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Supervisors’ Foreword

The response of macroscopic systems to a slow but constant energy input can be
either linear, with instantaneous dissipation and elastic deformation, or non-linear
with stress accumulation followed by sudden and irreversible reorganisations that
release energy. The Barkhausen noise measured in ferromagnets, the seismic
activity generated by plate tectonics or the jerky flow of granular materials are
examples of dynamical systems governed by rapid and dramatic reorganisation,
named avalanches.

Although, in all these systems, rich and diverse dynamics are observed, with
avalanches displaying peculiar shapes and evolutions, some common and well
known features can be identified. One such property is the unpredictability: even
with the full track record of the past events it is impossible to predict when, where
and of which magnitude, the next avalanche will be. A second important property is
that many quantities associated to avalanches (such as the magnitude, the duration
or the size of the region involved in the perturbation...) display scale-free statistics.

It is then tempting to consider avalanches as the natural extension to
out-of-equilibrium of continuous phase transitions where scale-free behaviour and
universality are predicted to occur when approaching the critical point. However
avalanche physics is much richer than its equilibrium counterpart. In particular,
basic observations such as the presence of aftershocks in earthquakes or the strain
localization of granular matter under shear are related to novel non-stationary
effects, totally absent in equilibrium critical dynamics.

These effects are considered by Francois Landes in his thesis, where models for
the earthquake statistics are studied. There, the frictional dynamics of two tectonic
plates along a fault is modelled as an interface sliding in a heterogeneous medium.
Because of the asperities of the medium, the dynamics is jerky and proceeds via
sudden and large reorganisations of the interface shape. Such avalanches corre-
spond to earthquakes. In absence of the relaxational effects inherent to friction the
classical depinning transition of an elastic interface is recovered. In this limit the
avalanche statistics is essentially Poissonian, i.e. avalanches are uncorrelated in
time and space. However the relaxational effects allow for a realistic description of



vi Supervisors’ Foreword

seismic activity. In particular, they are responsible for the presence of aftershocks,
for the quasi-periodic occurrence of major earthquakes (the so-called seismic cycle)
and accounts for a correct Gutenberg-Richter law.

The thesis is introduced with three very substantial chapters, that are actually
self-contained reviews of known subjects: the dry friction of sliding solids, the
phenomenological laws on the analysis of seismic activity and the model of the
depinning of an elastic interface. These reviews are crucial to the good under-
standing of the main result of the thesis, which, in our opinion, represents an
important attempt at bridging the gap between the complex scenario emerging from
earthquake data analysis and conventional avalanche models.

France Alberto Rosso
June 2015 Eduardo Jagla



Abstract

Many complex systems respond to a continuous input of energy by an accumulation
of stress over time, interrupted by sudden energy releases called avalanches.
Recently, it has been pointed out that several basic features of avalanche dynamics
are induced at the microscopic level by relaxation processes, which are neglected by
most models. During my thesis, I studied two well-known models of avalanche
dynamics, modified minimally by the inclusion of some forms of relaxation.

The first system is that of a viscoelastic interface driven in a disordered medium.
In mean-field, we prove that the interface has a periodic behaviour (with a new,
emerging time scale), with avalanche events that span the whole system. We
compute semi-analytically the friction force acting on this surface, and find that it is
compatible with classical friction experiments. In finite dimensions (2D), the
mean-field system-sized events become local, and numerical simulations give
qualitative and quantitative results in good agreement with several important fea-
tures of real earthquakes.

The second system including a minimal form of relaxation consists in a toy
model of avalanches: the Directed Percolation process. In our study of a
non-Markovian variant of Directed Percolation, we observed that the universality
class was modified but not completely. In particular, in the non-Markov case an
exponent changes of value while several scaling relations still hold. This picture of
an extended universality class obtained by the addition of a non-Markovian per-
turbation to the dynamics provides promising prospects for our first system.

vii
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Chapter 1
Introduction

There are many natural occurrences of systems that upon a continuous input of
energy, react by sudden releases of the accumulated energy in the form of discrete
events, that are generally called avalanches. Examples are the dynamics of sand
piles, magnetic domains inversions in ferromagnets, stress release on the earth crust
in the form of earthquakes, and many others. A remarkable characteristic of most of
these realizations is the fact that the size distribution of the avalanches may display
power-laws, which are a manifestation of the lack of intrinsic spatial scale in these
systems (similarly to what happens in continuous phase transitions at equilibrium
[LL8O0, Kar07], with the correlation length diverging at criticality). The theoretical
analysis is build on the features shared by these various processes, and aims at
isolating the minimal set of ingredients needed to explain the common elements of
phenomenology. There are numerous models which display critical behaviour and
thus power-law avalanche size distributions, however in most cases the exponents
characterizing the avalanches can only take a few possible values, corresponding to
the existence of a few different universality classes.

For almost 20 years, there has been an ongoing effort to understand earthquakes in
the framework of these critical and collective out-of-equilibrium phenomena. Several
theoretical models are able to reproduce a scale-free statistics similar to that present in
seismic events, but miss basic observations such as the presence of aftershocks after a
main earthquake or the anomalous exponent of the Gutenberg-Richter law [Sch02].
At a smaller and simpler scale, a general theory for the friction of solids, taking
into account the heterogeneities of each surface and the collective displacements,
contacts and fractures of the asperities is not yet available [Per00, PT96]. Current
theories fail to reproduce some non-stationary effects such as the increase of static
friction over time or the possibility of the decrease of kinetic friction with increasing
velocity.

A first class of models displaying a single well-defined out-of-equilibrium phase
transition is that of the depinning of an extended elastic interface! driven over a

The interface can be any manifold, i.e. a line, a surface, a volume, etc.
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disordered (random) energetic landscape [Fis98, Kar98]. While the interface is driven
across the disordered environment, it gets alternatively stuck (pinned) by the hetero-
geneities and freed (de-pinned) by the driving force. Despite its locally intermittent
character, the overall dynamics of the interface has a stationary regime, which makes
various analytical and numerical methods available. Remarkably, one can often dis-
regard the precise details of the microscopic dynamics when considering the large
scale behaviour. As a result, the depinning transition successfully represents various
phenomena, such as Barkhausen noise in ferromagnets [ABBM90, ZCDS98, DZ00,
DZ06], crack propagation in brittle materials [ANZ06, BSP08, BB11] or wetting
fronts moving on rough substrates [RK02, MRKR04, LWMRO09] (see [Bar95] for
notions on fractals, growing surfaces and roughness). Although the framework is
also a priori well suited to describe friction and thus earthquakes, the stationary
behaviour itself is the ground where major discrepancies arise between theoretical
depinning results and real data: the aftershock phenomenon observed in earthquakes,
for instance, is clearly not stationary [Sch02].

A second class of such models is that of Directed Percolation (DP) [008, Hin06,
004, Hin00], which models the random growth, spatial spread and death of some
density of “activity” over time, in the manner of an avalanche. On a lattice, each
site can be either active or inactive, and at each time step, each active site tries
to activate each of its neighbours, with a probability of success p. When all sites
become inactive, the avalanche is over and the state no longer evolves. This inactive
state is an “absorbing phase” of the dynamics: the DP transition is an absorbing
phase transition [HHLOS8]. There is a critical value of the probability p at which
the system reaches criticality, with most stochastic observables distributed as power-
laws. Numerous birth-death-diffusion processes share the same critical exponents
and scaling functions: the DP class is a wide, robust class. We use the DP process as
a toy model of avalanches with Markovian dynamics [VK81].

In this thesis, starting from models of out-of-equilibrium phase transitions with
stationary dynamics, we build and study variants of these models which still display
criticality, but in the same time have non-stationary dynamics.

The physical process at the origin of most of our motivation and choices is that
of solid on solid, dry friction (i.e. in the absence of lubricants). Actually, during
this thesis our concern was initially the application of statistical physics methods to
seismic events, however towards the end of the thesis we focused more on laboratory-
scaled friction, as it is a much better controlled field. Since this subject is not a
common topic in the field of disordered systems, we introduce the problem of friction
in Chap.2. Reviewing the basic phenomenology and the well-established parts of
the theory of friction, we are able to identify the main features that any friction
model should include. Two points emerge clearly. A first is the need to account for
the disordered aspect of the surfaces at play: asperities form a random network of
contacts which constantly break and re-form, and the surfaces are heterogeneous so
that the contact strengths are randomly distributed. A second is the relevance of some
slow mechanisms (plastic creep, in particular) which allow for a strengthening of the
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contacts over time. The latter point becomes especially relevant at very slow driving
speeds, or when there is no motion. We will focus on the slow driving regime, where
the non-trivial frictional behaviours appear and which is crucial when considering
seismic faults.

The physics of earthquakes is vast and quite complex [Sch02], but presents sev-
eral points of interest for us. A first is that the sliding of tectonic plates, at first
approximation, may be considered as a large-scale manifestation of solid on solid,
dry friction. This “application” has been studied quite extensively on its own, and a
large amount of data is available, so that seismic faults can be used to test the pre-
dictions of friction models. A second point is that due to its importance, the field of
geophysics has generated numerous interesting models, which may serve as starting
points to understand friction as a collective phenomenon, rather than a simple con-
tinuum mechanics problem. This motivates our quick review of seismic phenomena
and the related historical models, presented in Chap. 3.

The mapping of an earthquake model onto the problem of elastic depinning nat-
urally introduces our review of the depinning transition in Chap. 4. There, we intro-
duce all the concepts necessary to understand our own modified depinning model,
and appreciate its originality. We explain the critical properties of this dynamical
phase transition (or depinning transition [ZCDS98, RK02, LWMRO09, ANZ06]),
review the scaling relations and an original approach to the mean field. Even though
we notice that the depinning universality class is a robust one, we are forced to
acknowledge its inability to account for frictional phenomena.

With the notions presented in the previous chapters, our choice of modification of
the depinning problem is quite natural. The starting point of our analysis is to remark
that conventional depinning does not allow any internal dynamical effects to take
place during the inter-avalanche periods. To address this issue, in Chap.5 we intro-
duce the model of a viscoelastic interface driven in a disordered environment, which
allows for a slow relaxation of the interface in between avalanches. The viscoelastic
interactions can be interpreted as a simple way to account for the plastic creep, mainly
responsible for the peculiarities of friction at low driving velocity. After a qualitative
discussion of the novelties of the viscoelastic interface behaviour, we present a deriva-
tion of its mean field dynamics. Extending the mean field approach that we presented
for the elastic depinning to this new model, we are able to compute the behaviour
of the entire system, which is found to be non-stationary, with system-size events
occurring periodically. There, we also notice that the addition of the “visco-" part into
the elastic interactions is relevant in the macroscopic limit. We compare the mean
field dynamics at various driving velocities and find good agreement with experi-
mental results found in fundamental friction experiments (Chap. 2) and observations
on earthquakes statistics (Chap.3). In two dimensions, we are limited to numerical
simulations, but we are able to perform them on systems of tremendous sizes (up to
15000 x 15000 sites on a single CPU), which allows us to unveil some features
reminiscent of the mean field behaviour. The various outputs of our simulations
(critical exponents, aftershocks patterns, etc.) compare well with the observational
results from Chap. 3 (see Sect.5.6 for a more detailed summary of results). In the
comparison with models from various other contexts (amorphous plasticity, granular
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materials, etc.) we notice similarities in the various models construction, and a shared
tendency for global, system-size events.

During this thesis, most of the work was performed on non-stationary variations
on the depinning model, with a focus on the applications to seismic events. On
the way, we studied a variation of the Directed Percolation, which has to do with
non-stationarity, despite being a model completely different from those presented in
Chap. 5. The last chapter (Chap. 6) offers the opportunity to consider the bigger pic-
ture of avalanche models. In that chapter, we consider the celullar automaton [Wol83]
of Directed Percolation (DP). We provide an intuitive link with the problem of inter-
face depinning by showing how much one would need to modify the DP process to
let it represent the avalanches of the elastic interface. We introduce a non-Markovian
variant of the DP process, in which the probability to activate a site at the first try and
the second one are different from those in the ulterior attempts. This provides the
system with an implicit memory, making the microscopic dynamics non-stationary.
This modified DP displays criticality with some exponents changing continuously
with the first and second activation probabilities, while others do not: in particular,
only one scaling relation is violated by the new dynamics, so that the new class pre-
serves most of its parent’s structure. A long-standing challenge is to find experimental
systems belonging to the DP universality class: up to now, there are no such direct
examples [004]. Our new model, which includes DP as a particular case, opens the
way for possible future experimental work, as we may consider universality classes
larger than DP.

As a conclusion, we explain the general path that structures this thesis and draw
some directions for future work (Chap. 7).

In each chapter of this thesis, we provide a very quick introduction, which sim-
ply details the aim of the chapter and the organization of contents. In the chapters’
conclusions, we always carefully summarize the main results, and provide the moti-
vation for the next chapter or some directions for future work. We sometimes refer
to the Appendices for technical details or results that are not crucial to our pre-
sentation. Although each chapter is a self-contained entity, reading the earlier ones
allows to fully understand and appreciate the scope of the latter ones. The articles
published during this thesis are [JLR14] and [LRJ12], they essentially correspond to
the Chaps. 5 and 6, respectively.
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Chapter 2
Introduction to Friction

In this chapter we aim at giving a short overview of dry friction, i.e. frictional phe-
nomena where the lubricants effect is negligible. We first present the phenomeno-
logical laws derived by experimental observations, then present the rudiments of the
(incomplete) theory of friction.Excellent references on these topics are [Per00, PT96,
Kri02]. In the process, we comment on the existing literature and draw some conclu-
sions about possible directions for future work, especially for the statistical physics
community.

2.1 The Phenomenological Laws of Friction

Consider a solid parallelepiped—as depicted in Fig.2.1—in contact with a large
solid substrate over a surface S (supposed to be flat at the macroscopic scale), with
a normal load L (for instance due to gravity), being pulled along the surface via a
spring ko, itself pulled at a fixed velocity Vj. The block’s velocity is denoted v. The
force Fy of frictional effects was' claimed to follow these three laws:

e First law: Fj is independent from the surface area S.
e Second law: Fy is proportional to the normal load: Fj o< L.
e Third law: F} is independent of the sliding velocity v.

This allows to write a phenomenological equation for the friction force:

Fi = L 2.1)

IThese laws were stated in the 17th century by Amontons for the first two of them, and in the 18th
century by Coulomb for the third one.
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Fig. 2.1 Solid block sliding on a solid substrate. Solid parallelepiped sliding on an inclined plane
(angle «) at velocity v = x. The weight can be decomposed in two components, one orthogonal to
the surface (the load L), and one parallel to it (which contributes to the pulling). Additional pulling
can be provided via a spring kg, of which the “free” end may be moved at a fixed velocity V. The
kinetic friction force is denoted Fj

where i is the kinetic (or dynamic) friction coefficient, which depends on the nature
of the surfaces in contact along with many other things, but which is here assumed
to be independent from S, L and v.

There is one “exception” to the third law which is commonly observed: for the
static case (v = 0, i.e. when there may be pulling, but without motion) the friction
coefficient takes a different value p, larger than the dynamical one: pys(v = 0) >

(v > 0).

2.1.1 Stick-Slip Motion

Due to the fact that the static (v = 0) friction force is higher than the dynamic (v > 0)
one, a mechanical instability known as “stick and slip motion” can occur, especially
when the pulling is provided mainly in a sufficiently flexible way (small kq) or at
sufficiently low driving velocity Vj. As we are going to see, this is something that
we experience on a daily basis.

Consider the system pictured in Fig. 2.1, with an angle o = 0, for simplicity. The
free end of the spring kg is denoted wg and is driven steadily at a velocity V. The
spring ko can be thought of either as an actual spring through which the driving is
performed, or as an effective representation for the bulk rigidity of the solid. As we
pull the block from the side, we transmit some shear stress through its bulk. If the
solid is driven at constant velocity Vj directly from a point on its side, the effective
stiffness kg is proportional to the Young’s modulus E and inversely proportional to
the height d of the driving point (neglecting torque effects). See Fig.2.2 for a visual
explanation.In the context of a simple table-top experiment as presented here, the
solid’s stiffness is generally too large for stick-slip to occur, so that the use of an
actual spring ko to perform driving is useful.
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Fig. 2.2 Effective stiffness of the driving spring. Left a solid block with Young’s modulus E is
pulled rigidly from some point at a height d, i.e. this point is forced to have the velocity V. Middle
the solid block can be pictured as a dense network of springs, related to E. Springs in the horizontal
directions are not pictured for clarity. Right effective modelling by a block with infinitely rigid bulk,
pulled by an effective spring ko ~ E/d

Newton’s equations for the center of mass of the block at position x can be written
in the dynamic and static cases:

mxX = ko(Vot — x) — ux L (dynamic) 2.2)
0=ko(Vot —x) — F; (static) (2.3)

where the static friction force F; adapts according to Newton’s second law (Law
of action and reaction) in order to balance the pulling force, as long as it does not
exceed its threshold: | Fs| < pusL = (Fs)max-

We start with x( = 0) = 0, wo(0) = 0, and for ¢+ > 0 we perform the drive,
wo = Vot. As long as |Fy| < pusL, the block does not move: we are in the “stick”
phase.

At time ] = Ié”v , the static friction force Fy reaches its maximal value p; L and
the block starts to shde. This is the “slip” phase. Thus we have the initial condition
x(t1) = 0, x(t1) = 0 for the kinetic equation. The solution reads:

x(t) = Vot — 1) — /»Vo sm(\/>(t —t )) Mk) (1 — cos(\/I:nT)(t — tl))).
2.4)

It is natural to take a look at the short-time limit of the solid’s position:

- L ko Vi . — Lk
(ps — pik) 24 00t3_(,us i) Lko

2m 6m Tz Foth. @)

x(t) ~
® ~

which is increasing at short time, as expected, since pg > .

As x initially increases faster than Vp¢, the driving force from the spring,
(ko(Vot — x)), decreases over time, so that x may reach zero again. If at some point
x = 0, the kinetic friction coefficient is replaced by the static one, and oscillations
(and any form of further sliding) are prevented. We can compute the times ¢, such
that formally, x () = O:

[m (ps — px) L
= 2. [— — _ 2.
=1+ ko (p7r arctan( Ny )) (2.6)



10 2 Introduction to Friction

50F 0.7¢ a(t)
0.6F
40¢ psL F
30F 0.4F
a0l 0.3}
"Iﬂ‘ 0.2F
10¢ e (t) 0.1% /
T ty ta 30 tmed0 50 10 1 ta 30 -

. t]‘ . 2 . .
stick slip stick  slip

Fig. 2.3 Stick-slip evolution of the block over time. Left variations of the center of mass x over
time ¢ (solid blue) computed from (Eq.2.4). Right saw-tooth evolution of the stress during stick-slip
motion. Variations of the stress o = ko(Vot — x) (solid grey line) computed from (Eq.2.4). The
function Vot (dashed purple) is given for reference. At time #1, the threshold for the static force is
reached and the block starts to move, with a decreased friction force Fj (kinetic). At time #,, as
velocity cancels, one needs to consider the static friction force. Loading then increases until the
time 73 where the threshold of static friction is once again reached. Parameters used for the two
figures are: m = 1, Vo = 1, kg = 0.1, usL = 0.52, (us — px)L = 0.2. Note that the slip phase
seems long, but this is due to the parameters used: in particular, with a larger (us — px) we get
longer stick phases (and—relatively—shorter, sharper slip phases) Here we have a detailed view of
the slip phase

where p € N. The physical solution corresponds to the first positive time that can
be obtained, i.e. p = 1. At this time, the friction force (that always opposes motion,
whichever direction it goes) increases from pix L to ps L and motion stops. The evo-
lution of the block is once again controlled by the static equation of motion (Eq.2.3),
and we are in the “stick” phase.

The system will remain in the stick state until the time #3 such that Vpt3 — x(3) =
s L/ kg. Since the system has no memory (beyond x), the dynamics at ulterior times
is exactly periodic, as shown in Fig.2.3.

In friction experiments, one usually measures the fotal shear stress or total friction
force, which is given by o = ko(Vpt — x). We present the evolution of o (¢) in Fig. 2.3
(right), to be compared with experimental results, e.g. for a mica surface pulled at
constant velocity (Fig.2.4).

The difference between p; and 11 generates a mechanical instability, in which the
elastic energy provided by the driving is at times stored (static case, or “stick” phase)
and at times released over a short> period (kinetic case, or “slip” phase). This is the
exact opposite of the more common situation of dissipative forces monotonously
increasing with velocity so that a balance between drive and drag naturally yields
stable solutions.

2Note that in Fig. 2.3, the parameters chosen are such that the stick phase is rather short. For larger
(us — k) we get longer stick phases, and—relatively—shorter slip phases, since the duration of
the slip phase is independent of g, but the loading time grows essentially linearly with it.
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Fig. 2.4 From [Per00]. Stick-slip motion of mica surfaces coated with end-grafted chain molecules
(DMPE). The driving velocity is set to a few different values over time, while the stress or friction
force (here denoted F', measured in m N) is measured. When the spring velocity (v or Vj)) increases
beyond v} the sliding motion becomes steady. Here v} &~ 0.1 ps~!

Scope: Limiting Behaviours in ky and V)

In the limits ko ~ oo or Vp ~ oo we can derive simple analytical expressions, which
allow to estimate the range of relevance stick-slip motion.

Duration of the Slip Phase The duration of the slip phase #, — #; is obtained by

developing (Eq.2.6):
m —1
h—t ~ 2 [— O(k
2=h 1/ko7r+ (ko )

|m -1
h—1 V0~002 k077+0(V0 ) (2.7)

This means that the duration of the slip phase vanishes when kg ~ oo, but remains
finite when Vjy ~ oo.

Duration of the Stick Phase To fully predict how stick-slip behaviour depends on
the parameters ko and Vj, we need to compare the durations of the slip and stick
phases. The recurrent stick phase has duration 73 — f,, which is different from #|
because the initial condition we used is different from the system’s state at t = #,
(the spring is not extended at all at r = 0, it is fully relaxed). Starting from ¢ = 5,
with (Eq.2.3), the static friction force will reach its threshold at the time #3 such that
Votz — x(t2) = psL/ko (we used x(22) = x(3)). We thus have

s L x(12)
koVo Vo

3 —1 = — . (2.8)

Itis useless to fully write down the exact value of x (2 ), obtained by injecting (Eq. 2.6)
in (Eq.2.4). Instead, we only give the relevant limits:

m ) m )
x() ~ Vo2 /—m+ Oky"), x() ~ Vo2 [—m+0(V,"),
ko~o00 k() Vo~o0 ko
(2.9)
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i.e. the first® order term of both developments happens to be the same. In this (com-
mon) term, we recognize the previous developments of (Eq.2.7):

x(12)
Vo Vo~oo

Vo ko~oo (t—t)+ 0(Vy ). (2.10)

(th —11) + O(ky ),

where the dominant corrections come from (Eq.2.7). We can inject these expressions
in(Bq.28): 5 — =+ 42 —n =0+ —n:

— koVo Vo
-1 ~ O(kyh n—t ~ OV, @2.11)
ko~00 Vo~o0

This means that for a sufficiently rigid spring ko or a sufficiently high velocity Vj,
the duration of the stick phase vanishes.

Existence of Stick-Slip More precisely, we see that in these limits, the duration of the
slip phases is always large compared to the duration of the stick phase. For ko ~ oo,
Tgip ~ k(;m > Ttick ~ ko_l- For Vo ~ oo, Tgiip ~ O(1) > Tyick ~ Vo_l- We
can conclude that in these limits, the system looses its stick-slip behaviour. In this
very simple model, we did not include any viscous term of the form —nx, and the
friction law was assumed to be very simple. The addition of viscosity gives a sharper
decrease of the stress in the slip phase, and smooths the displacement, which tends
to suppress the stick-slip. In more refined models, one may find a critical value of
the spring stiffness, k{ (which depends on Vj), as is observed in most experiments.

The steady state can be obtained very simply by assuming a stationary behaviour.
Using the kinetic equation: 0 = ko(Vpt — x) — g L, we get:

L
x(t) = Vot + ”kL 2.12)
0

Examples of Stick-Slip in Everyday Life

There are too many examples of natural occurrences of stick-slip motion to make a
comprehensive list here: we are only going to name a few.

The sound of squeaking doors originates from a motion of the hinge of stick-
slip kind. The sudden motion during each slip phase produces a sound pulse, and
the periodicity of the stick-slip provides sound waves with a rather well-defined
frequency. The fact that the phenomenon is not exactly periodic does not prevent
us from classifying it as stick-slip, as the driving is still essentially monotonous.
We may notice that the computations from the previous section are validated by
our everyday experience: the sound of a squeaking door can often be suppressed by

3 Actually, many higher-order terms are also equal in both developments. This is also true for the
developments of 1, — 1.
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opening or closing it fast enough. This is what could be expected from the fact that
when Vj ~ oo, the stick-slip behaviour is suppressed.

The same kind of mechanism applies to grasshoppers which produce their char-
acteristic noise by rubbing their femur against their wings (or abdomen). The physics
is essentially the same as for squeaking doors, only at different length scales.

The bow of a violin also produces sound waves in a similar way (but it’s a bit
more complex, and of course the resonance of the violin’s string plays an important
role too).

The sudden stop of a car also involves stick-slip. Car brakes tend to squeal when
pressed too hard: by the same mechanism as above, the gentle and rather noiseless
sweep of the brake pads against the wheel (pure sliding) is then replaced by a high-
pitched noise (stick-slip). This could be expected from (Eq.2.6), where we see that
an increase in the load L is similar to a decrease in Vj, thus enhancing stick-slip
behaviour. The tires on the road can also (unfortunately) perform a sort of stick-slip:
when the brakes are pushed so hard that they lock up the wheels (pure stick in the
brake-wheels system), the tires will slide on the road (instead of rolling, i.e. sticking
to the road). In that case, the stick state corresponds to tires normally rolling, and
the slip state corresponds to a sudden slip on the road, which can induce wear of the
tires (loss of material and irreversible deformations) and “skid marks”. However, the
intermittent behaviour (which defines stick-slip) is usually just due to an intermittent
braking, so that the regularly spaced skid marks seen on roads are mostly not directly
related to stick-slip, but rather are the consequence of the use of an Anti-lock Braking
System.

We quickly mention a case of lubricated friction that has important implications
in human health: bones articulations. In this system, stick-slip causes more damage
than steady slip, something that can further increase the occurrence of stick-slip
[LBI13].

In all of the above examples of stick-slip motion, the whole “parallelepiped” is
considered as a single block. But stick-slip actually occurs on many different length
scales. Thus, even when the motion of the center of mass seems smooth, local ““stick-
slips” usually occur at the interface between the sliding solid and its substrate: for
instance, groups of molecules or surface asperities can “jump” quickly in a stick-slip
like fashion. During “steady” sliding, these local slip events occur asynchronously,
so that they essentially average out at the macroscopic level. These local events may
be probed indirectly, for instance, by studying the elastic waves emitted from the
sliding interface.

We will give more details on these local events and their relevance for macroscopic
friction in the following sections, but the impatient reader might jump directly to
Sect. 2.2.3.
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Fig. 2.5 Static friction force
versus In(z). C.A. Coulomb’s
data (circles) is compared a
simple law A + B In(7) 154
(solid line). Data taken from
[Dow79], retrieved from

[Per00] Fs 10
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2.1.2 Ageing and Violation(s) of the Third Law

Observations

Ageing in Static Friction As early as the 18th century, C.A. Coulomb measured
and observed an increase of the static friction coefficient with the time of contact
with the substrate. He found that the time dependence was rather well fit by a law
Fy; = A+ Bt®, with o =~ 0.2 (see Fig.2.5). However, in a more modern view
one notices that his experimental data is also well fit by F; = A + Bln¢, which
is essentially the currently widely-accepted law for the ageing of contact in many
materials.* From these rudimentary results, we see that the strength of the contact
initially increases quickly, but the time to double from ~10 (arbitrary units) to ~20
can be extrapolated to be of ~1h. More recent results about the ageing of contact at
rest can be found e.g. in [BDRF10].

This time-dependence of the static friction with time of stationary contact is very
important both in applications and conceptually. It could almost be nicknamed the
4th law of friction, due to its importance.

Velocity Weakening The third law is actually quite incorrect: how could friction
be independent from the sliding velocity v, and at the same time, have a singularity
at v = 0? Upon closer inspection there is no singularity, but a smooth behaviour
connecting the v = 0 and the very small velocity regimes (as one would expect
from intuition), via a friction force which decreases when the velocity increases (a
rather counter-intuitive observation). Typically, in the case of steady-state motion,
the velocity-dependent friction law can be expressed in its most simplified form by:

uk:,ﬁ—Aln(H%). 2.13)

4The common way to write this equation nowadays is rather iy = A + B In(1 + t/fo), a notation
that better preserves the need for homogeneity and the hatred for divergences.
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We further discuss the physical interpretation of this equation in the next subsection
(p. 16). For bare granite (see [KBD93]) parameters values range in the scales: j ~
O(1) (typically p* ~ 0.6), V* = 1 pms~!, and A ~ O(1072). These parameters
can be extracted from experiments where steady-state sliding is obtained for various
velocities, at different loads or other external conditions varied. Keeping the same
setup for different velocities, one is especially interested in the relative variations of
the Steady State friction coefficient ji53 = 1 — p* = —AIn(1 + v/ V*), as shown in
Fig.2.6.

However, for most materials this continuous decrease can only be observed at very
small velocities (~ 10 um s~!, see Fig.2.6), and one needs rather good instruments
to detect it in the lab. This also explains why it was not detected earlier. An example
of the crucial role of this weakening of friction with increasing driving velocity is
found at the level of Earth’s tectonic plates: as the imposed driving ~ Vj is very small,
plates perform stick-slip motion, with the slip phases corresponding to earthquakes.
The fact that friction is decreasing up to a limit velocity means that any initial
motion of the plate triggers an instability which drives it up to this limiting velocity.
Understanding this instability of the statics is an important aspect of geophysics. In
the geophysicists’ community, this decrease of friction with velocity is known as the
velocity-weakening effect.

Velocity Strengthening Let’s mention also the velocity strengthening regime (where
friction increases with velocity) which is expected to occur at a higher velocity
(which depends on other parameters as the load): see the right part of Fig.2.6. It
is tempting to attribute velocity strengthening to viscous or hydrodynamical effects
due to lubricants. Actually, in the presence of lubricants the hydrodynamic the-
ory predicts a friction force going as ~v? at high Reynolds numbers (i.e. at high
velocities). Furthermore, velocity strengthening can appear at much lower velocities
via mechanisms completely independent from hydrodynamics. A more reasonable
explanation for velocity strengthening is the wear, which increases roughly linearly
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with velocity. Wear may also produce an abundance of granular materials between
the surfaces, which may also dissipate more energy by increasing the contacts and
the sliding-induced deformation. In this thesis we are only interested in the small
velocity regime, and it is enough to know that beyond some limiting velocity, friction
starts to increase instead of decreasing. For a presentation of additional experimental
results on various materials displaying velocity strengthening and some arguments
to explain its origin, see [BSSBB14].

The Rate- and State-Dependent Friction Law(s)

From these diverse observations came the need to have a single constitutive law
(or empirical law) that would encompass both the observed time dependence of
static friction and the velocity dependences of kinetic friction (velocity weakening
or strengthening). We now present this general phenomenological law.

In the general case of non stationary sliding velocity v(z), the friction coefficient
can be expressed in terms of the so-called rate and state friction law [Die79, Rui83],
where “rate” simply refers to the time derivative (X = v) of the position and “state”
refers to an internal variable which represents the quality of the contacts between the
sliding solid and its substrate, 0(¢) (also sometimes denoted ¢(¢)). A widely used
form for the evolution of the variables u, 0 is:

N v V*6
L= p +aln(w)+bln(Dc) (2.14)
00 _ v (2.15)
or D, ’

where typically, V* = 1 pm s~ w* ~ 0.5, D, ~1-10 um, and a, b are dimension-
less constants that need to be fit for each particular data set, but typically range in
a,b ~ 0(1073). This is what is often called a “constitutive relation” for friction. We
may note that (Eq.2.14) is undefined at v = 0. This can be problematic for compu-
tations, but this is compatible with the definition of friction as the normalized shear
strength of a surface: there must be some slip at some scale for it to be measured.
Anyhow, (Eq.2.14) is sometimes rewritten as

. L) V*o
f=p +aln(1+V* +bln(1+ B (2.16)

to tackle this issue.

The above law is just one of several possible rate-dependent and state-dependent
friction laws (RSF laws). Many variations are possible for the evolution of the state
variable 0. Keeping (Eq. 2.14), we can have two other RSF laws by using one of these
evolution equations for 6:
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% =1= (U_9)2 (2.17)
ot D.)’ ’
90 _ v, (”—9). (2.18)
ot D, D,

Each of these will give different behaviours when looking in details, but some of the
main features are shared:

e In the steady state (0,0 = 0), we obtain 8°° = D, /v. Injecting itinto (Eq.2.14), we
get the steady state friction coefficient u** = p* + (a — b) In (v/ V*). Depending
on the sign of a — b, we will get velocity weakening or strengthening.

e In the case of zero velocity (v = 0), § is a monotonously increasing function of
time. For instance, starting from 6(0) = 0, (Eq.2.15) gives 0(¢t) = ¢. This allows
to account for the reinforcement of static friction over time.

These two shared features exactly answer to the initial need to reconcile static and
dynamic observations.

2.2 The Microscopic Origin of Friction Laws

Up to now, we have approached friction purely phenomenologically. At this point, the
reader should be thrilled to learn about the fundamental mechanisms of friction. How
come the friction force is not extensive in the surface of contact? What is the role of
the load, and how come the dependence is exactly linear? What are the mechanisms
for ageing, in the static and dynamical cases? Are they related? Can we find the form
of the velocity-weakening law, “from scratch™?

We are only going to give a few clues about these questions, since definitive
answers are not always available: even though it has progressed a lot in the last
30years, tribology still has many challenging questions to be answered. Although
we only present an overview of a sub-part of tribology, we will try to explain clearly
the link between length scales, and how “elemental” objects and phenomena emerge
from smaller and more fundamental ones. This simple yet rather accurate description
of friction is in large part due to Archard [Arc57], with important improvements being
very well summarized in [PT96, Per00].

However, we won’t explore much the nano-scale aspects of friction here: for
reviews on nano-scale models of friction and experimental results on nano-tribology,
see [VMU+13, CBU13]. The resource letter [Kri02] contains accessible references
to the relevant literature, as references are sorted and somewhat commented. Besides,
in this thesis we are interested in dry friction as opposed to lubricated friction: we
explain how we may dismiss lubrication in Appendix A.1.1.
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2.2.1 Preliminary: What is the Atomic Origin of Friction?

Small friction forces have been observed even for contacts of very few atoms: thus,
it is natural to wonder about the atomic origin of friction. At the quantum level, there
is no equivalent of “friction forces” between atomic clouds. What prevents sliding at
the atomic level are all the sorts of bond-formation mechanisms: chemical bonding,
Hydrogen bonds, van der Waals forces, etc. At a larger level,” wet contacts develop
capillary bridges, which are essentially liquid bonds developing due to surface tension
and geometrical constraints.

In any case, the existence of bonds between surfaces in contact is an obstacle to
the relative sliding of surfaces: in order to move, these bonds may first deform and at
some point, break. For a bond to break, the local force has to reach a certain threshold,
i.e. there is an energy barrier or activation energy needed to perform local motion.
The macroscopic friction force thus emerges from these local energy barriers that
have to be overcome to allow motion, so that the friction force is proportional to the
number of bonds:

F o Nponds- (2.19)

The intermittent nature of bonding at a local level is sometimes seen as a sort of
local stick-slip occurring at the micro or nano scale (depending on the characteristic
size of the bond). However this is just an analogy: for most surfaces the local state
(bound/unbound) is far from being periodic, and it is controlled mainly by surfaces’
properties (and not inertia or internal stress).

Once a bond is broken, the energy is generally not recovered: in general, no new
bond is formed right after breaking. Various detailed dissipation mechanisms can
account for this “loss” of energy, the main ones being excitation of electrons and cre-
ation of phonons. The energy lost in these processes can be converted into mechanical
energy (elastic and plastic deformations) or directly into heat. The dissipative nature
of macroscopic friction originates from the irreversible part of these processes (even
elastic oscillations dissipate energy via phonons).

Conclusion: Friction is Adhesion Aside from the relationship F o< Nponds, the
main point of this very short discussion is that dry friction at the atomic scale can be
reduced to adhesion (in the broad sense). In other words, the continuum mechanics
friction force simply emerges from the adhesion properties of the particles in contact
at the solid-substrate interface.

Outline

In this Sect.2.2, we will explain the three phenomenological laws with arguments
based on simple microscopic mechanisms.

SNote that we do not identify asperities and bonds. Bonds can be single-atomic contacts, whereas
the term asperity commonly denotes micro-scale contacts. Some bonds (as wet contacts) can be of
the wm length scale, as asperities. We discuss these nuances in Sect. 2.2.3.
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Since friction orginates from the adhesion of atoms that are actually in contact,
the geometry of each surface is crucial. We start our analysis by defining the main
kinds of surface profiles in Sect. 2.2.2, in particular we define the notion of algebraic
roughness, and provide experimental evidence of the strong roughness of most sur-
faces. This allows to understand naturally why the friction force is independent from
the apparent contact area, as specified by the first law.

In Sect.2.2.3, we discuss how the real contact area evolves, and how different
mechanisms (elastic or plastic deformation) for its evolution all lead to a linear
dependence in the load (second law). We also quickly discuss the role of fracture.

In the last Sect. 2.2.4 we show how the third law is actually violated in experiments,
explain why it is almost correct at the human scale and present some hypothetical
microscopical mechanisms explaining this violation.

2.2.2 Roughness

In the common sense, the roughness of a surface or texture is “how much the height
profile deviates from the average height”, and it is often taken as a binary measure:
things are either smooth or rough. However, this “definition” implicitly promotes
human length scales as references: for a height profile with a large spectrum of
wavelengths, the human senses (tactile or visual) can only perceive variations over
length scales larger than some threshold. Additionally, large wavelength variations
are often considered as irrelevant for roughness “to the eye”.

The concept of roughness as an objective measure of the texture properties of a
surface is used in various areas of science and engineering, so that depending on the
subject, its definition changes. In engineering, the variation of the profile at small
enough length scales is called roughness, at larger scales it is called waviness, and at
even larger scales itis called form. This is in contrast with the roughness as understood
in most statistical physics works, where roughness is a measure embracing all length
scales (as in fractals), i.e. where no particular length scale is favoured.

However, all definitions of roughness share a common goal: to reduce the tremen-
dous amount of information contained in any given height profile {#(x, y), (x, y) €
D} to a few scalar variables at most—ideally just one, which would then be called
“the roughness”. The aim is of course to retain as much information as possible in
these few variables. Depending on the symmetries expected from the profile, some
definitions will be more or less fit for this purpose.

Corrugation (or the False Roughness)

The concept of corrugation is in the neighbourhood of roughness. In common terms,
corrugation is either “the process of forming wrinkles” or “how much wrinkling there
is” at the surface of something. Corrugation refers to how much some profile departs
from being perfectly flat (as roughness does), but it implies the idea of periodicity
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or pseudo-periodicity for the height function /. Typical examples of profiles where
corrugation rather than roughness is relevant are:

e Top surface of a pack of hard spheres (e.g. glass beads), whether they are in perfect
order (hexagonal lattice) or not.

e Surface of an atomically smooth substrate (e.g. mica surface): the electronic
potential of the atoms forms regular bumps. The shape is essentially the same
as for ordered glass beads, at a different length scale.

e Underwater sand close to the shore can form a corrugated profile with characteristic
lengths of a few cm.

e Rail tracks tend to from quasi-periodic corrugations when excited at certain wave-
lengths. This increases the wear of tracks, because the “bumps” are extremely
work-hardened, and thus fragile. See [Per00], p. 41.

e Fingerprints, or friction ridges, are “wrinkles” atop the fingers, which allow for a
good perception of textures. See [SLPD09] or [WCDP11] for more details on the
role of corrugation in tactile perception.

The crucial discrepancy between the concepts of corrugation and roughness is that
the latter carries the idea of randomness, whereas the former one is usually a synonym
for periodic behaviour.

In the case of the contact of two atomically flat surfaces (i.e. flat at the atomic scale,
without any one-atom bump or hole), there is a small corrugation due to the crystalline
lattice. If the two lattices have lattice parameters (the length of one cell of the lattice)
a and b such that a/b is an irrational number, they are said to be incommensurate.
In this case, the perfect fit of the two lattices is impossible, because locations of
strong bonding due to correspondence of sites of both lattice will be rare: in this case
the relative corrugation “potential” may play an important role. The locations for
strong bonding will appear to be random, but are indeed determined by the relative
corrugation of the two surfaces. Many friction models use this sort of corrugation to
produce seemingly disordered, or random surfaces. One has to be careful with this
interpretation, because this chaotic behaviour due to the incommensurate nature of
substrates is “not very random”. If the ratio of lattice parameters a/b € Q, then the
two lattices are said to be commensurate, and then the interaction between the two
will be quite strong, since the number of strong bonding sites will be extensive with
the lattices size. We will discuss the case of commensurate surfaces a bit later, in
Sect. 2.2.3.

Overhangs The formalism used above (and below) implicitly assumes that the sur-
faces we consider do not have overhangs, i.e. for any point (x, y) € D of the surface
considered the function /4 is uni-valued (not multi-valued). Another way to see this
is to say that at any point, the local angle between the surface and the base-plane
is less than or equal to 7/2. In case a surface actually has overhangs, many detec-
tion apparatus would measure a “regularized” surface (as shown in panel ¢ and d of
Fig.2.7).



2.2 The Microscopic Origin of Friction Laws 21

Fig. 2.7 Various height profiles /2 (x). The solid part is pictured by small dots. a “Normal profile”,
without overhangs. b Profile with one overhang. Two regularisations are suggested by dashed and
dotted red lines. ¢ A first regularization of profile (b), as suggested by the dashed lines. d A second
regularization of profile (b), as suggested by the dotted lines

Width Described by a Single Scale: The Finite Roughness

For essentially “flat” profiles or more generally in engineering applications (where
only a certain range of length scales are relevant for friction), one may resort to
simple measures of the height profile 4 (x, y) in terms of its first moments or of some
extremal values. The underlying assumption is that the variations of 4 are “finite”,
i.e. the moments of the distribution A (x, y) (or even its cumulants) are finite, i.e.°
h € L*(R?). We will see later how well this condition should be fulfilled for this
sort of measures to be accurate.

Let us now precisely define a few measures of roughness. Consider a finite (but
macroscopic) sample, defined by the domain D C R?. Suppose that the raw profile /
is sufficiently regular: # € L?(D). To extract relevant variations of the height profile,
we will generally subtract its average to 4. We use X to denote the space average of
any quantity X: h = ﬁ fD h(x, y)dxdy. The most common measures of roughness
are given by the following functions of 4.

e The (average of the) absolute value: R,[h] = IITI fD |h(x, y) — E| dxdy.

e The root mean squared Rryis or width: w[h] = \/|_21>\ Ip |hGx,y) — E|2 dxdy.

e The maximum height of the profile: R;[h] = max (k) — min (h).
(x,y)€D (x,y)eD

Additional measures of the properties of a surface are e.g. the skewness and the
kurtosis of the profile, which come naturally as higher moments of the height function,
seen as a probability distribution.

Relevance These kind of measures—taken as simple real values—are well fit for
engineering applications, where the roughness needs only to be assessed on a definite
range of length scales, and for which the variations are usually mild in this range.
In the case of small variations, the observables defined above are well-behaved, in
particular they are essentially independent of the sample size. However, in the more
general context of the physics of friction, these measures fail to account for the rich
behaviour of the surfaces we may be interested in, and more specifically, they can

SThis notation indicates that the function A is a square-integrable function on R?: Jre |h)? < 0.
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strongly depend on the sampling size. Instead of looking at these functionals of 4 as
simple real variables, it is preferable to consider them as functions of the sampling
length, and to extract a few relevant quantities from these functions.

In particular, in the case of numerous natural surfaces, these indicators would
explode: the root mean square or width measurement for instance, w, would essen-
tially diverge, if the distribution 7 were to increase as a power-law. We are about to
see that this is indeed the case, at least in the applications we have in mind.

Self-Affinity: The Algebraic Roughness

As can be observed for silicon nitride ceramic balls observed at the micrometer
scale (see Fig.2.8) the height profile of rather smooth objects can actually be quite
irregular. We give a view of a rough surface from a toy model in Fig.2.8 (central
and right panels). This toy profile has large relative variations over a large range of
length scales. Here we want to provide the tools for describing such kind of profiles.
Defining new tools will also allow us to characterize more precisely experimental
observations.

Fig. 2.8 Left silicon nitride balls (used for bearings), finished (very smooth) and “rough lapped”
(rougher). We zoom (~x100) on one of the rougher balls (below), and realize that the landscape
is much rougher than it seemed, using a height resolution ~10 wm (Images retrieved from [Per00],
originally from [Cun93]. Central (respectively right) panel: 3D view (resp. “heat map” colouring)
of the height profile for a toy model of surface (arbitrary units). We zoom (~x3) on a seemingly
flat section, which reveals a rather irregular microscopic landscape upon closer inspection (below),
similar to the large scale one. Note that the preferred directions of our toy-surface (present at various
scales) are an artefact of the generating procedure, they are not expected to be so strong for real
materials
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First, we want to give clear definitions of the mathematical terms used, then see
a few examples of surfaces that can be characterised using these definitions, and
finally explain how we can quantitatively describe these surfaces efficiently, which
will yield a natural definition of the (algebraic) roughness.

Self-Similarity (and related definitions) Numerous objects have the property that
they “look the same” at various length scales. Here we make this idea more precise
by defining a few mathematical properties related to this idea. Additional details are
available in Appendix A.1.2.

Let us first define the property of self-similarity. A function of two variables
g(x, y) is said to be self-similar if an only if (iff) it satisfies:

g(x,y) = AMAag(AT %, ASy),  YAL2 >0, V(x, ). (2.20)

This is a re-scaling, and it correspond intuitively (e.g. for A > 1) to do two things
at the same time: “zoom out” in the x- and y-directions and to magnify (or also
“zoom in”) in the g-direction. Self-similarity is a very stringent constraint, since the
re-scaling in different directions has to be exactly the same.

A more general property defining objects with “similar” appearance at different
length scales is self-affinity. A function of two variables g(x, y) is said to be self-affine
iff:

g(x, y) = AP ARg(AT I, ATYY), VAL > 0, Y(x, y), (2.21)

where b1, by are the self-affinity or scaling exponents related to the affine transfor-
mation. This may be referred to as “anisotropic” self-affinity, but this wording is
misleading, because even for b1 = by # 1, we already have an affine transforma-
tion (and not a similarity transformation).” We see that self-affinity is an anisotropic
transformation which contains self-similarity as a special case (b; = by = 1).

Self-affinity is a rather general property, however it is interesting to note that it
only allows to compare fully deterministic objects. If we are interested in a random
process, we need an additional definition: statistical self-affinity. This is especially
relevant to characterize a real surface (which is highly heterogeneous, i.e. random).
A surface profile is said to have a roughness exponent ¢ when it is statistically self-
affine, i.e. when:

g0 2 ASg(A"y), VA >0, Vx, (2.22)

where the equality is “in Law” (for the random variables as distributions, not real-
ization per realization).

7Please note that in part of the literature, these two concepts are sometimes mistaken for one another,
or simply melted and seen as equivalent. When considering functions, it seems quite natural that
the ordinate and abscissa do not share the same scaling exponent, so that considering self-affinity
seems very natural. However, when considering geometrical objects such as self-similar or self-
affine objects, the distinction becomes important. Not all fractals are self-similar fractals.
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Fig. 2.9 Tllustration of the
width and its dependence on
the sample length L.
Depending on the definition
of the width (or
“roughness”), the precise
value of w(L) will defer.
However, for an
algebraically rough surface,
all definitions will display a
roughness exponent ¢ such
that w(L) ~ L¥eta

WLy

A generic example of mathematically well-defined stochastic process which is
statistically self-affine is the fractional Brownian motion (fBm). To give the interested
reader more insight into statistcal self-affinity, we study the fBm in Appendix A.1.3.

Structure Factor

To describe height profiles with the statistical self-affinity property, one needs to
extend the tools previously introduced. For instance, the root mean squared w
(“width”) of the height profile h(x) is the square root of the second moment of
the distribution computed in Eq. (A.9). For a surface being statistically self-affine at
least over the range x € [0, L] with a roughness exponent ¢, we thus have a width
wlh, L] = LS (see Fig. 2.9 for a concrete illustration). This is obviously a problem,
since an observable that explicitly (and much strongly) depends on the sampling size
is clearly ill-defined.

The solution is to acknowledge the self-affine nature of the surface, and to use the
exponent ( to define the roughness, which is possible since

In(wlh, L])
¢ L>1  In(L) (2.23)

does not depend on the precise value of L, as long as L > 1. However, it is important
to note that not all rough surfaces are exactly statistically self-affine with a unique
exponent over all length scales. There are usually cutoffs (lower and upper) to the
self-affine behaviour, and the exponent may even have two distinct values over two
distinct ranges! Thus, in order to be valid for a wider class of rough profiles, this
definition of roughness needs to be extended.

A very general observable that helps measuring the roughness of a given height
profile is the structure® factor S(g). This is not a roughness, since it is not a scalar,
but a function (which inherently contains more information than a single scalar). The

80riginally, the concept was used in crystallography, where structure obviously refers to the crys-
talline structure. The idea of looking at the spectrum in Fourier space, and at the typical energy of
each mode has since spread in many disciplines.
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idea is simply to look at the energy associated to each mode in the spectrum of the
height distribution. For a d-dimensional profile 4 (x), assuming periodic boundary
conditions (for simplicity) in a system of lateral length L, the averaged structure
factor is defined as:

1 ' 2
= d —iqx
S(q) = D /Dd X h(x) e~id (2.24)
= / dx h(x)h(0) e~ 9% (2.25)
D

where x is the d-dimensional coordinate, D is the domain considered and where
translational and rotational invariance ensure that the (spatial) frequency S(q) only
depends on ¢ = |q|, viag = 27n/L, n € N. The average X is the average of X over
many samples. For any self-affine process with exponent b = ¢, we have h(x) ~ x¢
up to a random phase so that we get:

S(g) ~ =T, (2.26)

so that aside from finite size effects (at short and large wavelengths), it is a pure
power-law (see e.g. [KRGKO09]). The measure of the structure factor is a robust way
to estimate roughness. A nice feature of S(g) is that if the profile considered is actually
not self-affine, or if it has two regimes with different exponents of self-affinity, it can
be seen immediately, as for example in Fig.2.11.

From now on, we will be interested solely in this last sort of roughness, so that
“rough” will refer to statistically self-affine surfaces, and ( may be called the rough-
ness. Except when explicitly stated otherwise, the surfaces we will consider are rough
over a large range of length scales.

We will discuss examples of rough interfaces produced by theoretical models in
later sections. For an example of concrete use of the structure factor and some precise
results on the roughness of a one-dimensional elastic line in disordered medium, see
[FBK13].

Experimental Examples of Rough Surfaces

Now that we have defined the appropriate tools, we can discuss real observations
more seriously than with Fig.2.8. In Fig.2.10, the roughness of some surfaces of
brittle materials (close to some cracks) is observed. If Fig.2.11, the roughness of
two-dimensional surfaces is measured for various materials, and we see how the
structure factor can help to determine to what extent a surface is really self-affine.
From these examples of self-affine surfaces, we begin to understand why the friction
force is independent from the apparent contact area: since most surfaces are very
rough, they can touch each other only at few points. If friction truly happens only
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Fig. 2.10 From [MlyHHR92]. Roughness of surfaces of six different brittle materials, close to the
fracture area (crack). Measurement of the height profile along one-dimensional cuts in the direction
perpendicular to the crack. The “power spectrum” P ( f) of the profile is exactly what we defined
as the structure factor S(g). The log-log plot shows the dependence of P(f) in the wavelength or

space frequency f. The roughness ( is extracted from the fit P(f) ~ f —(1420)
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Fig. 2.11 From a recent and excellent review on roughness, namely [PAT+05] (©IOP Publishing.
Reproduced by permission of IOP Publishing. All rights reserved). Optical measures (left panel
and green curve of right panel) are combined with AFM (Atomic Force microscope) measurements
(red curve of the right panel). The correlation function can be identified with the two-dimensional
structure factor, here denoted C(q). A fit is done to evaluate the fractal dimension, which is found
to be D ~ 2 for basalt and granit (left panel) and D = 2.2 for sandpaper atlogg < 7 (right panel).
This corresponds (for these 2D surfaces) to roughness given by ( = 3 — D. Notice how there are
two regimes for sandpaper, which are easily identified thanks to the use of the structure factor

where the surfaces meet, it must be proportional only to this real contact area, which

we now expect to be much smaller than the apparent one.We will explain this clearly
in the following section.
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2.2.3 Real Contact Area

We have seen that the apparent contact area has probably little to do with the real
one, and that only the latter is involved in friction. Here we want to compute this real
contact area from macroscopic measurements.

Most people have the idea that “smooth surfaces slide better”. So, let’s imagine
the extreme case of two perfectly flat, clean and commensurate surfaces. What would
happen if we were to put them in contact, and then apply some shear? The answer
is that we would simply observe cold welding, i.e. the boundary atoms would form
bonds between the two surfaces. Bonds could be chemical, or just van der Waals
forces.” If at least one of the materials has some impurities, the shear stress necessary
to obtain some strain (deformation) would be essentially the yielding stress of the
weaker of the two materials, and the shear would occur in the bulk of it, instead
of occurring in the contact plane. This simplistic example illustrates how friction
would be incredibly huge, if contact was to truly occur on the complete apparent
area of contact. Notice that in this ideal case, “friction” would be proportional to
the apparent contact area. From now on when we discuss the contact area, it will be
implicitly assumed that we do not refer to this apparent area of contact.

Stepping back a little from this very extreme example, if a surface is flat except
from few asperities'® of approximately the same height, one may expect that the
very few “true” contact points will allow for very low friction. However, imagine this
surface is slowly driven down towards another one with similar design (or completely
flat). As soon as the macroscopic load would be a bit more than zero, the local pressure
at the asperities would quickly become enormous, since it goes as the inverse of total
(true) area of contact. This would result on the plastic yielding of asperities, i.e. in
irreversible deformations at the atomic level, instead of reversible elastic deformation.
The “peaks” would be crushed, flattened, so that in the end we would have the flat
solids separated by few spots of one-layer flattened asperities, resulting once again
in a large contact area. Furthermore, if the distance between the two flat solids is
indeed of only one atomic diameter, the van der Waals interactions might once again
play some role by further increasing the macroscopic adhesion force.

Thus, we see that very smooth—nearly atomically smooth—surfaces, contrary to
popular belief, do not slide well. Another common idea is that very rough surfaces
slide badly. Actually, this one is true: for a surface with macroscopic height oscilla-
tions, i.e. “macroscopic corrugation” or form (or waviness), the energy barriers that
one needs to overcome to slide through are so high that they prevent any easy slid-
ing. Even if the microscopical properties of the solids are such that the microscopic
friction coefficient is small, for corrugated profiles, the surfaces will be interlocked

9The relevance of van der Waals forces at the nanoscale has been questioned recently in [MTS09]:
“friction is controlled by the short-range (chemical) interactions even in the presence of dispersive
[van der Waals] forces”.

10 Asperities, contacts or junctions are all words that designate the small “bumps” at the top of any
surface, which are responsible for the frue contact between solid and substrate. For a rough surface,
they are the top “peaks” of the profile.
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with one another, and the macroscopic friction force will be high. This is the case
for “roughcast” (or for “pebbledash”): even with a good microscopical surface treat-
ment, two such surfaces rubbed against each other would still slide very badly. In this
sense, the engineering definitions of the waviness and form are appropriate to elimi-
nate the large length scales contributions to friction, which can involve mechanisms
other than “small scale” friction.

Asperities at the Microscale

As it has been mentioned earlier, asperities are the small “bumps” on top of a surface
which are responsible for the frue contact between solid and substrate. By definition,
a contact is the point where the two surfaces meet and where bonds can form. The
concept of junction involves the idea of welding, which is made easier by the high
pressures at the asperities. For a rough surface, asperities are typically the top “peaks”
of the profile.

It is important to notice at this stage that bonds and asperities are not the same
thing. On the one hand, the notion of bond covers length scales from the atomic size
(afew Angstroms, ~10~1% m) to capillary bridges (up to fractions of mm, ~10~% m).
A bond is an elementary unit: it can get weaker or stronger due to external conditions,
it can break, but it does not have relevant sub-elements. On the other hand, the
notion of asperity refers to an entity generally described by continuum mechanics:
the contact between two asperities is of a size such that in the range of loading
conditions studied, it can not merge with a neighbouring one. Typically, the radius
of the contact area of an asperity is ~10 pm.

On a first approach, asperities can be seen as the building blocks of the contacts
responsible for friction. Then, the true contact area or asperity contact area'' can
be considered to be the whole area of contact between asperities, as depicted in
Fig.2.12a. A refined approach consists in considering the inner dynamics of the
contact. Then, the real contact area or atomic contact area is just the sum of the
individual contact area of each atomic bond (See Fig. 2.12b) The difference between
these two approaches has been pointed out in [MTS09], and opens promising avenues
for a better understanding of friction, especially for nanoscale objects.

However, the notion of asperity is often not only sufficient, but more relevant
than that of bond, for several reasons. First, the fact that the real contact area is not
equal to the apparent asperity area is not truly an issue, since in calculations it is
(often) automatically the real contact area which is involved. Second, asperities are
the (pseudo) elementary blocks which pin the surfaces together: their scale appears as
anatural length scale in many aspects of friction, and is way more practical to handle
than the atomic scale. Consequently, it is often sufficient to study their dynamical
behaviour alone (elastic and plastic deformations). Third, asperities are large enough
that one can apply most continuum mechanics to them: this is very handy. Hence, we
will mainly discuss the behaviour and dynamics of asperities in what follows. For a

"'What we call asperity contact area used to be consider the true contact area.
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Fig. 2.12 Left two profiles with algebraic roughness (( = 0.5) enter in contact. The junction is
highlighted in red. Right schematic view (from [MTS09]) of the junction, from above. Over the area
of the junction (the “real contact area”), not all space is actually covered in bonds. The atomic bonds
(red dots) actually cover only the grey area. From outside, the contact area is naturally mistaken
for the contact edge (solid red line), i.e. for the convex hull enclosing all the atomic bonds. In most
studies, the “real” or “true” contact area implicitly refers to this convex hull, not to the grey area

review on nanoscale models of friction and experimental results on nano-tribology,
see [VMU+13], or the resource letters [Kri02] which contains accessible references
to the literature.

Role of Plastic Yielding at the Solid-Substrate Interface

Consider a substrate upon which we set an object of which the lower surface is
rough in the sense defined earlier (i.e. it has a statistically self-affine surface). As we
approach the solid'? from above, at first there is only a single asperity in contact. At
this asperity, the pressure p; over the (real) contact area A is given by p; = L/A,
where L is the macroscopic load. For a typical asperity of diameter a ~ 10 um,
we have an asperity area A ~ 107'°m?2. For a load given by the weight of 1kg,
L ~ 10N, so that p; =~ 100 x 10° N/mz. For reference, the yield stress!3 for
diamond is ~ 80 x 10° N/mz, and for steel it is between 1 and 7 x 10° N/m2 (it
depends on the quality of the steel). As the pressure in the contact area is larger than

12 At this point, it does not matter to know precisely the profile of the substrate: whether it is flat or
rough with the same exponent as the upper solid, we can subtract the two profiles and consider the
result as the effective profile for the solid, and consider the effective profile of the substrate to be
flat.

13The yield stress is the stress that one needs to apply in order to obtain plastic yield. In the context
of these estimations, the relevant quantity is the penetration hardness or indentation hardness.
The typical measure protocol is that of Vickers: on the sample, an indentation is performed with a
tetrahedron in diamond. The stress needed to perform the indent is the indentation hardness.
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the yield stress, this single asperity must yield plastically, i.e. it is smoothly crushed
by the upper solid.

As the upper solid goes further down, it will encounter other asperities, which
will increase the contact area. As long as the pressure remains larger than the yield
stress, the solid will deform plastically. When the contact area is large enough to
strike a balance between pressure at asperities and yield stress, plastic deformation
will stop. This gives us a natural formula for the real contact area:

L
Areal = P (227)
g,

c

where o is the yield stress or indentation hardness of the softer of the two materials.
To be concrete, let’s continue with our mass of 1 kg, on top of a table of the same steel
(or any other stronger material). Let’s assume it is made of steel with o = 10° N/m?.
The real contact area is then Ay = 1078 m?, which is completely independent from
the apparent contact area. Surprisingly, this corresponds to only ~100 asperities of
unitary area ~107'0m?. We may compare this contact area with the apparent one
Aqpp by assuming the steel to be shaped as a parallelepiped, for instance with the
dimensions 10cm x 10cm x 1cm (the density of steel is p ~ 10 g/cm?). In this
case we have Ay = 107*cm? « Agpp = 100cm?, or also Ageat/Agpp = 1070,
i.e. the real contact area is only a tiny fraction of the apparent one. See Fig.2.13 for
an illustration.

Fig. 2.13 Schematic description of two rough surfaces (left, ( = 0.5) squeezed together. They
make more and more contacts (right, highlighted in red) until Ay = L/0o.. The area of each
asperity, Aasp, is the projection (dotted red line) of the contact onto the (x, y) plane. This area is
much smaller than the total area
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When we slide a solid over a “fresh” area, or when the frictional wear changes
the asperity landscape, and more generally as soon as some surfaces meet for the
first time, the picture presented above will also be valid. As we have seen earlier
(Eq.2.19), F o< Nponds- The number of bonds is essentially proportional to the area
of real contact, so that in the end, F & Nponds X Areal X L/0c, i.e. we found
Amonton’s second law.

In the above cases, we have assumed that the elastic deformations of the materials
are negligible. This is perfectly correct as long as we start from a state with few
contacts: the pressure is so high that local strain is large, and most of the deformation
is plastic. Another way to put it is to say that contacts are in a state of incipient
plastic flow, i.e. that they are at their plasticity threshold (or way beyond). When we
are around the equilibrium state with Ay = L/0., however, elastic deformations
can become relevant.

Role of Elastic Deformation at the Solid-Substrate Interface

In several cases, it is elasticity rather than plasticity which controls the evolution
of the surface area. In the friction of rubber, the very low elastic modulus makes it
very difficult to plastically deform the rubber, so that elastic forces prevail.'* For a
surface that is very smooth, in the sense there are many asperities at the top with
approximately equal height, one may expect the real contact area to be larger than
what is expected from the plastic yield reasoning.

Another natural question is to ask what happens in the following “extra-load”
experiment. In the “extra-load” setup, we set our steel block onto a (hard and flat)
table (the load is L = L), then press it with an extra load of 1kg = L; = 10N
(i.e. we double the total load), then remove the extra load (L = Lj). According to
our reasoning, the asperities have been crushed to a point where Areq =2 L1/0¢, SO
that we would naively expect the real contact area to be double of what is expected
from the simple, current load L (such an effect of memory of the previous loading
is actually not observed, not to this extent at least). We have just produced a “very
smooth” surface as mentioned above, since the top asperities have all the same height.

In all these cases the naive analysis implies that the real area of contact is no
longer proportional to the load, i.e. that Amonton’s second law is violated. However,
in all these cases the stress in the asperities can be quite high, since it is only bounded
from above by the plastic yielding limit o.. With values of the local stress up to o,
the elastic deformations of contacts can and will play an important role. To compute
the real area of contact and in particular its dependence on the load, we will need to
consider the elastic deformations of asperities. In this application of linear elasticity
theory, we will consider adhesion forces negligible compared to the elastic tensile
stresses (even though it is precisely adhesion which is responsible for friction!). The

14See [Per01] for a study of this extreme case that is rubber friction. Be careful that the theory has
evolved since, in particular one should consult [PAT+05] for accurate results.
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(a) (b)

o< o, o=o0.

Fig. 2.14 Schematic description of the “extra-load” (thought) experiment we propose. The upper
solid is considered infinitely tough compared to the lower one (527 > aﬁ”“’). Two particularly
interesting asperities are highlighted by green arrows along the evolution. a Load is zero, all
asperities are intact. b Load is L, some asperities deform elastically (blue, o < o.), others also
yield plastically (red, 0 = o). ¢ Load is increased to 2L 1 : additional elastic and plastic deformations
occur. d Load is decreased back to L: the upper solid is not pushed back to its initial position.
Asperities that were subject to very high stress can release a lot of it by pushing the upper solid up.
Asperities that were subject to moderate stresses go back to their original shape (left green arrow),
or are only slightly compressed (right green arrow)

role of adhesion for elastic solids with rough (random) surfaces has been included
in recent works as [PSS+08], where the law F o< L is still predicted.

We now discuss the elastic response of two simple models of asperities: cylindrical
asperities of which the extremity is considered flat, and spherically ended asperities
(where the asperities are not elongated enough to be able to neglect the shape of the
asperity extremity).

Model I: Cylindrical Asperities Here I give a schematic description of what happens
in the “extra-load” experiment by considering the asperities as essentially cylindrical.
In this limit, the contact area at each asperity is either 0 (no contact) or A,gp, 1 (typical
area of one micro-scale asperity).

When we increase the load up to 2L 1, asperities are crushed so that Areq ~ 2L1 /0,
(See Fig.2.14c). When we then decrease the load to L = L, the pressure no longer



2.2 The Microscopic Origin of Friction Laws 33

overcomes the yield stress, so that plastic flow is no longer possible. Yet, there is still
some high stress concentration in the asperities: instead of having the compressive
stress of the bulk, cr'z’;‘lk A L/Aqpp, asperities are subject to a compressive stress
o2P € [0, o], with an average:

S L
(0%F) = p1 = —— > ok, (2.28)
real

This stress corresponds to a compression of each asperity along z by a compressional
strain € (dimensionless variable) initially given by:

d
e=— x Eos?, (2.29)
20

where d is the elastic displacement of the asperity, z¢ its initial length,'> E the
Young’s modulus of the material. Depending on its initial length zo (length after
plastic flow), each asperity is more or less compressed, as pictured in Fig.2.14c.

Qualitatively, when the asperities are relieved from the extra load, those which
were more compressed (larger d/zo) are also those which de-compress more: they
rise, thus “lifting” the solid upwards. Those which were less compressed (smaller
d/zo) “rise” less and can thus lose contact in the process. (See Fig.2.14d).

We denote dd the “rise” of each asperity, so that the total lift of the upper solid
is equal to (6d),, where the average is over the surviving!® contacts at the end of
the process. As the rise of each surviving asperity is automatically equal to the
macroscopic one, we have also dd = (dd); (only zq is a random variable, drawn
independently for each asperity). To give a rough estimation of the dependence of
the real contact area in the load, we make the assumption that the total “rise” of the
asperities is negligible, i.e. that 6d < (zg)s. Thus for a surviving asperity the local
change dot’ o 8d/(z0)s in compressive stress is negligible: otar o< d/zo & const.
For these asperities we have an average compressive stress p; = (022 )y A const.,
i.e. L = p1Areal X Areal, 1.6. Amonton’s second law is respected. We may notice
that since the asperities are cylindrical, the unitary contact area Aagp,1 is constant,
and we have the more precise relation L o¢ Nasp. We note that the approximation
0d < (zo)s is especially well respected for very rough profiles, where z( has a large
distribution. This is clear if we consider the asperities which lose contact: if their zg
is very large, a smaller rise dd will be enough to kill contact.

15For now, we assume elongated asperities in the z direction, in the sense that their contact does
not depend on compression. Examples of such ideal shapes are cylinders or parallelepipeds, that
can be modelled by a simple spring. Examples of cases we exclude with this assumption are the
spherical and cylinder-with-rounded-tips shapes.

16For the asperities which lose contact (or “die”), the variation of d is even smaller than for the
surviving ones (it is less than the rise of the upper solid). However, this smaller rise corresponds to
a drop of the compressive stress from ooy to zero, since contact is lost. This explains how some
load bearing can be “forgotten”, despite the surviving contacts being subject to an approximately
constant pressure.



34 2 Introduction to Friction

The conclusion is that the main effect of decreasing (resp. increasing) the load in
the elastic regime is to remove some contacts (resp. create new ones).

Model II: Spherically Ended Asperities Another way to consider asperities is
assimilate them as spherical bumps, as depicted in Fig.2.15. Let’s start with a single
contact. Assuming purely elastic deformation and no adhesion, the Hertzian theory
of contact mechanics predicts, for a sphere pressed into a half-space, a non linear
dependence of the contact area with the load: A; oc L?/3. The non linearity may
seem surprising, given that we only used linear elasticity theory.

The qualitative explanation is very simple: as loading increases, the contact area
increases from a point to a disk of increasing radius. The average pressure in the
contact area is the macroscopic load divided by the contact area: it starts very large,
which allows for a large indent depth d, but as indent increases, so does the contact
area, which reduces the local pressure. At the end of the day, even though the inden-
tation is always proportional to local pressure, the geometry is such that the overall
dynamic is non linear in the load L.

However at the macroscopic scale, the linear dependence is most commonly
observed. A linear dependence emerging from the non linear law is found in a simple
model of spherical asperities. There is a classical derivation of the area of contact
and load for this model due to Greenwood, nowadays available in Chap. 2 of [PT96].
We reproduce here the main line of Greenwood’s argumentation.

Consider the centres of the spherically shaped bumps (of radius R) as depicted
in Fig.2.15: the centres’ heights constitute a profile ®(z) (z = H being the height
of the flat plane onto which asperities are pressed). At each bump, applying Hertz
theory, the bump is compressed a distance d = z — H, leading to an (unitary) contact
area A| = mRd and a load (borne by this single asperity) L1 = (4/3)E*R'/?d'/2,

(a)
/-

(b)
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Fig. 2.15 Schematic description of spherically shaped asperities or “bumps”, in purely elastic
compression (not to scale). a A single bump is compressed onto a rigid substrate. At zero load, the
area of contact is a single point. At higher loads, the area of contact is elastically deformed (blue
highlight) and is not proportional to the load: Acontact X L?/3 b A surface is modelled by spherical
bumps. On average, the area of contact is proportional to the load
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where E* is the reduced Young’s modulus.!” With N being the number of bumps in
the sample, we have the number of contacts n, area and load given by:

n= N/oo O (z)dz (2.30)
H
Areal = NWR/ P (z)(z — H)dz (2.31)
H
L= (4/3)E*R”2/OO ®(2)(z — H)*dz (2.32)
H

We assume a rapid decay of the function ®(z), which seems reasonable for “flat”
solids. We can take any decay, e.g. ® can be Gaussian or more simply, ®(z) =~ ¢~
is fine. This allows to compute:

N
n= Xe_/\H (2.33)
NTR
Areal = Te‘m (2.34)
E*Rl/2ﬂ.l/2 B
L=——5;—¢ . (2.35)

from which Greenwood concludes that A o< L. The problem with this reasoning is
that it assumes a rapidly decaying profile ®: for very flat surfaces, it is well accept-
able. However, for surfaces with roughness at several length scales, the relevance of
this model has been questioned, for instance in [PSS+08]. Indeed, this model only
accounts for roughness at a single length scale: the elastic deformation of larger
regions (e.g. made of several bumps) is implicitly considered to be zero, because this
larger length scale is implicitly ignored.

The Hertzian theory of contact applied on spherical asperities has played an im-
portant historical role, and is still valid for “Gaussian” or flat surfaces. This non
linearity in the response of spherical contacts is also interesting for the study of
granular materials. In regimes where the “balls” merely touch each other, it can be
crucial to account for the non linear response (see for example [GTVHV12] or the
review [AT06] for more details).

There has also been some observations of sub-linear dependence of the friction
in the load, in some particular contexts [BGKO06, Per0O]. This kind of non linear
dependence at the macroscopic scale is typically obtained when the unitary contact
area depends on the local load, i.e. in all sorts of rounded or triangular shapes, but
also when additional forces (e.g. van der Waals or capillary forces) produce geomet-
rical arrangements which strongly depend on the load, at rather large length scales.
The idea of a single-asperity with rounded extremity is also sometimes used as a

7The reduced Young’s modulus is defined as a combination of the two materials Young moduli
E1, E> and their poisson ratio vy, v via: 1/E* = (1 — 1/12)/E1 + (11— y%)/Ez.
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rudimentary model of AFM tip, in this case the single-asperity tip is the macro-
scopic system. The relevance of this sort of behaviour was summarized very early
by Archard, whom asserted that [Arc57]:

If the primary result of increasing the load is to cause existing contact areas to grow, then
the area of real contact will not be proportional to the load. But if the primary result is to
form new areas of contact, then the area and load will be proportional.

The Question of Fracture

The breaking of junctions is fundamentally a fracture process: as we have said earlier,
at the asperity scale, the high pressures result in cold welding, so that the separation
of the two surfaces occurs through rupture. The Fineberg’s group recently developed
a real-time visualization method of the real area of contact during the sliding of
the blocks [RCF04, RCF07, BDRF10, SF14], see also the review [VMU+13]. This
method shows that the transition from static to kinetic friction is controlled by the
collective behavior (and fracture) of the ensemble of asperities that form the interface
between the two solids. In particular they identify three different kinds of coherent
crack-like fronts that govern the onset of slip [RCFO04]. In a recent study [SF14], it
was shown that the slowest of these three fronts indeed governs the rupture, under
certain conditions: at driving velocities such that the rupture velocity is lower than
the Rayleigh wave speed, the predictions from Linear Elastic Fracture Mechanics
are in quantitative agreement with experiments.

In what follows we will discuss the question of the relevance of brittle fracture on
domains much larger than a single junction, or which involve some loss of material
(wear), which is a different question from that discussed by Fineberg and collabo-
rators. As asperities and the surrounding domains are subject to high stresses and
various geometrical constraints, one may naively expect mesoscopic fracture to be
commonplace, especially during sliding. We are going to see some reasons for why
fracture is not so common at the scale of micro asperities, but also how it can still be
relevant in some cases.

In the static case (with no driving being performed), the asperities are subject
to very high compressive stresses, which tend to decrease the probability of brittle
fracture.'® This is because the ductility (essentially the maximal plastic deforma-
tion possible before fracture) generally increases with the (hydrostatic) pressure. An
intuitive but hand-waving argument for this is that high pressure tends to close the
micro-cracks, vacancies and other voids generated by the plastic flow in the bulk of
the solid. As these defaults are responsible for fracture (which always starts from the
largest crack in the region under stress), their relative closing by pressure tends to
diminish the occurrence of fracture.

During sliding, the shear stress at the contact points can become enormous (as
for the compressive stress, this is due to the small contact area). At the level of

8The term brittles refers to “pure” fracture (without plastic deformation) as opposed to ductile
fracture. We have already considered the plastic behaviours previously.
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(a)

Fig. 2.16 Schematic picture of the situation of interlocking, fracture and elastic deformation
scenarios. a, b Sectional view of two asperities meeting under external driving (solid arrows).
c—f View from above of different scenarios. ¢ Situation of interlocking. Two scenarios of fracture
are suggested (b, d), with the broken zone shaded in blue (left) or red (right). e Situation of weak
interlocking: elastic deformations can be enough to let asperities go through. f With some elastic
(and a bit of plastic) deformation, asperities stay in their way

a single contact, as presented in Fig.2.16d, the response will be to simply break
the smallest possible cross-section of the welded asperities, which we identify as
a simple junction breaking, which is not the point discussed here. However, in the
configuration of “interlocking” (see Fig.2.16), an asperity is subject to a high shear
stress in a direction orthogonal to z (the main compressive stress). Thus one may
expect the small asperities to easily break by brittle fracture, rather than deform
elastically or plastically (we described these two mechanisms above). This is only
half true.

On the one hand, Griffith’s criterion shows that the critical stress for brittle fracture
is directly controlled by the size of the largest micro-crack in the sample. So for very
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small samples, this threshold stress will typically be very high: the smaller is the
sample, the smaller its largest crack.!'”

On the other hand, we have to remember that roughness is expected at all scales. At
large scales, all sorts of geometries can create locally high stresses on the “asperities”
domains, which are always much larger than the typical unitary asperity contact area
initially blocked (see Fig.2.16d). In the context of tectonic plates for instance, the
interlocking of “asperities” can involve locked areas over lengths ranging from the
centimetres up to several meters (or more), with widths in the same range. For such
large domains, the size of the largest crack available can become quite large, so
that the elastic stresses will easily trigger macroscopic fracture. This threshold force
needed for fracture contributes to the friction force.?’

In both cases, it is interesting to note that a principle of selection is at play.
The domains with the largest cracks (low fracture threshold) break first, and as slip
occurs, only the hardest domains remain, so that during a slip phase, the prevalence
of fracture typically decreases after a certain slip length D. We will come back to
this in more detail in the next Sect.2.2.4.

In the context of geophysics, it has been noticed that rocks are usually much
less ductile than the materials commonly considered in tribology (metals, etc.), so
that at equal external conditions, they break much earlier. Thus interlocking and the
associated fracture process is expected to be quite important. An attempt at explaining
friction as a process controlled mainly by the fracture of asperities was made in 1967
[Bye67], but the application of this theory has been limited to geophysics, where
the presence of wear particles in large proportions makes such an hypothesis more
likely.

To conclude, mesoscopic fracture plays a minor role in the dynamics of sliding?!
friction, regarding most applications. However when the system is either large, made
of rocks or a combination of both, fracture can become equally relevant as adhesion
in explaining friction. In geophysical applications, a comprehensive model for the
sliding of plates would necessarily acknowledge the role of fracture. Let us recall
that at the level of a single asperity, fracture is omnipresent, regardless of the nature
of the material and of the external conditions. This fact is the basis for numerous
works on friction [RCF04, RCF06, RCF07, BDRF10, BDF11, SF14].

19This is very intuitive, and the interested reader may try to make this reasoning more quantitative
by using the branch of probability theory called Extreme Value Statistics (EVS).

20How does this force scales with the real contact area as determined in the previous section (from
the elastic deformations)? Interlocking happens only where contacts are made, otherwise the large
“bumps” would simply go by. Because of that, the density of number of interlocked domains is
still proportional to the real contact area (itself proportional to the load). Then, the area of domains
(which is roughly proportional to the fracture energy) depends on the real contact area in a rather
intricate way, through the roughness exponent (. This is beyond the scope of this thesis.

21 And of course, fracture plays an even smaller role in the dynamics of static friction.
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Wear

In the context of friction, wear is usually defined quantitatively as the volume of
particles which separates from one of the two surfaces during sliding. The separated
particles may wander freely between the two surfaces (in this case, we may call them
debris) or re-attach to the other surface. In both cases, wear corresponds to a change
in the surfaces in contact (for engineering applications, it is sometimes only the net
amount of debris which is relevant). In a first approximation, wear is proportional to
the work performed by the friction force, hence it is proportional to the sliding length
and friction force (but not directly to the velocity). Interlocking and the subsequent
fracture obviously causes some wear. Let’s quickly discuss a few other mechanisms
which enter in the definition of “wear”.

A mechanism which is slightly different from plain fracture and also causes wear
is that of adhesion wear. When two asperities enter in contact and form a junction,
depending on the micro-structure of each asperity close to the junction plane, the
breaking of the bond may occur elsewhere than in the welding plane, so that one of
the asperity keeps a piece of the other one. This part can either stay in place or get
quickly separated from the asperity (due to the weakness of the joint): in both cases,
we have some wear. This is a possible mechanism of wear, which has much to do
with adhesion, hence the name. Note than the debris created in this way, or which
are already present, can also re-attach to one of the two surfaces, thus “regenerating”
the surface profile.

The term abrasive wear is used when one of the two surfaces is much harder than
the other, in terms of plastic yielding stress o.. In this case, when an asperity of the
harder material indents the other, it can plough a gutter (see Fig. 2.17) into it (instead
of being deformed or break by brittle fracture). In a sense, ploughing is essentially
plastic yielding along the surface plane, except that it can happen locally even when
we are no longer in the plastic yield stress regime, macroscopically.

Conclusion

During sliding, the elastic response of asperities is twofold: for a part, asperities
deform similarly as in the static case (see Fig.2.16f), and for the other part they
interlock. The interlocking of asperities can be overcome elastically if the height
of the asperity involved is small enough. Fracture naturally appears as a limit of
the elastic behaviour. And again, during sliding, the plastic response of asperities is
twofold: to some extent, asperities deform similarly as in the static case by yielding
against each other one at a time, but they may also plough long gutters into the
opposite surface.

2.2.4 Ageing of Contact and Its Consequences

We have explained the first two laws up to here: because of high roughness the appar-
ent area has little to do with the real one which is truly responsible for friction, and
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Fig. 2.17 Very schematic picture of the ploughing scenario. a, b Sectional view of two asperities
meeting under external driving (solid arrows). ¢, d View from above of the ploughing scenario.
If the upper (blue) material is much harder (larger yield stress o) than the lower one (green), an
asperity of the former may plough a gutter into the latter. The zone of the upper solid subject to the
highest stresses is highlighted in red (d)

for various reasons this area generally ends up being proportional to the load. How-
ever regarding the third law and its corrected version (the Rate- and State dependent
Friction laws), we have given no clue about the possible mechanisms yet.

The fact that RSF laws work very well (see Sect. 2.1.2) is not so surprising: with
at least three fitting parameters (u*, a, b) and somewhat five (counting D, and V*),
it is rather easy to “fit the data”. This picture becomes more satisfying when several
of these free parameters can be bound to some underlying physical mechanisms. We
are about to interpret 6 more precisely than just a “state” variable, and D, much more
precisely than a simple fitting/normalisation parameter. Other parameters can also
be interpreted, but with some caution.

Microscopic Origins

Ageing: Definition Here, we are going to see that static friction and more precisely
microscopical contacts display ageing, and we will give the link with the macroscopic
RSF laws. Let’s start with definitions.



2.2 The Microscopic Origin of Friction Laws 41

We define the notion of ageing as the opposite of stationary: a system which
displays ageing has some of its properties which change over time (i.e. they are not
stationary). A process with ageing necessarily has some long-term memory (typically
a power-law decay of the autocorrelation function over time).

A corollary is that with perfect knowledge of the microscopic dynamics of a
process with ageing, one can typically estimate the “age” of a sample from a snapshot
observation at some given time (i.e. a measure at a single time); the age being the
time spent evolving from some default (known) starting configuration, to the observed
one. The most common example of materials displaying ageing are glasses (see the
course 7 of [ABC+02] or [Bir05] for an introduction on the topic, and [AKBC+98]
for a discussion of an experimental example).

Creep In our study of the formation mechanisms of the real contact area we have
omitted the aspect of temporal evolution. At first order, the processes we discussed
are instantaneous: plastic yield, elastic response or brittle fracture all appear to hap-
pen very shortly after the appropriate constraints are applied. However, many time-
dependent secondary processes interact with these main three, such as dislocation
creep, desorption of protective films, formation of additional chemical bonds in the
junction, cyclic fatigue, surface corrosion and wear of fresh surfaces, viscoelastic
response in the bulk of asperities, elastic waves generated by ruptures, melting, etc.

The process usually recognized to be mainly responsible for variable behaviour
over time is plastic creep. For crystalline materials, we may speak of dislocation creep
[HBP+94, BHP94, PDW11]. Dislocations are produced through plastic events, and
their slow thermally-activated displacement (this is what is called creep) may in
return affect not only the plastic behaviour but also the condition for fracture. After
a quick plastic yield occurs at the time of formation of a new contact, some new
dislocations are formed (they are newborns, their age is zero). Since they have been
freshly generated, they have not reach any equilibrium, nor even a stationary state.
Thus they slowly diffuse and possibly trigger new (typically smaller) plastic events,
which can in turn generate new dislocations. This dynamics progressively decelerates
but never really reaches a stationary state, due to the infrequent bursts producing new
dislocations: this is ageing [PDW11]. The mechanism for plastic creep in amorphous
materials is a bit different (see [BL11] for a review and additional references). All
in all, from our understanding of creep (or even the observation of macroscopic
materials), one may expect asperities to age after contact and to slowly spread around
the initial junction area.

Indeed, this effect has been observed directly in experiments. In 1994 [DK94],
the diffraction of light through transparent samples allowed to directly observe the
evolution of the true contact area over time.We reproduce these impressive results in
Fig.2.18. Conventional techniques of contact analysis prior to these works used to
be post-mortem, i.e. after the surfaces had been in contact, one could analyse them to
sort out the properties of the last contact zones. These post-mortem studies were of
course unable to study the time evolution of contacts in such a way. From Fig.2.18
it is clear that despite the constant load, the true contact area slowly increases over
time, i.e. the contacts display some ageing.
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Fig. 2.18 From [DK94]. 3
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In the following paragraph we show how to incorporate this ageing into an effective
law for friction as the RSF laws given above.

Interpretation of 6 and D.. Let’s assume that 6 represents the additional (or
“bonus”) contact strength due to ageing, and see how we can fit this idea into our
observations.

On the one hand, at rest we expect a logarithmic increase of friction over time: if
O(v = 0) ~ t, then the third term b In(V*0/D,.) goes like ~ In(t) + const. Still at
rest, u* appears as the “instantaneous” friction, i.e. the friction obtained immediately
after contact, due to the fast processes. The fact that b <« p* corresponds well to
the fact that creep is a secondary process, which only gives corrections to the main
processes.

On the other hand at finite velocity the contacts “do not have time” to age: since
the solid constantly slips, new contacts are constantly formed, and “old” ones broken.
The crucial question is to estimate the contacts typical lifetime. Assuming a constant
sliding velocity for the sake of simplicity, we may call D, the “critical slip distance”,
i.e. the amount of slip (of the center of mass of the sliding block) necessary to break
a newly formed junction. It takes a time 6§, = D, /v for the bulk solid to slide over
a distance D.. Thus, the typical lifetime of a contact in the steady state is 6., so that
the average or typical “bonus resistance” goes like ~In(6,). This explains why in
all RSF laws the evolution of 6 must be chosen such that 6°° = D, /v.

Similarly, the values of D, can be interpreted straightforwardly. If asperities are
sharp, in the sense that they resemble elongated needles, they may deform elastically
and maintain contact over slip distances equal to several times the contact diameter
D, . On the contrary, if asperities are more like flat bumps with small heights, they will
break contact as soon as the slip is a fraction of their contact diameter. In any case,
for stronger bonds (larger contact diameter D, ), asperities will deform more before
breaking, i.e. D, increases with D,. All in all, the contact-breaking slip distance
is typically of the same order of magnitude as the asperities diameter, hence D, ~
1-10 pm.
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Now, in between v = 0 and v = const. > 0, there is a world of possibilities, and
each RSFlaw (in particular the choice for the evolution of 6(¢)) will react differently to
different experiments, as experiments with step-like variations of the driving velocity
Vo, slip-hold-slip experiments, etc. The way in which each law reacts more or less
realistically to each kind of input has been discussed in the reviews of reference,
e.g. in [Mar98] where experiments are discussed, or more recently in [KHK+12]
where the bibliography is abundant. However, we are not much interested in the
details of each law’s pros and cons: it is enough to note that no definitive consensus
has been reached yet, and that a detailed microscopic analysis from which RSF laws
would emerge is still missing. Thus, the problem in terms of fundamental physics is
still largely open.

Interpretation of Other Variables The velocity V* is merely a homogeneity
constant: for any choice of units, it can be absorbed into p*. Thus, the value
V* = 1 pms~! is simply a convenient choice, since relevant velocities are usu-
ally of this order.

For p/*, the interpretation seems quite simple: it is the default friction, correspond-
ing to the fast processes we initially described (up to the absorption of constants as
V* and normalization expected at t = 0, depending on the exact form of the RSF
law, (Egs.2.14 or 2.16)). In principle, 1* can be estimated quantitatively: assuming
a purely plastic formation of the true area of contact, we have A eq = L/, a num-
ber of bonds Nponds = Areal/Albond, and a threshold breaking force per bond f7.
Denoting Fj the macroscopic shear force (tangential) and L the load (normal), this
gives

F
o N (2.36)
L 0¢Albond

where the yield strength o, is easy to measure, but the ratio f1/0:Apond is very hard
to get.

The interpretation of @ and b is usually directly related to creep [HBP+94, BHP94].
In a recent work [PDW11], the activation volume is defined in relation with the
activation energy E* (Q* = E* /o) and the parameters a, b are predicted to be

kpT kpT
B b KB

a = * k] - ’
Q*o, Q o,

, (2.37)

where Q' is some other activation volume. Unfortunately, direct access to these
activation volumes and activation energies is difficult, so that these expressions for
the RSF laws parameters are seldom used.??

Furthermore, the position of creep as dominant mechanism for ageing has been
recently questioned in [LTGC11] where it was suggested that the strengthening of
chemical bonds at junctions could be a more realistic explanation for the ageing of

22Furthermore, this interpretation of b is quite new and to be taken with caution. The interpretation
of a is more commonly accepted [KHK+12], though it should still be taken with caution.
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frictional contacts than creep. This casts doubts upon the trust we may put into old
or current interpretations of the RSF laws in terms of plastic creep.

Stick-Slip Motion (with RSF Laws)

With a friction law that continuously depends on the sliding velocity v (velocity
weakening), and possibly on some ageing “state” variable € (increase of static friction
over time), the dynamics of stick-slip becomes a bit more complex than what we
forecasted in Sect. 2.1.1. However the main results are maintained: the existence
of stick-slip in general and its disappearance at large velocity (Vy) or hard driving
spring (ko).

A thorough study of RSF laws applied to a single degree of freedom (a simple
rigid block) was performed early in [GRRT84]. A more concise study of this problem
was performed in [RT86], where the differences with the Amontons-Coulomb laws
were emphasized. There, the main difference with the more simple law of friction is
the emergence of two time scales or velocities (instead of one). For velocities below
a first threshold, the motion is essentially described by the quasi-static picture (which
neglects the velocity dependence). For velocities above this threshold but below the
second one, the dynamical effects cannot be neglected. Above the second threshold,
stick-slip disappears (similarly to what we found in our simpler model, Sect. 2.1.1).

Another complete, yet concise study of stick-slip motion was performed in
[BCPRIY5]. They compare experimental results for paper on paper stick-slip with an-
alytical computations (weakly non linear analysis around the Hopf bifurcation) and
numerical integrations using the most common Rate-and-state friction law, (Egs. 2.14
and 2.15).

Of course, different dynamics of stick-slip can be obtained when using various
rate-and-state laws. However, the main features we are interested in remain the same:
as sliding velocity increases, stick-slip motion shifts from very regular to rather
chaotic, to non-existent. This rich behaviour has been the playground for intensive
studies in Geophysics, as we will see in Chap. 3.

The RSF law is particularly useful in geophysics in order to study the dynamics
of stick-slip, which involves the static friction coefficient and where the departure
from zero to finite velocity is especially relevant. This is what we explain in the next
section.

2.3 Conclusion: Friction Involves Randomness and
Viscoelasticity

We have presented the basic phenomenology of Friction. The three historical laws
have been amended to account correctly for the dependence on the sliding velocity,
a crucial point in the study of the dynamical stability of frictional systems (stick-
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slip instability). Intuition about the physical mechanisms behind these laws has been
supported with direct observations (microscopic measurements of surface profiles,
contact area and its time evolution). Simple models of (implicitly static) contact
have been presented, outlining the role of elasticity, plasticity and some secondary
mechanisms (fracture, plastic creep).

Microscopic models of friction should take into account the presence of random-
ness. A first source of randomness are the thermal fluctuations, responsible for the
plastic creep [PDW11] which plays a key role in the ageing of contacts. A second
source of randomness is the presence of “quenched disorder” induced by the het-
erogeneities and the roughness of the surfaces. The idea that surface self-affinity is
crucial to the friction properties is now well-established [PerO1, PAT+05], in partic-
ular it naturally explains the second friction law of Amontons. However most of the
phenomenological models (e.g. [RB91, PAT+05]) deal with the average properties
induced by the disorder and neglect the fluctuations of the dynamics. As we will
see in Chap. 4, the validity of this assumption is a matter of scale [PT96, CN9S§]. At
moderate scales (such as in laboratory experiments), the motion can be described
by deterministic effective equations such as the Rate-and-State equations. At much
larger scales, the motion is actually stochastic and displays a very complex avalanche
dynamics. This is in particular the case for fault dynamics, which is characterized
by random bursts of activity (earthquakes) that are random in magnitude, temporal
and spatial location.

There have been a few tentative friction models including real randomness, but
they have found rather limited echo until now: [RB91] is an example that received
unfairly small attention. Excellent reviews on this topic are [KHK+12, VMU+13],
but we will come back to this at length later. The problem with all other attempts is
that they fail either at correctly account for randomness, or they overlook the role
of microscopical ageing which is crucial in producing the RSF laws. All in all, no
definitive consensus has been reached to this day on the foundations of the RSF
law(s), even when resorting to such models: the search for a convincing yet simple
microscopical model reproducing a realistic RSF law is still an open problem.

To summarize—crudely—there are two main issues that must be addressed in
order to properly deal with friction. The first is the fluctuating, heterogeneous nature
of the contacts involved: one must use a stochastic approach. The second is the ageing
inherent to the microscopic mechanisms of contact. To deal with that, considering the
natural field or degree of freedom (usually the stress field or the location of the current
contacts) characterizing the instantaneous state of the system is not enough. One
must include some additional degree of freedom atop the natural one, i.e. consider
the dynamics of the displacement field to be non-Markovian.
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Chapter 3
Application of Friction to Seismic Faults

Here our aim is not to give a broad overview of the physics of earthquakes, which
has to do with many branches of the natural sciences, from chemistry to planetary
science. Instead, we try to give a few clues about the most commonly accepted results
of geophysics and seismology, keeping in mind that one is interested in the statistical
physics point of view. Good reviews following this angle are [Run03, BZ08]. The
classic reference in geophysics is [Sch02].

3.1 Phenomenology of Faulting and Earthquakes

3.1.1 Faults

What is a Fault?

A fault is a fracture in Earth’s crust along which there has been significant dis-
placements of the two surrounding rock slabs. Its depth is that of the corresponding
fractured tectonic plate, i.e. the fracture extends from Earth’s surface (or the ocean
floor) into the schizosphere (literally, the broken part) and stops at the plastosphere
(literally, the moldable part), in which rocks become extremely ductile and the notion
of fracture is irrelevant [Sch02]. We define the basics of the terminology of faulting
in Fig.3.1. The length of faults (in the direction of the trace, along Earth’s surface)
is widely distributed: it ranges from a few to several hundreds of kilometres. The
boundaries between plates (representing perimeters of thousands of km) thus consist
in a fault system, a network of inter-plate! faults that accommodate the constraints
coming from the bulk of the plates, from the magma currents in the (liquid) man-
tle, and from the neighbouring faults of the system itself. These adjustments of the
faults occur via sudden slips, which correspond to earthquakes in the schizosphere

I There are also intra-plate faults, which form into the bulk of the tectonic plates and are responsible
for a much smaller fraction of earthquakes.
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Fig. 3.1 Left Schematic picture of a fault and its fault plane. If one was standing inside the fault
plane, they could put a foot onto the footwall and the hangingwall would be hanging above them,
hence the names. Right Cross-sectional view of the fault plane. The fault plane is actually not a
mathematically well-defined plane, rather it is a zone with variable width. Between the two plates
there is the fault gouge layer (essentially thinly sheared, broken rocks which form a mix of granular
materials)

(generally at depths of less than twenty kilometres) and to an overdamped plastic
deformation in the plastoshpere. When the existing faults cannot accommodate these
constraints, a new fault may form, with a fault plane essentially aligned with the sum
of the forces. In some areas where a dense network of faults makes it difficult to
clearly identify a single fracture plane (the fault plane), the term fault zone is pre-
ferred to the notion of fault line. Note that some faults slowly slip without producing
earthquakes: this is why some plate boundaries are seismically inactive.
Animportant feature of faults is the presence of fault gouge, alayer of thin granular
materials (broken rocks) which fills the inter-plate space (see right panel of Fig.3.1).
The gouge layer can easily flow [Ant05], compared to the rocks of the crust which
are formed by the cooling of magma and consist in large solid slabs: in this sense,
the gouge layer lubricates friction between the solid plates.> The thickness of the
gouge layer fluctuates along the fault plane, and can span between a few millimetres
to several hundreds of meters, depending on the history of the fault. Too understand
better the possible roles of fault gouge and a review on models accounting for the flow
in granular or more generally amorphous materials, see the recent review [DC10].

Slip Geometries Depending on the forces applied on a fault, it may remain locked
(i.e. plates do not move) or slip in various ways: see Fig. 3.2 for a description of a few
basic scenarios. If the angle between Earth’s surface and the fault plane (the “dip”) is
smaller than 45°, the normal dip-slip fault is referred to as a thrust fault, a particularly
interesting case. In the subduction zones (where oceanic tectonic plates sink into the
mantle) this angle can actually be zero, i.e. the two plates may lay horizontally on
top of each other. In this sense, subduction zones are a special class of thrusts, which
correspond to the largest faults on Earth, and give rise to the largest earthquakes.’
For these reasons, thrust faults are also the typical case of study for physicists.

2The analogy between fault gouge and lubricants is limited: a reason is that granular materials do
not adhere in the way liquid lubricants do.

3Nine out of the ten largest earthquakes that occurred in the 20th century were subduction zone
events. This includes the 1960 Great Chilean Earthquake, which at a Magnitude of 9.5 was the largest
ever recorded, the 2004 Indian Ocean earthquake and tsunami, and the 2011 Tohoku earthquake
and tsunami.
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Fig. 3.2 The two elementary kinds of slip, strike-slip and dip-slip. When the dip (angle « between
the fault plane and Earth’s surface) is small, “normal slip” is also called “thrust”. When the footwall
is going down instead of up, the dip-slip is said to be reversed. Of course all faults are always
part strike-slip, part dip-slip, but there is usually one component of the displacement that strongly
dominates the other. When both components are important, we have an oblique fault, as that pictured
in Fig.3.1

The Stick-Slip Instability

In a fault system or inside a single fault, there are regions with velocity-weakening
friction (in which the slip accelerates once it starts) and regions with velocity-
strengthening friction (in which further slip is inhibted by the increase of friction).
The regions of velocity weakening accumulate energy until the static friction force
threshold is met. Once this is the case, the friction force decreases with increasing slip
velocity, so that the velocity can increase up to the value at which velocity strength-
ening starts.* This stick-slip instability is at the origin of earthquakes (see the section
on stick-slip, Sect.2.1.1, p (xxx) and the RSF laws, Sect.2.1.2). The neighbouring
regions stop the propagation of slip by remaining locked, either by absorbing the
stress (if their local stress is far enough from the static friction force threshold) or
because they display velocity-strengthening (in which case the slip velocity sets to a
very slow value and does not correspond to an earthquake). As it is very ductile, the
plastosphere is in the velocity-strengthening regime even at the smallest velocities,
and thus absorbs the slip without sudden motion, i.e. without quakes. We note that in
this context, the ageing of contacts at rest (corresponding to an increase of the static
friction force during stationary contact) can play an important role in faults, as the
time between two earthquakes in a given region can be very large. This is indeed the
case, and this effect is referred to as fault healing in the geophysics community.

Studying a single fault with a well defined fault plane, regardless of its orientation
(strike-slip fault on Earth’s surface or thrust fault in a subduction zone), we may
consider it as a simple tow-body system. Applying the laws of friction to this system
should help us to get some understanding of the mechanisms for earthquakes. In
this simple description of a sliding fault, we see how important the RSF laws can
be for seismology. We present a few models based on these considerations later, in
Sect.3.2.

4The regions of velocity strengthening also have a static friction force higher than zero, but as the
friction force increases with velocity, there is no such instability, thus no earthquakes.
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We now focus on the phenomenological description of earthquakes: first their
individual properties, then their statistical analysis.

3.1.2 Earthquakes: Individual Characteristics

Geometrical Definitions

We define the most important characteristics of an earthquake in Fig.3.3. The zone
that slipped, the rupture area A (grey) is especially important. We note than indepen-
dently of the magnitude of the earthquake, it is physically meaningful to distinguish
two classes of earthquakes, depending on whether the rupture area reaches both ends
of the schizosphere (large) or not (small). The rupture area scales eitheras A ~ WL
(large events) or A ~ a? (small events).

Seismic Moment and Magnitude

As a first approximation, the energy of an earthquake with average slip Au over an
area A reads:

A
Es~ 3 Ao RuA, 3.1)

where Ao is the average stress drop, generally assumed to be the difference between
the initial stress and the threshold stress for sliding. As the stress and stress drop
are actually difficult to define unequivocally and to measure, this definition is
difficult to relate to field observations. The scalar value of the seismic moment,
Moy =2 Eg/ Ao, can sometimes be estimated from direct measurements:

SURFACE [

SCHIZOSPHERE

SMALL

PLASTOSPHERE

Fig. 3.3 From [Sch02]. Schematic cross-sectional view of an earthquake rupture area (grey). Left
for a small earthquake, the rupture area can be characterized by its diameter a. Right for a large
earthquake, the rupture area reaches the surface and the plastosphere and is characterized by the
schizosphere width W and the along-strike length L. In both cases, the hypocenter is the point where
rupture was initiated and is just below the epicentre, defined as the projection of the hypocenter on
Earth surface
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Mo = uAuA, (3.2)

where u is the shear strength in the fault. The full seismic moment is the core measure
that we should refer to when discussing earthquake size. Note that the definition does
not depend on the nature (small or large) of the earthquake.

Link with the (Famous) Richter Scale With the recent improvements of obser-
vational tools, the estimation of the average slip has become increasingly precise,
making a direct estimation of My possible. Historically, geophysicists had to rely
mainly on the observation of seismic waves for a quantitative description of earth-
quakes. Precisely, they defined the magnitude M (the notation is a bit misleading,
but firmly established) of an earthquake as the logarithm of the amplitude of a spec-
ified seismic wave measured at a particular frequency, with the distance from the
hypocenter appropriately accounted for. Seismic waves are defined by their direc-
tion (angle with the surface plane), their nature (longitudinal or transversal) and their
amplitude: we do not detail the mechanisms for dissipation through radiation here,
but simply remark that they could be measured quite early. By considering the full
spectrum of seismic waves, one can derive a magnitude-moment relation empirically,
as [Sch02, Run03]:

3
log My = - Ms +9.1, (3.3)

where the prefactor 3/2 is well established in the literature while the constant 9.1 is
subject to fluctuations.

Characteristic Earthquakes and the Seismic Cycle

Considering a single fault and assuming that it is not perturbed by neighbouring
faults activity, one may expect a simple stick-slip dynamics. This is actually what
happens in some seismic regions where earthquakes occur on a given spot, almost
periodically, with an almost constant magnitude. Those periodic earthquakes are
referred to as characteristic earthquakes. We give an example of such a region in
Fig.3.4

The occurrence of “characteristic” earthquakes in a few geographical areas is
echoed more generally in numerous seismic faults, for which it is argued that the
inner, single-fault activity is naturally periodic. This more general quasi-periodicity
of the local seismic activity is referred to as the seismic cycle [BLA12, BZ03]. In this
perspective, the non-periodic occurrence of earthquakes in most regions is interpreted
as resulting from mutual triggering of neighbouring faults between them, of which
the different seismic cycles are not synchronized. Because neighbouring faults can
trigger earthquakes before the local cycle is complete, the overall seismic activity of
a fault system will appear to be random [Sch02]. Note that this argument does not
explain the non-periodic behaviour of some very large faults (as in subduction zone
areas).
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Fig. 3.4 Originally from
[OMHO3], retrieved from
[KHK+12]. Upper panel
Large earthquakes in the
Kamaishi region, with nearly
the same magnitude

M =~ 4.8 and recurrence
intervals of ~6 years.
Central panel Cumulative
seismic moment of Kamaishi
earthquakes. Lower panel
The “coseismic” slip
distribution of the 1995 and
2001 Kamaishi earthquakes
estimated from seismic
waveforms is between 0 and
1 meters (white to blue scale,
on the right). Epicenters are
indicated by dots linked to
their date of occurrence. The
dotted purple contour line
(resp. solid blue) denotes the
area of seismic slip larger
than 0.5m in the 1995

(resp. 2001) earthquake.
These three panels all point
towards an almost periodic
behaviour, in terms of time,
magnitude and location

“Constant” Stress Drop: a Scaling Law
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We have seen that the seismic moment scales as the average stress drop and as the
rupture area, which are both a priori independent random variables. However, there
is a phenomenological scaling law which seems to indicate a linear relationship
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Fig. 3.5 From [Sch02]. Source radius a against seismic moment M for “small” earthquakes. Note
the logarithmic scales: the two dashed lines indicate constant stress drops of Ao = 1 bar and 100 bar

between moment and rupture area, so that the stress drop seems to be fairly constant.
In Fig. 3.5, we see that the range of stress drop seems to be controlled by the seismic
moment, but the large width of this range, Ao € [0.03MPa, 30MPa] makes this
“scaling law” a rather weak prediction. Some models use a non-constant stress drop
in order to describe fault dynamics, while the validity of this scaling law is also
supported by recent studies [Sha09]. As several important points in seismology, the
community has not yet reached a definitive consensus on the question of the validity
of this law [Sch02].

3.1.3 Earthquakes: Statistical Properties

Here we provide the main two laws characterizing the statistical properties of earth-
quakes. For more details and discussion on additional scaling laws, there is the classic
[Sch02] and a comprehensive review, [WC94].

The Gutenberg-Richter Law

A very important scaling law concerns the statistical properties of earthquakes: the
celebrated Gutenberg-Richter law relates the magnitude of earthquakes to their fre-
quency. The law states that in any region, it is found that during a given period, the
number N (My) of earthquakes with magnitude > My is:

log(N(Ms)) = a — bMs (3.4)

where b is the Gutenberg-Richter (GR) exponent and a is a constant that depends
on the region and time considered, which indicates the overall degree of seismicity.
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single fault

fault system

large

M M

Fig. 3.6 Adapted from [PSS92]. Left cumulative histogram N (M) of the number of earthquakes
with magnitude larger M in some region. Around M ~ 7.5 for this fault system, the b exponent shifts
from by ~ 0.9 to by ~ 1.3. Central panel for a single fault, large earthquakes occur with a typical
magnitude much larger than what could be expected from interpolation of the small earthquakes
regime. The small earthquakes are characterized by b; ~ 1, typically. Right panel for a fault system,
both small and large earthquakes have a wide distribution of magnitudes, typically characterized
by exponents by ~ 1 and by & 1.5. The value of the crossover between the two regimes depends
on the width W of the schizosphere for the considered fault(s)

This relation for the cumulative distribution of magnitudes N (M) becomes a power-
law for the probability distribution of the seismic moment My, with an exponent
14+ B=1+42b/3:

P(Mo) = %MO‘(”B’, (3.5)

where A is a normalization factor. It is often claimed that the GR exponent has a
universal value of b & 1, but the situation is actually a bit more complex.

First, the small and large earthquakes (as defined above in geometrical terms)
seem to have different exponents. We report some results concerning this question
in Fig.3.6. This double scaling with a pair of exponents is rather well interpreted in
terms of the geometric picture described above (Fig.3.3): it seems to be consistent
with a “finite size effect” due to the confinement of the earthquake. In this thesis, we
will consider models for “small” earthquakes, which are not affected by the finite
width of the schizosphere, and denote b the exponent b1 of “small” earthquakes. This
allows us to dismiss the question of the complex boundary conditions inherent to
large earthquakes.

Second, there seems to be regional variations of the value of b: taking the world-
wide average, one obtains » = 1, but from one fault system to the other the value
actually ranges from 0.8 to 1.2, i.e. the range of values has a width of 0.4 (0.4 at least:
there are also claims of wider variations [Hir89, Uts02]). This question is however
debated, and some of the regional variations are blamed on insufficient sampling.

Interpretations The GR law displays a robust power-law behaviour, despite its
exponent being subject to fluctuations. This intriguing scale-free property calls for
an interpretation. In the literature, we identify three common approaches that aim to
explain this law.
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A first approach is to consider that each fault typical produces an earthquake
that scales with the fault size: since the faults’ lengths are distributed as power-laws
[Sch02], a power-law distribution for the events’ sizes is natural. This approach pro-
vides a good quantitative agreement between the different observations (earthquakes
magnitudes and faults lengths) but fails to explain why the faults length have a scale-
free distribution in the first place. In this sense, it does not explain the GR law from
first principles. The variability of events sizes in very large subduction-zone faults
is also unexplained.

A slightly different approach is to argue that each fault, taken alone, would essen-
tially follow a periodic seismic cycle with one characteristic earthquake followed by
aftershocks occurring at regular intervals (this main shock does not need to entirely
invade the fault plane, so that the seismic moment need not scale as the fault size,
as assumed above). If faults were independent, we would a priori obtain some dis-
tribution of earthquakes centred around the average characteristic earthquake value.
However, as faults interact, an important earthquake in one fault can trigger an event
in the neighbouring one “before its time”. This argument explains very well the
low number of truly “characteristic” faults observed, however its application to a
quantitative description of the GR law is subject to debate [Wes94, Kag96, SN04].

An alternative approach is to simply assume that all faults follow a RSF friction
law, are driven by the plates bulk, and possibly interact between them. In this view,
the power-law behaviour emerges from the competition between the randomness in
the initial state, the nonlinearities of the RSF law and the driving from the plates
bulk (and mantle). A complex dynamics ensues, that some spring-blocks models
somehow capture (see Sect.3.2.1). In this approach, the heterogeneities of the crust
are accounted for via the RSF laws.

A fourth angle, which is the one followed in this thesis, is to build simple models
based on the fundamental features of seismic faults. In our model, we will account
for the viscoelastic interactions in the plates bulk and the heterogeneities will be
represented by quenched disorder. Under driving, this kind of simple model yields
a rich dynamics which reproduces numerous important features of real earthquakes
and RSF laws. The important difference with the previous approach (spring-block
models) is that we will account for heterogeneities and slow plastic creep directly,
instead of using the effective description provided by RSF laws.

The Omori Law

In seismically active regions, there is generally a background noise of numerous very
small earthquakes (with magnitude <2) that continuously occur (typically, 1 million
per year, world-wide). The earthquakes we discuss here are large in the sense that they
are above this background noise, but they are typically “small” in the sense defined
in Fig.3.3. When an earthquake occurs, there are neighbouring regions in which the
stress is increased: this produces secondary earthquakes, strongly correlated with
the initial one (the main shock), that are called aftershocks. A main shock can also
be preceded by foreshocks, i.e. events above the background noise but much smaller
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than the main shock. Thus, the main shock is not defined as the first, but as the largest
event of a correlated sequence of earthquakes.”

A second very important law concerning earthquakes statistics is the modified
Omori law (or Omori-Utsu law), which describes the aftershocks decay rate, follow-
ing the main shock. Its most widely used form is [Sch02]:

1

to(1+1/1)P’ 5.5

Ngs(t) =

where ¢ is time since the occurrence of the main shock, n,(¢)dz is the number of
aftershocks with magnitudes greater than a specified value occurring in the time
interval [, ¢t 4 dt], fo and #1 are constants, and the exponent p is found to be p ~ 1.
Note that #; is also often denoted c, and is generally quite small, e.g. less than 100 s.
The Omori law is quite important for seismic hazard estimates, as it allows to estimate
the true value of the background noise and thus to identify potential foreshocks.

3.2 A Few Earthquakes Models

In the first chapter we presented friction in the most common environment, i.e. in
conditions much simpler than that between plates. In the geophysical applications,
one ought to consider a plethora of secondary effects: physical peculiarities of rocks
(prevalence of fracture, compared to metals), the fact that fault gouge is present and
affects friction in ways very different from lubricants [BZF+06], high heterogeneities
in the rock formations, difficulties of scaling laboratory studies up to field scales,
variations in fluid pressure, rock melting at the interface, dependence of constitutive
laws on pressure, temperature (which depends on the depth), etc. Since the dynamics
of seismic (and aseismic) faults is a priori quite complex, it seems reasonable to make
drastic simplifications in our description, in order to sort out the relevant physical
mechanisms at play.

This is the approach followed by the models we present in this section. We won’t
fully review the (impressively large) literature on models of seismic faults or earth-
quakes propagation, but focus on the historical model (Sect.3.2.1) and a few simple
variants which are connected to our work (Sect. 3.2.2). We quickly mention the role
of finite element simulations in Sect.3.2.3.

The interested reader may consult one of the two following recent works, which
review the topic with a statistical-physics point of view. We already mentioned
[KHK+12], which emphasizes the statistical aspects of friction and of simple earth-
quakes models. In the lecture notes [BC06], various phenomena connected to earth-
quakes are reviewed, including friction, plasticity, fracture, which are treated via

3Some alternative definitions based on some qualitative properties of the main shock formally allow
the aftershocks to be larger, but this is not the most common case.
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simple models (e.g. fibre bundle models). There, the emphasis is more on the math-
ematical treatment of the problems.

3.2.1 The Burridge-Knopoff Model (Spring-Block Model)

The Burridge-Knopoff (BK) [Bur67] model (or spring-block model) is designed
as a mesoscopic approach to friction in the context of seismicity: a tectonic plate
is divided in virtual blocks which are connected via elastic interactions, loading
being performed via elastic interactions with a rigid plate, itself driven at some fixed
velocity Vy (see Fig. 3.7). The core assumption of the BK model is that each block is
subject to some given phenomenological RSF law. Denoting 4; the distance travelled
by the block i in the driving direction, ko the stiffness of the connection with the
driving plate, ki the stiffness of the interactions between blocks and m the mass of
each block, the equation of motion reads:

mdfhi = ko(Vot — hi) + ki (V>h); — ®;, (3.7)

where V2 is a shorthand for the discrete Laplacian and ®; is the local friction force
acting on the block i. Initially, the BK model is in one dimension, but extending to
the two dimensional case is trivially done by reinterpreting the index i as a couple
of integers i = (x, y).

Of course, BK models do not intend to explain any RSF law, since the law is
directly injected in the model via the function . However, they provide a framework
to study the collective dynamics emerging from complex friction laws, something
which is expected to be relevant in individual seismic faults and fault systems.

Even in the case of the simplest friction law, defined by only two coefficients (sta-
tic and kinetic) and applied to a single block, we already have an interesting stick-slip

Plate drive at Vj

L
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D,y d; Diy1

Fig. 3.7 Adapted from [KHK+12]. The one dimensional BK model. Springs k| connect the blocks
together while springs ko connect them to the driving plate (pictured above). Some effective friction
force @ acts on each block, which are atop some rough substrate
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instability. In presence of many blocks, the finite slip of a single one may pull on
neighbouring blocks and trigger an avalanche of numerous one-block slips, an event
that can be identified with an earthquake. The occurrence of earthquakes in such
a conceptually simple model triggered a large activity around the BK model: vari-
ations include two-dimensional blocks assemblies, models with long-range elastic
interactions between blocks (which are an effective representation of the interactions
via the bulk of the plate), or driving via the system boundary (train model®). In most
cases, there is no randomness in BK models: avalanches follow regular patterns,
except when chaotic behaviour allows for seemingly random events. In some varia-
tions of the BK model, the initial configuration is random, which allows power-law
distribution to occur.

Using appropriate choices of RSF laws, geometry and numerical parameters,
models of the BK type have been rather successful at reproducing many features
of seismic dynamics [CLS94]. In particular, power-law distributions of avalanches
similar to the Gutenberg-Richter law and (in some occurrences) an Omori-type law
for the aftershocks decay has been observed. Variants of the original model are still
studied to this day [OKO07, GRT12], especially in the geophysics community. See
[KHK+12] for a recent review on the results of the 1D, 2D, short-range and long-
range BK models, or [BZ08] for a table summarizing the key results associated to
each ingredient included into the models.

The difficulty of simulating systems with a large number of blocks (due to the
nature of the equations, i.e. coupled continuous ODEs) has pushed the statistical
physics community to study simpler models in which general statistical results can be
obtained, such as cellular automata representing sliding blocks. Most importantly, the
BK model assumes a complex friction law rather than letting it emerge from simple
microscopical considerations: in this sense it is simply a way to probe the collective
effects of the RSF laws, not a fundamental description of frictional processes.

3.2.2 Cellular Automata

We define a cellular automaton simply as any system that can not be defined by a
Hamiltonian or by applying the Newtonian force balance, but only via a set of rules.
This definition includes all systems that can not be written in terms of an equation
involving some time derivatives of some local state variable.

Here we focus on the Olami-Feder-Christensen (OFC) model, closely related
to “sandpiles” models, and its connection to the problem of elastic depinning.
Other models of cellular automata (e.g. forest fire models) and their connections to
earthquake phenomena are reviewed in [Run03], with an emphasis on the accurate
description of actual earthquakes. For references on sandpiles themselves, there is
the classic [DRSV95] and the more recent [Paol2].

61t is similar to a train since only one block per column of blocks is directly driven.
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The Olami-Feder-Christensen Model

A simple cellular automaton model that has had a large success in the Olami-Feder-
Christensen model [OFC92]. This model is equivalent to a quasistatic (infinitely small
Vo) two-dimensional version of the Burridge-Knopoff model, using the simplest
friction law possible. The key simplification of the OFC model is that in the quasistatic
limit, one may disregard the continuous time nature of motion and replace the Newton
equation for the block position (involving a numerically difficult second order time
derivative) with a simple set of rules for the local stress.’

The friction law stipulates that when the stress of a block reaches a threshold (the
static friction force), the block will slide until the pulling force (or stress) acting
on it becomes zero (i.e. the kinetic friction force is chosen to be zero and inertia is
neglected). This translates into simple rules for the stress o; acting on block i, which
were derived in [OFC92]. Consider a square lattice of L x L sites. The system state
{oi,i € [1, L2]} is initialized with random values o; € [0, 1]. We then have the
steps:

(1) All the o;’s are uniformly increased at a constant rate koVy until a block has
o; = 1.

(2) Any block that has o; > 1 slips: the o; is set to zero and all neighbouring blocks
each receive an additional stress «. This is done in parallel for all blocks.

(3) Repeat Step (2) until o; < 1, Vi. When this is the case, the avalanche is over and

we may repeat Step (1).

The parameter o represents how much the system is conservative: on a square lattice
each site has 4 neighbours and the system is exactly conservative for « = 1/4.
This latter case corresponds to the dynamical rule of the BTW model [BTW87] (or
“Abelian Sandpile” model), which actually inspired the OFC model. For all values
o < 0.25, the system dissipates a stress 1 — 4« at each slip, which allows avalanches
to be finite even when using periodic boundary conditions.®

However, the OFC model still strongly depends on boundary conditions: power-
laws (and more generally Self-Organized Criticality features) are obtained only using
open or free boundary conditions, which allow for additional dissipation at the bound-
aries [OFC92]. This peculiarity, shared with—conservative—Abelian sandpiles, is
a symptom of the deterministic nature of the system. Despite displaying seemingly
random avalanches events, the OFC model randomness lies only in its initial condi-
tion, so that it is “less random” than models with quenched randomness.

"The stress is a tensorial quantity, but one may consider only the scalar stress resulting from the
projection onto the sliding direction.

8In the BTW model dissipation occurs only at the boundaries, thus the avalanches cutoff is controlled
by the system size, and it is impossible to use periodic boundary conditions. In the OFC model the
dissipation occurs in the bulk, thus the cutoff is controlled by this dissipation rate, which allows for
open or periodic boundary conditions.
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Quenched Disorder and the OFC* Model

Quenched Disorders and Early Results The reason for studying “quenched” ran-
domness is contained in its name: for some systems as metallic alloys, the thermal
noise, fluctuating in time (corresponding to fluctuations of density, charge, etc.) can
be frozen by a quench, i.e. by sudden cooling of the hot metal (e.g. by dipping it into
cool water). For many real systems—as Earth’s crust—this kind of mechanism is at
the origin of heterogeneities, also called “disorder”. Formally a noise is said to be
quenched when it is an explicit function of space but not of time. The evolution of
a d-dimensional system inside a d + 1 dimensional space allows it to explore new
values of the disorder over time, so that the system continually explores new values
of the disorder along its evolution.

Variants of the OFC model with quenched disorder have been studied soon after
the original paper: with heterogeneous redistribution coefficients «; at the different
sites [Cev95, Mou96] or with heterogeneous stress thresholds [JK93] (which are
renewed upon slip). The first implementation of disorder is weaker than the second
in the sense that the randomness is set once and for all for each «, whereas in
[JK93] new values of the thresholds are continuously drawn at random. In all cases,
various power-law distributions of the avalanche sizes can be obtained at least by an
appropriate selection of parameters, sometimes as a robust feature (as in the second
case).

Some of these early results should be taken with caution, since finite size effects
may be mislead for universal properties, due to the limited system sizes available at the
time. For instance, some transition between regimes [Mou96] have later been shown
to be simple crossovers [BWDO08]. A persisting feature in the case of variables «;’s
is the observation of a full synchronisation of the bulk sites (producing system-sized
events, reminiscent of “characteristic” earthquakes), over a given parameter range
[Mou96, BWDOS]. Although being very interesting, this feature is limited to the
tuning of some parameters into a given range, i.e. it is not universal. More generally,
the values of the power-laws exponents depend on the amplitude of variation of the
random «;’s

Conversely, the features specific to the second kind of quenched disorder are
very general and robust to parameter changes. We now detail this second kind
of disorder, which was introduced in [JK93] and studied at multiple occurrences
[RAMIy06, YYKI10, Jagl0]. We will refer to this model as the OFC* model, in
reference to [Jagl0].

The OFC* Model Consider a square lattice of L x L sites. The system state {0}, i €
[1, Lz]} is initialized with an homogeneous state o; = 0, Vi, with each block i having
arandom threshold fith drawn from some square-integrable distribution p. The rules
defining the dynamics of the OFC* model are the following:

(1) All the o;’s are uniformly increased at a constant rate koVp until a block has
o; = fl-th.
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(2) Any block that has o; > fl.th slips: the o; is set to zero and all neighbouring
blocks each receive an additional stress «o;. A new threshold ﬁh is drawn from
p. This is done in parallel for all blocks.

(3) Repeat Step (2) until ;7 < i‘h, Vi. When this is the case, the avalanche is over
and we may repeat Step (1).

We do not give any details about the phenomenology of this model, instead we
map it to the model of the elastic interface embedded in random media, of which the
behaviour is detailed in the next chapter.

Mapping with Elastic Interfaces We consider the set of blocks i and their positions
h; as defined in the original BK model, and want to translate the OFC* dynamics for
the stress variable o; back into an evolution equation for the positions #;. Actually,
the work is already done since by definition, the stress (projected onto the driving
direction) is defined as the sum of forces on the block i:

oi = k1VZh; + ko(Vot — hj). (3.8)

Considering the set of blocks as a single object, a flexible membrane or an elastic
interface, the equation of motion for this object can be written, in the overdamped
limit (see Sect.4.2.2):

dhi o ki V2hi +ko(Vor — hi) — f35(hy), (3.9)

where fith corresponds to the local static friction force threshold, or simply to the
“disorder” in which the interface is embedded. This continuous equation of motion
can be shown (again, see Sect.4.2.2) to be equivalent to the rules:

(1) Time ¢t increases until the total force acting on some site is larger than zero,
i.e. until ky V2h; + ko(Vot — h;) — fith > 0 for some site i.

(2) Any block fulfilling this condition slips: in a discrete setup, its /; is increased by
1. This increases the force on each neighbour by k1, while the force on i decreases
by 4k + ko. The random force fl.dis(hl-) takes a new value, fl.dis(h,- + 1).

(3) Repeat Step (2) until the total force o; — fi[h on each site is smaller than or equal
to zero. When this is the case, the avalanche is over and we may repeat Step (1).

This corresponds to the OFC* model iff @ = k1 and kg + 4k1 = 1, i.e. iff
ko=1—4k; =1 —4a. (3.10)

We see that in the case where the RSF law is replaced by a random static friction
force threshold and a kinetic friction force of zero, the Burridge-Knopoff model maps
onto the well studied problem of the depinning of an elastic interface in a random
environment. In this thesis, we will extend this kind of relationship to more complex
models, in the same spirit.
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Fig. 3.8 From [FLO1]. Finite elements simulations of the tectonic plate in the California region.
a Global view of the volume simulated and geographic situation. b Close up of the central region,
in which the mesh is more refined. A few important fault lines associated to large earthquakes
are highlighted with bold lines. ¢ Cross sectional view of the region of slip during the Landers
earthquake

3.2.3 Finite Elements

It would be unfair to conclude an overview of earthquakes and faults models without
mentioning the approach of finite elements, in which realistic continuum mechanics
stress-strain laws are used to predict or retro-predict the evolution of Earth’s crust.
A pioneering paper [Gra96] initially introduced the idea of using 3D finite elements
methods to simulate the propagation of seismic waves into the crust. In the same line
of thought, a promising model for the evolution of the fault (and neighbouring crust)
after a large earthquake was presented in [FLO1], where a whole region of plate was
simulated by finite elements (see Fig.3.8). Using a three-dimensional viscoelastic
model, they simulate the stress transfer in a large region of the plate, during the
7 years following the Landers earthquake, which allows to discuss several evolution
scenarios and to find good agreement of the (retro-)predictions with observations.

Such finite element methods, with an output which is difficult to interpret intu-
itively, are essentially unable to predict general laws. However, they may be used as
an efficient way of probing which constitutive laws and physical effects are neces-
sary to obtain a realistic evolution of the faults. Reciprocally, the general results of
statistical physics (e.g. the relevance of disorder in fault systems) could be included
in finite elements simulations, thus helping to improve their predictive power, some-
thing useful for producing precise seismic hazard estimations.

3.3 Conclusion: Earthquakes as Test Cases

The dynamics of seismic faults is much more complex than that of a simple large-
scale manifestation of friction. However frictional forces play a central role in faults
dynamics, and geophysics can be used as a playground or test case for friction models,
which can, reciprocally, help us to develop some intuition about the microscopic
mechanisms at play in seismic faults. In this respect, one should acknowledge the role
of geophysics as a strong driving force for understanding the detailed mechanisms
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of friction. At the same time, numerous fault models simply incorporate RSF laws
as an explicit ingredient.

In this thesis, we are interested in models with a micro- or meso-scopical founda-
tion, as our main concern is to understand how non-trivial friction laws can emerge
from simple, well-understood microscopic interactions.
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Chapter 4
Elastic Interfaces Driven in Disordered

Media

In this chapter, we present a model for extended disordered systems driven out of
equilibrium by external forces, which displays an out-of-equilibrium phase transition
or dynamical phase transition. Starting from a few simple microscopic rules, one
obtains a non-trivial critical behaviour with avalanches that are somewhat reminiscent
of earthquakes.

We first define the model of an elastic interface uniformly driven in a disordered
medium. We then introduce another type of driving, more appropriate for the study
of avalanches. After explaining the transition, its exponents and scaling relations in
finite dimensions, we present two techniques for solving the mean field problem, the
second one being more flexible (and useful in the next chapter). Finally we present a
few conventional extensions of the problem, thus showing how broad this framework
is. Despite a strong robustness of the model to various microscopical changes and
a large range of applicability, we unveil several flaws in its relevance for friction or
seismic faults dynamics.

4.1 The Elastic Interface in a Disordered Medium

The model of an elastic interface in a disordered medium we are about to present
provides a good description of the interfaces between magnetization domains appear-
ing in disordered ferromagnetic materials (3 dimensional case, two-dimensional
interface) or in thin magnetic films (two dimensional medium, one dimensional
elastic line). In particular, this model succeeds [DZ00] at explaining the so-called
Barkhausen noise [ABBM90, ZCDS98, DZ06] measured in ferromagnetic materi-
als, i.e. the surprising observation that magnetization domains can move via large
jumps or avalanches which follow power-law distributions over a large range of
length scales. This critical phenomenon is captured by the so-called depinning tran-
sition. There are numerous excellent reviews on the depinning transition, such as the
historical ones [Fis98, Kar98], or more recently [GKRO06, Gia09].
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There are several other successful applications of the depinning framework to
real systems, such as crack propagation in brittle materials [GR89, ANZ(06, BSP08,
BB11], contact lines in wetting [JdG84, MRKRO04], in particular wetting fronts mov-
ing on rough substrates [RK02, MRKR04, LWMRO09] or wetting fronts in porous
media [SAST13, ASA+13, BIM+10], dislocation assemblies (i.e. crystal deforma-
tion) [MZ06, MR06, ZMMZ06, MLAO0S8], in particular in vortex polycrystals in
type II superconductors [MMZZ04a, MMZZ04b, MMZ05, MMZZ05]. In this last
case, the connection between (poly)crystalline and amorphous vortex matter was
also studied, within the depinning framework [MMO09]. However we will refer to the
historical setup of the original, ferromagnetic case as the physical reference in the
following discussion.

4.1.1 Construction of the Model

Continuous Equation of Motion

Consider a d-dimensional manifold embedded in a (d + 1)-dimensional space. We
may denote (X, z) or (x, z) the (d + 1)-dimensional coordinates of any point and
h(x, t) the scalar function describing the position (or “height”) of the manifold along
the last coordinate (i.e. z). The function /4 is univalued, i.e. it has no overhangs (see
Sect.2.2.1). For numerical simulations, we discretize the x space on a lattice with
L sites, numbered by an index i. The z, ¢ coordinates still vary continuously (up to
numerical precision), i.e. h(i, ) € L(LY x R, R).

Elasticity The elastic interactions within the interface tend to minimize the local
curvature, V2h. The elastic energy of the line can be written:

ki
Eawsie = [ 3 (Vub?d, @)
where k; is some effective stiffness constant (homogeneous to a spring stiffness or
membrane elasticity). This corresponds to a local force Fejagtic (X) = —0 Eelastic/Oh =
ki V2h.

Driving As the magnetic field F is increased in the material, the average magne-
tization increases at the interface, thus pulling (or pushing) it accordingly: this is
modelled by the driving term with coupling energy

Egiive = —F.h(x,1), 4.2)

where F accounts for the intensity of the applied magnetic field. This gives a driving
force Fyrive(t) = —0Egrive/Oh = F = const., similar to a simple drift term.

Disorder Space is filled with quenched disorder, i.e. we have a random force 7(z, x)
which does not evolve over time. Its statistical properties are determined by its first
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two moments, the higher ones being essentially irrelevant (one generally assumes a
Gaussian statistics):

n(z,x) =0 4.3)
n(z1, x1)N(z2, X2) = 0 (x1 — x2) A, (21 — 22), 4.4

where d,, A, are some short-range functions (typically a Dirac for dy, but a function
with some range ry for A;). The notation X stands for average over realizations
of the random variable X. We can always choose the average to be zero because
a non-zero average can be absorbed into the driving force (a simple shift of F).
The corresponding force reads Fyisorder = f disn[h(x, t), x], where f dis i5 the typical
strength of the disorder. Note that this kind of action of the disorder is called Random
Field, since it is the local fields which are random.!

For simulations, a typical choice is to take the 77(z, i) s to be a set of L¢ independent
Gaussian noises with short-range correlations in the z direction. To obtain a range
ry A~ 1, one may draw each 7(|z],i) from a zero mean, unit variance normal
distribution and interpolate between nearest neighbours for the non-integer values
of z. This allows for an easy and rather efficient numerical implementation, however
there is a better strategy that we discuss in Sect.4.1.1.

Conclusion: The Equation In the overdamped limit, denoting 7 the effective vis-
cosity for the interface, we may apply Newton’s equation to each point A (x, t) and
obtain the Langevin equation:

n0dh(x, 1) = F 4+ ki (V2h)(x, 1) — fSn[h(x, 1), x], (4.5)

where the brackets [..] highlight the functional dependence. Note that the equation
is non-linear due to the last term: since 7 is a random distribution it is definitely
not linear in z. The key difficulty of the depinning problem is to deal with this
non-linearity.

We just want to add that the equation without disorder (but with thermal noise)
is historically referred to as the Edwards-Wilkinson equation, so that the Langevin
equation for the depinning is sometimes nicknamed quenched Edwards Wilkinson,
as for “Edwards Wilkinson equation with quenched noise”.

Dynamics

Continuous Dynamics The dynamics of motion is twofold, depending on the local
slope of the disorder function n[h(x), x] at each point x.

(1) If nlh(x), x]is increasing everywhere, an infinitesimal increase in F will result
in an infinitesimal advance of the interface and to a corresponding infinitesimal
adjustment in [k (x), x]. See the left part of Fig.4.1.

! An alternative kind of disorder is the Random Bond, which is discussed at the end of this chapter,
along with other variations on this precise kind of elastic interface.
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Fig.4.1 Left infinitesimal advance of the interface upon an infinitesimal increase of the force by 6 F.
The disorder force is locally increasing at all points. Right avalanche triggered by an infinitesimal
increase of the force by d F. The disorder force is locally decreasing in x = x;: this point will move
forward until either the disorder force n[/(x;), x1] or the elastic interactions stop it

(i) If n[h(x), x]is decreasing at a point x, an infinitesimal increase in F will result
in an advance of the interface which will stop only when the forces acting on the
interface cancel once again. See the right part of Fig.4.1.

This point of view is especially adapted to treat sets of successively pinned (motion-
less) configurations. In a dynamical regime, (Eq.4.5) would be more suitable.

This kind of dynamics is impractical because upon a slight increase in the drive the
interface may adapt smoothly, resulting in infinitely many infinitesimal “avalanches”
that need to be discarded by some small-size cutoff in the avalanches definition. This
is worrisome for analytical arguments, but also implies many fruitless computations
in terms of numerics.

The Narrow Wells “Approximation” We are interested in the universal properties
of the large and discontinuous avalanches. To get rid of the numerous infinitesi-
mal avalanches, we propose to replace the continuous disorder function f%5y[z, x]
with a function being zero everywhere except for countably many, randomly located
positions where it has random values, similarly with the strategy adopted in [Fis98].

See the upper part of Fig.4.2. Physically, the disorder energy landscape is seen
as a collection of narrow wells representing impurities. Along the 4 direction, the
narrow wells are separated by random intervals (spacings) z with distribution g(z)
and mean length 7 = fooo zg(z)dz. A natural choice for g(z) is the exponential law,
which corresponds to the case where impurities are uncorrelated in space.” The value
of the disorder force in a well depends on its shape, essentially defined by the width
along the 4 direction and the depth. We will assume that the spacings are not too

2The law of the spacings between points uniformly drawn on a line is the exponential law. The
average spacing is easily obtained from the linear density of the uniform distribution.
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Fig. 4.2 Up Physical picture of the narrow wells: the disordered energy potential consists in wells
with some finite width. Down idealized picture. The width is taken to be zero, so that each block’s
position i; can only take values in a countable set of positions. The narrow wells are now charac-
terized only by the threshold force fi’h needed to exit and their spacings z

large compared to the well’s depth,’ so that any time a site escapes from a well, it
will directly jump to the next one, never staying in between two wells (if k17 is small
enough).

We will also make the crucial assumption that the wells are narrow, i.e. their widths
are negligible compared to z, so that the displacement of a point trapped in a well is
negligible compared to the jumps between wells (see the lower part of Fig.4.2). To
exit from a well, a block will need to be pulled by a force larger than some threshold
fi‘h related to the well’s shape. With a given (infinitesimal) width and some random
distribution of depths, we obtain some stochastic distribution for the threshold forces
fi‘h (there is one set of those for each site 7).

To summarize, using infinitely narrow wells of finite depth, with randomly dis-
tributed spacing lengths, each block is always located in one of the (discrete) wells
and its coordinate /; evolves only via finite jumps z with a distribution g(z).

Under these assumptions, the continuous dynamics of the blocks becomes fully
discrete and the issue of having infinitely many infinitesimal avalanches disappears.
The dynamics is straightforward: we only have the possibility (ii) of the previous
dynamics. As long as each site fulfils the stability condition:

F4+k(Vih(x) < M, vxelLd, (4.6)

the interface does not move at all. When the increase of the force is enough to violate
(Eq.4.6) in one point i, the interface locally jumps forward to the next well, i.e. &;
increases by z (drawn from g(z)), and a new threshold force f,.th is drawn at random.
This process is iterated for all unstable sites until (Eq. 4.6) is valid again.

We want to stress that the “approximation” of narrow wells does not limit the
generality of our presentation: the narrow wells disorder can be reduced to a Gaussian
white noise, using g(z) ~ 6P (z—1) and fith drawn from a zero mean, unit variance
normal law.

3To do it properly, we need to compare ~k;Z with the disorder force, which is essentially a ratio of
the depth to the width of the well.
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4.1.2 The Depinning Transition (Constant Force Driving)

The Critical Force If we start from a very small force F, the interface will easily be
pinned. As we increase the force, at some point an impurity (sticking less strongly
to the interface) will finally let go. This may cause the neighbouring impurities
to also detach right after the next one, and then their own neighbours, and so on,
almost instantaneously (on a time scale 7, 1. This chain reaction or avalanche stops
when the interface is finally pinned down and the local velocity is zero everywhere:
81]’! = 0

If we again increase the force by an infinitesimal amount ¢ F, a new avalanche may
be triggered. Keeping the perturbation d F constant, for larger forces F, the interface
will need to find stronger impurities in order to stop, something that will become
more rare: the avalanches will get bigger with increasing F (and constant § F).

Above a certain force, the occurrence of impurities strong enough to pin the entire
line will switch from rare to non-existent, so that the center of mass will never rest:
we say that the interface is depinned, and we have:

v(t) >0, vVt 4.7

with  v(t) = (O;h(x, 1)) = %/dh(x,t)ddx. (4.8)

This threshold force above which the velocity is positive is called the critical force
and is often denoted F,. Note that above it, some pieces of interface may be at rest
sometimes, i.e. we may have locally 9,4 (x, t) = 0. The precise relationship between
the instantaneous average interface velocity and the force F is shown in Fig.4.3,
where we see that the critical force clearly plays a role analogous to that of a critical
point, separating a pinned phase from a depinned phase.

The Critical Force and the Larkin Length The prediction of a finite pinning force
is due to Larkin [LO79], in the context of vortices depinning, dislocations in solids
[Lab70] or domain walls in ferromagnets [HK75].

At small length scales the non-linearity of the disorder can be neglected (namely
FYSn[h(x, 1), x] can be replaced with £95n[x]) and the system reaches a stationary
state, in which the interface moves rigidly, without internal rearrangements. At the
length scales where the interface deformation is of the same order as the microscopic
disorder correlation length, this approximation does not hold and the non linearities
of the disorder should be accounted for. This length is called the Larkin length L.
(or “correlation length” [M04, PT99]) and separates two regimes:

e For systems sizes smaller than L., we observe a deterministic dynamics with a
pinning force which depends on the system size.

e For larger systems (L > L), the critical force becomes independent of the system
size and the dynamics is strongly intermittent.
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Fig. 4.3 Adapted from [FBKR13]: the “phase diagram” of the depinning transition at zero temper-
ature. For F < F,, we are in the pinned regime, v = 0. For F 2 F, we are in the depinned regime,
v~ (F — F,.)?. See Fig. 4.13 for the case with temperature T > 0.

The Larkin length can be computed analytically, and is shown to be very large in sys-
tems with long-range interactions. The absence of intermittent dynamics (avalanches)
in friction experiments at the laboratory scale can be interpreted as a finite size effect
(system size smaller than the Larkin length) [CN98, PT99, VMU+13].

In what follows we deal with systems of infinite size, for which the depinning
transition displays an intermittent dynamics characterized by universal scaling laws
and exponents, defined below.

Critical Exponents Considering F to be a control parameter and v to play the role of
the order parameter, we see that the system undergoes what we may call a dynamical
phase transition, in analogy with equilibrium phase transitions.* As the velocity near
F, is given by

v=0, for F < F, 4.9)
v~|F —F.?,  forF > F,, (4.10)
we have a second-order phase transition.” Furthermore, close to criticality the inter-

face develops roughness, i.e. it becomes self-affine and is characterized by an expo-
nent (:

VAT (x) — h(0)]2) ~ x°. 4.11)

We will precise the domain of validity of this relation soon.
The huge difference with equilibrium phase transitions is that here, we are not at
equilibrium: since the impurities pin the line, the system does not fully explore the

4Note that phase transitions only happen in the macroscopic limit (infinite system size). This is no
exception and for finite systems (as in numerics) one observes a dynamical crossover instead of a
transition. A careful analysis of the size effects reveals that we have truly a transition. We do not
discuss that here.

5 A phase transition is of second order if only the derivative of the order parameter is discontinuous
at the transition. If the order parameter is discontinuous, it is a first-order phase transition. If only
the second-order derivative was discontinuous, it would be a third-order phase transition.



74 4 Elastic Interfaces Driven in Disordered Media

phase space, and there is no way for it to find equilibrium. The transition is called
dynamical because the “phases” correspond to different dynamical states: pinned
(not moving) or de-pinned (rnoving).6

However, the analogy goes further than a simple qualitative change upon variation
of a parameter. At F' ~ F, the competition between disorder and elasticity prevails
and a critical state emerges, in which all the quantities of interest are distributed
as power-law distributions of the distance from criticality, A, = |F — F.|. We
qualitatively explain this critical behaviour below.

Avalanche Lateral Length Far below F (very small forces), aninitially flatinterface
will remain essentially flat, and its correlations will be those of the initial configura-
tion. As the force increases towards F, the three contributions start to balance each
other, increasing the instability of the interface: each point is in a metastable state,
on the verge of jumping ahead. Hence each growing avalanche can easily destabi-
lize the neighbouring (metastable) areas, thus increasing its size: upon infinitesimal
increases ¢ F of the force, larger and larger avalanches are triggered. As all forces are
present equally, it also takes a long time for an unstable part to find a locally stable
configuration and stop. At the transition, the interface becomes depinned, i.e. it is in
an infinite avalanche. This divergence to infinity of the avalanches maximal lateral
length €™ reads:

maX )~ (Fe — F)™7. (4.12)

We note that configurations verifying (Eq. 4.6) close to the transition should be called
metastable rather than stable, because an infinitesimal perturbation (§ F') may trigger
a large avalanche instead of a return to the same configuration.

Far above F, (very large forces) the disorder force is swept over very fast, resulting
in an effective thermalization (or annealing) of the noise. This results’ in different
pieces of the interface moving relatively independently, thus £™** — 0 when F >
F,. At smaller forces (F 2 F.), when the three terms compete equally, the interface
motion is continuous (it never stops everywhere at once) but essentially consists in
numerous (almost) individual avalanches acting in parallel. Thus the avalanches still
have a typical length scale E?}?i = (F—Fo)™", with the very same exponent v, an
a priori surprising “coincidence”, that is predicted by analytical works and verified
numerically.

We now link the avalanche lateral length and the correlation length. Below or
above the threshold force, a point locally stops exactly when the local forces reach
a balance, so that the local correlations at rest are large. Thus, at the end of an
avalanche, the region that moved is strongly correlated within itself, and we can
identify the correlation length of the interface at rest £ with the maximal avalanche

%In this sense, it’s the phases that are dynamical (or not), not the transition.

7 Anticipating on the following definitions of the critical exponents, we can prove this. In the
reference frame of the center of mass of the moving interface, the disorder effectively feltis n[A(x)+
vt, x]. Using h(x) ~x%, v(x) ~ x*(F — F.)” and the fact that z > ¢, we can see that £ — 0 when
F>F..



4.1 The Elastic Interface in a Disordered Medium 75

lateral length £™%: &poF.y ~ (F. — F)™", where we understand that the name v
was chosen in analogy with equilibrium phase transitions. Above threshold, there is
also a correlation length, even though the interface is never fully at rest: it represents
the correlations of the moving interface (which can have some parts at rest). The
common origin of the correlation length above and below threshold allows us to
write the general form:

E=I|F.—F|™". (4.13)

‘We note that in this out-of-equilibrium transition, a static observable (£) derives from
a dynamical one (£™?*).

Avalanche Width and Size We have only mentioned the lateral length (along the x
plane) up to now. The size S of an avalanche is the total area or volume swept over
by the interface during an avalanche:

S= /ddx(hafter(x) — hypefore (X)), (4.14)

where the integration spans over the entire system (or the zone affected by the
avalanche, it is the same) and the labels are explicit. By extension, the avalanche of
size S is sometimes called S, and {S} may denote the sites involved in an avalanche.

The width of an avalanche can be defined as the maximal gap between the height
h(x) of any two points x that where involved in an avalanche:

W = max (hafer(x)) — min (hpefore (X)), (4.15)
x€e{S} xe(S}

a definition that is best understood via Fig.4.4.
The same line of argumentation as for the avalanche lateral length shows that the
avalanche width must diverge as some power of the distance to criticality, i.e.

WX | F. — F|7%C (4.16)

which can be more practically written W ~ &S,

Interface Roughness The interface roughness or typical width is defined as:

W) =/ ([h(£) — h(0)]?). 4.17)

For the same reasons that explain the correspondence of ¢™* and £, the maximal
avalanche width (or depth) W™ and the interface typical extension W(£) are of
the same order of magnitude. Thus, the metastable states and the moving interface
are both characterized by a self-affine profile 4 (x) with roughness exponent ¢ and a
large-size cutoff given by the correlation length &:
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(a)
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Fig. 4.4 Avalanches characteristic properties. Schematic view of a one-dimensional interface
embedded in a random (disordered) medium. a Initial state (solid line). The line h(x) is depinned
at a single point (dashed line). b Intermediate state. The neighbours of this point are also depinned,
which allows the interface to move even further. ¢ After some additional local de-pinnings of the
interface, it is once again pinned in the final state (solid line). For comparison, we also recall the
initial state (dashed line). The avalanche lasted for a very short time, it is characterized by three
spatial measures: the lateral length ¢, the width W and the size S (the area swept over by the interface
during motion, highlighted in grey), which is § ~ £4W.
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Fig. 4.5 Illustration of the notion of interface roughness. Left Profile or height elastic interface in
random medium in d = 1. Here the interface is discretized over L = 1000 sites. We may notice
that the interface is strongly correlated over distances < { & 40. Right Average structure factor
associated to a few realizations of the interface shown on the left. For large length scales ¢ > &,
the structure factor takes large values, i.e. the interface is not correlated over large distances (no
more than at §). For small length scales, the interface is strongly correlated. Its correlations are
characterized by a self-affinity exponent { &~ 1.26.

W) ~ ¢, Ve <¢ (4.18)
W) ~ €8, VE>¢ (4.19)

Note that the second line denotes a flat interface at large scales, since for £ > &,
€¢ <« €. An intuitive definition of W (£) is given in Fig.4.5.

Avalanche Duration We define the avalanche duration as the time 7 between the
start and end of the avalanche. During an avalanche, as the interface gets locally
re-pinned and de-pinned again, its local velocity may vary widely. When many sites
are de-pinned together, they may move much faster collectively than if they had to
struggle individually. However, the extension of the moving region into the pinned
region is restrained by the impurities. This collective effects are such that T does not
scale linearly with the avalanche spatial extension:
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T~|F.—F|™" =&, (4.20)

where some unimportant prefactor is controlled by the characteristic time 7. Due
to the pinning from the impurities, the growth of the moving region is slower than
linear in time, i.e. we have z > 1 (a smaller z means a faster growth of the avalanche
over time).

4.1.3 Scaling Relations

We have defined some relevant observables up to here (v, &, W, S, T'), and some
critical exponents (3, v, ¢, z) which link them to the distance to criticality |F, — F|.
We expect that a few simple heuristic arguments should show how these observ-
ables scale with one another, thus providing us with scaling relations between the
exponents.

The Statistical Tilt Symmetry (STS) Originally, this symmetry and the ensuing
scaling relation was discussed in [NF93]. Following this seminal work, the STS was
also studied in terms of field theory and renormalization group. A precise derivation
of the STS is possible using the Martin-Siggia-Rose formalism [CGL00, MSR73].
However here we want to give a simple argument for it.

Consider the average susceptibility of the interface,

_ response @21
" perturbation’ '

where we consider the average response. Since an increase of the local stress by 6 F
can either do nothing or trigger a large avalanche, the susceptibility is expected to
diverge at the critical point.

On the one hand, consider a “tilt” § f (x) of the driving force with zero mean (and
constant over time). The response of the interface is formally denoted d% (x). Noting
G, the most general linear elastic kernel (the short-range elastic interaction we used
until now is G,; = ki Vz), we can write the equation of motion for the interface with
the tilt, 2(x), then make a change of variable i (x) = h(x) + G ;' (5 f):

mdih = F +6f + Ga(h) — f%nlh, x] (4.22)
m0ih = F + Ga(h) — f*nlh + G (6. x] (4.23)
We note that the equation for the new field h is that of an un-tilted interface, but

with a different disorder. The key to deriving the exact STS relation is to note that
on average (over realizations) the disorder does not actually change under the tilt:



78 4 Elastic Interfaces Driven in Disordered Media

nlhy + G;1(5f(x1))7 x11nlha + G;l(éf(xz)), o] = 6(xs — x) Al — iy
+G 6f () — G G F )]
=6(xa — x1)Alhy — 1]

=nlhy, x111lh2, x21, (4.24)

where we went from the first to the second line thanks to the product with the Dirac
d(x2 — x1). The effect of the tilt thus disappears from the two-point correlation func-
tion of the disorder and assuming a Gaussian disorder (or showing similar relations
for higher moments) we get:

law

nlhy + G (6 ), x1 ' nlh, x]. (4.25)

Thus the average susceptibility of the auxiliary interface I to the tilt is zero: 6h /0f =
0. The average susceptibility of /4 (x) is given by the response 6h = dh + Ge_zl ©f)
to the tilt:

Ok 0h+ G0N GLeNH
=57 = 5 =~ G, ~¢, (4.26)

where the last equivalence comes from the dimensional analysis® of the interaction
kernel. For instance, for the short-range elastic kernel G,; = V2 we have [Ge_ll] =
l/[Vz] = [x]% ie. Ge_ll is homogeneous to a length squared, and a = 2. For elastic
interactions with longer range, we may have o < 2.

On the other hand, the average local response to a local perturbation § f = 6 F in
the driving is given by the average and maximal avalanche width W ~ £€. Since the
perturbation § F is homogeneous to | F, — F'|, we consider that § F needs to be some
finite fraction of it, and we have

dhiocal gC 1i¢
= = ~&v 4.27)
X 5Flocal |Fc - F| f
To conclude, we have
1
=t = = , (4.28)
a—C

where in our case of short-range interactions o = 2. This general relation is often
called the STS relation and allows us to reduce the number of fundamental exponents
by one: we no longer need to measure or report v since it is given by this relation. In
numerical simulations of the depinning of the elastic interface, this relation is well
verified.

8We denote [X ] the dimension of the variable X in what follows.
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Scaling Relation for the Velocity Concerning the average velocity (over the whole
system) v(t), assuming that we reached some steady state v(#) = v, we can derive
a simple scaling relation for the depinning regime (v > 0). The average velocity is
simply given by the maximal avalanches, which displace the interface locally on a
distance W ~ ¢S over a time T ~ £2. Thus,

W
~ T 4.29
v ¢ (4.29)

By definition, v~ (F — F.)? = (¢77)7. Thus:

it = B=u(—0). (4.30)

We note that z > ( ensures that 5 > 0 i.e. that the average velocity vanishes at the
critical point. This scaling relation was also found in [NF93], from renormalization
arguments (change of scale, field dimensions). Combined with the STS, it gives
B=is

Conclusion We have reduced the number of “fundamental” exponents from 4 to 2
thanks to two scaling relations. The exponents that we choose to be “fundamental”
are z and (. Up to now we have discussed the properties of the maximal avalanches
and of the interface itself both below and above threshold, but not the statistical
properties of the avalanches which are also expected to display critical behaviour at
the transition.

Above the threshold (depinned regime), the dynamics consists essentially in
numerous almost independent avalanches. However when a point is almost stopped
(just before the end of an avalanche) it may keep on moving by participating in
a new one: because the motion truly consists in a single very large, never-ending
avalanche, these are not really independent. This makes it difficult to properly define
finite avalanche events, above the threshold.

Below the threshold (pinned regime, F < F.), an infinitesimal increase J F of
the force may trigger avalanches. By taking 6 F small enough, one may hope to
ensure that exactly zero or one avalanche will be triggered. In this way, one can a
priori trigger a large number of avalanches at fixed F, given that 0 F < |F, — F|.
However numerically it may prove difficult to keep F' constant while increasing it
by d F numerous times.

4.2 Avalanche Statistics at the Depinning Transition

As we have just seen, the depinning problem with constant force driving is not the
most appropriate way to study avalanche statistics. Here we introduce another way
to drive the system, which is more relevant for frictional or seismical applications
and allows for unlimited avalanche statistics while staying below the critical force
F, (and very close to it).
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4.2.1 Origin of the Elastic Drive

In the context of magnetization domains, in the previous approach we neglected
the effect of demagnetizing fields, which are actually relevant in most geometries
[ZCDS98]. Essentially, the demagnetizing fields are due to some boundary effects
which generate a field proportional and opposed to the magnetization, so that in the
equation of motion we should add a force —kh(x, t), where k is the demagnetization
factor:

nodh(x, 1) = F — kh(x, 1) + ki (V2h)(x, 1) — fn[h(x, 1), x]. 4.31)

This seemingly small variation is actually crucial. Suppose that ' > F. and & ~ 0:
as an avalanche unfolds the local height & (x, t) grows, and the effective local driving
force Fyrive = F — kh(x, t) decreases. At some point, the “demagnetization” from
the term —kh will be enough to have Fyrive < F¢ in the avalanche region, and the
avalanche will be able to stop.

Thus for any initial value of F' the system will end up in the pinned phase, precisely
around the transition: F(?r'l‘j‘; = F — khfindl < F.. A fruitful approach is to choose F
to be a time-dependent force, slowly increasing over time. On the time scale of an
avalanche (~n)j), the external force F is constant and the final value of the average
driving force will be F (?r‘l‘jé < F.. After an avalanche the slow increase in F will
eventually trigger a new avalanche, approximately when Fyrive & F. In this sense
we obtain a stationary dynamics, since avalanches properties are expected to be
controlled by the initial value of |F, — Fgrve|. Using this setup we may obtain as
many identically distributed avalanches as we need by simply waiting long enough.
Furthermore, for a large enough system each new avalanche occurs on a location far
away from the previous one, and avalanches will be nearly independent.

After this brief link with the previous case of the constant force, we present the

problem more formally in appropriate notations, in a self-contained way.

4.2.2 Construction of the Equation

Langevin Equation

Instead of driving the system with a constant force F equal in all points of the
interface and independent of its progression, we may want to pull it elastically via
springs (one per site) attached to a common surface (set in the plane z = w) with an
externally imposed velocity Vp (i.e. w = Vpt), as we did in the Burridge-Knopoff
or OFC* models. This is equivalent to a coupling with an energy parabola (potential
energy well) of which the minimum or center w moves at velocity Vj. The related
energy contribution reads:
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ko 24d
Egrive = ?(w —h(x))"d%x, (4.32)

where kg is the coupling constant between the external field and the interface, and
corresponds to the stiffness of the springs aforementioned. It corresponds to a local
driving force Fyrive(x) = ko(w — h). We can identify with the context of domain
walls: kow = F and koh = kh.

In general the driving function w(z) could be anything. However, the drive is usu-
ally taken to be a monotonously increasing function of time (there are good reasons
for that [DLW13]), but interestingly the non-monotonous case has also been consid-
ered’ recently [Dob13]. The role of non-stationarity was also studied in [DZ06].

In this thesis we use w = Vot with small Vp, i.e. Vo < rr/no (where ry is the
disorder correlation length, i.e. a small characteristic length along the z direction).
We write the evolution equation in a self-contained way:

nodh(x, 1) = ko(Vor — h(x, 1)) + ki (V2h)(x, 1) — fSSn[h(x, 1), x],  (4.33)
NG =0, GG = 0P —xe @ (434

where 67 is the Dirac distribution, and the correlation function of 7(z, x) along z
may be any short-range function with range ~r ¢ (we just give an example here).

In Fig.4.6 we represent the one dimensional system in terms of a mechanical
“circuit” (in analogy with an electrical circuit) consisting in blocks connected by
springs. This kind of representation will prove especially useful in the next chapter,
but it can already give us an intuitive view of the problem.

Quasi-Static Dynamics
By definition, a metastable state {w, i (x)} of the system fulfils the stability condition:

ko(w — h(x)) + ki (Vh)(x) < f8n[h(x), x],  Vax. (4.35)

The quasi-static (Vo = 0) dynamics can be summarized very simply, as an infin-
itesimal increase of w = Vpt has only two possible effects. Either the infinitesimal
advance of the interface is such that (Eq.4.35) is still fulfilled and the motion can-
not be called an avalanche. Or one site becomes unstable (i.e. it violates (Eq.4.35)
locally), triggering an avalanche (or “event”) that unfolds until (Eq.4.35) is verified
again. As the avalanche duration is ~n9 < ry/Vp, we may consider w constant
during the event. Algorithmically, w is kept constant during the avalanches. Once
the system is in a new metastable state, w increases again.

This formulation of the dynamics in terms of well-defined avalanches (or shocks)
between static states allows for a clearer understanding of the problem and an easy
numerical implementation of the system as a cellular automaton. As in the constant
force setup, we can use the narrow wells “approximation” (Sect.4.1.1) to avoid the
issue of the infinitesimal avalanches. In that case, the dynamics is exactly that of the

9We will come back to this only in the next chapter.
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OFC* model (see Sect.3.2.2).There is a smart numerical scheme due to Grassberger
[Gra94] which allows to simulate this kind of dynamics very efficiently. The core
reason for the efficiency of this method is the disappearance of the infinitesimal
avalanches in the algorithm, but there are also some purely technical “tricks” that
are very useful, which we present in Appendix A.3.1.

4.2.3 The Depinning Transition (Elastic Driving)

A Different Protocol

Tuning the Interface Velocity Since the driving force is no longer constant, it cannot
be the control parameter any more: however we do control the driving velocity Vj
(and the stiffness k). We want to relate the parameter V| to the observable v.
Consider some macroscopic increase in the driving force AF = koVoAt > 1.
The variations of the elastic and disorder terms (as measured on metastable states)
are necessarily bounded. Thus the only way to balance this change A F' in (Eq.4.35)
is to move the interface by a distance Ah ~ VyAt during this time interval Az, so
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as to get a stationary driving term ko(Vot — h). Hence the time- and space-average
velocity of the interface is given by

At
=g | drem (4.36)
1 At 1 d
= ; dtﬁ dx O;h(x, 1) (4.37)
— V. (4.38)

where the (.) stands for time average. This means that what used to be similar to
an order parameter is now a controlled quantity. For an infinite system there will
always be a point of the interface moving (i.e. some avalanche occurring) and the
time average on v does not need to be taken over a long interval At, i.e. we have
an instantaneous space-averaged velocity v(r) = V. However this is obtained by
averaging over space the very fast, large, localized jumps of the interface, typically
separated by large distances. In other words, we have huge spatio-temporal fluctua-
tions of the “order parameter” v(x, ) (as expected in a phase transition).

Measured Observable: The Stress or Force The stress or force 0 = ko(w —
h) = Fgive 1S now an observable that we measure rather than control. It has huge
fluctuations o (x, t), but it is a response function (unlike v (x, ) which is simply equal
to Vp on average). We find that the space- and time-average value o (Vj) follows the
exact same law as F(v) did in the other protocol, the constant force setup (see
Fig.4.3), i.e. we have the same phase diagram as previously. We understand the
behaviour at large velocities by considering the interface as simply following the
drive w, with the average stress representing how much the interface lags behind.

The behaviour at small (vanishing) velocities Vo = 0T simply corresponds to the
limit v ~ |F, — F|*3 ~0T, ie. to F & F,. Thus, the elastic driving method (in its
stationary regime) does not allow to explore the whole region F' < F, of the phase
diagram. Instead, it automatically drives us to the critical point, which is much more
interesting.

Where Is the Transition? A natural question is to ask ourselves: where is the critical
point? More precisely, what is the critical velocity? At Vy = 0, after a possible short
transient, nothing happens and we have F — kh < F, everywhere: we are below
criticality. At Vo = 07 i.e. in the quasi-static regime, the system evolves via discrete
and well-defined avalanches. At the end of each avalanche, the system is stable and
F —kh < F.everywhere, but this never lasts: the system oscillates around the critical
point. At any finite velocity Vp > 0, the infinite system is always in motion and we
are above the critical point. Thus, the “critical velocity” is V; = 0r.
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4.2.4 A New Scaling Relation

Scaling of the Correlation Length

In what follows we are in the quasi-static regime (Vy = 07). A naive approach
would conclude that since we are automatically driven towards the critical point, all
quantities of interest, in particular the correlation length £ will diverge to infinity:
since Vo = v~ |F, — F|? ~ 0%, we might expect £ ~ VO_"//j ~ 00. However, during
an avalanche the term —koh actually takes us a bit below criticality. We now need
to characterize quantitatively how far we typically are from criticality, depending on
ko (keeping Vo = 0™).

The elastic driving term corresponds to a quadratic energy potential Egrve =
ko(w — h)%. Tt acts as a confining potential for the interface, for which the energetic
cost of large excursions from w grows quadratically. Calling ¢ some unspecified
length in the x direction, we perform the dimensional analysis of the driving and
elastic energies over a patch £7:

1

Earve(0) = 5 A ) dx ko(w — h)* ~ kot/[h?] (4.39)
1

—Eq(t) = 5 /K , dx ki (VhY>  ~ ki e42[h7). (4.40)

The role of the disorder is a priori more complex. However, the argument used to
derive the STS in the constant force setup can be extended to the elastic driving case.
In particular, we find that the response 4 = (k1 V2 + ko) ' f does not affect the
disorder,'? which implies that (k{ V2h + koh) is not affected (or “renormalized”) by
the disorder. We define £ as the length scale where the elastic and driving contributions
have equal weights:

Eq (5) ~ Edrive (5)

K\ /2
£~ (é) (4.41)

For ¢ > &, the drive contribution outmatches the elastic one and the interface energy
is dominated by the driving term. The interface shape is thus controlled by the
confining potential, i.e. it is flat (at this length scale). For £ « &, the competition
between disorder and elasticity prevails, and the interface will be self-affine (rough)
with a roughness exponent , as pictured in Fig.4.5. We see that this length £ actually
behaves as the correlation length, thus we identify it with the one in the previous
section (which was defined as £ = |F, — F|™").

Up to the dismissal of the disorder this argument is a very classical one: its most
common form is in the field theory of a field ¢ with mass m, where the action reads
S = fdd)c[(Vc;S)2 + m?$?]. In that case the “correlation length” is §s = 1/m. The

19T be precise, the correlator of the disorder with or without the tilt is the same (in law).
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addition of the disorder term is expected to induce non-trivial effects, that may a
priori disturb this scaling. It is found, however, that the argument still holds in the
presence of disorder, due to the invariance of the relative weights of the elastic and
driving terms under renormalization (a rather non trivial result).

The most important thing to remember is that the correlation length is controlled

by the parameter ko via § ~ k, 172,

Self-Organized Criticality (SOC)

The restoring force —koh(x,t) decreases the driving force when an avalanche
unfolds, allowing to automatically set ourselves at the depinning transition criti-
cal point (we already explained it in the introduction, Sect.4.2.1). Since we do not
need to tune any parameter to go there (except for Vo — 0,kp — 0), we may
recognize this as an example of Self-Organized Criticality (SOC).

In contrast with original models of SOC, here the dissipation occurs in the bulk
of the system. For an avalanche of size S, the corresponding total (system-wide)
decrease of the driving force is —k(S. As the avalanche size increases with applied
force and still increases above the threshold F,, the dissipation —koS becomes
extremely powerful when we reach the threshold, thus preventing us from going
beyond. The explanation for the “self organization” simply lies in the continuous
driving toward criticality of a system that strongly dissipates “energy” above the
critical threshold. To comment on the SOC nature of the system, we cannot hope to
put it better than Fisher [Fis98]:

Whether critical behavior is considered “self-organized” or not is somewhat a matter of
taste: if the systems we are considering are driven at very slow velocity, then they will be
very close to critical. In another well known situation, when a fluid is stirred on large scales,
turbulence exists on a wide range of length scales extending down to the scale at which
viscous dissipation occurs. In both of these and in many other contexts the parameter which
is “tuned” to get a wide range of scales is the ratio of some basic “microscopic” scale to the
scale at which the system is driven.

For us the microscopic scale occurs at the most local scale with a dissipation para-
meter ko and the driving scale is that of the system. We need to set the velocity Vj
to a very low value in order to obtain (self-organized) criticality.

4.2.5 Statistical Distributions

Distribution of the Avalanches Sizes

At the transition (Vo = 0%, kg < k1) we expect to have many avalanches, with a
typical size £ diverging as k, 172, However, the avalanches are random events whose
sizes span the entire range from microscopic to ¢-wide. The distribution of avalanches
P(S) follows a power-law distribution with a cutoff (fast decay) for sizes larger than
some characteristic (or “maximal”) size S,,;:

P(S)=S"T"g(S/Sn), (4.42)
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where g(s) is a scaling function which decays very fast for x > 1. An avalanche
with lateral length £ has size S = £9%¢, so that

e (4.43)

We want to relate the new exponent 7 to those previously introduced.

Derivation of the Exponent 7 Adapting an argument from [ZCDS98], we can
directly derive the exponent 7. The average response (total displacement Ah =
f Ah(x)d?x) to an increase of the force AF ~ |F. — F| corresponds to the sum of
avalanche sizes under many infinitesimal increases 0 F = AF/N:

(§)~—. (4.44)

since each avalanche S is the response Ah to an increase O F.
Besides, similarly to the argument that led us to v = Vj), we see that the total drive
AF = koVpot, must be compensated by a displacement kg Ah. Hence, AF ~ ko Ah.
Combining these two arguments we get (S) = 1/ko ~ £2. By definition we also
have (S) = [ SP(S)dS~ S277 = (¢9+¢)>~". By identification we get

2

Another approach is to identify (S) in (Eq. 4.44) with the average of the susceptibility
x computed in (Eq.4.27), since on average the displacement under an increase ¢ F
in the force is (S) = X. We then have (S) = y = £//¥*¢_ Since (§) ~ (£41¢)2-7,
this yields the more general relation:

N

+¢
+¢’

T=2- (4.46)

U

which collapses to (Eq.4.45) since 1/v + ¢ = o = 2 in the case of short-range
elasticity (we used the STS relation). In Fig.4.7, we find 7 = 1.265 &£ 0.005, in
agreement with numerical results found in the literature for d = 2 (see [DZ00,
RLWO09]).

Other Distributions

Distribution of the Avalanches Lateral Length There are several ways to compute
the avalanches lateral length . The simplest one is to measure the maximal length
£x in the X direction (or £y in the Y direction). This gives us the power-law with
T¢ = 1.75, although this is not the smoothest result. Another way is to compute this
length as /€x{y. Yet another way is to compute it as /7, where n is the actual
number of sites affected by the avalanche (which is always smaller than the product
£xLy). In any case, we find the power-law P (£) ~ £~ 7 with 7y ~ 1.75.
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Fig. 4.7 Avalanche size distributions. Left Avalanches sizes S (indicated by dots) are evenly dis-
tributed over time, with only short-range correlations in time and space. The corresponding stress
o has small fluctuations (solid grey line) over time (w = Vjt). Parameters are k; = 1, kg = 0.03.
Right Probability distribution P (S) of the avalanches for k| = 1 and k¢ decreasing from left to right
ko = 0.03,0.01, 0.003, 0.001. The dashed line indicates the pure power-law ~S~1265 as guide to
the eye. The curves are shifted for an easy comparison and events with S < 2 have been cut off;
the number of remaining events is 10’

Denoting £ the lateral length (along the x plane) of an avalanche, we may call P (£)
the avalanches lateral length distribution, 7, the associated exponent and £, = £ its
cutoff. Since an avalanche with length ¢ has size S = 297C we have:

P(0)dl = £ gy(e/€)dl = P(S)dS (4.47)
~ §77dS, VS < Sy (4.48)
~ g~ @HOTGpdHCy Ve« & (4.49)
~ T @FOT=D=lgp VI L E. (4.50)

So that we identifty 77 = (d + {)(1 — 1) + 1 = d + { — 1 using (Eq.4.45) or
7¢ = d + 1 — 1 /v using the more general (Eq.4.46). In Fig.4.8, we observe that
7¢ =~ 1.75, in agreement with the measurement of ( ~ 0.75ind = 2.

Distribution of the Avalanche Areas Similarly the avalanche areas, i.e. the number
n ~ £4 of sites affected by an avalanche has a power-law distribution. The associated
exponent 7, and cutoff n,, = &4 can be derived from the identity n = ¢¢. We find
=1+ ¢—1)/d =1+ (d+ ()(r — 1)/d. Using the STS relation (4.45), this
simplifies into 7, = 1 + (d 4+ ¢ — 2)/d. The correspondence with the exponent
measured in the simulations can be found in Fig.4.9.

Distribution of the Avalanches Duration Similarly the avalanches duration, i.e. the
number of waves of updates necessary for the avalanche to completely unfold has
a power-law distribution. The associated exponent 77 and cutoff 7,, = £° can be
derived from the identity T = ¢*. Wefind 77 = 1+ (7y—1)/z = 1+(d+{)(7—1)/z.
Using the STS relation (4.45), this simplifiesinto 77 = 1+ (d + { — 2)/z.
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Fig. 4.8 Avalanches lateral length distribution P (£). The length is computed as the square root
of the number of sites affected by the avalanche. The dashed line indicates the pure power-law
~¢~175 as guide to the eye. Note that all events are much smaller than the system size L = 5000,
so that we do not have any finite-size effect. We used k; = 1 and k¢ decreasing from left to right
ko = 0.03, 0.01, 0.003, 0.001. The curves are shifted for an easy comparison and events with § < 2
have been cut off; the number of remaining events is 107
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Fig. 4.9 Avalanches area distribution P (n), in terms of the number of sites n affected. The length
is computed as the square root of the number of sites affected by the avalanche. The dashed line
indicates the pure power-law ~£~173 as guide to the eye. Note that all events are much smaller
than the system size L = 5000, so that we do not have any finite-size effect. We used k; = 1 and
ko decreasing from left to right ko = 0.03, 0.01, 0.003, 0.001. The curves are shifted for an easy
comparison and events with S < 2 have been cut off; the number of remaining events is 107
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Conclusion

Up to now, we have presented only simulation results and scaling arguments. We have
explained how the dynamical phase transition (depinning transition) can occur via
qualitative arguments, and gave links between the exponents, thanks to the scaling
relations. However, the evidence of a critical state with diverging length scales,
interface roughness and power-law distributed avalanches comes from numerics only.
The same is true for the values of the “fundamental” exponents z and ¢, which we
obtain solely from numerics.

In the following section we present two mean field approaches, which allow to
solve the problem of the depinning transition analytically in the cases of infinite-
range interactions or very high dimensions. The analytical approach allows a better
understanding of the inner mechanisms of the depinning transition and is a very
convincing argument for the case of a critical phenomenon in low dimensions. An
alternative and more general way to deal with the depinning problem analytically is
to use the Functional Renormalization Group (FRG) approach. For an introduction
to this subject, see [Pol03], for an historical review see [FH85], for applications to
the problem of depinning see [LWC02, RLW07].

4.3 Mean Field Approaches

4.3.1 Introduction

Defining the “mean field” The term mean field encompasses numerous microscopic
models. The common idea between all mean field approaches is that if the interactions
within the system are dense enough, then the dominant contribution to the interaction
of any point with the rest of the system (represented by some field) will be given
by the interaction with the average field, i.e. the fluctuations are neglected. In the
extreme limit, the mean field can be studied via a fully-connected model, where each
site interacts equally strongly with all the others. This limiting case is very simple
since we go from N degrees of freedom to a single one (or a couple of them at most).

A common and seminal example of such an approach is that of the Ising transition,
where the Curie-Weiss model assumes that each degree of freedom (the local value of
the spin s;) interacts with the macroscopic magnetization (which is just the average
M = (s)). A way to build this interaction from a microscopic model is to assume
that each spin interacts equally with all the others, regardless of their distance: this
is an example of fully connected model.

High Dimensionality A natural occurrence of mean field behaviour is when the
system considered is of high spatial dimension. Formally, when d = oo every site
interacts with infinitely many other sites and we obtain the same mean field as
in the fully connected case. As is, this is not really useful since reality does not
have infinitely many dimensions. However there is generally some upper critical
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dimension d,. beyond which the model behaves as in mean field: for any d > d,,,
we have mean field exponents due to the high connectivity of each site. Most models
have a finite and rather low upper critical dimension d,.: for instance, the elastic
depinning with short-range interactions has d,,. = 4.

Because of this correspondence, the mean field case is often presented as com-
plementary to the “finite dimensional” case (understand “not mean field case”).

Infinite Range: The Fully Connected Model

Construction of the Interaction Term For the sake of simplicity, we will use the
discrete system where /(x) is modelled by a lattice of sites with values h;, i € LY.
The continuum equations can be derived straightforwardly from the discrete ones.
For the same reason, we will use d = 1 in some derivations to decrease the volume
of terms.

Originally, the elastic interaction is written as the sum of contributions from the
neighbours of the current site i:

Foi =ki(hiz1 —hi) +ki(hi—1 — h;) = ki(Ah);, 4.51)

where (Ah); is the discrete Laplacian of & evaluated at i. Here in one dimension
each site has 2d = 2 neighbours.
With infinite range, the elastic interaction for i reads:

k
Foi= NI _Z(h i —ho), (4.52)
Vj#i

where we must divide by the total number of sites N to keep the system’s energy
extensive in N (and not growing as N'2). The sum over all neighbours can be rewritten:

D hj—h) =D (hj—hi) | = (hi = hi) (4.53)
Vi vj
=>hi=>n (4.54)
Vi Vi
= N(h—hy) (4.55)

To conclude, in order to get the fully connected Langevin equation for depinning,
we just need to replace k1 V2h with ki (7 — h). The equation of motion for a single
site i in the fully connected model then reads:

m0dhi = ko(w — ;) + ki (h — h;) = n;[h], (4.56)

where the individual contribution of each site to the interaction term (second term of
the r.h.s.) was in k1 /N.
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Remark on Roughness A crucial feature of the fully connected model is the irrele-
vance of geometry. Since all sites interact equally with each other, the notion of space
becomes irrelevant. Consequently, the notion of spatial correlation and of roughness
becomes meaningless: spatial fluctuations with a well-defined shape are forbidden,
since each site is the neighbour of all the others. Thus in mean field the interface
is “flat” in the sense that its spatial fluctuations are bounded, and the roughness
exponent is:

¢=0. (4.57)

4.3.2 The ABBM Solution

The dynamics of the center of mass of the interface in the fully connected model
can be mapped to the study of a single particle in some effective disordered poten-
tial [ZCDS98], the ABBM model. It was initially Alessandro, Beatrice, Bertotti,
Montorsi who proposed the problem of a single particle driven in a Brownian force
landscape [ABBMO0].

We first derive the mapping between the two problems, then we derive the expo-
nent 7 from stochastic calculs arguments.

Mapping of the Fully Connected Model to a Single Particle Model

Equation of Motion for the Center of Mass We sum (Eq.4.56) over i, divide by
the number of sites N and obtain the equation of motion for the center of mass of
the interface:

_ — 1
noOth = ko(w — h) — N ;ni [hi], (4.58)

where the interaction terms cancelled each other. The key point is to understand
the statistical properties of the disorder felt by the center of mass of the interface
nlh] = % ZVi nilhi], which currently explicitly depends on the A;’s.

An avalanche of size S ~ £97¢ = ¢4 involves a number n ~ £ of sites and corre-
sponds to a shift of the center of mass by ~n/N. For an avalanche involving n sites, the
mean force of the disorder 77[4] changes by an amount A/ (0, ZnUi /N?)~ «/ﬂau /N
because n random numbers 7); are replaced with new ones. Taking this into account,
the random force acting on the center of mass can be rewritten:

) | =l
h = ; N(o, 20/%), (4.59)
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i.e. it depends on / only through the average /. That is, the center of mass of the fully
connected model behaves as a single particle of which the position may be denoted
h, and which follows the equation:

_ _ 1 —
no0ih(t) = ko(w — h(1)) — \/—NBM(h(I)), (4.60)

where BM(t) is a Brownian Motion process with finite variance, «/zau. Note that
this equation is still non linear, because of the last term.

Statistics from the ABBM Picture

The dynamics of (Eq. 4.60) is very simple because it relates to a well-known problem
of stochastic calculus, that is the problem of the first crossing of a random walk with
a line. The single particle in a Brownian potential has been studied in depth by Sinai
[Sin83]. Under a drive like ours, (Eq.4.60) can easily be mapped onto that of a single
particle in a tilted Brownian potential.

Reformulation in Terms of First Crossing In the quasistatic limit (Vy = 07),
(Eq.4.60) can be summarized by a simple rule. If the particle verifies the condition
ko(w — h) < BM(h), it does not move (the prefactor /N has been absorbed in
ko). When w is increased, as soon as the equality is fulfilled, the particle becomes
unstable and it moves forward as long as the distance s it has moved is such that
ko(w —h —s) > BM(h + s). As the Brownian Motion is continuous, the avalanche
actually stops as soon as this equality is verified. This allows for a simple geometrical
construction of the solution: for any w, the position /(w) is always the smallest &
verifying w = h + BM(h)/ko. Introducing ¢(h) = h + BM(h)/ko, we have the
so-called Maxwell construction presented in Fig.4.10.
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Fig. 4.10 Maxwell Construction: plot of the function ¢(h) = h + BM(h)/ko. For w = wj, we
find the corresponding A (w1) via a simple geometrical construction. For w = w», there are two
solutions. The avalanche size is the difference: S = h(w;' ) — h(wy).
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Assuming that the avalanche happens infinitely fast, we have t = #; at the end
of the avalanche. Under an appropriate change of reference frame, the avalanche
stopping condition reduces to:

BM(s) = —kos,  with BM(0) = 0, 4.61)

meaning that the avalanche “size” s (or length) is distributed as the time of first
crossing of a Brownian Motion with the line of slope —ky.

Probability of First Crossing In the limit k9 — 0, the problem reduces to that
of the return at the origin for a Brownian walker starting in zero. This distribution
decays as:

P(s) o< s /2, (4.62)

so that the average size diverges: (s) = [ P(s)sds = oo.

For finite kg, the distribution has a cutoff at large length scales. The cutoff can
be found intuitively!! by comparing the typical extension of the “killing wall” —kos
with the typical extension!? of the free Brownian Motion (i.e. without killing wall),
~s1/2_The typical size at which these two intersect is s, ~ ky 2. For larger values of
s the linear term prevails and the probability quickly decays: the cutoff is thus s,,:

P(s)~s /2 exp (—s/4sm). (4.63)

The average size is then given by (s) ~ s,}q/ 2. An exact computation is provided in
[LWO9].

Consistency with Scaling in Finite Dimensions This result is perfectly consistent
with the scaling relations we derived in the case of finite dimensions. The key to link
the two approaches is to consider that the dimension corresponding to the mean field
is the upper critical one, i.e. to inject d = d,. = 4 in the scaling relations found
above. Keeping in mind that { = 0 for d > d,., we find again T =2 — 2/d = 3/2,

4
S~ &4~ (k(; 1/ 2) , (8) ~ 1/ko. We note that we only computed the statistics of the

sizes of the avalanches, but much more is available [LWMR09, DLW12].

11 A full computation should account for the new correlations of the walker induced by the condition
that it survived up to time ¢ (necessary to be able to cross for the first time).

12 Another (equivalent) way is to compute the probability density (or propagator) to be at coordinate
X = —kos at “time” s. This is P(X = —kos, 5) = (2ms) /2 exp(—(—kos)?/25) ~ exp(—k2s/2).
The exponential term is of order one iff s ~ k’ 2 and quickly decays for larger s: we get the cutoff
sm ~ kg 2,
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4.3.3 The Fokker-Planck Approach

In the ABBM all the degrees of freedom are reduced to a single one, and the only
reminiscence of the spatial extension of the system is contained in the correlations of
the disorder. This will become an issue in the following chapter, where the number
of degrees of freedom is two per site.

To address this issue, we present another method to derive the fully con-
nected behaviour which relies on the reduction of the complete system state
{w, hj, j”idis[hi], (Vi)} to the probability distribution P(J) of a single, simpler and
local variable 6; = F(w, h;, h). After recalling the dynamics in terms of §’s, and
introducing an important simplification, we derive and integrate a simple equation
for P(6), in the spirit of the Fokker-Planck approach.!?

Definition of The Local Variable § and Narrow Wells

Let us define explicitly the variable §, which represents the amount of additional
stress that a site can hold before becoming unstable (its “remaining stability range”):
6 = fISplhy, i1 — ko(w — hy) — k1(V?h);. As is, this expression is impractical
because upon a slight increase in the drive the interface may adapt smoothly, resulting
in infinitely many infinitesimal avalanches (as we discussed earlier, see Sect.4.1.1).
This shortcoming can be addressed using the narrow wells “approximation” (see
later in Sect.4.1.1), for which the variable 0; reads:

6 = I — ko(w — hy) — k1 (V2h),, (4.64)

This variable §; plays the same role as the quantity fl.th — X; of the OFC* model,
and follows the exact same dynamical rules if we choose g(z) = 6P7%(z — 1).

Identical Wells—Constant Thresholds For the mean field treatment, we make an
additional simplification: we consider the depth of the narrow wells to be the same
for all wells. In terms of threshold forces, this means that fl.th =const. = f th which
simplifies the expression for the 4’s:

0 = fth — ko(w — h;) — k1 (V?h);. (4.65)

The dynamics now only depends on the distribution g(z) of the spacings between
narrow wells. However, this is a rather minor change in the physics: we still have
quenched randomness, so the universal properties of this particular choice of disorder
are expected to be the same as for a more general one.

In Mean Field As we have seen in Sect.4.3.1, in the fully connected model all blocks
are linked via springs of stiffness ki /N, which results in a simple replacement of
ki1(V2h); with ky(h — h;):

13We may also call it a Master Equation, but here the state is described by a continuous variable J.



4.3 Mean Field Approaches 95
6 = fM —ko(w — hi) — ki (h — hy), (4.66)

where i = (1/N)>_ h; is the average height and N is the number of sites in the
system. Thanks to the fully connected graph of interactions, every site has the same
expression of ;, involving only the average / and #; itself: the notions of space and
neighbours have disappeared. The dynamics of the §; variable is quite simple.

1. Upon an increase in the load w, all the §’s decrease uniformly until a block
becomes unstable (§; < 0)

2. Unstable sites (§; < 0) each move to their next pinning wells: §; — §; +z(ko+k1)
with a different value of z drawn from g(z). For each jump z there is a drop in all
the §’s: 0; +— 6; — zk1 /N, V.

3. If 3i/6; <0, perform Step 2. Else (§; > 0), Vi, perform Step 1.

The Distribution P(J)

Infinite Size Limit As we have just seen, all the sites are equivalent and the J;’s are
independent identically distributed (i.i.d.) variables characterized by their probability
distribution Py, (§), which in general depends on the initial condition Py(d) and on
the current value of w. For a finite system with N sites, the typical configuration
{6;,i € [|1,..., N|]} will correspond to a set of N i.i.d. random variables drawn
from P (J).

In the thermodynamic limit N — oo, the fluctuations vanish and the description
of the system via the sole distribution P () becomes exact. Our aim is now to write
down the evolution equation for P, (J) when w increases.

An interesting observable is the average force applied on the system (or stress),
defined as F = 0 = ko(w — h). In our case, the stress simply reads:

o= fh_35, (4.67)
thanks to the cancellation of the interaction term, on average.

Dynamics When the external driving is increased by an infinitesimal quantity dw, the
distribution evolves from its initial shape Py, () to a new shape Py 4y (). In order
to compute the latter, it is useful to artificially decompose the dynamical evolution
in different steps.

In a first step, the center of the parabolic potential moves from w to w + dw
and all §;’s decrease by Adgepo = kodw: P(6)dd is increased by (O Py, /06)ddkodw.
Still in this first step, a fraction Py, (0)kodw of sites!4 becomes unstable and moves
to the next wells: P (6)dJ is increased by Py, (0)kodwg;(4)dd, where g1(5)dd is the

14Since dw is infinitesimal and P is continuous, we have Py, (0) ~ P (kodw), and the fraction of
unstable blocks can also be written P (kodw)kodw.
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probability for a block to fall in the range [, & + dd] after a jump.'> The new 6;’s
are given by z(k1 + ko), with z’s drawn from the distribution g(z). This writes:

Pyep1 (6) — Pp(8)  OP g(ﬁ)
=2 L= () + Pu(0)———F (4.68)

kodw 00 ko + ki

In this expression we have not accounted for the increase of 4 due to the numerous
jumps. This increase is given by the fraction of jumping sites multiplied by their
average jumping distance, i.e. it is worth!® Z P, (0)kodw. The corresponding change
in the §’s is a uniform decrease by zk| Py, (0)kodw (see (Eq.4.66)).

This shift in the §’s is accounted for in a second step, which acts on Pyepi ()
exactly as the first did on Py, (d), but with an initial drive given by the shift Adgep1 =
7k1 Py (0)kodw:

Pstep2(6) - Pstepl (6) _ aPstepl
A(Sstepl 04

)
8(koTk1)

0) + P, 0)——. 4.6

) + stepl() ko + k1 (4.69)

In turn, this second step does not account for the increase of / due to the “driving”
by Adgepi: this is accounted for in a third step, and so on.

As these steps go on, the drive from the increase in % is given by the geometrical
series:

k—1
Adsiept = kodw [ [ @1 Patep; (0)), (4.70)
j=0

where we identify Pgep0 = Pyy. The convergence of the series to zero is guaranteed
if Pyep;(0) < 1/(zk1), Vj. At this point it is enough to assume that this condition
is fulfilled at all times. In the next chapter we study another model for which this
condition may be violated at some times, there, we discuss this issue.

The general set of equations for the Pyepy’s is a closed form since Pgepr only
depends on the previous Pyepj, (j < k). Denoting s = stepk the internal time of the
avalanche in terms of steps, we can write the evolution as:

OF 1 =8PS(5)+P(0)—g(k°ik‘) @.71)
ds Adgepr 90 S kot ke '

15By definition, g1 (§)dd = g(z)dz.

19The average jump size of any finite number of jumps is not z, so this expression should be
puzzling. However, we work with P (0), i.e. we work in the infinite system size limit. In this limit
an infinitesimal fraction of sites that jump corresponds to infinitely many sites, so that the average
jump is exactly z.
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This evolution stops either when Pyepr (0) = 0 (hence Adgepr+1 = 0), or when the
r.h.s of (Eq.4.71) is zero. If Pyepr(0) = 0, some additional driving (increase in w)
will eventually lead to P, (0) > O at ulterior times. Upon successive increases of
w, (Eq.4.71) will be iterated again and again, each time with a renewed initial drive
kodw: we will see that this lets the distribution P (9) flow to its fixed point, where the
r.h.s of (Eq.4.71) cancels. We now study this case, i.e. the cancellation of the r.h.s of
(Eq.4.71).

Integration of the Dynamics As we explained, (Eq.4.71) has a fixed point P, (d)
that is found when:

0
8P* g(ko-‘rkl)
) + Po(0)————= = 0. 4.72
% (0) + P«(0) ko + k1 4.72)

This equation can easily be integrated, with P, (0) computed from the normalization
condition!” [ d§P () = 1. This gives:

1-G(—2—
P.(0) = M (4.73)
Z(ko + k1)

where G(z) = [ dz/g(2/). A simple stability analysis shows that the fixed point
is attractive, so that any initial condition converges to it. Moreover, it is possible
to prove that for any given initial condition, there exists a finite w, at which the
distribution reaches the fixed point and remains there for w > w,. This indicates
that the large time dynamics is stationary, as in the 2D case. The expression for the
average stress can be computed explicitly with an integration by parts:

0/ (ko+k1)
o g d
o= f‘“—/ ass 17 80z (4.74)
0 Z(ko + k1)
ko + ki) [2°d 2
_ gt (ko + l)é} 28(2)z @.75)
=
S il (4.76)
27

It is worth to note that the average stress only depends on the first tow moments of
g(2). As the elastic driving with Vo = 0 takes us exactly at the point of depinning
transition, this expression is actually the explicit expression for the critical force
F, that we defined in the constant force setup. We see very well that it is a non
universal quantity. For the reasonable example of an exponentially distributed z
(i.e. for g(z) = e%/%/7), we have for instance o = f® — (ko + k1)Z, so that the
critical force (with kg — 0)is F. = fM — kZ.

17To let the term J d6P(8) appear, one should multiply (4.72) by ¢ and integrate by parts.
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Statistics

Mapping to the Problem of First Crossing For any distribution P(J), we can
compute the probability distribution of the avalanche sizes N (S), for finite values
of the parameters kg, k1, z. To be concrete, we first consider the case where g(z) =
0(z — 7). For a finite system with N sites, the typical configuration {§;} corresponds
to a set of N independent and identically distributed random variables drawn from
P (). Letus sort the set: 69 < d; < - -- < dy—1. When the system becomes unstable
we have by definition 5y = 0. This site jumps to the next well at distance Z, so that all
0;’s are decreased by zk; /N. This will produce at least another jump if 6; < zk;/N.
More generally, the avalanche size S corresponds to the first time that the relation:

7k
Ss_1 < %S < ds 4.77)

is fulfilled.

It is thus important to study the statistics of the §; with i < N. Let us observe
that when N is very large, all these ¢;’s are close to zero, and their distribution
can be approximated with a uniform distribution: 6 < 1 = P(J) ~ P(0) =
const. Within this approximation, the spacings X; = d;4+1 — d; are independent
exponential variables of mean 1/P(0)N and variance 1/(P(0)N )2. We conclude
that the sequence Jy, ..., §; is a random walk with diffusion constant 1/(P (0) N )2
and drift 1/(P(0)N). When it crosses the line of slope zk1 /N, the avalanche is over
(see (Eq.4.77)).

Probability of First Crossing The statistics of S thus corresponds to the problem of
first crossing with 0 of a random walk with diffusion constant D = 1/(P(0)N )2 and
driftd = % - m. For a positive drift, there is a finite probability that this random
walk never crosses 0, which corresponds to an infinite avalanche. For a negative drift,
the time of zero crossing is always finite, and has been computed for the Brownian

motion in [MCO02]. The distribution of the avalanche sizes thus reads:
N(S) ~ §73/2 5= S/25max

D
with Smax = S=0- P(0)zk1) 2 (4.78)

where for simplicity we have neglected the short-scale regularization in the expres-
sion of N (S). If now we replace the choice g(z) = 6(z — z) with a broader function
g(z2), only the diffusion constant changes, thus Spax is the same up to a constant.

We note that the possibility of divergence for the avalanches re-appears in the
expression of Spax, since if P(0) = 1/zkj, it formally diverges. In the stationary
regime found in (Eq.4.73), we have P, (0) = 1/(z(ko + k1)) for any distribution g,
and thus Spax o ((ko + k1)/ ko)? (for any g): this illustrates the universality of the
scaling relations.

Finally let us remark that the results we obtain here by focusing on ¢; coincide
with the results obtained using the mapping to the ABBM model.
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Numerical Integration of the FP Equations
In this simple depinning model, we have the complete analytical solution P, by direct
integration. However if one is interested in the transient dynamics, i.e. in how any
initial configuration leads to the stationary one, the integration of the equations “by
hand” proves very hard. Furthermore, in the model we propose in the next chapter,
the dynamics does not lead to a simple stationary solution, and one is interested in
the complete evolution over time. For these reasons, we present here a scheme for the
numerical integration of the system (Eqgs.4.70 and 4.71) under quasi-static increase
of w.

Let us discretize P(§) with a bin of size . The distribution probability is then a
vector P; (related to P(d) by P; = P(d = ei)) which evolves with the following
rules:

e Driving process: We shift P; of one bin: P; < P,y (physically, € = kodw).
e [Instability check: We compute the weight of unstable sites:

Pinst=€zpi
i<0

If Pt > 0, we perform the Avalanche process.
Else we go back to the Driving process.
e Avalanche process: it is composed by a “jumping sites” and a “driving step”.

— Jumping sites:

g (ei/(ko + k1))

Pi20<_Pi+Pinst k0+k1

Pig <0

— Driving step (Adgep): we shift P; of ngpire = Int[%] bins.

Fig. 4.11 The evolution of

Py, (6) for the depinning 10F s

model when w is increased. & / stationary state

The initial distribution is a i

Gaussian centred in § = 0.4, 8

with standard deviation 0.15, :

and the weight at the left of ol i

0 = 0 cut. P(6) quickly

reaches its stationary form P(9) drive + events
i
of f
050 . f : 0.5
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Pi < Piyngn

Then we perform the Instability check.

This algorithm converges very quickly from any initial configuration to P, () for
any choice of g(z), as is shown in the example of Fig.4.11.

4.4 Is the Depinning Framework Relevant to Friction?

We have described several techniques and results dealing with the depinning transi-
tion in the constant force and elastic driving setups. We gave a short motivation for
the problem, mentioning the context of magnetic domain walls (Barkhausen noise),
yet the relationship between the depinning and friction or seismic faults has been
eluded.

In this section we first present a few variations of the depinning problem, that
received significant attention in the literature. This overview (Sect.4.4.1) outlines
the broad spectrum of situations covered by the depinning transition and the rela-
tive robustness of this universality class. We then discuss how some characteristic
results from this universality class do not compare well with friction experiments or
earthquakes dynamics (Sect.4.4.2). Despite the large spectrum of physics covered
by the depinning universality class, we are forced to acknowledge that friction (and a
fortiori seismic phenomena) cannot be adequately captured by any of the depinning
instances presented.

4.4.1 Depinning: A Robust Universality Class

We have already presented two variants of the depinning problem via the different
forms of driving (constant force and elastic driving), leading to different facets of
the same problem. Here we present other variations that are also in the depinning
universality class. This presentation is not intended to be exhaustive: our aim is to
give an idea of the generality of the depinning framework and define the vocabulary
for the curious reader. Along the lines, we try to show the relationship of the models
with experimental works.
Up to now, our default depinning equation was (Eq.4.5):

mdh(x, 1) = F + ki (Vih) (x, 1) = f¥nlh(x, 1), x].
The most general equation for the depinning problem reads:
nodh(x, 1) = Farivelh(x, 1), 1] + Felasticlh (x, )] + Flnlh(x, 1), x11, ~ (4.79)

where Farive, Felastic, + are some general functionals. We now want to discuss each
of these terms.
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Fig. 4.12 From [GKRO6]. Interface (solid line) and impurities (circles). Filled circles indicate
impurities which contribute to the interface energy. Left Random Bond, the interface energy only
depends on the impurities around it. Right Random Field, the interface energy depends on all the
impurities that have been swept over

Random Bond Versus Random Field

There are two universality classes of disorder: “Random Bond” (RB) and “Random
Field” (RF) (the names come from magnetic realizations of the depinning problem).
The RB kind of disorder corresponds to impurities that directly attract or repel the
interface, while in RF the pinning energy of the interface depends on all the impu-
rities that the interface has swept over see Fig.4.12, [GKRO06]. Denoting 7(z, x) the
microscopic random energy potential associated to the impurities, the corresponding
energy terms (and forces) read:

0
ERB En[h(-xvt)’x] — FRB = a_hn[h(x’t)»x] (480)
h(x,t)
Erp = / dznzy) = Fre=nlhe 0,2 @81)

The impurities at the origin of both kinds generally have positions uncorrelated in
space (typically they follow the uniform law) and correspond to values of the force
distributed over a range of finite width, i.e. it is reasonable to assume that 7(z, x)
is a white noise (and in particular that it has short-range correlations). The crucial
distinction is on the way that these impurities affect the interface, which can lead to
either RB or RF kind of correlations for the disorder force. The functional forms of
the disorder energy correlator R (and the force correlator A = —R” [CGLO00]) are
reviewed in [GKRO06, Gia09].

Up to now we have used the RF kind of disorder, i.e. the correlations of the random
force were short-ranged. This kind of disorder is appropriate e.g. when applying the
depinning transition to the problem of fracture in the tensile mode (Mode I, [BB11]),
where the impurities in the fractured plane still contribute to the total energy of
the system after they broke [ANZ06, BSPOS]. More generally, the random field is
appropriate whenever there is an asymmetry between the half-space that has been
visited (broken, in the context of fracture) and the other one.
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In the static case, i.e. in the absence of an external driving (F' = 0), the equilibrium
properties of the two classes are largely different. However, the dynamics (F' > 0)
of the two classes have been proven [NF93, CGLO00] to be in the same universality
class, with a unique set of exponents characterizing the depinning transition of these
two kinds of disorder. Numerics continue to verify this prediction with increasing
precision, up to recent works [FBK13]. In this thesis we will be interested only in
random field disorder, i.e. in a short-range correlated disorder function for the pinning
force.

Short-Range Versus Long-Range Elasticity

Short-Range Elasticity is fundamentally a short-range process: as atoms form bonds,
each one of them is in the minimum of the energetic potential generated by its
neighbours. At first order, the deviations from this minima are quadratic,'? i.e. the
elastic energy is Eo ~ k(5x)?, where dx is the deviation from the minimum. This
gives an elastic force linear in the deviation from elastic equilibrium and with a
short range. When we put together several atoms on a chain, the interaction of
each one of them with its closest neighbours naturally builds the discrete Laplacian,
V2h; = hj_1 —2hi +h i+1. In the continuum limit, we can write the elastic force as
Fy=kV?h=k 18§h (in higher dimensions the force is still given by a Laplacian).
For many systems, elasticity will naturally be accounted for via this term, and we
may speak of short-range elasticity.

Long-Range However, there are some situations where the cohesion forces are better
accounted for via long-range interactions. In the context of fracture [GR89], the
propagation of the crack front (a rough line) depends on the elastic interactions
over the whole crack plane'® when considering the dynamics of this elastic line,
one should use a long-range elastic interaction as an effective description of the
interactions mediated by the surroundings of the crack front. Similarly, in the wetting
of a (disordered or rough) surface [JdG84, RK02, MRKR04, LWMRO09], the contact
line of a liquid meniscus is affected by the forces from its surroundings, so that
the effective elastic interactions for the line alone are long-ranged. In the seismic
context, long-range elastic interactions within the 2D fault would be an effective
representation of the elastic interactions mediated by the bulk of the half-space (3D
structure). In some magnetic systems, there are also dipolar interactions [Nat83]
which are naturally long-ranged.?’

Let us define precisely the notion of long-range: considering the interface dis-
placements in Fourier space, the total elastic energy of the system is defined as:

18The first non zero development of any function around a local minimum is always quadratic. A
similar argument explains the null hypothesis stating that “fluctuations are Gaussian”.

19precisely, the interactions tend to minimize the overall post-mortem surface.

20Note that even in these systems, the fundamental interaction is mediated by short-range processes
(exchange of photons, etc.), which are (much) more simply accounted for via along-range interaction
kernel. In all cases, we consider systems where the propagation of the interaction (speed of light or
sound) is much faster than the system’s evolution (avalanche velocity).
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k dd PN
Eetasic = = | —L 1q/* Z(q)h(—q). (4.82)
2 2n)d

where ﬁ(q) is the Fourier transform of /2 (x). The crucial point here is that the spectrum
of the kernel scales as ~k1|q|“: for o = 2, we recover the short-range elastic kernel,
and for any o < 2, we have a long-range elasticity. We note that a smaller exponent
« gives a larger importance to the smaller ¢’s in the kernel’s power spectrum, i.e. to
the larger length scales, as expected. In the direct space, the elastic force applied on
the point x can be written (in one dimension):

, (4.83)

OE lasi o)
Faanct) = Edate _ [ g,/ MOZh)

Oh |x — x/|1+a

with a possible alternative being the use of fractional derivatives [ZRKO07]. With
long-range interactions, the exponents of the depinning transition change and depend
continuously on o [TGR98]. However the elastic kernel is still convex in the variable
h, so that the scaling relations hold and the depinning framework is still appropriate.
We recall the general scaling relations here:

L o L S
OK_C’ ﬂ_y(z C)v T_2 d—i—C’

where «, z and ¢ are our “fundamental” exponents. These exponents do change, while
these scaling relations remain the same. The extreme case of infinite range (o = 0)
corresponds to the mean field, fully connected approximation, that we discussed in
Sect. 4.3 (remember that in this case we also have { = 0).

We note that the addition of non-linear (non harmonic) terms breaks the STS
relation and take us into a different universality class (for the dynamics, F > 0). The
example of a quartic term such as E¢jg5ric = f ddxk{ (0,Jt)4 yields the quenched
KPZ universality class [RHK03, KRGKO09] for which we have e.g. ( = 0.63 instead
of 1.25(ind = 1).

VvV =

(4.84)

Eshelby Problem In the field of amorphous plasticity, it is well known that local
plastic events redistribute the stress over long distances via an anisotropic stress
propagator [BL11, MBB11, NRB14]. Indeed, it has been shown from microscopic
models that on average, the long-time equilibrium response yields the results pre-
dicted from the Eshelby inclusion problem [Esh57] (see [PRB14] and references
therein). In the context of seismicity this also seems inappropriate, as earthquakes
seem to entail quadrupolar stress redistributions [Sch02, BC06].

In extensions of the depinning transition framework to amorphous plasticity, this
anisotropic long-ranged kernel is taken into account [TPVR11, BZ13]. Approximat-
ing the effect of the rearrangements of the elastic interface (corresponding to local
plastic events) by a force quadrupole, one expects a four-fold quadrupolar symmetry
for the inhomogeneous part of the stress propagator. The form of this propagator for
an infinite two dimensional medium reads [MBB12]:
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1
G(r,0) = — cos(46), (4.85)
mr
where the stress-strain (o — ¢) relation reads:

Oo(r,t) = uy+ / dr'G(r — el ) 1), (4.86)

with p the shear modulus, 4 the strain rate and 7' refers to the plastic part of the
strain.

However, the non-convexity of this kind of elastic kernel renders several funda-
mental defining properties of the depinning transition invalid: in particular, we no
longer have only forward movements of the “interface”. The universality class thus
changes, and is different from the mean field one [BZ13]. However, these develop-
ments are quite recent and numerous questions remain open.

In this thesis, we focused on the microscopic modelling of the 2D surfaces with
short-range elastic interactions, and the effect of including long-range elasticity (pos-
sibly anisotropic) in our models remains an open question.

Zero Temperature Versus Finite Temperature (Creep)

Consider the addition of temperature, i.e. the addition of a random force 0(x, ¢):

n0dh(x, 1) = F 4+ ki (V2h)(x, 1) + nlh(x, 1), x] + 0(x, 1) (4.87)
with  (0(x1, 11)0(x2, 1)) = 2nok TSP (x1 — x2)6P (11 — 1), (4.88)

where §° denotes the Dirac distribution, F is the driving force and 7 is the tempera-
ture. The addition of temperature means that configurations that would normally be
pinned forever can now overcome small energy barriers, thanks to thermal fluctua-
tions. This phenomenon of escaping local energy minima is called creep. On average,
the thermal fluctuations push the interface in the direction of the force, something
that can generate an avalanche. Thus, the average velocity of the interface v will be
larger than zero even when F < F,. This changes the characteristic curve v(F),
which can be fitted by (see Fig.4.13):

I
o(F) ~ exp (=2 (E<)), (4.89)
kpT \ F

where 1 is the creep exponent and U, some characteristic energy. Strictly speaking,
for any temperature 7 > 0 the transition is lost and we get a simple crossover
[BKR+09] (i.e. no sharp transition even in the macroscopic limit). In this sense, we
see that temperature is relevant. For further discussion on the role of temperature on
interfaces with or without disorder, see [KEC+02, EC02], or [IBKCO09] for the effect
of temperature on the ageing (relaxing) properties of these interfaces.

A discussion and a table of the exponents for the depinning models with RF
or RB disorder, with or without quenched KPZ non linearities and the effect of
temperature on these models is available in [KRGKO09]. However, for many systems
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Fig. 4.13 Effect of the temperature on the depinning transition of an elastic line in a disordered
landscape. Left Adapted from [FBKR13]: the “phase diagram” of the depinning transition, with and
without temperature. Right Focus on the creep regime, from [KRGO5]. Temperature is increasing,
from bottom to top T = 0.24,0.26, ..., 0.42. Markers indicate numerical results and solid lines
the fit with (4.89), with U, and p as fitting parameters. The calculation of the creep exponent 1 can
be performed via a Functional Renormalization Group [CGD98]

the prefactors and the pace of avalanches are such that temperature can be neglected,
in a first approach. In this thesis, we are interested in the approximation of zero
temperature.

4.4.2 Depinning: A Model for Frictional Processes?

There are micro- and mesoscopic arguments for expecting the depinning of an elastic
interface to be related with frictional processes: the random distribution of asperities
may be accounted for via a quenched disorder term, the cohesion forces within each
sliding surface may be represented by elastic interactions and the driving from a side
of one block may be represented by the elastic driving term ko(w — h) (see also
Fig.2.2). These arguments can be debated. Here, we focus on the statistical output
of the models of depinning of elastic interfaces and compare them with observations
in the frictional and seismical contexts.

Context of Friction

Stick-Slip: A Confusion At the macroscopic scale, the slow driving of a solid relative
to another is expected to produce periodic stick-slip (see 2.1.1), either when Vj ~0
or when ko ~ 0.As we explained in Chap. 2, asperities are also expected to perform
“a kind of stick-slip” motion in the sense that they alternate between phases of
contact (~static, stick) and free phases (~dynamic, slip). Even in the seemingly
steady state regime of kinetic friction, there is still this microscopic stick-slip which
occurs locally, characterized by a pseudo-periodic behaviour and finite advances of
the asperities during the slip phases.

In the depinning model, the interface rapid motion during the avalanches alternates
with static phases, something which seems reminiscent of stick-slip. However, this
local pinned-unpinned alternation does not depict the expected stick-slip behaviours
observed in friction. In particular, there are two major discrepancies with expected
stick-slip.
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Fig. 4.14 Scatter plot of the average stress restricted to the avalanche area against the avalanche
size S: op (resp. 04) is the stress before (reps. after) the avalanche occurred. We used k1 = 1 and
(from left to right): ko = 0.05, 0.025,0.012, 0.003, 0.001. When kg — 0, the two values op, 04
converge to a common value: the stress drop Ao = op — 04 associated to the avalanches is thus
infinitesimal (in particular for the large avalanches)

First, in friction the duration of the stick phase for a large set of synchronized
asperities following stick-slip is pseudo-periodic, whereas in the elastic model the
waiting times between avalanches (at a single location) are not (the waiting times
for the entire interface between two events is actually exponentially distributed).

Second, the local stress felt by a small section of the interface does not operate a
saw-tooth like pattern as expected in friction. This is due to the random occurrences
of avalanches over time, but also to the fact that a small patch of the system can-
not — macroscopically — accumulate energy over time, as we now show. The typical
energy accumulated by a patch of diameter £ is given by the maximal avalanche size
Smax ~ §d+<, so that local variations of the stress scale as Ao ~ kof‘“‘C (for £ = &).
Since § ~k,, Y 2, this corresponds to a variation per surface area ~ko&¢ ~ k(l)_g/ 2 As
¢ < 2, when kg — O (i.e. at criticality), Ac — 0: the energy released locally by
the largest avalanches is thus infinitesimal (instead of being macroscopic), as can be
seen in Fig.4.14.

Velocity-Weakening In the depinning framework, the stress-velocity curve is
monotonously increasing, and its reciprocal is also monotonous: the driving force
F is always increasing with velocity, i.e. there is no room for velocity-weakening.
Note that this is also true in the finite temperature case.

Ageing of Contact at Rest In the case of the elastic line at exactly zero temperature,
if the driving is stopped (constant force F', or Vj set to zero), nothing happens to
the line once the avalanche is over. On the contrary, at finite temperature there will
be some creep i.e. the interface will move forward without any additional driving
being performed. As the interface moves forward, the stress decreases (decrease
of ko(w — h)) until the interface reaches the metastable states of lowest energy,
i.e. those where h(x) &~ w. This stress decrease is actually qualitatively compatible
with friction observations.
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However, if driving is then restored (Vy > 0), the interface stress will increase
back to its steady state value, without any statistically significant overshoot. This is
unlike what happens in friction, where the stress (static friction force) overshoots
compared to the steady state value.

Seismic Context

Correlations In the depinning model the time distribution of avalanches is essen-
tially poissonian (uncorrelated), whereas in the seismic context main shocks and
aftershocks are strongly correlated over time. There can be no naturally defined
aftershocks in the context of a purely elastic line (without inertia), simply because
there are no characteristic times besides the avalanche inner time scale ~7y and the
driving time scale ~hq/ Vy: aftershocks are impossible to render using purely elastic
(overdamped) models.

Exponents The GR law for the earthquakes magnitude-frequency distribution is
typically considered to be a power-law with an exponent b ~ 1 % 0.25, which
corresponds to 7 = 1 +2/3b ~ 1.7 & 0.2 (see Sect. 3.1 for the full definitions and
historical origins). The mean field value 7 = 3/2 of the depinning is thus just in the
limit of the acceptable range, and the 2D value 7 = 1.26 is definitely out of it.?!

Depinning Is Not a Model for Friction

The conclusion is very clear: although there are a few qualitative similarities between
the depinning of an elastic interface and friction or earthquakes, there are crucial
discrepancies which force us to discard the model of the depinning of an elastic
interface as an appropriate representation of friction (and a fortiori, of seismic faults
dynamics).

4.5 Conclusion: Elastic Depinning is not Friction

We have introduced depinning and presented its most salient features. With sim-
ple scaling arguments, mean field calculations and numerical simulations, we have
clearly stated the defining and characteristic features of the depinning transition. In
this dynamical phase transition between a moving and a static phase, we observe crit-
ical power-law distributions of avalanches and a rough (self-affine) interface. These
features are somewhat reminiscent of frictional processes, where the interfaces in
contact are usually self-affine, and of earthquakes, where the distributions of seismic
events follow power-law distributions.

2More generally, in the depinning problem we have 7 < 1.5 in all dimensions.
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However, despite its wide application spectrum and its robustness to small
changes, the avalanches at the depinning transition do not satisfactorily reproduce the
properties of frictional or seismical processes. Quantitatively the power-law expo-
nents do not match the observed ones, and important qualitative features such as
stick-slip, velocity-weakening or aftershocks do not appear.

In terms of microscopic construction there are several natural correspondences
with seismic faults, but also important discrepancies. A first approximation of the
elastic depinning models is the absence of local ageing mechanisms, a shortcoming
which explains the absence of velocity-weakening, a crucial feature in the genesis
of seismic phenomena. We will see how it is also responsible for the other failures
of the elastic depinning model at describing frictional processes. A second point is
the approximation of overdamped dynamics, which may not be justified for friction.
As we will see in the next chapter, when inertia is included, the depinning transition
can become first-order like [MMPOO, Pre00].

We conclude that the framework of the depinning transition offers a promising
basis for understanding friction and possibly earthquakes, but is a long shot from
providing a definitive answer. Despite representing a broad universality class, the
depinning framework needs to be extended to account for some fundamental mech-
anisms relevant in friction, as the ageing of contacts. This is precisely what we do in
the next chapter.??

References

[ABBMO90] Alessandro, Bruno, Cinzia Beatrice, Giorgio Bertotti, and Arianna Montorsi. 1990.
Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials.
1. Theory. Journal of Applied Physics 68(6): 2901-2907.
[ANZ06] Alava, Mikko J., Phani K.V.V. Nukala, and Stefano Zapperi. 2006. Statistical models
of fracture. Advances in Physics 55(3—4): 349—476.
[ASA+13] Atis, Severine, Sandeep Saha, Harold Auradou, Dominique Salin, and Laurent Talon.
2013. Autocatalytic reaction fronts inside a porous medium of glass spheres. Physical
Review Letters 110(14): 148301.
[BB11] Bonamy, Daniel, and Elisabeth Bouchaud. 2011. Failure of heterogeneous materials:
A dynamic phase transition? Physics Reports 498(1): 1-44.
[BCO6] Bhattacharyya, Pratip, and Bikas K Chakrabarti. 2006. Modelling critical and
catastrophic phenomena in geoscience. A statistical physics approach. Berlin:
Springer.
[BIM+10] Bou Malham, I., N. Jarrige, J. Martin, N. Rakotomalala, and L. Talon. 2010. Lock-
exchange experiments with an autocatalytic reaction front. The Journal of chemical
physics 133(24): 244505.
[BKR+09] Bustingorry, S., A.B. Kolton, A. Rosso, W. Krauth, and T. Giamarchi. 2009. Thermal
effects in the dynamics of disordered elastic systems. Physica B: Condensed Matter
404(3-4): 444-446.

22From now on, the term “depinning” will refer to the main case studied in this chapter except when
explicitly stated otherwise. See Appendix A.2.1 for a complete list of the choices we made in our
model of elastic interface.



References

[BL11]

[BSPO8]

[BZ13]
[CGDY8]
[CGLOO]

[CN98]
[DLW12]

[DLW13]

[Dob13]

[DZ00]

[DZ06]

[EC02]

[Esh57]

[FBK13]

[FBKR13]

[FH85]
[Fis98]
[Gia09]

[GKRO6]

[GR89]
[Gra94]

[HK75]

109

Barrat, J.L., and Anael Lemaitre. 201 1. Heterogeneities in amorphous systems under
shear. In Dynamical heterogeneities in glasses, colloids, and granular media, ed.
Ludovic Berthier, Giulio Biroli, Jean-Philippe Bouchaud, Luca Cipelletti, and Wim
van Saarloos. Oxford: Oxford University Press.

Bonamy, D., S. Santucci, and L. Ponson. 2008. Crackling dynamics in material failure
as the signature of a self-organized dynamic phase transition. Physical Review Letters
101(4): 45501.

Budrikis, Zoe, and Stefano Zapperi. 2013. Avalanche localization and crossover scal-
ing in amorphous plasticity. Physical Review E 88(6): 62403.

Chauve, P., T. Giamarchi, and P. Le Doussal. 1998. Creep via dynamical functional
renormalization group. Europhysics Letters (EPL) 44(1): 110-115. October.
Chauve, Pascal, Thierry Giamarchi, and Pierre Le Doussal. 2000. Creep and depin-
ning in disordered media. Physical Review B 62(10): 6241-6267.

Caroli, C., and P. Nozieres. 1998. Hysteresis and elastic interactions of microasperi-
ties in dry friction. The European Physical Journal B 4(2): 233-246. August.
Dobrinevski, Alexander, Pierre Le Doussal, and Kay Jorg Wiese. 2012. Nonstationary
essandro-Beatrice-Bertotti-Montorsi model. Physical Review E 85(3): 031105.
Dobrinevski, Alexander, Pierre Le Doussal, and Kay Jorg Wiese. 2013. Statistics of
avalanches with relaxation and Barkhausen noise: A solvable model. Physical Review
E 88(3): 032106.

Dobrinevski, Alexander, 2013. Field theory of disordered systems— Avalanches of
an elastic interface in a random medium. Ph.D thesis, Ecole Normale Supérieure
Durin, Gianfranco, and Stefano Zapperi. 2000. Scaling exponents for barkhausen
avalanches in polycrystalline and amorphous ferromagnets. Physical Review Letters
84(20): 4705-4708.

Durin, Gianfranco, and Stefano Zapperi. 2006. The role of stationarity in magnetic
crackling noise. Journal of Statistical Mechanics: Theory and Experiment 2006(01):
P01002-P01002.

Exartier, Raphaél, and Leticia Cugliandolo. 2002. Slow relaxations and history depen-
dence of the transport properties of layered superconductors. Physical Review B
66(1): 12517.

Eshelby, J.D. 1957. The determination of the elastic field of an ellipsoidal inclusion,
and related problems. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 241(1226): 376-396.

Ferrero, E., S. Bustingorry, and A. Kolton. 2013. Nonsteady relaxation and critical
exponents at the depinning transition. Physical Review E 87(3): 32122.

Ferrero, Ezequiel E., Sebastian Bustingorry, Alejandro B. Kolton, and Alberto Rosso.
2013. Numerical approaches on driven elastic interfaces in random media. Comptes
Rendus Physique 14(8): 641-650.

Fisher, Daniel, and David Huse. 1985. Wetting transitions: A functional
renormalization-group approach. Physical Review B 32(1): 247-256.

Fisher, Daniel S. 1998. Collective transport in random media: From superconductors
to earthquakes. Physics Reports 301(1-3): 113-150.

Giamarchi, T. 2009. Disordered Elastic Media. Encyclopedia of complexity and sys-
tems science, 2019-2038. Berlin: Springer.

Giamarchi, T., A.B. Kolton, and A. Rosso. 2006. Dynamics of disordered elastic
systems. In Jamming, yielding, and irreversible deformation in condensed matter,
ed. M.Carmen Miguel, and Miguel Rubi, 91-108. Berlin: Springer.

Gao, Huajian, and James R. Rice. 1989. A first-order perturbation analysis of crack
trapping by arrays of obstacles. Journal of Applied Mechanics 56(4): 828.
Grassberger, Peter. 1994. Efficient large-scale simulations of a uniformly driven sys-
tem. Physical Review E 49(3): 2436-2444.

Hilzinger, H.R., and H. Kronmiiller. 1975. Statistical theory of the pinning of Bloch
walls by randomly distributed defects. Journal of Magnetism and Magnetic Materials
2(1-3): 11-17.



110

[IBKCO09]

[JdG84]
[Kar98]

[KEC+02]

[KRGO5]

[KRGKO09]

[Lab70]
[LO79]

[LWO09]

[LWCO02]

[LWMRO09]

[MO04]

[MBBI11]

[MBB12]

[MCO02]

[MLAOS]

[MMO9]

[MMPO0]

[MMZ05]

[MMZZ04a]

[MMZZ04b]

4 Elastic Interfaces Driven in Disordered Media

Iguain, José, Sebastian Bustingorry, Alejandro Kolton, and Leticia Cugliandolo.
2009. Growing correlations and aging of an elastic line in arandom potential. Physical
Review B 80(9): 094201.

Joanny, J.F,, and P.G. de Gennes. 1984. A model for contact angle hysteresis. The
Journal of Chemical Physics 81(1): 552.

Kardar, Mehran. 1998. Nonequilibrium dynamics of interfaces and lines. Physics
Reports 301(1-3): 85-112.

Kolton, Alejandro, Raphaél Exartier, Leticia Cugliandolo, Daniel Dominguez, and
NGrg nbech Jensen. 2002. Effective temperature in driven vortex lattices with random
pinning. Physical Review Letters 89(22): 227001.

Kolton, Alejandro, Alberto Rosso, and Thierry Giamarchi. 2005. Creep motion of an
elastic string in a random potential. Physical Review Letters 94(4): 047002.

Kolton, Alejandro, Alberto Rosso, Thierry Giamarchi, and Werner Krauth. 2009.
Creep dynamics of elastic manifolds via exact transition pathways. Physical Review
B 79(18): 184207.

Labusch, R. 1970. A statistical theory of solid solution hardening. Physica Status
Solidi (b) 41(2): 659-669.

Larkin, AL, and YuN Ovchinnikov. 1979. Pinning in type Il superconductors. Journal
of Low Temperature Physics 34(3—4): 409-428.

Le Doussal, Pierre, and Kay Jorg Wiese. 2009. Driven particle in a random landscape:
Disorder correlator, avalanche distribution, and extreme value statistics of records.
Physical Review E 79(5): 051105.

Le Doussal, Pierre, Kay Wiese, and Pascal Chauve. 2002. Two-loop functional renor-
malization group theory of the depinning transition. Physical Review B 66(17):
174201.

Le Doussal, P., K.J. Wiese, S. Moulinet, and E. Rolley. 2009. Height fluctuations of
a contact line: A direct measurement of the renormalized disorder correlator. EPL
(Europhysics Letters) 87(5): 56001.

Miiser, M.H. 2004. Structural lubricity: Role of dimension and symmetry. Euro-
physics Letters (EPL) 66(1): 97-103.

Martens, Kirsten, Lydéric Bocquet, and Jean-Louis Barrat. 2011. Connecting diffu-
sion and dynamical heterogeneities in actively deformed amorphous systems. Phys-
ical Review Letters 106(15): 156001.

Martens, Kirsten, Lydéric Bocquet, and Jean-louis Barrat. 2012. Spontaneous forma-
tion of permanent shear bands in a mesoscopic model of flowing disordered matter.
Soft Matter 8(15): 4197.

Majumdar, Satya, and Alain Comtet. 2002. Exact asymptotic results for persistence
in the Sinai model with arbitrary drift. Physical Review E 66(6): 061105.

Miguel, M.Carmen, L. Laurson, and M.J. Alava. 2008. Material yielding and irre-
versible deformation mediated by dislocation motion. The European Physical Journal
B 64(3-4): 443-450.

Moretti, Paolo, and M-Carmen Miguel. 2009. Irreversible flow of vortex matter:
Polycrystal and amorphous phases. Physical Review B 80(22): 224513.

Marchetti, M.C., A.A. Middleton, and Thomas Prellberg. 2000. Viscoelastic depin-
ning of driven systems: Mean-field plastic scallops. Physical Review Letters 85(5):
1104-1107.

Moretti, Paolo, M-Carmen Miguel, and Stefano Zapperi. 2005. Grain boundaries in
vortex matter. Physical Review B 72(1): 014505.

Moretti, Paolo, M-Carmen Miguel, Michael Zaiser, and Stefano Zapperi. 2004.
Depinning transition of dislocation assemblies: Pileups and low-angle grain bound-
aries. Physical Review B 69(21): 214103.

Moretti, Paolo, M-Carmen Miguel, Michael Zaiser, and Stefano Zapperi. 2004.
Growth of a vortex polycrystal in type II superconductors. Physical Review Letters
92(25): 257004.



References

[MMZZ05]

[MRO6]

[MRKRO04]

[MSR73]
[MZ06]
[Nat83]
[NF93]

[NRB14]

[Pol03]
[PRB14]
[Pre00]
[PT99]
[RHKO03]
[RK02]

[RLWO7]

[RLWO09]

[SAST13]

[Sch02]
[Sin83]

[TGR98]

[TPVR11]

[VMU+13]

111

Moretti, Paolo, M-Carmen Miguel, Michael Zaiser Stefano Zapperi. 2005. Plasticity
and grain boundary motion in vortex matter. In International conference on Statistical
Mechanics of Plasticity and Related Instabilities.

Miguel, M.Carmen, and Miguel Rubi. 2006. Jamming, yielding, and irreversible
deformation in condensed matter, vol. 688., Lecture Notes in Physics Berlin:
Springer.

Moulinet, Sébastien, Alberto Rosso, Werner Krauth, and Etienne Rolley. 2004. Width
distribution of contact lines on a disordered substrate. Physical Review E 69(3):
35103.

Martin, P., E. Siggia, and H. Rose. 1973. Statistical dynamics of classical systems.
Physical Review A 8(1): 423-437.

Miguel, M-Carmen, and Stefano Zapperi. 2006. Materials science. Fluctuations in
plasticity at the microscale. Science (New York, N.Y.) 312(5777): 1149-1150.
Nattermann, T. 1983. The incommensurate-commensurate transition in a random-
field model. Journal of Physics C: Solid State Physics 16(21): 4113.

Narayan, Onuttom, and Daniel Fisher. 1993. Threshold critical dynamics of driven
interfaces in random media. Physical Review B 48(10): 7030-7042.

Nicolas, Alexandre, Joerg Rottler, and Jean-louis Barrat. 2014. Spatiotemporal cor-
relations between plastic events in the shear flow of athermal amorphous solids. Arxiv
Preprint pages 1-11.

Polonyi, Janos. 2003. Lectures on the functional renormalization group method. Cen-
tral European Journal of Physics 1(1): 1-71.

Puosi, F., J. Rottler, and J.-L. Barrat. 2014. Time-dependent elastic response to a local
shear transformation in amorphous solids. Physical Review E 89(4): 042302.
Prellberg, Thomas. 2000. Depinning in Driven Viscoelastic Media with Disorder: A
Dynamical Phase Transition.

Persson, B.N.J., and E. Tosatti. 1999. Theory of friction: elastic coherence length and
earthquake dynamics. Solid State Communications 109(12): 739-744.

Rosso, Alberto, Alexander Hartmann, and Werner Krauth. 2003. Depinning of elastic
manifolds. Physical Review E 67(2): 021602.

Rosso, Alberto, and Werner Krauth. 2002. Roughness at the depinning threshold for
a long-range elastic string. Physical Review E 65(2): 25101.

Rosso, Alberto, Pierre Le Doussal, and Kay Wiese. 2007. Numerical calculation of
the functional renormalization group fixed-point functions at the depinning transition.
Physical Review B 75(22): 2-5.

Rosso, Alberto, Pierre Le Doussal, and Kay Wiese. 2009. Avalanche-size distribution
at the depinning transition: A numerical test of the theory. Physical Review B 80(14):
144204.

Saha, Sandeep, Severine Atis, Dominique Salin, and Laurent Talon. 2013. Phase
diagram of sustained wave fronts opposing the flow in disordered porous media. EPL
(Europhysics Letters) 101(3): 38003.

Scholz, C.H. 2002. The mechanics of earthquakes and faulting, 2nd ed. Cambridge:
Cambridge University Press.

Sinai, Ya G. 1983. The limiting behavior of a one-dimensional random walk in a
random medium. Theory of Probability and Its Applications 27(2): 256-268.
Tanguy, Anne, Matthieu Gounelle, and Stéphane Roux. 1998. From individual to
collective pinning: Effect of long-range elastic interactions. Physical Review E 58(2):
1577-1590.

Talamali, Mehdi, Viljo Petijid, Damien Vandembroucq, and Stéphane Roux. 2011.
Avalanches, precursors, and finite-size fluctuations in a mesoscopic model of amor-
phous plasticity. Physical Review E 84(1): 016115.

Vanossi, Andrea, Nicola Manini, Michael Urbakh, Stefano Zapperi, and Erio Tosatti.
2013. Colloquium: Modeling friction: From nanoscale to mesoscale. Reviews of Mod-
ern Physics 85(2): 529-552.



112 4 Elastic Interfaces Driven in Disordered Media

[ZCDS98] Zapperi, Stefano, Pierre Cizeau, Gianfranco Durin, and H.E. Stanley. 1998. Dynam-
ics of a ferromagnetic domain wall: Avalanches, depinning transition, and the
Barkhausen effect. Physical Review B 58(10): 6353-6366.

[ZMMZ06] Zapperi, Stefano, M Carmen Miguel, Paolo Moretti, and Micheal Zaiser. 2006. Jam-
ming and yielding of dislocations: From crystal plasticity to superconducting vortex
flow, vol. 688, 189-205., Lecture notes in physics Berlin: Springer.

[ZRKO7] Zoia, A., A. Rosso, and M. Kardar. 2007. Fractional Laplacian in bounded domains.
Physical Review E 76(2): 021116.



Chapter 5
Viscoelastic Interfaces Driven

in Disordered Media

As we have seen in the previous chapter, the driven dynamics of heterogeneous
systems often proceeds by random jumps called avalanches, which display scale-
free statistics. This critical out-of-equilibrium behaviour emerges from the com-
petition between internal elastic interactions and interactions with heterogeneities
and is understood in the framework of the depinning transition [Fis98, Kar98]. In
this description of avalanches a trivial dynamics is usually assumed in the inter-
avalanche periods, characterized by a monotonous driving [Fis98, SDMO1]. How-
ever, the inclusion of viscoelastic effects with their own characteristic time scales
brings about novel dynamical features, which we study in this chapter. The existence
of viscoelastic interaction has drastic consequences on the macroscopic behaviour
of the system, as in the context of friction, where it is linked to the increase of static
friction over the time of contact [Die72, Mar98] (see also Sects.2.1.2 and 2.2.3).
Here we show how these relaxation processes generically induce a novel avalanche
dynamics characterized by new critical exponents and bursts of aftershocks strongly
correlated in time and space. Due to its simplicity, the model allows for analytic treat-
ment in mean field, and for extensive numerical simulations in finite dimensions. We
compare our model with the existing literature in two times: we start with models
that are strongly connected to ours, and conclude with a discussion on models from
other contexts, showing that a global trend seems to emerge, showing that our model
may play a role in other areas than friction and its applications.

5.1 Previous Literature

5.1.1 Viscoelastic Interfaces Driven Above the Critical Force

Vortices in type-II superconductors, due to their mutual repulsion, tend to form
a triangular crystal which is pinned and deformed by the presence of impurities
[Abr57]. In presence of a current / the Lorentz forces acting on the magnetic flux
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can eventually depin the vortices. This depinning can either be elastic or include
some degree of plasticity. In the elastic depinning the crystal can be deformed but
moves collectively. In the plastic depinning, topological defects proliferate and only
a fraction of the system moves while the rest remains pinned. This latter case is
observed more frequently in experiments and numerical simulations, where array of
vortices are depinned together and flow through channels. In this regime, the assembly
of vortices can not be described as an elastic solid sliding on a disordered substrate.
Instead, it seems appropriate to extend the elastic depinning framework to include
viscous, fluid-like interactions (see Prellberg Thomas, 2000, Private communication
and Refs. [MMPO00, MS02, Mar05, Mar06]).

In the seminal paper [MMPOO], the “visco” part is described by a memory kernel
C (1), so that the equation of motion for the coarse-grained displacement field u; (¢)
(representing deformations of regions pinned collectively by the disorder) reads:

t
noui (t) = V2 (/ dsC(z —s)u,-(s)) + F + fi(u;) (5.1)
o .

1

where f;(u;) is the disorder function. The first term in the r.h.s. is the viscoelastic
interaction force felt by the interface at the position i. For C(t — s) = (¢t — s), it
reduces to a purely viscous force V2ii;, corresponding to a purely fluid-like dynamics.
For C(t — s) = const, it reduces to a purely elastic force V2u; (1), i.e. we come back
to elastic depinning. For C(t — 5) = pe" ~9)#/M it corresponds to an interaction of
the “Maxwell” type, discussed in Sect.5.2.1.

The mean field case is studied via the fully-connected limit, in which both the vis-
cous and the elastic parts of the interactions become of infinite range. The analytical
results are obtained under the assumption of a constant average velocity v = >, i;.
Using the exponential kernel C(t — s) = pue ="/« with 7, an effective viscosity
(or friction coefficient), they find a self-consistency condition relating the average
velocity v to the driving force F. For sufficiently large values of 1, there are several
solutions to this condition, i.e. several v are compatible with a given driving force
F. This is interpreted as the possibility of an hysteresis for the force-velocity curve,
which is actually also observed in numerical simulations (where the constraint of
constant v is relaxed). See Fig.5.1 for a comparison of the analytical and numerical
response curves v(F).

The main conclusion that can be drawn from this study is that the depinning
of elastic and viscoelastic interfaces in disordered media differ significantly in the
mean field (and thus probably also in finite dimensions). However, the analytical
studies on viscoelastic interfaces are done in the constant force setup, where the
focus is generally on the velocity-force relationship instead of avalanches. Some of
the results from [MMPOO] can be compared with those presented in [FODS10],
where molecular dynamics simulations (of two-dimensional vortex lattices) are
performed.
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Fig. 5.1 From [MMPO0O]: the hysteretic depinning. In the depinned regime (v > 0), the (spatially)
averaged velocity is always positive. In the numerics, the force F' is slowly increased at first, and v
switches to the upper branch around F = 0.205. When F is slowly decreased, v switches back to
the lower branch around F & 0.17. There is thus a range of values of F' (& [0.17, 0.205]) for which
v can take two values, depending on the system previous history: this is the hysteretic depinning

5.1.2 The Relaxed Olami-Feder-Christensen Model (OF CR)

Aswehave seenin Sect. 3.2.2,p. 61, the OFC* model (equivalent to elastic depinning)
is also an honourable candidate for modelling frictional systems (e.g. tectonic plates),
except for its crucial lack of any ageing mechanism. In order to account for the
slow processes occurring between seismic events (plastic events, water flow, etc.),
a “relaxation mechanism” is introduced, which slowly smooths the stress field o of
the OFC* model over time.

It is natural to ask for a decrease of the stress, as it represents the local energy
density, which can only be minimized by microscopical processes (aside from thermal
fluctuations which are neglected). This approach was followed by Jagla et al. in
[JK10, JaglOa], where an effective equation for the stress variable o; in the inter-
avalanche periods was proposed, in the so-called OFCR model:

— =koVp + RV~<o;. (5.2)
dr

The second term is an effective way of translating the relaxation of the stress due to
microscopical processes. We comment on the effect of this second term in Fig.5.2.
The rules defining the dynamics of the OFCR model are the following:

(1) All the o;’s evolve according to (Eq.5.2) until a block has o; = fith. This can
be due to an increase of the relaxing term or to the drive with rate Vj.

(2) Any block that has 0; = ﬁh slips: all neighbouring blocks each receive an
additional stress «vo; and the o; is set to zero. A new threshold fl.th is drawn from
p. This is done in parallel for all blocks.
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Stress 3 ﬁh

Fig. 5.2 Schematic illustration of the stress relaxation in the OFCR model in one dimension, for
five blocks 1, 2, 3, 4, 5, with kg V) < R. Each square indicates the stress of the corresponding site,
horizontal bars indicate the thresholds fl.‘h. The dashed line indicates the average stress. Left initial
situation. Due to the local nature of the Laplacian operator, the block 4 does not move towards the
average stress, but towards the average of its two neighbours. Right same system observed after
it relaxed for some time. The block 4 went downward, now it goes upwards. In the absence of
aftershocks, the stresses converge to the average value of the stress (dashed line). Here the block 5
is going to meet its threshold, thus causing an aftershock

(3) Repeat Step (2) until 0; < fi‘h, Vi. When this is the case, the avalanche is over
and we may repeat Step (1).

This model and a few variants of the relaxation mechanism (5.2) were stud-
ied in great detail in [JK10, JaglOa, Jagll, AJR12], via numerical simulations.
There, several features were observed, which are in good agreement with earthquakes
phenomenology:

e The presence of aftershocks as side-effects of main shocks (they continue to happen
after a main shock even when driving is stopped).

e A Gutenberg-Richter law, with an exponent b ~ 1.

e The Omori law of aftershocks decay with an exponent p ~ 1.1.

e The presence of a seismic cycle (in the two dimensional system) [AJR12].

A model of elastic material with a somehow similar relaxation mechanism was
applied to study the evolution of the contact area of solids at rest in [Jag10b].

There have been a study done in parallel with ours, where the effect of the relax-
ation of the contacts was studied analytically in mean field in [BP13].There, the
focus was on the limited range of applicability of the GR law (which applies only
for “small earthquakes”).

These results indicate that the general philosophy of the model contains an element
essential to the dynamics of seismic faults and maybe more generally of frictional
processes. However, there are limitations to this approach. Due to the formulation of
the problem in terms of a cellular automaton, the physical interpretation of the model
is difficult: the relaxation mechanism is merely an effective way of accounting for
many microscopical processes, all reduced to a single parameter R. Consequently,
the respective roles of the various microscopical processes at play in friction (as
plastic yielding of asperities, etc.) can hardly be sorted out in the model. Another
important limitation due to the very formulation of the model is that a field theoretic
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treatment, or even a simple mean field description is not easily obtained for this
cellular automaton describing the evolution of a single field o.

In this thesis, we tackle these issues by studying a variant of the depinning
model which includes a “relaxation mechanism” inspired from the OFCR model
(see Sect.5.2). The model is defined by continuum evolution equations of a micro-
scopically well defined viscoelastic interface, which has a natural interpretation of
its own, and can be studied analytically in the mean field limit.

5.1.3 Compression Experiments and the Avalanche Oscillator

In a recent paper [PDC+12], a model of depinning with a relaxation mechanism
reminiscent of that used in OFCR was applied to the context of crystalline plasticity.
Due to its pseudo-periodic behaviour in a certain regime, this model was named the
avalanche oscillator.

The avalanche oscillator is built by considering a singe slip plane (two dimensional
structure), in which the motion or slip is characterized by a single scalar variable % (x)
denoting a component of the plastic distortion tensor. When the locally applied stress
o(x) (along the appropriate direction) reaches the random stress barrier to slip oy,
the system slips with a rate proportional to the excess stress ¢ — odis. Thanks to
dislocation hardening and elastic interactions via the crystalline lattice, the stress
decreases during slip, which thus eventually stops. Adapting some of the notations
from [PDC+12] to ours, the evolution for the slip 4 can be written:

oh ox)\" 1
g = noD (—) O (x)) + — (0 (x) — 04is(x)) O (0(x) — 04is(x)) ,
t i 7
(5.3)
with o(x) = ko(Vot — h) + k1 G (h)
(5.4)

where typically only n = 1is used, p is the shear modulus, ® the Heaviside function,
and 1o D plays a role similar to that of the R in OFCR, i.e. it controls the rate of
thermally activated processes responsible for the slow relaxation. The first term
corresponds to a slow relaxation mechanism while the second renders the fact that
slip is allowed only beyond a certain stress threshold. The local applied stress o (x)
itself depends on 4 via:

o(x) = koVot — koh(x) + / d’x'G(x — xHh(x'), (5.5)

where the first term comes from the externally applied stress (uniform), the sec-
ond from local dislocation hardening, and the last accounts for long-range elastic
interactions (see [PDC+12] for more details on the kernel G).
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Fig. 5.3 Adapted from [PDC+12]. Bursts of activity in the slow compression of micro-crystals.
Left Experimental measurements. The average avalanche size (S) is strongly dependent upon the
strain rate  (for (S) the average is taken over small time windows of 400 s). At low strain rate
of 4 = 1070 s7! the activity is mostly concentrated in short, quasi periodic bursts. Right results
from simulations, which very well reproduce the almost periodic behaviour. § is the time unit of
the simulation

The novelty lies in the relaxation term (first term in the r.h.s. of Sect.5.4), which
slowly increases the slip in the inter-avalanche periods, but only when the stress is
positive.! To implement the two competing time scales associated to relaxation (slow
process) and avalanches (fast process), the formulation of the model relies on the
Heaviside ® function (of the second term), which is an elegant reformulation of the
cellular automaton presentation.

The numerical integration of this model compares well with the experiments of
compression of Nickel micro-crystals, also reported in [PDC+12]. In particular, at
small strain rates they observe avalanches distributions with a larger exponent 7,
accompanied by periodic bursts of very intense activity, as measured in experiments
(see Fig.5.3). This model (and its results) was inspirational for this thesis: we will
come back to it later on.

5.2 A Viscoelastic Interface in Disordered Medium

5.2.1 Physical Motivations for Viscoelastic Interactions

As we pointed out in the previous chapter, the framework of the depinning transition
offers a promising basis for understanding friction and possibly earthquakes, but is
far from providing a definitive answer. Here we use the depinning terminology to
discuss the inclusion of additional microscopic effects.

In Chap. 2, we showed that the slow ageing of junctions is the microscopic mecha-
nism at the origin of several effects: velocity-weakening, the increase of static friction
at rest and more generally the Rate- and state-dependent friction laws (RSF). The
local increase of adherence over time (under constant external constraints) is difficult
to characterize precisely, but roughly corresponds to a slow increase of the contact
strength—at the junctions—over time. As this variation only applies to the asperities
which are actually in contact, using a time-dependent disorder force is not adequate:

I'This constraint is chosen mainly for numerical purposes, it prevents the slip to decrease during
relaxation. The authors show that this choice does not qualitatively affects the output of the model.
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it would make the disorder evolve even in the areas not in contact, which may cor-
respond to the nucleation of new contact points (which is not the main mechanism
of contact ageing).

A first alternative to strengthening the disorder is to introduce a “relaxation mech-
anism” that slowly weakens the only local force competing with the disorder, i.e. the
elastic interaction. The importance of local relaxation mechanisms in fault dynam-
ics was pointed out in [JaglOa, JK10, AJR12] but in these works relaxation was
introduced with ad-hoc rules, in a cellular automata fashion (OFCR model).

In this thesis we study the continuum evolution equations of a microscopically
well defined mechanical model that allows for a slow relaxation of the interface. The
local ageing is modelled via an elemental velocity-dependent term (a “dashpot™),
which naturally accounts for the creep plasticity occurring at the contact points.

Viscoelasticity: Two Techniques

Dashpots and Springs The notion of dashpot is at the core of our viscoelastic model.
Unlike springs which naturally represent elastic? interactions inside a solid, dash-
pots provide an effective representation of the various interactions that are velocity-
dependent rather than position-dependent, as e.g. in liquids. They represent the sim-
plest form of velocity dependence at the mesoscopic level. The force acting on a
point of coordinates /; linked via a dashpot (resp. a spring) to a point of coordinates
hiy1 is given by:

. . 0
Faashpot(hi+1 —> hi) = ny(hiv1 — i) = Uua(hwrl —hy), (5.6)
Fopring(hiv+1 — hi) = k(hiy1 — hy), (5.7

where 1), is a constant homogeneous to a viscosity (force/velocity or kgs™!) and k
is a stiffness (force/length or kg s~2). Combined with springs, dashpots can easily
provide a system with a form of memory.

The Memory Kernel Approach An alternative to using springs and dashpots is to
introduce a memory kernel. One considers the force deriving from a general kernel
C () coupling the velocities h = O h:

t
Fiemel = /0 C(t —5) (hip1(s) — hi(s)) ds. (5.8)

This coupling is non-local in time, so that the “memory” aspect of dashpot models
is immediately apparent. The only constraint is that the coupling must have a finite
first moment, i.e. fooo dsC(s) = n, < oo.

2In the regime of interest here, the atomic interactions are just deviations from an equilibrium
position and the first non-trivial term in the Taylor expansion is the second order (quadratic) term.
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One of the most simple choices is the exponential decay: C (1) = koe K2/ which
is the form used in [MMPOO]. More generally, most simple mechanical models built
with springs and dashpots can be expressed via memory kernels C(¢). The reciprocal
is false: not all memory kernels can be expressed as simple mechanical models
involving only a finite number of springs and dashpots. In this thesis, we favour
the use of mechanical circuits, as they represent the most minimal models possible
and give a clear intuition of the microscopic physics in the system. We presented
the memory kernel approach for completeness and to improve the readability of the
literature. We give two examples of memory kernels in the following.

Solids, Liquids and Viscoelastic Matter

Elastic Solid A simple model of solid elasticity is provided by a simple spring. We
do not detail this simple yet fundamental case here, since the harmonic oscillator has
already been well studied.

Maxwell Fluid Consider the Maxwell model, a simple model for viscoelastic mate-
rials, as depicted in Fig. 5.4 (top). Denoting X = h;4| — h; the total length of some
material, we study its response to a finite step in the imposed strain . This response
can be computed by solving first-order differential equations (see (5.11 and 5.10),
for the method of derivation), here we provide their solution in Fig.5.4.

There is no restoring force in this model: any imposed strain induces a stress which
eventually relaxes to zero, with the final configuration losing all memory of its initial
state. Thus, formally, we are modelling a viscous fluid rather than a solid. We also
see in this example that dashpots react as rigid bars to high frequency constraints
(frequencies higher than ~k,/n,) but dissipate the low frequency inputs. Over a
short observation time scale, a Maxwell fluid with small k3 /7,, will react essentially
as a solid. An example of material that we may model (at first approximation) using
the Maxwell model is honey: the time scale of relaxation is typically 1-10s, and
strongly depends on temperature. Note also that a Maxwell element can be elongated
indefinitely: since stress can be fully relaxed, the energy needed to impose a finite

U elongation stress o = kao(X —U)
«—> -
ok ol TE 1 u
0 U € STk
koe I R
— 2 >
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Fig. 5.4 Maxwell model for viscoelastic material, or Maxwell fluid. A spring k» is in series with a
dashpot 1), (left). Centre keeping h; fixed, the position of /; is submitted to a step increase by €,
and the (ideal) spring instantly adapts (is elongated by £). On a characteristic time scale ~,/ k2,
the length U = ¢; — h; adapts to the strain and the dashpot dissipates the stress stored in the spring
ko (right). Another step of decreasing elongation X is applied at a later time and results in a similar
behaviour (step variation followed by an exponential decay of the stress)
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velocity to the point /;41 grows only linearly with time. This is actually the case in
[MMPOO0], where the regime probed is that of finite velocity, or “steady shear” (see
Sect.5.1.1 and references therein).

The memory kernel C(r) = kye™"*2/" produces Maxwellian dynamics: to prove
it, we consider the same step increase of X (1) = h;41 — h; as in Fig.5.4. This
corresponds to a Dirac distribution for the velocity: l'z,'ﬂ(s) — fzi(s) =X (s) =
£6P (s — to). The kernel response is Fiemel = ckae 0%/l for t > £y and zero
before. This is exactly the response of the Maxwellian model presented earlier. As
the force Fiemel 1S linear in the field X (1), we may consider any input X has a sum
of step functions (Heaviside functions) and the total response will be the sum of the
step responses, so that this kernel and the microscopic Maxwell model introduced
above yield the same physics.

Standard Linear Solid (SLS) As we are interested in modelling a solid, we want
to include a restoring force which may bring back the system closer to its original
position (under a fixed stress) or which may retain some stress (at imposed strain),
for any observation time scale. This is done in the SLS model, where an additional
spring ki is set in parallel to the Maxwell model: denoting X = h;; — h; the total
length of an SLS element, we study its response to a finite step in the imposed strain
ein Fig.5.5.

Note that an SLS element always keeps some memory of its initial state: part
of the strain imposed (k;¢) is never forgotten, thanks to the restoring force induced
by k1. As for the Maxwell material, the system reacts rigidly to high frequency
constraints (frequencies higher than ~k» /7, ). However, the low frequency inputs are
not necessarily fully dissipated. In particular, an SLS element can not be elongated
indefinitely: since stress can not be fully relaxed, the energy needed to impose a
finite velocity to the point /; 41 scales as the square of the displacement (for large
displacements).

To recover the SLS model from a memory kernel, we use the combination:
C(t —s) = ki + kpe~"k2/M_The proof is similar to that of the Maxwell case: we

elongation stress o = k(X — Xo) + ko(X = U)

kq | P
< - R time N % ke ﬁ:
Fig. 5.5 Standard Linear Solid model (SLS) for a viscoelastic material. A spring k, is in series
with a dashpot 7,, and in parallel with a spring k| (fop). Middle keeping h; fixed and moving £,
by ¢, the (ideal) springs k1, ko instantly adapt (are elongated by €). On a characteristic time scale
~1y/ ko, the length U = ¢; — h; adapts to the strain and the dashpot dissipates the stress stored in
the spring k2, i.e. 0o = ko(X — U). We note X the equilibrium elongation for the spring k. The
stress o1 = k1 (X — X() contained in k| cannot be dissipated: it provides the system with a memory

of its initial configuration. Another step of decreasing elongation X is applied at a later time and
results in a similar behaviour. Note that the stress that was stored in k is instantly recovered
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decompose any input strain as a sum of step functions, and observe that their response
is that of this memory kernel. Note that in the mechanical perspective (springs and
dashpots), this model is obtained by the addition of a single additional degree of
freedom, which is the most minimal choice we can think of.

Origin of Viscoelastic Interactions: Plastic Creep Since we use the SLS model as
the elemental internal interaction of our interface, we now give some idea about its
microscopic origins. For materials under stress that are close to their limit of elasticity,
small plastic events occur, which correspond to local rearrangements of the atoms
for amorphous materials, and to dislocations motion for crystalline structures. These
rearrangements allow to locally release stress while loading the neighbouring region,
with an overall decrease of stress due to the greater satisfaction of constraints in the
final configuration (and some dissipation). Here we only mention a simple activation
theory, but the study of (crystalline and amorphous) plasticity is a field in itself
[BL11, MR06, MZ06, ABC+02, ZMMZ06, MLAOS].

During a rearrangement, the stress constraints are badly satisfied, so that there is
an energy barrier that prevents plastic events. Thanks to thermal fluctuations, this
barrier can be overcome, with a rate given by an Arrhenius law:

Eq
Rate o< exp (— T ) , (5.9)
B

where the height of the energy barrier is also called the activation energy, E,. This
Rate corresponds to the relaxation time scale 7, /k> = 7, mentioned above. This
relation between time scales and temperature allows to model [Lub08] the increasing
deformation occurring under constant stress known as creep. In this sense, our model
of a viscoelastic interface will depend on temperature. Still, we will use the depinning
formalism in its zero temperature limit, as the term 6(x, ) of the depinning equation
does not properly account for this viscoplastic creep. This kind of macroscopic
behaviour is often referred to as viscoplasticity rather than viscoelasticity, however
in what follows we will refer to our model as viscoelastic rather than viscoplastic, in
order to remember that it results from a combination of viscous and elastic elements.

5.2.2 Derivation of the Equations of Motion

Inspired by some of these previous works and by my collaboration with E.A. Jagla
and Alberto Rosso, I designed the model that we study in this chapter.® Intuitively,
our model corresponds to replacing the purely elastic interface of depinning with
a viscoelastic one (using the SLS model), thus accounting for some irreversible
processes (local plastic events) occurring at the micron scale (we give more details

3To be precise I initially designed another model and from it we defined the one presented here.
This other model (with “Laplacian relaxation”) has a big physical advantage and a big numerical
disadvantage compared to the present one, it is discussed in Sect.5.2.3.
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about the microscopical interpretation of viscoelasticity in Sect.5.2.1). The model
we use for viscoelasticity is a quite common and general phenomenological model
called the “Standard Linear Solid” (SLS). We now present a few insights about this
model.

Continuous Equations of Motion In the previous chapter, we presented the original
depinning model (of a purely elastic interface) in terms of a mechanical circuit
consisting in blocks connected by springs (in Fig.4.6). This kind of definition via a
sketch allows for an intuitive extension of the model. The model for a viscoelastic
interface (or “depinning with relaxation””) we propose is defined by the mechanical
circuit of Fig. 5.6. We first study the one-dimensional case, as presented in the figure.

The interface is decomposed in blocks of mass m, labelled i and moving along
horizontal rails ;. The action of the dashpot is to resist the change in ¢; — h; via
viscous friction, with a resulting force on h; given by 7,0;(¢; — h;). The blocks
move in a medium with some effective viscosity 1 and we study the overdamped
regime, malzhi <« no:h;. As each block is described by two degrees of freedom #;
and ¢;, the time evolution is governed by two equations. We now provide a pedestrian

1+1

2
. T
i+ 1
z
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hi w hi ®i w

| >
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Fig. 5.6 Mechanical “circuit” or sketch of the one-dimensional elastic interface model (left) and
of the viscoelastic model (right). The interface itself (bold black line) consists in blocks located
at discrete sites i,i + 1, ... (empty squares with location h;, h;41, ...) along the x axis and are
bound together via springs k; in the purely elastic model and a combination of springs (k1, k») and
a dashpot (7)) in the viscoelastic model. In the viscoelastic model the additional (internal) degree
of freedom ¢; is represented by a full square (blue). The driving is performed via springs ko linked
to a common position w (thin purple lines). The disorder force fl.dis (red) for the site i derives from
a disordered energy potential E;ﬁs, which is here simplified as a series of narrow wells separated
by random spacings. The damping (proportional to 7)) is not pictured
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derivation of the equations, for the sake of completeness. The first equation comes
from the force balance on £;:

ndihi =fYnlhi, i1+ ko(w — hy) + ki (hip1 — hi)
+ki(hi—1 — hi) + 0,0 (pi — hi) + ko(di—1 — hy) (5.10)

The second equation is derived from the force balance on ¢;:
0 =ka(hiv1 — &) + mu0i(hi — di) (5.11)

where we assume that the internal degree of freedom ¢; has no mass. Similarly the
force balance on ¢;_ yields:

0 =ka(hi — ¢i—1) + mu0; (hi—1 — pi-1). (5.12)

In order to let the Laplacian term ky(h;+1 — 2h; + h;_1) appear, we introduce the
variable

ui = ¢j —hi +hi—1 — di—1, (5.13)
which represents the elongation of the dashpot elements connected to site i. We inject
(Eq.5.11) into (Eq.5.10) to get rid of the time derivatives, and we subtract (Eq.5.12)
from (Eq.5.11) to obtain (Eq.5.15):

ndih; = fInh;, i1+ ko(w — k) + (ki + ka)(his1 — 2h; + hi_1) — kou;

(5.14)
NuOrui = ka(hiv1 — 2h; + hi—1) — kau;. (5.15)
A more elegant notation using the Laplacian operator V? is:
ndhi = fnlhi, il + ko(w — hi) + k1 Vihi + ka(VEhi — u;)
O = ka(Vihi = up). (5.16)

To generalize this to higher dimensions (on a square lattice), one simply has to
connect each block 4; to its neighbours via viscoelastic elements, using a single ori-
entation per direction. The equations obtained are exactly (Eq. 5.16) if we reinterpret
the label i as referring to d-dimensional space, the Laplacian V? as the d-dimensional
one, and the u; variable as:

d 2d
wi=» (¢ —hj)+ > (hjy—¢p). (5.17)
j=1

jr=d+1
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where indices j denote the d first neighbours, connected via a dashpot followed
by the spring k> (and k; in parallel) and indices j" denote the last d neighbours,
connected via the spring k> followed by a dashpot (and k| in parallel).

Our viscoelastic interface model is described in full generality by the equations
(5.16), so that from now on we forget about the intermediate variables ¢; and consider
the dynamics solely in terms of the principal field # and the auxiliary field u.

Narrow Wells Using the narrows wells representation for the disorder (see Sect. 4.1.1),
we may rewrite (5.16) as a slightly simpler set of evolution equations:

n00rhi = ko(w — hi) — f + ki V2hi + ko (V2hi — u;) (5.18)
NuOu; = ko (V2hi — u;), (5.19)

where the threshold force fl.‘h has some random distribution (e.g. a Gaussian) and
the narrow wells are separated by spacings z with some distribution g(z) with finite
average 7. As previously, we are interested in the case of steady driving, w = Vjt.

Backward Motion In the purely elastic case, there is a Middleton theorem [Mid92]
that guarantees that the interface moves only forward, thanks to the convexity of the
Laplacian operator and the monotonicity of the driving (w = Vpt is an increasing
function of time). In presence of viscoelastic elements, the term —k,u; may decrease
the pulling force over time and the Middleton theorem does not apply: backward
movements of the interface £ are a priori possible.

Let’s study the possibility of backward motion in the narrow wells case. There
should be a backward jump when the sum of the forces on a block exceeds the
threshold force to exit the narrow well in the decreasing z direction: assuming that
the wells have symmetric shape along the z axis, this threshold is simply | — fi‘h|.
Thus, the interface moves backwards (0;4 < 0) when

ko(w — hi) + " + ki V2hi + ka(VZhi — u;) <0, (5.20)

where the important point is the change of sign in front of fith. The stability range
for the site i is thus given by the condition ko(w — h;) + k1 VZh; + ko (V2h; — u;) €
[— fith, fi‘h]. We expect backward movements to be rare, since in general w —h; > 0.

To verify this proposition, we perform the following test, using the narrow wells
disorder. We build an algorithm which, after each increase in w (or change in the
u;’s), sweeps over all sites twice: during the first sweep, the criterion for backward
movements is checked, and backward jumps are performed (in parallel). In the sec-
ond sweep, the criterion for forward movements is checked, and forward jumps are
performed (in parallel). Among the numerous possibilities to implement backward
and forward jumps at the same time, this one is the one which favours the back-
ward jumps the most. Using this algorithm, in all the parameter ranges that we have
explored, we have not detected a single backward jump. The only exception is when
the parameters chosen produce a negative stress (i.e. w < /), an unphysical feature
that appears in particular for large 7 and small fl.dis’s. We discard this exception as it
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is unphysical and vanishes in the limit of small ky’s. The conclusion is that using the
narrow wells disorder, accounting for the possibility of backward movements—or
not—does not affect the dynamics of the viscoelastic model (at all).

More generally, for any choice of disorder these movements are not frequent,
thanks to the biased driving term ko (w — h): there, we have also observed numerically
that the real dynamics yields the same statistical results as the dynamics that allows
only forward movements. In all of the following, we will restrain the dynamics to
forward movements.

Discrete Dynamics (Cellular Automaton) Similarly to the purely elastic case,
within this choice of narrow wells disorder we can reformulate the continuous time
dynamics in terms of a cellular automaton with (partly) discrete behaviour. This is
especially practical in numerical simulations. In a similar spirit as (Eq.4.64), we
introduce the local variable §; which represents the amount of additional stress that
a site can hold before becoming unstable (its “remaining stability range”):

5 = fh—ko(w — hi) — (ki + ko) (V2h); + kau;. (521)
4

Restricting ourselves to forward motion,” the definition of a metastable state
{w, h;, u;, Vi} (also denoted {d;, u;, Vi}) is to fulfil the stability condition:

6 >0, Vi (5.22)

which is reminiscent of the conditions (Eq.4.6) or (Eq.4.35).
The quasi-static (Vo = 07) dynamics is very simple.

1 Increase w until 3i/0; < 0.

2 For all sites i with ; < 0, draw a z from g(z), increase h; by z and draw a new
threshold ﬁh for the site i. This changes ¢§; and its neighbors ;. Repeat until
(Eq.5.22) is fulfilled again.

3 The system is in a new metastable state, so relaxation acts via (Eq.5.19). If at
some point during relaxation we have a site i with §; < 0, go to Step 2. If this
does not happen, i.e. if we reach the state Vi, u; = V2h i, then we are in the fully
relaxed state, go to step 1.

5.2.3 A Model with Laplacian Relaxation

I also studied a variant of our model with “long-range” relaxation (non-local relax-
ation), inspired by some of the relaxation mechanisms studied in [Jagl10a, JK10].
From the mechanical circuit associated to this model (see Fig.5.7), we derive the
equation of motion, which is very much alike (Eq.5.16):

41f we allowed backward motion, it should happen when ¢; > 2 fi‘h, however we discarded such a
possibility earlier.
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i+1

Fig. 5.7 Mechanical circuit of the model of viscoelastic interface with Laplacian relaxation, to be
compared with the elastic and local relaxation models presented in Fig.5.6. It can be interpreted
as representing the viscous interactions between two elastic surfaces, one of them being pulled and
subject to disorder. There is no restoring force (spring in parallel to the dashpots), but the whole
auxiliary field ¢ prevents the distance between the two parts of the “interface” (¢ and &) from
becoming too large, so that we have an effective viscoelasticity similar to that of the SLS model

ndhi = f5nlhi, il + ko(w — hi) + ki Vihi + ka(VEh; — VZuy)
mOiui = ko (Vihi — Vuy), (5.23)

where the variable u; is still the elongation of the dashpot connected to the site i:
u; = ¢; — h;. Thus the only difference is that the u;’s relaxation now involves u;
and its neighbourhood, via the Laplacian term V2u; (which replaces the simple u; of
(Eq.5.16)). Hence, we will refer to this model as that with “Laplacian relaxation”,
that we may oppose to the primary model, with “local relaxation”.

The model with Laplacian relaxation is computationally much more demanding
to simulate in finite dimensions than the local model, due to the non-local nature of
the relaxation step. Thus, in what follows we will primarily report results on the first
model (with local relaxation), and refer to the second one when relevant differences
arise. In the mean field case, we will see that the two models collapse on a single
one, so that all results apply indifferently to both models.

5.2.4 Qualitative Dynamics of the Viscoelastic Interface

The following description of the dynamics is valid in the general case, independently
from the form of disorder chosen (narrow wells or not). It is also qualitatively the
same for the model with Laplacian relaxation. However it is useful to have the narrow
wells approximation in mind, since some things are conceptually simpler in that case.

Three Time Scales The relaxation constant 7, sets a new time scale:

(5.24)
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which is characteristic of the relaxation of the dashpots. It can be compared with two
other time scales:

(1) 7p = z/ Vo, which accounts for the slow increase of the external Drive w.
(i) 0 = mo/ max[ko, k1, k], which is the response time of the position 4 of the
blocks, i.e. the characteristic avalanche duration.

Except when explicitly stated otherwise, in what follows we will assume that the
three time scales are well separated:

70 L Ty L TP (5.25)

Avalanche Dynamics (time scale 7) On the time scale 7y of the avalanche duration,
we have |O;u| ~ |0;h|no/nu ~ 0: the dashpots are completely rigid and (5.18) is
simply the equation for an elastic interface with elasticity k; + k7, up to the term
—kou; which is constant in time.> We may refer to this abstract elastic interface
related to our viscoelastic model as the rigid interface.

Relaxation (time scale 7,,) At the end of an avalanche the blocks are pinned and the
h;’s are almost constant in time, i.e. they do not participate in any avalanche (with the
narrow wells choice, they are exactly constant). Thus (5.18) cancels on both sides,
and (5.19) comes into play: on a time scale 7, > 79 the u;’s can relax. As long as
the h; are constant, we have

wi(t) = V2h; + (ui(to) _ V2h,-) o=k (5.26)

where 1 is the time at which the last avalanche occurred. The evolution of the u;’s
can increase the r.h.s. of (5.18), so that some blocks may become unstable: this
triggers a secondary avalanche in the system, identified with an aftershock of the
seismic context. At the end of the aftershock the h;’s are pinned and relaxation
resumes, which may trigger an additional aftershock (see Fig.5.8), itself followed
by another one, and so on. These aftershocks occur without any additional driving:
the ensemble of events that occur at a given value of w will be called a cluster of
events (see Fig.5.9).

Driving (time scale 7p) Aside from triggering numerous aftershocks, the effect of
relaxation is to suppress the term k2 (V2h; — u;) in (5.18). When finally we have
u; = Vzhi, Vi, (5.19) cancels on both sides and we say that the system is fully
relaxed. New instabilities can only be triggered by an increase of w, which happens
on the slow time scale ~7p.

Note that by definition, when the system is fully relaxed, (Eq. 5.18) is fulfilled with
its last term being exactly zero, i.e. the configuration is that of an elastic interface with
elasticity k1. We may refer to this abstract elastic interface related to our viscoelastic
model as the flexible interface.

50n this time scale, the term —kou; has the same properties as the tilt § £ (x) we introduced to prove
the Statistical Tilt Symmetry (STS).
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Fig. 5.8 Schematic description of the evolution of the local stress o; over time for three sites. Left
A simple shock affecting a single site produces a stress drop on this site (i). Central panel Part
of the stress drop is due to the spring k> (blue part), i.e. it is due to the viscoelastic part of the
interactions (spring k> in series with a dashpot). Right During relaxation this part of the stress drop
is lost and we may have an aftershock. If at some point all the viscoelastic part of interactions (blue)
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Summary of the Continuous Dynamics Essentially, we have “main” avalanches
lasting for a time ~7y that are triggered by the increase of the drive w (through
ko), whereas relaxation (via ks, ),) triggers additional events: the aftershocks. The
typical inter-aftershocks time span is expected to be of order ~7,, and the typical inter-
main shocks time span of order ~7p. Since driving is much slower than relaxation,
the main avalanches occur only when the interface is fully relaxed, i.e. when its
effective elasticity is ~k (flexible interface). During any event (main or aftershock),
the fast dynamics dominates and the interface evolves essentially as an elastic one
with elasticity k1 + k2 (rigid interface). Thus the viscoelastic interface is expected
to evolve between its corresponding rigid elastic interface and the flexible one.
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5.3 Mean Field: The Fokker-Planck Approach

The core motivation for studying the mean field dynamics is to get a clear under-
standing of the phenomenology of our model with the help of analytical and semi-
analytical® results, which are only available in this simplified case. Since the mean
field is also an approximation for long-range interactions, we may also expect some
results to be similar with observations.

The main feature of the mean field model is the existence of periodic oscillations of
the average stress that are characteristic of macroscopic stick-slip motion, with large
stress drops corresponding to system-size avalanches, independently of finite-size
effects.

5.3.1 Derivation of the Mean Field Equations

Contrary what happened in the case of the purely elastic interface, the ABBM pic-
ture does not apply here: since each site has two degrees of freedom /; and u; with
complex interactions, mapping the complete system state onto a single particle is
impossible. Using a bit more information than a single scalar variable, some things
are however possible: a version of the ABBM model for a single particle “with retar-
dation” [ZCCDO5] was recently studied in depth [DLW13], displaying aftershocks
but no oscillatory behaviour. In that model, the collective memory of the system is
represented via a single kernel interacting with the single particle (representing the
interface’s center of mass).

Here we want to let each site have its own additional degree of freedom. To do this,
we map the complete system state {w, &;, £, u;, (¥i)} to the probability distribution
P (5%, 5R) of a couple of simpler and local variables (57, %) = F(w, h;, u;, h, ).
After writing the dynamics in terms of 4°s, we can derive a simple system of equations
for the distribution P (the Fokker-Planck Equations). We then manage to integrate this
system in two relevant limits, which allows to make a few quantitative predictions.

Definitions

Fully Connected Model—Continuous Equations We study the mean field limit via
the fully connected approximation: each block position 4; interacts equally with all
other blocks /; via N — 1 elements of the SLS type. In Appendix. A.2.2, we present
a pedestrian derivation of the equations directly from this mechanical picture. As
is usually found in mean field models, the equations simply correspond to formally
replacing the Laplacian term V2/ with /i — h. This reads:

9By semi-analytical we mean results obtained by the exact numerical integration of some exact
equations.



5.3 Mean Field: The Fokker-Planck Approach 131

nodihi = fYnlhi, i1+ ko(w — hi) + ki (h — hi) + ka(h — hi) — kou;
NuOs; = ka(h — hy) — kou;. (5.27)

It is worth to notice that both the local and Laplacian relaxation models have exactly
the same mean field equations, since # = const. = 0 (which implies that VZu; and
u; both reduce to the simple term u; in the mean field limit).

Definition of the §’s —Identical Wells Using the narrow wells choice of disorder,
the expression for ¢ (the amount of additional stress that a site can hold before
becoming unstable) reads: §; = fith —ko(w —hi) —ki(h —h;) —ko(h — hi) + kou;.
We make a crucial simplification in assuming that all wells are identical, so that we
have fl.th = f = const., so that the definition of the J; reads:

6 = f™ —ko(w — hy) —ki(h — hy) — ka(h — h;) + kou; (5.28)

where the randomness remains in the spacings between wells. Under this assumption,
we no longer observe aftershocks in mean field (see Appendix A.2.4), but otherwise
the events statistics is the same. It is then useful to split § in a fast part, & F and a
relaxed one, 6R:

5 = ™ —ko(w — hy) — (ki + k2) (h — h;)
6R = kou;, (5.29)

so that §; = 5iF + 6I.R . This splitting of ¢ in two variables is crucial in our analysis, it
allows to rewrite the entire dynamics solely in terms of the instantaneous values of
these variables.

Infinite Size Limit: the P((5F , 5R) Distribution As for the purely elastic case,
we consider the thermodynamic limit N — oo, where fluctuations vanish and the
description of the system via a simple probability distribution becomes exact. The
only difference here is that the sole distribution P (&) does not provide enough infor-
mation to fully characterize the system and its evolution.

Instead, we have to consider the joint probability density distribution P (6%, 6%).
The quantity P (67, 6%)dé* do R represents the probability for a site drawn at random
to have a particular set of (§ F_§R). The normalization of P writes:

/ déF/ do® Pt 6%) = 1. (5.30)
R R
We also have the marginal distributions:
Pr(6F) =/ do® p(st, ok (5.31)
R

Pr(6%) =/ st Pt 6%
R
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P5(8) = / do* / doRp ot gRygPirac (st 4 68 — 5). (5.32)
R R

Our aim is now to translate the evolution equations for A, u or & F_§R into evolution
equations for the distribution P (6%, 6%) (i.e. a Master Equation or loosely speaking
an equation of the Fokker-Planck type).

Dynamical Equations for the Distribution P (67, %)

Under a small increase of dw (on a time scale ~7p), two dynamical regimes are
observed: a fast one where avalanches unfold (on a time scale ~7y), and a slow one
where the dashpots relax (on a time scale ~7,).

Avalanche Dynamics (time scale 7, Fast Part) On a short time scale ( ~ 79), the
dashpots are blocked and only 6% evolves: the avalanche dynamics is very similar
to that of the purely elastic interface. As previously, it is useful to decompose the
avalanche in different steps. In Appendix A.2.3 we provide all the details on how
to translate the arguments of Sect.4.3.3 to the present case. Here, we outline the
principal results.

The main point of the analysis is to notice that [ P(—§ R 5R)dsk plays arole very
similar to that of “P(0)” in the elastic case. Yet we cannot replace | P(—d%, §%)ds®
with Ps(0) everywhere, because the avalanche dynamics reacts differently to each
value of §%. Decomposing an avalanche in “steps”, we find the following evolution
of P(6F, 5®) along the steps:

Pslepk+l(5 , 01 — Pstepk(5 ,01) _ 8Pstepk ((5F (SR) + P (_5R (5R)g ko+ki+ka
A(;sfepk a 20 ’ sepk ' kO + kl + k2 '
(5.33)
with driving steps given by the geometrical series:
k—1
A8k = kodw [ | (Z(Iq + ka) / Pyepj (—0%, 5R)dR) , (5.34)
Jj=0

where we identify Pgepo with Py, the distribution before w is increased by dw. We
will discuss the nature of this series (convergent or divergent) in the next subsection.
For now it is enough to assume that it eventually converges to zero. The total drive
occurring during an avalanche is the sum of the initial drive kpdw and of the additional
drives during the step. We denote Ajrive this sum: Agrl.ve => A5§epk'

To summarize, during an avalanche the interface evolves according to (Eq.5.33),

(Eq.5.34) until A(SSFtep i~ 0. If the r.h.s of (Eq.5.33) reaches zero everywhere, the

distribution P (6%, %) ceases to evolve, but the interface keeps going forward (until
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Aés{ep j & 0). This corresponds to the evolution of the corresponding rigid elastic
interface (with elasticity k1 + k2).

Depending on the value of Ps(0), the avalanches are expected either to consist
in a finite number of steps when the series (Eq.5.34) converges, or to be “infinite”
when the driving steps Aéslfepk are diverging.

Relaxation (time scale 7,,, Slow Part) On longer time scales (¢ =~ 7,), the dashpots
relax: the 5iR’s slowly evolve, and if a §; = 67 + 5% becomes smaller than zero,
this triggers a new fast event (aftershock). The relaxation equation (5.19), n,0yu; =
ka(V2h; — u;), can be rewritten in terms of s by inverting’ the equations (5.29):

Z—Za,af D)

R §F —oF
=0 +hp———+—. 5.35)
I (
We note that 2—12‘6,57 = —6R, 5o that from any initial condition we end up with

ok = 0, and thus 0 = S5F. Assuming that all (5l.F’s stay constant (thus 6 also is
constant), (5.35) predicts an exponential relaxation of each & iR towards:

& —oF
R —k L

_ 5.36
1,00 2ko + ki + ko ( )

where the index co denotes the long-time nature of the solution.

This relaxation can decrease 6%, which might trigger aftershocks if the total ¢ is
to reach zero. However this is never the case, due to the simplifying assumption of
identical wells ( fi[h = f = const.). We prove this result in Appendix A.2.4. The
absence of aftershocks allows all the blocks to fully relax after each event, so that
the system’s state just before any event is always fully relaxed (i.e. u; = h — h;, or
5K =068

5.3.2 Analytical Integration of the FP Equations

Using the shorthand Py siep; (0) = f Pytep j(—5R, 5R)dR, we rewrite (5.34):

k—1
A(sgepk = kodw H (Z(kl + kZ)P(S,stepj (0)) > (5.37)
Jj=0

7Taking the average of (Eq. 5.29) we get oF = F™ — ko(w — k). Computing the difference oF — 6F
is then easy.
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and we notice that the convergence of the series to zero is guaranteed if

1

— V. 5.38
(k1 + k2) / (-38)

P6,stepj(0) < ch(o) =

This condition is the small avalanche condition. We now study the two kind of
avalanches that arise from this condition: the small ones in the convergent case and
the “infinite”” ones in the divergent case.

Case of the Convergent Series (Small Avalanches)

Let’s assume that we have Pj seep; (0) < Ps(0), V. Strictly speaking, the series may
not reach zero in any finite number of steps, however we can impose a lower cutoff
for the fraction of jumping sites, in which case we have A(Sge . &~ (in a finite number
of steps (note that in any system of finite size the smallest non zero fraction is 1/N).
Since we have a prefactor dw, any such cutoff, as small as it is, can be reached in a
finite number of steps by choosing a sufficiently small dw.

Avalanches in this regime involve an infinitesimal total drive A 5rive = « A(Sgepk,
which is proportional to dw. The fraction of the sites involved in the avalanche is
also infinitesimal. For a large but finite system (N < 00), this corresponds to a finite
avalanche, involving a finite number of blocks, negligible when compared to the

system size.

Fully Relaxed State Just before the avalanche, the system is fully relaxed because
relaxation occurs much faster than driving. Since the avalanche only involves a finite
number of steps and an infinitesimal fraction of the system, the corresponding change
in the overall distribution P is also infinitesimal, and we may consider that the system
is always fully relaxed during this kind of avalanche.

When the system is fully relaxed, each value of 6% is associated to a single value
of 6%, which is 5500: thus the distribution P (67, 6%) is non-zero only on a single
line of the (67, %) plane and we can re-write it simply in terms of the marginal
distribution P (57):

F F oF —of
Pr(0") =P 6" kp————— ). 5.39
F(07) S (5.39)
In particular, the blocks that jump are those for which § = 0, i.e. those for which
SF_§F
(5,.F = —6iR = _511?00 = —kzﬁ. This corresponds to a single value of 5%, that

we denoted —§*:

. _ ko
ko + ki

(5.40)

85* is also the value of 6% at which the blocks jump, hence the notation.
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To conclude, at all steps of the avalanche the jumping sites are exactly those with
F_ . R . 6F —oF

0% = —0%, and the variable §;* can be replaced with k2m.

The Simplified Equation and its Solution The distribution P evolves according to

(5.33), which drives its r.h.s. towards zero. The corresponding (attractive) fixed point

is given by:

ol stepk , «F <R R <R 8 0-+ki+k2
—(07,0") + P, —0%,0")———= =0. 541
06! ) sepk )k0+k1+k2 ( )

Using (5.39 and 5.40), this simplifies into:

5.42
o5F k0+k1+kzg ko + ki1 + k ( )

OPF | Pp(—0% ( 5" 4 o )_ 0
Similarly to the elastic case, we use the normalization condition for Pr and find:

5F 46%

kotk+ky
1—/O+1+2g(1)dz

I . (5.43)
Z(ko + k1 + k2)

Pi(") =

This exact expression is strongly reminiscent of the fixed point we found in the
elastic case. Translating this expression into an expression for the more intuitive
quantity Ps(9), we find the same fixed point as for the “flexible” elastic interface
(with elasticity k1):

)

RoHR
1— / g(z)dz
PY(0) = 0

ko T = Q(9, k1) (5.44)

The average stress associated to Q (6§, k1) can be computed directly with an integration
by parts (as in Eq.4.76):

2
o= f" — (ko + kl);—z. (5.45)

Note that this fixed point Pg‘ (9) is not reached within a single avalanche; instead the
distribution Ps(§) slowly evolves towards it over many cycles of avalanches followed
by relaxation. A direct integration of Eqs. (5.33, 5.35) confirms that the distribution
P is indeed driven towards Q (4, k1) (see Sect.5.3.3, p. 140).

We notice that the fixed point has Ps(0) = 1/Z(ko + k1) (for any distribution
g(2)). Thus, if 1/z(ko + k1) = P§(0) = 1/z(k; + k2), we expect that on the way
to the fixed point Q(J, k1) of the “flexible” interface, the small avalanche condition
(5.38) is violated and an avalanche with diverging steps A¢ is triggered.
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Case of the Divergent Series

“Infinite” Avalanches When the small avalanche condition (5.38) is violated for
numerous steps during an avalanche, the magnitude of the driving steps Aégep y
becomes larger and larger. However this growth cannot last forever: the blocks which
jump correspond to new §’s jumping from O to an average value of Z(ko + k1 + k»2).
Because the corresponding drive (from A(Sgepk) is ~ Z(k; + kp), the dissipation’
due to ko > O prevents the occurrence of any truly infinite avalanche. After a finite
driving from the growing shifts Aégep i these will eventually decrease, converge to
zero, and the avalanche will stop.

However, the fact that the total drive (3 j Ad sfep j) is finite (instead of infinitesimal)
corresponds to an avalanche involving a finite fraction of the system, or possibly the
complete system. We call this kind of avalanche a global event, because it affects the
entire system.

Convergence to a Depinning Fixed Point (Fast Part of the Dynamics) For a small
enough dissipation kg, since there are many steps in this single event, the distribution
P actually reaches its fixed point, i.e. it fulfils:
2 ( oF +oR )
ko+k1+ka
57, 6% + Pyepr (=67, 6%)———2 =0, 5.46
( ) stepk( ) ko + k1 + ko ( )

OP, stepk
a6F

where the 0% are not in the fully relaxed state, since they are constant during an
avalanche. We can formally integrate this equation separately for each value of 5%,
then sum the solutions to get the intuitive distribution P5(d). We find the fixed point:

4
ko+ky+k
1—/°+‘”g(z>dz
0

P.(0) =
+(0) Z(ko + k1 + k2)

= Q(, k1 + k2), (5.47)

which is exactly the fixed point of the “rigid” elastic interface (with elasticity
k1 + k). This can also be understood intuitively by remarking that on the short
time scale of the avalanche, the dashpots are blocked (they act as rigid bars) so that
we just have two springs ki, kp acting in parallel. This corresponds to an elastic
interface of stiffness k1 + kp under a constant “tilt” —kou. When proving the STS
relation (Sect.4.1.3, p. 79), we have seen that the interface, with or without the tilt,
had statistically the same evolution equation, so that the convergence to Q (4, k1 +k»2)
is to be expected.

We note that P, (0) = 1/z(ko+ k1 + k) fulfils (5.38), which is consistent with our
initial hypothesis of a finite avalanche. The average stress associated to Q (6, k1 +k2)

° Another way to understand this is to notice that sites jump on average from 0 to § = Z(ko +
k1 + k2). Consider the best scenario for producing an infinite avalanche, when the stationary Ps(0)
is a rectangular function (its the function that decreases the least). Because of the normalization
condition f Ps = 1, we cannot hope for anything better than Ps(0) = 1/z(ko + k1 + k2), i.e. the
condition Ps sep;(0) > 1/(z(k1 + k2)) cannot be sustained indefinitely.
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can also be computed directly (integration by parts, as in (Eq.4.76)): ¢ = f* — (ko+
ki + kz)é—;

During an event, the 5iR’s are constant. After this very large event, the 5I.R’s are
thus very far from their new associated values 6500. Thus, the effect of relaxation is
a macroscopic change in P, that is difficult to compute directly without additional
hypotheses. The qualitative effect of relaxation on this final distribution is presented
in the next section, via the numerical integration of Egs. (5.33, 5.35).

Comparison of the Two Cases—Predictions

The two cases we presented above may seem contradictory at first. They key element
is to understand that while the fast dynamics of the large events drives the distribution
Ps(9) towards Q (6, k1 +k2), the mixed dynamics of the small events drives it towards
Q(9, k).

When the avalanches are “small” (i.e. infinitesimal), the duet of the fast dynamics
and relaxation drives Ps(d) towards Q(J, k1). On the way to this fixed point, the
distribution may violate the small avalanche condition (5.38), thus triggering a global
event. The condition to obtain a global eventis 1/Z(ko+k1) > P§(0) = 1/z(k1+k2),
which simplifies into:

ky = ko, (5.48)

independently of all other choices (as g(z), k1, etc.).

If kp > ko, when this large event occurs, the fast dynamics works for long enough
(at least until the small avalanche condition (5.38) is again respected), and the fixed
point Q (9, k1 +k2) can be reached. After this, relaxation also produces a large change
in P, and small avalanches follow. The function P thus follows a periodic cycle.

If k» < ko, there are no global events and the distribution Ps(§) simply reaches
(9, k1), irrespective of the precise value of k,. The dynamics of P is then perfectly
stationary.

5.3.3 Numerical Integration and Simulations in Mean Field

Numerical Integration of the FP Equations

The Algorithm Analogously to the purely elastic case, we discretize P (67, %)
with a bin e. The distribution probability is then a matrix P; ; where we identify
P67 = ei, 6% = ¢j)d"dR = P; ;2. The matrix evolves with the following rules:

e Driving process:
We shift P; j of one bin: P; j < Pi11,;.
Then we perform the Instability check.
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e Instability check:
We compute Py = >
process.
Else, we compute the total weight of unstable sites:

i P; ;. If Py > 1/z(ky + k2), we perform the Driving

Pos=¢ D, P (5.49)
(i+/)<0

. e 1
If Pipgt > T T00° then V&./e perform the Avalanche process.
Else we perform the Relaxation process.
e Avalanche process: it is composed by “jumping sites” and a “driving step”.

— Jumping sites: (i, j),

o . S el + 7

ifi+j>0: P j<«Pj+— Z Py g(u) (5.50)
i’'|(i'+j<0) k

ifi4+j<0: P <0, (5.51)

where Kk = ko + k1 + k. -
— Driving step (A(Ssliep): we shift P; ; of a fraction of bin: » = min(l, —Z(k‘+§2)Pi““ ),
Pij < P j+ (Ps1,j— Pij)r (5.52)

Then we perform the Instability check.
e Relaxation process:

We compute j (i), the single bin associated to 51'Roo = jool(i)e as'?

Joo(i) = Int (kz it Zi”é P j)) (5.53)
so that the relaxation corresponds to:
Pijnti) < D Pij
J
Pij#jotiy <= 0 (5.54)

Then we perform the driving process.

This algorithm integrates the fully connected version of the viscoelastic model, and
produces the results shown in Figs.5.10 and 5.11.

107¢ §s numerically more stable to associate SR (i, 00) with two bins, Joo(i) and joo(i) + 1. The
contribution ; Pi,j is split in the two bins using a linear interpolation.
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Fig. 5.10 Adapted from [JLR14]. Evolution of P(§) (solid line, blue and red) and the stress
o = ko(w — h) (lower panel) computed from direct integration of the evolution equations. We used
ko = 0.001, k1 = 0.1, ko = 0.3. Important curves are highlighted in red. (1) driving without any
avalanche, linearly increasing stress; (2) driving with elastic-depinning avalanches, slower stress
increase. (3) global event: P (J) collapses to the depinning fixed point Q (9, k1 + k2) (lower dashed
curve) and the stress drops to o (k| + k2) (lower dashed line). (4) relaxation closes the cycle back
to stage (1) without altering average stress

We may note that we have simply translated the analysis of Sect.5.3.1 in an
algorithmic format. In the Driving Process we see that the value of kodw is set to
€, since the initial drive after relaxation is of one bin (of width ¢). In the Instability
check we see that when the steps Ad%" are increasing (Poz(ky + k2) > 1), we simply

drive by one bin (kopdw). The cutoff that we mentioned for the driving steps Aésliepk

is set to £/100. In the Avalanche process, we see that the driving steps A6 or r
saturate to one. The possibility of driving occurring on length smaller than a bin € is
accounted for via a smooth shift, reminiscent of the term 9P /9§ F

Numerical Integrations: Two Cases

With the help of this numerical scheme, we can directly integrate the dynamics and
get exact results, up to the binning precision €. This allows us to check our analytical
predictions on the behaviour of P (57, §%). Since it is difficult to clearly present the
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Fig. 5.11 Evolution of P () (solid line, blue and red) and the stress o = ko(w — h) (lower
panel) computed from direct integration of the evolution equations. We used a larger value of ko:
ko = 0.1, k1 = 0.2, ko = 0.3. Important curves are highlighted in red. The Steps of evolution
are essentially the same as in the previous figure. The point of instability, Ps(0) = 1/z(k; + k2)
corresponds to the Ps(0) of an elastic interface Q (0, k1 + ko — ko with stiffness k; + ko — ko. The
large value of ko produces a finite difference between the value of Ps(0) at the instability point and
for the distribution Q (4, k1 + k»)

evolution over time of functions of two variables, we will focus on the more intuitive
distribution Pj;(6), defined by (5.32).

Depending on the validity of the condition k> > ko, there are global events, or
not. We comment these two cases below.

With Global Events (Periodic Behaviour) In Figs.5.10 and 5.11 we show the
most interesting case of k» > kg, where global events happen. The first figure is
for vanishing ko (expected physically), the second is the finite ko case, shown for
pedagogical purposes. In both cases we have ko < k, and the evolution of Py, (0) is
non stationary, with periodic oscillations in time. The cyclic behaviour can be split
in four phases.

In phase @ the system is driven (w increases), but since Ps(§) = 0, there are no
avalanches. The stress o increases linearly with time and the interface does not move
(h = const.).

In phase @ the system experiences a few small avalanches, since 0 < P5(0) <
P5(0). The combination of these small avalanches and relaxation drives Ps towards
Q(d, ky). Stress increases (slightly) sub-linearly and the interface slips (infini-
tesimally).
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The “phase” @ corresponds to the instant at which Ps(0) reaches the critical point
P5(0) = Pg (0) = 1/zZ(k1 +k2). At this point, the infinitesimal increase dw triggers a
global avalanche. In Fig. 5.10, the distribution Ps reaches Q (9, k1 + k») in this single
global avalanche. In Fig.5.11, the small ratio k2/ ko (large dissipation kq) is such
that at the end of the large event, Ps stops between the critical point Ps(d) = Pj(0)
and Q (4, k1 + kp). There, the instability point and the distribution Q (4, k| + k3) are
more clearly distinguished. In both cases, the large event corresponds to a large drop
of the stress and to a finite slip of the interface.

The “phase” @ corresponds to the relaxation that immediately follows. The dis-
tribution Ps completely changes in this single relaxation operation. As no event or
driving is performed, the stress does not change at all during @, and the interface
does not move at all either (since only the u;’s evolve via relaxation). This last phase
takes us back to the initial stage: we have an exactly periodic behaviour.

This integration with the choice of parameters k> > kg allows to check that global
events can actually take us to Q(J, k1 + k2) and that this function is indeed given
by our computation (5.47). As phase @ drives us towards Q(6, k1), we meet the
instability point and thus never actually reach Q (9, k). However in the case ky < ko
the convergence to Q (4, kp) is confirmed.

Without Global Events (Stationary Behaviour) In Fig.5.12 (left), we present a
few examples of stationary distributions Ps obtained using k> < k. In this weakly
viscoelastic regime, we observe a convergence of any initial Ps to Q(d, k1). Of
course, the critical values P(SC(O) of all these stationary solutions is larger than the
(common) Ps(0). As k» is increased towards kg, the critical value Pg (0) gets closer
to Ps(0), and it takes a longer time for the system to reach a stationary behaviour
(see Fig.5.12, right).

ko =0.2=ky
, k=00 ).950 7
25
oo iy =0.05
0.945
2
940
S 15 ©0.935
=
Al
930
10
0.925
5 /
0.920]
0 _ 0.915
002 0.00 0.02 0.01 0.06 0.08 0.10 0.0 0.1 02 03 0.1 05 0.6
0 w

Fig. 5.12 Left Collapse of the Ps(6) distributions for ky < ko. We used kg = 0.2, k; = 0.3 and
variable k»’s, and we only plot one point every five binning widths for clarity. Right Dependence
of the average stress o (¢) over time, depending on k. We use k» = 0, 0.05, 0.1, 0.2, 0.3, 0.4 (from
top to bottom). For ky < 0.2 = ko, there are only very small spurious oscillations due to the finite
precision of the numerical integration (finite binning ). For ko > ko, there are large oscillations (with
periods larger than a single simulation step). Inset focus on the early times dynamics. The larger the
k>, the longer it takes to reach the steady state. From left to right, we used k> = 0, 0.05, 0.10, 0.12
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Relevance of the Viscoelastic ‘“Perturbation”

It is important to note that from these analytical results and the corresponding exact
integrations, we can conclude that the addition of some “visco-" part into the elastic
interactions is relevant perturbation, in the macroscopic limit. Precisely, we see that
for any k; and any kp > 0, there will always be a kp small enough so that the
viscoelastic character of the system manifests itself (appearance of global events and
periodic oscillations of the average stress). We can even predict the value of kg at
which this happens, which is simply k; = k. In finite dimensions, this feature is
also present, although we do not have a precise criterion to predict below which kg
the appearance of the viscoelastic features are expected.

Monte Carlo Simulations in Mean Field

So far, we have always represented the disorder function by narrow wells. As long
as the associated forces have a random distribution, this choice does not affect the
generality of the reasoning, since narrow wells can be chosen to represent e.g. (dis-
cretized) white noise. However in our mean field calculations we used identical
wells: the threshold force associated to each narrow well being unique, randomness
remained only in the spacings distribution, g(z). We have seen that this choice sup-
presses aftershocks, an important feature of our model. One may wonder whether
this choice also affects the general behaviour of the system. For instance, does the
system still displays periodic oscillations and global events when the threshold force
f is random?

To answer this question, we perform Monte-Carlo simulations of the equations
(5.27) using a Gaussian distribution for fith and the same algorithm as presented for
the 2D case (see (Eq.5.21) and after). The results are displayed in Fig.5.13, and are
very similar to our predictions using the Fokker-Planck formalism. In particular we
observe that the system still displays periodic behaviour and global events, with the
fluctuations of the period being due to finite size effects. The main difference is the
presence of aftershocks, which are especially noticeable following the global shock.

5.3.4 Comparison with Experiments

Stick-Slip: Friction Forces

The periodic oscillations we observe are strongly reminiscent of the stick-slip motion
expected in friction. The oscillations disappear when kg is large enough compared
to the viscoelastic-ness (~k7) of the material, as is qualitatively expected in friction.
In terms of stress (or friction force), we predict that the system evolves between two
extreme values that are not necessarily reached:
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Fig. 5.13 Avalanches sizes and stress evolution of the viscoelastic interface in mean field (fully
connected). The threshold forces fith are randomly distributed, which allows for numerous after-
shocks, especially following the Global Shock (GS). The fluctuations of the stress (due to finite
size effects) during the “small avalanches” are negligible compared to the macroscopic stress drops
occurring in the GS

e The lower one, 01 = f th _ (ko + ki + kp)z?%/2Z, associated to the stationary
solution of the rigid interface (Q (9, k1 +k2)). When kg — 0, this stress is actually
reached during the global shocks (i.e. at the end of the macroscopic slip).

e The higher one, 05 = f th _ (ko + k1)z2 /27, associated to the stationary solution
of the flexible interface (Q(J, k1)). When kp < ko, this stationary stress takes this
value.

We can interpret o as a lower bound for the kinetic friction force, and o> as an upper
bound for the kinetic or static friction forces.

In the oscillating regime, the stress at which the macroscopic slip (global event)
starts corresponds to the actual static friction force Fy, for which we do not have an
analytical prediction. We can only predict that o1 < Fy < 0.

The decrease of friction (o) with increasing rigidity of the interface (k or k1 + k>
depending on k) is consistent with the intuition that a rigid material will slide more
easily than a flexible one. This feature is also present for the purely elastic interface.
Furthermore, a viscoelastic material that can adapt a lot over a large range of time
scales (e.g. rubber) is expected to adhere much more strongly (e.g. if ko > ki,
ko > ko), because it can adapt to the local surface profile. This latter feature is

specific of our viscoelastic model.

Periodic Events in Other Systems

“Characteristic”” Earthquakes Interpreting our mean field interface as a model for a
single fault with an effective long-range elastic interaction, we note a good agreement
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with the notion of seismic cycle and the observations of characteristic earthquakes
(see Sect.3.1.2). On this point, we want to stress out that in our model, the period
emerging from the viscoelastic interactions is macroscopic, unrelated to the precise
value of the microscopic time scale 7),, and is not a finite-size effect.

In several earthquake models such as OFC, it is sometimes argued that some almost
periodic events reproduce the seimsic cycle. One needs to be careful when discussing
this idea, in particular on estimating the macroscopic character of the cycle. In many
models, the “cyclic behaviour” is a purely local effect, which involves only the
typical (microscopic) slip length of the block and the corresponding (microscopic)
time scale needed to re-load it (we discussed the case of the elastic depinning in
Sect.4.4.2).

A different line of argumentation in models such as the OFC is to interpret some
system-size events due to finite-size effects as characteristic earthquakes (which
occurs in small systems with low dissipation). The possibility of finite-size effects in
seismic faults cannot be discarded entirely, however the absence of a clear correlation
between fault size and period of the seismic cycle points against it.

Micro-Crystals Deformation or the ‘“Avalanche Oscillator” The periodic large
events we find in mean field are strongly reminiscent of those found in [PDC+12]
(discussed in Sect.5.1.3). In that paper, using a long-range elastic kernel in two
dimensions of space, it was found that system-size events occurred over a large
range of parameters (precisely, at sufficiently low strain rates).

The periodic oscillations found in [PDC+12] were explained through a phenom-
enological model build on the notion of a susceptibility p, defined as “the multiplier
giving the net number of local slips triggered by a single slip”. The equation given
in [PDC+12] for the evolution of p is:

S,
Pre1 — Pr X (1 -~ §) : (5.55)

where the time ¢ used here should be connected to our discrete “steps”.

Learning from our analysis in terms of Ps(0) and its “critical” value P§(0) =
1/z(k1+k3), we canimprove the arguments based on this susceptibility p. Essentially,
p plays the same role as Ps(0)/ Pa" (0): when this ratio is larger than 1, the avalanche
involves an increasingly large number of sites, and may involve a finite fraction
of the complete system. A large avalanche decreases Ps(0) by a large amount, so
that the following avalanches are rather small: this is qualitatively compatible with
(5.55). However, by defining P (67, §%) we have been able to derive the evolution
equations for Pj(d) directly from the dynamical equations, and integrate them in a
semi-analytical way, thus giving a clear picture of the origin of the global instability
responsible for the global shocks. Our analysis shows that a full description of such
a system necessitates the use of an additional degree of freedom, which encodes the
memory of the system.


http://dx.doi.org/10.1007/978-3-319-20022-4_3
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Rate and State Friction Laws

As we discussed in Chap. 2 there are phenomenological Rate- and State-dependent
Friction (RSF) laws which characterize solid friction rather well. However these
laws lack microscopic foundations, and consequently their adaptation to very small
or very large scales is a difficult task.

In the setting of the complete separation of time scales (19 < 7, < Tp) that we
used up to now, it is impossible to discuss the effects of the variations of the driving
velocity Vp on the friction force, since we assumed quasi-static driving: Vp = 0%,
In a paper that should appear soon, we discuss these effects in the Mean Field limit,
where we can obtain semi-analytical results.

We now relax the constraint on the time scales: 79 < 7, =~ 7p. In this case,
avalanches still unfold infinitely fast (the time of slip is negligible compared to
all other times), but the relaxation and driving time scales compete. In the limit
where 7, > 7p, relaxation does not have the time to happen and we recover the
purely elastic depinning model, where we can not expect any RSF law. The other
limit, 79 < 7, < Tp, is the one we just studied in the present chapter. Between
these limits, an interesting transition takes place (see Fig.5.14, left panel): at small
velocities, one may observe stick-slip behaviour, while at larger velocities we observe
steady slip with a friction coefficient that decreases with increasing friction (i.e. the
velocity-weakening effect).

The RSF laws are build mainly on two fundamental observations: the velocity-
weakening effect (at small velocities) and the ageing or increase of contact at rest.
Both observations correspond to simple experimental setups, which allow to probe
the relevance of our model.

Velocity Weakening In the regime of steady sliding, where the friction force settles
to a stationary value, we observe a decrease of friction with increasing velocity
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Fig. 5.14 Left Variations of the minimal and maximal stresses during the stick-slip regime (left),
or of the stationary stress (right) in the steady sliding regime. As velocity increases in the steady
sliding regime, the friction force (o< o) decreases. Right Variation of the stationary stress (o, — o)
with the adimensionalized velocity V/ V. (blue). Green a pure logarithmic behaviour is shown as a
guide to the eye. Notice how we inverted the y-axis to match with the left panel


http://dx.doi.org/10.1007/978-3-319-20022-4_2

146 5 Viscoelastic Interfaces Driven in Disordered Media

(see Fig.5.14). We study the behaviour close to the transition point (V,, o.) and
compare the decrease of stress 0 — o, to the increase in velocity V/ V.. We observe
an almost logarithmic decay of the stress with velocity, 0 — o, ~ —log(V/V,). This
comparison proves that our model captures an important aspect of basic frictional
properties. The complete quantitative comparison has yet to be done.

The decrease of the average stress can be understood in terms of the solutions
Ps(9) of the Fokker-Planck equations, in the case of “small” avalanches (steady-state,
no system-size instability). Essentially, the change in velocity lets Ps(d) interpolate
between Q(9, k1 + kp) and Q(6, k1). At very large driving velocity Vy, we have
Tp < T, so that the dashpots relax too slowly and thus have no effect: we recover
purely elastic depinning, in this case P5(6) = Q(d, ki + k2) (associated to the lower
stress o] = f! h_ (ko+k1+k2)z2/27). At the smallest driving velocities for which we
still have a steady state (for lower velocities, there is stick-slip motion), the solution

tends Ps(8) to Q (4, k1) (associated to the higher stress oo = f* — (ko + kl)z_z/ZZ).

Contact Ageing Another experiment we may perform in the regime 7, >~ 7p is
the slide-hold-slide experiment, which is a standard test to measure the ageing of
contacts at rest. Consider a solid block pulled on some substrate, sliding steadily. If
at time #; we stop to pull, the block quickly ceases to move. At rest the friction force
increases over time, so that when we resume the pulling at time r, = #; + At, the
stress (or friction force) overshoots its stationary value: see Fig.2.5 (p. 14) for the
experiments and Fig.5.15 for our results.
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Fig. 5.15 Left Slide-hold-slide experiment in the mean field (fully connected) case. Starting from
some initial configuration, the system quickly reaches a stationary state under steady driving. Pulling
is stopped at time #; & 0.1, then restarts at time o = #; + At ~ 0.4. The relaxation occurring when
t € [11, o] increases the static friction force, which is probed when driving is resumed. The stress
overshoot (Ao),,4x measures this increase of the static friction coefficient. Due to the large slip
during the overshoot, a small decrease in stress quickly follows, after what the system returns to
its steady state. Right Dependence of the stress overshoot on the hold time (in the mean field, fully
connected case). Repeating the slide-hold-slide experiment for many values of the hold time At,
we may measure the ageing of contact at rest. The stress overshoot increases with the hold time,
up to a saturation at very long times which corresponds to the complete system being fully relaxed
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Measuring this overshoot gives a measure of the increase of friction over the time
At. Repeating this experiment many times (as Coulomb did a few centuries ago), we
obtain the law of the increase of friction Ao over time Af. We report the results of
this “experiment” in the right part of Fig.5.15. Note that this observation should be
interpreted using the concept of the joint P (6, §%)) distribution introduced earlier.
Although we obtain an increase of the static friction over time (as expected), the
success of this mean field approach is limited, since we do not obtain a logarithmic
increase but a linear one. This discrepancy can be attributed to the limitation inherent
to the mean field, for which it is impossible to obtain an Omori law. In a finite-
dimensional approach with Omori-like laws of the decay of activity over time, we
expect to find a logarithmic behaviour. This is left for future work.

5.4 Two Dimensional Results: Comparison
with Seismic Phenomena

The two dimensional case is expected to be somewhat representative of sliding fric-
tion, despite our use of short-range interactions, since sliding surfaces (e.g. faults) are
two dimensional (with surface roughness playing an important role). Furthermore,
this relevance of the two-dimensional case is confirmed a posteriori by qualitative
and quantitative agreements of numerical results with several field observations.

We have not fully completed the study of the model, but we can already present
several interesting results which contrast strongly with the purely elastic depinning
picture and which compare well with experimental observations.

Numerical Scheme In two dimensions we must rely on the numerical implemen-
tation of Egs. (5.18 and 5.19), (p. 128) on a finite system with periodic bound-
ary conditions. Implementing a Monte-Carlo integration of the equations, the only
approximation we make is to neglect the possibility of backward motion, as explained
earlier (Sect.5.2.2). Unlike what we did for the mean field model, here we study the
general case of a heterogeneous distribution of pinning wells, using a randomly dis-
tributed threshold force fi‘h (typically a Gaussian distribution with unit mean and
variance 3).

The crucial point that explains the efficiency of our numerical scheme is the use of
the narrow wells as representation for the disorder. In this representation, each block
is always in one of the pinning wells and evolves exclusively via finite jumps. This
spares us from computing numerous infinitesimal updates of the interface position
under the small increases dw of the driving. Inspired by an efficient method originally
developed in [Gra94] (see Appendix A.3.1), we only need to update the sites that
participate in an avalanche when they do so, so that we perform the exact dynamics
in a time that essentially scales as the total sum of the avalanches area.

For the Laplacian relaxation model, this efficient method does not apply. Instead,
the solution of the relaxation equation is not local and has to be resolved via an
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Fig. 5.16 The local stress restricted to the cluster area, just before (up, op) and just after (bottom,
o 4) it takes place, as a function of the cluster size Sc (the size of a cluster is the sum of the sizes
of the events occurring for this w). The local variation of stress vanishes for small avalanches
(with fluctuating values of op_4), and saturates to a constant nonzero value for large avalanches
(with well defined values for op 4). We used k1 = 0.1, k2 = 0.9 and (from left to right) ko =
0.05, 0.025, 0.018, 0.012. See also the Figure Fig. A.3 in the Appendix for the case with k; =
0, ko = 1, which also displays very well defined values of o 4

Euler-like method.!! This is why we favoured the local relaxation model (Eq.5.16)
in our presentation.

5.4.1 Local Oscillations

Our mean field prediction (and observation) is that there are periodic!? events which
involve the whole system, the so-called global events. In terms of the average stress,
this corresponds to a periodic evolution of the stress with a saw-tooth profile. In two
dimensions on the contrary, the average stress is constant (see Fig.5.19 or Fig.5.19)
and no global events are observed, up to finite size fluctuations. Nevertheless, a
careful analysis of the 2D model shows an interesting reminiscence of the mean
field behaviour. We now provide numerical evidence that periodic stick-slips occur
locally, without global synchronization between the different parts of the system.
In Fig.5.16 we show for each cluster of events the stress average restricted to the
cluster area, just before (op) and just after (o 4) it takes place. Small clusters show
broad distributions of o g and o 4, similar to what would be observed for the depinning
case. However, for large clusters both distributions become very narrow: op sets to
a value that we denote opyax, and o4 sets to o This is the fingerprint of the mean

1 0Or via Fourier transform, but then we also need to update the whole lattice at each relaxation time
step, which is highly inefficient.

12The behaviour is exactly periodic for the infinite system and very close to periodic for large
systems, the finite size effects being very weak (see Fig.5.13).
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field behaviour, suggesting a large scale description of the two-dimensional interface
as a terraced structure, with large plateaus of almost constant stress and macroscopic
stress differences between plateaus. It is remarkable that in the viscoelastic model,
the width of the distribution of the local stress (~0max — Omin) remains finite when
ko — 0, whereas in the depinning model [AJR12] it vanishes as ké_C/ 2 when ko — O,
since the roughness exponent ( is smaller than 2 in all dimensions (see also Fig. 5.17).

Indeed, we observe (see Fig. 5.18) that different parts of the system have different
values of the stress, which range from opin to omax (@ range of finite, non-vanishing
width). In analogy with mean field, it is only when the stress of a region reaches a
value of ~ oy that it gets destabilized and that the whole region collapses to opy;y.

Furthermore, the evolution of the local stress associated to a small patch of the
interface is non stationary, and shows an almost periodic oscillation between oy
and omax: see the dashed and dotted lines in Fig. 5.20. Since the oscillations are not
synchronized among the different patches, the system does not display any global
oscillations (for a large enough system size). The evaluation of the characteristic
length over which the stress level is strongly correlated has not been performed yet.
We need to assess its dependence on the paramters ko, k1, k> in order to fully describe
the model. This is left for future work.

Our observation of an almost constant stress drop over a large range of avalanches
seems well consistent with the observation of constant stress drop for seismic faults
(described in Sect.3.1.2). More precisely, if we dismiss our small avalanches (in
Fig.5.16, those with S < 104) as out of the range of interest in earthquakes, then our
“large” avalanches correspond to the “small” earthquakes, which seem to follow a
constant stress drop.
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Fig. 5.17 Blow-up of Fig.4.14 to be compared with Fig. 5.16. The scale of the plot, the parameters
used and the number of avalanches per parameter set (107) are the same as in Fig. 5.16, except for
the use of k; = 1, ko = 0. Inset plot the stress drop (Ao ),,qx associated to the largest avalanches
against k(l)%/z, with ¢ = 0.75 The straight line is a guide to the eye. When k9 — 0, the two values
0B, 04 converge to a common value: the stress drop Ac = op — o4 associated to the avalanches
is thus infinitesimal (in particular for the large avalanches). This can also be seen with even smaller
values of ko in Fig.4.14
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Fig. 5.18 Stress map of the viscoelastic interface model in 2D. A large event is triggered in a
region of high stress (left, most red part) , which lowers the stress down to rather homogeneously
distributed values ~o,;, (left). The most red spots correspond to g,y = 1.95 and the most blue
to opin = 1.77
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Fig. 5.19 Avalanches sizes S and stress evolution of the two-dimensional viscoelastic interface
model. Here we used 7p > 7, instead of the usual 7p > 7, i.e. there is some driving occurring
together with relaxation. This makes the qualitative picture more similar with real earthquakes. In
solid grey, the system-average oscillations of the stress. In dashed grey, the stress averaged over a
small patch of the system (patch of 50 x 50 sites in a 5000 x 5000 system). The stress restricted to a
small area has large fluctuations, similarly to the mean field global stress. In the inset, we show the
same quantities but on a longer times, so that the pseudo-periodic oscillations are clearly apparent

5.4.2 Aftershocks

A Well-Defined Feature

An important feature of the viscoelastic model is that unlike most avalanches models,
ithas a very natural definition of aftershocks: aftershocks are the avalanches triggered
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Fig.5.20 Left Avalanches sizes S and stress evolution of the two-dimensional viscoelastic interface
model. In solid grey, the system-average oscillations of the stress. In dashed and dotted grey lines,
the stress averaged over small patches of the system (patches of 10 x 10 sites in a 500 x 500 system).
The stress restricted to a small area has large fluctuations similar to the mean field global stress.
Avalanches sizes S (indicated by dots) are grouped in clusters, with strong correlations over time
inside each cluster. Right From [JK10]. Magnitude (o log(S)) of earthquakes over the San Andreas
area. Note the strong resemblance between these real events and those in Fig.5.19

by the relaxation of the dashpots (the slow evolution of ;’s). In this sense, for a given
increase of w that produces a first avalanche (main shock), all the following ones
(occurring at the same value of w) are aftershocks.

The aftershocks are not specific of the two-dimensional model: in other dimen-
sions they are also present, including the mean field case. In our mean field analysis,
we simplified the computations by assuming identical wells (i.e. fith = const.), a
choice that happens to prevent the occurrence of aftershocks. In the Laplacian relax-
ation variant of our model, one obtains aftershocks even within this simplifying
assumption, in all dimensions.

In Fig.5.20, we compare the synthetic avalanches sizes S over time (o w) with
earthquakes from the San Andreas region. The possibility of triggering events via
two mechanisms with distinct time scales (7, 7p) compares well with actual seismic
data, as a clear pattern of correlations emerges in both cases. An important qualitative
difference is that a real cluster of events (main shock and its aftershocks) spans a finite
time interval, due to the non-complete separation of the relaxation and driving time
scales: in reality, 7p /7, is different from zero. This shortcoming can be addressed by
using 7p > Ty, i.e. by allowing some driving to occur while relaxation happens. The
result of these more recent results can be seen in Fig.5.19, where the comparison
with actual earthquakes is visually excellent. The similarity of patterns is especially
convincing when comparing with the purely elastic depinning result, where events
are essentially uncorrelated in time and space (apart from finite size effects, see
Fig.4.7).


http://dx.doi.org/10.1007/978-3-319-20022-4_4
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No matter how convincing this simple kind of comparison may seem, it is insuf-
ficient to precisely determine the relevance of our model to seismic phenomena
or frictional processes. In the next subsections, we study the spatial and temporal
aftershocks patterns and compare them with seismic data.

Aftershocks Spatial Evolution: The Aftershock Migration

In terms of location and spatial spread over time, our model’s aftershocks are quali-
tatively compatible with an effect observed in seismology, the so-called “aftershock
migration”.

We report field observations in Fig.5.21 (adapted from [PZ09]) and note that the
aftershocks, which correspond to the region of high cumulated slip, spread away
from the main shock over time, and more precisely away from the high slip region.
In particular, the boundary of the slip region (which can be measured by cumulated
slip or the presence of aftershocks) grows as the logarithm of time, at ~3.4 km per
time decade.

o . : logt slip (cm)

Depth (km)
[ — ]
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Fig. 5.21 Migration of the Parkfield early aftershocks (San Andreas fault), adapted from [PZ09].
Upper panel location of the events in the fault plane (depth and distance along the fault), with
colors indicating the time since main shock. The grey scale indicates cumulative slip in the first
60days after the main shock (green star). Lower panel The occurrence times of aftershocks versus
the distance along the fault (along-strike distance). Blue circles (resp. red triangles) denote events
from a catalogue (resp. detected via a filtering technique introduced in [PZ09]). The black dashed
line represents the approximate slope of aftershock migration
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In a first approximation, we can interpret the aftershock migration effect in terms
of our simple viscoelastic interface model. Since the region (“slip region” or region
of finite stress drop) where large avalanches occurred has a rather low stress level,
ulterior aftershocks are unlikely to be large there, since we need to have o ~ o4y
to obtain large events. On the border of the slip region, however, slow relaxation
processes trigger aftershocks, which may be large since there are stocks of stress
in those neighbourhoods.!? Because the large aftershocks at the border also corre-
spond to further slip and stress drop, they extend the slip area and push the ulterior
events further away from the initial shock area. Thus, the slip area is expected to
slowly increase over time, via aftershocks occurring mostly at its border and slowly
migrating away from the main shock.

In Fig.5.22, we present the whole cluster of aftershocks issued from a single large
main shock of our 2D model (see also Fig.5.18 and the Fig. A.4 of the Appendix for
other representations of these data). We observe that small aftershocks (not indicated)
are rather uniformly distributed inside the slip region, while the epicentres of the large
ones typically occur at the border, extending the slip region. As some large areas of
high stress can only slip after some small events connect them to the slip region,
the growth of the affected area is rather slow. We conclude that the agreement of the
model with experiments is deeper than a simple coincidence, but leave the quantitative
comparison for future work.'*

Note that the use of huge system sizes is not a luxury (up to 15000 x 15000 sites,
running on a single CPU). As aftershocks spread over the system, the cluster area
(area of all the aftershocks belonging to a given cluster) can become several times
the size of the largest single event. Since we do not want to “feel” the finite size of
the system, we need this cluster area to be much smaller than the system size. If we
want to produce large events and respect this constraint, we typically need very large
system sizes.

Aftershocks Decay over Time: The Omori Law

A more widely known law about the evolution of aftershocks over time is the Omori
law. Essentially, it states that the number of aftershocks related to a main event
decreases as a power-law of time, after a short transient (see Sect. 3.1.3 for details).
This is compatible with the migration of aftershocks being logarithmic in time (con-
sidering aftershock triggering as a local process).

I3Far away from the affected region, large earthquakes are unlikely: seismic waves can remotely
trigger earthquakes, but in a marginal way compared to the aftershock migration effect. Furthermore,
remote triggering via seismic waves can not induce an aftershock spread scaling as ~ log 7, which
allows to distinguish it from local effects such as relaxation.

14 Actually, since the present model does not reproduce the Omori law of decay of aftershocks
over time, we already know that quantitative agreement is out of reach. However, in the model
of viscoelastic interface with Laplacian relaxation, we observe a power-law decay of activity over
time, so that quantitative agreement with Omori law is possible.


http://dx.doi.org/10.1007/978-3-319-20022-4_3
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70

Fig. 5.22 Stress map of the viscoelastic interface model in two dimensions. Colors indicate stress
levels, from high (red, ~2) to low (blue, ~1.75). A large stress drop corresponds to a large slip. From
left to right and top to bottom expansion of the affected area is seen to mainly spread (black arrows)
around the initial main shock and the subsequent aftershocks (small crosses indicate avalanches’
epicentres with § > 5000). The dashed line highlights the initially unstable region (main shock).
Affected regions have low chance to witness new large events, due to the low value of the local
stress. The simulation was performed using kg = 0.012, k1 = 0, k» = 1, and spacings z uniformly
distributed, between 0 and 0.2. The total system size is 15000 x 15000: for each elementary surface
unit, the local stress was computed by averaging over a square of 100 x 100 elemental sites of the
discrete system

One may have noticed that in the our viscoelastic model, the relaxation of the
variable u; is local and controlled by a single time constant. This choice yields an
unrealistic exponential decay of the aftershocks production rate over time. In this
respect, it is suitable to consider non-local relaxation mechanisms, as the Laplacian
relaxation presented in (Eq.5.23), which can reproduce the Omori law. In Fig.5.23,
we compare the decay of the aftershock production rate for the tow models (issued
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Fig. 5.23 Aftershocks decay over time: plot of the density of probability P (At) for the time since
main shock Af. The model with Laplacian relaxation (red line) has a power-law decay of the
aftershocks rate with an exponent ~2 (dashed line). The local relaxation model (blue line) has an
exponential decay of aftershocks rate, incompatible with the Omori law

from (5.16) and (5.23)), and observe a power-law decay for the Laplacian model. The
comparison of the rates of aftershocks production of the two models was recently
performed in [Jag14]. For now it is enough to note that simple models for viscoelastic
interfaces can reproduce a power-law decay of aftershocks over time, in qualitative
agreement with the observed Omori law.

If one is looking for more complete, detailed models that would reproduce more
faithfully the seismic phenomenology, it should prove interesting to consider a variant
of our model where the time scale 7, would be replaced with a distribution of them,
so as to account for the variability in the time scales of relaxation of the various
rocks present in the crust. This could be done for instance by replacing the SLS
(Standard Linear Solid) type of interaction with a Generalized Maxwell model type
(also called “Maxwell-Wiechert model”). In our work, we focused on building very
simple models, in order to be able to extract very general properties, so that this
prospect is left for future work.

5.4.3 The Gutenberg-Richter Exponent

As we explained in Sect. 3.1.3, an important feature of earthquakes is the Gutenberg-
Richter (GR) law which characterizes the magnitude-frequency distribution of seis-
mic events. The probability for a randomly selected earthquake to be of magnitude
M is given by f(M) ~ 107" where b is the GR exponent. As we discussed in
Sect.3.1.3, b is found to lie in the range b € [0.75, 1.25]. We note that the total
moment (or energy released) in a seismic event corresponds to the size S of an
avalanche in our model. For historical reasons, in seismology the magnitude M of
an event is related to the total moment S via M = 6 4 (2/3) log, S. This gives an
expected exponent for the avalanche size distribution 7 = 1 + (2/3)b € [1.5, 1.83],
with the central value b >~ 1 corresponding to 7 ~ 1.7.


http://dx.doi.org/10.1007/978-3-319-20022-4_3
http://dx.doi.org/10.1007/978-3-319-20022-4_3

156 5 Viscoelastic Interfaces Driven in Disordered Media

+— kg=10.001

+—a kg =0.003 104
<< ky=0.010
<< ky=0.030

B o el sl o ol e e el o

—~ 3
2 0 ko=0100]] R 1078
=z 10 = .
10 r
1(,—: 1012 r small ; large e
10 r events ' events R
107" r .
1013 r \’
. 10—16 Bul s onnd v vvd ool vl vl sl v i
10 100 10! 10% ]WS 10! 10° 10° 107 102 104 S 10()' 108

Fig. 5.24 Number N (S) of avalanches of size S (not normalized but proportional to P(S)) for the
two-dimensional viscoelastic interface model. The dashed lines indicate the pure power-law with
exponent 1.75. We used 7 = 0.1 and fith distributed as a Gaussian with unit variance. Left We used
k1 = kp = 0.05. The system size is 5000 x 5000 and events with § < 0.5 are not shown. Right we
use k1 = 0, ko = 1. The system size is 15000 x 15000 and events with S < 2 are not shown

This expected behaviour is very well compatible with that of the viscoelastic
interface model, which displays a power-law decaying distribution P (S) in all the
range that we have been able to explore (i.e. at least over the range [1, 107]), with
an anomalous exponent 7 ~ 1.7 — 1.8 (see Fig.5.24). This is quite remarkable
since in all conventional avalanche models like depinning or directed percolation,
this exponent is always smaller than 3 /2, since the mean field value is also the upper
bound for the exponent 7 [LWMRO09, DLW 12]. In particular in the 2D depinning
case we measured 7 ~ 1.27 (see also [RLWO09]), which is clearly incompatible
with the range observed experimentally. We also note that the depinning mean field
behaviour does not convincingly account for earthquakes, as the value 1.5 is at the
edge of the acceptable interval.

The search for “the right” exponent may sometimes appear as the ultimate goal, a
proof of adequacy of a model with reality. However, we must remember that the value
of b is not very well measured and is subject to intense discussions: whether it is truly
universal or subject to regional variations remains an open question. Given the large
variations of b, finding a value within the acceptable range is not a conclusive finding.
Furthermore, since we do not consider realistic long-range elastic interactions, the
coincidence has to be taken with caution.

5.5 Other Contexts with Viscoelastic-Like Effects

The generic features of our model are elasticity, disorder, external forcing and plas-
ticity (via the viscoelastic relaxation). There are actually various situations where
extended, slowly driven disordered systems which present some form of memory
(either viscoelasticity, relaxation, several degrees of freedom per lattice site, etc.),
such as crystal plasticity at slow strain rates [PDC+12], amorphous plasticity at
slow shear rates [MBB12], slowly sheared granular materials [BZ03, DBZU11], or
seismic faults [Jag10a]. We now look for the common points in the definitions of the
models describing those examples.
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In the following analysis, one should remember that in the depinning transition,
the disorder competes with the elastic interactions, so that the decrease of the strength
in one is equivalent to the increase of the strength in the other. For instance, a decrease
in the yielding thresholds (pinning force) amounts to the same thing as an increase
of the stress, since only the difference o; — fl.th matters.

In our model [JLR14], during an avalanche the interface is rigid (with stiff-
ness k1 + ko), while after the avalanche the stiffness decreases to ki, thanks to the
relaxation of the viscoelastic elements. A primary effect is to enhance the develop-
ment of avalanches relatively to avalanche triggering, since a stiffer interface corre-
sponds to lower stress thresholds.! Despite enhancing the growth of already existing
avalanches, viscoelasticity is also associated to numerous small avalanches (larger
exponent 7). More generally, the overall dynamics resulting from this primary effect
is quite complex, and was the subject of this chapter, so that we now focus only on
the origins of this “primary” effect.

In the OFCR model for seismic faults [JaglOa, JK10], the relaxation between
two events can decrease the local stress o;, so that it is more difficult to trigger an
avalanche, but as relaxation of the stress is forgotten during the event (as new stress
thresholds are drawn at random), an event which is already started has better chances
to be maintained. Thus, the effect is qualitatively similar to that in our model.

In the “avalanche oscillator” model [PDC+12], there is a slow creep (forward
motion) of the field / in between events. This change of & in the inter-avalanches
periods corresponds to'® a decrease of o, via the term —koh. During the driving
phases, this decrease of ¢ tends to inhibit the triggering of new avalanches, whereas
during an avalanche the stress is unaffected by the creep and is thus typically higher.
Once again, the effect is qualitatively similar to that in our model.

We now present three other examples of models with similar forms of relaxation.

Elastic Interface Model with Stress Overshoots An interesting model of a modified
elastic interface embedded in a disordered medium is studied in [SF03].There, the
focus is on the effects of inertia and elastic waves, in particular “stress overshoots”,
in which the motion of one region of the interface induces a temporary extra stress
on the neighbouring regions, in addition to the static stress.Precisely, consider the
model of the elastic depinning, discretized on a regular lattice: when a site jumps,
each neighbour gets an extra stress increase (of value o< M) which lasts for a single
time step. In the memory kernel approach, in the continuum limit, this essentially
translates into:

C(t) =1+ MsP@), (5.56)

where M is the amplitude of the overshoots, and § D is the Dirac distribution.

131n the model of Marchetti et al., in the quasi-static driving limit—which is actually not explored
in [MMPOO]—during an avalanche the interface would be rigid (with stiffness 1), while after the
avalanche its stiffness would decrease to 0.

16A change in & also corresponds to some variations in o through the long-range elastic kernel,
however the average of that change over the whole system is zero.
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For large enough system sizes, they find a single critical force F. (M), independent
of the previous history of the system, and an hysteresis cycle which seems to vanish
in the limit of very large systems. They also find that for values of M smaller than a
critical value M., the universality class is that of the elastic depinning. The paper also
contains a discussion about earthquakes and some of the features that we observed,
as the seismic cycle or the possibility of very large events (with sizes much larger
than those expected in purely elastic depinning). The study is however limited to
numerical simulations in two dimensions, in the constant force setup, with a focus
on the depinned phase (F > F,, v > 0). Furthermore, the largest system sizes used
are of 256 x 256 (to be compared to 15000 x 15000 in our numerical scheme), which
limits the accuracy of the quantitative results.

We note that a primary effect of the overshoots is to enhance the development of
avalanches relatively to avalanche triggering. There, this enhancement is directly put
in an ad hoc way, and this primary effect is qualitatively similar to that in our model.

Granular Materials with Dynamic Weakening A model for granular materials with
some degree of relaxation (or Dynamic Weakening) was presented in [DBZU11]
(see also [DBZUQ9] for the initial definition). In this coarse-grained model, each
site (much larger than the grain diameter) can be either fully filled with grains or
completely empty. The fraction of sites occupied by grains is denoted v, which is
proportional to the rescaled volume fraction ®/®,,,, of the underlying microscopic
granular material. Quasi-static driving is performed by pulling the grains in the sites
at the system boundaries, while sites filled with grains interact elastically with their
nearest neighbours (or with all of them in mean field).

The crucial peculiarity of the model lies in the friction law for each site. Initially,
sites have randomly distributed static ‘frictional’ failure thresholds o, ; (similar to
our fl.‘h). When the shear stress o; exceeds the local threshold oy ;, the grains in the
site i slip during one time step. The stress at which they stop is called the “arrest
stress” o, ;. The slip of the grains on one site can increase the stress over neighbouring
sites, thus triggering an avalanche of numerous slips. From the first slip (caused by
the stress being larger than o, ;) and for all the duration of the avalanche involving
this slip, the failure threshold for the site i is set at the “dynamic failure threshold”
value:

0d,i = 0s,i —(0s,i — 0a,i), (5.57)

where ¢ is a weakening parameter that quantifies the difference between effective
static and dynamic “friction” on meso-scales. Note that o4 ; is automatically larger
than oy ;, so that the weakening of the failure threshold does not immediately trigger
anew slip. At the end of an avalanche, when all sites have their stress o; below oy ;,
the failure thresholds “heal” back to their static value, o5 ; > 04,;.

We comment the results obtained for the mean field case of this model in Fig. 5.25.
A similarity with our model is the observation of periodic events, in the “solid” phase
(where the relaxation or “weakening” plays a significant role). Another similarity is
that there are no such large events when we are far from criticality (small v, or large ko
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Fig. 5.25 From [DBZU11]. Phase diagram of the model for granular materials with relaxation. At
low volume fractions v or low relaxation parameter ¢, the system is in a fluid phase, with only small
avalanches. At fixed ¢, when the volume fraction approaches the critical one, these small avalanches
become distributed as power-laws. In the “solid” regime, there are spontaneous switches between
a regime with small avalanches distributed as power-laws and a regime with system-size periodic
events. The switching is rare enough so that numerous periodic events can be observed in each
periodic sequence

in our model), In this sense, viscoelasticity is relevant only close to criticality. In our
model, these features can be explained from first principles. An important difference
with our model is the observation of an avalanche size exponent of 7 = 1.5 (as in the
mean field theory for the purely elastic depinning model), unlike our model for which
we observe a strong deviation from 1.5 (depending on the values of parameters). We
note that this model for granular materials is inspired from previous models designed
initially for seismic faults [BZ03, BZ96], in which the periodic events naturally
identify with characteristic earthquakes. All these results may also be compared
to molecular dynamics of disordered solids, as performed in [SR13], where the
inclusion of inertia generates similar features (in 2 and 3 dimensions, using long-
range interactions). Part of this comparison is performed in [DBZU11] itself, where
the model is carefully compared to experiments and simulations of the shearing of
granular materials.

Once again, we note that a primary effect of the lowering (“weakening”) of the
stress thresholds during an avalanche is to enhance the development of avalanches
relatively to avalanche triggering. The main difference with the previous model is
that here it is the disorder (stress threshold) that evolves, not the stress itself.

Amorphous plasticity We quickly mentioned the problem of amorphous plasticity
earlier, in Sect.4.4.1. The well accepted point of view [BL11, NB13] is that flow in
disordered (amorphous) media is occurring via local plastic events, corresponding
to small size rearrangements, that yield a long-range stress redistribution over the
system (Eshelby problem). The model in [MBB12] introduces a non-trivial value
for the restructuring time, the time needed to regain the original structure after a
local rearrangement (the model is strongly inspired by that originally introduced in
[PALB04, PALBOS]).


http://dx.doi.org/10.1007/978-3-319-20022-4_4
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The medium is described by a set of elasto-plastic elements that occupy the sites
of a square lattice. To model a material with a yield stress, under steady shear at
fixed strain rate -y, taking into account the long-range effects of the plastic events via
a stress propagator G (r) = cos(46) /mr?, they write the evolution of the stress field
o(r,t) as:

Oo(r,t) =y — Z,u/ dr'G(r — el (' 1), (5.58)

where 1. is the shear modulus and €7/ accounts for the change in the strain due to
local yielding. The relaxation of the material to the plastic state is controlled by a
Maxwellian viscoelastic mechanism.

ePl(r 1) = Ln(r Ho(r, 1) (5.59)
9 - ZNT k) bl b .

where 7 is a relaxation time scale and n (7, t) is the local activity, i.e. n(r, ) = 0 in
absence of plastic events and n(r, t) = 1 if the local region is in the plastic phase. The
transition from the elastic to the plastic state is controlled by the condition o > "
and by a rate 1/7,;. Once in the plastic state, the transition back to the elastic state
is simply controlled by a rate 1/7,;. This can be summarized by by the following
expressions for the transition probabilities:

dt
Por(nij(t +dt) = 1ln;;(t) = 0; 045 > 0y) = . (5.60)
p
dt
P]()(n,'j(t +dt) = 0|n,‘j(t) =1)= 7'_[ (5.61)
e

In [MBBI12], the focus is on the dependence of the dynamics on the ratio of these
time scales.

Some results of this model can be compared to ours. In particular, it is found that
shear bands form when the strain rate - is low enough and the time scale 7,; needed
to restore the elastic state is long enough. The shear bands correspond to a strongly
sheared phase with the geometry of a band (which is as long as the system size),
within a solid non flowing environment.!” These inhomogeneous patterns disappear
when the strainrate (y <> Vj) is large enough or when the elastic relaxation time scale
(Te1 <> T) is small enough (compared to the driving time scale 1/7 < z/ Vo = 7p).
These shear bands observed using a long-range interaction correspond to a collective
organization over the whole system, as for our global events (observed in mean field).
Some analytical results are found in the mean field version of the model [MBB12],
that we do not discuss here.

17This qualitatively echoes with the arrays or channels of flowing vortices surrounded by a pinned
crystalline structure that are found in superconductors (Sect.5.1.1).
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In this last model, the stress can overshoot the yielding value (oy < f thy for a
time ~7,;, while it takes a time ~T,; to come back to a lower stress. A long relaxation
time 7,; allows the stress to remain high for a longer time, thus enhancing the growth
of activity (analogous to enhancing avalanche development). Once again, the effect
is qualitatively similar to that in our model. An important difference with our model
lies in the use of the quadrupolar stress propagator. It would be interesting to consider
extensions of our model with this kind of long-range anisotropic interactions in the
future.

We noted recently the existence of another model [Pap13] for the shearing of
disordered solids which also relies on a mechanism of relaxation (“pin delay”) and
in which the phenomenology is reminiscent, with stick-slip like shearing and an
increased exponent 7. For a general discussion on the role of relaxation mechanisms
(or softening mechanisms) in the dynamics of amorphous solids, see [RTV11], or
[DC10] for a focus on granular materials and the shear transformation zone (STZ)
idea.

5.5.1 Common Features Emerging from Models
with Relaxation

It is clear that the idea of accounting for plastic creep or one of the related effects
(stress overshoots, dynamics weakening, etc.) has recently gained momentum in the
literature. A recurrent property of these various systems is the presence of system-
size events or of some collective organization with a correlation length which equals
the system size. Our analytical method provides an explanation for the origin of this
behaviour, with an unprecedented precision. Another robust feature that was reported
at least in dynamic weakening and explained in our model is the fact that viscoelastic
effects are apparent only close to criticality (v large enough, or ky small enough in
our model). Here our point is simply to notice that many models in different fields
share similar features. However, the precise universal behaviour of these various
model has yet to be determined.

We may already make a distinction between two classes in the aforementioned
models. In granular materials or more generally in amorphous media, the disorder
is at least in part structural [BL11], i.e. it is generated by the internal organization
of the system and it evolves under the dynamics. On the opposite, our model only
includes quenched disorder. The determination of the precise connection between
structural and quenched disorder is currently an open problem. In friction, we expect
both the quenched disorder (heterogeneities in the bulk and the surfaces of each solid)
and the structural disorder (self-organization of the asperities and contacts, evolving
over time) to be relevant. In the future, it would be interesting to design a model
of friction that would account more carefully for the different forms of randomness
characterizing the asperities.
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5.6 Conclusions

As we pointed out in the previous chapter, despite some similarities with the frictional
context, the model of a purely elastic interface is unable to provide correct predictions
concerning frictional behaviour (Sect.4.4.2, p. 107).

‘We addressed this problem via the inclusion of viscoelastic interactions, which are
a natural way to account for the plastic creep occurring at the contacts. This addition
of viscoelasticity is a relevant change, in the sense that the addition of a very small
amount of “visco-" to the elastic interactions is enough to affect the behaviour, in
the macroscopic limit (ko — 0).

In mean field, the relaxation of the viscoelastic elements generates a dynamical
instability, which we prove to be responsible for the occurrence of periodic system-
size events and macroscopic oscillations of the stress. The time scale of these oscil-
lations is distinct from the microscopic time scale associated to the “visco-" part of
the viscoelastic interactions (which is directly introduced in the equations). Instead,
the oscillations are characterized by a new, emerging time scale. The emergence of
this cycle results from the competition between the slow viscoelastic relaxation and
the fast avalanche dynamics: the slow dynamics drives the system towards a critical
point, that we prove to be unstable with respect to the fast avalanche dynamics. The
ensuing state can be characterized as a Non Equilibrium Non Stationary State—as
opposed to the Non Equilibrium Stationary States (NESS).

In two dimensions, we performed simulations on systems of tremendous sizes
(up to 15000 x 15000, and on a single CPU), which allowed to study regimes oth-
erwise hardly accessible. The global oscillations found in mean field disappear, but
are echoed by coherent oscillations of the local stress on finite regions of large sizes.
In each region, the oscillations of the stress have roughly the same amplitude and
period but a different phase, so that at a given time the stress map has a terraced
structure, with large plateaus of almost constant stress and macroscopic stress differ-
ences between plateaus. In this sense, the model displays non-stationarity in its two
versions: in mean field it has an exactly periodic behaviour and in two dimensions it
oscillates on a local scale.

Comparison of our Results with Friction Experiments Our results compare well
with the three elementary building blocks of the Rate- and State-dependent Friction
laws (RSF laws), in particular in the mean field case, which we have explored further
than the 2D case. First of all, our mean field model reproduces the existence of
stick-slip, with an amplitude of the stress oscillations consistent with experimental
observations: it decreases with increasing driving velocity (Vj) and with increasing
driving spring stiffness (ko). Second, by studying how the kinetic friction force (in
the steady-state regime) depends on the driving velocity, we are able to observe
and explain the well-known effect of velocity-weakening (logarithmic decrease of
friction with increasing velocity). Third, the response of our model to intermittent
driving allows us to reproduce qualitatively and understand an important aspect of
the ageing of contacts: we observe the increase of the static friction force with the
time of contact at rest.


http://dx.doi.org/10.1007/978-3-319-20022-4_4
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The overall results of this chapter indicate that the small plastic events occurring
at the contacts between asperities (responsible for the RSF laws) are well captured
by a simple model with viscoelastic interactions. Our work presents these various
macroscopic effects not as resulting from the application of some phenomenological
law, but as collective phenomena, emerging from micro- and meso-scopic consid-
erations. A by-product of our work is to extend the range of applicability of the
depinning framework and the related tools to the problem of solid friction.

Comparison of our Results with Earthquakes Statistics The avalanches of our
model reproduce several important features of earthquakes statistics. Viscoelastic
relaxation produces an increase in the exponent of the avalanche size distribution
(7) which matches the worldwide average value given by the Gutenberg-Richter
law, a feature usually obtained via a fine-tuning of parameters. The (synthetic) after-
shocks are naturally defined as by-products of their corresponding main earthquake,
as recognized in geophysics: there, aftershocks are defined as secondary earthquakes
triggered by a main one, with a time delay that can range from seconds to years.
In a model slightly different from the main one we presented here, the decay of the
aftershocks production rate is qualitatively compatible with the Omori law known
in geophysics (power-law decay). In the model that was the main subject of our pre-
sentation, the aftershocks production rate follows an unrealistic exponential decay.
The spatial correlations of aftershocks are well consistent with the migration effect
characterizing real seismicity: the epicentres of large aftershocks are located at the
boundary of the slip zone of the preceding “mother” quakes. The linear relation-
ship between area and seismic moment we observe matches with the observation of
constant stress drop that is often reported in geophysics. Moreover the oscillations
of the stress field are the manifestation of the so-called seismic cycle, the quasi-
periodic occurrence of large earthquakes in some geographical areas (also referred
to as characteristic earthquakes).

The fact that our model reproduces the essential features of seismic faults indicates
a certain robustness of our description of frictional phenomena, since fault dynamics
involves more than solid on solid, dry friction. We can also conclude that the kind
of viscoelastic interaction introduced in our model is essential to capture the basic
features of seismic dynamics.

Perspectives In the first and last sections (Sects.5.1 and 5.5) we have seen that
in various contexts other than friction or seismic faults (superconductors, granular
materials, crystalline and amorphous plasticity, etc.), relaxation effects similar to
our viscoelastic relaxation can be relevant. We propose a formulation of this kind of
problems in terms of a well-defined continuous model (built on two equations, for
two fields). It may be helpful in further attacking the general problem of relaxation
mechanisms in driven disordered systems. A singular and advantageous feature of our
formulation is the deep connection with the problem of purely elastic depinning: the
configurations visited by the viscoelastic interface are also metastable configurations
of specific elastic interfaces.

There are several avenues for future work. A first is to better characterize the
“viscoelastic depinning” universality class by extracting all the exponents from the
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different distributions (distribution of avalanche size, area, duration, etc.) and all their
scaling relations. In the next chapter, we will see that we may expect some scaling
relations to hold, despite being in a new, larger universality class. In particular, in
mean field we expect to have a new non trivial exponent, which may be predicted
from our analytical calculations.

A second point is that some extensions of our model should prove interesting. For
friction of crystalline solids, one could account for the (visco-)elastic interactions
of the solid’s bulk using long-range elastic interactions, similar to what was done
in [PDC+12]. For the case of seismic faults, one could account for the amorphous
nature of fault gouge by using a long-range and anisotropic kernel of the Eshelby
type ((MBB12] should be inspiring). More generally, an open problem is to design
a model for friction, which would account for the heterogeneous nature of asperities
via a quenched disorder and for their displacements via some kind of structural
disorder, as what was started in [DBZU11]. Yet another modification of the model
would be to account for the fact that in friction, the sliding surface is moving parallel
to itself. This may be accounted for using an anisotropic disorder correlator.
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Chapter 6
Directed Percolation: A Non-Markovian
Variant

One of the references of avalanche models studied for their critical properties is
Directed Percolation (DP). DP is the paradigmatic example of dynamical phase
transitions into absorbing states (see [HHLOS, Hin06, 004, HinOO] for reviews). It
provides an example of robust universality class with well studied critical behaviour,
where power-law distributed avalanches are generated. One of its most remarkable
characteristics is its robustness: numerous different particular models can effectively
be described within the DP scenario. Simple examples of DP processes are given by
cellular automata in which “active sites”” have some probability to activate their neigh-
bours, possibly propagating activity over large distances, for large periods of time.

It has been shown that the critical properties of the DP transition are however lost
if the probability to activate a site for the first time is reduced with respect to the
subsequent probabilities [GCR97, JDHO03]. We have shown in [LRJ12] that with an
appropriate increase of some of the following activation probabilities, criticality can
be restored, in a process that we call “compensation”. Here, we review these results
and relate them with the problems of elastic and viscoelastic interfaces.

In this chapter, we first study the conventional DP process and compare it with
elastic depinning (Sect. 6.1). Second, inspired by earthquakes models we introduce
a non-Markovian variation of the DP process. We prove that it is critical and study
its critical properties (Sect.6.2), and discuss its relationship with the viscoelastic
interface. We conclude by discussing the impact of our results and some perspectives
in Sect.6.3.

6.1 Pure Directed Percolation

In this section we start by defining a simple cellular automaton that belongs to
the DP universality class, and show in what respect it is different from the elastic
depinning model (Sect. 6.1.1). Then we study the critical behaviour of DP: we define
the main critical exponents and show their scaling relations (Sect. 6.1.2). This allows
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us to compare the universality class of DP and depinning via the results obtained at
criticality (Sect. 6.1.3).

6.1.1 Link Between Elastic Depinning
and Directed Percolation

Bond Directed Percolation (Bond DP) The Bond DP process is defined as a very
simple cellular automaton that produces avalanches: here we present a light variation
that highlights the similarity with the avalanches of the elastic depinning model. The
local density of activity ¢(x, r) fully describes the state of the realization of the DP
process at time . Consider an infinite square lattice, for example in two dimensions,
with initially no active sites!:

1 Pick a site at random and activate it: ¢; (1) = 1.

2 Foreachactive site ¢; () = 1,de-activate it (¢; (+1) = 0). Each of the neighbours
can be activated at time ¢ + 1, independently, with probability p (¢;(t + 1) =1
in case of success).

3 If there is one active site or more, then go to Step 2. Else, go to Step 1.

Note that a site which is activated by more than one neighbour ends up in the
same state as a site activated only once: a site can not be “doubly activated”. Usually,
DP is defined as above except for the Step 3 which does not send back to Step 1, so
that only one avalanche (or cluster of connected sites) is produced. Here we simply
let the algorithm repeat indefinitely from the initial condition with no active sites. A
striking difference between this model and depinning is the absence of any interface
or field that would evolve during the avalanche and remember its total progression:
in DP, only the instantaneous activity matters. The link between Directed Percolation
and (Isotropic) Percolation is explained in Fig.6.1.

A Special Case of Elastic Depinning Let us recall the continuous equation of motion
of the elastic interface using the narrow wells disorder:

nodihi = ko(Vot — hy) + ki (V2h); — £, 6.1)

Using the narrow wells disorder, the quasi-static dynamics stipulates that a site is
active if the local stress o; = ko(Vot — h;) + ki (V2h); is larger than its random
threshold £

We want to give a mapping between depinning and a modified DP model. Let us
assume that the narrow wells are equally spaced (by one unit length) and that the
threshold forces fl.th are exponentially distributed:

P(fM = X)dX = Ae MdX,  g(z) = 6Pz - 1), (6.2)

'In general, the initial condition can consist in any number of active sites.
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Fig. 6.1 From [Hin06]. Isotropic and Directed Percolation. Bonds connecting two sites are high-
lighted in bold black (drawn at random).The site initially active (seed) is highlighted in blue. Sites
which belong to the connected cluster of active sites are highlighted in red. Left Isotropic Perco-
lation in d = 2 dimensions. Right Directed Percolation in d = 1 + 1 dimensions. Direction of
time is downwards, following the arrow. Note that the DP cluster is restricted to the “light-cone”
represented with dashed green lines

where g(z) is the spacings distribution of the “narrow wells” introduced in Sect. 4.1.1.
We will see that the choice of the exponential distribution is crucial. Let us suppose
that the site i is inactive and receives some additional stress ¢, so that its stress goes
from o; to o; + €. Since the site is inactive, we already know that fl.th > o;. The
probability that it remains inactive is:

P(fM > o; +e)

P(f" > oi +elf" > o) = , oite>o; (6.3)

P(f" > o)
3 f;ﬂ_e e Mds 64
B f;o)\e*“ds 64)
= (6.5)
=P(f" > ¢). (6.6)

This result is independent of the value of o, i.e. the site does not remember the
increases of stress it witnessed. This memory-less property is characteristic of the
exponential distribution. We can verify the consistency of the scheme via an example:
the probability of not being activated under an increase 2¢ of the stress should be the
product of not being activated by two consecutive increases by . This is indeed the
case, since e~2A¢ = gmAcpmAe

When a site is activated, its stress decreases to a new value, o;, and its threshold is
drawn at random again. If the new threshold fl.th is lower than the new stress, the sites
is active again (it self-activates). This happens with a probability psir = P( fi‘h <

oj) = ch,- Ae™Mds = 1 — ¢~ Note that Pself does depend on o;.
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Dynamical Rules of the Special Model We can now describe the interface dynamics
in a probabilistic setup, i.e. without drawing the thresholds fi‘h in advance. Starting
from an initially flat> d-dimensional interface discretized on a square lattice with N
sites, {h;(0) = 0;(0) = 0, Vi € [1, N1}, the quasi-static dynamics (Vy = 07) reads:

1. Increase time until one site is active. We do not know the position of the thresholds
in advance, so the stress increase (Ao) = ko VoAt needed to activate one site is
a random variable distributed as:

P(Ac) = 1 — P(no site is activated up to time Ar) (6.7)
=1— (e MAMN, (6.8)

Since all sites are equivalent, the activated site can be picked at random. Declare
the site active and increase all o;’s by (Ao).

2. For all active sites, increase ; by one (decrease o; by ko + 2dk;) and draw
a new threshold fl.th. The 2d neighbouring ¢;’s are all increased by k (due to
the term k; V2h). Each of them is thus activated independently® with probability
p =1—e 1 The site i re-activates itself with probability peir = 1 — e~ .

3. If there is one active site or more, then go to Step 2. Else, go to Step 1.

This algorithm is actually independent from the field 4: it can be followed by simply
following the update rules for the o;’s, as was the case in the OFC* model (which is
equivalent to elastic depinning, see Sect.3.2.2, p. 63).

Link with a Modified DP Process The link with directed percolation is twofold.
First, if we artificially set the probability of self-activation pg.js to zero and identify
the constant p = 1 — e~ with the activation probability of DP, we exactly obtain
the bond DP process. If we artificially set pgjf to a constant non-zero value, we also
obtain the DP universality class: the critical value p. to obtain criticality will change,
but not the exponents.

Second, the above algorithm defines a modified DP process, associated to a field
o (itis DP-like in the sense that it evolves only by random activations). An interface
h can be associated to this process by demanding that #; advances by 1 whenever the
site i becomes active: the link with the density of activity ¢ is then given by ¢ = 0, 4.

Note that if we associate a field & (using ¢ = 0,h) to the usual DP process, the
Langevin equation for this # will not be that of the elastic depinning. For complete-
ness, we now provide the Langevin equation for the DP universality class.

Langevin Equation for the DP The DP process can be described by a Langevin
equation for the activity density ¢ [JDHO03, Hin0O0]:

2We can also start from any random distribution with finite first and second moments, the two
dynamics quickly collapse onto the same one, for a finite system.

31f a site has several active neighbours, each one of them successively tries to activate it, each with
the same probability.
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1
016 = DV?)+r¢ — Jug’ +&(x, 1), (6.9)

where the noise £ is Gaussian, has zero average £(x, r) = 0 and is delta correlated:
E(x,E(, 1) =T¢ d(x —x")5(t —1'). Note that this is a multiplicative noise, since
activity can not be generated from an inactive region. The distance to criticality is
controlled by r o« p. — p. The key ingredient in the DP process lies in the non-linear
term — %uqbz, which makes the local density saturate: it is the continuous translation
of the prescription that a single site cannot be “doubly activated”.

The Langevin equation (6.9) can be reformulated into the so-called Reggeon field
theory, which is the most practical way to perform a renormalization group analysis of
the DP universality class. For references on the Reggeon field theory, see the reviews
[Hin00, Hin06]. For an interesting application of this field theory to a modified DP
model, see the excellent [JDHO3].

Link with the NDCF Universality Class Here, our argument focused mostly
on showing that DP and elastic depinning are in different universality classes. In
[AMnO2], it is shown heuristically that the minimal Langevin equation for the NDCF
class (Non Diffusive Conserved Field class), given by:

¢ =DV>p+ro— %u¢2+§(x,t) — (6.10)
o = D'V?*¢ (6.11)

can be mapped onto a model of interface depinning (and vice-versa). The NDCF
class corresponds to the DP model with an additional field v, and corresponds to the
“modified DP” process with a non-trivial pgjr that we defined above. However, the
path followed in [AMn02] is more rigorous than ours, as two mappings are provided:
one from a microscopic model in the depinning class to the Langevin equation for the
NDCEF class, and one from a microscopic model in the NDCF class to the Langevin
equation for the depinning class. Furthermore, a table of exponents for these classes
and related models is provided, along with a detailed physical interpretation of all
the terms of the Langevin equations.

In this chapter we are interested in a different modification of the pure DP process,
which does not map to depinning. For additional details on the relation between
NDCF and depinning, we refer to [AMn02].

6.1.2 Critical Behaviour of Directed Percolation

In its discrete version, DP is a dynamical model defined on a lattice, where each site
is associated with a state (active or inactive, ¢; = 0 or 1) that evolves in time. We
have presented the bond DP process up to here. A commonly considered variant is
site DP, in which a site on the lattice will be active at time ¢ + 1 with probability p
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if at least one of its neighbours is active at time ¢. In bond DP, a site will be active at
time ¢ + 1 with probability 1 — (1 — p)¥, k being the number of its active neighbours
at time ¢. The configuration with no active sites is called an absorbing state because
once it is reached, the dynamics stops. In DP, the absorbing state is unique, it is
{¢i =0,Vi}.

For a small p the system is trapped in the absorbing state exponentially fast,
while for large p the system has a finite probability to remain active indefinitely (see
Fig.6.2). There exists a threshold p. at which the system is critical, and in which
the surviving probability decays algebraically with time. Around the threshold p,
the system displays a non equilibrium phase transition from a fluctuating phase to the
absorbing state. As for standard equilibrium phase transitions, universal behaviour
and critical exponents are expected. It was found that both site and bond DP belong
to the same universality class: here, we focus on bond DP on a two dimensional
square lattice, for which p, ~ 0.287338 [MDVZ99].

Order Parameter As p is the control parameter of the transition, we denote the
distance from criticality as A = |p — p.|. Two different order parameters can be
defined, depending on the initial condition. When the initial condition corresponds
to a fully active lattice the relevant question is to determine the density of active sites
when ¢ — oo (the stationary state), namely pg. For p < p¢, pst = 0, for p > pe,
pst = AP. When the initial condition corresponds to a lattice with a single active site
(the “seed”), a cluster of active sites spreads from it. Here the relevant question is to
determine the probability to remain out of the absorbing state when t — oo, namely

Ost. For p < pe, Qe =0, for p > p¢, Qg = A7,

Correlation Length Similarly to the case of equilibrium phase transitions, when
approaching criticality, a diverging length £; ~ A™"L describes the spatial corre-
lations. In dynamical phase transitions, there is also a characteristic scale for time
correlations, § ~ A™"I. These scales are independent of the observable and thus
of the initial condition, while one expects the two distinct order parameters pg; and

PP,

P<p,

Fig. 6.2 From [Hin06]. Realizations of the 1 + 1-dimensional DP process below, at, and above
threshold
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Qg to be characterized by different* exponents 5 and 3. We will see that other
quantities display power-law behaviour with different critical exponents, however it
is possible to write scaling relations that constrain the set of critical exponents to
only four independent quantities.

Observables and Scaling Relations

In practice, in numerical simulations it is convenient to start from the single seed
initial condition and let the cluster evolve up to time ¢. To characterize the growth
of spreading clusters, one measures the survival probability Q(r) and the average’
number of active sites at time #, N (¢). These two quantities obey the scaling forms:

Q1) o 17091 (1/&)) (6.12)
N(t) o g2 (1 /€)) (6.13)

where g1 and ¢ are 1 at 7 = 0, and g; (x) — 0 for x — o0, below threshold. When
we consider surviving clusters only, we can measure the average spatial extension
of the cluster at time 7, namely L%(r), and the average density p(r) of active sites at
time ¢ inside this region. These two quantities obey the scaling forms:

p(t) o<t 0g3(1/¢)) (6.14)
L(t) o< t'/2g4(1/€)) (6.15)

where g3 and g4 behave similarly to g; and g» below threshold.

Scaling Relations From Above the Threshold Above threshold, both Q(¢) and p(t)
approach their asymptotic stationary state, Qg and py, at a characteristic time ~ §|,
so that two scaling relations can be written:

B =0y (6.16)
g = oy (6.17)

At the critical point the scale invariance predicts that if time is rescaled by a factor
b, space should be rescaled by a factor b”-/”I. Thus the size of a cluster grows as
L(t) ~ t"1/"I and a third scaling relation can be written:

dl

7=— (6.18)
vy

A generalized hyperscaling relation [MDH94] valid below the upper critical
dimension [Hin00] relates the four quantities previously defined. Namely N (¢) can

4More precisely the field theory of absorbing phase transitions shows [Gra83] that the density
exponent 3 is associated with the annihilation operator while the survival exponent 3’ is associated
with the creation operator.

SDecent statistics are obtained via the averaging of numerous realizations of the process, but we do
not explicitly write (Q), (N), etc., as we ought to.
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= Space

Fig. 6.3 1-dimensional bond DP. Normal direction of time is downwards. The arrows are given
once and for all and are the same for both panels. Final time is ¢+ = 12. Left DP starting with a
fully active lattice: M = 7 occupied green seeds, with final density p(t) = % Right DP with time
reversed, starting from a single seed (seven times). In light blue, the paths which die before the
end. In open circles, the paths that survive until z. There are exactly m = 3 seeds that participate in
surviving walks: Q (1) = %

be expressed as the sum of two contributions: the active sites of surviving clusters
(~p(t)L% (1)) which have probability Q(¢), and the contribution of dead clusters.
This reads:

N(@) =LY 0p@) - Q1) +0- (1 — Q1)

d
n=——0-34. (6.19)
Z

Scaling Relations From Below the Threshold Below threshold, each cluster can
be identified with an avalanche and dies in a finite time 7. We define the size S of an
avalanche as the total number of activations that occurred, and are mainly interested
in its statistics, P (), which is expected to follow a power-law at criticality: P(S) ~
S~7. The characteristic size of an avalanche is related to 7' through [MDVZ99]:

T
S(T) ~ Ny, prenss (6.20)
o Q@

Assuming that fluctuations around this characgeristic value are small, we can write
P(S)dS ~ —Q'(T)dT where —Q’'(T) ~ T—°~! stands for the rate of death. Com-

_ ]+n+2§
bining the latter relation with Eq. (6.20) we have P(S) ~ T-(+1+20) ~ g ( Tt ),

and a scaling relation for the exponent 7 can thus be written:

_1+n+2 )

= —_—. 6.21
I4+n+4+6 14+n+0 ©21)
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Bulk and Spreading Exponents The exponents and relations that we introduced
here are general features of all absorbing phase transitions, which are characterized
by only four independent exponents: ¢, #, z and . The exponents 3, 6, v, v and z
are called “bulk exponents” because they can be measured both from the fully active
initial condition and from the single seed initial condition (with averages performed
over surviving runs exclusively). The exponents ', §, p and 7 are called “spreading
exponents” because they are measured starting from a single seed, with averages
performed over all runs.

Time Reversal Symmetry: an Additional Scaling Relation DP has an additional
symmetry associated with time reversal, which implies that § = § [GdIT79, Hin00].
This is schematically proved in Fig.6.3 for 1-dimensional bond DP, where arrows,
drawn with probability p, connect neighbouring sites. An activated site at the start
of an arrow activates the site at the end of the arrow. The key observation is that the
direction of time is arbitrary: starting from the top is equivalent to starting from the
bottom with reversed arrows. The survival probability Q(¢) with fully active initial
condition (with normal direction of time) is exactly equal to the density p(¢) with
single seed initial condition in reversed time. This relation thus reads:

o(r) = p@) (6.22)
§=20. (6.23)

The relation is exact for bond DP, while in general Q(¢r) ~ p(t), thanks to the
universality of DP. A necessary condition for this time-reversal symmetry is the
uniqueness of the absorbing state: in a process with multiple absorbing states or
ageing, one cannot freely reverse the arrow of time.

Exponents: Numerical Values in Two Dimensions We recall two-dimensional DP
exponents precisely measured in numerical simulations [MDVZ99]:

0 =0=0.4505+0.001 z=1.766=+0.002
v =1.2954+0.006 1 =0.2295 £ 0.001. (6.24)

From Eq. (6.21), we compute 7 = 1.268, very close to the depinning 2D value,

Tdepinning = 1.27 & 0.01, but different because the two models belong to different
universality classes.

6.1.3 Comparison with Depinning

Successful Identifications We first recall two scaling relations and provide a few
additional ones that can easily be deduced:
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DP: & =|AI7", g =1AIT", g~ spP=efgp~ aT@md),
(6.25)

where A = |p — p.| and S,,[f P is the cutoff for the large avalanches, defined only
when p < pc.

We quickly recall a few scaling relations from the elastic depinning model. We
denote A = F — F, the distance to criticality.

Depinning: & = [A|7Y, T, = A7, T, =&, 8, =&,
(6.26)

v~ A By =z - ), (6.27)

where [, is the 3 exponent of the elastic depinning, and 7;,, S,, are the cutoffs for
the distributions of the avalanches duration and size, respectively.

There are certain quantities that are straightforwardly identified. For instance, the
correlation length ¢ of the depinning can be associated to the correlation length of
DP: £ — &, . We write down all these associations:

v — B

vouv, o, Thn—§. 11—z Sp—SPP A8
vy

(6.28)

where the last one comes from the identifications of the S,,’s. If we now inject this
in the depinning relation 3,; = v(z — {) and use the previous associations, we get:

ﬁe1=zx(z—C)=u(z—V|_B)=V(Z—Z—V£)=ﬂ. (6.29)

Vi

In this sense, we may identify v(t) — p(¢), which is perfectly consistent with the
analysis provided in Sect.6.1.1, p. 174, where we identified 0;h; with the local
activity ¢;.

We can derive more associations by considering observables derived from the ones
introduced above. For instance the expression for the avalanche duration exponent
77 = 1 4+ (d + ¢ — 2)/z of the depinning is consistent with the expression for
the survival exponent § that can be found using the associations above. However
providing an extensive list is not our aim here. See [PMB96] for an early review of
avalanches model and a comparison of their universality classes.

Differences Between the Models

The Statistical Tilt Symmetry (STS) A first important difference is the violation
of the STS, v = 1/(2 — (), in the DP model. We can compute ¢ “for the DP” from
(6.28): in two dimensions, (pp ~ 0.97. Asv| ~ 0.733 # 097 = 1/2 — (pp).
This is to be expected, since the STS relation lies on the assumption of a quadratic
Hamiltonian, i.e. an interaction linear in 4. The non linear term —%ugbz of the DP
clearly violates this assumption.
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Susceptibility: a Scaling Relation for 7 In the elastic depinning as in DP, by def-
inition P(S) ~ S 7g(S/Sm), so that (S) ~ Si_T. However, the relation to the
susceptibility, (S) = y ~ A~(F7O holds only for the elastic depinning, and yields:

G+

=2 .
T PR,

(6.30)

As there is no notion of driving in DP, there is no susceptibility either. Thus, (S) is not
controlled as some average response would be, and (6.30) is violated. Injecting the
appropriate numbers from the associations made above into (6.30), we find 7 ~ 1.21,
quite far from its actual value 7 & 1.265.

We must conclude that although depinning and DP are two avalanche models
with a few similarities, they are not in the same universality class. Furthermore,
re-interpretations of scaling arguments from one model to the other proves unsuc-
cessful.

Time Reversal Symmetry Conversely, the equivalent of time reversal symmetry,
valid in DP, is violated in depinning. This is due to the presence of the field z, which
acts as a memory kernel for the interface (or for the “modified DP” defined earlier).
Since the depinning is defined by more than its instantaneous velocity (or activity,
¢ <> O¢h)), its dynamics is not symmetric by time reversal.

6.2 A Non-Markovian Variation of DP

A generalization of the bond DP process is the modified first Infection Model (IM)
[GCRY7, JDHO3, vW02, DHO3]. In this variant, the probability to activate a site
for the first time is given a value p; different from the value of the subsequent
activations (that we call pgps). This has been considered as a model to describe
epidemic processes with partial immunization. In this context, the activation of a
site is called infection, and it is understood that the possibility of the subsequent
reinfection probability psps can differ from the first infection probability p; due to
“immunization” effects. The question of the relevance of this change was a debate
for some time, but was finally settled [GCR97, JDHO3] and the phase diagram of
this problem in d = 2 is the one reproduced in Fig.6.4.

DP critical behaviour occurs at p; = psups = pe: at this point, Q(¢), N(t), L2(1)
and p(t) have power-law distributions corresponding to pure DP. In the curved line
terminated in the points “DP” and “GEP”, the system experiences a phase transition
corresponding to the so called General Epidemic Process (GEP). The fixed point
of (bond) GEP is located at p; = 1/2, psups = 0 and corresponds exactly to the
problem of bond Isotropic Percolation.

Along the AB line (Fig. 6.4), except for the unstable DP fixed point, the system is
not critical. In particular, the surviving probability Q(¢) and the size distribution of
the avalanches P (S) decays faster than a power-law. The instability of the DP fixed
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Fig. 6.4 Adapted from
[GCRY7]. Phase diagram of
the model with a first
infection probability pj
different from the
subsequent reinfection
probability pgyps (the IM).
Arrows indicate the RG-flow
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point was shown in [JDHO3]: the renormalization flow takes one from any point in
AB (outside the DP point) to either A or B.

6.2.1 First Attempt Model

Instead of the case in which there are different probabilities for the first infections,
here we focus on the case in which different probabilities occur for successive
attempts, namely irrespective if the activation of the site actually occurred or not. The
state is defined by the number of trials of activation, not the number of infections.
We will refer to this variant as the Attempt Model (AM), to distinguish it from the
Infection Model (IM) previously described. The AM is a sort of milder modification
of the original DP problem, compared to the IM. We expect the phase diagram of
the AM to be qualitatively similar to that of the IM.

In particular, the DP fixed point is clearly located at the same position, while
the GEP point is slightly different. As we stated before, for the IM the GEP point
corresponds to two-dimensional bond Isotropic Percolation (p1 = 0.5, psups = 0).
Instead, for the AM it corresponds to two-dimensional sife Isotropic Percolation
(p1 =~ 0.592746, pgubs = 0). Indeed, we observe that for the AM, when pgps = 0,
a site can be activated only at the very first attempt, with probability p; (no matter if
we consider site or bond DP), thus the sites that are activated once with this rule are
exactly the sites activated in d-dimensional site Isotropic Percolation.

The main difference between AM and IM is that the AM has a non-singular
limiting behaviour as p; — 0, leading in particular to a finite mean event size (S)
in this limit, whereas for the IM (S) goes to 0 as p; — 0.
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Motivation for the AM: link with the Viscoelastic Interface Model We start by
referring to the simpler case of the OFCR model. During an avalanche of the OFCR
model, the bulk dynamics is unaffected by the relaxation process: once a block
jumped during an avalanche, its behaviour is fully controlled by its new stress and
stress threshold.

However, the spreading of an avalanche is modified by relaxation. Under relax-
ation (0,07 = ko Vo + RVZGi), ablock i can see its stress either decrease or increase.
When the stress increases under relaxation, the block becomes closer to its activation
threshold and the probability for a neighbouring active site to activate it is increased.
Reciprocally, a decrease in the stress due to relaxation decreases the activation prob-
ability for this site. When a spreading avalanche encounters for the first time a site
that relaxed for some time, the probability to activate it is thus different from the
bulk one.

This probability evolves under the activation attempts: when a relaxed site has an
active neighbour, it receives an additional amount of stress k; (or «) which takes it
closer to its threshold. Under a few attempts of activation by neighbours, the relaxed
site should thus either be activated, or have the same probability of activation as any
other site. Note that in this respect, the simple fact that a neighbouring site attempts
to activate a site increases its activation probability, independently of the success of
this activation. This explains our motivation to study the Attempt Model rather than
the IM.

The parallel between the AM and the viscoelastic model is the same, the only
difficulty is to understand that the bulk activation probability is independent of the
precise value of the auxiliary field u.

6.2.2 Criticality Recovered with Compensation

Our main point here is to show that for the AM the lack of criticality generated by
a value of the first attempt p; smaller (resp. larger) than p. can be “compensated”
by a second attempt probability p; larger (resp. smaller) than p.. We will present
strong numerical evidence showing how this compensation occurs, restoring critical
behaviour in the system.®

In addition, a remarkable result is that at compensation, several critical exponents
of the problem, in particular the bulk exponents 6, z and v, take their normal DP
values, while the spreading exponents (J, 7, 7) depend on the precise values of p
and p».

We consider the case in which the first two attempts p; and p; differ from the
subsequent ones, that from now on we consider to be equal to the critical DP value:
Pi>2 = Psubs = pc = 0.287338.

SWe will not discuss the possibility of compensation in the IM since we cannot be conclusive at
present. Although it seems that compensation can be obtained, numerical evidence is not enough
for a discussion on the variation or not of the obtained critical exponents.
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Fig. 6.5 Q(t) for different choices of (pi, p2). Black circles represent the pure DP at p; =
P2 = Psubs = pe With a power-law exponent § = 0.4505 (averages performed over 10° samples).
Left Triangles represent the AM with py = 0, psubs = pe. From fop to bottom, we used p; =
0.494, 0.4888, 0.485. For p; = 0.4888, Q(r) displays a clear power-law with § = 0.25 £ 0.01
(averages performed over 10° samples). Right Squares represent the AM with p; = 0.01, peups =
pe. From top to bottom, we used py = 0.62,0.60, 0.58. For p; = 0.600, Q(¢) displays a clear
power-law with § = 0.53 £ 0.01 (averages performed over 10% samples)

Heuristic Argument for the Compensation A heuristic argument suggesting that
such a compensation can result in criticality is the following. As a perturbation,
the relevant character of a change in p; was demonstrated in [JDHO3] for the IM.
The analysis presented there indicates that a change in p, generates qualitatively the
same kind of perturbation (to leading order) than a different p;. Therefore, it is not
surprising that there are particular combinations of p; and p, at which the leading
term of both perturbations cancel each other. These particular combinations will be
the compensating pairs of values (p1, p2). However, the fact that we do not recover
the pure DP exponents indicates that higher order terms do not vanish, but result in
a marginal perturbation.

Numerical Evidence for Compensation and Variable Critical Exponents

We present first the numerical evidence of the compensation effect. In all simulations,
we start from a single active site (seed) a time ¢+ = 0, which is in a state of being
attempted twice, and let the clusters grow until time r = 100, or their natural death.
The lattice is large enough so that the boundaries are never reached by the cluster.
To be very precise about our choices: a site that has been successfully infected at the
first attempt is still in a state of being attempted just once.

We investigated two pairs of compensating points (p1, p2) and compared with
usual DP (in which p; = p» = psubs = pc). For the first one, we set pp = 0
and varied p; in order to find the critical point. In Fig.6.5 (left), we show a few
results for different values of p;. A careful study around the point p; = 0.4888
shows that we recover the critical character of the surviving probability at (p; =
0.4888 =+ 0.0005, p» = 0). The critical exponent § measured at the compensation
point (6 = 0.25 £ 0.01) is different from that at DP.
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Fig. 6.6 Left L(t) for the AM at criticality. Circles represent the pure DP at p; = p2 = psubs = Pe-
Squares represent the AM with p; = 0.01, pp = 0.600, psubs = pc. Triangles represent the AM
with p; = 0.4888, p» = 0, psubs = pc. The dashed line corresponds to a slope 1/z = 0.566, using
the exponent z measured in pure DP (6.24) Averages are performed over 10° — 10% samples. Right
p(t) for the AM at criticality. Circles represent the pure DP. Squares represent the AM with p; =
0.01, p2 = 0.600, psubs = pc. Triangles represent the AM with p; = 0.4888, p2 = 0, psubs = Pe-
The dashed line corresponds to the exponent measured in pure DP, § = 0.4505 (6.24). Averages
are performed over 10° — 108 samples

The second compensation point is searched by setting p; = 0.01 and varying
p2. In Fig. 6.5 (right), we show the critical character of the point (p; = 0.01, py =
0.6000 £ 0.0005). As for the previous point, this level of precision on the location
of the critical point was obtained from a careful numerical study. Similarly we find
a new value for §: 0.53 £+ 0.01.

Given the width of the range of times explored, we rule out the possibility of a
simple crossover between a pseudo-critical behaviour and a non-critical behaviour
that might exist at long times. As mentioned above, a Renormalization Group analysis
(such as that performed in [JDHO3]) would allow to solve this issue once and for all.

Critical Behaviour of the Bulk Observables Let us present the critical behaviour
of the quantities related to the bulk exponents, ¢, z, 1. L(¢) corresponds to the mean
cluster width averaged over runs that survive until time 7. In Fig. 6.6 (left) we compare
our data at two compensation points and at the DP point: we notice that the z exponent
does not change, unlike the coefficient before the power-law.

In Fig. 6.6 (right), p(t) corresponds to the mean density averaged over runs that
survived until ¢. The density of a single run is measured as the ratio of the number
of active sites at t over the number of sites that were activated at least once. Again,
one may notice in Fig.6.6 (right) that the exponent 6 remains unchanged between
the different critical points.
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We want to check if v changes with p; and p>. To do this we set (p; = 0.01, pp =
0.600) and use different values of pgps < pc , thus varying A, and observe the
deviation from power-law behaviour in Fig. 6.7 (left). We consider the scaling law
in Eq. (6.12): using the value of § = 0.53 extracted from Fig. 6.5 (right) and the DP
value given in Eq.(6.24), we obtain a perfect collapse for the survival probability.
This shows that v does not change between compensation and DP.

Critical Behaviour of the Spreading Observables The scenario is different for the
spreading exponents ¢, 7 and 7. We already saw that  changes at compensation. In
addition, in Fig. 6.8 (left), the number of active sites averaged over all runs, N(?), is
seen to depend on the compensation pair (p1, p2). For the compensated point (p; =
0.4888, p» = 0) we measure n = 0.44 £ 0.01 and for (p; = 0.01, p» = 0.600)
we measure 77 = 0.15 £ 0.01. At compensation, we expect the hyperscaling relation
(6.19) to hold. As z and 6 are found to be constant, the only way to preserve this
relation is to have d + 1 = d/z — 6 = const. This constant is 0.680 £ 0.002, if
we refer to [MDVZ99]. For the point (p; = 0.4888, p» = 0, psubs = pc), we find
that 6 + n = 0.69 £ 0.02. For the other compensation point (p; = 0.01, py =
0.600, psubs = pc), we find § + n = 0.68 £ 0.02. These results are consistent with
the expected value, for both compensation points.

In Fig.6.8 (right), we present the probability density function P(S). The scal-
ing relation (6.21) holds for the compensation process. In particular for the first
compensation point (p; = 0.4888, p» = 0), using § = 0.25 £ 0.01, the equa-
tion (6.21), and 6 + 71 = 0.69 £ 0.02, we expect 7 = 1.148 £ 0.006. We measure
7 = 1.151 £ 0.005. For the other compensation point we expect 7 = 1.315 £ 0.006
and measure 7 = 1.318 % 0.005. These results are all consistent with the expected
values, within our numerical precision. We see that the relations derived in the first
section are still valid, except for the time-reversal symmetry which is violated, since
0 #0.
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Fig. 6.7 Left Q(t) for the AM for p; = 0.01, p, = 0.600 and different pgyps. From top to bottom,
Psubs = 0.287338, 0.28733, 0.28732, 0.2873, 0.2872, 0.287. Averages are performed over 8 100
samples. Right We collapse these data, plotting Q() - 1° against 1/A~"I. We used § = 0.53 as
measured in Fig. 6.5 and the pure DP value v = 1.295 as in (6.24)
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Fig. 6.8 Left N(¢) for the AM at criticality. Triangles represent the AM with p; = 0.4888, p» =
0, psubs = pc. There we measure = 0.44 £ 0.01 (dashed line). Circles represent the pure DP
at p; = p2 = psubs = Pc. There the dashed line corresponds to the exponent measured in pure
DP, n = 0.2295 (6.24). Squares represent the AM with p; = 0.01, p» = 0.600, psubs = p.. We
measure ) = 0.15 % 0.01 (dashed line). Averages are performed over 105 — 108 samples. Right
P(S) for the AM at criticality. Circles represent the pure DP at p; = p2» = psubs = p.. We check
that 7 = 1.268 + 0.005. Squares represent the AM with p; = 0.01, po = 0.600, psups = pc. We
measure 7 = 1.318 &£ 0.005. Triangles represent the AM with p; = 0.4888, p» = 0, psubs = Pe-
There we measure 7 = 1.151 + 0.005. Averages are performed over 10° — 108 samples

Interpretation of the Results

Existence of Compensation, Criticality A generic description of the behaviour of
the model can be presented in the (pi, p2) parameter plane (Fig.6.9). In this plane
there is a line along which the behaviour of the system is critical. This line passes
through the DP point (p; = p., p2 = p¢). The values of the bulk exponents z, 6 and
v are constant all along the line. The three spreading exponents ¢, 77 and 7 change
continuously when we move along the line, but always respect the relations (6.19)
and (6.21), so that there is only one independent exponent that changes. The value of
0 passes from lower-than-DP values when p; > p. > pa, to larger-than-DP values
when p; < p. < p2. Out of this line, there is in general a stretched exponential
contribution to the distribution of the relevant quantities of the problem.

Although we do not have an analytical proof of our main claim, i.e. the existence of
acritical line in the (p1, p2) plane, we can simply demonstrate that there is a singular
line in some respect. Along the diagonal of the (p1, p») plane, the DP point separates
a long term survival probability Qj; of zero (towards the origin, p; = p» = 0) and
a finite value of Qg; (towards larger values of p; and p;). The values of Q;; in other
parts of the (p1, p») plane must smoothly match this known behaviour. In particular,
we will have a singular line separating a region with Q; = 0, towards the origin and
along this line, from another region with Qy; # 0, to the right and above this line.
This proves that there is a singular line with respect to Qy, in the (pi, p2) plane.
Our expectation is that this singular line is also a critical line in which quantities are
power-law distributed.

A complete proof would require to adapt and extend the renormalization-group
analysis of [JDHO3] to the present case. To confirm our numerical findings, we
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Fig. 6.9 Phase diagram of the system in the (p;, py) parameter space with pgyps = p. = 0.287338.
The dashed line (schematic) is a critical line on which quantities in the system are power-law
distributed. Above the line there is annular growth, and below there is sub-critical growth. The bulk
exponents 6, z, v|| are equal to DP values all along this line, whereas the spreading exponents d, 1, 7
vary continuously along the line (representative values of 7 are indicated). The crosses correspond
to those points along the critical line that were numerically determined

would need to prove that our the Attempt Model, at compensation, corresponds to a
marginal perturbation of the DP equations. As we explained earlier, a quick analysis
of the perturbation introduced by a modified first attempt probability shows that its
nature is very similar to that introduced by a modified second attempt probability.
Thus, it seems probable that the leading orders of these two perturbations can cancel
each other by appropriately selecting the pair (p1, p2), thus resulting in a marginal
perturbation.

Bulk and Spreading Exponents We can understand the behaviour of the bulk expo-
nents if we think that these exponents can be measured starting from a fully active
lattice. In this case the evolution of the system coincides with that of pure DP after a
few time steps. However, bulk exponents can also be measured on the surviving runs
started from a single active site. In this case space-time is divided in two regions:
the active one, and the outer, inactive one. In Fig.6.10 we show a snapshot of a AM
growing cluster at a given t. We see that sites that make the difference with usual DP
are mostly located at the boundary of the active region. We consider a large box of
size £1 < &) inspace and £ < ) in time, sufficiently far away from the boundary
with the inactive region. Its statistical properties will be completely independent of
its precise location and are indistinguishable from those of a box with the same size,
with the fully active initial condition. Since the role of the boundaries is asymptot-
ically small, this shows that the bulk exponents 6, v/, , v and thus z are unchanged
by the compensation process also if we use the single seed initial condition.

On the contrary, the spreading exponents J, 1), T are naturally defined only in the
seed initial condition, and involve averages over all runs. They are strongly affected
by the spreading properties of the active cluster, it is thus not so surprising to see
them depend continuously on p; and p».
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Fig. 6.10 Snapshot of a 150 T T T T T T T T
growing cluster in the AM at
compensation (p; =0.01, | e ,
p2 = 0.600). Red 100 G T 4
(resp. black) points at the ! *

border are those sites that e B

have been attempted once 50 :
(resp. twice). The whole
interior is formed by sites
that have been attempted
more than twice (blue)

Generality of the Results

Here we have focused on the case of two spatial dimensions, but qualitatively the same
behaviour is obtained for one dimension. However in one dimension the deviations
from criticality when p; is changed are much weaker than in two dimensions, making
the determination of the compensation condition much more difficult numerically.
In this respect we want to mention that we have found other realizations of the
DP process where the effect is quantitatively much more important. For instance, the
process in which we try to activate neighbours with probability p, having in addition
a self-activation probability ps.if of the same site, also belongs to the DP universality
class. In this case we have observed that a lower probability to activate neighbours
for the first time can be compensated by larger self-activation probabilities during
the next steps, and in this case the quantitative effect is much more important. In
particular we have obtained avalanche size distributions with 7 as large as >~ 1.7.

6.2.3 Discussion of Related Models

A similar scenario happens in 1-dimensional models which display critical behavior,
despite their breaking of the time-reversal symmetry. In these models [MDH94,
JD93, Jen93, MM99, MDVZ99, OMSM98, PP07, MnGDL96, MGD98] each site
is active or inactive, as in DP, but is equipped with an additional auxiliary field ¢
which allows for a large degeneracy of the absorbing state. On this point, let us
remark that the AM can formally be described by a Markovian dynamics on three
fields ¢, ¢1, with ¢ the activity field at time # and ¢; a record of the number of local
attempts: ¢4, = 0 for a virgin site, ¢4, = 1 for a site attempted once and ¢,y = 2
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for a site attempted twice or more. Using these two fields, it is easy to describe the
AM in a purely Markovian way.

Threshold Transfer Process (TTP) We discuss DP with auxiliary fields using the
example of the Threshold Transfer Process (TTP) [MDH94, OMSMO98]. In the 1-
dimensional TTP, a site may be vacant, singly or doubly occupied, corresponding
respectively to states o; = 0, 1 or 2. The auxiliary field ¢ denotes the density of singly
occupied sites. A doubly occupied site corresponds to the active state. Initially, only
the site at the origin is doubly occupied, while the state o; of each other site is 1 with
probability ¢init, and O otherwise. At each time step, a site i is selected at random.
If 0;(t) < 2, then 0;(t + 1) = 1 with probability  and O with probability 1 — r,
irrespective of the precise initial value. If o;(¢) = 2, the site releases one particle
to all neighbours with o(t) < 2. Contrary to the DP case, there are infinitely many
absorbing states since any configuration with no doubly occupied site is absorbing.

In the TTP, r plays the role of control parameter, and in d = 1, r, = 0.6894
[OMSMO8]. At criticality the bulk exponents and the hyperscaling relation behave
as in DP, independently of the initial condition. However the spreading exponents
continuously depend on the initial condition ¢jp;;. Setting the initial density of singly-
occupied sites to its stationary value ¢, = r., one recovers the full set of DP critical
exponents [MDH94]. As far as we know, a theoretical explanation for the continuous
change in the spreading exponents d, 7 is still an open question.

DP in a Box It is worth mentioning a second class of models with similar behaviour,
which corresponds to DP with special absorbing boundary conditions. In particular
DP with absorbing walls at positions x (f) = #C - t'/% shows spreading exponents
that continuously depend on C [KT95, KT94]. Analogous results with a moving
active wall are presented in [CPAN99]. Moreover, one dimensional models with soft
or hard walls conditions can be studied analytically in the case of Compact DP. They
can be mapped onto compact first attempt (for soft walls) and compact first infection
(for hard walls). Dickman showed [DBAO1] that in this case the critical behaviour is
maintained when p1 isreduced, i.e. in this case we do not have a stretched exponential
contribution.

Conclusion: (Number of) Fields Counting Memory effects in immunization prob-
lems, or the presence of auxiliary fields in TTP-like models, introduce high degen-
eracy of the absorbing state and thus break the time reversal symmetry. In these
systems, at criticality, the bulk DP exponents are recovered. However, if the initial
condition is sufficiently far from its stationary value (which is ¢ for TTP-like mod-
els, and the fully twice-attempted lattice for the compensation model ¢, = 2, or
the fully once-infected lattice in the modified first Infection Model), the spreading
exponents depend continuously on the initial condition. Non-stationarity seems to
play a key role in the observed anomaly of the spreading exponents.

At the beginning of this chapter, we discussed the link between the microscopic
dynamics of the elastic interface model and a Modified DP Process. We saw that
for this “modified DP” to follow the same dynamics as an interface, it needed an
additional field A, that controls the self-activation probability: peeir = 1 — e= M.
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The link between the activity ¢ and & is simply given by ¢ = 0;h. In the case of
the viscoelastic interface, described by two fields & and u, the scenario is similar.
We do not give the full derivation here, but simply mention that a “very modified
DP” process can be defined, in which the fields ¢, 4 and u are necessary to fully
describe the system and its evolution. This draws a parallel with the AM: starting
from the “modified DP” with fields ¢, &, if we then add the Attempt rule (using the
field ¢4), we obtain a model with three fields ¢, &, ¢4, reminiscent of the case of
the viscoelastic interface model.

6.3 Conclusion: An Extended Universality Class

We have shown that DP universal behaviour is strongly affected by changes in the
first probabilities to activate sites. This modification corresponds to a special case
of “long term memory”’, where each site remembers exactly how many times it has
been activated (or attempted) before. Our main result is that, although the change of
the very first attempt probability takes the model out of criticality, by changing the
second attempt probability in the opposite direction, we can restore critical behaviour,
in a process we called compensation. Several critical exponents found at the point of
compensation do not coincide with those of pure DP: in particular, a time-reversal
symmetry known to be valid for DP is violated at compensation, thus changing
the value of one of DP’s fundamental exponents, while the other three conserve
their values. A remarkable feature of the criticality with compensation is that the
exponents depend continuously on the precise choice of the activation probabilities,
while almost all the scaling relations of DP are preserved.

Anissue well known in the DP literature is the absence of experimental realizations
of the DP universality class [HIDRD99]. Here, we have shown that by including a
simple memory effect (which can also be expressed in terms of additional fields) into
the DP dynamics, we obtain an extended version of the DP universality class. The pure
DP is contained in this extended model, with some exponents varying continuously
with the parameters pi, p» while others do not change; similarly several scaling
relations are maintained, while one is violated. In this respect, our model offers the
hope to find universality classes larger than DP, but sharing some crucial features
with it (like the non linearity of the bulk of DP). Finding an experimental realization
of this extended-DP class should be easier than for the more restrictive pure DP class.

Aside from any application to a concrete situation, we want to stress the fact that
the present model provides a link between two classes of models with very different
behaviour: the models with an auxiliary field and the Infection Model. Although we
obtained the same results as in models with an auxiliary field (criticality with scal-
ing relations preserved, time-reversal symmetry broken), our microscopical descrip-
tion fits in the framework of modified First Infection Models, for which analytical
computations have been successful [JDHO03]. This may be an interesting approach
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to the open problem of initial-condition-dependent exponents in absorbing phase

transitions.
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Chapter 7
General Perspectives

Here, we do not intend to summarize the results obtained during this thesis, which
are already summarized in the conclusions of each chapter. Instead, let us explain
the path that was followed in this thesis, and try to put our results into perspective.

Seismic phenomena represent a striking natural realization of the kind of scale-
free statistics expected in out-of-equilibrium phase transitions. However, they also
represent a physical situation in which various areas of the natural sciences are
involved (from chemistry to planetary science, through geology). The approach of
the statistical physicist is to cut into this broad diversity of mechanisms, trying to sort
out the relevant ones. This angle has already proven successful: for example, over
the last 30years the universality behind the notion of disorder has been clarified,
so that we know that many variations in the disorder distribution are irrelevant at
the macroscopic scale. This allows to consider the precise nature and distribution of
rocks as an essentially irrelevant parameter. Similar arguments apply to other variable
parameters, which turn out to be irrelevant in the macroscopic limit (e.g. the precise
value of the strength of the interactions).

Relying on these powerful simplifications, simple statistical physics models show
that the competition between elasticity, disorder and driving force is already enough
to reproduce some of the main features characterizing faults dynamics. However,
a closer inspection of the experimental evidence reveals important discrepancies
between these models and real seismic faults. These failures point out the need for
including at least one new element into the statistical physics models.

In order to choose adequately this new “ingredient”, we considered the simpler
case of the frictional behaviour of dry materials in the well-controlled environment
of the laboratory. There, it is clear that some mechanisms at the level of contacts
are responsible for the various effects observed in friction at low sliding velocity
(velocity-weakening, ageing of contacts at rest). As we want to keep our models
simple, we decided to account for these mechanisms by considering the interactions
within each surface to be viscoelastic rather than purely elastic.

This simple choice proves to be a very good one, since our analytical and numerical
results compare very well with seismological observations and friction experiments
(see Sect.5.6 for a summary). This success is a proof that, in order to understand
© Springer International Publishing Switzerland 2016 191
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friction at small sliding velocities, one must take into account both disorder and
viscoelasticity. A side effect of our study is to clearly set the problem of dry friction
into the field of disordered systems. A more detailed account of the ability of our
model to reproduce frictional behaviour would be interesting, and further comparison
with experiments is an interesting lead for future work.

Independently from the precise performance of the model at matching with exper-
iments, it is interesting to question the generality of the approach. We answer to this
interrogation by noting that some common features seem to emerge in various models
including both microscopic disorder and some relaxation mechanisms. In particular,
in our model, we have proven that the addition of viscoelasticity is a relevant change,
in the sense that the addition of a very small amount of “visco-" to the elastic inter-
actions affects the macroscopic behaviour. The separate observations of universality
in disordered systems and in viscoelastic materials date from a long time, but for the
combination of both the consensus is just starting to emerge.

Our model is a good candidate to study the extended universality class of
“viscoelastic depinning”, as its simple formulation allows for analytic treatment
in mean field (that we performed) and extensive numerical simulations (as we did
in two dimensions). In this respect, an avenue for future work is to perform the
full analysis of the model in finite dimensions, extracting all the exponents and dis-
cussing the scaling relations. In particular, in two dimensions, we need to evaluate
the characteristic length over which the stress level is strongly correlated.

In these future works, we may be guided by our results on the modified Directed
Percolation (DP) model, for which the new universality class displays many common
features with the particular case of pure DP, indicating a relative robustness of the
“stationary features”. Natural extensions of our model that should be considered are
the study of the finite dimensional case with long-range interactions (expected to be
similar to [PDC+12]) and with quadrupolar, long-range stress redistribution (Eshelby
problem).
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Appendix A
Additional Proofs and Heuristics

A.1 Appendix to Chapter 2

A.1.1 Why Lubricants May Be Irrelevant

In this thesis, we are mainly interested in dry friction, as opposed to lubricated friction.
However, in real contact mechanics, there are always some impurities, gas molecules
or even liquids between the substrate (lower, motionless solid) and the (upper) sliding
solid. As friction is controlled by the properties of the surfaces in presence, the
molecules adsorbed on the substrate (and on the upper solid) are expected to play a
major role, even if they are present in very small quantities.

Consider a perfectly flat substrate, i.e. without a single one-atom imperfection on
length scales of several micrometers (this can be accomplished using mica surfaces,
that are rather easily produced with such flatness). On this substrate, molecules of
gas (or oil lubricants, etc.) can be adsorbed, allowing for “lubricated” friction (in the
broad sense).

If the adsorbate is in small enough quantity, only a single layer of molecules
(or less) will be present on the substrate. Increasing the quantity of adsorbate, one
can obtain several “layers” of them. For a thickness of a few layers, the first layer
is generally adsorbed on the surface, with possibly a regular crystalline structure,
while the remaining ones are either in the same crystalline order, or in a fluidized
state, which can be an un-jammed state for granular matter, fluid, or other “flowing”
states of matter. In this case, friction is controlled mainly by the solidification or
fluidization of this adsorbate layer. See [ATV02] for a detailed study of this case.

If a liquid is present in large quantity (~10 wm or more) between the substrate
and the sliding solid, then the hydrodynamic approach becomes relevant, and fric-
tion is controlled by the bulk hydrodynamics of this intermediate liquid, along with
the adsorption properties on each of the two surfaces (which control the boundary
conditions of the hydrodynamic problem). The nature of the interactions between
the two bare surfaces is then completely irrelevant.

© Springer International Publishing Switzerland 2016 193
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However we have seen that most surfaces are not at all flat, and even those we call
“smooth” in everyday life are actually quite rough at small—and not so small—length
scales. This diminishes the a priori crucial role of adsorbates, since the “true” contact
area is much smaller than what one would naively expect. At the rare contact points
that are relevant for the friction of rough surfaces, the hydrodynamics of adsorbates
is often irrelevant.

A.1.2 Self-Similarity (and Related Definitions)

Numerous objects have the property that they “look the same” at various length scales.
Here we make this idea more precise by defining various mathematical properties
related to this idea.

Let us first define the property of self-similarity (and other related properties) in
the general case. A function g(x) is said to be self-similar if an only if (iff) it satisfies:

g(x) = Ag(A"'x), VA >0, Vx. (A.1)

This is a re-scaling, and it correspond intuitively (e.g. for A > 1) to do two things
at the same time: “zoom in” in the x-direction and magnify (or also “zoom in”) in
the g-direction. This can be extended in 2 or more dimensions, where the condition
becomes (e.g. in d = 2 dimensions):

g(x,y) = AMAag(AT x, ASy),  YAL2 >0, V(x, ). (A.2)

Self-similarity is a very stringent constraint, since the re-scaling in the x- and g-
directions (and the y direction in 2D) has to be exactly the same.

A more general property defining objects with “similar” appearance at different
length scales is self-affinity. A function g(x) is said to be self-affine iff it satisfies:

g(x) = A’g(A"'x), VA >0, Vx, (A.3)
where b is the self-affinity or scaling exponent. We see that self-affinity is an
anisotropic transformation which contains self-similarity as a special case (b = 1).

The anisotropy can be stronger in two or more dimensions. In d = 2 dimensions,
the condition for self-affinity becomes

g, y) = AP ARg(AT I, ATYY), VAL > 0, Y(x, y), (A4)

where by, by are the self-affinity or scaling exponents related to the affine transfor-
mation. This may be referred to as “anisotropic” self-affinity, but this wording is
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misleading, because even for b = by # 1, we already have an affine transformation
(and not a similarity transformation).!

Self-affinity is a rather general property, however it is interesting to note that it
only allows to compare fully deterministic objects. This is already quite general, since
even for stochastic systems one may consider e.g. the correlation function g(xp, x2),
which despite being a deterministic object, helps in characterizing the fluctuations
of the system. For instance, if the system state is described by o(x), one may define
g(x1,x0) = (o(x1)o(x2) — o(x1)?). As g is deterministic, it may be self-affine.
However, if we are interested in many moments of some random distribution, or
even in its full distribution, then we need an additional definition: statistical self-
affinity. A stochastic process g is said to be statistically self-affine iff:

Law

gx) = Alg(A7'x), VA >0, Vx, (A.5)

where the equality is “in Law”. This definition allows to analyse the properties of
random processes. The definition of statistical self-similarity is obvious (just take
b=1).

A.1.3 Fraction Brownian Motion

Here, we use Fraction Brownian Motion (fBm) as a non-trivial and statistically self-
affine process, to exemplify the notion. Besides, it can be useful by itself.

As its name suggests, fBm is a generalization of Brownian Motion (BM). The
fBm process is defined as a continuous-time Gaussian process which is self-affine
and has a specific covariance function. The covariance function is:

1
(h(xh() = 3 (7 4337 = 11 =0 PT). (A6)

where H is the Hurst exponent; the Gaussianity hypothesis means that

1 _h)?
P(h(x))dx = —\/Z_e 2% dx, (A7)

oxN 2T

(where the variance o, can be computed, a)% = (h(x)z) = x2HY): and the self-affinity
or scaling exponent is H € [0, 1]:

IPlease note that in part of the literature, these two concepts are sometimes mistaken for one another,
or simply melted and seen as equivalent. When considering functions, it seems quite natural that
the ordinate and abscissa do not share the same scaling exponent, so that considering self-affinity
seems very natural. However, when considering geometrical objects such as self-similar or self-
affine objects, the distinction becomes important. Not all fractals are self-similar fractals.
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L.
h(Ax) = AP h(x). (A.8)

The case H = 1/2 reduces to BM, since x| + x3 — |x] —x2| = min(xy, x2), which is
the covariance of the BM. The definition of the corresponding discrete process can
be done rather naturally. To stay concise, we do not give it here.

We are going to see that intuitively, the fBm represents sub- or super-diffusive
processes. We start with simple Brownian motion for simplicity.

Originally, Brownian motion is understood as representing the position X (¢) of a
particle diffusing over time. For a large number N of independent random walkers
(each following a different realization X;(¢) of the same law), the average density
p(x, t) of particles is supposed to follow the equation of diffusion or heat equation,
i.e. Orp = Ap. The initial condition with all particles at x = 0 at time t = 0 is
{X;(0) = 0, Vi} and corresponds to a Dirac? distribution p(x,0) = 6P (x) for the
density. The solution to the heat equation with this boundary condition is p(x, 1) =
Q)= 2¢=3%/21 , which is exactly the probability density of the Brownian Motion
(this result also holds for any boundary condition). This means that BM is a good
candidate to represent the microscopical motion of diffusing particles, since in the
limit of large enough time (larger than the typical collision length) and large number
of particles (in order to give a meaning to the notion of density), it gives the same result
as the continuous equation of diffusion. A well-known side-product of this result is
that the typical distance /(x2(¢)) from the origin of a random walker (understand
BM process) at time  is typically ~¢!/2. The exponent 1/2 characterizes the spread
of the Brownian walker.

Let us see what the corresponding exponent is for fBm. The increments of the fBm
are said to be stationary, i.e. any function of the difference 4 (x) — h(x + s) does not
depend on x. In this sense, despite the fact that the fBm is non-Markovian® (except
for H = 1/2), it does not properly speaking display ageing, because its evolution
(encoded in the increments) does not explicitly depend on time. More precisely, using
the covariance formula we compute the second moment*:

h(x) — h(x +5))*) = 524, (A.9)
<( )

which is independent of x. So with 2(0) = 0, we have /(h2(x)) = x| which is
often written as h(x) ~ x in the physics community. This means that a particle
following a fractional Brownian motion has X (1) ~ t¥: depending on H, the fBm
is either positively correlated (H > 1/2, super-diffusive), or negatively correlated

2For reasons of coherence of notations which will be clearer later, we denote 2 the Dirac distri-
bution.

3 A Markovian process is a (random) process of which the future evolution only depends on the
present state (it has no memory of the past). Mathematically, X (r > #;) only depends on X (¢1), not
on X (¢ < t1). A non-Markovian process is a process for which X (¢) also depends on the values of
X at times earlier than 7.

“Thanks to the hypothesis of Gaussianity, all the other moments also depend only on s.
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(H < 1/2, sub-diffusive). Although this is not properly speaking ageing, we say that
the fBm with # > 1/2 displays a long-term memory or has long-range> correlations,
since the decay of its correlation function occurs with a power-law.

A few particular values of H are especially interesting.

e As said above, with H = 1/2 we recover Brownian motion (memoryless, simple
diffusion, etc.).

e For H = 1, the process becomes very smooth: the function 2 (x) becomes dif-
ferentiable! (As opposed to BM which is continuous everywhere but nowhere
differentiable). The motion is essentially “ballistic”.

e For H = 0, the process is extremely anti-correlated. There, the discrete picture is
clearer: if at time n the process increased in value, at the next time step (n + 1),
it will decrease below this value, to keep the balance. This is expected, since
X(t) ~ t? ~ {9 ~ O(1). The intuitive picture is less easy for the continuous
process.

e For H = —1/2 (!), we have white noise. This negative value needs an explanation.
Remember that the BM is not differentiable in the common sense. However, the
differential elements d B(s) of a Brownian motion are known to be a simple white
noise (i.e. just a sequence of independent Gaussians variables). A usual construct
of the discrete BM B(¢) is to simply compute the integrand of a white noise 7(s):
B(t) = fot 7(s)ds. In this sense, the derivative of BM is white noise, and formally,
one may say that the derivative of an fBM with some H is an fBm with H — 1.
The case H = —1/2 is especially meaningful.

e For H > 1, the same remark as previous item holds: formally, fBm only exists
for H € [0, 1], but procedures to generate fBm can be extended to other values
of H, producing processes with many similarities with fBm. For H € [1, 2[, the
process is very smooth (differentiable everywhere).

To understand how 4 (x) depends on H (besides the bulk variation that goes as
~xH ), it is practical to define the rescaled fBm:

h() ()

= — A.10
(2@ 7 (A10

y() =

v2
Which has P(y(z))dr = \/#Tﬂe’?dt. This process still has the same qualitative

correlations as fBm, except for the bulk drift. We show the behaviour for three
different realizations, each time for two values of H, in Fig. A.1.

Link with the fractal dimension It is difficult to discuss self-affine or self-similar
processes without mentioning fractals. We do not go into much detail here, but just
mention that for a (statistically) self-affine process /(x) embedded in d-dimensional

SWhen physicists talk about long-range (resp. long term), they usually mean that correlations in
space (resp. time) are power-law decaying functions of the distance (resp. time interval). Short-range
usually means an exponential decay (or step function with 0 value at infinity).
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Fig. A.1 Illustration of a statistically self-affine process: the rescaled fractional Brownian motion
y(t). Each color indicates a different realization of the underlying generating process. For each
realization, the dotted line corresponds to the fBm with # = 2/3 and the plain line H = 1/4. We
see how positive (H > 1/2) or negative (H < 1/2) auto-correlation translates in terms of local
variations (ignoring the bulk variation 77, thanks to the rescaling)

space with Hurst exponent H, the associated fractal dimension D (Hausdorff dimen-
sion) is given by the relation:

D+H=d+1. (A.11)

However this is not true for all processes with a behaviour in h(x) ~ x0TIt s
indeed a very specific property. For more on the fBm and the link with fractals,
one may consult (with some caution with the vocabulary, that has since changed)
the seminal works of Mandelbrot: [Man82], and more specifically [MV68]. A more
recent review which deals in particular with the subtleties concerning the difference
between fractals and self-affine processes can be found in [GS04].

A.2 Appendix to Chapter 5

A.2.1 Remark on Terminology

We have presented numerous variations based on the elastic depinning model, some
of them being in different universality classes, some of them being more intimately
connected to the “basic” depinning problem.
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However, in this thesis we focus on a particular case of depinning, and we use
“depinning” as short hand for the problem under specific assumptions:

Overdamped limit (no inertial term).

Drive is elastic , i.e. Fgrive = ko(w — h), with steady driving (w = Vpt).
Quasi-static limit: Vo << hg/no , or Vo = 07,

We are interested in the dynamics close to the transition, i.e. kg < k.
Short-range correlated disorder for the pinning force (Random Field), not periodic.
Short-range elastic kernel: Fepasic = k1 Ah.

The dimensionality will usually be d = 2, but we may also study d = 1 and the
mean field cases.

Temperature is Zero: there is no noise term in the Langevin equation of motion.

A.2.2 Derivation of the Mean Field Equations

We study the mean field limit via the fully connected approximation. In practice, each
block position /; interacts with the positions of all other blocks via N — 1 springs of
elastic constant k; /N (N being the number of blocks in the system) and via N — 1
Maxwell elements (i.e. spring in series with a dashpot). As usual for fully connected
systems, the final equation for the site i is obtained by replacing any occurrence of
Ah; with h — h;.

Here we give a precise derivation of this result, directly from the mechanical
circuit associated to the fully connected model pictured in Fig. A.2. In order to have
a simple symmetry in the equations, (N — 1)/2 Maxwell elements (numbered ;) are
in the order h;-dashpot-¢;-spring-4; and the remaining (N — 1)/2 (numbered ;')
are in the inverse order (h;-spring-¢ j;-dashpot-£ /), as pictured in Fig. A.2. The force
balance on 4;, ¢; and ¢ gives:

Fig. A.2 Mechanical circuit
of the mean field viscoelastic
interface
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. ki
nchi =f (i) + ko(w — hi) + 5 D (hj = hi)

Joj'#
77u3 ko
+ N’ Z(gﬁj —hi>+ﬁZ<¢,~ — hi) (A.12)
JF# J'#
ko nua
OZNZ(%—};,-H N’Z(qs,-—h,-) (A.13)
J#i jAi
ko nua
0= N%;(cb/ —hi) + N’ %;(gbj/ —hj) (A.14)
J 7l J'#i

Definingh = ~ >N | hyandu; = 2 j2ithi—¢))+2 5 4 (¢jr—h ), this simplifies
into:

ndchi = Y8 (i) + ko(w — hi) + (ki + ko) (R — hy;) — kou;
NuOsu; = ko(h — hy) — kou; (A.15)

which is just the d-dimensional result, after replacement of Ak by h — h. One
may notice that formally, the d-dimensional expression (Eq.(5.17)) taken at d =
(N — 1) /2 gives the exact same definition for u; as the one found here. Thus another
way of defining the mean field is to take a large N and formally set d to (N — 1)/2.

A.2.3 Mean Field Dynamics: Fast Part

As for the purely elastic interface (see Sect. 4.3.3), it is useful to artificially decompose
the dynamical evolution in different steps.

In a first step, the center of the parabolic potential moves from w to w + dw
and all 5I.F’s decrease by Adgepo = kodw: P(6F, 6%)dsFdsR is increased by
(OPy,/067)do" d6Rkodw. Still in this first step, a fraction P, (67 = —dR, 6%)kodw
of the sites with a given R becomes unstable and moves to the next wells:
P(6F, 6%)dsF doR isincreased by Py, (—dR, §®)kodwg (6F +0%)dsF, where g1 (67 +
6®)ds* is the probability for a block to fall in the range [6, ¥ +dd§ 7] after a jump®
from some 6. = —6%. The new § = 6 + 6% is given by z(ko + ki + k2), with
z’s drawn from the distribution g(z). This writes:

of 5k
g (ko+k1+k2)
ko+ki + ko
(A.16)

Pstepl((;Fa 6R) - Pw((;F» 5R) _ an
kodw —oF

(67, 6%y + P, (=R, 6%)

By definition, g (67 + 6%)dé¥ = g(z)dz.
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In this expression we have not accounted for the increase of & due to the numerous
jumps. This increase is given by the fraction of jumping sites multiplied by their
average jumping distance, i.e. it is worth’ 7P, (—6%, 6%)kodw. The corresponding
change in the 7 ’s is a uniform decrease by Z(k; +k2) Py, (—0 %, 6®)kodw (see (4.66)).

This shiftin the §7’s is accounted for in a second step, which acts on Pyep1 (67, %)
exactly as the first did on P, (67, §%), but with an initial drive given by the shift
At =7kt + ko) Py (—6R, 6®)kodw:

step

F <R F sR (M)
Pstep2(5 .0 )—Pstep1(5 .0 ) _ aPstepl ((SF (5R)—|—P (—5R (SR)g ko+ki+ko
Aéstepl 96F ’ step1 > 7](0 Yk +ho .
(A.17)

In turn, this second step does not account for the increase of % due to the “driving”
by Aégeplz this is accounted for in a third step, and so on.

As these steps go on, the drive from the increase in / is given by the geometrical
series:

k—1
ASkeo = kodw [ @K1 + k2) Paep (—3% . 6%)). (A.18)
j=0

where we identify Pyepo = Py,. The convergence of the series to zero is guaranteed
if Pyep;(—0%, %) < 1/(z(k1 + k2)), V. Strictly speaking we may not reach zero
in any finite number of steps, however it is natural to impose a lower cutoff for
the fraction of jumping sites (in any finite size system the minimal non zero value is
1/N), so that we may have Adgep; ~ 0in a finite number of steps. On the other hand,
if we have Pyepj(—6%, 6%) > 1/(Z(ki + k2)) for numerous consecutive steps, the
magnitude of the avalanche increases, the shifts Adgep; may become finite (instead
of infinitesimal), and the relevance of this artificial decomposition for analytical aims
becomes dubious.

The general set of equations for the Pyepr’s is a closed form since Pyepr only
depends on the previous Pgepj, (j < k). Denoting s = stepk the internal time of the
avalanche in terms of steps, we can write the evolution as:

5" 458
9 ko—+k1+ko

ko+ki +ky '

op, 1 0P, -
- Py(—6R. 5
D5 Do 006F T 11 )

(A.19)

This evolution stops either when Pgeepk (—6%, Ry = 0 (hence Aésfepk 41 = 0),0r

when the r.h.s of Eq. (A.19) is zero. The latter case corresponds to a convergence

"The average jump size of any finite number of jumps is not Z, so this expression should be puzzling.
However, we work with P (6%, %), i.e. we work in the infinite system size limit. In this limit an
infinitesimal fraction of sites that jump corresponds to infinitely many sites, so that the average
jump is exactly z.
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to the fixed point of the corresponding elastic interface with elasticity k1 + k». In
the former case, some additional driving (increase in w) will eventually lead to
P, (—0®, 6®) > 0. Upon successive increases of w, Eq. (A.19) will be iterated again
and again, each time with a renewed initial drive kodw: this drives the distribution
P (6%, 6%) towards a fixed point where the r.h.s of Eq. (A.19) cancels.

A.2.4 Relaxation Does Not Trigger Aftershocks in Mean Field

Consider a block that participates in an avalanche: it jumps from §(0) = 0 at time 0
to some 6(1) = z > 0 at time 1. This can be decomposed as a jump from 6% (0) =
—6%(0) to 67 (1) = —6R(0) + z. At the beginning of the avalanche the dashpots

< F
are fully relaxed, so that 6%(0) = 51.1?00(0) =k =0 O

b R
otk After the avalanche, ¢
relaxes to a new value of

SR (1) =k 8 =5/ (A.20)
1,008 ) T 2k0+k1+k2 ’
ko
=0k 0)— ———2. A21
i-00(0) ko+k1+k22 ( )
In terms of the variable §, this means a shift from z to z(1 — lmﬂﬁﬁ)’ i.e. the

overall shift due to the avalanche and the relaxation is still positive, and there is no
aftershock.

The meticulous reader may also consider the evolution under driving: as w
increases by dw, 6¥ decreases by the same amount. Assuming that no avalanche
occurs upon driving (otherwise we refer to the case above), this corresponds to a
shift 5500(1) = 51.1,300(0) + W’:ﬁdw, i.e. an increase of 6 after driving.

We conclude that thanks to the approximation of fl.th = f = const., the relax-
ation does not trigger aftershocks in the mean field regime.

Note that within the approximation f = const, even in finite dimensions there
are no aftershocks. This is true only for the particular model studied in this chapter,
which has a “local” relaxation kernel. For the Laplacian relaxation kernel of the
model, in finite dimension we still have aftershocks, even within this approximation.

A.2.5 Additional Figures to Section 5.4

The Figs. A.3 and A.4 are complementary material to Sect. 5.4.
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Fig. A.3 The local stress restricted to the event area, just before (up, op) and just after (bottom,
o 4) it takes place, as a function of the cluster size S (the size of a cluster is the sum of the sizes of
the events occurring for this w). The local variation of stress vanishes for small avalanches (with
fluctuating values of op 4), and saturates to a constant nonzero value for large avalanches (with

well defined values for op 4).We used k1 = 0,k =1

Fig. A.4 Complementary figure to Fig.5.22
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A.3 Numerical Methods

One can (naively) integrate the dynamics using Euler steps, but this is highly ineffi-
cient and should not be avoided whenever it is possible. We do not actually use Euler
steps, but a better scheme that we explain in the next subsection.

A.3.1 Viscoelastic Two Dimensional Case: Details
on the Numerical Integration Procedure

We provide here details on the integration of the dynamic equations of the viscoelastic
model. Our starting point is the set of Eq. (5.16) of the main text:

ndihi = ko(w — h;) + f8S(h;) + ki Ahi + ka(Ah; — u;) (A.22)
NuOru; = ko(Ah; — u;) (A.23)

with w = Vjyt. For the numerical work, it is convenient to introduce variables F; and
G;, defined as:

Fi = ko (Ah; — uy), (A.24)
G;i = ki (Ahy) + ko(w — hy). (A.25)

Using F; and G, the model equations can be written as

nohi = fYS(hi) + Gi + F; (A.26)
MOt Fi + ko F; = ko (AOh);. (A.27)

It is thus clear that G; represents the force onto /; exerted through k| and kg springs,
whereas F; is the force coming from the branches that contain the dashpots and k>
springs.

We work in the case in which temporal scales are well separated: 7 < 7, < Tp.
This corresponds to n < 1, <K zko/ V. As discussed in the main text, within the
narrow well approximation the actual integration of Egs. (A.26) and (A.27) does not
need a continuous time algorithm, but can be presented in the form of a discrete set of
rules. From a relaxed configuration with F; = 0 at time ¢, the load increase triggers a
new instability of Eq. (A.26) when the total force from the springs, here G;, reaches
fi’ h, and this occurs after a time interval:

f"=Gi
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Thus at time ¢ 4+ ¢ an avalanche starts at position i, producing the advance of 4;
to the next potential well h; < h; + z, and a corresponding rearrangement of the
forces according to (in two dimensions):

Fi < F; —4kaz (A.29)
Gi < G; — (4k; +ko)z (A.30)
Fj < Fj +kz (A31)
G; < G; +kz (A32)

where j are the four neighbour sites to i, and the value of fi’ " is renewed from its
probability distribution. All successive unstable sites are treated in the same way until
there are no more unstable sites. This defines the primary avalanche. At this point
the relaxation dynamics (A.27) begins to act, until some site eventually becomes
unstable. Note that due to the discrete pinning potential, in this stage /& remains
constant, namely the relaxation dynamics is simply:

O F; = —ko F;, (A.33)

This means that a given site i will trigger an avalanche due to relaxation if for some
increase in time dt the total force from the springs on this site, here F; + G, reaches
it ie., if

—ko ot

Fie 7w +G; = fit, (A.34)

(note that in order to have a solution, F; must be negative, as the L.h.s. is lower that
the r.h.s. at the starting time). This leads to the determination of §z as

u 'th - Gi
5t = —Z— min [m (fT (A.35)
2 1 i

Once all the secondary avalanches generated by relaxation have been produced and
F; has relaxed to zero, the external driving is increased again, according to (A.28).

This is the main scheme of the simulation. We should mention however, that its
efficient implementation relies on a classification scheme of all sites, in such a way
that the determination of the next unstable site in (A.28) and (A.35) does not require a
time consuming sweep over the whole lattice. In fact, following Grassberger [Gra94]
we classify the sites according to their value of the r.h.s. of (A.28) and (A.35), and
bin them, in such a way that the determination of the next unstable site can be limited
to the bin corresponding to the lowest values of these quantities. When sites change
their / values along the simulation, they are reaccommodated in the bins using a
doubly linked list algorithm (via a matrix of fixed size, which contains the next and
previous site of each site).

My codes will be made available on Github or a similar service in the future.
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