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Preface

The book is devoted to the spectral theory of the multidimensional Schrödinger
operator LðqÞ generated in L2ðRdÞ by the differential expression

�ΔuðxÞ þ qðxÞuðxÞ;

where x 2 R
d; d� 2 and q is a real periodic, relative to a lattice Ω, potential. This

operator describes the motion of a particle in the bulk matter. To describe the brief
synopsis of the book let us introduce some notations and recall some well-known
definitions. It is well known that the spectrum of LðqÞ is the union of the spectra
of the operators LtðqÞ for t 2 F� generated in L2ðFÞ by the same differential
expression and the conditions

uðxþ ωÞ ¼ eiht;ωiuðxÞ; 8ω 2 Ω;

where h�; �i is the inner product in R
d , t is a crystal momentum (quasimomentum),

F ¼: Rd=Ω and F� ¼: Rd=Γ are the fundamental domains (primitive cells) of the
lattices Ω and Γ respectively, and

Γ ¼: fδ 2 R
d : hδ;ωi 2 2πZ; 8ω 2 Ωg

is the reciprocal lattice, i.e., is the lattice dual to Ω. The spectrum of LtðqÞ consists
of the eigenvalues

Λ1ðtÞ�Λ2ðtÞ� . . .

These eigenvalues are called the Bloch eigenvalues. They define functions
Λn : t ! ΛnðtÞ for n ¼ 1; 2; . . . of t that are called the band functions of LðqÞ.

The n-th band function Λn is continuous with respect to t and its range

δn ¼: ΛnðtÞ : t 2 F�f g
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is the n-th band of the spectrum σðLðqÞÞ of LðqÞ :
σðLðqÞÞ ¼ [1

n¼1δn:

The eigenfunctions of LtðqÞ are known as the Bloch functions.
The book consists of five chapters. The first chapter presents preliminary defi-

nitions and statements to be used in the next chapters. Besides, we give a brief
discussion of what is known from the literature and what is presented in the book
about the perturbation theory of LðqÞ. In the second chapter, first, we obtain the
asymptotic formulas of arbitrary order for the Bloch eigenvalue and Bloch function
of the periodic Schrödinger operator LðqÞ of arbitrary dimension, when the corre-
sponding quasimomentum lies far from the diffraction hyperplanes

Dδ ¼: fx 2 R
d : jxj2 ¼ jxþ δj2g

for small values of δ: Then we study the case, when the corresponding quasimo-
mentum lies near a diffraction hyperplane and gets the complete perturbation theory
for the multidimensional Schrödinger operator with a periodic potential. Moreover,
we construct and estimate the measures of the isoenergetic surfaces in the high
energy region which implies the validity of the Bethe-Sommerfeld conjecture for
arbitrary dimension and arbitrary lattice. This conjecture was formulated in 1928
and claims that there exist only a finite number of gaps (the spaces between the
bands δn and δnþ1 for n ¼ 1; 2; . . .) in the spectrum σðLðqÞÞ of LðqÞ. Note that the
construction of the perturbation theory of LðqÞ is connected with the investigation
of the complicated picture of the crystal diffraction. The regular perturbation theory
does not work in this case, since the Bloch eigenvalues of the free operator are
situated very close to each other in the high energy region.

In the third chapter, using the asymptotic formulas obtained in the second
chapter, we determine constructively a family of the spectral invariants of LðqÞ from
the given Bloch eigenvalues. Some of these invariants are explicitly expressed by
the Fourier coefficients of the potential which present the possibility of determining
the potential constructively by using the Bloch eigenvalues as the input data.

In the fourth chapter, we consider the inverse problems of the three-dimensional
Schrödinger operator with a periodic potential q by the spectral invariants obtained
in the third chapter. First, we construct a set of trigonometric polynomials which is
dense in the Sobolev space Ws

2ðFÞ; where s[ 3; in the C
1- topology and every

element of this set can be determined constructively and uniquely, modulo inver-
sion x ! �x and translations x ! xþ τ for τ 2 R

3; from the given spectral
invariants that were determined constructively from the given Bloch eigenvalues.
Then a special class V of the periodic potentials is constructed, which can be easily
and constructively determined from the spectral invariants and hence from the given
Bloch eigenvalues. Moreover, we consider the stability of the algorithm for the
unique determination of the potential q 2 V of the three-dimensional Schrödinger
operator with respect to the spectral invariants and Bloch eigenvalues.

In the fifth chapter we summarize our results from the point of view of both
physicists and mathematicians. I am thankful to Claus Ascheron and Peter Wölfle
for their advices that help to improve the readability of the book.
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Chapter 1
Preliminary Facts

Abstract In this chapter we present some definitions and statements from the points
of view of both physicists and mathematicians to be used in the next chapters. We
mean especially the definitions of the lattices, periodic functions, Brillouin zones,
Schrödinger operator, Bloch eigenvalues, Bloch functions, diffraction planes, band
structures and Fermi surfaces. Moreover, we try to explain the transition between
these notions due to the understanding of the physicists andmathematicians. Besides,
wegive a brief discussion ofwhat is known from the literature andwhat is presented in
the book about the perturbation theory of the multidimensional Schrödinger operator
with a periodic potential. For this aimwe consider the largeBloch eigenvalues and the
correspondingBloch functions of the one-dimensional periodic Schrödinger operator
by the approachofChap.2, since it helps to compare thewell-knownone-dimensional
case with the multidimensional case and to see the complexity of the results obtained
in this book.

1.1 Lattices, Brillouin Zones, and Periodic Functions in R
d

The structure of the crystals can be described in termsof the lattice (called in geometry
and crystallography, a Bravais lattice), with a group of atoms attached to every lattice
point. The Bravais lattice in

R
d =: {(x1,x2, . . . , xd) : x1 ∈ R, x2 ∈ R, . . . , xd ∈ R

}
,

where R is the set of all real numbers, is defined by d linearly independent vectors
ω1,ω2, . . . ,ωd . In the case d = 3 these vectors are known as fundamental trans-
lations vectors such that every atomic arrangement looks the same in every respect
when viewed from the point r as when viewed from the point

r +
3∑

k=1

nkωk,

© Springer International Publishing Switzerland 2015
O. Veliev, Multidimensional Periodic Schrödinger Operator,
Springer Tracts in Modern Physics 263, DOI 10.1007/978-3-319-16643-8_1
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2 1 Preliminary Facts

where n1, n2 and n3 are integers. The lattice � generated by the vectors ω1,

ω2, . . . ,ωd is the set of all linear combinations of these vectors with the integer
coefficients:

� =
{

ω =
d∑

k=1

nkωk : n1 ∈ Z, n2 ∈ Z, . . . , nd ∈ Z

}

, (1.1.1)

whereZ is the set of all integers. The vectorsω1,ω2, . . . ,ωd used for the generation of
� are known as the primitive vectors or basis vectors for the lattice. The parallelotope
(d-dimensional parallelogram)

F =
{

x =
d∑

k=1

ykωk : y1 ∈ [0, 1), y2 ∈ [0, 1), . . . , yd ∈ [0, 1)
}

(1.1.2)

is called the fundamental parallelotope or the primitive unit cell of the lattice. In
the cases d = 2 and 3 the parallelotope F is the parallelogram and parallelepiped,
respectively. It has the origin in R

d as one corner and the vectors ω1,ω2, . . . ,ωd

form the sides which meet at that corner. Thus a crystal is characterized by its
regular periodically repeated structure. The smallest unit of this structure is called
the primitive unit cell. The primitive cells (parallelotopes) are joined together filling
the entire volume and giving rise to the periodicity of the crystal lattice.

The measure μ(F) (generalized volume) of the parallelotope F is equal to the
absolute value of the determinant of the d × d matrix (ωi, j ) created from the d row
vectors

ω1 = (ω1,1,ω1,2, . . . ,ω1,d ), ω2 = (ω2,1,ω2,2, . . . ,ω2,d ), . . . , ωd = (ωd,1,ωd,2, . . . ,ωd,d ).

Everywhere, for simplicity of notation and without loss of generality we assume that
the generalized volume (measure μ(F)) of the parallelotope F is equal to 1. Thus

μ(F) = ∣
∣det(ωi, j )

∣
∣ = 1. (1.1.3)

There are infinitely many choices for the basis vectors and hence for the unit cells.
In other words, the set of generators for a lattice is not uniquely determined. It is
well-known that the vectors b1, b2, . . . , bd are the other generators of � if and only
if there is a d × d matrix A = (ai, j ) with integer matrix elements and | det A| = 1
such that

bi =
d∑

j=1

ai, jω j

for i = 1, 2, . . . , d. Therefore, condition (1.1.3) is not a restriction for the choices
for the basis vectors of the lattice �.



1.1 Lattices, Brillouin Zones, and Periodic Functions in R
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Note that when F is translated through all the vectors in the lattice � fills all of
the space Rd without overlapping. Therefore the fundamental domain (unit cell) F
of the lattice � can be identified with the factor space (quotient group) Rd/� which
is the set of equivalent classes, where the equivalence of two elements x and y of
R

d is defined as follows: we say that x and y are equivalent if x − y ∈ �. Thus
any measurable set M that contains, for each x ∈ R

d , exactly one representative of
the set

x + � =: {x + y : y ∈ �}

is called a unit cell of the lattice �. It is also clear that Rd/� is a d-dimensional
torus (direct product of d circles).

We say that a function f : Rd → C is periodic with respect to the lattice � if

f (x + ω) = f (x)

for all ω ∈ �, where x = (x1,x2, . . . , xd) ∈ R
d and C is the set of all complex

numbers. Note that the periodic function f can be regarded in this case as a function
on the torus Rd/�. It is clear that the wave function ei〈γ,x〉 is periodic with respect
to the lattice � if and only if

〈γ,ω〉 ∈ 2πZ, (1.1.4)

for all ω ∈ �, where γ ∈ R
d and 〈·, ·〉 is the inner product in R

d . The set of all
vectors γ ∈ R

d satisfying (1.1.4), that is,

� =: {γ ∈ R
d : 〈γ,ω〉 ∈ 2πZ,∀ω ∈ �} (1.1.5)

is the lattice dual to � and is called the reciprocal lattice. The basis vectors of the
reciprocal lattice � are the vectors γ1, γ2, . . . , γd satisfying

〈γi ,ωi 〉 = 2π & 〈γi ,ω j 〉 = 0 (1.1.6)

for i, j = 1, 2, . . . , d and j �= i. Thus the fundamental parallelotope of the lattice �

is

F∗ =
{

ω =
d∑

k=1

akγk : a1 ∈ [0, 1), a2 ∈ [0, 1), . . . , ad ∈ [0, 1)
}

. (1.1.7)

As we noted above, F∗ can be identified with the fundamental domain Rd/� of the
lattice �.

The other and famous fundamental domains (unit cells) of the reciprocal lattice
� are the Brillouin zones. The first Brillouin zone (called Brillouin zone) of � is
defined to be the set of points x ∈ R

d in reciprocal space which are nearer (not
necessarily unique) to the origin than any point x + γ with γ ∈ � and γ �= 0.



4 1 Preliminary Facts

The nth Brillouin zone is the set of all points x in the reciprocal space which have
the origin as their (not necessarily unique) nth nearest point of the set

x + � =
{

y ∈ R
d : y = x + γ, γ ∈ �

}
. (1.1.8)

Note that any interior point of the nth Brillouin zone is the unique nth nearest point.
If the several points of (1.1.8) are the nth nearest points (i.e. are equidistant from the
origin) then these points belong to the boundaries of the Brillouin zones and only
one of them belongs to the nth Brillouin zone.

It readily follows from this definition the following properties of the Brillouin
zone:

(a) All zones have equal volumes,
(b) Each zone can be translated into the first zone so as to fill it exactly by

translating different pieces of the zone by appropriate reciprocal lattice-vectors.
(c) For arbitrary fixed n the nth Brillouin zone contains unique element from any

equivalent classes defined as follows: x and y are equivalent if x − y ∈ �. Therefore
the Brillouin zones can be identified with the fundamental domain R

d/� of the
lattice �.

The geometrical description of the Brillouin zones will be given in Sect. 1.3.
Now let us give the brief description of the problem discussed above. The recip-

rocal lattice vectors are the special wave vectors γ for which the free electron wave
function ei〈γ,x〉 is periodic with respect to the direct lattice. The wave vectors having
this property will be said to belong to the reciprocal lattice. The primitive vectors
γ1, γ2, . . . , γd of the reciprocal lattice can be generated from the primitive vectors
ω1,ω2, . . . ,ωd of the direct lattice by the equalities (1.1.6). A crystal is made up of
a periodic arrangement of one or more atoms (the basis) repeated at each Bravais
lattice point. Consequently, the crystal looks the same when viewed from any equiv-
alent lattice point, namely those separated by the translation of one unit cell. Every
periodic function is associated with a Bravais lattice. You can think of the function
as being defined in a primitive unit cell and then repeating the primitive unit cell at
every point of the Bravais lattice.

As we noted above the wave function ei〈γ,x〉 is periodic, with respect to the lattice
�, if and only if γ ∈ �. One can easily verify that the system

{
ei〈γ,x〉 : γ ∈ �

}
(1.1.9)

is an orthonormal basis in the Hilbert space L2(F) of square integrable functions
with the inner product

( f, g) =
∫

F
f (x)g(x)dx .

Indeed, by (1.1.3) we have

∥
∥
∥ei〈γ,x〉

∥
∥
∥
2 =

∫

F

∣
∣
∣ei〈γ,x〉

∣
∣
∣
2

dx =
∫

F
1dx = μ(F) = 1,
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where ‖·‖ is the norm in the space L2(F) defined by

‖ f ‖ =
(∫

F
| f (x)|2 dx

)1/2

.

The orthogonality of the system (1.1.9) means that

(
ei〈γ,x〉, ei 〈̃γ,x〉) =

∫

F
ei〈δ,x〉dx = 0

for all γ̃ �= γ, where δ = γ − γ̃ ∈ �. The last integral can be calculated by using the
substitution

(x1, x2, . . . , xd) ↔ (y1, y2, . . . , yd),

where y1, y2, . . . , yd equal to the coefficients of the expansion x in the basis
ω1,ω2, . . . ,ωd [see (1.1.2)] and by (1.1.2) this substitution transforms the parallelo-
tope F to the cube [0, 1)d . Moreover the Jacobian J of this substitution is nonzero
since the vectors ω1,ω2, . . . ,ωd are linearly independent. Therefore using

x =
d∑

k=1

ykωk (1.1.10)

and taking into account that δ ∈ �\ {0} , that is,

δ =
d∑

k=1

nkγk

where n1, n2, . . . , nd are integers and at least one of them is not zero we have

∫

F
ei〈δ,x〉dx = |J |

1∫

0

1∫

0

. . .

1∫

0

ei2πn1y1ei2πn2 y2 . . .ei2πnd yd dx1dx2. . .dxd = 0.

Since the system

{
ei2πn1y1ei2πn2 y2 . . .ei2πnd yd : n1 ∈ Z, n2 ∈ Z, . . . , nd ∈ Z

}

is complete in L2
([0, 1)d

)
, the above substitution shows that (1.1.9) is complete in

the Hilbert space L2(F) and hence is an orthonormal basis. Therefore every function
q ∈ L2(F) has the decomposition

q(x) =
∑

γ∈�

qγei〈γ,x〉, (1.1.11)
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where

qγ =
(

q, ei〈γ,x〉) =
∫

F
q(x)e−i〈γ,x〉dx

for γ ∈ � are the Fourier coefficients of q with respect to the orthonormal system
(1.1.9) and the Fourier series (1.1.11) converges to q in the norm of L2(F). If

∑

γ∈�

|qγ | < ∞,

then the series (1.1.11) converges uniformly to the periodic function q.
The smoothness of q depends on the Fourier coefficients. For simplicity, let us

first consider the case d = 1. Let � = Z. Then � = 2πZ and the system

{ei2πnx : n ∈ Z} (1.1.12)

is the orthonormal basis in L2[0, 1]. Using the integrations by part, one can readily
see that if the sth derivative of the periodic functions q of period 1 belongs to L2[0, 1]
then the Fourier coefficient q(s)

n of q(s) with respect to (1.1.12) satisfies the equality

q(s)
n =: (2πn)−sqn

where

qn =
∫ 1

0
q(x)e−i2πnx dx

is the Fourier coefficient of q. Therefore the periodic function q belongs to the
Sobolev space

W s
2 [0, 1] =:

{
f : f (s) ∈ L2[0, 1]

}

if and only if ∑

n∈Z
|2πn|2s |qn|2 < ∞

Similarly for arbitrary dimension d the relation q ∈ W s
2 (F) for the periodic, with

respect to the lattice �, function q means that

∑

γ∈�

|qγ |2|γ|2s < ∞
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1.2 Schrödinger Operator and Bloch Functions

The energy operator is often referred to as the Hamiltonian and it is also called (in
nonrelativistic quantummechanics) the Schrödinger operator. The Schrödinger oper-
ator with a periodic potential arises in the quantum theory of crystals and describes
the motion of a particle in the crystal. The ions forming a crystal lattice � actually
generate a periodic field and one can examine the motion of a electron in this field.
Thus if V (x) is the potential seen an electron at x then V (x + ω) = V (x) for all
ω ∈ �. The wave function u(x) of the electron placed in the periodic potential V
must satisfy the Schrödinger equation

− h2

2m
�u(x) + V (x)u(x) = Eu(x),

where

�u =
d∑

j=1

∂2u

∂x2j
,

h is Planck’s constant, m and E are respectively the mass of the electron and its
energy eigenvalue.

In the mathematical literature the Schrödinger equation is written in the form

−�u(x) + q(x)u(x) = �u(x), (1.2.1)

where

q(x) = 2m

h2
V (x),� = 2m

h2
E .

The Schrödinger operator L(q) with a real periodic, relative to a lattice �, potential
q is defined in space L2(R

d) as follows, where L2(R
d) is the Hilbert space of square

integrable functions with the inner product

( f, g)Rd =
∫

Rd
f (x)g(x)dx .

Let D be the set of all functions u ∈ L2(R
d) such that

(i) u is compactly supported, that is, the set

{
x ∈ R

d : f (x) �= 0
}

is a bounded closed subset of Rd ,

(ii)
∂u

∂x j
exists and is an absolutely continuous function of x j for j = 1, 2, . . . , d,

(iii) −�u + qu ∈ L2(R
d).
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Let L0(q) be an operator defined in D by

L0(q)u = −�u + qu.

One can readily verify that L0(q) is a symmetric operator, that is,

(
L0(q) f, g

)

Rd
=
(

f, L0(q)g
)

Rd

for all f, g ∈ D. The Schrödinger operator (Hamiltonian) L(q) is the self-adjoint
extension of L0(q). The existence and uniqueness of the extension are well-known
(see [BeShu]).

Now we consider the connection of the Hamiltonian L(q) with the Bloch Func-
tions. Recall that Bloch wave or Bloch state, named after Felix Bloch, is the wave
function of a particle (usually, an electron) placed in a periodic potential q. Bloch’s
theorem states that for a particle moving in the periodic potential, the wave functions
�(x) are of the form

�(x) = ei〈t,x〉 p(x), (1.2.2)

where p(x) is a periodic function with the same periodicity that the potential q
has and t ∈ R

d is a crystal momentum (quasimomentum). The exact form of p(x)

depends on the potential associated with atoms (ions) that form the solid. The motion
of an electron in the free space, where the potential q is zero everywhere, is described
by the simplest form of the Schrödinger equation

−�u(x) = λu(x)

and the wave function ei〈t,x〉 is the solution of this equation, since

−�ei〈t,x〉 = |t |2 ei〈t,x〉.

Thus by Bloch’s theorem the wave function �(x) of the electron in the periodic
potential is the product of the wave function ei〈t,x〉 of the electron in the free space
and the periodic function p(x). The wave function expressed by Eq. (1.2.2) is called
the Bloch wave or Bloch state.

The Bloch’s theorem is very important, since by applying this theorem, the wave
function in a macroscopic crystal containing as many atoms as the Avogadro number
can be determined by solving the Schrödinger equation into which information from
just one unit cell is inserted.

One of the often used (in mathematics) forms of Bloch’s theorem is the following
(see [Eas]):

Theorem (Bloch) Let S consist of the real numbers � for which theEq. (1.2.1) has
a non-trivial bounded solution in R

d . If � ∈ S then (1.2.1) has a solution �t (x,�)

of the form
�t (x,�) = ei〈t,x〉 p(x), (1.2.3)
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where p is a periodic function having the same periodicity that the potential q has,
the vector t ∈ R

d in (1.2.3) is called a crystal momentum (quasimomentum) and S
is said to be stability set of the Eq. (1.2.1)

The solution of (1.2.1) of the form (1.2.3) is called the Bloch solution of (1.2.1)
(see [Ku]). It readily follows from (1.2.3) that if ω ∈ �,where� is the period lattice
of the potential q and hence of p, then

�t (x + ω,�) = ei〈t,x+ω〉 p(x + ω) = ei〈t,x〉ei〈t,ω〉 p(x) = ei〈t,ω〉�t (x,�)

Therefore the Bloch solution �t (x,�) of (1.2.1) can be considered as an eigenfunc-
tion of the eigenvalue problem (1.2.1) and

u(x + ω) = ei〈t,ω〉u(x) (1.2.4)

for all ω ∈ �. Conversely, if�(x,�) is an eigenfunction of this eigenvalue problem
then by (1.2.4) we have

|�(x + ω,�)| = |�(x,�)|

for all ω ∈ �. It implies that �(x,�) is bounded in Rd and by Bloch’s theorem has
the form (1.2.3), that is, �(x,�) is the Bloch solution of (1.2.1). Thus �(x,�) is a
Bloch solution of (1.2.1) if and only if it is an eigenfunction of the eigenvalue problem
(1.2.1) and (1.2.4) for somevalues of the quasimomentum t ∈ R

d . The corresponding
eigenvalue �(t) is called the Bloch eigenvalue for the crystal momentum t. In other
words, the Bloch eigenvalue �(t) and Bloch function �t (x,�) for fixed crystal
momentum t are the eigenvalue and eigenfunction of −� + q acting on the space

{
u ∈ H2

loc(R
d) : u(x + ω) = ei〈t,ω〉u(x),∀ω ∈ �

}
,

where H2
loc(R

d) is the space of locally square integrable functions u such that ∂αu,

for |α| ≤ 2, is also locally square integrable.
In the language of the operator theory the Bloch eigenvalue �(t) and Bloch

function�t (x,�) for fixed crystal momentum t are the eigenvalue and eigenfunction
of the differential operator Lt (q) generated in L2(F) by the differential expression

−�u(x) + q(x)u(x) (1.2.5)

and the boundary conditions (1.2.4), where in the writing the boundary conditions
in the form (1.2.4) we take it that the eigenfunction u is extended to the whole Rd

as continuously differentiable functions. More precisely, the operator Lt (q) can be
defined in L2(F) as the differential operator generated by (1.2.5) and the boundary
conditions

u(x + ω j ) = ei〈t,ω j 〉u(x),uy j (x + ω j ) = ei〈t,ω j 〉uy j (x) (1.2.6)
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for x ∈ F( j) and j = 1, 2, . . . , d,where F is the closure of the parallelotope (1.1.2),
that is,

F =:
{

x =
d∑

k=1

ykωk : y1 ∈ [0, 1], y2 ∈ [0, 1], . . . , yd ∈ [0, 1]
}

(1.2.7)

is the closed parallelotope,

F( j) =:
⎧
⎨

⎩
x =

∑

k∈{1,2,...,d}\{ j}
ykωk : y1 ∈ [0, 1], y2 ∈ [0, 1], . . . , yd ∈ [0, 1]

⎫
⎬

⎭

(1.2.8)

is the face of the boundary ∂F of the parallelotope F generated by
ω1,ω2, . . . ,ω j−1,ω j+1,ω j+2, . . . ,ωd and uy j =: ∂u

∂y j
is the derivative of u with

respect to the variable y j defined by (1.1.10) [see also (1.2.7)].
Note that the boundary conditions (1.2.6) mean that the values of u and uy j on

the face ω j + F( j) of ∂F are equal to ei〈t,ω j 〉 times of their values on opposite face
F( j). The boundary conditions (1.2.6) are equivalent to the conditions (1.2.4) if, as
we noted above, in the writing the boundary conditions in the form (1.2.4) we take it
that the eigenfunction u is extended to the whole Rd as continuously differentiable
functions. Therefore in the next chapters for simplicity we say that the operator Lt (q)

is generated in L2(F) by the differential expression (1.2.5) and boundary conditions
(1.2.4). Thus the operator Lt (q) is defined as follows. Domain of definition D(Lt (q))

of Lt (q) is the set of u ∈ L2(F) such that:

(a)
∂u

∂x j
exists and is an absolutely continuous function of x j for j = 1, 2, . . . , d,

(b) −�u + qu ∈ L2(F),

(c) u satisfies the boundary conditions (1.2.6).
For u ∈ D(Lt (q)) the operator Lt (q) is defined by

Lt (q)u = −�u + qu

It is well-known the following statements about the spectral properties of Lt (q)

and L(q):
Theorem (On the spectra of the operators Lt (q) and L(q)).
(a) The spectrum σ(Lt (q)) of the operatorLt (q) is discrete and consists of the

eigenvalues
�1(t) ≤ �2(t) ≤ · · · (1.2.9)

such that � j (t) → ∞ as j → ∞ which are the Bloch eigenvalues with the fixed
quasimomentum t . The corresponding normalized eigenfunctions (Bloch functions)
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�1,t (x),�2,t (x), . . .

form an orthonormal basis in L2(F).

(b) The function �n is continuous with respect to t and its range

δn =: {�n(t) : t ∈ F∗} ,

where F∗ is the fundamental parallelotope of the reciprocal lattice �, is a closed
interval of R .

(c) The operator L(q) has no eigenvalue and has only the continuous spectrum.
The spectrum σ(L(q)) of the operator L(q), the stability set S defined in the above
formulation of Bloch’s theorem, and the union of the spectra of the operators Lt (q)

for t ∈ F∗ are the same, that is,

σ(L(q)) = S =
⋃

t∈F∗
σ(Lt (q)) =

⋃

t∈F∗

( ∞⋃

n=1

{�n(t)}
)

=
∞⋃

n=1

δn . (1.2.10)

Thusσ(L(q)) consists of the intervals δn for n = 1, 2, . . . , that are called the band
of the spectrum of L(q). The spaces between neighboring bands are called the band
gaps or the gaps in the spectrum of L(q). In the physical literature these bands and
gaps are named as energy bands (allowed regions of energy) and forbidden regions
of energy respectively

Note that the rigorous proof of this theoremcan be found in [Eas] (see also [BeShu,
ReSi]). First the physicists observed that the spectrum of L(q) has a band structure
[SomBe, Ki, Mad]. The eigenfunctions�1,t (x), �1,t (x), . . . , of Lt (q) for all values
of the quasimomentum t are the Bloch waves [Bl]. For the multidimentional case
Gelfand proved Parseval’s relation for the Bloch waves in L2(R

d) [Gel]. Oder and
Keller [OdKe] proved that the spectrum of L(q) is the union of all Bloch eigenvalues
�1(t),�2(t), . . . , for all t ∈ F�. Thomas [Th] proved that the spectrum of L(q)

is absolutely continuous. Wilson [Wi] studied the analytic properties of �n(t) as a
function of the quasimomentum t.

Now let us discuss this theorem from the point of view of the mathematicians
and physicists. The statement (a) follows from the fact that Lt (q) is a self-adjoint
operator defined in a bounded region of Rd .

Now we discuss (b). The function �n is continuous with respect to t due to the
following. Let Pn(x) be a function defined by

Pn(x) = e−i〈t,x〉�n,t (x), (1.2.11)

where �n,t (x) is the eigenfunction of Lt (q) corresponding to the eigenvalue �n(t),
that is,

−��n,t (x) + q(x)�n,t (x) = �n(t)�n,t (x), (1.2.12)

�n,t (x + ω) = ei〈t,ω〉�n,t (x),∀ω ∈ �. (1.2.13)
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Using (1.2.11), (1.2.12), and (1.2.13) one can easily verify that Pn(x) satisfies the
following equalities

−
Pn(x) − 〈2i t,∇〉 Pn(x) + 〈t, t〉 Pn(x) + q(x)Pn(x) = �n(t)Pn(x)

and
Pn(x + ω) = Pn(x) (1.2.14)

for all ω ∈ �. Hence �n(t) is the eigenvalue of the operator generated by the
operation

−
 − 〈2i t,∇〉 + 〈t, t〉 + q (1.2.15)

and the periodic boundary conditions. Since the periodic boundary conditions do not
depend on t and the operation (1.2.15) continuously depends on t the eigenvalue
�n(t) also continuously depends on t. Therefore its range

δn =: {�n(t) : t ∈ F∗} , (1.2.16)

where F∗ is the fundamental parallelotope of the reciprocal lattice �, is an interval
of R. The closedness of δn will be discussed later.

Now let us discuss (c). The operator L(q) is associated with the whole space Rd

and by the Floquet theory (see [Ku]) the Schrö dinger equation (1.2.1) has no solution
belonging to L2(R

d). Therefore L(q) has no eigenvalue. In fact, the numbers �n(t)
are not the eigenvalues of the operator L(q) since the corresponding Bloch solutions
�n,t (x) do not belong to L2(R

d) and by definition,� is an eigenvalue of the operator
L(q) if there exists

� ∈ D(L(q)) ⊂ L2(R
d)

such that
L(q)� = ��. (1.2.17)

Therefore Bloch eigenvalues are called the generalized eigenvalues of the operator
L(q). However, in some literatures �n(t) is named as an eigenvalue of L(q); that is
natural, say, in the following sense. Instead of the operator L(q)) in whole space Rd

one can consider an operator L(q, n) in the very large parallelotope

Fn =
{

x =
d∑

k=1

ykωk : y1 ∈ [−n1, n1], y2 ∈ [−n2, n2], . . . , yd ∈ [−nd , nd ]
}

,

(1.2.18)

with the periodic boundary conditions, where n = (n1, n2, . . . , nd) and n1,

n2, . . . , nd are large positive integers. Due to the fact that Rd is a limit of Fn as
n j → ∞ for j = 1, 2, . . . , d, the eigenvalues of the operator L(q, n) or the limit
points of its eigenvalues can be named (in some sense) the eigenvalues of L(q).
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Moreover using this argument, it was proved that (see [Eas]) the set of limit points,
of the eigenvalues of L(q, n) as n j → ∞ for j = 1, 2, . . . , d, coincides with
σ(L(q)). On the other hand, using another argument one can see that the set of
all eigenvalues of L(q, n) and their limit points as n j → ∞ for j = 1, 2, . . . , d,

coincide with the set of Bloch eigenvalues

{
�n(t) : t ∈ F�, n ∈ N

}
.

These arguments encourage to believe the validity of (1.2.10).
To be more precise let us define the operator L(q, n) precisely. Moreover con-

sideration the Schrödinger operator in the bounded and large parallelotope Fn is
interesting, since an electron in a metal must be confined in a bounded space. The
effect of a finite size of a system on the motion of an electron must be taken into
account. The electron wave function u(x) is assumed along the parallelotope Fn.

Since macroscopic crystal contains as many atoms as the Avogadro number it is
interesting to consider the large parallelotope Fn which means that n1, n2, . . . , nd

are large numbers. Let us impose the periodic boundary conditions

u(x + 2n jω j ) = u(x),uy j (x + 2n jω j ) = uy j (x) (1.2.19)

on this parallelotope for x ∈ Fn( j) and j = 1, 2, . . . , d, where Fn( j) is the face
of the boundary ∂Fn of the parallelotope Fn which is parallel to F( j) [see (1.2.8)]
and passes through the point −n jω j and the variable y j is defined by (1.1.10). Note
that the boundary conditions (1.2.19) means that the values of u and uy j on the face
Fn( j) of the parallelotope Fn are equal to their values on the opposite face.

Let L(q, n) be an operator generated in L2(Fn) by the differential expression
(1.2.5) and the boundary conditions (1.2.19). Since L(q, n) is associated with the
bounded domain Fn of Rd its spectrum is discrete and consists of the eigenvalues.
One can readily verify that the set of the eigenvalues of L(q, n) are the union of the
Bloch eigenvalues �n(t) for n ∈ N and t ∈ A(n), where

A(n) =
⎧
⎨

⎩
t =

d∑

j=1

k j

2n j
γ j : k j = 0, 1, . . . , 2n j ; j = 1, 3, . . . , d

⎫
⎬

⎭
. (1.2.20)

Indeed, if u(x) satisfies the first condition of (1.2.6) for t ∈ A(n), then applying it
2n j times and using (1.1.6) we obtain that

u(x + 2n jω j ) = exp

⎛

⎝
d∑

j=1

k j

2n j
γ j , 2n jω j

⎞

⎠u(x) = ei2πk j u(x) = u(x),

that is, the first condition of (1.2.19) holds. In the same way one can show that the
second condition of (1.2.6) implies the second condition of (1.2.19). The proof of
the converse statements are similar (see [Eas]). Thus we have
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σ(L(q, n)) =
⋃

t∈A(n)

σ(Lt (q)). (1.2.21)

Denote by � the union of the spectrum σ(L(q, n)) of the operators L(q, n) for
n ∈ N

d . It is clear that the closure� of� is the set of all limit points of the spectrum
σ(L(q, n)) as n j → ∞ for j = 1, 2, . . . , d. Since, as we noted above, the set of
these limit points is σ(L(q)), we have

� = σ(L(q)). (1.2.22)

On the other hand, taking into account that the set of all limit points of

{
k

2n
: k = 0, 1, . . . , 2n

}

as n → ∞ is [0, 1] and using the equalities (1.2.20) and (1.1.7) one can readily
see that the set of all limit points of A(n) as n j → ∞ for j = 1, 2, . . . , d is F∗.
Therefore (1.2.21) and the continuity of the function �n(t) on F∗ show that

� =
⋃

t∈F∗
σ(Lt (q)). (1.2.23)

Thus we tried to explain the reason of the well-known equalities

S =
⋃

t∈F∗
σ(Lt (q)) = � = σ(L(q)). (1.2.24)

Now let us discuss the well-known mathematical statements described above and
some properties of theBloch eigenvalues�n(t) and theBloch functions�n,t (x) from
the point in view of physicists. Considering �n(t) as an eigenvalue of the boundary
value problem (1.2.1) and (1.2.4) and taking into account that for any γ ∈ �, where
� is the reciprocal lattice, the equality

ei〈t+γ,ω〉 = ei〈t,ω〉 (1.2.25)

holds, we obtain
�n(t + γ) = �n(t) (1.2.26)

and
�n,t+γ(x) = �n,t (x) (1.2.27)

for all γ ∈ �.

By (1.2.26) for given n the energy eigenvalue�n(t) is periodic with periodicity of
a reciprocal lattice. The energies�n(t) associated with the index n vary continuously
with the wave vector t and form an energy band δn identified by the band index n.
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All distinct values of�n(t) occur for t-values within the fundamental domainRd/�

of the lattices �, say within the first Brillouin zone or the unit cell (fundamental
parallelotope F∗) of the reciprocal lattice. In (1.2.26) replacing γ by γ j for j =
1, 2, . . . , d and using (1.1.7) we see that �n(t) takes the same values in the opposite
faces of the closed parallelotope F∗. Therefore the bands δn for n = 1, 2, . . . , of
the spectrum of L(q) are closed intervals, since they are the images of the closed
parallelotope F∗ under the continuous function �n(t). These intervals are allowed
zones of energy and the spaces between the neighboring intervals are forbidden
zones.

TheBlochwave energy eigenstate�n,t (x) iswrittenwith subscripts n and t , where
n is a discrete index, called the band index, which is present because there are many
different Bloch waves with the same quasimomentum t (each has a different periodic
component p). Within a band (i.e., for fixed n), �n,t (x) varies continuously with t ,
if its energy �n(t) is a simple eigenvalue. Since (1.2.27) holds for any reciprocal
lattice vector γ, all distinct Bloch waves occur for t-values within the first Brillouin
zone of the reciprocal lattice.

Suppose an electron is in a Bloch state�n,t (x). It follows from (1.2.11), (1.2.14),
and (1.2.25) that

�n,t (x) = ei〈t,x〉 Pn(x) = ei〈t+γ,x〉 Pn,γ(x), (1.2.28)

where Pn and Pn,γ for γ ∈ � are periodic with the same periodicity as the crystal
lattice �. Thus the actual quantum state of the electron is entirely determined by
�n,t (x), not t or Pn(x) directly, since t or Pn(x) are not unique. Indeed, if �n,t (x)

can be written as above using t , it can also be written using t + γ, where γ is any
reciprocal lattice vector [see (1.2.27)] and this replacement changes the periodic
component Pn(x) in (1.2.28).

Equality (1.2.27) shows that the wave vectors (quasimomenta) that differ by a
reciprocal lattice vector are equivalent, in the sense that they characterize the same
set of Bloch states. The first Brillouin zone is a restricted set of wave vectors with
the property that no two of them are equivalent, yet every possible wave vector is
equivalent to one (and only one) vector in the first Brillouin zone. Hence, if we restrict
to the first Brillouin zones, then every Bloch state has a unique t . Therefore the first
Brillouin zone is often used to depict all of the Bloch states without redundancy, for
example in a band structure, and it is used for the same reason in many calculations.

1.3 Band Structure, Fermi Surfaces and Perturbations

In Sect. 1.2 we discussed the description of the levels of an electron in a periodic
potential in terms of a family of continuous functions �n(t) called as the band
functions. For each n, the set of electronic levels specified by �n(t) is called an
energy band. The information contained in these functions for different n and t is
referred to as the band structure of the solid. The electron in the free space corresponds
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to the Schrödinger operator with zero potential. In the case q = 0 the eigenvalues
and eigenfunctions of Lt (q) are |γ + t |2 and ei〈γ+t,x〉 for γ ∈ �, since

−�ei〈γ+t,x〉 = |γ + t |2ei〈γ+t,x〉,

the function ei〈γ+t,x〉 satisfies (1.2.4) and the system

{
ei〈γ+t,x〉 : γ ∈ �

}

is an orthonormal basis in L2(F).

(i) Diffraction hyperplanes and Brillouin zones. The eigenvalue |γ + t |2 of
Lt (0) coincides with the other eigenvalue |γ + t + δ|2, that is, |γ + t |2 is a multiple
eigenvalue of Lt (0) if and only if γ + t belongs to the diffraction hyperplane

Dδ =: {x ∈ R
d : |x |2 = |x + δ|2} (1.3.1)

for some δ ∈ �.By (1.3.1), x ∈ Dδ if and only if the points x and x +δ have the same
distance from the origin. Therefore Dδ is the hyperplane normal to the reciprocal
lattice vector −δ at their midpoint. Moreover by the same reason Dδ is the boundary
of the Brillouin zones defined in Sect. 1.1. The diffraction hyperplanes play a crucial
role in the perturbation theory. Let us have a look the diffraction hyperplanes and
Brillouin zones in the following cases:

Case 1. d = 1. Consider the case of one-dimensional Schrödinger operator L(q)

with a periodic, with respect to the lattice Z, potential q. Then the reciprocal lattice
is 2πZ and the solution of the equation

|x |2 = |x + 2πn|2

in R is the point πn. Thus in this case the diffraction hyperplanes are the points
πn for n = ±1,±2, . . . that are the boundaries of the Brillouin zones. The first
Brillouin zone is (−π,π]. The second Brillouin zone is (π, 2π] ∪ (−2π,−π] and
the nth Brillouin zone is ((n − 1)π, nπ] ∪ (−nπ,−(n − 1)π].

Case 2. d = 2. Let the reciprocal lattice � be the two-dimensional lattice in R
2

and δ be a vector of the lattice. Then x ∈ Dδ if and only if x lies in the line normal to
the vector −δ at its midpoints. Thus in this case the diffraction hyperplanes are the
lines normal to the reciprocal lattice vectors at their midpoints and the nth Brillouin
zone is the union of the polygons bounded by the diffraction lines.

Similarly in the case d = 3 the diffraction hyperplanes are the planes normal
to the reciprocal lattice vectors at their midpoints. Therefore the reciprocal space
is partitioned into polyhedra bounded by the planes normal to the reciprocal lattice
vectors at their midpoints. These planes are boundaries of the Brillouin zone. Hence
the Brillouin zone appears in reciprocal space as an assembly of polyhedra bounded
by the planes normal to the reciprocal lattice vectors at their midpoints.
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(ii) Isoenergetic surface. The isoenergetic surface representing the momentum
distribution of the electrons is also constructed in reciprocal space. Note that the
isoenergetic surface Iq(λ) corresponding to the energy λ refers to a constant energy
surface and is defined by

Iq(λ) = {t ∈ F∗ : ∃N ,�N (t) = λ},

that is, Iq(λ) is the set of quasimomenta t in the primitive cell F∗ of the reciprocal
lattice for which there exists a Bloch eigenvalue �N (t) coinciding with the constant
energyλ,where the band function�N (t) is defined in Sect. 1.2. This surface for some
special and important (in physics) value of λ is called the Fermi surface. Since for
the free electrons (in the case q = 0) the band functions are |γ + t |2, the isoenergetic
surface I0(λ) in this case is

I0(λ) = {t ∈ F∗ : ∃γ ∈ �, |γ + t |2 = ρ2}

which is the translation of the sphere {x ∈ R
d : |x | = ρ}, where λ = ρ2, to the

primitive cell F∗ by the vectors of the reciprocal lattice �. In fact this sphere can be
illustrated as the isoenergetic surfaces of the free electron.

(iii) Perturbation of the free electron. Now we discuss how the free-electron is
perturbed by the periodic potential and then demonstrate it in the one-dimensional
case (see iv). The effect of the periodic potential on the electron can be treated
in the reciprocal space in terms of the interaction of the isoenergetic surface with
the diffraction hyperplanes, that is, with the boundaries of the Brillouin zones. The
isoenergetic surface begins to be distorted from a sphere before making contacts with
the Brillouin zone planes. The gaps in the spectrum emerges as a result of distortion
of the isoenergetic surface in the diffraction planes. Recall that the spectrum of the
Schrödinger operator L(q) with a periodic potential consists of the energy bands
δn for n = 1, 2, . . . , that are defined in (1.2.16) and named as the allowed bands.
The gap in the spectrum is the region between the energy bands δn and δn+1 and in
the physical literature is named the forbidden band or the energy gap. This means
that the electron is not allowed to take energies between the allowed bands δn and
δn+1 and, hence, there appears an energy discontinuity. Thus an energy gap appears
across the Brillouin zone plane. The isoenergetic surface becomes discontinuous,
being separated into pieces by the zone boundary. This means that a part of the
isoenergetic surface appears in the (n + 1)th zone but the rest remains in the nth
zone, leaving unoccupied states holes. It can be easily seen in the one-dimensional
case [see the example below in (iv)].

The formation of the energy gap can also be discussed from the point of view
of the diffraction phenomena of the Bloch wave. For this let us recall the Bragg
reflection. The quasimomentum γ + t is said to satisfy the Laue condition or the
Bragg condition if it belongs to the diffraction plane Dδ for some δ, that is,
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|γ + t |2 = |γ + t + δ|2.

The Bloch wave changes its direction due to the Bragg reflection.
In the following one-dimensional example we demonstrate both how the inter-

action of the isoenergetic surface with the diffraction hyperplanes and how the dif-
fraction phenomena of the Bloch waves result in the energy gap. Note that the band
structure calculation of a real lattice is much more complicated and this example
should be looked upon as a simple demonstration.

(iv) One-dimensional Model. Let H(q) be the one-dimensional Schrödinger
operator (named as Hill’s operator) generated in L2(−∞,∞) by the expression

−y′′ + q(x)y, (1.3.2)

where q is a real-valued function satisfying q(x) = q(x + 1). Note that there are a
lot of books and papers about the one-dimensional case (see [DuSch, Eas, Le, MaVi,
Mar, Na, Ti] and the references on them), where the spectrum of H(q) is investigated
and the asymptotic formulas for the eigenvalues λ and the eigenfunctions � when
λ → ∞ were obtained by different methods. Here we consider the large Bloch
eigenvalues and the corresponding Bloch functions of H(q) by the approach which
is useful for understanding the results of Chap. 2. Moreover, it helps to compare
the well-known one-dimensional case with the multidimensional case and to see the
complexity of the results obtained in this book.

For simplicity assume that

sup
x∈[0,1]

|q(x)| = M < ∞ &
∫ 1

0
q(x)dx = 0. (1.3.3)

Note that the first condition in (1.3.3) can be replaced by q ∈ L1[0, 1] (see [VeDe,
VeDu]) and the second condition is assumed without loss of generality. Thus the
period lattice of the potential q is Z and the reciprocal lattice is 2πZ. As we stressed
above if the reciprocal lattice is 2πZ then the diffraction planes are the points πn for
n = ±1,±2, . . . , since the Bragg condition holds at them. We see below that this is
indeed the wave number at which the energy gap appears. Moreover we see readily
the cases when the plane wave ei(2πn+t)x is reflected and when it is not reflected by
the crystals.

Let us recall some well-known results about H(q) that we use for the discussion
of this model. The spectrum σ(H) of the operator H(q) is the union of the spectra
σ(Ht ) of the operators Ht (q) for t ∈ [0, 2π), which are generated in L2[0, 1] by the
expression (1.3.2) and the t-periodic boundary conditions

y(1) = eit y(0), y′(1) = eit y′(0).

In the case q = 0 the eigenvalues and eigenfunctions of Ht (0) are respectively
(2πn + t)2 and ei(2πn+t)x for n ∈ Z. All eigenvalues of Ht (0) for t �= 0,π are

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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simple, while the eigenvalues of H0(0), except 0, and Hπ(0) are double. Since the
eigenvalues of H−t (q) coincide with those of Ht (q), we discuss only the case t ∈
[0,π]. For simplicity let us investigate the case t ∈ [0, π

2 ]. (The case t ∈ (π
2 ,π] can

be considered in the same way). By well-known perturbation theory the eigenvalues

λ0(t) ≤ λ−1(t) ≤ λ1(t) ≤ λ−2(t) ≤ λ2(t) ≤ · · · (1.3.4)

of Ht (q) for t ∈ [0, π
2 ] satisfy the inequalities

∣
∣
∣λn(t) − (2πn + t)2

∣
∣
∣ ≤ M (1.3.5)

for all n ∈ Z due to (1.3.3).
First let us give the rigorous mathematical proof of the asymptotic formulas and

then discuss the band structure from the point of view of the physicists. To obtain
the asymptotic formula for the eigenvalues λn(t) and corresponding normalized
eigenfunctions �n,t (x) of Ht (q), let us use the following relation

(λn(t) − (2πk + t)2)(�n,t , ei(2πk+t)x ) = (q�n,t , ei(2πk+t)x ) (1.3.6)

which can be obtained from the equation

−� ′′
n,t (x) + q(x)�n,t (x) = λn(t)�n,t (x)

by multiplying e−i(2πk+t)x and integrating the resulting expression over [0, 1] by
parts, where (·, ·) denotes the inner product in L2[0, 1]. By (1.3.3) and Schward’s
inequality we have ∣

∣
∣(q�n,t , ei(2πk+t)x )

∣
∣
∣ ≤ M. (1.3.7)

If t ∈ [0, π
2 ] then ∣∣(2πn + t)2 − (2πk + t)2

∣
∣ ≥ 2π(|n − k|) |(2π |n + k| − π)| for

k �= ±n. This with (1.3.5) gives us

∣
∣
∣λn(t) − (2πk + t)2

∣
∣
∣ > 3π2 |(n − k)(n + k)| (1.3.8)

for k �= ±n and for the large values of n.

It follows from (1.3.6)–(1.3.8) that

∑

k∈Z,k �=±n

∣
∣
∣(�n,t (x), ei(2πk+t)x )

∣
∣
∣
2 =

∑

k∈Z,k �=±n

M2

(3π2(n − k)(n + k))2
= O(

1

n2 ).

Hence ∥
∥
∥
∥
∥
∥

∑

k∈Z,k �=±n

(�n,t (x), ei(2πk+t)x )ei(2πk+t)x

∥
∥
∥
∥
∥
∥

= O(
1

n
).



20 1 Preliminary Facts

Therefore the expansion of �n,t (x) by the orthonormal basis {ei(2πn+t)x : n ∈ Z}
has the form

�n,t (x) = un(t)e
i(2πn+t)x + vn(t)ei(−2πn+t)x + O(n−1), (1.3.9)

where un(t) = (�n,t , ei(2πn+t)x ), vn(t) = (�n,t , ei(−2πn+t)x ),

|un(t)|2 + |vn(t)|2 = 1 + O(n−2). (1.3.10)

Now we consider the following two cases. First let us consider the case when the
quasimomentum 2πn + t is far from the diffraction points πk, that is, there exists a
positive constant c � 1 such that t ∈ [c, π

2 ]. Then
∣
∣
∣(2πn + t)2 − (−2πn + t)2

∣
∣
∣ ≥ 8π |n| c.

Therefore using (1.3.5) and (1.3.6) for k = −n we obtain

∣
∣
∣λn(t) − (−2πn + t)2

∣
∣
∣ ≥ 8π |n| c − M

and
(�n,t (x), ei(−2πn+t)x ) = O(n−1)

This with (1.3.9) and (1.3.10) implies that

�n,t (x) = ei(2πn+t)x + O(
1

n
) (1.3.11)

for t ∈ [c, π
2 ].

Now using (1.3.11) in (1.3.6), letting k = n and taking into account the second
relation of (1.3.3) we obtain that

λn(t) = (2πn + t)2 + O

(
1

n

)
. (1.3.12)

Now let us consider the case t ∈ [0, c], that is, the case when the quasimomentum
2πn + t is close the diffraction point 2πn. In the case t = 0 the eigenvalues (2πn)2

for n �= 0 of the unperturbed operator H0(0) are double and the corresponding
eigenfunctions are the linear combinations of ei2πnx and e−i2πnx . All eigenvalues of
Ht (0) for t �= 0,π are simple. However if t is very close to 0 then the eigenvalues
(2πn + t)2 and (−2πn + t)2 are close to each other.

Let us consider the case t = 0. Since the eigenvalues (2πn)2 for n �= 0 of the
unperturbed operator H0(0) are double, by (1.3.4) and (1.3.5) the perturbed operator
H0(q) has two eigenvalues (counting multiplicity) denoted by λn =: λn(0) and
λ−n =: λ−n(0) such that
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λ−n ≤ λn,

∣
∣
∣λ±n − (2πn)2

∣
∣
∣ ≤ M.

First let us prove that the eigenvalues λn and λ−n are simple if

|nq2n|−1 = o(1), (1.3.13)

that is, |q2n| � 1
n , where

q2n =
(

q, ei4πnx
)

=
∫ 1

0
q (x) e−i4πnx dx .

Suppose to the contrary that λn is a double eigenvalue, that is, λn = λ−n . Then by
(1.3.9) and (1.3.10) the corresponding eigenspace is close to the span of the plane
waves ei2πnx and e−i2πnx , and there exists an eigenfunction of the form e−2πnx +
O
(
n−1

)
. Using this eigenfunction instead of �n,0(x) in the formula

(λn − (2πn)2)(�n,0, ei2πnx ) = (q�n,0, ei2πnx ), (1.3.14)

obtained from (1.3.6) by taking t = 0 and k = n, we get O
(
n−1

) = q2n + O
(
n−1

)

which contradicts (1.3.13). Thus the eigenvalues λn and λ−n are simple for large
values of n if (1.3.13) holds.

Now, for simplicity, let us consider the case when q is an even function. Then

q2n =
∫ 1

0
q(x) cos 4πnxdx ∈ R (1.3.15)

and without loss of generality it can be assumed that q2n > 0. Moreover in the case
of even potential q, it is well-known that (see [Eas, MaVi]) the periodic solutions and
hence the eigenfunction�n(x) =: �n,0(x) is either even or odd function. Therefore,
by (1.3.9) either vn = un + O(n−1) or vn = −un + O(n−1), where

un = (�n, ei2πnx ), vn = (�n, e−i2πnx ).

In the first case from (1.3.9) and (1.3.10) one can easily obtain that

�n(x) = unei2πnx + une−i2πnx + O(n−1) = √
2 cos 2πnx + O(n−1). (1.3.16)

Using this and taking into account that (�n, �−n) = 0,where �−n =: �−n,0(x),

we obtain

�−n(x) = unei2πnx − une−i2πnx + O(n−1) = √
2 sin 2πnx + O(n−1). (1.3.17)

Now using (1.3.16) and (1.3.17) in (1.3.14) and taking into account that λn − (2πn)2

is a real number,
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(cos 2πnx)2 = 1

2
(1 + cos 4πnx), (sin 2πnx)2 = 1

2
(1 − cos 4πnx),

and then using (1.3.15) we get

λn = (2πn)2 + q2n + O
(

n−1
)

(1.3.18)

and
λ−n = (2πn)2 − q2n + O

(
n−1

)
(1.3.19)

respectively. Note that the condition λ−n ≤ λn and formulas (1.3.18) and (1.3.19)
show that we have to take vn = un + O(n−1) if q2n > 0 and therefore (1.3.16) and
(1.3.17) hold.

In the same way one can show that the eigenvalues

μ−1 ≤ μ1 ≤ μ−2 ≤ μ2 ≤ · · ·

of Hπ(q) and the corresponding eigenfunction 	−1,	1,	−2,	2, . . . satisfy the
following asymptotic formulas

μn = (2nπ − π)2 + q2n−1 + O
(

n−1
)

(1.3.20)

μ−n = (2πn − π)2 − q2n−1 + O
(

n−1
)

(1.3.21)

and

	n(x) = √
2 cos(2πn − π)x + O(

1

n
). (1.3.22)

	−n(x) = √
2 sin(2πn − π)x + O(

1

n
). (1.3.23)

It iswell-known that [Eas, MaVi, Ti] the spectrumof H(q) consists of the intervals

[λ0,μ−1], [μ1,λ−1], [λ1,μ−2], [μ2,λ−2], . . . , [λ j−1,μ− j ], [μ j ,λ− j−1],
(1.3.24)

where j = 3, 4 . . ., that are the energy bands. Therefore the gaps in the spectrum
(energy gaps) of the Hill’s operator H(q) consist of the intervals

�1 = (μ−1,μ1),�2 = (λ−1,λ1), . . . ,�2 j−1 = (μ− j ,μ j ),�2 j = (λ− j ,λ j ),

(1.3.25)
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where j = 2, 3, . . . , that are the forbidden zones. Then (1.3.18)–(1.3.21) imply that
the length |�n| of the nth forbidden zone �n (gap of the spectrum) satisfies the
asymptotic formula

|�n| = 2 |qn| + O

(
1

n

)
. (1.3.26)

From the point of view of mathematicians the gaps arise as follows. For any real
periodic potential q the spectrum of the Hill’s operator H(q) consists of the intervals
(1.3.24). The ends of the intervals are periodic and antiperiodic eigenvalues. In the
case of unperturbed operator H(0) these intervals are

[0,π2], [π2, (2π)2], . . . , [(2nπ)2, ((2n + 1)π)2], [((2n + 1)π)2, ((2n + 2)π)2]
(1.3.27)

for n = 1, 2, . . . The right end of the nth band coincides with the left end of the
(n + 1)th band and these ends are the double eigenvalues (nπ)2 of periodic (if n is
an even number) or antiperiodic (if n is an odd number). Under the perturbation q
these double eigenvalues (double eigenvalue can be considered as two coinciding
eigenvalues) are separated and one eigenvalue goes to the left and becomes the right
end λ− j of the nth band (if n = 2 j) of the perturbed operator H(q) and the other
eigenvalue goes to the right and becomes the left endλ j of the (n+1)th band of H(q).

The space �2 j between these ends λ− j and λ j can not be occupied by the Bloch
eigenvalues λ− j (t) and λ j (t), since for t ∈ [0, c], where c � 1, the eigenvalues
λ− j (t) and λ j (t) together with λ− j (0) =: λ− j and λ j (t) =: λ j go to the left and
right respectively and hence arise gaps in the spectrum.

Now we summarize the discussed statements about the one-dimensional Schr
ödinger operator H(q) with a periodic potential q in the language of physicists. In
the above example, we rigorously constructed the Bloch waves in the high energy
region by asymptotic method that is very similar to the two-wave approximation. As
we noted above the Bragg condition is satisfied at±πn, since the reciprocal lattice is
2πZ. The isoenergetic surfaces I0((πn)2) corresponding to the energy (πn)2 consist
of two points−πn and πn and these points are the diffraction planes of the reciprocal
lattice. Under the perturbations the isoenergetic surfaces are separated into pieces by
the zone boundary and part of the isoenergetic surface appears in the (n + 1)th zone
but the rest remains in the nth zone, leaving unoccupied states holes.

Formula (1.3.11) means that the plane wave ei(2πn+t)x is almost not reflected
by the crystals if the wave number 2πn + t is far from the diffraction planes πn.
Formulas (1.3.16) and (1.3.17) show that under perturbation q the planewaves ei2πnx

and e−i2πnx interface each other. The standing waves
√
2 cos 2πnx and

√
2 sin 2πnx

are the results of the interference between two waves ei2πnx and e−i2πnx traveling in
the opposite directions. On the other hand, it is well-known that the eigenvalues of
Ht (q) for t �= 0,π are simple. Therefore if λn(0) is a simple eigenvalue, then�n,t (x)

continuously depend on t ∈ [0,π). This situation with (1.3.16) and (1.3.17) shows
that if t is close to zero then under perturbation q the plane waves ei(2πn+t)x and
e−i(2πn+t)x interface each other.Moreover, these situationswith (1.3.22) and (1.3.23)



24 1 Preliminary Facts

show the same resultwhen t is close toπ.Thus the electrons in the crystal are arranged
in the energy bands separated by the forbidden regions, called energy gaps or band
gaps, in the energy for which no wavelike electron orbitals exist. The band gap is a
result of the interference between two waves traveling in the opposite directions. The
planewavefunction ei(2πn+t)x represents the runningwave and carries themomentum
k = 2πn + t . If t �= 0,π then this wave function is the travelling wave. However,
the wave function at t = 0 is not wave ei2πnx or e−i2πnx travelling to the right or
left, respectively. Namely when the Bragg reflection condition t = 0 is satisfied by
the wave vector 2πn + t a wave travelling to the right is Bragg-reflected to travel to
the left and vice versa. As a result the standing waves

√
2 cos 2πx and

√
2 sin 2πx

are obtained from the travelling waves ei2πnx and e−i2πnx . The two standing waves√
2 cosπx and

√
2 sin πx pile up the electrons at the different regions. Therefore

the two waves have different values of the potential energy which is the origin of
the energy gap. It is well-known and we can see from the above example that the
magnitude of the energy gap depends on the Fourier coefficients of the periodic
potential. Thus the effect of the periodic potential is to produce an energy gap in
the band structure of the one-dimensional case and the energy gap appears when the
Bragg condition is satisfied at ±πn. In other words, when the wave vector is near to
these diffraction planes the Bloch wave is expressed by a linear combination of the
unperturbed plane waves ei(2πn+t)x and e−i(2πn+t)x perturbed by the lattice planes.
The runningwave−πn is reflected to thewaveπn by receiving the crystalmomentum
2πn from the lattice planes and the reflected wave−πn is again reflected to the wave
πn by receiving the crystal momentum 2πn from the lattice planes. This process
is infinitely repeated, resulting in a cosine- or sine-type stationary wave. Under the
above condition on the potential, the energy of the sine-type Bloch wave is lowered
and the energy of the cosine-type Bloch wave is raised. Thus, the difference in the
energy between these two stationary states must be responsible for the formation of
the energy gap.

1.4 Some Discussions of the Perturbation Theory

In this section we discuss the perturbation theory and isoenergetic surfaces for the
multidimensional Schrödinger operator L(q) in the high energy region. This case,
for the first time, was investigated in the papers [Ve1, Ve2, Ve3, Ve4, Ve5, Ve6]. In
Chap.2 we consider it in detail. Now we only describe briefly the crucial points and
complexity of this theory. For this, first let us recall that, in general, the perturbation
theory is easy if the potential q is smaller than the distance between the eigenvalues
of the unperturbed operator L(0). In other words, as well-known from the quantum
mechanics, if the perturbation is small compared to the energy difference between the
states, then we can use the regular perturbation theory to calculate the wave functions
and energy levels. The perturbation theory breaks down, however, in those caseswhen
the potential cannot be considered as a small perturbation. This happens when the
magnitude of the potential becomes comparable with the energy separation. To be

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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more precise let us define a constant h for the energy separation, named as the energy
separation constant, as follows. One can readily see from the One-dimensionel
model (see Sect. 1.3) that there are two cases:

Case 1. Isolated eigenvalue. An eigenvalue λ is isolated if all other eigenvalues
are far from λ (see the case t ∈ [c, π

2 ]). Then the energy separation constant h is a
distance from λ to the set of all other eigenvalues.

Case 2. Isolated pair of eigenvalues. If the two eigenvalues λ1 and λ2 are close
to each other and the others are far from these eigenvalues (see the case t ∈ [0, c)),
then the energy separation constant h is a distance from the set {λ1,λ2} to the set of
all other eigenvalues.

If ‖q‖ � h then the perturbation theory is easy and well-known, since in Case 1
and Case 2 one can use the regular perturbation theory and twowave approximations,
respectively,where the relation h � 1means that h is a sufficiently large number. The
inequality ‖q‖ � h which easifies the perturbation theory occurs in the following
two cases:

First case: The perturbation q is bounded or ‖q‖ = O(1) and the energy sep-
aration constant h tends to infinity as the eigenvalues go to infinity. This case is
the one-dimensional case in the high energy region and we demonstrated it in the
One-dimensionel model (see Sect. 1.3) and noted that this case was investigated
very well, there are a lot of books and papers about it.

Second case: The energy separation constant h is greater than some constant and
the potential q is replaced by εq,where ε is a small parameter, that is, ‖εq‖ � h.This
case can be used for the small eigenvalues of the multidimensional operator L(εq)

to obtain the formulas for ε → 0. Indeed if the eigenvalue |γ + t |2 has a distance
greater than some constant from the other eigenvalues then the small perturbation εq
can be investigated by the regular perturbation theory. Moreover if |γ + t |2 coincides
with (or it is near to) the eigenvalue |γ + t + δ|2 but has a distance greater than some
constant from the other eigenvalues, that is, if γ + t lies in (or it is near to) only one
Bragg plane Dδ, then a weak periodic potential εq has its major effect on those free
electron levels whose wave vectors are close to ones at which the Bragg reflection
can occur. In this case, in order to find the energy levels and the wave functions one
can use, for example, the two wave approximations. We will discuss this case in
detail in Chap. 5.

Thus in the first and second case, we can use the regular perturbation theory to
calculate the wave functions and energy levels.

Nowweare ready to discuss themultidimensional operator L(q) in the high energy
region. In this case, in the big contrary of the first and second case (see above) we
meet with the situation h � ‖q‖ instead of ‖q‖ � h, since the denseness of the
Bloch eigenvalues of the free operator increases infinitely with the increasing energy
and hence the distance between the eigenvalues tends to zero or the multiplicity of
the eigenvalues tend to infinity. To describe this case more precisely, let us introduce
some notations. The relation a(ρ) ∼ b(ρ) as ρ → ∞ means that a(ρ) = O(b(ρ))

and b(ρ) = O(a(ρ)), that is, there exist constants c1 and c2 such that

c1b(ρ) < a(ρ) < c2b(ρ).

http://dx.doi.org/10.1007/978-3-319-16643-8_5
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In this case we say that a(ρ) is of order b(ρ). Let E(ρ) be the number of the Bloch
eigenvalues (counting multiplicity) of the unperturbed operator Lt (0) lying in the
interval [ρ2, ρ2 + 1). The number E(ρ) depends on t ∈ F∗, however, in average,
E(ρ) ∼ ρd−2, since |γ + t |2 ∈ [ρ2, ρ2 + 1) if and only if

γ + t ∈ {x ∈ R
d : ρ2 ≤ |x |2 < ρ2 + 1} =: W (ρ). (1.4.1)

On the other hand, the spherical washer W (ρ) is filled with the translations of F∗ by
the vectors γ of the reciprocal lattice �, and

μ(W (ρ)) ∼ ρd−2μ(F∗),

whereμ(A) denotes the volume of the set A.Thus in the interval [ρ2, ρ2+1) of length
1 there are, in average, E(ρ) Bloch eigenvalues |γ + t |2 of the free operator, where
E(ρ) ∼ ρd−2. It means that the eigenvalues are densely situated in the high energy
region [ρ2, ρ2 + 1) and for the energy separation constant h(ρ) (now it depends on
ρ) one can write the equality

h(ρ) = O(ρ2−d). (1.4.2)

Hence in the multidimensional case in the high energy region the bounded potential
q cannot be considered as a small perturbation, since

‖q‖ ∼ ρd−2h(ρ) � h(ρ) (1.4.3)

for d > 2 and ρ � 1. Therefore the regular perturbation theory is ineffective in
this case. In Chap.2 we consider this case in detail. Now we only describe briefly
the following three problems (a), (b) and (c) which are the crucial and remarkable
points of the perturbation theory of the multidimensional operator L(q) in the high
energy region.

(a) Simplicity problem. Determine the set of quasimomenta γ + t such that the
corresponding Bloch eigenvalues �(γ + t) ∈ [ρ2, ρ2 + 1) of Lt (q) are simple.

The complexity of this problem is the following. The eigenvalue �(γ + t) ∈
[ρ2, ρ2+1) is a result of moving of the Bloch eigenvalues |γ+ t |2 of the free electron
under the perturbation q. In the interval [ρ2, ρ2 +1) of length 1 there are, in average,
E(ρ) Bloch eigenvalues |̃γ + t |2 of Lt (0), where γ̃ ∈ � and E(ρ) ∼ ρd−2. After the
periodic perturbation q all these eigenvalues move and some of them move of order
1 and hence each of the resulting eigenvalues �(̃γ + t) of Lt (q) may coincide with
�(γ+t). Thuswe need to control themoving of all eigenvalues |̃γ+t |2 ∈ [ρ2, ρ2+1)
for some values of t in order that all resulting eigenvalues �(̃γ + t) do not coincide
with �(γ + t) and hence �(γ + t) becomes a simple eigenvalue. Therefore it seems
that it is impossible to find the values of the quasimomenta γ + t for which the
corresponding Bloch eigenvalues �(γ + t) of Lt (q) are simple. The importance of
the simplicity of �(γ + t) is the following. The simplicity of �(γ + t) is necessary
for the investigation of the corresponding Bloch wave �γ+t (x) and for proving that
it is close to the plane wave ei〈γ+t,x〉 that is, satisfies the formula

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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�γ+t (x) = ei〈γ+t,x〉 + O(|γ + t |−α), (1.4.4)

where α > 0. The last equality means that the plane wave ei〈γ+t,x〉 goes through
the crystal almost without the diffraction. On the other hand, it is well known that
the plane wave ei〈γ+t,x〉 is reflected by the crystal if γ + t belongs to (or it is near
to) a diffraction hyperplane Dδ for some δ ∈ �. Then the reflected wave ei〈γ+δ+t,x〉
interferes with the initial wave ei〈γ+t,x〉 (see [BS], [Ki, Mad]) and (1.4.4) does not
hold. As we noted above there are, in average, E(ρ) eigenvalues

|γ + t |2, |γ + t + δ1|2, |γ + t + δ2|2, . . . , |γ + t + δn|2,

where n = E(ρ) ∼ ρd−2, lying in the interval [ρ2, ρ2 + 1). On the other hand, by
choosing the coordinate axis so that the direction of δ coincides with the direction
of (1, 0, 0, . . . , 0), we can easily verify that if

|γ + t |2 − |γ + t + δ|2 = c

then the quasimomentum γ + t lies on the distance |c|
|δ| from the diffraction plane

Dδ. Therefore all the diffraction planes Dδ1, Dδ2 , . . . , Dδn , may reflect the wave
ei〈γ+t,x〉 with the fixed quasimomentum t . If we do not fix t, then all diffraction planes
passing through the washer W (ρ) may reflect the wave ei〈γ+t,x〉 if the corresponding
eigenvalue |γ + t |2 lies in the interval [ρ2, ρ2 + 1). On the other hand, the number
D(ρ) of the diffraction planes having nonempty intersection with the sphere

S(ρ) = {x ∈ R
d : |x | = ρ}

and hence with W (ρ) is of order ρd , that is, D(ρ) ∼ ρd . Thus the second problem is
the following.

(b) Bragg Reflection Problem.Determine the set of quasimomenta γ+t ∈ W (ρ)

for which the plane wave ei〈γ+t,x〉 under the periodic perturbationq goes through
the crystal without the essential influence of the D(ρ) diffraction hyperplanes, where
D(ρ) ∼ ρd .

That is why the mathematical difficulties of the perturbation theory of the mul-
tidimensional operator L(q) in the high energy region have a physical nature—a
complicated picture of diffraction inside the crystal.

As we explained above in one-dimensional case it is very easy to explain the
arising of the gaps in the spectrum. Briefly speaking, there are only two Bloch
eigenvalues (−nπ)2 and (nπ)2 of the free operator lying at the point λ = (nπ)2 and
the isoenergetic surface I0((nπ)2) consists only of the two points−nπ and nπ which
are the diffraction planes. Under the perturbation q one eigenvalue goes to the left
and one to the right and the gap in the neighborhood of (nπ)2 emerges as a result of
these movings.

In the big contrary of the one-dimensional case, in the multidimensional case the
set of all Bloch eigenvalues |γ + t |2 of the unperturbed operator L(0) lying at the
same point ρ2 asmuch as the points of the sphere S(ρ), since |γ+t |2 = ρ2 if and only
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if (γ+ t) ∈ S(ρ). Some of these eigenvalues |γ+ t |2 are multiple. Recall that |γ+ t |2
is multiple if γ+t lies in the intersection of the sphere S(ρ) and diffraction planes and
the all other eigenvalues are simple. If the sphere is large, then after the perturbation
q the probability that all these eigenvalues go away from the point ρ2 and the other
Bloch eigenvalues do not come to this point and hence the isoenergetic surface
Iq(ρ2) becomes an empty set is very small. (Hence the probability of the validity of
the Bethe-Sommerfeld conjecture is close to 1). However as we noted above there
are the D(ρ) diffraction planes intersecting S(ρ) for large ρ, where D(ρ) ∼ ρd , and
the isoenergetic surface begins to be distorted from a sphere before making contacts
with the diffraction planes. Thus the isoenergetic surface is divided into a lot of
pieces. Therefore the rigorous mathematical investigation of the perturbations of all
these eigenvalues and to prove that the isoenergetic surface Iq(ρ2) can not become
an empty set are extremely complicated. Thus the third problem is the following:

(c) Isoenergetic Surfaces Problem. Determine the shape and measure of the
isoenergetic surface Iq(ρ2) of L(q) which emerges from the isoenergetic sphere
S(ρ) of L(0) as a result of its distortion and separation into very small pieces by the
D(ρ) diffraction planes intersecting S(ρ), where D(ρ) ∼ ρd .

To answer all these three problems (a), (b) and (c), in Chap.2 we develop
a new mathematical approach to this problem. The momentum space is divided
into two domains: U (non-resonance domain) and V (resonance domain) and the
eigenvalues |γ + t |2, for large γ ∈ �, are divided into two groups: non-resonance
ones if γ + t ∈ U and resonance ones if γ + t ∈ V and various asymptotic formulae
are obtained for the perturbations of each groups. (The precise definitions of U and
V are given in the introduction of Chap. 2). For the first time in the papers [Ve1,
Ve2, Ve3, Ve4] we constructed the set B ⊂ U, called as a simple set, such that if
γ + t ∈ B, then the corresponding Bloch eigenvalue �(γ + t) is simple and satisfies

�(γ + t) = |γ + t |2 + O(|γ + t |−α),

whereα > 0 and theBloch function�γ+t (x), corresponding to the eigenvalue�(γ+
t) satisfies (1.4.4). Moreover we proved that the simple set B has the asymptotically
full measure onRd and constructed a part of the isoenergetic surface Iq(ρ2) ⊂ B for
large ρ which is a union of the smooth surfaces and has the measure asymptotically
close to the measure of the sphere S(ρ). Thus, we constructed the set B ⊂ U that
positively solves all the problems (a), (b) and (c) described above. Therefore the
main difficulty and the crucial point of the investigations of the Bloch functions and
isoenergetic surfaces and hence of the perturbation theory of L(q) is the construction
and estimation of the set B. We discuss it in detail in the introduction of Chap. 2.
Note that, in Chap.2, we construct the simple set in the non-resonance domain U
so that it contains a big part of the isoenergetic surfaces of L(q). However in the
case of the resonance domain V we construct the simple set so that it can be easily
used for the constructive determination (in Chap. 3) a family of the spectral invariants
by the given Bloch eigenvalues. Then in Chap.4, we constructively determine the

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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potential q by these spectral invariants. We will continue these discussions at the end
(in Chap.5) of this book after the construction a perturbation theory (Chap. 2) and
its applications (Chaps. 3 and 4).
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Chapter 2
Asymptotic Formulas for the Bloch
Eigenvalues and Bloch Functions

Abstract In this chapterwe construct a perturbation theory for themultidimensional
Schrödinger operator with a periodic potential. This chapter consists of 6 sections.
First section is the introduction, where we define the non-resonance and resonance
domains U and V, describe briefly the scheme of this chapter and discuss the related
papers. The asymptotic formulas of arbitrary order for theBloch eigenvalueswhen the
corresponding quasimomentum lies in the non-resonance and resonance domains are
obtained inSects. 2.2 and2.3 respectively. InSect. 2.4,weobtain asymptotic formulas
for the Bloch functions when the quasimomentum lies in a set B ⊂ U which has
asymptotically full measure in the momentum (reciprocal) space. In Sect. 2.5, we
construct and investigate the large part of the isoenergetic surfaces in the high energy
region which implies the validity of the Bethe-Sommerfeld conjecture. Note that the
method of this chapter is the first and unique bywhich the asymptotic formulas for the
Bloch eigenvalues and Bloch functions and the validity of the conjecture for arbitrary
lattice and arbitrary dimension were proved. In Sect. 2.6, we obtain the asymptotic
formulas for the Bloch functions when the corresponding quasimomentum lies in a
set Bδ ⊂ V which is near to the diffraction hyperplane Dδ and is constructed so that
it can be easily used for the constructive determination (in Chap.3) a family of the
spectral invariants by the given Bloch eigenvalues.

2.1 Introduction

We consider the Schrödinger operator

L(q) = −� + q

in L2(R
d) for d ≥ 2 with a periodic (relative to a lattice �) potential q, where

q ∈ W s
2 (F), s ≥ s0 =: 3d − 1

2
(3d + d + 2) + d3d

4
+ d + 6, (2.1.1)
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F =: R
d/� is a fundamental domain of �. Without loss of generality it can be

assumed that the measure μ(F) of F is 1 and the mean value of the potential q on
F is 0. As we noted in Sect. 1.2 of Chap.1, the spectrum σ(L(q)) of L(q) is the
union of all Bloch eigenvalues �n(t) for t ∈ F∗ and n ∈ N, that is, the union of all
eigenvalues of Lt (q) for all t ∈ F�:

σ(L(q)) =
⋃

t∈F∗
σ(Lt (q)) =

∞⋃

n=1

{
�n(t) : t ∈ F∗} , (2.1.2)

where F� =: R
d/�, � is the lattice dual to � and Lt (q) = −� + q is defined

in L2(F) by the quasiperiodic boundary conditions [see (1.2.4) of Chap.1]. The
normalized eigenfunction �n,t (x) of Lt (q) corresponding to the eigenvalue �n(t)
is known as Bloch function and satisfies

Lt (q)�n,t (x) = �n(t)�n,t (x). (2.1.3)

In the case q = 0 the eigenvalues and eigenfunctions of Lt (q) are |γ + t |2 and
ei〈γ+t,x〉 for γ ∈ �:

Lt (0)e
i〈γ+t,x〉 = |γ + t |2ei〈γ+t,x〉. (2.1.4)

In the papers [Ve1, VeMol, Ve2, Ve3, Ve4] for the first time the eigenvalues
|γ + t |2, for large γ ∈ �, were divided into two groups: non-resonance ones and
resonance ones and various asymptotic formulae were obtained for the perturbations
of each groups. To give the precise definitions of the non-resonance and resonance
eigenvalue |γ + t |2 of order ρ2 (written as |γ + t |2 ∼ ρ2, for definiteness suppose

γ + t ∈ R(
3

2
ρ)\R(

1

2
ρ)),

where R(ρ) = {x ∈ R
d : |x | < ρ}) for large parameter ρ, we write the potential

q ∈ W s
2 (F) in the form

q(x) =
∑

γ∈�

qγei〈γ,x〉 = P(x) + G(x), (2.1.5)

where

qγ = (q, ei〈γ,x〉) =
∫

F
q(x)e−i〈γ,x〉dx,

P(x) =
∑

γ∈�(ρα)

qγei〈γ,x〉, G(x) =
∑

γ /∈�(ρα)

qγei〈γ,x〉,

�(ρα) = {γ ∈ � : 0 < |γ| < ρα)},

http://dx.doi.org/10.1007/978-3-319-16643-8_1
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and α = 1
κ

, κ = 3d + d + 2. The relation |γ + t |2 ∼ ρ2 means that there exist
constants c1 and c2 such that

c1ρ < |γ + t | < c2ρ.

Here and in the subsequent relations we denote by ci for i = 1, 2, . . . the positive,
independent of ρ, constants. Recall that the relation q ∈ W s

2 (F) [see (1.1.13) of
Chap.1] means that ∑

γ∈�

|qγ |2|γ|2s < ∞. (2.1.6)

This implies that if s ≥ d, then

sup
x∈F

|G(x)| = sup
x∈F

|
∑

γ /∈�(ρα)

qγei〈γ,x〉| ≤
∑

|γ|≥ρα

|qγ | = O(ρ−pα), (2.1.7)

where p = s − d. By the well-known perturbation theory [Kat] it follows from
(2.1.7) that the influence of G to the eigenvalue |γ + t |2 is O(ρ−pα). To observe the
influence of the trigonometric polynomial P to the eigenvalue |γ + t |2, we use the
formula

(�N − |γ + t |2)b(N , γ) = (�N ,t q, ei〈γ+t,x〉), (2.1.8)

where (·, ·) is the inner product in L2(F) and

b(N , γ) = (�N ,t , ei〈γ+t,x〉),

which is obtained by multiplying both sides of (2.1.3) by ei〈γ+t,x〉 and using (2.1.4).
We say that (2.1.8) is the binding formula for Lt (q) and Lt (0), since it connects the
eigenvalues and eigenfunctions of Lt (q) and Lt (0). Introducing expansion (2.1.5)
of q(x) into (2.1.8) and taking into account (2.1.7), we get

(�N (t) − |γ + t |2)b(N , γ) =
∑

γ1∈�(ρα)

qγ1b(N , γ − γ1) + O(ρ−pα). (2.1.9)

If �N is close to |γ + t |2 and γ + t does not belong to any of the sets

Vγ1(ρ
α1) =: {x ∈ R

d : ||x |2 − |x + γ1|2| ≤ ρα1} ∩ (R(
3ρ

2
)\R(

ρ

2
)) (2.1.10)

for γ1 ∈ �(ρα), where α1 = 3α, that is, γ + t is far from the diffraction planes Dγ1
for γ1 ∈ �(ρα), then

||γ + t |2 − |γ − γ1 + t |2| > ρα1 , |�N (t) − |γ − γ1 + t |2| >
1

2
ρα1 (2.1.11)

http://dx.doi.org/10.1007/978-3-319-16643-8_1
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for all γ1 ∈ �(ρα). Therefore, it follows from (2.1.8) that

b(N , γ − γ1) = (�N ,t q, ei〈γ−γ1+t,x〉)
�N (t) − |γ − γ1 + t |2 = O(ρ−α1). (2.1.12)

This with the obvious inequality

∑

γ∈�

|qγ | < c3 (2.1.6a)

[see (2.1.6) and take into account that s > d] implies that the right-hand side of (2.1.9)

is O(ρ−α1).Moreover, we prove that there exists an index N such that
1

b(N , γ)
times

the right-hand side of (2.1.9) is O(ρ−α1), i.e.,

�N (t) = |γ + t |2 + O(ρ−α1). (2.1.13)

Thus we see that if γ + t does not belong to any of the sets Vγ1(ρ
α1) [see (2.1.10)]

for γ1 ∈ �(ρα), then the influence of the trigonometric polynomial P and hence the
influence of the potential q [see (2.1.5) and (2.1.7)] to the eigenvalue |γ + t |2 is not
significant and there exists an eigenvalue of the operator Lt (q) satisfying (2.1.13).
This case is called the non-resonance case. More precisely, we give the following
definitions:

Definition 2.1.1 Let ρ be a large parameter, αk = 3kα for k = 1, 2, . . . , and

Vγ1(c4ρ
α1) =: {x ∈ R

d : ||x |2 − |x + γ1|2| ≤ c4ρ
α1 } ∩ (R(

3

2
ρ)\R(

1

2
ρ)),

E1(c4ρ
α1 , p) =:

⋃

γ1∈�(pρα)

Vγ1(c4ρ
α1), U (c4ρ

α1 , p) =: (R(
3

2
ρ)\R(

1

2
ρ))\E1(c4ρ

α1 , p),

Ek(c4ρ
αk , p) =:

⋃

γ1,γ2,...,γk∈�(pρα)

(∩k
i=1Vγi (c4ρ

αk )),

where p is defined in (2.1.7), the intersection ∩k
i=1Vγi in the definition of Ek is

taken over γ1, γ2, . . . , γk that are linearly independent. The set U (ρα1 , p) is said
to be a non-resonance domain and |γ + t |2 is called a non-resonance eigenvalue if
γ + t ∈ U (ρα1 , p). The domains Vγ1(ρ

α1) for γ1 ∈ �(pρα) are called the resonance
domains and |γ + t |2 is called a resonance eigenvalue if γ + t ∈ Vγ1(ρ

α1). The
domain

V ′
γ1

(ρα1) =: Vγ1(ρ
α1)\E2,

i.e., the part of the resonance domain Vγ1(ρ
α1), which does not contain the intersec-

tions of two resonance domains is called a single resonance domain.
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It is clear that asymptotic formula (2.1.13) holds if we replace Vγ1(ρ
α1) by

Vγ1(c4ρ
α1). Note that changing the value of c4 in the definition of Vγ1(c4ρ

α1), we
obtain the different definitions of the non-resonance eigenvalues (for the simplicity
of the notationswe take c4 = 1). However, in any casewe obtain the same asymptotic
formulas and the same perturbation theory, that is, this changing does not change
anything for the asymptotic formulas. Therefore we can define the non-resonance
eigenvalue in different way. Instead of the resonance domain Vγ1(c4ρ

α1) the set

Wγ1,α1 = {x ∈ R
d : ||x |2 − |x + γ1|2| < |x |α1}

can be considered (see [Ve2, Ve3, Ve4]). Since

Vγ1(
1

2
ρα1) ⊂ (R(

3

2
ρ)\R(

1

2
ρ)) ∩ Wγ1,α1 ⊂ Vγ1(

3

2
ρα1),

in all considerations the resonance domain Vγ1(ρ
α1) can be replaced by

Wγ1,α1 ∩ (R(
3

2
ρ)\R(

1

2
ρ)).

Moreover, instead of the domain Vγ1(ρ
α1) the set

{x ∈ R
d : |〈x, γ1〉| < ε|x ||γ1|},

where ε 
 1, also can be considered (see [Ve1, VeMol]). In any case we use the
same idea: breafly speaking, the eigenvalues |γ + t |2 ∼ ρ2 are non-resonance if γ+ t
far from the diffraction planes

Dδ =: {x ∈ R
d : |x |2 = |x + δ|2}

for δ = O(ρα). Nevertheless it is suitable to define the non-resonance eigenvalue in
different way depending on the form of the potential. Namely, the domain Wγ1,α1

is suitable, when the potential is the trigonometric polynomial. In case of smooth
potential we need to introduce a large parameter ρ and consider Vγ1(ρ

α1). Note that
all considered eigenvalues |γ + t |2 of Lt (0) satisfy the relations

1

2
ρ < |γ + t | <

3

2
ρ.

Therefore in the asymptotic formulas instead of O(ρa) one can take O(|γ + t |a).

In Sect. 2.2 to investigate the perturbations of the non-resonance eigenvalues
|γ + t |2 we take the operator Lt (0) for an unperturbed operator and q for a perturba-
tion. Iterating binding formula (2.1.8) for Lt (q) and Lt (0), namely, using (2.1.12) in
(2.1.9) and then using decomposition (2.1.5) and continuing this process, we prove
that (2.1.13) and the asymptotic formulas of arbitrary order hold. More precisely, we
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obtain the following results. For each γ + t ∈ U (ρα1 , p) there exists an eigenvalue
�N (t) of the operator Lt (q) satisfying the formulae

�N (t) = |γ + t |2 + Fk−1(γ + t) + O(|γ + t |−kα1) (2.1.14)

for k = 1, 2, . . . , [ 13 (p − 1
2κ(d − 1))], where [a] denotes the integer part of a,

F0 = 0, and Fk−1 (for k > 1) is expressed by the potential q and the eigenvalues of
Lt (0). Besides, we prove that if the conditions

|�N (t) − |γ + t |2| <
1

2
ρα1 , (2.1.15)

|b(N , γ)| > c5ρ
−cα, (2.1.16)

where 0 ≤ c < p − 1
4d3d , hold then the following statements are valid:

(a) if γ+t ∈ U (ρα1 , p), then�N (t) satisfies (2.1.14) for k = 1, 2, . . . , [ 13 (p−c)];
(b) if γ + t ∈ Es\Es+1, where s = 1, 2, . . . , d − 1, then

�N (t) = λ j (γ + t) + O(|γ + t |−(p−c− 1
4 d3d )α), (2.1.17)

where λ j is an eigenvalue of a matrix C(γ + t) (see below for the explanation of
C in the three-dimensional case). Moreover, we prove that every large eigenvalue of
the operator Lt (q) for all values of t satisfies one of these formulae (see Theorems
2.2.1 and 2.2.2).

The results of Sect. 2.2 were obtained in [Ve1, Ve2, Ve3, Ve4] and their enlarged
forms were written in [Ve6, Ve9]. The non-resonance eigenvalues for the three-
dimensional Schrödinger operator Lt (q) were considered in [Ve3]. Moreover, in
[Ve3] we observed that if γ + t ∈ Vδ(ρ

α1)\E2 and γ1 ∈ �(ρα)\{nδ : n ∈ Z},
where δ is the element of � of minimal norm in its direction, then it follows from
the definition of E2 that the inequalities obtained from (2.1.11) by replacing α1 with
α2 hold. Hence

b(N , γ − γ1) = O(ρ−α2)

[see (2.1.12)] and (2.1.9) has the form

(�N (t) − |γ + t |2)b(N , γ) =
∑

n∈Z,nδ∈�(ρα)

qnδb(N , γ − nδ) + O(
1

ρα2
). (2.1.18)

This gives an idea that the influence of q(x) − qδ(x), where

qδ(x) =
∑

n∈Z

qnδein〈δ,x〉, (2.1.19)

is not significant and there exist eigenvalues of Lt (q)which are close to the eigenval-
ues of Lt (qδ). Using this idea in [VeMol], to investigate the resonance eigenvalues
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we used the approximation of the Green functions of Lt (q) by the Green functions of
Lt (qδ). Note that in [Ve3] (see Theorem 2 of [Ve3]) writing the equations obtained
from (2.1.18) by replacing |γ + t |2 with |γ + t + nδ|2 for n ∈ Z, nδ ∈ �(ρα), we
got the system of equations from which one can conclude that the probable approx-
imations of the eigenvalues of the three-dimensional Schrödinger operator Lt (q),

besides |γ + t |2, are the eigenvalues of the matrix C, where C is a finite submatrix
of the matrix corresponding to the operator Lt (qδ). However, in the d-dimensional
case, to investigate the perturbation of the eigenvalue |γ+t |2 when the corresponding
quasimomentum γ + t lies in the intersection of k resonance domains we have to
consider more complicated system and matrix (see (2.2.15) and [Ve2, Ve4]).

Here we write the non-resonance case so that it can easily be used in Sect. 2.3,
wherewe consider in detail the single resonance domains Vδ(ρ

α1)\E2, since there are
similarities between the investigations of the non-resonance and the single resonance
cases. To see the similarities and differences between these cases, that is, between
Sects. 2.2 and 2.3, let us give the following comparison. As we noted above in the
non-resonance case the influence of the potential q is not significant, while in the
single resonance case the influence of q −qδ is not significant. Therefore, in Sect. 2.2
for the investigation of the non-resonance case we take the operator Lt (0) for an
unperturbed operator and q for a perturbation, while in Sect. 2.3 for the investigation
of the single resonance case we take the operator Lt (qδ) for an unperturbed operator
and q − qδ for a perturbation. In Sect. 2.2 to obtain the asymptotic formula for
the non-resonance case we iterate the formula (2.1.8) [called binding formula for
Lt (q) and Lt (0)] connecting the eigenvalues and eigenfunctions of Lt (q) and Lt (0).
Similarly, in Sect. 2.3 for the investigation of the eigenvalues corresponding to the
quasimomentum lying in the single resonance domain Vδ(ρ

α1)\E2 (see Definition
2.1.1), we iterate a formula [called binding formula for Lt (q) and Lt (qδ)] connecting
the eigenvalues and eigenfunctions of Lt (q) and Lt (qδ). The binding formula for
Lt (q) and Lt (qδ) can be obtained from the binding formula (2.1.8) for Lt (q) and
Lt (0) by replacing the perturbation q and the eigenvalues |γ+ t |2 and eigenfunctions
ei〈γ+t,x〉 of the unperturbed (for the non-resonance case) operator Lt (0) with the
perturbation q − qδ and the eigenvalues and eigenfunctions of the unperturbed (for
the single resonance case) operator Lt (qδ) respectively. To write this formula first
we consider the eigenvalues and eigenfunctions of Lt (qδ). For this let us introduce
the following notations which will be used during the book.

Notation 2.1.1 Let δ be a visible element of �, that is, δ is the element of � of
minimal norm in its direction. Denote by �δ the sublattice {h ∈ � : 〈h, δ〉 = 0}
of � in the hyperplane Hδ = {x ∈ R

d : 〈x, δ〉 = 0} and denote by �δ the lattice
of Hδ which is dual to �δ, that is, �δ =: {a ∈ Hδ : 〈a, k〉 ∈ 2πZ, ∀k ∈ �δ}. The
function qδ defined by (2.1.19) is called the directional potential. The eigenvalues
and eigenfunctions of the Schrödinger operator Lt (qδ) with the directional potential
qδ can be indexed by pair ( j, β) of the Cartesian product Z × �δ [see Lemma
2.3.1(b)] and we denote them by λ j,β and � j,β(x) respectively.
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By this notation we have

Lt (q
δ)� j,β(x) = λ j,β� j,β(x). (2.1.20)

Thus the binding formula for Lt (q) and Lt (qδ) is

(�N (t) − λ j,β)b(N , j,β) = (�N ,t , (q − qδ)� j,β), (2.1.21)

where
b(N , j,β) = (�N ,t ,� j,β),

which can be obtained by multiplying both sides of (2.1.3) by � j,β(x) and using
(2.1.20). To prove the asymptotic formulas in the single resonance case we iterate
the formula (2.1.21). The iterations of the formulas (2.1.8) and (2.1.21) are similar.
Therefore the simple iterations of (2.1.8) in Sect. 2.2 help to read the complicated
iterations of (2.1.21) in Sect. 2.3.

The brief scheme of the iteration of (2.1.21) is following. Using (2.1.5), decom-
posing (q −qδ)� j,β by the eigenfunctions of Lt (qδ) and putting this decomposition
into (2.1.21), we get

(�N (t) − λ j,β)b(N , j,β) = O(ρ−pα)

+
∑

( j1,β1)∈Q

A( j,β, j + j1,β + β1)b(N , j + j1,β + β1), (2.1.22)

where Q is a subset of the Cartesian product Z × �δ. Now using

b(N , j + j1,β + β1) = (�N ,t , (q − qδ)� j,β)

(�N (t) − λ j+ j1,β+β1)
,

which is obtained from (2.1.21) by replacing j,β with j + j1,β + β1, in (2.1.22),
we get the once iteration of (2.1.21):

(�N (t)−λ j,β)b(N , j,β) = O(ρ−pα)

+
∑

( j1,β1)∈Q

A( j,β, j + j1,β + β1)
(�N ,t , (q − qδ)� j,β)

(�N (t) − λ j+ j1,β+β1)
. (2.1.23)

Continuing this process we get the iterations of (2.1.21). Then we prove the asymp-
totic formulas, by using the iterations of (2.1.21), as follows. First we investigate in
detail, the multiplicand A( j,β, j + j1,β + β1) of (2.1.23) and prove the estimation

∑

( j1,β1)∈Q

|A( j,β, j + j1,β + β1)| < c6 (2.1.24)
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(see Lemmas 2.3.2, 2.3.3, 2.3.4). Thenwe investigate the distance between the eigen-
values λ j,β and λ j+ j1,β+β1 (see Lemma 2.3.5) and hence estimate the denominator
of the fractions in (2.1.23), since �N (t) is close to λ j,β . Using this and (2.1.24) we
prove that there exists an index N such that 1

b(N , j,β)
times the right-hand side of

(2.1.23) is O(ρ−α2), from which we get

�N (t) = λ j,β + O(ρ−α2) (2.1.25)

(see Lemma 2.3.6, Theorem 2.3.1). At last using this formula in the arbitrary times
iterations of (2.1.21), we obtain the asymptotic formulas of arbitrary order (Theorem
2.3.2). The results of Sect. 2.3 were obtained in [VeMol, Ve6, Ve9].

In Sect. 2.4, we investigate the Bloch functions in the non-resonance domain.
To investigate the Bloch functions we need to find the values of the quasimomenta
γ + t for which the corresponding eigenvalues of Lt (q) are simple. In the interval
[ρ2, ρ2 + 1) of length 1 there are, in average, ρd−2 eigenvalues |γ + t |2 of the
unperturbed operator Lt (0). Under the perturbation, all these eigenvalues move and
some of them move or order 1. Therefore, it seems that it is impossible to find the
values of quasimomenta γ + t for which the corresponding eigenvalues of Lt (q)

are simple. For the first time in papers [Ve2, Ve3, Ve4] (in [Ve3] for d = 3 and in
[Ve2, Ve4] for the cases: d = 2, q ∈ L2(F) and d > 2, q is a smooth potential) we
found the required values of quasimomenta, namely we constructed and estimated
the subset B of U (ρα1 , p) with the following remarkable properties (the expanded
explanations of these properties were done in [Ve5, Ve6, Ve9]):
Property 1 (Simplicity). If γ + t ∈ B, then there exists a unique eigenvalue �N (t),
denoted by �(γ + t), of the operator Lt (q) satisfying (2.1.13), (2.1.14). This is a
simple eigenvalue of Lt (q) and therefore we call the set B as the simple set.

Construction of the set B consists of two steps.
Step 1. We prove that all eigenvalues �N (t) of the operator Lt (q) satisfying

�N (t) ∼ ρ2 lie in the ε1 neighborhood of the numbers F(γ + t) and λ j (γ + t),
where

F(γ + t) = |γ + t |2 + Fk1−1(γ + t), ε1 = ρ−d−2α, k1 = [ d

3α
] + 2 (2.1.26)

[see (2.1.14), (2.1.17)]. We call these numbers as the known parts of the eigenvalues
of Lt (q). Moreover, for γ + t ∈ U (ρα1 , p) there exists �N (t) satisfying

�N (t) = F(γ + t) + o(ρ−d−2α) = F(γ + t) + o(ε1). (2.1.27)

Step 2. By eliminating the set of quasimomenta γ + t , for which the known parts
F(γ + t) of �N (t) are situated from the known parts F(γ′ + t), λ j (γ

′ + t) (γ′ �= γ)

of the other eigenvalues at a distance less than 2ε1, we construct the set B with the
following properties: if γ + t ∈ B, then the following conditions [called simplicity
conditions for the eigenvalue �N (t) satisfying (2.1.27)] hold:
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|F(γ + t) − F(γ′ + t)| ≥ 2ε1 (2.1.28)

for γ′ ∈ K\{γ}, γ′ + t ∈ U (ρα1 , p) and

|F(γ + t) − λ j (γ
′ + t)| ≥ 2ε1 (2.1.29)

for γ′ ∈ K , γ′ + t ∈ Ek\Ek+1, j = 1, 2, . . . ,where K is the set of γ′ ∈ � satisfying

|F(γ + t) − |γ′ + t |2| <
1

3
ρα1 . (2.1.30)

Thus the simple set B is defined as follows:

Definition 2.1.2 The simple set B is the set of

x ∈ U (ρα1, p) ∩ (R(
3

2
ρ − ρα1−1)\R(

1

2
ρ + ρα1−1))

such that x = γ + t, where γ ∈ �, t ∈ F�, and the simplicity conditions (2.1.28)
and (2.1.29) hold.

As a consequence of the conditions (2.1.28) and (2.1.29), the eigenvalue �N (t)
satisfying (2.1.27) does not coincide with the other eigenvalues.

To check the simplicity of �N (t) =: �(γ + t) (see Property 1) we prove that for
any normalized eigenfunction �N ,t corresponding to �N (t) the equality

∑

γ′∈�\γ
|b(N , γ′)|2 = O(ρ−2α1), (2.1.31)

which is equivalent to
|b(N , γ)|2 = 1 + O(ρ−2α1), (2.1.31a)

holds. The equality (2.1.31a) implies the simplicity of �N (t). Indeed, if �N (t) is
a multiple eigenvalue, then there exist two orthogonal normalized eigenfunctions
satisfying (2.1.31a), which is impossible. In fact to prove the simplicity of �N (t)
it is enough to show that for any normalized eigenfunction �N ,t corresponding to
�N (t) the inequality

|b(N , γ)|2 >
1

2
(2.1.31b)

holds. We proved this inequality in [Ve2, Ve3, Ve4] and as noted in Theorem 3 of
[Ve3] and in [Ve5, Ve6, Ve9] the proof of this inequality does not differ from the
proof of (2.1.31a) which equivalent to the following property:
Property 2 (asymptotic formulas for the Bloch functions). If γ + t ∈ B, then
the eigenfunction �N ,t (x), denoted by �γ+t (x), corresponding to the eigenvalue
�N (t) =: �(γ + t) (see Property 1) is close to ei〈γ+t,x〉, namely
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�N ,t (x) =: �γ+t (x) = ei〈γ+t,x〉 + O(|γ + t |−α1). (2.1.32)

Iterating (2.1.32), we get

�γ+t (x) = F∗
k−1(γ + t) + O(|γ + t |−kα1) (2.1.33)

for k = 1, 2, . . ., where F∗
k−1(γ + t) is expressed by q and the eigenvalues and

eigenfunctions of Lt (0) [see Theorem 2.4.2, formula (2.4.20)].
Note that the main difficulty and the crucial point of the investigation of the Bloch

functions and hence the main difficulty of the perturbation theory of L(q) is the
construction and estimation of the simple set B. This difficulty of the perturbation
theory of L(q) is of a physical nature and it is connected with the complicated
picture of the crystal diffraction. In themultidimensional case this becomes extremely
difficult since in the 1 neighborhood of ρ2 there are, in average, ρd−2 eigenvalues
and hence the eigenvalues can be highly degenerated. To see that the main part of
the perturbation theory is the construction and estimation of the set B let us briefly
prove that (the precise proof is given in Theorem 2.4.1) from the construction of B it
easily follows the simplicity of the eigenvalues and the asymptotic formula (2.1.32)
for the Bloch functions. As we noted above to prove the simplicity of �N (t) and
(2.1.32) it is enough to prove that (2.1.31) holds, that is, we need to prove that the
term b(N , γ′) in (2.1.31) is very small. If

|b(N , γ′)| > c5ρ
−cα,

then replacing γ by γ′ in (2.1.15), (2.1.16), (2.1.14), (2.1.17), and (2.1.27) we see
that �N (t) lies in ε1 neighborhood of one of the numbers F(γ′ + t) and λ j (γ

′ + t),
which contradicts to the simplicity conditions (2.1.28) and (2.1.29), since (2.1.27)
holds.

Since the main part of the perturbation theory is the construction and estimation
of the set B let us discuss the construction and the history of the construction of
the simple set. For the first time in [Ve2, Ve3, Ve4] we constructed and estimated
the simple set B. In [Ve3] we constructed the simple set for the three dimensional
Schrödinger operator L(q). If d = 2, 3, then the simplicity conditions (2.1.28) and
(2.1.29) are relatively simple, namely in this case

F(γ + t) = |γ + t |2

and thematrixC(γ′+t),when γ′+t lies in the single resonance domain, corresponds
to the Schrödinger operator with directional potential (2.1.19) (see Theorems 1 and
2 in [Ve3]). Therefore the simple set is constructed in such way that if γ + t ∈ B,

then the inequality
||γ + t |2 − |γ′ + t |2| ≥ ρ−a (2.1.34)
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for γ′ + t ∈ U (ρα1 , p), the inequality

||γ + t |2 − λ j (γ
′ + t)| ≥ ρ−a (2.1.35)

for γ′ + t lying in the single resonance domain, and the inequality

||γ + t |2 − |γ′ + t |2| ≥ c3

for γ′ + t lying in the intersection of two resonance domains hold, where a > 0.
Thus for the construction of the simple set B of quasimomenta in case d = 3 we
eliminated the vicinities of the diffraction planes [see (2.1.34)], the sets connected
with the directional potential [see (2.1.35)], and the intersection of two resonance
domains.

As the dimension d increases, the geometrical structure of B becomes more com-
plicated for the following reason. Since the denseness of the eigenvalues of the free
operator increases as d increasesweneed to use the asymptotic formulas of high accu-
racy and investigate the intersections of the higher order of the resonance domains.
Then the functions F(γ + t), λ j (γ + t) [see (2.1.28), (2.1.29)] taking part in the con-
struction of B (see Definition 2.1.2) becomes more complicated. Therefore surfaces
and sets defined by these functions and hence the construction and investigation of B
become more intricate. Besides of this construction in [Ve2] we gave the additional
idea for the nonsmooth potential, namely for the construction of the simple set B
when the nonsmooth potentials q ∈ L2(R

2/�), we eliminated additionally a set,
which is described in terms of the number of the states (see [Ve2] p. 47, [Ve6] Sect. 3
of Chap.3, and [Ve7]). More precisely, we eliminated the translations A

′
k of the set

Ak by the vectors γ ∈ �, where

A1 = {x : Nx (Kρ(
M0

ρ
)) > b1}, Ak = {x : Nx (Kρ(

2k−1M0

ρ
)\Kρ(

2k−2M0

ρ
)) > bk},

M0 � 1, b1 = (M0)
3
2 , bk = (2k M0)

3
2 , k ≥ 2,

Kρ(a) = {x : ||x | − ρ| < a}

and Nx (A) is the number of the vectors γ + x lying in A. These eliminations imply
that if γ + t is in the simple set then the number of the vectors γ′ in Ak is less than
or equal to bk . On the other hand using the formula (2.1.8) it can be proved that

|b(N , γ′)|2 = O((2k M0)
−2).

As a result, the left-hand side of (2.1.31) becomes o(1), which implies the sim-
plicity of �(γ + t) and the closest of the functions �γ+t (x) and ei〈γ+t,x〉. The
simple set B of the quasimomenta is constructed and investigated for the first time
(hence the main difficulty and the crucial point of perturbation theory of L(q) are
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investigated) in [Ve3] for d = 3 and in [Ve2, Ve4] for the cases: 1. d = 2, q ∈ L2(F);
2. d > 2, q is a smooth potential. Thus for the first time in the papers [Ve2, Ve3, Ve4,
Ve5] using the simple set B in the non-resnance domain U we constructed the per-
turbation theory (asymptotic formulas for Bloch eigenvalues and Bloch functions)
for the Schrödinger operator L(q) of arbitrary dimension d.

Then, Karpeshina proved (see [Ka1, Ka2, Ka3]) the convergence of the perturba-
tion series of the two and three dimensional Schrödinger operator L(q) with a wide
class of the nonsmooth potential q for a set, that is similar to B. In [FeKnTr1] the
asymptotic formulas for the eigenvalues and Bloch functions of the two and three
dimensional operator Lt (q) were obtained by the investigation of the corresponding
infinity matrix.

InSect. 2.5weconsider the geometrical aspects of the simple set of theSchrödinger
operator of arbitrary dimension. We prove that the simple set B has asymptotically
full measure on R

d . Moreover, we construct a part of the isoenergetic surfaces

{t ∈ F∗ : ∃N ,�N (t) = ρ2}

corresponding to ρ2, which is a smooth surface and has the measure asymptotically
close to the measure of the isoenergetic surface

{t ∈ F∗ : ∃γ ∈ �, |γ + t |2 = ρ2}

of the operator L(0). For this we prove that the set B has the following third property:
Property 3 (Geometric property, containment the overlapping intervals). For
any large ρ the set B contains the intervals {a + sb : s ∈ [−1, 1]} =: T (ρ) such that

�(a − b) < ρ2, �(a + b) > ρ2.

Since for γ + t ∈ T (ρ) ⊂ B the eigenvalue �(γ + t) is simple (see Property 1),
the function �(x) is continuous on T (ρ) and hence there exists γ + t such that
�(γ+ t) = ρ2, that is, the interval {�(γ + t) : (γ + t) ∈ T (ρ)} (consisting of Bloch
eigenvalues) overlap ρ2 which implies the validity of the Bethe-Sommerfeld conjec-
ture for arbitrary dimension and arbitrary lattice. This conjecture claims that there
exists only a finite number of gaps in the spectrum of L(q).
Property 4 (Containment the large part of the isoenergetic surface). Using the
geometric Property 3, we construct the part of the isoenergetic surfaces and proved
that for large ρ the isoenergetic surfaces

Iρ(q) = {t ∈ F∗ : ∃n,�n(t) = ρ2}

of L(q), contains a set which consists of the smooth surfaces and has the measure
asymptotically equal to the measure of the sphere {x ∈ R

d : |x | = ρ}. The nonempty
of Iρ(q) for large ρ implies the validity of the Bethe-Sommerfeld conjecture for
arbitrary dimension and arbitrary lattice.



44 2 Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions

There are several different approaches for solving the Bethe-Sommerfeld conjec-
ture. First method is the method of Skriganov. The Skriganov’s method is based on
the detailed investigation of the arithmetic and geometric properties of the lattice.
Skriganov [Sk1, Sk2, Sk3, Sk4, Sk5] proved the validity of the Bethe-Sommerfeld
conjecture for the Schrödinger operator with the dimension d = 2, 3 and the arbitrary
lattice, with the dimension d > 3 and the rational lattice. Dahlberg and Trubowits
[DaTru] gave the simple proof of this conjecture for the two dimensional Schrödinger
operator using an asymptotic of the Bessel functions.

In papers [Ve1, Ve2, Ve3, Ve4] (see also [Ve6, Ve8, Ve9]), for the first time, we
proved the validity of the Bethe-Sommerfeld conjecture for the arbitrary lattice and
arbitrary dimension by using the asymptotic formulas and by the construction of the
simple set B, that is, by the method of the perturbation theory. Then Karpeshina (see
[Ka1]) proved this conjecture for the two and three dimensional Schrödinger operator
L(q) for a wide class of nonsmooth potentials q by the method of the perturbation
theory.

Helffer andMohamed [HeMo] proved it for d ≤ 4, by investigating the integrated
density of states. Since this and the other investigations [Ka7, Moh, MoPaPc, PaSh,
So] about the integrated density of states have no any connection with the main
themes (asymptotic formulas for Bloch eigenvalues and Bloch functions, spectral
invariants and inverse problem) of this book, we do not discuss those results.

Parnovski [Pa] proved the validity of this conjecture for the arbitrary lattice and
arbitrary dimension by the methods of the perturbation theory. As he wrote in [Pa]
(see introduction), there are certain parallels between the approach of the paper [Pa]
and the approach used in the paper [Ve4] of Veliev. Briefly, he wrote the follow-
ing similarities and differences. Similarities: Precise asymptotic formulae for Bloch
eigenvalues in the non-resonance regions and some, although not very precise, formu-
lae in the resonance regions and the geometrical combinatorics. Differences: Veliev
makes a heavy use of the asymptotic formulae for the eigenfunctions, the isoener-
getic surface, whereas we don’t need it. One can readily see that the similarities are
Property 1 and Property 3 (see above) which are enough to prove the validity of this
conjecture for the arbitrary lattice and arbitrary dimension. Thus in [Pa] Parnovski
proved the validity of this conjecture by using the similarities. The differences, that
is, asymptotic formulas for the Bloch functions and investigations of the isoenergetic
surface are more important than the conjecture and are my additional investigation
whose expanded explanation were done in [Ve5, Ve6, Ve9]. Hence the method of the
papers [Ve1, Ve2, Ve3, Ve4] is the first and unique (for present) by which the validity
of the Bethe-Sommerfeld conjecture for the arbitrary lattice and arbitrary dimension
was proved, since [Pa] was written after all my papers and arxiv papers about it. Note
that in the recent literature [Ka4, Ka5, Ka6, PaBa, PaSo, Ve8] the generalizations of
some results to periodic magnetic Schrödinger, polyharmonic, and psevdodifferen-
tial operator were investigated. In order to avoid the technical complexity and taking
into account that the book is devoted to L(q) I do not discuss the generalizations.

In 4-th and 5-th sections we construct and investigate the simple set B with the
properties 1–4. Note that one can read Sects. 2.4 and 2.5 without reading Sect. 2.3.
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In Sect. 2.6, we construct the simple set in the resonance domain and obtain the
asymptotic formulas of arbitrary order for the Bloch functions of the multidimen-
sional Schrödinger operator L(q) of arbitrary dimension d, where

q ∈ W s
2 (F), s ≥ 6(3d(d + 1)2) + d, (2.1.36)

when the corresponding quasimomentum lies in this simple set, by using the ideas
of the Sects. 2.4 and 2.5. For the first time the asymptotic formulas for the Bloch
function in the resonance case were obtained in [FeKnTr2] for d = 2. Then in
[Ka2], in the resonance case, for d = 2, 3 and for a wide class of singular potentials
q, including Coulomb potential, the isoenergetic surfaces were constructed and the
convergence of the perturbation series for the Bloch functions was proved. In the
paper [Ve9] we investigated the resonance case for arbitrary dimension d. Note that
we construct the simple set in the non-resonance domain so that it contains a big part
of the isoenergetic surfaces of L(q). However in the case of resonance domain we
construct the simple set so that it can be easily used for the constructive determination
a family of the spectral invariants by the given Bloch eigenvalues and then to study
the inverse problem of L(q) by these spectral invariants in the next chapters.

In this chapter for the different types of the measures of the subset A of R
d we

use the same notation μ(A). By |A| we denote the number of elements of the set A
and use the following obvious fact. If a ∼ ρ, then

|{γ + t : γ ∈ �, ||γ + t | − a| < 1}| = O(ρd−1). (2.1.37)

Therefore for the number of the eigenvalues�N (t) of Lt (q) lying in (a2−ρ, a2+ρ)

the equality
|{N : �N (t) ∈ (a2 − ρ, a2 + ρ)}| = O(ρd−1) (2.1.37a)

holds. Besides, we use the inequalities:

α1 + dα < 1 − α, dα <
1

2
αd , (2.1.38)

αk + (k − 1)α < 1, αk+1 > 2(αk + (k − 1))α (2.1.39)

k1 ≤ 1

3
(p − 1

2
(κ(d − 1)), 3k1α > d + 2α, (2.1.40)

for k = 1, 2, . . . , d,which follow from the definitions of the numbers p, κ,α,αk, k1
[see (2.1.5), (2.1.1), (2.1.26), and the Definition 2.1.1].
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2.2 Asymptotic Formulas for the Eigenvalues

First we obtain the asymptotic formulas for the non-resonance eigenvalues by itera-
tion of (2.1.9). If (2.1.15) holds and

γ + t ∈ U (ρα1 , p),

then (2.1.11) holds. Therefore using the decomposition (2.1.5) in (2.1.12), we obtain

b(N , γ − γ1) =
∑

γ2∈�(ρα)

qγ2b(N , γ − γ1 − γ2)

�N (t) − |γ − γ1 + t |2 + O(ρ−pα). (2.2.1)

Substituting this for b(N , γ −γ1) into the right-hand side of (2.1.9) and isolating the
terms containing the multiplicand b(N , γ), we get

(�N (t) − |γ + t |2)b(N , γ) =
∑

γ1,γ2∈�(ρα)

qγ1qγ2b(N , γ − γ1 − γ2)

�N (t) − |γ − γ1 + t |2 + O(ρ−pα)

=
∑

γ1∈�(ρα)

|qγ1 |2b(N , γ)

�N (t) − |γ − γ1 + t |2 +
∑

γ1,γ2∈�(ρα),
γ1+γ2 �=0

qγ1qγ2b(N , γ − γ1 − γ2)

�N (t) − |γ − γ1 + t |2 + O(ρ−pα),

(2.2.2)

since
qγ1qγ2 = |qγ1 |2

for γ1 + γ2 = 0 and the last summation is taken under the condition γ1 + γ2 �= 0.
The formula (2.2.2) is the once iteration of (2.1.9). Let us iterate it several times. It
follows from the definition of U (ρα1 , p) that (see Definition 2.1.1) if

γ+t ∈ U (ρα1 , p), γ1 ∈ �(ρα), γ2 ∈ �(ρα), . . . , γk ∈ �(ρα), γ1+γ2+· · ·+γk �= 0,

and (2.1.15) holds, then

||γ + t |2 − |γ − γ1 − γ2 − · · · − γk + t |2| > ρα1 ,

|�N (t) − |γ − γ1 − γ2 − · · · − γk + t |2| >
1

2
ρα1 , ∀k ≤ p. (2.2.3)

Therefore arguing as in the proof of (2.2.1), we get

b(N , γ −
k∑

j=1

γ j ) =
∑

γk+1∈�(ρα)

qγk+1b(N , γ − γ1 − γ2 − · · · − γk+1)

�N (t) − |γ − γ1 − γ2 − · · · − γk + t |2 + O(
1

ρpα
)

(2.2.4)
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for k ≤ p, γ1+γ2+· · ·+γk �= 0.Nowwe iterate (2.1.9), by using (2.2.4), as follows.
In (2.2.2) replace b(N , γ −γ1 −γ2) by its expression from (2.2.4) [in (2.2.4) replace
k by 2] and isolate the terms containing b(N , γ), then replace b(N , γ−γ1−γ2−γ3)
for γ1 + γ2 + γ3 �= 0 by its expression from (2.2.4) and isolate the terms containing
b(N , γ). Repeating this process p1 times, we obtain

(�N (t)−|γ+ t |2)b(N , γ) = Ap1−1(�N , γ+ t)b(N , γ)+C p1 + O(ρ−pα), (2.2.5)

where p1 =: [ p
3 ] + 1,

Ap1−1(�N , γ + t) =
p1−1∑

k=1

Sk(�N , γ + t),

Sk(�N , γ + t) =
∑

γ1,...,γk∈�(ρα)

qγ1qγ2 . . . qγk q−γ1−γ2−···−γk
∏k

j=1(�N (t) − |γ + t − ∑ j
i=1 γi |2)

,

C p1 =
∑

γ1,...,γp1+1∈�(ρα)

qγ1qγ2 . . . qγp1+1b(N , γ − γ1 − γ2 − · · · − γp1+1)
∏p1

j=1(�N (t) − |γ + t − ∑ j
i=1 γi |2)

.

Here the summations for Sk and C p1 are taken under the additional conditions γ1 +
γ2 + · · · + γs �= 0 for s = 1, 2, . . . , k and s = 1, 2, . . . , p1 respectively. These
conditions and (2.2.3) show that the absolute values of the denominators of the
fractions in Sk and C p1 are greater than ( 12ρ

α1)k and ( 12ρ
α1)p1 respectively. Now

using inequality (2.1.6a), we get

Sk(�N , γ + t) = O(ρ−kα1), ∀k = 1, 2, . . . , p1 − 1, (2.2.6)

C p1 = O(ρ−p1α1) = O(ρ−pα),

since p1 ≥ 3p [see (2.2.5)] and α1 = 3α (see Definition 2.1.1), and hence p1α1 ≥
pα. In the proof of (2.2.6) we used only the condition (2.1.15) for �N . Therefore

Sk(a, γ + t) = O(ρ−kα1) (2.2.7)

for all a ∈ R satisfying

|a − |γ + t |2| <
1

2
ρα1 .

Theorem 2.2.1 (a) Suppose γ + t ∈ U (ρα1 , p). If (2.1.15) and (2.1.16) hold, then
�N (t) satisfies (2.1.14) for k = 1, 2, . . . , [ 13 (p − c)], where

F0(γ + t) = 0, Fk(γ + t) = O(ρ−α1), ∀k = 0, 1, . . . , (2.2.8)
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F1(γ + t) =
∑

γ1∈�(ρα)

|qγ1 |2
|γ + t |2 − |γ − γ1 + t |2 , (2.2.9)

Fs = As(|γ + t |2 + Fs−1, γ + t) =
s∑

k=1

Sk(|γ + t |2 + Fs−1, γ + t)

=
s∑

k=1

(
∑

γ1,...,γk∈�(ρα)

qγ1qγ2 . . . qγk q−γ1−γ2−···−γk
∏k

j=1(|γ + t |2 + Fs−1 − |γ + t − ∑ j
i=1 γi |2)

) (2.2.10)

for s = 1, 2, . . . . and the last summations in (2.2.10) are taken under the additional
conditions γ1 + γ2 + · · · + γ j �= 0 for j = 2, 3, . . . , k.

(b) For each vector γ + t from U (ρα1 , p) there exists an eigenvalue �N (t) of
Lt (q) satisfying (2.1.14) for k = 1, 2, . . . , [ 13 (p − 1

2κ(d − 1))].
Proof (a) Dividing both side of (2.2.5) by b(N , γ) and using (2.1.16) and (2.2.6),
we get the proof of (2.1.13). Thus the formula (2.1.14) for k = 1 holds and F0 = 0.
Hence (2.2.8) for k = 0 is also proved. Moreover, from (2.2.7), we obtain

Sk(|γ + t |2 + O(ρ−α1), γ + t) = O(ρ−kα1) (2.2.11)

for k = 1, 2, . . . . Therefore (2.2.8) for arbitrary k follows from the definition of
Fk [see (2.2.10)] by induction. Now we prove (2.1.14) by induction on k. Suppose
(2.1.14) holds for k = j < [ 13 (p − c)] ≤ p1, that is,

�N (t) = |γ + t |2 + Fj−1(γ + t) + O(ρ− jα1).

Substituting this into Ap1−1(�N , γ + t) in (2.2.5), dividing both sides of (2.2.5) by
b(N , γ), using (2.1.16), and taking into account that

Ap1−1(�N , γ + t) = A j (�N , γ + t) + O(ρ−( j+1)α1)

[see (2.2.6) and the definition of Ap1−1 in (2.2.5)], we get

�N (t) = |γ + t |2 + A j (|γ + t |2 + Fj−1 + O(ρ− jα1), γ + t)

+ O(ρ−( j+1)α1) + O(ρ−(p−c)α)

On the other hand
O(ρ−(p−c)α) = O(ρ−( j+1)α1),

since j + 1 ≤ 1
3 [p − c], and α1 = 3α. Therefore to prove (2.1.14) for k = j + 1 it

remains to show that
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A j (|γ + t |2 + Fj−1 + O(ρ− jα1), γ + t)

= A j (|γ + t |2 + Fj−1, γ + t)) + O(ρ−( j+1)α1) (2.2.12)

[see the definition of Fj in (2.2.10)]. It can be checked by using (2.1.6a), (2.2.8),
(2.2.11) and the obvious relation

1
∏s

j=1(|γ + t |2 + Fj−1 + O(ρ− jα1) − |γ + t − ∑s
i=1 γi |2)

− 1
∏s

j=1(|γ + t |2 + Fj−1 − |γ + t − ∑s
i=1 γi |2)

= 1
∏s

j=1(|γ + t |2 + Fj−1 − |γ + t − ∑s
i=1 γi |2) (

1

1 − O(ρ−( j+1)α1)
− 1)

= O(ρ−( j+1)α1), ∀s = 1, 2, . . . .

The formula (2.2.9) is also proved, since by (2.2.10) and (2.2.8) we have

F1 = A1(|γ + t |2, γ + t) = S1(|γ + t |2, γ + t)

=
∑

γ1∈�(ρα)

qγ1q−γ1

(|γ + t |2 − |γ + t − γ1|2) . (2.2.13)

(b) Let A be the set of indices N satisfying (2.1.15). Using (2.1.8) and Bessel’s
inequality, we obtain

∑

N /∈A

|b(N , γ)|2 =
∑

N /∈A

| (�N (x), q(x)ei〈γ+t,x〉)
�N − |γ + t |2 |2 = O(ρ−2α1)

Hence, by the Parseval equality, we have

∑

N∈A

|b(N , γ)|2 = 1 − O(ρ−2α1).

This and the inequality

|A| = O(ρd−1) = O(ρ(d−1)κα)

[see (2.1.37a) and the definition of α in (2.1.5)] imply that there exists a number N
satisfying (2.1.16) for c = 1

2κ(d − 1). Thus �N (t) satisfies (2.1.14) due to (a). ��
Theorem 2.2.1 shows that in the non-resonance case the eigenvalue of the operator

Lt (q) is close to the eigenvalue of the unperturbed operator Lt (0). However, in
Theorem 2.2.2 we prove that if

γ + t ∈ ∩k
i=1Vγi (ρ

αk )\Ek+1
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for k ≥ 1, where γ1, γ2, . . . , γk are linearly independent vectors of �(pρα), then
the corresponding eigenvalue of Lt (q) is close to the eigenvalue of the matrix C(γ +
t, γ1, γ2, . . . , γk) constructed as follows. Introduce the sets:

Bk =: Bk(γ1, γ2, . . . , γk) = {b : b =
k∑

i=1

niγi , ni ∈ Z, |b| <
1

2
ρ

1
2αk+1},

Bk(γ + t) = γ + t + Bk = {γ + t + b : b ∈ Bk}, (2.2.14)

Bk(γ + t, p1) = {γ + t + b + a : b ∈ Bk , |a| < p1ρ
α, a ∈ �} = {hi + t : i = 1, 2, . . . , bk},

where p1 is defined in (2.2.5), h1 + t, h2 + t, . . . , hbk + t are the vectors of Bk(γ +
t, p1), and bk =: bk(γ1, γ2, . . . , γk) is the number of the vectors of Bk(γ + t, p1).
Define the matrix C(γ + t, γ1, γ2, . . . , γk) =: (ci, j ) by

ci,i = |hi + t |2, ci, j = qhi −h j , ∀i �= j, (2.2.15)

where i, j = 1, 2, . . . , bk .

To prove Theorem 2.2.2 we use the following lemma.

Lemma 2.2.1 Suppose

γ + t ∈ (∩k
i=1Vγi (ρ

αk ))\Ek+1

and h + t ∈ Bk(γ + t, p1). If (h − γ′ + t) /∈ Bk(γ + t, p1), where γ′ ∈ �(ρα), then

||γ + t |2 − |h − γ′ − γ′
1 − γ′

2 − · · · − γ′
s + t |2| >

1

5
ραk+1 (2.2.16)

for s = 0, 1, . . . , p1 − 1, where γ′
1 ∈ �(ρα), γ′

2 ∈ �(ρα), . . . , γ′
s ∈ �(ρα).

Proof It follows from the definitions of p1 [see (2.2.5)] and p [see (2.1.5), (2.1.1)]
that p > 2p1. Therefore the conditions of Lemma 2.2.1 imply that

h − γ′ − γ′
1 − γ′

2 − · · · − γ′
s + t ∈ Bk(γ + t, p)\Bk(γ + t)

for s = 0, 1, . . . , p1 − 1. By the definitions of Bk(γ + t, p) and Bk [see (2.2.14)]
we have

h − γ′ − γ′
1 − γ′

2 − · · · − γ′
s + t = γ + t + b + a,

where

|b| <
1

2
ρ

1
2αk+1 , |a| < pρα, γ + t + b + a /∈ γ + t + Bk, b ∈ Bk ⊂ P, (2.2.17)

and P = Span{γ1,γ2, . . . , γk}. In this notation (2.2.16) has the form



2.2 Asymptotic Formulas for the Eigenvalues 51

||γ + t + a + b|2 − |γ + t |2| >
1

5
ραk+1 , (2.2.18)

where (2.2.17) holds. To prove (2.2.18) we consider two cases:
Case 1. a ∈ P . Since b ∈ Bk ⊂ P [see (2.2.17)] we have a + b ∈ P. This with

the third relation in (2.2.17) implies that a + b ∈ P\Bk , i.e.,

a + b ∈ P, |a + b| ≥ 1

2
ρ

1
2αk+1 (2.2.19)

[see the definition of Bk in (2.2.14)]. Now to prove (2.2.18) we consider the orthog-
onal decomposition γ + t = y + v of γ + t, where v ∈ P and y⊥P. First we prove
that the projection v of any vector

x ∈ ∩k
i=1Vγi (ρ

αk )

on P satisfies
|v| = O(ρ(k−1)α+αk ). (2.2.20)

For this we turn the coordinate axis so that P coincides with the span of the vectors
e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ek . Since γs ∈ P we have

γs =
k∑

i=1

γs,i ei , ∀s = 1, 2, . . . , k

Therefore the relation x ∈ ∩k
i=1Vγi (ρ

αk ) and (2.1.10) imply

k∑

i=1

γs,i xi = O(ραk ), ∀s = 1, 2, . . . , k,

where x = (x1, x2, . . . , xd), γ j = (γ j,1, γ j,2, . . . , γ j,k, 0, 0, . . . , 0). Solving this
system of equations by Cramer’s rule, we obtain

xn = det(bn
j,i )

det(γ j,i )
, ∀n = 1, 2, . . . , k, (2.2.21)

where bn
j,i = γ j,i for n �= j and bn

j,i = O(ραk ) for n = j. Since the absolute value of
the determinant det(γ j,i ) is the volume of the parallelotope generated by the vectors
γ1, γ2, . . . , γk we have ∣

∣det(γ j,i )
∣
∣ ≥ μ(F) = 1.

On the other hand the relation γ j ∈ �(pρα) and the definition of bn
j,i imply that
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|γ j,i | < pρα, det(bn
j,i ) = O(ραk+(k−1)α).

Therefore using (2.2.21), we get

xn = O(ραk+(k−1)α), ∀n = 1, 2, . . . , k; ∀x ∈ ∩k
i=1Vγi (ρ

αk ). (2.2.22)

Hence (2.2.20) holds. The conditions a ∈ P, b ∈ P and the orthogonal decomposi-
tion γ + t = y + v of γ + t, where v ∈ P and y⊥P imply that

〈y, v〉 = 〈y, a〉 = 〈y, b〉 = 0,

and
|γ + t + a + b|2 − |γ + t |2 = |a + b + v|2 − |v|2. (2.2.23)

Therefore using (2.2.20), (2.2.19), and the inequality αk+1 > 2(αk + (k − 1)α) [see
the second inequality in (2.1.39)], we obtain the estimation (2.2.18).

Case 2. a /∈ P. First we show that

||γ + t + a|2 − |γ + t |2| ≥ ραk+1 . (2.2.24)

Suppose that (2.2.24) does not hold. Then γ + t ∈ Va(ραk+1). On the other hand

γ + t ∈ ∩k
i=1Vγi (ρ

αk+1)

(see the conditions of Lemma 2.2.1). Therefore we have γ + t ∈ Ek+1 which contra-
dicts to the conditions of the lemma. Thus (2.2.24) is proved. Now, to prove (2.2.18)
we write the difference |γ + t + a + b|2 − |γ + t |2 as the sum of

d1 =: |γ + t + a + b|2 − |γ + t + b|2 and d2 =: |γ + t + b|2 − |γ + t |2.

Since
d1 = |γ + t + a|2 − |γ + t |2 + 2 〈a, b〉 ,

it follows from the inequalities (2.2.24) and (2.2.17) that |d1| > 2
3 ραk+1 . On the

other hand, taking a = 0 in (2.2.23), we have

d2 = |b + v|2 − |v|2.

Therefore (2.2.20), the first inequality in (2.2.17) and the second inequality in (2.1.39)
imply that

|d2| <
1

3
ραk+1 , |d1| − |d2| >

1

3
ραk+1 ,

that is, (2.2.18) holds ��
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Now we are ready to prove the following

Theorem 2.2.2 (a) Suppose

γ + t ∈ (∩k
i=1Vγi (ρ

αk ))\Ek+1,

where 1 ≤ k ≤ d − 1. If (2.1.15) and (2.1.16) hold, then there exists an index j such
that (2.1.17) holds, where

λ1(γ + t) ≤ λ2(γ + t) ≤ · · · ≤ λbk (γ + t)

are the eigenvalues of the matrix C(γ + t, γ1, γ2, . . . , γk) defined in (2.2.15).
(b) Every eigenvalue �N (t) of the operator Lt (q) satisfies one of the formulas

(2.1.14) and (2.1.17) for k = [ 13 (p − 1
2κ(d − 1))] and c = κ(d−1)

2 respectively.

Proof (a) Writing the Eq. (2.1.9) for all hi + t ∈ Bk(γ + t, p1), we obtain

(�N − |hi + t |2)b(N , hi ) =
∑

γ′∈�(ρα)

qγ′b(N , hi − γ′) + O(ρ−pα) (2.2.25)

for i = 1, 2, . . . , bk [see (2.2.14) for the definition of Bk(γ + t, p1)]. It follows from
(2.1.15) and Lemma 2.2.1 that if

(hi − γ′ + t) /∈ Bk(γ + t, p1),

then

|�N (t) − |hi − γ′ − γ1 − γ2 − · · · − γs + t |2| >
1

6
ραk+1 , (2.2.26)

where γ′ ∈ �(ρα), γ j ∈ �(ρα), j = 1, 2, . . . , s and s = 0, 1, . . . , p1−1.Therefore,
using the p1 times iterations of (2.2.1) taking into account (2.2.26), (2.1.6a) and the
obvious inequality p1αk+1 > pα [see (2.2.5) and Definition 2.1.1 for the definitions
of p1 and αk+1], we see that if

(hi − γ′ + t) /∈ Bk(γ + t, p1),

then

b(N , hi − γ′) =
∑

γ1,...,γp1−1∈�(ρα)

qγ1qγ2 . . . qγp1
b(N , hi − γ′ − ∑p1

i=1 γi )
∏p1−1

j=0 (�N − |hi − γ′ + t − ∑ j
i=1 γi |2)

+ O(ρ−pα) = O(ρp1αk+1) + O(ρ−pα) = O(ρ−pα). (2.2.27)
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Hence (2.2.25) has the form

(�N − |hi + t |2)b(N , hi ) =
∑

γ′:γ′∈�(ρα),

hi −γ′+t∈Bk (γ+t,p1)

qγ′b(N , hi − γ′) + O(ρ−pα)

for i = 1, 2, . . . , bk . This system can be written in the matrix form

(C − �N I )(b(N , h1), b(N , h2), . . . b(N , hbk )) = O(ρ−pα),

where the right-hand side of this system is a vector having the norm

‖O(ρ−pα)‖ = O(
√

bkρ
−pα).

Using the last two equalities, taking into account that one of the vectors h1 + t,
h2 + t, . . . , hbk + t is γ + t [see the definition of Bk(γ + t, p1) in (2.2.14)] and
(2.1.16) holds, we obtain

c5ρ
−cα < (

bk∑

i=1

|b(N , hi )|2) 1
2 ≤ ‖(C − �N I )−1‖√bkc7ρ

−pα. (2.2.28)

Since (C − �N I )−1 is the symmetric matrix having the eigenvalues (�N − λi )
−1

for i = 1, 2, . . . , bk, we have

max
i=1,2,...,bk

|�N − λi |−1 = ‖(C − �N I )−1‖ > c5c−1
7 b

− 1
2

k ρ−cα+pα, (2.2.29)

where bk is the number of the vectors of Bk(γ + t, p1). It follows from the definition
of Bk(γ + t, p1) [see (2.2.14)] and the obvious relations

|Bk | = O(ρ
k
2αk+1), |�(p1ρ

α)| = O(ρdα), dα <
1

2
3dα = 1

2
αd

that

bk = O(ρdα+ k
2αk+1) = O(ρ

d
2 αd ) = O(ρ

d
2 3

dα), ∀k = 1, 2, . . . , d − 1. (2.2.30)

Thus (2.1.17) follows from (2.2.29) and (2.2.30).
(b) Let�N (t) be an eigenvalue of Lt (q) lying in ( 34ρ

2, 5
4ρ

2).Denote by D the set
of all vectors γ ∈ � satisfying (2.1.15). Using (2.1.8), (2.1.15), Bessel’s inequality,
and Parseval’s equality, we obtain
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∑

γ /∈D

|b(N , γ)|2 =
∑

γ /∈D

| (�N ,t q, ei〈γ+t,x〉)
�N − |γ + t |2 |2

= O(ρ−2α1)‖�N ,t q‖ = O(ρ−2α1)

and ∑

γ∈D

|b(N , γ)|2 = 1 − O(ρ−2α1).

Since |D| = O(ρd−1) [see (2.1.37)], there exists γ ∈ D such that

|b(N , γ)| > c8ρ
− (d−1)

2 = c8ρ
− (d−1)κ

2 α,

that is, (2.1.16) for c = (d−1)κ
2 holds. Now the proof of (b) follows from Theorem

2.2.1(a) and Theorem 2.2.2(a), since either γ + t ∈ U (ρα1, p) or γ + t ∈ Ek\Ek+1
for k = 1, 2, . . . , d − 1 [see (2.2.33)] ��
Remark 2.2.1 The obtained asymptotic formulas hold true, without any changes
in their proofs, if we replace Vγ1(ρ

α1) by Vγ1(c4ρ
α1). Here we note that the non-

resonance domain

U =: U (c4ρ
α1 , p) =: (R(

3

2
ρ)\R(

1

2
ρ))\

⋃

γ1∈�(pρα)

Vγ1(c4ρ
α1)

(see Definition 2.1.1) has an asymptotically full measure on R
d in the sense that

lim
ρ→∞

μ(U ∩ S(ρ))

μ(S(ρ))
= 1,

where
S(ρ) = {x ∈ R

d : |x | = ρ}

is the sphere. Clearly, S(ρ)∩Vb(c4ρα1) is the part of sphere S(ρ),which is contained
between two parallel hyperplanes

{x : |x |2 − |x + b|2 = −c4ρ
α1} & {x : |x |2 − |x + b|2 = c4ρ

α1}.

The distances of these hyperplanes from the origin are O(
ρα1

|b| ). Therefore, the rela-
tions

|�(pρα)| = O(ρdα)

and α1 + dα < 1 − α [see (2.1.38)] imply
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μ(S(ρ) ∩ Vb(c4ρ
α1)) = O(

ρα1+d−2

|b| ),μ(E1 ∩ S(ρ)) = O(ρd−1−α), (2.2.31)

μ(U (c4ρ
α1 , p) ∩ B(ρ)) = (1 + O(ρ−α))μ(B(ρ)). (2.2.32)

If
x ∈ ∩d

i=1Vγi (ρ
αd ),

then (2.2.22) holds for k = d and n = 1, 2, . . . , d. Hence we have

|x | = O(ραd+(d−1)α).

It is impossible, since αd + (d − 1)α < 1 [see the first inequality in (2.1.39)] and
x ∈ S(ρ). It means that

(∩d
i=1Vγi (ρ

αk )) ∩ S(ρ) = ∅

for ρ � 1. Thus for ρ � 1 we have

R(
3

2
ρ)\R(

1

2
ρ) = (U (ρα1, p) ∪ (∪d−1

s=1 (Es\Es+1))). (2.2.33)

Remark 2.2.2 Here we note some properties of the known parts

|γ + t |2 + Fk(γ + t) & λ j (γ + t)

(see Theorem 2.2.1 and Theorem 2.2.2) of the eigenvalues of Lt (q). Denoting γ + t
by x we consider the function

F(x) = |x |2 + Fk(x).

It follows from the definition of Fk(x) that (see 2.2.10) F(x) is continuous on
U (c4ρα1 , p). Let us prove the equalities

∂Fk(x)

∂xi
= O(ρ−2α1+α), ∀i = 1, 2, . . . , d; ∀k = 1, 2, . . . , (2.2.34)

for x ∈ U (ρα1 , p), by induction on k. If k = 1 then (2.2.34) follows from (2.1.6a)
and the obvious relation

∂

∂xi
(

1

|x |2 − |x − γ1|2 ) = −2γ1(i)

(|x |2 − |x − γ1|2)2 = O(ρ−2α1+α), (2.2.35)

where γ1(i) is the i th component of the vector γ1 ∈ �(pρα). Now suppose that
(2.2.34) holds for k = s. Using this and (2.2.8), replacing |x |2 by |x |2 + Fs(x) in
(2.2.35) and evaluating as above we obtain
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∂

∂xi
(

1

|x |2 + Fs − |x − γ1|2 ) = −2γ1(i) + ∂Fs(x)
∂xi

(|x |2 + Fs − |x − γ1|2)2 = O(ρ−2α1+α).

This formula together with the definition (2.2.10) of Fk gives (2.2.34) for k = s + 1.
Now denoting λi (γ + t) − |γ + t |2 by ri (γ + t) we prove that

|ri (x) − ri (x ′)| ≤ 2ρ
1
2αd |x − x ′|,∀i. (2.2.36)

It is clear that
r1(x) ≤ r2(x) ≤ · · · ≤ rbk (x)

are the eigenvalues of the matrix

C(x) − |x |2 I =: C̃(x),

where C(x) is defined in (2.2.15). By definition, only the diagonal elements of the
matrix

C̃(x) = (̃ci, j (x))

depend on x and they are

c̃i, j (x) = |x + ai |2 − |x |2 = 2 〈x, ai 〉 + |ai |2, (2.2.37)

where x = γ + t, ai = hi + t − x and hi + t ∈ Bk(γ + t, p1). Using the equality
αd = 3dα (see Definition 2.1.1) and the definition of Bk(γ + t, p1) [see (2.2.14)],
we get

|ai | <
1

2
ρ

1
2αk + p1ρ

α < ρ
1
2αd

for k < d. Therefore taking into account that C̃(x)− C̃(x ′) is a diagonal matrix with
diagonal entries

c̃i, j (x) − c̃i, j (x ′) = 2〈x − x ′, ai 〉

[see (2.2.37)], we have

‖C̃(x) − C̃(x ′)‖ ≤ 2ρ
1
2αd |x − x ′|

which yields (2.2.36).
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2.3 Bloch Eigenvalues Near the Diffraction Planes

In this section we obtain the asymptotic formulae for the eigenvalues corresponding
to the quasimomentum γ + t lying near the diffraction hyperplane Dδ , namely lying
in the single resonance domain

V
′
δ(ρ

α1) =: Vδ(ρ
α1)\E2

defined in Definition 2.1.1, where δ is the element of � of minimal norm in its
direction, that is, δ is the element of � such that

{〈δ,ω〉 : ω ∈ �} = 2πZ.

In Sect. 2.2, to obtain the asymptotic formulas for the eigenvalues corresponding
to the quasimomentum γ + t lying far from the diffraction planes we considered
the operator Lt (q) as the perturbation of the operator Lt (0) with q. As a result
the asymptotic formulas for these eigenvalues of Lt (q) were expressed in terms
of the eigenvalues of Lt (0). To obtain the asymptotic formulae for the eigenvalues
corresponding to the quasimomentum γ + t lying near the diffraction plane Dδ we
consider the operator Lt (q) as the perturbation of the operator Lt (qδ), where the
directional potential qδ is defined in (2.1.19), with q − qδ. Hence it is natural that
the asymptotic formulas, which will be obtained in this section, are expressed in
terms of the eigenvalues of Lt (qδ). Therefore first of all we need to investigate the
eigenvalues and eigenfunctions of Lt (qδ). Here we use Notation 2.1.1. Denote by
Fδ the fundamental domain Hδ/�δ of �δ. Then t ∈ F∗ = R

d/� has a unique
decomposition

t = a + τ + |δ|−2 〈t, δ〉 δ, (2.3.1)

where a ∈ �δ, τ ∈ Fδ. Define the sets �′ and �′ by

�′ = {h + lδ∗ : h ∈ �δ, l ∈ Z},

and
�′ = {b + (p − (2π)−1 〈

b, δ∗〉)δ : b ∈ �δ, p ∈ Z},

where δ∗ is the element of � satisfying 〈δ∗, δ〉 = 2π.

Lemma 2.3.1 (a) The following relations hold:

� = �′, � = �′.

(b) The eigenvalues and eigenfunctions of the operator Lt (qδ) are

λ j,β(v, τ ) = |β + τ |2 + μ j (v(β, t)),� j,β(x) = ei〈β+τ ,x〉ϕ j,v(β,t))(ζ)
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for j ∈ Z, β ∈ �δ, where v(β, t) is the fractional part of

|δ|−2 〈t, δ〉 − (2π)−1 〈
β − a, δ∗〉 ,

τ and a are uniquely determined from decomposition (2.3.1). Here μ j (v(β, t))
and ϕ j,v(β,t)(ζ) are the eigenvalues and normalized eigenfunctions of the opera-
tor Tv(β,t)(Q(ζ)) generated by the boundary value problem

−|δ|2y′′(ζ) + Q(ζ)y(ζ) = μy(ζ),

y(ζ + 2π) = ei2πv y(ζ),

where, ζ = 〈δ, x〉 , Q(ζ) = qδ(x) and for simplicity of the notation, instead of v(β, t)
we write v(β) (orv) if t (ort and β), for which we consider v(β, t), is unambiguous.

Proof (a) For each vector ω of the lattice � assign

h = ω − (2π)−1 〈ω, δ〉 δ∗.

Using the relations 〈ω, δ〉 =: 2πl ∈ 2πZ, and 〈δ∗, δ〉 = 2π we see that h ∈ � and
〈h, δ〉 = 0, i.e., h ∈ �δ.Hence� ⊂ �′.Now for each vector γ of the lattice� assign
b = γ−|δ|−2 〈γ, δ〉 δ. It is not hard to verify that b ∈ Hδ and 〈b,ω〉 = 〈γ,ω〉 ∈ 2πZ

for ω ∈ �δ ⊂ �. Therefore b ∈ �δ. Moreover

〈
b, δ∗〉 = 〈

γ, δ∗〉 − 2π 〈γ, δ〉 |δ|−2.

Since 〈γ, δ∗〉 ∈ 2πZ, that is, 〈γ, δ∗〉 = 2πn, where n ∈ Z, we have

〈γ, δ〉 |δ|−2 = n − (2π)−1 〈
b, δ∗〉 .

Therefore we obtain an orthogonal decomposition

γ = b + 〈γ,
δ

|δ| 〉
δ

|δ| = b + (n − (2π)−1 〈
b, δ∗〉)δ (2.3.2)

of γ ∈ �, where b ∈ �δ, and n ∈ Z. Hence � ⊂ �′. On the other hand, if b ∈ �δ,

h ∈ �δ and n, l ∈ Z, then

〈
h + lδ∗, b + (n − (2π)−1 〈

b, δ∗〉)δ
〉
= 〈h, b〉 + 2πnl ∈ 2πZ.

Thus we have the relations (see the definitions of the sets �′ and �′)

� ⊂ �′, � ⊂ �′,
〈
ω′, γ′〉 ∈ 2πZ,∀ω′ ∈ �′, ∀γ′ ∈ �′. (2.3.3)
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Since � is the set of all vectors ω ∈ R
d satisfying 〈ω, γ〉 ∈ 2πZ for all γ ∈ � and �

is the set of all vectors γ ∈ R
d satisfying 〈ω, γ〉 ∈ 2πZ for all ω ∈ �, the relations

in (2.3.3) imply �′ ⊂ �, �′ ⊂ � and hence � = �′, � = �′.
(b) Since β + τ is orthogonal to δ, turning the coordinate axis so that δ coincides

with one of the coordinate axis and taking into account that the Laplace operator is
invariant under rotation, one can easily verify that

(−� + qδ(x))� j,β(x) = λ j,β� j,β(x)

Now using the relation 〈δ,ω〉 = 2πl, where ω ∈ �, l ∈ Z, and the definitions of
� j,β(x) and ϕ j,v(〈δ, x〉) we obtain

� j,β(x + ω) = ei〈β+τ ,x+ω〉ϕ j,v(〈δ, x + ω〉) = � j,β(x)ei〈β+τ ,ω〉+i2πlv(β,t).

Replacing τ and ω by t − a − |δ|−2 〈t, δ〉 δ and h + lδ∗ respectively, where

h ∈ �δ, l ∈ Z,

[see (2.3.1) and the first equality of (a)], and then using

〈h, δ〉 = 0,
〈
δ∗, δ

〉 = 2π

one can easily verify that

〈β + τ ,ω〉 = 〈t,ω〉 + 〈β − a, h〉 − 2πl[|δ|−2 〈t, δ〉 − (2π)−1 〈
β − a, δ∗〉].

From this, using the relation
〈β − a, h〉 ∈ 2πZ,

(since β − a ∈ �δ, h ∈ �δ), and taking into account that v(β, t) is a fractional part
of the expression in the last square bracket, we infer

� j,β(x + ω) = ei〈t,ω〉� j,β(x).

Thus � j,β(x) is an eigenfunction of Lt (qδ).

Now we prove that the system

{� j,β : j ∈ Z,β ∈ �δ}

contains all eigenfunctions of Lt (qδ). Assume the converse. Then there exists a
nonzero function f ∈ L2(F), which is orthogonal to all elements of this system.
Using (2.3.1), (2.3.2) and the definition of v(β, t) [see Lemma 2.3.1(b)], we get

γ + t = β + τ + ( j + v)δ, (2.3.4)
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where β ∈ �δ, τ ∈ Fδ, j ∈ Z, and v = v(β, t). Since ei( j+v)ζ can be decomposed
by the basis

{ϕ j,v(β,t))(ζ) : j ∈ Z}

the function ei〈γ+t,x〉 = ei〈β+τ ,x〉ei( j+v)ζ [see (2.3.4)] can be decomposed by the
system

{� j,β(x) = ei〈β+τ ,x〉ϕ j,v(β,t))(ζ) : j ∈ Z}.

Then the above assumption
(� j,β, f ) = 0

for j ∈ Z, β ∈ �δ implies that

( f, ei〈γ+t,x〉) = 0

for all γ ∈ �. This is impossible, since the system {ei〈γ+t,x〉 : γ ∈ �} is a basis of
L2(F) ��
Remark 2.3.1 It is clear that every vector x of R

d has the decompositions

x = γ + t

and
x = β + τ + ( j + v)δ,

where γ ∈ �, t ∈ F and β ∈ �δ, τ ∈ Fδ, j ∈ Z, v ∈ [0, 1). We say that the first
and second decompositions are � and �δ decompositions, respectively. Thus

γ + t = β + τ + ( j + v(β, t))δ

[see (2.3.4)] is the �δ decomposition of γ + t. As we noted in Lemma 2.3.1 instead
of v(β, t) we write v(β) (or v) if t (or t and β), for which we consider v(β, t), is
unambiguous. The decomposition (2.3.4) of γ + t is an orthogonal decomposition,
since β ∈ �δ, τ ∈ Fδ, and δ is orthogonal to both �δ and Fδ . Hence

|γ + t |2 = |β + τ |2 + |( j + v)δ|2.

Therefore, one can easily verify that, if γ + t ∈ Vδ(ρ
α1) (see Definition 2.1.1), then

||( j + v + 1)δ|2 − |( j + v)δ|2| < ρα1 .

Using this and the equality α1 = 3α, we get

|( j + v)δ| < r1, | jδ| < r1, r1 > 2ρα, (2.3.5)
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where r1 = ρα1

|2δ| + |2δ|. To the eigenvalue

|γ + t |2 = |β + τ |2 + |( j + v)δ|2

of Lt (0) assign the eigenvalue

λ j,β(v, τ ) = |β + τ |2 + μ j (v)

of Lt (qδ), where |( j + v)δ|2 is the eigenvalue of Tv(0) and μ j (v) is the eigenvalue
of Tv(Q) [see Lemma 2.3.1(b)] satisfying

|μ j (v) − |( j + v)δ|2| ≤ sup |Q(ζ)|, ∀ j ∈ Z. (2.3.6)

The eigenvalue λ j,β(v, τ ) of Lt (qδ) can be considered as the perturbation of the
eigenvalue

|γ + t |2 = |β + τ |2 + |( j + v)δ|2

of Lt (0) byqδ.Thenwe see that the influence of qδ is significant forβ+τ+( j+v)δ ∈
Vδ(ρ

α1), namely for the small values of j.

Now we prove that if

β + τ + ( j + v)δ ∈ Vδ(ρ
α1),

then there is an eigenvalue�N (t) of Lt (q)which is close to the eigenvalue λ j,β(v, τ )

of Lt (qδ), that is, we prove that the influence of q − qδ is not significant if the
quasimomentum lies in Vδ(ρ

α1)\E2. To prove this we consider the operator Lt (q) as
the perturbation of the operator Lt (qδ)with q−qδ and use (2.1.21) called the binding
formula for Lt (q) and Lt (qδ).Recall thatweobtained the asymptotic formulas for the
perturbation of the non-resonance eigenvalue |γ+t |2 by iterating the binding formula
(2.1.8) for the unperturbed operator Lt (0) and the perturbed operator Lt (q) (see
Sect. 2.2). Similarly, now to obtain the asymptotic formulas for the perturbation of
the resonance eigenvalue we iterate the binding formula (2.1.21) for the unperturbed
operator Lt (qδ) and perturbed operator Lt (q). For this (as in the non-resonance case)
we decompose (q − qδ)� j,β by the basis

{� j ′,β′ : j ′ ∈ Z,β′ ∈ �δ}

and put this decomposition into (2.1.21). Let us find this decomposition.Using (2.3.2)
for γ1 ∈ �(ρα) and (2.1.5), we get

γ1 = β1 + (n1 − (2π)−1 〈
β1, δ

∗〉)δ, ei〈γ1,x〉 = ei〈β1,x〉ei(n1−(2π)−1〈β1,δ∗〉)ζ ,



2.3 Bloch Eigenvalues Near the Diffraction Planes 63

q(x) − Q(ζ) =
∑

(n1,β1)∈�′(ρα)

c(n1,β1)e
i〈β1,x〉ei(n1−(2π)−1〈β1,δ∗〉)ζ + O(ρ−pα),

(q(x) − Q(ζ))� j,β(x)

=
∑

(n1,β1)∈�′(ρα)

c(n1,β1)e
i〈β1+β+τ ,x〉ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j,v(β)(ζ) + O(ρ−pα),

(2.3.7)

where c(n1,β1) = qγ1 ,

�′(ρα) = {(n1,β1) : β1 ∈ �δ\{0}, n1 ∈ Z,β1 + (n1 − (2π)−1 〈
β1, δ

∗〉)δ ∈ �(ρα)}.

Note that if (n1,β1) ∈ �′(ρα), then

|β1 + (n1 − (2π)−1 〈
β1, δ

∗〉)δ| < ρα

and

|β1| < ρα, |(n1 − (2π)−1 〈
β1, δ

∗〉)δ| < ρα <
1

2
r1, (2.3.8)

since β1 is orthogonal to δ and r1 > 2ρα [see (2.3.5)]. To decompose the right-hand
side of (2.3.7) by the basis {� j ′,β′ } we use the following lemma

Lemma 2.3.2 (a) If j and m satisfy the inequalities |m| > 2| j |, |mδ| ≥ 2r, then

(ϕ j,v, ei(m+v)ζ) = O(|mδ|−s−1) = O(ρ−(s+1)α), (2.3.9)

(ϕm,v, ei( j+v)ζ) = O(|mδ|−s−1). (2.3.10)

where r ≥ r1 = ρα1

|2δ| + |2δ|, ϕ j,v is the eigenfunction of the operator Tv(Q), and
Q ∈ W s

2 [0, 2π].
Proof (a) To prove (2.3.9) we iterate the formula

(μ j (v) − |(m + v)δ|2)(ϕ j,v, ei(m+v)ζ) = (ϕ j,v Q, ei(m+v)ζ), (2.3.11)

by using the decomposition

Q(ζ) =
∑

|l1|< |m|
2s

ql1δeil1ζ + O(|mδ|−(s−1)) (2.3.12)

Note that (2.3.11) and (2.3.12) are the one-dimensional cases of (2.1.8) and (2.1.5)
and the iteration of (2.3.11) is simpler than the iteration of (2.1.8) [see (2.1.9) and
(2.2.5)]. If | j | <

|m|
2 , and |li | <

|m|
2s for i = 1, 2, . . . , k, where k = [ s

2 ], then the



64 2 Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions

inequalities

|m + v − l1 − l2 − · · · − lq | − | j | >
1

5
|m|,

|m| − | j + v − l1 − l2 − · · · − lq | >
1

5
|m|

hold for q = 0, 1, . . . , k. Therefore by (2.3.6), we have

(|μ j − |(m − l1 − l2 − · · · − lq + v)δ|2|)−1 = O(|mδ|−2), (2.3.13)

(|μm − |( j − l1 − l2 − · · · − lq + v)δ|2|)−1 = O(|mδ|−2), (2.3.14)

for q = 0, 1, . . . , k. Iterating (2.3.11) k times, by using (2.3.13), we get

(ϕ j , ei(m+v)ζ) =
∑

|l1δ|,|l2δ|,...,|lk+1δ|< |mδ|
2s

ql1δql2δ . . . qlk+1δ

× (ϕ j , ei(m−l1−l2−···−lk+1+v)ζ)

�k
q=0(μ j − |(m − l1 − l2 − · · · − lq + v)δ|2) + O(|mδ|−s−1). (2.3.15)

Now (2.3.9) follows from (2.3.13), (2.3.15) and from inequality (2.1.6a). Formula
(2.3.10) can be proved in the same way by using (2.3.14) instead of (2.3.13). Note
that in (2.3.9) and (2.3.10) instead of O(|mδ|−s−1) we can write O(ρ−(s+1)α), since
|mδ| ≥ r ≥ r1 > 2ρα [see (2.3.5)] ��
Lemma 2.3.3 If | jδ| < r and (n1,β1) ∈ �′(ρα), then

ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j,v(β)(ζ)

=
∑

| j1δ|<9r

a(n1,β1, j,β, j + j1,β + β1)ϕ j+ j1,v(β+β1)(ζ) + O(ρ−(s−1)α),

(2.3.16)

where r and �′(ρα) are defined in Lemma 2.3.2(a) and in (2.3.7) respectively, and

a(n1,β1, j,β, j + j1,β + β1) = (ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j,v(β)(ζ),ϕ j+ j1,v(β+β1)(ζ)).

Proof Since
ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j,v(β)(ζ)

is equal to its Fourier series with the orthonormal basis

{ϕ j+ j1,v(β+β1)(ζ) : j1 ∈ Z}

it suffices to show that
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∑

j1:| j1δ|≥9r

|a(n1,β1, j,β, j + j1,β + β1)| = O(ρ−(s−1)α).

For this we prove

|a(n1,β1, j,β, j + j1,β + β1)| = O(| j1δ|−s) (2.3.17)

for all j1 satisfying | j1δ| ≥ 9r and take into account that r ≥ r1 > ρα [see the last
inequality in (2.3.5)]. Decomposing ϕ j,v(β) over {ei(m+v)ζ : m ∈ Z} and using the
last inequality in (2.3.8), we obtain

ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j (ζ) =
∑

m∈Z

(ϕ j , ei(m+v)ζ)ei(m+n+v(β+β1))ζ , (2.3.18)

where n ∈ Z and |nδ| < r . This and the decomposition

ϕ j+ j1(ζ) =
∑

m∈Z

(ϕ j+ j1, ei(m+v(β+β1))ζ)ei(m+v(β+β1))v

imply that

a(n1,β1, j,β, j + j1,β + β1) =
∑

m∈Z

(ϕ j , ei(m−n+v)ζ)(ϕ j+ j1, ei(m+v(β+β1))ζ)

(2.3.19)
where j, j1, n satisfy the conditions

| jδ| < r, | j1δ| ≥ 9r, |nδ| < r

due to the conditions in Lemma 2.3.3, (2.3.17) and (2.3.18) respectively. Consider
two cases:
Case 1: |mδ| > 1

3 | j1δ| ≥ 3r . In this case using the conditions of (2.3.19), we get
|(m − n)δ| > 2r and |m − n| > | j |. Therefore (2.3.9) implies that

(ϕ j , ei(m−n+v)ζ) = O(|mδ|−s−1),
∑

|m|> 1
3 | j1|

|(ϕ j , ei(m−n+v)ζ)| = O(| j1δ|−s).

Case 2: |m| ≤ 1
3 | j1|.Again using the conditions of (2.3.19) we obtain that | j1+ j | >

2|m|. Therefore it follows from (2.3.10) that

(ϕ j+ j1, ei(m+v(β+β1))ζ) = O(|( j1 + j)δ|−(s−1)) = O(| j1δ|−s−1),
∑

|m|≤ 1
3 | j1|

|(ϕ j+ j1(ζ), ei(m+v(β+β1))ζ)| = O(| j1δ|−s).

These estimations for these two cases together with (2.3.19) yield (2.3.17) ��
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Now it follows from (2.3.7) and (2.3.16) that

(q(x) − Q(ζ))� j ′,β′ (x) = O(ρ−pα)

+
∑

(n1, j1 ,β1)∈G(ρα,9r)

c(n1, β1)a(n1, β1, j, β′, j ′ + j1,β
′ + β1)e

i
〈
β1+β′+τ ,x

〉
ϕ j ′+ j1,v(β′+β1)

(ζ)

(2.3.20)

for all j ′ satisfying | j ′δ| < r, where

G(ρα, 9r) = {(n, j,β) : | jδ| < 9r, (n,β) ∈ �′(ρα),β �= 0}.

In (2.3.20) the multiplicand

ei〈β1+β′+τ ,x〉ϕ j ′+ j1,v(β+β1)(ζ) = � j ′+ j1,β′+β1(x)

does not depend on n1. Its coefficient is

A( j ′, β′, j ′ + j1,β′ + β1 =
∑

n1:(n1,β1)∈�′(ρα)

c(n1, β1)a(n1, β1, j ′, β′, j ′ + j1,β
′ + β1).

(2.3.21)

Lemma 2.3.4 If |β′| ∼ ρ and | j ′δ| < r, where

r ≥ r1 = ρα1

|2δ| + |2δ|,

then

(q(x) − Q(ζ))� j ′,β′(x)

=
∑

( j1 ,β1)∈Q(ρα,9r)

A( j ′,β′, j ′ + j1,β′ + β1)� j ′+ j1,β′+β1(x) + O(ρ−pα),

(2.3.22)

where
Q(ρα, 9r) = {( j,β) : | jδ| < 9r, 0 < |β| < ρα}.

Moreover, ∑

( j1,β1)∈Q(ρα,9r)

|A( j ′,β′, j ′ + j1,β
′ + β1)| < c9, (2.3.23)

where c9 does not depend on ( j ′,β′).

Proof Formula (2.3.22) follows from (2.3.20) and (2.3.21). Now we prove (2.3.23).
Since c(n1,β1) = qγ1 [see (2.3.7)], by the relations (2.1.6a) and (2.3.21) we need to
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prove the inequality

∑

j1

|a(n1,β1, j ′,β′, j ′ + j1,β
′ + β1)| < c9(c3)

−1. (2.3.24)

For this we use (2.3.19) and prove the inequalities:

∑

m∈Z

|(ϕ j ′, ei(m−n+v(β′)ζ)| < c10, (2.3.25)

∑

j1∈Z

|(ϕ j ′+ j1 , ei(m+v(β1+β′))ζ)| < c11. (2.3.26)

Since the distance between the numbers

|vδ|2, |(1 + v)δ|2, . . . ,

and similarly the distance between the numbers

|(−1 + v)δ|2, |(−2 + v)δ|2, . . . ,

where v ∈ [0, 1], are not less than c12, it follows from (2.3.6) that the number of the
elements of the sets

A = {m : |(m − n + v(β′))δ|2 ∈ [μ j ′(v(β′)) − 1,μ j ′(v(β′)) + 1]},
B = { j1 : μ j ′+ j1(v(β1 + β′)) ∈ [|(m + v(β1 + β′))δ|2 − 1, |(m + v)δ|2 + 1]}

is less than c13. Now in (2.3.25) and (2.3.26) isolating the terms with m ∈ A and
j1 ∈ B respectively, applying (2.3.11) to the other terms and then using

∑

m /∈A

1

|μ j ′(v′) − |(m − n + v′)δ|2| < c14,

∑

j1 /∈B

1

|μ j ′+ j1(v
′
1) − |(m + v′

1)δ|2|
< c14

we get the proofs of (2.3.25) and (2.3.26). Thus (2.3.24) and hence (2.3.23) are
proved. Clearly the constants c14, c13, c12, c11, c10 can be chosen independently on
( j ′,β′). Therefore c9 does not depend on ( j ′,β′) ��

Replacing ( j,β) by ( j ′,β′) in (2.1.21) and using (2.3.22), we get

(�N − λ j ′,β′)b(N , j ′,β′) = (�N , (q − Q)� j ′,β′) = O(ρ−pα)

+
∑

( j1,β1)∈Q(ρα,9r)

A( j ′,β′, j ′ + j1,β
′ + β1)b(N , j ′ + j1,β

′ + β1) (2.3.27)
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for |β′| ∼ ρ and | j ′δ| < r, where b(N , j,β) = (�N ,� j,β). Note that if | j ′δ| < r,
then the summation in (2.3.27) is taken over Q(ρα, 9r). Therefore if | jδ| < r1,
where r1 is defined in (2.3.5), then we have

(�N − λ j,β)b(N , j,β) = O(ρ−pα)

+
∑

( j1,β1)∈Q(ρα,9r1)

A( j,β, j + j1,β + β1)b(N , j + j1,β + β1). (2.3.28)

Thus (2.3.28) is obtained from (2.3.27) by interchanging j ′,β′, r, and j,β, r1. Now
to find the eigenvalue �N (t), which is close to λ j,β , where | jδ| < r1, we are going
to iterate (2.3.28) as follows. Since | jδ| < r1 and ( j1,β1) ∈ Q(ρα, 9r1), we have

|( j + j1)δ| < 10r1.

Therefore in (2.3.27) interchanging j ′,β′, r, and j + j1,β + β1, 10r1 and then
introducing the notations

r2 = 10r1, j2 = j + j1 + j2,β
2 = β + β1 + β2,

we obtain

(�N − λ j+ j1,β1+β)b(N , j + j1,β + β1) = O(ρ−pα)

+
∑

( j2,β2)∈Q(ρα,9r2)

b(N , j2,β2)A( j + j1,β + β1, j2,β2). (2.3.29)

Clearly, there exists an eigenvalue �N (t) satisfying

|λ j,β − �N (t)| ≤ 2M,

where M = sup |q(x)|. Moreover, in the next lemma (Lemma 2.3.5), we will prove
that if |β| ∼ ρ, and ( j1,β1) ∈ Q(ρα, 9r1), then

|λ j,β − λ j+ j1,β+β1 | >
5

9
ρα2 , |�N (t) − λ j+ j1,β+β1 | >

1

2
ρα2 . (2.3.30)

Therefore dividing both side of (2.3.29) by �N − λ j+ j1,β+β1 , we get

b(N , j + j1,β1 + β) = O(ρ−pα−α2)

+
∑

( j2,β2)∈Q(ρα,9r2)

A( j + j1,β + β1, j2,β2)b(N , j2,β2)

�N − λ j+ j1,β1+β
. (2.3.31)
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Putting the obtained formula for b(N , j + j1,β1 + β) into (2.3.28), we obtain

(�N − λ j,β)b(N , j, β) = O(ρ−pα)

+
∑

( j1,β1)∈Q(ρα,9r1)
( j2,β2)∈Q(ρα,9r2)

A( j, β, j + j1, β + β1)A( j + j1, β + β1, j2, β2)b(N , j2,β2)

�N − λ j+ j1,β+β1

.

(2.3.32)

Thus we got the once iteration of (2.3.28). It will give the first term of the asymptotic
formula for �N . For this we find the index N such that b(N , j,β) is not very small
(see Lemma 2.3.6) and (2.3.30) is satisfied, i.e., the denominator of the fraction in
(2.3.32) is a big number. Then dividing both sides of (2.3.32) by b(N , j,β), we get
the asymptotic formula for �N (t) (see Theorem 2.3.1).

Lemma 2.3.5 Let γ + t =: β + τ + ( j + v)δ ∈ V ′(ρα1) =: Vδ(ρ
α1)\E2

[see (2.3.4), Remark 2.3.1 and Definition 2.1.1], and ( j1,β1) ∈ Q(ρα, 9r1),
( jk,βk) ∈ Q(ρα, 9rk), where r1 is defined in (2.3.5) and rk = 10rk−1 for
k = 2, 3, . . . , p − 1. Then

| jδ| = O(ρα1), | jkδ| = O(ρα1), |βk | < ρα (2.3.33)

for k = 1, 2, . . . , p − 1. Moreover if

| j ′δ| <
1

2
ρ

1
2α2 , |β′ − β| < (p − 1)ρα

andβ′ ∈ �δ , j k = j+ j1+· · ·+ jk,βk = β+β1+· · ·+βk,where k = 1, 2, . . . , p−1,
then

|λ j,β − λ j ′,β′ | >
5

9
ρα2 , ∀β′ �= β, (2.3.34)

|λ j,β(v, τ ) − λ j k ,βk | >
5

9
ρα2 , ∀βk �= β. (2.3.35)

Proof The relations in (2.3.33) follow from (2.3.5) and the definitions of r1, rk,

Q(ρα, 9rk) (seeLemma2.3.4). Inequality (2.3.35) follows from(2.3.34) and (2.3.33).
It remains to prove (2.3.34). Since

|λ j,β − λ j ′,β′ | ≥ ||β′ + τ |2 − |β + τ |2| − |μ j − μ j ′ |, (2.3.36)

it is enough to prove the following two inequalities

|μ j − μ j ′ | <
1

3
ρα2 ,

and
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||β + τ |2 − |β′ + τ |2| >
8

9
ρα2 . (2.3.37)

The first inequality follows from

| j ′δ| <
1

2
ρ

1
2α2 , | jδ| = O(ρα1)

[see the conditions of this lemma and (2.3.33)] and (2.3.6), since α2 = 3α1. Now
we prove (2.3.37). The conditions

|β′ − β| < (p − 1)ρα, |δ| < ρα

imply that there exist n ∈ Z and γ′ ∈ � such that

γ′ = β′ − β + (n + (2π)−1 〈
β′ − β, δ∗〉)δ ∈ �(pρα). (2.3.38)

Since β′ −β �= 0 [see (2.3.34)] and β′ −β ∈ �δ , that is,
〈
β′ − β, δ

〉 = 0 the relation
(2.3.38) implies that

γ′ ∈ �(pρα)\δR.

This together with the condition

γ + t = β + τ + ( j + v)δ ∈ Vδ(ρ
α1)\E2

(see the assumption of the lemma and the definition of E2 in Definition 2.1.1) gives

γ + t /∈ Vγ′(ρα2),

that is,
||γ + t |2 − |γ + t + γ′|2| ≥ ρα2 .

From this using the orthogonal decompositions (2.3.4) and (2.3.38) of γ + t and γ′
respectively, taking into account that β, τ ,β′ are orthogonal to δ and then using the
relations

| jδ| = O(ρα1), |(n + (2π)−1 〈
β′ − β, δ∗〉)δ| = O(ρα),α2 > 2α

[see (2.3.33), (2.3.38) and Definition 2.1.1], we obtain (2.3.37) ��
Lemma 2.3.6 Let h1, h2, . . . , hm be the elements of L2(F), where m = p1 −1 and
p1 = [ p

3 ] + 1. Then for every eigenvalue λ j,β ∼ ρ2 of the operator Lt (qδ) there
exist an eigenvalue �N (t) and a corresponding normalized eigenfunction �N ,t (x)

of the operator Lt (q) such that:
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(i) |λ j,β − �N (t)| ≤ 2M, where M = sup |q(x)|,
(ii) |b(N , j,β)| > c15ρ− 1

2 (d−1),

(iii) |b(N , j, β)|2 > 1
2m

∑m
i=1 |(�N ,

hi‖hi ‖ )|2 ≥ 1
2m |(�N ,

hi‖hi ‖ )|2for i = 1, 2, . . . , m.

Proof Let A, B and C be the sets of indexes N satisfying (i), (ii), (iii) respectively.
Using (2.1.21), Bessel’s inequality and Parseval’s equality, we get

∑

N /∈A

|b(N , j,β)|2 =
∑

N /∈A

| (�N , (q − Q)� j,β)

�N − λ j,β
|2

< (2M)−2
∥
∥(q − Q)� j,β

∥
∥2 ≤ 1

4

and ∑

N∈A

|b(N , j,β)|2 ≥ 3

4
.

On the other hand the inequality |A| < c16ρ(d−1) [see (2.1.37a)] and the definition
of B imply that if

c215 <
1

4c16
,

then ∑

N∈A\B

|b(N , j,β)|2 <
1

4
.

Therefore using the relation A = (A\B) ∪ (A ∩ B), we obtain

∑

N∈A∩B

|b(N , j,β)|2 >
1

2
.

Now to prove the lemmawe show that there exists N ∈ A∩B satisfying (iii). Assume
that the assertion (iii) does not hold for all N ∈ A ∩ B. Using the last inequality,
the assumption that (iii) does not holds for N ∈ A∩ B and then the Bessel inequality,
we get

1

2
<

∑

N∈A∩B

|b(N , j,β)|2 <
1

2m

m∑

i=1

∑

N∈A

|(�N ,
hi

‖hi‖ )|2

≤ 1

2m

m∑

i=1

|| hi

‖hi‖ ||2 = 1

2
.
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This contradiction completes the proof of the lemma ��
Theorem 2.3.1 For every eigenvalue λ j,β(v, τ ) of Lt (qδ) such that β + τ +
( j + v)δ ∈ V ′

δ(ρ
α1) there exists an eigenvalue �N of Lt (q), denoted by �N (λ j,β

(v, τ )), satisfying

�N (λ j,β(v, τ )) = λ j,β(v, τ ) + O(ρ−α2). (2.3.39)

Proof In the proof of this theorem we use the inequalities

p1α2 > pα, pα − 1

2
(d − 1) > α2 (2.3.40)

which follow from the definitions of p,α,α2 and p2 given in (2.1.5),Definition 2.1.1,
and (2.2.5). By Lemma 2.3.6 there exists an eigenvalue �N (t) satisfying (i)–(iii) for

hi (x) =
∑

( j1,β1)∈Q(ρα,9r1),
( j2,β2)∈Q(ρα,9r2)

A( j,β, j1,β1)A( j1,β1, j2,β2)� j2,β2(x)

(λ j,β − λ j+ j1,β+β1)
i

,

where i = 1, 2, . . . , m; m = p1 − 1 and Q(ρα, 9r) is defined in Lemma 2.3.4. By
the definition of Q(ρα, 9r1) we have β1 �= 0. Therefore (2.3.34) and the assertion
(i) of Lemma 2.3.6 yield (2.3.30). Hence, in the brief notations

a = λ j,β, z = λ j+ j1,β+β1 ,

we have

|�N − a| < 2M, |z − a| >
1

2
ρα2 .

Using the relations

1

�N − z
= −

∞∑

i=1

(�N − a)i−1

(z − a)i
= −

m∑

i=1

(�N − a)i−1

(z − a)i
+ O(ρ−p1α2)

and the first inequality of (2.3.40), we see that (2.3.32) can be written in the form

(�N − λ j,β)b(N , j,β, ) =
m∑

i=1

(�N − a)i−1(�N ,
hi

‖hi‖ )‖hi‖ + O(ρ−pα).

Dividing both sides of the equality by b(N , j,β), using assertions (ii), (iii) of Lemma
2.3.6, and the second inequality of (2.3.40), we get
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|(�N − λ j,β)| < (2m)
1
2

m∑

i=1

|�N − a|i−1‖hi‖ + O(ρ−α2).

On the other hand, (2.3.23) and (2.3.35) imply that

‖hi‖ = O(ρ−α2).

These relations and the above inequality |�N − a| < 2M, yield the proof of the
theorem ��

Thus we iterated (2.3.28) once and got (2.3.32) fromwhich (2.3.39) was obtained.
Now to obtain the asymptotic formulas of arbitrary order, we repeat this iteration 2p1
times. For this we need to estimate the distance between λ j,β(v, τ ) and λ j ′,β(v, τ )

for j ′ �= j, namely we use the following lemma.

Lemma 2.3.7 There exists a positive function ε(ρ) such that ε(ρ) → 0 as ρ → ∞
and the set

A(ε(ρ)) =: (ε(ρ),
1

2
− ε(ρ)) ∪ (

1

2
+ ε(ρ), 1 − ε(ρ))

is a subset of

W (ρ) =: {v ∈ (0, 1) : |μ j (v) − μ j ′(v)| >
2

ln ρ
, ∀ j ′, j ∈ Z, j ′ �= j}.

If v(β) ∈ W (ρ), then

|λ j,β(v, τ ) − λ j ′,β(v, τ )| > 2(ln ρ)−1, ∀ j ′ �= j. (2.3.41)

Proof Denote by μ̃1(v), μ̃2(v), . . . , the eigenvalues of Tv(Q) numbered in nonde-
creasing order:

μ̃1(v) ≤ μ̃2(v) ≤ · · ·

It is well-known that the spectrum of Hill’s operator T (Q) consists of the intervals

�2 j−1 =: [μ̃2 j−1(0), μ̃2 j−1(
1

2
)], �2 j =: [μ̃2 j (

1

2
), μ̃2 j (1)]

for j = 1, 2, . . . . The length of the j th interval � j of the spectrum tends to infinity
as j tends to infinity. The distance between neighboring intervals, that is, the length
of the gaps in the spectrum tends to zero. The eigenvalues μ̃2 j−1(v) and μ̃2 j (v) are
the increasing continuous functions in the intervals (0, 1

2 ) and ( 12 , 1) respectively
and

μ̃ j (1 + v) = μ̃ j (v) = μ̃ j (1 − v).
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Since
lim

ρ→∞(ln ρ)−1 → 0,

the length of the interval � j is sufficiently greater than (ln ρ)−1 for ρ � 1 and there
are numbers ε′

j (ρ), ε′′
j (ρ) in (0, 1

2 ) such that

μ̃2 j−1(ε
′
2 j−1(ρ)) = μ̃2 j−1(0) + (ln ρ)−1,

μ̃2 j−1(
1

2
− ε′′

j (ρ)) = μ̃2 j−1(
1

2
) − (ln ρ)−1, (2.3.42)

μ̃2 j (
1

2
+ ε′

2 j (ρ)) = μ̃2 j (
1

2
) + (ln ρ)−1,

μ̃2 j (1 − ε′′
j (ρ)) = μ̃2 j (1) − (ln ρ)−1.

Denote

ε′(ρ) = sup
j

ε′
j (ρ), ε′′(ρ) = sup

j
ε′′

j (ρ), ε(ρ) = max{ε′(ρ), ε′′(ρ)}.

To prove that ε(ρ) → 0 as ρ → ∞ we show that both ε′(ρ) and ε′′(ρ) tend to zero
as ρ → ∞. If ρ1 < ρ2 then

ε′
j (ρ2) < ε′

j (ρ1), ε′(ρ2) < ε′(ρ1),

since μ̃2 j−1(v) and μ̃2 j (v) are the increasing functions in the intervals (0, 1
2 ) and

( 12 , 1) respectively. Hence

ε′(ρ) → a ∈ [0, 1
2
]

as ρ → ∞. Suppose that a > 0. Then there is a sequence ρk → ∞ as k → ∞ such

that ε′(ρk) >
a

2
for all k. This implies that there is a sequence {ik} and without loss

of generality it can be assumed that there is a sequence {2 jk − 1} of odd numbers
such that

ε′
2 jk−1(ρk) >

a

4

for all k. Since μ̃2 j−1(v) increases in (0, 1
2 ) and

μ̃2 jk−1(ε
′
2 jk−1(ρk)) − μ̃2 jk−1(0) = (ln ρk)

−1

we have
|μ̃2 jk−1(

a

4
) − μ̃2 jk−1(0)| ≤ (ln ρk)

−1 → 0
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as k → ∞, which contradicts to the well-known asymptotic formulas for the eigen-
values μ̃ j (v), for v = 0 and v = a

4 ,where a ∈ (0, 1
2 ].Thuswe proved that ε′(ρ) → 0

as ρ → ∞. In the same way we prove this for ε′′(ρ), and hence for ε(ρ). Now sup-
pose v ∈ A(ε(ρ)). Using (2.3.42) and the definition of ε(ρ), and taking into account
that μ̃2 j−1(v) and μ̃2 j (v) increase in (0, 1

2 ) and ( 12 , 1) respectively, we obtain that
the eigenvalues μ̃1(v), μ̃2(v), . . . are contained in the intervals

[μ̃2 j−1(0)+ (ln ρ)−1, μ̃2 j−1(
1

2
)− (ln ρ)−1], [μ̃2 j (

1

2
)+ (ln ρ)−1, μ̃2 j (1)− (ln ρ)−1]

for j = 1, 2, . . . , and in each interval there exists a unique eigenvalue of Tv. There-
fore the distance between the neighboring eigenvalues of Tv for v ∈ A(ε(ρ)) is not
less than the distance between these intervals, which is not less than 2(ln ρ)−1.Hence
the inequality in the definition of W (ρ) holds, that is, A(ε(ρ)) ⊂ W (ρ). Inequality
(2.3.41) is a consequence of the definition of W (ρ) ��

It follow from (2.3.35), (2.3.41) and (2.3.39) that

|�N (λ j,β) − λ j k ,βk (v, τ )| > c(βk, ρ), ∀v(β) ∈ W (ρ), (2.3.43)

where ( jk,βk) ∈ Q(ρα, 9rk), k = 1, 2, . . . , p − 1; c(βk, ρ) = (ln ρ)−1 when
βk = β, j k �= j and c(βk, ρ) = 1

2ρ
α2 when βk �= β.

Now to obtain the asymptotic formulas of the arbitrary order for�N (t)we iterate
(2.3.28) 2p1 times by using (2.3.43), as follows. Since | jδ| < r1 [see (2.3.5)],

( j1,β1) ∈ Q(ρα, 9r1), ( j2,β2) ∈ Q(ρα, 9r2)

[see (2.3.32)], and j2 = j + j1 + j2 [see (2.3.29) for this notation], we have | j2δ| <

10r2. Therefore in (2.3.27) interchanging j ′,β′, r, and j2,β2, 10r2 and using the
notations r3 = 10r2, j3 = j2 + j3, β3 = β2 + β3 (see Lemma 2.3.5), we obtain

(�N − λ j2,β2)b(N , j2,β2) = O(ρ−pα)

+
∑

( j3,β3)∈Q(ρα,9r3)

b(N , j3,β3)A( j2,β2, j3,β3). (2.3.44)

Dividing both side of (2.3.44) by �N − λ j2,β2 and using (2.3.43), we get

b(N , j2,β2) = O(ρ−pα(c(β2, ρ))−1)

+
∑

( j3,β3)∈Q(ρα,9r3)

b(N , j3,β3)A( j2,β2, j3,β3)

�N − λ j2,β2
(2.3.45)

for ( j2,β2) �= ( j,β). In the same way we obtain
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b(N , j k,βk) = O(ρ−pα(c(βk, ρ))−1)

+
∑

( jk+1,βk+1)∈Q(ρα,9rk+1)

b(N , j k+1,βk+1)A( j k,βk, j k+1,βk+1)

�N − λ j k ,βk
(2.3.46)

for ( j k,βk) �= ( j,β), k = 3, 4, . . . . Now we isolate the terms in the right-hand side
of (2.3.32) with the multiplicand b(N , j,β), i.e., the case ( j2,β2) = ( j,β), and
replace b(N , j2,β2) in (2.3.32) by the right-hand side of (2.3.45) when ( j2,β2) �=
( j,β) and use (2.3.30) and (2.3.43) to get

(�N − λ j,β)b(N , j,β) = S′
1(�N ,λ j,β))b(N , j,β) + O(ρ−pα)

+
∑

( j1,β1)∈Q(ρα,9r1),
( j2,β2)∈Q(ρα,9r2),( j2,β2) �=( j,β)

A( j,β, j1,β1)A( j1,β1, j2,β2)b(N , j3,β3)

(�N − λ j+ j1,β+β1)(�N − λ j2,β2)
,

(2.3.47)

where

S′
1(�N ,λ j,β) =

∑

( j1,β1)∈Q(ρα,9r1)

A( j,β, j + j1,β + β1)A( j + j1,β + β1, j,β)

�N − λ j+ j1,β+β1

.

(2.3.48)

The formula (2.3.47) is the twice iteration of (2.3.29). Repeating these processes 2p1
times, i.e., in (2.3.47) isolating the terms with the multiplicand b(N , j,β) (i.e., the
case ( j3,β3) = ( j,β)) and replacing b(N , j3,β3) by the right-hand side of (2.3.46)
(for k = 3) when ( j3,β3) �= ( j,β) etc., we obtain

(�N − λ j,β)b(N , j,β) = (

2p1∑

k=1

S′
k(�N ,λ j,β))b(N , j,β) + C ′

2p1 + O(ρ−pα),

(2.3.49)
where

S′
k(�N ,λ j,β) =

∑
(

k∏

i=1

A( j i−1,βi−1, j i ,βi )

(�N − λ j i ,βi )
)A( j k,βk, j,β),

C ′
k =

∑
(

k∏

i=1

A( j i−1,βi−1, j i ,βi )

(�N − λ j i ,βi )
)A( j k,βk, j k+1,βk+1)b(N , j k+1,βk+1).

Here j0 = j, β0 = β, j i = j + j1 + j2 + · · · + ji , βi = β + β1 + β2 + · · · + βi

and the summation for S′
k, and C ′

k are taken under the conditions

( ji ,βi ) ∈ Q(ρα, 9ri ), ( j i ,βi ) �= ( j,β)
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for i = 2, 3, . . . , k and for i = 2, 3, . . . , k+1, respectively. Besides by the definition
of Q(ρα, 9ri ) we have βk �= 0 for k = 1, 2, . . . . Therefore β1 �= β and the equality
βi = β implies that βi±1 �= β. Hence the numbers of the multiplicands �N −λ j i ,βi

in the denominators of S′
k and C ′

2p1
satisfying

|�N (λ j,β) − λ j i ,βi | >
1

2
ρα2

[see (2.3.43)] are not less than k
2 and p1, respectively. Now using (2.3.23) and the

first inequality of (2.3.40), we obtain

C ′
2p1 = O((ρ−α2 ln ρ)p1) = O(ρ−pα), S′

1(�N ,λ j,β) = O(ρ−α2),

(2.3.50)

S′
k(�N ,λ j,β) = O((ρ−α2 ln ρ)

k
2 ), ∀k = 2, 3, . . . , 2p1.

To prove this estimation we use (2.3.43). Moreover, if a real number a satisfies

|a − λ j,β | < (ln ρ)−1

then, by (2.3.35) and (2.3.37) we have

|a − λ j k ,βk (v, τ )| > c(βk, ρ).

Therefore using this instead of (2.3.43) and repeating the proof of (2.3.50) we obtain

S′
1(a,λ j,β) = O(ρ−α2), S′

k(a,λ j,β) = O(ρ−α2 ln ρ)
k
2 ), ∀k = 2, 3, . . . , 2p1.

(2.3.51)

Theorem 2.3.2 For every eigenvalue λ j,β(v, τ ) of the operator Lt (qδ) such that

β + τ + ( j + v)δ ∈ V ′
δ(ρ

α1), v(β) ∈ W (ρ),

there exists an eigenvalue �N , denoted by �N (λ j,β(v, τ )), of Lt (q) satisfying the
formulas

�N (λ j,β(v, τ )) = λ j,β(v, τ ) + Ek−1(λ j,β) + O(ρ−kα2(ln ρ)2k), (2.3.52)

where

E0 = 0, Es =
2p2∑

k=1

S′
k(λ j,β + Es−1,λ j,β),

for s = 1, 2, . . . , and
Ek−1(λ j,β) = O(ρ−α2(ln ρ)), (2.3.53)
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for k = 1, 2, . . . , [ 19 (p − 1
2κ(d − 1)].

Proof The proof of this Theorem is similar to the proof of Theorem 2.2.1(a). By
Theorem 2.3.1, formula (2.3.52) for the case k = 1 is proved and E0 = 0. Hence
(2.3.53) for k = 1 is also proved. The proof of (2.3.53), for arbitrary k, follows from
(2.3.51) and the definition of Es by induction. Now we prove (2.3.52) by induction.
Assume that (2.3.52) is true for k = s < [ 19 (p − 1

2κ(d − 1)], i.e.,

�N = λ j,β + Es−1 + O(ρ−sα2(ln ρ)2s)).

Putting this expression for �N into

2p1∑

k=1

S′
k(�N ,λ j,β),

dividingboth sides of (2.3.49) byb(N , j,β),using (2.3.50), (2.3.51) and the assertion
(ii) of Lemma 2.3.6 and the equality α2 = 9α, we get

�N = λ j,β +
2p1∑

k=1

S′
k(λ j,β + Es−1 + O(

(ln ρ)2s

ρsα2
), λ j,β) + O(ρ− 1

9 (p− 1
2 τ (d−1))α2 )

= O(ρ− 1
9 (p− 1

2 τ (d−1))α2 ) + λ j,β +
2p1∑

k=1

S
′
k(λ j,β + Es−1, λ j,β)

+ {
2p1∑

k=1

S
′
k(λ j,β + Es−1 + O(ρ−sα2 (ln ρ)2s), λ j,β) −

2p1∑

k=1

S
′
k(λ j,β + Es−1, λ j,β)}.

To prove (2.3.52) for k = s + 1 we need to show that the expression in the curly
brackets is equal to

O((ρ−(s+1)α2(ln ρ)2s+1).

This can be checked by using the estimations (2.3.24), (2.3.53), (2.3.35), (2.3.37)
and the obvious relation

1
∏n

i=1(λ j,β + Es−1 + O(ρ−sα2(ln ρ)2s) − λ j i ,βi )
− 1

∏n
i=1(λ j,β + Es−1 − λ j i ,βi )

= 1
∏n

i=1(λ j,β + Es−1 − λ j i ,βi )
(

1

1 + O(ρ−sα2(ln ρ)2s ln ρ)
− 1)

= O(ρ−(s+1)α2(ln ρ)2(s+1)), ∀n = 1, 2, . . . , 2p1. ��

Remark 2.3.2 Here we note some properties of the known parts λ j,β + Ek [see
(2.3.52)], where

λ j,β = μ j (v) + |β + τ |2
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[see Lemma 2.3.1(b)], of the eigenvalues of Lt (q). We prove the equality

∂(Ek(μ j (v) + |β + τ |2))
∂τi

= O(ρ−2α2+α ln ρ) (2.3.54)

for i = 1, 2, . . . , d − 1, where τ = (τ1, τ2, . . . , τd−1), k < [ 19 (p − 1
2τ (d − 1)] and

v(β) ∈ W (ρ). To prove (2.3.54) for k = 1 we evaluate the derivatives of

H(βk, j k, τ , v) =: (μ j (v) + |β + τ |2 − μ j k (v) − |βk + τ |2)−1.

Sinceμ j (v), andμ j ′(v) do not depend on τi , the function H(βk, j k, τ , v) for βk = β
does not depend on τi . Besides it follows from the definition of W (ρ) (see Lemma
2.3.7) that H(β, j k, τ , v) = O(ln ρ). For βk �= β using (2.3.35), and the equality

|βk − β| = |β1 + β2 + · · · + βi | = O(ρα)

[see the last inequality in (2.3.33)], we obtain that the derivatives of H(βk, j k, τ , v)

are equal to O(ρ−2α2+α). Therefore using (2.3.23) and the definition of E1(λ j,β)

[see (2.3.52) and (2.3.49)], by the direct calculation, we get (2.3.54) for k = 1. Now
suppose that (2.3.54) holds for k = s − 1. Using this, replacing μ j + |β + τ |2 by
μ j + |β + τ |2 + Es−1 in H(βk, j k, τ , v) and arguing as above we get (2.3.54) for
k = s.

2.4 Asymptotic Formulas for the Bloch Functions

In this section using the asymptotic formulas for the eigenvalues and the simplicity
conditions (2.1.28) and (2.1.29), we obtain the asymptotic formulas for the Bloch
functions with a quasimomentum of the simple set B defined in Definition 2.1.2.
Note that the simple set B is investigated in the next section.

Theorem 2.4.1 If γ + t ∈ B, then there exists a unique eigenvalue �N (t) satisfying
(2.1.14) for k = 1, 2, . . . , [ p

3 ], where p is defined in (2.1.7). This eigenvalue is a
simple eigenvalue of Lt (q) and the corresponding eigenfunction �N ,t (x), denoted
by �γ+t (x), satisfies (2.1.32) if q ∈ W s0

2 (F), where s0 is defined in (2.1.1).

Proof By Theorem 2.2.1(b) if γ + t ∈ B ⊂ U (ρα1, p), then there exists an eigen-
value�N (t) satisfying (2.1.14) for k = 1, 2, . . . , [ 13 (p− 1

2κ(d −1))] and by the first
inequality of (2.1.40), formula (2.1.14) holds for k = k1. Therefore using (2.1.14)
for k = k1, the relation 3k1α > d + 2α [see the second inequality of (2.1.40)], and
the notations of (2.1.26), we obtain that the eigenvalue�N (t) satisfies the asymptotic
formula (2.1.27). Let �N ,t be an arbitrary normalized eigenfunction corresponding
to �N (t). Since the normalized eigenfunction is defined up to the constant of
modulus 1, without loss of generality it can be assumed that arg b(N , γ) = 0,
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where
b(N , γ) = (�N ,t , ei〈γ+t,x〉).

Therefore to prove (2.1.32) it suffices to show that (2.1.31) holds. To prove (2.1.31)
we estimate the following summations

∑

γ′ /∈K

|b(N , γ′)|2,
∑

γ′∈K\{γ}
|b(N , γ′)|2 (2.4.1)

separately, where K is defined by (2.1.30). Using (2.1.27) and (2.1.30), we get

|�N (t) − |γ′ + t |2| >
1

4
ρα1 , ∀γ′ /∈ K , (2.4.2)

|�N (t) − |γ′ + t |2| <
1

2
ρα1 , ∀γ′ ∈ K . (2.4.3)

It follows from (2.1.8) and (2.4.2) that

∑

γ′ /∈K

|b(N , γ′)|2 = ‖q�N ,t‖2O(ρ−2α1) = O(ρ−2α1). (2.4.4)

Now let us estimate the second summation in (2.4.1). For this,weprove that simplicity
conditions (2.1.28) and (2.1.29) imply

|b(N , γ′)| ≤ c5ρ
−cα, ∀γ′ ∈ K\{γ}, (2.4.5)

where c = p − dκ − 1
4d3d − 3. The conditions γ′ ∈ K , γ + t ∈ B [see (2.1.30) and

Definition 2.1.2], the notation (2.1.26) and the equality (2.2.8) yield the inclusion

γ′ + t ∈ R(
3

2
ρ)\R(

1

2
ρ).

By (2.2.33) there are two cases.
Case1:γ′+t ∈ U (ρα1 , p).Case2:γ′+t ∈ (Es\Es+1),where s = 1, 2, . . . , d−1.

To prove (2.4.5) in Case 1 and Case 2, we suppose that (2.4.5) does not hold, use
Theorem 2.2.1(a) and Theorem 2.2.2(a) respectively to get a contradiction.

Case 1. If the inequality in (2.4.5) is not true, then by (2.4.3) the conditions of
Theorem 2.2.1(a) hold and hence we have

�N (t) = |γ′ + t |2 + Fk−1(γ
′ + t) + O(ρ−3kα) (2.4.6)

for k ≤ [ 13 (p − c)] = [ 13 (dκ + 1
4d3d + 3)]. On the other hand, it follows from the

definitions k1 =: [ d
3α ] + 2 [see (2.1.26)], α =: 1

κ
[see (2.1.5)] of k1 and α that
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k1 ≤ 1

3
dκ + 2 <

1

3
(dκ + 1

4
d3d + 3),

that is, formula (2.4.6) holds for k = k1. Therefore arguing as in the proof of (2.1.27)
(see the beginning of the proof of this theorem), we get

�N (t) − F(γ′ + t) = o(ε1).

This with (2.1.27) contradicts to (2.1.28). Thus (2.4.5) in Case 1 is proved. Similarly,
if the inequality in (2.4.5) does not hold in Case 2, that is, for γ′ + t ∈ (Es\Es+1)

and γ′ ∈ K , then by (2.4.3) the conditions of Theorem 2.2.2(a) hold and

�N (t) = λ j (γ
′ + t) + O(ρ−(p−c− 1

4 d3d )α), (2.4.7)

where (p − c − 1
4d3d)α = (dκ + 3)α > d + 2α. Hence we have

�N (t) − λ j (γ
′ + t) = o(ε1).

This with (2.1.27) contradicts (2.1.29). Thus the inequality in (2.4.5) holds. There-
fore, using |K | = O(ρd−1) [see (2.1.37)], κα = 1 [see (2.1.5)], we get

∑

γ′∈K\{γ}
|b(N , γ′)|2 = O(ρ−(2c−κ(d−1))α) = O(ρ−(2p−(3d−1)κ− 1

2 d3d−6)α).

(2.4.8)

If s = s0, that is, p = s0 − d, then 2p − (3d − 1)κ − 1
2d3d − 6 = 6. Since

α1 = 3α, the equalities (2.4.4) and (2.4.8) imply (2.1.31). Thus we proved that the
equality (2.1.32) holds for any normalized eigenfunction �N ,t (x) corresponding to
any eigenvalue �N (t) satisfying (2.1.14). If there exist two different eigenvalues or
multiple eigenvalue satisfying (2.1.14), then there exist two orthogonal normalized
eigenfunctions satisfying (2.1.32), which is impossible. Therefore �N (t) is a simple
eigenvalue. It follows from Theorem 2.2.1(a) that �N (t) satisfies (2.1.14) for k =
1, 2, . . . , [ p

3 ], since (2.1.32) holds and hence (2.1.16) holds for c = 0 ��
Remark 2.4.1 Since for γ + t ∈ B there exists a unique eigenvalue satisfying
(2.1.14) and (2.1.27), we denote this eigenvalue by�(γ + t). Since this eigenvalue is
simple, we denote the corresponding eigenfunction by �γ+t (x). By Theorem 2.4.1
this eigenfunction satisfies (2.1.32). Clearly, for γ+ t ∈ B there exists a unique index
N =: N (γ + t) such that �(γ + t) = �N (γ+t)(t) and �γ+t (x) = �N (γ+t),t (x).

Now we prove the asymptotic formulas of arbitrary order for �γ+t (x).

Theorem 2.4.2 If γ + t ∈ B, then the eigenfunction �γ+t (x) =: �N ,t (x) corre-
sponding to the eigenvalue �(γ+ t) =: �N (t) satisfies (2.1.33), for k = 1, 2, . . . , n,
where n = [ 16 (2p − (3d − 1)κ − 1

2d3d − 6)],
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F∗
0 = ei〈γ+t,x〉, F∗

1 = ei〈γ+t,x〉 +
∑

γ1∈�(ρα)

qγ1ei〈γ+t+γ1,x〉

|γ + t |2 − |γ + γ1 + t |2 ,

F∗
k (γ + t) = (1 + ‖F̃k‖)−1(ei〈γ+t,x〉 + F̃k(γ + t)),

F̃k is obtained from Fk by replacing qγ1 with ei〈γ−γ1+t,x〉, and Fk is defined by
(2.2.10).

Proof By Theorem 2.4.1, (2.1.33) for k = 1 is proved. To prove (2.1.33) for 2 ≤
k ≤ n, first we prove the following equivalent relations

∑

γ′∈�c(k−1)

|b(N , γ + γ′)|2 = O(ρ−2kα1), (2.4.9)

�N ,t (x) = b(N , γ)ei〈γ+t,x〉 +
∑

γ′∈�( k−1
n ρα)

b(N , γ + γ′)ei〈γ+t+γ′,x〉 + Hk(x),

(2.4.10)
where

�c(k − 1) =: �\(�(
k − 1

n
ρα) ∪ {0})

and
‖Hk‖ = O(ρ−kα1).

The case k = 1 is proved due to (2.1.31). Assume that (2.4.9) is true for k = m < n.
Then using (2.4.10) for k = m, and the obvious decomposition

q(x) =
∑

γ1∈�( 1n ρα)

qγ1ei〈γ1,x〉 + O(ρ−pα)

[see (2.1.5)], we obtain

�N ,t (x)q(x) = H(x) + O(ρ−mα1),

where H(x) is a linear combination of ei〈γ+t+γ′,x〉 for γ′ ∈ �(m
n ρα) ∪ {0}. Hence

(H, ei〈γ+t+γ′,x〉) = 0

for γ′ ∈ �c(m). Thus, using (2.1.8), (2.4.2) and Bessel’s inequality, we get
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∑

γ′:γ′∈�c(m),γ+γ′ /∈K

|b(N , γ + γ′)|2

=
∑

γ′:γ′∈�c(m),γ+γ′ /∈K

| (H(x) + O(ρ−mα1), ei〈γ+t+γ′,x〉)
�N − |γ + γ′ + t |2 |2

=
∑

γ′:γ′∈�c(m),γ+γ′ /∈K

| (O(ρ−mα1), ei〈γ+t+γ′,x〉)
�N − |γ + γ′ + t |2 |2 = O(ρ−2(m+1)α1). (2.4.11)

On the other hand, using α1 = 3α, (2.4.8), and the definition of n, we obtain

∑

γ′:γ′∈�c(m),γ+γ′∈K

|b(N , γ + γ′)|2 ≤
∑

γ′∈K\{γ}
|b(N , γ′)|2 = O(ρ−2nα1).

This with (2.4.11) implies (2.4.9) for k = m + 1. Thus (2.4.10) is also proved. It
follows from (2.4.9) that

‖
∑

γ′∈(�(ρα)\�( k−1
n ρα))

b(N , γ + γ′)ei〈γ+t+γ′,x〉‖ = O(ρ−kα1).

Therefore the formula (2.4.10) for k ≤ n can be written in the form

�N ,t − b(N , γ)ei〈γ+t,x〉 − H̃k =
∑

γ1∈�(ρα)

b(N , γ − γ1)e
i〈γ−γ1+t,x〉, (2.4.12)

where
‖H̃k‖ = O(ρ−kα1).

It is clear that the right-hand side of (2.4.12) can be obtained from the right-hand
side of the equality

(�N − |γ + t |2)b(N , γ) + O(ρ−pα) =
∑

γ1∈�(ρα)

qγ1b(N , γ − γ1),

which is (2.1.9), by replacing qγ1 with ei〈γ−γ1+t,x〉. Therefore in (2.4.12) doing the
iteration which was done in order to obtain (2.2.5) from (2.1.9), we get

�N ,t (x) − b(N , γ)ei〈γ+t,x〉 − H̃k(x) (2.4.13)

= Ãk−1(�N , γ + t)b(N , γ) + C̃k + O(ρ−pα),

where Ãk(�N , γ + t) and C̃k are obtained from Ak(�N , γ + t) and Ck by replacing
qγ1 with ei〈γ−γ1+t,x〉, respectively and the term O(ρ−pα) in the right-hand side
of (2.4.13) is a function whose norm is O(ρ−pα). Note that if follows from the
definitions of the functions F̃k, Ãk, C̃k that the estimations similar to the estimations
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of Fk, Ak, Ck hold for these functions and the proof of these estimations are the
same. Namely, repeating the proof of (2.2.6) and (2.2.8) we see that

‖ Ãk−1‖ = O(ρ−α1), ‖C̃k‖ = O(ρ−kα1), ‖F̃k−1(γ + t)‖ = O(ρ−α1). (2.4.14)

Now using the equalities

b(N , γ) = 1 + O(ρ−2α1), (2.4.15)

Ãk−1(�N , γ + t) = Ãk−1(Fk−2(γ + t), γ + t) + O(ρ−kα1)

= F̃k−1(γ + t) + O(ρ−kα1)

[see (2.1.31a), (2.1.14), (2.2.12) and the definition of F̃k] and dividing both side of
(2.4.13) by b(N , γ) we get

1

b(N , γ)
�N ,t (x) = ei〈γ+t,x〉 + F̃k−1(γ + t) + O(ρ−kα1)

+ 1

b(N , γ)
(H̃k(x) + C̃k + O(ρ−pα)). (2.4.16)

Moreover the relation
‖H̃k‖ = O(ρ−kα1)

[see (2.4.12)], formulas (2.4.14), (2.4.15), and the inequality pα ≥ nα1 ≥ kα1 (see
definition of n) imply that

‖O(ρ−kα1) + 1

b(N , γ)
(H̃k + C̃k + O(ρ−pα))‖ = O(ρ−kα1). (2.4.17)

Therefore using the equality ‖�N ,t‖ = 1, the assumption arg b(N , γ) = 0, the last
equality of (2.4.14) and taking into account that F̃k−1(γ + t) is a linear combination
of ei〈γ+t−γ1,x〉 for γ1 ∈ �(ρα) [since F̃k−1(γ + t) is obtained from the right-hand
side of (2.4.12)] and hence the functions ei〈γ+t,x〉 and F̃k−1(γ + t) are orthogonal,
from (2.4.16), we obtain

1

b(N , γ)
= (1 + ‖F̃k−1(γ + t)‖)) + O(ρ−kα1)), (2.4.18)

�N ,t (x) = (1 + ‖F̃k−1‖)−1(ei〈γ+t,x〉 + F̃k−1(γ + t) + O(ρ−kα1)). (2.4.19)

Thus (2.1.33) is proved. Let us consider the case k = 2. Using (2.4.15) and (2.4.17)
in (2.4.16) for k = 2 and recalling the definitions of F̃1 and F1 [see (2.2.13)], we get
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�N ,t (x) = ei〈γ+t,x〉 +
∑

γ1∈�(ρα)

qγ1ei〈γ+t+γ1,x〉

|γ + t |2 − |γ + γ1 + t |2 + O(ρ−2α1), (2.4.20)

that is, we obtain the proof of the equality for F∗
1 (γ + t) ��

2.5 Simple Sets and Isoenergetic Surfaces

In this section we consider the simple set B defined in Definition 2.1.2 and construct
a large part of the isoenergetic surfaces

Iρ(q) = {t ∈ F∗ : ∃N ,�N (t) = ρ2}

of L(q) corresponding to ρ2 for large ρ. In the case q = 0 the isoenergetic surface

Iρ(0) = {t ∈ F∗ : ∃γ ∈ �, |γ + t |2 = ρ2}

is the translation of the sphere

B(ρ) = {γ + t : t ∈ F∗, γ ∈ �, |γ + t |2 = ρ2}

by the vectors γ ∈ �. For simplicity of formulation of the main result of this section
we start with a conversation about it and introduce the needed notations.

Notation 2.5.1 We construct a part of isoenergetic surfaces by using Property 3
(see the Introduction) of the simple set B, that is, by the investigation of the function
�(γ + t) in the set B, where �(γ + t) is defined in Remark 2.4.1. In other words,
we consider the part

P Iρ(q) =: {t ∈ F∗ : ∃γ ∈ �,�(γ + t) = ρ2},

of the isoenergetic surfaces Iρ(q). The set P Iρ(q) is the translation of

T P Iρ(q) =: {γ + t : �(γ + t) = ρ2}.

We say that T P Iρ(q) is the part of the translated (on the simple set B) isoenergetic
surfaces. In this section we construct the subsets I ′

ρ and I ′′
ρ of T P Iρ(q) and P Iρ(q)

respectively and prove that the measures of these subsets are asymptotically equal to
the measure of the isoenergetic surfaces Iρ(0) of L(0). In other words, we construct
a large (in some sense) part I ′′

ρ of isoenergetic surfaces Iρ(q) of L(q). Since �(γ+ t)
approximately equal to F(γ + t) [see (2.1.27) and Remark 2.4.1] it is natural to call

Sρ = {x ∈ U (2ρα1 , p) : F(x) = ρ2},
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where U and F(x) are defined in Definition 2.1.1 and in (2.1.26), as approximated
isoenergetic surfaces in the non-resonance domain.

Now we construct a part of the simple set B in the neighborhood of Sρ that
contains I ′

ρ. For this we consider the surface Sρ. As we noted in the Introduction [see
Step 2 and (2.1.28)] the eigenvalue �(γ + t) does not coincide with the eigenvalues
�(γ + t + b) if

|F(γ + t) − F(γ + t + b)| > 2ε1

for γ + t + b ∈ U (ρα1 , p) and b ∈ �\{0}. Therefore we eliminate

Pb = {x : x ∈ Sρ, x + b ∈ U (
1

2
ρα1 , p), |F(x) − F(x + b)| < 3ε1} (2.5.1)

for b ∈ � from Sρ, denote the remaining part of Sρ by S′
ρ, and consider the ε

neighborhood of S′
ρ. Thus

S′
ρ =: Sρ\(∪b∈� Pb), Uε(S′

ρ) = ∪a∈S′
ρ
Uε(a)},

where
ε = ε1

7ρ
, Uε(a) = {x ∈ Rd : |x − a| < ε}, ε1 = ρ−d−2α.

In Theorem 2.5.1 we prove that the simplicity condition (2.1.28) holds in Uε(S′
ρ).

Denote by
T r(E) = {γ + x ∈ Uε(S′

ρ) : γ ∈ �, x ∈ E}

and
T rF� (E) =: {γ + x ∈ F� : γ ∈ �, x ∈ E}

the translations of E ⊂ Rd into Uε(S′
ρ) and F� respectively. In order that the

simplicity condition (2.1.29) holds, we discard from Uε(S′
ρ) the translation T r(A(ρ))

of the set A(ρ) defined as follows

A(ρ) =:
d−1⋃

k=1

⎛

⎝
⋃

γ1,γ2,...,γk∈�(pρα)

⎛

⎝
bk⋃

i=1

Ak,i (γ1, γ2, . . . , γk)

⎞

⎠

⎞

⎠ , (2.5.2)

where

Ak,i (γ1, . . . , γk) = {x ∈
(

k⋂

i=1

Vγi (ρ
αk )\Ek+1

)

∩Kρ : λi (x) ∈ (ρ2−3ε1, ρ
2+3ε1)},

λi (x) and bk are defined in Theorem 2.2.2, and

Kρ = {x ∈ R
d : ||x |2 − ρ2| < ρα1}.
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As a result, we construct the part Uε(S′
ρ)\T r(A(ρ)) of the simple set B [see Theorem

2.5.1(a)] which contains the set I ′
ρ [see Theorem 2.5.1(c)].

To prove the main result (Theorem 2.5.1) of this section we use the following
properties, namely (2.5.3) and Lemma 2.5.1, of the set constructed in Notation 2.5.1:

ρ − ρα1−1 < |x | < ρ + ρα1−1, ∀x ∈ Uε(Kρ),

|∂F

∂xi
| < 3ρ, ∀x ∈ U (ρα1 , p) ∩ Uε(Kρ), (2.5.3)

Uε(S′
ρ) ⊂ U (ρα1 , p) ∩ Kρ.

To prove (2.5.3) recall that

F(x) = |x |2 + Fk1−1(x), ∀x ∈ U (c4ρ
α1 , p) (2.5.4)

Fk1−1(x) = O(ρ−α1), ∀x ∈ U (c4ρ
α1 , p) (2.5.4a)

∂Fk1−1(x)

∂xi
= O(ρ−2α1+α) = O(ρ−5α), ∀x ∈ U (c4ρ

α1 , p) (2.5.4b)

F(x) = ρ2, |x | = ρ + O(ρ−α1−1), ∀x ∈ Sρ (2.5.4c)

[see (2.1.26), (2.2.8), (2.2.34) and the definition of Sρ]. One can readily see that
the inequalities in (2.5.3) follows from the definitions of Kρ and (2.5.4), (2.5.4a),
(2.5.4b). Since S′

ρ ⊂ Sρ, using (2.5.4c), we obtain the inclusion Uε(S′
ρ) ⊂ Kρ.

This inclusion with S′
ρ ⊂ U (2ρα1 , p) (see the definition of S′

ρ and Sρ) implies the
inclusion in (2.5.3).

Lemma 2.5.1 (a) If x ∈ Uε(S′
ρ) and x + b ∈ U (ρα1 , p) ∩ Kρ, where b ∈ �, then

|F(x) − F(x + b)| > 2ε1,

where
ε = ε1

7ρ
, ε1 = ρ−d−2α.

(b) If x ∈ Uε(S′
ρ), then x + b /∈ Uε(S′

ρ) for all b ∈ � .

(c) If E is a bounded subset of R
d , then μ(T r(E)) ≤ μ(E).

(d) If E ⊂ Uε(S′
ρ), then μ(T rF� (E)) = μ(E).

Proof (a) If x ∈ Uε(S′
ρ), then there exists a point a such that a ∈ S′

ρ and x ∈ Uε(a).
Since a + b lies in ε neighborhood of x + b, where

x + b ∈ U (ρα1 , p) ∩ Kρ,
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we have

a + b ∈ U (
1

2
ρα1 , p).

Therefore using the definitions of S′
ρ and Pb [see (2.5.1)], we obtain a /∈ Pb and

|F(a) − F(a + b)| ≥ 3ε1. (2.5.5)

On the other hand, using the last inequality of (2.5.3) and the obvious relations

|x − a| < ε, |x + b − a − b| < ε,

we obtain
|F(x) − F(a)| < 3ρε, |F(x + b) − F(a + b)| < 3ρε. (2.5.6)

These inequalities with (2.5.5) give the proof of Lemma 2.5.1(a), since 6ρε < ε1.
(b) If x and x + b lie in Uε(S′

ρ), then there exist the points a and c in S′
ρ such that

x ∈ Uε(a) and x + b ∈ Uε(c). Repeating the proof of (2.5.6), we get

|F(c) − F(x + b)| < 3ρε.

This, the first inequality in (2.5.6) and the relations

F(a) = ρ2, F(c) = ρ2

for a ∈ Sρ, c ∈ Sρ give
|F(x) − F(x + b)| < ε1,

where x ∈ Uε(S′
ρ) and x + b ∈ Uε(S′

ρ) ⊂ U (ρα1 , p) ∩ Kρ [see (2.5.3)] which
contradicts the Lemma 2.5.1(a).

(c) Clearly, for any bounded set E there exist only a finite number of vectors
γ1, γ2, . . . , γs such that

E(k) =: (E + γk) ∩ Uε(S′
ρ) �= ∅

for k = 1, 2, . . . , s and T r(E) is the union of the sets E(k). By the definition of
E(k) we have E(k) − γk ⊂ E,

μ(E(k) − γk) = μ(E(k)).

Moreover, by (b),
(E(k) − γk) ∩ (E( j) − γ j ) = ∅

for k �= j. Therefore (c) is true.
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(d) Now let E ⊂ Uε(S′
ρ). Then by (b) the set E can be divided into a finite

number of the pairwise disjoint sets E1, E2, . . . , En such that there exist the vectors
γ1, γ2, . . . , γn satisfying

(Ek + γk) ⊂ F�, (Ek + γk) ∩ (E j + γ j ) �= ∅

for k, j = 1, 2, . . . , n and k �= j. Using μ(Ek + γk) = μ(Ek), we get the proof of
(d), since T rF� (E) and E are the union of the pairwise disjoint sets Ek + γk and Ek

for k = 1, 2, . . . , n respectively ��
In the following Theorem we use the sets defined in Notation 2.5.1.

Theorem 2.5.1 (a) The set Uε(S′
ρ)\T r(A(ρ)) is a subset of the simple set B defined

in Definition 2.1.2. For every connected open subset E of Uε(S′
ρ)\T r(A(ρ) there

exists a unique index N such that �N (t) = �(γ + t) for γ + t ∈ E, where �(γ + t)
is defined in Remark 2.4.1. Moreover,

∂

∂t j
�(γ + t) = ∂

∂t j
|γ + t |2 + O(ρ1−2α1), ∀ j = 1, 2, . . . , d. (2.5.7)

(b) For the part Vρ =: S′
ρ\Uε(T r(A(ρ))) of the approximated isoenergetic surface

Sρ, the following holds:

μ(Vρ) > (1 − c17ρ
−α))μ(B(ρ)). (2.5.8)

Moreover, Uε(Vρ) lies in the subset Uε(S′
ρ)\T r(A(ρ)) of the simple set B.

(c) The isoenergetic surface I (ρ) contains the set I ′′
ρ , which consists of the smooth

surfaces and has the measure

μ(I ′′
ρ ) = μ(I ′

ρ) > (1 − c18ρ
−α)μ(B(ρ)), (2.5.9)

where I ′
ρ is a part of the translated isoenergetic surfaces T P Iρ(q) of L(q) which

is contained in the subset Uε(S′
ρ)\T r(A(ρ)) of the simple set B. In particular the

number ρ2 for ρ � 1 lies in the spectrum of L(q), that is, the number of the gaps in
the spectrum of L(q) is finite, where q ∈ W s0

2 (Rd/�), d ≥ 2, s0 = 3d−1
2 (3d + d +

2) + 1
4d3d + d + 6 and � is an arbitrary lattice.

Proof (a) To prove that
Uε(S′

ρ)\T r(A(ρ)) ⊂ B

weneed to show that for each pointγ+t ofUε(S′
ρ)\T r(A(ρ)) the following assertions

are true:
(1) γ + t ∈ U (ρα1 , p) ∩ (R( 32ρ − ρα1−1)\R( 12ρ + ρα1−1)).

(2) If γ′ ∈ K , where K is defined by (2.1.30), and γ′ + t ∈ U (ρα1 , p) then
(2.1.28) holds.
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(3) If γ′ ∈ K and γ′ + t ∈ Ek\Ek+1 then (2.1.29) holds.
The proof of (1) follows from the inclusion in (2.5.3).
The proof of (2). If γ′ ∈ K , then (2.1.30) holds. Since γ + t ∈ Uε(S′

ρ), there
exists a ∈ S′

ρ ⊂ Sρ such that γ + t ∈ Uε(a). Then (2.5.6), the equalities F(a) = ρ2

(see the definition of Sρ in Notation 2.5.1) and ε1 = 7ρε [see Lemma 2.5.1(a)] give

F(γ + t) ∈ (ρ2 − ε1, ρ
2 + ε1). (2.5.10)

This with (2.1.30) implies that

γ′ + t ∈ U (ρα1, p) ∩ Kρ.

Now in Lemma 2.5.1(a) considering x and x + b as γ + t and γ′ + t we get (2.1.28).
The proof of (3). As in the proof of (2) the inclusion γ′ ∈ K yields

γ′ + t ∈ (Ek\Ek+1) ∩ Kρ.

On the other hand, γ + t /∈ T r(A(ρ)) which means that γ′ + t /∈ A(ρ). Therefore it
follows from the definition of A(ρ) [see (2.5.2)] that

λi (γ
′ + t) /∈ (ρ2 − 3ε1, ρ

2 + 3ε1).

This with (2.5.10) implies (2.1.29).
Now let E be a connected open subset of Uε(S′

ρ)\T r(A(ρ) ⊂ B. By Theorem
2.4.1 and Remark 2.4.1 for a ∈ E ⊂ Uε(S′

ρ)\T r(A(ρ) there exists a unique index
N (a) such that

�(a) = �N (a)(a),�a(x) = �N (a),a(x), |(�N (a),a, ei〈a,x〉)|2 >
1

2

and �(a) is a simple eigenvalue. On the other hand, for fixed N the functions �N (t)
and (�N ,t , ei〈t,x〉) are continuous in a neighborhood of a if�N (a) is a simple eigen-
value. Therefore for each a ∈ E there exists a neighborhood U (a) ⊂ E of a such
that

|(�N (a),y, ei〈y,x〉)|2 >
1

2

for y ∈ U (a). Since for y ∈ E there is a unique integer N (y) satisfying

|(�N (y),y, e(〈y,x〉)|2 >
1

2
,

we have N (y) = N (a) for y ∈ U (a). Hence we proved that

∀a ∈ E, ∃U (a) ⊂ E : N (y) = N (a), ∀y ∈ U (a). (2.5.11)
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Now let a1 and a2 be two points of E , and let C ⊂ E be an arc that joins
these points. Let U (y1), U (y2), . . . , U (yk) be a finite subcover of the open cover
{U (a) : a ∈ C} of the compact C, where U (a) is the neighborhood of a satisfying
(2.5.11). By (2.5.11), we have N (y) = N (yi ) = Ni for y ∈ U (yi ). Clearly, if
U (yi ) ∩ U (y j ) �= ∅, then Ni = N (z) = N j , where z ∈ U (yi ) ∩ U (y j ). Thus
N1 = N2 = · · · = Nk and N (a1) = N (a2).

To calculate the partial derivatives of the function �(γ + t) = �N (t) we write
the operator Lt in the form

−� − 〈2i t,∇〉 + 〈t, t〉 .

Then, it is clear that

∂

∂t j
�N (t) = 2t j (�N ,t ,�N ,t ) − 2i(

∂

∂x j
�N ,t ,�N ,t ), (2.5.12)

�N ,t (x) =
∑

γ′∈�

b(N , γ′)ei〈γ′,x〉, (2.5.13)

where
�N ,t (x) = e−i〈t,x〉�N ,t (x).

If |γ′| ≥ 2ρ, then using

�N =: �(γ + t) = ρ2 + O(ρ−α),

[see (2.1.27), (2.5.10)], and the obvious inequality

|�N − |γ′ − γ1 − γ2 − · · · − γk + t |2| > c19|γ′|2

for k = 0, 1, . . . , p, where |γ1| < 1
4p |γ′|, and iterating (2.1.8) p times by using the

decomposition
q(x) =

∑

|γ1|< 1
4p |γ′|

qγ1ei〈γ1,x〉 + O(|γ′|−p)

we get

b(N , γ′) =
∑

γ1,γ2,...

qγ1qγ2 . . . qγp b(N , γ′ − ∑p
i=1 γi )

∏p−1
j=0 (�N − |γ′ − ∑ j

i=1 γi + t |2)
+ O(|γ′|−p), (2.5.14)

b(N , γ′) = O(|γ′|−p), ∀|γ′| ≥ 2ρ (2.5.15)
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By (2.5.15) the series in (2.5.13) can be differentiated term by term. Hence

− i(
∂

∂x j
�N ,t ,�N ,t ) =

∑

γ′∈�

γ′( j)|b(N , γ′)|2 = γ( j)|b(N , γ)|2 + a1 + a2,

(2.5.16)
where

a1 =
∑

|γ′|≥2ρ

γ′( j)|b(N , γ′)|2, a2 =
∑

|γ′|<2ρ,γ′ �=γ

γ′( j)|b(N , γ′)|2.

By (2.1.31) and (2.1.31a)

a2 = O(ρ−2α1+1), γ( j)|b(N , γ)|2 = γ( j)(1 + O(ρ−2α1),

and by (2.5.15), a1 = O(ρ−2α1). Therefore (2.5.12) and (2.5.16) imply (2.5.7).
(b) To prove the inclusion

Uε(Vρ) ⊂ Uε(S′
ρ)\T r(A(ρ))

we need to show that if a ∈ Vρ, then

Uε(a) ⊂ Uε(S′
ρ)\T r(A(ρ)).

This is clear, since the relations a ∈ Vρ ⊂ S′
ρ imply that Uε(a) ⊂ Uε(S′

ρ) and the
relation

a /∈ Uε(T r(A(ρ)))

implies that
Uε(a) ∩ T r(A(ρ)) = ∅.

To prove (2.5.8) first we estimate the measures of Sρ, S′
ρ and U2ε(A(ρ)), namely we

prove that

μ(Sρ) > (1 − c20ρ
−α)μ(B(ρ)), (2.5.17)

μ(S′
ρ) > (1 − c21ρ

−α)μ(B(ρ)), (2.5.18)

μ(U2ε(A(ρ))) = O(ρ−α)μ(B(ρ))ε (2.5.19)

(see below, Estimations 1, 2, 3). The estimation (2.5.8) of the measure of the set Vρ

is done in Estimation 4 by using Estimations 1, 2, 3.
(c) Relation (2.5.9) is proved in Estimation 5. The theorem is proved ��

Remark 2.5.1 Since
�N ,t (x) = ei〈t,x〉�N ,t (x)
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and the series (2.5.13) can be differentiated term by term, arguing as in the proof of
(2.5.16) and using the notation of Remark 2.4.1 we obtain

grad
(
�γ+t (x)

) = i(γ + t)ei〈γ+t,x〉 + O(|γ|1−2α1),

for (γ + t) ∈ B.

In Estimations 1–5 we use the notations:

G(+i, a) = {x ∈ G : xi > a}, G(−i, a) = {x ∈ G : xi < −a},

where x = (x1, x2, . . . , xd), a > 0. Recalling the definitions of the sets S′
ρ, A(ρ),

and using (2.5.3), it is not hard to verify that for any subset G ofUε(S′
ρ)∪U2ε(A(ρ)) ,

that is, for all considered sets G in these estimations and for any x ∈ G the followings
hold

ρ − 1 < |x | < ρ + 1, G ⊂ (∪d
i=1(G(+i, ρd−1) ∪ G(−i, ρd−1)). (2.5.20)

Indeed, (2.5.3) implies the inequalities in (2.5.20), and the inclusion in (2.5.20)
follows from these inequalities.

If G ⊂ Sρ, then by (2.5.4) and (2.5.4b) we have

∂F(x)

∂xk
> 0

for x ∈ G(+k, ρ−α). Therefore to calculate the measure of G(+k, a) for a ≥ ρ−α,

we use the formula

μ(G(+k, a)) =
∫

Prk (G(+k,a))

(
∂F

∂xk
)−1|grad(F)|dx1 . . . dxk−1dxk+1 . . . dxd ,

(2.5.21)
where

Prk(G) =: {(x1, x2, . . . , xk−1, xk+1, xk+2, . . . , xd) : x ∈ G}

is the projection of G on the hyperplane xk = 0. Instead of Prk(G) we write Pr(G)

if k is unambiguous. If D is m−dimensional subset of R
m, then to estimate μ(D),

we use the formula

μ(D) =
∫

Prk (D)

μ(D(x1, . . . xk−1, xk+1, . . . , xm))dx1 . . . dxk−1dxk+1 . . . dxm,

(2.5.22)
where

D(x1, . . . xk−1, xk+1, . . . , xm) = {xk : (x1, x2, . . . , xm) ∈ D}.
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Estimation 1 Here we prove (2.5.17) by using (2.5.21). During this estimation the set
Sρ is redenoted by G. First we estimate μ(G(+1, a)) for a = ρ1−α by using (2.5.21)
for k = 1 and the relations

∂F

∂x1
> ρ1−α, (

∂F

∂x1
)−1|grad(F)| = ρ

√
ρ2 − x22 − x23 − · · · − x2d

+ O(ρ−α),

(2.5.23)
Pr(G(+1, a)) ⊃ Pr(A(+1, 2a)), (2.5.24)

where
x ∈ G(+1, a), A = B(ρ) ∩ U (3ρα1 , p),

and
B(ρ) = {x ∈ R

d : |x | = ρ}.

Here (2.5.23) follows from (2.5.4), (2.5.4b) and (2.5.4c). Now we prove (2.5.24). If

(x2, . . . , xd) ∈ Pr1(A(+1, 2a)),

then by definition of A(+1, 2a) there exists x1 such that

x1 > 2a = 2ρ1−α, x21 + x22 + · · · + x2d = ρ2, |
∑

i≥1

(2xi bi − b2i )| ≥ 3ρα1 (2.5.25)

for all (b1, b2, . . . , bd) ∈ �(pρα). Therefore for h = ρ−α we have

(x1 + h)2 + x22 + · · · + x2q > ρ2 + ρ−α, (x1 − h)2 + x22 + · · · + x2q < ρ2 − ρ−α.

This, (2.5.4) and (2.5.4a) give

F(x1 + h, x2, . . . , xd) > ρ2, F(x1 − h, x2, . . . , xd) < ρ2.

Since F is a continuous function (see Remark 2.2.2) on U (c4ρα1 , p) there exists
y1 ∈ (x1 − h, x1 + h) such that [see (2.5.25)]

y1 > a, F(y1, x2, . . . , xd) = ρ2.

Moreover
|2y1b1 − b21 +

∑

i≥2

(2xi bi − b2i )| > ρα1 , (2.5.26)

because the expressionunder the absolute value in (2.5.26) differs from the expression
under the absolute value in (2.5.25) by 2(y1 − x1)b1, where
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|y1 − x1| < h = ρ−α, |b1| < pρα, |2(y1 − x1)b1| < 2p < ρα1 .

Now recalling the definitions of G(+1, a) and Sρ we see that these relations imply
the inclusion

(x2, . . . , xd) ∈ Pr1G(+1, a).

Hence (2.5.24) is proved. Now (2.5.23), (2.5.24), and the obvious relation

μ(Pr1G(+1, a)) = O(ρd−1)

[see (2.5.20)] give

μ(G(+1, a)) =
∫

Pr(G(+1,a))

ρ
√

ρ2 − x22 − x23 − · · · − x2d

dx2dx3 . . . dxd + O(
1

ρα )μ(B(ρ))

≥
∫

Pr(A(+1,2a))

ρ
√

ρ2 − x22 − x23 − · · · − x2d

dx2dx3 . . . dxd − c22ρ
−αμ(B(ρ))

= μ(A(+1, 2a)) − c22ρ
−αμ(B(ρ)).

Similarly,
μ(G(−1, a)) ≥ μ(A(−1, 2a)) − c22ρ

−αμ(B(ρ)).

Now using the inequality

μ(G) ≥ μ(G(+1, a)) + μ(G(−1, a))

we get
μ(G) ≥ μ(A(−1, 2a)) + μ(A(+1, 2a)) − 2c22ρ

−αμ(B(ρ)).

On the other hand, it follows from the obvious relation

μ({x ∈ B(ρ) : −2a ≤ x1 ≤ 2a}) = O(ρ−α)μ(B(ρ))

that
μ(A(−1, 2a)) + μ(A(+1, 2a)) ≥ μ(A) − c22ρ

−αμ(B(ρ)).

Therefore

μ(G) > μ(A) − 3c22ρ
−αμ(B(ρ)).

This implies (2.5.17), since

μ(A)) = (1 + O(ρ−α))μ(B(ρ))
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[see (2.2.32)].
Estimation 2 Here we prove (2.5.18). For this we estimate the measure of the set
Sρ ∩ Pb by using (2.5.21). During this estimation the set Sρ ∩ Pb is redenoted by G.
We choose the coordinate axis so that the direction of b coincideswith the direction of
(1, 0, 0, . . . , 0), i.e., b = (b1, 0, 0, . . . , 0) and b1 > 0. It follows from the definition
of Pb [see (2.5.1)], (2.5.4), (2.5.4c) that if (x1, x2, . . . , xd) ∈ G, then

x21 + x22 + · · · + x2d + Fk1−1(x) = ρ2, (2.5.27)

(x1 + b1)
2 + x22 + x23 + · · · + x2d + Fk1−1(x + b) = ρ2 + h, (2.5.28)

where
h ∈ (−3ε1, 3ε1), ε1 = ρ−d−2α.

Therefore subtracting (2.5.27) from (2.5.28) and using (2.5.4a), we get

(2x1 + b1)b1 = O(ρ−α1). (2.5.29)

This and the inequalities in (2.5.20) imply

|b1| < 2ρ + 3, x1 = −b1
2

+ O(ρ−α1b−1
1 ), |x21 − (

b1
2

)2| = O(ρ−α1). (2.5.30)

Consider two cases. Case 1: b ∈ �1, where

�1 = {b ∈ � : |ρ2 − |b

2
|2| < 3dρ−2α}.

In this case using the last equality in (2.5.30), (2.5.27), (2.5.4a), and taking into
account that b = (b1, 0, 0, . . . , 0) and α1 = 3α, we obtain

x21 = ρ2 + O(ρ−2α), |x1| = ρ + O(ρ−2α−1), x22 + x23 + · · · + x2d = O(ρ−2α).

(2.5.31)
Therefore

G ⊂ G(+1, a) ∪ G(−1, a),

where a = ρ − ρ−1. Using (2.5.21) and the obvious relation

μ(Pr1(G(±1, a)) = O(ρ−(d−1)α)

[see (2.5.31)] and taking into account that the expression under the integral in (2.5.21)
for k = 1 is equal to 1 + O(ρ−α) [see (2.5.4b) and (2.5.31)], we get

μ(G(±1, a)) = O(ρ−(d−1)α).
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Thus
μ(G) = O(ρ−(d−1)α).

Since
|�1| = O(ρd−1)

[see (2.1.37)], we have

μ(∪b∈�1(Sρ ∩ Pb) = O(ρ−(d−1)α+d−1) = O(ρ−α)μ(B(ρ)). (2.5.32)

Case 2: |ρ2 − | b
2 |2| ≥ 3dρ−2α. Repeating the proof of (2.5.31), we get

|x21 − ρ2| > 2dρ−2α,

d∑

k=2

x2k > dρ−2α, max
k≥2

|xk | > ρ−α. (2.5.33)

Therefore
G ⊂ ∪k≥2(G(+k, ρ−α) ∪ G(−k, ρ−α)).

Now we estimate μ(G(+d, ρ−α)) by using (2.5.21). If x ∈ G(+d, ρ−α), then
according to (2.5.27) and (2.5.4b) the expression under the integral in (2.5.21) for
k = d is O(ρ1+α). Therefore the first equality in

μ(D) = O(ε1|b|−1ρd−2), μ(G(+d, ρ−α)) = O(ρd−1+αε1|b|−1), (2.5.34)

where the set Prd G(+d, ρ−α) is redenoted by D, implies the second equality in
(2.5.34). To prove the first equality in (2.5.34) we use (2.5.22) for m = d − 1 and
k = 1 and prove the relations

μ(Pr1D) = O(ρd−2),

μ(D(x2, x3, . . . , xd−1)) < 6ε1|b|−1 (2.5.35)

for (x2, x3, . . . , xd−1) ∈ Pr1D. First relation follows from the inequalities in
(2.5.20). Thus we need to prove (2.5.35). If x1 ∈ D(x2, x3, . . . , xd−1), then by
the definitions of D(x2, x3, . . . , xd−1) and D we have (x1x2, , . . . , xd−1) ∈ D and

(x1, x2, . . . , xd) ∈ G(+d, ρ−α) ⊂ G =: Sρ ∩ Pb.

Therefore (2.5.27) and (2.5.28) hold. Subtracting (2.5.27) from (2.5.28), we get

2x1b1 + (b1)
2 + Fk1−1(x + b) − Fk1−1(x) = h, (2.5.36)

where x2, x3, . . . , xd−1 are fixed. Hence we have two equations (2.5.27) and (2.5.36)
with respect to the unknown x1 and xd . Using (2.5.4b), the implicit function theorem,
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and the inequalities |xd | > ρ−α, α1 > 2α from (2.5.27), we obtain

xd = f (x1),
d f

dx1
= −2x1 + O(ρ−2α1+α)

2xd + O(ρ−2α1+α)
. (2.5.37)

Substituting this in (2.5.36), we get

2x1b1 + b21 + Fk1−1(x1 + b1, x2, . . . , xd−1, f (x1)) − Fk1−1(x1, . . . , xd−1, f ) = h.

(2.5.38)
Using (2.5.4b), (2.5.37), the first equality in (2.5.30), and xd > ρ−α we see that the
absolute value of the derivative (w.r.t. x1 ) of the left-hand side of (2.5.38) satisfies
the inequality

|2b1 + O(ρ−2α1+α) + O(ρ−2α1+α)
x1 + O(ρ−2α1+α)

xd + O(ρ−2α1+α)
)| > b1

for

x1 = −b1
2

+ O(ρ−α1)

[see (2.5.30)]. Therefore from (2.5.38), by the implicit function theorem, we get

|dx1
dh

| <
1

|b| , ∀h ∈ (−3ε1, 3ε1).

This inequality implies that the image {x1(h) : h ∈ (−3ε1, 3ε1)} of the interval
(−3ε1, 3ε1) [see (2.5.28)] under the differentiable function x1(h) is an interval I
with the length less than 6ε1|b|−1. Since D(x2, x3, . . . , xd−1) is a measurable subset
of I, (2.5.35) holds. Thus (2.5.34) is proved. In the same way we get the same
estimation for the sets G(−d, ρ−α), G(+k, ρ−α) and G(−k, ρ−α), where k ≥ 2.
Hence

μ(Sρ ∩ Pb) = O(ρd−1+αε1|b|−1)

for b /∈ �1. Since |b| < 2ρ + 3 [see (2.5.30)] and ε1 = ρ−d−2α, taking into account
that the number of the vectors of � satisfying |b| < 2ρ + 3 is O(ρd), we obtain

μ(∪b/∈�1(Sρ ∩ Pb)) = O(ρ2d−1+αε1) = O(ρ−α)μ(B(ρ)).

This, (2.5.32) and (2.5.17) give the proof of (2.5.18).
Estimation 3 Here we prove (2.5.19). DenoteU2ε(Ak, j (γ1,γ2, . . . , γk)) by G,where

γ1,γ2, . . . , γk ∈ �(pρα), k ≤ d − 1,

and Ak, j is defined in (2.5.2). To estimate μ(G) we turn the coordinate axis so that
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Span{γ1,γ2, . . . , γk} = {x = (x1, x2, . . . , xk, 0, 0, . . . , 0) : x1, x2, . . . , xk ∈ R}.

Then by (2.2.22), we have
xi = O(ραk+(k−1)α)

for i ≤ k, x ∈ G. This, (2.5.20), and αk + (k − 1)α < 1 [see the first inequality in
(2.1.39)] give

G ⊂ (∪i>k(G(+i, ρd−1) ∪ G(−i, ρd−1)),

μ(Pr(G(+i, ρd−1))) = O(ρk(αk+(k−1)α)+(d−1−k)) (2.5.39)

for i > k. Now using these and (2.5.22) for m = d, we prove that

μ(G(+i, ρd−1)) = O(ερk(αk+(k−1)α)+(d−1−k)), ∀i > k. (2.5.40)

For this we redenote by D the set G(+i, ρd−1) and prove that

μ((D(x1, x2, . . . xi−1, xi+1, . . . xd)) ≤ (42d2 + 4)ε (2.5.41)

for
(x1, x2, . . . xi−1, xi+1, . . . xd) ∈ Pri (D)

and i > k, since using (2.5.41) and (2.5.39) in (2.5.22) one can easily get the proof
of (2.5.40). Hence we need to prove (2.5.41). To prove (2.5.41) it is sufficient to show
that if both x = (x1, x2, . . . , xi , . . . xd) and x ′ = (x1, x2, . . . , x ′

i , . . . , xd) are in D,

then
|xi − x ′

i | ≤ (42d2 + 4)ε.

Assume the converse. Then

|xi − x ′
i | > (42d2 + 4)ε.

Without loss of generality it can be assumed that x ′
i > xi . Then we have the inequal-

ities
x ′

i > xi + (42d2 + 4)ε, xi > ρd−1 (2.5.42)

since
x = (x1, x2, . . . , xi , . . . xd) ∈ D =: G(+i, ρd−1).

By the definition ofG the points x and x ′ lie in the 2εneighborhoodof Ak, j .Therefore
there exist the points a and a′ in Ak, j such that |x − a| < 2ε and |x ′ − a′| < 2ε.
These inequalities with (2.5.42) imply that
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ρd−1 − 2ε < ai < a′
i , a′

i − ai > 42d2ε, (2.5.43)

(a′
i )
2 − (ai )

2 > 2(ρd−1 − 2ε)(a′
i − ai ), (2.5.43a)

as, a′
s ∈ (xs − 2ε, xs + 2ε, ), ||as | − |a′

s || < 4ε (2.5.44)

for s �= i, since x ′
s = xs for s �= i. On the other hand, the inequalities in (2.5.20)

hold for the points of Ak, j , that is, we have

|as | < ρ + 1, |a′
s | < ρ + 1.

These inequalities and (2.5.44) imply

||as |2 − |a′
s |2| < 12ρε

for s �= i , and by (2.5.43)

∑

s �=i

||as |2 − |a′
s |2| < 12dρε <

2

7
ρd−1(a′

i − ai ). (2.5.45)

Using this and (2.5.43a), we get

||a|2 − |a′|2| >
3

2
ρd−1|a′

i − ai |. (2.5.46)

At last, the inequalities

a′
i − ai > 42d2ε, |as − a′

s | < 4ε for s �= i

for s �= i [see (2.5.43) and the inclusion in (2.5.44)] show that

|a − a′| < 2|a′
i − ai |. (2.5.46a)

Now we prove that (2.5.46) and (2.5.46a) contradict the inclusions a ∈ Ak, j and
a′ ∈ Ak, j . Using (2.2.36), the obvious relation 1

2αd < 1 [see definitions of α and
αd in (2.1.5) and in Definition 2.1.1] and (2.5.46a), we get

|r j (a) − r j (a
′)| < ρ

1
2αd |a − a′| <

1

2
ρd−1|a′

i − ai |,

where
r j (x) = λ j (x) − |x |2

(see Remark 2.2.2). This inequality, (2.5.46), the inequality
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a′
i − ai > 42d2ε

[see (2.5.43)], and the relation ε1 = 7ρε [see Lemma 2.5.1(a)] imply

|λ j (a) − λ j (a
′)| ≥ ||a|2 − |a′|2| − |r j (a) − r j (a

′)|
> ρd−1|a′

i − ai | > 42dρε > 6ε1.

The obtained inequality
|λ j (a) − λ j (a

′)| > 6ε1

contradicts with the inclusions a ∈ Ak, j , a′ ∈ Ak, j , since by definition of Ak, j [see
(2.5.2)] both λ j (a) and λ j (a′) lie in (ρ2 − 3ε1, ρ2 + 3ε1). Thus (2.5.41) and hence
(2.5.40) are proved. In the same way we get the same estimation for G(−i, ρ

d ). Thus

μ(U2ε(Ak, j (γ1, γ2, . . . , γk))) = O(ερk(αk+(k−1)α)+d−1−k).

Now taking into account thatU2ε(A(ρ)) is the union ofU2ε(Ak, j (γ1, γ2, . . . , γk) for
k = 1, 2, .., d − 1; j = 1, 2, . . . , bk(γ1, γ2, . . . , γk), and γ1, γ2, . . . , γk ∈ �(pρα)

[see (2.5.2)] and using

bk = O(ρdα+ k
2αk+1)

[see (2.2.30)], and that the number of the vectors (γ1, γ2, . . . , γk) forγ1, γ2, . . . , γk ∈
�(pρα) is O(ρdkα), we obtain

μ(U2ε(A(ρ))) = O(ερdα+ k
2αk+1+dkα+k(αk+(k−1)α)+d−1−k).

Therefore to prove (2.5.19), it remains to show that

dα + k

2
αk+1 + dkα + k(αk + (k − 1)α) + d − 1 − k ≤ d − 1 − α

or

(d + 1)α + k

2
αk+1 + dkα + k(αk + (k − 1)α) ≤ k

for 1 ≤ k ≤ d − 1. Dividing both sides of the last inequality by kα and using

αk = 3kα,α = 1

κ
, κ = 3d + d + 2

[see (2.1.5) and Definition 2.1.1], we get

d + 1

k
+ 3k+1

2
+ 3k + k − 1 ≤ 3d + 2.
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The left-hand side of this inequality gets its maximum at k = d − 1. Therefore we
need to show that

d + 1

d − 1
+ 5

6
3d + d ≤ 3d + 4

which follows from the inequalities

d + 1

d − 1
≤ 3, d <

1

6
3d + 1

for d ≥ 2.
Estimation 4 Here we prove (2.5.8). During this estimation we denote by G the set
S′
ρ ∩ Uε(T r(A(ρ)). Since Vρ = S′

ρ\G and (2.5.18) holds, it is enough to prove that

μ(G) = O(ρ−α)μ(B(ρ)).

For this we use (2.5.20) and prove

μ(G(+i, ρd−1)) = O(ρ−α)μ(B(ρ)), μ(G(−i, ρd−1)) = O(ρ−α)μ(B(ρ))

(2.5.47)

for i = 1, 2, . . . , d by using (2.5.21). By (2.5.4b), if x ∈ G(+i, ρd−1), then the
expression under the integral in (2.5.21) for k = i is less than 2(d + 1)2. Therefore
to prove the first equality of (2.5.47) it is sufficient to prove

μ(Pr(G(+i, ρd−1)) = O(ρ−α)μ(B(ρ)) (2.5.48)

Clearly, if
(x1, x2, . . . xi−1, xi+1, . . . xd) ∈ Pri (G(+i, ρd−1)),

then

μ(Uε(G)(x1, x2, . . . xi−1, xi+1, . . . xd)) ≥ 2ε

and by (2.5.22), it follows that

μ(Uε(G)) ≥ 2εμ(Pr(G(+i, ρd−1)). (2.5.49)

Hence to prove (2.5.48) we need to estimate μ(Uε(G)). For this we prove that

Uε(G) ⊂ Uε(S′
ρ), Uε(G) ⊂ U2ε(T r(A(ρ))), Uε(G) ⊂ T r(U2ε(A(ρ))). (2.5.50)

The first and second inclusions follow from G ⊂ S′
ρ and G ⊂ Uε(T r(A(ρ))) respec-

tively (see the definition of G). Now we prove the third inclusion in (2.5.50). If
x ∈ Uε(G), then by the second inclusion of (2.5.50) there exists b such that
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b ∈ T r(A(ρ)), |x − b| < 2ε.

Then by the definition of T r(A(ρ)) there exist γ ∈ � and c ∈ A(ρ) such that
b = γ + c. Therefore

|x − γ − c| = |x − b| < 2ε, x − γ ∈ U2ε(c) ⊂ U2ε(A(ρ)).

This together with
x ∈ Uε(G) ⊂ Uε(S′

ρ)

[see the first inclusion in (2.5.50)] gives x ∈ T r(U2ε(A(ρ))) (see the definition of
T r(E) inNotation 2.5.1), i.e., the third inclusion in (2.5.50) is proved. This inclusion,
Lemma 2.5.1(c), and (2.5.19) imply that

μ(Uε(G)) = O(ρ−α)μ(B(ρ))ε.

Now using (2.5.49), we get the proof of (2.5.48) and hence the proof of the
first equality of (2.5.47). The second equality of (2.5.47) can be proved in the same
way ♦
Estimation 5 Here we prove (2.5.9). Divide the set Vρ =: V, defined in Theorem
2.5.1(b), into pairwise disjoint subsets

V ′(±1, ρd−1) =: V (±1, ρd−1), V ′(±i, ρd−1) =: V (±i, ρd−1)\(∪i−1
j=1(V (± j, ρd−1)))

for i = 2, 3, . . . , d.Take anypointa ∈ V ′(+i, ρd−1) ⊂ Sρ and consider the function
F(x) [see (2.5.4)] on the interval (a − εei , a + εei ), where e1 = (1, 0, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), . . .. By (2.5.4c), we have

F(a) = ρ2.

It follows from (2.5.4b) and the definition of V ′(+i, ρd−1) that

∂F(x)

∂xi
> ρd−1

for x ∈ (a − εei , a + εei ). Therefore

F(a − δei ) < ρ2 − c23ε1, F(a + δei ) > ρ2 + c23ε1, (2.5.51)

where δ = ε
2 , ε1 = 7ρε. Since

[a − δei , a + δei ] ∈ Uε(a) ⊂ Uε(Vρ) ⊂ Uε(S′
ρ)\T r(A(ρ))

(see Theorem 2.5.1(b)), it follows from Theorem 2.5.1(a) that there exists an index
N such that �(y) = �N (y) for y ∈ Uε(a) and �(y) satisfies (2.1.27) (see
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Remark 2.4.1). Hence (2.5.51) implies that

�(a − δei ) < ρ2, �(a + δei ) > ρ2. (2.5.52)

Moreover it follows from (2.5.7) that the derivative of �(y) with respect to yi is
positive for y ∈ [a − δei , a + δei ]. Hence �(y) is a continuous and increasing
function in [a − δei , a + δei ]. Thus (2.5.52) implies that there exists a unique point
y(a, i) ∈ [a − δei , a + δei ] such that

�(y(a, i)) = ρ2.

Define I ′
ρ(+i) by

I ′
ρ(+i) = {y(a, i) : a ∈ V ′(+i, ρd−1)}).

In the same way we define

I ′
ρ(−i) = {y(a, i) : a ∈ V ′(−i, ρd−1)}

and put
I ′
ρ = ∪d

i=1(I ′
ρ(+i) ∪ I ′

ρ(−i)).

To estimate the measure of I ′
ρ we compare the measure of V ′(±i, ρd−1) with the

measure of I ′
ρ(±i) by using the formula (2.5.21) and the relations

Pr(V ′(±i, ρd−1)) = Pr(I ′
ρ(±i)), μ(Pr(I ′

ρ(±i))) = O(ρd−1), (2.5.53)

(
∂F

∂xi
)−1|grad(F)| − (

∂�

∂xi
)−1|grad(�)| = O(ρ−2α1), (2.5.54)

where the first equality in (2.5.53) follows from the definition of I ′
ρ(±i), the second

equality in (2.5.53) follows from the inequalities in (2.5.20), since I ′
ρ ⊂ Uε(S′

ρ), and
(2.5.54) follows from (2.5.4b) and (2.5.7). Using (2.5.53), (2.5.54), and (2.5.21), we
get

μ(V ′(±i, ρd−1)) − μ(I ′
ρ(±i)) = O(ρd−1−2α1). (2.5.55)

On the other hand, if

y =: (y1, y2, . . . , yd) ∈ I ′
ρ(+i) ∩ I ′

ρ(+ j)

for i < j then there are a ∈ V ′(+i, ρd−1) and a′ ∈ V ′(+ j, ρd−1) such that
y = y(a, i) = y(a′, j) and y ∈ [a − δei , a + δei ], y ∈ [a′ − δe j , a′ + δe j ]. These
inclusions and definitions of V ′(+i, ρd−1), V ′(+ j, ρd−1) imply that

ρd−1 − δ ≤ yi ≤ ρd−1.
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Therefore using the inequalities in (2.5.20), we get

μ(Pr j (I ′
ρ(+i) ∩ I ′

ρ(+ j))) = O(ερd−2).

This equality, (2.5.21) for k = j and (2.5.7) give

μ((I ′
ρ(+i) ∩ I ′

ρ(+ j))) = O(ερd−2) (2.5.56)

for all i and j. Similarly

μ((I ′
ρ(+i) ∩ I ′

ρ(− j))) = O(ερd−2)

for all i and j. Now using (2.5.56) and (2.5.55), we obtain

μ(I ′
ρ) =

∑

i

μ(I ′
ρ(+i)) +

∑

i

μ(I ′
ρ(−i)) + O(ερd−2) =

∑

i

μ(V ′(+i, ρd−1))

+
∑

i

μ(V ′(−i, ρd−1)) + O(ρd−1−2α1) = μ(Vρ) + O(ρ−2α1)μ(B(ρ)).

(2.5.57)

This and (2.5.8) yield the inequality (2.5.9) for I ′
ρ. Now we define I ′′

ρ as follows. If
γ + t ∈ I ′

ρ then

�(γ + t) = ρ2,

where �(γ + t) is a unique eigenvalue satisfying (2.1.27) (see Remark 2.4.1). Since

�(γ + t) = |γ + t |2 + O(ρ−α1)

[see (2.1.27), (2.5.4), and (2.5.4a)], for fixed t there exist only a finite number of
vectors γ1, γ2, . . . , γs ∈ � satisfying

�(γk + t) = ρ2.

Hence I ′
ρ is the union of the pairwise disjoint sets

I ′
ρ,k =: {γk + t ∈ I ′

ρ : �(γk + t) = ρ2} (k = 1, 2, . . . s).

The translation
I ′′
ρ,k = I ′

ρ,k − γk = {t ∈ F∗ : γk + t ∈ I ′
ρ,k}

of I ′
ρ,k is a part of the isoenergetic surface Iρ of L(q). Put

I ′′
ρ = ∪s

k=1 I ′′
ρ,k .
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If
t ∈ I ′′

ρ,k ∩ I ′′
ρ,m

for k �= m, then
γk + t ∈ I ′

ρ ⊂ Uε(S′
ρ)

and
γm + t ∈ Uε(S′

ρ),

which contradict Lemma 2.5.1(b). Therefore I ′′
ρ is the union of the pairwise disjoint

subsets I ′′
ρ,k for k = 1, 2, . . . s. Thus

μ(I ′′
ρ ) =

∑

k

μ(I ′′
ρ,k) =

∑

k

μ(I ′
ρ,k) = μ(I ′

ρ).

This implies (2.5.9) for I ′′
ρ , since (2.5.9) is proved for I ′

ρ [see (2.5.57)] �

2.6 Bloch Functions Near the Diffraction Hyperplanes

In this section we obtain the asymptotic formulas for the Bloch function correspond-
ing to the quasimomentum lying near the diffraction hyperplanes. Here we assume
that (2.1.36) holds instead of (2.1.1). Besides, in this section, we define the number
κ by κ = 4(3d(d + 1)) instead of the definition κ = 3d + d + 2 of κ given in
(2.1.5). The other numbers p,αk,α, k1, p1 are defined as in the introduction. Clearly
these numbers satisfy all inequalities of (2.1.38)–(2.1.40). Therefore the formulas
obtained in the previous sections hold in these notations too. Moreover the following
relations hold

k2 <
1

9
(p − 1

2
κ(d − 1)), k2α2 > d + 2α, 4(d + 1)αd = 1, (2.6.1)

where k2 = [ d
9α ]+ 2. In this section we construct a subset Bδ of V ′

δ(ρ
α1) such that if

γ + t =: β + τ + ( j + v)δ ∈ Bδ

(see Remark 2.3.1 for the notations), then there exists a unique eigenvalue �N (λ j,β
(v, τ )) satisfying (2.3.52).Moreover we prove that�N (λ j,β(v, τ )) is a simple eigen-
value if β + τ + ( j + v)δ belongs to the set Bδ. Therefore we call the set Bδ the
simple set in the resonance domain Vδ(ρ

α1). Then we obtain the asymptotic formu-
las of arbitrary order for the eigenfunction �N (x) corresponding to the eigenvalue
�N (λ j,β(v, τ )). At the end of this section we prove that Bδ has asymptotically full
measure on Vδ(ρ

α1). The construction of the simple set Bδ in the resonance domain
Vδ(ρ

α1) is similar to the construction of the simple set B in the non-resonance domain
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(see Step 1 and Step 2 in the introduction). As in Step 2 we need to find the sim-
plicity conditions for the eigenvalue �N (λ j,β). Since the first inequality in (2.6.1)
holds, �N (λ j,β) satisfies (2.3.52) for k = k2. Therefore it follows from the second
inequality of (2.6.1) that

�N (λ j,β(v, τ )) = E(λ j,β(v, τ )) + o(ρ−d−2α) = o(ε1), (2.6.2)

where

E(λ j,β(v, τ )) = λ j,β(v, τ ) + Ek2−1(λ j,β(v, τ )), ε1 = ρ−d−2α,

λ j,β(v, τ ) ∼ ρ2, Ek2−1(λ j,β) = O(ρ−α2(ln ρ)), (2.6.3)

λ j,β(v, τ ) = |β + τ |2 + μ j (v) = |β + τ |2 + O(ρ2α1), (2.6.4)

E(λ j,β(v, τ )) = |β + τ |2 + O(ρ2α1) (2.6.5)

[see (2.3.53), Lemma 2.3.1(b), (2.3.6), (2.3.5), and the definition of E(λ j,β(v, τ ))].
Due to (2.6.2) we call E(λ j,β(v, τ )) as the known part of �N (λ j,β(v, τ )). Since the
other eigenvalues lie in the ε1-neighborhood of λi (γ

′ + t), F(γ′ + t)
(see Step 1 in the introduction), in order that �N (λ j,β(v, τ )) does not coincide with
any other eigenvalue we use the following two simplicity conditions:

|E(λ j,β(v, τ )) − F(γ′ + t)| ≥ 2ε1, ∀γ′ ∈ M1, (2.6.6)

|E(λ j,β) − λi (γ
′ + t)| ≥ 2ε1, ∀γ′ ∈ M2; ∀i = 1, 2, . . . , bk, (2.6.7)

where M is the set of γ′ ∈ � satisfying

|E(λ j,β(v, τ )) − |γ′ + t |2| <
1

3
ρα1 ,

M1 is the set of γ′ ∈ M satisfying γ′ + t ∈ U (ρα1 , p), M2 is the set of γ′ ∈ M such
that γ′ + t /∈ U (ρα1 , p) and γ′ + t has the �δ decomposition

γ′ + t = β′ + τ + ( j ′ + v(β′))δ

(see Remark 2.3.1) with β′ �= β.

Definition 2.6.1 The simple set Bδ in the resonance domain Vδ(ρ
α1) is the set of

x ∈ V ′
δ(ρ

α1) ∩ (R(
3

2
ρ − ρα1−1)\R(

1

2
ρ + ρα1−1))

such that x = γ + t, where γ ∈ �, t ∈ F� [it is � decomposition of x (see Remark
2.3.1)] and x = β + τ + ( j + v(β))δ, where β ∈ �δ, τ ∈ Fδ, j ∈ Z, v(β) ∈ W (ρ)

(it is �δ decomposition of x and W (ρ) is defined in Lemma 2.3.7), and the simplicity
conditions (2.6.6) and (2.6.7) hold.
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Using the simplicity conditions (2.6.6) and (2.6.7) we prove that �N (λ j,β(v, τ ))

does not coincide with the other eigenvalues if

β + τ + ( j + v)δ ∈ Bδ.

The existence andproperties of the sets Bδ will be considered at the endof this section.
Recall that in Sect. 2.4 the simplicity conditions (2.1.28) and (2.1.29) implied the
asymptotic formulas for the Bloch functions in the non-resonance domain. Similarly,
here the simplicity conditions (2.6.6), (2.6.7) imply the asymptotic formulas for the
Bloch functions in the resonance domain V

′
δ(ρ

α1). For this we use the following
lemma.

Lemma 2.6.1 Let �N (λ j,β(v, τ )) be the eigenvalue of the operator Lt (q) satisfying
(2.3.52), where

β + τ + ( j + v)δ =: γ + t ∈ Bδ.

If for γ′ + t =: β′ + τ + ( j ′ + v(β′))δ at least one of the following conditions:

γ′ ∈ M, β′ �= β, (2.6.8)

|β − β′| > (p − 1)ρα, (2.6.9)

|β − β′| ≤ (p − 1)ρα, | j ′δ| ≥ h (2.6.10)

holds, then
|b(N , γ′)| ≤ c5ρ

−cα, (2.6.11)

where

h =: 10−pρ
1
2α2 , c = p − dκ − 1

4
d3d − 3, b(N , γ′) = (�N ,t , ei(γ′+t,x)),

and �N ,t is any normalized eigenfunction of Lt (q) corresponding to �N (λ j,β(v, τ )).

Proof Repeating the proof of the inequality in (2.4.5) and instead of the simplicity
conditions (2.1.28), (2.1.29) and the set K , using the simplicity conditions (2.6.6),
(2.6.7), and the set M, we obtain the proof of (2.6.11) under the condition (2.6.8).

Suppose that the condition (2.6.9) holds. Consider two cases:
Case 1: γ′ ∈ M. It follows from (2.6.9) that β′ �= β. Thus, in Case 1, condition

(2.6.8) holds and hence (2.6.11) is true.
Case 2: γ′ /∈ M. The definition of M [see (2.6.7)] and (2.6.2) imply that

|�N − |γ′ + t |2| >
1

4
ρα1 , ∀γ′ /∈ M. (2.6.12)

Therefore using (2.1.9) and the definition of c [see (2.6.11)], we get



2.6 Bloch Functions Near the Diffraction Hyperplanes 109

b(N , γ′) =
∑

γ1∈�(ρα)

qγ1b(N , γ′ − γ1)

�N − |γ′ + t |2 + o(ρ−cα). (2.6.13)

Since γ1 ∈ �(ρα) we have γ1 = β1 + a1δ [see (2.3.2)], where β1 ∈ �δ, a1 ∈ R,

|β1| < ρα and

γ′ − γ1 + t =: (β′ − β1) + τ + ( j ′ + v(β′) − a)δ.

Moreover , it follows from (2.6.9) that (β′ − β1) �= β. Therefore, if γ′ − γ1 ∈ M,

then repeating the proof of (2.6.11) for Case 1, we obtain

|b(N , γ′ − γ1)| ≤ c5ρ
−cα (2.6.14)

for γ′ − γ1 ∈ M . Now in (2.6.13) instead of b(N , γ′ − γ1) for γ′ − γ1 ∈ M writing
O(ρ−cα), and using (2.1.9) for b(N , γ′ − γ1) when γ′ − γ1 /∈ M , we get

b(N , γ′) =
∑

γ1,γ2

qγ1qγ2b(N , γ′ − γ1 − γ2)

(�N − |γ′ + t |2)(�N − |γ′ − γ1 + t |2) + o(ρ−cα), (2.6.15)

where the summation is taken under the conditions

γ1 ∈ �(ρα), γ2 ∈ �(ρα), γ′ − γ1 /∈ M.

Moreover, it follows from (2.6.12) that the multiplicands in the denominators of
(2.6.15) are the large numbers, namely

|�N − |γ′ −
j∑

i=1

γi + t |2| >
1

4
ρα1 , (2.6.16)

for

γ′ −
j∑

i=1

γi /∈ M,

where γi ∈ �(ρα), j = 0, 1, . . . . Arguing as in the proof of (2.6.14), we obtain

|b(N , γ′ − γ1 − γ2)| ≤ c5ρ
−cα (2.6.17)

for (γ′−γ1−γ2) ∈ M . Repeating this process p−1 times, that is, in (2.6.15) instead
of b(N , γ′ − γ1 − γ2) for γ′ − γ1 − γ2 ∈ M writing O(ρ−cα) [see (2.6.17)], and
using (2.1.9) for b(N , γ′ − γ1 − γ2) when γ′ − γ1 − γ2 /∈ M etc., we obtain
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b(N , γ′) =
∑

γ1,γ2,...,γp−1

qγ1qγ2 . . . qγp−1b(N , γ′ − ∑p−1
i=1 γi )

∏p−2
j=0 (�N − |γ′ − ∑ j

i=1 γi + t |2)
+ o(ρ−cα), (2.6.18)

where the summation is taken under the conditions

γ′ −
j∑

i=1

γi /∈ M

for j = 0, 1, . . . , p − 2. Therefore (2.6.16) and (2.1.6a) imply (2.6.11) for Case 2.
Now assume that (2.6.10) holds. First we prove that the following implication

γ′ −
s∑

i=1

γi ∈ M =⇒ β′ −
s∑

i=1

βi �= β, (2.6.19)

where s = 0, 1, . . . , p − 1 and

γi ∈ �(ρα), γi = βi + aiδ, (βi , δ) = 0, βi ∈ �δ, ai ∈ R (2.6.20)

[see (2.3.2) for this orthogonal decomposition of γi ] is true. Assume the converse,
i.e.,

β′ −
s∑

i=1

βi = β.

Then (2.6.20) and the equality γ′ + t = β′ + τ + ( j ′ + v(β′))δ (see Lemma 2.6.1)
yield

γ′ + t −
s∑

i=1

γi = β + τ + ( j ′ + v(β′))δ −
s∑

i=1

aiδ. (2.6.21)

Since γi ∈ �(ρα), δ ∈ �(ρα), v(β′) ∈ [0, 1] (see Lemma 2.3.1), and (2.6.20) is the
orthogonal decomposition of γi we have

|aiδ| < ρα, |v(β′)δ| < ρα.

On the other hand, by (2.6.10), | j ′δ| ≥ h. Therefore the orthogonal decomposition
(2.6.21) and the relations

h = 10−pρ
1
2α2 , h2 ∼ ρα2 ,α2 = 3α1 = 9α (2.6.22)

imply that

|γ′ + t −
s∑

i=1

γi |2 ≥ |β + τ |2 + 1

2
h2.



2.6 Bloch Functions Near the Diffraction Hyperplanes 111

Using this, (2.6.5), and (2.6.22) we obtain

|E(λ j,β(v, τ )) − |γ′ + t −
s∑

i=1

γi |2| > ρα1

which contradicts

γ′ −
s∑

i=1

γi ∈ M.

Thus (2.6.19) is proved. This implication for s = 0 means that if γ′ ∈ M then
β′ �= β. Therefore if (2.6.10) holds and γ′ ∈ M, then (2.6.8) holds too and hence
(2.6.11) holds. To prove (2.6.11) under condition (2.6.10) in case γ′ /∈ M we repeat
the proof of (2.6.11) in Case 2, that is, use (2.6.18), (2.6.12), and etc. ��
Theorem 2.6.1 If γ + t = β + τ + ( j + v(β))δ ∈ Bδ, then there exists a unique
eigenvalue �N (λ j,β(v, τ )) satisfying (2.3.52). This is a simple eigenvalue and the
corresponding eigenfunction �N ,t (x) satisfies the asymptotic formula

�N ,t (x) = � j,β(x) + O(ρ−α2 ln ρ). (2.6.23)

Proof The proof is similar to the proof of Theorem 2.4.1. Arguing as in the proof
of the Theorem 2.4.1 we see that to prove this theorem it is enough to show that for
any normalized eigenfunction �N corresponding to any eigenvalue�N satisfying
(2.3.52) the following equality holds

∑

( j ′,β′)∈K0

|b(N , j ′,β′)|2 = O(ρ−2α2(ln ρ)2), (2.6.24)

where

K0 = {( j ′,β′) : j ′ ∈ Z,β′ ∈ �δ, ( j ′,β′) �= ( j,β)},
b(N , j ′,β′) = (�N ,� j ′,β′).

Divide K0 into subsets: K c
1 , K1 ∩ S(p − 1), K1 ∩ Sc(p − 1), where

K c
1 = K0\K1, Sc(n) = K0\S(n),

K1 = {( j ′,β′) ∈ K0 : |�N (t) − λ j ′,β′ | < h2},

S(n) = {( j ′,β′) ∈ K0 : |β − β′| ≤ nρα, | j ′δ| < 10nh}

and h is defined in (2.6.22). If ( j ′,β′) ∈ K c
1 , then using (2.1.21), the definitions of

K c
1 and h, we have
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∑

( j ′,β′)∈K c
1

|b(N , j ′,β′)|2 = sup
x∈F

|q(x) − qδ(x)|2O(
1

ρ2α2
) = O(

1

ρ2α2
). (2.6.25)

To consider the set K1 ∩ S(p − 1) we prove that

K1 ∩ S(n) = K1 ∩ {( j ′,β) : j ′ ∈ Z} ⊂ {( j ′,β) : | j ′δ| < 2h} (2.6.26)

for n = 1, 2, . . . , p − 1. Take any element ( j ′,β) from K1 ∩ {( j ′,β) : j ′ ∈ Z}.
Since

λ j ′,β(v, τ ) = |β + τ |2 + μ j ′(v) = |β + τ |2 + |( j ′ + v)δ|2 + O(1),

where v ∈ [0, 1] [see Lemma 2.3.1(b) and (2.3.6)], using the definition of K1, (2.6.2),
(2.6.5) and (2.6.22), we obtain

|O(ρ2α1) − |( j ′ + v)δ|2| < 2h2, | j ′δ| < 2h.

Hence the inclusion in (2.6.26) is proved and

K1 ∩ {( j ′,β) : j ′ ∈ Z} ⊂ K1 ∩ S(n)

for n = 1, 2, . . . , p − 1. If the inclusion

K1 ∩ S(n) ⊂ K1 ∩ {( j ′,β) : j ′ ∈ Z}

does not hold, then there is an element ( j
′
,β

′
) of K1 ∩ S(n) such that

0 < |β − β
′ | ≤ nρα ≤ (p − 1)ρα, | j ′δ| < 10nh <

1

2
ρ

1
2α2

[see (2.6.22)]. Hence the pairs ( j ′,β′) and ( j,β) satisfy the conditions of (2.3.34).
Therefore using (2.3.34), (2.3.39) and (2.6.22) we get

|�N − λ j ′,β′ | >
1

2
ρα2 > h2 (2.6.27)

which contradicts the inclusion ( j ′,β′) ∈ K1. Thus (2.6.26) is proved. Therefore

∑

( j ′,β′)∈K1∩S(p−1)

|b(N , j ′,β′)|2 ≤
∑

j ′ �= j, | j ′δ|<2h

|b(N , j ′,β)|2 (2.6.28)

For the estimation of b(N , j ′,β) when | j ′δ| < 2h, we use (2.3.27) as follows. In
(2.3.27) replacing β′ and r by β and 2h, we obtain
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(�N − λ j ′,β)b(N , j ′,β) = O(ρ−pα)

+
∑

( j1,β1)∈Q(ρα,18h)

A( j ′,β, j ′ + j1,β + β1)b(N , j ′ + j1,β + β1). (2.6.29)

By the definition of Q(ρα, 18h) we have |β1| < ρα, | j1δ| < 18h, and hence

|( j ′ + j1)δ| < 20h <
1

2
ρ

1
2α2 .

Therefore in the right-hand side of (2.6.29) the multiplicand b(N , j ′ + j1,β + β1)

for ( j ′ + j1,β + β1) ∈ D(β), where

D(β) = {( j,β + β1) : | jδ| <
1

2
ρ

1
2α2 , 0 < |β1| < ρα},

takes part. Put

|b(N , j0,β + β0)| = max
( j,β+β1)∈D(β)

|b(N , j,β + β1)|.

By definition of D(β) and by (2.6.22) we have

|�N − λ j0,β+β0 | >
1

2
ρα2 .

This together with (2.1.21) gives

|b(N , j0,β + β0)| = O(ρ−α2).

Using this, (2.6.29) and (2.3.23), we get

|b(N , j ′,β)| < c24|�N − λ j ′,β |−1ρ−α2 (2.6.30)

for j ′ �= j, | j ′δ| < 2h, where

�N − λ j ′,β = λ j,β − λ j ′,β + O(ρ−α2) = μ j (v) − μ j ′(v) + O(ρ−α2)

[see (2.3.39) and Lemma 2.3.1(b)] and v ∈ W (ρ) (see the definition of Bδ). Now
using the definition of W (ρ) (see Lemma 2.3.7) and (2.3.6) we obtain

∑

j ′ �= j

|�N − λ j ′,β |−2 = O(ln ρ).

This with (2.6.30) and (2.6.28) yield
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∑

( j ′,β′)∈K1∩S(p−1)

|b(N , j ′,β)|2 = O(ρ−2α2(ln ρ)2). (2.6.31)

It remains to consider K1 ∩ Sc(p − 1). Let us prove that

b(N , j ′,β′) = O(ρ−cα) (2.6.32)

for ( j ′,β′) ∈ K1 ∩ Sc(p − 1), where the number c is defined in Lemma 2.6.1. For
this using the decomposition of ϕ j ′,v(β′)(s) by

{ei(m+v(β′))s : m ∈ Z},

we get

b(N , j ′,β′) =
∑

m

(ϕ j ′,v(s), ei(m+v)s)(�N ,t (x), ei(β′+τ+(m+v)δ,x)). (2.6.33)

If |β − β′| > (p − 1)ρα then Lemma 2.6.1 [see (2.6.9)], (2.3.25), and (2.6.33) give
the proof of (2.6.32). Thus we need to consider the case |β −β′| ≤ (p − 1)ρα. Then
by the definition of Sc(p − 1) we have | j ′δ| ≥ 10p−1h. Write the right-hand side of
(2.6.33) as T1 + T2, where

T1 =
∑

m:|mδ|≥h

T (m), T2
∑

m:|mδ|<h

T (m),

T (m) = (ϕ j ′,v(s), ei(m+v)s)(�N ,t (x), ei(β′+τ+(m+v)δ,x)).

By (2.3.25) and Lemma 2.6.1 [see (2.6.10)] we have

T1 = O(ρ−cα).

If |mδ| < h, then the inequality | j ′| > 2|m| holds. Therefore using (2.3.10), taking
into account that | j ′δ| ∼ ρα2 [(see (2.6.22)] and that the number of summands in
T2 is less than ρα2 , we get T2 = O(ρ−cα). The estimations for T1, T2 give (2.6.32).
Now using

|K1| = O(ρ(d−1)κα),

we get

∑

( j ′,β′)∈K1∩Sc(p−1)

|b(N , j ′,β′)|2 = O(ρ−(2c−(d−1)κ)α). (2.6.34)

This, (2.6.25) and (2.6.31) give the proof of (2.6.24), since (2c − (d − 1)κ)

α > α2. ��
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Now using Theorem 2.6.1, we obtain the asymptotic formulas of arbitrary order.

Theorem 2.6.2 The eigenfunction �N ,t (x), defined in Theorem 2.6.1, satisfies the
following asymptotic formulas

�N ,t (x) = E∗
k−1(x) + O(ρ−kα2 ln ρ) (2.6.35)

for k = 1, 2, . . . , n1, where n1 = [ 19 (p − κ( 3d−1
2 ) − 1

4d3d − 3)],

E∗
0 (x) = � j,β(x), E∗

k (x) = (1 + ‖Ẽk‖)−1(� j,β(x) + Ẽk(x)),

Ẽk is obtained from Ek by replacing A( j,β, j + j1,β + β1) with � j+ j1,β+β1(x),

and Ek is defined in Theorem 2.3.2.

Proof The proof of this theorem is very similar to the proof of Theorem 2.4.2. By
Theorem 2.6.1, (2.6.35) for k = 1 was proved. To prove it for arbitrary k (k ≤ n1)
we prove the following equivalent formulas

∑

( j ′,β′)∈Sc(k−1)

|b(N , j ′,β′)|2 = O(ρ−2kα2(ln ρ)2), (2.6.36)

�N ,t (x) =
∑

( j ′,β′)∈S(k−1)∪( j,β)

b(N , j ′,β′)� j ′,β′ + O(ρ−kα2 ln ρ). (2.6.37)

First consider the set Sc(k − 1) ∩ K1. It follows from the relations

S(k − 1) ∩ K1 = S(p − 1) ∩ K1 & S(k − 1) ⊂ S(p − 1)

for 0 < k < p [(see (2.6.26) and the definition of S(k − 1)] that

(S(p − 1))\S(k − 1)) ∩ K1 = ∅

and

Sc(k − 1) = Sc(p − 1) ∪ (S(p − 1)\S(k − 1)), Sc(k − 1) ∩ K1 = Sc(p − 1) ∩ K1.

Therefore using (2.6.34), the equalities c = p − dκ − 1
4d3d − 3 (see Lemma 2.6.1),

α2 = 9α, and n1 = [ 19 (p − κ( 3d−1
2 ) − 1

4d3d − 3)] (see Theorem 2.6.2), we obtain

∑

( j ′,β′)∈Sc(k−1)∩K1

|b(N , j ′,β′)|2 = O(ρ−2n1α2).
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Thus it remains to prove

∑

( j ′,β′)∈Sc(k−1)∩K c
1

|b(N , j ′,β′)|2 = O(ρ−2kα2(ln ρ)2) (2.6.38)

for k = 2, 3, . . . , n1. By (2.3.22) and (2.6.35) we have

�N (x)(q(x) − Q(s)) = H(x) + O(ρ−α2 ln ρ),

where H(x) is a linear combination of � j,β(x) and � j ′,β′(x) for ( j ′,β′) ∈ S(1),
since | jδ| < r1 < h [(see (2.3.5)]. Hence H(x) is orthogonal to � j ′,β′(x) for
( j ′,β′) ∈ Sc(1). Therefore using (2.3.27) and the definition of K c

1 we have

∑

( j ′,β′)∈Sc(1)∩K c
1

|b(N , j ′,β′)|2 =
∑

| (O(ρ−α2 ln ρ),� j ′,β′)

�N − λ j ′,β′
|2

= O(ρ−4α2(ln ρ)2).

Hence (2.6.38) for k = 2 is proved. Assume that this is true for k = m. Then (2.6.37)
for k = m holds too. This and (2.3.22) for r = 10m−1h give

�N (x)(q(x) − Q(s)) = G(x) + O(ρ−mα2 ln ρ),

where G is a linear combination of � j,β and � j ′,β′ for ( j ′,β′) ∈ S(m). Thus G
is orthogonal to � j ′,β′ for ( j ′,β′) ∈ Sc(m). Using this and repeating the proof of
(2.6.38) for k = 2 we obtain the proof of (2.6.38) for k = m + 1. Thus (2.6.36) and
(2.6.37) are proved. Arguing as in the proof of Theorem 2.4.2 one can easily see that
the formula (2.6.37) can be written in the form

�N ,t (x) − b(N , j,β)� j,β(x) − G̃k(x)

=
∑

( j1,β1)∈Q(ρα,9r1)

A( j,β, j + j1,β + β1)b(N , j + j1,β + β1), (2.6.39)

where
‖G̃k‖ = O(ρ−kα1).

It is clear that the right-hand side of (2.6.39) can be obtained from the right-hand
side of the equality

(�N − λ j,β)b(N , j,β) − O(ρ−pα)

=
∑

( j1,β1)∈Q(ρα,9r1)

A( j,β, j + j1,β + β1)b(N , j + j1,β + β1) (2.6.40)
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which is (2.3.28), by replacing A( j,β, j + j1,β + β1) with � j,β, j+ j1,β+β1(x).
Therefore in (2.6.39), doing the iteration which was done in order to obtain (2.3.49)
from (2.3.28), we get

�N ,t (x) − b(N , j,β)� j,β(x) − G̃k(x)

=
2p1∑

k=1

S̃′
k(�N ,λ j,β))b(N , j,β) + C̃ ′

2p1 + O(ρ−pα), (2.6.41)

where S̃′
k(�N , γ + t) and C̃ ′

k are obtained from S′(�N , γ + t) and C
′
k by replacing

A( j,β, j + j1,β +β1)with� j,β, j+ j1,β+β1(x) respectively and the term O(ρ−pα) in
the right-hand side of (2.6.41) is a function whose norm is O(ρ−pα). The remaining
part of the proof of this theorem is similar to the proof of Theorem 2.4.2 ��

Nowwe consider the simple set Bδ in the resonance domain Vδ(ρ
α1).Aswe noted

in Remark 2.3.1 every vector w of R
d has the decomposition

w = β + τ + ( j + v)δ, (β + τ , δ) = 0, (2.6.42)

where β ∈ �δ, τ ∈ Fδ, j ∈ Z, v ∈ [0, 1). Hence the space R
d is the union of the

pairwise disjoint sets

P(β, j) =: {β + τ + ( j + v)δ : τ ∈ Fδ, v ∈ [0, 1)}

for β ∈ �δ, j ∈ Z. To prove that Bδ has an asymptotically full measure on Vδ(ρ
α1),

that is,

lim
ρ→∞

μ(Bδ)

μ(Vδ(ρα1))
= 1 (2.6.43)

we define the following sets:

R1(ρ) = { j ∈ Z : | j | <
ρα1

2|δ|2 + 3

2
},

S1(ρ) = { j ∈ Z : | j | <
ρα1

2|δ|2 − 3

2
},

R2(ρ) = {β ∈ �δ : β ∈ Rδ(
3

2
ρ + dδ + 1)\Rδ(

1

2
ρ − dδ − 1))},

S2(ρ) = {β ∈ �δ : β ∈ (Rδ(
3

2
ρ − dδ − 1)\Rδ(

1

2
ρ + dδ + 1))\(

⋃

b∈�δ(ρ
αd )

V δ
b (ρ

1
2 ))},

where
Rδ(ρ) = {x ∈ Hδ : |x | < ρ}, �δ(ρ

αd ) = {b ∈ �δ : |b| < ραd },

V δ
b (ρ

1
2 ) = {x ∈ Hδ : ||x + b|2 − |x |2| < ρ

1
2 },
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and
dδ = sup

x,y∈Fδ

|x − y|

is the diameter of Fδ.

Moreover we define a subset P ′(β, j) of P(β, j) as follows. Introduce the sets

A(β, b, ρ) = {v ∈ [0, 1) : ∃ j ∈ Z, |2(β, b) + |b|2 + |( j + v)δ|2| < 4dδρ
αd },

A(β, ρ) =
⋃

b∈�δ(ρ
αd )

A(β, b, ρ), S3(β, ρ) = W (ρ)\A(β, ρ)

and put
S4(β, j, v, ρ) = {τ ∈ Fδ : β + τ + ( j + v)δ ∈ Bδ}

for j ∈ S1, β ∈ S2, v ∈ S3(β, j, ρ). Then define P ′(β, j) by

P ′(β, j) = {β + τ + ( j + v)δ : v ∈ S3(β, ρ), τ ∈ S4(β, j, v, ρ)}.

It is not hard to see that (2.6.43) follows from the following relations:

lim
ρ→∞

|Si (ρ)|
|Ri (ρ)| = 1, ∀i = 1, 2, (2.6.44)

Bδ ⊃ ∪ j∈S1,β∈S2 P ′(β, j), (2.6.45)

Vδ(ρ
α1) ⊂ ∪ j∈R1,β∈R2 P(β, j), (2.6.46)

lim
β→∞

μ(P ′(β, j))

μ(P(β, j))
= 1. (2.6.47)

To prove these relations we use the following lemma.

Lemma 2.6.2 Let w =: β + τ + ( j +v)δ. Then the following implications are true:
(a) w ∈ Vδ(ρ

α1) ⇒ j ∈ R1,β ∈ R2,

(b) j ∈ S1,β ∈ S2 ⇒ w ∈ Vδ(ρ
α1) ∩ (R( 32ρ − ρα1−1)\R( 12ρ + ρα1−1)),

(c) j ∈ S1,β ∈ S2 ⇒ w ∈ V
′
δ(ρ

α1) ∩ (R( 32ρ − ρα1−1)\R( 12ρ + ρα1−1)).
Moreover (2.6.46), (2.6.45), and (2.6.44) hold.

Proof Since (β + τ , δ) = 0 [see (2.6.42)] the inclusion ω ∈ Vδ(ρ
α1) means that

||( j + v + 1)δ|2 − |( j + v)δ|2| < ρα1

and

(
1

2
ρ)2 < |β + τ |2 + |( j + v)δ|2 < (

3

2
ρ)2

[see (2.1.10)], where |v| < 1, |τ | ≤ dδ = O(1) [see (2.6.42)]. Therefore by direct
calculation we get the proofs of the implications (a) and (b).
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Now we prove (c). Since (b) holds and

V
′
δ(ρ

α1) = V
′
δ(ρ

α1)\(∪a∈�(pρα)\δR
Va(ρα2)

(see Definition 2.1.1), it is enough to show that w /∈ Va(ρα2) for a ∈ �(pρα)\δR.
Using the orthogonal decomposition a1 + a2δ of a ∈ �(pρα) [see (2.3.2)], where
a1 ∈ �δ, a2 ∈ R , 〈a1, δ〉 = 0 and |a1| < pρα, |a2δ| < pρα, we obtain

|w + a|2 − |w|2 = d1 + d2,

where
d1 = |β + a1|2 − |β|2,

d2 = |( j + a2 + v)δ|2 − |( j + v)δ|2 + 2 〈a1, τ 〉 .

The requirements on j, a1, and a2 imply that

d2 = O(ρ2α1).

On the other hand the condition β ∈ S2 gives β /∈ V δ
a (ρ

1
2 ), i.e., |d1| ≥ ρ

1
2 . Since

2αk < 1
2 for k = 1, 2 [see the equality in (2.6.1)], we have

||w + a|2 − |w|2| >
1

2
ρ

1
2 , w /∈ Va(ρα2).

Thus (c) is proved.
The inclusion (2.6.46) follows from the implication (a).
If w = β + τ + ( j + v)δ belongs to the right-hand side of (2.6.45) then using

the implication (c) we obtain w ∈ V
′
δ(ρ

α1). Therefore (2.6.45) follows from the
definitions of P ′(β, j) and S4(β, j, v, ρ). It remains to prove (2.6.44). Using the
definitions of R1, S1 and inequalities |δ| < ρα, α1 > 2α we obtain that (2.6.44) for
i = 1 holds.

Now we prove (2.6.44) for i = 2. If β ∈ R2 then

β + Fδ ⊂ Rδ(
3

2
ρ + 2dδ + 1)\Rδ(

1

2
ρ − 2dδ − 1).

This implies that,

|R2| < (μ(Fδ))
−1μ(Rδ(

3

2
ρ + 2dδ + 1)\Rδ(

1

2
ρ − 2dδ − 1)),

since the translations β + Fδ of Fδ for β ∈ �δ, are the pairwise disjoint sets having
measure μ(Fδ). Suppose β + τ ∈ D(ρ), where
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D(ρ) = (Rδ(
3

2
ρ − 1)\Rδ(

1

2
ρ + 1))\(

⋃

b∈�δ(ρ
αd )

V δ
b (2ρ

1
2 )).

Then
3

2
ρ − 1 < |β + τ | <

1

2
ρ + 1

and
||β + τ + b|2 − |β + τ |2| ≥ 2ρ

1
2

for b ∈ �δ(ρ
αd ). Therefore using |τ | ≤ dδ it is not hard to verify that β ∈ S2. Hence

the sets β + Fδ for β ∈ S2 is a cover of D(ρ). Thus

|S2| ≥ (μ(Fδ))
−1μ(D(ρ).

This, the estimation for |R2|, and the obvious relations

|�δ(ρ
αd )| = O(ρ(d−1)αd )),

μ((Rδ(
3

2
ρ − 1)\Rδ(

1

2
ρ + 1))) = O(ρd−1),

μ((Rδ(
3

2
ρ − 1)\Rδ(

1

2
ρ + 1)) ∩ V δ

b (2ρ
1
2 )) = O(ρd−2ρ

1
2 ),

(d − 1)αd < 1
2 [see the equality in (2.6.1)],

lim
ρ→∞

μ((Rδ(
3
2ρ − 1)\Rδ(

1
2ρ + 1)))

μ(R( 32ρ + 2dδ + 1)\Rδ(
1
2ρ − 2dδ − 1))

= 1,

and
S2(ρ) ⊂ R2(ρ)

imply (2.6.44) for i = 2 ��
Theorem 2.6.3 The simple set Bδ has an asymptotically full measure in the reso-
nance set Vδ(ρ

α1) in the sense that (2.6.43) holds.

Proof The proof of the theorem follows from (2.6.44)–(2.6.47). By Lemma 2.6.2 we
need to prove (2.6.47). Since the translations P(β, j)−β− jδ and P ′(β, j)−β− jδ
of P(β, j) and P ′(β, j) are

{τ + vδ : v ∈ [0, 1), τ ∈ Fδ}

and
{τ + vδ : v ∈ S3(β, ρ), τ ∈ S4(β, j, v, ρ)}

respectively, it is enough to prove
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lim
ρ→∞ μ(S3(β, ρ)) = 1, μ(S4(β, j, v, ρ)) = μ(Fδ)(1 + O(ρ−α)), (2.6.48)

where j ∈ S1,β ∈ S2, v ∈ S3(β, ρ), and O(ρ−α) does not depend on v. To prove
the first equality in (2.6.48) it is enough to show that

μ(A(β, ρ)) = O(ρ−α), (2.6.49)

since W (ρ) ⊃ A(ε(ρ)) and
lim

ρ→∞ μ(A(ε(ρ)) = 1

(see Lemma 2.3.7). Using the definition of A(β, ρ) and the obvious relation

|�δ(ρ
αd )| = O(ρ(d−1)αd )

we see that (2.6.49) holds if

μ(A(β, b, ρ)) = O(ρ−dαd ).

In other words, we need to prove that

μ{s ∈ R : | f (s)| < 4dδρ
αd } = O(ρ−dαd ), (2.6.50)

where
f (s) = 2 〈β, b〉 + |b|2 + s2|δ|2, β ∈ S2, b ∈ �δ(ρ

αd ).

The last inclusions yield

|2 〈β, b〉 + |b|2| ≥ ρ
1
2

for |b| < ραd . This and the inequalities

| f (s)| < 4dδρ
αd

[see (2.6.50)] and αd < 1
2 [see the equality in (2.6.1)] imply that

s2|δ|2 >
1

2
ρ

1
2

from which we obtain
| f ′(s)| > |δ|ρ 1

4 .

Therefore (2.6.50) follows from the equality in (2.6.1). Thus (2.6.49) and hence the
first equality in (2.6.48) are proved.

Now we prove the second equality in (2.6.48). For this we consider the set
S4(β, j, v, ρ) for j ∈ S1, β ∈ S2, v ∈ S3(β, ρ). By the definitions of S4 and
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Bδ the set S4(β, j, v, ρ) is the set of τ ∈ Fδ such that E(λ j,β(v, τ )) satisfies the
conditions (2.6.6) and (2.6.7). Thus, we need to consider these conditions. For this
we use the decompositions

γ + t = β + τ + ( j + v)δ, γ′ + t = β′ + τ + ( j ′ + v(β′, t))δ,

(see Remark 2.3.1) and the notations

λ j,β(v, τ ) = μ j (v) + |β + τ |2, λi (γ
′ + t) = |γ′ + t |2 + ri (γ

′ + t)

(see Lemma 2.3.1(b) and Remark 2.2.2). Denoting by b the vector β′ − β, we write
the decomposition of γ′ + t in the form

γ′ + t = β + b + τ + ( j ′ + v(β + b, t))δ.

Then to every γ′ ∈ � there corresponds b = b(γ′) ∈ �δ . For γ′ ∈ M1 denote
by B1(β, b(γ′), j, v) the set of all τ not satisfying (2.6.6). For γ′ ∈ M2 denote by
B2(β, b(γ′), j, v) the set of all τ not satisfying (2.6.7), where M1 and M2 are defined
in (2.6.6) and (2.6.7). Clearly, if

τ ∈ Fδ\(∪s=1,2(∪γ′∈Ms (Bs(β, b(γ′), j, v))

then the inequalities (2.6.6) and (2.6.7) hold, that is, τ ∈ S4(β, j, v, ρ). Therefore
using μ(Fδ) ∼ 1 and proving that

μ(∪γ′∈Ms Bs(β, b(γ′), j, v)) = O(ρ−α), ∀s = 1, 2, (2.6.51)

we get the proof of the second equality in (2.6.48). Now we prove (2.6.51). Using
the above notations and the notations of (2.6.6) and (2.6.7) it is not hard to verify
that if τ ∈ Bs(β, b(γ′), j, v), then

|2 〈β, b〉+|b|2+|( j ′+v(β+b))δ|2+2 〈b, τ 〉−μ j (v)+hs(γ
′+t)| < 2ε1, (2.6.52)

where
h1 = Fk1−1 − Ek2−1, h2 = ri − Ek2−1, γ

′ ∈ Ms,

and s = 1, 2. First we prove that if b =: b(γ′) ∈ �δ(ρ
αd ), then (2.6.52) does not

hold. The assumption v ∈ S3(β, ρ) implies that v /∈ A(β, ρ). This means that

|2 〈β, b〉 + |b|2 + |( j ′ + v(β + b))δ|2| ≥ 4dδρ
αd .

Therefore if
|2 〈b, τ 〉 − μ j (v) + hs(γ

′ + t)| < 3dδρ
αd , (2.6.53)
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then (2.6.52) does not hold. Thus to prove that (2.6.52) does not hold it is enough to
show that (2.6.53) holds. Now we prove (2.6.53). The relations

b ∈ �δ(ρ
αd ) & τ ∈ Fδ

imply that
|2 〈b, τ 〉 | < 2dδρ

αd .

The inclusion j ∈ S1 and (2.3.6) imply that

μ j (v) = O(ρ2α1).

By (2.2.8) and (2.3.53),
h1 = O(ρα1).

Since αd = 3dα = 3d−1α1, (2.6.53) for s = 1 is proved. Now we prove the equality

ri = O(ρα1)

which implies that
|h2| = O(ρα1)

and hence ends the proof of (2.6.53). The inclusion

τ ∈ B2(β, b(γ′), j, v)

means that (2.6.7) does not hold, that is,

|E(λ j,β(v, τ )) − λi (γ
′ + t)| < 2ε1.

On the other hand, the inclusion γ′ ∈ M2 implies that γ′ ∈ M (see the definitions of
M2, and M) and hence

|E(λ j,β(v, τ )) − |γ′ + t |2| ≤ 1

3
ρα1

The last two inequalities imply that

ri (γ
′ + t) = O(ρα1).

Thus (2.6.53) is proved. Hence (2.6.52) for b ∈ �δ(ρ
αd ) does not hold. It means that

the sets B1(β, b, j, v) and B
2
(β, b, j, v) for |b| < ραd are empty.

To estimate the measure of the set

Bs(β, b(γ′), j, v)
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for
γ′ ∈ Ms, |b(γ′)| ≥ ραd , b ∈ �δ

we choose the coordinate axis so that the direction of b coincides with the direction
of (1, 0, 0, . . . , 0), i.e., b = (b1, 0, 0, . . . , 0), b1 > 0 and the direction of δ coincides
with the direction of (0, 0, . . . , 0, 1). Then Hδ and Bs(β, b, j, v) can be considered
as R

d−1 and as a subset of Fδ respectively, where Fδ ⊂ R
d−1. Now let us estimate

the measure of Bs(β, b, j, v) by using (2.5.22) for
D = Bs(β, b, j, v), m = d − 1, and k = 1. For this we prove that

μ((Bs(β, b, j, v))(τ2, τ3, . . . , τd−1)) < 4ε1|b|−1, (2.6.54)

for all fixed (τ2, τ3, . . . , τd−1). Assume the converse. Then there are two points

τ = (τ1, τ2, τ3, . . . , τd−1) ∈ Fδ & τ ′ = (τ
′
1, τ2, τ3, . . . , τd−1) ∈ Fδ

of Bs(β, b, j, v), such that

|τ1 − τ
′
1| ≥ 4ε1|b|−1. (2.6.55)

Since (2.6.52) holds for τ ′ and τ we have

|2b1(τ1 − τ
′
1) + gs(τ ) − gs(τ

′)| < 4ε1, (2.6.56)

where
gs(τ ) = hs(β

′ + τ + ( j ′ + v(β + b))δ).

Using (2.2.34), (2.2.36), (2.3.54), and the inequality |b| ≥ ραd , we obtain

|g1(τ ) − g1(τ
′)| < ρ−α1 |τ1 − τ

′
1| < b1|τ1 − τ

′
1|, (2.6.57)

|g2(τ ) − g2(τ
′)| < 3ρ

1
2αd |τ1 − τ

′
1| < b1|τ1 − τ

′
1|. (2.6.58)

These inequalities and (2.6.56) imply that

b1|τ1 − τ
′
1| < 4ε1

which contradicts (2.6.55). Hence (2.6.54) is proved. Since Bs(β, b, j, v) ⊂ Fδ and
dδ = O(1), we have

μ(Pr1Bs(β, b, j, v)) = O(1).
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Therefore formula (2.5.22), the inequalities (2.6.54) and |b| ≥ ραd yield

μ((Bs(β, b(γ′), j, v) = O(ε1|b(γ′)|−1) = O(ρ−αd ε1)

for γ′ ∈ Ms ⊂ M and s = 1, 2. This implies (2.6.51), since

|M | = O(ρd−1), ε1 = ρ−d−2α, O(ρd−1−αd ε1) = O(ρ−α).

��
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Chapter 3
Constructive Determination of the Spectral
Invariants

Abstract This chapter describes the constructive determination of the spectral
invariants explicitly expressed with respect to the Fourier coefficients of the potential
by using the Bloch eigenvalues as input data. At the same time, it gives a rich set
of invariants that is enough to determine the potential q. This chapter consists of
five sections. First section is the introduction and preliminary facts where we dis-
cuss the related papers, describe briefly the scheme of this chapter and recall the
results of Chap.2 which are used essentially in this chapter. In Sect. 3.2, we develop
the asymptotic formulas obtained in Chap.2 and write the first and second term
of the asymptotic formulas for the the Bloch eigenvalues in the explicit form. In
Sect. 3.3, we investigate the derivatives of the band functions �n with respect to the
quasimomentum. In Sect. 3.4, using the results of the previous sections, we deter-
mine constructively a family of spectral invariants of this operator from the given
Bloch eigenvalues. Some of these invariants generalize the well-known invariants
and others are entirely new. The new invariants are explicitly expressed by Fourier
coefficients of the potential which present the possibility of determining the poten-
tial constructively by using the Bloch eigenvalues as input data in the next chapter.
Final section of this chapter is the Appendix, where we give some estimations and
calculations of previous sections.

3.1 Introduction and Preliminary Facts

The main purpose of this chapter is the constructive determination of a family of
spectral invariants of the Schrödinger operator L(q) = −� + q in L2(R

d), d ≥ 2,
with a real periodic, relative to a lattice� inRd , potential q satisfying the smoothness
condition

q ∈ W s
2 (F) & s ≥ 6(3d(d + 1)2) + d

from the given Bloch eigenvalues �n(t) for large values of n and for the values of
quasimomentum t lying near the diffraction hyperplanes.

To list the main results, we use Notation 2.1.1 of Chap.2 (see introduction of
Chap.2). Denote by M(�) and M(�δ), the set of all visible points of the lattices� and
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128 3 Constructive Determination of the Spectral Invariants

�δ , respectively. The spectral invariants are expressed by the Bloch eigenvalues and
the Bloch functions of the Schrödinger operator L(qδ) in L2(R

d)with the directional
potential qδ(x) defined in (2.1.19) of Chap.2 which is the restriction of the original
potential q to the linear span of {ein〈δ,x〉 : n ∈ Z}. The function qδ depends only on
one variable ζ = 〈δ, x〉 and can be written as

qδ(x) = Q(〈δ, x〉), Q(ζ) =
∑

n∈Z
qnδeinζ .

The Bloch eigenvalues and the Bloch functions of the operator L(qδ) are expressed
by eigenvalues μ j (v) and eigenfunctions ϕ j,v(ζ) of the Sturm-Liouville operator
Tv(Q) defined in Lemma 2.3.1 of Chap.2.

In the pioneering paper [EsRaTr1] about isospectral potentials, it was proven that
if q ∈ C6(F), ω ∈ �\0, and δ is the visible point of � satisfying 〈δ,ω〉 = 0, then
given Bloch eigenvalues one may recover the eigenvalues of Tv(Q) for v = 0, 1

2 and
the invariants I (ω, δ, j, v) for j ∈ Z, v = 0, 1

2 , where

I (ω, δ, j, v) =
∫

F
|Qω(x)ϕ j,v(〈x, δ〉)|2dx (3.1.1)

if μ j (v) is a simple eigenvalue,

I (ω, δ, j, v) =
∫

F
|Qω(x)|2((ϕ j+1,v(〈x, δ〉))2 + (ϕ j,v(〈x, δ〉))2)dx (3.1.2)

ifμ j (v) is not a simple eigenvalue, namely ifμ j (v) = μ j+1(v), and Qω(x) is defined
by

Qω(x) =
∑

γ:γ∈�,〈γ,ω〉�=0

γ

〈ω, γ〉qγei〈γ,x〉. (3.1.3)

The proofs given in [EsRaTr1] were nonconstructive. In [FeKnTr2], it was given a
constructive way of determining the spectrum of Lt (qδ) from the spectrum of Lt (q)

for the case d = 2.
In this chapter, we consider the Schrödinger operator L(q) for arbitrary dimension

d and using the given Bloch eigenvalues as input date, we constructively determine
all eigenvalues of Tv(Q) for all values of v ∈ [0, 1) and a family of new spectral
invariants

J (δ, b, j, v) =
∫

F
|qδ,b(x)ϕ j,v(〈δ, x〉)|2dx (3.1.4)

for υ ∈ (0, 1
2 ) ∪ ( 12 , 1), j ∈ Z, and for all visible elements b and δ of �δ and �

respectively, where

qδ,b(x) =
∑

γ∈S(δ,b)\δR

γ

〈b, γ〉qγei〈γ,x〉, (3.1.5)
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S(δ, b) = P(δ, b) ∩ �, and P(δ, b) is the plane containing δ, b and 0. The results
of this chapter were published in [Ve10]. The formula (3.1.3) contains all Fourier
coefficients qγ of q except the Fourier coefficients corresponding to the vectors of
a hyperplane. However, (3.1.5) contains only the Fourier coefficients corresponding
to the vectors of the plane P(δ, b) except the vectors of δR. If the potential q is a
trigonometric polynomial and d > 2, then most of the polynomials (3.1.5) contain
either 2 nonzero Fourier coefficients qγ and q−γ, where

q−γ = qγ,

or 4 nonzero Fourier coefficients qγ1 , qγ2 , q−γ1 , q−γ2 , or 6 nonzero Fourier coef-
ficients qγ1 , qγ2 , qγ3 , q−γ1 , q−γ2 , q−γ3 . Moreover μn(v), for υ ∈ (0, 1

2 ) ∪ ( 12 , 1),
j ∈ Z, is a simple eigenvalue and the corresponding eigenfunction ϕn,v(ζ) has a
simple asymptotic decomposition. Therefore, substituting the asymptotic decompo-
sition

∣
∣ϕn,v(ζ)

∣
∣2 = A0 + A1(ζ)

n
+ A2(ζ)

n2 + · · · , (3.1.6)

where Ak(ζ) is expressed via Q(ζ), into (3.1.4) we find the new invariants

Jk(δ, b) =
∫

F
|qδ,b(x)|2Ak(〈δ, x〉)dx (3.1.7)

for k = 0, 1, 2, . . . , δ ∈ M(�), b ∈ M(�δ). Note that Jk(δ, b) is explicitly expressed
by the Fourier coefficients of q. Moreover, if d > 2 and q is a trigonometric poly-
nomial, then, in general, the number of the nonzero invariants (3.1.7) is greater than
the number of nonzero Fourier coefficients of q and most of these invariants are
explicitly expressed by m Fourier coefficients of q, where m ≤ 3. This situation
allows us to give (it will be given in the next chapter) an algorithm for finding the
potential q from these spectral invariants.

Let us describe the brief scheme of the constructive determination of these invari-
ants. We use the asymptotic formulas for the Bloch eigenvalues and Bloch func-
tion obtained in Chap.2. First, by improving the asymptotic formulas for the Bloch
eigenvalues and Bloch functions, in the high energy region and near diffraction
hyperplanes, obtained in Chap.2, we get the asymptotic formulas, where there are
sharp estimations for the first and second terms of the asymptotic decomposition. To
describe this improvement, let us introduce the following notations. The eigenvalues
of the operator Lt (0) with zero potential are |γ + t |2 for γ ∈ �. If the quasimomen-
tum γ + t lies near the diffraction hyperplane Dδ, then the corresponding eigenvalue
of Lt (q) is close to the eigenvalue of the operator Lt (qδ) with directional potential.
To describe the eigenvalue of Lt (qδ), we consider the lattice �δ defined in Notation
2.1.1 (see introduction of Chap. 2). Let Fδ =: Hδ/�δ be the fundamental domain of
�δ. In this notation, the quasimomentum γ + t has an orthogonal decomposition

γ + t = β + τ + ( j + v)δ, (3.1.8)
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where
β ∈ �δ ⊂ Hδ, τ ∈ Fδ ⊂ Hδ, j ∈ Z, v ∈ [0, 1),

and v depends on β and t. The eigenvalues and eigenfunctions of the operator Lt (qδ)

are
λ j,β(v, τ ) = |β + τ |2 + μ j (v) and � j,β(x) = ei〈β+τ ,x〉ϕ j,v(ζ),

respectively for j ∈ Z and β ∈ �δ. We say that the large quasimomentum (3.1.8)
lies near the diffraction hyperplane Dδ = {x ∈ R

d : |x |2 = |x + δ|2} if
1

2
ρ < |β| <

3

2
ρ, j = O(ρα1),αk = 3kα,α = 1

4(3d(d + 1))
, (3.1.9)

where ρ is a large parameter and k = 1, 2, . . . , d. In this chapter we construct a set
of the quasimomentum near the diffraction plane Dδ such that if β + τ + ( j + v)δ
belongs to this set, then there exists a unique eigenvalue, denoted by � j,β(v, τ ), of
Lt (q) satisfying

� j,β(v, τ ) = λ j,β(v, τ ) + O(ρ−a), (3.1.10)

� j,β(v, τ ) = λ j,β(v, τ ) + 1

4

∫

F
| f 2δ,β+τ |

∣
∣ϕ j,v

∣
∣2 dx + O(ρ−3a+2α1 ln ρ), (3.1.11)

where a = 1 − αd + α and

fδ,β+τ (x) =
∑

γ:γ∈�\δR,|γ|<ρα

γ

〈β + τ , γ〉qγei〈γ,x〉. (3.1.12)

This is a simple eigenvalue and the corresponding eigenfunction � j,β(x) satisfies

� j,β(x) = � j,β(x) + O(ρ−a). (3.1.13)

The remainders of the formulas (3.1.10), (3.1.11), (3.1.13) are O(ρ−a), O(ρ−3a+2α1

ln ρ), O(ρ−a) respectively, while the remainders of the corresponding formulas,
obtained in Chap.2, are O(ρ−α2), O(ρ−2α2(ln ρ)4), O(ρ−α2 ln ρ) [see (2.3.39),
(2.3.52), (2.6.23) of Chap.2], where

a > 1 − 1

4(d + 1)
,−3a + 2α1 < −2,

but α2 is a small number [see (3.1.9)]. Moreover, the second term of (3.1.11) has
an explicit and a suitable form for the constructive determination of new invariants.
Besides, we prove that the derivative of � j,β(v, τ ) in the direction of h = β+τ

|β+τ |
satisfies

|β + τ |∂� j,β(v, τ )

∂h
= |β + τ |2 + O(ρ2−2a) (3.1.14)
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and the derivatives of the other simple eigenvalues, neighboring with � j,β(v, τ ), do
not satisfy (3.1.14). Using these formulas, we constructively determine the eigenval-
ues of Tv for v ∈ [0, 1) and the invariants (3.1.4), (3.1.7). Then, using the asymptotic
formulas for the eigenvalues and the eigenfunctions of Tv, we find A0(ζ), A1(ζ),

A2(ζ) [see (3.1.7)] and the invariants

∫

F

∣
∣qδ,b(x)

∣
∣2 qδ(x)dx, (3.1.15)

∫

F

∣
∣
∣qδ(x)

∣
∣
∣
2

dx (3.1.16)

(see Appendix 4). If the potential q is a trigonometric polynomial, then most of the
directional potentials have the form

qδ(x) = qδei〈δ,x〉 + q−δe−i〈δ,x〉. (3.1.17)

In this case, by direct calculations, we show that

A0 = 1, A1 = 0, A2 = qδ(x)

2
+ a1 |qδ|2 , A3 = a2qδ(x) + a3 |qδ|2 , (3.1.18)

A4 = a4qδ(x) + a5(q
2
δ ei2〈δ,x〉 + q2

−δe−i2〈δ,x〉) + a6,

where a1, a2, . . . , a6 are the known constants (see Appendix 4). Moreover using
(3.1.18), (3.1.16), and (3.1.7) for k = 2, 4, we find the invariant

∫

F
|qδ,b(x)|2(q2

δ ei2〈δ,x〉 + q2
−δe−i2〈δ,x〉)dx (3.1.19)

in the case (3.1.17). In the next chapter, we give an algorithm for finding the potential
q by the invariants (3.1.15), (3.1.16), and (3.1.19).

3.2 First and Second Terms of the Asymptotics

First let us describe some results of Chap. 2 that we use in this chapter. In Chap.2 (see
Sect. 2.6) we constructed a set Bδ, which is called a simple set near the diffraction
plane Dδ , such that if the quasimomentum γ + t = β + τ + ( j + v)δ [see (3.1.8)]
belongs to the simple set Bδ, then there exists a unique eigenvalue �N of Lt (q)

which is simple and satisfies

|�N − E(λ j,β(v, τ ))| < ε1 (3.2.1)

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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(see Theorems 2.6.1 and 2.6.2 of Chap.2), where ε1 = ρ−d−2α and E(λ j,β(v, τ ))

is called the known part of �N . Besides, we proved that all other eigenvalues of the
operator Lt (q) lie in the ε1 neighborhood of the numbers F(γ′ + t) and λ j (γ

′ + t),
where γ′ ∈ �, which are called as the known parts of the other eigenvalues. In order
that �N does not coincide with the other eigenvalues, we use the following two
simplicity conditions

|E(λ j,β(v, τ )) − F(γ′ + t)| ≥ 2ε1, |E(λ j,β(v, τ )) − λi (γ
′ + t)| ≥ 2ε1. (3.2.2)

Briefly, Bδ is the set of β + τ + ( j + v)δ satisfying (3.2.2). Thus we constructed the
set Bδ by eliminating the set of quasimomenta γ + t ≡ β + τ + ( j + v)δ for which
the known part E(λ j,β(v, τ )) of the corresponding eigenvalue is situated from the
known parts of the other eigenvalues at a distance less than 2ε1.Thenwe investigated
the set Bδ. It is clear that every vector w of Rd can be written as w = γ + t, where
γ ∈ �, t ∈ F∗, and hence has decomposition (3.1.8). In Chap.2 [see the formula
(2.6.45), Theorems 2.3.1 and 2.6.1 of Chap.2] we proved that if

j ∈ S1(ρ),β ∈ S2(ρ), v ∈ S3(β, ρ), τ ∈ S4(β, j, v, ρ), (3.2.3)

then
β + τ + ( j + v)δ ∈ Bδ

and hence there exists a unique eigenvalue�N of Lt (q)which is simple and satisfies

�N = λ j,β(v, τ ) + O(ρ−α2) (3.2.4)

and the corresponding eigenfunction �N ,t (x) satisfies

�N ,t (x) = � j,β(x) + O(ρ−α2 ln ρ), (3.2.5)

where α2 is defined in (3.1.9) and the set S1, S2, S3 , S4 are defined as follows:

S1(ρ) = { j ∈ Z : | j | <
ρα1

2|δ|2 − 3

2
}, (3.2.6)

S2(ρ) = {β ∈ �δ : β ∈ (Rδ(
3

2
ρ − dδ − 1)\Rδ(

1

2
ρ + dδ + 1))\(

⋃

b∈�δ(ρ
αd )

V δ
b (ρ

1
2 ))},

where

dδ = sup
x,y∈Fδ

|x − y|, Rδ(c) = {x ∈ Hδ : |x | < c},
�δ(c) = {b ∈ �δ : 0 < |b| < c},

V δ
b (c) = {x ∈ Hδ : ||x + b|2 − |x |2| < c}.
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For β ∈ S2(ρ) the set S3(β, ρ) is defined by

S3(β, ρ) = W (ρ)\A(β, ρ), (3.2.7)

where

W (ρ) ≡ {v ∈ (0, 1) : |μ j (v) − μ j ′(v)| >
2

ln ρ
, ∀ j ′, j ∈ Z, j ′ �= j},

A(β, ρ) =
⋃

b∈�δ(ρ
αd )

A(β, b, ρ),

and

A(β, b, ρ) = {v ∈ [0, 1) : ∃ j ∈ Z, |2〈β, b〉 + |b|2 + |( j + v)δ|2| < 4dδρ
αd }.

For
j ∈ S1(ρ),β ∈ S2(ρ), v ∈ S3(β, ρ)

the set S4(β, j, v, ρ) is the set of τ ∈ Fδ for which

β + τ + ( j + v)δ ∈ Bδ.

In other words, S4(β, j, v, ρ) is the set of τ ∈ Fδ for which E(λ j,β(v, τ )) satis-
fies the simplicity conditions (3.2.2). Since the functions taking part in (3.2.2) are
measurable, S4(β, j, v, ρ) is a measurable set. In Chap.2 (see 2.6.48 of Chap.2), we
proved that

μ(S4(β, j, v, ρ)) = μ(Fδ)(1 + O(ρ−α)). (3.2.8)

Remark 3.2.1 If (3.2.3) holds, then there exists unique index N ( j,β, v, τ ), depend-
ing on j,β, v, τ , for which the eigenvalue �N ( j,β,v,τ )(t) satisfies (3.2.4). Instead of
N ( j,β, v, τ ),we write N ( j,β) (or N ) if v, τ (or j,β, v, τ ) are unambiguous. In the
asymptotic formulas (3.1.11)–(3.1.14), instead of�N ( j,β,v,τ ) and�N ( j,β,v,τ ),t (x)we
write � j,β(v, τ ) and � j,β(x) respectively, in order to underline that � j,β(v, τ ) and
� j,β(x) are close to λ j,β(v, τ ) and � j,β(x), where λ j,β(v, τ ) and � j,β(x) are the
eigenvalues and eigenfunction of the operator Lt (qδ) with directional potential qδ .

To prove the asymptotic formulas (3.1.10)–(3.1.14), which are suitable for the
constructive determination of the spectral invariants, we put an additional conditions
on β. Namely, we suppose that

β /∈
⋃

b∈�δ(pρα)

V δ
b (ρa), (3.2.9)

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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where V δ
b (ρa) and �δ(pρα) are defined in (3.2.6). By definition of V δ

b (ρa), the
relation (3.2.9) yields

||β|2 − |β + β1|2| ≥ ρa, ∀β1 ∈ �δ(pρα). (3.2.10)

Using the inequalities
|β1| < pρα, |τ | < dδ, a > 2α

[see (3.1.11)], we obtain

||β + τ |2 − |β + β1 + τ |2| >
8

9
ρa, ∀β1 ∈ �δ(pρα). (3.2.11)

Now we prove (3.1.10) by using (3.2.3), (3.2.11), and the following relation

(�N (t) − λ j,β)b(N , j,β) = (�N ,t , (q − qδ)� j,β), (3.2.12)

where
b(N , j,β) = (�N ,t ,� j,β).

In Chap. 2, using (2.3.12), we proved that [see (2.3.22) and (2.3.23) of Chap.2] if

| jδ| < r, |β| >
1

2
ρ, (3.2.13)

where

r ≥ r1 = ρα1

2|δ| + 2|δ|,

then the following decomposition

(q(x)−qδ(x))� j,β(x) =
∑

( j1,β1)∈Q(ρα,9r)

A( j, β, j+ j1, β+β1)� j+ j1,β+β1 (x)+O(ρ−pα)

(3.2.14)
of (q(x) − qδ(x))� j,β(x) by eigenfunction of Lt (qδ) holds, where

Q(ρα, 9r) = {( j,β) : | jδ| < 9r, 0 < |β| < ρα}

and ∑

( j1,β1)∈Q(ρα,9r)

|A( j,β, j + j1,β + β1)| < c2. (3.2.15)

http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
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Using this decomposition in (3.2.12), we get

(�N (t) − λ j,β)b(N , j,β) = O(ρ−pα)

+
∑

( j1,β1)∈Q(ρα,9r)

A( j,β, j + j1,β + β1)b(N , j + j1,β + β1). (3.2.16)

Remark 3.2.2 If | j ′δ| < r, |β′| > 1
2ρ and

|�N − λ j ′,β′ | > c(ρ),

then by (3.2.16) we have

b(N , j ′,β′) =
∑

( j1,β1)∈Q(ρα,9r)

A( j ′,β′, j ′ + j1,β′ + β1)b(N , j ′ + j1,β′ + β1)

�N − λ j ′,β′
+ O(

1

ρpαc(ρ)
).

If j ∈ S1(ρ), then | jδ| < r1 = O(ρα1) and in (3.2.16) instead of r we take r1.

Theorem 3.2.1 If (3.2.3) and (3.2.9) hold, then there exists a unique eigenvalue
� j,β(v, τ ) of Lt (q) which is simple and satisfies (3.1.10).

Proof Since there exists a unique eigenvalue �N (t) satisfying (3.2.4) and the corre-
sponding eigenfunction satisfies (3.2.5) (see Remark 3.2.1), we have

b(N , j,β) = 1 + O(ρ−α2 ln ρ).

Therefore, we need to prove that the right-hand side of (3.2.16) is O(ρ−a). First we
show that

b(N , j + j1,β + β1) = O(ρ−a) (3.2.17)

for
β1 ∈ �δ(pρα), j = o(ρ

a
2 ), j1 = o(ρ

a
2 ).

For this we prove the inequality

|�N (t) − λ j+ j1,β+β1 | >
1

2
ρa, ∀β1 ∈ �δ(pρα), ∀ j = o(ρ

a
2 ), ∀ j1 = o(ρ

a
2 ),

(3.2.18)
and use the formula

b(N , j + j1,β1 + β) = (�N ,t , (q − qδ)� j+ j1,β1+β)

�N − λ j+ j1,β1+β
(3.2.19)
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which can be obtained from (3.2.12) by replacing the indices j,β with j + j1,β+β1.

By (3.2.4), the inequality (3.2.18) holds if

|μ j (v) + |β + τ |2 − μ j+ j1(v) − |β + β1 + τ |2| >
5

9
ρa .

This inequality can be easily obtained by using (3.2.11), the equalities j = o(ρ
a
2 ),

j + j1 = o(ρ
a
2 ) [see the conditions on j, j1 in (3.2.17), (3.2.18)], and the formula

μn(v) = |(n + v)δ|2 + O(n−1) (3.2.20)

(see [Mar]). Note that the set of the eigenvalues of Tv(0) with zero potential is a
sequence

{|(n + v)δ|2 : n ∈ Z}

and it is not hard to see that the set of the eigenvalues of Tv can be written as a
sequence

{μn(v) : n ∈ Z}

satisfying (3.2.20). Thus (3.2.17) is proved. Using (3.2.17), the definition of
Q(ρα, 9r1), and the relations r1 = O(ρα1) (see Remark 3.2.2), α1 < a

2 , we obtain
that all multiplicands b(N , j + j1,β + β1) in the right-hand side of (3.2.16), in the
case r = r1, is O(ρ−a). Hence (3.2.15) implies that the right-hand side of (3.2.16)
is O(ρ−a). �

To prove the asymptotic formula (3.1.11), we iterate (3.2.16), in the case r = r1,
as follows. If | jδ| < r1, then the summation in (3.2.16) is taken under condition

( j1,β1) ∈ Q(ρα, 9r1)

(see Remark 3.2.2). By the definition of Q(ρα, 9r1) we have | j1δ| < 9r1. Hence

|( j + j1)δ| < r2,

where r2 = 10r1. Therefore, using (3.2.18) and Remark 3.2.2, we get

b(N , j + j1, β1 + β) =
∑

( j2,β2)∈Q(ρα,9r2)

A( j (1), β(1), j (2), β(2))b(N , j (2), β(2))

�N − λ j+ j1,β+β1

+ O(ρ−pα),

where

j (k) = j + j1 + j2 + · · · + jk,β(k) = β + β1 + β2 + · · · + βk
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for k = 0, 1, 2, . . . Using this in (3.2.16), we obtain

(�N − λ j,β)b(N , j, β) = O(ρ−pα)+
∑

( j1,β1)∈Q(ρα,9r1)( j2,β2)∈Q(ρα,9r2)

A( j, β, j (1), β(1))A( j (1), β(1), j (2), β(2))b(N , j (2), β(2))

�N − λ j+ j1,β+β1

.

(3.2.21)

To prove (3.1.11), we use this formula and the following lemma.

Lemma 3.2.1 Suppose (3.2.3) and (3.2.9) hold. If j ′ �= j, | j ′δ| < r, where

r = O(ρ
1
2α2), r ≥ r1,

and

r1 = ρα1

2|δ| + 2|δ|,

then
b(N ( j,β), j ′,β) = O(ρ−2ar2 ln ρ).

Proof To prove this lemma, we use the following formula obtained from (3.2.21) by
replacing j and r1 with j ′ and r respectively

(�N ( j,β) − λ j ′,β)b(N , j ′, β) = O(ρ−pα)+
∑

( j1,β1)∈Q(ρα,9r)
( j2,β2)∈Q(ρα,90r)

A( j, β, j ′(1), β(1))A( j ′(1), β(1), j ′(2), β(2))b(N , j ′(2), β(2))

�N − λ j ′+ j1,β+β1

,

(3.2.22)

where j ′(k) = j ′ + j1 + j2 + · · · + jk for k = 0, 1, 2, . . .. By (3.2.17) we have

b(N , j ′(2),β(2)) = O(ρ−a) (3.2.23)

for β(2) �= β. If j ′(2) �= j, then using (3.1.10) and taking into account that

v ∈ S3(β, ρ) ⊂ W (ρ)

[see the definition of W (ρ) in (3.2.7)], we obtain

|�N ( j,β) − λ j ′,β | >
1

ln ρ
. (3.2.24)

Therefore using, Remark 3.2.2, and (3.2.17), we see that

b(N , j ′(2),β) = O(ρ−a ln ρ)
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for j ′(2) �= j.Using this, (3.2.15), and the estimations (3.2.18), (3.2.23), we see that
the sum of the terms of the right side of (3.2.22) with multiplicand b(N , j ′(2),β(2))
for ( j ′(2),β(2)) �= ( j,β) is O(ρ−2a ln ρ). It means that the formula (3.2.22) can be
written in the form

(�N − λ j ′,β)b(N , j ′,β) = O(ρ−2a ln ρ) + C1( j ′,�N )b(N , j,β), (3.2.25)

where

C1( j ′,�N ) =
∑

( j1,β1)∈Q(ρα,9r)

A( j ′,β, j ′ + j1,β + β1)A( j ′ + j1,β + β1, j,β)

�N − λ j ′+ j1,β+β1

.

(3.2.26)
By (3.1.10), (3.2.18), (3.2.15) we have

1

�N − λ j ′+ j1,β+β1

= 1

λ j,β − λ j ′+ j1,β+β1

= O(ρ−3a),

C1( j ′,�N ) = C1( j ′,λ j,β) + O(ρ−3a), (3.2.27)

where C1( j ′,λ j,β) is obtained from C1( j ′,�N ) by replacing �N with λ j,β in the
denominator of the fractions in (3.2.26). In Appendix 1 we prove that

C1( j ′,λ j,β) = O(ρ−2ar2) (3.2.28)

for
| j ′δ| < r, ( j1,β1) ∈ Q(ρα, 9r), j ∈ S1.

Therefore dividing both sides of (3.2.25) by�N −λ j ′,β and using (3.2.24), (3.2.27),
(3.2.28), we get the proof of the lemma. �

Theorem 3.2.2 If (3.2.3) and (3.2.9) hold, then there exists a unique eigenvalue
� j,β(v, τ ) of Lt (q) which is simple and satisfies (3.1.11).

Proof We prove this by using (3.2.21). To estimate the summation in the right side
of (3.2.21), we divide the terms in this summation into three groups. The terms
of the first, second, and third groups are the terms with multiplicands b(N , j,β),

b(N , j (2),β)with j (2) �= j, and b(N , j (2),β(2))with β(2) �= β respectively. The
sum of the terms of the first group is C1(�N )b(N , j,β), where

C1(�N ) =
∑

( j1,β1)∈Q(ρα,9r1)

A( j,β, j + j1,β + β1)A( j + j1,β + β1, j,β)

�N − λ j+ j1,β+β1

.

(3.2.29)
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The sum of the terms of the second group is

∑

( j1,β1)∈Q(ρα,9r1)
( j2,β2)∈Q(ρα,9r2)

A( j,β, j + j1,β + β1)A( j + j1,β + β1, j (2),β)

�N − λ j+ j1,β+β1

b(N , j (2),β),

where j (2) �= j. Since
r2 = 10r1 = O(ρα1)

(see Remark 3.2.2) the conditions on j, j1, j2 and Lemma 3.2.1 imply that

j (2) = O(ρα1)

and
b(N , j (2),β) = O(ρ−2a+2α1 ln ρ).

Using this, (3.2.15) and (3.2.18), we obtain that the sum of the terms of the second
group is O(ρ−3a+2α1 ln ρ). The sum of the terms of the third group is

∑

( j1,β1)∈Q(ρα,9r1)
( j2,β2)∈Q(ρα,9r2)

A( j,β, j (1),β(1))A( j (1),β(1), j (2),β(2))

�N − λ j+ j1,β+β1

b(N , j (2),β(2)),

(3.2.30)
where β(2) �= β. Using (3.2.18) and Remark 3.2.2, we get

b(N , j (2),β(2)) =
∑

( j3,β3)∈Q(ρα,9r3)

A( j (2),β(2), j (3),β(3))b(N , j (3),β(3))

�N − λ j (2),β(2)
+ O(ρ−pα),

where r3 = 10r2. Substituting it into (3.2.30) and isolating the terms with multipli-
cands b(N , j,β), we see that the sum of the terms of the third group is

C2(�N )b(N , j,β) + C3(�N ) + O(ρ−pα),

where

C2(�N ) =
∑

( j1,β1)∈Q(ρα,9r1),
( j2,β2)∈Q(ρα,90r1)

A( j,β, j (1),β(1))A( j (1),β(1), j (2),β(2))A( j (2),β(2), j,β)

(�N − λ j+ j1,β+β1 )(�N − λ j (2),β(2))
,

(3.2.31)

C3(�N ) =
∑

( j1,β1)∈Q(ρα,9r1)
( j2,β2)∈Q(ρα,9r2),
( j3,β3)∈Q(ρα,9r3)

(
∏

k=1,2,3 A( j (k − 1),β(k − 1), j (k),β(k)))b(N , j (3),β(3))

(�N − λ j (1),β(1))(�N − λ j (2),β(2))
,
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and ( j (3),β(3)) �= ( j,β). By (3.2.17) and Lemma 3.2.1 we have

b(N , j (3),β(3)) = O(ρ−a)

for ( j (3),β(3)) �= ( j,β). Using this, (3.2.15), and taking into account that

|�N (t) − λ j (1),β(1)| >
1

3
ρa, |�N (t) − λ j (2),β(2)| >

1

3
ρa

for β(1) �= β, β(2) �= β [see (3.2.18)], we obtain

C3(�N ) = O(ρ−3a).

The estimations of the terms of the first, second and third groups imply that the
formula (3.2.21) can be written in the form

(�N − λ j,β)b(N , j,β) = (C1(�N ) + C2(�N ))b(N , j,β) + O(ρ−3a+2α1 ln ρ),

(3.2.32)
where

N = N ( j,β, v, τ ),�N ( j,β,v,τ ) = � j,β(v, τ )

(see Remark 3.2.1). Therefore, dividing both part of (3.2.32) by b(N , j,β), where

b(N , j,β) = 1 + o(1)

[see (3.2.5)], we get

� j,β = λ j,β + C1(� j,β)) + C2(� j,β)) + O(ρ−3a+2α1 ln ρ). (3.2.33)

The calculations in Appendix 3 and in Appendix 2 show that

C1(� j,β(v, τ )) = 1

4

∫

F

∣
∣ fδ,β+τ (x)

∣
∣2

∣
∣ϕ j,v(〈δ, x〉)∣∣2 dx + O(ρ−3a+2α1), (3.2.34)

C2(� j,β(v, τ )) = O(ρ−3a+2α1). (3.2.35)

Therefore (3.1.11) follows from (3.2.33). �

Theorem 3.2.3 If (3.2.3) and (3.2.9) hold, then the eigenfunction � j,β(x) corre-
sponding to the eigenvalue � j,β(v, τ ), where � j,β(v, τ ) is defined inTheorem3.2.1,
satisfies (3.1.13).

Proof To prove (3.1.13) we need to show that

∑

( j ′,β′):( j ′,β′) �=( j,β)

|b(N ( j,β), j ′,β′)|2 = O(ρ−2a). (3.2.36)
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In Chap.2 [see (2.6.36) of Chap.2] we proved that

∑

( j ′,β′)∈Sc(k−1)

|b(N , j ′,β′)|2 = O(ρ−2kα2(ln ρ)2), (3.2.37)

where

Sc(n) = K0\S(n), K0 = {( j ′,β′) : j ′ ∈ Z,β′ ∈ �δ, ( j ′,β′) �= ( j,β)},
S(n) = {( j ′,β′) ∈ K0 : |β − β′| ≤ nρα, | j ′δ| < 10nh}, h = O(ρ

1
2α2)

and k can be chosen such that kα2 > a, k < p. Therefore, it is enough to prove that

∑

( j ′,β′)∈S(k−1)

|b(N , j ′,β′)|2 = O(ρ−2a). (3.2.38)

Using (3.2.18), (3.2.19), definition of S(k −1) and the Bessel inequality for the basis

{� j ′,β′(x) : j ′ ∈ Z,β′ ∈ �δ},

we have

∑

( j ′,β′):( j ′,β′)∈S(k−1),β′ �=β

|b(N , j ′,β′)|2

=
∑

( j ′,β′)

|(�N (q − qδ),� j ′,β′)|2
|�N − λ j ′,β′ |2 = O(ρ−2a). (3.2.39)

In the case β′ = β and j ′ �= j using Lemma 3.2.1, we obtain

∑

( j ′,β)∈S(k−1), j ′ �= j

|b(N , j ′,β)|2 = O(ρ−4a+2α2(ln ρ)2)K , (3.2.40)

where K is the number of j ′ satisfying ( j ′,β) ∈ S(k − 1). Note that we can use
Lemma 3.2.1, since

| j ′δ| = O(ρ
1
2α2), ∀( j ′,β′) ∈ S(k − 1)).

It is clear that
K = O(ρ

1
2α2).

Since α2 < a
2 [see (3.1.9), (3.1.11)], the right side of (3.2.40) is O(ρ−2a). Thus

(3.2.40) and (3.2.39) give (3.2.38) �

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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3.3 On the Derivatives of the Band Functions

Now we estimate the derivative of �N (t) by using the following lemma.

Lemma 3.3.1 Let �N (β + τ + vδ), be a simple eigenvalue of Lt satisfying

|�N (β + τ + vδ) − |β + τ |2| < |δ|−2ρα1 (3.3.1)

where α1 is defined in (3.1.9), β satisfies (3.2.3), and β + τ + vδ − t ∈ �. Then

|β + τ |∂�N (t)

∂h
=

∑

j ′∈Z,β′∈�δ

〈β + τ ,β′ + τ 〉|b(N , j ′,β′)|2, (3.3.2)

where ∂�N (t)
∂h is the derivative of �N (t) in the direction of h = β+τ

|β+τ | . Moreover,

|b(N , j ′,β′)| ≤ c3
(|β′ + τ |2 + |( j ′ + v)δ|2)|β′ + τ |2d+6 (3.3.3)

for all β′ satisfying |β′ + τ | ≥ 4ρ and for all j ′ ∈ Z.

Proof We find the derivative of �N (t) by using

∂�N (t)

∂t j
= 2t j − 2i(

∂

∂x j
�N ,t ,�N ,t ),

where
�N ,t (x) = e−i〈t,x〉�N ,t (x),

t = (t1, t2, . . . , td) [see (2.5.12) of Chap.2]. Then

∂�N (t)

∂h
=

d∑

j=1

h j
∂�N (t)

∂t j
= 2〈h, t〉 − 2i(

∂

∂h
�N ,t ,�N ,t ). (3.3.4)

To compute ∂
∂h �N ,t (x), we prove that the decomposition

�N ,t (x) =
∑

j ′∈Z,β′∈�δ

b(N , j ′,β′)ei〈β′+τ−t,x〉ϕ j ′(〈δ, x〉) (3.3.5)

of �N ,t by basis
{� j,β : j ∈ Z,β ∈ �δ}

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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can be differentiated term by term. Since 〈δ, h〉 = 0 and

∂

∂h
ei〈β′+τ−t,x〉ϕ j ′(〈δ, x〉) = i〈β′ + τ − t, h〉ei〈β′+τ−t,x〉ϕ j ′(〈δ, x〉),

we need to prove that

∂

∂h
�N ,t (x) =

∑

j ′∈Z,β′∈�δ

i〈β′ + τ − t, h〉b(N , j ′,β′)ei〈β′+τ−t,x〉ϕ j ′(〈δ, x〉).
(3.3.6)

Therefore,we consider the convergence of these series by estimating themultiplicand
b(N , j ′,β′). First we estimate this multiplicand for ( j ′,β′) ∈ E, where

E = {( j ′,β′) : |( j ′ + v)δ|2 + |β′ + τ |2 ≥ 9ρ2},

by using the formula

b(N , j ′,β′) = (�N ,t , (q − qδ)� j ′,β′)

�N − λ j ′,β′
(3.3.7)

which can be obtained from (3.2.19) by replacing j + j1,β + β1 with j ′,β′. By
(3.2.3) and (3.3.1) we have

|�N | < 3ρ2. (3.3.8)

This inequality, the condition ( j ′,β′) ∈ E, definition of λ j ′,β′ , and (3.2.20) give

λ j ′,β′ − �N >
1

2
(|( j ′ + v)δ|2 + |β′ + τ |2) > ρ2 (3.3.9)

for ( j ′,β′) ∈ E . Therefore, (3.3.7) implies that

|b(N , j ′,β′)| ≤ c5
|( j ′ + v)δ|2 + |β′ + τ |2 , ∀( j ′,β′) ∈ E . (3.3.10)

Now we obtain the high order estimation for b(N , j ′,β′)when |β′ +τ | ≥ 4ρ. In this
case to estimate b(N , j ′,β′) we use the iterations of the formula in Remark 3.2.2.
To iterate this formula, we use the relation

|β′ + τ − β1 − β2 − · · · − βk |2 >
3

4
|β′ + τ |2
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for k = 1, 2, . . . , d + 3, where |βi | < ρα for i = 0, 1, . . . , k. This and (3.3.8) give

λ j ′(k),β′(k) − �N >
1

5
|β′ + τ |2, ∀|β′ + τ | ≥ 4ρ, (3.3.11)

where β′(k) = β′ +β1 +β2 + · · ·+βk . Moreover if | j ′δ| < c, where c is a positive
number, then

( jk,βk) ∈ Q(ρα, 10k−19c).

These conditions on j ′ and j1 imply that

| j ′(1)δ| < 10c.

Therefore, in the formula in Remark 3.2.2 replacing j ′,β′, r by j ′(1),β′(1), 10c,
we get

b(N , j ′(1), β′(1)) = O(ρ−pα) +
∑

( j2,β2)∈Q(ρα,90c)

A( j ′(1), β′(1), j ′(2), β′(2))b(N , j ′(2), β′(2))
�N − λ j ′(1),β′(1)

.

In the same way, we obtain

b(N , j ′(k), β′(k)) = O(ρ−pα)

+
∑

( jk+1,βk+1)∈Q(ρα,(10k )9c)

A( j ′(k), β′(k), j ′(k + 1),β′(k + 1))b(N , j ′(k + 1), β′(k + 1))

�N − λ j ′(k),β′(k)

(3.3.12)

for k = 1, 2, . . . In the formula in Remark 3.2.2 for r = c using (3.3.12) for
k = 1, 2, . . . d + 3 successively, we get

b(N , j ′,β′) =
∑

(

d+3∏

i=0

A( j ′(i),β′(i), j ′(i + 1),β′(i + 1))

�N − λ j ′(i),β′(i)
)b(N , j ′(d + 4),β′(d + 4)),

(3.3.13)
where sum is taken under conditions

( j1, β1) ∈ Q(ρα, 9c), ( j2, β2) ∈ Q(ρα, 90c), . . . , ( jd+4, βd+4) ∈ Q(ρα, (10d+3)9c).

Now using (3.2.14), (3.3.9), and (3.3.11), we obtain the proof of (3.3.3). It follows
from (3.3.12) and (3.3.3) that the series in (3.3.5) can be differentiated term by term
and (3.3.6) holds. Substituting (3.3.6) into (3.3.4) and using the Parseval equality,
by direct calculation, we obtain the proof of the lemma. �
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Theorem 3.3.1 If (3.2.3) and (3.2.9) hold, then the eigenvalue � j,β(v, τ ), defined
in Theorem3.2.1, satisfies (3.1.14).

Proof It follows from (3.3.3), (3.2.36), and (3.1.13) that

∑

j ′∈Z,|β′+τ |≥4ρ

〈β + τ ,β′ + τ 〉|b(N , j ′,β′)|2 = O(ρ2−2a),

∑

j ′∈Z,|β′+τ |<4ρ,( j ′,β′) �=( j,β)

〈β + τ ,β′ + τ 〉|b(N , j ′,β′)|2 = O(ρ2−2a),

〈β + τ ,β + τ 〉|b(N , j,β)|2 = |β + τ |2 + O(ρ2−2a),

where N = N ( j,β, v, τ ), �N ( j,β,v,τ ) = � j,β(v, τ ) (see Remark 3.2.1). Therefore
(3.1.14) follows from (3.3.2) �

To prove the main results of this paper we need the following lemmas.

Lemma 3.3.2 If �N (β + τ + vδ) is a simple eigenvalue of Lt (q) satisfying

|�N (β + τ + vδ) − |β + τ |2| < 2ρα, N �= N ( j,β, v, τ ),

where β + τ + vδ − t ∈ �, α is defined in (3.1.9), and j,β, v, τ satisfy (3.2.3),
(3.2.9), then

|β + τ |∂�N (t)

∂h
< |β + τ |2 − 1

4
ρ2αd .

Proof Here we note some reasons of the proof. It follows from (3.2.36) that

|b(N , j,β)|2 = 1 + O(ρ−2a) for N = N ( j,β). (3.3.14)

Since ||� j,β(x)|| = 1, using the Parseval’s equality for the orthonormal basis

{�N (x) : N = 1, 2, . . .}

and (3.3.14), we get

|b(N , j,β)|2 = O(ρ−2a), ∀N �= N ( j,β). (3.3.15)

This with the following long estimations of the other terms of the series of the right
side of (3.3.2) implies the proof of this lemma. By Lemma 3.3.1, we have

|β + τ |∂�N (t)

∂h
=

∑

j ′∈Z,β′∈�δ

〈β + τ ,β′ + τ 〉|b(N , j ′,β′)|2 =
7∑

i=1

Ci , (3.3.16)
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where
Ci =

∑

β′∈Ai

∑

j ′∈Z
〈β + τ ,β′ + τ 〉|b(N , j ′,β′)|2 (3.3.17)

and Ai is defined as follows:

A1 = {β′ ∈ �δ : β′ + τ /∈ Rδ(4ρ)},
where

Rδ(c) = {x ∈ Hδ : |x | < c},
A2 = {β′ ∈ �δ : β′ + τ ∈ Rδ(4ρ)\Rδ(H + 1

9
ρa−1)},

A3 = {β′ ∈ �δ : β′ + τ ∈ Rδ(H + 1

9
ρa−1)\Rδ(H + ραd−1), |β − β′| ≥ ρa−2α},

A4 = {β′ ∈ �δ : β′ + τ ∈ Rδ(H + 1

9
ρa−1)\Rδ(H + ραd−1), |β − β′| < ρa−2α},

A5 = {β′ ∈ �δ : β′ + τ ∈ Rδ(H + ραd−1)\Rδ(H − ρ2αd−1), |β − β′| ≥ ραd },
A6 = {β′ ∈ �δ : β′ + τ ∈ Rδ(H + ραd−1)\Rδ(H − ρ2αd−1), |β − β′| < ραd },
A7 = {β′ ∈ �δ : β′ + τ ∈ Rδ(H − ρ2αd−1)},

where H = |β + τ |, β ∈ S2(ρ), and hence by the definition of S2(ρ) [see (3.2.6)]
H satisfies the inequalities

1

2
ρ < H <

3

2
ρ. (3.3.18)

First we prove that
Ci = O(ρ2−2a), ∀i = 1, 2, 4, 6. (3.3.19)

It follows from (3.3.3) that (3.3.19) holds for i = 1. To prove (3.3.19) for i = 2 we
use (3.3.7) and show that

λ j ′,β′ − �N (t) > c6ρ
a . (3.3.20)

First let us prove (3.3.20). By the condition

|�N (β + τ + vδ) − |β + τ |2| < 2ρα

of the lemma we have
�N = H2 + O(ρα). (3.3.21)

If β′ ∈ A2, then using (3.3.18), definition of λ j ′,β′ , and (3.2.20), we have

λ j ′,β′ > H2 + c7ρ
a . (3.3.22)
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This, (3.3.21), and the inequality a > α imply (3.3.20). Now using (3.3.20), (3.3.7),
the inequalities

|β + τ | <
3

2
ρ, |β′ + τ | < 4ρ

and the Bessel inequality, we get the proof of (3.3.19) for i = 2.
To prove (3.3.19) for i = 4 we use the inequality

C4 < c8ρ
2(C4,1 + C4,2),

where

C4,1 =
∑

β′∈A4

∑

j ′:| j ′δ|≥ 1
30 ρ

a
2

|b(N , j ′,β′)|2, C4,2 =
∑

β′∈A4

∑

j ′:| j ′δ|< 1
30 ρ

a
2

|b(N , j ′,β′)|2,

and prove that
C4,i = O(ρ−2a), ∀i = 1, 2. (3.3.23)

It is clear that if β′ ∈ A4 and | j ′δ| ≥ 1
30ρ

a
2 , then (3.3.22) holds. Therefore, repeating

the proof of (3.3.19) for i = 2, we get the proof of (3.3.23) for i = 1.
Now we prove (3.3.23) for i = 2. It follows from (3.3.7) that

C4,2 =
∑

β′∈A4

∑

j ′:| j ′δ|< 1
30 ρ

a
2

|(�N , (q − qδ)� j ′,β′)|2
|�N (t) − λ j ′,β′ |2 . (3.3.24)

Since αd > α, it follows from (3.3.21) that the inequality

λ j ′,β′ − �N (t) > c9ρ
αd

holds for β′ ∈ A4 and | j ′δ| < ρ
a
2 . Therefore, using (3.2.20), we obtain

∑

j ′:| j ′δ|< 1
30 ρ

a
2

1

|�N (t) − λ j ′,β′ |2 < c10, ∀β′ ∈ A4, (3.3.25)

where c10 does not depend on β′. Using this in (3.3.24) and denoting

|(�N , (q − qδ)�n(β′),β′)| = max
j ′:| j ′δ|< 1

30 ρ
a
2

|(�N , (q − qδ)� j ′,β′)|
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(if max is gotten for several index n(β′), then we take one of them), we get

C4,2 < c11
∑

β′∈A4

|(�N , (q − qδ)�n(β′),β′)|2.

Now using (3.2.14), (3.2.15) and then (3.3.7), we obtain

C4,2 < c12ρ
−pα + c12

∑

β′∈A4

|b(N , n(β′) + j1(β
′),β′ + β1(β

′))|2

= c12ρ
−pα + c12

∑

β′∈A4

|(�N , (q − qδ)�n(β′)+ j1(β′),β′+β1(β′))|2
|�N − λn(β′)+ j1(β′),β′+β1(β′)|2 , (3.3.26)

where

|b(N , n(β′)+ j1(β
′),β′+β1(β

′))| = max
( j1,β1)∈Q(ρα,9 1

30 ρ
a
2 )

|b(N , n(β′)+ j1,β
′+β1)|.

To estimate C4,2 let us prove that

|�N − λn(β′)+ j1(β′),β′+β1(β′)| >
1

8
ρa . (3.3.27)

The inclusion

( j1,β1) ∈ Q(ρα, 9
1

30
ρ

a
2 )

and the condition

| j ′δ| <
1

30
ρ

a
2

imply that

|n(β′)δ + j1(β
′)δ| <

1

3
ρ

a
2

and by (3.2.20)

|μn(β′)+ j1(β′)| <
1

8
ρa .

Therefore, by (3.3.21), to prove (3.3.27) it is enough to show that

|H2 − |β′ + β1 + τ |2| >
3

8
ρa, ∀β′ ∈ A4,β1 ∈ �δ(pρα). (3.3.28)

Since

||β′ + τ |2 − H2| <
1

2
ρa
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[see definition of A4 and use (3.3.18)], we need to prove that

||β′ + τ |2 − |β′ + β1 + τ |2| >
7

8
ρa, ∀β′ ∈ A4,β1 ∈ �δ(pρα). (3.3.29)

Using
|β − β′| < ρa−2α

(see definition of A4), by calculations, we get

|β′ + τ |2 − |β′ + β1 + τ |2 = −2〈β′ + τ , β1〉 − |β1|2
= −2〈β + τ , β1〉 − |β1|2 − 2〈β′ − β, β1〉 = −(|β + β1 + τ |2 − |β + τ |2) + o(ρa).

This and (3.2.11) imply that (3.3.29) and hence (3.3.27) holds. Now to estimate the
right-hand side of (3.3.26) we prove that if β′ ∈ A4, β′′ ∈ A4 and β′ �= β′′, then

β′ + β1(β
′) �= β′′ + β1(β

′′). (3.3.30)

Assume that they are equal. Then we have β′′ = β′ + b, where b ∈ �δ(2ρα), since

β1(β
′) ∈ �δ(ρ

α),β1(β
′′) ∈ �δ(ρ

α).

It easily follows from the inclusions β′ ∈ A4 and β′ + b ∈ A4 that

||β′ + τ |2 − |β ′ + τ + b|2| <
1

2
ρa

which contradicts (3.3.29). Thus (3.3.30) is proved. Therefore, using (3.3.26),
(3.3.27) and the Bessel inequality, we obtain the proof of (3.3.23) for i = 2. Hence
(3.3.19) is proved for i = 4.

Now we prove (3.3.19) for i = 6. First we note that A6 = {β}. Indeed if β′ �= β
and β′ ∈ A6, then we have β′ = β + b, where b ∈ �δ(ρ

αd ), and from the relations
β /∈ V δ

b (ρ
1
2 ) [see (3.2.3) and the definition of S2], |β + τ | = H, we obtain that

||β′ + τ |2 − H2| >
1

2
ρ

1
2

which contradicts the inclusion

β′ + τ ∈ Rδ(H + ραd−1).

Hence

C6 =
∑

j ′∈Z
〈β + τ ,β + τ 〉|b(N , j ′,β)|2 = H2

∑

j ′∈Z
|b(N , j ′,β)|2 = H2

3∑

i=1

C6,i ,
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where

C6,1 = |b(N , j,β)|2, C6,2 =
∑

| j ′δ|≥ 1
30 ρ

a
2

|b(N , j ′,β)|2, C6,3 =
∑

| j ′δ|< 1
30 ρ

a
2 , j ′ �= j

|b(N , j ′,β)|2.

To prove (3.3.19) for i = 6 we show that

C6,i = O(ρ−2a), ∀i = 1, 2, 3. (3.3.31)

By (3.3.15) this equality holds for i = 1. For

| j ′δ| ≥ 1

30
ρ

a
2

the inequality (3.3.20) holds. Therefore, repeating the proof of (3.3.19) for i = 2,
we get the proof of (3.3.31) for i = 2. Arguing as in the proof of (3.3.23) for i = 2,
we obtain the proof of (3.3.31) for i = 3. Thus (3.3.19) is proved for i = 6.

Now we prove that

Ci ≤
∑

β′∈Ai

∑

j ′∈Z

|b(N , j ′,β′)|2(H2 − 1

3
ρ2αd ) (3.3.32)

for i = 3, 5, 7. Consider the triangle generated by vectors β + τ , β′ + τ , β − β′.
For β′ ∈ A3 we have

H + ραd−1 ≤ |β′ + τ | ≤ H + 1

9
ρa−1, |β − β′| ≥ ρa−2α.

Let θ be the angle between the vectors β + τ , and β′ + τ . If |θ| ≤ π
2 , then using the

cosine theorem, we get

|〈β + τ ,β′ + τ 〉| = 1

2
(|β + τ |2 + |β′ + τ |2 − |β − β′|2) < H2 − 1

3
ρ2αd ,

since a − 2α > αd . Using this and taking into account that

〈β + τ ,β′ + τ 〉 < 0

for π
2 < |θ| ≤ π, we get the proof of (3.3.32) for i = 3. If β′ ∈ A5 and |θ| ≤ π

2 ,

then

|〈β + τ ,β′ + τ 〉| ≤ H2 − 1

3
ρ2αd
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and hence (3.3.32) holds for i = 5. If β′ ∈ A7, then

|β′ + τ | ≤ H − ρ2αd−1

and by (3.3.18) we have

|〈β + τ ,β′ + τ 〉| ≤ H2 − 1

3
ρ2αd ,

that is, (3.3.32) holds for i = 7 too. Now (3.3.32) and the Bessel inequality imply
that

C3 + C5 + C7 ≤ H2 − 1

3
ρ2αd = |β + τ |2 − 1

3
ρ2αd .

This, (3.3.19) and (3.3.2) give the proof of the lemma, since 2 − 2a < 2αd [see
(3.1.11)]. �

3.4 The Construction of the Spectral Invariants

In this section we determine constructively a family of spectral invariants of this
operator from the given Bloch eigenvalues. For this we use the following lemma.

Lemma 3.4.1 Let b be a visible element of �δ and v ∈ (0, 1
2 ) ∪ ( 12 , 1). Then there

exists ρ(v) such that if ρ ≥ ρ(v), then there exists β ∈ S2(ρ) satisfying (3.2.9), the
relation v /∈ A(β, ρ), and the inequalities

1

3
|ρ|a < |〈β + τ , b〉| < 3|ρ|a, (3.4.1)

|〈β + τ , γ〉| >
1

3
|ρ|a, ∀γ ∈ S(δ, b)\δR, (3.4.2)

|〈β + τ , γ〉| >
1

3
|ρ|a+2α, ∀γ �∈ S(δ, b), |γ| < |ρ|α, (3.4.3)

∫

F

∣
∣ fδ,β+τ (x)

∣
∣2

∣
∣ϕn,v(〈δ, x〉)∣∣2 dx < c4ρ

−2a (3.4.4)

for τ ∈ Fδ, where S2, A(β, ρ), fδ,β+τ , S(δ, b) are defined in (3.2.6), (3.2.7), (3.1.12),
(3.1.5).

Proof Let n1 be a positive integer satisfying the inequality

|(n1 + v)δ|2 ≤ 4ρ1+αd < |(n1 + 1 + v)δ|2.
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Introduce the following sets

Db′, j (ρ, v, 4) = {x ∈ Hδ : |2〈x, b′〉 + |b′|2 + |( j + v)δ|2| < 4dδρ
αd },

D(ρ, v, 4) =
n1⋃

j=−n1−3

⋃

b′∈�δ(ρ
αd )

Db′, j (ρ, v, 4), (3.4.5)

S′
2(ρ, b, v) = ((V δ

b (4ρa)\V δ
b (ρa))\(D(ρ, v, 4) ∪ D1(ρ

1
2 ) ∪ D2(ρ

a+2α))) ∩ D3,

(3.4.6)
where

D1(ρ
1
2 ) =

⋃

b′∈�δ(ρ
αd )

V δ
b′(ρ

1
2 ), D2(ρ

a+2α) =
⋃

b′∈�δ(pρα)\bR

V δ
b′(ρa+2α),

D3 = (R(
3

2
ρ − dδ − 1)\R(

1

2
ρ + dδ + 1)).

Now we prove that the set S′
2(ρ, b, v) contains an element β ∈ �δ satisfying all

assertions of Lemma 3.4.1. First let us prove that S′
2(ρ, b, v)∩�δ is nonempty subset

of S2(ρ), that is,

S′
2(ρ, b, v) ∩ �δ ⊂ S2(ρ), S′

2(ρ, b, v) ∩ �δ �= ∅. (3.4.7)

It follows from the definitions of S′
2(ρ, b, v) and S2(ρ) [see (3.2.6)] that the first

relation of (3.4.7) holds. To prove the second relation we consider the set

D′(ρ) = (V δ
b (3ρa)\V δ

b (2ρa))\(D(ρ, v, 6) ∪ D1(2ρ
1
2 ) ∪ D2(2ρ

a+2α))) ∩ D4,

where

D4 = R(
3

2
ρ − 1)\R(

1

2
ρ + 1).

If β + τ ∈ D′(ρ), where β ∈ �δ, τ ∈ Fδ, then β ∈ S′
2(ρ, b, v). Therefore

{β + Fδ : β ∈ S′
2(ρ, b, v) ∩ �δ}

is a cover of D′(ρ). Hence

|S′
2(ρ, b, v) ∩ �δ| ≥ (μ(Fδ))

−1μ(D′(ρ)), (3.4.8)

where |S′
2(ρ, b, v)∩�δ| is the number of elements of S′

2(ρ, b, v)∩�δ . Thus, to prove
the second relation of (3.4.7), we need to estimate μ(D′(ρ)). It is not hard to verify
that (see Remark 2.2.1 of Chap.2)

μ((V δ
b (3ρa)\V δ

b (2ρa)) ∩ D4) > c13ρ
d−2+a . (3.4.9)

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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Now we estimate

μ((V δ
b (3ρa)\V δ

b (2ρa)) ∩ D1(2ρ
1
2 ) ∩ D4).

If b′ ∈ (bR)∩�δ(ρ
αd ), then one can easily verify that

V δ
b′(2ρ

1
2 ) ∩ D4 ⊂ V δ

b (2ρa) ∩ D4.

Therefore, we need to estimate the measure of

V δ
b (3ρa) ∩ V δ

b′(2ρ
1
2 ) ∩ D4

for b′ ∈ �δ(ρ
αd )\bR. For this we turn the coordinate axes so that the direction of

(1, 0, 0, . . . , 0) coincides with the direction of b′, and the plane generated by b,

b′ coincides with the plane {(x1, x2, 0, . . . , 0) : x1 ∈ R, x2 ∈ R}, that is, b′ =
(|b′|, 0, 0, . . . , 0), b = (b1, b2, 0, . . . , 0). Then the condition

x ∈ V δ
b (3ρa) ∩ V δ

b′(2ρ
1
2 ) ∩ D4

implies that

x1|b′| = O(ρ
1
2 ), x1b1 + x2b2 = O(ρa), x21 + x22 + · · · + x2d−1 = O(ρ2). (3.4.10)

First equality of (3.4.10) shows that

x1 = O(ρ
1
2 ).

Since b′ and b are linearly independent vectors of �δ, we have

|b′||b2| ≥ μ(Fδ),

where |b′| < ραd . Therefore,

|b2| ≥ μ(Fδ)ρ
−αd

and the second equality of (3.4.10) implies that

x2 = O(ρa+αd ).
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The third equality of (3.4.10) shows that the set

V δ
b (3ρa) ∩ V δ

b′(2ρ
1
2 ) ∩ D4

is a subset of

[−c14ρ
1
2 , c14ρ

1
2 ] × [−c14ρ

a+αd , c14ρ
a+αd ] × ([−c14ρ, c14ρ])d−3

which has the measure O(ρd−3+ 1
2+a+αd ). This with

|�δ(ρ
αd )| = O(ρ(d−1)αd )

gives

μ((V δ
b (3ρa) ∩ D1(2ρ

1
2 ) ∩ D4) = O(ρd−3+ 1

2+a+dαd ) = o(ρd−2+a), (3.4.11)

since dαd < 1
2 [see the definition of αd in (3.1.9)]. In the same way, we get

μ(V δ
b (3ρa) ∩ D2(2ρ

a+2α) ∩ D4) = O(ρd−3+2a+(d+4)α) = o(ρd−2+a), (3.4.12)

since a + (d + 4)α < 1 [see (3.1.9) and (3.1.11)]. To estimate μ(Db′, j (ρ, v, 6)) we
turn the coordinate axes so that the direction of (1, 0, 0, . . . , 0) coincides with the
direction of b′. Then the condition

x ∈ Db′, j (ρ, v, 6) ∩ D4

implies that

2x1|b′| + |b′|2 + |( j + v)δ|2| = O(ραd ), x21 + x22 + · · · + x2d−1 = O(ρ2).

These equalities show that x1 belongs to the interval of length O(ραd ) and

μ(Db′, j (ρ, v, 6) ∩ D4) = O(ρd−2+αd ).

Now using (3.4.5) and taking into account that

n1 = O(ρ
1
2 (1+αd )), |�δ(ρ

αd )| = O(ρ(d−1)αd ),

we obtain

μ(D(ρ, v, 4) ∩ D4 = O(ρd−2+ 1
2+(d+ 1

2 )αd ) = o(ρd−2+a),

since a > 1
2 + (d + 1

2 )αd [see (3.1.11) and (3.1.9)]. This estimation with (3.4.11),
(3.4.12), and (3.4.9) implies that
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μ(D′(ρ)) > c15ρ
d−2+a .

Thus the second equality of (3.4.7) follows from (3.4.8). Now take any element
β from S′

2(ρ, b, v) ∩ �δ. It follows from the definitions of the sets S′
2(ρ, b, v),

Db′, j (ρ, v, 4), A(β, ρ) [see (3.4.6) and (3.2.7)] that v /∈ A(β, ρ) and (3.2.9) holds.
Let us prove the inequalities in (3.4.1). By the definition of S′

2(ρ, b, v) we have

β ∈ V δ
b (4ρa)\V δ

b (ρa).

This means that
ρa ≤ |2〈β, b〉 + |b|2| < 4ρa .

This with the obvious relations

|b| = O(1), |τ | = O(1)

implies (3.4.1).
Now we prove (3.4.2). If γ ∈ S(δ, b)\δR , then

γ = nb + aδ, n �= 0, n ∈ Z, a ∈ R, |〈γ, b〉| = |n||b|2 ≥ |b|2, (3.4.13)

since each γ ∈ � has a decomposition γ = b′ + aδ, where b′ ∈ �δ, and b is a
visible element of �δ [see 2.3.2 of Chap.2 and the definition of S(δ, b) in (3.1.5)].
This with the relation 〈β + τ , δ〉 = 0 gives 〈β + τ , γ〉 = n〈β + τ , b〉. Therefore the
first inequality of (3.4.1) implies (3.4.2).

Let us prove (3.4.3). If
γ �∈ S(δ, b), |γ| < |ρ|α

then γ = b′ + aδ, where a ∈ R, b′ ∈ �δ(ρ
α)\bR, and 〈β + τ , γ〉 = 〈β + τ , b′〉.

Therefore using
|b′| = O(ρα), |τ | = O(1)

and arguing as in the proof of (3.4.1), we see that the relation

β /∈ V δ
b′(ρa+2α),

(see definition of S′
2(ρ, b, v)) implies (3.4.3). The inequality (3.4.4) follows from the

definition of fδ,β+τ (x) , (3.4.2), (3.4.3), and from the obvious relation

∑

γ∈�

|γ||qγ | < c16.

The last inequality with (3.4.13) implies the convergence of the series (3.1.5) �

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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Theorem 3.4.1 Suppose q ∈ W s
2 (F), where s ≥ 6(3d(d + 1)2) + d, and the band

functions are known. Then the spectral invariants μ j (v) for j ∈ Z, v ∈ [0, 1) and
(3.1.4), (3.1.7), (3.1.15), (3.1.16), (3.1.19) can be determined constructively.

Proof Let j ∈ Z and v ∈ (0, 1
2 ) ∪ ( 12 , 1). In Chap.2 (see Lemma 2.3.7) we proved

that

(ε(ρ),
1

2
− ε(ρ)) ∪ (

1

2
+ ε(ρ), 1 − ε(ρ)) ⊂ W (ρ),

where W (ρ) is defined in (3.2.7) and ε(ρ) → 0 as ρ → ∞. Therefore v ∈ W (ρ)

for ρ � 1. On the other hand, by Lemma 3.4.1, there exists β ∈ S2(ρ) such that
(3.2.9), the relation v /∈ A(β, ρ) and (3.4.1)–(3.4.4) holds. Then v ∈ S3(β, ρ) [see
(3.2.7)]. Thus j,β, v satisfy (3.2.3) and β satisfies (3.2.9), (3.4.1)–(3.4.4) for ρ � 1.
Replacing ρ by ρk ≡ 3kρ for k = 1, 2, . . ., in the same way, we obtain the sequence
β1,β2, . . ., such that

βk ∈ S2(ρk), v ∈ S3(βk, ρk)

and the relations obtained from (3.2.9), (3.4.1)–(3.4.4) by replacing β, ρ with βk, ρk

holds. Now take τ from Fδ and consider the band functions �N (βk + τ + vδ) for
N = 1, 2, . . .. Let Ak(v) be the set of all τ ∈ Fδ for which there exists N satisfying
the conditions:

|�N (βk + τ + vδ) − |βk + τ |2| < (ρk)
α
2 , (3.4.14)

�N (βk + τ + vδ) is a simple eigenvalue, (3.4.15)

||βk + τ |∂�N (βk + τ + vδ)

∂h
− |βk + τ |2| < ρ2−2a+α

k , (3.4.16)

where h = βk+τ
|βk+τ | . By (3.1.10), (3.2.20) and Theorem 3.3.1, � j ′,βk (v, τ ) for | j ′| <

ρ
α
5
k and for

βk ∈ S2(ρk),βk /∈
⋃

b∈�δ(pρα
k )

V δ
b (ρa

k ), v ∈ S3(βk, ρk), τ ∈ S4(βk, j ′, v, ρk)

(3.4.17)
satisfy the conditions (3.4.14)–(3.4.16). Therefore

S4(βk, j ′, v, ρk) ⊂ Ak(v)

for | j ′| < ρ
α
5
k and hence Ak(v) is not an empty set.Moreover, it follows from (3.4.15)

that �N (βk + τ + vδ) and
∂�N (βk + τ + vδ)

∂h

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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are measurable functions of τ and hence Ak(v) is a measurable set. Let

�N1(βk + τ + vδ) < �N2(βk + τ + vδ) < · · · < �Nn(k)
(βk + τ + vδ) (3.4.18)

be the eigenvalues of Lt satisfying (3.4.14)–(3.4.16). Using Theorem 3.3.1 and
Lemma 3.3.2, we see that if (3.4.17) holds for j ′ ∈ S1(ρk), then there exist ( j1,βk),

( j2,βk), · · · , ( jn(k),βk) such that
Ni = N ( ji ,βk) for i = 1, 2, . . . , n(k), that is,

�Ni (βk + τ + vδ) = � ji ,βk (v, τ ), ∀i = 1, 2, . . . , n(k) (3.4.19)

(see Remark 3.2.1). Let μ j (v) be i( j)th eigenvalue of the operator Tv when the
eigenvalues of Tv are numbered in the increasing order. (Note that the eigenvalues of
the operator Tv for v ∈ (0, 1

2 )∪( 12 , 1) are simple (see [Eas]). Using (3.4.18), (3.4.19)
and (3.1.10), (3.1.11) we obtain that if k is a large number and (3.4.17) holds for all
j ′ such that μ j ′ ≤ μ j , then

�Ni( j) (βk + τ + vδ) = |βk + τ |2 + μ j (v) + O(ρ−a
k ), (3.4.20)

�Ni( j) (βk+τ+vδ) = |βk+τ |2+μ j (v)+1

4

∫

F
| f 2δ,βk+τ |

∣
∣ϕ j,v

∣
∣2 dx+O(ρ−3a+2α1

k ln ρk),

(3.4.21)
For τ ∈ Ak(v) take i( j)th element �Ni( j) (βk + τ + vδ) [see (3.4.18)] of the set of
the eigenvalues satisfying (3.4.14)–(3.4.16) and consider the integral

J (Ak) = 1

μ(Fδ)

∫

Ak (v)

(�Ni( j) (βk + τ + vδ) − |βk + τ |2)dτ .

This integral is a sum of J (S′
4) and J (Ak(v)\S′

4), where S′
4 denotes the intersection

of S4(βk, j ′, v, ρk) for all j ′ such that μ j ′ ≤ μ j . If τ ∈ S′
4 and k is a large number,

then (3.4.20) holds. Thus using (3.4.20) and (3.2.8) for ρ = ρk , we get

J (S′
4) = μ j (v) + O(ρ−α

k ).

On the other hand the inclusion Ak(v) ⊂ Fδ, (3.2.8), and (3.4.14) imply that

μ(Ak(v)\S′
4) = O(ρ−α

k )

and
J (Ak(v)\S′

4) = O(ρ
− α

2
k ).

These equalities yield

J (Ak(v)) = μ j (v) + O(ρ
− α

2
k ).
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Letting k → ∞, we find μ j (v) for j ∈ Z and v ∈ (0, 1
2 ) ∪ ( 12 , 1). Since μ j (0) and

μ j (
1
2 ) are the end points of the interval {μ j (v) : v ∈ (0, 1

2 )}, the invariant μ j (v) is
determined constructively for all v ∈ [0, 1). In the Appendix 4, we constructively
determine (3.1.16) from the asymptotic formulas for μ j (v).

Now using (3.4.21) and taking into account that the invariant μ j (v) is determined,
we determine the invariant (3.1.4) as follows. Let B(βk, v) be the set of τ ∈ Fδ for
which there exists N satisfying (3.4.15), (3.4.16), and

|�N (βk + τ + vδ) − |βk + τ |2 − μ j (v)| < ρ
−2a+ α

2
k . (3.4.22)

For τ ∈ B(βk, v) take one of the eigenvalues �N (βk + τ + vδ) satisfying (3.4.15),
(3.4.16), (3.4.22) and consider

J ′(B(βk, v)) = |〈βk + τ , b〉|2
μ(Fδ)|b|4

∫

B(βk ,v)

(�N (βk + τ + vδ) − |βk + τ |2 − μ j (v))dτ .

This integral is a sum of J ′(S4) and J ′(B(βk, v)\S4). If τ ∈ S4 and k is a large
number, then arguing as above and taking into account that μ j (v) is a simple eigen-
value, we see that only the eigenvalue �Ni( j) (βk + τ + vδ) [see (3.4.21)] satisfies
(3.4.15), (3.4.16), (3.4.22). Hence in J ′(S4) instead of �N (βk + τ + vδ) we must
take �Ni( j) (βk + τ + vδ). Therefore using (3.4.21), we get

J ′(S4) = |〈βk + τ , b〉|2
4μ(Fδ)|b|4

∫

S4

∫

F
| fδ,βk+τ (x)ϕ j,v(〈δ, x〉)|2dxdτ + O(ρ2α1−a

k ln ρ).

(3.4.23)
Moreover using (3.4.22), (3.4.1), and

μ(B(βk, v)\S4) = O(ρ−α
k )

[see (3.2.8)], we obtain

J ′(B(βk, v)\S4) = O(ρ
− α

2
k ). (3.4.24)

Substituting the decomposition |δ|−2〈γ, δ〉δ + |b|−2〈γ, b〉b of γ for γ ∈ S(δ, b),

|γ| < |ρk |α into the denominator of the fraction in fδ,βk+τ (x) [for definition of this
function see (3.1.12)] and using (3.4.1), (3.4.3), we obtain

lim
k→∞ |b|−2〈βk +τ , b〉 fδ,βk+τ (x) =

∑

γ∈S(δ,b)\δR

γ

〈γ, b〉qγe〈γ,x〉 ≡ qδ,b(x), (3.4.25)

where qδ,b(x) is defined in (3.1.5) and the convergence of the series (3.1.5) is proved
in the proof of Lemma 3.4.1. This with (3.4.23) and (3.4.24) implies that
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lim
k→∞ J ′(B(βk, v) =

∫

F

∣
∣qδ,b(x)

∣
∣2

∣
∣ϕ j,v(〈δ, x〉)∣∣2 dx ≡ J (δ, b, j, v) (3.4.26)

[see (3.1.4)]. In (3.4.26) letting j → ∞ and using (3.1.6), we get the invariant
J0(δ, b) [see (3.1.7)]. Then we find the other invariants

J1(δ, b), J2(δ, b), . . . ,

of (3.1.7) as follows

J1 = lim
j→∞(J − J0) j, J2 = lim

j→∞((J − J0) j2 − J1 j), . . .

In the Appendix 4 using the asymptotic formulas for the eigenfunctions of
Tv(Q), we constructively determine the invariants (3.1.15), (3.1.19) from (3.1.7)
and (3.1.16) �

Appendices

Appendix 1: The Proof of (3.2.28)

Here we estimate the conjugate C1( j ′,λ j,β) of C1( j ′,λ j,β), namely we prove that

∑

( j1,β1)∈Q(ρα,9r)

A( j ′,β, j ′ + j1,β + β1)A( j ′ + j1,β + β1, j,β)

λ j,β − λ j ′+ j1,β+β1

= O(ρ−2ar2),

(3.5.1)
[see (3.2.26)], where

Q(ρα, 9r) = {( j1,β1) : | j1δ| < 9r, 0 < |β1| < ρα}, j ∈ S1(ρ), | j ′δ| < r, r = O(ρ
1
2α2).

The conditions on indices j ′, j1, j and (3.2.20) imply that

μ j ′+ j1 = O(r2),μ j = O(r2).

These with β /∈ V δ
β1

(ρa))), where β1 ∈ �δ(pρα), [see (3.2.9)] give

λ j,β − λ j ′+ j1,β+β1 = −2〈β,β1〉 + O(r2), |〈β,β1〉| >
1

3
ρa . (3.5.2)
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Using this, (3.2.15) and (3.5.1), we get

C1( j ′,λ j,β) =
∑

β1

C ′

−2〈β,β1〉 + O(ρ−2ar2), (3.5.3)

where
C ′ =

∑

j1

A( j ′,β, j ′ + j1,β + β1)A( j ′ + j1,β + β1, j,β).

In Chap.2, we proved that [see (2.3.7), (2.3.21), Lemma 2.3.3]

A( j ′,β, j ′ + j1, β + β1) =
∑

n1:(n1,β1)∈�′(ρα)

c(n1, β1)a(n1, β1, j ′, β, j ′ + j1,β + β1), (3.5.4)

A( j ′ + j1, β + β1, j,β) =
∑

n2:(n2,−β1)∈�′(ρα)

c(n2,−β1)a(n2, −β1, j ′ + j1,β + β1, j,β),

�′(ρα) = {(n1, β1) : β1 ∈ �δ\0, n1 ∈ Z, β1 + (n1 − (2π)−1〈β1, δ∗〉)δ ∈ �(ρα)},

c(n1,β1) = qγ1 , γ1 = β1 + (n1 − (2π)−1〈β1, δ
∗〉)δ ∈ �(ρα), (3.5.5)

a(n1,β1, j ′,β, j ′ + j1,β + β1) = (ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j ′,v(β)(ζ),ϕ j ′+ j1,v(β+β1)(ζ)),

a(n2, −β1, j ′ + j1, β + β1, j,β) = (ei(n2−(2π)−1〈−β1,δ
∗〉)ζϕ j ′+ j1,v(β+β1)(ζ),ϕ j,v(β)(ζ))

(3.5.6)

= (ϕ j ′+ j1,v(β+β1)(ζ), e−i(n2−(2π)−1〈−β1,δ
∗〉)ζϕ j,v(β)(ζ))

= (e−i(n2−(2π)−1〈−β1,δ∗〉ζϕ j,v(β)(ζ),ϕ j ′+ j1,v(β+β1)(ζ)),

where δ∗ is the element of � satisfying 〈δ∗, δ〉 = 2π.

Now, to estimate the right-hand side of (3.5.3) we prove that

∑

j1

a(n1,β1, j ′,β, j ′ + j1,β + β1)a(n2,−β1, j ′ + j1,β + β1, j,β) (3.5.7)

= a(n1 + n2, 0, j ′,β, j,β) + O(ρ−pα).

By definition, we have

a(n1 + n2, 0, j ′,β, j,β) = (ei(n1+n2)ζϕ j ′,v(β)(ζ),ϕ j,v(β)(ζ))

= (ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j ′,v(β)(ζ), e−i(n2−(2π)−1〈−β1,δ
∗〉)ζϕ j,v(β)(ζ)).

http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
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This, (3.5.6), and the following formulas

ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j ′,v(β)(ζ) (3.5.8)

=
∑

| j1δ|<9r

a(n1,β1, j ′,β, j ′ + j1,β + β1)ϕ j ′+ j1,v(β+β1)(ζ) + O(ρ−pα),

e−i(n2−(2π)−1〈−β1,δ
∗〉)ζϕ j,v(β)(ζ)

=
∑

| j1δ|<9r

a(n2,−β1, j ′,β, j ′ + j1,β + β1)ϕ j ′+ j1,v(β+β1) + O(ρ−pα),

∑

j1

|a(n1,β1, j ′,β, j ′ + j1,β + β1)| = O(1)

[see (2.3.16), (2.3.17) of Chap.2) give the proof of (3.5.7). Now from (3.5.7), (3.5.4)
and (3.5.3) we obtain

C ′ =
∑

n1

∑

n2

(c(n1,β1)c(n2,−β1)a(n1 + n2, 0, j ′,β, j,β) + O(ρ−pα)),

C1( j ′,λ j,β) =
∑

β1

∑

n1

∑

n2

C ′
1(β1, n1, n2) + O(ρ−2ar2),

where

C ′
1(β1, n1, n2) = c(n1,β1)c(n2,−β1)a(n1 + n2, 0, j ′,β, j,β)

−2〈β,β1〉 .

It is clear that
C ′
1(β1, n1, n2) + C ′

1(−β1, n2, n1) = 0. (3.5.9)

Therefore
C1( j ′,λ j,β) = O(ρ−2ar2).

Appendix 2: The Proof of (3.2.35)

Arguing as in the proof of (3.2.27), we see that

C2(� j,β) = C2(λ j,β) + O(ρ−3a)

and by (3.5.4)

C2(λ j,β) =
∑

β1,β2

(
∑

n1,n2,n3

(
∑

j1, j2

c(n1, β1)c(n2, β2)c(n3, −β1 − β2)

(λ j,β − λ j (1),β(1))(λ j,β − λ j (2),β(2))
a(n1, β1, j, β, j (1), β(1))

× a(n2, β2, j (1), β(1), j (2), β(2))a(n3, −β1 − β2, j (2), β(2), j, β),

http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
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where

( j1,β1) ∈ Q(ρα, 9r1), ( j2,β2) ∈ Q(ρα, 90r1), j ∈ S1,β1 + β2 �= 0.

Applying (3.5.7) two times and using (3.5.8), we get

∑

j1

a(n1, β1, j, β, j (1), β(1))(
∑

j2

a(n2, β2, j (1), β(1), j (2), β(2))a(n3, −β1 − β2, j (2), β(2), j,β))

=
∑

j1

a(n1, β1, j,β, j (1), β(1))(a(n2 + n3, −β1, j (1), β(1), j,β) + O(ρ−pα))

= a(n1 + n2 + n3, 0, j,β, j, β) + O(ρ−pα).

Using this in the above expression for C2(λ j,β) and taking into account that

λ j,β − λ j (1),β(1) = −2〈β,β1〉 + O(ρ2α1), |〈β,β1〉| >
1

3
ρa,

λ j,β − λ j (2)β(2) = −2〈β,β1 + β2〉 + O(ρ2α1), |〈β,β1 + β2〉| >
1

3
ρa,

which can be proved as (3.5.2), we have

C2(λ j,β) = O(ρ−3a+2α1)

+
∑

β1,β2

∑

n1,n2,n3

c(n1,β1)c(n2,β2)c(n3,−β1 − β2)a(n1 + n2 + n3, 0, j,β, j,β)

4〈β,β1〉〈β,β1 + β2〉 .

Grouping the terms with the equal multiplicands

c(n1,β1)c(n2,β2)c(n3,−β1 − β2), c(n2,β2)c(n1,β1)c(n3,−β1 − β2),

c(n1,β1)c(n3,−β1 − β2)c(n2,β2), c(n2,β2)c(n3,−β1 − β2)c(n1,β1),

c(n3,−β1 − β2)c(n1,β1)c(n2,β2), c(n3,−β1 − β2)c(n2,β2)c(n1,β1)

and using the obvious equality

1

〈β,β1〉〈β,β1 + β2〉 + 1

〈β,β2〉〈β,β2 + β1〉 + 1

〈β,β1〉〈β,−β2〉
+ 1

〈β,β2〉〈β−,β1〉 + 1

〈β,−β1 − β2〉〈β,−β2〉 + 1

〈β,−β1 − β2〉〈β,−β1〉 = 0,

we see that
C2(λ j,β) = O(ρ−3a+2α1).
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Appendix 3: The Proof of (3.2.34)

By (3.2.27) we have
C1(� j,β) = C1(λ j,β) + O(ρ−3a).

Therefore, we need to prove that

C1(λ j,β) = 1

4

∫

F

∣
∣ fδ,β+τ (x)

∣
∣2

∣
∣
∣ϕδ

j,v(〈δ, x〉)
∣
∣
∣
2

dx + O(ρ−3a+2α1),

where

C1(λ j,β) ≡
∑

β1

∑

j1

A( j,β, j + j1,β + β1)A( j + j1,β + β1, j,β)

λ j,β − λ j+ j1,β+β1

,

( j1,β1) ∈ Q(ρα, 9r1), j ∈ S1,

and by (3.5.4)

C1(λ j,β) =
∑

β1

∑

n1:(n1,β1)∈�′(ρα)

∑

n2:(n2,−β1)∈�′(ρα)

∑

j1

c(n1,β1)c(n2,−β1)

λ j,β − λ j+ j1,β+β1

× a(n1,β1, j,β, j + j1,β + β1)a(n2,−β1, j + j1,β + β1, j,β).

Replacing λ j,β − λ j+ j1,β+β1 by

−(2〈β + τ ,β1〉 + |β1|2 + μ j+ j1(v(β + β1)) − μ j (v(β)))

and using (3.5.7) for j ′ = j, we have

C1( j,λ j,β) =
∑

β1

∑

n1

∑

n2

c(n1,β1)c(n2,−β1)a(n1 + n2, 0, j,β, j,β)

−2〈β + τ ,β1〉

+
∑

β1

∑

n1

∑

n2

∑

j1

c(n1,β1)c(n2,−β1)a(n1,β1, j,β, j + j1,β + β1)

2〈β + τ ,β1〉(2〈β + τ ,β1〉 + |β1|2 + μ j+ j1 − μ j )

× a(n2,−β1, j + j1,β + β1, j,β)(|β1|2 + μ j+ j1(v(β + β1)) − μ j (v(β))).
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The formula (3.5.9) shows that the first summation of the right-hand side of this
equality is zero. Thus we need to estimate the second sum. For this we use the
following relation

μ j+ j1 (v(β + β1))a(n1, β1, j, β, j + j1, β + β1) = (ei(n1− 〈β1,δ∗〉
2π )ζϕ j,v(β)(ζ), Tvϕ j+ j1,v(β+β1)(ζ))

= (Tv(e
i(n1−(2π)−1(β1,δ

∗〉)ζϕ j,v(β)(ζ)), ϕ j+ j1,v(β+β1)(ζ)

= (|n1 − (2π)−1〈β1, δ
∗〉|2|δ|2 + μ j (v))(ei(n1−(2π)−1〈β1,δ∗〉)ζϕ j,v(β)(ζ), ϕ j+ j1,v(β+β1)(ζ))

− 2i(n1 − (2π)−1〈β1, δ
∗〉)|δ|2(ei(n1−(2π)−1〈β1,δ∗〉)ζϕ′

j,v(β)(ζ), ϕ j+ j1,v(β+β1)(ζ)).

Using this, (3.5.7), and the formula

∑

j1

(ei(n1−(2π)−1〈β1,δ∗〉)ζϕ′
j,v(β)(ζ)),ϕ j+ j1,v(β+β1)(ζ))a(n2, −β1, j + j1, β + β1, j, β)

= (ei(n1+n2)ζϕ′
j,v(β)(ζ)),ϕ j,v(β)(ζ)) + O(ρ−pα)

which can be proved as (3.5.7), we obtain

∑

j1

μ j+ j1(v(β + β1)a(n1,β1, j,β, j + j1,β + β1)a(n2,−β1, j + j1,β + β1, j,β)

(3.5.10)

= (|n1 − (2π)−1〈β1, δ
∗〉|2)|δ|2 + μ j (v)a(n1 + n2, 0, j,β, j,β)

− 2i(n1 − (2π)−1〈β1, δ
∗〉)|δ|2(ei(n1+n2)ζϕ′

j,v(β)(ζ),ϕ j,v(β)(ζ)).

Here the last multiplicand can be estimated as follows

μ j (v)(ϕ j,v(β)(ζ), ei(n1+n2)ζϕ j,v(β)(ζ)) = (ϕ j,v(β)(ζ), Tv(e
i(n1+n2)ζϕ j,v(β)(ζ)))

= (n1 + n2)
2|δ|2(ϕ j,v(β)(ζ), ei(n1+n2)ζϕ j,v(β)(ζ))

+ 2i(n1 + n2)|δ|2(ϕ j,v(β)(ζ), ei(n1+n2)ζϕ′
j,v(β)(ζ)) + μ j (v)(ϕ j,v(β), ei(n1+n2)ζϕ j,v(β)),

(ei(n1+n2)ζϕ′
j,v(β)(ζ)),ϕ j,v(β)(ζ)) = n1 + n2

2i
(ei(n1+n2)ζϕ j,v(β)(ζ)),ϕ j,v(β)(ζ)).

Using this, (3.5.10), and (3.5.7), we get

∑

j1

(a(n1, β1, j, β, j + j1, β + β1)a(n2, −β1, j + j1, β + β1, j, β))

× (|β1|2 + μ j+ j1 (v(β + β1)) − μ j (v(β))) = a(n1 + n2, 0, j, β, j, β)

× (|β1|2 + |n1 − 〈β1, δ
∗〉

2π
|2|δ|2 − (n1 − 〈β1, δ

∗〉
2π

)|δ|2(n1 + n2))

= (|β1|2 + |δ|2(n1 − 〈β1, δ
∗〉

2π
)(−n2 − 〈β1, δ

∗〉
2π

))a(n1 + n2, 0, j, β, j, β).
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Thus
C1( j, λ j,β) = C + O(ρ−3a+2α1 ),

where

C =
∑

β1,n1,n2

c(n1, β1)c(n2, −β1)a(n1 + n2, 0, j, β, j, β)

4|〈β + τ , β1〉|2 (3.5.11)

× (|β1|2 + (n1 − 〈β1, δ
∗〉

2π
)(−n2 − 〈β1, δ

∗〉
2π

)|δ|2).

Now we consider ∫

F

∣
∣ fδ,β+τ (x)

∣
∣2

∣
∣ϕn,v(〈δ, x〉)∣∣2 dx,

where fδ,β+τ is defined in (3.1.12). By (3.5.5)

fδ,β+τ (x) =
∑

(n1,β1)∈�′
δ(ρ

α)

β1 + (n1 − 〈β1,δ∗〉
2π )δ

〈β + τ , β1〉 c(n1, β1)e
i〈β1+(n1− 〈β1,δ∗〉

2π )δ,x〉.

Here fδ,β+τ (x) is a vector of Rd . Using 〈β, δ〉 = 0 for β ∈ �δ, we obtain

∣
∣ fδ,β+τ (x)

∣
∣2 =

∑

(n1,β1),(n2,β2)∈�′
δ(ρ

α)

〈β1, β2〉 + (n1 − 〈β1,δ∗〉
2π )(n2 − 〈β1,δ∗〉

2π )|δ|2
〈β + τ , β1〉〈β + τ , β2〉

× c(n1, β1)c(−n2, −β2)e
i〈β1−β2+(n1−n2−(2π)−1〈β1−β2,δ

∗〉)δ,x〉.

Since ϕ j,v(〈δ, x〉) is a function of 〈δ, x〉, we have
∫

F
ei〈β1−β2+(n1−n2−(2π)−1〈β1−β2,δ

∗〉)δ,x〉 ∣
∣ϕ j,v(〈δ, x〉)∣∣2 dx = 0

for β1 �= β2. Therefore

∫

F

∣
∣ fδ,β+τ (x)

∣
∣2

∣
∣ϕ j,v(〈δ, x〉)∣∣2 dx =

∑

β1,n1,n2

c(n1, β1)c(−n2, −β1)

|〈β + τ , β1〉|2

× (|β1|2 + (n1 − 〈β1, δ
∗〉

2π
)(n2 − 〈β1, δ

∗〉
2π

)|δ|2a(n1 − n2, 0, j, β, j, β〉.

Replacing n2 by −n2, we get

∫

F

∣
∣ fδ,β+τ (x)

∣
∣2

∣
∣ϕn,v(〈δ, x〉)∣∣2 dx = 4C

[see (3.5.11)] and (3.2.34).
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Appendix 4: Asymptotic Formulas for Tv(Q)

It is well-known that the large eigenvalues of T0(Q) lie in O( 1
m4 ) neighborhood of

|mδ| + 1

16π|mδ|3
∫ 2π

0
|Q(t)|2 dt

for the large values of m (see [Eas], p. 58). This formula yields the invariant (3.1.16). Using the
asymptotic formulas for solutions of the Sturm-Liouville equation (see [Eas], p. 63), one can easily
obtain that

ϕn,v(ζ) = ei(n+v)ζ (1 + Q1(ζ)

2i(n + v)|δ|2 + Q(ζ) − Q(0) − 1
2 Q2

1(ζ)

4(n + v)2|δ|4 ) + O(
1

n3 )),

where

Q1(ζ) =
∫ ζ

0
Q(t)dt.

From this, by direct calculations, we find A0(ζ), A1(ζ), A2(ζ) [see (3.1.6)] and then using these in
(3.1.7), we get the invariant (3.1.15).

Now we consider the eigenfunction ϕn,v(ζ) of Tv(p) in the case v �= 0, 1
2 and

p(ζ) = p1eiζ + p−1e−iζ .

The eigenvalues and the eigenfunctions of Tv(0) are (n + v)2|δ|2 and ei(n+v)ζ , for n ∈ Z. Since the
eigenvalues of Tv(p) are simple for v �= 0, 1

2 , by the well-known perturbation formula

(ϕn,v(ζ), ei(n+v)ζ )ϕn,v(ζ) = ei(n+v)ζ (3.5.12)

+
∑

k=1,2,...

(−1)k+1

2iπ

∫

C

(Tv(0) − λ)−1 p(x)k(Tv(0) − λ)−1ei(n+v)ζdλ,

where C is a contour containing only the eigenvalue (n + t)2|δ|2. Using

(Tv(0) − λ)−1ei(n+v)ζ = ei(n+v)ζ

(n + v)2|δ|2 − λ
,

we see that the kth (k = 1, 2, 3, 4) term Fk of the series (3.5.12) has the form

F1 = 1

2iπ

∫

C

∑

m=1,−1

pmei(n+m+v)ζ

((n + v)2|δ|2 − λ)((n + m + v)2|δ|2 − λ)
dλ,

F2 = −1

2iπ

∫

C

∑

m,l=1,−1

pm pl ei(n+m+l+v)ζ

((n + v)2|δ|2 − λ)

× 1

((n + m + v)2|δ|2 − λ)((n + m + l + v)2|δ|2 − λ)
dλ,
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F3 = 1

2iπ

∫

C

∑

m,l,k=1,−1

pm pl pkei(n+m+l+k+v)ζ

((n + v)2|δ|2 − λ)((n + m + v)2|δ|2 − λ)

× 1

((n + m + l + v)2|δ|2 − λ)((n + m + l + k + v)2|δ|2 − λ)
dλ,

F4 = −1

2iπ

∫

C

∑

m,l,k,r=1,−1

pm pl pk pr ei(n+m+l+k+r+v)ζ

((n + m + l + k + r + v)2|δ|2 − λ)

× 1

((n + m + v)2|δ|2 − λ)((n + m + l + v)2|δ|2 − λ)

× 1

((n + m + l + k + v)2|δ|2 − λ)((n + v)2|δ|2 − λ)
dλ.

Since the distance between (n + v)2|δ|2 and (n′ + v)2|δ|2 for n′ �= n is greater than c17n, we can
choose the contour C such that

1

|(n′ + v)2|δ|2 − λ| <
c18
n

, ∀λ ∈ C, ∀n′ �= n

and the length of C is less than c19. Therefore

F5 + F6 + · · · = O(n−5).

Nowwe calculate the integrals in F1, F2, F3, F4 by the Cauchy integral formula and then decompose
the obtained expression in power of 1

n . Then

F1 = ei(n+v)ζ ((p1eiζ − p−1e−iζ )
1

|δ|2 (
−1

2n
+ v

2n2 − 4v2 + 1

8n3 + O(
1

n4 ))

+ (p1eiζ + p−1e−iζ )
1

|δ|2 (
v

4n2 − v

2n3 + 12v2 + 1

16n4 + O(
1

n5
))).

Let F2,1 and F2,2 be the sum of the terms in F2 for which m + l = ±2 and m + l = 0 respectively,
i.e.,

F2 = F2,1 + F2,2,

where

F2,1 = ei(n+v)ζ (((p1)
2e2iζ + (p−1)

2e−2iζ )
1

|δ|4 (
−1

8n2 + −v

4n3 − 12v2 + 7

32n4 + O(
1

n5
))

+ ((p1)
2e2iζ − (p−1)

2e−2iζ )
1

|δ|4 (
−3

16n3 + O(
1

n4 ))),

F2,2 = ei(n+v)ζ |p1|2 (
c20
n2 + c21

n3 + c22
n4 + O(

1

n5
))

and c20, c21, c22 are the known constants. Similarly,

F3 = F3,1 + F3,2,
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where F3,1 and F3,2 are the sum of the terms in F3 for which m + l + k = ±3 and m + l + k = ±1
respectively. Hence

F3,1 = ei(n+v)ζ ((p31e3iζ − p3−1e−iζ )
1

|δ|6 (
−1

48n3 + O(
1

n4 ))

+ (p31e3iζ + p3−1e−3iζ )
1

|δ|6 (
1

16n4 + O(
1

n5
))),

F3,2 = ei(n+v)ζ ((p1eiζ − p−1e−iζ ) |p1|2 (
c23
n3 + c24

n4 + O(
1

n5
))

+ (p1eiζ + p−1e−iζ ) |p1|2 (
c25
n4 + O(

1

n5
))).

Similarly
F4 = F4,1 + F4,2 + F4,3,

where F4,1, F4,2, F4,3 are the sumof the terms in F4 for whichm+l+k+r = ±4,m+l+k+r = ±2,
m + l + k + r = 0 respectively. Thus

F4,1 = ei(n+v)ζ (p41e4iζ + p4−1e−4iζ )
1

|δ|8 (
1

384n4 + O(
1

n5
)),

F4,2 = ei(n+v)ζ (p21e2iζ + p2−1e−2iζ ) |p1|2 (
c26
n4 + O(

1

n5
))),

F4,3 = ei(n+v)ζ |p1|4 (
c27
n4 + O(

1

n5
))).

Since pk−1e−ikζ is conjugate of pk
1eikζ , the real and imaginary parts of Fke−i(n+v)ζ consist of terms

with multiplicands
pk
1eikζ + pk−1e−kiζ & pk

1eikζ − pk−1e−ikζ

respectively. Taking into account this and using the above estimations, we get

|(ϕn,v, ei(n+v)ζ )ϕn,v |2 = 2(
∑

k=1,2,3,4

Re(Fk) + Re(F1F2) + Re(F1F3)) + |F1|2 + |F2|2 + O(n−5)

= 1 + 1

2n2

1

|δ|2 (p1eiζ + p−1e−iζ + c28|p1|2) + 1

n3 ((p1eiζ + p−1e−iζ )c29

+ c30|p1|2) + 1

n4 ((p1eiζ + p−1e−iζ )c31 + c32|p1|2 + c33|p1|4

+ c34|p1|2(p1eiζ + p−1e−iζ ) + (c35 + c36|p1|2)(p21e2iζ + p2−1e−2iζ ))

+ O(
1

n5
),

where Re(F) denotes the real part of F. On the other hand

|(ϕn,v(ζ), ei(n+v)ζ )|2 = (c37
1

n2 + c38
1

n3 + c39
1

n4 )|p1|2 + c40
1

n4 |p1|4 + O(
1

n5
).

These equalities imply (3.1.18). The invariant (3.1.19) is a consequence of (3.1.18), (3.1.16) and
(3.1.7) for k = 2, 4 �
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Chapter 4
Periodic Potential from the Spectral
Invariants

Abstract In this chapter, we consider the inverse problem of the three-dimensional
Schrödinger operator L(q) with a periodic, relative to a lattice � of R3, potential
q. Firstly, we construct a set D of trigonometric polynomials such that: (a) D is
dense in W s

2 (R3/�), where s > 3, in the C
∞-topology, (b) any element q of the

set D can be determined constructively and uniquely, modulo inversion x → −x
and translations x → x + τ for τ ∈ R

3, from the given spectral invariants that were
determined constructively from the given Bloch eigenvalues. Then a special class
V of the periodic potentials is constructed, which can be easily and constructively
determined from the spectral invariants. This chapter consists of 7 sections. First
section is introduction, where we describe briefly the scheme of this chapter and
discuss the related papers. In the second section using the spectral invariants obtained
in Chap.3 we find the simplest invariants for the sets D and V . In the third, fourth
and fifth sections we give algorithms for the unique determination of the potential
q ∈ D and q ∈ V respectively from the simplest spectral invariants. In the sixth
section we consider the stability of the algorithm for q ∈ V with respect to the
spectral invariants and Bloch eigenvalues. Finally, in the seventh section we prove
that there are no other periodic potentials in the set of large class of functions whose
Bloch eigenvalues coincide with the Bloch eigenvalues of q ∈ V . Thus, Chap.4
gives some examples and ideas for finding the potential from the spectral invariants
and hence from the Bloch eigenvalues. Besides it gives a theoretical base (a lot of
nonlinear equations with respect to the Fourier coefficients of q) to solve numerically
this problem.

4.1 Introduction

We investigate the inverse problem for the three-dimensional Schrödinger operator
L(q) generated in L2(R

3) by the differential expression l(u) = −�u + q(x)u,

where x ∈ R
3, with a real periodic, relative to a lattice � of R3, potential q(x). Let

ω1,ω2,ω3 be a basis of the lattice � and

F = {c1ω1 + c2ω2 + c3ω3 : ck ∈ [0, 1), k = 1, 2, 3}

© Springer International Publishing Switzerland 2015
O. Veliev, Multidimensional Periodic Schrödinger Operator,
Springer Tracts in Modern Physics 263, DOI 10.1007/978-3-319-16643-8_4
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172 4 Periodic Potential from the Spectral Invariants

be a fundamental domain R3/� of �. Recall that the spectrum of L(q) is the union
of the spectra of the operators Lt (q) for t ∈ F∗ generated in L2(F) by the expression
l(u) and the conditions

u(x + ω) = ei〈t,ω〉u(x), ∀ω ∈ �,

where F∗ is the fundamental domain of the lattice �, � is the lattice dual to �, and
〈., .〉 is the inner product in R

3. The eigenvalues �1(t) ≤ �2(t) ≤ · · · of Lt (q)

are called the Bloch eigenvalues of L(q). These eigenvalues define the functions
�1(t), �2(t), . . . of t that are called the band functions of L(q). The aim of this
chapter is the constructive determination of the potential q of the three-dimensional
Schrödinger operator L(q) from the Bloch eigenvalues.

The inverse problems of the one-dimensional Schrödinger operator, that is, the
Hill operator, denoted by H(q), and themultidimensional Schrödinger operator L(q)

are absolutely different. Inverse spectral theory for theHill operator has a long history
and there exist many books and papers about it (see, for example, [Le, Mar, PoTr]).
In order to determine the potential q, where q(x + π) = q(x), of the Hill operator,
in addition to the given band functions �1(t), �2(t), . . ., one needs to know the
eigenvalues λ1,λ2, . . . of the Dirichlet boundary value problem and the signs of the
numbers u−(

√
λ1), u−(

√
λ2), . . ., where u−(λ) = c(λ,π) − s′(λ,π) and c(λ, x),

s(λ, x) are the solutions of the Hill equation

−y′′(x) + q(x)y(x) = λ2y(x)

satisfying c(λ, 0) = s′(λ, 0) = 1, c′(λ, 0) = s(λ, 0) = 0 (see [Mar], Chap. 3,
Sect. 4). In other words, the potential q of the Hill operator can not be determined
uniquely from the given band functions, since if the band functions�1(t), �2(t), . . .
of H(q) are given, then for every choice of the numbers λ1,λ2, . . . from the gaps
�1,�2, . . . of the spectrum of the Hill operator and for every choice of the signs of
the numbers u−(λ1), u−(λ2), . . . , there exists a potential q having�1(t), �2(t), . . .
as the band functions and λ1,λ2, . . . as the Dirichlet eigenvalues. In spite of this, it is
possible to determine uniquely the potential q of the multidimensional Schrödinger
operator L(q) from only the given band functions for a certain class of potential.
Because, in the case d > 1 the band functions give more informations. Namely, the
band functions give the spectral invariants that have no meaning in the case d = 1.
We solve the inverse problem by these spectral invariants. We will discuss this in the
end of the introduction.

The inverse problem for themultidimensional Schrödinger operator L(q) is inves-
tigated for the first time by Eskin et al. in the papers [EsRaTr1, EsRaTr2]. In
[EsRaTr1] the following result was proved:

Assume that the lattice � of R
d is such that, for ω, ω′ ∈ �, |ω′| = |ω| implies

ω′ = ±ω. If q(x) and q̃(x) are real analytic, then the equality

Spec(L0(q)) = Spec(L0(q̃)) (4.1.1)
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implies the equalities

Spec(Lt (q)) = Spec(Lt (q̃)) (4.1.2)

for all t ∈ R
d , where Spec(Lt (q)) is the spectrum of the operator Lt (q) and L0(q)

is the operator Lt (q) when t = (0, 0, . . . , 0).
In [EsRaTr2] the following result was proved for the two-dimensional Schr

ödinger operator L(q):
For � ⊂ R

2 satisfying the condition: if |ω′| = |ω| for ω, ω′ ∈ �, then ω′ = ±ω;
there is a set {Mα} of manifolds of potentials such that

(a) {Mα : α ∈ [0, 1]} is dense in the set of smooth periodic potentials in the
C∞-topology,

(b) for each α there is a dense open set Qα ⊂ Mα such that for q ∈ Qα the set
of real analytic q̃ satisfying (4.1.1) and the set of q̃ ∈ C6(F) satisfying (4.1.2) for
all t ∈ R

2 are finite modulo translations.
Eskin [Es] extended the results of the papers [EsRaTr1, EsRaTr2] to the case of

two-dimensional Schrödinger operator

H = (i∇ + A(x))2 + V (x), x ∈ R
2

with periodicmagnetic potential A(x) = (A1(x), A2(x)) and electric potential V (x).

The proof of the results of those papers is not constructive and does not seem to give
any idea about possibility to construct explicitly a periodic potential.

In this chapter, we give an algorithm for the unique (modulo the inversion and
translations) determination of the potential q of the three-dimensional Schrödinger
operator L(q) from the spectral invariants which were determined constructively in
Chap.3 from the given Bloch eigenvalues. As a result, we determine constructively
the potential from the given Bloch eigenvalues. The results of this chapter were
published in [Ve11, Ve12].

To describe the brief scheme of this chapter, we begin by recalling the invariants
obtained in Chap.3 which will be used here. An element a of the lattice � is said to
be a visible element of � if a is an element of � of the minimal norm belonging to
the line aR. Denote by S the set of all visible elements of �. Clearly,

q(x) = 1

2

∑

a∈S

qa(x),

where

qa(x) =
∑

n∈Z
z(na)ein〈a,x〉,

and z(c) =: (q, ei〈c,x〉) for c ∈ � is the Fourier coefficient of q. Here (., .) is the
inner product in L2(F). The function qa(x) is known as directional potential of q

http://dx.doi.org/10.1007/978-3-319-16643-8_3
http://dx.doi.org/10.1007/978-3-319-16643-8_3
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corresponding to the visible element a. Let a be a visible element of �, �a be the
sublattice {ω ∈ � : 〈ω, a〉 = 0} of � in the hyperplane Ha = {x ∈ R

3 : 〈x, a〉 = 0}
and

�a =: {γ ∈ Ha : 〈γ,ω〉 ∈ 2πZ, ∀ω ∈ �a}

be the lattice dual to �a . Let β be a visible element of �a and P(a,β) be the plane
containing a, β, and the origin. Define a function qa,β(x) by

qa,β(x) =
∑

c∈(P(a,β)∩�)\aR

c

〈β, c〉 z(c)ei〈c,x〉. (4.1.3)

In Chap.3, we constructively determined the following spectral invariants

∫

F

∣
∣qa(x)

∣
∣2 dx, (4.1.4)

∫

F

∣
∣qa,β(x)

∣
∣2 qa(x)dx (4.1.5)

from the asymptotic formulas for the band functions of L(q) obtained in Chap.2.
Moreover, in Chap.3 we constructively determined the invariant

∫

F
|qa,β(x)|2(z2(a)ei2〈a,x〉 + z2(−a)e−i2〈a,x〉)dx (4.1.6)

when the directional potential qa(x) has the form

qa(x) = z(a)ei〈a,x〉 + z(−a)e−i〈a,x〉. (4.1.7)

In this chapter, fixing the inversion and translations:

x → −x & x → x + τ , τ ∈ R
3, (4.1.8)

we give an algorithm for the unique determination of the potential q of the three-
dimensional Schrödinger operator L(q) from the invariants (4.1.4)–(4.1.6). Note
that the potential q can be uniquely determined only by fixing the inversion and
translations (4.1.8), since L(q(x)), L(q(−x)) and L(q(x + τ )) have the same band
functions and hence the same invariants (4.1.4)–(4.1.6).

First we consider the invariants (4.1.4)–(4.1.6) for the trigonometric polynomials
of the form

q(x) =
∑

a∈Q(N ,M,S)

z(a)ei〈a,x〉, (4.1.9)

http://dx.doi.org/10.1007/978-3-319-16643-8_3
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_3
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where N , M , S are integers,

Q(N , M, S) = {nγ1 + mγ2 + sγ3 : |n| ≤ N , |m| ≤ M, |s| ≤ S}\{0},

and {γ1, γ2, γ3} is a basis of � satisfying 〈γi ,ω j 〉 = 2πδi, j . If a = nγ1+mγ2 + sγ3,
then we write (n, m, s) and z(n, m, s) instead of a and z(a) respectively. For brevity
of the notations, instead of Q(N , M, S) we write Q if it is not ambiguous.

To describe the invariants (4.1.4)–(4.1.6) for (4.1.9), let us introduce some nota-
tions. If b ∈ (� ∩ P(a,β))\aR, then the plane P(a,β) coincides with the plane
P(a, b). Moreover every vector b ∈ (P(a,β) ∩ �)\aR has an orthogonal decom-
position

b = sβ + μa, (4.1.10)

where s is a nonzero integer, β is a visible element of �a, and μ is a real number.
Therefore, for every plane P(a, b), where b ∈ �, there exists a plane P(a,β), where
β is defined by (4.1.10), which coincides with P(a, b).

Notation 4.1.1 For every pair {a, b}, where a is visible element of � and b ∈ �, we
denote by I1(a, b) and I2(a, b) the invariants (4.1.5) and (4.1.6) respectively, where
β is a visible element of �a defined by (4.1.10).

Definition 4.1.1 A visible vector a ∈ � is said to be long visible (with respect to
Q) if sa ∈ Q if and only if s = ∓1.

If a is long visible, then the directional potential qa of (4.1.9) has the form (4.1.7).
Therefore the invariant (4.1.4) is

‖qa‖2 ≡ 2|z(a)|2 (4.1.11)

and hence the invariant (4.1.4) gives the absolute value of the Fourier coefficient
z(a). Moreover, we prove that there exist a lot of pairs {a, b} such that the invariants
(4.1.11), I1(a, b), and I2(a, b) give the following simple invariants

S1(a, b) = Re(z(−a)z(a − b)z(b)), A1(a, b) = cos(−α(a) + α(a − b) + α(b)),

(4.1.12)

S2(a, b) = Re(z2(−a)z(a + b)z(a − b)), A2(a, b) = cos(−2α(a) + α(a + b) + α(a − b)),

(4.1.13)

where Re(z) is the real part of the complex number z, z(a) = r(a)eiα(a),α(a) ∈
(−π,π]. In other words, for these pairs we have the equations

− α(a) + α(a − b) + α(b) = d(a, b)e(1, a, b)(mod2π), (4.1.14)

− 2α(a) + α(a + b) + α(a − b) = d(a, b)e(2, a, b)(mod2π), (4.1.15)
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where e(i, a, b) =: arccos Ai (a, b) for i = 1, 2 are the known numbers belonging
to [0,π], d(a, b) = ±1, and the equality θ = ϕ(mod2π) means that θ − ϕ = 2kπ
for some integer k.

In Sect. 4.2, we consider the invariants (4.1.5) and (4.1.6) for the polynomials
(4.1.9) andfind a lot of pairs {a, b} such that there exist the simple invariants A1(a, b),

A2(a, b) corresponding to these pairs.
Besides in Sect. 4.2, we consider the invariants (4.1.4)–(4.1.6) when q(x) has the

form
q(x) =

∑

a∈Q(1,1,1)

z(a)ei〈a,x〉, (4.1.16)

where

Q(1, 1, 1) =: {nγ1 + mγ2 + sγ3 : |n| ≤ 1, |m| ≤ 1, |s| ≤ 1}\{(0, 0, 0)}, z(a) �= 0
(4.1.17)

for all a ∈ Q(1, 1, 1) and {γ1, γ2, γ3} is a basis of � satisfying

〈γi , γ j 〉 �= 0, 〈γi + γ j , γk〉 �= 0, |γi | �= |γ j |, 〈γi + γ j + γk, γi − γ j − γk〉 �= 0
(4.1.18)

for all different indices i, j, k. Note that every lattice has a basis satisfying (4.1.18)
(see Proposition 4.2.3 in Sect. 4.2). Moreover in Proposition 4.2.2 of Sect. 4.2, we
prove that every element a of Q(1, 1, 1) is a visible element of � and hence the
directional potential qa(x) of (4.1.16) has the form (4.1.7). Therefore, we have the
invariants (4.1.4)–(4.1.6) for all a ∈ Q(1, 1, 1).

In Sect. 4.3 we give an algorithm for finding the Fourier coefficients z(n, m, s)
when (n, m, s) ∈ B(N , M, S), where

B(N , M, S) = {(n, m, s) ∈ Q(N , M, S) : nms(|n| − N )(|m| − M)(|s| − S) = 0}.

First, we find z(a) when a belongs to the boundary ∂ Q̃ of the parallelepiped

Q̃ =: {x = (x1, x2, x3) : |x1| ≤ N , |x2| ≤ M, |x2| ≤ S},

that is, we find the Fourier coefficients z(n, m, s) if either n = N ,−N , or m =
M,−M , or s = S,−S. For this we use the following two observations.

(1) All boundary points of Q̃ except the points of the set

A(N , M, S) = {(±N , 0, 0), (0, ±M, 0), (0, 0, ±S)} ∪ {(n, m, s) : |n| = |m| = |s| = N }

are long visible, if N , M, S are distinct prime numbers, satisfying N < M < S.

Hence, the absolute value r(a) of z(a) is known by (4.1.11).
(2) If a is a boundary point of Q̃, then there are a lot of vectors b such that there

exists simple invariant A2(a, b) corresponding to the pair {a, b}.
Thus, we can write a lot of equations of type (4.1.15) with respect to the argument

of the Fourier coefficients. If d(a, b) and the values of two summands in the left-hand
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side of (4.1.15) are known, then one can find the value of the third summand. To
use these equations we need to know the values of the arguments of some Fourier
coefficients. Three of them can be determined by fixing the translation x → x + τ ,
that is, by taking one of the functions q(x + τ ). Namely, in the Sect. 4.3, we prove
that the conditions

ατ (N − 1, M, S) = ατ (N , M − 1, S) = ατ (N , M, S − 1) = 0, (4.1.19)

ατ (N , M, S) ∈ [0, 2π

N + M + S − 1
), (4.1.20)

where
ατ (a) = arg(q(x + τ ), ei〈a,x〉),

determine a unique value of τ .
Thus, in Sect. 4.3, using (4.1.19) and a lot of equations of type (4.1.15) we deter-

mine z(a) when a ∈ ∂ Q̃. Then, using this, we find z(n, m, s), when nms = 0.
In Sect. 4.4 we construct a dense in W s

2 (F), where s > 3, in theC∞-topology set
D of trigonometric polynomials, such that every q ∈ D can be found by the given
algorithm.

In Sect. 4.5 fixing the inversion and translations (4.1.8), we give an algorithm
for the unique determination of the potential (4.1.16) of the three-dimensional
Schrödinger operator L(q) from the invariants (4.1.4)–(4.1.6).Moreover, we give the
formulas [see (4.5.12), (4.5.14), (4.5.22), (4.5.23), (4.5.27)–(4.5.29) and (4.5.33)–
(4.5.35)] for finding Fourier coefficients z(a) of the potential (4.1.16), by using the
invariants s1, s2, . . . , s24 [see (4.5.11)] obtained from (4.1.4)–(4.1.6). These formu-
las explicitly express the Fourier coefficients in term of the invariants s1, s2, . . . , s24.
Then using these formulas we find sufficient conditions [see (4.5.2)] on the invariants
that allows to find the potential of the form (4.1.16) by formulas (4.5.12), (4.5.14),
(4.5.22), (4.5.23), (4.5.27)–(4.5.29) and (4.5.33)–(4.5.35) (see Corollary4.5.1). Note
that, the sufficient conditions on the spectral data to solve the inverse problem for the
multidimensional Schrödinger operator L(q) is given for the first time in the paper
[Ve12], albeit in a fairly restricted set of potentials q. It is expected that, this approach
may open up new horizons for inverse problem of the multidimensional Schrödinger
operator with a periodic potential. Since the invariants (4.1.5) and (4.1.6) do not exist
in the case d = 1,we do not use the investigations of the inverse problem for the one
dimensional Schrödinger operator H(q). For this reason, we do not discuss a great
number of papers about the inverse problem of the Hill operator.

In Sect. 4.6 we study the stability of the algorithm with respect to errors both in
the invariants (4.1.4)–(4.1.6) and in the Bloch eigenvalues. Note that we determine
constructively the potential from the band functions in two steps. At the first step
we determined the invariants from the band functions in Chap.3. At the second step,
which is given in Sect. 4.5, we find the potential from the invariants. In Sect. 4.6 we
consider the stability of the problems studied in both steps. First, using the asymptotic
formulas obtained in Chap.3, we write down explicitly the asymptotic expression of

http://dx.doi.org/10.1007/978-3-319-16643-8_3
http://dx.doi.org/10.1007/978-3-319-16643-8_3
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the invariants (4.1.4)–(4.1.6) in terms of the band functions and consider the stability
of the invariants with respect to the errors in the Bloch eigenvalues (Theorem4.6.1
and Proposition4.6.1). Then we prove the stability of the algorithm given in Sect. 4.5
with respect to the errors in the invariants (Theorem4.6.2).

In Sect. 4.7 we prove some uniqueness theorems. First, we prove a theorem about
Hill operator H(p) when p(x) is a trigonometric polynomial (see Theorem4.7.1).
Then we construct a set W of all periodic functions q(x)whose directional potentials
qa(x) for all a ∈ S\{γ1, γ2, γ3} are arbitrary continuously differentiable functions,
where S is the set of all visible elements of �, {γ1, γ2, γ3} is a basis of � satisfying
(4.1.18), and the directional potentials qγ1(x), qγ2(x), qγ3(x) satisfy some condi-
tions. At the end we prove that if q has the form (4.1.16), q̃ ∈ W and the band
functions of L(q) and L(q̃) coincide, then q̃ is equal to q modulo inversion and
translations (4.1.8) (see Theorem4.7.2).

4.2 On the Simple Invariants

First, let us consider the invariants (4.1.5) and (4.1.6) for the trigonometric polyno-
mial (4.1.9).

Definition 4.2.1 A pair {a, b}, where a is a long visible element of Q and b ∈ Q, is
said to be a canonical pair of type 1 if 〈b, a − b〉 �= 0 and the following implication
holds

{c, a − c} ⊂ (P(a, b) ∩ Q)\aR ⇔ c ∈ {b, a − b}. (4.2.1)

A pair {a, b}, where a is a long visible element of Q and b ∈ Q, is said to be a
canonical pair of type 2 if 〈a + b, a − b〉 �= 0 and the following implication holds

{a + c, a − c} ⊂ (P(a, b) ∩ Q)\aR ⇔ c ∈ {±b}. (4.2.2)

Theorem 4.2.1 If the potential q has the form (4.1.9) and a is long visible ele-
ment of Q, then the invariants I1(a, b), I2(a, b), defined in Notation4.1.1, yield the
invariants

Re(z(−a)(
∑

c∈G1

g(a, c)z(a − c)z(c))), (4.2.3)

Re(z2(−a)(
∑

c∈G2

h(a, c)z(a − c)z(a + c))), (4.2.4)

where

g(a, c) = 〈c, c − a〉
(〈c,β〉)2 , h(a, c) = 〈c + a, c − a〉

(〈c,β〉)2 ,

G1 and G2 are the set of all c such that {c, a − c} ⊂ (P(a, b) ∩ Q)\aR and
{a + c, a − c} ⊂ (P(a, b) ∩ Q)\aR respectively.
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If {a, b} is a canonical pair of type k, where k = 1, 2, then (4.2.3) and (4.2.4)
give the simple invariants Sk(a, b), Ak(a, b) defined in (4.1.12) and (4.1.13).

Proof If the potential q(x) has the form (4.1.9), then (4.1.3) becomes

qa,β(x) =
∑

c∈(P(a,β)∩Q)\aR

c

〈β, c〉 z(c)ei〈c,x〉. (4.2.5)

Using this and (4.1.7) in (4.1.5), we get

I1(a, b) =
∫

F

∣
∣qa,β(x)

∣
∣2 qa(x)dx = �1 + �2, (4.2.6)

where I1(a, b) is defined in Notation4.1.1,

�1 =
∑

c∈(P(a,b)∩Q)\aR

〈c, c + a〉
〈c,β〉 〈c + a,β〉 z(c)z(−a − c)z(a), (4.2.7)

�2 =
∑

c∈(P(a,b)∩Q)\aR

〈c, c − a〉
〈c,β〉 〈c − a,β〉 z(c)z(a − c)z(−a).

Since Q(N , M, S) is symmetric with respect to the origin, the substitution c′ = −c
in (4.2.7) does not change �1. Using this substitution in (4.2.7) and then taking into
account that z(−b) = z(b), 〈a,β〉 = 0, we obtain

�1 = �2, �1 + �2 = Re(2�2).

This with (4.2.6) shows that the invariant I1(a, b) gives the invariant (4.2.3).
Replacing a by 2a, in the same way, we obtain the invariant

Re(z2(−a)(
∑

c∈G

〈c, c − 2a〉
(〈c,β〉)2 z(2a − c)z(c))) (4.2.8)

from the invariant I2(a, b), where G is the set of all c such that {c, 2a − c} ⊂
(P(a, b) ∩ Q)\aR, 〈c, c − 2a〉 �= 0. Thus, in (4.2.8) replacing c by a + c and using
the obvious equality 〈a,β〉 = 0, we get (4.2.4).

Now suppose that {a, b} is a canonical pair of type 1. Then it follows from the
definition of G1 and from the definition of the canonical pair of type 1 that G1 =
{b, a − b}. Therefore (4.2.3) has the form

Re(z((−a)(
〈b, b − a〉
(〈b,β〉)2 z(a − b)z(b) + 〈a − b,−b〉

(〈a − b,β〉)2 z(b)z(a − b))).
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The invariant S1(a, b) can be obtained from this invariant, because 〈b, b − a〉 =
〈a − b,−b〉 and 〈a,β〉 = 0. The invariant (4.1.11) and S1(a, b) imply A1(a, b). In
the same way we obtain the invariants S2(a, b) and A2(a, b) from (4.2.4) �

Now we determine a lot of canonical pairs of the types 1 and 2.

Condition 4.1 Suppose � = Z
3 and z(n, m, s) �= 0 for (n, m, s) ∈ B(N , M, S),

where N, M, S are prime numbers satisfying S > 2M, M > 2N , N � 1.

Proposition 4.2.1 Suppose the Condition4.1 holds.
(a) The pair {a, b} is a canonical pair of type 2 in each of the following cases:

(1)a = (N , M−1, s), b = (0,±1, p), where s+p, s−p ∈ [−S, S], |p| ≤ M−1.
(2) a = (N , m, S − 1), b = (0, q,±1), where m + q, m − q ∈ [−M, M].
(3) a = (N , m, s), b = (0,±1, p), where m ∈ [−M + 1, M − 1], s + p, s − p ∈

[−S, S], s−2p �∈ [−S, S], (N , m, s) /∈ A(N , M, S) and N 2+m2−1+s2− p2 �= 0.
(b) The pair {a, b} is a canonical pair of type 1 in each of the following cases

(1) a = (N , M − 1, s), b = (0,−1, N ), S − N < s ≤ S, s �= k N ,wherek ∈ Z .

(2) a = (N , M, 0), b = (N , 0, S)).

(c) If n and m are the relatively prime nonnegative integers and (n, m, 0) ∈ Q,
then

Q ∩ (P((0,−M, S), (n, m, 0))) = (Q−1 ∪ Q0 ∪ Q1) ∩ Q, (4.2.9)

where P((0,−M, S), (n, m, 0)) is the plane passing through (0, 0, 0), (0,−M, S),

(n, m, 0) and Qk = {l(n, m, 0) + k(0,−M, S) : l ∈ Z} for k = −1, 0, 1.

Proof (a) The conditions of Condition4.1 on N , M, S and the conditions of this
proposition on s, p, q, m imply the inequality 〈a + b, a − b〉 �= 0. Now, by the
Definition4.2.1, we need to show that (4.2.2) holds. Let c = (n1, m1, s1) be any
vector satisfying

{a + c, a − c} ⊂ (P(a, b) ∩ Q)\aR. (4.2.10)

Since, in all of the above cases, the first coordinate of a is N , the implication (4.2.10)
and the definition of Q(N , M, S) imply that n1 = 0 for the all cases (1)–(3). Hence

c ∈ {(x1, x2, x3) ∈ R
3 : x1 = 0} =: {x1 = 0}. (4.2.11)

On the other hand it follows from (4.2.10) that c ∈ P(a, b). Thus c belongs to the
line intersection of the planes P(a, b) and {x1 = 0}. Since b also belongs to this line
and b is a visible element of �, we have c = kb for some nonzero integer k. Clearly,
if k is not ±1, then either a + c or a − c does not belongs to Q(N , M, S), which
means that (4.2.2) holds.

(b) First let us consider the case (1). It is clear that 〈b, a−b〉 = N (s−N )−M �= 0,
since N and M are the distinct prime numbers. Therefore, we need to prove that
(4.2.1) holds (see Definition4.2.1). Let c = (n1, m1, s1) be any vector satisfying

{c, a − c} ⊂ (P(a, b) ∩ Q)\aR. (4.2.12)
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If the vector c lies on plane P(a, b), then the determinant of the matrix with rows
a, b and c is zero. It gives the equality

N (s1 + m1N ) = n1(s + (M − 1)N ). (4.2.13)

Since N is prime number and s +(M −1)N is not a multiple of N ,we have n1 = k N
for k ∈ Z. Then c = (k N , m1, s1). The set Q(N , M, S) contains the vector c only
in the following three cases: k = 0, k = 1, k = −1. In the case k = 0 we have
n1 = 0. Then from (4.2.13) one sees that s1 = −Nm1, that is, c = m1(0, 1,−N ),
where m1 �= 0. If m1 �= −1, i.e., c �= b, then the conditions S − N < s ≤ S of the
proposition imply that a − c �∈ Q. Thus, in the case k = 0, we obtain that c = b. If
k = −1, then one can readily see that c = (−N , m1, s1), a − c �∈ Q. It remains to
consider the case k = 1, that is, n1 = N . In this case we use the following obvious
implication:

a ∈ {xk = n}, b ∈ {xk = 0} ⇒ P(a, b) ∩ {xk = 0} = bR, P(a, b) ∩ {xk = n} = a + bR.

(4.2.14)
Since

c = (N , m1, s1) ∈ {x1 = N }, a ∈ {x1 = N }, b ∈ {x1 = 0}, c ∈ P(a, b)\aR

[see (4.2.12)], the relation (4.2.14) yields that c ∈ a + bR. Moreover, c = a + kb
for some nonzero integer k, since b is the visible element of �. Using this and taking
into account that a + kb, where a = (N , M −1, s), b = (0,−1, N ), lies in Q if and
only if k = −1, we obtain c = a − b.

Now consider the case (2). First let us prove that in this case the plane P(a, b)

contains only the vectors±(N , M, 0),±(N , 0, S),±(0, M,−S) of Q. In fact, every
element (n, m, s) of this plane satisfies the equation

S(nM − m N ) = s N M. (4.2.15)

First let us consider the case s = 0, i.e., the case nM = m N . Since N and M are
distinct prime numbers and −N ≤ n ≤ N , −M ≤ m ≤ M , it follows that either
n = ±N , m = ±M or n = m = 0. Now consider the case s �= 0. Then the right-
hand side of (4.2.15) is a multiple of S. Therefore taking into account that S is a
prime number satisfying Condition4.1 and −S ≤ s ≤ S, we have s = ±S. This
together with (4.2.15) gives the relation (n ± N )M = m N . From this relation one
sees that either n = ∓N , m = 0 or n = 0, m = ±M . Thus

P(a, b) ∩ Q = {±(N , M, 0),±(N , 0, S),±(0, M,−S)}.

Using this and taking into account that a = (N , M, 0), b = (N , 0, S), we get

(P(a, b) ∩ Q)\aR = {±b,±(a − b)}. (4.2.16)
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Now suppose that c is a vector satisfying (4.2.12). If c = −b, then

a − c = a + b /∈ (P(a, b) ∩ Q)\aR

due to (4.2.16). Similarly, if c = −(a − b), then

a − c = 2a − b /∈ (P(a, b) ∩ Q)\aR

again due to (4.2.16). Therefore (4.2.12) and (4.2.16) imply the proof of (4.2.1).
(c) The relation (n1, m1, s1) ∈ P((0,−M, S), (n, m, 0)) holds if and only if

S(mn1 − m1n) = s1Mn. (4.2.17)

If (mn1 − m1n) = 0, then s1 = 0. If (mn1 − m1n) �= 0, then s1 = ±S, since S
is prime satisfying Condition4.1, and (n, m, 0) ∈ Q. Hence, (n1, m1, s1) belongs
to either {x3 = 0} or {x3 = S} or {x3 = −S}. Therefore (4.2.9) follows from
(4.2.14) �

Now let us consider the invariants (4.1.5) and (4.1.6) for the simple trigonometric
polynomial (4.1.16). To describe the invariant (4.1.4) let us prove the following
proposition.

Proposition 4.2.2 Every element a of the set Q(1, 1, 1), defined in (4.1.17), is a
visible element of � and the corresponding directional potential qa has the form
(4.1.7).

Proof Let a be element of Q(1, 1, 1). By the definition of Q(1, 1, 1)

a = nγ1 + mγ2 + sγ3, |n| ≤ 1, |m| ≤ 1, |s| ≤ 1, a �= 0. (4.2.18)

If a is not a visible element of �, then there exists a visible element b of � such that
a = kb for some integer k > 1. This with (4.2.18) implies that

b = 1
k (nγ1 + mγ2 + sγ3). (4.2.19)

Since b ∈ � and {γ1, γ2, γ3} is a basis of � we have b = n1γ1 + m1γ2 + s1γ3,
where n1, m1, s1 are integers. Combining this with (4.2.19) and taking into account
the linearly independence of the vectors γ1, γ2, γ3, we get

(n1 − n
k )γ1 + (m1 − m

k )γ2 + (s1 − s
k )γ3 = 0, and n1 − n

k = m1 − m
k = s1 − s

k = 0.

This is impossible, since |n| ≤ 1, |m| ≤ 1, |s| ≤ 1, at least one of the numbers
n, m, s is not zero [see (4.2.18)], k > 1 and the numbers n1, m1, s1 are integers.
This contradiction shows that any element a of Q(1, 1, 1) is a visible element of
�. Therefore, it follows from the definition of Q(1, 1, 1) [see (4.1.17)] that the line



4.2 On the Simple Invariants 183

aR contains only two elements a and −a of the set Q(1, 1, 1). This means that the
directional potential qa has the form (4.1.7) �

By Proposition4.2.2 the invariant (4.1.4) for the potential (4.1.16) has the form

I (a) = |z(a)|2, ∀a ∈ Q(1, 1, 1), (4.2.20)

that is, we determine the absolute value of z(a) for all a ∈ Q(1, 1, 1).
To investigate the invariants (4.1.5) and (4.1.6), we use the conditions in (4.1.18).

Therefore, first, let us consider these conditions.

Proposition 4.2.3 Any lattice � has a basis {γ1, γ2, γ3} satisfying (4.1.18). In par-
ticular, if

� = {(na, mb, sc) : n, m, s ∈ Z}, (4.2.21)

where a, b, c ∈ R\{0}, then at least one of the bases {(a, 0, 0), (a, b, 0), (a, b, c)}
and {(−a, 0, 0), (a, b, 0), (a, b, c)} of � satisfies (4.1.18).

Proof Suppose that a basis {γ1, γ2, γ3} of � does not satisfy (4.1.18). Define
{̃γ1, γ̃2, γ̃3} by

γ̃1 = γ1, γ̃2 = nγ1 + γ2, γ̃3 = mγ1 + sγ2 + γ3,

where n, m, s are integers. Since γ1 = γ̃1, γ2 = γ̃2 − nγ̃1, γ3 = γ̃3 − mγ̃1 − s (̃γ2 −
nγ̃1), the triple {̃γ1, γ̃2, γ̃3} is also a basis of �. In (4.1.18) replacing {γ1, γ2, γ3} by
{̃γ1, γ̃2, γ̃3}, we obtain 12 inequalities with respect to n, m and s. Since n, m and s
are arbitrary integers one can readily see that there exists n, m and s for which these
inequalities hold. For example, let

γ̃1 = γ1, γ̃2 = nγ1 + γ2, γ̃3 = n2γ1 + γ3, (4.2.22)

where n is a large positive number, that is, n � 1. Then it follows from (4.2.22) that

〈
γ̃i , γ̃ j

〉 � 1,
〈
γ̃i + γ̃ j , γ̃ j

〉 � 1, ∀i �= j,

that is, the first and second inequalities in (4.1.18) hold. Besides, by (4.2.22), we
have

|̃γ1|2 ∼ 1, |̃γ2|2 ∼ n2, |̃γ3|2 ∼ n4,
〈
γ̃i , γ̃ j

〉 = O(n3), (4.2.23)

where an ∼ bn means that there exist positive constants c1 and c2 such that

c1|bn| < |an| < c2|bn| (4.2.24)

for n = 1, 2, . . .. The third inequality of (4.1.18) holds due to (4.2.23). By (4.2.23)
the term ±|̃γ3|2 in the fourth inequality of (4.1.18) can not be cancelled by the other
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terms of this inequality. Thus, we proved that any lattice � has a basis {̃γ1, γ̃2, γ̃3}
satisfying (4.1.18).

Note that, for the given lattice, one can easily find the basis satisfying (4.1.18). For
example, in the case (4.2.21), one can readily see that the basis {(a, 0, 0), (a, b, 0),
(a, b, c)} satisfies (4.1.18) if c2 �= 3a2 and the basis {(−a, 0, 0), (a, b, 0), (a, b, c)}
satisfies (4.1.18) if c2 �= a2. Thus at least one of the bases

{(a, 0, 0), (a, b, 0), (a, b, c)} and {(−a, 0, 0), (a, b, 0), (a, b, c)} satisfies (4.1.18) �

Now to describe the invariants (4.1.5) and (4.1.6) for (4.1.16) let us introduce
some notations. If b ∈ (� ∩ P(a,β))\aR, then the plane P(a,β) coincides with
the plane P(a, b). Moreover, every vector b ∈ (P(a,β) ∩ �)\aR has an orthogo-
nal decomposition (4.1.10). Therefore, as we noted in introduction, for every plane
P(a, b), where b ∈ �, there exists a plane P(a,β), where β is defined by (4.1.10),
coinciding with P(a, b). For every pair {a, b}, where a is visible element of � and
b ∈ �, we redenote by I1(a, b) and I2(a, b) the invariants I1(a,β) and I2(a,β)

defined in (4.1.5) and (4.1.6) respectively, where β is a visible element of �a defined
by (4.1.10).

Theorem 4.2.2 The following equalities for the invariant (4.1.5) hold:

I1(γi + γ j , γi ) = A1(γi + γ j , γi )Re(z(−γi − γ j )z(γ j )z(γi )), (4.2.25)

I1(γi − γ j , γi ) = A1(γi − γ j , γi )Re(z(−γi + γ j )z(−γ j )z(γi )), (4.2.26)

I1(γ, γi ) = A1(γ, γi )Re(z(−γ)z(γ − γi )z(γi )), (4.2.27)

I1(2γi − γ, γi ) = A1(2γi − γ, γi )Re(z(γ − 2γi )z(γi − γ)z(γi )), (4.2.28)

where A1(γi ± γ j , γi ), A1(γ, γi ), A1(2γi − γ, γi ) are nonzero numbers defined by

A1(a, b) = 2
(
(〈b,β〉)−2 + (〈a − b,β〉)−2

)
〈a − b, b〉 , (4.2.29)

{γ1, γ2, γ3} is a basis of � satisfying (4.1.18), γ = γ1 + γ2 + γ3 and Re(z) is the
real part of z.

Proof If the potential q(x) has the form (4.1.16), then (4.1.3) becomes

qa,β(x) =
∑

c∈(P(a,β)∩Q)\aR

c

〈β, c〉 z(c)ei〈c,x〉, (4.2.30)

where, for brevity, Q(1, 1, 1) is denoted by Q. Using this and (4.1.7) in (4.1.5) and
taking into account that the invariant I1(a,β) defined by (4.1.5) is redenoted by
I1(a, b), we get

I1(a, b) = �1 + �2, (4.2.31)
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where

�1 =
∑

c∈(P(a,b)∩Q)\aR

〈c, c + a〉
〈c,β〉 〈c + a,β〉 z(c)z(−a − c)z(a),

�2 =
∑

c∈(P(a,b)∩Q)\aR

〈c, c − a〉
〈c,β〉 〈c − a,β〉 z(c)z(a − c)z(−a)

and β is a visible element of �a defined by (4.1.10). Since Q(1, 1, 1) is symmetric
with respect to the origin, the substitution c̃ = −c in �1 does not change �1. Using
this substitution in �1 and then taking into account that z(−b) = z(b), 〈a,β〉 = 0,
we obtain �1 = �2. This with (4.2.31) gives

I1(a, b) = 2Re

⎛

⎝z(−a)

⎛

⎝
∑

c∈(P(a,b)∩Q)\aR

〈a − c, c〉
(〈c,β〉)2 z(a − c)z(c)

⎞

⎠

⎞

⎠ . (4.2.32)

Since a, β, (0, 0, 0) belong to the plane P(a, b) and β orthogonal to the line aR, we
have

〈c,β〉 �= 0, ∀c ∈ (P(a, b) ∩ Q)\aR. (4.2.33)

Now using (4.2.32) we obtain the invariants (4.2.25) and (4.2.26) as follows. First
let us consider (4.2.25). Let a = γi + γ j and b = γi . Then

(P(a, b) ∩ Q)\aR = {±γi , ± γ j , ± (γi − γ j )}.

On the other hand, if c ∈ {−γi , −γ j , ±(γi − γ j )}, then a − c /∈ Q. Therefore, the
summation in the formula (4.2.32) for the case a = γi + γ j , b = γi is taken over
c ∈ {γi , γ j } and hence (4.2.25) holds. It follows from (4.2.33) and from the first
inequality in (4.1.18) that A1(γi + γ j , γi ) �= 0.

Replacing a = γ j by−γ j and arguing as in the proof of (4.2.25), we get (4.2.26).
Now let us consider (4.2.27). Let a = γ = γ1 + γ2 + γ3 and b = γ1. Then

(P(a, b) ∩ Q)\aR = {±γ1, ± (γ2 + γ3)}.

If c = −γ1, or c = −γ2 − γ3, then a − c /∈ Q. Therefore, the summation in the
formula (4.2.32) for this case is taken over c ∈ {γ1, γ2 + γ3} and hence (4.2.27)
holds for i = 1. In the same way, we obtain (4.2.27) for i = 2, 3.

Now let us consider (4.2.28). Let a = 2γi − γ and b = γi . Then

(P(a, b) ∩ Q)\aR = {±γi , ± (γi − γ)}.

On the other hand, if c = −γi , or c = γ − γi , then a − c /∈ Q. Therefore, the
summation in the formula (4.2.32) for this case is taken over c ∈ {γi , γi − γ} and
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hence (4.2.28) holds. Sinceγi −γ = −(γ j +γk), it follows from the second inequality
in (4.1.18) that A1(2γi − γ, γi ) �= 0. �

Theorem 4.2.3 The following equalities for the invariant (4.1.6) hold:

I2(γi , γ j ) = A2(γi , γ j )Re(z2(−γi )z(γi + γ j )z(γi − γ j )), (4.2.34)

I2(γi , γ − γi ) = A2(γi , γ − γi )Re(z2(−γi )z(γ)z(2γi − γ)), (4.2.35)

where A2(γi , γ j ), A2(γi , γ − γi ) are nonzero numbers defined by
A2(a, b) = 2(a−b, a+b)(b,β)−2 and γ, γ1, γ2, γ3 are defined inTheorem4.2.2.

Proof Replacing a by 2a, and arguing as in the proof of (4.2.32), we get

I2(a, b) = 2Re

⎛

⎝z2(−a)

⎛

⎝
∑

c∈(P(a,b)∩Q)\aR

〈2a − c, c〉
(〈c,β〉)2 z(2a − c)z(c)

⎞

⎠

⎞

⎠ .

(4.2.36)
In (4.2.36) replacing c by a + c and taking into account that 〈a,β〉 = 0, we obtain
the invariant

I2(a, b) = 2Re

⎛

⎝z2(−a)

⎛

⎝
∑

c∈(P(a,b)∩Q)\aR

〈a + c, a − c〉
(〈c,β〉)2 z(a + c)z(a − c)

⎞

⎠

⎞

⎠ .

(4.2.37)
Now using this, we obtain the invariants (4.2.34) and (4.2.35) as follows. First let

us consider (4.2.34). Let a = γi , b = γ j . Then

(P(a, b) ∩ Q)\aR = {±γ j , ± (γi − γ j ), ± (γi + γ j )}.

One the other hand, if c = ±(γi − γ j ), or c = ±(γi + γ j ), then at least one of the
vectors a − c and a + c does not belong to Q. Therefore, the summation in (4.2.37)
for this case is taken over c ∈ {±γ j } and hence (4.2.34) holds. By the third inequality
in (4.1.18) we have A2(γi , γ j ) �= 0.

Now let us consider (4.2.35). Let a = γi and b = γ − γi . Then

(P(a, b) ∩ Q)\aR = {±γ, ± (γ − γi ), ± (γ − 2γi )}.

If c = γ, then c + a = γ + γi /∈ Q. If c = −γ, then c − a = −γ − γi /∈ Q.

If c = γ − 2γi , then c − a = γ − 3γi /∈ Q. If c = −(γ − 2γi ), then c + a =
−γ + 3γi /∈ Q. Therefore, the summation in the formula (4.2.37) for this case is
taken over c ∈ {±(γ − γi )} and hence (4.2.35) holds. Since γ = γi + γ j + γk, it
follows from the last inequality in (4.1.18) that A2(γi , γ − γi ) �= 0. �
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4.3 Finding the Fourier Coefficients Corresponding
to the Boundary

First we prove the following simple theorem:

Theorem 4.3.1 There exists a unique value of τ ∈ F such that the conditions
(4.1.19), (4.1.20) hold.

Proof It follows from (4.1.9) and from the definition of F that

ατ (a) = 〈a, τ 〉 + α(a), τ = c1ω1 + c2ω2 + c3ω3, (4.3.1)

where ατ (a) is defined in (4.1.20), and

α(a) = α0(a) = arg(q(x), ei〈a,x〉), ck ∈ [0, 1), k = 1, 2, 3.

Using this one sees that (4.1.19) is equivalent to the following system of equations

2π((N − 1)c1 + Mc2 + Sc3) = −α(N − 1, M, S)(mod2π),

2π(Nc1 + (M − 1)c2 + Sc3) = −α(N , M − 1, S)(mod2π),

2π(Nc1 + Mc2 + (S − 1)c3) = −α(N , M, S − 1)(mod2π).

The determinant of the coefficient matrix of this systemwith respect to the unknowns
c1, c2, c3 is 8π3(N + M + S −1). Therefore this system has a solution. Let c1, c2, c3
and c′

1, c′
2, c′

3 be different solutions of this system corresponding to the different
values of the right-hand side. Introduce the unknowns x = c1−c′

1, y = c2−c′
2, z =

c3 − c′
3. It is clear that x, y, z are the solution of the system

(N − 1)x + My + Sz = k,

N x + (M − 1)y + Sz = m,

N x + My + (S − 1)z = n.

where k, m, n are integers. The solutions of this system has the form

x = f (k, m, s)

N + M + S − 1
, x = g(k, m, s)

N + M + S − 1
, x = h(k, m, s)

N + M + S − 1
,

where f (k, m, s), g(k, m, s), h(k, m, s) are integers and f (1, 1, 1) = g(1, 1, 1) =
h(1, 1, 1) = 1.Therefore the above systemof equationswith respect to the unknowns
c1, c2, c3 ∈ [0, 1) has N + M + S − 1 solutions (c1,l , c2,l , c3,l) satisfying

c j,l+1 − c j,l = 1

N + M + S − 1
, j = 1, 2, 3 and l = 1, 2, . . . , N + M + S − 2.
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Thus using (4.3.1), the equality 〈ωi , γ j 〉 = 2πδi, j and taking into account the
notations

z(nγ1 + mγ2 + sγ3) =: z(n, m, s), z(a) = r(a)eiα(a),α(a) ∈ [−π,π), one sees
that there exist τ1, τ2, . . . , τN+M+S−1 such that

τl+1 − τl = ω1 + ω2 + ω3

N + M + S − 1
,

ατl+1(N , M, S) − ατl (N , M, S) = 2π

N + M + S − 1
.

This implies that there exists a unique value of τ satisfying (4.1.19), (4.1.20) �

By Theorem4.3.1, without loss of generality, it can be assumed that

α(N − 1, M, S) = α(N , M − 1, S) = α(N , M, S − 1) = 0. (4.3.2)

On the other hand, the invariant (4.1.11) determines the modulus of

z(N − 1, M, S), z(N , M − 1, S), z(N , M, S − 1), (4.3.3)

since the vectors (N − 1, M, S), (N , M − 1, S), (N , M, S − 1) are the long visible
elements of Q(N , M, S). Therefore, the Fourier coefficients in (4.3.3) are known.

In this sections, using Theorem4.2.1, Proposition4.2.1 and taking into account
that the Fourier coefficients in (4.3.3) are known, we find all the Fourier coefficients
z(a) for a ∈ B(N , M, S), where B(N , M, S) is defined in the introduction. To
formulate these results we use the following remark.

Remark 4.3.1 Let a1, a2, . . . , an be nonzero elements of �. Assign to every poly-
nomial ∑

k=1,2,...,n

z(ak)e
i〈ak ,x〉 (4.3.4)

the vector (x(a1), y(a1), x(a2), y(a2), . . . , x(an), y(an)) of R2n , where x(ak) and
y(ak) are the real and imaginary part of the Fourier coefficient z(ak). There exists one
to one correspondence between the polynomials of the form (4.3.4) and elements of
R
2n .Further, we assume the following types of conditions on the Fourier coefficients:
Type 1. Assume that z(a j ) �= 0 for some index j. In other words, we eliminate

the finite number of subspaces z(a j ) = 0 of dimension 2n − 2.
Type 2. Assume that some linear combinations of the invariants e(i, a, b) defined

in (4.1.14), (4.1.15) are not 0(modπ).
Type 3. Assume that some homogenous polynomials depending on
x(a1), y(a1), x(a2), y(a2), . . . . are not zero.
These conditions mean that we eliminate some sets of dimensions less than 2n.

In any case, the 2n dimensional measures of the eliminated sets are zero. We named
these conditions as zero measure conditions. This means that we consider almost all



4.3 Finding the Fourier Coefficients Corresponding to the Boundary 189

polynomials of the form (4.3.4). In order to avoid eclipsing the essence by technical
details, we prefer to formulate the theorems for almost all the potentials of the
form (4.3.4) instead of listing the eliminated sets. Note that the separated potentials
show that, to determine the potential uniquely (modulo translations) from spectral
invariants, it is necessary to eliminate some of these subspaces. Thus, the sufficient
conditions to solve the inverse problem by these method are close to the necessary
conditions.

First let us consider

z2(N , M − 1, l), z(N , M, l), z(N , M − 2, l), ∀l. (4.3.5)

Theorem 4.3.2 SupposeCondition4.1 holds. Then the spectral invariants (4.1.11)–
(4.1.13) determine constructively and uniquely, modulo inversion and translation
(4.1.8), the numbers in (4.3.5) for almost all the potentials of the form (4.1.9).

Proof Since the vectors (N , M, l), (N , M −1, l), (N , M −2, l) are long visible, the
absolute values of the numbers in (4.3.5) are known. Therefore we need to find

2α(N , M − 1, l),α(N , M, l),α(N , M − 2, l), ∀l. (4.3.6)

To find (4.3.5) for l = S, S − 1, S − 2 we use the equation (4.1.15) for the following
pairs:

P1 = {(N , M, S − 1), (0, 0, 1)}, P2 = {(N , M − 1, S), (0, 1, 0)},
P3 = {(N , M − 1, S − 1), (0, 1,−1)}, P4 = {(N , M − 1, S − 1), (0, 1, 0)},
P5 = {(N , M − 1, S − 1), (0, 0, 1)}, P6 = {(N , M − 1, S − 1), (0, 1, 1)},
P7 = {(N , M − 2, S − 1), (0, 0, 1)}, and P8 = {(N , M − 1, S − 2), (0, 1, 0)}.
Note that it follows from Proposition4.2.1(a) that the pairs P1, P2, . . . , P8 are

the canonical pairs of type 2. Therefore, by Theorem4.2.1, we have the invariant
A2(a, b) and hence there corresponds equation of type (4.1.15) to each of the pairs
P1, P2, . . . , P8. For simplicity of the notation, in (4.1.15) for Pi , instead of e(2, a, b)

and d(a, b) we write ei and di respectively. Denote α(N , M, S) by α. Using this
notation and (4.3.2) one sees that the equality (4.1.15) for the pairs P1, P2, . . . , P8
has the form

α + α(N , M, S − 2) = d1e1(mod2π),

α + α(N , M − 2, S) = d2e2(mod2π),

−2α(N , M − 1, S − 1) + α(N , M, S − 2) + α(N , M − 2, S) = d3e3(mod2π),

−2α(N , M − 1, S − 1) + α(N , M − 2, S − 1) = d4e4(mod2π),

−2α(N , M − 1, S − 1) + α(N , M − 1, S − 2) = d5e5(mod2π),

−2α(N , M − 1, S − 1) + α + α(N , M − 2, S − 2) = d6e6(mod2π),

−2α(N , M − 2, S − 1) + α(N , M − 2, S) + α(N , M − 2, S − 2) = d7e7(mod2π),

−2α(N , M − 1, S − 2) + α(N , M, S − 2) + α(N , M − 2, S − 2)) = d8e8(mod2π).

(4.3.7)
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From the first and second equations of (4.3.7) we obtain

α(N , M, S − 2) = (d1e1 − α)(mod2π), α(N , M − 2, S) = (d2e2 − α)(mod2π).

(4.3.8)
These equalities with the third equation of (4.3.7) yield

−2α(N , M − 1, S − 1) = (d3e3 − d2e2 − d1e1 + 2α)(mod2π).

Now using the last equality in the fourth, fifth and sixth equations of (4.3.7), we get

α(N , M − 2, S − 1) = (d4e4 + d2e2 + d1e1 − d3e3 − 2α)(mod2π),

α(N , M − 1, S − 2) = (d5e5 + d2e2 + d1e1 − d3e3 − 2α)(mod2π), (4.3.9)

α(N , M − 2, S − 2) = (d6e6 + d2e2 + d1e1 − d3e3 − 3α)(mod2π).

Writing the obtained value for α(N , M − 2, S − 1), α(N , M − 2, S), α(N ,
M − 2, S − 2),α(N , M − 1, S − 2) into seventh and eighth equation of (4.3.7)
we obtain

d7e7 − (d6e6 −2d4e4 + d3e3 − d1e1) = 0(mod2π), d8e8 +2d5e5 + d2e2 = d6e6 + d3e3(mod2π).

(4.3.10)
Introduce the notations V = (d1, d3, d4, d6, d7), U = (d8, d5, d2),

f1(V ) ≡ d7e7 − (d6e6 − 2d4e4 + d3e3 − d1e1), f2(U ) ≡ d8e8 + 2d5e5 + d2e2.

In these notations (4.3.10) has the form

f1(V ) = 0(mod2π), f2(U ) = d6e6 + d3e3(mod2π). (4.3.11)

Since di is either 1 or −1, the vector V takes 32 distinct values

V1, V2, . . . , V16 and − V1,−V2, . . . ,−V16.

Then the function f1(V ) takes 32 values

f1(V1), f1(V2), . . . , f1(V16) and f1(−V1), f1(−V2), . . . , f1(−V16).

Similarly, the vectorU takes 8 distinct valuesU1, U2, . . . , U8 and the function f2(U )

takes 8 values f2(U1), f2(U2), . . . , f2(U8). Suppose

f1(Vk) − f1(V j) �= 0(mod2π)

for k �= j . Then there are only one index k and two values Vk,−Vk of V satisfying

f1(Vk) = − f1(−Vk) = 0(mod2π).
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On the other hand, the arguments of the Fourier coefficients of q(x) and q(−x) take
the opposite values. Therefore, for fixing the translation q(x) −→ q(−x), we take
one of these two remaining values Vk,−Vk of V . Thus, one can find the signs of
d1, d3, d4, d6, d7 from the first equality in (4.3.11). Since the signs of d3 and d6 are
already known, we find d8, d5, d2 from the second equality in (4.3.11) if

d6e6 + d3e3 �= 0(mod2π) and f2(Uk) − f2(U j ) �= 0(mod2π).

Thus the numbers d1, d2, . . . , d8 are known. Since e1, e2, . . . , e8 are known invari-
ants, the numbers in (4.3.6) for l = S, S − 1, S − 2 can be expressed in terms of α.

Moreover we have the formulas [see (4.3.8), (4.3.9)]

−2α(N , M − 1, S − p) = E1 + 2pα,

α(N , M, S − p) = E2 − (p − 1)α, (4.3.12)

α(N , M − 2, S − p) = E3 − (p + 1)α

for p = 0, 1, 2, where by Ei for i = 1, 2, . . . we denote the linear combinations of
e1, e2, . . . with known coefficients.

Now let us consider (4.3.6) for all l. For this we use the Eq. (4.1.15) for the
canonical pairs P9(s) = {(N , M − 1, s),(0, 1, 1)}, P10(s) = {(N , M − 1, s − 1),
(0, 1, 0)},

P11(s) = {(N , M − 1, s), (0, 1,−1)} of type 2 (see Proposition4.2.1(a)). The
Eq. (4.1.15) for these pairs are

−2α(N , M − 1, s) + α(N , M, s + 1) + α(N , M − 2, s − 1) = d9(s)e9(s)(mod2π),

−2α(N , M − 1, s − 1) + α(N , M, s − 1) + α(N , M − 2, s − 1) = d10(s)e10(s)(mod2π),

−2α(N , M − 1, s) + α(N , M, s − 1) + α(N , M − 2, s + 1) = d11(s)e11(s)(mod2π),

(4.3.13)

where d9(s), d10(s), d11(s) are either 1 or −1. Using the equations

−2α(N , M − 1, s) + α(N , M, s + 2) + α(N , M − 2, s − 2) = d12e12(mod2π),

−2α(N , M − 1, s) + α(N , M, s − 2) + α(N , M − 2, s + 2) = d13e13(mod2π)

which are the Eq. (4.1.15) for the pairs {(N , M − 1, s), (0, 1, 2)}, {(N , M − 1, s),
(0, 1,−2)}, and arguing as in the determinations of the signs of d8, d5, d2, one can
find the signs of d9(s), d10(s), d11(s). Then from the equations (4.3.13), we can find
(4.3.6) for l = s − 1 if (4.3.6) is known for l = s + 1, s. Moreover as we proved
above they satisfy the formulae (4.3.12) for p = 0, 1, 2. The formulas in (4.3.12) for
all p can easily be obtained from (4.3.13) by induction. In the same way, we obtain
the formulas

α(N , M − p, S) = E4− (p −1)α, α(0, M,−S) = E5− (2S + N −1)α. (4.3.14)
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By Proposition4.2.1(b), the pair {(N , M, 0), (N , 0, S)} is a canonical pair of type 1.
Hence, using the invariant A1(a, b) [see (4.1.12)] for a = (N , M, 0), b = (N , 0, S)

and formulas (4.3.12), (4.3.14), we get the value of

cos((N + M + S − 1)α + E6).

Similarly, using the pair {(N , M, 0), (N , 0,−S)}, we find

cos((N + M + S − 1)α + E7).

By these two values of the cosine, we find (N + M + S − 1)α under condi-
tion E6 �= E7(modπ). This with (4.1.20) gives us the unique value of α and we
find the numbers in (4.3.6) under some zero measure conditions in the sense of
Remark4.3.1 �

To find the Fourier coefficient z(a) for all a ∈ ∂ Q̃, where ∂ Q̃ is defined in the
introduction, we use the following lemmas

Lemma 4.3.1 Let {a1, b} and {a2, b}, where a1 and a2 are the long visible elements
of Q(N , M, S), be the canonical pairs of type 1. Then the invariants

S1(a1, b) = Re(z(−a1)z(a1 − b)z(b)), S1(a2, b) = Re(z(−a2)z(a2 − b)z(b)),

(4.3.15)
defined in (4.1.12), uniquely determine z(b) if z(ak − b)and z(ak) for k = 1, 2 are
known and

I m(z(a1 − b)z(a1)z(−(a2 − b))z(−a2)) �= 0. (4.3.16)

Proof The equations in (4.3.15) is a system of the linear equations with respect to
the unknowns x(b), y(b) and the inequality (4.3.16) shows that the determinant of
the coefficient matrix of this system is not zero. Therefore (4.3.16) has a unique
solution �

Lemma 4.3.2 Suppose c ∈ Q has two different decompositions

c = a1 + b1, c = a2 + b2, where {a1, b1, a2, b2} ⊂ QN ,

such that z2(ak) and z(ak − bk)for k = 1, 2 are known and

I m(z2(a1)z(a1 − b1)z
2(−(a2))z(−(a2 − b2))) �= 0. (4.3.17)

If {a1, b1} and {a2, b2}, where a1 and a2 are the long visible elements of Q(N , M, S),

are the canonical pairs of type 2, then the invariants

S2(ak, bk) = Re(z2(−ak)z(ak − bk)z(ak + bk)),

defined by (4.1.13), where k = 1, 2, uniquely determine z(c).
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The proof is the same with the proof of Lemma4.3.1.

Theorem 4.3.3 Suppose that the Condition4.1 holds. Then the spectral invariants
(4.1.11)–(4.1.13) and (4.2.4) determine constructively and uniquely, modulo inver-
sion and translation (4.1.8), the Fourier coefficients z(a) for all a ∈ ∂ Q̃ for almost
all the potentials of the form (4.1.9).

Proof Step 1. In this step we find the Fourier coefficient z(N , M − 1, s) for s =
S − 2p. Since z2(N , M − 1, s) is known due to Theorem4.3.2, z(N , M − 1, s) is
known up to the sign:

z(N , M − 1, s) = ksvs,

where vs is known and ks is either 1 or −1. Moreover, kS is known [see (4.3.2)]. To
find ks for s = S − 2p, where p = 1, 2, . . . , S − 1 we use the invariant (4.2.4) for
the pair {a, b}, where a = (N , M − 1, S − p), b = (0, 0, 1). To write the invariant
(4.2.4) for this pair, we need to determine the set G2, defined in Theorem4.2.1, for
this pair. By the definition, G2 is the set of all c such that

{a + c, a − c} ⊂ (P(a, b) ∩ Q)\aR.

Clearly, if this inclusion holds, then c has the form (0, m, s). Hence c belongs to the
line intersection of the planes P(a, b) and {x1 = 0}. By (4.2.14) this line is bR. It
means that c = (0, 0, q) for some integer q. Thus G2 is the set of all (0, 0, q) such
that

{(N , M − 1, S − p − q), (N , M − 1, S − p + q)} ⊂ Q.

This inclusion implies that −p ≤ q ≤ p. Therefore the invariant (4.2.4) for the pair
{(N , M − 1, S − p),(0, 0, 1)} has the form

Re(z2(N , M − 1, S − p)

p∑

q=−p

〈(N , M − 1, S − p − q), (N , M − 1, S − p + q)〉
〈(N , M − 1, S − p), β〉 hq Vq ),

(4.3.18)

where Vq =: vS−p+qvS−p−q is known number and hq =: kS−p+qkS−p−q is either
1 or −1. Let

H = (h−p, h−p+1, . . . , h p)

and f be a function taking H to (4.3.18). Assume that f takes distinct nonzero values
at distinct points. Then (4.3.18) determines

hq = kS−p+qkS−p−q (4.3.19)

if 〈(N , M − 1, S − p − q), (N , M − 1, S − p + q)〉 �= 0. Thus (4.3.19) is known.
Taking p = q in (4.3.19), we find kSkS−2p. Since kS is known [see (4.3.2)], we find
kS−2p if
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A(p) =: 〈(N , M − 1, S − 2p), (N , M − 1, S)〉 �= 0.

Since the equation A(p) = 0 may have only one integer root p0 we have defined
kS−2p for all p except p = p0. It is clear that there exists p and q such that p0 = p+q
and 〈(N , M −1, S − p −q), (N , M −1, S − p +q)〉 �= 0. Therefore, using (4.3.19),
we define kS−p0 , since kS−p−q is known.

Step 2. To find z(N , M − 1, S − 2p + 1), we use the Lemma4.3.1. Let

a1 = (N , M − 1, S), a2 = (N , M − 1, S − 2), b = (0,−1, N ).

Without loss of generality, it can be assumed that S−2 �= k N . Otherwise,we consider
a2 = (N , M − 1, S − 4). By Proposition4.2.1(b) the pairs {a1, b} and {a2, b} are the
canonical pairs of type 1. Therefore applying Lemma4.3.1 and taking into account
that z(ak −b) and z(ak) for k = 1, 2 are known due to Theorem4.3.2 and Step 1, we
find z(b). Now, without loss of generality, we assume that S − 1 �= k N . Otherwise
we consider S − 3 instead of S − 1. By Proposition4.2.1(b) the pair {a, b}, where
a = (N , M − 1, S − 1) and b = (0,−1, N ), is the canonical pair of type 1. Hence
using the invariant (4.1.12) and taking into account that z(b) and z(a −b) are known,
we determine the sign of kS−1. From the knowledge of the sign of kS , we have found
the sign of kS−2p by (4.3.18). In the same way, from the knowledge of the sign of
kS−1, we find the sign of kS−2p−1. Thus, we have found z(N , M − 1, s) for all s.

Step 3. Now using Lemma4.3.2, we find z(N , m, s) for all m, s by induction.
They were found in Theorem4.3.2 and in steps 1,2 of this theorem for m = M, M −
1, M − 2. Let us find z(N , m, s) assuming that we have already found the z(N , q, s)
for q = M, M − 1, . . . , m + 1. Clearly, for any s ∈ [S,−S] there are different pairs
(s1, p1), (s2, p2) such that

sk+pk = s; sk, pk, sk−pk ∈ [S,−S]; sk−2pk �∈ [−S, S]; N 2+m2−1+s2k −p2k �= 0

sk �= ±N , sk − pk �= ±N for k = 1, 2. Then, by Proposition4.2.1(a) (see case 3),
the pair {ak, bk)} for k = 1, 2, where ak = (N , m + 1, sk), bk = (0,−1, pk), are the
canonical pairs of type 2.Moreover z(ak), z(ak −bk) are known by the assumption of
the induction.Hence the application ofLemma4.3.2 yields z(N , m, s). Interchanging
the roles of the first and second coordinates and then the roles of the first and third
coordinates, we find z(a) for all a ∈ ∂ Q̃ under some zero measure conditions in the
sense of Remark4.3.1 �

Theorem 4.3.4 Suppose Condition4.1 holds. Then the spectral invariants (4.1.11)–
(4.1.13), (4.2.3) determine constructively and uniquely, modulo inversion and trans-
lation (4.1.8), the Fourier coefficients

z(n, m, 0), z(n, 0, s), z(0, m, s)

for all n, m, s and for almost all the potentials of the form (4.1.9).
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Proof Let us find z(n, m, 0). Since (n, m, 0) �= (0, 0, 0) and z(−a) = z(a),without
loss of generality, it can be assumed that m > 0, n ≥ 0. Moreover, for the simplicity
of the notations, it can be assumed that n, m are relatively prime numbers, since we
find z(l(n, m, 0)) for all l. To find z(n, m, 0), we use the invariant (4.2.3) for the
pair {aq , (n, m, 0)}, where aq = (0,−M, S) + q(n, m, 0). To write the invariant
(4.2.3) for this pair we need to investigate the set G1, defined in Theorem4.2.1. By
the definition, G1 is the set of all c such that

{c, aq − c} ⊂ (P(aq , (n, m, 0)) ∩ Q)\aqR.

Using this, the obvious equality P(aq , (n, m, 0)) = P((0,−M, S), (n, m, 0)) and
(4.2.9), we obtain that G1 is the set of all c such that

{c, aq − c} ⊂ ((Q−1 ∪ Q0 ∪ Q1) ∩ Q)\aqR.

If c ∈ Q−1 then

aq − c = (q − l)(n, m, 0) + (0,−2M, 2S) /∈ Q.

If c ∈ Q0, then c = l(n, m, 0) for some l. Let p be the greatest integer satisfying
pn ≤ N , pm ≤ M . Then l(n, m, 0) ∈ Q if and only if −p ≤ l ≤ p. Moreover

aq − c = (0,−M, S) + (q − l)(n, m, 0) ∈ Q1.

Similarly, if c ∈ Q1, i.e., c = (0,−M, S) + (q − l)(n, m, 0) for some l, then
aq− c = l(n, m, 0). Therefore, the invariant (4.2.3) for the pair {aq , (n, m, 0)}, has
the form

Rez(−(aq))
∑

l

cl z(aq − l(n, m, 0))z(l(n, m, 0)), (4.3.20)

where q = 1, 2, . . . , p and cl = g(aq , l(n, m, 0)). Similarly, the invariant (4.2.3)
for the pair {bq , (n, m, 0)}, where bq = (0, M, S) + q(n, m, 0), has the form

Rez(−(bq))
∑

l

dl z(bq − l(n, m, 0))z(l(n, m, 0)), (4.3.21)

where q = −1,−2, . . . ,−p and dl = g(bq , l(n, m, 0)). Since the Fourier coeffi-
cients

z(aq), z(aq − l(n, m, 0)), z(bq), z(bq − l(n, m, 0))

are known due to Theorem4.3.3, we have 2p linear form [see (4.3.20) and (4.3.21)]
with respect to 2p unknowns

x(n, m, 0), x(2(n, m, 0)), . . . , x(p(n, m, 0)) and y(n, m, 0), y(2(n, m, 0)), . . . , x(q(n, m, 0)).
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Since the invariant (4.2.3) is known number, (4.3.20) and (4.3.21) give 2p linear
equations with respect to these unknowns. One can find these unknowns if the deter-
minant T (2p) of the coefficient matrix of the system of these linear equations is not
zero. Let us show that this determinant is not identically zero. Let x(l(n, m, 0)) be the
lth and y(l(n, m, 0)) be the (p + l)th unknown of the system, where l = 1, 2, . . . , p.

Similarly, let the lth equation of the system be given by the lth linear form of (4.3.20)
and the (p + l)th equation of the system be given by the lth linear form of (4.3.21).
Then T (2p) can be written in the form∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1,1 a1,2 ... a1,p b1,1 b1,2 ... b1,p

a2,1 a2,2 ... a2,p b2,1 b1,2 ... b2,p

... ... ... ... ... ... ... ...

ap,1 ap,2 ... ap,p bp,1 bp,2 ... bp,p

c1,1 c1,2 ... c1,p d1,1 d1,2 ... d1,p

c2,1 c2,2 ... c2,p d2,1 d2,2 ... d2,p

... ... ... ... ... ... ... ...

cp,1 cp,2 ... cp,p dp,1 dp,2 ... dp,p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where

aq,l = x(aq)(cl x(aq−l) + c−l x(aq+l)) + y(aq)(cl y(aq−l) + c−l y(aq+l)),

bq,l = x(aq)(cl y(aq−l) − c−l y(aq+l)) + y(aq)(cl x(aq−l) − c−l x(aq+l)),

cq,l = x(b−q)(dl x(b−q−l) + d−l x(b−q+l)) + y(b−q)(dl y(b−q−l) + d−l y(b−q+l)),

dq,l = x(b−q)(dl y(b−q−l) − d−l y(b−q+l)) + y(b−q)(dl x(b−q−l) − d−l x(b−q+l)).

The qth and (p + q)th diagonal elements aq,q and dq,q of the determinant contain
the summand x(aq)cq x(a0) and x(b−q)d−q y(b0) respectively. The nondiagonal ele-
ments do not contain these summands. Therefore, the determinant T (2p) contains
the summand

�q=1,2,...,p(cq x(aq)x(a0)d−q x(b−q)y(b0))

which can not be cancelled by the other summand of the determinant. Moreover, the
multiplicands cq and d−q are not zero since

〈
q(n, m, 0), aq − q(n, m, 0)

〉 = −qm M �= 0,
〈
q(n, m, 0), bq − q(n, m, 0)

〉 = qm M �= 0

Therefore the zero set of the determinant T (2p) of the coefficient matrix of the
system has zero measure. Thus solving this system we find z(n, m, 0) under some
zero measure conditions in the sense of Remark4.3.1. In the same way we find
z(n, 0, s) and z(0, m, s) �
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4.4 Inverse Problem in a Dense Set

In this section, we construct a dense in W s
2 (F), where s > 3, in C∞-topology set D

of trigonometric polynomials and prove that one can determine constructively and
uniquely (module inversion and translation (4.1.8)) the potential q ∈ D from the
spectral invariants (4.1.4)–(4.1.6). For this we use the following condition:

Condition 4.2 Suppose z(n, m, s) �= 0 for (n, m, s) ∈ C(
√

N ), where

C(
√

N ) = {(n, m, s) : 0 < |n| <
1

2

√
N , 0 < |m| <

1

2

√
N , 0 < |s| <

1

2

√
N }

and z(n, m, s) = 0 for (n, m, s) ∈ (Q(N , M, S))\(C(
√

N ) ∪ B(N , M, S)).

To find z(n, m, s) for (n, m, s) ∈ C(
√

N ) we use the following proposition.

Proposition 4.4.1 If the Condition4.2 holds, then the invariant (4.2.3) for
a ∈ B(N , M, S), b ∈ C(

√
N ) yields the invariant

Re(z(−a)(
∑

c∈G

g(a, c)z(a − c)z(c))), (4.4.1)

where g(a, c) = 〈c,c−a〉
(〈c,β〉)2 , G is the set of all c such that

{c, a − c} ⊂ ((P(a, b) ∩ Q)\aR) ∩ (C(
√

N ) ∪ B(N , M, S)) (4.4.2)

and at least one of the points c and a − c belongs to C(
√

N ).

Proof By Condition4.2, if {c, a − c} is not a subset of C(
√

N ) ∪ B(N , M, S) then
z(a − c)z(c) = 0. Therefore, it follows from the definition of G1 that the summation
in (4.2.3) is taken over all c satisfying (4.4.2). On the other hand, if both c and
a − c belong to B(N , M, S), then the summand z(−a)g(a, c)z(a − c)z(c) of (4.2.3)
is known due to Theorems4.3.3 and 4.3.4. Therefore, (4.2.3) implies the invariant
(4.4.1), if Condition4.2 holds �

Theorem 4.4.1 The invariants (4.1.11)–(4.1.13) and (4.4.1) determine construc-
tively and uniquely, modulo inversion and translation (4.1.8), the Fourier coefficients
z(n, m, s), where (n, m, s) ∈ C(

√
N ), for almost all the potentials of the form (4.1.9)

satisfying Conditions4.1 and 4.2.

Proof To find z(n, m, s) for (n, m, s) ∈ C(
√

N ), we use the invariant (4.4.1) for the
pair a = (−N + n, 0, j), b = (n, m, s), where j is a prime number satisfying

M < j ≤ S − √
N . (4.4.3)

Since n �= 0 and z(−n,−m,−s) = z(n, m, s), without loss of generality, it can be
assumed that n > 0. To use (4.4.1), we prove that
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G = {b, a − b},where b = (n, m, s), a − b = (−N ,−m, j − s), (4.4.4)

whereG is defined in Proposition4.4.1. Since the inclusion {b, a−b} ⊂ G is obvious,
we need to prove that G ⊂ {b, a − b}. For this we use the following inequalities

0 < |n|, |m|, |s| <
1

2

√
N , 2N < M < j ≤ S − √

N (4.4.5)

which follows from (4.4.3), Condition4.1, and the assumption (n, m, s) ∈ C(
√

N ).

Thus, to prove (4.4.4) we need to show that any element c = (n1, m1, s1) of G is
either b or a − b. First let us prove that n1m1s1 �= 0. Indeed, using the definition of
C(

√
N ) and the inequalities in (4.4.5) one can readily verify that the following three

statements are true.
1. If n1 = 0, then (n1, m1, s1) /∈ C(

√
N ), a − c = (−N + n,−m1, j − s1) /∈

C(
√

N ).

2. If m1 = 0, then (n1, m1, s1) /∈ C(
√

N ), a − c = (−N + n − n1, 0, j − s1) /∈
C(

√
N ).

3. If s1 = 0, then (n1, m1, s1) /∈ C(
√

N ), a − c = (−N + n − n1,−m1, j) /∈
C(

√
N ).

Therefore the relation (n1, m1, s1) ∈ G and the definition of G (see Proposi-
tion4.4.1) imply that n1m1s1 �= 0. Since c ∈ G we have c ∈ P(a, b)∩ Q. The point
c = (n1, m1, s1) belongs to the plane P(a, b) if and only if

(n − N )(ms1 − sm1) = j (mn1 − nm1). (4.4.6)

This equation holds in the following two cases:
Case 1. (ms1 − sm1) = 0. Then (mn1 − nm1) = 0. These two equalities imply

that the point c = (n1, m1, s1) lies on the line (n, m, s)R. Therefore we have

c = (n1, m1, s1) = k(n0, m0, s0), (n, m, s) = k0(n0, m0, s0), (4.4.7)

where k and k0 are the integers and (n0, m0, s0) is a visible element of Z3 lying in
(n, m, s)R.Moreover, it follows from (4.4.5) and from the above relationn1m1s1 �= 0
that

0 < |n0|, |m0|, |s0| <
1

2

√
N and kk0 �= 0 (4.4.8)

Using this let us prove that k(n0, m0, s0) ∈ G if and only if k = k0. If k = k0, then
by (4.4.7) we have (n1, m1, s1) = (n, m, s) = b ∈ G. Now we prove that if k �= k0,
then c = k(n0, m0, s0) /∈ G. Suppose at least one of the inequalities

|kn0| >
1

2

√
N , |km0| >

1

2

√
N , |ks0| >

1

2

√
N (4.4.9)
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holds. Then using (4.4.8), the definitions of C(
√

N ) and B(N , M, S), and taking
into account that N , M, and S are the prime numbers, we see that

c = k(n0, m0, s0) /∈ C(
√

N ) ∪ B(N , M, S),

and hence c /∈ G. Now suppose that all the inequalities in (4.4.9) do not hold. Then
using (4.4.5), (4.4.7), (4.4.8) and the assumption k �= k0, one can easily verify that

−N + n − kn0 �= 0,±N ; km0 �= 0,±M; j − ks0 �= 0,±S; j − ks0 >
√

N .

These relations and the definitions of C(
√

N ) and B(N , M, S) imply that

a − c = a − k(n0, m0, s0) = (−N + n − kn0, −km0, j − ks0) /∈ C(
√

N ) ∪ B(N , M, S),

which means that c /∈ G (see the definition of G in the Proposition4.4.1). Hence, it
is proved that if k �= k0, then (n1, m1, s1) /∈ G. Thus, in Case 1, the inclusion c ∈ G
implies the equality c = b.

Case 2. (ms1 − sm1) �= 0. Then it follows from (4.4.6) that

(ms1 − sm1) = pj, (4.4.10)

where p is a nonzero integer, since j is a prime number satisfying j > N − n [see
(4.4.5)]. The formulas (4.4.10) and (4.4.6) imply that

(n − N )p = mn1 − nm1. (4.4.11)

Using (4.4.10) and (4.4.5) one can readily verify that at least one of the inequalities

|m1| >
√

N , |s1| >
√

N (4.4.12)

holds. If the first inequality of (4.4.12) holds, then

c = (n1, m1, s1) /∈ C(
√

N ), a − c = (−N + n − n1,−m1, j − s1) /∈ C(
√

N )

and hence c /∈ G.
Now assume that |s1| >

√
N and |m1| ≤ √

N . Then c = (n1, m1, s1) /∈ C(
√

N ).
Therefore the relation c ∈ G and the definition of G give

a − c = (−N + n − n1,−m1, j − s1) ∈ C(
√

N ).

Using this, the definition of C(
√

N ), and (4.4.5), we obtain

| − N − n1| <
√

N , 0 < |m1| <
√

N , | j − s1| <
√

N . (4.4.13)
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Since c ∈ G, we have c ∈ C(
√

N ) ∪ B(N , M, S). On the other hand c /∈ C(
√

N ).

Hence c = (n1, m1, s1) ∈ B(N , M, S), that is, at least oneof the following inclusions
hold

n1 ∈ {0, N ,−N }, m1 ∈ {0, M,−M}, s1 ∈ {0, S,−S}.

This with (4.4.13) and (4.4.3) implies that n1 = −N . Using this in (4.4.11), we get

N (p − m) = n(p + m1). (4.4.14)

We assumed that |m1| ≤ √
N . Besides, by (4.4.5) we have |m| ≤ √

N , |n| ≤ √
N .

From these inequalities and (4.4.14) one can easily conclude that |p + m1| < N .

Thus N is a prime number and is greater than |n| and |p + m1|. Therefore from
(4.4.14) we obtain that p + m1 = 0, p − m = 0, and hence p = m = −m1. Using
this in (4.4.10), we obtain

(ms1 + sm) = mj, s1 = j − s, c = (n1, m1, s1) = (−N ,−m, j − s) = a − b.

Thus, we proved that any element c of the set G is either b (see Case 1) or a − b.

Hence G ⊂ {b, a − b} and (4.4.4) is proved.
Now it follows from (4.4.4) that the invariant (4.4.1) has the form

2Rez(−a)g(a, b)z(a − b)z(b)). (4.4.15)

Clearly, there exist two numbers j1 and j2 such that they satisfy the conditions of j
and

〈(−N + n, 0, j1), (n, m, s)〉 �= 0, 〈(−N + n, 0, j1), (n, m, s)〉 �= 0,

which implies that the multiplicand g(a, b) in (4.4.15) for a = (−N + n, 0, ji ),
where i = 1, 2, is not zero. Hence (4.4.15) gives the invariants

Re(z(−(−N + n, 0, ji ))z(−N ,−m, ji − s)z(n, m, s))), (4.4.16)

where z(−(−N + n, 0, ji )) and z(−N ,−m, ji − s) for i = 1, 2 are known
(see Theorems4.3.3 and 4.3.4). By Lemma4.3.1 the invariants (4.4.16) give the
Fourier coefficient z(n, m, s) under some zero measure conditions in the sense of
Remark4.3.1 �

Thus, we considered the set of the polynomials of the form

p(x) =
∑

a∈B(N ,M,S)∪C(
√

N )

z(a)ei〈a,x〉 (4.4.17)

(see Conditions4.1, 4.2 and the Theorems4.3.3, 4.3.4 and 4.4.1), where B(N , M, S)

and C(
√

N ) are defined in the introduction and in Condition4.2 respectively and
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z(a) �= 0. By E(N , M, S) denote the subspace of L2(F) generated by functions
ei〈a,x〉 for a ∈ (B(N , M, S) ∪ C(

√
N )). Let D(N , M, S) be the set of all poly-

nomial of the form (4.4.17) satisfying the zero measure conditions, in the sense
of Remark4.3.1, used in the proof of the Theorems4.3.2, 4.3.3, 4.3.4 and 4.4.1.
Due to Remark4.3.1, the set D(N , M, S) is obtained from E(N , M, S) by elimi-
nating the sets whose n dimensional measure is zero, where n is the number of the
elements of B(N , M, S) ∪ C(

√
N ). Therefore, for every positive ε and for each

fN ∈ E(N , M, S) the ball

{h ∈ E(N , M, S) : sup |h(x) − fN (x)| < ε}

contains an element pN of D(N , M, S), that is,

sup
x∈F

|pN (x) − fN (x)| < ε. (4.4.18)

Now consider a triple sequence {(Nk, Mk, Sk)} such that for all k the triple
(Nk, Mk, Sk) satisfies the conditions which are satisfied for (N , M, S) (see Con-
dition4.1) and Nk → ∞ as k → ∞. Thus Nk, Mk, Sk are the prime numbers
satisfying

Mk > 2Nk, Sk > 2Mk, N1 � 1, lim
k→∞ Nk = ∞ (4.4.19)

Denote by D(Nk, Mk, Sk) the set obtained from D(N , M, S) by substitution
(Nk, Mk, Sk) for (N , M, S). Let

D = ∪∞
k=1D(Nk, Mk, Sk). (4.4.20)

Theorem 4.4.2 (a) The set D is dense in W s
2 (F), where s > 3, in C

∞-topology.
(b) The invariants (4.1.4)–(4.1.6) determine constructively and uniquely, modulo

inversion and translations (4.1.8), the potentials q of the set D.

Proof (a) Note that f ∈ W s
2 (F) means that

f (x) =
∑

a∈�

( f, ei〈a,x〉)ei〈a,x〉,
∑

a∈�

|( f, ei〈a,x〉)|2(1 + |a|2s) < ∞. (4.4.21)

Without loss of generality, it can be assumed that ( f, 1) = 0. If s > 3, then

sup
x∈F

|
∑

a∈R(
√

N )

( f, ei〈a,x〉)ei〈a,x〉| ≤
∑

a∈R(
√

N )

|( f, ei〈a,x〉)| = O((
√

N )−(s−3)),

(4.4.22)
where R(

√
N ) = {a ∈ � : |a| ≥ √

N }. It follows from the definitions of B(N , M, S)

and C(
√

N ) that

�\(B(N , M, S) ∪ C(
√

N ) ∪ {(0, 0, 0)}) ⊂ R(
√

N ), (4.4.23)
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By (4.4.22) and (4.4.23) f (x) has an orthogonal decomposition f (x) = fN (x) +
rN (x), where

fN (x) =
∑

a∈(B(N ,M,S)∪C(
√

N )

( f, ei〈a,x〉)ei〈a,x〉, sup
x∈F

|rN (x)| = O((
√

N )−(s−3)),

(4.4.24)
fN ∈ E(N , M, S). Therefore for any ε > 0 there exists N such that

sup | f (x) − fN (x)| < ε. (4.4.25)

From (4.4.18) and (4.4.25) we obtain that for any f ∈ W s
2 (F) and for any ε > 0

there exists N and pN (x) ∈ D(N , M, S) such that

sup
x∈F

| f (x) − pN (x)| < 2ε

which means that D is dense in W s
2 (F) in C∞-topology.

(b) Let q be an element of D. Since the vector (Nk, 1, 0) is a visible element of
Z
3 for each Nk , the invariants

‖q(Nk ,1,0)‖

for k = 1, 2, . . .[see (4.1.4)] are given. By the definition of D, the number

k =: {max s : ‖q(Ns ,1,0)‖ �= 0}

is finite. Therefore q belongs to the set D(Nk, Mk, Sk). The statement of Theorem
4.4.2(b) for this set follows from the definition of D(N , M, S) and from the Theo-
rems4.3.3, 4.3.4, and 4.4.1 �

4.5 Finding the Simple Potential from the Invariants

In this section, we give an algorithm and formulas for finding the all Fourier coef-
ficients z(a) of the potential (4.1.16) from the invariants (4.2.25)–(4.2.28), (4.2.34)
and (4.2.35). First, let us introduce some notations. The number of elements of the
set

{nγ1 + mγ2 + sγ3 : |n| ≤ 1, |m| ≤ 1, |s| ≤ 1}

is 27, since the numbers n, m, s take 3 values −1, 0, 1 independently. The
set Q(1, 1, 1) [see (4.1.17)] is obtained from this set by eliminating the element
(0, 0, 0), and hence consist of 26 elements. Moreover, if γ ∈ Q(1, 1, 1), then
−γ ∈ Q(1, 1, 1) and γ �= −γ. Hence the elements of Q(1, 1, 1) can be denoted by
γ1, γ2, . . . , γ13 and −γ1,−γ2, . . . ,−γ13. Let us denote the elements γ1, γ2, . . . γ13
as following: γ1, γ2, γ3 be a basis of � satisfying (4.1.18) and
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γ4 = γ2 + γ3, γ5 = γ1 + γ3, γ6 = γ1 + γ2, γ7 = γ1 + γ2 + γ3,

γ8 = γ1 − γ2, γ9 = γ1 − γ3, γ10 = γ2 − γ3

γ11 = γ2 + γ3 − γ1, γ12 = γ1 + γ3 − γ2, γ13 = γ1 + γ2 − γ3 (4.5.1)

Introduce the notations
z(γ j ) = a j + ib j = r j e

iα j , (4.5.2)

where a j ∈ R, b j ∈ R, r j = |z(γ j )| ∈ (0,∞), and α j = α(γ j ) = arg(z(γ j )) ∈
[0, 2π) for

i = 1, 2, . . . , 13. Since themodulus r j of the Fourier coefficients z(γ j ) are known
due to (4.2.20), we need to know the values of the arguments α j of z(γ j ). For this
we use the following conditions on the arguments α1,α2, . . . ,α7:

α7 − α1 − α2 − α3 �= πk, α7 − αs+3 − αs �= πk, αm+3 − α j+3 + αm − α j �= πk,

α4 − α2 − α3 �= π

2
k, α5 − α1 − α3 �= π

2
k, α6 − α1 − α2 �= π

2
k,

α4 + α5 − α1 − α2 − 2α3 �= πk, α4 + α6 − α1 − α3 − 2α2 �= πk,

α5 + α6 − α2 − α3 − 2α1 �= πk, (4.5.3)

where s = 1, 2, 3; k ∈ Z and m, j are integers satisfying 1 ≤ m < j ≤ 3. In this
section, we give an algorithm for the unique (modulo (4.1.8)) determination of the
potentials q of the form (4.1.16) satisfying (4.5.3) from the invariants (4.1.4)–(4.1.6).
In the following remarkwe consider geometrically the set of all potentials of the form
(4.1.16) satisfying (4.5.3).

Remark 4.5.1 Since z(γ) = z(−γ), there exists one to one correspondence between
the trigonometric polynomials of the form (4.1.16) and thevectors (r1,α1, r2,α2, . . . ,

r13,α13) of the subset
S =: (0,∞)13 ⊗ [0, 2π)13

of the space R26. We use conditions (4.5.3) as restrictions on the potential (4.1.16)
and hence on the set S. Denote by S′ the subset of S corresponding to the set of the
potential (4.1.16) satisfying conditions (4.5.3). The conditions (4.5.3) means that we
eliminate from the subset

D =: {(α1, α2, . . . , α7) : α1 ∈ [0, 2π),α1 ∈ [0, 2π), α2 ∈ [0, 2π), . . . , α7 ∈ [0, 2π)}

of R7 the following six-dimensional hyperplanes

{α7 − α1 − α2 − α3 = πk}, {α7 − αs+3 − αs = πk}, {αm+3 − α j+3 + αm − α j = πk},
{α4 − α2 − α3 = π

2
k}, {α5 − α1 − α3 = π

2
k}, {α6 − α1 − α2 = π

2
k},

{α4 + α5 − α1 − α2 − 2α3 = πk}, {α4 + α6 − α1 − α3 − 2α2 = πk},
{α5 + α6 − α2 − α3 − 2α1 = πk}
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of R7 = {(α1,α2, . . . ,α7)}, where s = 1, 2, 3; k ∈ Z and m, j are integers
satisfying 1 ≤ m < j ≤ 3. In this notation we have

S = (0,∞)13 ⊗ [0, 2π)6 ⊗ D, S′ = (0,∞)13 ⊗ [0, 2π)6 ⊗ D′,

where D′ is obtained from D by eliminating the above six-dimensional hyperplanes.
It is clear that the 26 dimensional measure of the set S\S′ is zero. Since the main
result (Theorem4.5.2) of this section is concerned to the potentials corresponding to
the set S′, we investigate the almost all potentials of the form (4.1.16).

Since the operators L(q(x − τ )) for τ ∈ F have the same Bloch eigenvalues, we
may fix τ , that is, take one of the functions q(x − τ ), which determines three of the
arguments.

Theorem 4.5.1 There exists a unique value of τ ∈ F such that the following condi-
tions hold

α(τ , γ1) = α(τ , γ2) = α(τ , γ3) = 0, (4.5.4)

where {γ1, γ2, γ3} is a basis of the lattice � and α(τ , γ) = arg(q(x − τ ), ei〈γ,x〉).
Proof Let ω1,ω2,ω3 be a basis of � satisfying

〈γi ,ω j 〉 = 2πδi, j (4.5.5)

and F = {c1ω1 + c2ω2 + c3ω3 : ck ∈ [0, 1), k = 1, 2, 3} be a fundamental domain
R
3/� of �. If τ ∈ F, then we have τ = c1ω1 + c2ω2 + c3ω3. Therefore, using the

notations of (4.1.16) and (4.5.4) one can readily see that

α(τ , γ) = arg(q(x − τ ), ei〈γ,x−τ 〉ei〈γ,τ 〉) = α(γ) − 〈γ, τ 〉. (4.5.6)

This with (4.5.5) yields α(τ , γk) = α(γk)− 2πck which means that (4.5.4) is equiv-
alent to

2πck = α(γk), where α(γk) ∈ [0, 2π), 2πck ∈ [0, 2π) and k = 1, 2, 3. Thus,
there exists a unique value of τ = c1ω1 + c2ω2 + c3ω3 ∈ F satisfying (4.5.4) �

By Theorem4.5.1 and by (4.1.17), without loss of generality, it can be assumed
that

α1 = α2 = α3 = 0, z(γi ) = ai > 0, ∀i = 1, 2, 3. (4.5.7)

Using (4.5.6) one can easily verify that the expressions in the left-hand sides of the
inequalities in (4.5.3) do not depend on τ . Therefore, using the assumption (4.5.7)
one can readily see that the condition (4.5.3) has the form

α7 �= πk, α j �= π

2
k, α7 − α j �= πk, αm ± α j �= πk, (4.5.8)

where k ∈ Z; j = 4, 5, 6; m = 4, 5, 6 and m �= j. Using the notation of (4.5.2) and
taking into account that r jrm sin(α j ±αm) = b j am ±bma j , r jrm �= 0 [see (4.1.17)],
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we see that (4.5.8) can be written in the form

b7 �= 0, a j b j �= 0, b7a j − a7b j �= 0, b j am ± bma j �= 0, (4.5.9)

where j = 4, 5, 6; m = 4, 5, 6 and m �= j.
The equality (q(−x), ei〈a,x〉) = (q(x), ei〈a,x〉) shows that the imaginary part of

the Fourier coefficients of q(x) and q(−x) take the opposite values. Therefore, taking
into account the first inequality of (4.5.9), for fixing the inversion q(x) −→ q(−x),

in the set of potentials of the form (4.1.16) satisfying (4.5.3), we assume that

b7 > 0. (4.5.10)

Now using (4.5.7), (4.5.9), (4.5.10) and the invariants (4.2.20), (4.2.25)–(4.2.28),
(4.2.34), (4.2.35), we give an algorithm for finding the Fourier coefficients z(a) for
all a ∈ Q. Let us emphasize the main points of the reconstruction algorithm and the
relevant data for this algorithm. By (4.2.20), |z(a)| for a ∈ Q(1, 1, 1) is an invariant.
Since the first multiplicands A1(a, b) and A2(a, b) of the right-hand sides of the
invariants (4.2.25)–(4.2.28) and (4.2.34), (4.2.35) are nonzero known numbers (see
the Theorems 4.2.2 and 4.2.3), we can also use the second multiplicands of them as
invariants too.Namely,we use the following 24 invariants, denoted by s1, s2, . . . , s24,
as relevant data:

si = |z(γi )|, s4 = |z(γ2 + γ3)|, s5 = |z(γ1 + γ3)|, s6 = |z(γ1 + γ2)|,
s7 = Re(z(−γ1 − γ2)z(γ1)z(γ2)), s8 = Re(z(−γ1 − γ3)z(γ1)z(γ3)),

s9 = Re(z(−γ2 − γ3)z(γ2)z(γ3)), s9+i = Re(z(−γ)z(γ − γi )z(γi )),

s12+i = Re(z(γ − 2γi )z(γi − γ)z(γi )), s15+i = Re(z2(−γi )z(γ)z(2γi − γ)),

s19 = Re(z2(−γ1)z(γ1 + γ2)z(γ1 − γ2)), s20 = Re(z2(−γ2)z(γ2 + γ1)z(γ2 − γ1)),

s21 = Re(z2(−γ1)z(γ1 + γ3)z(γ1 − γ3)), s22 = Re(z2(−γ3)z(γ3 + γ1)z(γ3 − γ1)),

s23 = Re(z2(−γ2)z(γ2 + γ3)z(γ2 − γ3)), s24 = Re(z2(−γ3)z(γ3 + γ2)z(γ3 − γ2)),

(4.5.11)

where i = 1, 2, 3, γ = γ1 + γ2 + γ3, the invariants sk are obtained from (4.2.20),
(4.2.25), (4.2.27), (4.2.28), (4.2.35) and (4.2.34) for k = 1, 2, . . . 6, k = 7, 8, 9,
k = 10, 11, 12, k = 13, 14, 15, k = 16, 17, 18 and k = 19, 20, . . . , 24 respectively.
The main point of the reconstruction is the following. It follows from the definition
of s1, s2, s3 [see the first row of (4.5.11)] and from (4.5.7) that

z(γi ) = si > 0, ∀i = 1, 2, 3. (4.5.12)

Thus the Fourier coefficients z(γ1), z(γ2) and z(γ3) are expressed in terms of s1, s2
and s3 respectively. In the following theorem, using (4.5.12) and the invariants
s4, s5, . . . , s24, we find formulas (4.5.14), (4.5.22), (4.5.23), (4.5.27)–(4.5.29) and
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(4.5.33)–(4.5.35) that express all the other Fourier coefficients in terms of the invari-
ants s1, s2, . . . , s24.

Theorem 4.5.2 The invariants (4.5.11) determine constructively and uniquely, mod-
ulo inversion and translation (4.1.8), all the potentials of the form (4.1.16) satisfying
(4.5.3).

Proof To determine the potential (4.1.16), we find the all Fourier coefficients step
by step by using the invariants (4.5.11).

Step 1. In this step using the invariants s4, s5, . . . , s9 and the relations (4.5.12),
(4.5.9) and (4.5.10), we find

z(γ1 + γ2), z(γ1 + γ3), z(γ2 + γ3), z(γ1 + γ2 + γ3). (4.5.13)

The invariants s7, s8, s9 and formula (4.5.12) give the real parts a4, a5, a6 [see (4.5.2)]
of the Fourier coefficients z(γ2 + γ3), z(γ1 + γ3), z(γ1 + γ2):

a4 = s9
s2s3

, a5 = s8
s1s3

, a6 = s7
s1s2

. (4.5.14)

Then, using the invariants s4, s5, s6, we find the absolute values of the imaginary
parts of these Fourier coefficients. Thus due to the notations of (4.5.1) and (4.5.2),
we have

z(γ2 + γ3) = a4 + i t4|b4|, z(γ1 + γ3) = a5 + i t5|b5|, z(γ1 + γ2) = a6 + i t6|b6|,
(4.5.15)

where |bm | for m = 4, 5, 6 are known real numbers and tm is the sign of bm, i.e.,
is either −1 or 1. To determine t4, t5, t6, we use the invariants s9+i for i = 1, 2, 3
[see (4.5.11)]. Using (4.5.12), the invariant s10, which is s9+i for i = 1, the obvious
relations z(a) = z(−a), and the notations γ = γ1 +γ2 +γ3 = γ7, z(γ j ) = a j + ib j

[see (4.5.1), (4.5.2)], we obtain the equation

a4a7 + t4|b4|b7 = s10
s1

(4.5.16)

with respect to the unknowns a7 and b7. In the same way, from the invariant s9+i for
i = 2, 3, we obtain

a5a7 + t5|b5|b7 = s11
s2

, (4.5.17)

a6a7 + t6|b6|b7 = s12
s3

. (4.5.18)

By (4.5.9) t5|b5|a4 − t4|b4|a5 �= 0, t6|b6|a4 − t4|b4|a6 �= 0, t6|b6|a5 − t5|b5|a6 �= 0.
Therefore finding b7 from the systems of equations generated by pairs {(4.5.16),
(4.5.17)}, {(4.5.16), (4.5.18)}, {(4.5.17), (4.5.18)}, and taking into account (4.5.10),
we get the inequalities
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a4
s11
s2

− a5
s10
s1

t5|b5|a4 − t4|b4|a5 > 0,
a4

s12
s3

− a6
s10
s1

t6|b6|a4 − t4|b4|a6 > 0,
a5

s12
s3

− a6
s11
s2

t6|b6|a5 − t5|b5|a6 > 0

(4.5.19)
respectively. Now we prove that the relations (4.5.16)–(4.5.19) determines uniquely
the unknowns a7,b7, t4, t5, t6. Suppose to the contrary that there exists to different
solutions (a7, b7, t4, t5, t6) and (a′

7,b
′
7, t ′4, t ′5, t ′6) of (4.5.16)–(4.5.19). Clearly, if 2

components of the triple (t ′4, t ′5, t ′6) take the opposite values of the corresponding
components of the triple (t4, t5, t6) then all the inequalities in (4.5.19) do not hold
simultaneously. Therefore, at least, two component of (t ′4, t ′5, t ′6) must be the same
with the corresponding two components of (t4, t5, t6). It can be assumed, without loss
of generality, that t ′4 = t4 and t ′5 = t5. Then it follows from the system of equation
(4.5.16), (4.5.17) that a′

7 = a7, b′
7 = b7. Since b6b7 �= 0 due to (4.5.9) it follows

from (4.5.18) that t ′6 = t6. Thus without loss of generality, we can assume that
b4 > 0, b5 > 0, b6 > 0, that is, t4 = t5 = t6 = 1. Then the Fourier coefficients in
(4.5.13) can be determined from (4.5.16)–(4.5.19). Namely, by [see (4.5.1), (4.5.2)],
we have

z(γ2 + γ3) = a4 + ib4, z(γ1 + γ3) = a5 + ib5, z(γ1 + γ2) = a6 + ib6,
(4.5.20)

z(γ1 + γ2 + γ3) = a7 + ib7, (4.5.21)

where, it follows from the invariants s4, s5, s6 and (4.5.14) that

b4 =
√

(s2s3s4)2 − s29
s2s3

> 0, b5 =
√

(s1s3s5)2 − s28
s1s3

> 0, b6 =
√

(s1s2s6)2 − s27
s1s2

> 0

(4.5.22)

and it follows from (4.5.16), (4.5.17) that

a7 = b4
s11
s2

− b5
s10
s1

b5a4 − b4a5
, b7 = a4

s11
s2

− a5
s10
s1

b5a4 − b4a5
. (4.5.23)

Step 2. In this step using the invariants s19, s20, . . . , s24, and (4.5.9), we find

z(γ1 − γ2), z(γ1 − γ3), z(γ2 − γ3). (4.5.24)

From s19 and the equalities z(−γ1) = z(γ1) = s1 [see (4.5.12)], z(γ1 + γ2) =
a6 + ib6, z(γ1 − γ2) = a8 + ib8 [see (4.5.1), (4.5.2)], we obtain an equation

a6a8 − b6b8 = s−2
1 s19, (4.5.25)

with respect to the unknowns a8 and b8, since a6 and b6 are known due to (4.5.14)
and (4.5.22). From s20, in the same way, we get
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a6a8 + b6b8 = s−2
2 s20. (4.5.26)

Since a6b6 �= 0 due to (4.5.9), from (4.5.25) and (4.5.26), we find a8 and b8 :

a8 = s−2
1 s19 + s−2

2 s20
2a6

, b8 = s−2
2 s20 − s−2

1 s19
2b6

. (4.5.27)

Now instead of the pair {s19, s20} using the pair {s21, s22} we obtain

a9 = s−2
1 s21 + s−2

3 s22
2a5

, b9 = s−2
3 s22 − s−2

1 s21
2b5

, (4.5.28)

where z(γ1 − γ3) = a9 + ib9 [see (4.5.1), (4.5.2)] and then using the pair {s23, s24}
we obtain

a10 = s−2
2 s23 + s−2

3 s24
2a4

, b10 = s−2
3 s24 − s−2

2 s23
2b4

, (4.5.29)

where z(γ2 − γ3) = a10 + ib10.
Step 3. In this step using the invariants s12+i and s15+i for i = 1, 2, 3 we find

z(γ2 + γ3 − γ1), z(γ1 + γ3 − γ2), z(γ1 + γ2 − γ3). (4.5.30)

Using s12+i and s15+i for i = 1 and taking into account that γ = γ1 + γ2 + γ3,
z(a) = z(−a), z(γ2 + γ3 − γ1) = a11 + ib11 [see (4.5.1), (4.5.2)], we obtain the
equations

a4a11 + b4b11 = s−1
1 s13, (4.5.31)

a7a11 + b7b11 = s−2
1 s16. (4.5.32)

with respect to the unknowns a11 and b11, where a4, b4 and a7, b7 are defined by
(4.5.14), (4.5.22) and (4.5.23). Since a4b7 − b4a7 �= 0, due to (4.5.9), from this
system of equations we get

a11 = b4s−2
1 s16 − b7s−1

1 s13
a4b7 − b4a7

, b11 = a4s−2
1 s16 − a7s−1

1 s13
a4b7 − b4a7

. (4.5.33)

In the same way, using s12+i , s15+i for i = 2 and for i = 3, we find the following
formulas for z(γ1 + γ3 − γ2) = a12 + ib12 and z(γ1 + γ2 − γ3) = a13 + ib13 :

a12 = b5s−2
2 s16 − b7s−1

2 s13
a5b7 − b5a7

, b12 = a5s−2
2 s16 − a7s−1

2 s13
a5b7 − b5a7

, (4.5.34)

a13 = b6s−2
3 s16 − b7s−1

3 s13
a6b7 − b6a7

, b13 = a6s−2
3 s16 − a7s−1

3 s13
a6b7 − b6a7

. (4.5.35)
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The theorem is proved �

Formulas (4.5.12), (4.5.14), (4.5.22), (4.5.23), (4.5.27)–(4.5.29) and (4.5.33)–
(4.5.35) shows that the conditions (4.5.9) can be written in term of the spectral

invariants s1, s2, . . . , s24. Using the notations p = s1s2s3, p1 =
√

(s2s3s4)2 − s29 ,

p2 =
√

(s1s3s5)2 − s28 , p3 =
√

(s1s2s6)2 − s27 , one can easily verify that

a3+i = s10−i si

p
, b3+i = pi si

p

and the relations b7 �= 0, b7a j − a7b j �= 0 for j = 4, 5, 6, are equivalent to

s21s9s11 − s22s8s10 �= 0, (s21s9s11 − s22s8s10)s10−i − (s21s11 p1 − s22s10 p2)pi �= 0

for i = 1, 2, 3 [see (4.5.14) and (4.5.22)]. Therefore (4.5.9), in term of the invariants,
has the form:

s21s9s11 − s22s8s10 �= 0, si s10−i pi �= 0,

(s21s9s11 − s22s8s10)s10−i − (s21s11 p1 − s22s10 p2)pi �= 0, s10−k pi ± pks10−i �= 0,
(4.5.36)

where i = 1, 2, 3; k = 1, 2, 3 and k �= i. Thus from Theorem4.5.2 we obtain the
following

Corollary 4.5.1 If the spectral invariants s1, s2, . . . , s24 of L(q), where q is a poten-
tial of the form (4.1.16), are given and satisfy (4.5.36), then one can determine
the potential q constructively and uniquely, modulo (4.1.8), by formulas (4.5.12),
(4.5.14), (4.5.22), (4.5.23), (4.5.27)–(4.5.29) and (4.5.33)–(4.5.35).

4.6 On the Stability of the Algorithm

We determine constructively the potential from the Bloch eigenvalues in two steps.
In the first step we have determined the invariants from the Bloch eigenvalues in
Chap.3. In the second step we found the potential from the invariants in Sect. 4.5 of
this chapter. In this section we consider the stability of the problems studied in both
steps.

First, we consider the stability of the invariants (4.1.4)–(4.1.6) with respect to
the errors in the Bloch eigenvalues for the potential of the form (4.1.16). For this
let us recall the formulas of Chap.3 that will be used here. In Chap. 3 the spectral
invariants are expressed by the Bloch eigenvalues of the Schrödinger operator L(qδ)

with the directional potential qδ(x), where δ is a visible element of �. The function
qδ depends on only one variable s = 〈δ, x〉 and can be written as

http://dx.doi.org/10.1007/978-3-319-16643-8_3
http://dx.doi.org/10.1007/978-3-319-16643-8_3
http://dx.doi.org/10.1007/978-3-319-16643-8_3
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qδ(x) = Qδ(〈δ, x〉), Qδ(s) =
∑

n∈Z
z(nδ)eins . (4.6.1)

The Bloch eigenvalues and the Bloch functions of the operator L(qδ) are

λ j,β(v, τ ) = |β + τ |2 + μ j (v), � j,β(x) = ei〈β+τ ,x〉ϕ j,v(s),

where β ∈ �δ, τ ∈ Fδ =: Hδ/�δ, j ∈ Z, v ∈ [0, 1), μ j (v) and ϕ j,v(s) are the
eigenvalues and eigenfunctions of the operator Tv(Qδ) generated by the boundary
value problem:

−|δ|2y′′(s) + Qδ(s)y(s) = μy(s), y(2π) = ei2πv y(0), y′(2π) = ei2πv y′(0).

In Chap.3, we constructed a set of eigenvalue, denoted by � j,β(v, τ ), of Lt (q)

satisfying

� j,β(v, τ ) = |β + τ |2 + μ j (v) + 1

4

∫

F

∣
∣ fδ,β+τ

∣
∣2

∣
∣ϕ j,v

∣
∣2 dx + O(ρ−3a+2α1 ln ρ),

(4.6.2)
where β ∼ ρ, j = O(ρα1), α1 = 3α, a = 406α, α = 1

432 , −3a +2α1 = − 101
36 and

fδ,β+τ (x) =
∑

γ:γ∈Q(1,1,1)\δR

γ

〈β + τ , γ〉 z(γ)ei〈γ,x〉. (4.6.3)

To consider the stability of the invariants (4.1.4)–(4.1.6) with respect to the errors in
the band functions, we use (4.6.2) and the following asymptotic decomposition of
μ j (v) and

∣
∣ϕ j,v(s)

∣
∣2:

μ j (v) = | jδ|2 + c1
j

+ c1
j2

+ · · · + cn

jn
+ O(

1

jn+1 ), (4.6.4)

∣
∣ϕ j,v(s)

∣
∣2 = A0 + A1(s)

j
+ A2(s)

j2
+ · · · + An(s)

jn
+ O(

1

jn+1 ), (4.6.5)

where

c1 = c2 = 0, c3 = 1

16π|δ|3
∫ 2π

0

∣
∣
∣Qδ(t)

∣
∣
∣
2

dt (4.6.6)

(see [Mar] and [Eas]). In Chap.3, we proved that if qδ(x) has the form (4.1.7), then

A0 = 1, A1 = 0, A2 = Qδ(s)

2
+ B1 |z(δ)|2 , A3 = B2Qδ(s) + B3 |z(δ)|2 ,

(4.6.7)

A4 = B4Qδ(s) + B5((z(δ))
2ei2〈δ,x〉 + (z(−δ))2e−i2〈δ,x〉) + B6,

where B1, B2, . . . , B6 are the known constants.

http://dx.doi.org/10.1007/978-3-319-16643-8_3
http://dx.doi.org/10.1007/978-3-319-16643-8_3
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Theorem 4.6.1 Let q(x) be the potential of the form (4.1.16), satisfying (4.5.3). If

the Bloch eigenvalues of order ρ2 of L(q) are given with accuracy O(ρ− 101
36 ln ρ),

then one can determine the spectral invariants (4.1.4)–(4.1.6), constructively and

uniquely, with accuracy O(ρ− 97
108 ln ρ).

Proof First, using the asymptotic formula (4.6.2), we write explicitly the asymptotic
expression of the invariants

μ j (v), J (δ, b, j, v) =
∫

F
|qδ,b(x)ϕ j,v(〈δ, x〉)|2dx (4.6.8)

determined constructively in Chap. 3, where υ ∈ (0, 1
2 ) ∪ ( 12 , 1), j ∈ Z, qδ,b(x) is

defined in (4.1.3), δ ∈ Q(1, 1, 1) and b is a visible element of �δ, in terms of the
Bloch eigenvalues with an estimate of the remainder term. Let s1b1, s2b2, . . . , smbm

be projections of the vectors of the set Q(1, 1, 1)\δR onto the plane Hδ, where
si ∈ R and bi ∈ �δ . If bi ∈ b j R, where i > j, then we do not include bi to the list
of projections, that is, b1, b2, . . . , bm are pairwise linearly independent. Consider
the planes P(δ, bk) for k = 1, 2, . . . , m. It is clear that the set Q(1, 1, 1)\δR is the
union of the pairwise disjoint sets P(δ, bk) ∩ (Q\δR) for k = 1, 2, . . . , m. To find
the spectral invariants (4.6.8), we write fδ,β+τ (x) [see (4.6.3)] in the form

fδ,β+τ (x) =
m∑

k=1

Fδ,bk ,β+τ (x), (4.6.9)

where

Fδ,bk ,β+τ (x) =
∑

γ:γ∈P(δ,bk)∩(Q\δR)

γ

〈β + τ , γ〉 z(γ)ei〈γ,x〉. (4.6.10)

Clearly, if γ ∈ P(δ, bk)\δR and γ′ ∈ P(δ, bl)\δR for l �= k, then γ′ + γ /∈ δR.
Therefore taking into account that ϕ j,v(〈δ, x〉) is a function of 〈δ, x〉, we obtain

∫

F

〈
Fδ,bk ,β+τ (x), Fδ,bl ,β+τ (x)

〉 |ϕ j,v(〈δ, x〉)|2dx = 0, ∀l �= k.

This with (4.6.9) implies that

∫

F
| fδ,β+τ |2

∣
∣ϕ j,v

∣
∣2 dx =

m∑

k=1

∫

F
|Fδ,bk ,β+τ |2

∣
∣ϕ j,v

∣
∣2 dx . (4.6.11)

In Chap.3 we proved that for each b0 ∈ �δ there exists β0 + τ such that

|β0 + τ | ∼ ρ,
1

3
ρa < |〈β0 + τ , b0〉| < 3ρa,

http://dx.doi.org/10.1007/978-3-319-16643-8_3
http://dx.doi.org/10.1007/978-3-319-16643-8_3
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and � j,β0(v, τ ) satisfies (4.6.2). Since bk ∈ �δ, there exist βk + τ such that

1

3
ρa < |〈βk + τ , bk〉| < 3ρa (4.6.12)

and � j,β0(v, τ ) satisfies (4.6.2). From (4.6.12) we see that cos θk,k = O(ρa−1) =
o(1),where θs,k is the angle between βs +τ and bk . Therefore cos θs,k ∼ 1 for s �= k
and hence

〈βs + τ , bk〉 ∼ ρ (4.6.13)

for all s �= k. If b0 /∈ b1R ∪ b2R ∪ · · · ∪ bmR, then (4.6.13) holds for k = 0 and
s = 1, 2, . . . , m.

Now substituting the orthogonal decomposition |δ|−2〈γ, δ〉δ+|bk |−2〈γ, bk〉bk of
γ for γ ∈ P(δ, bk) ∩ (Q\δR) into the denominator of the fraction in (4.6.10), and
taking into account that β + τ ∈ Hδ, 〈β + τ , δ〉 = 0, we obtain

Fδ,bk ,β+τ (x) = |bk |2
〈β + τ , bk〉qδ,bk (x),

where qδ,bk (x) is defined in (4.1.3). This with (4.6.8) implies that

∫

F
|Fδ,bk ,β+τ |2

∣
∣ϕ j,v

∣
∣2 dx = |bk |4

(〈β + τ , bk〉)2 J (δ, bk, j, v). (4.6.14)

Substituting (4.6.11) and (4.6.14) in (4.6.2) and then instead of β writing βs for
s = 0, 1, . . . , m, we get the system of m + 1 equations

μ j (v)+
m∑

k=1

|bk |4
4(〈βs + τ , bk〉)2 J (δ, bk , j, v) = � j,βs (v, τ )+|βs + τ |2+ O(ρ−3a+2α1 ln ρ),

(4.6.15)
with respect to the unknowns μ j (v), J (δ, b1, j, v), J (δ, b2, j, v), . . . , J (δ, bm,

j, v). By (4.6.12) and (4.6.13) the coefficient matrix of (4.6.15) is (ai, j ), where
ai1 = 1 for i = 1, 2, . . . , m + 1 and

ak,k ∼ ρ−2a, as,k ∼ ρ−2, ∀k > 1, ∀s �= k. (4.6.16)

Expanding the determinant� of thematrix (ai, j ), one can readily see that the highest
order term of this expansion is the product of the diagonal elements of the matrix
(ai, j ) which is of order ρ−2ma and the other terms of this expansions are O(ρ−2m).

Therefore, we have
� ∼ ρ−2ma (4.6.17)
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Now we are going to use the fact that the right-hand side of (4.6.15) is determined
with error O(ρ−3a+2α1 ln ρ), if the Bloch eigenvalues of order ρ2 of L(q) are given
with accuracy O(ρ−3a+2α1 ln ρ). Let �k, �k,0 and �k,1 be determinant obtained
from � by replacing sth elements of the kth column by

� j,βs (v, τ ) + |βs + τ |2 + O(ρ−3a+2α1 ln ρ), � j,βs (v, τ ) + |βs + τ |2)

and O(ρ−3a+2α1 ln ρ) respectively. One can easily see that

�1 − �1,0 = �1,1 = O(ρ−2ma−3a+2α1 ln ρ),

�k − �k,0 = �k,1 = O(ρ−2ma−a+2α1 ln ρ) (4.6.18)

for k > 1. Therefore, solving the system (4.6.15) by the Cramer’s rule and using
(4.6.17), (4.6.18), we find μ j (v) and J (δ, bk, j, v) with error O(ρ−3a+2α1 ln ρ) and
O(ρ−a+2α1 ln ρ) respectively.

Now using (4.6.4) for j ∼ ρα1 , where n is chosen so that jn+1 > ρ3a, and taking
into account that μ j (v) is determined with error O(ρ−3a+2α1 ln ρ), we consider the
invariant (4.1.4). In (4.6.4) replacing j by k j, for k = 1, 2, . . . , n, we get the system
of n equations

c1
jk

+ c2
( jk)2

+ · · · + cn

( jk)n
= μ jk(v) + | jkδ|2 + O(

1

jn+1 ), (4.6.19)

with respect to the unknowns c1, c2, . . . , cn . The coefficient matrix of this system is
(ai,k), where ai,k = 1

( j i)k for i, k = 1, 2, . . . , n. Therefore, the determinant of (ai,k)

is
1

j

1

j2
· · · 1 jn 1

n! det(vi,k),

where vi,k = vk−1
i , vi = 1

i , that is, (vi,k) is the Vandermonde matrix and

det(vi,k) =
∏

1≤ j<i≤n

(
1

i
− 1

j

)
.

Now solving the system (4.6.19) by the Cramer’s rule and using the arguments used
for the solving of (4.6.15), we find c3 with an accuracy O(ρ−3a+5α1 ln ρ), since the
elements of the third column is of order ρ3α1 and the right-hand side of (4.6.19) is
determined with error O(ρ−3a+2α1 ln ρ). Thus formula (4.6.6) gives the invariant
(4.1.4) with error O(ρ−3a+5α1 ln ρ).

To consider the invariant (4.1.5) and (4.1.6), we use (4.6.5), where j ∼ ρα1 and n
can be chosen so that jn+1 > ρa . In (4.6.5) replacing j by k j, for k = 1, 2, . . . , n+1,
and using it in J (δ, bs, j, v) [see (4.6.8)], we get the system of n + 1 equations
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J0(δ, bs) + J1(δ, bs)

jk
+ J2(δ, bs)

( jk)2
+ · · · + Jn(δ, bs)

( jk)n
= J (δ, bs, j, v), (4.6.20)

with respect to the unknowns J0(δ, bs), J1(δ, bs), . . . , Jn(δ, bs), where

Jk(δ, bs) =
∫

F
|qδ,bs (x)|2Ak(〈δ, x〉)dx .

In the above we proved that the right-hand side of (4.6.20) is determined with error
O(ρ−a+2α1 ln ρ).Therefore, instead of (4.6.19) using (4.6.20) and repeating the argu-
ments used in finding of c3, we find J0(δ, bs), J1(δ, bs), . . . , J4(δ, bs)with accuracy
O(ρ−a+6α1 ln ρ). Then using (4.6.7), we determine the invariants (4.1.5) and (4.1.6)
with the accuracy O(ρ−a+6α1 ln ρ), where a − 6α1 = 97

108 �

Proposition 4.6.1 Let q(x) be the potential of the form (4.1.16), satisfying (4.5.3).
If the Bloch eigenvalues of order ρ2 of L(q) are given with accuracy ε, where 1 �
ε ≥ ρ− 151

54 , then one can determine the invariants (4.1.4)–(4.1.6), constructively and

uniquely, with accuracy ρ
103
54 o(ε).

Proof Since O(ρ−3a+2α1 ln ρ) = o(ε) (see (4.6.2), (4.6.15) can be written in the
form

μ j (v) +
m∑

k=1

|bk |4
4(〈βs + τ , bk〉)2 J (δ, bk, j, v) = � j,βs (v, τ ) + |βs + τ |2 + o(ε).

(4.6.21)
Instead of (4.6.15) using (4.6.21), that is, instead of O(ρ−3a+2α1 ln ρ) using o(ε),
and repeating the arguments that were used in solving of (4.6.15) we find μ j (v) and
J (δ, bk, j, v)with error o(ε) and o(ρ2aε) respectively. In the sameway from (4.6.19)
and (4.6.20) (everywhere instead of O(ρ−3a+2α1 ln ρ) using o(ε), and repeating the
arguments thatwere used in the proof ofTheorem4.6.1)wefind the spectral invariants
(4.1.4)–(4.1.6) with accuracy ρ2a+4α1o(ε), where 2a + 4α1 = 824

432 = 103
54 �

Note that Proposition4.6.1 differs from Theorem4.6.1. In the former one the
error ε does not depend on the order ρ2 of the given eigenvalues. We expect that this
simplifies the real applications.

Now using formulas (4.5.12), (4.5.14), (4.5.22), (4.5.23), (4.5.27)–(4.5.29) and
(4.5.33)–(4.5.35) (see the proof of Theorem4.5.2),we prove that if the spectral invari-
ants s1, s2, . . . , s24 [see (4.5.11)] of L(q),where q is a potential of the form (4.1.16),
are given and satisfy (4.5.36), then one can determine the potential q constructively
and uniquely, modulo (4.1.8), with error (M + h)ε, where M is explicitly expressed
by s1, s2, . . . , s24 and h → 0 as ε → 0. To determine M we introduce the following
notations. By (4.5.2) the Fourier coefficients of (4.1.16) are z(γ j ) = a j +ib j ,where,
by formulas (4.5.12), (4.5.14), (4.5.22), (4.5.23), (4.5.27)–(4.5.29) and (4.5.33)–
(4.5.35), a j and b j are explicitly expressed by s1, s2, . . . , s24. Indeed, using (4.5.14)
and (4.5.22) in (4.5.23) and (4.5.27)–(4.5.29)wewrite a j and b j for j = 7, 8, 9, 10 in
term of s1, s2, . . . , s24.Then using (4.5.14), (4.5.22) and (4.5.23) in (4.5.33)–(4.5.35)
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we write a j and b j for j = 11, 12, 13 in term of s1, s2, . . . , s24. Thus a j and b j are
the functions of s1, s2, . . . , s24 : a j = a j (s1, s2, . . . , s24), b j = b j (s1, s2, . . . , s24)
for j = 1, 2, . . . , 13. Introduce the functions

f j (ε) = a j (s1 + ε, s2 + ε, . . . , s24 + ε), g j (ε) = b j (s1 + ε, s2 + ε, . . . , s24 + ε)

and define M by

M = 2
∑

j=1,2,...,13

√

(
d f j (0)

dε
)2 + (

dg j (0)

dε
)2.

Theorem 4.6.2 If the spectral invariants (4.5.11) of L(q), where q is a potential of
the form (4.1.16), are given with error ε and satisfy (4.5.36), then the potential q can
be determined constructively and uniquely, modulo (4.1.8), with error (M + h)ε in
the C∞ metric, where ε � 1 and h → 0 as ε → 0.

Proof In Corollary4.5.1 we proved that if the invariants s1, s2, . . . , s24 satisfy the
conditions (4.5.36) then one can determine the potential q.Due to the above notation,
q has the form

q(x) =
13∑

j=1

(( f j (0) + ig j (0))e
i〈γ j ,x〉 + ( f j (0) − ig j (0))e

i〈−γ j ,x〉).

Since the expressions in (4.5.36) continuously depend on the invariants s1, s2,
. . . , s24, the conditions on (4.5.36) hold if these invariants are replaced by
s1 + ε, s2 + ε, . . . , s24 + ε for ε � 1. Therefore by Corollary4.5.1 one can construct
the potential

qε(x) =:
13∑

j=1

(( f j (ε) + ig j (ε))e
i〈γ j ,x〉 + ( f j (ε) − ig j (ε))e

i〈−γ j ,x〉)

from the dates s1+ε, s2 +ε, . . . , s24+ε. Thus to prove the theorem, that is, to prove
the inequality supx |qε(x) − q(x)| < (M + h)ε, it is enough to show that

f j (ε) − f j (0) = (
d f j (0)

dε
+ h j )ε, g j (ε) − g j (0) = (

dg j (0)

dε
+ h̃ j )ε (4.6.22)

for j = 1, 2, . . . , 13, where h j → 0 and h̃ j → 0 as ε → 0. It follows from (4.5.12)
that (4.6.22) holds for j = 1, 2, 3.To prove (4.6.22) for j > 3we use themean-value
formulas

f j (ε) − f j (0) = d f j (ε j )

dε
ε, g j (ε) − g j (0) = dg j (ε̃ j )

dε
ε,
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where ε j ∈ (0, ε), ε̃ j ∈ (0, ε) and prove that

d f j (ε j )

dε
= d f j (0)

dε
+ h j ,

dg j (ε̃ j )

dε
= dg j (0)

dε
+ h̃ j (4.6.23)

Let us prove (4.6.23). It follows from (4.5.7), (4.5.9) that the denominators of the
fractions in the formulas (4.5.14), (4.5.22), (4.5.23), (4.5.27)–(4.5.29) and (4.5.33)–
(4.5.35) are nonzero numbers. Therefore the denominators of the fractions taking part
in the expressions of f j (ε) and g j (ε) are nonzero numbers for ε � 1. Moreover, by

direct calculations one can readily see
d f j (ε)

dε and
dg j (ε)

dε are continuous functions at
ε = 0. It means that (4.6.23) holds and the theorem is proved �

The consequence of Theorems4.6.1 and 4.6.2 is the following:

Corollary 4.6.1 Let q(x) be the potential of the form (4.1.16) satisfying (4.5.3). If

the Bloch eigenvalues of order ρ2 of L(q) are given with accuracy O(ρ− 101
36 ln ρ),

then one can determine the potential q constructively and uniquely, modulo (4.1.8),
with accuracy O(ρ− 97

108 ln ρ)

The consequence of Proposition4.6.1 and Theorem4.6.2 is the following:

Corollary 4.6.2 Let q(x) be the potential of the form (4.1.16) satisfying (4.5.3).
If the Bloch eigenvalues of order ρ2 of L(q) are given with accuracy ε, where

1 � ε ≥ ρ− 151
54 , then one can determine the potential q, constructively and uniquely,

with error ρ
103
54 o(ε) in the C∞ metric

Proof It follows from Proposition4.6.1 that the invariants (4.1.4)–(4.1.6) can be

determined with accuracy ρ
103
54 o(ε). Then using (4.5.11) and taking into account that

the first multiplicands A1(a, b) and A2(a, b) of the right-hand sides of the invariants
(4.2.25)–(4.2.28) and (4.2.34), (4.2.35) are nonzero constants of order 1, we con-
clude that the invariants s1, s2, . . . , s24 can be determined with accuracy ρ

103
54 o(ε).

Therefore the proof follows from Theorem4.6.2 �

4.7 Uniqueness Theorems

First we consider the Hill operator H(p) generated in L2(R) by the expression

l(q) =: −y′′(x) + p(x)y(x)

when p(x) is a real-valued trigonometric polynomial

p(x) =
N∑

s=−N

pse2isx , p−s = ps, p0 = 0. (4.7.1)
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Let the pair {λk,1, λk,2} denote, respectively, the kth eigenvalues of the operator
generated in L2[0,π] by the expression l(q) and the periodic boundary conditions
for even k and the anti-periodic boundary conditions for odd k. It is well-known that
(see [Eas], Theorem 4.2.4)

λ0,1 = λ0,2 < λ1,1 ≤ λ1,2 < λ2,1 ≤ λ2,2 < λ3,1 ≤ λ3,2 < · · · < λn,1 ≤ λn,2 < · · · .

The spectrum Spec(H(p)) of H(p) is the union of the intervals [λn−1,2,λn,1] for
n = 1, 2, . . .. The interval γn =: (λn,1,λn,2) is the nth gaps in the spectrum of H(p).

Since the spectrum of the operators H(p(x)) and (H(p(x + τ )), where τ ∈ (0,π),

are the same, we may assume, without loss of generality, that p−N = pN = μ > 0.
We use the following formula obtained in the paper [Gri] (see Theorem 2 in [Gri])
for the length |γn| of the gap γn :

|γn| = 4n

μ

(
μe2

8n2

) n
N

∣
∣
∣
∣
∣

N−1∑

k=0

Ak(n)

(
1 + O

(
ln n

n

))∣
∣
∣
∣
∣
, (4.7.2)

where

Ak(n) = exp

[
2inkπ

N
+ 2n

N−1∑

k=0

λ j

((
1
2μn−2

) 1
N

e2ikπ/N
) j

]

(4.7.3)

and λ j algebraically depends on the Fourier coefficients of p(x).

From (4.7.3) one can readily see that

|Ak(n)| < exp(an1− 2
N ), |Ak(n)| > exp(−an1− 2

N ), ∀k = 0, 1, . . . , (N − 1),
(4.7.4)

where

a =
N−1∑

j=1

a j , a j = sup
k

∣
∣
∣
∣
∣
Re(2λ j

(
( 1
2μ

) 1
N e2ikπ/N

) j
∣
∣
∣
∣
∣
. (4.7.5)

This and (4.7.2) imply that

|γn| <
4n

μ

(
μe2

8n2

) n
N

2Nean1−
2
N

. (4.7.6)

Using (4.7.4)–(4.7.6) we prove the following:

Theorem 4.7.1 Let p̃(x) be a real-valued trigonometric polynomial of the form

p̃(x) =
K∑

s=−K

p̃se2isx , p̃−s = p̃s, p̃−K = p̃K = ν > 0.
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If Spec(H(p)) = Spec(H( p̃)), then K = N , where p(x) is defined in (4.7.1).

Proof Suppose K �= N . Without less of generality, it can be assumed that K < N .

We consider the following two cases:
Case 1: Assume that λ j = 0 for all values of j. Then from (4.7.3) for n = l N ,

l ∈ N we obtain that Ak(n) = 1 for all k. Therefore, by (4.7.2), we have

|γn| = 4n

μ

(
μe2

8n2

)l

N

(
1 + O

(
ln n

n

))
,∀n = l N . (4.7.7)

Applying (4.7.6) for the length |δn| of the n th gap δn in the Spec(H( p̃)), that is,
replacing N and μ by K and ν respectively and arguing as in the proof of (4.7.6),
we see that there exists a positive number b such that

|δn| <
4n

ν

(
νe2

8n2

) n
K

2K ebn1−
2
K

. (4.7.8)

Since the fastest decreasing multiplicands of (4.7.7) and (4.7.8) are n−2l and n− 2n
K

respectively and K < N , it follows from (4.7.7) and (4.7.8) for n = l N that |γl N | >

|δl N | for l � 1, which contradicts to the equality Spec(H(q)) = Spec(H( p̃)).

Case 2: Assume that λ j �= 0 for some values of j. Let us prove that the equalities

|γl N | = |δl N |, |γl N+1| = |δl N+1|, . . . , |γl N+N−1| = |δl N+N−1| (4.7.9)

for l � 1 can not be satisfied simultaneously. Suppose to the contrary that all
equalities in (4.7.9) hold. Using (4.7.2), (4.7.8) and taking into account that

(
νe2

8n2

) l N+m
K

(
μe2

8n2

)− l N+m
N

ebn1−
2
K = O(n−αn)

for 0 < α < l N+m
K − l N+m

N , from (4.7.9) we obtain

N−1∑

k=0

Ak(l N + m)

(
1 + O

(
ln l

l

))
= O(l−αl), ∀m = 0, 1, . . . (N − 1). (4.7.10)

Let us consider Ak(l N + m) in detail. It can be written in the form

Ak(l N +m) = exp

(
2imkπ

N

)
eck (l N+m), ck(l N +m) =

N−1∑

j=1

M j (k)(l N +m)1−
2 j
N ,

(4.7.11)
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where M j (k) is a complex number. Using the mean value theorem, we get

ck(l N + m) − ck(l N ) = m
N−1∑

j=1

M j (k)(l N + θ(k))−
2 j
N = O(l−

2
N ), (4.7.12)

where θ(k) ∈ [0, m] for all k. Now using (4.7.11), (4.7.12) and taking into account
that

ez = 1 + O(z) as z → 0, we obtain

Ak(l N + m) = exp

(
2imkπ

N

)
Ak(l N )(1 + O(l−

2
N )). (4.7.13)

Therefore (4.7.10) has the form

N−1∑

k=0

exp

(
2imkπ

N

)
Ak(l N ) (1 + o(1)) = O(l−αl), m = 0, 1, . . . (N − 1).

(4.7.14)
Consider (4.7.14) as a system of equations with respect to the unknowns

A0(l N ), A1(l N ), . . . , AN−1(l N ). Using the well-known formula for the deter-
minant of the Vandermonde matrix (vm,k), where vm,k = vk

m, vm = exp( 2imπ
N ), we

see that the main determinant of this system is

(1 + o(1)) det
(

e
2imkπ

N

)N−1

k,m=0
= (1 + o(1))

∏

0≤m<k≤(N−1)

(e
2ikπ

N − e
2imπ

N ).

Thus solving (4.7.14) by the Cramer’s rule we obtain Ak(l N ) = O(l−αl), for k =
0, 1, . . . (N − 1) which contradicts the second inequality in (4.7.4). The theorem is
proved. �

Now using this theoremwe prove a uniqueness theorem for the three-dimensional
Schrödinger operator. For this, first, we prove the following lemma.

Lemma 4.7.1 Let q̃(x) be infinitely differentiable periodic potential of the form

q̃(x) =
∑

a∈Q(1,1,1)

q̃a(x), (4.7.15)

where
q̃a(x) =

∑

n∈Z
z̃(na)ein〈a,x〉, z̃(0) = 0 (4.7.16)

and z̃(na) =: (q̃(x), ein〈a,x〉) is the Fourier coefficients of q̃. If the equalities

z̃(nγi ) = 0, z̃(nγ j ) = 0, ∀n ∈ Z\{−1, 1} (4.7.17)
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hold, then

Ĩ1(γi + γ j , γi ) = A1(γi + γ j , γi )Re(̃z(−γi − γ j )̃z(γi )̃z(γ j )), (4.7.18)

Ĩ1(γi − γ j , γi ) = A1(γi − γ j , γi )Re(̃z(−γi + γ j )̃z(γi )̃z(−γ j )), (4.7.19)

Ĩ2(γi , γ j ) = A2(γi , γ j )Re(̃z(−γi ))
2̃z(γi + γ j )̃z(γi − γ j )) (4.7.20)

for i = 1, 2, 3; j = 1, 2, 3; i �= j, where γ1, γ2, γ3, A1(a, b) and A2(a, b) are
defined in Theorems4.2.2 and 4.2.3 respectively, Ĩ1(a, b) and Ĩ2(a, b) are the invari-
ants (4.1.5) and (4.1.6) for the operator L(q̃).

Proof By definition of Ĩ1(γi + γ j , γi ) [see (4.1.5) and (4.1.3)] we have

Ĩ1(γi + γ j , γi ) =
∫

F

∣
∣̃qγi +γ j ,β(x)

∣
∣2 (q̃)γi +γ j (x)dx, (4.7.21)

where β is defined by (4.1.10),

q̃γi +γ j ,β(x) =
∑

c∈D

c

〈β, c〉 z̃(c)ei〈c,x〉, (4.7.22)

and D = {c ∈ (P(γi , γ j )∩�)\(γi + γ j )R : z̃(c) �= 0}. It follows from (4.7.15) that
if c ∈ D, then c = ka, where k is an integer, and a belongs to the set P(γi , γ j ) ∩
Q)\(γi +γ j )R. Since this set is {γi , γ j ,−γi ,−γ j , γi −γ j ,−(γi −γ j )} and (4.7.17)
holds, we have

D = {γi , γ j ,−γi ,−γ j } ∪ {k(γi − γ j ) : k ∈ Z}. (4.7.23)

Therefore, repeating the proof of (4.2.32), we see that

Ĩ1(γi + γ j , γi ) = 2Re

( ∞∑

n=1

z̃(−n(γi + γ j ))
∑

c∈D

〈
n(γi + γ j ) − c, c

〉

(〈c, β〉)2 z̃(n(γi + γ j ) − c)̃z(c)

)

.

(4.7.24)

It follows from (4.7.23) that if n > 1 and c ∈ D, then n(γi + γ j ) − c /∈ D and
z̃(n(γi + γ j ) − c) = 0. Hence, from (4.7.24) we obtain

Ĩ1(γi + γ j , γi ) = 2Re

⎛

⎝̃z(−(γi + γ j ))
∑

c∈D

〈
(γi + γ j ) − c, c

〉

(〈c, β〉)2 z̃((γi + γ j ) − c)̃z(c)

⎞

⎠ .

(4.7.25)

Using this instead of (4.2.32) and repeating the proof of (4.2.25), we get (4.7.18). In
(4.7.18) replacing γ j by −γ j , we get (4.7.19).
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Now let us prove (4.7.20). It follows from (4.7.17) that

(q̃)γi (x) = z̃(γi )e
i〈γi ,x〉 + z̃(−γi )e

−i〈γi ,x〉).

Therefore Ĩ2(γi , γ j ) has the form

Ĩ2(γi , γ j ) =
∫

F

∣
∣̃qγi ,β(x)

∣
∣2 (((̃z(γi ))

2ei2〈γi ,x〉 + (̃z(−γi ))
2e−i2〈γi ,x〉)dx (4.7.26)

[see (4.1.6)], where β is defined by (4.1.10),

q̃γi ,β(x) =
∑

c∈E

c

〈β, c〉 z̃(c)ei〈c,x〉, (4.7.27)

E = {c ∈ (P(γi , γ j ) ∩ �)\γiR : z̃(c) �= 0}. Arguing as in the proof of (4.7.24),
(4.7.25), we see that

E = {γ j ,−γ j } ∪ {k(γi − γ j ) : k ∈ Z} ∪ {n(γi + γ j ) : n ∈ Z}. (4.7.28)

Ĩ2(γi , γ j ) = 2Re

(

z̃2(−γi )
∑

c∈E

〈γi + c, γi − c〉
(〈c,β〉)2 z̃(γi + c)̃z(γi − c)

)

. (4.7.29)

If c = k(γi − γ j ), where k �= 0, or c = n(γi + γ j ), where n �= 0, then
at least one of the vectors γi − c and γi + c does not have the form c = sa,

where s ∈ Z, a ∈ P(γi , γ j ) ∩ Q)\γiR, and hence by (4.7.15) we have z̃(γi +
c)̃z(γi − c) = 0. Therefore, the summation in (4.7.29) is taken over c ∈ {±γ j } and
(4.7.20) holds. �

Now we prove a uniqueness theorem for the periodic, with respect to the lattice
�, potentials q(x) of C1(R3) subject to some constraints only on the directional
potentials qγ1(x), qγ2(x) and qγ3(x), where {γ1, γ2, γ3} is a basis of � satisfying
(4.1.18). Note that the directional potential qa(x) is a function Qa(s) of one variable
s =: 〈x, a〉 ∈ R, where the function Qa(s) is defined in (4.6.1). Let U be the
set of all periodic,with period 2π, functions f ∈ C1(R) such that spec(H( f )) =
spec(H(μ cos s)) for some positive μ. Denote by W the set of all periodic, with
respect to the lattice�, functions q(x) ofC1(R3)whose directional potentials qγk (x)

for k = 1, 2, 3 satisfy the conditions

Qγk ∈ (C1(R)\U ) ∪ T, ∀k = 1, 2, 3, (4.7.30)

where T is the set of all trigonometric polynomial. Thus we put condition only on the
directional potentials qγ1(x), qγ2(x) and qγ3(x). The all other directional potentials,
that is, qa(x) for all a ∈ S\{γ1, γ2, γ3}, where S is the set of all visible elements of
�, are arbitrary continuously differentiable functions.



222 4 Periodic Potential from the Spectral Invariants

Theorem 4.7.2 Let q be the potential of the form (4.1.16), satisfying (4.5.3). If
q̃ ∈ W and the Bloch eigenvalues of the operators L(q) and L(q̃) coincide, then q̃
is equal to q modulo (4.1.8).

Proof Let q̃ be a function of W whose Bloch eigenvalues coincides with the Bloch
eigenvalues of q. By Theorem 6.1 of [EsRaTr2] the Bloch eigenvalues of L(q̃a)

coincides with the Bloch eigenvalues of L(qa). It implies that the spectrum of
H(Q̃a) coincides with the spectrum of H(Qa), where Q̃a(〈x, a〉) = q̃a(x). Since
the length of the nth gap in the spectrum of H(Qa) satisfies (4.7.6), the same inequal-
ity holds for the nth gap of H(Q̃a). It implies that q̃a is an infinitely differentiable
function for all visible elements a of� (see [Mar]). Thus q̃(x) is an infinitely differen-
tiable function and due to Chap.3 the operator L(q̃) has the invariants (4.1.4)–(4.1.6)
denoted by Ĩ (a), Ĩ1(a, b), Ĩ2(a, b). Since the Bloch eigenvalues of L(q) and L(q̃)

coincide, we have

Spec(H(Q̃a)) = Spec(H(Qa)), Ĩ (a) = I (a), Ĩ1(a, b) = I1(a,β), Ĩ2(a, b) = I2(a, b)

(4.7.31)
We need to prove that

q̃(x) ∈ {q(sx + τ ) : τ ∈ F, s = ±1}.

For this, it is enough to show that there exist τ ∈ F, s ∈ {−1, 1} such that

q̃(sx − τ ) = q(x).

The draft scheme of the proof is the followings. In Theorem4.5.2 we proved that if
q(x) has the form (4.1.16), then its Fourier coefficients z(a) for a ∈ Q(1, 1, 1) can
be defined uniquely, modulo (4.1.8), from the invariants (4.2.25)–(4.2.28), (4.2.34)
and (4.2.35). Here we prove that if the band functions of the operators L(q) and
L(q̃) coincide, then q̃ has the form (4.1.16) and the operator L(q̃) has the spectral
invariants obtained from the formulas (4.2.25)–(4.2.28), (4.2.34), (4.2.35) respec-
tively by replacing everywhere z(a) with z̃(a). Then, using the arguments of the
proof of Theorem4.5.2 and fixing the inversion and translations (4.1.8), we prove
that z̃(a) = z(a) for a ∈ Q(1, 1, 1).

Sinceqa(x) = 0 fora ∈ S\Q(1, 1, 1), the equality (4.1.4) and the second equality
of (4.7.31) imply that q̃ has the form (4.7.15). Now, to show that q̃(x) has the form
(4.1.16), we prove that

z̃(na) = 0, ∀|n| > 1, a ∈ Q(1, 1, 1). (4.7.32)

By (4.5.7) we have Qγk (s) = ak cos s, where ak > 0 and k = 1, 2, 3. Therefore,
by the first equality of (4.7.31), Q̃

γk ∈ U. On the other hand, we have Q̃
γk ∈

(C1(R)\U ) ∪ T (see (4.7.30). Thus Q̃
γk ∈ T . Then, it follows from Theorem4.7.1

that (4.7.32) holds for a ∈ {γ1, γ2, γ3}. Hence the all conditions of Lemma4.7.1
hold and we have the formulas (4.7.18), (4.7.19) and (4.7.20). Besides, it follows
from the second equality of (4.7.31) that |̃z(γi )| = |z(γi )|. By Theorem4.5.1 there

http://dx.doi.org/10.1007/978-3-319-16643-8_3
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exists τ ∈ F such that

arg(q̃(x − τ ), e−i〈γk ,x〉) = 0, ∀k = 1, 2, 3.

Without loss of generality, we denote q̃(x − τ ) by q̃ and its Fourier coefficients by
z̃(a). Thus

z̃(γi ) = z(γi ) = ai > 0, ∀i = 1, 2, 3. (4.7.33)

Therefore (4.2.25), (4.2.26), (4.7.18), (4.7.19) and (4.7.31) imply that

Re(̃z(γi ± γ j )) = Re(z(γi ± γ j )). (4.7.34)

From this using the obvious equalities (see (4.1.4) and the second equality of (4.7.31))

∞∑

n=1

2|̃z(n(γi ± γ j ))|2 = Ĩ (γi ± γ j ) = I (γi ± γ j ) = 2|z(γi ± γ j )|2, (4.7.35)

we obtain
|I m (̃z(γi ± γ j ))| ≤ |I m(z(γi ± γ j ))|. (4.7.36)

On the other hand, using (4.2.34), (4.7.20), (4.7.33) and (4.7.31), we get

Re(̃z(γi + γ j )̃z(γi − γ j )) = Re(z(γi + γ j )z(γi − γ j )).

This with (4.7.34) and (4.7.36) implies that

|I m (̃z(γi ± γ j ))| = |I m(z(γi ± γ j ))|. (4.7.37)

Thus by (4.7.34) and (4.7.37), we have

|̃z(γi ± γ j )| = |z(γi ± γ j )|. (4.7.38)

Therefore, from (4.7.35) we see that (4.7.32) holds for a = γi ± γ j . Hence we have

z̃(n(γi ± γ j ) = 0, z̃(nγm) = 0, ∀n ∈ Z\{−1, 1}, (4.7.39)

where i, j, m are different integers satisfying 1 ≤ i, j, m ≤ 3. Now instead of
(4.7.17) using (4.7.39), that is, instead γi and γ j in (4.7.17) taking γi ± γ j and γm

respectively, and repeating the proof of Lemma 4.7.1, we obtain that

Ĩ1(γ, γi ) = A1(γ, γi )Re(̃z(−γ)̃z(γ − γi )̃z(γi )), (4.7.40)

Ĩ1(2γi − γ, γi ) = A1(2γi − γ, γi )Re(̃z(γ − 2γi )̃z(γi − γ)̃z(γi )), (4.7.41)
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Ĩ2(γi , γ − γi ) = A2(γi , γ − γi )Re(̃z(−γi ))
2̃z(γ)̃z(2γi − γ)) (4.7.42)

for i = 1, 2, 3; i �= j, where γ = γ1 + γ2 + γ3.
One can readily see that the formulas (4.7.18), (4.7.19), (4.7.40), (4.7.41), (4.7.20),

(4.7.42) are obtained from the formulas (4.2.25)–(4.2.28), (4.2.34), (4.2.35) respec-
tively by replacing everywhere z(a) with z̃(a). Moreover, by (4.7.33), (4.7.34) and
(4.7.37), we have

ãi = ai , ∀i = 1, 2, . . . , 6; b̃i = ±bi , ∀i = 4, 5, 6, (4.7.43)

where ãi + i b̃i = z̃(γi ). As in Step 1 in the proof of Theorem4.5.2, using (4.7.40)
for i = 1, 2, 3 and taking into account (4.7.43) we obtain the equations

a4ã7 + t̃4|b4 |̃b7 = s10s−1
1 (4.7.44)

a5ã7 + t̃5|b5 |̃b7 = s11s−1
2 , (4.7.45)

a6ã7 + t̃6|b6 |̃b7 = s12s−1
3 , (4.7.46)

where t̃m is the sign of b̃m, i.e., is either −1 or 1 and s1, s2, . . . , are the invariants
defined in (4.5.11). It follows from (4.5.9) that the main determinants of the systems
of equations, with respect to the unknowns ã7, b̃7, generated by pairs {(4.7.44),
(4.7.45)}, {(4.7.44), (4.7.46)}, {(4.7.45), (4.7.46)} are not zero. Finding b̃7 from
(4.7.44), (4.7.45) and taking into account (4.5.19), we see that b̃7 �= 0. Therefore, for
fixing the inversion q̃(x) −→ q̃(−x), we assume that b̃7 > 0.Using this and finding
b̃7 from the systems generated by pairs {(4.7.44), (4.7.45)}, {(4.7.44), (4.7.46)},
{(4.7.45), (4.7.46)}, we get the inequalities

a4s11s−1
2 − a5s10s−1

1

t̃5|b5|a4 − t̃4|b4|a5 > 0,

a4s12s−1
3 − a6s10s−1

1

t̃6|b6|a4 − t̃4|b4|a6 > 0,

a5s12s−1
3 − a6s11s−1

2

t̃6|b6|a5 − t̃5|b5|a6 > 0. (4.7.47)

One can readily see that the relations (4.7.44)–(4.7.47) with respect to the unknowns
ã7, b̃7, t̃4, t̃5, t̃6 are obtained from (4.5.16)–(4.5.19) by replacing the unknowns a7,
b7, t4, t5, t6 with ã7, b̃7, t̃4, t̃5, t̃6. Since we proved that (4.5.16)–(4.5.19) has a unique
solution, we have:

a7 = ã7, b7 = b̃7, t4 = t̃4, t5 = t̃5, t6 = t̃6. This with (4.7.43) implies that

ãi = ai , b̃i = bi , ∀i = 1, 2, . . . , 7. (4.7.48)
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In Step 2 and Step 3 of Theorem4.5.2 using the invariants (4.2.28), (4.2.34),
(4.2.35) we have determined the all other Fourier coefficients of q provided that ai

and bi for i = 1, 2, . . . , 7 are known. Since the invariants (4.7.41), (4.7.20), (4.7.42)
are obtained from the invariants (4.2.28), (4.2.34), (4.2.35) by replacing everywhere
ai and bi with ãi and b̃i respectively, and (4.7.48) holds, we have

z̃(a) = z(a), ∀a ∈ Q(1, 1, 1). (4.7.49)

This with the equalities (4.1.4), (4.2.20), (4.7.31) and (4.7.16) imply that (4.7.32)
holds for all a ∈ Q(1, 1, 1). Therefore, it follows from (4.7.15), (4.7.32) and (4.7.49)
that �

q̃(x) = q(x)
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Chapter 5
Conclusions

Abstract In this chapter we summarize the results and methods of the book in the
descriptive way. In this book the following three problems of the spectral theory
of the multidimensional Schrödinger operator L(q) with a periodic potential q are
investigated.

1. First problem is the perturbation theory of L(q) (Chap. 2).
2. Second problem is the constructive determination of the spectral invariants of

L(q) from the given Bloch eigenvalues (Chap. 3).
3. Third problem is the constructive determination of the potential q from the

spectral invariants (Chap. 4).
We describe all these three problems that can be considered as unique features.

Moreover these problems are investigated as a whole and in the pertinent form in
the sense that First problem ⇒ Second problem ⇒ Third problem. Besides in
Chap. 1 we present some definitions, statements and discussions to be used in the
next chapters from the point of view of both the physicists and mathematicians.

Conversation and Notations

First let us discuss the results of Chap.2. Recall that the Bloch eigenvalues and Bloch
functions are the eigenvalues and eigenfunctions of the operator

Lt (q) = −� + q (5.1)

in the primitive unit cell F of the period lattice � of the potential q, with t-periodic
boundary conditions, where t is a quasimomentum in the primitive unit cell F∗
of the reciprocal lattice �. Because the eigenvalue problem is set in a fixed finite
volume F , the spectrum of Lt (q) consists of the eigenvalues �1(t), �2(t), ..., such
that �n(t) → ∞ as n → ∞. Each of the energy levels �n(t) varies continuously
as t varies. In this way we arrive at a description of the levels of an electron in a
periodic potential in terms of a family of continuous functions �n(t). For each n,
the set of electronic levels specified by �n(t) is called an energy band. Thus the
eigenvalues �n(t) are labeled with the band index n. The Bloch function is also
denoted by �n,t (x) which indicates that each value of the band index n and the
vector t specify an electron state, or orbital with the energy �n(t). The information
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contained in these functions for different n and t is referred to as the band structure
of the solid. Since for the general reciprocal lattice inRd the determination of the nth
Brillouin zone is complicated, it is hard to find �n(t) for large n in the case q = 0.
However, in this case the Bloch eigenvalues is expressed by γ ∈ � in a simple way
as |γ + t |2. In Chap.2, (for the first time in [Ve2, Ve3, Ve4]) to observe the moving
of the eigenvalues |γ + t |2 of the free operator Lt (0) for

γ + t ∈ {x ∈ R
d : ρ2 ≤ |x |2 < ρ2 + 1} =: W (ρ), (5.2)

where ρ � 1, under the periodic perturbation q, instead of the traditional labeling by
band index n, we label the Bloch eigenvalues and Bloch functions of the perturbed
operator Lt (q) by γ + t and denote them as �(γ + t) and �γ+t (x). Then we find
the values of the quasimomenta γ + t in the non-resonance domain for which the
corresponding Bloch eigenvalues �(γ + t) of Lt (q) are simple and close to |γ + t |2,
that is,

�(γ + t) = |γ + t |2 + O(|γ + t |−α) (5.3)

for some positive α and the corresponding Bloch wave �γ+t (x) is close to the plane
wave ei〈γ+t,x〉, that is,

�γ+t (x) = ei〈γ+t,x〉 + O(|γ + t |−α). (5.4)

Aswe stressed in Sect. 1.4 of Chap. 1 [see (1.4.2)] in themultidimensional case the
Bloch eigenvalues |γ + t |2, where γ ∈ �, of the free operator Lt (0) for fixed t ∈ F∗
are densely situated in a high energy region. Moreover, there are in average D(ρ)

diffraction hyperplanes Dδ passing through the washer W (ρ), where D(ρ) ∼ ρd ,

and all these planes may reflect the wave ei〈γ+t,x〉 if the corresponding eigenvalue
|γ + t |2 lies in the interval [ρ2, ρ2+1). Therefore in order to get the formula (5.4) we
have to construct the set of quasimomenta for which the plane wave ei〈γ+t,x〉 under
the perturbation q goes through the crystal without the essential influence of all these
diffraction hyperplanes. That is why, the regular perturbation theory is ineffective
and the mathematical difficulties have a physical nature—a complicated picture of
the diffraction inside the crystal.

Recall that (see Sect. 1.4 of Chap. 1) in the First case (one-dimensional
Schrödinger operator) and the Second case (small eigenvalues for the multidimen-
sional Schrödinger operator with the small potential εq) the regular perturbation
theory is effective due to the fact that the potential is smaller than the distance
between the eigenvalues of the unperturbed operator. In the big opposite to the First
and Second cases, in the case of the large eigenvalues of the multidimensional L(q),

the potential q is greater than the distance between the eigenvalues [see (1.4.3) in
Sect. 1.4 of Chap. 1]. In this case the regular perturbation theory is ineffective even
if the potential q is replaced by εq, where ε is a small parameter, due to the fol-
lowing reason. The distance between the large eigenvalues lying in [ρ2, ρ2 + 1)
is, in average O(ρ2−d), and we can not assume that ε < ρ2−d , since ρ2−d tends
to zero as ρ → ∞ if d > 2. Thus for the multidimensional case and for the large

http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_1
http://dx.doi.org/10.1007/978-3-319-16643-8_1
http://dx.doi.org/10.1007/978-3-319-16643-8_1
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values of the energy, the perturbation theory becomes extremely difficult.
Therefore in Chap.2 we develop a new mathematical approach to construct a per-
turbation theory for the multidimensional Schrödinger operator L(q) for the large
values of energy. This approach for the first time is given in [Ve1, Ve2, Ve3, Ve4].
Before discussing in detail the steps of this approach let us consider the Second case
in detail by the approach of Chap.2, since it helps to explain these steps. Namely, let
us have a look to the following well-known model which demonstrates the influence
of the potential εq to the eigenvalue |γ + t |2 of order 1 of the free electron and to
the plane wave ei〈γ+t,x〉.

Small Potential Model

In this model we discuss the well-known formulas for the Bloch eigenvalue �n(t)
and the corresponding Bloch function�n,t of the operator Lt (εq),where ε is a small
parameter, n = O(1) and q ∈ L2(F). Consider the following two cases:

Case1. Isolated eigenvalue (see Sect. 1.4 of Chap. 1). The crystal momentum
γ + t is far from the diffraction planes Dδ for δ ∈ �. It means that the distance a of
the eigenvalue |γ + t |2 from the nearest eigenvalue of Lt (0) is of order 1, that is,

min
δ∈�\{0}

∣
∣
∣|γ + t |2 − |γ + t + δ|2

∣
∣
∣ = a ∼ 1. (5.5)

First we show that there exists a Bloch eigenvalue �n(t) of the operator Lt (εq)

satisfying the inequality

∣
∣
∣�n(t) − |γ + t |2

∣
∣
∣ ≤ ε ‖q‖ . (5.6)

Suppose to the contrary that (5.6) does not hold for all n ∈ N. Then using the formula

(�n(t) − |γ + t |2)(�n,t , ei〈γ+t,x〉) = ε(q�n,t , ei〈γ+t,x〉), (5.7)

obtained from the formula (2.1.8) of Chap.2 by replacing q with εq, and Parseval’s
equality for the orthonormal basis

{
�n,t : n ∈ N

}
we obtain the following contra-

diction.

1 =
∑

n∈N

∣
∣
∣(�n,t , ei〈γ+t,x〉)

∣
∣
∣
2 =

∑

n∈N

ε2
∣
∣(�n,t , qei〈γ+t,x〉)

∣
∣2

|�n(t) − |γ + t ||2 < 1.

It follows from (5.5) and (5.6) that

∣
∣
∣�n(t) − |γ + t + δ|2

∣
∣
∣ ≥ a − ε ‖q‖ (5.8)

http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_1
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
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for all δ ∈ �\ {0}. Therefore using Bessel’s inequality for the orthonormal system

{
ei〈γ+t+δ,x〉 : δ ∈ �\ {0}

}

and the formula

(�n(t) − |γ + t + δ|2)(�n,t , ei〈γ+t+δ,x〉) = ε(q�n,t , ei〈γ+t+δ,x〉), (5.9)

we obtain

∑

δ∈�\{0}

∣
∣
∣(�n,t , ei〈γ+t+δ,x〉)

∣
∣
∣
2 =

∑

δ∈�\{0}

ε2
∣
∣(q�n,t , ei〈γ+t+δ,x〉)

∣
∣2

∣
∣�n(t) − |γ + t + δ|2∣∣2

≤ ε2 ‖q‖2
|a − ε ‖q‖|2 = O(ε2).

This with the Parseval’s equality gives

�n,t = ei〈γ+t,x〉 + O(ε) (5.10)

whichmeans that the planewave ei〈γ+t,x〉 is almost not reflected by the crystal. Using
this in (5.7) and then taking into account that

∫

F
q(x)dx = 0,

we get
�n(t) = |γ + t |2 + O(ε2). (5.11)

Case 2. Isolated pair of eigenvalues (see Sect. 1.4 of Chap. 1). The crystal
momentum γ + t is close to the diffraction plane Dδ and far from the other dif-
fraction planes. In other words

∣
∣
∣|γ + t |2 − |γ + t + δ|2

∣
∣
∣ � 1 (5.12)

and ∣
∣
∣|γ + t |2 − |γ + t + δ

′ |2
∣
∣
∣ ≥ b ∼ 1 (5.13)

for δ
′ �= 0, δ, that is, γ + t is close only to the diffraction plane Dδ . Replacing �\ {0}

by �\ {0, δ} and repeating the proof of (5.10) we obtain

�n,t (x) = b(n, γ)ei〈γ+t,x〉 + b(n, γ + δ)ei〈γ+t+δ,x〉 + g(x), (5.14)

where
|b(n, γ)|2 + |b(n, γ + δ)|2 = O(ε2), ‖g‖ = O(ε),

http://dx.doi.org/10.1007/978-3-319-16643-8_1
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and g is a function orthogonal to ei〈γ+t,x〉 and ei〈γ+t+δ,x〉. Thus by (5.14) if γ + t
is close to Dδ then under the small perturbation εq the plane waves ei〈γ+t,x〉 and
ei〈γ+t+δ,x〉 interface each other, that is, the Bragg reflection can occur. Using (5.14)
in (5.7) and (5.9) we obtain

(�n(t) − |γ + t |2)b(n, γ) = εb(n, γ + δ)q−δ + O(ε2) (5.15)

and
(�n(t) − |γ + t + δ|2)b(n, γ + δ) = εb(n, γ)qδ + O(ε2) (5.16)

from which we estimate �n(t) and then �n,t in a standard way.
Thus if (5.12) and (5.13) hold, then the quasimomentum γ + t must be close

only to the Bragg plane Dδ determined by δ and we get the Eqs. (5.15) and (5.16)
to estimate the corresponding Bloch eigenvalues, which mean that a weak periodic
potential εq has its major effect on those free electron levels whose wave vectors
are close to ones at which the Bragg reflection can occur. In order words, if γ + t
lies near the Bragg plane Dδ, then in order to find the energy levels and the wave
functions we have the equations including only the two levels: one corresponds to
γ + t and the other one corresponds to γ + t + δ.

Discussion of the Approach of Chap. 2

Here we discuss the problems of the construction of the perturbation theory for the
Bloch eigenvalues and Bloch functions (Bloch waves) corresponding to the large
values of the energy. First let us explain why the Small potential model and similar
classical perturbation theory are ineffective for the proof of the formulas (5.3) and
(5.4). If |γ + t | ∼ ρ → ∞, then the numbers a and b defined in (5.5) and (5.13)
depend on ρ and as we stressed in Sect. 1.4 of Chap. 1, in general,

lim
ρ→∞ a(ρ) = 0, lim

ρ→∞ b(ρ) = 0.

To apply the argument of the above model we need to assume that ε � a(ρ) and
ε � b(ρ). On the other hand, (5.3) and (5.4) have ameaning only if |γ+t | ∼ ρ → ∞.
Therefore for any nonzero ε the classical perturbation theory is ineffective for the
proofs of (5.3) and (5.4). Moreover instead of one inequality (5.12) we obtain k(ρ)

inequalities ∣
∣
∣|γ + t |2 − |γ + t + δi |2

∣
∣
∣ � 1 (5.17)

for i = 1, 2, ..., k(ρ), where, in general k(ρ) → ∞ as ρ → ∞ and hence instead
of two equalities (5.15) and (5.16) we need to consider k(ρ) + 1 equalities. This
situation also shows the complexity of the perturbation theory in the high energy
region in the multidimensional case.

http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_1


232 5 Conclusions

Note that the concept: “the crystal momentum γ + t is far from the diffraction
planes Dδ or close only to one diffraction plane” was used very much in the physical
literature and as we have seen in the small potential model that it easifies the pertur-
bation theory for the quasimomentum γ + t of order 1. However, this concept breaks
down for the quasimomentum γ + t with |γ + t | ∼ ρ � 1 due to the following.
To construct the set of quasimomenta γ + t ∈ W (ρ) lying on the distance greater
than ε from the diffraction plane Dδ, we need to discard from W (ρ) the ε neighbor-
hood of Dδ . As we noted in Sect. 1.4 of Chap. 1 there are D(ρ) diffraction planes
Dδ intersecting W (ρ) for large ρ, where D(ρ) ∼ ρd . Therefore we must take care
that the remaining set does not become empty after all these discarding. For this we
should choose very small ε(ρ) depending on ρ and such that ε(ρ) → 0 as ρ → ∞.
However, then the formulas (5.3) and (5.4) have no any sense for the potential εq for
any ε, since γ + t ∈ W (ρ) and ρ → ∞.

Thus in the big contrary of the Small potential model and similar examples in
physics the concepts and arguments mentioned above do not help us seriously for
the investigation of the perturbation theory in the high energy region. That is why,
in Chap.2, we give a new approach for this problem.

Now let us describe the steps of the perturbation theory given in Chap. 2. The rig-
orous proofs of all steps are given in Chap. 2. Here we give only the brief comments
regarding the steps of the construction of the perturbation theory. The first step is the
classification of the Bloch eigenvalues of the free operator.

Classifications of the Eigenvalues

To avoid the technical details let us discuss this step for the multidimensional
Schrödinger operator L(P) with a trigonometric polynomial potential

P(x) =
∑

δ∈A

qδei〈δ,x〉, (5.18)

where A is a finite subset of the reciprocal lattice �. We consider the eigenvalue
|γ + t |2 as a vector γ + t of the washer W (ρ) defined in (5.2) for large ρ. Using
(5.18) in

(�N − |γ + t |2)(�N ,t , ei〈γ+t,x〉) = (�N ,t P, ei〈γ+t,x〉), (5.19)

we obtain
(�N (t) − |γ + t |2)b(N , γ) =

∑

δ∈A

qδb(N , γ − δ) (5.20)

where
b(N , γ) = (�N ,t , ei〈γ+t,x〉).

http://dx.doi.org/10.1007/978-3-319-16643-8_1
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
http://dx.doi.org/10.1007/978-3-319-16643-8_2
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Let us consider the right-hand side of (5.20). By (5.19) we have

b(N , γ − δ) = (�N ,t P, ei(γ−δ+t,x))

�N (t) − |γ − δ + t |2 . (5.21)

If �N is close to |γ + t |2 and γ + t does not belong to any of the sets

Vδ(ρ
α) =: {x ∈ R

d : ||x |2 − |x + δ|2| ≤ ρα} (5.22)

for δ ∈ A, that is, γ + t is far from the diffraction planes Dδ then

||γ + t |2 − |γ − δ + t |2| > ρα, |�N (t) − |γ − δ + t |2| >
1

2
ρα. (5.23)

Therefore, it follows from (5.21) and (5.23) that

b(N , γ − δ) =: (�N ,t , ei(γ−δ+t,x)) = O(ρ−α1) (5.24)

for all δ ∈ A and hence (5.20) has the form.

(�N (t) − |γ + t |2)b(N , γ) = O(ρ−α). (5.25)

From (5.25), by the technical investigation, we obtain that if

γ + t ∈ U =: W (ρ)\V (5.26)

where

V =
(

⋃

δ∈A

Vδ(ρ
α)

)

∩ W (ρ) (5.27)

then there exists an eigenvalue �(γ + t) satisfying (5.3). Thus if γ + t ∈ U then
the corresponding eigenvalue �(γ + t) of the perturbed operator Lt (P) is close to
the eigenvalue |γ + t |2 of the free operator Lt (P). If γ + t ∈ V then, in general, the
corresponding eigenvalue of the perturbed operator is not close to the eigenvalue of
the free operator Lt (0), and the eigenvalue |γ + t |2 under the perturbation P may
move of order 1. Therefore, in the papers [Ve1, Ve2, Ve3, Ve4], for the first time
the eigenvalues |γ + t |2, for large γ ∈ �, were divided into two groups: the non-
resonance ones if γ + t ∈ U and the resonance ones if γ + t ∈ V and various asymp-
totic formulae were obtained for the perturbations of each groups. The sets U and
V are named non-resonance and resonance domains respectively. Then Karpeshina
[Ka1, Ka2, Ka3] and Feldman-Knorrer-Trubowitz [FeKnTr1, FeKnTr2] entitled
the non-resonance (resonance) eigenvalues as nonsingular (singular) and stable
(unstable) eigenvalues respectively.
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The formula (5.24) shows that the influence of the plane waves ei〈γ−δ+t,x〉 for
δ ∈ A to the wave ei〈γ+t,x〉 is very small. However it is far from to prove (5.4), since
for this we have to prove that the total influence of the plane waves ei〈γ+δ+t,x〉 for all
δ ∈ �\ {0} to the wave ei〈γ+t,x〉 is small. For this and to solve all the three problems
(a), (b) and (c) described in Sect.1.4 of Chap. 1 (Simplicity, Bragg diffraction and
Isoenergetic surface problems)we constructed the simple set B. In other words, the
construction and investigation of the simple set B solve simultaneously the problems
of the perturbation theory (simplicity of the Bloch eigenvalues, asymptotic formulas
for the Bloch eigenvalues and Bloch Functions) and isoenergetic surfaces. Therefore
let us discuss the geometric construction and estimation of the simple set B as the
main step of the perturbation theory.

Geometric Constructions

This construction was done in Chap.2. Here we give only some description. To prove
the simplicity of�N (t) =: �(γ + t) and (5.4), we construct a set B of quasimonenta
such that if γ + t ∈ B, then the total influence of the plane waves ei〈γ+δ+t,x〉 for all
δ ∈ �\ {0} to the wave ei〈γ+t,x〉 is small. Since

{
ei〈γ+t,x〉 : γ ∈ �

}

is an orthonormal basis we have

�γ+t (x) = b(N , γ)ei〈γ+t,x〉 +
∑

δ∈�\{0}
b(N , γ + δ)ei〈γ+δ+t,x〉 (5.28)

Therefore if ∑

δ∈�\{0}
|b(N , γ + δ)|2 = O(ρ−2α) (5.29)

then the total influence mentioned above is O(ρ−α). To prove (5.24), that is, to show
that the influence of the plane waves ei〈γ−δ+t,x〉 for δ ∈ A to the wave ei〈γ+t,x〉 is
small, we discard from W (ρ) the neighbourhood Vδ(ρ

α) of the diffraction planes
Dδ . The set Vδ ∩ W (ρ) is the part of the washer W (ρ) which is contained between
the two parallel hyperplanes

{x : |x |2 − |x + δ|2 = −ρα}& {x : |x |2 − |x + δ|2 = ρα}.

This is the small part of W (ρ). Since A contains finite number of elements δ after
eliminating the sets Vδ for δ ∈ A the remaining part W̃ (ρ) ofW (ρ) is the essential part
of thewasher.Howeverwe can not do this operation (these eliminations) for all δ ∈ �,

since then the remaining part may be becomes empty set. Therefore the construction
of the simple set for multidimensional L(q) in high energy region becomes very
complicated. In [Ve3] for the construction of the simple set B of quasimomenta in

http://dx.doi.org/10.1007/978-3-319-16643-8_1
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case d = 3 we eliminated the very small vicinities of the diffraction planes, and
the sets connected with the directional potential, and the intersection of the two
resonance sets Vδ1(ρ

α) and Vδ2(ρ
α).

As the dimension d increases, the geometrical structure of B becomes more com-
plicated for the following reason. Since the denseness of the eigenvalues of the free
operator increases as d increases we need to use the asymptotic formulas of high
accuracy and investigate the intersections of the higher order of the resonance sets.
Then the functions F(γ + t), λ j (γ + t) [see (2.1.28), (2.1.29) of Chap.2] taking
part in the construction of B becomes more complicated. Therefore surfaces and
sets defined by these functions become more intricate. Instead of the vicinities of the
diffraction planes we use the vicinities of some surfaces. Thus for the dimensions
d > 3 these surfaces play the role of the diffraction planes.

Moreover the simple set B constructed in the non-resonance domain contains the
main part

{γ + t : �(γ + t) = ρ2}

of the isoenergetic surfaces Iρ(q) of L(q) corresponding to ρ2 for large ρ. We prove
that this part of Iρ(q) consist of the union of smooth surfaces and the total measure
of these surfaces asymptotically equals to the measure of the sphere

{x ∈ R
d : |x | = ρ}.

For this we find the derivatives of the Bloch eigenvalues �(γ + t). These derivatives
and asymptotic formulas have the following applications.

Some Applications

In the above notations the diagonal and non-diagonal elements of the current matrix
can be written as

S(γ + t, γ + t) = − ie h

2m

∫

F
(�∗

γ+t (x) grad �γ+t (x) − �γ+t (x) grad �∗
γ+t (x))dx

and

S(γ + t, γ̃ + t) = − ie h

2m

∫

F
(� ∗̃

γ+t (x) grad �γ+t (x) − �γ+t (x) grad � ∗̃
γ+t (x))dx

respectively, where h is Planck’s constant, m and e are the mass and charge of the
electron. Therefore using the formulas

�γ+t (x) = ei〈γ+t,x〉 +
∑

γ1∈�(ρα)

qγ1ei〈γ+t+γ1,x〉

|γ + t |2 − |γ + γ1 + t |2 + O(|γ|−2α1), (5.30)

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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and
grad �γ+t (x) = i(γ + t)ei〈γ+t,x〉 + O(|γ|1−2α1)

for (γ + t) ∈ B obtained in Chap.2 we get the following asymptotic formulas for
the diagonal and non-diagonal elements of the current matrix

S(γ + t, γ + t) = e h

m
(γ + t) + O(|γ|1−2α1),

S(γ + t, γ̃ + t) =
(

eh

m

)
(̃γ − γ)qγ−γ̃

|γ + t |2 − |̃γ + t |2 + O(|γ|1−2α1),

where (γ + t) ∈ B and (̃γ + t) ∈ B.
It readily follows from the formula

∂

∂t j
�(γ + t) = ∂

∂t j
|γ + t |2 + O(ρ1−2α1), ∀ j = 1, 2, ..., d.

of Chap.2 [see (2.5.7) of Chap. 2] that

grad �(γ + t) = (γ + t) + O(ρ1−2α1)

from which we obtain the asymptotic formulas for the velocity and impulse of the
electron.

Summarizing the results of Chap. 2 we note that the chapter gives the complete
perturbation theory of the periodic Schrödinger operator of arbitrary dimension. Note
that the method of this book and hence of the papers [Ve2, Ve3, Ve4, Ve5, Ve9] is
unique which gives asymptotic formulas for Bloch eigenvalues and Bloch functions
for arbitrary dimension. Moreover, in case of the resonance domain we constructed
the simple set so that it can be easily used for the constructive determination (in
Chap.3) a family of the spectral invariants by the given Bloch eigenvalues. Thus
Chap.2 is also a base for the constructive determinations of the spectral invariants.

On the Spectral Invariants and Inverse Problems

First, recall that a functional f in the space of the periodic, with respect to the lattice
�, functions is said to be spectral invariants if it has the following property: if the
Bloch eigenvalues of the Schrödinger operators L(q) and L(p) with the potentials
q and p coincide, then f (q) = f (p). Here the spectral invariants play the interme-
diate role between the Bloch eigenvalues and potentials. Since the influence of the
potential q is essential in the resonance domain, one can get a lot of informations
about potential q from the Bloch eigenvalues corresponding to the quasimomenta
lying in the high energy region and near to the diffraction hyperplanes. Therefore in
Chap.3 firstwe improve the asymptotic formulas for theBloch eigenvalues andBloch

http://dx.doi.org/10.1007/978-3-319-16643-8_2
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functions corresponding to those quasimomenta and get the formulas, where there
are sharp estimations for the first and second terms of the asymptotic decomposition.
Then using this and the behavior of the derivatives of the band functions we con-
structively determine the spectral invariants. Some of these invariants are explicitly
expressed by the Fourier coefficients of the potential which present the possibility
of determining the potential constructively by using the Bloch eigenvalues as input
data due to the following arguments. If the potential q is a trigonometric polynomial,
then the spectral invariants give us nonlinear equations with respect to the Fourier
coefficients of q and the number of the independent equations is greater than the
number of the Fourier coefficients. Moreover, most of these equations are explicitly
expressed by either 1 or 2 or 3 Fourier coefficients of q. This situation allows us to
give an algorithm for finding the potential q from these spectral invariants. Besides
solving these nonlinear equations by the numerical methods one can determine the
potential q in the set of the trigonometric polynomial. Then taking some limit process
one can find the smooth potentials from the given spectral invariants and hence from
the given Bloch eigenvalues. Hence in Chap.3, we constructively determined a fam-
ily of spectral invariants of L(q) from the given Bloch eigenvalues that is enough to
determine the potential q. Since this book is theoretical, it seems that the theoretical
part of the inverse problem by spectral invariants is complete, in the sense that the
book gives the full theoretical base and possibility to solve numerically this prob-
lem. Thus Chap.3 describes the constructive determination of the spectral invariants
explicitly expressed with respect to the Fourier coefficients of the potential by using
the Bloch eigenvalues as input data. At the same time, it gives a rich set of invariants
that is enough to determine the potential q.

Chapter 4 gives some examples and algorithms for finding the potential from the
spectral invariants and hence from the Bloch eigenvalues. We consider the inverse
problems of the three-dimensional Schrödinger operator with a periodic potential q
by the spectral invariants obtained in the third chapter. Note that the inverse problems
of the one-dimensional Schrödinger operator, the Hill operator, and the multidimen-
sional Schrödinger operator L(q) are absolutely different. In order to determine
the potential q, of the Hill operator, in addition to the given band functions �1(t),
�2(t), ..., one needs to know the eigenvalues λ1,λ2, ... of the Dirichlet boundary
value problem and some other informations. In other words, the potential q of the
Hill operator can not be determined uniquely from the given band functions, since
if the band functions �1(t), �2(t), ... of H(q) are given, then for every choice of
the numbers λ1,λ2, ... from the gaps �1,�2, ... of the spectrum of the Hill operator
there exists a potential q having�1(t), �2(t), ... as the band functions and λ1,λ2, ...

as the Dirichlet eigenvalues. In spite of this, it is possible to determine uniquely the
potential q of the multidimensional Schrödinger operator L(q) from only the given
band functions. Because, in the case d > 1 the band functions give more informa-
tions. Namely, the band functions give the spectral invariants that have no meaning
in the case d = 1. We solve the inverse problem by these spectral invariants.

In Chap.4, firstly, we construct a set D of the trigonometric polynomials which is
dense in the Sobolev spaces and every element can be determined constructively and
uniquely from the invariants obtained in Chap. 3. More precisely, fixing the inversion
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x → −x and translations: x → x+τ for τ ∈ R
3,we give an algorithm for the unique

determination of the potential q ∈ D of the three-dimensional Schrödinger operator
L(q) from the given spectral invariants that were determined constructively from
the given Bloch eigenvalues. Note that the potential q can be uniquely determined
only by fixing the above inversion and translations, since L(q(x)), L(q(−x)) and
L(q(x + τ )) have the same band functions and hence the same invariants. Then a
special class V of the periodic potentials is constructed, which can be easily and
constructively determined from the spectral invariants and hence from the given
Bloch eigenvalues. Besides, we consider the stability of the algorithm for the unique
determination of the potential q ∈ V of the three-dimensional Schrödinger operator
with respect to the spectral invariants and Bloch eigenvalues.

Thus Chap.4 give some ideas and algorithms for finding the potential from the
spectral invariants and hence from the Bloch eigenvalues which may open up new
horizons for the inverse problems of the important operators of the mathematical
physics. Since this book gives a constructive description of the direct (perturbation
theory-asymptotic formulas for Bloch eigenvalues and Bloch functions) and inverse
problems (constructive determinations of the periodic potential from the given Bloch
eigenvalues) of L(q), it seems that it will be used as an introduction to the topic as
well as the theoretical base for solving the inverse problems. Moreover the approach
used in this book may be used for the spectral analysis of the important operators of
the quantum mechanics and solid state physics.

References

[Ve1] Veliev, O.A.: On the spectrum of the Schrödinger operator with periodic potential. Sov.
Math. Dokl. 27(1), 234–237 (1983)

[Ve2] Veliev, O.A.: Asymptotic formulas for the eigenvalues of the multidimensional
Schrödinger operator and periodic differential operators. Preprint Inst. Phys. ANAzerb.
SSR no 156 (1985)

[Ve3] Veliev, O.A.: Asymptotic formulas for the eigenvalues of the periodic Schrödinger
operator and the Bethe-Sommerfeld conjecture. Funct. Anal. Appl. 21, 87 (1987)

[Ve4] Veliev, O.A.: The spectrum of multidimensional periodic operators (in Russian). Teor.
Funkstiı̆ Funktsional. Anal. i Prilozhen 49, 17–34 [English trans. in J. Sov. Math.
49(1990), 1045–1058] (1988)

[Ve5] Veliev, O.A.: Asymptotic formulas for block function of multidimensional periodic
Schr odinger operators and some of their application. J. Spectr. Theory of Oper. Appl.
(Elm, Baku) 9, 59–76 (1989)

[Ve9] Veliev, O.A.: Perturbation theory for the periodic multidimensional Schrödinger oper-
ator and the Bethe-Sommerfeld conjecture. Int. J. Contemp. Math. Sci. 2(2), 19 (2007)

[Ka1] Karpeshina, Yu E.: Perturbation theory formulae for the Schrödinger operator with a
non-smooth periodic potential. Math. USSR_Sb. 71, 101–123 (1992)

[Ka2] Karpeshina, Yu.E.: Perturbation series for the Schrödinger operator with a periodic
potential near planes of diffraction. Commun. Anal. Geom. 4(3), 339–413 (1996)

[Ka3] Karpeshina, Yu.E.: Perturbation theory for the Schrödinger operator with a periodic
potential. Lecture Note in Mathematics, vol. 1663. Springer, New York (1997)

http://dx.doi.org/10.1007/978-3-319-16643-8_4


References 239

[FeKnTr1] Feldman, J., Knorrer, H., Trubowitz, E.: The perturbatively stable spectrum of the
periodic Schrödinger operator. Invent. Math. 100, 259–300 (1990)

[FeKnTr2] Feldman, J., Knorrer, H., Trubowitz, E.: The perturbatively unstable spectrum of the
periodic Schrödinger operator. Comment. Math. Helvetica 66, 557–579 (1991)



Index

Symbols
d-dimensional torus, 3
t-periodic boundary conditions, 19, 227

A
Allowed zones of energy, 16
Asymptotic formulas, 19, 20, 23, 31, 35, 38–

40, 42–46, 55, 58, 62, 73, 75, 79, 81,
106, 108, 115, 124, 127, 129, 133,
158, 159, 166, 174, 234–236, 238

B
Band of the spectrum, viii, 12
Band structure, 12, 16, 19, 20, 25, 124, 228
Bethe-Sommerfeld conjecture, viii, 29, 31,

43, 44, 124
Binding formula, 33, 35, 37, 38, 62
Bloch eigenvalue, viii, 10, 29, 229
Bloch function, viii, 10, 32, 45, 106, 129,

227, 229
Bloch solution, 10
Bloch state, 9, 16
Bloch waves, 12, 16, 19, 24, 231
Bloch’s theorem, 9, 10, 12
Bragg condition, 18, 19, 24, 25
Bragg plane, 26, 231
Bragg reflection, 18, 19, 25, 26, 231
Bragg Reflection Problem, 28
Bravais lattice, 1, 5
Brillouin zone, 3, 5, 16–18, 228
Brillouin zone plane, 18

C
Canonical pair, 178–180, 194

Constant energy surface, 18
Constructive determination, 29, 31, 127,

129, 133, 172, 227, 236, 237
Crystal momentum, vii, 9, 10, 25, 229, 230,

232
Current matrix, 236

D
Differential expression, vii, 10, 14
Differential operator, 10
Diffraction hyperplane, viii, 17, 31, 130
Diffraction inside the crystal, 28
Diffraction plane, 18, 28, 130, 131, 230, 232
Diffraction points, 21
Directional potential, 37, 41, 42, 58, 128,

129, 133, 173–176, 182, 183, 209,
221, 235

E
Energy bands, 12, 18, 23, 25
Energy levels, 25, 26, 227, 231
Energy operator, 8
Energy separation constant, 26, 27

F
Forbidden regions, 12, 25
Fourier coefficients, viii, 7, 25, 127, 129,

171, 176, 177, 187, 188, 191, 193,
194, 197, 202, 203, 205–207, 217,
219, 222, 223, 225, 237

Fourier series, 7, 64
Fundamental domain, vii, 3, 5, 16, 32, 58,

129, 172, 204
Fundamental parallelotope, 2, 3, 12, 13, 16

© Springer International Publishing Switzerland 2015
O. Veliev, Multidimensional Periodic Schrödinger Operator,
Springer Tracts in Modern Physics 263, DOI 10.1007/978-3-319-16643-8

241



242 Index

G
Gaps in the spectrum, 12, 18, 24, 28, 43, 89,

217
Generalized eigenvalues, 13
Geometric property, 43
Geometrical structure, 42, 235

H
Hamiltonian, 8, 9
High energy region, viii, 24, 26–28, 31, 228,

231, 234, 236
Hilbert space, 5, 6, 8
Hill’s operator, 19, 23, 24, 73

I
Inner product, vii, 3, 5, 8, 20, 33, 172, 173
Integrated density of states, 44, 124
Inverse problem, 44, 45, 171, 172, 177, 189,

197, 237
Inverse spectral theory, 124, 172
Isolated pair of eigenvalues, 26, 230
Isospectral potentials, 128

L
Long visible, 175, 176, 188, 189, 192

N
Non-resonance domain, 29, 34, 45, 55, 86,

106, 108, 228, 235
Non-resonance eigenvalue, 34, 35, 62
Nonsmooth potential, 43

P
Periodic boundary conditions, 13, 14, 217
Perturbation of the free electron, 18
Primitive unit cell, 2, 5, 227
Primitive vectors, 2, 5

Q
Quantum state of the electron, 16

R
Reciprocal lattice, vii, 3, 5, 12, 13, 15–19,

24, 227, 228, 232
Regular perturbation theory, 25–27, 228

Resonance domains, 31, 34, 37, 42, 233
Resonance eigenvalue, 34, 62
Running wave, 25

S
Schrödinger equation, 8, 9
Schrödinger operator, viii, 1, 8, 9, 14, 17, 18,

25, 31, 36, 37, 41, 43–45, 124, 125,
127, 128, 171–174, 177, 209, 219,
227–229, 232, 236–238

Simple invariants, 175, 178, 179
Simple set, 29, 39–45, 79, 85–87, 89, 106,

107, 117, 120, 131, 234–236
Simplicity conditions, 39–41, 79, 80, 107,

108, 132
Simplicity of the eigenvalues, 41
Single resonance case, 37
Single resonance domain, 34, 37, 41, 42, 58
Small perturbation, 25–27, 231
Small potential model, 232
Sobolev space, viii, 7
Spectral invariants, viii, 29, 31, 44, 45, 127,

128, 133, 151, 156, 171, 172, 174,
189, 193, 194, 197, 209, 211, 214,
215, 227, 236–238

Spherical washer, 27
Standing waves, 24, 25
Symmetric operator, 9

T
Travelling wave, 25
Two-wave approximation, 24

U
Unperturbed operator, 21, 24, 25, 27, 29, 35,

37, 39, 49, 62, 228

V
Velocity and impulse of the electron, 236
Vicinities of some surfaces, 235
Visible element, 37, 151, 155, 173–176, 178,

180, 182, 184, 185, 198, 202, 209,
211

W
Wave function, 3, 5, 8, 9, 14, 25
Wave vectors, 5, 16, 26, 231


	Preface
	Contents
	1 Preliminary Facts
	1.1 Lattices, Brillouin Zones, and Periodic Functions in mathbbRd
	1.2 Schrödinger Operator and Bloch Functions
	1.3 Band Structure, Fermi Surfaces and Perturbations
	1.4 Some Discussions of the Perturbation Theory
	References

	2 Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions
	2.1 Introduction
	2.2 Asymptotic Formulas for the Eigenvalues
	2.3 Bloch Eigenvalues Near the Diffraction Planes
	2.4 Asymptotic Formulas for the Bloch Functions
	2.5 Simple Sets and Isoenergetic Surfaces
	2.6 Bloch Functions Near the Diffraction Hyperplanes
	References

	3 Constructive Determination of the Spectral Invariants
	3.1 Introduction and Preliminary Facts
	3.2 First and Second Terms of the Asymptotics
	3.3 On the Derivatives of the Band Functions
	3.4 The Construction of the Spectral Invariants
	References

	4 Periodic Potential from the Spectral Invariants
	4.1 Introduction
	4.2 On the Simple Invariants
	4.3 Finding the Fourier Coefficients Corresponding  to the Boundary
	4.4 Inverse Problem in a Dense Set
	4.5 Finding the Simple Potential from the Invariants
	4.6 On the Stability of the Algorithm
	4.7 Uniqueness Theorems
	References

	5 Conclusions
	References

	Index



