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Preface

The book is devoted to the spectral theory of the multidimensional Schrodinger
operator L(q) generated in L,(R?) by the differential expression

— Au(®) + g(D)u(x),

where x € Rd, d>?2 and q is a real periodic, relative to a lattice €2, potential. This
operator describes the motion of a particle in the bulk matter. To describe the brief
synopsis of the book let us introduce some notations and recall some well-known
definitions. It is well known that the spectrum of L(g) is the union of the spectra
of the operators L;(gq) for t € F* generated in Ly(F) by the same differential
expression and the conditions

u(x + w) = €u(x), Yo € Q,

where (-, -) is the inner product in RY, 7 is a crystal momentum (quasimomentum),
F=:R%/Q and F* =: R?/T" are the fundamental domains (primitive cells) of the
lattices 2 and T respectively, and

I={§eR’: (§,0) € 217,V € Q}

is the reciprocal lattice, i.e., is the lattice dual to . The spectrum of L,(q) consists
of the eigenvalues

A](l‘) < Az(l) <...
These eigenvalues are called the Bloch eigenvalues. They define functions

Ayt — Ay(r) for n=1,2,... of ¢ that are called the band functions of L(g).
The n-th band function A, is continuous with respect to ¢ and its range

8, =: {An(t) :t € F'}

vii



viii Preface

is the n-th band of the spectrum o(L(g)) of L(q) :
a(L(q)) = U, 8-

The eigenfunctions of L,(q) are known as the Bloch functions.

The book consists of five chapters. The first chapter presents preliminary defi-
nitions and statements to be used in the next chapters. Besides, we give a brief
discussion of what is known from the literature and what is presented in the book
about the perturbation theory of L(q). In the second chapter, first, we obtain the
asymptotic formulas of arbitrary order for the Bloch eigenvalue and Bloch function
of the periodic Schrédinger operator L(q) of arbitrary dimension, when the corre-
sponding quasimomentum lies far from the diffraction hyperplanes

Ds =:{x¢€ R? : |x|2 =|x+ 5|2}

for small values of §. Then we study the case, when the corresponding quasimo-
mentum lies near a diffraction hyperplane and gets the complete perturbation theory
for the multidimensional Schrédinger operator with a periodic potential. Moreover,
we construct and estimate the measures of the isoenergetic surfaces in the high
energy region which implies the validity of the Bethe-Sommerfeld conjecture for
arbitrary dimension and arbitrary lattice. This conjecture was formulated in 1928
and claims that there exist only a finite number of gaps (the spaces between the
bands 8, and 8,4 for n = 1,2,...) in the spectrum o(L(g)) of L(g). Note that the
construction of the perturbation theory of L(g) is connected with the investigation
of the complicated picture of the crystal diffraction. The regular perturbation theory
does not work in this case, since the Bloch eigenvalues of the free operator are
situated very close to each other in the high energy region.

In the third chapter, using the asymptotic formulas obtained in the second
chapter, we determine constructively a family of the spectral invariants of L(g) from
the given Bloch eigenvalues. Some of these invariants are explicitly expressed by
the Fourier coefficients of the potential which present the possibility of determining
the potential constructively by using the Bloch eigenvalues as the input data.

In the fourth chapter, we consider the inverse problems of the three-dimensional
Schrdédinger operator with a periodic potential g by the spectral invariants obtained
in the third chapter. First, we construct a set of trigonometric polynomials which is
dense in the Sobolev space W5(F), where s > 3, in the C*- topology and every
element of this set can be determined constructively and uniquely, modulo inver-
sion x — —x and translations x — x4+t for T € R?, from the given spectral
invariants that were determined constructively from the given Bloch eigenvalues.
Then a special class V of the periodic potentials is constructed, which can be easily
and constructively determined from the spectral invariants and hence from the given
Bloch eigenvalues. Moreover, we consider the stability of the algorithm for the
unique determination of the potential g € V of the three-dimensional Schrodinger
operator with respect to the spectral invariants and Bloch eigenvalues.

In the fifth chapter we summarize our results from the point of view of both
physicists and mathematicians. I am thankful to Claus Ascheron and Peter Wolfle
for their advices that help to improve the readability of the book.
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Chapter 1
Preliminary Facts

Abstract In this chapter we present some definitions and statements from the points
of view of both physicists and mathematicians to be used in the next chapters. We
mean especially the definitions of the lattices, periodic functions, Brillouin zones,
Schrodinger operator, Bloch eigenvalues, Bloch functions, diffraction planes, band
structures and Fermi surfaces. Moreover, we try to explain the transition between
these notions due to the understanding of the physicists and mathematicians. Besides,
we give a brief discussion of what is known from the literature and what is presented in
the book about the perturbation theory of the multidimensional Schrédinger operator
with a periodic potential. For this aim we consider the large Bloch eigenvalues and the
corresponding Bloch functions of the one-dimensional periodic Schrodinger operator
by the approach of Chap. 2, since it helps to compare the well-known one-dimensional
case with the multidimensional case and to see the complexity of the results obtained
in this book.

1.1 Lattices, Brillouin Zones, and Periodic Functions in R?

The structure of the crystals can be described in terms of the lattice (called in geometry
and crystallography, a Bravais lattice), with a group of atoms attached to every lattice
point. The Bravais lattice in

RY =: {(xl‘xz,...,xd):xl eR, xxeR,..., xdGR},

where R is the set of all real numbers, is defined by d linearly independent vectors
w1, w2, ...,wq. In the case d = 3 these vectors are known as fundamental trans-
lations vectors such that every atomic arrangement looks the same in every respect
when viewed from the point r as when viewed from the point

3
r+ Z nkW,
k=1

© Springer International Publishing Switzerland 2015 1
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2 1 Preliminary Facts

where n,ny and n3 are integers. The lattice 2 generated by the vectors wi,
wy, ...,wq 1s the set of all linear combinations of these vectors with the integer
coefficients:

d
Q:{w:anwk:meZ, HQGZ,...,ndGZ], (1.1.1)
k=1

where Z is the set of all integers. The vectors wy, w», . . ., wy used for the generation of
2 are known as the primitive vectors or basis vectors for the lattice. The parallelotope
(d-dimensional parallelogram)

d
F= [X = Zykwk y1€[0,1), y2€10,1),...,yq4 €10, 1)] (1.1.2)
k=1

is called the fundamental parallelotope or the primitive unit cell of the lattice. In
the cases d = 2 and 3 the parallelotope F is the parallelogram and parallelepiped,
respectively. It has the origin in R4 as one corner and the vectors W1, W2, v n., Wy
form the sides which meet at that corner. Thus a crystal is characterized by its
regular periodically repeated structure. The smallest unit of this structure is called
the primitive unit cell. The primitive cells (parallelotopes) are joined together filling
the entire volume and giving rise to the periodicity of the crystal lattice.

The measure p(F) (generalized volume) of the parallelotope F is equal to the
absolute value of the determinant of the d x d matrix (w;, ;) created from the d row
vectors

w = (W1,1, W1,25 - - -5 wid), w2 = (W2,1, w22, ..., W2.d)s s W = (Wd,1,Wd,2, -+ Wd,d)-

Everywhere, for simplicity of notation and without loss of generality we assume that
the generalized volume (measure u(F)) of the parallelotope F is equal to 1. Thus

p(F) = |det(w; )| = 1. (1.1.3)

There are infinitely many choices for the basis vectors and hence for the unit cells.
In other words, the set of generators for a lattice is not uniquely determined. It is
well-known that the vectors by, ba, ..., by are the other generators of 2 if and only
if there is a d x d matrix A = (a;, ;) with integer matrix elements and |det A| =1

such that
d
b,' = Zai,jwj
j=1
fori = 1,2,...,d. Therefore, condition (1.1.3) is not a restriction for the choices

for the basis vectors of the lattice 2.



1.1 Lattices, Brillouin Zones, and Periodic Functions in R? 3

Note that when F is translated through all the vectors in the lattice €2 fills all of
the space RY without overlapping. Therefore the fundamental domain (unit cell) F
of the lattice © can be identified with the factor space (quotient group) R¢ /€2 which
is the set of equivalent classes, where the equivalence of two elements x and y of
R¢ is defined as follows: we say that x and y are equivalent if x — y € . Thus
any measurable set M that contains, for each x € RY, exactly one representative of
the set

x+Q={x+y:yeQ}

is called a unit cell of the lattice Q. It is also clear that R¢/ is a d-dimensional
torus (direct product of d circles).
We say that a function f : RY — C is periodic with respect to the lattice €2 if

fx+w) =)

for all w € Q, where x = (x1,x2,...,Xq) € R4 and C is the set of all complex
numbers. Note that the periodic function f can be regarded in this case as a function
on the torus R?/ 2. It is clear that the wave function ¢/("*) is periodic with respect
to the lattice Q2 if and only if

(v, w) € 27Z, (1.1.4)

for all w € 2, where v € R and (-, -) is the inner product in RY. The set of all
vectors v € RY satisfying (1.1.4), that is,

= {yeR?: (v,w) € 27Z,Vw € Q} (1.1.5)
is the lattice dual to 2 and is called the reciprocal lattice. The basis vectors of the
reciprocal lattice I" are the vectors 71, 72, . . ., Vg satisfying

(Vi,wi) =21 & (vi,wj) =0 (1.1.6)

fori, j =1,2,...,dand j # i. Thus the fundamental parallelotope of the lattice I"
is

d
F* = [u} => @y a1 €00.1), az €10, 1), ..., a4 €10, 1)]. (1.1.7)
k=1

As we noted above, F* can be identified with the fundamental domain R/ T" of the
lattice I'.

The other and famous fundamental domains (unit cells) of the reciprocal lattice
I' are the Brillouin zones. The first Brillouin zone (called Brillouin zone) of IT" is
defined to be the set of points x € R in reciprocal space which are nearer (not
necessarily unique) to the origin than any point x 4+ v with v € I" and v # 0.



4 1 Preliminary Facts

The nth Brillouin zone is the set of all points x in the reciprocal space which have
the origin as their (not necessarily unique) nth nearest point of the set

x+F:{yeRd:y:x+'y,’yeF}. (1.1.8)

Note that any interior point of the nth Brillouin zone is the unique nth nearest point.
If the several points of (1.1.8) are the nth nearest points (i.e. are equidistant from the
origin) then these points belong to the boundaries of the Brillouin zones and only
one of them belongs to the nth Brillouin zone.

It readily follows from this definition the following properties of the Brillouin
zone:

(a) All zones have equal volumes,

(b) Each zone can be translated into the first zone so as to fill it exactly by
translating different pieces of the zone by appropriate reciprocal lattice-vectors.

(c) For arbitrary fixed n the nth Brillouin zone contains unique element from any
equivalent classes defined as follows: x and y are equivalent if x — y € I'. Therefore
the Brillouin zones can be identified with the fundamental domain R? /T of the
lattice T".

The geometrical description of the Brillouin zones will be given in Sect. 1.3.

Now let us give the brief description of the problem discussed above. The recip-
rocal lattice vectors are the special wave vectors  for which the free electron wave
function ¢! ¥ is periodic with respect to the direct lattice. The wave vectors having
this property will be said to belong to the reciprocal lattice. The primitive vectors
Y1, 72, - - -, Ya of the reciprocal lattice can be generated from the primitive vectors
w1, w2, ..., wy of the direct lattice by the equalities (1.1.6). A crystal is made up of
a periodic arrangement of one or more atoms (the basis) repeated at each Bravais
lattice point. Consequently, the crystal looks the same when viewed from any equiv-
alent lattice point, namely those separated by the translation of one unit cell. Every
periodic function is associated with a Bravais lattice. You can think of the function
as being defined in a primitive unit cell and then repeating the primitive unit cell at
every point of the Bravais lattice.

As we noted above the wave function ¢! ¥ is periodic, with respect to the lattice
2, if and only if v € T". One can easily verify that the system

{eW) L ye r} (1.1.9)

is an orthonormal basis in the Hilbert space L, (F) of square integrable functions
with the inner product

(F.9) = [ Feoatids.
Indeed, by (1.1.3) we have

. 2 .
el("/,X} — e (7.x)

2
dx:/ ldx = u(F) =1,
F
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where ||-|| is the norm in the space L, (F') defined by

12
||f||=(/F|f(x)|2dx) .

The orthogonality of the system (1.1.9) means that

(eiwx}’ e"ﬁ»x)) :/ d0X gy — 0
F

for all ¥ # v, where § = v —7 € . The last integral can be calculated by using the
substitution

(X1, %2, ..., Xq) < (Y1, Y2, - -5 Yd)»
where yi, y2,...,yq equal to the coefficients of the expansion x in the basis
w1, w2, ..., wq [see (1.1.2)] and by (1.1.2) this substitution transforms the parallelo-

tope F to the cube [0, l)d. Moreover the Jacobian J of this substitution is nonzero
since the vectors wi, wo, ..., wy are linearly independent. Therefore using

d
x:Zykwk (1.1.10)
k=1

and taking into account that § € I'\ {0}, that is,

d
§=> mmn
k=1

where ny, na, ..., ng are integers and at least one of them is not zero we have

11 1
/ei<5’x>dx = IJI//.../eﬂ“"‘y‘eizmzn...eizm‘””’dxldxz...dxd =0.
F

0 0 0

Since the system
{eizmlyleizmzyz. LAY e Ty €7, ... ng € Z}

is complete in Ly ([0, I ), the above substitution shows that (1.1.9) is complete in
the Hilbert space L, (F) and hence is an orthonormal basis. Therefore every function
q € Lo (F) has the decomposition

g(x) = queiﬁ’*”, (1.1.11)

yel
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where

4y = (q, e"”v”) = / q)e™ " dx
F

for v € I' are the Fourier coefficients of ¢ with respect to the orthonormal system
(1.1.9) and the Fourier series (1.1.11) converges to g in the norm of L, (F). If

D lgyl < oo,

yel

then the series (1.1.11) converges uniformly to the periodic function g.
The smoothness of g depends on the Fourier coefficients. For simplicity, let us
first consider the case d = 1. Let 2 = Z. Then I' = 27Z and the system

(™% . p e 7) (1.1.12)

is the orthonormal basis in L;[0, 1]. Using the integrations by part, one can readily
see that if the sth derivative of the periodic functions g of period 1 belongs to L»[0, 1]

then the Fourier coefficient q,(f) of ¢ with respect to (1.1.12) satisfies the equality
(s) __. —s
g, =:2mn)"qn

where X
n =/ q(x)e” " dx
0

is the Fourier coefficient of ¢g. Therefore the periodic function g belongs to the
Sobolev space

W3[0, 1] = {f C 9 e Ly[0, 1]}

if and only if

> 127 |gul* < oo
nez

Similarly for arbitrary dimension d the relation ¢ € W3 (F) for the periodic, with
respect to the lattice €2, function ¢ means that

> gy P> < o0

yel
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1.2 Schrodinger Operator and Bloch Functions

The energy operator is often referred to as the Hamiltonian and it is also called (in
nonrelativistic quantum mechanics) the Schrodinger operator. The Schrodinger oper-
ator with a periodic potential arises in the quantum theory of crystals and describes
the motion of a particle in the crystal. The ions forming a crystal lattice 2 actually
generate a periodic field and one can examine the motion of a electron in this field.
Thus if V(x) is the potential seen an electron at x then V (x + w) = V(x) for all
w € Q. The wave function u(x) of the electron placed in the periodic potential V
must satisfy the Schrodinger equation

2

—h—Au(x) + V(x)ulx) = Eu(x),
2m

where

0%u

X<

)

d
Au = Z
j=l1

&5
~.

h is Planck’s constant, m and E are respectively the mass of the electron and its
energy eigenvalue.
In the mathematical literature the Schrédinger equation is written in the form

—Au(x) + g(x)u(x) = Au(x), (1.2.1)

where
2m 2m

The Schrodinger operator L(g) with a real periodic, relative to a lattice €2, potential
q is defined in space L>(R?) as follows, where L, (R?) is the Hilbert space of square
integrable functions with the inner product

(f, i = / F )T,
Rd

Let D be the set of all functions u € Lz(Rd) such that
(1) v is compactly supported, that is, the set

{x eRY: £(x) ;éo}

is a bouélded closed subset of R,
(ii) a—u exists and is an absolutely continuous functionof x; for j = 1,2, ...,d,
Xj
(iii) —Au + qu € Ly(RY).
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Let L(g) be an operator defined in D by
Lo(q)u = —Au+ qu.

One can readily verify that L°(g) is a symmetric operator, that is,

(L@fg),, = (£ L°@9),,
for all f, g € D. The Schrodinger operator (Hamiltonian) L(q) is the self-adjoint
extension of L°(g). The existence and uniqueness of the extension are well-known
(see [BeShu)).

Now we consider the connection of the Hamiltonian L(g) with the Bloch Func-
tions. Recall that Bloch wave or Bloch state, named after Felix Bloch, is the wave
function of a particle (usually, an electron) placed in a periodic potential g. Bloch’s
theorem states that for a particle moving in the periodic potential, the wave functions
W (x) are of the form

W(x) =€ " px), (1.2.2)

where p(x) is a periodic function with the same periodicity that the potential g
hasand 7 € R? is a crystal momentum (quasimomentum). The exact form of p(x)
depends on the potential associated with atoms (ions) that form the solid. The motion
of an electron in the free space, where the potential g is zero everywhere, is described
by the simplest form of the Schrodinger equation

—Au(x) = \u(x)

and the wave function ¢! {""*) is the solution of this equation, since

_Aei(t,x) — |t|zei(f,x>.

Thus by Bloch’s theorem the wave function W (x) of the electron in the periodic
potential is the product of the wave function ¢/ "*) of the electron in the free space
and the periodic function p(x). The wave function expressed by Eq.(1.2.2) is called
the Bloch wave or Bloch state.

The Bloch’s theorem is very important, since by applying this theorem, the wave
function in a macroscopic crystal containing as many atoms as the Avogadro number
can be determined by solving the Schrédinger equation into which information from
just one unit cell is inserted.

One of the often used (in mathematics) forms of Bloch’s theorem is the following
(see [Eas]):

Theorem (Bloch) Let S consist of the real numbers A for which the Eq. (1.2.1) has
a non-trivial bounded solution in R?. If A € S then (1.2.1) has a solution W, (x, A)
of the form

U, (x, A) = 'Y p(x), (1.2.3)
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where p is a periodic function having the same periodicity that the potential q has,
the vector t € R? in (1.2.3) is called a crystal momentum (quasimomentum) and S
is said to be stability set of the Eq.(1.2.1)

The solution of (1.2.1) of the form (1.2.3) is called the Bloch solution of (1.2.1)
(see [Ku]). It readily follows from (1.2.3) thatif w € 2, where €2 is the period lattice
of the potential ¢ and hence of p, then

lIJ,(x +w’ A) — ei(l,x-Hd)p(x +w) — ei([,x)ei(l,w>p(x) — ei(l,uJ)\IJt(x’ A)

Therefore the Bloch solution W, (x, A) of (1.2.1) can be considered as an eigenfunc-
tion of the eigenvalue problem (1.2.1) and

wx 4+ w) = By (x) (1.2.4)

forall w € Q. Conversely, if W (x, A) is an eigenfunction of this eigenvalue problem
then by (1.2.4) we have
W (x +w, A =[¥(x, A

for all w € Q. It implies that W (x, A) is bounded in R and by Bloch’s theorem has
the form (1.2.3), that is, W (x, A) is the Bloch solution of (1.2.1). Thus W(x, A) is a
Bloch solution of (1.2.1) if and only if it is an eigenfunction of the eigenvalue problem
(1.2.1) and (1.2.4) for some values of the quasimomentum ¢ € R4 The corresponding
eigenvalue A (¢) is called the Bloch eigenvalue for the crystal momentum z. In other
words, the Bloch eigenvalue A () and Bloch function W, (x, A) for fixed crystal
momentum ¢ are the eigenvalue and eigenfunction of —A + g acting on the space

{ue HL®Y) utr +w) = o, vw € 2},

where Hﬁ)c (R?) is the space of locally square integrable functions u such that 9%,
for || < 2, is also locally square integrable.

In the language of the operator theory the Bloch eigenvalue A(¢) and Bloch
function ¥; (x, A) for fixed crystal momentum ¢ are the eigenvalue and eigenfunction
of the differential operator L;(q) generated in L (F') by the differential expression

—Au(x) + g(x)u(x) (1.2.5)

and the boundary conditions (1.2.4), where in the writing the boundary conditions
in the form (1.2.4) we take it that the eigenfunction u is extended to the whole R4
as continuously differentiable functions. More precisely, the operator L;(g) can be
defined in L, (F) as the differential operator generated by (1.2.5) and the boundary
conditions

u(x +wj) = e Nulx), uy, (x + wj) = e iluy (x) (1.2.6)
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forx € f(j) andj =1,2,...,d, where F is the closure of the parallelotope (1.1.2),
that is,

d
F = {x => w1 €10, 1], y2 € [0 1], ... ya € [0, 1]} (1.2.7)
k=1

is the closed parallelotope,

F(p=jx= D ww:ynel01,yel01] ...,y €0,1]
kefl,2,...d\{/}
(1.2.8)
is the face of the boundary OF of the parallelotope F generated by
W1, W2, e W1, Wi, Wjg2, ..., wg and Uy; =: g—;‘j is the derivative of u with

respect to the variable y; defined by (1.1.10) [see also (1.2.7)].

Note that the boundary conditions (1.2.6) mean that the values of w and uy; on
the face w; + F(j) of OF are equal to ¢/} times of their values on opposite face
F(j). The boundary conditions (1.2.6) are equivalent to the conditions (1.2.4) if, as
we noted above, in the writing the boundary conditions in the form (1.2.4) we take it
that the eigenfunction u is extended to the whole R? as continuously differentiable
functions. Therefore in the next chapters for simplicity we say that the operator L;(q)
is generated in L, (F) by the differential expression (1.2.5) and boundary conditions
(1.2.4). Thus the operator L, (q) is defined as follows. Domain of definition D(L,(q))
of L;(g) is the set of u € Lz(f) such that:

(a) v exists and is an absolutely continuous function of x; for j = 1,2,...,d,
Xj

(b) —Au + qu € Ly(F),

(c) u satisfies the boundary conditions (1.2.6).

For uw € D(L;(q)) the operator L;(q) is defined by

Li(@)u = —Au+ qu

It is well-known the following statements about the spectral properties of L;(g)
and L(q):
Theorem (On the spectra of the operators L;(q) and L(q)).
(a) The spectrum o(L;(q)) of the operatorL,(q) is discrete and consists of the
eigenvalues
A1) < Aa(f) <--- (1.2.9)

such that A j(t) — oo as j — o0 which are the Bloch eigenvalues with the fixed
quasimomentum t. The corresponding normalized eigenfunctions (Bloch functions)
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\IJ],[()C), \p2,l(x)9 e

form an orthonormal basis in Ly(F).
(b) The function A, is continuous with respect to t and its range

o =: {An(t) 11 € F*},

where F* is the fundamental parallelotope of the reciprocal lattice T, is a closed
interval of R..

(¢) The operator L(q) has no eigenvalue and has only the continuous spectrum.
The spectrum o(L(q)) of the operator L(q), the stability set S defined in the above
formulation of Bloch’s theorem, and the union of the spectra of the operators L;(q)
fort € F* are the same, that is,

oL@ =S=Jow@n=J ( {An(o}): Ud. @210
n=1 n=1

teF* teF*

Thus o (L(q)) consists of the intervals 6, forn = 1, 2, ..., thatare called the band
of the spectrum of L(q). The spaces between neighboring bands are called the band
gaps or the gaps in the spectrum of L(g). In the physical literature these bands and
gaps are named as energy bands (allowed regions of energy) and forbidden regions
of energy respectively

Note that the rigorous proof of this theorem can be found in [Eas] (see also [BeShu,
ReSi]). First the physicists observed that the spectrum of L(g) has a band structure
[SomBe, Ki, Mad]. The eigenfunctions Wy ;(x), Wi ;(x), ..., of L;(g) for all values
of the quasimomentum ¢ are the Bloch waves [Bl]. For the multidimentional case
Gelfand proved Parseval’s relation for the Bloch waves in Lz(Rd) [Gel]. Oder and
Keller [OdKe] proved that the spectrum of L(g) is the union of all Bloch eigenvalues
Aq(t), Ax(2), ..., for all ¥ € F*. Thomas [Th] proved that the spectrum of L(g)
is absolutely continuous. Wilson [Wi] studied the analytic properties of A,(¢) as a
function of the quasimomentum ¢.

Now let us discuss this theorem from the point of view of the mathematicians
and physicists. The statement (a) follows from the fact that L,(g) is a self-adjoint
operator defined in a bounded region of R?.

Now we discuss (b). The function A, is continuous with respect to ¢ due to the
following. Let P, (x) be a function defined by

Py(x) = e 00, (x), (1.2.11)
where W, ;(x) is the eigenfunction of L;(g) corresponding to the eigenvalue A, (t),
that is,

— AW, (x) + g(X) Wy 1 (x) = Ap (D)W (x), (1.2.12)

U, (x +w) =0, (x), Vo € Q. (1.2.13)
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Using (1.2.11), (1.2.12), and (1.2.13) one can easily verify that P,(x) satisfies the
following equalities

—APy(x) = (2it, V) Py(x) + (1, 1) Po(x) + q(x) Py (x) = An (1) Po(x)

and
Py(x +w) = Py(x) (1.2.14)

for all w € Q. Hence A,(t) is the eigenvalue of the operator generated by the
operation
—A—(2it,V)+(t,t) +¢q (1.2.15)

and the periodic boundary conditions. Since the periodic boundary conditions do not
depend on ¢ and the operation (1.2.15) continuously depends on ¢ the eigenvalue
A, (t) also continuously depends on ¢. Therefore its range

o =: {An(t) 11 € F*}, (1.2.16)

where F* is the fundamental parallelotope of the reciprocal lattice T, is an interval
of R. The closedness of §,, will be discussed later.

Now let us discuss (c¢). The operator L(q) is associated with the whole space R4
and by the Floquet theory (see [Ku]) the Schro dinger equation (1.2.1) has no solution
belonging to L(R?). Therefore L(g) has no eigenvalue. In fact, the numbers A, (1)
are not the eigenvalues of the operator L(g) since the corresponding Bloch solutions
W, ;(x) do not belong to Ly (R?) and by definition, A is an eigenvalue of the operator
L(q) if there exists

W e D(L(g)) C La(RY)

such that
L(g)¥V = AV. (1.2.17)

Therefore Bloch eigenvalues are called the generalized eigenvalues of the operator
L(g). However, in some literatures A, (¢) is named as an eigenvalue of L(g); that is
natural, say, in the following sense. Instead of the operator L(g)) in whole space RY
one can consider an operator L(g, n) in the very large parallelotope

d
Fn= [X = Zykwk 2y1 €[—n1,nil,y2 € [=np,n2], ..., yq € [—nd,nd]} ,

k=1
(1.2.18)
with the periodic boundary conditions, where n = (ny,nz,...,ng) ancl ni,
ny, ..., nq are large positive integers. Due to the fact that R? is a limit of F, as
nj — oofor j =1,2,...,d, the eigenvalues of the operator L(g, n) or the limit

points of its eigenvalues can be named (in some sense) the eigenvalues of L(g).
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Moreover using this argument, it was proved that (see [Eas]) the set of limit points,
of the eigenvalues of L(g,n) as n; — oo for j = 1,2,...,d, coincides with
0(L(g)). On the other hand, using another argument one can see that the set of
all eigenvalues of L(g,n) and their limit points as n; — oo for j = 1,2,...,d,
coincide with the set of Bloch eigenvalues

{An(t) 11 € F*,n e N}.

These arguments encourage to believe the validity of (1.2.10).

To be more precise let us define the operator L(g, n) precisely. Moreover con-
sideration the Schrodinger operator in the bounded and large parallelotope Fy is
interesting, since an electron in a metal must be confined in a bounded space. The
effect of a finite size of a system on the motion of an electron must be taken into
account. The electron wave function u(x) is assumed along the parallelotope Fp,.
Since macroscopic crystal contains as many atoms as the Avogadro number it is
interesting to consider the large parallelotope Fn which means that ny, na, ..., ng
are large numbers. Let us impose the periodic boundary conditions

u(x +2njw;) = u(x), Uy, (x +2njw;) = Uy; (x) (1.2.19)

on this parallelotope for x € Fn(j) and j = 1,2,...,d, where fn(j) is the face
of the boundary OFy of the parallelotope Fn which is parallel to F( J) [see (1.2.8)]
and passes through the point —n jw; and the variable y; is defined by (1.1.10). Note
that the boundary conditions (1.2.19) means that the values of « and Uy, on the face
Fn(j) of the parallelotope F, are equal to their values on the opposite face.

Let L(g,n) be an operator generated in Ly(Fy) by the differential expression
(1.2.5) and the boundary conditions (1.2.19). Since L(g, n) is associated with the
bounded domain F,, of R? its spectrum is discrete and consists of the eigenvalues.
One can readily verify that the set of the eigenvalues of L(qg, n) are the union of the
Bloch eigenvalues A, (t) forn € Nand ¢ € A(n), where

vj kj=0,1,....2n;;j=1,3,...,d}. (1.2.20)

N|N‘

d
A(n) = Z

Indeed, if u(x) satisfies the first condition of (1.2.6) for r € A(n), then applying it
2n; times and using (1.1.6) we obtain that

21k

],2n]w] u(x) =e"“"u(x) = ulx),

N|;\N

d
u(x +2njw;) =exp Z

that is, the first condition of (1.2.19) holds. In the same way one can show that the
second condition of (1.2.6) implies the second condition of (1.2.19). The proof of
the converse statements are similar (see [Eas]). Thus we have
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a(Lg.m) = ] (L)) (1.2.21)

teA(n)

Denote by X the union of the spectrum o(L(g, n)) of the operators L(g,n) for
n e N Itis clear that the closure T of X is the set of all limit points of the spectrum
o(L(g,m)) asn; — oofor j =1,2,...,d. Since, as we noted above, the set of
these limit points is o(L(q)), we have

Y =o(L(g)). (1.2.22)

On the other hand, taking into account that the set of all limit points of

k
{—:k:O,l,...,2n]
2n

as n — oo is [0, 1] and using the equalities (1.2.20) and (1.1.7) one can readily
see that the set of all limit points of A(n) asn; — oofor j = 1,2,...,d is F*.
Therefore (1.2.21) and the continuity of the function A, (¢) on F* show that

Y= U o(Li(q)). (1.2.23)

teF*

Thus we tried to explain the reason of the well-known equalities

S=J oLi@) =T =o(Lg)). (1.2.24)

teF*

Now let us discuss the well-known mathematical statements described above and
some properties of the Bloch eigenvalues A, (¢) and the Bloch functions W, ; (x) from
the point in view of physicists. Considering A, (¢) as an eigenvalue of the boundary
value problem (1.2.1) and (1.2.4) and taking into account that for any v € I, where
I" is the reciprocal lattice, the equality

ei(t+’y,w) — ei(z,w) (1.2.25)
holds, we obtain
Ap(t+y) = A1) (1.2.26)
and
"I’n,t+'y(x) =Y, ,(x) (1.2.27)
forall v e T.

By (1.2.26) for given n the energy eigenvalue A, (¢) is periodic with periodicity of
areciprocal lattice. The energies A, (¢) associated with the index n vary continuously
with the wave vector ¢t and form an energy band §, identified by the band index n.
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All distinct values of A, (¢) occur for z-values within the fundamental domain R? /T
of the lattices I', say within the first Brillouin zone or the unit cell (fundamental
parallelotope F*) of the reciprocal lattice. In (1.2.26) replacing « by «; for j =
1,2,...,d and using (1.1.7) we see that A, () takes the same values in the opposite
faces of the closed parallelotope F*. Therefore the bands o, forn =1,2,..., of
the spectrum of L(gq) are closed intervals, since they are the images of the closed
parallelotope F* under the continuous function A, (7). These intervals are allowed
zones of energy and the spaces between the neighboring intervals are forbidden
zones.

The Bloch wave energy eigenstate W,, ; (x) is written with subscripts n and t, where
n is a discrete index, called the band index, which is present because there are many
different Bloch waves with the same quasimomentum ¢ (each has a different periodic
component p). Within a band (i.e., for fixed n), W, ,(x) varies continuously with ¢,
if its energy A, (¢) is a simple eigenvalue. Since (1.2.27) holds for any reciprocal
lattice vector 7, all distinct Bloch waves occur for ¢-values within the first Brillouin
zone of the reciprocal lattice.

Suppose an electron is in a Bloch state W, ;(x). It follows from (1.2.11), (1.2.14),
and (1.2.25) that

W, (x) = NPy (x) = TP, L (x), (1.2.28)

where P, and P, - for v € I' are periodic with the same periodicity as the crystal
lattice €2. Thus the actual quantum state of the electron is entirely determined by
W, +(x), not ¢ or P,(x) directly, since ¢ or P,(x) are not unique. Indeed, if W, ;(x)
can be written as above using ¢, it can also be written using ¢ + v, where + is any
reciprocal lattice vector [see (1.2.27)] and this replacement changes the periodic
component P, (x) in (1.2.28).

Equality (1.2.27) shows that the wave vectors (quasimomenta) that differ by a
reciprocal lattice vector are equivalent, in the sense that they characterize the same
set of Bloch states. The first Brillouin zone is a restricted set of wave vectors with
the property that no two of them are equivalent, yet every possible wave vector is
equivalent to one (and only one) vector in the first Brillouin zone. Hence, if we restrict
to the first Brillouin zones, then every Bloch state has a unique ¢. Therefore the first
Brillouin zone is often used to depict all of the Bloch states without redundancy, for
example in a band structure, and it is used for the same reason in many calculations.

1.3 Band Structure, Fermi Surfaces and Perturbations

In Sect. 1.2 we discussed the description of the levels of an electron in a periodic
potential in terms of a family of continuous functions A, (¢) called as the band
functions. For each n, the set of electronic levels specified by A, (¢) is called an
energy band. The information contained in these functions for different n and ¢ is
referred to as the band structure of the solid. The electron in the free space corresponds
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to the Schrodinger operator with zero potential. In the case ¢ = 0 the eigenvalues
and eigenfunctions of L,(g) are |y 4 | and ¢/ "*:¥) for v € T, since

— AN = |y 4 g2t )
the function ¢/ (V1*) satisfies (1.2.4) and the system
{e"(ﬂ”"'[’x> 1y E F}

is an orthonormal basis in L (F).

(i) Diffraction hyperplanes and Brillouin zones. The eigenvalue |y + 7| of
L(0) coincides with the other eigenvalue |y + ¢ + |2, that is, |y + t|2 is a multiple
eigenvalue of L, (0) if and only if v + 7 belongs to the diffraction hyperplane

Ds=:{x e RY: x> = |x + 6%} (1.3.1)

forsome § € I'. By (1.3.1), x € Dy if and only if the points x and x + d have the same
distance from the origin. Therefore Dy is the hyperplane normal to the reciprocal
lattice vector —¢ at their midpoint. Moreover by the same reason D is the boundary
of the Brillouin zones defined in Sect. 1.1. The diffraction hyperplanes play a crucial
role in the perturbation theory. Let us have a look the diffraction hyperplanes and
Brillouin zones in the following cases:

Case 1. d = 1. Consider the case of one-dimensional Schrodinger operator L(g)
with a periodic, with respect to the lattice Z, potential g. Then the reciprocal lattice
is 277 and the solution of the equation

Ix|? = |x + 270/

in R is the point 7n. Thus in this case the diffraction hyperplanes are the points
7n for n = =1, £2, ... that are the boundaries of the Brillouin zones. The first
Brillouin zone is (—, w]. The second Brillouin zone is (7, 27] U (=27, —7] and
the nth Brillouin zone is ((n — )7, nw] U (—nw, —(n — 1)m].

Case 2. d = 2. Let the reciprocal lattice I' be the two-dimensional lattice in R?
and ¢ be a vector of the lattice. Then x € Dj if and only if x lies in the line normal to
the vector —§ at its midpoints. Thus in this case the diffraction hyperplanes are the
lines normal to the reciprocal lattice vectors at their midpoints and the nth Brillouin
zone is the union of the polygons bounded by the diffraction lines.

Similarly in the case d = 3 the diffraction hyperplanes are the planes normal
to the reciprocal lattice vectors at their midpoints. Therefore the reciprocal space
is partitioned into polyhedra bounded by the planes normal to the reciprocal lattice
vectors at their midpoints. These planes are boundaries of the Brillouin zone. Hence
the Brillouin zone appears in reciprocal space as an assembly of polyhedra bounded
by the planes normal to the reciprocal lattice vectors at their midpoints.



1.3 Band Structure, Fermi Surfaces and Perturbations 17

(ii) Isoenergetic surface. The isoenergetic surface representing the momentum
distribution of the electrons is also constructed in reciprocal space. Note that the
isoenergetic surface I, (\) corresponding to the energy A refers to a constant energy
surface and is defined by

I,(N) ={t € F* : 3N, Ay(t) = A},

that is, I, () is the set of quasimomenta ¢ in the primitive cell F* of the reciprocal
lattice for which there exists a Bloch eigenvalue A y (7) coinciding with the constant
energy A, where the band function A y (¢) is defined in Sect. 1.2. This surface for some
special and important (in physics) value of X is called the Fermi surface. Since for
the free electrons (in the case ¢ = 0) the band functions are |+ |2, the isoenergetic
surface Ip(\) in this case is

Io(A) ={te F*:3y €T, |’y+t|2=p2}

which is the translation of the sphere {x € RY : |x| = p}, where A\ = p?, to the
primitive cell F* by the vectors of the reciprocal lattice I'. In fact this sphere can be
illustrated as the isoenergetic surfaces of the free electron.

(iii) Perturbation of the free electron. Now we discuss how the free-electron is
perturbed by the periodic potential and then demonstrate it in the one-dimensional
case (see iv). The effect of the periodic potential on the electron can be treated
in the reciprocal space in terms of the interaction of the isoenergetic surface with
the diffraction hyperplanes, that is, with the boundaries of the Brillouin zones. The
isoenergetic surface begins to be distorted from a sphere before making contacts with
the Brillouin zone planes. The gaps in the spectrum emerges as a result of distortion
of the isoenergetic surface in the diffraction planes. Recall that the spectrum of the
Schrodinger operator L(g) with a periodic potential consists of the energy bands
on forn = 1,2, ..., that are defined in (1.2.16) and named as the allowed bands.
The gap in the spectrum is the region between the energy bands d,, and ;4 and in
the physical literature is named the forbidden band or the energy gap. This means
that the electron is not allowed to take energies between the allowed bands ¢, and
dn+1 and, hence, there appears an energy discontinuity. Thus an energy gap appears
across the Brillouin zone plane. The isoenergetic surface becomes discontinuous,
being separated into pieces by the zone boundary. This means that a part of the
isoenergetic surface appears in the (n + 1)th zone but the rest remains in the nth
zone, leaving unoccupied states holes. It can be easily seen in the one-dimensional
case [see the example below in (iv)].

The formation of the energy gap can also be discussed from the point of view
of the diffraction phenomena of the Bloch wave. For this let us recall the Bragg
reflection. The quasimomentum ~y + ¢ is said to satisfy the Laue condition or the
Bragg condition if it belongs to the diffraction plane Dy for some , that is,
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Iy +11* = |y + 1t + 6%

The Bloch wave changes its direction due to the Bragg reflection.

In the following one-dimensional example we demonstrate both how the inter-
action of the isoenergetic surface with the diffraction hyperplanes and how the dif-
fraction phenomena of the Bloch waves result in the energy gap. Note that the band
structure calculation of a real lattice is much more complicated and this example
should be looked upon as a simple demonstration.

(iv) One-dimensional Model. Let H(g) be the one-dimensional Schrodinger
operator (named as Hill’s operator) generated in L, (—00, 00) by the expression

-y +q@)y, (1.3.2)

where ¢ is a real-valued function satisfying ¢ (x) = g(x + 1). Note that there are a
lot of books and papers about the one-dimensional case (see [DuSch, Eas, Le, MaVi,
Mar, Na, Ti] and the references on them), where the spectrum of H (g) is investigated
and the asymptotic formulas for the eigenvalues \ and the eigenfunctions W when
A — oo were obtained by different methods. Here we consider the large Bloch
eigenvalues and the corresponding Bloch functions of H (g) by the approach which
is useful for understanding the results of Chap.2. Moreover, it helps to compare
the well-known one-dimensional case with the multidimensional case and to see the
complexity of the results obtained in this book.
For simplicity assume that

1
sup |g(x)| =M < o0 &/ qg(x)dx = 0. (1.3.3)
x€l0,1] 0

Note that the first condition in (1.3.3) can be replaced by ¢ € L1[0, 1] (see [VeDe,
VeDu]) and the second condition is assumed without loss of generality. Thus the
period lattice of the potential g is Z and the reciprocal lattice is 27Z. As we stressed
above if the reciprocal lattice is 277 then the diffraction planes are the points 7wn for
n==1,42, ..., since the Bragg condition holds at them. We see below that this is
indeed the wave number at which the energy gap appears. Moreover we see readily
the cases when the plane wave ¢/ @™+0% is reflected and when it is not reflected by
the crystals.

Let us recall some well-known results about H (¢) that we use for the discussion
of this model. The spectrum o (H) of the operator H (¢q) is the union of the spectra
o (Hy) of the operators H;(q) fort € [0, 27), which are generated in L,[0, 1] by the
expression (1.3.2) and the ¢-periodic boundary conditions

y(1) = €"y(0), y'(1) = €y (0).

In the case ¢ = 0 the eigenvalues and eigenfunctions of H;(0) are respectively
Qmn + t)? and ¢/ C™+DX for n e 7. All eigenvalues of H,(0) for t # 0, 7 are
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simple, while the eigenvalues of Hy(0), except 0, and H(0) are double. Since the
eigenvalues of H_;(g) coincide with those of H;(g), we discuss only the case ¢ €
[0, 7r]. For simplicity let us investigate the case ¢ € [0, %]. (The case t € (5, m] can
be considered in the same way). By well-known perturbation theory the eigenvalues

A1) = A1) = M) = A2(@) = M) =--- (1.3.4)

of Hy(g) for t € [0, 5] satisfy the inequalities
() — Qrn+1)* <M (1.3.5)

for all n € Z due to (1.3.3).

First let us give the rigorous mathematical proof of the asymptotic formulas and
then discuss the band structure from the point of view of the physicists. To obtain
the asymptotic formula for the eigenvalues )\, (¢) and corresponding normalized
eigenfunctions W, ;(x) of H;(g), let us use the following relation

(1) = @k + 1)?) (W 1, € CTHY) = (g0, ,, ! CTHFOY) (1.3.6)
which can be obtained from the equation

=W (1) + )Wy (x) = Ay (1) Wi r (x)
by multiplying e "*?™%+)* and integrating the resulting expression over [0, 1] by
parts, where (-, -) denotes the inner product in L;[0, 1]. By (1.3.3) and Schward’s
inequality we have

‘(C]\I’n,ta ¢ @mkt)xy

<M. (1.3.7)

If + € [0, 3] then |27n +1)? — 27k 4+ 1)%| = 2n(In — k|) |27 |n + k| — m)| for
k # =£n. This with (1.3.5) gives us

Ao () — Qmk + z)2) > 372 |(n — k)(n + k)| (1.3.8)

for k # =£n and for the large values of n.
It follows from (1.3.6)—(1.3.8) that

> o), 0 — oy v —0(%)
I Br2(n — k)(n + k)2 n2’

keZ. k#+n keZ k#+n

Hence

Z (W (x), ei(27rk+t)x)gi(27rk+;)x _ 0(1)
keZ k#+n "
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Therefore the expansion of W, ;(x) by the orthonormal basis {e!@mEDX .y e 7)
has the form

W, (1) = uy (0! DY Ly (0! DY L o7, (1.3.9)

where w, (1) = (W1, €/ C™HD%) 4, (1) = (W,,.;, €/ T2mH0x),
a1 + [oa())> = 1+ 0. (13.10)
Now we consider the following two cases. First let us consider the case when the

quasimomentum 27n + ¢ is far from the diffraction points 7k, that is, there exists a
positive constant ¢ < 1 such that ¢ € [¢, 5]. Then

‘(27rn )% — (=27 + 1)2‘ > 87 |n|c.

Therefore using (1.3.5) and (1.3.6) for k = —n we obtain

Ay (0) — (=270 + t)z‘ > 87 lnlc— M

and .
(\Ijn’t(x)’el(—zﬂ'n-Fl)X) — 0(}1_1)

This with (1.3.9) and (1.3.10) implies that

‘ 1
W, (x) = e C™EY L 0(~) (1.3.11)
n

fort € [c, 5].
Now using (1.3.11) in (1.3.6), letting k = n and taking into account the second

relation of (1.3.3) we obtain that

M) =Qan+1>+ 0 (%) . (1.3.12)

Now let us consider the case ¢ € [0, c], that is, the case when the quasimomentum
27n + t is close the diffraction point 27n. In the case ¢ = 0 the eigenvalues (277)?
for n # 0 of the unperturbed operator Hy(0) are double and the corresponding
eigenfunctions are the linear combinations of /2™ and e ~*2™*_ All eigenvalues of
H,(0) for t # 0, m are simple. However if ¢ is very close to O then the eigenvalues
Q27mn + 1)% and (—2mn + 1)? are close to each other.

Let us consider the case + = 0. Since the eigenvalues (27n)? for n # 0 of the
unperturbed operator Hy(0) are double, by (1.3.4) and (1.3.5) the perturbed operator
Hy(gq) has two eigenvalues (counting multiplicity) denoted by A\, =: A,(0) and
A—n =: A_;(0) such that
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An < A A — Qrn)*| < M.

First let us prove that the eigenvalues )\, and \_, are simple if
Ingon|™" = o(1), (1.3.13)

that is, |g2,| > %, where

1
Gon = (q’ et4ﬂ'nx) =/ q (x) €_l47mxdx.
0

Suppose to the contrary that ), is a double eigenvalue, that is, A\, = A_,. Then by
(1.3.9) and (1.3.10) the corresponding eigenspace is close to the span of the plane
waves ¢!2™* and e~'2™* and there exists an eigenfunction of the form e 2™
0] (n’l) . Using this eigenfunction instead of ¥, ¢(x) in the formula

Ay — 27n)?) (W0, €27) = (g W0, €2™), (1.3.14)
obtained from (1.3.6) by taking t = 0 and k = n, we get O (n_l) =qm+ O (n_l)
which contradicts (1.3.13). Thus the eigenvalues )\, and A_, are simple for large

values of n if (1.3.13) holds.
Now, for simplicity, let us consider the case when g is an even function. Then

1
Qon =/ q(x)cosdmnxdx € R (1.3.15)
0

and without loss of generality it can be assumed that ¢, > 0. Moreover in the case
of even potential ¢, it is well-known that (see [Eas, MaVi]) the periodic solutions and
hence the eigenfunction W, (x) =: ¥, o(x) is either even or odd function. Therefore,
by (1.3.9) either v, = u, + O(n"") or v, = —u, + O(n~"), where

Uy = (W, €2™), v, = (W, €712,
In the first case from (1.3.9) and (1.3.10) one can easily obtain that

W, (x) = upe>™ + upe ™ + 0(n~") = V2cos2mnx + 0(n~ Y. (1.3.16)

Using this and taking into account that (¥,, ¥_,) = O,where ¥_,, =: W_, o(x),
we obtain

W_,,(x) = 1y 2™ — e 2™ L 0~ = V2sin2mnx + 0(n~ Y. (1.3.17)

Now using (1.3.16) and (1.3.17) in (1.3.14) and taking into account that \,, — (27n)?
is a real number,
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2 1 . 2 1
(cos2mnx)” = 5(1 + cos4mnx), (sin2wnx)* = E(l — cos4mnx),
and then using (1.3.15) we get
A = 271) + gan + O (n_l) (13.18)

and
Ay = Q2rn)* — gy + O (n—l) (1.3.19)

respectively. Note that the condition A_,, < )\, and formulas (1.3.18) and (1.3.19)
show that we have to take v, = u, + O~ !) if q2n > 0 and therefore (1.3.16) and
(1.3.17) hold.

In the same way one can show that the eigenvalues

Pl S S 2 S < -

of Hr(q) and the corresponding eigenfunction ®_1, &1, ®_;, &5, ... satisfy the
following asymptotic formulas

o = @ = + gt + 0 (n7") (1.3.20)
fn = 2rn — )% — gon_1 + O (nfl) (13.21)
and 1
®,(x) = v2 cos(2mn — m)x + 0(=). (13.22)
n
®_,(x) = +/2sin(2rn — m)x + 0(1). (1.3.23)
n

Itis well-known that [Eas, MaVi, Ti] the spectrum of H (g) consists of the intervals

(Ao, p—1], [pens Aol [AL 2] T2y A2ds ooy TN =1 1 [ A—j—1l,
(1.3.24)

where j = 3,4 ..., that are the energy bands. Therefore the gaps in the spectrum
(energy gaps) of the Hill’s operator H (g) consist of the intervals

Ay = (-1, 1), Ao = (Ao, Ay ooy Agjor = (s 1), Aoy = (A—j, A)),
(1.3.25)
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where j = 2, 3, ..., that are the forbidden zones. Then (1.3.18)—(1.3.21) imply that
the length |A,| of the nth forbidden zone A, (gap of the spectrum) satisfies the
asymptotic formula

1
|Anl = 21gu] + O (;) (1326)

From the point of view of mathematicians the gaps arise as follows. For any real
periodic potential ¢ the spectrum of the Hill’s operator H (g) consists of the intervals
(1.3.24). The ends of the intervals are periodic and antiperiodic eigenvalues. In the
case of unperturbed operator H (0) these intervals are

[0, 721, [72, ™)1, ..., [2nm)2, (2n + D)2, [(2n 4+ D)%, (2n + 2)7)?]

(1.3.27)
forn = 1,2, ... The right end of the nth band coincides with the left end of the
(n + 1)th band and these ends are the double eigenvalues (nm)? of periodic (if n is
an even number) or antiperiodic (if n is an odd number). Under the perturbation g
these double eigenvalues (double eigenvalue can be considered as two coinciding
eigenvalues) are separated and one eigenvalue goes to the left and becomes the right
end A_; of the nth band (if n = 2j) of the perturbed operator H(gq) and the other
eigenvalue goes to the right and becomes the left end A ; of the (n+1)thband of H (g).
The space Aj; between these ends A_; and \; can not be occupied by the Bloch
eigenvalues A_;(t) and \;(¢), since for ¢ € [0, c], where ¢ < 1, the eigenvalues
A_j(#) and A;(¢) together with A_;(0) =: A_j and A\;(#) =: A; go to the left and
right respectively and hence arise gaps in the spectrum.

Now we summarize the discussed statements about the one-dimensional Schr
odinger operator H (g) with a periodic potential g in the language of physicists. In
the above example, we rigorously constructed the Bloch waves in the high energy
region by asymptotic method that is very similar to the two-wave approximation. As
we noted above the Bragg condition is satisfied at £7n, since the reciprocal lattice is
27Z. The isoenergetic surfaces Io((7n)?) corresponding to the energy (7n)? consist
of two points —mn and 7n and these points are the diffraction planes of the reciprocal
lattice. Under the perturbations the isoenergetic surfaces are separated into pieces by
the zone boundary and part of the isoenergetic surface appears in the (n + 1)th zone
but the rest remains in the nth zone, leaving unoccupied states holes.

Formula (1.3.11) means that the plane wave ! 2™HDX s almost not reflected
by the crystals if the wave number 27n + ¢ is far from the diffraction planes 7n.
Formulas (1.3.16) and (1.3.17) show that under perturbation g the plane waves ¢ 2™~
and e 2™ interface each other. The standing waves v/2 cos 27rnx and /2 sin 27nx
are the results of the interference between two waves /2™~ and e 2™ traveling in
the opposite directions. On the other hand, it is well-known that the eigenvalues of
H,(q) fort # 0, 7 are simple. Therefore if A, (0) is a simple eigenvalue, then ¥, ; (x)
continuously depend on ¢ € [0, 7). This situation with (1.3.16) and (1.3.17) shows
that if ¢ is close to zero then under perturbation ¢ the plane waves ¢! ®™+9* and
eI @m0 interface each other. Moreover, these situations with (1.3.22) and (1.3.23)
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show the same result when # is close to 7. Thus the electrons in the crystal are arranged
in the energy bands separated by the forbidden regions, called energy gaps or band
gaps, in the energy for which no wavelike electron orbitals exist. The band gap is a
result of the interference between two waves traveling in the opposite directions. The
plane wavefunction ¢! >™+)¥ represents the running wave and carries the momentum
k =2mn +t. If t # 0, 7 then this wave function is the travelling wave. However,
the wave function at ¢ = 0 is not wave ¢/2™¥ or ¢~*2™* travelling to the right or
left, respectively. Namely when the Bragg reflection condition ¢ = 0 is satisfied by
the wave vector 27n + t a wave travelling to the right is Bragg-reflected to travel to
the left and vice versa. As a result the standing waves +/2 cos 2mx and +/2 sin 27x
are obtained from the travelling waves ¢'2™"* and e~/>™*_ The two standing waves
V2 cosmx and /2 sin wx pile up the electrons at the different regions. Therefore
the two waves have different values of the potential energy which is the origin of
the energy gap. It is well-known and we can see from the above example that the
magnitude of the energy gap depends on the Fourier coefficients of the periodic
potential. Thus the effect of the periodic potential is to produce an energy gap in
the band structure of the one-dimensional case and the energy gap appears when the
Bragg condition is satisfied at =7n. In other words, when the wave vector is near to
these diffraction planes the Bloch wave is expressed by a linear combination of the
unperturbed plane waves e/ @™+ and ¢~ DX perturbed by the lattice planes.
The running wave —7n is reflected to the wave 7n by receiving the crystal momentum
27n from the lattice planes and the reflected wave —7n is again reflected to the wave
mn by receiving the crystal momentum 27n from the lattice planes. This process
is infinitely repeated, resulting in a cosine- or sine-type stationary wave. Under the
above condition on the potential, the energy of the sine-type Bloch wave is lowered
and the energy of the cosine-type Bloch wave is raised. Thus, the difference in the
energy between these two stationary states must be responsible for the formation of
the energy gap.

1.4 Some Discussions of the Perturbation Theory

In this section we discuss the perturbation theory and isoenergetic surfaces for the
multidimensional Schrodinger operator L(g) in the high energy region. This case,
for the first time, was investigated in the papers [Vel, Ve2, Ve3, Ve4, Ve5, Ve6]. In
Chap. 2 we consider it in detail. Now we only describe briefly the crucial points and
complexity of this theory. For this, first let us recall that, in general, the perturbation
theory is easy if the potential g is smaller than the distance between the eigenvalues
of the unperturbed operator L(0). In other words, as well-known from the quantum
mechanics, if the perturbation is small compared to the energy difference between the
states, then we can use the regular perturbation theory to calculate the wave functions
and energy levels. The perturbation theory breaks down, however, in those cases when
the potential cannot be considered as a small perturbation. This happens when the
magnitude of the potential becomes comparable with the energy separation. To be
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more precise let us define a constant £ for the energy separation, named as the energy
separation constant, as follows. One can readily see from the One-dimensionel
model (see Sect. 1.3) that there are two cases:

Case 1. Isolated eigenvalue. An eigenvalue ) is isolated if all other eigenvalues
are far from A (see the case r € [c, 5]). Then the energy separation constant 4 is a
distance from A to the set of all other eigenvalues.

Case 2. Isolated pair of eigenvalues. If the two eigenvalues A and \; are close
to each other and the others are far from these eigenvalues (see the case ¢ € [0, ¢)),
then the energy separation constant /% is a distance from the set {\1, A2} to the set of
all other eigenvalues.

If ||g |l < & then the perturbation theory is easy and well-known, since in Case 1
and Case 2 one can use the regular perturbation theory and two wave approximations,
respectively, where the relation 4 >> 1 means that / is a sufficiently large number. The
inequality |lg|| < h which easifies the perturbation theory occurs in the following
two cases:

First case: The perturbation ¢ is bounded or ||g|| = O(1) and the energy sep-
aration constant i tends to infinity as the eigenvalues go to infinity. This case is
the one-dimensional case in the high energy region and we demonstrated it in the
One-dimensionel model (see Sect. 1.3) and noted that this case was investigated
very well, there are a lot of books and papers about it.

Second case: The energy separation constant % is greater than some constant and
the potential g is replaced by g, where ¢ is a small parameter, that s, ||eg|| < h. This
case can be used for the small eigenvalues of the multidimensional operator L(eq)
to obtain the formulas for ¢ — 0. Indeed if the eigenvalue |y + ¢|? has a distance
greater than some constant from the other eigenvalues then the small perturbation ¢
can be investigated by the regular perturbation theory. Moreover if |y +|? coincides
with (or it is near to) the eigenvalue |y + 7 + §|% but has a distance greater than some
constant from the other eigenvalues, that is, if v + ¢ lies in (or it is near to) only one
Bragg plane Ds, then a weak periodic potential g has its major effect on those free
electron levels whose wave vectors are close to ones at which the Bragg reflection
can occur. In this case, in order to find the energy levels and the wave functions one
can use, for example, the two wave approximations. We will discuss this case in
detail in Chap. 5.

Thus in the first and second case, we can use the regular perturbation theory to
calculate the wave functions and energy levels.

Now we are ready to discuss the multidimensional operator L (g ) in the high energy
region. In this case, in the big contrary of the first and second case (see above) we
meet with the situation 7 < ||g|| instead of ||g|| <« h, since the denseness of the
Bloch eigenvalues of the free operator increases infinitely with the increasing energy
and hence the distance between the eigenvalues tends to zero or the multiplicity of
the eigenvalues tend to infinity. To describe this case more precisely, let us introduce
some notations. The relation a(p) ~ b(p) as p — oo means that a(p) = O (b(p))
and b(p) = O(a(p)), that is, there exist constants ¢y and ¢ such that

c1b(p) < a(p) < cab(p).
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In this case we say that a(p) is of order b(p). Let E(p) be the number of the Bloch
eigenvalues (counting multiplicity) of the unperturbed operator L,(0) lying in the
interval [p?, p> 4 1). The number E(p) depends on t € F*, however, in average,
E(p) ~ p=2, since |y + 1| € [p?, p* + 1) if and only if

yrte{x eRY: 2 < xP < p?+ 1) = W(p). (1.4.1)

On the other hand, the spherical washer W (p) is filled with the translations of F* by
the vectors ~y of the reciprocal lattice I', and

(W (p)) ~ p* 2 u(F*),

where /1(A) denotes the volume of the set A. Thus in the interval [p?, p>+ 1) of length
1 there are, in average, E(p) Bloch eigenvalues |y 4 |? of the free operator, where
E(p) ~ p®~2. It means that the eigenvalues are densely situated in the high energy
region [p?, p* + 1) and for the energy separation constant /(p) (now it depends on
p) one can write the equality

h(p) = 0(p*™%). (1.4.2)

Hence in the multidimensional case in the high energy region the bounded potential
q cannot be considered as a small perturbation, since

gl ~ p?~2h(p) > h(p) (1.4.3)

ford > 2 and p > 1. Therefore the regular perturbation theory is ineffective in
this case. In Chap.2 we consider this case in detail. Now we only describe briefly
the following three problems (a), (b) and (c¢) which are the crucial and remarkable
points of the perturbation theory of the multidimensional operator L(g) in the high
energy region.

(a) Simplicity problem. Determine the set of quasimomenta ~y + t such that the
corresponding Bloch eigenvalues A(y +t) € [p*, p*> + 1) of L;(q) are simple.

The complexity of this problem is the following. The eigenvalue A(y + ) €
[p?, p>+1) is aresult of moving of the Bloch eigenvalues |y +7|> of the free electron
under the perturbation ¢. In the interval [p?, p*> + 1) of length 1 there are, in average,
E(p) Bloch eigenvalues |y + 1|2 of L;(0), where ¥ € I and E(p) ~ pd_z. After the
periodic perturbation ¢ all these eigenvalues move and some of them move of order
1 and hence each of the resulting eigenvalues A (¥ + ) of L;(g) may coincide with
A (y+1). Thus we need to control the moving of all eigenvalues [7+1|% € [p?, p>+1)
for some values of ¢ in order that all resulting eigenvalues A (5 4 t) do not coincide
with A(y+¢) and hence A (y + t) becomes a simple eigenvalue. Therefore it seems
that it is impossible to find the values of the quasimomenta v + ¢ for which the
corresponding Bloch eigenvalues A (y + t) of L;(q) are simple. The importance of
the simplicity of A(y + #) is the following. The simplicity of A(y + ¢) is necessary
for the investigation of the corresponding Bloch wave W, 1, (x) and for proving that
it is close to the plane wave ¢/ (7*"*) that is, satisfies the formula
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W () = e 0 L Oy +17%), (14.4)
where o > 0. The last equality means that the plane wave ¢/ 7*"%) goes through
the crystal almost without the diffraction. On the other hand, it is well known that
the plane wave ¢! 7% is reflected by the crystal if v + 7 belongs to (or it is near
to) a diffraction hyperplane Ds for some & € I'. Then the reflected wave ¢! (70402
interferes with the initial wave ! (/%) (see [BS], [Ki, Mad]) and (1.4.4) does not
hold. As we noted above there are, in average, E(p) eigenvalues

Y+t Iy 0 Iy 6,y R+ 6,

where n = E(p) ~ p?~2, lying in the interval [p?, p*> + 1). On the other hand, by
choosing the coordinate axis so that the direction of d coincides with the direction
of (1,0,0,...,0), we can easily verify that if

W4+t2 =y +r+6P=c
then the quasimomentum ~ + ¢ lies on the distance % from the diffraction plane
Ds. Therefore all the diffraction planes Ds,, Ds,, ..., Ds,, may reflect the wave
¢! (7F1.%) with the fixed quasimomentum . If we do not fix 7, then all diffraction planes
passing through the washer W (p) may reflect the wave ¢/ V%) if the corresponding
eigenvalue |y + 7|2 lies in the interval [p?, p*> + 1). On the other hand, the number
D(p) of the diffraction planes having nonempty intersection with the sphere

S(p) = {x e R : x| = p)

and hence with W (p) is of order p?, thatis, D(p) ~ p®. Thus the second problem is
the following.

(b) Bragg Reflection Problem. Determine the set of quasimomenta~y—+t € W(p)
for which the plane wave ¢'7T"%) ynder the periodic perturbationg goes through
the crystal without the essential influence of the D (p) diffraction hyperplanes, where
D(p) ~ p".

That is why the mathematical difficulties of the perturbation theory of the mul-
tidimensional operator L(g) in the high energy region have a physical nature—a
complicated picture of diffraction inside the crystal.

As we explained above in one-dimensional case it is very easy to explain the
arising of the gaps in the spectrum. Briefly speaking, there are only two Bloch
eigenvalues (—nm)? and (n7)? of the free operator lying at the point A = (n)? and
the isoenergetic surface Io((n)?) consists only of the two points —n7 and n7 which
are the diffraction planes. Under the perturbation g one eigenvalue goes to the left
and one to the right and the gap in the neighborhood of (n7)? emerges as a result of
these movings.

In the big contrary of the one-dimensional case, in the multidimensional case the
set of all Bloch eigenvalues |y + 7| of the unperturbed operator L(0) lying at the
same point p> as much as the points of the sphere S(p), since |y+1|*> = p? if and only
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if (y4+1) € S(p). Some of these eigenvalues |y +7|* are multiple. Recall that |y 47|
is multiple if 7y 4-¢ lies in the intersection of the sphere S(p) and diffraction planes and
the all other eigenvalues are simple. If the sphere is large, then after the perturbation
g the probability that all these eigenvalues go away from the point p? and the other
Bloch eigenvalues do not come to this point and hence the isoenergetic surface
I, (p*) becomes an empty set is very small. (Hence the probability of the validity of
the Bethe-Sommerfeld conjecture is close to 1). However as we noted above there
are the D(p) diffraction planes intersecting S(p) for large p, where D(p) ~ p¢, and
the isoenergetic surface begins to be distorted from a sphere before making contacts
with the diffraction planes. Thus the isoenergetic surface is divided into a lot of
pieces. Therefore the rigorous mathematical investigation of the perturbations of all
these eigenvalues and to prove that the isoenergetic surface I, (p*) can not become
an empty set are extremely complicated. Thus the third problem is the following:

(c) Isoenergetic Surfaces Problem. Determine the shape and measure of the
isoenergetic surface I, (0*) of L(q) which emerges from the isoenergetic sphere
S(p) of L(0) as a result of its distortion and separation into very small pieces by the
D(p) diffraction planes intersecting S(p), where D(p) ~ p?.

To answer all these three problems (a), (b) and (c), in Chap.2 we develop
a new mathematical approach to this problem. The momentum space is divided
into two domains: U (non-resonance domain) and V (resonance domain) and the
eigenvalues |y 4 ¢|2, for large ~ € T, are divided into two groups: non-resonance
ones if ¥+ ¢ € U and resonance ones if v + ¢ € V and various asymptotic formulae
are obtained for the perturbations of each groups. (The precise definitions of U and
V are given in the introduction of Chap.2). For the first time in the papers [Vel,
Ve2, Ve3, Ve4] we constructed the set B C U, called as a simple set, such that if
v+t € B, then the corresponding Bloch eigenvalue A (y 4+ ¢) is simple and satisfies

Ay +1) =y 1P+ Oy 4179,

where o > 0 and the Bloch function W, 1, (x), corresponding to the eigenvalue A (y+
t) satisfies (1.4.4). Moreover we proved that the simple set B has the asymptotically
full measure on R and constructed a part of the isoenergetic surface I, (p*) C B for
large p which is a union of the smooth surfaces and has the measure asymptotically
close to the measure of the sphere S(p). Thus, we constructed the set B C U that
positively solves all the problems (a), (b) and (c¢) described above. Therefore the
main difficulty and the crucial point of the investigations of the Bloch functions and
isoenergetic surfaces and hence of the perturbation theory of L(q) is the construction
and estimation of the set B. We discuss it in detail in the introduction of Chap. 2.
Note that, in Chap.2, we construct the simple set in the non-resonance domain U
so that it contains a big part of the isoenergetic surfaces of L(g). However in the
case of the resonance domain V we construct the simple set so that it can be easily
used for the constructive determination (in Chap. 3) a family of the spectral invariants
by the given Bloch eigenvalues. Then in Chap.4, we constructively determine the
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potential g by these spectral invariants. We will continue these discussions at the end
(in Chap.5) of this book after the construction a perturbation theory (Chap.2) and
its applications (Chaps. 3 and 4).
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Chapter 2
Asymptotic Formulas for the Bloch
Eigenvalues and Bloch Functions

Abstract In this chapter we construct a perturbation theory for the multidimensional
Schrodinger operator with a periodic potential. This chapter consists of 6 sections.
First section is the introduction, where we define the non-resonance and resonance
domains U and V, describe briefly the scheme of this chapter and discuss the related
papers. The asymptotic formulas of arbitrary order for the Bloch eigenvalues when the
corresponding quasimomentum lies in the non-resonance and resonance domains are
obtained in Sects. 2.2 and 2.3 respectively. In Sect. 2.4, we obtain asymptotic formulas
for the Bloch functions when the quasimomentum lies in a set B C U which has
asymptotically full measure in the momentum (reciprocal) space. In Sect.2.5, we
construct and investigate the large part of the isoenergetic surfaces in the high energy
region which implies the validity of the Bethe-Sommerfeld conjecture. Note that the
method of this chapter is the first and unique by which the asymptotic formulas for the
Bloch eigenvalues and Bloch functions and the validity of the conjecture for arbitrary
lattice and arbitrary dimension were proved. In Sect.2.6, we obtain the asymptotic
formulas for the Bloch functions when the corresponding quasimomentum lies in a
set Bs C V which is near to the diffraction hyperplane Ds and is constructed so that
it can be easily used for the constructive determination (in Chap. 3) a family of the
spectral invariants by the given Bloch eigenvalues.

2.1 Introduction

We consider the Schrédinger operator
L@)=-A+q
in Ly(RY) for d > 2 with a periodic (relative to a lattice Q) potential ¢, where

3d — 1 d3q

g e W5(F), s=>s0= 5 (3"+d+2)+T+d+6, 2.1.1)
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F =: R?/Q is a fundamental domain of 2. Without loss of generality it can be
assumed that the measure p(F) of F is 1 and the mean value of the potential g on
F is 0. As we noted in Sect. 1.2 of Chap. 1, the spectrum o(L(gq)) of L(q) is the
union of all Bloch eigenvalues A, (¢) fort € F* and n € N, that is, the union of all
eigenvalues of L;(¢) forallt € F*:

o(L(@) = | oLi(@) = | {An) : 1 € F*}, (2.12)

teF* n=1

where F* =: R?/T, I is the lattice dual to  and L,;(q) = —A + ¢ is defined
in Ly(F) by the quasiperiodic boundary conditions [see (1.2.4) of Chap.1]. The
normalized eigenfunction W, ;(x) of L;(g) corresponding to the eigenvalue A, ()
is known as Bloch function and satisfies

Li(@)Wn,1(x) = Ap(t) Wy, (x). (2.1.3)

In the case ¢ = O the eigenvalues and eigenfunctions of L,(q) are |y + ¢|? and
e/ 0F0%) for v e T
Lt(o)ei<"/+l,x) — |,y+t|2ei(’7+l,x>. (214)

In the papers [Vel, VeMol, Ve2, Ve3, Ve4] for the first time the eigenvalues
|y 4 1|2, for large v € T, were divided into two groups: non-resonance ones and
resonance ones and various asymptotic formulae were obtained for the perturbations
of each groups. To give the precise definitions of the non-resonance and resonance
eigenvalue |y + 7|% of order p? (written as |y 4 1|> ~ p?, for definiteness suppose

3 1
y+te R(zp)\R(Ep)),

where R(p) = {x € R? : |x| < p}) for large parameter p, we write the potential
g € W5 (F) in the form

q(x) = Zq,ye”%ﬂ =Px)+ G(x), (2.1.5)
yell

where
gy = (q, PASE) :/ qg(x)e ¥ dx,
F

Pr)= D> ¢, Gry= D g,

yel'(p®) Y€l (p%)

L) ={yel:0<yl<pH}
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and a = :—{, s = 3% 4+ d + 2. The relation |y 4 t|> ~ p*> means that there exist

constants ¢; and ¢, such that
cip < |y+tl <cap.

Here and in the subsequent relations we denote by ¢; fori = 1,2, ... the positive,
independent of p, constants. Recall that the relation ¢ € W3 (F) [see (1.1.13) of
Chap. 1] means that

D P < oo (2.1.6)
el

This implies that if s > d, then

sup (GOl =sup| > gy < D gl =007, 2.17)
xeF Yl qerm 1= p"

where p = s — d. By the well-known perturbation theory [Kat] it follows from
(2.1.7) that the influence of G to the eigenvalue |y + z‘|2 is O (p~P%). To observe the
influence of the trigonometric polynomial P to the eigenvalue |y + ¢|2, we use the
formula

(AN — |7 + 11BN, 7) = (W .1q, e OH), (2.1.8)

where (-, -) is the inner product in L, (F’) and

b(N,7) = (W, 00,
which is obtained by multiplying both sides of (2.1.3) by ¢/ (V"% and using (2.1.4).
We say that (2.1.8) is the binding formula for L;(g) and L,(0), since it connects the

eigenvalues and eigenfunctions of L;(g) and L;(0). Introducing expansion (2.1.5)
of ¢(x) into (2.1.8) and taking into account (2.1.7), we get

(AND) = Iy +1PDDWN. N = D gyb(N,y =)+ 0", (2.1.9)
mer(p®)

If Ay is close to |y + 7|2 and ~ + ¢ does not belong to any of the sets
Vo (p™1) =: d . (1.2 2 o 3p P
(™) =t {x e RY L Ix]” =[x + 7l = p™) N (R(5NREG)) (2.1.10)

for 1 € I'(p®), where oy = 3¢, that is, y + ¢ is far from the diffraction planes D,
for y; € T'(p®), then

1
Iy + 1 — Iy =y + 1P > p* L JANG) — |y — 1+ 1] > 5P @1
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for all v; € T'(p®). Therefore, it follows from (2.1.8) that

(Wp.rq, e H0A))

b(N,v—m) =
An@) — |y = +1?

=0(p ™). (2.1.12)

This with the obvious inequality

Z lgy] < c3 (2.1.6a)

yell

[see (2.1.6) and take into account thats > d]implies that the right-hand side of (2.1.9)

is O (p~“!). Moreover, we prove that there exists an index N such that N times
Y
the right-hand side of (2.1.9) is O (p~), i.e.,
AN@) =y +17+0(p™™). (2.1.13)

Thus we see that if v + ¢ does not belong to any of the sets V., (0®!) [see (2.1.10)]
for y1 € I'(p®), then the influence of the trigonometric polynomial P and hence the
influence of the potential g [see (2.1.5) and (2.1.7)] to the eigenvalue |y + z‘l2 is not
significant and there exists an eigenvalue of the operator L;(g) satisfying (2.1.13).
This case is called the non-resonance case. More precisely, we give the following
definitions:

Definition 2.1.1 Let p be a large parameter, o = 3kafork=1,2,..., and

, 3 1
Vo (eap™) = {x € RY ¢ [l — Iy + 91 P < cap™ ) 0 (RGP\R(5)).

3 1
Eveap™. py= | Vai(ean™). Uleap™. p) = (RGP\RGP\E1(eap™. p).
TEr(pp)
E(cap™, p) =: U (Nf_y Vay (cap™)),

Y1725 EL (ppY)

where p is defined in (2.1.7), the intersection ﬂ{.‘zl V,, in the definition of Ej is
taken over 71, 72, ..., Y that are linearly independent. The set U (p®!, p) is said
to be a non-resonance domain and |y + 1|2 is called a non-resonance eigenvalue if
v+t € U(p™, p). The domains V., (p!) for v € I'(pp®) are called the resonance
domains and |y + |7 is called a resonance eigenvalue if v + ¢ € Vo, (p™1). The
domain

V(0" =1 Vo, (p"D\ Ea,

i.e., the part of the resonance domain V., (p*!), which does not contain the intersec-
tions of two resonance domains is called a single resonance domain.
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It is clear that asymptotic formula (2.1.13) holds if we replace V., (p*') by
V1 (c4p"). Note that changing the value of c4 in the definition of V., (c4p™!), we
obtain the different definitions of the non-resonance eigenvalues (for the simplicity
of the notations we take ¢4 = 1). However, in any case we obtain the same asymptotic
formulas and the same perturbation theory, that is, this changing does not change
anything for the asymptotic formulas. Therefore we can define the non-resonance
eigenvalue in different way. Instead of the resonance domain V., (c4p!) the set

d. (o2 2
Wy o = {x € RT:Ix|” =[x + 7] < |x]*}

can be considered (see [Ve2, Ve3, Ve4]). Since

1 3 1 3
V'y1 (Epm) C (R(Ep)\R(Ep)) N W'y|,a1 C V'y| (Epal),

in all considerations the resonance domain V., (p*!) can be replaced by

3 1
W’YI,CYI N (R(_P)\R(_p))
2 2
Moreover, instead of the domain V., (p™!) the set
e e RY: [, 1)l < elxliml},

where € < 1, also can be considered (see [Vel, VeMol]). In any case we use the
same idea: breafly speaking, the eigenvalues |y + 7|> ~ p? are non-resonance if -y +¢
far from the diffraction planes

Ds=:{x e R : |x]*> = |x + 6}

for 0 = O(p®). Nevertheless it is suitable to define the non-resonance eigenvalue in
different way depending on the form of the potential. Namely, the domain W, .,
is suitable, when the potential is the trigonometric polynomial. In case of smooth
potential we need to introduce a large parameter p and consider V., (p*!). Note that
all considered eigenvalues |y + 1% of L, (0) satisfy the relations

! [y + 1] )
— < < —pP.
FP <l 5P

Therefore in the asymptotic formulas instead of O (p?) one can take O (|y + #|%).
In Sect.2.2 to investigate the perturbations of the non-resonance eigenvalues
|7 41| we take the operator L, (0) for an unperturbed operator and ¢ for a perturba-
tion. Iterating binding formula (2.1.8) for L;(g) and L,(0), namely, using (2.1.12) in
(2.1.9) and then using decomposition (2.1.5) and continuing this process, we prove
that (2.1.13) and the asymptotic formulas of arbitrary order hold. More precisely, we
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obtain the following results. For each v 4+t € U(p®!, p) there exists an eigenvalue
AN (t) of the operator L;(q) satisfying the formulae

AN =y + 1P+ Fa(y+ 0+ Oy + 117 (2.1.14)

fork =1,2,..., [%(p — %%(d — 1))], where [a] denotes the integer part of a,
Fy =0, and F;_; (for kK > 1) is expressed by the potential ¢ and the eigenvalues of
L,(0). Besides, we prove that if the conditions

2 1 a
[AN@) — |y +1I7] < CLAE (2.1.15)
|b(N, )| > csp™“, (2.1.16)

where 0 <c¢c < p — A—ILd 34 hold then the following statements are valid:
(@)ify+1 € U(p™, p),then Ay (¢) satisfies (2.1.14) fork = 1,2, ..., [%(p—c)];
b)ify+1t € Eg\Es+1, wheres =1,2,...,d — 1, then

An() = Aj(v+1) + Oy + 1]~ P=e 3830y, (2.1.17)

where J; is an eigenvalue of a matrix C(y + t) (see below for the explanation of
C in the three-dimensional case). Moreover, we prove that every large eigenvalue of
the operator L;(q) for all values of ¢ satisfies one of these formulae (see Theorems
2.2.1 and 2.2.2).

The results of Sect.2.2 were obtained in [Vel, Ve2, Ve3, Ve4] and their enlarged
forms were written in [Ve6, Ve9]. The non-resonance eigenvalues for the three-
dimensional Schrodinger operator L;(g) were considered in [Ve3]. Moreover, in
[Ve3] we observed that if v+t € Vs(p®™)\E2 and v € T'(p)\{né : n € Z},
where ¢ is the element of I of minimal norm in its direction, then it follows from
the definition of E» that the inequalities obtained from (2.1.11) by replacing oy with
oy hold. Hence

b(N,v—71) = 0(p~")

[see (2.1.12)] and (2.1.9) has the form

1
AN@O =y +IPDBN. D= D qusb(N.y —nd) +0(—). (2.1.18)
neZ,nderl (p®) P

This gives an idea that the influence of g (x) — q5(x), where

g () = D quse Y, (2.1.19)
nez

is not significant and there exist eigenvalues of L,(g) which are close to the eigenval-
ues of L;(g%). Using this idea in [VeMol], to investigate the resonance eigenvalues
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we used the approximation of the Green functions of L;(g) by the Green functions of
Lt(q‘;). Note that in [Ve3] (see Theorem 2 of [Ve3]) writing the equations obtained
from (2.1.18) by replacing |y + ¢|? with |y + ¢ + nd|? for n € Z, né € T'(p*), we
got the system of equations from which one can conclude that the probable approx-
imations of the eigenvalues of the three-dimensional Schrédinger operator L;(g),
besides |y + t|2, are the eigenvalues of the matrix C, where C is a finite submatrix
of the matrix corresponding to the operator L;(¢%). However, in the d-dimensional
case, to investigate the perturbation of the eigenvalue |y+¢|> when the corresponding
quasimomentum y + ¢ lies in the intersection of k resonance domains we have to
consider more complicated system and matrix (see (2.2.15) and [Ve2, Ved]).

Here we write the non-resonance case so that it can easily be used in Sect. 2.3,
where we consider in detail the single resonance domains Vs(p®!)\ E», since there are
similarities between the investigations of the non-resonance and the single resonance
cases. To see the similarities and differences between these cases, that is, between
Sects.2.2 and 2.3, let us give the following comparison. As we noted above in the
non-resonance case the influence of the potential g is not significant, while in the
single resonance case the influence of g —¢? is not significant. Therefore, in Sect.2.2
for the investigation of the non-resonance case we take the operator L;(0) for an
unperturbed operator and g for a perturbation, while in Sect. 2.3 for the investigation
of the single resonance case we take the operator L;(¢?) for an unperturbed operator
and ¢ — ¢° for a perturbation. In Sect.2.2 to obtain the asymptotic formula for
the non-resonance case we iterate the formula (2.1.8) [called binding formula for
L;(g) and L;(0)] connecting the eigenvalues and eigenfunctions of L;(g) and L;(0).
Similarly, in Sect.2.3 for the investigation of the eigenvalues corresponding to the
quasimomentum lying in the single resonance domain Vs(p“!)\ E2 (see Definition
2.1.1), we iterate a formula [called binding formula for L,(g) and L, (q5 )] connecting
the eigenvalues and eigenfunctions of L;(q) and L,(q‘s). The binding formula for
L;(g) and Lt(q5) can be obtained from the binding formula (2.1.8) for L;(g) and
L,(0) by replacing the perturbation ¢ and the eigenvalues |y +7|> and eigenfunctions
¢! (7+1:%) of the unperturbed (for the non-resonance case) operator L;(0) with the
perturbation ¢ — ¢° and the eigenvalues and eigenfunctions of the unperturbed (for
the single resonance case) operator L,(¢°) respectively. To write this formula first
we consider the eigenvalues and eigenfunctions of L;(g°). For this let us introduce
the following notations which will be used during the book.

Notation 2.1.1 Let § be a visible element of T, that is, § is the element of T of
minimal norm in its direction. Denote by Qs the sublattice {h € Q : (h,d) = 0}
of Q2 in the hyperplane H; = {x € R : (x,§) = 0} and denote by Ts the lattice
of Hs which is dual to Q5, that is, I's =: {a € Hs : (a, k) € 217, Yk € Qs}. The
function q° defined by (2.1.19) is called the directional potential. The eigenvalues
and eigenfunctions of the Schrodinger operator L, (q‘;) with the directional potential
q5 can be indexed by pair (j, [3) of the Cartesian product 7, x T's [see Lemma
2.3.1(b)] and we denote them by \; 3 and ® ; 5(x) respectively.
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By this notation we have
Li(@")®; 5(x) = A} 5@ 5(x). (2.1.20)
Thus the binding formula for L,(g) and Lt(q‘g) is

(AN = XN, j, B) = (Wn., (g — ") P} ), (2.1.21)

where
b(Na ja B) = (lIIN,ta q)],ﬂ)7

which can be obtained by multiplying both sides of (2.1.3) by ®; 3(x) and using
(2.1.20). To prove the asymptotic formulas in the single resonance case we iterate
the formula (2.1.21). The iterations of the formulas (2.1.8) and (2.1.21) are similar.
Therefore the simple iterations of (2.1.8) in Sect.2.2 help to read the complicated
iterations of (2.1.21) in Sect.2.3.

The brief scheme of the iteration of (2.1.21) is following. Using (2.1.5), decom-
posing (g — q‘s)@j, 3 by the eigenfunctions of L, (¢°) and putting this decomposition
into (2.1.21), we get

(AN() = Xjg)bN, j. B) = O(p~"")

+ Z A(j, B, J + j1, B+ BDDN, j + j1, B+ b)), (2.1.22)
(J1.81)€Q

where Q is a subset of the Cartesian product Z x I's. Now using

W, (g — gD p)
(AN = Njsjyp+5)

b(N,j+ j1, B+ p1) =

which is obtained from (2.1.21) by replacing j, 8 with j + ji, 8 + (1, in (2.1.22),
we get the once iteration of (2.1.21):

(ANO=Ajb(N, j. B) = O0(p~ ")

(Un.1. (g — )P )
(AN = Ny i)

+ D> AG.B A+ BB (2.1.23)

(Jj1.8D€Q

Continuing this process we get the iterations of (2.1.21). Then we prove the asymp-
totic formulas, by using the iterations of (2.1.21), as follows. First we investigate in
detail, the multiplicand A(j, 8, j + j1, 8+ (1) of (2.1.23) and prove the estimation

> 1AG. 8.+ 1, B+ Bl < cs (2.1.24)

(J1,.81)€0
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(see Lemmas 2.3.2,2.3.3,2.3.4). Then we investigate the distance between the eigen-
values A; 5 and Aj4 j, g4, (see Lemma 2.3.5) and hence estimate the denominator
of the fractions in (2.1.23), since Ay (¢) is close to A; 5. Using this and (2.1.24) we
prove that there exists an index N such that m times the right-hand side of

(2.1.23) is O (p~“?), from which we get
AN®) =Aj g+ O0(p~ ™) (2.1.25)

(see Lemma 2.3.6, Theorem 2.3.1). At last using this formula in the arbitrary times
iterations of (2.1.21), we obtain the asymptotic formulas of arbitrary order (Theorem
2.3.2). The results of Sect.2.3 were obtained in [VeMol, Ve6, Ve9].

In Sect.2.4, we investigate the Bloch functions in the non-resonance domain.
To investigate the Bloch functions we need to find the values of the quasimomenta
~ + t for which the corresponding eigenvalues of L;(q) are simple. In the interval
[p?, p*> + 1) of length 1 there are, in average, p? 2 eigenvalues |y + 7|> of the
unperturbed operator L;(0). Under the perturbation, all these eigenvalues move and
some of them move or order 1. Therefore, it seems that it is impossible to find the
values of quasimomenta ~ + ¢ for which the corresponding eigenvalues of L;(g)
are simple. For the first time in papers [Ve2, Ve3, Ve4] (in [Ve3] for d = 3 and in
[Ve2, Ved] for the cases: d =2, g € L»(F) and d > 2, ¢ is a smooth potential) we
found the required values of quasimomenta, namely we constructed and estimated
the subset B of U(p®!, p) with the following remarkable properties (the expanded
explanations of these properties were done in [Ve5, Ve6, Ve9]):

Property 1 (Simplicity). If v 4 ¢ € B, then there exists a unique eigenvalue A y (1),
denoted by A(y + t), of the operator L,(q) satisfying (2.1.13), (2.1.14). This is a
simple eigenvalue of L,;(q) and therefore we call the set B as the simple set.

Construction of the set B consists of two steps.

Step 1. We prove that all eigenvalues Ay () of the operator L,(q) satisfying
An(t) ~ p2 lie in the 1 neighborhood of the numbers F(y + ¢) and A;(y + 1),
where

e d
Foy4+1) =y 4+t + Fy_1(y+1), e =p 972, k1=[3 142 (2.1.26)

Q
[see (2.1.14), (2.1.17)]. We call these numbers as the known parts of the eigenvalues
of L;(q). Moreover, for v+t € U (p™', p) there exists A y () satisfying

AN =F(y+0)40(p 92 = F(y+1) + o(e)). (2.1.27)

Step 2. By eliminating the set of quasimomenta y 4 ¢, for which the known parts
F(y+1) of Ay(t) are situated from the known parts F (7' +1), \j (7' +1) (v # )
of the other eigenvalues at a distance less than 2¢1, we construct the set B with the
following properties: if v 4+ ¢ € B, then the following conditions [called simplicity
conditions for the eigenvalue A y (¢) satisfying (2.1.27)] hold:
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|[F(y4+1) — F(Y +1)| = 2¢3 (2.1.28)
fory € K\{v}, v +t € U(p®, p) and
|[F(y+1) = A\j(Y +1)| > 2¢ (2.1.29)

fory € K,~' 4+t € Ex\Er+1, j = 1,2, ..., where K is the set of 7/ € T satisfying

1
[F(y+1)— |7 + 1| < 5p‘“. (2.1.30)

Thus the simple set B is defined as follows:

Definition 2.1.2 The simple set B is the set of

3 B 1 B
x e U(p‘“,p)ﬁ(R(Ep_pal 1)\R(§p+p(’” )

such that x = v + ¢, where v € I', t € F*, and the simplicity conditions (2.1.28)
and (2.1.29) hold.

As a consequence of the conditions (2.1.28) and (2.1.29), the eigenvalue A y(¢)
satisfying (2.1.27) does not coincide with the other eigenvalues.

To check the simplicity of Ay (f) =: A(y +t) (see Property 1) we prove that for
any normalized eigenfunction Wy ; corresponding to Ay (¢) the equality

> (N A =07, (2.1.31)
y'el\y
which is equivalent to
Ib(N. > =1+ 0(p~>™), (2.1.31a)

holds. The equality (2.1.31a) implies the simplicity of Ay (¢). Indeed, if Ay (?) is
a multiple eigenvalue, then there exist two orthogonal normalized eigenfunctions
satisfying (2.1.31a), which is impossible. In fact to prove the simplicity of Ay (¢)
it is enough to show that for any normalized eigenfunction Wy ; corresponding to
Ay (1) the inequality

1
Ib(N,)|* > 5 (2.1.31b)

holds. We proved this inequality in [Ve2, Ve3, Ve4] and as noted in Theorem 3 of
[Ve3] and in [Ve5, Ve6, Ve9] the proof of this inequality does not differ from the
proof of (2.1.31a) which equivalent to the following property:

Property 2 (asymptotic formulas for the Bloch functions). If v 4+t € B, then
the eigenfunction Wy ,(x), denoted by W,,,(x), corresponding to the eigenvalue
An(t) =: A(y + 1) (see Property 1) is close to ¢/ (V%) namely
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Wy (X) =2 W (x) = O 4 Oy 4117, (2.1.32)

Iterating (2.1.32), we get
W (X) = FF (Y 4 1) + O(y + 1] %1y (2.1.33)

fork = 1,2,..., where F;' (v + t) is expressed by ¢ and the eigenvalues and
eigenfunctions of L;(0) [see Theorem 2.4.2, formula (2.4.20)].

Note that the main difficulty and the crucial point of the investigation of the Bloch
functions and hence the main difficulty of the perturbation theory of L(gq) is the
construction and estimation of the simple set B. This difficulty of the perturbation
theory of L(g) is of a physical nature and it is connected with the complicated
picture of the crystal diffraction. In the multidimensional case this becomes extremely
difficult since in the 1 neighborhood of p? there are, in average, p? 2 eigenvalues
and hence the eigenvalues can be highly degenerated. To see that the main part of
the perturbation theory is the construction and estimation of the set B let us briefly
prove that (the precise proof is given in Theorem 2.4.1) from the construction of B it
easily follows the simplicity of the eigenvalues and the asymptotic formula (2.1.32)
for the Bloch functions. As we noted above to prove the simplicity of Ay (#) and
(2.1.32) it is enough to prove that (2.1.31) holds, that is, we need to prove that the
term b(N, ') in (2.1.31) is very small. If

|b(N,7)| > csp™ Y,

then replacing v by 4/ in (2.1.15), (2.1.16), (2.1.14), (2.1.17), and (2.1.27) we see
that Ay (¢) lies in €1 neighborhood of one of the numbers F (7' +1) and A; (7' +1),
which contradicts to the simplicity conditions (2.1.28) and (2.1.29), since (2.1.27)
holds.

Since the main part of the perturbation theory is the construction and estimation
of the set B let us discuss the construction and the history of the construction of
the simple set. For the first time in [Ve2, Ve3, Ve4] we constructed and estimated
the simple set B. In [Ve3] we constructed the simple set for the three dimensional
Schrodinger operator L(g). If d = 2, 3, then the simplicity conditions (2.1.28) and
(2.1.29) are relatively simple, namely in this case

F(y+0=Iy+1

and the matrix C (7' +1), when~’ +¢ lies in the single resonance domain, corresponds
to the Schrodinger operator with directional potential (2.1.19) (see Theorems 1 and
2 in [Ve3]). Therefore the simple set is constructed in such way that if v + ¢ € B,
then the inequality

4+t =1+t = p (2.1.34)
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for v 4+t € U(p™, p), the inequality
Iy + 1P =X + 0l = p™ (2.1.35)
for 4/ + 7 lying in the single resonance domain, and the inequality
Iy +1P =1 +1P] = e

for v/ + ¢ lying in the intersection of two resonance domains hold, where a > 0.
Thus for the construction of the simple set B of quasimomenta in case d = 3 we
eliminated the vicinities of the diffraction planes [see (2.1.34)], the sets connected
with the directional potential [see (2.1.35)], and the intersection of two resonance
domains.

As the dimension d increases, the geometrical structure of B becomes more com-
plicated for the following reason. Since the denseness of the eigenvalues of the free
operator increases as d increases we need to use the asymptotic formulas of high accu-
racy and investigate the intersections of the higher order of the resonance domains.
Then the functions F(y+1), A;j(y+1) [see (2.1.28), (2.1.29)] taking part in the con-
struction of B (see Definition 2.1.2) becomes more complicated. Therefore surfaces
and sets defined by these functions and hence the construction and investigation of B
become more intricate. Besides of this construction in [Ve2] we gave the additional
idea for the nonsmooth potential, namely for the construction of the simple set B
when the nonsmooth potentials ¢ € Lo (R2 /2), we eliminated additionally a set,
which is described in terms of the number of the states (see [Ve2] p.47, [Ve6] Sect. 3
of Chap. 3, and [Ve7]). More precisely, we eliminated the translations A;( of the set
Ay by the vectors v € I', where

2k=1p, 2k=2 1,
K, (
p p

M
Ap={x: Nx(Kp(70)) > bi}, Ak = {x 2 Ne(Kj( ) > bi},

Mo 1,by = (Mo)2, b = 2XMo)? &k > 2,
Ko@) = {x : ||x| — p| < a)

and N, (A) is the number of the vectors v + x lying in A. These eliminations imply
that if v + 7 is in the simple set then the number of the vectors 7' in Ay is less than
or equal to by. On the other hand using the formula (2.1.8) it can be proved that

Ib(N, ¥ > = 0((2*Mp)™2).

As a result, the left-hand side of (2.1.31) becomes o(1), which implies the sim-
plicity of A(y + t) and the closest of the functions W,,(x) and eI Fx) The
simple set B of the quasimomenta is constructed and investigated for the first time
(hence the main difficulty and the crucial point of perturbation theory of L(g) are
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investigated) in [Ve3] ford = 3 andin [Ve2, Ved]forthecases: 1.d = 2,q € L,(F);
2.d > 2, g is asmooth potential. Thus for the first time in the papers [Ve2, Ve3, Ve4,
VeS5] using the simple set B in the non-resnance domain U we constructed the per-
turbation theory (asymptotic formulas for Bloch eigenvalues and Bloch functions)
for the Schrodinger operator L(q) of arbitrary dimension d.

Then, Karpeshina proved (see [Kal, Ka2, Ka3]) the convergence of the perturba-
tion series of the two and three dimensional Schrédinger operator L(q) with a wide
class of the nonsmooth potential g for a set, that is similar to B. In [FeKnTr1] the
asymptotic formulas for the eigenvalues and Bloch functions of the two and three
dimensional operator L,;(q) were obtained by the investigation of the corresponding
infinity matrix.

In Sect. 2.5 we consider the geometrical aspects of the simple set of the Schrédinger
operator of arbitrary dimension. We prove that the simple set B has asymptotically
full measure on R¢. Moreover, we construct a part of the isoenergetic surfaces

{t € F¥:3N, AN(1) = p°}

corresponding to p?, which is a smooth surface and has the measure asymptotically
close to the measure of the isoenergetic surface

{te F¥*:3yel, |y+1> =p?)

of the operator L(0). For this we prove that the set B has the following third property:
Property 3 (Geometric property, containment the overlapping intervals). For
any large p the set B contains the intervals {a +sb : s € [—1, 1]} =: T'(p) such that

Ala —b) < p2, A(a +b) > pz.

Since for v 4+t € T(p) C B the eigenvalue A(y + ¢) is simple (see Property 1),
the function A(x) is continuous on 7'(p) and hence there exists v + ¢ such that
A(y+1) = p?, thatis, the interval {A(y + 1) : (v + 1) € T (p)} (consisting of Bloch
eigenvalues) overlap p? which implies the validity of the Bethe-Sommerfeld conjec-
ture for arbitrary dimension and arbitrary lattice. This conjecture claims that there
exists only a finite number of gaps in the spectrum of L(g).

Property 4 (Containment the large part of the isoenergetic surface). Using the
geometric Property 3, we construct the part of the isoenergetic surfaces and proved
that for large p the isoenergetic surfaces

Ip(g) = {r € F* : 3n, Au(1) = p*)

of L(g), contains a set which consists of the smooth surfaces and has the measure
asymptotically equal to the measure of the sphere {x € R? : |x| = p}. The nonempty
of I,(g) for large p implies the validity of the Bethe-Sommerfeld conjecture for
arbitrary dimension and arbitrary lattice.
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There are several different approaches for solving the Bethe-Sommerfeld conjec-
ture. First method is the method of Skriganov. The Skriganov’s method is based on
the detailed investigation of the arithmetic and geometric properties of the lattice.
Skriganov [Skl1, Sk2, Sk3, Sk4, Sk5] proved the validity of the Bethe-Sommerfeld
conjecture for the Schrodinger operator with the dimension d = 2, 3 and the arbitrary
lattice, with the dimension d > 3 and the rational lattice. Dahlberg and Trubowits
[DaTru] gave the simple proof of this conjecture for the two dimensional Schrodinger
operator using an asymptotic of the Bessel functions.

In papers [Vel, Ve2, Ve3, Ve4] (see also [Ve6, Ve8, Ve9]), for the first time, we
proved the validity of the Bethe-Sommerfeld conjecture for the arbitrary lattice and
arbitrary dimension by using the asymptotic formulas and by the construction of the
simple set B, that is, by the method of the perturbation theory. Then Karpeshina (see
[Kal]) proved this conjecture for the two and three dimensional Schrodinger operator
L(g) for a wide class of nonsmooth potentials g by the method of the perturbation
theory.

Helffer and Mohamed [HeMo] proved it for d < 4, by investigating the integrated
density of states. Since this and the other investigations [Ka7, Moh, MoPaPc, PaSh,
So] about the integrated density of states have no any connection with the main
themes (asymptotic formulas for Bloch eigenvalues and Bloch functions, spectral
invariants and inverse problem) of this book, we do not discuss those results.

Parnovski [Pa] proved the validity of this conjecture for the arbitrary lattice and
arbitrary dimension by the methods of the perturbation theory. As he wrote in [Pa]
(see introduction), there are certain parallels between the approach of the paper [Pa]
and the approach used in the paper [Ve4] of Veliev. Briefly, he wrote the follow-
ing similarities and differences. Similarities: Precise asymptotic formulae for Bloch
eigenvalues in the non-resonance regions and some, although not very precise, formu-
lae in the resonance regions and the geometrical combinatorics. Differences: Veliev
makes a heavy use of the asymptotic formulae for the eigenfunctions, the isoener-
getic surface, whereas we don’t need it. One can readily see that the similarities are
Property 1 and Property 3 (see above) which are enough to prove the validity of this
conjecture for the arbitrary lattice and arbitrary dimension. Thus in [Pa] Parnovski
proved the validity of this conjecture by using the similarities. The differences, that
is, asymptotic formulas for the Bloch functions and investigations of the isoenergetic
surface are more important than the conjecture and are my additional investigation
whose expanded explanation were done in [Ve5, Ve6, Ve9]. Hence the method of the
papers [Vel, Ve2, Ve3, Ved] is the first and unique (for present) by which the validity
of the Bethe-Sommerfeld conjecture for the arbitrary lattice and arbitrary dimension
was proved, since [Pa] was written after all my papers and arxiv papers about it. Note
that in the recent literature [Ka4, Ka5, Ka6, PaBa, PaSo, Ve8] the generalizations of
some results to periodic magnetic Schrédinger, polyharmonic, and psevdodifferen-
tial operator were investigated. In order to avoid the technical complexity and taking
into account that the book is devoted to L(g) I do not discuss the generalizations.

In 4-th and 5-th sections we construct and investigate the simple set B with the
properties 1-4. Note that one can read Sects. 2.4 and 2.5 without reading Sect.2.3.
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In Sect.2.6, we construct the simple set in the resonance domain and obtain the
asymptotic formulas of arbitrary order for the Bloch functions of the multidimen-
sional Schrodinger operator L(g) of arbitrary dimension d, where

q € Wi(F), s>63%d+1)? +d, (2.1.36)

when the corresponding quasimomentum lies in this simple set, by using the ideas
of the Sects.2.4 and 2.5. For the first time the asymptotic formulas for the Bloch
function in the resonance case were obtained in [FeKnTr2] for d = 2. Then in
[Ka2], in the resonance case, for d = 2, 3 and for a wide class of singular potentials
q, including Coulomb potential, the isoenergetic surfaces were constructed and the
convergence of the perturbation series for the Bloch functions was proved. In the
paper [Ve9] we investigated the resonance case for arbitrary dimension d. Note that
we construct the simple set in the non-resonance domain so that it contains a big part
of the isoenergetic surfaces of L(q). However in the case of resonance domain we
construct the simple set so that it can be easily used for the constructive determination
a family of the spectral invariants by the given Bloch eigenvalues and then to study
the inverse problem of L(g) by these spectral invariants in the next chapters.

In this chapter for the different types of the measures of the subset A of R? we
use the same notation ;1(A). By |A| we denote the number of elements of the set A
and use the following obvious fact. If a ~ p, then

v +1:v el v+l —al < 1} = 0. (2.137)
Therefore for the number of the eigenvalues A y (¢) of L;(g) lying in (a*— P, a’+ p)
the equality

N 1 An@) € (@® = p,a® + )}l = 0(p" ) (2.1.37a)

holds. Besides, we use the inequalities:

1
al+da<1l—a, da< zad, (2.1.38)
ap+ k—Da <1, o) >2(a+ k= 1) (2.1.39)
1 1
k1 < g(p — E(%(d - 1)), 3kia>d+2a, (2.1.40)
fork = 1,2, ...,d, which follow from the definitions of the numbers p, s, «, ax, ki

[see (2.1.5), (2.1.1), (2.1.26), and the Definition 2.1.1].
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2.2 Asymptotic Formulas for the Eigenvalues

First we obtain the asymptotic formulas for the non-resonance eigenvalues by itera-
tion of (2.1.9). If (2.1.15) holds and

v+t eUp™, p),
then (2.1.11) holds. Therefore using the decomposition (2.1.5) in (2.1.12), we obtain

gypb(N, vy =71 —72)

AN — 1y -+ 1P 0(p~P%). (2.2.1)

bIN,y =)= D,

7el(p®)

Substituting this for (N, v — ~1) into the right-hand side of (2.1.9) and isolating the
terms containing the multiplicand b(N, y), we get

9y gnb(N, v =71 —72) _
AN@ =+, p = > =2 = TeeT
V1,726l (pY) N Tm
2
b(N, b(N,y—v — e
- Z A (|371_|| (— V)le Z q:\]qw(z[)(_l“Y_ 71+t722) O,
1EeT(p™) N T 71,7260 (%), N T
Y1+727#0
2.2.2)
since
_ 2
997 = gy |

for 71 4+ 2 = 0 and the last summation is taken under the condition vy; + v # 0.
The formula (2.2.2) is the once iteration of (2.1.9). Let us iterate it several times. It
follows from the definition of U (p“!, p) that (see Definition 2.1.1) if

Y+t € U™, p),v1 € T(p*), 2 € T(0Y), ..., % € T(p™), i+72+- - +n #0,

and (2.1.15) holds, then

Iy +t2 =1y = =72 — - = + 1] > p™,

1
AN — Iy =1 =2 — =+t > 5™ Vk<p. (2.2.3)

Therefore arguing as in the proof of (2.2.1), we get

k
b(N V—Zv'): Z Gyt DN,y =91 — 72 — - = Yk+1) +0(L)
’ — AND =y = =72 — =+ 1 pP
j=1 Y+1€T(p%)

(2.2.4)
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fork < p,vi+7+-- -+ # 0. Now we iterate (2.1.9), by using (2.2.4), as follows.
In (2.2.2) replace b(N, v —v1 — 72) by its expression from (2.2.4) [in (2.2.4) replace
k by 2] and isolate the terms containing b(N, ), then replace b(N, v —y1 — 72 —73)
for v1 + v2 + 3 # 0 by its expression from (2.2.4) and isolate the terms containing
b(N, ). Repeating this process p; times, we obtain

(AN =y +1PBIN, 7) = Ap -1 (AN, y+DB(N, ) +Cp +0(p~7), (22.5)

where p; =: [%] +1,

pi—1
Ap—1(AN, Y +1) = D Si(Ay, v +10),

k=1

Sk(AN, Y +1) = z 4y - - Aud—n—rn——%

9 - k n 3
iz [z AN @) = Iy +1 =20 7il?)
C. — z ‘171%’2"'q“/plﬂb(Nv’)’_Vl_72_"'_’7p1+1)
P — n .
oeip 1 €00 PLIAN® = Iy +1 =3 vl

Here the summations for S; and C), are taken under the additional conditions ~; +
Yo+ -4+ #O0fors =1,2,...,kand s = 1,2,..., pj respectively. These
conditions and (2.2.3) show that the absolute values of the denominators of the
fractions in Sy and Cp, are greater than (% p*1)* and (% p“1)P! respectively. Now
using inequality (2.1.6a), we get
Sc(An,y+1) =0 %), Vvk=1,2,...,p1 — 1, (2.2.6)
Cp=0@(p ") =0@p""),

since p; > 3p [see (2.2.5)] and a1 = 3« (see Definition 2.1.1), and hence pjag >
pa. In the proof of (2.2.6) we used only the condition (2.1.15) for A . Therefore

Se(a, v +1) = O(p~Fan) (2.2.7)

for all a € R satisfying
2 1 (s3]
la =y + 1171 < 507

Theorem 2.2.1 (a) Suppose v+t € U(p™, p). If (2.1.15) and (2.1.16) hold, then
AN (1) satisfies (2.1.14) fork = 1,2, ..., [%(p — ¢)], where

Fo(y+1) =0, Fk(y+1) = 0(p™™), Yk=0,1,..., (2.2.8)
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lg
Fiy+n= >, : (2.2.9)
12— |y — 12
erem YTy =+
N
Fo= Ay +1P+ Fot,y+0 = D Si(y+ 12 + Foi,y +10)
k=1
N
GGy -+ o G Gy — e
— Z( Z 3 71 ;2 Yk Y1—72 ’ij ; ) (2'2'10)
k=1 41,.... el (p®) Hj=1(|7+t| + Fe_1 —|y+1t— ,':1'Yi| )

fors =1,2,....and the last summations in (2.2.10) are taken under the additional

conditions y1 +v2 +---+7v; #0for j =2,3,... k.
(b) For each vector v + t from U (p™', p) there exists an eigenvalue Ay (t) of
Li(q) satisfying (2.1.14) fork = 1,2, ..., [3(p — 3¢(d — 1)].

Proof (a) Dividing both side of (2.2.5) by b(N, «) and using (2.1.16) and (2.2.6),
we get the proof of (2.1.13). Thus the formula (2.1.14) for k = 1 holds and Fy = 0.
Hence (2.2.8) for k = 0 is also proved. Moreover, from (2.2.7), we obtain

Sk(ly + 112+ 0(p™), v +1) = O(p~*) (2.2.11)
for k = 1,2, .... Therefore (2.2.8) for arbitrary k follows from the definition of

Fy [see (2.2.10)] by induction. Now we prove (2.1.14) by induction on k. Suppose
(2.1.14) holds for k = j < [%(p —¢)] < pi, that is,

AN@) =y + 1>+ Fj1(y+ 1)+ 0(p 7).

Substituting this into A, —1(Ay, v+ 1) in (2.2.5), dividing both sides of (2.2.5) by
b(N, ), using (2.1.16), and taking into account that

Ap—1 (AN, Y+ 1) = Aj(AN, Y +1) + O(p~ U TD)
[see (2.2.6) and the definition of A, 1 in (2.2.5)], we get

AN =7+ 1P+ Ay + P+ Fioi + 0(p77), v +1)
+ O(p—(j-&-l)ozl) + 0(p—(17—€)11)

On the other hand _
O(p~ P79 = 0 (p~ ),

since j + 1 < %[p —c], and a1 = 3. Therefore to prove (2.1.14) fork = j + 1 it
remains to show that
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Aj(Iy+ 1P+ Fioi + 0(p™ ™), v +1)
= Aj(y+ 1P+ Fi_1,y+1) + 0(p~U+hen) (2.2.12)

[see the definition of F; in (2.2.10)]. It can be checked by using (2.1.6a), (2.2.8),
(2.2.11) and the obvious relation

1
[Ty + 12+ Fimi + 0(p=9) — Iy +1 = 350 %il?)
1
[Tioi(y+ 1P+ Fior = Iy +1 = 25 vl
1 1

[Goi(y + 1P+ Fjor = Iy 41 = 2o 7)1 = 0(p=U+hen)

=0(p YUthany vs=1,2,....

The formula (2.2.9) is also proved, since by (2.2.10) and (2.2.8) we have

Fi=A(y+tP v+ =Si(y+ 1%y +1)

419
= > . (2.2.13)
rs (Iy+tl* = lv+t =7l

(b) Let A be the set of indices N satisfying (2.1.15). Using (2.1.8) and Bessel’s
inequality, we obtain

N7, i(y+t,x)
> b, = Y VAW g )
Ay =y +1?
NéA N¢A

Hence, by the Parseval equality, we have

D IbIN NP =1-0(p>).

NeA

This and the inequality
A= 0(p"™h) = 0(p =)

[see (2.1.37a) and the definition of « in (2.1.5)] imply that there exists a number N
satisfying (2.1.16) for ¢ = %%(d — 1). Thus A y(¢) satisfies (2.1.14) due to (a). 0O

Theorem 2.2.1 shows that in the non-resonance case the eigenvalue of the operator
L(g) is close to the eigenvalue of the unperturbed operator L,(0). However, in
Theorem 2.2.2 we prove that if

v+t €N Vo (p")\Epgr
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for k > 1, where 1, 72, ..., Y are linearly independent vectors of I"(pp®), then
the corresponding eigenvalue of L, (g) is close to the eigenvalue of the matrix C(y +
t, Y1, 72, - - -, Yk) constructed as follows. Introduce the sets:

k
By =: Br(y1,72,---» %) ={b:b = Z}ni%ni €Z,1b| < %P%ak“},
i=
Br(v+t)=v+t+By={y+t+Db:be By}, (2.2.14)
Bi(y+t,p)={y+t+b+a:beBy,lal <pip*acly={hj+t:i=12,..., by},
where pi is defined in (2.2.5), h| +¢, ho +1¢, ..., hp, +t are the vectors of By (y +

t, p1), and by =: br(y1, 72, - .., V) 1s the number of the vectors of By (v + ¢, p1).
Define the matrix C(y + 1,71, 72, ..., %) =: (ci,j) by

cii=Ihi +11°. cij=qn-n,. Vi # ], (2.2.15)

wherei, j =1,2,..., b.
To prove Theorem 2.2.2 we use the following lemma.

Lemma 2.2.1 Suppose
Y4t € (O Vo, (0™ )\ Ext

andh+1t € B(y+t, p1). If (h —+ +1t) ¢ By (y+1t, p1), where v’ € T'(p®), then
1
v+ ==~ =7 == =+ 1P > S (2.2.16)

fors =0,1,..., p1 — 1, where y{ € T(p®), 75 € T(p“), ..., 75 € T'(p™).

Proof 1t follows from the definitions of p; [see (2.2.5)] and p [see (2.1.5), (2.1.1)]
that p > 2p;. Therefore the conditions of Lemma 2.2.1 imply that

h—~ =y == =7 +1€Br(y+1, p)\Br(y +1)
fors = 0,1,..., p — 1. By the definitions of Bi(vy + t, p) and By [see (2.2.14)]
we have

h—~ =y = ——vi+t=7+t+b+a,

where
1
Ib] < zp%“kﬂ, la| < pp*,y+t+b+tag¢y+i+Bbe B CP, (22.17)

and P = Span{vy1,72, - .., 7}. In this notation (2.2.16) has the form
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1
Iy + 14 a+bl =y 412> op™, (22.18)

where (2.2.17) holds. To prove (2.2.18) we consider two cases:
Case 1.a € P.Since b € By C P [see (2.2.17)] we have a + b € P. This with
the third relation in (2.2.17) implies thata + b € P\ B, i.e.,

1
a+beP, la+b> Ep%%' (2.2.19)

[see the definition of By in (2.2.14)]. Now to prove (2.2.18) we consider the orthog-
onal decomposition v+t = y + v of v + ¢, where v € P and y_L P. First we prove
that the projection v of any vector

x € Ny Vo, (p™)

on P satisfies
lv] = O (pk—Datary, (2.2.20)

For this we turn the coordinate axis so that P coincides with the span of the vectors
e1 =(1,0,0,...,0),e2 =(0,1,0,...,0),..., e. Since 5 € P we have

k
Vo= D sicis Vs=12,...k
i=1

Therefore the relation x € ﬂle Vy, (p™) and (2.1.10) imply

k
> wixi = 0(%), Vs =1.2....k,

i=1

where x = (x1,x2,...,%4), vj = (Vj,1,7j,2>---»Vjk» 0,0, ...,0). Solving this
system of equations by Cramer’s rule, we obtain

_ det(®])

Xy = . Vn=1,2,...k 2.2.21)
"7 det(yy.)

where b?’i = j,iforn # jand b;%’i = O(p™) forn = j. Since the absolute value of
the determinant det(+y; ;) is the volume of the parallelotope generated by the vectors
Y1, Y2, -+ - Yk We have

|det(v;.)| = u(F) = 1.

On the other hand the relation v; € I'(pp®) and the definition of b’]’.y ; imply that
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il < pp®,  det®};) = O(p™ =D,
Therefore using (2.2.21), we get
Xy = O(pM T DN v = 1,2,k Vx e bV, (p%). (2.2.22)

Hence (2.2.20) holds. The conditions a € P, b € P and the orthogonal decomposi-
tiony+t=y+vofvy+t, where v € Pand yL P imply that

(y,v) =(y,a) =(y,b) =0,

and
N4+t+a+b?—|v+1>=la+b+v)*— v (2.2.23)

Therefore using (2.2.20), (2.2.19), and the inequality ag+1 > 2(ax + (kK — 1)) [see
the second inequality in (2.1.39)], we obtain the estimation (2.2.18).
Case 2. a ¢ P. First we show that

Iy +1+al? =y + 1] = p™, (22.24)

Suppose that (2.2.24) does not hold. Then v + ¢ € V,(p“+!). On the other hand
v+t e N Vi (p™h)

(see the conditions of Lemma 2.2.1). Therefore we have v+t € Ej4 which contra-
dicts to the conditions of the lemma. Thus (2.2.24) is proved. Now, to prove (2.2.18)
we write the difference |y + ¢ + a + b|*> — |y + 1|? as the sum of

di = |y+t+a+bP—|y+t+bandd> =: |y +1+b* — |y + 1

Since
di=y+t+al®—|y+t>+2(a,b),

it follows from the inequalities (2.2.24) and (2.2.17) that |d;| > % P+ On the
other hand, taking a = 0 in (2.2.23), we have

dy = |b+v]* — |v*

Therefore (2.2.20), the first inequality in (2.2.17) and the second inequality in (2.1.39)
imply that

1 1
dal < 30 ldi| = Idal > 3™,

that is, (2.2.18) holds m]
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Now we are ready to prove the following

Theorem 2.2.2 (a) Suppose
v+ 1€ (O Vay (P D\Ei1,

where 1 <k <d—1.1If(2.1.15) and (2.1.16) hold, then there exists an index j such
that (2.1.17) holds, where

MO +HD =X(y+0) = = Ay (y+1)

are the eigenvalues of the matrix C(vy + t, y1, Y2, - . ., Yk) defined in (2.2.15).
(b) Every eigenvalue An(t) of the operator L;(q) satisfies one of the formulas
(2.1.14) and (2.1.17) for k = [%(p — %%(d —1)]andc = @ respectively.

Proof (a) Writing the Eq.(2.1.9) for all h; +t € By (y + ¢, p1), we obtain

(Ay = lhi + BN hi) = D qyb(N.hi —9)+ O0(p™P*)  (22.25)
v el(p%)

fori =1,2,..., by [see (2.2.14) for the definition of By (y +¢, p1)]. It follows from
(2.1.15) and Lemma 2.2.1 that if

(hi =~ +1) & Br(y+1, p1),

then 1
IAN@) = |hi =7 = =y — - — s + ] > o (2.2.26)

wherey € T'(p®),v; e T(p*), j=1,2,...,sands =0, 1, ..., py—1. Therefore,
using the p; times iterations of (2.2.1) taking into account (2.2.26), (2.1.6a) and the
obvious inequality pjagy1 > pa [see (2.2.5) and Definition 2.1.1 for the definitions
of py and a4 1], we see that if

(hi =~ +1) & Br(y+1, p1),

then

Z GGy - Gy DN i = = 2L %)
—1 i
teomyere g (Ay = hi =o' +1 = 3 %)

+O0(p™"") = 0" )+ 0(p™"") = 0(p™").  (22.27)

b(N,hi =) =
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Hence (2.2.25) has the form

(AN = |hi + tP)b(N, ) = > qyb(N, hi =) + O (p~"?)
v el (p%),
hi—~'+t€Br(y+t,p1)

fori =1,2,..., br. This system can be written in the matrix form
(C = AND(BN, h1),b(N, ha), ...b(N, hp)) = O(p~P?),
where the right-hand side of this system is a vector having the norm
10(p™ "N = O bxp™P).

Using the last two equalities, taking into account that one of the vectors hy + ¢,
hy +t,..., hp, +tis v+t [see the definition of Br(y + ¢, p1) in (2.2.14)] and
(2.1.16) holds, we obtain

by
. 1 _ —
csp < QL IbIN )2 < (€ = AND T IVbrerp™ . (22.28)
i=1

Since (C — ANI)_l is the symmetric matrix having the eigenvalues (Ay — )\i)_l
fori =1,2,..., b, we have

_1
max [Ay — NITU =€ = AND T > eseq b 2 pTetPY, (2.2.29)
k

=12,

where by, is the number of the vectors of Bi(y+1, p1). It follows from the definition
of By (v +1t, p1) [see (2.2.14)] and the obvious relations

1 1
|Bil = O(p2+1), [T(p1p®)] = 004, da < Esda = S0

that
b = O(pPF301y = 0(p2%) = 0(p2¥'Y), Wk =1,2,....d —1. (2.2.30)
Thus (2.1.17) follows from (2.2.29) and (2.2.30).
(b) Let Ay () be an eigenvalue of L;(g) lying in (%pz, %pz). Denote by D the set

of all vectors v € I' satisfying (2.1.15). Using (2.1.8), (2.1.15), Bessel’s inequality,
and Parseval’s equality, we obtain
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i (y+t, x))

(‘I’th,
DN P = D 1 i ?

v¢D v¢D
= 0<p‘2“l>||\1w,,q|| =0(p~)
and

SUB(N. NP =1-0(p).

yeD

Since |D| = O (p?~1) [see (2.1.37)], there exists v € D such that

@-n _-bx,

[b(IN, V)| > cgp™ 2 =cgp )

that is, (2.1.16) for ¢ = @-Dx 1)% holds. Now the proof of (b) follows from Theorem
2.2.1(a) and Theorem 2.2. 2(a) since either v+t € U (p™, p) or v+t € Ex\Ex+1
fork=1,2,...,d — 1 [see (2.2.33)] |

Remark 2.2.1 The obtained asymptotic formulas hold true, without any changes
in their proofs, if we replace V,, (p®!) by V,, (c4p'). Here we note that the non-
resonance domain

(63 3 1 (63
U=:Uleap™, p) =t (RGO\RGoD\ | Vay(eap™)
el (pp®)

(see Definition 2.1.1) has an asymptotically full measure on R? in the sense that

(U N S(p))
im —————— =
p=oo p(S(p))

k]

where
S(p) ={x eRY: |x| = p}

is the sphere. Clearly, S(p) N Vj,(c4p®!) is the part of sphere S(p), which is contained
between two parallel hyperplanes

fx o x)? = v +b1* = —cap™) & fx 1 |x[* = |x +b|* = cap™).

The distances of these hyperplanes from the origin are O(%). Therefore, the rela-
tions

IT(pp™)| = 0(p?)

and a1 +da < 1 — a[see (2.1.38)] imply
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pa1+d—2
p(S(p) N Vi(cap™)) = O( b] ), WELNS(p)) = 017, (22.31)
p(U(cap™, p) N B(p)) = (1 4+ O(p~ ") (B(p)). (2.2.32)

If
x €Ny Vo (0™,

then (2.2.22) holds fork =d andn = 1,2, ..., d. Hence we have
x| = O(patd=Dey,

It is impossible, since ay + (d — 1) < 1 [see the first inequality in (2.1.39)] and
x € S(p). It means that
(N Vo, (0™)) N S(p) = 0

for p > 1. Thus for p > 1 we have

3 1 _
RGP\R(p) = (U (™, p) U (U] (E\Ess)). (2.2.33)
Remark 2.2.2 Here we note some properties of the known parts
4117+ Fy+0 & Aj(y +1)

(see Theorem 2.2.1 and Theorem 2.2.2) of the eigenvalues of L,(g). Denoting v + ¢
by x we consider the function

F(x) = |x|* + Fe(x).

It follows from the definition of Fj(x) that (see 2.2.10) F(x) is continuous on
U (cap™', p). Let us prove the equalities

OFk(x)

e =0(p 29ty Vi=1,2,....d; Vk=1,2,..., (2.2.34)
1

for x € U(p™', p), by induction on k. If k = 1 then (2.2.34) follows from (2.1.6a)
and the obvious relation

0 1 =271 (i)

v — = O (p 2ntay, 2.2.35
o WP =P P == - 0 % (&)

where (i) is the ith component of the vector y; € I'(pp®). Now suppose that
(2.2.34) holds for k = s. Using this and (2.2.8), replacing lx|? by |x|2 + Fy(x) in
(2.2.35) and evaluating as above we obtain
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0 1 —21 (i) + 25

—( ) = 72(11+(1)'
Oxi xP+ Fy—lx —=m*"  (xPP+ F =[x = m?)?

=O0(p

This formula together with the definition (2.2.10) of Fj gives (2.2.34) fork = s + 1.
Now denoting \; (v +1) — |y + 12 by r; (v + t) we prove that

Iri (x) = ri ()| < 2p2%|x — x|, Vi. (2.2.36)

It is clear that
ri(x) <rx) <o < rp(x)

are the eigenvalues of the matrix
C(x) — x|’ =: C(x),

where C(x) is defined in (2.2.15). By definition, only the diagonal elements of the
matrix B
C(x) = (¢ j(x))

depend on x and they are

G = xtal* =X =2, @)+ lail?, (2.2.37)

where x = v +1t,a; = h; +t —x and h; +t € Br(y +t, p1). Using the equality

ag = 3% (see Definition 2.1.1) and the definition of By (v +t, p1) [see (2.2.14)],
we get

1
lai| < QP%‘“ +p1p® < 2%
for k < d. Therefore taking into account that C (x)— C (x”) is a diagonal matrix with
diagonal entries
Cijx) = ¢ j(x) =2(x —x', a;)
[see (2.2.37)], we have
~ ~ ) La /
[Cx) = COHI < 2p2%|x —x

which yields (2.2.36).
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2.3 Bloch Eigenvalues Near the Diffraction Planes

In this section we obtain the asymptotic formulae for the eigenvalues corresponding
to the quasimomentum v + ¢ lying near the diffraction hyperplane Dy, namely lying
in the single resonance domain

V(0™ =: Vs(p")\Ea

defined in Definition 2.1.1, where ¢ is the element of I of minimal norm in its
direction, that is, ¢ is the element of I" such that

{0, w) : w e Q} =27Z.

In Sect.2.2, to obtain the asymptotic formulas for the eigenvalues corresponding
to the quasimomentum ~ + ¢ lying far from the diffraction planes we considered
the operator L;(g) as the perturbation of the operator L;(0) with ¢g. As a result
the asymptotic formulas for these eigenvalues of L;(g) were expressed in terms
of the eigenvalues of L;(0). To obtain the asymptotic formulae for the eigenvalues
corresponding to the quasimomentum y + ¢ lying near the diffraction plane Dy we
consider the operator L;(g) as the perturbation of the operator L;(g%), where the
directional potential ¢° is defined in (2.1.19), with ¢ — ¢°. Hence it is natural that
the asymptotic formulas, which will be obtained in this section, are expressed in
terms of the eigenvalues of L; (q‘s). Therefore first of all we need to investigate the
eigenvalues and eigenfunctions of L,(¢°®). Here we use Notation 2.1.1. Denote by
Fs the fundamental domain Hs/T'; of I's. Then t € F* = R?/T has a unique
decomposition

t=a+1+672(0)8, (2.3.1)

where a € T'y, 7 € Fj. Define the sets Q" and '’ by
Q = {(h+16:heQslcll)

and
I'=1{b+(p—Cm b, 0*)5:beTys, pel)

where 0* is the element of 2 satisfying (0%, ) = 2.

Lemma 2.3.1 (a) The following relations hold:
Q=Q, =T
(b) The eigenvalues and eigenfunctions of the operator L, (q‘s) are

A, m) = 1B+7P 4+ p(B, 1)), ®; () = P00 0500
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for j € Z, B € T's, where v([3, t) is the fractional part of

1617242, 8) — @)~ (5 — a. 6%),
T and a are uniquely determined from decomposition (2.3.1). Here ;(v(3,1))

and ©; v3,1(C) are the eigenvalues and normalized eigenfunctions of the opera-
tor Ty(3,1) (Q(C)) generated by the boundary value problem

—1817y"(O) + QO y(0) = uy(©),
y(¢ +2m) = 2™y (0),

where, ¢ = (0, x) , Q(C) = ¢° (x) and for simplicity of the notation, instead of v(3, t)
we write v(3) (orv) ift (ort and 3), for which we consider v((3, t), is unambiguous.

Proof (a) For each vector w of the lattice €2 assign
h=w-—Qm) (w6 "

Using the relations (w, 6) =: 2nwl € 27Z, and (§*, §) = 27 we see that 1 € Q and
(h,0) =0,i.e.,h € Q5. Hence 2 C . Now for each vector y of the lattice I" assign
b =~—|8]72 (v, §) 6. Itis not hard to verify that b € Hj and (b, w) = (v, w) € 27Z
for w € Qs C Q. Therefore b € I's. Moreover

(b, 6%) = (7, 6*) — 2 (v, 6) |51 2.
Since (v, 6*) € 2nZ, that is, (y, 0*) = 27n, where n € Z, we have

(7,0 16172 =n— 2m)~" (b, 6*).

Therefore we obtain an orthogonal decomposition

0 )i =b+@n—Cm b, 5*)é (2.3.2)

:b+< s T oy
7 7101 101

of v € ', where b € Ty, and n € Z. Hence I' C T"". On the other hand, if b € Ty,
h e Qsandn,l € Z, then

(h+16% b+ @ = @m) " (b, 5D6) = (h, b) + 2mnl € 27Z.

Thus we have the relations (see the definitions of the sets Q" and ')

QcQ.rcr, (w/, 7/) e 2nZ, V' € @, Vv eT’. (2.3.3)
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Since € is the set of all vectors w € RY satisfying (w, ) € 2rZforally € " and T
is the set of all vectors v € RY satisfying (w, v) € 277 for all w € €, the relations
in(2.3.3)imply ' € Q, " CcTandhence Q = Q', I =T".

(b) Since 3 + 7 is orthogonal to §, turning the coordinate axis so that § coincides
with one of the coordinate axis and taking into account that the Laplace operator is
invariant under rotation, one can easily verify that

(—A+q°(x)D;j 5(x) = A 5 5(x)

Now using the relation (4§, w) = 2/, where w € Q, [ € Z, and the definitions of
®; 5(x) and ¢ ,((J, x)) we obtain

D px +w) = ei(ﬁ+7,x+w>(pj’v(<5’ X4 w) = (Djﬂ(x)ei(6+’r,w>+i27rlv(ﬂ,t)'
Replacing 7 and w by t — a — |6| 72 (t, §) § and h + 15* respectively, where
heQ,lelZ,
[see (2.3.1) and the first equality of (a)], and then using
(h,8) =0,(6%,6) =2m
one can easily verify that
(B+T,w) = {t,w) + (B —a,h) —27l[|6] % (t,8) — 2m) "' (B — a, 6*)].

From this, using the relation
(B —a,h) € 2n,

(since B —a € T'5, h € Q5), and taking into account that v((3, t) is a fractional part
of the expression in the last square bracket, we infer

D p(x +w) =D 5(x).

Thus ®; 3(x) is an eigenfunction of L:(g%).
Now we prove that the system

{®jp:j€el pels}
contains all eigenfunctions of Lt(qé). Assume the converse. Then there exists a
nonzero function f € L,(F), which is orthogonal to all elements of this system.

Using (2.3.1), (2.3.2) and the definition of v(/3, t) [see Lemma 2.3.1(b)], we get

y+t=0+7+( +v)d, (2.3.4)
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where 3 € s, 7 € Fs, j € Z, and v = v(83, 1). Since ¢!U+)¢ can be decomposed
by the basis
{pjv@m Q) :j € Z}

the function eV H%) = l(F+7.2) o1 (G+0)C [gee (2.3.4)] can be decomposed by the
system '
(@)500) =T 05.0)(0) 1 € Z).

Then the above assumption
(@5, f)=0

for j € Z, B € I's implies that
(f. !0 =0

for all v € TI". This is impossible, since the system {e!*"*) : v € T} is a basis of
Ly(F) m

Remark 2.3.1 Tt is clear that every vector x of R? has the decompositions
X =7+t

and
x=0+74(+v)d,

where y e I',t € Fand 8 € ', 7 € Fs, j € Z, v € [0, 1). We say that the first
and second decompositions are I" and I's decompositions, respectively. Thus

vyt =047+ +v(B. )0
[see (2.3.4)] is the I's decomposition of v + ¢. As we noted in Lemma 2.3.1 instead
of v(3, t) we write v((3) (or v) if ¢t (or ¢t and 3), for which we consider v((3, t), is
unambiguous. The decomposition (2.3.4) of v + ¢ is an orthogonal decomposition,
since 3 € I's, 7 € Fs, and ¢ is orthogonal to both I'5 and Fj. Hence
Y+ 1P =18+71+1( +v)s.
Therefore, one can easily verify that, if v + ¢ € V5(p!) (see Definition 2.1.1), then
1G4 v+ DO =[G+ )] < p*.

Using this and the equality o1 = 3, we get

[(j +v)d| <ry,|jol <r1,r > 2p%, (2.3.5)
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where r| = 2 5| 4+ |26]. To the eigenvalue

I+ =18+ 7P +1( + 0o
of L;(0) assign the eigenvalue
N g, ) =B+ 71+ pjv)

of L,(qé), where |(j + v)(5|2 is the eigenvalue of T, (0) and y; (v) is the eigenvalue
of T, (Q) [see Lemma 2.3.1(b)] satisfying

;) — 1 +v)8*| <sup Q. VjeZ (2.3.6)

The eigenvalue A; (v, 7) of L,(q5) can be considered as the perturbation of the
eigenvalue
I+ 1P =18+7P+10 + )6

of L;(0) by ¢°. Then we see that the influence of ¢° is significant for S+74(j+v)d €
Vs(p™'), namely for the small values of j.

Now we prove that if
B+T1+( +v)d e Vs(p™),

then there is an eigenvalue A y (¢) of L,(g) which s close to the eigenvalue A; 5(v, )
of L;(¢?), that is, we prove that the influence of ¢ — ¢ is not significant if the
quasimomentum lies in Vs(p*')\ E;. To prove thlS we consider the operator L;(q) as
the perturbation of the operator L, (¢°) with g —¢® and use (2.1.21) called the binding
formulafor L;(q) and L; (q(’ ). Recall that we obtained the asymptotic formulas for the
perturbation of the non-resonance eigenvalue |y+7|> by iterating the binding formula
(2.1.8) for the unperturbed operator L;(0) and the perturbed operator L;(g) (see
Sect.2.2). Similarly, now to obtain the asymptotic formulas for the perturbation of
the resonance eigenvalue we iterate the binding formula (2.1.21) for the unperturbed
operator L; (q‘s) and perturbed operator L;(g). For this (as in the non-resonance case)
we decompose (g — qa)d)j, g by the basis

(®jip:j €l B eTs)

and put this decomposition into (2.1.21). Let us find this decomposition. Using (2.3.2)
for v € I'(p®) and (2.1.5), we get

i = B1+ (1 — @m)7 {B1, 848, el 1) = o) =GO (5ITNC
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q(x) — Q) = Z c(ny, et o) fm=Cm~ (BLeNE | o (pPey,
(n1.B1)€l"(p™)

(q(x) — Q)P 5(x)

: : _ -1 * _
— Z c(nl’ﬁl)el(ﬂlJrﬂJrT,X)el(nl @m~{p1.6 ))ij’v(ﬂ)(o + 0(p~ P,
(n1,81)el’(p*)
2.3.7)

where c(n1, 81) = g,

I'(p®) = {(n1, B1) : B € Ts\{O}, ny € Z, By + (ny — 2m) ! (B1.6*)d € T(p™)}.
Note that if (ny, 51) € I''(p®), then

181 + (m1 — @m) " {31, 5*)dl < p”

and

1
Bl < % LG = @m~H B, 07Dal < p* < o, (2.3.8)

since (31 is orthogonal to d and r; > 2p® [see (2.3.5)]. To decompose the right-hand
side of (2.3.7) by the basis {® 5} we use the following lemma

Lemma 2.3.2 (a) If j and m satisfy the inequalities |m| > 2|j|, |md| > 2r, then

(©j.0» ei(m+v)§) — 0(|m6|7“1) _ O(pf(s+l)a)’ (2.3.9)
(Pm,vs € UTI) = O(Ims| 7). (2.3.10)

where r > r; = % + |20], ;v is the eigenfunction of the operator T,(Q), and

0 € W3[0, 2]

Proof (a) To prove (2.3.9) we iterate the formula
(11 (V) = [(m + 0)S*) (.00 €TV = (07, Q. €™V, (2.3.11)

by using the decomposition

Q) = D quse™ 4+ 0(ms|~67) (2.3.12)

m
<

Note that (2.3.11) and (2.3.12) are the one-dimensional cases of (2.1.8) and (2.1.5)

and the iteration of (2.3.11) is simpler than the iteration of (2.1.8) [see (2.1.9) and

Q251 |j| < 2L and |1;] < % fori = 1,2,...,k, where k = [$], then the
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inequalities
) 1
m+v—0 —lh—- =l —1jl > glml,
; 1
ml = 1j +v =l =l = = lg| > <Im|

hold forg =0, 1, ..., k. Therefore by (2.3.6), we have

(pj=lm =1 =l — - =1+ v)5* N~ = 0(Imé| ), (2.3.13)
(pim =G =1 =l — - — Iy +0)3PD~ = 0(md| ™), (2.3.14)

forg =0, 1, ..., k. Iterating (2.3.11) k times, by using (2.3.13), we get

(4,0]', ei(m-‘rv)C) = Z q1,64q156 - - - Qi1

111611128, oo i1 6] < 2221

. pim=I1 ===l 14+v)C
(pj. e ) +o(ms ™Y, (23.15)

X
Mo —lm =l =l — -+ =g +v)3]?)

Now (2.3.9) follows from (2.3.13), (2.3.15) and from inequality (2.1.6a). Formula
(2.3.10) can be proved in the same way by using (2.3.14) instead of (2.3.13). Note
that in (2.3.9) and (2.3.10) instead of O (|jm5|~*~") we can write O (p~¢TD®), since
|md| > r >r; > 2p~ [see (2.3.5)] m]

Lemma 2.3.3 If|jd| < r and (ny, B1) € T (p%), then

i _ =1/ *
ol (m—Q2m) (B1.0 >)c80j,v([3)(<)

= > a(. B j. B+ 1B+ BG4 i@+ () + 0TI,
| j10]<9r
(2.3.16)
where r and T’ (p™) are defined in Lemma 2.3.2(a) and in (2.3.7) respectively, and
. . . [ —_ _l *
a(ni, B, j. B.j+ j1.B8+B) = (M= IIDCo, 5 (O i v+ ).

Proof Since
P _ -1 3 *
e m—Cm~H (B0 >)C<Pj,v(;5)(<)

is equal to its Fourier series with the orthonormal basis

{@j+iiv@+s)(Q) 1 € Z}

it suffices to show that
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> lan. B, B j+ B+ Bl = 0TI,

Jr:lj161=9r

For this we prove

la(n, B, j, B, j + j1.B8+ Bl = 0(1j10]™) (2.3.17)

for all j; satisfying |jiJ| > 9r and take into account that r = ry > p~ [see the last
inequality in (2.3.5)]. Decomposing ¢; y(3) over {e! MV - e 7) and using the
last inequality in (2.3.8), we obtain

¢l m=Em BN, () = > (g, dmEIG I (23.18)

meZ

where n € Z and |nd| < r. This and the decomposition

@j+i () = Z(% i ¢ MV (BHBDIC) i m+v(B+51)v

meZ

imply that

a(ni, 1, j, B, + B+ B1) = D (), € TI) (g,  TIHING
meZ

(2.3.19)
where j, ji, n satisfy the conditions

|jo] < r, |j10] = 9r, |nd| <r

due to the conditions in Lemma 2.3.3, (2.3.17) and (2.3.18) respectively. Consider
two cases:

Case 1: |mé| > %|j15| > 3r. In this case using the conditions of (2.3.19), we get
|(m — n)d| > 2r and |m — n| > |j|. Therefore (2.3.9) implies that

(pj. ") = 0(md| =7, DT Iy IO = 07167,

1
lm|> 311l

Case2: |m| < % | j1]. Again using the conditions of (2.3.19) we obtain that | j; + j| >
2|m|. Therefore it follows from (2.3.10) that

(P jr- € TVIHING = 0(1(ji + /)31y = 0(jid ),
D @i Q). TG = 01 j16]7).

1
Im|<31j1l

These estimations for these two cases together with (2.3.19) yield (2.3.17) m|
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Now it follows from (2.3.7) and (2.3.16) that

(q() = QNP g (x) = 0(p~ P

N
+ 2 cln. pany, By, j. 8§+ g1, B+ BT (O
(n1,j;.B1EG(p*.9r)

(2.3.20)

for all j’ satisfying | j'5| < r, where

G(p™, 9r) = {(n, j, B) : 1j6| < 9r, (n, ) € T'(p"), B # 0}.
In (2.3.20) the multiplicand
AT a0 () = Py e (X)
does not depend on n;. Its coefficient is
AL B G+ B8+ B = Z c(ny, Boany, B, j'. B j + j1,8 + Bo).
ni:(ng,B1)er’ (p*)

(2.3.21)

Lemma 2.3.4 If|5'| ~ pand |j'0| < r, where

p
VZF1:®+|25L

then

(q(x) = QNP g (x)

= Z A(j/, 6/’j/+j1,5/+61)(Dj’+j1,/3’+{31(x)+ O(p_[?(l),
(j;-BEQ(p*,9r)

(2.3.22)

where
Q(p™,9r) ={(j, B : 1jél <9r,0 < |B] < p“}.

Moreover,
S JAGL AL+ B+ B < co, (23.23)
(Jj1.81)€Q(p™,97r)

where cg does not depend on (j', ).

Proof Formula (2.3.22) follows from (2.3.20) and (2.3.21). Now we prove (2.3.23).
Since c¢(n1, 1) = g4, [see (2.3.7)], by the relations (2.1.6a) and (2.3.21) we need to
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prove the inequality

> latny, B, J' B 7+ B+ Bl < colez) (2.3.24)

Ji

For this we use (2.3.19) and prove the inequalities:

Dy, e MG < ¢, (2.3.25)
mez
Z|(‘Pj/+jwei(mﬂ(ﬂlw/))c)l <cir- (2.3.26)
J1EZL

Since the distance between the numbers
[wd|%, (1 + )8, ...,
and similarly the distance between the numbers
(=1 4+ )81, (=2 +v)d%, ...,

where v € [0, 1], are not less than cy3, it follows from (2.3.6) that the number of the
elements of the sets

A={m:|m—n+v@N* € lpywB)) -1, my@B)) + 11},
B ={ji:pji; 0B+ B)) €llm+v@B + B3 — 1, [(m + v)d|* + 17}

is less than cy3. Now in (2.3.25) and (2.3.26) isolating the terms with m € A and
J1 € B respectively, applying (2.3.11) to the other terms and then using

1
< C14,
S (v — _ / 2
”21¢A|uj<v> [On —n+ 02|
1

<
by (V)) = [Gm + v}

C14
J1¢B

we get the proofs of (2.3.25) and (2.3.26). Thus (2.3.24) and hence (2.3.23) are
proved. Clearly the constants cy4, ¢13, €12, €11, €10 can be chosen independently on
(j', ). Therefore cg does not depend on (j’, 5) O

Replacing (7, ) by (j/, ) in (2.1.21) and using (2.3.22), we get

(AN = A g)b(N, j', B)) = (N, (g — Q)P jrp) = O(p~ ")

+ > AL B BB, i B+ B (23.27)
(j1,81)€Q(p*,9r)
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for | 3’| ~ pand |j'6| < r, where b(N, j, ) = (Wn, ®; 3). Note that if |;'d| < r,
then the summation in (2.3.27) is taken over Q(p®, 9r). Therefore if |jd| < ry,
where ry is defined in (2.3.5), then we have

(AN = Ajp)b(N, j, B) = O(p~")

+ > AG.B i BHBOBWN. j+ 1 B+ ). (23.28)
(J1.81)€Q(p*,9r1)

Thus (2.3.28) is obtained from (2.3.27) by interchanging j’, 3, r, and j, 3, r1. Now
to find the eigenvalue A y(7), which is close to A} 5 , where | jo| < rq, we are going
to iterate (2.3.28) as follows. Since |jé| < ry and (i, B1) € Q(p®, 9r1), we have

|(j + j0dl < 10ry.

Therefore in (2.3.27) interchanging j’, 3, r, and j + ji1, 8 + 51, 10r; and then
introducing the notations

ry=10r1, j2 = j+ j1 + j2, B2 = B+ B1 + B,

we obtain

(AN = XNjgj1.p148)b(N, j+ j1, B4 1) = O(p™ ")

+ D BN, BHAG + 1 B+ B P B (2.3.29)
(j2,82)€ Q(p™,9r2)

Clearly, there exists an eigenvalue A y (¢) satisfying
IAj.g — An@)| =2M,

where M = sup |¢q(x)|. Moreover, in the next lemma (Lemma 2.3.5), we will prove
that if | 3] ~ p, and (j1, 81) € Q(p®, 9r1), then

5 1
Njg = Njjr.pe61 > §Pa2, [AN() = Njtjy B+ > EPQZ- (2.3.30)

Therefore dividing both side of (2.3.29) by Ay — Ajyj, g+, We get
b(N, j+ j1, 1+ pB) = 0(p P*7")

> AGG + ji. B+ B, j2 BHbN, j2, 5%)
AN = Ajtjipi+8

n (23.31)

(j2:82)€Q(p*.9r2)
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Putting the obtained formula for b(N, j + ji, B1 + ) into (2.3.28), we obtain

(AN = Xj p)b(N, j, B) = O(p P
s AL B j+ j1. B+ BOAG + j1. B+ B, j2, B2b(N, j2, 5?)
AN = Ajji, B+

+

(1,81)€Q(p".9r1)
(j2,02)€Q(p*.,9r2)

(2.3.32)

Thus we got the once iteration of (2.3.28). It will give the first term of the asymptotic
formula for A y. For this we find the index N such that b(N, j, 3) is not very small
(see Lemma 2.3.6) and (2.3.30) is satisfied, i.e., the denominator of the fraction in
(2.3.32) is a big number. Then dividing both sides of (2.3.32) by b(N, j, B), we get
the asymptotic formula for Ay (¢) (see Theorem 2.3.1).

Lemma23.5 Let v+t =: B+ 7+ (j+v)d € V(p*) = Vs(p*)\E2
[see (2.3.4), Remark 2.3.1 and Definition 2.1.1], and (ji, 1) € Q(p%,9ry),

(ks Br) € Q(p“,9rt), where ry is defined in (2.3.5) and ry = 10rk_1 for
k=2,3,...,p— 1. Then

[jol = O(p™), |jkdl = O(p™), |6kl < p“ (2.3.33)

fork=1,2,..., p— 1. Moreover if
./ 1 luz / &
|]5|<§P2 . 1B =Bl<(p—1Dp

andﬁ/ € 1—‘6) jk = j+j1+' N '+jk’ ﬁk = /6+ﬁ1+’ : '+ﬁk!Wherek = 1’ 27 ceey p_lv
then

5

INjg—Ajr gl > §p"2, VB # B, (2.3.34)
5

INjp (0 T) = Aje gl > 50, vk #£ 3. (2.3.35)

Proof The relations in (2.3.33) follow from (2.3.5) and the definitions of ry, ry,
Q(p“, 9ry) (see Lemma 2.3.4). Inequality (2.3.35) follows from (2.3.34) and (2.3.33).
It remains to prove (2.3.34). Since

INjg = Nl = 1B + 712 = 18+ 7P = Iy = pyl, (2.3.36)
it is enough to prove the following two inequalities

1

Iy =yl < 30

and
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8
B+ 712 =168 + 71 > T (2.3.37)

The first inequality follows from
y o1g, . o
701 < 502, 1j8] = O(p™)

[see the conditions of this lemma and (2.3.33)] and (2.3.6), since ar» = 3. Now
we prove (2.3.37). The conditions

18" Bl < (p—Dp*, 8] <p”
imply that there exist n € Z and v € T such that
Y =F =B+ 0+ @0~ 5.6°)5 € T(pp™). (2338)

Since 3" — 3 # 0 [see (2.3.34)] and 3’ — 3 € T, that is, (6’ -0, 5) = 0 the relation
(2.3.38) implies that
v € T(pp™)\IR.

This together with the condition
Y+t =04+T74+ (G +v)d € Vs(p*)H\Er
(see the assumption of the lemma and the definition of E5 in Definition 2.1.1) gives
Y+t ¢ Vy(p™),

that is,
Iy +t12 = Iy + 1+ /17 = p*2.

From this using the orthogonal decompositions (2.3.4) and (2.3.38) of v + ¢ and ~/
respectively, taking into account that 3, 7, 3’ are orthogonal to ¢ and then using the
relations

1761 = 0 (™), |(n+ 2m)~ (8" = B, 6*)d] = 0(p"), a2 > 20
[see (2.3.33), (2.3.38) and Definition 2.1.1], we obtain (2.3.37) |

Lemma 2.3.6 Lethy, ha, ..., hy, be the elements of Lo(F), where m = p1 — 1 and
p1 = [g] + L. Then for every eigenvalue \; 5 ~ p* of the operator L,(q‘s) there
exist an eigenvalue AN (t) and a corresponding normalized eigenfunction Wy ;(x)
of the operator L;(q) such that:
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(@) A5 — An()] < 2M, where M = sup|q(x)].
(i) 1b(N. j., )] > crsp 2D,
(i) bV, j, B2 > o TP 1V, )2 = ol (W, i) Pfori = 1,2, ..., m.

Proof Let A, B and C be the sets of indexes N satisfying (i), (ii), (iii) respectively.
Using (2.1.21), Bessel’s inequality and Parseval’s equality, we get

Uy, [oF
Z bV B Z |( NA(q 0)P;, /)’)|
Né¢A NgA N Aip
_2 2 !
<em @ -0)®s] <
and 3
DN AP = 7
NeA

On the other hand the inequality |A| < c16p(d_l) [see (2.1.37a)] and the definition
of B imply that if

then

1
>IN, i BP < 1.

NeA\B 4

Therefore using the relation A = (A\B) U (A N B), we obtain

D bIN, i BIP > %

NeANB

Now to prove the lemma we show that there exists N € AN B satisfying (iii). Assume
that the assertion (iii) does not hold for all N € A N B. Using the last inequality,
the assumption that (iii) does not holds for N € AN B and then the Bessel inequality,
we get

%< Z |b(N, j, ﬁ)|2<—ZZ|(“’N’m)'2

NeANB i=1 NeA
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This contradiction completes the proof of the lemma O

Theorem 2.3.1 For every eigenvalue \;3(v,T) of L:(q%) such that 3 + T +
(j+v) e Vé’(p“‘) there exists an eigenvalue Ay of L;(q), denoted by Ay (\j g
(v, 1)), satisfying

AnAj g, 7)) = Xj g, )+ O(p~ ™). (2.3.39)
Proof In the proof of this theorem we use the inequalities
1
pion > pa, po— E(d -1 > (2.3.40)

which follow from the definitions of p, «, a and p» givenin (2.1.5), Definition 2.1.1,
and (2.2.5). By Lemma 2.3.6 there exists an eigenvalue A y (¢) satisfying (i)—(iii) for

3

Y AG BT BYAGT BT % )% 2 0 ()
o= > Y w—
(1.81)€Q(p",9r1), Js J+it, 1
(j2.62)€Q(p™.9r2)

wherei = 1,2,...,m; m = p; — 1 and Q(p®, 9r) is defined in Lemma 2.3.4. By
the definition of Q(p“, 9r1) we have 3; # 0. Therefore (2.3.34) and the assertion
(i) of Lemma 2.3.6 yield (2.3.30). Hence, in the brief notations

a=2Ajp, Z=Njtji,8+6
we have |
Ay —a| <2M, |z—al|> Epaz.
Using the relations
m

1 — (Ay —a)~! (Ay —a)~! _
— _ _ — = 40 pia2
Ay —z ; (z —a)t ; (z —a) ( )

and the first inequality of (2.3.40), we see that (2.3.32) can be written in the form

m

(AN — )\j’g)b(N, j.B) = Z(AN _ a)i_l(\IJN

i=1

h;
s il + O (™).
e
Dividing both sides of the equality by b(N, j, [3), using assertions (ii), (iii) of Lemma
2.3.6, and the second inequality of (2.3.40), we get
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1 " .
(AN = Aj)l < @m)2 D" |Ay —al kil + 0(p~™).

i=1
On the other hand, (2.3.23) and (2.3.35) imply that
lhill = O(p~).

These relations and the above inequality |Ay — a| < 2M, yield the proof of the
theorem O

Thus we iterated (2.3.28) once and got (2.3.32) from which (2.3.39) was obtained.
Now to obtain the asymptotic formulas of arbitrary order, we repeat this iteration 2 p;
times. For this we need to estimate the distance between A; 5(v, 7) and A (v, T)
for j' # j, namely we use the following lemma.

Lemma 2.3.7 There exists a positive function (p) such that c(p) — 0.as p — oo
and the set

1 1
Ae(p)) =: (e(p), o e(p)) U (5 +e(p), 1 —¢e(p)

is a subset of
2
W(p) =:{ve 0, 1) |pj@) — py)| > np’ Vi’ j €L, j #j}

Ifv(B) € W(p), then

N, T) = Aj s, D > 2(Inp)~ L, Vi £ ). (2.3.41)

Proof Denote by 111 (v), fi2(v), ..., the eigenvalues of T, (Q) numbered in nonde-
creasing order:
1 (v) < pia(v) < -

It is well-known that the spectrum of Hill’s operator T (Q) consists of the intervals

- - 1 - 1 _
Noj_1 =: [sz—l(O),sz—l(z)], Apj =: [HZ,/’(E)vMZj(l)]

for j =1,2,.... The length of the jth interval A ; of the spectrum tends to infinity
as j tends to infinity. The distance between neighboring intervals, that is, the length
of the gaps in the spectrum tends to zero. The eigenvalues fi»;—1(v) and fi5;(v) are
the increasing continuous functions in the intervals (0, %) and (%, 1) respectively
and

fi(1+v) = () = (1 —v).
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Since
lim (Inp)~! — 0,
p—>00

the length of the interval A ; is sufficiently greater than (In p)~! for p > 1 and there
are numbers e/j (»), 5’]7(,0) in (0, %) such that
f2j-1(5;_1(p) = fi2j-1(0) + (In p) ",
~ 1 ~ 1 -
F2j-1(5 = £§(p) = fioj-1(5) = (np) ", (23.42)

_ 1, _ 1 _
foj (5 +€5; () =Ti2j(5) + (n )™,

fij(1 = €5(p) = Fizj (1) = (in p)~".
Denote

'(p) = supe(p), £"(p) =supei(p), e(p) = max{c'(p), " (p)}.
J J

To prove that £(p) — 0 as p — oo we show that both &'(p) and £”(p) tend to zero
as p — oo. If p; < pa then

€i(p2) <€ (p), €' (p2) <€ (p),
since fi2;—1(v) and [12;(v) are the increasing functions in the intervals (0, %) and

(%, 1) respectively. Hence

, 1
e(p) > ael0. 5]

as p — oo. Suppose that a > 0. Then there is a sequence py — oo as k — oo such
that ¢’ (pg) > 4 for all k. This implies that there is a sequence {ix} and without loss

of generality it can be assumed that there is a sequence {2j; — 1} of odd numbers
such that

, a
Ezjk_l(Pk) > Z

for all k. Since 7151 (v) increases in (0, %) and
[2ji—1(8, 1 (p)) — [i2j—1(0) = (In o) !

we have a
B2je-1(3) = Fi2jy-10)] < (Inpp)~ ' =0
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as k — oo, which contradicts to the well-known asymptotic formulas for the eigen-
values 71 (v), forv = Oand v = %, wherea € (0, %]. Thus we proved thate’(p) — 0
as p — oo. In the same way we prove this for €”(p), and hence for £(p). Now sup-
pose v € A(e(p)). Using (2.3.42) and the definition of (p), and taking into account
that fio;_1(v) and i (v) increase in (0, %) and (%, 1) respectively, we obtain that
the eigenvalues 11 (v), fi2(v), . . . are contained in the intervals

- _ 1 1 _
[fi2j-1(0) 4 (In p) =1, fi2j-1(3) = (Inp)~1, [i2j (5) + (In p) " Ta; (1) — (n p)~']

for j = 1,2, ..., and in each interval there exists a unique eigenvalue of T;,. There-
fore the distance between the neighboring eigenvalues of T, for v € A(e(p)) is not
less than the distance between these intervals, which is not less than 2 (In p)_1 .Hence
the inequality in the definition of W (p) holds, that is, A(s(p)) C W (p). Inequality
(2.3.41) is a consequence of the definition of W (p) O

It follow from (2.3.35), (2.3.41) and (2.3.39) that
[ANAj ) — Aji (v, T)| > c(B. ). Yu(B) € W(p), (2.3.43)

where (ji, B) € Q(p*,9), k = 1,2,....p — 1; (5%, p) = (Inp)~! when
g% =B, j* # jand c(B%, p) = 5p°2 when 3¢ # .

Now to obtain the asymptotic formulas of the arbitrary order for A y (t) we iterate
(2.3.28) 2p; times by using (2.3.43), as follows. Since |jd| < rq [see (2.3.5)],

(1, B1) € Q(p™,9r1), (j2, B2) € Q(p™,9r2)

[see (2.3.32)], and j2 = j + ji + j» [see (2.3.29) for this notation], we have | j25| <
10r,. Therefore in (2.3.27) interchanging j’, 5, r, and j2, 52, 10r, and using the
notations r3 = 10r;, j3 = j2 + j3, 8% = B% + (3 (see Lemma 2.3.5), we obtain

(An = A2 2)b(N, j*, %) = 0(p~ ")
DL bW BHAG BB (2.3.44)
(j3.03)€Q(p*,9r3)

Dividing both side of (2.3.44) by Ay — Aj2 5 and using (2.3.43), we get

b(N, j2, 8% = 0(p~ P (c(B* p)™h

> b(N, j3, BHAG?, 3, j3, 3°)

+
AN — )\jzﬂz

(2.3.45)
(j3,03)€Q(p™,9r3)

for (j2, %) # (j, 3). In the same way we obtain
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b(N, j*, 85 = o(p~ " (B*, p»™h)

Z b(N, Jk-i-l ﬂk—H)A(j ﬂk k+1 ﬂk-‘rl)

+
AN - )‘jk,ﬂ

(2.3.46)
Uk+1:8k+1)€Q (0%, 9re+1)

for (jk, ﬂk) # (j,0), k =3,4,.... Now we isolate the terms in the right-hand side
of (2.3.32) with the multiplicand b(N, j, 3), i.e., the case (j2, 3%) = (j, ), and
replace b(N, j2, %) in (2.3.32) by the right-hand side of (2.3.45) when (2, §%) #
(j, B) and use (2.3.30) and (2.3.43) to get

(AN — X @)b(N, j, B) = S{(An, A j,ﬁ»b(N J.B) + 0(p P
3 A, B, 7Y BYHAGE BY, 2 BHBWN, 3, 3%)
(AN = Njtji.p+8) (AN — Aj2 g2)

+

)

(1,.80)€Q(p",9r1),
(j2.82)€0(p%,9r2). (2.8 £(j.B)
(2.3.47)

where

Z AW, B, j+ B+ BDAG + j1, B+ B, J. B)

SI(AN, Njg) =
! o AN = Ajtji. 546

(J1,81)€Q(p*,9r1)
(2.3.48)

The formula (2.3.47) is the twice iteration of (2.3.29). Repeating these processes 2p1
times, i.e., in (2.3.47) isolating the terms with the multiplicand b(N, j, §) (i.e., the
case (j3, 3%) = (j, B)) and replacing b(N, j3, 3°) by the right-hand side of (2.3.46)
(for k = 3) when (j3, %) # (j, ) etc., we obtain

2pi
(AN = A pb(N, . B) = O Si(AN. Ajg)bN. j. B) + Ch, + O(p "),
k=1
(2.3.49)
where

Al 1 gi— , 'i’ i ) )
Si(Aw. ,/»—Z(H (’(ANfi ;,)5))A<J’iﬂ",1,ﬂ>,
] i

i—1 i— ) i
=3 (H AGT DL, g, 141, 4B, 4, ),
(AN J ﬁl)

Here j=j, 8 =3, j'=j+ji+p+-+jn. B =8+bi+5+ -+
and the summation for Sk, and C’ are taken under the conditions

Ui Bi) € Q0™ 9r0), (', BY) # (j, B)



2.3 Bloch Eigenvalues Near the Diffraction Planes 77

fori =2,3,...,kandfori =2, 3, ..., k+1, respectively. Besides by the definition
of Q(p®, 9r;) we have B # Ofork = 1,2, .... Therefore 3! # 3 and the equality
B! = [ implies that 3'*! £ 3. Hence the numbers of the multiplicands Ay — A ji g
in the denominators of S; and C; , satisfying

1
AN = Aji | > 50

[see (2.3.43)] are not less than % and pi, respectively. Now using (2.3.23) and the
first inequality of (2.3.40), we obtain

Chpy = OWp™ 2 Inp)P) = O(p™"), S{(AN, Ay 5) = O(p™ ),
(2.3.50)

S{AN. M) = O((p ™™ Inp)?), Vk=2,3,....2pi.
To prove this estimation we use (2.3.43). Moreover, if a real number a satisfies
la — Ajgl < (Inp)~!
then, by (2.3.35) and (2.3.37) we have
la = Aje gk (v, ] > (85, p).

Therefore using this instead of (2.3.43) and repeating the proof of (2.3.50) we obtain

i@ Ajp) = 0(p~™), Sj(a. M\jg) = O(p 2 Inp)d), Vk=2.3.....2p).
(2.3.51)

Theorem 2.3.2 For every eigenvalue A\ g(v, T) of the operator L:(g%) such that
B47+ (G +v)d e Vi(p™), v(B) e Wp),

there exists an eigenvalue Ay, denoted by Ay (\j g(v, 7)), of Li(q) satisfying the
formulas

AN a0, 7)) = Nj a0, T) + Exm1(Vj g) + O(p 2 (n p)*),  (2.3.52)

where
2p2

Eg=0,E; =Y S\ s+ Es—1, A0,
k=1

fors =1,2,..., and
Er—1(A\j5) = O(p~“*(In p)), (2.3.53)
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fork=1,2,....[§(p — 3s(d - D)].

Proof The proof of this Theorem is similar to the proof of Theorem 2.2.1(a). By
Theorem 2.3.1, formula (2.3.52) for the case k = 1 is proved and Ep = 0. Hence
(2.3.53) for k = 1 is also proved. The proof of (2.3.53), for arbitrary k, follows from
(2.3.51) and the definition of E by induction. Now we prove (2.3.52) by induction.
Assume that (2.3.52) is true for k = s < [§(p — 33(d — D], i.e.,

AN =Xj g+ Es—1 + O (™" (In p)™)).
Putting this expression for Ay into

2pi

ZS]/((AN,/\j,ﬂ),

k=1

dividing both sides of (2.3.49) by b(N, j, (3), using (2.3.50), (2.3.51) and the assertion
(ii) of Lemma 2.3.6 and the equality ap = 9a, we get

o (In p)** Lp—tr@-1
AN =Xjg+ D S\ g+ Ee1 + O(psT), Xj.g) + 0(p~ 5P~ 37@=Dazy
k=1
1 1 2[71 /
=0(p 9 P727d=02) L\ 5+ S (N g+ Es—1.)j.5)
k=1
2pi , 2p1 ,
+1O. SN g+ Esm1 + 00 2 p)*), Aj ) — D SN g+ Es—1. M) p)).

k=1 k=1

To prove (2.3.52) for k = s + 1 we need to show that the expression in the curly
brackets is equal to
0((p—(s+l)a2 (ln p)2S+l)'

This can be checked by using the estimations (2.3.24), (2.3.53), (2.3.35), (2.3.37)
and the obvious relation

1 1
[T s + Es—1 + 0(p—2(n p)) = Nji 5)  [limi Vg + Es—1 = Aji gi)
1 1
= ( , -1
[T21 s+ Es—1 = Aji gi) 14 O(p=5°2(In p)?S In p)
= 0(p 6D (n p)26+tDy  vp=1,2,...,2p;. O

Remark 2.3.2 Here we note some properties of the known parts A; 3 + Ej [see
(2.3.52)], where

Nig=pj) + I8+
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[see Lemma 2.3.1(b)], of the eigenvalues of L;(q). We prove the equality

O(Ex(uj() + 18+ 71%)

= 0(p 22" In p) (2.3.54)
oTi

fori=1,2,....,d —1, where 7 = (11, 72, ..., 7a—1). k < [g(p — 37(d — D] and
v(B3) € W(p). To prove (2.3.54) for k = 1 we evaluate the derivatives of

HB R 70 = (@) + 1B+ 7 = pp ) — |18+ 7D

Since 4 (v), and 11 ;7 (v) do not depend on 7;, the function H (3%, j*, 7, v) for g = 3
does not depend on 7;. Besides it follows from the definition of W (p) (see Lemma
2.3.7) that H(3, j*, 7, v) = O(In p). For 5* # 3 using (2.3.35), and the equality

1B =Bl =11+ B+ + Bl =00

[see the last inequality in (2.3.33)], we obtain that the derivatives of H (ﬂk . J k ,T, V)
are equal to 0(p_2a2+0‘). Therefore using (2.3.23) and the definition of Ey (A} 3)
[see (2.3.52) and (2.3.49)], by the direct calculation, we get (2.3.54) for k = 1. Now
suppose that (2.3.54) holds for k = s — 1. Using this, replacing n; + |3 + 7|? by
i+ 18+ 7-|2 + E¢_1in H(ﬁk, jk, 7, v) and arguing as above we get (2.3.54) for
k=s.

2.4 Asymptotic Formulas for the Bloch Functions

In this section using the asymptotic formulas for the eigenvalues and the simplicity
conditions (2.1.28) and (2.1.29), we obtain the asymptotic formulas for the Bloch
functions with a quasimomentum of the simple set B defined in Definition 2.1.2.
Note that the simple set B is investigated in the next section.

Theorem 2.4.1 Ify+1t € B, then there exists a unique eigenvalue Ay (t) satisfying
2.1.14) fork = 1,2, ..., [%], where p is defined in (2.1.7). This eigenvalue is a
simple eigenvalue of L;(q) and the corresponding eigenfunction Wy ;(x), denoted
by Wy, (x), satisfies (2.1.32) if q € W;O(F), where s is defined in (2.1.1).

Proof By Theorem 2.2.1(b) if y +1 € B C U(p“!, p), then there exists an eigen-
value A y (¢) satisfying (2.1.14) fork = 1,2, ..., [%(p— %%(d— 1))] and by the first
inequality of (2.1.40), formula (2.1.14) holds for k = kj. Therefore using (2.1.14)
for k = ki, the relation 3kja > d + 2« [see the second inequality of (2.1.40)], and
the notations of (2.1.26), we obtain that the eigenvalue A y (¢) satisfies the asymptotic
formula (2.1.27). Let Wy ; be an arbitrary normalized eigenfunction corresponding
to Apn(t). Since the normalized eigenfunction is defined up to the constant of
modulus 1, without loss of generality it can be assumed that argb(N,vy) = O,
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where .
b(N,7v) = (W, e 00y,

Therefore to prove (2.1.32) it suffices to show that (2.1.31) holds. To prove (2.1.31)
we estimate the following summations

DN DT BN AP 24.1)

v ¢K v eK\{~}

separately, where K is defined by (2.1.30). Using (2.1.27) and (2.1.30), we get

1
AN () — 17 + 1] > 27" VK (2.4.2)

/ 2 1 « /
[An() — |y +1t]7] < Ep I, Vv eK. 2.4.3)
It follows from (2.1.8) and (2.4.2) that

Db AP = lgWn PO ) = 0(p72M). (2.4.4)
YK
Now let us estimate the second summation in (2.4.1). For this, we prove that simplicity
conditions (2.1.28) and (2.1.29) imply

Ib(N,Y)| < esp™, Vv € K\{}, (2.4.5)

where c = p —d» — %d3d — 3. The conditions v € K, v+t € B [see (2.1.30) and
Definition 2.1.2], the notation (2.1.26) and the equality (2.2.8) yield the inclusion

, 31
v Fre R(EP)\R(EP)-

By (2.2.33) there are two cases.

Case l:7/+t € U(p™, p).Case2: v+t € (Es\Esy1), wheres = 1,2, ...,d—1.
To prove (2.4.5) in Case 1 and Case 2, we suppose that (2.4.5) does not hold, use
Theorem 2.2.1(a) and Theorem 2.2.2(a) respectively to get a contradiction.

Case 1. If the inequality in (2.4.5) is not true, then by (2.4.3) the conditions of
Theorem 2.2.1(a) hold and hence we have

AN =1 + 1P+ Fo (Y + 0+ 00~ (2.4.6)

fork < [(p — ©)] = [$(ds + $d3? + 3)]. On the other hand, it follows from the
definitions k1 =: [<L] + 2 [see (2.1.26)], a =: L [see (2.1.5)] of k1 and « that
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ki < sdot 2 < ~(dot ~d3 +3)
—dx < =(dx+ - s
=3 3 4

that is, formula (2.4.6) holds for k = k. Therefore arguing as in the proof of (2.1.27)
(see the beginning of the proof of this theorem), we get

AN() — F(Y +1) = o(e).

This with (2.1.27) contradicts to (2.1.28). Thus (2.4.5) in Case 1 is proved. Similarly,
if the inequality in (2.4.5) does not hold in Case 2, that is, for ' + 1 € (Es\E;s11)
and 7/ € K, then by (2.4.3) the conditions of Theorem 2.2.2(a) hold and

AN = N ( + 1)+ O(p~Pemad3hoy, 24.7)
where (p — ¢ — %de)a = (d»+ 3)a > d + 2a. Hence we have
An(@) = Xj(y +1) = o(er).

This with (2.1.27) contradicts (2.1.29). Thus the inequality in (2.4.5) holds. There-
fore, using |K| = O(pd_l) [see (2.1.37)], »za. = 1 [see (2.1.5)], we get

Z Ib(N, ,y/)|2 _ O(p—(2c—%(d—l))a) _ 0(p—(Zp—(3d—l)%—%d3d—6)a)‘
7'eK\{7}

(2.4.8)
If s = s0, thatis, p = so — d, then 2p — (3d — 1) — %d?}d — 6 = 6. Since
a1 = 3a, the equalities (2.4.4) and (2.4.8) imply (2.1.31). Thus we proved that the
equality (2.1.32) holds for any normalized eigenfunction Wy ;(x) corresponding to
any eigenvalue Ay (¢) satisfying (2.1.14). If there exist two different eigenvalues or
multiple eigenvalue satisfying (2.1.14), then there exist two orthogonal normalized
eigenfunctions satisfying (2.1.32), which is impossible. Therefore A y (¢) is a simple
eigenvalue. It follows from Theorem 2.2.1(a) that Ay (¢) satisfies (2.1.14) for k =
1,2,..., [%], since (2.1.32) holds and hence (2.1.16) holds for ¢ = 0 O

Remark 2.4.1 Since for v 4t € B there exists a unique eigenvalue satisfying
(2.1.14) and (2.1.27), we denote this eigenvalue by A (y+1). Since this eigenvalue is
simple, we denote the corresponding eigenfunction by W, ,(x). By Theorem 2.4.1
this eigenfunction satisfies (2.1.32). Clearly, for y+¢ € B there exists a unique index
N =: N(y + 1) such that A(y + 1) = An(y40) (1) and Yoy (X) = Wy ()0 (X).

Now we prove the asymptotic formulas of arbitrary order for W, (x).

Theorem 2.4.2 If v+t € B, then the eigenfunction W1,(x) =: Wy ,(x) corre-
sponding to the eigenvalue A(y+1t) =: An(t) satisfies (2.1.33), fork =1,2,...,n,
wheren = [£(2p — (3d — )3« — 1d3% — 6)],
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i{y+Ht471,%)

— ¢ i (y+2,x) +
merz(:pa) I7+t|2 Y+ 412

F(>)k — ei('y+t,x)’ F*

FE(y4+0 = A+ 1FID~ 10 4 Fe(y 4 1)),

Fy. is obtained from Fy by replacing q, with Nt and Fy is defined by
(2.2.10).

Proof By Theorem 2.4.1, (2.1.33) for k = 1 is proved. To prove (2.1.33) for 2 <
k < n, first we prove the following equivalent relations

> BNy + )P = 0(p ), (2.4.9)
~'elre(k—1)

lIJN’[(X) — b(N, ,y)ei(‘/-l—t,x) =+ Z b(N, ~ + 7/)ei(’y+t+’y/’x) + Hk(x),

yer (5t pm)
(2.4.10)

where
Mk —1)= F\(F( “) U {0})

and
I Hell = O (p~*).

The case k = 1 is proved due to (2.1.31). Assume that (2.4.9) is true for k = m < n.
Then using (2.4.10) for k = m, and the obvious decomposition

g = D gy 10
el pm

[see (2.1.5)], we obtain
Wy, (X)q(x) = H(x)+ O0(p~ "),
where H (x) is a linear combination of ¢! (1+17"%) for 4/ € I'(%p") U {0}. Hence
(H, e 72y — ¢

for v € I'“(m). Thus, using (2.1.8), (2.4.2) and Bessel’s inequality, we get
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2. Ib(N, v+
v €re(m), v+ ¢K
Ly H@rope s,
Ay = Iy +o +1?

v €le(m), v+ ¢K

- >

vy erem) v+ ¢K

(O(p—mal ), ei (W+z+,)/’x))

AN —hEy T | T oW Ay

On the other hand, using a; = 3, (2.4.8), and the definition of n, we obtain
> BN,y + 1P < D (N, )P = 0(p™"™).
vy €re(m),y+v' ek 7'ek\{}
This with (2.4.11) implies (2.4.9) for k = m + 1. Thus (2.4.10) is also proved. It
follows from (2.4.9) that

I > WLy el O = o,
Y e (PNL )

Therefore the formula (2.4.10) for k < n can be written in the form

Wy, —bN, )T —Hy = D" BN,y =)0 (24.12)
Nner(p®)

where B
| Hell = O(p~m).

It is clear that the right-hand side of (2.4.12) can be obtained from the right-hand
side of the equality

(AN = Y+ BN, N+ 0(p ") = > g,b(N,y =),
TEr (p®)

which is (2.1.9), by replacing g, with ¢! =M+ Therefore in (2.4.12) doing the
iteration which was done in order to obtain (2.2.5) from (2.1.9), we get

Wy 1 (x) — b(N, et %) — Hy(x) (2.4.13)
= Ap_1(AN, Y+ DN, ) + Cr + O(p~ P,

where Kk (AN, v+ t) and Ek are obtained from A;(An, v +t) and Cy by replacing
q~, with e/ MFLY) - respectively and the term O(p~P%) in the right-hand side
of (2.4.13) is a function whose norm is O(p™ 7). Note that if follows from the
definitions of the functions Fk, Ak, Ck that the estimations similar to the estimations
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of Fi, Ak, Ci hold for these functions and the proof of these estimations are the
same. Namely, repeating the proof of (2.2.6) and (2.2.8) we see that

IAk—1ll = O(p™), ICkll = O(p~*N), [IFeci(y 1)l = O(p™ ™). (2.4.14)
Now using the equalities

b(N,v) =14 0(p~2), (2.4.15)

Ac1(AN, Y + 1) = Aoy (Feoa(y + 1), 7 + 1) + 0(p )
= Fe1(y+1) + O(p~*n)
[see (2.1.31a), (2.1.14), (2.2.12) and the definition of fk] and dividing both side of
(2.4.13) by b(N, v) we get

1
b(N, )

Wy () = 070+ oy (y 1) + 007

+

_ _ e
bV ) ) + Gt 0. (2.4.16)

Moreover the relation _
IHill = O(p~*1)

[see (2.4.12)], formulas (2.4.14), (2.4.15), and the inequality pa > nag > kag (see
definition of n) imply that

lo(pkery + (Hi + Ci + O(p~ ")) | = 0(p~Fom). (2.4.17)

b(N,~)

Therefore using the equality ||y || = 1, the assumption arg b(N, ) = 0, the last
equality of (2.4.14) and taking into account that Fi_1 (v + 1) is a linear combination
of ¢ H=7%) for 4y € I'(p®) [since fk_l(v + t) is obtained from the right-hand
side of (2.4.12)] and hence the functions e LX) and ka_l(’y + t) are orthogonal,
from (2.4.16), we obtain

= I —ka
sy = (L IFer+ 0 + 067 ), (2.4.18)

Wy (x) = (L+ | B DTN L By (v+1) + 0(pF)). (2.4.19)

Thus (2.1.33) is proved. Let us consider the case k = 2. Using (2.4.15) and (2.4.17)
in (2.4.16) for k = 2 and recalling the definitions of F} and F [see (2.2.13)], we get
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q el (v Ft1.x)

Wy (x) = 0H0 4 Z PR FE——T +

7€l (p)

O(p~2™), (2.4.20)

that is, we obtain the proof of the equality for F}*(y 4 ) O

2.5 Simple Sets and Isoenergetic Surfaces

In this section we consider the simple set B defined in Definition 2.1.2 and construct
a large part of the isoenergetic surfaces

I(q) = {t € F*:AN, Ay (1) = p’}
of L(q) corresponding to p? for large p. In the case ¢ = 0 the isoenergetic surface
1,(0)={t € F*: 3y e, |y +1t]> = p*}
is the translation of the sphere
B(p)={y+1:1eF.yel |y +1I> = p?)

by the vectors v € I'. For simplicity of formulation of the main result of this section
we start with a conversation about it and introduce the needed notations.

Notation 2.5.1 We construct a part of isoenergetic surfaces by using Property 3
(see the Introduction) of the simple set B, that is, by the investigation of the function
A(7y 4+ t) in the set B, where A(y + t) is defined in Remark 2.4.1. In other words,
we consider the part

Pl,(q) =:{t € F*: 3y e, A(y +1) = p*},
of the isoenergetic surfaces 1,(q). The set P1,(q) is the translation of
TPI(q) = {y+1: A(y+1)=p°).

We say that T P 1,(q) is the part of the translated (on the simple set B) isoenergetic
surfaces. In this section we construct the subsets I), and I'] of T P1,(q) and P1,(q)
respectively and prove that the measures of these subsets are asymptotically equal to
the measure of the isoenergetic surfaces 1,(0) of L(0). In other words, we construct
alarge (in some sense) part 1 ,;/ of isoenergetic surfaces 1,(q) of L(q). Since A(y+1)
approximately equal to F(y+t) [see (2.1.27) and Remark 2.4.1] it is natural to call

Sp=1{x e UQp™, p): F(x) = p?},
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where U and F (x) are defined in Definition 2.1.1 and in (2.1.26), as approximated
isoenergetic surfaces in the non-resonance domain.

Now we construct a part of the simple set B in the neighborhood of S, that
contains 1 ;. For this we consider the surface S,. As we noted in the Introduction [see
Step 2 and (2.1.28)] the eigenvalue A (v + t) does not coincide with the eigenvalues
Ay +t+Db)if

[F(y+1) — F(y+1+b)| > 2

fory+1t+be U™, p) and b € T\{0}. Therefore we eliminate
1
Py={x:xe€S8,,x+be U(Epo‘l, p), |F(x) — F(x +b)| < 3e1} (2.5.1)

for b € T from S,, denote the remaining part of S, by SL, and consider the ¢
neighborhood of S,,. Thus

S;) =: S)\(Uper Pp), UE(S;)) = UaeS;UE(a)},

where

€
€= 7—1 U@)={xeR:|x—a| <&} e = p*dfza.
p

In Theorem 2.5.1 we prove that the simplicity condition (2.1.28) holds in Ug(S;)).
Denote by
Tr(E)={y+x¢€ Ug(S;) :vel,x e E}

and
Trp«(E)=:{y+x e F*:~veTl,x € E}

the translations of E C R% into UE(S,;) and F* respectively. In order that the
simplicity condition (2.1.29) holds, we discard from U (S ;)) the translation Tr(A(p))
of the set A(p) defined as follows

d—1

by
Ap) = | U UAaion o) (25.2)

k=1 \"1,72,---» %€l (pp®) \i=1

where

k
Aki(y, o) ={x € (ﬂ Vy, (p“")\EkH)ﬂKp SN (x) € (0P =3e1, pPP43e1)),
i=1

i (x) and by are defined in Theorem 2.2.2, and

Ky =f{x e R 1 |x]> = p?| < p™).
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As a result, we construct the part U, (S;))\Tr (A(p)) of the simple set B [see Theorem
2.5.1(a)] which contains the set I/’) [see Theorem 2.5.1(c)].

To prove the main result (Theorem 2.5.1) of this section we use the following
properties, namely (2.5.3) and Lemma 2.5.1, of the set constructed in Notation 2.5.1:

p—p" 7 < x| < p4pMTl Vx e U(K,),
OF .
Ia—l <3p, Vx e U™, p)NU:(K)p), (2.5.3)
X
UE(S;)) c U™, p)n K,.

To prove (2.5.3) recall that

F(x) = x> + F,—1(x), Vx € U(cap™, p) (2.5.4)
Fi—1(x) = O(p™ "), Vx € U(cap™, p) (2.5.4a)
OFy, _
%T-I(X) — 0(p~ 2%y — 0(p5Y), Vx € Ulcap™, p) (2.5.4b)
l
Fx)=p% [x|=p+0(p "), Vxes, (2.5.4¢)

[see (2.1.26), (2.2.8), (2.2.34) and the definition of §,]. One can readily see that
the inequalities in (2.5.3) follows from the definitions of K, and (2.5.4), (2.5.4a),
(2.5.4b). Since S, C S, using (2.5.4c), we obtain the inclusion U.(S}) C K.
This inclusion with S/’, C U@2p™, p) (see the definition of S; and S,) implies the
inclusion in (2.5.3).

Lemma 2.5.1 (a) Ifx € UE(S;) and x +b € U(p™', p) N K,, where b € T, then

|F(x) = F(x +b)| > 2¢y,

where

(b) If x € UE(S[’,), then x + b ¢ UE(S;])forallb el.
(¢) If E is a bounded subset of RY, then w(Tr(E)) < u(E).
(d) If E C U(S}), then i(Trp+(E)) = pu(E).

Proof (a)Ifx € Ug(S//)), then there exists a point a such thata € S,/O and x € U-(a).
Since a + b lies in € neighborhood of x + b, where

x+beU(p™, p)NKpy,
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we have 1
a+be U(Epa‘,p).

Therefore using the definitions of S;) and Py [see (2.5.1)], we obtain a ¢ P, and
|F(a) — F(a+b)| > 3¢;. (2.5.5)
On the other hand, using the last inequality of (2.5.3) and the obvious relations
[x —a|<e,|x+b—a—>b| <e,

we obtain
|F(x) — F(a)| <3pe, |F(x +b) — F(a+b)| < 3pe. (2.5.6)

These inequalities with (2.5.5) give the proof of Lemma 2.5.1(a), since 6ps < €.
(b) If x and x + b lie in U (S /’)), then there exist the points a and ¢ in S,; such that
x € Uc(a) and x + b € U:(c). Repeating the proof of (2.5.6), we get
|F(c) — F(x + b)| < 3pe.
This, the first inequality in (2.5.6) and the relations

F(a)=p* F(c)=p’

fora € §,, c € S, give
|F(x) — F(x +b)| < ¢,

where x € U(S)) and x + b € U-(S,) C U(p™, p) N K, [see (2.5.3)] which
contradicts the Lemma 2.5.1(a).
(c) Clearly, for any bounded set E there exist only a finite number of vectors
Y1, Y2, - -+ Ys such that
E(k) =: (E +w) NU(S,) # ¥

fork = 1,2,...,s and Tr(FE) is the union of the sets E (k). By the definition of
E (k) we have E(k) — v C E,

P(E(k) = yi) = p(E(k)).

Moreover, by (b),
(E(k) =) N(E() —vj) =1

for k # j. Therefore (c) is true.
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(d) Now let E C Ug(Sl’)). Then by (b) the set E can be divided into a finite
number of the pairwise disjoint sets E1, Ea, ..., E, such that there exist the vectors

Y1, 72, - - ., Yo satisfying
(Ex +) CF* (Ex+v) N(Ej+7j) # 0

fork,j=1,2,...,nand k # j. Using pu(Ex + ) = p(Ex), we get the proof of
(d), since Trp«(E) and E are the union of the pairwise disjoint sets Ej + v and Ey
fork = 1,2, ..., n respectively 0O

In the following Theorem we use the sets defined in Notation 2.5.1.

Theorem 2.5.1 (a) The set UE(S;))\Tr(A(p)) is a subset of the simple set B defined
in Definition 2.1.2. For every connected open subset E of UE(S;))\Tr(A(p) there
exists a unique index N such that Ay (t) = A(y+1t) fory+t € E, where A(y+1t)
is defined in Remark 2.4.1. Moreover,

0 0
—Ay+D) = —|y+tP+0(p'), Vi=1,2,....d. (2.5.7)
alj 8t,~
(b) ForthepartV,, =: S;)\UE(Tr(A(p))) of the approximated isoenergetic surface
Sy, the following holds:

w(Vy) > (I —c17p” N (B(p)). (2.5.8)

Moreover, U-(V)) lies in the subset UE(S;))\Tr(A(p)) of the simple set B.
(¢) The isoenergetic surface I (p) contains the set 1/, which consists of the smooth
surfaces and has the measure

p(l)) = pI) > (1 = cigp™“Hu(B(p)), (2.5.9)

where [ /’) is a part of the translated isoenergetic surfaces T P1,(q) of L(q) which
is contained in the subset Ug(S/’))\Tr(A(p)) of the simple set B. In particular the
number p* for p >> 1 lies in the spectrum of L(q), that is, the number of the gaps in
the spectrum of L(q) is finite, where q € WZSO RY/Q), d > 2, 59 = Lz_l@d +d+
2) + %d3d + d + 6 and Q2 is an arbitrary lattice.

Proof (a) To prove that
U-(S)\Tr(A(p)) C B

we need to show that for each point v+ of U (S ;))\Tr(A(p)) the following assertions
are true:

M) y+1eU@E™, p)N(RGp—p " N\R(Gp+p*~h).

(2) If ¥ € K, where K is defined by (2.1.30), and ' + ¢ € U(p™, p) then
(2.1.28) holds.
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B3)If+ € K and' 4+t € E;\Egs then (2.1.29) holds.
The proof of (1) follows from the inclusion in (2.5.3).
The proof of (2). If v/ € K, then (2.1.30) holds. Since v+t € UE(S;}), there

exists a € S;, C S, such that v + ¢ € Uc(a). Then (2.5.6), the equalities F'(a) = p2
(see the definition of S, in Notation 2.5.1) and €1 = 7pe [see Lemma 2.5.1(a)] give

F(y+1) € (p> —e1.p° +€1). (2.5.10)
This with (2.1.30) implies that
Y +teUpE™, p)NK,.

Now in Lemma 2.5.1(a) considering x and x + b as v+t and 7/ + ¢ we get (2.1.28).
The proof of (3). As in the proof of (2) the inclusion 7" € K yields

Y +1 € (E\Ex+D) N K.

On the other hand, v + ¢ ¢ Tr(A(p)) which means that v + ¢ ¢ A(p). Therefore it
follows from the definition of A(p) [see (2.5.2)] that

MY +1) ¢ (p* = 3e1, p* + 3e1).

This with (2.5.10) implies (2.1.29).

Now let E be a connected open subset of UE(S/’))\Tr(A(p) C B. By Theorem
2.4.1 and Remark 2.4.1 fora € E C UE(S;))\Tr(A(p) there exists a unique index
N (a) such that

i{a,x)y2 1
Aa) = AN (@), Va(x) = YN@).a(X), [(YN@),a, e D7 > 3
and A(a) is a simple eigenvalue. On the other hand, for fixed N the functions A y ()
and (Wy 4, € {:)y are continuous in a neighborhood of @ if A y (a) is a simple eigen-
value. Therefore for each a € E there exists a neighborhood U (a) C E of a such
that

. 1
(Wn ).y e D) > 3

for y € U(a). Since for y € E there is a unique integer N (y) satisfying

(y,x))|2 - l,

VY] .y el
[(WN(y),y >

we have N(y) = N(a) for y € U (a). Hence we proved that

Va € E,AU(a) C E: N(y) = N(a), Vy e U(a). (2.5.11)
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Now let a; and a; be two points of E , and let C C E be an arc that joins
these points. Let U(y1), U(y2), ..., U(yx) be a finite subcover of the open cover
{U(a) : a € C} of the compact C, where U (a) is the neighborhood of a satisfying
(2.5.11). By (2.5.11), we have N(y) = N(y;) = N; for y € U(y;). Clearly, if
U(yi) NU(y;) # @, then N; = N(z) = Nj, where z € U(y;) N U(y;). Thus
Ni=Np=---=Niand N(a;) = N(ap).

To calculate the partial derivatives of the function A(y 4+ t) = Ay (t) we write
the operator L; in the form

—A — (2it, V) + (t,t).

Then, it is clear that

0 0
a_AN(t) =2t; (PN, Onye) — 21— Pt Pivie)s (2.5.12)
t; 8Xj
Oy (x) = D BN, Y)e ), (2.5.13)
yel

where '
Dy (x) = eV wy ().

If |y| > 2p, then using
Ay =t A(y+1) =p*+0(p™™),
[see (2.1.27), (2.5.10)], and the obvious inequality
AN =1V === =%+t > coly P

fork =0,1,..., p, where || < $|*y’|, and iterating (2.1.8) p times by using the
decomposition

g = > gy 100y

1
il<z; 1Yl

we get

+ 07", (25.14)

b(N ’7/) _ Z v 9y, - - -qub(N’ 'V/ - 21!;1 Vi)
, ~ .

D (AN — 1y = 2 v+ 117

b(N.,7)= 0¥ ™). VYIHI=2p (2.5.15)
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By (2.5.15) the series in (2.5.13) can be differentiated term by term. Hence

8 !y / M
—i(=®n0 v = DY (DIBIN, AP =3 (DIBWN, NP + a1 + o,
™

J el

(2.5.16)
where

ar= D ADIbWNAPa= D A DIBN AP

1v1=2p IV1<2p.7' #y
By (2.1.31) and (2.1.31a)
_ —2a1+1 . 2 _ . —2a1
ay=0(p ) YDIBN, NIT =~ A+ O(p~ ™),

and by (2.5.15), a; = O(p‘zal). Therefore (2.5.12) and (2.5.16) imply (2.5.7).
(b) To prove the inclusion

U:(Vy) C U=(SO\Tr(A(p))
we need to show thatif a € V), then
Us(a) C U=(S)\Tr(A(p)).

This is clear, since the relations a € V, C S;, imply that U.(a) C US(S;)) and the
relation

a ¢ U-(Tr(A(p)))

implies that
Ue(a) N Tr(A(p) = 0.

To prove (2.5.8) first we estimate the measures of S, S ;, and Uz:(A(p)), namely we
prove that

p(Sp) > (1 = c20p™ ") u(B(p)), (2.5.17)
(S > (1= carp™ ) u(B(p)), (2.5.18)
w(Uae(A(p))) = O(p~“)u(B(p))e (2.5.19)

(see below, Estimations 1, 2, 3). The estimation (2.5.8) of the measure of the set V,
is done in Estimation 4 by using Estimations 1, 2, 3.
(c) Relation (2.5.9) is proved in Estimation 5. The theorem is proved m]

Remark 2.5.1 Since _
Wy (x) =MDy (x)



2.5 Simple Sets and Isoenergetic Surfaces 93

and the series (2.5.13) can be differentiated term by term, arguing as in the proof of
(2.5.16) and using the notation of Remark 2.4.1 we obtain

grad (W4, (X)) = i (y + el 0T 4 0(|y)1720),
for (y+1) € B.
In Estimations 1-5 we use the notations:
G(H+i,a)={xe€G:x; >a},G(—i,a)={x e G:x; < —a},

where x = (x1,x2,...,xg), a > 0. Recalling the definitions of the sets S;), A(p),
and using (2.5.3), it is not hard to verify that for any subset G of Ug(S,/,) UU:(A(p)),
that is, for all considered sets G in these estimations and for any x € G the followings
hold

p—1<lx|<p+1,GC U (GHi,pd YU G(—i,pd™)).  (25.20)

Indeed, (2.5.3) implies the inequalities in (2.5.20), and the inclusion in (2.5.20)
follows from these inequalities.
If G C S, then by (2.5.4) and (2.5.4b) we have

OF (x)

0
Oxi -

for x € G(+k, p~®). Therefore to calculate the measure of G (+k, a) fora > p~¢,
we use the formula

OF
W(G(+k, a)) = / (a—x]()*‘ lgrad(F)|dx .. .dxg_1dxiy1 . ..dxq,

Pri(G(+k,a))
(2.5.21)
where

Pri(G) =: {(x1, X2, ..., Xk—1, Xkt 1, Xk42, - - - Xq) : X € G}

is the projection of G on the hyperplane x; = 0. Instead of Pry(G) we write Pr(G)
if k is unambiguous. If D is m—dimensional subset of R™, then to estimate u(D),
we use the formula

u(D) = / (DX, oo X1y Xk 1y - o0 X)) XD - dX1d Xy - d Xy,

Pry (D)
(2.5.22)
where

D(x1, oo X1, Xk 1y -+ o5 Xm) = {xx 0 (X1, X2, ..., Xp) € D}.
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Estimation 1 Here we prove (2.5.17) by using (2.5.21). During this estimation the set
S, is redenoted by G. First we estimate ;(G(+1, a)) fora = pl_o‘ by using (2.5.21)
for k = 1 and the relations

oF p

_ OF _ _
5 = P (G ) grad(F)] = — =+ 0™,
1 1 \/pz—xz—x3—--~—xd
(2.5.23)
Pr(G(+1,a)) D Pr(A(+1, 2a)), (2.5.24)
where
x € G(+1,a), A= B(p)NUQBp™, p),
and

B(p) = {x e R? : |x| = p}.
Here (2.5.23) follows from (2.5.4), (2.5.4b) and (2.5.4c). Now we prove (2.5.24). If
(x2,...,xq) € Pri(A(+1, 2a)),
then by definition of A(+41, 2a) there exists x; such that

X1 >2a=2p""" x{ + x5+ xg=p | D (2xibi — bD)| = 3p™ (2.5.25)

i>1
for all (by, by, ...,bg) € T'(pp®). Therefore for h = p~* we have
(x1 +h)2+xg+-~-+x§ >pP 4% (x —h)2+X§+-~-+x§ <p?—p
This, (2.5.4) and (2.5.4a) give
F(xi+h,x2,....x5) > p* F(x1 — h, x2, ..., xq) < p°.

Since F is a continuous function (see Remark 2.2.2) on U(cqp™, p) there exists
y1 € (x1 — h, x1 4+ h) such that [see (2.5.25)]

v >a, F(y1,x2,...,xq) =p2.
Moreover
2y1b1 = b} + D~ Qxibi = b)) > 1, (2.5.26)

i>2

because the expression under the absolute value in (2.5.26) differs from the expression
under the absolute value in (2.5.25) by 2(y; — x1)b1, where
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i —xil <h=p""% |b1l < pp®, 1201 —xD)b1| <2p < p™'.
Now recalling the definitions of G(+1, a) and S, we see that these relations imply
the inclusion
(x2,...,xq) € PriG(+1, a).
Hence (2.5.24) is proved. Now (2.5.23), (2.5.24), and the obvious relation
u(PriG(+1,a)) = 0(p*™ ")

[see (2.5.20)] give

1
UG (+1, a)) = — p2 Sdds - dvg + 0 HB()
Pr(G(+1,a)) \/p TN T T T
p _
> / — =dxpdx3 ... dxg — exp “u(B(p))

2 _ _ .
Pr(A(+1,2a)) \/” 2773 Xd

= u(A(+1, 2a)) — caap™ “(B(p)).

Similarly,
(G (=1,a)) = u(A(=1,2a)) — ca2p™“u(B(p)).

Now using the inequality
wW(G) > p(G(+1, a)) + u(G(—1, a))

we get
W(G) > p(A(—1,2a)) + p(A(+1, 2a)) — 2cp~* u(B(p)).

On the other hand, it follows from the obvious relation
p({x € B(p) : —2a < x1 < 2a}) = O(p~ " )u(B(p))

that
w(A(—1,2a)) + n(A(+1, 2a)) > n(A) — cnp™ “u(B(p)).

Therefore
1(G) > p(A) = 3canp “u(B(p)).
This implies (2.5.17), since

1(A) = 1+ 0(p~")B(p))
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[see (2.2.32)].

Estimation 2 Here we prove (2.5.18). For this we estimate the measure of the set
S, N Pp by using (2.5.21). During this estimation the set S, N Pj is redenoted by G.
‘We choose the coordinate axis so that the direction of b coincides with the direction of
(1,0,0,...,0),1i.e.,b = (b1,0,0,...,0)and b; > 0. It follows from the definition
of Py [see (2.5.1)], (2.5.4), (2.5.4¢) that if (x1, x2,...,x7) € G, then

a4 1]+ Fyoi(x) = pP (2.5.27)
(1 +b)2+x3 43+ 22+ Fyo1(x+b) = p? +h, (2.5.28)

where
h e (=3¢1,3¢e1),e1 = p 972,

Therefore subtracting (2.5.27) from (2.5.28) and using (2.5.4a), we get
(2x1 +b1)b; = O(p™ ). (2.5.29)

This and the inequalities in (2.5.20) imply
b _ —by 7u1b—l 2 lﬂ 2 —aq
bl <2p+3, 11 = =+ 0By ). Ixf = (31 = 0. (2.530)
Consider two cases. Case 1: b € I'1, where
2 b 2 —2«
Pi={bel:|p = |5 P <3dp™).

In this case using the last equality in (2.5.30), (2.5.27), (2.5.4a), and taking into
account that b = (b1, 0,0, ...,0) and a1 = 3, we obtain

=P+ 0. l=p+ 00 ).+ + - +x5= 00",
(2.5.31)
Therefore
G CG(+1,a)UG(—1,a),
where a = p — p~!. Using (2.5.21) and the obvious relation

pw(Pri(G(£1,a)) = O(p~ @Dy

[see (2.5.31)] and taking into account that the expression under the integral in (2.5.21)
fork =1lisequalto 1 + O(p~?) [see (2.5.4b) and (2.5.31)], we get

w(G(£1,a)) = 0(p~ @D,
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Thus
1(G) = 0(p~ =Dy,
Since
ITil= 0"
[see (2.1.37)], we have
1(Uber; (S N Py) = O (p~ =D+l = 0(p™*) u(B(p)). (2.5.32)

Case 2: |p? — |§|2| > 3dp~2“. Repeating the proof of (2.5.31), we get
d
2 2 -2 2 —2, —
|x{ — p7| > 2dp™=7, Zxk >dp™, r]?za%( lxk| > p~“. (2.5.33)
k=2
Therefore
G C Uis2(G(+k, p” YU G(=k, p~)).
Now we estimate u(G(+d, p~*)) by using (2.5.21). If x € G(+d, p~®), then
according to (2.5.27) and (2.5.4b) the expression under the integral in (2.5.21) for
k = d is O(p'*®). Therefore the first equality in
_ -1 d-2 -y d—1+4+a -1
w(D) = O(er|b]™ p* ), u(G(+d, p™™)) = O(p eilbl™),  (2.5.34)
where the set PryG(+d, p~®) is redenoted by D, implies the second equality in
(2.5.34). To prove the first equality in (2.5.34) we use (2.5.22) form = d — 1 and

k = 1 and prove the relations

u(PriD) = 0(p2),

(D (x,x3, ..., xq-1)) < 6e1]b]”! (2.5.35)
for (x2,x3,...,x4—1) € Pr;D. First relation follows from the inequalities in
(2.5.20). Thus we need to prove (2.5.35). If x; € D(x2, x3,...,Xx4—1), then by
the definitions of D(x7, x3, ..., x4—1) and D we have (x1x3,,...,x7—1) € D and

(x1,X2,...,%3) € G(+d, p™") C G =:5,N Pp.
Therefore (2.5.27) and (2.5.28) hold. Subtracting (2.5.27) from (2.5.28), we get
2x1b1 + (b1)* + Fiy 1 (x +b) — Fy 1 (x) = h, (2.5.36)

where x3, x3, ..., xg—1 are fixed. Hence we have two equations (2.5.27) and (2.5.36)
with respect to the unknown x; and x4. Using (2.5.4b), the implicit function theorem,
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and the inequalities |xg| > p~%, a1 > 2« from (2.5.27), we obtain

xq = f(x1),

d 2x; + O(p~ 21t
d—f=— X+ 00 ) (2.5.37)

214 + O(p~201%a)’

Substituting this in (2.5.36), we get

2x1b1 + b+ Fey—1(x1 + b1, X2, .o Xa—1, f) = Fey—1 (X1, ..., Xa—1, f) = h.

(2.5.38)
Using (2.5.4b), (2.5.37), the first equality in (2.5.30), and x4 > p~“ we see that the
absolute value of the derivative (w.r.t. x1 ) of the left-hand side of (2.5.38) satisfies
the inequality

x1 + O(p—2a1+a)
Xq + 0(p72u1+0¢)

12b1 + O (p~21FY) 4 O (p~2179) )| > by

for b
X =+ 0

[see (2.5.30)]. Therefore from (2.5.38), by the implicit function theorem, we get

L e (2303
|E| < B’ € (—3e¢1, 3e1).
This inequality implies that the image {x{(h) : h € (—3¢e1,3e1)} of the interval
(—3e1, 3¢e1) [see (2.5.28)] under the differentiable function x; (k) is an interval
with the length less than 6¢ |b|_1 . Since D(x2, x3, ..., xg—1) is a measurable subset
of I, (2.5.35) holds. Thus (2.5.34) is proved. In the same way we get the same
estimation for the sets G(—d, p~%), G(+k, p~*) and G(—k, p~®), where k > 2.
Hence

(S, N Pp) = O(p" e b ™)

for b ¢ I';. Since |b| < 2p + 3 [see (2.5.30)] and £; = p~¢ 2%, taking into account
that the number of the vectors of I satisfying |b| < 2p + 3 is O (p?), we obtain

1(Upgr, (S, N Pp)) = O (™% ) = O (p~ ") u(B(p)).

This, (2.5.32) and (2.5.17) give the proof of (2.5.18).
Estimation 3 Here we prove (2.5.19). Denote Uac (A, j (71,72, - - - » W) by G, where

Y725 - €T (ppY), k<d—1,

and Ay ; is defined in (2.5.2). To estimate ;1(G) we turn the coordinate axis so that
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Span{yvi,v2,....w}={x =1, x2,...,x.,0,0,...,0) : x1, x2, ..., x¢ € R}.

Then by (2.2.22), we have
Xi — 0(pak+(k71)a)

fori <k, x € G. This, (2.5.20), and o, + (k — 1)ax < 1 [see the first inequality in
(2.1.39)] give

G C (Ui=t(G(+i, pd ™) U G (=i, pd ™)),
P(Pr(G (i, pd 1)) = O(prH = Datd=1=00, (2.5.39)
fori > k. Now using these and (2.5.22) for m = d, we prove that
(G (+i, pd~ 1)) = 0 (gptlertk=Dartd=1-ky = v; 5 k. (2.5.40)
For this we redenote by D the set G(+i, pd~!) and prove that
((D(X1, X2, .+ Xi— 14 Xit1s - .- Xq)) < (42d% + 4)e (2.5.41)

for
(X1, X2, o+ . Xj—1, Xit15 - - - Xq) € Prj(D)

and i > k, since using (2.5.41) and (2.5.39) in (2.5.22) one can easily get the proof
of (2.5.40). Hence we need to prove (2.5.41). To prove (2.5.41) it is sufficient to show
that if both x = (x1,x2,...,x;,...x¢) and x" = (x1,x2,...,x/,...,xg) arein D,
then

lxi — x/| < (42d° + 4)e.

Assume the converse. Then
Ixi — x/| > (42d* 4 4)e.
Without loss of generality it can be assumed that x; > x;. Then we have the inequal-
ities
x| > x; + (42d* + de, x; > pd ™! (2.5.42)

since
x = (x1,x2,....%i,...x3) € D =: G(+i, pd_l).

By the definition of G the points x and x’ lie in the 2¢ neighborhood of Ay ;. Therefore
there exist the points a and a’ in A ; such that |x — a| < 2¢ and |x" — a’| < 2e.
These inequalities with (2.5.42) imply that
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pd™' —2¢ < a; <d, a] —a; > 42d%¢, (2.5.43)
(a)? — (@) > 2(pd~" = 2e)(a} — @), (2.5.43a)
as, a, € (xs — 2, x5 + 2¢,), |las| — la,|| < 4e (2.5.44)

for s # i, since x, = x, for s # i. On the other hand, the inequalities in (2.5.20)
hold for the points of Ay ;, that is, we have

lagl < p+1,la,| < p+ 1.
These inequalities and (2.5.44) imply
llas|? = lag?| < 12pe

for s # i, and by (2.5.43)

2 712 2 -1, 7
> llagl® = laf?| < 12dpe < Spd”" @] — ai). (2.5.45)
SF#EL

Using this and (2.5.43a), we get
2 /12 31

[la]® —|a’'|7| > zpd la; — a;l. (2.5.46)

At last, the inequalities
al —a; > 42d%, |ay —al| <4e fors #i
for s # i [see (2.5.43) and the inclusion in (2.5.44)] show that
la —d'| <2|a; — ajl. (2.5.46a)

Now we prove that (2.5.46) and (2.5.46a) contradict the inclusions a € Ay ; and

a e Ay, j. Using (2.2.36), the obvious relation %ad < 1 [see definitions of « and
ag in (2.1.5) and in Definition 2.1.1] and (2.5.46a), we get

1
Irj@ = rj@)l < p>*la—d'| < 5pd "'} — ayl.

where
ri(x) = A\j(x) — |x?

(see Remark 2.2.2). This inequality, (2.5.46), the inequality
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/ 2
a; —a; > 42d°e
[see (2.5.43)], and the relation €1 = 7pe [see Lemma 2.5.1(a)] imply

IXj(@) = A\j(@)| = llal* = 1a'1?] — Irj(@) — rj(d)]

> pd~Va! — a;| > 42dpe > 6¢;.

The obtained inequality
IAj(@) = Aj(a")] > 6e

contradicts with the inclusions a € Ay ;, a € Ay, j» since by definition of Ay ; [see

(2.5.2)] both Aj(a) and A, (a’) lie in (p2 — 3eq, p2 + 3e1). Thus (2.5.41) and hence
(2.5.40) are proved. In the same way we get the same estimation for G(—i, £). Thus

U2 (Ak (11,72, - ) = O (pH TN,
Now taking into account that U. (A(p)) is the union of Up. (Ax, j (71,72, - - -, Yk) for
k=1,2,..,d—1;j=12,....bc(v1,72,-- > %), and 1,72, ..., % € ['(pp”)
[see (2.5.2)] and using
bk — 0(pda+§(xk+1)

[see (2.2.30)], and that the number of the vectors (v1, ¥2, . . ., V&) fory1, 72, ..., Y% €
C(pp®) is O(p?*™), we obtain

/»L(UZS(A(p))) — 0(Spda-‘r%Otk+l+dk0¢+k(0¢k+(k—l)0¢)+d—l—k)-
Therefore to prove (2.5.19), it remains to show that

k
da+§ak+1+dka+k(ak+(k—1)a)+d—l—kgd—l—a
or

k
d+ Do+ Eak+1 +dka + k(o + (k— Da) <k

for 1 < k <d — 1. Dividing both sides of the last inequality by ka and using
1 d
—,x=3"4+d+2
%

[see (2.1.5) and Definition 2.1.1], we get

d+1 3k+l
%+T+3k+k_153d+2'
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The left-hand side of this inequality gets its maximum at k = d — 1. Therefore we

need to Sh()W that

which follows from the inequalities

d+1 1
L53,d<—3d+1
d—1 6

ford > 2.
Estimation 4 Here we prove (2.5.8). During this estimation we denote by G the set
S;) NU(Tr(A(p)). Since V, = S/’)\G and (2.5.18) holds, it is enough to prove that

w(G) = O(p~)(B(p)).
For this we use (2.5.20) and prove

(G (+i, pd~ 1)) = 0(p~ Y (B(p)), (G (=i, pd~")) = O(p~“)u(B(p))
(2.5.47)

fori = 1,2,...,d by using (2.5.21). By (2.5.4b), if x € G(+i, pd~"), then the
expression under the integral in (2.5.21) for k = i is less than 2(d + 1)2. Therefore
to prove the first equality of (2.5.47) it is sufficient to prove

u(Pr(G(+i, pd= ")) = 0 (p~")(B(p)) (2.5.48)

Clearly, if
(X1, X2 - Xi 12 Xit 1 - - - Xg) € Pri(G(4i, pd™ 1)),

then
w(U(G)(x1, X2, ... Xi—1, Xi41, - .. Xq)) = 2€
and by (2.5.22), it follows that
1(U(G)) = 2ep(Pr(G (+i, pd~")). (2.5.49)
Hence to prove (2.5.48) we need to estimate (U (G)). For this we prove that
U:(G) C U(S,), U-(G) C Ur=(Tr(A(p))), U:(G) C Tr(Uz=(A(p))). (2.5.50)
The first and second inclusions follow from G C S ;) and G C U-(Tr(A(p))) respec-

tively (see the definition of G). Now we prove the third inclusion in (2.5.50). If
x € U(G), then by the second inclusion of (2.5.50) there exists b such that
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beTr(A(p)), |x—>b|<2e.

Then by the definition of Tr(A(p)) there exist v € I' and ¢ € A(p) such that
b = v + c. Therefore

lx —y—cl=|x—=0b| <2 x—7€Ux(c)CUx(A(p)).

This together with
x € U:(G) C U(S))

[see the first inclusion in (2.5.50)] gives x € Tr(U>-(A(p))) (see the definition of
Tr(E)inNotation 2.5.1),1.e., the third inclusion in (2.5.50) is proved. This inclusion,
Lemma 2.5.1(c), and (2.5.19) imply that

p(U=(G)) = O(p™ " )(B(p))e.

Now using (2.5.49), we get the proof of (2.5.48) and hence the proof of the
first equality of (2.5.47). The second equality of (2.5.47) can be proved in the same
way <&
Estimation 5 Here we prove (2.5.9). Divide the set V, =: V, defined in Theorem
2.5.1(b), into pairwise disjoint subsets

V/(£1, pd™ ") = V(*1, pd™ ), V' (£i, pd ™) =: V (i, pd—l)\(uf'i*ll(V(ij, pd~ 1))

fori =2,3,...,d.Takeany pointa € V'(+i, pd‘l) C §, and consider the function
F(x) [see (2.5.4)] on the interval (a — ce;, a + ce;), where e; = (1,0,0,...,0),
e; =(0,1,0,...,0),.... By (2.5.4c), we have

F(a) = p°.
It follows from (2.5.4b) and the definition of V' (+i, pd ~1) that

OF (x)
8xi

> pd~!

for x € (a — €e;, a + €e;). Therefore
F(a—de;) < p* —cxer, Fla+de) > p* + caser, (2.5.51)
where § = % g1 = Tpe. Since
[a — dej,a+dei] € Uz(a) C U=(V,) C U-(S)\Tr(A(p))

(see Theorem 2.5.1(b)), it follows from Theorem 2.5.1(a) that there exists an index
N such that A(y) = An(y) for y € U:(a) and A(y) satisfies (2.1.27) (see
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Remark 2.4.1). Hence (2.5.51) implies that

A(a — de;) < pz, A(a + de;) > pz. (2.5.52)
Moreover it follows from (2.5.7) that the derivative of A(y) with respect to y; is
positive for y € [a — de;, a + de;]. Hence A(y) is a continuous and increasing
function in [a — de;, a + de;]. Thus (2.5.52) implies that there exists a unique point
v(a,i) € [a — de;, a + de;] such that

Aly(a, i) = p*.

Define I[’)(+i) by
I(+i) = {y(a.i) :a € V'(+i, pd™")}).

In the same way we define
Iy(—=i) = {y(a. i) ra € V'(~i, pd™")}

and put
I = UL (I (+i) U I (—).

To estimate the measure of / [’) we compare the measure of V'(+i, pd~ 1) with the
measure of / /’,(:I:i ) by using the formula (2.5.21) and the relations

Pr(V'(&i, pd ™) = Pr(lj(£D). pPr(lj(£)) = 0(p" ). (25.53)
OF OA

(5 )7 lgrad(F)| = (5 =)' lgrad(A)| = 0 (™), (2.5.54)
Xi (9)6,'

where the first equality in (2.5.53) follows from the definition of /’](:I:i ), the second
equality in (2.5.53) follows from the inequalities in (2.5.20), since / /’) C Ug(S/’,), and
(2.5.54) follows from (2.5.4b) and (2.5.7). Using (2.5.53), (2.5.54), and (2.5.21), we
get

p(V! (i, pd ™) = pl(Fi) = 0(p 7172, (2.5.55)

On the other hand, if

Y=t (V1 Y25 -5 Ya) € L () NI ()
for i < j then there are a € V'(4i,pd~") and ' € V'(+j, pd~") such that
y=y(a,i)=y(d, j)andy € [a — de;,a + de;], y € [a’ — dej,a’ + de;]. These
inclusions and definitions of V'(+i, pd ’1), V' (+j, pd -1 imply that

pd™" =5 <y < pd7".
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Therefore using the inequalities in (2.5.20), we get
p(Prj (L (+i) N 1 (+)) = O(ep’™?).
This equality, (2.5.21) for k = j and (2.5.7) give
(I () NI () = 0p’™) (25.56)
for all i and j. Similarly
P (+i) N 1) (=) = O(ep? ™)

for all i and j. Now using (2.5.56) and (2.5.55), we obtain

1

1

pI) =" uI(+i) + Z Py (=) + O(ep”™) = D (V' (+i, pd™"))

+ DV (=i pd ™) + 01 = (V) + 07> ) (B )

(2.5.57)

This and (2.5.8) yield the inequality (2.5.9) for /). Now we define ] as follows. If
v+t €I, then

Ay +1) = p*,
where A (y 4 t) is a unique eigenvalue satisfying (2.1.27) (see Remark 2.4.1). Since
A(y+1) =y +1P + 0(p™)

[see (2.1.27), (2.5.4), and (2.5.4a)], for fixed ¢ there exist only a finite number of
vectors V1, 72, - .., Vs € I satisfying

Aty +1) = p*.
Hence 7 ; is the union of the pairwise disjoint sets
Iy=fw+tel: Ap+n=p)Gk=12,.5).

The translation
Dy=Liy—w={teF iy+tel,,}

of I /’J’ « 18 a part of the isoenergetic surface 1, of L(g). Put

"o "
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If
i "
t e Ip,k N Ip’m

for k # m, then
Y+t €E I;, C Ug(S/’J)

and
Ym +1 € UE(S;))a

which contradict Lemma 2.5.1(b). Therefore / ,;’ is the union of the pairwise disjoint
subsets I;’!k fork=1,2,...s. Thus

p(I)y =" )y =D ) ) = udl)).
k k

This implies (2.5.9) for I;,/, since (2.5.9) is proved for I;) [see (2.5.57)] a

2.6 Bloch Functions Near the Diffraction Hyperplanes

In this section we obtain the asymptotic formulas for the Bloch function correspond-
ing to the quasimomentum lying near the diffraction hyperplanes. Here we assume
that (2.1.36) holds instead of (2.1.1). Besides, in this section, we define the number
2 by 2 = 4(3%(d + 1)) instead of the definition > = 3¢ + d + 2 of s given in
(2.1.5). The other numbers p, ok, o, k1, p1 are defined as in the introduction. Clearly
these numbers satisfy all inequalities of (2.1.38)—(2.1.40). Therefore the formulas
obtained in the previous sections hold in these notations too. Moreover the following
relations hold

1 1
ko < g(p = 52d = D). koo > d + 20, 4(d + Dag =1, 2.6.1)

where ky = [9%] + 2. In this section we construct a subset Bs of Vg(p"“) such that if
Y+t =0+7174+(j+v) € Bs

(see Remark 2.3.1 for the notations), then there exists a unique eigenvalue Ay (A g
(v, 7)) satisfying (2.3.52). Moreover we prove that Ay (A} g(v, 7)) is a simple eigen-
value if B + 7 + (j + v)J belongs to the set Bs. Therefore we call the set B; the
simple set in the resonance domain Vs(p®!). Then we obtain the asymptotic formu-
las of arbitrary order for the eigenfunction Wy (x) corresponding to the eigenvalue
An(Aj g(v, 7)). At the end of this section we prove that By has asymptotically full
measure on Vs(p™'). The construction of the simple set B; in the resonance domain
Vs(p™') is similar to the construction of the simple set B in the non-resonance domain
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(see Step 1 and Step 2in the introduction). As in Step 2 we need to find the sim-
plicity conditions for the eigenvalue Ay ()} 3). Since the first inequality in (2.6.1)
holds, Ay (A} g) satisfies (2.3.52) for k = k. Therefore it follows from the second
inequality of (2.6.1) that

AN s, 7)) = EQ g, 7)) +0(p™ 72 = o(e), (2.6.2)
where

EN\ s, 7)) =X s, 7) + Etum1 (N g(v, 7)), 1 = p~ 972,

X s, T~ p?, Er,—1(Njg) = O(p~*2(In p)), (2.6.3)
X, T) = 1B+ 71+ pj) = 1B+ 712+ 0(p*™), (2.6.4)
EM\j 3. 7)) =8+ 7* + 0(p™) (2.6.5)

[see (2.3.53), Lemma 2.3.1(b), (2.3.6), (2.3.5), and the definition of E(\; g(v, 7))].

Due to (2.6.2) we call E(Aj g(v, 7)) as the known part of Ay (A g(v, 7)). Since the

other eigenvalues lie in the ej-neighborhood of N\, (y + 1), F(v + 1)

(see Step 1in the introduction), in order that Ay (A; (v, 7)) does not coincide with
any other eigenvalue we use the following two simplicity conditions:

IEQ\j s, 7)) = F(Y + )| =21, ¥y € My, (2.6.6)

|E()\jﬂ) — )\,-('y’ + )| > 2¢q, V'y/ e My, Vi=1,2,..., b, 2.6.7)

where M is the set of 4/ € T satisfying
/ 2 1 o
IE(Aj s, 7)) — 17 +1I7] < 3P

M| is the set of v/ € M satisfying v+t € U(p™, p), M3 is the set of v/ € M such
that v/ + 1 ¢ U(p®', p) and +' + ¢ has the 'y decomposition

VHt=0 414G +vE))d
(see Remark 2.3.1) with 8" # (.
Definition 2.6.1 The simple set Bs in the resonance domain Vs(p“!) is the set of
/oo 3 ap—1 1 ap—1
x € Vs(p)nN (R(Ep— p )\R(§p+p )
such that x = v + ¢, where y € I', t € F* [itis I" decomposition of x (see Remark
23.D]andx =B+ 7+ (j +v(B))J, where 5 € 'y, T € Fs, j € Z, v(B) € W(p)

(itis I's decomposition of x and W (p) is defined in Lemma 2.3.7), and the simplicity
conditions (2.6.6) and (2.6.7) hold.
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Using the simplicity conditions (2.6.6) and (2.6.7) we prove that Ay (X\; (v, 7))
does not coincide with the other eigenvalues if

B+7+(j+v)d € Bs.

The existence and properties of the sets Bs will be considered at the end of this section.
Recall that in Sect.2.4 the simplicity conditions (2.1.28) and (2.1.29) implied the
asymptotic formulas for the Bloch functions in the non-resonance domain. Similarly,
here the simplicity conditions (2.6.6), (2.6.7) imply the asymptotic formulas for the
Bloch functions in the resonance domain V(; (p™"). For this we use the following
lemma.

Lemma 2.6.1 Let Ay () (v, 7)) be the eigenvalue of the operator L, (q) satisfying
(2.3.52), where
B+T7+(j+v)d=:v+1 € By.

Iffory +t=: 6+ 71+ (j +v(8))J at least one of the following conditions:

Y eM, B #00, (2.6.8)
1B =03'1> (p—1p“, (2.6.9)
1B-01<p—-Dp" |j'd=h (2.6.10)
holds, then
Ib(N,~)| < csp™, (2.6.11)
where

1 .
h=:110"Pp2 ¢ = p—dsx— zd3d —3, b(N,7) = (Wn,, T,

and Wy ; is any normalized eigenfunction of L, (q) corresponding to An (X (v, 7)).

Proof Repeating the proof of the inequality in (2.4.5) and instead of the simplicity
conditions (2.1.28), (2.1.29) and the set K, using the simplicity conditions (2.6.6),
(2.6.7), and the set M, we obtain the proof of (2.6.11) under the condition (2.6.8).

Suppose that the condition (2.6.9) holds. Consider two cases:

Case 1: v/ € M. It follows from (2.6.9) that 3’ # (3. Thus, in Case 1, condition
(2.6.8) holds and hence (2.6.11) is true.

Case 2: 7' ¢ M. The definition of M [see (2.6.7)] and (2.6.2) imply that

1
Ay — 1y + 1 > 7" M (2.6.12)

Therefore using (2.1.9) and the definition of ¢ [see (2.6.11)], we get
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b(N,~ —
b(N,~") = E EUTRASIAN St £ %) ( 7, Wé) + o(p™ ). (2.6.13)
o AN — 1Y+
Ner(p®)

Since 71 € T'(p%) we have y; = (1 + a6 [see (2.3.2)], where 31 € ['s, a; € R,
|81l < p™ and

YV —m+t=@ =B +7+( +v()—a).

Moreover , it follows from (2.6.9) that (3’ — 3;) # (. Therefore, if ¥/ — v € M,
then repeating the proof of (2.6.11) for Case 1, we obtain

Ib(N, v — )| < csp™ (2.6.14)

for 7' — 41 € M. Now in (2.6.13) instead of b(N, v — 1) fory' — 1 € M writing
O(p~°®), and using (2.1.9) for b(N,~y" — 1) when ' —y; ¢ M, we get

Gy Gpb(N, Y =71 —72)

b(N,v") =
N 7% (AN =1+t Ay =1 =7 +11)

+o(p~), (2.6.15)

where the summation is taken under the conditions

1 €T(PY), el ("), ¥ =7 ¢ M.

Moreover, it follows from (2.6.12) that the multiplicands in the denominators of
(2.6.15) are the large numbers, namely

j
1
Ay — 1Y — 2% 12> 2o (2.6.16)
1=
for
j
v - Z% ¢ M,
i=1

where v; € I'(p®), j =0, 1,.... Arguing as in the proof of (2.6.14), we obtain
6N,y =71 = 72) <csp (2.6.17)
for (Y —~1 —72) € M.Repeating this process p — | times, that is, in (2.6.15) instead

of b(N,~" —~v1 — 72) for ¥ — v1 — 72 € M writing O(p~%) [see (2.6.17)], and
using (2.1.9) for b(N, v — v1 — v2) when ' — 41 — 72 ¢ M etc., we obtain
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p—1

GGy - -Gy DN, =P 00)

b(N, ’7/) — 2 Y1472 Yp—1 Zz 1 N

~ +o(p™ "), (2.6.18)
)
V17250005 Tp—1 HJ:O (AN - |’7/ - z{:l Yi + tlz)

where the summation is taken under the conditions

J
V=D nEM
i=1

for j =0,1,..., p — 2. Therefore (2.6.16) and (2.1.6a) imply (2.6.11) for Case 2.
Now assume that (2.6.10) holds. First we prove that the following implication

A S
V=Dl veM= =D p #p. (2.6.19)
i=1 i=1
where s =0,1,..., p —1and
v € T(pY), vi = Bi +aid, (Bi,0)=0, B; €Ty, a; €R (2.6.20)

[see (2.3.2) for this orthogonal decomposition of 7;] is true. Assume the converse,
ie.,
N
B=>p=p
i=1

Then (2.6.20) and the equality ' + ¢t = 8’ + 7 + (j' + v(3))d (see Lemma 2.6.1)
yield
N S
VAt=D i =B+7+ G +vB)N5 - D ad. (2.6.21)
i=1 i=1

Since v; € T'(p®), 0 € T'(p®), v(B’) € [0, 1] (see Lemma 2.3.1), and (2.6.20) is the
orthogonal decomposition of v; we have

laio| < p*, [v(B)d] < p.

On the other hand, by (2.6.10), | j'§| > h. Therefore the orthogonal decomposition
(2.6.21) and the relations

h=10"7p2%, h2 ~ p ay = 3a; = 9a (2.6.22)

imply that

s
1
e I T R e

i=1
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Using this, (2.6.5), and (2.6.22) we obtain
S
[EQj 50, 7) = 1y +1 =D 7l*l > p™
i=1

which contradicts

N
V=D veM.
i=1

Thus (2.6.19) is proved. This implication for s = 0 means that if v € M then
B # (. Therefore if (2.6.10) holds and 7 € M, then (2.6.8) holds too and hence
(2.6.11) holds. To prove (2.6.11) under condition (2.6.10) in case v’ ¢ M we repeat
the proof of (2.6.11) in Case 2, that is, use (2.6.18), (2.6.12), and etc. O

Theorem 2.6.1 If v+t =0+ 7+ (j +v(B))d € By, then there exists a unique
eigenvalue An(\j (v, 7)) satisfying (2.3.52). This is a simple eigenvalue and the
corresponding eigenfunction Wy ;(x) satisfies the asymptotic formula

Wy (x) =P g(x) + O(p~*Inp). (2.6.23)
Proof The proof is similar to the proof of Theorem 2.4.1. Arguing as in the proof
of the Theorem 2.4.1 we see that to prove this theorem it is enough to show that for

any normalized eigenfunction Wy corresponding to any eigenvalueA y satisfying
(2.3.52) the following equality holds

D BN, LB =0 (np)?), (2.6.24)
(Jj".AHeKo

where

Ko = {(j/v ﬁ/) : j/ €Z, ﬁ/ eIy, (j/v ﬁ/) 75 (]’ ﬁ)},
b(N,j' ) =Wy, Pjp3).

Divide Ky into subsets: K§, K1 N S(p — 1), K1 N S°(p — 1), where
Ki = Ko\K1, S°(n) = Ko\S(n),
Ki={('.58) € Ko : IANG®) = Ajr gl < h?),
Sn) ={(", ") € Ko : 16— 5| <np®, 1j'6] < 10"h}

and £ is defined in (2.6.22). If (j/, ') € K{, then using (2.1.21), the definitions of
K{ and h, we have
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. 1 1
> bW LB =suplg(x) = ¢° ()P O(5) = O(—).  (26.29)
o o ¢ xeF P 2 P 2
(J'.B)eK]
To consider the set K1 N S(p — 1) we prove that
KiNSm) =Kin{('3:j €Zy C{(',B):1jd] < 2h} (2.6.26)

forn =1,2,..., p — 1. Take any element (', 3) from K; N {(j',B) : j € Z}.
Since

Nig,m) =B+ 7P+ pp) =18+7P + 1"+ v)d* + o),

where v € [0, 1] [see Lemma 2.3.1(b) and (2.3.6)], using the definition of K1, (2.6.2),
(2.6.5) and (2.6.22), we obtain

10 = 1" +v)8°] < 2h?,|j'3] < 2h.
Hence the inclusion in (2.6.26) is proved and
Kin{(j'.p):j € Z} C Ky N S(n)
forn=1,2,..., p— 1. If the inclusion
KinS(m) Cc Kin{(j".B) :j €Z}

does not hold, then there is an element ( j/, 6/) of K1 N S(n) such that
/ 1
0<18—B1=np" = (p= 1y 1j/6] < 10"h < 3p3*

[see (2.6.22)]. Hence the pairs (', 3') and (j, [3) satisfy the conditions of (2.3.34).
Therefore using (2.3.34), (2.3.39) and (2.6.22) we get

1
AN — Xj ] > Epaz > h? (2.6.27)

which contradicts the inclusion (j’, 3') € K. Thus (2.6.26) is proved. Therefore

S pwL AP > bW AP (2628)

(J".BNeKINS(p—1) J'#Js 1j'01<2h

For the estimation of b(N, j’, 3) when |j’d| < 2h, we use (2.3.27) as follows. In
(2.3.27) replacing 3’ and r by (3 and 2/, we obtain
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(AN =Xy p)b(N, j'.B) = 0(pF)

+ > AGLB I+ 0 B4 BOBN, j + i, B+ B (2.6.29)
(j1.81)€Q(p*,18h)

By the definition of Q(p®, 18h) we have | 31| < p®, |j18] < 18K, and hence
o s 1 1,
(G + j1)d]| < 20h < Epz 2.

Therefore in the right-hand side of (2.6.29) the multiplicand (N, j' + j1, 8 + 51)
for (j' + j1, B+ B1) € D(B), where

1 1
DB ={(, B+ B :1jol < 5/)7‘”, 0 <1681l < p}
takes part. Put

Ib(N, jo. B+ Bo)l = Ib(N, j, B+ Bl

max
(J.B+B1eD(B)

By definition of D(3) and by (2.6.22) we have

1
AN — Ajo,3+60| > Epaz-

This together with (2.1.21) gives
Ib(N, jo, B+ Bo)l = O(p~™).
Using this, (2.6.29) and (2.3.23), we get
BN, j'. B)| < caal Ay — Njr gl ™ p™® (2.6.30)
for j' # j, |j'6| < 2h, where
AN =Xjpg=Xjg=Apg+ 0 ") =pj@) — @)+ 0(p~ ")

[see (2.3.39) and Lemma 2.3.1(b)] and v € W(p) (see the definition of Bs). Now
using the definition of W (p) (see Lemma 2.3.7) and (2.3.6) we obtain

D AN = Ayl 2 = O(np).
J'#i

This with (2.6.30) and (2.6.28) yield
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> bW LA =00 3. (2.6.31)
(J".8NekKiNS(p—1)

It remains to consider K1 N S°(p — 1). Let us prove that
b(N,j' 3= 0(p) (2.6.32)

for (j/, 8") € K1 N S(p — 1), where the number c is defined in Lemma 2.6.1. For
this using the decomposition of ¢ (3 (s) by

{ei(Wt-i-v(ﬁ’))A‘ ‘m e 7),
we get

BN j' B) =D (pju(s), € ") Wy (x), & PHTTHEDI0) 0 (26.33)
m

If |6 — 3| > (p — 1)p® then Lemma 2.6.1 [see (2.6.9)], (2.3.25), and (2.6.33) give
the proof of (2.6.32). Thus we need to consider the case |3 — | < (p — 1)p®. Then
by the definition of S(p — 1) we have |j'6| > 107! /. Write the right-hand side of
(2.6.33) as T1 + T, where

Ti= > Tm), T > Tm,

m:|lmo|>h m:|md|<h

T(m) = (pjr,u(s), ") (Wi s (x), T 7000y,
By (2.3.25) and Lemma 2.6.1 [see (2.6.10)] we have
Ty =0(p™ ).

If |md| < h, then the inequality |j’| > 2|m| holds. Therefore using (2.3.10), taking
into account that |j'd| ~ p®2 [(see (2.6.22)] and that the number of summands in
T; is less than p®2, we get 7o = O (p~“*). The estimations for 77, 7> give (2.6.32).
Now using

K1l = 0(p' D7,

we get

> Ib(N. j, 3> = 0(p~c—(@=D3ay, (2.6.34)
(B eKinse (p—1)

This, (2.6.25) and (2.6.31) give the proof of (2.6.24), since (2¢c — (d — 1)x)
a > ). O
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Now using Theorem 2.6.1, we obtain the asymptotic formulas of arbitrary order.

Theorem 2.6.2 The eigenfunction Wy ;(x), defined in Theorem 2.6.1, satisfies the
following asymptotic formulas

Wy, (x) = Ef_(x) 4+ O(p~*21np) (2.6.35)
fork=1,2,...,n1, where ny = [%(p — %(%) — %d3d —3)],
Ej(x) = ®;5(x), Ef(x) = (1+ |ExlD)™"(@;,5(x) + Ex(x)),

Ey is obtained from Ey by replacing A(j, B, j + j1,8 + B1) with ® 1}, 545 (x),
and Ey, is defined in Theorem 2.3.2.

Proof The proof of this theorem is very similar to the proof of Theorem 2.4.2. By
Theorem 2.6.1, (2.6.35) for k = 1 was proved. To prove it for arbitrary k (k < ny)
we prove the following equivalent formulas

>, bW B =0 R p)?), (2.6.36)
(J".8)eS (k=1)

Wy, (x) = > bIN.j' BV g+ 0~ 2 np).  (2.637)
(j",8)eSk—1)U(,B)

First consider the set S€(k — 1) N K. It follows from the relations
Sk—DNK; =S(p—-1DNK; &Sk—1)CS(p—1)
for 0 < k < p [(see (2.6.26) and the definition of S(k — 1)] that
S(p—DN\SKk—-1)NK; =0
and
Shk—1D)=S(p-DUS(pP—-D\Sk-1),Sk—-DNK; =S(p—-1NKj.

Therefore using (2.6.34), the equalities c = p —ds» — 4—1‘d3d — 3 (see Lemma 2.6.1),
az =9a, and ny = [§(p — (35L) — 1d3? — 3)] (see Theorem 2.6.2), we obtain

> Ib(N, j', B = 0(p~"1).

(j".B)es (k=DHNK;
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Thus it remains to prove

> Ib(N. j. 31 = 0(p~ 22 (In p)?) (2.6.38)
(' )eSe (k—)NKS

fork =2,3,...,n;. By (2.3.22) and (2.6.35) we have

Wy (x)(g(x) — Q(s)) = H(x) + O(p~* Inp),

where H (x) is a linear combination of ®; 5(x) and @ g (x) for (j', 3") € S(1),
since |jd| < r; < h [(see (2.3.5)]. Hence H(x) is orthogonal to Dz (x) for
(j', B") € $¢(1). Therefore using (2.3.27) and the definition of K{ we have

0 (O(p™21np), @j1 5) ,
> WL BHPE=D] Fv—

(', 3)eS (HNK P
= 0(p~**(Inp)*).

Hence (2.6.38) for k = 2 is proved. Assume that this is true for k = m. Then (2.6.37)
for k = m holds too. This and (2.3.22) for r = 10"~ 'h give

Wy (x)(g(x) — Q(s)) = G(x) + O(p~ " Inp),

where G is a linear combination of ®; 3 and W/ 3 for (j’, ') € S(m). Thus G
is orthogonal to W/ 5 for (j’, ') € S°(m). Using this and repeating the proof of
(2.6.38) for k = 2 we obtain the proof of (2.6.38) for k = m + 1. Thus (2.6.36) and
(2.6.37) are proved. Arguing as in the proof of Theorem 2.4.2 one can easily see that
the formula (2.6.37) can be written in the form

Wy (x) — BN, j, B)¥; 5(x) — Gi(x)

= > AG.B. A+ BEBOBWN, j+ 1. B+ D). (2.639)
(j1.81)€Q(p™,9r1)

where _
Gl = O(p~Fm).

It is clear that the right-hand side of (2.6.39) can be obtained from the right-hand
side of the equality
(AN = Xjp)b(N, j, ) — O(p~ P

= D AGBH L B+POBIN, j+ i, B+ B (2.640)
(1.81)€Q(p™.9r1)
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which is (2.3.28), by replacing A(j, 3, j + j1.8 + B1) with ®; 5 ;15 545 (X).
Therefore in (2.6.39), doing the iteration which was done in order to obtain (2.3.49)
from (2.3.28), we get

Wy (x) = b(N, j, B)¥; 5(x) — Gr(x)
2p1

=" k(AN AjaDbIN, j. B) + Clap, + O(p™ P, (2.6.41)
k=1

where S';(Ay, v +1) and C'; are obtained from §' (A, v +1t) and C,; by replacing
A(j, B, j+ j1,B8+B1) with ®; 5 i+ i 545, (x) respectively and the term O (p™P%) in
the right-hand side of (2.6.41) is a function whose norm is O (p~?%). The remaining
part of the proof of this theorem is similar to the proof of Theorem 2.4.2 O

Now we consider the simple set B in the resonance domain Vs(p“!). As we noted
in Remark 2.3.1 every vector w of R? has the decomposition

w=p+7+(+0), (B+T7.6) =0, (2.6.42)

where 3 € I'5, 7 € F5, j € Z, v € [0, 1). Hence the space RY is the union of the
pairwise disjoint sets

PGB, j)={8+7+ (G +v)d:TeFs5,vel0, 1)}

for 8 € I's, j € Z. To prove that Bs has an asymptotically full measure on Vs(p™!),
that is,
p(Bs)

PP 2.6.43
pr00 p(Vs(p1)) ( )

we define the following sets:

7 pa] 3
Ri(p) =1{Jj il < 553 + 51
1p={jeZ:ljl< 2|6|2+2}
. Loop 3
S = 7 : — =}
1p={jez:ljl< e 2}

3 1
Ry(p) ={fels:p¢€ R5(§P+dd + 1)\R5(§P —ds — 1)},

3 1
Sa(p) = 1B € T2 B € (Rs(5p —ds = D\Rs(5p+ds + DNC Vi),
bel's(pd)

where
Rs(p) = {x € Hs : |x| < p}, T5(p*?) = {b € T : |b| < p*},

6, A8 . 2 2 1
Vy(p2) ={x € Hs : ||x + b|” — |x]"]| < pZ},
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and
ds = sup [x —y|

x,yEF;s

is the diameter of Fj.
Moreover we define a subset P'(3, j) of P(3, j) as follows. Introduce the sets

AB.b,p)={vel0,1):3j € Z, 23, ) + |b]* + |(j + v)3|*| < 4dsp},
A(B,p) = U A(B, b, p), S3(B, p) = W(p)\A(SB, p)

bels(pd)

and put
S4B, jov.p)={T € Fs: B+ 7+ (j + v)d € Bs}

for j € S1, B € Sy, v e S0, J,p). Then define P'(53, j) by
P'B,)={B+7+ G +v)0:veSB p),Te S4B, j. v, p}

It is not hard to see that (2.6.43) follows from the following relations:

S.
im | l(p)' = 1’ Vi = 1’2’ (2.6.44)
p—=0o0 |R; (p)]
Bs D Ujes pes, P'(B, 1), (2.6.45)
Vs(p™) C Ujer,,per, P(B, ), (2.6.46)

pPBD)

— 2.6.47
erae 1(P(B. J)) (2047

To prove these relations we use the following lemma.

Lemma 2.6.2 Let w =: 3+ 74 (j +v)d. Then the following implications are true:
@w e Vs(p") = j € Ry, (€ Ry,
(b)jeSi.BeSH=weV;(p™)N(RGp—p*"IN\RGp+p*~1),
© jeSLBES = we Vi(p)N(RGp—p " NRGEp+p1~1)).
Moreover (2.6.46), (2.6.45), and (2.6.44) hold.

Proof Since (8 + 7, §) = 0 [see (2.6.42)] the inclusion w € Vs(p®!) means that
G+ v+ D8P = 1 + v)dl*| < p™

and 1 3
(§p>2 < 1B+ TP+ + v < (§p>2

[see (2.1.10)], where |v| < 1, |7| < ds = O(1) [see (2.6.42)]. Therefore by direct
calculation we get the proofs of the implications (a) and (b).
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Now we prove (c). Since (b) holds and
Vé(p“‘) = V(S,(pal)\(UaEF(pp“)\&RVa(paz)
(see Definition 2.1.1), it is enough to show that w ¢ V,(p®?) fora € T'(pp®)\IR.
Using the orthogonal decomposition a; 4+ axd of a € I'(pp®) [see (2.3.2)], where
a; €Ts,ar € R, (a1, 6) =0and |ar| < pp“, |axd| < pp®, we obtain

lw+al® — |w* =di + da,

where
di =18+a1l* - 8%

dy = |(j +az +v)6> = |(j + )0 +2 a1, 7).
The requirements on j, aj, and a; imply that
dy = O(p*™).

On the other hand the condition 3 € S, gives 3 ¢ Va‘s(p%), ie., |di| > p%. Since
20 < % for k = 1, 2 [see the equality in (2.6.1)], we have

11
llw + al* — Jwl?| > 307w & Va(p™),

Thus (c) is proved.

The inclusion (2.6.46) follows from the implication (a).

If w= 8474 (j 4+ v)d belongs to the right-hand side of (2.6.45) then using
the implication (c) we obtain w € V(; (p™). Therefore (2.6.45) follows from the
definitions of P’(3, j) and S4(3, j, v, p). It remains to prove (2.6.44). Using the
definitions of Rj, S| and inequalities |§| < p“, a1 > 2« we obtain that (2.6.44) for
i = 1 holds.

Now we prove (2.6.44) fori = 2. If § € R then

3 1
b8+ Fs C Rg(zp + 2d;s + 1)\R6(§P —2ds — 1).
This implies that,
1 3 1
[R2| < (u(Fs)) M(st(Ep + 2ds5 + 1)\R5(§p —2ds — 1)),

since the translations 3 + Fj of Fs for § € ', are the pairwise disjoint sets having
measure i(Fs). Suppose 5+ 7 € D(p), where
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D(p) = (Rs(Gp = D\Rs(p+D\C | Vi@,
beTs5(pd)
Then

Sl <1847l < 2pti
2" Y

and .
B+ 7 +b* — |3 +7* = 2p2

for b € I's(p™?). Therefore using |7| < ds it is not hard to verify that 3 € S,. Hence
the sets 3 + Fs for 3 € S; is a cover of D(p). Thus

2] = (u(F5)) ™" (D (p).
This, the estimation for |R;|, and the obvious relations

IT5(p%)| = O(p=Doay),

3 1 d—1
M((Ra(zp - 1)\R5(§P +1)=00p"""),
3 ! 5k d—2 1
M((R(s(zp - 1)\R5(§p + 1)) NV, (2p2)) = O(p" “p2),
d—-1Day < % [see the equality in (2.6.1)],

o MRGp = D\RsGp+ D)
P~ W(R(3p + 2ds + D\Rs(3p — 2d; — 1))

’

and
S$2(p) C Ra(p)

imply (2.6.44) fori = 2 O

Theorem 2.6.3 The simple set Bs has an asymptotically full measure in the reso-
nance set Vs(p™) in the sense that (2.6.43) holds.

Proof The proof of the theorem follows from (2.6.44)—(2.6.47). By Lemma 2.6.2 we
need to prove (2.6.47). Since the translations P (3, j)—3— jdand P'(8, j)—B—jd
of P(3, j)and P'(3, j) are

{t+vd:vel0,1), T € Fs}

and
{T+vd:veS3(8, p,7e€ S4B, j, v, p)

respectively, it is enough to prove
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pli)fgo u(S3(8, p) =1, p(Sa(B, j, v, p)) = W(F)(1+ 0(p™)),  (2.6.48)

where j € S1,3 € S2,v € S3(3, p), and O(p~*) does not depend on v. To prove
the first equality in (2.6.48) it is enough to show that

w(A(B, p) = O(p™), (2.6.49)

since W(p) D A(e(p)) and
plj)rgo u(AE(p) =1

(see Lemma 2.3.7). Using the definition of A((3, p) and the obvious relation
ITs(p")| = 0(p )
we see that (2.6.49) holds if
(A, b, p)) = O(p40).
In other words, we need to prove that
pls € R:[f(9)] < ddsp) = O (p~40), (2.6.50)

where
() =2(B,b) + |bI* + s*10*, B e S, beTs(p*).

The last inclusions yield
1
2(8.6) + 16| = p2

for |b] < p®d. This and the inequalities

Lf ()] < 4dsp™

[see (2.6.50)] and oy < % [see the equality in (2.6.1)] imply that
1 1
2512 L
1) —p2
571017 > 5P

from which we obtain

£/ )] > [6]pF.

Therefore (2.6.50) follows from the equality in (2.6.1). Thus (2.6.49) and hence the
first equality in (2.6.48) are proved.

Now we prove the second equality in (2.6.48). For this we consider the set
S4(B, j,v,p) for j € S1, B € S, v € S3(F, p). By the definitions of S4 and
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B; the set S4(3, j, v, p) is the set of 7 € Fs such that E()\; g(v, 7)) satisfies the
conditions (2.6.6) and (2.6.7). Thus, we need to consider these conditions. For this
we use the decompositions

YHt=0+7+G+0)6, Y+ =0 +7+( + v, 1)),
(see Remark 2.3.1) and the notations
NigW,m) =) +1B+TP N A0 =1+t +1)

(see Lemma 2.3.1(b) and Remark 2.2.2). Denoting by b the vector 8’ — 3, we write
the decomposition of 7' + ¢ in the form

Y 4+t=B+b+7+ (G +v(B+b,1))d.
Then to every 7/ € T there corresponds b = b(y’) € T'y. For v/ € M; denote
by B' (5, b(7'), j, v) the set of all 7 not satisfying (2.6.6). For 4/ € M, denote by

Bz(ﬂ, b(v"), j, v) the set of all 7 not satisfying (2.6.7), where M| and M, are defined
in (2.6.6) and (2.6.7). Clearly, if

7 € F5\(Us=12(Uyenm, (B* (B, b(7), j, v))

then the inequalities (2.6.6) and (2.6.7) hold, that is, 7 € S4(3, j, v, p). Therefore
using (Fs) ~ 1 and proving that

:LL(U’Y/GMYBX (6’ b(’Y/)» j9 U)) = O(Pia)» Vs =1, 27 (2651)
we get the proof of the second equality in (2.6.48). Now we prove (2.6.51). Using
the above notations and the notations of (2.6.6) and (2.6.7) it is not hard to verify
that if 7 € B*(83, b(7), j, v), then

12(8, b)Y+ b+ +v(B+D)S1P+2 (b, 7) — 1 (0) +hs (Y +1)| < 221, (2.6.52)

where
hy = Fy,—1 — Exy—1, ha = ri — Egy—1,7 € Mj,

and s = 1, 2. First we prove that if b =: b(7/) € T'5(p*@), then (2.6.52) does not
hold. The assumption v € S3(3, p) implies that v ¢ A(S, p). This means that

12(B, b) + 1b1> + |(j + v(B + b))5|*| > 4d;sp°.

Therefore if
12(b, 7) — pj(v) + hs (¥ + )| < 3dsp™, (2.6.53)
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then (2.6.52) does not hold. Thus to prove that (2.6.52) does not hold it is enough to
show that (2.6.53) holds. Now we prove (2.6.53). The relations

beTls(p*) &7 € Fs

imply that
12(b, 7} | < 2dsp™.

The inclusion j € S and (2.3.6) imply that
pi) = 0(p*™).

By (2.2.8) and (2.3.53),
hy = 0(p™).

Since oy = 3%a = 39"y, (2.6.53) for s = 1 is proved. Now we prove the equality
ri = 0(p™")

which implies that
lha| = O (p™")

and hence ends the proof of (2.6.53). The inclusion
7€ BX(B.b(), j.v)
means that (2.6.7) does not hold, that is,
[EQj (v, 7)) = Ai(f +1)] < 2e1.

On the other hand, the inclusion 7’ € M, implies that ' € M (see the definitions of
M>, and M) and hence

IEQ\j s(v, 7)) — 17 + 12| < %p‘“
The last two inequalities imply that
ri(y +1) = 0(p").
Thus (2.6.53) is proved. Hence (2.6.52) for b € I'5(p“4) does not hold. It means that

the sets B' (3, b, j, v) and Bz(ﬁ, b, j,v) for |b| < p“d are empty.
To estimate the measure of the set

B'(3,b(7"), j, v)
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for
7' e M, [b(y) =p™, beT;

we choose the coordinate axis so that the direction of b coincides with the direction
of (1,0,0,...,0),i.e.,b=(b1,0,0,...,0), b; > 0and the direction of J coincides
with the direction of (0, 0, ..., 0, 1). Then Hs and B*(3, b, j, v) can be considered
as R?~! and as a subset of Fj respectively, where F5 C RY~!. Now let us estimate
the measure of B*(3, b, j, v) by using (2.5.22) for

D = B*(3,b, j,v),m =d — 1, and k = 1. For this we prove that

p((B* (B, b, j, v)) (12,73, ..., Ta—1)) < 4ei[b| ™", (2.6.54)
for all fixed (72, 73, ..., T4—1). Assume the converse. Then there are two points
T=(T1,72, T3 ..., Td—1) € Fs & 7' = (71,72,73,”.,751—1) € Fy

of B(83, b, j, v), such that
ITi — 7| = 4eq|b| . (2.6.55)
Since (2.6.52) holds for 7/ and T we have
2b1(r1 = 71) + g5 (7) — g5 ()] < 4e1. (2.6.56)

where
gs(1) = hs(B' + 7+ (j' + v(B+ b))d).

Using (2.2.34), (2.2.36), (2.3.54), and the inequality |b| > p®4, we obtain
91(1) — g1 ()] < p~ V1 — 7| < bilmy — 7y, (2.6.57)
192(7) = 92| < 3p2|m = 7| < bilm = 7. (2.6.58)
These inequalities and (2.6.56) imply that
bi|m — Ti| < 4eq
which contradicts (2.6.55). Hence (2.6.54) is proved. Since B*(/3, b, j, v) C Fs and

ds = O(1), we have
pw(PriB*(B, b, j,v)) = O(1).
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Therefore formula (2.5.22), the inequalities (2.6.54) and |b| > p yield

p((B* (B.6(Y). j.v) = 0(1lb()| ™) = 0(p~*ey)

fory € My C M and s = 1, 2. This implies (2.6.51), since

M| = 0?1, e1 = p@72%, 0(p!™17%e)) = 0(p™).

References

[Vel]
[VeMol]

[Ve2]

[Ve3]
[Ved]
[Kat]
[Ve6]
[Ve9]

[VeT]

[Ves]
[Kal]
[Ka2]
[Ka3]
[FeKnTr1]
[Sk1]
[Sk2]
[Sk3]

[Sk4]

Veliev, O.A.: On the spectrum of the Schrédinger operator with periodic potential. Sov.
Math. Dokl. 27(1), 234-237 (1983)

Veliev, O.A., Molchanov, S.A.: Structure of the spectrum of the periodic Schrodinger
operator on a Euclidean torus. Funct. Anal. Appl. 19, 238 (1985)

Veliev, O.A.: Asymptotic formulas for the eigenvalues of the multidimensional
Schrodinger operator and periodic differential operators. Preprint Inst. Phys. AN Azerb.
SSR no 156, (1985)

Veliev, O.A.: Asymptotic formulas for the eigenvalues of the periodic Schrodinger
operator and the Bethe-Sommerfeld conjecture. Funct. Anal. Appl. 21, 87 (1987)
Veliev, O.A.: The spectrum of multidimensional periodic operators (in Russian). Teor.
Funkstii Funktsional. Anal. i Prilozhen 49, 17-34 [English trans. in J. Sov. Math.
49(1990), 1045-1058] (1988)

Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

Veliev, O.A.: Asymptotic formulas for the eigenvalues and periodic differential opera-
tors. Doctor of Sciences Thesis, Razmadze Mathematical Institute, Tbilisi (1989)
Veliev, O.A.: Perturbation theory for the periodic multidimensional Schrodinger oper-
ator and the Bethe-Sommerfeld conjecture. Int. J. Contemp. Math. Sci. 2(2), 19 (2007)
Veliev, O.A.: On the two-dimensional Schrodinger operator whose periodic potential is
square integrable in a fundamental domain. J. Spectr. Theory Oper. Appl. (Elm, Baku)
64-76 (1991)

Veliev, O.A.: On the polyharmonic operator with a periodic potential. Proc. Inst. Math.
Mech. Azerbaijan Acad. Sci. (2), 127-152 (2005)

Karpeshina, Yu.E.: Perturbation theory formulae for the Schrodinger operator with a
non-smooth periodic potential. Math. USSR_Sb. 71, 101-123 (1992)

Karpeshina, Yu.E.: Perturbation series for the Schro dinger operator with a periodic
potential near planes of diffraction. Commun. Anal. Geom. 4(3), 339-413 (1996)
Karpeshina, Yu.E.: Perturbation Theory for the Schr6 dinger Operator with a Periodic
Potential. Lecture Notes in Mathematics, vol. 1663. Springer, New York (1997)
Feldman, J., Knorrer, H., Trubowitz, E.: The perturbatively stable spectrum of the
periodic Schrodinger operator. Invent. Math. 100, 259-300 (1990)

Skriganov, M.M.: Proof of the Bethe-Sommerfeld conjecture in dimension two. Sov.
Math. Dokl. 20(1), 89-90 (1979)

Skriganov, M.M.: On the spectrum of the multi-dimensional operators with periodic
coefficients. Funct. Anal. i Pril. 16(N4), 88-89 (1982)

Skriganov, M.M.: The multi-dimensional Schrodinger operator with periodic potential.
Izvestiya Akad. Nauk SSSR (Ser. Math.) 47(N3), 659-687 (1983)

Skriganov, M.M.: The spectrum band structure of the three dimensional Schrodinger
operator with periodic potential. Invent. Math. 80, 107-121 (1985)



126

[Sk5]

[DaTru]
[HeMo]
[Ka7]
[Moh]

[MoPaPc]

[PaSh]

[So]
[Pa]

[Kad]

[Ka5]

[Ka6]

[PaBa]
[PaSo]
[FeKnTr2]

[Ves]

2 Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions

Skriganov, M.M.: Geometric and arithmetic methods in the spectral theory of multidi-
mensional periodic operators. Proc. Steklov Inst. Math. (Amer. Math. Soc., Providence,
no. 2) (1987)

Dahlberg, B.E.J., Trubuwits, E.: A remark on two-dimensional periodic potential. Com-
ment. Math. Helvetica 57, 130-134 (1982)

Helffer, B., Mohamed, A.: Asymptotics of the density of states for the Schrodinger
operator with periodic potential. Duke Math. J. 92, 1-60 (1998)

Karpeshina, Yu.E.: On the density of states for the periodic Schrodinger operator. Ark.
Mat. 38(1), 111-137 (2000)

Mohamed, A.: Asymptotic of the density of states for the Schrodinger operator with-
periodic electromagnetic potential. J. Math. Phys. 38(8), 4023—4051 (1997)

Morozov, S., Parnovski, L., Pchelintseva, I.: Lower bound on the density of states for
periodic Schrodinger operators. Oper. Theory Appl. (Amer. Math. Soc. Transl. Ser. 2,
Providence, RI) 231, 161-171 (2010)

Parnovski, L., Shterenberg, R.: Asymptotic expansion of the integrated density of states
of a two-dimensional periodic Schro dinger operator. Invent. Math. 176(2), 275-323
(2009)

Sobolev, A.V.: Asymptotics of the integrated density of states for periodic elliptic
pseudo-differential operators in dimension one. Rev. Mat. Iberoam. 22(1), 55-92 (2006)
Parnovski, L.: Bethe-Sommerfeld conjecture. Ann. Henri Poincaré 9(3), 457-508
(2008)

Karpeshina, Yu.E.: Spectral properties of the periodic magnetic Schrodinger operator in
the high-energy region. Two-dimensional case. Commun. Math. Phys. 251(3), 473-514
(2004)

Karpeshina, Yu.E.: Asymptotic formulas for eigenvalues and eigenfunctions of periodic
magnetic Schrodinger operators. Waves in periodic and random media (South Hadley,
MA, 2002). Contemp. Math. (Amer. Math. Soc., Providence, RI) 339, 91-103 (2003)
Karpeshina, Yu.E.: On spectral properties of periodic polyharmomic matrix operators.
Spectral and Inverse spectral theory (Goa, 2000). Proc. Indian Acad. Sci. Math. Sci.
112(1), 117-130 (2002)

Barbatis, G., Parnovski, L.: Bethe-Sommerfeld conjecture for pseudodifferential per-
turbation. Commun. Partial Differ. Equ. 34(4-6), 383—418 (2009)

Parnovski, L., Sobolev, A.: Bethe-Sommerfeld conjecture for periodic operators with
strong perturbations. Invent. Math. 181(3), 467-540 (2010)

Feldman, J., Knorrer, H., Trubowitz, E.: The perturbatively unstable spectrum of the
periodic Schrodinger operator. Comment. Math. Helvetica 66, 557-579 (1991)
Veliev, O.A.: Asymptotic formulas for block function of multidimensional periodic
Schrodinger operators and some of their application. J. Spectr. Theory Oper Appl.
(Elm, Baku) 9, 59-76 (1989)



Chapter 3
Constructive Determination of the Spectral
Invariants

Abstract This chapter describes the constructive determination of the spectral
invariants explicitly expressed with respect to the Fourier coefficients of the potential
by using the Bloch eigenvalues as input data. At the same time, it gives a rich set
of invariants that is enough to determine the potential ¢. This chapter consists of
five sections. First section is the introduction and preliminary facts where we dis-
cuss the related papers, describe briefly the scheme of this chapter and recall the
results of Chap. 2 which are used essentially in this chapter. In Sect. 3.2, we develop
the asymptotic formulas obtained in Chap.2 and write the first and second term
of the asymptotic formulas for the the Bloch eigenvalues in the explicit form. In
Sect. 3.3, we investigate the derivatives of the band functions A, with respect to the
quasimomentum. In Sect.3.4, using the results of the previous sections, we deter-
mine constructively a family of spectral invariants of this operator from the given
Bloch eigenvalues. Some of these invariants generalize the well-known invariants
and others are entirely new. The new invariants are explicitly expressed by Fourier
coefficients of the potential which present the possibility of determining the poten-
tial constructively by using the Bloch eigenvalues as input data in the next chapter.
Final section of this chapter is the Appendix, where we give some estimations and
calculations of previous sections.

3.1 Introduction and Preliminary Facts

The main purpose of this chapter is the constructive determination of a family of
spectral invariants of the Schrodinger operator L(g) = —A + ¢ in Ly(RY), d > 2,
with a real periodic, relative to a lattice €2 in R?, potential ¢ satisfying the smoothness
condition

qgeWS(F) & s=6(3%d+1)%+d

from the given Bloch eigenvalues A, (¢) for large values of n and for the values of
quasimomentum ¢ lying near the diffraction hyperplanes.

To list the main results, we use Notation 2.1.1 of Chap.2 (see introduction of
Chap.2). Denote by M (I") and M (T's), the set of all visible points of the lattices I" and
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I'5, respectively. The spectral invariants are expressed by the Bloch eigenvalues and
the Bloch functions of the Schrédinger operator L (q‘s) in Lz(Rd) with the directional
potential ¢%(x) defined in (2.1.19) of Chap.2 which is the restriction of the original
potential ¢ to the linear span of {e"{>¥) : n € Z}. The function ¢° depends only on
one variable { = (d, x) and can be written as

9°(0) = Q((6,%), QO = D gnse™.

nez

The Bloch eigenvalues and the Bloch functions of the operator L(g’) are expressed
by eigenvalues 1 ;(v) and eigenfunctions ¢; ,(¢) of the Sturm-Liouville operator
T, (Q) defined in Lemma 2.3.1 of Chap. 2.

In the pioneering paper [EsRaTr1] about isospectral potentials, it was proven that
if g € C6(F), w € Q\0, and § is the visible point of I' satisfying (, w) = 0, then
given Bloch eigenvalues one may recover the eigenvalues of 7, (Q) for v = 0, % and
the invariants I (w, 9, j, v) for j € Z, v =0, %, where

1.6, j,v) = /F 100 ()50 ((x. 8))Pdx G.L1)

if pj(v) is a simple eigenvalue,

(W, 6, j,v) = /F 1 Q) (@j+1.0({x, O + (9.0 ((x, HNHdx  (3.1.2)

if ;1 (v) is not a simple eigenvalue, namely if 11 (v) = 41 (v), and O, (x) is defined
by
’y .
0u(x) = Z — g, (3.1.3)

yel w0 &)

The proofs given in [EsRaTr1] were nonconstructive. In [FeKnTr2], it was given a
constructive way of determining the spectrum of L; (q‘s) from the spectrum of L;(g)
for the case d = 2.

In this chapter, we consider the Schrédinger operator L (g) for arbitrary dimension
d and using the given Bloch eigenvalues as input date, we constructively determine
all eigenvalues of 7, (Q) for all values of v € [0, 1) and a family of new spectral
invariants

JG.b. j.v) = /F 105.5 ()50 (6, x))Pdx (3.14)

for v € (0, %) U (%, 1), j € Z, and for all visible elements » and § of 'y and T’
respectively, where

’y .
aGp) = D qu/e’”’”, (3.1.5)
~eS(6.b)\6R 7’ v
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S(,b) = P(0,b)NT, and P (9, b) is the plane containing 6, b and 0. The results
of this chapter were published in [Vel0]. The formula (3.1.3) contains all Fourier
coefficients ¢, of g except the Fourier coefficients corresponding to the vectors of
a hyperplane. However, (3.1.5) contains only the Fourier coefficients corresponding
to the vectors of the plane P(d, b) except the vectors of JR. If the potential ¢ is a
trigonometric polynomial and d > 2, then most of the polynomials (3.1.5) contain
either 2 nonzero Fourier coefficients ¢, and g, where

qd—y = q~,

or 4 nonzero Fourier coefficients g-,, ¢,, ¢—~,» g—v,, Or 6 nonzero Fourier coef-
. 1 1
ficients gy, G, Gy3» G—y1» d—72> G—v3- Moreover p, (v), for v € (0, 5) U (5, 1),
J € Z, is a simple eigenvalue and the corresponding eigenfunction ¢, ,(¢) has a
simple asymptotic decomposition. Therefore, substituting the asymptotic decompo-

sition
A1(Q) n A2(0)

2 —
[enu (O = A0+ — p

4+ (3.1.6)

where Ay (€) is expressed via Q((), into (3.1.4) we find the new invariants
Je(0,b) = / 195,6(¥)* Ak (8, x))dx (3.1.7)
F

fork =0,1,2,...,6 e M(I"), b € M(Ts). Note that Ji (6, b) is explicitly expressed
by the Fourier coefficients of g. Moreover, if d > 2 and ¢ is a trigonometric poly-
nomial, then, in general, the number of the nonzero invariants (3.1.7) is greater than
the number of nonzero Fourier coefficients of g and most of these invariants are
explicitly expressed by m Fourier coefficients of ¢, where m < 3. This situation
allows us to give (it will be given in the next chapter) an algorithm for finding the
potential ¢ from these spectral invariants.

Let us describe the brief scheme of the constructive determination of these invari-
ants. We use the asymptotic formulas for the Bloch eigenvalues and Bloch func-
tion obtained in Chap. 2. First, by improving the asymptotic formulas for the Bloch
eigenvalues and Bloch functions, in the high energy region and near diffraction
hyperplanes, obtained in Chap.2, we get the asymptotic formulas, where there are
sharp estimations for the first and second terms of the asymptotic decomposition. To
describe this improvement, let us introduce the following notations. The eigenvalues
of the operator L, (0) with zero potential are |y + ¢|? for v € I". If the quasimomen-
tum  + ¢ lies near the diffraction hyperplane Dy, then the corresponding eigenvalue
of L;(q) is close to the eigenvalue of the operator L, (qa) with directional potential.
To describe the eigenvalue of L; (q5), we consider the lattice I'5 defined in Notation
2.1.1 (see introduction of Chap.2). Let Fs =: Hs/ I's be the fundamental domain of
I's. In this notation, the quasimomentum -y + ¢ has an orthogonal decomposition

Y+t=0+7+( +v)9, (3.1.8)
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where
Bels CHs, 7€ Fs C Hs, j € Z,v € [0, 1),

and v depends on 3 and 7. The eigenvalues and eigenfunctions of the operator L; (¢°)
are .
Xjp@.m) = 184717+ pj () and @ 5(x) = T ;,(0),

respectively for j € Z and 3 € I's. We say that the large quasimomentum (3.1.8)
lies near the diffraction hyperplane Ds = {x € RY : |x|? = |x + 6%} if

1 3 1

Z 0, ji=00(p"), qq=3,a=—— 3.19

5P <18l <3p.J (P™"), Q=157 a 1) (3.1.9)
where p is a large parameter and k = 1, 2, ..., d. In this chapter we construct a set

of the quasimomentum near the diffraction plane Ds such thatif 3+ 7+ (j + v)d
belongs to this set, then there exists a unique eigenvalue, denoted by A ; 5(v, 7), of
L;(q) satisfying

Ajg, )= Xjg,7)+ 0 ), (3.1.10)

1 2 _
Am(v,T):A,-,g(v,T)JrZ/ |f§ﬁ+T| l@jo| dx + 031 Inp), 3.1.11)
F
wherea = 1 — ay + o and

Y i~
foprr) = > mqye”*”- (3.1.12)
Y:y€l\OR, |y]<p® ’

This is a simple eigenvalue and the corresponding eigenfunction W; 3(x) satisfies
Wjp(x) =@, 5(x) + 0(p™. (3.1.13)

The remainders of the formulas (3.1.10), (3.1.11), (3.1.13) are O (p~9), O (p~32+2
Inp), O(p™“) respectively, while the remainders of the corresponding formulas,
obtained in Chap.2, are O(p~°2), O(p~2*2(Inp)*), O(p~*21Inp) [see (2.3.39),
(2.3.52), (2.6.23) of Chap. 2], where

a>1 —3a + 201 < -2,

C4d+ 1)’

but a; is a small number [see (3.1.9)]. Moreover, the second term of (3.1.11) has
an explicit and a suitable form for the constructive determination of new invariants.

Besides, we prove that the derivative of A g(v, 7) in the direction of 7 = —|§i;\
satisfies A s )
j,3\U, T _
18+ 7| —L 2 = B4 7 + 0(p* ) (3.1.14)

Oh
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and the derivatives of the other simple eigenvalues, neighboring with A j 5(v, 7), do
not satisfy (3.1.14). Using these formulas, we constructively determine the eigenval-
ues of T, for v € [0, 1) and the invariants (3.1.4), (3.1.7). Then, using the asymptotic
formulas for the eigenvalues and the eigenfunctions of 7, we find A¢(¢), A1((),
A2(C) [see (3.1.7)] and the invariants

/F 95600 ¢° (x)dx, (3.1.15)

/ ‘q‘s(x)lzdx (3.1.16)
F

(see Appendix 4). If the potential ¢ is a trigonometric polynomial, then most of the
directional potentials have the form

¢’ (x) = gse'0) 4 g_sem 10X (3.1.17)

In this case, by direct calculations, we show that

q°(x)

Ag=1,A1=0,4; = +arlgs?, Ay = a2q®(x) + a3 lgs*.  (3.1.18)
Ag = agq’(x) + as(q2e'?00) 4 g2 s 120 4 g,

where aj, as, ..., ae are the known constants (see Appendix 4). Moreover using
(3.1.18), (3.1.16), and (3.1.7) for k = 2, 4, we find the invariant

/ 1g6.5 (013 (g2 4 g2 se 20 ) gy (3.1.19)
F

in the case (3.1.17). In the next chapter, we give an algorithm for finding the potential
q by the invariants (3.1.15), (3.1.16), and (3.1.19).

3.2 First and Second Terms of the Asymptotics

First let us describe some results of Chap. 2 that we use in this chapter. In Chap. 2 (see
Sect.2.6) we constructed a set Bs, which is called a simple set near the diffraction
plane Dg, such that if the quasimomentum v 4+t = 8+ 7 + (j + v)J [see (3.1.8)]
belongs to the simple set By, then there exists a unique eigenvalue Ay of L;(q)
which is simple and satisfies

AN — E(\jp(v, 7))| < €1 (3.2.1)
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(see Theorems 2.6.1 and 2.6.2 of Chap.2), where £; = p~¢~2* and E\j s, 1)
is called the known part of A . Besides, we proved that all other eigenvalues of the
operator L;(g) lie in the &1 neighborhood of the numbers F (7" + 1) and \; (7' + 1),
where 7/ € T", which are called as the known parts of the other eigenvalues. In order
that Ay does not coincide with the other eigenvalues, we use the following two
simplicity conditions

IEQj5(v, 1) = F(Y + 0| = 261, [EQ 50, 7)) = N (Y +1)] = 2e1. (3.2.2)

Briefly, Bs is the set of 347 + (j + v)¢ satisfying (3.2.2). Thus we constructed the
set Bs by eliminating the set of quasimomenta v+t = 4+ 7 + (j + v)d for which
the known part E(); (v, 7)) of the corresponding eigenvalue is situated from the
known parts of the other eigenvalues at a distance less than 2¢;. Then we investigated
the set Bj. It is clear that every vector w of R? can be written as w = + + , where
v € I',t € F*, and hence has decomposition (3.1.8). In Chap.2 [see the formula
(2.6.45), Theorems 2.3.1 and 2.6.1 of Chap.2] we proved that if

J € S81(p), B € S2(p),veS3(B,p), T e S4B, v, p), (3.2.3)

then
B+7+(j+v)de Bs

and hence there exists a unique eigenvalue A y of L;(q) which is simple and satisfies
Ay =Xj (v, )+ O0(p™ ") (3.2.4)

and the corresponding eigenfunction Wy ;(x) satisfies
Uy (x) =P s(x) + O(p~Inp), (3.2.9)

where «; is defined in (3.1.9) and the set Sy, S», S3, S4 are defined as follows:

prt 3
i h (3.2.6)

Silp)={jeZ:|jl <

3 1 1
Sa(p) ={B € Ts: B € (Rs(5p—ds — D\RsGp+ds + DNC [ Vi (o2},
beT5(pd)

where
ds = sup |x —yl|, Rs(c) ={x € Hs : |x| <},
x,y€Fs

Is(c) ={bels:0<|bl <c},

V(c) ={x € Hs : [|x + b> — |x|*| < ).


http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2

3.2 First and Second Terms of the Asymptotics 133

For 3 € S»(p) the set S3(5, p) is defined by

S3(B. p) = W(p\A(B, p). 32.7)
where
W(p)={ve©,1):|uj@ —pj@)]|> é, Vi’ j €, j #j}.
AB.p= |J AB.b.p).
bels(pd)
and

AB.b.p) = (v el0,1):3] € Z, [2(8,b) + b +1(j + 5| < ddsp™).

For
Jj € Si(p), B e Sp),ve S8, p)

the set S4(3, j, v, p) is the set of 7 € Fj for which
B+ 74+ (j+v)d e Bs.

In other words, S4(8, j, v, p) is the set of 7 € Fy for which E()\; 5(v, 7)) satis-
fies the simplicity conditions (3.2.2). Since the functions taking part in (3.2.2) are
measurable, S4(3, j, v, p) is a measurable set. In Chap.2 (see 2.6.48 of Chap.2), we
proved that

1(S4(B, j, v, p) = p(Fs)(1 + O (p™)). (3.2.8)

Remark 3.2.1 If (3.2.3) holds, then there exists unique index N (j, 3, v, 7), depend-
ingon j, 3, v, T, for which the eigenvalue Ay (; 3,v,r) () satisfies (3.2.4). Instead of
N(j, B, v, 1), wewrite N(j, 8) (or N)ifv, 7 (or j, 3, v, 7) are unambiguous. In the
asymptotic formulas (3.1.11)—=(3.1.14), instead of A v, 3,v,7) and Wy ;. 8,v,7),¢ (X) We
write A j 5(v, 7) and W (x) respectively, in order to underline that A ; 5(v, 7) and
W; 5(x) are close to A g(v, 7) and ®; 5(x), where A; 5(v, 7) and @ 5(x) are the
eigenvalues and eigenfunction of the operator L;(¢°) with directional potential ¢°.

To prove the asymptotic formulas (3.1.10)—(3.1.14), which are suitable for the
constructive determination of the spectral invariants, we put an additional conditions
on 3. Namely, we suppose that

se |J vieY. (3.2.9)

bel's(pp®)
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where V/(p%) and T;(pp®) are defined in (3.2.6). By definition of V) (p%), the
relation (3.2.9) yields

1812 = 184 B11?] = p%, VY61 € Ts(pp®). (3.2.10)

Using the inequalities
181l < pp®, |7l < ds,a > 2a

[see (3.1.11)], we obtain

8
1B+7 =18+ B+ 7 > 5", VB € Ts(pp). (3.2.11)
Now we prove (3.1.10) by using (3.2.3), (3.2.11), and the following relation

(AN = XN, j, B) = (Wn ., (g — ") P} ), (3.2.12)

where
b(N, j,B)=Wn, @;p).

In Chap. 2, using (2.3.12), we proved that [see (2.3.22) and (2.3.23) of Chap. 2] if

. 1
|]5| <r, |ﬁ| > §p7 (3.2.13)

where
(o31

_P
2/9]

r>rp + 2141,

then the following decomposition

(Q(X)—q(s(x))‘bj,y(x) = Z A, By jHit BHBDPR iy, s )+0(p™PY)
(j1.81)€Q(p™,97)
. (3.2.14)
of (g(x) — q"(x))dDj,@(x) by eigenfunction of L,(q5) holds, where
Q(p™,9r) ={(j, B) : 1jol <9r,0 < |B] < p*}
and
D IAGLB B4 B < . (3.2.15)

(j1.81)€Q(p*.9r)
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Using this decomposition in (3.2.12), we get

(AN@) = Ajp)b(N, j, B) = O(p~"")

+ > AGB+ i B+BOBN. 4 ji. B+ B).  (32.16)
(1B (0 .9r)

Remark 3.2.2 It |j'6| < r, |f| > %p and

AN = Ajr gl > c(p),

then by (3.2.16) we have

A -/ /’ ./ ', / bN’ ./ " / 1
Z ('8 + ji, B+ Bb( J+Jlﬂ+51)+0( )

b(N,j,B)= .
N7 Av = 7c(p)

(Jj1.81)€Q(p™.9r)
If j € S1(p), then |j§]| < ri = O(p™) and in (3.2.16) instead of r we take ry.

Theorem 3.2.1 If (3.2.3) and (3.2.9) hold, then there exists a unique eigenvalue
Aj g(v, 7) of Li(q) which is simple and satisfies (3.1.10).

Proof Since there exists a unique eigenvalue A y (¢) satisfying (3.2.4) and the corre-
sponding eigenfunction satisfies (3.2.5) (see Remark 3.2.1), we have

b(N,j,B)=1+0(p “Inp).

Therefore, we need to prove that the right-hand side of (3.2.16) is O(p~%). First we
show that
b(N,j+ j1.B+081)=0(@p" (3.2.17)

for . .
B € Ts(pp™), j =o0(p?), j1 = o(p?).

For this we prove the inequality

1 . a . a
IAN@) = Njtjy g | > 5,0“, V01 € Ts(pp™), Vj =o0(p?), Vj1 = o(p?),
(3.2.18)
and use the formula

(Uni, (@ — )Pty pi48)

b(N,j+ ji1,5 +08) =
AN = Aj+j1.51+8

(3.2.19)
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which can be obtained from (3.2.12) by replacing the indices j, 8 with j+ ji, 54+ .
By (3.2.4), the inequality (3.2.18) holds if

5
|mw>+w+fﬁ—m+mw—uﬁwﬂ+ﬂ%>§w.

This inequality can be easily obtained by using (3.2.11), the equalities j = o(p%),
Jj + j1 = o(p?) [see the conditions on j, j; in (3.2.17), (3.2.18)], and the formula

(i (v) = |(n +0)8)* + O(n™") (3.2.20)

(see [Mar]). Note that the set of the eigenvalues of 7;,(0) with zero potential is a

sequence
{I(n + v)(5|2 ne’l}

and it is not hard to see that the set of the eigenvalues of T, can be written as a
sequence
() : n €7}

satisfying (3.2.20). Thus (3.2.17) is proved. Using (3.2.17), the definition of
Q(p™, 9ry), and the relations r; = O(p™') (see Remark 3.2.2), a1 < 5, we obtain
that all multiplicands b(N, j + ji, 8 + (1) in the right-hand side of (3.2.16), in the
caser = rq, is O(p~%). Hence (3.2.15) implies that the right-hand side of (3.2.16)
is O(p™). O

To prove the asymptotic formula (3.1.11), we iterate (3.2.16), in the case r = rq,
as follows. If | j| < rq, then the summation in (3.2.16) is taken under condition

(1, B1) € Q(p™,9r1)
(see Remark 3.2.2). By the definition of Q(p“, 9r1) we have |j1| < 9r;. Hence
|(J + jdl < ra,
where r, = 10r;. Therefore, using (3.2.18) and Remark 3.2.2, we get

A (D), B(1), j(2), B2)DN, j(2), 5(2)

+0(p™"),
AN = Ajt 1.6+

BN, j+j. B8 = >

(j2.32)€Q(p™,9r2)

where

JK=j+p+p+ - F il =0+01+ 5+ -+ b
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fork =0, 1,2, ... Using this in (3.2.16), we obtain

(AN = Ajp)b(N, j.B) = 0(p~ ")+
AU B JD), BDAGD), SD). j (D), B2, j(2). f2))

AN = Xj+ji.845

(1.B80€Q(p",9r1) (j2.52)€Q(p 9r2)

(3.2.21)

To prove (3.1.11), we use this formula and the following lemma.

Lemma 3.2.1 Suppose (3.2.3) and (3.2.9) hold. If j' # j, |j' 0| < r, where
r=0(p"),r =1,

and

P!
1T
r 2|5|+ [0]

then
b(N(j, B), J', B) = O(p~>r*Inp).

Proof To prove this lemma, we use the following formula obtained from (3.2.21) by
replacing j and r; with j’ and r respectively

(AnG.p) = Ay p)b(N, j', B) = O(p~ ")+
Z A(j, B, (1), BANAG' (1), B(1), j(2), B2)D(N, j'(2), 5(2))
AN = Ajryji 46 ’

(j1.81)€Q(p*,9r)
(j2,32)€Q(p™,90r)

(3.2.22)
where j'(k) = j '+ j1+ jo+ -+ jxfork=0,1,2,....By (3.2.17) we have
b(N, j'(2), (2)) = 0(p™) (3.2.23)
for 8(2) # (. 1f j/(2) # j, then using (3.1.10) and taking into account that
v e S3(8,p) C Wip)

[see the definition of W (p) in (3.2.7)], we obtain

1
[ANnG.8) — Ajr sl > ny (3.2.24)

Therefore using, Remark 3.2.2, and (3.2.17), we see that

b(N, j'(2),8) = O(p~“Inp)
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for j/(2) # j. Using this, (3.2.15), and the estimations (3.2.18), (3.2.23), we see that
the sum of the terms of the right side of (3.2.22) with multiplicand b(N, j'(2), 5(2))
for (j'(2), B(2)) # (j, B) is O(p‘z" In p). It means that the formula (3.2.22) can be
written in the form

(Ay = Ay b(N, j', 8) = O(p~ " Inp) + Ci(j', AWb(N, j, B),  (3.2.25)

where
. A, B J + 1, B+ BOAG + j1. B+ b1, J. B)
aGhian = > AT e :
(1,BDEQ(p*,9r) N A
(3.2.26)
By (3.1.10), (3.2.18), (3.2.15) we have
1 1 _
= =0(p™,
AN = Njkji g8 AjB = AjiinB+8
Ci1(j', An) = C1(j', A\j.g) + O(p™>D), (3.2.27)

where C1(j’, Aj 3) is obtained from C(j’, Ay) by replacing Ay with A; 5 in the
denominator of the fractions in (3.2.26). In Appendix 1 we prove that

Ci(j's Aj.g) = O(p~2r?) (3.2.28)

for
1j'6] < r, (1. B1) € Q(p*,9r), j € S1.

Therefore dividing both sides of (3.2.25) by Ay — A/ g and using (3.2.24), (3.2.27),
(3.2.28), we get the proof of the lemma. O

Theorem 3.2.2 If (3.2.3) and (3.2.9) hold, then there exists a unique eigenvalue
Aj g(v, 7) of Li(q) which is simple and satisfies (3.1.11).

Proof We prove this by using (3.2.21). To estimate the summation in the right side
of (3.2.21), we divide the terms in this summation into three groups. The terms
of the first, second, and third groups are the terms with multiplicands b(N, j, (),
b(N, j(2), 8) with j(2) # j, and b(N, j(2), 5(2)) with 3(2) # [ respectively. The
sum of the terms of the first group is C1(An)b(N, j, 3), where

Z AW, B, j+ j1. B+ BDAG + j1. B+ 61, J, )

Ci(An) =
AN = Njtji, 546

(j1,81)€Q(p™,9r1)
(3.2.29)
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The sum of the terms of the second group is

3> A, B+t B+ BDAG + 1. B+ 61.J (D). 5)

b(N, j(2),B),
AN = Ajtji1, 540

(j1.81)€Q(p™,9r1)
(j2,2)€Q(p*,9r2)

where j(2) # j. Since
ry = 10r; = O (p™)

(see Remark 3.2.2) the conditions on j, ji, j» and Lemma 3.2.1 imply that
i@ =0(@"

and
b(N, j(2).8) = 0(p~ > ** Inp).

Using this, (3.2.15) and (3.2.18), we obtain that the sum of the terms of the second
group is O (p~3?2% In p). The sum of the terms of the third group is

> AQJ, B, j (D), BANAG D), B, j(2), B(D)

AN = Njtji, 46

b(N, j(2), 5(2)),

(J1,81)€Q(p",9r1)
(J2:32)€Q(p*,9r2)
(3.2.30)

where 3(2) # (3. Using (3.2.18) and Remark 3.2.2, we get

A(j (D), 5(2),j(3), BBNLN, j(3), B(3))

+0(p P,
AN = Aj2).80)

bIN,j@),52) = >,

(j3.83)€Q(p*.9r3)

where r3 = 10ry. Substituting it into (3.2.30) and isolating the terms with multipli-
cands b(N, j, 3), we see that the sum of the terms of the third group is

Co(AN)D(N, j, B) + C3(AN) + O(p~ P,

where
A(j, B, 7 (1), BAYAG (1), B(1), j(2), B2HA(F(2), B(2), J,
Cy(Ay) = Z (Jﬁ]()(ﬁA()) (Aj,(.),ﬁ()],\()ﬂi.)) (j()@()]ﬂ)ﬁ
(1. B1)EQ(" 9r), N = Aases) A = Aje).se)
(j2,82)€0(p",90r1)
(3.2.31)
_ A(jk —1), 8k —1), jk), B(k))b(N, j(3), 53
Cs(Ay) = Z ([Tiz123AG( ), B( ), j k), BU)))B(N, j(3), 5( ))7

G BOEOw™9r) (AN = Aj.sm) (AN = Aj@).82)

(j2,32)€Q(p",9r2),
(j3.33)€Q(p™,9r3)
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and (j(3), 8(3)) # (j, ). By (3.2.17) and Lemma 3.2.1 we have
b(N, j(3),8(3)) = O(p™)

for (j(3), B(3)) # (J, ). Using this, (3.2.15), and taking into account that

1 1
[AN®) — Xy, s > gﬂa, [AN() — Xj2).82) > 5/)“

for (1) # 3, B(2) # 3 [see (3.2.18)], we obtain
C3(Ay) = 0(p™%.

The estimations of the terms of the first, second and third groups imply that the
formula (3.2.21) can be written in the form

(AN —Aj p)D(N, j, B) = (C1(An) + C2(AN)D(N, j, B) + 0(p™3+ 2 In p),
(3.2.32)
where

N =N(,B.,v,7), AN, B = Aj sV, T)
(see Remark 3.2.1). Therefore, dividing both part of (3.2.32) by b(N, j, 3), where
b(N, j,B)=14+0(1)
[see (3.2.5)], we get
Ajg=Xig+Ci(Aj )+ Ca(Aj ) + O(p 392 1n p). (3.2.33)

The calculations in Appendix 3 and in Appendix 2 show that
1 2 2 -
Ci(Aj 50, ) = 7 / | 5,54 [0 (8, 20)|" dx + O (p734F201), (3.2.34)
F

Ca2(Aj g(v, 7)) = O(p 34201y, (3.2.35)

Therefore (3.1.11) follows from (3.2.33). (Il

Theorem 3.2.3 If (3.2.3) and (3.2.9) hold, then the eigenfunction V; 3(x) corre-
sponding to the eigenvalue A j 3(v, 7), where A j 5(v, T) is defined in Theorem 3.2.1,
satisfies (3.1.13).

Proof To prove (3.1.13) we need to show that

> LN G B). . B> = 0(p~2. (3.2.36)
G180 BAGLB)
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In Chap.2 [see (2.6.36) of Chap. 2] we proved that

> b= 0 (np)?), (3.2.37)
(j',B)eSe(k—1)

where
§°(n) = Ko\S(n), Ko ={(j'.8) : j' € Z.f € Ts.(j'. B) # (j. D)}

S() =1{(j.B) € Ko: 18— B < np®, |j/0] < 10"k}, h = O(pz®?)

and k can be chosen such that ka, > a, k < p. Therefore, it is enough to prove that

> bW B = 0. (3.2.38)
(j'.BeSk—1)

Using (3.2.18), (3.2.19), definition of S (k — 1) and the Bessel inequality for the basis
(@ p(x):j €Z,B €T},
we have

> Ib(N, j', B
(J",08):(j",BeSk—1),8 #3
> |(Un(g —q%), ) g

=0(p~ ). 3.2.39
INESYRE (=) ( )

("8
In the case 3 = B and j' # j using Lemma 3.2.1, we obtain

> Ib(N, j', B> = 0(p~* 2% (In p)*)K, (3.2.40)
(J'.BeSk=1),j'#j

where K is the number of j’ satisfying (j’, 3) € S(k — 1). Note that we can use
Lemma 3.2.1, since

18] = 0(p2°2), V(j', ) € Stk — 1)).

It is clear that .
K =0(p2™).

Since ap < % [see (3.1.9), (3.1.11)], the right side of (3.2.40) is O(p_Q“). Thus
(3.2.40) and (3.2.39) give (3.2.38) O
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3.3 On the Derivatives of the Band Functions

Now we estimate the derivative of Ay (¢) by using the following lemma.

Lemma 3.3.1 Let Ay (6 + 7 4 vd), be a simple eigenvalue of L; satisfying
[AN(B+T +v0) — B+ < 18] 72p™ (33.1)

where « is defined in (3.1.9), ( satisfies (3.2.3), and 3+ 7+ vd —t € I'. Then

ot oh

OAN (1) .
Brri=a == > BTG DB, AP (33.2)
Jj'€Z,B'els
OAN(1) . . . . . BT
where === is the derivative of Ay () in the direction of h = TiE=ep Moreover,
(N, j', )] < 9 (33.3)
(6" + 712+ (" + )G + 7]%d+6
for all ' satisfying |8’ + 7| > 4p and for all j' € 7.
Proof We find the derivative of Ay (¢) by using
aAN(I) 0
=2t; = 2i(— Py, Py yt),
atj J l(axj N> Onr)
where ‘
Dy (x) = ey (x),
t=(t,t,...,t7) [see (2.5.12) of Chap.2]. Then
6AN(r> & OANG) _ 9
Z 2(h, 1) = 2i (= Py.s, P.o) (33.4)

To compute a% @y +(x), we prove that the decomposition

Oy )= D bIN, BT 005, x)) (33.5)

J'€Z,B' el

of Wy ; by basis
(Wj5:j €L eTs)
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can be differentiated term by term. Since (4, #) = 0 and

O ifr— X .l i3 +7—t,x
¢ T e (0, x) = (5 47— 1, e T 000, x)),

we need to prove that

9 o) = > i =B, B T8, x)).
Oh J' €L, el’s
(3.3.6)
Therefore, we consider the convergence of these series by estimating the multiplicand
b(N, j', 3. First we estimate this multiplicand for (j’, 3’) € E, where

E=(G"3):1(G" + o>+ 168 + 71 = 907},
by using the formula

_ WN (g =g P) )

b(N,j'. )
AN - )\j/’ﬁ/

(3.3.7)

which can be obtained from (3.2.19) by replacing j + ji, 8 + (1 with j/, 3. By
(3.2.3) and (3.3.1) we have
AN < 3p%. (3.3.8)

This inequality, the condition (', ') € E, definition of A s 5, and (3.2.20) give

1
Ay = An > SAG"+ VP + 18 + 7% > p? (3.3.9)

for (j', 3') € E. Therefore, (3.3.7) implies that

bN’ b S .
N T PV = G w15 71

5 v(j',3) e E. (3.3.10)

Now we obtain the high order estimation for b(N, j’, ') when |3’ + 7| > 4p. In this
case to estimate b(N, j’, ') we use the iterations of the formula in Remark 3.2.2.
To iterate this formula, we use the relation

5 47— Br = Bo— = Bl > 21 7P
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fork=1,2,...,d + 3, where |§;| < p®fori =0, 1, ..., k. This and (3.3.8) give
1 / 2 /
Ajw. gy — AN > 516+ 7% VIE 4 7] = 4p, (3.3.11)

where 3’ (k) = 3/ + 81 + 2 + - - - + . Moreover if | j'0| < ¢, where c is a positive
number, then
Giks Br) € 0(p*, 10K 19¢).

These conditions on j’ and j; imply that
[j (Dd] < 10c.

Therefore, in the formula in Remark 3.2.2 replacing j', 5, r by j'(1), §'(1), 10c,
we get

3 AG'(D, B/, j' (D), B'(2)bN, j'(2), 5'(2))

b(N, j (1), (1)) = O(p~ ") +
AN = Ajaypm

(j2,32)€Q(p™,90¢)
In the same way, we obtain

b(N, j'(k), B'(k)) = O(p~P?)
i Z A k), B/ k), j (k+ 1), B (k+ 1)b(N, j'(k+ 1), 3/ (k + 1))
AN = Aj), 8 ()

Ukt1-Br+1)€Q(p%, (10K)9¢)

(3.3.12)

for k = 1,2,... In the formula in Remark 3.2.2 for r = ¢ using (3.3.12) for
k=1,2,...d + 3 successively, we get

d+3

OO D /
. ) = 21 LTI EEE DN, 1 440,01+ 4,

(3.3.13)
where sum is taken under conditions

(1, B1) € Q(p™, 9¢), (ja, B2) € Q(p™,90¢), ..., (jata, Bata) € Q(p®, (10973)9¢).

Now using (3.2.14), (3.3.9), and (3.3.11), we obtain the proof of (3.3.3). It follows
from (3.3.12) and (3.3.3) that the series in (3.3.5) can be differentiated term by term
and (3.3.6) holds. Substituting (3.3.6) into (3.3.4) and using the Parseval equality,
by direct calculation, we obtain the proof of the lemma. (]
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Theorem 3.3.1 If (3.2.3) and (3.2.9) hold, then the eigenvalue A j 5(v, T), defined
in Theorem 3.2.1, satisfies (3.1.14).

Proof 1t follows from (3.3.3), (3.2.36), and (3.1.13) that

Z B+, 8 +70bWN, |, )= 0,

J'EL, | +T|=4p

> B+7. 8 +1)bW, j' B = 02,
J'EL\B'+TI<4p, (. B)#(j.B)

B+71,B+1bIN, j, D> =18+711>+ 0>,

where N = N(j, B,v,7), An(.gv,r) = Aj (v, 7) (see Remark 3.2.1). Therefore
(3.1.14) follows from (3.3.2) O

To prove the main results of this paper we need the following lemmas.
Lemma 3.3.2 If Ay(8 + 7 + vd) is a simple eigenvalue of L;(q) satisfying
IANB+T +v0) =18+ <20% N # N(j. B.v.7),

where 0+ 17+ vd —t € T, « is defined in (3.1.9), and j, 3, v, T satisfy (3.2.3),
(3.2.9), then

OAN(t 1
N() <|5+T|2__p2u,1.

18+ 7| i 2

Proof Here we note some reasons of the proof. It follows from (3.2.36) that
Ib(N, j, B> =1+ 0(p~>%) for N = N(j, ). (3.3.14)
Since [|®; g(x)|| = 1, using the Parseval’s equality for the orthonormal basis
(Un(x): N=1,2,...}
and (3.3.14), we get
6N, j. )P = 0™, YN # N(j. ). (3.3.15)

This with the following long estimations of the other terms of the series of the right
side of (3.3.2) implies the proof of this lemma. By Lemma 3.3.1, we have

OAN() _
oh

7
S B+T. 8+ bW, AP =D G (33.16)

Jj'€Z,B'els i=1

16+ 7]
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where

Ci= > DUB+r.0 +nbW. . 3P (33.17)

[eA; j el
and A; is defined as follows:
Ar={f els: 0 +7 ¢ Rs(4p)},
where
Rs(c) ={x € Hs : |x| < ¢},
Ay ={f' €Ts: 0 +7€Rs(4p)\Rs(H + épa_l)},
A3={0'eTs:f +7€Rs(H + ép“”)\&s(H +p%, 18- B = ),

1 - — —
Ay=1{3 eTs: 8 +7eRs(H + §p“ Y\Rs(H + p*~1), 18— 8| < p* 2%,
As = {ﬁ/ el :B/‘FT c Rg(H-Fpad_l)\R(S(H _p2ad—l)’ |ﬁ—ﬂ/| > pd),
Ag=10"€Ts: §'+7 € Rs(H + p" " D\Rs(H = o>~ 1), 15 = ] < o),
A7=1{B €Ts:p +7eRs(H—p* 1),

where H = | + 7|, 8 € S2(p), and hence by the definition of Sy (p) [see (3.2.6)]
H satisfies the inequalities

1 3
Ep < H < Ep. (3.3.18)
First we prove that
Ci= 0>, Vi=1,2,4,6. (3.3.19)

It follows from (3.3.3) that (3.3.19) holds for i = 1. To prove (3.3.19) fori = 2 we
use (3.3.7) and show that

Ajrg — AN (@) > cop”. (3.3.20)
First let us prove (3.3.20). By the condition
IAN(B+ T+ — |0+ T|2| < 2p°

of the lemma we have
Ay = H?> 4+ 0(p"). (3.3.21)

If 3" € Az, then using (3.3.18), definition of A/ 4, and (3.2.20), we have

N g > H> +c7p°. (3.3.22)
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This, (3.3.21), and the inequality @ > « imply (3.3.20). Now using (3.3.20), (3.3.7),
the inequalities

3
B+71< 5p 18 + 71 <4p

and the Bessel inequality, we get the proof of (3.3.19) fori = 2.
To prove (3.3.19) for i = 4 we use the inequality

Cs < c3p®(Cay + Ca2),

where
Cii= D> D NP Caa= D D bW BN
Fea sl 4502 e j1jsl< 402
and prove that
Cioi =02, Vi=1,2. (3.3.23)

Itis clear thatif 3 € A4 and |j'0| > % p?, then (3.3.22) holds. Therefore, repeating
the proof of (3.3.19) for i = 2, we get the proof of (3.3.23) fori = 1.
Now we prove (3.3.23) for i = 2. It follows from (3.3.7) that

(N, (g —q")®j )]
Cyn = 2 E TN (3.3.24)
B'eAs . 1 § J 'ﬁ
J"l 5|<30P7

Since ag > «, it follows from (3.3.21) that the inequality

Aing —An(@) > cop™

holds for 8 € A4 and |j'8] < p?. Therefore, using (3.2.20), we obtain

1

0 VB €Al (3.3.25)
Z] L AN = A g

Jli <5502

where c19 does not depend on 3. Using this in (3.3.24) and denoting

Uy, (g —g)Pupyp)l = max Wy, (g — )P 5

a
Ji1J'81< 5502
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(if max is gotten for several index n(3’), then we take one of them), we get

Cip <cn D (N, (g — g")Pusy. ).
B'eAy

Now using (3.2.14), (3.2.15) and then (3.3.7), we obtain

Cap <cp P +en D Ib(N,n(@) + j1(8), 5 + BB

B'eAy

1\ s —q° [ 4 i (6. 3+ 7 2
—ep e Y |(Wn, (@ = 4" Pu)+jn (30,5 +613)] (33.26)

S I S e erao P
where
Ib(N, n(8)+ j1(8), B'+ 51BN = max . Ib(N, n(B")+ j1, '+ Bl
(1.B1)€Q(p*.95502)
To estimate Cy4 2 let us prove that
1 a
[AN = M@y +i@).5+m@)| > gp"- (3.3.27)

The inclusion |
i1, € @ 9—pi
(1, B1) € O(p 30" )

and the condition |
'8 < —p3
|70l 30"
imply that

1 4
n(8)6 + j1(B)5] < "

and by (3.2.20)
1
ltn(n+i )] < gP“-

Therefore, by (3.3.21), to prove (3.3.27) it is enough to show that

3
|H? — |3+ 1 + 7% > "> VB € As, B € Ts(pp®). (3.3.28)

Since

1
18 + 71> — H?| < 77
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[see definition of A4 and use (3.3.18)], we need to prove that

7 :
B + 71 =18 + i+ 71| > P, VB € Ay, B € Ts(pp™). (3.3.29)

Using
18— B < p*72

(see definition of A4), by calculations, we get

18+ 71> =18 + B+ 71> = =28 +7,61) — 161
=208+7,81) = A1* =208 =B, 51) = =B+ B + 71> = 1B + 71%) + 0(p?).

This and (3.2.11) imply that (3.3.29) and hence (3.3.27) holds. Now to estimate the
right-hand side of (3.3.26) we prove thatif 3’ € Ay, 3" € Agand 3’ # 3”, then

B+ 618 # B+ BB, (3.3.30)
Assume that they are equal. Then we have 87 = 3’ + b, where b € ['s(2p®), since

Bi1(B) € Ts5(p™), B1(B”) € T5(p™).

It easily follows from the inclusions 3’ € A4 and ' + b € Ay4 that
/ 2 / 2 1 a
6"+ 71" =168 +7+0bI° < 7P
which contradicts (3.3.29). Thus (3.3.30) is proved. Therefore, using (3.3.26),
(3.3.27) and the Bessel inequality, we obtain the proof of (3.3.23) for i = 2. Hence
(3.3.19) is proved for i = 4.

Now we prove (3.3.19) for i = 6. First we note that Ag = {3}. Indeed if 3’ # 3
and 3’ € Ag, then we have 3 = 8 + b, where b € ['s(p®?), and from the relations

0 ¢ Vf(p%) [see (3.2.3) and the definition of S3], | + 7| = H, we obtain that
/ 2 2 11
68+ 71" — H"| > 3P’
which contradicts the inclusion

B +71 € Rs(H+p™™).

Hence

3
Co= D (B+7.B+7IbIN,j' B> =H>D |b(N,j, B =HD Ce.i,

j/GZ j/eZ i=1
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where

Co1=Ib(N,j, DI Cor= D BN, j, B Cos= D bW, B

178124507 1j781< 3 p 2 /4]
To prove (3.3.19) for i = 6 we show that
Cei=O0(p %), Vi=1,2,3. (3.3.31)

By (3.3.15) this equality holds for i = 1. For
1 a
i'5| > —p2
1ol = 30"

the inequality (3.3.20) holds. Therefore, repeating the proof of (3.3.19) fori = 2,
we get the proof of (3.3.31) for i = 2. Arguing as in the proof of (3.3.23) fori = 2,
we obtain the proof of (3.3.31) for i = 3. Thus (3.3.19) is proved for i = 6.

Now we prove that

1
Ci< D D N, BOH - 5pz% (3.3.32)

B'eA; j'eZ

fori = 3,5, 7. Consider the triangle generated by vectors 3+ 7, '+ 7, 5 — 3.
For 3 € A3 we have

1
H+4p% ' < |3 +7|<H+ §p“—1, 16— 5| = p73.

Let 6 be the angle between the vectors 3+ 7, and 5’ + 7. If |#| < T, then using the
cosine theorem, we get

1 1
(G478 + 1) =SB+ 7P+ 18 + 72 =18 = B < H? = 2,
since @ — 2a. > 4. Using this and taking into account that

B+7,8+1)<0

for 7 < |0] < m, we get the proof of (3.3.32) fori = 3.If 3’ € As and |0] < 7,
then

1
HB+T,B +7) < H*— gpz‘*d
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and hence (3.3.32) holds fori = 5. If 3’ € A7, then
168"+ 7| < H — p*a~!

and by (3.3.18) we have

1
WG+ 7,6 +7) < H* — gp“d,

that is, (3.3.32) holds for i = 7 too. Now (3.3.32) and the Bessel inequality imply
that

1 1
C3+Cs+Cy < H* - gpz"‘" =18+7* - gpzo‘d.

This, (3.3.19) and (3.3.2) give the proof of the lemma, since 2 — 2a < 2ay [see
(3.1.1D)]. O

3.4 The Construction of the Spectral Invariants

In this section we determine constructively a family of spectral invariants of this
operator from the given Bloch eigenvalues. For this we use the following lemma.

Lemma 3.4.1 Let b be a visible element of I's and v € (0, %) U (%, 1). Then there
exists p(v) such that if p > p(v), then there exists 3 € S»(p) satisfying (3.2.9), the
relation v ¢ A(B, p), and the inequalities

%W < B +7,b)| <3l G.4.1)
B +7,7) > éw, Vv € 5(8,b)\R, (3.4.2)

B +7,7) > §|p|“+2“, Yy & 58,b), Il < [pl°, (3.4.3)

/F | 5,540 00| om0 (6, X)) dx < cap™ (3.4.4)

fort € Fs,where Sy, A(B, p), fs5,5+r, S(6, b) aredefinedin(3.2.6), (3.2.7), (3.1.12),
(3.1.5).

Proof Let n| be a positive integer satisfying the inequality

|(n1 +v)8]* < 4p"T < |(ny + 1 +v)d|%.
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Introduce the following sets
Dy j(p, v, 4) = {x € Hy - [2(x, b)) + |b'* + 1(j + v)3*| < 4dsp™},

ni
D(p.v.4H= | U Dyjpv.4). (3.4.5)
Jj=—n1=3b'els(p*d)

S)(p. b, v) = (VL (@p\VE (9)\(D(p. v, 4) U Dy (p?) U Dy(p+2))) N D3,
(3.4.6)
where

1 1 .
DipH = | V). D= | Vet
b'els(pd) b'eTs(pp)\bR

3 1
D3 = (R(E’O —ds — 1)\R(§p +ds+ 1).

Now we prove that the set S}(p, b, v) contains an element § € TI's satisfying all
assertions of Lemma 3.4.1. First let us prove that S} (p, b, v) N5 is nonempty subset
of S2(p), that is,

S5(p b, v) NTs C $2(p), Sh(p, b, v) NT5 # 0. (3.4.7)

It follows from the definitions of S (p, b, v) and S2(p) [see (3.2.6)] that the first
relation of (3.4.7) holds. To prove the second relation we consider the set

D'(p) = (V) Gp™\V @0 D\(D(p. v, 6) U D1(2p%) U Da(26°2)) N Dy,

where 3 |
Dy = R(Ep - 1)\R(§p +1).

If 34+ 7 € D'(p), where 3 € T's, 7 € Fs, then 8 € S)(p, b, v). Therefore
{B+4 Fs: B € S5(p,b,v) NTs}
is a cover of D'(p). Hence
1S5(p, b, v) N T5| = (u(F5)) " (D' (p)), (3.4.8)
where |S5(p, b, v) NT'5| is the number of elements of S; (p, b, v) NT's. Thus, to prove
the second relation of (3.4.7), we need to estimate ;.(D’(p)). It is not hard to verify

that (see Remark 2.2.1 of Chap. 2)

1V Bp\V, (20M) N Dy) > cp3p® 2+, (3.4.9)
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Now we estimate
1
1V BpM\V, (2p%) N D1 (2p2) N Dy).
If b’ € (bR)NT'5(p®?), then one can easily verify that
Therefore, we need to estimate the measure of
0 a ) 1
V, Bp") NV (2p2) N Dy
for b’ € Ts(p™4)\bR. For this we turn the coordinate axes so that the direction of
(1,0,0,...,0) coincides with the direction of b’, and the plane generated by b,
b’ coincides with the plane {(x1, x2,0,...,0) : x; € R, x; € R}, thatis, b’ =
(16'],0,0,...,0), b= (by,bs,0,...,0). Then the condition
501 a §on %
implies that
1
x1|b'] = 0(p2), x1b1 + xaby = O(p™), X} + x3 4+ - -+ x3_; = 0(p?). (3.4.10)
First equality of (3.4.10) shows that
1
x1 = 0(p2).
Since b’ and b are linearly independent vectors of I'y, we have
b'[|ba] = p(Fs),
where |b’| < p®. Therefore,
|ba| = p(Fs)p~
and the second equality of (3.4.10) implies that

Xy = 0(pa+(yd)'
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The third equality of (3.4.10) shows that the set
VPB3p) N V32p?) N Dy
is a subset of
[—c1ap?, c1ap?] x [—crap™ 4, e1ap™ 4] x ([—cap, crapl)? ™
which has the measure O (p? 3 +%+a+ad). This with
ITs(p™)] = O (p\~ )
gives
P(VEBp™) N D1(2p7) N Dy) = O(p?=FH3+atdeay — o(pd=24ay - 34.11)

since dayg < % [see the definition of ayy in (3.1.9)]. In the same way, we get

p(VE(3p%) N Da(2p"T2%) N Dy) = O (p? 312040y — (0 =240y (3.4.12)
since a + (d +4)a < 1 [see (3.1.9) and (3.1.11)]. To estimate u(Dy  ;(p, v, 6)) we
turn the coordinate axes so that the direction of (1, 0,0, ..., 0) coincides with the
direction of »’. Then the condition

X € D;,/,j(p, v,6) N Dy
implies that
216/ 4+ 161241 4 06 = 0(p%), x} +x3 + -+ x2_, = 0(p?).
These equalities show that x; belongs to the interval of length O (p“¢) and
p(Dy j(p, v,6) N Dg) = O(p?~2+04),
Now using (3.4.5) and taking into account that
m = 0(p21F90), |Ds(p")] = 0 (p=1),
we obtain
(D(p, v, 4) N Dy = O (p?~ 23+ Dy — (i =2ta),

since a > 1 + (d + )ag [see (3.1.11) and (3.1.9)]. This estimation with (3.4.11),
(3.4.12), and (3.4.9) implies that
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(D' (p)) > cysp?=2Ha,

Thus the second equality of (3.4.7) follows from (3.4.8). Now take any element
B from S)(p, b, v) N T's. It follows from the definitions of the sets S;(p, b, v),
Dy j(p,v,4), A(B, p) [see (3.4.6) and (3.2.7)] that v ¢ A(3, p) and (3.2.9) holds.
Let us prove the inequalities in (3.4.1). By the definition of Sé(p, b, v) we have

B € VI (4p\V (pY).

This means that
P < 12(8,b) + |b?| < 4p”.

This with the obvious relations
bl = 0(), |7 = 0(1)

implies (3.4.1).
Now we prove (3.4.2). If v € S(d, b)\OR , then

y=nb+ad,n#0,n€Z,ack,|(y,b)|=n|b] > b (3.4.13)

since each v € T has a decomposition v = b’ + ad, where b’ € T's, and b is a
visible element of I'; [see 2.3.2 of Chap.2 and the definition of S(J, b) in (3.1.5)].
This with the relation (5 4 7, §) = 0 gives (G + 7, v) = n(8 + 7, b). Therefore the
first inequality of (3.4.1) implies (3.4.2).
Let us prove (3.4.3). If
v & S, b), 1yl < |pl°

then v = b’ + ad, where a € R, b’ € T'5(p®)\bR, and (B + 7,7) = (B + 7, D).
Therefore using
Ib'| = 0(p™), I7| = O(1)

and arguing as in the proof of (3.4.1), we see that the relation

B¢ V()

(see definition of Sé (p, b, v)) implies (3.4.3). The inequality (3.4.4) follows from the
definition of f5 g4+,(x) , (3.4.2), (3.4.3), and from the obvious relation

> hllgyl < cie.

el

The last inequality with (3.4.13) implies the convergence of the series (3.1.5) (]
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Theorem 3.4.1 Suppose g € W5 (F), where s > 6(34(d + 1)) + d, and the band
Sfunctions are known. Then the spectral invariants 1 (v) for j € Z, v € [0, 1) and
(3.1.4), (3.1.7), (3.1.15), (3.1.16), (3.1.19) can be determined constructively.

Proof Let j € Z and v € (0, %) U (%, 1). In Chap.?2 (see Lemma 2.3.7) we proved
that

1 1
€p), 5 =PIV (5 +ep), T —(p)) € W(p),

where W (p) is defined in (3.2.7) and e(p) — 0 as p — oo. Therefore v € W(p)
for p > 1. On the other hand, by Lemma 3.4.1, there exists 3 € S>(p) such that
(3.2.9), the relation v ¢ A(S, p) and (3.4.1)—(3.4.4) holds. Then v € S3(5, p) [see
(3.2.7)]. Thus j, 3, v satisty (3.2.3) and  satisfies (3.2.9), (3.4.1)-(3.4.4) for p > 1.
Replacing p by py = 3¥p fork = 1,2, ..., in the same way, we obtain the sequence
B1, B2, ..., such that

B € S$2(pi), v € S3(Bxk, pr)

and the relations obtained from (3.2.9), (3.4.1)—(3.4.4) by replacing (3, p with G, px
holds. Now take 7 from Fj and consider the band functions Ay (Gx + 7 + vd) for
N =1,2,....Let Ax(v) be the set of all 7 € Fy for which there exists N satisfying
the conditions:

IANBr + 7+ v0) — 1B + 71| < (1) 2, (3.4.14)

AN (Br + 7+ vd) is a simple eigenvalue, (3.4.15)
OAN(Bk + T + vd) _

1B + 71X 5"(% — 1B + 7P| < it (3.4.16)

where h = @’L‘i; By (3.1.10), (3.2.20) and Theorem 3.3.1, A j 3, (v, T) for lj'l <

pkg and for

BeeSap. e | Vi ve SsBh o). T € SaBr J' v, pr)
bel's(ppy)
(3.4.17)
satisfy the conditions (3.4.14)—(3.4.16). Therefore

S4B, j', v, pr) C Ax(v)

for |j'| < ,o,f and hence Ay (v) is not an empty set. Moreover, it follows from (3.4.15)

that Ay (Bx + 7 + vd) and
OAN(Br + T + vd)

Oh
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are measurable functions of 7 and hence Ay (v) is a measurable set. Let
AN, (B +T7+ vd) < AN, (B + 7+ Vi) <--- < AN,,(k)(ﬂk +7+vd) (3.4.18)

be the eigenvalues of L, satisfying (3.4.14)—(3.4.16). Using Theorem 3.3.1 and
Lemma 3.3.2, we see that if (3.4.17) holds for j € S1(py), then there exist (ji, B),

(J25 Br)s - -+ » (nky» Br) such that
N; = N(ji, Br) fori = 1,2, ..., n(k), thatis,

AN, Be+T7+08) = Aj 50,7, Vi=1,2,...,n(k) (3.4.19)

(see Remark 3.2.1). Let p;(v) be i(j)th eigenvalue of the operator 7T, when the
eigenvalues of T, are numbered in the increasing order. (Note that the eigenvalues of
the operator 7, for v € (0, %) U (%, 1) are simple (see [Eas]). Using (3.4.18), (3.4.19)
and (3.1.10), (3.1.11) we obtain that if k is a large number and (3.4.17) holds for all
j' such that y1j < p; , then

Ay G+ 7+ 08) = |k + 72+ 1 (0) + 0o, (3.4.20)

1 —Jla (0%
Ay Gutr+08) = Bty [ 175 gl dx 07 npo),
(3.4.21)

For 7 € A (v) take i (j)th element AN,(_,)(ﬁk 4+ 7 + vd) [see (3.4.18)] of the set of
the eigenvalues satisfying (3.4.14)—(3.4.16) and consider the integral

J(Ay) =

(An,, Bk + 7+ v8) — |B¢ + T1H)dr.
,LL(F(;) A0 Nij ﬁk |5k |

This integral is a sum of J(S}) and J(Ax(v)\S}), where S denotes the intersection

of S4(Bk, j', v, px) for all j" such that y1jy < ;. If 7 € Sy and k is a large number,
then (3.4.20) holds. Thus using (3.4.20) and (3.2.8) for p = pi, we get

(S = i) + 0o ).
On the other hand the inclusion Ay (v) C Fy, (3.2.8), and (3.4.14) imply that
(AL (W\SY) = O (p ™)

and N
J(Ak(W\Sy) = O(p, D).

These equalities yield ’
J(Ak () = pj () + O(p; *).



158 3 Constructive Determination of the Spectral Invariants

Letting k — oo, we find 4 (v) for j € Zand v € (0, 1) U (3, 1). Since 11j(0) and
,uj(%) are the end points of the interval {z;(v) : v € (0, %)}, the invariant u;(v) is
determined constructively for all v € [0, 1). In the Appendix 4, we constructively
determine (3.1.16) from the asymptotic formulas for p; (v).

Now using (3.4.21) and taking into account that the invariant y ; (v) is determined,
we determine the invariant (3.1.4) as follows. Let B(5k, v) be the set of 7 € Fs for
which there exists N satisfying (3.4.15), (3.4.16), and

2a+7 (3.4.22)

IANBE + T+ v0) — 1B+ 71 — )| < py
For 7 € B(f, v) take one of the eigenvalues Ay (B + 7 + vd) satisfying (3.4.15),
(3.4.16), (3.4.22) and consider

(B + 7, b)|?

J (B(Bk, =
B =i

/ (A (B + 7+ v8) — B + 77 — ;).
B(Bk,v)

This integral is a sum of J'(S4) and J'(B(Bk, v)\S4). If 7 € Sy and k is a large
number, then arguing as above and taking into account that 1 (v) is a simple eigen-
value, we see that only the eigenvalue Ay, (Bk + 7 + vd) [see (3.4.21)] satisfies
(3.4.15), (3.4.16), (3.4.22). Hence in J'(S4) instead of Ay (Bx + 7 + vd) we must
take A, (Br 4+ 7 4+ v9). Therefore using (3.4.21), we get

von B+ 7.0 , ) 2a1-a
J(84) = W/&/F | f5.80+7 ()0 ({0, X)) [“dxdT + O (py; In p).
(3.4.23)
Moreover using (3.4.22), (3.4.1), and
(BB, v)\Ss) = O(p; )
[see (3.2.8)], we obtain
J'(B(B, v\S3) = O(py ). (3.4.24)

Substituting the decomposition |6]~2 (v, §)6 + |b|~2(~, b)b of v for v € S(, b),
[7] < |pk|® into the denominator of the fraction in f5 g, +-(x) [for definition of this
function see (3.1.12)] and using (3.4.1), (3.4.3), we obtain

. - Y /
Jm b1 BT B o) = D e = gsp), (34.25)
ve€S(8,b)\6R v

where g5 5 (x) is defined in (3.1.5) and the convergence of the series (3.1.5) is proved
in the proof of Lemma 3.4.1. This with (3.4.23) and (3.4.24) implies that
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Jlim J'(B(fe,v) = /F 145,600 9.0 ((8, 20 dx = T (6, b, jv)  (3.4.26)

[see (3.1.4)]. In (3.4.26) letting j — oo and using (3.1.6), we get the invariant
Jo(9, b) [see (3.1.7)]. Then we find the other invariants

J16,b), J,(6,Db), ...,
of (3.1.7) as follows

Ji = lim (J — Jo)j, Jo = lim ((J — Jo)j* — J1Jj). ...
j—o00 j—o00

In the Appendix 4 using the asymptotic formulas for the eigenfunctions of
T,(Q), we constructively determine the invariants (3.1.15), (3.1.19) from (3.1.7)
and (3.1.16) ([l

Appendices

Appendix 1: The Proof of (3.2.28)

Here we estimate the conjugate C1(j’, Aj 3) of C1(j’, \j 3), namely we prove that

),

Z AU BT+ LB+ PVAG + LB+ B ). B 0(p~272

(1-8€Q (R 9r) A8 = A s

3.5.1)
[see (3.2.26)], where

1
0(p™,9r) = {(j1, B1) : 1161 < 9,0 < |Ai] < p*}, j € S1(p), 1j'0] < r.r = O(p2™2).
The conditions on indices j’, ji, j and (3.2.20) imply that

Mgy = O(rz),p,j = 0(}’2).

These with 3 ¢ Vgl (p"))), where 31 € T's(pp®), [see (3.2.9)] give

1
Mg = Ajinses = =208, B1) + 00, 18, Bi)| > 3,0“~ (3.5.2)
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Using this, (3.2.15) and (3.5.1), we get

- C’
ClNp) =D —————+0(p ), (3.5.3)
£ —2(3. B1)

where

C'=> A B.J + i, B+ BOAG + ji, B+ B, J. B)-

J1

In Chap. 2, we proved that [see (2.3.7), (2.3.21), Lemma 2.3.3]

A B J 4 B+ = > c(ny, Bratny, Br, j', B, j' + j1, B+ B, (3.5.4)
ny:(ny.Ber’ (p%)
A+ 1. B+ B, . B) = > c(na, =Batny, =B1, j' + j1. B+ b1, . B),

ny:(np,—B1)el’ (p%)

I (p®) = {(n1, B1) : B1 € T5\0,ny € Z, B1 + (11 — @)~ (51, )3 € T(p™)},

c(ni, B1) = gy = B + (1 — 2w~ NB1, )8 € T(p®), (3.5.5)
atny, Br,j'. 6. j + 1. B+ B = (ei("‘7(2”)71W“‘;*))g%/,u(ﬂ) (©)s @14 j1wB+6D (),

: —1 / *
alny, =B, j' + ji. B+ B, j. B) = (/2= COTH=BINC, 550 (O 9003 ()
(3.5.6)

—j _ —1,_ *
= (Pt jr w4 Q) TR BTN G5 ()

= (e—i(m—Cm! (—ﬁl,o‘*)ngj’v(ﬁ) (©. @4 j10B+8D ()

where 6™ is the element of € satisfying (§*, §) = 2.
Now, to estimate the right-hand side of (3.5.3) we prove that

>ati. B j B+ jr B+ Batma, =P+ ji B+ B B (BST)
J
=a(n; +n2,0,j,8,j,06)+ 0@ P).

By definition, we have

a(ny +n2,0, j', B, j, B) = ("0 50, )03 ()
: _ —17 * .z _ —1,_ *
= (et @m)~(p1,6 >)C<Pj’,u(ﬂ)(o’ e~ in2—Cm)™ (1,6 >)<80j,v(,6’)(o)~
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This, (3.5.6), and the following formulas

. _ —1yy *
SO TN, ) (3.5.8)
= D ami. BB 7+ i B+ B hw@s) Q) + 07",
| j10]<9r

s _ —1,_ *
i m=2m~H{=p1,6 ”ij,vw)(é)

= Z a(my, =1, j', B, ' + j1. B+ BDCj 41 vg+6) + O™ PY),
1j161<9r

> latny, B, j's B, J + ji, B4 Bl = O(1)

Ji

[see (2.3.16), (2.3.17) of Chap.2) give the proof of (3.5.7). Now from (3.5.7), (3.5.4)
and (3.5.3) we obtain

C'=>"> (e, Bi)cna, —Baln +n2,0, ', B, j. B) + O(p~P*)),

ny np
Ci(Jj, Ajp) Ajp) = Z chl(ﬂl,nl,nz)—i-()(p_h 2,
ny np
where
c(ny, B)c(na, —Br)a(ny +na, 0, j', B, j, B)
Ci(Bi,n1,n) = )
1 ~2(3, B1)
It is clear that
C1(B1,n1,n2) + Ci(—=p1,n2,n1) = 0. (3.5.9)

Therefore
C1(j". Xjp) = O(p~2r?).

Appendix 2: The Proof of (3.2.35)

Arguing as in the proof of (3.2.27), we see that
Co(Aj3) = C2(Nj ) + O(p%)

and by (3.5.4)

c(ny, Br)c(na, B2)c(nz, —B1 — B2) C o
C(\jg) = E E E 61,7, B, (D, B
2(\j8) = 2 dz(n] z m(h - s — A, 3(1))(>\]d_)\1(2) ) a(ny, B, j, B, j(1), B(1))

x a(ny, B2, j(1), B(1), j(2), B(2)a(nz, =B — B2, j(2), B(2), j, B,
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where

(J1, B1) € Q(p™, 9r1), (j2, B2) € Q(p™,90r1), j € S1, B1 + B2 # 0.

Applying (3.5.7) two times and using (3.5.8), we get

> a, Br, j, B, j (1), BUN alna, By, j (1), B, j(2), B2)anz, —B1 — a, j(2), BQ), j, B))

J1 2

= Za(m, b1, 4. B8, j (D), B a(na +n3, —p1, j(1), B, j, B) + O(p~P)
J1
=a(ny +ny+n3,0,j,8,j,8)+ 0@ P).

Using this in the above expression for C2 (), ) and taking into account that

1
Ajs = Aj.om = =208, A1) + 0>, 13, i)l > 3,
1
Xig = Aj@se) = =208, B + Ba) + 0(p™), [(B. B + B2)| > gp“,
which can be proved as (3.5.2), we have

C2(\jg) = O(p~3aT2an)

C(I’l], ﬁl)c(nZ’ ﬁZ)C(I’B, _ﬁl — ﬁz)a(nl +ny +n3, 0, j, ﬁ, j, B)
+ﬂ1,zﬂ2n1§n3 4(57 ﬁl)(ﬁv /81 +ﬁ2> '

Grouping the terms with the equal multiplicands

c(ni, Br)c(na, Po)c(nz, —=B1 — B2), c(na, B2)c(ny, Bi)c(nz, —BG1 — Ba2),
c(ny, B)c(nz, =B1 — fa)c(nz, £2), c(na, fr)c(ns, —B1 — Ba)e(ny, i),
c(n3, —f1 — B2)c(ny, B)c(ng, B2), c(n3, —F1 — B2)c(na, B2)c(ny, Br)

and using the obvious equality

1 1 1

B BB B+ B2) T B BB Bt B | (B BB —Ba)
1 1 1

T B A= B0 T B —Bi= BB =B T B —Bi— BB =B

we see that

C2(\jg) = O(p3t2omy,
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Appendix 3: The Proof of (3.2.34)

By (3.2.27) we have
Ci(Ajp) = Ci(\j.5) + O(p73).

Therefore, we need to prove that

Ci(\jp) = /|f5ﬂ+7(x)| ‘@JU (, x)‘ dx + O (p~3at2ay,

where

— _ A(JﬁJ+J16+ﬁ1)A(J+Jlﬁ+51]B)
CI(A”ﬂ):EJZI Aj.B = Aj+ji,B+6:

(Jj1. B1) € Q(p™,9r1), j € S1,

and by (3.5.4)

Ci(\jp) = Z Z Z Z c(ny, Br)e(na, —F1)

A
B nyi(ng,B1)el’ (p®) na:(na,—B1)eEl (p*) i ]ﬂ JHiB+6
xa(ny, B, j, B, j + j1, B+ Boamz, =51, j+ ji1, B+ 51, j, B).

Replacing A\j 3 — Ajij, g+, by
—QB+7, 00 + 1811 + p1j1ji 0B + B1) — pj (v(B)))

and using (3.5.7) for j = j, we have

—_— c(ny, Br)c(nz, =Ba(n +n2,0, j, 3, j, 5)
CNJ,AW:/}ZZZ —2(B+ 7, B1)
1 1 on2

c(ny, f)c(na, —Bvany, Bi, j, B, j + j1. B+ B1)
+%;% Z 20847, 80)QB+T7,01) + 15117 + pjtrj — 1))

x a(na, =B, j + j1. B+ B, js BUBHE + pjrjy (B + B)) — 11j(w(B))).
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The formula (3.5.9) shows that the first summation of the right-hand side of this
equality is zero. Thus we need to estimate the second sum. For this we use the

following relation

Wj+jy B+ p)any, B, j, B, j+ j1. B+ 61) = (e“""%)%,;u(a)(cx Ty@jtji.vB+6) ()
= (T (@ M=CO T GO 5O @)+ (©)
= (In1 — @B Y PISR + 1y () (@ 1= COT LIN 5 (O @ w0 ()
—2i(ny — @m) By, S NISP (DT NG (O @ s (O)-

Using this, (3.5.7), and the formula

> (el =Cm” HBLINE

30] v(ﬂ)(C))v ¢j+j1,v(ﬁ+ﬁ1)(<))a(n2s _ﬁl’ ] + jlv ﬁ+ﬂ17 j? ﬁ)

= (e MFmIC () 23 ) + 0P
which can be proved as (3.5.7), we obtain

Z“/Hl (B + Bany, Br, j, B, j + j1, B+ Boanz, —B1, j+ j1. B+ 61, j, B)

Ji
(3.5.10)

= (In1 — @M~ NB1, )61 + pj(w)a(ny +n2,0, j, B, j, B)
—2i(n; — @m) (B, FNIOPP (MG (O, 0 ()

Here the last multiplicand can be estimated as follows

1) ()P0 (©)s € MT2C 0 5(0) = (9,08 (O To (€™M0 15 (O))
= (1 4+ 1221819003 (O), €™M0, L5, (0))

+2i(n1 +n2)|812(9;,05) (0 e’("'ﬂzx@/] w3 (@) + 1 (@), e Mo ),

ny+ny
(@0 Ly () 9 () = T(e’("‘“”(wu(ﬁ) () 5.0 ().

Using this, (3.5.10), and (3.5.7), we get

D (ati. B j. B+ 1. B+ Baty, =B j + ji. B+ Bi. j. B)
J

X (5112 + pjtju <v(ﬁ+ﬂl>> — 1 () = a(nl +n2,0, .5, j. B)
x(|ﬂl|2+|n1—[‘ Y152 — [‘ B3y 52y +m)

ﬂ] ) ﬂ] 5*

)(— ))a(nl +n2,0,j, 8, j, B).

= (161> + 161 (n1 —
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Thus -
Ci( Ajp) = C + 0(p~ 2,
where
c(ny, B)c(na, —Bany +n2,0, j, B, j, 6)
€= 35.11
31%@ 4B+, ﬁl>|2 ( )
, 0% | o
X (Brf + (m = (512 Dy = 200 52y,
0 2w

Now we consider

/F|f5,,a+f(x)|2 om0 (8, x))|” dx,

where fs g, is defined in (3.1.12). By (3.5.5)

by.5%
c(n ﬂl)ei(ﬂﬁr(mfwlzf ))5,)6).

Ss.p4r(x) =

B+ (ny — P180ys
Z B+, 01)

(n1,81)€5(p™)

Here f5 54+ (x) is a vector of R4, Using (8, §) = 0 for 3 € I's, we obtain

5 (B1, Bo) + (ny — P15y (ny — B0y 612
B+, 81(B+T,B2)

2
|f5ﬂ+7(x)| =
(n1,081),(n2,62)€l(p)

x c(n1, B)c(—na, — )l (B =Prtm—n2=@m~(B1—=52.69)8.x)

Since ¢;,((d, x)) is a function of (4, x), we have

/ AP0 =8N | (5, )P dx = 0
F

for 31 # (. Therefore

2 2 c(ny, Br)c(—=na, —B1)
B+7 j, v 63 dx =
1o F losncsnPax 2 TG

L 0% L 0%
< (B + oy = Py, 1100

2 . .
— 3 .
2 o )o|7a(ny —n2,0, j, B3, j, B)

Replacing ny by —na, we get

/F |f5,3+‘r(x)|2 ‘9911,1)((5’ x))|2dx =4C

[see (3.5.11)] and (3.2.34).
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Appendix 4: Asymptotic Formulas for T,(Q)

It is well-known that the large eigenvalues of 7o (Q) lie in O(m%) neighborhood of

1 2T )
|m6|+m/0 [Q(1)|°dt

for the large values of m (see [Eas], p. 58). This formula yields the invariant (3.1.16). Using the
asymptotic formulas for solutions of the Sturm-Liouville equation (see [Eas], p. 63), one can easily
obtain that

01(0) () — 0(0) = 030
2i(n +v)|6)? 4(n + v)2|0)*

. 1
Pno(Q) = TV + )+ 0(5),

where

¢
01(0) = /O 0(d.

From this, by direct calculations, we find Ag(¢), A1(¢), A2(C) [see (3.1.6)] and then using these in
(3.1.7), we get the invariant (3.1.15).
Now we consider the eigenfunction ¢, ,,(¢) of T}, (p) in the case v # 0, % and
PO = pr1e + pore™.

The eigenvalues and the eigenfunctions of 7, (0) are (n + v)2|6]2 and ! "TV)C for n € Z. Since the
eigenvalues of 7, (p) are simple for v # 0, % by the well-known perturbation formula

(Pn,0(Q), €Y, 4 (O) = &/ HC (3.5.12)

k1
+z(1)+

k=1,2,.

/(TU(O) P p(x) (T,(0) — N~ e mHC N

where C is a contour containing only the eigenvalue (n + )2|8|2. Using

PUCEEN

Tv 0) — \ —1 ji(n+v)¢ —
(L@ =X "e n+ 0202 — A

5

we see that the kth (k = 1, 2, 3, 4) term F, of the series (3.5.12) has the form

1 i(n+m+v)¢
Ay % Lt ax
2im 1 (021612 = N ((n +m 4 )23 = X)
C m=
P plez(n+m+l+v)C
217r/ Z ((n—i-v)2|(5|2
C m
! dX
X 5
((n+m 40202 =N ((n+m+1+v)2]> = V)
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B L / pmplpkei(nerJrlJrkJrv)C
c

1
2in ) = (021612 = N ((+m+)? [0 = N)

1
X
((n+m+1+0)252 = N((n+m+1+k+ )25 —
. i(n+m+l+k+r+v)¢

-1 DPm PLDkPre

Fy=—

¢ 2m/ 2 (ntm+l+k+r+v262—N
C m,lk,r=1,—1

dX,
A)

1
it m T 0B =N+ m+ 1+ 020 —
|
dr
x (n+m+1+k~+v)?%6]72 =N ((n+v)?[5]> = N)

Since the distance between (1 + v)?|6|? and (n’ + v)2|5|? for n’ % n is greater than c7n, we can
choose the contour C such that

1 c18
— < —,VYAeC,Vn #n
0T =N ?
and the length of C is less than cj9. Therefore

Fs+Fs+---=0n>).

Now we calculate the integrals in Fp, F>, F3, F4 by the Cauchy integral formula and then decompose
the obtained expression in power of % Then

402 +1 1
Fy = (¢ _ —i¢ v O(—
1=e ((pre'“ = p_ie )|5|2( 52 e TOCI)
2
ic i¢ voowv 12v° + 1 1
+ (p1e'> + p_re”’ )|5|2 (—n2 w3 T e +O(—n5))).

Let F» 1 and F> > be the sum of the terms in F; for which m + [ = £2 and m + [ = 0 respectively,
ie.,
F,=F)+ ko,

where
_ —v 1202 +7 1
Fyi =" (((p1)*e” + (p-1)?e ™) W( o2 T s T g TOG3)
. B 1
+ (p2¥C = (p_1)2e 2")W(16 3+ 07,
i(n4v)¢ Ip €20 21 €22

Fry=e PP (G5 4+ 5+ S 0 5»

and ¢, ¢21, 22 are the known constants. Similarly,

F3 = F31 + F3.,
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where F3,1 and F3 5 are the sum of the terms in F3 for whichm +1+k =+3andm +1 + k = +1
respectively. Hence

1
Fip = e/ " ((pje¥t — 7IC)|6|6(48 3+ 067

1
+ (pie 4+ plie¥0) + 0G5,

|6P(16 4

23 24
F3p =" ((pre’s — p_1e™) |pi (—+—+0(—))

+ (P +pae ) Ipi P (—+0( 5»)

Similarly
Fy = Fy4 + Fyp + Fy 3,

where Fy 1, F4 2, Fy 3 are the sum of the terms in Fy for whichm+[+k+r = £4, m+1+k+r = £2,
m + 1 + k + r = 0 respectively. Thus

1
F4, _et(n+v)g’(p4e4l(+p e —41() 0(75))’

|8(384n

|6
Fior = ez(n+v)<(pZeZIC + p e 21() |p1| (7 + 0(7)))
Fyz =00 py* (5 0(—5))).
n n
Since p]ile_"kf is conjugate of pll‘eikc, the real and imaginary parts of Fye~*""+¥) consist of terms
with multiplicands ' ' ' )
PRk 4 e HE g phetS gk ik

respectively. Taking into account this and using the above estimations, we get

(@ €00 P =20 D" Re(Fr) + Re(Fi F2) + Re(F1 F3)) + | Fil* + | B> + 0(n™)
k=1,2,3,4

11 ; _ 1 . »
=1+ ﬁw(me‘( + po1e”C + el + n—3((p1e’< + po1e7 )29

1 . .
+c3olp11?) + nj((me’c + po1e ezt +enlpi? +enlpl?
+ caalpiP(pre’s + p_1e™) + (35 + 36l 11 (pTeH + p2ie7%0)

1
+ 0(*5),
n
where Re(F) denotes the real part of F'. On the other hand
i(n+v)Cy2 1 1 1 2 1 4 1
[(Pn,0(C), € "= (37— + 38— +c3o—)Ipil” +cao—Ipil" + O(=).
n n n n n

These equalities imply (3.1.18). The invariant (3.1.19) is a consequence of (3.1.18), (3.1.16) and
3.1.7) fork =2,4 | ]
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Chapter 4
Periodic Potential from the Spectral
Invariants

Abstract In this chapter, we consider the inverse problem of the three-dimensional
Schridinger operator L(g) with a periodic, relative to a lattice Q of R?, potential
q. Firstly, we construct a set D of trigonometric polynomials such that: (a) D is
dense in W3 (R3/), where s > 3, in the C*-topology, (b) any element g of the
set D can be determined constructively and uniquely, modulo inversion x — —x
and translations x — x + 7 for 7 € R3, from the given spectral invariants that were
determined constructively from the given Bloch eigenvalues. Then a special class
V of the periodic potentials is constructed, which can be easily and constructively
determined from the spectral invariants. This chapter consists of 7 sections. First
section is introduction, where we describe briefly the scheme of this chapter and
discuss the related papers. In the second section using the spectral invariants obtained
in Chap. 3 we find the simplest invariants for the sets D and V. In the third, fourth
and fifth sections we give algorithms for the unique determination of the potential
q € D and g € V respectively from the simplest spectral invariants. In the sixth
section we consider the stability of the algorithm for ¢ € V with respect to the
spectral invariants and Bloch eigenvalues. Finally, in the seventh section we prove
that there are no other periodic potentials in the set of large class of functions whose
Bloch eigenvalues coincide with the Bloch eigenvalues of ¢ € V. Thus, Chap.4
gives some examples and ideas for finding the potential from the spectral invariants
and hence from the Bloch eigenvalues. Besides it gives a theoretical base (a lot of
nonlinear equations with respect to the Fourier coefficients of ¢) to solve numerically
this problem.

4.1 Introduction

We investigate the inverse problem for the three-dimensional Schrédinger operator
L(g) generated in Lr(RY) by the differential expression [(u) = —Au + g(x)u,
where x € R3, with a real periodic, relative to a lattice €2 of R3, potential g (x). Let
w1, wy, w3 be a basis of the lattice 2 and

F={ciwi+cowry+c3ws:ck€[0,1),k=1,2,3}

© Springer International Publishing Switzerland 2015 171
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172 4 Periodic Potential from the Spectral Invariants

be a fundamental domain R?/Q of . Recall that the spectrum of L(q) is the union
of the spectra of the operators L;(g) fort € F* generated in L, (F') by the expression
[(u) and the conditions

u(x +w) =y (x), Yw € Q,

where F* is the fundamental domain of the lattice I', T is the lattice dual to €2, and
(., .) is the inner product in R3. The eigenvalues A1(f) < Ax(t) < --- of L;(q)
are called the Bloch eigenvalues of L(q). These eigenvalues define the functions
A1(t), Aa(2), ... of t that are called the band functions of L(g). The aim of this
chapter is the constructive determination of the potential g of the three-dimensional
Schrodinger operator L(g) from the Bloch eigenvalues.

The inverse problems of the one-dimensional Schrodinger operator, that is, the
Hill operator, denoted by H (g), and the multidimensional Schrodinger operator L(g)
are absolutely different. Inverse spectral theory for the Hill operator has a long history
and there exist many books and papers about it (see, for example, [Le, Mar, PoTr]).
In order to determine the potential g, where ¢ (x + 7) = g(x), of the Hill operator,
in addition to the given band functions Aj(¢), Ax(t), ..., one needs to know the
eigenvalues A1, )z, ... of the Dirichlet boundary value problem and the signs of the
numbers u_(v/A1), u—(x/A2), ..., where u_(\) = c(\, m) — s’(\, m) and c¢(\, x),
s (A, x) are the solutions of the Hill equation

—" () + g(x)y(x) = A y(x)

satisfying ¢(\,0) = s'(A\,0) = 1, ¢/(A\,0) = s(\,0) = 0 (see [Mar], Chap.3,
Sect.4). In other words, the potential ¢ of the Hill operator can not be determined
uniquely from the given band functions, since if the band functions A (¢), Az (), ...
of H(g) are given, then for every choice of the numbers A, Az, ... from the gaps
A1, A, ... of the spectrum of the Hill operator and for every choice of the signs of
the numbers u_ (A1), u_()\z), ..., there exists a potential ¢ having A (1), Aa (1), ...
as the band functions and A, A2, . .. as the Dirichlet eigenvalues. In spite of this, it is
possible to determine uniquely the potential g of the multidimensional Schrodinger
operator L(g) from only the given band functions for a certain class of potential.
Because, in the case d > 1 the band functions give more informations. Namely, the
band functions give the spectral invariants that have no meaning in the case d = 1.
We solve the inverse problem by these spectral invariants. We will discuss this in the
end of the introduction.

The inverse problem for the multidimensional Schrédinger operator L(q) is inves-
tigated for the first time by Eskin et al. in the papers [EsRaTrl, EsRaTr2]. In
[EsRaTr1] the following result was proved:

Assume that the lattice Q of R? is such that, for w, W' € Q, || = |w| implies
W' = tw. If q(x) and q(x) are real analytic, then the equality

Spec(Lo(q)) = Spec(Lo(q)) (4.1.1)
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implies the equalities
Spec(Li(q)) = Spec(L((q)) (4.1.2)

forallt € RY, where Spec(L;(q)) is the spectrum of the operator L,(q) and Lo(q)
is the operator L:(q) whent = (0,0, ...,0).

In [EsRaTr2] the following result was proved for the two-dimensional Schr
odinger operator L(gq):

For Q C R? satisfying the condition: if || = |w| for w,w' € Q, then w' = Fw;
there is a set {M,} of manifolds of potentials such that

(@) {My : a € [0, 1]} is dense in the set of smooth periodic potentials in the
C®°-topology,

(b) for each « there is a dense open set Q. C M, such that for g € Q,, the set
of real analytic § satisfying (4.1.1) and the set of § € C®(F) satisfying (4.1.2) for
all t € R? are finite modulo translations.

Eskin [Es] extended the results of the papers [EsRaTr1, EsRaTr2] to the case of
two-dimensional Schrédinger operator

H=(GV+AXx)>+ V), x € R?

with periodic magnetic potential A(x) = (A1(x), Az(x)) and electric potential V (x).
The proof of the results of those papers is not constructive and does not seem to give
any idea about possibility to construct explicitly a periodic potential.

In this chapter, we give an algorithm for the unique (modulo the inversion and
translations) determination of the potential g of the three-dimensional Schrédinger
operator L(g) from the spectral invariants which were determined constructively in
Chap. 3 from the given Bloch eigenvalues. As a result, we determine constructively
the potential from the given Bloch eigenvalues. The results of this chapter were
published in [Vell, Vel2].

To describe the brief scheme of this chapter, we begin by recalling the invariants
obtained in Chap. 3 which will be used here. An element a of the lattice I' is said to
be a visible element of I' if @ is an element of I" of the minimal norm belonging to
the line aR. Denote by S the set of all visible elements of I'. Clearly,

1
g) =5 > ¢ (),
aes

where

q“(x) = D z(naye™ ),

nez

and z(c) =: (g, ¢'“¥) for ¢ € T is the Fourier coefficient of g. Here (., .) is the
inner product in Ly(F). The function ¢“(x) is known as directional potential of ¢
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corresponding to the visible element a. Let a be a visible element of I, 2, be the
sublattice {w € Q : (w, a) = 0} of  in the hyperplane H, = {x € R : (x, a) = 0}
and

I'y=:{vye H;: (y,w) €217, Yw € Qg}

be the lattice dual to ©2,. Let 3 be a visible element of I';, and P (a, 3) be the plane
containing a, /3, and the origin. Define a function g, g(x) by

Gap®) = .

ce(P(a,p)NIM)\aR

: ﬂcc) 2(c)el e (4.13)

In Chap. 3, we constructively determined the following spectral invariants

/F|q”(x)|2dx, (4.1.4)

/F 90,5007 ¢ (x)dx (4.1.5)

from the asymptotic formulas for the band functions of L(g) obtained in Chap.2.
Moreover, in Chap. 3 we constructively determined the invariant

/ |ga,5(0)* (22 (@)e* @) 4 2% (—a)e 2@ )y dx (4.1.6)
F

when the directional potential ¢ (x) has the form
g% (x) = z(a)e" @Y + z(—a)e @Y 4.1.7)
In this chapter, fixing the inversion and translations:
X = —X &x—>x+T,T€R3, 4.1.8)

we give an algorithm for the unique determination of the potential g of the three-
dimensional Schrodinger operator L(g) from the invariants (4.1.4)—(4.1.6). Note
that the potential ¢ can be uniquely determined only by fixing the inversion and
translations (4.1.8), since L(g(x)), L(g(—x)) and L(g(x + 7)) have the same band
functions and hence the same invariants (4.1.4)—(4.1.6).

First we consider the invariants (4.1.4)—(4.1.6) for the trigonometric polynomials
of the form

gy = > e, (4.1.9)

acQ(N,M,S)
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where N, M, S are integers,
O(N,M,S) ={ny1+my+sy3:|n| <N, |m| <M, |s| < SI\{0},

and {71, 72, 73} is a basis of I satisfying (v;, w;) = 27d; ;. If a = ny| +my2 4573,
then we write (n, m, s) and z(n, m, s) instead of a and z(a) respectively. For brevity
of the notations, instead of Q(N, M, S) we write Q if it is not ambiguous.

To describe the invariants (4.1.4)—(4.1.6) for (4.1.9), let us introduce some nota-
tions. If b € (I' N P(a, 5))\aR, then the plane P(a, 3) coincides with the plane
P(a, b). Moreover every vector b € (P(a, 3) N T')\aR has an orthogonal decom-
position

b =s0B+ pa, (4.1.10)

where s is a nonzero integer, (3 is a visible element of T';, and p is a real number.
Therefore, for every plane P (a, b), where b € T, there exists a plane P (a, 3), where
0 is defined by (4.1.10), which coincides with P (a, b).

Notation 4.1.1 For every pair {a, b}, where a is visible element of T and b € T', we
denote by I1(a, b) and I(a, b) the invariants (4.1.5) and (4.1.6) respectively, where
0 is a visible element of T, defined by (4.1.10).

Definition 4.1.1 A visible vector a € I is said to be long visible (with respect to
Q)ifsa € Q if and only if s = F1.

If a is long visible, then the directional potential g of (4.1.9) has the form (4.1.7).
Therefore the invariant (4.1.4) is

lg®lI* = 2|z(a)? 4.1.11)

and hence the invariant (4.1.4) gives the absolute value of the Fourier coefficient
z(a). Moreover, we prove that there exist a lot of pairs {a, b} such that the invariants
4.1.11), I1(a, b), and I>(a, b) give the following simple invariants

Si(a, b) = Re(z(—a)z(a — b)z(b)), A1(a, b) = cos(—a(a) + ala — b) + a(b)),
(4.1.12)

Sy(a, b) = Re(zz(—a)z(a + b)z(a — b)), Ax(a, b) = cos(—2a(a) + ala + b) + ala — b)),
(4.1.13)

where Re(z) is the real part of the complex number z, z(a) = r(a)e!®@, a(a) €
(—m, 7]. In other words, for these pairs we have the equations

—a(a) + ala — b) + a(b) =d(a, b)e(l, a, b)(mod2), (4.1.14)

—2a(a) + ala 4+ b) + ala — b) =d(a, b)e(2, a, b)(mod2m), (4.1.15)
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where e(i, a, b) =: arccos A;j(a, b) fori = 1,2 are the known numbers belonging
to [0, 7], d(a, b) = *£1, and the equality § = @(mod2m) means that  — ¢ = 2km
for some integer k.

In Sect.4.2, we consider the invariants (4.1.5) and (4.1.6) for the polynomials
(4.1.9) and find alot of pairs {a, b} such that there exist the simple invariants A (a, b),
As(a, b) corresponding to these pairs.

Besides in Sect. 4.2, we consider the invariants (4.1.4)—(4.1.6) when g (x) has the
form

gy =D zae, (4.1.16)

aeQ(l,1,1)

where

o, L) = {nyi+my+sys:|n| <1, |m| <1, |s| < 1}\{(0,0,0)}, z(a) #0
4.1.17)
foralla € Q(1, 1, 1) and {~1, 72, 73} is a basis of I" satisfying

(i) # 0, (v + 95 ) # 0, 1l # 1yl i+ 4+ 9% =5 —w) #0
(4.1.18)
for all different indices i, j, k. Note that every lattice has a basis satisfying (4.1.18)
(see Proposition 4.2.3 in Sect.4.2). Moreover in Proposition 4.2.2 of Sect.4.2, we
prove that every element a of Q(1, 1, 1) is a visible element of I" and hence the
directional potential g“(x) of (4.1.16) has the form (4.1.7). Therefore, we have the
invariants (4.1.4)-(4.1.6) foralla € Q(1, 1, 1).
In Sect.4.3 we give an algorithm for finding the Fourier coefficients z(n, m, s)
when (n,m,s) € B(N, M, S), where

B(N,M,S) ={(n,m,s) € Q(N, M, S) : nms(|n| — N)(Im| — M)(|s| — S) = 0}.
First, we find z(a) when a belongs to the boundary dQ of the parallelepiped
0 =:{x= (i, x2,x3) : il < N, 2| < M, |xa] < S},

that is, we find the Fourier coefficients z(n, m, s) if either n = N, —N, orm =
M,—M,ors =S, —S. For this we use the following two observations.
(1) All boundary points of Q except the points of the set

AN,M,S) ={(£N,0,0), (0,£M,0),(0,0,£S5)} U {(n,m,s) : |n| =|m| = |s| = N}

are long visible, if N, M, § are distinct prime numbers, satisfying N < M < S.
Hence, the absolute value r(a) of z(a) is known by (4.1.11).

(2) If a is a boundary point of Q, then there are a lot of vectors b such that there
exists simple invariant A, (a, b) corresponding to the pair {a, b}.

Thus, we can write a lot of equations of type (4.1.15) with respect to the argument
of the Fourier coefficients. If d (a, b) and the values of two summands in the left-hand
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side of (4.1.15) are known, then one can find the value of the third summand. To
use these equations we need to know the values of the arguments of some Fourier
coefficients. Three of them can be determined by fixing the translation x — x + 7,
that is, by taking one of the functions ¢ (x + 7). Namely, in the Sect.4.3, we prove
that the conditions

ar(N=1,M,S)=a,(NNM—-1,85)=a,(N,M,S—-1)=0, (4.1.19)

2T
N,M,S 0, ——————), 4.1.20
ar( ) el0. ) (4.120)

where ‘
ar(a) = arg(q(x + 1), €',

determine a unique value of 7.

Thus, in Sect. 4.3, using (4.1.19) and a lot of equations of type (4.1.15) we deter-
mine z(a) when a € Q. Then, using this, we find z(n, m, s), when nms = 0.

In Sect. 4.4 we construct a dense in W5 (F), where s > 3, in the C*°-topology set
D of trigonometric polynomials, such that every g € D can be found by the given
algorithm.

In Sect.4.5 fixing the inversion and translations (4.1.8), we give an algorithm
for the unique determination of the potential (4.1.16) of the three-dimensional
Schrodinger operator L(g) from the invariants (4.1.4)—(4.1.6). Moreover, we give the
formulas [see (4.5.12), (4.5.14), (4.5.22), (4.5.23), (4.5.27)—(4.5.29) and (4.5.33)-
(4.5.35)] for finding Fourier coefficients z(a) of the potential (4.1.16), by using the
invariants sy, o, ..., s24 [see (4.5.11)] obtained from (4.1.4)—(4.1.6). These formu-
las explicitly express the Fourier coefficients in term of the invariants sy, 53, . . ., $24.
Then using these formulas we find sufficient conditions [see (4.5.2)] on the invariants
that allows to find the potential of the form (4.1.16) by formulas (4.5.12), (4.5.14),
(4.5.22),(4.5.23), (4.5.27)—(4.5.29) and (4.5.33)—(4.5.35) (see Corollary 4.5.1). Note
that, the sufficient conditions on the spectral data to solve the inverse problem for the
multidimensional Schrodinger operator L(g) is given for the first time in the paper
[Vel2], albeit in a fairly restricted set of potentials g. It is expected that, this approach
may open up new horizons for inverse problem of the multidimensional Schrodinger
operator with a periodic potential. Since the invariants (4.1.5) and (4.1.6) do not exist
in the case d = 1, we do not use the investigations of the inverse problem for the one
dimensional Schrodinger operator H (g). For this reason, we do not discuss a great
number of papers about the inverse problem of the Hill operator.

In Sect.4.6 we study the stability of the algorithm with respect to errors both in
the invariants (4.1.4)—(4.1.6) and in the Bloch eigenvalues. Note that we determine
constructively the potential from the band functions in two steps. At the first step
we determined the invariants from the band functions in Chap. 3. At the second step,
which is given in Sect. 4.5, we find the potential from the invariants. In Sect. 4.6 we
consider the stability of the problems studied in both steps. First, using the asymptotic
formulas obtained in Chap. 3, we write down explicitly the asymptotic expression of
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the invariants (4.1.4)—(4.1.6) in terms of the band functions and consider the stability
of the invariants with respect to the errors in the Bloch eigenvalues (Theorem4.6.1
and Proposition4.6.1). Then we prove the stability of the algorithm given in Sect. 4.5
with respect to the errors in the invariants (Theorem4.6.2).

In Sect. 4.7 we prove some uniqueness theorems. First, we prove a theorem about
Hill operator H (p) when p(x) is a trigonometric polynomial (see Theorem4.7.1).
Then we construct a set W of all periodic functions g (x) whose directional potentials
q“(x) for all a € S\{v1, 72, 13} are arbitrary continuously differentiable functions,
where S is the set of all visible elements of I", {71, 72, 73} is a basis of I" satisfying
(4.1.18), and the directional potentials g7 (x), ¢"2(x), ¢7>(x) satisfy some condi-
tions. At the end we prove that if ¢ has the form (4.1.16), ¢ € W and the band
functions of L(g) and L(g) coincide, then g is equal to ¢ modulo inversion and
translations (4.1.8) (see Theorem4.7.2).

4.2 On the Simple Invariants

First, let us consider the invariants (4.1.5) and (4.1.6) for the trigonometric polyno-
mial (4.1.9).

Definition 4.2.1 A pair {a, b}, where a is a long visible element of Q and b € Q, is
said to be a canonical pair of type 1 if (b, a — b) # 0 and the following implication
holds

{c,a—c}C (P(a,b)N Q)\aR & c € {b,a — b}. “4.2.1)

A pair {a, b}, where a is a long visible element of Q and b € Q, is said to be a
canonical pair of type 2 if (a + b, a — b) # 0 and the following implication holds

{a+c,a—c} C(P(a,b)N Q)\aR & c € {+b}. “4.2.2)
Theorem 4.2.1 [f the potential q has the form (4.1.9) and a is long visible ele-

ment of Q, then the invariants 11 (a, b), I>(a, b), defined in Notation4.1.1, yield the
invariants

Re(z(=a)( D, g(a. ©)z(a — 0)z(0))), 4.2.3)
ceG
Re(z*(—a)( Y. h(a.c)zla — c)z(a + o)), 4.2.4)
ceGy
where ( ) o4 |
¢, c—a c+a,c—a
5 = 5 > ]’l s =
9@ =y "= py

G1 and Gy are the set of all ¢ such that {c,a — c} C (P(a,b) N Q)\aR and
{a+c,a—c} C (P(a,b) N Q)\aR respectively.
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If {a, b} is a canonical pair of type k, where k = 1, 2, then (4.2.3) and (4.2.4)
give the simple invariants S (a, b), Ax(a, b) defined in (4.1.12) and (4.1.13).

Proof 1f the potential g (x) has the form (4.1.9), then (4.1.3) becomes

dap)= > < _ze)el e, 4.2.5)
cepammonar >
Using this and (4.1.7) in (4.1.5), we get
2
Ii(a, b) =/ |ga,s(0)|” ¢*(x)dx = =) + %y, (4.2.6)
F
where I (a, b) is defined in Notation4.1.1,
c,c+a
D I v v G S NN ER)
ce(P(a,h)NQ)\aR ¢ ¢ra,
(c,c—a)
3y = Z mz(c)z(a —c)z(—a).
ce(Pa.bnonaRr ‘P
Since Q(N, M, S) is symmetric with respect to the origin, the substitution ¢’ = —¢

in (4.2.7) does not change ;. Using this substitution in (4.2.7) and then taking into
account that z(—b) = z(b), (a, B) = 0, we obtain

T =35, %1 4+ ) = Re(2X)).

This with (4.2.6) shows that the invariant /| (a, b) gives the invariant (4.2.3).
Replacing a by 2a, in the same way, we obtain the invariant

Re(z*(— a)(z - o (€C220) g4 — o)z (4.2.8)

ceG

from the invariant I,(a, b), where G is the set of all ¢ such that {c,2a — ¢} C
(P(a,b) N Q)\aR, (c,c — 2a) # 0. Thus, in (4.2.8) replacing c by a + ¢ and using
the obvious equality {(a, §) = 0, we get (4.2.4).

Now suppose that {a, b} is a canonical pair of type 1. Then it follows from the
definition of G and from the definition of the canonical pair of type 1 that G| =
{b, a — b}. Therefore (4.2.3) has the form

(b,b—a) (a —b, —b)
z(a — b)z(b) + —ZZ(b)Z(a —b))).

Re(z(—a)(——F—" (b, ﬁ )2 ({a — b, 6))
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The invariant S;(a, b) can be obtained from this invariant, because (b, b —a) =
(a — b, —b) and (a, 8) = 0. The invariant (4.1.11) and S;(a, b) imply A{(a, b). In
the same way we obtain the invariants S»>(a, b) and Aj(a, b) from (4.2.4) O

Now we determine a lot of canonical pairs of the types 1 and 2.

Condition 4.1 Suppose I' = 7> and z(n, m, s) # 0 for (n,m,s) € B(N, M, S),
where N, M, S are prime numbers satisfying S > 2M, M > 2N, N > 1.

Proposition 4.2.1 Suppose the Condition4.1 holds.

(a) The pair {a, b} is a canonical pair of type 2 in each of the following cases:
()a=(N,M—-1,s),b=(0,=£1, p), wheres+p,s—p € [-S, S], |p| < M—1.
2)a=N,m,S—1),b=1(0,gq,xl), wherem +q,m —q € [-M, M].
(3)a=(N,m,s),b=(0,=%1, p), wherem e [-M+1,M—1],s+p,s—p €

[—S, Sl s—2p & [—S, S, (N,m,s) ¢ AN, M, S)and N> +m? —1+s5>—p? # 0.

(b) The pair {a, b} is a canonical pair of type 1 in each of the following cases
MWHa=N,M—-1,5),b=(0,—-1,N),S—N <s <S8,s #kN,wherek € Z.
2)a=(N,M,0),b=(N,0,S)).

(c) If n and m are the relatively prime nonnegative integers and (n,m,0) € Q,
then

QN (P0,-M,S), (n,m,0))) =(Q-1UQoUQ)NQ, (4.2.9)

where P((0, —M, S), (n, m, 0)) is the plane passing through (0, 0, 0), (0, —M, §),
(n,m,0)and Qr = {l{(n,m,0)+ k0, —M,S) :1 € Z}fork=-1,0, 1.

Proof (a) The conditions of Condition4.1 on N, M, S and the conditions of this
proposition on s, p, g, m imply the inequality (¢ + b,a — b) # 0. Now, by the
Definition4.2.1, we need to show that (4.2.2) holds. Let ¢ = (ny, m1, s1) be any
vector satisfying

{a+c,a—c} C (P(a,b)n Q)\aR. (4.2.10)

Since, in all of the above cases, the first coordinate of a is N, the implication (4.2.10)
and the definition of Q(N, M, S) imply that n; = 0 for the all cases (1)—(3). Hence

ce{(x1,x2,x3) € R} : x; =0} =: {x; =0}. (4.2.11)

On the other hand it follows from (4.2.10) that ¢ € P(a, b). Thus c belongs to the
line intersection of the planes P (a, b) and {x; = 0}. Since b also belongs to this line
and b is a visible element of I', we have ¢ = kb for some nonzero integer k. Clearly,
if k is not &1, then either a 4 ¢ or a — ¢ does not belongs to Q(N, M, S), which
means that (4.2.2) holds.

(b) Firstlet us consider the case (1). Itis clear that (b, a—b) = N(s—N)—M # 0,
since N and M are the distinct prime numbers. Therefore, we need to prove that
(4.2.1) holds (see Definition4.2.1). Let ¢ = (n1, m1, s1) be any vector satisfying

{c,a—c} C (P(a,b) N Q)\aR. (4.2.12)
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If the vector c lies on plane P(a, b), then the determinant of the matrix with rows
a, b and c is zero. It gives the equality

N(si +miN) =ni(s + (M — D)N). (4.2.13)

Since N is prime number and s + (M — 1) N is not a multiple of N, we have n| = kN
for k € Z. Then ¢ = (kN,m1, s1). The set Q(N, M, S) contains the vector ¢ only
in the following three cases: k = 0, k = 1, k = —1. In the case k = 0 we have
np = 0. Then from (4.2.13) one sees that s; = —Nm, thatis, c = m(0, 1, —N),
where m # 0. If m; #£ —1, i.e., ¢ # b, then the conditions S — N < s < S of the
proposition imply that a — ¢ ¢ Q. Thus, in the case k = 0, we obtain that ¢ = b. If
k = —1, then one can readily see that c = (=N, m1, s1),a —c ¢ Q. It remains to
consider the case k = 1, that is, n; = N. In this case we use the following obvious
implication:

a€fxy=n}, be{xy=0}= P(a,b) N {x =0} =bR, P(a,b) N {xx =n} =a + bR.
(4.2.14)
Since

c=(N,my,s1) € {x1 =N}, ae{x; =N}, be{x; =0}, c € P(a,b)\aR

[see (4.2.12)], the relation (4.2.14) yields that ¢ € a + bR. Moreover, ¢ = a + kb
for some nonzero integer k, since b is the visible element of I". Using this and taking
into account that a + kb, wherea = (N, M —1,s),b = (0, —1, N), liesin Q if and
only if k = —1, we obtainc = a — b.

Now consider the case (2). First let us prove that in this case the plane P(a, b)
contains only the vectors (N, M, 0), =(N, 0, S), £(0, M, —S) of Q. In fact, every
element (n, m, s) of this plane satisfies the equation

S(nM —mN) =sNM. (4.2.15)

First let us consider the case s = 0, i.e., the case nM = mN. Since N and M are
distinct prime numbers and —N <n < N, —M < m < M, it follows that either
n==N,m = =£M orn =m = 0. Now consider the case s # 0. Then the right-
hand side of (4.2.15) is a multiple of S. Therefore taking into account that S is a
prime number satisfying Condition4.1 and —S < s < S, we have s = +S. This
together with (4.2.15) gives the relation (n = N)M = mN. From this relation one
sees that eithern = FN, m =0orn =0, m = =M. Thus

P(a,b)N Q ={£(N, M, 0), £(N,0,S), (0, M, =9}
Using this and taking into account thata = (N, M, 0), b = (N, 0, S), we get

(P(a,b) N Q)\aR = {&b, £(a — b)}. (4.2.16)
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Now suppose that ¢ is a vector satisfying (4.2.12). If ¢ = —b, then
a—c=a+b¢ (P(a,b)n Q)\aR
due to (4.2.16). Similarly, if c = —(a — b), then
a—c=2a—b¢ (Pa,b)n Q)\aR

again due to (4.2.16). Therefore (4.2.12) and (4.2.16) imply the proof of (4.2.1).
(c) The relation (ny, my, s1) € P((0, —M, S), (n, m, 0)) holds if and only if

S(mny —min) = s1Mn. 4.2.17)

If (mny — min) = 0, then s = 0. If (mn; — mn) # 0, then s; = £, since S
is prime satisfying Condition4.1, and (n, m,0) € Q. Hence, (n1,m, s1) belongs
to either {x3 = 0} or {x3 = S} or {x3 = —S§}. Therefore (4.2.9) follows from
“4.2.14) O

Now let us consider the invariants (4.1.5) and (4.1.6) for the simple trigonometric
polynomial (4.1.16). To describe the invariant (4.1.4) let us prove the following
proposition.

Proposition 4.2.2 Every element a of the set Q(1, 1, 1), defined in (4.1.17), is a
visible element of I" and the corresponding directional potential q° has the form

4.1.7).

Proof Let a be element of Q(1, 1, 1). By the definition of Q(1, 1, 1)
a=nyi+my+sy, [n| <1, |m| <1, [s]| <1, a #0. (4.2.18)

If a is not a visible element of I", then there exists a visible element » of I" such that
a = kb for some integer k > 1. This with (4.2.18) implies that

b= f(ny +my +s73). (4.2.19)

Since b € T" and {71, 72, 13} is a basis of I we have b = n1vy; + m1v2 + 5173,
where n1, m1, s1 are integers. Combining this with (4.2.19) and taking into account
the linearly independence of the vectors 71, 72, 73, we get

n

(m—pm+m—P)n+6—py3=0adn —7g=m—7=s1—7=0.

This is impossible, since |n| < 1, |m| < 1,|s| < 1, at least one of the numbers
n, m,s is not zero [see (4.2.18)], k > 1 and the numbers n1, m1, s; are integers.
This contradiction shows that any element a of Q(1, 1, 1) is a visible element of
I'. Therefore, it follows from the definition of Q(1, 1, 1) [see (4.1.17)] that the line
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aR contains only two elements a and —a of the set Q(1, 1, 1). This means that the
directional potential ¢ has the form (4.1.7) O

By Proposition4.2.2 the invariant (4.1.4) for the potential (4.1.16) has the form
I(@) = |z(@)*, Ya € Q(1, 1, 1), (4.2.20)

that is, we determine the absolute value of z(a) foralla € Q(1,1, 1).
To investigate the invariants (4.1.5) and (4.1.6), we use the conditions in (4.1.18).
Therefore, first, let us consider these conditions.

Proposition 4.2.3 Any lattice I" has a basis {1, V2, 73} satisfying (4.1.18). In par-
ticular, if
I' = {(na, mb, sc) :n,m, s € 7}, (4.2.21)

where a, b, c € R\{0}, then at least one of the bases {(a, 0, 0), (a, b, 0), (a, b, ¢)}
and {(—a, 0, 0), (a, b, 0), (a, b, c)} of T satisfies (4.1.18).

Proof Suppose that a basis {71, 72,13} of I' does not satisfy (4.1.18). Define
{31, 72,73} by

V=7, Y2 =07+, 3=my1+572+73,
where n, m, s are integers. Since vy, = 1, 72 = Y2 — 131, 73 = Y3 —my; — $(Y2 —
n71), the triple {31, 72, 73} is also a basis of I". In (4.1.18) replacing {1, 72, 73} by
{31, 72, 73}, we obtain 12 inequalities with respect to n, m and s. Since n, m and s

are arbitrary integers one can readily see that there exists n, m and s for which these
inequalities hold. For example, let

=7, Yo =nm + 72, 3 =0’y 47, (4.2.22)
where n is a large positive number, that is, 7 >> 1. Then it follows from (4.2.22) that
Fi, 7)) > 1, [ +7,,7;) > 1 Vi # ],
that is, the first and second inequalities in (4.1.18) hold. Besides, by (4.2.22), we

have
AP~ 1 Bl ~n? sl ~at ({5 F;) = o), (42.23)
where a, ~ b, means that there exist positive constants c; and ¢, such that

ctlby| < lan| < c2lbyl (4.2.24)

forn = 1,2, .... The third inequality of (4.1.18) holds due to (4.2.23). By (4.2.23)
the term =+|73|? in the fourth inequality of (4.1.18) can not be cancelled by the other
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terms of this inequality. Thus, we proved that any lattice T" has a basis {71, 72, 73}
satisfying (4.1.18).

Note that, for the given lattice, one can easily find the basis satisfying (4.1.18). For
example, in the case (4.2.21), one can readily see that the basis {(a, 0, 0), (a, b, 0),
(a, b, ¢)} satisfies (4.1.18) if ¢? # 3a? and the basis {(—a, 0, 0), (a, b, 0), (a, b, )}
satisfies (4.1.18) if ¢2 #= a?. Thus at least one of the bases

{(a,0,0), (a,b,0), (@, b,c)}and {(—a, 0,0), (a, b, 0), (a, b, ¢)} satisfies (4.1.18) O

Now to describe the invariants (4.1.5) and (4.1.6) for (4.1.16) let us introduce
some notations. If b € (I' N P(a, B))\aR, then the plane P (a, 3) coincides with
the plane P (a, b). Moreover, every vector b € (P(a, #) N I')\aR has an orthogo-
nal decomposition (4.1.10). Therefore, as we noted in introduction, for every plane
P(a, b), where b € T, there exists a plane P(a, ), where (3 is defined by (4.1.10),
coinciding with P (a, b). For every pair {a, b}, where a is visible element of I" and
b € T', we redenote by I(a, b) and I>(a, b) the invariants I (a, 3) and I(a, )
defined in (4.1.5) and (4.1.6) respectively, where (3 is a visible element of ', defined
by (4.1.10).

Theorem 4.2.2 The following equalities for the invariant (4.1.5) hold:
Lvi + 75, %) = A1 + 7). v Re(z(=vi = 7j)z(vj)z2(7i). (4.2.25)
Ii(vi =y, 7)) = At(yi — v, i) Re(z(=i +v)z(=7)z(71)), (4.2.26)
Li(y, i) = A1(y, vi) Re(z(=)z(y — vi)z(hi)), (4.2.27)
L2y =, %) = A2y — v, vi)Re(z(y = 27)z(vi — Vz(vi),  (4.2.28)

where A1 (v; £, 7)), A1(v, 7)), A1(2v; — 7, i) are nonzero numbers defined by

ArGab) =2 (b, A2+ (@ = b, B)2) la = bb), (4229)

{71, v2, 73} is a basis of T satisfying (4.1.18), v = v1 + 2 + 73 and Re(z) is the
real part of z.
Proof If the potential g (x) has the form (4.1.16), then (4.1.3) becomes

Gap®) = >

ce(P(a,)NQ)\aR

< ife.x) 4.2.30)
7. c)z(c)e , 4.2.

where, for brevity, Q(1, 1, 1) is denoted by Q. Using this and (4.1.7) in (4.1.5) and
taking into account that the invariant /{(a, 3) defined by (4.1.5) is redenoted by
Ii(a, b), we get

Ii(a,b) =2 + X», (4.2.31)
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where

(c,c+a)
¥ = Z ——————7(c)z(—a — ¢)z(a),
ce(P(a,b)nQ)\aR (c, B) {c+a,p)

(c,c —a)
22 = Z mz(c)z(u — C)Z(—a)

ce(P(a,h)NQ)\aR
and [ is a visible element of I';, defined by (4.1.10). Since Q(1, 1, 1) is symmetric
with respect to the origin, the substitution ¢ = —c in ¥ does not change ¥. Using
this substitution in X and then taking into account that z(—b) = z(b), (a, B) =0,
we obtain X1 = X». This with (4.2.31) gives

Ii(a, b) = 2Re | z(—a) D la=co 0], @23

2
ce(P(a,h)NQ)\aR ({e. 8D

Since a, 3, (0, 0, 0) belong to the plane P (a, b) and ( orthogonal to the line aR, we
have
(c,B) #0, Yc € (P(a,b) N O)\aR. (4.2.33)

Now using (4.2.32) we obtain the invariants (4.2.25) and (4.2.26) as follows. First
let us consider (4.2.25). Leta = 7; +yj and b = ;. Then

(P(a,b) N \aR = {£;, £, £ =)}

On the other hand, if ¢ € {—v;, —7;, £(vi —7v;)}, thena — ¢ ¢ Q. Therefore, the
summation in the formula (4.2.32) for the case a = «; + 7, b = ~; is taken over
¢ € {v;, 7,} and hence (4.2.25) holds. It follows from (4.2.33) and from the first
inequality in (4.1.18) that Aj(y; + 7y, i) # 0.
Replacing a = v; by —v; and arguing as in the proof of (4.2.25), we get (4.2.26).
Now let us consider (4.2.27). Leta = v = 71 + 72 + 73 and b = ~;. Then

(P(a,b) M Q)\aR = {£v1, * (2 +73)}.

Ifc = —v1,0orc = —y2 — 73, thena — ¢ ¢ Q. Therefore, the summation in the
formula (4.2.32) for this case is taken over ¢ € {71, 72 + 73} and hence (4.2.27)
holds for i = 1. In the same way, we obtain (4.2.27) for i = 2, 3.

Now let us consider (4.2.28). Leta = 2+y; — v and b = ~;. Then

(P(a,b) N Q)\aR = {£~i, + (v =}

On the other hand, if c = —v;, or ¢ = v — 7;, then a — ¢ ¢ Q. Therefore, the
summation in the formula (4.2.32) for this case is taken over ¢ € {v;,v; — v} and
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hence (4.2.28) holds. Since y; —y = —(v;+7), it follows from the second inequality
in (4.1.18) that A1 (2y; — v, vi) # 0. O

Theorem 4.2.3 The following equalities for the invariant (4.1.6) hold:
Ly 7)) = As(vi. ) Re(Z (=2 (i + 7))z (vi — 7)) (4.2.34)

Ly, y — %) = A0y, v — 1) Re(Z (=) z2(Mz(2% — 7)), (4.2.35)

where Az (i, vj), A2 (i, v — i) are nonzero numbers defined by
Asx(a,b) =2(a—b, a+Db) (b, §)~2 and~, V1, Y2, 3 are defined in Theorem4.2.2.

Proof Replacing a by 2a, and arguing as in the proof of (4.2.32), we get

D(a, b) = 2Re | (~a) > %z(za — 0)z(c)

ce(P(a,b)NQ)\aR
(4.2.36)

In (4.2.36) replacing ¢ by a + ¢ and taking into account that (a, 5) = 0, we obtain
the invariant

I(a, b) =2Re | 22(—a) Z (a+c’—azc>z(a +¢)z(a —¢)
ce(P(a,b)nQ)\aR (e, )
(4.2.37)
Now using this, we obtain the invariants (4.2.34) and (4.2.35) as follows. First let
us consider (4.2.34). Leta =;, b =~;. Then

(P(a,b) N O)\aR = {£v;, £ (i =), (i +7)}

One the other hand, if ¢ = £(y; — ), or ¢ = (7; + 7y;), then at least one of the
vectors a — ¢ and a + ¢ does not belong to Q. Therefore, the summation in (4.2.37)
for this case is taken over ¢ € {£;} and hence (4.2.34) holds. By the third inequality
in (4.1.18) we have Az (v;, v;) # 0.

Now let us consider (4.2.35). Leta = ; and b = v — ;. Then

(P(a,b) N Q)\aR = {£y, £ (v =), £ =2}

Ifc =~ thenc+a=~v+~v ¢ Q. Ifc = —y,thenc—a = —y— ¢ 0.
Ifc=~v—-2vy,thenc—a=~v—-3v ¢ Q. lf c = —(y —27v;), thenc+a =
—v + 37; ¢ Q. Therefore, the summation in the formula (4.2.37) for this case is
taken over ¢ € {£(y — 7;)} and hence (4.2.35) holds. Since v = ~; + v + Y, it
follows from the last inequality in (4.1.18) that A>(vy;, v — i) # 0. [
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4.3 Finding the Fourier Coefficients Corresponding
to the Boundary

First we prove the following simple theorem:

Theorem 4.3.1 There exists a unique value of T € F such that the conditions
(4.1.19), (4.1.20) hold.

Proof Tt follows from (4.1.9) and from the definition of F that
ar(a) ={a, )+ ala), T = ciw; + cowy + c3ws, “4.3.1)
where o (a) is defined in (4.1.20), and
ala) = apla) = arg(q(x), &), ¢ €10, 1), k = 1,2, 3.
Using this one sees that (4.1.19) is equivalent to the following system of equations

2n((N — ey + Mcy + Sc3) = —a(N — 1, M, S)(mod?2m),
2n(Nci + (M — 1)cy + Sc3) = —a(N, M — 1, S)(mod2m),
2n(Ncy + Mcy + (S — De3) = —a(N, M, S — 1)(mod2).

The determinant of the coefficient matrix of this system with respect to the unknowns
1, ¢a, ¢318 87 (N 4+ M + S —1). Therefore this system has a solution. Let ¢y, ¢3, ¢3
and ¢}, ¢, ¢} be different solutions of this system corresponding to the different
values of the right-hand side. Introduce the unknowns x = ¢y —c¢}, y =2 —¢5, 2 =
c3 — cg. It is clear that x, y, z are the solution of the system

(N—Dx+My+ Sz =k,
Nx+ (M — 1)y + Sz =m,
Nx+My+(S—1)z=n.

where k, m, n are integers. The solutions of this system has the form

flk,m,s) gk, m,s) hk,m,s)
Xr=— = =
N+M+S-1 N+M+S§S-1 N+M+S§S-1

where f(k,m,s), gtk,m,s), h(k,m,s) are integers and f(1,1,1) = g(1,1,1) =
h(1, 1, 1) = 1. Therefore the above system of equations with respect to the unknowns
c1,c2,¢3 €[0,1) has N+ M + S — 1 solutions (c11, ¢2,1, ¢3,) satisfying

1

=——j=1,2,3and/=1,2,.... N+ M+ S —2.
N MErS—1 bi an + M +

Cjl+1 —Cjl
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Thus using (4.3.1), the equality (w;,y;) = 2m¢;; and taking into account the
notations

2(ny1 +myy +573) =: z(n, m, 5), z(a) = r(a)e'™?, a(a) € [—m, ), one sees
that there exist 71, 7, ..., TN+ m+5—1 such that

w1 + wy + w3

Kl vy v

27

on  (N,M,S) —any(N,M,S) = NiM+sS—1
This implies that there exists a unique value of 7 satisfying (4.1.19), (4.1.20) O

By Theorem4.3.1, without loss of generality, it can be assumed that
alN—-1,M,S)=a(N,. M —-1,S)=a(N,M,S—1)=0. (4.3.2)
On the other hand, the invariant (4.1.11) determines the modulus of
Z(N—-1,M,8),z(N,M —1,85),z(N,M, S — 1), (4.3.3)

since the vectors (N — 1, M, S), (N, M — 1, S), (N, M, S — 1) are the long visible
elements of Q(N, M, S). Therefore, the Fourier coefficients in (4.3.3) are known.

In this sections, using Theorem4.2.1, Proposition4.2.1 and taking into account
that the Fourier coefficients in (4.3.3) are known, we find all the Fourier coefficients
z(a) fora € B(N, M, S), where B(N, M, S) is defined in the introduction. To
formulate these results we use the following remark.

Remark 4.3.1 Letay, ay, ..., a, be nonzero elements of I'. Assign to every poly-
nomial _
> zaet (4.3.4)
k=1,2,...,n
the vector (x(ap), y(a1), x(az), y(az), ..., x(an), y(a,)) of R2", where x(ar) and

y(ay) are the real and imaginary part of the Fourier coefficient z(ay). There exists one
to one correspondence between the polynomials of the form (4.3.4) and elements of
RR?". Further, we assume the following types of conditions on the Fourier coefficients:

Type 1. Assume that z(a;) # O for some index j. In other words, we eliminate
the finite number of subspaces z(a;) = 0 of dimension 2n — 2.

Type 2. Assume that some linear combinations of the invariants e(i, a, b) defined
in (4.1.14), (4.1.15) are not O(mod).

Type 3. Assume that some homogenous polynomials depending on

x(ay), y(ay), x(a2), y(az), . ... are not zero.

These conditions mean that we eliminate some sets of dimensions less than 2n.
In any case, the 2n dimensional measures of the eliminated sets are zero. We named
these conditions as zero measure conditions. This means that we consider almost all
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polynomials of the form (4.3.4). In order to avoid eclipsing the essence by technical
details, we prefer to formulate the theorems for almost all the potentials of the
form (4.3.4) instead of listing the eliminated sets. Note that the separated potentials
show that, to determine the potential uniquely (modulo translations) from spectral
invariants, it is necessary to eliminate some of these subspaces. Thus, the sufficient
conditions to solve the inverse problem by these method are close to the necessary
conditions.

First let us consider
ZZ(N, M—1,1), z(N,M,l),z(N,M —2,1), VI. 4.3.5)

Theorem 4.3.2 Suppose Condition4.1 holds. Then the spectral invariants (4.1.11)—
(4.1.13) determine constructively and uniquely, modulo inversion and translation
(4.1.8), the numbers in (4.3.5) for almost all the potentials of the form (4.1.9).

Proof Since the vectors (N, M, 1), (N, M —1,1), (N, M —2,1) are long visible, the
absolute values of the numbers in (4.3.5) are known. Therefore we need to find

20(N, M — 1,1), a(N, M, 1), «(N, M —2,1), V. (4.3.6)

To find (4.3.5) for/ = S, S — 1, S — 2 we use the equation (4.1.15) for the following
pairs:
Pr={(N,M,S—1),(0,0,D}, , ={(N,M —1,85),(0,1,0)},
Ps={(NM—-1,S—1),0,1, =D}, P, ={(N,. M —1,5—1),(0,1,0)},
Ps={(N,M—-1,S—1),0,0, 1D}, Ps={(N,M—1,5—-1),(0, 1, 1)},
Pr={(N,M—-2,S—1),(0,0,1)},and Ps = {(N,M — 1,5 —2), (0, 1,0)}.
Note that it follows from Proposition4.2.1(a) that the pairs Pi, P, ..., Pg are
the canonical pairs of type 2. Therefore, by Theorem4.2.1, we have the invariant
Aj(a, b) and hence there corresponds equation of type (4.1.15) to each of the pairs
Py, P5, ..., Pg.Forsimplicity of the notation, in (4.1.15) for P;, instead of e(2, a, b)
and d(a, b) we write ¢; and d; respectively. Denote a(N, M, S) by «. Using this
notation and (4.3.2) one sees that the equality (4.1.15) for the pairs Py, P, ..., Pg
has the form

a+a(N,M,S —2) =djer(mod2m),

a+a(N,M —2,8) =dyer(mod2n),

—2a(N,M -1, S—1)+a(N,M,S—2)+a(N,M —2,85) = dzez(mod2r),

—2a(N,M —1,S—1)+a(N,M —2,S5 — 1) = dgeq(mod2m),

—2a(N,M—-1,S—1)4+a(N,M — 1,5 —2) =dses(mod2r),

—2a(N,M -1, S—1)+a+a(N,M —2,S —2) =dgeg(mod2r),

—2a(NM -2, S—1)+aN.M—-2,5)+a(N,M —2,5 —2) =dyje;(mod2T),

—2a(N,M—-1,S-2)+a(N,M,S —2)+a(N,M — 2,5 —2)) = dgeg(mod?2r).
4.3.7)
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From the first and second equations of (4.3.7) we obtain
a(N, M, S —2) = (diey — a)(mod2m), a(N, M — 2, 8) = (drey — a)(mod?2).
(4.3.8)
These equalities with the third equation of (4.3.7) yield
—2a(N,M — 1,85 — 1) = (dzez — drey — di1e1 + 2a) (mod?2).

Now using the last equality in the fourth, fifth and sixth equations of (4.3.7), we get

a(N,M —2,85 — 1) = (dgeq + drey +diey — dzes — 2a) (mod2T),
a(N,M — 1,8 —2) = (dses + drey +diey — dzes — 2a)(mod27), (4.3.9)
a(N,M —2,8 —2) = (deee + drey + dre1 — dzes — 3a)(mod?2T).

Writing the obtained value for (N, M — 2,5 — 1), a(N, M — 2,5), a(N,
M—-2,§S—-2),a(N,M — 1, S — 2) into seventh and eighth equation of (4.3.7)
we obtain
dre7 — (deeg — 2dses +des — dier) = 0(mod2m), dges +2dses +drer = dgeg +d3e3(r20d217r).
Introduce the notations V = (d;, d3, d4, dg, d7), U = (dg, ds, d>), (310
S1(V) = dye7 — (dees — 2dseq + dzez — dyer), f2(U) = dgeg + 2dses + daes.

In these notations (4.3.10) has the form

f1(V) =0(mod2r), fo(U) = dgec + d3ez(mod?2r). (4.3.11)
Since d; is either 1 or —1, the vector V takes 32 distinct values

Vi, Vo,..., Vigand — V|, Vs, ..., —Vie.
Then the function f1 (V) takes 32 values
[V, fitVa), ..., fiVie) and fi(=V1), fi(=V2), ..., fi(=Vie).

Similarly, the vector U takes 8 distinct values Uy, U, . .., Ug and the function f>(U)
takes 8 values f>(U1), f2(U2), ..., f2(Us). Suppose

Vi) = f1(V)) # 0(mod?2)
for k # j. Then there are only one index k and two values Vi, —V; of V satisfying

f1(Vi) = = fi(=Vi) = 0(mod?2).
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On the other hand, the arguments of the Fourier coefficients of g (x) and g (—x) take
the opposite values. Therefore, for fixing the translation g(x) — g(—x), we take
one of these two remaining values Vi, —Vy of V. Thus, one can find the signs of
di, d3, dy, dg, d7 from the first equality in (4.3.11). Since the signs of d3 and dg are
already known, we find dg, ds, d> from the second equality in (4.3.11) if

deee + dzesz # 0(mod2m) and fo(Uy) — f2(U;) # O(mod?2w).

Thus the numbers d;, da, . . ., dg are known. Since ey, e, . .., eg are known invari-
ants, the numbers in (4.3.6) for/ = §, S — 1, S — 2 can be expressed in terms of a.
Moreover we have the formulas [see (4.3.8), (4.3.9)]

—2a(N,M —1,§ — p) = E1 +2pa,
a(N,M,S —p)=E>—(p— Daq, 4.3.12)
a(NM —-2,S—p)=E3—(p+ Da

for p =0, 1,2, where by E; fori = 1, 2, ... we denote the linear combinations of
e1, e, ... with known coefficients.

Now let us consider (4.3.6) for all /. For this we use the Eq.(4.1.15) for the
canonical pairs Po(s) = {(N, M — 1,5),(0, 1, 1)}, Pio(s) = {(N,. M — 1,5 — 1),
0, 1,0},

Pri(s) = {(N,M — 1,5), (0, 1, —1)} of type 2 (see Proposition4.2.1(a)). The
Eq. (4.1.15) for these pairs are

—2a(N,M —1,s)+a(N,M,s+ 1)+ a(N,M — 2,5 — 1) = dy(s)eg(s)(mod2m),
—2a(N,M -1, s —D4+aN,M,s — 1)+ a(N,M —2,s — 1) =djp(s)e19(s)(mod2m),
—2a(N,M —1,s)+a(N,M,s — 1)+ a(N, M —2,5s + 1) =dy1(s)e11(s)(mod2m),
(4.3.13)

where do(s), d1o(s), d11(s) are either 1 or —1. Using the equations

—2a(N,.M —1,8)+a(N,M,s +2)+a(N,M — 2,5 —2) = dire1n(mod2m),
—2a(N.M —1,5)+a(N,M,s —2)+a(N,M — 2,5 + 2) = di3e13(mod2r)

which are the Eq.(4.1.15) for the pairs {(N, M — 1,5), (0, 1,2)}, {(N, M — 1,5),
(0, 1, —2)}, and arguing as in the determinations of the signs of ds, ds, da, one can
find the signs of dy(s), d19(s), d11(s). Then from the equations (4.3.13), we can find
(4.3.6) for [ = s — 1if (4.3.6) is known for [ = s + 1, s. Moreover as we proved
above they satisfy the formulae (4.3.12) for p = 0, 1, 2. The formulas in (4.3.12) for
all p can easily be obtained from (4.3.13) by induction. In the same way, we obtain
the formulas

a(NNM—p,S)=Es—(p—Da, a(0, M, -S5) =Es—Q2S+N—-1Da. (4.3.14)
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By Proposition4.2.1(b), the pair {(N, M, 0), (N, 0, S)} is a canonical pair of type 1.
Hence, using the invariant A (a, b) [see (4.1.12)] fora = (N, M,0),b = (N, 0, S)
and formulas (4.3.12), (4.3.14), we get the value of

cos(N+ M+ S — 1o+ Eg).
Similarly, using the pair {(N, M, 0), (N, 0, —S)}, we find
cos((N+M+ S —1Da+ E7).

By these two values of the cosine, we find (N + M + S — 1)a under condi-
tion Eg¢ # E7(modm). This with (4.1.20) gives us the unique value of o and we
find the numbers in (4.3.6) under some zero measure conditions in the sense of
Remark 4.3.1 O

To find the Fourier coefficient z(a) for all a € Gé, where Bé is defined in the
introduction, we use the following lemmas

Lemma 4.3.1 Let {ay, b} and {ay, b}, where a; and ay are the long visible elements
of Q(N, M, S), be the canonical pairs of type 1. Then the invariants

Si(ai, b) = Re(z(—ai)z(a1 — b)z(b)), Si(az, b) = Re(z(—az2)z(az — b)z(D)),
(4.3.15)
defined in (4.1.12), uniquely determine z(b) if z(ax — b)and z(ay) for k = 1,2 are
known and
Im(z(a1 — b)z(ar)z(—(az — b))z(—az)) # 0. (4.3.16)

Proof The equations in (4.3.15) is a system of the linear equations with respect to
the unknowns x (b), y(b) and the inequality (4.3.16) shows that the determinant of

the coefficient matrix of this system is not zero. Therefore (4.3.16) has a unique
solution 0

Lemma 4.3.2 Suppose ¢ € Q has two different decompositions
¢ =ay + b1, c=ax+ by, where {ay, by, az, b2} C Qpy,
such that z%(ay) and z(ay — by)for k = 1,2 are known and
Im(z(a1)z(ar — b))z (—(@2)z(—(a2 — b)) # 0. (4.3.17)

If{ay, b1} and{az, ba}, where ay and as are the long visible elements of Q(N, M, S),
are the canonical pairs of type 2, then the invariants

Sa(ax, br) = Re(z*(—ar)z(ax — bp)z(ax + by)),

defined by (4.1.13), where k = 1, 2, uniquely determine z(c).
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The proof is the same with the proof of Lemma4.3.1.

Theorem 4.3.3 Suppose that the Condition4.1 holds. Then the spectral invariants
(4.1.11)—(4.1.13) and (4.2.4) determine constructively and uniquely, modulo inver-
sion and translation (4.1.8), the Fourier coefficients z(a) for all a € 8@ for almost
all the potentials of the form (4.1.9).

Proof Step 1. In this step we find the Fourier coefficient z(N, M — 1, s) for s =
S — 2p. Since z2(N, M — 1, s) is known due to Theorem4.3.2, z(N, M — 1, 5) is
known up to the sign:

Z(N, M —1,5) = ks,

where vy is known and k; is either 1 or —1. Moreover, kg is known [see (4.3.2)]. To
find ks fors = S — 2p, where p = 1,2, ..., S — 1 we use the invariant (4.2.4) for
the pair {a, b}, wherea = (N, M — 1, S — p), b = (0, 0, 1). To write the invariant
(4.2.4) for this pair, we need to determine the set G, defined in Theorem4.2.1, for
this pair. By the definition, G is the set of all ¢ such that

{a+c,a—c} C (P(a,b)N Q)\aR.

Clearly, if this inclusion holds, then ¢ has the form (0, m, s). Hence ¢ belongs to the
line intersection of the planes P(a, b) and {x; = 0}. By (4.2.14) this line is bR. It
means that ¢ = (0, 0, ¢) for some integer ¢g. Thus G is the set of all (0, 0, g) such
that

{(NM—-1,S—p—q),(NNM—-1,S—p+qg)} CO.

This inclusion implies that —p < g < p. Therefore the invariant (4.2.4) for the pair
{(N,M —1,S — p),(0,0, 1)} has the form

(NNM—-1,85—p—q),(NM—-1,5—p+gq)
((NsM_le_P)’ﬁ)

p
Re@(N.M ~1,S=p) D
q==p

hqVg),
(4.3.18)
where V,;, =: vg_,4Vs5-p—g is known number and hy =: ks_p14ks—p—4 is either

lor—1.Let
H=O"_p,h_pi1,...,hp)

and f be afunction taking H to (4.3.18). Assume that f takes distinct nonzero values
at distinct points. Then (4.3.18) determines

hg =ks—pigks—p—q (4.3.19)
if(NNM—-1,S—p—¢q),(N,M —1,5 — p+q)) # 0. Thus (4.3.19) is known.

Taking p = ¢ in (4.3.19), we find ksks_7,. Since kg is known [see (4.3.2)], we find
ks_op if
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A(p) =:((N.M —1,5=2p),(N,.M —1,5)) #0.

Since the equation A(p) = 0 may have only one integer root pg we have defined
ks_2) forall p except p = po. Itis clear that there exists p and g such that pg = p+qg
and (N, M—1,S—p—q),(N,M—1,5—p+gq)) # 0. Therefore, using (4.3.19),
we define kg p,, since ks_,_, is known.

Step 2. To find z(N, M — 1, S — 2p + 1), we use the Lemma4.3.1. Let

a=((N,M—1,5),a0=(N,M—1,5S—2),b=(0,—1, N).

Without loss of generality, it can be assumed that S—2 # kN . Otherwise, we consider
a) = (N,M —1, S —4). By Proposition4.2.1(b) the pairs {a;, b} and {ay, b} are the
canonical pairs of type 1. Therefore applying Lemma4.3.1 and taking into account
that z(ax — b) and z(ay) for k = 1, 2 are known due to Theorem4.3.2 and Step 1, we
find z(b). Now, without loss of generality, we assume that S — 1 # kN. Otherwise
we consider S — 3 instead of S — 1. By Proposition4.2.1(b) the pair {a, b}, where
a=(N,M—-1,5—1)and b = (0, —1, N), is the canonical pair of type 1. Hence
using the invariant (4.1.12) and taking into account that z(b) and z(a — b) are known,
we determine the sign of kg_. From the knowledge of the sign of kg, we have found
the sign of kg_>, by (4.3.18). In the same way, from the knowledge of the sign of
ks—_1, we find the sign of kg_>,_1. Thus, we have found z(N, M — 1, s) for all 5.

Step 3. Now using Lemma4.3.2, we find z(N, m, s) for all m, s by induction.
They were found in Theorem4.3.2 and in steps 1,2 of this theorem form = M, M —
1, M —2.Letus find z(N, m, s) assuming that we have already found the z(N, g, s)
forq =M, M —1,...,m+ 1. Clearly, for any s € [S, —S] there are different pairs
(s1, p1), (52, p2) such that

Sk+Pr = 83 Sky Pho Sk— Pk €[S, —S1; sk—2pr & [=S, S1; N> 4m*—14s7—pi #0

Sk # £N, sy — px # £N for k = 1, 2. Then, by Proposition4.2.1(a) (see case 3),
the pair {ax, by)} fork = 1,2, where ax = (N, m+ 1, sg), by = (0, —1, pr), are the
canonical pairs of type 2. Moreover z(ay), z(ax — by) are known by the assumption of
the induction. Hence the application of Lemma4.3.2 yields z(N, m, s). Interchanging
the roles of the first and second coordinates and then the roles of the first and third
coordinates, we find z(a) forall a € 8@ under some zero measure conditions in the
sense of Remark4.3.1 O

Theorem 4.3.4 Suppose Condition4.1 holds. Then the spectral invariants (4.1.11)—
(4.1.13), (4.2.3) determine constructively and uniquely, modulo inversion and trans-
lation (4.1.8), the Fourier coefficients

z(n,m,0), z(n, 0, 5), z(0, m, s)

for all n, m, s and for almost all the potentials of the form (4.1.9).
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Proof Letus find z(n, m, 0). Since (n, m, 0) # (0, 0,0) and z(—a) = m, without
loss of generality, it can be assumed that m > 0, n > 0. Moreover, for the simplicity
of the notations, it can be assumed that n, m are relatively prime numbers, since we
find z(I(n, m, 0)) for all [. To find z(n, m,0), we use the invariant (4.2.3) for the
pair {ay, (n,m,0)}, where a; = (0, =M, S) + g(n,m,0). To write the invariant
(4.2.3) for this pair we need to investigate the set G, defined in Theorem4.2.1. By
the definition, G is the set of all ¢ such that

{c,ag — c} C (P(agq, (n,m,0)) N O)\a,R.

Using this, the obvious equality P(ay, (n,m,0)) = P((0, =M, S), (n, m, 0)) and
(4.2.9), we obtain that G is the set of all ¢ such that

{e,ag —c} C((Q-1U Qo U Q1) N O)\agR.
If c € Q_1 then
ag—c=(q—Dmn,m0 +(0,-2M,2S5) ¢ 0.

If c € Qo, then ¢ = I(n, m,0) for some /. Let p be the greatest integer satisfying
pn < N, pm < M. Thenl(n,m,0) € Q if and only if —p <[ < p. Moreover

ag—c=(0,-M,S)+(q—Dn,m0) € 0.

Similarly, if ¢ € Qy, ie.,, c = (0,—M,S) + (g — I)(n, m,0) for some /, then
ag— ¢ = l(n, m, 0). Therefore, the invariant (4.2.3) for the pair {a,, (n, m, 0)}, has
the form
Rez(—(aq)) Z cz(ag —1l(m,m,0)z((n, m,0)), (4.3.20)
I

where ¢ = 1,2,..., p and ¢; = g(ay,l(n, m,0)). Similarly, the invariant (4.2.3)
for the pair {by, (n, m, 0)}, where by = (0, M, §) + q(n, m, 0), has the form

Rez(—=(bg)) D diz(by — L(n,m, 0))z(l(n, m, 0)), (4.3.21)
l

where ¢ = —1,-2,..., —p and d; = g(by,[(n, m,0)). Since the Fourier coeffi-
cients
z(aq), z(ag — l(n,m,0)), z(by), z(bg — l(n, m, 0))

are known due to Theorem4.3.3, we have 2 p linear form [see (4.3.20) and (4.3.21)]
with respect to 2 p unknowns

x(n,m,0),x2(n,m,0)),..., x(p(n,m,0))and y(n,m,0), y2(n, m,0)), ..., x(g(n,m,0)).
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Since the invariant (4.2.3) is known number, (4.3.20) and (4.3.21) give 2p linear
equations with respect to these unknowns. One can find these unknowns if the deter-
minant 7 (2p) of the coefficient matrix of the system of these linear equations is not
zero. Let us show that this determinant is not identically zero. Let x (I(n, m, 0)) be the
Ithand y(I/(n, m, 0)) be the (p +)th unknown of the system, where/ =1, 2, ..., p.
Similarly, let the /th equation of the system be given by the /th linear form of (4.3.20)
and the (p + [)th equation of the system be given by the /th linear form of (4.3.21).
Then T (2p) can be written in the form
a1 ai2 ... aip bl,l blyz bl,p
a1 a2 ... axp b2,1 bl,z bz)p
ap.1dp2 ... App bp,l b,,,z bl’vl’
c1,1 €12 ... Cl,p dl,l d1,2 dl,p
2,1 €22 ... C2.p d2’1 dzyz dz,p

Cp1 Cp2 o Cppdp1dpa...dpp
where

aq,1 = x(ag)(cix(ag—1) + c—ix(ag+1)) + y(ag)(cry(ag—i) + c—1y(ag+i)),

bg1 = x(ag)(cry(ag—1) — c—1y(ag+1)) + y(ag)(cix(ag—1) — c—ix(ag+1)),
cqg1 = xb_)dix(b—g—1) +d_1x(b_g) +yb_)(diyb_g1) +dyb_gi1)),
dg1 = x(b—g)(d1y(b—g—1) — d—1y(b—g+41)) + y(b—g)(dix(b—g—1) — d—1x(b—q+1))-

The gth and (p + ¢)th diagonal elements a, 4 and d, 4 of the determinant contain
the summand x (a4 )cyx (aop) and x (b_4)d_, y(bo) respectively. The nondiagonal ele-
ments do not contain these summands. Therefore, the determinant 7 (2p) contains
the summand

Mg=1.2,....p(cqx(aq)x(ao)d—4x(b—q)y(bo))

which can not be cancelled by the other summand of the determinant. Moreover, the
multiplicands ¢, and d_ are not zero since

(q(n, m,0),aq — q(n,m, O)) =—qgmM #0, (q(n, m,0), by —qn,m, 0)) =gmM #0

Therefore the zero set of the determinant 7 (2p) of the coefficient matrix of the
system has zero measure. Thus solving this system we find z(n, m, 0) under some
zero measure conditions in the sense of Remark4.3.1. In the same way we find
z(n,0,s) and z(0, m, s) O
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4.4 Inverse Problem in a Dense Set

In this section, we construct a dense in W5 (F'), where s > 3, in C*-topology set D
of trigonometric polynomials and prove that one can determine constructively and
uniquely (module inversion and translation (4.1.8)) the potential ¢ € D from the
spectral invariants (4.1.4)—(4.1.6). For this we use the following condition:

Condition 4.2 Suppose z(n, m, s) # 0 for (n,m, s) € C(\/N), where
1 1 1
C(WN)={(n,m,s):0<|n| < Eﬁ,o < |m| < Eﬁ,o <s| < Eﬁ}

and z(n,m, s) = 0 for (n,m, s) € (Q(N, M, $)\(C(~'N) U B(N, M, S)).
To find z(n, m, s) for (n, m, s) € C(\/ﬁ) we use the following proposition.

Proposition 4.4.1 [f the Condition4.2 holds, then the invariant (4.2.3) for
a€ B(N,M,S),be C(\/N) yields the invariant

Re(z(—a)(D_ g(a, c)z(a — ©)z(c))). (4.4.1)
ceG
where g(a, c) = %, G is the set of all ¢ such that
{c,a—c} C ((P(a,b)N Q)\aR) N (C(WN)UB(N, M, S)) 4.4.2)

and at least one of the points ¢ and a — ¢ belongs to C (v/N).

Proof By Condition4.2, if {c, a — c} is not a subset of C(v/N)U B(N, M, S) then
z(a —¢)z(c) = 0. Therefore, it follows from the definition of G that the summation
in (4.2.3) is taken over all ¢ satisfying (4.4.2). On the other hand, if both ¢ and
a —cbelong to B(N, M, S), then the summand z(—a)g(a, c)z(a — c)z(c) of (4.2.3)
is known due to Theorems4.3.3 and 4.3.4. Therefore, (4.2.3) implies the invariant
(4.4.1), if Condition4.2 holds O

Theorem 4.4.1 The invariants (4.1.11)—(4.1.13) and (4.4.1) determine construc-
tively and uniquely, modulo inversion and translation (4.1.8), the Fourier coefficients
z(n,m,s), where(n,m,s) € C(\/ﬁ),for almost all the potentials of the form (4.1.9)
satisfying Conditions 4.1 and 4.2.

Proof Tofind z(n, m, s) for (n, m, s) € C(v/N), we use the invariant (4.4.1) for the
paira = (—N +n,0, j), b = (n,m, s), where j is a prime number satisfying

M<j<S—+N. (4.4.3)

Since n # 0 and z(—n, —m, —s) = z(n, m, s), without loss of generality, it can be
assumed that n > 0. To use (4.4.1), we prove that
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G ={b, a — b}, whereb = (n,m,s), a—b=(—N,—m, j—s), “4.4.4)

where G is defined in Proposition4.4.1. Since the inclusion {b, a—b} C G isobvious,
we need to prove that G C {b, a — b}. For this we use the following inequalities

1
0<|n|,|m|,|s|<§ﬁ, IN<M<j<S—+/N (4.4.5)

which follows from (4.4.3), Condition4.1, and the assumption (n, m, s) € C(\/N ).
Thus, to prove (4.4.4) we need to show that any element ¢ = (ny, my, s1) of G is
either b or a — b. First let us prove that nyms; # 0. Indeed, using the definition of
C(+/N) and the inequalities in (4.4.5) one can readily verify that the following three
statements are true.

1.If ny = 0, then (n1,my,s1) ¢ C(WN),a—c = (=N +n,—my, j —s51) ¢
C(W/N).

2.If my = 0, then (n1,m1,s1) ¢ C(WN),a—c= (=N +n—n1,0,j —s1) ¢
C(W/N).

3.If sy = 0, then (ny,my,s1) ¢ C(«/ﬁ), a—c=(—N+n—ny,—my,j) ¢
CW/N).

Therefore the relation (n1,m1,s1) € G and the definition of G (see Proposi-
tion4.4.1) imply that nyms; # 0. Since ¢ € G we have ¢ € P(a, b) N Q. The point
¢ = (n1,my, s1) belongs to the plane P(a, b) if and only if

(n — N)(msy —smy) = j(mn; — nmy). (4.4.6)

This equation holds in the following two cases:
Case 1. (ms; —sm1) = 0. Then (mn; — nm) = 0. These two equalities imply
that the point ¢ = (n1, m1, s1) lies on the line (n, m, s)R. Therefore we have

¢ = (n1,my, s1) = k(ng, mog, s0), (n,m,s) = ko(ng, mo, so), (4.4.7)

where k and ko are the integers and (ng, mo, so) is a visible element of 73 lying in
(n, m, s)R. Moreover, it follows from (4.4.5) and from the above relationnyms; 7# 0
that

1
0 < |nol, Imol, |sol < Ex/ﬁandkko #0 (4.4.8)

Using this let us prove that k(ng, mo, so) € G if and only if k = kq. If k = ko, then
by (4.4.7) we have (n1, m1, s1) = (n, m,s) = b € G. Now we prove that if k # ko,
then ¢ = k(no, mo, so) ¢ G. Suppose at least one of the inequalities

1 1 1
lkno| > Eﬁ, lkmo| > E‘/ﬁ’ lkso| > EW (4.4.9)
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holds. Then using (4.4.8), the definitions of C(+/N) and B(N, M, S), and taking
into account that N, M, and S are the prime numbers, we see that

¢ = k(ng, mo, so0) ¢ C(W'N)UB(N, M, S),

and hence ¢ ¢ G. Now suppose that all the inequalities in (4.4.9) do not hold. Then
using (4.4.5), (4.4.7), (4.4.8) and the assumption k # kg, one can easily verify that

—N+n—kng#0,£N; kmg £ 0, £M; j —kso #0,£S; j —kso > v/N.
These relations and the definitions of C(+/N) and B(N, M, S) imply that
a—c=a—k(ng, mgy,sg) =(—N +n —kng, —kmg, j — ksg) ¢ C(/'N) U B(N, M, S),
which means that ¢ ¢ G (see the definition of G in the Proposition4.4.1). Hence, it
is proved that if k # ko, then (n1, m1, s1) ¢ G. Thus, in Case 1, the inclusion c € G
implies the equality ¢ = b.

Case 2. (ms; — sm1) # 0. Then it follows from (4.4.6) that

(msy —smy) = pj, (4.4.10)

where p is a nonzero integer, since j is a prime number satisfying j > N — n [see
(4.4.5)]. The formulas (4.4.10) and (4.4.6) imply that

(n—N)p =mn| —nmj. 4.4.11)
Using (4.4.10) and (4.4.5) one can readily verify that at least one of the inequalities
Imi| > VN, |si| > VN (4.4.12)
holds. If the first inequality of (4.4.12) holds, then
c=mi.mis1) ¢ CWN), a=c=(=N+n-n,—mi,j—s1) ¢ CHN)
and hence ¢ ¢ G.
Now assume that |s1| > VN and Imy| < V/N.Thenc = (ny,my,s1) ¢ C(\/N).
Therefore the relation ¢ € G and the definition of G give
a—c=(—-N+n—ny,—my,j—s1) € C(x/ﬁ).
Using this, the definition of C (+/N), and (4.4.5), we obtain

| =N —ni| <~N,0 < |mi| <+/N, |j—si1| <~N. (4.4.13)
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Since ¢ € G, we have ¢ € C(+/N) U B(N, M, S). On the other hand ¢ ¢ C(+/N).
Hencec = (n1,mq, s1) € B(N, M, S), thatis, atleast one of the following inclusions
hold

ny €{0,N,—N},m €{0,M,—-M}, s €{0,S, —S}.

This with (4.4.13) and (4.4.3) implies that n; = —N. Using this in (4.4.11), we get
N(p—m)=n(p+mp). (4.4.14)

We assumed that |m | < +/N. Besides, by (4.4.5) we have [m| < VN, In| < +/N.
From these inequalities and (4.4.14) one can easily conclude that |p + m| < N.
Thus N is a prime number and is greater than |n| and |p + m1|. Therefore from
(4.4.14) we obtain that p +m =0, p —m = 0, and hence p = m = —m. Using
this in (4.4.10), we obtain

(msy+sm)=mj, sy =j—s, c=my,my,s1)=-N,—m,j—s)=a—b.

Thus, we proved that any element ¢ of the set G is either b (see Case 1) or a — b.
Hence G C {b, a — b} and (4.4.4) is proved.
Now it follows from (4.4.4) that the invariant (4.4.1) has the form

2Rez(—a)g(a, b)z(a — b)z(b)). (4.4.15)

Clearly, there exist two numbers j; and j, such that they satisfy the conditions of j
and

(=N +n,0, 1), (n,m,s)) #0, (=N +n,0, j1), (n,m,s5)) # 0,

which implies that the multiplicand g(a, b) in (4.4.15) fora = (—N + n, 0, j;),
where i = 1, 2, is not zero. Hence (4.4.15) gives the invariants

Re(Z(—(—N + n, Ov ji))z(_Ns —m, ji - S)Z(”l, m, S))), (4416)

where z(—(—N + n,0, j;)) and z(—N,—m, j; — s) for i = 1,2 are known
(see Theorems4.3.3 and 4.3.4). By Lemma4.3.1 the invariants (4.4.16) give the
Fourier coefficient z(n, m, s) under some zero measure conditions in the sense of
Remark4.3.1 (I

Thus, we considered the set of the polynomials of the form

p(x) = > z(a)e' ') (4.4.17)

a€B(N,M,S)UC(/'N)

(see Conditions 4.1, 4.2 and the Theorems 4.3.3,4.3.4 and 4.4.1), where B(N, M, S)
and C(v/N) are defined in the introduction and in Condition4.2 respectively and
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z(a) # 0. By E(N, M, S) denote the subspace of L>(F) generated by functions
¢'\@X) for a € (B(N, M, S) U C(/N)). Let D(N, M, S) be the set of all poly-
nomial of the form (4.4.17) satisfying the zero measure conditions, in the sense
of Remark4.3.1, used in the proof of the Theorems4.3.2, 4.3.3, 4.3.4 and 4.4.1.
Due to Remark4.3.1, the set D(N, M, S) is obtained from E(N, M, S) by elimi-
nating the sets whose n dimensional measure is zero, where n is the number of the
elements of B(N, M, S) U C (\/ﬁ ). Therefore, for every positive € and for each
fv € E(N, M, S) the ball

{he E(N,M,S) :suplh(x) — fn(x)| < ¢}
contains an element py of D(N, M, S), that is,

sup [pn(x) — fn(x)] <e. (4.4.18)

xeF

Now consider a triple sequence {(Nk, M, Sx)} such that for all k the triple
(Ng, My, Sy) satisfies the conditions which are satisfied for (N, M, §) (see Con-
dition4.1) and Ny — oo as k — oo. Thus Ny, My, Sy are the prime numbers
satisfying

My > 2Ng, S > 2Mi, N1 > 1, klim N = o0 (4.4.19)
— 00

Denote by D(Ng, My, Si) the set obtained from D(N, M, S) by substitution
(N, My, Sy) for (N, M, S). Let

D = U, D(Ni, My, ). (4.4.20)

Theorem 4.4.2 (a) The set D is dense in W5 (F), where s > 3, in C*®-topology.
(b) The invariants (4.1.4)—(4.1.6) determine constructively and uniquely, modulo
inversion and translations (4.1.8), the potentials q of the set D.

Proof (a) Note that f € W5 (F) means that
F) =D (f NG N (f NP+ afF) <00, (4421)
aell ael’
Without loss of generality, it can be assumed that (f, 1) = 0. If s > 3, then

sup| > (fe @l @< S () = 0((VN)TE),
xeF aER(\/ﬁ) aeR(ﬁ)
(4.4.22)
where R(v/N) = {a € T : |a| > ~/N}.Itfollows from the definitions of B(N, M, S)
and C(v/N) that

I'\(B(N, M, S) UC(/N)U{(0,0,0)}) C R(~N), (4.4.23)
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By (4.4.22) and (4.4.23) f(x) has an orthogonal decomposition f(x) = fx(x) +
ry(x), where

fn(x) = >, (f, €N @D sup |y (0)] = O(VN)"67),
ae(B(N,M,S)UC(VN) xek
(4.4.24)
fv € E(N, M, S). Therefore for any € > 0 there exists N such that
sup | f(x) — fn(x)| <e. (4.4.25)

From (4.4.18) and (4.4.25) we obtain that for any f € W3 (F) and for any ¢ > 0
there exists N and py(x) € D(N, M, S) such that

sup | f(x) — pn(X)] < 2¢

xeF

which means that D is dense in W3 (F') in C*°-topology.
(b) Let g be an element of D. Since the vector (N, 1, 0) is a visible element of
73 for each N, the invariants

g M)

fork =1,2,...[see (4.1.4)] are given. By the definition of D, the number
k=: {maxs : [lg™ "0 # 0)

is finite. Therefore ¢ belongs to the set D (Ny, My, Sx). The statement of Theorem
4.4.2(b) for this set follows from the definition of D(N, M, S) and from the Theo-
rems4.3.3,4.3.4, and 4.4.1 |

4.5 Finding the Simple Potential from the Invariants

In this section, we give an algorithm and formulas for finding the all Fourier coef-
ficients z(a) of the potential (4.1.16) from the invariants (4.2.25)—(4.2.28), (4.2.34)
and (4.2.35). First, let us introduce some notations. The number of elements of the
set

{nyi +my2+sy3iinl <1, Iml < 1, |s| < 1}

is 27, since the numbers n,m,s take 3 values —1,0, 1 independently. The
set O(1,1,1) [see (4.1.17)] is obtained from this set by eliminating the element
(0,0,0), and hence consist of 26 elements. Moreover, if v € Q(1,1, 1), then
—v € Q(,1,1) and v # —~. Hence the elements of Q(1, 1, 1) can be denoted by
Y1, Y2, - --» Y13 and —y1, =2, ..., —713. Let us denote the elements 1, 72, ... 713
as following: 71, 2, 3 be a basis of I' satisfying (4.1.18) and
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YAa=7+7 =71+ Y6=71+72, v7=71+72+73,
Y8 =1 — V2, V9 =71 — 73, Y10 = 7V2 — V3
Y=+, 2= +1B—72. MB=11+7"—7 (4.5.1)

Introduce the notations .
2(vj) = aj +ibj =rje, (4.5.2)

where a; € R, b; € R, rj = |z(7)] € (0,00), and a; = a(y;) = arg(z(v;)) €
[0, 27) for

i =1,2,...,13.Since the modulus r; of the Fourier coefficients z(v;) are known
due to (4.2.20), we need to know the values of the arguments «; of z(v;). For this
we use the following conditions on the arguments aq, ao, ..., a7:

a7 —a) —ap — a3 # Tk, a7 — Q3 — g F Tk, 3 — a3+ am — aj # Tk,
T T T
a4—a2—0z37é§k, (xs—al—a37é§k, (16—(11—0627&5](,

ag +as —ayp —ap — 203 # 1wk, as+ o — ) —az — 20 # Tk,
as + g — ap — a3 — 2a # Tk, 4.5.3)

where s = 1,2, 3; k € Z and m, j are integers satisfying 1 < m < j < 3. In this
section, we give an algorithm for the unique (modulo (4.1.8)) determination of the
potentials ¢ of the form (4.1.16) satisfying (4.5.3) from the invariants (4.1.4)—(4.1.6).
In the following remark we consider geometrically the set of all potentials of the form
(4.1.16) satisfying (4.5.3).

Remark 4.5.1 Since z(y) = z(—), there exists one to one correspondence between
the trigonometric polynomials of the form (4.1.16) and the vectors (r1, a1, 12, o, . . .,
r13, a13) of the subset

S =:(0,00)® @10, 2m)"

of the space R?%. We use conditions (4.5.3) as restrictions on the potential (4.1.16)
and hence on the set S. Denote by S’ the subset of S corresponding to the set of the
potential (4.1.16) satisfying conditions (4.5.3). The conditions (4.5.3) means that we
eliminate from the subset

D =:{(a1,ap,...,a7): a1 €[0,27), a1 € [0,27), ap € [0,27),..., a7 € [0,27)}
of R” the following six-dimensional hyperplanes

{a7 —a) —ap — a3z = wk}, {a7 — as43 — as = 7k}, {43 — @3 +am — o = 7k},
T Vs s
fag —ap —az = Ek}’ {as —a; —az = Ek}’ {ag —a) —ap = Ek}’

{as + a5 —ay; —ap —2a3 = 7k}, {as + ag — a] — a3 —2ap = 7k},
{as +ag — ap — a3z —2a1 = 7k}
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of R7 = {(a1, a2, ...,a7)}, where s = 1,2,3; k € Z and m, j are integers
satisfying 1 < m < j < 3. In this notation we have

S=(0,0003®1[0,2m°® D, § = (0,00)® ®[0,2m)° @ D',

where D’ is obtained from D by eliminating the above six-dimensional hyperplanes.
It is clear that the 26 dimensional measure of the set S\S’ is zero. Since the main
result (Theorem4.5.2) of this section is concerned to the potentials corresponding to
the set S’, we investigate the almost all potentials of the form (4.1.16).

Since the operators L(g(x — 7)) for 7 € F have the same Bloch eigenvalues, we
may fix 7, that is, take one of the functions g (x — 7), which determines three of the
arguments.

Theorem 4.5.1 There exists a unique value of T € F such that the following condi-
tions hold
a(r,m) = a1, 72) = a(r,73) =0, (4.5.4)

where {1, v2, y3} is a basis of the lattice T and o(t, v) = arg(q(x — 7), e )y,

Proof Let wy, wa, w3 be a basis of Q2 satisfying
(i, wj) =270, ; (4.5.5)

and F = {cjwi + cowr + c3w3 : ¢, € [0, 1), k = 1,2, 3} be a fundamental domain
RS/ Qof Q.If 7 € F, then we have 7 = cjw] + caw> + c3ws. Therefore, using the
notations of (4.1.16) and (4.5.4) one can readily see that

a(r,y) = arg(g(x — 1), & T 0Ty = a(y) — (v, 7). (4.5.6)

This with (4.5.5) yields a(7, vx) = a(vx) — 27ci which means that (4.5.4) is equiv-
alent to

2mcry = a(yk), where a(vx) € [0, 2m), 2mcx € [0,27) and k = 1, 2, 3. Thus,
there exists a unique value of 7 = cjw; + cowr + c3w3 € F satisfying (4.5.4) U

By Theorem4.5.1 and by (4.1.17), without loss of generality, it can be assumed
that
al=ap=03=0, z(v;) =a; >0, Vi=1,2,3. “4.5.7)

Using (4.5.6) one can easily verify that the expressions in the left-hand sides of the

inequalities in (4.5.3) do not depend on 7. Therefore, using the assumption (4.5.7)
one can readily see that the condition (4.5.3) has the form

a7 # 7k, aj;égk, a7 —aj # 7k, ay £ aj # Tk, 4.5.8)

where k € Z; j =4,5,6;m =4,5,6 and m # j. Using the notation of (4.5.2) and
taking into account that r jry, sin(aj £ oyy) = bjam £byaj, riry # 0 [see (4.1.17)],
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we see that (4.5.8) can be written in the form
b7 750, ajbj ;é 0, b7aj —a7bj 750, bjam :I:bmaj 7& 0, (4.5.9)

where j =4,5,6;m =4,5,6 andm # j.

The equality (g(—x), ¢/{@¥)) = (g(x), ¢!{@x)) shows that the imaginary part of
the Fourier coefficients of ¢ (x) and g (—x) take the opposite values. Therefore, taking
into account the first inequality of (4.5.9), for fixing the inversion ¢ (x) — g(—x),
in the set of potentials of the form (4.1.16) satisfying (4.5.3), we assume that

by > 0. (4.5.10)

Now using (4.5.7), (4.5.9), (4.5.10) and the invariants (4.2.20), (4.2.25)—(4.2.28),
(4.2.34), (4.2.35), we give an algorithm for finding the Fourier coefficients z(a) for
alla € Q. Let us emphasize the main points of the reconstruction algorithm and the
relevant data for this algorithm. By (4.2.20), |z(a)| fora € Q(1, 1, 1) is an invariant.
Since the first multiplicands Aj(a, b) and A3 (a, b) of the right-hand sides of the
invariants (4.2.25)—(4.2.28) and (4.2.34), (4.2.35) are nonzero known numbers (see
the Theorems 4.2.2 and 4.2.3), we can also use the second multiplicands of them as
invariants too. Namely, we use the following 24 invariants, denoted by s1, 52, . . ., $24,
as relevant data:

si =1z, sa = lz(v2 + W), s5 = lz(v1 + W), s6 = lz(y1 + 72,
57 = Re(z(—71 —12)z(71)z2(12)), s8 = Re(z(—71 — 13)2(v1)z2(73)),
59 = Re(z(—72 — v3)2(12)2(73)), s94i = Re(z(—7)z(v — 7i)z(7i))»
s124 = Re(@(y = 2920 = M2(0). s1541 = Re(&>(=31)z(Mz(271 = 7).
519 = Re(Z2(—yD)z(n1 + 712)2(71 — 7)), 520 = Re(Z2(—12)z(v2 + 71)z(72 — Y1),
521 = Re(Z2(—yD)z(n +13)2(1 — 1)), 522 = Re(Z2(—13)2(33 +71)2(33 — 7)),

523 = Re(z%(—12)2(m2 + 713)2(72 — 73)), $24 = Re(Z2(—73)2(13 +12)2(73 — 7)),
(4.5.11)

wherei = 1,2,3, v 1 + 72 + 73, the invariants s; are obtained from (4.2.20),
(4.2.25), (4227) (4228) (4.2.35) and (4.2.34) fork = 1,2,...6,k = 7,8,9,

k=10,11,12,k =13,14,15,k = 16,17, 18 and k = 19, 20, ..., 24 respectively.
The main point of the reconstruction is the following. It follows from the definition
of 51, 52, 3 [see the first row of (4.5.11)] and from (4.5.7) that

z(y)=s; >0, Vi=1,2,3. 4.5.12)
Thus the Fourier coefficients z(71), z(72) and z(73) are expressed in terms of s1, 53

and s3 respectively. In the following theorem, using (4.5.12) and the invariants
sS4, 5, ..., s24, we find formulas (4.5.14), (4.5.22), (4.5.23), (4.5.27)—(4.5.29) and
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(4.5.33)—(4.5.35) that express all the other Fourier coefficients in terms of the invari-
ants s1, §2, ..., 824.

Theorem 4.5.2 The invariants (4.5.11) determine constructively and uniquely, mod-
ulo inversion and translation (4.1.8), all the potentials of the form (4.1.16) satisfying
(4.5.3).

Proof To determine the potential (4.1.16), we find the all Fourier coefficients step
by step by using the invariants (4.5.11).

Step 1. In this step using the invariants sq4, S5, ..., s9 and the relations (4.5.12),
(4.5.9) and (4.5.10), we find

zZ(v1 +72), zn +73), z2(2 +73), z(n + 2 +73). (4.5.13)

The invariants s7, 53, s9 and formula (4.5.12) give the real parts a4, as, ag [see (4.5.2)]
of the Fourier coefficients z(72 + v3), z(71 +73), 2(y1 + 72):
59 58 57

a4 = ——, as = ——, ag = ——. (4.5.14)
5253 5153 5152

Then, using the invariants s4, 55, 56, we find the absolute values of the imaginary
parts of these Fourier coefficients. Thus due to the notations of (4.5.1) and (4.5.2),
we have

z(v2 +73) = as +italbal, z(y1 + 73) = as + its|bs|, z(y1 + 12) = ae + its|bsl,
(4.5.15)
where |b,,| for m = 4,5, 6 are known real numbers and t,, is the sign of b, i.e.,
is either —1 or 1. To determine 4, fs, 5, We use the invariants sgo4; fori = 1,2, 3
[see (4.5.11)]. Using (4.5.12), the invariant 510, which is so; for i = 1, the obvious
relations z(a) = z(—a), and the notations v = 1 +72 +73 = 77, 2(v;) = a; +ib;
[see (4.5.1), (4.5.2)], we obtain the equation

asar + t4|ba|by = SSL]O (4.5.16)

with respect to the unknowns a7 and b7. In the same way, from the invariant s9; for

i = 2,3, we obtain
S11

asay + t5|bs|b7 = o (4.5.17)
S
asar + te|bg|b7 = SLj (4.5.18)

By (4.5.9) t5|bs|as — t4lbalas # 0, te|belas — talbslas # 0, te|bglas — t5|bs|ag # 0.
Therefore finding b7 from the systems of equations generated by pairs {(4.5.16),
(4.5.17)}, {(4.5.16), (4.5.18)}, {(4.5.17), (4.5.18) }, and taking into account (4.5.10),
we get the inequalities
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% L, e L, a
ts|bslas — talbalas ~ 7 telbolas — talbslag ~ 7 tslbslas — ts|bs|ag

(4.5.19)
respectively. Now we prove that the relations (4.5.16)—(4.5.19) determines uniquely
the unknowns a7,b7, t4, ts, ts. Suppose to the contrary that there exists to different
solutions (a7, by, 1, 15, t6) and (a5.,b, t}, 15, t¢) of (4.5.16)-(4.5.19). Clearly, if 2
components of the triple (t;, 75, #;) take the opposite values of the corresponding
components of the triple (#4, f5, f¢) then all the inequalities in (4.5.19) do not hold
simultaneously. Therefore, at least, two component of (7}, 75, z¢) must be the same
with the corresponding two components of (74, 75, ). It can be assumed, without loss
of generality, that tjl = t4 and tg = t5. Then it follows from the system of equation
(4.5.16), (4.5.17) that a5 = az, b, = b7. Since bgb7 # 0 due to (4.5.9) it follows
from (4.5.18) that té = f¢. Thus without loss of generality, we can assume that
by > 0,bs > 0,bg > 0, that is, t4 = t5 = t¢ = 1. Then the Fourier coefficients in
(4.5.13) can be determined from (4.5.16)—(4.5.19). Namely, by [see (4.5.1), (4.5.2)],
we have

510
51

S10

as 5

—as as=12 — ag as

zZ(v2 +73) = as +ibs, z(y1 +73) = as +ibs, z(y1 +V2) = ae + ibg,
(4.5.20)

zZ(1+72+73) =a7+iby, (4.5.21)

where, it follows from the invariants s4, s, s¢ and (4.5.14) that

,/(s25354)2 - s92 / (s15355)2 — sg (s15256)% — s%
b b — >0

= > O, 5 = — > 07 6 =
5253 5153 5152
(4.5.22)
and it follows from (4.5.16), (4.5.17) that
byl — psilo astl — g5io
a7 = ———L =2 L, (4.5.23)
bsa4 — bsas bsasq — bsas
Step 2. In this step using the invariants s9, $29, . . ., S24, and (4.5.9), we find
zZ(v1 —72)s 2(1 —73), 2(v2 — 73)- (4.5.24)

From s19 and the equalities z(—v1) = z(v1) = s1 [see (4.5.12)], z(y1 + 1) =
ae + ibg, z(y1 — 7v2) = ag + ibg [see (4.5.1), (4.5.2)], we obtain an equation

asag — bebg = 51_2519, (4.5.25)

with respect to the unknowns ag and bg, since ag and bg are known due to (4.5.14)
and (4.5.22). From sy¢, in the same way, we get
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asas + bebs = 55, *52. (4.5.26)
Since agbg # 0 due to (4.5.9), from (4.5.25) and (4.5.26), we find ag and by :

-2 -2 -2 -2
§1 7819 + 5, “820 b S, 7820 — Sy "S19
= by = ——7———m.

4.5.27
s 2ag 2bs (4527)
Now instead of the pair {s19, 520} using the pair {s21, s22} we obtain
-2 -2 -2 -2
S, 521+ 8, 7S S> "8§00 — 8, 7S
ag= L 2L T3 P, 03 T2 T2l (4.5.28)
2as 2bs

where z(y] — 73) = a9 + iby [see (4.5.1), (4.5.2)] and then using the pair {523, 24}

we obtain 5 5 5 5

S, 823+ 85, 7S S2 824 — 8, 7S

M’ bio = M’ (4.5.29)
2ay4

app = T

where z (72 — v3) = a0 + ibio.
Step 3. In this step using the invariants s124; and s154; fori = 1,2, 3 we find

z(+73 =7, 21 +73 —72), z(n + 72 — 73)- (4.5.30)

Using s124+; and sjs4; for i = 1 and taking into account that v = 1 4+ 72 + 73,
z(a) = z(—a), z(y2 +v3 — 1) = a1 + iby; [see (4.5.1), (4.5.2)], we obtain the
equations

agary + bsbyy = sy 's13, (4.5.31)
azary + bibiy = sy *s1e. (4.5.32)

with respect to the unknowns a1 and b1y, where a4, by and a;, b7 are defined by
(4.5.14), (4.5.22) and (4.5.23). Since asb7 — bsa7; # 0, due to (4.5.9), from this
system of equations we get

-2 -1 -2 —1
b4s1 516 — b7s1 513 a4s1 516 — Cl7Sl 513
al = » D11 =
a4b7 — b4a7

4.5.33
a4b7 — b4a7 ( )

In the same way, using s124, s15+; for i = 2 and for i = 3, we find the following
formulas for z(y; + 3 —72) = a12 +ibiz and z(y1 + 72 — ¥3) = a3 + ib13 :

-2 -1 -2 -1
bss, “s16 — b1s, s13 ass, “S16 — a7s, S13

= L b = , 4.5.34
42 asb7 — bsaz = asb7 — bsaz ( )
besy 2516 — brsy s agsy2s16 — arsy s
ap3 = D853 S16 = b1sy s13 0, deSy Tsi6 — 475y 13 4.5.35)
agb7 — bgaz aegb7 — beaz
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The theorem is proved O

Formulas (4.5.12), (4.5.14), (4.5.22), (4.5.23), (4.5.27)—(4.5.29) and (4.5.33)—
(4.5.35) shows that the conditions (4.5.9) can be written in term of the spectral

invariants sq, 52, ..., s24. Using the notations p = s15253, p1 = / (525354)2 — sg,
D2 = 4/ (s15355)2 — sé, p3 = 4/ (s15256)% — s72, one can easily verify that

Pisi

$10—iSi
s b= —
p

az4i =
and the relations b7 # 0, byaj — a7b; # 0 for j = 4,5, 6, are equivalent to

2 2 2 2 2 2
5789811 — $558510 7 0, (5759511 — $558510)510—i — (S{S11p1 — $38510p2)pi # 0

fori =1, 2,3 [see (4.5.14) and (4.5.22)]. Therefore (4.5.9), in term of the invariants,
has the form:

2 2
5789511 — 8588510 7 0, sis10-ipi # 0,

(5759511 — $358510)S10—i — (57511 p1 — $3510p2)Pi # 0, S10-kPi £ prsio—i # 0,
(4.5.36)

wherei = 1,2,3; k = 1,2,3 and k # i. Thus from Theorem4.5.2 we obtain the
following

Corollary 4.5.1 Ifthe spectral invariants sy, s2, . . ., s24 of L(q), where q is a poten-
tial of the form (4.1.16), are given and satisfy (4.5.36), then one can determine
the potential q constructively and uniquely, modulo (4.1.8), by formulas (4.5.12),
(4.5.14), (4.5.22), (4.5.23), (4.5.27)—(4.5.29) and (4.5.33)—(4.5.35).

4.6 On the Stability of the Algorithm

We determine constructively the potential from the Bloch eigenvalues in two steps.
In the first step we have determined the invariants from the Bloch eigenvalues in
Chap. 3. In the second step we found the potential from the invariants in Sect. 4.5 of
this chapter. In this section we consider the stability of the problems studied in both
steps.

First, we consider the stability of the invariants (4.1.4)—(4.1.6) with respect to
the errors in the Bloch eigenvalues for the potential of the form (4.1.16). For this
let us recall the formulas of Chap.3 that will be used here. In Chap. 3 the spectral
invariants are expressed by the Bloch eigenvalues of the Schrodinger operator L (g?)
with the directional potential ¢° (x), where § is a visible element of I". The function
q‘i depends on only one variable s = (J, x) and can be written as
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g’ (x) = Q°((5,x)), Q°(s) = D _z(nd)e'™. (4.6.1)

neZ
The Bloch eigenvalues and the Bloch functions of the operator L(g’) are
Xjp@. 1) = 18471+ 1), @500 =TT,
where 3 € T's, 7 € Fs =: Hs/ U5, j € Z, v € [0, 1), pj(v) and ; ,(s) are the

eigenvalues and eigenfunctions of the operator T,(Q°) generated by the boundary
value problem:

—1612"(s) 4+ Q% (s)y(s) = py(s), y2m) = 2™y (0), y'(2m) = €>™y'(0).

In Chap.3, we constructed a set of eigenvalue, denoted by Aj 3(v, 7), of L:(q)
satisfying

1 2 2 _
Aj s, 1) = |5+T|2+Mj(v)+ZA}f5,/i+r| lpjo| dx + O(p T Inp),

(4.6.2)

where 5 ~ p, j = O(p™), aq = 3, a = 4060, o = é’ “3a+20; = 101 and
’y .

o, (x) = Z — L (), (4.6.3)

(B+T7,7)

yye0(1,1,1D\SR

To consider the stability of the invariants (4.1.4)—(4.1.6) with respect to the errors in
the band functions, we use (4.6.2) and the following asymptotic decomposition of

i () and [ip; ()|

. Cl Cl

u,-(v)=|15|2+7+j—2+ +—+0( n+1) (4.6.4)

2 Ai(s) | Ax(s) Ap ( )
)0 (9)] = Aot ==+ =5+ n+1) (4.6.5)

where
1 2w 2

=0=06="—— dr 46.6
aTae=ne l67r|5|3/0 (4.6.6)

(see [Mar] and [Eas]). In Chap. 3, we proved that if q‘s(x) has the form (4.1.7), then

0°%(s)

+ By z(0)*, A3 = B2Q°(s) + B3 1z(9)I?,
4.6.7)

Apg=1, A1 =0, Ay =

A4 = B4Q’(s) + Bs((2(8))e") + (2(=0))%e~ ")) 4 By,

where By, B», ..., Bg are the known constants.
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Theorem 4.6.1 Let q(x) be the potential of the form (4.1.16), satisfying (4.5.3). If
0

the Bloch eigenvalues of order p* of L(q) are given with accuracy O(p_% In p),
then one can determine the spectral invariants (4.1.4)—(4.1.6), constructively and

uniquely, with accuracy O (p_% In p).

Proof First, using the asymptotic formula (4.6.2), we write explicitly the asymptotic
expression of the invariants

1), TG, jov) = /F 105.5 ()00 (6, x))Pdlx 468)

determined constructively in Chap. 3, where v € (0, %) U (%, 1), j€eZ, qgsp(x)is
defined in (4.1.3), 6 € Q(1, 1, 1) and b is a visible element of I's, in terms of the
Bloch eigenvalues with an estimate of the remainder term. Let 5101, s2b2, . .., Sibpy
be projections of the vectors of the set Q(1, 1, 1)\0R onto the plane H;, where
si € Rand b; € I's. If b; € b; R, where i > j, then we do not include b; to the list
of projections, that is, by, b, ..., b, are pairwise linearly independent. Consider
the planes P (4, by) fork = 1,2, ..., m. Itis clear that the set Q(1, 1, 1)\JR is the
union of the pairwise disjoint sets P (6, br) N (Q\IR) fork = 1,2, ..., m. To find
the spectral invariants (4.6.8), we write f5 31, (x) [see (4.6.3)] in the form

m
Fo.per(¥) = D Fspy par(X), (4.6.9)
k=1
where
F by ptr () = > mz(v)e“%“. (4.6.10)

YY€P(3,b0)N(Q\SR)

Clearly, if v € P(6, bx)\0OR and ~" € P(0, b;)\OR for [ # k, then v/ + ~ ¢ IR.
Therefore taking into account that ¢; , ({d, x)) is a function of (4, x), we obtain

[ Fbessir). By ) (8,51 Palx =0, 1 £ k.
F
This with (4.6.9) implies that
2 e 2
[ sl lesal =3 [ B osuf ar. @61
F i— JF
In Chap. 3 we proved that for each by € I'5 there exists Sy + 7 such that

1
|Bo + 7| ~ p, gpa < |{Bo + T, bo)| < 3p°,
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and A j 5, (v, 7) satisfies (4.6.2). Since by € I's, there exist 3 + 7 such that

1

gp“ < Bk + 7, bi)| < 3p° (4.6.12)
and A g,(v, 7) satisfies (4.6.2). From (4.6.12) we see that cos Oy x = o+ =
o(1), where 6;  is the angle between [3; + 7 and by. Therefore cos 0,  ~ 1fors # k

and hence
(Bs +7.b) ~p (4.6.13)

forall s # k. If bg ¢ by RU DR U --- U b, R, then (4.6.13) holds for k = 0 and
s=1,2,....,m

Now substituting the orthogonal decomposition |8 =2 (v, 8)6 + |bx| =2 (7, by)bi of
~ for v € P(6, by) N (Q\OR) into the denominator of the fraction in (4.6.10), and
taking into account that 3 + 7 € Hy, (6 + 7, ) = 0, we obtain

|by |2

(B+ T, b)
where g5 p, (x) is defined in (4.1.3). This with (4.6.8) implies that

Fs b p+r(X) = q5,b (X),

2 |by|* .
| Fs.pp pirl? || dx = —————J (3, by, j, v). (4.6.14)
/F msel sl de = G ’

Substituting (4.6.11) and (4.6.14) in (4.6.2) and then instead of 3 writing [, for
s =0,1,...,m, we get the system of m + 1 equations

" <v>+Z ﬁm bir jo0) = A g, (0, 7)1 + 712+ 0(p~34+ 20 In g,

(4.6.15)
with respect to the unknowns p;(v), J(9, by, j,v), J(0, b2, j,v),..., (0, by,
J,v). By (4.6.12) and (4.6.13) the coefficient matrix of (4.6.15) is (a;,;), where
a1 =1fori =1,2,...,m~+1and

K~ p 2 agr ~p 2 Yk > 1, Vs £ k. (4.6.16)

Expanding the determinant A of the matrix (a; ;), one canreadily see that the highest
order term of this expansion is the product of the diagonal elements of the matrix
(a;, ;) which is of order p~2™¢ and the other terms of this expansions are O (p~>").
Therefore, we have

A ~ pma (4.6.17)
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Now we are going to use the fact that the right-hand side of (4.6.15) is determined
with error O (p~3¢+2%1 In p), if the Bloch eigenvalues of order p? of L(q) are given
with accuracy O(p_3“"’20‘1 Inp). Let A, Ao and Ag 1 be determinant obtained
from A by replacing sth elements of the kth column by

Ajp 0. 7) + 185 + 71+ 07 np), Ajg (v.7) + 10 + 717)
and O (p~3¢+2%1 1n p) respectively. One can easily see that

Al — Ao =Apg = O(p2ma—3at2eny gy,
Ap — Apo = Ap = O(p~2ma—at2at |y p) (4.6.18)

for k > 1. Therefore, solving the system (4.6.15) by the Cramer’s rule and using
(4.6.17), (4.6.18), we find 11 (v) and J (3, by, j, v) with error O(p~34+2%11n p) and
O (p~T21 In p) respectively.

Now using (4.6.4) for j ~ p®1, where n is chosen so that j"*! > o3, and taking
into account that y; (v) is determined with error 0(;)_3“"’2‘“1 In p), we consider the
invariant (4.1.4). In (4.6.4) replacing j by kj, fork = 1, 2, ..., n, we get the system
of n equations

ci 2 Cn 2 1

e L ) ko o(—), 4.6.19

jk+(jk)2+ +(jk)" wjk () + [jkS|” + (jn+l) ( )
with respect to the unknowns ¢y, ¢a, .. ., ¢,. The coefficient matrix of this system is
(ai k), where a; y = L for i,k =1,2,...,n. Therefore, the determinant of (a; )

Gk
1S

11 1
—=g e 1= det(vip),
n! ’

JjJ?
where v; = vf_l, v = :v, that is, (v; &) is the Vandermonde matrix and
1 1
det(vj ;) = -——=).
ow=T1 (5-5)
1<j<i<n

Now solving the system (4.6.19) by the Cramer’s rule and using the arguments used
for the solving of (4.6.15), we find ¢3 with an accuracy 0(;)_3”5“1 In p), since the
elements of the third column is of order p**! and the right-hand side of (4.6.19) is
determined with error 0(;)_3’”'2"‘l In p). Thus formula (4.6.6) gives the invariant
(4.1.4) with error O (p~3¢+3%1 In p).

To consider the invariant (4.1.5) and (4.1.6), we use (4.6.5), where j ~ p® and n
canbe chosen so that j"*! > p?. In(4.6.5)replacing j by kj, fork = 1,2, ..., n+1,
and using it in J (0, by, j, v) [see (4.6.8)], we get the system of n + 1 equations
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Jl((s» bs) -12(5» bs) Jn((sa bs)
ik (jk)? (jkyn

with respect to the unknowns Jo(9, by), J1 (0, by), ..., Ju(d, by), where

Jo(8, by) + = J (@, by, j,v), (4.6.20)

Ji (9, by) :/F|C]6,bx(x)|2Ak((5»x>)dx~

In the above we proved that the right-hand side of (4.6.20) is determined with error
O (p~T21 In p). Therefore, instead of (4.6.19) using (4.6.20) and repeating the argu-
ments used in finding of ¢3, we find Jo (0, by), J1 (0, by), ..., J4(J, bs) with accuracy
O(p_“%‘“1 In p). Then using (4.6.7), we determine the invariants (4.1.5) and (4.1.6)
with the accuracy O (p~*+t%¥1 In p), where a — 6 = % (]

Proposition 4.6.1 Let g(x) be the potential of the form (4.1.16), satisfying (4.5.3).

If the Bloch eigenvalues of order p* of L(q) are given with accuracy €, where 1 >
e > p*%, then one can determine the invariants (4.1.4)—(4.1.6), constructively and

uniquely, with accuracy p% o(e).

Proof Since O(p~3?T2% 1np) = o(e) (see (4.6.2), (4.6.15) can be written in the
form

b
pj(v) + Z ﬁ](& bi, j,v) =Ajg (v, 7) + |5 + 717 + 0(e).

(4.6.21)
Instead of (4.6.15) using (4.6.21), that is, instead of 0(/)_3““‘1l In p) using o(e),
and repeating the arguments that were used in solving of (4.6.15) we find y; (v) and
J (0, by, j, v) witherror o(g) and 0(p*%¢) respectively. In the same way from (4.6.19)
and (4.6.20) (everywhere instead of 0(,()’3“2‘}I In p) using o(¢), and repeating the
arguments that were used in the proof of Theorem 4.6.1) we find the spectral invariants
(4.1.4)~(4.1.6) with accuracy p***4%10(c), where 2a + 4a; = §5 = 183 O

Note that Proposition4.6.1 differs from Theorem4.6.1. In the former one the
error € does not depend on the order p? of the given eigenvalues. We expect that this
simplifies the real applications.

Now using formulas (4.5.12), (4.5.14), (4.5.22), (4.5.23), (4.5.27)—(4.5.29) and
(4.5.33)—(4.5.35) (see the proof of Theorem 4.5.2), we prove that if the spectral invari-
ants s, s2, . . ., 524 [see (4.5.11)] of L(q), where ¢ is a potential of the form (4.1.16),
are given and satisfy (4.5.36), then one can determine the potential ¢ constructively
and uniquely, modulo (4.1.8), with error (M + h)e, where M is explicitly expressed
by s1, 52, ...,84 and h — 0 ase — 0. To determine M we introduce the following
notations. By (4.5.2) the Fourier coefficients of (4.1.16) are z(7y;) = aj+ib;, where,
by formulas (4.5.12), (4.5.14), (4.5.22), (4.5.23), (4.5.27)—(4.5.29) and (4.5.33)—
(4.5.35), aj and b; are explicitly expressed by s1, 52, ..., s24. Indeed, using (4.5.14)
and (4.5.22)in (4.5.23) and (4.5.27)—(4.5.29) we writea; and b; for j =7, 8,9, 10in
termof sy, 52, ..., s24. Thenusing (4.5.14), (4.5.22) and (4.5.23) in (4.5.33)—(4.5.35)
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we write a; and b; for j = 11, 12, 13 in term of 51, 52, ..., s24. Thus a; and b; are
the functions of s1, 52, ..., 524 : aj = aj(sl,sz, ..., 504), bj = bj(S], 82, ..., 504)
for j = 1,2, ..., 13. Introduce the functions

fi® =aj(s1+e,s2+¢e,...,54+¢), gje) =bj(s1+&,520+¢6,...,54+¢)

and define M by

M=2 Z /(df’(o))u(dgf(o))

j=12,..

Theorem 4.6.2 Ifthe spectral invariants (4.5.11) of L(q), where q is a potential of
the form (4.1.16), are given with error € and satisfy (4.5.36), then the potential q can
be determined constructively and uniquely, modulo (4.1.8), with error (M + h)c in
the C*° metric, where ¢ < 1l and h — O as e — 0.

Proof In Corollary4.5.1 we proved that if the invariants s, s2, ..., 24 satisfy the
conditions (4.5.36) then one can determine the potential g. Due to the above notation,
q has the form

13
q(x) = D ((f5(0) +ig;(0)e' V™ + (f;(0) — ig;(0))e' =)

j=1

Since the expressions in (4.5.36) continuously depend on the invariants si, $7,

., 824, the conditions on (4.5.36) hold if these invariants are replaced by
s1+e,s0+¢€,...,54+¢€fore < 1. Therefore by Corollary4.5.1 one can construct
the potential

13
q-(x) =: D _((fj(©) +igj(eNe' ™) + (fj(e) —igj(e)e' 1)

j=1

from the dates s1 +¢, s2+¢, .. ., 24 +¢. Thus to prove the theorem, that is, to prove
the inequality sup, |g-(x) — q(x)| < (M + h)e, it is enough to show that

fie) = f;0) =« +hje, gje) —g;j0) =( +hje  (4.622)

f]( ) dgj 0)
de

forj=1,2,...,13, where h; — Oandﬁ} — Oase — 0. It follows from (4.5.12)

that (4.6.22) holds for j = 1, 2, 3. To prove (4.6.22) for j > 3 we use the mean-value

formulas _
f ; dg;j(€)) .

fie) = f;(0) = P

6 gj(e) —g;0) =
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where €; € (0, ¢), €; € (0, €) and prove that

dfje;) dfj(0) . dgjE) dgj(0) ~
Ll = S ey, = = T (4.6.23)

Let us prove (4.6.23). It follows from (4.5.7), (4.5.9) that the denominators of the
fractions in the formulas (4.5.14), (4.5.22), (4.5.23), (4.5.27)—(4.5.29) and (4.5.33)—
(4.5.35) are nonzero numbers. Therefore the denominators of the fractions taking part
in the expressions of f;(¢) and g; (¢) are nonzero numbers for ¢ < 1. Moreover, by

direct calculations one can readily see % and % are continuous functions at
€ = 0. It means that (4.6.23) holds and the theorem is proved (]

The consequence of Theorems4.6.1 and 4.6.2 is the following:

Corollary 4.6.1 Let q(x) be the potential of the form (4.1.16) satisfying (4.5.3). If

the Bloch eigenvalues of order p* of L(q) are given with accuracy O(p*% In p),
then one can determine the potential q constructively and uniquely, modulo (4.1.8),

with accuracy O(p_l% In p)
The consequence of Proposition4.6.1 and Theorem4.6.2 is the following:

Corollary 4.6.2 Let g(x) be the potential of the form (4.1.16) satisfying (4.5.3).
If the Bloch eigenvalues of order p* of L(q) are given with accuracy ¢, where

151 . . . .
1 > e > p~ 54, then one can determine the potential q, constructively and uniquely,
with error p54 0(g) in the C*° metric

Proof 1t follows from Proposition4.6.1 that the invariants (4.1.4)—(4.1.6) can be

determined with accuracy p% o(¢). Then using (4.5.11) and taking into account that
the first multiplicands A1 (a, b) and A3 (a, b) of the right-hand sides of the invariants
(4.2.25)—(4.2.28) and (4.2.34), (4.2.35) are nonzero constants of order 1, we con-

clude that the invariants sy, 2, ..., 24 can be determined with accuracy pls%3 o(e).
Therefore the proof follows from Theorem4.6.2 ]

4.7 Uniqueness Theorems

First we consider the Hill operator H (p) generated in L (R) by the expression

l(q) =1 —y"(x) + p(x)y(x)

when p(x) is a real-valued trigonometric polynomial

N
p(x) = Z pxez”x, p—s = Ps, po=0. 4.7.1)
s=—N
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Let the pair {\¢ 1, Ax.2} denote, respectively, the kth eigenvalues of the operator
generated in L, [0, 7] by the expression /(g) and the periodic boundary conditions
for even k and the anti-periodic boundary conditions for odd k. It is well-known that
(see [Eas], Theorem 4.2.4)

A1 =202 <A1 SAM2<XM1SM2<M 1S M32<- <M1 S A<

The spectrum Spec(H (p)) of H (p) is the union of the intervals [\, 1 2, A, 1] for
n=1,2,....Theinterval v, =: (A\,.1, Ay,2) is the nth gaps in the spectrum of H (p).
Since the spectrum of the operators H (p(x)) and (H(p(x + 7)), where 7 € (0, ),
are the same, we may assume, without loss of generality, that p_y = py = > 0.
We use the following formula obtained in the paper [Gri] (see Theorem 2 in [Gri])
for the length |7, | of the gap ~,:

4n [ pe® N
[Yn| = m (W) , 4.7.2)

where

. N-1 1 J
Dink I
Ar(n) =exp|: ”’N” +21 > ) ((%un_z)N ez”m/N) ] 4.1.3)
k=0

and \; algebraically depends on the Fourier coefficients of p(x).
From (4.7.3) one can readily see that

|Ar(m)| < explan'= %), |Ar(m)| > exp(—an'"%), Vk =0, 1, ..., (N — 1),

4.7.4)
where
N—1 n _ j
a= Z aj, aj =sup |Re(2\; ((%M)N eZ’k”/N) ‘ . (4.7.5)
j=1 k
This and (4.7.2) imply that
4 2\ ¥ 1-2
Yl < — (“_62) 2N V. (4.7.6)
w \8n

Using (4.7.4)—(4.7.6) we prove the following:

Theorem 4.7.1 Let p(x) be a real-valued trigonometric polynomial of the form

K
p)= > P, py =Dy, Pk =px =v >0,
s=—K
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If Spec(H(p)) = Spec(H(p)), then K = N, where p(x) is defined in (4.7.1).

Proof Suppose K # N. Without less of generality, it can be assumed that K < N.
We consider the following two cases:

Case 1: Assume that \; = O for all values of j. Then from (4.7.3) forn = IN,
I € N we obtain that Ag(n) = 1 for all k. Therefore, by (4.7.2), we have

4n [ pe? ! Inn
lml=—\==]) N(1+0{—)).Vn=IN. 4.7.7)
i\ 8n? n

Applying (4.7.6) for the length |9, | of the n th gap J, in the Spec(H (p)), that is,
replacing N and p by K and v respectively and arguing as in the proof of (4.7.6),
we see that there exists a positive number b such that

4 2 % _2
16,] < 7” (%) 2K ¥ 4.7.8)

Since the fastest decreasing multiplicands of (4.7.7) and (4.7.8) are n=2 and n_%

respectively and K < N, it follows from (4.7.7) and (4.7.8) for n = [N that |y;n| >

|6 | for I >> 1, which contradicts to the equality Spec(H (q)) = Spec(H (p)).
Case 2: Assume that A; # 0 for some values of j. Let us prove that the equalities

[vinl = 10wl vl = 10ivsils oo livev—11 = [oiven—1] (4.7.9)

for / > 1 can not be satisfied simultaneously. Suppose to the contrary that all
equalities in (4.7.9) hold. Using (4.7.2), (4.7.8) and taking into account that

2 IN+m 2 _IN+m )
ve K e N ebnlff _ O(n_o‘”)
8n? 8n?
for0 < a < [N% — IN%, from (4.7.9) we obtain

N-1

> AWUN +m) (1 +0 (#)) =00, Vm=0,1,...(N —1). (4.7.10)

k=0
Let us consider A;(IN + m) in detail. It can be written in the form

; N-1
2imkr\ .
Ak(IN +m) = exp (%) N (AN +m) = > M) UN +m)' =¥,

j=1
4.7.11)
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where M (k) is a complex number. Using the mean value theorem, we get

N-1 ,

ck(IN +m) —cr(IN) =m Z M;(k)(UN + G(k))_ZWJ = 0(1_%), 4.7.12)
j=1

where 6(k) € [0, m] for all k. Now using (4.7.11), (4.7.12) and taking into account

that
et =1+ 0(z) as z — 0, we obtain

2imkm

Ar(IN +m) = exp ( ) AN + O~ )). (4.7.13)

Therefore (4.7.10) has the form

N=l 2imkw —al
Zexp I AcIN)Y A +o0(1) =00, m=0,1,...(N —1).

=~

(4.7.14)
Consider (4.7.14) as a system of equations with respect to the unknowns
Ao(IN), A1(IN), ..., AN—1(IN). Using the well-known formula for the deter-
minant of the Vandermonde matrix (v, x), where v, = vf,‘w Uy = exp(ﬁ%), we
see that the main determinant of this system is

2imkn \ N—1 2ikm 2imm
(1+0(1))det<e v )k’m:0=(1+o(1)) [T (% -,

0<m<k<(N—1)

Thus solving (4.7.14) by the Cramer’s rule we obtain Ay (IN) = O( —oly fork =
0,1,...(N — 1) which contradicts the second inequality in (4.7.4). The theorem is
proved. U

Now using this theorem we prove a uniqueness theorem for the three-dimensional
Schrodinger operator. For this, first, we prove the following lemma.

Lemma 4.7.1 Let ¢ (x) be infinitely differentiable periodic potential of the form

qx= > §'®. (4.7.15)
aeQ(,1,1)
where _
g (x) = D Zmaye™ ", Z(0) =0 (4.7.16)
nez

and Z(na) =: (q(x), e™ X)) is the Fourier coefficients of 4. If the equalities

Z(nyi) =0, Z(ny;) =0, Vn € Z\{—1, 1} 4.7.17)
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hold, then
Ly +7j. %) = A1(yi + 7). 7)) ReG(—yi — v)Z(1)Z())). (4.7.18)
(i =5, %) = A1(yi = 7). ) ReG(—i +7)Z(WE (=), (4.7.19)
L. 7)) = A2 (i, 7)) ReG(=7i))*Z(vi + 7)Z(i — 7)) (4.7.20)

Jori =1,2,3;j =1,2,3;i # j, where 71, 72,73, A1(a, b) and As(a, b) are
defined in Theorems 4.2.2 and 4.2.3 respectively, I (a, b) and I (a, b) are the invari-
ants (4.1.5) and (4.1.6) for the operator L(q).

Proof By definition of I~1 (vi +vj, i) [see (4.1.5) and (4.1.3)] we have

L+ 7) = /F |Gy, @7 (0)dx, (4.7.21)

where [ is defined by (4.1.10),

Gyt () = D = Z(e)e! ), (4.7.22)

ceD

C
(B, c)

and D = {c € (P (7, v;) NI\ (7 +7,)R : Z(c) # 0}. It follows from (4.7.15) that
if ¢ € D, then ¢ = ka, where k is an integer, and a belongs to the set P (7;,v;) N

O)\(vi +7;)R. Since this setis {v;, vj, =i, —Vj» Y —7j>, —(vi —7;)} and (4.7.17)
holds, we have

D = {i,vj, =i, —vj} Uik(yi — 7)) 1 k € Z}. (4.7.23)

Therefore, repeating the proof of (4.2.32), we see that

- > i +7j) —¢,
h(vi +7j,7) =2Re (Z Z(=n(yi + 7)) Z W

n=1 ceD

(v +7j) — C)E(c)) .
(4.7.24)

It follows from (4.7.23) thatif n» > 1 and ¢ € D, then n(y; + ;) —c ¢ D and
Z(n(y; + ;) — ¢) = 0. Hence, from (4.7.24) we obtain

= ~ i+ j) — 6 C) ~
Ty 41770 = 2Re (2 1 SN =z e ).
= (e
(4.7.25)

Using this instead of (4.2.32) and repeating the proof of (4.2.25), we get (4.7.18). In
(4.7.18) replacing «; by —v;, we get (4.7.19).
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Now let us prove (4.7.20). It follows from (4.7.17) that
@) (x) = Z()e' ) 4+ Z(—yp)e ™ D),
Therefore 72(7,',7]-) has the form
b)) = / 13,500 (@) 22009 4 G (—y))2e 200 N)dx - (4.7.26)

[see (4.1.6)], where (3 is defined by (4.1.10),

o) = Y 5570, (4.7.27)

ceE

E ={c e (P(i,vj) NTH\ViR : Z(c) # 0}. Arguing as in the proof of (4.7.24),
(4.7.25), we see that

E={yj,—vj}Ulk(vi —vj) : k € Z}U {n(y; +,) : n € Z}. (4.7.28)

L(yi. 7)) = 2Re (32(—%-) P SV A c)). (4.7.29)
i)

If ¢ = k(yi — vj), where k # 0, or ¢ = n(y; + ), where n # 0, then
at least one of the vectors v; — ¢ and ~; + ¢ does not have the form ¢ = sa,
where s € Z, a € P(v;,7;) N @)\R, and hence by (4.7.15) we have Z(v; +
¢)Z(y; — ¢) = 0. Therefore, the summation in (4.7.29) is taken over ¢ € {£+;} and
(4.7.20) holds. O

Now we prove a uniqueness theorem for the periodic, with respect to the lattice
Q, potentials ¢ (x) of C!'(R?) subject to some constraints only on the directional
potentials g7 (x), ¢72(x) and ¢73(x), where {71, 72,3} is a basis of I' satisfying
(4.1.18). Note that the directional potential ¢ (x) is a function Q“(s) of one variable
s =: (x,a) € R, where the function Q%(s) is defined in (4.6.1). Let U be the
set of all periodic,with period 27, functions f € C!(R) such that spec(H(f)) =
spec(H (pcoss)) for some positive . Denote by W the set of all periodic, with
respect to the lattice 2, functions ¢ (x) of C! (R3) whose directional potentials g 7 (x)
for k = 1, 2, 3 satisfy the conditions

Q% e (CYR\U)UT, Vk =1,2,3, (4.7.30)

where T is the set of all trigonometric polynomial. Thus we put condition only on the
directional potentials g7 (x), g2 (x) and ¢ (x). The all other directional potentials,
that is, g (x) for all a € S\ {1, 72, 13}, where S is the set of all visible elements of
I', are arbitrary continuously differentiable functions.
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Theorem 4.7.2 Let g be the potential of the form (4.1.16), satisfying (4.5.3). If
q € W and the Bloch eigenvalues of the operators L(q) and L(q) coincide, then q
is equal to g modulo (4.1.8).

Proof Let ¢ be a function of W whose Bloch eigenvalues coincides with the Bloch
eigenvalues of ¢. By Theorem 6.1 of [EsRaTr2] the Bloch eigenvalues of L(g%)
coincides with the Bloch eigenvalues of L(g“). It implies that the spectrum of
H(Q%) coincides with the spectrum of H(Q%), where Q%({(x, a)) = g“(x). Since
the length of the nth gap in the spectrum of H (Q*) satisfies (4.7.6), the same inequal-
ity holds for the nth gap of H (é“). It implies that ¢g“ is an infinitely differentiable
function for all visible elements a of I (see [Mar]). Thus g (x) is an infinitely differen-
tiable function and due to Chap. 3 the operator L(g) has the invariants (4.1.4)—(4.1.6)
denoted by I~(a), I~1(a, b), I~2(a, b). Since the Bloch eigenvalues of L(g) and L(q)
coincide, we have

Spec(H(Q%)) = Spec(H(QY)), 1(a) = I(a), I1(a,b) = I1(a, B), r(a, b) = I(a, b)
(4.7.31)
We need to prove that

gx)ef{gsx+71):T7€F,s ==%l1}.
For this, it is enough to show that there exist 7 € F, s € {—1, 1} such that
q(sx — 1) = q(x).

The draft scheme of the proof is the followings. In Theorem4.5.2 we proved that if
¢ (x) has the form (4.1.16), then its Fourier coefficients z(a) fora € Q(1, 1, 1) can
be defined uniquely, modulo (4.1.8), from the invariants (4.2.25)—(4.2.28), (4.2.34)
and (4.2.35). Here we prove that if the band functions of the operators L(g) and
L(q) coincide, then g has the form (4.1.16) and the operator L(g) has the spectral
invariants obtained from the formulas (4.2.25)-(4.2.28), (4.2.34), (4.2.35) respec-
tively by replacing everywhere z(a) with Z(a). Then, using the arguments of the
proof of Theorem4.5.2 and fixing the inversion and translations (4.1.8), we prove
that Z(a) = z(a) fora € Q(1, 1, 1).

Since ¢g“(x) = Ofora € S\Q(1, 1, 1), theequality (4.1.4) and the second equality
of (4.7.31) imply that g has the form (4.7.15). Now, to show that g (x) has the form
(4.1.16), we prove that

Z(na) =0, Vin| > 1,a € Q(1, 1, ). (4.7.32)

By (4.5.7) we have Q" (s) = aj coss, where ax > 0 and k = 1, 2, 3. Therefore,
by the first equality of (4.7.31), Q™ € U. On the other hand, we have Q'* €
(CY(R)\U) U T (see (4.7.30). Thus Q' € T. Then, it follows from Theorem4.7.1
that (4.7.32) holds for a € {v1, 72, v3}. Hence the all conditions of Lemma4.7.1
hold and we have the formulas (4.7.18), (4.7.19) and (4.7.20). Besides, it follows
from the second equality of (4.7.31) that [7(;)| = |z(+;)|. By Theorem4.5.1 there
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exists 7 € F such that
arg(q(x —7), e 0y =0, Vk=1,2,3.
Without loss of generality, we denote g (x — 7) by ¢ and its Fourier coefficients by
Z(a). Thus
Z(vi)=z(yi)=a; >0, Vi=1,2,3. (4.7.33)
Therefore (4.2.25), (4.2.26), (4.7.18), (4.7.19) and (4.7.31) imply that

Re(Z(v; £7vj)) = Re(z(vi £v))). (4.7.34)

From this using the obvious equalities (see (4.1.4) and the second equality of (4.7.31))

D 2R £y =T ) = 10y £7)) =202y £y)P (4.7.39)

n=1

we obtain
[Im@Z(y; £y))] < Hm(z(y; £ 9;)]. (4.7.36)

On the other hand, using (4.2.34), (4.7.20), (4.7.33) and (4.7.31), we get
Re(@(vi +7))2(vi — 7)) = Re(z(yi +7))z(vi — 7))
This with (4.7.34) and (4.7.36) implies that
Im@(vi £ = [Im(z(yi £ ;). (4.7.37)
Thus by (4.7.34) and (4.7.37), we have
[Z(vi £ = lz(vi £7))I- (4.7.38)
Therefore, from (4.7.35) we see that (4.7.32) holds for a = 7; & ;. Hence we have
Z(n(y £v) =0, Z(nyy) =0, Vo € Z\{-1, 1}, (4.7.39)
where i, j, m are different integers satisfying 1 < i, j,m < 3. Now instead of
(4.7.17) using (4.7.39), that is, instead ~; and ~y; in (4.7.17) taking ; £ ~y; and
respectively, and repeating the proof of Lemma 4.7.1, we obtain that
Ly, 7) = A1(v, %) ReG(=)Z(y = 1)Z(0), (4.7.40)

N2y =7, %) = A1(2vi — 7, %) ReG(y — 29)Z(vi — MZ(3)),  (47.41)



224 4 Periodic Potential from the Spectral Invariants

Ly, v — %) = A2y, v — %) ReG (=) Z(NZ2% — 7)) (4.7.42)

fori =1,2,3;i # j, where y = v + 72 + 3.

One can readily see that the formulas (4.7.18), (4.7.19), (4.7.40), (4.7.41), (4.7.20),
(4.7.42) are obtained from the formulas (4.2.25)-(4.2.28), (4.2.34), (4.2.35) respec-
tively by replacing everywhere z(a) with Z(a). Moreover, by (4.7.33), (4.7.34) and
(4.7.37), we have

i =a;, Vi=1,2,...,6; b = +b;, Yi =4,5,6, (4.7.43)

where G + ib; = Z(7;). As in Step 1 in the proof of Theorem4.5.2, using (4.7.40)
fori =1, 2, 3 and taking into account (4.7.43) we obtain the equations

asay + Talbalby = s10s7 " (4.7.44)
asay + Ts|bslby = suis; (4.7.45)
asdy +Tslbslby = sias3 ', (4.7.46)
where 7,, is the sign of 5,,1, i.e., is either —1 or 1 and sy, 57, ..., are the invariants

defined in (4.5.11). It follows from (4.5.9) that the main determinants of the systems
of equations, with respect to the unknowns a7, b, generated by pairs {(4.7.44),
(4.7.45)}, {(4.7.44), (4.7.46)}, {(4.7.45), (4.7.46)} are not zero. Finding b7 from
(4.7.44), (4.7.45) and taking into account (4.5.19), we see that by # 0. Therefore, for
fixing the inversion g (x) —> g (—x), we assume that by > 0. Using this and finding
b7 from the systems generated by pairs {(4.7.44), (4.7.45)}, {(4.7.44), (4.7.46)},
{(4.7.45), (4.7.46)}, we get the inequalities

—1 -1
a4s11s2 — asslosl

— = > 0,
t5|bs|as — t4]balas
-1 -1
a4s12s3 — ae6S109 -0
tolbslas — t4]bglac ’
—1 -1
ass1283 ° — AeS11S
3 2_>0. (4.7.47)

t6|bslas — 15|bs|ag

One can readily see that the relations (4.7.44)—(4.7.47) with respect to the unknowns
@7, by, 14, 15, T are obtained from (4.5.16)—(4.5.19) by replacing the unknowns a7,
b7, 4, t5, tg with ay, 57, 14, 15, 1g. Since we proved that (4.5.16)—(4.5.19) has a unique
solution, we have:~

a7 =az, by = by, t4 =14, ts = 15, tg = fg. This with (4.7.43) implies that

G =a, bi=b;, Vi=12,...17. (4.7.48)
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In Step 2 and Step 3 of Theorem4.5.2 using the invariants (4.2.28), (4.2.34),
(4.2.35) we have determined the all other Fourier coefficients of ¢ provided that a;
and b; fori = 1,2, ..., 7 are known. Since the invariants (4.7.41), (4.7.20), (4.7.42)
are obtained from the invariants (4.2.28), (4.2.34), (4.2.35) by replacing everywhere
a; and b; with a; and l;l respectively, and (4.7.48) holds, we have

z(a) = z(a), Ya € Q(1, 1, 1). (4.7.49)

This with the equalities (4.1.4), (4.2.20), (4.7.31) and (4.7.16) imply that (4.7.32)
holds foralla € Q(1, 1, 1). Therefore, it follows from (4.7.15), (4.7.32) and (4.7.49)
that (Il

g(x) =q(x)
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Chapter 5
Conclusions

Abstract In this chapter we summarize the results and methods of the book in the
descriptive way. In this book the following three problems of the spectral theory
of the multidimensional Schrédinger operator L(g) with a periodic potential g are
investigated.

1. First problem is the perturbation theory of L(g) (Chap. 2).

2. Second problem is the constructive determination of the spectral invariants of
L(q) from the given Bloch eigenvalues (Chap. 3).

3. Third problem is the constructive determination of the potential ¢ from the
spectral invariants (Chap. 4).

We describe all these three problems that can be considered as unique features.
Moreover these problems are investigated as a whole and in the pertinent form in
the sense that First problem = Second problem = Third problem. Besides in
Chap. 1 we present some definitions, statements and discussions to be used in the
next chapters from the point of view of both the physicists and mathematicians.

Conversation and Notations

First let us discuss the results of Chap. 2. Recall that the Bloch eigenvalues and Bloch
functions are the eigenvalues and eigenfunctions of the operator

Li(g) =—-A+q (3.1

in the primitive unit cell F of the period lattice €2 of the potential ¢, with 7-periodic
boundary conditions, where ¢ is a quasimomentum in the primitive unit cell F*
of the reciprocal lattice I'. Because the eigenvalue problem is set in a fixed finite
volume F, the spectrum of L,(g) consists of the eigenvalues A(z), A>(%), ..., such
that A, (t) — oo as n — o0o. Each of the energy levels A, (¢) varies continuously
as ¢ varies. In this way we arrive at a description of the levels of an electron in a
periodic potential in terms of a family of continuous functions A, (¢). For each n,
the set of electronic levels specified by A, (¢) is called an energy band. Thus the
eigenvalues A, (¢) are labeled with the band index n. The Bloch function is also
denoted by W, ;(x) which indicates that each value of the band index n and the
vector ¢ specify an electron state, or orbital with the energy A, (¢). The information
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contained in these functions for different n and ¢ is referred to as the band structure
of the solid. Since for the general reciprocal lattice in R? the determination of the nth
Brillouin zone is complicated, it is hard to find A, () for large n in the case ¢ = 0.
However, in this case the Bloch eigenvalues is expressed by v € I' in a simple way
as |y + t|2. In Chap. 2, (for the first time in [Ve2, Ve3, Ve4]) to observe the moving
of the eigenvalues |y + |? of the free operator L;(0) for

yHrefx eRY:p? < x> < p?+ 1} = W(p), (5.2)

where p > 1, under the periodic perturbation g, instead of the traditional labeling by
band index n, we label the Bloch eigenvalues and Bloch functions of the perturbed
operator L;(q) by v + ¢ and denote them as A(y + ¢) and W,,(x). Then we find
the values of the quasimomenta v + ¢ in the non-resonance domain for which the
corresponding Bloch eigenvalues A (v +1) of L,(g) are simple and close to |y + |2,
that is,

Ay +1) =y + 1P+ Oy +117%) (5.3)

for some positive « and the corresponding Bloch wave W, 1, (x) is close to the plane
wave ¢! (7T5Y) that is,

W () = e 0 L Oy +17%). (5.4)

As we stressed in Sect. 1.4 of Chap. 1 [see (1.4.2)] in the multidimensional case the
Bloch eigenvalues |y + t|2, where v € T, of the free operator L,(0) for fixedt € F*
are densely situated in a high energy region. Moreover, there are in average D(p)
diffraction hyperplanes Ds passing through the washer W (p), where D(p) ~ p?,
and all these planes may reflect the wave ¢!Y*%) if the corresponding eigenvalue
|y 41/ lies in the interval [ p?, p> + 1). Therefore in order to get the formula (5.4) we
have to construct the set of quasimomenta for which the plane wave e¢’(Y*"*) under
the perturbation g goes through the crystal without the essential influence of all these
diffraction hyperplanes. That is why, the regular perturbation theory is ineffective
and the mathematical difficulties have a physical nature—a complicated picture of
the diffraction inside the crystal.

Recall that (see Sect.1.4 of Chap. 1) in the First case (one-dimensional
Schrodinger operator) and the Second case (small eigenvalues for the multidimen-
sional Schrodinger operator with the small potential £g) the regular perturbation
theory is effective due to the fact that the potential is smaller than the distance
between the eigenvalues of the unperturbed operator. In the big opposite to the First
and Second cases, in the case of the large eigenvalues of the multidimensional L(g),
the potential g is greater than the distance between the eigenvalues [see (1.4.3) in
Sect. 1.4 of Chap. 1]. In this case the regular perturbation theory is ineffective even
if the potential g is replaced by g, where ¢ is a small parameter, due to the fol-
lowing reason. The distance between the large eigenvalues lying in [p?, p> + 1)
is, in average O(p>~“), and we can not assume that ¢ < p*>~¢ | since p*>~¢ tends
to zero as p — oo if d > 2. Thus for the multidimensional case and for the large
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values of the energy, the perturbation theory becomes extremely difficult.
Therefore in Chap.2 we develop a new mathematical approach to construct a per-
turbation theory for the multidimensional Schrodinger operator L(g) for the large
values of energy. This approach for the first time is given in [Vel, Ve2, Ve3, Ve4].
Before discussing in detail the steps of this approach let us consider the Second case
in detail by the approach of Chap. 2, since it helps to explain these steps. Namely, let
us have a look to the following well-known model which demonstrates the influence
of the potential £ to the eigenvalue |y + ¢|? of order 1 of the free electron and to
the plane wave ¢! (7+1:*),

Small Potential Model

In this model we discuss the well-known formulas for the Bloch eigenvalue A, (¢)
and the corresponding Bloch function W, ; of the operator L,(eq), where ¢ is a small
parameter, n = O (1) and g € L,(F). Consider the following two cases:

Casel. Isolated eigenvalue (see Sect. 1.4 of Chap. 1). The crystal momentum
~ 4+ t is far from the diffraction planes Ds for 6 € I'. It means that the distance a of
the eigenvalue |y + t|? from the nearest eigenvalue of L;(0) is of order 1, that is,

. 2 2
min +tc—=lv+t+6 ‘:aNI. 5.5
M\{O}]w -y | (5.5)

First we show that there exists a Bloch eigenvalue A, (¢) of the operator L;(sq)
satisfying the inequality

|20 =y + 1P| < clgll. (5.6)

Suppose to the contrary that (5.6) does not hold for all n € N. Then using the formula
(An(0) = |7+ 1) (W p. € 0 = e(q Wy p, & 00D, (5.7)

obtained from the formula (2.1.8) of Chap.2 by replacing g with e¢g, and Parseval’s
equality for the orthonormal basis {\Iln,, :neN } we obtain the following contra-

diction.

&2 ‘(\yn’“ qei<'y+t,x))}2

|An(t) — |y + ]

1= Z ’(‘ljn,t, €i(7+t’x))‘2 = Z

neN neN

It follows from (5.5) and (5.6) that

|An) = 1y + 1 46| za =< gl (5:8)
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for all § € T"\ {0}. Therefore using Bessel’s inequality for the orthonormal system
[0 5 ey (o))
and the formula
(An(0) = |y + 1+ 01 (Wi p, € THH0) = (g, ,, &/ OTHF0D) - (5.9)
we obtain

i (v 2
e[, O gl

. 2
> | 0t s _ 0@,
ser\{0} sty |An@®) — Iy +1+62°  la—cliqll
This with the Parseval’s equality gives
Wy = 0 4 0(e) (5.10)

which means that the plane wave ¢! *%¥) is almost not reflected by the crystal. Using
this in (5.7) and then taking into account that

/ g(x)dx =0,
F

An(t) = |y + 11> 4+ 0. (5.11)

we get

Case 2. Isolated pair of eigenvalues (see Sect.1.4 of Chap. 1). The crystal
momentum y + ¢ is close to the diffraction plane Dy and far from the other dif-
fraction planes. In other words

‘|v+t|2—lv+t+5|2‘<<1 (5.12)

and /
‘|7+l|2—|’7+t+(5|2‘2b~1 (5.13)

for &' # 0, 6, thatis, v+ is close only to the diffraction plane D;. Replacing '\ {0}
by I'\ {0, ¢} and repeating the proof of (5.10) we obtain

W, (x) = b(n, 7)e! T L b(n, v 4 0)e! T L g(x), (5.14)

where
b, )| + b,y + 0> = 0E?), gl = 0(e),
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and g is a function orthogonal to e/t"*) and ¢/(VH+9:%) Thus by (5.14) if v + ¢
is close to Dy then under the small perturbation £¢ the plane waves e/ (7**) and

¢! +1+0.3) nterface each other, that is, the Bragg reflection can occur. Using (5.14)
in (5.7) and (5.9) we obtain

(An(t) — |y +t19b(n,7) = eb(n, v + 6)q_s + O(?) (5.15)

and
(An(t) — |y + 1+ 81P)b(n, v + ) = eb(n, Y)gs + O (%) (5.16)

from which we estimate A, (¢) and then W, ; in a standard way.

Thus if (5.12) and (5.13) hold, then the quasimomentum ~ + ¢ must be close
only to the Bragg plane D; determined by ¢ and we get the Egs. (5.15) and (5.16)
to estimate the corresponding Bloch eigenvalues, which mean that a weak periodic
potential £g has its major effect on those free electron levels whose wave vectors
are close to ones at which the Bragg reflection can occur. In order words, if v + ¢
lies near the Bragg plane Ds, then in order to find the energy levels and the wave
functions we have the equations including only the two levels: one corresponds to
~ + t and the other one corresponds to v + ¢ + 4.

Discussion of the Approach of Chap. 2

Here we discuss the problems of the construction of the perturbation theory for the
Bloch eigenvalues and Bloch functions (Bloch waves) corresponding to the large
values of the energy. First let us explain why the Small potential model and similar
classical perturbation theory are ineffective for the proof of the formulas (5.3) and
S5.4). If |y + t| ~ p — oo, then the numbers a and b defined in (5.5) and (5.13)
depend on p and as we stressed in Sect. 1.4 of Chap. 1, in general,

lim a(p) =0, lim b(p) =0.
pP—>00 p—>00

To apply the argument of the above model we need to assume that ¢ < a(p) and
€ < b(p).Onthe other hand, (5.3) and (5.4) have ameaning only if | y+¢| ~ p — oo.
Therefore for any nonzero ¢ the classical perturbation theory is ineffective for the
proofs of (5.3) and (5.4). Moreover instead of one inequality (5.12) we obtain k(p)
inequalities

I+t =y +1+ 61 < 1 (5.17)

fori = 1,2, ..., k(p), where, in general k(p) — 00 as p — oo and hence instead
of two equalities (5.15) and (5.16) we need to consider k(p) + 1 equalities. This
situation also shows the complexity of the perturbation theory in the high energy
region in the multidimensional case.
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Note that the concept: “the crystal momentum ~ + ¢ is far from the diffraction
planes D; or close only to one diffraction plane” was used very much in the physical
literature and as we have seen in the small potential model that it easifies the pertur-
bation theory for the quasimomentum 7y + ¢ of order 1. However, this concept breaks
down for the quasimomentum ~ + ¢ with |y + | ~ p > 1 due to the following.
To construct the set of quasimomenta v + ¢t € W(p) lying on the distance greater
than € from the diffraction plane Ds, we need to discard from W (p) the € neighbor-
hood of Ds. As we noted in Sect. 1.4 of Chap. 1 there are D(p) diffraction planes
Dj intersecting W (p) for large p, where D(p) ~ p?. Therefore we must take care
that the remaining set does not become empty after all these discarding. For this we
should choose very small e(p) depending on p and such that e(p) — 0 as p — oo.
However, then the formulas (5.3) and (5.4) have no any sense for the potential eq for
any ¢, since v+t € W(p) and p — oo.

Thus in the big contrary of the Small potential model and similar examples in
physics the concepts and arguments mentioned above do not help us seriously for
the investigation of the perturbation theory in the high energy region. That is why,
in Chap. 2, we give a new approach for this problem.

Now let us describe the steps of the perturbation theory given in Chap. 2. The rig-
orous proofs of all steps are given in Chap.2. Here we give only the brief comments
regarding the steps of the construction of the perturbation theory. The first step is the
classification of the Bloch eigenvalues of the free operator.

Classifications of the Eigenvalues

To avoid the technical details let us discuss this step for the multidimensional
Schrodinger operator L(P) with a trigonometric polynomial potential

P(x)= > gse'™, (5.18)
0eA

where A is a finite subset of the reciprocal lattice I'. We consider the eigenvalue
|y +1|% as a vector v + ¢ of the washer W (p) defined in (5.2) for large p. Using
(5.18) in

(AN — |y + 1) (W, 0Ty = (W P, e 03D (5.19)
we obtain
(AN = |7 +t)BN. ) = D gsb(N, v —6) (5.20)
dcA
where

b(N,7) = (W, e 0y,
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Let us consider the right-hand side of (5.20). By (5.19) we have

(W, P, 070400

b(N,~v—9) = An() — =1 (5.21)
If Ay is close to |y + £|? and 7 + ¢ does not belong to any of the sets
Vs(p®) =t fx € R ¢ ||x | — [x + 0’| < p) (5.22)
for 0 € A, thatis, vy + ¢ is far from the diffraction planes Ds then
I+ 11 =y =0+ 117 > p% |ANG) = Iy =8+ 11| > %pa. (5.23)
Therefore, it follows from (5.21) and (5.23) that
b(N, v —0) =t (W, & T70H9) = 0(p~) (5.24)
for all 6 € A and hence (5.20) has the form.
(AN() = [y + 1IN, 7) = O(p™®). (5.25)
From (5.25), by the technical investigation, we obtain that if
y+telU= W(p\V (5.26)

where

V= (U Va(P“)) N W(p) (5.27)

deA

then there exists an eigenvalue A (v + ¢) satisfying (5.3). Thus if v 4+ ¢ € U then
the corresponding eigenvalue A(y + t) of the perturbed operator L;(P) is close to
the eigenvalue |y + |2 of the free operator L;(P). If v+ € V then, in general, the
corresponding eigenvalue of the perturbed operator is not close to the eigenvalue of
the free operator L, (0), and the eigenvalue |y 4 ¢|> under the perturbation P may
move of order 1. Therefore, in the papers [Vel, Ve2, Ve3, Ved4], for the first time
the eigenvalues |y 4 ¢|?, for large v € I, were divided into two groups: the non-
resonance ones if 7+t € U and the resonance ones if 7+t € V and various asymp-
totic formulae were obtained for the perturbations of each groups. The sets U and
V are named non-resonance and resonance domains respectively. Then Karpeshina
[Kal, Ka2, Ka3] and Feldman-Knorrer-Trubowitz [FeKnTrl, FeKnTr2] entitled
the non-resonance (resonance) eigenvalues as nonsingular (singular) and stable
(unstable) eigenvalues respectively.
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The formula (5.24) shows that the influence of the plane waves eI =0+X) for
§ € A to the wave e/ ') is very small. However it is far from to prove (5.4), since
for this we have to prove that the total influence of the plane waves ¢! Y+9+:%) for all
§ € I'\ {0} to the wave ¢/ (V%) is small. For this and to solve all the three problems
(a), (b) and (c) described in Sect. 1.4 of Chap. 1 (Simplicity, Bragg diffraction and
Isoenergetic surface problems) we constructed the simple set B. In other words, the
construction and investigation of the simple set B solve simultaneously the problems
of the perturbation theory (simplicity of the Bloch eigenvalues, asymptotic formulas
for the Bloch eigenvalues and Bloch Functions) and isoenergetic surfaces. Therefore
let us discuss the geometric construction and estimation of the simple set B as the
main step of the perturbation theory.

Geometric Constructions
This construction was done in Chap. 2. Here we give only some description. To prove
the simplicity of Ay (z) =: A(y+1¢) and (5.4), we construct a set B of quasimonenta

such that if v +¢ € B, then the total influence of the plane waves e/ HHLX) for all
6 € I'\ {0} to the wave ¢’ (+1.x) is small. Since

{e’l<7+”x> iy € F}

is an orthonormal basis we have

Vs () = BN, e TH 4 7 BN,y + §)el 00T (5.28)
6ell\{0}
Therefore if
ST bW A+ = 07 (5.29)
delr\{0}

then the total influence mentioned above is O (p~“). To prove (5.24), that is, to show
that the influence of the plane waves ¢!/ =0t:%) for § € A to the wave ¢/ (17 is
small, we discard from W (p) the neighbourhood Vjs(p®) of the diffraction planes
Ds. The set Vs N W(p) is the part of the washer W (p) which is contained between
the two parallel hyperplanes

e = x + 617 = —p"} & {x : x> — |x + 6> = p%).

This is the small part of W(p). Since A contains finite number of elements ¢ after
eliminating the sets Vs for § € A the remaining part W (p) of W (p) is the essential part
of the washer. However we can not do this operation (these eliminations) forall § € T,
since then the remaining part may be becomes empty set. Therefore the construction
of the simple set for multidimensional L(g) in high energy region becomes very
complicated. In [Ve3] for the construction of the simple set B of quasimomenta in
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case d = 3 we eliminated the very small vicinities of the diffraction planes, and
the sets connected with the directional potential, and the intersection of the two
resonance sets Vs, (o) and Vs, (p“).

As the dimension d increases, the geometrical structure of B becomes more com-
plicated for the following reason. Since the denseness of the eigenvalues of the free
operator increases as d increases we need to use the asymptotic formulas of high
accuracy and investigate the intersections of the higher order of the resonance sets.
Then the functions F(y + 1), A;j(y + 1) [see (2.1.28), (2.1.29) of Chap.2] taking
part in the construction of B becomes more complicated. Therefore surfaces and
sets defined by these functions become more intricate. Instead of the vicinities of the
diffraction planes we use the vicinities of some surfaces. Thus for the dimensions
d > 3 these surfaces play the role of the diffraction planes.

Moreover the simple set B constructed in the non-resonance domain contains the
main part

(y+1: Ay +1) = p’}

of the isoenergetic surfaces /,(q) of L(g) corresponding to p? for large p. We prove
that this part of 1,(g) consist of the union of smooth surfaces and the total measure
of these surfaces asymptotically equals to the measure of the sphere

{xeRd x| = pl.

For this we find the derivatives of the Bloch eigenvalues A (7y + ¢). These derivatives
and asymptotic formulas have the following applications.

Some Applications

In the above notations the diagonal and non-diagonal elements of the current matrix
can be written as

ieh
S(y+t,v+1) = o /F(\IJ:H (x) grad Wy (x) — W q,(x) grad ‘Il;_H(x))dx
and
~ ieh " X
Sty+t,v+1) = o F(\-II:H_,(x) grad Wi, (x) — W,y (x) grad \I/%_,(x))dx

respectively, where h is Planck’s constant, m and e are the mass and charge of the
electron. Therefore using the formulas

4 el (rH Y1)

Iy + 112 =y + v +1)?

Wy (1) = & O0F0 4 S +0(172M),  (5.30)

TEr (p®)
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and
grad \Ij’}“‘rt(x) = [(f}/ + t)e”'\/"l‘fv)f) + 0(|,_Y|1—2041)

for (y +t) € B obtained in Chap.2 we get the following asymptotic formulas for
the diagonal and non-diagonal elements of the current matrix

eh 1-2c
S(7+t,v+t)=7(v+t)+0(lvl ),

+ O(|y|' %),

S(y+t,7+1) = (ﬂ) Y — Vg7

m) |y +11? =7 +1]?

where (y+1) € Band (¥ +1¢) € B.
It readily follows from the formula

0 0 2 1-2
—A 1= — t 0 N Vi=1,2,...d.
o, v+ 8tj|v+ I+ O(p ), VJj

of Chap.2 [see (2.5.7) of Chap. 2] that
grad A(y+1) = (y+ 1) + 0(p'72)

from which we obtain the asymptotic formulas for the velocity and impulse of the
electron.

Summarizing the results of Chap.2 we note that the chapter gives the complete
perturbation theory of the periodic Schrédinger operator of arbitrary dimension. Note
that the method of this book and hence of the papers [Ve2, Ve3, Ved, Ve5, Ve9] is
unique which gives asymptotic formulas for Bloch eigenvalues and Bloch functions
for arbitrary dimension. Moreover, in case of the resonance domain we constructed
the simple set so that it can be easily used for the constructive determination (in
Chap. 3) a family of the spectral invariants by the given Bloch eigenvalues. Thus
Chap. 2 is also a base for the constructive determinations of the spectral invariants.

On the Spectral Invariants and Inverse Problems

First, recall that a functional f in the space of the periodic, with respect to the lattice
2, functions is said to be spectral invariants if it has the following property: if the
Bloch eigenvalues of the Schrodinger operators L(g) and L(p) with the potentials
q and p coincide, then f(g) = f(p). Here the spectral invariants play the interme-
diate role between the Bloch eigenvalues and potentials. Since the influence of the
potential g is essential in the resonance domain, one can get a lot of informations
about potential g from the Bloch eigenvalues corresponding to the quasimomenta
lying in the high energy region and near to the diffraction hyperplanes. Therefore in
Chap. 3 first we improve the asymptotic formulas for the Bloch eigenvalues and Bloch
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functions corresponding to those quasimomenta and get the formulas, where there
are sharp estimations for the first and second terms of the asymptotic decomposition.
Then using this and the behavior of the derivatives of the band functions we con-
structively determine the spectral invariants. Some of these invariants are explicitly
expressed by the Fourier coefficients of the potential which present the possibility
of determining the potential constructively by using the Bloch eigenvalues as input
data due to the following arguments. If the potential g is a trigonometric polynomial,
then the spectral invariants give us nonlinear equations with respect to the Fourier
coefficients of ¢ and the number of the independent equations is greater than the
number of the Fourier coefficients. Moreover, most of these equations are explicitly
expressed by either 1 or 2 or 3 Fourier coefficients of g. This situation allows us to
give an algorithm for finding the potential g from these spectral invariants. Besides
solving these nonlinear equations by the numerical methods one can determine the
potential g in the set of the trigonometric polynomial. Then taking some limit process
one can find the smooth potentials from the given spectral invariants and hence from
the given Bloch eigenvalues. Hence in Chap. 3, we constructively determined a fam-
ily of spectral invariants of L(g) from the given Bloch eigenvalues that is enough to
determine the potential g. Since this book is theoretical, it seems that the theoretical
part of the inverse problem by spectral invariants is complete, in the sense that the
book gives the full theoretical base and possibility to solve numerically this prob-
lem. Thus Chap. 3 describes the constructive determination of the spectral invariants
explicitly expressed with respect to the Fourier coefficients of the potential by using
the Bloch eigenvalues as input data. At the same time, it gives a rich set of invariants
that is enough to determine the potential g.

Chapter 4 gives some examples and algorithms for finding the potential from the
spectral invariants and hence from the Bloch eigenvalues. We consider the inverse
problems of the three-dimensional Schrédinger operator with a periodic potential g
by the spectral invariants obtained in the third chapter. Note that the inverse problems
of the one-dimensional Schrédinger operator, the Hill operator, and the multidimen-
sional Schrodinger operator L(g) are absolutely different. In order to determine
the potential ¢, of the Hill operator, in addition to the given band functions A(?),
A> (1), ..., one needs to know the eigenvalues Aj, A2, ... of the Dirichlet boundary
value problem and some other informations. In other words, the potential ¢ of the
Hill operator can not be determined uniquely from the given band functions, since
if the band functions A{(t), Ax(f), ... of H(q) are given, then for every choice of
the numbers A1, Az, ... from the gaps Ay, Az, ... of the spectrum of the Hill operator
there exists a potential ¢ having A1(¢), A2(), ... as the band functions and A\, Az, ...
as the Dirichlet eigenvalues. In spite of this, it is possible to determine uniquely the
potential g of the multidimensional Schrodinger operator L(q) from only the given
band functions. Because, in the case d > 1 the band functions give more informa-
tions. Namely, the band functions give the spectral invariants that have no meaning
in the case d = 1. We solve the inverse problem by these spectral invariants.

In Chap. 4, firstly, we construct a set D of the trigonometric polynomials which is
dense in the Sobolev spaces and every element can be determined constructively and
uniquely from the invariants obtained in Chap. 3. More precisely, fixing the inversion
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x — —x and translations: x — x 47 for7 € R?, we give an algorithm for the unique
determination of the potential g € D of the three-dimensional Schrodinger operator
L(g) from the given spectral invariants that were determined constructively from
the given Bloch eigenvalues. Note that the potential ¢ can be uniquely determined
only by fixing the above inversion and translations, since L(g(x)), L(g(—x)) and
L(g(x 4+ 7)) have the same band functions and hence the same invariants. Then a
special class V of the periodic potentials is constructed, which can be easily and
constructively determined from the spectral invariants and hence from the given
Bloch eigenvalues. Besides, we consider the stability of the algorithm for the unique
determination of the potential g € Vof the three-dimensional Schrédinger operator
with respect to the spectral invariants and Bloch eigenvalues.

Thus Chap.4 give some ideas and algorithms for finding the potential from the
spectral invariants and hence from the Bloch eigenvalues which may open up new
horizons for the inverse problems of the important operators of the mathematical
physics. Since this book gives a constructive description of the direct (perturbation
theory-asymptotic formulas for Bloch eigenvalues and Bloch functions) and inverse
problems (constructive determinations of the periodic potential from the given Bloch
eigenvalues) of L(g), it seems that it will be used as an introduction to the topic as
well as the theoretical base for solving the inverse problems. Moreover the approach
used in this book may be used for the spectral analysis of the important operators of
the quantum mechanics and solid state physics.
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