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Supervisor’s Foreword

The interplay between charge and spin degrees of freedom of electrons in solids has
attracted much interest in a broad range of fields in condensed matter physics. In
magnetic conductors, the spin-dependent scattering of electrons plays an important
role in their peculiar magnetic and transport phenomena, such as the giant mag-
netoresistance and spin-transfer torque. In these systems, the underlying spin
texture affects the electrical transport, and at the same time the electron motion has
an influence on the magnetism. Thus, the electronic and magnetic states are
determined in a self-consistent manner through the spin-charge interplay, which is a
key for understanding of the fascinating phenomena. Recently, the exploration of
such intriguing physics has been conducted for the systems with geometrically
frustrated lattice structures. The geometrical frustration has also been studied for a
long time, in particular, in insulating magnets for their peculiar magnetism, such as
complicated magnetic orders, spin glasses, and spin liquids. In magnetic conductors
on geometrically frustrated lattices, however, further interesting phenomena are
anticipated through the spin-charge interplay. In fact, a variety of novel phenomena
have been discovered successively; for instance, the unconventional anomalous
Hall effect and peculiar diffusive conductivity in pyrochlore compounds and par-
tially disordered magnetism in layered triangular materials. The theoretical under-
standing of these phenomena is a challenge, as it is necessary to deal with the keen
competition between different electronic and magnetic states under the influence of
geometrical frustration.

In the present thesis work by Hiroaki Ishizuka, fundamental aspects of the
spin-charge coupled phenomena under geometrical frustration have systematically
been investigated for three different types of lattice structures, i.e., triangular,
kagome, and pyrochlore. He discovered that strong fluctuations enhanced by
geometrical frustration result in unprecedented phenomena, not only in peculiar
magnetic and transport properties but also in the topological nature of the systems.
Given the simplicity of the models studied here, the diversity of the findings is
rather surprising but highlights the distinctive effect of geometrical frustration on
spin-charge coupled systems. The key theoretical tool in his study is a large-scale
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Monte Carlo simulation, which provides numerically exact results fully taking into
account the fluctuation effects and makes it possible to discriminate the different
states in keen competition. The current study offers the theoretical understanding
of the mechanisms of complex phenomena, which will stimulate further experi-
mental studies in the rapidly growing field. It also provides an important basis for a
deeper exploration of new physics emergent from the subtle interplay between
charge and spin degrees of freedom.

Tokyo, Japan Prof. Yukitoshi Motome
March 2015
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Chapter 1
Introduction

Abstract Physics of spin-charge coupled systems, systems with itinerant electrons
and localized moments that interact with each other, is one of the major topics in
the field of strongly correlated electrons. In these systems, the itinerant electrons
mediate effective interactions between the localized moments giving rise to rich
magnetic behaviors in some of the metallic magnets. Meanwhile, the scattering from
localized moments may strongly affects electronic structure of itinerant electrons,
inducing unconventional electronic states and transport phenomena. Among various
materials of this class, recently,metallicmagnets on pyrochlore and triangular lattices
have gained interest for there unusual magnetic and transport properties observed in
severalmaterials. In thesematerials, alongwith the spin-charge coupling, geometrical
frustration potentially plays an important roles. In this chapter, we review basic
aspects of the spin-charge coupled systems and geometrical frustration.

1.1 Spin-Charge Coupled Systems

A minimal model with the spin-charge coupling is given by the following form,

H = −t
∑

〈i, j〉,σ
(c†iσ c jσ + H.c.) − J

∑

j

′S j · σ j . (1.1)

Here, ciσ (c†iσ ) is the annihilation (creation) operator of an itinerant electron with
spin σ =↑,↓ at i th site, and t is the transfer integral. The sum 〈i, j〉 is taken over
nearest-neighbor (NN) sites. The second term is the onsite (s-d) interaction between
localized spins and itinerant electrons. In the term, S j and

σ j =
∑

α,β

c†jβτβαc jα (1.2)

represent the localized spin and itinerant electron spin at j th site, respectively, and
J is the coupling constant;

∑′
j is the sum over all sites with localized spins (not

neccessary be all the sites in the system).
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2 1 Introduction

This model has a wide range of applications in the condensed matter physics.
One example is noble metal (Au, Ag, Cu, Pt) alloys doped with a small amount
of magnetic ions (Fe or Mn) [6]. In these systems, the magnetic moments from
the magnetic ions are located randomly in the system, typically 1/100–1/10 of the
total sites. These moments on the doped ions interact with itinerant electrons in the
metallic alloy, which is thought to be described by the second term of Eq. (1.1). On
the other hand, as the typical distance between the localized moments being large, it
is expected that the direct exchange interaction between the moments is negligible.

Equation (1.1) is also considered as a simplifiedmodel for someof transition-metal
and rare-earth oxides; in this case, the magnetic moments are located periodically
on every sites. To be specific, here we consider a transition metal compound with
open 3d shell filled with four electrons. This is the case for colossal magnetoresitive
manganites, where three to four electrons occupy the 3d orbitals depending on the
doping.When the transition-metal ion is surrounded by six oxygens forming an octa-
hedron, the degeneracy of 3d shell orbitals is partially lifted by crystal field, splitting
into two eg orbitals and three t2g orbitals. In the case of octahedral coordination, the
t2g orbitals have lower energy than the eg orbitals; with sufficiently strong crystal
field, the t2g bands are energetically separated from the eg bands by an energy gap.

If the Hund’s coupling between the electrons is sufficiently strong, three out of
four electrons occupy the lower t2g orbitals with aligning there spins parallel, while
the remaining one is placed in one of the eg orbitals to benefit from the magnetic
interaction. In this case, the electrons in t2g orbitals can be considered as S = 3/2
localized moments as the t2g levels are far below the Fermi level and have a small
intersite overlap between them. On the other hand, the electrons in the eg orbitals
remain itinerant, which are interacting with the S = 3/2 localized moments by
the Hund’s coupling. In all, the system can be considered as a spin-charge coupled
system in which the localized t2g moment is coupled to eg itinerant electrons; the
coupling is ferromagnetic (FM) due to the Hund’s coupling.

A similar but slightly different situation is realized in rare-earth ions. In rare-earth
compounds, the 4 f orbitals and orbitals with larger principal quantum number reside
close to the Fermi level, contributing to their low temperature behavior. In many of
these compounds, the 4 f orbitals remain partially filled due to the strong Coulomb
repulsion between the 4 f electrons, although they tend to have lower one-particle
energy than other partially filled shells. In addition, due to the strong repulsion, the
number of electrons in 4 f orbitals is often virtually fixed at a commensulate value.
Hence, a similar situation to the above transition-metal ion is realized, where the 4 f
electrons can be viewed as localized spins which are interacting with itinerant elec-
trons on orbitalswith larger principal quantumnumber. One difference here is that the
effective interaction between the localized moments and the itinerant electrons usu-
ally comes from the super-exchange mechanism; they tend to be antiferromagnetic
(AFM).
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1.2 Magnetism in Spin-Charge Coupled Systems

1.2.1 Ruderman-Kittel-Kasuya-Yosida Interaction

One interesting consequence of the spin-charge coupling in Eq. (1.1) is that, the
itinerant electronsmediate effective spin interactions between the localizedmoments.
When J/t is sufficientlyweak, the effective interactions arewell approximated by the
exchange-type interactions that arise from a second-order perturbation theory. This
was originally discussed by Ruderman and Kittel [41] in the context of interactions
between the nuclear moments. Soon after their work, Kasuya [21] and Yosida [61]
independently applied a similar argument to transition-metal systems, where the
localized moments of 3d orbitals interact with itinerant electrons. This is called the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction after their pioneering works.

Let us explain how the RKKY interaction arises from the spin-charge coupling.
We consider the first term of Eq. (1.1) as non-perturbative term H0 and the second
term as the perturbation term H ′;

H = H0 + H ′, (1.3)

where

H0 =
∑

k,σ

εkc†kσ ckσ , (1.4)

H ′ = −J
∑

j

′S j · σ j (1.5)

= −J
∑

j

′ ∑

q

eiq·R j S j · σ q. (1.6)

Here, ckσ (c†kσ ) is the Fourier transform of annihilation (creation) operator ciσ (c†iσ ),
R j is the position of the localized moment S j .

σ j =
∑

α,β

c†jβτβαc jα (1.7)

and

σ q = 1

N

∑

k,α,β

c†k−qβτβαckα. (1.8)

is the itinerant electron spin and its Fourier transform, respectively; N is the number
of the sites and τβα is the vector of βα components of the Pauli matrices. In this
section, for simplicity, we approximate the electron dispersion by that for the free
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electron gas, i.e.,

εk = k2

2m∗ , (1.9)

where m∗ is the effective mass.
The Rayleigh-Schrodinger perturbation theory in terms of J gives the second-

order effective Hamiltonian in the form

H (2) =
∑

kα,k′β

〈kα
∣∣H ′∣∣ k′β〉〈k′β

∣∣H ′∣∣ kα〉
εk − εk′

, (1.10)

where |kα〉 is the one-particle wave function with wave number k and spin α. A
straightforward calculation gives

H (2) = m∗ J 2

N 2

∑

i> j

S j · Si

∑

k,k′

ei(k−k)·(R j −Ri )

k2 − k′2 . (1.11)

By replacing the sum by an integral, we obtain

H (2) = 2m∗ J 2k4F
(2π)3

∑

i> j

K (2kF Rij)S j · Si , (1.12)

where

K (x) = x cos(x) − sin(x)

x4
. (1.13)

Here, Rij = |Ri − R j | is the distance between the two spins at i th and j th sites and
kF is the Fermi wave number. Hence, the second-order perturbation theory gives rise
to effective exchange-type spin interactions.

There are two distinct features in the RKKY interaction in Eq. (1.12). The first
one is the power-law nature of interaction with respect to the distance between two
spins. In the case of the direct exchange interaction, the interaction is expected to
decay exponentially with respect to distance, and hence, the interactions between
further-neighbor sites are often negligible. In contrast, the RKKY interaction for the
3D electron gas given in Eqs. (1.12) and (1.13) shows power-law decay with respect
to distance Rij, |K (Rij)| ∼ 1/R3

ij. Thus, the RKKY interactions between the spins
with long distance often become relevant. Another important point is the sign change
of the interaction with respect to Rij. Figure1.1 shows the plot of K (x), which gives
the distance dependence of the RKKY interaction. The interaction shows oscillation
of the sign with distance.

The above two features of RKKY interaction give rise to peculiar magnetic behav-
ior. When the localized moments are periodically aligned on the lattice sites, the
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Fig. 1.1 Plot of K (x) in
Eq. (1.13) with respect to x
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long-range nature and sign change of interactions often induce frustration between
the spins, possibly giving rise to some exotic magnetic orderings such as an incom-
mensurate magnetic order. In the case of the noble alloys doped with magnetic ions,
the effective interactions between the localized moments vary from FM to AFM,
inducing random interactions between them. As a consequence, the system shows
characteristic behavior at low temperature known as spin glass [6].

1.2.2 Double-Exchange Interaction

While some of the phenomena that take place in transition metal alloys are well
understood by the RKKY interaction, some transitionmetal compounds are expected
to have a strong coupling between the localized moments and itinerant electrons
because of the strong intra-atomic Hund’s coupling, as described in Sect. 1.1. In these
cases, the RKKY description is expected to be no longer valid, as it is a perturbation
theory from theweak J limit. Such casewas discussed byZener [62] and byAnderson
and Hasegawa [3], in the context of electron mediated interactions in manganese
oxides.

To derive the effective interaction in the strong coupling limit, we consider a two-
site FM Kondo lattice model with a classical moment at each site and an itinerant
electron hopping between the two sites,

H = −t
∑

σ

(c†1σ c2σ + c†2σ c1σ ) − J
2∑

i=1

Si · σ i . (1.14)

As the localized moments are treated as classical ones, once the configuration of
the moments is given, the Hamiltonian for itinerant electrons can be given by the
one-particle Hamiltonian,
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He =

⎛

⎜⎜⎝

−JSz
1 Sx

1 − i Sy
1 −t 0

Sx
1 + i Sy

1 JSz
1 0 −t

−t 0 −JSz
2 Sx

2 − i Sy
2

0 −t Sx
2 + i Sy

2 JSz
2

⎞

⎟⎟⎠ . (1.15)

Here, the first and second rows correspond to the up- and down-spin electrons at
the site 1, respectively, and the third and fourth rows for the electrons at the site
2. To consider the strong coupling limit of J → ∞, we first transform the basis of
Eq. (1.15) so that theHamiltonian becomes diagonal for the second term inEq. (1.14).
This transformation yields

H̃e =

⎛

⎜⎜⎝

−J 0 −t̃ −t̃ ′12
0 J −t̃ ′21∗ −t̃∗

−t̃∗ −t̃ ′12∗ −J 0
−t̃ ′21 −t̃ 0 J

⎞

⎟⎟⎠ , (1.16)

where

t̃ = t

(
cos

θ1

2
cos

θ2

2
+ sin

θ1

2
sin

θ2

2
ei(ϕ2−ϕ1)

)
, (1.17)

and

t̃ ′ij = t

(
cos

θi

2
sin

θ j

2
e−iϕ j + sin

θi

2
cos

θ j

2
e−iϕi

)
. (1.18)

Here, (θi , ϕi ) are the polar coordinates of Si .
By applying the first-order Brillouin-Wigner perturbation theory in terms of t/J ,

we obtain the 2 × 2 double-exchange Hamiltonian that for the electrons with spins
parallel to the localized moments,

HDE =
( −J −t̃

−t̃∗ −J

)
. (1.19)

In the case of two sites, this Hamiltonian can be further simplified by an unitary
transformation,

H̃DE =
( −J −t cos θ

2−t cos θ
2 −J

)
, (1.20)

where θ is the relative angle between the two spins. The one-particle eigenstates are
obtained by diagonalizing the Hamiltonian in Eq. (1.20) as

ε± = −J ± |t | cos θ

2
. (1.21)
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To see how the itinerant electrons induce magnetic interaction, let us consider the
case in which temperature T is much lower than |t |. In this limit, we can assume that
the electrons always occupy the ground state. The total energy of the system with
one itinerant electron is given by

E = ε− = −J − |t | cos θ

2
. (1.22)

Hence, the internal energy decreases as the localized moments align their spins
parallel to each other, i.e., a FM effective interaction is induced by the itinerant
electron. This FM interaction is called the double-exchange interaction. In general,
the double-exchange interaction favors a magnetic configuration that optimizes the
kinetic energy of itinerant electrons. In a lattice model with localized moments at
every lattice site, it often favors FM ordering.

1.2.3 Magnetic Ordering by a Metal-Insulator Transition

In spin-charge coupled systems, ametal-insulator transition in the electronic bands of
itinerant electronsmay takes place associatedwith a formation ofmagnetic orderings.
This is related to the folding of the Brillouin zone, which was originally proposed in
a charge-phonon coupled systems in one dimension.

In a one-dimensional chain, the electronic states at k = ±kF is degenerate at
the Fermi level. In general, when there is degeneracy at the Fermi level, the system
responds sensitively to a perturbation that couples those degenerate states, and lifts
the degeneracy. In a chain, such mechanism leads to a formation of superstructure
by a lattice distortion of period 1/2kF. This occurs associated with a metal-insulator
transition, as the lifting of degeneracy pushes the two states away from the Fermi
level. This is known as the Peierls transition [39].

A similar transition my occur by a formation of a magnetic order instead of the
lattice distortion. This type of metal-insulator transition accompanied by a magnetic
ordering was discussed in the interacting electron systems, that was called the Slater
mechanism [43].

A similar phenomenon takes place in the Kondo lattice model when a long-range
magnetic order develops; a magnetic order of period 1/2kF couples to the electrons
at the Fermi level, driving a metal-insulator transition. The Brillouin zone is folded
into 1/n of the original one under the formation of an n-site magnetic superlattice. At
the same time, an energy gap opens at the edge of the folded Brillouin zone, leading
to an energy gain.

An important feature of the magnetic ordering associated with the metal-insulator
transition is that, unlike the case ofRKKY interactions, the energy gain by the energy-
gap opening can not be expressed as an effective two-spin interaction. Hence, in
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general, the Peierls-type mechanism can induce a magnetic ordering, which can not
be realized in localized spin systems. We present one of such cases in Chap.3, where
themetal-insulator transition stabilizes a partially disordered state in two dimensions.

1.3 Transport Phenomena in Spin-Charge Coupled Systems

1.3.1 Metal-Insulator Transition

While the coupling between the localized moments and itinerant electrons gives
rise to effective interactions, it also affects the electronic and transport properties
of the itinerant electrons. In this section, we briefly review the effect of spin-charge
coupling on the itinerant electrons with considering the case of classical localized
moments.

An example is the metal-insulator transition in the Peierls-type mechanism dis-
cussed in Sect. 1.2.3. In this case, as the size of charge gap depends on the develop-
ment of the magnetic order, the temperature dependence of the resistivity deviates
from the Arrhenius equation. This can be used as a signature of correlation-induced
metal-insulator transition.

1.3.2 Electron Scattering by Localized Moments

In ametallic phase, fluctuating spins contribute to the electrical resistivity of itinerant
electrons as they act as a source of scattering through the spin-charge coupling. To
be specific, let us consider the Ising-spin Kondo lattice model, where the collinear
Ising moments are coupled to itinerant electrons. In the high-temperature paramag-
netic phase, the localized moments are disordered by thermal fluctuations. As the
model does not include the interaction between itinerant electrons, the thermody-
namic properties are obtained by taking the statistical average over the one-body
problem for each of the disordered spin configurations. This is essentially the same
as the random potential problemwith binary potential. Hence, in the disordered state,
the scattering by localized moments contribute to increase in resistivity.

A similar but more drastic phenomenon takes place in the presence of inhomo-
geneous magnetic domains. One such example is the Mn oxides La1−xSrxMnO3.
In the manganese compounds, the competition between the Neel type AFM ordered
insulator and the FM metal is known to take place by carrier doping (the holes are
doped into the eg orbitals of Mn sites by replacing the La by Sr ions). In the phase
competing region, a first order transition and associated phase separation takes place
between the two ordered states. The inhomogeneity of different magnetic orders
is expected to be the origin of the colossal magnetoresistance observed in the Mn
oxides [51].

http://dx.doi.org/10.1007/978-4-431-55663-3_3
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1.3.3 Anomalous Hall Effect Induced by the Spin Berry Phase

In addition to the scattering from the localizedmoments, the spinBerry phase induced
by the spin-charge coupling also has a significant effect on the transport properties
[25, 37, 59]. As we discussed in Sect. 1.2.2, in the strong coupling limit of the Kondo
lattice model in Eq. (1.1), the hopping matrix element is given by Eq. (1.17), which
can be written in the form

t̃ = t cos θije
iφij , (1.23)

where θij is the relative angle between the localized moments at i th and j th sites and
φij is the spin Berry phase induced by the rotation of the electron spins associated
with the hopping from i th to j th site. By an analogy to the Peierls phase induced
by the external magnetic field, the spin Berry phase can induce the Hall effect in the
presence of a certain spin texture.1

The anomalous Hall effect induced by the spin Berry phase mechanism attracted
interest as the mechanism for an unconventional magnetic field dependence of the
anomalous Hall effect in a pyrochlore oxide Nd2Mo2O7 [45, 46] (further details on
the pyrochlore oxides will be discussed in Sect. 1.4).2 As a simplified model that
shares essential features of the pyrochlore compounds, a double-exchange model on
a kagome lattice was studied in the presence of the all-out type magnetic order [37].
A schematic figure of the kagome lattice is shown in Fig. 1.2a. The all-out order is a
q = 0 long-range order in which all the spins on a triangle are pointing outward, as
shown in Fig. 1.2b. In this case, by choosing the local gauge so that all the spin Berry
phases become |φij| = φ/3, the Hamiltonian for the itinerant electrons is given by

Hk = t ′
⎛

⎝
0 2 cos(k · a1)e−iφ/3 2 cos(k · a3)eiφ/3

2 cos(k · a1)eiφ/3 0 2 cos(k · a2)e−iφ/3

2 cos(k · a3)e−iφ/3 2 cos(k · a2)eiφ/3 0

⎞

⎠, (1.24)

where t ′ = t cos(θij/2) and

a1 =
(

−1

2
,−

√
3

2

)
, a2 = (1, 0), a3 =

(
−1

2
,

√
3

2

)
. (1.25)

By diagonalizing the Hamiltonian in Eq. (1.24), one can show that the energy
spectrum of the itinerant electrons has an energy gap at electron density n = 1/3 and
2/3 for φ �= 0, π ; here, n is the electron density n = 1

N

∑
i 〈c†i ci 〉. The Hall conduc-

tivity can be evaluated by using the Kubo formula, or equivalently, by calculating
the first Chern number [23, 53],

1Hall effect induced by spin textures in weak coupling limit was also discussed in Ref. [50].
2For the origin of the anomalous Hall effect of Nd2Mo2O7, there is also another theoretical proposal
based on the orbital Berry phase [52].
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(a)

(b)

Fig. 1.2 Schematic pictures of a the kagome lattice and b the all-out spin configuration on a triangle
unit

Cn = 1

2π i

∫

BZ
dk ẑ · ∇k × An(k). (1.26)

Here,

An(k) = 〈nk |i∇k| nk〉 (1.27)

is the Berry connection for the nth band and ẑ is the unit vector perpendicular to the
kagome plane. The integral is taken over the entire Brillouin zone.

In the cases of φ �= 0 and π , the Hall conductance was shown to be [37]

σH = −sgn(sin φ)
e2

h
(1.28)

for both n = 1/3 and 2/3.

1.4 Pyrochlore Oxides

Recently, the experimental study on the magnetism and transport phenomena in
spin-charge coupled systems on geometrically frustrated lattices has gained much
interest. In these systems, aswediscussed inSect. 1.2, the spins are subject to effective
interactions which are mediated by the itinerant electrons via coupling between the
itinerant electrons and localized moments. As mentioned in Sect. 1.2, the effective
interactions lead to novelmagnetic states because of their peculiar nature. In addition,
the geometrical frustration of the lattice structure may cause further complicated
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situations as the consequence of a macroscopic number of nearly-degenerate states.
In this section and the subsequent section, we briefly review a part of recent studies
on the frustrated metallic magnets.

1.4.1 Lattice and Electronic Structure

Magnetic pyrochlore oxides A2B2O7 are a class of frustratedmagnets which recently
gained much interest due to their peculiar properties [14]. In these compounds, the A
sites are occupied by rare-earth and some of transition-metal ions and the B sites by
transition metal ions and some of tetrels. In the crystal, the ions A and B individually
form the pyrochlore lattices which interpenetrate each other.

An important feature of these compounds is the oxygen coordination around
the A and B ions. Figure1.3 shows schematic pictures of A and B ions and their
coordinating oxygens. For a B ion site, there are six oxygens coordinating around
the ion, forming an octahedral structure (Fig. 1.3b). The distortion of the octahedral
cage of oxygens is small, and the O-B-O bond angle ranges from 81◦ to 100◦, which
is close to the ideal value 90◦ [14].

On the other hand, the A site in A2B2O7 has eight coordinating oxygen ions.
Figure1.3a shows a schematic picture of the A site and surrounding oxygen ions;
the six oxygen ions form a ring structure, and the remaining two oxygens are placed
on the top and bottom of the A site forming a linear O-A-O bonding. A typical
distance from the A ion to an oxygen in the ring are 2.4–2.5Å. On the other hand,
the distance between the top oxygen and A ion is typically around 2.2Å, which is
considerably shorter than those to the oxygens in the ring [14]. This strong anisotropy
in the coordination gives strong axial crystal field on the electrons at the A site along
the linear O-A-O bond. This bond is parallel to the local [111] axis, which is along
the line connecting two tetrahedra the ion belongs to.

As stated above, the A sites are usually occupied by rare-earth ions which have
the strong spin-orbit coupling; the total angular momentum J = L + S becomes
a good quantum number for the 4 f electrons in these ions. Here, L and S are the

(a) (b)

Fig. 1.3 Schematic pictures of a A and b B ions and coordinating oxygens in pyrochlore oxides
A2B2O7
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orbital and spin angular momentum, respectively. The spin-orbit coupling and the
strong crystal field from the anisotropic coordination of the oxygens lift the 2J + 1
degeneracy of the 4 f electrons. As a consequence, the magnetic moments on the
A ions are subject to the axial anisotropy. For instance, in the case of A2Ti2O7 and
A2Sn2O7 series, the magnetic moments has easy-axis anisotropy in the case of Pr,
Nd, Tb, Dy, and Ho, while easy-plane for Er and Yb [14].

1.4.2 Geometrical Frustration in Pyrochlore Magnets

In an insulating compound with one of the A or B ions being non-magnetic, the
system can be considered as a localized spin system on a pyrochlore lattice. To be
specific, let us consider the Ising moments on a pyrochlore lattice with the strong
local [111] easy-axis anisotropy which is realized in several pyrochlore oxides such
as Dy2Ti2O7 [40] and Ho2Ti2O7 [17]. These materials are often called spin ice [7].
In the spin ice compounds, a doublet remains as the single ion ground state due to the
crystal field, which can be considered as Ising spins which the moments are directed
along the local [111] direction. When the NN interaction is AFM, each tetrahedron
favors an all-in or all-out local spin configuration; the schematic picture of the all-out
state is shown in Fig. 1.4c. Hence, in the ground state, all the tetrahedra become all-in
or all-out forming an AFM long-range order. This is called the all-in/all-out state, in
which all the spins on the upward tetrahedra pointing into each tetrahedron and all
spins pointing out on the downward tetrahedra.

On the other hand, when the NN interaction is FM, the spin configurations that
maximize the net moments of each tetrahedra are favored, and all the tetrahedra
become two-in two-out at T = 0 (Fig. 1.4a). However, in contrast to the AFM case,
the two-in two-out local constraint alone is insufficient for driving the system to order.
This is a consequence of the six-fold degeneracy of the two-in two-out configura-
tions; there are macroscopic numbers of global spin configurations for which all the
tetrahedra satisfy the two-in two-out constraint3 [8]. As a result, by only considering
the NN interaction, the system remains disordered to absolute zero temperature with
only showing the development of two-in two-out local spin correlations.4

1.4.3 Subdominant Interactions in Spin Ice Compounds

The ground state degeneracy of the frustrated magnets implies the presence of resid-
ual entropy [38], which is the remaining entropy at T = 0 associated with the
macroscopic degeneracy of the disordered ground state. This apparently contradicts

3The two-in two-out constraint is called ice rule after its discovery in the study of water ice, where
the proton configuration is subject to the equivalent local constraint [5, 38].
4This situlation is sometimes called as the cooperative paramagnet [56].
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Fig. 1.4 Schematic pictures of a two-in two-out, b one-in three-out, and c all-out tetrahedra of
spin ice

with the third raw of thermodynamics stating the entropy S → 0 for T → 0. In
the actual compounds, the ground state degeneracy is expected to be lifted by sub-
dominant interactions such as further-neighbor interactions between the magnetic
moments. As a consequence, development of a long-range order is expected to take
place at low temperatures. Furthermore, such subdominant interactions give rise to
nontrivial phenomena which are different from the systems with the NN interactions
alone.

One such example is the dipole-dipole interaction in the spin ice compounds
[7, 8]. In the spin ice compounds, the A-site rare-earth ions carry large magnetic
moments of about 10μB , where μB is the Bohr magneton. Hence, it is expected that
the dipole-dipole interaction becomes relevant; the situation is called the dipolar spin
ice [7, 8]. By a Monte Carlo (MC) simulation for a model for the dipolar spin ice,
it was discussed that the dipole-dipole interaction lifts the degeneracy of the two-
in two-out configurations and gives rise to an AFM order at low temperatures. In
addition, it gives rise to phase competition between the spin ice and the all-in/all-out
ordered states by changing the NN interaction from AFM to FM [32]. It also gives
rise to a first-order transition in the T − H phase diagram with magnetic field along
the 〈111〉 direction, from the kagome-ice magnetization plateau state to the saturated
state [4, 9, 18].

1.4.4 Metallic Pyrochlore Magnets

In the pyrochlore oxides, there are several compounds that possess metallic nature.
Some examples for such materials are the compounds that Ir and Mo ions occupy
the B sites. In the case of metallic compounds, the itinerant electrons coming from
the B ions interact with the localized moments on the A sites. In these compounds,
through the spin-charge coupling, the effective nearest-neighbor interactionmediated
by itinerant electrons together with the geometrical structure possibly gives rise to
the frustration between the localized moments. On the other hand, the spin-charge
coupling also gives rise to the subdominant interactions such as the further-neighbor
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RKKY interactions. In analogy with the dipolar spin ice, such subdominant effects
induced by the spin-charge coupling may give rise to novel magnetic behavior.

Another interesting aspect of these compounds is the transport phenomena. In
these compounds, if the cooperative paramagnetic state or a novel magnetic state
emerges, it may also affect the electronic state of itinerant electrons via the spin-
charge coupling. In such a case, it is likely that a signature of the modified electronic
state is observed in transport properties. Focusing on these points, in the rest of
this section, we review recent experimental and theoretical studies on the metallic
pyrochlore compounds.

1.4.5 R2Mo2O7

The first class of the metallic pyrochlore compounds discussed here is the molybde-
num pyrochlore oxides R2Mo2O7 (R is rare earth). A series of materials in this group
is known to show a rich phase diagram with the substitution of the rare-earth ions
and by applying the external pressure [2, 15, 16, 19, 22]. Figure1.5 shows the phase
diagram for the substitution sorted by the ionic radius of R. Dy and Tb ions have
relatively small ionic radii and are located in the left side in the phase diagram, where
a spin-glass insulating phase emerges in the low-temperature region. On the other
hand, Nd and Sm ions have larger ionic radii and are located in the right side, where
a FM metallic state is dominant in the broad range of temperature up to ∼100K. Gd
and Eu compounds are located in the vicinity of the phase boundary between these
two phases. In the competing region, the spin-glass metallic phase emerges. As a
consequence, the series of compounds shows systematic evolution of the low tem-
perature phase from the spin-glass insulating phase, the spin-glass metallic phase, to
the FM metallic phase with increasing the ionic radius of rare-earth ions.

Fig. 1.5 Phase diagram of molybdenum pyrochlore oxides. The horizontal axis is the average ionic
radius of the rare-earth ions. FM, SGI, and SGM denote ferromagnetic metal, spin-glass insulator,
and spin-glass metal, respectively. (Adapted with permission from Ref. [19], ©2009 APS)
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Fig. 1.6 Phase diagram of molybdenum pyrochlore oxides with R = Nd and Sm under the
applied hydrostatic pressure. Each line shows the measurement under various external pressure.
FM, SGM, and PM denote ferromagnetic metal, spin-glass metal, and paramagnetic metal, respec-
tively. (Adapted with permission from Ref. [19], ©2009 APS)

The low-temperature phases also show a systematic change in application of exter-
nal pressure [19]. Figure1.6 shows the phase diagram of Nd2Mo2O7 and Sm2Mo2O7
with application of hydrostatic pressure. Under ambient pressure, the compounds
show FM metallic phase below the critical temperature Tc. With increasing pres-
sure, Tc decreases and the system turns into a spin-glass metallic state above ∼3
and∼7GPa for Sm and Nd compounds, respectively. Further application of pressure
induces another transition, and the system finally enters into a paramagnetic metallic
phase under strong pressure. These results indicate that the magnetic behavior of the
Mo compounds can be tuned by the substitution of the rare-earth ions or by applying
external pressure.

An interesting feature of the Mo compounds is the transport property in the phase
competing region. Figure1.7 shows the temperature dependence of the electrical
resistivity. By applying the external pressure to the Nd compound, the temperature
dependence of the resistivity gradually weakens and shows nearly temperature inde-
pendent behavior above 8GPa. A similar behavior is also seen in the Sm variant,
which shows nearly flat behavior above pressure �6GPa.

The systematic evolution of the low temperature phase was discussed by consider-
ingmodification of the transfer integrals and the effective super-exchange interaction
between Mo ions [19, 44]. In these compounds, the Mo ions are responsible for the
phase competition. Each Mo ion has two 4d electrons on average in the t2g levels
which are split by the trigonal crystal field; one of the two electrons is in the lower a1g

level and the other is in the higher e′
g level. The a1g electrons are rather localized, and

interact with each other through the AFM super-exchange interaction. On the other
hand, the e′

g electrons are itinerant and induce the FM double-exchange interaction
between the a1g spins. The chemical substitution of R and the application of pres-
sure affect the transfer integrals of e′

g electrons (bandwidth) and the super-exchange
interaction between a1g spins in a complicated manner. The competition between the
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Fig. 1.7 Temperature dependence of the resistivity for Nd and Sm compounds. (Adapted with
permission from Ref. [19], ©2009 APS)

two interactions was expected to be the origin of the complicated phase competition
in these compounds. It was considered that the chemical substitution mainly affects
the bandwidth, while the pressure modifies the superexchange dominantly [19].

Considering the discussions in Sect. 1.1, one may think that the Mo network of
R2Mo2O7 can be considered as a Kondo lattice model where the a1g electrons act
as the localized spins and only the e′

g electrons remain itinerant. One, however, need
to be careful about whether the discussion in Sect. 1.1 applies to the Mo network.
According to the first-principles calculations on the electronic structure of R2Mo2O7,
the a1g band lies typically about 0.5eV below the Fermi level, and is entangled with
the e′

g bands [44]. This is in contrast to the case of a typical spin-charge coupled
system LaMnO3, where the localized t2g bands lie roughly 1.7eV below the Fermi
level and they are well separated from the itinerant eg bands [42]. Hence, it might
be more like a multi-band Hubbard model then a Kondo lattice model. Nevertheless,
the study on the classical-spin Kondo lattice model may be useful in understanding
the physics of Mo network, as it has similar mathematical structure to the mean-field
type approximations for the Hubbard type models.

Interestingly, a peculiar phase separation between the paramagnetic and the FM
ordered states was theoretically reported in a recent study of a double-exchange
model on a pyrochlore lattice [34, 35]. The model consists of the double-exchange
term and NN AFM super-exchange interaction between the localized spins:

H = −
∑

〈i, j〉,σ
tij(c

†
iσ c jσ + H.c.) + JAFM

∑

〈i, j〉
Si · S j . (1.29)

Here, the hopping integral tij is given by Eq. (1.17) and the sums are for all the NN
pairs. By using an unbiased MC simulation described in Sect. 2.2, the phase diagram

http://dx.doi.org/10.1007/978-4-431-55663-3_2
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Fig. 1.8 Monte Carlo results of a the density of states and b the optical conductivity at JAFM = 0.1.
The curves show temperature dependence of each data from T = 0.02 (red) to 0.14 (black).
(Adapted with permission from Ref. [35], ©2010 APS)

of the model in Eq. (1.29) was studied throughly. The results indicated that the phase
separation between the FM ordered and paramagnetic states appears ubiquitously
throughout the phase diagram [34]. This implies that, by tuning the AFM super-
exchange interaction, the inhomogeneity due to the phase separation is expected to
take place on the verge of FM order. Hence, it might be related to the glassy-phase
found under application of external pressure (see Fig. 1.6) [19].

In addition, it was also pointed out that the temperature dependence of the
electronic and transport properties are suppressed in the phase competing region
[35]. Figure1.8 shows result of MC simulation for JAFM = 0.1. The results show
very weak temperature dependence of the electronic and transport properties from
T = 0.04 to 0.14. This behavior is attributed to the suppression of NN interactions by
the competition between the double-exchange and super-exchange interactions; the
two interactions cancel out and effectively no correlation remains between the NN
spins. These results qualitatively account for the diffusive metallic behavior under
the external pressure in R2Mo2O7 [35].

Meanwhile, the coupling of itinerant electrons on theMo pyrochlore networkwith
localized magnetic moments at the rare-earth sites lead to another interesting trans-
port phenomena, namely, unconventional anomalous Hall effect [45]. Empirically,
the Hall resistivity ρH in a metallic compound is known to obey

ρH = RoB + 4π RsM, (1.30)

where B is the external field, M is the magnetization, and Ro and Rs are the ordinary
and anomalous Hall coefficients, respectively. Thus, the Hall resistivity is expected
to increase with both increasing external field and magnetization.

In contrast to this well known behavior, a recent experiment on Nd2Mo2O7
observed decrease of Hall resistivity with increasing external magnetic field. It was
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argued both experimentally [45, 46] and theoretically [37] that theBerry phasemech-
anism described in Sect. 1.3.3 is responsible for this behavior. In the Nd compound,
the noncoplaner magnetic texture of the Nd localized moments plays a key role.
The Nd moments have a spin anisotropy due to the crystal field, and are aligned in
the local [111] directions; Nd spins constitute a spin-ice system and develop two-
in two-out ice-rule type spin configuration at low temperatures. The noncoplanar
spin configuration leads to a finite spin Berry phase. Then the spin-Berry phase may
induce the anomalous Hall effect as discussed in Sect. 1.3.3. Thus, in this scenario,
the coupling of itinerant electrons to the ice-rule type frustrated localized spins plays
a crucial role in the anomalous transport phenomena.

1.4.6 R2Ir2O7

The Ir pyrochlore compounds also show interesting behavior. These compounds also
show a systematic change in the metal-insulator transition with respect to the ionic
radius of R site [1, 29, 30, 58]. The compounds with small ionic radii exhibit a
metal-insulator transition at temperature around 120–140K. On the other hand, the
transition temperature become much lower for compounds with large ionic radii;
R = Nd compound show transition at 33K and no transition is observed for R = Pr.

Among the various compounds in this group, the Pr compound is known for
various interesting transport phenomena. Figure1.9 shows the resistivity and the
magnetic susceptibility of a single crystal sample [36]. The resistivity decreases with
decreasing temperature above 100K, indicating the system is metallic. However, the
decrease becomes slow below �100K, and the resistivity slightly increases at lower
temperatureswith showingminimumat�40K.Themagnetic susceptibility showsno
sign of a phase transition down to�70mK, except for a spin freezing behavior below
0.12K. Temperature dependence of the susceptibility exhibits peculiar behavior, as
shown in Fig. 1.10. At high temperatures, it is well fitted by the Curie-Weiss behavior,

Fig. 1.9 Resistivity and
inverse magnetic
susceptibility of a single
crystal of Pr2Ir2O7.
(Adapted with permission
from Ref. [36], ©2006 APS)
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Fig. 1.10 Magnetic
susceptibility for a single
crystal of Pr2Ir2O7.
(Adapted with permission
from Ref. [36], ©2006 APS)

Fig. 1.11 Anisotropic
response of Hall conductivity
and magnetization with
respect to external magnetic
field. (Adapted with
permission from Ref. [26],
©2007 APS)

and the estimated Curie-Weiss temperature is ΘW = −20K. In addition, below
T � 1.7K, themagnetic susceptibility shows a logarithmic temperature dependence.
The inset shows strong dependence of the susceptibility on external field upon cooling
below T = 0.12K, which is a sign of spin freezing [36].

In addition, Pr2Ir2O7 shows peculiar features in the Hall conductivity [26].
Figure1.11 show the results of the anomalous Hall conductivity (a) and magneti-
zation (b) in applied magnetic field along three different directions, [100], [110],
and [111]. While the results for [100] and [110] directions show monotonic increase
with respect to the magnetic field, the conductivity along the [111] direction shows
non-monotonic behavior similar to that of Nd2Mo2O7. Clearly, this is in contra-
diction with the “conventional” anomalous Hall effect, in which the conductivity is
proportional to the magnetic moment.



20 1 Introduction

Fig. 1.12 Temperature
dependence of magnetization
and Hall conductivity.
(Adapted with permission
from Ref. [27], ©2010
Nature Publishing Group)

Another interesting behavior was recently reported in this compound, in the
low temperature conductivity measurement under no external magnetic field [27].
Figure1.12 shows temperature dependence of spontaneous magnetic moment and
Hall conductivity. At the lowest temperature, Pr2Ir2O7 shows a phase transition to
a phase with finite magnetic moment and Hall conductivity. The magnetic moment
vanishes with increasing the temperature. However, the Hall conductivity appears to
remain finite even in the absence of magnetic moment. In Ref. [28], this result was
interpreted as a consequence of a novel magnetic state. However, we also note that
a recent study on the electronic structure of the Ir electrons argued that a very weak
magnetic moments may give rise to strong response in the Hall conductivity, which
might be the source of the anomalous Hall effect in Pr2Ir2O7 [33].

As discussed in Sect. 1.4.1, the localized moment of the Pr ion in Pr2Ir2O7 is sub-
ject to the strong crystal field, which induces strong Ising-type anisotropy. Hence, an
Ising-spin Kondo lattice model is expected to be a good starting point for studying
Pr2Ir2O7. Such a model was studied by simply considering an effective Ising spin
model with the RKKY interaction for the fcc electron gas [20]. They studied the
phase diagram and temperature dependence of susceptibility using the classical MC
simulation, and successfully reproduced the behavior ofmagnetic susceptibility, neg-
ative ΘW in the presence of strong FM NN interaction. More recently, the transport
property of an Ising-spin Kondo lattice model was studied, focusing on the resistivity
minimum of the Pr2Ir2O7 [10, 55]. There results showed that the development of the
ice-rule local correlation gives rise to a minimum in the resistivity.

1.5 Triangular Layered Oxides

Another class of metallic magnets on a frustrated lattice that is known to show
interesting magnetic properties are the triangular lattice magnets. One such exam-
ple is the partially-disordered phase, which is a magnetic order with coexisting



1.5 Triangular Layered Oxides 21

magnetically-ordered sites and paramagnetic/non-magnetic sites. In this section, we
review basic aspects of the triangular lattice magnets focusing on the partial disorder
in Ising spin systems.

1.5.1 Partially Disordered State

The partially-disordered (PD) state is a magnetic order which magnetically ordered
sites and paramagnetic sites are periodically aligned. Figure1.13 shows schematic
pictures of the PD states in an Ising spin model; the up and down arrows show
ordered Ising spins and the open circles represent paramagnetic sites. The spins on
the paramagnetic sites are thermally fluctuating between the up and down states,
hence, they do not contribute to the magnetization.

Historically, the PD state was first studied in an Ising model on the triangular
lattice [31]. In the first attempt, an Ising spin model with NN (J1) and second-
neighbor (J2) interactions was considered, with J1 and J2 being AFM and FM,
respectively. The ground state of this model is a three-sublattice ferrimagnetic (FR)
order, which is composed of the honeycomb network of up spins and isolated down
spins at the remaining sites. The phase diagram of this model was studied by a
mean-field theory, and it was shown that the three-sublattice PD state (Fig. 1.13a) is
realized in the finite temperature region in between the low temperature FR ordered
state and the high-temperature paramagnetic phase. However, subsequent numerical
studies on the J1–J2 Ising model on the triangular lattice have reported that the PD
state is unstable against thermal fluctuations. In a series of the subsequent studies,
the phase diagram of this model was studied extensively using the classical MC
simulation for both weak J2 [11–13, 49, 57] and for J2 being comparable to J1
[24]. All of the studies consistently reported the presence of two subsequent phase
transitions, similar to those of the mean-field theory. However, based on the finite
size scaling analysis [12, 13], MC snap shots [11, 57], and MC time evolution
[12, 49, 57], it was claimed that the intermediate phase found in these studies are

(a) (b)

Fig. 1.13 Schematic picture of the a 3-sublattice and b 5-sublattice PD state. The up and down
arrows indicate magnetically ordered sites and the open circles represent paramagnetic sites. The
paramagnetic sites are thermally fluctuating between the up and down states
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a Kosterlitz-Thouless type quasi-long-range order, and not a long-range PD state
[24].5 These results consistently show that the PD state is unstable in the J1–J2 Ising
model on the triangular lattice, and is taken over by a Kosterlitz-Thouless type state.

Later, similar studies for an Ising model on a triangular lattice with third-neighbor
interaction [48] and for an Ising model on a kagome lattice with NN J1 and second-
neighbor J2 interaction were done by using the classical MC method [47]. However,
no PD long-range order was found in these models; it was only realized as a quasi-
long-range order at the best. These results along with the above MC results on
the J1–J2 triangular Ising model appear to show that the PD state is unstable in
two-dimensional Ising models. So far, the only PD state confirmed is in a three-
dimensional model with stacked triangular lattices, in which the interlayer spin-spin
coupling being stronger than the intralayer couplings [54].

1.5.2 Ag2CrO2

While the theoretical studies on two-dimensional Ising models appear to show that
the PD state is not stabilized in two dimensions, a recent experiment on a quasi-
two-dimensional oxide Ag2CrO2 has reported an interesting result. Ag2CrO2 is a
stacked-triangular lattice compound with a crystal structure similar to delafossite.
This compound consists of alternating stacks of the CrO2 planes and Ag2 plane,
with lattice parameter a = 2.9298Å and c = 8.6637Å at T = 200K [28]. In this
compound, the Cr3+ ions have open 3d shells with three electrons per ion. Due to
the octahedral coordination of oxygen ions, the 3d orbitals of the Cr3+ ions split
into three t2g and two eg orbitals; the three electrons fill up the t2g orbitals with
aligning their spins, which leaves no orbital degrees of freedom. From the high-
temperature susceptibility measurement, the effective magnetic moment for Cr3+
ions is experimentally estimated to be 3.55 μB [60], which is close to the spin-only
value, 3.87 μB . Hence, it is expected that each Cr3+ layer forms a triangular spin
system with S = 3/2. Meanwhile, this magnet is known to be a metal; it is expected
that the itinerant electrons are at Ag sites. Thus, this material is a spin-charge coupled
system which localized moments on Co site interacts with itinerant electrons on Ag
sites.

Ag2CrO2 shows a phase transition at TN = 24K; the heat capacity measurement
shows a sharp peak at TN = 24K, indicating a phase transition to an AFM order
[60]. A detailed study on the magnetic and crystal structure of the compound was
recently conducted by aneutrondiffraction technique [28]. Figure1.14 showsneutron
powder diffraction pattern for the Ag2CrO2 at T = 4 and 45K, which are below and
above the TN, respectively. In addition to the Bragg peaks observed in at 45K, the

5We also note that, in these studies, there was some disagreement on the overall structure of the
phase diagram. However, all these studies consistently claimed that the high-T phase transition is
of a Kosterlitz-Thouless type. For further details, see Ref. [24].
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Fig. 1.14 Neutron powder
diffraction pattern of
Ag2CrO2 at T = 4K (below
TN) and 45K (above TN).
(Adapted with permission
from Ref. [28], ©2012 APS)

result for 4K shows additional Bragg peaks at ( 15
1
5 l) and ( 45

1
5 l). This indicates that

a five-sublattice magnetic structure emerges below TN. The magnetic Bragg peaks
were fitted reasonablywell by assuming the five-sublattice PD state in Fig. 1.13b [28].
The unit cell along the c axis remains as the same with the structural one, indicating
the FM stacking of the PD triangular layers. In addition, from the structural analysis,
it was reported that the compound exhibits a slight distortion of the triangular lattice
at TN, where the b axis is slightly contracted. The transition is the magnetic ordering
accompanied by the lattice distortion, consistent with the anisotropic structure of the
five-sublattice order.

1.6 Motivation of This Study

In this chapter, we reviewed some of the basic aspects of the spin-charge coupled
systems, where localized moments and itinerant electrons interact with each other.
Though the magnetism and transport phenomena in the spin-charge coupled systems
have been extensively studied formore than half a century, they still serve as one of the
major topics in the field of condensedmatter physics.Moreover, recent developments
in experimental techniques have opened numbers of new directions in the studies of
these systems; from novel magnetic behavior and transport phenomena to industrial
applications such as spintronics.

One of such direction is the study of compounds with geometrically frustrated
lattice structures. One of the major motivations in the study of these compounds is to
explore novel magnetic states and transport phenomena induced by the cooperation
of the spin-charge coupling and geometrical structure of the lattices. Indeed, as we
discussed in Sects. 1.4 and 1.5, these compounds exhibit various interesting transport
and magnetic phenomena.

The main objective of thesis is to theoretically explore the novel phases that are
induced by the spin-charge coupling in a geometrically frustrated magnets. While



24 1 Introduction

novel phenomena are anticipated and experimentally observed in the triangular and
pyrochlore metallic magnets, much less theoretical studies were done at the begin-
ning of this project. This is contrastive to the case of manganese oxides, where the
fundamental properties of its effective model—the double-exchange model—have
been extensively studied. To gain an understanding on the fundamental properties of
the simplestmodels,we studied themagnetic phase diagramand electronic properties
in this thesis.

In frustrated systems, due to the competition between the interactions, they often
induce various nontrivial magnetic states at the low temperature. To clarify these
phenomena, through out the study, we intensively used an unbiased Monte Carlo
simulation which gives the “numerically exact” solutions to the thermodynamic
properties of the model. The method is free from the negative-sign problem that
often precludes application of the quantum Monte Carlo method. Hence, we can
study the low temperature properties of the fermion models even in the presence of
geometrical frustration.

1.7 Structure of This Thesis

The structure of this thesis is as follows. In Chap. 2, we introduce the models and
methods; the Ising-spin Kondo lattice models are introduced in Sect. 2.1, and Monte
Carlo and variational method we used are described in the subsequent sections.
Section2.5 is devoted to the perturbation theory we used in Chap. 8.

In Chaps. 3–8, we present our theoretical results on the Kondo lattice models on
various frustrated lattices. The results on the triangular lattice models are presented
in Chaps. 3 and 4. The magnetic behavior of this model is studied in Chap.3, where
we show that this model exhibits the first example of PD state in two dimensions.
On the other hand, in Chap. 4, we study the electronic states of itinerant electrons
in another magnetic state that appears in the phase diagram of this model, the three-
sublattice ferrimagnetic order. We found that the ferrimagnetic order is a half-metal
with Dirac electrons.

Chapters5 and 6 are devoted to the magnetic and transport properties of Kondo
lattice models on a kagome lattice. In Chap. 5, we present emergence of a peculiar
ferrimagnetic state called the loop liquid state, and its transport properties. On the
other hand, we study a spin-ice type Ising-spin Kondo lattice model on a kagome
lattice in Chap. 6.We show that, when a local correlation called kagome ice develops,
an energy gap opens in the electronic density of states of the itinerant electrons. We
call this state the kagome-ice insulator; the electronic states and transport properties
are studied in detail. We show that the kagome-ice insulator exhibits finite Hall
conductivity.

In the last three chapters, Chaps. 7, 8, and 10, we study spin-ice type Ising-spin
Kondo lattice models on a pyrochlore lattice. In Chap. 7, we show the magnetic and
electronic properties in the intermediate coupling region,where the coupling between
the electrons and spins is weaker than the bandwidth of free electrons. On the other
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hand, in Chap.8, we present emergence of an interesting intermediate phase in the
strong coupling limit of the Kondo lattice model. The benchmark of the Monte Carlo
method used in these two sections is given in Chap. 9. Finally, Chap. 10 is devoted
to the summary.
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Chapter 2
Models and Methods

Abstract This chapter is devoted to introduce themodels andmethodswe employed
in this thesis. We consider Ising-spin Kondo lattice models on frustrated lattices,
such as triangular, kagome, and pyrochlore lattices. A strong coupling limit of the
Kondo lattice model, double-exchange model, is also introduced. The magnetic and
transport properties of these models are numerically studied by using Monte Carlo
simulations and variational calculation. Details of these methods are also explained
in this chapter. In addition to the numerical calculations on Kondo lattice models, a
perturbation approach for deducing the effective spin-spin interactions in the double-
exchange models are also explained.

2.1 Ising-Spin Kondo Lattice Model

2.1.1 Kondo Lattice Model on Frustrated Lattices

To explore the novel magnetic and transport phenomena that emerge from the com-
petition and/or cooperation of spin-charge coupling and geometrical frustration, we
here consider a simple model with these aspects, the Ising-spin Kondo lattice model
on geometrically frustrated lattices. The Hamiltonian is given by

H = −t
∑

〈i, j〉,σ
(c†iσ c jσ + H.c.) − J

∑

i

Si · σ̂i −
∑

i

Si · h. (2.1)

The first term represents hopping of itinerant electrons, where ciσ (c†iσ ) is the
annihilation (creation) operator of an itinerant electron with spin σ =↑,↓ at i th site,
and t is the transfer integral. The sum 〈i, j〉 is taken over NN sites. The second term
is the onsite interaction between localized spins and itinerant electrons, where J is
the coupling constant (the sign of J does not matter in the present model),

σ̂ i =
∑

α,β

c†i,ασαβciβ (2.2)
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represents the localized Ising spin at i th site (|Si | = 1); and σαβ is the vector of
Pauli matrices. As we will see in the following sections, along with the models
with collinear Ising spins, we also consider the models with different anisotropy
axes depending on the sublattices. Hence, the localized spins are denoted by vectors
Si = (Sx

i , Sy
i , Sz

i ), where Sγ

i (γ = x, y, z) is the γ component of the i th spin. In
some sections, we also consider the effect of external magnetic field h. The third term
in Eq. (2.1) describes the external magnetic field acting on the localized moments.
For simplicity, we ignore the effect of magnetic field on the itinerant electrons. This
corresponds to the limit in which the localized spins have infinitely large magnetic
moments; such a limit is reasonably justified in some realistic situation, such as the
rare-earth and transition-metal compounds discussed in the introduction, as they are
expected to have large magnetic moments.

2.1.2 Strong Coupling Limit

In Chaps. 6 and 8, we consider the strong-J limit of Eq. (2.1). In this limit, the spin
of each itinerant electron is perfectly polarized along the direction of the localized
moment at each site. As a consequence, the spin indices for itinerant electrons are
projected out. Instead, the spin-charge coupling modifies the hoppings of itinerant
electrons [1, 5]; this limit is known as the double-exchange limit (see Sect. 1.2.2).
The Hamiltonian in this limit is given by

H = −
∑

〈i, j〉
(ti j c̃

†
i c̃ j + H.c.) −

∑

i

h · Si , (2.3)

where

ti j = t

(
cos

θi

2
cos

θ j

2
+ sin

θi

2
sin

θ j

2
e−i(ϕi −ϕ j )

)
(2.4)

is the hopping matrix element between i th and j th site modulated by the relative
angle between the Si and S j ; (θi , ϕi ) are the polar coordinates for the localized
moment at i th site;

Si = (Sx
i , Sy

i , Sz
i ) = S(sin θi cosϕi , sin θi sin ϕi , cos θi ). (2.5)

2.2 Monte Carlo Simulation

To numerically analyze the models in Eqs. (2.1) and (2.3), we performed an unbiased
Monte Carlo (MC) simulation which has been widely used to study similar models
[2–4]. The method is generally applicable to the fermion models coupled to classi-
cal fields whose Hamiltonian is given in a quadratic form in terms of the fermion

http://dx.doi.org/10.1007/978-4-431-55663-3_6
http://dx.doi.org/10.1007/978-4-431-55663-3_8
http://dx.doi.org/10.1007/978-4-431-55663-3_1
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operators. To be specific, however, we particularly consider the case of itinerant
electrons coupled to localized spins.

In general, the partition function for such amodel is obtained by taking two traces;
one is over the classical fields and the other over the fermion degree of freedom. For
the present model in Eq. (2.1), the partition function is written as

Z = Tr{Si }Tr{ciσ ,c†iσ } exp
[
−β

(
H({Si }) − μN̂c

)]
, (2.6)

where Tr{Si } and Tr{ciσ ,c†iσ } are the traces over the Ising spins and the electron oper-

ators, respectively, and H({Si }) is a one-particle Hamiltonian matrix in Eq. (2.1)
defined for a given Ising spin configuration {Si } = (S1, S2, . . . , SN ) where N is the
number of the sites; β = 1/T is inverse temperature, μ is the chemical potential,
and N̂c = ∑

iσ c†iσ ciσ . The former trace can be calculated by classical MC sampling
of the spin configurations {Si } with the Boltzmann weight

P({Si }) = 1

Z
exp [−Seff({Si })] , (2.7)

where the effective action is given by the latter trace in the form

Seff({Si }) = − log
(
Tr{ciσ ,c†iσ } exp

[
−β

(
H({Si }) − μN̂c

)])
. (2.8)

A straightforward method to calculate the effective action is the numerical diag-
onalization of H({Si }) [4]. By using the one-particle eigenvalues for H({Si }),
{εν({Si })}, the effective action is calculated by

Seff({Si }) =
Ndim∑

ν=1

F[εν({Si })], (2.9)

where F[x] = − log
[
1 + exp {−β(x − μ)}] and Ndim is the dimension of the

Hamiltonian (Ndim = 2N in the present case).

2.3 Polynomial Expansion Method

In the polynomial-expansion Monte Carlo (PEMC) method, the sum over the eigen-
states is replaced by the integration over the density of states (DOS), and the integral
is evaluated by using the polynomial expansion technique [3];

Seff({Si }) =
∫

dε D{Si }(ε)F(ε) =
∑

m

μm fm, (2.10)

where D{Si } is DOS for itinerant electrons for a spin configuration {Si }.
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In Eq. (2.10), DOS and F are expanded by Chebyshev polynomials as

μm =
∫ 1

−1
dxTm(x)D̃{Si }(x) = Tr Tm[H({Si })], (2.11)

fm = −1

αm

∫ 1

−1

dx

π
√
1 − x2

Tm(x)F(x), (2.12)

where αm = 1 for m = 0 and otherwise 1/2. Here, DOS is renormalized so that the
entire spectrum fits into the range of x = [−1, 1];

D̃{Si }(x) = aD{Si }(ax + b). (2.13)

where a = (εtop−εbtm)/2 and b = (εtop+εbtm)/2. In the case of a pyrochlore lattice
with finite J/t , we take εtop = 2t + J + 1 and εbtm = −6t − J − 1 (we afford a
margin of 1 for both εtop and εbtm). On the other hand, in the case of J/t → ∞ limit,
we take εtop = 2t + 1 and εbtm = −6t − 1. In Eqs. (2.11) and (2.12), the Chebyshev
polynomials Tm are calculated by using the recursion relation in the form

Tm(x) = 2xTm−1(x) − Tm−2(x), (2.14)

with

T0(x) = 1, T1(x) = x . (2.15)

In the MC update, we choose a single spin (or several spins) randomly and flip it
(or them) by probability p, which is given by the standardMetropolis algorithm, i.e.,

p = exp[−βSeff({Si } f )]
exp[−βSeff({Si }i )] . (2.16)

Here, {Si }i is the initial spin configuration and {Si } f is the fliped configuration.
When evaluating Seff({Si }i ) and Seff({Si } f ) in PEMC, the Chebyshev moments

μm are evaluated by calculating the Chebyshev polynomials of the Hamiltonian
matrix recursively. For the sparse Hamiltonian matrix, the calculation amount of μm

is O(N 2 log N ), as the necessary order of polynomials scales as log N . In one MC
step, we go through the above process N times recursively. Hence, the total cost for
one MC step in PEMC is O(N 3 log N ) [3], which is reduced from O(N 4) in the
Monte Carlo method using the numerical diagonalization.

2.3.1 Truncation Algorithm

An efficient way to further reduce the calculation amount is to employ a truncation
algorithm [2]. In the truncation procedure, a real-space basis e j (k) = δ j,k is chosen
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for the trace in Eq. (2.11), where k is a site index. A new vector v(m)
j is generated by

multiplying the unit vector by the mth Chebyshev polynomial of the Hamiltonian, as

v(m)
j = Tm[H({Si })]e j ≡

∑

k

v
(m)
j,k ek . (2.17)

If the hopping term in the Hamiltonian is limited to nearest-neighbor sites as in
Eq. (2.1), the coefficient v(m)

j,k takes a nonzero value only if || j − k|| ≤ m is satisfied,
where || j − k|| is the Manhattan distance between two sites j and k. Furthermore,
the coefficient usually becomes small quickly as the Mahnattan distance increases.
Hence, the vector elements of v(m)

j with such small amplitudes can be neglected in the
calculation of the moment μm . In particular, the truncation was done by introducing
a threshold for the amplitude of vector elements, ε, and ignoring the small elements
which satisfy |v(m)

j,k | < ε in the calculation of Eq. (2.17) [2]. A similar truncation was
also introduced in the trace operation to calculate the effective action Seff({Si }). This
algorithm further reduces the total cost of one MC update to O(N ) [2].

In this study, we considered a similar but slightly different truncation algorithm.
We carry out the truncation by a real-space distance, not by a magnitude of the
vector element in the original scheme; namely, we set a truncation distance d and
ignore all contributions out of the range of the Manhattan distance d from a flipped
spin. An example of sites within Manhattan distance d ≤ 2 is shown in Fig. 2.1 for
checkerboard lattice. In the present method, the list of sites to be considered in the
calculation is known in advance and unchanged throughout the MC simulation. On
the other hand, in the previous method, the list needs to be updated by looking at the

Fig. 2.1 Schematic picture
of the real-space truncation.
The figure shows a projection
of the pyrochlore lattice onto
a 〈001〉 plane, and circles
represent the lattice sites.
The black circle in the center
represents the site with
flipped spin. Gray circles
indicate the sites within the
range of the truncation
distance d. The picture
shows an example of d = 2
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elements of v(m)
j in each MC step. Therefore, the present algorithm is much simpler

than the previous one.
In previous studies, this method was shown to be efficient in reducing the com-

putational costs [2]. The benchmark on the efficiency of this method for the model
in Eq. (2.1) is presented in Sect. 9. We, however, found that the truncation method
is less efficient for the system sizes that we calculated. Hence, we did not use the
truncation method, and instead, used the original PEMC method in Chaps. 7 and 8.

2.3.2 Physical Quantities

In this algorithm, the calculation of physical quantities related to the localized spin
degrees of freedom (e.g., magnetization and its susceptibility) can be done in the
same manner as the classical Monte Carlo method. Formally, it is done by replacing
the internal energy with Seff({Si }),

〈Os〉 = 1

Z
Tr{Si }Os exp [−Seff({Si })] . (2.18)

Here, Os = Os({Si }) is a function for a physical quantity related to spins. The
susceptibility for Os , χOs , is calculated from the fluctuation of Os ,

χOs = 1

T
(〈O2

s 〉 − 〈Os〉2). (2.19)

When calculating a physical quantity related to electronic degree of freedom,
such as internal energy, the calculation should be done by appropriately taking into
account of the Fermi distribution function

〈Ôe〉 = 1

Z
Tr{Si }Oe({Si }) exp [−Seff({Si })] , (2.20)

with

Oe({Si }) = Tr{ciσ ,c†iσ } Ôe({Si }) exp(−βH). (2.21)

Here, Oe({Si }) is a physical quantity for itinerant electrons which is given in the
quadratic form in terms of ciσ , and Tr{ciσ ,c†iσ } is the trace over the electronic degree
of freedom.

As numbers of different parameters are used in each chapter, the details of the
actual quantities calculated were described in each chapter separately. We also note
that we used different notations as defined in each chapter.

http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_8
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2.3.3 Conductivity

To investigate the transport properties, we calculated the conductivity by the stan-
dard Kubo formula in a similar manner as in Eq. (2.21). For instance, the optical
conductivity along the direction ν induced by an electronic field along the direction
η was calculated by

σην(ω, T ) = −iTr{Si }

[
∑

m,n

f (εn) − f (εm)

εm − εn

〈m| ĵη|n〉〈n| ĵν |m〉
ω − εm + εn + iτ−1

]
, (2.22)

where, f (ε) is the Fermi distribution function, εm is the eigenenergy for mth state
of itinerant electrons, and τ is the scattering rate. Here,

ĵη = −it
∑

〈 j,k〉,σ
(nη · δ j,k)(c

†
kσ c jσ − c†jσ ckσ ) (2.23)

is a current operator in the η direction (η is assigned for each case below), which
is constructed in a standard way from a polarization operator in order to satisfy
the continuity equation. Here, nη is the unit vector in the η direction and δ j,k is
the geometrical vector from j th to kth site. The sum is taken for all the nearest-
neighbor pairs. The details on the parameters we used in the calculations are given
in each chapter.

2.4 Variational Method

In addition to theMCmethod introduced in Sects. 2.2 and 2.3, the ground state phase
diagrams were studied using a variational method comparing the ground state energy
of different magnetically ordered states obtained in the MC simulation.

In the variational calculation, we first calculated the electron density and internal
energy for each magnetic orders with varying the chemical potential μ. The ground
state at different μ are obtained by comparing the ground state energy for different
magnetic states. The phase diagram with respect to μ is then mapped onto the phase
diagram with varying n; the phase separation between different magnetic states is
determined from the jump of n at the phase boundary. As an example, the variational
calculation for the triangular lattice model is presented in Sect. 3.3.4.

2.5 Perturbation Method in the Strong Coupling Limit

In the pyrochlore lattice cases in Chaps. 7 and 8, we also derived an effective spin
model to analyze the phase diagram. In the weak coupling limit, the perturbation
theory in terms of J/t which leads to the RKKY interaction, is expected to be a

http://dx.doi.org/10.1007/978-4-431-55663-3_3
http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_8
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useful approach; the details of this approach is explained in Sect. 1.2.1 and is used in
Chap.7. On the other hand, in the strong coupling limit, we introduced a perturbation
theory in terms of the relative angle of the localized moments. In the strong coupling
limit, the hopping integrals for itinerant electrons are modulated by the relative
angle of localized moments (Eq. (2.4)). For simplicity, we approximate the hopping
Eq. (2.4) by its absolute value

t̃i j = |ti j | = t

√
1 + cos θi cos θ j + 1

2
sin θi sin θ j cos(ϕi − ϕ j ) (2.24)

= t cos(θi j/2), (2.25)

where, θi j is the angle between the i th and j th spins.1 In the current models, as the
spins are of Ising type, Eq. (2.25) can be transformed into

t̃i j = t0 + t1 S̃i S̃ j (2.26)

with

t0 = 1

2

(
cos

θ0i j

2
+ sin

θ0i j

2

)
(2.27)

t1 = 1

2

(
cos

θ0i j

2
− sin

θ0i j

2

)
, (2.28)

where θ0i j is the relative angle between the easy axes of neighboring sites and S̃i = ±1

is the Ising spin on i th site projected onto its anisotropy axis. When θ0i j = π/2, then
t1 = 0; hence, the orientation of localized Ising moments does not affect itinerant
electrons. When θ0i j∼π/2, t1 remains much smaller than t0. As the angle between the
two nearest-neighbor spins is ∼109◦ for the spin-ice model considered in Chap. 8,
and close to π/2, we performed perturbation theory in terms of t1/t0. Essentially,
this perturbation expansion corresponds to the perturbation for �θ0i j = π/2 − θ0i j .
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Chapter 3
Partial Disorder on a Triangular Lattice

Abstract In this chapter, we study magnetic and electronic properties of an Ising-
spin Kondo lattice model on a triangular lattice. We present that the model shows rich
phase diagram with various magnetic phases: two-sublattice stripe, three-sublattice
ferrimganetic, and partially disordered states. In addition to these long-range orders,
we also found a Kosterlitz-Thouless like quasi-long-range order. In these four states,
partial disorder and Kosterlitz-Thouless like states are thermally-induced phases
that only apears in intermediate temperature region above other long-range orders.
Interestingly, the partially disordered phase is insulating and show charge dispropor-
tionation. We also present analysis of a mean-field calculation of the band structure
and discuss that the partial disorder in the present model is potentially stabilized by
the charge gap formation.

3.1 Model and Method

In this section, we introduce the model and method. The model we consider in this
section is described in Sect. 3.1.1. In Sect. 3.1.2, we define the physical quantities
that we calculated by the Monte Carlo simulation.

3.1.1 Model

In this chapter, we consider a single-band Kondo lattice model on a triangular lattice
with localized Ising moments. The Hamiltonian is given by

H = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + J
∑

i

σ z
i Si . (3.1)

The first term represents hopping of itinerant electrons, where ciσ (c†
iσ ) is the annihi-

lation (creation) operator of an itinerant electron with spin σ =↑,↓ at i th site, and t is
the transfer integral. The sum 〈i, j〉 is taken over nearest-neighbor (NN) sites on the
triangular lattice. The second term is the onsite interaction between localized spins
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(c)(a) (b)

Fig. 3.1 Schematic pictures of a stripe order, b ferrimagnetic (FR) order, and c partial disorder (PD)
on a triangular lattice. The arrows show magnetically ordered sites and the circles are thermally
fluctuating paramagnetic sites

and itinerant electrons, where σ z
i = c†

i↑ci↑ − c†
i↓ci↓ represents the z-component of

itinerant electron spin, and Si = ±1 denotes the localized Ising spin at i th site; J is
the coupling constant. We take t = 1 as the unit of energy, the lattice constant a = 1,
and the Boltzmann constant kB = 1.

3.1.2 Physical Quantities

In this section, the magnetic phase diagram of the model in Eq. (3.1) is studied mainly
by a Monte Carlo (MC) simulation introduced in Sect. 2.2. As we will see, the model
in Eq. (3.1) shows rich phase diagram with variety of magnetic orders as shown in
Fig. 3.1: stripe, three-sublattice ferrimagnetic (FR), and partially disordered (PD)
states. In the MC simulation, in principle, these magnetic states can be distinguished
by calculating the spin structure factor for the Ising moments,

S(q) = 1

N

∑

i, j

〈Si S j 〉 exp(iq · ri j ), (3.2)

where the braket denotes the thermal average in the grand canonical ensemble, and
ri j is the vector from i th to j th site. The PD state is signaled by peaks of S(q) at
q = ±(2π/3,−2π/3), while the FR order develops a peak at q = 0 in addition
to q = ±(2π/3,−2π/3). No Bragg peaks develop in the Kosterlitz-Thouless (KT)
state as it is a quasi-long-range order. However, it is difficult to distinguish KT phase
from a long-range order (LRO) in finite-size calculations, as the correlation length
in the KT state is divergent and easily exceeds the system size at low temperature.

To distinguish the FR, PD, and KT instabilities, it is helpful to use the pseudospin
defined on three-site unit cell:

S̃m =
⎛

⎜⎝

2√
6

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3

⎞

⎟⎠

⎛

⎝
Si

S j

Sk

⎞

⎠ , (3.3)

http://dx.doi.org/10.1007/978-4-431-55663-3_2
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and its summation

M̃ = 3

N

∑

m

S̃m (3.4)

where m is the index for the three-site unit cells, and (i, j, k) denote the three sites in
the mth unit cell belonging to the sublattices (A, B, C), respectively [5, 10]. Then, the
three-sublattice PD state (Fig. 3.1c) is characterized by a finite M̃ = (M̃x , M̃y, M̃z)

parallel to (
√

3/2, 1/
√

2, 0), (0,
√

2, 0), or their threefold symmetric directions
around the z axis. On the other hand, the three-sublattice FR state (Fig. 3.1b) is
characterized by a finite M̃ along (

√
2/3,

√
2, 1/

√
3), (2

√
2/3, 0,−1/

√
3), or their

threefold symmetric directions around the z axis. Hence, the two states are distin-
guished by the azimuth of M̃ in the xy plane as well as Mz . In the MC calculations,
we measure

Mxy = 〈(M̃2
x + M̃2

y )1/2〉, (3.5)

Mz = 〈|M̃z|〉, (3.6)

and the corresponding susceptibilities,

χxy = N

T
(〈M̃2

x + M̃2
y 〉 − M2

xy), (3.7)

χz = N

T
(〈M̃2

z 〉 − M2
z ). (3.8)

We also introduce the azimuth parameter of M̃ defined by

ψ = M 3 cos 6φM , (3.9)

where φM is the azimuth of M̃ in the xy plane and M = 3
8 M2

xy . The parameter ψ

has a negative value and ψ → − 27
64 for the perfect PD ordering, while it becomes

positive and ψ → 1 for the perfect FR ordering; ψ = 0 for both paramagnetic and
KT phases in the thermodynamic limit N → ∞.

In PD phase, we also expect to observe finite entropy close to 1/3 of the paramag-
netic phase due to the presence of thermally-fluctuating moments. To evaluate the
entropy that comes from localized moments, we calculate the spin entropy. The spin
entropy per site is defined by

S (T ) = − 1

N

∑

{Si }
P({Si }) log P({Si }), (3.10)

where P({Si }) is given by Eq. (2.7), which is the probability for a spin configuration
{Si } to be realized. In the MC calculation, we calculate the temperature derivative
of S ,

http://dx.doi.org/10.1007/978-4-431-55663-3_2
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∂S (T )

∂T
= 1

N T 2
{〈Seff H〉 − 〈Seff 〉〈H〉} , (3.11)

and estimate the spin entropy by integrating ∂S (T )/∂T ,

S (T ) =
∫ T

0

∂S (T )

∂T
dT = log 2 −

∫ ∞

T

∂S (T )

∂T
dT . (3.12)

In Eq. (3.11), Seff is the effective action in Eq. (2.8). In the following calculations,
we set the cutoff to 1 for the upper limit of the last integral in Eq. (3.12).

On the other hand, in order to identify the two-sublattice stripe order (Fig. 3.1a),
we calculate the order parameter

Mstr =
⎡

⎣
∑

q∗
str

{
S(q∗

str)

N

}2
⎤

⎦
1/2

, (3.13)

and its susceptibility χstr. Here, the sum is taken for the characteristic wave vectors of

the stripe orders running in three different directions, q∗
str = (π, 0) and (± 1

2π,
√

3
2 π).

In this study, the thermodynamic behavior of itinerant electrons are also studied
focusing on charge disproportionation. We compute the charge modulation defined
by

nCO =
{

N (q∗
CO)

N

}1/2

(3.14)

at q∗
CO = (−2π/3, 2π/

√
3), which corresponds to the wave numbers for the three-

sublattice orders. Here, N (q) is the charge structure factor for itinerant electrons,

N (q) = 1

N

∑

i, j

〈ni n j 〉 exp(iq · ri j ), (3.15)

and ni = 1
2

∑
σ c†

iσ ciσ .

3.2 Mean Field Theory

We first discuss one particle band structure in the PD state by a mean-field approach.
We consider a three-sublattice LRO state in Fig. 3.1c. The mean-field Hamiltonian
given by

http://dx.doi.org/10.1007/978-4-431-55663-3_2
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(c) (d)

(a) (b)

Fig. 3.2 a Mean-field band structure calculated by Eq. (3.16) for the local magnetic field of PD
type, (ΔA,ΔB,ΔC) = (2, 0,−2). The gray hexagon on the basal plane shows the first Brillouin
zone for the magnetic supercell. b–d Mean-field band structure along the symmetric lines in the
local magnetic field of PD type, (ΔA,ΔB,ΔC) = (Δ, 0,−Δ): b Δ = 1/3, c Δ = 2/3, and d
Δ = 2. The dashed horizontal lines indicate the Fermi level for n = 1/3

H MF =
∑

k

⎛

⎝
ΔAσ z τk τ ∗

k
τ ∗

k ΔBσ z τk
τk τ ∗

k ΔCσ z

⎞

⎠ . (3.16)

Here, three rows correspond to the different sublattices A, B, and C in the three-site
unit cell; Δα is a mean field given by J 〈Sα〉 (α = A, B, C). The sum is taken in
the first Brillouin zone for the magnetic unit cell for three-sublattice order. τk is the
hopping term for itinerant electrons given by

τk = −t[eikx + e
i
(
− kx

2 +
√

3
2 ky

)

+ e
i
(
− kx

2 −
√

3
2 ky

)

] (3.17)

and σ z corresponds to the z component of itinerant electron spin.
If we consider three sublattice FR order, then Δα is given by (ΔA,ΔB,ΔC) =

(Δ,Δ,−Δ). This case is studied in Sect. 4.2; we show that the electronic structure
in the FR order is semimetallic with forming Dirac nodes. In this section, we discuss
the band structure for the PD case, where the mean-field is given by (ΔA,ΔB,ΔC) =
(Δ, 0,−Δ). The band structure for Δ = 2 is shown in Fig. 3.2a. There are three bands

http://dx.doi.org/10.1007/978-4-431-55663-3_4
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Fig. 3.3 Δ dependence of
the mean-field energy gap
and associated charge
modulation nCO at n = 1/3
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reflecting the three sublattice structure of PD state which all of the bands are doubly
degenerate. The first Brillouin zone is shown by the gray shade in the bottom surface.
The result shows the presence of an energy gap at the Fermi level corresponding to
n = 1/3, that opens between the lowest energy band and the middle band (see also
Fig. 3.2d).

Figure 3.2b–d shows the results of band structure while varying Δ. The results are
plotted along the symmetric line in the Brillouin zone shown in the bottom surface in
Fig. 3.2a. When Δ = 1/3, electron and hole pockets are present at the Fermi level.
For Δ = 2, on the other hand, the system is insulating for n = 1/3 (Fig. 3.2d). The
pockets in Δ = 1/3 result disappear at Δ = 2/3; the band structure for Δ = 2/3 is
shown in Fig. 3.2c. Namely, the PD state show metal-insulator transition at Δc = 2/3.

Figure 3.3 shows Δ dependence of the energy gap. The charge gap develops for
Δ > 2/3 and monotonically increases, approaching asymptotically a Δ-linear form
for Δ 
 t . The charge modulation is also induced by the inequivalence of sublattices.
We plot nCO (Eq. (3.14)) at n = 1/3 in Fig. 3.3. In the PD state, the local charge
density at paramagnetic sites become dilute compared to those at the magnetically
ordered sites. In the limit of Δ 
 t , nCO approaches nCO = 1/

√
12 ∼ 0.289.

The results above suggest potential stabilization of PD state by charge gap forma-
tion, which does not occure in models with only localized moments. In the previous
studies on the Ising spin models [4, 10, 11] and an equivalent classical particle
model [8] on a triangular lattice, PD was shown to be unstable against thermal fluc-
tuations and taken over by a KT state. In the case of our model, however, as the KT
state lacks a long-range periodic magnetic structure, it is expected that the KT state
does not open an energy gap in the electronic state of itinerant electrons. Therefore,
there is a chance of stabilizing the PD state by the Slater-type mechanism, that is, by
forming an energy gap at the Fermi level with folding the Brillouin zone by forming
a magnetic superlattice.
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Another point to be noted is that the formation of an energy gap takes place at
finite Δ. This implies that, if the PD state is stabilized by the charge gap formation,
it is expected to appear from a finite J and not remain stable down to J → 0. This
is contrasting from magnetic ordering driven by Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [7, 9, 12]. If the PD state is stabilized by RKKY interaction, it
should appear for an infinitesimal J , as RKKY interaction is given by the second-
order perturbation in terms of J/t .

3.3 Monte Carlo Simulation

In this section, we study the thermodynamic property of model in Eq. (3.1) by a Monte
Carlo simulation. We first show finite-temperature phase diagrams in Sect. 3.3.1,
which include four magnetic phases: stripe, PD, FR, and KT-like states. The details
of numerical data for the PD state are elaborated in Sect. 3.3.2 and the results for
stripe, KT-like, and FR states are discussed in Sect. 3.3.3. The method to determine
the phase separation is explained in Sect. 3.3.4.

3.3.1 Phase Diagrams

Figure 3.4a shows the phase diagram around the electron filling n = 1/3 at J = 1
obtained by MC calculations. The phase diagram is covered with four different
phases, stripe, FR, PD, and KT-like, in addition to an electronic phase separation (PS).

(a) (b)

Fig. 3.4 Phase diagrams of the model in Eq. (3.1) while varying n at a J = 1 and b J = 2.
The symbols show phase boundaries for the four phases: stripe, partially disordered (PD), KT-like
(“KT”), and ferrimagnetic (FR) phases. PS represents a phase separation. The lines are guides for
the eyes. The strips at T = 0 show the ground states obtained by comparing the energy of stripe
and FR states
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Fig. 3.5 Phase diagram of
the model in Eq. (3.1) at
n = 1/3 while varying J .
The notations are common to
those in Fig. 3.4. The
boundary between PD and
PS is difficult to determine
by MC calculations, and
supposed to be located at
lower temperature than
indicated by the gray arrows

For relatively low filling of n � 0.29, the stripe order with period two (Fig. 3.1a)
develops in the low temperature region. On the other hand, for higher filling of
n � 0.32, the system exhibits the three-sublattice FR order at low temperature
(Fig. 3.1b). We also calculated ground state phase diagram by a variational calculation
comparing the ground state energy of the stripe and FR states. Strip at the bottom
of the figure shows the result of variational calculation. The details of the results for
these orders will be discussed in Sect. 3.3.3.

In addition to these two states, the numerical results show two intermediate-
temperature states depending on the electron filling n. For 0.29 � n � 0.34, we
identify the intermediate phase as the three-sublattice PD state (Fig. 3.1c). Mean-
while, for n � 0.34, we find KT-like behavior similar to the one discussed in the
Ising models [4, 5, 8, 10, 11]. In these intermediate-temperature phases, the numer-
ical data indicate a LRO for PD but a quasi-LRO in the KT-like region. The details
of PD phase will be discussed in Sect. 3.3.2.

The results for J = 2 also show qualitatively similar phase diagram, as shown in
Fig. 3.4b. We also find the PD phase in the intermediate-temperature region where
stripe and FR orders compete. However, in contrast to the case with J = 1, where PD
is found widely above the FR state as well as PS, the PD phase dominantly appears
above the PS region between the stripe and FR states.

We also investigated the phase diagram of the model in Eq. (3.1) while varying
J . Figure 3.5 shows the numerically obtained phase diagram at n = 1/3. In the MC
simulation, PD state appears for J � 0.8. The transition temperature to PD state
increases with increasing J for small J region, and it turns to a gradual decrease
with maximum at J ∼ 2. The result shows that the PD state is stable in a wide range
of Kondo coupling, 0.8 � J � 5.6.

An important observation in this phase diagram is that the PD state does not
survive to J → 0, and it is taken over by the KT-like and FR phases in the small
J region. The absence of PD state in the J → 0 limit implies that the RKKY
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interaction in the second-order perturbation theory is insufficient in stabilizing the
PD state. Interestingly, the emergence of PD for J > Jc �= 0 is consistent with the
Slater-type mechanism discussed in Sect. 3.2; the MC result of Jc ∼ 0.8 is in good
accordance with the mean-field argument of the critical value Δc = 2/3. The result
implies that a non-perturbative effect of itinerant electrons plays a crucial role in
stabilizing the PD state.

In the PD region in Fig. 3.5, our MC data do not show clear sign of further transition
while decreasing temperature before the MC calculations become unstable. In the
low temperature region, however, it becomes difficult to determine the chemical
potential μ for n = 1/3. The lowest temperatures of MC calculations are shown in
the phase diagram by the gray downward arrows. On the other hand, the analysis of
the ground state indicates that the ground state for J � 1.68 is the FR state, while the
region for J � 1.68 is PS between the stripe and FR states. In addition, we observe
the PS instability by carefully investigating the change of n as a function of μ at
J = 5.4 (see also Sect. 3.3.4). From these facts, at T = 0, we conclude that the PD
for J � 1.68 is taken over by PS between the stripe and FR states. For an estimates
of the PS boundary, we merely plotted the lowest temperatures we reached in our
constant-n calculations as the upper limit of temperature for the PS instability.

3.3.2 Partial Disorder

Here, we present the details of MC data for identifying the PD state. Figure 3.6
shows T dependences of MC results for different J at n = 1/3. To fix n, we tuned
μ at each temperature; the errors for n at each temperature are controlled within

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

Fig. 3.6 MC results for (a1)-(c1) Mxy , Mz , and ψ , (a2)-(c2) χxy and χz , and (a3)-(c3) S and its
temperature derivative ∂S /∂T at n = 1/3; (a1)-(a3) J = 1, (b1)-(b3) J = 2, and (c1)-(c3) J = 4.
The calculations were done for the system sizes N = 12×12, 12×18, and 18×18. S is calculated
from numerical integration of ∂S /∂T by assuming S (T = 1) = log 2



44 3 Partial Disorder on a Triangular Lattice

0.001. Figure 3.6a1 is the result for the pseudomoments Mxy and Mz at J = 1
[see the definitions in Eqs. (3.5) and (3.6), respectively]. Mxy shows two anomalies

while decreasing temperature at T (PD)
c = 0.086(4) and T (FR)

c = 0.019(2). The
critical temperatures are determined by the peaks of the susceptibilities, χxy and χz ,

as mentioned below. At T (PD)
c , Mxy rapidly increases and approaches

√
2 at lower

temperatures. In addition, it shows a kink at T (FR)
c and further increase to 8/3 at lower

temperatures. Meanwhile, Mz shows no anomaly at T (PD)
c , while it shows a rapid

increase to 1/
√

3 at T (FR)
c . Correspondingly, χxy and χz in Fig. 3.6a2 also shows

divergent peaks increasing with the system size; peaks of χxy appear at both T (PD)
c

and T (FR)
c , while χz shows a peak only at T (FR)

c . These results signal the presence
of two successive phase transitions at T (PD)

c = 0.086(4) and T (FR)
c = 0.019(2). The

error bars are estimated by the range of temperature where the standard deviation
of the MC data exceeds the difference of expectation value from the peak value.
The transition temperatures and error bars shown in Figs. 3.4 and 3.5 are given by
this criterion. Meanwhile, most of the calculations in Fig. 3.4 were done by fixing μ

instead of n. Hence, we also give the error bars in terms of n, as n changes with T
in a fixed μ calculation.

To determine the nature of low temperature phases at n = 1/3, we also computed
the azimuth parameter ψ [Eq. (3.9)] shown in Fig. 3.6a1. While increasing the system
sizes, ψ apparently deviates from zero to a negative value below T (PD)

c , indicating
that the intermediate phase for T (FR)

c < T < T (PD)
c has a PD type order. On the

other hand, ψ shows a sign change at T (FR)
c , and rapidly increases to ψ = 1 at lower

temperatures. This is a signature of the FR transition, which will be discussed in
detail in Sect. 3.3.3.

The emergence of PD is also seen in the results for the spin entropy S and its
temperature derivative [Eqs. (3.12) and (3.11), respectively], as shown in Fig. 3.6a3.
In the intermediate-temperature region for T (FR)

c < T < T (PD)
c , S appears to

approach 1
3 log 2 as decreasing temperature, which is the value expected for the ideal

PD state where one out of three spins in the magnetic unit cell remains paramagnetic.
The remaining entropy is released rapidly at T (FR)

c andS → 0 at lower temperatures
due to the ordering of paramagnetic spins in the FR state.

Similar phase transitions to the PD state are observed in the wide range of J , as
shown in Fig. 3.6b1–b3, c1–c3 at J = 2 and J = 4, respectively. In these results,
however, we could not confirm the presence of another phase transition at a lower
temperature in the range of temperature we calculated, in contrast to the FR transition
found in the case of J = 1. As the PD state retains a finite S , it is unlikely that this
phase survives to T → 0. Hence, it is presumably taken over by other ordered phases
or PS at a lower temperature. As shown in Fig. 3.5, the variational ground state phase
diagram shows PS for the values of J in Fig. 3.6b, c. We, therefore, expect that the
PD state is taken over by PS below T = 0.02 for J � 2. The situation is indicated
by the gray arrows in the phase diagram in Fig. 3.5, as discussed in Sect. 3.3.1.

Another point to be noted is the systematic change inS in the PD state by changing
J . While the result at J = 1 appears to show plateau like behavior at S ∼ 1

3 log 2,
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Fig. 3.7 MC results for
S(q) along the q = (qx , 0)

line at T = 0.02. The
calculations were done for
the system size N = 18 × 18

the plateau value of S in the PD state decreases while increasing J , as shown in
Fig. 3.6a3, b3, c3. The decrease in S is presumably attributed to the development
of spatial correlations between paramagnetic sites in the PD state; the ideal value
S = 1

3 log 2 is for completely uncorrelated paramagnetic spins, and correlations
between them reduces the entropy. Such development of correlations is observed in
the spin structure factor S(q) defined in Eq. (3.2). Figure 3.7 shows a profile of S(q)

calculated by MC simulation at T = 0.02. The peaks at q = (4π/3, 0) and (8π/3, 0)

indicates that the system is in a three-sublattice ordered phase, while the absence of
a sharp peak at q = (0, 0) indicates that there is no net magnetic moment; the result
is consistent with PD state. When comparing the results at J = 2 and J = 4, the
peak corresponding to the three-sublattice order gets sharper for J = 4, while the
height of the peak of S(q) is almost the same. This indicates that the PD order at
J = 2 shows more spin fluctuations than that at J = 4, consistent with the trend of
the plateau value of S .

Thus far, we showed the results at n = 1/3. Next, we show how the PD evolves
while changing n. Figure 3.8 shows the MC result of ψ as a function of n at T = 0.08
and J = 2. ψ becomes negative around n = 1/3 and takes the lowest value at
n 
 1/3. The data indicate that ψ is almost system size independent or slightly
decreases as the system size increases in the finite range of n around n = 1/3.
Hence, the PD state is stabilized not only at n = 1/3 but for a finite range of
0.31 � n � 0.34 in the thermodynamic limit. The range well agrees with that for
the PD phase estimated from the peak of susceptibilities shown in Fig. 3.4b.

With regard to the order of the PD transition, the PD transition in our MC results
appears to be continuous, as shown in Fig. 3.6. However, it needs careful considera-
tion, as we will discuss here. It is known that the Ising model on a triangular lattice
with antiferromagnetic NN interactions is effectively described by a six-state model,
in which the low-energy states with three up-up-down and three up-down-down con-
figurations in the three-site unit cell are described by six-state variables. The PD state
in our model also retains six low-energy states with different up-down-paramagnetic
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Fig. 3.8 MC results for ψ

while varying n at T = 0.08
and J = 2. The calculations
were done for the system
sizes N = 12 × 12, 12 × 18,
and 18 × 18

configurations, and hence, the transition to PD is expected to be classified in the
framework of six-state models. However, from the argument of duality properties,
it is prohibited that the six-state models exhibit a single second-order transition for
changing temperature [3]. For instance, a two-dimensional six-state clock model
shows two KT transitions at finite temperature [2, 6]. On the other hand, a six-state
Potts model shows a weak first order transition to LRO, in which the correlation
length reaches the order of 1000 sites at the critical point [1]. In our PD case, the
apparently second-order transition at T (PD)

c is not expected to be a single one, but
is always followed by another transition to FR or PS at a lower temperature. This
appears not to violate the general argument for the six-state models, although it is
not clear to what extent the argument applies, as the electronic PS never takes place
in the localized spin models. Hence, the PD transition can be of second order, as
indicated in our numerical results. Of course, we cannot exclude the possibility of
a weak first order transition, similar to that of the Potts model. In this case, due to
a long correlation length at the critical temperature, the system sizes used in our
calculations are likely to be insufficient to distinguish the first order transition from
second order one.

3.3.3 Other Magnetic Orders

Figure 3.9 presents the results for the relatively low filling where the stripe order is
stabilized at a low temperature. Figure 3.9a shows the order parameter for the stripe
order, Mstr (Eq. (3.13)), and Fig. 3.9b shows the corresponding susceptibility χstr at
J = 2 and n = 0.27. A phase transition to the stripe phase is characterised by a
rapid increase of Mstr and corresponding peak of χstr. The transition temperature
T (str)

c plotted in the phase diagram in Fig. 3.4a is determined by the peak position



3.3 Monte Carlo Simulation 47

Fig. 3.9 MC results for a
Mstr and b its susceptibility
χstr at J = 2 and n = 0.27.
The inset in (b) shows T (str)

c
for different sizes and the
solid line is the extrapolation
which gives
T (str)

c = 0.051(13). The
calculations were done for
the system sizes
N = 12 × 12, 14 × 14,
12 × 18, 16 × 16, and
18 × 18

(a)

(b)

of χstr. The error bars are estimated in a similar manner to the case of T (PD)
c and

T (FR)
c . We also show the system-size extrapolation of T (str)

c in the inset of Fig. 3.9b.
Although the data are rather scattered, we fit them by f (N ) = a + b/N c with fitting
parameters a, b, and c. The extrapolation clearly shows that the phase transition takes
place at a finite temperature, as expected for the two-dimensional Ising orders.

With increasing n, the ground state is taken over by the FR state. Figure 3.10
shows the results for at n = 0.38 and J = 2. The data indicate two successive
transitions signaled by the peaks in χxy and χz at different temperatures. The peak
of χz corresponding to the increase of Mz signals the phase transition to the FR
phase at T (FR)

c = 0.098(4). At the same time, ψ becomes finite below T (FR)
c , and

approaches 1, as expected for the FR ordering. Similar behavior was observed at
T (FR)

c = 0.019(2) in Fig. 3.6a1, a2. On the other hand, at a higher TKT = 0.146(4),
only Mxy changes rapidly, and correspondingly, χxy shows a peak. Mxy , however,
shows a noticeable system-size dependence even below TKT, in contrast with the
results below T (PD)

c . Similar behavior was observed in the KT transition in Ising spin
systems [5, 10].

In these successive transitions, ψ does not show an anomaly at TKT, while it shows
a sharp rise around T (FR)

c , as shown in Fig. 3.10a. The value of ψ extrapolated to
large N converges to zero in the intermediate-temperature range. Figure 3.11 shows
the extrapolation of ψ for N → ∞. The results indicate that, ψ remains to be zero at
N → ∞ for T � 0.104, which is far below TKT = 0.146(4). On the other hand, the
extrapolated value becomes positive finite for T � 0.104, reflecting the FR order;
the transition temperature is estimated as T̃ (FR)

c = 0.102(2), which is in accordance
with T (FR)

c = 0.098(4).
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Fig. 3.10 MC results for a
Mxy , Mz , and ψ , b χxy and
χz , and c S and its
temperature derivative
∂S /∂T at n = 0.38 and
J = 2. The calculations
were done for the system
sizes N = 12 × 12, 12 × 18,
and 18 × 18

(c)

(a)

(b)

Fig. 3.11 Extrapolation of
ψ to N → ∞ at different
temperatures. The solid lines
for T ≤ 0.104 is the linear
fitting of data
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The results above indicate that there is no sixfold symmetry breaking in Mxy at
TKT, as seen in the KT phase in the Ising spin models [10]. Hence, we consider that
the higher-temperature transition at TKT is of KT type. Namely, the system exhibits
two successive transitions from the paramagnetic phase to the KT-like phase at TKT,
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Fig. 3.12 MC results for the
real-space spin correlation
function C(r) at J = 2 and
n = 0.38. The results are
shown only for the sites with
C(r) > 0. The calculations
were done for the system
size N = 18 × 18

1.0

0.1

0.2

0.3

0.4

0.6

0.06
1 2 3 4 6 8

C
(r

)

r

T=0.180 0.160

0.148

0.144

0.130

0.116
0.104
0.096
0.088
0.080

and the KT-like phase to the low-temperature FR phase at T (FR)
c . Here, we call the

intermediate-temperature phase the KT-like phase, as it is difficult to confirm either
the KT universality class by critical behavior or the quasi-LRO behavior within the
system sizes we reached, as seen below.

The signature of two successive transitions is also observed in the real-space spin
correlation function C(r). Here C(r) is the averaged correlations between the Ising
spins in distance r , defined by

C(r) =
∑

i, j

1

Np(r)
〈Si S j 〉δ(|ri j | − r), (3.18)

where Np(r) = ∑
i, j δ(|ri j | − r) is the number of spin pairs with distance r , and

δ(x) is the delta function. The MC data while varying temperature are shown in
Fig. 3.12. Although the results are not conclusive due to the limitation on accessible
system sizes, they appear to be consistent with the two transitions discussed above.
For T � T (FR)

c = 0.098(4), the spin correlation appears to approach constant for
large distance, well corresponding to the FR LRO developed in this low temperature
region. On the other hand, for T � TKT = 0.146(4), it becomes concave downward
with a steep decrease with respect to the distance, which reflects an exponential
decay in the high temperature paramagnetic state. In the intermediate region for
T (FR)

c � T � TKT, the spin correlation also decays with increasing distance. The
decay, however, is much slower and appears to obey an asymptotic power law, which
is characteristic to the quasi-LRO in the KT state. In principle, the critical exponents
can be estimated from the asymptotic power-law behavior, but it is difficult to be
conclusive in the current system sizes.
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Fig. 3.13 a The grand
potetial � and b electron
filling n with respect to the
chemical potential μ,
numerically calculated by
exactly diagonalizing the
one-body Hamiltonian for
itinerant electrons. The
results are obtained at J = 2
with Ns = 24 × 24 site
superlattice of N = 12 × 12
site unit cells. The strip at the
left side of (b) shows the
ground state at the
corresponding filling

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

-3.0 -2.5 -2.0 -1.5 -1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Ω

μ

FR

PS

stripe

stripe

stripe

FR

(a)

(b)

n

3.3.4 Phase Separation

In this section, we present how the PS region was identified in the phase diagram
in Figs. 3.4 and 3.5. The ground state phase diagram is obtained by a variational
calculation comparing the grand potential per site, � = 〈H〉/N − 2μn, where μ is
the chemical potential and n is the electron filling. Here, we compare � calculated
for the magnetically ordered states found in the MC simulation. The procedure is
summarized in Fig. 3.13 at J = 2. Figure 3.13a, b shows the results of � and n,
respectively. For μ � −1.87 (μ � −1.87), � for the stripe order is lower (higher)
than that for the FR order, indicating that the stripe (FR) state is the ground state in
this region. At the critical value of μ 
 −1.87, the electron filling for the two states
take different values, n 
 0.301 in the stripe state and n 
 0.334 in the FR state, as
shown in Fig. 3.13b. This indicates that n changes discontinuously from n 
 0.301
to n 
 0.334 at the transition between the stripe and FR states. In other words, the
system is unstable in the region of 0.301 � n � 0.334 against PS between the two
states; the range of n is identified as the electronic PS. The PS regions in Fig. 3.4
are determined in this manner. Meanwhile, the PS region at n = 1/3 in Fig. 3.5 is
identified by the similar calculations by changing J .

Next, we describe how the PS region is determined at finite temperature in the
MC calculation. In the MC simulation using the grand canonical ensemble, PS is
characterized by a sudden jump of n while sweeping μ. Figure 3.14 shows a typical
MC result for n as a function of μ. The result at T = 0.048 shows a smooth change of
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Fig. 3.14 MC results for n
as a function of μ at different
temperature. The results are
for J = 2 and N = 12 × 12
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n in the entire region of μ in the figure. On the other hand, the results at T = 0.040
and 0.044 show a sudden change from n ∼ 0.290 to 0.315 at μ ∼ −1.996. We
roughly estimate the PS region by the values of n at the both ends of the jump. The
results are plotted in the phase diagrams in Fig. 3.4. The range of PS slightly depends
on the system size, and hence, we plot the threshold values of n for each system size
in the phase diagram.

3.4 Electronic State

In the previous sections, we discussed the thermodynamic behavior of the localized
spin degree of freedom, with emphasis on the emergence of PD state. In this section,
we focus on the behavior in the charge degree of freedom of itinerant electrons in
the PD phase.

Figure 3.15 shows temperature dependence of the charge modulation nCO at n =
1/3 for different J . Figure 3.15a is the result at J = 1 for different system sizes. The
result shows an increase of nCO below T 
 T (PD)

c = 0.086(4), indicating that the
PD state is accompanied by charge modulation with period three. Similar onsets of
charge modulation at T (PD)

c are observed for larger J , as shown in Fig. 3.15b, c; the
amplitude of the modulation in the PD phase increases monotonically as J increases.
The magnitude of the charge modulation is in the same order compared to the mean-
field result in Fig. 3.3, while the growth is considerably suppressed by a factor of
two to four, presumably because of thermal fluctuations neglected in the mean-field
theory.

We next look into the electronic density of states (DOS) at different temperature.
Figure 3.16 shows the results for DOS while varying temperature at J = 2 and
n = 1/3. The Fermi level is set at ε = 0. Here, DOS was calculated by counting the
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Fig. 3.15 MC results for
nCO at q = (2π/3,−2π/3)

at n = 1/3 and a J = 1, b
J = 2, and c J = 4. The
calculations were done for
the system sizes
N = 12 × 12, 12 × 18, and
18 × 18
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number of energy eigenvalues as the histogram with the energy interval of 0.0375.
In the paramagnetic region for T � T (PD)

c = 0.130(4), DOS is featureless near
the Fermi level. On the other hand, below T (PD)

c , an energy gap develops at the
Fermi level for n = 1/3. The result shows that the PD state is an insulator, which
supports the scenario that PD is stabilized by the charge gap formation described
in Sect. 3.2. Similarly to the charge modulation, the energy gap in the MC results is
largely suppressed compared to that obtained by the mean-field analysis in Fig. 3.3.
This appears to show the importance of appropriately taking into account of thermal
fluctuations.
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Fig. 3.16 MC results for
DOS of itinerant electrons at
n = 1/3 and J = 2 for
N = 18 × 18. The Fermi
level is set at ε = 0. The
statistical errors are
comparable to the width of
the lines
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3.5 Summary

To summarize, by a combined analysis of the mean-field type calculation and Monte
Carlo simulation, we investigated the origin of the partial disorder in the Ising-spin
Kondo lattice model on a two-dimensional triangular lattice. In the mean-field type
calculation, we have clarified that a local magnetic field of the partial disorder type
induces a metal-insulator transition at 1/3 filling at a critical value of the field. The
result suggests that the three-sublattice partial disorder can give rise to an energy gap,
and therefore, it has a chance to be stabilized through the Slater-type mechanism. On
the other hand, in the Monte Carlo simulation, we have provided numerical results
on the emergence of partial disorder at finite temperatures where the stripe phase
and the ferrimagnetic order compete with each other. The Monte Carlo results show
that the partially disordered state appears above a nonzero value of the spin-charge
coupling, and that it is insulating and accompanied by charge disproportionation. The
nonzero critical value of the spin-charge coupling and the opening of the charge gap
are both qualitatively consistent with the mean-field analysis. The results indicate
that the partial disorder is stabilized by the charge gap formation which is often found
in itinerant magnets.
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Chapter 4
Dirac Half-Metal on a Triangular Lattice

Abstract In this section, we study the electronic states in the three-sublattice fer-
rimagnetic order which appeared in the n � 1/3 region of the phase diagram in
Chap.3. We show that the itinerant electrons exhibit the Dirac cone dispersion with
half-metallic behavior in the presence of three-sublattice ferrimagnetic order. By
variational calculation and Monte Carlo simulation, we demonstrate that the ferri-
magnetic order with the Dirac node dominates in the wide range of Kondo coupling
and electron density. An experimental realization will be beneficial for spintronics
as a candidate for spin-current generator.

4.1 Model and Method

4.1.1 Model

In this section, we consider an Ising-spin Kondo lattice model on a triangular lattice
similar to the Hamiltonian studied in Chap.3:

H = −t
∑

〈i, j〉,σ
(c†iσ c jσ + H.c.) − J

∑

i

Sz
i σ

z
i + J ′ ∑

〈i, j〉
σi · S j . (4.1)

Here, ciσ (c†iσ ) is the annihilation (creation) operator of an itinerant electron with

spin σ = ↑,↓ at i th site, σ z
i = c†i↑ci↑ − c†i↓ci↓ and Sz

i represent the z component
of itinerant and localized spin, respectively. t is the transfer integral, and J and J ′
are the Kondo coupling. The third term in Eq. (4.1) is the Kondo coupling between
nearest-neighbor sites. Hereafter we take t = 1 and J, J ′ ≥ 0.
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4.1.2 Numerical Calculations

For investigating the stability of the ferrimagnetic (FR) order in the ground state,
we used a variational calculation in which the ground state energy is compared for
different magnetically ordered states. The details of the method is given in Sect. 2.4.

For finite temperature (T ) calculation, we used a Monte Carlo (MC) method
explained in Sect. 2.2. In this section, we perform calculations with system size up
to N = 18× 18 sites. For these sizes, we confirmed that the MC method using exact
diagonalization is faster than the polynomial expansion method. Hence, we use the
exact diagonalization instead of polynomial expansion. The calculations were done
for system sizes N = 12 × 12, 12 × 18, and 18 × 18 with typically 9800 Monte
Carlo steps after 5000 steps of relaxation.

The magnetic pattern of the ordered phases are primarily investigated by calculat-
ing the magnetic structure factor S(q). However, as discussed in Chap.3, the Kondo
lattice model on triangular lattice shows rich phase diagram with thermally induced
phases, such as partial disorder (PD) and Kosterlitz-Thouless (KT) like states. These
states are difficult to be distinguished solely by S(q). To distinguish these phases, we
use the pseudo-moments and azimuth parameters (see Chap.3 for further details).

The pseudo-moment is defined by

S̃m =
⎛

⎜⎝

2√
6

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3

⎞

⎟⎠

⎛

⎝
Si

S j

Sk

⎞

⎠ , (4.2)

where m is the index for the three-site unit cells, and (i, j, k) denote the three sites
in the mth unit cell belonging to the sublattices (A, B, C), respectively. We measure
the net moment M = (3/N )

∑
m S̃m and its susceptibility. Using the net moment for

each MC steps, we define the azimuth parameter ψ by

ψ = (M̃xy)
3 cos 6φM , (4.3)

= 33

83

(
M2

x − M2
y

) {(
M2

x + M2
y

)2 − (
4Mx My

)2
}

, (4.4)

where φM is the azimuth angle of M in the xy plane and M̃xy = 3M2
xy/8 (M2

xy =
M2

x + M2
y ). In Chap.3, these parameters are used to distinguish PD, KT-like, and

three-sublattice FR states. In this section, we focus on the FR state, which is signaled
by Mxy → 2

√
2/3, |Mz | → 1/

√
3, and ψ → 1 at T → 0, respectively [2, 5].

Further details on the parameters introduced here is given in Sect. 3.1.
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Fig. 4.1 Band structure of
the model in Eq. (4.1) under
the three-sublattice
ferrimagnetic order at J = 2.
The figure shows three
lower-energy bands at
J ′ = 0 and the arrows
indicate the spins for each
band. The gray shade on the
basal plane shows the first
Brillouin zone

4.2 Band Structure

In this section, we discuss the itinerant electron bands of the model in Eq. (4.1) in
the three-sublattice FR state. By treating the localized moments as classical spins
with |Si | = 1, the band structure is calculated by the exact diagonalization of the
Hamiltonian. Due to the three sublattice structure of the magnetic order, we get six
bands in total, three for up-spin and three for down-spin. The lower three bands of
the six bands are shown in Fig. 4.1; the two red bands are up spin bands, and the blue
band is of down spin.

The band structure has a notable feature at the energy ε = −J . The two up-spin
bands touch with each other at the K and K ′ points in the Brillouin zone forming a
Dirac node; the down-spin band has the band top at the same points with an ordinary
parabolic dispersion in the vicinity of K and K ′ points. The enlarged figure of Dirac
node is shown in Fig. 4.2a, and the energy dispersion along the symmetric lines in
Fig. 4.2b. When the electron filling is at n = 1/3, the two lower bands are fully
occupied while the remaining bands (including the upper three) are unoccupied; the
Fermi level is located at the nodes where the three bands meet. As the down-spin
band has an energy gap, the half-metallic Dirac electrons are obtained by electron
doping to the unoccupied up-spin band. On the other hand, hole doping hides the
Dirac nature as the down-spin band also forms the Fermi surface.

The Dirac node can be energetically isolated from the down spin band by intro-
ducing a weak AFMKondo coupling between the neighboring sites, J ′. Figures4.2c,
d show lower three bands of the FR order at J = 2 and J ′ = 0.05. Figure4.2c is
the first quadrant of the Brillouin zone, and Fig. 4.2d is the band structure along
the symmetric lines. The Fermi level for 1/3 filling is located at the Dirac nodes.
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(a) (c)

(b) (d)

Fig. 4.2 Band structures of the model in Eq. (4.1) under the three-sublattice ferrimagnetic order at
J = 2. a The enlarged view near the Fermi level ε = −J at n = 1/3 in the first quadrant, b the cut
along the symmetric lines, c and d show the results at J ′ = 0.05. The arrows indicate the spins for
each band. The dashed line in d indicates the Fermi level in the MC simulation shown in Fig. 4.4

As it is shown, the parabolic down spin band is shifted downward and the Fermi
level around 1/3 filling solely comes from the Dirac nodes. We note that the off-site
Kondo coupling considered here is significantly small, which are in the order of
J/100. In general, an off-site Kondo coupling may exist in the Kondo lattice sys-
tems, although the magnitude is expected to be much smaller than the onsite one
and the sign depends on the orbital nature of itinerant and localized electrons. As
the magnitude of J ′ considered here is much smaller than that of J , we believe that
such value could be realized in magnetic oxides. Hence, the simple FR order on the
triangular lattice realizes the Dirac half-metallic state near 1/3 filling.

4.3 Low-Energy Effective Hamiltonian

4.3.1 k · p Perturbation Theory

In this section, we discuss the low-energy effective Hamiltonian for the itinerant
electrons using the k · p perturbation scheme [4]. We show that the low-energy
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Hamiltonian for the Dirac nodes in the previous section is exactly the same one as
that for the graphene, and hence, it is expected to show similar transport properties.

Under the FR order, the electronic Hamiltonian is given by

H =
∑

k

⎛

⎝
−Jσ z

A τk τ ∗
k

τ ∗
k −Jσ z

B τk
τk τ ∗

k

(
J + 6J ′) σ z

C

⎞

⎠ . (4.5)

Here, the upper two rows correspond to the sites with the up localized moment (A,
B sublattices) and the bottom row is for the down one (C sublattice) in the three-site
unit cell. In Eq. (4.5), σ z is the z component of the Pauli matrix for itinerant electrons,
k is the wave vector, and τk is the Fourier transform of the hopping term given by

τk = −t

[
eikx + e

i
(
− kx

2 +
√
3
2 ky

)

+ e
i
(
− kx

2 −
√
3
2 ky

)]
. (4.6)

Focusing around the K and K ′ points in the Brillouin zone, we obtain an approx-
imate form of Eq. (4.5) by the k ·p perturbation scheme [4]. Expanding τk to the first
order in terms of the relative wave vector κ measured from the K and K ′ points, the
Hamiltonian is rewritten in the form

Hk± �
⎛

⎝
−Jσ z

A i 32 t
(
κx ± iκy

) −i 32 t
(
κx ∓ iκy

)

−i 32 t
(
κx ∓ iκy

) −Jσ z
B i 32 t

(
κx ± iκy

)

i 32 t
(
κx ± iκy

) −i 32 t
(
κx ∓ iκy

) (
J + 6J ′) σ z

C

⎞

⎠ . (4.7)

Here, the sign ± corresponds to the K and K ′ points. Then, up to the first order
expansion in terms of tκx/J and tκy/J , Eq. (4.7) is factorized into two parts; one is
a localized state at the down-spin sites in the C sublattice, and the other is a 2 × 2
Hamiltonianwith the wave functions confined in the up-spin honeycomb subnetwork
of the A and B sublattices,

H Dirac
k± =

( −Jσ z
A i 32 t (κx ± iκy)

−i 32 t (κx ∓ iκy) −Jσ z
B

)
. (4.8)

This is equivalent to the effective low-energy Hamiltonian of graphene.

4.3.2 Condition for the Dirac Half-Metal

From the form of effective low-energy Hamiltonian, it is clear that the Dirac cones
are formed immediately by switching on J . When J is small, however, the second
lower band for up spin crosses the Fermi level at n = 1/3 in the different region
in the Brillouin zone from the Dirac points. Hence, there is a band overlap at the
energy of the Dirac nodes, and the low-energy physics is not characterized solely by
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the massless Dirac fermions. In this section, we consider the condition that the Dirac
nodes are energetically isolated at the Fermi level.

In the small J region, the second up-spin band has two local minima: one at the
K and K ′ point, forming the Dirac nodes, and the other at the k = (2π/3, 0) and its
three fold symmetric points. The eigenvalues for these points are given by

εK = −(J + 3J ′) (4.9)

for the Dirac node and

ε( 2π3 ,0) = t

2
−

√(
J + 3J ′ − t

2

)2

+ 2t2 (4.10)

for the k = (2π/3, 0) points. Hence, with sufficiently small J , the energy is lower
for the latter, resulting in the band overlap which masks the Dirac nodes. In order to
make the Dirac node isolated at the Fermi level, εK < ε( 2π3 ,0) should be satisfied;
this condition is further simplified to

J + 3J ′ > t. (4.11)

This condition is important because the necessary J and J ′ are much smaller than
the noninteracting bandwidth 9t . We believe the strength of J and J ′ given here can
be satisfied in materials.

4.4 Phase Diagrams

In the discussions above, we assumed the presence of three-sublattice FR order in
the model in Eq. (4.1). In this section, we investigate the stability of the FR order in
the Kondo-lattice type model.

First, we start by investigating the ground state phase diagram near n = 1/3
by a variational calculation. In Chap.3, we studied the phase diagram of the model
in Eq. (4.1) with J ′ = 0 and found that the two-sublattice stripe phase and three-
sublattice FR phase competes in the vicinity of 1/3 filling. We compare the ground
state energy of these two phases and the ferromagnetic order. The results at J = 2
are shown in Fig. 4.3 for J ′ = 0 and 0.05. At J ′ = 0, the ground state in the plotted
range is dominated by the FR phase as well as the stripe phase. The different phases
are separated by phase separation. As shown in Fig. 4.3b, the introduction of small
J ′ largely stabilizes the FR phase near n = 1/3 as well as the stripe phase. This is
because the itinerant electron spins are polarized parallel to the localized spins in
the ground state, leading to an energy gain (loss) by the AFM J ′ for the two states
(the ferromagnetic state). We note that, in a real compound, the AFM superexchange
(SE) coupling between neighboring localized spins, given by JAF

∑
〈i, j〉 Si · S j may

http://dx.doi.org/10.1007/978-4-431-55663-3_3
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(a) (b)

Fig. 4.3 Ground state phase diagrams obtained by the variational calculation at a J ′ = 0 and b
J ′ = 0.05. The schematic picture of magnetic structure in each phase is shown. The white region
indicates the electronic phase separation (PS) and the dotted vertical lines indicate n = 1/3

Fig. 4.4 MC results for a
the pseudo moments Mxy
and |Mz |, b corresponding
susceptibilities χxy and χz ,
c azimuth parameter ψ . The
data are calculated at
n = 0.34

(a)

(b)

(c)
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also exist. However, in the current case, it neither modifies the band structure nor
harms the stability of the FR state. This could be understood from the fact that the
AFM SE interaction affects stripe and FR order in exactly the same way. As the
phase competition around n = 1/3 is between stripe and FR order, the AFM SE
interaction do not affects the phase boundary.

We next investigate the finite temperature region using the MC calculation. As
the results for J ′ = 0 are already presented in Chap. 3, we here present the results
only for finite J ′ and show that weak J ′ does not make qualitative change in the
finite T behavior. Figure4.4 shows the MC results at J = 2 and J ′ = 0.05 in the
slightly electron doped region to n = 1/3 (see also Fig. 4.2d). The results indicate two
successive phase transitions at TKT = 0.192(15) and at Tc = 0.108(9). The transition
temperatures are estimated by extrapolating the peak of susceptibilities χxy and χz

as N → ∞. The transition at TKT is considered as a KT type with the growth of
quasi-long-range order (see Sect. 3.3.3). On the other hand, the phase transition at
Tc is a three-sublattice FR ordering. The MC result and the above analysis for the
ground state consistently indicate that the three-sublattice FR order is stabilized in
the vicinity of n = 1/3 in the wide range of parameters for J and J ′, spontaneously
giving rise to the Dirac half-metal.

4.5 Discussion and Summary

In this chapter, we discussed emergence of a Dirac half-metal in an Ising-spin Kondo
latticemodel on a triangular lattice. By the analysis on the electronic state, we showed
that a three-sublattice ferrimagnetic order in a triangular lattice gives rise to half-
metallic Dirac nodes at the Fermi level for 1/3 filling. In addition, we performed
variational calculation andMonteCarlo simulation and showed that the ferrimagnetic
order is stabilized in the vicinity of electron filling 1/3. The results consistently shows
that the Dirac half-metal to be realized in the Ising-spin Kondo lattice model.

These results may also be interesting from experimental point of view. Theoreti-
cally, a trivial approach to the spin-polarized Dirac node is to consider ferromagnetic
Kondo lattice model that couples localized moments to itinerant electrons with Dirac
nodes in their single particle bands, such as single-band tight binding model on a
honeycomb or kagome lattice.

In the honeycomb and kagome models, when J is sufficiently strong compared
to the bandwidth, a ferromagnetic ground state is realized by the double-exchange
mechanism[1, 7] we discussed in Sect. 1.2.2. This ferromagnetic state is expected to
be stable for wide range of electron fillings. In this ferromagnetic state, the itinerant
electron bands split into two according to the spins; each band has exactly the same
form as that for the noninteracting case J = 0. This is due to the strong ferromagnetic
Kondo coupling. Hence, we expect to find half-metallic Dirac electrons in double-
exchange systems on a honeycomb or kagome lattice. However, these situations are
expected to be very difficult to realize in materials as a strong exchange interaction
or the honeycomb and kagome structures is rare in magnetic compounds.

http://dx.doi.org/10.1007/978-4-431-55663-3_3
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In the triangular lattice compounds, the ferrimagnetic state we considered in this
chapter is a well known magnetic state in triangular Ising antiferromagnet, and such
state was also observed in several insulating magnets [3, 6]. Hence, our results in
the minimal model will stimulate the hunt for Dirac half-metal in transition-metal
and rare-earth compounds. The present results is expected to be qualitatively robust
even when extending the model to more realistic situations. For instance, the FR
state remains stable when including the transverse components of localized spins,
at least, in the presence of the Ising anisotropy. Multi-band effect may be avoided
under a particular crystal field; for instance, the d-electron a1g orbital isolated by
a strong trigonal field is a good candidate for the realization. Our results here also
suggest the possibility of realizing the exotic electronic state in transition-metal and
rare-earth compounds, which generally retain much higher controllable degrees of
freedom than the well known Dirac electron systems such as graphene.
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Chapter 5
Thermally-Induced Phases on a Kagome
Lattice

Abstract In this chapter,we consider an Ising-spinKondo latticemodel on a kagome
lattice. The model shares some of the fundamental characters with the triangular
model considered in Chaps. 3 and 4; both the triangular and kagome lattices con-
sist of triangular units, and the two models show geometrical frustration when the
nearest-neighbor interaction is antiferromagnetic. We show that this kagome lattice
model exhibits a rich phase diagram with various thermally-induced phases: loop-
liquid state,

√
3 × √

3 partially-disordered state, and partial ferromagnetic state.
Among these phases, loop-liquid state is a novel ferrimagnetic state, which possesses
a fractional magnetic moment but the system remains disordered due to thermal fluc-
tuations. We also discuss the similarity and differences of the partially-disordered
state in kagome and triangular lattice models.

5.1 Model and Method

5.1.1 Model

We consider a single-band Kondo lattice model on a kagome lattice with localized
Ising spin moments. The Hamiltonian is given by

H = −t
∑

〈i, j〉,σ
(c†iσ c jσ + H.c.) + J

∑

i

σ z
i Si . (5.1)

Here, the first term is hopping of itinerant electrons,where ciσ (c†iσ ) is the annihilation
(creation) operator of itinerant electron with spin σ =↑,↓ at the i th site, and t is
the transfer integral. The sum 〈i, j〉 is taken over nearest-neighbor (NN) sites on the
kagome lattice. The second term is the on-site Kondo coupling between localized
Ising spins and itinerant electrons. σ z

i = c†i↑ci↑ − c†i↓ci↓ is the z component of the
itinerant electron spin, Si = ±1 denotes the localized Ising spin at the i th site, and
J is the coupling constant. Hereafter, we take t = 1 as the unit of energy, the lattice
constant a = 1, and the Boltzmann constant kB = 1. As the unit of conductance, we
take e2/h.
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5.1.2 Monte Carlo Method

Thermodynamic properties of the model in Eq. (5.1) are studied by the same Monte
Carlo (MC) method used in previous chapters; we use numerical diagonalization to
calculate the effective action as they are faster for system sizes up to order of hundred
sites. The details of the algorithm is elaborated in Sect. 2.2. Using this method, we
conducted the calculations up to the system size N = 3 × Ns with Ns = 92 where
Ns is the number of three-site unit cells. To deal with the freezing of MC sampling,
some of the low temperature data were calculated starting from a mixed initial spin
configuration of low temperature ordered and high-temperature disordered states [9].
The thermal averages were calculated with typically 4300–80000 MC steps after
1800–18000 MC steps for thermalization. In the MC simulation, we also calculate
optical conductivity of itinerant electrons using the standard Kubo formula with
scattering rate τ−1 = 0.01.

5.1.3 Variational Calculation

In addition to the MC simulation, we also conducted the variational calculations of
the ground state. We compared the ground state energy of the magnetic states found
in the MC simulation: they are, ferromagnetic (FM) order, q = 0 ferrimagnetic (FR)
and

√
3 × √

3 FR orders. Further details of the algorithm is given in Sect. 2.4.

5.1.4 Observables

To investigate the magnetic behavior of the model, we calculated several parameters
to elucidate the information on the spin states, along with the net magnetization

m =
√

〈(∑i Si/N )2〉 and spin structure factor

S(k) = 1

Ns

∑

i, j∈α

〈Si S j 〉 exp
(
ik · ri j

)
, (5.2)

where ri j is the vector from i th to j th site, and the sum is taken for the sites i, j in
the same sublattice α.

Firstly, to see the local spin correlations in the FM and FR states, we used the
probability to find a two-up one-down spin configuration in each triangle,

P =
√

〈(
∑

ν

pν

2Ns
)2〉, (5.3)
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(a) (b)

Fig. 5.1 Schematic pictures of the magnetic structures of PD states with a q = 0 and b
√
3 × √

3
ordering. The dotted hexagon in a shows the unit cell for the kagome lattice while that in b is the
magnetic supercell for the

√
3 × √

3 order. The numbers in a denote crystallographic sublattice,
and A, B, and C in b are the magnetic sublattice

where pν = 1(−1) for two-up one-down (one-up two-down) and otherwise pν = 0,
and the sum is over all triangles. As we will show later, this parameter acts like an
order parameter for the loop-liquid (LL) state, which is a thermally-induced phase
with fractional magnetic moment.

In addition to the LL state, we show that this model also exhibit a
√
3 × √

3
partial disorder (PD) state and the Kosterlitz-Thouless (KT) like state similar to that
of triangular lattice case discussed in Chap.3 (Fig. 5.1). In this chapter, we also use
the pseudo-spin [3, 15] to study these phases. The pseudo-spin on each unit cell is
defined by,

S̃m =
⎛

⎜⎝

2√
6

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3

⎞

⎟⎠

⎛

⎝
S1

m
S2

m
S3

m

⎞

⎠ , (5.4)

where Sν
m is the Ising spin on the νth site in the mth unit cell (Fig. 5.1a). We calculate

the sublattice pseudo-spin moment

Mα = 3

N

∑

m∈α

S̃m, (5.5)

where α = A,B,C denotes three sublattices for the pseudo-spins (Fig. 5.1b).
To determine the partially disordered state, we also used the azimuth parameter
defined by

ψα = (M̃α
xy)

3 cos 6φMα , (5.6)

http://dx.doi.org/10.1007/978-4-431-55663-3_3
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where φMα is the azimuth of Mα in the xy plane, and M̃α
xy = 3(Mα

xy)
2/8 [Mα

xy =
{(Mα

x )2 + (Mα
y )2}1/2] (Ref. [15]). The parameter ψα takes a negative value and

ψα → −27/64 for the ideal PD ordering, while it becomes positive and ψα → 1
for the ferrimagnetic ordering; ψα = 0 for both the paramagnetic and the KT-like
phases in the thermodynamic limit N → ∞.

For both q = 0 and
√
3 × √

3 PD states shown in Fig. 5.1, Mα
xy , |Mα

z |, and
ψα are independent of α. To distinguish these two states, we also calculate the net
pseudo-spin moment

M = 1

N

∑

m

S̃m = 1

3

∑

α

Mα, (5.7)

and corresponding Mxy , |Mz |, and ψ . In addition, to detect the phase transitions, we
compute the susceptibilities for the pseudo-spin moments by fluctuation formula

χO = N

T

(
〈O2〉 − 〈O〉2

)
, (5.8)

where O is a physical quantity renormalized by the number of sites. In the following
calculations, we found that all the quantities were independent of α. Hence, we
showed the averaged values over α, O ′ = ∑

α Oα/3 (Oα = Mα
xy, |Mα

z |, ψα).

5.2 Loop-Liquid State

5.2.1 Phase Diagram

We start by the phase diagram obtained by the MC simulation. Figure5.2 shows
the phase diagram obtained by the MC simulation at J = 6 while varying electron
density n = ∑

iσ 〈c†iσ ciσ 〉/2N . As lowering temperature, the system exhibits a phase
transition to a state with finite net magnetization. Temperature dependence of m are
shown in Fig. 5.3a. In the low density region for n � 0.28,m approaches its saturated
value 1 in the low-temperature limit, namely, the system exhibits a fully-polarized
FM order. This phase is connected to the FM phase in the the large J region, which
is induced by the double-exchange mechanism [1, 17].

While increasing n, the low-temperature value of m decreases from 1 and contin-
uously becomes smaller as n becomes larger, as shown in Figs. 5.3a, b. On the con-
trary, the local correlation parameter P increases continuously from zero (Fig. 5.3b).
A characteristic feature here is that the spin structure factor S(k) for the same sublat-
tice remains featureless except for the peak at k = 0, as shown in Fig. 5.5a. We call
this region with the reduced m the partially ferromagnetic (PFM) phase. One point
to be noted is that this phase cannot be a ground state of the current model. Hence, at
the lowest temperature, the PFM phase is expected to be taken over by another phase.
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Fig. 5.2 Phase diagram of the model in Eq. (5.1) at J = 6. The symbols shows the critical temper-
atures Tc for magnetic states: ferromagnetic (FM), partially ferromagnetic (PFM), loop liquid (LL),
q = 0 ferrimagnetic (q = 0), and

√
3×√

3 ferrimagnetic (
√
3×√

3) states. The upper limit for Tc
for q = 0 state n = 0.415 is shown by the downward triangle, which is given by the temperature
we reached with Ns = 82 calculations. The curve connecting the symbols is a guide for the eyes.
The strip at the bottom is the ground state phase diagram obtained by the variational calculation.
PS is the phase separation between the neighboring two phases

(a) (b)

Fig. 5.3 a MC results for the temperature dependences of m at different n. The data at n = 4/9
are calculated for Ns = 92, while the others for Ns = 82. b n dependences of m, χm , and P at
T = 0.03 for Ns = 62, 72, 82, and 92

In this case, it is likely to be a phase separation between FM and q = 0 FR states
we found in the variational calculation (see the bottom strip in Fig. 5.2). However, in
the MC simulation, we could not determine this instability. Presumably, the phase
separation takes place in very low temperature below our calculation.

In the region of 0.4 � n < 4/9, the low-temperature value of m becomes almost
independent of n, and saturates to a fractional value m = 1/3, as shown in Fig. 5.3a.
In this region, most of the triangles on the kagome lattice are in two-up one-down
spin configurations, namely, P � 1 (Fig. 5.3b). As shown in Fig. 5.5b, S(k) does not
show any sharp peak except for the one at k = 0, indicating that this state has no
superstructure. Hence, this FR state is a peculiar magnetic state subject to the two-up
one-down local constraint, in a similar sense to the two-in two-out state in spin ice
[5, 10]. The spin state is composed of the emergent degrees of freedom, self-avoiding
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(a) (b) (c)

Fig. 5.4 The schematic pictures of the magnetic states for a loop-liquid, b q = 0, and c
√
3× √

3
ferrimagnetic states. The bold lines denote the loops connecting up-spin sites and the dots show
down-spin sites

up-spin loops and isolated down-spins, as schematically shown in Fig. 5.4a (the bold
lines in the schematic picture connect up-spin sites while the dots represent down
spins). Hence, we call this state the LL state.1

An interesting observation here is that the change between the FM, PFM, and
LL states is smooth and there is no sign of phase transition. Both m and P changes
continuously without showing any singularity, and the magnetic susceptibility χm

shows only a broad hump, as shown in Fig. 5.3b. This indicates that the change from
FM to LL is a crossover and not a phase transition. Such behavior is understood from
the symmetry point of view. In the LL state, though it possesses a fractional magnetic
moment, the system still remains disordered and preserves all the symmetries of the
lattice; the situation is unchanged from the FM and PFM states. As a consequence,
these phases are smoothly connected by the crossover.

As further decreasing temperature or further increasing n, the LL state exhibits
phase transitions with showing a magnetic long-range order (LRO). In our MC sim-
ulation, we identify two different transitions; one is the transition to the state with
q = 0 LRO of the two-up one-down spin configurations (Fig. 5.4b), and the other to
the state with

√
3 × √

3 LRO (Fig. 5.4c). The former is observed while decreasing
temperature at n ∼ 0.415, and the latter is found by increasing n to a commensurate
filling n = 4/9. S(k) for the latter state is shown in Fig. 5.5c. In the correspond-
ing density regions, the two phases are obtained in the variational calculation for the
ground state, as shown in Fig. 5.2. These two LRO states are viewed as crystal phases
of the emergent loops in the two extreme cases; the former is a periodic array of one-
dimensional chains, while the latter the shortest six-site hexagons. Interestingly, the
peculiar LL state extends in the density region between these two crystal phases.

1In general, the algebraic spin correlation may induce a characteristic diffusive structure in the
magnetic structure factor, such as the pinch points in the case of spin ice. Indeed, we see a broad
hump around q = (±2π/3,∓2π/3), which might be the sign of such structure. However, we need
larger systems sizes to precisely determine such a structure.
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(a) (b)

(c)

Fig. 5.5 The MC results of S(k)/Ns are shown for a n = 0.325, b n = 0.42, and c n = 4/9 at
T = 0.03 and Ns = 92

5.2.2 Loop Liquid and Its Crystalization

Let us closely look at the MC results in the LL region. Figure5.6 shows the temper-
ature dependence at n = 0.415 calculated by MC simulation. Figure5.6a shows the
result of net magnetization m and its susceptibility χm . m increases with decreasing
temperature and shows saturation to 1/3, associated with a divergent peak of χm at
T ∼ 0.05. At the same temperature, P shows saturation to 1 and its susceptibility
χP shows a peak, as shown in Fig. 5.6b. This indicates most of the triangles become
two-up one-down below T ∼ 0.05. To determine the order of transition and the
transition temperature of this phase transition, we calculated Binder parameter [2]
for m and P , gm and gP , respectively. They are shown in Fig. 5.6d. The two Binder
parameters show a monotonic increase with decreasing temperature and a crossing,
consistently suggesting the transition to be of second order. The critical tempera-
ture for the transition is determined from the crossing of the results for different
sizes; it is estimated to be Tc = 0.051(4). On the other hand, a rapid increase of
S(k = 0)/Ns to 1 is observed in Ns = 42 and 62, as shown in Fig. 5.6c. However, the
onset temperature decreases for larger Ns; they also show strong finite size effects
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(a) (b)

(c) (d)

Fig. 5.6 MC results for a m and χm , b P and χP , c S(k = 0)/Ns, and d gm and gP for Ns = 42,
52, 62, 72, and 82 and at n = 0.415

with different behavior for even and odd Ns. This implies a phase transition to the
q = 0 ordered state takes place at a lower temperature, at least lower than the onset
temperature for Ns = 62, 0.028. This is consistent with the ground state obtained
by the variational calculation, as shown in Fig. 5.2a. Although the precise estimate
of the critical temperature is difficult within the present calculation, these results
indicate that successive phase transitions from PM to LL and LL to q = 0 FR state
take place at n = 0.415. The former corresponds to the formation of loops, and the
latter their crystallization.

5.2.3 Resonant Peak in the Electronic State

In the last, we discuss the electronic and transport properties of the itinerant electrons
in the LL state. The results of optical conductivity σ(ω) is shown in Fig. 5.7.

We here study the optical conductivity of LL state using two different approaches.
First, to extract the effect of characteristic spin correlations in the LL state, we
calculate σ(ω) by taking simple average over different spin patterns in the ideal
LL manifold, i.e., all the triangles satisfy the two-up one-down local constraint.
Figure5.7a is the result of σ(ω) calculated by taking simple average over 24 different
spin configurations, generated randomly. The optical conductivity was calculated at
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Fig. 5.7 Optical
conductivity σ(ω) calculated
by a simple average over LL
configurations at n = 0.422
for a 22 supercell of
N = 3 × 122 sites, and b
MC simulation at J = 6 for
a 42 supercell of N = 3 × 62

sites at T = 0.04. J (n) on
the right side of a (b) show
Kondo coupling (electron
density) for each data. The
typical error bars are shown
at ω = 0.5. The inset in
a shows the peak position of
σ(ω) at ω ∼ 1 with the
dotted line showing fitting by
ω = 0.995 + 0.558/
J − 0.155/J 2. The inset in
b is DOS at n = 0.431 and
T = 0.04

(a)

(b)

n = 0.422 for various J . An interesting feature of the result is the sharp peak at
ω = ωp ∼ 1.0–1.2, which shifts to lower ω for larger J .

This comes from the transition process between two localized states in the six-
site loops. In the limit of J → ∞, electrons are confined in the loops or at isolated
sites [7]; the contribution to σ(ω) comes only from the transition process between the
electronic states in the same loop. Hence, sharp peaks appear in σ(ω) corresponding
to the discrete energy levels in the finite length loops. In the current kagome case,
the most dominant loops are the shortest ones with the length of six sites. In the six-
site loops, the energy difference between the unoccupied and occupied levels at this
filling (the highest and second highest levels) is 1. Hence, we expect a sharp peak at
ωp = 1 in the limit of J → ∞. For large but finite J , the second order perturbation
in terms of the hopping between up and down spin sites shifts the second highest
eigenenergy to a lower energy. On the other hand, this perturbation process does
not affect the highest eigenenergy state. Hence, it is expected that the peak shifts to
a higher ω as decreasing J ; the asymptotic behavior at J → ∞ is expected to be
ωp = 1 + O(1/J ). This is confirmed by the fitting shown in the inset of Fig. 5.7a.

Interestingly, the peak persists in the weak J region where the exchange splitting
2J is comparable or smaller than the bandwidth, 6t , where the above perturbative
argument is expected to be no longer valid. In a recent study on a metal-insulator
transition caused by correlated potentials, a LL-type local correlation induces a
metal-insulator transition at a considerably smaller potential than the bandwidth
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by confining the electrons in the loops [6]. The persistent existence of resonant peak
is likely to be a consequence of this confinement.

Emergence of the characteristic peak is also observed in the thermodynamic aver-
age obtained by the MC simulation. Figure5.7b shows the MC result of σ(ω) while
varying n at T = 0.04 and J = 6. With increasing n from the FM region, the peak at
ω ∼ 1 develops in the LL state for n � 0.4. The inset in Fig. 5.7b shows the density
of states (DOS) for itinerant electrons (lower half of two split bands) at n = 0.431.
The result clearly shows the presence of two sharp peaks below and above the Fermi
level set at ε = 0; the energy difference is about 1.1, which well corresponds to the
peak in σ(ω) in the main panel of Fig. 5.7b.

5.3 Partial Disorder

We next focus on the weak J region of the model in Eq. (5.1). We show that, in the
weak J region at n = 1/3, the system exhibits the PD and the KT-like state.

Figure5.8 shows the results of theMCcalculation atn = 1/3and J = 2.As shown
in Fig. 5.8a, Mα

xy monotonically increases with decreasing temperature and shows a
rapid increase at T ∼ 0.06. In addition, it exhibits a small shoulder at T ∼ 0.015
before approaching the value at the lowest temperature. The two anomalies are more
clearly observed in the corresponding susceptibility χα

xy plotted in Fig. 5.8b; χα
xy

shows a divergent peak at T ∼ 0.06 and a hump structure at T ∼ 0.015. The results
imply two successive transitions takes place with decreasing temperature. As it will
be discussed later, the anomaly at higher temperature is a transition to KT-like state
and the lower temperature one is PD. The transition temperature are estimated to be
TKT = 0.057(3) by extrapolating the peak temperature of χα

xy . On the other hand, the
onset of PD state, T PD

c , is estimated as T PD
c = 0.030(2) from the azimuth parameter

ψ , by temperature at which the size-extrapolated ψ deviates from zero.
First, we consider the temperature region T < T PD

c . At the lowest temperature
of our calculation, Mα

xy approaches
√
2 while |Mα

z | is essentially zero in the ther-
modynamic limit, as shown in Fig. 5.8a. In addition, ψα shows a sharp decrease
in this region, from ψα = 0 to ∼ −0.4, as shown in Fig. 5.8c. The nonzero ψα

indicates a spontaneous breaking of six-fold rotational symmetry of Mα; specifi-
cally, the negative value approaching −27/64 suggests that the system exhibits PD
state. Correspondingly, as shown in Fig. 5.8b, χα

z shows a monotonic increase with
decreasing temperature, which is ascribed to the presence of paramagnetic spins in
the PD state. In contrast to Mα

xy , no increase in the net moments, Mxy or Mz , is seen
in the entire range of calculation;ψ is also zero. We also found that the spin structure
factor exhibits a peak corresponding to the

√
3×√

3 order. Hence, we conclude that
the system exhibits the PD state with period

√
3 × √

3 for T < T PD
c .
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Fig. 5.8 MC results for a
Mα

xy and |Mα
z |, b χα

xy and
χα

z , and c ψα . Results shown
are the average over all the
sublattices α = A, B, C (See
Fig. 5.1b). The data are for
J = 2 with system sizes
N = 6 × 6, 6 × 9, and 9 × 9
at n = 1/3

(a)

(b)

(c)

Next, we examine the intermediate temperature region T PD
c < T < TKT. As

shown in Fig. 5.8b, χα
xy shows a divergent peak at TKT corresponding to a rapid rise

of Mα
xy in Fig. 5.8a, which is a clear indication of a phase transition. Mα

xy , however,
exhibits a considerable finite-size effect in this temperature region. On the other
hand, |Mα

z | andψα shows almost no change. In particular,ψα is extrapolated to zero
within statistical errors in the limit of N → ∞, indicating that the intermediate region
shows no rotational symmetry breaking with respect to Mα . Similar behavior was
observed in the KT phase with quasi-long-range order in the Ising antiferromagnets
on triangular and kagome lattices [3, 4, 12–14] and in the Kondo lattice model on
a triangular lattice (Chap. 3). Hence, we conclude that the intermediate phase for
T PD

c < T < TKT is of a KT-like phase.
Consequently, ourMC data indicate that the system exhibits two successive phase

transitions in the calculated temperature range: one is from a high-temperature para-
magnetic phase to an intermediate KT-like phase, and the other is from the KT-like
phase to a low-temperature PD state with period

√
3×√

3. One point to be addressed
here is an anticipated phase transition from the PD state to the true ground state. The

http://dx.doi.org/10.1007/978-4-431-55663-3_3
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PD state retains residual entropy of ∼ 1
3 log 2 associated with the 1/3 paramagnetic

moments. Hence, the PD state is unlikely to be the ground state of the present model
because the degeneracy will be lifted by the long-range Ruderman-Kittel-Kasuya-
Yosida (RKKY) interactions induced by the spin-charge coupling (Sect. 1.2.1) [8, 11,
16]. However, in our MC simulation at n = 1/3, there is no indication of a further
phase transition from the PD state down to T � 10−3t . This implies that the energy
scale of the relevant RKKY interaction is extremely small and that the true ground
state is nearly degenerate with other spin configurations in the PD state. A similar
feature was also discussed in an Ising spin Kondo lattice model on a triangular lattice
in Chap.3.

Finally, let us compare the present results with those for the model on a triangular
lattice discussed in Chap.3. In the kagome lattice case, the transition temperature
to the PD state, T PD

c = 0.030(2), is an order of magnitude smaller than that in the
triangular lattice case, T PD

c = 0.130(4) (see Sect. 3.3.2 for further details). This is
presumably because of the stronger frustration in the kagome lattice case. Namely,
the antiferromagnetic order develops on the honeycomb network in the case of a PD
state on the triangular lattice, whereas it appears on the disconnected hexagons in the
kagome lattice case, as shown in Fig. 5.8b; the former can be accommodated by NN
interactions, but the latter needs further-neighbor interactions. Hence, the difference
of T PD

c can be understood because the RKKY interaction becomes weaker for further
neighbors in general. In the kagome lattice case, instead, the KT-like phase appears
over a wide temperature range above the PD phase whereas a direct transition from
the paramagnetic to PD phase is observed for the triangular lattice model at 1/3-
filling. This might also be ascribed to the difference in frustration; a higher entropy
due to the stronger frustration may contribute to the prevalence of the KT-like phase.

5.4 Summary

In this chapter, we studied an Ising-spin Kondo lattice model on a kagome lattice
focusing on the emergentmagnetic states and their electronic properties. In the region
with J comparable to the bandwidth, we presented that the loop-liquid state emerges
in the finite temperature region, in addition to ferromagnetic, q = 0 ferrimagnetic,
and

√
3 × √

3 ferrimagnetic states. The loop liquid is a Coulombic ferrimagnetic
state, characterized by the emergent up-spin loops originating from the two-up one-
down local spin configurations. The phase diagram is understood in terms of the
emergent loops as crystallization and cohesion of the dense liquid of the loops. We
also showed that the loop-liquid formation is observed in characteristic peaks in the
optical conductivity.

On the other hand, in the weak J region at n = 1/3, we found two successive
transitions: one from a high-temperature paramagnetic phase to an intermediate-
temperature Kosterlitz-Thouless-like phase, and the other to a low-temperature√
3× √

3 partially-disordered state. The two transitions are clearly elucidated by an
unbiasedMonteCarlo simulation, using the pseudo-spinmoments, the corresponding

http://dx.doi.org/10.1007/978-4-431-55663-3_1
http://dx.doi.org/10.1007/978-4-431-55663-3_3
http://dx.doi.org/10.1007/978-4-431-55663-3_3
http://dx.doi.org/10.1007/978-4-431-55663-3_3
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susceptibilities, and the azimuth parameter. A comparison between the present results
and those for a triangular lattice implies that the partial disorder is stabilized in a
wide class of two-dimensional Kondo lattice models under frustration.
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Chapter 6
Anomalous Hall Insulator in Kagome Ice

Abstract In this chapter, we consider double-exchange model with Ising localized
moment on a kagome lattice. We consider Ising anisotropy of the localized moments
to be that of 〈111〉 kagome plane of pyrochlore spin ice. We find that the local-
spin correlation developed in the kagome plane, kagome-ice state, opens a charge
gap without magnetic ordering. The insulating phase is a quantum anomalous Hall
insulator. By Monte Carlo simulation, we elucidate the anomalous Hall insulating
region in the phase diagram with temperature and magnetic field. We also discuss
the stability of the charge gap in an anisotropic pyrochlore lattice composed of the
kagome layers weakly coupled by the interlayer triangular sites.

6.1 Model and Method

Here, we introduce the model and methods we used in this chapter. In Sect. 6.1.1, we
introduce the model in details. Subsequent sections are devoted to the description of
method we used; details on the numerical diagonalization and Monte Carlo (MC)
simulation are given in Sects. 6.1.2 and 6.1.3, respectively.

6.1.1 Kagome Ice Model

In this chapter, we consider a single-band double-exchange (DE) model [1, 15] with
the spin-ice type Ising spins on a kagome lattice, which corresponds to the 〈111〉
plane of a pyrochlore lattice (see Fig. 6.1a).

H = −
∑

〈i, j〉
(ti j c

†
i c j + H.c.) −

∑

i

hz cos θi . (6.1)

Here, ci (c†i ) is the annihilation (creation) operator of an itinerant electron at
i th site. The spin index of electron is dropped as the spin is aligned parallel
to the localized moment Si at each site. The anisotropy axis of the localized
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Fig. 6.1 a Schematic
picture of spin ice on a
pyrochlore lattice. The
shaded plane indicates a
〈111〉 kagome plane.
Schematic pictures of b
one-in two-out and c all-out
type spin configuration

moments depend on the sublattice; they are given by Si = (Sx
i , Sy

i , Sz
i ) =

S(sin θi cosϕi , sin θi sin ϕi , cos θi ), where (θi , ϕi ) = (arccos( 13 ),
2π
3 ns + π

2 ),
(arccos(− 1

3 ),
2π
3 ns − π

2 ) for the sublattice ns = 1, 2, 3 and S = 1 (see Fig. 6.1c).
This anisotropy axes correspond to the line connecting center of the two tetrahedra
the site belongs to (Fig. 6.1a).

The sum 〈i, j〉 in the first term of Eq. (6.1) is taken over nearest-neighbor (NN)
sites on the kagome lattice, and the effective transfer integral ti j depends on the
relative angle of neighboring Ising spins; they are given by

ti j = t

(
cos

θi

2
cos

θ j

2
+ sin

θi

2
sin

θ j

2
e−i(ϕi −ϕ j )

)
, (6.2)

where t is the transfer integral between NN sites. In Eq. (6.1), for simplicity, the
effect of external magnetic field is taken into account by the Zeeman term only for
the localized Ising moments. Hereafter, we set the unit of energy t = 1, the length of
Bravais lattice vector a = 1, and the Boltzmann constant kB = 1. For conductance,
the unit is taken as e2/h = 1, where e is the elementary charge and h is the Planck
constant.

In DE models, the spin-charge coupling induces an effective ferromagnetic inter-
action between the localized spins at general filling as discussed in Sect. 1.2.2
[1, 15]. In this model, the ferromagnetic interaction for NN sites gives rise to macro-
scopic degeneracy in the ground state. In addition to the effective NN interactions,
the spin-charge coupling also gives rise to further-neighbor interactions, which gen-
erally lifts the degeneracy in the ground state and select a magnetic order as the
ground state. However, as the further-neighbor interactions are usually much weaker
than the NN one, a cooperative paramagnetic state with strong local correlations of
two-in one-out or one-in two-out is expected to emerge in the intermediate tempera-
ture (T ) region between a high-T paramagnetic state and the low-T ordered phase.
The main focus of this chapter is to study the electronic and transport properties in
the cooperative paramagnetic state that evolve in applied magnetic field.

http://dx.doi.org/10.1007/978-4-431-55663-3_1
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6.1.2 Numerical Diagonalization

In the following sections, we study the effect of spin correlation to the electronic
states of itinerant electrons by taking a simple average (arithmetic mean) over dif-
ferent configurations of spins. Instead of the magnetic field hz , we control the net
magnetization along the z direction per triangle,

mz = 1

Ns

∑

i

cos θi , (6.3)

where Ns = N/3 is the number of the unit cells and N is the number of sites.
The average is taken over different spin configurations with a fixed ratio of differ-

ent types of triangles. For 0 ≤ mz ≤ 1/3, we consider the manifold in which all the
triangles are of two-in one-out or one-in two-out type; their ratio is controlled so as
to realize the given value of mz . At mz = 1/3, all the upward (downward) triangles
are in the two-in one-out (one-in two-out) configuration, which is the kagome ice.
For mz > 1/3, we introduce all-in upward and all-out downward triangles. Eventu-
ally, at the saturation to mz = 1, the system shows a long-range order of alternating
all-in and all-out triangles. For all the cases in mz < 1, we generate different spin
configurations using a loop update method [7].

The conductivity is calculated by using the Kubo formula. The calculations were
done on 42 superlattices of N = 3 × 182 sites and T = 10−5 by averaging over
32 realizations of different spin configurations. Conductivities are calculated with
assuming a small inelastic scattering rate τ−1 = (3 × 182 × 42)−1.

6.1.3 Monte Carlo Simulation

In addition to the numerical diagonalization method, we also conducted a MC simu-
lation to investigate magnetic and transport properties in the low temperature region.
We used the algorithm described in Sect. 2.2 using the single-spin flip update and
global loop update algorithm for the localized spins [11]. The calculations were con-
ducted up to N = 3× 102 with typically 20,000 MC measurements after 6000 steps
of thermalization.

In the Monte Carlo simulation, we calculated difference of two-in one-out and
one-in two-out triangles

ρ =
√

〈(ρ+ − ρ−)2〉 (6.4)

and the scalar spin chirality

κ = 1

2Ns

∑

(i, j,k)

〈Si · S j × Sk〉 (6.5)

http://dx.doi.org/10.1007/978-4-431-55663-3_2
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to identify the kagome-ice state, in addition to mz defined in Sect. 6.1.2. Here, ρ+
is the probability of an upward (downward) triangle to be two-in one-out (one-in
two-out) and the ρ− is probability for one-in two-out (two-out one-in). In Eq. (6.5),
the sum is taken over all the triangles in the kagome lattice. The susceptibilities for
mz and ρ, χm and χρ , were also calculated by

χO = N

T

(
〈O2〉 − 〈O〉2

)
, (6.6)

where O is a physical quantity renormalized by the number of sites. Conductivities
were calculated by using Kubo formula with taking inelastic scattering factor τ =
0.05.

6.2 Exact Diagonalization Study of Electronic States

6.2.1 Density of States

Figure6.2 shows the electronic density of states (DOS) for different values of mz .
The solid and open arrows on the spectra indicate the Fermi levels for the electron
filling n = 1/3 and n = 2/3, respectively. Here, electron filling is defined by
n = 1

N

∑
i 〈c†i ci 〉.

Figure6.2a shows the results for 0 ≤ mz ≤ 1/3, where all the triangles are in two-
in one-out or one-in two-out configurations. The results indicate that the development
of spatial correlations in the kagome ice manifold develops a charge gap at n = 2/3
near mz = 1/3, although there is no magnetic long-range order. We also note that
a δ-function peak appears inside the charge gap. This originates from the localized
bound states within the hexagons with all spins in or all spins out. The formation of
bound states is a consequence of the quantum phase interference. The details will be
discussed in Sect. 6.2.2.

(a) (b)

Fig. 6.2 DOS for different mz calculated by the simple average over the kagome ice spin config-
urations. Solid and open arrows indicate the Fermi levels for n = 1/3 and n = 2/3, respectively.
The data for different mz are plotted with the offset of 0.14 and 0.19 in a and b, respectively
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Figure6.2b shows the results for 1/3 ≤ mz ≤ 1, where the all-in upward or all-
out downward triangles (magnetic monopoles) are introduced into the kagome ice
manifold. At the Fermi level for n = 1/3, the introduction of monopoles leads to a
dip in the spectra, and opens a full gap for mz � 0.7. On the other hand, the energy
gap at n = 2/3 and mz = 1/3 is closed by introducing monopoles. However, for
mz � 0.7, DOS develops a dip again and shows an energy gap at mz � 1. In the
all-in/all-out ordered state at mz = 1, DOS has a particle-hole symmetric form with
two gaps at n = 1/3 and n = 2/3 above and below the central flat band [12].

6.2.2 In-Gap Localized States

In the results of DOS shown in Fig. 6.2, we found a δ-function peak at ε = 1, in
the energy gap of the kagome ice insulator. We show that this peak comes from the
localized electronic state in the six-site loops of the spins pointing inward for the
upward triangles (outward for the downward triangles) (see Fig. 6.3). This can be
understood by considering a wave function

| ψ 〉 = 1√
6

6∑

n=1

e−i 2π3 nc†in
| 0〉 (6.7)

where {i1, · · · , i6} is the sites in the hexagon of Fig. 6.3 in clockwise direction. By
multiplying the Hamiltonian in Eq. (6.1) to the eigenstate in Eq. (6.7), we can see that
Eq. (6.7) is the eigenfunction of Eq. (6.1) with ε = 1; the hopping terms going out
of the loop cancel out by the quantum phase interference. Hence, for each six-site
loop, there exists one localized electronic state with eigenenergy ε = 1, which form
the in-gap flat band.

6.2.3 Conductivity

To gain further insight into the peculiar changes of DOS in Sect. 6.2.1, we calculated
the longitudinal (σxx ) and transverse (σxy) conductivities. Figure6.4 shows the results

Fig. 6.3 Schematic picture
of the six-site loops in the
kagome ice state
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Fig. 6.4 The longitudinal
and transverse conductivities
at n = 2/3 as a function
of mz

at n = 2/3. For 0 ≤ mz ≤ 1/3, σxx shows monotonic decrease in accordance with
the growth of energy gap in DOS. On the other hand, σxy shows monotonic increase
while increasing mz , showing a quantized value at σxy = 1 in the gapped state near
mz = 1/3. In the kagome ice state, we confirmed that all the spin configurations we
generated become σxy = +1 within errors of the order of 10−6. Small deviations
presumably come from a small T introduced in the calculations.

For mz > 1/3, σxx increases and shows a hump at mz ∼ 2/3; finally it decreases
to zero in the all-in/all-out insulator at mz = 1. Correspondingly, σxy decreases from
1 with showing a sign change at mz ∼ 2/3, and converges to another quantized value
σxy = −1 at mz = 1.

The non-monotonic change of the Hall conductivity σxy is explained by the Berry
phasemechanism [8, 12, 14]. In a previous studyon thekagomeDEmodelwithq = 0
all-in all-out magnetic order [12], it was shown that the Hall conductivity depends
on the scalar chirality of localized spins in the three-site unit cell, Si · S j × Sk . A
similar mechanism was shown to work through the fluctuations [13] also. Our result
of σxy is understood by considering the scalar chirality; two-in one-out (one-in two-
out) upward (downward) triangles bring negative chirality − 4

3
√
3
while magnetic

monopoles bring positive chirality + 4
3
√
3
each.

The remarkable point in our results is the quantization of σxy at +1 in the gapped
kagome ice state and its switching to −1 accompanied by the closing and reopening
of the energy gap at n = 2/3 and associated hump in σxx . The change in σxy as well
as the hump in σxx suggests a transition between the kagome ice at mz = 1/3 and
all-in/all-out ordered state at mz = 1. The latter ordered state was shown to be an
anomalous Hall insulator (AHI) characterized by the first Chern number C = −1
[12]. On the other hand, the kagome ice at mz = 1/3 is a paramagnetic state with
constrained local spin configurations.Hence, the quantizationofσxy aswell as the gap
opening in DOS is highly nontrivial, suggesting that the cooperative paramagnetic
state with kagome-ice correlation is another AHI. The closing and reopening of the
energy gap as well as the hump of σxx is interpreted as a phase transition between
topologically different insulators with a transient metallic state in between.
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6.3 Monte Carlo Simulation

The above calculations imply that a similar change between the kagome ice and all-
in/all-out ordered state can take place in the model in Eq. (6.1) in applied magnetic
field hz . To confirm this, in this section, we investigate the thermodynamic behavior
of the kagomeDEmodel by aMC simulation, that can take into account the interplay
of localized moments and itinerant electrons.

6.3.1 Magnetic Properties

Figure6.5 shows the MC results at T = 0.03 and n = 2/3 in applied field hz . All the
results consistently indicate two sharp crossovers while increasing hz ; one is from
the zero-field state to the kagome ice state by switching on hz , and the other to the
all-in/all-out ordered state at hz ∼ 0.34. Figure6.5a depicts the results for mz and
its susceptibility χz . They clearly indicate the presence of 1/3 magnetization plateau
for 0.1 � hz � 0.3 followed by rapid increase of mz for larger hz and a peak of
χz at hz = 0.341(3). As shown in Fig. 6.5b, the ratio of two-in one-out and one-in
two-out configurations in the system ρ, defined by Eq. (6.4), stays close to 1 in the

(a) (b)

(c)

Fig. 6.5 MC results for a mz and χz , b ρ and χρ , and c κ at n = 2/3 and T = 0.03. The data were
calculated for the system sizes ranging from N = 3 × 62 to 3 × 102



86 6 Anomalous Hall Insulator in Kagome Ice

(a) (b)

(d)(c)

Fig. 6.6 Spin structure factor for the localized Ising spins calculated by the MC simulation at
T = 0.03 and a hz = 0.00, b 0.08, c 0.16, and d 0.24. The results are for the system size with
N = 3 × 102

plateau regime, while it decreases for larger hz ; the corresponding susceptibility χρ

shows a sharp peak at hz = 0.340(3). Figure6.5c shows the net scalar chirality κ

defined by Eq. (6.5), where the sum is taken over all the triangles and the indices
(i, j, k) are in the counterclockwise order in each triangle. It approaches and stays
near the minimum value − 4

3
√
3
, followed by rapid increase for a higher field with

showing a sign change at hz = 0.325(5). These results are signatures of a crossover
between the kagome ice state and all-in/all-out ordered state takes place by applying
the external magnetic field.

We stress that the 1/3 plateau state in the MC simulation is a cooperative para-
magnetic state where kagome-ice type local correlation is well developed but lacks
long-range ordering. To confirm this, we calculated the magnetic structure factor
by using the MC method. Figure6.6 shows the results of S(q) for N = 3 × 102 at
T = 0.03 and n = 2/3 calculated by MC method. The result at h = 0 in Fig. 6.6a
shows no magnetic Bragg peaks, which indicates no magnetic long-range ordering.
We also note that a broad structure with maxima at q = (0, 0) is seen in Fig. 6.6a.
One possible cause of this structure is the fluctuation toward a long-range mag-
netic order which is expected at a much lower temperature. Another possibility is
that the structure is related to development of local correlation. At the parameter
of the calculation, the kagome-liquid type local correlation is well developed, as is
seen from Fig. 6.5b. Such development of local correlation sometimes gives rise to
a characteristic structure in S(q), such as the pinch points in spin ice compounds
[4, 5]. However, it is necessary to perform the calculations for larger system sizes to
precisely determine such a characteristic structure.
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With applying the external magnetic field, a Bragg peak starts to develop at q = 0
which corresponds to the net magnetic moment. Figure6.6b–d shows the results of
S(q) under external magnetic field; these results corresponds to the magnetization
plateau. The peak at q = 0 is clearly observed in all the results. However, no other
Bragg peaks are observed in the results, indicating that there is no long-range ordering
characterized by q �= 0.

6.3.2 Electronic and Transport Properties

The development of two magnetic states are also reflected in the electronic and
transport properties. Figure6.7 shows the results of DOS for N = 3×102 calculated
by MC method at T = 0.03 and n = 2/3. The Fermi level for n = 2/3 is set at
ε = 0. The result for hz = 0 shows featureless DOS, while an energy gap starts to
develop with applying external magnetic field, as is seen in the results for h = 0.08
and 0.16. On the other hand, with applying stronger magnetic field, the gap become
less obvious for h > 0.16. The results for DOS are consistent with the results for σxx

and σxy shown in Fig. 6.5d, which shows two humps in the result of σxx . Overall, the
results of MC simulation under magnetic field well resemble those of the numerical
diagonalization results shown in Fig. 6.2, and hence, the kagome ice insulating state
is expected to be realized in the plateau region.

The presence of kagome ice insulator and its crossover to the all-in/all-out state
are also seen in the transport properties. Figure6.8 showsMC results for σxx and σxy

at n = 2/3 and t = 0.03.With applying themagnetic field, σxx decreases rapidly and
approaches zero in the magnetic plateau region shown in Fig. 6.5a. However, with
further increasing the magnetic field, σxx shows an increase and a hump. For σxy ,
with the application of the magnetic field, it shows rapid increase and approaches 1.0
in the kagome ice plateau region, consistently with the gap formation seen in the MC
results for DOS (Fig. 6.7). On the other hand, with further increasing the magnetic

Fig. 6.7 DOS calculated by
MC simulation at T = 0.03
and N = 3 × 102 while
varying external magnetic
field. The Fermi level at
n = 2/3 is set at ε = 0. For
each data, offset of Δ = 0.16
is taken for better visibility
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Fig. 6.8 MC results for σxx and σxy with the application of the magnetic field at n = 2/3 and
T = 0.03. The calculations were done for N = 3 × 62 − 3 × 102 size systems

(a) (b)

Fig. 6.9 Contour plots of the MC results for a σxy and b σxx in the hz-T plane. The calculations
were done for N = 3 × 62 size systems. The white crosses show the parameters at which the MC
acceptance rate becomes lower than 1%

field, σxy shows a sign change at hz = 0.328(7) accompanied by the hump of σxx .
These features resemble the result of exact diagonalization shown in Fig. 6.4.

In the last, in Fig. 6.9, we mapped out the conductances in the hz-T plane. The
two insulating phases are also clearly observed in the contour plots of σxy and σxx in
the hz-T plane. Figure6.9a shows the result of σxy . It clearly indicates two regimes
with a finite Hall conductivity σxy of an opposite sign: a dome-like region centered at
hz ∼ 0.15, and another one for hz � 0.34. The two regimes are also clearly indicated
by strong suppression of σxx , as shown in Fig. 6.9b. Thus, the phase diagram shows
that the model in Eq. (6.1) exhibits two different insulating regimes with different
topological characters, as expected in the analysis by using the simple average in
Sect. 6.2.
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6.4 Anisotropic Pyrochlore Lattice

In the last, we discuss the stability of the energy gap when three dimensionality is
introduced. Here, we consider an anisotropic pyrochlore lattice model with hopping
integral t = 1 for the intraplane hoppings in a kagome plane and t ′ interplane
hoppings. The intraplane hoppings are the hoppings in the 〈111〉 kagome planes
[the purple plane in Fig. 6.1a]. On the other hand, the interplane hoppings are those
connecting the 〈111〉 triangular and the 〈111〉 kagome planes; the model can also be
viewed as kagome planes weakly-coupled to the sandwiched triangular planes.

Figure6.10 shows the result of the electronic DOS calculated by taking simple
average over different kagome-ice spin configurations; themoments on the triangular
planes are fixed ferromagnetically along the netmagneticmoments of kagomeplanes.
Such situation is expected to be realized in pyrochlore material Dy2Ti2O7 with
external field applied along 〈111〉 direction [2, 6, 10]. Figure6.10a shows the overall
structure of DOS. In this model, as there is extra electrons from the triangular planes,
the energy gap at n = 2/3 of the kagome model corresponds to the energy gap
at n = 3/4 of the t ′/t = 0 case [The position of the arrow in the lowest DOS
in Fig. 6.10a]. By introducing t ′, the energy gap at n = 3/4 becomes smaller and
vanishes above t ′/t = 0.4.

Figure6.10b shows the enlarged figure of DOS around the energy gap at n = 3/4.
In the t ′/t = 0 limit, there exist two energy gaps separated by the flat band at ε = 1;
the upper one corresponds to the gap at n = 2/3 in the kagome lattice case. When
introducing t ′, the gap becomes smaller and closes around t ′/t ∼ 0.3. On the other
hand, the lower gap persists to t ′/t ∼ 0.4.

The dependence of energy gap with respect to t ′ is summarized in Fig. 6.11. The
energy gap in Fig. 6.11 is estimated from the energy difference between the highest
occupied energy level and lowest unoccupied energy level. As indicated in Fig. 6.10,
the result shows that the energy gap closes at t ′/t ∼ 0.3. The results indicate that, in

(a) (b)

Fig. 6.10 Density of states for the anisotropic pyrochlore lattice with varying t ′/t . a Overall
structure and b enlarged figure around the energy gap at n = 3/4. The calculations were done for
83 superlattice of N = 4 × 63 sites
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Fig. 6.11 Size of energy gap
at n = 3/4 with varying t ′/t

the presence of interlayer couplings, the kagome ice insulating state persists when
the interlayer coupling is weaker or similar to 1/3 of the interlayer couplings.

6.5 Discussion and Summary

In this chapter, we presented comprehensive analyses that provide convincing evi-
dence for the existence of kagome ice AHI in the intermediate T classical spin-
liquid regime. This is a peculiar topological state of matter in the absence of Landau
levels, spin-orbit coupling, and magnetic ordering. Upon further decreasing T , it
is expected that effective further-neighbor interactions induced by the spin-charge
coupling stabilize some magnetic order, whose ordering pattern may become com-
plicated depending on hz as well as the electron density. It is left for future study to
investigate the full phase diagram including the low-T ordered phases.

On the other hand, an extension of the model to more realistic situation on the
three-dimensional pyrochlore lattice was studied in Sect. 6.4. By analyzing the elec-
tronic density of states, we showed that kagome ice insulator is stable for t ′/t � 0.3.
For larger t ′, the quantization of σxy no longer holds and the behavior of σxy under
magnetic field shows a featureless curve. However, it is expected that the non-
monotonic change of σxy remains in applied magnetic field. It is interesting to note
that such non-monotonic behavior of the Hall resistivity was observed in the 〈111〉
magnetic field in Pr2Ir2O7 [3, 9].
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Chapter 7
Spin-Charge Coupled Phases on a Pyrochlore
Lattice

Abstract In this chapter, we study a spin-ice type Kondo lattice model on a
pyrochlore lattice. The finite temperature phase diagram of the Kondo lattice model
is studied by using an efficient Monte Carlo method using the polynomial expansion
technique (Sect. 2.3). This algorithm is an unbiased simulation method with well
controlled approximation, that allows us to study spin-charge coupled systems using
large system sizes. In this section, we present the results up to 2048 sites. By the
large-scale Monte Carlo simulation, we clarify the phase diagram of the model; we
find a new 32-sublattice magnetic phase with concomitant charge modulation, along
with other phases such as two-in two-out and all-in/all-out orders. We also show that
the spin and charge order can be switched by external magnetic field to a different
one accompanied by a half magnetization plateau.

7.1 Model and Method

In this section, we briefly review the model and method we used in this chapter.
The model is explained in Sect. 7.1.1 and the Monte Carlo (MC) method we used in
Sect. 7.1.2. Further details on the model and the method is given in Chap.2.

7.1.1 Spin-Ice Kondo Lattice Model

We here consider a Kondo lattice model with Ising spins on a pyrochlore lattice,
whose Hamiltonian is given by

H = −t
∑

〈i, j〉,σ

(
c†iσ c jσ + H.c.

)
− J

∑

i

Si · σ i . (7.1)

The first term represents hopping of itinerant electrons, where ciσ (c†iσ ) is the anni-
hilation (creation) operator of an itinerant electron with spin σ =↑,↓ at i th site, and
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(a) (b)

(c) (d)

Fig. 7.1 Spin configurations for a ice-ferro, b ice-(0, 0, 2π), c 32-sublattice, and d all-in/all-out
order

t is the transfer integral for nearest-neighbor (NN) sites. The sum 〈i, j〉 is taken over
NN sites on the pyrochlore lattice. The second term is the onsite interaction between
localized moments and itinerant electrons, where J is the Kondo coupling. Si and

σ i =
∑

α,β

c†iαταβciβ (7.2)

represent the localized Ising moment and itinerant electron spin at i th site, respec-
tively; we take |Si | = 1. Here, ταβ is the vector of αβ components of the Pauli
matrices.

In this section, we consider the Isingmoments with anisotropy axis along the local
〈111〉 direction, i.e., along the line connecting the centers of two tetrahedra which
the spin belongs to (see Fig. 7.1). Hereafter, we take t = 1 as the unit of energy and
the Boltzmann constant kB = 1. For the unit of length, we take the lattice constant
of cubic unit cell a = 1 as shown in Fig. 7.1d.

7.1.2 Monte Carlo Simulation

Thermodynamic properties of the model in Eq. (7.1) are investigated by MC simu-
lation using both the exact diagonalization (ED) and polynomial expansion method
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(PEM). In relatively higher density region ne � 0.15, we concluded that PEM with
m = 40 polynomials gives good convergence (ne = ∑

iσ 〈c†iσ ciσ 〉/N ). On the other
hand, the convergence appears to be much worse for ne � 0.15, and hence, we
employed ND instead of PEM. Further details of the benchmarks on PEM method
are given in Chap.9.

In this section, the calculations were conducted up to N = 4 × 83 for the MC
with PEM and N = 4× 43 for ED. Typically, we perform more than 3000 MC steps
for the calculation of physical quantities. The results are divided into three bins to
estimate the statistical error. For system size N = 4 × 83, one MC step takes about
30 seconds by using 1024 CPU cores in the System B (SGI Altix ICE 8400EX) at
ISSP supercomputer center.

7.1.3 Physical Quantities

In the MC simulation, we computed magnetic order parameter defined for αth sub-
lattice,

Mq =
(

S(α)
q max

Nt

) 1
2

, (7.3)

to determine the development of magnetic orders in low temperature. Here, S(α)
q max

is the maximum component of sublattice-dependent spin structure factor,

S(α)
q = 1

Nt

∑

i, j∈α

〈Si · S j 〉 exp
[
iq · (

ri − r j
)]

, (7.4)

where Nt = N/4 is the number of tetrahedra, ri is the position of i th site, and
q is the wave number. In addition, we also calculated the probability to find each
configuration of all-in or all-out (P40), three-in one-out or one-in three-out (P31),
and two-in two-out (P22). The magnetic pattern in each phase are determined from
the magnetic order and local correlation parameters.

The spatial modulation in the charge degree of freedom is detected by a similar
order parameter defined by

nq =
[

N (α)
q max

Nt

]1/2

, (7.5)

where N (α)
q is the charge structure factor for αth sublattice defined by

N (α)
q = 1

Nt

∑

i, j∈α

〈n̂i n̂ j 〉 exp
[
iq · (

ri − r j
)]

, (7.6)

http://dx.doi.org/10.1007/978-4-431-55663-3_9
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and n̂i is the electron number operator for i th site

n̂i =
∑

σ

c†iσ ciσ . (7.7)

We also calculated the charge modulation Δn defined by the difference of the elec-
tron densities between the kagome and triangular planes perpendicular in the [111]
direction.

7.2 Phase Diagram

Figure7.2a shows the phase diagram of the model in Eq. (7.1) at J = 2 obtained
by the MC simulation. There are four dominant phases at low T in the calculated
density region 0 ≤ ne ≤ 0.3. The open symbols show the transition temperatures Tc

for each phase determined from the inflection point or sharp jump of T dependence
of the order parameter Mq.

In the low density region ne � 0.04, the q = 0 two-in two-out order shown
in Fig. 7.1a evolves in the low T region below Tc � 0.025. We call this phase the
ice-ferro phase hereafter. While increasing the electron density, a different ordering
develops in the region of 0.08 � ne � 0.15. The ordering structure is of layer
type with q = (0, 0, 2π), in which every tetrahedron retains two-in two-out ice-
rule configuration, while the net moments of tetrahedra form a collinear layer-type
ordering (Fig. 7.1b); we call this the ice-(0, 0, 2π) phase. The ordering pattern is the
same as that found in a spin icemodel including the long-range dipolar interaction [2].
A new phase appears in the higher density region for 0.15 � ne � 0.22. The
magnetic structure is a 32-sublattice long-range order with q = (π, π, π), in which
all third-neighbor spins are aligned in an antiferromagnetic (AFM)manner. Here and
hereafter we refer to the third neighbors as the six second-neighbor sites along the
straight chains running in the pyrochlore lattice. Note that the AFM third-neighbor
interaction is free from frustration, uniquely selecting the 32-sublattice ordering, if
other interactions are negligible. For ne � 0.22, the system exhibits the q = 0 all-
in/all-out order (Fig. 7.1d). The closed symbols at ne ∼ 0.05 and 0.15 indicate phase
transitions to other complex magnetic orderings, whose magnetic unit cells reach the
system size; we need larger system sizes to confirm the orderings.

We also calculated the phase diagram at T = 0 by comparing the ground state
energy for the four ordered states appearing in the MC simulation. The result is
shown in the strip at the bottom axis of Fig. 7.2a. All the four phases appear in the
corresponding density regions where the MC results show their instabilities. The
phase transitions between different phases are all first order at T = 0 accompanied
by a jump of the electron density, that is, phase separation (PS).

The trend of the phase diagram is reasonable from the viewpoint of the RKKY
interactions [3]. Figure7.2b shows the nearest-, second-, and third-neighbor com-
ponents of the RKKY interaction, which are calculated by using the bare magnetic
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Fig. 7.2 a Phase diagram of
the model in Eq. (7.1) at
J = 2. The open symbols
show Tc for the four phases,
while the closed ones are for
other complex orders. The
lines are guides for the eyes.
The bottom strip shows the
ground-state phase diagram
obtained by comparing the
energy of four phases. PS
indicates phase separation.
b RKKY interactions for the
nearest-, second-, and
third-neighbor spins
calculated by using the
second-order perturbation in
terms of J for the model
(7.1). The latter two are
multiplied by factor 3 for
clarity

(a)

(b)

susceptibility for the noninteracting tight-binding model at J = 0. In the lowest
density region ne � 0.05, all three components are positive [ferromagnetic (FM)],
because of the small Fermi surface. This is consistent with the ice-ferro order appear-
ing in this region (Fig. 7.1a). While increasing the electron density above 0.05, the
second- and third-neighbor RKKY interactions change their signs to be AFM, while
the NN interaction remains dominantly FM. The ice-(0, 0, 2π) order is stabilized
as a compromise of these interactions (Fig. 7.1b). While further increasing the elec-
tron density, the NN RKKY interaction also changes its sign at ne ∼ 0.20. In the
vicinity of this density, the NN interaction becomes relatively weak compared to
the further-neighbor ones. The 32-sublattice order emerges in this region. Indeed,
themagnetic structure of 32-sublattice order is characterized byAFMordering of the
third-neighbor spins (Fig. 7.1c), while it shows no apparent change in NN spin cor-
relations from high-T paramagnetic state, as discussed below. In the higher density
region ne � 0.22, the NN interaction becomes AFM, and the all-in/all-out order is
stabilized. The absence of frustration in the dominant NN AFM interaction makes
Tc much higher than other phases.

It should be stressed that, although the sequence of magnetic orderings is qualita-
tively understood by the analysis of RKKY interactions, it is difficult to infer a priori
the phase diagram in the nonperturbative region of J only by the form of RKKY
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interactions. For instance, critical temperatures are difficult to predict. Indeed, our
phase diagram is qualitatively different from that for a spin-only RKKY model [1].
The unbiased MC simulation explicitly taking account of itinerant electron degree
of freedom is crucial to identify the phase diagram.

7.3 Temperature Dependence of Physical Quantities

We next look into the T dependences of the order parameters and short-range spin
correlations within each tetrahedron. The local spin correlations are measured by
calculating P40, P31, and P22. Figure7.3a shows the results in the ice-ferro region.
The results show an enhancement of the ice-rule local correlation P22 prior to phase
transition at Tc 	 0.023,while P40 and P31 are strongly suppressed. P22 also becomes
dominant in the ice-(0, 0, 2π) phase region, as shown in Fig. 7.3b. Regarding to the
order of transition, a sharp jump is observed for the ice-(0, 0, 2π)ordering (Fig. 7.3b),
which is an indicative of a first order transition. This is presumably due to the six-fold
degeneracy of the ordered ground state, in analogy with the six-state Potts model [4].
In this respect, the transition to the ice-ferro statemight also be of first order, while the
MC data do not show clear indication of discontinuity in the MC results. This might
presumably be of the small system size. Indeed, recent study on an effective spin
model using RKKY interaction shows weak first order transition [3]. On the other
hand, the results for the all-in/all-out region show contrasting behavior (Fig. 7.3d),
in which the all-in/all-out correlation P40 is enhanced prior to the phase transition at
Tc 	 0.051.

In sharp contrast, for the 32-sublattice order, the local correlation parameters
show weak T dependence, even in the critical region near Tc 	 0.047. This implies
that the ordering is not driven by NN spin correlations, as discussed above. Another
interesting point here is that the 32-sublattice magnetic order exhibits a concomitant
charge disproportionation. In Fig. 7.3c, we plot the charge disproportionation nq.
The result clearly indicates the emergence of concomitant charge disproportionation
below Tc; the temperature of the inflection point of nq is in agreementwith that of Mq.
The wave number for charge structure factor is q = (0, 0, 2π). The local electron
density is higher at the sites belonging to the all-in/all-out tetrahedra compared with
the other sites (see Fig. 7.1c). On the other hand, all the other phases in Fig. 7.2 are
charge uniform; the 32-sublattice order is the only phase showing a concomitant
charge disproportionation.

This could be understood by a simple perturbation argument. A standard second-
order perturbation in terms of J predicts that the underlying magnetic ordering
restricts a possible wave number for charge disproportionation to q = qα1 +qα2 +G,
where qα are the magnetic wave numbers and G is a reciprocal lattice vector. For the
ice-ferro, stripe, and all-in/all-out phases, no charge disproportionation is allowed
because 2qα = G. For the 32-sublattice order, however, a charge disproportionation
with q 
= G is allowed as qα is dependent on α.



7.4 Magnetic Field Switching of Charge Disproportionation 99

(a) (b)

(c) (d)

Fig. 7.3 T dependences of the order parameter Mq and the ratios of tetrahedra with different spin
configurations, P22, P31, and P40, at J = 2. The data are calculated at a fixed chemical potential
μ: a μ = −5.9 [corresponding to ne = 0.030(2)], b μ = −4.8 [ne = 0.099(3)], c μ = −3.4
[ne = 0.195(1)], and (d) μ = −2.4 [ne = 0.264(3)]. The magnetic ordering wave vectors for each
phase are (a), d q = 0, (b) (0, 0, 2π), and (c) (π, π, π). In (c), the charge disproportionation nq
with q = (0, 0, 2π) is also plotted

7.4 Magnetic Field Switching of Charge Disproportionation

In this section, we study the behavior of 32-sublattice order under external magnetic
field. In particular, we focus on the charge modulation in this phase, which we
show to be switchable by applying an external magnetic field. Figure7.4 shows the
magnetization M = | ∑i Si |/N and the charge disproportionation under a magnetic
field h applied along a [111] direction at T = 0.025 (Δn). For simplicity, we apply
a magnetic field only to localized Ising spins. Under a weak magnetic field of up to
h ∼ 0.04, the 32-sublattice order at h = 0 remains robust and M remains almost zero.
At higher magnetic fields, M increases abruptly, indicating a first-order transition to
a different phase, which is characterized by the half-magnetization plateau M 	 1/4
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Fig. 7.4 Magnetization M
and charge
disproportionation Δn under
the external magnetic field h
along a [111] direction at
μ = −3.4 and T = 0.025.
The vertical dashed line is an
estimate of the critical field
at T = 0, hc 	 0.0465,
obtained by comparing the
ground state energies in a
sufficiently large system.
The inset shows a schematic
picture of the magnetic order
in the plateau state at
M 	 1/4

(Due to the non-colinear anisotropy axes, the full saturation is M = 1/2 in the present
model). This plateau state remains stable up to h ∼ 0.1. The magnetic structure of
the plateau phase is obtained by aligning all the spins on triangular layers in the field
direction (see the inset of Fig. 7.4). Although there is a finite size effect, the data for
N = 4 × 63 show the transition to the plateau state very close to hc estimated at
T = 0 in the thermodynamic limit. For the high-field region above the plateau state,
we could not obtain converged results owing to the poor convergence of PEM.

Interestingly,Δn also changes from almost zero to nonzero abruptly at the critical
field, namely, the charge disproportionation is simultaneously switched to that along
the [111] direction. The switchingmay be explained as follows. Asmentioned above,
the charge disproportionation with q = (0, 0, 2π) in the zero-field state appears to
be dominantly driven by the inhomogeneity of NN spin correlations. In contrast, in
the plateau state in applied magnetic field, the NNmean fields have uniform, nonzero
magnitude at all the sites. Instead, the mean fields from second-neighbor spins along
the chains are different between the triangular and kagome sites, which may lead to
the charge disproportionation along the [111] direction in the plateau state.

7.5 Discussion and Summary

To summarize, we have numerically investigated the Kondo lattice model with
Ising spins with the local [111] easy-axis spin anisotropy on a pyrochlore lattice,
which potentially describes metallic pyrochlore oxides. By using the state-of-the-
art Monte Carlo simulation that can directly simulate the Kondo lattice models,
we found the 32-sublattice ordered phase in the phase competing region between the
two-in two-out and all-in/all-out phases. This phase exhibits a charge disproportiona-
tion concomitantwith themagnetic order. The spin and chargepattern canbe switched
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by an external magnetic field to a different one that shows a half-magnetization
plateau. Our result demonstrates that spin-charge coupling on a frustrated lattice
induces rich behavior than that in localized spin systems.
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Chapter 8
Spin-Cluster State in a Pyrochlore Lattice

Abstract In this chapter, we study magnetic phase diagram and transport phenom-
ena in a double-exchange model on a pyrochlore lattice with spin-ice type localized
moments. Magnetic properties at finite temperatures of the model were studied by
two different approaches: a classical Monte Carlo simulation of an effective spin
model and the Monte Carlo simulation of the double-exchange model. With these
twomethods, we show that the competition between ferromagnetic double-exchange
interaction and antiferromagnetic superexchange interaction leads to an interesting
spin-cluster phase. In this phase, four-spin clusters are formed and arranged periodi-
cally, which violates spacial inversion without breaking time reversal symmetry.We
also show that the spin-cluster phase exhibits spin Hall effect via the fluctuating
noncoplanar spin textures.

8.1 Model and Method

In this section, we describe the model and method we used in this chapter. In
Sect. 8.1.1, we introduce the spin-ice double-exchange (DE) model. The details of
the method we used for the effective spin model, a perturbation theory and a classical
Monte Carlo (MC) simulation, are explained in Sects. 8.1.2 and 8.1.3, respectively.
Details of the MC simulation for the DE model is given in Sect. 8.1.4. Finally, in
Sect. 8.1.5, we describe physical quantities we calculated in this chapter.

8.1.1 Spin-Ice Double-Exchange Model

In this section, we consider the strong-coupling limit of the Kondo lattice model
we studied in Chap.7, a DE model [1, 19] on a pyrochlore lattice with Ising local-
ized moments. The Ising moments have anisotropy axis along local [111] axis (see
Fig. 8.1a). The Hamiltonian is given by
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(a) (b)

Fig. 8.1 Schematic pictures of a a pyrochlore lattice and b diamond lattice composed of the centers
of tetrahedra in a. The definition of interactions in the effective Ising model in Eq. (8.9) are also
shown in a

H = −
∑

〈i, j〉
(ti j c

†
i c j + H.c.) + JAFM

∑

〈i, j〉
Si · S j . (8.1)

Here, ci (c†i ) is the annihilation (creation) operator of an itinerant electron at i th
site. The spin index is dropped as the spin of itinerant electron is aligned parallel to
the localized Ising moment Si at each site. Instead, the effective transfer integral ti j

depends on the relative angle of neighboring Ising spins, as explained in Sect. 1.2.2.
The anisotropy axis of the Ising spin is site-dependent and along the local [111] direc-
tion, as shown in Fig. 8.1a. In Eq. (8.1), the sum 〈i, j〉 is taken over nearest-neighbor
(NN) sites on the pyrochlore lattice. The second term in Eq. (8.1) is the antiferromag-
netic (AFM) interaction between the NN Ising moments. This is a minimal model
including the [111] anisotropy, spin-charge coupling, and geometrical frustration,
which are all present in many pyrochlore oxides [3]. In this section, hereafter, we
set the unit of energy t = 1, the lattice constant of cubic unit cell a = 1, and the
Boltzmann constant kB = 1. The unit of conductance is set as e2/h = 1 (e is the
elementary charge of electron).

In the current model, AFM interaction JAFM prefers all-in or all-out, while the
ferromagnetic (FM) DE interaction favors a two-in two-out configuration of Ising
moments in each tetrahedron (see Fig. 1.4 for spin configurations in spin ice). In
addition to this competition, the kinetic motion of electrons induces more com-
plicated interactions. Hence, we expect phase competition by controlling JAFM.
In the following, we particularly focus on the competition between different elec-
tronic and magnetic phases in the model in Eq. (8.1) at quarter filling of electrons,
n = 1

N

∑
i 〈c†i ci 〉 = 1/4, where N is the number of sites.

http://dx.doi.org/10.1007/978-4-431-55663-3_1
http://dx.doi.org/10.1007/978-4-431-55663-3_1
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8.1.2 Perturbation Theory

As we studied in Chap.7, we can study the model in Eq. (8.1) using an MC method.
However, as the MC simulation is highly cpu demanding, we first try to capture
the overall picture of the phase competition by analyzing an effective spin model
with kinetic-driven interactions. To derive the effective spin model, we consider a
perturbation expansion for the hopping term from the strong-coupling limit of Ising-
spin Kondo lattice model. In this method, we map the spin-ice model onto an Ising
model on a pyrochlore lattice with Ising spin S̃i on site i , where S̃i = ±1 is the
projected spin parameter to a local [111] vector ni , Si = S̃i ni . The details of this
method is given in Sect. 2.5. This method is expected to be useful in the cases in
which the relative angle of anisotropy axis for NN spins is close to π/2.

8.1.3 Monte Carlo Simulation for the Effective
Ising Spin Model

We investigate the phase diagram of the effective spin model derived by the perturba-
tion theory in Sect. 8.1.2 using a classicalMC simulation. For efficientMC sampling,
in addition to the single-spin flip update, we adopt a tetrahedron update, in which
four spins in a tetrahedron are flipped at once, by using the heat bath method. The
calculations were typically done with 1.2×106 (4.9×106) MC steps for N = 4×63

and 4×83 (N = 4×103 and 4×123) after the thermalization of 2.2×105 (9.2×105)
MC steps.

8.1.4 Monte Carlo Simulation for the Double-Exchange Model

In addition to the effective spin model, in Sect. 8.3, we directly investigate the DE
model in Eq. (8.1) by the polynomial expansion Monte Carlo method (PEMC) [8],
the same algorithm we used in Chap. 7. The details of the algorithms are described
in Sect. 2.2 and the benchmarks for this algorithm for finite J is given in Chap.9.

In the calculations presented here, we used 34 polynomials for sufficient conver-
gence. The calculations were done by single-spin flip and tetrahedron updates for
typically 2900MC steps after 700 MC steps of initial relaxation. Both of the updates
were done using the standard Metropolis method.

8.1.5 Physical Quantities

To identify the ground state magnetic orders in the MC simulation, we calculate the
diagonal components of the sublattice-dependent spin structure factor

http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_2
http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_2
http://dx.doi.org/10.1007/978-4-431-55663-3_9
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S(α)
k = 1

Nt

∑

i, j∈α

〈Si · S j 〉 exp
[
ik · (ri − r j

]
. (8.2)

For simplicity, hereafter in this chapter, we use S(k) for the diagonal components.
We note that the result of S(α)

k does not depend on α. In addition to S(k), we also
calculated the net magnetic moment M (M̃) and its susceptibility χ (χ̃) for Si (S̃i ).
Also, the local correlations measured by the fraction of two-in two-out, ρ22, three-in
one-out and one-in three-out, ρ31, and all-in and all-out tetrahedra, ρ40.

The spin-cluster phase, which is the main finding of this chapter, is detected by λ

parameter and its susceptibility χλ. Here, λ is defined by

λ = 1

2Nt

⎛

⎝
∑

p∈P

∑

i, j∈p

S̃i S̃ j −
∑

q∈Q

∑

i, j∈q

S̃i S̃ j

⎞

⎠ , (8.3)

where P (Q) is the set of all upward (downward) tetrahedra in the pyrochlore lattice,
and the second sum in the first (second) term is taken over all sites in the pth (qth)
tetrahedra.1 This parameter becomes nonzero if the local correlation within each
upward and downward tetrahedron becomes inequivalent. Hence, a finite λ implies
that spacial-inversion symmetry (SIS) is broken. The specific heat of the model is
also calculated by the fluctuation of the internal energy. For the classical spin model,
it is given by

C = β2
(
〈H2〉 − 〈H〉2

)
. (8.4)

On the other hand, due to the presence of itinerant electrons, the formula for the DE
model is given in the form

C = β2
(
〈H2〉 − 〈H〉2 + 〈Ce〉

)
. (8.5)

Here, 〈Ce〉 is the thermal average of electronic specific heat for a given spin config-
uration {Si },

Ce =
∫

dε
ε2ρ{Si }(ε)

4 cosh2[β(ε − μ)/2] ; (8.6)

ρ{Si }(ε) is the one-particle electronic density of states andμ is the chemical potential.

For the calculation of the spin Hall conductivity, σ (s)
H , we used the Kubo formula

σ
(s)
H (ω) = − i

vunit

∑

m,n,k

fn,k − fm,k

εn,k − εm,k

〈n, k| j s
z,y |m, k〉〈m, k| jx |n, k〉

ω + εn,k − εm,k + i/τ
. (8.7)

1This parameter is a variant of the bond parameter introduced in Ref. [13].



8.1 Model and Method 107

Here, j s
α is the spin Hall current defined by [16]

j s
z,y = 1

2

{
sz, vy

}
, (8.8)

where sz is the spin moment along the z direction and vy is the verocity for the
y direction of the itinerant electrons. jx is the charge current operator along the x
direction. The εm,k and fm,k is the eigenenergy and corresponding Fermi distribution
function for the electronic state in i th band with wave number k, |i, k〉, τ is the
scattering rate, and vunit = 1/

√
2 is the volume of the unit cell.

Using these formula, σ (s)
H was calculated numerically by taking arithmetic aver-

age over 64 different spin configurations randomly generated so that the upward
tetrahedra are either all-in or all-out. In the calculation, we assumed τ−1/t = 0.01,
and an electronic field is applied along the [110] direction, and the spin current and
magnetic moment are measured along [1̄12] and [11̄1], respectively.

8.2 Effective Spin Model

8.2.1 J1- J2- J3 Ising Model

By using the perturbation theory in Sect. 2.5, we obtain the effective Isingmodel with
long-range andmultiple-spin interactions.Amongmany contributions, for simplicity,
we consider only two-spin interactions2;

Heff = −J1
∑

〈i, j〉
S̃i S̃ j + J2

∑

{i, j}
S̃i S̃ j + J3

∑

[i, j]

S̃i S̃ j . (8.9)

Here, the estimates of the perturbation for NN, second-neighbor, and third-neighbor
couplings gives J1 = −4.19161×10−2 + JAFM/3, J2 = 9.65132×10−4, and J3 =
9.96332 × 10−4, respectively (see Fig. 8.1a for the definition of interactions). Note
that J1 consists of two contributions: the FM DE interaction and AFM interaction
JAFM (the signs are reversed due to the projection from Si to S̃i ).

8.2.2 Monte Carlo Simulation

Figure8.2 shows the phase diagram obtained by the MC simulation. We identify
four dominant regions in addition to the high-T paramagnetic state: (i) the ice
state for J1 � −0.004, (ii) 32-sublattice ordered phase for −0.003 � J1 � 0,

2We also evaluated the four-spin interactions, but they are much smaller and subdominant compared
to the two-spin interactions. Hence, they are ignored in our calculation.

http://dx.doi.org/10.1007/978-4-431-55663-3_2
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Fig. 8.2 Finite T phase diagram for the effective Ising model in Eq. (8.9).The symbols indicate the
critical temperatures (crossovers in the ice region) obtained by MC simulation, and the lines are the
guides for eyes

(iii) spin-cluster phase with SIS breaking for 0.002 � J1 � 0.006, and
(iv) all-in/all-out ordered phase for J1 � 0.006. Figure8.3 shows typical MC data
for T dependenices of physical quantities used for identifying these four regions.

In the region (i), the FM DE interaction is dominant, which develops the two-in
two-out spin configuration in all tetrahedra. This is clearly seen in the local correla-
tions measured by the fraction of two-in two-out, ρ22, three-in one-out and one-in
three-out, ρ31, and all-in and all-out tetrahedra, ρ40; as T decreases, ρ22 grows, while
ρ31 and ρ40 are suppressed, as shown in Fig. 8.3a. Correspondingly, the specific heat
C shows a hump, similar to that found in the spin ice [4, 12]. This signals a crossover
to the ice state, which is plotted in Fig. 8.2.

On the other hand, in the region (iv), JAFM dominates the FM DE interaction
and stabilizes the all-in/all-out order. Figure8.3e shows a rapid increase of the net
magnetic moment for projected spins, M̃ , and corresponding divergent behavior
of its susceptibility χ̃ . At the same time, C shows a sharp peak and ρ40 becomes
dominant, as shown in Fig. 8.3f. The results indicate the second order transition to the
all-in/all-out ordered state; the critical temperature is estimated at Tc = 0.01170(4)
at J1 = 0.008 from the Binder analysis [2] of M̃ shown in the inset of Fig. 8.3e.

Between the two regimes, we found interesting phases resulting from competition
between the DE interaction and JAFM. One is the 32-sublattice ordered phase in
the region (ii) next to the ice state. Figure8.3b shows an abrupt increase of the
corresponding spin structure factor for the same sublattice, S(k) at k = (π, π, π),
while only small anomalies are seen in ρ22, ρ31, and ρ40. This is the 32-sublattice
order we discussed in Sect. 7.2 (see Fig.7.1c). We note that the phase transition to
32-sublattice order here is apparently of first order while the phase transition in

http://dx.doi.org/10.1007/978-4-431-55663-3_7
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(a) (b)

(c) (d)

(e) (f)

Fig. 8.3 MC results for the model in Eq. (8.9) at a J1 = −0.006, b J1 = −0.002, c, d J1 = 0.004,
and e, f J1 = 0.008. See the text for details

Sect. 7.3 appears to be of second order. This is due to the presence of tricritical point,
which appears while sweeping the ratio J2/J3. By theMC calculation with sweeping
J2/J3, in the region J2/J3 � 1, we confirmed that the transition to 32-sublattice
order is of second order. On the other hand, the order of transition changes from
second order to first order with increasing J2/J3 → 1. In the phase diagram in
Fig. 8.2, the transition temperature is estimated from the size extrapolation of the
abrupt jump of S(k).

Another interesting phase is found in the region (iii) on the verge of the all-in/all-
out order. Figure8.3c shows the result for λ parameter and its susceptibility χλ. The

http://dx.doi.org/10.1007/978-4-431-55663-3_7
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result indicates that the upward and downward tetrahedra become inequivalent at
low T ; one of them has larger population of the all-in/all-out tetrahedra than the other
(seeFig. 8.1a). In otherwords, four-spin clusters are formed and arrangedperiodically
(the translational symmetry is not broken as the primitive unit cell includes a pair
of upward and downward tetrahedra). The transition is continuous and the critical
temperature is estimated at Tc = 0.00596(4) at J1 = 0.004, from the Binder analysis
in the inset. The specific heat plotted in Fig. 8.3d also shows an anomaly at Tc.
Interestingly, the phase below Tc does not show anymagnetic ordering; no singularity
is found in S(k). Therefore, in this phase, TRS is preserved but SIS is broken due to
the differentiation of upward and downward tetrahedra.

8.2.3 Emergent Frustration Induced by Further Neighbor
Interactions

The spin-cluster phase in region (iii) appears only at finite T , as depicted in Fig. 8.2;
the system exhibits another transition at a lower T (see also Fig. 8.3d). This suggests
that the spin-cluster phase is a thermally-induced intermediate phase. Such interme-
diate phase is often found in geometrically frustrated systems, as we discussed some
examples in Chaps. 3 and5. To see the frustration effect more explicitly, let us rewrite
the model in Eq. (8.9) into a magnetic charge model,

Heff = J2
∑

〈p,q〉
Q p Qq − J̃1

2

∑

p

Q2
p + const., (8.10)

defined on a diamond lattice composed of the centers of tetrahedra in the pyrochlore
lattice (see Fig. 8.1b). Here, J̃1 = J1/2 + J2 (we take J2 = J3 for simplicity) and
Q p = ∑

i∈p S̃i is the magnetic charge at pth site on the diamond lattice, defined
by the sum of four projected spins belonging to pth tetrahedron in the pyrochlore
lattice.3 In the MC simulation, below Tc, either upward or downward tetrahedra are
dominated by all-in/all-out configurations. Furthermore, at lower T , the remaining
ones become dominantly two-in two-out, as seen for T � 0.00324 in Fig. 8.3d.
Hence, the situation is approximately viewed as the magnetic charge with Q p = ±4
bridged by Q p = 0 on the diamond lattice, as shown inFig. 8.1b. This is effectively an
Ising model on a face-centered-cubic (FCC) lattice. The system, therefore, hinders
severe frustration in the superlattice of tetrahedra, which presumably leads to the
emergence of the spin-cluster phase (iii).4

3The indices p and q run both upward and downward tetrahedra; hence, there is a local constraint
for neighboring Q p and Qq , as they share S̃i in between them.
4The transition at T � 0.00324 might be ascribed to a dimensional reduction similar to that in the
FCC Ising model [6].

http://dx.doi.org/10.1007/978-4-431-55663-3_3
http://dx.doi.org/10.1007/978-4-431-55663-3_5
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8.3 Monte Carlo Study of the Double-Exchange Model

In Sect. 8.2, by considering the effective Ising model for the DE model in Eq. (8.1),
we discussed the emergence of an intermediate spin-cluster phase with broken SIS.
In this section, we investigate whether the broken SIS state appears in the original DE
model by using PEMC and directly conducting the MC simulation for the itinerant
model. We show that, indeed, the intermediate state appears in the DE model at a
particular range of JAFM and T .

Figures8.4a, b show the MC results at JAFM = 0.18. The increase of λ, and the
peaks of χλ and C at T ∼ 0.053, along with absence of anomaly in S(k), indicate
the emergence of a SIS-broken spin-cluster phase, similar to that in Figs. 8.3c, d.
On the other hand, S(k) at k = (0, 0, 2π) sharply increases at a lower T associated
with a sharp peak in C . The extrapolation with respect to 1/N of these transition
temperatures (peaks of χλ and C) is presented in Fig. 8.5. The results show that the
model in Eq. (8.1) exhibits two successive transitions: one is the transition to the
spin-cluster state with SIS breaking at Tc = 0.051(1), and the other is the magnetic
transition with TRS breaking at TN = 0.032(1). The estimate of Tc and TN are
obtained from extrapolation as shown in Fig. 8.5.

The lowest T phase is an AFM planer type magnetic LRO. In the ground state,
the tetrahedra that belong to the lattice points in the first 〈100〉 layer are in all-out
configuration. On the other hand, the tetrahedra in the second 〈100〉 layer are all-in.
The spin pattern of the ground state consists of alternating stacking of these two 〈100〉
layers. While the transition at TN is seen clearly in the result of PEMC simulation,
such a transition was not captured in the effective Ising model, as shown in Fig. 8.2.
The result suggests that the interactions beyond the effective model in Eq. (8.9) lift
the degeneracy in the FCC pseudospin model. Indeed, the result of density of states
(DOS) for itinerant electrons in this LRO show that this magnetic phase below TN is
an insulator. This result appears to show that a Slater-like mechanism takes dominant

(a) (b)

Fig. 8.4 MC results for the DE model in Eq. (8.1) at n = 1/4 and JAFM = 0.18. a The results for
χ , λ, χλ, and S(k = (0, 0, 2π)), and b ρ22, ρ31, ρ40, and C
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Fig. 8.5 System-size
extrapolation of critical
temperatures estimated by
the two peaks of χλ for the
DE model in Eq. (8.1) at
n = 1/4 and JAFM = 0.18

role in selecting the LRO. As our perturbation theory takes the free electron state
with renormalized hopping as the non-perturbative Hamiltonian, it is expected that
such an effect is neglected in this approximation.

On the other hand, the phase transition to spin-cluster state is well reproduced in
the DE model. An interesting feature of this phase is that, though the transition at Tc

is not a magnetic one, the magnetic susceptibility χ for the Ising spins, χ , shows a
steep decrease below Tc, in addition to a kink anomaly at TN, as shown in Fig. 8.4a.
This is in sharp contrast to a usual AFM phase transition, which shows a maxima at a
temperature at or slightly higher than the magnetic transition temperature. The hump
in the magnetic susceptibility is a consequence of the formation of the all-in/all-out
spin clusters, which have no magnetic moments for each clusters. In the ideal case
of the intermediate state, where all the upward tetrahedra are fluctuating between
all-in or all-out, the net magnetic moment of the system are exactly zero as each of
the spins belong to a cluster.

Fig. 8.6 Spin Hall
conductivity calculated by
taking simple average in the
SIS-broken spin-cluster
manifold
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8.4 Spin Hall Effect

An interesting point of the intermediate phase is that it exhibits finite spin Hall
conductivity. As the evaluation of the spin Hall conductivity using the MC method
is numerically tough, we here calculated the spin Hall conductivity by assuming an
ideal situation, i.e., by taking simple average over 64 different spin configurations
randomly generated so that the upward tetrahedra are either all-in or all-out. Further
details on the calculation of spin Hall conductivity σ

(s)
H is given in Sect. 8.1.5.

Figure8.6 shows the result of σ
(s)
H calculated by the Kubo formula Eq. (8.7) with

finite frequency ω. The results shows that the real part of σ
(s)
H (ω) remains finite

at ω → 0. This suggests that the intermediate spin-cluster phase show spin Hall
effect. The present SHE is one of the consequences of characteristic noncoplanar
spin textures [7, 10, 18], which is distinct from the conventional SHE originating
from the relativistic SOI.

Wenote that, it was recently pointed out that, the vertex correction gives significant
effects on the spin Hall conductivity; in some cases, the vertex correction completely
cancels out the finite σ

(s)
H obtained by the standard Kubo formula [5]. Also, compared

to the charge currents, the definition of j s
α remains somewhat ambiguous. Again, this

also has a significant effect on σ
(s)
H . Hence, our result suggests possible emergence

of SHE, but further investigation using more sophisticated calculation techniques is
desirable.

8.5 Discussion and Summary

To summarize, in this chapter, we studied the phase diagram of the spin-ice double-
exchange model using the effective spin model. By using a classical Monte Carlo
method, we mapped out the phase diagram of the effective spin model with varying
nearest-neighbor interaction, and found a new intermediate phase with broken spatial
inversion symmetry. By using the polynomial expansion Monte Carlo method, we
also confirmed that the intermediate phase emerges in the original double-exchange
model. In addition, we found that the intermediate phase exhibits the spin Hall effect.

The SIS breaking in our model in Eq. (8.1) takes place by formation of four-spin
clusters. Cluster formation is a manifestation of competing interactions in frustrated
itinerant electron systems [14, 15]. Our SIS-broken phase, however, retains neither
charge ordering nor magnetic dipole ordering, suggesting that it is characterized
by higher-order electric and magnetic multipoles. Hence, our results indicate that
the scattering of electrons by such multipoles can lead to unconventional transport
phenomena. Multipole orders, which are often called “hidden orders”, have attracted
interests not only in localized spin systems but also in conducting systems [9]. SHE
may provide a further insight into such hidden multipoles.
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As mentioned above, our model is simple but includes some essential features
in metallic pyrochlore oxides, which have recently attracted growing interest both
experimentally and theoretically [3]. It is intriguing that some pyrochlore compounds
indeed exhibit similar SIS breaking accompanied by a breathing-type lattice distor-
tion [11, 17].
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Chapter 9
Benchmark of the Polynomial Expansion
Monte Carlo Method

Abstract In this section, we present the benchmark of the polynomial expansion
Monte Carlo method to a Kondo lattice model with classical localized moments on
a geometrically frustrated lattice. We apply the method to the model in Eq. (7.1)
introduced in Sect. 7.1.1, the spin-ice type Ising-spin Kondo lattice model on a three-
dimensional pyrochlore lattice, and examine the convergence in terms of the order
of polynomials and the truncation distance. We find that, in a wide range of electron
density at a relatively weak Kondo coupling compared to the noninteracting band-
width, the results by the polynomial expansion method show good convergence to
those by the conventional method within reasonable numbers of polynomials. On the
other hand, we also show that the real-space truncation is not helpful in reducing the
calculation amount for the system sizes that we reached, as the sufficient convergence
is obtained when most of the sites are involved within the truncation distance.

9.1 Model and Parameters

In this section, we briefly restate the model and parameters we used for the bench-
mark.

9.1.1 Spin-Ice Kondo Lattice Model

We consider a Kondo lattice model with Ising spins on a pyrochlore lattice (the
Hamiltonian studied in Chap. 7). The Hamiltonian is given by

H = −t
∑

〈i, j〉,σ
(c†iσ c jσ + H.c.) − J

∑

i

Si · σ i . (9.1)

The first term represents hopping of itinerant electrons, where ciσ (c†iσ ) is the anni-
hilation (creation) operator of an itinerant electron with spin σ =↑,↓ at i th site, and
t is the transfer integral. The sum 〈i, j〉 is taken over nearest-neighbor sites on the
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pyrochlore lattice, which consists of a three-dimensional network of corner-sharing
tetrahedra. The second term is the onsite interaction between itinerant electron spins,

σ i =
∑

α,β

c†iαταβciβ, (9.2)

(ταβ is the vector of αβ components of the Pauli matrices) and localized Ising
moments Si (|Si | = 1), and J is the coupling constant. The anisotropy axis of
Ising moments is given along the local [111] direction, i.e., along the line connecting
the centers of two tetrahedra which the spin belongs to (see Fig. 7.1 in Chap.7).

As this section is intended to be a presentation of the benchmark for Chap.7, we
particularly focus on the relatively low electron density region of 0 < n < 0.35 at a
weak spin-charge coupling (J = 2t). The electron density is defined by

n = 1

2N

∑

iσ

〈c†iσ ciσ 〉, (9.3)

where N is the number of sites. Hereafter, we set the unit of energy t = 1, the lattice
constant of the cubic unit cell a = 1, and the Boltzmann constant kB = 1.

9.1.2 Details of the Calculation and Physical Quantities

The polynomial expansion Monte Carlo method (PEMC) is a controlled approxima-
tion in the sense that the results converge to the results by the conventional Monte
Carlo method based on the exact diagonalization (EDMC) by increasing the poly-
nomials and truncation length. In the following sections, we present the benchmark
results for the convergence by changing the total number of polynomials mtot and
the truncation distance d. We investigate the convergence using system sizes up to
N = 4 × 83, with electron fillings that corresponds to different ground states stud-
ied in Chap.7 and various temperatures, both above and below transition. For small
system size, N = 4 × 43, we also present comparison of the PEMC results with
EDMC. For the results presented in this chapter, we typically performed 3000 MC
measurements after 500 MC steps of thermalization.

The convergence of calculation is investigated by the convergence of physical
quantities calculated by MC simulation. In this chapter, we measure two types of
physical quantities which characterize the long-range ordering and short-range cor-
relations, respectively. These quantities were used in Chap.7 to clarify the phase
diagram of the Kondo lattice model in Eq. (9.1).

http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_7


9.1 Model and Parameters 117

For the long-range ordering, we calculate the sublattice magnetization

Mq =
[
4

N
Sαα(q)

]1/2
, (9.4)

where Sαα(q) is the αth diagonal component of the spin structure factor

Sαβ(q) = 1

N

∑

n,l

〈Sα
n · Sβ

l 〉 exp[iq · (rα
n − rβ

l )]. (9.5)

Here, Sα
n is the classical Ising spin at αth sublattice site in nth unit cell, and rα

n is
the position vector of the Ising spin Sα

n . In the calculations below, we present the
results for threemagnetic phases: ice-ferro, 32-sublattice, and all-in/all-out order (see
Fig. 7.1). The characteristicwavenumberq for these phases are givenbyq = (0, 0, 0)
for the ice-ferro and all-in/all-out orders, and q = (π, π, π) for the 32-sublattice
order. For these three orders, the diagonal component of the structure factor Sαα(q)

does not depend on α. Hence, we show the results for the sublattice α = 1.
In addition to the sublattice magnetization, we also measure local correlation

parameters P22, P31, and P40. These parameters are defined by the probabilities
of a tetrahedron to be in two-in two-out configuration, three-in one-out or one-in
three-out configuration, and all-in or all-out configuration, respectively. In Chap. 7,
the magnetic ordering pattern is determined by these local correlation parameters in
addition to the spin structure factor.

9.2 Temperature Dependence

To gain an overview on how PEMC works, we first show T dependence of the sub-
lattice magnetization Mq in the ice-ferro, 32-sublattice, and all-in/all-out ordered
regions. In Chap.7, we argued that four dominant magnetic phases arise in the elec-
tron density n � 0.3: ice-ferro, ice-(0, 0, 2π), 32-sublattice, and all-in/all-out. We,
however, omit the results for the ice-(0, 0, 2π) phase as PEMC shows extremely slow
convergence in terms of the number of polynomials mtot. The data in this section
were calculated for N = 4 × 43 sites with truncation distance d = 6. As we show
later, the deviation due to the truncation is sufficiently small for d = 6.

Figure9.1a shows T dependence of Mq calculated by PEMC at μ = −5.9 in
comparison with the EDMC result. The electron density is almost T independent at
n = 0.030(2). In this very low density region, the ice-ferro order develops at low T
(see Chap.7). The PEMC results are shown by the open symbols, while the EDMC
results are shown by crosses connected by the solid line. All the results show a rapid
increase of Mq as T decreases, signaling the phase transition to the ice-ferro phase.

http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_7
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(a)

(c)

(b)

Fig. 9.1 T dependence of Mq calculated by PEMC at a μ = −5.9 [n = 0.030(2)], b μ = −3.7
[n = 0.180(5)], and c μ = −1.3 [n = 0.348(6)]. The wave number q is q = (0, 0, 0) for (a) and
(c), and q = (π, π, π) for (b). Different symbols correspond to the results of MC simulation with
different numbers of polynomials. Crosses with solid lines show the results by EDMC. The PEMC
calculations are done with d = 6 for 4 × 43 site systems

However, the PEMC results show slow convergence to the EDMC ones; even the
results for mtot = 40 show considerable deviations.

On the other hand, for higher electron densities, the PEMC results show good
convergence to the EDMC results. Figures9.1b, c show the results at μ = −3.7 and
μ = −1.3, respectively. For the result at μ = −3.7 in Fig. 9.1b, the 32-sublattice
order develops at low-T . As shown in Fig. 9.1b, the results for mtot = 10 and 20
show considerable deviations from the EDMC results. On the other hand, the results
for mtot = 30 and 40 show good agreement except for a slight deviation around
the critical point [the critical temperature is estimated as Tc = 0.043(2) from the
inflection point of the T dependence of Mq (see Chap.7 for further details)].

A similar result was obtained for μ = −1.3. At this chemical potential, the all-
in/all-out order develops at the low temperature. The result in Fig. 9.1c shows that
mtot = 30 and 40 appear to be sufficient for the convergence except for the region
close to Tc = 0.085(5), whereas the results for smaller mtot are oscillating in terms
of mtot.

http://dx.doi.org/10.1007/978-4-431-55663-3_7
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These results indicate that the PEMC results show sufficient convergence for
mtot � 30 in the relatively high density region of n � 0.15. The results away from
the critical point converge faster than those close to the critical point. These aspects
are further discussed in the following sections.

9.3 Convergence in the Number of Polynomials

We next investigate the convergence of PEMC with respect to mtot in the three den-
sity regions shown in Figs. 9.1a–c, respectively, for N = 4 × 43. We here show the
convergence in three different T regions: a low-T ordered region, high-T paramag-
netic region, and in the vicinity of the critical temperature. The critical temperatures
for μ = −5.7, −3.7, and −1.3 are estimated to be Tc = 0.023(2), 0.043(2), and
0.085(5), respectively, from the inflection point of the T dependence of Mq.

Figure9.2 shows the results forμ = −5.7 (ice-ferro ordered region) at T = 0.012,
0.020, and 0.030, corresponding to the ordered phase, close to critical point, and
paramagnetic regions, respectively. Figure9.2a is the result for Mq, and Figs. 9.2b–d

(a) (b)

(c) (d)

Fig. 9.2 PEMC results for mtot dependence of a Mq, b P22, c P31, and d P40. The calculations are
done for N = 4 × 43 and μ = −5.7 with d = 6. For comparison, the results and statistical errors
by EDMC are shown by horizontal solid lines and shades, respectively
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(a) (b)

(c) (d)

Fig. 9.3 PEMC results for mtot dependence of a Mq, b P22, c P31, and d P40. The calculations are
done for N = 4 × 43 and μ = −3.7 with d = 6. For comparison, the results and statistical errors
by EDMC are shown by horizontal solid lines and shades, respectively

are the results for the local correlation parameters P22, P31, and P40, respectively. The
EDMC results are indicated by horizontal solid lines and the shades show statistical
errors. In all T regions, the convergence of PEMC results to the EDMC ones is slow;
mtot � 80 appears to be necessary for sufficient convergence.

On the other hand, the PEMC results at μ = −3.7 show better convergence.
The results are shown in Fig. 9.3. Both the sublattice magnetization and the local
correlation parameters show reasonable convergence for mtot � 30. The situation
is similar for μ = −1.3 (the all-in/all-out ordered region), as shown in Fig. 9.4;
the results show good convergence for mtot � 35. In both cases with μ = −3.7
and −1.3, the data close to critical temperature appear to show relatively slower
convergence compared to the low-T and high-T region, but the remnant deviation is
in a reasonable range and not harmful to the estimation of the critical temperature.

The results in Figs. 9.3 and 9.4 indicate that PEMC works efficiently in a
wide range of T for the relatively high electron density of n � 0.15. Typically,
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(a) (b)

(c) (d)

Fig. 9.4 PEMC results for mtot dependence of a Mq, b P22, c P31, and d P40. The calculations are
done for N = 4 × 43 and μ = −1.3 with d = 6. For comparison, the results and statistical errors
by EDMC are shown by horizontal solid lines and shades, respectively

mtot = 30–40 is sufficient for the convergence. On the other hand, in the lower elec-
tron density region, quantitatively sufficient convergence requires much larger mtot.
These points are discussed in Sect. 9.6.

9.4 Convergence in the Truncation Distance

Next, we investigate the convergence with respect to the real-space truncation dis-
tance d. Here, the calculations are done at μ = −3.7 and −1.3 with mtot = 40, for
which PEMC results show good convergence to the EDMC ones as discussed in the
previous section. The system size considered here is N = 4 × 43; the Manhattan
distance to the furthest site is d = 8.

Figure9.5 shows the PEMC results in the 32-sublattice ordered region at μ =
−3.7 for different temperatures, T = 0.035, 0.045, and 0.055, which correspond to
the magnetically ordered phase, in the vicinity of critical point, and paramagnetic
phase, respectively. In all T regions, the PEMC data converge to the EDMC ones for
d � 6, except for the data at T = 0.045 in the one close to critical temperature. This
shows again that the convergence becomes slower around the critical point.
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(a) (b)

(c) (d)

Fig. 9.5 PEMC results for d dependence of a Mq, b P22, c P31, and d P40. The calculations are
done for N = 4 × 43 and μ = −3.7 with mtot = 40. For comparison, the results and statistical
errors by EDMC are shown by horizontal solid lines and shades, respectively

The situation is similar in the all-in/all-out region. Figure9.6 shows the results
for μ = −1.3 at T = 0.070, 0.080, and 0.090. The results for Mq in Fig. 9.6a show
good convergence for d � 5 for all T shown. For P22, P31, and P40 in Figs. 9.6b–d,
the results at T = 0.070 and 0.090 also show well converged results for d � 5. On
the other hand, the data at T = 0.080 show a slight deviation from EDMC data up to
d � 7.

From the above results, it appears that the truncation with d � 6 gives sufficient
convergence in a wide range of T and n. In this system size N = 4 × 43, d = 6
already covers a large part of the lattice sites, and hence, the truncation is less useful to
the reduction of the calculation amount. It is, however, expected from the truncation
algorithm that the necessary truncation distance for the same accuracy does not
depend so much on the system size. Hence, the truncation may be efficient for larger
system sizes. We examine this point in the next section.
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(a) (b)

(c) (d)

Fig. 9.6 PEMC results for d dependence of a Mq, b P22, c P31, and d P40. The calculations are
done for N = 4 × 43 and μ = −1.3 with mtot = 40. For comparison, the results and statistical
errors by EDMC are shown by horizontal solid lines and shades, respectively

9.5 Convergence in the Truncation Distance
for Larger Systems

To confirm the efficiency of the truncation in larger system sizes, here we conduct the
PEMC calculations for N = 4 × 63 and 4 × 83 in the 32-sublattice ordered region.
For these system sizes, as EDMC is inapplicable due to the large calculation amount,
we perform only PEMC and check the convergence with respect to the truncation
distance d. In these sizes, the Manhattan distance to the farthest site is d = 12 for
N = 4 × 63 and d = 16 for N = 4 × 83.

Figure9.7 shows the results in the 32-sublattice ordered region at μ = −3.4
[n = 0.195(1)] for N = 4 × 63. Here, we take mtot = 40, as the necessary mtot
for the convergence is expected to be less dependent on the system sizes [2, 3]. As
shown in Fig. 9.7a, for d � 8, the results for Mq show reasonable convergence to
the results without truncation in all T regions. The results for P22, P31, and P40
also show convergence with d � 8, as shown in Figs. 9.7b–d. Similar behavior is
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(a) (b)

(c) (d)

Fig. 9.7 PEMC results for d dependence of a Mq, b P22, c P31, and d P40. The calculations are
done for N = 4 × 63 and μ = −3.4 with mtot = 40

also observed for N = 4 × 83. Figure9.8 shows the results for N = 4 × 83 with
T = 0.035, 0.045, and 0.055. All the results also show good convergence for d � 8.

9.6 Discussion

In the previous studies using PEMC, the number of polynomials for well converged
calculations was typically 30 � mtot � 40 [1, 3–6]. Our results presented at μ =
−3.7 and −1.3 in Sects. 9.2 and 9.3 indicate that good convergence is reached for
a similar range of mtot. This shows that PEMC is also an efficient approach even in
the presence of severe geometrical frustration. We note that the range of chemical
potential μ corresponds to a moderate electron density n � 0.15. Considering the
fact that most of the previous studies were conducted in the region for 0.20 � n �
0.80 [1, 3–6], this also supports the applicability of PEMC in the frustrated models
in the similar density region.

On the other hand, our results in the lower electron density region show much
slower convergence, and even the results for mtot = 80 show considerable deviations
from the EDMC results, as shown in Fig. 9.2. This might be owing to the fact that
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(a) (b)

(c) (d)

Fig. 9.8 PEMC results for d dependence of a Mq, b P22, c P31, and d P40. The calculations are
done for N = 4 × 83 and μ = −3.4 with mtot = 40

the Fermi level is close to the band bottom. In the small electron density region,
the precise structure of DOS near the band edge plays a crucial role for the thermo-
dynamics; to reproduce the details of DOS requires larger number of polynomials.
Another possible source is the small energy scale in the low density region. Because
of the small kinetic energy, the effective interactions between localized spins become
small, and hence, the relevant T range including Tc is much lower than that in the
higher density region. This also requires larger number of polynomials for sufficient
convergence.

Next, we discuss the convergence with respect to the real-space truncation. The
results in Figs. 9.7 and 9.8 show that sufficient convergence is obtained for d � 8 for
both N = 4×63 and 4×83. This is consistent with the expectation that the necessary
truncation distance is not strongly dependent on the system size. Unfortunately, as
d = 8 covers the large part of the system with N = 4×63 and 4×83, the truncation
method is not helpful to reducing the calculation amount for the present system sizes.
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9.7 Summary

In this section, we have presented the benchmark results on the application of poly-
nomial expansion Monte Carlo method to a geometrically-frustrated spin-charge
coupled system, a spin-ice type Kondo lattice model on a pyrochlore lattice. We
have investigated the convergence of Monte Carlo results with respect to the number
of polynomials mtot and the truncation Manhattan distance d. The results indicate
that, in the electron density region 0.15 � n � 0.35, the polynomial expansion
Monte Carlo results with mtot = 40 show sufficient convergence to those obtained
by the conventional Monte Carlo method using the exact diagonalization. The results
show that, although the current model has a δ-function singularity in the density of
states in the noninteracting limit associatedwith the geometrical frustration, the poly-
nomial expansion Monte Carlo results show good convergence within the number of
polynomials comparable to previous studies for unfrustrated models. For the real-
space truncation, our results indicate that d � 8 gives well converged results for
N = 4 × 63 and 4 × 83, while d � 6 is enough for N = 4 × 43. This condition,
however, is insufficient for reducing the calculation amount. Hence, we did not use
the truncation method in the calculation presented in Chap. 7.
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Chapter 10
Summary

Abstract In this section, we summarize the main results of this thesis, theoreti-
cal studies of the Ising spin Kondo lattice models on frustrated lattices: triangular,
kagome, and pyrochlore lattices. Using aMonte Carlo simulation, we explored emer-
gence of various nontrivial magnetic states that arise from geometrical frustration
and thermal fluctuation. Transport properties in the thermally induced novel states
are also discussed.

In this thesis, we studied the thermodynamic behavior of Ising-spin Kondo lat-
tice models on geometrically frustrated lattices: triangular, kagome, and pyrochlore
lattices. Throughout the thesis, we extensively discussed the magnetism and elec-
tronic/transport properties of the models. The focus of this study is two-fold: (a)
to explore novel magnetic phases induced by the spin-charge coupling and thermal
fluctuations, and (b) to study how such phases affect the electronic and transport
properties of the coupled itinerant electrons.

Physics of spin-charge coupled systems has been one of the major topics in con-
densed matter physics. Under strong influence of the effective magnetic interactions
mediated by the kinetic motion of itinerant electrons, the localized moments in the
spin-charge coupled systems show rich behavior. At the same time, themagnetic state
of the localized moments is reflected to the itinerant electrons, giving rise to novel
transport phenomena. In relation to various systems such as Mn oxides, rare-earth
compounds, and spin glass alloys, these phenomena have been studied extensively
both in experiment and theory.

On the other hand, recent experiments on the pyrochlore and triangular metallic
oxides gave rise to a new question; how does the geometrical frustration affects the
magnetic and electronic properties of the spin-charge coupled systems. In localized
spin models, it is known that the frustration in interactions gives rise to various exotic
behavior far different from the well known magnets. In the spin-charge coupled
systems, however, the studies in this direction are still limited and even the magnetic
phase diagram of the single-band classical-spin Kondo lattice models remain to be
studied. To clarify the fundamental features of the Kondo lattice models on frustrated
lattices, and to provide a solid ground for discussing the magnetic and electronic
properties of the materials with frustrated lattice structure, we theoretically studied
one of the simplest models on frustrated lattices with spin-charge coupling.

© Springer Japan 2015
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In Chap.3, we studied the magnetic phase diagram of an Ising-spin Kondo lattice
model on a triangular lattice. By using a Monte Carlo simulation, we showed that
a three-sublattice partially disordered state is realized at finite temperature in the
phase competing regionbetween stripe, three sublattice ferrimagnetic, andKosterlitz-
Thouless type phases. We also conducted a mean-field type analysis, and discussed
the possibility of the partially disordered state to be stabilized by the charge gap
formation. This is the first example of the two-dimensional partial disorder, which
was shown tobeunstable in the previous studies on the two-dimensional Isingmodels.

In Chap.4, we discussed the electronic structure of the three-sublattice ferri-
magnetic state discovered in Chap.3. We conducted the band structure analysis and
derived the low-energy effectiveHamiltonian. The results showed that the band struc-
ture is strongly spin dependent, and at electron density n = 2/3, the electronic bands
for electrons with the spin anti-parallel to the net magnetic moment (we call this
the “down” spin) forms an energy gap. On the other hand, the electronic bands for
electrons with the spin parallel to the net magnetic moment form a semi-metallic
structure with Dirac nodes at the Fermi level. Hence, in the vicinity of n = 2/3, a
half-metallic state with fully spin-polarized Dirac electrons is realized in this model.

In addition, by a variational calculation and aMonte Carlo simulation, we showed
that the ferrimagnetic order is stabilized in a wide range of the spin-charge coupling.
We also presented that introducing a weak nearest-neighbor Kondo coupling signif-
icantly stabilizes the ferrimagnetic state in the vicinity of electron density n = 2/3.

In Chaps. 5 and 6, we considered Kondo lattice models on kagome lattices. In
Chap.5, we investigated the thermodynamic behavior of the collinear Ising-spin
Kondo lattice model on a kagome lattice. We investigated the phase diagram in a
wide range of electron density by a Monte Carlo simulation at finite temperature
and by a variational calculation at zero temperature. In the ground state, we found
the ferromagnetic, q = 0 ferrimagnetic state, and

√
3 × √

3 ferrimagnetic states by
a variational calculation. On the other hand, at finite temperature, we found three
thermally-induced states: the loop liquid, Kosterlitz-Thouless, and partially disor-
dered states. Here, the Kosterlitz-Thouless and partially-disordered states are the
magnetic states similar to that found in the triangular lattice case.

On the other hand, the loop-liquid state is a peculiar ferrimagnetic state which
possesses a fractional magnetic moment but nomagnetic superstructure. In this state,
all the triangles are in the two-up one-down spin configurations, which results in the
emergent degree of freedom, i.e., the loops connecting the up-spin sites and isolated
down spins. However, as the two-up one-down local correlation is insufficient to
drive the system to form a long-range order, the system remains in a disordered
state with 1/3 magnetic moment of the fully saturated case. We also investigated the
transport properties of the itinerant electrons in the loop-liquid state, and showed that
the formation of the loops manifests in resonant peaks in the optical conductivity.

In Chap.6, we studied the electronic and transport properties of a kagome-lattice
model with noncoplanar Ising spins. Namely, we considered a kagome-ice type
Ising-spin Kondo lattice model. We conducted an extensive study on the effect of
ice-rule type local correlations on the itinerant electrons, and found that an energy
gap develops in the electronic density of states for itinerant electrons. Associated
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with the energy gap formation, we found that the Hall conductivity is quantized to
σxy = e2/h. These results indicate that the kagome-ice local correlation gives rise
to a quantum anomalous Hall state without a magnetic long-range order, Landau
levels, and the relativistic spin-orbit coupling. In addition, we conducted Monte
Carlo simulation on the thermodynamic properties, and found that the kagome-ice
quantum anomalous Hall insulator is realized in the presence of external magnetic
field.

Finally, in Chaps. 7, 8 and 9, we considered a Kondo lattice model on a pyrochlore
lattice with spin-ice type localized moments. In Chap.7, we considered the weak
coupling region for the spin-ice Kondo lattice model. The phase diagram of the spin-
ice Kondo lattice model with varying the electron density was calculated by using the
polynomial expansion Monte Carlo method. We found that a 32-sublattice magnetic
order emerges in between the ice-type magnetic orders and all-in/all-out antiferro-
magnetic order. We presented that the magnetic order is driven by the third-neighbor
interactions, and nearest-neighbor interaction is irrelevant in this region. In addition,
we showed that the 32-sublattice order accompanies charge disproportionation. We
also demonstrated that the charge disproportionation can be switched along with the
magnetic order by the external magnetic field.

Chapter 8 is devoted to the strong coupling limit for the spin-ice Kondo lattice
model discussed in Chap.7. By controlling the antiferromagnetic super-exchange
interaction between the localized moments, we found that a peculiar intermediate
phase appears in the phase competing region between the ice-rule type ferromagnetic
and all-in/all-out antiferromagnetic states. In addition, by the analysis on an effective
spin model, we found that the intermediate state is driven by the second- and third-
neighbor interactions. In the intermediate state, the spatial inversion symmetry of
the pyrochlore lattice is broken by the formation of all-in/all-out spin clusters. On
the other hand, the time-reversal symmetry is preserved as the clusters are thermally
fluctuating between the all-in and all-out states.We also showed that the formation of
spin clusters has a substantial effect on transport properties. In particular, we showed
that the intermediate state may exhibit a nonzero spin Hall conductivity even in the
absence of the spin-orbit coupling.

In Chap.9, we presented the benchmarks of the polynomial expansion method
used in the Monte Carlo simulation in Chaps. 7 and 8. By comparison of the polyno-
mial expansion method to the Monte Carlo simulation using exact diagonalization,
we show that a sufficient convergence is achievedwithin reasonable numbers of poly-
nomials. Application of this method to the pyrochlore model enabled us to conduct
simulations on large size systems in three dimensions, as presented in Chaps. 7 and 8.

To summarize, in this thesis, we studied the magnetic and electronic properties of
Ising-spin Kondo lattice models on several different frustrated lattices. Throughout
the study, we mainly used an unbiased Monte Carlo simulation to obtain reliable,
numerically-exact results within the statistical error bars. Our results indicate that
the spin-charge coupling and geometrical frustration give rise to peculiar magnetic
states; the Slater type mechanism and further-neighbor effective interactions have
important contribution to these phenomena. In addition, the spin correlations of
peculiar states in the Kondo lattice models are reflected to the itinerant electrons,
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resulting in interesting transport phenomena. These results imply that the spin-charge
coupling brings about qualitatively different nature in the magnetism and transport
phenomena from those in the unfrustrated systems.
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