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To Lori, who left us far too soon





Preface

This monograph presents a reasonably complete treatment of the model-based
approach to the processing of data from underwater acoustic arrays. By complete
we mean that the material herein is accessible to anyone at the level of a bachelor’s
degree in engineering, but may not be sufficiently familiar with the areas of
statistical signal processing or acoustic array processing. With this goal in mind, it
provides a reasonably rigorous treatment of standard time-domain statistical signal
processing and acoustic array processing with an emphasis on its spatial processing
aspects. A second reason for taking this approach is that since the processing
philosophy presented here differs sufficiently from the standard approach, a review
of the standard approach was warranted.

At its heart, model-based processing as discussed here is a form of Bayesian
processing that relies heavily on physical models to provide the a priori information.
This is done within the framework of the Kalman filter, since it itself is a Bayesian
processor, and additionally provides a natural framework for including physical
models, along with the ability of including prior information in a statistical form
as in the usual Bayesian processor. Further, it is capable of easily handling the
nonlinearities that accompany real-world models. By physical models we mean here
such phenomena as array motion, array configuration, signal structures other than
plane wave models, and oceanic propagation models. Because of this, the material
presented here constitutes an approach to acoustic array processing that is capable
of providing performance improvement over many of the presently used methods.

I would like to acknowledge Dr. James Candy, Chief Scientist for Engineering,
the Lawrence Livermore National Laboratory for originally introducing me to the
Kalman filter and emphasizing its applicability far beyond its original area of control
theory. He made it clear that it provides a framework for performance enhancement
to the field of signal processing and estimation theory in a very general way. I
also gratefully acknowledge Dr. Allan Pierce, Professor Emeritus of Mechanical
Engineering, Boston University, who encouraged me to write this book.

Portsmouth, RI, USA Edmund J. Sullivan
December 2014
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Chapter 1
Introduction

1.1 Background

The underwater acoustic array is generally concerned with the tasks of detection,
estimation, and tracking. Here, detection is defined as the determination of the
existence or nonexistence of a postulated signal at the receiver, and in its simplest
form it is a simple binary (yes/no) decision. Once this decision is made, the task
of detection is complete. The next step is estimation, where the signal is examined
in order to obtain more information. When the estimation is concerned with the
target coordinates, then it is called tracking. This book is mainly concerned with
estimation, and detection per se is not discussed in great detail.

For our purposes, it is convenient to divide estimation into two classes: para-
metric and nonparametric. What is meant by nonparametric estimation is that
the processing does not concern itself with other than the value of the estimate.
Conventional bearing estimation using a line array would be a simple example of a
nonparametric estimator. Parametric, on the other hand, attempts to exploit certain
parameters of the signal, as in time series analysis, or parameters describing the
source and the medium. These ideas are depicted in Fig. 1.1. Here it is seen that one
kind of parametric processing is the inverse problem, which is a means of extracting
information from the data regarding the source or the medium.

1.2 The Inverse Problem

Estimation is the determination of the values of certain parameters of the signal, the
source, or the medium. As mentioned above, a simple example is the determination
of the bearing angle of the signal at a receiving array of hydrophones arriving
from an acoustic source. At its most complex, estimation leads to a class of

© Edmund J. Sullivan 2015
E.J. Sullivan, Model-Based Processing for Underwater Acoustic Arrays,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-17557-7_1
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Fig. 1.2 Ideal oceanic waveguide

problems called inverse problems, examples of which could be source localization,
the extraction of the value of some property of the ocean (sound speed), the ocean
bottom (density, sound speed, etc.) from the signal, or the characterization of a
source or scatterer, commonly called identification.

One way to look at the inverse problem is to define it in terms of an associated
forward problem. Consider an acoustic source in an ideal two-dimensional oceanic
waveguide as depicted in Fig. 1.2. The surface and bottom are the boundaries of
the waveguide. If the source frequency, ocean depth, bottom characteristics and the
range from the source to the vertical array receiver and the depth of the source
are all known, and an appropriate propagation model is available, then the acoustic
field at the array elements can be computed. This is called the forward problem. An
associated inverse problem would be the following. Given the propagation model,
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source frequency, ocean depth, bottom characteristics, and the array measurements,
what are the coordinates (range and depth) of the source? This is the so-called
matched field (MF) problem of ocean acoustics and was first examined by Hinich [9]
in 1972, where the depth-only problem was examined, and later in 1976 by Bucker
[3] who showed that both the range and depth of the source could be estimated.
Bucker introduced the term “matched-field processing” or MFP.

Since the work of Hinich and Bucker, a great deal of work has been done on MFP
and it has proven to be quite useful in many applications, especially those where
the propagation model was well known. However, when the model was not well
known, the technique would often fail. An example of this can be seen in the work
of Hinich and Sullivan [10], where an experimental determination of the range and
depth of a 190 Hz source was carried out using MFP with a normal-mode model
used to describe the propagation. The signal-to-noise ratio (SNR) was quite high
and the bottom properties were well known. There were nine modes induced by the
signal. However, it was impossible to obtain a solution unless the two highest modes
were removed. That is, these modes were introducing unacceptable errors into the
solution which did not simply degrade the solution, but prevented any solution at all.

Ultimately, this problem constituted a practical limit on the matched-field
problem. Much of the difficulty lies with the fact that the relationship between the
data and the model parameters is highly nonlinear one, so that a useful quantitative
measure of the limitations of the model is not available. An overview of MFP can
be found in [2, 15] and references therein.

Thus, the general inverse problem contains two pitfalls. First, it is not always
clear that there is sufficient information available for a satisfactory solution. For
example, in the matched-field problem, the sound speed profile in the ocean may
not be sufficiently well known. Second, if knowledge of the sound speed profile is
necessary, then it must be known to an unknown level of accuracy. If the solution is
not strongly dependent on its accuracy, it can be approximate and a usable solution
can be found. Alternatively, if it must be known accurately and sufficiently accurate
information is not available, the problem is considered to be ill-posed.1 This can
have effects ranging from a poor solution to a catastrophic loss of any solution at all.
In the matched field literature, this issue has historically been called the Mismatch
problem [16]. There have been many attempts to remedy the mismatch problem, the
first major step forward being the work of Richardson and Nolte [14], who included
a priori probabilities for the troublesome parameters in their Matched Field Problem
algorithm to account for their uncertainties. Nevertheless, the mismatch problem
remains a major limiting factor to the matched-field problem. A more detailed
description of the history and methods of MFP can be found in [6] which is a special
issue of The Journal of Oceanic Engineering dedicated to the field.

1A problem is considered to be ill-posed if a unique solution does not exist. Further, if it does exist,
it must change continuously with changes in the initial conditions. This is sometimes referred to
as being ill-posed in the sense of Hadamard [8].



4 1 Introduction

In order to move beyond the limitations posed by the mismatch problem, it is
necessary to look at what MFP is trying to do in a more formal sense. When one
introduces a model into an estimation procedure, as in MFP, it really constitutes
the use of a priori information. That is, it becomes a Bayesian problem. Strictly
speaking, much of Bayesian estimation theory is based on introducing the prior
information in terms of probability distributions. A classic example of this is the
maximum a posteriori (MAP) [12] method.

The MAP method is a generalization of the maximum likelihood (ML) estimator.
The ML estimator requires knowledge of the likelihood function, which is the
probability of the measurement conditioned on the unknown parameters. Consider
the case of a single unknown parameter. The likelihood function is written as

L D p.yjx/; (1.1)

where the measurement y is conditioned on the unknown parameter x. The ML
estimate of x is then found as that value of x that maximizes p.yjx/. The quality of
the estimate is embodied in the variance on the estimate, signified by �2ml which is
defined as the expected value of the square of the estimate minus its true value. Now
suppose that there exists prior knowledge of x in terms of the probability density
function p.x/with variance �2p . The MAP estimate is then found from the maximum
of p.yjx/p.x/. As we will see in Chap. 3, the variance on the estimate is now given by

�2map D �2ml�
2
p

�2ml C �2p
: (1.2)

It is of interest to rewrite this as

1

�2map

D 1

�2ml

C 1

�2p
: (1.3)

The reciprocal of the variance is called the Fisher information, and for more than
one parameter, it is a matrix [12]. Equation 1.3 states that the Fisher information in
the MAP processor is the sum of the Fisher information2 in the ML estimate plus
that added by the prior.

1.3 Model-Based Processing

In the case of the MAP estimator, it is clear that the addition of prior information
improves performance. In the case of prior information in the form of physical
models however, what is the analogous procedure? As will be seen, this problem can

2Strictly speaking, the Fisher information is the correct term only when it derives from the
likelihood function. Here it is being used in a looser sense following the usage of Frieden [7].
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be dealt with in a fundamental way by embedding the physical model into a Kalman
filter.3 The Kalman filter is a Bayesian processor and is based on a Gauss–Markov
model [5]. It is a recursive processor that is self-correcting since it uses new data to
update the estimate. Furthermore, as will be shown in Chap. 4, it provides a means
of including the poorly known parameters as part of the state vector of unknowns;
a procedure known as augmentation. This is a powerful technique, since if these
troublesome parameters can impact the estimate, then they must impact the data and
are therefore amenable to estimation themselves. In other words, the Kalman filter
can provide an estimate of any parameter that is observable, where a necessary
(but not sufficient) condition for observability is that the relevant information be
contained in the data. It is this approach to the problem that we refer to here as
model-based processing or MBP, and is the basis of the approach discussed in this
book.

Although the Kalman filter and its variants will be discussed in Sect. 4, it is useful
to mention here that it provides a great deal of latitude in the fidelity of the model.
It does this by allowing what is called system or plant noise, which is a critical
part of the algorithm. It is not a noise in the same sense as measurement noise4

but nevertheless it is a valid means of allowing for model deficiencies in terms of
a Markov process, and it plays a critical role in the algorithm by allowing model
errors to be included in a fundamental way. By model deficiencies, we mean that
the model does not contain the physics in a sufficiently complete way. This differs
from mismatch, which can exist in models that are not deficient, but contains poorly
known parameters. The salient point here is that mismatch can introduce corrupting
and sometimes fatal misinformation to the algorithm, whereas model deficiency
simply means a lack of relevant information and can often be compensated for by
the system noise, albeit with a loss in solution quality.

As is well known, most problems of interest are nonlinear, where the Kalman
filter in its original form is only optimal for the linear and Gaussian case. This has
not proven to be a major issue since the nonlinear problem is easily dealt with by
the extended Kalman filter (EKF) [4] and the unscented Kalman filter (UKF) [11].
A more recent form of the Kalman-type processor is the particle filter [1], which
allows for the case of multi-modal pdf’s. Its application to the oceanic problem has
been pioneered by Candy [5], Michelopolou [13], and Yardim et al. [17].

3The introduction of the Kalman filter into the oceanic inverse problem is due mainly to Candy [4]
who pointed out that in principle, any physical model could be embedded into it.
4It differs from measurement noise in that it does not arise as an additive corruption of a
measurement, but is a statistical measure of the lack of fidelity of the model. Nevertheless it can be
considered to be a valid noise term in the Gauss–Markov sense.
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1.4 Observability

Observability has two requirements. First, the relevant information must be con-
tained in the measurement data. And second, the processor must be constructed so
as to extract this information. A good example is that of wavefront curvature range
estimation. If the ability to sense the wavefront curvature is not specifically modeled
in the processor, array length and SNR notwithstanding, a range estimation is simply
not achievable even though the range information is contained in the data.

The concept of observability [4] comes from the control theory community. In its
most general form, it requires the ability of recovering the initial state of a system
from measurements on the present state and can be cast in levels of increasing
complexity, but for our purposes the following will suffice. Given the parameter
vector x and the linear measurement system

y.t/ D Cx; (1.4)

observability simply means that C is an invertible matrix, since this allows the
reconstruction of the initial value of x. More generally, for a nonlinear measurement
system, which is generally the case in MBP, we would have

y.t/ D cŒx�; (1.5)

with cŒx� denoting the nonlinear function of the state or parameter vector. Here,
observability implies the invertibility of this function.

As an example, consider a horizontal line array of N uniformly shaded (weighted)
elements, equally spaced at distance d, with a narrowband plane wave signal from a
localized5 source arriving at angle � as measured from broadside. If a conventional
beamformer is used, the phase shift of the output of each receiver element is found,
from which the bearing angle � can be estimated. However, since the signal is
arriving from a localized source, and the receiving array is not far from this source,
then it can be assumed that the wavefront is the arc of a circle, with the source
range being the radius of this circle. Hence the range is observable. However, the
conventional beamformer cannot estimate this range, since the geometry of the
situation is not modeled into the measurement system. If this is done, the range and
bearing can both be estimated, and in both cases, the performance of the estimators
depends upon such parameters as L=�, the aperture in units of wavelength, and R=L,
the ratio of the range to the aperture.

In this example, the range and bearing are both observable (contained in the
data), but their estimates depend upon the models used by the estimator. On other
hand, the elevation angle, that is, the angle made by the range with the plane defined
by the range and bearing, is not observable since the relevant information is not

5By localized we mean small enough to be approximated by a point.
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contained in the data. This is a consequence of the axial symmetry of the line array
and therefore no model exists that will allow its estimation. A different receiver
array would be necessary in order to capture the information.

1.5 Book Outline

The remainder of the book is organized as follows. The next chapter presents an
overview of the acoustic array and the conventional analysis methods used. This
serves two purposes: to familiarize the acoustic array to those whose knowledge
of the area is limited, and to provide a background for the newer, model-based
approach in order to emphasize the significant differences involved. Chapter 3
presents a comprehensive overview of statistical signal processing as a preparation
for the introduction of the Kalman-type processor in Chap. 4. Chapter 5 contains
several examples of Model-Based Array Processing using both real and synthesized
data. In Chap. 6, the issues of “tuning” the filter and determining the quality of the
solution are discussed.
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Chapter 2
The Acoustic Array

2.1 The Acoustic Array

Hydrophones configured in groups are called acoustic arrays. An acoustic array
provides a means of controlling the directional properties of acoustic transmission
and reception. Here, we shall consider only receiving arrays, since most transmitting
arrays1 play a minor role in Model-Based Processing as discussed in this book.

When discussing receiving arrays, the hydrophones are often referred to as
elements or receivers. The simplest configuration for an array is that where the
elements are equally spaced in a line where all of the receivers are the same and have
the same isotropic sensitivity. Isotropic means that the receiver is equally sensitive
in all spatial directions. Much of this chapter will concentrate on the line array, since
the towed array, which is a line array, is a major workhorse of naval sonar systems.
Also, most of the issues surrounding the fundamental characteristics of arrays can
be treated in the context of the line array.

Other forms of arrays are planar (two-dimensional) and nonplanar such as hull-
mounted arrays which can be cylindrical or spherical in shape. They differ from
the line array not only in performance but also in the approaches used in their
analysis. These are generally referred to as three-dimensional arrays and will also
be discussed in this chapter.

1A transmit arrays differs from a receive array in that the intensity of the transmitted field can cause
a mutual coupling between its transducer elements that can strongly impact its performance. This
phenomenon complicates the analysis of such arrays.

© Edmund J. Sullivan 2015
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2.2 The Line Array

In the case of uniformly spaced receiver elements, the length of a line array is
given by

L D .N � 1/d; (2.1)

where L is referred to as the aperture. N is the number of elements in the array and
d is the element spacing. The approximation L � Nd holds for most calculations
when N is on the order of 10 or greater. A line array is shown schematically in
Fig. 2.1. In this figure, � is the angle of the propagation direction of the incoming
plane acoustic wave measured clockwise from the normal to the array or the
“broadside” direction. The elemental outputs are voltages that are proportional to
the instantaneous acoustic signal (pressure). In the conventional array processor,
the signals from the hydrophones are weighted and summed, producing the array
output. For unity weighting, this summation is described by

S D
N�1X

nD0
sn.t/: (2.2)

And assuming a narrowband signal with radian frequency ! D 2�f where f is the
frequency, the signal at the nth receiver can be written in complex form, as

sn D ei!.tC�n/ (2.3)

so that the array output, S, is given by

S D ei!t
N�1X

nD0
ei!�n : (2.4)

Fig. 2.1 Line array
configuration

d sin

d 
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In this equation, �n is the time delay of the wavefront associated with the nth
receiver. With the help of Fig. 2.1 we see that, by defining the delay at the first
(n D 0) receiver to be zero, and recognizing that the wavefront is normal to the
propagation direction, the relative delay associated with the second receiver is the
travel time � associated with the distance dsin� , that is � D .d=c/sin� , where c is
the speed of sound in water, so that for the nth receiver the time delay is given by �n

where

�n D n� D n.d=c/sin�: (2.5)

Note that the time dependence was factored out of the sum in Eq. 2.4. This allows
us to consider the array output in terms of its spatial processing performance only.
In the case of a single-frequency signal such as we have here, we choose to write the
time delay in terms of its associated phase shift, since this will be important later.
Note that the phase associated with the time delay �n is given by !�n, so that the
phase associated with the nth element, which we call �n, is given by

�n D !�n D nd.!=c/sin�: (2.6)

For the single frequency case, it is convenient to define a spatial frequency or
wavenumber k D !=c D 2�f=c D 2�=�, with � being the wavelength. With
this definition, the phase at the nth receiver is now written as

�n D nkdsin�: (2.7)

Now writing Eq. 2.4 explicitly as a function of � and without the time dependent
part, the spatial part becomes

S.�/ D
N�1X

nD0
einkdsin� ; (2.8)

or generally, if the individual elements have a directivity f .�/, this becomes

S.�/ D
N�1X

nD0
f .�/einkdsin� D f .�/

N�1X

nD0
einkdsin� : (2.9)

In this case, where the directivity is the same for all elements, the directivity
factors out of the sum. This is known as the product theorem [16]. The normalized
magnitude of the sum itself, i.e., the sum over the isotropic elements, is usually
referred to as the array factor and its magnitude can be written in closed form as

P.�/ D 1

N

ˇ̌
ˇ̌
ˇ

N�1X

nD0
einkdsin�

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
sin.Nk.d=2/sin�/

sin.k.d=2/sin�/

ˇ̌
ˇ̌
ˇ: (2.10)

This is plotted in Fig. 2.2. Here it is seen that the array has a maximum response
(main lobe) at zero degrees, which, as previously mentioned, is the “broadside”
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0 2 3-3 - -2

Fig. 2.2 Beam pattern of the normalized magnitude of the array factor. The arrows indicate the
beamwidth or half-power point

direction. The other maxima are called sidelobes. This main lobe establishes a rough
limit on the precision with which the bearing of an incoming plane wave can be
estimated. This limit, called the beamwidth, is defined as the width of the main
lobe power, jP.�/j2, at the half-power points, or equivalently, the points where the
lobe magnitude is 1=

p
2 of the maximum.

It is of interest here to return to the concept of the acoustic aperture. As we have
previously seen, for an array of N elements with spacing d the physical length or
aperture, has length L � Nd for N greater than 10 or so. The “acoustic” aperture,
which is the aperture in units of wavelength, is called A, where A D L=�. Then if the
array has half-wavelength spacing, the acoustic aperture is, to a good approximation,
equal to N=2. Rewriting Eq. 2.10 for the case of half-wavelength spacing, we find

P.�/ D
ˇ̌
ˇ̌
ˇ
sin.�.N=2/sin�/

sin..�=2/sin�/

ˇ̌
ˇ̌
ˇ �

ˇ̌
ˇ̌
ˇ

sin.�A�/

sin..�=2/�/

ˇ̌
ˇ̌
ˇ; (2.11)

where the small angle approximation for sin� � � has been used. Since the beam
half-power points defining the beamwidth occur, to a very good approximation,
when the argument of the numerator of P.�/ is �=2, i.e., when �A� D �=2, �
must be one half of the beamwidth in radians. Defining the beamwidth in radians as
	
, we have a spatial “uncertainty” relation, which states that the acoustic aperture
A, times the beamwidth in radians is on the order of unity. That is

A	
 D .L=�/	
 � 1: (2.12)
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This relation offers a highly useful way to envision a line array. If one wishes to
decrease the beamwidth of a line array, the acoustic aperture must be increased.
For example, for a 16 wavelength array, the beamwidth can be expected to be
approximately 1/16 radians. This reduces to 57.3/16 which is 3.6ı. A useful rule
of thumb then is that the beamwidth in degrees of a line array is about 60 divided
by the aperture in wavelengths.

2.3 Beamforming

All of the above discussion centered on the “unsteered” line array. This means that
the array has a maximum response to a signal arriving at broadside. If we desire a
maximum response for a signal arriving at some other angle, the array must be
modified or “steered” to this angle. In other words, the maximum array response
must be able to accommodate signals arriving at any desired angle. The methods for
doing this are discussed next.

2.3.1 Delay and Sum Beamforming

Delay and sum beamforming is accomplished by introducing time delays that set
the relative phases between elements to zero when the incoming signal is at the
desired angle. We begin with a weighted form of Eq. 2.2. Although the weights are
not necessary for the present discussion, they will play a role in array optimization,
which we will address later.

To steer the array to angle �m, the weighted array output expression becomes

S.�; �m/ D
N�1X

nD0
wnsn.t � �n;m/ D

N�1X

nD0
wnsn.t � n.d=c/sin�m/; (2.13)

where �n;m D n.d=c/sin�m is the time delay applied at the nth receiver to steer
the array to the angle �m. The delay and sum procedure is depicted in Fig. 2.3.
The advantage of delay and sum beamforming is that it is carried out in the time
domain and therefore is valid for the broadband case, but it can engender undesirable
computational problems when a digitized basebanded signal is used. This arises
from the fact that a basebanded signal is inherently at a sample rate of only a few
samples per cycle of the highest frequency, which means that there does not exist
sufficient time scale precision when selecting a delayed version of the signal. This
can be overcome by using an interpolation filter, where the signal can be interpolated
and resampled [9, 10] at a higher rate just prior to the beamformer. In those cases
where this is not practical, the so-called k � ! beamformer is used. The k � !

beamformer is essentially a method of using the narrowband phase shift beamformer
to accomplish broadband beamforming, and is discussed in the following.
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Sum Output

Element 1

Element 2

Element N

1

2

N

Fig. 2.3 Time domain beamformer. The outputs of the individual element time domain signals are
delayed and these delayed signals are then summed, providing the output time series. This figure
depicts the unweighted case

2.3.2 Phase Shift Beamforming and the k � ! Beamformer

The k � ! beamformer is based on the narrowband phase shift beamformer. For
a given frequency, the time delays associated with a particular steering direction
are associated with a phase shift, as was seen in Eq. 2.7. Introducing weights into
Eq. 2.8, we have

S.�/ D
N�1X

nD0
wneinkdsin� : (2.14)

We now introduce a steering phase shift �n;m D nkdsin�m where n and m label the
element and steering angle, respectively. The steered form of Eq. 2.14 is

S.�; �m/ D
N�1X

nD0
wne.inkdsin��inkdsin�m/: (2.15)

For computational purposes, this form can be cast into the form of a spatial
Fourier transform [11, 18] as follows. Define the vector wavenumber k D ksin� .
Equation 2.15 can now be rewritten as

S.�; �m/ D
N�1X

nD0
wneindk � e�indkm : (2.16)
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Identifying An D wneindk as the signal from the nth receiver, Eq. 2.16 takes the form

S.�m/ D
N�1X

nD0
Ane�indkm ; (2.17)

where the dependence on � has been suppressed. If we now make the identification

dkm D dksin�m D d.2�=�/sin�m D 2�.m=N/: (2.18)

Equation 2.17 takes the form of the discrete Fourier transform

S.�m/ D
N�1X

nD0
Ane�i2�. nm

N /: (2.19)

This creates a set of N “beam bins.” Note that this means that the beams are
uniformly spaced in sin� instead of � , so that an interpolation must be done to
render the beams uniformly spaced in angle space.

If we now consider the input signal An itself to be the output of a temporal Fourier
transform, then each application of Eq. 2.19 at the kth frequency becomes

Sk.�m/ D
N�1X

nD0
An;ke�i2�. nm

N /; (2.20)

where n is the receiver index and m is the beam index. This provides a narrowband
beamformer for the input signal at that particular temporal frequency. Thus, a
temporal Fourier transform of the time domain signal at the output of each of the
N receivers is carried out. The N outputs for each index k are then put through the
spatial Fourier transform, providing a set of N beams for that particular frequency.

Combining the outputs for each frequency requires a bit of effort. The problem
is that the beam angles are dependent on the frequency. Following Maranda [6], we
define the dimensionless wavenumber �m for the beam angle �m by multiplying km

by d, the element spacing. Thus,

�m D dkm D �.2d=c/f sin�m; (2.21)

and observe that c=2d D fd is the so-called design frequency of the array,2 i.e., the
frequency at which the wavelength is twice d, the element spacing. A normalized
dimensionless wavenumber can be written as

�m D �.f=fd/sin�m: (2.22)

2The design frequency is that frequency associated with an element spacing of one half wavelength.
This element spacing is sometimes referred to as spatial Nyquist sampling, since at frequencies
higher than this, the beam pattern will “alias” or in the older terminology, grating lobes will be
produced, due to the spatial undersampling of the signal.
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Fig. 2.4 The k-omega plot
for an eight element line
array. The slanted lines are
the beams for a given value of
m, the beam index. The
vertical line is the case for
m D 0, the broadside beam.
Note that for a given beam,
the wavenumber depends
upon the frequency. For
clarification see the
discussion following Eq. 2.22

Normalized Wavenumber 

0 /2/2

0.5 df

df

This can be plotted on a so-called k �! plot as shown in Fig. 2.4. Here the beams
are the straight line plots of frequency as a function of � with � as a parameter. The
lines for endfire, i.e., � D ˙�.f=fd/, are for the case of � D ˙90ı. Note, however,
that at f D 0:5fd, that the case for � D � lies outside of the ˙90ı lines. This is
called the non-acoustic region and corresponds to acoustic radiation traveling at a
speed less than c. Generally, for a given beam angle, an algorithm that combines the
frequency components in such a way as to remain on the line of constant angle is
required. For example, the two dashed lines to the left and right of the center dashed
line (broadside beam) correspond to the ˙30ı beams. At f D fd this is the case
for � D ˙�=2 but at half this frequency � D ˙� , which corresponds to endfire.
This must be taken into account in any broadband k � ! beamformer. The reader is
directed to [6, 7] for more information on frequency domain beamforming.

2.3.3 Beam Patterns

The beam pattern of a passive array is the response of the array to a plane wave3

acoustic signal as a function of incoming angle of the signal and, unless otherwise
specified, is based on the so-called far-field approximation. This is the region where

3A plane wave is a wave where the surfaces of constant phase are planes and the direction of
propagation is normal to these planes.
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the angular field distribution is essentially independent of the distance from the
array. For the case of a line array of aperture L, its far field is that distance where R
satisfies the condition R � L2=.4�/.

Figure 2.2 is a beam pattern for a line array. However, this is a two-dimensional
picture. The line array of isotropic elements actually has an axially symmetric three-
dimensional pattern. Thus, the main beam actually has a wheel-like structure and
consequently a line array can only provide directionality in a two-dimensional sense,
whereas the planar array is capable of providing a true beam in three-dimensional
space.

Of course, this capability in not unique to circular planar arrays, but is true of
planar arrays in general. In fact, Fig. 2.2 is also the beam pattern of a rectangular
array. If the rectangular planar array is in the x � y plane of a Cartesian coordinate
system, then Fig. 2.2 is the pattern based on the aperture along the y-axis when
viewed along the x-axis. The three-dimensional beam pattern is then the product
of the x-axis and y-axis beam patterns. This result is based on the product theorem
discussed earlier.

2.4 Array Gain and the Directivity Index

When considering detection performance, the benefit provided by an array is the
improvement in the signal-to-noise ratio. This improvement is quantified by the
array gain or AG. It is defined in decibels as

10log10.SNRout=SNRin/; (2.23)

where the numerator is the signal-to-noise ratio at the array output, and the
denominator is the signal-to-noise ratio at a single element of the array, assumed
to be the same for all elements of the array. For a linear array two approaches exist
for computing or estimating the array gain. One approach involves the directional
patterns of the signal and noise fields in which the array is placed, together with the
beam pattern of the array.

Let the signal and noise fields be characterized by the directional functions
S.�; �/ and N.�; �/, representing the signal and noise power per unit solid angle,
respectively, incident on the array from the polar directions � and �, and let b.�; �/
be the beam pattern of the array. Then the array gain as just defined becomes

AG D
R
4�

S.�; �/b.�; �/d˝=
R
4�

N.�; �/b.�; �/d˝R
4� S.�; �/d˝=

R
4� N.�; �/d˝

: (2.24)

In this cumbersome expression each integral is merely the directional pattern of
signal or noise, weighted or multiplied by the array beam pattern and integrated
over the full solid angle of 4� steradians. For a single, isotropic array element, it
has been assumed that b.�; �/ D 1.
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An alternative and more useful approach to array gain explicitly uses the
coherence properties of the signal and noise across the dimensions of the array.
In terms of the array output, the coherence is quantitatively measured by the
correlation, which is a measure of the degree of similarity of the outputs between
any two elements of the array. If vi.t/ and vj.t/ are voltages generated by two array
elements, then the cross correlation coefficient between them is defined as

�i;j D Efvi.t/vj.t/g: (2.25)

The E indicates the expected value. In practice, this is usually approximated by
taking the time average.4 Now consider a line array of N elements of equal
sensitivity. Let the noise-free signal amplitudes, including any phase shifts or delays
incorporated for steering, be denoted by si.t/. Then the signal vector is given as

S D Œs1 s2 � � � sN �
�; (2.26)

with � indicating the conjugate transpose. The explicit time dependence has been
suppressed for simplicity. Denoting the weighting vector as W, the array output
power can now be expressed as

P D EfjW�Sj2g D W�EfSS�gW D W�RW; (2.27)

where R is called the covariance matrix. From the above definition of cross
correlation, we see that the elements of R are �i;j.

Assuming additive noise, the received signal is written as

vi D si C ni: (2.28)

That is, vi, the received signal at the ith receiver, is equal to the sum of the noise-free
signal si and the measurement noise, ni. Substituting this into the above expression
for the covariance matrix results in

R D Ef.S C N/.S C N/�g; (2.29)

with N D Œn1 n2 � � � nN �
�. Expanding this and noting that for the case where the

signal and noise are uncorrelated, the cross terms EfS�Ng are zero, the result is

R D EfSS�g C EfNN�g D Rs C Rn; (2.30)

4The length of time one uses in computing a time average is always open to some ambiguity, since
it assumes statistical stationarity and a geometrically fixed measurement scenario. Since complete
information regarding these issues is never available, the shortest averaging time consistent with
reasonable results should be used.
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and the array output power can now be written as

P D W�RsW C W�RnW: (2.31)

It is now possible to write the SNR out of the array as

SNRout D Ps=Pn D .W�RsW/=.W
�RnW/: (2.32)

It is of interest to look at the special case of unity weighting (all wi D 1) with
perfectly spatially correlated signal and spatially uncorrelated noise. Physically,
this is the case of a plane wavefront across the full aperture of the array and the
interelement correlations of the noise equal to zero. This means that Rs

i;j D s2 and
Rn

i;j D ıi;jn2 with ıi;j being the Kronecker delta, i.e., ıi;j D 1 for i D j and ıi;j D 0

for i ¤ j. The resulting output SNR now reduces to

SNRout D .N2s2/=.Nn2/ D N.s2=n2/ D N � SNRin; (2.33)

so that the array gain for this case is simply N, the number of elements in the array.
The array gain for the case of spatially uniform noise is called the directivity factor
D. The directivity index or DI, which is the term used in the sonar equation to
include the array effects, is defined as

DI D 10log10D: (2.34)

Such a case of spatially uncorrelated noise occurs for a line array of equally
spaced elements, with half-wavelength spacing.5 From this expression, it would
appear that one could increase the array gain by simply increasing the number of
elements. However, if this is done, the noise covariance matrix will no longer be
diagonal.

In the broadband case, the noise covariance is never diagonal. In this case, the
array spacing is usually set to be one half wavelength at the high end of the band,
i.e., the design frequency mentioned in the previous section. If this is not done, those
higher frequencies where the wavelength is less than twice the element spacing,
fold over, meaning aliasing will occur, just as in the case of a Fourier transform of
an undersampled time-domain signal. Thus, once the design frequency is specified,
the only way to increase the array gain by increasing the number of elements is to
make the array physically longer, in order to preserve the desired covariance matrix
structure.

5It is of interest to point out that the DI of a uniformly shaded line array is independent of the
steering angle, in spite of the fact that steering off broadside broadens the beamwidth. This is a
consequence of the fact that the beam is actually three-dimensional. As the steering goes away
from broadside, the beam takes on a conical shape with a decreasing cone angle.



20 2 The Acoustic Array

Because of propagation effects, it can be possible that the signal itself is not
totally coherent along the full aperture of a towed array. In this case, the structure
of Rs in Eq. 2.32 degrades so that full advantage of the aperture cannot be exploited.
In this case, even if we were to lengthen the array while maintaining the design
frequency requirement, the performance would degrade. In other words, for a
spatially uniform noise field, spacing the elements of a line array at half wavelength
is a necessary condition for achieving an array gain of 10log10N, but not sufficient.
It is also necessary to have a signal that is perfectly coherent across the aperture.
That is, the signal coherence length must be at least equal to the aperture length.

2.4.1 Limitations of the Directivity Index

The DI is still a useful quantity for many applications. For simple arrays, such as
the line and circular plane, the DI can be evaluated in closed form. For arrays that
cannot be approximated by these simple forms, the DI can be found numerically if
the beam pattern is known.

Because it can be easily evaluated for some common array configurations, the
directivity index is a useful parameter for providing at least a first-cut estimate of
the gain of an array. Yet its restriction to the special case of a signal with perfect
spatial coherence in isotropic noise must not be overlooked. In the real ocean
these ideal conditions seldom, if ever, occur. For example, the noise background
of the sea is known to be anisotropic, and to have directionality in both the vertical
and (at low frequencies) the horizontal planes. Transmitted signals commonly are
received from a number of different vertical directions over a variety of refracted
and reflected multipaths. Such multipath propagation causes the spatial coherence
of a low-frequency signal to decrease rapidly with range and hydrophone separation
[15], so that, when an array is steered toward the signal arriving along one of the
multipaths, the signals arriving from the others act as noise and produce a degraded
array gain. Studies by Carey [3] at frequencies near 400 Hz show for the deep-water
cases that coherence lengths on the order of 100 wavelengths can be achieved to
ranges of 500 km; while in the variable downward refraction conditions of shallow-
water waveguides with sand-silt bottoms, coherence lengths are on the order of 30
wavelengths out to ranges of 45 km. Because of this, directivity index, although
it is still a useful sonar parameter for approximate calculations, should be used
with caution in the complicated signal and noise environment of the real ocean.
Whenever the spatial coherence characteristics of signal and noise are known, or
can be estimated, array gain should replace DI in realistic sonar calculations.
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2.5 Array Optimization

There are different approaches to optimizing an array. Probably the simplest
approach is to try to obtain sidelobes as low as possible, given a desired beamwidth
[1, 14]. The set of coefficients fwig consistent with this goal usually results in a set
of “tapered” coefficients, i.e., large in the center of the aperture and monotonically
decreasing toward the ends of the aperture. Generally speaking, the lower the
sidelobes, the wider the beamwidth. This is consistent with the beamwidth/aperture
product discussed previously, since tapered shading reduces the effective length of
the aperture.

Another approach seeks the maximum SNR for a given spatial noise distribution.
That is, an attempt is made to directly account for the character of the noise field.
This entails expressing the array gain as a function of the shading coefficients fwig,
and finding the set of coefficients that maximize it. That is, we maximize

AG D .W�RsW/=.W
�RnW/: (2.35)

Although for the isotropic noise case, the array gain can never exceed N, there
are cases when the character of the noise field permits array gains greatly exceeding
N. Consider the example of a noise field with a spatial distribution where the noise
level is high in signal-free regions and low near the angle of arrival of the signal.
Clearly, any set of coefficients that desensitizes the array in the direction of the
noise will allow performance that exceeds that for a spatially uniform noise field.
Thus, if the noise covariance is known, then a set of weights can be computed for
the maximum SNR. In the case where the array must deal with multiple sources,
however, the spatial resolution of the arriving signals angles becomes of prime
importance. Improving resolution is not necessarily consistent with maximizing the
gain. An example of a popular adaptive processor providing high spatial resolution
is the so-called MVDR or minimum variance distortionless response array [2].
This technique minimizes the array output power over the full solid angle while
constraining the response in the direction of interest to be fixed at unity. The
term “minimum variance,” therefore, does not refer to the variance on the bearing
estimate, but on the minimum noise power (i.e., noise variance). The MVDR weights
for an array with noise covariance Rn is given by [5]

Wmvdr D R�1
n S

S�R�1
n S

(2.36)

with S being the signal vector. This set of weights provides an array with a narrow
main lobe. As mentioned above, high-resolution beamformers are generally not
optimal in a SNR sense, but can provide the ability to resolve sources that are
closely spaced in angle, where the conventional beamformer would fail. A complete
discussion of these types of beamformers is found in [8, 17].
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Note that if one has knowledge of the noise covariance as a function of time,
Eq. 2.36 provides a means of adapting the weights to maintain performance.
Because of this, the MVDR is sometimes referred to as an adaptive beamformer.
It is not unique in this sense, however, since any covariance-based algorithm that
allows adaptation of the weights leads to an adaptive array. The field of adaptive
arrays is a large one and the reader is directed to [17] for further information.

2.6 Bearing Estimation

In the passive sonar problem, the estimation of the bearing of a source is a task
often required of a towed line array. Assuming that range of the source is large as
compared to the aperture of the array, it can be assumed that the arriving signal is
a plane wave. Also, to a very good approximation, this can be considered to be a
two-dimensional problem, as depicted in Fig. 2.1. The problem then is to estimate
the angle � . In practice, this is done by seeking the maximum of the beamformer
output. From an heuristic point of view, this seems like the obvious thing to do. From
an estimation theory viewpoint, it is of interest to ask if this approach is optimum.
The answer is yes and is shown for the narrowband case by the following. In the
case of spectral estimation the maximum likelihood estimate of the frequency is
found from the peak of the periodogram P.f /, where the periodogram is defined as
the normalized magnitude squared of the frequency spectrum [5], which is given by,

P.f / D j.S.f /j2: (2.37)

Since we have shown that the beam pattern of an array is the Fourier transform of
the aperture, it is a spectrum in k space. Then the periodogram is

P.k/ D
ˇ̌
ˇ̌

N�1X

nD0
aneinkd

ˇ̌
ˇ̌
2

; (2.38)

with

k D kdsin�: (2.39)

Since the bearing is related to the frequency through the phase term, i.e.,

kdsin� D 2�.f=c/dsin�; (2.40)

we can use the maximum likelihood invariance6 theorem [19] to conclude that the
maximum of P.k/ is the ML estimator for the bearing angle � .

6This theorem [19] states that given an invertible relation between two variables, say y D f .x/,
the maximum likelihood estimate of x, designated as Ox, can be found by finding the maximum
likelihood estimate of y, designated as Oy, and solving the relationship for Ox. That is, Oy D f .Ox/.
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From an estimation theory point of view, the quality of an estimate is measured
by the error variance [5] on the estimate, where this variance is given by

�2� D EfŒ� � O��2g: (2.41)

The Cramér–Rao lower bound or CRLB for an estimate is the smallest variance
on an estimate that can be achieved by an estimator, and an estimator that does
achieve it is called efficient [5]. For the case of narrowband bearing estimation using
a line array, for a singe time sample7

�2� D 3

.SNR/�2N NC1
N�1 .Acos�/2

; (2.42)

which for N reasonably large, is well approximated by

�2� D 3

.SNR/�2N.Acos�/2
: (2.43)

Note that the acoustic aperture A D L=� appears in the denominator. As expected,
the CRLB on the estimate of � decreases with an increase in A. Also, it decreases
with an increase in the SNR, and N, the number of elements in the array. Recall
also that the beamwidth of the array is well approximated by the reciprocal of
the acoustic aperture, so we see that the variance on the estimate of the bearing
decreases with the beamwidth, as expected. The term Acos� is usually referred to
as the projected aperture. Thus, the CRLB on the estimate of � increases as the
bearing moves away from broadside, since the projected aperture decreases.

2.7 Three-Dimensional Arrays

Although the line array plays a major role in underwater signal processing, three-
dimensional arrays can arise in many applications. For example, arrays may
be mounted on the hulls of autonomous undersea vehicles (AUVs), leading to
conformal arrays. Submarines and surface ships carry spherical and cylindrical
arrays. Although the mathematical modeling of such arrays easily obtains from the
generalization of the previous discussion of the line array, the optimization of such
arrays becomes much more problematical, and usually must be treated numerically.

The general expression for a three-dimensional array, in a standard polar
coordinate system, is given by

7For our purposes here, the single time sample case is sufficient. The more general case, which
includes the number of independent time samples, will be discussed in Chap. 5.
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Fig. 2.5 Coordinate system
for the three-dimensional
array. The reference phase
plane passes through the
origin and the incoming wave
is normal to this plane y

z

rn

x

q

f

k

S.�; �/ D
NX

nD1
wneik�rn : (2.44)

Referring to Fig. 2.5, k is the wave vector of the incoming plane wave signal. Its
direction defines the direction of propagation and has the magnitude jkj D k D
2�=�. � and � are the polar angles of k and rn is the radial coordinate of the
nth isotropic receiver element. To see the structure of the phase term in Cartesian
coordinates, it is useful to expand it as follows.

k � rn D kŒxnsin�cos� C ynsin�sin� C zncos��: (2.45)

For a line array on the x-axis, yn, zn, and � are all zero and Eq. 2.45 reduces to

k � rn D kndsin�; (2.46)

which is the phase term for a line array for xn D nd. Note that an element directivity
can be included here, just as in the line array case, but the product theorem no longer
holds, since these directivities will not all be in the same rotational positions, except
for the case of a planar array, where all the zn are zero.

One case of interest is the conformal array, i.e., an array that conforms to a
surface. By defining the projected planar array (PPA) [4] to be the array that obtains
by placing one axis of the coordinate system, say the z axis, along the maximum of
the main lobe, and setting the z coordinates of all the elements to zero, some insight
into the performance of the associated conformal array can be obtained. First, it can
be shown [13] that the main lobe of both the conformal array and its associated PPA
are essentially the same. Second, the apertures of the PPA are inversely related to
the beamwidths in the x � z and y � z planes of the PPA. However, the sidelobe
behavior of the conformal array is generally worse than that of the associated PPA.
By worse, we mean that, for a given set of shading coefficients, the sidelobes of the
conformal array are higher than those of the PPA, and the difference increases as
the observation angle moves away from the MRA.

Examples of beamforming for three-dimensional arrays are given in [4, 12, 13].
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Chapter 3
Statistical Signal Processing Overview

3.1 Introduction

Before proceeding to a discussion of the Kalman filter and it variants, it is helpful
to present an overview of statistical signal processing. Although the concern of this
book is mainly estimation, this chapter begins with a short discussion of detection
theory. There are two reasons for this. One is for completeness and the other is that
there will be some mention of detection in Chap. 6 when the innovations sequence,
one of the major components of the Kalman filter, is discussed. Consequently, the
treatment here is not to be considered as a comprehensive discussion of detection
theory.

The section on estimation theory will begin with a discussion of the Cramér–Rao
lower bound (CRLB), which is a lower bound on the variance achievable by a given
estimator. And since we are dealing with improvements in estimation via the use of
models, a quantitative measure of the improvement is required. Since the variance
is the accepted measure of the quality of an estimate, the CRLB is an essential tool
for this measure.

3.2 Detection Theory for Totally Known Signals

In the field of underwater signal processing, the binary hypothesis describes most
detection problems. That is, the concern is with determining whether a signal does
or does not exist. Such problems are most often dealt with by the Neyman–Pearson
(N–P) detector [7, 11]. The N–P detector delivers the highest probability of detection
for a given probability of false alarm. It allows for two kinds of errors. Deciding that
the signal is present when it is not is called an error of Type I, and deciding that the
signal is not present when it is, is an error of Type II.

© Edmund J. Sullivan 2015
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As a simple example of the N–P detector, consider the problem of detecting the
presence of a nonzero DC level in white Gaussian noise. The binary hypothesis is
stated as follows. Designating the DC level as v, the zero-mean white Gaussian noise
as n with variance �2 and the received signal as y, two hypotheses are considered.
These are H0, the hypothesis that no signal is present, and H1, the hypothesis that a
signal is present. These hypotheses, for the case of real signals, are stated as follows.

H0 W y D n

H1 W y D v C n: (3.1)

A probabilistic description of these hypotheses, based on the assumption of n being
white and Gaussian, is given by

p.yjH0/ D 1

.2��2/1=2
e�y2=2�2 ; (3.2)

and

p.yjH1/ D 1

.2��2/1=2
e�.y�v/2=2�2 : (3.3)

The N–P criterion states that the optimal detection structure is given by the so-called
Likelihood Ratio, which is defined by

L D p.yjH1/

p.yjH0/
D e�.y�v/2=2�2

e�y2=2�2
: (3.4)

The N–P detector decides that H1 is true if L > 
 where as will be seen, 
 is
determined by the desired probability of false alarm, and that H0 is true otherwise.
In conventional practice, the logarithm of L is used so that the test statistic,
lnL, is compared with ln
 . From Eq. 3.4, the logarithm is compared with ln
 .
The logarithm of the likelihood ratio is

lnL D �.y � v/2=2�2 C y2=2�2 D Œ2vy � v2�=2�2; (3.5)

so that H1 is true if

yv

�2
>

v2

2�2
C ln
: (3.6)

This is cast in terms of probability as follows. The probability of detection, i.e., the
probability that H1 is true, is given by

PD D 1

.2��2/1=2

Z 1

T
e�.y�v/2=2�2dy; (3.7)
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and the probability of false alarm, PFA, is given by

PFA D 1

.2��2/1=2

Z 1

T
e�y2=2�2dy; (3.8)

and T is the threshold. The threshold is the level above which a detection is declared.
The procedure for implementation of the N–P detector now follows immediately.
The desired PFA is chosen, which defines the threshold T via Eq. 3.8. Given T,
Eq. 3.7 is then used to compute PD. The detection problem then is not completely
defined without the specification of PFA.

The above example is based on a single sample. In the case of a known, discretely
sampled time-varying signal vn with N samples, the above argument is generalized
as follows. Still assuming zero-mean white (independent) Gaussian noise and a
totally known signal with N samples, Eq. 3.2 generalizes to the product of the
individual likelihoods.1 Equation 3.2 is replaced with

p.yjH0/ D 1

.2��2/N=2
e� 1

2�2

PN
nD1 y2n ; (3.9)

and Eq. 3.3 is replaced with

p.yjH1/ D 1

.2��2/N=2
e� 1

2�2

PN
nD1.yn�vn/

2

: (3.10)

Here, y represents the vector of N data samples with elements fyng. For this case
Eq. 3.6 generalizes to

1

�2

NX

nD1
ynvn >

1

2�2

NX

nD1
v2n C ln
: (3.11)

We see that, as one would expect, the threshold increases with the signal energy,
which is given by

E D
NX

nD1
v2n : (3.12)

Upon rearranging Eq. 3.11, we finally get

NX

nD1
ynvn >

1

2

NX

nD1
v2n C �2ln
: (3.13)

1This is clear if the signal is sampled at the so-called Nyquist rate, since these probabilities are
independent. When the sample rate is higher than the Nyquist rate, no new independent samples
are being introduced so that this likelihood function still holds.
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Note that the term on the LHS of Eq. 3.13 is the correlation between the data and
the signal. Thus, when the form of the signal is known a priori, this test statistic
can be computed. This is the well-known matched filter, and in the form shown, is
known as the Replica Correlator [2]. The recipe for its implementation now follows
from the generalization of Eqs. 3.7 and 3.8 which is found by simply replacing the
likelihoods for the single sample case with those for the N sample case. Thus, the
probability of detection now becomes

PD D 1

.2��2/N=2

Z 1

T
e� 1

2�2

PN
nD1.yn�vn/

2

dy; (3.14)

and the probability of false alarm becomes

PFA D 1

.2��2/N=2

Z 1

T
e� 1

2�2

PN
nD1 y2n dy: (3.15)

Selecting a value for the probability of false alarm (Eq. 3.15) is solved for the
lower limit on the integral, which yields the threshold value. Given this threshold,
one can then directly compute the detection probability from Eq. 3.14. This provides
the basis for a family of equations for the detection probability as a function of
the false alarm probability with the signal-to-noise ratio as a parameter specifying
each curve in the family. Such a family of curves is called the receiver operating
characteristic or ROC curves. For more information the reader is directed to [7].

For the purposes of this book, the logarithm of the likelihood for H1 which is
obtained from Eq. 3.10 will be our main interest, since it is intimately related to the
innovations sequence provided by the Kalman filter. As will be seen in Chap. 4
the recursive update procedure of the Kalman filter provides a sequence called
the innovations sequence, each term of which is the difference between the new
measurement and the previous estimate of the measurement. Its square is then the
log likelihood for white noise for a properly tuned Kalman filter. Thus a sequential
log likelihood term is available is a natural product of the Kalman filter.

3.3 Classical Estimation Theory

As with the discussion of detection theory in Sect. 3.1, this discussion of estimation
theory will be minimal, since it is mainly intended to provide a basis for the
following chapter on the Kalman filter. Here, the term classical refers to estimators
for deterministic parameters.

As mentioned in Chap. 1, estimation is the determination of the values of certain
parameters of the signal, the source or the medium. It is convenient to classify the
estimation task into two types: parametric and nonparametric. Parametric estimation
can be further separated by identifying those cases where the parameters have a clear
physical basis, such as ocean bottom density and sound speed, and those cases where
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this is not necessarily so, which can be the case in time series analysis. To put in a
different way, parametric estimation consists of providing some kind of parameter-
based structure to the signal. This is done for either of two reasons: to improve the
performance of the estimator or to extract estimates of certain parameters of the
source or medium.

3.4 The Cramér–Rao Lower Bound

Before continuing, it is useful at this point to introduce the CRLB, which is the lower
bound on the error variance of an estimate, since as already mentioned, the quality
of an estimate is most commonly measured in terms of its variance. We begin with
the problem of finding the estimate of a parameter x where the data are described by
a linear model with zero mean white (uncorrelated) Gaussian noise. That is

yi D x C ni; (3.16)

and the likelihood function is given by

p.yjx/ D 1

.2��2/N=2
e

�1

2�2

PN
iD1.yi�x/2

; (3.17)

with y D Œy1 y2 � � � yN �.
It is now assumed that the best estimate is the mean of the data, viz.

Ox D 1

N

NX

iD1
yi D 1

N

NX

iD1
.x C ni/ D Efxg C 1

N

NX

iD1
ni: (3.18)

Here the notation E indicates the expected value. The variance on the estimate
follows as

�2x D Ef.Ox � Efxg/2g D E

��
1

N

NX

iD1
ni

�2�
D 1

N2

NX

iD1

NX

jD1
Efninjg; (3.19)

and since we have assumed Gaussian white (uncorrelated) noise, this reduces to

�2x D 1

N2

NX

iD1
Efn2i g D �2

N
; (3.20)

where �2 D Efn2i g.2

2This is a well-known result—that the variance on the mean of a data set of length N is the variance
on the data set itself divided by N.
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Since the likelihood function for the data is known, it is possible to establish a
lower bound on the variance of an estimate based on this likelihood. This is the
CRLB [6]. An estimator that achieves this bound3 is said to be efficient. It is derived
here following the treatment in [5] for the case of a single real parameter x.

The expected value of the error of an unbiased estimate of x is

EfOx � xg D
Z
.Ox � x/p.yjx/dy D 0: (3.21)

The derivative of this with respect to x is

Z
.Ox � x/

@p.yjx/
@x

dy �
Z

p.yjx/dy D 0: (3.22)

Using

@p.yjx/
@x

D p.yjx/@lnp.yjx/
@x

; (3.23)

and the fact that p is normalized, Eq. 3.22 can be written as

Z
.Ox � x/

@lnp.yjx/
@x

p.yjx/dy D 1: (3.24)

The integrand is now factored resulting in

Z
.Ox � x/

p
p.yjx/

�
@lnp.yjx/
@x

p
p.yjx/

�
dy D 1: (3.25)

Using the Cauchy Schwarz inequality4 on Eq. 3.25 results in

� Z
p.yjx/

�
@lnp.yjx/

x

�2
dy

�� Z
p.yjx/.Ox � x/2dy

�
� 1: (3.26)

The left bracketed term in Eq. 3.26 is the Fisher information matrix (FIM)5 I, and
the right bracketed term is the error variance on the estimate of x. This states that

�2x � I�1: (3.27)

3It is important to keep in mind that the CRLB is only meaningful in terms of the associated
likelihood function.
4This inequality states that

� R
A.z/B.z/dz

	2 � R
ŒA.z/�2

R
ŒB.z/�2dx:

5This is a one-dimensional problem so that here the Fisher matrix is one dimensional. However,
the term matrix is used to avoid confusion and maintain a consistent terminology.
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This states that the error variance on the estimate of x can never be less than the
inverse of the FIM I. A more general derivation, dealing with multiple parameters,
can be found in [7],

The likelihood function for a signal y, that depends upon an M-dimensional
parameter vector x D Œx1; x2; : : : ; xM�, is the probability of y conditioned on x.
It is written as p.y=x/, with x considered to be fixed. The FIM for this case is

Iij D �E

�
@

@xi

@

@xj
lnŒp.yjx/�

�
: (3.28)

The CRLB on xk, the estimate of the kth element of x then follows as

�2xk
� .I�1/kk: (3.29)

Since ni in Eq. 3.18 represents a white Gaussian process, it is seen from Eqs. 3.17
and 3.28 that the Fisher matrix is

I D N

�2x
; (3.30)

which leads to the result that the lower bound on the variance of the estimate Ox is
simply the noise variance divided by N, i.e.,

CRLB.x/ D �2x
N
: (3.31)

But this is the same as found in Eq. 3.20. Thus, the estimator of Eq. 3.20 is efficient.

3.5 Estimator Structure

The estimator used in the example above is linear. The general linear model is
given by

y D Ax C n: (3.32)

In the above, A is an N � M matrix and we shall refer to it here as the measurement
matrix. N is the number of measurements and M is the size of the parameter vector
x. This measurement model will be used throughout this chapter.
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3.5.1 The Minimum Variance Unbiased Estimator

In the case where p.yjx/ is known, it can be shown from the CRLB theorem [6] that
˛.x/ is an efficient minimum variance estimator if and only if

@lnp.yjx/
@x

D I.x/.˛.x/� x/: (3.33)

Since this is an efficient estimator, it also follows that the covariance matrix for the
estimate is

Cx D I�1: (3.34)

Note that when the expected value of Eq. 3.33 is zero, the estimator ˛ is unbiased.
As an example, consider the following case.

The Gaussian likelihood function for the linear model with white noise is
given by

p.yjx/ D 1

.2��2/N=2
e� 1

2�2
.y�Ax/T .y�Ax/

: (3.35)

From this equation, the Gaussian log likelihood (ignoring the multiplying factor
which does not depend on the data) is � 1

2�2
Œ.y � Ax/T.y � Ax/�. Then with the help

of the vector calculus chain rule, r.aTb/ D .raT/b C .rbT/a, with r denoting the
derivative with respect to the vector x, we find that Eq. 3.33 becomes,

@lnp.yjx/
@x

D 1

�2
ŒATy � .ATA/x�; (3.36)

which can be rewritten as

@lnp.yjx/
@x

D .ATA/

�2
Œ.ATA/�1ATy � x�: (3.37)

Upon comparison with Eq. 3.33 we find that the MVU estimator of x is

Ox D .ATA/�1ATy; (3.38)

and since it is an efficient estimator, the covariance on the estimate of x is

Cx D �2.ATA/�1: (3.39)

Although it will not be a problem in this book, in the interest of completeness, it
should be pointed out that the MVU is a special case of the minimum mean square
estimator (MMSE) for the case where zero bias is assumed. For the general MMSE,
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an unbiased estimator cannot always be found. This is seen as follows. The general
minimum mean square error is written as

MSE.Ox/ D EŒ.Ox � x/2� D E

�h
.Ox � E.Ox//C .E.Ox/� x/

i2�
: (3.40)

Here it is seen that the left-hand term in the RHS of this equation delivers the
variance on the estimate, the right-hand term is a function of x, i.e., the estimator
is biased. By assuming that the ŒE.Ox/ � x� term is zero and minimizing only the
variance delivers the unbiased minimum variance estimator or MVU.

3.5.2 The Non-white Minimum Variance Unbiased Estimator

For the case where the noise statistics are still zero mean but not white, the results
for the white noise case for the Minimum Variance Unbiased Estimator can be easily
generalized by using a prewhitening transformation. Suppose the colored covariance
matrix R is known and factorable as R�1 D DTD. This whitens the noise since
R D .DTD/�1 D D�1.DT/�1 so that

DRDT D D.DTD/�1DT D DD�1.DT/�1DT D I; (3.41)

and the linear model transforms as

Dy D DAx C Dn: (3.42)

The MVU now becomes

Ox D Œ.DA/TDA��1.DA/TDy; (3.43)

which can be rewritten as

Ox D ŒAT.DTD/A��1ATDTDy; (3.44)

or

Ox D .ATR�1A/�1ATR�1y; (3.45)

and the covariance on Ox becomes COx D .ATR�1A/�1.
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3.5.3 Best Linear Unbiased Estimator

In the case where the Minimum Variance Unbiased Estimator cannot be found or
the pdf of the data is unknown, but the covariance of the data is known and the
expected value of n is zero, the approach is to find the best linear estimator that
is unbiased. The minimum variance approach in this case delivers the best linear
unbiased estimator (BLUE).

The BLUE is found from the classical form of the Gauss–Markov [8] theorem
which is stated as follows. If the data model is linear as in Eq. 3.32, which is
rewritten here

y D Ax C n (3.46)

and x is a nonrandom vector, the covariance of n is R and Efng D 0, then the BLUE
for x is

Ox D .ATR�1A/�1ATR�1y; (3.47)

and the variance of the estimate is COx D .ATR�1A/�1. This is proved in [8]. The
important point here is that the form is the same as for the MVU estimator, but they
are not the same in terms of optimality. That is, Eq. 3.47 is optimal only under the
assumption of the data being described by a linear model and only the mean and
covariance of the noise are known, whereas if the pdf were known and Gaussian,
then the MVU is optimal.

It now immediately follows that if R D �2I and the expected value of n is zero,
then Eq. 3.47 reduces to

Ox D .ATA/�1ATy D Py; (3.48)

which is the least squares estimate. This is the case where the knowledge of the
statistics is minimal. It is still a form of BLUE however. The form of the linear
estimator in Eq. 3.48, denoted by P, is sometimes referred to as the Moore–Penrose
inverse [9, 10] or the pseudoinverse, since it is the solution to a least squares estimate
for the overdetermined problem.

Equation 3.48 can be viewed from two different points of view. If there is only
one realization of the data vector, then it is the least-squares solution for x. On the
other hand, if a sequence of data vectors is assumed, Eq. 3.48 is written as

Oxi D .ATA/�1ATyi D Pyi; (3.49)

and can be considered to be a sequential processor which produces a sequence
of estimates of the parameter x, i.e., xi. In the stationary case, this is simply an
extension to two dimensions of the least-squares problem. In the nonstationary case,
however, the form of Eq. 3.49 leads to a sequential estimator which is a natural lead-
in to the Kalman filter, which will be discussed in the next chapter.
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Another approach to the least squares estimation problem is the weighted
least squares (WLS) problem. Since the least squares estimator can be found by
minimizing J where

J D .y � Ax/T.y � Ax/; (3.50)

an extension can be found by including a weighting vector W, such that J becomes

J D .y � Ax/TW.y � Ax/: (3.51)

The solution can be found from minimizing J using the vector calculus chain rule.
Not surprisingly the estimator for this case is

Ox D .ATWA/�1ATWy: (3.52)

Clearly, this is not a generally optimum approach. The selection of a weighting
matrix is usually dictated by the user and could be based on many different criteria.

3.5.4 The Maximum Likelihood Estimator

One reason to turn to the maximum likelihood estimator (MLE) is that there exist
cases where a Minimum Variance Unbiased Estimator either does not exist or cannot
be found. In particular, this is true when the estimator does not satisfy Eq. 3.33.
An example of such an estimator is given by Kay [6], where the signal model is

xi D A C ni; (3.53)

where A is an unknown DC level and the likelihood function is given by

p.xjA/ D 1

.2�A/N=2
e� 1

2A

PN�1
iD0 .xi�A/2 : (3.54)

This is a somewhat curious example, since the unknown and the variance are the
same, but it nevertheless serves as an example of an estimation problem for which an
MVU cannot be found. That is, it cannot be put into the form of Eq. 3.33. Although
an MLE can be found for this example, it is not efficient. This is true for many MLE
estimators, i.e., that they are generally only asymptotically efficient and unbiased.

There is another reason we may need to turn to an MLE. It is that the MVU is
based on a linear model, but most of the real-world problems that we will encounter
here are nonlinear. However, the MLE has an important property expressed by the
maximum likelihood invariance theorem [12]. As an example of this, suppose we
seek the ML estimate of some parameter ˇ. Further, suppose there exists another



38 3 Statistical Signal Processing Overview

parameter ˛, where there exists an (invertible) relationship between ˇ and ˛, and
the ML estimate of ˛ is easy to determine. Since

ˇ D f .˛/: (3.55)

and

@L

@̌
D @L

@˛

@˛

@̌
D 0: (3.56)

We see that

@L

@˛
D 0; (3.57)

satisfies the conditions for the ML estimate of both ˛ and ˇ. Thus, denoting Ǒ and
Ǫ as the ML estimates of ˇ and ˛, respectively, it follows that

Ǒ D f . Ǫ /: (3.58)

This property of the MLE is quite important for the problems encountered in this
book. This is because as shown in [6], if an efficient estimator exists, it is given by
the MLE. As an example of this, consider the general Gaussian case with a linear
model. The likelihood function for this case is

p.yjx/ D 1

.2�/N=2jRj1=2 e� 1
2 .y�Ax/T R�1.y�Ax/: (3.59)

Obviously, the maximum of p.yjx/ obtains from the minimum of .y � Ax/TR�1.y �
Ax/, which, as we have seen, delivers the MVU.

As will be seen, there are problems where a solution for parameters that are
not of direct interest are more tractable, but these parameters are functions of
the parameters of interest. Then the problem can be done in two steps: solve for
those parameters not of direct interest followed by solving these estimates for the
parameters of interest. It may turn out that a numerical solution will be necessary,
but this is the price to pay for finding an ML solution, where a direct solution was
simply not tractable.

When p.yjx/ is known, the ML type of estimator can be used. The advantage
of this is that it is reasonably easy to find numerical solutions by searching for
an extremum of the likelihood function, and in the case of a nonlinear model or
a non-Gaussian pdf, this is a distinct advantage. For the case when no statistical
information is available, the LS estimator is the only approach available, whether
the model is linear or not. When the solution must be found numerically, a further
complication here is that the likelihood surface may not be unimodal, i.e., there may
be multiple extrema.
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3.6 Bayesian Estimators

As mentioned in Chap. 1, Bayesian estimation [5] is the use of a priori information
in an estimation. Formally, Bayes’ rule states that

p.yjx/ D p.xjy/p.y/
p.x/

; (3.60)

where p.yjx/ is the likelihood function as before, and p.xjy/p.y/ D p.x; y/ is the
joint probability. More will be said on this subject in the next chapter, but we wish
to bring it up here in order to present a generalization of the CRLB that allows its
use in the Bayesian problem. In Chap. 1 the maximum a posteriori (MAP) problem
was introduced. Its variance was shown to be found from the addition of the Fisher
information associated with the prior probability.6 However, one may ask what the
CRLB for the Bayesian estimation problem is in terms of the CRLB for the classical
estimation problem. It is shown in [1] that it is found from the Fisher matrix resulting
from the replacement of the likelihood function by the joint probability density
function written as p.yjx/p.x/. The classical CRLB is based on the log likelihood
and the Bayesian CRLB is based on the two terms, the log of the likelihood function
and the log of the prior density function. This is seen as follows.

Consider the case of a single unknown parameter x. The log of the joint pdf is

ln.y; x/ D lnp.yjx/C lnp.x/: (3.61)

The Fisher matrix then follows as

I D �E

�
@2lnp.yjx/
@x2

�
� E

�
@2lnp.x/

@x2

�
: (3.62)

So the problem separates neatly into the sum of two terms: the classical term and
the prior term. As an example of an MAP problem, consider the following example.

We seek the estimate of the parameter � , for the model

yi D � C ni; i D 1; 2; : : : ; N; (3.63)

where ni is Gaussian with covariance �2nn.7 Assuming � to be a constant, we have

6The term Fisher Information is being used here in a loose manner. In the single parameter case,
the reciprocal of the variance is referred to as the Fisher information whereas the inverse of the
Fisher matrix, which obtains from the likelihood function, is the highest value attainable for the
Fisher information.
7The double subscript is now used in anticipation of its conventional use in the Kalman filter
literature.
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ln p.yj�/ D � 1

2�2nn

NX

iD1
.yi � �/2; (3.64)

with y D Œy1; y2; : : : ; yN �. This is an ML estimator and the solution follows from

@

@�

�
1

2�2nn

NX

iD1
.yi � O�/2

�
D 0; (3.65)

or

O�ml D 1

N

NX

iD1
yi: (3.66)

That is, the estimate is the mean of the measurements. To find the variance on the
estimate, the estimate is written as

O� D 1

N

NX

iD1
yi D Ef�g C 1

N

NX

iD1
ni; (3.67)

so that

�2ml D EŒ. O� � Ef�g/2� D E

�
1

N2

NX

iD1

NX

jD1
njni

�
(3.68)

since the noise is assumed to be uncorrelated, the double sum collapses to N times
a single sum, so that the variance finally becomes

�2ml D 1

N

NX

iD1
Efn2i g D �2nn

N
: (3.69)

Thus, the variance on the estimate of � decreases as the number of data samples
increases. This means that the estimator is consistent.8

Now suppose that there exists a priori information on � that is Gaussian9 with
mean N� and variance �2pp. Then we seek the MAP solution

8A consistent estimator approaches the true value as the number of data samples increases.
9This is not a good example of a Bayesian estimator since, strictly speaking, the Bayesian prior
information is considered to be stochastic information where here it is being used to perform a point
estimation. Its use here is to present a simple means of illustrating the impact of prior information
on an estimate.
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@

@�

( PN
iD1Œyi � �map�

2

2�2nn

C Œ�map � N��2
2�2pp

)
D 0 (3.70)

or

� PN
iD1Œyi � �map�

�2nn

C Œ�map � N��
�2pp

D 0: (3.71)

Solving for O�map results in

O�map D
O�ml C �2nn

N�2pp

N�
1C �2nn

N�2pp

: (3.72)

The variance on the MAP estimate is found as follows:

�2map D Ef.� � O�map/
2g (3.73)

substituting for O�map from Eq. 3.72 and defining

R D �2nn

N�2pp

: (3.74)

Equation 3.73 becomes, after some manipulation,

.1C R/2�2map D E
˚
Œ.� � N�/C .� � O�ml/�

2


: (3.75)

Using the fact that Ef.� � �ml/g D 0, Eq. 3.75 becomes

.1C R/2�2map D �2ppR2 C �2nn

N
; (3.76)

and from the definition of R, after some manipulation, we finally get

�2map D �2pp
�2nn
N

�2pp C �2nn
N

: (3.77)

But �
2
nn
N D �2ml, so that

�2map D �2pp�
2
ml

�2pp C �2ml

; (3.78)
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or

1

�2map
D 1

�2ml

C 1

�2pp

: (3.79)

This is consistent with Eq. 3.62 which states that the Fisher information for the MAP
estimator is the sum of the Fisher information for the ML estimator plus the Fisher
information associated with the prior.

As mentioned in the last footnote, the MAP is not the best example of a
Bayesian estimator. However, for the case of model-based processing, it is useful
for pedagogical reasons. First, note that the contribution of the prior information
is manifestly clear through the ratio R. When R is small compared with unity, the
improvement is negligible. R can be small for two reasons: the variance on the prior
is large, meaning it does not do a good job importing information on the estimate,
or N is large, meaning that the number of measurements is so large that the ML
estimate overwhelms the contribution by the prior. Another way to say this is that
the Fisher information contributed by the prior is small compared to that provided
by the ML estimator.

Another point that can be clarified by the MAP estimator is that it provides a
simple example of the mismatch problem. This is the fact that bad prior information
can actually degrade the estimate rather than improving it. This can be seen by
inspection of Eq. 3.72. The MAP estimate is actually made up of a weighted sum of
the ML estimate, O�ml and the mean of the prior, N� . This means that any error in N�
will introduce a bias to the MAP estimate. In fact, the prior will always introduce a
correction to the ML estimate unless O�ml D N� .

In the next chapter, when the Kalman-type recursive estimators are developed,
the Bayesian approach will again be discussed in a somewhat different context.

3.7 Recursive Estimator Structures

The preceding section discussed that group of estimators sometimes referred to as
classical estimators, since they deal with deterministic parameters. They also form
the basis for batch type processes, since they are employed by first collecting all
of the data, and then exercising the algorithm. However, there are certain classes of
problems that are best dealt with by using recursive type processors. For example,
if the statistics are not stationary, or the parameters of interest are changing in time,
a batch process clearly cannot be optimal. As a means of redirecting attention from
classical batch estimation to recursive estimation, two simple examples of recursive
estimators are developed here and without proof, are put into the form of a Kalman
filter.
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3.7.1 Estimation of the Mean of a Growing Data Set

Consider the mean of N samples (measurements) fxng of a fixed quantity x where
the mean is to be taken as an estimation of the value of x. This is given as

OxN D 1

N

NX

nD1
xn; (3.80)

where the hat indicates the estimate. We now ask whether adding a new measure-
ment to the data set requires the whole data set to be averaged again, or if there is a
simpler way to handle it. The answer is that there is a simpler way to handle it. This
can be seen as follows. Equation 3.80 is rewritten as

OxN D 1

N
xN C 1

N

N�1X

nD1
xn D 1

N
xN C .N � 1/

N

1

.N � 1/
N�1X

nD1
xn: (3.81)

But this simply states that

OxN D 1

N
xN C .N � 1/

N
OxN�1: (3.82)

That is, the new average is equal to the old average times .N � 1/=N plus the new
datum divided by the total number of data points. This can be rearranged to take the
following form.

OxN D OxN�1 C 1

N
.xN � OxN�1/: (3.83)

This is actually a highly simplified form of a Kalman filter. It is trivial for
three reasons: there is no measurement noise included, xN is found by its direct
measurement, and the model is the proper one, meaning that the prescription (take
the average) to achieve the estimate of x is correct.

To make it look more like a Kalman filter, a new notation is now introduced by
rewriting Eq. 3.83 as

Ox.tjt/ D Ox.tjt � 1/C K.t/�.t/: (3.84)

Here �.t/ D ŒxN � Ox.tjt � 1/� is called the innovation and K.t/ is called the
Kalman gain, which in this simple example is a constant equal to 1

N . xN is the
Nth measurement. The notation x.tjt � 1/ is meant to indicate the estimate of x
predicted at time t based on the data taken up to and including time t � 1. This is
called the predicted state in Kalman filter parlance and x.tjt/ is called the corrected
state, where the correction term is seen to be the innovation times the Kalman gain.
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Note that the correction includes the new measurement. Simply stated, the Kalman
filter recursive estimator provides a new estimate as the sum of the previous estimate
plus a correction term based on the new measurement.

Although not proved in this chapter, the Kalman gain derives from the fact that
the Kalman filter is an MMSE.

3.7.2 Further Generalizations

Suppose that x, the parameter of interest, was not directly observable, but was related
to the measurement in a linear way and was corrupted with additive noise. That is,
suppose that the actual measurement is denoted by y and that

y D Cx C v; (3.85)

where v is zero mean white and Gaussian. Then the innovation would take the form

�.t/ D ŒyN � COx.tjt � 1/�: (3.86)

In the case of an exact model, the innovation sequence evolving from the recursion
would then simply be v.t/,10 the measurement noise. The importance of this is
that in the case of incorrect or incomplete models, which we will discuss later,
the innovation sequence provides a test of the goodness of the model based on the
deviation of the innovations sequence from being zero mean and white. This is one
of the powerful properties of the Kalman filter; its ability to constantly monitor the
fidelity of the model.

It is now seen that the recursive estimator now must be specified by two
equations, The first is Eq. 3.84 which we generalize here, without proof, to a
multichannel form, without the correction term, but with an additive system noise
term, W. In these equations, X is the M-dimensional state vector, H is the M � M-
dimensional state transition matrix, Y is the N-dimensional measurement vector, and
C is the N � M measurement matrix. Thus, the state equation is

X.tjt/ D HX.tjt � 1/C W.t/; (3.87)

and the measurement equation, a generalized form of Eq. 3.85, is

Y.t/ D CX.t/C V.t/: (3.88)

Here, W D Œw1 � � � wM �
T and V D Œv1 � � � vN �

T . Equations 3.87 and 3.88 are
considered to be in the Gauss–Markov form.

10In the following development, time dependence will not always be made explicit, in the interest
of simplicity.
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The term state equation is used since the original form of the filter was based
on a state space-based formulation so as to accommodate differential equations. As
an example, we consider a dynamic model based on a familiar dynamical system
governed by the following second-order ordinary differential equation.

d2x

dt2
C k2x D 0: (3.89)

Following the usual state space prescription, we define dx
dt D Px, and the two-

dimensional state vector as X D Œx Px�T . For this case, the Kalman equations,
Eqs. 3.87 and 3.88 become, respectively,

d

dt

�
x.tjt/
Px.tjt/

�
D

�
0 1

�k2 0

� �
x.tjt � 1/
Px.tjt � 1/

�
C

�
w1.t � 1/

w2.t � 1/

�
; (3.90)

and

2
64

y1
:::

yN

3
75 D C

�
x
Px
�

C

2
64
v1
:::

vN

3
75 (3.91)

here C is the N � M measurement matrix. This is the linear Kalman filter and the
equations are referred to as being in a first-order Gauss–Markov form.11

The solution to this Kalman filter estimator must be put into finite difference
form before proceeding to a discrete recursive solution. Thus, we set

d

dt

�
x.tjt/
Px.tjt/

�
� 1

	t

�
x.tjt/ � x.tjt � 1/
Px.tjt/ � Px.tjt � 1/

�
: (3.92)

After some manipulation, and assuming the approximation to be exact, the state
equation becomes

�
x.tjt/
Px.tjt/

�
D

�
1 	t

�	tk2 1

� �
x.tjt � 1/

Px.tjt � 1/

�
; (3.93)

or

X.tjt/ D ŒI C	tH�X.tjt � 1/: (3.94)

11The first-order Markov assumption states that in a discrete sequential system the present state
depends only upon its previous value.
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Defining A D I C .	t/H, we have the resulting state equation

X.tjt/ D AX.tjt � 1/; (3.95)

and Eq. 5.17, which we repeat here, is the measurement equation, which completes
the set of desired Kalman filter equations for this example.

Y.t/ D CX.t/: (3.96)

This constitutes the complete Kalman filter equations for a discrete time solution
for this second-order dynamical system. Given an a priori value for k in Eq. 3.89,
this will deliver a sine wave solution. The accuracy of the solution will depend on
the sample rate, 1=	t. The sufficiency of the size of 	t can be monitored by using
the innovations sequence test for zero mean and whiteness. That is, 	t would be
reduced until the innovations test is satisfactory.

This example is a demonstration of how the Kalman filter can accommodate
physical models. The importance of this cannot be understated, since it demonstrates
how it provides a self-consistent way to provide an enhancement to the performance
of a processor by using physical models as a form of a priori information. For more
discussion of this point see Candy [3]

3.8 The Linear Kalman Filter Algorithm

3.8.1 Preliminary Comments

There are three steps to the algorithm. The first is the prediction of the new state and
its use to predict the new measurement, which is needed by the innovation. The state
estimation error covariance QP is also predicted since it is needed in the second step,
which is the computation of the correction terms. Also needed are an initial value for
the measurement noise covariance matrix, Rvv , an initial value for the system noise
covariance matrix, Rww, and an initial guess for the state vector, X.t � 1jt � 1/.
As mentioned before, a priori knowledge of the k term in Eq. 3.89 is needed.
However, if it is poorly known, it can in fact be included as a third term in the
state vector along with the necessary modification to the state transition matrix, and
estimated along with the state itself. This is referred to as augmentation.12 The third
step is the update or correction step, which completes the iteration.

12This shows how the Kalman filter can self-consistently update the model along with the
estimation of the quantities of interest.
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3.8.2 The Algorithm
Prediction

OX.tjt � 1/ D A OX.t � 1jt � 1/
QP.tjt � 1/ D A QP.t � 1jt � 1/A0.t � 1/C Rww

OY.tjt � 1/ D C OX.tjt � 1/

Correction Terms

Y.t/ D New Measurement

�.t/ D Y.t/ � C OX.tjt � 1/

R��.t/ D C.t/ QP.tjt � 1/C0.t/C Rvv

K.t/ D QP.tjt � 1/C0R�1
��

Update or correction

OX.tjt/ D OX.tjt � 1/C K.t/�.t/

QP.tjt/ D ŒI � K.t/C� QP.tjt � 1/

Here, R�� is the innovation covariance. It should be noted that the Kalman
algorithm usually includes a source term in the first prediction equation that is not
used here in the interest of simplicity, and will not be needed in the applications that
we will be treating in Chap. 5.

3.8.3 Discussion

Observe that there are two terms that enter into the update equation. They are the
Kalman gain and the innovation. It is worth taking a closer look at these terms.
The Kalman gain is given by

K.t/ D QP.tjt � 1/C.t/0R�1
�� .t/: (3.97)

The QP.tjt � 1/ term is the predicted state error covariance. If it is large, it acts to
increase the value of K.t/, thereby increasing the influence of the measurement on
the correction term via the innovations. That is, because of the larger state estimation
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error, the model loses some influence and the algorithm begins to depend more
on the measurements. Alternatively, if the innovation covariance is large due to a
large measurement noise, then the innovation covariance increases, thereby acting
to reduce the impact of the measurement term on the update and putting more trust
in the model. In this way, we see how the correction term encompasses both the
impact of the fidelity of the model and the impact of measurement noise.

As previously mentioned, the system noise, W.t/, is not a noise in the same
sense as the measurement noise. It is a means of allowing for incompleteness of the
model. However, it is still a valid noise in the Gauss–Markov sense. It is of critical
importance in the Kalman filter, without which the processor will not properly
converge. Here the power of the Gauss–Markov model is evident, since it permits
the Kalman filter to perform with models of varying fidelity, such that a degradation
in the model fidelity, rather than preventing a solution, still allows a solution, but
with the penalty of slower convergence and larger error covariance. Such latitude is
not found in classical estimators.

Another important element of the Kalman filter is the innovation sequence, since
it allows a continuous monitoring of the performance of the algorithm. If the model
is doing a good job of extracting information from the data, then the innovation
sequence will be zero-mean and white, since it will be predominantly made up of
the measurement noise. Conversely, if the model deviates from a reasonably faithful
representation of the physics, the innovations sequence will indicate this. Indeed, the
innovation sequence can be easily configured into a sequential likelihood test and
therefore can serve as a detector which can indicate the loss of an important element
of the model. In other words, it can efficiently perform as a sensitive change detector.
More will be said in this regard in the last chapter.

As a final point, although the system noise allows for incompleteness in the
model, it should be pointed out that incompleteness is not the same as model
errors as may be introduced, for example, by incorrect parameters. When model
parameters are incorrect or greatly in error, system noise does not do a good job of
compensating for this. This is why the ability of the Kalman filter to allow model
parameters to be directly included in the estimation process, referred to earlier as
augmentation, is so important. In other words, it solves the joint state/parameter
estimation problem [4].
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Chapter 4
From Bayes to Kalman

4.1 Introduction

The Kalman filter [10] was introduced in the preceding chapter as a generalization
of a simple recursive processor. This was a “bottom up” point of view and was
presented without proof. In this chapter it will be shown that the Kalman filter is
a special case of a more general processing structure called a Bayesian filter (BF).
That is, it is presented as a “top down” description. None of the material in this book
will deal in depth with the Bayesian filter, but it is introduced for completeness and
also to demonstrate that the Kalman filter logically derives from it and is therefore
a Bayesian processor. It then follows that for the case where the measurement
model and the system model are both linear, and the measurement noise and system
noise are both Gaussian, the Kalman filter is optimum and therefore an optimum
realization of a Bayesian filter.

The Bayesian filter is based on the probability density functions (pdf) describing
the situation, and is the general optimal filter. However, in general it cannot be used
in this form since, unlike the optimal Kalman filter where the pdfs are Gaussian, the
pdfs for the Bayesian filter cannot be represented in a closed form in the general
case. The best one can do is to use a discrete representation of the pdfs, which leads
to the so-called Particle Filter [3, 6]. In this hierarchy, the Bayesian filter comes first,
followed by the Kalman filter. This point of view is actually the reverse of the actual
historical development, since the Kalman filter came first [10] and was followed by
the particle filter [3].
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4.2 The Bayesian Filter: Preliminaries

The Bayesian filter is based on a recursive form of Bayes’ rule and uses the
Chapman–Kolmogorov (C–K) equation to transition the state. Before discussing
the details however, some discussion is in order.

Bayes’ rule can be obtained by recognizing that the joint probability of two vector
random variables X and Y can be written in two ways, i.e.,

P.X;Y/ D P.XjY/P.Y/ D P.YjX/P.X/; (4.1)

so that

P.XjY/ D P.YjX/P.X/

P.Y/
: (4.2)

In words, this states that the posterior is equal to the likelihood times the prior
divided by the evidence or normalizing factor. The normalizing factor is given by
the marginal1

P.Y/ D
Z

P.YjX/P.X/dX; (4.3)

so that we finally have Bayes’ rule given as

P.XjY/ D P.YjX/P.X/R
P.YjX/P.X/dX

: (4.4)

This forms the basis for the development of the chain rule of probability.
In order to facilitate the discussion of the chain rule, it is necessary to specialize

the notation to a specific set of joint variables indexed by t. From Eq. 4.1, it follows
that

P.y.t/; y.t � 1/; y.t � 2// D P.y.t/; y.t � 1/jy.t � 2// � P.y.t � 2//: (4.5)

In the same way, the RHS of this can be expanded as

P.y.t/; y.t � 1/jy.t � 2// � P.y.t � 2//

D P.y.t/jy.t � 1/; y.t � 2// � P.y.t � 1/jy.t � 2// � P.y.t � 2//: (4.6)

Combining these two, we have

P.y.t/; y.t � 1/; y.t � 2//
D P.y.t/jy.t � 1/; y.t � 2// � P.y.t � 1/jy.t � 2// � P.y.t � 2//: (4.7)

1A marginal distribution of a multivariate distribution is the result of removing one or more of the
variates by summing or integration. Thus p.x/ D R

p.x; y/dy is a marginal distribution.
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This is a general form of the chain rule, and it is easy to see that it can be extended
to as many random variables as is necessary. For our purposes, we will assume
that the process is first-order Markov. In words, the first-order Markov assumption
states that in a discrete sequential system, the present state depends only upon the
preceding state. What this means mathematically is that if we define

Yt D fy.t/; y.t � 2/; y.t � 3/; : : :g (4.8)

which is not a vector but simply denotes the set of measurements up to y.t/,
then the expression

P.y.t/;Yt�1/ D P.y.t/jYt�1/ � P.Yt�1/; (4.9)

reduces to

P.y.t/;Yt�1/ D P.y.t/jYt�1/ � P.y.t � 1//; (4.10)

so that

P.y.t/jYt�1/ D P.y.t/jy.t � 1//: (4.11)

With this assumption Eq. 4.7 reduces to

P.y.t/; y.t � 1/; y.t � 2//

D P.y.t/jy.t � 1// � P.y.t � 1/jy.t � 2// � P.y.t � 2//: (4.12)

Thus, the Markov assumption leads to a simpler and very useful form of this form
of the chain rule.

The Chapman–Kolmogorov equation now follows as a marginal pdf based on the
chain rule. It is given by

P.x.t/jYt�1/ D
Z

P.x.t/jx.t � 1// � P.x.t � 1/jYt�1/dx.t � 1/: (4.13)

4.3 The Bayesian Filter

The Bayesian filter is based on the Chapman–Kolmogorov equation and the
recursive Bayes’ rule, where the former takes on the role of the predictor or state
transition and the recursive Bayes’ rule takes on the role of the measurement
and update. Thus, the process model is embedded in the C–K equation, and the
measurement in the form of the likelihood equation and the update are embedded in
the recursive Bayes’ rule. Returning for a moment to the Kalman filter, we see that
the measurement and update are carried out in separate steps, where in the Bayesian
filter, these steps are inherent in the update step of the recursive Bayes’ rule.
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Whereas the Kalman filter, which is Gaussian based, estimates the conditional
mean and covariance of the state vector, the Bayesian filter prediction equation
estimates the posterior density P.x.t//jYt�1/, and the Bayesian update equation
corrects this posterior based on the new measurement, thereby providing P.x.t/jYt/.
These pdfs represent the complete solution. For example, there is no requirement
that the posterior density be unimodal, or symmetric, and the process model,
P.x.t/jx.t � 1//, need not be linear.

Thus, the Bayesian filter is made up of the Chapman–Kolmogorov equation,
which will henceforth be referred to as the prediction equation given by Eq. 4.13
and the update equation which is the recursive form of Bayes’ rule [6] and is given
here as

P.x.t/jYt/ D P.y.t/jx.t//P.x.t/jYt�1/
P.y.t/jYt�1/

: (4.14)

This is derived in [6].
Here, the LHS is the updated posterior. On the RHS, we find the posterior based

on the measurements up to time t � 1 times P.y.t/jx.t//, which is the likelihood
function, i.e., the pdf associated with the new measurement and will be designated
as C.y.t/jx.t// to single it out. This is the general update equation. The term
P.x.t/jx.t�1// in the update equation is now replaced by A.x.t/jx.t�1// in order to
identify it as the process model. In summary then, the Bayesian filter equations, for
our purpose here, are given in the following form: the prediction equation, which
predicts the value of the posterior pdf at time t, based on the measurements up to
and including time t � 1, viz:,

P.x.t/jYt�1/ D
Z

A.x.t/jx.t � 1// � P.x.t � 1/jYt�1/dx.t � 1/; (4.15)

and the update equation which updates the predicted posterior to its corrected form,
based on the new measurements2 up to and including time t. Thus

P.x.t/jYt/ D C.y.t/jx.t//P.x.t/jYt�1/
P.y.t/jYt�1/

: (4.16)

4.3.1 The Particle Filter

As mentioned in the previous section the Bayesian filter is the complete solution for
the posterior pdf representing the estimation problem. However, as given in the two
equations above, it is not of much use, since we generally do not know the pdfs in
any useful closed form. In order to reduce it to an operational form, the particle filter

2The new measurement is entered directly into C.y.t/jx.t//.
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(PF) has been developed. It is a direct numerical formulation of the Bayesian filter
and is based on a discretization of the problem using Monte Carlo [7] sampling.
The particles are the discrete samples of the pdf. That is, for the probability density
p.x/, N discrete samples of x, say fxig i D 1 � � � N, and the associated weights,
p.xi/ i D 1 � � � N, constitute a representation of the value of p.xk/. This leads to a
discrete representation of the prior P.x.t/jy.t � 1// given by

P.x1Wkjy1Wk�1/ �
NX

iD1
wi

k�1ı.xk � xi
k/; (4.17)

where k is the time index.
The pdf will have regions that are of varying importance (weight), resulting in

the necessity for a nonuniform distribution of samples. Thus, given an initial set
of these particles for the value of the posterior density P.x.t � 1/jYt�1/, this set
is propagated through the prediction equation, resulting in a new set of particles
representing P.x.t/jYt�1/. The next step is the update, using Eq. 4.16. Although this
may seem to be straightforward, it is not. To blindly carry out a recursive process
will lead to a phenomenon called degeneracy, where only a few particles will have
any significance and the others will be weighted with insignificantly small weights.
This is dealt with by resampling, using a technique called Importance Sampling
[6] and the procedure is referred to as sequential importance sampling3 or SIS.
Importance sampling is a technique that relies on selecting samples that cluster in
the important region of the pdf, thus ignoring insignificant particles. This leads to
the second problem where only a few samples survive and therefore cannot provide
a significant representation of the distribution. This is called impoverishment. This
approach is referred to as sampling importance resampling (SIR) and is sometimes
called the bootstrap filter [5]. It is the workhorse of present day particle filtering.

Problems remain however. In particular, even when SIR is used, the issue of
impoverishment can arise since the SIR approach converts a few particles into many,
thus reducing the diversity of the particles. This can be dealt with in many cases by
using a larger value of process noise.

Nevertheless, the particle filter is a powerful technique, and in those cases that
deal with multi-modal pdfs, whether nonlinear or not, it is the only game in town.
Examples of particle filter applications to ocean acoustic problems can be found in
Michelopoulou et al. [11, 12] and references therein.

3The idea of importance sampling goes back to the Manhattan project and was originated by Von
Neumann and Hastings in order to apply the so-called Monte Carlo methods to high dimensional
integrals.
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4.3.2 Comments

As can be inferred from the previous discussion, the particle filter is an extremely
powerful technique for dealing with the nonlinear and non-Gaussian cases. How-
ever, it is not easy to use for the novice. As a result it is wise to avoid its use when
possible, since the Kalman filter is still a valid approach to problems where the
non-Gaussianity and the nonlinearities are not severe and a direct estimate of the
full posterior probability density is not sought. Since this book deals with parameter
estimation problems and not the direct estimate of the posterior density function of
the system, the particle filter will not be of further interest to us in this book.

4.4 The Kalman Filter

Here, we will develop the Kalman filter on a more rigorous basis, by showing that
it follows as a maximum a posteriori (MAP) estimate based on the posterior pdf of
a Bayesian filter.4 It is important to recall at this time that the Bayesian and particle
filters provide a recursive estimate of the posterior pdf. However, the Kalman filter
is most often used as a parameter estimator. For our purposes here then, the simplest
way to connect the two are to consider the Kalman filter as a MAP estimator of x
where x is considered as a deterministic state vector whose statistics are described
by the posterior pdf from a Bayesian filter. In this approach, the update equation
of the Bayesian filter is viewed as a MAP estimator with the prior pdf being the
previous value of the posterior. That is, P.x.t/jYt/ is considered the output of an
MAP estimator with C.y.t/jx.t// being the likelihood function and P.x.t/jYt�1/
being the prior. The update equation is

P.x.t/jYt/ D C.y.t/jx.t//P.x.t/jYt�1/
P.y.t/jYt�1/

: (4.18)

The LHS is the posterior. On the RHS is the previous value of the posterior,
i.e., the posterior based on the measurements up to time t � 1, designated Yt�1,
times C.y.t/jx.t//, which is the pdf associated with the new measurement. Here,
C.y.t/jx.t// corrects or updates the posterior using both the new measurement and
the measurement prediction update in the denominator. This term in the denominator
is called the evidence in Bayesian parlance.

It is now assumed that the pdfs are Gaussian. Using the conventional notation for
the Gaussian, i.e.,

N.x;m;R/ D ae.x�m/0R�1.x�m/; (4.19)

4This section is somewhat tedious to follow and can be skipped on a first reading without affecting
the understanding of the rest of the book.
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with x being a random vector, m its mean, a the normalization, and R the associated
covariance matrix. For the Gaussian case then, the evidence from the denominator
of the Bayesian filter takes the form of the following Gaussian density function:

P.y.t/jYt�1/ D N.y.t/; y.tjt � 1/;R��/; (4.20)

where Ree is the innovations5 covariance. The density associated with the measure-
ment is

C.y.t/jx.t// D N.y.t/;Cx.t/;Rvv / (4.21)

with Rvv and C being the measurement noise covariance and measurement matrix,
respectively.

P.x.t/jYt�1/ D N.x.t/; x.tjt � 1/; QP.tjt � 1// (4.22)

is the predicted posterior density, which is the pdf describing the statistics of the
state vector estimate and QP.tjt � 1/ is the state error covariance matrix.

Some comments are due here. Note that, as was done in Chap. 3, the notation
has been generalized somewhat by setting the time argument .t � 1/ to .tjt � 1/

where appropriate, to signify that at the time t, the state variable or measurement is
based only on data up to t � 1. Also note that Eq. 4.21 implies that the measurement
equation is given by the Gauss–Markov form, i.e.,

y.t/ D Cx.t/C v.t/; (4.23)

in keeping with our assumption of linearity. Thus, the innovation can be written as

�.t/ D y.t/ � COx.tjt � 1/ D y.t/ � Oy.tjt � 1/; (4.24)

where y.t/ and Oy.tjt � 1/ are the new measurement and the predicted measurement,
respectively. The state error covariance is given by6

QP.tjt � 1/ D EfŒx.t/ � Ox.tjt � 1/�Œx.t/ � Ox.tjt � 1/�0g: (4.25)

Substituting Eqs. 4.20–4.22 into the Bayesian processor update equation,
Eq. 4.16, results in7

p.x.t/jYt/ D B � exp
� � .1=2/v0.t/R�1

vv v.t/
	

� exp
� � .1=2/Qx0.tjt � 1/ QP�1 Qx.tjt � 1/	

� exp
� C .1=2/�0.t/R�1

�� �.t/
	
: (4.26)

5Recall that the innovation is defined in Eq. 3.84.
6This is not to be confused with the posterior, which is the statistical description of the state vector
x, where QP is the covariance associated with the state error.
7Here, we have changed the notation by using the prime instead of T to indicate the transverse
operation in an attempt to render the notation somewhat cleaner.



58 4 From Bayes to Kalman

Here Qx.tjt � 1/ D x.t/ � Ox.tjt � 1/ and B is the normalization. Following the
usual procedure, we consider the maximum of the log of P.x.t/jYt/. Note that the
quadratic form associated with the innovation covariance R�� does not depend upon
x, so only the quadratic forms associated with QP and Rvv need to be considered.
Then the MAP estimate of x is found by finding the extremum of L where

L D .y.t/ � Cx.t//
0

R�1
vv .t/.y.t/ � Cx.t//

C.x.t/ � Ox.tjt � 1//0 QP�1.tjt � 1/.x.t/ � Ox.tjjt � 1//: (4.27)

Observe that Eq. 4.23 has been used.
In order to take the derivative, the vector gradient chain rule is used. It is given by

rx.a
0b/ D rx.a

0/b C rx.b
0/a: (4.28)

Taking the gradient of Eq. 4.27 with respect to x.t/, setting it to zero and solving for
Xmap results in8

OXmap D ŒC0R�1
vv .t/C C QP�1.tjt � 1/��1 � Œ QP�1.tjt � 1/Ox.tjt � 1/C C0R�1

vv y.t/�:

:(4.29)

The use of the matrix inversion lemma, given by

.A C BD0/�1 D A�1 � A�1B.I C D0A�1B/�1D0A�1; (4.30)

on the square bracket on the LHS of Eq. 4.29 with

A D QP�1.tjt � 1/; B D C0R�1
vv ; C D D0; (4.31)

results in

ŒC
0

R�1
vv C C QP�1.tjt � 1/��1

D QP.tjt � 1/� QP.tjt � 1/C
0

R�1
vv ŒI C C QP.tjt � 1/C0

R�1
vv �

�1 � C QP.tjt � 1/:

(4.32)

Before continuing, we need to have the innovations covariance in terms of the
state estimation error covariance. The innovations covariance can be written as

R��.t/ D E
˚
Œy.t/ � COx.tjt � 1/�Œy.t/ � COx.tjt � 1/�0



; (4.33)

8This assumes that the maximum of the pdf occurs at Xmap, which limits the validity of this
approach to unimodal pdf’s. Of course the Gaussian has this property.
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and since y.t/ D Cx.t/C v.t/ and Qx.tjt � 1/ D x.t/ � Ox.tjt � 1/, this becomes

R��.t/ D E
˚
ŒCQx.tjt � 1/C v.t/�ŒCQx.tjt � 1/C v.t/�

0


: (4.34)

Carrying out the expected value operation results in

R��.t/ D C QP.tjt � 1/C0 C Rvv.t/: (4.35)

Using Eq. 4.35 it is now possible to simplify the RHS of Eq. 4.32 by noting that the
term in square brackets can be rewritten as follows:

ŒI C C QP.tjt � 1/C
0

R�1
vv �

�1 D ŒRvvR�1
vv C C QP.tjt � 1/C

0

R�1
vv �

�1: (4.36)

Now using Eq. 4.35, this reduces to RvvR�1
�� so that the RHS of Eq. 4.32 reduces to

QP.tjt � 1/� QP.tjt � 1/C
0

R�1
�� C QP.tjt � 1/: (4.37)

Substituting this into Eq. 4.29 results in

OXmap D Œ QP.tjt � 1/� QP.tjt � 1/C
0

R�1
�� C QP.tjt � 1/�

�Œ QP�1.tjt � 1/Ox.tjt � 1/C C0R�1
vv y.t/�: (4.38)

Collecting terms in Ox.tjt � 1/ on the RHS of Eq. 4.38 results in

Ox.tjt � 1/� QP.tjt � 1/C0R�1
�� COx.tjt � 1/; (4.39)

and collecting terms in y.t/ on the RHS of Eq. 4.38 yields

QP.tjt � 1/C0ŒR�1
vv � R�1

�� C QP.tjt � 1/C0R�1
vv �y.t/: (4.40)

Using I D R�1
�� R�� this becomes

QP.tjt � 1/C0R�1
�� ŒR�� � C QP.tjt � 1/C0�R�1

vv y.t/; (4.41)

and using Eq. 4.35, this term reduces to

QP.tjt � 1/C0R�1
�� y.t/: (4.42)

Combining terms in Ox.tjt � 1/ and y.t/, Eq. 4.38 becomes

OXmap D Ox.tjt/ D Ox.tjt � 1/C K.t/�.t/; (4.43)

which is the Kalman state update equation.
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Where

K.t/ D QP.tjt � 1/C0R�1
�� ; (4.44)

is the Kalman gain and

�.t/ D y.t/ � COx.tjt � 1/; (4.45)

is the innovation.
We are now in a position to derive the state estimation error covariance update.

QP.tjt/ is defined as

QP.tjt/ D E
˚
ŒQx.tjt/�ŒQx.tjt/�0
 D E

˚
Œx.t/ � Ox.tjt/�Œx.t/ � Ox.tjt/�0
: (4.46)

Using Eq. 4.43, this can be written as

QP.tjt/ D E
˚
ŒQx.tjt � 1/� K.t/�.t/�ŒQx.tjt � 1/� K.t/�.t/�0



: (4.47)

Expanding this results in

QP.tjt/ D E
˚Qx.tjt � 1/Qx0.tjt � 1/� Qx.tjt � 1/.K.t/�.t//0

�K.t/�.t/Qx0.tjt � 1/C K.t/�.t/.K.t/�.t//0


: (4.48)

The first term is simply QP.tjt � 1/ and the last term can easily be shown to be

E
˚
K.t/�.t/.K.t/�.t//0


 D QP.tjt � 1/C0K.t/0: (4.49)

Using the fact that

CQx.tjt � 1/

 D �.t/ � v.t/; (4.50)

and the fact that the expected value of v.t/ is zero, the second term can be shown to
be the negative of the third term, so that Eq. 4.48 reduces to

QP.tjt/ D QP.tjt � 1/� E
˚
K.t/�.t/.Qx0.tjt � 1/
 (4.51)

and again using Eq. 4.50, we finally have

QP.tjt/ D ŒI � K.t/C.t/� QP.tjt � 1/; (4.52)

which is the desired state error covariance update equation.
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4.4.1 The Kalman Algorithm

Before we can show the complete algorithm, we must first derive the state error
covariance prediction. For the linear Gaussian case, the state transition equation is
based on the Gauss–Markov model given by

Ox.tjt � 1/ D A.t � 1/Ox.t � 1jt � 1/C w.t � 1/; (4.53)

where w is referred to here as the plant or system noise. The state estimation error
is now

Qx.tjt � 1/ D x.t/ � A.t � 1/Ox.t � 1jt � 1/� w.t � 1/; (4.54)

or

Qx.tjt � 1/ D A.t � 1/x.t � 1/� A.t � 1/Ox.t � 1jt � 1/� w.t � 1/; (4.55)

which is the same as

Qx.tjt � 1/ D A.t � 1/Qx.t � 1jt � 1/C w.t � 1/: (4.56)

The state error covariance prediction now follows from

QP.tjt � 1/ D E
˚Qx.tjt � 1/Qx0.tjt � 1/
: (4.57)

Substitution of Eq. 4.56 and performing the expected value operation leads to

QP.tjt � 1/ D A.t � 1/ QP.t � 1jt � 1/A0.t � 1/C Rww.t � 1/; (4.58)

with Rww.t � 1/ being the system noise covariance. We now have all we need to
specify the algorithm.

Prediction

Ox.tjt � 1/ D A.t � 1/Ox.t � 1jt � 1/C B.t � 1/u.t � 1/

QP.tjt � 1/ D A.t � 1/ QP.t � 1jt � 1/A0.t � 1/C Rww.t/

Correction Terms

�.t/ D y.t/ � C.t/Ox.tjt � 1/

R��.t/ D C.t/ QP.tjt � 1/C0.t/C Rvv.t/

K.t/ D QP.tjt � 1/C0.t/R�1
�� .t/
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Update

Ox.tjt/ D Ox.tjt � 1/C K.t/�.t/

QP.tjt/ D ŒI � K.t/C.t/� QP.tjt � 1/

The term B.t � 1/u.t � 1/ in the first prediction equation is a source term. As
previously mentioned, we will not have occasion to use it in this book, but it is
included here for completeness.

4.4.2 Some Comments

There are two terms that enter into the update equation. Here, they take the form of
the Kalman gain and the innovation. It is worth taking a closer look at these terms.
The Kalman gain is given by

K.t/ D QP.tjt � 1/C0.t/R�1
�� .t/: (4.59)

The QP.tjt � 1/ term is the state error covariance. If it is large, it acts to increase
the value of K.t/, thereby increasing the influence of the measurement on the
correction term via the innovations. That is, the model loses some influence and
the algorithm begins to depend more on the measurements. Alternatively, if the
innovation covariance is large due to a large measurement noise, then the innovation
covariance increases, thereby acting to reduce the impact of the correction term on
the update. In this way, we see how the correction term encompasses both the impact
of the fidelity of the model and the impact of measurement noise.

The system noise w.t/ is a means of allowing for errors in the model. It is of
critical importance in the Kalman filter, without which it will not properly converge.
Here the power of the Gauss–Markov model is evident, since it permits the Kalman
filter to perform with models of varying fidelity, such that a degradation in the model
accuracy, rather than preventing a solution, allows a solution, but with the penalty
of slower convergence and larger error covariance. Such latitude is rarely found in
classical estimators.

4.4.3 The Nonlinear Case

As has already been mentioned, the Kalman filter is optimal only for the linear
Gaussian case. Since many, if not most, real-world problems do not satisfy these
criteria, approximations must be made. For the case of non-Gaussianity, as long as
the problem is linear and the statistics are governed by a unimodal pdf, a direct
application of the Kalman filter usually suffices. However, for the nonlinear case the
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linear Kalman filter is not applicable. The first approach to deal with this was the
so-called extended Kalman filter or EKF [4]. The EKF deals with nonlinearities
by linearizing them with a first-order Taylor series approximation. This can be
sufficient for many cases but can be difficult to use since the derivatives of the
nonlinear functions can often be quite complex. Also they must be updated with
each step.

In practice the EKF algorithm is nearly identical to the linear case algorithm,
except that matrices of derivatives, in the form of Jacobian matrices, must be
included for each nonlinear function, i.e., the state transition function and the
measurement function. It will not be derived here and the derivation can be found
in [4]. The algorithm is given by the following.

Prediction

Ox.tjt � 1/ D AŒOx.t � 1jt � 1/�C B.t � 1/u.t � 1/

QP.tjt � 1/ D A ŒOx.t � 1jt � 1/� QP.t � 1jt � 1/A ŒOx0.t � 1jt � 1/�C Rww.t/

Correction Terms

�.t/ D y.t/ � CŒOx.tjt � 1/�
R��.t/ D C ŒOx.tjt � 1/� QP.tjt � 1/C ŒOx0.tjt � 1/�C Rvv.t/

K.t/ D QP.tjt � 1/C ŒOx0.tjt � 1/�R�1
ee .t/

Update

Ox.tjt/ D Ox.tjt � 1/C K.t/�.t/

QP.tjt/ D ŒI � K.t/C ŒOx.tjt � 1/� QP.tjt � 1/

Jacobians

A .x/ D @AŒx�

@x

ˇ̌
ˇ̌
Ox.t�1jt�1/; u.t�1/

C .x/ D @CŒx�

@x

ˇ̌
ˇ̌
Ox.tjt�1/

Here, AŒx� and CŒx� denote the nonlinear state transition and measurement functions,
respectively.

The term Jacobian is sometimes used to denote the matrix itself and other times
it is used to denote its determinant. Here of course, it is the matrix. Also, as used
here, it is not usually square.
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4.4.4 The Unscented Kalman Filter

The EKF achieves its goal by linearizing the nonlinearity by means of a first-order
Taylor expansion about a single point, whereas the unscented Kalman filter (UKF)
uses the actual nonlinearity [8, 9], but seeks only the first two moments of the pdf.
As we will see, it can provide an exact representation of the first two moments after
transformation, when given the first two moments of the input in terms of the so-
called sigma points. Further, it avoids the need for computing the Jacobians and in
general is correct to second order and in the case of a Gaussian input it is correct to
third order.

As an example, consider the case of a two-dimensional state vector with Gaussian
noise with mean and covariance�x and Rxx. Further, Rxx is factorable into its square
roots9 as Rxx D SxS0

x. The UKF is based on a set of points called sigma points,
which are selected so as to capture the mean and covariance. It requires 2Nx C 1

sigma points, where Nx is the size of the state vector. Thus, for this example, five
sigma points are required. They are given by [9]

X0 D �x W0 D �

Nx C �

X1 D �x C
p
.Nx C �/.Sx/1 W1 D 1

2.Nx C �/

X2 D �x C
p
.Nx C �/.Sx/2 W2 D 1

2.Nx C �/

X3 D �x �
p
.Nx C �/.Sx/1 W3 D 1

2.Nx C �/

X4 D �x �
p
.Nx C �/.Sx/2 W4 D 1

2.Nx C �/
: (4.60)

Here, .Sx/1 and .Sx/2 are the two columns constituting the matrix Sx. The parameter
� is a tuning parameter. A heuristic rule commonly used is to set Nx C � D 3.10 The
covariance is now represented in terms of the columns of its square root. Observe
that for this example, since x is a vector of length two, each of these sigma points is
a vector of length two. It is now easy to verify

4X

iD0
WiXi D �x; (4.61)

and

4X

iD1
Wi.Xi � �x/.Xi � �x/

0 D Rxx; (4.62)

9This factorization is usually done with a Cholesky decomposition.
10This parameter is discussed by Candy [6].
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where we have used the fact that since Rxx D SxS0
x, and Sx D Œ.Sx/1 .Sx/2�, then

Œ.Sx/1 .Sx/2�Œ.Sx/1 .Sx/2�
0 D Œ.Sx/1.Sx/

0
1 .Sx/2.Sx/

0
2� D Rxx.

If these five points are now passed through a nonlinear state transition or
measurement function aŒx�, the result is the five new sigma points given by
Yk D aŒXk�. The new values of the mean and variance are now given by

4X

iD0
WiYi D �y; (4.63)

and

4X

iD1
Wi.Yi � �y/.Yi � �y/

0 D Ryy: (4.64)

To gain some insight into this, it is illuminating to look at the scalar case. In this
case, the initial state is specified by �x and �2x .11 The sigma points are given by

X0 D �x D x.t � 1jt � 1/
X1 D �x C

p
.Nx C �/�x

X2 D �x � p
.Nx C �/�x;

where here Nx D 1 and � D 2 so that Nx C � D 3. If the weights are defined as

W0 D �

Nx C �
D 2

3

W1 D 1

2.Nx C �/
D 1

6

W2 D 1

2.Nx C �/
D 1

6

then

�x D
2X

iD0
WiXi and �x D

2X

iD0
Wi.Xi � �x/

2: (4.65)

These sigma points are now passed through the nonlinear transition aŒx� yielding

Y0 D aŒX0� D aŒ�x�

Y1 D aŒX1� D aŒ�x C p
.Nx C �/�x�

Y2 D aŒX2� D aŒ�x � p
.Nx C �/�x�:

11For the scalar case we call Rxx �
2
x for reasons of convention.
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It now follows that

�y D
2X

iD0
WiYi and �y D

2X

iD0
Wi.Yi � �y/

2; (4.66)

where these are the exact moments and the weights are the same as before. To see
why this works, we compute the moments �y and �y directly by using a three-
point Gaussian–Hermite (G–H) [1] quadrature integration. The three-point G–H
integration of a function, say f .x/, is given by12

Z 1

�1
e�x2 f .x/dx D

3X

iD1
wif .�i/ (4.67)

with

w1 D 2

3

p
�; w2 D 1

6

p
�; w3 D 1

6

p
� (4.68)

and

�1 D 0; �2 D 1

2

p
6; �3 D �1

2

p
6: (4.69)

When f .x/ is expressible as a polynomial of order 2n�1, the quadrature is exact. For
this case this means that if f .x/ is expressible as a polynomial of order 5, it is exact,
since for our three-point quadrature n D 3. Thus, we now seek the expectation of
y D aŒx� where x is distributed as N.�x; �

2
x /. Then

Efyg D 1p
2��x

Z C1

�1
aŒx�e

� .x��x/2

2�2x dx: (4.70)

Setting z D x��xp
2�x

so that x D p
2�xz C �x and dx D p

2�xdz, we find that

Efyg D 1p
�

Z 1

�1
e�z2aŒ

p
2�xz C �x�dz; (4.71)

which is given by G–H quadrature as

Efyg D 1p
�

3X

iD1
wiaŒ

p
2�x�i C �x�: (4.72)

12Wi is used for the UKF weight and wi is used for the Gauss–Hermite weight.
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Inserting the G–H parameters results in

Efyg D 1p
�

�
2

3

p
�aŒ�x�C 1

6

p
�aŒ�x C p

3�x�C 1

6

p
�aŒ�x � p

3�x�

�
: (4.73)

This can be written as

Efyg D ŒW1Y1 C W2Y2 C W3Y3� D �y (4.74)

which is the exact mean based on the transformed sigma points. The transformed
variance now follows immediately as

Ef.y � �y/
2g D 1p

2��x

Z C1

�1
ŒaŒx� � �y�

2e
� .x��x/2

2�2x dx: (4.75)

Using the same transformation of variables as before and evaluating the integral
vis G–H quadrature, we find

Ef.y � �y/
2g D 1p

�

Z C1

�1
e�z2 ŒaŒ

p
2�xz C �x� � �y�

2dz: (4.76)

Which, again using G–H quadrature, becomes

�2y D
3X

iD1
Wi.Yi � �y/

2: (4.77)

The importance of this development is that even if the sigma points are passed
through a nonlinearity, the correct first and second moments will obtain from
the same weights and transformed sigma points, since these expected values
are computed with the same Gauss–Hermite parameters. This means that given
some nonlinear transfer function, say aŒx�, the first and second moments of the
transformed points follow directly from replacing X0, X1 and X2 with Y0 D
aŒX0�, Y1 D aŒX1� and Y2 D aŒX2�.

The is a powerful result since an essentially exact representation of the first
two moments is obtained, in spite of the existence of the nonlinearity. Further, this
approach is not limited to the first two moments, as can be seen from Eq. 4.70, since
the form of the function f .x/ is essentially arbitrary.

Summarizing, given the first and second moments of the input to a nonlinear
transfer function �x and �2x , the sigma points and weights are given by Eq. 4.60.
Passing these sigma points through the nonlinearity yields a new set of sigma points
Y0, Y1 and Y2 such that the output statistics follow from

�y D
2X

iD0
wiYi �2y D

2X

iD0
wi.Yi � �y/

2: (4.78)
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This is not a general proof since the Gauss–Hermite (G–H) approach outlined
above is only equivalent to the UKF approach for the scalar case. The UKF requires
2Nx C 1 points whereas the three-point G–H approach requires 3Nx points. This
means that as the dimension of the state vector increases, the number of points
required by the G–H approach increases faster that for the UKF approach. This is
demonstrated in the following, where the two-dimensional G–H case is developed.

The generalization of Eq. 4.70 for the two-dimensional case begins by seeking
the expected value of the two-dimensional state vector y.

Efyg D 1

2�jS0j
Z 1

�1
ye� 1

2 .y�Ny/0R�1
yy .y�Ny/dy: (4.79)

Here, Ryy D SS0 is the covariance of y � Ny where y D Œy1 y2�0 and S is the square
root of Ryy. In order to continue, we need to put this into reduced form. Following
Arasaratnam et al. [2] with some minor changes, the following transformation of
variables is introduced.

y D p
2Sx C Ny: (4.80)

Observing that ryx is the Jacobian, the resulting integral for the expected value of
y is

Efyg D 1

�

Z 1

�1
ye�y0y

hp
2Sx C Ny

i
dx: (4.81)

Using the same three-point Gauss quadrature, but in nested form, this becomes

Efyg D
3X

iD1
wi

3X

jD1
wj

�p
2ŒS1�i S2�j�C Ny

�
; (4.82)

where S1 and S2 are the columns of S. Note that this is already a nine-point case,
compared to five points for the UKF. Expanding Eq. 4.82 and using the fact that
�1 D 0 results in

Efyg D w21 Ny
Cw1w2.

p
2Œ0 S2�2�C Ny/

Cw1w3.
p
2Œ0 S2�3�C Ny/

Cw2w1.
p
2ŒS1�2 0�C Ny/

Cw22.
p
2ŒS1�2 S2�2�C Ny/

Cw2w3.
p
2ŒS1�2 S2�3�C Ny/

Cw3w1.
p
2ŒS1�3 0�C Ny/

Cw3w2.
p
2ŒS1�3 S2S2�2�C Ny/

Cw23.
p
2ŒS1�3 S2�3�C Ny/:
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Using Eqs. 4.68 and 4.69 to evaluate the coefficients wi and the Gauss points �i, it
can be verified that the above weighted sum of these nine terms indeed delivers Ny,
and after subtracting Ny, multiplying by the transpose, and performing the weighted
sum, the correct covariance obtains. Further, it can be verified that the coefficients
are normalized. In spite of the increase in the number of terms, the Gauss–Hermite
approach does have some advantages and has been treated in depth by Arasaratnam
et al. [2]. At this point, we leave the G–H approach and will use only the UKF
method, which we summarize here.

X0 D �x W0 D �

Nx C �

Xi D �x C
p
.Nx C �/Si Wi D 1

2.Nx C �/

XiCNx D �x � p
.Nx C �/Si WiCNx D 1

2.Nx C �/
: (4.83)

As previously mentioned, Si is a column of the covariance square root.

4.4.5 The UKF Algorithm

Before discussing the algorithm per se there are two issues that must be clarified.
These are the form of the Kalman gain and the issue of augmentation. First, the
Kalman gain. As we already know, the Kalman gain for the linear case is given by

K.t/ D QP.tjt � 1/C0R�1
�� ; (4.84)

where C is the measurement matrix. For the UKF however, a measurement matrix
per se is not available since the measurement is not linear. This means that the
Kalman gain must be replaced by a form consistent with the nonlinear form of
the UKF. In the following, using an approach used by Simon [13], with some
changes, the necessary form for K is found by deriving the Kalman filter in a purely
statistical form. This approach is illuminating since it does not explicitly specify
Gaussian statistics, and assumes that the algorithm obtains from an assumption that
the optimal filter is embodied in a linear operator which turns out to be the Kalman
gain itself. Thus, the updated state is assumed to follow from

x.tjt/ D K.t/y.t/C b.t/: (4.85)

Here, y.t/ is the latest measurement and b.t/ is a term that guarantees that the
estimate is unbiased. That is, it is a constraint that requires

Nx.tjt/ D Nx.t/ D K.t/Ny.t/C b.t/; (4.86)
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where the overbar indicates the mean. Thus the constraint is

b.t/ D Nx.t/ � K Ny.t/: (4.87)

The value of K follows from the minimization of the trace13 of P.tjt/, where

P.tjt/ D EfŒx.t/ � x.tjt/�Œ� � � �0g: (4.88)

We begin by subtracting and adding back the mean of x.t/ � x.tjt/, resulting in

P.tjt/ D EfŒx.t/ � x.tjt/ � E.x.t/ � x.tjt//�Œ� � � �0g
CEfŒx.t/ � x.tjt/�gEfŒ� � � �g0g: (4.89)

Using Eqs. 4.85 and 4.87, the first term on the RHS of Eq. 4.89 can be written as

EfŒ.x.t/ � Nx.t// � K.t/.y.t/ � Ny.t//�Œ� � � �0g: (4.90)

Multiplying out and taking the expected value yields

EfŒ.x.t/ � Nx.t// � K.t/.y.t/ � Ny.t//�Œ� � � �0g
D P.tjt � 1/� K.t/R0

x� � Rx�K
0.t/C K.t/R��K

0.t/; (4.91)

where we have used the fact that � D y.t/ � Ny.t/ D y.t/ � Oy.
The second term on the RHS of Eq. 4.89 is zero by virtue of Eq. 4.86. Hence,

P.tjt/ D P.tjt � 1/� K.t/R0
x� � Rx�K

0.t/C K.t/R��K
0.t/: (4.92)

The remaining task is to solve the following for K.t/.

@

@K.t/
TrŒP.tjt/� D @

@K.t/
TrŒ�K.t/R0

x� � Rx�K
0.t/C K.t/R��K

0.t/� D 0; (4.93)

where Tr is the trace operation. Note that P.tjt � 1/ has been removed since it does
not depend upon K.t/. The derivative follows from the development on page 308 in
[13] which tells us

@

@A
Tr.ABA0/ D AB C AB0I @

@A
Tr.AB/ D B0I @

@A
Tr.BA0/ D B: (4.94)

It now follows that by solving Eq. 4.93 for K.t/ yields

K.t/ D Rx�R
�1
�� ; (4.95)

which is the Kalman gain in terms of the relevant covariance matrices.

13The trace is the sum of the squared errors, so its minimum is the minimum mean squared error.
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This is still not the proper form of the gain for the UKF. To see why, it is useful
to reexamine Eq. 4.84 by rewriting it in the following way.

K.t/ D EfQx.tjt � 1/Qx0.tjt � 1/C0gR�1
�� (4.96)

using the fact that CQx.tjt � 1/ D y.t/� Oy.tjt � 1/ D �.t/, it is immediately clear that
this relation does not hold for the case of a nonlinear measurement function, since
�.t/ is no longer a meaningful representation of the predicted measurement error.
To remedy this, � in the covariance matrices is replaced by the residual �i, where

�i D Yi.tjt � 1/� Oy.tjt � 1/; (4.97)

with

Oy.tjt � 1/ D
2NxX

iD0
WiYi.tjt � 1/: (4.98)

The proper covariances are now given by

R��.tjt � 1/ D
2NxX

iD0
Wi�.tjt � 1/� 0.tjt � 1/; (4.99)

and

Rx� D
2NxX

iD0
WiXi.tjt � 1/� 0.tjt � 1/: (4.100)

The second issue, that of augmentation, arises from the fact that in the case
of nonadditive noise, the system noise and measurement noise covariances can
be augmented directly into the state vector, thereby treating them as unknowns in
the full nonlinear algorithm. There is a great deal of literature on this subject, and
some disagreement as to its advantages. Here we will not be using it since in our
experience, for the type of problems we deal with, additive noise seems to be a
realistic assumption and augmentation does not seem to offer an advantage of any
significance. For those interested, the reader is directed to the Ph.D. thesis of van
der Merwe [14] and references therein.14

14This is a rather large and complete document on the subject of sigma-Point Kalman filters in
general and is well worth reading.
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4.4.6 A Walk Through the UKF Algorithm

For the case where the state function and the measurement function are both
nonlinear, the nonlinear state transition and measurement functions are designated
AŒx� and CŒx�, respectively. The algorithm then proceeds as given in Table 4.1.
Let the respective mean and covariance of the initial state be Ox.t � 1jt � 1/ and
QP.t � 1jt � 1/. The sigma points in the first 2Nx C 1 lines in this table are then
found from Eq. 4.83 with �x replaced by Ox.t � 1jt � 1/ and Sp determined by
QP.t � 1jt � 1/ D SpS0

p. The associated weights also follow from Eq. 4.83.
The main advantages of this remarkable processor are [6]:

1. The transformed statistics are precise up to the second order.
2. The choice of the matrix square root used has no impact on the success of the

algorithm.
3. No Jacobian calculations are necessary.

In the following chapter, several applications will be presented.

Table 4.1 The UKF algorithm

Sigma points and weights

X0 D Ox.t � 1jt � 1/ W0 D �
NxC�

Xi D Ox.t � 1jt � 1/C p
.Nx C �/.Sp/i Wi D 1

2.NxC�/

XiCNx D Ox.t � 1jt � 1/� p
.Nx C �/.Sp/i WiCNx D 1

2.NxC�/

State prediction

Xi.tjt � 1/ D AŒXi.t � 1jt � 1/�C BŒu.t � 1/� (sigma point prediction)

Ox.tjt � 1/ D P2Nx
iD0 WiXi.tjt � 1/ (State Prediction)

State error prediction
QXi.tjt � 1/ D Xi � Ox.tjt � 1/ (State Error)

QP.tjt � 1/ D P2Nx
iD0 Wi QXi.tjt � 1/ QX 0

i .tjt � 1/C Rww.t � 1/ (Error Covariance)

This completes the prediction stage of the algorithm. For the update stage, we use the
predicted sigma points from the prediction stage corrected by the initial state error
covariance.

Update sigma points

OX0.tjt � 1/ D Ox.tjt � 1/

OXi.tjt � 1/ D Ox.tjt � 1/C p
.Nx C �/.Sp/i.tjt � 1/

OXiCNx.tjt � 1/ D Ox.tjt � 1/� p
.Nx C �/.Sp/i.tjt � 1/

Measurement prediction

Yi.tjt � 1/ D CŒ OXi.tjt � 1/� (Nonlinear measurement)

Oy.tjt � 1/ D P2Nx
iD0 WiY .tjt � 1/i (Measurement prediction)

(continued)
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Table 4.1 (continued)

Residual and gain prediction

�i.tjt � 1/ D Yi.tjt � 1/� Oy.tjt � 1/ (Predicted residual)

R��.tjt � 1/ D P2Nx
iD0 Wi�i.tjt � 1/0�i.tjt � 1/C Rvv (Residual covariance)

Rx� .tjt � 1/ D P2Nx
iD0 Wi QXi.tjt � 1/0�i.tjt � 1/C Rvv (Cross covariance)

K.t/ D Rx� .tjt � 1/R�1
�� .tjt � 1/ (Gain)

State update

�.t/ D y.t/� Oy.tjt � 1/ (Innovation)

Ox.tjt/ D Ox.tjt � 1/C K.t/�.t/ (State update)
QP.tjt/ D QP.tjt � 1/� K.t/R�� .tjt � 1/K0.t/ (Error covariance update)

Initial inputs

Ox.0j0/ QP.0j0/ Rww Rvv
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Chapter 5
Applications

5.1 Introduction

This chapter begins with the application of model-based processing to the towed
line array for the case of a narrowband signal. It is the simplest of all of the
examples and also clearly manifests the impact of explicitly using the sinusoidal
signal configuration and the motion of the array as parts of the relevant model.
Some time will be spent on this development so as to familiarize the reader with
the details of the development of the UKF solution to the types of problems in
this chapter. It will develop the processor as a bearing estimator. The outline of the
code for this case will be presented in pseudocode with sufficient detail to allow the
reader to develop his or her own MATLAB code. All problems demonstrated in this
chapter have been solved using the UKF as described in Chap. 4.

The emphasis in the following examples will be on the improvement in perfor-
mance achieved using the model-based approach over the conventional approach to
the same problem. In most cases, the CramKer–Rao lower bound on the variance
of the estimation error, as described in Chap. 3, will be used as the measure of
improvement.

5.2 The Narrowband Towed Line Array

The model for this case has two parts. First, the motion of the array is explicitly
included. Second, the functional form of the sinusoidal signal is explicitly used.
The conventional approach to narrowband bearing estimation using a towed array,
as described in Chap. 2, is to introduce a phase shift to the output of each receiver
element, where this phase shift is consistent with a particular look direction. This is
depicted in Fig. 5.1, where the phase shift is based on the dsin� term. The procedure

© Edmund J. Sullivan 2015
E.J. Sullivan, Model-Based Processing for Underwater Acoustic Arrays,
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Fig. 5.1 Line array
configuration

d sin

d 

is then to sum these shifted receiver outputs producing the desired output of the
beamformed array. In the model-based approach, rather than constructing such a
beamformer, the problem is treated as a pure estimation problem.

Referring again to Fig. 5.1, note that the signal received at, say, the third receiver
from the origin on the x-axis is located a distance of x D 2d from the origin on
the x-axis. The first element is labeled n D 0. This means that if we consider the
signal at the receiver element at the origin as the reference signal, then the phase
difference between the signal received at this element, and that received at element
No. 2, is 2� 2�.d=�/� sin� , where � is the angle of the incoming signal measured
clockwise from the vertical (broadside). More generally, the relative phase of the
signal at the nth element can be written as nkdsin� where we recall from Chap. 2
that k D 2�=� is called the wavenumber. Unlike the treatment in Chap. 2 however,
where the temporal dependence was ignored and the problem was treated as a purely
spatial problem, in the model-based method the time dependence cannot be ignored.

The approach is as follows. Referring to Fig. 5.2, the phase of the signal received
at the hydrophone moving to the right with speed v is given by

�.t/ D !0Œt C .Œd C vt�=c/sin��; (5.1)

where !0 is the source frequency and the Doppler due to the motion is seen to be
a function of the bearing angle � . Generally speaking then, the phase at the nth
element is

�n.t/ D !0Œt C .Œnd C vt�=c/sin�� D !0Œ1C .v=c/sin��t C nkd sin �; (5.2)

where the phase term now can be seen to include both the Doppler and the spatial
phase term found in the usual nonmoving case. Although none of this is new, the fact
remains that this Doppler term is still ignored in conventional bearing estimation
schemes. Here we will show how the dependence of the Doppler on the bearing
angle can be exploited to improve the bearing estimation performance.
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Fig. 5.2 The moving hydrophone. This depicts the second element, which has index n D 1,
at t D 0

For the signal frequency of !0 D 2�fo, the phase of the signal for the stationary
array at the nth element is !0t C kndsin� . However, if the array is moving, say
to the right at speed Cv, then the correct expression for this phase term is given
by Eq. 5.2. Here we see that although in the conventional approach, the observed
(Doppler shifted) frequency is used when computing the spatial phase where, to be
precise, the source frequency should be used. However, the conventional approach
works well since the Doppler shift incurred by an array moving at a conventional
tow speed is a small fraction of the source frequency. Nevertheless, since there
is information about the bearing angle � in the Doppler, it is worth asking if this
information can be exploited in order to improve the bearing estimate.

In order to answer this question, consider a single element in Fig. 5.1 Since it is
moving to the right with speed v, the observed radian frequency is given as before by

! D Œ1C .v=c/sin��!0: (5.3)

Here, !0 is the source frequency.1 Assuming v and c to be known, it can be seen
that if the source frequency was known a priori, then the bearing angle � could be
found—even in the case of no physical aperture. That is, there is observable bearing
information contained in the Doppler. Note that the array has nevertheless moved,
tracing out a path L D vT, where T is the time assigned to the process. Thus, L
can be considered to be a passive synthetic aperture, since the physical aperture is
clearly zero.

1A more general form of Eq. 5.3 is ! D Œ1˙ .v=c/sin��!0 where the minus sign allows for array
motion in the �x direction.
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This argument suggests that if the bearing angle and source frequency were
estimated jointly, then the quality of the bearing estimate would be improved. It was
shown in 1997 by Sullivan and Candy [13] that this is indeed the case and that such
an estimation can be carried out using a Kalman filter. One might ask if it is possible
to perform a bearing estimation using a single hydrophone. The answer is no, and
this point will be expanded upon later in this chapter.

5.2.1 Model-Based Bearing Estimation with a Towed Array

The measurement system for the bearing estimation problem is the set of outputs
from the receiver elements of the array. Calling this measurement vector Y D
Œy1 y2 � � � yN �

0, we have

y1.t; 0/ D acosŒ!0t C ˇ.0; t/sin��

y2.t; 1/ D acosŒ!0t C ˇ.1; t/sin��

:::

yM.t;N � 1/ D acosŒ!0t C ˇ.N � 1; t/sin��; (5.4)

where the argument of the cosine function is given by Eq. 5.2 along with the
definition ˇ.n; t/ D k.nd C vt/, with n being the element index. This nonlinear
measurement system can be expressed concisely as

Y D cŒ�; !0; a�: (5.5)

The state vector is X D Œ� !0 a�0 and the state equation is

X.tjt � 1/ D
2

4
�.tjt � 1/

!0.tjt � 1/

a.tjt � 1/

3

5 D AX.t � 1jt � 1/ D
2

4
1 0 0

0 1 0

0 0 1

3

5

2

4
�.t � 1jt � 1/

!0.t � 1jt � 1/
a.t � 1jt � 1/

3

5 :

(5.6)

Some comments are in order here. Observe that the state equation contains three
parameters instead of two. This is because the signal is expressed in terms of its
amplitude and frequency and not its phase. By expressing the phase as a function of
the two unknowns � and !0, carrying the amplitude along as a nuisance parameter
could be avoided. However, this necessitates employing a phase unwrapping step
which can be problematical, especially when the SNR is low.

Note also that unlike most Kalman filter configurations, there is no structure to
the state transition matrix A, i.e., it is simply the identity matrix. This is referred to
as the random walk case and occurs here since the relevant model for this problem
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is totally contained in the measurement system. However, the state transition matrix
has been written explicitly here since later we will have occasion to include a bearing
rate model which will necessarily provide structure to the A matrix. A bearing
rate model will improve the bearing estimate for cases where the bearing rate is
significant.

This problem, as formulated here, is the simplest example of the model-based
bearing estimation problem. Indeed multiple bearings and frequencies can easily be
introduced, but at the cost of a larger state vector. Also, the element spacings are not
limited to be equal—any spacing scheme can be employed simply by replacing the
nd term with the element coordinate xn.

We are now in a position to configure the estimation algorithm, i.e., the
construction of the unscented Kalman filter for this problem, since the state and
measurement systems have been defined. This will be described in some detail for
this problem so as to familiarize the reader with art of formulating model-based
problem solutions using the UKF. The code will use an outer shell which requires
an update function which in turn requires two functions for generating the sigma
points and their weights.

The outer shell code, or driver program, will input the values of ˛, ˇ, and �,2 the
initial state vector Ox.t � 1jt � 1/, Nx, and Ny, the respective sizes of the state and
measurement vectors, and the initial values of the covariances P0 D QP.t � 1jt � 1/,
Rww and Rvv , the initial state error covariance matrix, the state or system noise
covariance matrix, and the measurement noise covariance matrix, respectively.
These last three are referred to as the tuning3 parameters, since they must be
adjusted in order to optimize the convergence of the filter. The data file containing
the input data time series from the receiver elements is also entered in this driver
code. A for loop on the time is now put into the driver program which calls the
update function. This update function will generate the sigma points as described
under sigma points and weights in Table 4.1. The state prediction is then carried
out as described under the second part of Table 4.1. Continuing with Table 4.1, the
state error prediction is computed. Before performing the measurement prediction,
the sigma points must be updated using the updated state mean and error covariance.
The residual and the Kalman gain are then determined and finally the state is
updated, completing the first iterative step. Also required to complete this step are
two functions containing the state and measurement equations. This update function
also contains the two functions tasked with computing the initial sigma points and

2Note that in Table 4.1, there is a term Nx C � that appears in several places. However, the user
has a choice. The term � can be replaced with � D ˛2.Nx C �/ � Nx. The relative advantages
or disadvantages of this are discussed by Candy [3] on pages 208–209, where the definitions of
˛ and ˇ can be found. The difference between the two manifests itself mainly in the higher order
moments of the initial pdf of the problem. In Table 4.1 � is used but in the code used here for this
problem � is replaced with �. The reader is encouraged to try it both ways.
3Tuning is discussed in detail in Chap. 6.
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their associated weights and the other to compute the updated sigma points for the
measurement and update steps. Following the completion of this for loop, the driver
program then must include the necessary plot routines.

This code structure is outlined by the following pseudocode4

Pseudocode

Input ˛; ˇ; �; Rww; Rvv; QP.t � 1jt � 1/;P0; Nf, x.t � 1jt � 1/, fs, vta

Load Data file This contains This contains

• Y(Nf,Ns)= Hydrophone input data time series—Ns is the number of time samples
• Nf=Number of hydrophones
• fs=Sample frequency
• x.t � 1jt � 1/=Initial state vector—this is 3 � 1 for our case, since Nx D 3

• QP.t � 1jt � 1/ D Initial state error covariance
• vta=Towed array speed

For Loop
for (initial time) to (final time) do

call update function
This carries out calculations specified in Table 4.1, i.e.

• Compute sigma points and weights (done with function routines)
• State prediction
• State error prediction
• Update sigma points
• Measurement prediction
• Residual and gain prediction
• State update

end do

Output State vector estimates and other desired quantities

Plot Routines

5.2.1.1 Example

This example is that of a moving line array (or towed array) with five elements
spaced at half-wavelength for the 121 Hz narrowband signal, arriving at the array
at an angle of C3ı from broadside. The input data file contains the simulated data
file for a 121 Hz signal of length 30 s generated as would be received by a moving
array at a speed of vta D 5m=s. That is, the motion is manifest in the data, since

4Pseudocode is an intermediate step between the common language and programming language,
and is useful since it is logically structured, thus allowing the user to configure the actual code
based on his or her personal experience while maintaining the proper form of the algorithm.
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Fig. 5.3 Simulation results for a simulated signal arriving at a bearing of 3ı. The simulated signal
amplitude was set at unity and the source frequency is 121 Hz

the data file must reflect the fact that it is being received by a moving receiver.
The SNR is �2 dB at the hydrophone level5 and the noise was generated using the
randn MATLAB function. Based on the previous discussion, the state vector is of
length Nx D 3, The measurement vector is of length Ny D 5. The resulting tuning
parameters are

P0 D
2

4
10 0 0

0 1 0

0 0 10

3

5�10�2 Rww D
2

4
0:001 0 0

0 0:1 0

0 0 10

3

5�10�7 Rvv D
2

4
1 0 0

0 1 0

0 0 1

3

5�10�5:

(5.7)

The initial state vector is x0 D Œ30 125 1�0 D Œ� !0 a�0. The results are shown
in Fig. 5.3.

Figure 5.4 shows the results of an experiment carried out in the Baltic sea [15]
using the hydrophones on the forward end of a towed array. It was this scenario
that was used as a basis for the above simulation. This figure shows the results of

5This SNR was picked so as to emulate as closely as possible the experiment carried out in the
Baltic sea [15] described below.
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Fig. 5.4 Results of Baltic experiment

a 4 s record as the array passed near broadside to a pure tone source at a range
of about 500 m. The full array was six wavelengths long at 121 Hz. The bottom
curve is the result of using a conventional bearing estimator with the full aperture.
The upper smooth curves are the result of using the forward section of the array
both for the first four hydrophones (green) and the first five hydrophones (yellow).
The simulation was for the five hydrophone case, which provides an aperture of
about two wavelengths. The smooth curves are the results of using the model-
based processor on the short forward sections and the widely scattered dots are
the conventional bearing estimation results on the same forward sections. As can
be seen, the model-based processor greatly outperforms the conventional processor.
The offset between the upper curves and the lower curve is a consequence of the fact
that the acoustic centers of the short forward sections and the full array are offset
from each other, since the range to the source is only on the order of 500 m. The
sample variance on the bearing estimate for the yellow dots, i.e., the two wavelength
case, is �2B D 0:234. This is close to �2fd D 0:196 resulting from the use of a
frequency domain beamformer (see the discussion of the k � ! beamformer in
Chap. 3) on the simulated data shown in Fig. 5.5. The sample variance on the yellow
curve in Fig. 5.4 is �2mb D 0:0052. Clearly, the impact of the model-based approach
is enormous.

Finally, we show in Fig. 5.5 the result of using the frequency domain beamformer
on the simulated data compared to the model-based result. As can be seen, these
simulated results compare well to the experimental results. That is, the impact of
the model-based approach is huge.
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Fig. 5.5 Comparison of the bearing estimate for the model based processor (top) with that of the
frequency domain beamformer (bottom)

5.2.2 The Single Hydrophone Case

As mentioned in Sect. 5.2 this algorithm cannot provide a bearing estimate while
using a pressure measurement based on a single moving hydrophone. The question
is not a trivial one, since the Kalman filter can provide estimates of state vectors
where the size of the state vector is larger than the size of the measurement system.
This follows since the number of measurements is determined not simply by the size
of the measurement system, but by the fact that the processor is recursive, thereby
providing a large number of measurements. This can be seen in the following
development.

Consider the linear time-independent system given by

x.1/ D Ax.0/; (5.8)

y.1/ D Cx.1/; (5.9)

where x is 3 � 1 and y is 1 � 1.
By iterating the measurement system, the following structure follows.

y.0/ D Cx.0/

y.1/ D CAx.0/
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y.2/ D CA2x.0/

:::

y.n � 1/ D CAn�1x.0/:

Or, since the state vector is 3 � 1, n D 2 and

2

4
C

CA
CA2

3

5 x.0/ D Mox.0/ D
2

4
y.0/
y.1/
y.2/

3

5 : (5.10)

The matrix Mo is called the observability matrix and when it is full rank, the
system is observable. This means that even though there are three unknowns, i.e.,
the three elements of the state vector, and only one measurement equation, that is,
the measurement system is one-dimensional, the system is solvable. The analysis
carried out above is based on a linear system. For the single-hydrophone case, since
the measurement system is time-dependent and nonlinear, the above analysis does
not apply. A proper analysis requires the use of the Gramian [3] and is a level of
complexity beyond the scope of this book. However, when it is done, it concludes
that the observability matrix is not full rank. For those interested in pursuing this
further, [8] is a good start.

This concludes the discussion of the narrowband towed array bearing estimator.
The next section generalizes the narrowband bearing estimation to the case of the
joint estimation of bearing and range.

5.2.3 Joint Bearing and Range Estimation

Conventional tracking with a Kalman filter requires that a maneuver be made. This
is done by making two bearing measurements, each at a sufficiently different bearing
in order to insure that the measurements are independent. This is necessary since the
conventional tracking algorithm uses separate bearing measurements that are made
external to the Kalman filter, and then used as inputs, that is, it is a means of coherent
triangulation and is used to provide an estimation of the position and velocity of the
target. This is sometimes referred to as “bearings-only” tracking. For more on this
see [1] and references therein.

This approach presents a problem if one desires a rapid estimation of the
source coordinates, since to maneuver the township and then recover a straight
line configuration of the towed array to obtain the second bearing estimate can
require as long as 20 min. Here, we demonstrate that by using the model-based
approach, where the motion of the array plays a direct role in the estimation
process, the need for a maneuver can be eliminated. Here we will simply do a joint
estimation where the range will be inferred by building the wavefront curvature into
the measurement model.
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Fig. 5.6 Array and source configuration. R is the range to the first element and the bearing is
measured from broadside

Consider the configuration shown in Fig. 5.6. Here, a line array of N point
receiver elements is moving in the Cx direction with speed v. The narrow-band
source, which is radiating at radian frequency !0, is located at xs and ys. The signal
arriving at the nth element from the narrowband source is given by

sn D acosŒ!0.t � �n.t//�; (5.11)

where t is the time and �n is the time delay associated with the nth element. The
crux of the problem lies in the following development leading to �n.t/.

When t D 0, the range to the first element is taken as a reference and the time
delay for the nth element then follows as

�n.t/ D ŒRn.t/ � R1.0/�=c; (5.12)

with c being the speed of sound.

Rn.t/ D
q
.xs � Œ.n � 1/d C vt�/2 C y2s : (5.13)

As mentioned above, the inclusion of the array speed, v, is critical to this devel-
opment, since it introduces the Doppler into Eq. 5.11 via the time delay. In order to
exploit this effect however, the source frequency!0 must be known. This means that
we must treat the problem as a joint estimation of not only the source coordinates R
and � , but of the source frequency as well. The measurement equations now evolve
from the substitution of Eq. 5.13 into Eq. 5.12 and then substituting the result into
Eq. 5.11. This is outlined in the following.
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Fig. 5.7 Delay between element and wavefront for wavefront curvature ranging

A vector of the ranges from the source to each element is defined by

R.n/ D
q
Œ.xs � .n � 1/d C vt//2 C y2s �; n D 1; 2; : : : N: (5.14)

A vector of the time delays (see Fig. 5.7) is then defined as

�.n/ D .R.n/� Rref/=c; (5.15)

with Rref D R.1/. Here c is the speed of sound. The vector of hydrophone
measurements then follows as

y.n/ D acos.2�!0.t � �.n//: (5.16)

This constitutes a measurement vector of the N direct hydrophone measurements.
The observed frequency at the first hydrophone is added as an added measurement,
making the length of the measurement vector equal to N C 1. So that

y.N C 1/ D !0.1C .v=c/sin�t/; (5.17)

with �t being the true bearing of the source at the first element. Thus, the nonlinear
N � 1 measurement equation system is written more concisely as

Y.t/ D cŒX.t/�: (5.18)
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The state vector is now given by X D Œxs ys !0�, so that

X.tjt � 1/ D AX.t � 1jt � 1/; (5.19)

where A D I, the identity matrix.
Note that the motion of the source has not been included as it would have been

in the usual bearings-only tracker. This is because the Kalman filter is a recursive
processor, thereby providing the polar coordinates of the source as a function of
time. Indeed, it would be a mistake to include Pxs and Pys as state variables, since this
processor depends on the source frequency as a state variable any source motion
would play a role in the value of this frequency. Since the Kalman filter can only
estimate the apparent source frequency, the time varying estimates of the source
coordinates themselves constitute the source tracking solution.

Having the state equations and measurement equations, the UKF can now be
configured.

5.2.3.1 Example of Joint Bearing and Range Estimation

In this example a 40 element line array, with one-half wavelength element spacing, is
towed at a speed of 4m=s across the zero bearing point of a stationary target, giving
an estimate of the time-dependent bearing � and range6 R. The UKF configuration
follows from Eqs. 5.18 and 5.19. Although we seek the range and bearing, the state
actual vector is given by (see Eqs. 5.13–5.17 )

X D Œxs ys !0�: (5.20)

In this way, all of the nonlinearities reside in the measurement system. Two minutes
of synthetic data with a frequency of 300Hz were generated with a �10 dB signal-
to-noise ratio at the hydrophone level. At this frequency, with half-wavelength
spacing, the length of the array is 97.5 m. The initial values of xs and ys used were
300 m and 2,000 m, respectively. The tuning parameters used are

P0 D

2

64
1 0 0

0 1 0

0 0 10�3

3

75 Rww D

2

64
2 � 10�4 0 0

0 4 � 10�3 0

0 0 2 � 10�8

3

75 Rvv D

2

64
0:1 0 0

0 0:1 0

0 0 0:25

3

75 :

The initial state vector is x0 D Œ300 1500 303�0, and the state transition matrix is
the identity matrix. The results are shown in Figs. 5.8 and 5.9.

6These estimates are time dependent since the reference used is the first element of the array, and
the array is moving. Nevertheless, if the source is also moving, its motion can be found from the
resulting range and bearing estimates.
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Fig. 5.8 Estimates of state vector elements for a range of about 2,000 m. The dashed lines are the
true values. The vertical axis is time in seconds and the horizontal axes are in meters

These results offer an opportunity to discuss the importance of the tuning
parameters. If we double the range and leave everything else the same, although not
shown, the solution requires the full 2 min to converge. However, by quadrupling
the value of Rww, the convergence time is significantly reduced, as seen in Figs. 5.10
and 5.11. Note that here, the range is on the order of 40 times the length of the
physical aperture.

Finally we show in Fig. 5.12 an example for a range of 10,000 m or 10 km. The
tuning parameters are the same except for the fact that Rww was increased by a
factor of 10. Here, the only difference is that the convergence time is greater. It is
worth noting that the range to physical aperture ratio is 100. We also note that for
this case the physical aperture subtends an angle of slightly less than 0:6ı. Clearly,
this range estimate could not have been achieved using a conventional wavefront
curvature approach. At a speed of 4m=s the array travels 480 m in the 120 s of
processing time. Thus somewhat less than five array lengths is traced out for a total
baseline of nearly six array lengths. If the model based approach was not used here,
this baseline would have been essentially wasted. This algorithm is capable of range
estimates far greater than shown here. The limit is really based only on the available
SNR, and as one would expect, the greater the range and the noisier the signal,
the noisier the estimate and the longer the convergence time.
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Fig. 5.9 Estimates of the range and bearing for a range of about 2,000 m. The dashed lines are
the true values. The vertical axis is time in seconds. The horizontal axis on the left-hand plot is in
degrees and the horizontal axis on the right-hand plot is in meters

5.3 The Broadband Problem

The issue of the broadband signal requires a quite different approach to the problem.
For the narrowband case, the functional form of the signal is explicitly known, where
this is not the case for the broadband case. Also, the issue of the Doppler becomes
problematical. If we desire to remain in the time domain, rather than exploiting the
Doppler, by estimating an apparent source frequency, which would have to be found
by using a Fourier transform, we could proceed by using the Doppler equation to
estimate a virtual sample rate at the source. This virtual sample rate would then
be used to discretize the time delay. However, this presents its own problem, since
the sample rate must be high enough to provide the necessary precision in the time
delay estimate, resulting in a prohibitive computation time. Nevertheless, this is still
a viable approach.

The approach we will take here is to work in the frequency domain. This
presents its own problems. First, the data must be preprocessed—that is, the
measurement system does not simply consist of the hydrophone measurements.
This is a consequence of the fact that an explicit model of the time domain signal
does not exist in a closed form. The second complication is that the phases of the
hydrophone signals must be obtained via a phase unwrapping procedure, which
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Fig. 5.10 Estimates of state vector elements for a range of about 4,000 m. The dashed lines are
the true values. The vertical axes are time in seconds. The left and center horizontal axes are in
meters and the right-hand horizontal axis is in Hz

poses a limit on the SNR. That is, unlike the previous examples, the results do not
“gracefully degrade” as the SNR decreases, since the phase unwrapping process is
strongly nonlinear. That is, as the SNR decreases, a point is reached where the phase
unwrapping calculation collapses.

5.3.1 Frequency Domain Broadband Array Processor: Theory

Consider first a narrow-band version of the problem. Consider a line array of N
receiver elements to be moving with speed v in the Cx direction of an x � y
coordinate system. Let the plane-wave signal be arriving at angle � with respect
to the y axis, measured to be positive for clockwise rotation. The signal at the nth
receiver can then be represented in complex form as

sn.t/ D anei.!0=c/.ndCvt/sin�Ci!0t: (5.21)

As before, !0 is the radian frequency of the signal at the source, d is the coordinate
of the nth receiver element, � is the bearing angle measured from broadside, an is
the signal amplitude, and t is time. Since we will be working in the phase domain,
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Fig. 5.11 Estimates of the range and bearing for a range of about 4,000 m. The dashed lines are
the true values. The vertical axis is time in seconds. The left-hand horizontal axis is in degrees and
the right-hand horizontal axis is in meters

there is no need to include the signal amplitude as a nuisance parameter. This leaves
the two parameters !0 and � to be estimated. The state equation of the Kalman filter
is given by

�
�.tjt � 1/
!0.tjt � 1/

�
D

�
1 0

0 1

� �
�.t � 1jt � 1/

!0.t � 1jt � 1/
�
: (5.22)

If there is a non-negligible bearing rate in the scenario, this can be easily dealt with
by augmenting a bearing rate into the Kalman equations. For this case, Eq. 5.22 is
generalized to

2

4
�.tjt � 1/

˛.tjt � 1/

!0.tjt � 1/

3

5 D
2

4
1 	t 0
0 1 0

0 0 1

3

5

2

4
�.t � 1jt � 1/

˛.t � 1jt � 1/

!0.t � 1jt � 1/

3

5 ; (5.23)

where ˛ is an estimate of @�=@t, and 	t is the update time increment.
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Fig. 5.12 Estimates of the range and bearing for a range of about 10,000 m. The dashed lines are
the true values

Now consider the broadband case. Since we choose to work in the phase domain,
the measurement equation is based on the exponent in Eq. 5.21. This means that
we must preprocess each hydrophone signal by creating a sequence of short time
segments which will be transformed into the frequency domain. A discrete spectrum
of the broadband signal for each of these time segments is computed. Consider now
one of these segments for the nth hydrophone. Each frequency will have a phase
associated with it. Since these phases are related by the frequency index, an average
phase for this time segment can be computed as

 n D 1

	m

MHiX

mDMLo

fm.!0=c/.nd C vt/sin� C m!0t C �mng=m

D 1

	m

MHiX

mDMLo

fm.!0=c/ndsin� C �mng=m C !t:

Here, ! D !0.1 C .v=c/sin�/ and is the lowest frequency of a DFT of the data at
the receiver and MLo and MHi are the respective low frequency and high frequency
indices of this DFT. 	m D MHi � MLo C 1 is the number of frequency components
of the DFT, d D xn � xn�1 is the inter-element spacing of the line array receiver
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elements, �mn is an arbitrary phase, and m is the frequency index. Note that this
refers all of the phases to that of the lowest frequency line of a virtual DFT at the
source.

Since only the phase differences are relevant to the problem, there are only
N � 1 receiver-based phase difference measurements available for the N receivers.
Assuming that the arbitrary phase terms �mn average to a negligibly small value, the
N � 1 measurements, based on the above model for the phase are given by

yn D  nC1 �  n; n D 1; 2; : : : ;N � 1; (5.24)

where the !t term has canceled out. There is an auxiliary measurement equation
that is based on the observed frequency. This is basically the Doppler relation and
is given by

yN D ! D !0.1C .v=c/sin�/: (5.25)

In this equation, !0 can be thought of as the lowest frequency of a virtual DFT of
the signal at the source. The resulting measurement system has the (nonlinear) form

2

666664

y1
y2
:::

yN�1
yN

3

777775
D

2

666664

.d=c/!0sin�

.d=c/!0sin�
:::

.d=c/!0sin�
!0 C .v=c/!0sin�

3

777775
; (5.26)

or symbolically,

Y D cŒ�; !0�: (5.27)

5.3.2 The Algorithm

As mentioned previously, the hydrophone data must be preprocessed before arriving
at the above measurement equations. Referring to Fig. 5.13 the hydrophone output
time series is segmented into 0.1 s segments,7 bandpass filtered to the desired section
of the spectrum, decimated to a manageable sample rate and then put through an
FFT. The phase of each hydrophone signal is then found by dividing out the index of
each frequency line and then averaging. That is, by dividing out the frequency index,
the frequencies, and thereby the phases, are aligned with the lowest value !0, and

7This value is that selected for the experimental example which follows in the next section.
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Fig. 5.13 Flow diagram for the broadband data preprocessor

thereby can be averaged to provide an estimate of phase. This averaging procedure
includes a phase unwrapping step. This is the weak point of this processor, since for
low SNR, the phase unwrapping step fails.

5.3.3 Experimental Results

The work presented here was originally reported in [16]. The experimental data
were obtained as a data set of opportunity. During an experiment carried out
jointly by Boston University and Woods Hole Oceanographic Institution, using
the autonomous Undersea vehicle REMUS, a short (six element) array was towed.
During the experiment, a ferry from the mainland of Cape Cod on its way to the
island of Nantucket passed through the area. The resulting data provide the basis for
this work [10].

The six element array, which had an element spacing of 0.75 m, was towed at a
speed of 1.5 m/s. The ferry appeared by emerging from a shallow region, known as
Tuckernuck Shoal, at an angle very close to broadside (0ı) to the towed array, and
the closest point of approach occurred at approximately 20ı. The array was moving
in a straight line toward the course of the ferry, which was moving at approximately
20 kts, on a straight course from left to right with respect to forward endfire of the
array. This configuration is depicted in Fig. 5.14 where points A and B are the ferry
positions for the respective beginning and CPA of the data used in this work. The
distance between these two points is approximately 2 km. Although the radiated
sound from the ferry was quite broadband, extending over a band from about 100 to
1,000 Hz, there was a particularly strong band of energy occurring between 890 Hz
and 920 Hz. This energy band was selected for the bearing estimation. At this band
of frequencies, the array has an acoustic length of approximately 2.3 wavelengths.
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Fig. 5.14 Configuration of the experiment

A sequence of 8000 0.1 s DFTs was generated in order to obtain the phase
averages over the full 800 s of the data. The band was then constrained to the lines
between 890 Hz and 920 Hz. The phase averages extracted from each hydrophone
sequence constituted the basis of the measurements used in Eq. 5.26. The frequency
measurement was taken directly as the lowest frequency of the DFT of the data.

The results are shown in Figs. 5.15 and 5.16. In both figures the vertical axis is
time in seconds. The left panel of Fig. 5.15 is the result of beamforming the data
with a conventional frequency-domain beamformer, and is computed from

p.tj; �k/ D
NX

nD1

MHiX

mDMLo

˚
e�i2� fmn.d=c/sin�k



F�

tj .fm; n/: (5.28)

The bracketed term is the steering vector and Ftj.fm; n/ is the frequency domain
signal at the nth hydrophone associated with the time tj. The center panel shows
the maxima of the plot in the left panel, and the right panel shows the model-based
result. As expected, both estimators fail to resolve the bearing in the neighborhood
of endfire. After endfire, beginning at about 400 s, the model-based processor clearly
shows the cumulative performance improvement expected of such a processor. This
occurs since the bearing rate is small, and therefore the random walk state model of
Eq. 5.22 is valid.

Figure 5.16 depicts the results for the case where the bearing rate is augmented
into the processor. The left panel shows the bearing estimate, the center panel shows
the estimate of the bearing rate, and the right-hand panel shows the estimate of
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Fig. 5.15 Bearing estimation results. The left panel is the conventional frequency-domain beam-
former result. The middle panel is a plot of the maxima of the plot in the left panel and the right
panel is the model-based processor result

the source fundamental frequency. Note that this frequency is not constant, since
the source itself is undergoing nonzero accelerations. Thus, before endfire it has
an up Doppler and after endfire, a down Doppler. Thus, the apparent fundamental
frequency of the virtual DFT at the source must adapt to these speed changes.

The fact that the bearing estimate in Fig. 5.16 shows some improvement over
that of Fig. 5.15 is a direct consequence of the inclusion of the bearing rate as an
augmented state vector element. The Kalman filter requires that the user specify a
trial value for the state error covariance. The value chosen constitutes a lower bound
on the eventual state error covariance. This provides a means for the user to control
the convergence rate of the process. That is, the larger this covariance is chosen to
be, the faster the convergence of the processor; but at the price of a noisier estimate.
The estimate in Fig. 5.16 allowed a smaller value for this covariance to be used,
since the convergence requirements for the case of a nonzero bearing rate are eased
by the inclusion of the bearing rate directly into the dynamics via Eq. 5.23. Thus,
the limiting state estimation error is smaller in Fig. 5.16 (left panel), than that in
Fig. 5.15 (right panel).
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Fig. 5.16 Bearing rate augmentation result

5.4 Model-Based Localization

In the first chapter, the matched-field problem (MFP) was discussed in terms of its
limitations, in particular, the mismatch problem where lack of accurate knowledge
of the model parameters either degrades the solution or indeed, prevents any
viable solution at all. An example [9] was shown in which an MFP solution using
experimental data which supported nine modes could not be achieved without
eliminating the top two modes, i.e., modes eight and nine. This means that these
two modes provided by the model were simply not an accurate representation of
their actual counterparts. In 1995, Candy [5] applied the concept of augmentation
to this type of problem and demonstrated that in this way, the modal functions
themselves could be jointly estimated along with the modal amplitudes, and those
modes provided by the propagation model served as the initial values provided to
the Kalman filter. It is worth outlining this approach since it not only demonstrates
the power of augmentation, but it also provides an example of the use of the
innovations sequence as a measure of the fidelity of the model. In the example
to follow, there were 23 hydrophones in the vertical array and 2358 state vector

8The five modal functions and their derivatives were each evaluated at 23 points along with the five
modal amplitudes.
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elements. This configuration allows the hydrophone measurements to be treated as
a spatial series of measurements whereby the recursive nature of the processor can
treat them with a single measurement equation rather than one with a dimension
of 23 � 1. This provides a significant increase in computational efficiency. The
following example is based on a set of data obtained by Carey et al. [6] in the Hudson
Canyon area off of the New Jersey coast. The depth was 72 m. A 23 element vertical
array with 2.5 m spacing was used, thereby spanning 55 m of depth.

We first review how this problem would be formulated as an MFP. The Helmholtz
equation is put into cylindrical coordinates denoted by r � and z. The equation is
separable in this coordinate system. Here r is the radial coordinate, which for our
problem is the range, z is the depth coordinate and the � coordinate is ignored, since
the problem is conventionally viewed in two dimensions. This is consistent with
Fig. 1.2. Upon separation, the range equation is of the form of Bessel’s equation,
and for the case of propagating waves, the relevant solutions are zeroth order Hankel
functions of the first kind, designated by H1

0.kr.m/r/ for outward going waves. Here
kr.m/ is the radial wavenumber associated with the mth eigensolution, The equation
in z is an eigenvalue equation given by

d2

dz2
�m.z/C kz.m/�m.z/ D 0I m D 1; : : : ;M; (5.29)

where there are M eigensolutions and the wavenumbers, by virtue of the separation
process, are related by the so-called dispersion relation, viz.

k2 D k2z .m/C k2r .m/; (5.30)

with k D !=c.z/ being the water wavenumber. Here ! D 2�f , f is the frequency,
and c.z/ is the speed of sound in the water, which depends upon the depth. Thus,
each modal function �m.z/ is associated with a range solution H2

0.kr.m/r/ by virtue
of the dispersion relation. This is a range-independent form of the wave equation,
meaning that there is no dependence of the sound speed on r. Having these solutions
in hand, the total solution is then given by

p.rs; z/ D q
MX

mD1
H1
0.kr.m/rs/�m.zs/�m.z/; (5.31)

where p is the acoustic pressure, q is the source amplitude, �m is the mth modal
function at z and zs is the source depth, kr.m/ is the horizontal wavenumber
associated with the mth mode, and rs is the source range. It is useful to write this
solution in the form

p.rs; z/ D
MX

mD1
ˇm.rs; zs/�m.z/; (5.32)

where ˇm.rs; zs/ D qH1
0.kr.m/rs/�m.zs/ is called the mth modal amplitude.
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The usual MFP would now proceed as follows. The vertical array provides a
vector of measurements of the true field, which we call Pt. The model provides a
prediction of these measurements for a given set of source coordinates, zs rs. This
we label as Pp. The solution, as first put forth by Bucker [2], is found by seeking the
maximum of the magnitude squared of the normalized inner product of these two
vectors. That is, the estimates of rs and zs are found from

Max A.r; z/ D A.rs; zs/ D Max
jP0

tPpj2
jPtj2jPpj2 : (5.33)

This correlation surface (sometimes referred to as the “ambiguity” surface9

approach is not optimal, since it is neither a maximum likelihood or minimum
variance solution [14], even in the case of a perfectly known set of modal functions.
The maximum is found by exhaustively searching over the surface A.r; z/. In
practice however, as mentioned in Chap. 1, unless the model parameters, in this
case, the modal functions, are known to a sufficient degree of accuracy, a viable
solution cannot be found. Much effort has been expended trying to alleviate this
problem, leading to improvement in some cases. However, as can be seen from
Eq. 5.32 the obvious approach is to jointly estimate the modal functions and their
amplitudes jointly, since using the accuracy of the modal functions obtained from a
model are subject to the uncertainties in the sound speed profile (SSP) and boundary
conditions at the bottom, which are themselves open to inaccuracies.

A better approach is to carry out the solution in modal space. This is done by
observing that Eq. 5.32 is linear in the modal functions, so that if the number of
measurements equals or exceeds the number of modes, the modal amplitudes can
be found by using a pseudo inverse [15], sometimes called the Moore–Penrose
inverse, which leads to a maximum likelihood solution for the modal amplitudes.
This approach offers some advantage vis a vis the mismatch problem, since if the
troublesome modes can be identified, they can simply be removed. However, this
entails the cost of reducing the information content of the model.

Returning now to Candy’s approach, we begin by observing that following
Eqs. 3.89 and 3.90 from Chap. 3, Eq. 5.29 can be written in state space as follows.
Since each mode is characterized by a second order, ordinary differential equation,
its state space form is

d

dz
�

m
.z/ D Am.z/�m

.z/; (5.34)

with

Am.z/ D
�

0 1

�k2z .m/ 0

�
; (5.35)

9This terminology, although commonplace, is unfortunate, since it is not the ambiguity diagram as
originally defined by Woodward [17] which plays an important role in the active sonar problem.
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and

�
m
.z/ D Œ�m.z/ P�m.z/�

0 (5.36)

with P�m.z/ D d
dz�m.z/. Including all M modes leads to

d

dz
�.z/ D A.z/�.z/; (5.37)

where �m.z/ the 2M � 1 state vector defined by

�.z/ D Œ�1.z/ P�1.z/ �2.z/ P�2.z/ � � � �M.z/ P�M.z/�
0; (5.38)

and the 2M � 2M block diagonal transition matrix is given by

A.z/ D

2

64
A1.z/

: : :

AM.z/

3

75 : (5.39)

The state space propagator now obtains from this by discretization, i.e.,

�.z`/ D ŒI C	zA��.z`/; (5.40)

where ` is the hydrophone index. Defining I C 	zA as A.z`�1; ˇ/, and assuming a
random walk model for the modal amplitudes fˇig with

ˇ D Œˇ1 ˇ2 � � � ˇM�
0; (5.41)

leads to the augmented state space model given by

2

64
�.z`/

� � �
ˇ.z`/

3

75 D
2

4
A.z`�1; ˇ/ j 0

� � �
0 j IM

3

5

2

64
�.z`�1/
� � �
ˇ.z`�1/

3

75 C
2

4
w.z`�1/
� � �

wˇ.z`�1/

3

5 ; (5.42)

with the associated nonlinear measurement model which follows directly from
Eq. 5.32

p.rs; z`/ D cŒˇ.z`/; �.z`/�C v.z`/: (5.43)

This is a Gauss–Markov representation which includes the second order statis-
tics. The measurement noise can represent the near-field acoustic noise field,
flow noise on the hydrophone, and electronic noise. The modal (process) noise
can represent sound speed errors, distant shipping noise, errors in the boundary
conditions, sea state effects, and ocean inhomogeneities.
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Note that Eq. 5.43 contains the hydrophone measurements as a series, much
analogous to a time series. This means that the measurement equation can be treated
as a single equation which treats the hydrophone data sequentially. As mentioned
before, this provides a huge saving in computation time. Also, in the results to
follow, a single pass over the array was sufficient to provide a viable solution. This
means that each of the five modal functions (and their derivatives) supported by
the propagation channel in the following problem will be estimated at 23 points,
along with the five estimates of the modal amplitudes. This points out the fact that
even though there are more estimates than measurements, the estimates of the 23
points of each of modal functions are not independent. This is a consequence of the
fact that the transition matrix that evolved from the vertical equation contains the
information contained in the vertical equation.

For the solution to proceed, the horizontal wavenumbers are required. These were
found from the experimental data [4] by computing its spatial spectrum, in which the
spectral lines are the horizontal wave numbers. The solution is found in two steps.
First, Eqs. 5.42 and 5.43 are solved as a Kalman filter problem, leading to estimates
of the modal functions evaluated at 23 points, and the five modal amplitudes. The
state vector was initialized by using solutions for the modal functions and the modal
amplitudes from the SNAP [11] model. The resulting modal amplitudes are implicit
functions of the source range and depth, rs and zs. Thus a second step is required
which is a numerical optimization carried out by finding the minimum of

J.rs; zs/ D
MX

mD1
Œˇ.rs; zs/� H1

0.kr.m/rs/�m.zs/�
2: (5.44)

There two issues complicating this calculation. First, the surface J.rs; zs/ is not
unimodal. In [5], in order to find the global minimum, the polytope method of
Nelder–Meade [12] was used. This method tests each extremum found by testing
in its neighborhood. Alternatively, the surface could be exhaustively searched as
is done in the conventional MFP problem. This is inefficient since it requires the
complete range-depth map to be computed over the region of interest. In this work,
the Nelder–Meade method was used.

The second issue is that unless there is some means of interpolating the modal
function estimates is used, the depth estimate accuracy will be limited to the
precision allowed by the 23 point estimate. This could be done by one of two ways.
Either the modal function points could be fit to a curve or the actual propagator
could be used as a way of generating smaller steps, which was done here. For more
detail on this, see [5]. As previously mentioned, the solution was carried out using
only a single pass over the array. The resulting estimates of the modal functions
are shown in Fig. 5.17. The red lines are the two sigma bounds on the mean. The
solution for the source coordinates found from the Nelder–Meade optimizer are
plotted in Fig. 5.18.

As can be seen, this solution is remarkably accurate. This is mainly due to the
fact that the modal functions are estimated directly from the data. Unlike MFP,
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Fig. 5.18 Localization solution using the Nelder–Meade optimizer

the vertical equation is imbedded directly into the state equation, whereas in MFP,
the modal functions are predicted from the model, which in turn requires accurate
knowledge of the boundary conditions, especially those at the bottom, and an
accurate knowledge of the SSP. In the model-based approach, these predicted modal
functions are used to initialize the state vector, but they are then adaptively corrected
by the data vis the recursive estimation algorithm. At this point, any errors in the
boundary conditions and the SSP become moot, since the data itself is now the
determining factor.

For a complete description of the solution, the reader is directed to [5].
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Chapter 6
Filter Tuning and Solution Testing

6.1 Discussion

Since this is a monograph, there are necessarily subjects that have not been
fully covered. Here we wish to amend this to some degree. First, although the
science behind the modeling and the mathematics of the Kalman filter have been
addressed, there are two issues that, until now, have been neglected. These are
the process of “tuning” the Kalman filter, and that of assessing the quality of
the solutions. The solution quality is mainly based on testing of the innovations
sequence. The innovations sequence is, in essence, a continual observer of the
progress of the Kalman filter, since it sequentially compares each new measurement
to what the model thinks it will be. As such it carries highly useful information on
how the processor can be improved. As a simple example, at the end of the last
chapter the model-based localization problem was presented. Here we recall that
according to the data, there were five modes. This was known a priori since it was
determined by a spatial spectrum of the data taken during the experiment. However,
suppose this were not the case. That is, suppose that it were assumed that there
were only four modes. In such a case, the spectrum of the innovations sequence
would have indicated this by presenting the spatial spectral line of the fifth mode,
since it was contained in the data. Speaking more generally, the innovations not only
indicated modeling errors, but in many cases it can actually identify the problem.

6.2 Tuning the Filter

As previously discussed, the Kalman filter inputs Rww, Rvv , and P0must be selected
by the user. These are called the tuning parameters, and selecting them is considered
to be an art more than a procedure that can be codified in a few steps. In order to
understand this it is useful to look at the Kalman gain term K; where
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K D QPC0R�1
�� ; (6.1)

and examine its role in the update step of the algorithm. In the following simplified
expression, Xc, the corrected or updated state vector is found by adding the
correction term as follows.

Xc D Xp C K�; (6.2)

with Xp being the predicted state vector. If the state error covariance QP is large, then
this acts to make the Kalman gain large, indicating that the filter is providing a noisy
estimate and therefore the role of the measurements, via the innovation, becomes
more important than the model. That is, the algorithm believes more strongly in the
data than in the model. Of course, the opposite is true if the state error covariance
is small, rendering the value of K to be small. In this case the model takes more
precedence viv a vis the measurements. A similar argument holds with regard to the
innovations covariance R�� . Since it enters the gain in terms of its inverse, if it is
large, so that its inverse is small, this means that the measurement noise is large.
This acts to make the Kalman gain term small, meaning that the filter depends more
on the model. Conversely, it then follows that if the measurement noise is small,
then this tends to increase the Kalman gain, thereby putting more dependence on
the measurements.

The above argument provides a guide for the selection of the values of Rww Rvv .
Ideally, the value of Rvv should match the true measurement noise covariance, but
this is not always known to a sufficient accuracy, so intuition gained from experience
must become the guide. Clearly, if Rvv is too large, it will underemphasize the
role of the measurements, putting too much dependence on the model, whereas the
opposite, of course, is true, i.e., if it is unrealistically small, then the measurements
will be overemphasized relative to the model.

Also, by observing that the value of QP can never be less than Rww, it is important
to have this term as small as practically possible so as to aim for a small state error.
However, if it is too low, the speed of convergence of the filter becomes unacceptably
slow. Furthermore, since the role of Rww is to compensate for modeling errors,
making it too small can put too much focus on the deficiencies of the model. Thus,
it can be seen that experience must play a role here also. Generally speaking, the
larger Rww, the faster the convergence, but the noisier the estimates, and the smaller
the value of Rww, the noise on the state estimate is reduced, but at the cost of slower
convergence.

The selection of P0 also deserves some attention, since selecting it to be too
small or too large will delay convergence. Also if P0 is selected to be too large,
depending on the model, it can cause the filter to deviate from a convergent path,
thereby preventing any solution.
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6.3 Assessing Solution Quality

There are two tests that can be made to assess the quality of the solution. First, the
state error bounds can be compared to the state estimate. The red curves in the right
column of Fig. 5.17 are the two sigma bounds for the modal estimates and are found
directly from the associated component of the diagonal of the state error covariance.
In these plots, the means of the initial modes has been subtracted from the means
of the estimated modes. This test evaluates the enhancement obtained by using the
physical model in the estimation scheme.

6.3.1 Innovation Sequence Zero Mean Test

Of no less importance are the tests one makes on the innovations. If the innovation
sequence is zero mean and white (uncorrelated), then the solution is considered to
be optimum [1]. The zero mean test is based on the sample mean of the innovations
sequence. This sample mean, for the ith component of �i.t/, is given by

Om�.i/ D 1

N

NX

iD1
�i; (6.3)

and for N reasonably large, Om�.i/ � N .m�; �
2
��=N/ where N is the number of

samples. For a normalized Gaussian the 5% significance level is given by ˛, which
is defined by

1p
2�

Z ˛

�˛
e�x2=2dx D 0:95: (6.4)

The resulting value of ˛ is 1.96. If we now define x D . Om�.i/ � m�.i//=
p
�2��=N,

where m�.i/ is the population mean of �, then the threshold for accepting the zero
mean hypothesis is defined as �i where it follows from Eq. 6.4 that

�i D 1:96

s
O�2��.i/

N
; (6.5)

where O�2��.i/, which is the relevant term on the diagonal of the innovation covariance
R�� , is the sample variance1 on �.

O�2��.i/ D 1

N

NX

iD1
�2i .t/: (6.6)

1Recall that the sample variance given by O�2��.i/ is the variance on � where O�2��.i/=N is the sample
variance on the mean of �.
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6.3.2 Innovation Sequence Whiteness Test

The whiteness test checks whether the innovation sequence is uncorrelated. The
sample covariance function is given by

OR��.i; k/ D 1

N

NX

tDkC1
Œ�i.t/ � Om�.i/�Œ�i.t C k/ � Om�.i/�

0: (6.7)

This is now normalized such that

O���.i; k/ D OR��.i; k/
OR��

: (6.8)

For N > 30 this can be considered to be Gaussian with zero mean and variance
1=N. Defining

W�� D O���.i; k/˙ 1:96p
N
; (6.9)

and using Eq. 6.5, it follows that when 95 % of the values of O���.i; k/ fall within this
interval the whiteness criterion is met.

Although this whiteness test is useful for detecting model deficiencies for
individual innovation sequence components, it becomes impractical when the
number of measurements is large. This leads to a statistic containing all of the
components called the weighted sum square residual or WSSR test. It accumulates
the innovations vector over a finite window of length Nw and is defined as

O�.n/ D
nX

kDn�NwC1
�0.k/R�1

�� �.k/: n � Nw: (6.10)

Derived in a manner similar to that for the zero mean test, the threshold � for the
95 % interval test is defined by

� D NyNw C 1:96
p
2NyNw: (6.11)

This provides a sliding window of width Nw when n > Nw.
As a final comment, the WSSR can be used as a detector in the sense that it

will provide a detection statistic for the case when the model deviates from the
information in the data. This is not surprising since Eq. 6.10 has the form of a log
likelihood. For an example of this, see [2] in which a Kalman filter was tuned to
the speckle noise from a laser Doppler vibrometer which was measuring the ground
surface displacement as a means of detecting a buried mine. The speckle noise was
modeled with an autoregressive model and the Kalman filter was tuned. When the



References 109

buried mine was vibrating at its resonant frequency due to an impulsive stimulus,
the resonant vibration of the mine induced a small oscillatory displacement in the
ground surface that was not contained in the autoregressive model of the speckle
noise, hence the deviation from whiteness was detected easily by the WSSR test.
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A
Acoustic aperture, 12
Acoustic array, 1
Adaptive beamformer, 22
Ambiguity surface, 99
Apparent source frequency, 87
a priori information, 40
Array aperture, 10
Array factor, 11
Array gain, 17
Array optimization, 21
Augmentation, 5, 46, 69
Autonomous undersea vehicle (AUV), 23

B
Bandpass filter, 93
Baseline, 88
Bayesian estimation, 4
Bayesian filter, 51–53, 56, 57
Bayesian processor, 57
Bayes rule, 39
Beam bins, 15
Beamforming, 13
Beam pattern, 16
Beamwidth, 12
Beamwidth–aperture product, 21
Bearing estimation, 22
Bearing rate, 91, 95
Bearing rate model, 79
Bearings-only tracker/tracking, 84, 87
Best linear unbiased estimator (BLUE), 36
Bootstrap filter, 55
Broadband array processor, 90

Broadband problem, 89
Broadside direction, 10

C
Cauchy Schwarz inequality, 32
Chain rule of probability, 52
Chapman–Kolmogorov equation, 53
Cholesky decomposition, 64
Classical estimation theory, 30
Coherence length, 20
Conformal array, 24
Covariance matrix, 18
Cramér–Rao lower bound (CRLB), 23, 31, 39,

75
Cross-correlation coefficient, 18

D
Decimate, 93
Degeneracy, 55
Delay and sum beamforming, 13
Design frequency, 15
Detection, 1
Detector, 108
Directivity, 11
Directivity index, 18
Doppler, 77

E
Efficient estimator, 34, 38
EKF. See Extended Kalman filter (EKF)
EKF algorithm, 63
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Evidence, 52, 56
Expectation, 66
Expected value, 31
Extended Kalman filter (EKF), 63

F
Far-field approximation, 16
Finite difference, 45
First-order Gauss–Markov process, 45
First-order Markov, 53
First-order Taylor series, 63
Fisher information, 4, 42
Fisher information matrix, 32
Forward problem, 2
Frequency domain, 90
Frequency-domain beamformer, 95
Frequency index, 92, 93

G
Gauss–Hermite parameters, 67
Gauss–Hermite quadrature, 66
Gauss–Markov form, 45, 57
Gauss–Markov model, 61
Gauss points, 69

H
Hankel function, 98
Helmholtz equation, 98
Horizontal wavenumbers, 101

I
Ill-posed problem, 3
Importance sampling, 55
Impoverishment, 55
Innovations covariance, 58, 106
Innovation sequence, 43, 48, 107
Inverse problem, 1
Isotropic sensitivity, 9

J
Jacobian, 63, 64, 68
Joint estimation, 85
Joint state/parameter estimation, 48

K
Kalman algorithm, 61
Kalman filter, 43, 51, 56
Kalman gain, 60, 69

k–¨ beamformer, 13
k–¨ plot, 16

L
Likelihood function, 4
Likelihood ratio, 28
Linear Kalman filter, 46
Log likelihood, 108

M
Main lobe, 12
Manhattan project, 55
MAP estimator, 56
Marginal distribution, 52
Matched-field problem, 97, 98
Matched field processing, 3
Matched filter, 30
Matrix inversion lemma, 58
Maximum a posteriori problem (MAP), 39
Maximum likelihood estimator, 4, 37
Maximum likelihood invariance theorem, 22,

37
Measurement function, 65
Measurement vector, 78
Minimum mean square estimator (MMSE), 34,

44
Minimum variance, 34
Minimum variance distortionless response

(MVDR), 21
Mismatch problem, 3, 97
MMSE. See Minimum mean square estimator

(MMSE)
Modal amplitudes, 100, 101
Modal function, 98, 99
Modal space, 99
Model-based bearing estimation, 78
Model-based localization, 97
Model-based processing, 4
Model deficiencies, 5
Monte Carlo sampling, 55
Moore–Penrose inverse, 36
Multipath propagation, 20
MVU, 34

N
Narrowband towed line array, 75
Neyman–Pearson (N–P) detector, 27
Non-acoustic region, 16
Non-parametric processor, 30
Non-white MVU, 35
Normalized dimensionless wavenumber, 15
Normal-mode model, 3
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O
Observability, 6
Observability matrix, 84

P
Parametric processor, 30
Particle filter, 51, 54–55
Passive synthetic aperture, 77
Periodogram, 22
Phase shift beamformer, 13
Phase unwrapping, 90
Planar array, 17
Plane wave, 16
Posterior probability, 55
Preprocessor, 94
Prewhitening transformation, 35
Probability density function, 4
Probability of detection, 28
Probability of false alarm, 28
Product theorem, 11, 17
Projected aperture, 23
Projected planar array, 24
Pseudocode, 80
Pseudoinverse, 36
Pure tone, 82

R
Random walk, 78
Receiver operating characteristic (ROC), 30
Receiving arrays, 9
Recursive Bayes rule, 53
Recursive estimator, 42
REMUS vehicle, 94
Replica correlator, 30
Residual, 71

S
Sample rate, 46, 89
Sample variance, 82
Separable equation, 98
Sequential importance resampling (SIR), 55
Sequential importance sampling (SIS), 55
Sidelobes, 12
Sigma points, 64, 65, 67
Signal vector, 18, 21
5% Significance level, 107
Single hydrophone case, 83
SIR. See Sequential importance resampling

(SIR)

SIS. See Sequential importance sampling (SIS)
Spatial Fourier transform, 14
Spatial frequency, 11
Spatially uncorrelated noise, 19
Spatial spectral line, 105
Spatial uncertainty relation, 12
Speckle noise, 108, 109
State error covariance, 106
State space, 45
State transition matrix, 78, 79
Steered array, 13
Steering vector, 95
System noise, 48

T
Temporal Fourier transform, 15
Three-dimensional array, 23, 24
Threshold, 29
Time delay, 11, 13, 85
Time domain beamformer, 14
Trace of a matrix, 70
Transmitting arrays, 9
Tuning parameters, 105

U
UKF. See Unscented Kalman filter (UKF)
UKF algorithm, 69, 72
Unscented Kalman filter (UKF), 64
Update equation, 54

V
Variance, 32
Vector calculus chain rule, 34
Vector gradient chain rule, 58
Virtual DFT, 93, 96

W
Wavefront curvature, 88
Wavenumber, 11, 76, 98
Weighted least squares, 37
Weighted sum square residual (WSSR), 108
Whiteness test, 108
WSSR. See Weighted sum square residual

(WSSR)

Z
Zero mean test, 107
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