first investigate the Hamiltonian H7, .. When performing the direct prod-
ucts indicated in Eq. (5.3.2) by using Egs. (3.4.1) and (2.2.3), H}, | takes the matrix
form

—3/20 0 /30 0 0 0
0 32 0 0 0 0 0 0
0 0 -1/20 0 2 0 0
ox V3 0 0 120 0 0 0
Hos=0s| 0 0 0 o 20 0 3| (5.3.4)
0 0 2 0 0 —1/20 0
0 0 0 0 0 0 32 0
0 0 0 03 0 0 =32
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The exchange interaction given in Eq. (5.3.4) can be diagonalized and one then
obtains the eigenvalues Ey;;g

Eging = Aig(—5/2,-5/2,-5/2,3/2,3/2,3/2,3/2,3/2) (5.35)
with i = (1 to 8), respectively.

The states 1 to 3 are triply degenerate, corresponding to the J= 1 states. As
discussed above, they have I's symmetry. States 4 to § are 5 times degenerate and
correspond to the J = 2 states with partially mixed '3 and "4 symmetry. We thus learn
that H, ¢ is directly determined by the Hamiltonians HZ),; and H,, displayed in
Egs. (4.3.3) and (4.3.2), respectively. HZ, | gives normally the main contribution to
the exchange interaction between electron and hole.

The eigenstates vffgd leading to the diagonalization of the Hamiltonian are given
by
0 0 —v3/2 0 0 0 1/20
0 0 0 00 0 01
0 —v2/2 0 0 0+2/2 0 0
oxd 0 0 12 0 0 0 4320
exd _ 53.6
YT 12 0 0 320 0 0 0 (5.3.6)
0 2/2 0 0 042/2 0 0
0 0 0 01 0 0 0
V3/2 0 0 120 0 0 0

Let us now identify the eigenstates vff‘gj of Eq. (5.3.6) in terms of the exciton

eigenstates v{jy defined for the I's ® I's subspace. According to the construction of
the Kronecker product of the total angular momentum matrices for j, = 3/2 with
the Pauli-spin matrices, the exciton eigenstates v{jy are given in the conduction- and
valence-band electron basis by (see Eq. (4.2.4)):

1)Ba, = v3a,

viig = | — 1)BB. = vyB

v§is = (V21008 + | — Daae/v3 = vjae

viis = (V21008 + | — Da)Be/v/3 = v},

Vel = (V200)a + 1) B /v/3 = via
vEfs = (V210)a + 1) 3)Be/v/3 = vif,

v7is = [Daae = vga

vg1g = [ aBe = vgBe.

ex __
vijg = |

(5.3.7)

In order to transform these states to the exciton electron-hole basis we have to
use the correspondence between valence-band and hole states, which is given in Eq.
(4.1.5), namely:
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vy = (V2(0)a + 1) B)ae /3 = via, = —|¢h)a. = —|Ws
Vi = (V200)a + [1)B)Be/V/3 = vi B, = —|¢!) B, = —| W,

h
U;TS = lHaa, = Ugae = |yl =Wy

¢}y = —v}
hy __ v
|h¢2> - (53.8)
|¢3) = —Vs5
¢ =
Using Eq. (4.2.6) we then obtain the following states:
vy = | — 1)Bae = via, = —|¢})a, = —|Uy)
US)ICS = )33, = v366 = |¢1 6 = —|W¥s)
v = (V20084 — 1 a)ae/f= viae = |[¢h)a, = [¥2)
vy = (V200)8 + | — 1)a)B./v3 = v} e = [65) B = |We) 539
)
)
)

V5t = Iaf, = vi B, = |83, = |Wg).

When comparing with the exciton wave functions given in Eq. (4.2.4) or Eq.
(4.2.5) we see that we have found again the states |W;) to |\Ws). As discussed above,
they result from the direct product of the electron conduction-band states with the
valence-band states that transform according to I's.

Considering the electron-hole basis functions, which diagonalize the exchange
interaction H.7 ¢, one obtains (by combining Eq. (5.3.6) with the basis functions
Eq. (5.3.7) and then applying Eq. (5.3.9) together with Eq. (4.3.16)) again for the
J =1 states (having I's symmetry)

v = (|W3) + V3| Ws))/2 = |1, 1)
vy = = (1) + [W2))/V2 = [1,0) (5.3.10)
vSid = (|We) + V3|W1))/2 =1, —1)

and for the J = 2 states, which are used to construct in a similar way exciton states
with I'; and 'y symmetry,

viig = (W) — V3|W3))/2 =2, 1
Vil = W) = 12,2

vad = (W) — [W7)/v2 = (2,0

Vi = (V3|We) — [W1))/2 = [2, 1
Vil = —|Ws) =2, -2).

)
)
) (5.3.11)
)
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Let us now examine the second exchange interaction Hamiltonian given by Eq.
(5.3.3). After performing the matrix products indicated in Eq. (5.3.3) HJ),s takes
the matrix form

—27/8 0 0 7v3/4 0 0 0 0
0 27/8 0 0 0 0 3/2 0
0 0 —-1/8 0 0 5 0 0

HE A 7V3/4 0 0 1/8 0 0 0 0

ch8 =589 9 0 0 1/8 0 0 73/4
0 0 5 0 0 —-1/8 0 0
0 32 0 0 0 0 27/8 0
0 0 0

0 7V3/4 0 0 —27/8
(5.3.12)

Again, as discussed in connection with Eq. (4.3.9) for this exciton block, the
exchange interaction given in Eq. (5.3.12) can be diagonalized. As in Eq. (4.3.19)

one then obtains the eigenvalues Ej;;»g
Egins = A23(39/8,39/8, —41/8, —41/8, —41/8,15/8,15/8,15/8)  (5.3.13)

with i = (1 to 8), respectively. This is exactly the energy level scheme given in Fig.
4.4. The eigenstates, which diagonalize the Hamiltonian matrix, are given by

0 0 0 0 —3/2 0 0o 172

v2/2 0 0 0 0 0 —v2/2 0
0 V2/2 0 —v2/2 0 0 0 0
exd 0o 0 0 0 1/2 0 0 V32
s =L o 0 —12 0 0 V32 0 0 (5-3.19
0 V2/2 0 V272 0 0 0 0
V2/2 0 0 0 0 0 V22 0
0 0 V32 0 0 1/2 0 0

To go further into details, let us recall the electron-hole interactions H_,, and

H;,, defined in Egs. (4.3.4) and (4.3.5). As we have seen in connection with Eq.
(4.3.19) the exchange interactions H.;,, and H, ; have no influence on the degener-
acy of the J =1 exciton states but may only shift them. Since H;,, and H;?, ; depend
on the direction of the cubic axis, they act differently on exciton states with I'3 and I'4
symmetry and may partially lift the degeneracy of the J = 2 states. These terms are
called “cubic-exchange interactions”. The same result is now obtained from H;, ,,
which splits the I'; from the I'y states.

The exciton states v{3¢ and vS3¢ are twofold degenerate. According to Eq. (4.1.7)
there is only one twofold degenerate irreducible representation (here I'3) that appears

in the product subspace of (I's ® I'g) exciton states. Therefore the exciton states v‘fgg
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and v$3¢ are identified to have I's symmetry, v$34 to v3¢ are triply degenerate. They
correspond to the J = 1 states with I's symmetry, which are given in Eq. (5.3.10).
The remaining states v&¢, vid, and v3d must therefore be the states having 'y
symmetry.

The J = 2 states, which are adapted to the crystal symmetry, have been given in
Egs. (4.3.20) and (4.3.21). We obtain here for the reduced subspace the same states,

namely, for the states with I'; symmetry:

12,4) = (12,2) + 12, =2))/V2 = (|Wa) — |W5))/¥/2

(5.3.15)
12,0) = (|W2) — |¥7))/v/2

and for those with I'y symmetry:

1L 4) = =(2. 1) + 12, 1)) /V/2 = =((1¥g) — V3|W3))/2 + (v/3|Wg) — |¥1))/2) /2
I, =) =i(12, = 1) = 2, 1))/V2 = i (v/3]Wg) — [W1))/2 — (1Wg) — v/3]W3))/2)/V2
12, =) = (12,2) = |2, =2))/V/2 = (1¥4) + |¥5)) /2.
(5.3.16)
Normally, the influence of the electron-hole exchange-interaction term H;, ,¢ is very
small and no splitting of exciton states with I'; and I'4 symmetry has been observed
in zincblende-type semiconductors. (See Fig. 4.5.) This is in accordance with our
earlier remark that this term describes the influence of the exchange interaction on
the spin-orbit splitting.

In general, a Hamiltonian of a system may depend on an additional set of physical
quantities, which can be due to extrinsic perturbations (as magnetic fields B, electric
fields E, strain e, and so on) or to intrinsic perturbations (as the exciton center-of-mass
wave-vector ), which break the full point-group symmetry. Such perturbations will
be discussed in the next section.

To discuss only the I'¢ ® I'g subspace of the exciton ground state is usually suf-
ficient since in most simple binary semiconductors the spin-orbit coupling is the
dominant interaction. Then the valence bands with I'; and I's symmetry are well
separated in energy and the different exciton series, which are formed from these
bands together with the lowest conduction-band states, do not mix.

5.4 Symmetry-Breaking Effects in the I's ® I's Exciton
Ground State

5.4.1 Magnetic-Field Dependence

Let us now consider the invariant expansion of the exciton Hamiltonianin the I'¢ ® I'g
subspace. We will follow the same lines as for the split-off band, i.e. the exciton
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Hamiltonian that was constructed in the I'¢ ® I'; subspace discussed above. Then
the linear magnetic field B dependence takes the form

HEE = alug ® (B 00) + (afy,50(B - o) + a5 (Bx G0 + ByG)? + B:GH) @ 1e =
= (1/2)¢ g log ® (Brog + Byop + B:o)+

- (ah1usa Br s + Byjd + B2 i) + gy (BrG® + By () + B2 ) @ Le,
(54.1)
where ay, ¢, and ajp; o, are the g-factors of the holes in the valence band with I'g
symmetry. The pseudo-angular momentum matrices ji and (j’)® describe the cou-
pling of states in the valence band with I'g symmetry. The pseudo-angular momentum
matrices j! are given in Eq. (3.4.1). As mentioned above, the coefficients a}, ¢, and
ag,g correspond to the parameters « and g introduced by Luttinger [5]

v —
Ap1v8a = _2,”3‘%

) (5.4.2)
Apiugy = —21B9,

where (1 p represents the electron magneton of Bohr.

In the case of the split-off band, the terms given in Eq. (5.4.1) originate directly
from the conduction and valence bands. They have the required symmetry properties
and lead here to a splitting of the degenerate exciton states or the linear Zeeman
effect of excitons in the ' ® 'y subspace (see Fig.5.4).

Concerning electron-hole exchange-interaction terms, varying linearly with the
strength of magnetic field B, we see that two terms are in principle possible: Using
Table 2.3, one has first to construct from the components of B and the Pauli-
spin matrices o, new matrices pertaining to the conduction band that transform
as (I's, K™) or (I's, K ™). They can then be combined with the valence-band matri-
ces (X, Yus, Zyg) and (Uyg, Vyg), which are given in Eq. (3.4.3). The resulting
magnetic-field dependent exchange-interaction terms, transforming as (I'y, K ), can
be present in the exciton Hamiltonian. These terms are, however, very small since
they involve not only the electron-hole exchange-interaction but also the spin-orbit
coupling. They have not been studied further in literature. One can mention that other
symmetry-breaking interactions, varying in higher order with B" (with n > 2) can
be constructed but, following the argumentation given above, terms involving the
exchange interaction together with spin-orbit coupling can normally be neglected.

5.4.2 Wave-Vector, Electric-Field, and Strain-Dependent
Interactions

Concerning the wave-vector Q dependent terms (transforming as (I's, K 7)) or their
power of nth order, noted Q", we distinguish again two types: the first group is
diagonal within the electron states and results directly from the conduction- and
valence-band electrons and holes:
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Fig. 5.4 Experimental normal-incidence magneto-reflectance of I'¢ ® I's-excitons in ZnTe at
T =4.2 K, for applied magnetic induction B || [110] and incident light wave-vector Q_L B (Voigt
configuration). Notice the splitting of the transverse I'5 (J = 1) exciton level into three components
T1, T», and T3. (One could intuitively expect two split components only to occur; in this experimen-
tal configuration, however, a mixing between dipole-allowed (J = 1) and dipole-forbidden (J = 2)
states resulted in the appearance of the third component.) The overall shift of the spectral pattern is
due to a diamagnetic response of the exciton. Adapted after Ref. [11]

A Q-linear term resulting from the valence-band hole has the same form as given
in Eq. (3.4.6):

HEE = CEGE (G = DD + U2 (G2 = GDDIQ,

(5.4.3)
+ {5 ((GH = (GDHH0:1 ® ..

In addition, a term quadratic in Q7 reads

HGY = Gi5r 0l ® Lo, +
+G5pHI3(07 — DG — GDH + 207 — 07 — 0DQ3GH* — G = GHHI® L+

+2G10,0:453 . jiY + 0: 04U i) + 0 Oy, JIN ® L.
(5.4.4)

Although the terms H, 3‘18 and H 3‘28 follow directly from the corresponding terms
in the valence band, their numerical values in the exciton problem can be different
from that of the electron or hole system. This is due to the fact that the wave-packets
describing the exciton-envelope functions have to be constructed from a great number
of electron and hole states. One also notes that the parameter G‘fXQSZ, describing the
isotropic-exciton translational-mass, depends explicitly on the value of the electron
and hole effective masses.
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A second group of terms describes the wave-vector Q dependence of the exchange
interaction. In the subspace under consideration, eleven terms can be constructed,
which are enumerated in Ref. [6]. As mentioned above, these terms are small and
are usually not further considered in literature. The terms correspond to different
orders of perturbation calculation, which is indicated by the power of j ¢ and o,
operators. Since they can, however, become important (they can e.g. explain the fact
that longitudinal and transverse excitons with J = 1 may have different effective
masses (see Ref. [6, 7]) we consider here terms linear in j,; and o, which can
be regarded as the most important ones. Then, the wave-vector dependence of the
exchange interaction is given by

Hghe = 01 Q° (i ® 0y + j ® 02 + j5 ® 00) +
+8505[3(0F — Oy ® 0} — j) ® )

2 2 2 .7 z . X X .y y (5.4.5)
+Q20I -0 —0)Q2j;®0; — j, ®0, — j; ® )]+
+ 2850510, 0:17), 0Ll + Q:0ulji, 031+ Q. 0L, o211,
where
iy, 001 =(1/2)(j; ® o) + j) ® 0,). (5.4.6)
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Fig. 5.5 Shift and splitting of the n = 2, 3 I'¢ ® I'g-exciton reflectance lines in a Cul single crystal
as a function of the applied uniaxial stress P || [111]. Wave vector of the incident light @ || [110],
various symbols of the experimental points denote various light polarizations. It is interesting to
note that because the higher exciton states n = 2 and n = 3 investigated here have large exciton
radii, the electron and hole in the exciton are quite far apart. Therefore, the exchange interaction can
be neglected and the exciton splitting simply reproduces the decomposition of the orbitally twofold
degenerate I'g valence band. According to Ref. [12]
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The above discussion applies also to electric-field and strain-dependent inter-
actions, which we will not discuss in more detail. (An example of strain-induced
I'e ® I's-exciton splitting is shown in Fig. 5.5.) Compared to the wave-vector depen-
dent symmetry-breaking effects one has only to pay attention to the fact that these
physical quantities transform differently under time reversal than the wave-vector
Q. This implies that all even orders of the power development of the perturbation
give rise to the same coupling scheme of the states, while the odd orders change in
structure.

References

—

Cho, K.: Phys. Rev. B 14, 4463 (1976)

Cho, K.: Excitons, Topics in Current Physics 14, Springer, Berlin, Heidelberg (1979)
Rahimpour Soleimani, H., Ostatnicky, T., Cronenberger, S., Gallart, M., Gilliot, P., Honerlage,
B.:J. Appl. Phys. 100, 023705 (2006)

Dresselhaus, G.: Phys. Rev 100, 580 (1955)

Luttinger, J.M.: Phys. Rev. 102, 1030 (1956)

Honerlage, B., Lévy, R., Grun, J.B., Klingshirn, C., Bohnert, K.: Phys. Rep. 124, 161 (1985)
Mita, T., Satome, K., Ueta, M.: Solid State Commun. 33, 1135 (1980)

Koda, T., Mitani, T., Murahashi, T.: Phys. Rev. Lett. 25, 1495 (1970)

Nikitine, S., Biellmann, J., Deiss, J. L., Grosmann, M., Grun, J. B., Ringeissen, J., Schwab,
C., Sieskind, M., Wursteisen, L.: In Report of the International Conference on The Physics of
Semiconductors (Exeter, July 1962), The Institute of Physics and The Physical Society, London
1962, p. 431

10. Chelikowski, J.R., Cohen, M.L.: Phys. Rev. B 14, 556 (1976)

11. Venghaus, H., Jusserand, B.: Phys. Rev. B 22, 932 (1980)

12. Sauder, T., Daunois, A., Deiss, J.L., Merle, J.C.: Solid State Commun. 51, 323 (1984)

W

O XNk



Chapter 6

Invariant Expansion and Electron-Band ez
Structure Effects in Wurtzite-Type
Semiconductors

We are now interested in the invariant expansion of the electron, hole, and exciton
states in direct semiconductors with wurtzite structure, i.e. with Cs, point-group
symmetry. The electronic structure of many binary semiconductors with wurtzite
structure is very similar to the case discussed above for zincblende structure. Often,
materials can even realize both structures or can easily undergo phase transitions
from one structure to the other if some parameter (as temperature or pressure) is
varied, for instance CdS. Other important semiconductors crystallizing in wurtzite
structure are GaN, InN and ZnO. It is, however, important to recall that the symmetry
properties and the crystal structure of both systems are quite different, giving rise to
their different physical properties.

The pile-up sequence in the crystal construction has been discussed in con-
nection with Fig. 2.1 in the frame of a hard-sphere model. The pile-up sequence
“ABABAB...” of the spheres in the “hexagonal close packed (hcp) structure” gives
rise to an additional anisotropy of the crystal when compared to the fcc structure: it
has a crystallographic axis, the so called “c -axis”. In the following, we use Cartesian
coordinates (x, y, z) and choose z || ¢ and (x, y) L c.

While the electronic structure of atoms in the considered crystals with T; and Cg,
point-group symmetry is quite similar, the different crystal structures give rise to
different electronic-band structures in the systems, i.e. a different organization of the
electronic Bloch states. As we will see the main difference between the systems is due
to an uniaxial crystal field, which appears in the hexagonal system. When compared
to zincblende structure, this leads to an additional splitting of the valence band at the
I'-point and to some more important linear dispersion terms in the electronic-band
structure.

Let us consider a semiconductor with wurtzite structure that has an empty conduc-
tion band (index “e”’), which is made up from spin-degenerate atomic s-orbitals. When
including the electron spin, the states are twofold degenerate and one has to describe
them in the double-group representation. The symmetry-adapted conduction-band
states then transform as I'; at the I"-point (see Refs. [1, 2]). This is in Cg, point-
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Fig. 6.1 The band structure of hexagonal CdS. We are mainly interested in the enlarged portion
that displays schematically the resolved uppermost valence bands with I'g, I'7, and I'7-symmetries
in the parabolic approximation close to the I"'-point. A uniaxial crystal field leads to a splitting A.¢
of the valence bands as well as an isotropic spin-orbit coupling, characterized by the spin-orbit
splitting Ag,, which is also observed. Note: The valence band state of I'|-symmetry becomes, after
including the electron spin, a I'j ® I'; = I'; state in the double-group notation. Similarly, the states
with I's-symmetry develop into I's ® I'; = I'7 @ I'g states. (Figure adapted after Ref. [3])

group symmetry the double-group irreducible representation of 1/2 spins (while in
T, point-group symmetry it is called I's; see Chap. 2).

Let us recall that the orbital part of the uppermost filled valence band states (index
“v”’) are mostly originating from atomic p-orbitals with some admixture of atomic d-
orbitals. These states are three-fold degenerate, described by an angular momentum
I = 1. When including the electron spin, there are six degenerate valence-band states
at the I"-point, transforming pairwise as (I'7, I'7, and I'g), respectively. (See Figs. 1.4
and 6.1.)
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Table 6.1 Notation of symmetry adapted operators or perturbation components in Cg, point-
group symmetry. Their transformation properties are given in square brackets. (K —, K+) give the
transformation properties with respect to Kramers’ conjugation. From Refs. [1, 2, 4, 5]

INTEC)) [z] or [I7 + 3] or [ 2] or [(0)*] KTl
I : (T) [I;]or[o}] 1K~
s : (U) [(3x% — y)y] 1K+
Ty (V) [3y? — x2)x] KTl
I's : (X,Y) [x, y] Kt
T's : (X,Y) [y, =l or[o), —o)] K~
T : (W,2) [(x2 — y2), 2xy] KTl

As we have discussed in the introduction the effective Hamiltonian H determines
the energy E of the system, which is a real, scalar quantity. Therefore, H has to be
a scalar operator, transforming as I'; of the symmetry group under consideration.
Since the Hamiltonian is supposed to be independent of time it transforms as K
under time reversal. All interaction terms that may exist in a crystal have to respect
these symmetry properties. In the following we will closely follow the procedure
that we have described above for zincblende-type crystals in order to construct an
effective Hamiltonian of the system.

We analyze first the symmetry properties of perturbations under Cg, point-group
symmetry. Neglecting the spin for the moment [1, 2] there exist six irreducible
representations, into which all perturbation can be decomposed. Likewise Tables 2.1,
6.1 enumerates these irreducible representations in C, structures. They are labeled
from I'j to I'g. Then, Table 6.1 indicates the transformation properties of the different
components using spatial basis functions or basis-operator components. According to
their symmetry, the components are labeled by “S” to “Z”. The angular-momentum
([I;] and [l,, —I,]) and the pseudo-spin operator-components ([c%] and [o7, —o])
transform as K~ under time reversal, all other functions and operator components
as K.

In analogy with Tables 2.1 and 6.2 gives the transformation properties of sev-
eral perturbations under Cg, point-group symmetry-operations. Following [1, 4] we
consider for example the transformation properties of a magnetic field B, a finite
wave-vector Q, of electric-field effects (proportional to E or E?), or strain com-
ponents ¢; (with (i, j) = (x, y, z)), and we give their symmetry with respect to
Kramers’ conjugation (K, K™).

Table 6.3 gives the multiplication scheme for the components of Tables6.1 and
6.2 for Cg, point-group symmetry. As shown before, when using it successively,
symmetry-adapted perturbation-components of higher order can be generated. Com-
bining them with symmetry-adapted matrix-operators the interaction terms of the
effective Hamiltonian can be constructed. One should notice here that when gen-
erating matrix-operator components from the multiplication scheme, expressions,
which are not yet symmetric or antisymmetric, have to be symmetrized to gener-
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Table 6.2 Transformation properties of linear and quadratic perturbation components as magnetic
field B, wave-vector Q or electric field E effects, and strain tensor components ¢; j (with @@, j) =
(x,,z)) in Cg, point-group symmetry. (K ~, K) give the transformation properties with respect
to Kramers’ conjugation. From Refs. [1, 5]

K~ Kt K~ Kt Kt Kt Kt
ry: S B2, 0. 02, E, EZ, €27y Exx +
B} + B? 02+ 02 EI+E2 ey
I : T B,
I'; : U
F4 Vv
I's : X By —B; By Ox 0.0« Ey E E €zx
1Y —B, |—ByB, 0y 0,0 E, E,E, €yz
Ig: W —-BY + B} ;-0 E;—E]  |ex—¢y
1 Z —2B, B, 20,0, 2E\E, 2€xy

Table 6.3 Multiplication scheme for the components of Table6.1 in Cg, point-group symmetry.
RC: Resulting component. Concerning operator components, expressions, which are not yet sym-
metric or antisymmetric, they have to be symmetrized to obtain the correct product component.
The “XZ' — YW’ and“Y Z' + X W'” products lead to “resulting components (RC)” different from
those given in Ref. [1]. From Refs. [1, 2]

RC Product of components
ry:s Ss’ TT' uu’ Vv’ XX +YY |WW +2Z2Z
I : T ST’ uv’ XY —YX |wWz —zw’
r; : U N TV’ XZ' +Yw
Iy 1V N4 TU' Yz — Xw’
I's : X SX’' TY’ vz’ -vw’ YZ'+ XW
1Y Sy’ -TX' uw’ vz XZ —-Yw
I's : W N4 TZ' -UX' 2.4 XX -YY |Z2Z —WW
1 Z Sz’ —-TW’ vy’ vy’ XY +YX |WZ +ZW

ate the correct product component. In addition, the “XZ" — YW’ and“YZ' + XW'”
products lead to “resulting components”, which are different from those given in Ref.
[1]. Finally, Table 6.3 is completed by the multiplication scheme of the irreducible
representations given in Table 6.4 [1, 2, 4-6].
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6.1 Spin-Degenerate Conduction-Bands in Semiconductors
with C¢, Point-Group Symmetry

Let us first consider the one-electron band-structure of a spin-degenerate conduction-
band in the vicinity of the I'-point. Since all other atomic states are separated in energy
from the conduction band, the electron is described by an effective Hamiltonian H,,
acting only in the subspace of the conduction-band states. Since this subspace is
twofold degenerate we use the effective pseudo-spin operator o, (with o, = 1/2) in
order to develop the effective Hamiltonian H,. We choose again Pauli-spin matrices
ol withi = (x, y, z) as basis matrices:

0 1 0 —i 1 0
X . y . 7
o, = <1 0) ;o) = (i 0 ) ;o0 = (0 —l>' (6.1.1)

These basis matrices transform spatially like the components of an angular-
momentum operator and are K~ under time reversal. Because of the uniaxiality
of waurtzite structure, the spatial transformation properties of (o7, 0;) are different
from that of o%. In systems with Cg, point-group symmetry (o7, ;) transform like
the irreducible representation I's, 0% as I'; [1, 2, 4-7].

The last pseudo-spin matrix used to span the basis of conduction-band states for
the development of a Hamiltonian is the unit matrix 1., which can be obtained in
systems with Cg, point-group symmetry by calculating

— 1o _ )2
1, = (o 1) = (09)?, 6.1.2)

which transforms as (I';, KT). As shown previously, 1, may also be constructed from
the Pauli matrices by calculating (1/3)(c)? or (1/2)[(cF)* + (02)*] (Concerning
time-reversal symmetry one may recall that operators transforming as K ~ under time
reversal (as e.g. o) give rise to operators having K+ symmetry when taken to even
orders, as it is the case for the construction of the unit matrix 1,.).

The four pseudo-spin matrices given in Egs. (6.1.1) and (6.1.2) are linearly inde-
pendent of each other and span a basis of interacting conduction-band states. Since the
effective Hamiltonian H, has to transform as (I';, K*) it has here to be proportional
to 1,. Like the case of conduction band in zincblende structure we find

H, =a,l,, (6.1.3)

where a, is a real number or function. It is the only form a Hamiltonian can take
in its matrix form for the spin-degenerate conduction-band. Then H, contains all
interaction terms, which have the full crystal symmetry, i.e. which remain invariant
under all symmetry operations that are compatible with the point group of the crystal.
They are diagonal in the considered states and have the same energy value for both
states. This means that these interactions do not couple the pseudo-Bloch functions
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«, and (3,, which are eigenstates of the Hamiltonian. The interaction terms have also
to be invariant under time reversal. They determine completely the energy of the
spin-degenerate electron-states in the conduction band at the center of the Brillouin
zone.

Equation (6.1.3) shows that the spin degeneracy of the conduction-band electron-
states can only be lifted through symmetry-breaking effects. These terms have to
involve either the basis matrix o2, which transforms according to Table 6.1 like the
irreducible representation Iy, or the pseudo-spin matrix-components (o, 07 ), trans-
forming as I's. As mentioned above, these matrix operators transform according to
K~ under time reversal.

Table 6.2 shows that a term

HB] = aBlaBZcrj + aB”,(ByUZ + BxO'zf) (614)

may appear as a symmetry-breaking linear Zeeman effect. The two constants a g, and
ap1p are in principle independent of each other, and both terms are scalar quantities
that show the correct behavior with respect to time reversal.

Quite similarly, Table 6.2 shows that also terms varying linearly with the wave-
vector Q are possible. But since the transformation properties of the components of
the magnetic field B and Q are different, the interaction terms rather read

HQ1 = an(QxUév — Q),O'j). (615)

Alinear term proportional to O, cannot exist since spatial symmetry would require
the term to be multiplied by the matrix 1,, which has, however, the wrong time-
reversal symmetry when compared to that of Q..

As given in Table6.2 the electric-field components (E,, E,) transform like
(I's, K*) and E, as (I';, K*). Because of its temporal symmetry properties, E"
(E taken to all possible orders n) have K symmetry. Therefore, they can only be
combined with the unit matrix 1.. It follows immediately that an electric field cannot
lead to a splitting of the spin-degenerate states. Thus, a linear Stark effect propor-
tional to E, or E, or strain fields involving €., or €;, have no effect on the energy of
the conduction-band states, while a term

Hg, = apa E; 1, (6.1.6)

is possible. It shifts the conduction-band states proportionally to the electric field
component E, linearly in energy as the crystal field does.

Concerning higher orders in E, they can also lead to a Stark shift of the states.
An example is the quadratic Stark effect, which results here in a perturbation of the
form

Hpy = apaEX1e + ap(E; + ED).. (6.1.7)

aga, and agyp, being real constants. As it can be seen in Table 6.2, no other combina-
tions of electric field components up to second order can exist. Figure 6.2 shows the
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energy variation if an electric field is applied in the z-direction: a linear and quadratic
Stark effect is observed while the electric field components in the x- or y-direction
lead only to a quadratic Stark effect.

Similar is the effect due to the strain components €, or (€,, + €y,), giving rise to
an interaction term of the form

Hel = aeplongezzle + Aeptrans (exx + 6)’y)16'7 (618)

which equally shift the states but do not lead to a splitting.

In the same way behave quadratic terms up to second order in the magnetic field
B? or wave-vector components Q7 since their spatial and temporal transformation
properties are equal to that of E>. We find

Hp, = agzaBzzle + aBZb(B? + B)zy)le
and (6.1.9)
Hpr = agaa Q?le + anb(Q,zc + Qi)le’

where agy, and apy, are parameters, characteristic for an anisotropic quadratic
Zeeman effect, while a ), and a gy, are the anisotropic effective mass parameters of
the conduction-band electrons.

Figure 6.3 shows the energy variation if a magnetic field is applied in an arbitrary
direction to a wurtzite-type semiconductor: a linear and quadratic Zeeman effect
are observed and the degeneracy of the spin states is lifted because of the B-linear
interaction. The electron dispersion can have a similar form but, remembering Eq.
(6.1.5), it presents a Q-linear term only if the (Q,, Q,) components are # 0. Then,
the dispersion of the spin-states are non-degenerate even in the absence of a magnetic
field.
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6.2 Uniaxial Crystal Field Acting on a Three-Fold
Degenerate Valence Band without Spin

Concerning the uppermost valence band of simple wurtzite-type semiconductors
(Cey point-group symmetry) let us first neglect (as in Sect. 3.1 for the zincblende
structure) the electron spin. The valence-band states are mainly built from atomic
p-orbitals. These orbitals |m ;) are eigenfunctions of the angular-momentum operator
[ and its z-component [, with [ = 1, m; being the magnetic quantum number:

Ilmj) =mjlm;) with m; = 1,0, —1). 6.2.1)
The energy eigenvalues e,,; are three-fold degenerate in systems with spherical sym-

metry. As indicated in Eq. (3.1.3) the matrix components of the angular-momentum
operator are given by

010 0—i 0 10 0
L=/ l1o1]:;,=0/v2 i 0 =i ];i.=[000 |. (622
010 0i 0 00 —1

According to Table 6.1, the operator component /, transforms as the irreducible rep-
resentation I'; in systems with Cg, point-group symmetry, while (I, /,) transform
as the two-dimensional irreducible-representation I's.

We will first construct the basis matrices, which are adapted to the crystal symme-
try and span the three-dimensional angular-momentum subspace of the valence-band
states. We can achieve this by forming products of the operator components given
in Eq. (6.2.2). Using the multiplication scheme given in Table 6.4 we can form three
different products of the irreducible representations:

MHer,=I), I's®l's=I'1®élh®&l¢ and I ®T's =T5s. (6.2.3)
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Table 6.4 Multiplication table for irreducible representations in crystals with Cg, point-group
symmetry. From Refs. [1, 2]

Iy I, |[I'z Iy I's s I, I's Ty
Iy Iy I |[I'z Iy I's s I, I's T
I i |I'y |3 I's Is Iy I'g Iy
I's I'n [To |Ts I's I's I'y I'y
Iy Iy s I's I's I, Ty
I's Fi++ | I3+ 7409 | Igs+T9 | I7+Ty
s Iy +Ts
T¢ ry+ I's+ T I'7+ Ty I'7+Tyg
'+ T
Iy )+ s+ I's+ T
I+ 7T 'y + T
I's ry+ I's + T
', +Ts
I'o I+
I+
I3+T4

In this way we obtain seven additional matrices that may be used together with the
three matrices in Eq. (6.2.2) to form a basis of our system, i.e. we have to choose
now nine matrices, which are linearly independent and hermitian since they are used
to develop the effective Hamiltonian. These basis matrices have to be adapted to the
crystal symmetry. One can obtain such matrices or functions by using Table 6.3 that
governs the product formation of symmetry-adapted components in crystals with
Cey point-group symmetry.

U < (I'3) is not constructed for this basis
V & (Ty) is not constructed for this basis

S=128 =0+ l;) & transforming as < (I'y, K1)

I'=1I< I K")

(X,Y) =y, —I;) & transforming as & (I's, K™)
(Xa» Yo) = (—{ll}, —{lyl.}) & (Ts, KT)
(W.Z) = (I} — 17, =2{L:,}) & (T, KT),

where the curly parentheses

{lylz} = (1/2)(lylz + lzly)

indicates the symmetrized product of the two matrices /, and /..

According to Tables 6.1 and 6.3 we construct the following components:

(6.2.4)

(6.2.5)
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We see from Table 6.3 that products of components different from those in Eq.
(6.2.4) could have been chosen to construct the basis of our subspace. They would,
however, linearly depend on those given in Eq. (6.2.4) and differ from them probably
by a phase factor (some multiplication by (—1) or (£i)). This has to be remembered
when comparing results of calculations from different publications, e.g. approaches
in Refs. [1, 2, 4-6]. Using the choice

T — 1l and (X,Y) — (I, L)

we obtain the following matrices together with their transformation properties:
1 0 0 1 0 O
s=[0 0 o]:S.=|0 2 o)le T,k
0 0 1 0 0 1
0 0
0 0 )& @K
0 -1

1
0
0
0 -1 0 01 0
x:(i/f)(l 0 —) _(1/f)(1 0 )@(FS,K) (6.2.6)
0 0 1 0

O 1 0
Ya=@/@V2) -1 0 —1| & Ts. k1)
1 O 1 0

0
1
0
0 0 -1 0 0 i
W= (o 0 );Z:(O 0 o)@(r6,1<+).
0 —i 0 0

One easily verifies that the matrices of Eq. (6.2.6) fulfill the requirements men-
tioned above and are characterized by a well-defined irreducible representation.
As we have discussed in the introduction, since these matrices span the three-
dimensional angular-momentum subspace of the valence-band states, they can be
used to develop the effective Hamiltonian HV of the system. In lowest order, this
Hamiltonian does not consider any symmetry-breaking effect. It then contains all
scalar interaction terms that remain unchanged under the symmetry operations of
the crystal and are invariant under time reversal, i.e. interactions that transform as
(T'1, K1). In Eq. (6.2.4) the two operator-components § = lz2 and S, = (lf + li)
fulfill this condition and H" takes the form

—1

Xq = (1/(2v2)) (

H' = ay S+ anSe = anll +and; +13), (6.2.7)

a,; and a,; being real constants. The terms appearing in H" are diagonal in the
considered states, i.e. the interactions do not mix the pseudo-Bloch functions |m ),
which are eigenstates of the Hamiltonian H". The interaction terms shift, however,
the energies of the states when passing from spherical symmetry to an environment
with Cg, point-group symmetry. Equation (6.2.7) determines completely the energies
of the valence-band states in the absence of any symmetry-breaking effect. The
eigenvalues of H" are given by
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e] =e_| =day] +ap
and (6.2.8)

ey = 2av2.

Equation (6.2.8) shows that the uniaxial crystal field leads to an energy split-
ting between the eigenfunctions |m ;) with (m; = £1) and m; = 0. This so called
“crystal-field splitting” A is given by

Acf = day2 — dyl- (629)

It vanishes if a,; = a,» and we find again the energetic structure of crystals with
zincblende structure. This situation is usually called to be “quasi-cubic”. (Concerning
A,y see also Fig. 1.4, which will be discussed in more detail in Sect. 6.3 because of
the simultaneous presence of crystal-field and spin-orbit coupling.)

The effective Hamiltonian H' may be presented in a different form, in which the
influence of the crystal field is better apparent. Using the matrix forms of S and S,
given in Eq. (6.2.6), one may use the form

H" = ay (S + Sa) + (an — av)Se = 2ay1 1y + Ay Se = Hj + HCI}, (6.2.10)

where 1, stands for the unit matrix of the valence-band subspace when neglect-
ing the electron spin. In analogy to Eq. (3.2.9) for zincblende-type semiconductors
Hj = 2a,,1, gives the direct term and H, = A.sS, describes the influence of the
crystal field. Thus, H" determines the valence-band energy at the I'-point in wurtzite
structure where the crystal-field splitting is separated from all other interactions.

We may now use the basis functions given in Eq. (6.2.4) together with various
symmetry-breaking perturbations to construct the invariant expansion of the Hamil-
tonian H". Some simple examples of perturbations are given in Table 6.2 together
with their transformation properties in crystals with C¢, point-group symmetry. As
before, Table 6.3 is used to choose the correct product of the components accord-
ing to their symmetry, which is given in Table 6.2. When combining e.g. the matrix
components (S = [7 and S, = (I +1})) of Eq. (6.2.4) with the perturbations (B?
or Bf + B_\z,); (Qg or Q)% + Qi); (E; E2 or E}% + Ei); (€;; Or € + €y,) terms that
may appear in the Hamiltonian H" are obtained. This is due to the fact that all
contributions to the products transform as (I'y, K ™).

A term linear in B, of the form

Hl';lz ZQZIZIZBZ (6.2.11)

may be present in the Hamiltonian while a term involving Q. linearly has no influence
on the energy of the valence band states. This is due to the fact that B, and Q, have
different spatial transformation properties. On the other hand, the matrix components
(X,Y) =y, —I,) of Eq. (6.2.4) can be combined with the perturbation components
(By, —By) or (Qx, Qy) to contribute to the Hamiltonian in the form
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nglxy = alvglxy(l)'B)’ + lx Bx)
or (6.2.12)
Hélxy = alélxy(l)' QX - lx Qy)

All other combinations of perturbations from Table6.2 with the matrix com-
ponents (X, Y) are forbidden since they transform as K under time reversal. In
the same way, other symmetry adapted perturbation terms involving (X,, Y,) =
(—{LL:}, —{1,1.}) transforming as (['s, K*) or (W, Z) = (I] — I3, =2{l;L,}) (that
are of (I's, K ™) symmetry) can be constructed.

6.3 Uniaxial-Crystal Field and Spin-Orbit Coupling in
Semiconductor with C¢, Point-Group Symmetry:
Valence Bands

Following closely the procedure described in Sect. 3.3 we develop the Hamiltonian
describing fully electrons in the valence band of simple, wurtzite-type semiconduc-
tors as specified in the introduction. The invariant expansion has to respect the fact
that the electrons in the valence band are spin 1/2 particles and have an orbital-
angular momentum [/, = 1. Again, we consider the spin degeneracy by introducing
in addition to the orbital-angular momentum an effective-spin operator o, which
operates only on the valence-band spin-states. The matrices describing this effec-
tive valence-electron spin transform as the effective spins of the conduction-band
electrons, namely as (I'», K~) and (I's, K ™) for the (¢%) and (o7, 07) components,
respectively. The direct product of the angular-momentum matrices given in Eq.
(6.2.6) with the spin matrices span the subspace of dimension six, in which the
valence-band states are defined. Again, the eigenstates of the product /, ® o, can be
classified according to the total angular momentum j, = I, & o, and its projection
component j, onto the z-axis of the crystal. Thus, states with a total angular momen-
tum j, = 3/2 and j, = 1/2 are constructed. As given in Eq. (3.2.1) for the cubic
zincblende structure, the six-fold valence-band electron-wave functions w; take the
form

wi = a1 )a+a;2]1)3 + a;310)a + a;4l0)5 + ais| — Na +aiel — 1)
i=1,..06),
(6.3.1)
where the eigenfunctions |m ;) of the momentum operator [, have been introduced
in Eq. (6.2.1) and « and 3 denote again the valence-band electron-spin up and down
states, respectively.

Concerning the angular-momentum subspace, we start with the basis matrices (S;
Sa; T3 X, Y; X4, Yu; W, Z), which are obtained from the components (I, [, ;) of
the angular momentum and are given in Eqs. (6.2.4) and (6.2.6). The basis matri-
ces transform as (I'j; ['j; I'p; I's; I's; and T'g), respectively. The valence-electron
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spin-matrices together with the unit matrix obtained from (%)%, which transforms
as (I';, K™), are used as basis matrices to span the valence-band spin-subspace.
They are defined in the same way as in Eqs. (6.1.1) and (6.1.2) for the conduction-
band electron-states. Spin and angular-momentum subspaces are multiplied with
each other, their direct product (Kronecker product) spanning the subspace of the
valence-band states. As in Sect. 3.3, the matrices defined in the angular-momentum
subspace given above are denoted in the following by capital Latin letters, those
defined in the spin-subspace by a prime (/) and matrices defined in the product space
by double quotation mark (”’). According to Ref. [1] we denote in the following the
valence-band spin-matrices by

(crﬁ)2 )

—oy > Y 632
o) > X ! (6.3.2)

ol — T

‘We thus obtain the thirty-six symmetry-adapted basis-matrices from the multipli-
cation scheme in Table 6.4. They are defined through

(S:Sa:T: X, Y: Xq,Ya: W, Z) ® S’ & transforming as <> 2(T'j, KT): Ty, K~:T5, K ;Ts, K+:Tg, KT)
(S:Sa:T: X, Y: Xa, Ya: W, Z) @ (T') & (T2, K7): T, K+: 5, KT s, K~;Tg, K7)

(8:Sa)® (X', Y") & (2(T's, K7))

(M &X', ¥Y) & (s, k1)

X VQX,Y)e T @&l ®lg, K1)

Xa.Y) ® (X', Y) & 1 @2 @ T6, K7)

W, 2)® X', Y)e M30&T4®Ts, K7).

(6.3.3)

The symmetry-adapted basis-matrices corresponding to Eq. (6.3.3) can now be
established using Table 6.3. Together with perturbation terms of Table 6.2 these matri-
ces can be used to construct all possible contributions to a Hamiltonian, including
symmetry-breaking effects. Their spatial and temporal transformation properties are
noted according to the convention introduced in Sect. 3.3. Since different basis matri-
ces may have the same spatial symmetry but arise from different components of
the angular-momentum and spin operators, we indicate their origin by subscripts,
where the first number indicates the irreducible representation to which the angular-
momentum components belong and the second that of the spin component. For
example the matrix X,s” characterizes the matrix X" (one of the components trans-
forming as I's in the six-dimensional product space) obtained from the direct product
of the angular-momentum matrix S, transforming as I'; with the spin component X’
transforming as I's. As given in Eq. (6.3.3) it has K~ time-reversal symmetry. For
shortness we write in the following (as in Tables2.3 and 6.3) the matrix product
S1a1” = S, ® S’ in the form S;,;” = S,5’. We thus obtain the following thirty-six
matrices from Eq. (6.3.3):
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Being (K ) under time reversal and resulting from S’ :

8117 =885 8101”7 = S48 Xsa1” = XuS', Ysa1” = YaS's We1” = WS', Z1” = ZS';
(with K ) resulting from S’ :

T, =TS X51”=XS,Y51”=YS;

(with K1) resulting from 7" :

S0 =TT Xsp” =YT',Ys52” = —XT/;

(with K ~) resulting from 7" :

T12” = ST Tia2” = SaT'; Xs5a2” = YaT', Ysa2” = =X T's Wep” = ZT', Zgy” = —WT';
resulting from X' (time-reversal symmetry not specified) :

Y257 = —TX'; X157 = SX'; X1a5” = Sa X';

resulting from Y’ (time-reversal symmetry not specified) :

Xos” =TY'; Y15” = 8Y'; Yias” = SaY';

(being K1) resulting from (X, Y) @ (X', Y') :

Sss”=XX'+YY;Tss" = XY —YX'; Wss” = XX' —YY', Zss” = XY + YX';

(being K ~) resulting from (X, Y,) ® (X', Y') :

Ssa5” = Xa X'+ YY" Tsas” = XY — Yo X's Wsas” = Xo X' — YoY', Zsas” = XoY' + Yo X's
(being K ~) resulting from (W, Z) ® (X', Y') :

Ussm7=ZX' + WY'; Vos" = ZY' — WX'; X" = WX' + ZY' Yo5" = —WY' + ZX'.
(6.3.4)

Let us now discuss the Hamiltonian H" of the valence band in wurtzite-type
semiconductors in detail. We start with those terms, which have the full crystal
symmetry at the I'-point. They are characterized by the fact that only scalar values
multiply the matrices of Eq. (6.3.4). Inspection shows immediately that four matrices
of the product space are compatible with interaction terms that may appear in a
Hamiltonian, i.e. products transforming as (I'y, K). The first two are given by

Si”W=S®S5 and §1,,” =S5, ® S (6.3.5)

They are independent of the valence-band spin-state and have been discussed in the
foregoing chapter as giving rise to the energy of the valence band states and the
crystal-field splitting. Two further terms

S$»” =T ® T’ together with S55" = X @ X' +Y ® Y’ (6.3.6)

depend on the spin state.
Formally, the Hamiltonian H" respecting the full point-group symmetry can there-
fore be written as

H" = H; + H;y + Hy,, + H,,\ =

502 soxy —
— 4V S ” v S " v S ” v Sy ’ (6'3'7)
=011+ Qeppdlal’ A 0227 + Ay, 055 s
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where a;p, a;py, ag,., and ag,, are real constants with arbitrary values. (We use
here the terms a;;, and a;, instead of a,; and a,; of the foregoing section in order
to distinguish clearly between interactions originating from spin-orbit coupling and
crystal-field effects.) The first and the second contributions in Eq. (6.3.7) give the
energy of the valence-band states at the I'-point (see also Eq. (6.2.7)), which are
no longer degenerate in energy. In the preceding section we have identified the
splitting as being due to the uniaxial crystal field. It splits the states into two different
blocks, characterized by the orbital-angular momentum according to (m; = %1) and
(m; = 0). In the product space including the spin, these angular-momentum states
become each twofold degenerate.

As shown in Eq. (6.3.6) two additional contributions that depend on the spin and
the angular momentum of the valence-band states may exist in a Hamiltonian of
systems with wurtzite structure. Since they depend on the spin state, by analogy
to Eq. (3.2.10), they are due to the spin-orbit interaction. The latter may also be
influenced by the axial anisotropy of the crystal field, i.e. the spin-orbit interaction
can be different in the z-direction and perpendicular to it. This may result in two
different values of the spin-orbit coupling-constants ag, and ag,, ., .

In order to discuss further the different terms in Eq. (6.3.7) we calculate the basis
matrices indicated in Egs. (6.3.5) and (6.3.6). We obtain the following set of matrices:

100000 100000
010000 010000
S = 000000 57— 002000
000000| " 000200
000010 000010
000001 000001

and (6.3.8)
100000 00 0 0 00O
0-1000 0 0020 00
on_|000000f ¢ 0420 0 00
Z 71000000 T]lo0 0 0 420
0000-10 00 04200
000001 00 0 0 00

Let us first consider the first and second term in Eq. (6.3.7), namely, H;| +
H;}'Z = azfl S+ agfleal”. If agfl = a;’ﬂ we obtain for their sum (HC”f1 + H;}Q )

HYy + HYy = 2al1,. (6.3.9)

As discussed in the foregoing section this expression is proportional to the unit matrix
1, of the valence-band subspace and we see that the crystal-field splitting vanishes.
Like the direct term Hj in Eq. (3.2.9) for zincblende-type semiconductors, Eq. (6.3.9)
describes also the valence-band energy at the I"-point in wurtzite structure.
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Similarly to Egs. (6.2.10), (6.3.7) can be simplified writing it as

H’ = Hd +H + Hrvoz + Hsvoxv =

; : . (6.3.10)
= 2acf21v + acfSH + asozS22 + asoxySSS ’

where a;, = a/; — a;p, denotes the crystal-field coupling-parameters. Then, the
direct term Hy = 2a;, 1, can be used to fix the zero of energy chosen at the I"-point
inside the valence band in the absence of all fine-structure interactions that lift the
degeneracy. As a consequence, this term can be neglected in the following discussion
and the crystal-field interaction reduces to the Hamiltonian H”, of = aCfS 117 We will
now discuss several limiting cases:

'af_o asoz:a;)oxy#o

oo soxy- 1-. if the spin-orbit coupling is isotropic in the absence
of acrystal-field splitting, we obtain for the sum (H?,_+ H? ) of the third and fourth

s0Z soxy

term of Eq. (6.3.7) or Eq. (6.3.10) the matrix form

Ifa? of =0anda?  =a!

10 0 0 00
0-1v20 00
0420 0 00
v v _v
Hsoz + Hsoxy soz 0 0 0 0 \/E 0 (6311)
00 0 +2-10
00 0 0 01

This expression reproduces exactly the spin-orbit interaction of the valence-band
in zincblende-type semiconductors H;, given in Eq. (3.2.10). Diagonalization of the
matrix in Eq. (6.3.11) leads us to the eigenvalues and eigenvectors of the Hamiltonian
as given in Egs. (3.2.11) and (3.2.12). In this respect the conditions a”f1 = affz and
ag,, = 4, used to derive Eq. (6.3.11) define the “quasi-cubic limit” of wurtzite-
structure crystals. In this limit the wave functions transforming as (x, y,z ) are
equivalent and one can carry one wave function into the others by a simple rotation
of the coordinate system.

It is important to notice that the “quasi-cubic limit” does not respect, however,
the fact that the cubic axes (x, y, z) are defined through the Cartesian coordinate
system in zincblende structure while in wurtzite structure the cubic [111]-crystal
direction is taken as z-axis, and the (x, y)-axis are perpendicular to it but they are
not further specified. This means that the symmetry properties, i.e. the cylindrical
(uniaxial) symmetry of wurtzite-type crystals, remain valid and only the eigenvalues
and eigenfunctions of the states are the same in both crystal systems. Or, to put it
differently, in order to simulate the wurtzite structure when starting from the cubic
zincblende structure, stress may be applied in the [111]-crystal direction. This leads
to a symmetry breaking and a crystal-field splitting of the valence band with I'g
symmetry. This splitting vanishes of course with vanishing stress, defining thus again
the “quasi-cubic limit” of wurtzite structure. This discussion indicates that this limit
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may be realized despite the different point-group symmetries of the structures and
the tetrahedral arrangement of atoms in zincblende-type crystals.

o aly #0,a5, #0,andag, =0

soxy

Another interesting limit of Eq. (6.3.10) is characterized by a;, # Oanday,,, = 0.

We see, via comparing Eq. (6.3.10) with Eq. (6.3.8), that the terms chf ancf H .
which characterize the crystal field and a part of the spin-orbit coupling correspond
to diagonal matrices, i.e. when looked upon separately, the states |m;)a and [m )3,
with j = (—1, 0, 1) defined in Eq. (6.3.1) are eigenstates of this Hamiltonian. The

states are two-fold degenerate in energy e;; by pairs obeying to

E|i=e= (aé’f +a! ) for (|1)a and | — 1)) transforming as I'g

soz

v ) for (|1) and | — 1)) transforming as '~ (6.3.12)

v
Er = e = (acf — Ugoy

E3 = e34 = 0 for (|]0)a and |0)3) transforming as I';.

This result can be inferred immediately by scrutinizing the sum of the diagonal matri-
ces apS1” + ag,.$27. For instance the same eigenvalue (a;, + ag,.) corresponds
to eigenstates | 1)« (upper left corner) and | — 1) 3 (lower right corner); this is then
the energy ej6. One can proceed similarly for e;5 and e34.

The states |1)a and | — 1)3 transform according to the irreducible representa-
tion I'g in Cg, symmetry, the pair |1)3 and | — 1)« according to I'7, and finally
|0)cr and |0) 3 transform also as I';.

When comparing Eqs. (6.3.12) to (3.2.13) we see that the states w} = |1)« and
w¢ = | — 1) with energy ej¢ correspond directly to the states |3/2,3/2) and
13/2, —3/2) in Eq. (3.2.13), respectively. In zincblende structure this doublet of
states is degenerate with the pair of states |3/2, =1/2) of Eq. (3.2.13). Together, they
are transforming as I'g in 7, point-group symmetry. In Cg, symmetry, the |3/2, 1/2)
states form a doublet of states with energy e,s, transforming as I';. They are sepa-
rated in energy from the other states depending on the uniaxial crystal-field a;, and
the z-component of the spin-orbit coupling-constant a;, . Last but not least the states
|1/2, £1/2) with energy e34 form a second doublet of states transforming as I';.

One should notice here that the energetic order of the three doublets with I,
I'7, and I'; symmetry depends on the relative strengths and signs of a!; and ag,_.
Historically, the valence bands in wurtzite structure were labeled “A”, “B”, and “C”
according to their energy, the “A” band having the highest energy value. In most of
the simple wurtzite-type semiconductors (as e.g. in CdS) the “A” band is the one
with 'y symmetry, but there are exceptions: Most probably in ZnO under normal
conditions one of the I'; bands has the highest energy and is labeled “A”, followed
by the band “B”, which corresponds to the doublet with I'y symmetry. Since the
symmetry of the states influences e.g. the selection rules of optical transitions, it
is more relevant to classify the states according to their symmetry than to their
energetic order. Therefore, when referring to the “A”, “B”, and “C” valence bands in
the following, we will suppose that the “A” band has 'y symmetry and “B” and “C”
are doublets with I'; symmetry.
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o aly #0,al,. #0,andal,  #0

Concerning the spin-orbit coupling, let us now consider in addition to H,  # 0
the interaction term H,, ., that was neglected in the preceding case. We see from the
form of the Ss55” matrix that the states with I'g symmetry

w = [Naandwg = | —1)3 (6.3.13)

are not affected by H;, ., and do not couple to other valence-band states. They have
still the energy e = (a,; + ay,.). On the other hand, other states characterized by
the same j, components become coupled, i.e. as indicated by the matrix Sss” the
state
[1) 3 couples to |0)a
and (6.3.14)

|0)3 couples to | — 1)

due to the planar spin-orbit coupling H, .

Using the notation introduced in Refs. [6, 8] the full Hamiltonian H" describing
the valence band at the I'-point takes in this general case (aff #0, a;,, #0, and
al  # 0) the form

soxy

H' = HY; + H},, + H},, =

s0z soxy —

(6.3.15)

SO OO O M
cocoopb Qo
oo oo p o
oPpboocoo
ocQbocoo
MO OO oo

where
F= (a;} + a;;z)

G = (a;; — ag,,) (6.3.16)
A =2a!

soxy*
After diagonalizing Eq. (6.3.15) we obtain the eigenvalues of the three doublets to
E, = (aé} + a;;z)
and (6.3.17)
Eas = {(aly —al,) /(@) — a2,)? + 8(at,,,)?) /2.

which give the energies of the valence sub-bands in the presence of the planar spin-
orbit coupling and of the crystal field. The normalized energies E;/a;,,i = (1,2, 3)
are plotted against A = ag,_/a;, in Fig.6.4a—c for different factors ag,,,/ag,. that
measure the anisotropy of the system. An anti-crossing effect of the states with I';
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I
Wt

Fig. 6.4 (a)-(c) Left panel: Normalized energies E; / aff ,i = (1, 2, 3) in the presence of the crystal
field (a;, # 0) and of an anisotropic spin-orbit coupling (a) ag,,, = 0.1ag,.. (b) a,,, = 0.3a;,,
and (¢) ag,,, = 0.7a,, plotted in dependence of A = ay,, /aé’f as given by solution of Eq. (6.3.17).
See text. Right panel displays schematically the three corresponding valence-band dispersions in
the vicinity of the Brillouin zone center for A = 1.5. It can be seen how the energy separation
between the I'; bands increases with increasing planar spin-orbit coupling (i.e. increasing ag, . ),
while the I'g states are not influenced
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symmetry clearly shows up. Its amount increases with increasing value of the factor
gy /sy, In the case if a; and ag,, have different signs the energetic order of
the sub-bands with I'; and I'y symmetry is changed. In consequence the amount of
hybridization of the different states with ['; symmetry is also modified. One also
remarks that no hybridization takes place between states of different symmetry, i.e.
the states with I'g and I'; symmetry.

Using the notation of Eq. (6.3.1) the remaining eigenstates of Eq. (6.3.15) (the
“A” valence-band states transforming as I'g are given in Eq. (6.3.13)) transform as
I';. They are given by the following linear combinations of spin-orbit states:

wy = a2|1)5 + a2 310)« with energy Ep = {(a;’f —ag,,) + \/(“é)f —a¥%)t + S(afoxy)z}ﬂ

and

w§ = 33,2|1>ﬁ + a3,3|0)0f with energy E3 = {(agf - a;}oz) - \/(agf - asyoz)z + 8(a§0xy)2 }/27
(6.3.18)
where the corresponding eigenvalues have been added. The coefficients a, », az 3,
a3, az 3 have the values:

a2 = \/Ea;)oxy/\/ (E3)2 + 2(asl')oxy)2

a3 = (—E3)/\/(E3)? +2(a},,,)?

asn = ﬁa;joxy/ (E2)2 + z(asvoxy)z

as3 = (—E2)/\/(E2)* + 2(a},,,)?

(6.3.19)

For the valence band states w,; and w? we obtain similarly

wj = a3 410)5 +ay,5| — 1)o with energy Ep = {(ac“f —ate) +(al; —alo)? + 8<a§oxy)2}/2

and

w? = as 410)8 + as 5| — 1)« with energy E3 = {m;{f —al,,) — \/(agf —a¥%)? + 8((1;’0)0,)2}/2

(6.3.20)
as4 = ‘/za:oxy/ (E2)” + 2(ag,,,)?
ags = E2/ (E2)2 + z(asvoxy)z
(6.3.21)
as 4 = ﬁa:axy/ (E3)2 + 2(61;}”),)2

ass = E3/\/(E3)* +2(al,.,)*

with

One can thus see that the states w), wj and w3, ws are degenerate in energy. We
see that these coupled states that diagonalize Eq. (6.3.15) (involving the crystal-field
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a,, and the anisotropic spin-orbit interaction through ay, and ag,,,) depend on four
parameters. Introducing
a2 =ds4; —A23 =455
and (6.3.22)

aszn = dq4; —a3z 3 = a4s,

the “B” band states (having the energy E, > E3) are given by

wy = ax3|0)a + az»|1)3
and (6.3.23)
wy = —a33| — Do+ a3,|0)5.

In the same way the second doublet, the “C” valence-band states with energy E3 are
given by
wy = a33|0)a +a32|1) 8
and (6.3.24)

ws = —as 3| — Lo+ a110) 8.

Equations (6.3.13), (6.3.17), (6.3.23) and (6.3.24) determine completely the (“A”,
“B”, and “C”) valence-band wave-functions and their energies in the considered
wurtzite-type semiconductors in the presence of a crystal field and an anisotropic
spin-orbit coupling. It is, however, important to notice that (depending on the value
of the coefficients a;», az 3, az 2, and a3 3) the eigenfunctions of the “B” and “C”
valence-band states are not necessarily orthogonal to each other. This indicates that
the simultaneous presence of a crystal field and the spin-orbit coupling mixes the
different spin-orbitals.

° agf #0,ag,, =ag,, #0(@.e. wurtzite valence bands in the so-called quasi-cubic
approximation)

Let us discuss the special case a;; # 0, ag,, = ay,,, # 0 in detail. After diago-
nalizing Eq. (6.3.15) we obtain the eigenvalues of the three doublets
E; = (acf +aw<)
and (6.3.25)
Exrs = ((al) — al) £ \J(al) — a2, + 8(a1,)2) /2,

which give the energies of the valence sub-bands in the presence of the crystal field
and of an isotropic spin-orbit coupling. Figure 6.5 shows the resulting energy E;/a_,
as a function of A = ay,, /aff

The situation (a;; # 0, ag,, = aj,,, # 0) is often realized in real crystals since
a finite crystal field modlﬁes only slightly the spin-orbit coupling, which is usually
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Fig. 6..5 Normalized . - g

energies E;/a’,, \ |8
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*1

of the crystal field and of an
isotropic spin-orbit coupling
agoz = a‘:)oxy #0asa
function of A = a;,’uz/agf as
given by the solution of Eq.
(6.3.17). E denotes the
energy of the exciton states
with I'g-symmetry, E» and
E5 are of ['7-symmetry

isotropic in bulk semiconductors. Therefore it is a good approximation [1, 9] to
assume that ag, = ay,,, even in uniaxial semiconductors.

In the literature (c.f. Refs. [1, 9]) an isotropic spin-orbit coupling has been con-
sidered within an approximation called the “quasi-cubic approximation”, which we
will now discuss. It consists in diagonalizing the spin-orbit interaction ~ [ - o and
a small effective stress along the cubic z axis. For small (and almost vanishing)
crystal-field splittings the wave-function admixtures between the “B” and “C” sub-
bands are supposed to be negligible and the states remain orthogonal to each other at
finite field strengths. (As shown in Fig. 6.4a—c the admixtures between the “B” and
“C” sub-bands lead to a hybridization of their states, which is not considered in the
“quasi-cubic approximation”).

Applying this approximation the valence-band wave-functions are characterized
by only two different mixing parameters called “y” and “9”. If the crystal-field
splitting vanishes they reproduce the valence-band wave-functions of zincblende-
type crystals. This approximation is only valid if the crystal-field splitting is small
compared to the energy gap and if the spin-orbit coupling is isotropic.

In the literature (see Ref. [1]) the valence-band states are defined by the functions
®;,i =1, ...6. First, the A-band states, which have I'g symmetry read

&5 = —|1)a(corresponding w; introduced above)
and (6.3.26)
®g = | — 1)S(corresponding w¢ introduced above).

They are not affected by the planar spin-orbit coupling.
The “A” band is followed by the two doublets of states transforming as I';. First,
the “B” band states are characterized by
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@, = 6|0)a — 7|1)(corresponding ~ w3)
and (6.3.27)
®; = 7| — 1)a — §|0) B(corresponding ~ wy)

and the second doublet, the “C” valence-band states, are given by

&3 = —v|0)a — §|1)B(corresponding ~ w})
and (6.3.28)
d, = 6| — 1) + v|0) B(corresponding =~ w?).

The parameters vy and ¢ are defined through energy differences as

v=4/2/2+ B})
§=By/\/2+ BY)

6.3.29
obeying 7> + 6% = 1 ( )

and
By = -2+4+3AE/A,,

where AE = E| — E, is the energy difference between the valence bands as given in
Eqg. (6.3.25) and A, denotes the spin-orbit splitting in the quasi-cubic limit as given
in Eq. (3.2.195).

If a;’f = 0, the crystal field vanishes and the states ®5 and @4, which have I'y
symmetry and ®; and &, with I'; symmetry become degenerate. This situation is
called the “quasi-cubic limit”. In this case, as one can verify using a simple algebra,
the wave functions are determined by v = /1/3 and § = —./2/3.

In the quasi-cubic limit the three cubic axes (x, y, z) are equivalent. Then the
spin-orbit coupling is the same for the atomic p-orbitals, which are considered. This
leads here to the fact thatag,, = ay,,,, and the splitting energy Ay, = 3ag,, = 3ay,,,
corresponds to the spin-orbit splitting observed in zincblende structure.

Let us discuss in the following our wave functions w; in the quasi-cubic limit, i.e.
determine their form in the limit thata;, — Oand ag,, = ay,,,. We note the resulting
approximated functions by g/ with i = (1, ..., 6). We will discuss here in terms of
the crystal-field coupling parameter a;, which we have introduced in Eq. (6.3.10),
rather than in terms of the energy difference AE introduced in Ref. [1]. As in Ref.

[1] we find from Eq. (6.3.25) in the case aff =0

E; = a;,. and E3 = —2a;,_,
leading with Eq. (6.3.19) and ag,, = ay,,, to (6.3.30)

612,3 =das3> and a2,2 = —613’3.
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The coefficients in Egs. (6.3.19) and (6.3.21) can now be determined for the limit
that a;’f — 0. Starting with a, , we have:

a2 = V2/\J2+ (Es/at, ). 6.3.31)

Introducing € = aﬁf /as,., we now obtain for the term (E3/a;,_) by a first order power
development of e

Esfal, =[-1+e— V(1 +e? +8]/2=

(6.3.32)
=[-14+€e—-3/1—-(12/9¢l/2 =[-24 (2/3)e].
Introducing in analogy with Eq. (6.3.29)
By = =2+ (2/3)(az;/ag,,) (6.3.33)
one obtains:
Y =ay,=4/2/2+ B})
and equally (6.3.34)

§=ay3=Bi/\/(2+ B}),

where a, 3 can be calculated in the same way as a, » or by simply using the fact that
the wave functions are normalized leading to (72 + 62) = 1. The other coefficients
in Egs. (6.3.22) and (6.3.30) can be obtained in a similar way.

Figure 6.6 shows the mixing coefficients v and ¢ of the I'; states in the presence
of a crystal field and an isotropic spin-orbit coupling in dependence on the parameter
Ecf/Eso = (2/ 3)(aff /a;,.), which measures the relative strength of the crystal-field
interaction compared to the spin-orbit coupling.

Since the “A” band states with I'g symmetry are not affected by the planar spin-
orbit coupling we find for the valence-band wave-functions also in the frame of the
quasi-cubic approximation:

v

w) =gq) = [aandw =g¢ = | —1)4. (6.3.35)

Together with Eq. (6.3.22) we see that the set of wave functions w; given in Egs.
(6.3.23) and (6.3.24) can be approximated by introducing the two mixing parameters
~ and ¢ defined in Eq. (6.3.34). The “B” band states are given by

q; =610)a+~1)3
and (6.3.36)

q; =7 —1a+4610)8

and in the same way the “C” valence-band states
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Fig. 6.6 Mixing coefficients
~ and 0 of the I'7 states in the
quasi-cubic approximation in
the presence of a crystal field
and an isotropic spin-orbit
coupling as a function of
E.f/Es,. In the quasi-cubic
limit (i.e. Ecy = 0) 1

v = VI3 and § = —/273. - |
See text and Eq. (6.3.34)
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g3 = —10)a 46| 1) 8
and (6.3.37)
gs = =6l — Lya +v(0)53.

Differences in the notations between the functions ®; and our functions g; given
above are due to not important phase factors in the definition of the wave functions.
Using our definitions we keep the same phase-factor of the wave functions w; and
q}. The advantage to use the functions ¢, instead of the w} for the valence band
states lies in the fact that the different sub-band states are mutually orthogonal to
each other. This facilitates the discussion of selection rules for optical transitions.
The quasi-cubic approximation and the resulting notation for the wave functions will
be explicitly used in Chap. 7 concerning excitons in wurtzite-type semiconductors.

e Symmetry-breaking interactions in the valence bands of crystals with Cg, point-
group symmetry

Let us now discuss some symmetry-breaking interactions and consider first the
dispersion of the valence bands. As we have demonstrated in preceding chapters, we
develop the dispersion into a power series of the wave-vector Q. We then consider
symmetry-adapted combinations of the wave-vector components and construct, using
the basis matrices given in Eq. (6.3.4), those terms, which have the correct trans-
formation properties of a Hamiltonian. Since the number of basis matrices is finite
(here 36), the number of symmetry-breaking interaction terms for a given order of
the development is finite.

Table 6.2 indicates that the wave-vector component Q. transforms as (I';, K~) and
(Qx, Qy) as (I's, K7). Concerning terms varying linearly with the Q. component,
Eq. (6.3.4) shows that the only term transforming as (I';, K ™) that can be constructed
is the interaction

Hoi; = ag1:Q:S85a5”- (6.3.38)
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The matrix Ss,5” couples the same states as the matrix Sss” given in Eq. (6.3.8) that
describes the planar form of the spin-orbit interaction, i.e. it mixes further the states
of the I'; sub-bands. This mixing increases with increasing wave-vector component
Q.

Concerning Q, and Q,, there are five different terms possible that vary linearly
with the wave-vector components and transform as (I';, K+). These terms are given
by:

Hpiyy = agixy1(Qx X517 + Oy Y517) + a01xy2(0x Xs5a2” + Oy Y5007)+
+a01xy3(0xX15” + 0y Y157) + ag1xya(Ox X1as” + Oy Y1as™)+  (6.3.39)
+a01xy5(0x Xes5” + Oy Yes5™).

These Q-linear terms are also given in Refs. [1, 6]. Their mixing scheme is very
complex since they couple different valence-band states of I'; symmetry with each
other. It is interesting to notice that all the different Q-linear terms do not act on the
I'y sub-bands, which are not coupled with each other nor with the I'; sub-bands, i.e.
the I'y sub-bands cannot carry a Q-linear term in wurtzite-type semiconductors. This
can be directly seen from the form of the matrices X;;” and Y;;” and Eq. (6.3.15):
In Eq. (6.3.15) the I'y-states are diagonal (not coupled to other states) and remain
unchanged after having diagonalized the spin-orbit coupling.

Another point is helpful when considering Eq. (6.3.39): The coefficient labeled
agixy1 should give rise to the mostimportant Q-linear term in wurtzite-type semicon-
ductors since it is due to the mixing of the wave-vector with the angular momentum
of the state. Including the electron spin does not modify this interaction. The terms
proportional to agiyy> and agiyys appear only when the spin-orbit interaction is
added. They vanish with vanishing spin-orbit coupling. The terms proportional to
agixy3 and agiyy4 have their origin in the direct interaction of the wave-vector with
the electron spin. But this coupling appears only if the spin states are mixed with the
orbital momentum due to the spin-orbit coupling.

We consider that it is beyond the scope of this book to develop all terms that are
of second or higher order in Q. In second order one usually restricts to the common
effective-mass parameters, which are well-known in wurtzite-type crystals. But the
basis matrices enumerated in Eq. (6.3.4) show (together with the terms quadratic in
Q? given in Table6.2) that nine different effective-mass terms can be constructed.
They determine the warping and splitting of the valence-band dispersion. Symmetry
breaking terms due to an externally applied electric field E or to strain can be derived
in the same way from Table 6.2 together with Eq. (6.3.4).

Concerning the symmetry-breaking interaction-terms varying linearly with the
magnetic field B, Table 6.2 indicates that the B, component transforms as (I';, K 7),
while (By, — B,) have the same transformation properties as (Q., Q), respectively.
Therefore the discussion of Eq. (6.3.38) is also valid for the magnetic-field compo-
nents (By, —B,). The linear B, component, however, must be constructed explicitly
using Eq. (6.3.4). It gives rise to an interaction Hamiltonian consisting of four terms
that is given as
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Hpi;, = ap1;1B;151” + ap12 B 112" + ap1:3B; T1x2” + api124B; Ts.57.  (6.3.40)

The corresponding matrices have a similar structure as those given in Eq. (6.3.8).
The coefficients agi,1 B, to api,;3B, are diagonal and only split the states of the
different sub-bands. The last term, proportional to ag;.4B,, mixes, however, also
states from the different sub-bands with I'; symmetry.
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Chapter 7 ®)
Excitons in Wurtzite-Type oo
Semiconductors

7.1 Exciton Ground-State Energy

As in Chap. 4, let us first consider the symmetry of exciton states at the I"-point
[1, 2]. One should mention at this stage that the total symmetry of exciton states
I, is given by the symmetry of the envelope function (labeled I',,,,,) multiplied by
the symmetry of the valence-band states “w” (I',) and multiplied by the symmetry
of the conduction-band states (in our case I'7). Since the envelope function of the
exciton ground state considered in the following has spherical symmetry (i.e. it has

I'}-symmetry) one obtains:
ey =Tem®@l, Iy =Iel,eIh=I,T0. (7.1.1)

We will again use the following convention: Matrices indicated by a subscript “e”
are defined in the conduction-band electron-subspace. In the pseudo-spin formalism
they are given by o, = (0, o, o}) and 1, and are labeled according to Table 6.1.
One thus obtains:

I, = (@) = S,
o) = X,
(7.1.2)

X
-0, > Y,

z
o; = T,.

As mentioned before, S, transforms according to (I'y, KT). The terms (X,, Y.)
represent the pseudo-spin matrices that transform as (I's, K~), and 7, transforms
as (I',, K7), respectively. In order to construct the interaction Hamiltonian of exci-
ton states, we calculate again the Kronecker product of the thirty-six valence-band
matrices (which are given in Eq. (6.3.4) and indicated by a double quotation mark
(")) with the conduction-band electron-matrices defined through Eq. (7.1.2).

Since conduction- and valence-band electron-states are characterized by spin- and
orbital-angular momentum, one has to use the double-group representation also for
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the characterization of exciton states. As mentioned above, conduction-band states
are made up from s-type atomic orbitals and are only spin degenerate. They transform
as ['7. Similarly to excitons in zincblende structure, the uppermost filled valence-band
states in wurtzite structure have a dimension of six at the I'-point. They are usually
made up from atomic p-orbitals with some admixtures of d-orbitals. As discussed
above, their degeneracy is partly lifted by crystal-field and spin-orbit interactions.
This results into three sets of doublet states, one transforming as I'g and the two
others as I';.

After coupling of electrons and holes one obtains also three exciton series, labeled
“A”, “B”, and “C” that have different energies. (Historically, in different substances
with wurtzite structure, excitons with the lowest ground-state energy are labeled
“A’-excitons. On the contrary, we will classify here the exciton series according to
their transformation properties. Thus, we identify the “A” exciton series with the
one where the valence-band states transform as I'g. As we will see this symmetry-
dependent attribution is more interesting than the one relying on the energy since
the symmetry of states determines the selection rules for optical transitions that are
important in exciton physics.)

Introducing the symmetries of the valence-band states into Eq. (7.1.1), the trans-
formation properties of the exciton ground states are given by:

For the “A” exciton series > ' @ 'y ® ' = T's @ Iy

7.1.3
and for the “B” and “C”series > I'1 [ Q' =111, ®Is. ( )
This product space, in which the exciton ground state is defined, is of dimension
twelve, and all direct, exchange and symmetry-breaking perturbations can now be
formulated in this exciton subspace.

According to the transformation properties of the valence-band matrices given
in Egs. (6.3.3) and (6.3.4), we see that the Hamiltonian H* describing the exciton
ground state at the I'-point may have four different contributions transforming as
(T, K

H® = (Hy" + H}) + Hy, + H),. (7.1.4)

Here the first and the second term are not explicitly separated into the direct
electron-hole interaction and a crystal-field term, appearing in the exciton problem
due to the valence band:

(Hi' + H) = (ag" Su” + agpSia1”) ® Se. (7.1.5)
The third term is due to the spin-orbit interaction of the valence band, which can again
be anisotropic and have different values along the c-direction and perpendicular to

it, i.e. in the (x, y)-plane. The spin-orbit coupling Hamiltonian then reads:

HS = (ag,, 527 + a5, Ss57) @ S,. (7.1.6)
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The electron spin, and therefore the indiscernibility of electrons does not play
any role in the terms given above. They all involve only the unit matrix of the
conduction-band electron-subspace. Therefore, at this stage, the exciton energies are
given by the energy difference between the conduction band and the “A”, “B”, and
“C” valence bands, reduced by the exciton binding energy, which can be determined
by calculating the eigenvalue of the direct term Hj* in the Hamiltonian.

Thelasttermin Eq. (7.1.4), H}, , has a different structure. It concerns the exchange
interaction between a conduction-band electron and a hole in the valence band.
It affects the exciton fine structure and modifies not only the direct electron-hole
interaction but can also influence the crystal-field and the spin-orbit coupling.
Analogously to zincblende-type semiconductors different exchange-interaction terms
can be also constructed for wurtzite-type material, but, since the material is uniaxial,
the exchange interaction can also be anisotropic. We will discuss these terms in a
separate section.

The terms given in Eq. (7.1.4) determine now completely the energy-fine structure
of the twelve-fold degenerate exciton ground state in wurtzite-type semiconductors,
which is shown in Fig.7.1. Ap indicates the exciton-binding energy determined
with respect to the energy minimum of the electron-hole continuum of states. The
degeneracy of the exciton ground state is partly lifted by crystal-field and spin-
orbit interactions into the three exciton ground states labeled “A”, “B”, and “C”.
Their energy is further split by the different electron-hole exchange interactions.
One should notice that exciton states with 'y and I's symmetry are dipole active
states.

7.2 Construction of Exciton States in Wurtzite-Type
Semiconductors

As we have discussed in connection with zincblende structure, the exciton states
may be constructed from the valence-band states, for which the crystal-field and the
spin-orbit interaction are diagonalized. They are associated with the conduction-band
states, whose interaction matrices are also diagonal with respect to these interactions.
We thus build e.g. the “A”-exciton states from the valence-band states given in Eq.
(6.3.13):

w] = |1)e, wg = | — 1)B and the electron states (ct,, fB.).

As discussed above (Eq. (7.1.3)) the symmetry-adapted wave functions of the exciton
ground state are transforming according to:

I's @ ' <> for the “A”-exciton series
and
I'®TI', & TI's < for the “B”- and “C”-exciton series.
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As indicated in Table 6.1 the I's and I'; states transforming as the space coordinates
(x, y, z) are states, which posses a dipole-moment, while the other states are spin-
triplet states, which are not dipole-active. Since we want to discuss optical transitions
induced by linearly polarized light in the following we are especially interested in
the states (x, y, z). (Circular or elliptically polarized light can be decomposed into
two linearly polarized light fields with a fixed phase difference and thus they can also
be treated within this approach.) For the different exciton series “i”(i € (A, B, C))
these states are noted |x){*, |y){*, and |z){*, respectively. The remaining triplet states
are labeled |£)¢*.

Let us now introduce conduction- and valence-band product-states. It is worth-
while to notice again that electronic transitions from valence- to conduction-band
states that are induced by an electromagnetic radiation field leave the spin state of the
transiting electron unchanged. Therefore, dipole-active product-states must involve
in our notation spin configurations of the type ac, or 8,.

As we will see, “A’-exciton wave functions having a linear polarization
)47, 1v)4 (.e. transforming as x or y, respectively) can be be formed from the
valence-band states given in Eq. (6.3.13) by (w] = [l)a, wg = | — 1)B) and the
electron states («,, f.). Concerning “B”- and “C”-exciton wave functions this is in
general not possible since the valence-band states wj to w? given in Egs. (6.3.23) and
(6.3.24) involve four different parameters, which are not independent: For the coef-
ficients a;; in Eq. (6.3.23) and (6.3.24) relations a3 = az; =dand axy = —ayz =y
hold, as we demonstrated in the preceding chapter. It means that the only combination
of wave functions from Eq. (6.3.23) and (6.3.24), which could result in completely
linearly polarized “B”- or “C”-exciton states, is of the type (|1) — | — 1)). Glancing
at Eq. (3.1.2) implies, however, that in this way a linear polarization |y)% or |y)¢&'
cannot be achieved, since

all) —b| — 1) # cly) ifa # b but arbitrary.

This indicates that “B”- and “C”-exciton states states possess a remaining circular
polarization contribution, which cannot be eliminated. In consequence, the resulting
selection rules for transitions with linearly polarized light are not strict. Therefore we
will construct in this section the exciton wave functions in the framework of the quasi-
cubic approximation, i.e. we will use for their construction the only approximately
valid valence-band wave-functions g given in Eqgs. (6.3.35)—(6.3.37) instead of the
functions w;} with i =1, ..., 6. As discussed above this approximation is widely
applicable. In addition, even if the wave functions w; have to be used for a specific
application, our approach gives at least an indication of the selection rules for the
considered exciton transitions. Attention has to be payed, however, that the “true”
states are different from the ones formed within this approximation. (Or, to put it
differently, the “true” states can carry a small dipole-moment (i.e. be dipole active)
while the approximated states are pure triplet states.)

It is evident that dipole-active transitions are easier to understand in the electron—
defect-electron representation than in the electron-hole formulation. We will there-
fore start from the following product-states for the construction of the “A’-exciton
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states. Then, we will only at the end of this chapter transform the exciton-wave
functions to the electron-hole representation. Let us introduce:

ple)C = |1>a/36 = qijﬂe

P = |Daa, = gla

. I Decere i 72.1)
P5* = | —1)BB. = q¢Be
P =] —1)Ba, = ggo.

We see that the states P;* and P;* are dipole-active states, because they do not
flip the spin of the excited electron. We thus decompose (by analogy to Eq. (4.2.4)
in zincblende structure) the “A”-exciton states in wurtzite-type material into a lin-
ear combination of proper basis-product states. The same result can be obtained
by direct but tedious diagonalization of the exciton Hamiltonian in the quasi-cubic
approximation. The product states read

1)Y= (ggBe — gl ae) /N2 = (I = )BBe — ID)aae) /N2 = (PE* — P§¥) /N2
NG = i(@lBe +qlae) /N2 =i(| — 1)BBe + | D)awe) /V2 = i (PE* + P§) /N2
115 = (gl — g} Be) /N2 = (| — D)Bae — [1afe) /N2 = (PF* — PF¥) /N2

12)5° = —i(glate + g} Be) /N2 = —i(| — 1)Bate + [1)ae) /2 = =i (PF* + P{Y) V2.
(7.2.2)

In order to describe the “B”-exciton states we introduce product states that are
constructed from the valence-band states g) = §|0)x + y[1)B and g; = §|0)8 +
y| — l)a given in Eq. (6.3.36). Using the notation

Pt =gy Be = (8|0)a + v [1)B)Be
exP6 =v gy = (810)a + y 1) B)axe (72.3)
Pt =qife = B10) +y| — Da)Be

)

Pt = gja. = (810)B + y| — Da)a,
one obtains for the “B”-exciton states:

)5 = (=q3 Be + qite) /N2 = (=(810)ar + ¥ [1)B)Be + (B10)B + ¥ | — De)ewe) /v/2 =
= (=P + P{)/N2

)5 =i(qhBe + qiae) /N2 = i((810)a + ¥ [1)B)Be + (B10)B + v | — D)) /2 =

= i(P& + P§)/N2

125 = (@Yate + 4§ Be) /N2 = ((810)e + ¥ |1) Bate + (810) B + v| — D) Be)/~/2 =

= (P& + P§)N2

)5 = —i(gioe — qiBe) /N2 = —i((610)a + y | 1)B)ae — (B10)B + ¥ — D) Be) /2 =

= —i(P¢" — Py V2.
(7.2.4)
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To construct the last quartet of states (the “C”-exciton states) we start with g3 =
—y10)a +8]1)B and g¢ = y|0)B — 8| — 1) from Eq. (6.3.37) and obtain

Pg* =q3B. = (—y|0)a +8|1)B) e
Ply = g3 = (—y[0)a + 8|1) B
Pfi =q5B. = (v|0)B — 8| — ) B,
P5 = g5, = (y|0) — ] — a)a.

(7.2.5)

One then obtains for the “C”-exciton states:

)& = (—gYBe — q¥e) /N2 = (=(=y|0)a + 8]1)B)Be — (¥10)B — 8] — D)t /2 =
= (=P — P{")/N2

INE =igyBe — q¥ar)/(V2) = i((—y|0)a + 8|1)B)Be — (¥10)B — 8| — Deda)/(v/2) =
i(—P + PSY)/N2

10& = (=gYate + g2 Be) V2 = (—=(—y|0)a + 8|1) B)are + (¥[0) B — 8] — D) Be) V2 =
= (=Pf§ + P{)/V2

10 = —i(giae +q¥Be) /N2 = —i((—y|0)a + 8]1)B)te + (¥ [0)B — 8] — 1) Be) /2 =

= —i(P{§ + P{)/V2.
(7.2.6)

Using the exciton basis functions of Egs. (7.2.2), (7.2.4), and (7.2.6), i.e. the states
(Ix)5 o [12)57), (Ix) 5 to [1)5), and (|x) & to |t)¢ ), one obtains three exciton blocks. In
these exciton blocks the direct electron-hole interaction, the crystal-field interaction,
and the spin-orbit coupling are diagonalized. The blocks are, however, separated
in energy by the spin-orbit and crystal-field interaction, acting on the valence-band
states.

It is interesting to notice the difference between the “A”-exciton states on one side
and the “B”- and “C”-exciton states on the other side: in the “B”- and “C”-exciton
series, where the ground-state exciton-wave function transforms as (I'y @ I', & I's),
not only the dipole active (|x)°*, |y)°*) exciton states transforming as I'5 are present,
but also the |z)“*-exciton state (having I'|-symmetry).

Let us now discuss the dipole moment of the exciton states in more detail. Let us
consider linearly polarized light, (¢, n, ¢) being the projection of the polarization unit
vector onto the cubic axes (x, y, z). (Here we remember that the z-axis is chosen
parallel to the crystallographic c-axis and the (x, y)-plane is perpendicular to it.)
After summing over the spin states of the conduction-band electron and the valence-
band defect-electron states, we obtain the dipole moments of the exciton-states to
(see Ref. [1]):
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for the “A”-exciton states
1X)5 5 5 = & mMo

()5, 12)5) =0,
for the “B”-exciton states

(05, NG 1% = (vE, yn, V250 My (7.2.7)
(I0%) =0,
and for the “C”-exciton states

(1X)E, 19, 120 = (88, 8, vV2y )My
(&) =0,

where My = (s|ex|x) indicates the transition-matrix element from the crystal ground
state labeled (s| to the exciton state |x) induced by the dipole-moment operator ex.
The exciton states labeled (|x){™, |y){*, [z){* (i € (A, B, C))) are dipole active and
their dipole moment depends on the orientation of the polarization vector with respect
to the crystallographic axis.

It is interesting to notice that the dipole moment of the “B”- and “C”-exciton
states depends (through the coefficients § and y) in the quasi-cubic approximation
on the crystal-field and spin-orbit coupling while that of the “A”-exciton states is
independent of it and depends only (as it is also the case for zincblende structure)
on the orientation of the dipole. As discussed above, this is due to the different
admixtures of the spin-orbitals of the valence band to the singlet-exciton states in the
case of the “B”- and “C”-excitons. The triplet states (|¢)¢*) carry no dipole moment
in the quasi-cubic approximation.

As described in Chap. 4 and going back to Egs. (6.3.35)—(6.3.37), we now for-
mulate exciton states in wurtzite type crystals in the frame of the product space of
electron and hole states. Therefore, we have to introduce hole states as Kramers’
conjugated states Wih) of the defect-electron valence-band states ¢ considered up
to now. We introduce again the index “/” in the wave-functions in order to indicate
that we are dealing with the “hole” representation for the valence-band states.

The “A”-band states (g7, g¢) that transform according to the irreducible represen-
tation I'g become:

@ =1a=—x+iya/v2=

= —(x —iy)Bu/V2=—| = DBy = —[¥7])

g =1-Dp=@x—iyp/vV2=

= —(x +iy)ay/V2 = [Day = [Y3).

The “B”-band states (qg ,q4) that transform as I'; are:

g3 =y|1)B +8|0)a = za — y (x +iy)B/V2 =

= 828 + v (x — iy)ap/vV2 = 810)By + v| — Doy, = [vh)
ql =800+ y| — Da =828+ y(x —iy)a/vV2 =
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= —8zap +y (x +iy)B/V2 = =810}y, — y 1)y = —1¥}),
followed by the second pair of states (qé’ , qg ) that transform also as I'7, the “C”-band:
@y =8B — yl0)a = —yza — 8(x +iy)B/V2 =
= =y +8(x —iVan/V2 = —y10)By + 8| — Dy, = —[yd)
q? =y|0)B — 8| — o = yzp — 8(x —iy)a/v2 =
= —yzay = 8(x +iy)B/vV2 = =y 0)an + 811) B = V).
(7.2.8)

When comparing the valence-band wave functions in the “hole” representation
with that of the “defect-electron” representation one finds the following identity:

lyy) = q¢

W) =qf

W) = aq) (729)
Wi =g -
W) =gt

lve) = g

This equivalence between the two representations is similar to that given in

Eq. (4.1.5) for the case of zincblende structure.
Concerning the exciton wave functions we obtain in the electron-hole basis the
following expressions:

For the“A”-band states, originating from the valence-band states (¢, qg ):

PP =qVBe = —| = DBuBe = —1¥1)Be

P§ = gqlae = —| — 1)Bpee = — Y1)t

P$* = gl Be = |Dapfe = V2 e

P{* = glae = [Dajpoe = [Y4) .

Then one obtains the exciton states:

)5 = (¢ Be — qiee) /N2 = (NapBe + | — DBpae) /N2 = (W Be + 9] ae) V2
NG =il Be +aloe) /N2 = i(Dapfe — | — 1)Brote) /N2 = i (W) Be — 9] ate) V2
115 = (g2ae — ) Be) /N2 = (Dapae + | — 1)BrBe) /N2 = (Wh)ae + [W) o) /V2

10)5" = —i(ggae +af Be) /N2 = —i(apae — | = DBpBe) /N2 = —i(1¥ e — Y1) Be) /2.
(7.2.10)
The “B”- and “C”-exciton states are constructed in the same way. One obtains for
the “B”-exciton states:
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)% = (—gY e + i ae) /N2 = (—=(610)a + y 1) B)e + (B10)B + v| — Da)ae)/vV2 =

= (—(810) By + 7| — Dew)Be + (=80 — y[1)Bp)ere) /N2 = (= W) Be — 191 ate) V2
1% = i(gYBe + afoe) /N2 = i((810)a + ¥ [1)B)Be + (B10)B + ¥ | — De)ete) /2 =

= i((810)Bh + ¥ | — an)Be + (=810)ay — ¥ 1) Bp)ete) /N2 = i(1W) Be — 191 )te) V2
1% = (g3ee + a3 Be)/V2 = ((610)a + y 1) Bae + (510)B + v| — Da)Be)/V2 =

= ((310)By + v — Dap)ee + (—510)ay, — v DB /V2 = (¥ ae — W) Be) /N2

0% = —i(q3ee — qi Be) /N2 = —i((810)a + y 1) B)ae — (B10)B + ¥ | — D) Be) V2 =

= —i((310)By + v| — Dap)ae — (—8[0)ap — 1) Br)Be)/V2 = —i(1Yh)ae + W) e) /V/2.

(7.2.11)
The “C”-exciton states become in the electron-hole representation:

)& = (—g¥Be — q¥oe) /N2 = (=(=y|0)a + 8[1)B) e — (¥ 10) B — 8] — a)ate)/v/2 =
= (—(=710)By + 8| — Doap)Be — (—y 10y +81) Bp)ae) /2 = (W) pe — 19 ae) V2
& = i(gY e — q¥ae)/(V2) = i((—y|0)a + 8|1)B)Be — (710} B — 8] — D)) /v/2 =
= i((—y10) By + 8] — Dap)Be — (—y 10y +8I1)B)ae) /2 = i (— [y Be — [Wae) /72
)& = (—q¥ae + ¥ Be) /N2 = (—(—y|0)a + 8]1) Bate + (YI0)B — 8| — D)) /v/2 =
= (—(=710)Bp + 8| — Dap)ae + (—y 10}y +811)Bp)Be) /2 = (W ae + 19 Be)/V2
I0& = —i(qYee + 2 Be) V2 = —i (=¥ |0)a + 8|1)B)are + (¥ 10) B — 8] — a)Be)/V/2 =

= —i((=710)By + 8] — Dap)ae + (—y [0}y + 8|1)BR)B) /N2 = —i(—[W)ae + W) Be) /V/2.
(7.2.12)

The representation in Eqgs. (7.2.10)—(7.2.12) is interesting since it shows directly
the origin of the notation “spin-singlet” states (the dipole-active exciton-states labeled
[x)¢%, | y)Ye*, |2)¢) and the “spin-triplet” states |¢)“* and |#,)¢*, which are forbidden
in optical transitions. As it is introduced in atomic physics the spins of two electrons
are anti-parallel in the case of singlet states, while they are parallel in triplet states.
This convention is also used in exciton physics when speaking of the orientation
of the spins of an electron and of the associated hole which together make up the
considered exciton.

We have stated above that the spin-orbit and crystal-field splitting of the valence
band lead to an energy splitting of the different exciton series. In general, however, the
spin-orbit and crystal-field splitting of the exciton series can be slightly modified with
respect to the values of the valence band by the electron-hole exchange-interaction.
This is due to the fact that exchange-interaction can lead to a mixture of the exciton
states of the different series. We are going to discuss some aspects of electron-hole
exchange-interaction in the following section.
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7.3 Electron-Hole Exchange-Interaction in the Exciton
Ground State of Wurtzite-Type Material

The last term in Eq. (7.1.4) H);, concerns the exchange interaction between a
conduction-band electron and a hole in the valence band of wurtzite-type mate-
rial. As mentioned before, in order to determine the full description of the exchange
interaction in the exciton problem, one has to calculate the Kronecker product of the
matrices described by Egs. (6.3.4) and (7.1.2). This procedure has been discussed
in detail in Sect. 4.3 for zincblende-type material. In this context we have stated
already that the electron-hole exchange-interaction gives usually only rise to small
corrections of the exciton-energy fine-structure that is mainly determined by the
crystal-field and spin-orbit interactions. These two interactions dominate also the
energy fine structure of the valence band.

In wurtzite-type semiconductors different exchange-interaction terms can be con-
structed but, on the contrary to zincblende structure, the material is uniaxial and thus
the exchange interaction is also anisotropic. According to the transformation prop-
erties of the basis matrices given in Egs. (6.3.4) and (7.1.2) nine different terms can
now be established. They are:

ex _ 1z I
echlz — aech(TZI ®T.)

cehlxy = aelj;(XSI” X+ Y517"®Y,)

Hp, = a2y (T ® T.)

Hy = aezfliv(XIS” X, +Y15"®Y,)
e = o (Tiay” ® T,) (7.3.1)

eohdry = a::;;v(Xlas” X, +Yis" ®Y,)

ex _ 4z i)

echdz — aech(TSUS QTe)
ex 4xy
echdxy = aech (X5f12” ® Xé’ + Y502” ® Ye)

echSxy = a::i,V(Xss” ® X, + Yes" @ Y,).

In this representation the first eight terms H;),,. to H,, ., have the same origin
as the corresponding terms H,, to HZ}, given in Eq. (4.3.1) for the zincblende
structure. In wurtzite-type material they can be different along the ¢-direction and
perpendicular to it, leading to a higher number of possible terms. Only the term
H;?, 5., 1 new in wurtzite structure and vanishes in zincblende structure. This can be
easily inferred e.g. according to the subscripts of the relevant valence-band matrices
Xes” and Ygs”: The subscript “6” means that the angular-momentum components
transform as ', while in zincblende structure the basis matrices transform only as
I'1, '3, [y, or I's (see Eq. (3.1.5)). All terms in Eq. (7.3.1) are the signature of the
indiscernibility of electrons.

As discussed above H,,, and H;},,,  aswell as H;}, and H :fhﬁy describe the
direct exchange interaction between valence-band and conduction-band electrons,
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which are in the same spin state. In this exchange interaction the orbital-angular
momentum of the states is not involved. On the other hand, H), and H:thlxy
describe the spin-orbit coupling between the angular momentum of the valence band,
which interacts directly with the spin of the conduction-band electron.

The other terms are more complicated. They involve in addition to the exchange
interaction the spin-orbit coupling between the hole spin and angular momentum.
In an approach applying perturbation theory, they would be of higher order than the
foregoing terms. When considering electron-hole exchange interaction in the exciton
problem, one would therefore restrict to the terms H :fhk and H :fhzxy as well as to
HEX ex

ex - . . ! P
con3; and Hy7y+,  in the case of small spin-orbit coupling and to H;7,,, and H,7,,

if spin-orbit coupling largely exceeds the electron-hole exchange interaction.

7.4 Symmetry-Breaking Effects and Exciton Exchange
Interaction in Wurtzite-Type Semiconductors

The effect of magnetic fields on energy levels of both “A” (I'g valence band) and “B”
(I’ valence band) excitons in hexagonal CdSe was studied by Komarov et al. [3].
Generally speaking, the interaction of carriers/excitons with external magnetic fields
and the crystal field is rather weak and sometimes difficult to be observed experi-
mentally. It was, however, revealed that doping of CdSe with magnetic impurities
(here Mn ions) considerably enhanced the effect of symmetry breaking on excitons

electron-hole continuum

spin-orbit )
& exchange exciton
crystal field Interactions series
Ap
LOL, T, K
1 —_—
exciton 7 m—i r
ground state | Len i m— For
S il ) B
Ler r
\‘;‘:7_:'_ el C
- o

Fig. 7.1 Energy level scheme of excitons resulting from a conduction band with I'7-symmetry and
a valence bands with I'g and two others with ['7-symmetries in simple semiconductors with wurtzite
structure (Cg, point-group symmetry). A indicates the exciton-binding energy determined with
respect to the energy minimum of the electron-hole continuum of states. The twelve-fold degeneracy
of the exciton ground state is partly lifted by crystal-field and spin-orbit interactions into the three
exciton ground states labeled “A”, “B”, and “C”. Their energy is further split by the different electron-
hole exchange interactions. Exciton states with I'1 and I's symmetry are dipole-active states. See
text
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Fig. 7.2 Positions of the maxima of the A and B excitonic reflection singularities in hexagonal
CdSe:Mn versus external magnetic induction B for (a) B || ¢ and (b) B L c. Different experimental
points e, o and [] correspond to different orientations of the electric light field vector E with respect
to c-axis and to the direction of B. Temperature 7 = 1.94 K, solid curves represent results of
calculation. According to Ref. [3]
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Fig. 7.3 (a) Excitonic reflectivity curves for uniaxially stressed hexagonal ZnO at 7 = 1.8 K.
Values of applied uniaxial pressure P are indicated at each curve. Geometry of experiment: P L ¢
and @ || c¢. Symbols (L) and (||) in the panel denote orientations of electric light field vector E with
respect to P. (b) Curves of averaged measurements on ZnO, CdS and CdSe. Solid and dashed lines
mean different geometry of experiment in terms of E, P, and c. Points are results of theoretical
calculations. According to Ref. [4]
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in a magnetic field. As a result, a giant splitting of excitonic states was observed via
measuring optical reflection spectra at 7 = 1.94 K in a CdSe sample containing a Mn
concentration of 10 Mol. percent. From typical reflection singularities (c.f. Figs. 1.2
and 1.3) plots were obtained as shown in Fig. 7.2, which represent splitting of the A
and B excitonic levels as a function of external magnetic induction B. (It is worth
mentioning that a difference in wavelength from 617 nm (~2.010 eV) up to 649nm
(~1.910 eV) is really “giant”.) The reason for this unusually large spectral splitting
of ~32nm (about 100 meV) consists in the strong exchange interaction of electrons
with the 3d orbitals of Mn ions; in fact, in an external magnetic field that polarizes
spins of the impurities, this exchange interaction becomes equivalent to the action
of an additional effective magnetic field. Full curves in Fig.7.2 represent results of
calculations.

Symmetry-breaking effects due to a strain-dependent action exerted on excitons in
wurtzite-type semiconductors is demonstrated by Fig.7.3. Again, a very important
role is played (as we shall see shortly) by the exchange interaction; this time by
electron-hole interaction within an exciton. Panel (a) in Fig.7.3 displays optical
reflectivity curves measured at 7 = 1.8 K in the excitonic region of a hexagonal
ZnO crystal exposed to different uniaxial pressures. Panel (b) of this figure reviews
splittings and shifts of the lines as a function of the applied stress together with similar
results obtained on hexagonal CdS and CdSe [4]. The overall situation being quite
complicated (splitting of excitonic lines occurred only in a particular experimental
geometry, different split components exhibited various polarizations etc.), we do not
intend to go into details. We wish to stress one point only: A customary interpretation
of these results in terms of a deformation potential concept was not successful. Only
when, in addition, also electron-hole exchange interaction was taken into account
very good agreement between theory (open circles in Fig. 7.3b) and experiment was
achieved. Then, the maximal wavelength difference between split lines in Fig.7.3b
amounts to ~7nm (about 30 meV) only, which contrasts heavily with the giant
splitting in Fig.7.2.

References

—

Cho, K.: Phys. Rev. B 14, 4463 (1976)

2. Koster, J.F., Dimmock, J.O., Wheeler, R.G., Statz, H.: Properties of the Thirty-two Point Groups.
MIT Press, Cambridge, Mass. (1963)

3. Komarov, A.V., Ryabchenko, M., Semenov, Yu.G., Shanina, B.D., Vitrikhovskil, N.I.: Sov. Phys.
JETP 52, 783 (1980)

4. Koda, T., Langer, D. W., Euwema, R. N.: IX. International Conference on the Physics of Semi-

conductors, Moscow 1968, vol. 1, p. 242. Nauka, Leningrad (1968)



Chapter 8 ®)
Light-Matter Interaction e
and Exciton-Polaritons

in Semiconductors

8.1 Propagating Electromagnetic Light Fields
in a Dielectric Medium

Light corresponds to a transverse electromagnetic radiation field. It is characterized
by its electric- e and magnetic-polarization vectors k. e and k are both oscillating in
time with frequency w and propagating in space, characterized by the wave-vector
q. The fields obey the wave equation and will be described below by harmonic
plane waves. The electric- e and magnetic-polarization vectors k are special forms
of electric field E and magnetic induction vectors B whose evolution in space and
time is governed by Maxwell’s equations.

The wave aspect of an electromagnetic radiation field can be most easily derived
from Maxwell’s equations for the electric field and magnetic induction vector, written
in their differential form. Maxwell’s equations then read in terms of E and B:

V. (eep)E =p (8.1.1)
V-B=0 (8.1.2)
VxXE = _9B (8.1.3)
- at . .
OFE
V x1/(ppo)B = (J + (660)5), (8.1.4)

where “V” is the nabla operator. Maxwell’s equations involve the following quanti-
ties:

e E: Electric field vector
e B: Magnetic induction vector
e J: Electric current density vector
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p: charge density

€0: vacuum permittivity

e: relative permittivity or dielectric function
Lo: vacuum permeability

w: relative permeability

Equations (8.1.1)—(8.1.4) describe the response of a material on an applied electric
or magnetic field. Therefore, one introduces usually the following quantities:

P = ¢y x E: Electric polarization vector

D = eeyE = ¢ E + P: Electric displacement vector
H = 1/(upo)B: Magnetic field vector

M = B — o H: Magnetic polarization vector

In nonmagnetic semiconductors, in which we are interested here, the response to
magnetic fields is only slightly different from that of vacuum. In general it is not
necessary to go into details but it is sufficient to introduce the magnetic polariza-
tion vector M as the magnetic dipole moment per unit volume. As stated above, in
homogeneous, linear (non ferromagnetic), and isotropic media the magnetic field H
and the magnetic induction vector B are parallel and the relative permeability p is a
scalar, not a tensor.

Since the response to magnetic fields is usually not important in nonmagnetic
semiconductors we will not discuss problems connected to the magnetic response
function i in more detail. This is different for electric fields where the material’s
response is described by the relative permittivity (or dielectric function) €, on which
we will concentrate.

The dielectric function € = (1 + ) is determined by the dielectric susceptibility
x- This quantity establishes in a general way the relation between the electric field
vector E and the electric polarization vector P that the field has induced in the
material. It should be carried in mind that x (and thus €) are nonlinear functions of
E and have tensor character in anisotropic materials. For the sake of simplicity this
aspect is neglected throughout this section.

The electric current density vector J in Eq. (8.1.4) is connected to the electric
field vector E through Ohm’s law

J=0E, (8.1.5)

where o denotes the conductivity of the material. Since J is characterized by the
presence of free carriers, it is also called the “displacement current”.

The optical properties of intrinsic or only weakly doped semiconductors can be
described by a vanishing electric current density J or a low conductivity. The elec-
tric current density is not very important in the context of this chapter concerning
exciton-polaritons in intrinsic semiconductors. The second term of Eq. (8.1.4) is,
however, more subtle since it originates from the presence of bound charges, which
can be displaced from their equilibrium position by the electric field E. This con-
tribution is often called the “polarization current”. It involves the dielectric function
€ and depends on the time variation of the electric field. It is therefore of crucial
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importance when discussing the optical properties of materials that are nonmagnetic
and nonconducting.

Let us first consider the propagation of electromagnetic fields in vacuum. For
vacuum, the following conditions hold:

J=0p=0;P=0;M=0. (8.1.6)

They correspond to € = ;= 1 and lead with Eq. (8.1.1) to V « E = 0. In vacuum
one obviously has D || E and B || H. Introducing the conditions Eq. (8.1.6) into
Egs. (8.1.3) and (8.1.4) we obtain

VxE oOH dV x H OE (8.1.7)
x E = —pp— an x H=¢—. 1.
o1 o
. . - 0 . :
Applying the differentiations (V x) and (5) to Eq. (8.1.7) and interchanging tem-
poral and spatial differentiations lead to

VxVxE:—,roxa—Handea—Hzeoaz—E. (8.1.8)
ot ot or?
We now use the properties of the nabla operator:
VxVxE=V(V-E)—V’E. (8.1.9)
And since V « E = 0 we obtain from Eq. (8.1.8)
V’E = /10608827122, (8.1.10)

where “V2 = A” is the Laplace operator. The same differential equation, which is the
well-known wave equation in the absence of any damping process, is also obtained
for the magnetic field vector H.

In conclusion, we find that when solving Maxwell’s equations in vacuum, all
components W; of the electromagnetic radiation field vectors & and e obey the wave
equation, which reads in Cartesian coordinates (x, y, z) in its general form

0y, N 0, N Y,
0x? 0y? 072

O*,;
12

= (1/v) 3

(8.1.11)

The electromagnetic radiation field can be described by harmonic plane waves of the

form
e(r,t) = egexpli(qr — wi)]

and (8.1.12)
h(r,t) = hoexpli(gr — wt)],
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which are solutions of the wave equation (8.1.10). The fields are characterized by a
wavenumber vector ¢, the frequency w, and the electric and magnetic field vectors
eg and hy, respectively.

The field propagates in space and time, “v” being the phase velocity of the
oscillation. Comparing Eqgs. (8.1.10) and (8.1.11) one finds for the phase veloc-
ity v = 4/1/(uoco). This is the light velocity “c” in vacuum, which is one and the
same constant for all frequencies.

We will now consider in more detail the orientation of the field vectors of the
propagating electromagnetic field. Inserting the plane-wave function Eq. (8.1.12)
into the condition V - E = 0 one obtains

V.e(r,t) =iq-e=iq-epexpli(qr —wt)] =0, (8.1.13)
which results in ey L ¢. Similarly, we obtain from Eq. (8.1.7)

V x e(r.1) = —Moahgt’ 2 (8.1.14)

The differentiation leads to the relation

q x e(r,t) =q x epexpli(qr — wit)] = powh(r,t) = powhoexpli(qgr — wt)]
(8.1.15)
or
q X ey = /Lowho. (8116)

This indicates that for the magnetic polarization vector conditions kg L ey and k¢ L
q hold.
Consequently, in vacuum the orientation of the three vectors k, e, and ¢ is mutually
perpendicular to each other:
elhlgqgle. (8.1.17)

Equation (8.1.17) remains valid throughout the propagation of the fields.

The term “Photons” is used to describe propagating light quanta (the quanta of the
electromagnetic radiation field), which transport energy in a well defined direction.
Photons are treated as quasi-particles: The photon energy is quantized and given by
hw and the propagation of photons is ruled by their quasi-momentum labeled fq.
Photons have in addition an angular momentum J = 1. However, it is important
to remember Eq. (8.1.17) here: It indicates that the electric and magnetic fields
of the propagating light quanta are perpendicular to the wave-vector. Therefore,
when taking the direction of propagation given by g as direction of quantization,
photons are characterized by magnetic quantum numbers (M; = +1); a photon state
characterized by M; = 0 does not exist since it would correspond to a longitudinal
field.

Applying Eq. (8.1.12) (describing the propagating electromagnetic radiation field)
to the wave equation Eq. (8.1.10) results into
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¢ = 1/(moeo) = (Ww/q)% (8.1.18)

indicating that the light velocity is determined by the wavenumber vector and the
frequency of oscillation. Both quantities are not independent, free variables but are
linked with each other through the phase velocity. This fact is known as a “dispersion
relation”, which connects the wavenumber vector to the frequency of oscillation or
the wave-vector of the radiation to the photon energy.

In problems concerning wave propagation one considers not only the phase veloc-
ity but one introduces also a velocity, called “group velocity” vg, with which a “wave
packet” (an ensemble of partial waves or “wavelets” around a central frequency)
propagates. Such a superposition of partial waves can e.g. describe a pulsed field.
The group velocity vy is defined through

vy = == = gradyw. (8.1.19)

If one prepares at a certain time a wave packet, propagating into a well defined direc-
tion at a given place, it will keep its spatial shape if the group velocity is independent
of frequency. If v, is frequency dependent, the partial waves, which build the wave
packet, will propagate with different phase velocities and the packet will smear out,
i.e. the superposition of the partial waves will change its form as a function of time
and place. In vacuum, the group velocity v, is equal to the phase velocity and vg = ¢
is also a constant for all frequencies w. Thus, a wave packet will keep its form during
propagation in vacuum.

Let us now consider a homogeneous, isotropic, and non-absorbing dielectric
medium in which the electromagnetic radiation field is propagating. The field is
still characterized by the oscillation frequency w and its propagation by a wavenum-
ber vector, which is denoted by g, where the index reminds that the propagation is
not in vacuum but in a medium that can be polarized. The orientations of the three
vectors e, L h, L g, remain mutually perpendicular to each other but the value of
q, and therefore the phase velocity of the propagating light field are different from
those in vacuum. This will be discussed in detail in the following.

Similar to the case of vacuum discussed above, the wave propagation can be
determined from Maxwell’s equations Egs. (8.1.1)—(8.1.4) but with changed condi-
tions describing the presence of a medium, which is electrically neutral but contains
bound charges. The problem is treated in more details in Ref. [1] and literature cited
therein. As in vacuum, the medium is considered as being linear, isotropic, nonmag-
netic, and without free charges, but it can be polarized by an electric field E. Then,
the following conditions shall hold:

J=0;p=0; P =xeE; M =0, (8.1.20)

where x # 0. The important assumption is at the moment that the polarization
P « E, i.e. that y is a scalar function that does not depend on the field strength.
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The conditions given above correspond to € # 1, p =1, but lead again with
Eq. (8.1.1) to

V.(eep) E=00rV.D=0. (8.1.21)

If € # O this is equivalent to
V.E=0. (8.1.22)

Introducing the conditions Eq. (8.1.20) into Egs. (8.1.3) and (8.1.4) we obtain
VxE oH dVxH OE (8.1.23)
x E = —pp— an x H = eeg—. 1.
Ho ot "o

Proceeding as above, one obtains

OH OH O’E
VxVxXxE= —/J,()V X E and V x E = GGOW (8124)
and together with Eq. (8.1.9) one obtains
0’E
V2E = ejpeg——-. (8.1.25)

ot?

Since in our model only the phase velocity has changed, the same discussion as in
vacuum applies for the dielectric material. The most important point is that solutions
of Eq. (8.1.24) are still plane waves of the form

ey(r,t) = epexpli(q,r — wt)]
and (8.1.26)
hp(r, 1) = hoexpli(gpr — wi)l,
characterized by a wavenumber vector g, the frequency w, and the polarization

vectors ey and hy, respectively.
Applying Eq. (8.1.26) to the wave equation Eq. (8.1.25) results now into

v? = 1/(epoeo) = ¢ /e = (w/q,)°, (8.1.27)

indicating again that the phase velocity v is determined by the wavenumber vector
q, inside the medium and the frequency w of oscillation. According to Eq. (8.1.27)
it is changed when compared to vacuum by the dielectric function e that is given by:

e=cqr /v’ =q,/q (8.1.28)
since ¢ = w/q (Eq. (8.1.18)).

We have defined € = 1 in vacuum. Normally, in a transparent dielectric medium € >
1 holds, implying thatc > v or with Eq. (8.1.28) ¢, > ¢. Thus the photon propagation
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is slower in the medium than in vacuum. This gives rise to light refraction at an
interface between two dielectric media with different dielectric constants since the
refractive index n of the dielectric medium is related to the dielectric function by

n® =e. (8.1.29)

At this point one should notice the fact that only transverse electromagnetic waves
are solutions of Maxwell’s equations in vacuum. In a dielectric medium we find,
however, that Eq. (8.1.21) can also be fulfilled if € = O at a certain frequency. Then
we find:

D=0andV-D=0
or (8.1.30)

V. D = (ccy)V - E = (eco)(iq, - E).

Equation (8.1.30) shows that a longitudinal field E || g, is a possible solution of
Maxwell’s equations in the dielectric medium if € = 0. Using the definitions of the
electric displacement vector D and of the electric polarization P one finds in the
caseof D =0

E=—-1/¢P, (8.1.31)

i.e. E and P are anti-parallel. On the other hand Eq. (8.1.23) remains still valid. This
leads when using the plane-wave solutions for E and H to

qp x E = pjowH and g, x E =0 (8.1.32)

since E || g,. We thus find for longitudinal electric fields that kg = 0 and B = 0,
indicating that the above solution does not describe an electromagnetic wave but a
longitudinal electric polarization wave in which E and P are anti-parallel.

Let us now come back to transverse electromagnetic waves in a dielectric medium.
When introducing the definition of the electric displacement vector D = eeg E =
€oE + P into Eq. (8.1.25) we obtain

0’E o*P
V2E — jpeg— = Mo (8.1.33)

which relates the electric polarization vector (i.e. the response of the dielectric
medium) to the time dependent electric field. Equation (8.1.33) is very general and
follows immediately from Maxwell’s equation.

In order to determine the response of the coupled system of dielectric medium
and photons one has to define the properties of the medium. Let us first consider a
simple situation where oscillators (e.g. atoms) with eigenfrequency wy are coupled
linearly to the propagating electromagnetic field. The oscillators are not interacting
with each other, and the medium is assumed to be homogeneous, nonmagnetic, and
isotropic. As discussed above, the electromagnetic light field is described by plane
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waves with wavenumber vector g, and frequency w. The atoms have a mass m and
an electric charge e. They can be polarized by the electric field and each atom has
an electric dipole moment

p =es, (8.1.34)

where s is the elongation of the charge with respect to its equilibrium position. The

elongation is driven by the electric field and, in the absence of damping effects, the
equation of the harmonic oscillator is given by

%s

mw + s =eE (8.1.35)

where [ is the spring constant of the oscillator. Introducing the eigenfrequency of

the oscillator wy = +/3/m and using the dipole moment instead of the elongation as

variable one obtains
&p 2 2

For a macroscopic system one rather introduces the polarization P and the density

of atoms N. Then one obtains in addition to Eq. (8.1.33) a second equation, which
relates the electric polarization vector to the time dependent electric field:

1050 N )
W—FMOP:(Ne /m)E. (8.1.37)
Eliminating from Eq. (8.1.33) and (8.1.37) the electric polarization P and using the
relations X X
O°E 5 o°P ”
W:—wEandW:—wP,

one obtains a differential equation for the electric field:
0? ) , O*E ,, \O'E
(ﬁ + w(,) (V E — /.l()éow) = (/L()NE /m) W (8.1.38)

Using the plane waves given in Eq. (8.1.26) as solution ansatz for E, one finds that
the plane waves are solutions of Eq. (8.1.38) if the constants fulfill the following
condition:

(—w? + w(z))(qlz, — uoeowz) = uoNezwz/m, (8.1.39)
where ipeg = 1/c?. When introducing the atomic polarizability as

a= u()Ne2c2/m = Ne2/(meo)

one obtains an equation relating the parameters of the dielectric material
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Aqr/w’ =14 a/(w; —wd). (8.1.40)

In the framework of this “one-oscillator model” Eq. (8.1.40) indicates that g, and w
are not independent free variables but have to fit the material parameters in order to
obtain a propagating wave. It establishes the dispersion relation w(g,) of our model
material.

The dispersion relation, which we have already introduced for vacuum in connec-
tion with Eq. (8.1.18), is an important relation that characterizes the optical properties
and the field propagation in a dielectric material. We will discuss it in detail in the
next sections.

The dielectric function e(w) governs the light-matter interaction in a general way
in a homogeneous system under stationary (non-transient) excitation conditions. The
interaction scenario has to be revised under pulsed excitation and for inhomogeneous
systems. In the following discussions we assume that a homogeneous material is
interacting with a stationary electromagnetic field.

Before considering more complicated material properties let us first discuss the
simple atomic model described above. According to Eqgs. (8.1.28), (8.1.40) gives also
the dielectric function €(w) of the model material:

€w) =gy /0’ =14 a/(w; —w). (8.1.41)

Figure 8.1 shows the typical form of the dielectric function €(w) in the case of the
one-oscillator model. First, it is important to notice that in a dielectric material e(w) is
not a constant as in vacuum but depends on the photon energy fw through the material
parameters « and wy. For a dielectric material « is usually a positive constant and
€(w) > 1 for small values of w. Then, e(w) is first increasing with increasing w
and has a singularity at the resonance frequency wy. Above the resonance e(w) is

negative in the frequency range wy < w < /wg + «. As discussed with Eq. (8.1.30)
€(w) = 0 holds for longitudinal electric waves, which oscillate at the frequency wy .

We will come back to this point later. Here we find that e(w; ) =0 for w, =,/ wg + a.
When increasing w further, € is positive and monotonously increasing again. For
w —> 00 one obtains e(w) —> 1, indicating that the field is no longer influenced
by the resonance but completely decoupled from the oscillator.

Equation (8.1.41) gives the most simple model for simulating a dielectric material.
Let us now discuss several possible extensions of this model, which may be relevant
in the context of our work. In the presence of several spectrally separated resonances
“Jj” with polarizabilities «¢; and eigenfrequencies w jo Eq. (8.1.41) can be generalized
to

ew) =14 (aj/ Wl —uw?). (8.1.42)
J

Then the scenario for e(w) is very similar to that of the one-oscillator model: for small
frequencies e(w) =1+ j (a il (wjzo)) > 1. Then €(w) has singularities at each
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Fig. 8.1 Typical form of the dielectric function e(w) in the case of the one-oscillator model without
damping and spatial dispersion. With a: polarizability; wp: resonance frequency (frequency of
transverse mode); wr : frequency of longitudinal mode. (In a quantum mechanical formulation one
uses: oscillator strength f; energy of transverse mode E7; energy of longitudinal mode Ey . Then:

a— foyhwy = Er; hwp = h,/w(z) +a— EL)

resonance frequency wjo, followed by a frequency region where e(w) is negative,
before becoming positive again. As for the one-oscillator model we obtain e(w) —>
1 when w — oo. This scenario indicates that the electromagnetic field is mainly
influenced by resonances that have a higher frequency than that of the field, i.e. a
classical oscillator decouples from a driving field that oscillates too rapidly such that
the oscillator cannot follow.

We have considered the two simplest cases in which independent (not mutually
coupled) oscillators with the same or different eigenfrequencies are coupled to the
electromagnetic radiation field. This approach can be easily generalized to several
interesting cases, including damping or the mutual coupling between oscillators: If

d
a linear damping of the form (ymd—j) is added to Egs. (8.1.35), (8.1.41) takes the

form
eW) =14+ a/(Wi —w* —iwy). (8.1.43)

In this case, e(w) is a complex function, the real part giving the index of refraction
and the imaginary part the absorption of the system. The case of several, spectrally
separated resonances “j” including damping constants 7;, may be treated in the same
way.

If the frequency w is close to a single, isolated resonance with frequency wy this
resonance dominates all other contributions and determines the dielectric function.
When including damping constants -y; for the different resonances, Eq. (8.1.43) then
reads

W) =14 (0j/ (W — w* —iwy)). (8.1.44)
J
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The dielectric function can then be approximated by replacing in Eq. (8.1.44) w by
wy in all terms, which are not resonant, i.e. whose contributions to €(w) do not change
considerably if w is slightly changed in the vicinity of the resonance frequency w.
One then obtains:

e(w) =1+ Z (ozj/(w? — wf — iww_,-)) + as/(wf —w = iwys) =
j#s (8.1.45)

= e+ as/ (W] — W’ —iwy),

where
=1+ (a;/W—w! —iw))) (8.1.46)
J#s
denotes the “background dielectric constant” close to the resonance “s”. This approx-
imation has the advantage that the dielectric function is now described as in the
one-oscillator model in which only the constant term is modified by introducing the
dielectric background, which is independent of frequency w.

Letus now go back to the most simple one-oscillator model for a dielectric medium
in the absence of damping. As discussed above, Eq. (8.1.40) determines not only the
dielectric function e(w), but its solution gives also the “dispersion relation w(q,)” of
the dielectric medium. The value of g, is either real, corresponding to the wavenum-
ber vector of propagating waves, or purely imaginary. An imaginary wavenumber
vector g, describes evanescent waves, which appear in the frequency range where
€(w) is negative, i.e. close to the resonance frequency wy. (See Ref. [1].) Electro-
magnetic waves cannot propagate in this spectral region and, when impinging onto a
surface of a dielectric material, the wave undergoes total reflection. Inside the material
is, however, an evanescent wave generated and | 1/g,, | determines the penetration
depth of the light field.

Figure 8.2 shows the dispersion relation w(g, ) as given by Eq. (8.1.40). We see that

ifw &~ 0,i.e.ifw << wp the dispersion relation simplifiestow = (¢/,/1 + a/wé)ql,.

This means thatw(g,) is given by a straight line with slopec/,/1 + a/wg = c//€(0).
The dispersion bends down close to the resonance at w = wy, where the group velocity

ow

Vg = % = 0. At higher frequencies w is purely imaginary but becomes real again if

a/ (W2 —w?) > —1. We see that this frequency w is equal to w;, = /w2 + « defined

above. It characterizes the eigenfrequencies of longitudinal electric waves, which are
solutions of Maxwell’s equations. When w = w; the wavenumber vector g, = 0 and
. Oow . . ..
the group velocity vg = Pl 0 again. At very high frequencies, i.e. if wy << w
q

the dispersion relation simplifies again to a straight line with slope c. We see that the
asymptotic values of the group velocity vy is smaller below an electronic resonance
than above the resonance.
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Fig. 8.2 Typical form of the dispersion relation w(qg,) in the case of the one-oscillator model

without damping and spatial dispersion. wy: resonance frequency; a: polarizability; wy = , /wé + a:
frequency of longitudinal mode; LPB (UPB): lower (upper) polariton branch; slope of the dotted
line: light velocity c; slope of the dashed-dotted line: polariton phase velocity v = ¢//€(0)

If different resonances are considered we obtain the same general features as for
a single resonance: For a given w the solutions for g, are either real or imaginary,
indicating either propagating or evanescent waves. If a finite damping is considered,
the wavenumber vector g, is a complex number, indicating that the field is attenuated
during its propagation. The equation to be solved is then

AR/t =14 (a;/W} —w? —iwy)). (8.1.47)
J

Let us now go back to Eq. (8.1.40) but consider the dispersion relation in the
following interesting case: If the atoms, which give rise to the electric polarization P
are not independent but are interacting directly with each other, their eigenfrequency
wp has no longer a constant values, but wy becomes a function of the wavenumber
vector q,. Or, to put it differently, w(gp) is no longer a single valued function but
has for a given frequency several solutions for the wavenumber vector g,. Due to
their mutual interaction the oscillator modes noted wy(gp) are said to show “spa-
tial dispersion”. Their dispersion is first determined and the interaction with the
electromagnetic radiation field is then considered in a second step. This concept is
used throughout this article when modes with spatial dispersion are coupled to the
electromagnetic radiation field.

The dispersion relation w(gp) of the interacting oscillators coupled to the light
field is now given by the solution of Eq. (8.1.40), which takes the form:

g2 w(gy)® =1+ a/(wolgp)* — w(gy)®). (8.1.48)
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A typical form of the resulting dispersion relation using the one-oscillator model is
shown in Fig. 8.9 and more complex cases are discussed in Sect. 8.4.

Up to now, we have treated atoms in the framework of classical mechanics. Our
discussion remains valid, however, if atoms and optical transitions are treated by
quantum mechanics. Fields are then still described by classical electrodynamics,
which is sufficient in this work. This is the approach in Hopfield’s theory [2]. In
order to obtain a quantum mechanical description of the problem, one has to perform,
however, several modifications (for more details see Ref. [1]):

First, one has to replace the oscillators by (in our case electronic) transitions
and to introduce an oscillator strength f; instead of the atomic polarizability . In
Eq. (8.1.37) the term (Ne?/m) describes the coupling strength of the oscillators to
the electromagnetic radiation field. It is replaced by the oscillator strength, which
measures the coupling of the electromagnetic field to the electron that undergoes a
dipole-active transition between two states |i) and |j). The transition probability is
proportional to the corresponding dipole-matrix element squared

=P = [a1HP 1)
where HP denotes the dipole operator, which induces the transition. The dipole-
matrix element depends on the symmetry of the states |i) and |j) and on the field
polarization. Following Ref. [1] the oscillator strength f; then takes the form

filwo) = 2Nwy |HP | /(heo),

which replaces the atomic polarizability «,;. (We note here that some authors define
2
the oscillator strength as a dimensionless quantity f' = 2mwyq ‘Hi? ‘ /(he?), which

multiplies the polarizability & = Ne?/(mep) in order to obtain f; given above. For
sake of simplicity, we follow here Ref. [2].).

Second, one considers energies rather than frequencies. We therefore note in
the following by E; the energy fw, of the considered resonant transition “s”, i.e.
the energy difference between the two states, which are involved in the electronic
transition. Since the energy-quantum E is given to the material during the excitation
by the electromagnetic field (the system has a higher energy after the excitation than
before, and this energy remains in the system during a certain time) this process is
considered as an “elementary excitation” of the system. As discussed in preceding
chapters this elementary excitation is considered as a quasi-particle, E; being its
energy (Here we are mainly considering excitons in the following but our approach
is also valid for other elementary excitations as e.g. dipole-active phonons.).

In order to relate the oscillator strength f;(wp) to measured quantities let us return
to the one-oscillator model given in Eq. (8.1.45) for an isolated resonance wy, but in
the absence of damping. The dielectric material is assumed to be homogeneous and
isotropic. Starting from Eqgs. (8.1.45) and (8.1.46) we introduce instead of
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— 2 2
W) =€ + ay/(wy; —w?)
the oscillator strength f; and write:
2 2
ew) = e, + fi/(wy —w). (8.1.49)

One replaces now the resonance frequency w; by the energy of the considered trans-
verse exciton state Er that couples to the light field. Then, the polarization and the
electric field lead to the following equation

ew) = & + W f,J(EF — (hw)?). (8.1.50)

Figure 8.1 shows € as a function of w. At fiw = 0 the dielectric function turns to
e0)=¢, + hzfs/(E%). €(w) has a singularity at w7 = E7 and is then negative, but

changes its sign again at
hw =\ E3 + 12 f;/ep. (8.1.51)

As discussed with Eq. (8.1.30) e(w) = 0 holds also for longitudinal electric waves.
Therefore the energy of the transverse coupled modes given above is identical with the
energy of the longitudinal exciton E; (which corresponds to a longitudinal electric

wave). We thus find
E; :,/E%—i—hzfx/q], (8.1.52)

which implies immediately with Eq. (8.1.50)
1 fy = ep(E] — E7). (8.1.53)

Equation (8.1.53) relates the oscillator strength directly to the longitudinal and trans-
verse eigenfrequencies of the oscillation. This situation follows from a general rule
(see Ref. [3]) according to which the frequencies of longitudinal and transverse exci-
tations of a system are the signature of a zero and a singularity (pole) of the dielectric
function, respectively. Figure 8.1 illustrates this rule. For iw > E; the dielectric
function €(w) increases monotonously to €, when iw >> E| .

Let us now come back to the dispersion relation and consider the quasi-momentum
hQ of the coupled elementary excitations in the absence of spatial dispersion (i.e.
E; and E7 have constant values). (In order to stress that we consider elementary
excitations as quasi-particles we denote their wave-vectors by @ and their quasi-
momenta by A Q. The wave-vector @ is directly given by the wave-vector of the
photons g, that excite the polarizable medium in which they propagate.) Then the
polarization and the electric field lead to the following equation, which determines
the dispersion relation of the elementary excitations:
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AR QY E(Q) = e+ W2 f;/(E2 — Ei(Q)?) =

8.1.54
& (1 + (E] — E})/(E7 — E:(Q)Y), ( )

where E;(Q) = hw;(Q) denotes the energy of this mode “i”. (We have introduced
an index “i” since the transverse modes can be degenerate and may depend on the
polarization of the field as will be discussed later.) Since the polarizable state coupled
to the light field is considered as a quasi-particle, it is called a “polariton”. As in the
classical case discussed above, E;( Q) is obtained from the solution of Eq. (8.1.54)
and gives the polariton dispersion.

Again Fig.8.2 shows its general form after considering the modifications men-
tioned above. (In addition, when compared to Eq. (8.1.40) we have introduced in
Eq. (8.1.54) the background dielectric constant €,.) The dispersion E;( Q) has two
branches where Q is real, which are separated in energy by a solution where Q is
imaginary. The two real branches of Q are called the “lower” and “upper” polariton
branch and are labeled “LPB” and “UPB”, respectively, in Fig.8.2. The slopes of
these branches give the polariton group velocity. The lower polariton branch (LPB)
starts with a linear slope at Q@ =0, E;(Q) = 0 and approaches the energy value
E7 = hwy from below for large wave-vectors @, where the polariton group velocity
is equal to 0.

The upper polariton branch (UPB) starts at Q = 0 and energy E; = hw; with
a group velocity vg = 0. It then varies linearly in energy for larger wave-vectors
Q. There, its slope is ¢/,/€p, i.e. it increases when compared to the lower polariton
branch.

In order to better understand the identification of E; = ‘/E% + h2fs/ep given
above, consider the following situation: An oscillating dipole is embedded in a homo-
geneous, isotropic material. wg is its eigenfreqency. At rest, the eigenfrequency is, by
symmetry, independent of the dipole orientation in space, spanned by the Cartesian
coordinates (x,y,z). If, however, the oscillator is propagating with wave-vector Q
along the z-direction, the wave-vector breaks the spherical symmetry of the system
that has now cylindrical symmetry. Then the eigenfreqency of the oscillator may be
different when oscillating along the z-direction (parallel to @) or perpendicular to
Q. Under cylindrical symmetry x and y directions remain equivalent, i.e. transverse
oscillations along x or y are different modes, but they obey the same dispersion
relation.

In the exciton problem described above, “longitudinal” and “transverse” modes
can be only distinguished if Q # 0 since then the spherical symmetry is broken. For
Q = 0, however, we have spherical symmetry and “longitudinal” and “transverse”
modes are indistinguishable and their energy is therefore degenerate. This implies
for our example that longitudinal excitons and transverse upper-branch exciton-
polaritons have the same energy E; at the I"-point.

Polaritons with a small group velocity are said to be “exciton-like” and when the
slope of the dispersion relation is large they are called “photon-like” since excitons
and photons behave in that way. It is interesting to notice that the dispersions of
transverse excitons and photons (the latter is given by the dotted line with slope
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“c” in Fig.8.2) cross, but for polariton branches this crossing is forbidden. This
“anti-crossing” behavior (hybridization) of dispersions is well known in quantum
mechanics for interacting, almost degenerate states that have the same symmetry.

Concerning the energetic region where @ is imaginary, it makes no sense to inter-
pret it in terms of “polaritons”. Polaritons are propagating quasi-particles consisting
of the electromagnetic radiation field, which excites electronic transitions. Within the
polariton concept, this range corresponds rather to an energy gap where wave propa-
gation is forbidden. In this region, this energy gap allows the presence of evanescent
waves.

8.2 [Exciton-Polaritons in Direct-Gap Semiconductors

Let us now leave the general problem of propagating electromagnetic fields in a
dielectric medium and focus on the physical situation we are interested in: excitonic
polaritons in direct semiconductors close to the fundamental band gap. Then our
discussion will concern photon energies of several eV (about 1 to 3 eV). Using
typical values of € = (2 to 10) for semiconductors, Eq. (8.1.40) leads to photon-wave
numbers g, of several 10° to 10° cm™'. When comparing to the extension of reduced
Brillouin zones in simple crystals (i.e. wave numbers at the zone boundary gy of the
order of some 10% cm™') we see that the photon-wave numbers are very small, i.e.
q, ~ 0 when discussing them in comparison to g . This statement is equivalent to the
fact that the wavelength of the plane waves considered here is long when compared to
the inter-atomic distances (which gives also the order of magnitude of wave numbers
at the zone boundary g in simple crystals). Therefore, semiconductor crystals can
be considered as being homogeneous materials with respect to propagating photons.
Then light diffraction due to the translational invariant atomic structure does not take
place for the wavelengths considered here and impurity scattering can be neglected
in a good approximation. Of course, this discussion applies only to systems whose
dimensions are infinite and where surface effects and dislocations can be neglected.

Since we will discuss electronic transitions from one state to other states, we will
mainly be interested in bound electron-hole states, the excitons. As discussed in the
foregoing chapters excitons, having a dipole moment, are characterized by a total
angular momentum J = 1. Because of this symmetry, transverse excitons couple
to photons, which have equally an angular momentum J = 1 and the dipole-matrix
element between a valence-band state and a conduction-band state may be # 0. This
means that transverse excitons can be excited optically and the resulting elementary
excitations have mixed exciton and photon character.

Direct optical transitions discussed here take place with conservation of energy
and momentum and do not involve other quasi-particles as e.g. phonons or impu-
rity scattering. The electron spin is not changed by the transition since the interac-
tion between electrons and photons involves only the orbital part of the electron-
wave functions. In a one-electron band-structure schema E (k) transitions of an
electron from an occupied valence-band state (characterized by its energy E,(k,),
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wave-vector k,, and spin o,) to an unoccupied conduction-band state (characterized
by E.(k.), k., and o,) by absorption of a photon with energy Aw and wave-vector
0 leads to

Ec(ke) = Ev(kv) + hw

kezkv+Q 8.2.1)
and o
Op = Oy.

According to the above discussion Q « k, and optical transitions are almost vertical
when represented in the one-electron E (k) band-structure diagram. Then Eq. (8.2.1)
leads to

k., = k,. (8.2.2)

Above we have introduced a model, which can be used to determine the polariton
dispersion relation E;( Q) and the dielectric function e(w) of a material. Let us now
discuss some general aspects of coupled polarization-photon systems: In optics,
when shining light of frequency w onto a material, e(w) or the dispersion relation
E;(Q) impose the wave-vector (i.e. both its absolute value and the direction) that
governs the propagation of the plane waves. At a given frequency and for a given
polarization the dielectric function e(w) or E;( Q) are determined by the electronic
states of a material. The material becomes polarized by the light field and the electric
charges can change from one state to another. But electronic transitions between states
correspond to frequency resonances in the dielectric function, which depends on the
photon energy fw, the propagation wave-vector Q and the electric polarization vector
e, with respect to the crystal axis, the intensity of the light field, etc. Furthermore,
€(w) is a complex function since materials are usually absorbing.

In general, e(w) and the dispersion relation E;(Q) are therefore complicated
functions of the material parameters. Several measurement techniques have been
developed for semiconductors and insulators in order to determine exciton-polariton
structures in the presence of spatial dispersion and symmetry breaking effects.

To determine a dispersion relation needs the simultaneous knowledge of the energy
E; and of the wave-vector Q of the elementary excitation. Since propagating light
fields are used in these measurement techniques, they have all to overcome an inher-
ent difficulty: The fields are propagating inside a sample, which one wants to study,
but the measuring procedure is performed outside of it. Thus, the studied signal has
to be transmitted through a surface. At the surface, the propagating polaritons are
partly reflected and partly transmitted and propagate as photons outside the sample.
While the frequency (or photon energy) of the elementary excitation is conserved
throughout the transmission process, the wave-vector is not a conserved quantity
since space (at the surface) is not homogeneous. Therefore, methods have to be devel-
oped, which allow to reconstruct the wave-vector Q inside the sample from quantities
that can be determined outside the sample. This is the reason why simple straightfor-
ward optical methods as one-photon absorption or conventional emission (lumines-
cence) measurements are not suitable for determination of the polariton dispersion.
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Experimental methods developed for momentum-space or “ Q-space spectroscopy”
are among others:

e Analysis of Fabry-Perot modes

e Time-of-flight method

e Two- or three-photon spectroscopy

e Two-photon Raman scattering (denoted by some authors also as hyper-Raman
scattering)

Resonant Brillouin scattering

Two-phonon Raman scattering

e Thin-prism method

Many details and results of the experimental techniques are easily found in litera-
ture, and we give here only some few examples in order to explain the measuring
procedure.

When shining white light on a thin sample with flat, parallel surfaces Fabry-Perot
modes appear in the transmission and reflection spectra of the sample. They are due
to the interference of partial waves, transmitted and/or reflected from the different
surfaces. Successive maxima or minima of the Fabry-Perot fringes are separated
by AQ = 7/d where Q@ is the propagation wave-number of the polariton and d
the geometrical thickness of the sample. Far from a resonance, e(w) of a material
can be easily measured and for a given frequency w the polariton wave-number
Q can be determined from Eq. (8.1.28). Starting from such a point in the (w, Q)
diagram, the polariton dispersion can be reconstructed from the spectral positions of
the Fabry-Perot fringes (see Refs. [4-8]). Let us consider CuCl as an example. As
we will discuss in more detail in Sect. 8.3, CuCl is a semiconductor, in which the
lowest lying exciton series can be well described by the one-oscillator model. As
shown in Fig. 8.3 one clearly observes Fabry-Perot interference fringes in the light
intensity, transmitted (Trp) and reflected (Rpp) by the sample. From these fringes
the dispersion of the upper and lower polariton branch (UPB and LPB, respectively)
has been reconstructed and visualized on the right panel of Fig. 8.3 by the bold line.

As stated in Eq. (8.1.19) the group velocity vy = % determines the propagation

of a polariton through a sample. As shown in Fig. 8.4 for the example of CuCl, the
variation of vy /c as a function of photon energy is quite important in the vicinity of the
exciton resonance, resulting in a “slowing down” of the propagating quasi-particles.
This region is therefore also called the “bottleneck region” of the dispersion. As
shown in Fig. 8.4, very small values of vg/c ~ 107> to 10~* are observed when the
photon energy of the exciting laser pulses is tuned through the bottleneck region. The
thickness of the sample being known, the polariton group velocity can be determined
by measuring the time-of-flight of a light pulse through a sample as a function of
frequency. Then the dispersion relation is obtained through integration of Eq. (8.1.19)
(see Refs. [9-11]).

In two-photon spectroscopy (see Fig.8.5 as an example) one uses a spectrally
broad test and a narrow pump beam of frequency w), to excite a sample at spatial and
temporal coincidence. In Fig.8.5 @ is the angle between the exciting beams inside
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Fig. 8.3 Analysis of Fabry-Perot modes in reflection (R p, left panel) and transmission (7 p, right
panel) of a 0.15 pm thick CuCl platelet at a temperature 7 = 1.6 K in the Z3-exciton series. Using
the one-oscillator model the polariton dispersion is reconstructed from the interference fringes. The
polariton dispersion is superimposed on the right panel and visualized by the bold line. E;, denotes
the energy of longitudinal exciton. LPB (UPB) denote the lower (upper) polariton branch. (Adapted
after Refs. [4, 7])
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Fig. 8.4 Time-of-flight method through a semiconductor sample. The polariton dispersion (left
panel) E(Q) (energy E as function of wave-number Q) and the resulting relative polariton-group
velocity vg/c (right panel) against photon energy are shown together with experimental results of
time-of-flight measurements on a CuCl platelet at T = 2 K. vy denotes the polariton group velocity;
c: light velocity; LPB (UPB) lower (upper) polariton branch. (Adapted after Refs. [1, 9, 10])
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Fig. 8.5 Two-photon absorption measurements for different angular configurations as a function of
the two-photon energy in CuCl (temperature 7 = 1.5 K). The inset shows the scattering configura-
tion. The polariton wave-vectors of test and pump beams Q;, Q p are calculated from the angles of
incidence and the refraction index of the sample, ® denotes the angle between the exciting beams.
Their sum determines Q., the final-state polariton wave-vector, created by the two-photon absorp-
tion process. In the test-beam spectrum, transmitted through a sample, two-photon absorption gives
rise to absorption peaks that are due to the creation of a longitudinal exciton (LE) and to a polariton
(TP) on the upper polariton branch. While the peak labeled LE stays at a fixed spectral position,
the position of peak TP changes when @ is varied, i.e. if the module of Q. is changed. This allows
to reconstruct the polariton dispersion by adjusting the parameters of Eq. (8.1.54). Since the two-
photon absorption coefficients are small (of the order of 10~ cmW ™), high intensity laser pulses
(of about 20 ns duration and several MW/cm? maximum peak intensity) and samples, having a
thickness of several mm, have to be used. Experiments with these characteristics are possible since
the photon energies of the beams are outside the exciton resonance. (Adapted after Refs. [12, 13])

the crystal. The pump beam changes the transmission of the test beam through the
sample and leads to spectral hole burning at frequency w;. By changing the photon
energy of the pump beam one verifies that an induced absorption change is due
to a two-photon absorption process and not to population of exciton or impurity
states, which may also be induced by the pump beam. (In a two-photon absorption
process the sum w, = w; +w, remains almost constant if w, is changed. If an exciton
population is created by the pump beam the spectral hole burning at frequency w;
remains at a fixed frequency, independent of the frequency w),.) Thus, the frequency
w, of the final state in the two-photon absorption process is measured.

If the frequency of both beams is outside of resonances, the dielectric function is
constant and as mentioned above, the wave-numbers Q, and Q, of test and pump
pulses can be calculated from w; and w), respectively. One measures the angles of
incidence of test and pump pulses, determines from the dielectric function e(w) = n?
the corresponding refractive indexes n, and n,, and calculates the wavenumber vec-
tors (direction and absolute value) Q; and @, of test and pump polaritons. The sum
of Q; and @, determines the wavenumber vector Q. of the final-state polariton,
excited in this “two-photon absorption” process (see inset of Fig. 8.5). When chang-
ing the angle @ between the exciting beams @, is varied and different points on
the polariton dispersion can be reached, which can thus be partly reconstructed. One
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should notice that this technique does not allow to attain the lower polariton branch
(see Refs. [12, 13]) but only higher polariton branches as well as longitudinal exci-
tons. Although not dipole active, the latter can be optically excited by two-photon
absorption in a non-collinear configuration.

The sample can be excited similarly in three-photon spectroscopy by three spec-
trally narrow laser beams. Usually, one of them has a fixed photon energy while the
second one is tunable. The latter is split into two beams and the angular configuration
of the three beams can be chosen. As discussed above it determines the wavenumber
vector of the final state @, that is reached by the three-photon absorption process.
In this way elementary excitation populations can be excited resonantly. They relax
to other states, which give rise to photoluminescence (PL). The intensity of PL lines
that are sensible to such three-photon absorption processes is measured and their
maxima determined, i.e. the three-photon absorption maximum is determined for a
fixed angular configuration by photoluminescence excitation (PLE) spectroscopy. As
described above the energy and the wavenumber vector Q. of the final state reached
by the three-photon absorption process can be determined. Varying the angular con-
figuration allows then to reconstruct the polariton dispersion. For details see e.g.
Refs. [14, 15].

Two-photon Raman (or hyper-Raman) scattering is a quite efficient method
in which one excites an almost resonant intermediate state (mostly an excitonic
molecule or biexciton) virtually by two-photon absorption. One may either use one
or two different, spectrally narrow, tunable laser beams to excite the sample. (The
one-beam configuration is discussed in the following.) The intermediate state recom-
bines into two other polaritons or one longitudinal exciton and one polariton, obeying
energy and wave-vector conservation of the two incoming and outgoing quasi parti-
cles. In Fig. 8.6 @ is the scattering angle between exciting and the observed polariton.
The sample emission is measured spectrally resolved in a well defined direction for
a fixed angle of incidence of the exciting beam. The observed emission lines shift
spectrally with the photon energy of excitation. These measurements are repeated
for different angels of incidence and observation in forward (dashed line in Fig. 8.6)
or backward (full line in Fig. 8.6) scattering configurations. The parametrized polari-
ton dispersion is then used in a self-consistent way to calculate from the measured
angles and photon energies the wavenumber vectors Q; (i = 1 to4) of the four quasi
particles involved in the scattering process. The parameters defining the dispersion
relation are then adjusted such that the experimental results are reproduced. (See
Refs. [16-20].)

In resonant Brillouin scattering Ref. [21] a spectrally very narrow, tunable laser
excites close to the exciton resonance a polariton state in the sample. As indicated
in Fig. 8.7 it scatters by emission of an acoustical phonon to another polariton state,
obeying to energy and momentum conservation. The scattered polariton transforms
into a photon outside the sample, which is then detected. (One often works in a
backscattering configuration with phonon emission (Stokes scattering); scattering
involving phonon absorption (Anti-Stokes scattering) is, however, also possible.) If
the frequency of the excitation source is changed, different polariton states are excited
that scatter to new final states and involve other phonons with different frequencies.
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Fig.8.6 Scheme of two-photon Raman scattering via biexcitons (see Ref. [16]) in a forward (dashed
lines) and backward (full lines) scattering configuration. Two polaritons with photon energy fuw;
and wave-vector Q; excite biexcitons virtually. They recombine under energy and wave-vector
conservation (here into two LBP polaritons) with wave-vector Q and K, respectively. @ is the
scattering angle inside the crystal between the exciting polaritons and the final-state polariton with
wave-vector Q. This polariton is observed outside the crystal as a photon, emitted by the sample.
The second quasi-particle with wave-vector K, which is not observed in the experiment, can be
either a polariton on the lower polariton branch or a longitudinal exciton

The dispersion of acoustical phonons being known, the excitonic polariton dispersion
can be reconstructed close to the exciton resonance (see e.g. Refs. [22-27]).

A slightly modified scattering mechanism is used in two-phonon Raman scat-
tering (c.f. Refs. [28, 29]). In this process, in a first step, the exciting polariton is
first scattered by a longitudinal or transverse acoustical phonon to an intermediate
polariton state. This scattering process can take place with absorption or emission
of the acoustical phonon. The intermediate-state polariton decays under emission
of a longitudinal optical phonon to a final-state polariton, which is situated on the
lower polariton branch and transforms into a photon, which is then detected. Since
the energy of longitudinal optical phonons is constant in the wave-vector interval
relevant in two-phonon Raman processes, the excitonic polariton dispersion can be
reconstructed from the known dispersion of the acoustical phonons.

The thin-prism method is a well known method to determine the refractive index
n of transparent materials. A parallel light beam is transmitted trough a sample with a
prismatic shape. The prism angle being known, the refractive index of the material can
be determined from the deviation of the light beam and the wave-number calculated
from Eq. (8.1.28) and the frequency of the light (c.f. Refs. [30, 31]). As the analysis
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Fig. 8.7 Scheme of resonant Brillouin scattering (Stokes scattering) in a backward configuration
involving the emission of longitudinal (L, dashed arrows) and transverse (7', full arrows) acoustical
phonons. The full lines give the polariton dispersion E(Q) of a one-oscillator model. (1, 2) and (1°,
2’) indicate the branches of the exciting and final-state polaritons and (1, 1°) or (2, 2’) denote the
upper or lower polariton branches, respectively. £ and E7 indicate the energies of the longitudinal
and transverse excitons. Aé and Ag visualize the Stokes shift of the Brillouin emission lines due
to a L or T phonon-emission process, respectively. (Adapted after Refs. [4, 22, 40])

of Fabry-Perot modes and the time-of-flight method, the thin-prism method is quite
difficult to apply to materials with strong excitonic resonances since such materials
have also a strong absorption. Then the transmitted beams are highly attenuated and
the imaginary part of the dielectric function can no longer be neglected compared to
its real part.

All we have said so far about polaritons has been concerned with direct band-
gap semiconductors (after all, as in all the preceding chapters). Now it might be
important to ask the following question: What about polaritons in indirect band-
gap semiconductors, where the bottom of the conduction-band and the top of the
valence-band are located at different wave-vectors Q in the first Brillouin zone?

We have sketched both cases (direct and indirect band-gap materials) in Fig. 8.8.
In this figure, exciton energy levels are displayed as an extension to Q # 0 of the
relevant exciton features from Fig. 4.2 (in other words, these are the exciton dispersion
curves). Along with these features, also photon dispersion curves, represented by
straight lines with slopes driven by the speed of light v in the given material (the
phase velocity v is defined in Eq. (8.1.27)) are shown. Here we obtain
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Fig. 8.8 Schematic representation of the exciton- and photon-dispersion curves in (a) direct band-
gap and (b) indirect band-gap semiconductors. (a) While polaritons (dashed lines) are formed in
the cross-over region of exciton and photon dispersion curves (around point “P”) in direct semi-
conductors, such a cross-over region (see panel (b)) does not exist in indirect semiconductors. (See
text)

v=c/e
and (8.2.3)
E = hw = vhQ.

In the left panel (a) of Fig. 8.8, i.e. in a direct band-gap semiconductor, the exciton
and photon dispersion curves cross each other. If both quasi particles have the same
symmetry (i.e. in the present case: if the excitons are dipole-active) they give rise
in this way to degenerate states that belong to both systems, excitons and photons.
Then, as is well known from quantum mechanics, the dispersion curves must split at
the point of intersection P in order to remove the degeneracy (leading to the “anti-
crossing” behavior mentioned already above). This is illustrated in panel (a) by the
dashed curves around P. The region in the vicinity of P then schematically represents
polariton-dispersion curves, which have been introduced in this section and will
be treated in detail in the rest of this chapter (as discussed above “polaritons” are
understood as mixed states of excitons and photons).

On the other hand, in an indirect semiconductor the dispersion curves of excitons
and photons do not intersect, as shown in panel (b) of Fig. 8.8. There are two reasons
for this: First, since the speed of light is extremely high, the slope of the photon
dispersion is also very large and the “photon-like region” is limited to a narrow
interval of wave-vector Q values (with 0 < Q < 10° cm™!) around the I'-point.
Second, in virtually all known semiconductors with indirect band gap the Q;-point
(this is the point of minimum energy of the indirect exciton) is located very far
from the I'-point, namely, at (or close to) the first Brillouin-zone boundary (Q; =
10% cm™'). For these reasons the exciton and photon states do not enter into an
immediate interaction (interaction may be mediated e.g. by phonon fields) and thus
there is no reason to consider exciton-polariton states in indirect band-gap materials.
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Perhaps a last note is worth mentioning at this point. The optical properties of
semiconductors are usually treated in the so-called dipole approximation Q = 0
(see Refs. [1, 32]). This approximation covers most of the excitonic properties and
experimental manifestations, but not all of them. First, because Q is in fact a little
bit larger than zero, the photon dispersion curve in direct-gap semiconductors must
cross that of the excitons (see Fig.8.8a), leading quite naturally to the polariton
concept. Second, the diffusion of electronic excitations (free excitons) in real space
over a distance of 1/Q =~ 1073 c¢m (= 100 nm) causes non-local effects known as
“polariton spatial dispersion” (or wave-vector dependence of the dielectric constant).
From the point of view of symmetry these phenomena can be regarded as “symmetry
breaking” due to the final magnitude (even if very small) of the wave-vector Q. Thus,
the polariton concept goes beyond the common dipole approximation but, at the same
time, it is important to realize that this concept is limited to a very narrow range of
wave-vectors @ close to the I point.

8.3 Exciton-Polaritons in the I'¢ ® I'7 Subspace
in Zincblende-Type Semiconductors

As already discussed in Sect. 4.1, excitons are bound states of an electron and a
hole in a semiconductor. Besides the band indexes of the states, excitons are usually
characterized according to their center-of-mass wave-vector Q and their spin . In
the electron-hole representation wave-vector and spin of the excitons are given by

Q = ke + kh
and (8.3.1)

O—:GE+Uh9

k. and o, being the wave-vector and spin of the electron. Since it will be important
in the following discussion we recall that the hole wave-vector kj and spin o, are
obtained from the wave-vector k, and spin o, of the missing electron in the valence
band by Kramers’ conjugation, i.e.

ky, = —k,
and (8.3.2)
Op = —0y.

Using Eq. (8.2.2) together with Eq. (8.3.1) we see that the center-of-mass wave-
vector Q of excitons interacting with the electromagnetic radiation field in direct
semiconductors is very small when compared with the wave-vector characterizing
the boundary of the Brillouin zone ¢, i.e. Q/qp ~ 1073 for dipole-active excitons
in which we are interested here.
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Electrons and holes being charged quasi-particles, they interact with each other
via Coulomb interaction and they are subject to the periodic crystal potential. The
electron-hole interactions, which possess the full crystal symmetry have been dis-
cussed in Chap. 4 and especially in Sect. 5.1. Using the | J, M) pseudo-spin notation
for the exciton states in the electron-hole representation, one obtains the four states
given in Egs. (5.1.7) and (5.1.8).

While the attractive direct Coulomb interaction leads to the exciton-binding
energy, which is the same for the J =0 and J =1 exciton states, the repulsive
electron-hole exchange-interaction splits the singlet-exciton states (the J = 1 states)
with I's symmetry from the triplet-exciton state with I'; symmetry (see Fig. 4.3).
The spin-triplet exciton state corresponds to the eigenstate of pseudo-spin (J = 0,
M = 0), which does not carry a dipole moment. It is not affected by the exchange
interaction.

J = 1exciton states posses a dipole moment. The eigenstates consist of two trans-
verse exciton states and a longitudinal one, in which the dipole moment is orientated
along the center-of-mass wave-vector Q. The dipole moment of the two transverse
exciton states is orientated perpendicular to Q. For completeness, we mention at this
point that one can define transverse and longitudinal exciton states only if the center-
of-mass wave-vector Q # 0 andifitis a well defined quantity. This is the case in bulk
crystals but it is no longer the case in very small nanostructures. This point is impor-
tant since the electron-hole exchange interaction has two contributions as discussed
in Sect. 4.3 (see also Ref. [33] ): an analytical one, which is independent of the orien-
tation of the dipole moment with respect to the wave-vector Q and a non-analytical
exchange interaction, which acts only on longitudinal excitons. Thus the energies of
transverse and longitudinal exciton states increase (with respect to the spin-triplet
exciton state) with increasing analytical exchange interaction. In addition the energy
of longitudinal excitons is further increased by the non-analytical exchange interac-
tion. This results in the fact that longitudinal and transverse excitons are no longer
degenerate in bulk material. Thus, at Q@ = 0, the electron-hole exchange-interaction
splits in the ' ® I'; subspace of zincblende-type semiconductors the exciton states
into a triplet-exciton state with I', symmetry, two transverse exciton states with I'sy
symmetry and a longitudinal exciton states with I's; symmetry (see Fig. 4.3 and also
Fig. 4.1).

As discussed in connection with Eq. (8.1.53), dipole active transverse excitons
have a so-called “oscillator strength” f,, which is proportional to the splitting between
longitudinal and transverse-exciton states. In fact if one neglects the wave-vector
dependence of the longitudinal (£ ) and transverse exciton energies (E7) one finds
for the “one-oscillator model” (a situation where only one isolated oscillator interacts
with the light field and all other resonances are accounted for by a background
dielectric constant ¢,): h? f; = eh(Ez - E%). We see that the non-analytical part of
the exchange interaction accounts for the oscillator strength of excitons.

Transverse J = 1 excitons and photons (the quanta of the electromagnetic radi-
ation field) have in zincblende-type semiconductors the same symmetry properties:
both types of quasi-particles possess a dipole moment, which is orientated perpen-
dicular to their propagation direction and the states transform as I's. Quasi-particles
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having the same symmetry are said to be in the “strong-coupling regime”. This means
that these elementary excitations, “exciton-polaritons”, have mixed exciton and pho-
ton character. As discussed above and displayed e.g. in Figs.8.2 and 8.8, because
of the strong coupling between excitons and photons, the dispersion of the coupled
system is strongly modified in the cross-over region, where exciton and photon states
have similar energies. Hybridization or “anti crossing” of the dispersions is observed
in such situations. In general, only dispersion relations of elementary excitations
having different symmetries can cross each other.

In most cases the longitudinal and transverse exciton energies depend on the
wave-vector, i.e. they show spatial dispersion: Excitons are a collective excitation of
acrystal and correspond classically to an excitation of coupled oscillators. Therefore,
one has to consider in the formation of polaritons that E7 is a function of Q. As
discussed in Sect. 5.2 the finite wave-vector @ breaks the point-group symmetry of
the crystal and the exciton dispersion is described by a power-law:

Er(Q)=Er+) a,Q". (8.3.3)

Inthe ' ® I'7 subspace the leading powerisn = 2. As given in Eq. (5.2.3), differ-
ent wave-vector dependent direct and exchange electron-hole interactions terms may
exist at this order. In the following we will neglect the (even anisotropic) exchange
interactions, which break the point-group symmetry. As discussed in connection with
Eq. (5.2.4) the factor a; = h?/(2M,,) is determined by the effective exciton center
of mass value M,,. This term is isotropic and does not mix the different exciton
states. Thus, no oscillator strength is transferred from the transverse exciton state
with a given polarization to the other states. In the framework of this approximation
(i.e. when neglecting all different symmetry breaking interactions and considering
only the term proportional to a, = h?/(2M,,)) the polariton problem reduces in the
I'e ® I'; subspace to the one-oscillator problem, since the other excitons do not cou-
ple to the light field with the considered polarization. One then obtains for E7(Q):

Er(Q) = Er + (2/2M,,) Q*. (8.3.4)

The polariton dispersions E;( Q) are given for the different branches i = (1, 2)
by the solution of the dispersion equation Eq. (8.1.54):

R Q*/Ei(Q)* = e, + I f,/(E7(Q)* — Ei(Q)%)

(8.3.5)
=e(1 +(E] — E3)/(Er(Q)* — E:(@)%),

¢ being the light velocity in vacuum and ¢, the background dielectric constant due
to the other oscillators that are not explicitly considered. Usually Eq. (8.3.5) can be
simplified by neglecting the wave-vector dependence of the exciton energies in the
numerator. Then the solution of Eq. (8.3.5) is given by:
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E/(Q) = (1/fz>\/(A + A2 —4B2)

where
A =1 Q%ep + Er(Q)(E}/E2) (8.3.6)

and
B? = 22 Q%Er (Q)?/ep.

Spatial dispersion modifies considerably the polariton dispersion as shown in
Fig.8.9: For small energies Eq. (8.3.5) has only one solution for real wave-vectors.
This branch corresponds to the lower polariton branch, which is sketched in Fig. 8.2 in
the absence of spatial dispersion. Above E7 the energy gap (leading to total reflection
as discussed with Eq. (8.1.54)) disappears and the system has always at least one
propagating solution. Above E; the system shows two real (propagating) modes,

E(Q)

-0 0

Fig. 8.9 Polariton dispersion E( Q) (full lines) in the one-oscillator model with spatial dispersion
that applies to the I's ® I'7 subspace in zincblende-type semiconductors. LPB (UPB): lower (upper)
polariton branch. E; and E7 indicate the energies of the longitudinal and transverse excitons,
respectively. Dashed curves (straight line) indicate the exciton (photon) dispersions. M, denotes the
effective exciton center-of-mass value. 1/,/€p is proportional to the high-energy polariton group
velocity of the UPB. At high energies, upper branch polaritons are photon like, lower branch
polaritons have excitonic character. LPB states are photon like for E(Q) < Er. It is important to
notice that there is no energy gap between E7 and Ey if spatial dispersion is taken into account,
ie.if 0 < M, < oco. (According to Ref. [4], see text)
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one corresponding to the upper polariton branch, but the second one (the lower
polariton branch) still exists. (This leads in semiconductor optics to the well known
problem that transmission and reflection coefficients of light at interfaces cannot
be determined from the electromagnetic theory alone but the so-called “additional
boundary conditions (abc)” (Refs. [34—36]) are needed in this spectral region.) The
upper polariton branch finds its analytical continuation to energies below E; in a
purely imaginary wave-vector branch, but its discussion is beyond the scope of this
book.

Experimental results have often been analyzed in the framework of the one-
oscillator model since it is the most simple model describing the exciton-photon
system in the strong-coupling regime. CuCl is a semiconductor, in which the lowest
lying exciton series can be well described by this model since it is well-separated
in energy from the higher-lying exciton states. It is acting in the I'¢ ® I'; subspace,
all other exciton states being neglected. As discussed already in the beginning of
Sect. 8.2, this simple polariton dispersion has been successfully studied by the method
of Fabry-Perot modes (see Ref. [7] and Fig. 8.3) and the time-of-flight method (see
Refs. [9, 10] and Fig. 8.4) .

Nonlinear optical spectroscopic methods have also been applied to determine
the exciton-polariton dispersion relation. Results of measurements obtained by two-
photon absorption spectroscopy (c.f. Refs. [12, 13]) and two-photon Raman scatter-
ing (Refs. [16, 17]) via biexcitons have been used to construct parts of the polariton
dispersion and that of longitudinal excitons (see Figs.8.10 and 8.11).

Depending on the presence of symmetry breaking interactions between electrons
and/or holes and intrinsic or extrinsic fields, the different exciton states can be mixed.
Thus, oscillator strength is transferred from the transverse state under consideration
to the other states. Therefore, the electromagnetic radiation field may also couple to
these states and the polariton dispersion becomes more complex. Such a situation will
be considered in the next section where exciton-polaritons in the I's ® I's subspace
of zincblende-type semiconductors are discussed in detail.

8.4 [Exciton-Polaritons in the I'¢ ® I's Subspace
in Zincblende-Type Semiconductors

Polaritons are compound quasi-particles with mixed exciton and photon character,
which propagate as polarization waves through the dielectric medium. We have
discussed in the preceding section the formation of exciton-polaritons in the simple
one-oscillator model where only one dipole-active exciton state (called “oscillator
state” here) couples to the electromagnetic radiation field. All other exciton states,
which may be almost degenerate in energy with this “oscillator state”, have a different
symmetry or polarization. Thus they do not couple to the light field and are called
“dark states” in the following.
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Fig. 8.10 Polariton and longitudinal-exciton dispersion E(Q) of CuCl, reconstructed from the
two-photon absorption measurements of Fig. 8.5 at a temperature 7 = 1.5 K. ® denotes the angle
between the exciting beams outside the crystal. TP indicates the spectral position of the upper branch
polaritons and LE that of the longitudinal excitons, created in the two-photon absorption process.
The dashed line indicates the spectral position of the transverse exciton (TE). The resulting lower
polariton branch is not accessible in two-photon absorption measurements. (Adapted after Refs.
[12, 13])
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Fig. 8.11 Polariton and longitudinal-exciton dispersion E(Q) of CuCl. The reconstruction makes
use of data obtained by two-photon Raman (hyper-Raman) scattering via biexcitons (full circles and
crosses) at temperature 7 = 4.2 K (see Ref. [16]) and of the data from Fig. 8.10, obtained by two-
photon absorption (see Ref. [12, 13], open circles). Additional points determined by two-photon
Raman scattering (see Ref. [17], triangles) are added. (Adapted after Refs. [4, 12, 16, 17], see text)
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As we have seen, if the point-group symmetry is broken due to interactions
between electrons and/or holes with intrinsic or extrinsic fields the different exciton
states can be mixed. Thus, oscillator strength is transferred from the transverse “oscil-
lator state” to the other states that become also dipole-active, i.e. the electromagnetic
radiation field couples to the previously “dark states”. The oscillator strength of the
new “mixed states” depends on the amount of admixture of the “oscillator state” to
the “dark states”. As a consequence the polariton dispersion becomes more complex
and is a function of the strength of the symmetry-breaking interactions.

We will discuss in the following exciton-polaritons in the I'¢ ® I's subspace,
which is spanned by eight exciton states. As discussed in Sect. 5.3 we will start with
J =1 and J = 2 exciton states and adapt them to the 7, point-group symmetry.
Then the states given in Egs. (5.3.10), (5.3.15) and (5.3.16) are these symmetry-
adapted exciton states in which the direct Coulomb and the electron-hole exchange-
interactions are diagonal. Using these basis functions, the polariton dispersion can
be studied in detail as a function of symmetry-breaking interactions.

Before we go to a discussion of polaritons we are about to discuss dispersion
relations of “bare” excitons for wave-vectors Q # 0, i.e. out of the I'-point of the
first Brillouin zone. As discussed in Sect. 5.3 the effective Hamiltonian Hg* of the

exciton ground states reads in the ['¢ ® I's pseudo-spin subspace:
Hg' = Agslis ® 1o + A1s(jy, ® 0, + jy @0 + j; @ o)+ 84.1)
+A% [} @0k + (G} @ o) + ()} @ o] h

The electron-hole basis functions, which diagonalize the exchange interaction
H% s = Ais(jE @ 0 + jo ® 02 + jE @ 0%), are the J = 1 states (having I's sym-
metry)

ol = (193) +V3]Ws))/2 = |1, 1)

v = —(|W) + [W5))/v/2 = |1, 0) (8.4.2)
Vi = (|We) + V3[W1))/2 = |1, 1)

and the J = 2 states

Vil = (W) — V3|W3))/2 = |2, 1
vl = W) = 12,2

vad = (W) — [W7)/v2 = (2,0

v = (V3|We) — |W1))/2 = [2, 1
vild = —|Ws) = [2, -2).

)
)
) (8.4.3)
)

Since we will consider in the following mainly light fields with linear polarization,
we rather introduce, instead of the states given in Eq. (8.4.2), the exciton states
(|x), |¥), |z)) that transform as the Cartesian coordinates (x, y, z):
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Ix) = (=1, 1) + |1, =1)/v/2 = (=(1%3) + V3| ¥8))/2 + (1We) + +/3|¥1))/2)//2
ly) =i (11, 1) + |1, =1))/~/2 = i ((1¥3) + v/3|Wg)) /2 + (|We) + v/31¥1))/2)/v/2

lz) = [1,0) = —(1W2) + |W7))/V2.
(8.4.4)

Usually the anisotropic exchange-interaction term Ajg in Eq. (8.4.1) is small
when compared to the isotropic interactions Apg and Ajg. Therefore in most
direct semiconductors with 7; point-group symmetry the J = 2 states remain
degenerate at the I" point. It is nevertheless interesting to consider the anisotropic
exchange-interaction Ajg since it allows to identify easily the symmetry adapted
exciton wave-functions with I'; and I'y symmetry. When taking into account the
cubic exchange-interaction term Ajg and diagonalizing

Hog = Mg [ @07 + ()’ @ o) + () ® o]

the J = 1 states given in Eq. (8.4.4) are not modified and diagonalize also the cubic
exchange-interaction.

The exciton states with I'; and I'y symmetry are split in energy by H.,,; and
linear combinations of J = 2 states have to be used in order to diagonalize the
direct Coulomb and the electron-hole exchange interactions of Eq. (8.4.1), which are
compatible with the T,; point-group symmetry. The J = 2 states, which are adapted
to the crystal symmetry have been introduced in Egs. (5.3.15) and (5.3.16). We
obtained for the states with '3 symmetry

12, 4) = (12,2) + 12, =2))/¥/2 = (W) — |Ws))/+/2

(8.4.5)
12,0) = (W) — [¥7))/+/2

and for those with I'y symmetry

1L +) = —(12,1) + 12, —1))/V2 = —=((1¥5) — v/31¥3))/2 + (v/3|We) — |W1))/2)/v/2
11, =) = i(12, =1) — |2, 1))/v/2 = i(v/3]W6) — |1W1))/2 — (1Wg) — v/3|W3))/2)/+/2

12, =) = (12,2) — 12, =2))/V2 = (1W4) + |¥5))/v/2.
(8.4.6)

Keeping in mind the symmetry adapted exciton wave functions of Eq. (8.4.5) and
Eq. (8.4.6) let us neglect in the following the anisotropic exchange interaction, i.e.
take A,g = 0. We then obtain with Eq. (5.3.5) for the energies of the exciton states
E,..s(J) with (J = 1, 2) at wave-vector Q@ = 0, i.e. at the center of the Brillouin
zone:

E..s(J =2) = Eg + Ags + (3/2) A5 for the J = 2 exciton states

8.4.7
E..s(J =1)=Eg+ Aog — (5/2) A3 for the J = 1 exciton states . ( )
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One should recall here that in the considered direct energy-gap semiconductors
our “zero” of energy has been fixed at the “crystal ground state”, i.e. in the absence
of any electronic excitation, which may be thought to be situated at the I"-point of
the Brillouin zone. The minimum of the conduction band (also at the I"-point) has
the energy E¢. Excitons are bound states of an electron and a hole and the exciton
binding energy is thus negative, i.e. E,.,3(J) < E¢. The exciton binding energy can
be introduced by considering all direct interactions between the electron and the hole
and the surrounding semiconductor. Thus, Aog can be interpreted as representing the
exciton binding energy in this approximation (i.e. relevant to the holes generated in
the I'g valence band).

Considering the electron spin leads to additional interactions: the exchange inter-
actions between electrons and defect electrons (which are the Kramer’s conjugated
states of holes). These interactions are due to the quantum statistics of electrons:
Since electrons are Fermions, two electrons cannot be in quantum states, character-
ized by the same set of quantum numbers. Therefore, a repulsive interaction between
these electrons appears: the exchange-correlation energy, which depends on the states
under consideration. Since one cannot calculate this energy in a general way (inde-
pendent of the states) we will discuss it in the following in an approximative form
and consider mainly the localized charge density of electron states.

In exciton problems the exchange part of the Coulomb interaction J,, plays a
central role: J,, is determined by the spin-singlet part of the localized charge density
of the exciton state (corresponding to its dipole moment). As we have seen, the J = 1
exciton states transforming as the Cartesian coordinates (x, y, z) posses a dipole
moment. Spin-triplet excitons, to which the J = 2 exciton states also belong, have
a vanishing singlet charge density and are not affected by this exchange interaction
(see Ref. [33]). Therefore,

E% ¢ =Eg+ Aos + (3/2)A§§=2) for the J = 2 exciton states (8.4.8)

will be considered in the following as the ground-state energy E? ¢ (including
exchange interaction) of excitons, which have no dipole moment.

The exchange part of the Coulomb interaction J,, for J = 1 excitons (having a
dipole moment as discussed above) has in the present approximation two different
contributions (c.f. Ref. [29]): It consists of an analytic part that acts on all J =1
exciton states, i.e. it acts equally on the longitudinal and transverse dipole-active
excitons states. But it has also a non-analytic part that acts only on the longitudinal
excitons and not on the other states. Therefore the exchange part of the Coulomb
interaction can only be evaluated if the direction of the wave-vector Q is specified
since it defines the notions of a “longitudinal” and “transverse” dipole moment of
the excitons states.

If the wave-vector @ is finite the interaction energy A%:]) in Eq. (8.4.8) can be
decomposed into an analytic Afg and a non-analytic A%g contribution, namely

AT = Afg+ AT (84.9)
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The analytic part of J,, shifts all J/ = 1 exciton states to higher energies compared to
the exciton ground-state energy E? ¢. Using this notation it follows from Eq. (8.4.7)

that the singlet-triplet splitting of the I's ® I'g subspace excitons Ast is given by
Ast = 4A%s. (8.4.10)

The non-analytic part of J,, leads then to an additional splitting of longitudinal and
transverse exciton states (Ref. [33]), which are separated by Ayr with

Apr = 4A". (8.4.11)

We thus obtain instead of Eq. (8.4.7) the following exciton energy-level scheme (see
Fig.8.12):

E..s(J =2) = EY , for the J = 2 exciton states

ex8

and

Elo(J =1) = E? ; + Ay, for the transverse J = 1 exciton states

ELo(J =1) = EY g + Ay + Apr for the longitudinal J = 1 exciton state .
(8.4.12)
In comparison with Fig. 4.4, as mentioned above, a small splitting between the I'3
and I'4 levels due to the cubic exchange interaction is neglected here.

We will now use the symmetry adapted exciton wave functions given in Eq. (8.4.4)
to Eq. (8.4.6) as a basis to develop the exciton-polariton dispersion in the presence of
symmetry-breaking exciton-interactions. EY ¢ is taken as the origin of energy scale.

We start with the exciton dispersion E; ( Q) inthe I'gs ® I'g exciton subspace, where
0 denotes the exciton center-of-mass wave-vector. The @-dependent interaction
terms up to second order in @ are discussed in Sect. 5.4. They include direct terms
as well as the wave-vector dependence of the electron-hole exchange-interaction.

Terms that one may consider in the exciton-polariton problem are given in Egs.
(5.4.3)—(5.4.5): The most important ones are obtained directly from the dispersion
relation of the conduction and valence bands. These direct terms are diagonal within
the electron states. We find a Q-linear term (resulting from the valence-band hole
Eq. (3.4.6)), which is given by Eq. (5.4.3):

HE® = CERIUS. (G = GHDN0x + 1+ (G = GNPy + s, (G = ()01 @ 1
(8.4.13)
and terms proportional to %, which read (see Eq. (5.4.4))

HES = G{ph 01,8 ® Lot
+GSHIB0F — OGN = ()P + 207 — 03 — 0D QGH? = () = (DD ® Le+

265010y Qi J§) + Q2 QxliS, Jy ) + Cx Oy iy, DN ® 1o
(8.4.14)
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Fig. 8.12 Energy level scheme of excitons arising from holes in the I'g valence band and electrons
in the I's conduction band in zincblende semiconductors. In comparison with Fig. 4.4, here a small
splitting between the I'3 and I'4 levels due to the cubic exchange interaction is neglected (see text)

In addition, one may consider a second group of terms that describes the wave-
vector dependence of the exchange interaction. As discussed in Sect. 5.4 they are
usually quite small and the most important ones are bi-linear in j,3 and o,. These
terms are given by (see Eq. (5.4.5)):

Hg = 05507 () ® 0f + j) @ 02 + ji ®@ D)+
FOSH3(02 — O((GF ®0F — jY ®02) + 207 — 02 — 0HQji ® ol — ji @ o — ji ® o)+

2055510y 0: )3, 031 + 0: 04 Lji, 021+ Qx O, Lji . o211
(8.4.15)

We will call in the following “H eng” the exciton Hamiltonian defined in the ' ® I'g
subspace, which includes the symmetry-breaking interactions enumerated above:

HG® = HGP + HGY + HE,. (8.4.16)
Usually only some of the terms of H est are used in literature (see Refs. [4, 33])

to calculate the exciton dispersion. The procedure that we adopt is described in
detail in Ref. [37] for CuBr where the I'¢ ® I's exciton subspace is considered, but



204 8 Light-Matter Interaction and Exciton-Polaritons in Semiconductors

this procedure is valid also in the general case. One first establishes the interaction
matrix “/ eQ" 8 defined for the exciton dispersion in the eight-fold degenerate I's ® I'g
subspace through

15 = Matrix ((ijI[kD)) , (8.4.17)

where (ij||kl) are the matrix elements of H¢®, using the basis functions |ij) and
|kl) given in Egs. (8.4.4)—(8.4.6).

For an arbitrary direction of the wave-vector Eq. (8.4.17) has to be diagonalized
numerically. In a high symmetry direction it can be given, however, in a block-
diagonal form (for detailed calculations concerning CuBr see Refs. [37, 38]). In the
[001] direction (i.e. for @ | z) the matrix Eq. (8.4.17) falls e.g. into four blocks if
the basis functions are transformed in the following way:

[64) = (1x) £ [y)/vV2 and [n2) = (114) £ [1-)/v/2. (8.4.18)

These blocks correspond to the four irreducible representations A; (with i = 1 to
4) of the C;, point group. Two of the block matrices have the same eigenvalues.
The dispersions of the exciton states |74) and |£4) remain therefore degenerate.
Especially, the transverse exciton states |£4) have the same dispersion.

Similar block matrices can be obtained if the exciton wave-vector is aligned
to the high symmetry directions [111] or [110]. The exciton-wave functions that
have to be used to obtain these block matrices are given in Table8.1. If Q || [111]
direction, which is the new quantization axis (z" || [111]), the blocks correspond to
the irreducible representations Ay, A, and A3 of the point group Cs,. A contains
as element the wave function |z’) of Table 8.1 and A, the one noted |2—'). While
the representations A; and A, are not degenerate, the representation Aj gives rise
to three exciton branches, which are each two times degenerate. To these two rows
of the representation Az belong the wave-function elements [|2+'), |14'), and |y’)
(first row)] and [|20'), |1—'), and |x’) (second row)], respectively. Their dispersion

Table 8.1 Exciton wave-functions in crystals with 7, point-group symmetry for Q along the high
symmetry directions [110] and [111], which are taken as quantization axes. From Ref. [4]

Linear combination of basis functions

New basis 0 | [110] 0| [111]

2+ : (—/3120) +i[2-))/2 [2+)

20y : —(20) + i+/3]2—))/2 120)

I1+) : (14) + 11-)/v/2 (1+4) — [1-)/v2

1) : —i[2+) (2)2—) — [14) — [1-))/+/6
[2—') : (14) = 11=-))/V2 (12=) + [14+) + [1=-))/+/3
Ix") (—lx) + 1y)/+/2 (=lx) + [y /2

ly) |z) 2lz) — Ix) — [y))//6

1=y (x) +1y)/V2 (x) + 1y) + 12))/+/3
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has to be determined numerically, but again the two transverse exciton states have
the same dispersion.

It is interesting to notice that in the high symmetry directions @ || [111] or
0 || [100] the longitudinal and the transverse J = 1 excitons are in different irre-
ducible representation. Therefore, as we will discuss in connection with the polariton
problem, longitudinal excitons are not mixed with transverse excitons and are not
dipole active, i.e. they do not couple to the light field. This is different if @ || [110].
Taking the [110] direction as new quantization axis, the interaction matrix falls
only into two blocks corresponding to the two irreducible representations X; and
%, of the point group C;. Both irreducible representations contain 4 elements. The
wave-functions are given in Table 8.1. The representation X; is spanned by the wave-
function elements [|[1-'), [2—'), |¥'), and |Z/)] and X, by [|2+'), |20}, |14+'), and
|x)]. Due to the low symmetry of the [110]-direction, the longitudinal and a trans-
verse exciton become mixed at finite wave-vectors in the ¥; representation. Since
the two transverse exciton states belong to two different irreducible representations
they are no longer degenerate in the [110]-direction, i.e. they have different disper-
sion relations and a cubic crystal is birefringent in this (or an arbitrarily low) crystal
direction. This effect is in general small but may become important close to exciton
resonances.

It is worth while to mention here that two orthogonal, linearly polarized transverse
charge vibrations, which propagate in the [001]-direction of a cubic system see the
same charge distribution of the dielectric medium. Therefore, their interaction with
the environment is the same and the dispersion of these transverse modes is the same.
If one considers, however, propagation of transverse modes in the [110]-direction
and their elongations in the [110]-direction or the [001]-direction, it is evident that
the charge distribution for both modes is different. One therefore expects that the
dispersion of such charge waves depends on the direction of propagation and the
direction of the linear polarization, leading to birefringence and dichroism.

Once the bare exciton wave functions and their dispersions are known one can
introduce the polariton concept, i.e. consider the problem of excitons that are coupled
to the light field. We first solve the Schrodinger equation for the exciton problem:

HE®10:(Q)) = Ei(Q)|9;(Q)), (8.4.19)

where the Hamiltonian H 3‘8 is given by Eq. (8.4.17) in its matrix form. The exciton
wave-function |®;(Q)) is given as a linear combination of the basis functions |¥;)
(see Egs. (8.4.4)—(8.4.6)) by

1D:(@) = cij (D)) (8.4.20)
j

In this case Hopfield’s theory for excitonic polaritons (see Ref. [2]) has to be extended
to the multiple oscillator case (as e.g. in Refs. [4, 33, 37, 39]). We thus find the
dispersion relation E; ( Q) of the eight exciton branches labeled “i”. Since only m < 8
dipole active exciton branches can couple to the light field, we further consider only
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Fig. 8.13 Polariton dispersion relation E( Q) in the case of the I's ® I's subspace in CuBr for (a)
the X irreducible representations, i.e. Q || [110], which is the new quantization axis (z' || [110]),
and polarization vector || to the [001]-direction and (b) the X, irreducible representations, i.e. as
in (a) Q || [110] but polarization vector | to the [110]-direction. Measurements were performed in
backward scattering (full circles) and in different forward scattering angular configurations (crosses)
on CuBr platelets and massive crystals at a temperature 7 = 4.2 K. (Adapted after Refs. [4, 37])

transverse J = 1 exciton states labeled “7”” where atleast one of the ¢;7( Q) # 0. The
other branches are exciton branches and do not give rise to polaritons as propagating
quasi-particles. As discussed above the exciton polarization and the electric field lead
then to the following equation

22 Q2 /EF (0)% = ¢ (1 +3 (@A ELO? - Er(0D)/(Ej(@)? - EL <Q>2>) :

' (8.4.21)
where E} ol (Q) denotes the energy of the n-th polariton branch (with 1 <n < (m +
1)) of the irreducible representation considered. As in the classical case E,ﬁml (Q)is
obtained from the solution of Eq. (8.4.21) and gives the polariton dispersion (c.f.
Refs. [37, 38]).

Similarly to the simple case where the one-oscillator model can be applied, the
polariton dispersion can be determined experimentally by hyper-Raman scattering.
Using these measurements the polariton dispersion has been determined in a self-
consistent procedure (see Ref. [37]). Figure 8.13 shows as an example the dispersion
relations E( Q) of CuBr for the high symmetry Q || [110]-direction, which is the new
quantization axis (i.e. z’ || [110]). Figure 8.13a gives the result for the ¥, irreducible
representations, i.e. for Q || [110] and polarization vector || to the [001]-direction. In
the X, irreducible representation, i.e. for a polarization vector | to the [110]-direction
shown in Fig. 8.13b, the dispersion is qualitatively different.

Such complex excitonic-polariton structures have been analyzed using resonant-
Brillouin scattering in several zincblende-type semiconductors as GaAs [22, 40],
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CdTe [22], ZnSe [23], or CuBr [24] at low temperatures. As discussed in Sect. 8.2 the
phonon velocities being known, the polariton dispersion relation was reconstructed
from these measurements.

We have often used the fact that a Hamiltonian is an operator that is invariant
under time reversal. The wave-vector Q being an odd function under time reversal,
one obtains for dispersion relations E( Q) the equality

E(Q) = E(-0). (8.4.22)

If the system is interacting in addition with a magnetic field B (which is also an
odd function under time reversal), Eq. (8.4.22) has to be completed to (see Refs. [2,
41-43)):

E(Q.B)=E(-Q.-B) # E(Q.-B) = E(-Q.B). (8.4.23)

Thus, E(— @, B) can be reconstructed if E(Q, B) is measured as function of B for
positive and negative values of B.

The inequality of Eq. (8.4.23) can be nicely demonstrated in optical measure-
ments by excitonic polaritons in CuBr, which show important Q-linear and B-linear
interaction terms (Refs. [37, 38, 44-49]).

Since the number of symmetry-breaking interaction terms, which can be con-
structed in the pseudo-spin formalism is very important, one usually restricts oneself
to terms linear in B and linear or quadratic in Q and one neglects the dependence
of the exchange interaction on B and Q. The most important contributions to the
Hamiltonian then read:

HE'S = Noglyg ® 1o + Ajg(ji ® 03 + i ® 00 + j§ ® o9)+

+CHPS (G = GDDNCx + 1D, (G = GHDNy + Ui, (G = (D)) 021 ® Let

+GixQ82 Q21v8 ® 1+

+GSEHI3(0% — 0D = (D + 207 — 07 — 0D QGH* = (1) = G @ Let+

2655510y 02073 J§) + Q2 0x S, i3} + Cx Oy iy, DN ® Lot

+1/29°uplug ® (Broy + Byoe + Boog)+

- (@Brusa (B + Byt + Boif) + a1y (Br G + By + Bo(G5)) @ 1e,
(8.4.24)
where ¢ is the Landé factor of the electron in the conduction band and aj, ¢, and
a1, are the Landé factors of the holes in the valence band with I's symmetry. As
mentioned previously (see Sect. 3.4), these terms correspond to the parameters ~ and

q introduced by Luttinger:

a%lea = _2/1’3’%

) (8.4.25)
Aprsy = —2HBG-
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Fig. 8.14 Typical form of the dispersion relation E(Q) in the case of the I's ® I'g subspace in
zincblende-type semiconductors (CuBr) in a magnetic field B. (Dashed lines: exciton dispersions,
full lines: polariton dispersions.) @ || [110], which is the new quantization axis (z’ || [110]), B ||
[110]. (a) Polarization e || [001], corresponding to the irreducible representations | of the point
group Cy; (b) Polarization e || [110], corresponding to the irreducible representations X, of the
point group C;. Individual curves represent various exciton/polariton branches. (Adapted after
Ref. [49])

Let us consider as an example the case Q | [110]-direction. When using the
symmetry-adapted exciton-wave functions given in Table 8.1, the interaction matrix
corresponding to Eq. (8.4.24) has two diagonal blocks I¢™® and I¢'®, giving the
energies of the irreducible representations X; and X,. As described above, after
having diagonalized these matrices one obtains the exciton-dispersion relations and
from this the polariton dispersions in the presence of a magnetic field. Figure 8.14a, b
shows calculated exciton (dashed lines) and polariton (full lines) dispersion relations
for CuBr at a fixed magnetic field (B = 4.6 T) with B || [110]-direction. In Fig. 8.14a
the electric-field polarization e is taken e || [001]-direction, Fig. 8.14b shows results
for e || [110]. The exciton and polariton dispersions are significantly asymmetric.
In Figs. 8.14a, b the upper polariton branches and the longitudinal exciton are not
shown. Measurements have been performed on cleaved CuBr platelets by hyper-
Raman scattering in a backward configuration at temperature 7 = 4.2 K (see Ref.
[49]).

8.5 Exciton-Polaritons in Wurtzite-Type Semiconductors

As indicated in Table 6.1, in wurtzite-type semiconductors, states having I's or I'
symmetry transform as the components (x, y, z) of the position vector r. As indicated
in Sect. 7.2, for the different exciton series “i”(i € (A, B, C)) the corresponding
exciton states are noted |x){*, |y){*, and |z)7*, respectively. These states posses a
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dipole-moment, while other states having I'g or I'; symmetry are spin-triplet states
(labeled |¢){*), which are not dipole-active. In the context of exciton-polaritons we
are especially interested in the states (|x){*, |y){*, [z)¢") since they may couple to
the electromagnetic radiation field.

Waurtzite-type crystals are uniaxial crystals, i.e. they have a crystallographic axis,
the so called “c-axis”. In crystal optics this direction defines also the “optical axis” of
the crystal. In the following, when using Cartesian coordinates (x, y, z), we choose
Z || cand (x, y) L c. Then, the electric transition dipole moment p of an elementary
excitation, which is discussed in the beginning of this chapter and defined in Eq.
(8.1.34), is decomposed into two components labeled “p,” for the component of
pllcand “p,” for thatof p L c.

Let us now discuss the properties of an electromagnetic radiation field e, which
propagates with wave-vector @ inside the crystal. One defines a “principal plane”
or “main section” of a crystal as a plane that contains @ and the crystal-optical axis
c¢. (For instance, as sketched in the inset of Fig.8.16 the vectors x and z || ¢ span
the principle plane, and the wave-vector @ is inclined by an angle [ with respect
to the crystal-optical axis c¢.) We will consider first a light field e that is — contrary
to the situation just discussed in connection with Fig.8.16 — linearly polarized per-
pendicularly to the principal plane. If the wave-vector of the field changes now from
0 to a wave-vector Q; of the same module but with an arbitrary direction within
the principal plane, its polarization remains perpendicular to the principal plane and
thus to ¢. Then the coupling of the field to the dipole moment, proportional to p, ,
is constant, independent of the angle (3 between the direction of @ and the optical
axis ¢. Consequently, the dielectric function e¢(w) of the field (as introduced in Eq.
(8.1.41)) is independent of the direction of propagation of Q. In optics we call these
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rays “ordinary rays” whose propagation and refraction is governed by the “ordi-
nary dielectric function ¢,,4(w)”. (We choose the index “ord” instead of the usually
employed index “0” in order to avoid confusion between ¢, and vacuum permittivity
60.)

The dispersion of “ordinary polaritons” is easily described by generalizing the
procedure described in the introductory part of the present chapter and that of the
one-oscillator model in Sect. 8.3 for the I's ® I'; subspace in zincblende-type semi-
conductors. Let us first extend Eq. (8.3.5) to the case of three well-separated exciton
resonances labeled A, B, and C as it may be the case in wurtzite-type semicon-
ductors. As discussed above, we consider an electromagnetic radiation field with
wave-vector @ lying in the principal plane spanned by the Cartesian coordinates
(x, ¢). The polarization p is, as the electric field e, perpendicular to the principal
plane (e, p) L c, i.e. (e, p) || y. All three exciton resonances couple to an electro-
magnetic radiation field with this polarization, giving rise to propagating ordinary
polaritons. The polariton dispersions Elf”d (Q) is given for the different branches i
by the solution of the equation

W2 Q% E () = ¢, (1+ > (E{<0>2—E§'<0)2>/<E§<Q>2—E;”d<Q>2>), (8.5.1)
Jj=(A,B,C)

¢ being the light velocity in vacuum and ¢, the background dielectric constant due to
the oscillators that are not explicitly considered. E7.(Q) denotes the dispersion of the
exciton “j” when spatial dispersion is considered. The wave-vector dependence of
the exciton energies has been neglected in the numerator of Eq. (8.5.1) since £ i Q)
and E7.(Q) vary almost in the same manner with Q.

Figure 8.15 shows the typical dispersion relation for ordinary polaritons E ;”d( )
of CdS, if only the A- and B-exciton resonances were considered. This dispersion
relation is calculated from the two-oscillator model with spatial dispersion given in
Eq. (8.5.1).

While the A-exciton of CdS (spanned by the exciton I'; ® I'9-subspace) contains
only second order dispersive terms, the B-exciton that is defined in the I'; ® I'7-
subspace contains also terms, varying linearly with wave-vector Q (see Eq. (6.3.38)
and Eq. (6.3.39)). Experimental results are obtained by hyper-Raman scattering (cir-
cles) and reflection measurements (squares) (see Refs. [4, 50, 51]).

If the light field e is still linearly polarized but the polarization vector is lying inside
the principal plane, i.e. if e € (x, ¢)-plane, the situation is more complicated. Then
the coupling strength of the light field with a transition dipole-moment depends on
the direction of propagation of the field with respect to the c-axis, i.e. on the angle 3
between the wave-vector @ and the optical axis ¢. This angular-dependent coupling
is taken into account by the “extraordinary dielectric function (e.,)”: In the case
Q || ¢ the polarization p is perpendicular to ¢ (i.e. parallel to x) and the coupling
strength is proportional to p; . Then, the value of the dielectric function is given by
€4 (W). If, however, the field propagation direction is perpendicular to ¢, the electric
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Fig. 8.16 Mixed-mode polariton dispersion in the one-oscillator model with spatial dispersion that
applies for example to the B or C subspace exciton polaritons in wurtzite-type semiconductors. The
inset shows the principal plane in which the propagation wave-vector  and the electric field vector
e lie. The principal plane is spanned by the vectors x and z || ¢. The wave-vector @ is inclined by the
angle 3 with respect to the crystal-optical axis c. A variation of 3 leads to a changing of the coupling
between the exciton with dipole moment p; and the electric field e and thus to the dispersion of
mixed-mode polaritons. It can be clearly seen how the longitudinal-transverse splitting diminishes
with decreasing angle 5. (Adapted from Ref. [1]. See text)

field vector e is parallel to ¢ and therefore the coupling strength is proportional to py.
In this situation, i.e. if e | ¢ and @ L ¢, the value of the dielectric function is labeled
€.0(w). For arbitrary angles 3 we denote the extra-ordinary dielectric function by
€00(03, w), which varies continuously as a function of 3 between €,,4(w) and €., (w)
according to (Ref. [52]):

1/€e0(B, w) = (€08 B)?/€ora(w) + (sin 3)* /€0 (w). (8.5.2)

Let us consider in more detail the situation of the B or C exciton states, which
transform as I'; (i.e. like the position vector “z”’) in wurtzite-type semiconductors,
as an example. These excitons have their dipole moment p || ¢, which couples only
to the component e, of the propagating electromagnetic field e. Its dipole-matrix
element is given by py if 8 = 90°. Otherwise, the dipole-matrix element depends
on the projection of e onto the crystallographic c-axis, which varies with 3. Since
polaritons excited in this configuration have a mixed character they are called “mixed-



212 8 Light-Matter Interaction and Exciton-Polaritons in Semiconductors

mode polaritons”: the wave functions of the optically excited excitons |z){* have
neither a longitudinal nor a transverse character with respect to the wave-vector Q.
Let us consider only the influence of py. The dipole-matrix element squared
is proportional to the difference in energy realized by the excitons when they are
longitudinal or transverse states, i.e. to the longitudinal-transverse splitting Ay 7:

Apr =Ep —Er. (8.5.3)

As we have discussed above, longitudinal and transverse exciton states have different
energies because of the non-analytic exchange interaction between electron and hole.
The exciton energy depends thus on the orientation of the transition dipole moment
p with respect to its center-of-mass wave-vector Q. Therefore, the longitudinal-
transverse splitting of the mixed-mode polariton A7'7 as a function of 3 is given
by

ATE(B) = Ay sin?(B). (8.5.4)

The longitudinal-transverse splitting of the mixed mode excitons A7 (3) is maximal
if (@ L ¢) and vanishes if (Q || ¢).

The energy of a longitudinal exciton E; is independent of the light field since
longitudinal excitons and the electromagnetic field do not couple, i.e. E; has a
constant value, independent of 3. Then, Egs. (8.5.3) and (8.5.4) determine the energy
of the mixed-mode exciton state E,,,, (3) to

Eum(B) = EL — A17(B) = Er — Ay sin®(B). (8.5.5)

Following Eq. (8.1.53) the oscillator strength f; of a dipole-active exciton is given
by
17 f; = ep(E] — E7). (8.5.6)

We thus obtain from Eq. (8.5.5) for the oscillator strength f,,,,, () of the mixed-mode
state

B frum(B) = € (E] — Enm(B3)%). (8.5.7)

We can now determine the dispersion relation of the mixed-mode polaritons
E! (3, Q), i.e. the energy of the coupled elementary excitations as a function of
the wave-vector @, which depends on the angle 3 between @ and the crystal axis c.
Let us denote by E,,,, (5, Q) the energy of the mixed-mode excitons if we include
similarly to Eq. (8.5.1) spatial dispersion. We then obtain the following equation:

W Q*E! (B, @) = & (1 + (E] = Enn(B)))/(Eun (3, @)* = E[" (3, @))).-

(8.5.8)

Its solution determines the energy E;” (3, Q) of the mixed-mode polariton branch
‘Ai77‘

Figure 8.16 shows the typical mixed-mode polariton-dispersion (see Ref. [1])

in the one-oscillator model with spatial dispersion calculated from Eq. (8.5.8) for
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Fig. 8.17 Energetic positions of exciton (dashed lines) and exciton-polariton (full lines) states
as a function of magnetic induction B in hexagonal CdS for @ — 0 in a configuration Q L c,
e L c. Circles, squares and triangles indicate results obtained at a temperature of 7 = 1.8 K from
hyper-Raman scattering, reflection and absorption spectroscopy, respectively. (a) B L ¢;(b) B || c.
(Adapted from Refs. [4, 50])

various angles (3. The model applies to the B- or C-subspace exciton polaritons in
wurtzite-type semiconductors, which transform as I'; at wave-vector Q = 0.

The above discussion shows that in experiments the samples have to be prop-
erly orientated, i.e. the direction of the crystallographic axis has to be well known.
Furthermore it is advantageous to choose simple angular configurations: A consid-
ered external or internal perturbation X should be well-orientated with respect to the
crystal c-axis, mostly ¥ L ¢ or X || ¢. Then, crystal parameters can be determined
when modeling the system within the framework discussed above. Such modeling
has been performed for several symmetry-breaking perturbations. Figure 8.17a, b
shows the energetic positions of exciton and exciton-polariton states as a function
of the magnetic induction B in CdS for @ — 0 in a configuration Q L ¢, e L c.
The orientation of the magnetic field is chosen in Fig.8.17a B L ¢ and in Fig.8.17b
B || c. Circles, squares and triangles indicate results from hyper-Raman scattering,
reflection and absorption spectroscopy, respectively, while the dashed and full lines
represent theoretical modeling. (According to Refs. [4, 50]).
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Appendix A
Example of Matrix Diagonalization

For those readers, who are not familiar with matrix formulation of quantum mechan-
ics we wish to demonstrate how to solve the Schrodinger equation—a crucial task
occurring in many places of the book—by hand, i.e. without making use of PC and
any dedicated software as “Maple” or “Mathematica”. We shall explain the overall
procedure step by step, taking as an illustrative example a particular Schrodinger
equation as formulated in Eqgs. (3.1.9) and (3.1.10). The solution consists in diago-
nalization of the non-diagonal Hamiltonian matrix Eq. (3.1.9)

2 0 .X2
¥ o,
2 0 Z2

N

A=

= o

where we have introduced notation
Z=202- 07— 0}.x*=3(0] — 0}),and y* = —40? + 20} +207.

By performing the diagonalization process we shall obtain three required energy
eigenvalues Ay, with k = 1,2, 3, namely, three diagonal elements of the resulting
diagonal matrix

Ay 0 0 AL 0 O
A= 0 Ap O =] 0 A, O],
0 0 A33 00 A3

where we denoted for the sake of simplicity Ay = Ay. Simultaneously, we can (if
we wish) obtain the corresponding eigenfunctions u; (r) with k = 1, 2, 3 as a linear
combination of basis functions v, (r):

3
w(r) =Y Sgva(r). (A1)
n=I1
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218 Appendix A: Example of Matrix Diagonalization

The basis functions in this particular example are represented by Eq. (3.1.2): v, (r) =
[1), v2(r) = 10) and v3(r) = | — 1).

Let us start. There is a technical recipe how to diagonalize a non-diagonal matrix
A’ (see Ref. [1]): The condition

det(A’ Apiom) =0

ml

is equivalent to
> Sen(Apy = Arbur) = 0, (A2)

m

which has to be fulfilled. S, have been introduced by Eq. (A.1), A}, and Ay denote
elements of the matrices A’ and A, respectively, and ¢, represents the Kronecker

delta:
5o _ [0 ifm#1
"N ifm =1

The solution of Eq. (A.2) will yield the requested energy eigenvalues Ay.
Because we work in this example in a 3-dimensional subspace, all subscripts in
Eq. (A.1) and (A.2) span values 1, 2, and 3. We now write down Eq. (A.2) explicitly

forl =1:
k=1:811(A], — A) + SipAb, + Si34%, =0

k=2: Sm(A/H - Az) + S22A,21 + S23A/31 =0 (A3)
k= 3 N S3](A/11 — A3) + S32A/21 4+ S33Aél = 0

A similar set of equations for [ = 2 reads

k=1: SllA/12 + S12(A/22 —A)+ Sl3A/32 =0
k=2: SZIA/Q + SQZ(A’ZZ — Ay + 523A,32 =0 (A4)
k=3: S31A/12 + S32(A/22 —Az) + S33A%2 =0

and for/ =3
k=1: S11A/13 + S12A/23 + 513(14/33 — Al) =0

k=2: Sz]A/B + SZQA/B + Sz3(Ag3 - Az) =0 (AS)
k=3: S31A’13 + S32A,23 + S33(Ag3 — A3) =0.

From the above system of Egs. (A.3)—(A.5) one has to select three equations for
three unknown quantities. By inspecting Eqs. (A.3)—(A.5) we can see that selection
of the three first rows represents a set of three equations for the unknowns Sy, Si»,
and Si3:

Si(A} — A + SpAj + Si345, =0
S11A}, 4+ Si2(Ay, — Ay + Si3A%, =0
SiAl; + SinAl + Si3(Ay; — Ay =0.



Appendix A: Example of Matrix Diagonalization 219
For our particular example this can be rewritten as

S11(z* — Ay) + Si3x? =0
Sp(y* — A =0 (A.6)
Sllxz + 513(Z2 —A)=0.

This is a homogeneous set of equations, requiring for a non-zero solution S;; # 0
that the determinant D be equal zero:

(Z2—A) 0 x?
D= 0 2 — A4 0 =0
x? 0 (F#-A)

or
(22— ADO? = AN — A —x*O* = A) =0.

Let y?> # A;. Then (z> — A;) = %x? is the required solution. We shall consider
the (4) sign; in this case one obtains

Al =2 —x* = (207~ 02— Q%) — 302 +302 =207 — 40? + 207,

which is expression (3.1.11), indeed. (Considering the (—) signleadsto A; = 2Q§ +
20? — 40?2, which is nothing else but the eigenvalue A3, as we will see below.)

Three other equations for the three unknown quantities S, , S22, and S>3 are defined
by the second rows in Egs. (A.3)—(A.5):

SZI(A/U — Ay + SZZA/21 + S23A,31 =0
S Al + S2(AY, — Ar) + SiA%, =0
SZIA/13 + 522A/23 + S33(A/33 - AZ) =0

or
$51(z* — Ag) + S3x* =0
Sn(y* — A) =0 (A7)
Sh1x? + Sx3(z22 — Ay) = 0.
We put again
(z2 — A)) 0 x?
D = 0 y2 - A2 0 =0
x? 0 (22— Ay

and therefore obtain:

(22 — A) (Y — A2 — Ap) —x*(? — Ay = 0.
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Let y?> # A,. Then (z> — A»)?> = x* and A, = 7% £ x? but this is A,. It follows
that y?> = A, must hold, or A, = y? = 2Q§ + 2Q3 - 4Q§ as quoted in expression
(3.1.11). (Notice that y> # A; as it is required in the preceding step.)

The last three equations (for the unknown terms S3;, S3,, and S33) follow from
the third rows of Egs. (A.3)—(A.5):

S31(Z2 — A3) + S33)C2 =0
Sp(y* — A3) =0 (A.8)
S31x% + S33(z2 — A3) = 0.

We put again
(Z2—43) 0 x?
D= 0 y:— A; 0 =0
x? 0 (22— A3)

and thus
(22 — A3)*(y* — A3) —x*(y* — A3) = 0.

Obviously y? # A3 (because y? = A,). Then: (77> — A3)> =x* and A3 =72 +
x* =202 - 07— 05 +3(01 — 0}) =207 —40; +207 as quoted in expres-
sion (3.1.11).

In this way we have determined the eigenvalues A;, A,, and As. In order to
know also the relevant eigenfunctions as given in Eq. (A.1), we have to find the
coefficients Sl*, To do so, we substitute into Eq. (A.6) the solution A;, and obtain
thus three equations for three unknown quantities S;;, Si2, and Si3:

S11X2 + S]3)C2 =0
Sp(y*—22+x%) =0
Siix? + Sizx? =0.

Since x2, y2, and z2 can take arbitrary values, it is obvious that in order to satisfy
these equations, one has to put:

Sp=0
S =-813#0.

It follows then from Eq. (A.1) that the corresponding eigenfunction is equal to
u(r) = |Wa302(1)) = const. (—[1) +| — 1)) (A9)

incompliance with Eq. (3.1.11). Itis to be noted that in this way the eigenfunctions can

be determined within accuracy of a multiplicative constant, which will be discussed

soon. Repeating in a similar manner the same procedure, i.e. substituting the solution
of A, into Eq. (A.7), we obtain:
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So1(22 = y?) + Spx? =0
Sn(y*—yH) =0
Sr1x? + Sp3(z* — y*) = 0.

Taking into consideration the first and the third equation only, we have:

So1(22 = y?) + Spx? =0
Sux? + Sa3(z2 — yH) =0,

which represents a homogeneous system of two equations for S,;, and S,3. To obtain
a non-zero solution Sy; # 0, and S»3 # 0, we put
@—=y) ¥

D: 2

x2 (=) =0

or
(ZZ _ y2)2 — X4
(2% = y?) = +x2.

But this relation is in contradiction with the introductory formulation of the problem,
namely, with the very form of the matrix A’. Therefore, the only possible solution
reads: S>; = S>3 = 0 and S, # 0. Thus we obtain

ur(r) = |Wu302(2)) = const.|0) (A.10)

again in agreement with Eq. (3.1.11). We let to the reader to show that by substi-
tuting the solution for Az into Eq. (A.8) one obtains S3; = S33 # 0 and S3, = 0.
Consequently

uz(r) = [Wa302(3)) = const. (1) + | — 1)) . (A.11)

The values of the constants occurring in expressions (A.9)—(A.11) can be deter-
mined by making use of the condition of unitarity of the matrix S;; [1]. This is due
to the fact that the eigenfunctions of the operators are orthonormalized functions in
the vector-space, which is considered. One thus obtains

> SenSpy = . (A.12)

Itemizing this sum for k = [ one obtains:

ifk=I1l=1: SllSTl + SIZSE + S]3ST3 = (511 =1
ifk=1=2: S21S§1 + SZQS;Z + SzgS;} =0p =1 (A.13)
ifk=1=3: S315§<1 + S3QS§2 + S33S;3 =33 = 1.

The first Eq. (A.13) implies (since S;; = —S;3 and Sj, = 0):
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SusSH +Sush, =1
218117 =1
Si=1/42.

At this point one should mention that wave functions have to be square integrable
by definition but there is no restriction on their phase, which can be freely chosen.
If several degenerate or nearly degenerate wave functions are considered, one has
only to pay attention that they are defined with the same phase factor such that they
remain orthogonal to each other if a superposition of these function is constructed,
which diagonalizes a Hamiltonian. Consequently, we obtain now

w1 (r) = Was2(D) = (1/v/2) (=11) + | = ).
Similarly, the second Eq. (A.13) implies (since Sy; = S3 =0)

SpSi =1
Sy = 1.

Consequently,
uz(r) = |[Waz02(2)) = 10).

Finally, by applying the third Eq. (A.13) we get (since S3; = 0 and S3; = S33 ):

285388 = 1
S33 = S35 = 1/4/2

and therefore

u3(r) = W3003)) = (1/¥2) (I +1 = 1)).



Appendix B
Basis Transformations of Matrices

In quantum mechanics, and in particular in its matrix formulation, it becomes quite
often necessary to express various operators (i.e. the relevant matrices) using different
basis “vectors”. One example of such an operation has been exposed in the present
textbook when transforming the Hamiltonian-related matrix P34 (Eq. (3.2.7)) from
one system of basis matrices, given by Eq. (3.2.1), to another one described by Eq.
(3.2.12). The result of this operation, being displayed as P34,” in Eq. (3.2.20), can
be easily obtained by making use of the “Maple” or “Mathematica” software but,
when doing so, the mathematics behind remains hidden. It is the purpose of this
Appendix to unveil the calculation procedure step by step and to convince the reader
that he/she is able to perform the whole computation himself, “by hand”, if he/she
will not regret the (effectively) sacrificed time.

First, let us formulate the problem. Let us suppose we have two basis systems v,
and uy, and let an operator Abe expressed in each of them via its matrix elements as

Akl :/uZAuldu and A;{[ :fV:AAVldV'

At the same time there is an interrelationship between the two bases which reads
(see Ref. [1])

up = Z S Un, (B.1)

where S is a matrix of unitary transformation. (We use here “S” as the usual notation
for a matrix of unitary transformation. Care has to be taken not to confound this
notation with the matrices S and S’ presented in Tables 2.1, 2.2, 2.3 and 6.1-6.3.)

The A matrix (formulated using the u;-basis) can be expressed through the A’
matrix (v,-basis) as follows (see Ref. [1]):

A=SA'S' =SA'ST, (B.2)
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where S~! denotes an inverted matrix of S, and ST is the Hermitian conjugate of
S. Now, in our particular case, let the v,-basis be represented by the six “vectors”
defined in Eq. (3.2.1):

V;} = |1>Oé, V; = |1>ﬁ7 Vg = |O)Oé, V}lj = |O>/6» Vg = | - 1>Oé, l/g = | - 1>/6

In a matrix form, they can be written down (in their “own” basis) also like this (we
omit the superscript for the sake of simplicity):

100000
01,0000
L, _|o0wmooo
"“loo00woo
0000uws0
0000 0w

Vectors of the uy-basis in our example are defined by the columns of the matrix given
by Eq. (3.2.12):

0 0 00 0 1
0 —6/30 0 +/3/30
Y 0 V3/30 0 +6/30 B3
“T1ov33 0 046/3 0 0 '
V6/3 0 0433 0 0
0 0 1 0 0 0

Let us consider the matrix A’ expressed in Eq. (3.2.7) to be transformed with the
aid of Eq. (B.2) from the v,- to the u;-basis as an example:

0 -1000 3
10003 0
o, looo0200
A=Pal=14 0200 0 (B.4)
0 3000 —I
3 000-10

In order to be able to exploit Eq. (B.2), we are now in a position to find the matrix S
of an unitary transformation between v, and u;. The general relation (B.1) can be in

our case specified as
6

we= Y Sivnwithk=1,...,6

n=1

and combining this expression with matrix (B.3), it is easy to itemize this sum (and
thus to obtain the following six vectors u| to ug, expressed in the basis of the v,) to
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up = —=(v/3/3)[0) + (V6/3)] = D = Sjyva + Sisvs

uy = —(V6/3)v2 + (v3/3)3 = S5y12 + Sivs

Uz = Vg = S;GI/(,

us = (V6/3)vs + (V3/3)vs = Sy + Sisvs

us = (V3/3)2 + (V6/3)v3 = Sva + S

ue = v = Sg V1,
which corresponds exactly to Eq. (3.2.13). (For the sake of simplicity and clearness
we have chosen here the notation “u;” instead of the v;-basis functions given in

Chap. 3.) It follows immediately that S = S* (there are only real coefficients in the
above expressions for u; to ug ) and this matrix reads

0 0 0 —/3/36/30
0-v6/343/3 0 0 0
G |0 0 0 0 0 1
0 0 0 6/3 V/3/30
0 V3/3 V6/3 0 0 0
1 0 0 0 0 0

Before we proceed further, we have to check whether this matrix is unitary, as
requested by Eq. (B.1). A unitary matrix S is by definition a matrix whose Hermitian
conjugate S is equal to its inverted matrix S~ :

St=s5"" (B.5)

Remembering the definition of a Hermitian conjugate matrix S;} = S}kl. (i.e. a simple
interchange of columns for rows in our case) we obtain

0 0 00 0 1
0 —+6/30 0 +/3/30
0 V3/30 0 +6/30

—V3/3 0 046/3 0 0

V6/3 0 043/3 0 0
0 0 1 0 0 0

St = (B.6)

and then we can easily calculate the product SS*:
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100000
010000
001000
000100
000010
000001

I
=~

SST=8TS =

It means that S* possesses the property of an inverted matrix, ST = S~!, indeed.
Consequently, the S matrix is unitary and we may proceed to calculate the prod-
uct defined by Eq. (B.2), namely, A = SA’S~!. At first, applying a bit tedious but
straightforward algebra, we calculate using Eq. (B.4), (B.5), and (B.6):

0 —-100 0 3 0 0 0 0 0 1
~10003 0 0 —v6/30 0 /3/30
e ol 0 0020 0 0 V3/30 0 6/30
A'ST = Pyu’ST = =
0 0200 O —V3/3 0 046/3 0 0
0 3000 —1 J6/3 0 0+3/3 0 0
3 000-10 0 0 1 0 0 0
0 V6/3 3 0 —V3/30
NG 0 0 3 0 -1
Cl-2vE3 00 0 2v6/3 00 0|
- 0 2330 0 2V6/3 0 =0
0 -6 -1 0 V300
—V6/3 0 0 —/3/3 0 3
Finally
0 0 0 —/3/36/30 0 V6/3 3 0 —=J3/30
0 —/6/33/3 0 0 0 NG 0 0 V3 0 -1
A—50— 0 0 0 0 0 1|[-2v33 0 0263 0 0]|_
0 0 0 V6/3 V3/30 0 2J3/30 0 2J6/3 0
0 V3/3 V6/3 0 0 0 0 -6 -1 0 V30
1 0 0 0 0 o/ \-v6/3 0 0 —-V3/3 0 3

0 —8/3 —v6/3 0 V2/3 0
—8/3 0 0 —v2/3 0 6/3
| =v6/3 0 0 —v3/3 0 3 _p
Tl o0 —v23-V33 0 13 0 | T e
V2/3 0 0 7/3 0 —3/3
0  J6/3 3 0 —3/3 0

in full agreement with Eq. (3.2.20) of the main text.

We encourage the reader to transform in a quite similar way (and using the same
matrix S) Zs;” from Eq. (3.2.18) to obtain Zs;,,” as given by Eq. (3.2.21) and also
to transform Z44” from Eq. (3.2.19) to Z44,,” in Eq. (3.2.22).



Appendix C
Matrix Direct Product

A well-known matrix product occurring quite often both in linear algebra and in
physics is that of two (¢ x ¢) square matrices of the same order ¢,

A = (amy) and B = (b)),

which is defined as

q
C=A-B= (amn)(bmn) = Zampbpn = (Cmn) with (m» i’l) =1..., q-

p=l1

Or, explicitly, an element ¢, standing on the point of intersection of the m-th row
and the n-th column of the resulting matrix C is equal to a scalar product of the m-th
row of matrix A with the n-th column of matrix B, or

Cin = amlbln + am2b2n +-+ amqbqn~

The matrix C remains to be a (¢ x ¢) square matrix.

However, apart from this common matrix product, another product called “Matrix
direct product” or “Kronecker product” can be defined. This kind of matrix product
is of particular importance in physics. Let us have a (m x n) matrix A and a (p X q)
matrix B. (In general, since m # n and p # g, neither A nor B thus need to be a
square matrix.) The Kronecker product

C=AQ®B
is defined as

Cap = aijby, (C.1)
where
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a=pi—-—D+k,a=1,...,mp

C.2
B=q(-1)+1B=1,....,nq. (€2

To understand better this definition, it might be useful to discuss a simple example.
Let

app dpiz a3 bii b
A= |ay apay ]| with(im=n=3)and B = 712) Wwith (p=q=2).
by by

asy asp ass

In this case, when applying Eqgs. (C.1) and (C.2), we obtain

ap apz a3 bui bi
C=AQB=|manas|® <b21 bzz) =

as) aszp ass
C11 C12 €13 C14 C15 Ci6
C21 €2 €23 C24 (25 C26
€3] €32 €33 C34 €35 C36
C41 C42 C43 Ca4 C45 C46
C51 C52 C53 Cs54 C55 C56
Co1 C62 Co3 Coa Co5 Co6

where

ci1 = anbii, ci2 = anbia, c13 = apbii, cia = apbiz, c15 = a13bii, c16 = azbiz

¢ = apbay, ¢ = a1by, 23 = apbsy, ¢ = apbxn, ¢5s = apbay, c26 = aizbyn

-y Coa = anban, cos = azbay, cop = azbo.

(C.3)

It means that the first row in the C = A ® B matrix is formed by an ordered sequence

of three pairs of numbers: the first pair is created by multiplying a;; at first with by,

and then with b5, the second pair originates when multiplying successively a;, with

b1 and then with b, etc. The fifth row is formed e.g. by multiplying in an analogous
way the elements aj3; (the 3rd row of A) with the elements b;; (the 1st row of B).

As a numerical example, let us calculate the Kronecker product Ps4” quoted in

the main text with the aid of Eq. (3.2.7):
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001 100 01
P34”:<3 000)]—-10-20 )®<10):
100 001

—-10 3
(55 0)s ()
3 0-1

Simple application of Eq. (C.3) yields immediately

0 -1000 3

0003 O
020 0
200 O
00 0 —1
00-10

—

Py =

wooo |l
cwoo

in compliance with the right hand side of Eq. (3.2.7).

229

Note: The Kronecker product of two unit matrices results again in a unit matrix

(of a higher order), for example:

100 100
G%@OM::MO@G%:
001 001

100000
010000
001000
000100
000010
000001



Appendix D

Some Elements of Group Theory Applied to
Crystalline Solids

As discussed in Sect. 1.4, a crystal is characterized by the “Bravais lattice”, which
consists of a periodical arrangement of atoms in one, two or three dimensions (di-
mension n =1, 2, or 3). The Bravais lattice is characterized by the fact that, if some
well defined discrete spatial translations are applied to the system, the environment
of a point remains invariant under these translations.

If we neglect translations, there are five other symmetry operations, which may
leave an object invariant. To each operation belong symmetry elements, which specify
the fixed points. The symmetry operations and symmetry elements are in general
denoted by:

E: The identity operation in which no action is applied to the object

e C,: An n-fold rotation, i.e. the symmetry element is a rotation by 27 /n around an

axis, which is called the “symmetry axis” of the system

o: A reflection on a mirror plane which has to be defined

e i: The inversion with respect to one point, which is called the “center of inversion”.
Taken as the origin, the coordinates r of a point are changed into —r

e S,: An n-fold improper rotation, i.e. the symmetry element is a rotation C, by

27 /n around an axis, followed by a reflection on a plane perpendicular to this

rotation axis.

In S, the axis is called an “n-fold rotation-reflection axis”. Similarly, the rotation
may be followed by an inversion in a point lying on the rotation axis. The axis is
then called an “n-fold rotation-inversion axis”. Although neither of the operations
alone are symmetry elements, the combined actions are. For example, the operation
S corresponds to a reflection, S, to an inversion.

Concerning the n-fold rotation C,, n may take every value in centro-symmetric
atoms. In crystals, however, n can only take the discrete values n = (2, 3, 4, or 6)
because of the translational invariance of the system. If a system has several axis
of rotation, the one with the largest value of n (if it is unequivocal) is called the
“principal axis” of rotation. If n > 3 the sense of rotation becomes important. Then
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a clockwise rotation (seen from above) is noted C,;” and a counter-clockwise rotation
(positive in the mathematical sense) C,f.

One remarks that C; and C;} applied one after the other to the system annihilate
the operations performed by the two symmetry elements. (This corresponds to the
identity operation “E”.) We call this successive application of elements to a system a
“multiplication”. Let us call R = C,; and S = C;I". If we apply first R and then S to
the system, we write it as the product SR. As discussed above, we obtain SR = E.
So, in the language of mathematics, S is the inverse element of R or § = R~!. In
addition, we find that RS = SR = E,ie. RR"' =R 'R=E.

Concerning a reflection on a mirror plane o, this reflection plane is called a
“vertical mirror plane” if it contains the principal axis of rotation. This is indicated
by o,. If the plane is perpendicular to the principal axis, it is called a “horizontal
mirror plane” indicated by o;,. A “diagonal mirror plane” is a vertical plane (i.e. a
plane containing the principal axis), which bisects the angle between two C, axis,
which are orientated perpendicular to the principal axis. The symmetry element is
indicated by o,.

In general, if R is an element of the set of operations its inverse element R~! is
also an element of this set. In addition, if [R, S] are two elements of the set, their
product (RS) = T is also an element of the set. Furthermore, the multiplication,
which we have defined above, is associative, i.e. if [R, S, U] are elements of the set
of operations, which we have considered, one obtains that (RS)U = R(SU).

One sees that the above mentioned set of symmetry elements form a group in the
language of mathematics. This means that they obey the following rules:

1. The identity is an element of the set

2. The multiplication of elements is associative

3. Iftwoelements R and S are members of the set, their product RS is also a member
of the set

4. The inverse R~! of an element R is also a member of the set.

Using the symmetry operations discussed above together with the condition that
a crystal forms a Bravais lattice, thirty-two distinct crystallographic point groups can
be constructed. Using the Schoenflies’ notation for their classification, one obtains:
The five cubic point groups Oy, O, Ty, T, Ty, :

e O, is the full symmetry group of a cube

e O the cubic group without improper rotations

e T, is the full symmetry group of a regular tetrahedron

e T is the full symmetry group of the regular tetrahedron without improper opera-
tions (i.e. operations that transform right-handed objects into left-handed ones as
reflections or inversions)

e Ty is the result when inversion symmetry is added to the elements of 7.

Using Schoenflies’ notation for their classification, the other crystallographic
point groups in the different crystal classes are given by:

e C,: groups containing only an n-fold rotations
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e C,,: groups containing an n-fold rotation axis as well as vertical mirror planes that
contain the rotation axis. Their number is determined by the symmetry operation
Ca

e C,,: groups containing an n-fold rotation axis as well as a horizontal mirror plane
perpendicular to the rotation axis

e §,: groups containing only an n-fold rotation-reflection axis

e D,: groups containing an n-fold rotation axis as well as two-fold rotation axes that
are perpendicular to the n-fold rotation axis. Their number is determined by the
symmetry operation C,

e D,;: groups containing the elements of D, as well as a horizontal mirror plane
perpendicular to the n-fold rotation axis

e D,,: groups containing the elements of D,, as well as mirror planes, containing the
n-fold rotation axis and bisecting the angles between the two-fold rotation axes.
Their number is determined by the symmetry operation C,,.

In order to summarize we give the symmetries of the thirty-two distinct crys-
tallographic point groups in the different three-dimensional crystal classes which
are:

5 Cubic point groups: Oy, O, Ty, T, Ty,

7 Tetragonal point groups: Cu, Cay, Cap, Sa, Da, Daj, Doy

3 Orthorhombic point groups: Cy,, D3, Doy

3 Monoclinic point groups: C», Cap, Cip

2 Triclinic point groups: Cy, S»

5 Trigonal point groups: C3, Csy, S¢, D3, D3y

7 Hexagonal point groups: Cg, Cey, Cen, C3ns D, Dep, D3y

We are mostly interested in the simple cubic semiconductors with 7; and O; sym-
metry and the hexagonal ones with Cg, symmetry. The symmetry elements of the
cubic T, and O, structures are:

° Tdi E, 8C3, 3C2, 6(7d, 6S4
e Oj: In addition to the elements of the T, structure the inversion i.

For Cg, symmetry one obtains:
(] C6v: E, Cz, 2C3, 2C6, 30’d, 30’v.

When considering 7, point-group symmetry, we see that there are five symmetry
classes (E, Csz, C3, 04, and Sy ) into which the twenty-four symmetry elements are
divided. One can state that rotations by the same angle around equivalent axes or
reflections by equivalent planes belong to the same class. Each class gives rise to one
“irreducible representation” for which one or several wave-functions are defined.
Since the electron-wave functions have to be compatible with the symmetry oper-
ations of the crystal (i.e. have to be invariant under the symmetry operations) they
can be characterized by their symmetry properties, and the functions are then called
to transform as the irreducible representation. Each crystal-wave function can then
be decomposed into a linear combination of electron-wave functions transforming
as an irreducible representation of a definite symmetry.
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absorption spectrum, 69, 108
band structure, 69
luminescence spectra, 83
polariton dispersion curves, 198
Z1 » exciton series, 69, 108
Z3 exciton series, 69, 83, 108, 116, 187
Cul exciton reflectance, 125
Cu;0, 102
C-valence band, 5, 143, 157
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D
Damping
constant, 178
Dark exciton, 102
Defect-electron state, 77, 80, 101
Degeneracy, 6, 22, 26, 30, 43, 50, 66, 100,
133, 165
Diagonal
blocks, 76, 93, 110, 208
mirror plane, 232
Dielectric
function, 170, 174, 175, 177-179, 182
medium, 173-175, 179, 197
susceptibility, 170
Dipole
active excitons, 98—103, see also J =1
exciton state
moment, 14,96, 110, 111, 160, 161, 176,
209
Dispersion
of polariton, 183, 185-189, 196, 210
of the conduction band, 34-37
of the valence band, 4446, 145, 151, 152
relation of elementary excitations, 173
spatial, 178, 180, 185, 196, 209-212
d-orbitals, 22, 85, 128, 156
Double-group representation, 55, 82, 127,
155

E
Effective Hamiltonian
invariant expansion, 8, 17, 24, 122, 137
Effective mass
approximation, 35, 61-63
Effective spin, 50, 138
Eigenfunction, 17,24, 32, 33,42, 45,47, 48,
117,217,220
Eigenvalue, 17, 18,26, 30, 32-34, 45,47, 49,
217-219
Electric
displacement, 170, 175
polarization, 170, 175, 176, 180, 185
Electromagnetic radiation field, 96, 101,
102, 169, 171-173, 180
Electron
Bohr magneton, 30, 76, 123
g-factor, 112, 123,207
spin, 22-24, 38, 41, 50
Electron band structure
CdS, 128
GaAs, 71, 117
GaN, 5

Index
ZnSe, 71, 117
Electron-defect-electron representation, 79,
80, 158

Electron-hole
continuum, 82, 84, 86, 157, 165
exchange interaction, 80, 86, 90-93, 100,
103, 157, 165
interaction, 86, 90, 156, 160
representation, 80, 82, 96, 97, 159, 193
Elementary excitation, 82, 181, 184, 195
Energy
conservation, 10, 16
eigenvalue, 30, 32, 49, 134, 217, 218
Evanescent wave, 179, 180, 184
Exchange interaction
analytic, 100, 111, 194
anisotropic, 200
cubic, 99, 103, 202, 203
matrix, 97
non-analytic, 100, 104, 111, 194, 212
Exciton
basis function, 90, 160
binding energy, 84, 86, 109, 116, 118,
157, 201
bright, 102
center-of-mass, 79, 122, 196, 202
dark, 102
dielectric function, 170, 174, 177, 191
dipole active, 96, 101, 103, 161
energy-level scheme, 84, 104, 105, 165,
202
envelope function, 79, 85, 102
ground state, 77-79, 82, 85-87, 100, 116
J=0,J=1,J =2,95-99,201, 202
longitudinal, 83, 100, 103-105, 201
mixing of states, 94
ortho-, 101, 102
para-, 101, 102
photoluminescence spectrum, 3, 6, 7
reflectance spectrum, 3, 105
singlet, 101
singlet-triplet splitting, 103, 111, 202
singularity, 182
spin-orbit coupling, 87
symmetry-breaking effects, 85, 111, 116,
122, 165
transverse, 83, 100, 104, 105, 202
triplet, 101-103, 194, 201
wave function, 94, 98, 120, 158, 162, 200
Zj  series, 69, 108
Z3 series, 108, 187
Exciton-polariton
bottleneck region, 186
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dispersion curve, 191-193

dispersion equation, 195

Fabry-Perot modes, 187, 197

I'e ® I'7 subspace, 193

I'e ® I'g subspace, 197

group velocity, 173, 183, 196

hyper-Raman scattering, 206, 208-210

lower polariton branch (LPB), 183, 186

mixed-mode, 211, 212

resonant Brillouin scattering, 186, 189,

191

spatial dispersion, 180, 195, 196, 212

symmetry breaking, 195, 197

thin-prism method, 190

two-photon spectroscopy, 186, 189, 198

upper polariton branch (UPB), 183, 186,

187, 196

wurtzite-type semiconductors, 208
Excitonic molecule , see biexciton189
Extraordinary dielectric function, 210

G
GaAs
band structure, 71, 117
exciton photoluminescence, 2, 3
exciton reflectance, 3
I'| exciton states, 157, 160, 165
I'; exciton states, 84, 104, 157, 160, 165
I's exciton states, 84, 104, 105, 157, 160, 165
I'e ® I'7 exciton subspace, 193, 194
I'e ® I'g exciton subspace, 202
GaN
A, B, C-excitons, 4
exciton photoluminescence, 4
exciton reflectance, 4
wurtzite band structure, 4, 5
Zincblende, 4
GaSb
zincblende valence bands, 23
Generalized coordinates, 9, 11
g-factor, 30, 112, 123, 207
Group
theory, 1, 13, 26
velocity, 173, 179, 183, 186, 196

H
Hamilton operator
matrix formulation, 41, 217
transformation properties, 35, 39, 44
Hartree-Fock approximation, 78, 80
Hermitian conjugate matrix, 225
Hexagonal
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close-packed structure, 21
lattice, 17, 24
point groups, 233
Hole
g-factor, 112, 123, 207
heavy, 6, 23, 75
light, 6, 23, 75
Horizontal mirror plane, 232, 233
Hybridization of states, 67

I
Identity
operation, 17, 23, 26, 231, 232
representation, 13
Invariant expansion
wurtzite-type semiconductors, 127, 138
Inversion, 17, 231-233
Inverted matrix, 224-226
Irreducible representation, 23, 24, 26, 233

J

J = 0 exciton state, 96, 194

J =1 exciton state, 96-98, 101, 194, 199—
202, 205, 206

J = 2 exciton state, 97-99, 199-202

K

Kramers’ conjugation, 17, 26, 27, 80-82,
193

Kronecker product, 50, 227-229

L
Lagrange function, 8-10, 12
Landé factor, see g-factor
Lattice point, 15
Lifting spin degeneracy, 64
Longitudinal
electric wave, 175, 179, 182
exciton, 100, 104, 182, 183, 198
-transverse splitting, 103-105, 111, 211,
212
Lower Polariton Branch (LPB), 183, 186
Luttinger parameters, 75

M
Magnetic polarization, 170, 172
Matrix
diagonalization, 33, 217
direct product, see Kronecker product
Maxwell’s equations, 169, 171



238

Mixing of states, 46, 76, 94
Momentum conservation, 16, 189
Monoclinic
point groups, 233
Multiplication scheme, 27, 28, 72, 129, 130

N

n-fold improper rotation, 17, 231
n-fold rotation, 17, 231-233
Noether’s theorem, 10, 16
Non-diagonal blocks, 59, 92, 93, 100
(N + 1) particle problem, 78

(0]
Oy, point-group symmetry, 18
One-oscillator model, 177-181, 186, 187,

211

Optical axis, 209-211
Ordinary

dielectric function, 210

rays, 210
Orthoexciton, 101, 102
Orthorhombic

point groups, 233
Oscillator

eigenfrequency, 176
strength, 96, 100, 102, 181, 182, 194,
197, 199

P
Paraexciton, 101, 102
Parity, 18, 39
Pauli-spin matrices, 24-26, 108, 109, 131
Penetration depth, 179
Perturbation
magnetic field, 14, 18, 26, 35, 47, 130
symmetry-adapted, 129
Phase velocity, 172-174, 191
Phonon
acoustical, 189-191
optical, 190
Photoluminescence spectroscopy, 2
Photon, 101, 102, 172-175
Point-group symmetry, 16, 232, 233
Polariton
dispersion, 183, 185-188, 196, 198, 209
exciton-like, 183, 196
group velocity, 173, 183, 186, 187
lower branch, see lower polariton branch
mixed-mode, 211, 212
photon-like, 183, 192, 196

Index

upper branch, see upper polariton branch
Polarizability, see atomic polarizibility
Polarization current, 170
p-orbitals, 22, 41, 85, 128, 134, 149, 156
Principal

axis of rotation, 232

plane, 209-211
Product space, 50-53, 108, 139-141, 156,

161

Pseudo-Bloch functions, 24, 35, 131
Pseudo-spin

development, 71, 107

operator, 24, 129, 131

Q

Quasi-cubic
approximation, 147, 148, 151, 159, 161
limit, 142, 149, 151

Q-wave vector
finite, 23, 34, 129
linear perturbation, 44
linear terms, 35, 44, 61-66, 74, 152
squared perturbation, 35, 74

R

Reciprocal lattice vector, 16

Reflectance, 1-4, 103, 105, 125
Reflection on a mirror plane, 17, 231, 232
Refractive index, 175

Resonance frequency, 177-180

S
Schoenflies’ notation, 232
Schrodinger equation, 11, 13, 18, 45
Si
band structure, 6
electron-hole liquid, 7
excitonic molecule, 7
free exciton, 7
photoluminescence, 7
Singlet exciton, 101, 110
Singlet-triplet splitting of exciton states, 103,
111,202
s-orbitals, 22, 127
Spatial
dispersion, 178, 180, 182, 195, 196, 209—
211
translations, 15, 231
Spherical symmetry, 13, 16, 32, 79, 85, 134,
136, 155, 183
Spin degeneracy, 29, 39, 50, 87, 132, 138
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Spin-orbit
interaction, 22, 54-56, 68, 86, 141, 142,
147
splitting, 22, 55, 56, 61-63, 86, 88, 128,
149

Spin-orbit coupling
anisotropic, 145, 147
isotropic, 128, 147, 148, 150, 151
planar, 144, 145, 148, 150
Spinors, 80, 82
Spin-singlet exciton, see singlet exciton
Spin-triplet exciton, see triplet exciton
Split-off
band, 22, 56, 63
exciton block, 95
exciton states, 92, 94, 95, 107, 109
Stark effect
linear, 31, 39, 48, 57, 132
magnetic-field induced, 32
quadratic, 31, 132, 133
Strain tensor, 27, 31, 46, 114, 115
Strong-coupling regime, 195, 197
Susceptibility, see dielectric susceptibility
Symmetry breaking
electric-field induced, 116, see also Stark
effect
exciton interactions, 123, 199
finite wave-vector, 34, 35, 62
magnetic-field induced, 29, 32, see also
Zeeman effect
of exciton ground state, 85
strain-induced, 114, 126
Symmetry operations, 8, 16, 17,23,25,231-
233

T
T, point-group symmetry
irreducible representations, 26, 233
Tetragonal
point groups, 233
Third-order dispersive terms, 47
Time reversal, 14, 17, 23-26, 207
Total reflection, 179, 196
Transformation of matrices, 47, 118
Transformation properties of
electric field, 27, 130
Hamiltonian, 8, 44
magnetic field, 26, 27, 130
strain tensor, 27, 130
wave vector, 27, 130
Transition
dipole matrix element, 96, 181
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dipole-active, 158, 181
valence-conduction band, 77, 78, 101,
Transverse
electromagnetic wave, 175
exciton, 100, 104, 105, 182-184, 194—
196, 202
Triclinic
point groups, 233
Trigonal
point groups, 233
Triplet exciton, 101-103
Two-oscillator model, 209, 210

U
Uniaxial crystal
field, 128, 137, 141
Unitary
matrix, 225
transformation, 223, 224
Unit matrix, 25, 31, 229
Upper Polariton Branch (UPB), 183, 186,
187, 196

A%
Valence band
I'7 subspace, 55, 68
I'g subspace, 71, 72, 75
including electron spin, 50, 128
warping, 45, 46, 75
wurtzite-type crystals, 134-138
Zeeman splitting, 48, 70, 76
zincblende-type crystals, 41
Vertical
mirror plane, 232, 233
optical transitions, 79, 185, 193

w

Wave equation, 169, 171, 172, 174

Wave-vector, 4, 16,21, 23, 26, 185, 192-195

Waurtzite structure, 4, 21, 141-143, 156, 164,

165

Waurtzite-type semiconductors
A, B, C-exciton series, 4, 5, 157, 160
A, B, C-valence bands, 4, 5, 143, 157
quasi-cubic approximation, 147
quasi-cubic limit, 142
symmetry-breaking interactions, 151

Z
Zeeman effect
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linear, 30, 47, 70, 112, 123, 132
quadratic, 31, 48, 113, 133, 134
Z1 »-exciton series, 108
Z3-exciton series, 69, 83, 108, 116, 187
Zincblende structure, 21, 22, 41, 77, 107

Index

ZnSe
band structure, 117
ZnTe

magneto-reflectance, 124
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