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Preface

There are good theoretical reasons to consider seriously the possibility that gravity
is not described precisely by Einstein’s General Relativity but rather by some al-
ternative theory. First, attempts to renormalize General Relativity in the 1960s and
1970s showed clearly that counterterms must be introduced which alter the theory
significantly and make its field equations of fourth order instead of second. From the
physical point of view, this fact implies that extra degrees of freedom, in addition
to the usual spin two graviton, need to be introduced. Unfortunately, the corrected
theory is not free of ghosts, which makes it non-unitary. The corrections introduced
by renormalization are quadratic in the algebraic invariants of the curvature tensor
and were successfully employed in R2-inflation in the early universe. By retaining
only corrections quadratic in the Ricci scalar R or, by extension, corrections which
are general non-linear functions ofR (and no longer motivated by renormalization),
one obtains the so-called class of f .R/ theories of gravity.

Second, when one tries to approach gravity (and the other interactions) from the
high energy side and then obtain low-energy physics, one does not recover Einstein’s
theory. Adopting, at least as a temporary model, string theory as a full theory of
quantum gravity which also unifies the known interactions, one can take a low-
energy limit which, again, does not reproduce General Relativity but gives instead
a Brans-Dicke theory. Scalar-tensor theories of gravity have been known for a long
time and were developed following initial suggestions by Dirac, Jordan, Fierz, and
Thiery, culminating in the 1961 paper by Brans and Dicke introducing what is now
known as Brans-Dicke theory. The original motivations for Brans-Dicke theory were
rooted in the need to implement Mach’s principle, which is not fully incorporated
in General Relativity, in a relativistic theory of gravity. After Brans-Dicke theory
(the prototype of scalar-tensor theories of gravity) was born, research on Mach’s
principle went its own way and, without doubt, the interest of modern physicists
in scalar-tensor gravity arises more from string theories than from Mach’s princi-
ple. Dilaton fields and their non-minimal couplings to the spacetime curvature are
unavoidable features of string theories, shared with scalar-tensor gravity.

It seems, therefore, that first loop corrections or attempts to fully quantize grav-
ity necessarily introduce significant deviations from General Relativity and extra
degrees of freedom. The recent thermodynamics of spacetime approach to emer-
gent gravity pictures General Relativity as a thermodynamical state of equilibrium
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among a wider spectrum of gravity theories and it only makes sense that, if extra
degrees of freedom are allowed in addition to the standard spin two graviton of
General Relativity, deviations from this equilibrium state will correspond to the ex-
citation of these extra degrees of freedom and to deviations from Einstein’s theory.
From the theoretical point of view, going beyond General Relativity is a necessity
and exploring the wider landscape of theories becomes a cultural need.

From the experimental point of view, General Relativity has been tested directly
in the Solar System in its weak-field, slow motion approximation. Binary pulsars,
most notably the Hulse-Taylor system PSR 1913C 16, allow for indirect tests out-
side the Solar System, in the same regime. However, strong gravity tests are still
missing and gravity is tested very poorly at the scale of galaxies and clusters, wit-
nessing the fact that even Newtonian gravity is doubted at galactic scales, which
has led to the introduction of MOND and TeVeS theories to replace galactic dark
matter. Cosmology cannot be advocated as a precise test of General Relativity at
large scales: in fact, almost all theories of gravity admit the Friedmann-Lemaitre-
Robertson-Walker line element as a solution of their field equations, with perfect
fluids or other reasonable matter sources. Indeed, it is from cosmology that comes
the indication that gravity may not be described exactly by General Relativity. The
1998 discovery that the present expansion of the universe appears to be accelerated,
made using the luminosity distance versus redshift relation of type Ia supernovae,
has left cosmologists scrambling for an explanation. In order to explain the cosmic
acceleration within the context of General Relativity, one needs to introduce the
mysterious dark energy, which is very exotic (its pressure P and energy density �
must satisfy P ' ��), diluted, comprises approximately 75% of the energy content
of the universe, and is not detected in the laboratory. Dark energy seems very much
an ad hoc solution of the problem of the present acceleration of the universe and,
understandably, alternatives have been looked for. Attempts to explain away dark en-
ergy using the backreaction of inhomogeneities on the dynamics of the background
universe have been, so far, unconvincing. In 2002, the idea was advanced by one of
us, soon followed by other authors, that perhaps we are observing the first deviations
from General Relativity on the largest scales. f .R/ theories of gravity (although not
of the quadratic form obtained by renormalization) were resurrected in an attempt
to explain this phenomenon. Curiously, f .R/ gravity admits a scalar-tensor repre-
sentation. Since these first attempts, the literature on f .R/ and scalar-tensor gravity
and their applications to cosmology has flourished, and scalar fields or f .R/ modi-
fications of gravity are now even proposed as alternatives to dark matter. This book
attempts to organize the available knowledge about these classes of theories and the
vast literature into a coherent view. The book is not meant to be a comprehensive
review of half a century of literature, including its recent explosion: it is conceived
more as an advanced introduction to this expanding area of research.

It would be premature and unjustified to claim that gravity is described by any of
the theories described in this book. However, even if none of these extended theories
of gravity ultimately proves to be correct, they are simple enough to solve many
problems while still allowing us to peek into the vast landscape of theories beyond
Einstein gravity and to understand many ways in which gravity can be enlarged with
respect to Einstein’s conception.
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Notations and conventions: the following notations and conventions are used in
this book. The metric signature is � C CC in four spacetime dimensions. Units
are used in which the speed of light c and the reduced Planck constant „ assume
the value unity. G is Newton’s constant, the Planck mass is mpl D G�1=2, while
� � 8�G. Greek indices assume the values 0, 1, 2, 3 and Latin indices assume
the spatial values 1, 2, 3. A comma denotes ordinary differentiation, ra is the
covariant derivative operator, and g denotes the determinant of the metric tensor
g�� , while ��� is the Minkowski metric, which takes the form diag.�1; 1; 1; 1/
in Cartesian coordinates in four dimensions. "˛ˇ�� is the totally antisymmetric
Levi-Civita tensor. Round and square brackets around indices denote symmetriza-
tion and antisymmetrization, respectively, which include division by the number of
permutations of the indices, for example:

A.˛ˇ/ � A˛ˇ C Aˇ˛

2
; AŒ˛ˇ� � A˛ˇ � Aˇ˛

2
:

The Riemann and Ricci tensors are given in terms of the Christoffel symbols � ı
˛ˇ

by

R˛ˇ�
ı D � ı˛�;ˇ � � ıˇ�;˛ C � �˛��

ı
�ˇ � �

�

ˇ�
� ı�˛ ;

R˛� � R˛ˇ�
ˇ D �

ˇ

˛�;ˇ
� � ˇ

ˇ�;˛
C � ı˛��

�

ı�
� � ıˇ��

ˇ

ı˛
;

and R � g˛ˇR˛ˇ is the Ricci curvature. � � g˛ˇr˛rˇ is d’Alembert’s operator.
A tilde usually denotes quantities defined in the Einstein frame and the subscript 0
identifies quantities evaluated at the present instant of time in the history of the
universe.

Naples and Sherbrooke Salvatore Capozziello
November 2010 Valerio Faraoni
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Chapter 1
Extended gravity: a primer

Ubi materia, ibi geometria.
– Johannes Kepler

1.1 Why extending gravity?

Einstein’s theory of General Relativity (GR) provides a comprehensive and coherent
description of space, time, gravity, and matter at the macroscopic level. It is formu-
lated in such a way that space and time are not the absolute entities of classical
mechanics, but, rather, dynamical quantities determined together with the distribu-
tion and motion of matter and energy. As a consequence, Einstein’s approach gave
rise to a new conception of the universe which, for the first time in the history of
physics, came to be considered as a dynamical system susceptible of precise math-
ematical modeling and physical measurement. Cosmology thus left the realm of
philosophy where it had been relegated until Einstein’s work and was legitimately
incorporated into that of science. Over the years, the possibility of investigating the
universe scientifically has led to the formulation of the Standard Big Bang model
of the universe [1153] which matched the available cosmological observations until
recently. However, in the last thirty years several shortcomings of Einstein’s theory
were found and scientists began wondering whether GR is the only fundamental the-
ory capable of successfully explaining the gravitational interaction. This new point
of view comes mainly from the study of cosmology and of quantum field theory.
In cosmology, the presence of the Big Bang singularity, together with the flatness,
horizon, and monopole problems [564] led to the realization that the standard cos-
mological model based on GR and on the Standard Model of particle physics is
inadequate to describe the universe at extreme regimes. On the other hand, GR is a
classical theory which cannot work as a fundamental theory when a full quantum
description of spacetime and gravity is sought for. For these reasons, and especially
because of the lack of a definitive quantum theory of gravity, various alternative
gravitational theories were proposed which attempt to formulate at least a semiclas-
sical scheme in which GR and its successes could be replicated. One of the most
fruitful approaches resulted in the so-called Extended Theories of Gravity (ETGs)
which have, in some sense, become a paradigm in the study of the gravitational
interaction. ETGs are based on corrections and enlargements of Einstein’s theory.

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics 170,
DOI 10.1007/978-94-007-0165-6 1, c� Springer Science+Business Media B.V. 2011
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2 1 Extended gravity: a primer

The paradigm consists, essentially, of adding higher order curvature invariants and
minimally or non-minimally coupled scalar fields into the dynamics emerging from
some effective quantum gravity action [190].

Other reasons to modify GR are provided by the attempt to fully incorporate
Mach’s principle into the theory. GR contains only some of Mach’s ideas and ad-
mits solutions that are explicitly anti-Machian, such as the Gödel universe [544] and
exact pp-waves [877]. According to Mach’s principle the local inertial frame is de-
termined by the average motion of distant astronomical objects [159]. This feature
implies that the gravitational coupling at a spacetime point is not absolute but is de-
termined by surrounding matter and, therefore, becomes a function of the spacetime
location, a scalar field. As a consequence, the concept of inertia and the Equivalence
Principle have to be revised. Brans-Dicke theory [165] was the first fully fleshed out
alternative to Einstein’s GR, and the prototype of alternative theories of gravity.
The variable gravitational “constant” corresponding to a scalar field coupled non-
minimally to the geometry constitutes a more satisfactory implementation of Mach’s
principle than GR [165, 234, 999].

Furthermore, every scheme unifying the fundamental interactions, such as super-
string, supergravity, or Grand-Unified Theories (GUTs) produces effective actions
in which non-minimal couplings to the geometry or higher order terms in the curva-
ture invariants are necessarily present. Such contributions are due to first or higher
loop corrections in the high curvature regime approaching the full (and still specu-
lative) quantum gravity regime [190]. This scheme was adopted in the quantization
of matter fields on curved spacetimes and the result was that the interactions be-
tween quantum scalar fields and the background geometry, or the gravitational
self-interactions, yield corrections to the Hilbert-Einstein Lagrangian [144]. More-
over, it has been realized that these corrective terms are unavoidable in the effective
quantum gravity actions [1122]. All these approaches certainly do not constitute a
full quantum gravity theory, but are needed as temporary working schemes toward it.

To summarize, higher order invariants of the curvature tensor such as R2,
R��R�� , R��˛ˇR��˛ˇ , R�R, R�kR, or non-minimally coupled terms between
matter (especially scalar) fields and geometry such as �R have to be added to
the effective gravitational Lagrangian as soon as quantum corrections are intro-
duced. For instance, such terms occur in the low-energy limit of the Lagrangian
of string theories or in Kaluza-Klein theories when extra spatial dimensions are
compactified [530].

On the other hand, from the conceptual point of view, there is no a priori reason
to restrict the gravitational Lagrangian to be a linear function of the Ricci scalar R,
minimally coupled with matter [768]. Furthermore, the idea that there are no
“exact” laws of physics has been contemplated seriously: in such a case, the effec-
tive Lagrangians of physical interactions would be average quantities arising from
stochastic behavior at a more microscopic level. This feature would mean that local
gauge invariances and the related conservation laws are well approximated only in
the low-energy limit and the fundamental constants of physics can vary [103].

In addition to being motivated by fundamental physics, ETGs have been the sub-
ject of great interest in cosmology because they naturally exhibit an inflationary
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behavior capable of overcoming the shortcomings of the Standard Big Bang model
based on GR. The related inflationary scenarios seem realistic and capable of
matching the current observations of the cosmic microwave background (CMB)
[402, 701, 1044]. It has been shown that, by means of conformal transforma-
tions, the higher order and non-minimally coupled terms always correspond to
Einstein gravity plus one (or more) scalar field(s) minimally coupled to the cur-
vature [233,550,764,1072,1144]. More precisely, higher order terms always appear
as second order contributions to the field equations when they are replaced by equiv-
alent scalar fields. For example, the term R2 in the Lagrangian yields fourth order
equations of motion [951], R �R gives sixth order equations [34, 550], R�2R

yields eighth order equations [113], and so on. By means of a conformal transfor-
mation, any second order derivative term corresponds to a scalar field:1 for example,
fourth order gravity is equivalent to Einstein gravity plus a single scalar field; sixth
order gravity to GR plus two scalar fields; and so on [550, 985]. For example, it is
possible to show that f .R/ gravity is equivalent not only to a scalar-tensor theory
but also to Einstein theory coupled to an ideal fluid [244]. This property is useful if
multiple inflationary events are desired because an early stage could produce large-
scale structures with very long wavelengths which later grow into the clusters of
galaxies observed today, while a later stage could select smaller scale structures ob-
served as galaxies today [34]. The philosophy is that each inflationary era is related
to the dynamics of a scalar field. Finally, these extended schemes could naturally
solve the graceful exit problem, avoiding the shortcomings of previous inflationary
models [35, 701].

1.2 Cosmological and astrophysical motivation

The revision of standard early cosmological scenarios leading to inflation implies
that a new approach is necessary also at later epochs: ETGs could play a fundamen-
tal role also in this context. In fact, the increasing bulk of data accumulated over the
past few years has paved the way for a new cosmological model usually referred to
as the Concordance Model or � Cold Dark Matter (�CDM) model.

The Hubble diagram of type Ia supernovae (hereafter SNeIa) measured by both
the Supernova Cosmology Project [676,901] and the High-z Team [936,1078] up to
redshift z � 1, was the first piece of evidence that the universe is currently under-
going a phase of accelerated expansion. Later on, balloon-born experiments such as
BOOMERANG [377] and MAXIMA [1055] determined the location of the first two
Doppler peaks in the spectrum of CMB anisotropies, strongly suggesting a universe
with flat spatial sections. When combined with the constraints on the dimension-
less matter density parameter ˝M from galaxy clusters, these data indicate that

1 The dynamics of all these scalars are usually determined by second order Klein-Gordon-like
equations.
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the universe is dominated by an unclustered fluid with negative pressure commonly
referred to as dark energy, which drives the accelerated expansion. This picture has
been further strengthened by the recent precise measurements of the CMB spec-
trum by the WMAP satellite experiment [592, 1038, 1039], and by the extension of
the SNeIa Hubble diagram to redshifts larger than one [940].

An overwhelming number of papers appeared following these observational
pieces of evidence, which present a large variety of models attempting to explain
the cosmic acceleration. The simplest explanation would be the well known cos-
mological constant � [956]. Although the latter provides the best-fit to most of
the available astrophysical data [1038], the �CDM model fails egregiously in ex-
plaining why the inferred value of � is so tiny (120 orders of magnitude lower) in
comparison with the typical value of the vacuum energy density predicted by parti-
cle physics, and why its present value is comparable to the matter density – this is
the so-called coincidence problem.

As a tentative solution, many authors have replaced the cosmological constant
with a scalar field � rolling slowly down a flat section of a potential V.�/ and giv-
ing rise to the models known as quintessence [340,882]. Albeit successful in fitting
the data with many models, the quintessence approach to dark energy is still plagued
by the coincidence problem since the dark energy and matter densities evolve dif-
ferently and reach comparable values only during a very short time of the history
of the universe, coinciding right at the present era. In other words, the quintessence
dark energy is tracking matter and evolves in the same way for a long time; at late
times, somehow it changes its behavior and no longer tracks the dark matter but
begins to dominate in the fashion of a (dynamical) cosmological constant. This is
the coincidence problem of quintessence.

To add to this puzzle, the origin of this quintessence scalar field is mysterious,
although various (usually rather exotic) models have been proposed, leaving a great
deal of uncertainty on the choice of the scalar field potential V.�/ necessary to
achieve the late-time acceleration of the universe. The subtle and elusive nature of
dark energy has led many authors to look for a completely different explanation of
the acceleration behavior of the cosmos without introducing exotic components. To
this end, it is worth stressing that the present-day cosmic acceleration only requires
a negative pressure component that comes to dominate the dynamics late in the mat-
ter era, but does not tell us anything about the nature and the number of the cosmic
fluids advocated to fill the universe. This consideration suggests that it could be pos-
sible to explain the accelerated expansion with a single cosmic fluid characterized
by an equation of state causing it to act like dark matter at high densities, while be-
having as dark energy at low densities. An attractive feature of these models, usually
referred to as Unified Dark Energy (UDE) or Unified Dark Matter (UDM) models,
is that the coincidence problem is solved naturally, at least at the phenomenological
level, with such an approach. Examples are the generalized Chaplygin gas [661],
the tachyon field [881], and condensate cosmology [110]. A different class of UDE
models with a single fluid has been proposed [214, 259]: its energy density scales
with the redshift z in such a way that a radiation-dominated era, followed by a matter
era and then by an accelerating phase can be naturally achieved. These models are
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extremely versatile since they can be interpreted both in the framework of UDE or
as two-fluid scenarios containing dark matter and scalar field dark energy. A char-
acteristic feature of this approach is that a generalized equation of state can always
be obtained and the fit to the observational data can be attempted.

There is another, different, way to approach the problem of the cosmic accel-
eration. As stressed in [756], it is possible that the observed acceleration is not
the manifestation of yet another ingredient of the cosmic pie, but rather the first
signal of a breakdown, in the infrared limit, of the laws of gravitation as we
understand them. From this point of view, it is tempting to modify the Einstein-
Friedmann equations to see whether it is still possible to fit the astrophysical data
with models containing only standard matter and without exotic fluids. Examples are
the Cardassian expansion [507] and Dvali-Gabadadze-Porrati (DGP) gravity [405].
Within the same conceptual framework, it is possible to find alternative schemes in
which a quintessential behavior is obtained by incorporating effective models com-
ing from fundamental physics and giving rise to generalized or higher order gravity
actions [211] (see [843] for a comprehensive review). For instance, a cosmologi-
cal constant may be recovered as a consequence of a non-vanishing torsion field,
leading to a model consistent with both the SNeIa Hubble diagram and observa-
tions of the Sunyaev–Zel’dovich effect in galaxy clusters [215]. SNeIa data could
also be efficiently fitted by including in the gravitational sector higher order cur-
vature invariants [212, 719, 720, 843]. These alternative models provide naturally a
cosmological component with negative pressure originating in the geometry of the
universe, thus overcoming the problematic nature of quintessence scalar fields.

The variety of cosmological models which are phenomenologically viable candi-
dates to explain the observed accelerated expansion is clear from this short review.
This overabundance signals that only a limited number of cosmological tests are
available to discriminate between competing theories, and it is clear that there is a
high degeneracy of models. Let us remark that both the SNeIa Hubble diagram and
the angular size-redshift relation of compact radio sources [294, 908] are distance-
based probes of the cosmological model and, therefore, systematic errors and biases
could be iterated. With this point in mind, it is interesting to search for tests based
on time-dependent observables. For example, one can take into account the look-
back time to distant objects since this quantity can discriminate between different
cosmological models. The lookback time is observationally estimated as the differ-
ence between the present-day age of the universe and the age of a given object at
redshift z. This estimate is possible if the object is a galaxy observed in more than
one photometric band since its color is determined by its age as a consequence of
stellar evolution. Hence, it is possible to obtain an estimate of the galaxy’s age by
measuring its magnitude in different bands and then using stellar evolutionary codes
to choose the model that best reproduces the observed colors.

Coming to the weak-field limit, which essentially means considering Solar Sys-
tem scales, ETGs are expected to reproduce GR which, in any case, is firmly tested
only in this limit and at these scales [1167]. Even this limit is a matter of debate since
several relativistic theories do not reproduce exactly the Einsteinian results in their
Newtonian limit but, in some sense, generalize them. As was first noticed by Stelle
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[1052], R2-gravity gives rise to Yukawa-like corrections to the Newtonian potential
with potentially interesting physical consequences. For example, it is claimed by
certain authors that the flat rotation curves of galaxies can be explained by such
terms [966]. Others [772] have shown that a conformal theory of gravity is noth-
ing but a fourth order theory containing such terms in the Newtonian limit. Reports
of an apparent anomalous long-range acceleration in the data of the Pioneer 10/11,
Galileo, and Ulysses spacecrafts could be accommodated in a general theoretical
scheme incorporating Yukawa corrections to the Newtonian potential [44, 131].

In general, any relativistic theory of gravitation yields corrections to the weak-
field gravitational potentials (e.g., [920]) which, at the post-Newtonian level and
in the Parametrized Post-Newtonian (PPN) formalism, could constitute a test of
these theories [1167]. Furthermore, the newborn gravitational lensing astronomy
[991] is providing additional tests of gravity over small, large, and very large scales
which will soon provide direct measurements of the variation of the Newton cou-
pling [697], the potential of galaxies, clusters of galaxies, and several other features
of self-gravitating systems. Likely, such data will be capable of confirming or ruling
out as physically inconsistent GR or ETGs.

1.3 Mathematical motivation

In ETGs, the Einstein field equations are modified in two ways: (i) the geometry can
be coupled non-minimally to some scalar field, and/or (ii) derivatives of the metric
higher than second order appear. In the former case, we generically deal with scalar-
tensor theories of gravity; in the latter, with higher order theories. Combinations of
non-minimally coupled and higher order terms can also emerge as contributions to
effective Lagrangians (higher order-scalar-tensor theories of gravity).

From the mathematical point of view, the problem of formally reducing more
general theories to the Einstein form has been discussed extensively. Through a
Legendre transformation on the metric, higher order theories with Lagrangians satis-
fying minimal regularity conditions assume the form of GR with (possibly multiple)
scalar field(s) sourcing the gravitational field (e.g., [484,768,769,1023]). The formal
equivalence between models with variable gravitational coupling and Einstein grav-
ity via conformal transformations has also been known for a long time [360, 392].
This has given rise to a debate on whether the mathematical equivalence between
different conformal representations of the theory (called Jordan and Einstein con-
formal frames) is also a physical equivalence – this debate is still continuing ([473]
and references therein) and we will discuss it below.

Another issue is the Palatini approach to gravity: this was first analyzed by
Einstein himself [415] but was called the Palatini approach as a consequence of
an historical misunderstanding [191,485]. The fundamental idea of the Palatini for-
malism is to regard the (usually torsion-less) connection � �

˛ˇ
defining the Ricci

tensor R�� as a quantity independent of the spacetime metric g�� . It is well known
from standard textbooks (e.g., [1139, 1153]) that the Palatini formulation of GR
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is equivalent to the purely metric theory. This follows from the fact that the field
equations for the connection � �

˛ˇ
, regarded as a quantity independent of the metric,

yield the Levi-Civita connection of the metric g�� . Therefore, there is no particular
reason to impose the Palatini variational principle in the standard Hilbert-Einstein
theory instead of the metric variational principle. However, the situation changes
completely if we consider the ETGs formulated in terms of functions of curvature
invariants, such as f .R/, or coupled non-minimally to some scalar field. Then, the
Palatini and the metric variational principles generate different field equations and
the theories obtained describe different physics [486, 769]. The relevance of the
Palatini approach in this framework has been highlighted recently in relation to its
cosmological applications [211, 721, 722, 843, 1129].

The crucial problem of the Newtonian potential in alternative gravity and its rela-
tions with the conformal factor [794] have also been studied. Physically, considering
the metric g�� and the connection � �

˛ˇ
as independent fields amounts to decoupling

the metric structure of spacetime from its geodesic structure (with the connection

�
�

˛ˇ
being, in general, different from the Levi-Civita connection

n
�

˛ˇ

o
of g��). The

causal structure of spacetime is governed by g�� , while the spacetime trajectories
of particles are governed by � �

˛ˇ
. This decoupling of causal and geodesic structures

enriches the spacetime geometry and generalizes the purely metric formalism. This
metric-affine structure of spacetime is naturally translated, by means of the Palatini
field equations, into a bimetric structure of spacetime. In addition to the physical
metric g�� , a second metric h�� is present which is related, in the case of f .R/
gravity, to the connection. The connection � �

˛ˇ
turns out to be the Levi-Civita con-

nection of this second metric h�� and provides the geodesic structure of spacetime.
If we consider non-minimal coupling interactions in the gravitational Lagrangian

of scalar-tensor theories, the new metric h�� is related to this non-minimal coupling
and h�� can be related to a different geometric and physical aspect of the gravi-
tational theory. Through the Palatini formalism, the non-minimal coupling and the
scalar field entering the evolution of the gravitational fields are separated from the
metric structure of spacetime. The situation mixes when we consider the case of
higher order-scalar-tensor theories.

1.4 Quantum gravity motivation

One of the main challenges of modern theoretical physics is to construct a theory
able to describe the fundamental interactions of nature as different aspects of the
same theoretical construct. This goal has led, in the past decades, to the formula-
tion of several unification schemes which, inter alia, attempt to describe gravity
by putting it on the same footing as the other interactions. All these schemes try to
describe the fundamental fields in terms of the conceptual apparatus of quantum me-
chanics. This is based on the fact that the states of a physical system are described
by vectors in a Hilbert space H and the physical fields are represented by linear
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operators defined on domains of H . Until now, any attempt to incorporate gravity
in this scheme has either failed or been unsatisfactory. The main conceptual prob-
lem is that the gravitational field describes simultaneously the gravitational degrees
of freedom and the background spacetime in which these degrees of freedom live.

Owing to the difficulties of building a complete theory unifying interactions
and particles, during the last thirty years the two fundamental theories of mod-
ern physics, GR and quantum mechanics, have been critically re-analyzed. On the
one hand, one assumes that the matter fields (bosons and fermions) come out from
superstructures (e.g., Higgs bosons or superstrings) that, undergoing certain phase
transitions, have generated the known particles. On the other hand, it is assumed
that the geometry (e.g., the Ricci tensor or the Ricci scalar) interacts directly with
quantum matter fields which back-react on it. This interaction necessarily modifies
the standard gravitational theory, that is, the Lagrangian of gravity plus the effec-
tive fields is modified with respect to the Hilbert-Einstein one, and this fact leads to
the ETGs.

From the point of view of cosmology, the modifications of standard gravity pro-
vide inflationary scenarios of remarkable interest. In any case, a condition that must
be satisfied in order for such theories to be physically acceptable is that GR is re-
covered in the low-energy limit.

Although remarkable conceptual progress has been made following the intro-
duction of generalized gravitational theories, at the same time the mathematical
difficulties have increased. The corrections introduced into the Lagrangian augment
the (intrinsic) non-linearity of the Einstein equations, making them more diffi-
cult to study because differential equations of higher order than second are often
obtained and because it is impossible to separate the geometric from the matter
degrees of freedom. In order to overcome these difficulties and simplify the equa-
tions of motion, one often looks for symmetries of the Lagrangian and identifies
conserved quantities which allow exact solutions of the dynamics to be discovered.
The key step in the implementation of this program consists of passing from the
Lagrangian of the relevant fields to a point-like Lagrangian or, in other words, in
going from a system with an infinite number of degrees of freedom to one with a
finite number of degrees of freedom. Fortunately, this is feasible in cosmology be-
cause most models of physical interest are spatially homogeneous Bianchi models
and the observed universe is spatially homogeneous and isotropic to a high degree
(Friedmann-Lemaitre-Robertson-Walker or FLRW model).

The need for a quantum theory of gravity was recognized at the end of the 1950s,
when physicist tried for the first time to treat all interactions at a fundamental level
and describe them in terms of quantum field theory. Naturally, the first attempt to
quantize gravity used the canonical approach and the covariant approach, which had
been applied with remarkable success to electromagnetism. In the first approach
applied to electromagnetism, one considers the electric and magnetic fields satisfy-
ing the Heisenberg uncertainty principle and the quantum states are gauge-invariant
functionals generated by the vector potential defined on three-surfaces of constant
time. In the second approach applied to electromagnetism, one quantizes the two
degrees of freedom of the Maxwell field without any 3 C 1 decomposition of the
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metric, while the quantum states are elements of a Fock space [628]. These pro-
cedures are equivalent. The former allows for a well-defined measure, whereas the
latter is more convenient for perturbative calculations such as, for example, the com-
putation of the S -matrix in QED.

These methods have been applied also to GR, but many difficulties arise in this
case due to the fact that Einstein’s theory cannot be formulated in terms of a quan-
tum field theory on a fixed Minkowski background. To be more specific, in GR the
geometry of the background spacetime cannot be given a priori: spacetime is the
dynamical variable itself. In order to introduce the notions of causality, time, and
evolution, one must first solve the equations of motion and build the spacetime. For
example, in order to know if a particular initial condition will give rise to a black
hole, it is necessary to fully evolve it by solving the Einstein equations. Then, tak-
ing into account the causal structure of the solution obtained, one has to study the
asymptotic metric at future null infinity in order to assess whether it is related, in
the causal past, with that initial condition. This problem becomes intractable at the
quantum level. Due to the uncertainty principle, in non-relativistic quantum mechan-
ics particles do not move along well-defined trajectories and one can only calculate
the probability amplitude  .t; x/ that a measurement at time t detects a particle
around the spatial point x. Similarly, in quantum gravity, the evolution of an ini-
tial state does not provide a specific spacetime. In the absence of a spacetime, how
is it possible to introduce basic concepts such as causality, time, elements of the
scattering matrix, or black holes?

The canonical and covariant approaches provide different answers to these ques-
tions. The canonical approach is based on the Hamiltonian formulation of GR and
aims at using the canonical quantization procedure. The canonical commutation re-
lations are the same that lead to the uncertainty principle; in fact, the commutation
of certain operators on a spatial three-manifold of constant time is imposed, and
this three-manifold is fixed in order to preserve the notion of causality. In the limit
of asymptotically flat spacetime, the motion generated by the Hamiltonian must be
interpreted as temporal evolution (in other words, when the background becomes
the Minkowski spacetime, the Hamiltonian operator assumes again its role as the
generator of translations). The canonical approach preserves the geometric features
of GR without the need to introduce perturbative methods [54, 387, 802, 803, 1157].

The covariant approach, instead, employs quantum field theory concepts and
methods. The basic idea is that the problems mentioned above can be easily cir-
cumvented by splitting the metric g�� into a kinematical part ��� (usually flat) and
a dynamical part h�� , as in

g�� D ��� C h�� : (1.1)

The geometry of the background is given by the flat metric tensor and is the same
as in Special Relativity and ordinary quantum field theory, which allows one to
define the concepts of causality, time, and scattering. The quantization procedure is
then applied to the dynamical field, considered as a (small) deviation of the metric
from the Minkowski background metric. Quanta are discovered to be particles with
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spin two, called gravitons, which propagate in flat spacetime and are defined by
h�� . Substituting the metric g�� into the Hilbert-Einstein action, it follows that
the Lagrangian of the gravitational sector contains a sum whose terms represent, at
different orders of approximation, the interaction of gravitons and, eventually, terms
describing matter-graviton interaction (if matter is present). Such terms are analyzed
by using the familiar techniques of perturbative quantum field theory.

These quantization programs were both pursued during the 1960s and 1970s. In
the canonical approach, Arnowitt, Deser, and Misner [54] provided a Hamiltonian
formulation of GR using methods proposed earlier by Dirac and Bergmann. In this
Hamiltonian formalism, the canonical variables are the three-metric on the spatial
submanifolds obtained by foliating the four-dimensional manifold (note that this
foliation is arbitrary). The Einstein equations give constraints between the three-
metrics and their conjugate momenta and the evolution equation for these fields,
known as the Wheeler-DeWitt (WDW) equation. In this way, GR is interpreted as
the dynamical theory of the three-geometries (geometrodynamics). The main diffi-
culties arising from this approach are that the quantum equations involve products
of operators defined at the same spacetime point and, in addition, they entail the
construction of distributions whose physical meaning is unclear. In any case, the
main problem is the absence of a Hilbert space of states and, as consequence, a
probabilistic interpretation of the quantities calculated is missing.

The covariant quantization approach is closer to the known physics of particles
and fields in the sense that it has been possible to extend the perturbative methods of
QED to gravitation. This has allowed the analysis of the mutual interaction between
gravitons and of the matter-graviton interactions. The formulation of Feynman rules
for gravitons and the demonstration that the theory might be unitary at every order
of the expansion was achieved by DeWitt.

Further progress was achieved with Yang-Mills theories, which describe the
strong, weak, and electromagnetic interactions of quarks and leptons by means
of symmetries. Such theories are renormalizable because it is possible to give the
fermions a mass through the mechanism of spontaneous symmetry breaking. Then,
it is natural to attempt to consider gravitation as a Yang-Mills theory in the covari-
ant perturbation approach and check whether it is renormalizable. However, gravity
does not fit into this scheme; it turns out to be non-renormalizable when one con-
siders the graviton-graviton interactions (two-loops diagrams) and graviton-matter
interactions (one-loop diagrams).2 The covariant method allows one to construct
a theory of gravity which is renormalizable at one-loop in the perturbative series
[144]. Due to the non-renormalizability of gravity at different orders, its validity is
restricted only to the low-energy domain, i.e., to large scales, while it fails at high en-
ergy and small scales. This implies that the full unknown theory of gravity has to be
invoked near or at the Planck era and that, sufficiently far from the Planck scale, GR
and its first loop corrections describe the gravitational interactions. In this context it

2 Higher order terms in the perturbative series imply an infinite number of free parameters. At the
one-loop level it is sufficient to renormalize only the effective constants Geff and�eff which, at low
energy, reduce to Newton’s constant GN and the cosmological constant �.
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makes sense to add higher order terms to the Hilbert-Einstein action. Besides, if the
free parameters are chosen appropriately, the theory has a better ultraviolet behavior
and is asymptotically free. Nevertheless, the Hamiltonian of these theories is not
bounded from below and they are unstable. In particular, unitarity is violated and
probability is not conserved.

An alternative approach to the search for a theory of quantum gravity comes from
the study of the electroweak interaction. In this approach, gravity is treated neglect-
ing the other fundamental interactions. The unification of the electromagnetic and
the weak interactions suggests that it might be possible to obtain a consistent theory
when gravitation is coupled to some kind of matter. This is the basic idea of super-
gravity. In this class of theories, the divergences due to the bosons (gravitons in this
case) are cancelled exactly by those due to the fermions, leading to a renormalized
theory of gravity. Unfortunately, this scheme works only at the two-loop level and
for matter-gravity couplings. The Hamiltonian is positive-definite and the theory
turns out to be unitary. But, including higher order loops, the infinities re-appear,
destroying the renormalizability of the theory.

Perturbative methods are also used in string theories. In this case, the approach
is completely different from the previous one because the concept of particle is re-
placed by that of an extended object, the fundamental string. The usual physical
particles, including the spin two graviton, correspond to excitations of the string.
The theory has only one free parameter (the string tension) and the interaction cou-
plings are determined uniquely. It follows that string theory contains all fundamental
physics and it is therefore considered as a candidate for the theory of everything.
String theory seems to be unitary and the perturbative series converges implying
finite terms. This property follows from the fact that strings are intrinsically ex-
tended objects, so that ultraviolet divergencies coming from small scales or from
large transfer impulses, are naturally cured. In other words, the natural cutoff is
given by the string length, which is of Planck size lPl . At scales larger than lPl , the
effective string action can be rewritten in terms of non-massive vibrational modes,
i.e., in terms of scalar and tensor fields (tree-level effective action). This eventually
leads to an effective theory of gravity non-minimally coupled with scalar fields, the
so-called dilaton fields.

To conclude, let us summarize the previous considerations:

� A consistent (i.e., unitary and renormalizable) theory of gravity does not yet
exists.

� In the quantization program for gravity, two approaches have been used: the co-
variant approach and the perturbative approach. They do not lead to a definitive
theory of quantum gravity.

� In the low-energy regime (with respect to the Planck energy) at large scales, GR
can be generalized by introducing into the Hilbert-Einstein action terms of higher
order in the curvature invariants and non-minimal couplings between matter and
gravity. These lead, at the one-loop level, to a consistent and renormalizable
theory.
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1.4.1 Emergent gravity and thermodynamics of spacetime

In recent years we have witnessed the growth of theoretical efforts on emergent
gravity theories. The central idea is that, given the complete lack of experimen-
tal data about high-energy quantum gravity, it is worth approaching gravity from
the low-energy side with some kind of effective theory. In this approach, grav-
ity “emerges” from fundamental constituents, sort of “atoms of spacetime”, with
the metric and the affine connection being collective variables in a way similar to
hydrodynamics, in which a fluid description emerges from an aggregate of micro-
scopic particles. The emergent gravity approach attempts the reconstruction of the
microscopic system underlying classical gravity. It may be possible to constrain
the microscopic properties of the fundamental constituents by requiring that the
emergent theory of gravity be not too far from GR today. This approach naturally
questions the principles which constitute the foundations of gravitational theories.

A related area is that of analogue models: if gravity emerges as a collective sys-
tem made of microscopic constituents of quantum nature, it may be possible to
model it with the help of physical systems in which an effective metric and a con-
nection rule the dynamics, for example one can attempt to study Hawking radiation
from black holes using acoustic analogues (“dumb holes”) [858, 1099, 1125], or
Bose-Einstein condensates (see [82] for a review of analogue models). While an ef-
fective metric is generated, it usually has a kinematic nature, in the sense that field
equations are not generated with it. However, a recent work was able to generate a
complete toy model theory of scalar gravity [541] and it is hoped that progress will
be made in this direction. A common feature to all known emergent spacetimes is
that they exhibit Lorentz invariance in the low-energy limit. The Lorentz symmetry
is expected to be broken in the ultraviolet limit in which the fundamental quantum
constituents of gravity make their effects being felt. We mention these modern ap-
proaches here because they question the foundations of gravitational theory and do
not insist that GR is the theory to be reproduced with large scale coarse-graining:
different theories with similar features are possible as well.

Another line of research related to the previous one is based on the idea that grav-
ity can be reproduced through a sort of thermodynamics of spacetime. It was shown
in [631] that the Einstein equations could be derived through local considerations
of equilibrium thermodynamics. Using thermodynamical considerations on local
Rindler horizons associated to the worldlines of physical observers and assuming
the GR relation SBH DA=4 between entropy and horizon area (which is believed
to be more fundamental than the Einstein equations, or the field equations of any
gravitational theory), Jacobson was able to derive the Einstein equations more or
less in the same manner that an equation of state is derived for an ideal gas [631].
The implication of this result would be that it does not make much sense to quantize
directly the Einstein equations in order to learn about the fundamental ingredients of
quantum gravity, the same way that by quantizing the equation of state of an atomic
hydrogen gas one would not learn anything about the hydrogen atom and its energy
levels. From our perspective it is interesting that, if a similar thermodynamics of
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spacetime approach is applied to f .R/ gravity, it is then necessary to resort to near-
equilibrium thermodynamics in order to derive the correct field equations [419].
This fact seems to demonstrate that GR is just one state of gravity corresponding to
thermodynamic equilibrium and, when this equilibrium is disturbed at higher ener-
gies, near-equilibrium configurations correspond to alternative theories of gravity,
and further justify the study of ETGs.

A result with a conceptually similar flavour is found in the cosmology of scalar-
tensor theories: scalar-tensor cosmologies appear to relax to GR during the evolution
of the universe [361–363]. This is another hint that GR may be only a state of
equilibrium, while an entire spectrum of theories could be found as higher energy
excitations.

These conclusions are still very speculative and based on results that require
further study; however, they underline the need to think about gravity outside of the
GR box and hint to the fact that much more work needs to be done before one can
claim a full understanding of gravity even at lower energy scales.

1.5 What a good theory of gravity should do: General Relativity
and its extensions

A relativistic theory of gravity must satisfy certain minimal requirements from the
phenomenological point of view. First, it must explain astronomical observations
mapping the orbits of planets and the potential well of self-gravitating structures
such as galaxies and clusters. This means that the theory must reproduce the
Newtonian dynamics in its weak-field, slow-motion limit. Then, at the Post-
Newtonian level, the theory must pass the classical Solar System tests, which have
by now become very precise [1167]. Second, the theory should reproduce correctly
the observed galactic dynamics accounting for the known baryonic constituents in-
cluding luminous (stars) and sub-luminous (planets, dust, and gas) components, and
radiation, and reproduce the Newtonian potential which is, by assumption, extrapo-
lated to galactic scales. Third, the theory must address the problem of the generation
of large scale structures (galaxy clusters, superclusters, voids, and filaments). Fi-
nally, the cosmological dynamics must be reproduced: this means predicting in a
self-consistent way the Hubble parameter H0, the deceleration parameter q0, the
density parameters, etc. Astronomical observations and experiments probe directly
standard baryonic matter, radiation, and indirectly the overall attraction of gravity
acting at all scales and depending on distance.

The simplest theory satisfying the above requirements at least to a certain degree
was Einstein’s GR [414]. It is based on the assumption that space and time are entan-
gled into a single spacetime structure which, in the limit of zero gravity, reduces to
the flat Minkowski spacetime. Einstein did benefit of earlier ideas of Riemann, who
had stated that the universe should be a curved manifold and that its curvature must
be measured by means of astronomical observations [416]. The matter distribution
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determines, point by point, the local curvature of this spacetime manifold. The the-
ory, eventually formulated by Einstein in 1915, relies on three basic assumptions on
gravity:

1. The Principle of Relativity is the requirement that all observers be equally valid
for describing physics. In particular, inertial frames (which do not exist glob-
ally) are not a priori preferred. This postulate addresses the main shortcoming of
Special Relativity, being based on preferred inertial frames and Lorentz boosts
between them.

2. The Equivalence Principle (EP) requires acceleration effects to be locally in-
distinguishable from gravitational effects (roughly speaking, the equivalence
between inertial and gravitational mass).3

3. The Principle of General Covariance requires that the field equations be “gener-
ally covariant” tensor equations whose form is the same in all coordinate systems,
and states that all coordinate systems are in principle equivalent in the descrip-
tion of physics [994]. In modern language, the field equations are required to be
invariant under the action of the group of spacetime diffeomorphisms.

In addition to these three principles one imposes that causality is preserved (Prin-
ciple of Causality, i.e., that each spacetime point should admit a notion of past,
present, and future which is the same for all physical observers. It is generally felt
that the notion of causality forbids the presence of closed timelike curves and time
travel, although this belief is rather superficial (see [748] for a discussion and refer-
ences). In any case, to enforce the absence of closed timelike curves it is necessary
to impose restrictions on the matter distribution (energy conditions) [83,273,1139]).

The old Newtonian theory of gravitation that Einstein needed to recover in the
limit of weak gravitational forces and slow motions regarded space and time as ab-
solute entities and required particles to move, in a preferred inertial frame, along
curved trajectories, the curvature of which (i.e., the acceleration) was a function of
the strength of the sources through the “forces”. With this premise, Einstein was
led to postulate that gravitational forces should be described by the curvature of a
metric tensor field g�� related to the line element ds2 D g��dx

�dx� of a four-
dimensional spacetime manifold, and having the same signature of the Minkowski
metric (the Lorentz signature herewith assumed to be .�;C;C;C/). He also pos-
tulated that spacetime curves onto itself and that its curvature is locally determined
by the distribution of the sources, i.e., – spacetime being a continuum – by the
four-dimensional generalization of the matter stress-energy tensor T .m/�� (a rank-two
symmetric tensor) of continuum mechanics.

Once a metric g�� is given, its curvature is expressed by the Riemann (or curva-
ture) tensor

R˛ˇ�
� D � �˛� ;ˇ � � �ˇ�;˛ C � �˛ˇ�

�
�� � � ��ˇ� ��˛ (1.2)

3 The Equivalence Principle admits (at least) three distinct formulations which are discussed later
in this chapter [1167].
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where the commas denote partial differentiation. Its contraction

R˛� � R˛ˇ�
ˇ ; (1.3)

is the Ricci tensor, while
R � R�� D g��R�� (1.4)

is the scalar (or Ricci) curvature of g�� . Einstein initially contemplated the equa-
tions for the dynamics of gravity

R�� D �

2
T .m/�� ; (1.5)

where �D 8�G (in units in which cD 1) contains the gravitational coupling con-
stant G. These equations turned out to be physically and mathematically inconsis-
tent. As pointed out by Hilbert [994], they do not derive from an action principle;
there is no action which reproduces them exactly through a variation.4 Einstein’s
reply was that he knew that the equations were physically unsatisfactory, since they
were incompatible with the continuity equation deemed to be satisfied by any rea-
sonable form of matter. Assuming that the latter consists of a perfect fluid with
stress-energy tensor

T .m/�� D .P C �/ u�u� C P g�� ; (1.6)

where u� is the four-velocity of the fluid particles and P and � are the pressure and
energy density of the fluid, respectively, the continuity equation requires T .m/�� to be
covariantly constant, i.e., to satisfy the conservation law

r�T .m/�� D 0 ; (1.7)

where r˛ denotes the covariant derivative operator of the metric g�� . In fact,
r�R�� does not vanish, except in the special case R� 0. Einstein and Hilbert in-
dependently concluded that the incorrect field equations (1.5) had to be replaced by
the correct ones

G�� D � T .m/�� (1.8)

where

G�� � R�� � 1

2
g��R (1.9)

is now called the Einstein tensor of g�� . These equations can be derived by mini-
mizing an action and satisfy the conservation law (1.7) since the relation

r�G�� D 0 ; (1.10)

holds as a contraction of the Bianchi identities that the curvature tensor of g�� has
to satisfy [1153].

4 This is not entirely correct but this point is not essential.
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The Lagrangian that, when varied, produces the field equations (1.8) is the sum
of a “matter” Lagrangian density L .m/, the variational derivative of which is

T .m/�� D � 2p�g
ı
�p�gL .m/

�

ıg��
; (1.11)

and of the gravitational (Hilbert-Einstein) Lagrangian

p�gLHE D p�g R ; (1.12)

where g is the determinant of the metric g�� .
Hilbert’s and Einstein’s choice was rather arbitrary, as it became clear a few years

later, but it was certainly the simplest from both the mathematical and the physical
points of view. As clarified by Levi-Civita in 1919, curvature is not a purely metric
notion but is also related to the linear connection defining parallel transport and co-
variant differentiation [717]. In a sense, this idea is the precursor of what would later
be called a “gauge-theoretical framework” [673], following the pioneering work of
Cartan in 1925 [279]. But in Einstein’s times only metric concepts were available to
mathematicians and physicists alike and his solution was the only viable one.

It was later clarified that the three principles of relativity, equivalence, and covari-
ance, together with causality, require only that the spacetime structure be determined
by either one or both of two fields, a Lorentzian metric g�� and a linear connection
� ˛�� , assumed to be torsionless for simplicity. The metric g�� fixes the causal struc-
ture of spacetime (the light cones) as well as its metric relations measured by clocks
and rods and the lengths of four-vectors. The connection � ˛�� determines the laws
of free fall, the four-dimensional spacetime trajectories followed by locally inertial
observers. These, of course, must satisfy a number of compatibility relations in-
cluding the requirement that photons follow null geodesics of � ˛�� , so that � ˛�� and
g�� can a priori be independent, but constrained a posteriori by the physics. These
physical constraints, however, do not necessarily impose that � ˛�� is the Levi-Civita
connection of g�� [887].

The previous considerations illustrate the fact that one can envisage alternative
gravitational theories, which we prefer to call “extended gravitational theories”
(ETGs) because their basic assumptions are exactly the same as those used by
Einstein and Hilbert in the construction of GR. These are theories in which gravita-
tion is described by either a metric (purely metric theories), or by a linear connection
(purely affine theories), or by both fields (metric-affine theories, also known as first
order formalism theories). In these theories, the Lagrangian is a scalar density of the
curvature invariants constructed out of both g�� and � ˛�� . The choice (1.12) is by
no means unique and it turns out that the Hilbert-Einstein Lagrangian is in fact the
only choice that produces an invariant linear in the second derivatives of the metric
(or the first derivatives of the connection). Unfortunately, this Lagrangian is rather
singular from the Hamiltonian point of view in the same way of Lagrangians linear
in the canonical momenta in classical mechanics (e.g., [53]).
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A number of attempts to generalize GR and unify it with electromagnetism along
these lines were followed by Einstein and many others, including Eddington, Weyl,
and Schrödinger to mention a few [51]. These attempts were eventually abandoned
in the 1950s, mainly because of a number of difficulties related to the definitely more
complicated structure of a non-linear theory (where by “non-linear” we mean one
based on non-linear invariants of the curvature tensor), and also because of the dis-
covery of two new physical interactions, the strong and the weak nuclear forces that
required the more general framework of gauge theory [656]. Still, sporadic investi-
gations of alternative theories continued after 1960 (see [1167] and the references
therein for a short history). The search for a coherent quantum theory of gravita-
tion, or the belief that gravity has to be considered as a sort of low-energy limit of
string or other quantum theories [553] – something that we will not discuss here –
has more recently revived the idea that it is not mandatory to adhere to the simple
prescription of Einstein and Hilbert and to assume that classical gravity is governed
by a Lagrangian linear in the curvature. Further curvature invariants or non-linear
functions of them can also be contemplated, especially in view of the fact that their
inclusion is required in both the semiclassical expansion of a quantum Lagrangian
and in the low-energy limit of stringy actions. Moreover, it is clear from recent as-
trophysical observations and from the current cosmological investigations that it is
legitimate to doubt the paradigmatic role played by the Einstein equations at Solar
System, galactic, extragalactic, and cosmological scales, unless one is willing to ad-
mit that the right hand side of Eq. (1.8) contains some types of exotic energy, the
dark matter and dark energy components of our universe.

The idea discussed in this section is, in principle, much simpler. Instead of
changing the matter side of the Einstein equations (1.8) and introducing the miss-
ing matter-energy content of the observed universe (up to 95% of its total energy
content), while adding mysterious and odd-behaving states of the matter fields, we
contemplate the fact that it is a priori simpler and more convenient to change the
geometric/gravitational sector of these equations by inserting non-linear corrections
to the Lagrangian. This procedure could be regarded as a mere matter of taste; how-
ever, there is no reason to discard this approach a priori, and this possibility is
intriguing and worth exploring. In principle, the action belongs to a vast family
of permissible actions and, from the purely phenomenological point of view, this
freedom allows it to be chosen on the basis of its best-fit with the available observa-
tional data at all scales (solar, galactic, extragalactic, and cosmological). The down
side of this approach is that too many models fit well the observations because of
the relatively large number of free functions and parameters that they contain, and
predictive power may be lost. However, it is hoped that theoretical work will provide
guidelines pointing to a preferred action and will discriminate between huge classes
of models which fit the data, of which already too many are known. From the the-
oretical point of view, it makes perfect sense to give serious consideration to rather
well-motivated non-linear theories of gravity based on non-singular Lagrangians.
Instead, the �CDM model is accompanied by exotic matter completely differ-
ent from the known baryons, never detected in our laboratories, and segregated at
astrophysical scales.
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1.6 Quantum field theory in curved space

At small scales and high energies, an hydrodynamic description of matter as a per-
fect fluid is inadequate: a more accurate description requires quantum field theory
formulated on a curved space, in the framework of either GR or another relativis-
tic theory of gravity. Since, at scales comparable to the Compton wavelength of
the relevant particles, matter must be quantized, one can employ a semiclassical
description of gravitation in which the Einstein equations assume the form

G�� � R�� � 1

2
g��R D< T�� > ; (1.13)

where the usual Einstein tensor G�� appears on the left hand side whereas the right
hand side contains the expectation value of a quantum stress-energy tensor sourcing
the gravitational field. More precisely, if j > is a quantum state describing the
early universe, then

< T�� >�<  j OT�� j > ; (1.14)

where OT�� is the quantum operator associated with the classical energy-momentum
tensor of the matter field and the right hand side is an appropriately regularized ex-
pectation value. In general, a quantized matter field O� is subject to self-interactions
and it interacts also with other fields and with the gravitational background. Such
interaction terms may be included in the definition of an effective potential5

Veff .�/ D< aj OH ja > (1.15)

with

� D< aj O�ja > ; (1.16)

where ja > represents a normalized state of the theory under consideration (i.e.,
< aja >D 1) and OH is the Hamiltonian operator satisfying ı < aj OH ja >D 0,
where ı is the variation on the average of H -eigenstates. This condition corre-
sponds to energy conservation.

In a curved spacetime, even in the absence of classical matter and radiation, quan-
tum fluctuations of matter fields give non-vanishing contributions to < T�� >, an
effect similar to the vacuum of QED [144, 705]. When matter fields are free, mass-
less and conformally invariant, these corrections assume the form

< T�� >D k1
.1/H�� C k3

.3/H�� : (1.17)

5 Hereafter, scalar fields and potentials are understood as their effective values, obtained averaging
over quantum states. In this sense, classical fields and potentials are the expectation values of
quantum fields and potentials.
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Here k1 and k3 are numerical coefficients, while

.1/H�� D 2RI�� � 2g���R C 2RR�� � 1

2
g��R

2 ; (1.18)

.3/H�� D R��R�� � 2

3
RR�� � 1

2
g��R

��R�� C 1

4
g��R

2 : (1.19)

The divergence of the tensor .1/H�� vanishes,

.1/H �
�I� D 0 : (1.20)

This tensor can be obtained by varying a quadratic contribution to the local action,

.1/H�� D 2p�g
ı

ıg��

�p�g R2� : (1.21)

In order to remove the infinities coming from< T�� > and obtain a renormalizable
theory, one has to introduce infinitely many counterterms in the Lagrangian density
of gravity. One of these terms is CR2

p�g, where C is a parameter that diverges
logarithmically. Equation (1.13) cannot be generated by a finite action because then
the gravitational field would be completely renormalizable, i.e., it would suffice to
eliminate a finite number of divergences to make gravity similar to QED. Instead,
one can only construct a truncated quantum theory of gravity. The expansion in
loops is done in terms of „, so the truncated theory at the one-loop level contains all
terms of order „. In this sense, this is the first quantum correction to GR. It assumes
that matter fields are free and, due to the Equivalence Principle, all forms of matter
couple in the same way to gravity. It also implies an intrinsic non-linearity of gravity,
so that a number of loops are needed in order to take into account self-interactions
or mutual interactions between matter and gravitational fields. At the one-loop level,
divergences can be removed by renormalizing the cosmological constant �eff and
the gravitational constantGeff . The one-loop contributions to< T�� > are the quan-
tities .1/H�� and .3/H�� above. In addition, one has to consider

.2/H�� D 2R��I�� � �R�� � 1

2
g���RCR��R�� � 1

2
R��R��g�� : (1.22)

It is shown in [144] that the relation

.2/H�� D 1

3

.1/

H�� (1.23)

holds in conformally flat spacetimes. In this case, only the first and third terms of
H�� are present in Eq. (1.17).
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Since one can add to the parameter C in the Lagrangian term C
p�q R2 an

arbitrary constant, the coefficient k1 can assume any value – the latter should be
determined experimentally [144].

The tensor .3/H�� is conserved only in conformally flat spacetimes (for example,
FLRW spaces) and it cannot be obtained by varying a local action. Finally, one has

k3 D 1

1440�2

�
N0 C 11

2
N1=2 C 31N1

�
; (1.24)

where theNi ’s (i D 0; 1=2; 1) are determined by the number of quantum fields with
spin 0; 1=2, and 1. Vector fields contribute more to k3 due to the larger coefficient
31 of N1. These massless fields, as well as the spinorial ones, are described by
conformally invariant equations and appear in < T�� > in the form (1.17).

The trace of the energy-momentum tensor vanishes for conformally invariant
classical fields while, owing to the term weighted by k3, one finds that the expecta-
tion value of the tensor (1.17) has non-vanishing trace. This fact is at the origin of
the so-called trace anomaly.

Let us discuss briefly how the conformal anomalies are generated when the origin
of the tensor T�� is not classical, i.e., when quantum field theories are formulated
in curved spacetime. As we will see in more detail later, if a theory is conformally
invariant, under the conformal transformation

g��.x/ ! Qg��.x/ � ˝2.x/g��.x/ : (1.25)

the action in .nC 1/ spacetime dimensions satisfies the functional equation

SŒ Qg�� 	 D SŒg�� 	C
Z
dnC1x

ıSŒ Qg�� 	
ı Qg�� ı Qg�� ; (1.26)

where the use of

ı Qg��.x/ D �2˝�1.x/ Qg��.x/ı˝.x/ ; (1.27)

and of the classical variational principle

T .m/�� D � 2p�g
ıS .m/

ıg��
; (1.28)

yields

SŒ Qg�� 	 D SŒg�� 	 �
Z
dnC1x

p� Qg T ��. Qg��/˝�1ı˝ : (1.29)

From this, it follows that

T ��Œg��.x/	 D � ˝.x/p�g
ıSŒ Qg�� 	
ı˝.x/

ˇ
ˇ
ˇ̌
˝D1

: (1.30)
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Hence, if the classical action is invariant under conformal transformations, the trace
of the energy-momentum tensor vanishes. At the quantum level this situation could
not occur for the following reason. A conformal transformation is, essentially, a
rescaling of lengths with a different rescaling factor at each spacetime point x; the
presence of a mass, and hence of a length scale, in the theory breaks conformal in-
variance and generates the trace anomaly. To preserve conformal invariance one has
to consider massless fields, as done in (1.17). In this case one obtains the condition

< T �� >D 0 ; (1.31)

which allows one to consider a conformally invariant theory. Note that gravity is
not renormalizable in the usual way; because of this, divergences appear as soon as
quantum effects are considered. A loop expansion yields

< T �� >D< T �� >div C < T �� >renD 0 ; (1.32)

confirming the validity of Eq. (1.31). In this case conformal invariance is preserved
only if the divergent part is equal (up to the sign) to the renormalized tensor. An
anomalous trace term will appear on the right hand side of the field equations (1.13)
which, at one-loop and in the zero mass limit of the fields, is given by

< T �� >divD
�

Qk1
�
M � 2

3
�R

�
C Qk3G

�
D � < T �� >ren ; (1.33)

for a four-dimensional theory. Here Qk1 and Qk3 are proportional to k1 and k3, while
M and G are obtained from .1/H�� and .3/H�� as

M D R˛ˇ�ıR˛ˇ�ı � 2R˛ˇR˛ˇ C 1

3
R2 ; (1.34)

G D R2 � 4R˛ˇR˛ˇ CR˛ˇ�ıR˛ˇ�ı : (1.35)

G is the Gauss-Bonnet term. In four dimensions, the integral

Z
d 4x

p�g G (1.36)

is an invariant (Euler characteristic) which provides information about the
topology of the spacetime manifold on which the theory is formulated (Gauss-
Bonnet theorem). In a FLRW background M vanishes identically but G gives
non-vanishing contributions to (1.17) even if the variation of (1.36) is zero (in four
dimensions).

In general, by summing all the geometric terms deduced from the Riemann tensor
and of the same order in < T

�
� >ren, one derives the right hand side of (1.17).

If the background metric is conformally flat, this can be expressed by means of
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Eqs. (1.18) and (1.19). Then, one can conclude that the trace anomaly due to the
geometric terms arises because the one-loop approach is an attempt to formulate
quantum field theories on curved spacetime.6 Cosmological models arising from
(1.17) are studied in [137].

The masses of the matter fields and their mutual interactions can be neglected in
the high curvature limit becauseR � m2. The matter-graviton interactions generate
non-minimal coupling terms in the effective Lagrangian. The one-loop contributions
of such terms are comparable to the ones due to the trace anomaly and generate,
from the conformal point of view, the same effects on gravity. The simplest effective
Lagrangian that takes into account these corrections is

LNMC D �1
2

r˛�r˛� � V.�/� 


2
R�2 ; (1.37)

where 
 is a dimensionless coupling constant between the scalar and the gravita-
tional fields. The scalar field stress-energy tensor will be modified accordingly (see
Sect. 1.7.2 below) but a conformal transformation can be found such that the mod-
ifications due to curvature terms can, at least formally, be cast in the form of a
matter-curvature interaction. The same argument holds for the trace anomaly.

Certain Grand-Unified theories lead to a polynomial coupling of the form 1 C

�2 C ��4 generalizing the one of (1.37), while an exponential coupling e�˛'R
between a scalar field (dilaton) ' and the Ricci scalar appears instead in the effective
Lagrangian of string theories.

The field equations obtained by varying the Lagrangian density
p�gLNMC are

�
1 � �
�2�G�� D �

�
r��r�� � 1

2
g�� r˛� r˛� � V g��

C 

	
g���

�
�2
� � r�r�

�
�2
�
 �

; (1.38)

�� � dV

d�
� 
R� D 0: (1.39)

The non-minimal coupling of the scalar field is reminiscent of that exhibited by the
four-vector potential of curved space Maxwell theory in Eq. (1.56) below.

Motivation for the non-minimal coupling in the Lagrangian LNMC comes from
many directions. A nonzero 
 is generated by first loop corrections even if it is
absent in the classical action [143, 144, 499, 500, 833, 892]. Renormalization of
a classical theory with 
 D 0 shifts this coupling constant to a value which
is typically small [27, 626] but can, however, affect drastically an inflationary

6 Equations (1.18) and (1.19) can include terms containing derivatives of the metric of order higher
than fourth (fourth order corresponding to the R2 term) if all possible Feynman diagrams are
included. For example, corrections such as R�R or R2�R can be present in .3/H�
 implying
equations of motion that contain sixth order derivatives of the metric. Also these terms can be
treated by making use of conformal transformations [34].
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cosmological scenario and determine its success or failure [3, 442, 446, 453, 515,
518]. A non-minimal coupling term is expected at high curvatures [499, 500], and
it has been argued that classicalization of the universe in quantum cosmology in-
deed requires 
 ¤ 0 [866]. Moreover, non-minimal coupling can solve potential
problems of primordial nucleosynthesis [295, 297] and the absence of pathologies
in the propagation of �-waves seems to require conformal coupling for all non-
gravitational scalar fields ([474,556,557,1028], see also [376,466]).7 The conformal
value 
 D 1=6 is also an infrared fixed point of the renormalization group in finite
GUTs [156, 157, 185–190, 423, 820, 864, 933]. Non-minimally coupled scalar fields
have been widely used in relation with specific inflationary scenarios [89,111,437–
440, 519, 522, 620, 691, 692, 713, 964]. The approach adopted was largely one in
which 
 is regarded as a free parameter to be used at will in order to fix possible
problems of specific inflationary scenarios; see [446, 449] for more general treat-
ments. Geometric reheating of the universe with strong coupling 
� 1 has also
been studied [111, 1090, 1091] and non-minimally coupled scalar fields have been
considered in relation with wormholes [347, 349, 569], black holes [593, 1110],
and boson stars [639, 731, 1109]. The value of the coupling 
 is not, in general,
a free parameter but it depends on the physical nature of the particular scalar field
� [499, 500, 589, 600, 893, 1131] (see [446, 449, 453] for reviews of the available
theoretical prescriptions for the value of 
).

To conclude, any attempt to formulate quantum field theory on a curved space-
time necessarily leads to modifying the Hilbert-Einstein action. This means adding
terms containing non-linear invariants of the curvature tensor or non-minimal cou-
plings between matter and the curvature originating in the perturbative expansion.
In cosmology, all these modifications may affect deeply inflationary scenarios orig-
inally proposed using minimally coupled scalars [449,453]. Although rare and very
speculative alternatives have been proposed to the inflationary paradigm, the latter
is currently accepted by most authors as the “canonical” cure to the shortcomings
of the Standard Big Bang model, with the added bonus of providing a viable mech-
anism for the generation of density perturbations to seed the structures observed
today in the universe. However, the effects of non-minimal coupling on the infla-
tionary paradigm need to be assessed carefully [446, 449].

1.7 Mach’s principle and other fundamental issues

We now comment on the role played by ETGs in connection with fundamental prob-
lems which are only partially addressed by GR. We will consider first the concept
of inertia and the problem of how to incorporate Mach’s principle in the grav-
itational theory. We focus on the time period between the Lense-Thirring 1918

7 Note, however, that the distinction between gravitational and non-gravitational fields becomes
representation-dependent in ETGs, together with the various formulations of the EP [1035].
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gedanken experiment and the formulation of Brans-Dicke theory in 1961. This
scalar-tensor theory contained a new important feature, the variability of the gravi-
tational “constant”.

It is interesting that theories originally developed to better understand the concept
of inertia, the most peculiar property of mass, were recovered in the low-energy limit
of string theory in the 1980s and, independent of this fact, are used nowadays to cure
the shortcomings of standard cosmology and explain the large-scale distribution of
matter observed in the universe. This curious fact becomes even more intriguing
in view of the dark matter problem. This is why we begin by discussing some of
the older features of ETGs: in the following chapters we also consider features of
these theories which were discovered more recently and play a role in our current
understanding of cosmology.

Although two of the three classical tests of GR were performed only a few years
after Einstein’s 1916 paper, during the next forty-five years the progress in the area
of experimental gravity was very slow, essentially because the technology was inad-
equate for the detection and the study of the extremely small effects predicted. From
the 1960s onward the technological and theoretical efforts in the study of GR were
renewed. On the experimental side, the new interest was spurred by astronomical
discoveries indicating the role of relativistic gravity in astrophysics and cosmol-
ogy, and by the technological advances in laboratory and space experiments which
made high precision tests possible. Dirac was explicit about the relevance of this
technological progress in a 1973 article about his Large Number Hypothesis, in
which he stated: “the gravitational constant will be inversely proportional to the
epoch, ... moreover the variability of G is now ... not too small to be beyond the
capability of present day technology” [395].

On the theoretical side, we also find a similar atmosphere. Theoretical research in
GR did not languish as much as its experimental counterpart in the same years, and
important results were obtained gaining a better understanding of crucial aspects
of GR (e.g., the discovery of the singularity theorems, the Kerr-Newman metric,
and black hole thermodynamics). New theories of gravity were also proposed, most
notably the Brans-Dicke theory which appeared in 1961 [165]. We do not consider
here the progress of standard GR but we focus on those aspects of ETGs which were
proposed and studied in the period under consideration, such as:

� Multi-dimensional Kaluza-Klein-type theories proposed to link gravity and
microphysical models;

� Attempts to quantize the classical world described by GR;
� The introduction and development of inflationary scenarios.8

8 We do not discuss here the extension to the gravitational interaction of the gauge theory approach
developed in relation with the other fundamental interactions. Such an approach is designed to ad-
dress different problems, for example how to embody particle spin in GR, and the role of torsion
(in this case the theory of the gravitational interaction is formulated in a spacetime which differs
from the standard one because the connection is not symmetric), also in connection with early uni-
verse cosmology, or the relevance of such geometrical ingredients for elementary particles physics
(see [583] for an exhaustive exposition of the relevant Einstein-Cartan-Sciama-Kibble theory).
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1.7.1 Higher order corrections to Einstein’s theory

Two particular features recur in all the theoretical constructions mentioned above:
the first is the role of higher order theories of gravity, while the second is the high
relevance of scalar fields in gravity, which is exemplified by (multi-)scalar-tensor
theories of gravity. Both types of theories were present in the gravitational arena
before 1960 but after that time their relevance grew larger and larger (see [978]
for a history of these theories and [128] for a short presentation of Jordan-Fierz-
Thiery-Brans-Dicke theories). Concerning the first aspect, we stress that higher
order gravity theories necessarily appear when quantization is performed on a
curved spacetime and the renormalization problem is addressed [144]. This class
of theories also appears in studies of inflation in the early universe (e.g., [550]).
The increasing interest in (multi-)scalar-tensor theories is intimately connected with
the success that the inflationary paradigm had in cosmology since 1980 and due to
the fact that inflation provides very reasonable answers to the puzzles of Standard
Big Bang cosmology, as well as providing a physical mechanism for the generation
of large scale structures in the universe. Finally, the presence of the scalar field is
connected with the relevance of multi-dimensional gravity as an essential ingredient
of string and superstring theories, in which dilaton and moduli scalar fields similar
to that of scalar-tensor gravity appear in the low-energy limit.

We will discuss higher order gravity as well as string cosmology in the context
of the Noether symmetry approach in the following chapters: for the moment, we
focus our attention on a bridge between the, apparently different, higher order and
scalar-tensor gravities. We begin with the particular case of fourth order theories
described by the Lagrangian density

p�gL D p�g f .R/ : (1.40)

The variation of this Lagrangian with respect to g�� yields the fourth order field
equations

f 0.R/R�� � 1

2
f .R/ g�� � r�r�f 0.R/C g���f 0.R/ D 0; (1.41)

with f 0 � df .R/=dR. The new set of variables

p D f 0.R/ D f 0
�
g�� ; @�g�� ; @�@�g��

�
; Qg�� D p g�� ; (1.42)

links the Jordan frame variable g�� to the Einstein frame variables
�
p; Qg��

�
(p must

be positive-definite). The widely used word “frame” is rather misleading: it denotes
the use of one variable or the others and has nothing to do with choosing some
spacetime reference frames (such as, for example, the inertial frames of Special
Relativity). The terminology “Einstein frame” comes from the fact that, using the
transformation g ! .p; Qg/, Eqs. (1.41) are transformed into equations very similar
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to the Einstein equations of GR. The Einstein frame equations in the absence of
ordinary matter (T .m/�� D 0) are

QG�� D 1

p2

�
3

2
p;�p;� � 3

4
Qg�� Qg˛ˇp;˛p;ˇ C 1

2
Qg�� .f .R/ �Rp/

�
: (1.43)

Defining ' D
q
3
2

lnp, these turn into

QG�� D r�'r�' � 1

2
Qg��r˛'r˛' � Qg��V.'/ ; (1.44)

where

V.'/ D Rf 0.R/ � f .R/
2f 02.R/

jRDR.p.'// : (1.45)

In these expressions the function R D R.p.'// is obtained by inverting the rela-
tion p D f 0.R/, which is always possible if f 00.R/ ¤ 0. Equation (1.44) can be
obtained from the Lagrangian rewritten in terms of ' and the tilded geometrical
quantities

p�gL D p� Qg
" QR
2

� 1

2
Qg��r�'r�' � V.'/

#

; (1.46)

which has the same form as that of Einstein gravity coupled to a self-interacting
minimally coupled scalar field. Looking at Eq. (1.46), it is clear why the set of
variables

� Qg�� ; p
�

is called Einstein frame. The examples below further clarify these
considerations.

Example 1: f .R/ D R2 ; p � f 0 D 2R.
In this case R.p/ D p=2 and the potential

V.'/ � V.p.'// D R.p.'// p.'/� f .R.p.'//

2p2.'/
D 1

8
(1.47)

is constant.

Example 2: f .R/ D R C ˛R2 ; p � f 0.R/ D 1C 2˛R.
It is R.p/ D .p � 1/=2˛. The potential expressed in terms of p is

V.p/ D .p � 1/2
8˛p2

: (1.48)

The sign of V depends on ˛; the case ˛ > 0 is studied in [1057] while ˛ < 0

is discussed in [769] and is subject to a violent local instability [460, 851]. From
the cosmological point of view, both cases and the more general situation f .R/ D
RC ˛R2 CˇRN (with N a generic integer), are discussed in [246]. This R2 model
is considered again later in connection with inflation. As shown by Whitt [1160],
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the equations of motion arising from the Lagrangian (1.40) with f .R/ D RC ˛R2

coincide with those for a system with the conformally transformed metric

Qg�� D .1C 2˛R/g�� : (1.49)

So far we have seen how to go from the Jordan to the Einstein frame: is the inverse
procedure always possible? This is a relevant question that will be encountered also
in the discussion of scalar-tensor theories. Two points need to be emphasized in this
regard: first, beginning with the Einstein frame, it is in principle possible to go to
a Jordan-type Lagrangian. Second, when standard matter is present in these mod-
els, it is important to look at its dynamics. For example, the photon worldlines are
geodesics in the Jordan frame as well as in the Einstein frame, but the case of mas-
sive particles is different: their Jordan frame geodesics are no longer transformed
into Einstein frame geodesics, and vice-versa. In this regard, the two frames are not
equivalent (see [769] and the discussion of Chap. 3). The above considerations can
easily be extended to theories of order higher than fourth [191, 550].

1.7.2 Minimal and non-minimal coupling
and the Equivalence Principle

Gell-Mann seems to have been the first to introduce the expression “minimal cou-
pling” in connection with the electromagnetic interaction: “We shall postulate a
principle that is given wide, though usually tacit acceptance, that of minimal elec-
tromagnetic interaction” [532]. What Gell-Mann says concerning this principle is
that, given a Lagrangian with all electric charges switched off (all the other effects
being included in that Lagrangian), the coupling with the electromagnetic interac-
tion is obtained via the substitution

@� ! @� C ieA�; (1.50)

that is, the electromagnetic interaction is introduced by replacing every partial
derivative with the covariant derivative in (1.50) (see also [628]). A similar
scheme is used to introduce the gravitational interaction: beginning from the
special-relativistic description of the physical interaction (which is equivalent to
switching off the gravitational charge), the gravitational interaction is switched on
by the substitution

��� ! g�� ; @� ! r� ; p�� d 4x ! p�g d 4x ; (1.51)

in the Lagrangian (��� is the flat Minkowski metric and g�� is the Lorentzian one,
while � and g are their determinants). An important aspect of these “comma goes to
semicolon” and “��� goes to g��” rules is the following (e.g., [804, 1139]). Let us
consider the curved space Maxwell equations
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F ˛ˇ Iˇ D �4�J ˛ ; F˛ˇ I� C Fˇ� I˛ C F�˛Iˇ D 0 ; (1.52)

and the four-vector potential A� related to the Maxwell field by

F˛ˇ D r˛Aˇ � rˇA˛ : (1.53)

We have the following problem: using the above-mentioned rule one obtains two
possible equations from the first of Eqs. (1.52):

Aˇ I˛ Iˇ �A˛Iˇ Iˇ D 4�J ˛ ; (1.54)

or
Aˇ I˛ Iˇ �A˛Iˇ Iˇ CR˛ˇA

ˇ D 4�J ˛ I (1.55)

while the second of Eqs. (1.52) yields, using the Lorentz gauge r�A� D 0,

.4dRA/
˛ D 4�J ˛ ; (1.56)

where
.4dRA/

˛ D ��A˛ CR˛ˇA
ˇ (1.57)

and 4dR is the de Rham vector wave operator. Now the question is: both Maxwell
equations for the four-potential A� are obtained using the “comma goes to semi-
colon” rule, but which is the correct one? The answer is: the one obtained using
the de Rham operator. As consequence, we see that “correspondence rules” are not
sufficient to write down equations in curved space from known physics in flat space
when second derivatives are involved (that is, in most situations of physical interest).
In such cases, extra caution is needed.

As stressed, for example, in [999] such a prescription is also insufficient in the
presence of interactions which do not have a “Minkowskian” counterpart at all, that
is, when typical general-relativistic interactions are relevant. These are interactions
expressed via the Riemann tensor or some function of it and occur, for example,
in the study of the free fall of a particle with spin: the corresponding equations of
motion (Papapetrou-Mathisson equations) involve a contribution containing a cou-
pling between the spin tensor and the Riemann tensor [999]. Such a contribution
cannot be obtained from the prescriptions given above. This motion is described by
the corrected geodesic equation [1153]

d 2x	

d�2
C � 	��

dx�

d�

dx�

d�
C aR	��˛

d Px�
d�

d Px�
d�

S˛ D 0 (1.58)

(a is a parameter measuring the strength of the spin contribution S˛ coupled with
the curvature tensor R	˛ˇ� ). This replaces the usual geodesic equation

d 2x	

d�2
C � 	��

dx�

d�

dx�

d�
D 0 (1.59)
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obtained from the special-relativistic equation of motion with gravity switched off

d 2x	

d�2
D 0 ; (1.60)

by using the previous minimal coupling procedure.
In order to give a satisfactory formulation of the notion of non-minimal coupling,

some preliminary steps are needed, namely we have to discuss the Equivalence
Principle. An exhaustive treatment can be found in [1167]. The first step in the
formulation of this principle is the equivalence between inertial and gravitational
mass found already in Galilei’ s experiments and in Newton’s work,

mI D mG ; (1.61)

which implies that all bodies fall with the same acceleration independent of their
mass and internal structure, in a given gravitational field. This statement is called
“universality of free fall” or Weak Equivalence Principle (WEP). A more precise
statement of the WEP is:

“If an uncharged body is placed at an initial event in spacetime and given an initial ve-
locity there, then its subsequent trajectory will be independent of its internal structure and
composition” [1167].

Einstein added to this a new fundamental part: in his formulation, using as an
example the famous freely falling elevator, not only the laws of mechanics behave
in it as if gravity were absent, but all physical laws (except those of gravitational
physics) have the same behavior. Following current terminology, we refer to this
principle as the Einstein Equivalence Principle (EEP). A more precise statement is:

“the outcome of any local non-gravitational test experiment is independent of the velocity of
the (free falling) apparatus and the outcome of any local non-gravitational test experiment
is independent of where and when in the universe it is performed” [1167].

A “local non-gravitational experiment” is defined as an experiment performed
in a small size freely falling laboratory, in order to avoid the inhomogeneities of
the external gravitational field, and in which any gravitational self-interaction can
be ignored. For example, the measurement of the fine structure constant is a local
non-gravitational experiment, while the Cavendish experiment is not.

From the EEP it follows that the gravitational interaction must be described in
terms of a curved spacetime, that is, the postulates of the so-called metric theories
of gravity have to be satisfied [1167]:

1. Spacetime is endowed with a metric g�� ;
2. The world lines of test bodies are geodesics of that metric;
3. In local freely falling frames (called local Lorentz frames), the non-gravitational

laws of physics are those of Special Relativity.

Both GR and Brans-Dicke-like theories are metric theories of gravity. However, in
the context of ETGs, these definitions meant to characterize the most fundamental
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feature of GR, the Equivalence Principle, and the physical properties discriminating
between GR and other metric theories of gravity turn out to ultimately depend on
the conformal representation of the theory adopted. More precisely, in scalar-tensor
gravity, massive test particles follow geodesics in the Jordan frame, satisfying the
WEP, but the same particles deviate from geodesic motion in the Einstein frame
(a property referred to as non-metricity of the theory). This difference shows that the
EP is formulated in a representation-dependent way [1035]. This serious shortcom-
ing has not yet been addressed properly; for the moment we set aside this problem
and proceed. Three comments are necessary at this point:

1. Let us assume that the WEP is violated; of course this implies that also the EEP
is violated. Let us assume, for example, that the inertial masses .mI i / in a system
differ from the passive ones according to

mPi D mI i

 

1C˙A�
A EAi
mI ic2

!

; (1.62)

where EA is the internal energy of the body connected with the A-interaction
and �A is a dimensionless parameter quantifying the violation of the WEP. It is
then convenient to introduce a new dimensionless parameter (the Eötvös ratio)
considering, for example, two bodies moving with accelerations

ai D
 

1C˙A�
A EAi
mI ic2

!

g .i D 1; 2/ ; (1.63)

where g is now the acceleration of gravity. Then we define the Eötvös ratio as

� D 2
ja1 � a2j
ja1 C a2j D ˙A�

A

ˇ
ˇ
ˇ
ˇ
EA1
mI1c2

� EA2
mI2c2

ˇ
ˇ
ˇ
ˇ : (1.64)

The measured value of � provides information on the WEP-violation parameters
�A. Experimentally, the equivalence between inertial and gravitational masses is
strongly confirmed [1167].

2. The minimal coupling prescriptions given in our previous discussion are con-
nected precisely with the mathematical formulation of the EEP (actually, in order
to implement the EEP we have to put in special-relativistic form the laws un-
der consideration and then proceed to find the general-relativistic formulation,
switching on gravity. In other words, we have to apply minimal coupling pre-
scriptions with the caveat already discussed).

3. The final comment is strictly related with the theories that we will deal with:
since we are interested in ETGs, do these theories satisfy the EEP?

In order to address this question we must introduce new concepts and generalize
the two principles reported above. First, still following Will [1167], we introduce the
notion of “purely dynamical metric theory”; this is a theory such that “the behaviour
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of each field is influenced to some extent by a coupling to at least one of the other
fields in the theory” [1167]. It is obvious that GR is a purely dynamical theory;
Brans-Dicke theory also belongs to this class since the equations for the metric
involve the scalar field, and vice-versa.

Let us consider then an experimental situation such as the Einstein freely falling
elevator. We require that the frame used be sufficiently large to encompass a gravi-
tational system (for example, the Cavendish apparatus). The first step is to compute
the metric, and this is done in two stages. First we have to assign boundary condi-
tions “far” from the local system, then we have to solve the equations for the fields
generated by the local system. Since the metric couples to the other fields of the
theory, it will be influenced somehow by these fields, in particular the metric will
be related to the boundary values assumed “far away” by these fields. The world
surrounding the local gravitating system can influence the metric generated by the
local system via the values taken by those other fields on the boundary. Then, local
gravitational experiments can depend on where the laboratory is located in the uni-
verse, as well as on its velocity relative to the external world. Local non-gravitational
experiments are unaffected by such a behavior because they couple only with the
metric which is locally Minkowskian. Of course, in a purely metric theory the only
field coupling the local system with the environment is g�� and it is always possible
to find a Minkowskian coordinate system at the boundary between the local system
and the external world. In this way the asymptotic behavior of the metric is Lorentz-
invariant, i.e., independent of the velocity and flat, i.e., independent of the location.
The status of Brans-Dicke-like theories is different: in this case it is still possible
to choose an asymptotically Minkowskian (Lorentz-invariant) metric which is inde-
pendent of the velocity and of the scalar field(s), but now the asymptotic value of
these scalar(s) can give rise to a dependence on the location of the laboratory. An
example of this situation is given by Brans-Dicke-like theories in which the gravi-
tational coupling “constant” actually depends on the asymptotic value assumed by
the scalar field.

All these considerations can be summarized in the Strong Equivalence Principle
(SEP), which states:

(i) “WEP is valid for self-gravitating bodies as well for test bodies;

(ii) The outcome of any local test experiment is independent of the velocity of the (freely
falling) apparatus;

(iii) The outcome of any local test experiment is independent on where and when in the uni-
verse it is performed” [1167].

The SEP differs from the EEP because of the inclusion of bodies with self-
gravitating interactions, such as planets or stars, and because of experiments in-
volving gravitational forces (e.g., the Cavendish experiment). If gravitational forces
are ignored, the SEP reduces to the EEP.

Finally, many authors have conjectured that the only theory compatible with the
Strong Equivalence Principle is GR, that is,

SEP �! GR only: (1.65)
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Before concluding our considerations on minimal and non-minimal couplings,
we return to what is probably the most important conceptual ingredient of this
subject, the Mach principle.

1.7.3 Mach’s principle and the variation of G

Following Bondi [159] there are, at least in principle, two entirely different ways of
measuring the rotational velocity of Earth. The first is a purely terrestrial experiment
(e.g., a Foucault pendulum), while the second is an astronomical observation con-
sisting of measuring the terrestrial rotation with respect to the fixed stars. In the first
type of experiment the motion of the Earth is referred to an idealized inertial frame
in which Newton’s laws are verified. In the second kind of experiment the frame
of reference is connected with a matter distribution surrounding the Earth and the
motion of the latter is referred to this matter distribution. In this way we face the
problem of Mach’s principle, which essentially states that the local inertial frame
is determined by some average motion of distant astronomical objects [159, 999].9

Trying to incorporate Mach’s principle into metric gravity, Brans and Dicke con-
structed a theory alternative to GR [165]. Taking into account the influence that the
total matter has at each point (constructing the “inertia”), these two authors intro-
duced, together with the standard metric tensor, a new scalar field of gravitational
origin as the effective gravitational coupling. This is why the theory is referred to as
a “scalar-tensor” theory; actually, theories in this spirit had already been proposed
years earlier by Jordan, Fierz, and Thiery [128]. An important ingredient of this
approach is that the gravitational “constant” is actually a function of the total mass
distribution and of the scalar field, and is actually variable. In this picture, gravity is
described by the Lagrangian density

p�gLBD D p�g
�
�R � !

�
r��r�� C L .m/

�
; (1.66)

where ! is the dimensionless Brans-Dicke parameter and L .m/ is the matter
Lagrangian including all the non-gravitational fields. As stressed by Dicke [392],
the Lagrangian (1.66) has a property similar to one already discussed in the context
of higher order gravity. Under the conformal transformation g�� ! Qg�� D ˝2g��
with ˝ D p

G0', the Lagrangian density (1.66) is mapped into

p�gL D p� Qg
� QRCG0 QL .m/ CG0 QL .˝/



; (1.67)

9 An interesting discussion on this topic, also connected with different theories of space, both in
philosophy and in physics, is found in Dicke’s contribution “The Many Faces of Mach” in Grav-
itation and Relativity [391]. This discussion presents also the problematic position that Einstein
had on Mach’s principle.
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where

QL .˝/ D � .2! C 3/

4�G0˝
r˛

�p
˝



r˛
�p

˝


; (1.68)

and QL .m/ is the conformally transformed Lagrangian density of matter. In this way
the total matter Lagrangian density QLtot D QL .m/C QL .˝/ has been introduced. The
field equations are now written in the form of Einstein-like equations as

QR�� � 1

2
Qg�� QR D G0 Q��� ; (1.69)

where the stress-energy tensor is now the sum of two contributions,

Q��� D T .m/�� C���.˝/ : (1.70)

Dicke noted that this new (tilded, or Einstein frame) form of the scalar-tensor the-
ory has certain advantages over the theory expressed in the previous (non-tilded, or
Jordan frame) form; the Einstein frame representation, being similar to the Einstein
standard description is familiar and easier to handle in some respects. But, in this
new form, Brans-Dicke theory also exhibits unpleasant features. If we consider the
motion of a spinless, electrically neutral, massive particle, we find that in the con-
formally rescaled world its trajectory is no longer a geodesic. Only null rays are left
unchanged by the conformal rescaling. This is a manifestation of the fact that the
rest mass is not constant in the conformally transformed world and the equation of
motion of massive particles is modified by the addition of an extra force proportional
to r�˝ [392]. Photon trajectories, on the other hand, are not modified because the
vanishing of the photon mass implies the absence of a preferred physical scale and
photons stay massless under the conformal rescaling, therefore their trajectories are
unaffected.

This new approach to gravitation has increased the relevance of theories with
varying gravitational coupling. They are of particular interest in cosmology since,
as we discuss in detail in the following chapters, they have the potential to cir-
cumvent many shortcomings of the standard cosmological model. We list here the
Lagrangians of this type which are most relevant for this book.

� The low-energy limit of the bosonic string theory [553,977,1086,1087] produces
the Lagrangian density

L D e�2

�
RC 4g��r��r�� ��� : (1.71)

� The general scalar-tensor Lagrangian density [128, 1133] is

LST D
�
f .�/R � !.�/

2
g˛ˇr˛�rˇ� � V.�/

�
; (1.72)
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where f .�/ and !.�/ are arbitrary coupling functions and V.�/ is a scalar field
potential. The original Brans-Dicke Lagrangian is contained as the special case
f .�/ D �; !.�/ D !0=� (with !0 a constant), and V.�/ � 0.

� A special case of the previous general theory is that of a scalar field non-
minimally coupled to the Ricci curvature, which has received so much attention
in the literature to deserve a separate mention,

LNMC D
�

1

16�G
� 
�2

2

�
R � 1

2
g��r��r�� � V.�/ ; (1.73)

where 
 is a dimensionless constant. This explicit non-minimal coupling was
originally introduced in the context of classical radiation problems [298] and,
later, conformal coupling with 
 D 1=6 was discovered to be necessary for the
renormalizability of the ��4 theory on a curved spacetime [144, 205]. The cor-
responding stress-energy tensor (“improved energy-momentum tensor”) and the
relevant equations will be discussed later. In particular, the theory is conformally
invariant in four dimensions when 
 D 1=6 and either V � 0 or V D ��4

[144, 205, 897, 1139].

All these theories exhibit a non-constant gravitational coupling. The Newton con-
stant GN is replaced by the effective gravitational coupling

Geff D 1

f .�/
; (1.74)

in Eq. (1.72) which, in general, is different from GN (we use � as the generic
function describing the effective gravitational coupling). In string theory or with
non-minimally coupled scalars, such functions are specified in (1.71) and (1.73). In
particular, in spatially homogeneous and isotropic cosmology, the couplingGeff can
only be a function of the epoch, i.e., of the cosmological time.

We stress that all these scalar-tensor theories of gravity do not satisfy the SEP
because of the above-mentioned feature: the variation of Geff implies that local
gravitational physics depends on the scalar field via �. We have then motivated
the introduction of a stronger version of the Equivalence Principle, the SEP. Gen-
eral theories with such a peculiar aspect are called non-minimally coupled theories.
This generalizes older terminology in which the expression “non-minimally cou-
pled scalar” referred specifically to the field described by the Lagrangian LNMC of
Eq. (1.73), which is a special case of (1.72).

Let us consider, as in Eq. (1.72), a general scalar-tensor theory in the presence of
“standard” matter with total Lagrangian density �RC L .
/ C L .m/, where L .m/

describes ordinary matter. The dynamical equations for this matter are contained in
the covariant conservation equation r�T

.m/
�� D 0 for the matter stress-energy tensor

T
.m/
�� , which is derived from the variation of the total Lagrangian with respect to
g�� . In other words: concerning standard matter, everything goes as in GR (i.e.,
��� ! g�� , @� ! r�) following the minimal coupling prescription. What is new
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in these theories is the way in which the scalar and the metric degrees of freedom
appear: now there is a direct coupling between the scalar degree of freedom and a
function of the tensor degree of freedom (the metric) and its derivatives (specifically,
with the Ricci scalar of the metric R

�
g; @g; @2g

�
). Then, confining our analysis to

the cosmological arena, we are presented with two alternatives. The first is

lim
t!1Geff .�.t// D GN ; (1.75)

in which standard GR cosmology is recovered at the present time in the history
of the universe. The second possibility occurs if the gravitational coupling is not
constant today, i.e., Geff is still varying with the epoch and PGeff =Geff jnow (in brief
PG=G) is non-vanishing.

In many theories of gravity, then, it is perfectly conceivable that Geff varies with
time: in some solutions Geff does not even converge to the value observed today.
What do we know, from the observational point of view, about this variability? There
are three main avenues to analyze the variability of Geff : the first is lunar laser
ranging (LLR) monitoring the Earth-Moon distance; the second is information from
solar astronomy; the third consists of data from binary pulsars. The LLR consists
of measuring the round trip travel time and thus the distances between a transmitter
and a reflector, and monitoring them over an extended period of time. The change of
round trip time contains information about the Earth-Moon system. This round trip
travel time has been measured for more than twenty-five years in connection with
the Apollo 11, 14, 15, and the Lunakhod 2 lunar missions. Combining these data
with those coming from the evolution of the Sun (the luminosity of main sequence
stars is quite sensitive to the value of G) and the Earth-Mars radar ranging, the
current bounds on

ˇ
ˇ PG=Gˇˇ allow at most 0:4 � 10�11 to 1:0 � 10�11 per year [394].

The third source of information on G-variability is given by binary pulsar systems.
In order to extract data from this type of system (the prototype is the famous binary
pulsar PSR 1913C16 of Hulse and Taylor [1069]), it has been necessary to extend
the post-Newtonian approximation, which can be applied only to a (gravitationally)
weakly interacting n-body system, to (gravitationally) strongly interacting systems.
The order of magnitude of

ˇ
ˇ PG=Gˇˇ allowed by these strongly interacting systems is

2 � 10�11 yr�1 [394].

1.8 Extended gravity from higher dimensions and area
metric approach

In addition to the reasons that we have already discussed for extending gravity, we
mention here additional motivation for Brans-Dicke and scalar-tensor gravity which,
although not as compelling, is nevertheless at least of some interest.

It is sometimes remarked that the gravitational scalar field of Brans-Dicke theory
has no geometric origin, while in GR the only gravitational field, the metric g�� , has
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purely geometric character, an aesthetically appealing feature. In actual fact, also the
Brans-Dicke scalar can be derived, at least in special cases, from the geometry in
Kaluza-Klein and in Lyra’s theories and in the area metric approach. These theories,
however, exhibit features that are not desirable in the spirit of Mach’s principle.

We begin with the well known fact that Brans-Dicke gravity with the special

value of the Brans-Dicke parameter ! D � .d � 1/

d
can be derived from Kaluza-

Klein theory with d extra spatial dimensions, in which the Brans-Dicke scalar
originates from the determinant of the metric defined on the submanifold of the
extra dimensions [51, 69, 335, 657, 674, 876]. In the simplest version of this the-
ory, the total spacetime .M ˝K; OgAB/ contains a four-dimensional submanifoldM
with one timelike and three spacelike dimensions and a d -dimensional spatial sub-
manifold K (d � 1). Denoting .4 C d/-dimensional quantities with a caret, the
.4C d/-dimensional metric

. OgAB / D
� Og�� 0

0 O�ab
�

(1.76)

(with A;B; ... D 0; 1; ..., .3C d/, �; 
, ... D 0; 1; 2; 3, and a; b; ::: D
4; 5; ..., .3C d/) is assumed to be diagonal (off-diagonal components appear-
ing in the original theories of Kaluza and Klein [657,674], designed to unify gravity
and electromagnetism, generated a gauge field), with g�� a FLRW metric on M
and O�ab a diagonal Riemannian metric on K .

By assuming that the extra spatial dimensions curl up on a microscopic scale l ,
the Hilbert-Einstein action integral in .4C d/ dimensions in vacuo10

S D
Z
d .4Cd/x

p
� Og L .4Cd/ D 1

16� OG
Z
d .4Cd/x

p
� Og

� OR C O�



(1.77)

is split into the product of an integral over the four spacetime dimensions and one
over the remaining d dimensions. If

' �
ˇ
ˇ̌det. O�ab/

ˇ
ˇ̌ (1.78)

is the determinant of the metric of the extra dimensions and

�ab � '�1=d O�ab (1.79)

(with jdet.�ab/j D 1), then

S D V .l/

16� OG
Z
d 4x

p�gp
'

��
RCRK C O�



C .d � 1/

4d

g��r�'r�'
'2

�
; (1.80)

10 Here Og D det. OgAB/, OR is the Ricci curvature of OgAB , O� and OG are the .4 C d/-dimensional
cosmological constant and gravitational constant, and gAB D gAB.x

�/ only.
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where V .l/ is the volume of the compact manifoldK and RK is the Ricci curvature
of K . Using G D OG=V .l/ and � � p

', the action becomes

S D 1

16�G

Z
d 4x

p�g
�
�
�
RCRK C O�



C .d � 1/

d

g��r��r��
�

�
; (1.81)

which describes a Brans-Dicke theory with parameter ! D � .d � 1/
d

(the scalar �

does not carry dimensions).11

Another possible way of rooting the Brans-Dicke scalar field in the geometry
makes use of the derivation of this theory from a Lyra manifold [135,637,759,914,
1003–1006, 1015, 1026]. An n-dimensional Lyra manifold

�
M; ; g��

�
consists of

a smooth manifoldM; a smooth scalar field  (the gauge function with dimensions
of an inverse length), and a Lyra connection

�
�

˛ˇ
D 1

 

n
�

˛ˇ

o
C s C 1

 2
g��

�
gˇ� @˛ � g˛ˇ @� 

�
; (1.82)

where s is a constant and
n
�

˛ˇ

o
are the Christoffel symbols of g�� , and where

r˛ g�� D 0. Torsion

T˛ˇ
� D s

 2

�
g
�

ˇ
r˛ � g�˛ rˇ 



(1.83)

is generated by the torsion potential  . The dimensionless Lyra curvature

K�˛ˇ
� � 1

 2

h
@˛

�
 �

�

�ˇ



� @�

�
 �

�

˛ˇ



C � ��ˇ �

�
�˛ � � �˛ˇ � ���

i
(1.84)

and its contractionsK˛� � K˛ˇ�
ˇ andK � g��K�� are analogous to, but distinct

from, the Riemann tensor and its contractions and are used to define the gravitational
Lyra action

S D
Z
d 4x  4

p�g K : (1.85)

By using the expression [759, 1026]

K D R

 2
C 2 .s C 1/

 3
.1 � n/� 

C 1

 4

h
.s C 1/2

�
3n � n2 � 2

�� 2 .s C 1/ .2 � n/
i

r˛ r˛ (1.86)

11 This derivation of Brans-Dicke theory can be used as a solution-generating technique [138].



38 1 Extended gravity: a primer

with n D 4, discarding a total divergence, and setting � �  2 one obtains [1026]
the Brans-Dicke action

S D
Z
d 4x

p�g
�
� R � !

�
g�� r�� r� �

�
: (1.87)

The Lyra action contains no dimensional coupling and agrees with the idea that
a fundamental theory could be scale-invariant whereas dimensional effective cou-
plings arise as vacuum expectation values of certain fields, as exemplified by
Sakharov’s induced gravity [960]. In Lyra’s theory, it is matter that breaks scale
invariance. A mass or potential for the Brans-Dicke field, however, does not arise
naturally in the Lyra geometry (it would be akin to a graviton mass in GR), while an
exponential potential arises naturally in Kaluza-Klein compactifications described
in the Einstein frame.

Another way of giving a geometric meaning to the scalar field of Brans-Dicke
theory is through the area metric approach in which both g�� and � derive from
a higher rank geometric structure [916–919, 996]. A Lorentzian area metric on a
smooth manifold is a non-degenerate rank four tensor field G˛ˇ�ı with the symme-
tries

G˛ˇ�ı D G�ı˛ˇ ; (1.88)

Gˇ˛�ı D �G˛ˇ�ı ; (1.89)

G˛ˇı� D �G˛ˇ�ı : (1.90)

The inverse area metric G˛ˇ�ı is such that G˛ˇ��G���ı D 4ı
Œ˛
� ı

ˇ�

ı
. If X˛ and Y ˇ

are two vectors at the same spacetime point spanning a parallelogram, its area is

given by
q
G˛ˇı�X˛Y ˇX�Y ı . An almost metric area metric has the structure

G˛ˇı� D g˛�gˇı � g˛ıgˇ� C h.�/p�g "
˛ˇ�ı ; (1.91)

where "˛ˇ�ı is the Levi-Civita symbol and � a scalar field. If h.�/ D 0 at a point,

then the area
q
G˛ˇı�X˛Y ˇX�Y ı coincides with the one derived from the metric

g�� . An area metric volume form �G and an area metric curvature scalar RG can
be constructed so that the analogue of the Hilbert-Einstein action

SG D
Z
�GRG (1.92)

can be varied with respect to G˛ˇ�ı yielding the field equation of vacuum ! D 0

Brans-Dicke theory with h2 D .2��/�1 � 1 [917, 918, 996]. This technique singles
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out ! D 0 Brans-Dicke theory in vacuo. However, when matter is included in the
picture by adding the corresponding action, as in

S D
Z
�GRG C S .m/ � SG C S .m/ ; (1.93)

self-consistency of the theory imposes restrictions on the coupling of matter to the

area metric. Specifically, if K˛ˇ�ı D .det.G//�1=6
ı .�SG/

ıG˛ˇ�ı
, the field equations as-

sume the form

K˛ˇ�ı D T˛ˇ�ı ; (1.94)

where T˛ˇ�ı is the generalized energy-momentum tensor of matter on an area metric
manifold

T˛ˇ�ı D � .det.G//�1=6
ıS .m/

ıG˛ˇ�ı

D 2 T
.m/

Œ˛Œ�
gı�ˇ� � 1

3
T .m/ g˛Œ�gı�ˇ � 1

24
˛

p�g "˛ˇ�ı ; (1.95)

where T .m/ D g��T
.m/
�� is the trace of the usual symmetric energy-momentum

tensor T .m/�� and ˛ is a scalar weighting the antisymmetric part of T˛ˇ�ı . In general,
only restricted forms of matter possess a T˛ˇ�ı with such properties (perfect fluids
do, and have been used in area metric cosmology and in the weak-field limit [996]).
The modified ! D 0 Brans-Dicke field equations are

G�� D 1

�

�
r�r�� � 1

2
g����

�
C �

�
4T .m/�� � h.�/˛

2
g��

�
; (1.96)

�� D 4�

3
�T .m/ C 1 � 8�2�2

6
p
1 � 4�2�2 ˛ ; (1.97)

which reduce to the usual ! D 0 Brans-Dicke field equations in vacuo
(T .m/�� D0; ˛ D 0) and clearly exhibit a non-standard coupling between matter
and gravity. It is claimed that this non-standard coupling makes the theory compati-
ble with the experimental limits on the first order PPN parameters [918] (remember
that in pure Brans-Dicke theory without a mass or a potential for the scalar field, !
cannot be zero but is forced to have values j!j > 40;000 [133]).

Finally, we mention that scalar-tensor gravity occurs also in brane-world scenar-
ios in which, contrary to string theories, extra spatial dimensions are allowed to be
much larger than the Planck scale (see, e.g., [168, 526]).
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1.9 Conclusions

We have not yet presented the specific contents of the models that we are going to
study: this will be done in the forthcoming chapters. Before going into details, we
want the reader to have a general idea of the conceptual novelty and the qualitative
features that ETGs have in comparison with GR, and to understand the motivation
and the historical developments of theoretical physics in the recent past that stimu-
late research beyond Einstein gravity.

It seems reasonable, to say the least, to enlarge GR to more general schemes
because in this way it is possible to explain several theoretical and observational
facts which otherwise call for rather ad hoc explanations. As we shall see in the
following, cosmology is a field which has seen many fruitful applications of these
generalizations of Einstein gravity. Following sheer curiosity early on, high energy
physics and attempts to renormalize gravity have provided much of the original mo-
tivation to extend gravity. We have not yet reached any definitive conclusion on what
is the “correct” theory of gravity. It is quite possible that all the theories formulated
so far eventually prove to be wrong, and they are known to be left wanting in many
regards. Here we identify the search for “the theory of gravity” as a pressing prob-
lem of theoretical and experimental physics. The theories developed thus far, and
those currently under development, should probably not be taken too seriously, but
they are useful at least as toy models to learn how gravity could be different from
Einstein’s theory and to get a glimpse of the difficulties and phenomena one could
expect in a more advanced theory. Moreover, the reader should not forget that much
of the recent interest has been motivated by new experimental data such as the ob-
servations of type Ia supernovae and that much speculation is simply ruled out by
the observations. It is with this understanding that we proceed to look more closely
at the terrain not covered by Einstein in his times.



Chapter 2
Mathematical tools

With my full philosophical rucksack I can only climb slowly up
the mountain of mathematics.
– Ludwig Wittgenstein

In this chapter we discuss certain mathematical tools which are used extensively in
the following chapters. Some of these concepts and methods are part of the standard
baggage taught in undergraduate and graduate courses, while others enter the tool-
box of more advanced researchers. These mathematical methods are very useful in
formulating ETGs and in finding analytical solutions. We begin by studying confor-
mal transformations, which allow for different representations of scalar-tensor and
f .R/ theories of gravity, in addition to being useful in GR. We continue by dis-
cussing variational principles in GR, which are the basis for presenting ETGs in the
following chapters. We close the chapter with a discussion of Noether symmetries,
which are used elsewhere in this book to obtain analytical solutions.

2.1 Conformal transformations

A mathematical tool that has proved very useful in alternative gravitational the-
ories as well as in GR is that of conformal transformations (see [467, 472, 769]
for reviews). The idea is to perform a conformal rescaling of the spacetime metric
g�� ! Qg�� . Often a scalar field is present in the theory and the metric rescaling
is accompanied by a (nonlinear) redefinition of this field � ! Q�. New dynamical
variables

� Qg�� ; Q�� are thus obtained. The scalar field redefinition serves the purpose
of casting the kinetic energy density of this field in canonical form. The new set of
variables

� Qg�� ; Q�� is called the Einstein conformal frame, while
�
g�� ; �

�
constitute

the Jordan frame. When a scalar degree of freedom � is present in the theory, as in
scalar-tensor or f .R/ gravity, it generates the transformation to the Einstein frame
in the sense that the rescaling is completely determined by a function of �. In prin-
ciple, infinitely many conformal frames could be introduced, giving rise to as many
representations of the theory. From the physical point of view, these different repre-
sentations have been the subject of many debates and misinterpretations, which will
be discussed later. For the moment we expose the mathematical technique.

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics 170,
DOI 10.1007/978-94-007-0165-6 2, c� Springer Science+Business Media B.V. 2011
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Let the pair .M; g��/ be a spacetime, with M a smooth manifold of dimension
n � 2 and g�� a Lorentzian or Riemannian metric on M . The point-dependent
rescaling of the metric tensor

g�� �! Qg�� D ˝2g�� ; (2.1)

where the conformal factor˝.x/ is a nowhere vanishing, regular1 function, is called
a Weyl or conformal transformation. Due to this metric rescaling, the lengths of
spacelike and timelike intervals and the norms of spacelike and timelike vectors are
changed, while null vectors and null intervals of the metric g�� remain null in the
rescaled metric Qg�� . The light cones are left unchanged by the transformation (2.1)
and the spacetimes .M; g��/ and .M; Qg��/ exhibit the same causal structure; the
converse is also true [1139]. A vector that is timelike, spacelike, or null with respect
to the metric g�� has the same character with respect to Qg�� , and vice-versa.

In the Arnowitt-Deser-Misner (ADM) [54] decomposition of the metric

g�� dx� dx� D � �N 2 �NiN i
�

dt2 C 2Njdt dxj C hij dxi dxj (2.2)

using the lapse function N and the shift vectorN i , the transformation properties of
these quantities follow from Eq. (2.1):

QN D ˝ N ; QN i D N i ; Qhij D ˝2 hij : (2.3)

The ADM mass of an asymptotically flat spacetime [54] does not change under the
conformal transformation and scalar field redefinition [282].

The transformation properties of various geometrical quantities are useful [1065,
1139]. We list them here, leaving their proof to the reader as an exercise:

Qg�� D ˝�2 g�� ; Qg D ˝2n g (2.4)

for the inverse metric and the metric determinant,

Q� ˛ˇ� D � ˛ˇ� C˝�1
�
ı˛ˇr�˝ C ı˛�rˇ˝ � gˇ�r˛˝



(2.5)

for the Christoffel symbols,

A

R˛ˇ�
ı D R˛ˇ�

ı C 2 ııŒ˛rˇ�r� .ln˝/� 2gı�g�Œ˛rˇ�r� .ln˝/
C2rŒ˛.ln˝/ ııˇ�r� .ln˝/� 2rŒ˛.ln˝/gˇ�� gı� r� .ln˝/
�2g�Œ˛ııˇ� g��r� .ln˝/r�.ln˝/ (2.6)

1 See [171, 172, 180] for the possibility of continuation beyond singular points of the conformal
factor.
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for the Riemann tensor,

QR˛ˇ D R˛ˇ � .n � 2/r˛rˇ .ln˝/� g˛ˇg
�� r�r�.ln˝/

C .n� 2/r˛.ln˝/rˇ .ln˝/
� .n � 2/ g˛ˇ g

�� r�.ln˝/r� .ln˝/ (2.7)

for the Ricci tensor, and

QR � Qg˛ˇ QR˛ˇ D ˝�2
"

R � 2 .n � 1/� .ln˝/

� .n� 1/ .n � 2/
g˛ˇr˛˝ rˇ˝

˝2

#

(2.8)

for the Ricci scalar. In the case of n D 4 spacetime dimensions, the transformation
property of the Ricci scalar can be written as

QR D ˝�2
�
R � 6�˝

˝

�

D ˝�2
"

R � 12�.
p
˝/p

˝
C 3g˛ˇr˛˝rˇ˝

˝2

#

: (2.9)

The Weyl tensor C˛ˇ�
ı with the last index contravariant is conformally invariant,

AC˛ˇ�
ı D C˛ˇ�

ı ; (2.10)

but the same tensor with indices raised or lowered with respect to C˛ˇ�
ı is not. This

property explains the name conformal tensor sometimes used forC˛ˇ�
ı [749]. If the

original metric g˛ˇ is Ricci-flat (i.e.,R˛ˇ D 0), the conformally transformed metric
Qg˛ˇ is not (cf. Eq. (2.7)). In the conformally transformed world the conformal factor
˝ plays the role of an effective form of matter and this fact has consequences for
the physical interpretation of the theory. A vacuum metric in the Jordan frame is
not such in the Einstein frame, and the interpretation of what is matter and what is
gravity becomes frame-dependent [1035]. However, if the Weyl tensor vanishes in
one frame, it also vanishes in the conformally related frame. Conformally flat met-
rics are mapped into conformally flat metrics, a property used in cosmology when
mapping FLRW universes (which are conformally flat) into each other. In particular,
de Sitter spaces with scale factor a.t/ D a0 exp .H0t/ and a constant scalar field as
the material source are mapped into similar de Sitter spaces.
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Since, in general, tensorial quantities are not invariant under conformal transfor-
mations, neither are the tensorial equations describing geometry and physics. An
equation involving a tensor field  is said to be conformally invariant if there exists
a number w (the conformal weight of  ) such that, if  is a solution of a tensor
equation with the metric g�� and the associated geometrical quantities, Q � ˝w 

is a solution of the corresponding equation with the metric Qg�� and the associated
geometry.

In addition to geometric quantities, one needs to consider the behavior of com-
mon forms of matter under conformal transformations. It goes without saying
that most forms of matter or fields are not conformally invariant: invariance un-
der conformal transformations is a very special property. In general, the covariant
conservation equation for a (symmetric) stress-energy tensor T .m/

˛ˇ
representing or-

dinary matter,
rˇ T

.m/

˛ˇ
D 0 (2.11)

is not conformally invariant [1139]. The conformally transformed QT .m/
˛ˇ

satisfies the
equation

Qrˇ QT .m/
˛ˇ

D � QT .m/ Qr˛ .ln˝/ : (2.12)

Clearly, the conservation equation (2.11) is conformally invariant only for a matter
component that has vanishing trace T .m/ of the energy-momentum tensor. This fea-
ture is associated with light-like behavior; examples are the electromagnetic field
and a radiative fluid with equation of state P .m/ D �.m/=3. Unless T .m/ D 0,
Eq. (2.12) describes an exchange of energy and momentum between matter and the
scalar field ˝ , reflecting the fact that matter and the geometric factor˝ are directly
coupled in the Einstein frame description.

Since the geodesic equation ruling the motion of free particles in GR can be
derived from the conservation equation (2.11) (geodesic hypothesis), it follows that
timelike geodesics of the original metric g˛ˇ are not geodesics of the rescaled metric
Qg˛ˇ and vice-versa. Particles in free fall in the world

�
M;g˛ˇ

�
are subject to a force

proportional to the gradient Qr˛˝ in the rescaled world
�
M; Qg˛ˇ

�
– this is often

identified as a fifth force acting on all massive particles and, therefore, it can be said
that no massive test particles exist in the Einstein frame. The stress-energy tensor
definition in terms of the matter action S .m/ D R

d 4x
p�gL .m/,

QT .m/
˛ˇ

D �2
p� Qg

ı
�p� Qg L .m/




ı Qg˛ˇ ; (2.13)

together with the rescaling (2.1) of the metric, yields

QT˛ˇ.m/ D ˝�2 T .m/
˛ˇ

;
e

T˛
ˇ .m/ D ˝�4 T˛ˇ

.m/
; QT ˛ˇ D ˝�6 T ˛ˇ .m/; (2.14)

and
QT .m/ D ˝�4 T .m/ : (2.15)
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The last equation makes it clear that the trace vanishes in the Einstein frame if and
only if it vanishes in the Jordan frame.

Perfect fluids. Now let us consider the stress-energy tensor of a perfect fluid,2

T
.m/

˛ˇ
D
�
P .m/ C �.m/



u˛uˇ C P .m/g˛ˇ W (2.16)

the corresponding tensor in the rescaled world is

QT .m/
˛ˇ

D
� QP .m/ C Q�.m/



Qu˛ Quˇ C QP .m/ Qg˛ˇ ; (2.17)

where the four-velocity Qu� of the fluid satisfies

Qg˛ˇ Qu˛ Quˇ D �1: (2.18)

Together with the metric rescaling (2.1), this normalization gives the transformation
properties of the fluid four-velocity and of its inverse, which are widely used in the
literature,

Qu� D ˝�1 u� ; Qu� D ˝ u�: (2.19)

By comparing Eqs. (2.14) and (2.17) and using Eq. (2.19), one obtains

� QP .m/ C Q�.m/



Qu˛ Quˇ C QP .m/ Qg˛ˇ D ˝�2
h�
P .m/ C �.m/



u˛uˇ

C P .m/ g˛ˇ

i
; (2.20)

and the transformation properties of the energy density and pressure of the fluid
under the conformal transformation (2.1) are

Q�.m/ D ˝�4 �.m/ ; QP .m/ D ˝�4 P .m/ : (2.21)

If, in the Jordan frame, the fluid has a barotropic equation of state of the form

P .m/ D .� � 1/ �.m/ (2.22)

with � Dconstant, then the same equation of state is valid in the Einstein frame
thanks to the relations (2.21) between �.m/; P .m/ and their conformal cousins Q�.m/
and QP .m/. However, this property does not hold true for a more general barotropic
equation of state P D P.�/ which is not of the form (2.22).

2 See [317] for the transformation properties of an imperfect fluid under a conformal
transformation.
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In the case of FLRW metrics the usual Jordan frame conservation equation for a
fluid

d�.m/

dt
C 3H

�
P .m/ C �.m/



D 0 (2.23)

is modified in the Einstein frame to

d Q�.m/
dt

C 3 QH
� QP .m/ C Q�.m/



D
�
3 QP .m/ � Q�.m/


 d .ln˝/
dt

; (2.24)

as follows from Eq. (2.12).
Let us now review some fundamental fields:

The Klein-Gordon field. The source-free Klein-Gordon equation �� D 0 in the
absence of self-interactions is not conformally invariant. However, its generalization

�� � n � 2

4.n� 1/ R � D 0 (2.25)

for n � 2 is conformally invariant [298, 898, 1139]. It is reasonable to allow for the
possibility that the scalar � acquires a mass or other potential at high energies and,
accordingly, in particle physics and in cosmology it is customary to introduce a po-
tential energy density V.�/ for the Klein-Gordon scalar. We have already discussed
how a non-minimal coupling between � and the Ricci curvature arises. Taking both
of these into account, the relevant equation for � becomes

�� � 
 R � � dV

d�
D 0 ; (2.26)

where 
 is the dimensionless coupling constant. The introduction of non-minimal
coupling with 
 ¤ 0 makes the theory a scalar-tensor one.

Equation (2.26) is conformally invariant in four spacetime dimensions if 
 D 1=6

and V D 0 or V D ��4 [205,898,1139]. Even a constant potential V; equivalent to
a cosmological constant, corresponds to an effective mass for the scalar (not to be
identified with a real mass [464]) which breaks conformal invariance [762].

Although unintuitive, it is not difficult to understand why a quartic potential pre-
serves conformal invariance on the basis of dimensional considerations. Conformal
invariance corresponds to the absence of a characteristic length (or mass) scale in
the physics. In general, the potential V.�/ contains dimensional parameters (such
as the massm in V D m2�2=2) but, when V D ��4, the dimension of V (a mass to
the fourth power) is carried by �4 and the self-coupling constant � is dimensionless,
i.e., there is no scale associated to V in this case.

The Maxwell field. In four spacetime dimensions the Maxwell equations are
conformally invariant, while the equation satisfied by the electromagnetic four-
potential A�,

�A� � R��A� D �4�j� (2.27)
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(where j� is the four-current) is not [112, 353]. However, this quantity is gauge-
dependent and is not an observable. As already discussed, quantum corrections to
classical electrodynamics, including the generation of mass terms and the conformal
anomaly, break the conformal invariance.

Higher spin fields. The conditions for conformal invariance of fields of arbitrary
spin in general spacetime dimensions are varied and, generally, complicated; we
refer the reader to [623].

2.2 Variational principles in General Relativity

Variational principles are used to formulate the equations of motion of particles and
fields in theoretical physics, and GR is no exception. We first discuss the variational
principle for test particles and then the one leading to the Einstein equations.

2.2.1 Geodesics

In GR the spacetime metric is related to geodesic motion because the Equivalence
Principle requires that the motion of a point-like body in free fall be described by
the geodesic equation. The latter can be derived from the variational principle

ıS D ı

Z B

A

ds D 0 ; (2.28)

where ds is the line element and A and B are the initial and final points along the
spacetime trajectory, respectively. The line element is written as

ds D
ˇ
ˇ
ˇg˛ˇdx˛dxˇ

ˇ
ˇ
ˇ
1=2 D

ˇ
ˇ
ˇ
ˇ
ˇ
g˛ˇ

dx˛

ds

dxˇ

ds

ˇ
ˇ
ˇ
ˇ
ˇ

1=2

ds ; (2.29)

with s playing the role of an affine parameter, and from which it follows that

g˛ˇu˛uˇ D �1 ; (2.30)

where u˛ D dx˛

ds
is the four-velocity of the particle. Substitution into Eq. (2.28)

yields

ıS D ı

Z B

A

ˇ
ˇ̌
ˇ
ˇ
g˛ˇ

dx˛

ds

dxˇ

ds

ˇ
ˇ̌
ˇ
ˇ

1=2

ds D 0 : (2.31)
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By performing this variation, one obtains

ıS D
Z B

A

1

2
qˇ
ˇg˛ˇu˛uˇ

ˇ
ˇ

"

g˛ˇ;	ıx
	 dx˛

ds

dxˇ

ds
C 2g˛ˇ

d

ds
.ıx˛/

dxˇ

ds

#

ds D 0 :

(2.32)

The second term in square brackets is g˛ˇ ı
�
dx˛

ds
dxˇ

ds



as a consequence of the fact

that ı .ds/ D d .ıs/, hence

g˛ˇ ı

 
dx˛

ds

dxˇ

ds

!

D g˛ˇ
dx˛

ds
ı

 
dxˇ

ds

!

Cg˛ˇ
dxˇ

ds
ı

�
dx˛

ds

�
D 2g˛ˇ

dxˇ

ds

d

ds
.ıx˛/ :

(2.33)
Using g˛ˇu˛uˇ D �1, it is

ıS D
Z B

A

1

2

"

g˛ˇ;	ıx
	 dx

˛

ds

dxˇ

ds
C 2g˛ˇ

dxˇ

ds

d

ds
.ıx˛/

#

ds D 0 (2.34)

and integration by parts of the second term yields

ıS D
Z B

A

1

2

 

g˛ˇ;	ıx
	 dx˛

ds

dxˇ

ds

!

ds C
"

g˛ˇ
dxˇ

ds
ıx˛

#B

A

�
Z B

A

d

ds

 

g˛ˇ
dxˇ

ds

!

ıx˛ds D 0 : (2.35)

By imposing that, at the endpoints, it is ıx˛ .A/ D ıx˛ .B/ D 0, the second term
vanishes and

ıS D
Z B

A

1

2

 

g˛ˇ;	
dx˛

ds

dxˇ

ds
ıx	

!

ds �
Z B

A

 

g˛ˇ
d 2xˇ

ds2
C g˛ˇ;	

dx	

ds

dxˇ

ds

!

ıx˛ds

D 0 : (2.36)

This equation can be written as

ıS D
Z B

A

"�
1

2
g˛ˇ;	 � g	ˇ;˛

�
dx˛

ds

dxˇ

ds
� g	ˇ

d 2xˇ

ds2

#

ıx	ds D 0 : (2.37)

This integral vanishes for all variations ıx	 with fixed endpoints if

g	ˇ
d 2xˇ

ds2
D
�
1

2
g˛ˇ;	 � g	ˇ;˛

�
u˛uˇ : (2.38)
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Since

g	ˇ;˛u˛uˇ D g	˛;ˇuˇu˛ D 1

2

�
g	ˇ;˛ C g	˛;ˇ

�
u˛uˇ ; (2.39)

whereas

g	ˇ
d 2xˇ

ds2
D 1

2

�
g˛ˇ;	 � g	ˇ;˛ � g	˛;ˇ

�
u˛uˇ (2.40)

we have

f�; ˛ˇg D 1

2

�
g	˛;ˇ C g	ˇ;˛ � g˛ˇ;	

�
(2.41)

and

g	ˇ
d 2xˇ

ds2
C f�; ˛ˇg u˛uˇ D 0 : (2.42)

Multiplying by g	� and remembering that

g	�g	ˇ D ı�ˇ ; g	� f�; ˛ˇg D � �˛ˇ ; (2.43)

one has

d 2x�

ds2
C � �˛ˇu˛uˇ D 0 ; (2.44)

which is the geodesic equation describing the free fall motion of a point-like body
in the gravitational field � �

˛ˇ
.

2.2.2 Field equations

The Einstein equations or the gravitational field equations of any ETG can be de-
rived from a variational principle. Of course, the description is more involved than
for point particles because we are discussing a field theory, i.e., a distributed physical
system with an infinite number of degrees of freedom. We illustrate the derivation
of the Einstein field equations in vacuo as the starting point.

Let us consider

ı

Z
d˝

p�gL D 0 ; (2.45)

where
p�g d˝ is the invariant volume element and L is the desired Lagrangian

density. In fact, under the coordinate transformation x˛ ! x˛ D x˛ .x�/, where
x� are the “initial” local coordinates, we have

d˝ D J d˝ ; J D det

�
@x˛

@x�

�
; (2.46)
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with J the Jacobian determinant of the transformation. Moreover, we have

g˛ˇ D diag .�1; 1; 1; 1/ ; (2.47)

g˛ˇ D @x�

@x˛
@x�

@xˇ
g�� ; (2.48)

g D �1 D J 2g and, therefore,

d˝ D d˝

J
D p�g d˝ : (2.49)

Since we want the Euler-Lagrange equations deriving from the variational principle
to be of second order, the Lagrangian must be quadratic in the first order deriva-
tives of g�� . These first order derivatives contain the Christoffel symbols, which
are not coordinate-invariant. Then we have to choose for the Lagrangian density L
expressions containing higher order derivatives and, a priori, this brings the danger
that the field equations could become of order higher than second (we will discuss
in detail this point for ETGs). The obvious choice of Hilbert and Einstein for the
Lagrangian density L was the Ricci scalar curvatureR. The variational principle is
then

ı

Z
d˝

p�g R D 0 : (2.50)

The relations

ıg D g g��ıg�� D �g g��ıg�� (2.51)

yield

ı
�p�g � D � ıg

2
p�g D �1

2

p�g g˛ˇ ıg˛ˇ ; (2.52)

from which it follows that
Z 	�

ı
p�g�RC p�g R��ıg�� C p�g g��ıR��



d˝

D
Z p�g ıg��	R�� � 1

2
Rg��



d˝ C

Z p�g g��ıR��d˝ D 0 : (2.53)

The second integral can be evaluated in the local inertial frame, obtaining

R��.0/ D � ˛��;˛ � � ˛�˛;� ; (2.54)

ıR��.0/ D @

@x˛

�
ı� ˛��

� � @

@x�

�
ı� ˛�˛

�
; (2.55)
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g��.0/ıR��.0/ D g��.0/
@

@x˛

�
ı� ˛��

� � g��.0/
@

@x�

�
ı� ˛�˛

�

D g��.0/
@

@x�

�
ı� ���

� � g��.0/
@

@x�

�
ı� ˛�˛

�

D @

@x�

	
g��.0/ı� ��� � g��.0/ı� ˛�˛



: (2.56)

Then, we can write

g��.0/ıR��.0/ D @W �

@x�
; W � D g��.0/ı� ��� � g��.0/ı� ˛�˛ : (2.57)

The second integral in Eq. (2.53) can be discarded since its argument is a pure
divergence; in fact, in general coordinates it is

Z p�g g��ıR��d˝ D
Z p�g @W

�

@x�
d˝

D
Z p�g W �I�d˝ D

Z
@

@x�

�p�gW �
�
d˝ D 0;

(2.58)

and then Z p�g ıg��
�
R�� � 1

2
Rg��

�
d˝ D 0 ; (2.59)

from which we obtain the vacuum field equations of GR

G�� � R�� � 1

2
g��R D 0 (2.60)

as Euler-Lagrange equations of the Hilbert-Einstein action. Vice-versa, starting
from Eq. (2.60) and retracing the previous steps in inverse order (i.e., integrating
the Einstein equations), one can re-obtain the Hilbert-Einstein action (2.50), thus
demonstrating the equivalence between this action and the field equations (2.60).
Introducing matter fields as sources is straightforward, producing Eqs. (1.8) as a
result.

2.3 Adding torsion

Several questions of interest in modern physics could depend on the fact that GR
is a classical theory that does not include ultraviolet quantum effects. Quantum
effects should be considered in any theory dealing with gravity at a fundamental
level and even in effective theories. Assuming a U4 manifold instead of the usual
V4 (see below) is a straightforward generalization of GR which attempts to include
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fields with non-zero spin in the geometrical framework of GR. The Einstein-Cartan-
Sciama-Kibble (ECSK) theory is one of the most serious attempts in this direction
[584]. However, the mere inclusion of spin matter fields does not exhaust the role
of torsion, which can give important contributions in any fundamental theory. For
example, a torsion field appears in (super)string theories if we consider the funda-
mental string modes. One needs at least a scalar and two tensor modes, a symmetric
and an antisymmetric one. In the low-energy limit, the latter is a torsion field [553].

Several attempts to unify gravity with electromagnetism have taken into account
torsion in four- and higher-dimensional theories such as Kaluza-Klein models [700].
Any theory of gravity incorporating twistors needs to include torsion [601], while
supergravity is the natural arena in which torsion, curvature, and matter fields enter
on the same footing [888].

Several authors agree that curvature and torsion could play various roles in the
cosmological dynamics at both early and late epochs. In fact, the interplay of curva-
ture and torsion produces naturally repulsive contributions to the energy-momentum
tensor, hence cosmological models become singularity-free and accelerating [385].

All these reasons suggest considering torsion in any comprehensive theory of
gravity which takes into account non-gravitational fundamental interactions. How-
ever, in most papers in the literature, a clear distinction between the different kinds
of torsion is not made. Usually torsion is simply related to the spin density of matter
but, very often, it assumes more general meanings. There are more than one inde-
pendent torsion tensors with different properties [240]. The problem of extending
GR to actions more general than the Hilbert-Einstein one is naturally related to the
consideration of torsion. In this section we illustrate the general features of torsion
and the associated quantities defined in U4 spacetimes [584]. This formalism can be
applied, in general, to any alternative theory of gravity.

The torsion tensor S �
�� is the antisymmetric part of the affine connection coeffi-

cients � ��� ,

S �
�� D 1

2

�
� ��� � � ���

� � �
�

Œ���
: (2.61)

In GR it is postulated that S �
�� D 0. It is a general convention to call U4 a

four-dimensional spacetime manifold endowed with metric and torsion, while four-
dimensional manifolds with metric and without torsion are labelled V4. In general,
torsion occurs in linear combinations as the contortion tensor

K �
�� D �S �

�� � S��� C S �
� � D �K �

� � ; (2.62)

and the modified torsion tensor

T �
�� D S �

�� C 2ı
�

Œ�
S�� ; (2.63)

where S� � S �
�� . According to these definitions, the affine connection can be

written as
� ��� D ˚

�
��

� �K �
�� ; (2.64)
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where
˚�
��

�
are the usual Christoffel symbols of the symmetric connection. The

presence of torsion in the affine connection implies that the covariant derivatives of
a scalar field � do not commute, i.e.,

QrŒ� Qr��� D �S �
��

Qr�� : (2.65)

For a vector va and a covector wa, the relations

. Qr� Qr� � Qr� Qr�/v� D R �
��˛v˛ � 2S ˛

��
Qr˛v� (2.66)

and

. Qr� Qr� � Qr� Qr�/w� D R ˛
��� w˛ � 2S ˛

��
Qr˛w� (2.67)

hold. The torsion contribution to the Riemann tensor R �
��� is given explicitly by

R �
��� D R �

��� .fg/� r�K �
�� C r�K �

�� CK �
�ˇ K

ˇ
nu� �K �

�ˇ K ˇ
�� ; (2.68)

where R �
��� .fg/ is the tensor generated by the Christoffel symbols. The symbols

Qr� and r� denote the covariant derivative operators with and without torsion, re-
spectively. Using Eq. (2.68), the expressions for the Ricci tensor and the curvature
scalar are

R�� D R��.fg/� 2r�S� C r�K �
�� CK �

�ˇ K
ˇ

�� � 2SˇK
ˇ

�� (2.69)

and
R D R.fg/� 4r�S� CK�ˇ�K

��ˇ � 4S�S� : (2.70)

Torsion can be decomposed with respect to the Lorentz group into three irreducible
tensors

S �
�� D T S �

�� C AS �
�� C V S �

�� ; (2.71)

where

AS �
�� D g��SŒ���� (2.72)

is called the axial (or totally antisymmetric) torsion and

T S �
�� D S �

�� � AS �
�� � V S �

�� (2.73)

is the traceless non-totally antisymmetric part of torsion. Torsion has 24 com-
ponents, of which TS�� has 16 components, AS�� has 4, and V S�� has the
remaining 4. It is also

V S �
�� D 1

3

�
S�ı

�
� � S�ı

�
�

�
: (2.74)

It is clear that relating torsion to the spin density of matter is only one of its possible
applications [240].
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2.4 Noether symmetries

The celebrated theorem of Emmy Noether states that conserved quantities in the
dynamics of a physical system are related to the existence of symmetries and cyclic
variables in its Lagrangian [53, 774, 808]. Here we review the Noether symmetry
approach for dynamical systems with a finite number of degrees of freedom. We
will use it later to obtain exact solutions of ETGs.

Let L
�
qi ; Pqi � be a canonical, non-degenerate, point-like Lagrangian satisfying

@L

@�
D 0 ; det

�
Hij

� � det

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ̌ @2L

@ Pqi@ Pqj
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ̌ ¤ 0 ; (2.75)

where Hij is the Hessian matrix of L and an overdot denotes differentiation with
respect to the affine parameter � (which usually corresponds to the time t). In the
Lagrangian formalism for point particles and rigid bodies, the Lagrangian L as-
sumes the form

L D T .q; Pq/� V .q/ ; (2.76)

where T and V are the kinetic and potential energies, respectively. T is a quadratic
form of the Pqi . The Hamiltonian associated with L is

EL � @L

@ Pqi Pqi � L ; (2.77)

it coincides with the total energy T C V , and is a constant of motion. Any smooth
and invertible transformation3 of the generalized coordinates qi ! Qi.q/ induces
a transformation of the generalized velocities

Pqi ! PQi .q/ D @Qi

@qj
Pqj : (2.78)

We assume that the Jacobian matrix J D jj@Qi=@qj jj of the coordinate transfor-
mation does not vanish. The Jacobian fJ of the “induced” transformation is easily
derived and J ¤ 0 implies that fJ ¤ 0. In general, this transformation is local
because the condition J ¤ 0 cannot be satisfied on the entire space but only in the
neighbourhood of a given point. If the transformation is extended to the maximal
submanifold on which J ¤ 0, problems can arise for the whole manifold due to
the possibility of different topologies [808].

A point transformationQi D Qi .q/ can depend on one or more parameters. Let
us assume that a point transformation depends on a parameter ", Qi D Qi .q; "/,
and that it defines a one-parameter Lie group. For infinitesimal values of ", the trans-
formation is then generated by a vector field. Examples are the vector field @=@x

3 Here we consider only point transformations.
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associated with a translation along the x-axis, and the field x.@=@y/ � y.@=@x/

associated with a rotation about the z-axis. In general, an infinitesimal point trans-
formation is represented by a generic vector field on Q

X D ˛i .q/
@

@qi
: (2.79)

The induced transformation (2.78) is then represented by

X.c/ D ˛i .q/
@

@qi
C
�
d

d�
˛i .q/

�
@

@ Pqj : (2.80)

The vector field X.c/ is called the complete lift of X [808]. A function f .q; Pq/ is
invariant under the transformation X.c/ if

£X.c/f � ˛i .q/
@f

@qi
C
�
d

d�
˛i .q/

�
@f

@ Pqj D 0 ; (2.81)

where £Xcf is the Lie derivative of f along X.c/. If, in particular, £X.c/L D 0, then
X.c/ is said to be a symmetry for the dynamics described by L.

In order to fully flesh out the relation between Noether’s theorem and cyclic
variables, let us consider a Lagrangian L yielding the Euler-Lagrange equations

d

d�

�
@L

@ Pqj
�

� @L

@qj
D 0 (2.82)

and the vector field (2.80). By contracting Eq. (2.82) with the ˛i ’s, one obtains

˛j
�
d

d�

�
@L

@ Pqj
�

� @L

@qj

�
D 0 : (2.83)

By using the fact that (as follows from Eq. (2.83))

˛j
d

d�

�
@L

@ Pqj
�

D d

d�

�
˛j

@L

@ Pqj
�

�
�
d˛j

d�

�
@L

@ Pqj ; (2.84)

one obtains that

d

d�

�
˛i
@L

@ Pqi
�

D £XL : (2.85)

For brevity, from now on we abuse notations when there is no possibility of confu-
sion and we write X instead of X.c/. A straightforward consequence of Eq. (2.85)
is the
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Noether theorem:

If £XL D 0, then the function

˙0 D ˛i
@L

@ Pqi (2.86)

is a constant of motion.

A few remarks are in order. First, Eq. (2.86) can be expressed in a coordinate-
independent way as the contraction of X with the Cartan one-form

�L � @L

@ Pqi dqi : (2.87)

Given a generic vector field Y D yi@=@xi and a one-form ˇ D ˇidx
i it is, by

definition,
iYˇ D yiˇi (2.88)

and Eq. (2.86) can then be written as

iX�L D ˙0 : (2.89)

Using a point transformation, the vector field X is rewritten as

eX D
�
iXdQ

k

 @

@Qk
C
�
d

d�

�
ixdQ

k

� @

@ PQk
; (2.90)

henceeX0 is still the lift of a vector field defined on the configuration space. If X is a
symmetry and a point transformation is chosen such that

iXdQ
1 D 1 ; iXdQ

i D 0 .i ¤ 1/ ; (2.91)

it follows that

eX D @

@Q1
;

@L

@Q1
D 0 : (2.92)

Therefore,Q1 is a cyclic coordinate and the dynamics can be reduced [53, 774].
The coordinate transformation (2.91) is not unique and a clever choice can be

very advantageous. Moreover, the solution of Eq. (2.91) is, in general, not defined
on the entire space but only locally, as noted above. It is possible that multiple vector
fields X are found, say X1 and X2. If these commute, ŒX1;X2	 D 0, then two cyclic
coordinates can be found by solving the system

iX1dQ
1 D 1 ; iX2dQ

2 D 1 ; iX1dQ
i D 0 .i ¤ 1/ ; iX2dQ

i D 0 .i ¤ 2/ :

(2.93)
The transformed fields are then @=@Q1 and @=@Q2. If X1 and X2 do not commute,
this procedure cannot be applied, as is clear from the fact that diffeomorphisms
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preserve the commutation relations. To proceed, let us note that the commutator
X3 D ŒX1;X2	 is also a symmetry because

£X3L D £X1 £X2L� £X2 £X1L D 0 : (2.94)

If X3 does not depend on X1 and X2, the procedure is repeated until the vector fields
close the Lie algebra. The usual way to treat this situation consists of performing
a Legendre transformation to switch to the Hamiltonian formalism and to a Lie
algebra of Poisson brackets. If a reduction to cyclic coordinates is sought for, this
procedure can be achieved by:

1. choosing arbitrarily one of the symmetries or a linear combination of them and
obtaining new coordinates as above. After the reduction, the new Lagrangian
eL.Q/ is obtained.

2. Repeating the search for symmetries in this new space, performing a new reduc-
tion, and repeating this procedure until possible.

3. If the search for symmetries fails, another attempt is made with a different exist-
ing symmetry.

Let us now assume that L is of the form (2.76). Since X is of the form (2.80),
£XL will consists of the sum of a second degree homogeneous polynomial in the
velocities and of an inhomogeneous term in qi . Since such a polynomial must van-
ish identically, all its coefficients vanish. If the configuration space has dimension n,

one obtains 1C n.nC 1/

2
partial differential equations; the system is then overde-

termined and, if any solution exists, it must be expressed in terms of integration
constants instead of boundary conditions. Clearly, an overall constant factor in the
Lie vector X is irrelevant.

The Noether approach will be used in Chaps. 4 and 8 to obtain exact solutions
with symmetries of ETGs.

2.5 Conclusions

Armed with the mathematical tools described in this chapter, we are now ready
to explore in more detail the landscape of gravitational theories that lie beyond
Einstein’s GR. These theories are conveniently described in terms of their actions
satisfying the variational principle, and the search for analytical solutions can be
performed using Noether symmetries. In addition, general solutions in cosmology
can be discussed using qualitative analysis, which is presented in Chap. 6.



Chapter 3
The landscape beyond Einstein gravity

What is a scientist after all? It is a curious man looking through
a keyhole, the keyhole of nature, trying to know what’s going on.
– Jacques Cousteau

The two main classes of ETGs considered in this book, scalar-tensor and f .R/
gravity, are the subject of much of this chapter. After exposing the metric formal-
ism, due consideration is given to the Palatini version of f .R/ theories, emphasizing
its bimetric nature. Specifically, we present the actions describing ETGs, derive the
field equations from a variational principle, and then discuss their different confor-
mal representations. In this chapter the emphasis is on the general structure of these
theories, while their application to astrophysics and cosmology is studied in later
chapters.

As is the case for GR, alternative theories of gravity are best expressed using
actions and variational principles for the degrees of freedom that they contain. In
this chapter we discuss the action and field equations of Brans-Dicke theory first:
this is the prototype of scalar-tensor theories and, historically, was the first complete
and successful alternative to GR. Then, metric f .R/ gravity is presented, beginning
with the case of quadratic corrections to the Hilbert-Einstein Lagrangian which was
employed in the first scenario of inflation in the early universe [1044]. The dis-
cussion of more general ETGs follows. We then examine the different conformal
representations of ETGs and discuss the effective equation of state appearing in
these theories and their initial value problem.

3.1 The variational principle and the field equations
of Brans-Dicke gravity

The Brans-Dicke theory of gravity [165, 490, 648, 649] is the prototype of gravita-
tional theories alternative to GR. The action in the Jordan frame (the set of variables�
g�� ; �

�
) is

S.BD/ D 1

16�

Z
d 4x

p�g
�
�R � !

�
g��r�� r�� � V.�/

�
C S .m/ ; (3.1)

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics 170,
DOI 10.1007/978-94-007-0165-6 3, c� Springer Science+Business Media B.V. 2011
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where

S .m/ D
Z
d 4x

p�gL .m/ (3.2)

is the action of ordinary matter and ! is the dimensionless Brans-Dicke parameter.
The factor � in the denominator of the kinetic term of � in the action (3.1) is purely
conventional and has the only purpose of making ! dimensionless. Matter does
not couple directly to �, i.e., the Lagrangian density L .m/ is independent of �
(“minimal coupling” of matter). However, � couples directly to the Ricci scalar.
The gravitational field is described by both the metric tensor g�� and the Brans-
Dicke scalar � which, together with the matter variables, constitute the degrees of
freedom of the theory. As usual for scalar fields, the potential V.�/ generalizes the
cosmological constant and may reduce to a constant, or to a mass term.1

As discussed in Chap. 1, the original motivation for introducing Brans-Dicke the-
ory was the implementation of Mach’s principle. This is achieved in Brans-Dicke
theory by making the effective gravitational coupling strength Geff � ��1 de-
pend on the spacetime position and being governed by distant matter sources, as
in Eq. (3.9) below. As already remarked, modern interest in Brans-Dicke and scalar-
tensor theories is motivated by the fact that they are obtained as low-energy limits
of string theories.

The variation of the action (3.1) with respect to g�� and the well known proper-
ties [705]

ı
�p�g � D �1

2

p�g g�� ıg�� ; (3.3)

ı
�p�g R� D p�g

�
R�� � 1

2
g��R

�
ıg�� � p�g G�� ıg�� ; (3.4)

yield the field equation

G�� D 8�

�
T .m/�� C !

�2

�
r�� r�� � 1

2
g��r˛�r˛�

�

C 1

�

�r�r�� � g�� ��
� � V

2�
g�� ; (3.5)

where

T .m/�� � �2p�g
ı

ıg��

�p�gL .m/



(3.6)

1 Due to the particular equation (3.9) satisfied by the Brans-Dicke field �, its mass is not the coef-
ficient of the quadratic term in the expansion of V .�/, as for minimally coupled scalar fields, but

rather the quantity m defined by m2 D 1

2! C 3
�
�
d2V

d�2
� dV

d�

�
[443].
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is the energy-momentum tensor of ordinary matter. By varying the action with
respect to �, one obtains

2!

�
�� CR � !

�2
r˛�r˛� � dV

d�
D 0 : (3.7)

Taking now the trace of Eq. (3.5),

R D �8� T .m/
�

C !

�2
r˛�r˛� C 3��

�
C 2V

�
; (3.8)

and using the resulting Eq. (3.8) to eliminate R from Eq. (3.7) leads to

�� D 1

2! C 3

�
8� T .m/ C �

dV

d�
� 2V

�
: (3.9)

According to this equation, the scalar � is sourced by non-conformal matter (i.e., by
matter with trace T .m/ ¤ 0), however the scalar does not couple directly to L .m/:
the Brans-Dicke scalar � reacts on ordinary matter only indirectly through the metric
tensor g�� , as dictated by Eq. (3.5). The term proportional to � dV=d� � 2V on the
right hand side of Eq. (3.9) vanishes if the potential has the form V.�/ D m2�2=2

familiar from the Klein-Gordon equation and from particle physics.
The action (3.1) and the field equation (3.5) suggest that the field � be identified

with the inverse of the effective gravitational coupling

Geff .�/ D 1

�
; (3.10)

a function of the spacetime location. In order to guarantee a positive gravitational
coupling, only the range of values � > 0 corresponding to attractive gravity is
considered. The dimensionless Brans-Dicke parameter ! is a free parameter of the
theory: a value of ! of order unity would be natural in principle (and it does appear
in the low-energy limit of the bosonic string theory). However, values of ! of this
order of magnitude are excluded by Solar System experiments, for a massless or
light field � (i.e., one that has a range larger than the size of the Solar System).

The larger the value of !, the closer Brans-Dicke gravity is to GR [1153]; there
are, however, exceptions such as vacuum Brans-Dicke solutions,2 and solutions
sourced by conformal matter [43, 75, 446, 451, 454, 780, 944, 946, 948, 975]. The
most stringent experimental limit, ! > 40; 000, was set by the Cassini probe in
2003 [133].

Brans-Dicke theory with a free or light scalar field is viable in the limit of large!,
but the large value of this parameter required to satisfy the experimental bounds is

2 One should keep in mind, however, that the limit of particular spacetime solutions of the field
equations of a gravitational theory should be taken in a coordinate-independent way [535,885,886].
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certainly fine-tuned and makes Brans-Dicke theory unappealing. However, this fine-
tuning becomes unnecessary if the scalar field is given a sufficiently large mass and,
therefore, a short range. This means that a self-interaction potential V.�/ has to be
considered in discussing the limits on ! and this fact is an adjustment of the original
Brans-Dicke theory [165].

3.2 The variational principle and the field equations of metric
f .R/ gravity

We now examine the variational principle and the field equations of another class of
ETGs, f .R/ gravity in the metric formalism. The salient feature of these ETGs
is that the field equations are of fourth order and, therefore, more complicated
than those of GR (which is recovered as the special case f .R/DR). Due to their
higher order, these field equations admit a much richer variety of solutions than the
Einstein equations. For simplicity, we begin by discussing quadratic corrections to
the Hilbert-Einstein theory, which provide interesting cosmology.

3.2.1 f .R/ D R C ˛R2 theory

Quadratic corrections in the Ricci scalar motivated by attempts to renormalize GR,
as discussed in Chap. 1, constitute a straightforward extension of GR and have been
particularly relevant in cosmology since they allow a self-consistent inflationary
model to be constructed [1044]. We will use this model as an example before dis-
cussing general metric f .R/ gravity.

Let us begin by deriving the field equations for the Lagrangian density

L D RC ˛R2 C 2�L .m/ (3.11)

from the variational principle ı
R
d 4x

p�gL D 0. We consider vacuum first. The
variation gives

Z
d 4x

p�g G˛ˇ ıg˛ˇ C ˛ ı

Z
d 4x

p�g R2 D 0 ; (3.12)

in which the variation of R
p�g produces the Einstein tensor. We now compute the

second term on the right hand side of Eq. (3.12). We have

ı

Z
d 4x

p�g R2 D �1
2

Z
d 4x

p�g g˛ˇ ıg˛ˇR2 C 2

Z
d 4x

p�g RıR (3.13)
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and

Z
d 4x

p�g RıR D
Z
d 4x

p�g R
�
ıg˛ˇR˛ˇ C g˛ˇ ıR˛ˇ



: (3.14)

By using the fact that

g˛ˇ ıR˛ˇ D r˛rˇh˛ˇ � �h ; (3.15)

where

h˛ˇ � �ıg˛ˇ ; h � �g˛ˇ ıg˛ˇ ; (3.16)

one has

Z
d 4x

p�g R g˛ˇ ıR˛ˇ D
Z
d 4x

p�g R
�
r˛rˇh˛ˇ � �h



: (3.17)

Integrating by parts twice, the operators r˛rˇ and � acting on h˛ˇ and h, respec-
tively, transfer their action onto R and

Z
d 4x

p�g R g˛ˇ ıR˛ˇ D
Z
d 4x

p�g
�
h˛ˇr˛rˇR � h�R



: (3.18)

Using Eq. (3.16), Eq. (3.18) becomes

Z
d 4x

p�g R g˛ˇ ıR˛ˇ D
Z
d 4x

p�g
�
�ıg˛ˇr˛rˇRC g˛ˇ�Rıg˛ˇ



:

(3.19)
Upon substitution of Eq. (3.19) into Eq. (3.14), one obtains

Z
d 4x

p�g RıR D
Z
d 4x

p�g
�
Rıg˛ˇR˛ˇ � ıg˛ˇr˛rˇRC g˛ˇ�Rıg˛ˇ




(3.20)

and Eq. (3.13) takes the form

ı

Z
d 4x

p�g R2 D �1
2

Z
d 4x

p�g g˛ˇ ıg˛ˇR2

C2
Z
d 4x

p�g
�
Rıg˛ˇR˛ˇ � ıg˛ˇr˛rˇRC g˛ˇ�Rıg˛ˇ




D
Z
d 4x

p�g �2RR˛ˇ � 1
2
g˛ˇR

2
�
ıg˛ˇ

C2
Z
d 4x

p�g �g˛ˇ�R � r˛rˇR
�
ıg˛ˇ : (3.21)
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Substituting this equation into Eq. (3.12) and including the matter part of the
Lagrangian L .m/ which produces the energy-momentum tensor T .m/�� , the field
equations

G˛ˇ C ˛

�
2R

�
R˛ˇ � 1

4
g˛ˇR

�
C 2

�
g˛ˇ�R � r˛rˇR

�� D � T
.m/

˛ˇ
(3.22)

are obtained; they are fourth-order PDEs for the metric components.
The trace of Eq. (3.22) is

�R � 1

6˛

�
RC � T .m/



D 0 ; (3.23)

which shows that ˛ must be positive. One can also define an angular frequency !
(equivalent to a mass m) so that

1

6˛
D !2 D m2 : (3.24)

Following this definition, Eq. (3.23) becomes

�R �m2
�
RC � T .m/



D 0 : (3.25)

After the early phases of the universe, as the temperature decreases with the expan-
sion, the term proportional tom2 becomes dominant. Equation (3.25) can be seen as
an effective Klein-Gordon equation for the effective scalar field degree of freedom
R (sometimes called scalaron).

3.2.2 Metric f .R/ gravity in general

Let us discuss now a generic analytical3 function f .R/ in the metric formalism,
beginning with the vacuum case, as described by the Lagrangian density

p�gL Dp�g f .R/ obeying the variational principle ı
R
d 4x

p�g f .R/ D 0. We have

ı

Z
d 4x

p�g f .R/ D
Z
d 4x

	
ı
�p�g f .R/�C p�g ı .f .R//


D
Z
d 4x

p�g 	f 0.R/R�� � 1
2
g��f .R/



ıg��

C
Z
d 4x

p�g f 0.R/g��ıR�� ; (3.26)

3 This assumption is not, strictly speaking, necessary and is sometimes relaxed in the literature.
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where the prime denotes differentiation with respect to R. We now compute these
integrals in the local inertial frame. By using

g��ıR�� D g��@�
�
ı� ���

� � g��@�
�
ı� ���

� � @�W
� (3.27)

where

W � � g��ı� ��� � g��ı� ��� ; (3.28)

the second integral in Eq. (3.26) can be written as

Z
d 4x

p�g f 0.R/g��ıR�� D
Z
d 4x

p�g f 0.R/@�W � : (3.29)

Integration by parts yields

Z
d 4x

p�g f 0.R/g��ıR�� D
Z
d 4x

@

@x�

	p�g f 0.R/W �



�
Z
d 4x@�

	p�gf 0.R/
W � : (3.30)

The first integrand is a total divergence and can be discarded by assuming that the
fields vanish at infinity, obtaining

Z
d 4x

p�g f 0.R/g��ıR�� D �
Z
d 4x@�

	p�g f 0.R/
W � : (3.31)

Let us calculate now the termW � appearing in Eq. (3.31). We have

ı� ��� D ı

�
1

2
g�˛

�
@�g˛� C @�g�˛ � @˛g��

�
�

D 1

2
g�˛

	
@� .ıg˛�/C @�

�
ıg�˛

� � @˛
�
ıg��

�

; (3.32)

since in the locally inertial frame considered here it is

@˛g�� D r˛g�� D 0 : (3.33)

Similarly, it is

ı� ��� D 1

2
g�˛@� .ıg�˛/ : (3.34)

By combining Eqs. (3.33) and (3.34), one obtains

g��ı� ��� D 1

2
g��

	�@� .g˛�ıg˛� /� @�
�
g�˛ıg

�˛
�� g�˛@˛

�
ıg��

�
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D 1

2
@�
�
g��ıg

��
�� @�

�
g˛�ıg

�˛
�
; (3.35)

g��ı� ��� D �1
2
@� .g�˛ıg

�˛/ ; (3.36)

from which it follows immediately that

W � D @�
�
g��ıg

��
� � @� �g��ıg��

�
: (3.37)

Using this equation one can write

Z
d 4x

p�g f 0.R/g��ıR��

D
Z
d 4x@�

	p�g f 0.R/
 	@� �g��ıg��
� � @�

�
g��ıg

��
�

: (3.38)

Integrating by parts and discarding total divergences, one obtains

Z
d 4x

p�g f 0.R/g��ıR�� D
Z
d 4x g��@

�@�
	p�gf 0.R/
 ıg��

�
Z
d 4x g��@

�@�
	p�g f 0.R/
 ıg�� : (3.39)

The variation of the action is then

ı

Z
d 4x

p�g f .R/ D
Z
d 4x

p�g 	f 0.R/R�� � 1
2
f .R/g��



ıg��

C
Z
d 4x

	
g��@

�@�
�p�g f 0.R/�� g��@

�@�
�p�gf 0.R/�
 ıg�� : (3.40)

The vanishing of the variation implies the fourth order vacuum field equations

f 0.R/R�� � f .R/

2
g�� D r�r�f 0.R/� g���f 0.R/ : (3.41)

These equations can be re-arranged in the Einstein-like form

f 0.R/R���f
0.R/
2

g��RCf 0.R/
2

g��R�f .R/
2

g�� D r�r�f 0.R/�g���f 0.R/;
(3.42)

and then

G�� D 1

f 0.R/

�
r�r�f 0.R/ � g���f 0.R/C g��

Œf .R/� f 0.R/R	
2

�
: (3.43)
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The right hand side of Eq. (3.43) is then regarded as an effective stress-energy tensor,
which we call curvature fluid energy-momentum tensor T .curv/

�� sourcing the ef-
fective Einstein equations. Although this interpretation is questionable in principle
because the field equations describe a theory different from GR, and one is forcing
upon them the interpretation as effective Einstein equations, this approach is quite
useful in practice.

3.3 A more general class of ETGs

ETGs exhibit two main features: first, the geometry can couple non-minimally to
some scalar field; second, derivatives of the metric components of order higher than
second may appear. In the first case, we say that we have scalar-tensor theories of
gravity, and in the second case we have higher order theories. Combinations of non-
minimally coupled and higher order terms can also emerge in effective Lagrangians,
producing mixed higher order/scalar-tensor gravity.

From the mathematical point of view, the reduction of more general theories
to the Einstein-like form is common practice. Through a Legendre transformation
of the metric, higher-order theories take the form of effective Einstein gravity un-
der suitable regularity conditions of the Lagrangian, with (possibly multiple) scalar
field(s) as the source of the gravity, but with important differences if matter is present
[484, 768, 769, 1023]. The mathematical equivalence between models with variable
gravitational coupling and standard Einstein gravity through conformal transforma-
tions has also been known for a long time [360,392]. This mathematical equivalence
gives rise to different conformal representations of scalar-tensor theories, the most
well known being the Jordan and the Einstein conformal frames. The issue of the
physical equivalence of these conformal frames has been debated at length, and
probably blown out of proportion. However, there are still open questions to this re-
gard ([473] and references therein). Several authors claim a true physical difference
between these two conformal frames on the basis that experimental and observa-
tional data support the Jordan frame as a better fit with theoretical solutions. Other
authors support the viewpoint that only the Einstein frame is physical on the basis of
energy considerations [769]. These points of view are discussed later in this chapter.

3.4 The Palatini formalism

The Palatini approach to gravitational theories was introduced by Einstein himself
[415] but received its name because of an historical misunderstanding [191, 485].
The fundamental idea of the Palatini formalism is to regard the (usually torsion-free)
connection � ��˛ entering the definition of the Ricci tensor as a variable independent
of the spacetime metric g�� . The Palatini formulation of GR is equivalent to the
metric version of this theory as a consequence of the fact that the field equations
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for the connection � ˛�� give the Levi-Civita connection of the metric g�� [1139].
As a consequence, there is no particular reason to impose the Palatini variational
principle in GR instead of the metric variational principle.

The situation is different in ETGs depending on functions of curvature invari-
ants, such as f .R/, or for gravity non-minimally coupled to a scalar field. In these
cases, the Palatini and the metric variational principle yield different field equations
and different physics [486, 769]. The Palatini approach in the context of ETGs has
been the subject of much (and, as we will see, ill-fated) interest in cosmological
applications [211, 721, 722, 843, 1129].

The Newtonian potential obtained in the weak-field limit of alternative theories
of gravity and its relations with a conformal factor have also been studied [794].
From the physical point of view, considering the metric g�� and the connection � ˛��
as independent fields amounts to decoupling the metric structure of spacetime and
its geodesic structure with the connection � ˛�� being distinct from the Levi-Civita
connection of g˛ˇ . The causal structure of spacetime is defined by g�� , while the
spacetime trajectories of particles are governed by � ˛�� . In principle, this decoupling
enriches the geometric structure of spacetime and generalizes the purely metric for-
malism. By means of the Palatini field equations, this dual structure of spacetime is
naturally translated into a bimetric structure of the theory: instead of a metric and
an independent connection, the Palatini formalism can be seen as containing two
independent metrics g�� and h�� D f 0.R/ g�� . In Palatini f .R/ gravity the new
metric h�� determining the geodesics is related to the connection � ˛�� by the fact
that the latter turns out to be the Levi-Civita connection of h�� .

In scalar-tensor gravity, the second metric h�� is related to the non-minimal
coupling of the Brans-Dicke-like scalar. In the Palatini formalism the non-minimal
coupling and the scalar field are separated from the metric structure of spacetime.
The situation mixes when we consider higher order/scalar-tensor theories.

3.4.1 The Palatini approach and the conformal structure
of the theory

Let us work out examples showing the role of conformal transformations in the
Palatini approach to ETGs [26], beginning with fourth order gravity in which the
difference between metric and Palatini variational principles is evident. The Ricci
scalar in f .R/ is R � R.g; � / � g˛ˇR˛ˇ .� / and is a generalized Ricci scalar,
whereas R��.� / is the Ricci tensor of a torsion-free connection � ˛�� which, a pri-
ori, has no relations with the spacetime metric g�� . The gravitational sector of the
theory is described by the analytical function f .R/, while

p�g denotes the usual
scalar density of weight 1. The field equations derived with the Palatini variational
principle are

f 0.R/R.��/.� / � f.R/
2
g�� D T

.m/
�� ; (3.44)

r�
˛

	p�g f 0.R/g��
 D 0 ; (3.45)
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where r�
� is the covariant derivative of the non-metric connection � ˛�� , and we use

units in which 8�G D 1.
It is important to stress that Eq. (3.45) is obtained under the assumption that

the matter sector described by L .m/ is functionally independent of the (non-metric)

connection� ˛�� ; however it may contain metric covariant derivatives
g

r of the matter

fields. This means that the matter stress-energy tensor T .m/�� Œg; � 	 depends on the
metric g�� and on the matter fields collectively denoted by � , together with their
covariant derivatives with respect to the Levi-Civita connection of g�� . It is easy to
see from Eq. (3.45) that

p�g f 0.R/g�� is a symmetric tensor density of weight 1,
which naturally leads to the introduction of a new metric h�� conformally related
to g�� by [26, 486] p�g f 0.R/ g�� D

p
�h h�� : (3.46)

With this definition � ˛�� is the Levi-Civita connection of the metric h�� , with the
only restriction that the conformal factor

p�g f 0.R/g�� relating g�� and h�� be
non-degenerate. In the case of the Hilbert-Einstein Lagrangian it is f 0.R/ D 1 and
the statement is trivial.

The conformal transformation

g�� �! h�� D f 0.R/ g�� (3.47)

implies that R.��/.� / D R��.h/. It is useful to consider the trace of the field
equations (3.44)

f 0.R/R � 2f .R/ D g˛ˇT
.m/

˛ˇ
� T .m/ ; (3.48)

which controls the solutions of Eq. (3.45). We refer to this scalar equation as the
structural equation of spacetime. In vacuo and in the presence of conformally invari-
ant matter with T .m/ D 0, this scalar equation admits constant solutions. In these
cases, Palatini f .R/ gravity reduces to GR with a cosmological constant [486,956].

In the case of interaction with matter fields, the structural equation (3.47), if
explicitly solvable, provides in principle an expression R D F.T .m// and, as a
result, both f .R/ and f 0.R/ can be expressed in terms of T .m/. This fact allows
one to express, at least formally, R in terms of T .m/, which has deep consequences
for the description of physical systems, as we will see later. Matter rules the bimetric
structure of spacetime and, consequently, both the geodesic and metric structures
which are intrinsically different. This behavior generalizes the vacuum case.

Let us now extend the Palatini formalism to non-minimally coupled scalar-tensor
theories, with the goal of understanding the bimetric structure of spacetime in
these theories and its possible geometric and physical interpretation. We denote by
S1 the action functional of Palatini scalar-tensor theories, while non-minimal in-
teraction between scalar-tensor and f .R/ gravities will be considered later, calling
S2 the respective action. Then, we will finally consider the case of scalar fields �
non-minimally coupled to the gravitational fields

�
g�� ; �

˛
��

�
, denoting by S3 the
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corresponding action. In this case, the low curvature limit R ! 0, which is relevant
for the present epoch of the history of the universe, is particularly significant.

The scalar-tensor action can be generalized, in order to better develop the Palatini
approach, as

S1 D
Z
d 4x

p�g
�
F.�/R � "

2

g

r� �
g

r
�

� � V.�/C L .m/

�
�;

g

r �

��
;

(3.49)

with " D ˙1 corresponding to an ordinary scalar or a phantom field, respectively.
The field equations for the metric g�� and the connection � ˛�� are

F.�/

�
R.��/ � 1

2
g��R

�
D T .
/�� C T .m/�� ; (3.50)

r�
˛

	p�g F.�/g��
 D 0 ; (3.51)

where R.��/ is defined by Eq. (3.44). The equation of motion of the matter fields is

"�� D V
.�/C F
.�/R ; (3.52)

ıL .m/

ı�
D 0 : (3.53)

In this case, the structural equation of spacetime implies that

R D �
�
T .
/ C T .m/

�

F.�/
; (3.54)

where we must require that F.�/ > 0. The bimetric structure of spacetime is thus
defined by the ansatz p�g F.�/g�� D

p
�h h�� (3.55)

so that h�� is conformal to g�� ,

h�� D F.�/ g�� : (3.56)

It follows from Eq. (3.54) that in vacuo T .
/ D 0 and T .m/ D 0 this theory is
equivalent to vacuum GR. If F.�/ D F0 D const. we recover GR with a minimally
coupled scalar field, which means that the Palatini approach intrinsically gives rise
to the conformal structure (3.56) of the theory which is trivial in the Einsteinean,
minimally coupled, case.

As a further step, let us generalize the previous results to the case of non-minimal
coupling in the framework of f .R/ theories. The action functional can be written as

S2 D
Z
d 4x

p�g
�
F.�/f .R/� "

2

g

r� �
g

r
�

� � V.�/C L .m/.�;
g

r �/

�

(3.57)
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where f .R/ is, as usual, an analytical function of R. The Palatini field equations
for the gravitational sector are

F.�/

�
f 0.R/R.��/ � f .R/

2
g��

�
D T

.
/
�� C T

.m/
�� ; (3.58)

r�
˛

	p�gF.�/f 0.R/g��
 D 0 : (3.59)

The equations of motion for the scalar and matter fields are

"�� D V
.�/C F
.�/f .R/ ; (3.60)

ıL .m/

ı�
D 0 ; (3.61)

in which the non-minimal interaction term enters the modified Klein-Gordon equa-
tions. In this case, the structural equation of spacetime implies that

f 0.R/R � 2f .R/ D T .
/ C T .m/

F.�/
: (3.62)

The bimetric structure of spacetime is given by

p�g F.�/f 0.R/g�� D
p

�h h�� (3.63)

with g�� and h�� again conformally related,

h�� D F.�/f 0.R/ g�� : (3.64)

Once the structural equation is solved, the conformal factor depends on the values
of the matter fields (�;� ) or, more precisely, on the traces of their stress-energy
tensors and the value of �. In vacuo, Eq. (3.62) implies that the theory reduces again
to Einstein gravity as for minimally interacting f .R/ theories [486]. The validity of
this property is related to the decoupling of the scalar field from the metric.

Finally, let us discuss the situation in which the gravitational Lagrangian is a
general function of � and R, as in

S3 D
Z
d 4x

p�g
�
K .�;R/� "

2

g

r� �
g

r
�

� � V.�/C L .m/

�
�;

g

r �

��
;

(3.65)
which yields the gravitational field equations

@ K.
;R/
@R

R.��/ � K.
;R/
2

g�� D T
.
/
�� C T

.m/
�� ; (3.66)

r�
˛

hp�g @ K.
;R/
@R

g��
i

D 0 ; (3.67)
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while the scalar and matter fields obey

"�� D V
.�/C @ K.�;R/

@�
; (3.68)

ıL .m/

ı�
D 0 : (3.69)

The structural equation of spacetime can be expressed as

@K.�;R/

@R
R � 2K.�;R/ D T .
/ C T .m/ : (3.70)

When solved, Eq. (3.70) provides again the form of the Ricci scalar in terms
of the traces of the stress-energy tensors of matter and of the scalar field (with
K.�;R/ > 0). The bimetric structure of spacetime is defined by

p�g @K.�;R/

@R
g�� D

p
�h h�� (3.71)

with

h�� D @K.�;R/

@R
g�� : (3.72)

The conformal factor depends on the matter fields only through the traces of their
stress-energy tensors. The conformal factor and the bimetric structure are ruled by
these traces and by the value of the scalar field �. In this case, in general, one does
not recover GR, as is evident from Eq. (3.70) in which the strong coupling between
R and � prevents, even in vacuo, the possibility of obtaining constant solutions.

Let us discuss the R ! 0 regime, a good approximation to the present epoch of
the observed universe. The linear expansion of the analytical functionK .�;R/

K.�;R/ D K0.�/CK1.�/R C O.R2/ (3.73)

with

K0.�/ D K.�;R/ jRD0 ; K1.�/ D
�
@K.�;R/

@R

�
jRD0 ; (3.74)

can be substituted into Eqs. (3.70) and (3.72) obtaining, to first order, the structural
equation and the bimetric structure. The structural equation yields

R D �1
K1.�/

h
T .
/ C T .m//C 2K0.�/

i
(3.75)

and the value of the Ricci scalar is always determined, in the linear approximation,
in terms of T .
/, T .m/, and �. The bimetric structure is, otherwise, simply defined
by the first term of the Taylor expansion, which is
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h�� D K1.�/ g�� (3.76)

reproducing, as expected, the scalar-tensor case (3.56). Scalar-tensor theories can
then be recovered as the linear approximation of a general theory in which gravity
and the non-minimal couplings are arbitrary (cf. Eqs. (3.75) and (3.62)). This fact
agrees with the above considerations when the Lagrangians of physical interactions
can be considered as locally gauge-invariant stochastic functions [103].

Finally, there exist also bimetric theories which cannot be conformally related
[1167] and torsion will also appear in the most general framework [240,583]. These
more general theories will not be discussed here.

3.4.2 Problems with the Palatini formalism

Palatini f .R/ gravity suffers from two serious problems: (i) the presence of curva-
ture singularities at the surface of stars [78–80], and (ii) incompatibilities with the
Standard Model of particle physics [497, 622, 870] (see also the discussion of the
initial value problem of Palatini modified gravity later in this chapter).

Let us begin by discussing the first problem, which occurs when attempting to
build static spherically symmetric interior solutions and matching them with the
spherically symmetric exterior metric while satisfying the Darmois-Israel junction
conditions [627]. Since Palatini f .R/ gravity in vacuo reduces to GR with a cosmo-
logical constant, the unique exterior solution is the Schwarzschild-de Sitter metric.
We then search for an interior solution with matter described by a perfect fluid with
stress-energy tensor T�� D .P C �/ u�u� C Pg�� . Following [78–80], the most
general static and spherically symmetric line element is

ds2 � �e2�.r/dt2 C e2�.r/dr2 C r2 d˝2
2 (3.77)

(where d˝2
2 D d�2 C sin2 �d'2 is the line element on the unit two-sphere) for

which the Palatini field equations yield

�0 D �1
2 .1C �/

�
1 � e2�

r
� e2�

F
8�GrP C ˛

r

�
; (3.78)
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�
; (3.79)
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� � r F 0

2F
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where, in this section, a prime denotes differentiation with respect to the radial
coordinate r and F � @f=@R. A generalization to Palatini f .R/ gravity of
the Tolman-Oppenheimer-Volkoff equation of hydrostatic equilibrium was found
in [86, 197, 651]. By introducing

mtot.r/ � r

2

�
1 � e�2�

�
(3.83)

and using the Euler equation

P 0 D �
0 .P C �/ ; (3.84)

Equations (3.78) and (3.79) yield the generalized Tolman-Oppenheimer-Volkoff
equation

P 0 D � 1

1C �

.�C P/

r .r � 2mtot/

�
mtot C 4�r3P

F
� ˛

2
.r � 2mtot/

�
; (3.85)

m0tot D .1C �/�1
�
4�r2�

F
C ˛ C ˇ

2
� mtot

r
.˛ C ˇ � �/

�
: (3.86)

The system (3.84), (3.85), and (3.86) for the four functions�, 
 (ormtot),P , and � is
closed by prescribing an equation of state, for example of the barotropic form P D
P.�/. The authors of [78–80] choose the simple polytropic equation of state P D
k��0 (where �0, k, and the polytropic index � are constants).4 Thermodynamical
considerations allow the rest mass density �0 to be eliminated, casting the polytropic
equation of state in the form [78–80]

� D
�
P

k

�1=�
C P

� � 1
: (3.87)

The Darmois-Israel junction conditions at the surface of the star r D rout (defined
as the radius where P D � D 0) require the continuity of the metric and its normal
derivative, hence of �0 there. The unique exterior solution is the Schwarzschild-de
Sitter metric with a cosmological constant � D R0=4, where R0 is the constant
value of R, therefore in the exterior it must be

exp .�2
.r// D b exp .2�.r// D 1 � 2m

r
� R0r

2

12
; (3.88)

where b andm are integration constants to be determined. Equation (3.86) yields

mtot.r/ D mC r3

24
R0 (3.89)

4 A polytropic equation of state is inappropriate to model main sequence stars but is used for white
dwarfs and neutron stars.
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approaching the star surface from the interior, while approaching from the exterior
it must be

�0 .rout/ D 1

rout

r3outR0 � 12m

R0r
3
out � 12rout C 24m

: (3.90)

The continuity of �0.r/ across the star surface requires that F 0.rout/ D 0 for r !
r�out [78]; but then

m0tot.rout/ D 2F0R0r
2
out C �

r3outR0 � 8mtot
�
C 0

16F0
; (3.91)

where

C D dF

dP
.P C �/ : (3.92)

At the star surface the derivativem0tot is ill-behaved for a wide range of values of the
polytropic index � . If 1 < � < 3=2, then C 0 D dC =dPP 0 / dC =dP .P C �/

tends to zero at the surface. As a consequence, m0tot.rout / given by Eq. (3.91)
is finite and m0tot is continuous across the star surface. In the range of values
3=2 < � < 2 of the polytropic index, C 0 diverges as this surface is approached
when dF=dR.R0/; dR=dT .T0/ ¤ 0 (these conditions are satisfied by generic
forms of f .R/ [78–80]). In spite of the fact that mtot stays finite, the divergence
of m0tot implies the divergence of the Riemann tensor R���

� , the Ricci curvature
R, and the Kretschmann scalar R��˛ˇR��˛ˇ . The divergence occurs in all regimes
ranging from Newtonian to strong gravity. Now, it is expected that theoretical mod-

els of simple polytropic stars (with
3

2
< � < 2) can be built in any acceptable

theory of gravity, as in the Newtonian case.5

The reason for the occurrence of these singularities in Palatini f .R/ gravity has
been identified clearly in [78–80] and could be related to the non-dynamical nature
of the effective scalar field f 0.R/. Consider the second order field equations (3.44):
since R can be expressed in terms of the trace of the energy-momentum tensor T .m/

using the trace equation (3.48), the right hand side of Eq. (3.44) contains second
derivatives of T .m/ which, in turn, contain first and zero order derivatives of the
matter fields. Therefore, Eq. (3.44) can contain derivatives of the matter fields up to
third order. This situation is very different from that occurring in GR and in most
ETGs, in which the field equations contain at most first order derivatives of the
matter fields. As a consequence, the metric in GR is generated by an integral over the
matter distribution and discontinuities or singularities in the matter fields and their
derivatives do not translate into discontinuities or singularities of the metric [79]. In
Palatini f .R/ gravity we find instead an algebraic dependence of the metric on the
matter fields and a discontinuity in the matter fields or their derivatives translates in
a discontinuity of the metric and a curvature singularity.

5 A few unphysical exceptions are presented in [78] but, otherwise, the singular behavior is generic
in Palatini f .R/ gravity.
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It is not the polytropic description that causes the divergence: in fact, a perfect
fluid energy-momentum tensor arising from a kinetic theory includes the matter
fields (energy density and pressure) but not their derivatives, making the problem
less severe because the microscopic matter distribution is already smoothed out. The
problem will be more severe in matter distributions such as the scalar field whose
stress-energy tensor contains first order derivatives of the scalar (or possibly second
derivatives, if this field couples non-minimally to the curvature).

The root of the problem for Palatini f .R/ gravity is due to the fact that the
independent connection is actually an auxiliary field that appears to be without dy-
namics, as is clear from the fact that the trace equation (3.48) is not an evolution
equation for the effective scalar field � D f 0.R/ (it contains no derivatives) but,
rather, is an algebraic or transcendental equation. This effective scalar field is related
algebraically to derivatives of the matter fields and of the metric and, as a result, the
theory has a higher differential order in the matter than the metric.

Let us discuss now the difficulties that Palatini modified gravity encounters with
respect to the Standard Model of particle physics. A theory satisfying the Equiva-
lence Principle,6 but with a higher differential structure than its matter fields is likely
to exhibit unexpected phenomenology in local non-gravitational experiments, which
in turn causes the difficulties with the Standard Model. The algebraic dependence
of the connection on the derivatives of matter fields introduces strong couplings be-
tween matter and gravity and, therefore, self-interactions of the matter fields. If one
attempts to eliminate the connection completely in the action, then this action neces-
sarily includes higher order derivatives of the matter field (self-interactions) [1035].

The problems were first pointed out in [497] using Dirac particles as matter,
and re-discussed in [622] and [870] using a Higgs field. Both calculations were
performed in the Einstein frame of the scalar-tensor equivalent of Palatini f .R/
gravity, but were also repeated in the Jordan frame ([79], see also [1033] – we follow
these two references here). Assuming a scalar fieldH as a form of matter described
by the action

S .m/ D 1

2„
Z
d 4x

p�g
�
g��@�H@�H � m2H

„2 H
2

�
(3.93)

in units G D c D 1 and taking, as an example, f .R/ D R � �4=R [275, 1129]
the potential for the effective scalar field � D f 0.R/ is V.�/ D 2�2

p
� � 1. To

describe the physics in the local frame we must expand the action to second order
around vacuum. The vacuum of the Palatini action with (3.93) as the matter action
is given by H D 0, � D 4=3, and g�� ' ��� (with �2 � � acting as an effective
cosmological constant which can be ignored in the local frame). The point is that
the field � cannot be expanded perturbatively because it is related algebraically to
the matter fields. As a consequence, ı� ' T .m/=�2 ' m2Hı H

2=.„3�2/ at energies

6 The matter energy-momentum tensor is covariantly conserved with respect to the metric covariant
derivative, which implies the geodesic equation for freely falling particles [1167].
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lower than the mass mH (if H is a Higgs boson, it is mH � 102 � 103 GeV). The
second order expansion of the action for the H -field for energies much lower than
mH is

S .m/'
Z
d 4x

p�g
2„

�
g��@�.ıH/@�.ıH/� m2H

„2 ıH
2

��
1C m2HıH

2

�2„3 C m2H.@ıH/
2

�4„3
�
:

(3.94)

Using the estimate �2 ' � ' H 2
0 with the Hubble radius H�10 D 3000 Mpc and

ı H � mH, the order of magnitude of the corrections can be estimated. At energies
� 10�3 eV the first correction is of order

m2HıH
2

�2„3 �
�
H�10
�H

�2 �
mH

mPl

�2
� 1 ; (3.95)

where �H D „=mH � 2� 10�19 � 2� 10�16 cm is the Compton wavelength of the
Higgs boson andmPl D 1:2� 1019 GeV is the Planck mass. The second correction
is of order

m2H.@ıH/
2

�4„3 �
�
H�10
�XH

�2 �
mH

mPl

�2 �
H�10
L

�2
� 1 : (3.96)

Such large, non-perturbative, corrections in the physics of H -matter in the local
frame are bound to violate the constraints deriving from the high precision experi-
ments testing the Standard Model.

3.5 Equivalence between f .R/ and scalar-tensor gravity

Metric and Palatini f .R/ gravities are equivalent to scalar-tensor theories with the
derivative of the function f .R/ playing the role of the Brans-Dicke scalar, as has
been re-discovered several times [301, 587, 1072, 1144, 1160]. We illustrate this
equivalence beginning with the metric formalism.

3.5.1 Equivalence between scalar-tensor and metric f .R/ gravity

In metric f .R/ gravity, we introduce the scalar � � R; then the action

S D 1

2�

Z
d 4x

p�g f .R/C S .m/ (3.97)

is rewritten in the form [301, 587, 1072, 1144, 1160]

S D 1

2�

Z
d 4x

p�g Œ .�/R � V.�/	C S .m/ (3.98)
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when f 00.R/ ¤ 0, where

 D f 0.�/ ; V .�/ D �f 0.�/ � f .�/ : (3.99)

It is trivial to see that the action (3.98) coincides with (3.97) if � D R. Vice-versa,
let us vary the action (3.98) with respect to �, which leads to

R
d 

d�
� dV

d�
D .R � �/ f 00.R/ D 0 : (3.100)

Equation (3.100) implies that � D R when f 00.R/ ¤ 0. The action (3.98) has the
Brans-Dicke form

S D 1

2�

Z
d 4x

p�g
h
 R � !

2
r� r� � U. /

i
C S .m/ (3.101)

with Brans-Dicke field  , Brans-Dicke parameter ! D 0, and potential U. / D
V Œ�. /	. An ! D 0 Brans-Dicke theory was originally studied for the purpose of
obtaining a Yukawa correction to the Newtonian potential in the weak-field limit
[878] and called “O’Hanlon theory” or “massive dilaton gravity”. The variation of
the action (3.98) yields the field equations

G�� D �
 
T
.m/
�� � 1

2 
U. /g�� C 1

 

�r�r� � g��� 
�
; (3.102)

3� C 2U. / �  dU
d 

D � T .m/ : (3.103)

3.5.2 Equivalence between scalar-tensor and Palatini
f .R/ gravity

Palatini f .R/ gravity is also equivalent to a special Brans-Dicke theory with a scalar
field potential. The Palatini action

S D 1

2�

Z
d 4x

p�g f .R/C S .m/ (3.104)

is equivalent to

S D 1

2�

Z
d 4x

p�g 	f .�/C f 0.�/ .R � �/
C S .m/ : (3.105)

It is straightforward to see that the variation of this action with respect to � yields
� D R. We can now use the field � � f 0.�/ and the fact that the curvature R is the
(metric) Ricci curvature of the new metric h�� D f 0.R/ g�� conformally related
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to g�� , as already explained. Using now the well known transformation property of
the Ricci scalar under conformal rescalings [1065, 1139]

R D RC 3

2�
r˛�r˛� � 3

2
�� (3.106)

and discarding a boundary term, the action (3.105) can be presented in the form

S D 1

2�

Z
d 4x

p�g
�
�R C 3

2�
r˛�r˛� � V.�/

�
C S .m/ ; (3.107)

where

V.�/ D ��.�/� f Œ�.�/	 : (3.108)

This action is clearly that of a Brans-Dicke theory with Brans-Dicke parameter ! D
�3=2 and a potential. This theory has been studied occasionally in the literature
[46, 81, 354, 366, 373, 878, 879], but it turns out to be a pathological case [78–80,
452, 497, 622, 870].

3.6 Conformal transformations applied to extended gravity

We have already mentioned the Jordan and the Einstein frame on several occasions:
it is now time to look in detail at the conformal transformations providing differ-
ent representations of ETGs and a solution-generating technique. In the following
chapters we will apply the tool of conformal transformations to ETGs. The basic
properties of conformal transformations were introduced in Sect. 2.1; in this section
we present their application to Brans-Dicke gravity first, and then to more general
scalar-tensor and f .R/ theories.

3.6.1 Brans-Dicke gravity

In Brans-Dicke theory the choice of conformal factor [392]

˝ D p
G� (3.109)

in the conformal transformation g�� ! Qg�� D ˝2g�� brings the gravitational
sector of the Brans-Dicke action

SBD D
Z
d 4x

p�g
�
�R � !

�
g˛ˇr˛�rˇ� � V.�/

�
C S .m/ (3.110)
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into the Einstein frame form. Then the scalar field redefinition

Q�.�/ D
r
2! C 3

16�G
ln

�
�

�0

�
; (3.111)

with � > 0 and ! > �3=2 transforms the scalar field kinetic energy density into
canonical form. In terms of the variables

� Qg�� ; Q��, the Brans-Dicke action assumes
its Einstein frame form

SBD D
Z
d 4x

(
p� Qg

" QR
16�G

� 1

2
Qg˛ˇ Qr˛ Q� Qrˇ Q� � U � Q��

#
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r
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L .m/ Œ Qg	
)

; (3.112)

where Qr˛ is the covariant derivative operator of the rescaled metric Qg˛ˇ and

U
� Q�� D V

	
�
� Q��
 exp

 

�8
r

�G

2! C 3
Q�
!

D V.�/

.G�/2
(3.113)

is the Einstein frame potential. The restriction of the parameter range to ! > �3=2
is sometimes attributed to the need of guaranteeing that it is possible to perform
the conformal transformation. However, one could take the absolute value j2! C 3j
there, but in actual fact ! cannot cross the barrier �3=2: the ! D �3=2Brans-Dicke
theory is pathological. With a special potential, ! D �3=2 Brans-Dicke theory is
equivalent to Palatini f .R/ gravity.

The Jordan frame scalar has the dimensions of G�1, while the Einstein frame
scalar Q� has the dimensions of G�1=2 and is usually measured in Planck masses. In
the GR limit � !const., the Jordan and the Einstein frames coincide.

The inspection of the action (3.112) often leads people to state that, in the
Einstein frame, gravity is described by GR, but there are two important differences
between Einstein frame Brans-Dicke gravity and Einstein’s theory. First, the free
scalar Q� acting as a source of gravity on the right hand side of the field equations
is always present, i.e., in the Einstein frame solutions of the vacuum field equations
QR�� D 0 cannot be obtained as in vacuum GR because the scalar Q� pervades the

spacetime manifold and cannot be removed. This persistence is a reminder of the
cosmological origin of � � G�1eff in the original (Jordan frame) Brans-Dicke theory

[165]. The scalar Q� is always present even if, formally, the gravitational field is only
described by the metric tensor Qg˛ˇ in the Einstein frame. The conformal transforma-
tion shifts the Jordan frame gravitational variable � into Einstein frame matter7 Q�.

7 This property makes it clear that the distinction between gravitational and non-gravitational de-
grees of freedom depends on the conformal representation of a gravitational theory.
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The second difference between GR and Einstein frame Brans-Dicke theory
consists of the fact that the matter Lagrangian L .m/ is now multiplied by the ex-
ponential factor in Eq. (3.112). This factor is described as an anomalous coupling
of matter to the scalar Q� which has no counterpart in GR. It is because of this cou-
pling that the matter energy-momentum tensor QT .m/

˛ˇ
in the Einstein frame obeys

Eq. (2.12) instead of the GR conservation equation rˇ T
.m/

˛ˇ
D 0. The modified

conservation equation implies changes to the geodesic equation and to the equation
of geodesic deviation, and the violation of the Equivalence Principle in the Einstein
frame.

Under the conformal transformation (2.1), the matter energy-momentum tensor
T
.m/
�� scales as

QT ˛ˇ
.m/

D ˝s T
˛ˇ

.m/
; QT .m/

˛ˇ
D ˝sC4 T .m/

˛ˇ
; (3.114)

where s is an appropriate conformal weight. The conservation equation rˇ T
.m/

˛ˇ
D 0

transforms (in four spacetime dimensions) as [1139]

Qr˛
�
˝s T

˛ˇ

.m/



D ˝s r˛T ˛ˇ.m/ C .s C 6/˝s�1 T ˛ˇ

.m/
ra˝ �˝s�1g˛ˇ T .m/r˛˝ :

(3.115)

It is convenient to choose the conformal weight s D �6 which yields, consistently
with Eq. (2.15),

QT .m/ � Qg˛ˇ QT .m/
˛ˇ

D ˝�4 T .m/ ; (3.116)

and QT .m/ vanishes if and only if T .m/ D 0. Equation (3.115) assumes the form

Qr˛ QT ˛ˇ
.m/

D � QT .m/ Qg˛ˇ Qr˛ .ln˝/ : (3.117)

Since ˝ D p
G� it is

Qr˛ QT ˛ˇ
.m/

D � 1

2�
QT .m/ Qrˇ� (3.118)

or, in terms of the Einstein frame scalar [1133],

Qr˛ QT ˛ˇ
.m/

D �
r

4�G

2! C 3
QT .m/ Qrˇ Q� : (3.119)

The geodesic equation receives corrections as a consequence of eq. (3.119). Con-
sider a dust fluid with energy-momentum tensor

QT .m/
˛ˇ

D Q�.m/ Qu˛ Quˇ I (3.120)
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Equation (3.119) yields

Qu˛ Quˇ Qrˇ Q�.m/ C Q�.m/ Qu˛ Qrˇ Quˇ C Q�.m/ Qu� Qr� Qu˛ D
r

4�G

2! C 3
Q�.m/ Qr˛ Q� : (3.121)

Using an affine parameter � along the fluid worldlines with tangent Qu�, Eq. (3.121)
becomes

Qu˛
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C Q�.m/ Qr� Qu�
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2! C 3
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This equations splits into the two equations

d Q�.m/
d�

C Q�.m/ Qr� Qu� D 0 (3.123)

and

d Qu˛
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4�G

2! C 3
Qr˛ Q� : (3.124)

The geodesic equation is then modified in the Einstein frame as [312, 313, 1133]

d 2x�

d�2
C Q� ���

dx�

d�

dx�

d�
D
r

4�G

2! C 3
Qr� Q� : (3.125)

The correction on the right hand side is often described as a fifth force propor-
tional to the gradient Qr� Q� that couples universally to all massive test particles. The
Weak Equivalence Principle (universality of free fall) is violated by this fifth force
because of the spacetime dependence of Qr� Q�. Due to this coupling, scalar-tensor
theories in the Einstein frame appear to be non-metric theories. On the other hand,
it is well known that all metric theories of gravity satisfy the Weak Equivalence
Principle [1167], and the (non-)metricity becomes a statement on whether a theory
satisfies or not the WEP. Therefore, the metric character of ETGs, and whether they
satisfy or not the Equivalence Principle, become properties dependent on the con-
formal frame representation. This fact leaves the foundation of relativistic gravity
on a rather shaky ground, which is a problem especially when trying to isolate the
fundamental properties of classical gravity which should be preserved in approaches
to quantum or emergent gravity. We do not discuss this issue further and we refer
the reader to [1035] and the references therein.

As expected, the equation of null geodesics is left unaffected by the conformal
transformation: null geodesics receive no fifth force correction in the Einstein frame.
This invariance is consistent with the fact that the equation of null geodesics can be
derived from the Maxwell equations in the high frequency limit of the geometric
optics approximation, in conjunction with the fact that Maxwell’s equations are con-
formally invariant in a four-dimensional manifold. A more direct way of looking at
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conformal invariance for null geodesics is by noting that the electromagnetic field
stress-energy tensor has vanishing trace T D 0 and the corresponding conserva-
tion equation rˇ T˛ˇ D 0 is unaffected by the conformal rescaling g�� ! Qg�� D
˝2 g�� , together with the geodesic equation for a null dust described by Eq. (3.120)
when Qu� Qu� D 0.

A correction to the timelike geodesic equation similar to the one discovered in
Brans-Dicke theory appears in the low-energy limit of string theory [527, 1068], in
which the dilaton replaces the Brans-Dicke field and a similar coupling violates the
Equivalence Principle [312,313,364,1068]. The violation is kept small in order not
to violate the Solar System bounds [1167]. In the low-energy limit of string theory
the dilaton couples with different strengths to bodies of different nuclear compo-
sition which carry a dilatonic charge q, contrary to the Brans-Dicke field which
couples universally to all forms of non-conformal matter. The formal substitution of
the dilatonic charge q with the factor 2

p
�G= .2! C 3/ allows a parallel between

the two theories, but in string theory it may be possible to eliminate the coupling by
setting the dilatonic charge q to zero in certain cases, whereas the coupling of the
Einstein frame Brans-Dicke scalar cannot be eliminated.

3.6.2 Scalar-tensor theories

More general scalar-tensor theories are described by the Jordan frame action

SST D
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o
; (3.126)

where ˛m is the coupling constant of ordinary matter. The conformal factor is still
given by Eq. (3.109) while the Einstein frame scalar field is defined by the differen-
tial relation
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16�G
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�
: (3.127)

The Einstein frame scalar-tensor action is

SST D
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d 4x

p� Qg
" QR
16�G

� 1
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Qg˛ˇ Qr˛ Q� Qrˇ Q� � U
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(3.128)

with scalar field potential

U
� Q�� D V

	
�. Q�/


.G�/2
(3.129)
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and coupling

Q̨m
� Q�� D ˛m

.G�/2
: (3.130)

Again, Eq. (3.128) can be seen as the action for GR with a canonical scalar field
which has positive-definite kinetic energy density, but with the important difference
that the matter Lagrangian density is multiplied by the factor ˝�4 D .G�/�2,
which can be interpreted as a variation of the coupling constant ˛m with space and/or
time. Again, this matter- Q� coupling is responsible for the non-conservation of QT .m/��

as in Eq. (3.119), and for violating the Equivalence Principle.
The conformal transformation technique has been used as a tool for generat-

ing exact solutions of a scalar-tensor theory beginning from known solutions of
GR [100, 123, 574, 751, 1103–1108], and for deriving approximate solutions of the
linearized theory [88]. This solution-generating technique is most convenient for
solutions with vanishing potential: in fact, when a potential V.�/ is present, solu-
tions that correspond to a physically well motivated potential in one frame generate,
via the conformal mapping, solutions in the other frame which rarely correspond to
a physical potential. Consider, for example, Brans-Dicke theory with a mass term
V.�/ D m2�2=2 in the Jordan frame. The Einstein frame potential is

U D 1

2

�m
G


2
; (3.131)

i.e., a cosmological constant. A given functional form of V.�/ in the Jordan
frame corresponds to a very different form of U

� Q�� in the Einstein frame. Re-
versing the problem, which Jordan frame potential V.�/ produces a mass term
U
� Q�� D m2 Q�2=2 in the Einstein frame? Equations (3.111) and (3.129) yield the

answer
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with �1 is a constant. It would be difficult to motivate this potential from a known
theory of particle physics. As a conclusion, it is legitimate to use exact solutions
in the Einstein frame to generate solutions in the Jordan frame, but this procedure
usually produces solutions of limited physical interest.

InD > 2 spacetime dimensions, the scalar-tensor theory described by the action

S
.D/
ST D

Z
dDx

p�g
h
f .�/R � !.�/r˛�r˛� � V.�/C ˛mL .m/

i
; (3.133)

can be conformally transformed according to

g˛ˇ �! Qg˛ˇ D f .�/
2

D�2 g˛ˇ ; (3.134)
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and
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producing the new scalar field potential in the Einstein frame
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3.6.3 Mixed f .R//scalar-tensor gravity

The action of generalized scalar-tensor gravity
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(3.137)

is mapped into its Einstein frame form by a conformal transformation which was
rediscovered many times in particular realizations [97,346,550,764,984,1047,1072,
1144, 1160]. The conformal factor is
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and, together with the scalar field redefinition
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allows the action (3.137) to be rewritten in the Einstein frame form
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where [610, 764]
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This action describes a non-linear �-model with canonical gravity and two scalar
fields � and Q� which reduce to a single one if f

�
�; Q�� is linear in R. In this case

the Einstein frame action is
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in which � D �
� Q��.

3.6.4 The issue of the conformal frame

Some considerations are in order at this point. The conformal transformation from
the Jordan to the Einstein frame is a mathematical map which allows one to study
several aspects of scalar-tensor gravity, f .R/ gravity and, in general, any ETG.
However, having now available both the Jordan and the Einstein conformal frames
(and infinitely many other conformal frames could be defined by choosing the con-
formal factor˝ arbitrarily), one wonders whether the two frames are also physically
equivalent or only mathematically related. In other words, the problem is whether
the physical meaning of the theory is “preserved” or not by the use of conformal
transformations. One has now the metric g�� and its conformal cousin Qg�� and the
question has been posed of which one is the “physical metric”, i.e., the metric from
which curvature, geometry, and physical effects should be calculated and compared
with experiment [227]. The issue of “which frame is the physical one” has been
debated for a long time and it regularly resurfaces in the literature, with authors ar-
guing in favor of one frame against the other, and others supporting the view that the
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two frames are physically equivalent and that the issue is a pseudo-problem. Many
errors in the literature over the years, from advocates of both points of view, have
contributed to confusion.

The first to approach this issue seems to have been Fierz (see [558]) but the first
popular argument is due to Dicke, who presented it in the paper introducing the
conformal transformation for Brans-Dicke theory [392]. Dicke’s argument is that
physics must be invariant under a rescaling of units and the conformal transfor-
mation is merely a local rescaling: units are not changed rigidly over the entire
spacetime manifold, but by amounts which are different at different spacetime
points. In Dicke’s view, the two frames are equivalent provided that the units of
mass, length, and time, and quantities derived from them scale with appropriate
powers of the conformal factor in the Einstein frame [392].

With this view in mind, it is not difficult to see why many authors consider the
issue of which conformal frame is physical a pseudo-problem. In principle, it is
difficult to object to this argument, but there are two difficulties:

1. Even though Dicke’s argument is clear in principle, its application to practi-
cal situations is a different matter. The view that the two conformal frames are
merely different representations of the same theory, similar to different gauges
of a gauge theory, should be checked explicitly using the equations describing
the physics. “Physical equivalence” is a vague concept because one can consider
many different matter (or test) fields in curved spacetime and different types
of physics, or different physical aspects of a problem. When checking explic-
itly the physical equivalence between the two frames, one has to specify which
physical field, or physical process is considered and the equations describing it.
The equivalence could then be shown explicitly, but there is no proof that holds
for all of physics, for example for Klein-Gordon fields, spinors, for cosmology,
black holes, etc. While physical equivalence has been proved for various physi-
cal aspects, no proof comprehensive of all physical fields and different physical
applications exists.

2. Dicke’s argument is purely classical. In cosmology, black hole physics, and
ETGs quantum fields in curved space play a significant role and the equiva-
lence of conformal frames is not clear at all at the quantum level. Of course,
not much is known about this equivalence in quantum gravity due to the lack
of a definitive quantum gravity theory, but when the metric g�� is quantized
in full quantum gravity approaches, inequivalent quantum theories are found
[56, 421, 496, 558]. One can consider the semiclassical regime in which grav-
ity is classical and the matter fields are quantized: again, one would expect
the conformal frames to be inequivalent because the conformal transformation
can be seen as a Legendre transformation [769], similar to the Legendre trans-
formation of the classical mechanics of point particles which switches from
the canonical Lagrangian coordinates q to the variables fq; pg of the Hamil-
tonian formalism. Now, it is well known that Hamiltonians that are classically
equivalent become inequivalent when quantized, producing different energy
spectra and scattering amplitudes [207,368,543]. However, the conformal equiv-
alence between Jordan and Einstein frame seems to hold to some extent at
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the semiclassical level [496].8 Again, only a particular kind of physics has
been considered and one cannot make statements about all possible physical
situations.

Unfortunately, the scaling of units in the Einstein frame is often forgotten, pro-
ducing results that either do not make sense or are partially or totally incorrect, or
sometimes the error is inconsequential,9 reinforcing the opposite view that the two
frames are completely equivalent. While Dicke’s explanation is very appealing and
several claims supporting the view that the two frames are inequivalent turned out
to be incorrect because they simply neglected the scaling of units in the Einstein
frame, one should not forget that Dicke’s argument is not inclusive of all areas of
physics and it is better to check explicitly that the physics of a certain field does not
depend on the conformal representation and not make sweeping statements. Certain
points have been raised in the literature which either constitute a problem for Dicke’s
view, or, at least, indicate that this viewpoint cannot be applied blindly, including
the following.

� Massive test particles follow timelike geodesics in the Jordan frame, while they
deviate from geodesic motion in the Einstein frame due to a force proportional
to the gradient of the scalar field (equivalently, of the conformal factor or of the
varying mass unit [473]). Hence, the Weak Equivalence Principle is satisfied in
the Jordan frame but not in the Einstein frame due to the coupling of the scalar
field to ordinary matter, or to the variation of units. Since the Equivalence Prin-
ciple is the foundation of relativistic gravity, this aspect is important and there
are two ways to look at it. One can cherish the view that the two conformal
frames are equivalent also with respect to the Equivalence Principle, which im-
plies that the latter is formulated in a way that depends on the conformal frame
representation. Then, a representation-independent formulation must be sought
for [1035]; however, no progress has been made in this direction. Or, one could
view the violation of the Weak Equivalence Principle in the Einstein frame more
pragmatically by saying that “physical equivalence” of the two frames is a vague
term which must be defined precisely and this concept cannot be used blindly,
in fact the Equivalence Principle of standard textbooks holds only in one frame
but not in the other. This fact could be used as an argument against the physical
equivalence of the frames.

8 A common argument among particle physicists relies on the equivalence theorem of Lagrangian
field theory stating that the S-matrix is invariant under local (nonlinear) field redefinitions
[147, 311, 332, 406, 660, 703, 961]. Since the conformal transformation is, essentially, a field re-
definition, it would seem that quantum physics is invariant under change of the conformal frame.
However, the field theory in which the equivalence theorem is derived applies to gravity only in
the perturbative regime in which the fields deviate slightly from Minkowski space. In this regime,
tree level quantities can be calculated in any conformal frame with the same result, but in the
non-perturbative regime field theory and the equivalence theorem do not apply.
9 Dicke himself applied the conformal transformation and the scaling of units incorrectly [393] in
GR cosmology (see [268, 473]).
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� The Brans-Dicke-like scalar field easily violates all of the energy conditions in
the Jordan frame, but satisfies them in the Einstein frame. While this fact does
not eliminate singularities in one frame leaving them in the other [473] (i.e.,
the two frames are equivalent with respect to the presence of singularities), one
cannot say that the two frames are “equivalent” with respect to the energy con-
ditions. This difficulty arises because part of the matter sector of the theory, in
the Einstein frame, comes from the conformal factor; in other words, the con-
formal transformation mixes matter and geometric degrees of freedom, which is
the source of many interpretational problems [232, 1035]. Thus, even if the the-
ory turns out to be independent of the conformal representation, its interpretation
is not.

� There are studies of FLRW cosmology in which the universe accelerates in one
frame but not in the other. From the pragmatic point of view of an astronomer
attempting to fit observational data (for example, type Ia supernovae data to a
model of the present acceleration of the universe), the two frames certainly do
not appear to be “physically equivalent” [242, 245].

To approach correctly the problem of physical equivalence under conformal
transformations, one can compare physics in different conformal frames at the level
of the Lagrangian, of the field equations, and of their solutions. This comparison
may not always be easy but, in certain cases, it is extremely useful to discriminate
between frames. It has been adopted, for example, in [244], to compare cosmolog-
ical models in the Einstein and the Jordan frame. Specifically, it has been shown
that solutions of f .R/ and scalar-tensor gravity cannot be assumed to be physically
equivalent to those in the Einstein frame when matter fields are given by generalized
Equations of State (EoS). The situation is summarized in Table 3.1.

In these, and in other situations, one must specify precisely what “physical equiv-
alence” means. In certain situations physical equivalence is demonstrated simply by
taking into account the coupling of the Brans-Dicke-like scalar field to matter and
the varying units in the Einstein frame, but in other cases the physical equivalence
is not obvious and it does not seem to hold. At the very least, this equivalence, if it

Table 3.1 Three approaches (EoS, scalar-tensor and f .R/)) compared
at the level of Lagrangians, field equations, and their solutions. Math-
ematical equivalence of the three levels does not automatically imply
physical equivalence of the solutions.

EoS  ! LST  ! Lf .R/

l l l

Einstein eqs.  ! ST eqs.  ! f .R/ eqs.

l l l

E frame sol.  ! E frame sol.+�  ! J frame sol.
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is valid at all, must be defined in precise terms and discussed in ways that are far
from obvious. For this reason, it would be too simplistic to dismiss the issue of the
conformal frame entirely as a pseudo-problem that has been solved for all physical
situations of interest. It is fair to say that there have been surprises and non-trivial
difficulties have been uncovered.

3.7 The initial value problem

Another important problem is the initial value formulation. There are several criteria
for the viability of a theory of gravity, and one of them is certainly the property of
having a well-posed initial value problem in order to guarantee that the theory has
predictive power [1139]. The Cauchy problem of theories described by the action

S D
Z
d 4x

p�g
�
R

2�
C ˛R��R

�� C ˇR2 C �R����R
����

�
C S .m/ (3.147)

was studied in [840, 1072] and found to be well-posed (in four spacetime di-
mensions, the Gauss-Bonnet identity allows one to drop the Kretschmann scalar
R����R

���� from the action). Reference [704] discusses the initial value prob-
lem of metric and Palatini f .R/ gravity with a general (i.e., not restricted to the
quadratic form considered in [840,1072]) function f .R/ but droppingR��R�� and
R����R

���� . It is useful to begin with the Cauchy problem of scalar-tensor gravity,
which was studied in [962], and then to use the results and the equivalence of metric
and Palatini f .R/ gravity with an ! D 0;�3=2 Brans-Dicke theory.

Let us provide some terminology [1027]: the system of 3C1 equations of motion
of GR or ETGs is well-formulated if it can be recast as a system of only first order
equations in time and space in the scalar field variables. The goal is to write this
system in the full first order form

@tu CM iriu D S .u/ ; (3.148)

where u denotes the fundamental variables hij ; Kij , etc. of the usual 3C1Arnowitt-
Deser-Misner (ADM) splitting,M i is called the characteristic matrix of the system,
and S .u/ describes source terms and contains only the fundamental variables but
not their derivatives. The initial value formulation is then said to be well-posed
if the system of partial differential equations is symmetric hyperbolic (i.e., M i is
symmetric) and strongly hyperbolic (i.e., siM i has a real set of eigenvalues and
a complete set of eigenvectors for any one-form si , and obeys some boundedness
conditions).

For a physical theory to be viable, it must admit an appropriate initial value
formulation to guarantee its predictability [350]. This means that, starting from
suitably prescribed initial data, the subsequent dynamical evolution of the physical
system is completely and uniquely determined. In this case, the problem is said to
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be well-formulated. For example, in classical mechanics, given the initial positions
and velocities of the particles (or of the constituents) composing a physical system
with a finite number of degrees of freedom and knowing the interactions between
them, if the system evolves without external interferences the dynamical evolution
is determined. This is true also for field theories, for example, for the Maxwell field.
However, even if the initial value problem is well-formulated, the theory must pos-
sess additional properties in order to be viable. First, small changes of the initial
data must produce only small perturbations in the subsequent dynamics over rea-
sonably short time scales, in other words the evolution equations should exhibit a
continuous dependence on the initial data in order to be predictive. Second, for hy-
perbolic equations, changes in the initial data must preserve the causal structure of
the theory. If both these requirements are satisfied, the initial value problem of the
theory is also well-posed.

GR has been shown to admit a well-formulated and well-posed initial value
problem in vacuo and in the presence of “reasonable” forms of matter (perfect flu-
ids, minimally coupled scalar fields, etc.) but, for other relativistic field theories,
the initial value formulation must be studied carefully. One needs to satisfy con-
straints between the initial data and perform wise gauge choices in order to cast
the field equations in a form suitable to correctly formulate the Cauchy problem.
The consequence of well-posedness is that GR is a “stable” theory with a robust
causal structure in which singularities can be classified (for a detailed discussion
see [1065, 1139]).

Here we focus on whether the initial value problem of ETGs (including scalar-
tensor and f .R/ theories in both the metric and metric-affine formulation) is well-
formulated. It is not a priori obvious that standard GR methods are suitable for
the discussion of the Cauchy problem in every ETG and it is doubtful that the full
Cauchy problem can be properly addressed using only the results available in the
literature for the fourth order theories described by a quadratic Lagrangian [402,
1072]. f .R/ gravity, like GR, is a gauge theory with constrained dynamics and
establishing results on the initial value formulation relies on solving the constraints
on the initial data and on finding suitable gauges, coordinate choices in which the
Cauchy problem can be demonstrated to well-formulated and, possibly, well-posed.
In [840, 1072] the initial value problem is studied for quadratic Lagrangians in the
metric approach with the conclusion that it is well-posed. The Cauchy problem for
generic f .R/ models is studied below in the metric and Palatini approaches with
the result that the problem is well-formulated for the metric theory in the presence
of “reasonable” matter and well-posed in vacuo.

It is shown below that the Cauchy problem of metric-affine f .R/ gravity is well-
formulated and well-posed in vacuo, while it can be at least well-formulated for
various forms of matter including perfect fluids, Klein-Gordon, and Yang-Mills
fields. We use the 3 C 1 ADM formulation and the Gaussian normal coordinates
approach, both of which prove useful in the discussion of whether the Cauchy prob-
lem is well-formulated. Of course, in order to prove the complete viability of a
theory, also well-posedness has to be demonstrated.
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3.7.1 The Cauchy problem of scalar-tensor gravity

Early work on the initial value problem of scalar-tensor gravity includes [329, 840,
1072]. Noakes [840] proved well-posedness of the Cauchy problem for a non-
minimally coupled scalar field � with vacuum action

SNMC D
Z
d 4x

p�g
��

1

2�
� 
�2

�
R � 1

2
r��r�� � V.�/

�
: (3.149)

Cocke and Cohen [329] used Gaussian normal coordinates to study the Cauchy
problem of Brans-Dicke theory without potential V.�/. A systematic approach to
the Cauchy problem of scalar-tensor theories of the form

S D
Z
d 4x

p�g
�
f .�/R

2�
� 1

2
r˛�r˛� � V.�/

�
C S .m/ (3.150)

independent of particular coordinate choices was proposed by Salgado [962],
obtaining the result that the Cauchy problem is well-posed in vacuo and well-
formulated otherwise. Slightly more general scalar-tensor theories of the form
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�
f .�/R
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2
r��r�� � V.�/

�
C S .m/ ; (3.151)

containing the additional coupling function !.�/ were studied in [704].
In the notation of [962], and setting � D 1 in this section, the field equations are

G�� D 1
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f 00

�r��r�� � g��r˛�r˛�
�C f 0

�r�r�� � g����
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; (3.152)

!�� C f 0

2
R � V 0.�/C !0

2
r˛�r˛� D 0 ; (3.153)

where a prime denotes differentiation with respect to �. Equation (3.152) is in the
form of an effective Einstein equation [962]

G�� D T .eff /
�� D 1

f .�/

�
T .f /�� C T .
/�� C T .m/��



; (3.154)

where

T .f /�� D f 00.�/
�r��r�� � g��r˛�r˛�

�C f 0.�/
�r�r�� � g����

�
;

(3.155)
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and

T .
/�� D !.�/
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r� �r�� � 1

2
g��r˛� r˛�

�
� V.�/g�� (3.156)

has canonical structure. The trace of Eq. (3.154) yields

�� D
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(3.157)

One then proceeds in the usual 3 C 1 ADM formulation of the theory in terms of
lapse, shift, extrinsic curvature, and gradient of � [932, 962, 1139]. It is assumed
that a time function t is defined so that the spacetime

�
M;g�� ; �

�
is foliated by a

family of hypersurfaces ˙t of constant t with unit timelike normal n�. The three-
dimensional metric is h�� � g��Cn�n� , h�� is the projection operator on˙t , and
n� and h�

� satisfy

n�n� D �1 ; h��n
� D h��n

� D 0 ; h�
�h�� D h�� : (3.158)

The metric decomposition in terms of lapse function N and shift vectorN� is

ds2 D � �N 2 �N iNi
�
dt2 � 2Nidtdx

i C hijdx
idxj ; (3.159)

where i; j; k are spatial indices assuming the values 1; 2, and 3, N > 0, n� D
�Nr�t , and

N� D �h�� t� ; (3.160)

and where the time flow vector t� obeys

t�r�t D 1 ; (3.161)

t� D �N� CNn� : (3.162)

As a consequence, N D �n�t� and N�n� D 0. The extrinsic curvature of the
hypersurfaces˙t is

K�� D �h��h��r�n� (3.163)

and the three-dimensional covariant derivative of h�� on ˙t is given by

D
.3/
i T �1:::

�1::: D h�1
�1
: : : h�1

�1
: : : hf ir.3/

f
T �1:::

�1::: (3.164)

for any three-tensor .3/T �1:::
�1::: , with Dih�� D 0. The spatial gradient of the

scalar field is
Q� � D�� ; (3.165)



94 3 The landscape beyond Einstein gravity

its momentum is

˘ D Ln� D n�r�� (3.166)

and

Kij D �rinj D � 1
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�
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˘ D 1

N
.@t� CN ˛Q˛/ ; (3.168)

while
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l D Di .N˘/ : (3.169)

The ADM decomposition of the effective energy-momentum tensor T .eff /
�� is then
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where

S�� � h�
�h�

�T
.eff /
�� D 1

f

�
S
.f /
�� C S

.
/
�� C S

.m/
��



; (3.171)

J� � �h��T .eff /
�� n� D 1

f

�
J
.f /
� C J

.
/
� C J

.m/
�



; (3.172)

E � n�n�T
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�
; (3.173)

and T .eff / D S � E , where T .eff / � T .eff /�
� and S � S��. Using the Gauss-

Codazzi equations [1139], the effective Einstein equations projected tangentially
and orthogonally to ˙t yield the Hamiltonian constraint [962, 1139]

.3/RCK2 �KijK ij D 2E ; (3.174)

the momentum constraint
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and the dynamical equations
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whereK � K i
i . The trace of Eq. (3.176) leads to

@tK CN l@lK C.3/ �N �NKijK
ij D N

2
.S C E/ ; (3.177)
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where .3/� � DiDi . The second order derivatives of � are in principle troublesome
because they could make the initial value problem ill-formulated, but they can be
eliminated in most cases [962]. The f - and �-quantities of Eqs. (3.171)–(3.173)
turn out to be

E.f / D f 0 .D˛Q˛ CK˘/C f 00Q2 ; (3.178)

J .f /� D �f 0 �K�
�Q� CD�˘

� � f 00˘Q� ; (3.179)
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(3.180)

whereQ2 � Q˛Q˛. The quantities
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are also useful [962], and the introduction of ! and !0 yields the further quantities
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Finally, the quantities appearing on the right hand sides of the 3C 1 field equations
are
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while
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The Hamiltonian and the momentum constraints assume the form
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respectively, and the dynamical equation (3.176) is written as
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The trace of this equation is
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where [962]
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The initial data in vacuo .hij ; Kij ; �;Qi ; ˘/ on an initial hypersurface ˙0 must
satisfy the constraints (3.194) and (3.195), in addition to

Qi �Di� D 0 ; (3.199)

DiQj D DjQi : (3.200)

When matter is present, the additional variablesE.m/, J .m/� , S .m/�� must be assigned
on the initial hypersurface. Prescribing lapse N and shift N� is equivalent to fixing
a gauge.10 The differential system (3.194)–(3.197) contains only first-order deriva-
tives in both space and time once the d’Alembertian �� is written in terms of
�;r��r��, f , and its derivatives by means of Eq. (3.198) [704, 962]. Follow-
ing [962], the reduction to a first-order system indicates that the Cauchy problem is
well-posed in vacuo and well-formulated in the presence of matter.

3.7.2 The initial value problem of f .R/ gravity in the ADM
formulation

In the notations of this section (cf. [962]), Brans-Dicke theory corresponds to
!.�/ D !0=�, where !0 is the constant Brans-Dicke parameter, f .�/ D �, and
V ! 2V . The Hamiltonian and momentum constraints are then
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10 Various gauge conditions employed in the literature are surveyed in [962].
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The dynamical equations read
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where
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Remembering the results of the previous subsection for scalar-tensor gravity, metric
f .R/ gravity theories equivalent to !0 D 0 Brans-Dicke gravities have a well-
formulated Cauchy problem in general, which is also well-posed in vacuo. Palatini
f .R/ theories, which are equivalent to Brans-Dicke gravities with !0 D �3=2
are different. For !0 D �3=2, the d’Alembertian �� disappears from Eq. (3.205)
and the field � is not dynamical – it can be assigned arbitrarily subject only to the
constraint that its gradient satisfies the degenerate equation (3.205). Unless �� D 0,
in which case the argument does not apply, it is impossible to eliminate �� from the
system (3.201)–(3.204) in Palatini f .R/ gravity. The condition �� D 0 includes
some important cases [255, 444]: first, the possibility that � D constant reduces
the theory to GR, which has a well-posed initial value problem. Second, Palatini
f .R/ gravity in vacuo reduces to GR with a cosmological constant (which is known
to have a well-posed Cauchy problem), the Ricci curvature is constant, and ��
vanishes identically [255–257, 444, 1033]. The argument can be extended to any
situation in which the stress-energy tensor of matter has a constant trace T .m/ [444],
although this occurrence does not seem to be very physical apart from vacuum, the
cosmological constant, and conformal matter which has T .m/ D 0. When T .m/ ¤ 0,
it seems virtually impossible to eliminate time derivatives and all second derivatives
from the 3 C 1 field equations and no theorem is known about the well-posedness
of the Cauchy problem in this case.

3.7.3 The Gaussian normal coordinates approach

A different approach to the initial value problem uses Gaussian normal coordinates
(also called synchronous coordinates) instead of the ADM decomposition. Before
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discussing ETGs, we recall the initial value formulation of GR in these coordinates,
which is well-formulated and well-posed, as shown in [1139]. We adopt the formal-
ism developed in [1065].

3.7.3.1 The Cauchy problem of GR

Let us consider a system of Gaussian normal coordinates [1139], in which the metric
tensor has components g00 D �1 and g0i D 0. These coordinates serve the purpose
of splitting the spacetime manifold M into a spatial hypersurface ˙3 of constant
time from the orthogonal time direction.

Given a second rank symmetric tensorW�� on the globally hyperbolic spacetime�
M;g��

�
, we define its (symmetric) conjugate tensor

W ��� D W�� � W

2
g�� ; (3.206)

where j denotes the covariant derivative with respect to the Levi-Civita connection
induced by g�� andW � W ��g�� is the trace ofW�� . If V0 is a spacetime domain
in M in which g00 6D 0 and ˙3 is the three-surface of equation x0 D 0, then the
following statements are equivalent:

1. W�� D 0 in V0;
2. W �ij D 0 andW0˛ D 0 in V0;
3. W �ij D 0 andW �

�j� D 0 in V0 with Wo� D 0 in ˙3.

Let us consider the Einstein equations G�� D �T .m/�� and the contracted Bianchi

identities r�T
.m/
�� D 0; introducing the tensor

W�� � G�� � � T .m/�� ; (3.207)

the conjugate tensor is

W ��� D R�� � � T ��� ; (3.208)

and the Einstein equations are
W�� D 0 : (3.209)

These are 10 equations for the 20 unknown functions g�� and T .m/�� . We assign the

10 functions g0� and T .m/ij ; the remaining 10 functions gij and T .m/0� are determined
by Eq. (3.209). These functions can be expressed in the equivalent form

Rij � � T �ij D 0 ; W
�

�j� D T
�

�j� D 0 ; (3.210)

with the condition

G0� � � T .m/0� D 0 (3.211)
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on the hypersurface x0 D 0. Eqs. (3.210) can be rewritten as

gij;00 D 2 NRij � A

2
gij;0 C glmgi l;0gjm;0 C 2� T �ij ; (3.212)

T
.m/
0�;0 D �T .m/0�;0 D T .m/

i

�;i C � i
i� T

.m/�

� � �
�

i� T .m/
i

� ; (3.213)

where NRij is the intrinsic Ricci tensor of the hypersurface x0 D 0, � �
�� is the

Levi-Civita connection of the metric g�� , and

A � gijgij;0 : (3.214)

In the same way, the constraint equation (3.211) becomes

A;i �Djgij;0 C 2� T
.m/
0i D 0 ; (3.215)

QR � A2

4
C B

4
C 2� T00 D 0 ; (3.216)

where NR is the intrinsic Ricci scalar of the hypersurface x0 D 0, Di denotes the
covariant derivative operator on this hypersurface associated with the Levi-Civita
connection of the intrinsic metric gij j˙0

and

B D gijglmgi l;0gim;0 : (3.217)

Let us assign now the Cauchy data

gij ; gij;0; T
.m/
�0 (3.218)

on the hypersurface x0 D 0; they must satisfy the constraint equations (3.215),
(3.216), (3.212), and Eq. (3.213) gives the quantities

gij;00; T
.m/
0�;0 ; (3.219)

as functions of the Cauchy data. By differentiating Eqs. (3.212) and (3.213), it is
straightforward to obtain time derivatives of higher order as functions of the ini-
tial data. This procedure allows one to locally reconstruct the solution of the field
equations as a power series of x0. The initial three-surface ˙3 is then a Cauchy
hypersurface for the globally hyperbolic spacetime

�
M;g��

�
and the initial value

problem is well-formulated in GR. Our goal is now to extend these results to f .R/
gravity in the metric-affine formalism.
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3.7.3.2 The Cauchy problem of vacuum f .R/ gravity
in the metric-affine formalism

In the metric-affine formulation of f .R/ gravity the independent variables are�
g�� ; �

˛
��

�
, where g�� is the metric and � ˛�� is the linear connection. In vacuo,

the field equations are obtained by varying the action

S Œg; � 	 D
Z
d 4x

p�g f .R/ (3.220)

with respect to the metric and the connection, where R .g; � / D g��R�� is the
scalar curvature of the connection � ˛�� and R�� is the Ricci tensor constructed with
this connection. The metric connection � ˛�� can have a non-vanishing torsion while,
in the Palatini approach, � ˛�� is a non-metric but torsion-free connection [220].

In vacuo, the field equations of f .R/ gravity with torsion are [220–222]

f 0.R/R�� � f.R/
2
g�� D 0 ; (3.221)

T �
�� D � 1

2f 0

@f 0

@x�

�
ı
�
�ı
�
� � ı��ı��

�
; (3.222)

while the field equations of f .R/ gravity à la Palatini are [767,768,868,1030,1034]

f 0.R/R�� � f.R/
2
g�� D 0 ; (3.223)

r�
	
f 0.R/g��


 D 0 : (3.224)

In both cases, the trace of the field equations (3.221) and (3.223) yields

f 0.R/R � 2f .R/ D 0 : (3.225)

When this equation admits solutions, the scalar curvature R is a constant; then
Eqs. (3.222) and (3.224) imply that both connections coincide with the Levi-Civita
connection of the metric g�� which solves the field equations and both theories
reduce to GR with a cosmological constant, for which the Cauchy problem is well-
formulated and well-posed [1139].

3.7.3.3 The Cauchy problem in the metric-affine formalism with matter

Let us allow now a perfect fluid and study the Cauchy problem of f .R/ gravity.
We discuss simultaneously the Palatini approach and a non-vanishing torsion, but
we assume that the matter Lagrangian does not couple explicitly to the connection.
Then the field equations are
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f 0.R/R�� � f.R/
2
g�� D T

.m/
�� ; (3.226)

T ˛
�� D � 1

2f 0.R/
@f 0.R/
@x�

�
ı
�
�ı
˛
� � ı��ı˛�

�
(3.227)

in the case of f .R/ gravity with torsion, and

f 0.R/R�� � f.R/
2
g�� D T

.m/
�� ; (3.228)

r˛
	
f 0.R/g��


 D 0 ; (3.229)

for Palatini f .R/ gravity, where T .m/�� � � 2p�g
ı
�p�gL .m/

�

ıg��
is the matter

energy-momentum tensor. The trace of Eqs. (3.226) and (3.228) yields the relation
between R and T .m/ � g��T

.m/
��

f 0.R/R � 2f .R/ D T .m/ : (3.230)

When T .m/ D const. the theory reduces to GR with a cosmological constant and
the initial value problem is identical to the vacuum case. Assuming that the rela-
tion (3.230) is invertible and T .m/ ¤ const., the Ricci scalar can be expressed as a
function of T .m/

R D F
�
T .m/



: (3.231)

It is then easy to show that the field equations of both the Palatini and the metric-
affine theory with torsion can be expressed in the form [220, 221, 868]

R�� � 1

2
g�� R D 1

'
T .m/�� C 1

'2

�
�3
2

@'

@x�
@'

@x�
C ' Qr� @'

@x�

C 3

4

@'

@x˛
@'

@xˇ
g˛ˇg��

� ' Qr˛ @'

@x˛
g�� � V .'/ g��

�
; (3.232)

where

V .'/ � 1

4

h
'F�1

��
f 0
��1

.'/



C '2
�
f 0
��1

.'/
i
; (3.233)

is an effective potential for the scalar field

' � f 0
�
F
�
T .m/




: (3.234)
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By performing the conformal transformation g�� �! Qg�� D ' g�� , Eq. (3.232)
assumes the simpler form [220, 534, 868]

QR�� � 1

2
Qg�� QR D 1

'
T .m/�� � 1

'3
V .'/ Qg�� ; (3.235)

where QR�� and QR are the Ricci tensor and the Ricci scalar of the conformal metric
Qg�� , respectively.

The connection ���˛, solution of the field equations with torsion, is

� ˛
�� D Q� ˛

�� C 1

2'

@'

@x�
ı˛� � 1

2'

@'

@x�
g�˛g�� ; (3.236)

where Q� ˛
�� is the Levi-Civita connection of the metric g�� while Q� ˛�� , solution of

the Palatini field equations, coincides with the Levi-Civita connection of the confor-
mal metric Qg�� . ���˛ and Q� ˛�� satisfy the relation

Q� ˛
�� D � ˛

�� C 1

2'

@'

@x�
ı˛� (3.237)

and the Levi-Civita connections induced by the metrics g�� and Qg�� are related by
the identity

Q� ˛
�� D � ˛

�� C 1

2'

@'

@x�
ı˛� � 1

2'

@'

@x�
g�˛g�� C 1

2'

@'

@x�
ı˛� : (3.238)

The field equations (3.232) have to be considered together with the matter field
equations and it must be kept in mind that the conservation equations for both the
metric-affine theories (with torsion and à la Palatini) coincide with the standard
conservation laws of GR [257]

Qr�T �� D 0 : (3.239)

It is straightforward to show that Eq. (3.239) is equivalent to the conservation law

Qr�T �� D 0 (3.240)

where

T�� D 1

'
T .m/�� � 1

'3
V .'/ Qg�� ; (3.241)

for the conformally transformed theories (3.235). In fact, by an explicit calculation
of the divergence Qr�T �� where the relations (3.238) have been used, we obtain



104 3 The landscape beyond Einstein gravity

Qr�T�� D 1

'2
Qr�T .m/�� C 1

'3
@'

@x�

"

�T
.m/

2
C 3V.'/

'
� V 0.'/

#

: (3.242)

The constraint equations (3.239) and (3.240) are then mathematically equivalent in
view of the relation

T .m/ � 6V.'/

'
C 2V 0.'/ D 0 ; (3.243)

which is equivalent to the definition ' D f 0.F.T .m/// [220].
With these results in mind, the Cauchy problem for Eq. (3.232) and the related

equations of motion for matter can be approached by discussing the equivalent initial
value problem of the conformally transformed theories. Using, as in GR, Gaussian
normal coordinates and beginning with Eqs. (3.235) and (3.240), it is easy to con-
clude that the Cauchy problem is well-formulated also in this case.

In general, the equations of motion for matter imply the Levi-Civita connec-
tion of the metric g�� and not the connection induced from the conformal metric
Qg�� . Thanks to Eq. (3.238), this is not a problem since the connection Q� ˛�� can be
expressed in terms of ���˛ and the scalar field ' which, on the other hand, is a
function of the matter fields. As a result, we could obtain slightly more complicated
equations implying further constraints on the initial data but, in any case, the same
equations can always be rewritten in “normal form” with respect to the maximal
order time derivatives of the matter fields, determining a well-formulated Cauchy
problem [1139].

As an example, let us examine in detail the perfect fluid case with barotropic
equation of state P D P.�/. The corresponding energy-momentum tensor is

T .m/�� D .P C �/ u�u� C Pg�� ; (3.244)

and satisfies Eq. (3.239) with the normalization

g��u�u� D �1 ; (3.245)

of the fluid four-velocity. Equation (3.239) gives

.�C P u�/j� u� C .�C P/ u�j�u� C @P

@x�
D 0 : (3.246)

Contraction with u˛ yields

.�u�/j� D �P u�j� (3.247)

while, substituting Eq. (3.247) into Eq. (3.246) for ˛ D 1; 2, and 3, we obtain

.�C P/ u�uij� D � @P

@x�

�
uiu� C gi�

�
: (3.248)
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Equations (3.245), (3.247), and (3.248) involve the metric g�� and its first deriva-
tives; using the relation (3.238) we can rewrite them in terms of the conformal metric
Qg�� , the scalar ' D '.�/, and their first derivatives, obtaining

1

'
Qguu�u� D �1 ; (3.249)

@

@x�
.�V �/C Q� �

�� � u� � 2

'

@'

@x�
�u�

D �P
�
@u�

@x�
C Q� �

�� u� � 2

'

@'

@x�
u�
�
; (3.250)

.�C P/ u�
�
@ui

@x�
C Q� i

�� u� C 1

2'

�
� @'

@x�
ıi� C @'

@x�
ıi� � @'

@x�
g�ig��

�
u�
�

D � @P

@x�

�
uiu� C gi�

�
: (3.251)

In Gaussian normal coordinates in which Qg00 D �1 (assuming ' > 0) and
Qg0i D 0, Eq. (3.249) yields the expression of u0 in terms of the remaining com-
ponents ui . Eqs. (3.249) and (3.250) can be regarded as linear equations for the
functions @ui=@x0 and @�=@x0. The explicit solution of these equations, in terms
of the unknown functions, could originate further constraints on the initial data and
on the form of the function f .R/. In Gaussian normal coordinates, Eqs. (3.249)
and (3.250) allow one to obtain @ui=@x0 and @�=@x0 as functions of the initial data
Qgij , @ Qgij =@x0, ui , and � allowing the equations of motion of matter to be cast in
normal form, hence the Cauchy problem is well-formulated.

Consider, as another example, the initial value formulation of f .R/ gravity cou-
pled with Yang-Mills fields, in particular with the electromagnetic field. Also in this
case, the problem is well-formulated. In fact, the stress-energy tensor of a Yang-
Mills field has vanishing trace. Using Eq. (3.230), it is easy to prove that the Ricci
scalar is constant and then, using Eqs. (3.227) and (3.229) one concludes that the
connection coincides with the Levi-Civita connection of g�� . In this situation, both
theories (à la Palatini and with torsion) reduce to GR with a cosmological constant
and the Cauchy problem is well-formulated (this conclusions was already reached
for the Maxwell field). Moreover, the initial value problem is well-posed for any
theory in which the trace of the matter energy-momentum tensor is constant, which
is reduced to Einstein gravity with a cosmological constant. The Cauchy problem
for perfect fluid and scalar field sources is discussed in [256, 257].

To conclude, we have shown that the initial value problem for ETGs can be at
least well-formulated, passing another test for the viability of these theories. Well-
posedness is also necessary in order to achieve a complete control of the dynamics
but it depends on the specific matter fields adopted and the discussion becomes
specific to them.
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Since ETGs, like GR, are gauge theories, the choice of suitable coordinates may
be crucial to show that the Cauchy problem is formulated correctly. We have dis-
cussed the two approaches using the 3 C 1 ADM decomposition and Gaussian
normal coordinates, which can be defined when the covariant derivative operator
r� arises from a metric. These coordinates are useful for calculations on a given
non-null surface ˙3, i.e., a three-dimensional embedded submanifold of the four-
dimensional manifoldM . Gaussian normal coordinates allow one to define uniquely
timelike geodesics orthogonal to ˙3 and to formulate correctly the conditions for
the validity of the Cauchy-Kowalewski theorem [1139].

In the metric-affine formalism a given f .R/ theory in vacuo is equivalent to GR
plus a cosmological constant, hence the initial value problem is well-formulated
and well-posed. The same conclusion holds with matter sources whenever the trace
of the energy-momentum tensor is constant. As shown in [220–222], by introduc-
ing matter fields in the Palatini and in the metric-affine approach with torsion, one
can define R D F

�
T .m/

�
and then the scalar field ' � f 0

�
F
�
T .m/

��
, which

allows one to reduce the theory to scalar-tensor gravity and to relate the form of
f .R/ to the trace of the matter energy-momentum tensor. In this case, it is always
possible to show that the initial value problem is well-formulated avoiding the sin-
gularities which could emerge with different gauge choices [704]. Moreover, matter
fields could induce further constraints on the Cauchy hypersurface x0 D 0 which,
if suitably defined, lead to the normal form of the equations of motion for the mat-
ter sources. This is one of the main requirements for a well-formulated initial value
problem. However different sources of the gravitational field, such as perfect fluids,
Yang-Mills, and Klein-Gordon fields, could generate different constraints on the ini-
tial hypersurface˙3. These constraints could also imply restrictions on the possible
form of f .R/. In conclusion, as in GR, the choice of gauge is essential for a correct
formulation of the initial value problem, while the source fields have to be discussed
carefully.

3.8 Conclusions

Through the Lagrangian formulation, we have obtained the field equations of vari-
ous theories of gravity. We have seen how the metric and Palatini variations produce
different field equations in ETGs, contrary to what happens in GR. Conformal trans-
formations have been applied to ETGs, and an overview of the Cauchy problem has
been given. It is beginning to be clear that several aspects of a gravitational theory
need to be taken into account before the latter can be claimed to be viable. Other
aspects of ETGs and other criteria for their viability are examined in the following
chapters.



Chapter 4
Spherical symmetry

Like a great poet, Nature knows how to produce the greatest
effects with the most limited means.
– Heinrich Heine

In all areas of physics and mathematics it is common to search for insight into a
theory by finding exact solutions of its fundamental equations and by studying these
solutions in detail. This goal is particularly difficult in non-linear theories and the
usual approach consists of assuming particular symmetries and searching for solu-
tions with these symmetries. Stripped of inessential features and simplified in this
way, the search for exact solutions becomes easier. In a sense, this approach be-
trays a reductionist point of view but, pragmatically, it is often crucial to gain an
understanding of the theory that cannot be obtained otherwise and that no physi-
cist or mathematician would want to renounce to. In this chapter we discuss exact
solutions of ETGs with spherical symmetry. In addition to gaining insight into the
theory, spherically symmetric solutions are particularly important in astrophysics as
models for stars and compact objects, including black holes, which are important
theoretical laboratories for theories of quantum gravity. The next section discusses
spherical symmetry in GR and in metric f .R/ gravity and presents static spherically
symmetric solutions and a Noether symmetry approach. Then, the more difficult is-
sue of non-static and non-asymptotically flat solutions is discussed. The second part
of the chapter is devoted to the study of spherically symmetric solutions in general
scalar-tensor theories and of the Jebsen-Birkhoff theorem. The chapter ends with a
discussion of black holes in ETGs and of a map from spherical to axially symmetric
solutions. An example is given. A spherically symmetric solution in Palatini f .R/
gravity has already been given in Sect. 3.4.2.

4.1 Spherically symmetric solutions of GR and metric
f .R/ gravity

The physically relevant spherically symmetric solutions of GR include the asymp-
totically flat Schwarzschild solution describing an isolated body, which was derived
in the very early days of GR. Other relevant solutions include the Schwarzschild-de

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics 170,
DOI 10.1007/978-94-007-0165-6 4, c� Springer Science+Business Media B.V. 2011
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Sitter (or Kottler) metric representing a black hole embedded in a de Sitter universe,
and the Lemaitre-Tolman-Bondi class of solutions describing spherical objects em-
bedded in a dust-dominated cosmological background [160, 716, 1053, 1076], to
which one should add the McVittie metric and its generalizations [789] (see [695]
for a survey of inhomogeneous solutions including spherically symmetric ones, and
[1053] for exact solutions of GR). Spherical solutions representing black holes have
been instrumental in the development of black hole mechanics and thermodynamics
[1139, 1142].

4.1.1 Spherical symmetry

The classical tests of GR pertain to the realm of spherically symmetric solutions and
the weak-field limit [1167]. One of the fundamental properties of a gravitational the-
ory is the possibility of asymptotic flatness, i.e., spacetime being Minkowskian far
away from a localized distribution of mass-energy. Alternative gravitational theories
may or may not exhibit this physical property which allows for a consistent compar-
ison with GR. This point is sometimes forgotten in the study of the weak-field limit
of alternative theories of gravity and can be discussed in general by considering the
meaning of spherical solutions in ETGs when the standard results of GR are recov-
ered in the limits r ! 1 and f .R/ ! R. Spherical solutions can be classified
using the Ricci curvatureR as

� solutions with R D 0,
� solutions with constant Ricci scalar R D R0 ¤ 0,
� solutions with Ricci scalar R.r/ depending only on the radial coordinate r , and
� solutions with time-dependentR.t; r/.

In the first three cases the Jebsen-Birkhoff theorem is valid, meaning that sta-
tionary spherically symmetric solutions are necessarily static. However, as shown
in the following, this theorem does not hold for every situation in f .R/ gravity be-
cause temporal evolution can emerge already in perturbation theory at some order
of approximation.

A crucial role for the existence of exact spherical solutions is played by the
relation between the metric potentials and by the relations between the latter and
the Ricci scalar. The relation between the metric potentials and R can be re-
garded as a constraint which assumes the form of a Bernoulli equation [249]. In
principle, spherically symmetric solutions can be obtained for any analytic func-
tion f .R/ by solving this Bernoulli equation, for both the case of constant Ricci
scalar and R D R.r/. These spherically symmetric solutions can be used as back-
grounds to test how generic f .R/ gravity may deviate from GR. Theories that imply
f .R/ ! R in the weak-field limit are particularly interesting. In such cases, the
comparison with GR is straightforward and the experimental results evading the GR
constraints can be framed in a self-consistent picture [131]. Finally, a perturbation
approach can be developed to obtain spherical solutions at zero order, after which
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first order solutions are searched for. This scheme is iterative and can, in principle,
be extended to any order in the perturbations. It is crucial to consider f .R/ theories
which can be Taylor-expanded about a constant value R0 of the curvature scalar R.

4.1.2 The Ricci scalar in spherical symmetry

By imposing that the spacetime metric is spherically symmetric,

ds2 D �A.t; r/dt2 CB.t; r/dr2 C r2d˝2
2 ; (4.1)

the Ricci scalar can be expressed as

R .t; r/ D
�
B
� PA PB � A02

�
r2 C A

�
r
� PB2 � A0B 0

�C 2B
�
2A0 C rA00 � r RB�

�

�4A2
�
B2 � B C rB 0

�� �
2r2A2B2

��1
;

(4.2)

where a prime and an overdot denote differentiation with respect to r and t , respec-
tively. If the metric (4.1) is time-independent, i.e., A.t; r/ D a.r/ and B.t; r/ D
b.r/, then Eq. (4.2) assumes the simple form

R.r/ D
�
a.r/

�
2b.r/

�
2a0.r/C ra00.r/

�
� ra0.r/b0.r/

�
� b.r/a0.r/2r2

� 4a2.r/

�
b.r/2 � b.r/C rb0.r/

�� �
2r2a2.r/b2.r/

��1
: (4.3)

One can see Eq. (4.3) as a constraint on the functions a.r/ and b.r/ once a specific
form of the Ricci scalar is given. Equation (4.3) reduces to the Bernoulli equation
of index two [249]

b0.r/C h.r/b.r/C l.r/b2.r/ D 0 (4.4)

for the metric component b.r/, i.e.,

b0.r/C
�
r2a0.r/2 � 4a.r/2 � 2ra.r/Œ2a.r/0 C ra.r/00	

ra.r/Œ4a.r/C ra0.r/	

�
b.r/

C
�
2a.r/

r

�
2C r2R.r/

4a.r/C ra0.r/

��
b.r/2 D 0 : (4.5)

The general solution of Eq. (4.5) is

b.r/ D exp
	� R dr h.r/




K C R
dr l.r/ exp

	� R dr h.r/

 ; (4.6)
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where K is an integration constant and h.r/ and l.r/ are the coefficients of the
linear and quadratic terms in b.r/, respectively. Inspection of this Bernoulli equation
reveals that solutions corresponding to l.r/ D 0 exist, which have a Ricci curvature
scaling as R � �2=r2 as spatial infinity is approached. No real solutions exist if
h.r/ vanishes identically. The limit r ! C1 deserves special care: in order for the
gravitational potential b.r/ to have the correct Minkowskian limit, both functions
h.r/ and l.r/ must go to zero provided that the quantity r2R.r/ is constant. This
fact implies that b0.r/ D 0, and, finally, also the metric potential b.r/ has the correct
Minkowskian limit.

If asymptotic flatness of the metric is imposed, the Ricci curvature must scale as
r�n when r ! C1, where n > 2 is an integer,

r2R.r/ ' r�n as r ! C1 : (4.7)

Any other behavior of the Ricci scalar would compromise asymptotic flatness, as
can be seen from Eq. (4.5). In fact, let us consider the simplest spherically symmetric
case in which

ds2 D �a.r/dt2 C dr2

a.r/
C r2d˝2

2 : (4.8)

The Bernoulli equation (4.5) is easily integrated and the most general metric poten-
tial a.r/ compatible with the constraint (4.3) is

a.r/ D 1C k1

r
C k2

r2
C 1

r2

Z
dr

�Z
r2R.r/dr

�
; (4.9)

where k1 and k2 are integration constants. The Minkowskian limit a.r/ ! 1 as
r ! 1 is obtained only if the condition (4.7) is satisfied, otherwise the gravitational
potential diverges.

4.1.3 Spherical symmetry in metric f .R/ gravity

Let us specialize now to metric f .R/ theories by considering an analytic function
f .R/, the fourth order field equations

f 0.R/R�� � 1

2
f .R/g�� � f 0.R/I�� C g���f 0.R/ D � T�� ; (4.10)

and the corresponding trace equation

3�f 0.R/C f 0.R/R � 2f .R/ D � T : (4.11)
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By rewriting Eq. (4.10) as

G�� D T .curv/
�� C T .m/�� ; (4.12)

T .curv/
�� D 1

f 0.R/
˚
g��

	
f .R/ �Rf 0.R/
C f 0.R/I��

�
g��g�� � g��g��

��

(4.13)

matter enters Eq. (4.12) through the modified stress-energy tensor

T .m/�� D � T��

f 0.R/
: (4.14)

The most general spherically symmetric metric can be written as

ds2 D �m1.t 0; r 0/dt02Cm2.t
0; r 0/dr02Cm3.t

0; r 0/dt0dr0Cm4.t
0; r 0/d˝2

2 ; (4.15)

wheremi are functions of the radius r 0 and of the time t 0. A coordinate transforma-
tion t D U1.t

0; r 0/ ; r D U2.t
0; r 0/ diagonalizes the metric (4.15) and introduces

the areal radius r such that m4.t 0; r 0/ D r2, giving

ds2 D �A.t; r/dt2 CB.t; r/dr2 C r2d˝2
2 ; (4.16)

hence Eq. (4.16) can be taken as the most general torsion-free Lorentzian spherically
symmetric metric without loss of generality. The field equations (4.10) and (4.11)
for this metric reduce to

f 0.R/R�� � 1

2
f .R/g�� C H�� D � T�� ; (4.17)

g��H�� D f 0.R/R � 2f .R/C H D � T ; (4.18)

where

H�� D �f 00.R/
�
R;�� � � t��R;t � � r��R;r � g��

��
gt t ;t C gt t ln

p�g;t
�
R;t

C
�
grr ;r C grr ln

p�g;r
�
R;r C gt tR;t t C grrR;rr

��

�f 000.R/
�
R;�R;� � g��

�
gt tR;t

2 C grrR;r
2

��
; (4.19)

H D g��H�� D 3f 00.R/
��
gt t ;t C gt t ln

p�g;t
�
R;t

C
�
grr ;r C grr ln

p�g;r
�
R;r C gt tR;t t C grrR;rr

�

C3f 000.R/
�
gt tR;t

2 C grrR;r
2

�
: (4.20)
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In these equations the derivatives of f .R/ with respect to R are distinct from the
time and spatial derivatives of R, a feature which will allow us to better understand
the dynamical behavior of the solutions.

4.1.4 Solutions with constant Ricci scalar

Let us assume that the Ricci scalar is constant, R D R0. The field equations (4.17)
and (4.18) with H�� D 0 are

f 00R�� � 1

2
f0g�� D � T

.m/
�� ; (4.21)

f 00R0 � 2f0 D � T .m/ ; (4.22)

where f0 � f .R0/ and f 00 � f 0.R0/, and they can be rewritten as

R�� C �g�� D q� T
.m/
�� ; (4.23)

R0 D q� T � 4� ; (4.24)

where � D � f0

2f 00
and q�1 D f 00 . We restrict to Lagrangians which reduce to the

Hilbert-Einstein one as R ! 0 and do not contain a cosmological constant�,

f .R/ ' R as R ! 0 : (4.25)

Then, the trace equation (4.22) indicates that in vacuo (T .m/�� D 0) one obtains a
class of solutions with constant Ricci curvature R D R0. In particular, there exist
solutions with R0 D 0.

Let us suppose now that the above Lagrangian density reduces to a constant for
small curvature values, limR!0 f D �. Interesting features emerge again from
the trace equation: using Eq. (4.22) and the definition of f .R/, it is seen that zero
curvature solutions do not exist in this case because

� 0R � 2� � �0R � 2� D � T .m/ : (4.26)

Contrary to GR, even in the absence of matter there are no Ricci-flat solution of
the field equations since the higher order derivatives give constant curvature so-
lutions corresponding to a sort of effective cosmological constant. In fact, in GR,
solutions with non-vanishing constant curvature occur only in the presence of matter
because of the proportionality of the Ricci scalar to the trace of the matter energy-
momentum tensor. A similar situation can be obtained in the presence of a cosmo-
logical constant �. The difference between GR and higher order gravity is that the
Schwarzschild-de Sitter solution is not necessarily generated by a�-term, while the
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effect of an “effective” cosmological constant can be achieved by the higher order
derivative contributions, as discussed extensively in [103, 248, 816, 817].

Let us consider now the problem of finding the general solution of Eqs. (4.21) and
(4.22) for the spherically symmetric metric (4.16). The substitution of this metric

into the .t; r/ component of (4.21) yields
PB.t; r/
rB.t; r/

D 0, which means that B.t; r/

must be time-independent,B.t; r/ D b.r/. On the other hand, the .�; �/ component

of Eq. (4.21) yields
A0.t; r/
A.t; r/

D �.r/, where �.r/ is a time-independent function and

A.t; r/ D Qa.t/ exp

�Z
�.r/dr

�
D Qa.t/ b

r2
exp

�Z
dr
Œ2 � r2.2�C 2q� p/	b.r/

r

�

(4.27)

where P is the pressure of a perfect fluid with stress-energy tensor

T .m/�� D .P C �/ u�u� C Pg�� : (4.28)

The function A.t; r/ is separable, A.t; r/ D Qa.t/a.r/, and the line element (4.16)
becomes

ds2 D �Qa.t/a.r/dt2 C b.r/dr2 C r2d˝2
2 (4.29)

and is rewritten as

ds2 D �a.r/d Qt2 C b.r/dr2 C r2d˝2
2 (4.30)

by redefining the time coordinate t ! Qt as d Qt D p Qa.t/ dt. From now on, the tilde
will be dropped from this time coordinate.

To summarize, in a spacetime with constant scalar curvature, any spherically
symmetric background is necessarily static or, the Jebsen-Birkhoff theorem holds
for f .R/ gravity with constant curvature (cf. [582]).

A remark is in order at this point. We have assumed a spacetime with constant
Ricci scalar and deduced conditions on the form of the gravitational potentials. The
inverse problem can also be considered: whenever the gravitational potential a.t; r/
is a separable function and b.t; r/ is time-independent, using the definition of the
Ricci scalar, it is R D R0 D const. and at the same time the solutions of the field
equations will be static if spherical symmetry is invoked. For a complete analysis of
this problem, one should take into account the remaining field equations contained
in (4.23) and (4.24) which have to be satisfied by taking into account the expression
of the Ricci scalar (4.3). One must then solve the system

Rt t C � a.r/ � q� Œ� C P .1 � a.r//	 D 0 ; (4.31)

Rrr � �b.r/� q� Pb.r/ D 0 ; (4.32)

R0 � q� .� � 3P /C 4� D 0 ; (4.33)

R .a.r/; b.r// D R0 ; (4.34)



114 4 Spherical symmetry

which takes the form

e
R

2�r2.2�C2q� P /b.r/
r

dr

�
	
r2 .2�C 2q� P � 2/
2 b.r/4 � 4b.r/3

� 3r 	r2 .2�C 2q� P / � 2
 b0.r/b.r/2

C 2r
	
b0.r/C rb00.r/



b.r/� 2r2b0.r/2

�

� 4r4q� .P C �/ b.r/2 D 0 ; (4.35)

�
3r
	
r2 .2�C 2q� P / b0.r/ � 2
 � 8

�
b.r/2 � 4 	r2 .2�C 2q� P / � 3
 b.r/3

� 	
r2 .2�C 2q� P / � 2



b.r/4 C 2r2b0.r/2 � 2rb.r/

	
rb.r/00 � 3b0.r/
 D 0 ;

(4.36)
�
r2Œ4�C 2q� .P � �/	 � 8

�
b.r/3 �

�
3r
	
r2.2�C 2q� P / � 2



b0.r/� 4

�
b.r/2

C 	
r2 .2�C 2q� P / � 2
 b.r/4 � 2r2b0.r/2 C 2r

	
rb00.r/ � b0.r/



b.r/ D 0

(4.37)

where, using Eq. (4.3), the only unknown potential is now b.r/. A general solution
is found for the particular equation of state P D ��:

ds2 D �
�
1C k1

r
C q� � � �

3
r2
�

dt2 C dr2

1C k1

r
C q� ��	

3
r2

C r2d˝2
2 : (4.38)

In the case of constant Ricci scalar R D R0, all f .R/ theories admit solutions with
de Sitter-like behavior even in the weak-field limit. This is one of the reasons why
dark energy can be replaced by f .R/ gravity [103,211,212,218,219,263,275,851,
865].

Let us consider now f .R/ gravity with an analytic Lagrangian function f .R/,
which we write as

f .R/ D �C �0RC �.R/ ; (4.39)

where �0 is a constant, � plays the role of the cosmological constant, and �.R/ is
an analytic function of R satisfying the condition

lim
R!0

�.R/

R2
D �1 (4.40)

with �1 another constant. By neglecting the cosmological constant � and setting
�0 to zero, a new class of theories is obtained which, in the limit R ! 0, does



4.1 Spherically symmetric solutions of GR and metric f .R/ gravity 115

Table 4.1 Examples of f .R/ models admitting constant or zero scalar curvature solutions. The
powers n and m are integers while the 
i are real constants.

f(R) theory Field equations

R R�
 D 0


1RC 
2Rn

8
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
:̂

R�
 D 0 with R D 0; 
1 ¤ 0

R�
 C �g�
 D 0 with R D
�


1
.n�2/
2

� 1
n�1

; 
1 ¤ 0; n ¤ 2

0 D 0 with R D 0; 
1 D 0

R�
 C �g�
 D 0 with R D R0; 
1 D 0; n D 2


1RC 
2R�m R�
 C �g�
 D 0 with R D
�
� .mC2/
2


1

� 1
mC1


1RC 
2Rn C 
3R�m R�
 C �g�
 D 0, with R D R0 so that


1R
mC1
0 C .2� n/
2RnCm

0 C .mC 2/
3 D 0

R

1CR

(
R�
 D 0 with R D 0

R�
 C �g�
 D 0 with R D � 
1
2

1

1CR

R�
 C �g�
 D 0 with R D � 2
1
3

not reproduce GR (Eq. (4.40) implies that f .R/ � R2 as R ! 0). In this case,
analyzing the complete set of equations (4.21) and (4.22), one can observe that both
zero and constant (but non-vanishing) curvature solutions are possible. In particular,
if R D R0 D 0 the field equations are solved for all forms of the gravitational
potentials appearing in the spherically symmetric background (4.30), provided that
the Bernoulli equation (4.5) relating these functions is satisfied for R.r/ D 0. The
solutions are thus defined by the relation

b.r/ D exp
	� R dr h.r/




K C 4
R dra.r/ expŒ� R drh.r/	

rŒa.r/Cra0.r/�

: (4.41)

Table 4.1 provides examples of f .R/ theories admitting solutions with constant
but non-zero values of R or null R. Each model admits Schwarzschild and
Schwarzschild-de Sitter solutions, in addition to the class of solutions given by
(4.41).

4.1.5 Solutions with R D R.r/

Thus far, we have discussed the behavior of f .R/ gravity searching for spheri-
cally symmetric solutions with constant Ricci curvature. In GR this situation is well
known to give rise to the Schwarzschild (R D 0) and the Schwarzschild-de Sitter
(R D R0 ¤ 0) solutions. The search for spherically symmetric solutions can be
generalized to f .R/ gravity by allowing the Ricci scalar to depend on the radial
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coordinate. This approach is interesting because, in general, higher order theories of
gravity admit naturally this kind of solution, with several examples reported in the
literature [216, 217, 248, 816, 817, 1052]. In the following we approach the problem
from a general point of view.

If we choose the Ricci scalar as a generic functionR.r/ of the radial coordinate,
it is possible to show that also in this case the solution of the field equations (4.17)
and (4.18) is time-independent (if T .m/�� D 0). In other words, the Jebsen-Birkhoff
theorem holds. As in GR, it is crucial to study the off-diagonal .t; r/ component
of (4.17) which, for a generic f .R/, reads

d

dr

�
r2f 0.R/

�
PB.t; r/ D 0 ; (4.42)

and two possibilities can occur. First, one can choose PB.t; r/ ¤ 0, implying that
f 0.R/ � 1=r2. In this case the remaining field equation is not satisfied and there
is incompatibility. The only possible solution is then given by PB .t; r/ D 0 and
B .t; r/ D b.r/. The .�; �/ equation is then used to determine that the potential
A.t; r/ can be factorized with respect to time, the solutions are of the type (4.29),
and the metric can be recast in the stationary spherically symmetric form (4.30) by
a suitable coordinate transformation.

Even the more general radial-dependent case admits time-independent solutions.
From the trace equation and the .�; �/ equation, the relation

a.r/ D b.r/
e

2
3

R
.Rf 0

�2f /b.r/

R0f 00

dr

r4R02f 002
(4.43)

(with f 00 > 0) linking a.r/ and b.r/ can be obtained, in addition to [816, 817]

b.r/ D 6
	
f 0.rR0f 00/0 � rR02f 002




rf .rR0f 00 � 4f 0/C 2f 0 ŒrR .f 0 � rR0f 00/ � 3R0f 00	 : (4.44)

Again, three more equations have to be satisfied in order to completely solve the
system (respectively the .t; t/ and .r; r/ components of the field equations plus the
Ricci scalar constraint), while the only unknown functions are f .R/ and the Ricci
scalar R.r/.

If we now consider a fourth order theory described by f .R/ D R C ˚.R/ with
˚.R/ � R we are able to satisfy the complete set of equations up to third order in
˚ . In particular, we can solve the full set of equations; the relations (4.43) and (4.44)
will provide the general solution depending only on the forms of the functions˚.R/
and R.r/, i.e.,

a.r/ D b.r/
e
�2
3

Z
ŒR C .2˚ �R˚ 0/	 b.r/

R0˚ 00
dr

r4R02˚ 002
; (4.45)
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b.r/ D �3.rR
0˚ 00/;r
rR

: (4.46)

Once the radial dependence of the scalar curvature is obtained, Eq. (4.45) allows one
to obtain the solution of the field equations and the gravitational potential related
to the function a.r/. The physical relevance of this potential can be assessed by
comparison with astrophysical data (e.g., [650]).

4.1.6 Perturbations

When the Ricci scalarR.r/ depends on the radial coordinate, one can find perturba-
tive solutions. Several perturbative techniques exist that enable one to investigate
higher order gravity in the weak-field limit. A general approach with analytical
f .R/ theories begins with the assumption that the background model deviates only
slightly from GR, i.e., f .R/ D RC˚.R/with˚.R/ � R. An alternative approach
has the background metric considered as the zero order solution and as its starting
point. Both approaches view the weak-field limit of a given higher order theory of
gravity as a correction to GR, which is the zero order approximation. Both methods
can provide interesting results in astrophysics. The first approach, which is based
on the matching of the background metric and the GR solution is discussed in the
following.

In general, the perturbative search for solutions involves the study of a perturbed
metric g�� D g

.0/
�� C g

.1/
�� , which implies that the first order field equations (4.17)

and (4.18) split in two orders. The metric perturbation implies a splitting of the Ricci
scalar R into a background part plus a perturbation, and then the analytic function
f .R/ can be Taylor-expanded about the background value of R,

f .R/ D
X

n

f n.0/

nŠ

�
R � R.0/

�n
�
X

n

f n.0/

nŠ
R.1/

n
: (4.47)

The zero order field equations read

f 0.0/R.0/�� � 1

2
g.0/��f

.0/ C H .0/
�� D � T .0/�� ; (4.48)

where

H .0/
�� D �f 00.0/

�
R.0/;�� � � .0/���R.0/;� � g.0/��

�
g.0/�� ;�R

.0/
;� C g.0/��R.0/;��

Cg.0/�� �ln p�g�
;�
R.0/;�

��

�f 000.0/
�
R.0/;� R

.0/
;� � g.0/��g

.0/��R.0/;� R
.0/
;�

�
: (4.49)
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To first order it is

f 0.0/
�
R.1/���1

2
g.0/��R

.1/

�
Cf 00.0/R.1/R.0/���1

2
f .0/g.1/��CH .1/

�� D � T .1/�� (4.50)

with

H .1/
�� D �f 00.0/

�
R.1/;�� � � .0/���R.1/;� � � .1/

�

��R
.0/
;�

�g.0/��
�
g.0/�� ;�R

.1/
;� C g.1/�� ;�R

.0/
;� C g.0/��R.1/;�� C g.1/��R.0/;��

Cg.0/��
�

ln
p�g.0/;� R.1/;� C ln

p�g.1/;� R.0/;�
�

Cg.1/�� ln
p�g.0/;� R.0/;�

�

�g.1/��
�
g.0/�� ;�R

.0/
;� C g.0/��R.0/;�� C g.0/�� ln

p�g.0/;� R.0/;�
��

�f 000.0/
�
R.0/;� R

.1/
;� CR.1/;� R

.0/
;� � g.0/��g

.0/��

�
R.0/;� R

.1/
;� CR.1/;� R

.0/
;�

�

�g.0/��g.1/��R.0/;� R.0/;� � g.1/��g.0/��R.0/;� R.0/;�
�

�f 000.0/R.1/
�
R.0/;�� � � .0/

�

��R
.0/
;� � g.0/��

�
�
g.0/�� ;�R

.0/
;� C g.0/��R.0/;�� C g.0/�� ln

p�g;�R.0/;�
��

�f IV.0/R.1/
�
R.0/;� R

.0/
;� � g.0/��g

.0/��R.0/;� R
.0/
;�

�
: (4.51)

Apart from analyticity, no assumption is made on the form of the function f .R/.
At this level, the zero order solution of Eq. (4.48) is required and, in general, this
could be a GR solution. This problem can be overcome by assuming the same order
of perturbation on the f .R/, i.e.,

f .R/ D RC ˚.R/ (4.52)

with ˚ � R. Then we have

f D R.0/ CR.1/ C ˚ .0/ ; f 0 D 1C ˚ 0.0/ ; f 00 D ˚ 00.0/ ; f 000 D ˚ 000.0/ ;
(4.53)

and Eq. (4.48) reduces to

R.0/�� � 1

2
g.0/�� R

.0/ D � T .0/�� : (4.54)
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On the other hand, Eq. (4.50) reduces to

R.1/��� 1
2
g.0/�� R

.1/� 1
2
g.1/��R

.0/� 1
2
g.0/��˚

.0/C˚ 0.0/R.0/��CH .1/
�� D � T .1/�� ; (4.55)

where

H .1/
�� D �˚ 000.0/

�
R.0/;� R

.0/
;� � g.0/��g

.0/rrR.0/;r R
.0/
;r

�

�˚ 00.0/
�
R.0/;�� � � .0/r�� R.0/;r � g.0/��

�
g.0/

rr

;r R
.0/
;r

Cg.0/rrR.0/;rr C g.0/rr ln
p�g.0/;r R.0/;r

��
: (4.56)

This new system of field equations is simpler than the previous one and, once the
zero order solution is obtained, the first order solutions are easy to find. A list of so-
lutions obtained with this method is presented in Table 4.2 for various f .R/models.

In the case of f .R/models which are manifest corrections to the Hilbert-Einstein
Lagrangian, such as f .R/ D �CRC "R lnR and f .R/ D RC "Rn with j"j � 1,
one obtains exact solutions for the gravitational potentials a.r/ and b.r/ related by
a.r/ D b.r/�1. The first order expansion is straightforward, as in GR. If the func-
tions a.r/ and b.r/ are not related, for f .R/ D � C R C "R lnR, the first order
system is solved directly without any prescription on the perturbation functions x.r/
and y.r/. This is not the case for f .R/DRC"Rn since, for this model, one obtains
an explicit constraint on the perturbation function implying the possibility to deduce
the form of the gravitational potential �.r/ from a.r/ D 1C 2�.r/. In such a case,
no corrections are found with respect to the standard Newtonian potential. The theo-

ries f .R/DRn and f .R/D R

RC 

exhibit similar behaviors. The case f .R/DR2

is degenerate and must be discussed independently.

4.1.7 Spherical symmetry in f .R/ gravity and the Noether
approach

This subsection details the application of the Noether approach to spherical symme-
try in metric f .R/ gravity. This is a useful method to generate exact solutions.

4.1.7.1 The point-like f .R/ Lagrangian in spherical symmetry

Exact spherically symmetric solutions with constant Ricci scalar in f .R/ gravity
can be found using the Noether symmetry approach presented in Chap. 2. To begin,
one needs to derive a point-like Lagrangian from the action of modified gravity by
imposing spherical symmetry, while enforcing the constancy of the Ricci scalar by
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Table 4.2 A list of solutions for several f .R/ theories in the perturbative approach. The ki are
integration constants, rg � 2GM=c2 is the Schwarzschild radius (in standard units), and the po-
tentials a.r/ and b.r/ are defined in Eq. (4.30).
f.R/ theory 
CRC "R ln R

spherical potentials a.r/ D b.r/�1 D 1C k1
r
� �r2

6
C ıx.r/

solutions x.r/ D k2
r
C "�Œln.�2�/�1	r2

6ı

first order metric a.r/ D 1� �r2

6
C ıx.r/, b.r/ D 1

1� �r2
6

C ıy.r/

solutions

8
<̂

:̂

x.r/ D .
r2 � 6/
�
k1 C

R
dr 4ı.2�2r4�15�r2C18/y.r/Crf36r"�Œlog.�2�/�1	Cı.�r2�6/2y0.r/g

36rı.�r2�6/

�

y.r/ D k2ı�6r
3"�Œln.�2�/�1	

rı.r2��6/2

f.R/ theory RC "Rn

spherical potentials a.r/ D b.r/�1 D 1C k1
r
C ıx.r/

solutions x.r/ D k2
r

first order metric a.r/ D 1C ı x.r/
r

, b.r/ D 1C ı y.r/
r

solutions x.r/ D k1 C k2r , y.r/ D k3
f.R/ theory Rn

spherical potentials a.r/ D b.r/�1 D 1C k1
r
C R0r

2

12
C ıx.r/

solutions

8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

n D 2; R0 ¤ 0 and x.r/ D 3k2�k3
3r
C k3r

2

12
C k4

r

R
dr r2

8
ˆ̂
<

ˆ̂
:

R
dr

exp

�
R0r

2
0 ln.r�r0 /

8C3R0r
2
0

�

r5

9
>>=

>>;

with r0 satisfying the condition 6k1 C 8r0 CR0r
3
0 D 0

n � 2; system solved only withR0 D 0 and no prescriptions on x.r/

first order metric a.r/ D 1C ı x.r/
r

, b.r/ D 1C ı y.r/
r

solutions

8
<

:
n D 2 y.r/ D � R0r

3

6
� x.r/

2
C 1

2
rx0.r/C k1; R.r/ D ıR0

n ¤ 2 y.r/ D � 1
2

R
dr r2R.r/� x.r/

2
C 1

2
rx0.r/C k1 with R.r/ any

first order metric a.r/ D 1� rg

r
C ıx.r/, b.r/ D 1

1�
rg
r

C ıy.r/

solutions

8
<

:

n D 2 y.r/ D rk1

3r2g�7rg rC4r2
C r2k2

3.3r2g�7rg rC4r2/
C rg r

2x.r/C2.rg r
3

�r4/x0.r/

.3rg�4r/.rg�r/2

n ¤ 2 any x.r/, y.r/, andR.r/

f.R/ theory R= .RC �/
first order metric a.r/ D 1C ı x.r/

r
, b.r/ D 1C ı y.r/

r

solutions

8
ˆ̂̂
<̂

ˆ̂
ˆ̂
:

x.r/ D � 4e
�


1=2r
p

6



k1 � 2

p

6e

1=2r
p

6


3=2
k2 C k3r

y.r/ D � 2e
�


1=2r
p

6 .6
1=2C

p

6
 r/

3b3=2
k1 � 2e


1=2r
p

6 .
p

6�
1=2r/


3=2
k2

means of a suitable Lagrange multiplier. With the previous considerations in mind,
a spherically symmetric spacetime is described by the line element

ds2 D �A.r/dt2 C B.r/dr2 CM.r/d˝2
2 : (4.57)

The Schwarzschild solution of GR is obtained ifM.r/ D r2 andA.r/ D B�1.r/ D
1 � 2M=r , with r an areal radius. In the presence of spherical symmetry the action

S D
Z

drL
�
A;A0; B; B 0;M;M 0; R;R0

�
(4.58)
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contains only a finite number of degrees of freedom, the Ricci scalar R and the
potentialsA, B , andM defining the configuration space. The point-like Lagrangian
is obtained by writing the action as

S D
Z
d 4x

p�g
�
f .R/� �.R � NR/

�
; (4.59)

where � is a Lagrangian multiplier and NR is the Ricci scalar of the metric (4.57)

NR D A00

AB
C 2M 00

BM
C A0M 0

ABM
� A02

2A2B
� M 02

2BM2
� A0B 0

2AB2
� B 0M 0

B2M
� 2

M

� R� C A00

AB
C 2M 00

BM
; (4.60)

where R� collects the terms containing first order derivatives. The Lagrange mul-
tiplier � is obtained by varying the action (4.59) with respect to R, which yields
� D fR.R/. By expressing the metric determinant g and NR as functions of A, B ,
and M , Eq. (4.59) gives

S D
Z

dr
p

ABM

�
f � fR

�
R � R� � A00

AB
� 2M 00

BM

��

D
Z

dr

�p
ABM

�
f � fR

�
R �R��

�
�
�
fRMp

AB

�0
A0 �

�
2
p
Ap
B
fR

�0
M 0
�
:

(4.61)

The last two integrals differ by a total divergence which can be discarded, and the
point-like Lagrangian becomes

L D �
p
AfR

2M
p
B
.M 0/2 � fRp

AB
A0M 0 � MfRRp

AB
A0R0

�2
p
AfRRp
B

R0M 0 � p
AB Œ.2C MR/ fR � Mf 	 : (4.62)

The canonical Lagrangian (4.62) is written in compact form using matrix notation as

L D q0t OT q0 C V ; (4.63)

where q D .A;B;M;R/ and q0 D .A0; B 0;M 0; R0/ are the generalized Lagrangian
coordinates and velocities. The index “t” denotes the transposed vector. The kinetic
tensor is

OTij D @2L

@q0i@q0j
(4.64)
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and V.q/ is the potential energy depending only on the generalized coordinates. The
Euler-Lagrange equations are

d

dr

�rq0L
� � rqL D 2

d

dr

�
OT q0
�

� rqV � q0t
�

rq OT
�
q0

D 2 OT q00 C 2

�
q0 	 rq OT

�
q0 � rqV � q0t

�
rq OT

�
q0 D 0 :

(4.65)

R obeys a constraint relating the Lagrangian coordinates. The Hessian determinant

of (4.62),

ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ̌
ˇ
@2L

@q0i@q0j

ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ̌
ˇ
, vanishes because the point-like Lagrangian does not depend

on the generalized velocity B 0. The metric component B does not contribute to
the dynamics, but its equation of motion has to be taken into account as a further
constraint. The definition of the energy

EL D q0 	 rq0L� L (4.66)

coincides with the Euler-Lagrangian equation for the component B of the gener-
alized coordinate q. Then, the Lagrangian (4.62) contains only three degrees of
freedom and not four, as expected a priori. Now, since the equation of motion for
B does not contain the derivative B 0, it can be solved explicitly in term of B as a
function of the other Lagrangian coordinates:

B D 2M 2fRRA
0R0 C 2MfRA

0M 0 C 4AMfRRM
0R0 C AfRM

02

2AM Œ.2CMR/fR �Mf 	
: (4.67)

By inserting Eq. (4.67) into the Lagrangian (4.62), we obtain a non-vanishing Hes-
sian matrix removing the singular dynamics. The new Lagrangian reads1

L� D p
L (4.68)

with

L D q0t OLq0 D Œ.2CMR/fR � fM	

M

	 	2M 2fRRA
0R0 C 2MM 0.fRA0 C 2AfRRR

0/C AfRM
02
 : (4.69)

1 Lowering the dimension of the configuration space through the substitution (4.67) leaves the
dynamics unaffected because B is non-dynamical. In fact, if Eq. (4.67) is introduced into the set
of dynamical equations (4.62), these coincide with the equation derived from (4.69).
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Since
@L
@r

D 0, L is canonical (L is a quadratic form in the generalized velocitiesA0,
M 0 andR0 and coincides with the Hamiltonian), hence L can be regarded as the new
Lagrangian with three degrees of freedom. It is crucial that the Hessian determinant

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ̌
@2L
@q0i@q0j

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ̌ D 3AM Œ.2CMR/fR �Mf 	3 fRfRR2 : (4.70)

now does not vanish. It is assumed that .2 C MR/fR � Mf ¤ 0, otherwise the
above definitions of B , and L (Eqs. (4.67) and (4.69)) are meaningless. Moreover,
it is assumed that fRR ¤ 0 allows for a wide class of fourth order gravity models.
The GR case f .R/ D R is special: the GR point-like Lagrangian requires a further
reduction of the number of degrees of freedom and the previous results cannot be
applied directly. Eq. (4.62) yields

LGR D �
p
A

2M
p
B
.M 0/2 � 1p

AB
A0M 0 � 2

p
AB (4.71)

which, through the Euler-Lagrange equations, provides the standard GR equa-
tions for the Schwarzschild metric. The absence of the generalized velocity B 0 in
Eq. (4.71) is evident. Again, the Hessian determinant vanishes. Nevertheless, con-
sidering again the constraint (4.67) for B , it is possible to obtain a Lagrangian with
non-vanishing Hessian. In particular, it is

BGR D .M 0/2

4M
C A0M 0

2A
; (4.72)

L�GR D
p

LGR D
s
M 0.2MA0 C AM0/

M
; (4.73)

and the Hessian determinant is
ˇ
ˇ̌
ˇ
ˇ

ˇ
ˇ̌
ˇ
ˇ
@2LGR
@q0i@q0j

ˇ
ˇ̌
ˇ
ˇ

ˇ
ˇ̌
ˇ
ˇ

D �1 ; (4.74)

a non-vanishing sub-matrix of the f .R/ Hessian matrix.
The Euler-Lagrange equations derived from Eqs. (4.72) and (4.73) yield the vac-

uum solutions of GR

A D k4 � k3

r C k1
; B D k2k4

A
; M D k2.r C k1/

2 : (4.75)

In particular, the standard form of the Schwarzschild solution is recovered for k1 D
0, k2 D 1, k3 D 2GM=c2, and k4 D 1.
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Table 4.3 The field equations approach and the point-like Lagrangian approach differ because
spherical symmetry can be imposed either in the field equations after standard variation with re-
spect to the metric, or directly into the Lagrangian, which then becomes point-like. The energy EL
corresponds to the .0; 0/ component ofH�
 . The absence of B 0 in the Lagrangian implies the pro-
portionality between the constraint equation for B and the energy function EL. As a consequence,
there are only three independent equations and three unknown functions. The .�; �/ component
corresponds to the field equation for M . H�
 is given in Appendix B.1.

Field equations approach Point-like Lagrangian approach

ı
R
d4x
p�g f D 0 � ı

R
drLD 0

# #
H�
 D @�

h
@.

p

�g f /

@�g�


i
� @.

p

�g f /

@g�

D 0 d

dr

�rq0L
��rqL D 0

�

H D g�
H�
 D 0 EL D q0 � rq0L� L
# #

H00 D 0 � d
dr

�
@L
@A0

�� @L
@A
D 0

Hrr D 0 � d
dr

�
@L
@B0

�� @L
@B
/ EL D 0

H�� D csc2 �H�� D 0 � d
dr

�
@L
@M 0

�� @L
@M
D 0

H D A�1H00 �B�1Hrr � 2M�1csc2 �H�� D 0 � a combination of the above equations

Table 4.3 summarizes the field equations associated with the point-like
Lagrangians and their relation with respect to the ones of the standard approach.

4.1.8 Noether solutions of spherically symmetric f .R/ gravity

In spherical symmetry, the areal radius r plays the role of an affine parame-
ter. Then, the configuration space is Q D .A;M;R/ and the tangent space is
T Q D .A;A0;M;M 0; R;R0/. According to the Noether theorem, the existence
of a symmetry for the dynamics described by the Lagrangian (4.69) implies the
existence of a conserved quantity. The Lie differentiation of Eq. (4.69) yields2

LXL D ˛ 	 rqL C ˛0 	 rq0 L D q0t
�
˛ 	 rq OL C 2

�
rq˛

�t
OL
�
q0 : (4.76)

This Lie derivative vanishes if the functions ˛ satisfy the system

˛i
@ OLkm
@qi

C 2
@˛i

@qk
OLim D 0 : (4.77)

2 From now on, q denotes the vector .A;M;R/.
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Solving the system (4.77) means finding the functions ˛i which identify the Noether
vector. However the system (4.77) depends implicitly on the form of the function
f .R/ and, by solving it, one obtains the forms of the function f .R/ which are
compatible with spherical symmetry. Alternatively, by choosing the form of f .R/,
(4.77) can be solved explicitly. As an example, the system (4.77) is satisfied if we
choose

f .R/ D f0R
s ; ˛ D .˛1; ˛2; ˛3/ D

�
.3 � 2s/kA; �kM; kR

�
(4.78)

with s a real number, k an integration constant, and f0 a dimensional coupling
constant.3 This means that for f .R/ D Rs there exist at least one Noether symmetry
and a related conserved quantity

˙0 D ˛ 	 rq0L

D 2skMR2s�3 Œ2s C .s � 1/MR	
	
.s � 2/RA0 � .2s2 � 3s C 1/AR0



: (4.79)

A physical interpretation of ˙0 is possible in GR. In this case, obtained for s D 1,
the above procedure must be applied to the Lagrangian (4.73), obtaining the solution

˛GR D .�kA; kM/ : (4.80)

The functions A and M provide the Schwarzschild solution (4.75), and then the
constant of motion takes the form

˙0 D 2GM

c2
(4.81)

in standard units; the conserved quantity is the Schwarzschild radius (or the mass of
the gravitating system).

Another solution can be found for constant Ricci scalarR D R0 [816], for which
the field equations reduce to

R�� C k0g�� D 0 ; (4.82)

where k0 D �1
2
f .R0/=fR.R0/. The general solution is

A.r/ D 1

B.r/
D 1C k0

r
C R0

12
r2 ; M D r2 (4.83)

3 The dimensions are given by R1�s in term of the Ricci scalar. For simplicity, f0 is set to unity in
the following.
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which includes the special case

A.r/ D 1

B.r/
D 1C k0

r
; M D r2 ; R D 0 : (4.84)

The solution (4.83) is the well known Schwarzschild-de Sitter metric.
In the general case f .R/ D Rs, the Lagrangian (4.69) becomes

L D sR2s�3Œ2s C .s � 1/MR	

M

	 	2.s � 1/M 2A0R0 C 2MRM0A0 C 4.s � 1/AMM0R0 C ARM02



(4.85)

and the expression (4.67) of B is

B D s
	
2.s � 1/M 2A0R0 C 2MRM0A0 C 4.s � 1/AMM0R0 C ARM02




2AMR Œ2s C .s � 1/MR	
; (4.86)

and GR is recovered for s D 1.
Using the constant of motion (4.79), one can solve for A, obtaining

A D R
2s2

�3sC1
s�2

8
<

:
k1 C˙0

Z
R

4s2
�9sC5
2�s dr

2ks.s � 2/M Œ2s C .s � 1/MR	

9
=

;
(4.87)

for s ¤ 2, where k1 is an integration constant. For s D 2 one finds

A D � ˙0

12kr2.4C r2R/RR0
: (4.88)

These relations allow one to find general solutions of the field equations regulating
the function R.r/. For example, the solution corresponding to

s D 5=4 ; M D r2 ; R D 5r�2 ; (4.89)

is the spherically symmetric metric given by

ds2 D � 1p
5
.k2 C k1r/ dt2 C 1

2

�
1

1C k2

k1r

�
dr2 C r2d˝2

2 (4.90)

with k2 D 32˙0

225k
. The value of s for this solution is ruled out by Solar System

experiments [96, 325, 326].
To summarize, the Noether symmetry approach provides a general method to

find spherically symmetric exact solutions of ETGs, and of metric f .R/ gravity in



4.1 Spherically symmetric solutions of GR and metric f (R) gravity 127

particular. The procedure consists of .i/ obtaining the point-like f .R/ Lagrangian
with spherical symmetry; .ii/ writing the Euler-Lagrange equations; .iii/ searching
for a Noether vector field; and .iv/ reducing the dynamics and then integrating the
equations of motion using the constants of motion. Vice-versa, this approach also
allows one to select families of f .R/ models with spherical symmetry. The method
can be generalized. If a symmetry exists, the Noether approach allows transforma-
tions of variables to cyclic ones, reducing the dynamics to obtain exact solutions.
For example, since we know that f .R/ D Rs gravity admits a constant of motion,
the Noether symmetry suggests the coordinate transformation

L
�
A;M;R;A0;M 0; R0

� ! eL
�fM;eR;eA0;fM 0; NR0� ; (4.91)

for the Lagrangian (4.69), where the conserved quantity corresponds to the cyclic
variable eA. In the presence of multiple symmetries one can find multiple cyclic
variables. If three Noether symmetries exist, the Lagrangian L can be mapped into
a Lagrangian with three cyclic coordinates eA D eA.q/, fM D fM.q/ and eR D eR.q/
which are functions of the old generalized coordinates. These new functions must
satisfy the system

.3 � 2s/A
@eA
@A

�M
@eA
@M

CR
@eA
@R

D 1 ; (4.92)

.3 � 2s/A
@eqi
@A

�M @eqi
@M

CR
@eqi
@R

D 0 ; (4.93)

with i D 2; 3 (we have set k D 1). A solution of (4.93) for s ¤ 3=2 is

eA D lnA

.3 � 2s/ C FA

�
A

�A
3�2sM �A A

�A
2s�3M �A

�
; (4.94)

eqi D Fi

�
A

�i
3�2sM �i ; A

�i
2s�3M �i

�
(4.95)

while, if s D 3=2,

eA D � lnM C FA.A/GA.MR/ ; (4.96)

eqi D Fi .A/Gi .MR/ ; (4.97)

where FA, Fi , GA and Gi are arbitrary functions and �A, �i , 
A, and 
i are integra-
tion constants.

The considerations of this section make it clear once again that the Jebsen-
Birkhoff theorem does not hold, in general, for metric f .R/ gravity.
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4.1.9 Non-asymptotically flat and non-static spherical solutions
of metric f .R/ gravity

Any solution of the vacuum field equations

R�� D �g�� (4.98)

of GR (possibly with a cosmological constant) is also a solution of metric f .R/
gravity in all cases in which the (reduced) trace equation

f 0.R/R � 2f .R/ D 0 (4.99)

admits solutions. The converse is not true. In the context of spherical symmetry, the
Schwarzschild metric solves the field equations of metric f .R/ gravity in vacuo if
R D 0. IfR is constant in vacuo, then the Schwarzschild-(anti-)de Sitter metrics are
solutions. Unless the constancy of R is imposed, the Schwarzschild-(anti)de Sitter
metric is not the unique solution because the Jebsen-Birkhoff theorem does not hold
in metric f .R/ gravity.

There exist several studies of exact spherically symmetric solutions of metric
f .R/ gravity in the literature. Recent motivation for these studies arises from the
need to understand the weak-field limit of metric f .R/ theories which are of interest
in cosmology. A 1C 1C 2 covariant formalism for spherically symmetric solutions
in metric f .R/ gravity was developed in [862, 863].

In addition to vacuum solutions, non-vacuum ones have been studied; usually,
in these cases, the matter source is assumed to be a perfect fluid. Fluid dynamics
in metric f .R/ gravity was studied in [761, 807, 942, 1067] long before the recent
revival of f .R/ gravity. Spherically symmetric solutions found in the literature in-
clude those of [173, 174, 197, 249, 321, 323, 795, 816–818, 1161].

The stability of spherically symmetric solutions was discussed in [652, 1001].
Previous stability analyses of particular modified gravity theories include that of
[1161] in the theory

S D
Z
d4x

p�g
�

	
R � ˛R2 � ˇR��R

�� C "G


; (4.100)

where ˛; ˇ, and " are constants and G D R2 � 4R��R
�� C R��˛ˇR

��˛ˇ is the
Gauss-Bonnet term. The Schwarzschild metric is a solution of this theory and the
stability analysis of Schwarzschild black holes in [1161] led to the somehow sur-
prising conclusion that the massive ghost graviton (or “poltergeist”) that appears in
this theory stabilizes Schwarzschild black holes with small mass against Hawking
radiation instability (an issue discussed also in [823, 824]). If ˇ D " D 0 the the-
ory (4.100) reduces to quadratic f .R/ gravity and the stability criterion of [1161]
reduces to ˛ < 0, consistently with the familiar stability condition f 00.R/ > 0. For
˛ D 0 the theory reduces to GR, in which black holes are quantum-mechanically
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unstable because of Hawking radiation and of their negative specific heat, but clas-
sically stable [1139]. This feature is replicated in f .R/ gravity and the classical
stability condition for Schwarzschild black holes is again f 00.R/ � 0.

Regarding black holes, all black hole solutions of GR (possibly with a cosmolog-
ical constant) will also be solutions of metric and Palatini f .R/ gravity [77, 915].
While in the Palatini version of the theory they are all the black hole solutions, in
metric f .R/ gravity other black hole solutions are in principle possible because of
the failure of the Jebsen-Birkhoff theorem, adding to the richness and variety of
spherically symmetric solutions.

4.1.9.1 Clifton and Barrow’s static solution in f .R/ D R1Cı gravity

The Schwarzschild-de Sitter solution is not the only known static spherically sym-
metric solution of the fourth order field equations of metric f .R/ gravity. An
example is given by Clifton and Barrow’s static solution [321, 326]

ds2 D �A1.r/dt2 C dr2

B1.r/
C r2d˝2

2 ; (4.101)

where

A1.r/ D r
2ı.1C2ı/

1�ı C C1

r
1�4ı
1�ı

; (4.102)

B1.r/ D .1 � ı/2

.1 � 2ı C 4ı2/ Œ1 � 2ı .1C ı/	

 

1C C1

r
1�2ıC4ı2

1�ı

!

; (4.103)

and where C1 is a constant and r is the area radius. This solution is not asymptot-
ically flat and reduces to the Schwarzschild one in the limit ı ! 0 in which the
theory goes over to GR. The Ricci scalar is non-constant. Perturbations of this solu-
tion were studied in [321, 326] and light deflection in this spacetime was studied in
[862] using a 1C 1C 2 covariant approach.

4.1.9.2 A dynamical solution in f .R/ D R1Cı gravity

Since the f .R/ theories of interest for cosmology are designed to produce a time-
varying effective cosmological constant in order to explain the present acceleration
of the universe, black hole solutions in these theories are likely to represent central
objects embedded in cosmological backgrounds. Not much is known about this kind
of solution even in the context of GR, although a few GR examples are available
[267,462,465,468,520,765,783,784,859,957,1059], and even less is known about
f .R/ black holes and spherically symmetric solutions.



130 4 Spherical symmetry

As an example of how spherical solutions of metric f .R/ gravity can differ from
the Schwarzschild spacetime, we consider here an exact solution of f .R/ D R1Cı
gravity found by Clifton [321] and describing a dynamical spherical spacetime
which is asymptotically FLRW. This solution exhibits a peculiar behavior: it con-
tains a strong spacetime singularity which becomes naked at late times.

Solar System experiments set the constraints ı D .�1:1˙ 1:2/ 	 10�5 on the
parameter ı of f .R/ D R1Cı gravity [96, 321, 325, 326, 1171], while the local
stability criterion requires f 00.R/ � 0 [396,460] and ı > 0. We only retain positive
values of this parameter.

As already discussed, the fourth order field equations of vacuum metric f .R/
gravity can be rewritten as effective Einstein equations with geometric terms acting
as a form of effective matter,

R�� � 1

2
g��R D 1

f 0.R/

�
r�r�f 0 � g���f 0 C g��

.f �Rf 0/
2

�
; (4.104)

where the effective matter spoils the Jebsen-Birkhoff theorem.
The line element is [321]

ds2 D �A2.r/dt2 C a2.t/B2.r/
�
dr2 C r2d˝2

2

�
; (4.105)

where

A2.r/ D
�
1 � C2=r

1C C2=r

�2=q
; (4.106)

B2.r/ D
�
1C C2

r

�4
A2.r/

qC2ı�1 ; (4.107)

a.t/ D t
ı.1C2ı/

1�ı ; (4.108)

q2 D 1 � 2ı C 4ı2 ; (4.109)

in isotropic coordinates. There are two distinct classes of solutions for a given value
of ı: the first has C2qr > 0 and the second has C2qr < 0. The line element (4.105)
approaches the FLRW one in the limit C2 ! 0. In the limit ı ! 0 the theory
reduces to GR while (4.105) reduces to the Schwarzschild line element in isotropic
coordinates provided that C2qr > 0. Assuming that r > 0, C2 > 0, and the positive
root in the expression q D ˙p

1 � 2ı C 4ı2 in Eq. (4.109), it is q ' 1 � ı in the
limit 0 < ı � 1.

The solution (4.105)–(4.109) is conformal to the Fonarev solution [498] which
is conformally static [763] and, therefore, it is also conformally static, a property
shared with the Sultana-Dyer solution [1059] and with certain generalized McVittie
solutions of GR [465].
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The metric (4.105) is conveniently recast in the Nolan gauge, in which it is
straightforward to identify apparent horizons which may exist. Using first the ra-
dial coordinate

Qr � r

�
1C C2

r

�2
(4.110)

and then the areal radius

� � a.t/
p
B2.r/ Qr

�
1C C2

r


2 D a.t/ Qr A2.r/ qC2ı�1
2 ; (4.111)

one obtains the line element [445]

ds2 D �A2dt2 C a2A2ı�12 d Qr2 C �2d˝2
2 : (4.112)

Using the fact that [445]

d Qr D d� �A
qC2ı�1

2

2 Pa Qr dt

aA
qC2ı�1

2

2 C.r/

; (4.113)

where

C.r/ D 1C 2.q C 2ı � 1/
q

C2a

�
A

2ı�1�q
2

2 ; (4.114)

the metric assumes the Painlevé-Gullstrand-like form

ds2 D �A2
"

1 � A
2.ı�1/
2

C 2
Pa2 Qr2

#

dt2 � 2A
�qC2ı�1

2

2

C 2
Pa Qr dtd�

C d�2

A
q
2C

2
C �2d˝2

2 : (4.115)

The cross-term in dtd� is then eliminated by the use of the new time coordinate Nt
defined by the differential equation

d Nt D 1

F.t; �/
Œdt C ˇ.t; �/d�	 ; (4.116)

where F.t; �/ is an integrating factor which guarantees that d Nt is an exact differen-
tial and satisfies

@

@�

�
1

F

�
D @

@t

�
ˇ

F

�
: (4.117)
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By setting

ˇ D A
�qC2ı�3

2

2

C 2
Pa Qr

1 � A
2.ı�1/
2

C2 Pa2 Qr2
(4.118)

the line element becomes [445]

ds2 D �A2DF 2d Nt2 C d�2

A
q
2C

2D
C �2d˝2

2 (4.119)

in the Nolan gauge, where H � Pa=a and

D D 1 � A
�q�1
2

C 2
H 2�2 : (4.120)

The apparent horizons are located at g�� D 0, or

A
q
2

�
C 2 �H 2R2A

�q�1
2



D 0 ; (4.121)

hence g�� vanishes if A2 D 0 orH 2R2 D C 2A
qC1
2 . A2 vanishes at r D C2, which

describes the Schwarzschild event horizon in the limit to GR ı ! 0 and locates a
spacetime singularity. In fact, the Ricci scalar is

R D 6
� PH C 2H 2

�

A2.r/
(4.122)

and diverges as r ! C2. This quantity reduces to the familiar FLRW value
6
� PH C 2H 2

�
in the limit C2 ! 0. This spacetime singularity is strong in the sense

of Tipler’s classification [1074] since the areal radius � D a QrA
qC2ı�1

2

2 vanishes
when r D C2. This behavior is in contrast with the Schwarzschild solution of GR
corresponding to ı D 0 and � D Qr D 4C2 at r D C2.

Let us focus on the second root of Eq. (4.121), i.e., H 2�2 D C 2A
qC1
2 or

H� D ˙
�
1C 2.q C 2ı � 1/

q

C2a

�
A

2ı�1�q
2

2

�
A

qC1
2

2 ; (4.123)

where the positive sign is appropriate to an expanding universe. In the limit ı � 1

it is

H� D
�
1C 2ıC2a

�
A
�.1� 3ı

2 /
2

�
A1�ı2 : (4.124)

Two limits can be studied in order to understand the properties of this solution.
First, as C2 ! 0 the central object disappears and the solution reduces to a FLRW
universe while r D Qr and � become a comoving radius and a proper radius, respec-
tively. Moreover, Eq. (4.123) reduces toH� D 1 which has the solution �c D 1=H ,
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the radius of the cosmological horizon. The second limit is the limit to GR ı ! 0,
in which Eq. (4.123) becomes A2 D 0 or r D C2 with H � 0.

Equations (4.108) and (4.111) then allow one to compute the left hand side of
Eq. (4.123) as

HR D ı .1C 2ı/

1 � ı t
2ı2

C2ı�1
1�ı

C2

x

.1 � x/ qC2ı�1
q

.1C x/
�qC2ı�1

q

; (4.125)

where x � C2=r . The right hand side of Eq. (4.123) is

.1 � x/ qC1
q

.1C x/
qC1

q

�
1C 2 .q C 2ı � 1/

q

x

.1 � x/2

�
; (4.126)

and Eq. (4.123) assumes the form

�
t

1�2ı�2ı2

1�ı

��1
D .1 � ı/
ı .1C 2ı/ C2

x .1C x/
�2qC2ı�2

q

.1 � x/ 2.ı�1/
q

	
�
1C 2 .q C 2ı � 1/

q

x

.1 � x/2

�
; (4.127)

where
1 � 2ı � 2ı2

1 � ı
is positive for 0 < ı <

p
3 � 1
2

' 0:366.

At late times the left hand side of Eq. (4.127) vanishes, implying that x ' 0

and that there is a unique root or apparent horizon. This unique late-time horizon is
identified as a cosmological horizon: in fact, r ! 1 as x D C2=r ! 0. The limit
x ! 0 can also be obtained when the parameter C2 ! 0 , in which case H� ! 1

and

r ' � ' H�1 D 1 � ı
ı .1C 2ı/

t (4.128)

is the radius of the cosmological horizon of the FLRW space without any central
inhomogeneity. Only a cosmological apparent horizon and no black hole apparent
horizons are present at late times, which means that the central singularity at � D 0

becomes naked in the late-time development of this universe.
Using the quantity x as a parameter, the time t and the radius � of the apparent

horizons are [445]

t.x/ D
(

.1 � ı/

ı .1C 2ı/C2

x .1C x/
2.�qCı�1/

q

.1 � x/ 2.ı�1/
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�) 1�ı
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(4.129)

�.x/ D t.x/
ı.1C2ı/

1�ı
C2

x
.1 � x/

qC2ı�1
q .1C x/

q�2ıC1
q : (4.130)
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Fig. 4.1 The radius � of the
apparent horizon as a
function of time. Two inner
horizons form after the Big
Bang, cover the � D 0

singularity for a finite period
of time, and then merge and
disappear. A third horizon of
cosmological nature
represented by the upper
branch of the curve keeps
expanding. The parameter
values used are C2 D 1 and
ı D 0:2.
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Figure 4.1 shows � as a function of time. In this universe, two inner horizons develop
after the Big Bang and they cover the � D 0 singularity. At a later time these appar-
ent horizons become closer and finally merge and disappear. In the meantime a third
horizon of cosmological nature keeps expanding. The � D 0 singularity becomes
naked when the two inner apparent horizons disappear.

4.2 Spherical symmetry in scalar-tensor gravity

In the following we present spherically symmetric solutions of scalar-tensor gravity,
beginning with Brans-Dicke theory and with static solutions. While it is relatively
easy to find static solutions, it is considerably more difficult to find time-dependent
solutions even under the assumption of spherical symmetry. Some of these are pre-
sented, although their precise significance is still uncertain – this is the case also for
their counterparts in Einstein’s theory.

4.2.1 Static solutions of Brans-Dicke theory

The first spherically symmetric vacuum solutions of (Jordan frame) Brans-Dicke
theory to be found were those forming the so-called Brans class I and given by
[164]
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ds2 D �
�
1 � �=r

1C �=r

�2=	
dt2 C
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1C �=r

� 2.��C �2/
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(4.131)

�.r/ D �0

�
1 � �=r
1C �=r

�C=	
; (4.132)

in isotropic coordinates, where �;C; �0, and � are constants with

�2 D .C C 1/2 � C

�
1 � !C

2

�
> 0 : (4.133)

These solutions are static and spherically symmetric, but different from the
Schwarzschild metric. They solve the vacuum Brans-Dicke field equations with
V.�/ D 0 for r > �. Three other classes of spherically symmetric solutions were
found by Brans [164], although they are not all independent from each other [134].
Usually, only positive values of the parameters C and � occur in the literature and,
for these, the scalar field diverges at the horizon (when this is present).

Various choices of the constant C are possible, giving rise to a two-parameter
family of solutions (assuming that ! is already fixed). The values of these parame-
ters are not completely arbitrary, for example, the requirement that the tensor mass
be positive restricts the parameter space [117]. For certain values of the parameter
C the solution (4.131) and (4.132) does not reduce to the Schwarzschild solution
when ! ! 1, while the scalar field � exhibits the asymptotic behavior

� D �0 C O

�
1p
!

�
(4.134)

instead of the expected scaling (see, e.g., [1153])

� D �0 C O

�
1

!

�
(4.135)

as ! ! C1 [75, 780, 976]. This issue is not unique to this specific family of so-
lutions but is more general. The problem of the correct limit of Brans-Dicke theory
and its solutions to GR occurs mostly when the matter source has vanishing trace
T .m/ D 0 and it has not been completely elucidated, although some insight has been
gained over the years [43, 75, 292, 293, 451, 454, 780, 885, 886, 944, 946–948, 976].
In general, the limit of a spacetime when one or more parameters vary may turn
out to be ill-defined even in GR because it could depend on the coordinate sys-
tem adopted and therefore it could be non-unique [535]. For example, the limit of
the Schwarzschild solution as the mass parameter diverges is either the Minkowski
space or a Kasner space [535]. A coordinate-independent approach to the limit of
GR spacetimes based on the Cartan scalars has been developed in [885] and applied
to the ! ! 1 limit of Brans-Dicke theory in [886]. It was found that the limit
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of Brans-Dicke solutions to GR solutions corresponding to the same stress-energy
tensor is not unique, or it may not yield a GR solution at all [886].

In addition to the Brans metric (4.131), other exact solutions of Brans-Dicke
theory which are static and asymptotically flat are known.

Several vacuum solutions of scalar-tensor gravity were generated from Brans-
Dicke solutions in [1104]. Solutions of Barker’s theory were found in [403, 921].
Barker’s theory corresponds to the choice

!.�/ D 4 � 3G0�

2 .G0� � 1/ : (4.136)

of the Brans-Dicke coupling function, which makes the effective gravitational cou-
pling for spherically symmetric solutions [856]

Geff D 2 .! C 2/

2! C 3

1

�
: (4.137)

a constant even though the scalar � is dynamical.
Since the Brans-Dicke-like scalar � couples to the trace of the matter energy-

momentum tensor, it is not sourced by conformally invariant matter, which plays a
special role. Many electro-vacuum solutions were discovered in [72,73,928]. Other
electro-vacuum, static, asymptotically flat solutions in the Jordan frame were found
in [192, 925].

4.2.2 Dynamical and asymptotically FLRW solutions

An intriguing type of solutions is that interpreted as a black hole embedded in a
cosmological background. The search for such solutions in the context of GR was
originally motivated by the need to understand the effect of the cosmological ex-
pansion on local systems (a problem that is not yet completely closed, see [268] for
a review), and led to the McVittie solution of the Einstein equations [789]. Several
recent solutions of these equations describing exact spherically symmetric cosmo-
logical black holes are still poorly understood. In the context of scalar-tensor gravity
there is the possibility that the effective gravitational coupling be space-dependent,
i.e., that gravity can be stronger or weaker inside inhomogeneities in the matter
distribution. This possibility has led to the study of exact solutions describing inho-
mogeneities in a FLRW universe, which are taken to be spherically symmetric for
simplicity. An example is the class of separable metrics found by Clifton, Mota and
Barrow [328]

ds2 D �A2k.r/dt2 C a2.t/

�
1C C

2kr

�4
A

2.k�1/.kC2/
k .r/

�
dr2 C r2d˝2

2

�
;

(4.138)
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A.r/ D 1 � C
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2kr
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k D
s
2 .! C 2/

2! C 3
(4.142)

in isotropic coordinates, whereC; a0; t0, and �0 are constants and the matter content
of the universe outside the spherical inhomogeneity is a perfect fluid with constant
equation of state P D .� � 1/ �. The energy density is

� .t; r/ D �0

�
a0

a.t/

�3�  1 � C
2kr

1C C
2kr

!�2k
: (4.143)

The power-law dependence of the scale factor a.t/ on the time coordinate t is the
same as the one that would occur in a FLRW universe without inhomogeneities
[328].

Other solutions representing spherically symmetric inhomogeneities in an oth-
erwise spatially homogeneous and isotropic universe in scalar-tensor gravity are
obtained by mapping back from the Einstein frame to the Jordan frame certain ex-
act solutions of GR representing cosmological black holes embedded in a FLRW
background filled by a minimally coupled scalar field [328], matching FLRW re-
gions [328]. There are also Swiss-cheese models [959] and Lemaitre-Tolman-Bondi
models [573].

4.2.3 Collapse to black holes in scalar-tensor theory

We will see below that, according to a theorem by Hawking4 [581] and other results
[645], all static or stationary black hole solutions of Brans-Dicke theory coincide
with those of GR provided that the (Jordan frame) Brans-Dicke scalar does not
vanish or diverge on the event horizon [210, 752]. Similar results exist for more
general scalar-tensor theories, such as that of a scalar field non-minimally coupled

4 Hawking’s theorem, which is proved for a Brans-Dicke scalar � without potential, is immediately
extended to the case in which it has a quadratic potential V .�/D m2�2=2 [969].
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to the Ricci curvature [782, 953, 1168]. In the situation in which the Brans-Dicke
scalar � vanishes on the horizon (“cold black holes”) the Hawking temperature is
believed to vanish, while it should diverge when � ! 1 on the horizon.

Assuming that gravitational collapse does not lead to a naked singularity (which
seems to be a non-generic outcome in GR [1137] but should be checked in alterna-
tive gravities), the final state should presumably be a stationary (Kerr-Newman)
black hole. However, it is still possible that a highly dynamical situation such
as gravitational collapse leads to stationary black holes with Brans-Dicke scalar
vanishing/diverging at the horizon, or that starting out with the assumption of sta-
tionarity somehow restricts one to considering eternal black holes which cannot be
generated during collapse (it has been suggested that this could be the case for ex-
tremal black holes in GR). It is therefore important to check explicitly the outcome
of collapse in Brans-Dicke theory, which has been done numerically by Scheel,
Shapiro, and Teukolsky [975, 976] following early work by Matsuda and Nariai
[781]. In [975,976] the Oppenheimer-Snyder collapse of dust in spherical symmetry
is studied numerically for Brans-Dicke theory in the Jordan frame and without scalar
field potential. It is found that during the collapse there are significant deviations
from GR: the apparent horizon area decreases, violating the second law of black
hole mechanics which states that the horizon area cannot decrease [582, 1139], and
the apparent horizon crosses outside the event horizon. This behavior is attributed to
the violation of the null energy condition by the Brans-Dicke scalar field regarded
as an effective form of matter in the field equations, which can be rewritten as ef-
fective Einstein equations. However, once scalar radiation has been radiated away
and these “transients” have decayed, the final state is found to be the Schwarzschild
black hole [975, 976]. This result is in agreement with Hawking’s theorem, a sug-
gestion by Penrose [899], a study by Thorne and Dykla based on an expansion in
powers of !�1 [1073] in which the background is GR, and with previous numeri-
cal work by Shibata, Nakao, and Nakamura [1011]. All these studies suggest that
the final state should be a Kerr (for cylindrical symmetry) or a Schwarzschild (for
spherical symmetry) black hole.5 Further numerical studies by Harada and collab-
orators [572] focussed on the emission of scalar gravitational waves, while Novak
used a perfect fluid with pressure and paid particular attention to the phenomenon of
scalarization (the possibility, analogous to magnetization, that the scalar field could
peak at anomalously large amplitudes) [857].

The phenomenology found by Scheel, Shapiro and Teukolsky during the dynam-
ical phases of the collapse is recovered by Kerimo and Kalligas [665] and Kerimo
[664], who studied numerically the collapse of a dust in a tensor-two-scalar theory
with massless scalars � and  forming a �-model and ! D !.�; /, in the pres-
ence of spherical symmetry. The deviations from GR are enhanced due to the extra
freedom in the coupling function !.�; /.

5 These studies, however, assume from the outset that the collapse does not result in a naked sin-
gularity or in a solution that does not reduce to a GR one in the ! ! 1 limit [976], and such
solutions do exist in scalar-tensor gravity.



4.3 The Jebsen-Birkhoff theorem 139

More recent work has shown that GR black holes in their quiescent state are
essentially indistinguishable from solutions of a wide variety of gravity theories
containing additional vector and tensor true degrees of freedom [915], although per-
turbations of black hole spacetimes can reveal the differences between these theories
and GR [77].

4.3 The Jebsen-Birkhoff theorem

Spherically symmetric solutions are important to understand the weak-field limit of
ETGs and to confront them with Solar System experiments (after all, the three clas-
sical tests of GR are based on the spherical Schwarzschild solution) and one would
like to know which static solutions are generic. One of the first questions that arises
when comparing alternative gravity with GR is whether the Jebsen-Birkhoff theo-
rem well known from spherical symmetry in Einstein’s theory can be generalized,
or fails, in these extensions of GR [463].

Beginners in GR are familiar with the Birkhoff theorem stating that a spher-
ically symmetric solution of the vacuum Einstein equations is necessarily static
[142]. This result was actually discovered by Jebsen [638] two years before Birkhoff
[374,375,642]. The Jebsen-Birkhoff theorem fails to extend to metric f .R/ gravity
while it holds in Palatini f .R/ gravity [1033]. Since both metric and Palatini f .R/
gravities can be represented as Brans-Dicke theories with a potential, understand-
ing the Jebsen-Birkhoff theorem in scalar-tensor gravity allows for its understanding
also in f .R/ gravity, therefore we begin with scalar-tensor theories. Since the Brans-
Dicke-like scalar is often treated as an effective form of matter for effective Einstein
equations, we first formulate a generalized Jebsen-Birkhoff theorem in the presence
of matter in GR and conveniently transfer the results to spherical symmetry in scalar-
tensor gravity, using both the Jordan and the Einstein frames [463]. In this section
the cosmological constant, if present, is regarded as an effective form of matter de-
scribed by the stress-energy tensor T .
/�� D � 


8�G
g�� and “vacuum” implies that

� D 0.

4.3.1 The Jebsen-Birkhoff theorem of GR

The most general spherically symmetric line element is6

ds2 D �A2.t; r/dt2 C B2.t; r/dr2 C r2d˝2
2 ; (4.144)

6 For convenience we use here a notation which is different from the one of the previous sections.
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with r an areal radius. The metric components g0i (i D 1; 2; 3), if present, can be
eliminated by redefining the coordinates t and r [638,705]. The .0; 1/ ; .0; 0/ ; .1; 1/,
.2; 2/, and .3; 3/ components of the Einstein equations yield

PB
B

D 4�Gr T
.m/
01 ; (4.145)

1
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where T .m/�� is the matter energy-momentum tensor and, in this section, a prime and
an overdot denote differentiation with respect to r and t , respectively.

4.3.2 The non-vacuum case

Consider a timelike observer with four-velocity u� D �
A�1; 0; 0; 0

�
at rest in the

coordinate system .t; r; �; '/. The matter energy density relative to this observer is

� � T .m/�� u�u� D T
.m/
00

A2
; (4.150)

while the radial energy current relative to this observer is

J.r/ � �T .m/�� u� e�.r/ D T
.m/
01

AB
(4.151)

(with e�
.r/

D �
0; B�1; 0; 0

�
the spacelike unit vector in the radial direction), and the

radial pressure is

P.r/ � T .m/�� e
�

.r/
e�.r/ D T

.m/
11

B2
: (4.152)
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The non-radial stresses T .m/ij with i ¤ j (i; j D 1; 2; 3) vanish because of the Ein-
stein equations in conjunction with the vanishing of the componentsGij with i ¤ j

in spherical symmetry. Equations (4.148) and (4.149) imply that
T
.m/
33

sin2 �
D T

.m/
22 .

The Einstein equations require that the matter distribution be spherically sym-
metric and the derivatives of �; J.r/, and P.r/ with respect to � and ' vanish.

A spherically symmetric T .m/�� is said to describe a static matter distribution if and
only if

@�

@t
D Au�r�� D 0 ;

@P.r/

@t
D Au�r�P.r/ D 0 ; J.r/ D 0 : (4.153)

This is equivalent to requiring that the Lie derivatives of T .m/�� along the directions
of the two Killing vectors t� (timelike) and  � (spacelike) vanish [980, 981].

Equation (4.145) with the assumption T .m/01 D 0 guarantees that PB D 0 and
B D B.r/. Then Eq. (4.147) with the assumption @P.r/=@t D 0 implies that A0=A
is time-independent. It could still be possible for A to depend on time through a
multiplicative factor, A.t; r/ D f .t/a.r/, but in this case a redefinition of the time
coordinate t ! Nt with d Nt � f .t/dt absorbs the factor f .t/ into Nt and the metric
can be written in locally static form. Then the Einstein equations (4.148) and (4.149)
imply that also T .m/22 and T .m/33 and the tangential pressures

P.�/ � T .m/�� e
�

�
e�.�/ D T

.m/
22

r2

D P.'/ � T .m/�� e
�

.'/
e�.'/ D T

.m/
33

r2 sin2 �
(4.154)

vanish (here e�
.�/

and e�
.'/

are spacelike unit vectors in the angular directions). This
result leads [463] to the

Jebsen-Birkhoff theorem (version 1): If a solution of the Einstein equations

is spherically symmetric and the matter distribution is static (i.e., @�
@t

D @P.r/

@t
D 0

and J.r/ D 0), then the metric is static in a region in which t is timelike and .r; �; '/
are spacelike.

The theorem is necessarily restricted to the region of the spacetime manifold in
which the coordinates maintain their timelike or spacelike character, as originally
remarked by Ehlers and Krasinski [413]. This restriction is not satisfied, for ex-
ample, in the region inside the Schwarzschild black hole horizon or outside the de
Sitter cosmological horizon, where these metrics are time-dependent. In Ehlers and
Krasinki’s words [413], “a spherically symmetric solution admits, besides the SO(3)
generators, an additional hypersurface-orthogonal Killing vector field” (see also
[511, 980, 981, 1053] for discussions of the local character of the Jebsen-Birkhoff
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theorem). The metric can be put in static form only where this additional Killing
field stays timelike, which excludes black hole horizons where it vanishes. The
theorem does not contemplate black hole horizons and does not imply that the solu-
tion of the Einstein equations is the Schwarzschild metric.

Vacuum is trivially static and gives rise to the familiar version of the Jebsen-
Birkhoff theorem. The assumptions made on the matter distribution described by
T
.m/
�� are fairly strong because this tensor contains the metric g�� and the as-

sumptions on T .m/�� require already, indirectly that the metric is static. However,
the assumption of a static matter distribution still allows for physically non-trivial
situations. One example is that of a cosmological constant seen as a form of effec-
tive matter described by T .
/�� , which is spherically symmetric and static. In this
case the GR solution is the Schwarzschild-(anti)de Sitter one. For example, the
Schwarschild-de Sitter (or Kottler) line element admits the locally static form

ds2 D �
�
1 � 2GM

r
� �r2

3

�
dt2

C
�
1 � 2GM

r
� �r2

3

��1
dr2 C r2d˝2

2 (4.155)

in the spacetime region comprised between the black hole and the cosmological
horizons. Another non-trivial example is electro-vacuum [365]; the solution with a
static electric chargeQ and no current is the static Reissner-Nordstrom metric

ds2 D �
�
1 � 2GM

r
C Q2

r2

�
dt2

C
�
1 � 2GM

r
C Q2

r2

��1
dr2 C r2d˝2

2 : (4.156)

The absence of a radial energy current, J.r/ D 0, without the assumption of
staticity of � and P.r/ is not sufficient to guarantee time-independence of the metric.
As a counterexample consider the McVittie solution describing a spherical ob-
ject embedded in a cosmological background [789] for which J.r/ D 0 and the
metric is time-dependent (except for the special case in which it reduces to the
Schwarzschild-(anti)de Sitter metric).

Version 1 of the Jebsen-Birkhoff theorem is more useful for the discussion of
spherical symmetry in scalar-tensor gravity than the familiar textbook version be-
cause the Brans-Dicke-like scalar field acts as an effective form of matter [463].

4.3.3 The vacuum case

If vacuum (T .m/�� D 0) is regarded as a trivial form of static matter, the Jebsen-
Birkhoff theorem reduces to the familiar version
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Jebsen-Birkhoff theorem (version 2): a spherically symmetric solution of the
vacuum Einstein equations is necessarily static in a region in which t is timelike
and .r; �; '/ are spacelike.

“Vacuum” rules out the possibility of a cosmological constant and electro-vacuum,
and the Schwarzschild-(anti)de Sitter and Reissner-Nordstrom solutions: then the
solution of the Einstein equations must necessarily be the Schwarzschild metric.

“Vacuum”, defined by T .m/�� D 0 is not necessarily a trivial configuration in
alternative gravity. In scalar-tensor theories the Brans-Dicke-like scalar field � de-
scribing the gravitational field together with the tensor g�� may be dynamical and

still conspire to give a zero effective stress-energy tensor T .
/�� ; then � is called a
“non-gravitating” or “stealth” scalar field. Two examples of massive stealth � waves
coupled non-minimally to the Ricci curvature and with a power-law potential were
found in [61], with a Minkowski metric providing a non-trivial realization of ver-
sion 2 of the Jebsen-Birkhoff theorem. Other examples of non-gravitating matter
distributions are given in [62, 74, 371, 943, 1022]. At present, it is not clear whether
these rather exotic solutions are stable, although there are indications that they may
be [475].

From the physical point of view, the field content of GR consists only of a
massless spin two field and the lowest order gravitational radiation is quadrupole.
A spherically symmetric source cannot emit gravitational radiation and its mass-
energy is conserved, therefore the spacetime around a spherically symmetric source
must be static.

A well known corollary of the Jebsen-Birkhoff theorem is the extension to GR of
Newton’s iron sphere theorem stating that the gravitational field due to a spherically
symmetric distribution of mass inside a spherical cavity vanishes. In spherical sym-
metry, if the energy distribution inside a cavity is static, the solution of the Einstein
equations will be static, being flat space (the Schwarzschild solution with zero mass)
in vacuo and the (anti-)de Sitter metric in the presence of a cosmological constant.

4.3.4 The Jebsen-Birkhoff theorem in scalar-tensor gravity

The validity of the Jebsen-Birkhoff theorem was investigated early on in Jordan
[649] and Brans-Dicke theories [404,699,879,927,929–931,995,1016–1018,1112]
and it was quickly found that, in general, it is not valid. In order for the theorem
to hold it is necessary to impose that the effective stress-energy tensor T .
/�� of
the Brans-Dicke-like scalar is time-independent.7 The fact that the theorem fails
in the presence of time-dependent scalars opens the door for new scalar-tensor phe-
nomenology. Physically, it is expected that the Jebsen-Birkhoff theorem must be

7 In addition to the obvious way of satisfying this requirement by imposing that � is time-
independent, also stealth scalar fields [61, 62, 74, 371, 943] satisfy it.
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abandoned in scalar-tensor gravity because of the new spin zero degree of free-
dom that occurs in scalar-tensor gravity, which allows for scalar monopole and
dipole radiation. In Einstein’s theory monopole and dipole radiation are forbidden
because the gravitational field is described only by a spin two field which admits
only quadrupole, or higher multipole, radiation. Since in GR spherically symmet-
ric pulsating sources cannot generate gravitational waves, a spherically symmetric
metric must be static. This is no longer true in scalar-tensor gravity, in which the
time-varying monopole moment of a radially pulsating spherical source generates
scalar waves which transfer energy and make the metric time-dependent.

Consider the scalar-tensor action

SST D 1

16�

Z
d 4x

p�g
�
�R � !.�/

�
g��r�� r�� � V.�/

�
C S .m/ (4.157)

and the corresponding field equations

R�� � 1

2
g��R D 8�

�
T .m/�� C !.�/

�2

�
r��r�� � 1

2
g��r˛�r˛�

�

C 1

�

�r�r�� � g����
� � V.�/

2�
g�� � 8�

�

�
T .m/�� C T .
/��



;

(4.158)

.2! C 3/�� D 8�T .m/ � d!

d�
r˛�r˛� C �

dV

d�
� 2V ; (4.159)

written in the form of effective Einstein equations with the scalar field � acting as
an effective form of matter (we assume � > 0 and ! > �3=2 in the following).
By imposing that the matter stress-energy tensor T .m/�� vanishes, only the effective

stress-energy tensor T .
/�� is left, in which T .
/00 could depend on time and T .
/0i

can be non-vanishing if � is time-dependent, spoiling the Jebsen-Birkhoff theorem.
The validity of the theorem is restored only upon the assumption that � is time-
independent or does not gravitate (T .
/�� D 0).

4.3.5 The trivial case � D constant

In the trivial situation � D const. � �0 > 0, Eq. (4.158) becomes

R�� � 1

2
g��R D 8�

�0
T .m/�� � V0

2�0
g�� ; (4.160)

where V0 � V.�0/. The theory reduces to GR with the cosmological constant� �
V0=.2�0/. If T .m/�� is such that the energy distribution is static (including T .m/�� D 0),
then version 1 of the Jebsen-Birkhoff theorem applies and the metric is static in the
region in which the coordinate gradients do not change their causal character.
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4.3.6 Static non-constant Brans-Dicke-like field

Assume that the spherically symmetric solution of the field equations (4.158) and
(4.159) has line element (4.144). Then the only non-vanishing Christoffel symbols
are

� 000 D
PA
A
; � 001 D � 010 D A0

A
; � 011 D B PB

A2
; (4.161)

� 100 D AA0

B2
; � 101 D � 110 D

PB
B
; � 111 D B 0

B
; (4.162)

� 122 D � r

B2
; � 133 D � r

B2
sin2 � ; (4.163)

� 212 D � 221 D 1

r
; � 233 D � sin � cos � ; (4.164)

� 313 D � 331 D 1

r
; � 323 D � 332 D cos �

sin �
; (4.165)

and

r˛�r˛� D �
P�2
A2

C �02

B2
; (4.166)

while the d’Alembertian of the scalar � is

�� D � 1

A2

 
R� �

PA
A

P� � AA0

B2
�0
!

C 1

B2

 

�00 � B PB
A2

P� � B 0

B
�0
!

C 2�0

rB2
:

(4.167)

The .0; 1/ ; .0; 0/, and .1; 1/ components of the field equations (4.158) yield

2 PB
Br

D 8�

�
T
.m/
01 C !

P��0
�2

C 1

�

 
P�0 � A0

A
P� �

PB
B
�0
!

; (4.168)

A2
�
1

r2
C 2B 0

B3r
� 1

B2r2

�
D 8�

�
T
.m/
00 C !

2�2

�
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�02
�
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�0C 2�0
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;

(4.169)

2A0
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� B2
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C 1
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D 8�

�
T
.m/
11 C !
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�
�02 C B2

A2
P�2
�

C B2
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A

P� � AA0

B2
�0 � 2A2

B2r
�0
!

� VB2

2�
:

(4.170)
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In the absence of radial energy currents (T .m/01 D 0) and assuming that � D �.r/

only, Eq. (4.168) yields
PB
B

�
2

r
C �0

�

�
D 0 ; (4.171)

hence either PB D 0 or �.r/ D C=r2, where C > 0 is a constant. If � D C=r2

Eq. (4.169) implies that B2 D 2C .2! C 3/

2C C V r4
in vacuo and B D B.r/; in both cases

we reduce to PB D 0, and we confine our attention to this situation from now on.
Equation (4.170) becomes

A0

A

�
2

r
C �0

�

�
D 8�

�
T
.m/
11 C B2 � 1

r2
C !

�
�0

�

�2
� 2

r

�0

�
� B2V

2�
: (4.172)

If @T .m/11 =@t D 0 the right hand side is time-independent andA can depend from t at
most through a multiplicative factor, A.t; r/ D f .t/a.r/. Then the time-dependent
factor can be absorbed by a redefinition of the time coordinate d Nt D f .t/dt and the
metric assumes the locally static form while the other field equations imply that the
radial pressures T .m/i i (i D 1; 2; 3) are also static.

The fact that the scalar field � needs to be static (or non-gravitating) in order
to restore the Jebsen-Birkhoff theorem was established for particular scalar-tensor
theories. Early on, Schücking [995] derived the result for Jordan’s theory, Reddy
[930] did it for the electro-vacuum case of the Sen-Dunn theory (Sen-Dunn grav-
ity [1005] is a scalar-tensor theory in which the second derivative terms r�r�� �
g���� in the effective stress-energy tensor of � vanish identically) and for the con-
formally coupled scalar field [927]. Electro-vacuum Sen-Dunn gravity was revisited
in [404] and errors corrected in [699], while the conformally coupled situation was
reconsidered in [1017]. Electro-vacuum in more general scalar-tensor theories was
studied by Venkateswarlu and Reddy [1112].

In the light of the discussion above, the Jebsen-Birkhoff theorem turns out to
be not very interesting in scalar-tensor gravity because it is valid only under con-
ditions that seem too restrictive. When the Brans-Dicke-like scalar is static but not
constant, the solution of the field equations can be different from Schwarzschild-
(anti)de Sitter. If this field is constant the theory reduces to GR and the familiar
Jebsen-Birkhoff theorem holds together with its iron sphere corollary (the spheri-
cally symmetric solution inside an empty cavity is static if the scalar field � is static
or non-gravitating).

4.3.7 The Jebsen-Birkhoff theorem in Einstein frame
scalar-tensor gravity

Let us now examine the Einstein frame description of scalar-tensor gravity. We re-
call, for the reader’s benefit, the conformal transformation of the metric and the
redefinition of the scalar field
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g�� ! Qg�� D ˝2 g�� ; ˝ D p
G� ; (4.173)

d Q� D
r

j2!.�/C 3j
16�G

d�

�
(4.174)

for ! ¤ �3=2. The scalar-tensor action (4.157) becomes

SST D
Z
d 4x

p� Qg
" QR
16�G

� 1

2
Qg�� Qr� Q� Qr� Q� � U. Q�/C L .m/

.G�/2

#

; (4.175)

with the tilde denoting rescaled quantities as usual and

U
� Q�� D V

	
�. Q�/


	
G�. Q�/
2

: (4.176)

The Einstein frame field equations are

QR�� � 1

2
Qg�� QR D 8�G

.G�/2
T .m/�� C 8�G QT . Q
/�� ; (4.177)

Q� Q� � dU

d Q� D 8�GT .m/

.G�/2
: (4.178)

Here

QT . Q
/�� D Qr� Q� Qr� Q� � 1

2
Qg�� Qg˛ˇ Qr˛ Q� Qrˇ Q� � U

� Q��

2
Qg�� (4.179)

is the canonical stress-energy tensor for a scalar field minimally coupled with the

Ricci curvature and satisfies the weak energy condition if V � 0. If the metric g��
has the spherically symmetric form (4.144) also the rescaled metric Qg�� has the
same form with ˝ D ˝.�/ D ˝.t; r/.

As discussed previously in this book, the Jordan and the Einstein conformal
frames are physically equivalent representations at the classical level [392,473,495]
as long as the conformal transformation remains well-defined, hence the previous
discussion of the Jebsen-Birkhoff theorem should be easily recovered in the Einstein
frame. The Einstein frame scalar field Q� can only be constant if its Jordan frame
counterpart � is constant; in this case one obtains, in the Einstein frame, the equa-
tions of motion of GR which include a cosmological constant term if U. Q�/ ¤ 0

(or, equivalently, V.�/ ¤ 0, cf. Eq. (4.176)), and version 1 of the Jebsen-Birkhoff
theorem is valid.

If instead � ¤ const. but � is independent of the time coordinate, then˝ D ˝.r/

and Q� given by Eq. (4.174) is also static and, introducing the rescaled four-velocity

Qu� D u�

˝
D � QA�1; 0; 0; 0; �, the Einstein frame quantities are
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Q�Œ Q�	 � QT Q.
/�� Qu� Qu� D Q�02
2 QB2 C U

� Q��

2
; (4.180)

QJ.r/Œ Q�	 � � QT Q.
/�� Qu� Qe�.r/ D 0 ; (4.181)

QP.r/Œ Q�	 � QT Q.
/�� Qe�
.r/

Qe�.r/ D
Q�02
2 QB2 � U. Q�/

2
: (4.182)

By assuming that � is static the effective energy distribution QT . Q
/�� is static and, if

T
.m/
�� is static as well, version 1 of the Jebsen-Birkhoff theorem holds. Then the

spherical solution g�� of the field equations is static in a spacetime region in which
the coordinates maintain their causal character.

In the case ! D �3=2 the field Q� becomes ill-defined but the variables
� Qg�� ; �

�

can still be employed as Einstein frame variables and the action is

S.�3=2/ D
Z
d 4x

p� Qg
" QR
16�G

C 3

2
Qg�� Qr�� Qr�� � V.�/C L .m/

.G�/2

#

;

(4.183)

in which � is a phantom field. Once again, the metric is static only if � and T .m/��

are static and the theory reduces again to GR with a cosmological constant if � is
constant.

The Jordan and Einstein frames are only equivalent when the conformal transfor-
mation is well-defined and this equivalence ceases to hold if � ! 0C or � ! C1,
situations that may occur near a black hole horizon. For example, the black hole
solutions of Brans class I [164], those of Bekenstein [118], and those of Campanelli
and Lousto [210,752] are spherically symmetric and static but not Schwarzschildian.
They apparently contradict a theorem by Hawking which, loosely speaking, states
that stationary black holes in Brans-Dicke theory are the same as those of Einstein’s
theory and whose proof relies on the use of the Einstein frame.

4.3.8 Hawking’s theorem and Jebsen-Birkhoff
in Brans-Dicke gravity

Hawking’s theorem [581] states that a stationary metric containing a black hole is a
solution of the vacuum Brans-Dicke field equations (with V D 0) if and only if it
solves the Einstein equations, and therefore it must be axially symmetric or static.
The theorem is usually quoted as saying that Brans-Dicke black holes are exactly the
same as those of GR. From the mathematical point of view this is an overstatement
and many exact solutions of scalar-tensor gravity describe black holes with a static
scalar field which do not coincide with the Schwarzschild metric. A common feature
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of these solutions is that the scalar field either vanishes or diverges on an event or ap-
parent horizon. Technically, this feature invalidates the proof of Hawking’s theorem,
as shown below. From the physical point of view a vanishing or divergent scalar field
corresponds to a zero or infinite Hawking temperature (see Sect. 4.4 below), which
makes these solutions highly questionable. The most well known example is proba-
bly that of Brans class I solutions (4.131) and (4.132) with divergent scalar � on the
horizon.

Let us consider again the Einstein frame used in the proof of Hawking’s theorem
[581]. Another theorem by Hawking [580] states that a stationary GR black hole
must be axisymmetric and have spherical topology and relies on the null energy
condition. Hawking’s theorem extends this GR result to Brans-Dicke gravity [581]
with the intention to prove that � is static. The advantage of using the Einstein frame
is that the rescaled Brans-Dicke scalar

Q� D
r

j2! C 3j
16�G

ln

�
�

��

�
(4.184)

(where �� is a constant) satisfies the null energy condition. The assumption that
spacetime is stationary then implies that it is also axially symmetric [580] and,
therefore, there exist timelike and spacelike Killing fields t� and  � such that
the Einstein frame scalar Q� is necessarily constant along their orbits, or else these
symmetries are broken. Therefore, @� Q� can only be spacelike or zero outside the
horizon. Consider a four-dimensional volume V bounded by two Cauchy hypersur-
faces S and S 0 at two consecutive instants of time, a portion of the black hole event
horizon, and spatial infinity [581]: the Einstein frame equation of motion (4.178) in
vacuo and with V D 0 becomes Q� Q� D 0. Multiplying this equation by Q�, integrat-
ing over V , and using the Gauss theorem and the identity

Q� Q� Q� D Qr�
� Q� Qr� Q�



� Qr� Q� Qr� Q� ; (4.185)

yields [581]
Z

V

d 4x Qg�� Qr� Q� Qr� Q� D
Z

@V

ds˛
� Q� Qr˛ Q�



: (4.186)

The integral over the boundary @V on the right hand side separates into four contri-
butions,

Z

@V
ds˛

� Q� Qr˛ Q�



D
�Z

S
C
Z

S 0

C
Z

rDC1
C
Z

horizon

�
ds˛

� Q� Qr˛ Q�


: (4.187)

The two portions of the Cauchy hypersurfaces S and S 0 give contributions that
cancel out because they have the same absolute value (due to the time symmetry)
but opposite signs due to the fact that outgoing unit normals have opposite directions
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on these hypersurfaces. There is zero contribution from spatial infinity because Q�
vanishes there. The contribution from the integral over the portion of the horizon
is declared to vanish in [581] because the projection of @� Q� along the null vector
tangent to the horizon (which is a linear combination of t� and  �) vanishes due
to the symmetries. This argument fails when the Einstein frame scalar Q� diverges at
the horizon, which happens if the Jordan frame � either vanishes or diverges there.
In these cases the conformal transformation to the Einstein frame and its variables� Qg�� ; Q�� become ill-defined at the horizon. The proof cannot be completed in the
Jordan frame because � violates the null energy condition [463].

The Jordan frame scalar � in the known solutions which violate the Hawking
theorem is indeed static (which is what [581] intended to prove), but it has a ra-
dial dependence and these solutions do not coincide with the Schwarzschild metric.
These solutions include those of Campanelli and Lousto [210, 752] in Brans-Dicke
theory. If the Brans-Dicke scalar � does not vanish or diverge on the horizon,
Hawking’s theorem applies and the solution is the Schwarzschild metric.

4.3.9 The Jebsen-Birkhoff theorem in f .R/ gravity

The previous results can be easily extended to metric and Palatini f .R/ gravity
using the scalar-tensor representation of these theories.

4.3.9.1 Palatini f .R/ gravity

In the ! D �3=2; V ¤ 0 Brans-Dicke equivalent of Palatini f .R/ gravity in
vacuo, electro-vacuo, or in any region in which the trace T .m/ is constant, the
d’Alembertian disappears from the field equation (4.159), which reduces to

8�GT .m/ C �
dV

d�
� 2V.�/ D 0 : (4.188)

This is no longer a differential equation but is instead algebraic or transcendental.
If Eq. (4.188) has solutions, they are of the form � D const. � �0 and Eq. (4.158)
becomes

R�� � 1

2
g��R D 8�

�0
T .m/�� � V.�0/

2�0
g�� ; (4.189)

describing GR with a cosmological constant � D V.
0/
2
0

. Then the Jebsen-Birkhoff

theorem is valid if the matter distribution described by T .m/�� is static.
The fact, well known in the literature, that the Jebsen-Birkhoff theorem is valid

in Palatini f .R/ gravity with a static matter distribution reflects once again the non-
dynamical nature of the Brans-Dicke scalar in this class of theories.
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4.3.9.2 Metric f .R/ gravity

For metric f .R/ gravity in vacuo the field equation (4.159) is

�� D 1

3

�
�
dV

d�
� 2V.�/

�
; (4.190)

a dynamical PDE. Since � is now dynamical and, in general, time-dependent
the Jebsen-Birkhoff theorem does not hold. Currently, most studies impose that
� D const., which is equivalent to the assumptionR D const. This assumption is, no
doubt, due to the need to simplify calculations and to compare static solutions with
Solar System experiments. However, by so doing, one misses the variety of solutions
with time-dependentR which are certainly more generic than static ones. Moreover,
metric f .R/ theories of current interest for cosmology are designed to produce an
effective time-varying cosmological constant propelling the present acceleration of
the universe without dark energy, and typical solutions are expected to be asymptot-
ically FLRW. This brings us again to the need to understand these solutions, few of
which are known [321,328,445,462,465,468,520,765,783,784,789,859,957,1059]
in GR as well as in ETGs.

4.4 Black hole thermodynamics in extended gravity

Black hole thermodynamics [85, 1138, 1140, 1142] is a milestone of gravitational
physics and, more in general, of 20th century theoretical physics. The discov-
ery by Hawking that black holes emit semiclassical radiation made it possible to
assign a temperature to black holes and it was the missing ingredient that gave
meaning to the entire construction of black hole thermodynamics, making sense
of the notion of entropy and of the laws of black hole thermodynamics. An im-
portant motivation for the development of black hole thermodynamics is the hope
to learn about quantum gravity through the construction of the microscopic statis-
tical mechanics underlying this macroscopic thermodynamics. To summarize (see
[85,1138,1140,1142] for a full treatment), black hole thermodynamics in GR links
the black hole Hawking temperature TH given by KBTH D „�g

2�Kc
(where K and

�g are the Boltzmann constant and the surface gravity of the horizon, respectively),

the entropy SBH D c3A

4„G D A

l2
P l

(where A is the area of the event horizon and

lPl D p„G=c3 is the Planck length), and the internal energy Mc2 (where M is
the black hole mass). In the formulation of [85], black hole thermodynamics for
stationary GR black holes comprises the:

� Zeroth law: the surface gravity �g , and hence the temperature TH of a stationary
black hole are constant on the event horizon.
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� First law: in the thermodynamical transition between stationary states in which
a black hole with mass M , angular momentum J , and chargeQ change, it is

dM D KBTHdSBH C˝HdJ C ˚HdQC ıq ; (4.191)

where ˝H and ˚H are the angular velocity and electrostatic potential on the
horizon, and ıq is the change inM due to a stationary matter distribution outside
the black hole horizon (if present). The first law relates the quantities M;J , and
Q measured at spatial infinity with the local quantities SBH ; TH ; A;˝H , and
˚H on the horizon.

� Second law: in any classical process the horizon area A cannot decrease and
therefore�SBH � 0.

� Third law: it is impossible to reduce the temperature of a black hole to zero by
a finite number of physical processes, or (since TH and �g vanish for extremal
black holes), a non-extremal black hole cannot be made extremal by a finite num-
ber of physical processes in which matter satisfying the weak energy condition
falls into the horizon.

The second law is then extended to include the entropy increase of both the black
hole and matter outside of it (generalized second law [119–121]). The generaliza-
tion of black hole thermodynamics to non-stationary, dynamical black holes was
begun later ([57–59, 161, 838, 1124] and references therein). The phenomenon of
Hawking radiation does not depend on the field equations and hence it is present
in alternative gravity as well and black hole thermodynamics extends to ETGs. If
information about quantum gravity can be learned by studying black hole thermo-
dynamics, it is necessary to understand this subject in extensions of GR given that
quantum corrections, renormalization, and the formulation of effective theories un-
avoidably introduce extra corrections to the Hilbert-Einstein action in the form of
extra fields, higher derivatives, and non-minimal couplings, as seen in Chap. 1. It has
also been pointed out that the stability of black hole thermodynamics with respect
to perturbations of the GR action may help us selecting physically preferred classes
of theories [632].

We have already mentioned the construction of a thermodynamics of spacetime
by Jacobson using local Rindler horizons and assuming the entropy-area relation

SBH D A

4G
[631]. A similar derivation of the field equations using the thermody-

namics of local Rindler horizons has been performed also for metric f .R/ gravity
[419]. Then, f .R/ corrections to the Hilbert-Einstein action seem to describe non-
equilibrium thermodynamics [419] (see also [310, 424]). Similar derivations are
possible also for Lovelock and Gauss-Bonnet gravity [693, 859, 880, 883, 889].

The property of the first law of relating quantities measured at infinity with lo-
cal quantities on the horizon is still valid in alternative theories of gravity [632] but
the expression of the entropy SBH must be changed in these theories, as has been
known for a long time [206, 351, 753, 822, 824, 924, 1127]. Various techniques have
been developed to compute black hole entropy, including Wald’s Noether charge
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method [629, 630, 632, 1127, 1141], field redefinition techniques [632], and the
Euclidean path integral approach [536]. Wald’s Noether charge method is based
on a Lagrangian formulation of the first law and applies to stationary black holes
with bifurcate Killing horizons in any diffeomorphism-invariant theory of gravity
with arbitrary spacetime dimension. The method was applied to Palatini f .R/ grav-
ity, metric modified gravity, and other gravitational theories [170, 184, 1130]. We
now focus on the Bekenstein-Hawking entropy in scalar-tensor and f .R/ gravity,
following [447].

4.4.1 Scalar-tensor gravity

Stimulated by numerical studies showing that the collapse of dust to black holes in
Brans-Dicke theory violates the area law during its dynamical phases [664,665,975,
976], Kang studied black hole entropy in Brans-Dicke theory [662]. He realized that
the area law per se is not problematic but, rather, it is the expression of the entropy-
area relation which must be corrected in Brans-Dicke gravity. The correct expression
of the entropy is

SBH D 1

4

Z

˙

d 2x

q
g.2/ � D �A

4
; (4.192)

where g.2/ is the determinant of the restriction of the metric to the horizon surface˙
and � is, as usual, the Brans-Dicke scalar field. Equation (4.192) is understood by re-
placing the Newton constantG with the effective gravitational couplingGeff D ��1
of Brans-Dicke theory [662]. The quantity SBH turns out to be non-decreasing. The
philosophy of replacing the gravitational coupling with an effective gravitational
coupling determined by rewriting the field equations as effective Einstein equations
and read scalar field or, in f .R/ gravity, geometric terms as effective forms of mat-
ter, is useful also in more general gravitational theories. Equation (4.192) has now
been derived using various procedures [629, 632, 1127].

An alternative viewpoint [662] uses the Einstein frame representation of Brans-
Dicke gravity. The Jordan frame Brans-Dicke action

SBD D
Z
d 4x

p�g
16�

h
�R � !

2
g��r��r�� � V.�/C 16�L .m/

i
(4.193)

assumes the Einstein frame form

SBD D
Z
d 4x

p� Qg
" QR
16�G

� 1

2
Qg�� Qr� Q� Qr� Q� � U. Q�/C L .m/

.G�/2

#

; (4.194)
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with the tilde denoting Einstein frame quantities and U
� Q�� D V.�. Q�//

�
G�. Q�/�2

. A black

hole event horizon, being a null surface, is invariant under the conformal rescaling
but its area is changed and the change in the entropy formula

SBH D A

4G
! A

4Geff
D �A

4
(4.195)

can be understood as the change in the area due to the conformal rescaling of the
metric. To wit, since Qg.2/�� D ˝2 g

.2/
�� , the Einstein frame area is

QA D
Z

˙

d 2x

q
Qg.2/ D

Z

˙

d 2x ˝2

q
g.2/ D G� A (4.196)

using the fact that the scalar field is constant on the horizon, which is necessary
otherwise the surface gravity is not constant on the horizon and the zeroth law does
not hold. Therefore, the relation QSBH D QA=4G is valid also in the Einstein frame.
This is expected because, in vacuo, the theory reduces to GR with varying units of
length Qlu � ˝ lu, time Qtu � ˝ tu, and mass Qmu D ˝�1mu (where tu; lu, and mu

are the constant units of time, length, and mass in the Jordan frame, respectively)
[392] and the unit of area scales as QlA � ˝2 lA D G�lA. Since c and „ do not scale
because of their dimensions, the entropy is dimensionless and is not rescaled, hence
the Jordan frame and Einstein frame entropies coincide [662]. The equality between
Jordan frame and Einstein frame entropies is not limited to scalar-tensor gravity but
extends to all theories with action

R
d 4x

p�g f �g�� ; R�� ; �;r˛�
�

which admit
an Einstein frame representation [680].

We note in passing that the equivalence between Jordan and Einstein frames with
respect to black hole entropies supports the view that these two frames are physically
equivalent. What is more, this equivalence is expected to hold at the classical level
and break down when quantum processes are introduced. However, black hole ther-
modynamics is not purely classical: the phenomenon of Hawking radiation which is
crucial to the understanding of black hole thermodynamics is instead semiclassical
and the physical equivalence between conformal frames with respect to black hole
entropy seems to extend the scope of the conformal transformation technique.

Another point worth making is that, if the scalar field vanishes on the horizon of
a Brans-Dicke black hole, a zero temperature is assigned to it, seemingly violating
the third law. Black holes with vanishing � on the horizon, known as “cold black
holes”, have nevertheless been the subject of several studies [175–179, 210, 698,
752,826,1170,1174]. Similarly, if � diverges on the horizon of a scalar-tensor black
hole, the entropy diverges. Thermodynamics seems to rule out the possibility that
either � ! 1 or � ! 0 as the horizon is approached.

For Brans-Dicke theory with zero scalar field potential, the theorem by Hawking
already discussed [581] states that, unless � vanishes or diverges on the horizon
(in which cases the proof of the theorem becomes invalid), all stationary black holes
are the same as those of GR, in the sense that the scalar � becomes constant outside
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the horizon (then the theory reduces to GR). This theorem explains the result of the
numerical studies of black hole collapse in Brans-Dicke gravity finding GR black
holes as the end product [664,665,975,976]. If cold black holes and black holes with
divergent � on the horizon are discarded as pathological on the basis of thermody-
namics ([170, 670], e.g., advocate the use of thermodynamics to exclude similar
situations), GR black holes are the only possible final state of equilibrium in Brans-
Dicke theory. To date, Hawking’s theorem [581] has not been generalized beyond
Brans-Dicke gravity with a massless scalar field.

4.4.2 Metric modified gravity

The correct expression of the entropy-area relation is, in this case, [19,169,184,331,
547]

SBH D f 0.R/A
4G

(4.197)

This formula is proved by applying the Noether charge method [169, 184, 331].
Again (assuming a D-dimensional static black hole), the only correction required
consists of the replacement of Newton’s constant G with the effective gravitational
coupling which, in this case, is Geff D G=f 0.R/. This apparently heuristic justifica-
tion is supported by the study of Brustein and collaborators [184] who identify Geff

by using the matrix of coefficients of the kinetic terms of metric perturbations [184].
The metric perturbations contributing to the Noether charge in Wald’s formula and
its generalizations are identified with specific polarizations of the metric perturba-
tion associated with fluctuations of the area density on the bifurcation surface ˙ of
the horizon.8 For a theory described by the action

S D
Z
d 4x

p�gL
�
g�� ; R˛ˇ�	;r�R˛ˇ�	; �;r˛�; :::

�
; (4.198)

where � is a gravitational scalar field, the black hole entropy is then

SBH D A

4Geff
: (4.199)

The Noether charge is

SBH D �2�
Z

˙

�
ıL

ıR��ab

�

.0/

O"�� O"�� ; (4.200)

8 The bifurcation surface ˙ is the .D�2/-dimensional spacelike cross-section of a Killing horizon
on which the Killing field vanishes.
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where the subscript .0/ denotes the fact that the quantity in brackets is evaluated on
solutions of the equations of motion and O"�� is the antisymmetric binormal vector
to the bifurcation surface˙ . This binormal satisfies r��� D O"�� on the bifurcation
surface ˙ , where �� is the Killing field vanishing on the horizon. The binormal is
normalized to O"�� O"�� D �2. The effective gravitational coupling then turns out to
be [184]

Geff D �2�
�

ıL

ıR����

�

.0/

O"�� O"�� : (4.201)

For metric modified gravity with L D f .R/, this prescription gives back Geff D
G=f 0.R/ and the entropy (4.197). It is straightforward to see that this calculation is
consistent with the description of metric f .R/ gravity as a scalar-tensor theory con-
taining the massive dynamical degree of freedom f 0.R/, and with the corresponding
Eq. (4.192) derived in scalar-tensor gravity.

4.4.3 Palatini modified gravity

The Noether charge method of Wald was applied to Palatini modified gravity by
Vollick [1130]. The entropy of a static black hole horizon corresponds again to the
Noether charge

SBH D 2�

�g

Z

˙

Q ; (4.202)

where the .D � 2/-form Q is the Noether potential corresponding to spacetime
diffeomorphisms,˙ is the bifurcation surface, and �g is the surface gravity on the
horizon. Vollick [1130] considered the D-dimensional action

SPalatini D
Z
dDx

p�g
�
f .R/

16�G
C L .m/

�
I (4.203)

since Palatini f .R/ gravity in vacuo is equivalent to GR with a cosmological con-
stant, the entropy of a stationary black hole is

SBH D f 0.R/A
4G

: (4.204)

In the presence of matter it is useful to consider again the trace of the field equa-
tions which, as noted above, is an algebraic (or transcendental) equation and not a
differential equation due to the non-dynamical nature of the scalar f 0.R/. When
the trace T .m/ is constant (in particular for conformally invariant matter), the Ricci
curvature R is expressed in terms of T .m/ and eliminated, becoming a constant to-
gether with f 0.R/. The theory reduces again to GR with a cosmological constant
and the effective gravitational coupling of the theory is identified with Geff D G=f 0
[1130].
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Again, the black hole entropy given by the Noether charge is

SBH D A

4Geff
D f 0A

4G
: (4.205)

In the presence of matter with non-constant trace T .m/ the situation is more com-
plicated and the black hole entropy depends on the ratio of the effective gravitational
couplings on the horizon and at spatial infinity:

SBH D f 0̇

f 01
A

4G
; (4.206)

where f 0̇ is the value of f 0.R/ on the horizon and f 01 is the value far away from
the black hole [1130].

4.4.4 Dilaton gravity

Dilaton gravity theories (in both the metric and Palatini formulations) with action

Sdilaton D
Z
dDx

p�g
16�G

f
�
g�� ; R.��/

�
(4.207)

were studied in [184, 1130]. By varying with respect to the metric g�� one obtains
the field equations

@f

@g��
� f

2
g�� D 0 ; (4.208)

while varying with respect to the independent connection � yields

Nr˛
�p�g @f

@R.��/

�
D 0 : (4.209)

In vacuo these equations describe GR with an effective cosmological constant �
appearing in the effective matter tensor @f

@R.	
/
D �g�� [1130].

The effective gravitational coupling isGeff D G=�, and the black hole entropy is

SBH D A

4Geff
D �A

4G
: (4.210)

Before closing this section we mention that also the thermodynamics of cos-
mological horizons has been the subject of several works, at least in metric f .R/
gravity [19, 199–201, 331, 547, 806, 1146]. The Bekenstein-Hawking entropy has
been studied in Lovelock gravity [198, 345, 633, 824, 889], in Gauss-Bonnet theo-
ries [693,880,883,889], and in theories with Lorentz violation. Regarding the latter,
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there are claims that perpetual motion machines of the second kind are made pos-
sible by Lorentz violation ([398], see also [418, 634]) but this unpleasant feature
seems to be impossible in tensor-vector-scalar (TeVeS) theories [954], and the issue
requires further attention. From a general point of view, and putting together the
various works available in the literature, it seems that black hole thermodynamics
can be quite useful to constrain families of ETGs inspired by low-energy quantum
gravity.

4.5 From spherical to axial symmetry: an application
to f .R/ gravity

We now show how it is possible to obtain an axially symmetric solution starting from
a spherically symmetric one, using a method developed by Newman and Janis in
GR [835, 836]. This method can be applied to a static spherically symmetric metric
adopted as a “seed” metric. In principle, the procedure could be applied whenever
Noether symmetries are present. We apply this procedure to solutions of metric
f .R/ gravity [229].

In general, the approach is not straightforward since, if f .R/ ¤ R, the field
equations are of fourth order and the relevant existence theorems and boundary
conditions are different from those of GR. However, the existence of a Noether sym-
metry guarantees the consistency of the chosen f .R/model with the field equations.

Let us consider a spherically symmetric metric of the form

ds2 D �e2
.r/dt2 C e2	.r/dr2 C r2d˝2
2 : (4.211)

Following Newman and Janis, the line element (4.211) can be written in Eddington-
Finkelstein coordinates .u; r; �; '/, i.e., the grr component is eliminated by the
coordinate change and a cross term is introduced [804]. We set dt D du C F.r/dr
with F.r/ D ˙e	.r/�
.r/, turning the line element (4.211) into

ds2 D �e2
.r/du2 
 2 e	.r/�
.r/dudr C r2d˝2
2 : (4.212)

The surface u D constant is a light cone with vertex in r D 0. The inverse metric
tensor in null coordinates is

.g��/ D

0

BB
B
B
B
B
BB
B
@

0 
e�	.r/�
.r/ 0 0


e�	.r/�
.r/ e�2	.r/ 0 0

0 0 1
r2 0

0 0 0 1

r2 sin2 �

1

CC
C
C
C
C
CC
C
A

: (4.213)
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The matrix (4.213) can be written in terms of a null tetrad as

g�� D �l�n� � l�n� Cm� Nm� Cm� Nm� ; (4.214)

where l�, n�, m�, and Nm� satisfy the conditions

l�l
� D m�m

� D n�n
� D 0; l�n

� D �m� Nm� D �1; l�m� D n�m
� D 0;

(4.215)

and where an overbar denotes complex conjugation. At any spatial point, the tetrad
can be chosen in the following manner: l� is the outward null vector tangent to the
light cone, n� is the inward null vector pointing toward the origin, and m� and Nm�
are vectors tangent to the two-dimensional sphere defined by constant r and u. For
the spacetime (4.213), the null tetrad can be chosen as

l� D ı
�
1 ; (4.216)

n� D �1
2

e�2	.r/ ı�1 C e�	.r/�
.r/ ı�0 ; (4.217)

m� D 1p
2 r

�
ı
�
2 C i

sin �
ı
�
3

�
; (4.218)

Nm� D 1p
2 r

�
ı
�
2 � i

sin �
ı
�
3

�
: (4.219)

Now we extend the set of coordinatesx� D .u; r; �; �/ by promoting the real radius
to the role of a complex variable. The null tetrad then becomes9

l� D ı
�
1 ; (4.220)

n� D �1
2

e�2	.r; Nr/ ı�1 C e�	.r; Nr/�
.r; Nr/ ı�0 ; (4.221)

m� D 1p
2 Nr

�
ı
�
2 C i

sin �
ı
�
3

�
; (4.222)

Nm� D 1p
2 r

�
ı
�
2 � i

sin �
ı
�
3

�
: (4.223)

A new metric is obtained by performing the complex coordinate transformation

x� �! Qx� D x� C i y�.x� / ; (4.224)

9 A certain degree of arbitrariness is present in the complexification of the functions � and �.
Obviously, we must recover the metric (4.213) as soon as r D Nr .
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where y� .x� / are analytic functions of the real coordinates x� , and simultaneously
letting the null tetrad Z�a � .l�; n�; m�; Nm�/ with a D 1; 2; 3; 4, undergo the
transformation

Z�a �! QZ�a . Qx� ; NQx� / D Z�a
@ Qx�
@x�

: (4.225)

Obviously, one has to recover the old tetrad and metric as soon as Qx� D NQx� . In
summary, the effect of the “tilde transformation” (4.224) is to generate a new metric
whose components are real functions of complex variables,

g�� �! Qg�� W Qx � Qx 7! R (4.226)

with

QZ�a . Qx� ; NQx� /jxDQx D Z�a .x
� / : (4.227)

For our purposes, we can make the choice

Qx� D x� C ia
�
ı
�
1 � ı

�
0

�
cos � �!

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Qu D u C ia cos � ;

Qr D r � ia cos � ;

Q� D � ;

Q� D � ;

(4.228)

where a is a constant and, with the choice Qr D NQr , the null vectors (4.220)–(4.223)
reduce to

Ql� D ı
�
1 ; (4.229)

Qn� D �1
2

e�2	.Qr;�/ ı�1 C e�	.Qr;�/�
.Qr;�/ ı�0 ; (4.230)

Qm� D 1p
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2 C i
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; (4.231)

NQm� D 1p
2.Qr C ia cos �/

�
�ia.ı�0 � ı

�
1 / sin � C ı

�
2 � i

sin �
ı
�
3

�
: (4.232)

A new metric is recovered from the transformed null tetrad via Eq. (4.214). With
the null vectors (4.229)–(4.232) and the transformation (4.228), the new metric in
coordinates Qx� D .Qu; Qr; �; �/ is
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where˙ D pQr2 C a2 cos2 � . The covariant metric Qg�� is
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(4.234)

The dots in the matrix denote symmetric entries satisfying the metric symmetry
g�� D g��. The form of this metric gives the general result of the Newman-Janis
algorithm starting from any spherical seed metric.

The metric (4.234) can be simplified by a further gauge transformation so that the
only off-diagonal component is g
t . This procedure makes it easier to compare with
the standard Boyer-Lindquist form of the Kerr metric [804] and to interpret physical
properties such as frame dragging. The coordinates Qu and ' can be redefined in such
a way that the metric in the new coordinates has the properties described above.
Explicitly, using

d Qu D dt C g.Qr/d Qr (4.235)

and

d� D d� C h.Qr/d Qr ; (4.236)

where

g.Qr/ D �e	.Qr;�/.˙2 C a2 sin2 �e	.Qr;�/C
.Qr;�//
e
.Qr;�/.˙2 C a2 sin2 �e2	.Qr;�//

; (4.237)

h.Qr/ D � a e2	.Qr;�/

˙2 C a2 sin2 � e2	.Qr;�/
; (4.238)
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after algebraic manipulations the covariant metric (4.234) becomes, in coordinates
.t; Qr; �; �/,

0
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;

(4.239)

where � D � .Qr; �/ and � D � .Qr; �/. This metric represents the complete family
of metrics that may be obtained by performing the Newman-Janis algorithm on any
static spherically symmetric seed metric, written in Boyer-Lindquist coordinates.
These transformations require that˙2 Ca2 sin2 � e2	.Qr;�/ ¤ 0, where e2	.Qr;�/ > 0.
We now show that this approach can be used to derive axially symmetric solutions
also in f .R/ gravity.

Begin with the spherically symmetric solution (4.90), that we rewrite as

ds2 D � .˛ C ˇr/ dt2 C ˇr

2 .˛ C ˇr/
dr2 C r2d˝2

2 ; (4.240)

where ˛ is a combination of ˙0, k, and ˇ D k1 obtained with the Noether ap-
proach. The metric tensor in Eddington-Finkelstein coordinates .u; r; �; �/ of the
form (4.213) is
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The complex null tetrad (4.220)–(4.223) is now

l� D ı
�
1 ; (4.242)
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By computing the complex coordinate transformation (4.228), the null tetrad
becomes

Ql� D ı
�
1 ; (4.245)
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Qm� D 1p
2 . Qr C ia cos �/

�
ia
�
ı
�
0 � ı

�
1

�
sin � C ı

�
2 C i

sin �
ı
�
3

�
: (4.247)

By performing the same procedure as in GR, one derives an axially symmetric
metric of the form (4.239) but starting from the spherically symmetric covariant
metric (4.240),
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(4.248)

where

�1 D a
�
2˛r C 2ˇ˙2 �

p
2ˇ˙3=2



sin2 � ; (4.249)

�2 D a2
�
˛r C ˇ˙2 �

p
2ˇ˙3=2



sin2 � : (4.250)

By setting a D 0, the metric (4.240) is immediately recovered.
The method illustrated by this example is general and can be extended to any

spherically symmetric solution of f .R/ gravity [229].

4.6 Conclusions

Much insight into relativistic theories of gravity has been gained by exploring spher-
ically symmetric solutions. A complication with respect to Einstein’s theory is given
by the fact that the Jebsen-Birkhoff theorem is not valid in general in ETGs. In
scalar-tensor and f .R/ gravity, and presumably also in other theories, in order
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for the spherical solutions of the field equations to be static, one must impose
that the distribution of effective matter corresponding to the geometric terms in
the field equations other than the Einstein tensor is static. This assumption is very
restrictive because, given that theories of current interest for cosmology mimic a
time-dependent cosmological “constant”, one expects generic solutions to be dy-
namical. In general, and with the exception of Palatini f .R/ gravity, even static
solutions of the field equations do not reduce to the Schwarzschild-(anti)de Sitter
metrics familiar from GR (although the latter are usually solutions of the modified
field equations). This fact testifies of the larger variety of solutions allowed in the
ETG when the number of degrees of freedom of GR is enlarged, for example by in-
cluding the massive scalar degree of freedom of metric f .R/ gravity, which appears
because of the fourth (as opposed to second) order of the field equations in this class
of theories.

Overall, studies in the literature have focused on static solutions and we still
have too few examples of truly dynamical exact solutions. The understanding of
time-dependent, spherically symmetric solutions of the field equations of various
ETGs including black holes, as well as the systematic search for their counterparts
in GR together with the understanding of their precise significance, are identified
as open problems of classical gravity. Black hole thermodynamics in ETGs has the
promise of being another fruitful area of research.



Chapter 5
Weak-field limit

The effort to understand the universe is one of the very few
things that lifts human life a little above the level of farce, and
gives it some of the grace of tragedy.
– Steven Weinberg

Astrophysical applications of ETGs include the possibility of replacing dark matter
in galaxy and clusters with modifications of gravity, the weak-field (Newtonian and
post-Newtonian) limit, and gravitational waves. Dark matter at galactic and clus-
ter scales is traditionally included in the realm of cosmology and is discussed in
Chap. 7. Here we focus on the weak-field limit of metric f .R/ gravity, referring the
reader to well known sources for other ETGs. We then discuss gravitational waves
in ETGs.

5.1 The weak-field limit of extended gravity

The weak-field limit of scalar-tensor gravity is discussed in detail in many works
(e.g., [360, 1166, 1167]) and will not be repeated here. Due to the problems with
Palatini f .R/ gravity already discussed, we will also omit the discussion of its
weak-field limit and refer the reader to [1033] and the references therein.

At shorter (galactic and Solar System) spatial scales, ETGs exhibit gravitational
potentials with non-Newtonian corrections. This feature was discovered long ago
[1051], and recent interest arises from the possibility of explaining the flatness of the
rotation curves of spiral galaxies without huge amounts of dark matter. In particular,
the rotation curves of a wide sample of low surface brightness spiral galaxies can be
fitted successfully by the corrected potentials [216,217], and this possibility may be
extended to other types of galaxies [510].

One could attempt to investigate other issues such as, for example, the Pioneer
anomaly [44, 45] with the same approach [130]. A systematic analysis of ETGs at
scales much smaller than the Hubble radius is then necessary. In this section we
discuss the weak-field limit of f .R/ gravity without specifying the form of the
theory and highlighting the differences and similarities with the post-Newtonian
and post-Minkowskian limits of GR. The literature contains conflicting claims
[14,66,96,249,250,252–254,288,325,326,389,409,605,624,816,818,830,831,868,

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics 170,
DOI 10.1007/978-94-007-0165-6 5, c� Springer Science+Business Media B.V. 2011
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871, 950, 1010, 1031, 1036, 1172], and clarity is needed in order to compare theory
and experiment [1035]. Based on the scalar-tensor representation of f .R/ gravity
with1 ! D 0, Chiba [301] originally suggested that all f .R/ theories are ruled out
because of the experimental limit j!j > 40; 000 [133]. While this constraint can be
circumvented by giving the scalar degree of freedom a large mass and, therefore,
making it short-ranged, it seemed that its range must be at least comparable with
the Hubble radius in order to affect the dynamics of the universe. This conclusion
is incorrect because of the chameleon mechanism and the weak-field limit is sub-
tler than it appears, as will be clear below. Solar System experiments constrain the
PPN parameter � , and then the Brans-Dicke parameter !, only when the range of
the scalar degree of freedom is comparable to, or larger than the spatial scale of
the experiment (for the Cassini experiment providing the lower bound on ! [133],
this is the size of the Solar System) [1133]. If the mass of this scalar is large, the
parameter � is close to unity. However, the scalar does not have a fixed range but,
rather, its mass depends on the energy density of its environment, so that this field
becomes short-ranged and is undetectable at small (Solar System) scales, while its
range is cosmological at cosmological densities �. This chameleon mechanism is
widely used in quintessence models of dark energy [666, 667].

Again, a direct approach independent of the equivalence of metric f .R/ and
scalar-tensor gravity is more convincing, and was first formulated for the prototype
model f .R/ D R��4=R (which, at the time, was already ruled out by the Dolgov-
Kawasaki instability [396,460]) in [430]. The weak-field limit for a general function
f .R/ was presented in [306, 641, 869].

Weak-field experiments such as light bending, the perihelion shift of planets,
and frame-dragging experiments are valuable tests of ETGs. There are sufficient
theoretical predictions to state that certain higher order theories of gravity can be
compatible with Newtonian and post-Newtonian experiments [25,253,301,306,326,
430, 459, 641, 849, 1031], as can be shown also by using the scalar-tensor represen-
tation of f .R/ gravity.

In the following we outline a formalism addressing the weak-field and small
velocity limit of fourth order gravity allowing a Jordan frame systematic discus-
sion of these limits and of spherically symmetric solutions [251]. This discussion
is valid also for general higher order theories containing the invariants R��R�� or
R˛ˇ��R

˛ˇ�� [247]. The non-Newtonian corrections in the gravitational potentials
could potentially explain known astrophysical phenomenology.

A preliminary step consists of concentrating on the vacuum case and then build-
ing a Newtonian and post-Newtonian formalism for f .R/ theories in the presence
of matter. It is possible to estimate the post-Newtonian parameter � by considering
second order solutions for the metric components in vacuo. For completeness, we
treat the problem also by imposing the harmonic gauge on the field equations.

1 Although some caution about the equivalence with scalar-tensor theory in the Newtonian and the
GR limits is necessary [459, 650], the equivalence holds in the post-Newtonian limit [461].
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5.2 The Newtonian and post-Newtonian approximations:
general remarks

Certain general features must be taken into account when performing the Newto-
nian and post-Newtonian limits of a relativistic theory of gravity. For a virialized
system of particles of total mass NM interacting gravitationally, the kinetic energy
NM.Nv/2=2 is approximately of the same order of magnitude as the potential energy
U DG NM 2= Nr , where Nr and Nv are typical average values of the separations and ve-
locities of these particles. As a consequence, it is

Nv2 � G NM
Nr (5.1)

(for instance, in Newtonian mechanics, a test particle in a circular orbit of radius r
about a spherically distributed mass M has velocity v given by v2 D GM=r). The
post-Newtonian approximation can be described as a method for obtaining the mo-
tion of the system beyond first (i.e., Newtonian) order with respect to the quantities
G NM= Nr and .Nv/2, which are assumed to be small with respect to the square of the
speed of light c2 (this approximation is an expansion in inverse powers of c).

Typical values of the Newtonian gravitational potentialU in the Solar System are
nowhere larger than 10�5 (the quantity U=c2 is dimensionless). Planetary velocities
satisfy the condition .Nv/2 . U , while2 the matter pressure P inside the Sun and
the planets is much smaller than the energy density �U of matter,3 P=� . U .
Furthermore, one must consider that other forms of energy in the Solar System
(stresses, radiation, thermal energy, etc.) have small magnitudes and their specific
energy density˘ (the ratio of the energy density to the rest mass density) is related
to U by ˘ . U (˘ is approximately 10�5 in the Sun and 10�9 in the Earth [1166,
1167]). One can consider that these quantities, as functions of velocity, give only
second order contributions,

U � v2 � P

�
� ˘ � O(2) ; (5.2)

therefore the velocity v contributes to order O(1), U 2 to order O(4), U v to order
O(3), U˘ is of order O(4), etc. In this approximation, one has

@

@x0
� v 	 r ; (5.3)

and
j@=@x0j

jrj � O(1) : (5.4)

2 Here the velocity v is expressed in units of c.
3 Typical values of P=� are 10�5 in the Sun and 10�10 in the Earth [1166, 1167].
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Massive test particles move along geodesics given by the equation

d 2x�

ds2
C � ���

dx�

ds

dx�

ds
D 0 ; (5.5)

or

d 2xi

dx02
D �� i00 � 2� i0m

dxm

dx0
� � imn

dxm

dx0
dxn

dx0

C
�
� 000 C 2� 00m

dxm

dx0
C 2� 0mn

dxm

dx0
dxn

dx0

�
dxi

dx0
: (5.6)

In the small velocity approximation and retaining only first order terms in the
deviations of g�� from the Minkowski metric ��� , the particle equations of mo-
tion reduce to the Newtonian result

d 2xi

d.x0/2
' �� i00 ' �1

2

@g00

@xi
: (5.7)

The quantity .1C g00/ is of order G NM= Nr , hence the Newtonian approximation

gives
d 2xi

d.x0/2
to order G NM= Nr2, that is, to order .Nv/2=r . As a consequence, the

post-Newtonian approximation requires one to compute
d 2xi

d.x0/2
to order .Nv/4= Nr .

According to the Equivalence Principle and the local flatness of the spacetime man-
ifold, it is possible to find a coordinate system in which the metric tensor is nearly
equal to ��� , with the correction expanded in powers of G NM= Nr � .Nv/2,

g00.x
0; x/ D �1C g

.2/
00 .x

0; x/C g
.4/
00 .x

0; x/C O(6) ; (5.8)

g0i .x
0; x/ D g

.3/
0i .x

0; x/C O(5) ; (5.9)

gij .x
0; x/ D ıij C g

.2/
ij .x

0; x/C O(4) ; (5.10)

and with inverse metric

g00.x0; x/ D �1C g.2/00.x0; x/C g.4/00.x0; x/C O(6) ; (5.11)

g0i .x0; x/ D g.3/0i .x0; x/C O(5) ; (5.12)

gij .x0; x/ D ıij C g.2/ij .x0; x/C O(4) : (5.13)
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When computing the connection coefficients � �
˛ˇ

, one must take into account the
fact that the space and time scales in the gravitational system are set by Nr and Nr=Nv,
respectively, hence spatial and time derivatives are of order

@

@xi
� 1

Nr ;
@

@x0
� Nv

Nr : (5.14)

Using the approximations (5.8)–(5.13), we have

� .3/
0

00 D 1

2
g
.2/;0
00 ; (5.15)

� .2/
i

00 D 1

2
g
.2/;i
00 ; (5.16)

� .2/
i

jk D 1

2

�
g.2/

;i

jk � g.2/ij;k � g.2/
i

k;j

�
; (5.17)

� .3/
0

ij D 1

2

�
g.3/

0

i;j C g.3/
0

j;i � g.3/;0ij
�
; (5.18)

� .3/
i

0j D 1

2

�
g.3/

;i

0j � g.3/
i

0;j � g.2/ij;0
�
; (5.19)

� .4/
0

0i D 1

2

�
g.4/

0

0;i C g.2/00g
.2/
00;i

�
; (5.20)

� .4/
i

00 D 1

2

�
g.4/

;i

00 C g.2/img
.2/
00;m � 2g.3/

i

0;0

�
; (5.21)

� .2/
0

0i D 1

2
g.2/

0

0;i : (5.22)

The only non-vanishing components of the Ricci tensor are

R
.2/
00 D 1

2
r2g

.2/
00 ; (5.23)

R
.4/
00 D 1

2
r2g

.4/
00 � 1

2
g.2/

mn
;mg

.2/
00;n � 1

2
g.2/

mn
g
.2/
00;mn

C1

2
g.2/

m

m;00 � 1

4
g.2/

0;m

0 g
.2/
00;m � 1

4
g.2/

m;n

m g
.2/
00;n � g.3/

m

0;m0 ; (5.24)

R
.3/
0i D 1

2
r2g

.3/
0i � 1

2
g.2/

m

i;m0 � 1

2
g.3/

m

0;mi C 1

2
g.2/

m

m;0i ; (5.25)

R
.2/
ij D 1

2
r2g

.2/
ij � 1

2
g.2/

m

i;mj � 1

2
g.2/

m

j;mi � 1

2
g.2/

0

0;ij

C1

2
g.2/

m

m;ij : (5.26)
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In the harmonic gauge g��� ��� D 0 these expressions become (see Appendix C)

R
.2/
00 D 1

2
r2g

.2/
00 ; (5.27)

R
.4/
00 D 1

2
r2g

.4/
00 � 1

2
g.2/

mn
g
.2/
00;mn � 1

2
g.2/

0

0;00 � 1

2

ˇ
ˇ
ˇrr�g

.2/
00

ˇ
ˇ
ˇ
2

; (5.28)

R
.3/
0i D 1

2
r2g

.3/
0i ; (5.29)

R
.2/
ij D 1

2
r2g

.2/
ij ; (5.30)

where r2 and r denote the Laplacian and the gradient in flat space, respectively.
The Ricci scalar in this gauge is

R.2/ D R.2/
0

0 �R.2/mm D 1

2
r2g.2/

0

0 � 1

2
r2g.2/

m

m ; (5.31)

R.4/ D R.4/
0

0 C g.2/
00
R
.2/
00 C g.2/

mn
R.2/mn

D 1

2
r2g.4/

0

0 � 1

2
g.2/

0;0

0;0 � 1

2
g.2/

mn
�
g.2/

0

0;mn � r2g.2/mn

�
� 1

2
jrg.2/00j2

C1

2
g.2/

00r2g
.2/
00 : (5.32)

The inverse of the metric tensor is defined by g˛�g�ˇ D ı˛
ˇ

. The relations between
terms of order higher than first are

g.2/00.x0; x/ D �g.2/00 .x0; x/ ; (5.33)

g.4/00.x0; x/ D g
.2/
00 .x

0; x/
2 � g.4/00 .x0; x/ ; (5.34)

g.3/0i .x0; x/ D g
.3/
0i .x

0; x/ ; (5.35)

g.2/ij .x0; x/ D �g.2/ij .x0; x/ : (5.36)

Finally, the Lagrangian of a particle in the gravitational field is proportional to the
invariant distance ds,

L D
�
g��

dx�

dx0
dx�

dx0

�1=2
D
�
g00 C 2g0mvm C gmnvmvn

�1=2

D
�
1C g

.2/
00 C g

.4/
00 C 2g

.3/
0mvm � v2 C g.2/mn vmvn

�1=2
: (5.37)
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To second order, this expression reduces to the Newtonian test particle Lagrangian

LNewt D
�
1 C g

.2/
00 � v2

�1=2
, where v2 D dxm

dx0
dxm

dx0
. Post-Newtonian physics in-

volves terms of order higher than fourth in the Lagrangian.
Since the odd-order perturbation terms O(1) or O(3) contain odd powers of the

velocity v or of time derivatives, they are related to the dissipation or absorption
of energy by the system. Mass-energy conservation prevents losses of energy and
mass and, as a consequence, in the Newtonian limit it prevents terms of order O(1)
and O(3) to appear in the Lagrangian. When contributions of order higher than O(4)
are included, different theories produce different predictions. For example, due to
the conservation of post-Newtonian energy, GR forbids terms of order O(5), while
terms of order O(7) can appear and are related to the energy lost due to gravitational
radiation.

5.2.1 The Newtonian and post-Newtonian limits of metric f .R/

gravity with spherical symmetry

Let us apply the formalism of the previous section to the weak-field and small ve-
locity regime of metric f .R/ gravity. Assuming spherical symmetry and vacuum,
we have

gtt.t; r/ D A.t; r/ ' �1C g
.2/
tt .t; r/C g

.4/
tt .t; r/ ; (5.38)

grr.t; r/ D B.t; r/ ' 1C g.2/rr .t; r/ ; (5.39)

g�� .t; r/ D r2 ; (5.40)

g

.t; r/ D r2 sin2 � ; (5.41)

while the inverse metric components are

gtt D A.t; r/�1 ' �1 � g
.2/
tt C g

.2/
tt

2 � g
.4/
tt ; (5.42)

grr D B.t; r/�1 ' 1 � g.2/rr ; (5.43)

the metric determinant is

g ' r4 sin2 �
h
�1C

�
g.2/rr � g

.2/
tt



C
�
g
.2/
tt g

.2/
rr � g

.4/
tt


i
; (5.44)

and the Christoffel symbols are given by

� .3/
t

tt D g
.2/
tt;t
2
; � .2/

r

tt C � .4/
r

tt D g
.2/
tt;r
2

C g
.2/
rr g

.2/
tt;rCg.4/

tt;r
2

; (5.45)

� .3/
r

tr D �g
.2/
rr;t
2
; � .2/

t

t r C � .4/
t

t r D g
.2/
tt;r
2

C g
.4/
tt;r�g.2/

tt g
.2/
tt;r

2
; (5.46)
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� .3/
t

rr D �g
.2/
rr;t

2
; � .2/

r

rr C � .4/
r

rr D �g
.2/
rr;r

2
� g

.2/
rr g

.2/
rr;r

2
; (5.47)

� r

 D sin2 �� r
��
; � .0/

r

�� C � .2/
r

�� C � .4/
r

�� D �r � r g.2/rr � r g.2/rr
2
: (5.48)

The only non-vanishing components of the Ricci tensor are

Rtt D R
.2/
tt CR

.4/
tt ; (5.49)

Rt r D R
.3/
tr ; (5.50)

Rrr D R.2/rr ; (5.51)

R�� D R
.2/

��
; (5.52)

R

 D R
.2/

��
sin2 � ; (5.53)

where

R
.2/
tt D r g

.2/
tt;rr C 2g

.2/
tt;r

2r
; (5.54)

R
.4/
tt D

�
�r.g.2/tt;r /

2 C 4 g
.4/
tt;r C r g

.2/
tt;r g

.2/
rr;r C 2 g.2/rr

�
2g
.2/
tt;r C r g

.2/
tt;rr




C2r g.4/tt;rr C 2r g
.2/
rr;tt

�
.4r/�1 ; (5.55)

R
.3/
tr D �g

.2/
rr;t

r
; (5.56)

R.2/rr D �r g
.2/
tt;rr C 2 g

.2/
rr;r

2r
; (5.57)

R
.2/

��
D �

2 g.2/rr C r
�
g
.2/
tt;r C g

.2/
rr;r




2
; (5.58)

and the post-Newtonian Ricci scalar is

R ' R.2/ CR.4/ (5.59)
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with

R.2/ D
2 g.2/rr C r

�
2 g

.2/
tt;r C 2 g

.2/
rr;r C r g

.2/
tt;rr




r2
; (5.60)

R.4/ D
n
4g.2/rr

2 C 2rg.2/rr

�
2g
.2/
tt;r C 4g.2/rr;r C rg

.2/
tt;rr



(5.61)

Cr
h
�rg.2/tt;r

2 C 4g
.4/
tt;r C rg

.2/
tt;rg

.2/
rr;r � 2g.2/tt

�
2g
.2/
tt;r C rg

.2/
tt;rr




C2rg.4/tt;rr C 2rg
.2/
rr;tt

io
	 �2r2��1 : (5.62)

We restrict the discussion to functions f .R/ which are analytic at the value R0 of
the Ricci curvature,4

f .R/ D
C1X

nD0

f n.R0/

nŠ
.R � R0/

n D f0 C f1R C f2R
2 C f3R

3 C ::: ; (5.63)

where in the last equality we have assumed R0 D 0. The coefficient f1 must be
positive in order to have a positive gravitational coupling. The post-Newtonian for-
malism consists of using this expansion in the field equations, which are expanded
to orders O(0), O(2), and O(4), and then solved.

The substitution of Eq. (5.63) in the vacuum field equations and their expansion
to orders O(0), O(2), and O(4) yield

H .0/
�� D 0 ; H .0/ D 0 ; (5.64)

H .2/
�� D 0 ; H .2/ D 0 ; (5.65)

H .3/
�� D 0 ; H .3/ D 0 ; (5.66)

H .4/
�� D 0 ; H .4/ D 0 : (5.67)

The order O(0) approximation gives

f0 D 0 ; (5.68)

4 At least, the non-analytic part of f .R/ (if it is allowed to exist) must go to zero faster than R3 as
R! 0.



174 5 Weak-field limit

a trivial consequence of the assumption (5.8)–(5.10) that space-time is asymptoti-
cally Minkowskian. If the Lagrangian is expandable around the zero value of the
Ricci scalar (R0 D 0), the cosmological constant must vanish in vacuo.

If we now consider the second order approximation, the system (5.64)–(5.67) in
vacuo yields

f1rR
.2/ � 2f1g.2/tt;r C 8f2R

.2/
;r � f1rg

.2/
tt;rr C 4f2rR

.2/ D 0 ; (5.69)

f1rR
.2/ � 2f1g

.2/
rr;r C 8f2R

.2/
;r � f1rg.2/tt;rr D 0 ; (5.70)

2f1g
.2/
rr � r

�
f1rR

.2/ � f1g.2/tt;r � f1g
.2/
rr;r C 4f2R

.2/
;r C 4f2rR

.2/
;rr



D 0 ; (5.71)

f1rR
.2/ C 6f2

�
2R

.2/
;r C rR.2/;rr



D 0 ; (5.72)

2g.2/rr C r
�
2g
.2/
tt;r � rR.2/ C 2g

.2/
rr;r C rg

.2/
tt;rr



D 0 : (5.73)

The trace equation (5.72), in particular, is a differential equation for the Ricci scalar
which allows one to solve the system (5.69)–(5.73) to order O(2) as

g
.2/
tt D �ı0 C ı1.t/

3
r
e�r
p�� � ı2.t/

6.�
/3=2r er
p�� ; (5.74)

g.2/rr D �
ı1.t/

�
r
p�
 C 1




3
r
e�r
p�� C

ı2.t/
�

r Cp�





6
2r
er
p�� ; (5.75)

R.2/ D ı1.t/

r
e�r
p�� � ı2.t/

p�

2
r

er
p�� ; (5.76)

where


 D f1

6f2
; (5.77)

and f1 and f2 are expansion coefficients of f .R/. The integration constant ı0 is
dimensionless, while the two arbitrary functions of time ı1.t/ and ı2.t/ have the di-
mensions of an inverse length and an inverse length squared, respectively, and 
 has
the dimensions on an inverse length squared. These functions are completely arbi-
trary because the differential system (5.69)–(5.73) contains only spatial derivatives.
The additive quantity ı0 can be set to zero.

The gravitational potential for a generic analytic f .R/ can now be obtained.
Equations (5.74)–(5.76) provide the second order solution in term of the metric
expansion (see the definition (5.38)–(5.41)) but, as said above, this term coincides
with the gravitational potential at the Newtonian order, gtt D �1�2� D �1Cg.2/tt .
The gravitational potential of a fourth order theory of gravity analytic in R is
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�.FOG/ D K1

3
r
e�r
p�� C K2

6.�
/3=2r er
p�� (5.78)

with K1 D ı1.t/ andK2 D ı2.t/.
For a given f .R/ theory, the structure of the potential is determined by the pa-

rameter 
, which depends on the first and second derivatives of f .R/ atR0. The po-
tential (5.78) is valid for non-vanishing f2, since we manipulated Eqs. (5.69)–(5.73)
dividing by f2. The Newtonian limit of GR cannot be obtained directly from the
solution (5.78) but requires the field equations (5.69)–(5.73) once the appropriate
expressions in terms of the constants fi are derived.

The solution (5.78) must be discussed in relation to the sign of the term under
square root in the exponents. If this sign is positive (which means that f1 and f2
have opposite signature), the solutions (5.74)–(5.76) and (5.78) can be rewritten
introducing the scale parameter l D j
j�1=2. In particular, considering ı0 D 0, the
functions ıi .t/ as constants, k1 D lı1.t/=3 and k2.t/ D l2 ı2.t/=6 and introducing
a radial coordinate Qr in units of l , we have

g
.2/
tt D �ı0 � ı1.t/l

3

e�r=l

r= l
� ı2.t/l

2

6

er=l

r= l
D k1

Qr e�Qr C k2

Qr eQr ; (5.79)

g.2/rr D ı1.t/l

3

.r= l C 1/

r=l
e�r=l � ı2.t/l

2

6

.r=l � 1/
r=l

er=l

D �k1 .Qr C 1/ e�Qr

Qr C k2
.Qr � 1/ eQr

Qr ; (5.80)

R.2/ D ı1.t/

l

e�r=l

r= l
C ı2.t/

2

er=l

r= l
D 3

l2

�
k1

e�Qr

Qr C k2
eQr

Qr
�
: (5.81)

The gravitational potential can then be rewritten as

�.FOG/ D k1

Qr e�Qr C k2

Qr eQr ; (5.82)

which is analogous to the result or [1051] derived for the theory R C ˛R2 C
ˇR��R

�� and consistent5 with [920,986] discussing higher order Lagrangians such

as f .R;�R/ D R C
pX

kD0
akR�kR. In this last case, it was demonstrated that the

number of Yukawa corrections to the gravitational potential is related to the order
of the theory (this point will be reconsidered in Chap. 7 when we discuss large scale
structures). However, it is straightforward to show [247] that the usual form Newton

5 In a spatially homogeneous and isotropic spacetime manifold, the higher order curvature invari-
ants R�
R�
 and R˛ˇ�
R˛ˇ�
 can be written in terms of R2.
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plus Yukawa is recovered in Eq. (5.82) using a coordinate change, and Eq. (5.82)
assumes the form

�.FOG/ D �
�
GM

f1r
C ı1.t/

6
r
e�r
p��

�
; (5.83)

where ı1.t/ is again an arbitrary function of time and the parameters depend on
the Taylor coefficients. An effective Newton constant Geff D G=f1 and a range
l D j
j�1=2 emerge, and depend on the form of the function f .R/.

The inspection of Eqs. (5.74)–(5.76) and (5.79)–(5.81) reveals that the
Newtonian limit of an analytic f .R/ theory depends only on the first and second
coefficients of the Taylor expansion of f .R/. The gravitational potential is always
characterized by two Yukawa corrections determined only by the first two terms of
the Taylor expansion.

The diverging contribution, arising from the exponentially growing mode, has to
be analyzed carefully and, in particular, the physical relevance of this term must be
evaluated in relation to the length scale .�
/�1=2. For r � .�
/�1=2, the weak-
field approximation turns out to be unphysical and (5.74)–(5.76) no longer holds.
One can obtain a modified gravitational potential which can work as a standard
Newtonian one in the appropriate limit and provides interesting behavior at larger
scales, even in the presence of the growing mode, once the constants in Eq. (5.78)
have been suitably adjusted. Once the growing exponential term is discarded, this
potential reproduces the Yukawa-like potential phenomenologically introduced in
order to explain the flat rotation curves of spiral galaxies without dark matter [966].

Yukawa-like corrections to the gravitational potential have been suggested in
several contexts, for example, in a model describing the gravitational interaction
between dark matter and baryons. In this model the interaction suppressed at small
(subgalactic) scales is described by a Yukawa contribution to the standard New-
tonian potential. This behavior is suggested by observations of the inner rotation
curves of low-mass galaxies and provides a natural scenario in which to interpret
the cuspy profile of dark matter halos arising in N -body simulations [905].

The result outlined here is consistent with other calculations. Since an expo-
nential potential is expanded in a power-law series, it is not surprising to find a
power-law correction to the Newtonian potential [216, 217] when a less rigorous
approach is considered in order to calculate the weak-field limit of a generic f .R/
theory, and perturbative calculations will provide effective potentials which can be
recovered by means of an appropriate approximation from the general case (5.82).

Let us consider now a negative sign of 
, when the two Yukawa corrections in
(5.79)–(5.81) are complex. Using the form of gtt, the gravitational potential (5.82) is

�.FOG/ D k1

Qr exp .�i Qr/C k2

Qr exp .i Qr/ ; (5.84)

which can be recast as

�.FOG/ D 1

Qr
�
.k1 C k2/ cos Qr C i .k2 � k1/ sin Qr

�
: (5.85)
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This gravitational potential, which could a priori be discarded as physically
irrelevant, satisfies the Helmholtz equation r2� C k2� D 4�G�, where � is a real
function acting both as matter and antimatter density. As discussed in [108, 109],
Re
˚
�.FOG/

�
can be seen as a classically modified Newtonian potential corrected by

a Yukawa factor while Im
˚
�.FOG/

�
could have implications for quantum mechanics.

This term can provide an astrophysical origin for the puzzling decayKL ! �C��,
whose phase is related to an imaginary potential in the kaon mass matrix. Of
course, these considerations are purely speculative but it could be interesting to
pursue them.

Let us consider now third order contributions in the system (5.64)–(5.67); at this
order the off-diagonal equation

f1 g
.2/
rr;t C 2f2r R

.2/
;t r D 0 (5.86)

relating the time derivatives of R and g.2/rr must be taken into account. If the Ricci
scalar depends on time, also the metric components and the gravitational potential
do. This result agrees with the analysis of [251] in terms of the dynamical evo-
lution of R and demonstrating that a time-independent Ricci scalar implies static
spherically symmetric solutions, which is confirmed (and explained) by Eq. (5.86).
In conjunction with Eqs. (5.79)–(5.81), Eq. (5.86) suggests that if one considers the
problem to lower (second) order, the background metric can have static solutions ac-
cording to the Jebsen-Birkhoff theorem, but this is no longer true when higher orders
are considered. The validity of the Jebsen-Birkhoff theorem in higher order theories
of gravity depends on the approximation order considered. This theorem holds in
metric f .R/ gravity only when the Ricci scalar is time-independent, and to second
order in a v=c expansion of the metric coefficients. According to Eqs. (5.74)–(5.76)
and (5.78), it is only in the limit of small velocities and weak fields that the gravita-
tional potential is effectively time-independent. But, contrary to GR, in metric f .R/
gravity a spherically symmetric background can have time-dependent evolution.

The next step is the order O(4) analysis of the system (5.64)–(5.67) providing
the solutions in terms of g.4/tt , the order necessary to compute the post-Newtonian
parameters. Unfortunately, at this order the system is much more complicated and
a general solution is not possible. One sees from Eqs. (5.64)–(5.67) that the gen-
eral solution is characterized only by the first three orders of the f .R/ expansion, in
agreement with the f .R/ reconstruction using the post-Newtonian parameters in the
scalar-tensor representation [250,253]. Although a complete description is difficult,
an estimate of the post-Newtonian parameter � can be obtained from the order O.2/
evaluation of the metric coefficients in vacuo. Since (5.74)–(5.76) suggest a non-
Newtonian gravitational potential as a general solution of analytic f .R/ gravity,
there is no reason to ask for a post-Newtonian description of these theories. In fact,
as said earlier, the post-Newtonian analysis presupposes to evaluate deviations from
the Newtonian potential at a higher than second order approximation in v=c. Thus,
if the gravitational potential deduced from a given f .R/ theory is a general function
of the radial coordinate displaying a Newtonian behavior only in a certain regime
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(or in a given range of the radial coordinate), it would be meaningless to develop
a general post-Newtonian formalism as in GR [856, 1166, 1167]. Of course, by a
proper expansion of the gravitational potential for small values of the radial coordi-
nate, and only in this limit, one can develop an analog of the post-Newtonian limit
for these theories.

In order to estimate the post-Newtonian parameter � , one proceeds by expanding
gtt and grr, obtained to second order in (5.79)–(5.81), with respect to the dimension-
less coordinate Qr , obtaining

g
.2/
tt D k2 � k1 C k1 C k2

Qr C k1 C k2

2
Qr C O.2/ ; (5.87)

g.2/rr D �k1 C k2

Qr C k1 C k2

2
Qr C O.2/ ; (5.88)

where k1 C k2 D GM and k1 D k2 in the standard case. When Qr ! 0 (i.e., when
r � p�
) the linear and successive order terms are small and the first (Newtonian)
term dominates. Since the post-Newtonian parameter � is related to the coefficients
of the 1=r terms in gtt and grr, one can estimate this quantity by comparing the
coefficients of the Newtonian terms relative to both expressions in (5.88). Since
� D 1 in GR, the difference between these two coefficients gives the effective
deviation from the GR value.

A generic fourth order gravity theory provides a post-Newtonian parameter �
consistent with the GR prescription if k1 D k2. Conversely, deviations from this
behavior can be accommodated by tuning the relation between the two integration
constants k1 and k2. This is equivalent to adjusting the form of the f .R/ theory to
obtain the correct GR limit first, and then the Newtonian potential. This result agrees
with recovering the GR behavior from generic f .R/ theories in the post-Newtonian
limit [1032, 1172]. This is particularly true when the f .R/ Lagrangian behaves,
in the weak-field and small velocity regime, as the Hilbert-Einstein Lagrangian. If
deviations from this regime are observed, an f .R/ Lagrangian which is a third order
polynomial in the Ricci scalar can be more appropriate [250].

The degeneracy in the integration constants can be partially broken once a com-
plete post-Newtonian parameterization is developed in the presence of matter. Then,
the integration constants are constrained by the Boltzmann-Vlasov equation describ-
ing conservation of matter at small scales [141].

So far, no specific gauge choice has been made, however particular gauges can
be considered to simplify the calculations. A natural choice consists of the condi-
tions (5.27)–(5.30), which coincide with the standard post-Newtonian gauge

hjk
;k � 1

2
h;j D O.4/ ; (5.89)

h0k
;k � 1

2
hkk;0 D O.5/ ; (5.90)
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where h�� � g�� � ��� . In this gauge the Ricci tensor becomes6

Rttjhg
D R

.2/

ttjhg
CR

.4/

ttjhg
; (5.91)

Rrrjhg
D R

.2/

rrjhg
; (5.92)

where

R
.2/

ttjhg
D r g

.2/
tt;rr C 2g

.2/
tt;r

2r
; (5.93)

R
.4/

ttjhg
D
r g

.4/
tt;rr C 2 g

.4/
tt;r C r

�
g.2/rr g

.2/
tt;rr � g.2/tt;tt � g

.2/
tt;rr

2



2r
; (5.94)

R
.2/

rrjhg
D r g.2/rr;rr C 2 g

.2/
rr;r

2r
; (5.95)

R
.2/

�� jhg
D R

.2/



jhg
D 0 ; (5.96)

while the Ricci scalar to order O.2/ and O.4/ is

R
.2/

jhg D rg
.2/
tt;rr C 2g

.2/
tt;r � rg.2/rr;rr � 2g.2/rr;r

2r
; (5.97)

R
.4/

jhg D
�
r g

.4/
tt;rr C 2 g

.4/
tt;r C r

�
g.2/rr g

.2/
tt;rr � g

.2/
tt;tt � g

.2/
tt;rr

2



� g
.2/
tt

�
r g

.2/
tt;rr C 2 g

.2/
tt;r




�g.2/rr

�
r g.2/rr;rr C 2 g.2/rr;r


�
.2r/�1 : (5.98)

The gauge choice does not affect the connection coefficients. The solution of the
system (5.64)–(5.67) in this gauge is

gtt
jhg
.t; r/ D �1C k1

r
C k2

r2
C k3 log r

r
; (5.99)

grr
jhg
.t; r/ D 1C k4

r
; (5.100)

where the constants k1 and k4 pertain to the order O.2/, while k2 and k3 pertain to
the order O.4/. The Ricci scalar vanishes to orders O.2/ and O.4/.

6 We denote harmonic gauge quantities with the subscript hg.
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Using Eqs. (5.99) and (5.100), it is easy to check that the GR prescriptions are
immediately recovered for k1 D k4 and k2 D k3 D 0. The grr component
contains only the second order term, as required by a GR-like behavior, while the
gtt component exhibits also the fourth order corrections which determine the sec-
ond post-Newtonian parameter ˇ [1166, 1167]. A full post-Newtonian formalism
requires the consideration of matter in the system (5.64)–(5.67): the presence of
matter links the second and fourth order contributions in the metric coefficients
[1166, 1167].

5.2.2 Comparison with the standard formalism
and the chameleon effect

The weak-field formalism developed thus far is somehow different from the stan-
dard formalism used in the literature on metric f .R/ gravity and we now bridge
the gap between these two descriptions by reformulating the previous discussion
in more standard form. Here we essentially report the work of [306, 869] (see also
[470]) in order to compare the previous formalism with more standard results in the
literature on metric f .R/ gravity. Again, the goal is writing the field equations of
a general metric f .R/ theory in the post-Newtonian approximation, solving them,
and from their solutions computing the PPN parameter � . We consider a spherically
symmetric, static, non-compact body embedded in a background de Sitter universe.
Contrary to the previous section, in which the Minkowski background was assumed
right away, the de Sitter space represents an adiabatic situation in which the universe
evolves very slowly with respect to the dynamical time scales of local systems. A de
Sitter space with R�� D R0g��=4 and R0 D 12H 2

0 exists if the conditions

f 00R0 � 2f0 D 0; H0 D
s
f0

6f 00
(5.101)

are satisfied. The metric is given by

ds2 D � 	1C 2�.r/�H 2
0 r
2


dt2 C 	

1C 2˚.r/CH 2
0 r
2


dr2 C r2d˝2

2

(5.102)

in Schwarzschild coordinates, and where the post-Newtonian potentials �.r/ and
˚.r/ are small perturbations. The PPN parameter � is

� D ��=˚ (5.103)

and can be obtained by solving the equations of motion for the potentials � and ˚ .
A linearized analysis is performed by assuming
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j�.r/j ; j˚.r/j � 1; r � H�10 ; (5.104)

R.r/ D R0 CR1.r/; (5.105)

with R1.r/ � R0. In order to proceed, one needs the assumptions

1. f .R/ is analytical at R0.
2. mr � 1, wherem is the effective mass of the scalar degree of freedom of metric
f .R/ gravity, which must have a range larger than the size of the Solar System
(or, taking into account all the present terrestrial experiments, its range must be
larger than 0.2 mm [602]).

3. The pressure P of the local star-like object is negligible and T .m/1 ' ��.

By expanding f .R/ and f 0.R/ aroundR0, the trace equation simplifies to

3f 000 �R1 C �
f 000 R0 � f 00

�
R1 D � T

.m/
1 : (5.106)

For a static spherically symmetric body it is R1 D R1.r/ and �R1 D 1
r2

d
dr�

r2 dR1

dr



, and Eq. (5.106) becomes

r2R1 �m2R1 D � � �

3f 000
; (5.107)

where

m2 D f 00 � f 000 R0
3f 000

: (5.108)

Taking into accountR0 D 12H 2
0 D 2f0=f

0
0 , one further obtains

m2 D
�
f 00
�2 � 2f0f

00
0

3f 00f 000
: (5.109)

This equation for the effective mass of the scalar R is derived independently in
various studies of perturbations of de Sitter space [472, 832, 860, 869].

The assumption that the scalar R1 is very light allows one to neglect the term
m2R1 in Eq. (5.107). The Green function of the equation r2R1 D � � �

3f 00

0

is then

G.r/ D � 1
4�r

and

R1 ' ��
3f 000

Z
d 3x0 �.r 0/G.r � r 0/ ; (5.110)

yielding

R1 ' � M

12�f 000 r
.mr � 1/ : (5.111)
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The conditionm2r2 � 1 yields

1

3

ˇ̌
ˇ
ˇ
f 00
f 000

� R0

ˇ̌
ˇ
ˇ r
2 � 1 (5.112)

and, using H0r � 1,
ˇ
ˇ
ˇ
ˇ
f 00
f 000

ˇ
ˇ
ˇ
ˇ r
2 � 1 : (5.113)

Expanding f .R/ and f 0.R/ in the full field equations and using f0 D 6H 2
0 f
0
0 ,

one obtains

ı˛ˇf
00
0 �R1 C f 00

�
R˛ˇ � 3H 2

0 ı
˛
ˇ



� f 00
2
R1ı

˛
ˇ

�f 000 r˛rˇR1 C f 000 R1R˛ˇ D � T .m/
˛

ˇ : (5.114)

ForH0r � 1 the d’Alembertian reduces to r2
� and the .0; 0/ component of the field

equations yields

f 00
�
R00 � 3H 2

0

� � f 00
2
R1 C f 000 R1R00 C f 000 r2R1 D �� � : (5.115)

Further computingR00 D 3H 2
0 � r2�.r/ and discarding f 000 H 2

0R1 � f 00r2� and
similar terms yields

f 00r2�.r/C f 00
2
R1 � f 000 r2R1 D � � : (5.116)

Since r2R1 ' � � �

3f 00

0

formr � 1, it is

f 00r2�.r/ D 2� �

3
� f 00
2
R1 : (5.117)

Equation (5.117) can be integrated from r D 0 to radii r larger than the radius r0 of
the star-like object and Gauss’ law then gives

d�

dr
D �

6�f 00
�M

48�f 000 r2
� C1

r2
; (5.118)

where M.r/ D 4�
R r0
0
dr 0 .r 0/2�.r 0/. The integration constant C1 is set to zero so

that the Newtonian potential is regular at r D 0 [306] and �.r/ becomes

�.r/ D � � M

6�f 00 r
� � M

48�f 000
r : (5.119)



5.2 The Newtonian and post-Newtonian approximations: general remarks 183

Neglecting the second term on the right hand side due to the fact that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�Mr
48�f 00

0

�� M
6�f 0

0
r

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
f 00
8f 000

ˇ
ˇ
ˇ
ˇ r
2 � 1 ; (5.120)

one obtains [306]

�.r/ ' � � M

6�f 00 r
: (5.121)

We now need to solve the remaining .1; 1/ field equation for the potential ˚.r/,

f 00
�
R11 � 3H 2

0

� � f 00
2
R1 � f 000 r1r1R1

Cf 000 R1R11 C f 000 �R1 D � T .m/
1

1 (5.122)

with T .m/
1

1 ' 0 outside the star. We have

R11 ' 3H 2
0 � d2�

dr2 C 2
r
d˚
dr
; (5.123)

g11r1r1R1 ' d2R1

dr2 ; (5.124)

and neglecting higher order terms, one obtains [306]

f 00
�

�d
2�

dr2
C 2

r

d˚

dr

�
� f 00R1

2
C 2f 000

r

dR1

dr
' 0 : (5.125)

Equation (5.111) for R1 shows that the third term in Eq. (5.125) is negligible in
comparison with the fourth one because

ˇ
ˇ
ˇ
ˇ̌
ˇ

f 0

0
R1

2

2f 00

0

r
dR1

dr

ˇ
ˇ
ˇ
ˇ̌
ˇ

'
ˇ
ˇ
ˇ̌ f
0
0

f 000

ˇ
ˇ
ˇ̌ r2 � 1 : (5.126)

Equation (5.111) for dR1=dr and Eq. (5.121) for �.r/, finally yield

d˚

dr
D � � M

12�f 00 r2
; (5.127)

which admits the solution

˚.r/ D � M

12�f 00 r
: (5.128)
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The post-Newtonian parameter � arising from the metric (5.102) which solves the
field equations is then

� D �˚.r/
�.r/

D 1

2
: (5.129)

This value of � violates the experimental bound j� � 1j < 2:3 	 10�5 [133] and

coincides with the value
!0 C 1

!0 C 2
obtained by using the equivalence between metric

f .R/ gravity and !0 D 0 scalar-tensor gravity [301]. The result is also confirmed
by [869] in isotropic coordinates and by a study of spherically symmetric interior
solutions matched to exterior solutions [650]. This would be the end of the story for
metric f .R/ gravity if it was not for the fact that the second assumption used in the
calculation is not satisfied.7

If the condition mr � 1 does not hold, the scalar degree of freedom of metric
f .R/ gravity is massive and if this mass is sufficiently large, the associated range
is so short that the scalar is effectively hidden from experiments probing gravity
in the Solar System as is well known, for example, for the theory f .R/ D R C
˛R2 incorporating renormalization-motivated corrections to GR. If m � 10�3 eV
(i.e., the scalar field range is less than 0:2 mm), the scalar goes undetected at small
scales. What saves metric f .R/ gravity is the chameleon mechanism known from
scalar field models of dark energy [666, 667] and consisting of the effective mass
m depending on the curvature and the energy density of its environment.m can be
large at Solar System and terrestrial densities but small at cosmological densities.
The scalar field is short-ranged in the Solar System and long-ranged at cosmological
densities, still having a chance to affect the dynamics of the universe and explaining
the cosmic acceleration. The chameleon effect is naturally present in metric f .R/
gravity [288,478,832,1042]; for example, it appears in theories of the form [36,39,
40, 275]

f .R/ D R � .1 � n/�2
�
R

�2

�n
(5.130)

making them compatible with experiment in the parameter range 0 < n � 0:25 if �
is sufficiently small [478]. The Cassini constraint on � [133] yields the upper limit
[478]

�

H0
� p

3

�
2

n.1 � n/

� 1
2.1�n/

10
�6�5n
2.1�n/ : (5.131)

Fifth force experiments set the limit

�

H0
� p

1� n

�
2

n.1 � n/
� 1

2.1�n/

10
�2�12n

1�n ; (5.132)

7 Other situations are possible: the function f .R/ may be non-analytic at R0 [641].
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where the stability condition f 00 > 0 requires that n > 0. Admissible values of m
seem to be m ' 10�50 eV� 10�17H0 [478]. The acceleration of the universe can
be explained because, for small values of R, the Rn correction with n < 1 is larger
than the Hilbert-Einstein R-term and eventually dominates the dynamics. However,
from the observational point of view, these kinds of theories are also practically in-
distinguishable from a cosmological constant [36,39–41,478]. From the theoretical
point of view, it is still possible to avoid the huge fine-tuning of � by means of a
much smaller fine-tuning of �.8

It is also possible to study the weak-field limit of metric f .R/ theories which
admit a global Minkowski solution and linearize around this global flat background
[324]. However, these theories are not relevant for the cosmology of the present
epoch of the universe and may be unstable [326]. It is interesting that they contain
several new post-Newtonian potentials in addition to the two discussed here [324].

5.3 The Post-Minkowskian approximation

We have developed a general analytic procedure to deduce the Newtonian and
post-Newtonian limits of f .R/ gravity outside matter sources. Now we discuss a
different limit of these theories, obtained when the small velocity assumption is
relaxed and only the weak-field approximation is retained. Again, we assume spher-
ical symmetry of the metric, considering gravitational potentials A and B of the
form

A .t; r/ D �1C a .t; r/ ; (5.133)

B .t; r/ D 1C b .t; r/ ; (5.134)

with ja.t; r/j; jb.t; r/j � 1. Let us perturb the field equations considering again the
Taylor expansion (5.63). In vacuo and to first order in a and b, one obtains

f0 D 0 ; (5.135)

f1

�
R
.1/
�� � 1

2
g
.0/
��R

.1/

�
C H .1/

�� D 0 ; (5.136)

where

H .1/
�� D �f2

�
R.1/;�� � � .0/���R.1/;� � g.0/��

�
g.0/�� ;�R

.1/
;� C g.0/��R.1/;��

Cg.0/�� ln
p�g.0/;� R.1/;�

��
: (5.137)

8 The cosmological constant problem, of course, is still not solved.
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In this approximation the Ricci scalar vanishes and the derivatives are evaluated at
R D 0. Let us consider now the large r limit far from the sources of the gravitational
field: Equations (5.135) and (5.136) become

@2a.t;r/

@r2 � @2b.t;r/

@t2
D 0 ; (5.138)

f1

�
a.t; r/ � b.t; r/

�
� 8f2

�
@2b.t;r/

@r2 C @2a.t;r/

@t2
� 2 @2b.t;r/

@t2

�
D �.t/ ;(5.139)

where �.t/ is a generic time-dependent function. Equations (5.138) and (5.139) are
coupled wave equations for a.t; r/ and b.t; r/, therefore we search for a wave-like
solution

a .t; r/ D
Z
d! dk

2�
Qa.!; k/ ei .kr!t/ ; (5.140)

b .t; r/ D
Z
d! dk

2�
Qb.!; k/ ei .kr!t/ ; (5.141)

where k � jkj, and we substitute these into Eqs. (5.138) and (5.139), setting
�.t/ D 0. Equations (5.138) and (5.139) are satisfied if

Qa.!; k/ D Qb.!; k/ ; ! D ˙k ; (5.142)

Qa.!; k/ D
�
1 � 3


4k2

�
Qb.!; k/ ; ! D ˙

r

k2 � 3


4
(5.143)

where, as before, 
 D f1=6f2. In particular, for f1 D 0 or f2 D 0, one obtains
solutions with dispersion relation ! D ˙k. For fi ¤ 0 (i D 1; 2), the dispersion
relation suggests that massive modes are present. In particular, for 
 < 0, the mass
of the scalar graviton is mgrav D �3
=4 and, accordingly, it is obtained for a mod-
ified real gravitational potential. A non-Newtonian gravitational potential describes
a massive degree of freedom in the particle spectrum of the gravity sector with in-
teresting perspectives for the detection and production of gravitational waves [224].
The presence of massive modes in higher order gravity is well known [1051].

If 
 > 0, the solution

a
�Qt ; Qr� D .a0 C a1 Qr/ e˙

p

3
2
Qt ; (5.144)

b
�Qt ; Qr� D �

b0 C b1 Qt� cos

�p
3

2
Qr
�

C �
b00 C b01 Qt� sin

�p
3

2
Qr
�

C b000 C b001 Qt ;
(5.145)
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with a0, a1, b0, b1, b00, b01, b000 , b001 constants is admitted. The variables Qr and Qt are
expressed in units of 
�1=2. In the post-Minkowskian approximation, as expected,
the gravitational field propagates via wave-like solutions. The gravitational wave
content of fourth order gravity originates new phenomenology (massive modes) to
be taken into account by the gravitational wave community. These massive degrees
of freedom could also constitute a potential candidate for cold dark matter [399].

To conclude this section, we have a general analytic approach for the weak-field,
small velocity (Newtonian) limit of a generic f .R/ metric theory. The scheme can
be used to compute the post-Newtonian parameters of these theories without resort-
ing to the scalar-tensor description of f .R/ gravity. At first sight, the scalar-tensor
equivalent with Brans-Dicke parameter ! D 0 seems to imply a post-Newtonian
parameter � D 1=2 incompatible with Solar System tests [301], but this is not the
case because of the chameleon mechanism.

5.3.1 The energy-momentum pseudotensor in f .R/ gravity
and gravitational radiation

As we have seen, higher order theories of gravity introduce extra degrees of freedom
which can be described by writing the field equations as effective Einstein equations
and introducing an additional curvature “effective source” in their right hand side.
This quantity behaves as an effective energy-momentum tensor contributing to the
energy loss of a system due to the emission of gravitational radiation. The proce-
dure to calculate the stress-energy pseudotensor of gravitational waves in GR can
be extended to more general theories and this quantity can be obtained by varying
the gravitational Lagrangian. In GR this quantity is known as the Landau-Lifshitz
pseudotensor [705].

Let us consider f .R/ gravity, for which
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The Euler-Lagrange equations

@L

@g��
� @	

�
@L

@g��;	

�
C @2	�

�
@L

@g��;	�

�
D 0 (5.147)

coincide with the vacuum field equations. Even in the case of more general theories,
it is possible to define the energy-momentum pseudotensor
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This quantity, together with the matter energy-momentum tensor T .m/�� , satisfies a
conservation law as required by the contracted Bianchi identities in conjunction
with the effective Einstein equations. In fact, in the presence of matter one has
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2
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as a consequence,
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D 0 ; (5.150)

which is the conservation law given by the contracted Bianchi identities. We can
now write the expression of the energy-momentum pseudotensor t	˛ in terms of
f .R/ and its derivatives
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t	˛ is a non-covariant quantity in GR while its generalization to fourth order gravity
turns out to be covariant. This expression reduces to the Landau-Lifshitz pseudoten-
sor of GR in the limit f .R/ ! R, in which

t	˛ jGR
D 1p�g

�
@LGR

@g��;	
g��;˛ � ı	˛LGR

�
(5.152)

and where the GR Lagrangian has been considered in its effective form containing
the symmetric part of the Ricci tensor which leads to the equations of motion

LGR D p�g g�� �� ���� ��� � � ���� ���
�
: (5.153)

The definitions of energy-momentum pseudotensor in GR and in f .R/ gravity are
different. The difference is due to the fact that terms of order higher than second are
present in f .R/ gravity and they cannot be discarded as boundary terms following
integration by parts, as is done in GR. The effective Lagrangian of GR turns out to be
the symmetric part of the Ricci scalar since the second order terms appearing in the
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expression of R can be removed integrating by parts. An analytic f .R/ Lagrangian
can be rewritten, to linear order, as f � f 00R C F .R/, where the function F is
such that F .R/ � R2 as R ! 0. As a consequence, one can rewrite t	˛ as

t	˛ D f 00t	˛ jGR
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The general expression of the Ricci scalar obtained by splitting its linear (R�) and
quadratic ( NR) parts in the metric perturbations is

R D g��.� ���;� � � ���;�/C g��.� ����
�
�� � � ���� ���/ D R� C NR (5.155)

(note that LGR D �p�g NR). In the GR case t	˛ jGR
, the first non-vanishing term of

the Landau-Lifshitz pseudotensor is of order h2 [625, 705]. A similar result can be
obtained in f .R/ gravity: using Eq. (5.154) one obtains that, to lowest order,
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Using the perturbed metric we have R� � R.1/, where R.1/ is defined by

R.1/�� D h�.�;�/� � 1

2
�h�� � 1

2
h;�� ; (5.157)
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with h � h�� . In terms of h and ��� , one obtains
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The first significant term in Eq. (5.156) is of second order in the perturbations. We
can now write the explicit expression of the pseudotensor in terms of the perturba-
tion h,
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This expression can be put in compact form using the metric perturbation Qh�� as
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The energy-momentum pseudotensor of the gravitational field describing the energy
transport during propagation has a natural generalization to f .R/ gravity. Here we
have adopted the Landau-Lifshitz construct, but many other pseudotensors can be
used [814]. The general definition of t	˛ obtained above consists of the sum of a GR
contribution plus a term characteristic of f .R/ gravity,

t	˛ D f 00 t	˛ jGR
C f 000 t	˛ jf : (5.163)

In the limit f .R/ ! R one obtains t	˛ D t	˛ jGR
. Massive gravitational modes are

contained in t	˛ jf since � Qh can be considered as an effective scalar field degree

of freedom evolving in a potential and t	˛ describes the transport of energy and
momentum.

5.4 Gravitational waves

Gravitational waves are a fundamental new prediction of relativistic theories of
gravity with respect to Newton’s theory, which emerge in the post-Minkowskian
approximation. The Einstein field equations of GR are hyperbolic and admit solu-
tions which describe waves of the gravitational field leaving their sources (energy
currents) and propagating away at the speed of light and carrying energy and mo-
mentum. GR admits analytical solutions describing strong plane waves [1053], but
these are just idealizations: realistic gravitational waves have extremely small am-
plitudes which make their detection very challenging [273, 1139, 1153].

Given that gravitational waves generated in the laboratory have amplitudes so
small as to make their detection impossible with any means foreseeable in the
near future, research has concentrated on gravitational waves generated by astro-
physical sources and on those of cosmological origin forming a gravitational wave
background.
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Experimental efforts involving the LIGO [739], VIRGO [1123], and other giant
interferometers or resonant detectors are presently operating, while more ambitious
projects such as the space-based LISA (Laser Interferometer Space Antenna) and
BBO (Big Bang Observer) interferometers [342, 352, 745, 904, 1098] are being de-
signed. The gravitational wave community believes that gravitational waves will be
detected within the next decade or so [998]. Since the signal to noise ratio in these
experiments is low, one needs to compare the data with theoretical templates of
the gravitational waveforms emitted by astrophysical objects and processes to filter
out the noise. Currently, theoretical efforts in gravitational wave research focus on
predicting accurate waveforms and building banks of templates for interferometric
detectors. Roughly speaking, each detector is sensitive only to gravitational waves
of wavelength comparable to its size, hence various types of detectors are needed
to explore the entire spectrum. Resonant bar detectors are typically sensitive only
to a narrow band, with giant laser interferometers being much more broad-banded.
The detection of cosmological gravitational waves, which have much larger wave-
lengths than the typical kHz wave generated by astrophysical processes, is best left
to future space-based interferometric experiments with a baseline comparable to the
astronomical unit.

In the language of field theory, the gravitational waves of GR correspond to a
massless spin two graviton field propagating at the speed of light with two inde-
pendent polarizations. In alternative theories of gravity, there are additional degrees
of freedom in addition to this massless spin two graviton, which contribute extra
modes of various spin, massless or massive. In scalar-tensor and metric f .R/ the-
ories of gravity there is an extra scalar mode, while in vector-tensor-scalar theories
a richer spectrum of modes appear. Gravitational waves in ETGs can be classified
according to the effect of their transversal and longitudinal modes on a sphere of test
particles at rest before the wave arrives, resulting in the so-called E(2) classification
scheme [407, 408, 1167]. We refer the reader to [1167] for a more comprehensive
description.

To facilitate comparison with ETGs, we recall the form of the field equations of
GR linearized around a Minkowski background with metric ��� in an asymptot-
ically Cartesian coordinate system and in the weak-field limit [1139, 1153, 1167].
The metric is

g�� D ��� C h�� ; (5.164)

where
ˇ
ˇh��

ˇ
ˇ � 1 in these asymptotically Cartesian coordinates.9 The linearized

Einstein equations are

��h�� C @�@�h � @�@˛h˛� � @�@˛h
˛
� D 0 ; (5.165)

where �� is the d’Alembertian of the Minkowski metric and h � ���h�� is
the trace of the metric perturbation h�� (indices are raised and lowered with

9 Gravity is no longer weak for an observer in fast motion with respect to observers at rest in this
asymptotically Cartesian coordinate system [777].
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��� and ���). By using the freedom of changing coordinates it is possible to choose
the Lorentz gauge

@˛h
˛
� � 1

2
@�h D 0 (5.166)

to reduce the linearized equation of motion for the metric perturbations in this
gauge to

��h�� D 0 : (5.167)

The solutions can be expanded in plane waves as

h�� D A.C/�� eik˛x
˛ C A.	/�� eik˛x

˛

; (5.168)

where A.C;	/�� are constant polarization tensors and ���k�k� D 0.

5.4.1 Gravitational waves in scalar-tensor gravity

Let us begin by considering gravitational waves around a Minkowskian background
in scalar-tensor gravity. For simplicity, we first consider the Jordan frame formula-
tion of Brans-Dicke gravity without scalar field potential, described by the action
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and with the field equations written in the form
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� 2V

�
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A flat background is antithetical to the original inspiration for Brans-Dicke the-
ory, i.e., the implementation of Mach’s principle in gravity. However, this is now
regarded as only one of the reasons for the study of scalar-tensor gravity, and a
marginal one, and the pair

�
��� ; �0

�
(where �0 is a constant) is indeed a legitimate

solution of the field equations of scalar-tensor gravity. Scalar-tensor gravitational
waves are small perturbations of this space, according to

g�� D ��� C h�� ; (5.172)

� D �0 C ' ; (5.173)
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where the scalar and tensor modes have the same order of magnitude in terms of a
smallness parameter ",

O

�
'

�0

�
D O

�
h��

� D O ."/ : (5.174)

The Jordan frame linearized field equations are [1133, 1135, 1153, 1167]
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; (5.175)

��' D 0 : (5.176)

It is possible to choose a gauge in which
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In this gauge the Jordan frame linearized field equations reduce to

��h�� D 0 ; (5.178)

��' D 0 : (5.179)

The solutions can be expanded in plane waves

h�� D A.C/�� eik˛x
˛ C A.	/�� eik˛x

˛

; (5.180)

' D '0 ei l˛x
˛

; (5.181)

where A.C;	/�� and '0 are constants and ���k�k� D ��� l
�l� D 0. Scalar modes

accompany the spin two modes. Because of the assumption that the potential V.�/
is zero in the action (5.169), l� is a null vector, and the scalar '-waves are massless
and propagate at light speed.

If a potential V.�/ is introduced in the action (5.169), the Minkowski space�
��� ; �0

�
is a solution of the Brans-Dicke field equations only if

�0V
0.�0/� 2V.�0/ D 0 : (5.182)

In this case, the linearized field equation for ' becomes

��' C V 00 � �0V 000
2! C 3

' D 0 : (5.183)
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Unless the potential is V.�/ D m2�2=2 (in which case V.�/ disappears from the
equation of motion for �), the '-waves acquire a mass. The plane wave expan-
sion (5.181) now yields

���l
�l� D V 00 � �0V 000

2! C 3
(5.184)

and
V 00 � �0V 000
2! C 3

< 0 is required in order to preserve causality. Using l� � .!; l /,

the scalar waves obey the dispersion relation
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�
(5.185)

in vacuo.
Although at first sight scalar modes seem to always go hand-in-hand with ten-

sor ones, gravitational radiation of spin two is quadrupole to lowest order and a
spherically symmetric motion of a spherical distribution of mass-energy does not ex-
cite (spin two) radiation in GR, while it does excite scalar radiation in Brans-Dicke
gravity.

Consider now a plane monochromatic scalar wave given by

' D '0 cos .l˛x˛/ ; (5.186)

where '0 is a constant and ���l�l� D 0. The effective energy density of the waves
as seen by an observer with timelike four-velocity 
� is given, to first order, by the
projection of the effective stress energy tensor of the scalar wave

T��

�
� D � �l�
�

�2 '
�0
: (5.187)

This quantity oscillates with the frequency of ', violating the weak energy condition
[1139]. Note that this energy density is not quadratic in the first derivatives of the
field but is instead linear in its second derivatives, which implies that the energy
density of the scalar is of order O("), while the contribution of the tensor modes h��
is only of order O("2), as described by the well known Isaacson effective stress-
energy tensor T .eff /�� Œh˛ˇ 	 [625].

The presence of negative energies for a free Brans-Dicke scalar perturbation of
Minkowski space is sometimes regarded as a negative feature of (Jordan frame)
scalar-tensor gravity because of the fear that negative energies cause a runaway and
the system decays to a lower and lower energy state ad infinitum. However, this
argument only applies when the total energy (including the gravitational energy of
the spin two graviton) is known and is not bounded from below. It is not at all clear
that this is the case here and, indeed, a covariant and gauge-invariant linear analysis
with respect to inhomogeneous perturbations of Minkowski space in Brans-Dicke
theory shows stability to first order [458].
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Let us now discuss Brans-Dicke gravitational waves in the Einstein frame
description of this theory. The weak-field metric and scalar field in the Einstein
frame are

Qg�� D ��� C Qh�� ; (5.188)

Q� D Q�0 C Q' ; (5.189)

where Q�0 is constant and O. Qh��/ DO. Q'= Q�0/ DO."/. The Einstein frame linearized
field equations are
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Q� Q' D 0 ; (5.191)
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now has canonical form (i.e., quadratic in the first derivatives of the scalar field).
Again, one can consider plane monochromatic waves

Q' D Q'0 cos .l˛x
˛/ ; (5.193)

where Q'0 is a constant and ���l�l� D 0. The energy density for an observer char-
acterized by a four-velocity 
� in the Einstein frame is

QT��
�
� D 	
l�


� Q'0 sin .l˛x˛/

2 C QT .eff /�� Œ Qh˛ˇ 	 
�
� ; (5.194)

and is positive definite. In the Einstein frame, the contributions of scalar and tensor
modes to the total effective energy density are both quadratic in the first derivatives
of the fields and have the same order of magnitude O."2/. Contrary to the Jordan
frame, the weak energy condition is satisfied in the Einstein frame. Of course, the
difference is a consequence of the fact that the identification of what is matter and
what is gravity is frame-dependent in ETGs [1035].

5.4.2 Gravitational waves in higher order gravity

Detecting new gravitational wave modes could be a crucial experiment able to dis-
criminate among theories since these modes would constitute evidence that GR must
be enlarged or modified [124, 236]. In general, field equations containing higher
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order terms describe, in addition to the massless spin two field (the standard gravi-
ton of GR), also spin zero and spin two massive modes, the latter possibly being
ghosts. This result is general and can be obtained by means of a straightforward
generalization of the discussion for f .R/ gravity and mode counting.

Let us generalize the Hilbert-Einstein action by adding curvature invariants dif-
ferent from the Ricci scalar,

S D
Z
d 4x

p�g f .R;P;Q/ ; (5.195)

where

P � R��R
�� ; (5.196)

Q � R����R
���� : (5.197)

By varying the action (5.195) with respect to g�� , one obtains the field equations
[274]
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where
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The trace of Eq. (5.198) yields
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Expanding the third term on the right hand side of (5.200) and using the contracted
Bianchi identities, one obtains
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By defining
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the Klein-Gordon equation

�˚ � dV

d˚
D 0 (5.204)

is obtained. In order to find the modes of the gravity waves of this theory, we lin-
earize around the Minkowski background,

g�� D ��� C h�� ; (5.205)
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then Eq. (5.202) yields
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where R0 � R.���/ D 0 and, similarly, fP0 D @f

@P
j�	


, which is either constant

or zero (a zero subscript denoting quantities evaluated with the Minkowski metric).
ıR denotes the first order perturbation of the Ricci scalar which, together with the
perturbed parts of the Riemann and Ricci tensors, is given by (e.g., [270])
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where h � ���h�� . The first term of Eq. (5.207) is
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however since ıP and ıQ are second order, it is ıF ' F;R0 ıR and
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Eq. (5.201) then yields the Klein-Gordon equation for the scalar perturbation ı˚
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The second line of Eq. (5.213) vanishes because fP0 and fQ0 are constant and the
scalar mass is defined as
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Perturbing the field equations (5.198), one obtains
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It is convenient to work in Fourier space so that, for example, @�h�� ! ik�h�� and
�h�� ! �k2h�� , where now k2 � k�k�. Then, Eq. (5.215) becomes
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We rewrite the metric perturbation as

h�� D Nh�� �
Nh
2
��� C ���hf (5.217)

and use the gauge freedom to demand that the usual conditions @� Nh�� D 0 and
Nh D 0 hold. The first condition implies that k� Nh�� D 0, while the second one gives
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With these conditions in mind, we have

ıR�� D 1

2

�
2k�k�hf C k2���hf C k2 Nh��

�
; (5.220)

ıR D 3k2hf ; (5.221)

k˛kˇ ıR
˛ ˇ

.��/
D �1

2

	�
k4��� � k2k�k�

�
hf C k4 Nh��



; (5.222)

k˛kˇ ıR
˛
.�
ı
ˇ

�/
D 3

2
k2k�k�hf : (5.223)

Using Eqs. (5.217)–(5.223) in Eq. (5.216), a little algebra yields

1

2

�
k2 � k4 fP0 C 4fQ0

F0

�
Nh��

D .���k
2 � k�k�/ ı˚

F0
C .���k

2 � k�k�/hf : (5.224)

Defining now hf � �ı˚=F0, we find the perturbation equation

k2

 

1C k2

m2spin 2

!
Nh�� D 0 ; (5.225)

where

m2spin 2 � � F0

fP0 C 4fQ0
; (5.226)
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while Eq. (5.213) gives

�hf D m2s hf : (5.227)

It is easy to see from Eq. (5.225) that we have a modified dispersion relation corre-
sponding to a massless spin two field (k2 D 0) and a massive spin two ghost mode
with

k2 D 2F0

fP0 C 4fQ0
� �m2spin 2 (5.228)

with mass m2spin 2. In fact, the propagator of Nh�� can be rewritten as

G.k/ / 1

k2
� 1

k2 Cm2spin2

: (5.229)

The negative sign of the second term indicates its ghost nature, which agrees with the
results found in the literature for this class of theories [300, 861, 1051]. As a check,
we can see that for the Gauss-Bonnet Lagrangian density G D Q � 4P C R2, we
have fP0 D �4 and fQ0 D 1, then Eq. (5.225) simplifies to k2 Nh�� D 0 and in this
case we have no ghosts, as expected.

The solution of Eqs. (5.225) and (5.227) can be expanded in plane waves as

Nh�� D A��.
�!p / exp .ik˛x˛/C c.c. ; (5.230)

hf D a.�!p / exp .iq˛x˛/C c.c. ; (5.231)

where

k˛ �
�
!mspin 2

;�!p


; !mspin 2

D
q
m2spin 2 C p2 ; (5.232)

q˛ �
�
!ms

;�!p


; !ms

D
q
m2s C p2 ; (5.233)

and where mspin 2 is zero (respectively, non-zero) in the case of massless (respec-
tively, massive) spin two modes and the polarization tensor A��.

�!p / is given by
Eqs. (21)–(23) of [1102]. In Eqs. (5.225) and (5.230), the equation and the solu-
tion for the standard waves of GR [804] have been obtained while Eqs. (5.227)
and (5.231) are the equation and the solution for the massive mode, respectively
(see also [225]).

The fact that the dispersion law for the modes of the massive field hf is not
linear has to be emphasized. The velocity of every “ordinary” (i.e., arising from
GR) mode Nh�� is the light speed c, but the dispersion law (5.233) for the modes of
hf is that of a massive field which can be discussed like a wave packet [225]. The
group velocity of a wave packet of hf centered in �!p is
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�!vg D
�!p
!
; (5.234)

which is exactly the velocity of a massive particle with mass m and momentum �!p .
From Eqs. (5.233) and (5.234), it is easy to obtain

vg D
p
!2 �m2

!
: (5.235)

In order for the wave packet to have constant speed, it must be [225]

m D
q
.1� v2g/ ! : (5.236)

Before proceeding, we discuss the phenomenological constraints on the mass of the
gravitational wave field [343]. For frequencies in the range relevant for space-based
and terrestrial gravitational antennas, i.e., 10�4 Hz� f � 10 kHz [1, 17, 47, 745,
746, 1014, 1066, 1162], a strong constraint is available. For a massive gravitational
wave it is [223]

! D
p
m2 C p2 ; (5.237)

and then

0 eV � m � 10�11 eV : (5.238)

A stronger bound comes from cosmology and Solar System tests, which provide

0 eV � m � 10�33 eV : (5.239)

The effects of these light scalars can be discussed as those of a coherent gravitational
wave.

5.4.2.1 Polarization states of gravitational waves

Looking at Eq. (5.213) we see that we can have a k2 D 0 mode corresponding
to a massless spin two field with two independent polarizations plus a scalar mode
while, if k2 ¤ 0, we have a massive spin two ghost mode (“poltergeist”) and there
are five independent polarization tensors plus a scalar mode. First, let us consider
the case in which the spin two field is massless.

Taking �!p in the z-direction, a gauge in which onlyA11, A22, andA12 D A21 are
different from zero can be chosen. The condition Nh D 0 gives A11 D �A22. In this
frame, we can take the polarization bases10

10 These polarizations are defined in the physical three-space. The polarization vectors are orthog-
onal to each another and are normalized according to e��e�
 D 2ı
�. The other modes are not
traceless, in contrast to the ordinary “plus” and “cross” polarization modes of GR.
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e.C/�� D 1p
2
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0 0 0
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0 1 0

1 0 0

0 0 0

1

A ; (5.240)

e.s/�� D 1p
2

0

@
0 0 0

0 0 0

0 0 1

1

A : (5.241)

Substituting these expressions into Eq. (5.217), it follows that

h��.t; z/ D AC.t � z/ e.C/�� C A	.t � z/ e.	/��

Chs.t � vgz/ es�� : (5.242)

The termsAC.t � z/ e.C/�� and A	.t � z/ e.	/�� describe the two standard polarizations
of gravitational waves which arise in GR, while the term hs.t � vgz/ ��� is the
massive field arising from the generic f .R/ theory.

When the spin two field is massive, the bases of the six polarizations are
defined by

e.C/�� D 1p
2

0

@
1 0 0

0 �1 0
0 0 0

1

A ; e.	/�� D 1p
2

0

@
0 1 0

1 0 0

0 0 0

1

A ; (5.243)
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and the amplitude can be written in terms of the six polarization states as

h��.t; z/ D AC.t � vgs2
z/ e.C/�� CA	.t � vgs2

z/ e.	/��

CBB.t � vgs2
z/ e.B/�� C CC .t � vgs2

z/ e.C/��

CDD.t � vgs2
z/ e.D/�� C hs.t � vgz/ es�� ; (5.246)

where

vgs2
D
q
!2 �m2s2
!

(5.247)
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Fig. 5.1 The six polarization
modes of gravitational waves.
We illustrate the displacement
induced at phases spaced by
� radians by each mode on a
circle of test particles at rest
before the wave impinges
upon them. The wave
propagates out of the plane
of the page in (a), (b), and (c)
and into this plane in (d), (e),
and (f). While (a) and (b)
describe the “plus” and
“cross” modes, respectively,
(c) corresponds to the scalar
mode, and (d), (e), and (f) to
the D, B, and C modes.
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is the group velocity of the massive spin two field. The first two polarizations are
the same as in the massless case, inducing tidal deformations of the .x; y/ plane.
Figure 5.1 illustrates how each gravitational wave polarization affects test masses
arranged on a circle before the wave impinges on them.

From a purely quantum-mechanical point of view, the presence of the ghost mode
may seem as a pathology of the theory. There are several reasons why this mode
is problematic in the particle interpretation of the metric perturbations. The ghost
mode can be viewed as either a particle state with positive energy and negative
probability density, or as a positive probability density state with negative energy.
In the first case, allowing the presence of such a particle will induce violations of
unitarity, while the negative energy scenario leads to a theory without ground state
and the system becomes unstable. Vacuum can decay into pairs of ordinary and
ghost gravitons leading to a catastrophic instability.

A way out of these problems consists of imposing a very weak coupling of the
ghost with the other particles in the theory, such that the decay rate of the vacuum
becomes comparable to the inverse of the Hubble time. The present vacuum state
will then appear to be sufficiently stable. This is not a viable option in our theory
because the ghost state appears in the gravitational sector, which is bound to couple
to all forms of matter present and it seems physically and mathematically unlikely
for the ghost graviton to couple differently than the ordinary massless graviton does.

Another possibility consists of assuming that this picture does not hold up to ar-
bitrarily high energies and that at some cutoff scale Mcutoff the theory gets modified
appropriately to ensure a ghost-free behavior and a stable ground state. This can
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happen, for example, if we assume that Lorentz-invariance is violated at Mcutoff ,
thereby restricting any potentially harmful decay [429]. However, there is no guar-
antee that modified gravities like the one investigated here are valid to arbitrarily
high energies. Such models are plagued at the quantum level by the same prob-
lems of ordinary GR, i.e., they are not renormalizable. It is, therefore, not necessary
for them to be considered as genuine candidates for a quantum gravity theory and
the corresponding ghost particle interpretation becomes ambiguous. At the classical
level, the perturbation h�� should be viewed as nothing more than a tensor repre-
senting the stretching of spacetime away from flatness. A ghost mode then makes
sense as just another way of propagating this perturbation of the spacetime geom-
etry, one which, in the propagator, carries a sign opposite to that of an ordinary
massive graviton. Viewed in this way, the presence of the massive ghost graviton
will induce on an interferometer the same effects as an ordinary massive graviton
transmitting the perturbation, but with the opposite sign of the displacement. Tidal
stretching of the polarization plane by a polarized wave will turn into shrinking
and vice-versa. Eventually, the signal will be a superposition of the displacements
coming from the ordinary massless spin two graviton and the massive ghost. Since
these two modes induce competing effects, their superposition will lead to a less
pronounced signal than the one expected were the ghost mode absent, setting less
stringent constraints on the theory. However, the presence of the new modes will
also affect the total energy density carried by the gravitational waves and this may
also appear as a candidate signal in stochastic gravitational wave backgrounds.

5.4.2.2 Detector response

Let us consider now the possible response of a detector in the presence of grav-
itational waves coming from a definite direction. The detector output depends
on the gravitational wave amplitude, which is determined by specific theoreti-
cal models. However, one can study the detector response to each gravitational
wave polarization without specifying a priori the theoretical model. Following
[2, 63, 158, 493, 711, 766, 1113], the angular pattern function of a detector of gravi-
tational waves is given by

FA. Ő / D D W eA. Ő / ; (5.248)

D D 1

2
. Ou ˝ Ou � Ov ˝ Ov/ ; (5.249)

where A D C;�; B; C;D; s and : denotes a contraction between tensors. D is the
detector tensor representing the response of a laser-interferometric detector. It maps
the metric perturbation in a signal on the detector. The vectors Ou and Ov are unitary
and orthogonal to each other, they are directed to each detector arm, and they form
an orthonormal coordinate basis together with the unit vector Ow (see Fig. 5.2). Ő is
the unit vector directed along the direction of propagation of the gravitational wave.
Equation (5.248) holds only when the arm length of the detector is much smaller
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Fig. 5.2 The coordinate
systems used to calculate the
polarization tensors and a
view of the coordinate
transformation.

than the gravitational wave wavelength, a condition satisfied by ground-based laser
interferometers but not by space interferometers such as LISA. A standard orthonor-
mal coordinate system for the detector is

Ou D .1; 0; 0/ ; (5.250)

Ov D .0; 1; 0/ ; (5.251)

Ow D .0; 0; 1/ ; (5.252)

and the coordinate system for the gravitational wave, rotated by .�; �/, is given by

Ou0 D .cos � cos�; cos � sin�;� sin �/ ; (5.253)

Ov0 D .� sin �; cos�; 0/ ; (5.254)

Ow0 D .sin � cos�; sin � sin �; cos �/ : (5.255)

A rotation by the angle  around the direction of propagation of the gravitational
wave gives the most general choice of coordinates, that is

Om D Ou0 cos C Ov0 sin ; (5.256)

On D �Ov0 sin C Ou0 cos ; (5.257)

Ő D Ow0 : (5.258)
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The coordinates . Ou; Ov; Ow/ are related to
�

Om; On; Ő 
 by the rotation angles .�; �;  /,

as shown in Fig. 5.2. Using the vectors Om, On, and Ő , the polarization tensors are

eC D 1p
2
. Om ˝ Om � On ˝ On/ ; (5.259)

e	 D 1p
2
. Om ˝ On C On ˝ Om/ ; (5.260)

eB D 1p
2

�
Om ˝ Ő C Ő ˝ Om



; (5.261)

eC D 1p
2

�
On ˝ Ő C Ő ˝ On



: (5.262)
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p
3

2

� Om
2

˝ Om
2

C On
2

˝ On
2

C Ő ˝ Ő
�
; (5.263)

es D 1p
2

� Ő ˝ Ő 
 : (5.264)

Taking into account Eqs. (5.248) and (5.249), the angular patterns for each polar-
ization are

FC.�; �;  / D 1p
2
.1C cos2 �/ cos 2� cos 2 

� cos � sin 2� sin 2 ; (5.265)

F	.�; �;  / D � 1p
2
.1C cos2 �/ cos 2� sin 2 

� cos � sin 2� cos 2 ; (5.266)

FB .�; �;  / D sin � .cos � cos 2� cos � sin 2� sin / ; (5.267)

FC .�; �;  / D sin � .cos � cos 2� sin C sin 2� cos / ; (5.268)

FD.�; �/ D
p
3

32
cos 2�

	
6 sin2 � C .cos 2� C 3/ cos 2 



; (5.269)

Fs.�; �/ D 1p
2

sin2 � cos 2� : (5.270)

The angular pattern functions for each polarization are plotted in Fig. 5.3. Even if
we have considered a different model, these results are consistent, for example, with
those of [2, 493, 839, 1075].
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Fig. 5.3 Angular pattern functions of an interferometric detector for the various polarizations.
From left to right and from top to bottom, one sees constant level surfaces corresponding to the
“plus”, “cross”, B, C, D, and scalar modes.

Another area of research which we do not discuss here consists of the study of
the stochastic background of gravitational waves which may contain the possible
signature of extra gravitational wave modes and be relevant for the detectability of
these contributions to gravitational radiation.



208 5 Weak-field limit

The above analysis covers extended gravity models with a generic class of higher
order Lagrangian densities and Lagrangian terms of the form f .R;P;Q/. We have
linearized the field equations of these theories around a Minkowski background
and found that, in addition to a massless spin two field, the theory contains also
spin zero and two massive modes with the latter being, in general, ghosts. If the
interferometer is directionally sensitive and we also know the orientation of the
source (and, of course, if the source is coherent) the discussion is straightforward.
In this case, the massive mode coming from the simplest extension of GR, i.e., f .R/
gravity, would induce longitudinal displacements along the direction of propagation
of the wave, which should be detectable, and only the scalar mode would be the
detectable truly new signal [225]. But, even in this case, there could be a second
scalar mode inducing a similar effect and representing a massive ghost, although
with a negative sign.

For the situation considered here, massive modes are certainly of interest for
the LISA space interferometer. It is in principle possible that massive gravitational
wave modes could be produced in more significant quantities in cosmological or
early astrophysical processes in alternative theories of gravity, a possibility which
is still largely unexplored. This situation should be kept in mind when looking for a
signature capable of distinguishing these theories from GR, and it seems to deserve
further investigation.

5.5 Conclusions

The weak-field limit of ETGs shows new aspects of gravitation which are not present
in GR. The Newtonian and post-Newtonian limits give weak-field potentials which
are not of the standard Newtonian form. The corrections, in general, are Yukawa-
like terms which, as we will see in the following chapters, could explain in a very
natural fashion several astrophysical and cosmological observations.

The post-Minkowskian limit of ETGs exhibits new gravitational field modes
which can easily be interpreted as massive gravitons.

The study of the generation, propagation, and detection of gravitational waves in
the weak-field limit of a given relativistic theory of gravity is an important part of as-
trophysics. Primordial gravitational waves generated during the early epochs of the
universe (especially during inflation) would allow, when detected, to rule out or con-
strain certain theories and investigate others. The detection of gravitational waves
of astrophysical or cosmological origin can hardly be overemphasized because it
would open a new branch of astronomy providing information which is not acces-
sible with visible, infrared, optical, X-ray, or � -ray astronomy. In fact, gravitational
waves can be generated in regions deep inside supernovae, near black hole horizons,
or very early in the history of the universe when the latter is completely opaque to
photons. The study of relativistic astrophysics not related to gravitational waves in
ETGs is a broad and complex subject for which we refer the reader to specialized
books and review articles (e.g., [1166, 1167]) and to the references therein.



Chapter 6
Qualitative analysis and exact solutions
in cosmology

A part of the secret of analysis is the art of using notations well.
– Gottfried Wilhelm von Leibniz

In this chapter we focus again on scalar-tensor and f .R/ gravity. We begin by
studying the phase space of spatially homogenous and isotropic scalar-tensor (and,
by extension, f .R/) cosmology. Understanding the structure of the phase space is
extremely useful when exact solutions cannot be obtained, or when one needs to
know whether known solutions are generic or not. After a general discussion of the
geometry of the phase space, we continue by examining particular analytical solu-
tions of scalar-tensor and metric f .R/ gravity. While these rare exact solutions may
be very special, they still allow us to gain insight into the properties of these ETGs.

6.1 The Ehlers-Geren-Sachs theorem

The identification of our universe with a FLRW space relies on the observational
fact that, on a cosmological scale, the observable universe is spatially homogeneous
and isotropic, and on the extrapolation of these properties to the much larger portion
of the universe which is not accessible to us (Copernican principle).

In GR, as well as in ETGs, the strongest support for this identification is the
high degree of isotropy of the cosmic microwave background, and the assumption
that isotropy would be observed from any spatial point in the universe, i.e., the
Copernican principle. Mathematical relativists have something to say here: that a
spacetime in which a family of observers exists who see the CMB isotropic can be
identified with a FLRW space is not a trivial statement. This property is a kinemat-
ical characterization of FLRW spaces known as the Ehlers-Geren-Sachs theorem
[412]. Usually, the vanishing of acceleration, shear, and vorticity,

Pu� � u˛r˛u� D 0 ; ��� D 0 ; !�� D 0 ; (6.1)

for a congruence of “typical” observers with four-velocity u� is assumed to imply
that the spacetime has FLRW line element

ds2 D �dt2 C a2.t/ �ij .x
k/ dxidxj (6.2)

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics 170,
DOI 10.1007/978-94-007-0165-6 6, c� Springer Science+Business Media B.V. 2011
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where �ij is a constant curvature three-metric. However, this result is guaranteed
only if (i) matter is described by a perfect fluid, and (ii) the Einstein equations are
imposed: then the Weyl tensor is guaranteed to vanish.

In its original version, the Ehlers-Geren-Sachs theorem states that, if a congru-
ence of timelike, freely falling observers in a dust-dominated universe all see an
isotropic radiation field, then the spacetime is spatially homogeneous and isotropic
(and, therefore, a FLRW universe). The original Ehlers-Geren-Sachs theorem was
generalized to an arbitrary perfect fluid that is geodesic and barotropic and with
observers that are geodesics and irrotational [318, 428, 483] (see [320] and ref-
erences therein for a discussion of inhomogeneous or anisotropic cosmological
models which admit an isotropic radiation field). An “almost Ehlers-Geren-Sachs
theorem” also holds: spacetimes that are “close” to satisfying the Ehlers-Geren-
Sachs conditions are “close” to FLRW spaces [1054, 1067].

Since the Ehlers-Geren-Sachs theorem is so basic for cosmology, one would like
to know whether it is still valid in the context of ETGs, in particular in scalar-tensor
and f .R/ gravity. Early investigations [761, 1067] proved an Ehlers-Geren-Sachs
theorem for the metric version of the theory with action

S D 1

2�

Z
d 4x

p�g �RC ˛R2 C ˇR��R
��
�C S .m/ : (6.3)

The Ehlers-Geren-Sachs theorem was later extended to general metric f .R/ gravity
in [942]. In scalar-tensor gravity, the result was proved in [319], the authors of which
studied theories described by the action

SST D 1

2�

Z
d 4x

p�g
�
�R � !.�/

�
r��r�� � V.�/

�
C S .m/ : (6.4)

As we have already seen, when f 00 ¤ 0 metric and Palatini f .R/ gravity are
equivalent to Brans-Dicke theories with scalar field �Df 0.R/ and with !D 0 or
! D �3=2, respectively, and with a particular non-vanishing potential V.�/. This
equivalence allows one to provide an independent proof of the Ehlers-Geren-Sachs
theorem for metric f .R/ gravity, consistently with [761, 942, 1067], and also to
extend the theorem to the Palatini version of these theories [448].

6.2 The phase space of FLRW cosmology in scalar-tensor
and f .R/ gravity

The interest of physicists in scalar-tensor cosmology [446, 516] was revived by the
extended [701, 702, 733, 1152] and hyperextended [12, 596, 702, 708, 785] scenar-
ios of inflation in the early universe and, more recently, by models of scalar-tensor
quintessence [31–33, 64, 65, 127, 132, 149, 281, 284, 297, 302, 303, 384, 420, 422,
450,476,477,513,517,778,847,847,851,903,934,935,1002,1083,1101]. Even for
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the spatially homogeneous and isotropic FLRW cosmology, the field equations of
scalar-tensor gravity allow us to find only rare exact solutions and a phase space pic-
ture is very valuable in describing qualitatively the dynamics. Many phase portraits
describing the dynamics of Brans-Dicke homogeneous and isotropic cosmological
models can be found in the literature [594,689,690,970], including the possibilities
that the Brans-Dicke-like scalar � has a non-vanishing potential V.�/, that a perfect
fluid is present when V � 0, with or without a cosmological constant�, and for the
possible three-geometries characterized by the values 0;˙1 of the curvature index
K . Here, following [441], we discuss the geometric structure of the phase space for
scalar-tensor FLRW cosmology. We try to use, as much as possible, physical quanti-
ties such as the Hubble parameterH and the Brans-Dicke-like scalar � as dynamical
variables, in contrast with many works in the literature in which the price to pay for
achieving simpler mathematics is the use of unphysical dynamical quantities which
can be related to physical ones only by formal transformations without physical in-
terpretation (usually, such variables mix the scale factor a.t/ of the FLRW metric
with the scalar field �).

We adopt the FLRW line element

ds2 D �dt2 C a2.t/

�
dr2

1 �Kr2
C r2d˝2

2

�
(6.5)

and the scalar-tensor action (6.4). At early times before inflation the universe may
have been anisotropic, but it is widely believed that inflation caused the universe to
isotropize, washing away much of the information about the pre-inflationary state
(see [139,291,334,798,828,829] for studies of the isotropization of Bianchi models
in scalar-tensor cosmology). It is appropriate to study FLRW universes in ETGs
during inflation, and dark energy models based on ETGs have also been studied
after 1998 [31–33, 64, 65, 127, 132, 149, 281, 284, 297, 302, 303, 384, 420, 422, 450,
476, 477, 513, 517, 778, 847, 847, 851, 903, 934, 935, 1002, 1083, 1101]. It has been
suggested [1042] that the universe may evolve into a chaotic regime in the future,
which would make prediction impossible, and the dimensionality of the phase space
is important in this regard. Chaos is impossible in a two-dimensional phase space
continuum; this property is well known when the phase space is flat and it holds also
when it is curved, but the proof of this statement is non-trivial for the curved phase
space of FLRW cosmology [469, 561].

Many works in the literature provide complete phase space analyses for spe-
cific choices of the coupling functions and of the scalar field potential V.�/
[594, 689, 690, 970]. In this section we focus instead on the geometric structure and
dimensionality of the phase space for general coupling functions !.�/ and (except
special cases) for any potential V.�/. Obviously, a complete phase space analy-
sis can only be performed when the theory is completely specified, and we refer
the reader to the literature for details about specific models, discussing here only
the general features of the phase space applicable to all models. The results that we
summarize here were originally obtained for conformally or non-minimally coupled
scalar fields [38, 501, 560, 562, 952] (formally included in the scalar-tensor class),
and then generalized.
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6.2.1 The dynamical system

The field equations obtained by varying the action (6.4) can be written in the form
of effective Einstein equations as

G�� D !.�/

�2

�
r�� r�� � 1

2
g�� r˛� r˛�

�
C 1

�

�r�r�� � g����
� � V

2�
g��

C8�

�
T .m/�� ; (6.6)

�� D 1

2! C 3

�
�
dV

d�
� 2V � d!

d�
r˛� r˛� C 8�T .m/

�
: (6.7)

The combination �dV=d� � 2V in Eq. (6.7) disappears if the potential is a pure
mass term V.�/ D m2�2=2 (e.g., [443, 970]). The field equations with the FLRW
metric (6.5) are

H 2 D �H
 P�
�

!

C !.�/

6

 P�
�

!2
C V.�/

6�
� K

a2
C 8��.m/

3�
; (6.8)

PH D �!.�/
2

 P�
�

!2
C 2H

 P�
�

!
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2 .2! C 3/ �

�
�

dV

d�
� 2V C d!

d�

� P��2
�

CK
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� 8�

.2! C 3/ �

h
.! C 2/ �.m/ C !P .m/

i
; (6.9)

R� C
�
3H C 1

2! C 3

d!

d�

�
P� D 1

2! C 3

�
2V � � dV

d�
C 8�

�
�.m/ � 3P .m/


�
;

(6.10)

where, as usual, an overdot denotes differentiation with respect to the comoving
time. We assume that matter is a perfect fluid with barotropic equation of state

P .m/ D .� � 1/ �.m/ (6.11)

with � a constant. Then, the conservation equation P�.m/C 3H
�
�.m/ C 3P .m/

� D 0

yields

�.m/ D �0

a3�
(6.12)

with �0 a constant.
By choosing a and � as dynamical variables, the dynamical equations (6.8)

and (6.10) are of second order. Only two equations in the set (6.8)–(6.10) are
independent and the Hamiltonian constraint reduces the dimensionality of the
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�
a; Pa; �; P�� phase space to three [970]. A further simplification is often possible:

in vacuo and when the universe is spatially flat (K D 0), the scale factor a only
appears in Eqs. (6.8)–(6.10) through the Hubble parameter. By choosing H and �
as dynamical variables (which is a convenient choice because H is a cosmological
observable), the Hamiltonian constraint effectively reduces the dimensionality of
the phase space

�
H;�; P�� to two, that is, the orbits of the solutions are constrained

to move on an energy surface in this three-dimensional space.
Before we proceed, let us rewrite Eqs. (6.8)–(6.10) using the conformal time �

(with dt � a d�) and the variable

x � a0

a
D aH (6.13)

often used in the literature, where a prime denotes differentiation with respect to �.
In terms of x and � it is

x2 D �x
�
�0

�

�
C !.�/

6

�
�0

�

�2
C a2V.�/

6�
�K C 8��0

3a3��2�
; (6.14)

x0 D x2 � !

2

�
�0

�

�2
C 2x

�
�0

�

�

C 1

2 .2! C 3/ �

�
a2
�
�
dV

d�
� 2V

�
C �

�0
�2 d!
d�

�

CK � 8��0 .!� C 2/

.2! C 3/ � a3��2
: (6.15)

We now focus on various, rather general, situations of interest in scalar-tensor
gravity.

6.2.1.1 The phase space with vacuum, free scalar field,
and any three-geometry

In vacuo and with no scalar field potential, Eq. (6.14) becomes the quadratic equa-
tion for �0

!
�
�0
�2 � 6x��0 � 6�2 �K C x2

� D 0 ; (6.16)

which has the reduced discriminant

�1

4
D 3�2

	
.2! C 3/ x2 C 2!K



: (6.17)

The solutions are

� 0̇ .x; �/ D 3�

!

�
x ˙p

F1 .x; �/


; (6.18)

F1 .x; �/ D 1

3

˚
Œ2!.�/C 3	 x2 C 2K!.�/

�
: (6.19)
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If ! >0 and KD 0 or C1, it is always F1 � 0. However, if KD � 1 or ! <0,
regions corresponding to F1 <0 exist which are forbidden to the dynamics.
Equation (6.15) yields

x 0̇ .x; �/ D x2C 9

2!

�
x ˙

p
F1


2 � �

! .2! C 3/

d!

d�
� 1

�
C6x

!

�
x ˙

p
F1



CK:

(6.20)

We see that the values of x0 and �0 are determined once .x; �/ are specified.
In general there are two values of both x0 and �0 for a given pair .x; �/, correspond-
ing to the upper and lower sign in Eqs. (6.20) and (6.18), respectively. The two
values describe the geometry of the phase space, which is a two-dimensional energy
surface in the .x; x0; �; �0/ space. This surface consists of two sheets corresponding
to the upper or lower sign, which will be referred to as “upper sheet” and “lower
sheet”, respectively. It would be misleading to regard the .x; �/ plane as the phase
space: this plane is only a projection of the two-dimensional energy surface living
in a three-dimensional phase space. If attention is restricted only to the .x; �/ plane,
the projections of orbits onto this plane can intersect each other, which is impossible
for the true orbits in the curved energy surface according to the uniqueness theo-
rems for the solutions of the Cauchy problem of the system (6.8)–(6.10). Projections
onto the .x; �/ plane of orbits passing from one sheet to the other may cross each
other.

In certain scalar-tensor theories the orbits of the solutions change from one sheet
to the other, and they can only do so at points where the two sheets touch each other,
which are identified by F1 D 0. The set of points satisfying this condition forms
the boundary

B � ˚�
x; �; �0

� W F1 .x; �/ D 0
�

(6.21)

of the forbidden region F , where x0C D x0� and �0C D �0� D 3� x=!.
The dimensional reduction of the effective phase space is achieved by using co-

moving time and the variables .H; �/. However, if K ¤ 0 and comoving time is
used, the scale factor cannot be eliminated from the field equations and the dimen-
sional reduction cannot be achieved. In this case it is more convenient to use the
conformal time �.

The fixed points of the system (6.18) and (6.20) correspond to .x0; �0/ D .0; 0/;
Eqs. (6.18)–(6.20) then yield either � D 0 (which we reject because it corresponds
to infinite gravitational coupling), or xD 0 with ! KD 0. To summarize, for a spa-
tially flat FLRW universe the only fixed point is the Minkowski space obtained for
xD aH D 0, which lies on the boundary B of the forbidden region. For spatially
curved universesKD ˙1, the only fixed points are .x; �/ D .0; �0/ with �0 a root
of ! .�/ D 0. This fixed point is again a Minkowski space located on the boundary
B. If ! ¤ 0 everywhere, then there are no fixed points. As a consequence, there are
no limit cycles (which must contain at least one fixed point).



6.2 The phase space of FLRW cosmology in scalar-tensor and f (R) gravity 215

6.2.1.2 The phase space for vacuum, V D m2�2=2, and flat three-sections

In the absence of matter and when V.�/ D m2�2=2 and the FLRW universe is spa-
tially flat, the physical variablesH and � are the most convenient. The Hamiltonian
constraint (6.8) yields the quadratic equation for P�

!

6

� P��2 �H� P� C
�
m2

12
� �H 2

�
�2 D 0 ; (6.22)

which has discriminant

�2 .H; �/ D �2

3

�
.2! C 3/H 2 � ! m2

6
�

�
(6.23)

and solutions

P�˙ .H; �/ D 3

!

�
H� ˙

p
�2



: (6.24)

The phase space is again the union of two curved two-dimensional sheets in the�
H;�; P�� space. These two sheets join on the boundary of the forbidden region. This

boundary corresponds to �2 D 0 or (discarding the unphysical solution � D 0),

H.�/ D ˙m
s

� !.�/

6 Œ2!.�/C 3	
: (6.25)

The stationary points .H0; �0/, which must satisfyH0 D ˙mp�0=12, are de Sitter
spaces with constant scalar field and are always located away from the boundary
�2 D 0. Again, if K ¤ 0 the scale factor a cannot be eliminated to use H as a
dynamical variable. The wave equation for � can be integrated for any value of K .
Its solutions include the trivial solution � D const. corresponding to GR with a
cosmological constant and

Z
d�
p
2!.�/C 3 D const.

Z
dt

a3.t/
: (6.26)

A complete description of the phase space for Brans-Dicke theory in this case can
be found in [970] in terms of the dynamical variables

X �
r
2! C 3

12

�0

�
; (6.27)

Y � a0

a
C �0

2�
; (6.28)

and the conformal time �. The dimensional reduction of the phase space cannot be
achieved by using these variables.
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6.2.1.3 The phase space in vacuo with V ¤ 0 and spatially flat
three-geometry

Now consider vacuum and a general potential V.�/ for a spatially flat FLRW uni-
verse, using .H; �/ as dynamical variables and the comoving time to write the field
equations as

H 2 D �H
 P�
�

!

C !.�/

6

 P�
�

!2
C V.�/

6�
; (6.29)
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� 2V C d!

d�

� P��2
�
;

(6.30)

R� C
�
3H C 1

2! C 3

d!

d�

�
P� D 1

2! C 3

�
2V � �

dV

d�

�
: (6.31)

For ! ¤ 0 the Hamiltonian constraint (6.29) provides again a quadratic equation
for P�,

!
� P��2 � 6H� P� C �

V � 6H 2�
�
� D 0 : (6.32)

Its reduced discriminant is

F2 .H; �/ D 	
3 .2! C 3/H 2� � !V



� (6.33)

and the roots are

P�˙ .H; �/ D 1

!.�/

h
3H� ˙p

F2 .H; �/
i
; (6.34)

which makes the phase space again the union of two-dimensional sheets correspond-
ing to the lower and upper signs in Eq. (6.34). Figures 6.1–6.3 illustrate the geometry
of the phase space for a particular choice of !.�/ and V.�/. In general, there is
no guarantee that F2 � 0 and there will be regions of the phase space in which
F2 < 0: they cannot be penetrated by the orbits of the solutions.

IfK ¤ 0 the reduction of the phase space to two dimensions cannot be performed
because the scale factor appears explicitly (i.e., not in the combination H D Pa=a)
in the term K=a2 in Eqs. (6.8) and (6.9).

The phase space is flat if F2 D 0, i.e., if ! D �3=2 in conjunction with1 V � 0.
In this case one has

P� C 2H� D 0 (6.35)

1 Palatini f .R/ gravity does not correspond to this situation because it necessarily has V ¤ 0.
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Fig. 6.1 The upper sheet of the phase space of the scalar-tensor gravity described by !.�/ D�
10�2 � � C 1��1

and scalar field potential V .�/D ��4 (for � D 1).
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Fig. 6.2 The lower sheet corresponding to the scalar-tensor theory described in Fig. 6.1.

and either � is identically zero (a physically unacceptable solution) or � / a�2.
Then the Hamiltonian constraint is automatically satisfied and PH D �H 2, which
yields the coasting universe with scale factor a D a0 .t � t0/.
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Fig. 6.3 The energy surface of the scalar-tensor theory of Figs. 6.1 and 6.2 resulting from the two
sheets of these figures joined along B. The “hole” is the region F forbidden to the orbits of the
dynamical system.

In the general situation V ¤ 0, the stationary points are .H; �/ D .H0; �0/ with
H0 and �0 constants, and they exist if

H0 D ˙
s
V0

6�0
; �0V

0
0 � 2V0 D 0 ; (6.36)

where V0 � V.�0/ > 0 and V 00 � dV=d�
ˇ
ˇ

0

.

6.2.1.4 The phase space with P D ��=3 and a free scalar

Another special case corresponds to the particular equation of state P D ��=3 and a
free Brans-Dicke-like scalar field (V � 0). Using the variables .x; �/ and conformal
time, the field equations are

x2 D �x
�
�0

�

�
C !.�/
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�2
�K C 8��0
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; (6.37)
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�
; (6.38)
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where

A D 16��0 .! C 3/

3 .2! C 3/
: (6.39)

Again, Eq. (6.37) yields

!
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�
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D 0 : (6.40)

The discriminant and roots of this quadratic equation are
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while Eq. (6.38) gives
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CK
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2 � A

�
: (6.43)

The energy surface in the .x; �; �0/ phase space consists again of two sheets
attached along the boundary�3 .x; �/ D 0 of a forbidden region; there are no equi-
librium points, which would correspond to constant x0 and �0 and are incompatible
with Eqs. (6.37) and (6.38).

To summarize, the geometry of the phase space of FLRW scalar-tensor
cosmology, in which gravity is described by the action (6.4), can be relatively
complicated. In general, there are two independent equations for FLRW scalar-
tensor cosmology. These are second order equations for a and � and the natural
phase space seems to be the

�
a; Pa; �; P�� space. The Hamiltonian constraint (6.8)

confines the orbits of the solutions to an energy hypersurface, effectively reducing
the dimension to three. When K D 0 the scale factor only enters the field equations
through the Hubble parameter H and it is convenient to choose .H; �/ instead
of .a; �/ as dynamical variables. Then the trajectories of the solutions live in a
two-dimensional hypersurface embedded in the

�
H;�; P�� space.

If K D ˙1 one can again reduce the phase space to a two-dimensional surface
embedded in a three-dimensional space. The dynamics are derived without speci-
fying the coupling function !.�/ and, in some cases, also for arbitrary scalar field
potential V.�/. The stationary points of the dynamical system are determined in this
general situation.
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Usually, the phase space consists of two sheets attached to each other along the
boundary B of a region not accessible to the orbits of the solutions. The latter can
change sheet only by passing through B, but there are scenarios in which the orbits
stay in one or the other of the two sheets and never change. The .H; �/ plane is
a projection of the curved energy hypersurface and projections of the orbits can
possibly intersect in this plane. The equilibrium points of the dynamical system
(when they exist) are de Sitter spaces, possibly degenerating into Minkowski spaces.

A complete discussion of the dynamics requires the specification of !.�/ and
V.�/. Although many forms of V.�/ are proposed in high energy physics and in
cosmology, only few proposals for !.�/ have been advanced, and they are dictated
by mathematical convenience rather than being inspired by physics [446].

6.2.1.5 The phase space of f .R/ gravity

As already discussed, metric and Palatini f .R/ gravity are equivalent to scalar-
tensor theories with Brans-Dicke field �Df 0.R/, Brans-Dicke couplings ! D 0

and ! D �3=2, respectively, and a special potential V.�/. Discarding Palatini f .R/
gravity which is non-dynamical and of little interest from the phase space point
of view, we are left with the metric version of the theory. The general qualitative
features are the same as for any scalar-tensor theory, with a simplification introduced
by the fact that one needs not worry about terms in ! and its derivatives in the
field equations. The phase space geometry is discussed in [386]. However, here we
have only outlined what a phase space analysis is. A detailed treatment for specific
models can be found in the literature (see, for example, Refs. [246, 261, 263]).

6.3 Analytical solutions of Brans-Dicke and scalar-tensor
cosmology

In all physical theories, exact solutions are sought for in order to gain insight into the
physical content and predictions of the theory, even if they describe highly idealized
or oversimplified situations. Here we present a selection of analytical solutions of
scalar-tensor cosmology (in the Jordan frame representation) in order to illustrate
similarities and differences between scalar-tensor gravity and GR.2

Einstein frame solutions can be obtained from Jordan frame ones by using the
conformal transformation, but in practice the reverse process is more common, i.e.,
exact solutions of GR are mapped back into the Jordan frame to discover new scalar-
tensor solutions.

2 No attempt to be complete is made: we refer the reader to [751] for an early review, to [446] for
a recent one, and to the references therein.
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We adopt the line element (6.5). Vacuum solutions .a.t/; �.t// of the field equa-
tions have the gravitational scalar field as the only formal source of gravity, while
non-vacuum solutions are usually derived for perfect fluids with constant equation
of state

P .m/ D w�.m/ D .� � 1/ �.m/ ; (6.44)

with the constant � in the range of values 0 � � � 2 and, again we regard the
cosmological constant� as an effective fluid corresponding to � D 0.

In the Jordan frame, ordinary matter is minimally coupled to the Brans-Dicke-
like field � and the stress-energy tensor T .m/�� of the fluid is covariantly conserved. In

a FLRW universe, conservation assumes the form
d�.m/

dt
C 3H

�
�.m/ C P .m/



D0,

which yields �.m/ D C=a3� , where C is an integration constant. Consider a Big
Bang solution with scale factor a.t/! 0 as t ! 0C: if the universe contains two
barotropic fluids with indices �1 and �2 and 0 � �1 ; �2 � 2, the fluid with the
largest � will dominate the dynamics near the initial singularity.

Since the trace T .m/ of the stress-energy tensor of ordinary matter acts as the
only source for the scalar field, one finds similarities between vacuum scalar-tensor
solutions and solutions corresponding to radiative matter with T .m/ D 0 [970,1145].

6.3.1 Analytical solutions of Brans-Dicke cosmology

Let us begin with spatially flat FLRW universes in Brans-Dicke theory. The field
equations for arbitrary curvature index are
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; (6.45)
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; (6.46)

R� C 3H P� D 1

2! C 3

�
8�
�
�.m/ � 3P .m/



� � dV

d�
C 2V

�
: (6.47)

By using the new variables

˛ � ln a ; ˚ � � ln .G�/ ; (6.48)
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related to the scale factor and the Brans-Dicke field, the equations of Brans-Dicke
cosmology are found to be symmetric under the duality transformation [735, 736]

˛ �!
�
3! C 2

3! C 4

�
˛ � 2

�
! C 1

3! C 4

�
˚ ; (6.49)

˚ �! �
�

6

3! C 4

�
˛ �

�
3! C 2

3! C 4

�
˚ : (6.50)

This transformation generalizes a scale factor duality known in the effective action
of string theories [530, 542, 1087, 1111],

˛ �! �˛ ; (6.51)

˚ �! ˚ � 6˛ : (6.52)

This duality is reproduced by Eqs. (6.49) and (6.50) for ! D �1.
Big Bang solutions resembling those of GR were found early on, usually assum-

ing the boundary condition near the Big Bang

lim
t!0

	
a3.t/ P�.t/
 D 0; (6.53)

which implies that one of the four integration constants
�
a0; Pa0; �0; P�0

�
is elimi-

nated, lowering the dimension of the phase space with some loss of generality of
the solutions [798, 1145]. With or without the restriction (6.53), the phase space of
FLRW cosmology in Brans-Dicke gravity has a higher dimension than the corre-
sponding phase space of GR (which only requires initial conditions .a0; Pa0/) and
therefore scalar-tensor gravity exhibits a richer variety of solutions than GR.

Most of the exact solutions recurrent in the literature on Brans-Dicke cosmology
are of the power-law type

a.t/ / tq ; �.t/ / ts ; 3q C s � 1 : (6.54)

In BD theory, a power-law solution plays a role analogous to that of the inflationary
de Sitter attractor in GR. If a barotropic fluid is present, V.�/ � 0, and a D a0 t

q ,
then the field equation ruling the dynamics of the BD scalar reduces to

R� C 3q

t
P� D 8� .4 � 3�/C

.2! C 3/ a0 3�
t�3�q : (6.55)

A particular solution of this equation is

� D �1 t
2�3�q ; (6.56)
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with

�1 D 8�C .4 � 3�/

.2! C 3/ a0 3� .2 � 3�q/ Œ1C 3q .1 � �/	
; (6.57)

and the general solution of Eq. (6.55) is therefore

� D �0 t
s C �1 t

2�3�q ; (6.58)

with s D 0 or 3q C s D 1.

6.3.1.1 Spatially flat FLRW solutions of Brans-Dicke theory

Spatially flat solutions are, of course, more easily found than spatially curved ones.
Some classic solutions are presented in the following, as well as other representa-
tives of this class.

The O’Hanlon and Tupper solution [879] corresponds to vacuum, V.�/ � 0,
and to the parameter range ! > �3=2 with ! ¤ �4=3; 0. It is given by

a.t/ D a0

�
t

t0

�q
˙

; (6.59)

�.t/ D �0
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t0

�s
˙

; (6.60)

with

q˙ D !

3 .! C 1/
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3 .2! C 3/

D 1

3! C 4

 

! C 1˙
r
2! C 3

3

!

; (6.61)

s˙ D 1
p
3 .2! C 3/

3! C 4
; (6.62)

and satisfies 3q C s D 1. Various derivations of this solution, which exhibits a
Big Bang singularity as t ! 0, have been given [690, 798, 798, 879]. Its limit as
! ! C1 is

a.t/ / t1=3 ; � D const. (6.63)

and it does not reproduce the corresponding GR solution, which is Minkowski
space.

The solutions corresponding to the exponents .q�; s�/ and .qC; sC/ are called
the slow and fast solution, respectively. The terminology originates in the behavior
of �.t/ as t ! 0. The slow solution has increasing �.t/ and decreasing coupling
Geff ' 1=� (for ! > � 4=3), while the fast solution has decreasing �.t/ and
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increasing Geff ' 1=� at early times (for ! > �4=3). The fast and slow solutions
are interchanged under the duality transformation (6.49) and (6.50), which yields

.q˙; s˙/ �! .q
; s
/ : (6.64)

The common remark that the O’Hanlon-Tupper solution goes over to the de Sitter
space

.a.t/; �.t// D .a0 exp .H t/ ; �0 exp .�3H t// ; (6.65)

with H D const. in the limit ! ! �4=3 is not strictly speaking, true. This de
Sitter space is only obtained by choosing simultaneously the values qC and s� of
the exponents. However, Eq. (6.65) does describe the only de Sitter solution of the
Brans-Dicke equations (6.45)–(6.47) for K D 0 and vacuum. This solution differs
from the usual de Sitter space with constant scalar field solving the Einstein-Klein-
Gordon system. Examples of de Sitter solutions with a non-constant scalar field are
known in scalar-tensor theories [61, 62, 561].

The Brans-Dicke dust solution [165] describes the spatially flat FLRW universe
containing dust with V.�/ D 0 and ! ¤ �4=3 given by

.a.t/; �.t// D .a0 t
q ; �0 t

s/ (6.66)

with

q D 2 .! C 1/

3! C 4
; s D 2

3! C 4
; (6.67)

and it satisfies 3q C s D 2, while

�.m/ D C

a3�
D �0 t

r (6.68)

with

r D �3q D �6 .! C 1/

3! C 4
; �0 D C

a30
: (6.69)

The Nariai solution [563, 827] is a particular power-law solution for a spatially
flat FLRW universe with V.�/ � 0, ! ¤ �4 Œ3� .2 � �/	�1 < 0, and a perfect
fluid. It is given by

a.t/ D a0 .1C ı t/q ; (6.70)

�.t/ D �0 .1C ı t/s ; (6.71)
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where

q D 2 Œ! .2 � �/C 1	

3!� .2 � �/C 4
; (6.72)

s D 2 .4 � 3�/

3!� .2 � �/C 4
; (6.73)

and it is s C 3�q D 2. The energy density of the fluid redshifts according to

�.m/.t/ D C

a3�
D �0 .1C ı t/r ; r D �3�q : (6.74)

The exponents q, s, and r are often rewritten as functions of the parameters

˛ � 2 .4 � 3�/

.2! C 3/ .2 � �/C 3� � 4 ; A � 2! C 3

12
; (6.75)

as [690]

q D 2

˛ C 3�
; s D 2˛

˛ C 3q
; r D �6�

˛ C 3�
; (6.76)

and

ı D
�
˛ C 3�

2

�
8
<

:
8��0

3�0

h
.1C ˛=2/2 � A˛2

i

9
=

;
: (6.77)

Special cases of the Nariai solution include the Brans-Dicke dust solution [165]
for dust (P .m/ D 0, ˛ D .! C 1/�1, ! ¤ �4=3)

a.t/ D a0 .1C ı t/
2.!C1/
3!C4 ; (6.78)

�.t/ D �0 .1C ı t/
2

3!C4 ; (6.79)

�.m/.t/ D �0 .1C ı t/
�6.!C1/

3!C4 ; (6.80)

ı D
�
4��0

�0

3! C 4

2! C 3

�1=2
; (6.81)

with 3q C s D 2.
If ! D �1 the radiation fluid and the scalar field balance each other to pro-

duce a Minkowski space with a non-trivial scalar field growing quadratically with
time. The solution is instead expanding if ! < �4=3 or ! > �1, and pole-like if
�4=3 < ! < �1. In this case, there are two disconnected branches reminiscent of
pre-Big Bang cosmology in string theory [738]. One of these branches expands for
t < �t0 and the other contracts for t > �t0.
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Another special case contained in the Nariai solution corresponds to a radiation
fluid (P .m/ D �.m/=3), and is given by

a.t/ D a0 .1C ı t/1=2 ; (6.82)

�.t/ D �0 D const: ; (6.83)

�.m/.t/ D C

a4
D �0

.1C ı t/2
; (6.84)

ı D
�
32��0

3�0

�1=2
: (6.85)

This solution does not depend on the Brans-Dicke parameter !.
Another special case of the Nariai solution is that of a FLRW universe with cos-

mological constant [701,779] corresponding to P .
/ D ��.
/, ˛ D 4 .2! C 1/�1,
which results in

a.t/ D a0 .1C ı t/!C
1
2 ; (6.86)

�.t/ D �0 .1C ı t/2 ; (6.87)

ı D
�
32��0

�0

1

.6! C 5/ .2! C 3/

�1=2
: (6.88)

The extended inflationary scenario is based on this particular solution, which is
not the only solution describing a FLRW universe dominated by a cosmological
constant but is a phase space attractor. Other solutions with cosmological constant
were found in [944].

Generalized Nariai solutions describing spatially flat FLRW universes were
found in [563, 810] using the time coordinate � defined by

d� D dt

a3.��1/
(6.89)

(which coincides with t for a dust fluid):

a .�/ D a0 .� � ��/q� .� � �C/q˙ ; (6.90)

� .�/ D �0 .� � ��/s� .� � �C/s˙ ; (6.91)

where

q˙ D !

3

�
1C ! .2 � �/


q
2!C3
3

� ; (6.92)

s˙ D
1˙

q
2!C3
3

1C ! .2 � �/

q
2!C3
3

; (6.93)
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with a0, �0 and �˙ constants and ! > �3=2. The Nariai solution is obtained when
�C D ��. If �C ¤ ��, the solution (6.90)–(6.93) approaches the O’Hanlon-Tupper
vacuum solution (6.59)–(6.62) as � ! �˙.

To conclude this subject, we discuss the phase space analysis of spatially
flat FLRW universes in Brans-Dicke cosmology with V.�/D 0. Dynamical sys-
tem methods provide a qualitative overall view of the cosmological dynamics
[333, 1040, 1136]. Allowing a cosmological constant described as an effective per-
fect fluid, the dynamics described are analyzed in [594, 689, 690, 944, 970]. The
Brans-Dicke cosmological equations form a system of two coupled autonomous
first order equations for the (rescaled) scale factor and the Brans-Dicke scalar field
[594, 689, 970]. The phase space is two-dimensional, eliminating the possibility of
chaos [469,561]. The parameters! and � vary in the range .!; �/ 2 .�3=2;C1/�
Œ0; 2	. The possible behavior of the scale factor a.t/ is quite varied and includes
bouncing models, i.e., universes that contract to a minimum size and then re-expand
superaccelerating with PH > 0; these bouncing models occur for ! < 0.

A phase space analysis for spatially flat FLRW models with a perfect fluid and
a linear potential can be found in [689] and the case with no fluid is studied in
[945]. A linear potential V D�� is obtained by adding a cosmological constant
� to the Ricci curvature multiplying the Brans-Dicke field � in the Brans-Dicke
action, which is different from the simple addition of a constant � to the overall
Lagrangian density as in GR [443].

For ! > 0 all universes which are initially expanding approach de Sitter space at
late times, irrespective of the value of the EoS parameter w, but this is not the case if
! < 0; then, there are bouncing universes and vacillating universes, i.e., solutions
that expand, slow down, contract for a short time, and re-expand again.

Two de Sitter equilibrium points are always present irrespective of the value of
the EoS parameter, corresponding to [100, 689, 945]

a.˙/.t/ D a0 exp

(

˙ .! C 1/

�
2�

.2! C 3/ .3! C 4/

�1=2
t

)

; (6.94)

�.˙/.t/ D �0 exp

(

˙
�

2�

.2! C 3/ .3! C 4/

�1=2
t

)

: (6.95)

In general the scalar field is not constant for these de Sitter spaces, but the general
relativistic solution with constant scalar is recovered in the ! ! 1 limit.

The two equilibrium points (6.94) and (6.95) corresponding to the upper or
lower sign respectively, are phase space attractors. Their attraction basin is lim-
ited to most, but not all, of the solutions with expanding initial data. They reduce to
Minkowski spaces with exponentially expanding or contracting Brans-Dicke scalar
field if ! D �1 (the parameter value given by the low-energy limit of bosonic string
theory). These Minkowski spaces are stable and have analogues in string cosmology
[50, 821]). There are additional equilibrium points of various nature of the dynami-
cal system for the special values 0; 1, and 4=3 of the EoS parameter � D w C 1 of
the perfect fluid.
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If ! > 0, all the initially contracting solutions end in a Big Crunch singularity.
If �1 < ! < 0, there are non-singular bouncing universes, some of which end up
near the de Sitter attractors for suitable initial conditions [336, 435, 563, 689].

A phase plane analysis of the dynamics with potential V.�/ D V0 �
2n can be

found in [595].

6.3.1.2 Spatially curved FLRW solutions with V D 0 and Bianchi models

Spatially closed (K D C1) or open (K D �1) FLRW universes in Brans-Dicke
gravity are found in [94, 718, 750, 798, 809, 1145] and phase portraits are calculated
in [594, 690, 970]. In terms of the time coordinate � defined by

d� D
s

8��.m/

.2! C 3/ �
dt (6.96)

for ! > �3=2 and of the dynamical variables

x � 1

2�

d�

d�
; y � 1

a

da

d�
; (6.97)

the Brans-Dicke field equations for a FLRW model with arbitrary value of K
are [594]

x0 D �x2 � 3 .2 � �/

2
xy C

�
2 � 3�

2

�
; (6.98)

y0 D �2 �1 � 3˛2
�

3˛2
x2 C 3xy C 3� � 2

2
y2 � 3 .4 � 3�/ ˛2 C 3� � 2

6˛2
; (6.99)

where ˛ � .2! C 3/�1=2. The field equations form an autonomous system of two
coupled first order equations and, using these variables, the phase space is two-
dimensional. This situation is to be compared with that of GR with a single scalar
field, in which the phase space is three-dimensional when K ¤ 0 [38, 501, 561],
making chaos possible [146, 155, 208, 209, 344, 1079]. In Brans-Dicke FLRW cos-
mology with the variables .x; y/ the phase space may be three-dimensional when a
potential V.�/ is present [970]. The K D 0 FLRW universes lie on the separatrix
described by the equation

x C y D ˙
r
1C x2

3˛2
: (6.100)

On either side of this separatrix there are K D C1 and K D �1 FLRW spaces and
the orbits of the system cannot cross the separatrix.3

3 This separation of the phase space in three regions was discovered for a particular scenario of
inflation in GR in [122].
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The phase plane is symmetrical under the time inversion � ! �� together
with the reflection about the origin .x; y/ ! .�x;�y/. The equilibrium points
.x0; y0/ D .0; 0/ of the dynamical system (6.98) and (6.99) are

�
x
.1/
˙ ; y

.1/
˙



D ˙1
q
3 .2 � �/2 � ˛2 .4 � 3�/2

	 	˛ .4 � 3�/ ; 2 � � � ˛2 .4 � 3�/
 ;

(6.101)
�
x
.2/
˙ ; y

.2/
˙



D ˙
�p

2 � 3 �
2

;
1p
2� 3�

�
; (6.102)

where the solutions denoted by a ‘C’ or a ‘�’ are expanding or contracting, respec-
tively. Because of this duality we consider only the ‘C’ solutions. The critical points�
x
.1/
˙ ; y

.1/
˙



exist only for K D 0 and lie on the separatrix. When mapped back to

the original variables, the equilibrium points correspond to the power-law solutions

.a.t/; �.t// D .a0 t
q; �0 t

s/ ; (6.103)

where

q.i/ D 2y.i/

2x.i/ C 3 � y.i/
; (6.104)

s D 4x.i/

2x.i/ C 3 � y.i/
: (6.105)

The critical point
�
x
.1/
C ; y

.1/
C



is the Nariai solution; it exists if ˛ <
p
3.2��/
j4�3� j . In

the limiting case ! D �4= Œ3� .2 � �/	, the equilibrium point becomes a de Sitter
space. If � D 0, the equilibrium point reduces to the solution (6.86)–(6.88) of ex-
tended inflation.

Mapping back the .x; y/ variables to the original ones, the equilibrium point�
x
.2/
C ; y

.2/
C



corresponds to the coasting universe .a.t/; �.t// D
�
a0 t; �0 t

2�3=�



and it exists if � < 2=3 irrespective of !. In GR, instead, this solution only appears
for � D 2=3. If

! > !c � 2

.2� �/ .2 � 3�/ ; (6.106)

this equilibrium point is located in the K > 0 region; if ! < !c it appears in the
K < 0 region, while if ! D !c , it lies on the K D 0 separatrix.

The stability analyses of [594, 690, 970] show that:

� The equilibrium point
�
x
.1/
C ; y

.1/
C



(the expanding Nariai solution) is a late-time

attractor if ! > !c and a saddle point if ! < !c . It corresponds to power-law
inflation and it is an attractor in ! > !c spatially open models.
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� The other equilibrium point
�
x
.2/
C ; y

.2/
C



is an attractor if ! < !c and a saddle

point if ! > !c .
� The two fixed points coincide and lie on the K D 0 separatrix if ! D !c . In this

case, the equilibrium point is an attractor if K � 0 and a saddle point if K > 0.

The fixed points at infinity can be found by using a Poincaré projection compact-
ifying the phase plane and are located by the values of the polar angle

� .3/ D tan�1
�

�1C 1p
3˛

�
; (6.107)

� .4/ D tan�1
�

�1 � 1p
3˛

�
; (6.108)

� .5/ D �

2
: (6.109)

In addition, there are equilibrium points given by the symmetric angles obtained by
time reversal. � .3/ and � .4/ lie on theK D 0 separatrix. Using the original variables,
these equilibrium points describe the spatially flat O’Hanlon-Tupper solutions [879]
a / tq , � / �s with

q D sin � .i/

F
�
� .i/

� ; s D 2 cos � .i/

F
�
� .i/

� ; (6.110)

F .�/ D 2 cos � C
�
1 � 2 sin.2�/C 2

3˛2
cos2 �

�
sin � : (6.111)

Here � .4/ is the fast (expanding) solution and � .3/ is the slow solution, which ex-
pands if ! > 0 and contracts if ! < 0. � .5/ describes the Milne universe of GR
.a; �/ D .a0 t; const./.

Stability analyses of the stationary points at infinity [594, 690, 970] show that:

� The fixed point � .5/ (expanding Milne universe) is a late time attractor if
� > 2=3.

� Whenever the critical point
�
x.1/; y.1/



lies at a finite distance from the origin,

the stationary points at infinity � .3/ and � .4/ are nodes.

� When the critical point
�
x.1/; y.1/



disappears, the nature of the critical points

at infinity depends on the value of � . If � < 4=3 then � .3/ is a saddle point, and
it is also an attractor for K D 0 solutions lying on the separatrix, while � .4/ is a
node. This behavior is reversed if � > 4=3.

If K D C1 certain solutions end in a Big Crunch and there are also hesitating
universes emerging from a Big Bang, slowing down, and re-expanding again. There
are coasting universes, and also vacillating universes emerging from a Big Bang,
contracting, and then re-expanding. Other solutions begin contracting, stop, expand,
and then reach an accelerated regime.
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If K D �1 there are bouncing universes and solutions which emerge from a
Big Bang and approach the � .5/ coasting universe attractor at late times. For both
K D ˙1, there are solutions dominated by a cosmological constant but which do
not approach a K D 0 de Sitter solution at late times [970]. They show that the
cosmic no-hair theorems of GR stating that the inflationary de Sitter space is a late
time attractor for the cosmic dynamics, and that cosmological inflation generically
leads to a flat universe, do not hold in general in Brans-Dicke (or scalar-tensor)
gravity. This property is related to the fact that the spatially flat solution of Brans-
Dicke cosmology corresponding to pure cosmological constant is not de Sitter space
but a power-law solution instead.

6.3.1.3 Phase space for V D m2�2=2 and any three-geometry

When V.�/ D m2�2=2, K is arbitrary and with a barotropic fluid, the use of con-
formal time � and of the variables

X �
r
2! C 3

12

�0

�
; (6.112)

Y � a0

a
C �0

2�
; (6.113)

Z � m2

2
a2� (6.114)

(where 0 � d=d�), reduces the dynamical system to the three first order coupled
equations [970]

X 0 D �2XY C 4 � 3�
4A

�
Y 2 �X2 � Z

6
CK

�
; (6.115)

Y 0 D 2 � 3�
2

�
Y 2 �X2 CK

�� 2X2 C �

4
Z ; (6.116)

Z0 D 2ZY ; (6.117)

where

A � 1

2

r
2! C 3

3
(6.118)

and ! > �3=2.
In general, the phase space is three-dimensional, contrary to the cases V D 0

[690] and V D �� [689,945]. However, in vacuo, the variableZ can be eliminated
and the phase space becomes two-dimensional. If there is only radiation (P .m/ D
�.m/=3) the variable X can be eliminated and the phase space becomes again two-
dimensional [970].
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Whether equilibrium points exist or not depends on the three-geometry and on
the value of � . For vacuum and for radiation there exist power-law contracting and
expanding attractors and also expanding de Sitter attractors [970].

The Dehnen-Obregon solution [369] is a K D C1 coasting universe filled with
dust, with zero scalar field potential and ! < �2 given by

a.t/ D
r �2
2C !

t ; (6.119)

�.t/ D �8�
2! C 3

�.t/ t2 D �0

t
; (6.120)

with 2�2a3.t/ �.t/ D M and

�0 D �p
2M j! C 2j3=2
� .2! C 3/

; (6.121)

where the constantM is the mass of this closed universe and

�.t/ D M j! C 2j3=2
4
p
2�2

1

t3
: (6.122)

Other FLRW solutions have been derived using conformal time and a different
choice of variables than .a; �/ [94, 533, 751, 798, 874, 1084, 1145].

Homogeneous and anisotropic Bianchi universes have been found, with special
attention devoted to the initial singularity [828,829], usually with variables different
from .a; �/, which complicates their interpretation. The isotropization of Bianchi I,
V, and IX models in Brans-Dicke cosmology (without potential V ) and a perfect
fluid is studied in [291, 828, 829]. Bianchi V solutions with metric

ds2 D �dt2 C a21 dx
2 C a22 e�2x dy2 C a23 e�2x d z2 (6.123)

in synchronous coordinates are found in [289].

6.3.2 Exact scalar-tensor cosmologies

Many cosmological solutions of scalar-tensor theories with varying coupling !.�/
have been found [11, 15, 16, 94, 100, 101, 104, 118, 136, 230, 232, 370, 479, 480, 512,
533, 658, 659, 798, 874, 906, 1080, 1084, 1145] with specialized techniques origi-
nally developed in [94, 100] for vacuum- or radiation-dominated FLRW universes.
Spatially flat FLRW universes with a perfect fluid obeying 0 � � � 4=3 in gen-
eral scalar-tensor theories are studied in [101]. A solution-generating technique
for FLRW universes with arbitrary three-geometry, arbitrary coupling !.�/, and
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vacuum or radiation, can be found in [104]. A solution-generating method valid for
any value of the perfect fluid EoS and spatially flat FLRW models is also developed
there.

Bianchi models in general scalar-tensor gravity are discussed in [798,1145]. The
isotropization of Bianchi cosmologies in scalar-tensor theories without scalar field
potential and with a perfect fluid is studied in [798]. Vacuum with a scalar field
potential satisfying the special condition4

�

V

dV

d�
D 2˙ ˛

r
3

2
C !.�/ ; (6.124)

where ˛ is constant, is studied in [139, 333, 334]. With the exception of certain
Bianchi type IX models, all Bianchi universes isotropize if 0 < ˛2 � 2 and they
inflate if ˛2 < 2. Bianchi VIIb models with ˛ > 0 isotropize but do not inflate [334].

Point-like Noether symmetries leading to first integrals of motion as conserved
charges in anisotropic scalar-tensor cosmologies are studied in [735]. In the pres-
ence of a cosmological constant, only Brans-Dicke gravity admits Noether symme-
tries. These symmetries are still present in the � ! 0 limit, but other scalar-tensor
theories admit Noether symmetries for � D 0 [735].

6.4 Analytical solutions of metric f .R/ cosmology
by the Noether approach

We will now focus on the application of the Noether symmetry approach to the
search for exact solutions in FLRW cosmology, concentrating on metric f .R/ grav-
ity [226]. Since metric f .R/ gravity is equivalent to an ! D 0 scalar-tensor theory
with a special potential determined by the form of the function f .R/, this discus-
sion continues the study of scalar-tensor cosmology begun in the previous sections.
It provides insight on the nature of a particular correction to the Hilbert-Einstein
action, which can however be regarded as the prototype of higher order additions
motivated by renormalization and low-energy string theory. The Noether symmetry
approach has been applied to scalar-tensor gravity in [234].

6.4.1 Point-like f .R/ cosmology

The equations of FLRW cosmology in f .R/ gravity can be derived from a canon-
ical point-like Lagrangian L

�
a; Pa;R; PR� where Q D .a;R/ is the configuration

space and TQ D �
a; Pa;R; PR� is the corresponding tangent bundle on which L is

4 This special choice of the potential makes the corresponding Einstein frame potential an
exponential.
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defined. As done for spherical symmetry, Lagrange multipliers can be used to turn
the expression ofR in terms of the scale factor and its derivatives into a constraint on
the dynamics. By selecting a suitable Lagrange multiplier and integrating by parts,
the Lagrangian L becomes canonical. Specifically, the action is

S D 2�2
Z

dt a3
�
f .R/� �

�
R � 6

� Ra
a

C Pa2
a2

C K

a2

��
� �m0

a3
� �r0

a4

�
;

(6.125)

where a is the scale factor normalized to unity today (i.e., a0 � a.t0/ D 1) and
�m0 and �r0 are the current values of the energy densities of dust and radiation,
respectively.5

The variation of the action term containing the Lagrange multiplier with respect
to R gives � D fR and Eq. (6.125) becomes

S D 2�2
Z

dt a3
�
f � fR

�
R � 6

� Ra
a

C Pa2
a2

C K

a2

��
� �m0

a3
� �r0

a4

�
: (6.126)

Integrating by parts, the point-like FLRW Lagrangian is written as

L D a3 .f � fRR/�6 a2 fRR PR PaC6 fR a Pa2C6K fR a��m0� �r0

a
; (6.127)

a canonical function of the (time-dependent) Lagrangian coordinates .a;R/. The
total energy EL and the time-time component of the field equations obey

EL D 6 fRR a
2 Pa PR C 6 fR a Pa2 � a3 .f � fR R/� 6K fR a C �m0 C �r0

a
D 0 :

(6.128)

In the following it will be convenient to search for solutions in the parametric form	
H.a/; f

�
R.a/

�

so that fR D f 0=R0, where a prime now denotes differentiation

with respect to the parameter a. Moreover, ifR is not constant, fRR PR D dfR=dt D
aH f 0R D aH

h
f 00=R0 � f 0 R00=R02

i
and the Friedmann equation can be rewrit-

ten as

f �6a
�
f 00

R0
� f 0R00

R02

�
H 2� 6f 0H 2

R0
�
�
6K

a2
CR

�
f 0

R0
D �0m

a3
C �0r

a4
: (6.129)

The equations of motion for a and R are

fRR

�
R � 6

�
H 2 C Ra

a
C K

a2

��
D 0 ; (6.130)

5 With this choice, a is dimensionless while the curvature index K carries the dimensions of an
inverse length squared and f .R/ those of a mass to the fourth power.
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6 fRRR PR2 C 6 fRR RRC 6 fRH
2 C 12 fR

Ra
a

D 3 .f � fR R/� 12 fRRH PR � 6 fR
K

a2
C �r0

a4
: (6.131)

Considering R and a as independent Lagrangian coordinates, for consistency

R must coincide with 6

� Ra
a

C Pa2
a2

C K

a2

�
(unless fRR D 0), which is the Euler

constraint on the dynamics. As shown below, exact solutions of the system
(6.128)–(6.131) and the corresponding form of the function f .R/ can be ob-
tained by imposing the existence of Noether symmetries. The existence of these
symmetries guarantees the reduction of the dynamics and the integrability of the
system.

6.4.2 Noether symmetries in metric f .R/ cosmology

The condition LXL D 0 for the existence of a symmetry gives rise to the system of
linear partial differential equations for ˛ and ˇ

fR .˛ C 2a @a˛/C a fRR .ˇ C a @aˇ/ D 0 ; (6.132)

a2 fRR @R˛ D 0 ; (6.133)

2 fR @R˛ C fRR .2 ˛ C a @a˛ C a @Rˇ/C a ˇ fRRR D 0 ; (6.134)

3˛ .f � RfR/ � a ˇ RfRR � 6K

a2
. f̨R C a ˇ fRR/C �r0 ˛

a4
D 0 ; (6.135)

obtained by equating to zero the coefficients of the quadratic terms containing Pa2,
PR2, and Pa PR. The last equation is a relation between a andR. A solution is found by

determining explicit forms of ˛ and ˇ. If at least one of these is different from zero,
then a Noether symmetry exists, which fixes the form of the function f .R/.

If fRR ¤ 0, Eq. (6.133) can be immediately integrated and ˛ D ˛.a/ depends
only on a (GR corresponds to the trivial case fRR D 0). One can write Eqs. (6.132)
and (6.134) as

fR

�
˛ C 2a

d˛

da

�
C a fRR .ˇ C a @aˇ/ D 0 ; (6.136)

fRR

�
2 ˛ C a

d˛

da
C a @Rˇ

�
C a ˇ fRRR D 0: (6.137)

Using separation of variables and searching for solutions of the form

ˇ D A.a/B.R/ ; (6.138)
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it must be

fR

�
˛ C 2a

d˛

da

�
C aB fRR

d

da
.a A/ D 0 ; (6.139)

fRR

�
2 ˛ C a

d˛

da

�
C aA

d

dR
.fRR B/ D 0 : (6.140)

Equation (6.140) implies

1

fRR

d

dR
.fRRB/ D v0 D const:; (6.141)

with solution

B D v1 C v0 fR
fRR

; (6.142)

where v1 is another constant, and we also have

2˛ C a
d˛

da
D �v0 aA : (6.143)

Since fRR ¤ 0, Eq. (6.139) implies that

v1 D 0 or B D v0
fR

fRR
(6.144)

and

˛ C 2 a
d˛

da
C a

d

da
.v0 aA/ D 0 (6.145)

which becomes, using Eq. (6.143),

˛ � a2 d
2˛

da2
� a d˛

da
D 0 ; (6.146)

with general solution

˛ D c1 a C c2

a
: (6.147)

Since the scale factor is dimensionless, c1 and c2 have the same dimensions. We can
further fix ˛ to be dimensionless, which determines the dimensions of ˇ to be that
of a mass squared. Finally, one obtains

ˇ D �
�
3 c1 C c2

a2


 fR

fRR
: (6.148)
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Using the solutions for ˛ and ˇ, Eq. (6.135) is rewritten as

�
c1 a

2 C c2
� �
3 a4 f C �r0

�C 2 a4 fR .6K c1 � c2 R/ D 0 ; (6.149)

which is equivalent to

fR D
�
c1 a

2 C c2
� �
�r0 C 3 a4 f

�

2 a4 .c2R � 6K c1/
(6.150)

if c2R � 6K c1 ¤ 0. It is clear that, once a form of f is chosen, this equation pro-
vides R as a function of a. Since, on shell, R is a function of H and its derivatives,
this Noether condition constitutes a dynamical constraint. It is convenient to look for
solutions in the parametric form

	
H.a/; f

�
R.a/

�

. In this case, since fR D f 0=R0,

the Noether condition corresponds to the ordinary differential equation

f 0.a/
R0.a/

D
�
c1a

2 C c2
� 	
3f .a/a4 C �0r




2a4 Œc2R.a/ � 6c1K	 : (6.151)

A Noether solution
	
H.a/; f .R.a//



must solve simultaneously the Friedmann

equation (6.129) and the Noether constraint (6.151). Equation (6.150) can also be
rewritten as

c1 a
2
�
�r0 C 3 a4 f C 12K a2 fR

�C c2
	
�r0 C a4 .3 f � 2R fR/


 D 0: (6.152)

There is a family of solutions that provides a class of f .R/ models with Noether
symmetry. The symmetry implies the existence of the constant of motion

˛
�
6 fRR a

2 PRC 12 fR a Pa�C 6ˇ fRR a
2 Pa D 6�30 D const: ; (6.153)

where �0 carries the dimensions of a mass. Equation (6.153) can be recast as

dfR

dt
D fRR PR D �30

a .c1 a2 C c2/
C c1 a

2 � c2

c1 a2 C c2
fRH (6.154)

or, in terms of the parameter a,

aH.a/

�
f 00.a/
R0.a/

� f 0.a/R00.a/
R0.a/2

�
�
�
a2c1 � c2

�
H.a/f 0.a/

.c1a2 C c2/ R0.a/
D �30
a .c1a2 C c2/

:

(6.155)

Once Eq. (6.151) is solved, because the Noether constraint is satisfied, the solu-
tion

	
H.a/; f

�
R.a/

�

automatically solves also Eq. (6.155) for a particular �0.

Equation (6.153) can then be used to reduce the order of the Friedmann equation. In
fact, writing Eq. (6.128) as

f � 6 fRR PRH � 6 fRH
2 � fR

�
RC 6K

a2

�
� �m0

a3
� �r0

a4
D 0; (6.156)



238 6 Qualitative analysis and exact solutions in cosmology

it is

f � 12 c1 a
2

c1 a2 C c2
fRH

2 �fR
�
RC 6K

a2

�
D 6�30H

a .c1 a2 C c2/
C �m0

a3
C �r0

a4
(6.157)

with fR given by (6.150). We will use this relation to search for analytical cosmo-
logical solutions depending on the constant of motion�0 determined by the Noether
symmetry.

6.4.3 Exact cosmologies

We now discuss the Noether condition (6.152) and the dynamical system (6.128),
(6.130), and (6.131) and, in particular, the values of the integration constants c1;2,
the structural parametersK; �r0; �m0, and the Noether charge �0.

6.4.3.1 c1 D 0

In this case, the Noether condition (6.152) reduces to

2R fR � 3 f D �r0

a4
: (6.158)


 Vacuum and pure dust
In vacuo or in the presence of pure dust (�r0 D 0), we find

f D f0

�
R

R0

�3=2
: (6.159)

For vacuum, this solution was presented in [239]. To avoid ghosts, it must be
fR > 0, i.e., f0 > 0. With pure dust, Eq. (6.159) can be substituted into Eq. (6.157)
with �m0 ¤ 0 and �r0 D 0 to obtain

�
R

R0

�3=2
C 18K

a2 R0

�
R

R0

�1=2
D �12�

3
0H

c2 a f0
� 2�m0

a3 f0
: (6.160)

1. K D 0: the right hand side of Eq. (6.160) must be positive. If �0 D 0 (in
this case analytical solutions exist) this is impossible because f0>0, hence it is
impossible to have ghost-free solutions. For the more general case �30=c2 < 0,
there could in principle be a physical solution, which can be found numerically.

2. K ¤ 0: the Ricci scalar can be found by solving Eq. (6.160). If �0 D 0 we
have a cubic equation for

p
R=R0 which always admits a real root, although this

may not be positive. As follows from Eq. (6.160), there are ghosts if �0 D 0;

K D �1 since f0 < 0. If �0 D 0;K D C1 there are no solutions because
x3 C 18K

a2R0
x C 2�m0

a3 f0
> 0.
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 Mixture of dust and radiation
For a mixture of dust and radiation we have

fR D 3

2

f

R
C �r0

2 a4R
: (6.161)

To keep fR > 0 it must be

f > � �r0

3 a4
: (6.162)

Substituting fR into the reduced Friedmann equation (6.157) yields

f D � 12�30 aH R

c2 .R a2 C 18K/
� 6K �r0

a4 .Ra2 C 18K/
� 3�r0R

a2 .Ra2 C 18K/
� 2�m0R

a .Ra2 C 18K/
;

(6.163)

which gives f as a function of a via RDR.a/. It must be c2 ¤ 0 other-
wise the Noether condition becomes trivial. This expression can be inserted
into Eq. (6.161). Assuming that R.a/ is a monotonic function of a and using
fR D .df=da/=.dR=da/, Eq. (6.158) becomes the differential equation for R.a/

R0 D 6

a3
�
18a3H�30 C 4c2�r0 C 3ac2�m0

�
.Ra2 C 6K/

� ˚�R2Œ2a3.H � aH 0/�30 C c2.2�r0 C a�m0/	a
4 C 6KR

� 	6a3�30 .H C aH 0/� c2.4�r0 C a�m0/


a2 � 72c2K

2�r0
�
: (6.164)

Equation (6.164) can be further rewritten as a second order differential equation for
H.a/ by using the familiar expression of R in terms of H and its derivatives

R D 6

�
aHH0 C 2H 2 C K

a2

�
: (6.165)

Substituting Eq. (6.165) into Eq. (6.164) yields

H 00 D � 	a4H 2
�
18a3H�30 C 4c2�r0 C 3ac2�m0

�
�1

	
n
24aK2�30 CH

h
a2
n
a2
�
6a3H�30 C 4c2�r0 C 3ac2�m0

�
H 02

C a
	
12aK�30 CH

�
78a3H�30 C 32c2�r0 C 21ac2�m0

�

H 0

C 12H
	
2aK�30 CH

�
2a3H�30 C 2c2�r0 C ac2�m0

�
� � 8c2K�r0

�
:

(6.166)

This differential equation identifies functions f .R/ which satisfy simultaneously
the Friedmann equation and the Noether condition. Having chosen a as the evolution
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parameter, finding the functionsH.a/ which solve Eq. (6.166) determines uniquely
the metric. Hence, H.a/ represents an exact solution of the field equations. Of
course, to know the dependence a.t/ of the scale factor on the proper time, the
integral t D R

da=.aH/ must be computed.
Analytical solutions can be found in the special case �0 D 0, in which the dif-

ferential equation becomes linear in H 2. Its solution is a family

H D H .a; d1; d2; c2; K; �r0; �m0/ ; (6.167)

where the constants d1;2 come from the integration of Eq. (6.166). Equation (6.165)
makes it possible to define a function R .a; d1; d2; c2; �r0; �m0/ which can then be
substituted into Eq. (6.163) to find the explicit parametric form f D f .a; d1; d2; c2;

�r0; �m0/ of the function f .R/. In other words, we find the explicit parametric form
of f .R/ using the scale factor a as a parameter.

Two situations can be distinguished:

1. K D 0, �0 D 0: Eq. (6.166) can be integrated yielding

H 2 D d2
�
d1 C 8 a �r0 C 3 �m0 a

2
�

a4
; (6.168)

where d1;2 are integration constants with dimensions of a mass to the fourth
power and of an inverse mass squared, respectively. This expression for H.a/,
together with Eqs. (6.163) and (6.165) forms a solution of the system (6.129) and
(6.151), so that Eq. (6.155) is satisfied by setting �0 D 0. This solution is phys-
ically unacceptable because it corresponds to a negative gravitational coupling:
Eq. (6.162) cannot be satisfied by Eq. (6.163) if K D 0 and �0 D 0 (however,
the non-linear case �0=c2 < 0 could still lead to physical solutions). Similarly,
we reject the case K D �1; �0 D 0.

2. K > 0, �0 D 0: as long as R > 18K=a2, the second term on the left hand side
of Eq. (6.163) is positive, allowing for the possibility of a physical solution. The
integration of Eq. (6.166) leads to

H 2 D
�p

2 d1 � 32 �2r0K

9�20m

�
1

a4
C
�
8 d2 �r0 � 16K�r0

3�m0

�
1

a3
C 3 d2 �m0

a2
;

(6.169)

where d1 and d2 have the dimensions of a mass squared and an inverse mass
squared, respectively. In order to find d1 and d2, one fits this formula with the
Friedmann equation of GR for a FLRW universe dominated by matter, radiation,
or curvature, considering

p
2 d1 � 32 �2r0K

9�20m
D H 2

0 ˝
.eff/
r0 ; (6.170)

8 d2 �r0 � 16�r0K

3�m0
D H 2

0 ˝
.eff/
m0 ; (6.171)

3 d2 �m0 D H 2
0 ˝

.eff/
k0

: (6.172)
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This system does not admit physical solutions since, using present data [1039],
one finds

K D 1

2
H 2
0 ˝

.eff/
k0

� 3

16

�m0

�r0
H 2
0 ˝

.eff/
m0 < 0 : (6.173)

6.4.3.2 c2 D 0

In this case, the Noether condition (6.152) reduces to

�r0 C 3 a4 f C 12K a2 fR D 0 : (6.174)


 Cosmological constant and dust
If only dust and a cosmological constant are present, �r0 D 0 and a flat universe

cannot be a solution of the field equations because it would imply that f D 0. If
K ¤ 0 one finds

fR D a2 f

4K
: (6.175)

Since fR > 0, f is positive whenK is positive and vice-versa. Taking this fact into
account in the Friedmann equation, it is

a3c1
	�
12H 2 CR

�
a2 C 10K



f D 4K

�
6H�30 C c1�m0

�
: (6.176)

Restricting ourselves to the study of the simplest linear case corresponding to
�0 D 0, two situations are possible:

1. �m0 D 0; �0 D 0: then one needs to impose

R D 6

�
2H 2 C K

a2

�
(6.177)

which, together with the definition of R, yields

H 2 D 2

�
d1 � K

3a2

�
(6.178)

where d1 is an integration constant with the dimensions of a mass squared.
Equation (6.174) can now be solved for f .a/, obtaining

f D d2

a
D d2

�
�RC 24d1

2K

�1=2
(6.179)

with d2 an integration constant carrying the dimensions of a mass to the fourth
power.

2. �m0 ¤ 0; �0 D 0: the Friedmann equation and Eq. (6.175) give

f D � 4K �m0

.12H 2 CR/a5 C 10Ka3
: (6.180)
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Substituting this expression into Eq. (6.175) and using the expression of R in
terms of H.a/, one finds a linear second order differential equation for H 2.a/

with solution

H 2 D d1

2a4
C 2d2 � 2K

3a2
; (6.181)

where d1;2 are again integration constants with the dimensions of a mass squared
and

R D �24d2 � 2K

a2
; (6.182)

f D �2K �m0
3 a d1

: (6.183)


 Radiation and dust There are three possibilities, corresponding to the possible
signs of K .

1. K D 0: in this case it is

f D �r0

3a4
(6.184)

and

fR D �f
0

R0
D 4

3

�r0

a5R0
: (6.185)

A well-behaved background evolution requires R0 > 0, hence fR < 0 and the
effective gravitational coupling is negative, which makes this solution physically
unacceptable.

2. K ¤ 0: using Eq. (6.174) one finds

fR D �r0

12Ka2
C f a2

4K
(6.186)

and, using the Friedmann equation (6.157) and solving for f , one obtains

f D �c1
�
12H 2 CR

�
�r0a

2 C 12K
�
6H�30 C c1�m0

�
a C 6c1K�r0

3a4c1 Œ.12H 2 CR/a2 C 10K	
(6.187)

which, inserted into the Noether condition (6.174) in conjunction with the ex-
pression of R in terms of .H;H 0; a/, leads to the differential equation for H.a/

H 00 D 	
a5H 2

�
18aH�30 C 3ac1�m0 C 4c1�r0

�
�1

	
n
aH

h
� �18aH�30 C 3ac1�m0 C 4c1�r0

�
H 02a4

� 3
�
aH

�
30aH�30 C 5ac1�m0 C 8c1�r0

� � 4K�30
�
H 0 a2

C 4K
�
6aH�30 C ac1�m0 C 2c1�r0

�
 � 8K2�30
�
: (6.188)
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In the case �0 D 0; �m0 ¤ 0, Eq. (6.188) is integrated to give

H 2 D 256K�3r0
405a5�3m0

C 16K�2r0
27a4�2m0

C 8d1�r0

5a5
� 2K

3a2
C 3�m0d1

2a4
C 2d2 ; (6.189)

where d1;2 are integration constants with the dimensions of an inverse mass
squared and a mass squared, respectively. A new cosmological term scaling as
a�5 appears in this Friedmann equation, analogous to a matter term with equa-
tion of state P D 2�=3.

If .�0; �m0/ D .0; 0/ (i.e., for a radiation-dominated universe), Eq. (6.188)
admits the solution

H 2 D 2d2 C 2d1

5a5
� 2K

3a2
; (6.190)

where both d1 and d2 have the dimensions of a mass squared.

6.4.4 c1; c2 ¤ 0

Dividing Eq. (6.152) by c1 one obtains

fR D
�
a2 C c3

� �
�r0 C 3 a4 f

�

2 a4 .c3R � 6K/ (6.191)

where c3 D c2=c1 ¤ 0, which implies that

fRR PR D Q�30
a .a2 C c3/

C a2 � c3
a2 C c3

fRH (6.192)

with Q�30 D �30=c1. The Friedmann equation (6.157) can be rewritten as

f � 12 a2

a2 C c3
fRH

2 � fR

�
R C 6K

a2

�
D 6 Q�30H
a .a2 C c3/

C �m0

a3
C �r0

a4
: (6.193)

By substituting Eq. (6.191) into Eq. (6.193) and solving for f , one finds

f D 12 Q�30 a5 H .6K � c3 R/

a4 .a2 C c3/ Œ3 .12H2 C R/a4 C .30K C c3R/ a2 C 18c3K	

��r0
�
12H2 CR

�
a4 C 2�m0 .c3R � 6K/ a3 C 3�r0 .c3R � 2K/ a2 C 6c3K�r0

a4 Œ3 .12H2 C R/a4 C .30K C c3R/ a2 C 18c3K	
;

(6.194)
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where RDR.a/ and H DH.a/. Again, one can proceed by regarding f as an
implicit function of a into the Noether condition (6.191). Since f Df .R.a//, it is

fR D da

dR

df

da
D f 0

R0
: (6.195)

The substitution of Eqs. (6.194) and (6.195) into Eq. (6.191) yields the second order
equation forH

H 00 D 1

a4.a2 C c3/.3a2 C c3/H 2
	
18 Q�30Ha3 C .a2 C c3/.4�r0 C 3a�m0/




	 ˚�24c3.3a2 C c3/ Q�30H 4a5 � 24.a2 C c3/
2K2 Q�30 a

� H 2
h
6.3a2 C c3/

2 Q�30H 02a4 C 24.�3a4 � 2c3 a
2 C c23/K Q�30

C .a2 C c3/
2 .45�m0 a

3 C 72�r0 a
2 C 21c3 �m0 aC 32c3 �r0/H

0
 a3

�6H 3
	
.3a2 C c3/.15a

2 C 13c3/ Q�30H 0a4

C2c3.a2 C c3/
2 .2�r0 C a�m0/



a2

� �a2 C c3
�
H
	
a4H 0

	
12
�
c3 � 3a2

�
K Q�03

C �
a2 C c3

� �
3a2 C c3

�
.4�r0 C 3a�m0/H

0


� 4
�
a2 C c3

�
K
�
3�m0a

3 C 6�r0a
2 C 2c3�r0

�
�
: (6.196)

Equation (6.196) rules the dynamics of the Noether solutions for choices of f .R/
compatible with the Noether symmetry. There is a free parameter c3 which, together
with the initial conditions

�
H0;H

0
0

�
, uniquely specify the dynamics. This non-linear

ODE is still of second order in H.a/, as the time-time component of the field equa-
tions is in any f .R/ theory. However, this equation is independent of the explicit
form of the function f .R/ and contains c3 and �0 (the Noether charge) as the only
unknown parameters. Then, there is a solution of Eq. (6.196) for any value of the
Noether charge and the solutions spanned as c3 and �0 vary represent the whole set
of Noether-charged cosmological solutions of f .R/ theories.

6.4.4.1 Cosmological constant and dust

In the presence of dust and a cosmological constant, Eq. (6.191) reduces to

fR D 3f
�
a2 C c3

�

2 .R c3 � 6K/
; (6.197)
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while f can be written as

f D 2 .6K � Rc3/
	�
6H�30 C �m0

�
a2 C �m0c3




a .a2 C c3/ Œ3 .12H 2 CR/ a4 C .30K CRc3/ a2 C 18Kc3	
: (6.198)

If .�m0; �0/ D .0; 0/ there are no solutions, hence we only discuss
�0 D 0; �m0 ¤ 0, in which case f can be written in the form

f D 3
�
12H 2 CR

�
a4 C .30K CRc3/ a

2 C 18Kc3: (6.199)

Inserting this relation into Eq. (6.197) together with the definition of R, one finds

H 00 D �4c3H 2 � a
�
15a2 C 7c3

�
H 0H � a2 �3a2 C c3

�
H 02 C 4K

a2 .3a2 C c3/H
; (6.200)

whose general solution is

H 2 D �c3K
9a4

� 2K

3a2
C 2d1

a4
C 2c3d2

a2
C 3d2: (6.201)


 Pure radiation
Once again, Eq. (6.196) with .�0; �m0/ D .0; 0/ yields

�
H 2

�00 D � 18a2 C 8c3

a .3a2 C c3/

�
H 2

�0 � 12 c3H
2

a2 .3a2 C c3/
C 2k.6a2 C 2c3/

a4 .3a2 C c3/
: (6.202)

The general solution for positive values of c3 is

H 2 D 3c3d1

a4
C 27d1

c3
C 18d1

a2
C 5

p
3
p
c3d2

a3
C 9

p
3d2

a
p
c3

C 4K

c3
C 2K

a2

C
3c3d2 tan�1

�p
3ap
c3




a4
C
27d2 tan�1

�p
3ap
c3




c3
C
18d2 tan�1

�p
3ap
c3




a2
:

(6.203)

For negative values of c3 one finds

H 2 D 3c3d1

a4
C 27d1

c3
C 18d1

a2
� 5

p
3
p
c3d2

a3
C 9

p
3d2

a
p�c3 C 4K

c3
C 2K

a2

C
3c3d2 tanh�1

� p
3ap�c3




a4
C
27d2 tanh�1

� p
3ap�c3




c3
C
18d2 tanh�1

� p
3ap�c3




a2
:

(6.204)
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Both expressions ofH.a/ together with Eqs. (6.194) and (6.165) form a solution of
(6.129) and (6.151) with vanishing Noether charge �0.


 Dust and radiation
Let us restrict ourselves to the case Q� D 0, which admits analytical solutions.

Equation (6.196) reduces to

�
H 2

�00 D �
�
45�m0a

3 C 72�r0a
2 C 21c3�m0aC 32c3�r0

�

a .3a2 C c3/ .4�r0 C 3a�m0/

�
H 2

�0

� 24 c3 .�m0a C 2�r0/H
2

a2 .3a2 C c3/ .4�r0 C 3a�m0/
C 8k.3�m0a

3 C 6�r0a
2 C 2c3�r0/

a4 .3a2 C c3/ .4�r0 C 3a�m0/
:

(6.205)

Remarkably, this ODE is linear in H 2 and analytical solutions can be obtained for
any value of K .

1. K D 0: the solution of Eq. (6.205) is
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where d1;2 are integration constants with the dimensions of a mass to the fourth
power and of an inverse mass squared, respectively. This solution deviates from
the corresponding GR solution because it contains an 1=a term which, if dom-
inant, leads to acceleration. Furthermore, there are terms involving �r0, which
include the inverse tangent of a (c3 is assumed to be positive). These terms have
different behavior at low and high redshift. In fact, since tan�1.a/ � a at high
redshifts a! 0, these terms behave as dust with energy densities scaling as 1=a
and a respectively, and are subdominant with respect to radiation. Moreover,
since tan�1.a/ � �=2 for large and positive a, these terms behave as radiation,
curvature, and cosmological constant, respectively. In order to have a true dust
component at late times, it must be

�r0 d2 c
3=2
3 D 4�G

15
�m0 : (6.207)
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This fact means that �r0 behaves as the material source in this modified
Friedmann equation. A cosmological constant term is also present and it is
determined by the integration constants related to the Noether condition.
As for the case c3 < 0, the solution of Eq. (6.205) can be written as (see
Appendix B.2)
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2. K ¤ 0: the general solution is
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Also in these cases we have interesting behaviors matching the main cosmolog-
ical eras. The integration constants d1;2 have the dimensions of a mass squared
and an inverse mass squared, respectively.
For negative values of c3, Eq. (6.205) has the solution
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Once the free parameters (if there are any) are constrained by the data, one can select
physically interesting f .R/ models as in [218].


 The non-linear case Q�0 ¤ 0

For general (i.e., non-vanishing) values of the parameter Q�0, Eq. (6.196) cannot
be written as a linear differential equation for H 2 and analytical solutions are un-
known. However, assigning an initial condition for H and suitable values for the
parameters, one can solve this equation numerically. In turn, the initial conditions
determine the functions f .R/ and H.a/.

6.4.4.2 Non-Noether solutions

In general it is not possible to find a solution of the Friedmann equations which is
also a Noether symmetry: such symmetries do not exist for all f .R/ theories.
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A solution of the cosmological equations is generally incompatible with the
condition LXL D 0. Both equations are satisfied only in peculiar situations
occurring if Noether charges are present in the structure of the theory. For example,
imposing a power-law solution a / tp defines a function R D R.a/ which can be
inserted in the Noether symmetry equations in order to find f .R.a//. Finally one
can substitute the expressions of f .a/, R.a/, and H in the Friedmann equations. It
is easy to show that, forK D 0, there are no simple power-law solutions compatible
with a Noether charge. The method discussed above allows one to discriminate
theories which admit or do not admit cosmological solutions compatible with a
Noether charge. Power-law solutions exist in general f .R/ models and they can be
found using different methods [24, 211, 212, 219, 275, 331, 846, 865]. Assuming a
power-law H.a/, one finds R as a function of a and then, in principle, determines
f .R.a//. It is therefore possible to write the field equation as a second order differ-
ential equation for f .a/, with H and R given functions of a. This argument holds
also if the redshift z is employed [218]. For example, let us rewrite the Friedmann
equation (6.128) as

f � 6 fRR PRH � 6 fRH 2 � fR

�
R C 6K
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D �m0

a3
C �r0

a4
(6.211)

and let us considerH D NH.a/ and R D NR.a/ as given functions, where
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�
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�
: (6.212)

The Friedmann equation can be written as
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(6.213)

The general solution of this second order linear equation in f depends on the pa-
rameters f0 and f 00 and is a linear combination of two independent solutions of the
homogeneous equation plus a particular solution. It is then clear that more than one
f .R/model can have the sameH.a/ behavior, i.e., multiple theories share the same
cosmological evolution due to the fourth order of the field equations. The singular
points of this differential equation occur as either NH or d NR=da vanish. Interesting
classes of solutions can be found.


 Radiation solutions
Let us search all the f .R/ choices admitting the particular solution a D p

t=t0,
for which

NH D 1

2 t0 a2
D H0

a2
(6.214)
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so that NR D 6K=a2, where H0 � .2 t0/
�1. We have three interesting cases:

1. If K D 0 then it is R D 0, leading to the Friedmann equation

f .0/ � 6 fR.0/ NH 2 D �m0

a3
C �r0

a4
(6.215)

which, if �m0 ¤ 0, cannot be solved for NH � a�2 since f .0/ and f 0.0/ must be
constant and cannot depend on a. If �m0 D 0, standard GR is recovered.

2. If K < 0 we have the differential equation

f 00 C 4

a
f 0 C 2K

H 2
0

f D 2K .�r0 C a�m0/

H 2
0 a

4
(6.216)

whose general solution can be written as
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; (6.217)
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where the SinIntegral and CosIntegral functions are defined by
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t
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Z 1

x
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dt ; (6.219)

respectively. Both integration constants d1;2 have the dimensions of a mass to the
fourth power.
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3. Using a similar procedure for K > 0, one finds the solution
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; (6.220)
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where
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(6.222)

respectively, and �EM � 0:577 is the Euler-Mascheroni constant. Both d1 and
d2 are integration constants with the dimensions of a mass to the fourth power.


 Dust solutions
We now search for f .R/ models with dust-like behavior a.t/ D .t=t0/

2=3, and
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3 t0 a3=2
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a3=2
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3 a3
; (6.223)

whereH0 � 2=.3 t0/. For spatially flat FLRW universes there is the two-parameter
family of solutions
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depending on the integration constants d1;2 both with dimensions of a mass to the
fourth power. The Hilbert-Einstein Lagrangian f .R/ D R, obtained when d1, d2,
and �r0 vanish, belongs to this family.


 Exponential solutions
By imposing that

NH D H0 D const: ; NR D 6

�
2H 2

0 C K

a2

�
; (6.226)

there are again three situations corresponding to the possible signs of the curvature
index.

1. K D 0: H and R are constant with R D R0 � 12H 2
0 and the Friedmann

equation reduces to

f .R0/ � 1

2
fR.R0/ R0 D �m0

a3
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a4
: (6.227)

Solutions exist only if �m0 D �r0 D 0 [103].
2. K > 0: H is still constant but R is not and one finds
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; (6.228)
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3. K < 0: the solution is
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 �CDM solutions
Let us now look for f .R/ models compatible with the �CDM solutions of the

Friedmann equations of GR, which are relevant in the confrontation of theoretical
f .R/ models with observations (e.g., [243]). Defining

NH 2 � H 2
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�
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(6.232)



6.5 Analytical cosmological solutions of f
�
R;�R; ::: ;�kR

�
gravity 253

with the present observational constraint˝m0 C˝r0 D 1, the differential equation
to solve becomes
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which must be integrated numerically upon providing initial conditions
�
f0; f

0
0

�
.

6.5 Analytical cosmological solutions of f
�
R; �R; ::: ; �kR

�

gravity

We now apply the Noether symmetry approach to the search for exact solutions of a
higher order gravity theory with more degrees of freedom than metric f .R/ gravity.
The results show the extreme generality of the method.

6.5.1 Higher order point-like Lagrangians for cosmology

A generic higher order theory in four dimensions is described by the action

S D
Z
d 4x

p�g f .R;�R;�2R; : : : ;�kR/ (6.234)

in units � D c D 1. The field equations are [191, 237, 985]

G�� D 1

D˙

�
1

2
g�� .f �D˙R/C �

g�	g�� � g��g	�
�
D
I	�
˙

C1

2

kX

iD1

iX

jD1

�
g��g	� C g�	g��

� �
�j�i �I�

�
�i�j @f

@�iR

�I	

� g��g	�

"

.�j�1/I��i�j @f

@
�
�iR

�

#)

; (6.235)

where
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: (6.236)



254 6 Qualitative analysis and exact solutions in cosmology

These are vacuum field equations of order .2k C 4/. Matter forms studied in the
literature include a (non-)minimally coupled scalar field [233, 1144].

Let us restrict, for simplicity, to the Lagrangian density f .R;�R/. Then, we
have eight order field equations which become sixth order equations if the function
f is linear in �R. In order to apply the Noether symmetry approach we use the
point-like FLRW Lagrangian

L D L
�
a; Pa;R; PR;�R; P.�R/



; (6.237)

whereR and �R are regarded as independent variables and time derivatives of order
higher than one are eliminated using the method of Lagrange multipliers (see, e.g.,
[1119] for the fourth order case). The action becomes

S D 2�2
Z
dt

(

a3f � �1

"

R � 6

 
Ra
a

C
� Pa
a

�2
C K

a2

!#

� �2

�
�RC RRC 3

� Pa
a

�
PR
��

: (6.238)

The Lagrange multipliers �1;2 are obtained by varying the action with respect to R
and �R,

�1 D a3
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Integrating by parts, the point-like Lagrangian is
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Note that, alternatively, one could consider
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(6.241)

as a Lagrange multiplier [233], obtaining an alternative Lagrangian density differing
from (6.240) only by a term vanishing on the constraint,
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The LagrangiansL and QL are equivalent.
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Let us now derive the Euler-Lagrange equations from (6.240). The equation
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while the other Euler-Lagrange equation
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Finally,
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coincides with the Lagrangian constraints
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The Hamiltonian constraint (time-time component of the field equations)
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yields

H 2

�
@f

@R

�
CH

d

dt

�
@f

@R

�
C �

6
D 0 ; (6.251)
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plays the role of an effective density [233].

6.5.2 The Noether symmetry approach for higher order gravities

As seen before, a Noether symmetry for the Lagrangian (6.240) exists if LXL D 0

[230–232, 234, 235, 241]. In our case, the tangent space is
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(6.253)

and the symmetry generator is
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where ˛; ˇ; and � are functions of .a;R;�R/. A Noether symmetry exists if at
least one of these functions is different from zero. Their analytic forms can be
found by writing explicitly the condition LXL D 0, which corresponds to a set

of 1C n.nC 1/

2
partial differential equations obtained by equating to zero the

quadratic terms containing Pa2, PR2, P.�R/2, Pa PR, etc. In our case, n D 3 and one
obtains the PDE system
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This system is overdetermined and, if it admits solutions, enables one to assign ˛,
ˇ; � , and f .R;�R/. Then, one can transform the Lagrangian (6.240) so that

L
�
a; Pa;R; PR;�R; P.�R/



! L.u; Pu;w; Pw; Pz/ ; (6.262)

where z is a cyclical variable and the dynamics are thus simplified. This change of
variables can be easily obtained by the conditions

iXdz D ˛
@z

@a
C ˇ

@z

@R
C �

@z

@�R D 1 ; (6.263)

iXdw D ˛
@w

@a
C ˇ
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@R
C �

@w

@�R D 0 ; (6.264)

iXdu D ˛
@u

@a
C ˇ

@u

@R
C �

@u

@�R D 0 : (6.265)

Once the dynamics are solved using the variables .z;w; u/, the inverse transforma-
tion

.z.t/;w.t/; u.t// ! .a.t/; R.t/;�R.t// (6.266)
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allows its description in terms of the original variables. Note, however, that we are
considering constrained dynamics since the variables a, R, �R are related.

If f .R;�R/ depends only linearly on �R the theory is of sixth order, otherwise
it is of eighth order. A sixth-order solution of the Noether system (6.255)–(6.261) is
recovered if

˛ D ˛0p
a
; any .ˇ ; �/ ; f .R;�R/ D f1RC f2�R ; K D 0 : (6.267)

According to the previous discussion [675,1144], this theory reduces to GR in which
standard cosmological solutions are recovered.

If the function f depends on powers of �R, Noether symmetries are given by

˛ D 0 ; ˇ D ˇ0 ; � D 0 ; f .R;�R/ D f1RC f2.�R/n ; n � 2 :

(6.268)

However, the theory can assume different forms following integration by parts [675,
985, 1144]. The equations of motion are

4f1 PH C 6f1H
2 C 2Kf1

a2
� f2.1 � n/.�R/n �

 PR
a

!

˙0 D 0 ; (6.269)

�f2n.n � 1/a3.�R/n�2 P.�R/ D ˙0 ; (6.270)

�RC RRC 3H PR D 0; (6.271)

6f1

�
H 2 C K

a2

�
� f2.1 � n/.�R/n C PR˙0 D 0 ; (6.272)

where ˙0 is the Noether charge and R is the cyclic variable. The standard gravita-
tional coupling is recovered, as usual, for f1 D 1=2. A solution for this system is

a.t/ D a0 t (6.273)

forK D �1, ˙0 D 0, and for arbitrary n and f2. Another solution is

a.t/ D a0
p
t (6.274)

forK D 0, ˙0 D 0, f1 D 0 and for arbitrary n and f2. Finally, one obtains

a.t/ D a0 exp.k0t/ (6.275)

forK D 0, ˙0 D 0, and f1 D 0.
The radiative solution a.t/ D a0

p
t is obtained for the cases

˛ D 0 ; ˇ D ˇ0

a
; any � ; f .R;�R/ D f1RC f2R

2 C f3�R ; (6.276)
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and

˛ D 0 ; ˇ D 0 ; � D �0

a
; f .R;�R/ D f1RC f2R

2 C f3R�R ; (6.277)

with �0 D const. The second situation is physically interesting and the related cos-
mological models have been the subject of attention [129, 550].

Another Noether symmetry is obtained for

˛ D 0 ; ˇ D ˇ0 ; � D ˇ0
�R
R

; f .R;�R/ D f1RC f2
p
R�R (6.278)

or simply for

f .R;�R/ D f2
p
R�R : (6.279)

This case deserves attention because
p
R�R is a part of the a3-anomaly [550]

occurring in the analysis of first loop corrections to the gravitational action [538,
539, 1176].

The straightforward change of variables (6.263)–(6.265) yields

z D R ; u D
r

�R
R

; w D a : (6.280)

By selecting the standard Einstein coupling f1 D 1=2, the Lagrangian (6.240)
becomes

L D 3
�
w Pw2 �Kw

�� f2

�
3w Pw2u C 3w2 PwPu C w3PzPu

2u2
� 3Kwu

�
; (6.281)

where z (and thereforeR) is the cyclic variable. The equations of motion are derived
from (6.281). Again, the particular solutions

a.t/ D a0t ; a.t/ D a0
p
t ; a.t/ D a0 exp.k0t/ ; (6.282)

which depend on the set of parameters .˙0; K; f2/ are obtained. A phase space and
conformal analysis [129] provides the conditions for the onset and the duration of
inflation, which depend on the signs and values of f2 and ˙0, restricting the set of
initial conditions providing an adequate amount of inflation [129, 550]. Table 6.1
summarizes the results.

Table 6.1 Symmetries in models of order higher than fourth.

f .R;�R/ ˛ ˇ �

f1RC f2.�R/n.n ¤ 1/ 0 ˇ0 0
f1RC f2R2 C f3�R 0 ˇ0a

�1 �.a; R;�R/
f0RC f1R2 C f2R�R 0 0 �0 a

�1

f2
p
R.�R/ 0 ˇ0 ˇ0R

�1�R
f1RC f2pR.�R/ 0 ˇ0 ˇ0R

�1�R
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6.6 Conclusions

The exact solutions of scalar-tensor, metric f .R/, and f
�
R;�R; ::: ;�kR

�
gravity

presented give a flavour of the particular features of these classes of theories, and of
what can be obtained by allowing the gravitational theory to include extra degrees
of freedom. When analytical solutions cannot be found, or reveal themselves to
be too special for the task at hand, a phase space analysis can be extremely useful
when special symmetries are present, such as in FLRW cosmology or with spherical
symmetry. The geometry of the phase space of scalar-tensor FLRW cosmology is
rather involved.

In the presence of symmetries, a theory lends itself to the Noether approach
for the search of analytical solutions. This approach has been amply illustrated in
this chapter. The Noether technique requires higher order terms, such as R3=2 orp
R�R, which are physically relevant because they are related to first loop or trace

anomaly contributions to the effective action of quantum gravity. For illustration,
the PDE system (6.255)–(6.261) can have several solutions. We have not presented
an exhaustive list of possible Noether symmetries in higher order theories, but we
have restricted to examples in fourth, sixth, and eighth order models. Of course,
obtaining higher derivative terms in the effective Lagrangian of gravity does not,
automatically make the theory renormalizable [107].

The presence of a Noether symmetry makes the analysis of a given cosmology
easier, however the existence of an abstract symmetry is not, by itself, a criterion for
preferring a particular theory over another. The situation becomes far more interest-
ing when the theory is physically relevant per se and is also the only one selected
by the Noether approach [230, 235, 805].



Chapter 7
Cosmology

Entia non sunt multiplicanda praeter necessitatem.
– William of Ockham

The standard Big Bang model of the universe is a very successful description of
the universe around us. Its success is supported by three major pieces of evidence:
(1) the expansion of the universe, which constitutes the most natural interpretation of
the redshift of galaxies; (2) the existence of a cosmic background of microwaves, a
relic of the primordial state of high density, pressure and temperature (the predicted
spectrum of the cosmic microwave background is that of a blackbody with temper-
ature of 2.73 K, in remarkable agreement with the observations), and (3) primordial
nucleosynthesis: the relative abundances of hydrogen, deuterium, helium, and a few
other light elements are predicted and are in agreement with observations.

If GR is replaced by an ETG in the standard Big Bang model, one can still
find many spatially homogeneous and isotropic solutions that are in qualitative
and quantitative agreement with the observed recession of galaxies, spectrum and
temperature of the cosmic microwave background, and primordial nucleosynthesis
[390,554,555,1153]. Primordial nucleosynthesis imposes constraints on alternative
gravity, but these can be satisfied by many scenarios.

A consistent cosmological theory necessarily requires a relativistic theory of
gravitation, and cosmology was developed after Einstein’s formulation of GR.
Following the 1998 discovery of the acceleration of the cosmic expansion, modi-
fied theories of gravity at large scales were proposed as explanations alternative to
dark energy. An important motivation for the study of ETGS, therefore, is provided
by cosmological observations. In this chapter we recall the standard equations of
Big Bang and inflationary cosmology in GR, which will then be compared with the
corresponding field equations of ETGs (for comprehensive introductions to cosmol-
ogy we refer the reader to standard textbooks [688, 728, 1139, 1153]). We focus on
the present accelerated epoch, discuss cosmography as a phenomenological formal-
ism able to parameterize a wide spectrum of gravitational theories, and we apply it
to metric f .R/ gravity. Then we proceed to discuss galaxy clusters and show how
modified gravity can in principle replace dark matter at the cluster scale.

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics 170,
DOI 10.1007/978-94-007-0165-6 7, c� Springer Science+Business Media B.V. 2011
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7.1 Big Bang, inflationary, and late-time cosmology in GR

The FLRW line element

ds2 D �dt2 C a2.t/

�
dr2

1 �Kr2
C r2

�
d�2 C sin2 � d'2

�
�

(7.1)

describes spatially homogeneous and isotropic universes in comoving time t and
polar coordinates .r; �; '/ and contains the normalized curvature index K which
can assume the values 0;C1, or �1 corresponding to flat, positively, or negatively
curved spatial sections, respectively. Thanks to these symmetries, and assuming
that the universe is filled with a perfect fluid described by the stress-energy ten-
sor T .m/�� D .P C �/ u�u� C Pg�� , the Einstein equations for this metric reduce to
the ordinary differential equations for the scale factor a.t/

H 2 D �

3
� � K

a2
; (7.2)

Ra
a

D PH CH 2 D � �

6
.�C 3P / ; (7.3)

where an overdot denotes differentiation with respect to the comoving time t ,
H � Pa=a is the Hubble parameter, and � and P are the energy density and pres-
sure of the cosmic fluid, respectively. A cosmological constant�, if present, will be
described as a perfect fluid with energy density �.
/ and pressure P .
/ related by

P .
/ D ��.
/ D �

�
: (7.4)

The energy density and pressure of the cosmic fluid satisfy the conservation equation

P�C 3H .P C �/ D 0; (7.5)

which follows from the covariant conservation r� T
.m/
�� D 0 for the energy-

momentum tensor of the cosmic fluid. A critically open (K D 0), spatially flat,
universe has energy density

�c D 3H 2

�
(7.6)

(critical density). If many fluids are present in the universe, the energy density �.i/

of the i -th component of this multi-component fluid can be expressed in units of the
critical density by introducing the corresponding dimensionless density parameter

˝.i/ � �.i/

�c
: (7.7)
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Since � D P
i �
.i/, the Hamiltonian constraint (7.2) in a K D 0 universe is

written as

1 D
X

i

˝.i/: (7.8)

7.1.1 The standard Big Bang model

By assuming reasonable equations of state for the cosmic fluid in the early universe,
such as the radiation equation of state P D �=3, or even the dust equation of state
P D 0, it is found that Ra < 0, which leads to a singularity at a finite time in the past
(Big Bang) and, forK D C1 universes, to a maximum size of the universe which is
reached and followed by collapse to a Big Crunch singularity [688,728,1139,1153].
The standard Big Bang model makes three fundamental predictions: the expan-
sion of the universe and the redshift of galaxies, the existence, temperature, and
blackbody spectrum of the cosmic microwave background (CMB), and the relative
abundances of light elements produced during primordial nucleosynthesis in the
radiation-dominated era. The observation of these phenomena established the Big
Bang model as a highly successful description of the universe.

7.1.2 Inflation in the early universe

Beginning in the 1970s, certain shortcomings of the Big Bang model started being
noticed, most notably the flatness problem (why is the universe so close to being
spatially flat today given that any initial departure from a K D 0 model gets am-
plified during the dynamical evolution?), the horizon problem (why photons of the
CMB coming from opposite directions today have the same temperature to high pre-
cision while the size of causally connected regions at the last scattering is at most
one degree?), and the monopole problem (why monopoles predicted so profusely in
grand unified theories are not observed, and why similar relics from early epochs
failed to dominate the dynamics of the universe given that they are so massive?)
[688, 728]. In the context of the standard Big Bang model, these three problems
can only be “solved” by imposing extremely fine-tuned initial conditions, which is
hardly acceptable in a physical theory. In 1980 the idea was advanced that a brief
and accelerated ( Ra > 0) expansion of the universe by a factor of approximately e60

can solve all these problems [564,741,742,1044]. In the most common inflationary
models, the universe is dominated by a scalar field � minimally coupled to the Ricci
curvature and with potential energy density V.�/, as in the action

S D
Z
d 4x

p�g
�
R

2�
� 1

2
g�� r�� r�� � V.�/

�
: (7.9)
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We assume here that � dominates the dynamics of the universe during inflation and
we do not include other forms of matter in the picture. The stress-energy tensor of
� has the canonical form

T�� D r�� r�� � 1

2
g�� r˛� r˛� � g��V.�/: (7.10)

As it is well known, this energy-momentum tensor can be cast in the form of a per-
fect fluid stress-energy tensor with four-velocity u� D r	
pjr˛
r˛
j and with energy
density and pressure

�
 D T�� u� u� D
P�2
2

C V.�/; (7.11)

P
 D T�� h
�� D Tii

gii
D

P�2
2

� V.�/; (7.12)

where h�
� is the projection operator on the three-dimensional spatial sections

defined by h�� � g�� C u� u� . The scalar field potential V.�/ is usually taken
to be positive because during inflation, in which P� ' 0 and � ' V.�/, the universe
is dominated by the potential of the scalar and must be non-negative. The Friedmann
equations (7.2) and (7.3) then assume the form

H 2 D �

3

" P�2
2

C V

#

� K

a2
; (7.13)

PH D �H 2 � �

3

	 P�2 � V 
 ; (7.14)

while the scalar � satisfies the Klein-Gordon equation

R� C 3H P� C dV

d�
D 0: (7.15)

The curvature term can be omitted from eq. (7.13) because, even starting from
anisotropic initial conditions, the universe evolves dynamically to a state extremely
close to a spatially flat FLRW universe during inflation (cosmic no-hair). With a few
exceptions,K D 0 is a robust prediction of inflation [688, 728].

Only two of the three equations (7.13)–(7.15) are independent. In fact, if P� ¤ 0,
the Klein-Gordon equation (7.15) can be derived from the conservation equation
(7.5) or, equivalently, from Eqs. (7.13) and (7.14).

The equations of inflation (7.13)–(7.15) and those satisfied by cosmological per-
turbations are usually solved in the slow-roll approximation

P�2
2

� V; R� � H P�; (7.16)

in which Eqs. (7.13)–(7.15) reduce to

H 2 ' � V

3
; (7.17)
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3H P� ' �dV
d�

: (7.18)

The slow-roll approximation assumes that the solution �.t/ of the field equations
rolls slowly, i.e., with negligible “friction” P� over a shallow segment of its potential
V.�/. The latter then mimics the effect of a cosmological constant � ' V.�/

making the cosmic expansion almost de Sitter,

a.t/ D a0 exp ŒH.t/ t 	 ; (7.19)

where

H.t/ D H0 CH1 t C 	 	 	 (7.20)

and the constant term H0 dominates in the expression of H.t/. Generally speak-
ing, there exist de Sitter solutions H D const., � D const. which are attractors in
the phase space of the dynamical system (7.13)–(7.15), and this fact justifies the
use of the slow-roll approximation, which turns out to be a generic phenomenon.
Inflation stops when the potential V.�/ ends its plateau and quickly decreases to a
zero minimum. Then, � quickly accelerates toward this minimum, overshoots it,
and oscillates around it. These oscillations are damped by particle creation due
to the explicit coupling of � to other fields (or even to the Ricci curvature if
� is non-minimally coupled [111]), a phenomenon called reheating which dissi-
pates the kinetic energy of � and raises the temperature of the universe which
has dropped during the inflationary expansion. This superluminal expansion, if it
lasts for approximately 60 e-folds of expansion of the scale factor a.t/, solves the
flatness, horizon and monopole problems of the standard Big Bang model. What
is more, it provides a mechanism for the generation of density perturbations via
quantum fluctuations of the scalar field (which are accompanied by gravitational
waves, tensor mode fluctuations of the metric tensor) and correspond to scalar den-
sity perturbations which will later seed the formation of large scale structures.
Cosmic structures begin to grow after the end of the inflationary and radiation
epochs. For practical purposes, inflation ends when the slow-roll parameters

" � 1

2�

�
V 0

V

�2
; � � 1

�

V 00

V
(7.21)

(where a prime denotes differentiation with respect to �) become of order unity. The
subject of inflation will be reconsidered in Chap. 8 in connection with ETGs.

7.1.3 The present-day acceleration

As already mentioned, it was discovered in 1998 that the present expansion of
the universe is accelerated, a finding that shocked the community of cosmologists.
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Evidence for the cosmic acceleration came from the observation of SNeIa (SNeIa)
[936,982], which were adopted as standard candles because of their high intrinsic lu-
minosity and because they possess a characteristic period-luminosity relation which
makes it possible to assess their absolute magnitude, and hence their luminosity dis-
tance, from their light curve [163,548]. A systematic search for SNeIa was launched
after a long time of steady progress in the study of such objects and of their light
curves. The search revealed that these supernovae are fainter than it was expected
at that time, which is interpreted as an effect of the recent expansion history of the
universe (accelerated versus decelerated). At a fixed redshift, these supernovae are
further away than they would be in a decelerating universe. For moderate redshifts
z the luminosity distance (DL)-redshift relation is

H0DL D z C 1

2
.1 � q0/ z2 C 	 	 	 ; (7.22)

where q � �Raa= . Pa/2 is the deceleration parameter. In an accelerating universe
with q < 0, DL is larger than it would be in a decelerating universe with q > 0.
Since the universe has accelerated its expansion in the past, light from a supernova
has travelled a larger distance to reach us and the supernova looks dimmer than it
would be in a decelerated universe.

The cosmic acceleration has also the advantage that it helps reconciling the age
of the universe with that of globular clusters, which has been a problem for theorists
in the past.

The data, first from the BOOMERANG [377, 706, 791, 797], MAXIMA [570] and
similar experiments, and then from the WMAP satellite [1038], provide the picture
of a spatially flat universe with total energy density (in units of the critical density)

˝ D ˝.m/ C˝.q/ D 1 (7.23)

where ˝.m/ ' 0:24 is the matter energy density, and the rest is dark matter, and
˝.q/ ' 0:76 describes an unknown form of energy called dark energy and unclus-
tered [411, 491, 902, 936–939, 982]. The acceleration equation of GR

Ra
a

D � �

6
.�C 3P / (7.24)

implies that an accelerated expansion is possible if and only if the effective equation
of state of the dominant cosmic fluid is such that P < ��=3. The analysis of the
available data implies that P ' ��. This fact is at odds with the P D 0 equation of
state of dark matter and constitutes a very exotic property of dark energy.

In the early days of research on dark energy, observational reports used to quote
the constraints on the effective equation of state parameter of dark energy w �
P=� as �1 � w � �1=3 (with the upper bound decreasing as the observations
were getting better and better). It was then realized that values w < �1 were also
compatible with the data, and it was even argued that the range of values w � �1 is
favored [202, 356, 358, 359, 502, 1177, 1178].
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A large amount of theoretical work went into building models of dark energy.
An obvious candidate for dark energy is the cosmological constant �, which is
characterized by the constant equation of state P
 D ��
 and, as will be discussed
below, fits the data better than most other models [140, 271, 955, 956]. However,
explaining the cosmic acceleration with the cosmological constant brings back in
a more severe form the old cosmological constant problem [1154, 1155], i.e., the
value of the vacuum energy density �
 is approximately 120 orders of magnitude
smaller than its natural Planck scale value � � c3= .„G/), and 40 orders of mag-
nitude smaller than the value predicted if a cutoff at the QCD scale is introduced.
Assuming that the cosmological constant is cancelled almost exactly by an unknown
mechanism which nevertheless leaves behind an extremely tiny residual just suffi-
cient to explain the cosmic acceleration, corresponds to extreme fine-tuning. Most
authors are more inclined to believe that the cosmological constant is exactly can-
celled, although a plausible mechanism to achieve this cancellation is unknown, and
that the cosmic acceleration is due to some other form of energy, thus avoiding the
need to leave the extremely small residual.

A second problem with the cosmological constant is posed by the fact that the
dark energy just begins to dominate the cosmic dynamics at redshift z � 1, follow-
ing the radiation- and matter-dominated epochs. In order for this to happen around
the present time, the energy density of the cosmological constant must be fine-tuned:
dark energy must be subdominant at the time of primordial nucleosynthesis, or it
would affect the expansion rate of the universe and modify the observed relative
abundances of light elements. Dark energy must also be negligible during the matter-
dominated era or else the growth of density perturbations would be compromised.
Then the problem arises of why the dark energy begins to dominate the dynamics
of the universe only now when there are observers to notice this fact (cosmic coin-
cidence problem). In other words, the densities of matter and dark energy were very
different in the past and will be very different in the future, so why is it that they are
approximately equal in the short epoch of the cosmic history in which we live?

Rejecting the cosmological constant explanation, most authors prefer dynamical
models in which dark energy is time-dependent and begins to dominate during the
matter era. Many models of dark energy have been proposed: we refer the reader to
[743] for a resource letter on dark energy with a detailed list of references and to
[971] for a recent review. Most models of dark energy are based on a minimally
coupled scalar field (quintessence field) rolling in a potential, in the theoretical
framework of GR. This is not surprising because it is well known from inflation-
ary theories that a scalar field slowly rolling on a flat section of its potential can
accelerate the expansion of the universe and is equivalent to a perfect fluid. The fact
that the scalar field is dynamical provides a time-dependent effective equation of
state, which is a necessary feature to solve the cosmic coincidence problem.

In the simplest models based on a single minimally coupled scalar field, if the
potential V.�/ satisfies the condition [1050]

� �
V d2V
d
2

�
dV
d



2 � 1; (7.25)
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the phase space of the field equations contains late time attractors with a very large
attraction basin. The condition (7.25) is useful because, for a given potential, one
can sometimes test for the presence of these attractors by checking the condition
� > 1 without solving explicitly the field equations. These attractor solutions are
time-dependent (not fixed points in the .H; �/ phase space) and they exist for a wide
class of potentials used in the literature. They are known as tracking solutions [732,
1050, 1180] and they were studied before the discovery of the cosmic acceleration
as mechanisms to implement an effective time-dependent cosmological “constant”
[487,488,509,923,1156] which otherwise would have had to be assumed ad hoc by
assigning� as a function of time or of the scale factor. The idea of a time-dependent
vacuum energy is not new (see [875] for a review): the original reason to pursue it,
which has now only historical importance, was the attempt to reconcile a low value
of the matter density ˝.m/ observed in the 1990s with the inflationary prediction
˝.m/ C˝.
/ D 1.

The solution of a tracking model converges to its attractor before the present
era for a very large set of initial conditions spanning even 150 orders of magni-
tude, quintessence begins to dominate the dynamics of the universe after the matter
era, and equipartition ˝.q/ D ˝.m/ occurs at redshifts z � 1 (before that time,
there is some evidence of a decelerated expansion of the universe from the super-
nova SN1997ff at z D 1:7 [540, 939] and at least two other supernovae at z D 1:2

[1077, 1093]). The cosmic coincidence problem is then, at least in principle, re-
solved, contrary to what happens with a cosmological constant which has constant
effective energy density.

The energy density of quintessence �q redshifts more slowly than the energy
densities of ordinary matter and radiation and comes to dominate late in the matter
era, even if its numerical value was initially negligible because the ratio �.m/=�.q/
decreases during the cosmic expansion, until it becomes less than unity and �.q/
begins to dominate. The equipartition time is determined by the energy scale of the
quintessence potential, which is fixed by the requirement that ˝0 ' 1 today. This
scale is very small on natural particle physics scales, and generally needs to be fine-
tuned in order to reproduce the cosmic dynamics that we know. Hence, it is fair to
say that all models of quintessence suffer from some degree of fine-tuning.

During the radiation- and matter-dominated epochs, quintessence tracks the dom-
inant form of energy (radiation or dust) and emerges only later. The radiation energy
density �.r/ / a�4 initially dominates, but it redshifts faster than the matter energy
density �.m/ / a�3. In an analogous way, the quintessence energy density �.q/ is
initially much smaller than �.m/ but redshifts more slowly and eventually comes to
dominate.

The nature of the suggested quintessence field is completely speculative: some
attempts have been made to relate this field to known particle physics, e.g., [316],
to identify quintessence with a supergravity field [166, 167, 339, 949], an axion, the
string dilaton, or moduli fields in string theories [115, 314, 315, 503, 504, 528, 529,
585, 588, 669, 837, 1085]. None of these attempts is convincing at this time.

The available data do not exclude that dark energy could be of the very exotic
form called phantom energy. The constraints on the dark energy equation of state
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are in agreement with values of the parameter w < �1 [358, 571, 792, 974]. The
possibility that w < �1 was investigated by several authors [202,305,505,723,726,
792,872,997,1177,1178] using models based on a scalar field with the “wrong” sign
of the kinetic energy term of the scalar (phantom field), or other modifications of
the Lagrangian. It has also been argued that stringy matter requires wq < �1 [504].
Dark energy with the extreme equation of state wq < �1 is known as phantom
energy. A fundamental phantom field is extremely unstable from both the classical
and quantum points of view [276,287] and, at best, could be admissible only as part
of an effective theory. However, a model of phantom energy not relying on Einstein
gravity could be more plausible because of the following considerations. In GR the
inequality P < �� is equivalent to PH > 0, and the Hubble parameter satisfies the
equations

H 2 D �

3
�; (7.26)

Ra
a

D PH CH 2 D � �

6
.� C 3P / : (7.27)

Assuming for simplicity that a single quintessence fluid dominates the cosmic
expansion, Eqs. (7.26) and (7.27) imply that

PH D ��
2

�
�.q/ C P.q/

�
(7.28)

and therefore P.q/ < ��.q/ (or wq < �1) is equivalent to PH > 0. If the matter
component has a non-negligible energy density, the pressure of quintessence must
be even more negative. A regime with PH > 0 (originally investigated in the con-
text of inflationary models [754]) is known as superinflation or, in the context of
the present-day epoch of the universe, superacceleration [446,450,455,934]. If our
universe is truly superaccelerating today, models of quintessence based on a single
scalar field minimally coupled to gravity would not be able to explain this superac-
celeration. In fact, the scalar field �.t/ has energy density and pressure

� D P�2
2

C V.�/; (7.29)

P D
P�2
2

� V.�/: (7.30)

Then, Eq. (7.28) becomes

PH D � �

2
P�2 (7.31)

and PH � 0 in any minimally coupled GR model. The case PH D 0 corresponds
to a de Sitter solution with scale factor a.t/ D a0 eHt . For any potential V.�/, the
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effective equation of state of a FLRW universe dominated by a minimally coupled
scalar field is

P

�
D P�2 � 2V

P�2 C 2V
� w.x/; (7.32)

where x � P�2=2V is the ratio between the kinetic and the potential energy densi-
ties of the scalar. Assuming that V � 0, which guarantees positivity of the energy
density of �,

w.x/ D x � 1

x C 1
(7.33)

increases monotonically from its minimum wmin D �1 attained at x D 0 to its
horizontal asymptote approached as x ! C1, corresponding to V D 0. At best,
the effective equation of state parameter of a minimally coupled scalar field spans
the range

�1 � w � 1: (7.34)

If the effective equation of state of the cosmic fluid in the present era is such that
w < �1, it cannot be explained by this canonical scalar field model for quintessence
unless one resorts to the problematic and unnatural phantom field.

Superacceleration regimes known in pre-1998 literature consist of pole-like in-
flation with scale factor

a.t/ D a0

t � t0
; (7.35)

a special form of superacceleration studied in early inflationary theories [754, 911],
in pre-big bang cosmology [738], and in Brans-Dicke theory [348].

From a more general point of view, negative or even phantom effective pressures
appear in ETGs, as will be discussed in the rest of this book (they were noted in
higher derivative gravity in [910] and in induced gravity in [911]). They appear
also due to semiclassical particle production causing bulk viscosity [91, 604, 1175,
1179], in dissipative fluids in the presence of a quintessence field [308, 309], with
quantum fields violating the weak energy condition [7, 872], and in models with
non-linear kinetic terms [202,305,792,891,997,1177,1178]. A form of quintessence
without potential V and kinetic energy density non-linear in r��r�� is known as
kinetically driven quintessence or k-essence.

The possibility has been pointed out that a time-dependent and positive equation
of state parameter w, when interpreted as a constant, give rise to w.eff / < �1 or,
vice-versa, that assuming w D const. and w � �1 in a likelihood analysis may
incorrectly disguise an equation of state wq < �1 [773].

Let us examine the possible consequences of dark energy taking the form of
phantom energy. A fluid with effective equation of state parameter w < �1 violates
the weak and dominant energy conditions and, in principle, opens the door to causal-
ity violations, wormholes and time machines. These are not mandatory, at least if
the w-parameter is time-dependent [383,787,788]: the speed of sound does not nec-
essarily exceed the speed of light because P D w� describes an effective equation
of state, not a true one. Acoustic waves (space-dependent perturbations of the exact
model) do not obey the effective equation of state satisfied by the unperturbed P
and �.
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A curious potential consequence of superacceleration is that, if it continues, the
universe may end in a finite time with the scale factor a.t/ diverging as t ! t�, with
t� finite. Then the energy density and pressure also diverge as t ! t� (the energy
density grows during superacceleration) in what is called a Big Rip singularity [202,
203, 456, 505, 787, 788, 1042]. From the mathematical point of view, it is easy to
understand the Big Rip as the manifestation of a common phenomenon in the theory
of ordinary differential equations. Specifically, an ordinary differential equation of
the form

dy.t/

dt
D f .y/; (7.36)

where the function f is defined over a real interval I , admits maximally extendable
solutions if the function f .y/ satisfies the Lipschitz condition, i.e., if there exists a
constantM such that

ˇ
ˇf .y0/� f .y00/

ˇ
ˇ � M

ˇ
ˇy0 � y00ˇˇ (7.37)

for any y0; y00 in I . Consider, for example, the equation

dy.t/

dt
D y2; (7.38)

the solutions of which do not admit a maximal extension. The solution is

y.t/ D 1

t0 � t ; (7.39)

where t0 is an integration constant corresponding to the initial condition y.0/ D
1=t0. For t0 > 0, consider the branch t < t0: the solution explodes as t ! t0
from below and cannot be extended beyond this barrier. The qualitative behavior of
this solution is caused by its rapid growth: while y grows, its derivative grows even
faster (as y2) and the solution quickly explodes. A similar situation may occur for
a FLRW universe in a superacceleration regime: the acceleration equation can be
written as

PH D �H 2 � �

6
.3w C 1/� (7.40)

for a fluid with equation of state P D w�, while the integration of the energy
conservation equation P� C 3H.w C 1/� D 0 yields � D �0a

�3.wC1/. For a phantom
fluid with w < �1, � increases during the cosmic expansion and PH / aj3.wC1/j as
the expansion proceeds, creating a situation similar to the one of the example above.
When the equation of state is constant, the scale factor is easily found to be

a.t/ D a0

jt � t0j 2
3j1Cwj

: (7.41)

Realistic models of dark and phantom energy have a dynamical effective equation
of state and w can in principle change and cross the barrier w D �1 (known as the
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phantom divide). However, it has been proved difficult to construct explicit models
that exhibit this behavior.

If the inequality w < �1 is supported by the future reconstruction of the equation
of state of dark energy, the more conventional quintessence models based on min-
imally coupled scalars have to be abandoned in favor of alternative ones. Among
these are non-minimally coupled models in ETGs. Even a very small amount of
phantom energy leads to a fast (on a cosmological timescale) growth of its energy
density and may lead to a Big Rip singularity.

Finally, let us discuss the prospects of testing the idea of quintessence (scalar
field dark energy) with observations. Proposals to verify or falsify the idea and sce-
narios of quintessence exist, suggesting the reconstruction of the effective potential
V.�/ and of the effective equation of state of quintessence from the luminosity
distance-redshift relation DL.z/ of SNeIa [149, 304, 476, 609, 646, 825, 958, 1043].
A minimally coupled scalar field and its potential can be expressed in terms of the
variable x � 1C z as [958]

V.x/

�
.0/
c

D H 2

H 2
0

� x

6H 2
0

d
�
H 2

�

dx
� ˝.m/

2
x3; (7.42)

1

�
.0/
c

�
d�

dx

�2
D 2

3H 2
0 x

d .lnH/

dx
� ˝.m/

H 2
x; (7.43)

and the equation of state parameter is

wq.x/ D 2x d.lnH/
dx

� 3
3

�
1 �

�
H0

H


2
˝.m/x3

� ; (7.44)

where �.0/c D 3H 2
0 =� is the present value of the critical density. The Hubble param-

eter as a function of redshift z can be derived from the kinematic relation with the
luminosity distance DL.z/ in a K D 0 FLRW universe

H D
�
d

d z

�
DL.z/

1C z

���1
: (7.45)

If the luminosity distance DL.z/ is determined from observational data, then Eqs.
(7.42) and (7.44) allow the reconstruction of the potential V and the parameter wq
[149, 958].

Another proposal consists of testing the effective equation of state of the universe
by using weak gravitational lensing [125]. Finally, for a minimally coupled scalar
in GR, the relation

d 2H.z/

d z2
� 3˝

.m/
0 H0 .1C z/2 (7.46)

must be satisfied [956]. If the observations show a violation of this inequality, we
would have evidence for non-Einsteinian gravity.
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7.2 Using cosmography to map the structure of the universe

Both dark energy and modified gravity models exist which agree with observational
data on the expansion history of the universe. As a consequence, one cannot dis-
criminate between these competing approaches unless high precision probes of the
expansion rate and the growth of cosmological structures become available. This
situation suggests a conservative approach to the problem of the cosmic acceler-
ation which relies on the smallest possible number of model-dependent quantities.
A potential solution consists of going back to cosmography [1153] instead of finding
and then testing solutions of the Friedmann equations. The cosmographic parame-
ters, which are completely defined by the time derivatives of the scale factor, make it
possible to fit the data on the distance-redshift relation without a priori assumptions
on the underlying cosmological model. The only assumption is that the metric is a
FLRW one, which is a solution of the field equations of many gravitational theories.

More than eighty years after Hubble’s discovery of the cosmic expansion we can
now, in principle, extend cosmography well beyond the purpose of Hubble’s quest
for the value of H0. The Hubble diagram of SNeIa extends up to z D 1:7 making it
necessary to Taylor-expand the scale factor at least to fifth order in order to have a
reliable approximation of the distance-redshift relation, and variables other than the
redshift z are necessary when data at z � 1 are considered. It is then possible, at least
in principle, to estimate up to five cosmographic parameters, although in practice the
available data set is still too small to allow for a precise and realistic determination
of all of them. Once these five quantities are determined, they can be used to con-
strain theoretical models. This approach reverses the conventional prediction of the
cosmographic parameters in the context of a given theory. In cosmography, instead,
the model is described by characterizing its quantities as functions of the cosmo-
graphic parameters. Such a program is particularly suited for the study of modified
f .R/ gravity. Due to the fourth order of the field equations in these theories, it is
difficult to obtain analytical expressions for the scale factor (which clearly depends
on the form of the function f .R/) and hence predict the values of the cosmographic
parameters. In the following we derive useful relations between the cosmographic
parameters and the present-day values of f .n/.R/ � dnf=dRn, with n D 0; 1; 2; 3

for any function f .R/, under rather general assumptions.1

The cosmographic parameters are defined in a FLRW spacetime. It is diffi-
cult to estimate a priori the extent to which the fifth order expansion provides a
sufficiently accurate description of the quantities of interest. The number of cos-
mographic parameters to be used depends on the problem at hand: here we are
concerned only with the Hubble diagram of SNeIa, hence we have to check that
the distance modulus �cp.z/ obtained using the fifth order expansion of the scale
factor coincides, within experimental error, with the one (�DE .z/) of the underly-
ing physical model. Since such a model is, of course, unknown one can adopt a

1 We only study metric f .R/ theories here. The reader is referred to [912, 913] for a similar ap-
proach in Palatini f .R/ gravity.
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phenomenological parameterization of the dark energy equation of state2 (EoS) and
examine the percent deviation ��=�DE as function of the EoS parameters. Here
this exercise is carried out using the Chevallier-Polarski-Linder (CPL) model which
we introduce below and it is verified that ��=�DE is an increasing function of the
redshift z, as expected, but remains smaller than 2% up to z � 2 over a wide region
of the CPL parameter space. Moreover, truncating the Taylor expansion to a lower
order may introduce sufficient deviations for z > 1 to potentially bias the analysis if
the experimental errors are as small as those predicted for future surveys of SNeIa.
There is a certain degree of confidence that the fifth order expansion presented be-
low is both sufficient to get an accurate distance modulus over the redshift range
probed by these supernovae and necessary to avoid dangerous biases.

7.2.1 The cosmographic apparatus

The key ingredient of cosmography is the Taylor expansion of the scale factor a.t/.
It is convenient to introduce the functions

H.t/� 1

a

da

dt
; (7.47)

q.t/�� 1

aH2
d 2a

dt2
; (7.48)

j.t/� 1

aH3
d 3a

dt3
; (7.49)

s.t/� 1

aH4
d 4a

dt4
; (7.50)

l.t/� 1

aH5
d 5a

dt5
; (7.51)

which are referred to as the Hubble, deceleration, jerk, snap, and lerk parameters,
respectively. Straightforward algebra yields the relations

PHD�H 2.1C q/; (7.52)

RHDH 3.j C 3q C 2/; (7.53)

2 One can always use a phenomenological dark energy model to obtain a reliable estimate of the
evolution of the scale factor even if the correct theory involves modified gravity instead of dark
energy.
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d 3H

dt3
DH 4 Œs � 4j � 3q.q C 4/� 6	 ; (7.54)

d 4H

dt4
DH 5 Œl � 5s C 10.q C 2/j C 30.q C 2/q C 24	 : (7.55)

Equations (7.52)–(7.55) relate the derivatives of the Hubble parameter to the other
cosmographic parameters. The distance-redshift relation may then be obtained using
the Taylor expansion of a.t/ [285, 1126, 1149].

7.2.1.1 The scale factor series

With these definitions in mind, the Taylor expansion of the scale factor to fifth or-
der is

a.t/

a.t0/
D1CH0.t � t0/� q0

2
H 2
0 .t � t0/

2 C j0

3Š
H 3
0 .t � t0/

3 C s0

4Š
H 4
0 .t � t0/

4

C l0

5Š
H 5
0 .t � t0/5 C O

	
.t � t0/6



; (7.56)

which is the inverse of the characterization of the redshift factor in a FLRW universe

1C z D a.t0/

a.t/
: (7.57)

The physical distance travelled by a photon emitted at time t� and absorbed at the
current epoch t0 is

D D c

Z t0

t
�

dt D c.t0 � t�/: (7.58)

Assuming that t� D t0 �D=c and inserting this value into Eq. (7.56), one obtains

1C zD a.t0/

a.t0 � D
c
/
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1 � H0

c
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�
H0

c

�2
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6

�
H0

c

�3
D3 C s0

24

�
H0

c

�4
D4

� l0

120

�
H0

c

�5
D5 C O

"�
H0D

c

�6##�1
: (7.59)
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The inverse of this expression is
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: (7.60)

Inverting the series z.D/ to obtain D.z/ yields the proper distance D as a function
of redshift

z.D/DZ .1/
D

�
H0D

c
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C Z .2/

D

�
H0D
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�
H0D
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�
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CZ .5/
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"�
H0D
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�6#

; (7.61)

where

Z .1/
D D1; (7.62)

Z .2/
D D1C q0

2
; (7.63)

Z .3/
D D1C q0 C j0

6
; (7.64)

Z .4/
D D1C 3q0

2
C q20

4
C j0

3
� s0

24
; (7.65)

Z .5/
D D1C 2q0 C 3q20

4
C q0j0

6
C j0

2
� s

12
C l0; (7.66)

from which it follows that

D.z/D cz

H0

h
D .0/

z C D .1/
z z C D .2/

z z2 C D .3/
z z3 C D .4/

z z4 C O.z5/
i

(7.67)
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with

D .0/
z D1; (7.68)
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; (7.69)
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In astronomy it is not the proper (physical) distance D.z/ that is relevant. but rather
the luminosity distance

DL D a.t0/

a.t0 � D
c
/
a.t0/r0 (7.73)

and the angular diameter distance

DA D a.t0 � D
c
/

a.t0/
a.t0/r0; (7.74)
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(7.75)

For short distances, the series expansion of a.t/ in r0.D/ yields
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To convert from the proper distance travelled to the r-coordinate the Taylor expan-
sions of the sin and sinh functions are used, obtaining
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so that Eq. (7.56) with the curvature term becomes
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where
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The luminosity distance is then expressed as
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� 15q0s027j0C10j 2 � 11s0 � l0 � 5kc2.1C 8q0 C 9q20 � 2j0/
a20H

2
0

�
: (7.90)

The angular diameter distance used in number counts is

DA.z/ D cz

H0

h
D .0/
A C D .1/

A z C D .2/
A z2 C D .3/

A z3 C D .4/
A z4 C O.z5/

i
; (7.91)

where

D .0/
A D1; (7.92)

D .1/
A D�1

2
.3C q0/ ; (7.93)

D .2/
A D 1

6

�
11C 7q0 C 3q20 � j0 � kc2

H 2
0 a

2
0

�
; (7.94)

D .3/
A D� 1

24

�
50C46q0C39q20 C 15q30 � 13j0 � 10q0j0 � s0 � 2kc2.5C 3q0/

H 2
0 a

2
0

�
;

(7.95)

D .4/
A D 1

120

�
274C 326q0 C 411q20 C 315q30 C 105q40 � 210q0j0 � 105q20j0

� 15q0s0137j0 C 10j 2 � 21s0 � l0 � 5kc2.17C20q0C9q20�2j0/
a20H

2
0

�
:(7.96)
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Following the notation of [285], we define

˝0 D 1C kc2

H 2
0 a

2
0

; (7.97)

which can be regarded as a purely cosmographic parameter, or

˝0 D 1 �˝k D ˝m;0 C˝r;0 C˝X;0: (7.98)

Using this density parameter, Eqs. (26)–(28) become

D .0/
L;yD1; (7.99)

D1
L;yD�1

2
.�3C q0/ ; (7.100)

D .2/
L;yD�1

6

�
12 � 5q0 C 3q20 � j0 �˝0

�
; (7.101)

D .3/
L;yD 1

24

	
52� 20q0 C 21q20 � 15q30 � 7j0 C 10q0j0 C s0 � 2˝0.1C 3q0/



;

(7.102)

D .4/
L;yD 1

120

	
359� 184q0 C 186q20 � 135q30 C 105q40 C 90q0j0 � 105q20j0

� 15q0s057j0 C 10j 2 C 9s0 � l0 � 5˝0.17� 6q0 C 9q20 � 2j0/



(7.103)

and

D .0/
A;yD1; (7.104)

D .1/
A;yD�1

2
.1C q0/ ; (7.105)

D .2/
A;yD�1

6

	�q0 � 3q20 C j0 C˝0


; (7.106)

D .3/
A;yD� 1

24

	�2q0 C 3q20 C 15q30 � j0 � 10q0j0 � s0 C 2˝0


; (7.107)

D .4/
A;yD� 1

120

	
1 � 6q0 C 9q20 � 15q30 � 105q40 C 10q0j0 C 105q20j0 C 15q0s0

� 3j0 � 10j 2 C s0 C l0 C 5˝0


: (7.108)
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The relations occurring earlier in this section are valid for arbitrary values of the
curvature index K but in the following we assume a spatially flat universe and use
these relations for K D 0. Since we are going to use supernova data, the Taylor
expansion of the luminosity distance as it appears in the distance modulus �.z/ D
5 log10DL.z/ used in astronomy will also be useful:

�.z/ D 5

log 10

�
log z C M .1/z C M .2/z2 C M .3/z3 C M .4/z4



; (7.109)

where

M .1/D�1
2
.�1C q0/ ; (7.110)

M .2/D� 1

24

�
7 � 10q0 � 9q20 C 4j0

�
; (7.111)

M .3/D 1

24

�
5 � 9q0 � 16q20 � 10q30 C 7j0 C 8q0j0 C s0

�
; (7.112)

M .4/D 1

2880

��469C 1004q0 C 2654q20 C 3300q30 C 1575q40 C 200j 20

�1148j0�2620q0j0�1800q20j0 � 300q0s0 � 324s0 � 24l0
�
: (7.113)

7.2.1.2 Cosmography and extended gravity

In metric f .R/ gravity and in a spatially flat universe the Hubble parameter obeys
(using units such that � � 8�G D 1)

H 2 D 1

3

�
�m

f 0.R/
C �curv

�
; (7.114)

where the prime denotes differentiation with respect to R and

�curv D 1

f 0.R/

�
1

2

	
f .R/ �Rf 0.R/
 � 3H PRf 00.R/

�
(7.115)

is the energy density of an effective curvature fluid.3 Assuming that matter does not
couple directly to this curvature fluid, the continuity equation for matter yields the
usual scaling

�M D �M .t0/

a3
D 3H 2

0˝M

a3
; (7.116)

3 The name curvature fluid does not refer to the curvature index of the FLRW metric but denotes
the fact that the field equations have been re-arranged in the form of effective Einstein equations.
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where ˝M is the present-day density parameter of matter. The continuity equation
for �curv reads

P�curv C 3H.1C wcurv/�curv D 3H 2
0˝M

PRf
00
.R/

Œf 0.R/	2 a3
; (7.117)

where the effective equation of state parameter of the curvature fluid is

wcurv D �1C
RRf
00
.R/C PR

h
PRf
000
.R/� Hf 00.R/

i

	
f .R/� Rf 0.R/



=2� 3H PRf

00
.R/

: (7.118)

The curvature fluid quantities �curv and wcurv depend only on f .R/ and its deriva-
tives up to third order. As a consequence, if one considers only their present-day
values (naively, replacing R with R0), two f .R/ theories with the same values of
f .R0/, f 0.R0/, f 00.R0/, and f 000.R0/ will be degenerate.4

By combining Eq. (7.117) with Eq. (7.114) the master equation for the Hubble
parameter

PHD� 1

2f 0.R/

n
3H 2

0˝Ma
�3 C RRf

00
.R/

C PR
h PRf

000
.R/ � Hf 00.R/

io
(7.119)

is finally obtained. Using the expression of the Ricci curvature in a K D 0 universe

R D 6
� PH C 2H 2

�
(7.120)

and inserting the result into Eq. (7.119), one obtains a fourth order non-linear ODE
for the scale factor a.t/, which cannot be solved easily even in simple situations such
as, e.g., f .R/ / Rn. Its numerical solution, although technically feasible, is plagued
by the uncertainty on the boundary conditions, i.e., on the present-day values of the
scale factor and its derivatives up to third order.

7.2.1.3 Cosmography and the derivatives of f .R/

We approach the problem from a different point of view: rather than choosing a
parametrized expression for f .R/ and then numerically solving Eq. (7.119) for
given boundary conditions, we relate the present-day values of the derivatives of

4 It can be argued that this statement is not strictly true because different f .R/ theories will lead to
different expansion rates H.t/ and, therefore, different present-day values of R and its derivatives.
However, it is likely that two functions f .R/ that exactly match up to third order today will give
rise to the same H.t/ at least for t ' t0, so that .R0; PR0; RR0/ will be almost the same.
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f .R/ to the cosmographic parameters .q0; j0; s0; l0/ and we constrain them in a
model-independent way, obtaining indications on the kind of function f .R/ which
is able to fit the observed Hubble diagram (see [900] for a similar analysis motivated
by effective energy conditions).

As a preliminary step, it is useful to consider again the constraint equation (7.120).
Differentiation with respect to t yields

PRD6 � RH C 4H PH � ; (7.121)

RRD6
�
d 3H

dt3
C 4H RH C 4 PH 2

�
; (7.122)

d 3R

dt3
D6

�
d 4H

dt4
C 4H

d 3H

dt3
C 12 PH RH

�
: (7.123)

Evaluating these derivatives at the present time and using Eqs. (7.52)–(7.55), one
obtains

R0D6H 2
0 .1 � q0/; (7.124)

PR0D6H 3
0 .j0 � q0 � 2/; (7.125)

RR0D6H 4
0

�
s0 C q20 C 8q0 C 6

�
; (7.126)

d 3R0

dt3
D6H 5

0 Œl0 � s0 C 2.q0 C 4/j0 � 6.3q0 C 8/q0 � 24	 ; (7.127)

which will be useful in the following.
Let us now come back to the expansion rate (7.114) and the master equa-

tion (7.119), which hold during the entire history of the universe. At the present
time t D t0 they give

H 2
0 DH 2

0˝M

f 0.R0/
C f .R0/ �R0f 0.R0/� 6H0 PR0f 00.R0/

6f 0.R0/
; (7.128)

� PH0D 3H 2
0˝M

2f 0.R0/
C

PR20f 000.R0/C � RR0 �H0 PR0
�
f 00.R0/

2f 0.R0/
: (7.129)

Using Eqs. (7.52)–(7.55) and (7.124)–(7.127), Eqs. (7.128) and (7.129) can be re-
arranged in the form of relations between H0 and the cosmographic parameters
.q0; j0; s0/, or as relations between the present-day values of f .R/ and its deriva-
tives up to third order. However, two more relations are needed in order to close
the system and determine the four unknown quantities f .R0/, f 0.R0/, f 00.R0/,
and f 000.R0/. The first relation is obtained by noting that (restoring � � 8�G) the
Hamiltonian constraint reads

H 2 D 8�G

3f 0.R/
	
�m C �curvf

0.R/



(7.130)
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where Geff D G=f 0.R/ is as an effective gravitational coupling with present-day
value equal to the measured Newton constantGeff .z D 0/ D G, hence

f 0.R0/ D 1: (7.131)

The fourth relation needed to close the system can be obtained by first differentiating
Eq. (7.119) with respect to t ,

RHD
PR2f 000.R/C � RR �H PR�f 00.R/C 3H 2

0˝Ma
�3

2
	 PRf 00.R/
�1 Œf 0.R/	2

�
PR3f .iv/.R/C �

3 PR RR �H PR2�f 000.R/
2f 0.R/

�
�
d 3R=dt3 �H RR C PH PR�f 00.R/� 9H 2

0˝MHa
�3

2f 0.R/
(7.132)

(with f .iv/.R/ � d 4f=dR4), and then expanding f .R/ to third order,

f .R/ ' f .R0/Cf 0.R0/.R � R0/C f 00.R0/
2

.R � R0/
2 C f 000.R0/

6
.R �R0/3:

(7.133)

Evaluating Eq. (7.132) at the present day yields

RH0D
PR20f 000.R0/C

� RR0�H0 PR0
�
f 00.R0/C3H 2

0˝M

2
	 PR0f 00.R0/


�1
Œf 0.R0/	2

�
�
3 PR0 RR0 �H PR20

�
f 000.R0/

2f 0.R0/

�
�
d 3R0=dt

3 �H0 RR0 C PH0 PR0
�
f 00.R0/� 9H 3

0˝M

2f 0.R0/
: (7.134)

We can now schematically proceed as follows: we evaluate Eqs. (7.52)–(7.55) at
z D 0 and insert them in the left hand sides of Eqs. (7.128), (7.129), and (7.134).
Then we insert Eqs. (7.124)–(7.127) in the right hand sides of these same equa-
tions so that only the cosmographic parameters .q0; j0; s0; l0/ and the f .R/-related
quantities appear. Finally, we solve the resulting equations subject to the con-
straint (7.131) with respect to the present-day values of f .R/ and its derivatives
up to third order. The result is

f .R0/

6H 2
0

D�P0.q0; j0; s0; l0/˝M C Q0.q0; j0; s0; l0/

R.q0; j0; s0; l0/
; (7.135)

f 0.R0/D1; (7.136)
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6H 2
0 f
00.R0/D�P2.q0; j0; s0/˝M C Q2.q0; j0; s0/

R.q0; j0; s0; l0/
; (7.137)

�
6H 2

0

�2
f 000.R0/D�P3.q0; j0; s0; l0/˝M C Q3.q0; j0; s0; l0/

.j0 � q0 � 2/R.q0; j0; s0; l0/ ; (7.138)

where

P0�.j0 � q0 � 2/l0 � .3s0 C 7j0 C 6q20 C 41q0 C 22/s0

� 	.3q0C16/j0C20q20C64q0C12
 j0 � �
3q40C25q30C96q20C72q0C20� ;

(7.139)

Q0�.q20 � j0q0 C 2q0/l0 C 	
3q0s0C.4q0C6/j0C6q30 C 44q20 C 22q0 � 12



s0

C 	
2j 20 C.3q20 C 10q0 � 6/j0C17q30C52q20 C 54q0 C 36



j0C3q50C28q40

C118q30 C 72q20 � 76q0 � 64 ; (7.140)

P2� 9s0 C 6j0 C 9q20 C 66q0 C 42; (7.141)

Q2�� ˚6.q0 C 1/s0 C Œ2j0 � 2.1� q0/	 j0 C 6q30 C 50q20 C 74q0 C 32
�
;

(7.142)

P3�3l0 C 3s0 � 9.q0 C 4/j0 � .45q20 C 78q0 C 12/; (7.143)

Q3�� ˚2.1C q0/l0 C 2.j0 C q0/s0 � .2j0 C 4q20 C 12q0 C 6/j0

� .30q30 C 84q20 C 78q0 C 24/
�
; (7.144)

R�.j0 � q0 � 2/l0 � .3s0 � 2j0 C 6q20 C 50q0 C 40/s0

C 	
.3q0 C 10/j0 C 11q20 C 4q0 � 18



j0 � .3q40 C 34q30 C 246q0 C 104/:

(7.145)

Equations (7.135)–(7.145) make it possible to estimate the present-day values of
f .R/ and its first three derivatives in terms of the Hubble parameter H0 and
the cosmographic parameters .q0; j0; s0; l0/, given the value of the matter density
parameter ˝M . This is in principle problematic: while the cosmographic parame-
ters may be determined in a model-independent way, the fiducial value of ˝M is
usually obtained by fitting a given dataset in the framework of an assumed dark
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energy scenario. However, different models all converge to the concordance value
˝M ' 0:25 which is also in agreement with astrophysical, model-independent esti-
mates based on the mass fraction of gas in galaxy clusters. It has been proposed that
f .R/ theories may avoid the need for dark matter in galaxies and galaxy clusters
[148, 213, 216, 217, 510, 793, 1021]: in this case, the total matter content of the uni-
verse is essentially equal to the baryonic one. According to the primordial elements
abundance and Big Bang nucleosynthesis, we would then get ˝M ' !b=h

2 with
!b D ˝bh

2 ' 0:0214 [672] and h the Hubble constant in units of 100 km=(s 	 Mpc).
Setting h D 0:72 in agreement with the results of the Hubble Space Telescope Key
Project [506] yields ˝M D 0:041 for a baryon-only universe. In the following we
consider both cases when numerical estimates are needed.
H0 only plays the role of a scaling parameter giving the correct physical dimen-

sions to f .R/ and its derivatives. As such, it is not surprising that we need four
cosmographic parameters .q0; j0; s0; l0/ in order to determine the four quantities
f .R0/, f 0.R0/, f 00.R0/, and f 000.R0/. Moreover, Eqs. (7.135)–(7.138) are linear in
these f -quantities and .q0; j0; s0; l0/ uniquely determine the previous ones. On the
contrary, inverting them to obtain the cosmographic parameters in terms of the f .R/
ones does not produce linear relations. Indeed, the field equations in f .R/ theories
are non-linear fourth order ODEs for the scale factor a.t/ and fixing the derivatives
of f .R/ up to third order makes it possible to find a class of solutions, not a single
solution. Each of these solutions is characterized by a different set of cosmographic
parameters, explaining why the inversion of Eqs. (7.135)–(7.145) does not provide
a unique result for .q0; j0; s0; l0/.

Let us discuss the assumptions leading to the relations above. While Eqs. (7.128)
and (7.129) are exact consequences of the field equations, Eq. (7.134) relies heavily
on the approximation of f .R/ with its third order expansion (7.133). When this
approximation breaks down, the system is no longer closed because a fifth unknown
parameter f .iv/.R0/ enters the game. Replacing f .R/ with its expansion is not
possible for all f .R/ theories. By truncating the expansion to third order, one
implicitly assumes that higher order terms are negligible over the redshift range
probed by the data, i.e.,

f .n/.R0/.R �R0/n �
3X

mD0

f .m/.R0/

mŠ
.R � R0/

m for n � 4 (7.146)

in this range. It is impossible to check the validity of this assumption without explic-
itly solving the field equations. However, one can estimate the order of magnitude
of the relevant quantities considering that, for all viable models, the background dy-
namics should not differ much from those of the �CDM model to at least z ' 2.
Using the expression ofH.z/ for the�CDM model, it is seen thatR=R0 is a rapidly
increasing function of redshift so that, in order for Eq. (7.146) to hold, it must be
f .n/.R0/ � f 000.R0/ for n � 4. This condition is easier to check for many analyti-
cal f .R/models; once it is verified, we still have to worry about Eq. (7.131) relying
on the assumption that the cosmological gravitational coupling is exactly the same as
the local one. Although reasonable, this requirement is not automatic. The numerical



7.2 Using cosmography to map the structure of the universe 287

value usually adopted for the Newton constant GN is obtained from laboratory
experiments in settings that can hardly be considered homogenous and isotropic.
The spacetime metric in such conditions has little to do with the cosmological met-
ric at large scales and matching the two values of G is an extrapolation. Although
commonly accepted and quite reasonable, the conditionGlocal D Gcosmological could,
at least, in principle, be violated and then Eq. (7.131) would have to be reconsidered.
As we will see, the condition f 0.R0/ D 1 may not be verified in certain modi-
fied gravity models popular in the literature. However, it is reasonable to assume
that Geff .z D 0/ D G.1 C "/ with " � 1. One should repeat the derivation of
Eqs. (7.135)–(7.138) with the condition f 0.R0/ D .1 C "/�1. By linearizing in "
and comparing with the equations derived earlier, we can estimate the error induced
by assuming that " D 0. The resulting expressions are long and will not be reported
here; they depend in a complicated way on the values of the matter density parameter
˝M , the cosmographic parameters .q0; j0; s0; l0/, and ". However, it can be checked
numerically that the error induced on f .R0/, f 00.R0/, and f 000.R0/ is much lower
than 10% for values of " as large as 0:1, which is unrealistically generous.

7.2.1.4 f .R/ gravity and the CPL model

Determining f .R/ and its derivatives in terms of the cosmographic parameters
requires a model-independent estimate of the latter from data. Unfortunately, even
in the current era hailed as the era of “precision cosmology”, such a program is still
too ambitious to provide useful constraints on the derivatives of f .R/. The cos-
mographic parameters may also be expressed in terms of the dark energy density
and the EoS parameters in such a way that the present-day values of f .R/ and its
derivatives generating given .q0; j0; s0; l0/ can be obtained for a specified dark en-
ergy model. To this end, it is convenient to adopt a parametrized expression for the
dark energy EoS in order to reduce the dependence of the results on the theoretical
model. In agreement with a prescription by the Dark Energy Task Force [20], in
the following we use the Chevallier-Polarski-Linder (CPL) parameterization for the
EoS setting [299, 744]

w D w0 C wa.1 � a/ D w0 C wa
z

1C z
(7.147)

so that, in a spatially flat universe filled with dust and dark energy, the dimensionless
Hubble parameter E.z/ � H=H0 is given by

E2.z/ D ˝M .1C z/3 C˝X .1C z/3.1Cw0Cwa/ e�
3wa z
1Cz (7.148)

with ˝X D 1 � ˝M because of spatial flatness. In order to determine the cos-
mographic parameters for this model, we avoid integrating H.z/ to obtain a.t/
by noting that d=dt D �.1 C z/H.z/d=d z and we use this relation to evaluate
. PH; RH;d 3H=dt3; d 4H=dt4/ and then solve Eqs. (7.52)–(7.55) evaluated at z D 0

with respect to the parameters of interest. Straightforward algebra yields
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q0D 1

2
C 3

2
.1 �˝M /w0; (7.149)

j0D1C 3

2
.1 �˝M / Œ3w0.1C w0/C wa	 ; (7.150)

s0D�7
2

� 33

4
.1 �˝M /wa � 9

4
.1 �˝M / Œ9C .7 �˝M /wa	w0

�9
4
.1 �˝M /.16 � 3˝M /w20 � 27

4
.1 �˝M /.3 �˝M /w

3
0; (7.151)

l0D 35

2
C 1�˝M

4
Œ213C.7�˝M/wa	waC .1�˝M /

4
Œ489C9.82� 21˝M /wa	w0

C9

2
.1 �˝M /

�
67 � 21˝M C 3

2
.23 � 11˝M /wa

�
w20

C27

4
.1�˝M /.47� 24˝M /w

3
0 C 81

2
.1 �˝M /.3 � 2˝M /w40: (7.152)

Inserting Eqs. (7.149)–(7.152) into Eqs. (7.135)–(7.145) one obtains lengthy ex-
pressions, not reported here, for the present-day values of f .R/ and its first three
derivatives in terms of .˝M ;w0;wa/. The f .R/ model thus obtained is not dy-
namically equivalent to the starting CPL one: the two models have the same
cosmographic parameters only today. As such, for instance, the scale factors co-
incide in the two theories only during the time period in which the fifth order Taylor
expansion constitutes a good approximation of the actual a.t/. Such a procedure
does not select a unique f .R/ model but rather a class of theories with the same
third order expansion of f .R/.

7.2.1.5 The �CDM model

With this caveat in mind, we consider first the �CDM model obtained by setting
.w0;wa/ D .�1; 0/, with

q0D 1

2
� 3

2
.1 �˝M /; (7.153)

j0D1; (7.154)

s0D1� 9

2
˝M ; (7.155)

l0D1C 3˝M C 27

2
˝2
M : (7.156)

When inserted into the expressions for the f .R/ quantities, these relations give

f .R0/ D R0 � 2�; f 00.R0/ D f 000.R0/ D 0; (7.157)
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and the only metric f .R/ theory having exactly the same cosmographic parameters
as the �CDM model is described by f .R/ / R, i.e., GR. This is a consequence
of the values of .q0; j0/ of the �CDM model: had we left .s0; l0/ unspecified and
fixed .q0; j0/ to be the values in Eqs. (7.153)–(7.156), we would have obtained
Eq. (7.157) again. Since the �CDM model fits well a large set of different data,
we expect the actual values of .q0; j0; s0; l0/ to differ little from the �CDM ones.
Therefore, we substitute into Eqs. (7.135)–(7.145) the expressions

q0Dq
0 .1C "q/; (7.158)

j0Dj
0 .1C "j /; (7.159)

s0Ds
0 .1C "s/; (7.160)

l0Dl
0 .1C "l/; (7.161)

with
�
q
0 ; j



0 ; s



0 ; l



0

�
given by Eqs. (7.153)–(7.156)and

�
"q; "j ; "s; "l

�
quantifying

the deviations from the�CDM values allowed by the data. A numerical estimate of
these quantities can be obtained, for example, from a Markov chain analysis but this
is outside the scope of the present discussion. We prefer to consider an idealized
situation in which the four quantities above share the same value " � 1. In this
case we can easily investigate how much the corresponding function f .R/ deviates
from GR by considering the ratios f 00.R0/=f .R0/ and f 000.R0/=f .R0/. Inserting
the previous expressions for the cosmographic parameters into the exact formulae
for f .R0/, f 00.R0/ and f 000.R0/, taking their ratios and then expanding to first order
in ", one obtains

�20D 64 � 6˝M .9˝M C 8/

Œ3.9˝M C 74/˝M � 556	˝2
M C 16

"

27
; (7.162)

�30D 6 Œ.81˝M � 110/˝M C 40	˝M C 16

Œ3.9˝M C 74/˝M � 556	˝2
M C 16

"

243˝2
M

; (7.163)

having defined the dimensionless quantities

�20�f 00.R0/
f .R0/

H 4
0 ; (7.164)

�30Df 000.R0/
f .R0/

H 6
0 ; (7.165)

which are more convenient for estimating the order of magnitude of the different
terms. Inserting our fiducial values for˝M , we obtain

�20 ' 0:15 " for ˝M D 0:041; (7.166)

�20 ' �0:12 " for ˝M D 0:250; (7.167)
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�30' 4 " for ˝M D 0:041; (7.168)

�30 ' �0:18 " for ˝M D 0:250: (7.169)

For values of " up to 0:1, the above relations show that the second and third deriva-
tives are at most two orders of magnitude smaller than the zero order term f .R0/.
The value of �30 for a baryon-only model corresponding to ˝M D 0:04 seems to
attribute a greater importance to the third order term. However, numerical checks
show that the above relations approximate well the exact expressions up to " ' 0:1,
the accuracy depending on the value of˝M and being a decreasing function of this
parameter. Using the exact expressions for �20 and �30, the conclusion that the ef-
fect of second and third order derivatives is negligible is significantly strengthened.
This result is valid under the assumption that the narrower the constraints on the
validity of the �CDM model, the less the cosmographic parameters deviate from
their �CDM values. It is possible to show that this is indeed the case for the CPL
parametrization used here. We have also assumed that the deviations

�
"q; "j ; "s; "l

�

take on the same values. Although this assumption is rather ad hoc, the main results
are not affected by relaxing it. One can still assume that all of them are very small so
that Taylor-expanding to first order leads to additional terms in Eqs. (7.162)–(7.163)
which are likely of the same order of magnitude. We may therefore conclude that,
if the observations confirm that the values of the cosmographic parameters agree
within �10% with those predicted in the �CDM model, then the deviation of the
function f .R/ from the GR choice f .R/ / R must be small. This conclusion is
justified only for the f .R/ models which satisfy the constraint (7.146). It is possi-
ble to construct a counterexample with f .R0/ / R0, f 00.R0/ D f 000.R0/ D 0 but
f .n/.R0/ ¤ 0 for some n � 4. For this counterexample, Eq. (7.146) is not satisfied
and the cosmographic parameters must be evaluated using the solution of the field
equations and it is not excluded that the resulting .q0; j0; s0; l0/ are within 10% of
the �CDM ones.

7.2.1.6 The constant EoS model

Let us now take into account the condition w D �1 but retain wa D 0, which pro-
duces the so-called quiessence models. In such a case, problems arise because both
terms .j0 � q0 � 2/ and R may vanish for some combinations of the two parame-
ters .˝M ;w0/ of the model. For instance, we find that j0�q0�2 D 0 for w0 D w1
or w2, with

w1D 1

1 �˝M Cp
.1 �˝M / .4 �˝M /

; (7.170)

w2D�1
3

"

1C 4 �˝Mp
.1 �˝M / .4 �˝M /

#

: (7.171)



7.2 Using cosmography to map the structure of the universe 291

The equation R.˝M ;w0/ D 0 may have different real roots w depending on the
value of ˝M adopted. Denoting collectively with wnul l the values of w0 which, for
a given˝M , make .j0 � q0� 2/R.˝M ;w0/ vanish, we identify a set of quiessence
models whose cosmographic parameters give rise to divergent values of f .R0/,
f 00.R0/, and f 000.R0/. For these models f .R/ is clearly not defined so that we have
to exclude these cases from further consideration. It is still possible to construct an
f .R/ theory reproducing the same background dynamics, but a different route has
to be used.

Since both q0 and j0 now deviate from the�CDM values, it is not surprising that
both f 00.R0/ and f 000.R0/ assume finite non-zero values. However, to investigate
the deviations of f .R/ from GR, it is more instructive to study the quantities �20
and �30. These are plotted in Figs. 7.1 and 7.2 for two fiducial values of ˝M . The
range of w0 in these plots has been chosen in such a way as to avoid divergences
but the lessons we draw are valid for more general values of w0. Even in this case,
f 00.R0/ and f 000.R0/ are two to three orders of magnitude smaller that the zero-th
order term f .R0/. This fact could be guessed from the previous discussion for the
�CDM case: relaxing the assumption w0 D �1 is equivalent to allowing the cosmo-
graphic parameters to deviate from their �CDM values. Although one cannot map
directly the two cases into each other, one could argue in favor of such a relation,
making these plots less surprising. Nevertheless, while in the �CDM case �20 and
�30 always have opposite signs, this is not true for quiessence models with w > �1.
Depending on the value of ˝M , we can have f .R/ theories with both �20 and �30

−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7
w0

−0.02
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η 2
0

Fig. 7.1 The dimensionless ratio between the present-day values of f 00.R/ and f .R/ as a function
of the constant EoS parameter w0 of the corresponding quiessence model. The dashed and solid
curves describe models with ˝M D 0:041 and 0:250, respectively.
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Fig. 7.2 The dimensionless ratio between the present-day values of f 000.R/ and f .R/ as functions
of the constant EoS parameter w0 of the corresponding quiessence model. The dashed and solid
curves refer to models with˝M D 0:041 and 0:250, respectively.

positive. Moreover, the lower the value of˝M , the higher the ratios �20 and �30 for
a given value of w0, which can be explained qualitatively by noting that for a lower
˝M the density parameter of the curvature fluid must be larger, requiring higher
values of the second and third derivatives (see [214] for a different approach).

7.2.1.7 The general case

Finally, we consider evolving dark energy models with dynamical equation of state
and wa ¤ 0. Needless to say, varying three parameters instead of two allows for a
wider range of models that will not be discussed in detail here. We focus on evolving
dark energy models with w0 D �1, a value in agreement with recent analyses.
The resulting �20 and �30 as functions of wa are reported in Figs. 7.3 and 7.4 for
models with positive wa, which guarantees that w.z/ � w0 C wa > w0 as z !
1 so that the EoS of dark energy can eventually approach the dust value w D
0; this is also the range favored by the data. We exclude values such that �20 or
�30 diverge. Considering how they are defined, it is clear that these quantities will
diverge when f .R0/ D 0 and that the values of .w0;wa/ which make .�20; �30/
diverge are obtained by solving

P0.w0;wa/˝M C Q0 .w0;wa/ D 0; (7.172)
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Fig. 7.3 The dimensionless ratio between the present-day values of f 00.R/ and f .R/ as functions
of the wa parameter for models with w0 D �1. The dashed and solid curves describe models with
˝M D 0:041 and 0:250, respectively.

where P0.w0;wa/ and Q0.w0;wa/ are obtained by inserting Eqs. (7.149)–(7.152)
in the definitions (7.139)–(7.140). For these CPL models, no two f .R/models have
the same values of the cosmographic parameters while simultaneously satisfying
all the criteria for the validity of the procedure followed here. If f .R0/ D 0, the
condition (7.146) is likely to be violated and higher than third order derivatives
must be included in the Taylor expansion of f .R/, invalidating the derivation of
Eqs. (7.135)–(7.138).

Subject to this caveat, Figs. 7.3 and 7.4 show that allowing the dark energy EoS to
evolve dynamically does not change significantly our conclusions. The second and
third derivatives, although non-vanishing, are negligible with respect to the zero-th
order term, favoring a function f .R/ that is only mildly non-linear which, in some
sense, is expected. Eqs. (7.149) and (7.150) suggest that, having set w0 D �1, q0 is
the same as in the �CDM model while j0 becomes j
0 C .3=2/.1�˝M /wa. The
Hilbert-Einstein Lagrangian density f .R/ D R � 2� is recovered for .q0; j0/ D�
q
0 ; j



0

�
for all values of .s0; l0/ and introducing a wa ¤ 0 makes .s0; l0/ different

from the �CDM values but the first two cosmographic parameters are only mildly
affected. These deviations are then partially washed out by the complicated way in
which they enter the determination of the present-day values of f .R/ and its first
three derivatives.
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Fig. 7.4 The dimensionless ratio between the present-day values of f 000.R/ and f .R/ as a func-
tion of the wa parameter for models with w0 D �1. The dashed and solid curves describe models
with˝M D 0:041 and 0:250, respectively.

7.2.1.8 Constraining the f .R/ parameters

We have now devised an alternative method to estimate f .R0/, f 00.R0/, and
f 000.R0/ by resorting to a model-independent parameterization of the dark energy
EoS. Ideally, the cosmographic parameters would be estimated directly from the
data and Eqs. (7.135)–(7.145)would then be used to infer the values of the quantities
related to the function f .R/. The latter would then be used to constrain the parame-
ters entering a modified gravity theory with a specified function f .R/ characterized
by a set of parameters p D .p1; : : : ; pn/, provided that the assumptions underlying
the derivation of Eqs. (7.135)–(7.145) are satisfied. In the following we present two
examples highlighting the potentiality and the limitations of this analysis.

7.2.1.9 A double power-law action

The first example, which is physically motivated in [842], is given by the choice

f .R/ D R .1C ˛Rn C ˇR�m/ (7.173)

with n;m > 0, and

f .R0/DR0
�
1C ˛Rn0 C ˇR�m0

�
; (7.174)
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f 0.R0/D1C ˛.nC 1/Rn0 � ˇ.m � 1/R�m0 ; (7.175)

f 00.R0/D˛n.nC 1/Rn�10 C ˇm.m � 1/R
�.1Cm/
0 ; (7.176)

f 000.R0/D˛n.nC 1/.n� 1/Rn�20

�ˇm.mC 1/.m � 1/R�.2Cm/0 : (7.177)

Denoting with �i (i D 0; 1; 2; 3) the values of f .i/.R0/ determined by Eqs. (7.135)–
(7.145), one can solve the system

f .R0/D�0; (7.178)

f 0.R0/D�1; (7.179)

f 00.R0/D�2; (7.180)

f 000.R0/D�3; (7.181)

for the four unknowns .˛; ˇ; n;m/ as follows. The first and second equation are
solved with respect to .˛; ˇ/ obtaining

˛D 1 �m

nCm

�
1 � �0

R0

�
R�n0 ; (7.182)

ˇD� 1C n

nCm

�
1 � �0

R0

�
Rm0 ; (7.183)

while the solution of the third and fourth equations yields

˛D�2R
1�n
0 Œ1CmC .�3=�2/R0	

n.nC 1/.nCm/
; (7.184)

ˇD�2R
1Cn
0 Œ1 � nC .�3=�2/R0	

m.1 �m/.nCm/
: (7.185)

By equating the two solutions one obtains the system

n.nC 1/.1�m/ .1 � �0=R0/
�2R0 Œ1CmC .�3=�2/R0	

D1; (7.186)

m.nC 1/.m� 1/ .1 � �0=R0/
�2R0 Œ1 � nC .�3=�2/R0	

D1; (7.187)
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for the unknowns .n;m/. Solving this system with respect to m provides two
solutions: m D �n, which is discarded because it corresponds to divergent .˛; ˇ/,
and

m D �
�
1 � nC �3

�2
R0

�
(7.188)

which, inserted back into the system, leads to a quadratic equation for n with roots

n D 1

2

"

1C �3

�2
R0˙

p
N .�0; �2; �3/

�2R0.1C �0=R0/

#

(7.189)

where

N .�0; �2; �3/D
�
R20�

2
0 � 2R30�0 CR40

�
�23

C6 �R0�20 � 2R20�0 CR30
�
�2�3

C9 ��20 � 2R0�0 CR20
�
�22 C 4

�
R20�0 �R30

�
�32 : (7.190)

Depending on the values of .q0; j0; s0; l0/, Eq. (7.189) may lead to one, two, or any
number of acceptable solutions, i.e., positive values of n. This solution has then to
be inserted back into Eq. (7.188) to determinem and then into Eq. (7.183) or (7.185)
to estimate .˛; ˇ/. If the final values of .˛; ˇ; n;m/ are physically acceptable,
we then conclude that the model (7.173) agrees with the data giving the cosmo-
graphic parameters inferred. The complete analytical exploration of the region of
the .q0; j0; s0; l0/ parameter space leading to acceptable solutions .˛; ˇ; n;m/ is a
challenge that we will not pursue here.

7.2.1.10 The Hu and Sawicki model

One of the most pressing problems of f .R/ theories is the need to escape the severe
constraints imposed by Solar System experiments. A successful model proposed by
Hu and Sawicki [605] is based on the choice5

f .R/ D R �Rc ˛.R=Rc/
n

1C ˇ.R=Rc/n
: (7.191)

As in the model previously discussed, there are four parameters which can be
expressed in terms of the cosmographic parameters .q0; j0; s0; l0/. First, it is

5 This model does not pass the matter instability test but viable generalizations of it have been
proposed [330, 848, 852].
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f .R0/DR0 � Rc
˛Rn0c

1C ˇRn0c
; (7.192)

f 0.R0/D1 � ˛nRcR
n
0c

R0.1C ˇRn0c/
2
; (7.193)

f 00.R0/D
˛nRcR

n
0c

	
.1� n/C ˇ.1C n/Rn0c




R20.1C ˇRn0c/
3

; (7.194)

f 000.R0/D˛nRcR
n
0c.An

2 C BnC C/

R30.1C ˇRn0c/
4

; (7.195)

with R0c D R0=Rc and

AD�ˇ2R2n0c C 4ˇRn0c � 1; (7.196)

BD3.1� ˇ2R2n0c /; (7.197)

CD�2.1� ˇRn0c/
2: (7.198)

Equating Eqs. (7.192)–(7.195) to the quantities .�0; �1; �2; �3/ defined above, one
can in principle solve this system to obtain .˛; ˇ;Rc ; n/ in terms of .�0; �1; �2; �3/
and then, using Eqs. (7.135)–(7.145), express them as functions of the cosmo-
graphic parameters. However, setting �1 D 1 as required by Eq. (7.136) gives
only the trivial solution ˛nRc D 0 so that the Hu-Sawicki model reduces to the
Hilbert-Einstein Lagrangian f .R/ D R. To circumvent this problem one relaxes
the condition f 0.R0/ D 1 to f 0.R0/ D .1C "/�1, which is equivalent to assuming
that the present-day effective gravitational coupling Geff ;0 D GN =f

0.R0/ differs
only slightly from its Newtonian value. Then, it is possible to solve analytically
for .˛; ˇ;Rc ; n/ in terms of .�0; "; �2; �3/. The actual values of .�0; �2; �3/ are no
longer given by Eqs. (7.135)–(7.138) but it can be checked that they deviate from
these expressions6 much less than 10% for values of " reaching 10%, which are well
above realistic expectations.

With this caveat in mind, we first solve the equation

f .R0/ D �0 ; f 00.R0/ D 1

1C "
(7.199)

obtaining

˛D n.1C "/

"

�
R0

Rc

�1�n �
1� �0

R0

�2
; (7.200)

ˇD n.1C "/

"

�
R0

Rc

��n �
1 � �0

R0
� "

n.1C "/

�
; (7.201)

6 The correct expressions of .�0; �2; �3/ can still be written formally as Eqs. (7.135)–(7.138) but
the polynomials entering these equations are now different and depend also on powers of ".
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and then insert these expressions in Eqs. (7.192)–(7.195).Rc drops out and its value
can no longer be determined, which is expected because Eq. (7.191) can trivially be
rewritten as

f .R/ D R � Q̨ Rn
1C Q̌Rn (7.202)

where Q̨ � ˛ R1�nc and Q̌ � ˇR�nc are determined by the above expressions
for .˛; ˇ/. Reversing the discussion, the present-day values of f .i/.R/ depend on
.˛; ˇ;Rc/ only through the parameters . Q̨ ; Q̌/ and the use of the cosmographic pa-
rameters is unable to break this degeneracy. However, since Rc only plays the role
of a scaling parameter, one can arbitrarily choose its value without loss of generality.
This degeneracy allows us to get a consistency relation for the Hu-Sawicki model.
By solving the equation f 00.R0/ D �2, one obtains

n D .�0=R0/C Œ.1C "/="	.1� �2R0/� .1� "/=.1C "/

1 � �0=R0 ; (7.203)

which can then be inserted into f 000.R0/ D �3 to obtain a complicated relation be-
tween �0; �2, and �3. By solving this relation with respect to �3=�0 and expanding
to first order in ", the constraint obtained is

�3

�0
' �1C "

"

�2

R0

�
R0

�
�2

�0

�
C "��10
1C "

�
1 � 2"

1 � �0=R0
��
: (7.204)

If the cosmographic parameters .q0; j0; s0; l0/ are known with sufficient accuracy,
one can compute the values of .R0; �0; �2:�3/ for a given " (eventually using the
expressions obtained for " D 0) and then check if they satisfy this relation. If this
is not the case, the Hu-Sawicki model can be rejected without solving the field
equations and fitting the data. In practice, the errors in the cosmographic parameters
are still so large that this test is left for the future. However, the Hu-Sawicki model
passes other tests [605] and is consistent with cosmography.

7.2.1.11 Observational constraints on the derivatives of f .R/

Equations (7.135)–(7.145) relate the present-day values of f .R/ and its first three
derivatives to the cosmographic parameters .q0; j0; s0; l0/ and the matter density
parameter˝M . In principle, therefore, a measurement of these quantities constrains
the f .i/.R0/ and the parameters of a given fourth order theory through the method
discussed above. The errors in the cosmographic parameters propagate through the
f .R/ quantities; the covariance matrix for the cosmographic parameters is non-
diagonal and care must be taken in the estimate of the errors on f .i/.R0/. A similar
discussion applies to the errors in the dimensionless ratios �20 and �30. As a general
rule, the uncertainty on a f .R/-related quantity g.˝M ;p/ which depends on ˝M
and the cosmographic parameters p is
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�2g D
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ˇ
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ˇ
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2
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C 2

X
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@pi

@g

@pj
Cij ; (7.205)

where Cij are the elements of the covariance matrix Ci i D �2pi
, .p1; p2; p3; p4/ D

.q0; j0; s0; l0/ and it is assumed that the error �M on ˝M is uncorrelated with the
errors on p. This assumption is satisfied exactly only if the matter density parameter
is estimated using an astrophysical method, for example, obtaining the total energy
density of the universe from the estimated halo mass function. Alternatively, ˝M
can be constrained by CMB experiments. Since the latter probe the very high red-
shift universe (z ' zlss ' 1089) while the cosmographic parameters pertain to the
present-day epoch, one can argue that the determination of˝M is not affected by the
details of the model adopted for describing the late universe. It is reasonable to as-
sume that, whatever dark energy or f .R/ candidate is considered, the era probed by
the CMB is well approximated by standard GR with dust only. We make the simpli-
fying but physically well-motivated assumption that �M is small and is uncorrelated
with the cosmographic parameters. With this assumption, the problem of estimat-
ing the errors on g.˝M ;p/ reduces to that of estimating the covariance matrix for
the cosmographic parameters, given the details of the data set used. We address this
issue by computing the Fisher information matrix ([1071] and references therein)
defined as

Fij D
�
@2L

@�i@�j

�
(7.206)

whereL D �2 ln L .�1; : : : ; �n/, L .�1; : : : ; �n/ is the likelihood of the experiment,
.�1; : : : ; �n/ is the set of parameters to be constrained, and h: : :i denotes an expecta-
tion value computed by evaluating the Fisher matrix elements for fiducial values of
the model parameters .�1; : : : ; �n/, while the covariance matrix C is finally obtained
as the inverse of F.

A key ingredient in the computation of F is the definition of the likelihood
which depends, of course, on the experimental constraint used. The present anal-
ysis is based on a fifth order Taylor expansion of the scale factor a.t/, hence we
can only rely on observational tests probing quantities which are described well by
this truncation. Moreover, since we do not assume a particular model, we can only
characterize the background evolution of the universe and not the evolution of per-
turbations which unavoidably require the specification of a physical model. As a
result, the Hubble diagram of SNeIa is ideal in order to constrain the cosmographic
parameters. We define the likelihood as

L .H0;p//exp

�
��

2

2
.H0;p/

�
; (7.207)

�2 .H0;p/D
NSNeIaX

nD1

�
�obs.zi /� �th.zn;H0;p/

�i .zi /

�2
; (7.208)
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where the distance modulus is given by

�th .z;H0;p/ D 25C 5 log

�
c

H0

�
C 5 logDL.z;p/ (7.209)

and

DL.z/ D .1C z/
Z z

0

d z

H.z/=H0
(7.210)

is the luminosity distance. Using the fifth order expansion of the scale factor, we
obtain an analytical expression for DL.z;p/ and the computation of Fij does not
require numerical integrations, making the estimate faster. The final ingredient
consists of the specification of the details of the SNeIa survey, i.e., the redshift distri-
bution of the sample and the error in each measurement. Following [671], we adopt7

�.z/ D
s

�2sys C
�

z

zmax

�2
�2m; (7.211)

where zmax is the maximum redshift of the survey, �sys is an irreducible scatter in the
SNeIa distance modulus, and �m must be assigned depending on the photometric
accuracy.

In order to compute the Fisher matrix one chooses the�CDM predictions for the
cosmographic parameters as fiducial model. For˝M D 0:3 and h D 0:72 (where h
is the Hubble parameter in units of 100 km=s 	 Mpc), we obtain

.q0; j0; s0; l0/ D .�0:55; 1:0;�0:35; 3:11/: (7.212)

As a first consistency check, we compute the Fisher matrix for a survey mimicking
the recent database of [367], setting .NSNeIa; �m/ D .192; 0:33/. After marginaliz-
ing over h (which is fully degenerate with the SNeIa absolute magnitude M ), we
obtain the uncertainties

.�1; �2; �3; �4/ D .0:38; 5:4; 28:1; 74:0/; (7.213)

where we use the indexing introduced above for the cosmographic parameters.
These values compare reasonably well with those obtained from a cosmographic
fitting of the SNeIa Gold Dataset8 [643, 644]

7 The authors of [671] assume that the data are binned in redshift and the error is �2 D �2sys=NbinC
Nbin.z=zmax/

2�2m, with Nbin the number of supernovae in a bin. We prefer not to bin the data so
that Nbin D 1.
8 These estimates are obtained by computing the mean and standard deviation from the marginal-
ized likelihoods of the cosmographic parameters. Then, the central values do not represent exactly
the best-fit model, while the standard deviations do not give a rigorous description of the error
because the marginalized likelihoods are manifestly non-Gaussian. Since we are interested in an
order of magnitude estimate we do not pay attention to these statistical details.
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q0D�0:90˙0:65; j0 D 2:7˙6:7; (7.214)

s0D36:5˙52:9; l0 D 142:7˙320: (7.215)

Because of the Gaussian assumptions they rely on, Fisher matrix forecasts are
known to be lower limits to the accuracy a given experiment can attain in the
determination of a set of parameters. This is indeed the case with the compari-
son suggesting that our predictions are quite optimistic. However, the analysis in
[643, 644] used the Gold SNeIa dataset which is poorer in high redshift supernovae
than the one in [367] that we mimic here, hence larger errors on the higher order
parameters .s0; l0/ are expected.

Rather than computing the errors on f .R0/ and its first three derivatives, it is
more interesting to look at the precision attainable on the dimensionless ratios �20
and �30 because they quantify the deviations from linearity. For the fiducial model
adopted, both �20 and �30 vanish while, using the covariance matrix for a present-
day survey and setting �M =˝M ' 10%, their uncertainties are

.�20; �30/ D .0:04; 0:04/: (7.216)

As an application, Figs. 7.1 and 7.2 show how �20 and �30 depend on the present-
day EoS parameter w0 for f .R/ models with the same cosmographic parameters
of a dark energy model with constant EoS. As is clear from these figures, also
restricted to the 1� range, the full region plotted is allowed by such large constraints
on .�20; �30/, meaning that the full class of corresponding f .R/ theories is experi-
mentally viable. One may therefore conclude that the current SNeIa data are unable
to discriminate between a �-dominated universe and this class of metric modified
gravities.

As the next step, we consider a SuperNova Anisotropy Probe (SNAP)-like survey
[23] setting .NSNeIa; �m/ D .2000; 0:02/. We use the redshift distribution of Table 1
of [671] and add 300 nearby SNeIa in the redshift range .0:03; 0:08/. The Fisher
matrix calculation gives the uncertainties on the cosmographic parameters

.�1; �2; �3; �4/ D .0:08; 1:0; 4:8; 13:7/: (7.217)

The significant improvement of the accuracy in the determination of .q0; j0; s0; l0/
translates in a reduction of the errors on .�20; �30/, which now read

.�20; �30/ D .0:007; 0:008/ (7.218)

having assumed that, when SNAP data will be available, the matter density parame-
ter ˝M will be known with a precision �M =˝M � 1%. Looking again at Figs. 7.1
and 7.2, it is clear that the situation is improved: the constraints on �20 make it pos-
sible to narrow the range of allowed models with low matter content (dashed curve)
while models with typical values of ˝M are still viable for w0 spanning almost the
entire horizontal axis. The constraint on �30 is still too weak so that almost the full
region plotted is allowed.
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Finally, we consider an hypothetical future SNeIa survey working at the same
photometric accuracy as SNAP and with the same redshift distribution, but in-
creasing the number of SNeIa to NSNeIa D 6 	 104 as expected from DES [5],
PanSTARRS [655], and SKYMAPPER [983], while still larger numbers may poten-
tially be achieved by ALPACA [341] and LSST [1096]. Such a survey could achieve

.�1; �2; �3; �4/ D .0:02; 0:2; 0:9; 2:7/ (7.219)

giving (with �M=˝M � 0:1%),

.�20; �30/ D .0:0015; 0:0016/: (7.220)

Figure 7.1 shows that, with such a precision on �20, the allowed region for w0 es-
sentially reduces to the�CDM value while Fig. 7.2 shows that the constraint on �30
definitely excludes models with low matter content, further reducing the range of
w0 values to small deviations from w0 D �1. We can therefore conclude that such a
survey will be able to discriminate between the concordance�CDM model and all
the f .R/ theories giving the same cosmographic parameters as quiessence models
other than the �CDM itself.

A similar discussion may be repeated for f .R/ models with the same
.q0; j0; s0; l0/ values as the CPL model even if grasping the efficacy of the sur-
vey is less intuitive due to the fact that the parameter space is multi-valued. For the
same reason we do not explore the accuracy on the double power-law or Hu-Sawicki
models, even if this is technically feasible.

7.2.1.12 What does cosmography teach us after all?

An unprecedented amount of high quality data have provided new input for cos-
mology. As it often happens in science, new and better data lead to unexpected
discoveries, such as the nowadays accepted evidence for the cosmic accelera-
tion. The equally impressive amount of more or less viable theoretical models
proposed in order to explain this acceleration has also generated confusion and
model-independent analyses are valuable. From this point of view, cosmography is
particularly useful and preferable to assuming ad hoc theoretical solutions. Current
and future SNeIa surveys have renewed interest in the determination of the cos-
mographic parameters, motivating the investigation of how these quantities can
constrain cosmological models.

We have already derived the expressions of the present-day values of f .R/
and its first three derivatives as functions of the matter density parameter ˝M ,
the Hubble constant H0, and the cosmographic parameters .q0; j0; s0; l0/ in met-
ric f .R/ gravity. A third order expansion of f .R/ was required and we have shown
that these relations hold for a large class of models and can help in the search for
viable f .R/ models without the need to solve the field equations.

The constraints on .q0; j0; s0; l0/ are still too weak to efficiently apply the pro-
gram outlined above. We have shown how it is possible to link the popular CPL
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parameterization of the dark energy equation of state and the derivatives of f .R/
by imposing that they produce the same cosmographic parameters. This analysis
has led to the conclusion that the only f .R/ function able to produce the same val-
ues of .q0; j0; s0; l0/ as the�CDM model is f .R/ D R�2�. If future observations
tell us that the cosmographic parameters are those of the �CDM model with high
precision, we can rule out all the metric f .R/ theories which satisfy the assump-
tions used in the derivation of Eqs. (7.135)–(7.138). This result should not be seen
as a no-go theorem for higher order gravity: one could still construct models with
vanishing f 00.R0/ and f 000.R0/ as required, but with non-vanishing higher order
derivatives. One could argue against such models by invoking Occam’s razor, but
nothing compels their rejection if they turn out to be theoretically well motivated
and in agreement with the data.

If new SNeIa surveys determine the cosmographic parameters with suffi-
cient accuracy, acceptable constraints on the dimensionless quantities �20 /
f 00.R0/=f .R0/ and �30 / f 000.R0/=f .R0/ could be obtained, allowing for the
possibility of discriminating competing f .R/ theories from each other. To assess
the feasibility of such a program we have outlined a Fisher matrix approach fore-
casting the accuracy in the cosmographic parameters that can be achieved by future
SNeIa surveys. A SuperNova Anisotropy Probe (SNAP)-like survey may begin giv-
ing interesting (yet still weak) constraints enabling us to reject f .R/ models with
low matter content, while a definitive improvement is achievable with future SNeIa
surveys observing �104 objects and making it possible to discriminate between
�CDM and a large class of fourth order theories. However, a necessary ingredient
is the measurement of ˝M by an independent method such as the mass fraction of
gas in galaxy clusters which, at present, is still far from the necessary 1% precision.
One can also rely on the ˝M estimate from the anisotropy and polarization spectra
of the CMB even if this requires assuming that the physics at recombination is
strictly described by GR, which restricts the scope to f .R/ models reducing to lin-
ear f .R/ at recombination. This assumption does not seem too restrictive because
in the f .R/ models in the literature the modifications of gravity only play a role
either during early universe inflation or late in the matter-dominated era.

Regarding the kind of data useful to constrain the cosmographic parameters, the
use of a fifth order expansion of the scale factor makes it possible to bypass the
specification of the underlying physical model and rely on the minimal assumption
that the universe is described by the spatially flat FLRW metric. While useful, this
generality severely limits the useful datasets. Only observational tests which depend
exclusively on the background evolution can be used, so that the range of astrophys-
ical probes reduces to standard candles such as SNeIa and, possibly, gamma-ray
bursts (if they turn out to be reliable standard candles [238]) and standard rods, e.g.,
the angular size-redshift relation for compact radio sources. Moreover, pushing the
Hubble diagram to redshifts z � 2 may rise the question of the impact of grav-
itational lensing amplification on the apparent magnitude of the standard candles
adopted. The magnification probability distribution function depends on the growth
history of perturbations [338,508,598,599,608] and one should worry about the un-
derlying physical model in order to estimate whether this effect biases the estimate
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of the cosmographic parameters. It has been shown [559,647,854,941,972] that the
amplification due to gravitational lensing does not alter significantly the measured
distance modulus for z � 1 SNeIa. Although these studies are based on GR, one can
argue that in any viable f .R/ model the growth of perturbations eventually leads
to a distribution of structures along the line of sight close to the one observed and,
therefore, the lensing amplification is approximately the same. The systematic error
introduced by neglecting lensing magnification should then be lower than the sta-
tistical errors expected by future SNeIa surveys. One can also try to further reduce
this possible bias using the method of flux averaging [1147] (in this case the Fisher
matrix calculation should be repeated). The constraints on the cosmographic param-
eters may be tightened by imposing physically motivated priors in parameter space.
For instance, one can impose that the Hubble parameterH.z/ stays always positive
over the full range probed by the data, or that the transition from past deceleration to
present acceleration occurs over the range probed by the data so that we can detect
it. Such priors should be included in the likelihood definition and the Fisher matrix
should then be re-computed.

Although the current data are still too limited to efficiently discriminate between
competing f .R/ theories, an aggressive strategy aiming at a precise determination
of the cosmographic parameters could offer stringent constraints on higher order
gravity without the need to solve the field equations or address the complicated
problems related to the growth of perturbations. More than eighty years after the
pioneering work of Hubble, the old cosmographic approach constitutes a precious
observational tool to investigate new developments in cosmology.

7.3 Large scale structure and galaxy clusters

Changing the gravity sector of our theories of the physical world has consequences
not only at cosmological scales but also at the smaller scales of galaxies and clusters
and, therefore, we now apply the f .R/ gravity approach to galaxy clusters. This
issue is the subject of a lively debate with results arguing in favor [25,253,288,389,
830,1031] or against [301,396,868] such models at local scales. As a rule of thumb,
higher order theories of gravity cause the gravitational potential to deviate from the
Newtonian 1=r law [326,675,793,987,1021,1051], although the deviations may be
small.

Consider, for illustration, power-law theories f .R/ D f0R
n; their Newtonian

limit was investigated in [217] assuming that the metric in the limit ˚=c2 � 1 is
Schwarzschild-like. It turns out that a power-law term .r=rc/

ˇ must be added to the
Newtonian 1=r term in order to obtain the correct gravitational potential. While the
parameter ˇ may be expressed analytically as a function of the slope n of f .R/,
rc sets the scale on which the correction term begins being significant. A particular
range of values of n such that the correction is an increasing function of the radius r
has been investigated: this correction causes an increase of the rotation curve with
respect to the Newtonian situation and, in principle, offers the prospect of fitting the
galactic rotation curves without dark matter.
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A set of low surface brightness (LSB) galaxies with extended and well-
determined rotation curves was considered in [378, 379]. These systems are
supposed to be dominated by dark matter and fitting the relevant data success-
fully without dark matter supports the modified gravity approach (see [510] for an
independent analysis of a different sample of galaxies). In conjunction with the
hints from large scale cosmological applications there is, in principle, the possibil-
ity to address both the dark energy and dark matter problems within the context
of a single fundamental theory [148, 216, 682, 747]. The simple power-law f .R/

considered here is just a toy model which fails to account for all the cosmological
phenomena contemplated in a comprehensive theory, including the early universe,
large scale structures, and the late time acceleration [216, 682].

A fundamental issue is related to galaxy clusters and superclusters, structures
with size intermediate between galaxies and the universe as a whole. Like galaxies,
clusters and superclusters appear to be dominated by dark matter, but this dark mat-
ter component seems to be clustered and organized in a way that is quite different
from galaxies. It seems that the dark matter distribution depends on the scale and
that also its fundamental nature may depend on it (see [67] for a review).

In the (metric) modified gravity approach, the task is to reconstruct the mass
profile of clusters without dark matter, i.e., to find corrections to the Newtonian
potential which produce the same dynamics as dark matter. f .R/ gravity could
be the paradigm to interpret both dark energy and dark matter as curvature effects
acting on scales at which GR is not tested. Let us discuss now how cosmography
and then galaxy clusters could help implementing this program.

7.3.1 The weak-field limit of f .R/ gravity and galaxy clusters

As discussed in Chap. 5, the gravitational potential of an analytic f .R/ theory is

� D �GM

f1r
� ı1.t/ e�r

p��

6
r
: (7.221)

Among the possible analytic f .R/ models, consider those for which the cosmolog-
ical term f0 and terms higher than second have been discarded. Rewriting the f .R/
Lagrangian as

f .R/ D a1RC a2R
2 C 	 	 	 (7.222)

and specifying the gravitational potential (7.221) generated by a point-like matter
distribution as

�.r/ D �3GM

4a1r

 

1C e�r=L

3

!

; (7.223)

where

L.a1; a2/ �
�

�6a2
a1

�1=2
(7.224)
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(not a free parameter in the fitting procedure but a function of the coefficients a1;2) is
an interaction length of the problem introduced by the correction to the Newtonian
potential. The change in notations reflects the specific choice in the much wider
class of potentials (7.221), but the following considerations are general.

7.3.2 Extended systems

The gravitational potential (7.223) describes a point-like mass and it is generalized
to extended galaxy clusters described as spherically symmetric systems consist-
ing of infinitesimal mass elements dm, each contributing a point-like gravitational
potential. The total potential is obtained by integrating all these contributions over
a sphere. We must then compute the integral

˚.r/ D
Z 1

0

r2dr

Z �

0

sin �d�
Z 2�

0

d' �.r/: (7.225)

The point-like potential (7.223) can be split into two terms: the Newtonian
component is

�N .r/ D � 3GM

4a1r
; (7.226)

the extended integral of which is well known (apart from the factor 3
4a1

) and is

˚N .r/ D � 3

4a1

GM.< r/

r
; (7.227)

whereM.< r/ is the mass enclosed in a sphere of radius r . The correction

�C .r/ D � GM

4a1

e�r=L

r
(7.228)

gives

˚C .r/ D ��GL
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r
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The radial integral is estimated numerically once the mass density is given. A fun-
damental difference between this term and the Newtonian one is that, while in the
latter the matter outside a spherical shell of radius r does not contribute to the po-
tential, for the former external matter contributes to the integral. Therefore, we split
the corrective potential as
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(7.230)
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if r 0 < r , and

˚C;ext.r/D��GL

2
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(7.231)

if r 0 > r , and the total potential of the spherical mass distribution is

˚.r/ D ˚N .r/C ˚C;int.r/C ˚C;ext.r/: (7.232)

As shown below, we need the radial derivative of the gravitational potential; it
may not be possible to evaluate the two derivatives analytically, but they can be
estimated numerically once an expression for the total mass density �.r/ is given.
While the Newtonian term yields the simple expression

d˚N
dr

.r/ D 3

4a1

GM.< r/

r2
; (7.233)

the internal and external derivatives of the corrective potential terms are more com-
plicated. We do not provide their explicit form here, but note that they are integrals
of the form

F .r; r 0/ D
Z ˇ.r/

˛.r/

dr 0 f .r; r 0/; (7.234)

from which it follows that

dF .r; r 0/
dr

D
Z ˇ.r/

˛.r/

dr 0
df .r; r 0/

dr

�f .r; ˛.r// d˛

dr
.r/C f .r; ˇ.r//

dˇ

dr
.r/: (7.235)

This expression is evaluated numerically once the integration limits are specified.
The Gauss theorem is valid only for the Newtonian part because it scales as 1=r2.
However, the Gauss theorem no longer holds for the total potential (7.223) because
of the non-Newtonian correction. This is not a problem because in f .R/ gravity
the full conservation laws are determined by the contracted Bianchi identities which
guarantee self-consistency [217, 237, 1033].

7.3.3 The cluster mass profiles

Galaxy clusters are generally considered to be bound gravitational systems with
approximate spherical symmetry and in hydrostatic equilibrium if virialized. These
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assumptions are widely used in spite of the fact that most clusters exhibit more
complex morphologies and/or evidence of strong interactions or dynamical activity,
especially in their innermost regions [290, 380].

Assuming spherical symmetry and hydrostatic equilibrium, the structure equa-
tion can be derived from the collisionless Boltzmann equation

d

dr

	
�gas.r/ �

2
r


C 2�gas.r/

r
.�2r � �2�;'/ D ��gas.r/

d˚.r/

dr
; (7.236)

where ˚ is the gravitational potential of the cluster, �r and ��;' are the mass-
weighted velocity dispersions in the radial and tangential directions, respectively,
and � is the gas mass density. For an isotropic system, it is

�r D ��;' (7.237)

and the pressure profile can be related to said quantities as

P.r/ D �2r �gas.r/: (7.238)

Substituting Eqs. (7.237) and (7.238) into Eq. (7.236) we have, for an isotropic
sphere,

dP.r/

dr
D ��gas.r/

d˚.r/

dr
: (7.239)

For a gas sphere with temperature profile T .r/ the velocity dispersion becomes

�2r D KBT.r/

�mp
; (7.240)

where KB is the Boltzmann constant, � � 0:609 is the mean mass particle, and
mp is the proton mass. The substitution of Eqs. (7.238) and (7.240) into Eq. (7.239)
yields

d

dr

�
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�mp
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�
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(7.241)

or, equivalently,

�d˚
dr

D KBT .r/

�mpr

�
d ln �gas.r/

d ln r
C d ln T .r/

d ln r

�
: (7.242)

Now the total gravitational potential of the cluster is

˚.r/ D ˚N .r/C ˚C .r/; (7.243)

where
˚C .r/ D ˚C;int.r/C ˚C;ext.r/: (7.244)
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If we consider only the standard Newtonian potential, then the total mass Mcl;N .r/

of the cluster is composed by the mass of the gas, plus the mass of galaxies, plus the
mass of the cD galaxy and dark matter, and it is given by the expression

Mcl;N .r/DMgas.r/CMgal.r/CMCDgal.r/CMDM.r/

D�KBT .r/
�mpG

r

�
d ln �gas.r/

d ln r
C d lnT .r/

d ln r

�
; (7.245)

whereMcl;N denotes the standard estimated Newtonian mass. The contribution from
galaxies is usually considered to be negligible in comparison with that of the other
two components and

Mcl;N .r/�Mgas.r/CMDM.r/

��KBT .r/
�mp

r

�
d ln �gas.r/

d ln r
C d lnT .r/

d ln r

�
: (7.246)

Since estimates of the gas mass are provided by X-ray observations, the equilibrium
equation can be used to derive the amount and spatial distribution of dark matter
present in a cluster of galaxies. Inserting the previous extended-corrected poten-
tial (7.243) into Eq. (7.242) yields

�d˚N
dr

� d˚C
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D KBT .r/
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from which the extended-corrected mass estimate
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follows. Since the use of a corrected potential avoids, in principle, the need for dark
matter, the total cluster mass is

Mcl;EC.r/ D Mgas.r/CMgal.r/CMCDgal.r/ (7.249)

and the mass density corresponding to the ˚C term is

�cl;EC.r/ D �gas.r/C �gal.r/C �CDgal.r/ (7.250)

with the density components derived from observations.
We will use Eq. (7.248) to compare the baryonic mass profile Mcl;EC.r/, esti-

mated from observations with the theoretical deviation from the Newtonian gravita-

tional potential given by the expression �4a1r
2

3G

d˚C
dr

.r/. Our goal is to reproduce

the observed mass profiles for a sample of galaxy clusters.
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7.3.4 The galaxy clusters sample

We now apply the formalism of Sect. 7.3.3 to the sample of galaxy clusters of
Refs. [1114, 1115] which consists of 13 low redshift clusters spanning a temper-
ature range 0:7�9:0 keV derived from high quality Chandra archival data. In all
these clusters, the surface brightness and the gas temperature profiles are measured
out to large radii, so that mass estimates can be extended up to r500 or beyond.

7.3.5 The gas density model

The gas density distribution of the clusters in the sample is described by the analytic
model proposed in [1114], which modifies the classical ˇ-model to represent the
characteristic properties of the observed X-ray surface brightness profiles, i.e., the
power-law type cusps of gas density in the cluster center, instead of a flat core and
the steepening of the brightness profiles at large radii. Eventually, a second ˇ-model
with a small core radius is added to improve the model near the cluster cores. The
analytical form for particle emission is given by

np ne Dn20
.r=rc/

�˛

.1C r2=r2c /
3ˇ�˛=2 	 1

.1C r�=r
�
s /"=�

C n202
.1C r2=r2c2/

3ˇ2
; (7.251)

which can be easily converted to a mass density using the relation

�gas D nT�mp D 1:1667 nemp; (7.252)

where nT is the total number density of particles in the gas. The resulting model has
a large number of parameters, some of which do not have a direct physical inter-
pretation. While this can often be inappropriate and computationally inconvenient,
it suits well our situation in which the main requirement is a detailed qualitative
description of the cluster profiles.

In [1114], Eq. (7.251) is applied to a restricted range of distances from the cluster
centre between an inner cutoff rmin chosen to exclude the central temperature bin
(10�20 kpc) where the intra-cluster medium is likely to be multi-phase, and rdet,
where the X-ray surface brightness is at least 3� significant. We have extrapolated
the above function to values outside this restricted range using the following criteria:

� For r < rmin, we have performed a linear extrapolation of the first three terms out
to r D 0 kpc;

� For r > rdet, we have performed a linear extrapolation of the last three terms out
to a distance Nr for which �gas.Nr/ D �c , where �c is the critical density of the
universe at the cluster redshift: �c D �c;0.1C z/3. For radii larger than Nr , the gas
density is assumed constant at �gas.Nr/.
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Table 7.1 Column 1: cluster name. Column 2: richness. Column 3: total cluster mass. Column 4:
gas mass. Column 5: galaxy mass. Column 6: cD galaxy mass (all mass values are estimated
at r D rmax). Column 7: ratio of total galaxy mass to gas mass. Column 8: minimum radius.
Column 9: maximum radius.

Mcl;N Mgas Mgal McDgal rmin rmax

name R .M
ˇ

/ (M
ˇ

) (M
ˇ

) (M
ˇ

) gal
gas (kpc) (kpc)

A133 0 4:35874 � 1014 2:73866 � 1013 5:20269 � 1012 1:10568 � 1012 0:23 86 1060

A262 0 4:45081 � 1013 2:76659 � 1012 1:71305 � 1011 5:16382 � 1012 0:25 61 316

A383 2 2:79785 � 1014 2:82467 � 1013 5:88048 � 1012 1:09217 � 1012 0:25 52 751

A478 2 8:51832 � 1014 1:05583 � 1014 2:15567 � 1013 1:67513 � 1012 0:22 59 1580

A907 1 4:87657 � 1014 6:38070 � 1013 1:34129 � 1013 1:66533 � 1012 0:24 563 1226

A1413 3 1:09598 � 1015 9:32466 � 1013 2:30728 � 1013 1:67345 � 1012 0:26 57 1506

A1795 2 5:44761 � 1014 5:56245 � 1013 4:23211 � 1012 1:93957 � 1012 0:11 79 1151

A1991 1 1:24313 � 1014 1:00530 � 1013 1:24608 � 1012 1:08241 � 1012 0:23 55 618

A2029 2 8:92392 � 1014 1:24129 � 1014 3:21543 � 1013 1:11921 � 1012 0:27 62 1771

A2390 1 2:09710 � 1015 2:15726 � 1014 4:91580 � 1013 1:12141 � 1012 0:23 83 1984

MKW4 - 4:69503 � 1013 2:83207 � 1012 1:71153 � 1011 5:29855 � 1011 0:25 60 434

RXJ1159 - 8:97997 � 1013 4:33256 � 1012 7:34414 � 1011 5:38799 � 1011 0:29 64 568

In Table 7.1, the radius limit rmin is almost the same as defined above. When the
value given by [1114] is less than the cD galaxy radius (defined below), we choose
this last one as the lower limit. On the contrary, rmax is quite different from rdet: it is
fixed by considering the higher value of the temperature profile and not by imaging
methods.

We finally compute the gas massMgas.r/ and the total massMcl;N .r/ for all clus-
ters in our sample, substituting Eq. (7.251) into Eqs. (7.252) and (7.245). The gas
temperature profile is described in Sect. 7.3.6. The resulting mass values, estimated
at r D rmax, are listed in Table 7.1.

7.3.6 Temperature profiles

An accurate qualitative description of the radial behavior of the gas properties is
needed for our purposes. Standard isothermal or polytropic models, and even the
more complex model of [1114], do not provide a good description of the data at all
radii and for all clusters in the sample. Therefore, we describe the gas temperature
profiles using the X-ray spectral analysis results without introducing any analytic
model and the X-ray spectral values of [1116]. A detailed description of the relative
spectral analysis is given in [1115].

7.3.7 The galaxy distribution model

The density of galaxies is modelled after [67]; even if the galaxy distribution is a
point distribution instead of a continuous function, assuming that galaxies are in
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equilibrium with the gas, one can use a ˇ-model � / r�3 for r < Rc from the
cluster centre, and a steeper one � / r�2:6 for r > Rc , where Rc is the cluster core
radius (its value is taken from [1114]). The density of galaxies is given by

�gal.r/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂
ˆ̂
:̂

�gal;1

�
1C

�
r
Rc


2��3=2
r < Rc;

�gal;2

�
1C

�
r
Rc


2��1:3
r > Rc;

(7.253)

where the constants �gal;1 and �gal;2 are chosen as follows:

� Reference [67] provides the central number density of galaxies in rich com-
pact clusters for galaxies located within 1:5h�1Mpc from the cluster centre
and brighter than m3 C 2m (where m3 is the magnitude of the third bright-
est galaxy): ngal;0 � 103h3 galaxies 	Mpc�3. We then fix �gal;1 in the range
1034 � 1036 kg/kpc3. For clusters obeying the condition chosen for the galaxy to
gas mass ratio, we assume a typical elliptical and cD galaxy mass in the range
1012 � 1013Mˇ.

� The constant �gal;2 is fixed with the only requirement that the galaxy density
function is continuous at Rc .

The effect of varying the galaxy density in the range 1034 � 1036 kg/kpc3 is
tested on the cluster with the lowest mass, i.e., A262, for which one would expect
the largest variations; the result is that the contribution of galaxies and of the cD
galaxy gives a variation not larger than 1% to the final estimate of fit parameters.

The cD galaxy density is modelled as in [989], which uses a Jaffe model of the
form

�cDgal D �0;J
�
r
rc


2 �
1C r

rc


2 ; (7.254)

where rc is the core radius and the central density is obtained fromMJ D 4

3
�R3c�0;J .

The mass of the cD galaxy has been fixed at 1:14 � 1012 Mˇ, with rc D Re=0:76

and where Re D 25 kpc is the effective radius of the galaxy. The central galaxy for
each cluster in the sample is assumed to have approximately this mass in stars.

We assume that the total mass of the galaxy component (i.e., galaxies plus cD
galaxy masses) is 20�25% of the gas mass: in [979] the mean fraction of gas versus
the total mass (with dark matter) for a cluster is estimated to be 15�20%, while the
same quantity for galaxies is 3�5%. This means that the relative mean galaxies-to-
gas mass ratio in a cluster is 20�25%. We have varied the parameters �gal;1, �gal;2

andMJ in their previous defined ranges to obtain a mass ratio between total galaxy
mass and total gas mass which lies in this range. The resulting galaxy mass values

and ratios
gal

gas
, estimated at r D rmax, are listed in Table 7.1.

Figures 7.5 and 7.6 show how each component is spatially distributed. The cD
galaxy is dominant with respect to the other galaxies only in the inner region (i.e.,
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Fig. 7.5 Power spectrum test on sample chain for the parameter a1 using the method described in
Sect. 7.3.9. The black curve is the logarithm of the analytical template Eq. (7.261) for the power
spectrum, while the gray curve is the discrete power spectrum obtained using Eqs. (7.259) and
(7.260).
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Fig. 7.6 Histogram of the sample points for the parameter a1 in Abell 383 resulting from the
MCMC implementation used to estimate best-fit values and errors for the fitting procedure de-
scribed in Sect. 7.3.9. Binning (horizontal axis) and relative frequencies (vertical axis) are given by
automatic procedure from Mathematica 6.0.

below 100 kpc). The cluster’s innermost regions have been excluded from the anal-
ysis and therefore the contribution of the cD galaxy is negligible and the gas is the
dominant visible component, starting from the innermost regions out to large radii,
with the galaxy mass amounting to only 20�25% of the gas mass. Similar features
are shown by all the clusters in the sample used.
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7.3.8 Uncertainties in the mass profiles

Uncertainties in the total mass profiles of the clusters are estimated performing
Monte-Carlo simulations [834]. We proceed to simulate temperature profiles and
choose random radius-temperature pairs of values for each bin in the temperature
data of [1115]. Random temperature values are extracted from a Gaussian distribu-
tion centered on the spectral values and with a dispersion fixed to its 68% confidence
level. For the radius, we choose a random value inside each bin. We perform 2000
simulations for each cluster and perform two cuts on the simulated profile. First, we
exclude those profiles that give an unphysical negative estimate of the mass: this is
possible when our simulated pairs of quantities give rise to a temperature gradient
that is too large. After this cut, there remain approximately 1500 simulations for any
cluster. Then we order the resulting mass values for increasing radii. Extreme mass
estimates (outside the 10�90% range) are excluded from the obtained distribution in
order to avoid other high mass gradients which originate masses too different from
the real data. The resulting limits provide the errors on the total mass. Uncertainties
in the electron density profiles have not been included in the simulations because
they are negligible in comparison with those of the gas temperature profiles.

7.3.9 Fitting the mass profiles

With the aid of X-ray observations it is possible to model theoretically the galaxy
distribution and, using Eq. (7.248), to estimate the baryon content of clusters. We
have performed a best-fit analysis of the theoretical equation (7.248),

Mbar;th.r/D 4a1

3

�
� kT .r/

�mpG
r

�
d ln �gas.r/

d ln r
C d lnT .r/

d ln r

��

�4a1
3G

r2
d˚C
dr

.r/ (7.255)

versus the observed mass contributions

Mbar;obs.r/ D Mgas.r/CMgal.r/CMCDgal.r/: (7.256)

Since not all the data involved in the above estimate have measurable errors we
cannot perform an exact �2 minimization but we can minimize the quantity

�2 D 1

N � np � 1
NX

iD1

.Mbar;obs �Mbar;theo/
2

Mbar;theo
; (7.257)

where N is the number of data and np D 2 are the free parameters of the model.
We minimize the �2 using the Markov Chain Monte Carlo Method (MCMC). For
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each cluster, we run various chains to set the best parameters of the Metropolis-
Hastings algorithm used. Beginning with an initial parameter vector p D .a1; a2/,
we generate a new trial point p0 from a tested proposal density q.p0;p/ represent-
ing the conditional probability to get p0, given p. This new point is accepted with
probability

˛.p;p0/ D min

�
1;
L.djp0/P.p0/q.p0;p/
L.djp/P.p/q.p;p0/

�
; (7.258)

where d are the data, L.djp0/ / exp.��2=2/ is the likelihood function, and P.p/ is
the prior on the parameters. The prior on the fit parameters is related to Eq. (7.258);
since L is a length, we need to force the ratio a1=a2 to be positive. The proposal
density is Gaussian-symmetric with respect to the vectors p and p0, i.e., q.p;p0/ /
exp.��p2=2�2/, with �p D p � p0. We decide to fix the dispersion � of any trial
distribution of parameters to 20% of the trial a1 and a2 at any step. This means that
the parameter ˛ reduces to the ratio between the likelihood functions.

We run one chain of 105 points for each cluster; the convergence of these chains
is tested using the power spectrum analysis of [400]. The key idea of this method
is simple but powerful: if we take the power spectra of the MCMC samples we
have a high correlation on small scales but, when the chain reaches convergence,
the spectrum becomes flat (like a white noise spectrum). Hence, by checking the
spectrum of just one chain, instead of many parallel chains as in the Gelmann-Rubin
test, is sufficient to assess the convergence reached (we refer the reader to [400] for
a detailed discussion). The discrete power spectrum of the chains is calculated as

Pj D jajN j2 (7.259)

with

a
j
N D 1p

N

N�1X

nD0
xn exp

�
i
2�j

N
n

�
; (7.260)

where N and xn are the length and the element of the sample from the MCMC,
respectively, and j D 1; : : : ; N

2
� 1. The wavenumber kj of the spectrum is related

to the index j by kj D 2�j=N . Then this quantity is fitted with the analytical
template

P.k/ D P0
.k�=k/˛

1C .k�=k/˛
(7.261)

or, in the equivalent logarithmic form,

lnPj D lnP0 C ln

�
.k�=kj /˛

1C .k�=kj /˛

�
� � C rj ; (7.262)
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where � D 0:57216 is the Euler-Mascheroni constant and rj are random measure-
ment errors with < rj >D 0 and < ri rj >D �2ıij =6. From the fit, we estimate
the fundamental parameters P0 and j � (the index corresponding to k�). The first is
the value of the power spectrum extrapolated to k ! 0 and, from this, we derive the
convergence ratio from r � P0=N ; if r < 0:01, convergence is reached. The second
parameter is related to the turning point from a power-law to a flat spectrum: it must
be larger than 20 in order to be sure that the number of points in the sample coming
from the convergence region is larger than the noise points. If these two conditions
are verified for all the parameters, then the chain has reached convergence and the
statistics derived from MCMC describes well the underlying probability distribution
(typical results are shown in Figs. 7.5 and 7.6). Following the prescriptions of [400],
we perform the fit over the range 1 � j � jmax , with jmax � 10j �, where a first
estimate of j � can be obtained from a fit with jmax D 1000, and then perform a
second iteration in order to have a better estimate. Even if convergence is achieved
after a few thousand steps in the chain, we run longer chains of 105 points in or-
der to reduce the noise from the histograms and avoid under- or over-estimating the
errors in the parameters. The i� confidence levels are easily estimated by deriving
from the final sample the 15:87-th and 84:13-th quantiles (which define the 68%
confidence interval) for i D 1, the 2:28-th and 97:72-th quantiles (which define the
95% confidence interval) for i D 2, and the 0:13-th and 99:87-th quantiles (which
define the 99% confidence interval) for i D 3. Having described the method, let us
now comment on the results.

7.3.10 Results

The numerical results of the fitting analysis are summarized in Table 7.2, which
gives the best-fit values of the independent fitting parameters a1 and a2 and of
the gravitational length L, considered as a function of the previous two quantities.
Figures 7.5 and 7.6 provide a typical power spectrum and histogram of samples de-
rived by the MCMC in order to assess the convergence reached (flat spectrum at
large scales). The baryonic mass profiles versus the radius for some clusters of the
sample are plotted in Figs. 7.9–7.13.

The goodness and the properties of the fits are shown in Figs. 7.5 and 7.6. The
main feature is the presence of a typical scale for each cluster above which the
model works well (typical relative differences are less than 5%), while for lower
scales there is a larger difference. Inspection reveals that this turning point is located
at a radius �150 kpc. Except for very large clusters, this value is independent of the
cluster, being approximately the same for all members of the sample. There are
two main independent explanations that could justify this trend: limitations due to a
break in the state of hydrostatic equilibrium, or limitations of the series expansion
of the f .R/ models.

If the assumption of hydrostatic equilibrium is incorrect, then we are in a regime
in which the fundamental relations (7.236)–(7.242) fail. As discussed in [1115],
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Table 7.2 Column 1: cluster name. Column 2: first derivative coefficient a1 of f .R/ series. Col-
umn 3: 1� confidence interval for a1. Column 4: second derivative coefficient a2 of f .R/ series.
Column 5: 1� confidence interval for a2. Column 6: characteristic length L of the modified grav-
itational potential, derived from a1 and a2. Column 7: 1� confidence interval for L.

name a1

[a1 � 1� ,
a1 C 1� ] a2 .kpc2/

[a2� 1� , a2C 1� ]
.kpc2/ L (kpc)

[L� 1� , LC 1� ]
(kpc)

A133 0:085 [0:078, 0:091] �4:98 � 103 [�2:38 � 104,
�1:38 � 103]

591:78 [323:34, 1259:50]

A262 0:065 [0:061, 0:071] �10:63 [�57:65, �3:17] 31:40 [17:28, 71:10]
A383 0:099 [0:093, 0:108] �9:01 � 102 [�4:10 � 103,

�3:14 � 102]
234:13 [142:10, 478:06]

A478 0:117 [0:114, 0:122] �4:61 � 103 [�1:01 � 104,
�2:51 � 103]

484:83 [363:29, 707:73]

A907 0:129 [0:125, 0:136] �5:77 � 103 [�1:54 � 104,
�2:83 � 103]

517:30 [368:84, 825:00]

A1413 0:115 [0:110, 0:119] �9:45 � 104 [�4:26 � 105,
�3:46 � 104]

2224:57 [1365:40,
4681:21]

A1795 0:093 [0:084, 0:103] �1:54 � 103 [�1:01 � 104,
�2:49 � 102]

315:44 [133:31, 769:17]

A1991 0:074 [0:072, 0:081] �50:69 [�3:42 � 102, �13] 64:00 [32:63, 159:40]
A2029 0:129 [0:123, 0:134] �2:10 � 104 [�7:95 � 104 ,

�8:44 � 103]
988:85 [637:71, 1890:07]

A2390 0:149 [0:146, 0:152] �1:40 � 106 [�5:71 � 106,
�4:46 � 105]

7490:80 [4245:74,
15715:60]

MKW4 0:054 [0:049, 0:060] �23:63 [�1:15 � 102,
�8:13]

51:31 [30:44, 110:68]

RXJ1159 0:048 [0:047, 0:052] �18:33 [�1:35 � 102,
�4:18]

47:72 [22:86, 125:96]

the central (70 kpc) region of every cluster is strongly affected by radiative cooling
and thus it cannot be directly related to the depth of the cluster potential well. This
means that, in this region, the gas is not in hydrostatic equilibrium but in a multi-
phase, turbulent state driven by some astrophysical, non-gravitational, interaction.
In this case, the gas cannot be used as a good standard tracer.

Another limitation of our modelling must also be taken into account, i.e., the re-
quirement that the function f .R/ is analytical. The corrected gravitational potential
used is derived in the weak-field limit, which requires that

R � R0 � a1

a2
; (7.263)

whereR0 is the background curvature. If this condition is not satisfied, the approach
does not work [252]. Considering that a1=a2 has the dimensions of the inverse of a
length squared, this condition defines the length scale over which the expansion can
work and indicates the limit in which the model can be compared with data.

For the sample employed, the fit of the parameters a1 and a2 spans the length
range 19�200 kpc, except for the largest cluster. Every galaxy cluster has its own
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gravitational length scale. A similar situation, but at completely different scales, has
been found for LSB galaxies modelled by f .R/ gravity [217].

Considering the data available and the analysis performed, it is not possible to
quantify the amount of radiative cooling and the validity of the weak-field limit,
which are not mutually exclusive but should be considered in detail in a more refined
picture. Other phenomena, including cooling flows, mergers, and asymmetric shapes
should also be considered in a more detailed modelling of clusters. Here we are only
interested in a proof of principle that extended gravity could be a valid alternative
to dark matter in order to explain the cluster dynamics.

Similar issues are present also in [182], in which Metric-Skew-Tensor gravity is
used as a generalization of GR to derive the gas mass profile of a sample of clusters
with gas as the only baryonic component of the clusters. These authors consider
some of the clusters included in the sample used here (in particular, A133, A262,
A478, A1413, A1795, A2029, and MKW4), and they find the same different trend
for r � 200 kpc, although with a different behavior. While the model presented
here gives lower values than X-ray data on the gas mass, their model gives higher
values with respect to the X-ray gas mass data. This fact stresses the need for a more
accurate model of the gravitational potential.

As discussed in Chap. 5, in general, the weak-field limit of ETGs provides
Yukawa-like corrections to the Newtonian potential [663, 1051]. Specifically, given
a theory of gravity of order .2n C 2/, there are n Yukawa corrections to the New-
tonian potential [920]. This means that, if the effective Lagrangian density of the
theory is

L D f .R;�R; :::;�kR; :::;�nR/
p�g (7.264)

we have

�.r/ D �GM

r

"

1C
nX

kD1
˛k e

�r=Lk

#

: (7.265)

Standard GR with no Yukawa corrections is recovered for n D 0 (second order
theory), while metric f .R/ gravity corresponds to n D 1 and any � operator intro-
duces derivatives of a further order two in the field equations.

In the series (7.265),G is the value of the gravitational constant at infinity andLk
is the interaction length of the k-th component of the non-Newtonian correction. The
amplitude ˛k of each component is normalized to the standard Newtonian term; the
sign of ˛k informs us of whether the corrections are attractive or repulsive [1167].
Moreover, the variation of the gravitational coupling is involved. In our case, we
take into account only the first, leading term of the series. Let us rewrite (7.223) as

�.r/ D �GM

r

h
1C ˛1 e�r=L1

i
I (7.266)
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then the effect of non-Newtonian terms can be parametrized by .˛1; L1/ which
could be a more useful parameterization than the previous .a1; a2/ or

�
Geff ; L

�
with

Geff D 3G=.4a1/. For large distances r � L1, the exponential term vanishes and
the gravitational coupling isG. If r � L1 the exponential approaches unity and, by
differentiating Eq. (7.266) and comparing with the gravitational force measured in
the laboratory, one obtains

Glab D G

�
1C ˛1

�
1C r

L1

�
e�r=L1

�
' G.1C ˛1/; (7.267)

where Glab D 6:67 � 10�8 g�1 cm3 s�2 is the usual Newton constant measured by
Cavendish-like experiments. Of course, G and Glab coincide in Newtonian gravity.
The inverse square law holds asymptotically but the measured coupling constant
differs from Glab by a factor .1C ˛1/. In general, any correction introduces a char-
acteristic length that acts at a certain scale for the self-gravitating systems, as in the
case of the galaxy clusters studied here. The range Lk of the k-th component of the
non-Newtonian force can be identified with the mass mk of a pseudo-particle with
effective Compton wavelength

Lk D „
mkc

: (7.268)

The interpretation is that, in the low-energy limit, fundamental theories attempting
to unify gravity with the other forces introduce, in addition to the massless graviton,
massive particles which also mediate the gravitational interaction [537] (see [228,
1033] for metric f .R/ gravity). These masses are related to effective length scales
which can be parametrized as

Lk D 2 � 10�5
�
1 eV

mk

�
cm: (7.269)

There have been several attempts to constrain Lk and ˛k (and then mk) using ex-
periments on scales in the range 1 cm < r < 1000 km and various techniques
[410, 494, 1037]. The expected masses of particles which are the additional carriers
of the gravitational force range in the interval 10�13 eV < mk < 10�5 eV. The
general outcome of these experiments, even retaining only the term k D 1, is that
the geophysical window between laboratory and astronomical scales

j˛1j � 10�2; L1 � 102 � 103 m (7.270)

is not excluded. Fujii [514] suggested that an exponential deviation from the New-
tonian potential could arise due to the microscopic interaction coupling nuclear
isospin and baryon number.

The astrophysical counterparts of these non-Newtonian corrections seemed ruled
out until a few years ago due to the fact that the experimental tests of GR seemed
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to predict the Newtonian potential in the weak-field limit inside the Solar System.
However, it has been shown that several alternative theories can evade the Solar Sys-
tem constraints [228, 712]. There are also indications of an anomalous long-range
acceleration in the data of the Pioneer 10/11, Galileo, and Ulysses spacecrafts,
which are now almost outside the Solar System. If confirmed, this anomalous accel-
eration calls into play Yukawa-like corrections again [45]. Besides, it is possible to
reproduce phenomenologically the flat rotation curves of spiral galaxies considering
the values

˛1 D �0:92; L1 � 40 kpc: (7.271)

The main assumption of this approach is that the additional gravitational interaction
is carried by some ultra-soft boson with mass in the range m1 � 10�27�10�28 eV.
The action of this boson becomes efficient at galactic scales without the need for
enormous amounts of dark matter to stabilize these systems [966]. Furthermore,
it is possible to use a combination of two exponential corrections and give a de-
tailed explanation of the kinematics of galaxies and galaxy clusters without dark
matter [410].

Both spacecrafts anomalies and galactic rotation curves come from outside the
Solar System boundaries within which GR has been tested, and they are purely phe-
nomenological. Certain authors (e.g., [786]) interpret also CMB experiments such
as BOOMERANG and WMAP [377,1038] in the framework of modified Newtonian
dynamics, again without invoking dark matter. All these facts point toward the idea
that corrections to standard gravity can be taken seriously and should not be ex-
cluded dogmatically, especially considering that the direct detection of dark matter
still eludes us.

With this philosophy in mind, we plot the trend of a1 as a function of the den-
sity in Fig. 7.7. The values of a1 are strongly constrained in a narrow region of
the parameter space and a1 can be considered a tracer for the size of gravitational
structures. a1 ranges between 0:12�0:8 for larger clusters and 0:4�0:6 for poorer
structures (i.e., galaxy groups such as MKW4 and RXJ1159). We expect a particular
trend when applying the model to different gravitational structures. Figure 7.7 gives
characteristic density values.

Similar considerations hold also for the characteristic gravitational length L
directly related to both a1 and a2. The parameter a2 shows a large range of variation
(between �106 and �10) in comparison with the density and mass of the clusters.
The value of L changes with the size of the gravitational structure (Fig. 7.8) so it
can be considered, in addition to the Schwarzschild radius, as a sort of additional
gravitational radius. Particular care must be taken when considering Abell 2390,
which shows large cavities in the X-ray surface brightness distribution and whose
central, highly asymmetric, region is not expected to be in hydrostatic equilibrium.
All results at small and medium radii for this cluster could be strongly biased by
these effects [1114], and the same can be said for the resulting exceptionally large
value of L. Figure 7.8 shows how observational properties of the cluster which
characterize well its gravitational potential (such as the average temperature and the



7.3 Large scale structure and galaxy clusters 321

10 28 10 22 10 16 10 10 10 4 100
0.0

0.2

0.4

0.6

0.8

1.0

rgas kg m3

a 1

Fig. 7.7 Density versus a1: predictions on the behavior of a1. The horizontal bold line indicates
the Newtonian limit a1 ! 3=4, which we expect to be realized on scales comparable with the
size of the Solar System. Vertical lines indicate typical approximate values of the matter density
(without dark matter) for various gravitational structures: a universe with critical density �crit �
10�26 kg=m3 (long-dashed); galaxy clusters with �cl � 10�23 kg=m3 (short-dashed); galaxies
with �gal � 10�11 kg=m3 (dot-dashed); the Sun with �sun � 103 kg=m3 (dot-dashed). Arrows and
boxes show the predicted trend for a1.

total cluster mass within r500, plotted in the upper and lower panel, respectively),
correlate well with the characteristic gravitational length L.

For clusters we can define a gas density-weighted mean and a gas mass-weighted
mean, both depending on the series parameters a1;2 as

< L >�D 318 kpc; < a2 >�D �3:40 	 104; (7.272)

< L >MD 2738 kpc; < a2 >MD �4:15 	 105: (7.273)

Note the correlation with the sizes of the cluster’s cD-dominated central region and
the “gravitational” interaction length of the whole cluster. In other words, the pa-
rameters a1;2 directly related to the first and second derivatives of f .R/ determine
the characteristic sizes of the self-gravitating structures.

7.3.11 Outlooks

If the previous considerations are correct, the gravitational interaction depends on
the scale and its infrared limit is dominated by the expansion coefficient of the gravi-
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Fig. 7.8 Single temperature fit to the total cluster spectrum (upper panel) and total cluster mass
within r500, in solar masses M

ˇ

(lower panel) are plotted as functions of the characteristic gravita-
tional length L. Temperature and mass values are taken from [1114].

tational Lagrangian. Roughly speaking, it is expected that beginning with the cluster
scale down to the galactic scale, and then to the smaller Solar System or terrestrial
scales, the terms of the series lead the clustering of self-gravitating systems dom-
inating over other non-gravitational phenomena. The Newtonian limit is recovered
for a1 ! 3=4 and L.a1; a2/ � r at small scales and for L.a1; a2/ � r at large
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Fig. 7.9 Baryonic mass versus radius for the cluster A133. The dashed curve is the experimentally
observed estimate (7.256) of the baryonic matter component (i.e., gas, galaxies, and cD galaxy);
the solid curve is the theoretical estimate (7.255) for the baryonic component. The dotted curves
are the 1� confidence levels given by errors on fitting the parameters plus statistical errors on mass
profiles as discussed in Sect. 7.3.8.
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Fig. 7.10 Baryonic mass versus radius for the cluster A383.

scales. In the first case, the gravitational coupling has to be redefined, in the sec-
ond G1 ' G. In these limits, the linear Ricci term is dominant in the gravitational
Lagrangian and Newtonian gravity is restored [920]. Reversing the argument, this
could be the starting point to achieve a theory capable of explaining the strong seg-
regation in masses and sizes of gravitationally bound systems.
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Fig. 7.11 Baryonic mass versus radius for the cluster A478.
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Fig. 7.12 Baryonic mass versus radius for the cluster A1413.

The present state of cosmology shows that the Standard Cosmological Model
based on GR, primordial nucleosynthesis, cosmic abundances and large scale struc-
ture, has difficulties, including the lack of a consistent theory for missing matter and
cosmic acceleration. These shortcomings originate further difficulties in interpreting
the observational data – one can say that we have a book but not the alphabet to
read it. There are two main approaches to this problem: many researchers try to
solve the problems of the Standard Cosmological Model by assuming that GR is
the correct theory of gravity, but this leads to the introduction of exotic and invisi-
ble energy and matter components to explain the cosmic dynamics and large scale



7.3 Large scale structure and galaxy clusters 325

r kpc
50 100 200 500 1000

M
M

1 1012

2 1012

5 1012

1 1013

2 1013

5 1013
1 1014
2 1014

Fig. 7.13 Baryonic mass versus radius for the cluster A2029.

structures. Other authors purport that GR is not the definitive and comprehensive
theory of gravity but it should be revised at ultraviolet (quantum gravity) and in-
frared (extragalactic and cosmological) scales. In the second approach dark energy
and dark matter could be just signals that a more general theory is needed at large
scales even if GR works well at Solar System scales. To some extent the situation
can be seen as a philosophical debate without solution, but it is possible to pose the
question in more physical terms.
f .R/ gravity is strictly related to the second approach. It is a fruitful approach to

generalize GR even if most models in the literature are purely phenomenological. It
is interesting that, as soon as Einstein formulated GR, many authors including him-
self begun exploring other possibilities [237]. At the beginning these studies were
mainly devoted to check the mathematical consistency of GR, but the desire to unify
gravity with electromagnetism first and the other interactions later (only electromag-
netism was known in the early days of GR), motivated efforts to develop alternative
gravity theories. Today, one of the goals of alternative gravity is to understand the
effective content and dynamics of the universe. This question has recently assumed
dramatic tones because the fact that more than 95% of cosmic matter-energy is un-
known at fundamental level is disturbing and alternative gravity could be a way out
of this situation. Even if we live in the so-called era of precision cosmology, the
present status of the observations does not allow us to discriminate between alterna-
tive gravity and dark energy/dark matter. The Large Hadron Collider could resolve
many questions by detecting new supersymmetric particles, prime candidates for
dark matter.

Cosmography, being by definition a model-independent approach, is a useful
tool for discriminating between different cosmological models. Cosmographic pa-
rameters can be estimated without assigning an a priori cosmological model and
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cosmography can be used in two ways. First, one can use it to discriminate between
GR and alternative gravity. a goal which relies upon the availability of good qual-
ity data. Certain minimum sensibility and error requirements in the surveys and the
data must be met in order to solve this question: they are not met yet and therefore
we are not able to do the necessary job because reliable standard candles are not
available at very large redshifts [238]. Second, we can use the cosmographic param-
eters to constrain cosmological models as was done here for metric f .R/ gravity.
Since these parameters are model-independent, they are natural priors in any theory.
As already said, the accuracy in their determination is a crucial issue. So far, SNeIa
have been used as standard candles but other classes of objects and phenomena (the
CMB, bright galaxies, gamma ray bursts, baryon acoustic oscillations, weak lens-
ing, etc.) should be considered in the quest for better accuracy. Forthcoming space
missions will be extremely useful in this sense.

To conclude, it is very difficult to break the degeneracy in the large set of cos-
mological models attempting to explain the observations in a deductive approach.
It would be fruitful to reconstruct the correct cosmological model by an inductive
approach without a priori assumptions and using the minimum possible number of
parameters, according to Occam’s razor. This inductive approach would not be fully
satisfactory because it would provide only a limited amount of information, but it
could nevertheless inspire and guide the theoretical efforts.

7.4 Testing cosmological models with observations

The methods developed to test the many candidates proposed to explain the cos-
mic acceleration are based on measurements of distance and lookback time of
astronomical objects identified as standard candles. In this section we discuss the
characteristic parameters and constraints for various classes of cosmological mod-
els and we emphasize the degeneracy between these models, a signal that more data
at low .0 < z < 1/, medium .1 < z < 10/ and high .10 < z < 1000/ redshift
are needed to realistically discriminate between models. The large number of viable
candidates to explain the accelerated expansion signals that the number of cosmo-
logical tests available to discriminate between competing models is too limited and
that there is a serious degeneracy problem. Both the SNeIa Hubble diagram and the
angular diameter-redshift relation of compact radio sources [294,908] are distance-
based probes of cosmological models in which systematic errors and biases could
be iterated. It is interesting, therefore, to look for tests based on time-dependent ob-
servables, for example the lookback time to distant objects. The lookback time is
estimated observationally as the difference between the present-day age of the uni-
verse and the age of a given object at redshift z. The estimate of its value is possible
if the object is a galaxy observed in more than one photometric band, since its color
is determined by its age as a consequence of stellar evolution. It is thus possible to
estimate the age of the galaxy by measuring its magnitude in different bands and
then using stellar evolutionary codes to choose the model that best reproduces the
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observed colors. A similar approach is pursued by Lima and Alcaniz [740] (see also
[640]), who use the age, rather than the lookback time, of old high redshift galax-
ies to constrain the dark energy equation of state. The same method is applied to
braneworld models [21] and to the Chaplygin gas [22]. However, the estimate of
the age of a single galaxy may be affected by systematic errors which are difficult
to control. This problem can be overcome by considering a sample of galaxies be-
longing to the same cluster. By averaging the estimates for all galaxies, one obtains
an estimate of the cluster age and reduces the systematic errors. This technique was
proposed by Dalal et al. [355] and used by Ferreras et al. [489] to test a class of
models in which a quintessence scalar field couples explicitly with matter.

We review various classes of dark energy models discussing methods to con-
strain them with observational data. Without attempting to be complete, we intend
to illustrate the degeneracy problem and the need for further and self-consistent ob-
servational surveys at all redshifts to remove the degeneracy.

7.4.1 Toward a new cosmological standard model

As a simple classification scheme, candidates to explain the cosmic acceleration
may be divided into three wide classes.9 The first class includes models based on
dark energy: the simplest representative is the �CDM scenario and its quintessen-
tial generalizations, which will be referred to as QCDM models. The second class
comprises UDE models with a single fluid described by an equation of state able
to describe all regimes of the cosmic history [214, 259]: they will be referred to as
parametric density models or generalized EoS models. The third class is composed
of models describing the accelerated expansion as a manifestation of the break-
down of GR and its Friedmann equations, for example f .R/ gravity [211,212,851].
Although not exhaustive, these three classes allow one to explore qualitatively dif-
ferent physics, which is done in the following.

7.4.1.1 The �CDM model and its generalizations

A cosmological constant � is certainly capable of driving a period of accelerated
expansion of the universe and the �CDM model is the best-fit to a combined anal-
ysis of completely different astrophysical data ranging from SNeIa to the CMB

9 A conceptually different explanation proposed is that, in the context of GR, the cosmic acceler-
ation is due to the backreaction of inhomogeneities on the dynamics of an (averaged) background
[193–195, 685, 686, 724, 725, 775, 776, 890, 922, 1163, 1164]. We do not discuss this proposal here
because it has not yet been proved that the backreaction (which is undeniably present) has the cor-
rect magnitude to explain the cosmic acceleration, nor that the backreaction term in the averaged
acceleration equation even gives a positive contribution to Ra. Extending this idea to scalar-tensor
of f .R/ gravity in the hope of improving the situation does not bring definitive answers, either
[1128].
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Fig. 7.14 CMB anisotropy spectrum for various values of w. Data points are the WMAP measure-
ments and the best-fit is obtained for w' �1.

anisotropy spectrum (see Fig. 7.14) and galaxy clustering [926, 1038, 1070]. A sim-
ple generalization is the QCDM scenario in which the effective equation of state
parameter w � p=� becomes negative at a certain epoch, with w D �1 corre-
sponding to the standard cosmological constant. One of the goals of observational
cosmology is testing whether w deviates or not from �1. How such a negative pres-
sure fluid can drive the cosmic acceleration is easily understood by inspection of the
Friedmann equations

H 2 � �

3

�
�M C �Q

�
; (7.274)

2
Ra
a

CH 2 D �� PQ D �8�Gw�Q; (7.275)

where the universe is assumed to be spatially flat as suggested by the position of the
first peak in the CMB anisotropy spectrum ([377, 1038, 1055], see also Fig. 7.14).

The continuity equation P�C 3H .P C �/ D 0 for the i -th fluid component with
Pi D wi�i yields

˝i D ˝i;0

a3.1Cwi /
D ˝i;0.1C z/3.1Cwi /; (7.276)
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where ˝i � �i=�crit is the density parameter for the i -th fluid. Equation (7.274)
then gives

H.z/ D H0

q
˝M;0.1C z/3 C˝Q;0.1C z/3.1Cw/: (7.277)

Using Eqs. (7.274) and (7.275), the deceleration parameter q � �a Ra= Pa2 becomes

q0 D 1

2
C 3w

2
.1 �˝M;0/ : (7.278)

The Hubble diagram of SNeIa, the large scale galaxy clustering and the CMB
anisotropy spectrum can all be fitted by the �CDM model with .˝M;0;˝Q/ '
.0:3; 0:7/, giving q0 ' �0:55 describing an accelerated universe today. The sim-
plicity of the model and its ability to fit most data explain why the �CDM scenario
is the leading candidate from a purely observational point of view. Nonetheless its
generalization, the QCDM models incorporating mechanisms for the evolution of�,
are invoked to solve the coincidence problem.

7.4.1.2 Generalizing the EoS: parametric density models

A phenomenological class of UDE models [214, 259] introduces a single fluid10

with energy density

�.a/ D Anorm

�
1C s

a


ˇ�˛ �
1C

�
b

a

�˛�
(7.279)

with 0 < ˛ < ˇ, s and b (with s < b) two scaling factors, andAnorm a normalization
constant. It is convenient to rewrite the energy density as a function of redshift.
Replacing a D .1C z/�1 in Eq. (7.279), one obtains

�.z/ D Anorm

�
1C 1C z

1C zs

�ˇ�˛ �
1C

�
1C z

1C zb

�˛�
; (7.280)

having defined zs D 1=s � 1 and zb D 1=b � 1. It is � / a�ˇ for a � s, � / a�˛
for s � a � b, and � / const. for a � b. By setting .˛; ˇ/ D .3; 4/ the energy
density smoothly interpolates between a radiation-dominated phase and a matter-
dominated period, finally approaching a de Sitter phase. Anorm may be estimated by
inserting Eq. (7.279) into Eq. (7.274) and evaluating the result at the present time,

10 This model may be interpreted not only as comprising a single fluid with an exotic equation of
state, but also as composed of dark matter and scalar field dark energy, or in the framework of
modified Friedmann equations.
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Anorm D �crit;0

.1C s/ˇ�˛ .1C b˛/
: (7.281)

The continuity equation may be recast in a form more convenient for computing the
pressure and the parameter w � p=�, obtaining [214, 259]

w D Œ.˛ � 3/aC .ˇ � 3/s	b˛ � Œ3.a C s/C .˛ � ˇ/s	a˛

3.aC s/.a˛ C b˛/
; (7.282)

which shows that w depends strongly on the scale factor and hence on the redshift.
Combining the Friedmann equations, the deceleration parameter q D .1C 3w/=2 is

q D Œ.˛ � 2/aC .ˇ � 2/s	b˛ � Œ2.aC s/C .˛ � ˇ/s	a˛
2.aC s/.a˛ C b˛/

: (7.283)

The present day acceleration parameter is obtained by setting a D 1,

q0 D .y � 1/˛ C zs Œ˛ y � 2.1C y/	C .ˇ � 4/.1C y/

2.2C zs/.1C y/
(7.284)

with y D .1C zb/�˛. It is straightforward to derive the constraints on q0 [214,259]

1

2

�
ˇ � ˛

2C zs
� 2

�
� q0 � 1

2

�
˛zs C 2ˇ

2.2C zs/
� 2

�
: (7.285)

It is convenient to solve Eq. (7.284) with respect to zb in order to express this as the
function of q0 and zs

zb D
�
˛.1C zs/C ˇ � .2C zs/.2q0 C 2/

˛ � ˇ C .2C zs/.2q0 C 2/

�1=˛
� 1 : (7.286)

This parametric density model is fully characterized by five parameters chosen as
the asymptotic slopes .˛; ˇ/, the present-day deceleration and Hubble parameters
.q0;H0/, and the scaling redshift zs . As in [214, 259], we set .˛; ˇ/ D .3; 4/ and
zs D 3454 so that .q0;H0/ are the parameters to be constrained by the data. Any
generalized EoS approach can be reduced to this scheme when fitting the data; the
phenomenological parameters are usually given also a physical meaning.

7.4.1.3 Curvature quintessence

As already discussed, metric f .R/ gravity can be seen as a curvature fluid which,
added to the matter fluid, produces the effective energy density and pressure

�tot D �M C �curv ; Ptot D PM C Pcurv; (7.287)
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where [24, 211, 275, 851]

�curvD 1

f 0.R/

�
1

2

	
f .R/ �Rf 0.R/
 � 3H PRf 00.R/

�
; (7.288)

PcurvD 1

f 0.R/
˚�
2H PR C RR�f 00.R/C PR2f 000.R/

C 1

2

	
f .R/ �Rf 0.R/


�
: (7.289)

and

wcurv D �1C f 00.R/ RRC 	
f 000.R/ PR �Hf 00.R/




Œf .R/� Rf 0.R/	 =2� 3Hf 00.R/ : (7.290)

As an example [24, 211, 275, 851], consider the choice f .R/ D f0R
n (with f0 a

constant). Then, there exist power-law solutions a.t/ D .t=t0/
˛ with

˛ D 2n2 � 3nC 1

2 � n
(7.291)

and constant deceleration parameter

q.t/ D q0 D 1 � ˛
˛

D � 2n
2 � 2n � 1

2n2 � 3nC 1
: (7.292)

For acceleration (˛ > 0, q0 < 0) the parameter n must satisfy

n 2
 

�1;
1 � p

3

2

!

[
 
1C p

3

2
;1

!

: (7.293)

Models with n in the first (second) interval of this range will be referred to as
CurvDown (CurvUp) models, respectively. The method described in the following
subsection can be used to constrain the parameters .n;H0/ of this model. A simple
power-law f .R/ model is not sufficient to realistically reproduce the transient mat-
ter era needed for large scale structure formation and the transition to acceleration
[245]. However, this simple example constitutes a proof of principle that acceler-
ated behavior can be recovered in a simple way by extending GR without exotic
dark energy.

7.4.2 Methods to constrain models

We now discuss how cosmological models can be constrained, in principle, using
suitable distance and/or time indicators. Theoretical cosmological models must be
matched with observations by using the redshift z as the natural time variable for the
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Hubble parameter, i.e.,

H.z/ D � Pz
z C 1

: (7.294)

Interesting redshift ranges are 100 < z < 1000 for the early universe probed by
CMB experiments, 10 < z < 100 probed by large scale structure surveys, and
0 < z < 10 probed by SNeIa and radiogalaxies. The method consists of build-
ing a reasonable patchwork of data from different epochs and then matching them
with the same cosmological solution spanning, in principle, the cosmic history from
inflation to the present. In order to constrain the parameters contained in the cos-
mological solution, a reasonable approach is to maximize the likelihood function

L / exp

�
��

2.p/
2

�
; (7.295)

where p are the parameters characterizing the cosmological solution. The �2 merit
function is

�2.p/ �
NX

iD1

"
yth.zi ;p/� yobs
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�
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A .p/ � 0:469
0:017

�2
:

(7.296)
The terms in Eq. (7.296) can be characterized as follows: the dimensionless coordi-
nate distances y to objects at redshifts z in the first term are defined as

y.z/ �
Z z

0

d z0

E.z0/
; (7.297)

where E.z/ � H.z/=H0 is the normalized Hubble parameter, the main quantity
which allows to compare the theoretical results with data. The function y is related
to the luminosity distance DL D .1 C z/r.z/. A sample of data on y.z/ for 157
SNeIa is discussed in the Gold dataset of [940] and in the 20 radiogalaxies sample
of [357]. These works fit with good accuracy the linear Hubble law at low redshift
z < 0:1, obtaining the dimensionless Hubble parameter h D 0:664˙0:008. This
value is in agreement with H0 D 72˙8 km s�1 Mpc�1 provided by the Hubble
Space Telescope Key project [506] and based on the local distance ladder, estimates
from time delays in multiply-imaged quasars [258], and the Sunyaev-Zel’dovich
effect in X-ray clusters [973, 990].

The second term in Eq. (7.296) allows one to extend the redshift range to
probe y.z/ up to the last scattering surface, z � 1000. The shift parameter R �p
˝M y.zlss/ [1149, 1150] can be determined from the CMB anisotropy spectrum,

where zlss is the redshift of the last scattering surface which can be approximated
as zlss D 1048

�
1C 0:00124!�0:738

b

� �
1C g1!

g2

M

�
with !i D ˝ih

2 (i D b;M for
baryons and total matter, respectively), and .g1; g2/ given in [607]. The parameter
!b is constrained by baryogenesis calculations compared with the observed abun-
dances of primordial elements. Using this method, the value !b D 0:0214˙0:0020
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is found [672]. In any case, the exact value of zlss has a negligible impact on the
results, and setting zlss D 1100 does not change constraints and priors on the other
parameters of a given model.

The third term in �2 takes into account the acoustic peak of the large scale cor-
relation function at 100 h�1Mpc separation, detected by using 46748 luminous red
galaxies (LRG) selected from the Sloan Digital Sky Survey (SDSS) Main Sample
[417, 1056]. The quantity

A D
p
˝M

zLRG

�
zLRG

E.zLRG/
y2.zLRG/

�1=3
; (7.298)

where zLRG D 0:35 is the effective redshift of the sample, is related to the position of
the acoustic peak. A depends on the dimensionless coordinate distance (and thus on
the integrated expansion rate) and on˝M andE.z/. This dependence removes some
of the degeneracies intrinsic in the distance fitting methods. Therefore, it is particu-
larly interesting to include A as a further constraint on the model parameters using
its measured value A D 0:469˙0:017 [417]. Although similar to the usual �2 in-
troduced in statistics, the reduced �2, i.e., the ratio between �2 and the number of
degrees of freedom, is not forced to be unity for the best-fit model because of the
presence of priors on R and A and because the uncertainties �i are not Gaussianly
distributed but take care of both statistical errors and systematic uncertainties. With
the definition (7.295) of the likelihood function, the best-fit model parameters are
those that maximize L .p/.

Using the method sketched above, the classes of models of interest here can be
constrained by observations. However, most of the tests recently used to constrain
cosmological parameters (such as the SNeIa Hubble diagram and the angular size-
redshift test) are essentially distance-based methods. The proposal of Dalal et al.
[355] of using the lookback time to high redshift objects is thus particularly in-
teresting since it relies on a completely different observable. The lookback time is
defined as the difference between the present-day age of the universe and its age at
redshift z and may be computed as

tL.z;p/ D tH

Z z

0

d z0

.1C z0/E.z0;p/
; (7.299)

where tH D H�10 D 9:78h�1 Gyr is the Hubble time (with h the Hubble constant in
units of 100 km s�1 Mpc�1). By definition, the lookback time is not sensitive to the
present-day age of the universe t0 so that it is, at least in principle, possible that a
model fits well the data on the lookback time but nonetheless predicts a completely
wrong value for t0. This parameter can be evaluated from Eq. (7.299) by simply
changing the upper integration limit from z to infinity. This shows that it is indeed
a different quantity since it depends on the full history of the universe and not only
on how the universe evolves from redshift z to now. This is the reason why this
quantity can be explicitly introduced as an additional constraint. As an example, let
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us discuss how to use the lookback time and the age of the universe to test a given
cosmological model. Consider an object i at redshift z and denote by ti .z/ its age
defined as the difference between the age of the universe when the object was born
(at the formation redshift zF ) and the one at z. It is

ti .z/D
Z 1

z

d z0

.1C z0/E.z0;p/
�
Z 1

zF

d z0

.1C z0/E.z0;p/

D
Z zF

z

d z0

.1C z0/E.z0;p/
D tL.zF / � tL.z/; (7.300)

where the definition (7.299) has been used. Assume that we haveN objects and that
we are able to estimate the age ti of the i -th object at redshift zi (i D 1; 2; : : : ; N ).
We can estimate the lookback time as

tobsL .zi /DtL.zF / � ti .z/

DŒtobs0 � ti .z/	 � Œtobs0 � tL.zF /	

Dtobs0 � ti .z/ � df ; (7.301)

where tobs
0 is the present age of the universe and

df � tobs
0 � tL.zF / (7.302)

is a delay factor which is introduced to take into account our ignorance about the for-
mation redshift zF of the object. Actually, what can be measured is the age ti .z/ of
the object at redshift z. In order to estimate zF , one should use Eq. (7.300) assuming
a background cosmological model. Since our goal is to determine the background
cosmological model, we cannot infer zF from the measured age so that this quantity
is completely undetermined. In principle, df should be different for each object in
the sample unless there is a theoretical reason to assume the same redshift at the for-
mation of all the objects. If this is indeed the case (as will be assumed later), then it
is computationally convenient to consider df rather than zF as the unknown param-
eter to be determined from the data. Again, a likelihood function can be defined as

Llt .p; df / / exp Œ��
2
lt
.p; df /

2
	 (7.303)
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whereNp is the number of parameters of the model, �t is the uncertainty on tobs
0 , �i

the one on tobs
L .zi /, and the superscript theor denotes the predicted value of a given

quantity. The delay factor enters the definition of �2lt since it determines tobs
L .zi / from

ti .z/ through Eq. (7.301), but the theoretical lookback time does not depend on df .
In principle, this method should discriminate efficiently between the various dark
energy models, but this is not the case due to the scarcity of data available, which
leads to large uncertainties on the estimated parameters. In order to alleviate this
problem it is convenient to add further constraints on the models by using Gaussian
priors11 on the Hubble constant, i.e. redefining the likelihood function as

L .p/ / Llt .p/ exp

"

�1
2

�
h � hobs

�h

�2#

/ exp Œ��
2.p/
2

	; (7.305)

where df is absorbed in the set of parameters p and

�2 � �2lt C
�
h � hobs

�h

�2
(7.306)

with hobs the estimated value of h and �h its uncertainty. The Hubble Space Tele-
scope Key project results [506] set .h; �h/ D .0:72; 0:08/. This estimate, obtained
by local distance ladder methods, is independent of the cosmological model. The
best-fit model parameters p may be obtained by maximizing L .p/, which is equiv-
alent to minimize the �2 (7.306). A qualitative comparison of different models may
be obtained by comparing the values of this pseudo-�2, although this should not be
considered as a definitive evidence against a given model. Having more than one
parameter, one obtains the best-fit value of each single parameter pi as the value
which maximizes the marginalized likelihood for that parameter

Lpi
/
Z
dp1 : : :

Z
dpi�1

Z
dpiC1 : : :

Z
dpn L .p/: (7.307)

After normalizing the marginalized likelihood to unity at the maximum, one com-
putes the 1� and 2� confidence limits (CL) on that parameter by solving Lpi

D
exp .�0:5/ and Lpi

D exp .�2/, respectively. To summarize, taking into account
the procedures described for distance and time measurements, one can reasonably
constrain a given cosmological model. In any case, the main problem is the access
to sufficiently large and sufficiently high quality datasets.

11 The need for priors to reduce the parameter uncertainties is often advocated for cosmological
tests. For instance, a strong prior on ˝M is introduced in [740] to constrain the dark energy equa-
tion of state. It is likely that extending the dataset to higher redshifts and reducing the uncertainties
on the age estimate will avoid the need for priors.
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7.4.3 Data samples for constraining models: large scale structure

In order to apply the method outlined above, a set of distant objects is needed whose
age can be somehow estimated. Galaxy clusters seem ideal candidates in this sense
because they can be detected up to high redshift and their redshift at formation12 is
almost the same for all clusters. Furthermore, it is relatively easy to estimate their
age using only photometric data. The color of their component galaxies, in particu-
lar the reddest ones, is needed for this purpose. The stellar populations of the reddest
galaxies become redder and redder as they evolve. Then, it is just a matter of assum-
ing a stellar population synthesis model and looking at how old the latest episode
of star formation should have happened in the galaxy’s past to produce colors as
red as the observed ones (this is referred to as the color age). The main limitations
of this method are the stellar population synthesis model and a few unknown in-
gredients, including the metallicity and the star formation rate. The choice of the
evolutionary model is a crucial step in estimating the color age and is also the main
source of uncertainty [1165]. An alternative and more robust route to cluster age is
to consider the color scatter (see [162] for an early application of this approach).
The argument, qualitatively, goes this way: if galaxies have an extreme similarity in
their color and nothing is conspiring to make the color scatter surreptitiously small,
then the latest episode of star formation should happen in the galaxy’s far past, oth-
erwise the observed color scatter would be larger. Quantitatively, the scatter in color
should thus be equal to the derivative of the color with time, multiplied by the scat-
ter of star formation times. The first quantity may be predicted using population
synthesis models and turns out to be almost the same for all evolutionary models,
reducing significantly the systematic uncertainty. We refer to the age estimated by
this method as scatter age. The dataset needed to apply the method described earlier
may now be obtained using the following procedure. First, for a given redshift zi ,
we collect the colors of the reddest galaxies in a cluster at that redshift, and then we
use one of the two methods outlined above to determine the color or the scatter age
of the cluster. If more than one cluster is available at that redshift, we average the re-
sults from different clusters in order to reduce the systematic error. Having obtained
ti .zi /, we then use Eq. (7.301) to estimate the lookback time at that redshift. What
we measure is tobs

L .zi /C df , that is, the quantity that enters the definition (7.304) of
�2
lt

and then the likelihood function. To estimate the color age, following [49], we
choose the Kodama and Arimoto model [678] among the various available stellar
population synthesis models. Unlike other models, this one allows for chemical evo-
lution which is otherwise neglected. This choice provides three points on the z

�
tobs
L

�

12 In the literature, the cluster formation redshift is defined as the redshift at which the last episode
of star formation occurred. In this sense, the definition of df given here should be modified by
adding a constant term which accounts for the duration of the star formation process and the time
elapsed from the beginning of the universe to the birth of the first galaxy cluster. For this reason,
it is still possible to consider the delay factor to be the same for all clusters, but it is not possible
to infer zF from the fitted value of df because the details of star formation are unknown. This
approach is particularly useful since it avoids considering lower limits to the age of the universe at
redshift z rather than the actual values.
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Table 7.3 Main properties of the cluster sample used in the analysis. The data on the
left refer to clusters whose age has been estimated from the color of the reddest galaxies
(color age), while those on the right have been obtained using the color scatter (scatter
age). The redshift z, number N of clusters used, age estimate, and the relevant reference
are reported for each data point.

Color age Scatter age

z N Age (Gyr) Ref. z N Age (Gyr) Ref.

0.60 1 4.53 [49] 0.10 55 10.65 [48]
0.70 3 3.93 [49] 0.25 103 8.89 [48]
0.80 2 3.41 [49] 1.27 1 1.60 [145]

diagram obtained by applying the method to a set of six clusters at three different
redshifts as detailed in Table 7.3. Using a large sample of low redshift SDSS clusters
it is possible to evaluate the scatter age for clusters at z D 0:10 and z D 0:25 [48].
Blakeslee et al. [145] apply the same method to a single high redshift (z D 1:27)
cluster. Collecting data using both the color and the scatter ages, we end up with a
sample of 159 clusters at six redshifts (listed in Table 7.3) which probe the redshift
range .0:10; 1:27/. This sample overlaps nicely with the one probed by the Hubble
diagram of SNeIa, making it possible to compare our results with those from SNeIa.
We assume � D 1Gyr as uncertainty on the cluster age, no matter what method is
used to obtain that estimate. This is a conservative choice: if the error on the age
were so large, the color-magnitude relation for the reddest cluster galaxies should
have a large scatter that is not observed. We have, however, chosen such a large error
to account qualitatively for the systematic uncertainties related to the choice of the
evolutionary model.

Finally, we need an estimate of tobs
0 to apply this method. Following Rebolo et al.

[926], one can choose .tobs
0 ; �t / D .14:4; 1:4/Gyr obtained by a combined analysis

of the WMAP and VSA data on the CMB anisotropy spectrum and SDSS galaxy
clustering. This estimate is model-dependent since Rebolo et al. [926] implicitly
assume that the �CDM model is the correct one. However, this value is in good
agreement with tobs

0 D 12:6C3:4�2:4 Gyr determined from the age of globular clusters
[696] and tobs

0 > 12:5 ˙ 3:5Gyr from radioisotopic studies [286]. For this reason,
one can be reasonably confident that systematic errors are not introduced in the
method adopted by the estimate of Rebolo et al. for tobs

0 , even when testing cosmo-
logical models different from the �CDM one.

7.4.4 Testing cosmological models: an example

The method described can be applied to dark energy models in order to constrain
their parameters and determine whether they can be phenomenologically viable can-
didates to explain the cosmic acceleration. All the models presented are roughly
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described by few parameters which are13 .˝M ; h;w/ for the QCDM model, .q0; h/
for the parametric density model, and .n; h/ for curvature quintessence models. For
the three classes of models, another parameter is needed, i.e., the delay factor df
which will be marginalized over since it is not interesting for our purposes.

Let us consider the QCDM model first: the results are shown in Figs. 7.15 and
7.16. In the first plot the estimated cluster age is compared with

�.z/ D tL.z/C df (7.308)

using the best-fit values for the model parameters and the delay factor, which turn
out to be

.˝M ; h;w/ D .0:25; 0:70;�0:81/; df D 4:5Gyr; (7.309)

giving �2 ' 0:04. The �2 value for the best-fit parameters (both for the QCDM
model and the other dark energy models considered) is quite small, suggesting that
errors have been seriously overestimated. This is not surprising given the arbitrary
way in which the uncertainties on the estimated age of the clusters have been fixed.
That this is likely to be the case is also suggested by a qualitative argument: one
could rescale the errors on tobs

L .zi / in such a way that �2 D 1 for the best-fit model.
Since for the best-fit QCDM model �2 ' �2

lt
, this rescaling leads to multiply by

almost 1=5 the uncertainties on tobs
L .zi /. If the error on t0 was negligible, we should

reduce the uncertainty on the cluster age from 1 Gyr to 0.2 Gyr, which is a more
realistic value. The presence of an error in tobs

0 slightly complicates this argument
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Fig. 7.15 Comparison between predicted and observed values of � D tL.z/C df for the best-fit
QCDM model.

13 From now on we drop the subscript 0 from ˝M;0 without the risk of confusion and we use the
dimensionless parameter h instead of the Hubble constant H0.
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Fig. 7.16 1� and 2� confidence regions in the .˝M ;w/ plane for the QCDM model after marginal-
izing over the Hubble constant h and the delay factor df

but does not change the main conclusion. We are thus confident that the very low
value of the �2 obtained for the best-fit model is due only to overestimating the
uncertainties on the clusters ages. However, we do not perform any rescaling of the
uncertainties since, to this end, we should select a priori a model as fiducial, which
is contrary to the philosophy adopted here. Such a rescaling would not affect the
main results anyway.

Figure 7.16 shows the 1� and 2� confidence limits in the .˝M ;w/ plane obtained
by marginalizing over the Hubble constant and the delay factor. Two interesting
considerations may be drawn: first, phantom models are allowed by the data, which
agrees with fitting the QCDM model to the SNeIa Hubble diagram and the CMB
anisotropy spectrum [571]. Unfortunately, a direct comparison is not possible since
the marginalized likelihood is too flat to provide constraints on w and all the values
in the range �2 � w � 1=3 tested are well within the 1� CL. Due to the scarcity
of the data, this result is also a consequence of not having used priors on ˝M , as
is usually done. By using the procedure described, we obtain the estimates on the
other QCDM parameters
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˝M 2 .0:13; 0:39/ ; h 2 .0:63; 0:77/ .1� CL/; (7.310)

˝M 2 .0:01; 0:62/; h 2 .0:56; 0:84/ .2� CL/: (7.311)

Given that we are able to produce only weak constraints on the QCDM model, from
now on we focus on the case w D �1 of the�CDM model and no longer discuss the
results for the QCDM model. The best-fit parameters for the cosmological constant
model are

.˝M ; h/ D .0:22; 0:71/ ; df D 4:05Gyr .�2 ' 0:09/; (7.312)

originating the curve �.z/ of Fig. 7.17, while Fig. 7.18 reports the confidence regions
in the .˝M ; h/ plane after marginalizing over the delay factor. From the marginal-
ized likelihood functions one obtains

˝M 2 .0:10; 0:35/; h 2 .0:63; 0:78/ .1� CL/; (7.313)

˝M 2 .0:06; 0:59/ ; h 2 .0:56; 0:85/ .2� CL/: (7.314)

The�CDM model has been widely tested against a large set of different astrophys-
ical data and this fact offers us the possibility of cross-checking both the model
and the validity of the method. It is instructive to compare the results presented
here with those from the fit to the SNeIa Hubble diagram. Barris et al. [87] use a
set of 120 SNeIa up to z D 1:03, finding ˝M D 0:33 as the best-fit value with
a large uncertainty (not quoted explicitly, but noticeable in their Fig. 7.12) in good
agreement with our result. Another result by Riess et al. [940] uses a SNeIa Hubble
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Fig. 7.17 Comparison between predicted and observed values of � D tL.z/C df for the best-fit
�CDM model.
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Fig. 7.18 1� and 2� confidence regions in the .˝M ; h/ plane for the �CDM model.

diagram extending to z D 1:55, finding ˝M D 0:29C0:05�0:03 , still in agreement with
our result. The �CDM model has also been tested by means of the angular size-
redshift relation. Using a catalogue of ultracompact radio sources and taking into
account carefully the systematic uncertainties and selection effects, Jackson [636]
finds˝M D 0:24C0:09�0:07 , again in agreement with the estimate above.

Neither Barris et al. [87] nor Riess et al. [940] quote a best-fit value for h since
this parameter is infinitely degenerate with the supernovae absolute magnitude M
when fitting the SNeIa Hubble diagram. Nonetheless, SNeIa may still be used to
determine h by fitting the linear Hubble law to low redshifts (z < 0:1) SNeIa. Using
this method, Daly and Djorgovski [357] find h D 0:664 ˙ 0:08. Our estimate for
h agrees also with estimates using different methods such as various local standard
candles [506], the Sunyaev-Zel’dovich effect in galaxy clusters [973], and time de-
lays in multiply-imaged quasars [258]. Finally, we quote the results of Tegmark et
al. [1070], who perform a combined fit of the �CDM model to both the WMAP
data on the CMB anisotropy spectrum and the galaxy power spectrum measured
by more than 200,000 galaxies surveyed by the SDSS collaboration. They find
˝M D 0:30˙ 0:04 and h D 0:70C0:04�0:03 .
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The most interesting result of testing the �CDM model with the lookback
method is not the success of this model (since the latter has already been tested
in many ways), but the substantial agreement between these estimates of the pa-
rameters .˝M ; h/ and those based on distance measurements. This agreement is
encouraging since it constitutes an important cross-check applicable, in principle,
to any cosmological model.

Let us examine the results of the parametric density model in Figs. 7.19 and 7.20.
The best-fit model is obtained for the values of the parameters .q0; h/ and of the
delay factor

.q0; h/ D .�0:68; 0:71/ ; df D 4:20Gyr .�2 ' 0:07/: (7.315)

Marginalizing over df one obtains

q0 2 .�0:81;�0:47/ ; h 2 .0:64; 0:78/ .1�/; (7.316)

q0 2 .�0:89;�0:24/; h 2 .0:58; 0:85/ .2�/: (7.317)

The upper 2� CL on the q0 parameter is truncated because it extends to values
higher than what is physically acceptable.

In [214, 259] the parameters of this model are constrained by using both the
SNeIa Hubble diagram and the angular size-redshift relation. In particular, fitting
the model to the SNeIa Hubble diagram gives h D 0:64C0:08�0:05 , while the physically
acceptable range for q0 turns out to be in agreement with the data for q0 D �0:42

0.2 0.4 0.6 0.8 1 1.2 1.4
z

6

8

10

12

14

τ

Fig. 7.19 Comparison between predicted and observed values of � D tL.z/C df for the best-fit
parametric density model.
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Fig. 7.20 1� and 2� confidence regions in the .q0; h/ plane for the parametric density model.

as best-fit value. The present-day deceleration parameter q0 is better constrained
using the data of [636] to perform the angular size-redshift test, obtaining q0 D
�0:64C0:10�0:12 [214, 259]. Both these results are in good agreement with the present
estimates and it is concluded that the parametric density model is a viable candidate
alternative to the �CDM model which is, of course, a case of degeneracy.

Finally, let us discuss the results for curvature quintessence. Figures 7.21
and 7.22 report the confidence regions in the .n; h/ plane for the CurvUp and Curv-
Down regimes, respectively, after marginalizing over the delay factor. A striking
feature is that the contour plots are not closed so that the marginalized likelihood
function gives only an upper (lower) limit to the parameter n in the CurvUp (Curv-
Down) regime. Formally, the estimates for the best-fit values in the CurvUp and
CurvDown regime are

.n; h/ D .1:367; 0:71/ ; df D 4:80Gyr .�2 ' 0:23/; (7.318)

.n; h/ D .�0:367; 0:74/; df D 4:80Gyr .�2 ' 0:21/; (7.319)
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Fig. 7.21 1� and 2� confidence regions in the .n; h/ plane for curvature quintessence in the
CurvUp regime.

but the best-fit value for n actually lies outside the range investigated. Since the
confidence regions are open, it is meaningless to give constraints on h, but it is
nonetheless possible to infer the limits

n � 1:402 .1�/; n � 1:424 .2�/; (7.320)

n � �0:508 .1�/; n � �0:606 .2�/; (7.321)

for the CurvUp and CurvDown regimes, respectively. These limits do not contra-
dict the ranges determined by fitting the SNeIa Hubble diagram [212] but they
seem unrealistic. The deceleration parameter corresponding to these values of n
is too small (q0 � �0:01), contradicting the evidence for an accelerating uni-
verse. Moreover, the results in [212] have been obtained by using an old sample
of SNeIa, including certain SNeIa that have now been discarded from the Gold
dataset of [940]. On the other hand, fitting a power-law scale factor to the angular
size-redshift relation for compact radio sources gives ˛ ' 1 [635] which, using
Eq. (7.291), translates in an estimate for n in agreement with the result presented.
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Fig. 7.22 1� and 2� confidence regions in the .n; h/ plane for curvature quintessence in the
CurvDown regime.

7.5 Conclusions

The 1998 discovery of the cosmic acceleration came as a shock to most cosmologists
and it is likely that its explanation requires new physics. The cosmological constant
is problematic because of the cosmological constant problem and the coincidence
problem. Dark energy scenarios fit the data but dark energy seems an ad hoc fix.
The backreaction of inhomogeneities in GR has been invoked, but it is not clear
whether it contributes to accelerating or decelerating the expansion of the universe
and, at present, there is no consensus on the magnitude of its effect. Modifications
of Einstein gravity at large scales could be an explanation. While astronomers, less
exposed to the fancy theories and speculative world of high energy physics, are
naturally more conservative and not inclined to modify GR, theoretical physicists
have plenty of motivation to modify it, as we have seen in Chap. 1 (although, usually,
modifications are contemplated in the ultraviolet and not in the infrared sector).

We are confronting a plethora of possible theoretical models to explain the
cosmic acceleration. These must be confronted with the observational data. For
asymptotically flat spacetimes, the Parametrized Post-Newtonian (PPN) formalism
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has been devised in order to compare alternative gravitational theories with GR and
to constrain them using Solar System experiments [1167]. In cosmology, the role
of the PPN formalism is played by cosmography. While certain models can be def-
initely ruled out on the ground that they predict wrong values of the cosmographic
parameters, too many models still survive the cosmographic test. We have outlined
methods to compare cosmological theories and observations, focusing on metric
f .R/ gravity for definiteness. Similar analyses can be performed for other theories
as well.

Since gravity is still poorly tested at galactic and extragalactic scales, we have
discussed the possibility that (metric) f .R/ gravity could replace dark matter at the
cluster scale using an f .R/ toy model for illustration. If the experimental search
for dark matter (in particular supersymmetric particles) turns out to elude us, then
modified gravities may have to be taken into account more seriously. While such a
conclusion is premature, it is interesting to speculate on possible alternatives to dark
matter to avoid becoming dogmatic about it.

To conclude, there are too many theoretical models that fit the observational data
and “explain” the cosmic acceleration. While it is important to enlarge and refine the
observations, the constraints produced by these, although unthinkable a few decades
ago, are still too weak to effectively weed out the garden of theoretical scenarios.
We believe that one has to resort to theoretical criteria to guide research on dark en-
ergy and its substitutes rather than merely compiling a list of observationally viable
models. It is also important to keep an open mind and to be creative because the
cosmic acceleration may require physics never explored before.



Chapter 8
From the early to the present universe

There are more things in heaven and earth, Horatio, than are
dreamt of in your philosophy.
– William Shakespeare

In this final chapter we bring together elements developed in the rest of the book and
we further discuss cosmology in ETGs. We begin with the early universe and carry
on to the present universe. Inflation in the early universe is now widely accepted as a
paradigm of modern cosmology, although it is still largely a speculation. While the
1992 detection of temperature anisotropies in the CMB by the COBE satellite [1020]
and their further studies culminating in the detailed maps provided by the WMAP
experiment [1038] (soon to be enhanced by the future PLANCK results [907]) are
regarded as providing at least partial support for inflation, it is healthy to keep in
mind that inflation is not proven beyond doubt, and alternative scenarios should not
be discarded a priori but should be given due consideration.

The state of the universe before inflation is unknown, but the idea that inflation
begins in a quantum gravity regime setting initial conditions for the inflationary ex-
pansion has become quite popular. In the past, the quantum regime of the early
universe was addressed within the speculative formalism of quantum cosmology
based on canonical quantization of a Hamiltonian for gravity and matter [668].
More recently, loop quantum cosmology has provided an alternative approach to the
fundamental questions previously addressed by quantum cosmology [55,150–154].
Here we limit ourselves to examine the main aspects of more “traditional” quantum
cosmology in ETGs. We then continue by discussing inflation in scalar-tensor and
quadratic gravities, including cosmological perturbations, the constraints on these
theories coming from primordial nucleosynthesis, and we finish with a discussion
of the present accelerated universe.

8.1 Quantum cosmology

Several different points of view can be adopted to introduce and motivate quantum
cosmology. The latter is not a well-defined and finished theory: on the contrary,
it has both mathematical problems in its foundations and problems of physical

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics 170,
DOI 10.1007/978-94-007-0165-6 8, c� Springer Science+Business Media B.V. 2011
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interpretation. However, quantum cosmology can be considered as the first step
toward the construction of a non-perturbative quantum theory of the universe, a sys-
tem with strong gravity. A primary motivation for studying quantum cosmology is
finding initial conditions from which our classical universe evolved. A peculiar fea-
ture is that, contrary to familiar physical theories such as electromagnetism, GR, or
non-relativistic quantum mechanics, initial and boundary conditions for the system
“universe” cannot be imposed from the outside. Familiar physical theories contain a
fundamental dynamical law (e.g., the Maxwell, Einstein, or Schrödinger equations)
and the specification, from the outside, of initial conditions. In cosmology, by def-
inition, there is no “outside the universe”, hence boundary conditions must be part
of the fundamental laws of physics. Moreover, time disappears from quantum cos-
mology because its fundamental equation, the Wheeler-DeWitt (WDW) equation, is
analogous to a time-independent Schrödinger equation with zero energy eigenvalue.
Quantum cosmology can be considered as an autonomous branch of physics due to
this issue of initial conditions and time [577].

It is considerably difficult for quantum cosmology to achieve the status of a
consistent theory due not only to these conceptual difficulties, but also to mathemat-
ical ones. First, the superspace of geometrodynamics [799–803,1158] has infinitely
many degrees of freedom and, in practice, it is impossible to integrate the full WDW
equation. Second, the Hilbert space of states describing the quantum universe is
ill-defined [388]. Finally, the probabilistic interpretation of ordinary quantum me-
chanics fails for the WDW equation. In spite of these shortcomings, several results
have been obtained and quantum cosmology has become a tool with which to ad-
dress important questions in theoretical physics, albeit there is no doubt that these
results will have to be replaced by rigorous ones when better computational and
interpretational schemes are available. For example, the full, infinite-dimensional,
superspace can be restricted by fiat to a finite-dimensional configuration space (the
minisuperspace) and most of the mathematical difficulties can be avoided, making
it possible to integrate the WDW equation.

The Hartle-Hawking no-boundary condition [578, 579] and Vilenkin’s tunneling
from nothing condition [1117, 1118, 1120, 1121] provide attempts to guess initial
conditions from which the classical universe could originate. The Hartle criterion
[576] is an interpretive scheme for solutions of the WDW equation and consists
of searching for peaks of the wavefunction of the universe. If the latter is strongly
peaked, then there are correlations between the geometrical and matter degrees of
freedom. If this wavefunction does not peak, correlations are lost. In the first case,
the emergence of classical trajectories (i.e., universes) is expected. The analogy with
non-relativistic quantum mechanics is immediate: in the presence of a potential bar-
rier, a wavefunction which solves the Schrödinger equation exhibits oscillations on
and outside the barrier, and a decreasing exponential behavior through the barrier.
A similar situation occurs in quantum cosmology, in which the potential barrier is
replaced by the superpotentialU

�
hij; '

�
, where hij are the components of the three-

metric of geometrodynamics and ' is a scalar field adopted as a simple description
of the matter content of the universe. The wavefunction of the universe is written as
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�
	
hij.x/; '.x/


 � ei m
2
P l
S ; (8.1)

wheremPl is the Planck mass and

S � S0 Cm�2P lS1 C O
�
m�4P l

�
; (8.2)

is an action expanded in inverse powers of mPl . There is no normalization factor
because there is no Born probability interpretation of the wavefunction of the uni-
verse.

Inserting the action S into the WDW equation and equating term to term equal
powers of mPl, one obtains the Hamilton-Jacobi equation for S0. Similarly, equa-
tions for S1; S2; : : : are obtained, which can then be solved perturbatively. With S0
only, the semiclassical limit of quantum cosmology is recovered [566–568]. If S0
is a real number, one obtains oscillating WKB modes and the Hartle criterion is
recovered because � is peaked on a region of the phase space defined by

�ij D m2Pl

ıS0

ıhij
; �' D m2Pl

ıS0

ı'
; (8.3)

where �ij and �' are classical momenta conjugated to hij and '. The semiclassical
region of superspace in which � has an oscillating structure is either a Lorentzian
or an Euclidean one. If it is Euclidean, then S D iI and

� � e�m2
P l
I ; (8.4)

where I is the action for the Euclidean solutions of the classical field equations
(instantons). This scheme, solves, at least at the semiclassical level, the prob-
lem of initial conditions. Given an action S0, Eqs. (8.3) imply n free parameters
(one for each dimension of the configuration space Q � �

hij; '
�
) and n first in-

tegrals of motion. However, the general solution of the field equations involves
.2n � 1/ parameters, one for each Hamilton equation of motion except for the en-
ergy (Hamiltonian) constraint. Consequently, the wavefunction is peaked on a subset
of the general solution. In this sense, the boundary conditions on the wavefunction
(Hartle-Hawking, Vilenkin, or others) imply initial conditions for the classical so-
lutions. The issue is now whether there exist methods to select these constants of
motion. In other words, can the Hartle criterion and the emergence of classical tra-
jectories be implemented by some general approach without arbitrarily choosing
regions of the phase space where the momenta (8.3) are constant? This question is
addressed in the following. We will show that in ETGs the existence of Noether
symmetries determines at least a subset of the general solution of the WDW equa-
tion corresponding to oscillatory behavior. Vice-versa, the Hartle criterion is always
connected to the presence of a Noether symmetry and then to the emergence of
classical trajectories defined as solutions of the classical field equations of the the-
ory. The discussion is restricted to minisuperspace models but the method could be
extended to the full theory.
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8.1.1 Noether symmetries in quantum cosmology

Minisuperspaces are restrictions of the superspace of geometrodynamics. They are
finite-dimensional configuration spaces on which point-like Lagrangians can be
defined. Physically relevant cosmological models (e.g., Bianchi models) can be de-
fined on such minisuperspaces. From the point of view of quantum cosmology, any
symmetry selects a constant conjugate momentum since, according to the Euler-
Lagrange equations it is

@ QL
@Qi

D 0 ” @ QL
@ PQi

D ˙i : (8.5)

Vice-versa, the existence of a constant conjugate momentum means that a cyclical
variable and a Noether symmetry exists. This means that the minisuperspace

�
qi ; Pqi�

is mapped by the Noether symmetry into the minisuperspace
�
Qi ; PQi

�
, where the

cyclical variable is evident.
We will examine time-independent, non-degenerate Lagrangians L.qi ; Pqj / with

@L

@t
D 0 ; det

�
Hij
� � det jj @2L

@ Pqi@ Pqj jj ¤ 0 ; (8.6)

whereHij is the Hessian. As usual in analytical mechanics, L can be set in the form

L D T .qi ; Pqi / � V.qi / ; (8.7)

where T is a quadratic form in Pqj and V.qi / is a potential term. The energy function
associated with L is

EL � @L

@ Pqi Pqi �L �qj ; Pqj � (8.8)

and, using the Legendre transformation

H D �j Pqj �L.qj ; Pqj / ; �j D @L

@ Pqj ; (8.9)

one obtains the Hamiltonian and the conjugate momenta.
Considering again the symmetry, the condition LXL D 0 and the vector field X

give a homogeneous polynomial of second degree in the velocities plus an inhomo-
geneous term in qj . Thanks to the condition LXL D 0, this polynomial vanishes
identically and then all its coefficient vanish. If n is the dimension of the configu-
ration space (i.e., the dimension of the minisuperspace), there are Œ1C n.nC 1/=2	

PDEs whose solutions specify the symmetry. Such a system is overdetermined and,
if a solution exists, it is expressed in terms of integration constants instead of bound-
ary conditions.
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In the Hamiltonian formalism, we have

	
˙j ;H


 D 0 .1 � j � m/ ; (8.10)

as it must be for conserved momenta in quantum mechanics and the Hamiltonian
must satisfy

L�H D 0 (8.11)

in order to obtain a Noether symmetry, where the vector � is defined by [774]

� D Pqi @
@qi

C Rqi @
@ Pqi : (8.12)

Let us now consider the minisuperspace of quantum cosmology and the semiclas-
sical interpretation of the wavefunction of the universe. Straightforward canonical
quantization yields (in units „ D c D 1)

�j�! O�j D �i@j ; (8.13)

H�! OH �
qj ;�i@qj

�
: (8.14)

It is well known that the Hamiltonian constraint gives the WDW equation so that, if
j� > is a state of the system (i.e., the wavefunction of the universe), the dynamics
are given by

H j� >D 0 : (8.15)

If a Noether symmetry exists, the reduction procedure outlined above can be applied
and then Eqs. (8.5) and (8.9) imply that

�1� @L

@ PQ1
D iX1

�L D ˙1 ; (8.16)

�2� @L

@ PQ2
D iX2

�L D ˙2 ; (8.17)

: : : ;

depending on the number of Noether symmetries. Here iXj
�L D ˙j is the

contraction of Xj with the Cartan one-form defined in Chap. 2. After quantization,
one gets

� i@1j� >D˙1j� > ; (8.18)

�i@2j� >D˙2j� > ; (8.19)

: : : ;
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which are translations along the Qj axis singled out by the corresponding symme-
try. Equations (8.18) and (8.19) can be immediately integrated and, since the˙j are
real constants, oscillatory behavior occurs for j� > in the directions of the symme-
tries, i.e.,

j� >D
mX

jD1
ei˙jQ

j j�.Ql/ > .m < l � n/ ; (8.20)

where m is the number of symmetries, l are the directions along which symmetries
do not exist, and n is the total dimension of the minisuperspace. Vice-versa, the
dynamics given by Eq. (8.15) can be reduced using Eqs. (8.18) and (8.19) if and
only if it is possible to define constant conjugate momenta as in (8.16) and (8.17),
that is, oscillatory behavior for a subset of solutions j� > arises only if a Noether
symmetry exists [239].

The m symmetries provide first integrals of motion and the possibility to select
classical trajectories. In one- and two-dimensional minisuperspaces, the existence
of a Noether symmetry allows one to obtain the complete solution of the problem
and the full semiclassical limit of quantum cosmology, as summarized in the

Theorem: In the semiclassical limit of quantum cosmology, the reduction procedure
of the dynamics related to the existence of Noether symmetries allows one to select a
subset of solutions of the WDW equation with oscillatory behavior. According to the
Hartle criterion on the wavefunction of the universe, this fact provides conserved
momenta and trajectories which can be interpreted as classical cosmological solu-
tions. Vice-versa, if a subset of solutions of the WDW equation has an oscillatory
behavior, due to Eq. (8.19), conserved momenta and Noether symmetries exist or,
Noether symmetries select classical universes.

Examples of minisuperspace cosmological models derived from ETGs are given
in the following.

8.1.2 Scalar-tensor quantum cosmology

To illustrate the theorem, consider a scalar-tensor theory described by the action

SST D
Z
d 4x

p�g
�
f .'/R � 1

2
g��r�'r�'� � V.'/

�
: (8.21)

Restricting, for simplicity, to a FLRW cosmology with scale factor a.t/, the point-
like Lagrangian is

L D 6a Pa2f C 6a2 Pa Pf � 6Kaf C a3
�
V � P'2

2

�
; (8.22)
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with configuration space Q � .a; '/ (a two-dimensional minisuperspace).
A Noether symmetry exists if the condition LXL D 0 is satisfied, in which
case

X D ˛
@

@a
C ˇ

@

@'
C P̨ @

@ Pa C P̌ @

@ P' ; (8.23)

where ˛ D ˛ .a; '/ ; ˇ D ˇ .a; '/. The PDE system given by LXL D 0 is

f .'/

�
˛ C 2a

@˛

@a

�
C af 0.'/

�
ˇ C a

@̌

@a

�
D 0 ; (8.24)

3˛ C 12f 0.'/
@˛

@'
C 2a

@̌

@'
D 0 ; (8.25)

a f̌ 00.'/C
�
2˛ C a

@˛

@a
C @̌

@'

�
f 0.'/C 2

@˛

@'
f .'/C a2

6

@̌

@a
D 0 ; (8.26)

	
3˛V.'/C aˇV 0.'/



a2 C 6KŒ f̨ .'/C a f̌ 0.'/	 D 0 ; (8.27)

where a prime now denotes differentiation with respect to ' (there are four equations
since n D 2). Several solutions exist for this system [230,231,235], determining also
the form of the model since the system (8.24)–(8.27) gives ˛; ˇ, f .'/, and V.'/.
For example, with spatially flat sections (K D 0), a solution is

˛D�2
3
p.s/ˇ0 a

sC1'm.s/�1 ; ˇ D ˇ0 a
s'm.s/ ; (8.28)

f .'/DD.s/'2 ; V .'/ D �'2p.s/ ; (8.29)

where

D.s/ D .2s C 3/2

48.s C 1/.s C 2/
; p.s/ D 3.s C 1/

2s C 3
; m.s/ D 2s2 C 6s C 3

2s C 3
;

(8.30)

and .s; �/ are free parameters. The variable change yields

w D �0 a
3'2p.s/ ; z D 3

ˇ0�.s/
a�s'1�m.s/ ; (8.31)

where �0 is an integration constant and

�.s/ D � 6s

2s C 3
: (8.32)

The Lagrangian (8.22) becomes, for K D 0,

L D �.s/ws=3Pz Pw � �w (8.33)
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where z is cyclical and

�.s/ D 2s C 3

12�20 .s C 2/.s C 1/
: (8.34)

The conjugate momenta are

�z D @L

@Pz D �.s/ws=3 Pw ; �w D @L

@ Pw D �.s/ws=3 Pz ; (8.35)

the Hamiltonian is

QH D �z�w

�.s/ws=3
C �w ; (8.36)

and the Noether symmetry is given by

�z D ˙0 : (8.37)

Quantizing Eqs. (8.35), one obtains

� �! �i@z ; �w �! �i@w ; (8.38)

and the WDW equation

h
.i@z/.i@w/C Q�w1Cs=3

i
j� >D 0 ; (8.39)

where Q� D �.s/�. The quantum version of the constraint (8.37) is

�i@zj� >D ˙0j� > ; (8.40)

and the dynamics are reduced. A straightforward integration of Eqs. (8.39)
and (8.40) yields

j� >D j˝.w/ > j�.z/ >/ ei ˙0z e�i Q	w2Cs=3

; (8.41)

which is an oscillating wavefunction and the Hartle criterion is recovered. In the
semiclassical limit, we have two first integrals of motion: ˙0 (i.e., the equation for
�z) and EL D 0, i.e., the Hamiltonian (8.36) which becomes the equation for �w.
Classical trajectories in the configuration space QQ � .w; z/ are immediately recov-
ered,

w.t/D.k1t C k2/
3

sC3 ; (8.42)

z.t/D.k1t C k2/
sC6
sC3 C z0 : (8.43)
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Going back to Q � .a; '/, the classical cosmological behavior

a.t/Da0.t � t0/l.s/ ; (8.44)

'.t/D'0.t � t0/
q.s/ ; (8.45)

is recovered, where

l.s/ D 2s2 C 9s C 6

s.s C 3/
; q.s/ D �2s C 3

s
: (8.46)

Depending on the value of s, the classical universe exhibits Friedmann, power-law,
or pole-like behavior.

If one considers instead generic Bianchi models with distinct scale factors
a1; a2; a3, the configuration space is Q � .a1; a2; a3; '/ and more than one sym-
metry can exist [241]. The considerations on the oscillatory regime of the wavefunc-
tion of the universe and the recovery of the classical regime are repeated without
change.

8.1.3 The quantum cosmology of fourth order gravity

Arguments similar to those exposed above work for higher order gravity. In partic-
ular, consider the fourth order theory with purely gravitational sector

S D
Z
d 4x

p�g f .R/ : (8.47)

As seen in Chap. 6, the corresponding point-like action for FLRW cosmology is

S D
Z
dt L

�
a; Pa;R; PR� ; (8.48)

where an overdot denotes again differentiation with respect to time and the scale
factor a and the Ricci scalar R are the canonical variables, as usual in canonical
quantization [233, 985, 988, 1119]. The expression of the Ricci scalar in terms of
.a; Pa; Ra/ introduces a Lagrangian constraint which eliminates second and higher
order derivatives in the action (8.48) and yields a system of second order differential
equations for a and R. The action (8.48) can be written as

S D 2�2
Z

dt

�
a3f .R/ � �

�
R � 6

� Ra
a

C Pa2
a2

C K

a2

���
; (8.49)
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where the Lagrange multiplier � is derived by varying with respect to R:

� D a3f 0.R/ (8.50)

(a prime now denotes differentiation with respect toR). We know that f .R/ gravity
is a special scalar-tensor theory, which we highlight introducing the scalar degree of
freedom

p � f 0.R/ ; (8.51)

so that the Lagrangian (8.49) becomes

L D 6a Pa2p C 6a2 Pa Pp � 6Kap � a3W.p/ (8.52)

of the same form of (8.22) apart from the kinetic term. This is an Helmholtz-like
Lagrangian [769] with .a; p/ as independent variables and with potential

W.p/ D h.p/p � r.p/ ; (8.53)

where

r.p/ D
Z
f 0.R/dR D

Z
pdR D f .R/ ; h.p/ D R ; (8.54)

with h D .f 0/�1 the inverse of f 0. The configuration space is now Q � .a; p/ and
p is equivalent to '. The condition LXL D 0 is realized by the vector field

X D ˛ .a; p/
@

@a
C ˇ .a; p/

@

@p
C P̨ @

@ Pa C P̌ @

@ Pp (8.55)

and gives

p

�
˛ C 2a

@˛

@a

�
p C a

�
ˇ C a

@̌

@a

�
D 0 ; (8.56)

a2
@˛

@p
D 0 ; (8.57)

2˛ C a
@˛

@a
C 2p

@˛

@p
C a

@̌

@p
D 0 ; (8.58)

6K .˛p C ˇa/C a2
�
3˛W C aˇ

@W

@p

�
D 0 : (8.59)

Solving this system, i.e., finding the Noether symmetry, provides ˛, ˇ and W.p/.
The system is satisfied by

˛ D ˛.a/ ; ˇ .a; p/ D ˇ0a
sp ; (8.60)
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where s is a parameter and ˇ0 is an integration constant. In particular,

sD0 �! ˛.a/ D �ˇ0
3
a ; ˇ.p/ D ˇ0 p ; W.p/ D W0 p ; K D 0 ;

(8.61)

sD�2 �! ˛.a/ D �ˇ0
a
; ˇ.a; p/ D ˇ0

p

a2
; W.p/ D W1p

3 ; 8K ;
(8.62)

where W0 and W1 are constants. As before, the new set of variables Qj .qi / is
adapted to the foliation induced byX . Let us discuss separately the solutions (8.61)
and (8.62).

8.1.3.1 The case s D 0

The induced change of variables Q � .a; p/ �! QQ � .w; z/ can be chosen as

w .a; p/ D a3p ; z.p/ D lnp (8.63)

and the Lagrangian (8.52) becomes

QL.w; Pw; Pz/ D Pz Pw � 2w Pz2 C Pw2
w

� 3W0w ; (8.64)

with z the cyclical variable. The conjugate momenta are

�z� @ QL
@Pz D Pw � 4Pz D ˙0 ; (8.65)

�w� @ QL
@ Pw D Pz C 2

Pw
w
; (8.66)

and the Hamiltonian is

H .w; �w; �z/ D �w�z � �2z

w
C 2w�2w C 6W0w : (8.67)

By quantizing canonically, the reduced dynamics are given by

�
@2z � 2w2@2w � w@w@z C 6W0w

2
� j� >D 0 ; (8.68)

�i @zj� >D ˙0 j� > : (8.69)

We have taken simple factor ordering in the WDW equation (8.68). The wavefunc-
tion has an oscillatory factor, with

j� >� ei ˙0 z j�.w/ > ; (8.70)
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where the function j� > satisfies the Bessel equation

�
w2@2w C i

˙0

2
w @w C

�
˙2
0

2
� 3W0w2

��
�.w/ D 0 : (8.71)

The solutions are linear combinations of Bessel functionsZ�.w/,

�.w/ D w1=2�i˙0=4Z�.�w/ ; (8.72)

where


 D ˙1

4

q
4 � 9˙2

0 � i4˙0 ; � D ˙9
r
W0

2
: (8.73)

The oscillatory regime for this component depends on 
 and � being real or not.
From the Noether symmetry (8.61), the wavefunction of the universe is then

� .z;w/ � ei˙0Œz�.1=4/ ln w� w1=2Z� .�w/ : (8.74)

For large values of w, the Bessel functions have an exponential behavior [10] and
the wavefunction (8.74) is written as

� � ei Œ˙0z�.˙0=4/ ln w˙	w� : (8.75)

Due to the oscillatory behavior of � , Hartle’s criterion is satisfied. By identifying
the exponential factor of (8.75) with S0, we recover the conserved momenta �z; �w

and select classical trajectories. In terms of the original variables, we obtain the
cosmological solutions

a.t/Da0e
�t
6 exp

�
� z1
3

e� 2�t
3



; (8.76)

p.t/Dp0e.	=6/t exp
h
z1 e�.2	=3/t

i
; (8.77)

where a0; p0, and z1 are integration constants. It is clear that � plays the role of a
cosmological constant and then inflationary behavior is recovered asymptotically.

8.1.3.2 The case s D �2

The new variables adapted to the foliation for the solution (8.62) are now

w .a; p/ D ap ; z.a/ D a2 ; (8.78)
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and the Lagrangian (8.52) assumes the form

QL.w; Pw; Pz/ D 3Pz Pw � 6Kw �W1w3 : (8.79)

The conjugate momenta are

�zD @ QL
@Pz D 3 Pw D ˙1 ; (8.80)

�wD @ QL
@ Pw D 3Pz ; (8.81)

and the Hamiltonian is

H .w; �w; �z/ D 1

3
�z�w C 6Kw CW1w3 : (8.82)

Repeating the discussion given above, the wavefunction of the universe is found to
be

� .z;w/ � ei Œ˙1zC9Kw2C.3W1=4/w
4� (8.83)

and the classical cosmological solutions are

a.t/ D ˙
p
h.t/ ; p.t/ D ˙c1 C .˙1=3/ tp

h.t/
; (8.84)

where

h.t/D
�
W1˙

3
1

36

�
t4 C

�
W1w1˙1

6

�
t3 C

�
K˙1 C W1w21˙1

2

�
t2

Cw1
�
6K CW1w21

�
t C z2 (8.85)

and where w1, z1 and z2 are integration constants. At late times one has the power-
law expansion

a.t/ � t2 ; p.t/ � 1

t
: (8.86)

8.1.4 Quantum cosmology with gravity of order higher
than fourth

Minisuperspaces suitable for the previous analysis can be found for theories with
gravitational action

S D
Z
d 4x

p�g f .R;�R/ ; (8.87)
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with configuration space Q � .a;R;�R/ [129, 233, 551, 985, 988]. The FLRW

point-like Lagrangian is L
�
a; Pa;R; PR;�R; P.�R/



with the constraints

RD6
"

Ra
a

C
� Pa
a

�2
C K

a2

#

; (8.88)

�RD�
�

RRC 3
Pa
a

PR
�
: (8.89)

Introducing Lagrange multipliers as usual, the point-like Lagrangian is

L D 6a Pa2p C 6a2 Pa Pp � 6Kap � a3 Phq � a3W .p; q/ ; (8.90)

where

p� @f

@R
; q � @f

@�R ; (8.91)

W .p; q/Dh.p/p C g.q/q � f ; (8.92)

and

h.p/ D R ; g.q/ D �R ; f D f .R;�R/ : (8.93)

The minisuperspace is now three-dimensional but, again, Noether symmetries can
be found. Cases of physical interest include [129, 551]

f .R;�R/Df0RC f1R
2 C f2R�R ; (8.94)

f .R;�R/Df0RC f1
p
R�R ; (8.95)

discussed in detail in [239]. Once symmetries (if they exist) are identified, suitable
changes of variables

Q � .a;R;�R/ �! QQ � .z; u;w/ (8.96)

can be found, where one or two variables are cyclical in the Lagrangian (8.90). For
example, for (8.95) one obtains

QL D 3
�
w Pw2 �Kw

� � f1

�
3w Pw2u C 3w2 PwPu C w3PzPu

2u2
� 3Kwu

�
; (8.97)

where we assumed f0 D 1=2, the standard Einstein coupling, z is the cyclical vari-
able, and

z D R ; u D
r

�R
R

; w D a : (8.98)
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The conserved quantity is

˙0 D w3 Pu
2u2

: (8.99)

Using canonical quantization and deriving the WDW equation from Eq. (8.97), the
wavefunction of the universe is

j� >� ei˙0zj�.u/ > j�.w/ > ; (8.100)

where �.u/ and �.w/ are combinations of Bessel functions. The oscillatory part of
the solution is evident and the Hartle criterion is satisfied. In the semiclassical limit,
using the conserved momentum (8.99), the cosmological behaviors

a.t/ D a0 t ; a.t/ D a0 t
1=2 ; a.t/ D a0 ek0t ; (8.101)

are obtained, depending on the choice of boundary conditions.
These results conclude our discussion of the connection between Noether sym-

metries for minisuperspace cosmological models and classical solutions. If the
wavefunction of the universe is related to the probability of a given classical
cosmology, the existence of symmetries tells us the conditions under which the
Hartle criterion works. The wavefunction is related only to the probability of a cer-
tain behavior but is not the probability amplitude since quantum cosmology is not
unitary. Furthermore, the Hartle criterion is meaningful in the context of Everett’s
many-worlds interpretation of quantum mechanics [432,492,575], in which the uni-
verse branches into a large number of copies whenever a measurement is made. For
ordinary quantum mechanics, the many-world interpretation is just one of the pos-
sible consistent formulations designed to deal with correlations internal to isolated
systems. The Hartle criterion provides an operative interpretation of such correla-
tions. In particular, if the wavefunction is strongly peaked around some region of the
configuration space, we predict that we will observe the correlations characteristic
of that region. If instead the wavefunction is rather flat in some region, correlations
characteristic of that region are precluded to the observations. If the wavefunction is
neither peaked nor flat, no observable prediction is possible; the correlation of some
region of minisuperspace can be seen as a causal connection.

As noted, the analogy with non-relativistic quantum mechanics is straightfor-
ward. By considering situations in which an individual system consists of a large
number of identical subsystems, one can derive from the above interpretation
the usual probabilistic interpretation of quantum mechanics for the subsystems
[566–568, 577]. Hartle’s criterion is recovered without arbitrariness if one or more
Noether symmetries are present in a given minisuperspace model, when strongly
peaked subsets of the wavefunction of the universe are found. Vice-versa, oscilla-
tory segments of the wavefunction can be always connected to conserved momenta
and then to Noether symmetries.
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8.2 Inflation in ETGs

Inflation, a very short period of accelerated, superluminal expansion of the universe
preceding the radiation-dominated era, has the advantages of solving the horizon,
flatness, and monopole problems of the standard Big Bang model, while provid-
ing a mechanism to generate primordial density fluctuations that later can grow
into the structures observed today in the universe, i.e., galaxies, clusters, and su-
perclusters. It is possible that (as was believed in the 1980s) inflation follows an
earlier radiation-dominated era, or (an idea that is more popular today) that infla-
tion begins in a quantum gravity regime [688, 728, 741]. Since GR is modified by
quantum corrections at high energies, it is likely that inflation is correctly described
not by GR, but by a theory incorporating corrections to the Hilbert-Einstein action,
such as scalar-tensor or quadratic gravity [1044]. In this section we discuss inflation
in ETGs.

8.2.1 Scalar-tensor gravity: extended and hyperextended inflation

Guth’s scenario known as old inflation [564], based on the idea of the universe
going through a spontaneous first order phase transition from a metastable vacuum,
and later abandoned because of its difficulties, was resurrected in extended inflation
[701]. In Guth’s old inflation the cosmic expansion is de Sitter-like because the in-
flaton  is trapped in a false vacuum state (supercooling of the universe). While  
is fixed to the value D 0 in this state, its constant potential V.0/ > 0 acts as a cos-
mological constant � D 8�GV.0/ causing exponential expansion a.t/ D a0 eH t .
Old inflation is supposed to end because the field  tunnels from the false to the
true vacuum spontaneously nucleating bubbles of true vacuum. The nucleation rate
of true vacuum bubbles per Hubble time and per Hubble volume is �V D � =H 4,
where � is the nucleation rate per unit time. In most field theories, � is a constant
determined by the shape of the potential barrier separating the true and the false
vacua. In GR-based old inflation H is constant and the nucleation rate �V is also
constant. Then, in order to complete the phase transition ending inflation, a suffi-
cient number of bubbles must nucleate per Hubble time and volume, or �V � 1. But
if inflation lasts long enough to solve the problems of the standard Big Bang model,
the bound �V � 1 must hold. This limit arises because, if �V is too large, a large
number of true vacuum bubbles stops inflation too early.

The old inflationary scenario was abandoned because of these conflicting con-
straints and replaced by other GR-based scenarios in which the universe expands
only approximately with an exponential law, i.e., a.t/ D a0 exp .H.t// where
H.t/ D H0CH1 tC 	 	 	 with the constantH0 dominating the expansion in the slow-
roll approximation. Slow-roll inflation occurs because the potential V. / has a flat
section mimicking a cosmological constant. Inflation is then terminated by a second
order phase transition, assuming that the potential becomes a steep well and that the
inflaton starts rolling fast on it, breaking the slow-roll approximation. The inflaton
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travels down the steep potential, reaches the minimum V D 0 of its potential, over-
shoots and oscillates around it, dissipating potential energy in its oscillations around
the minimum. These oscillations create particles during the reheating regime due the
coupling of  to some other field, and rising the temperature of the universe, which
by then is very cold because of the inflationary expansion.

The first order phase transition terminating old inflation works better in Brans-
Dicke theory than in GR. This happens because in Brans-Dicke gravity the solution
of the field equations with a cosmological constant as the only matter source is not
de Sitter space, but the power-law solution1 (6.86) and (6.87) [779]

a.t/ / t !C1=2 ; �.t/ / t2 : (8.102)

This solution describes power-law inflation2 if ! > 1=2. The Hubble parameter
H D .! C 1=2/ =t is not constant, then the nucleation rate of true vacuum bubbles

�V D �

H 4
/ t4 is time-dependent, and this is the remedy for the problem of old

inflation. Now �V is small at early times, when few true vacuum bubbles nucleate
and inflation can proceed for a sufficient number of e-folds, after which the nucle-
ation of true vacuum bubbles becomes more efficient, and the cosmic expansion
slows down. The phase transition is then completed and the false vacuum energy
V.0/ disappears as tunneling continues. The latent heat of the transition is then dis-
sipated via collisions of the rapidly moving bubbles, producing a hot thermal bath of
particles and gravitational waves. This spontaneous mechanism of exit from infla-
tion looks in principle more appealing than a second order phase transition obtained
by changing by hand the shape of the potential V . / (hence the equation of mo-
tion of the inflaton). However, a serious shortcoming called the big bubble problem
was found [702, 1152]: early on, the nucleation rate �V is small but not exactly
zero and a few true vacuum bubbles nucleate early. They are much smaller than
the Hubble radius and, therefore, they are not affected appreciably by the spacetime
curvature, evolving as if they were in flat spacetime and expanding at the speed of
light. When they become comparable in size with the Hubble radius, they begin
expanding at the inflationary cosmic rate and eventually reach a cosmological size.
Since these early-generated bubbles are few and they end up being so large, they do
not thermalize like the much more numerous small bubbles nucleated later, and they
leave a significant imprint in the CMB. They generate inhomogeneities that domi-
nate those generated by quantum fluctuations of the inflaton and the metric tensor.
These bubble-induced fluctuations would be at a level detectable with present tech-
nology [684, 702, 733, 1152] and, since they are not observed, extended inflation
is severely constrained. Detailed calculations of the bubble spectrum [733] set the

1 This solution is a special case of the Nariai solution (6.70)–(6.73).
2 Power-law inflation was originally introduced using GR and an exponential potential V .�/ [4,
92, 727, 754]. The perturbation spectrum for power-law inflation can be calculated analytically
[433, 760], while for most other scenarios the solution can only be obtained numerically.
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constraint ! � 20 on the Brans-Dicke parameter, in gross violation of the limit
! > 40; 000 coming from the Cassini experiment3 [133].

Various alternative scenarios of extended inflation were devised to solve the big
bubble problem [12, 596, 597, 702, 708, 785]. As usual, the simplest way to cir-
cumvent the Solar System bound ! > 40; 000 consists of giving the scalar � a
short range by introducing a potential U.�/ [702]. This potential is supposed to
begin dominating the dynamics of � after the end of inflation, to have a minimum
(at �0 > 0), in which � can sit, with �0 D G�1 as the inverse of the present-day
value of the gravitational coupling. Keeping � constant ensures that GR is recov-
ered, provided that V.�0/ ' 0 (otherwise a cosmological constant is introduced in
the field equations). With this modification, bubble nucleation proceeds slowly with
a low value of !, but the Solar System limits on ! are circumvented, avoiding the
big bubble problem. Another problem raises its head, however: at the level of pertur-
bations, this remedy for extended inflation alters the spectrum of scalar perturbations
[729], introducing a significant tilt from a scale-invariant Harrison-Zeldovich spec-
trum and violating the observational constraints on the spectral index ns . The new
spectral index ns.!/ is a monotonically increasing function of the Brans-Dicke pa-
rameter and the constraint ! � 20 implies n � 0:8, violating already the old 1�
COBE limit nS D 1:2˙ 0:3 [71, 126, 549, 591]. The only way to reconcile the pre-
dicted value of the spectral index with observations is by admitting a higher value
of !, which spoils extended inflation.

Other proposals to solve the big bubble problem which appeared in the literature
include the possibility of allowing extended inflation to terminate via a first order
phase transition, followed by a second phase of inflation in the slow-roll regime and
terminating the latter by a second order phase transition to erase the bubble pertur-
bations in the CMB left behind by the first order phase transition ending the previous
stage of extended inflation (plausible double inflation). However, the main motiva-
tion of the original extended inflation model, i.e., ending inflation via a spontaneous
first order phase transition, is lost in double inflationary models.

Extended inflation was also considered in the context of stochastic inflation,
a semiclassical scenario in which short wavelength quantum fluctuations of both
the inflaton and the Brans-Dicke field act as noise for long wavelength classical
modes and induce Brownian motion described by a Fokker-Planck diffusion equa-
tion [521–524, 1060, 1062, 1063]. The trajectory of the scalar field peaks around
classical values and the problems associated with classical scenarios persist.

The big bubble problem of extended inflation can be avoided by setting the in-
flationary scenario in the context of a scalar-tensor theory instead of Brans-Dicke
gravity, which is done in hyperextended inflation. Allowing the coupling function
! .�/ to be time-dependent, this quantity can go from relatively small values at the
beginning of inflation to large values after the end of inflation. In this way, there
is no need to introduce a potential giving a short range to the Brans-Dicke-like

3 At the time in which the big bubble problem was pointed out, the experimental constraint on the
Brans-Dicke parameter was ! > 500 [1167].
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scalar field. While this is a possibility, the value of ! changes by a large amount
in a time that is very short in comparison with the age of the universe. Early ver-
sions of hyperextended inflation [100] were criticized because of fine-tuning in the
mechanism achieving such a large change [734].

A version of hyperextended inflation proposed in [734,1049] has! initially large,
which entails the production of an acceptable spectrum of density perturbations.
Later on, ! decreases, with only a few true vacuum bubbles nucleated at this time
which has the advantage of leaving the CMB unaltered. Inflation stops because of
the dynamics of the scalar, not because of a first order phase transition with nucle-
ation of bubbles. A significant nucleation of true vacuum bubbles due to tunneling
occurs only after inflation is finished, removing the effective vacuum energy of the
potential V . D 0/. This scenario relies on a scalar-tensor theory described by the
action

S D
Z
d 4x

p�g
�
1

16�

�
�R � !.�/

�
g��r��r�� � U.�/

�

� 1

2
g˛ˇr˛ rˇ � V. /

�
; (8.103)

where the inflaton potential V. / has a minimum V.0/ > 0 corresponding to the
metastable state. The dynamics of the inflaton  can again be described in the slow-
roll approximation [95, 523, 1081].

In intermediate inflation [93,105,819] the cosmic expansion interpolates between
exponential and power-law and yields a Harrison-Zeldovich (ns D 1) or a blue
(ns > 1) spectrum of density perturbations. Since no large bubbles are created, the
big bubble problem is not an issue. Various models that seem to work have been
found [552, 708]. However, as for the alternatives to extended inflation, the original
motivation for extended inflation, which was ending inflation via a first order phase
transition, is lost in hyperextended models.

8.2.2 Inflation with quadratic corrections

Inflation can be implemented not only with scalar fields but also in the context of
higher derivative theories which contain in the action a term proportional to R2, a
special case of metric f .R/ gravity corresponding to f .R/ D R C ˛R2. Indeed,
the first model of inflation [1044] was of this kind, with extra terms quadratic in the
Ricci tensor, Ricci scalar, and their derivatives added to f .R/. However, the simple
addition of an R2 term to the Hilbert-Einstein Lagrangian density works and is not
to be regarded as a toy model: it was derived from supergravity in [260] and has
by now been the subject of many studies [103, 401, 679, 796, 1046, 1058, 1160]. In
the literature, f .R/ D RC ˛R2 inflation is usually reduced to scalar field inflation
by using the equivalence between metric f .R/ and ! D 0 Brans-Dicke gravity
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discussed earlier. The effective scalar field degree of freedom is � D f 0.R/ D
1C 2˛R and its potential is

V.�/ D Rf 0.R/ � f .R/
ˇ
ˇ
RDR.
/ D .� � 1/2

4˛
: (8.104)

In the Einstein frame (which seems to be more common than the Jordan frame in
the literature) the action is

S D
Z
d 4x

p� Qg
" QR
2�

� 1

2
Qg�� Qr� Q� Qr� Q� � U � Q��

#

; (8.105)

where

Q� D
r
3

2�
ln� (8.106)

and

U
� Q�� D e�2

q
2�
3
Q


8�˛

�
e
q

2�
3
Q
 � 1

�2
: (8.107)

The computed spectral index of scalar perturbations is nS D 0:96 and the gravita-
tional wave contribution to anisotropies in the CMB is negligible [730].

Inflation and quantum cosmology in a mixed Brans-Dicke-R2 theory of gravity
were studied in [337, 586].

8.3 Cosmological perturbations

It is difficult to overstate the importance of perturbations of a FLRW universe: in ad-
dition to growing and forming superclusters, clusters, galaxies, and stars and making
life possible, primordial perturbations are important for the theoretical physicist be-
cause they generate a permanent imprint as temperature fluctuations in the CMB.
These temperature fluctuations were detected in 1992 by the COBE satellite [1020]
and have been the subject of intense scrutiny ever since. Different theories and
models of the early universe usually predict different spectra of fluctuations, hence
density, gravitational wave, and possibly vorticity perturbations around a FLRW
background provide a way to test theoretical predictions about the early universe.

In addition to solving the horizon, flatness, and monopole problems of stan-
dard Big Bang cosmology, inflation provides a natural mechanism to create density
perturbations, generated as quantum fluctuations of the inflaton field. Such a mech-
anism is missing in the Big Bang model. There, an initial spectrum of perturbations
must be assumed without a cause. The physical wavelength �phys D a� of these
perturbations (where � is the comoving wavelength) redshifts as the scale factor
increases, while the size of the horizon H�1 remains practically constant during
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inflation. As a consequence, perturbations cross outside the horizon during inflation
and the spectrum of density perturbations is usually specified by their amplitude at
this horizon crossing. While they stay outside the horizon, regions separated by a
distance larger thanH�1 are not in causal contact with each other and the perturba-
tions do not evolve. After the end of inflation, H�1 grows as a power of the scale
factor and the perturbations eventually re-enter the horizon during the radiation-
or the matter-dominated era. These perturbations act as seeds and can then grow
non-linearly during the matter era and begin to form cosmic structures.

This mechanism of generation of structure works in GR as well as in ETGs;
however, the growth history of these perturbations after they go non-linear depends
on the theory of gravity and, therefore, large scale structure surveys can potentially
discriminate between GR and its competitors. Here we focus on the primordial gen-
eration of scalar and tensor perturbations during inflation, which leave an imprint in
the CMB.

Many studies of primordial perturbations of a FLRW universe can be found in
the literature, especially in the context of scalar-tensor gravity [76, 102, 132, 183,
296, 307, 372, 434, 436–439, 525, 531, 565, 653, 654, 687, 691, 692, 729, 755, 760,
770, 771, 896, 963, 964, 1048, 1061, 1094, 1095]. A formalism applicable to gen-
eralized gravitational theories incorporating both scalar-tensor and modified f .R/
gravity was formulated by Hwang and his collaborators [611, 612, 616–618, 841].
This treatment is probably the most convenient for our purposes and we review it
in this section, referring the reader to the original references for a more detailed
discussion. The formalism is valid in regions of the phase space in which the field
equations do not have singular points (see [8, 9, 457, 471, 515, 518, 600, 1045] for
discussions of singular points in scalar-tensor theories).

8.3.1 Scalar perturbations

The perturbed FLRW line element is written as

ds2 D � .1C 2˛/ dt2 � �;i dt dxi C a2.t/
	
.1C 2'/ ıij C 2HT Yij



dxi dxj ;

(8.108)

where ˛; �, and ' can be expressed in terms of scalar (Y ), vector (Yi ), and ten-
sor (Yij) spherical harmonics. The usual scalar spherical harmonics Y satisfy the
equation

r2Y D �k2 Y (8.109)

(where k is an eigenvalue), while the vector and tensor spherical harmonics Yi and
Yij are related to Y by

YiD 1

k2
@iY ; (8.110)

YijD 1

k2
@i@jY C 1

3
ıij Y : (8.111)
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The scalar field is decomposed as

� .t; x/ D �0 .t/C ı� .t; x/ ; (8.112)

with the background field �0 depending only on the comoving time, while the
perturbation ı� depends on both space and time. With the observational results
in mind, we focus on a spatially flat FLRW universe setting to zero the curva-
ture index K . The background quantities are classical while the perturbations are
quantum-mechanical and are quantized by a canonical procedure associating quan-
tum operators to these quantities.

Since the perturbations are inhomogeneous, they suffer from the notorious
gauge-dependence problems of cosmology and one needs to study gauge-invariant
quantities. We use the covariant and gauge-invariant formalism of Bardeen, Ellis,
Bruni, Hwang and Vishniac [425–427, 621] in the version adapted by Hwang
[612, 616–618] to generalized gravity described by the action

S D
Z
d 4x

p�g
�
1

2
f .�;R/ � !.�/

2
r˛�r˛� � V.�/

�
(8.113)

(since the inflaton dominates other forms of matter during inflation, we omit the
matter part of the action). A convenient procedure consists of writing the field equa-
tions in the form of effective Einstein equations,

G�� D T�� Œ�	 ; (8.114)

where

T�� Œ�	D 1

F

�
!

�
r�� r�� � 1

2
g�� r˛� r˛�

�
� 1

2
.RF � f C 2V / g��

C r�r�F � g���F



(8.115)

is an effective stress-energy tensor for the scalar � and we adopt the notation

F .�;R/ � @f

@R
: (8.116)

The gauge-invariant treatment for cosmological perturbations in GR [737, 812] can
then be applied. The effective stress-energy tensor has the form of an imperfect fluid
tensor

T�� D .P C �/ u� u� C Pg�� C 2q.� u� / C ��� ; (8.117)

where q� and ��� D ��� are the heat current density and the anisotropic stress
tensor, respectively. They are purely spatial quantities, i.e.,

qˇ uˇ D 0 ; ��� u� D ��� u� D 0 : (8.118)
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The evolution of the scalar field � is ruled by

�� C 1

2!

�
d!

d�
rˇ� rˇ� C F � 2

dV

d�

�
D 0 : (8.119)

Following the gauge-invariant formalism for perturbations in GR, one considers the
Bardeen gauge-invariant variables [84] and the gauge-invariant variable

ı�' � ı� �
P�
H
' � �

P�
H
'ı
 ; (8.120)

where an overdot denotes differentiation along the direction parallel to the fluid
four-velocity u�, i.e., Pf � uˇ rˇf . To first order, this operation is nothing but the
differentiation with respect to the comoving time of the FLRW background. Scalar
perturbations are described by the second order action [613–615, 757, 758, 811]

S .pert/ D
Z
dt d 3x L .pert/ D 1

2

Z
dt d 3x a3Z

�
(

ı P�2' � 1

a2
ı�'

;i ı�';i C 1

a3Z

H

P�
d

dt

"

a3Z
d

dt

 P�
H

!#

ı�2'

)

(8.121)

generalizing the action for inflationary perturbations in GR [737], where

Z.t/ D
2! C 3. PF /2

F . P
/2

2
� PF
2HF

C 1

2 : (8.122)

In the limit to Einstein theory, F D ��1, ! D 1 and Z D 1. The variation of the
action (8.121) yields the evolution equation for the perturbations ı�'

ı R�' C .a3Z/P
a3Z

ı P�' �
(

r2

a2
C 1

a3Z

H

P�
d

dt

"

a3Z
d

dt

 P�
H

!#)

ı�' D 0 : (8.123)

By introducing the auxiliary variables

z.t/� a P�
H

p
Z ; (8.124)

v.t; x/�z
H

P� ı�' D a
p
Z ı�' ; (8.125)
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Equation (8.123) is written as

v�� �
�

r2 C z��
z

�
v D 0 ; (8.126)

where � is the conformal time defined by dt D ad�. The Heisenberg picture is
used in the quantization of the perturbations in order to keep the vacuum state time-
independent. The quantum operators ı O�.t; x/ and O' are associated with the classical
variables ı�.t; x/ and ', with (a hat denotes a quantum operator)

ı O�' D ı O� � P�
H

O' : (8.127)

The operator ı O�' is then Fourier-decomposed in the usual way

ı O�' D 1

.2�/3=2

Z
d 3k

h
Oak ı�'k

.t/ ei k�x C Oa�
k
ı��'k

.t/ e�i k�xi : (8.128)

The creation and annihilation operators Oa�
k

and Oak obey the canonical commutation
relations

h
Oak ; Oa�

k0

i
Dı.3/ �k � k0

�
; (8.129)

Œ Oak ; Oak0 	D
h

Oa�
k
; Oa�
k0

i
D 0 ; (8.130)

and the complex Fourier coefficients evolve in time according to

ı R�'k C .a3Z/P
a3Z

ı P�'k C
(
k2

a2
� 1

a3Z

H

P�

"

a3Z
d

dt

 P�
H

!#)

ı�'k D 0 : (8.131)

Now v is expanded as the Fourier integral

v.t; x/ D 1

.2�/3=2

Z
d 3k

	
vk.t/ ei k�x C v�k.t/ e�i k�x
 ; (8.132)

and its quantum counterpart is

Ov D zH
P� ı O�' D a

p
Z ı O�' ; (8.133)

where the components vk.t/ are the solutions of

.vk/�� C
�
k2 � z��

z

�
vk D 0 : (8.134)
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The classical momentum conjugated to ı�' is

ı�'.t; x/ D @L .pert/

@.ı P�'/
D a3Z ı P�'.t; x/ ; (8.135)

with associated quantum operator ı O�' . The operators ı O�' and ı O�' satisfy the equal
time commutation relations

h
ı O�'.t; x/; ı O�'.t; x0/

i
D 	

ı O�'.t; x/; ı O�'.t; x0/

 D 0 ; (8.136)

h
ı O�'.t; x/; ı O�'.t; x0/

i
D i

a3Z
ı.3/

�
x � x0

�
; (8.137)

with the ı�'k.t/ obeying

ı�'k ı
P�'�k � ı�'�k ı P�'k D i

a3Z
: (8.138)

The relation

z��
z

D m

�2
; (8.139)

where m is a constant, is used at this point in GR-based inflation. This relation can
be generalized to the slow-roll inflationary regime of theories of the form (8.113),
which also have de Sitter attractors in phase space. The use of Eq. (8.139) reduces
Eq. (8.134) for vk to

.vk/�� C
�
k2 � .
2 � 1=4/

�2

�
vk D 0 ; (8.140)

where


 D
r

mC 1

4
: (8.141)

In order to solve Eq. (8.140) we introduce the variable s D k�, which turns vk into
vk D p

s J.s/ and Eq. (8.140) into the Bessel equation

d 2J

ds2
C 1

s

dJ

ds
C
�
1 � 
2

s2

�
J D 0 ; (8.142)

which has as solutions the Bessel functions of order 
 and

vk.�/ D
p
k� J�.k�/ : (8.143)
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The solutions of Eq. (8.125) are the Fourier coefficients

ı�'k.�/ D P�
zH

vk.�/ D 1

a
p
Z

vk.�/ : (8.144)

The quantities vk.�/ can be rewritten by expressing the Bessel functions J� in terms
of Hankel functionsH .1;2/

� , yielding

vk.�/ D
p
�j�j
2

h
c1 .k/ H .1/

� .kj�j/C c2 .k/ H .2/
� .kj�j/

i
(8.145)

and Eq. (8.144) gives

ı�'k.�/ D
p
�j�j

2a
p
Z

h
c1.k/H .1/

� .kj�j/C c2.k/H .2/
� .kj�j/

i
: (8.146)

The coefficients c1 and c2 are normalized according to

jc2.k/j2 � jc1.k/j2 D 1 ; (8.147)

to preserve Eq. (8.138).

In the limit of small wavelengths
z��
z

� k2, the vacuum state must correspond

to positive frequency solutions and Eq. (8.134) assumes the form

.vk/�� � k2vk D 0 ; (8.148)

the solutions of which are vk / e˙i k� , hence

ı�'k D 1

a
p
Z

p
2k

h
c1 .k/ ei kj�j C c2 .k/ e�i kj�j

i
(8.149)

(the same result is obtained by expanding Eq. (8.146) for kj�j � 1). The positive
frequency solution in the small wavelength limit is obtained for

c1.k/ D 0 ; c2.k/ D 1 ; (8.150)

which is equivalent to selecting the Bunch-Davies vacuum for de Sitter space and
yields

ı� .�; x/ D 1

.2�/3=2

Z
d 3x

h
c2 .k/ ei .k�x�k�/ C c�2 .k/ ei .�k�xCkj�j/

i
: (8.151)

The power spectrum of a quantity g.t; x/ is defined as

P.k; t/ � k3

2�2

Z
d 3r hg .x C r; t/ g .x; t/ix e�i k�r D k3

2�2
jgk.t/j2 ; (8.152)
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where h ix denotes an average over the spatial coordinates x and gk.t/ are the
Fourier coefficients of the expansion

g .t; x/ D 1

.2�/3=2

Z
d 3k

	
gk.t/ ei k�x C g�k.t/ e�i k�x
 : (8.153)

The power spectrum of the gauge-invariant operator ı O�'k
is obtained with the

choice g .t; x/ D h0jı O�'k
j0i, which yields

P
ı O
'
.k; t/ D k3

2�2

Z
d 3r h0 jı O�'k .x C r; t/ ı O�'k.x; t/j0 ix e�i k�r : (8.154)

Long wavelength perturbations cross outside the horizon during inflation and are
described by the large scale limit of Eq. (8.131), which admits the solution

ı�'.t; x/ D � P�
H

�
C.x/ �D.x/

Z t

0

dt 0
1

a3Z

H 2

P�
�
; (8.155)

where C.x/ and D.x/ are the coefficients of a growing and a decaying component,
respectively (from now on we omit the latter). In the long wavelength limit kj�j �
1, the solution ı�'k.�/ for 
 ¤ 0 becomes

ı�'k.�/ D i
pj�j� .
/
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p
�Z

�
kj�j
2

���
Œc2.�/ � c1.�/	 ; (8.156)

where � is the Gamma function. The power spectrum of ı�'k then turns out to be
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�3=2a j�jpZ
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2

� 3
2��

jc2.k/� c1.k/j (8.157)

for 
 ¤ 0. Equation (8.155) without the decaying mode yields

C.x/ D �HP� ı�'.t; x/ (8.158)

and the definition (8.152) of power spectrum gives

P1=2
C .k; t/ D

ˇ
ˇ
ˇ
ˇ
H
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ˇ
ˇ
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ˇP

1=2

ı
'
.k; t/ : (8.159)

Equations (8.120) and (8.158) then yield

'ı
 D � H

P� ı�' D C : (8.160)
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The quantity C.x/ is proportional to the CMB percent temperature fluctuation
ı T=T [617],

ıT

T
D C

5
: (8.161)

As a consequence, the temperature anisotropy spectrum is

q
PıT=T .k; t/ D 1

5

p
PC .k; t/ (8.162)

and Eq. (8.159) yields
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where Eq. (8.157) provides P1=2

ı
'
.

Equation (8.162) now yields the spectral index of scalar perturbations

nS � 1C
d
�

ln Pı O'ı�




d .ln k/
; (8.164)

which is computed as

nS D 1C d .ln PC /

d .ln k/
: (8.165)

Equations (8.159) and (8.157) yield

nS D 4 � 2
 .
 ¤ 0/ : (8.166)

While in slow-roll inflation in GR it is sufficient to introduce two slow-roll parame-
ters, in the slow-roll regime of generalized gravity four such parameters are needed
[618, 841]:

"1D
PH
H 2

D �"H ; (8.167)

"2D
R�
H P� D ��H ; (8.168)

"3D
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2H F
; (8.169)

"4D P̨
2H˛

; (8.170)
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where

˛ D F

"

! C 3
� PF �2

2 F
� P��2

#

: (8.171)

The first two parameters "1 and "2 coincide, apart from the sign, with the familiar
slow-roll parameters "H and �H introduced in the Hubble slow-roll approximation
to inflation in GR. The remaining two parameters "3;4 are characteristic of gener-
alized inflation. The four slow-roll parameters and their time derivatives P"i remain
small during slow-roll inflation. By neglecting P"i one has

z��
z

D a2H 2 .2 � 2"1 C 3"2 � 3"3 C 3"4/ (8.172)

to first order.
To proceed, we use the standard relation

� ' � 1

aH

1

1C "1
; (8.173)

which is proved as follows. In de Sitter space it is a D a0 exp.H0t/ and integrating
the definition of conformal time dt D a d� yields

� D � 1

aH
D �e�H0t

a0H0
: (8.174)

For expanding (H0 > 0) de Sitter spaces, t ! C1 corresponds to � ! 0, while
for contracting (H0 < 0) de Sitter spaces, t ! C1 corresponds to � ! C1. In
the approximation in which the derivatives P"i are negligible, Eq. (8.174) reduces to
Eq. (8.173) [613–615].

Equation (8.173) then yields

mD2C 3 .�2"1 C "2 � "3 C "4/ ; (8.175)


D 3

2
� 2"1 C "2 � "3 C "4 ; (8.176)

and Eqs. (8.166) and (8.176) give the spectral index of scalar perturbations

nS D 1C 2 .2"1 � "2 C "3 � "4/ ; (8.177)

The right hand side of Eq. (8.177) is evaluated when the perturbations cross outside
the horizon. We obtain a nearly Harrison-Zeldovich spectrum with nS not very dif-
ferent from unity. In the GR limit f .�;R/ D R=�, ! D 1, PF D 0, "3 and "4 vanish
and the spectral index reduces to the usual one for GR inflation with a minimally
coupled scalar nS D 1 � 4 "H C 2 �H [688, 728, 737].
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8.3.2 Gravitational wave perturbations

Gravitational waves (tensor) perturbations are generated during inflation as quantum
fluctuations of the metric g�� . Tensor perturbations in generalized gravity inflation
have also been computed in [615,841] following the now canonical method for GR-
based inflation, and we report here also this calculation.

Tensor modes are described by the gauge-invariant perturbation HT in
Eq. (8.108). The latter is now rewritten using

cij .t; x/ � HT .t/ Yij .x/ ; (8.178)

where the Yij are tensor spherical harmonics. The cij are transverse and traceless,

ri cij D 0 ; cii D 0 : (8.179)

The action for tensor perturbations is [37, 610]

S .gw/ D
Z
dt

Z
d 3x L .gw/ D

Z
dt
Z
d 3x

a3F

2

�
Pcij

Pcji � 1

a2
cij;krkcij

�
:

(8.180)

The variation of this action yields the classical evolution equation

Rcij C
 

3H C
PF
F

!

Pcij � r2 cij

a2
D 0 : (8.181)

It is convenient to use the quantities

zg�ap
F ; (8.182)

vg .t; x/�zg cij .t; x/ ; (8.183)

to reduce the evolution equation (8.181) to

�
vg
�
��

�
"�

zg
�
��

z
C r2

#

vg D 0 : (8.184)

In the long wavelength limit .zg/��=zg � k2, the solution is

cij .t; x/ D Cij .x/�Dij .x/
Z t

0

dt

a3F
; (8.185)
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where the second term on the right hand side decays and will be omitted in the
following.

In the small wavelength limit, the asymptotic solution for the Fourier coefficients
of cij as functions of conformal time is

cij .�;k/ D 1

a
p
F

h
c
.1/
ij .k/ ei k� C c

.2/
ij .k/ e�i k�

i
: (8.186)

The classical perturbations cij are decomposed into the two possible polarizations
“C” and “�” as

cij .t; x/D L3=2

.2�/3

Z
d 3k

2X

lD1
hlk.t/ e

.l/
ij .k/ eik�x

� L3=2

.2�/3

Z
d 3k QCij .t; x;k/ ; (8.187)

whereL3 is an irrelevant normalization volume which disappears in the final results
and l D C or �. The e.l/ij are polarization tensors describing the two polarization
states and obey

e
.l/
ij .k/ e.l

0/ ij .k/ D 2 ıl l 0 : (8.188)

Now we introduce

hl .t; x/� L3=2

2 .2�/3

Z
d 3k QCij .t; x;k/ e.l/ ij .k/

D L3=2

.2�/3

Z
d 3k hlk .t/ ei k�x ; (8.189)

and the classical power spectrum

Pcij .t;k/ D k3

2�2

Z
d 3r hcij .t; x C r/ cij .t; x/ix e�i k�r ; (8.190)

where h ix denotes a spatial average, and it is

Pcij .t;k/ D 2

2X

lD1
Phl

.t;k/ D 2

2X

lD1

k3

2�2
jhlk.t/j2 (8.191)

with hCk D h	k � hk.
The tensor modes are quantized by associating quantum operators Ocij to the clas-

sical variables cij. These operators are Fourier-expanded as
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bcij .t; x/D 1

.2�/3=2

Z
d 3k

2X

lD1

h
ehlk.t/balk e

.l/
ij .k/ ei k�x

Ceh�lk.t/ba
�

lk e
.l/
ij .k/ e�i k�xi

� 1

2 .2�/3=2

Z
d 3k OCij .t; x;k/ ; (8.192)

where the Qhlk.t/ are mode functions. The creation and annihilation operators Oa�
lk

and Oalk satisfy the canonical commutation relations

h
Oalk; Oa�

l 0k0

i
Dıl l 0 ı.3/

�
k � k0� ; (8.193)

Œ Oalk; Oal 0k0 	D
h

Oa�
lk; Oa�

l 0k0

i
D 0 : (8.194)

The quantum operators

Ohl .t; x/� 1

2 .2�/3=2

Z
d 3k OCij .t; x;k/ e.l/ ij .k/

D 1

.2�/3=2

Z
d 3k

h Qhlk .t/ Oalk ei k�x C Qh�lk .t/ Oa�
lk e�i k�x

i
(8.195)

are associated to the classical variables and the equation of motion for the Ocij gives

Rbhl C
 

3H C
PF
F

!
Pbhl � r2 Ohl

a2
D 0 : (8.196)

The momenta canonically conjugated to Ohl are

ı O�hl
.t; x/ D @L .gw/

@

� Pbhl
� D 2 a3 F Ohl (8.197)

and satisfy the equal time commutation relation

h Ohl .t; x/ ; ı O�hl

�
t; x0�

i
D i ı.3/

�
x � x0� ; (8.198)

while the mode functions Qhlk .t;k/ satisfy the Wronskian condition

fhlk
Pfhlk� � fh�lk

Pfhlk D i

a3 F
: (8.199)



8.3 Cosmological perturbations 379

If the assumption �
zg
�
��

zg
D mg

�2
(8.200)

(where mg is a constant) is valid, then the equation for the mode functions admits
the analytical solution in terms of conformal time

fhlk .�/ D
p
� j�j

2a
p
2F

h
cl1 .k/ H

.1/
�g
.k j�j/C cl2 .k/ H

.2/
�g
.k j�j/

i
; (8.201)

where


g D
r

mg C 1

4
: (8.202)

The normalization

jcl2 .k/j2 � jcl1 .k/j2 D 1 (8.203)

must be satisfied by each polarization state in order to satisfy Eq. (8.199). The power
spectrum of tensor modes

P Ocij .�; k/ D k3

2�2

Z
d 3r h0 ˇˇ Ocij .t; x C r/ Ocij .t; x/

ˇ
ˇ 0i e�ik�r ; (8.204)

then is computed as

P Ocij .�; k/ D 2
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P Ohl

.�; k/ D 2
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ˇ
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: (8.205)

The vacuum state is identified by imposing the condition that quantum field theory in
Minkowski space is recovered in the limit of short wavelengths, which is equivalent
to setting c1 D 0 and c2 D 1.

For 
g ¤ 0 one obtains

q
P Ocij .�; k/ D H

2�
p
2F

1

aH j�j
� .
g/

� .3=2/

�
k j�j
2

� 3
2
��g

: (8.206)

The spectral index of tensor perturbations is defined as

nT � d
�
ln P Ocij

�

d .ln k/
; (8.207)

and therefore turns out to be

nT D 3 � 2 
g : (8.208)
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In the slow-roll regime, the derivatives P"i of the four slow-roll parameters (8.167)–
(8.170) are small and can be neglected obtaining

�
zg
�
��

zg
D a2H 2 .2C "1 C 3"3/ (8.209)

to first order. The relation aH D � .1 � "1/ =�C O.2/ then yields

mgD2 � 3 "1 C 3 "3 ; (8.210)


gD 3

2
� ."1 � "3/ ; (8.211)

and the spectral index of tensor perturbations is simply

nT D 2 ."1 � "3/ : (8.212)

If inflation enters a superacceleration regime, defined by increasing Hubble pa-
rameter PH > 0, then "1 D PH=H 2 > 0 and the spectral index of tensor modes
Eq. (8.212) can be positive, giving a blue spectrum with more power at small wave-
lengths than the usual inflationary spectrum [754]. A blue spectrum of gravitational
waves is physically interesting because the possibility of detecting cosmological
gravitational waves (e.g., [266, 745, 904]) is thus enhanced. Blue spectra of gravi-
tational waves cannot be obtained with minimally coupled scalar fields in GR (for
which nT D 4 PH=H 2 is always non-positive).

The temperature anisotropies observed in the CMB sky are decomposed in spher-
ical harmonics4 Y lm and then the monopole (average temperature) and the dipole
(caused by the peculiar motion of the Solar System) terms are removed, leaving

ıT

T
D
C1X

lD2

ClX

mD�l
alm Y

lm .�; '/ ; (8.213)

with contributions from both scalar and tensor modes,

ıT

T
D
�
ıT

T

�
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C
�
ıT

T

�

T

: (8.214)

Using the multipole moments

C
.S;T /

l
�

ClX

mD�l
jalmj2 (8.215)

4 We now change the notation for the scalar spherical harmonics to the more familiar Y lm instead
of Y .
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for both scalar and tensor modes, the relative importance of scalar and tensor modes
in producing the temperature fluctuations is expressed by the ratio

R � C
.T /

l

C
.S/

l

: (8.216)

This ratio for quadrupole modes is computed by Hwang [841] obtaining

R D 4�
�
� !

8�GF
"1 C 3 "23



: (8.217)

In GR it is
!

8�GF
D 1, "3 D 0, and Eq. (8.217) can be rewritten as

R D �2� nT I (8.218)

this relation is independent of the inflationary model and potential V.�/ considered,
hence it is regarded as a consistency relation for the paradigm of inflation [728]. In
general, this reduction is not possible for slow-roll inflation in ETGs.

8.4 Constraints on ETGs from primordial nucleosynthesis

The standard Big Bang model is supported by three major pieces of observational
evidence: the redshift of galaxies, the existence, temperature and spectrum of the
CMB, and primordial nucleosynthesis. The prediction of the relative abundances
of light elements processed in the radiation-dominated universe ([28, 29, 603, 894,
1134], see also [1143]) matches the observed abundances. It is only during the ra-
diation era that, when the decreasing temperature of the expanding universe drops
to �109 K (corresponding to an age of three minutes for the universe), primordial
nucleosynthesis begins with the production of �25% by mass of 4He and traces of
2H, 3He and 7Li [196, 277]. There is almost no production of heavier elements (see
[884, 992] for reviews).

The abundance of 4He and other light elements depends crucially on the ex-
pansion rate of the universe; this sensitive dependence provides a way to constrain
ETGs by using observational limits on the relative abundances of light elements
[13, 283, 390, 397, 554, 555, 790, 967, 1007, 1009, 1082]. During nucleosynthesis,
practically all the neutrons that are present are used to manufacture helium nuclei
and the helium mass fractionX

�
4He

�
depends on the ratio of the neutron and proton

number densities (nn and np , respectively) at that time,

X
�
4He

� D 2

nn

np

1C nn

np

ˇ
ˇ
ˇ
ˇ
ˇ
nucleosynthesis

: (8.219)
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Before the time tF known as freeze-out, the weak interaction maintains neutrons
and protons in chemical equilibrium. After this time, this is no longer possible and
the ratio np=nn remains frozen to its value at tF , which is

nn

np

ˇ
ˇ
ˇ̌
tF

D exp

�
mn �mp
KBTF

�
; (8.220)

where mn and mp are the neutron and proton masses, respectively, KB is the
Boltzmann constant, and TF is the freeze-out temperature. Neutrons decay freely
due to ˇ-decay during the time between freeze-out and nucleosynthesis and the
length of this time interval determines the final abundance of neutrons at nucleosyn-
thesis and the mass fraction of 4He produced. If the cosmic expansion proceeds
faster than in GR, freeze-out occurs earlier and at a higher temperature TF , hence
the ratio nn=np is closer to unity. In addition, the time between freeze-out and nu-
cleosynthesis is shorter, fewer neutrons decay) assuming that the lifetime of the
free neutron is the same as in GR (which is not to be taken for granted if the
fundamental constants of physics are allowed to vary), and more neutrons are avail-
able. These coincidences determine a higher mass fractionX

�
4He

�
. The expression

2x .1C x/�1 on the right hand side of Eq. (8.219) is an increasing function of its
argument x � nn=np, hence a slower cosmic expansion translates into an under-
production of 4He.

The deviation of the cosmic expansion rate from that of standard Einstein gravity
is measured by the Hubble parameter HST in the ETG considered divided by the
Hubble parameterH appropriate for GR with the same forms and amounts of matter
in a spatially flat FLRW universe,


n � HST

H
D HST

r
8�G

3
� : (8.221)

The ratio (8.221) is called speedup factor and is equal to unity in Einstein gravity.
If 
n deviates from this value, there is over- or under-production of 4He during
nucleosynthesis [90, 363, 1132].

In scalar-tensor gravity, the speedup factor is calculated as [361, 362]


n D 1

˝.�n/

r

1C
h
1
G˝

d˝
d


j
0

i2
; (8.222)

where ˝.�/ D p
G� is the scale factor of the conformal transformation mapping

the Jordan frame variables to the Einstein frame, and �n and �0 are the values of
the scalar field at the time of nucleosynthesis and now, respectively. While there
is some consensus on the estimate of the value of 
n in the range 0:8� 
n � 1:2,
more conservative interpretations of the observed abundances yield the tighter limits
0:95 � 
n � 1:03 [283, 1007]. The mass fraction of 4He produced during nucle-
osynthesis is [283, 867, 993]
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X
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nb
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�
C 0:012 .N� � 3/

C0:185
�
�� � 889:8 s

889:8 s

�
C 0:327 ln 
n ; (8.223)

where nb and n� are the number densities of baryons and photons, respectively,
and N� is the number of light (i.e., mass < 1MeV) neutrino species, and �� is
the lifetime of the neutrino. On the basis on the experimental limits the reasonable
choice N� D 3 and �� < 885 s provides the limit [967] X

�
4He

�
< 0:250, which

implies the bound ln 
n � 0:0797 on the speedup factor.
In scalar-tensor gravity, the bounds on 
n translate into constraints on the cou-

pling function !.�/. Unfortunately, these constraints are not universal but depend
on the particular scalar-tensor model. For example, the lower bound on the present
value of ! is !.�0/ � 107 in the scalar-tensor models studied in [363, 967], while
the much tighter constraint !.�0/ � 1020 holds for a different class of scalar-tensor
gravities [397, 1007]. This large range of lower bounds arises because, in the ab-
sence of self-interaction of the Brans-Dicke-like scalar field, two mechanisms acting
in different directions rule the convergence of scalar-tensor to Einstein gravity, and
therefore the magnitude of 
n at any given time. One mechanism attracts the the-
ory toward GR and dominates in certain scalar-tensor theories satisfying particular
boundary conditions, which leads to a monotonic behavior of the speedup factor.
This rapid convergence produces nucleosynthesis bounds that are much more strin-
gent than those obtained in scalar-tensor models in which the attractor mechanism
is less efficient [1008]. A repulsive mechanism counteracts the attractor one and
shows its effects in theories with non-monotonic or oscillating speedup factor 
n, in
which the nucleosynthesis bounds turn out to be much less stringent.

When a self-interaction potential V.�/ is included in the picture, the dynamics
of � change. For example, if the potential has a minimum, � is attracted toward a
fixed value corresponding to this minimum, turning the scalar-tensor theory into GR.
However, the situation is more complicated because the dynamics of � are regulated
not only by V.�/ but also by the source terms

��8� T .m/ � P! P�� = .2! C 3/ in the
equation of motion for �. The theory may converge to GR but, in certain situations,
only asymptotically (a behavior reported for a massive Brans-Dicke-like scalar in a
spatially flat FLRW universes, or for a massless scalar in aK D �1 universe [968]).

To conclude, the nucleosynthesis bounds are model-dependent but, near the
present epoch, it is meaningful to consider an expansion about the present-day value
�0 of �. In this approximation, valid up to the epoch of primordial nucleosynthesis,
a scalar-tensor model is described only by the first two coefficients of the expansion
of the conformal factor ˝ . Introducing a1;2 as in

ln˝Da1 .� � �0/C a2

2
.� � �0/

2 C 	 	 	 ; (8.224)

d .ln˝/

d�
Da1 C a2 .� � �0/C 	 	 	 ; (8.225)
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it is


n D
�
G�n

�
1C a21

G2

���1=2
: (8.226)

The coefficients a1;2 are related to the post-Newtonian parameters of the scalar-
tensor theory used in the analysis of Solar System experiments [1167] by the
equations [360, 855]

� � 1' �2 a21
1C a21

; (8.227)

ˇ � 1' a21 a2

2
�
1C a21

�2 : (8.228)

8.5 The present universe: f .R/ gravity as an alternative to
dark energy

In this section we summarize various elements introduced earlier in this book and
try to provide a unifying picture. The varied astronomical and cosmological obser-
vations of the last decade, including CMB studies and supernovae and large scale
structure surveys, concur to provide the picture of a universe with a present ex-
pansion that is accelerating and with an energy content comprising 4% of ordinary
baryonic matter, 20% of dark matter, and 76% of a mysterious dark energy with ex-
otic properties [60, 417, 940, 1039]. A cosmological constant � would be the most
natural explanation for dark energy but it suffers from the well known cosmological
constant problems [271, 1154]: the observed value of the cosmological constant is
enormously smaller than the vacuum energy predicted by quantum mechanics; and
the energy densities of � and of matter are comparable only during a short time
in the history of the universe, so why is this coincidence happening today when
humans are present to observe it? (This is the coincidence problem.)

Anthropic arguments can be advanced in order to explain the smallness of �
[106, 280]. More recently, anthropic reasoning has been revived in the context of
the landscape of string theory, assuming that our universe corresponds to only one
of an enormous number of vacuum states [1064]. However, advocating anthropic
arguments is perceived by most physicists as a last ditch attempt showing the lack
of better physical arguments.

Rejecting the cosmological constant, in order to remain within the context of
GR, one must postulate the existence of dark energy, an unknown form of energy
which escapes direct detection and does not cluster as ordinary matter. In order to
accelerate the universe (i.e., Ra > 0), this dark energy must posses a very exotic
negative pressure, as follows from the Friedmann equation for the scale factor
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Ra
a

D �4� G
3

.�C 3P / ; (8.229)

and the strong energy condition � C 3P � 0 [1139] must be violated by dark en-
ergy. The most popular scenarios for explaining a dynamical dark energy are known
as quintessence and they are usually based on scalar fields acting the same way
as the inflaton does in the early universe [68, 204, 272, 873, 895, 923, 1148, 1156].
Quintessence scenarios share the common feature of not being theoretically mo-
tivated and not providing a satisfactory solution to one of the biggest puzzles of
current theoretical physics. In fact, the mass of the proposed quintessence scalar
field is typically many orders of magnitude smaller than the natural mass scales of
particle physics, and it is not clear why such fields do not couple explicitly to matter
(no mechanism or symmetry is enforced to prevent this coupling to occur [269]).

The present acceleration of the universe ends the matter-dominated era when
dark energy (or modified gravity, or whatever else causes the acceleration) becomes
dominant over dust. During the matter era, the density fluctuations generated during
inflation, which could not grow during the radiation era, go nonlinear and form
the present-day cosmic structures that we observe. Therefore, it is essential for a
theoretical model to incorporate a matter era that lasts for a sufficiently long time.

The “standard” picture of the present universe is summarized in the concor-
dance model or �CDM model supplemented by some inflationary scenario. While
regarded as highly successful, this model is plagued by the cosmological constant
problems and lacks a convincing explanation of the nature of dark energy and seems
to constitute more an empirical fit to the data with poor theoretical motivation than
a complete model, or a consistent theory of the universe. It is natural therefore, that
alternatives to dark energy have been sought for. None of these proposals are free of
problems.

As already mentioned, a possible explanation of the cosmic acceleration could
be that gravity is not described by GR, but by a theory that is “close” to GR at small
scales but deviates from it in the infrared sector, causing effects only at large scales.
Can such a theory explain the present cosmic acceleration? As long as the dark en-
ergy problem is not solved in a plausible and satisfactory way, it is certainly worth
pursuing alternatives. Moreover, questioning the gravitational theory itself definitely
provides a deeper understanding of gravity and highlights how things could be
different.

8.5.1 Background universe

Assuming the spatially flat FLRW line element

ds2 D �dt2 C a2.t/
	
dr2 C r2

�
d�2 C sin2 �d�2

�

(8.230)
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and a universe filled with a perfect fluid with energy-momentum tensor T �� D
.�C P/ u�u� C P g�� , the field equations of metric f .R/ gravity yield

H 2 D 1

3f 0

�
� � C Rf 0 � f

2
� 3H PRf 00

�
; (8.231)

2 PH C 3H 2 D � 1

f 0
h
� P C . PR/2f 000 C 2H PRf 00

C RRf 00 C 1

2
.f � Rf 0/

i
; (8.232)

where it is assumed that f 0 > 0 to keep the effective gravitational coupling positive,
and that f 00 > 0 to avoid local instabilities [396, 460, 851]. The effective energy
density and pressure of the f .R/ fluid are

�eff D Rf 0 � f

2f 0
� 3H PRf

00

f 0
; (8.233)

Peff D
PR2f 000 C 2H PRf

00 C RRf 00 C 1
2
.f � Rf 0/

f 0
: (8.234)

The effective density �eff is non-negative in a spatially flat FLRW universe, as fol-
lows from Eq. (8.231) in the limit � ! 0. f .R/ gravity can produce accelerated
expansion without the need for dark energy or an inflaton. In vacuo, Eqs. (8.231)
and (8.232) assume the form [211, 219]

H 2D �

3
�eff ; (8.235)

Ra
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D��
6

�
�eff � 3Peff

�
(8.236)

but, if a cosmological fluid if present, it couples to gravity with the effective strength
�=f 0. One can define the effective EoS parameter

weff � Peff

�eff
D

PR2f 000 C 2H PRf
00 C RRf 00 C 1

2
.f �Rf 0/

Rf 0�f
2

� 3H PRf
00 : (8.237)

For example, a metric f .R/model mimics the de Sitter equation of state weff D �1
when

f 000

f 00
D PRH � RR

. PR/2 : (8.238)

By introducing explicitly the scalar degree of freedom of metric f .R/ gravity � �
f 0.R/, the effective EoS parameter becomes

weff D �1C 2

� R� �H P��

R� � f � 6H P� D �1C �
� R� �H P��

3�H 2
; (8.239)
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while

�eff C Peff D
R� �H P�
�

D
P�
�

d

dt

"

ln

 P�
a

!#

: (8.240)

and a de Sitter solution corresponds to P� D f 00.R/ PR D 0.
The ODEs describing spatially homogeneous and isotropic cosmologies are of

fourth order in the scale factor a.t/. When matter is absent (a situation of interest
in early time inflation or in a late universe completely dominated by f .R/ correc-
tions), a.t/ appears only through the Hubble parameter H � Pa=a. In this situation
it is convenient to adopt H , instead of a, as the dynamical variable. First, H is a
cosmological observable; second, the field equations (8.231) and (8.232) are of third
order in H . This elimination of a is not possible when the spatial sections are not
flat or when a fluid with density �.a/ is present.

The dynamical fields of the theory are the metric g�� and the massive scalar
degree of freedom � � f 0.R/. That quadratic corrections to the Hilbert-Einstein
action introduce a massive scalar field was noted early on in [190,1051,1052,1057,
1100, 1122], and this conclusion is relevant for any metric f .R/ theory [484, 590,
869]. The metric tensor contains, in principle, various degrees of freedom: spin two
modes, vector and scalar modes, and all of these can be massless or massive. GR
contains only a massless graviton but when nonlinear corrections depending on R,
R��R

�� , R����R���� are included in the action, other modes raise their head. In
f .R/ gravity these include only a massive scalar mode, which is dynamical in the
metric formalism but not in the Palatini formalism.
f .R/ gravity can achieve cosmic acceleration through the effective equation of

state parameter weff ' �1, as is well known from R2-inflation. This is possible
also in the late universe, and it has even been attempted to unify early inflation
and late time acceleration in the context of modified gravity [70, 842, 848, 850,
852, 853]. However, modelling the late-time cosmic acceleration should not spoil
the successes of the standard cosmological model which requires early inflation, a
radiation era allowing Big Bang nucleosynthesis, a matter era during which mat-
ter overdensities can grow and form structures, and the present accelerated epoch
leading to an uncertain future era the prediction of which is model-dependent
(a de Sitter attractor solution or a Big Rip singularity are common predictions).
The transitions between consecutive eras must be smooth. Smoothness may not
be guaranteed in all f .R/ models and the radiation-matter transition, in particu-
lar, was claimed to originate problems in specific but representative f .R/ models,
including f D R � �2.nC1/=Rn, n > 0 [36, 40, 181, 245, 852]. However, the
prototypical toy model f .R/ D R � �4=R which reportedly could not termi-
nate the radiation era was analyzed in detail with singular perturbation methods
[431] and a sufficiently long matter era was found. In general, although a caveat
exists about terminating the radiation era and allowing a sufficiently long matter
era, one can always find choices of the function f .R/ which achieve the correct
cosmological dynamics (or any prescribed evolutionary history) by first assign-
ing the desired form of the scale factor a.t/ and then by integrating a differential
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equation for f .R/ that produces the desired scale factor (designer f .R/ gravity)
[218, 245, 381, 478, 481, 482, 605, 606, 815, 844, 845, 852, 1029]. The result is a
rather contrived form of the function f .R/. More important, the solution f .R/ is
not unique [815, 1024, 1025, 1042], which shows that observational data providing
information on (a segment of) the cosmic expansion history a.t/ cannot suffice for
a reconstruction of the function f .R/ specifying the theory of gravity. Additional
information is necessary, and it may come from the growth history of cosmological
density perturbations, which depends on the theory of gravity.

As usual, analytical solutions of the equations of FLRW cosmology are rare and
phase space analyses (a powerful tool in cosmology [333,1136]) are necessary, and
common in the literature, originating with pre-1998 studies ofR2-inflation (not lim-
ited to spatially flat FLRW spaces) [35, 246, 813, 1044]. The possibility of chaos in
metric f .R/ gravity was discussed in [98, 99], and many dynamical system stud-
ies appeared due to the recent interest in f .R/ models of the cosmic acceleration
[6,36,39–41,261–263,265,274,322,323,327,409,481,482,545,546,709,710,719,
846, 965].

8.5.2 Perturbations

As already remarked, the FLRW metric is an analytical solution of the field equa-
tions of most gravitational theories, hence f .R/ gravity, dark energy models, or
other theories cannot be discriminated if only the unperturbed FLRW cosmological
model is probed. From the observational point of view, this means that using only
probes sensitive to the expansion history of the universe will not identify the cor-
rect theory. But there is hope, for the growth of density inhomogeneities depends
on the theory of gravity and potentially provides the means to discriminate between
dark energy and modified gravity. The effects of modifying gravity on the growth of
structures should be visible in the CMB and in galaxy surveys [677, 681, 694, 719,
722,1000,1012,1013,1019,1029,1041,1088,1159,1173]. Most efforts to constrain
f .R/ gravity with CMB data [41,52,264,605,719,720,909,1042,1089,1092,1151]
rely on specific choices of the function f .R/, but a few general results have also
been obtained. The growth and evolution of local scalar perturbations in metric
f .R/ gravity theories which reproduce GR at high curvatures were studied in
[278, 382, 1029] by assuming a scale factor evolution typical of a �CDM model.
Vector and tensor modes are unaffected by f .R/ corrections. The well known result
that f 00.R/ > 0 is required for the stability of scalar perturbations is also recovered
[1029]. The qualitative effects of correcting the Hilbert-Einstein action include low-
ering the large angle anisotropy of the CMB (perhaps helping to obtain the desired
low quadrupole reported by the observations), and different correlations between
the CMB and galaxy surveys than in GR [1029]. Currently, we are at a stage in
which the viability of f .R/ gravity in comparison with the�CDM model begins to
be challenged, but more precise observations are needed [18, 114, 116, 707, 1173],
while previous approximations (e.g., [1172]) are criticized and refined. For example,
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in [382] matter inhomogeneities are studied in the longitudinal gauge using a full
fourth order equation for the density contrast ı�=� (this reduces to a second order
one only for sub-horizon modes). The quasi-static approximation invalid for general
forms of the function f .R/ is found to hold for physically motivated choices of this
function. The relation between the gravitational potentials appearing in the metric
and responsible for gravitational lensing and the matter overdensities depends on
the theory of gravity [1173].

Density inhomogeneities generated in the Palatini formalism have been studied in
[30,278,681–683,714,715,721,1097]: two different formalisms developed in [619,
683] and [756] were compared for the specific model f .R/ D R � �2.nC1/=Rn and
it is was found that the two models agree for scenarios that are “close” in param-
eter space to the standard concordance model, but give different results for models
that differ significantly from the �CDM model. However, Palatini f .R/ gravity in
its present form is not viable and these studies do not seem applicable to “cured”
versions of the Palatini formalism which will necessarily include extra degrees of
freedom and extra modes in the solutions of the evolution equations for density
perturbations.

8.6 Conclusions

We begun our discussion by reviewing the main pieces of evidence pointing to the
need for theories of gravity alternative to GR and incorporating new features. The
latter include extra degrees of freedom, such as scalar fields, and novel couplings
of these fields to gravity (in the Jordan frame) or to matter (in the Einstein frame).
Higher order corrections to the Hilbert-Einstein action also appear naturally.

As soon as one leaves GR, many new possibilities appear. For example, the
metric and Palatini variations originate different field equations, the extra fields
introduced bring with them the freedom of choosing coupling functions and po-
tentials, etc. The weak-field limit of these alternative gravities provides too little
information on how to choose these functions. As we have seen, cosmology pro-
vides an important arena for the study of alternative theories and the discovery of
the present acceleration of the universe has renewed the interest in modifications of
GR as a possible way to avoid the introduction of an ad hoc dark energy. Again,
the modifications of gravity lead to an enormous variety of possible models. Being
introduced to explain some modern observations (the luminosity distance versus
redshift relation of type Ia supernovae, the CMB data, etc.), these models must fit
the observational data, however too many models satisfy this requirement, which
is not sufficient to weed out competing candidates. It is, therefore, necessary that
theory provide guidelines to direct the exploration of new models for gravity. It has
been proved very useful to examine closely various criteria for the viability of a
given theory. They include possessing Newtonian and post-Newtonian limits com-
patible with Solar System and terrestrial experiments; being ghost-free; admitting
a well-posed Cauchy problem; producing all the cosmological eras needed for a
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successful cosmological model from the early universe to the present accelerated
era, with smooth transitions between these different epochs; local and global sta-
bility; compatibility with the Standard Model of particle physics and with stellar
evolution, etc. Over the years, the study of these criteria has led to the formulation
of the PPN formalism, cosmography, to an understanding of the Palatini formalism,
of attractor mechanisms toward GR in cosmology, of the chameleon mechanism for
gravity, and of other interesting issues.

Ultimately, neither theoretical criteria not fitting the data can select a unique
theory or class of theories and we are always presented with a degeneracy of models.
Researchers often argue in favor of this or that theory on the basis of a particular cri-
terion being more important than others, but this kind of argument invariably reveals
itself to be a matter of taste and not compelling.

To conclude our excursion into the territory that lies beyond Einstein’s GR, it is
fair to say that we do not have a complete view of this territory but, rather, we have
just taken a glimpse and charted only a small part of it. As soon as new gravitational
degrees of freedom are excited or new couplings introduced, the phenomenology
becomes richer and the situation unfamiliar and more complex. Given our very lim-
ited perspective on this new territory, it would be presumptuous to claim that this or
that theory is validated by cosmology, theoretical arguments, or data. The theories
studied thus far, most notably scalar-tensor and f .R/ gravity, can work as toy mod-
els to satisfy many pressing theoretical and observational needs, but they should be
seen more as temporary models, proofs of principle that modifying gravity satisfies
these needs and avoids dark energy and dark matter, rather than final theories. The
possibility that gravity is not fundamental but emerges in the same way that fluid
mechanics and thermodynamics describe collective averaged properties of micro-
scopic constituents of matter, should also be kept in mind at all times.

Progress in gravitational physics is slow due to the scarcity of experimental data
and recent developments have largely been stimulated by observational progress in
cosmology. We hope to have made clear that our current knowledge of gravity is
extremely limited and that we cannot rest satisfied with Einstein’s theory. Although
it is a milestone of twentieth century physics and a major intellectual achievement
of mankind, GR is almost a century old and was created before quantum mechanics
was fully developed. The fact that it is not yet fully understood does not diminish
the need to go beyond it and to understand how things could be different (and, most
likely, how they are different) at energy and spatial scales not fully explored. The
recognition of this state of affairs in our present knowledge is the first step needed
to make progress.



Appendix A
Physical constants and astrophysical
and cosmological parameters

Digits in parenthesis denote the 1-� uncertainty in the previous two digits. The
values are taken from Ref. [1169] and the Particle Data Group tables [42].

A.1 Physical constants

Speed of light in vacuo c D 2:99792458 	 1010 cm=s

gravitational constant G D 6:67259.85/ 	 10�8 cm3 	 g�1 	 s�2

Planck constant h D 6:6260755.40/ 	 10�27 erg 	 s

reduced Planck constant „ � h

2�
D 1:05457266.63/ 	 10�27 erg 	 s

Boltzmann constant KB D 1:380658.12/ 	 10�16 erg=K

Stefan-Boltzmann constant � D 5:67051.19/ 	 10�5 erg 	 cm�2 	 s�1 	 K�4

electron mass me D 9:1093897.54/ 	 10�28 g ' 511:0 keV

proton mass mp D 1:6726231.10/ 	 10�24 g ' 938:3MeV

atomic mass unit 1 a.m.u. D 1:6605402.10/ 	 10�24 g ' 931:5MeV

fine structure constant ˛ D 7:29735308.33/ 	 10�3 � 1

137

Compton wavelength of the electron �c D 2:426 	 10�10 cm.
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A.2 Conversion factors

Armstrong: 1
ı
A D 10�8 cm D 10�10 m

Fermi: 1 fm D 10�13 cm D 10�15 m

1 erg D 10�7 J

1 eV D 1:602177 	 10�19 J D 1:602177 	 10�12 erg

Astronomical Unit 1 A.U. D 1:496 	 1013 cm

light year: 1 ly D 9:46073 	 1017 cm

parsec: 1 pc D 30:85678 	 1017 cmD 3:2616 ly

A.3 Astrophysical and cosmological quantities

Standard acceleration of gravity g D 9:806 	 102 cm=s2

mass of the Sun Mˇ D 1:989 	 1033 g

mass of the Earth Me D 5:978 	 1027 g

average radius of the Earth Re D 6:370 	 108 cm

radius of the Sun Rˇ D 6:96 	 1010 cm

Chandrasekhar mass (upper limit to the mass of a white dwarf) MCh ' 1:46Mˇ

Schwarzschild radius Rs D 2GM=c2 D 3 .M=Mˇ/ km

Schwarzschild black hole temperature T D „c3
8�GKBM

' 10�7 .Mˇ=M/K

Schwarzschild black hole evaporation time � D 1066 .M=Mˇ/3 yr

Hubble parameterH0 D 72˙ 3 km 	 s�1 	 Mpc�1

reduced Hubble parameter h D H0=
�
100 km 	 s�1 	 Mpc�1

�

total matter density parameter ˝m: ˝mh2 D 0:133˙ 0:006
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baryon density parameter ˝b: ˝bh
2 D 0:0227˙ 0:0006

radiation density parameter ˝r : ˝rh
2 D 2:47 	 10�5

cosmological constant density parameter ˝
: ˝
 D 0:74˙ 0:03

spectral index of density perturbations nS D 0:963C0:014�0:015

tensor to scalar ratio for perturbations r < 0:43 (95% confidence level).

A.4 Planck scale quantities

Planck length lPl D
r„G
c3

D 1:6 	 10�33 cm

Planck mass mPl D
r

„c
G

D 2:2 	 10�5 g

Planck time tPl D lPl

c
D 5:4 	 10�44 s

Planck energy EPl D mPlc
2 D 2:0 	 1016 erg D 1:3 	 1019 GeV

Planck temperature TPl D EPl

KB
D 1:4 	 1032 K

Planck mass density �Pl D c2

G l2
P l

D 5:2 	 1093 g=cm3.



Appendix B
The Noether symmetry approach
to f .R/ gravity

The field equations used in the Noether symmetry approach to spherical symmetry
and to FLRW cosmology in metric f .R/ gravity are reported below.

B.1 The field equations and the Noether vector for spherically
symmetric f .R/ gravity

The field equations of metric f .R/ gravity with spherical symmetry are

H00 D 2A2B2Mf C ˚
BMA02 � A

	
2BA0M 0 CM

�
2BA00 � A0B 0

�
�
fR

C ��2A2MB 0R0 C 4A2BM 0R0 C 4A2BMR00
�
fRR

C 4A2BMR02fRRR D 0 ; (B.1)

Hrr D 2A2B2M 2f C �
BM 2A02 C AM 2A0B 0 C 2A2MB 0M 0 C 2A2BM 02

� 2ABM 2A00 � 4A2BMM 00
�
fR C �

2ABM 2A0R0

C 4A2BMM 0R0
�
fRR D 0 ; (B.2)

H�� D 2AB2Mf C �
4AB2 � BA0M 0 C AB 0M 0 � 2ABM 00

�
fR

C �
2BMA0R0 � 2AMB 0R0 C 2ABM 0R0 C 4ABMR00

�
fRR

C4ABMR02fRRR D 0 ;

H''D sin2 � H�� D 0 : (B.3)

The trace of the field equations is

HD g��H�� D 4AB2Mf � 2AB2MRfR C 3
�
BMA0R0 � AMB 0R0

C 2ABM 0R0 C 2ABMR00
�
fRR C 6ABMR02fRRR D 0 : (B.4)
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The system (4.77) is derived from the condition for the existence of a Noether sym-
metry LXL D 0. Considering the configuration space q D .A ;M ;R/ and defining
the Noether vector ˛ D .˛1 ; ˛2 ; ˛3/, the system (4.77) assumes the explicit form




�
@˛2

@A
fR CM

@˛3

@A
fRR

�
D 0 ; (B.5)

A

M

�
.2CMR/˛3fRR � 2˛2

M
fR

�
fR

C

��
˛1

M
C 2

@˛1

@M
C 2A

M

@˛2

@M

�
fR C A

�
˛3

M
C 4

@˛3

@M

�
fRR

�
D 0 ; (B.6)




�
M
@˛1

@R
C 2A

@˛2

@R

�
fRR D 0 ; (B.7)

˛2 .f � RfR/ fR � 


��
˛3 CM

@˛3

@M
C 2A

@˛3

@A

�
fRR

C
�
@˛2

@M
C @˛1

@A
C A

M

@˛2

@A

�
fR

�
D 0 ; (B.8)

ŒM .2CMR/˛3fRR � 2˛2fR	 fRR C 


�
fR

@˛2

@R

C
�
2˛2 CM

@˛1

@A
C 2A

@˛2

@A
CM

@˛3

@R

�
˛3fRR CMfRRR

�
D 0 ; (B.9)

2A Œ.2CMR/˛3fRR � .f � RfR/ ˛2	 fRR C 


��
@˛1

@R
C A

M

@˛2

@R

�
fR

C
�
2˛1 C 2A

@˛3

@R
CM

@˛1

@M
C 2A

@˛2

@M

�
fRR C 2A˛3fRRR

�
D 0 ; (B.10)

with the condition 
 D .2CMR/fR �Mf ¤ 0 to guarantee the non-vanishing of
the Hessian of the Lagrangian (4.69).

B.2 Noether symmetries in metric f .R/ cosmology

Here it is shown that Eq. (6.208) is indeed a Noether solution with K D 0 and
�0 D 0. First, fromH.a/ given by

H 2D�4d1d2.�c3/
9=2

a4
C 24d1d2.�c3/7=2

a2
C �0md2.�c3/5=2

a4

�36d1d2.�c3/5=2
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C
2
p
3�r0 tanh�1

� p
3ap�c3



d2c

2
3

a4
C 10�r0d2.�c3/3=2

a3

C
12

p
3�r0 tanh�1

� p
3ap�c3



d2c3

a2
� 18�r0d2

p�c3
a

C18p3�r0 tanh�1
 p

3ap�c3

!

d2 ; (B.11)

we calculate the expression of R.a/

RD 6
�
2H 2 C aH H 0

�

D�144d1d2.�c3/
7=2

a2
C 432d1d2.�c3/5=2 � 48d2�r0.�c3/3=2

a3

�
72

p
3d2�r0 tanh�1

� p
3ap�c3



c3

a2
C 216d2�r0

p�c3
a

�216p3d2�r0 tanh�1
 p

3ap�c3

!

: (B.12)

Since both H and R are known one finds, using Eq. (6.194),

f .a/D�8d1c
2
3

a3
� 24d1c3

a
� 3�r0

a4
C
4
p
3�r0 tanh�1

� p
3ap�c3




a3
p�c3 � 12�r0

a2 c3

�
12

p
3�r0 tanh�1

� p
3ap�c3




a.�c3/3=2 : (B.13)

The expressions ofH;R, and f satisfy Eq. (6.129). The system admits the constant
of motion �0 D 0, which is the Noether charge given by Eq. (6.155).

Let us consider now the equivalent scalar-tensor picture. The action

S D
Z
d 4x

p�g f .R/C S .m/ (B.14)

can be rewritten as

S D
Z
d 4x

p�g Œ� R � V.�/	C S .m/ ; (B.15)
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where � D f 0.R/ and V D Rf 0.R/ � f .R/ jRDR.
/. Using Eqs. (B.11)–(B.13),
one can write explicitly the potential

V.�/D3456d1d 32 �3.�c3/13=2 � 10368d 42�r0 �
4c63

�1728p3d 32 �r0 �3 tanh�1

2

66
4

p
3

�
6d2 �.�c3/5=2 C

q
�36d 22 �2c53 � c3

�

p�c3

3

77
5c
4
3

C1728d 32�r0 �3
q

�36d 22 �2c53 � c3.�c3/7=2 � 288d1d2 �.�c3/5=2

C432d 22�r0 �2 c23 C 288
p
3d 22 �r0 �

2
q

�36d 22 �2c53 � c3

	 tanh�1

2

6
6
4

p
3

�
6d2 �.�c3/5=2 C

q
�36d 22 �2c53 � c3

�

p�c3

3

7
7
5 .�c3/3=2

C144p3d2�r0 � tanh�1

2

66
4

p
3

�
6d2 �.�c3/5=2 C

q
�36d 22 �2c53 � c3

�

p�c3

3

77
5

�16d1
q

�36d 22 �2c53 � c3 �
96d2�r0 �

q
�36d 22 �2c53 � c3p�c3 � 9�r0

c23

�576d1d 22 �2
q

�36d 22 �2c53 � c3c43 C 8
p
3�r0.�c3/�5=2

q
�36d 22 �2c53 � c3

	 tanh�1

2

6
6
4

p
3

�
6d2 �.�c3/5=2 C

q
�36d 22 �2c53 � c3

�

p�c3

3

7
7
5 : (B.16)

In order to assess whether the evolution of the background universe constitutes a
viable cosmic history, it is sufficient to check whether the Hubble parameter given
by Eq. (B.11) fits the data from primordial nucleosynthesis to the current acceler-
ated era.
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The weak-field limit of metric f .R/ gravity

Here it is shown that the harmonic gauge can be reduced to the form (5.27)–(5.30).
This gauge is usually characterized by the condition g��� ��� D 0. For � D 0, one
has

2g��� 0�� � g.2/
0;0

0 � 2g.3/0;mm C g.2/
m;0

m D 0 (C.1)

and, for � D i ,

2g��� i�� � g.2/
0;i

0 C 2g.2/
mi

;m � g.2/m;im D 0 : (C.2)

By differentiating Eq. (C.1) with respect to x0, xj and Eq. (C.2) with respect to x0,
one obtains

g.2/
0

0;00 � 2 g.3/m0;0m C g.2/
m

m;00 D 0 ; (C.3)

g.2/
0

0;0j � 2 g.3/m0;jm C g.2/
m

m;0j D 0 ; (C.4)

g.2/
0

0;0i C 2 g.2/
m

i;0m � g.2/mm;0i D 0 : (C.5)

Combining Eqs. (C.4) and (C.5) yields

g.2/
m

m;0i � g.2/
m

i;0m � g.3/
m

0;mi D 0 : (C.6)

Finally, differentiating Eq. (C.2) with respect to xj , one obtains

g.2/
0

0;ij C 2g.2/
m

i;jm � g.2/
m

m;ij D 0 (C.7)

and redefining the indices as .i; j / ! .j; i/, we get

g.2/
0

0;ij C 2g.2/
m

j;im � g.2/mm;ij D 0 : (C.8)
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Combining Eqs. (C.7) and (C.8) now yields

g.2/
0

0;ij C g.2/
m

i;jm C g.2/
m

j;im � g.2/mm;ij D 0 : (C.9)

The relations (C.3), (C.6), and (C.9) guarantee the viability of (5.27)–(5.30).
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149. B. Boisseau, G. Esposito-Farèse, D. Polarski, A.A. Starobinsky, Phys. Rev. Lett. 85, 2236

(2000).
150. M. Bojowald, Living Rev. Relativity 8, 11 (2005).
151. M. Bojowald, Living Rev. Relativity 11, 4 (2008).
152. M. Bojowald, Nature Phys. 3N8, 523 (2007).
153. M. Bojowald, Sci. Am. 299N4, 28 (2008).
154. M. Bojowald, H. Hernandez, M. Kagan, P. Singh, A. Skirzewski, Phys. Rev. Lett. 98, 031301

(2007).
155. L. Bombelli, F. Lombardo, M. Castagnino, J. Math. Phys. 39, 6040 (1998).
156. A. Bonanno, Phys. Rev. D 52, 969 (1995).
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