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Supervisor’s Foreword

Large-scale quantum information processing (QIP) is one of the biggest challenges
in the field of quantum information science. Toward that goal, researchers in the
world have been trying to test many methodologies. To date, one of the most
promising ways in that direction is one-way QIP or cluster-state QIP, where QIP is
performed based on measurements of subsystems in a large-scale entangled state
called a cluster state. The important property of the cluster states is that the overall
entanglement does not disappear when a subsystem is measured, in contrast to most
multipartite entangled states like Greenberger–Horn–Zeilinger (GHZ) states, which
collapse when a subsystem is measured. In the cluster-state QIP, the back-action of
measurements changes the cluster-state, facilitating QIP.

In the present thesis work by Ryuji Ukai, optical realizations of cluster-state QIP
are systematically investigated. There are two directions for the realizations. One is
in the spatial domain, and the other is in the time domain. This work shows
solutions for both directions. As for the spatial domain, the author shows the
experimental results on multistep and multi-input cluster-state QIP and proves the
powerfulness of this scheme. Moreover, he shows the complete theoretical analysis
on this scheme. As for the time domain, the author presents a new scheme of
cluster-state QIP to handle time-domain multiplexed ultra-large cluster states.

This work offers a comprehensive guideline for a deep understanding of large-
scale cluster-state QIP.

Tokyo, Japan, March 2014 Prof. Akira Furusawa Ph.D.
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Chapter 1
Introduction

1.1 One-Way Quantum Computation

1.1.1 Quantum Computation

The historical origin of quantum mechanics was the quantum hypothesis proposed
by Planck in 1900 [1]. From that time, considerable efforts have been devoted to the
research of quantum mechanics. Since it predicted curious phenomena contradictory
to classical mechanics, several researchers were skeptical about the new-coming
theories. In order to show the incompleteness of quantum mechanics, several thought
experiments were proposed. They included the paradox of nonlocal correlations
proposed by Einstein et al. [2]. Afterward, it was experimentally demonstrated that
such curious phenomena are observable in the real world. After long discussions
on quantum mechanics, it is now accepted and hailed as one of the great scientific
theories.

Recently, it was found that quantum mechanics can be applied to information
processing. The birth of quantum information processing was the proposal of the
quantum Turing machine by Deutsch in 1985 [3]. Although the superiority of quan-
tum computation over classical computation had not initially been demonstrated, it
was later proved that a quantum computer can solve some problems more efficiently
than a classical computer [4–8]. A well-known example is the factoring of integers.
Its discovery expedited research on quantum computers.

In the same way as the classical computation, the input of a quantum computer
is classical information (Fig. 1.1). It is firstly encoded into a quantum state |ψin〉.
A quantum computer has the ability to apply a unitary operator Û onto the quan-
tum state, leading to the output quantum state |ψout 〉 = Û |ψin〉. This quantum state
manipulation is the key part of the quantum computation. The final answer of the
quantum computation is also classical information, which will be read out by per-
forming a measurement on the output quantum state.

The superposition of quantum states and quantum entangled states are character-
istic traits of in quantum theory. Consider a two-level system labeled by |0〉 and |1〉,
such as photon number states, or ground and excited states of an atom. An arbitrary
one qubit state is represented by

© Springer Japan 2015
R. Ukai, Multi-Step Multi-Input One-Way Quantum Information
Processing with Spatial and Temporal Modes of Light, Springer Theses,
DOI 10.1007/978-4-431-55019-8_1

1



2 1 Introduction

inψ outψÛ

Quantum Computer

Input StateInput Informatoin Output State Output Information

Fig. 1.1 Quantum computation

a|0〉 + b|1〉. (1.1)

This is called a superposition of |0〉 and |1〉. Different from a statistical mixture of
two quantum states, it leads to quantum interference.

An entangled state (Sect. 3.7.1) refers to a quantum state which cannot be decom-
posed into two independent subsystems. The following is an example of entangled
states in a two-qubit system:

|0〉A|0〉B + |1〉A|1〉B√
2

. (1.2)

This state cannot be represented by a tensor product of a state in the subsystem A and
another state in the subsystem B. As mentioned above, entanglement was originally
proposed by Einstein, Podolsky, and Rosen as a paradox which pointed out the
apparent incompleteness of quantum mechanics. However, it was later demonstrated
experimentally [9, 10], and it is now understood as a characteristic property of
quantum mechanics. The quantum state proposed by Einstein, Podolsky, and Rosen is
called the Einstein-Podolsky-Rosen state (EPR state). It is thought that the superiority
of quantum computations originate from the parallelism of computation, based on
superposition and entanglement [11].

1.1.2 Quantum Teleportation

Another application of quantum entanglement is quantum teleportation [12–21]
(Sect. 4.1.1). It is a protocol with which one can transmit an unknown quantum
state to a receiver at a distance (Fig. 1.2). The sender and the receiver are usually
named “Alice” and “Bob”, respectively.

For this purpose, Alice and Bob share an EPR state in advance. The procedure
of quantum teleportation is as follows. Firstly, Alice entangles the quantum state to
be transmitted and half of the EPR state which belongs to Alice. Alice measures the
two outcomes in an appropriate measurement basis. The measurement results are

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_4


1.1 One-Way Quantum Computation 3

sent to Bob through classical channels. By performing correction operations on the
other half of the EPR state, Bob can reconstruct the quantum state which was initially
prepared by Alice.

Quantum teleportation has features in common with quantum computation,
including that both handle entanglement, and require (some) quantum state trans-
formations. Quantum teleportation can be considered as an identity operation on
an input state, since the quantum state which Bob reconstructs is equivalent to that
which was initially owned by Alice.

1.1.3 Application of Quantum Teleportation to Quantum
Computation (Gate Teleportation, Offline Scheme)

Although quantum teleportation was initially proposed as a protocol to transmit
a quantum state, it was later found that it can be applied to implement quantum
computation. In quantum teleportation, an EPR state |E P R〉 is utilized as a resource
for its protocol (Fig. 1.2). The first scheme of its application is to replace the resource
state |E P R〉 with another state D̂|E P R〉 [22, 23] (Fig. 1.3, Sect. 4.1.2).

By changing the resource state, Bob reconstructs D̂|ψ〉, which is a unitary trans-
formed version of the initial state |ψ〉. The unitary operator D̂ is determined by the
resource state D̂|E P R〉. This scheme is called a gate teleportation since the uni-
tary operator D̂, which was initially applied to the resource state, becomes applied
to the input state through the quantum teleportation. In addition, it is also called
an offline scheme of quantum computation. This is because the unitary operator D̂
can be considered to be applied to the offline resource state |E P R〉, leading to the
revised resource state D̂|E P R〉. During the online computation, it is applied to the
input state through the quantum teleportation.

EPR
Resource

Classical
Communications

Alice

Bob

1

2

in

1

2

Quantum State
to be teleported

Fig. 1.2 Quantum teleportation
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Fig. 1.3 Gate teleportation, offline scheme
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1
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in

1

2
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Communications

Quantum State
to be teleported

Other Measurements

Fig. 1.4 One-way quantum computation

1.1.4 Application of Quantum Teleportation to Quantum
Computation (One-Way Quantum Computation)

Another application of quantum teleportation to quantum computation was later
proposed. It is called one-way quantum computation [24–29] (Sect. 4.2 and Chap. 5),
which is the main topic of this thesis. In one-way quantum computation, we change
the measurements from the quantum teleportation (Fig. 1.4).

Since the quantum state is projected to another basis, the state after the mea-
surements is dependent on the measurement basis. Therefore, the state which
Bob reconstructs becomes D̂|ψ〉, where D̂ is determined by the basis of the
measurements Alice has performed. One-way quantum computation is a model of
quantum computation where operations are controlled by measurement bases. It is
also called the cluster model of quantum computation, or cluster computation, since
a multi-partite entangled state, called the cluster state, is used as a resource for
quantum computation.

http://dx.doi.org/10.1007/978-4-431-55019-8_4
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1.1.5 Circuit Model and Cluster Model

Quantum computation is usually studied by using the circuit model [11, 30], where
computation is described by the order of unitary gates onto the initial states. The
circuit model is a universal model of quantum computation: an arbitrary quantum
computation can be described in this model.

The cluster model is an alternative to the standard circuit model. In this model,
the actual process of computation is focused on: operations are achieved by a suc-
cession of measurements on an entangled state. In the example of Fig. 1.4, a bipartite
entangled state (EPR state) is utilized as a resource for the computation. Since the
number of measurements is equivalent to the number of resource modes, two mea-
surements are involved. In addition, it is also equivalent to the degrees of freedom
(DOF) of unitary transformations since each measurement provides a DOF. There-
fore, Fig. 1.4 has the ability to perform unitary transformations with two DOF.1 In this
manner, the DOF of unitary operations achieved by one-way quantum computation is
determined by the number of resource modes. By using a larger-scale resource state,
we can perform unitary operations with more DOF.

The procedure of cluster-model quantum computation is summarized by the fol-
lowing:

• Prepare a multi-partite entangled state (cluster state, Sect. 5.1), which will be used
as a resource for quantum computation.

• Couple an input state with the cluster state (Sect. 5.3).
• Perform reshaping of the cluster state based on the operation to be achieved

(Sect. 5.4).
• Perform unitary operations through measurements (Sect. 5.5).
• Read out the unmeasured modes, which give us the solution of the computation.

A sufficiently large cluster state can be used as a universal resource for one-way
quantum computation, that is, an arbitrary computation is achieved by using the
same cluster state. Once a requested unitary operation is determined, the cluster
state is transformed so that it can be efficiently implemented through the one-way
quantum computation. The operation determines the set of measurement bases. By
choosing an appropriate set of measurement bases, we can implement an arbitrary
unitary transformation. Since operations can be switched by adjusting measurement
bases using the same resource cluster state, one-way quantum computation can be
considered as a software-based quantum computation. Note that the resource cluster
state is consumed irreversibly during the computation. This is the reason why it is

1 To be precise, Fig. 1.4 shows the teleportation-based input coupling scheme (Sect. 5.3.3), where
both measurements are homodyne measurements. A homodyne measurement has one DOF: the
relative phase θ between the signal beam and the local oscillator beam. Thus, Fig. 1.4 has two
DOF. In general, we can implement a transformation with multiple DOF using an elementary one-
mode one-way gate (Sect. 4.2.3) by choosing a complicated measurement. However, we usually
assume that we construct a large-scale quantum computation by concatenating several kinds of
elementary gates with limited DOF. Therefore, the total DOF of operations still increase as well by
concatenating elementary gates.

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_4
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called the one-way scheme. However, the transformation of the input state to the
output state is unitary, thus reversible.

1.1.6 Continuous-Variables and Universality

1.1.6.1 Continuous-Variable Quantum Computation

We have so far used two-level systems with |0〉 and |1〉 in order to show sev-
eral examples. However, quantum computation is also discussed by using more
high-dimensional systems, including continuous-variable (CV) systems where com-
putational bases are continuously varying quantum states, such as eigenstates of
momentum operators |p = s〉 (Sect. 3.1).

In recent experimental demonstrations of quantum computations using quantum
states of light (Chap. 2), not only discrete-variable (DV) systems but also CV systems
are utilized. We use optical CV systems in this thesis. The main merit of optical CV
systems is that entangled states can be generated deterministically (success probabil-
ity is equal to 100 %), and thus operations can also be implemented deterministically.
It is stark contrast to optical DV systems where entangled states are generated prob-
abilistically and experiments are verified via postselections.

We mention here that there also exists a drawback in optical CV systems: ideal
computational basis states such as |p = s〉 require an infinite amount of energy.
It is different from the DV systems where computational basis states are physi-
cal states. Since we cannot employ such unphysical states in actual experiments,
they are approximated by other physical states. For example, the zero eigenstate of
the momentum operator |p = 0〉 is approximated by a p-squeezed vacuum state
(Sect. 2.2.3). Approximations of these states lead to unavoidable errors in CV quan-
tum computations.2

1.1.6.2 Universality

It is known that an arbitrary digital classical computation can be achieved by cas-
cading NAND gates in an appropriate order. In a similar manner, an arbitrary CV
quantum computation can be achieved by cascading the following elementary gates
in an appropriate order (Sect. 3.6):

• Gate which can perform an arbitrary one-mode Gaussian operation.
• Gate which can perform a two-mode Gaussian operation.
• Gate which can perform a one-mode non-Gaussian operation.

2 Since both optical DV and CV systems have merits and demerits of their own, a hybrid scheme is
also being studied [31], where DV gates are implemented using optical CV setups. It is thought that
the imperfections of quantum states may be compensated by limiting the dimension of computational
bases.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_2
http://dx.doi.org/10.1007/978-4-431-55019-8_2
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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  quantum teleportation

2006, N. C. Menicucci et al.,
  CV one-way quantum computation

1998, A. Furusawa et al.,
  quantum teleportation

one-input identity two-step

2007, P. van Loock et al.,
cluster states with beam splitter networks 2008, Yukawa, Ukai,

generation of four-mode cluster states

number of resource modes

2008, Yoshikawa, Ukai,
  Gaussian operations,
  teleportation-based input coupling

2008, Ukai, Armstrong,
  rotation gate

one-input rotation four-step

2009, Ukai, Iwata, Shimokawa,
  squeezing gates

one-input squeezing four-step

2009, Ukai,
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2011, Ukai, Yokoyama,
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two-input controlled-Z four-step

2011, Ukai, Yokoyama,
  optimum nonlocal gate
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2012, Ukai, Yokoyama, Armstrong,
  gain-tunable entangling gate

two-input gain-tunable three-step

2013, Yokoyama, Ukai, Armstrong,
  Sornphiphatphong, Kaji, Suzuki,
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2010, N. C. Menicucci et al.,
  CZ-based temporal-mode scheme

2011, Yoshikawa, Ukai, Yokoyama,
  squeezer-based input coupling

2011, N. C. Menicucci,
  temporal-mode cluster states
  with beam splitter networks

2012, Ukai, Armstrong,
  one-way quantum computation
  with temporal-mode cluster states

Theories Experiments

Fig. 1.5 History of CV one-way quantum computation. Works in our laboratory are shown with
underlines

Here, Gaussian operations correspond to unitary transformations with inhomoge-
neous quadratic polynomial Hamiltonians in the canonical operators (Sect. 3.4.3).
Similar to the classical computation, multi-step operations should also become pos-
sible because a total quantum computation is achieved by cascading these elementary
gates.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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1.2 History of One-Way Quantum Computation
and This Thesis

1.2.1 History of One-Way Quantum Computation

Figure 1.5 shows a brief history of CV one-way quantum computation and the status
of this thesis. In this figure, we include CV quantum teleportation as well since it
has a connection with CV one-way quantum computation (Sect. 1.1).

Although quantum teleportation was originally proposed in the DV systems [12],
it was later extended to the CV systems [13, 15]. An experimental realization of CV
quantum teleportation was first reported in 1998 [17].

Since quantum teleportation is a protocol to transmit a one-mode quantum state
without applying any unitary transformations, we can consider it as an identity oper-
ation on a one-mode state. Note that a two-mode entangled state called EPR state
is utilized as a resource for quantum teleportation. Since we equate the number of
resource modes with the number of operations in one-way quantum computation,
we can consider that a quantum teleportation is a two-step operation.

Similar to quantum teleportation, one-way quantum computation was first defined
in the DV systems [24, 32]. Several years after the original proposal, DV one-way
quantum computation experiments were also reported [33, 34].

The CV cluster state was introduced in 2006 [26] by extending the DV counterpart.
Shortly after, one-way quantum computation was proposed by Menicucci [27]. They
were basic theories of CV cluster states and one-way quantum computations where
controlled-Z gates are utilized as entangling gates for the generation of a cluster
state and the coupling of an input state with the cluster state3 (Sects. 5.2.1 and 5.3.2).
However, they were not desirable theories especially for experimentalists because a
controlled-Z gate required a large-scale experimental setup [36, 37], and thus it was
not realistic to prepare multiple controlled-Z gates for generations of cluster states
and demonstrations of one-way quantum computations.

One of these problems was solved by van Loock et al. [35] (Sect. 5.2.2). They
showed that, compared to the original proposal that an ideal cluster state is generated
by entangling eigenstates of momentum operators by using controlled-Z gates, an
approximation of the ideal cluster state can be generated by combining squeezed
vacuum states by using beam splitters. In the limit of infinite squeezing, it becomes
identical to the ideal cluster state. It made it easier to generate cluster states, lead-
ing to several experimental reports including four-mode cluster state generations
[38, 39] and eight-mode cluster state generations [40]. In addition, an experimental
demonstration of cluster state reshaping (Sect. 5.4) was also reported [41].

As for the coupling of an input state with a cluster state, we found that a quantum
teleportation can be applied for this purpose, where a beam splitter, not a controlled-
Z gate, plays the role of input coupling [42] (Sect. 5.3.3). Together with the cluster

3 In Ref. [26], it was already mentioned that special shapes of cluster states can be generated by
using beam splitter networks. However, its generalization was given in Ref. [35].

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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state generation with beam splitter networks, it became possible to implement one-
way quantum computations without using controlled-Z gates. Afterward, we found
that not only quantum teleportation but also a squeezing operation can be applied to
input coupling in one-way quantum computations as well (Sect. 5.3.4).

We then move onto implementations of one-way quantum computations. In the
original paper of CV one-way quantum computations [27], it was already given how
the operation is determined by a specific measurement basis. However, conversely,
it was an open question how the set of measurement bases should be chosen for
a specific operation using a multi-partite cluster state. An example of multi-step
one-way quantum computation was first given in Ref. [29]: approximate squeezing
operations, which are members of one-mode Gaussian operations, are achieved by
using four-mode cluster states with homodyne measurements. Note that the operation
was inevitably an approximate version of the ideal squeezing operation even though
the resource cluster state was an ideal state. This is because the sets of measurement
bases were not optimum for the squeezing operations.

In 2009, we reported several general answers for choices of measurement
bases [42] (Sect. 5.5). One main result was that arbitrary one-mode Gaussian opera-
tions, including squeezing operations, can be achieved by using a four-mode linear
cluster state with homodyne measurements. Different from the earlier proposal [29],
we have shown the set of measurement bases with which we can achieve an ideal one-
mode Gaussian operation when we can utilize an ideal cluster state as a resource. We
have also proved that several one-mode Gaussian operations cannot be implemented
by using a three-mode linear cluster state as a resource, thus the four-mode linear
cluster state is the minimum resource which satisfies the universality of one-mode
Gaussian operations. In addition, we have also proposed the set of measurement
bases for arbitrary multi-mode Gaussian operations though it was not the optimal
choice of measurement bases.

By combining the methodology of one-mode Gaussian operations with the
teleportation-based input coupling scheme [42], we have experimentally demon-
strated several one-mode Gaussian operations (rotation and squeezing operations)
using four-mode linear cluster states as resources. Although we have demonstrated
only several members of one-mode Gaussian operations, the experimental setup had
the ability to implement an arbitrary one-mode Gaussian operation.

As a next step for universal one-way quantum computation, demonstrations of
multi-mode Gaussian operations were highly anticipated. Its first trial was reported
in Ref. [43]. Although they tried to demonstrate a two-mode gate which had an ability
to entangle two separable states, they could not observe entanglement at the output.
The main reason was that the level of entanglement present in the cluster state was
not sufficient. Entanglement at the output is the key criterion of the entangling gate,
thus the operation was not successful.

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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1.2.2 This Thesis

1.2.2.1 Spatial-Mode Experiments

In this thesis, we show the first successful demonstration of a two-mode operation
(controlled-Z gate) in one-way quantum computation (Chap. 7), which has already
been reported in Ref. [44] as well. Though it was a similar experiment to the previous
report [43], we have successfully observed entanglement at the output, which was
sufficient to show the nonclassical nature of the gate.

By combining with the demonstrations of one-mode Gaussian operations, we
now have all the tools to implement an arbitrary multi-mode Gaussian operation in
a framework of one-way quantum computation.

Including the controlled-Z gate experiment, three experimental demonstrations
of one-way quantum computations on two-mode input states are reported in this
thesis [44]. They have a common property that they are demonstrations of two-input
quantum gates which have the ability to entangle two independent quantum states.
In addition, each mode of the quantum states is distinguished from the others by its
spatial location (spatial modes).

The inherent features of each experiment are summarized as follows.

Controlled-Z Gate Experiment

This is an experiment of a two-mode Gaussian operation using a four-mode linear
cluster state as a resource. The operation which is implemented is the unity-gain
controlled-Z gate [27]: it does not impart an additional squeezing operation on each
quantum mode. It can be considered as an experimental demonstration of gate tele-
portations [22, 23] on a two-mode system, because it is nothing but the circuit which
is acquired by exchanging the order of the controlled-Z gate in the circuit where a
controlled-Z gate is applied to the outcomes of two quantum teleportations.

Optimum Nonlocal Gate Experiment

This is an experiment of a two-mode Gaussian operation using a two-mode cluster
state as a resource. The nonlocal controlled-Z gate (with additional squeezing opera-
tions) is implemented using the minimum resource: a bipartite entangled state shared
in advance, and a classical channel in each direction (two channels in total) [45]. Here,
a nonlocal gate refers to a quantum gate whose target two modes are located at a
distance from each other [36, 45–49].

http://dx.doi.org/10.1007/978-4-431-55019-8_7
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Gain-Tunable Entangling Gate Experiment

This is an experiment of two-mode Gaussian operations using a three-mode cluster
state as a resource. In contrast to the other two experiments where operations are fixed,
we can control the on-off switching as well as the gain of the entangling interaction
by changing the measurement basis [42]. It shows the property of one-way quantum
computations where operations are controlled by measurement bases onto cluster
states.

Temporal-Mode Theories

In this thesis, one-way quantum computation using temporal-mode cluster states
is also studied [50, 51]. It will lead to the experimental generation of ultra-large
entangled states and experimental demonstrations of many-step one-way quantum
computations.

Similar to classical computations where an arbitrary computation is achieved by
concatenating NAND gates, an arbitrary CV quantum computation can be achieved
by concatenating several basic quantum gates. For that purpose, many-step operations
should be implemented. Nonetheless, the current schemes for one-way quantum
computation experiments lack extensibility. This is because each mode of cluster
states is encoded spatially, thus the experimental setup becomes larger in proportion
to the number of operations. Although it is proposed that one can encode each mode
in a different frequency using a frequency comb [52, 53], it would not be easy to
implement one-way quantum computations using the frequency-mode cluster states.

Recently, one-way quantum computation using temporal modes was proposed
[50, 51]. In this scheme, each mode is encoded in a different time, instead of its spa-
tial location. It enables us to implement many-step one-way quantum computations
without enlarging our experimental setup.

In Ref. [51], the schematic for the generation of temporal-mode cluster states was
proposed, with which one can generate cluster states of an arbitrary size by using a
limited and fixed optical setup (Sect. 10.1.3). It was a giant step toward the realization
of many-step one-way quantum computation.

However, since the cluster states to be generated had complex structures, it was not
known how all resource modes can be utilized for computation. It was proposed that
quantum computation can be achieved by using a half or a quarter of the generated
cluster states after eliminating the other modes. Although it was sufficient to show
superiority of the temporal-mode scheme theoretically, it was expected that a strategy
for implementing one-way quantum computations without disposing cluster modes
would be discovered (Sect. 10.1.4).

In this thesis, we propose a solution to this problem. We show that computation
using a temporal-mode cluster state is equivalent to a repetition of quantum tele-
portations (Sect. 10.3.3). Since we can implement one-mode Gaussian operations
with two DOF by controlling the measurement basis in a quantum teleportation
(Sect. 5.3.3), we can utilize all modes of the temporal-mode cluster state in one-

http://dx.doi.org/10.1007/978-4-431-55019-8_10
http://dx.doi.org/10.1007/978-4-431-55019-8_10
http://dx.doi.org/10.1007/978-4-431-55019-8_10
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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way quantum computations without eliminating any of them. In addition, we show
that non-Gaussian operations and multi-mode Gaussian operations are also achieved
without eliminating resource modes (Sects. 10.5 and 10.6) by considering repetitions
of a one-way quantum computation circuit with the three-mode linear cluster state,
and the quantum computation circuit of the controlled-Z gate experiment (Chap. 7).
It is expected that these findings will lead to the development of both theories and
experiments over temporal-mode one-way quantum computation.

1.3 Structure of This Thesis

In Chap. 2, we briefly review quantum optics. In Chap. 3, we describe CV quantum
states and quantum state manipulations.

Theories of one-way quantum computation is described in Chaps. 4 and 5. In the
former section, we will introduce one-way quantum computation by comparing it
with the offline scheme. The details of one-way quantum computation are discussed
in the latter section.

Through Chaps. 6–9, we show experiments of one-way quantum computations.
Chapter 6 describes the generation of cluster states which are used in the following
three demonstrations of quantum gates. In Chap. 7, we show the theory, experimental
setup, and results of the controlled-Z gate experiment using a four-mode linear cluster
state as a resource. In Chap. 8, we show the optimum nonlocal gate experiment using
a two-mode cluster state. In Chap. 9, we show the gain-tunable entangling gate using
a three-mode cluster state as a resource.

Before concluding this thesis, we show theories of one-way quantum computation
using temporal-mode cluster states in Chap. 10.
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Chapter 2
Quantum Optics

2.1 Quantum Mechanics and Quantum Optics

2.1.1 Uncertainty Principle

2.1.1.1 Variance and Standard Deviation

Let Â and |ψ〉 be a Hermitian operator and a state vector, respectively. The variance
and standard deviation of the operator Â for the state |ψ〉 are defined as

〈�2 Â〉 = 〈( Â − 〈 Â〉)2〉 = 〈 Â2〉 − 〈 Â〉2, (2.1)

〈� Â〉sd =
√

〈�2 Â〉 =
√

〈 Â2〉 − 〈 Â〉2, (2.2)

where
〈 Â〉 = 〈ψ | Â|ψ〉, 〈 Â2〉 = 〈ψ | Â2|ψ〉 (2.3)

are expectation values of Â and Â2, respectively.

2.1.1.2 Uncertainty Principle

Consider two Hermitian operators Â and B̂ with a state |ψ〉. They satisfy

〈� Â〉sd〈�B̂〉sd � 1

2

∣∣〈[ Â, B̂]〉∣∣, (2.4)

which is called the uncertainty principle. In the special case of [ Â, B̂] = i�, Eq. (2.4)
becomes

〈� Â〉sd〈�B̂〉sd � 1

2
�. (2.5)

A state is referred to as a minimum uncertainty state when it has the minimum product
of fluctuations.

© Springer Japan 2015
R. Ukai, Multi-Step Multi-Input One-Way Quantum Information
Processing with Spatial and Temporal Modes of Light, Springer Theses,
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2.1.2 Quantized Electromagnetic Field

2.1.2.1 Electric Field, Magnetic Field, and Hamiltonian

The electric field operator and the magnetic field operator [1, 2] are given by

Ê(r, t) = i

(
1

2π

) 3
2

∫
d3Vk

2∑

σ=1

√
�ωk

2ε0
ekσ

(
âkσ ei(k·r−ωk t) − â†

kσ e−i(k·r−ωk t)
)
, (2.6)

B̂(r, t) = i

(
1

2π

) 3
2

∫
d3Vk

2∑

σ=1

√
�

2ε0ωk
k × ekσ

(
âkσ ei(k·r−ωk t) − â†

kσ e−i(k·r−ωk t)
)
. (2.7)

By using these two operators, the Hamiltonian of the electromagnetic field becomes

Ĥsys =
∫

d3Vk

2∑

σ=1

�ωk

2

(
â†

kσ âkσ + âkσ â†
kσ

)
. (2.8)

These three operators satisfy

Ê
†
(r, t) = Ê(r, t), B̂

†
(r, t) = B̂(r, t), Ĥ†

sys = Ĥsys . (2.9)

Therefore, they are Hermitian operators and thus observables. In these equations,
âkσ and â†

kσ are annihilation and creation operators of photons with the wave vector
k and the polarization σ , respectively. They satisfy

[âkσ , â†
k′σ ′ ] = δσσ ′δ(3)(k − k′), [âkσ , âk′σ ′ ] = [â†

kσ , â†
k′σ ′ ] = 0. (2.10)

ekσ and ωk represent the unit vector and the angular frequency, respectively.

2.1.2.2 Quadratures

The annihilation and creation operators are not Hermitian operators, and thus not
observables. By using these two operators, the following quadrature operators are
defined:

x̂kσ =
√

�

2ωk

(
âkσ + â†

kσ

)
, (2.11)

p̂kσ = −i

√
�ωk

2

(
âkσ − â†

kσ

)
. (2.12)

They correspond to the position and momentum operators of quantized harmonic
oscillators. They satisfy the commutation relation:
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[x̂kσ , p̂k′σ ′ ] = i�δσσ ′δ(3)(k − k′). (2.13)

They are Hermitian operators x̂†
kσ = x̂kσ and p̂†

kσ = p̂kσ , and thus observables. âkσ

and â†
kσ are conversely acquired as

âkσ =
√
ωk

2�
x̂kσ + i

√
1

2�ωk
p̂kσ , (2.14)

â†
kσ =

√
ωk

2�
x̂kσ − i

√
1

2�ωk
p̂kσ . (2.15)

2.1.2.3 Single Mode and Simplification

Although all wave vectors k and polarizations σ are so far integrated and added,
only a single mode with a specific wave vector and polarization is considered in
the following discussion.1 In addition, all constants except for the reduced Planck
constant � are omitted.2 As a result, the electric and magnetic field operators become

Ê(r, t) = i

√
�

2
e
(

âei(k·r−ωt) − â†e−i(k·r−ωt)
)
, (2.16)

B̂(r, t) = i

√
�

2
k × e

(
âei(k·r−ωt) − â†e−i(k·r−ωt)

)
, (2.17)

respectively. The quadrature operators are

x̂ =
√

�

2

(
â + â†

)
, (2.18)

p̂ = −i

√
�

2

(
â − â†

)
, (2.19)

or conversely

â = 1√
2�

(
x̂ + i p̂

)
, (2.20)

â† = 1√
2�

(
x̂ − i p̂

)
. (2.21)

The commutation relations become

1 To be precise, a mode is defined by integrating wave vectors with a mode function which has
distinctive nonzero values around a specific wave vector. Therefore, the commutation relations
(Eqs. (2.22) and (2.23)) do not become delta functions.
2

� is abbreviated to � = 1
2 , 1 and 2 depending on papers, which sometimes leads to confusion.
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[x̂, p̂] = i�, (2.22)

and
[â, â†] = 1. (2.23)

By using Eqs. (2.16), (2.17), (2.20) and (2.21), the electric and magnetic field
operators are described as

Ê(r, t) = −e
[
x̂ sin (k · r − ωt)+ p̂ cos (k · r − ωt)

]
, (2.24)

B̂(r, t) = −k × e
[
x̂ sin (k · r − ωt)+ p̂ cos (k · r − ωt)

]
. (2.25)

2.1.2.4 Uncertainty Principle for Quadratures

By applying the uncertainty principle to the quadrature operators x̂ and p̂, we get

〈�x̂〉sd〈� p̂〉sd � 1

2
�. (2.26)

Therefore, x̂ and p̂ cannot be determined simultaneously.

2.2 Several Quantum States

2.2.1 Coherent State

2.2.1.1 Definition

A coherent state |α〉 is defined to be an eigenstate of the annihilation operator â with
the eigenvalue α = |α|eiθ :

â|α〉 = α|α〉, α ∈ C. (2.27)

2.2.1.2 Averages and Fluctuations

For the coherent state |α〉,

〈x̂〉 = √
2��[α], 〈x̂2〉 = 2�(�[α])2 + �

2
, 〈�2 x̂〉 = �

2
, 〈�x̂〉sd =

√
�

2
.

(2.28)
Similarly,
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〈 p̂〉 = √
2��[α], 〈 p̂2〉 = 2�(�[α])2 + �

2
, 〈�2 p̂〉 = �

2
, 〈� p̂〉sd =

√
�

2
.

(2.29)
Thus, x̂ and p̂ have the same fluctuations. In addition, the coherent state is a

minimum uncertainty state.

2.2.1.3 Representation in Phase Space

A single mode quantum state can be represented in a two-dimensional phase space.
Let x̂ be the horizontal axis, with p̂ the vertical axis. Averages and fluctuations of
position and momentum operators are described by the location and shade of a circle
(Fig. 2.1).

2.2.1.4 Representation in Time

By using Eq. (2.24), the mean value of the electric field operator 〈Ê〉 is given by

〈Ê〉 = 〈α|Ê |α〉 = −e[〈α|x̂ |α〉 sin(k · r − ωt)+ 〈α| p̂|α〉 cos(k · r − ωt)] (2.30)

= −e
√

2�|α| sin(k · r − ωt + θ). (2.31)

In a similar manner, 〈Ê2〉 becomes

〈Ê2〉 = 〈Ê〉2 + �

2
, (2.32)

where
〈x̂ p̂ + p̂x̂〉 = −i�(α2 − α∗2) = 4��[α]�[α] (2.33)

Fig. 2.1 Representation in
phase space

x

p

α2

θ

sd
x̂Δ

sd
p̂Δ
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is utilized. Therefore, the variance is given by

〈�2 Ê〉 = �

2
. (2.34)

Figure 2.2 shows a graph of the electric field in the time domain. The mean value
is a sine wave, while the fluctuations do not depend on time.

2.2.1.5 Displacement Operator

The coherent state |α〉 is represented as

|α〉 = D̂(α)|0〉, (2.35)

where
D̂(α) = eαâ†−α∗â, α ∈ C (2.36)

is a displacement operator, while |0〉 is the vacuum state (see the next subsection).

2.2.2 Vacuum State

2.2.2.1 Definition

The vacuum state is a coherent state with α = 0.

2.2.2.2 Averages and Fluctuations

Since the vacuum state is an example of coherent states, it shares all the properties
described in 2.2.1.

Fig. 2.2 Representation in
time

E

tO
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〈x̂〉 = 〈 p̂〉 = 0, 〈x̂2〉 = 〈 p̂2〉 = �

2
, 〈�x̂〉sd = 〈� p̂〉sd =

√
�

2
. (2.37)

These equations show that the mean values of x̂ and p̂ are equal to zero. The vac-
uum state is a minimum uncertainty state with finite fluctuations derived from the
uncertainty principle.

2.2.2.3 Representation in Phase Space

Phase space representation of the vacuum state is shown in Fig. 2.3.

2.2.2.4 Representation in Time

By using

〈Ê〉 = 0, 〈�2 Ê〉 = �

2
, (2.38)

for the vacuum state, we get the graph of the electric field in the time domain (Fig. 2.4).
The mean value is constantly zero, while the fluctuations do not depend on time.

2.2.3 Squeezed Vacuum State

2.2.3.1 Definition

We define a squeezing operator:

Ŝ(r) = e
r
2 (â

2−â†2), r ∈ R, (2.39)

Fig. 2.3 Representation in
phase space

x

p
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E

tO

Fig. 2.4 Representation in time

where r is called a squeezing parameter. A squeezed vacuum state,3 or a squeezed
state, is defined as

Ŝ(r)|0〉, (2.40)

where |0〉 is the vacuum state.

2.2.3.2 Averages and Fluctuations

By using

Ŝ†(r)â Ŝ(r) =â cosh r − â† sinh r, (2.41)

Ŝ†(r)â† Ŝ(r) =â† cosh r − â sinh r, (2.42)

Ŝ†(r)x̂ Ŝ(r) = e−r x̂, Ŝ†(r) p̂ Ŝ(r) = er p̂, (2.43)

we get

〈x̂〉 = 〈 p̂〉 = 0, 〈x̂2〉 = �

2
e−2r , 〈 p̂2〉 = �

2
e2r , (2.44)

and thus

〈�2 x̂〉 = �

2
e−2r , 〈�2 p̂〉 = �

2
e2r , 〈�x̂〉sd =

√
�

2
e−r , 〈� p̂〉sd =

√
�

2
er .

(2.45)
Note that the variance of x̂ is not equal to that of p̂ for r 
= 0. However, they satisfy

〈�x̂〉sd〈� p̂〉sd = �

2
. (2.46)

Therefore, the squeezed vacuum state is also a minimum uncertainty state.

3 When r > 0, it becomes an x-squeezed state. When r = 0, it is the vacuum state. When r < 0, it
becomes a p-squeezed state.
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2.2.3.3 Representation in Phase Space

Figures 2.5 and 2.6 show phase space representations of squeezed states with r > 0
and r < 0.

In these figures, dotted circles show phase space representations of the vacuum
states. Fluctuations of x̂ and p̂ are smaller than those of the vacuum states in Figs. 2.5
and 2.6, respectively.

2.2.3.4 Representation in Time

By using Eq. (2.24), the mean value of the electric field operator 〈Ê〉 for the squeezed
state Ŝ(r)|0〉 is given by

〈Ê〉 = 〈0|Ŝ(r)† Ê Ŝ(r)|0〉 = 0. (2.47)

Therefore, 〈�2 Ê〉 = 〈Ê2〉 − 〈Ê〉2 = 〈Ê2〉 becomes

〈�2 Ê〉 = �

2
e−2r sin2(k · r − ωt)+ �

2
e2r cos2(k · r − ωt). (2.48)

Figures 2.7 and 2.8 show graphs of the squeezed states at r = 0 in the time domain.
In both cases, the mean value of the electric field operator is constantly zero.

When r > 0, the graph is considered as a superposition (in a classical sense) of
cosine waves with different amplitudes, because the fluctuation of p̂ is larger than
that of x̂ . To the contrary, when r < 0, it is considered as a superposition of sine
waves, because the fluctuation of x̂ is larger than that of p̂.

x

p

Fig. 2.5 Representation in phase space (r > 0)



24 2 Quantum Optics

x

p

Fig. 2.6 Representation in phase space (r < 0)

2.3 Optical Parametric Oscillator

In all experiments in this thesis, each squeezed state is generated by using an optical
parametric oscillator (OPO). An OPO is an optical cavity with a nonlinear medium
(Fig. 2.9). The generation process of the squeezed state is fully formulated by the
quantum Langevin equation [3, 4]. In this section, we briefly review the quantum
Langevin equation.

2.3.1 Quantum Langevin Equation

We define âin and âout as the annihilation operators of the main input and output
fields, while γ1 (∈ R) is the damping constant. In a similar manner, we define b̂in

and b̂out as the annihilation operators of the loss-mode input and output fields, while
γ2 (∈ R) is the damping constant. The output field of the OPO âout is given by

Fig. 2.7 Representation in
time (r > 0)

E

tO
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E

tO

Fig. 2.8 Representation in time (r < 0)

âout (Ω + ω) = [( γ1
2 )

2 − (
γ2
2 − iω)2 + |ε|2]âin(Ω + ω)− εγ1â†

in(Ω − ω)

(
γ1+γ2

2 − iω)2 − |ε|2

+
√
γ1γ2(

γ1+γ2
2 − iω)b̂in(Ω + ω)− ε

√
γ1γ2b̂†

in(Ω − ω)

(
γ1+γ2

2 − iω)2 − |ε|2 ,

(2.49)

where Ω is the center angular frequency of the laser, while ω is a relative angular
frequency. ε (∈ C) shows a constant which is determined by the amplitude of the
pump laser and the second order susceptibility of the nonlinear medium χ(2). In the
following, we omit Ω for simplicity. By defining

âp(ω) = âout (ω)+ âout (−ω)√
2

, âm(ω) = âout (ω)− âout (−ω)√
2

, (2.50)

we get

〈x̂ p(ω)x̂ p(ω
′)〉 = 〈 p̂m(ω) p̂m(ω

′)〉 = �

2
δ(ω − ω′)

[
Sq(ω) cos2 θ

2
+ Asq(ω) sin2 θ

2

]
,

(2.51)

〈x̂m(ω)x̂m(ω
′)〉 = 〈 p̂p(ω) p̂p(ω

′)〉 = �

2
δ(ω − ω′)

[
Asq(ω) cos2 θ

2
+ Sq(ω) sin2 θ

2

]
,

(2.52)

where

Sq(ω) = 1 − 2|ε|γ1

(
γ1+γ2

2 + |ε|)2 + ω2
, (2.53)

Asq(ω) = 1 + 2|ε|γ1

(
γ1+γ2

2 − |ε|)2 + ω2
(2.54)
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nonlinear
crystal

Fig. 2.9 Optical parametric oscillator

show levels of squeezing and antisqueezing. Here, we have defined |ε| and θ as
ε = eiθ |ε|. These equations show that the operator with angular frequency Ω + ω

has correlations only with the operator with angular frequency Ω − ω. We can
consider that there exist two independent modes âp(ω) and âm(ω), which are in
x̂ p-squeezed and p̂m-squeezed states when θ = 0.

2.3.2 Relationship to Experimental Setups

The damping constants γ1 and γ2 are approximated by

γ1 = T c

l
, γ2 = Lc

l
, (2.55)

where c is the speed of light, while l, T , and L are the cavity length, the energy
transmissivity, and the intracavity energy loss of the OPO, respectively. We also
define

εth = γopo = γ1 + γ2

2
, x = |ε|

εth
, (2.56)

where εth and γopo represent the oscillation threshold and the half width at half
maximum (HWHM) of the OPO, respectively. x shows the ratio between the pump
amplitude and the oscillation threshold. It is related to the maximum (G+) and
minimum (G−) amplification factors (parametric gains) of the classical parametric
process:

G± = 1

(1 ∓ x)2
. (2.57)

By using these parameters, we get

Sq(ω) = 1 − T

T + L

4x

(1 + x)2 + ( ω
γopo

)2
, (2.58)

Asq(ω) = 1 + T

T + L

4x

(1 − x)2 + ( ω
γopo

)2
. (2.59)
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2.4 Homodyne Measurement

Homodyne measurement [1] is the basic measurement in quantum optics. In all
experimental demonstrations reported in this thesis, all measurements on quantum
states are homodyne measurements.

The basic structure of the homodyne measurement is described in Fig. 2.10.
It detects interferences between the signal beam and a local oscillator (LO) beam,

which is an intense coherent beam. Since the LO beam works as a reference, we can
measure a quantum state in specific spatial and frequency modes. In addition, we
can measure quantum fluctuations of the signal beam without being obstructed by
thermal noise.

We define â as the annihilation operator of the signal mode, while α = |α|eiφ is
the complex amplitude of the LO beam. Here, we have assumed that the intensity
of the LO beam is so high that its quantum nature is negligible. These two modes
are combined using a 50:50 beam splitter (half beam splitter, HBS), leading to the
annihilation operators

â1 = 1√
2
(â + α), â2 = 1√

2
(−â + α). (2.60)

signal beam LO beam

HBS

−

homodyne detector

â α

1â2â

Fig. 2.10 Homodyne measurement
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These outcomes are converted to photocurrents. The output of the homodyne detec-
tion is

Î (t) = â†
1 â1 − â†

2 â2 =
√

2

�
|α|[x̂(t) cosφ + p̂(t) sin φ]. (2.61)

It shows that the measurement variable of the homodyne detection is a linear
combination of position and momentum operators. It is controlled by the phase
φ of the LO beam. We can also get

Î (t) =
∞∫

−∞
dω[α∗â(ω)e−iωt + αâ†(ω)eiωt ] (2.62)

=
∞∫

0

dω[α∗â(−ω)eiωt + αâ†(−ω)e−iωt + α∗â(ω)e−iωt + αâ†(ω)eiωt ].

(2.63)

By using α = |α|eiφ , it becomes

Î (t) = |α|
√

2

�

∞∫

0

dω
[

cosωt[(x̂(ω)+ x̂(−ω)) cosφ + ( p̂(ω)+ p̂(−ω)) sin φ]

+ sinωt[( p̂(ω)− p̂(−ω)) cosφ − (x̂(ω)− x̂(−ω)) sin φ]
]
. (2.64)

By defining

âp(ω) = â(ω)+ â(−ω)√
2

, âm(ω) = â(ω)− â(−ω)√
2

, (2.65)

we get

Î (t) = |α| 2√
�

∞∫

0

dω
[

cosωt[x̂ p(ω) cosφ + p̂p(ω) sin φ] + sinωt[ p̂m(ω) cosφ − x̂m(ω) sin φ]
]

(2.66)

= |α| 2√
�

∞∫

0

dω
[
x̂ p(ω, φ) cosωt + x̂m(ω, φ + π

2 ) sinωt
]
. (2.67)

Here, we have used
x̂(ω, φ) = x̂(ω) cosφ + p̂(ω) sin φ. (2.68)

In all experiments reported in this thesis, the outcomes of homodyne detections
are measured by using a spectrum analyzer. In general, a spectrum analyzer shows the
power of electrical signals with a specific angular frequency ω, which corresponds
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to a measurement of the power, or the variance, of x̂ p(ω, φ) and x̂m(ω, φ+ π
2 ). Note

that it shows the total power of these two operators because it cannot distinguish
between x̂ p(ω, φ) and x̂m(ω, φ + π

2 ).
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Chapter 3
Quantum States and Quantum State
Manipulations

3.1 Computational Basis

Quantum computation with discrete variables (DV) utilizes a discrete and finite num-
ber of quantum states as its computational basis [1]. On the contrary, quantum com-
putation with continuous variables (CV) involves a continuous and infinite number
of quantum states as its computational basis. In this thesis, we focus on CV quantum
computation.

In CV quantum computation with bosonic fields, two types of computational bases
are traditionally used—eigenstates of position and momentum operators |x = a〉 and
|p = b〉 with a, b ∈ R,

x̂|x = a〉 = a|x = a〉, a ∈ R, (3.1)

p̂|p = b〉 = b|p = b〉, b ∈ R, (3.2)

where a and b represent their eigenvalues. In the following, we sometimes describe
the eigenstate of the position operator as |x〉 or |a〉x , while that of the momentum
operator as |p〉 or |b〉p, for simplicity. They are complete:

∞∫

−∞
dx |x〉〈x| = 1,

∞∫

−∞
dp |p〉〈p| = 1, (3.3)

and orthogonal:

〈x|x′〉 = δ(x − x′), 〈p|p′〉 = δ(p − p′). (3.4)

Two eigenstates |x〉 and |p〉 of position and momentum operators are related to each
other by the Fourier transformation:

© Springer Japan 2015
R. Ukai, Multi-Step Multi-Input One-Way Quantum Information
Processing with Spatial and Temporal Modes of Light, Springer Theses,
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|x〉 = 1√
2π�

∞∫

−∞
dp e− ixp

� |p〉, (3.5)

|p〉 = 1√
2π�

∞∫

−∞
dx e

ixp
� |x〉. (3.6)

The inner product of |x〉 and |p〉 is given by

〈x|p〉 = 1√
2π�

e
ixp
� . (3.7)

3.2 Representations of Quantum States

In this section, we summarize several methods for representing quantum states.

3.2.1 State Vector

3.2.1.1 One-Mode State

We set the eigenstate |x〉 of the position operator x̂ as the computational basis. An
arbitrary one-mode pure quantum state |ψ〉 can be expanded as

|ψ〉 =
∞∫

−∞
dx |x〉〈x|ψ〉 =

∞∫

−∞
dx f (x)|x〉, (3.8)

where f (x) = 〈x|ψ〉 is normalized:

∞∫

−∞
dx f ∗(x)f (x) =

∞∫

−∞
dx 〈ψ|x〉〈x|ψ〉 = 1. (3.9)

When we set the eigenstate |p〉 of the momentum operator p̂ as the computational
basis, |ψ〉 can be expanded as

|ψ〉 =
∞∫

−∞
dp g(p)|p〉, (3.10)

∞∫

−∞
dp g∗(p)g(p) = 1. (3.11)
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3.2.1.2 Multi-Mode State

As a natural extension of the one-mode case above, the N-mode infinite-dimensional
Hilbert space is spanned by the direct product of eigenstates of position or momentum
operators. By taking the former case for example, the computational basis for the
N-mode quantum state is given by

|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉 = |x1〉|x2〉 · · · |xN 〉. (3.12)

An arbitrary N-mode pure quantum state |ψN 〉 can be expanded in the position basis
as

|ψN 〉 =
∞∫

−∞
dx1

∞∫

−∞
dx2 · · ·

∞∫

−∞
dxN f (x1, x2, . . . , xN )|x1〉|x2〉 · · · |xN 〉, (3.13)

where f (x1, x2, . . . , xN ) is normalized:

∞∫

−∞
dx1

∞∫

−∞
dx2 . . .

∞∫

−∞
dxN f ∗(x1, x2, . . . , xN )f (x1, x2, . . . , xN ) = 1. (3.14)

3.2.2 Density Operator

Although all pure quantum states can be described by state vectors, mixed states
cannot be described in this manner. In order to formulate mixed states, we introduce
density operators.

3.2.2.1 Definition of Density Operator

Consider an ensemble of pure states |ψn〉 with statistical probabilities pn. The density
operator ρ̂ of the mixed quantum state is defined as

ρ̂ =
∑

n

pn|ψn〉〈ψn|. (3.15)

Since pn represents the probability, we have

pn > 0,
∑

n

pn = 1. (3.16)

In the case of a pure quantum state |ψ〉, the density operator ρ̂ is given by
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ρ̂ = |ψ〉〈ψ|. (3.17)

Any density operator is Hermitian with trace of one, and positive definite:

ρ̂† = ρ̂, trρ̂ = 1, ρ̂ ≥ 0. (3.18)

3.2.2.2 Observable and Its Expectation Value

In general, any observable can be formulated by a Hermitian operator Â. It can be
decomposed into

Â =
∑

a

a|a〉〈a|, (3.19)

where |a〉 shows the eigenstate of Â with eigenvalue a (spectral decomposition). The
expectation value of the observable Â in the state with the density operator ρ̂ is given
by

〈Â〉 =
∑

n

pn〈ψn|Â|ψn〉 =
∑

a

〈a|
∑

n

pn|ψn〉〈ψn|Â|a〉 = trρ̂Â. (3.20)

Here, the trace operation “tr” satisfies

trÂB̂ = trB̂Â, (3.21)

for any operators Â and B̂.

3.2.3 Stabilizer

Consider a pure one-mode quantum state |ψ〉. Consider the set {Ŝ} of unitary operators
Ŝ which satisfy

Ŝ|ψ〉 = |ψ〉. (3.22)

The set forms a subgroup (stabilizer group) of the unitary group which consists of
unitary operators. We refer to {Ŝ} as the stabilizer of the quantum state |ψ〉 [2, 3].

For example, the set {F̂(θ)} of the rotation operators F̂(θ) (Sect. 3.5.3):

F̂(θ) = eiθâ†â (3.23)

is the stabilizer of the vacuum state |0〉 since
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F̂(θ)|0〉 = |0〉. (3.24)

Accordingly, the quantum state which is not changed by the rotation operator F̂(θ)
with an arbitrary θ including the global phase is nothing but the vacuum state.

An arbitrary one-mode pure quantum state |ψ〉 is given by the vacuum state |0〉
and a unitary operator Û as

|ψ〉 = Û|0〉. (3.25)

Since we have

ÛF̂(θ)Û†|ψ〉 = ÛF̂(θ)Û†[Û|0〉] = |ψ〉, (3.26)

{ÛF̂(θ)Û†} is the stabilizer of the quantum state |ψ〉. Accordingly, the quantum state
which is stabilized by {ÛF̂(θ)Û†} is nothing but |ψ〉. Therefore, the quantum state
can be uniquely determined by its stabilizer.

The discussion above can be easily extended to N-mode pure quantum states since
the stabilizer of the N-mode vacuum state is given by {F̂k(θk)}, where F̂k(θk) is the
rotation operator on mode k.

We lastly consider the eigenstates |x = a〉 and |p = b〉 of position operator x̂ and
momentum operator p̂. By using

eis x̂−a
� |x = a〉 = |x = a〉, e−is p̂−b

� |p = b〉 = |p = b〉, (3.27)

we find that the stabilizers of these quantum states are {eis x̂−a
� } and {e−is p̂−b

� }. Note
that they are the momentum displacement operator and the position displacement
operator up to global phases. When the eigenvalues are a = 0 and b = 0, they
become the momentum displacement operator Ẑ(s) and the position displacement
operator X̂(s) (Sects. 3.5.1 and 3.5.2).

3.2.4 Nullifier

Consider a pure one-mode quantum state |ψ〉. Consider an operator δ̂ ( �= 0) which
satisfies

δ̂|ψ〉 = 0. (3.28)

We refer to δ̂ as a nullifier of the quantum state |ψ〉 [2, 3].
For example, the annihilation operator â is the nullifier of the vacuum state |0〉

since â|0〉 = 0. The nullifier of |ψ〉 = Û|0〉 is given by ÛâÛ†.
Similarly, since the nullifiers of the N-mode vacuum state |0〉⊗N are {âk}, k =

1, . . . ,N , the nullifiers of |ψ〉 = Û|0〉⊗N are given by {ÛâkÛ†}, k = 1, . . . ,N .
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Any N-mode pure quantum state can be uniquely determined by its N independent
nullifiers.

We sometimes write

δ̂ = 0, (3.29)

in order to show that δ̂ is a nullifier of the quantum state, for simplicity.
Consider that an operator δ̂ is a nullifier of an N-mode quantum state |ψ〉 (δ̂|ψ〉 =

0). Since

(aδ̂)|ψ〉 = 0, (3.30)

aδ̂ is also a nullifier of the quantum state |ψ〉.
Consider that two operators δ̂1 and δ̂2 are nullifiers of a quantum state |ψ〉 (δ̂1|ψ〉 =

0, δ̂2|ψ〉 = 0). Since

(aδ̂1 + bδ̂2)|ψ〉 = 0, δ̂1δ̂2|ψ〉 = 0, (3.31)

(aδ̂1 + bδ̂2) and δ̂1δ̂2 are also nullifiers of the quantum state |ψ〉.

3.2.5 Moment

3.2.5.1 xpxp Notation and xxpp Notation

We utilize two types of notations in order to formulate vectors of quadrature operators
based on the order of position operators and momentum operators.

In xpxp notation, we describe N-mode quadrature operators as

ξ̂ = (x̂1, p̂1, . . . , x̂N , p̂N )
T . (3.32)

On the other hand, in xxpp notation, we describe N-mode quadrature operators as

q̂ = (x̂1, . . . , x̂N , p̂1, . . . , p̂N )
T . (3.33)

These two notations are related as
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂1
...

x̂N

p̂1
...

p̂N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0

. . .

1 0
0 1

0 1
. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x̂1
p̂1
...

x̂N

p̂N

⎞
⎟⎟⎟⎟⎟⎠

≡ T

⎛
⎜⎜⎜⎜⎜⎝

x̂1
p̂1
...

x̂N

p̂N

⎞
⎟⎟⎟⎟⎟⎠
. (3.34)

Here, T satisfies

T−1 = TT . (3.35)

3.2.5.2 Definition of Moment

We assume that ρ̂ is the density operator of an N-mode mixed quantum state. We
define the k-th order moment in xpxp notation as

Mj1,...,jk = tr
[
ρ̂ξ̂j1 · · · ξ̂jk

]
. (3.36)

Similarly, we can define k-th order moments in xxpp notation.

3.2.6 Expectation Value and Covariance Matrix of Quadrature
Operators

3.2.6.1 Expectation Value of Quadrature Operators

We consider the first-order moments in xpxp notation. By definition mj = tr
[
ρ̂ξ̂j

]
,

they show expectation values of quadrature operators mj = 〈ξ̂j〉. Similarly, the first-
order moments in xxpp notation are given by nj = 〈q̂j〉.

3.2.6.2 Covariance Matrix in xpxp Notation

We consider the second-order moments in xpxp notation. By definition, they are

Mj1,j2 = tr
[
ρ̂ξ̂j1 ξ̂j2

]
. Note that M2j−1,2j = tr

[
ρ̂x̂j p̂j

]
, which shows correlation

between position and momentum operators of single mode, does not become a real
number. Therefore, by subtracting the expectation values, and by symmetrizing with
respect to position and momentum operators, we define the covariance matrix V in
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xpxp notation as

Vj,k = tr
[
ρ̂
{
Δξ̂j,Δξ̂k

}]
, Δξ̂j=ξ̂j − 〈ξ̂j〉,

{
Δξ̂j,Δξ̂k

}
=Δξ̂jΔξ̂k +Δξ̂kΔξ̂j

2
.

(3.37)

The matrix V can also be described as

V =
〈
(ξ̂ − 〈ξ̂〉)(ξ̂ − 〈ξ̂〉)T

〉
− i�

2
Ω. (3.38)

Here, Ω =
N⊕

k=1

ω, where ω =
(

0 1
−1 0

)
.

By definition, V is a real symmetric matrix. The uncertainty principle is described
as

V + i�

2
Ω ≥ 0. (3.39)

It is a necessary and sufficient condition for a real symmetric matrix V that it shows
a covariance matrix of a physical quantum state:

A real symmetric matrix V represents a covariance matrix

of a physical quantum state ⇐⇒ V + i�

2
Ω ≥ 0. (3.40)

It shows that V is a positive-definite matrix:

V + i�

2
Ω ≥ 0 =⇒ V > 0. (3.41)

3.2.6.3 Covariance Matrix in xxpp Notation

We can define the covariance matrix � in xxpp notation as well:

� =
〈
(q̂ − 〈q̂〉)(q̂ − 〈q̂〉)T

〉
− i�

2
Ω ′, Ω ′ =

(
O I
−I O

)
, (3.42)

where I and O represent the N × N unit matrix and zero matrix, respectively.
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3.2.6.4 Williamson’s Theorem

Here, we use xpxp notation. An arbitrary 2N × 2N positive-definite real symmetric
matrix V can be diagonalized by a symplectic matrix S ∈ Sp(2N,R)1:

SVST =

⎛
⎜⎜⎜⎜⎜⎝

ν1
ν1
. . .

νN

νN

⎞
⎟⎟⎟⎟⎟⎠
, νi > 0. (3.43)

This is called the Williamson’s theorem. Here, νk is called a symplectic eigenvalue. It
can be computed by acquiring the eigenvalues of iΩV , which are equivalent to ±νk .
Note that the diagonal matrix diag[ν1, ν1, . . . , νN , νN ] represents the covariance
matrix of an N-mode thermal state. Thus, we get the following statement:

A real symmetric matrix V represents a covariance matrix

of a physical quantum state ⇐⇒ min νk ≥ �

2
and V > 0. (3.44)

In addition, we have

V > 0 ⇐⇒ det Vk > 0 for all k, (3.45)

for a real symmetric matrix V , where Vk is the k-th order principal submatrix of V .
As a result,

A real symmetric matrix V represents a covariance matrix

of a physical quantum state ⇐⇒ min νk ≥ �

2
and det Vi > 0 for all i. (3.46)

In the special case of a two-mode state, we describe two symplectic eigenvalues
as ν± (ν+ ≥ ν−).

3.2.7 Wigner Function and Gaussian State

3.2.7.1 Wigner Function

We consider an N-mode mixed quantum state with density operator ρ̂. By using the
Wigner characteristic function:

1 Note that V does not necessarily show a covariance matrix of a physical quantum state. For more
details of symplectic matrices and symplectic groups, see Refs. [4, 5].
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χ(η) = tr
[
ρ̂e

i
�

ηT ξ̂
]
, (3.47)

we define the Wigner function [6] of the N-mode state as

W(ξ) = 1

(2π�)2N

∞∫

−∞
d2Nη χ(η)e− i

�
ηT ξ, (3.48)

where

ξ = (x1, p1, . . . , xN , pN )
T , η = (u1, v1, . . . , uN , vN )

T . (3.49)

It is a real-valued function whose range might contain negative values.

3.2.7.2 Gaussian State

Consider a quantum state whose Wigner function is a Gaussian function. It is called
a Gaussian state. Any Gaussian state is uniquely determined by its first-order and
second-order moments, or equivalently, the expectation values m and the covariance
matrix V . Note that here we use xpxp notation. By using m and V , the Wigner function
is given by

W(ξ) = 1

(2π)N
√

det V
e− 1

2 (ξ−m)T V−1(ξ−m). (3.50)

The vacuum state, squeezed state, and coherent state are one-mode Gaussian
states. In addition, all the quantum states in the experiments in this thesis are Gaussian
states.

3.2.8 Quadrature Operator Which Specifies a Particular
Quantum State

We sometimes show that a quantum mode is in a particular quantum state by adding
a superscript to its quadrature operators. For example, consider that mode 1 is in
a vacuum state. By adding superscripts (0) to quadrature operators, we describe
them as

x̂(0)1 + ip̂(0)1 . (3.51)

Similarly, a p-squeezed state is formulated as

er1 x̂(0)1 + ie−r1 p̂(0)1 . (3.52)
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3.3 Representations of Quantum State Manipulations

In this section, we summarize several methods for the representation of quantum
state manipulations.

3.3.1 Unitary Operator, Transformation of State Vector,
Schrödinger Picture

A quantum state manipulation corresponds to a transformation of a quantum state
|ψ〉 to |ψ′〉. By using a unitary operator Û with Û†Û = Î , it can be formulated as

|ψ′〉 = Û|ψ〉. (3.53)

3.3.2 Transformation of Density Operator

We assume that the density operator of an initial state is given by ρ̂ =
∑

i

pi|ψi〉〈ψi|.

By applying a unitary operator Û, it becomes

ρ̂′ =
∑

i

piÛ|ψi〉〈ψi|Û† = Ûρ̂Û†. (3.54)

3.3.3 Transformation of Stabilizer

We assume that the set of unitary operators {Ŝ} is the stabilizer of a quantum state
|ψ〉 (Ŝ|ψ〉 = |ψ〉). We apply a unitary operator Û to the quantum state. By using

ÛŜÛ†[Û|ψ〉] = Û|ψ〉, (3.55)

we find that the stabilizer of the resulting quantum state Û|ψ〉 is given by {ÛŜÛ†}.

3.3.4 Transformation of Nullifier

We assume that the operator δ̂ is a nullifier of a quantum state |ψ〉 (δ̂|ψ〉 = 0). We
apply a unitary operator Û to the quantum state. By using
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Û δ̂Û†[Û|ψ〉] = 0, (3.56)

we find that Û δ̂Û† is a nullifier of the resulting quantum state Û|ψ〉.

3.3.5 Transformation of Annihilation Operator, Heisenberg
Picture

3.3.5.1 General Operation

An arbitrary N-mode Hermitian operator F̂, which shows an observable, can be for-
mulated as a function of annihilation and creation operators as F̂(â1, â†

1, . . . , âN , â†
N ).

In the Heisenberg picture, it is transformed by a unitary transformation with a unitary
operator Û to

Û†F̂(â1, â†
1, . . . , âN , â†

N )Û = F̂(Û†â1Û, Û†â†
1Û, . . . , Û†âN Û, Û†â†

N Û). (3.57)

Note that the creation operators are the Hermitian conjugates of the annihilation
operators. Therefore, the transformation of an arbitrary Hermitian operator can be
traced only by tracing the transformation of annihilation operators:

âk → â′
k = Û†âkÛ, (3.58)

where âk and â′
k show annihilation operators of mode k before and after the quantum

state manipulation, respectively.

3.3.5.2 Gaussian Operation

In the case of Gaussian operations, transformations of annihilation and creation
operators are formulated by matrices (for more details, see Sect. 3.4):

âj → â′
j = Û†âjÛ =

N∑

k=1

(Ejkâk + Fjkâ†
k)+ βj, Ejk ∈ C,Fjk ∈ C,βj ∈ C.

(3.59)

In xpxp notation with

ξ̂ = (x̂1, p̂1, . . . , x̂N , p̂N )
T , (3.60)

it is formulated as

ξ̂
′ = Mξ̂ + d, Mij ∈ R, di ∈ R, (3.61)

or equivalently,
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(
x̂′
p̂′
)

=
(

A B
C D

)(
x̂
p̂

)
+
(

e
f

)
, Aij,Bij,Cij,Dij, ei, fi ∈ R, (3.62)

in xxpp notation. A,B,C,D,E,F,M have to satisfy some condition in order to
preserve commutation relations (see Sect. 3.4).

3.3.6 Transformation of Expectation Values and Covariance
Matrix for Gaussian Operations

3.3.6.1 xpxp Notation

We assume that the expectation values of quadrature operators and the covariance
matrix of an N-mode quantum state are given by

m = 〈ξ̂〉, V =
〈
(ξ̂ − m)(ξ̂ − m)T

〉
− i�

2
Ω, (3.63)

in xpxp notation with

ξ̂ = (x̂1, p̂1, . . . , x̂N , p̂N )
T . (3.64)

By performing a Gaussian operation with

ξ̂
′ = Mξ̂ + d, Mij ∈ R, di ∈ R, (3.65)

in xpxp notation, the expectation values of quadrature operators and the covariance
matrix become

m′ = Mm + d, V ′ = MVMT . (3.66)

3.3.6.2 xxpp Notation

We assume that the expectation values of quadrature operators and the covariance
matrix of an N-mode quantum state are given by

n = 〈q̂〉, � =
〈
(q̂ − 〈q̂〉)(q̂ − 〈q̂〉)T

〉
− i�

2
Ω ′, (3.67)

in xxpp notation with

q̂ = (x̂1, . . . , x̂N , p̂1, . . . , p̂N )
T . (3.68)

By performing a Gaussian operation with
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q̂′ = Mq̂ + d, Mij ∈ R, di ∈ R, (3.69)

in xxpp notation, the expectation values of quadrature operators and the covariance
matrix become

n′ = Mn + d, �′ = M�MT . (3.70)

3.3.7 Comparison Between Transformation of Nullifier
and Transformation of Annihilation Operator

Although the transformation of nullifiers seems to be the inverse of the annihilation-
operator transformation, there exists a difference between them when we consider
multi-step quantum state manipulations.

Consider a one-mode quantum state |ψ0〉. We apply a unitary operator Û1(x̂, p̂),
followed by Û2(x̂, p̂). to the state |ψ0〉.

First, we consider the transformation of annihilation operators. We define x̂0, p̂0
as the quadrature operators of the initial mode (before unitary transformations). By
the first unitary operator, they are transformed to

x̂1 = Û†
1 (x̂0, p̂0)x̂0Û1(x̂0, p̂0), p̂1 = Û†

1 (x̂0, p̂0)p̂0Û1(x̂0, p̂0). (3.71)

By the second unitary operator, the quadrature operators x̂1, p̂1 are transformed to

x̂2 = Û†
2 (x̂1, p̂1)x̂1Û2(x̂1, p̂1), p̂2 = Û†

2 (x̂1, p̂1)p̂1Û2(x̂1, p̂1). (3.72)

Next, we consider the transformation of nullifiers. We define δ̂0(x̂0, p̂0) to be
the nullifier of the initial state (before unitary transformations). By the first unitary
operator, it is transformed to

δ̂1(x̂0, p̂0) = Û1(x̂0, p̂0)δ̂0(x̂0, p̂0)Û
†
1 (x̂0, p̂0). (3.73)

By the second unitary operator, it is transformed to

δ̂2(x̂0, p̂0) = Û2(x̂0, p̂0)δ̂1(x̂0, p̂0)Û
†
2 (x̂0, p̂0). (3.74)

3.3.8 Transformation of Quadrature Operator Which Specifies
a Particular Quantum State

Since Sect. 3.3.5 gives us the general rule for transformations from the annihilation
operators before operations to those after operations, we can obtain the quadrature
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operators which specify the output quantum state by substituting quadrature operators
which specify the input state for the input-mode quadratures in the transformation
rule of the annihilation operators.

We take an example of a p-squeezing operation on a vacuum state. By using
quadrature operators which specify a particular quantum state, the initial vacuum
state is described as

x̂(0) + ip̂(0). (3.75)

The p-squeezing operation is formulated as:

x̂′ + ip̂′ = er x̂ + ie−r p̂. (3.76)

By substituting x̂(0) for x̂, and p̂(0) for p̂, we get the quadrature operators which
specify the output state:

x̂′ + ip̂′ = er x̂(0) + ie−r p̂(0). (3.77)

3.4 Group of Operator

In general, an arbitrary unitary operator Û can be described as

Û = e−i Ĥ
� , (3.78)

where Ĥ is the corresponding Hamiltonian which is a polynomial of position oper-
ators x̂k and momentum operators p̂k . In this section, we classify unitary operators
based on the order of polynomials.

3.4.1 Pauli Group (Heisenberg-Weyl Group)

3.4.1.1 Operator

Consider a Hamiltonian which is a linear combination of n-mode position operators
x̂j and momentum operators p̂j:

Ĥ =
n∑

j=1

(αj x̂j + βj p̂j)+ γ. (3.79)

The set of unitary operators:
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P(n) = {
e
− i

�
[

n∑
j=1
(αj x̂j+βj p̂j)+γ]∣∣αj,βj, γ ∈ R

}
(3.80)

forms a group called the Pauli group or the Heisenberg-Weyl group. Note that γ
represents a global phase.

3.4.1.2 Matrix

We define x̂k and p̂k as the position and momentum operators of mode k. The Pauli
group transformation with {αk,βk} is formulated in the Heisenberg picture as

x̂′
k + ip̂′

k = x̂k + ip̂k − αki + βk . (3.81)

By defining

x̂ =
⎛
⎜⎝

x̂1
...

x̂n

⎞
⎟⎠ , p̂ =

⎛
⎜⎝

p̂1
...

p̂n

⎞
⎟⎠ , α̂ =

⎛
⎜⎝
α̂1
...

α̂n

⎞
⎟⎠ , β̂ =

⎛
⎜⎝
β̂1
...

β̂n

⎞
⎟⎠ , (3.82)

we can represent it by using vectors in xxpp notation:

(
x̂′
p̂′
)

=
(

x̂
p̂

)
+
(

β
−α

)
. (3.83)

Thus, the Pauli group operator is nothing but a displacement operator (Sects. 3.5.1
and 3.5.2):

X̂1(β1) · · · X̂n(βn)Ẑ1(−α1) · · · Ẑn(−αn). (3.84)

3.4.2 Symplectic Group

3.4.2.1 Operator

Consider an n-mode unitary operator Û = e− i
�

Ĥ whose Hamiltonian Ĥ is a homo-
geneous quadratic polynomial in the quadrature operators. The set of the unitary
operators Û forms a group called the Symplectic group.

3.4.2.2 Matrix (xxpp Notation)

We define x̂k and p̂k as the position and momentum operators of mode k. The Sym-
plectic group transformation is formulated in the Heisenberg picture as
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(
x̂′
p̂′
)

=
(

A B
C D

)(
x̂
p̂

)
, (3.85)

in xxpp notation, where A, B, C, and D are n × n real matrices. In order to preserve
commutation relations, they satisfy

ABT − BAT = O, CDT − DCT = O, ADT − BCT = I, (3.86)

where O and I are n × n zero and unit matrices, respectively. Equation (3.86) shows

that the matrix

(
A B
C D

)
is a member of the real symplectic group Sp(2n,R).2

3.4.2.3 Matrix (xpxp Notation)

Symplectic groups can be formulated in xpxp notation as well.

ξ̂
′ = Mξ̂, M = T−1

(
A B
C D

)
T , (3.87)

where T is defined in Eq. (3.34).

3.4.2.4 Matrix (Annihilation and Creation Operators)

An arbitrary Symplectic group operation can be formulated as

âj → â′
j = Û†âjÛ =

n∑

k=1

(Ejkâk + Fjkâ†
k), Ejk ∈ C,Fjk ∈ C, (3.88)

or equivalently,

⎛
⎜⎝

â1
...

ân

⎞
⎟⎠ →

⎛
⎜⎝

â′
1
...

â′
n

⎞
⎟⎠ =

⎛
⎜⎝

E11 · · · E1n
...
. . .

...

En1 · · · Enn

⎞
⎟⎠

⎛
⎜⎝

â1
...

ân

⎞
⎟⎠+

⎛
⎜⎝

F11 · · · F1n
...
. . .

...

Fn1 · · · Fnn

⎞
⎟⎠

⎛
⎜⎝

â†
1
...

â†
n

⎞
⎟⎠ . (3.89)

In order to preserve commutation relations, n × n real matrices E and F satisfy

EFT = FET , EE† = FF† + I. (3.90)

2 For more details of symplectic matrices and symplectic groups, see Refs. [4, 5].
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3.4.2.5 Inverse Transformation

The inverse transformation of

b̂j =
∑

k

(Ejkâk + Fjkâ†
k) (3.91)

is given by

âj =
∑

k

(E∗
kjb̂k − Fkjb̂

†
k). (3.92)

By considering preservation of the commutation relations, E and F satisfy

E†F = (E†F)T , E†E = (F†F)T + I. (3.93)

3.4.3 Clifford Group (Gaussian Operation)

3.4.3.1 Operator

Consider an n-mode unitary operator Û = e− i
�

Ĥ whose Hamiltonian Ĥ is an inho-
mogeneous quadratic polynomial in the quadrature operators. The set of unitary
operators Û forms a group called the Clifford group. Operations by the Clifford
group operators are called Clifford operations or Gaussian operations. The Clifford
group C(n) is a semidirect product of the Pauli group P(n) and the Symplectic group
Sp(2n,R):

C(n) = Sp(2n,R)� P(n). (3.94)

3.4.3.2 Matrix (xxpp Notation)

We define x̂k and p̂k as the position and momentum operators of mode k. The Sym-
plectic group transformation is formulated in the Heisenberg picture as

(
x̂′
p̂′
)

=
(

A B
C D

)(
x̂
p̂

)
+
(

e
f

)
(3.95)

in xxpp notation, where A, B, C, and D are n × n real matrices, while e and f are
n-dimensional real vectors. In order to preserve commutation relations, they satisfy

ABT − BAT = O, CDT − DCT = O, ADT − BCT = I. (3.96)
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Thus, the matrix

(
A B
C D

)
is a member of the real symplectic group Sp(2n,R).

3.4.3.3 Matrix (Annihilation and Creation Operators)

An arbitrary Clifford group operation can be formulated as

âj → â′
j = Û†âjÛ =

n∑

k=1

(Ejkâk + Fjkâ†
k)+ βj, Ejk ∈ C,Fjk ∈ C,βj ∈ C,

(3.97)

or equivalently,

⎛
⎜⎝

â1
...

ân

⎞
⎟⎠ →

⎛
⎜⎝

â′
1
...

â′
n

⎞
⎟⎠ =

⎛
⎜⎝

E11 · · · E1n
...
. . .

...

En1 · · · Enn

⎞
⎟⎠

⎛
⎜⎝

â1
...

ân

⎞
⎟⎠+

⎛
⎜⎝

F11 · · · F1n
...
. . .

...

Fn1 · · · Fnn

⎞
⎟⎠

⎛
⎜⎝

â†
1
...

â†
n

⎞
⎟⎠+

⎛
⎜⎝
β1
...

βn

⎞
⎟⎠ .

(3.98)
This shows that the Gaussian operation is equivalent to the linear unitary Bogoliubov
(LUBO) transformation.

In order to preserve commutation relations, n × n real matrices E and F satisfy

EFT = FET , EE† = FF† + I. (3.99)

3.4.4 Gaussian Operation as Clifford Group

3.4.4.1 Clifford Group and Pauli Group

The Clifford group C is the normalizer of the Pauli group:

C = N(P) = {b̂ ∈ U|b̂Pb̂† = P}, (3.100)

where U is the unitary group. For an arbitrary set of a Clifford group operator Ĉ and
a Pauli group operator P̂1, there exists a Pauli group operator P̂2 which satisfies

ĈP̂1Ĉ† = P̂2, (3.101)

and thus

ĈP̂1 = P̂2Ĉ. (3.102)
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Therefore, the order of Clifford group operator and Pauli group operator can be
swapped by changing the Pauli group operator to another Pauli group operator.
Importantly, the Clifford group operator is not changed.

In the following, we write down the operation directly in the Heisenberg picture.
We define a Clifford group transformation with a Clifford operator Ĉ as

(
x̂′
p̂′
)

=
(

A B
C D

)(
x̂
p̂

)
+
(

e
f

)
. (3.103)

Its inverse transformation Ĉ† is given by

(
x̂′
p̂′
)

=
(

A B
C D

)−1 (x̂
p̂

)
−
(

A B
C D

)−1 (e
f

)
. (3.104)

We define a Pauli group transformation with a Pauli operator P̂1 as

(
x̂′
p̂′
)

=
(

x̂
p̂

)
+
(

g
h

)
. (3.105)

By using these equations, P̂1Ĉ† is

(
x̂′
p̂′
)

=
(

A B
C D

)−1 (x̂
p̂

)
−
(

A B
C D

)−1 (e
f

)
+
(

g
h

)
. (3.106)

Therefore, ĈP̂1Ĉ† becomes

(
x̂′
p̂′
)

=
(

A B
C D

)((
A B
C D

)−1 (x̂
p̂

)
−
(

A B
C D

)−1 (e
f

)
+
(

g
h

))
+
(

e
f

)
(3.107)

=
(

x̂
p̂

)
+
(

A B
C D

)(
g
h

)
, (3.108)

which corresponds to a member of Pauli group operator P̂2.

3.4.5 Summary of Names

Table 3.1 shows summary of names for groups.



3.5 Operators 51

Table 3.1 Summary of names for groups

Name of group Pauli group Symplectic group Clifford group

Symbol P(n) Sp(2n,R) C(n)

C(n) = Sp(2n,R)� P(n)

Other names Displacement operation Gaussian operation

Heisenberg-Weyl group LUBO transformation

Hamiltonian Linear Homogeneous quadratic Inhomogeneous quadratic

Heisenberg picture Constant Sp(2n,R) Sp(2n,R) and Constant

3.5 Operators

In this section, we review several major operators.

3.5.1 Position Displacement Operator

3.5.1.1 Definition

The position displacement operator X̂(s) is defined as

X̂(s) = e− i
�

sp̂, s ∈ R. (3.109)

It displaces a state in phase space by s in position.

3.5.1.2 Schrödinger Picture

By applying the position displacement operator X̂(s) on eigenstates of position oper-
ator |x = a〉 and momentum operator |p = b〉, we get

X̂(s)|x = a〉 = |x = a + s〉, X̂(s)|p = b〉 = e− isb
� |p = b〉. (3.110)

3.5.1.3 Heisenberg Picture

We define x̂ and p̂ as the position and momentum operators of the mode on which
the operator works. The transformation by the position displacement operator X̂(s)
in the Heisenberg picture is given by

X̂†(s)x̂X̂(s) = x̂ + s, X̂†(s)p̂X̂(s) = p̂, (3.111)



52 3 Quantum States and Quantum State Manipulations

or equivalently,
(

x̂′
p̂′
)

=
(

x̂
p̂

)
+
(

s
0

)
. (3.112)

3.5.1.4 Transformation of Nullifier

We show the transformation of quadrature operators by the Hermitian conjugate of
the operator.3

X̂(s)x̂X̂†(s) = x̂ − s, X̂(s)p̂X̂†(s) = p̂. (3.113)

We will utilize these equations when we trace quantum state manipulations by using
transformations of nullifiers.

3.5.2 Momentum Displacement Operator

3.5.2.1 Definition

The momentum displacement operator Ẑ(s) is defined as

Ẑ(s) = e
i
�

sx̂, s ∈ R. (3.114)

It displaces a state in phase space by s in momentum.

3.5.2.2 Schrödinger Picture

By applying the momentum displacement operator Ẑ(s) on eigenstates of position
operator |x = a〉 and momentum operator |p = b〉, we get

Ẑ(s)|x = a〉 = e
isa
� |x = a〉, Ẑ(s)|p = b〉 = |p = b + s〉. (3.115)

3.5.2.3 Heisenberg Picture

We define x̂ and p̂ as the position and momentum operators of the mode on which the
operator works. The transformation by the momentum displacement operator Ẑ(s)
in the Heisenberg picture is given by

3 In the following subsections, we show it as transformation rules for nullifiers.
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Ẑ†(s)x̂Ẑ(s) = x̂, Ẑ†(s)p̂Ẑ(s) = p̂ + s, (3.116)

or equivalently,
(

x̂′
p̂′
)

=
(

x̂
p̂

)
+
(

0
s

)
. (3.117)

3.5.2.4 Transformation of Nullifier

The transformation rule for nullifiers is given by

Ẑ(s)x̂Ẑ†(s) = x̂, Ẑ(s)p̂Ẑ†(s) = p̂ − s. (3.118)

3.5.3 Rotation Operator

3.5.3.1 Definition

The rotation operator F̂(θ) is defined as

F̂(θ) = e
iθ
2�
(x̂2+p̂2) = eiθ(â†â+ 1

2 ), θ ∈ R. (3.119)

It rotates a state in phase space by θ in a counter-clockwise direction.

3.5.3.2 Heisenberg Picture

We define x̂ and p̂ as the position and momentum operators of the mode on which the
operator works. The transformation by the rotation operator F̂(θ) in the Heisenberg
picture is given by

F̂†(θ)x̂F̂(θ) = x̂ cos θ − p̂ sin θ, F̂†(θ)p̂F̂(θ) = x̂ sin θ + p̂ cos θ, (3.120)

or equivalently,
(

x̂′
p̂′
)

=
(

cos θ − sin θ
sin θ cos θ

)(
x̂
p̂

)
. (3.121)

We next define â and â† as the annihilation and creation operators of the mode on
which the operator works. The transformation by the rotation operator F̂(θ) in the
Heisenberg picture is given by

F̂†(θ)âF̂(θ) = âeiθ, F̂†(θ)â†F̂(θ) = â†e−iθ. (3.122)
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3.5.3.3 Transformation of Nullifier

The transformation rule for nullifiers is given by

F̂(θ)x̂F̂†(θ) = x̂ cos θ + p̂ sin θ, F̂(θ)p̂F̂†(θ) = −x̂ sin θ + p̂ cos θ, (3.123)

F̂(θ)âF̂†(θ) = âe−iθ, F̂(θ)â†F̂†(θ) = â†eiθ. (3.124)

3.5.4 Fourier Operator

3.5.4.1 Definition

The Fourier operator F̂ is defined as

F̂ = F̂
(π

2

)
= e

iπ
4�
(x̂2+p̂2). (3.125)

It rotates a state in phase space by θ = π
2 in a counter-clockwise direction. In this

thesis, the notation F̂ without argument represents the Fourier operator.

3.5.4.2 Schrödinger Picture

By applying the Fourier operator F̂ on eigenstates of the position operator |x = a〉
and the momentum operator |p = b〉, we get

F̂|x = a〉 = |p = a〉, F̂|p = b〉 = |x = −b〉. (3.126)

3.5.4.3 Heisenberg Picture

We define x̂ and p̂ as the position and momentum operators of the mode on which
the operator works. The transformation by the Fourier operator F̂ in the Heisenberg
picture is given by

F̂†x̂F̂ = −p̂, F̂†p̂F̂ = x̂, (3.127)

or equivalently,
(

x̂′
p̂′
)

=
(

0 −1
1 0

)(
x̂
p̂

)
. (3.128)
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We next define â and â† as the annihilation and creation operators of the mode
on which the operator works. The transformation by the Fourier operator F̂ in the
Heisenberg picture is given by

F̂†âF̂ = iâ, F̂†â†F̂ = −iâ†. (3.129)

3.5.4.4 Transformation of Nullifier

The transformation rule for nullifiers is given by

F̂x̂F̂† = p̂, F̂p̂F̂† = −x̂, (3.130)

F̂âF̂† = −iâ, F̂â†F̂† = iâ†. (3.131)

3.5.5 Quadratic Phase Operator

3.5.5.1 Definition

The quadratic phase operator (shearing operator) D̂(κ) is defined as

D̂(κ) = e
i

2�
κx̂2
, κ ∈ R. (3.132)

It shears a state in phase space with respect to the x axis by a gradient of κ.

3.5.5.2 Heisenberg Picture

We define x̂ and p̂ as the position and momentum operators of the mode on which
the operator works. The transformation by the quadratic phase operator D̂(κ) in the
Heisenberg picture is given by

D̂†(κ)x̂D̂(κ) = x̂, D̂†(κ)p̂D̂(κ) = p̂ + κx̂, (3.133)

or equivalently,
(

x̂′
p̂′
)

=
(

1 0
κ 1

)(
x̂
p̂

)
. (3.134)
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3.5.5.3 Transformation of Nullifier

The transformation rule for nullifiers is given by

D̂(κ)x̂D̂†(κ) = x̂, D̂(κ)p̂D̂†(κ) = p̂ − κx̂. (3.135)

3.5.6 Two-Mode Interaction Operator

3.5.6.1 Definition

We define the following operator Q̂(g, θ,φ):

Q̂(g, θ,φ) = e− i
�

g(x̂1 cos θ+p̂1 sin θ)(x̂2 cosφ+p̂2 sin φ), g ∈ R, 0 ≤ θ < 2π, 0 ≤ φ < 2π.
(3.136)

It shows a two-mode interaction operator with interaction gain g.

3.5.6.2 Heisenberg Picture

We define x̂i and p̂i as the position and momentum operators of mode i on which the
operator works. The transformation by the two-mode interaction operator Q̂(g, θ,φ)
in the Heisenberg picture is given by

⎛
⎜⎜⎝

x̂′
1

p̂′
1

x̂′
2

p̂′
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 g sin θ cosφ g sin θ sin φ
0 1 −g cos θ cosφ −g cos θ sin φ

g sin φ cos θ g sin φ sin θ 1 0
−g cosφ cos θ −g cosφ sin θ 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x̂1
p̂1
x̂2
p̂2

⎞
⎟⎟⎠ ,

(3.137)

where we have utilized xpxp notation (Sect. 3.2.5).

3.5.7 Controlled-Z Operator

3.5.7.1 Definition

The controlled-Z operator ĈZ(g) with gain g, sometimes called the weighted
controlled-Z operator, is defined as the two-mode interaction operator Q̂(g, θ,φ)
with θ = 0 and φ = π:

ĈZ(g) = Q̂(g, 0,π) = e
i
�

gx̂1x̂2 . (3.138)
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In the special case of unity gain g = 1, it is simply called the controlled-Z operator,
which is expressed by ĈZ .

3.5.7.2 Heisenberg Picture

We define x̂i and p̂i as the position and momentum operators of mode i on which the
operator works. The transformation by the controlled-Z operator ĈZ(g) with gain g
in the Heisenberg picture is given by

Ĉ†
Z(g)x̂1ĈZ(g) = x̂1, Ĉ†

Z(g)p̂1ĈZ(g) = p̂1 + gx̂2, (3.139)

Ĉ†
Z(g)x̂2ĈZ(g) = x̂2, Ĉ†

Z(g)p̂2ĈZ(g) = p̂2 + gx̂1, (3.140)

or equivalently,
⎛
⎜⎜⎝

x̂′
1

p̂′
1

x̂′
2

p̂′
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 g 0
0 0 1 0
g 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x̂1
p̂1
x̂2
p̂2

⎞
⎟⎟⎠ . (3.141)

3.5.7.3 Transformation of Nullifier

The transformation rule for nullifiers is given by

ĈZ(g)x̂1Ĉ†
Z(g) = x̂1, ĈZ(g)p̂1Ĉ†

Z(g) = p̂1 − gx̂2, (3.142)

ĈZ(g)x̂2Ĉ†
Z(g) = x̂2, ĈZ(g)p̂2Ĉ†

Z(g) = p̂2 − gx̂1. (3.143)

3.5.8 Beam Splitter Operator

3.5.8.1 Definition in Heisenberg Picture

The transformation by a beam splitter (including phase space rotation) is a two-mode
unitary transformation in which the number of photons is preserved. It is formulated
as a linear transformation of annihilation operators â1 and â2:

(
â′

1
â′

2

)
=
(

B11 B12
B21 B22

)(
â1
â2

)
. (3.144)
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In order to preserve the number of photons (the law of conservation of energy), the
following condition must be satisfied:

â†
1â1 + â†

2â2 = â′†
1 â′

1 + â′†
2 â′

2, (3.145)

leading to

|B11|2 + |B21|2 = |B12|2 + |B22|2 = 1, B∗
11B12 + B∗

21B22 = 0. (3.146)

It shows that the matrix B is a 2 × 2 unitary matrix. Note that elements of B may not
be real numbers.

In general, an arbitrary 2×2 unitary matrix B can be decomposed into the following
four components [1]:

B = eiΛ2

(
ei Ψ2 0

0 e−i Ψ2

)(
cos Θ2 sin Θ

2

− sin Θ
2 cos Θ2

)(
ei Φ2 0

0 e−i Φ2

)
, Λ,Ψ,Φ ∈ R, 0 ≤ Θ ≤ 2π.

(3.147)

3.5.8.2 Operator

The operator B̂ which satisfies

(
â′

1
â′

2

)
= B̂†

(
â1
â2

)
B̂ (3.148)

is given by

B̂ = eiΛL̂0 eiΨ L̂3eiΘL̂2 eiΦL̂3 . (3.149)

Here, we have defined the following four operators:

L̂0 = 1

2
(â†

1â1 + â†
2â2), L̂1 = 1

2
(â†

1â2 + â1â†
2),

L̂2 = 1

2i
(â†

1â2 − â1â†
2), L̂3 = 1

2
(â†

1â1 − â†
2â2), (3.150)

or equivalently,

L̂0 = 1

4�
(x̂2

1 + p̂2
1 + x̂2

2 + p̂2
2 − 2�), L̂1 = 1

2�
(x̂1x̂2 + p̂1p̂2),

L̂2 = 1

2�
(x̂1p̂2 − p̂1x̂2), L̂3 = 1

4�
(x̂2

1 + p̂2
1 − x̂2

2 − p̂2
2). (3.151)

L̂0 commutes with L̂1, L̂2, and L̂3, and they satisfy L̂0(L̂0 + 1) = L̂2
1 + L̂2

2 + L̂2
3.

By using
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eiΛL̂0 = e−iΛ2 F̂1

(
Λ

2

)
F̂2

(
Λ

2

)
, (3.152)

eiΨ L̂3 = F̂1

(
Ψ

2

)
F̂2

(
−Ψ

2

)
, (3.153)

eiΘL̂2 = e
iΘ
2�
(x̂1p̂2−p̂1x̂2), (3.154)

B̂ is given by

B̂ = e−iΛ2 F̂1

(
Λ

2

)
F̂2

(
Λ

2

)
F̂1

(
Ψ

2

)
F̂2

(
−Ψ

2

)
e

iΘ
2�
(x̂1p̂2−p̂1 x̂2)F̂1

(
Φ

2

)
F̂2

(
−Φ

2

)
.

(3.155)

It is the operator representation of Eq. (3.147). The first term e−iΛ2 shows a global
phase, which does not affect the operation. The terms F̂i(∗) show rotations in phase

space. The term e
iΘ
2�
(x̂1p̂2−p̂1x̂2) shows a phase-free beam splitter. Λ,Ψ,Θ,Φ corre-

spond to those in Eq. (3.147).

3.5.8.3 Four-Types of Beam Splitter Matrices and Thier Operators

As beam splitter matrices B for linear transformations of annihilation operators:

(
â′

i
â′

j

)
= B

(
âi

âj

)
, (3.156)

we define the following four unitary matrices4:

B(1)ij (
√

R) =
(−√

R
√

T√
T

√
R

)
, B(2)ij (

√
R) =

(√
T −√

R√
R

√
T

)
, (3.157)

B(3)ij (
√

R) =
( √

T
√

R
−√

R
√

T

)
, B(4)ij (

√
R) =

(√
R

√
T√

T −√
R

)
. (3.158)

We define the following four beam splitter operators which correspond to the beam
splitter matrices above:

B̂(1)ij (
√

R), B̂(2)ij (
√

R), B̂(3)ij (
√

R), B̂(4)ij (
√

R). (3.159)

4 Beam splitter matrices and operators are usually defined just as the author pleases in each paper.
In some cases, the definitions of beam splitter matrices are not mentioned explicitly. Such ambiguity
of their definition might confuse the readers. In this thesis, we define the four-types of beam splitters
for convenience. By explicitly declaring the type of its matrix when we use a beam splitter in theory,
we can avoid confusion derived from the ambiguity of the beam splitter matrix.
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Here, R and T represent the energy reflectivity and transmissivity of the beam splitter,
where T + R = 1. In general, beam splitter operators and matrices depend on the
order of modes on which they operate. Thus, we show the order of modes in the
subscript. On the other hand, the superscript shows the entry of the matrix which is
equal to −√

R. That is,

1. In the case of B(1)ij (
√

R), the matrix element from mode i to mode i is −√
R.

((1, 1) entry of the matrix when the order of modes is i, j.)
2. In the case of B(2)ij (

√
R), the matrix element from mode j to mode i is −√

R.
((1, 2) entry of the matrix when the order of modes is i, j.)

3. In the case of B(3)ij (
√

R), the matrix element from mode i to mode j is −√
R.

((2, 1) entry of the matrix when the order of modes is i, j.)
4. In the case of B(4)ij (

√
R), the matrix element from mode j to mode j is −√

R.
((2, 2) entry of the matrix when the order of modes is i, j.)

If the order of modes is j, i, the matrices are given by

B̂(1)ji (
√

R) = B̂(4)ij (
√

R), B̂(2)ji (
√

R) = B̂(3)ij (
√

R), B̂(3)ji (
√

R) = B̂(2)ij (
√

R), B̂(4)ji (
√

R) = B̂(1)ij (
√

R).

(3.160)

3.5.8.4 Transformation of Nullifier

Consider an operation which can be formulated as a linear transformation of annihi-
lation operators (transformation by beam splitters with phase rotations):

â′ = Û†âÛ = Uâ, (3.161)

where â shows a vector of annihilation operators, while Û and U show a beam splitter
operator and a beam splitter matrix, respectively. Its inverse transformation is

Ûâ′Û† = â = U−1â′
. (3.162)

Thus, it can be described as a linear transformation of annihilation operators by the
unitary matrix U−1. In the case of the four beam splitter matrices above, they are
given by

B(1)
−1

ij (
√

R) = B(1)ij (
√

R), B(2)
−1

ij (
√

R) = B(3)ij (
√

R), (3.163)

B(3)
−1

ij (
√

R) = B(2)ij (
√

R), B(4)
−1

ij (
√

R) = B(4)ij (
√

R). (3.164)

It leads to the following transformation rule for nullifiers.

In the case of B̂(1)ij (
√

R), it is given by
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x̂i → −√
Rx̂i + √

1 − Rx̂j, p̂i → −√
Rp̂i + √

1 − Rp̂j, (3.165)

x̂j → √
1 − Rx̂i + √

Rx̂j, p̂j → √
1 − Rp̂i + √

Rp̂j. (3.166)

In the case of B̂(2)ij (
√

R), it is given by

x̂i → √
1 − Rx̂i + √

Rx̂j, p̂i → √
1 − Rp̂i + √

Rp̂j, (3.167)

x̂j → −√
Rx̂i + √

1 − Rx̂j, p̂j → −√
Rp̂i + √

1 − Rp̂j. (3.168)

In the case of B̂(3)ij (
√

R), it is given by

x̂i → √
1 − Rx̂i − √

Rx̂j, p̂i → √
1 − Rp̂i − √

Rp̂j, (3.169)

x̂j → √
Rx̂i + √

1 − Rx̂j, p̂j → √
Rp̂i + √

1 − Rp̂j. (3.170)

In the case of B̂(4)ij (
√

R), it is given by

x̂i → √
Rx̂i + √

1 − Rx̂j, p̂i → √
Rp̂i + √

1 − Rp̂j, (3.171)

x̂j → √
1 − Rx̂i − √

Rx̂j, p̂j → √
1 − Rp̂i − √

Rp̂j. (3.172)

3.5.8.5 Multi-Mode Beam Splitter Network

Consider an N-mode operation which can be formulated as a linear transformation
of annihilation operators

â′
i =

N∑

j=1

Uijâj, (3.173)

or equivalently,
⎛
⎜⎝

â′
1
...

â′
N

⎞
⎟⎠ =

⎛
⎜⎝

U11 · · · U1N
...
. . .

...

UN1 · · · UNN

⎞
⎟⎠

⎛
⎜⎝

â1
...

âN

⎞
⎟⎠ , (3.174)

where U is a unitary matrix. This is a photon-number-preserving operation, thus it
can be achieved by a network of beam splitters with phase rotations in phase space.

In general, it can be implemented by using at most
N(N − 1)

2
beam splitters [7].
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Fig. 3.1 Classification of unitary operators

3.6 Universality and Classical Simulation

3.6.1 Universality

Consider a set S of operators and its subset T = {b̂1, b̂2, . . . b̂n} with a finite number
n of elements. If an arbitrary element b̂ ∈ S can be approximated by a product of a
finite number of b̂k ∈ T with arbitrary precision, the set T is termed universal for the
set S.

Figure 3.1 shows classification of unitary operators based on the order of
Hamiltonians (Gaussian/Unitary with non-Gaussian) and the number of modes (one-
mode/multi-mode). Universal quantum computation corresponds to multi-mode
unitary operations [8].

3.6.1.1 One-Mode Gaussian Operation

The simplest set is the one that consists of one-mode Gaussian operations. Here,
a one-mode Gaussian operation corresponds to a Clifford group operator whose
Hamiltonian is an inhomogeneous quadratic polynomial in the quadrature operators
of one mode (Sect. 3.4.3).

It is known that an arbitrary one-mode Gaussian operation can be achieved by com-
bining the position displacement operator X̂(s), rotation operator F̂(θ), and squeezing
operator Ŝ(r).
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3.6.1.2 One-Mode Unitary Operation

The second group consists of one-mode unitary operations whose Hamiltonians are
arbitrary-order polynomials in the quadrature operators of one mode. It includes
one-mode non-Gaussian operations whose Hamiltonians are more than or equal to
third-order polynomials.

It is known that an arbitrary one-mode unitary operation can be achieved by
combining the position displacement operator X̂(s), rotation operator F̂(θ), squeezing
operator Ŝ(r), and cubic phase operator N̂(η) = eiηx̂3

.

3.6.1.3 Multi-Mode Gaussian Operation

The third group consists of multi-mode Gaussian operations. Here, a multi-mode
Gaussian operation corresponds to a Clifford group operator whose Hamiltonian
is an inhomogeneous quadratic polynomial in the quadrature operators of multiple
modes (Sect. 3.4.3).

It is known that an arbitrary multi-mode Gaussian operation can be achieved by
combining the position displacement operator X̂(s), rotation operator F̂(θ), squeezing
operator Ŝ(r), and controlled-Z operator ĈZ(g).

3.6.1.4 Multi-Mode Unitary Operation

The last group consists of multi-mode unitary operations whose Hamiltonians are
arbitrary-order polynomials in the quadrature operators of multiple modes. It includes
multi-mode non-Gaussian operations whose Hamiltonians are more than or equal to
third-order polynomials. This is the general case, and corresponds to the universal
quantum computation.

It is known that an arbitrary multi-mode unitary operation can be achieved by
combining the position displacement operator X̂(s), rotation operator F̂(θ), squeezing
operator Ŝ(r), controlled-Z operator ĈZ(g), and cubic phase operator N̂(η) = eiηx̂3

.

3.6.2 Efficient Classical Simulation

It was reported that quantum computations in some subgroup of the unitary group
can be simulated efficiently by classical computers. Although it was initially proven
in DV systems [1, 9], it was later extended to CV systems [10].

The subgroup of CV quantum computation which can be efficiently simulated by
classical computers is summarized as follows. (1) Initial state is a Gaussian state.
(2) The operations are composed of the following components: (2.a) Gaussian oper-
ations, (2.b) losses, (2.c) homodyne measurements, and (2.d) Gaussian operations
based on homodyne measurements. It shows that non-Gaussian operations must be
involved so that quantum computers stand at advantage over classical computers.
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An important thing is that it does not mean Gaussian operations in quantum
computations can be processed by assistant classical computers, instead of main
quantum computers. This is because measurements, which destroy superpositions
of quantum states, cannot be avoided before Gaussian operations are implemented
by classical computers, since classical computers cannot process quantum states.
Therefore, Gaussian operations should be implemented by quantum computers as
well.

Experimental demonstrations in this thesis satisfy all conditions above, thus they
can be efficiently simulated by classical computers. We can consider that the com-
puter program “Quantum Computation Builder” in Sect. B.2 is an example of clas-
sical simulation of quantum computation.

3.7 Entangled States and Entanglement Criteria

3.7.1 Entangled States

Consider an n-mode quantum state with a density operator ρ̂ [11]. We label each mode
by j = 1, 2, . . . , n. We define the set of all modes to be B. If the density operator ρ̂
can be decomposed into a direct product of density operators of its l subsystems:

ρ̂ =
∑

i

λiρ̂iB1 ⊗ · · · ⊗ ρ̂iBl , (3.175)

the quantum state is referred to be separable into {Bk}. Here, Bk shows the set of
modes in k-th subsystem, while ρ̂iBk shows the density operator of k-th subsystem
consisting of modes in Bk . Note that intersections of any Bj and Bk for j �= k are
empty sets, while the union of all Bk for k = 1, . . . , l is B. λi shows the probability
of the i-th state with the density operator ρ̂i = ρ̂iB1 ⊗ · · · ⊗ ρ̂iBl , where

∑
i λi = 1.

The quantum state is a fully inseparable state, or genuine entangled state, if and only
if its density operator cannot be decomposed into Eq. (3.175) with any set of Bk . In
this section, we don’t impose the condition that the subsystem composed of modes
in Bk is inseparable. That is, it may be separable into sub-subsystems.

Although quantum entanglement was originally proposed as a paradox which
showed imperfection of quantum dynamics [12], it was later demonstrated experi-
mentally [13, 14]. It is now understood not only as a distinctive property of quantum
dynamics, but the central key element of expanding its applications, such as quantum
computations and quantum communications.

3.7.2 Entanglement Criteria

A condition which is used to distinguish entangled states from separable states is
called entanglement criterion, or inseparability criterion.
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In this thesis, we utilize two types of entanglement criteria. One is based on
variances of quadrature operators (Sect. 3.7.4). The other is based on the partial
transpose of density operators (Sect. 3.7.5). We choose an appropriate entanglement
criterion for each experiment because each has its own advantages and disadvantages
(Sect. 3.7.7).

3.7.3 Duan Criterion

The Duan entanglement criterion, which was theoretically proven by Duan in
2000 [15], is one of two major entanglement criteria for two-mode continuous vari-
ables. It is based on the total variance of quadrature operators.

We assume that x̂i and p̂i for i = 1, 2 represents quadrature operators of a
two-mode continuous-variable system. If the quantum state is a separable state, it
satisfies

〈
Δ2
(
|a|x̂1 + 1

a
x̂2

)〉
+
〈
Δ2
(
|a|p̂1 − 1

a
p̂2

)〉
�
(

a2 + 1

a2

)
�, a ∈ R \ {0}.

(3.176)

As the contraposition of this statement, we get the following sufficient condition for
entanglement:

∃a ∈ R \ {0},
〈
Δ2
(
|a|x̂1 + 1

a
x̂2

)〉
+
〈
Δ2
(
|a|p̂1 − 1

a
p̂2

)〉
<

(
a2 + 1

a2

)
�

=⇒ inseparable into subsystems 1 and 2. (3.177)

Note that Eq. (3.177) does not provide a necessary and sufficient condition, but
only a sufficient condition for entanglement. However, as for any Gaussian state, it
is proven that we can get a necessary and sufficient condition for entanglement by
performing standardization of its covariance matrix, which corresponds to virtual
local Gaussian operations on the quantum state in question (see Ref. [15]).

3.7.4 Extension of van Loock-Furusawa Criterion

3.7.4.1 Background

Several years after the proposal of Duan entanglement criterion for two-mode
continuous-variable states, van Loock and Furusawa showed its extension to multi-
mode states [11]. Similar to the original, sufficiency for inseparability is proven by
evaluating variances of linear combinations of n-mode position or momentum oper-
ators: û = ∑

j hjx̂j and v̂ = ∑
j gjp̂j, where hj, gj ∈ R for all j. When the density
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operator is decomposed into Eq. (3.175), the variances of these linear combinations
satisfy

〈Δ2û〉ρ + 〈Δ2v̂〉ρ � 1

2

l∑

k=1

∣∣∣
∑

j∈Bk

hjgj

∣∣∣. (3.178)

Violation of Eq. (3.178) guarantees that the density operator of the quantum state
cannot be decomposed into Eq. (3.175). For some n-mode quantum states, it can be
proven that they are fully inseparable states, by showing that (n − 1) Eq. (3.178) are
violated with an appropriate set of (ûj, v̂j, {Bk}j) for j = 1, . . . , n − 1. The sets of
modes {Bk}j should be carefully chosen so that every separable case is negated. Note
that van Loock-Furusawa criterion gives us a sufficient condition for inseparability.
On the contrary, necessity does not hold.

van Loock-Furusawa criterion works well in some specific cases. Several distinct
examples are verifications of an EPR state and n-mode GHZ states. In these cases,
(ûj, v̂j) are chosen from the set of their nullifiers: û = x̂1 − x̂2 and v̂ = p̂1 + p̂2 for the
EPR state, while ûj = x̂j − x̂n and v̂j = ∑n

m=1 p̂m for the n-mode GHZ state. In the
former case, Bk are set to be B1 = {1} and B2 = {2}, while {B1,B2}j = {{j},B \ {j}}
in the latter case, where B = {1, . . . , n}.

However, the selection of (ûj, v̂j) becomes problematic in many cases. It derives
from the strong condition that ûj consists only of position operators, while v̂j con-
sists only of momentum operators. Therefore, van Loock-Furusawa entanglement
criterion cannot be directly applied to entanglement detections of cluster states since
their nullifiers consist of both position and momentum operators.

A well-used evasion scheme is, similar to the Duan criterion, to transform the sepa-
rability criterion Eq. (3.178) by applying virtual local Gaussian operations, especially
rotations in phase space, which effectively mix position and momentum operators in
û and v̂. It is valid since local operations do not affect separability of quantum states.
By applying this scheme, we can expand the group of quantum states whose entan-
glement can be detected by the extended van Loock-Furusawa criteria. It includes
n-mode linear cluster states and n-mode star cluster states.

In spite of the extension above, it does not provide entanglement criteria for all
shapes of cluster states. For example, entanglement of the three-mode triangle cluster
state with nullifiers

p̂1 − x̂2 − x̂3, p̂2 − x̂1 − x̂3, p̂3 − x̂1 − x̂2 (3.179)

cannot be detected. In general, the extension above fails for any cluster state with a
triangle structure.

Here we present a further extension of van Loock-Furusawa criteria, where the
assumption on û and v̂ are removed, except that they are observables. By this exten-
sion, all linear combinations of position and momentum operators can be directly
used for detection of inseparability, without any virtual local unitary operations. In
addition, nonlinear combinations are also acceptable.
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3.7.4.2 Extension of van Loock-Furusawa Criterion

Consider that an n-mode quantum state with the density operator ρ̂ can be decom-
posed into l subsystems in the form of Eq. (3.175). We define

ĥBk ≡ hBk (x̂j, p̂j|j ∈ Bk), (3.180)

ĝBk ≡ gBk (x̂j, p̂j|j ∈ Bk), (3.181)

where hBk (x̂j, p̂j|j ∈ Bk) and gBk (x̂j, p̂j|j ∈ Bk) are arbitrary Hermitian functions
of x̂j and p̂j within the k-th subsystem Bk . We also define the summations of these
operators:

ξ̂ =
l∑

k=1

ĥBk , ζ̂ =
l∑

k=1

ĝBk . (3.182)

By definition, the variance of the operator ξ̂ is given by

〈
Δ2ξ̂

〉 =
∑

i

λi
〈
ξ̂2〉

i −
(∑

i

λi
〈
ξ̂
〉
i

)2

, (3.183)

leading to

〈
Δ2ξ̂

〉 =
∑

i

λi

(〈
Δ2ξ̂

〉
i + 〈

ξ̂
〉2
i

)
−
(∑

i

λi
〈
ξ̂
〉
i

)2

(3.184)

≥
∑

i

λi
〈
Δ2ξ̂

〉
i =

∑

i

λi

(〈
ξ̂2〉

i − 〈
ξ̂
〉2
i

)
. (3.185)

Here 〈ξ̂〉i = trρ̂iξ̂ and 〈Δ2ξ̂〉i = trρ̂i(ξ̂ − 〈ξ̂〉i)
2 represent expectation values and

variances of the i-th quantum state with ρ̂i = ρ̂iB1 ⊗· · ·⊗ ρ̂iBl . We used the Cauchy-
Schwarz inequality

1 ·
∑

i

λi
〈
ξ̂
〉2
i =

(∑

i

λi

)(∑

i

λi
〈
ξ̂2〉

i

)
(3.186)

≥
(∑

i

√
λi ×√

λi
〈
ξ̂
〉
i

)2

, (3.187)

with
∑

i λi = 1. By using
〈
ĥBk ĥBk′

〉
i
=
〈
ĥBk

〉
i

〈
ĥBk′

〉
i

for k �= k′, we get
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〈
ξ̂2〉

i − 〈
ξ̂
〉2
i =

⎛
⎝

l∑

k=1

〈
ĥ2

Bk

〉
i
+

l∑

k,k′=1

〈
ĥBk

〉
i

〈
ĥBk′

〉
i

⎞
⎠

−
⎛
⎝

l∑

k=1

〈
ĥBk

〉2
i
+

l∑

k,k′=1

〈
ĥBk

〉
i

〈
ĥBk′

〉
i

⎞
⎠ (3.188)

=
l∑

k=1

〈
Δ2ĥBk

〉
i
, (3.189)

and thus

〈
Δ2ξ̂

〉
ρ

≥
∑

i

λi

l∑

k=1

〈
Δ2ĥBk

〉
i
. (3.190)

In a similar manner, we also get

〈
Δ2ζ̂

〉
ρ

≥
∑

i

λi

l∑

k=1

〈
Δ2ĝBk

〉
i
. (3.191)

By using these inequalities, the sum of these variances satisfies

〈
Δ2ξ̂

〉
ρ
+ 〈
Δ2ζ̂

〉
ρ

≥
l∑

k=1

∣∣∣∣∣
∑

i

λi

〈[
ĥBk , ĝBk

]〉
i

∣∣∣∣∣ =
l∑

k=1

∣∣∣
〈[

ĥBk , ĝBk

]〉∣∣∣ . (3.192)

This is the final form of the necessary condition for separability. Here we have used
the uncertainty principle

〈
Δ2Â

〉
+
〈
Δ2B̂

〉
≥
∣∣∣
〈[

Â, B̂
]〉∣∣∣, (3.193)

for Hermitian operators Â and B̂, and the triangle inequality

∑

i

|ai| ≥
∣∣∣∣∣
∑

i

ai

∣∣∣∣∣ . (3.194)

for ai ∈ C.
In the same manner, the product of two variances satisfies

〈
Δ2ξ̂

〉
ρ

〈
Δ2ζ̂

〉
ρ

≥= 1

4

l∑

k=1

∣∣∣
〈[

ĥBk , ĝBk

]〉∣∣∣
2
. (3.195)
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The sufficient conditions for inseparability are given by taking the contrapositions
of these statements. By choosing Eq. (3.192), we get the sufficient condition for
inseparability:

〈
Δ2ξ̂

〉
ρ
+ 〈
Δ2ζ̂

〉
ρ
<

l∑

k=1

∣∣∣
〈[

ĥBk , ĝBk

]〉∣∣∣ =⇒ inseparable into {Bk}. (3.196)

Similar to the original van Loock-Furusawa criteria, Eq. (3.196) only negates
the possibility that the quantum state can be separable into {Bk}. Full inseparability
can be proven by showing that (n − 1) Eq. (3.196) hold with an appropriate set of
(ûj, v̂j, {Bk}j) for j = 1, . . . , n − 1. The sets of modes {Bk}j should be carefully
chosen so that every separable case is negated.

3.7.5 Entanglement Criteria via Partial Transpose of Density
Operators

3.7.5.1 Peres Criterion

Although Peres criterion was initially proposed as an entanglement criterion for
low-dimensional systems by Peres and Horodecki [16, 17], it was later extended to
continuous-variable systems.

Consider that a quantum state with a density operator ρ̂ is separable into two
subsystems A and B. In this case, the density operator is given by

ρ̂ =
∑

i

ηiρ̂iA ⊗ ρ̂iB, (3.197)

where ρ̂iA and ρ̂iB represent density operators in two subsystems A and B. We don’t
impose the condition that each subsystem A and B is inseparable. That is, each
subsystem may be separable into sub-subsystems.

Consider the operator which is given by taking the partial transpose of the density
operator with respect to the subsystem A:

ρ̂TA =
∑

i

ηiρ̂
T
iA ⊗ ρ̂iB. (3.198)

If the density operator ρ̂ represents a quantum state which is separable into two
subsystems A and B, ρ̂TA satisfies

trρ̂TA = 1, ρ̂TA ≥ 0, (3.199)

thus ρ̂TA represents a density operator of another physical state.
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As the contraposition of this statement, we get the following sufficient condition
for entanglement:

ρ̂TA does not represent a physical state =⇒ ρ̂ is inseparable into A and B.
(3.200)

Furthermore, we get

ρ̂TAdoes not represent a physical state for an arbitrary set {A,B} =⇒ ρ̂ represents

a fully inseparable state. (3.201)

3.7.5.2 Simon Criterion

By applying the Peres criterion, Simon found an inseparable criterion on covariance
matrices of two-mode continuous-variable states [18].

We assume that the covariance matrix of a two-mode state is given by V . We label
these two modes as A and B. We here utilize xpxp notation for covariance matrices
(Sect. 3.2.5). Since the partial transpose with respect to the subsystem A corresponds
to

⎛
⎜⎜⎝

x̂A

p̂A

x̂B

p̂B

⎞
⎟⎟⎠ → Λ

⎛
⎜⎜⎝

x̂A

p̂A

x̂B

p̂B

⎞
⎟⎟⎠ , Λ =

⎛
⎜⎜⎝

1
−1

1
1

⎞
⎟⎟⎠ , (3.202)

the covariance matrix V is transformed to

V → Ṽ = ΛVΛ. (3.203)

The Peres criterion shows that, if V is a covariance matrix of a separable state, Ṽ
represents a covariance matrix of a physical state. Thus, it satisfies

Ṽ + i�

2
Ω ≥ 0. (3.204)

We define three 2 × 2 matrices A, B, and C as

V =
(

A C
CT B

)
. (3.205)

If the covariance matrix V represents a separable state, it satisfies
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det A det B +
(

�
2

4
− | det C|

)2

− tr[AJCJBJCT J] ≥ �
2

4
(det A + det B), (3.206)

where

J =
(

0 1
−1 0

)
. (3.207)

By taking the contraposition of this statement, we get the following sufficient
condition for entanglement:

For a covariance matrix V of a physical state,

det A det B +
(

�
2

4
− | det C|

)2

− tr[AJCJBJCT J] < �
2

4
(det A + det B)

=⇒ V represents a covariance matrix of an entangled state.
(3.208)

If V represents a covariance matrix of a Gaussian state, it leads to the following
necessary and sufficient condition for entanglement:

For a covariance matrix V of a physical Gaussian state,

det A det B +
(

�
2

4
− | det C|

)2

− tr[AJCJBJCT J] < �
2

4
(det A + det B)

⇐⇒ V represents a covariance matrix of an entangled state. (3.209)

3.7.5.3 Condition on PT Symplectic Eigenvalues

We assume that the covariance matrix of an n-mode state is given by V . In the CV
system, partial transpose with respect to a subsystem B1 corresponds to sign flips of
momentum operators in B1:

⎛
⎜⎜⎜⎜⎜⎝

x̂1
p̂1
...

x̂n

p̂n

⎞
⎟⎟⎟⎟⎟⎠

→ Λ

⎛
⎜⎜⎜⎜⎜⎝

x̂1
p̂1
...

x̂n

p̂n

⎞
⎟⎟⎟⎟⎟⎠
, Λ =

⎛
⎜⎜⎜⎜⎜⎝

1
s(1)

. . .

1
s(n)

⎞
⎟⎟⎟⎟⎟⎠
, (3.210)

where

s(k) =
{

1 (k ∈ B1)

−1 (k /∈ B1)
. (3.211)
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By applying the partial transpose, the covariance matrix V becomes

V → Ṽ = ΛVΛ. (3.212)

If the quantum state given by V is separable into two subsystems B1 and B2, the
matrix Ṽ represents a covariance matrix of some physical n-mode state. We define
the partial transpose (PT) symplectic eigenvalues ν̃ to be the symplectic eigenvalues
of Ṽ . In the special case of two-mode states, we define ν̃± (ν̃+ ≥ ν̃−) as the two PT
symplectic eigenvalues, where ν̃+ is necessarily ν̃+ ≥ �

2 . As a result, we get

min ν̃k ≥ �

2
. (3.213)

By taking the contraposition of this statement, we get the following sufficient con-
dition for inseparability:

For a covariance matrix V of a physical Gaussian state,

min ν̃k <
�

2
=⇒ not separable into B1 and B2. (3.214)

Although we have assumed that V represents a covariance matrix of a physical
state, it is not guaranteed that symmetric matrices which are acquired in experi-
ments show covariance matrices of physical states because of experimental errors.
Therefore, we have to verify that the experimental symmetric matrix surely shows a
physical state as well:

A real symmetric matrix V satisfies V > 0 and min νk ≥ �

2
and min ν̃k <

�

2
=⇒ V represents a physical state which is not separable into B1 and B2.

(3.215)

Note that it does not give us necessary condition for inseparability in general. For
some specific cases, such as 1×n Gaussian states, it is proven that it is a necessary and
sufficient condition for inseparability. However, its necessity is violated even though
V is a covariance matrix of a Gaussian state. The minimum case of its violation is
the 2 × 2 Gaussian system [19].

3.7.6 Logarithmic Negativity

Although several measures of entanglement for mixed states are proposed [20–24],
we utilize the logarithmic negativity, which can be easily acquired in both theory
and experiment [25].
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We assume that the density operator of a quantum state is given by ρ̂. We define
ρ̂TA to be the partial transpose operator of ρ̂ with respect to the subsystem A. The
logarithmic negativity EN (ρ̂) is defined as

EN (ρ̂) = log ‖ρ̂TA‖1, (3.216)

where

‖Û‖1 = tr
√

Û†Û (3.217)

is the trace norm of Û, which is equal to the sum of the singular values of Û, or
equivalent to

∑
k

√
λk , where λk represent eigenvalues of Û†Û. If the operator Û

is a Hermitian operator, including density operators, singular values are equal to the
absolute values of eigenvalues of Û.

It is known that the logarithmic negativity does not increase by local operations
and classical communications (LOCC). Although it is entanglement monotone, it is
not convex [25, 26].

We finally assume that the density operator ρ̂ represents a Gaussian state. The
logarithmic negativity is given by

EN (ρ̂) =
∑

k

max

[
0,− log

(2ν̃k

�

)]
. (3.218)

In the special case of a two-mode Gaussian state, it is given by

EN (ρ̂) = max

[
0,− log

(2ν̃−
�

)]
, (3.219)

since ν̃+ ≥ �

2 .

3.7.7 Comparison of Entanglement Criteria

We discuss advantages and disadvantages of two different entanglement criteria (one
is based on quadrature variances, while the other is based on partial transpose of
density operators). In the following, we assume that the quantum state in question is
a two-mode Gaussian state, which is the case with experiments in this thesis.

3.7.7.1 Disadvantage of Entanglement Criteria Based on Quadrature
Variances

Entanglement criteria based on variances of specific functions of quadrature opera-
tors (Duan criterion and van Loock-Furusawa criterion) provide sufficient conditions
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for entanglement, not necessary and sufficient conditions, even though it is known
in advance that the quantum states to be evaluated are Gaussian states. Although the
standardization of its covariance matrix provides a necessary and sufficient condi-
tions for entanglement, we have to change the quadrature operator functions. Thus
we regard the revised criterion as another one. For each quantum state, there exist
appropriate functions of quadrature operators with which its entanglement can be
efficiently detected.

The fact that they only provide sufficient conditions imposes a strong requirement
on us that we have to choose appropriate functions of quadrature operators. It means
that we have to have some knowledge about the state in advance. Therefore, these
entanglement criteria work well when quantum states to be checked are known in
advance. One good example is verification of cluster state generation. It works well
too when we verify output states of known quantum gates with known input states.
On the contrary, they might not be suitable for verification of unknown quantum
states.

We show another example where they are not suitable. Consider a two-mode
Gaussian quantum state. We assume that a position operator x̂i of mode i has corre-
lation with momentum operator p̂i of the same mode i. The standardization in Duan
criterion leads to mixture of position and momentum operators (x̂i, p̂i) of single mode.
Although it is not problematic in theory, it complicates experimental setup because
we have to measure variances of linear combinations of position and momentum
operators. An example of this will be given in Chap. 9.

3.7.7.2 Advantage of Entanglement Criteria Based on Partial
Transpose of Density Operators

Entanglement criteria based on partial transpose of density operators give us neces-
sary and sufficient conditions for entanglement. Once the density matrix or covariance
matrix is acquired, inseparability criteria can be directly evaluated. We do not have to
choose an appropriate formulae, such as functions of quadrature operators in Duan
criterion and van Loock-Furusawa criterion.

3.7.7.3 Disadvantage of Entanglement Criteria Based on Partial
Transpose of Density Operators

In order to evaluate inseparability, we have to know all the elements of the covariance
matrix. They includes excess elements which might not be needed for verification of
entanglement.

3.7.7.4 Advantage of Entanglement Criteria Based on Quadrature Variances

Inseparability can be evaluated by acquiring the minimum set of variables (such
as several elements of the covariance matrix) which are needed for verification of
entanglement. It simplifies experimental demonstrations of entanglement detections.

http://dx.doi.org/10.1007/978-4-431-55019-8_9
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Chapter 4
Offline Scheme and One-Way Quantum
Computation

4.1 Quantum Teleportation and Gate Teleportation

4.1.1 Quantum Teleportation

Quantum teleportation is a protocol in which one can transmit an unknown quantum
state to a receiver at a distance. The sender and the receiver of the quantum state are
usually named “Alice” and “Bob”, respectively. In order to distinguish quantum tele-
portation from one-mode teleportation (half-teleportation, Sect. 4.2), we sometimes
refer to it as ordinary quantum teleportation or full quantum teleportation.

We consider that Alice possesses a one-mode quantum state |ψ〉. Alice will trans-
mit it to Bob via a quantum teleportation.

For that purpose, Alice and Bob share an EPR state in advance. Alice has a half of
the EPR state, while Bob has the other half of it. The procedure of quantum telepor-
tation is as follows (see Figs. 4.1 and 4.2). First, Alice entangles the quantum state
to be transmitted and a half of the EPR state which belongs to Alice. Alice measures
the two outcomes in an appropriate measurement basis. The measurement results
are sent to Bob through classical channels. By performing correction operations on
the other half of the EPR state, Bob can reconstruct the quantum state which was
initially owned by Alice. Note that the quantum state |ψ〉 does not pass through any
quantum channels with which quantum states can be directly transmitted.

In Figs. 4.1 and 4.2, mode 1 and mode 2 correspond to an EPR state. Mode 1 is
owned by Alice, while mode 2 is owned by Bob. In Fig. 4.2, we show the procedure for
generation of the EPR state as well: it can be generated by combining two squeezed
states on a beam splitter (we will show this later).

In the following, we formulate the process of quantum computation (Fig. 4.2) by
using quadrature operators which specify particular quantum states (Sect. 3.2.8).

We assume that the initial states in modes 1 and 2 are vacuum states. We describe
these modes as

{
x̂ (0)1 + i p̂(0)1

x̂ (0)2 + i p̂(0)2

, (4.1)
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Fig. 4.2 Quantum circuit of quantum teleportation

where the subscript k = 1, 2 denotes the mode number, while the superscripts (0)
show that these modes are in vacuum states.

As a next step, we apply p-squeezing operators on both modes. We can describe
these two squeezed states as

{
er1 x̂ (0)1 + ie−r1 p̂(0)1

er2 x̂ (0)2 + ie−r2 p̂(0)2

, (4.2)

where rk represents the squeezing parameter for mode k.
We then perform a Fourier operation on mode 1, leading to

{
−e−r1 p̂(0)1 + ier1 x̂ (0)1

er2 x̂ (0)2 + ie−r2 p̂(0)2

. (4.3)

The next step is an application of a beam splitter operator B̂(1)12 (
1√
2
) on mode 1

and mode 2. Note that the argument in the operator is the amplitude reflectivity, while
that in the quantum circuit shown in Fig. 4.2 is the energy reflectivity. As a result,
mode 1 and mode 2 become

⎧
⎨
⎩

x̂ (e)1 + i p̂(e)1 = 1√
2

(
e−r1 p̂(0)1 + er2 x̂ (0)2

)
+ i 1√

2

(
−er1 x̂ (0)1 + e−r2 p̂(0)2

)

x̂ (e)2 + i p̂(e)2 = 1√
2

(
−e−r1 p̂(0)1 + er2 x̂ (0)2

)
+ i 1√

2

(
er1 x̂ (0)1 + e−r2 p̂(0)2

) . (4.4)
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By using these equations, we get

x̂ (e)1 − x̂ (e)2 = √
2e−r1 p̂(0)1 , p̂(e)1 + p̂(e)2 = √

2e−r2 p̂(0)2 . (4.5)

In the limit of infinite squeezing (rk → ∞), we get

x̂ (e)1 − x̂ (e)2 = 0, p̂(e)1 + p̂(e)2 = 0. (4.6)

Therefore, mode 1 and mode 2 represented by x̂ (e)k + i p̂(e)k (k = 1, 2) are in an EPR
state.1

We define the quadrature operators of the input mode as

x̂in + i p̂in . (4.7)

We apply the beam splitter operator B̂(2)in,1(
1√
2
) on mode in and mode 1, leading to

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1√
2

x̂in − 1
2

(
e−r1 p̂(0)1 + er2 x̂ (0)2

) ]
+ i

[
1√
2

p̂in − 1
2

(
−er1 x̂ (0)1 + e−r2 p̂(0)2

) ]

[
1√
2

x̂in + 1
2

(
e−r1 p̂(0)1 + er2 x̂ (0)2

) ]
+ i

[
1√
2

p̂in + 1
2

(
−er1 x̂ (0)1 + e−r2 p̂(0)2

) ]

[
1√
2

(
−e−r1 p̂(0)1 + er2 x̂ (0)2

) ]
+ i

[
1√
2

(
er1 x̂ (0)1 + e−r2 p̂(0)2

) ]
.

(4.8)

We perform measurements (homodyne measurements) on modes in and 1. We
measure x̂ in mode in, while p̂ in mode 1. The measurement observables ŝin, ŝ1 for
the measurements on modes in and 1 are given by

ŝin = 1√
2

x̂in−1

2

(
e−r1 p̂(0)1 + er2 x̂ (0)2

)
, ŝ1 = 1√

2
p̂in+1

2

(
−er1 x̂ (0)1 + e−r2 p̂(0)2

)
.

(4.9)
Without using the position operators erk x̂ (0)k for the squeezed-state modes k = 1, 2,
the quadrature operators for the output mode k = 2 can be reformulated as

[
x̂in − √

2e−r1 p̂(0)1 − √
2ŝin

]
+ i

[
p̂in + √

2e−r2 p̂(0)2 − √
2ŝ1

]
. (4.10)

Note that the reformulation above holds before the measurements are carried out.
On the contrary, when the measurements on modes in and 1 have been carried out
indeed, the quadratures of the output modes become

1 To be precise, mode 1 and mode 2 represented by x̂ (e)k + i p̂(e)k (k = 1, 2) are in an EPR state

in the limit of infinite squeezing. In the case of finite squeezing, x̂ (e)1 − x̂ (e)2 and p̂(e)1 + p̂(e)2 have
nonzero variances. Thus, these two modes are in an approximate EPR state. We sometimes refer to
this finitely correlated state as a two-mode squeezed state.
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Fig. 4.3 Quantum circuit of
quantum teleportation
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[
x̂in − √

2e−r1 p̂(0)1 − √
2sin

]
+ i

[
p̂in + √

2e−r2 p̂(0)2 − √
2s1

]
, (4.11)

where sin and s1 represent measurement results of measurement variables ŝin and ŝ1,
respectively. By performing feed-forwards (displacement operations) based on the
measurement results:

X̂2

(√
2sin)Ẑ2(

√
2s1

)
, (4.12)

we get
[
x̂in − √

2e−r1 p̂(0)1

]
+ i

[
p̂in + √

2e−r2 p̂(0)2

]
. (4.13)

In the limit of infinite squeezing rk → ∞, we get

x̂in + i p̂in, (4.14)

which is identical to the quadrature operators of the input mode in. Therefore, tele-
portation of the quantum state is finished successfully.

In the following, we substitute Fig. 4.3 for Fig. 4.2, for simplicity.

4.1.2 Gate Teleportation

Although quantum teleportation was initially proposed as a protocol to transmit a
quantum state, it was later found that it can be applied to implement quantum com-
putation. In this subsection, we show an example which is called the “teleportation
of quantum gate”, “gate teleportation”, or “offline scheme”.

4.1.2.1 Gate Teleportation

Consider that we perform a unitary operator Û on the output state of a quantum
teleportation (Fig. 4.4).

We next consider a change of the order of the unitary operation by Û and
the feed-forward operation. Here, the feed-forward operator is given by P̂A =
X̂2(

√
2sin)Ẑ2(

√
2s1), where sin and s1 represent measurement results. In general,

the unitary operator Û and the displacement operator P̂A do not commute with each
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Fig. 4.4 Gate teleportation 1 in
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other. We here define another feed-forward unitary operator N̂ :

N̂ = Û P̂AÛ †, (4.15)

which is determined by measurement results sin, s1 and the unitary operator Û . We
then have

Û P̂A = N̂Û . (4.16)

Therefore, we can change the order of the unitary operation by Û and the feed-
forward operation without changing the unitary operator Û .

4.1.2.2 Classification by Order of Unitary Operator

We consider the new feed-forward unitary operator N̂ . The original feed-forward
operator P̂A is a member of the Pauli group (Sect. 3.4.1). In general, the unitary
operator Û is formulated by a polynomial f (x̂, p̂) of quadrature operators x̂, p̂:

Û = ei f (x̂, p̂). (4.17)

If the order of f (x̂, p̂) is less than or equal to two, the unitary operator Û belongs
to the Clifford group (Sect. 3.4.3). If the order of f (x̂, p̂) is larger than or equal to
three, it does not belong to the Clifford group.

We first consider that the operator Û is a member of the Clifford group. In general,
for an arbitrary Clifford operator Ĉ and Pauli operator P̂A, there exists a Pauli operator
P̂B which satisfies (Sect. 3.4.4)

Ĉ P̂AĈ† = P̂B . (4.18)

As a result, we get Û P̂A = P̂BÛ , thus the revised feed-forward operator P̂B is a
member of the Pauli group (displacement operator) as well.

We then consider the case where the order of the polynomial f (x̂, p̂) is more than
or equal to three. The new feed-forward unitary operator N̂ is not a member of the
Pauli group, thus it is not a displacement operation. We define a group of unitary
operators C3:

C3 = {
Û |Û PÛ † � C

}
, (4.19)

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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where P and C represent the Pauli group and the Clifford group. The cubic phase
operator V̂ (γ ) is a member of the group C3:

V̂ (γ ) = eiγ x̂3 ∈ C3. (4.20)

If the unitary operator Û is a member of the group C3, there exists a Clifford group
operator Ĉ which satisfies Û P̂A = ĈÛ , where Ĉ is determined by the measurement
results sin, s1 and the unitary operator Û . Thus, the revised feed-forward operation
is a Gaussian operation.

4.1.2.3 Gate Teleportation

In the original quantum circuit shown in Fig. 4.4, the unitary operator Û is applied
to the output state of the quantum teleportation. On the contrary, in the transformed
version of the quantum circuit shown in Fig. 4.5, the unitary operator is applied to
the EPR state before it is utilized as a resource for the quantum teleportation. This
kind of transformation of quantum circuit is called teleportation of quantum gate or
gate teleportation.

It is reported that gate teleportation can be applied to implement quantum compu-
tation (offline scheme of quantum computation). Consider that we perform a particular
unitary operator Û on an arbitrary quantum state |ψ〉 based on Fig. 4.4 or Fig. 4.5.
In the original circuit (Fig. 4.4), the operator Û is applied to the quantum state |ψ〉.
Thus, we have to be able to apply Û on an arbitrary quantum state. On the contrary,
in the transformed version of quantum circuit (Fig. 4.5), the operator Û is applied
to the resource EPR state. Thus, we only have to be able to apply Û on a particular
quantum state, leading to a revised resource state. In addition, the revised resource
state is also a known state. Therefore, if we can generate it by using a different way,
we can replace the original method for generation of the revised state with the newer
one.

It provides another advantage of gate teleportation. Consider that implementation
of the operator Û involves inevitable losses in experiment. If the loss is too large,
the quantum state would be destroyed because of interaction with its environment
(decoherence). This problem can be solved if we can generate the revised resource
state by a less-loss process, instead of by performing the unitary operator Û to the
original resource EPR state.

Fig. 4.5 Gate teleportation 2 in
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Consider another case where implementation of the operator Û cannot be achieved
deterministically in experiment. The quantum state would be destroyed as well when
it fails. This problem can be solved by applying the gate teleportation since the prepa-
ration of the revised resource state can be detached from the main (online) compu-
tation. That is, even if the revised resource state can be generated probabilistically,
we can repeat generation of the revised resource state until we successfully generate
it. The generated state is stored in a memory, and then utilized in the online com-
putation. In addition, we can also apply the distillation [1, 2] in order to purify the
revised resource state.

We briefly mention universality of quantum computation with gate teleportation.
It is known that an arbitrary unitary operation can be implemented by combining
Gaussian operations and a one-mode non-Gaussian operation (Sect. 3.6). Remember
that a one-mode non-Gaussian operation with the cubic phase operator V̂ (γ ) can
be implemented with Gaussian feed-forward operations by using the gate telepor-
tation. Therefore, universality is achieved by combining Gaussian operations and
preparation of the revised resource state for the cubic phase operator V̂ (γ ).

4.2 One-Mode Teleportation Circuit and Elementary
Circuit for One-Way Quantum Computation

In this section, we introduce another application of quantum teleportation to quantum
computation. It is the one-way quantum computation, which is the main theme in this
thesis. It is also called cluster model of quantum computation, or cluster computation.

Since quantum teleportation circuit is not the minimum component for quantum
computation, we first show the minimum circuit called the one-mode teleportation
circuit. It is also called the half-teleportation circuit2 or elementary one-mode one-
way quantum computation circuit. We then refer to offline scheme and one-way
quantum computation.

4.2.1 One-Mode Teleportation Circuit (Half-Teleportation
Circuit, Elementary One-Mode One-Way Quantum
Computation Circuit)

4.2.1.1 Quantum Circuit

Figure 4.6 shows the quantum circuit of the one-mode teleportation circuit.
Mode in represents the input mode, which can be in an arbitrary state. Mode

1 is the resource mode for the one-mode teleportation circuit. In the ideal case, it

2 It is called the half-teleportation circuit since two one-mode teleportation circuits are equivalent
to the ordinary quantum teleportation circuit.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Fig. 4.6 One-mode telepor-
tation circuit
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is initially in the zero eigenstate |p = 0〉 of the momentum operator p̂. It can be
approximated by a p-squeezed state.

We perform a controlled-Z gate on mode in and mode 1 (Sect. 3.5.7). It is repre-

sented by an operator ĈZ = e
i
�

x̂in x̂1 . We then perform a measurement on mode in
with measurement observable p̂, followed by feed-forward operation to the position
operator of mode 1.

4.2.1.2 Schrödinger Picture

We show the process of the one-mode teleportation circuit in the Schrödinger picture.
We define |ψ〉in to be the initial state in mode in, while the initial state in mode

1 is given by |p = 0〉1. Thus, the initial state in two modes is

|ψ〉in|p = 0〉1. (4.21)

We expand these two states as

|ψ〉in =
∞∫

−∞
ds ψ(s)|x = s〉in, (4.22)

|p = 0〉1 = 1√
2π�

∞∫

−∞
dt |x = t〉1. (4.23)

By performing the controlled-Z operator ĈZ = e
i
�

x̂in x̂1 , it becomes

|Ψ 〉(C)in1 = ĈZ |ψ〉in|p = 0〉1 = 1√
2π�

∞∫

−∞
ds

∞∫

−∞
dt ψ(s)e

i
�

st |x = s〉in|x = t〉1.

(4.24)
Next, we perform a projection measurement on mode in with the set of projection
operators {Ê(m)}:

{Ê(m)} = {|p = m〉〈p = m|∣∣m ∈ R
}
. (4.25)

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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When the measurement result is m, the quantum state after the measurement is
given by

|Ψ 〉(M)in1 ∝ Ê(m)|Ψ 〉(C)in1 . (4.26)

We have

Ê(m)|Ψ 〉(C)in1 = |p = m〉in
1

2π�

∞∫

−∞
ds

∞∫

−∞
dt ψ(s)e

i
�

st e− i
�

sm |x = t〉1 (4.27)

= |p = m〉in
1√
2π�

∞∫

−∞
ds ψ(s)X̂1(m)|p = s〉1 (4.28)

= |p = m〉in
1√
2π�

X̂1(m)

∞∫

−∞
ds ψ(s)F̂1|x = s〉1 (4.29)

= |p = m〉in
1√
2π�

X̂1(m)F̂1|ψ〉1, (4.30)

where

X̂(m) = e− i
�

m p̂, F̂ = e
iπ
4�
(x̂2+ p̂2) (4.31)

are the position displacement operator and the Fourier operator, respectively. By
extracting mode 1 with an appropriate normalization factor, we get

|Ψ 〉(M)1 = X̂1(m)F̂1|ψ〉1. (4.32)

By performing a feed-forward operation X̂(−m), it becomes

|Ψ 〉(out)
1 = F̂1|ψ〉1. (4.33)

Therefore, the input state |ψ〉 is transmitted from mode in to mode 1 with the Fourier
operator F̂ applied.

4.2.1.3 Heisenberg Picture

Next, we show the process of one-mode teleportation circuit in the Heisenberg pic-
ture.

We define the initial quadrature operators to be
{

x̂in + i p̂in

x̂1 + i p̂1
. (4.34)
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By performing the controlled-Z operator on mode in and mode 1, they become

{
x̂in + i( p̂in + x̂1)

x̂1 + i( p̂1 + x̂in)
. (4.35)

Next, we perform a projection measurement on mode in. The measurement
observable ŝin is p̂, thus

ŝin = p̂in + x̂1. (4.36)

Without using the position operator x̂1 for the resource squeezed-state mode k = 1,
the quadrature operators for the output mode k = 1 can be reformulated as

ŝin − p̂in + i( p̂1 + x̂in). (4.37)

Note that the reformulation above holds before the measurement is carried out. On
the contrary, when the measurement on mode in has been carried out indeed, the
quadratures of the output mode become

sin − p̂in + i( p̂1 + x̂in), (4.38)

where sin represents the measurement result of the measurement variable ŝin . By
performing the feed-forward operation (displacement operation) based on the mea-
surement result:

X̂1(−sin), (4.39)

we get

x̂out + i p̂out = − p̂in + i( p̂1 + x̂in). (4.40)

Note that the input-output relation above holds independently of the initial states in
mode in and mode 1.

We consider the case where the initial state in the resource mode 1 is the zero
eigenstate |p = 0〉 of the momentum operator p̂, whose nullifier is p̂1 = 0. The
input-output relation becomes

x̂out + i p̂out = − p̂in + i x̂in, (4.41)

or equivalently,

(
x̂out

p̂out

)
=

(
0 −1
1 0

) (
x̂in

p̂in

)
. (4.42)

Thus, we find that the Fourier transformation on the input mode is performed.
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We next consider another case where the initial state in the resource mode 1 is
a p-squeezed state. We use quadrature operators which specify particular quantum
states (Sect. 3.2.8):

x̂1 + i p̂1 = er1 x̂ (0)1 + ie−r1 p̂(0)1 . (4.43)

The input-output relation becomes

− p̂in + i
(

e−r1 p̂(0)1 + x̂in

)
, (4.44)

or equivalently,

(
x̂out

p̂out

)
=

(
0 −1
1 0

)(
x̂in

p̂in

)
+

(
0

e−r1 p̂(0)1

)
. (4.45)

In the limit of infinite squeezing r1 → ∞, it becomes identical to the ideal case. On
the contrary, when the squeezing parameter r1 is finite, the additional term e−r1 p̂(0)1
does not vanish. It leads to error of one-way quantum computation which derives
from the finite level of resource squeezing.

4.2.1.4 Controlled-Z Gate with Gain g

Although we usually use the unity-gain controlled-Z gate for the one-mode telepor-
tation circuit, we sometimes use a controlled-Z gate with gain g (Fig. 4.7). In this
case, the feed-forward operation should be changed to X̂1(− 1

g sin). The input-output
relationship becomes

x̂out + i p̂out = −1

g
p̂in + i( p̂1 + gx̂in). (4.46)

Note that the input-output relation above holds independently of the initial states in
mode in and mode 1.

In the ideal case where the resource mode is initially in |p = 0〉 or p-squeezed
state with r → ∞, the additional term p̂1 vanishes, and an ideal operation can be
achieved. The input-output relation becomes

(
x̂out
p̂out

)
=

(
0 − 1

g

g 0

) (
x̂in
p̂in

)
=

(
1/g 0
0 g

) (
0 −1
1 0

) (
x̂in
p̂in

)
=

(
0 −1
1 0

)(
g 0
0 1/g

) (
x̂in
p̂in

)
.

(4.47)

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Fig. 4.7 One-mode teleporta-
tion gate with non-unity-gain
controlled-Z gate
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4.2.2 Offline Scheme

In order to compare one-way quantum computation with offline scheme, we develop
the offline scheme based on the one-mode teleportation circuit. Although the essence
in this subsection is similar to that of the gate teleportation (Sect. 4.1.2), it is not an
example of the gate teleportation in a strict sense because the following discussion
does not utilize the ordinary quantum teleportation.

Consider that we perform a unitary operator D̂ on the output state of a one-mode
teleportation circuit (Fig. 4.8).

We assume that the Hamiltonian of the operator D̂ is a polynomial f (x̂) of the
position operator x̂ :

D̂(x̂) = e
i
�

f (x̂). (4.48)

It is obvious that the output state is given by

|Ψ 〉(out)
1 = D̂1(x̂)F̂1|ψ〉1. (4.49)

We consider a change of the order of the displacement operation with X̂(−s) and
the unitary gate with the operator D̂(x̂) (Fig. 4.9). We define an operator M̂(s, f ) as

M̂(s, f ) = D̂(x̂)X̂(−s)D̂†(x̂), (4.50)

which is determined by the measurement result s and the function f . Since
M̂(s, f )D̂(x̂) = D̂(x̂)X̂(−s), we find that these two operators can be swapped
by changing the feed-forward operation. Note that the unitary operator D̂(x̂) is pre-
served.

The original feed-forward operator X̂(−s) is a member of the Pauli group. On the
contrary, the new feed-forward operator is a unitary operator M̂(s, f ). If the order of
the polynomial f (x̂) is less than or equal to two, the unitary operator D̂(x̂) belongs to
the Clifford group (Sect. 3.4.3), thus M̂(s, f ) belongs to the Pauli group (Sect. 4.1.2).
If the unitary operator D̂(x̂) is a member of the group C3 Eq. (4.19), M̂(s, f ) belongs
to the Clifford group, thus the new feed-forward operation is a Gaussian operation.

Fig. 4.8 Offline scheme 1 in
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Fig. 4.9 Offline scheme 2 in
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Fig. 4.11 Elementary circuit
for one-way quantum compu-
tation 1
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We then consider a change of the order of the controlled-Z gate and the unitary
gate with the operator D̂(x̂) (Fig. 4.10). Since their Hamiltonians are diagonal to x̂i ,
they commute with each other.

Figure 4.10 shows a circuit where the unitary operator D̂(x̂) is applied to the
resource state in mode 1 in advance, and it acts indirectly on the input state via the
one-mode teleportation circuit. Therefore, we can consider that it is an example of
the offline scheme.

4.2.3 Elementary Circuit for One-Way Quantum Computation

4.2.3.1 Transformation of Quantum Circuit

Consider that we perform a unitary operator D̂ on the output state of a one-mode
teleportation circuit (Fig. 4.11).

Different from Sect. 4.2.2,3 We assume that the Hamiltonian of the operator D̂ is
a polynomial f ( p̂) of the momentum operator p̂:

D̂( p̂) = e
i
�

f ( p̂). (4.51)

It is obvious that the output state is given by

|Ψ 〉(out)
1 = D̂1( p̂)F̂1|ψ〉1. (4.52)

By using F̂† p̂ F̂ = x̂ and F̂† D̂( p̂)F̂ = D̂(x̂), it is equivalent to

|Ψ 〉(out)
1 = F̂1 D̂1(x̂)|ψ〉1. (4.53)

3 In Sect. 4.2.2, we have assumed that D̂(x̂) = e
i
�

f (x̂). Although we have changed the assumption
for simplicity, the essence is the same.
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Remember that the output state of a one-mode teleportation circuit is given by F̂1|φ〉1
when the input state is |φ〉in . Thus, the state Eq. (4.53) can be considered as the output
state of the one-mode teleportation circuit with the input state |φ〉in = D̂in(x̂)|ψ〉in . It
is also equivalent to the output state of the quantum circuit where the unitary operator
D̂in(x̂) is first applied to the input state |ψ〉in , and then the state is transmitted to
mode 1 via the one-mode teleportation circuit (Fig. 4.12).

We then consider a change of the order of the controlled-Z gate and the unitary
gate with the operator D̂(x̂) (Fig. 4.13). Since their Hamiltonians are diagonal to x̂i ,
they commute with each other.

Here, the measurement is a projection measurement with the set of projection
operators {Ê(m)} = {|p = m〉〈p = m|∣∣m ∈ R

}
. Note that it is carried out after the

operator D̂(x̂) is performed. The combination of the operator and the measurement
is equivalent to another measurement with the set of projection operators

{Ê
′
(m)} = {

D̂†(x̂)|p = m〉〈p = m|D̂(x̂)∣∣m ∈ R
}
. (4.54)

Its measurement basis is D̂†(x̂)|p = m〉, while observable is p̂′ = D̂†(x̂) p̂ D̂(x̂)
(Fig. 4.14).

Different from the offline scheme, the feed-forward operation is not changed
during transformation of the quantum circuit above.

In summary, by changing the measurement basis from |p = m〉 to D̂†(x̂)|p = m〉,
we can perform a unitary operator D̂(x̂) which is determined by the measurement
basis. The key of one-way quantum computation is that operations are controlled by
measurement bases.

4.2.3.2 Observable

In the case of the offline scheme, the observable is not changed from the momentum
operator p̂. On the contrary, it is changed to p̂′ = D̂†(x̂) p̂ D̂(x̂) in one-way quantum
computation. We assume that the Hamiltonian of the operator D̂(x̂) is a polynomial
of the position operator x̂ :

D̂(x̂) = e
i
�

f (x̂) = e
i
�

∑
n an x̂n

. (4.55)

Fig. 4.12 Elementary
circuit for one-way quantum
computation 2
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Fig. 4.14 Elementary
circuit for one-way quantum
computation 4
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By using [x̂n, p̂] = i�nx̂n−1, we get

p̂′ = D̂†(x̂) p̂ D̂(x̂) = p̂ + f ′(x̂), (4.56)

where f ′(x) is the first derivative of f (x) with respect to x : f ′(x) = d f (x)
dx . When

f (x̂) is a quadratic function of x̂ , p̂′ becomes a linear combination of quadrature
operators x̂ and p̂. It can be achieved by a homodyne measurement. When the order
of f (x̂) is larger than or equal to three, non-linear measurement is required.

4.2.3.3 Heisenberg Picture

Since four figures (Figs. 4.11, 4.12, 4.13 and 4.14) are equivalent to each other, we
choose Fig. 4.12 in order to acquire the input-output relation in the Heisenberg picture
for simplicity.

We define that the input mode is x̂in + i p̂in . By performing the unitary operator
D̂(x̂), the position and momentum operators become

x̂ ′ + i p̂′ = D̂†(x̂in)(x̂in + i p̂in)D̂(x̂in) = x̂in + i( p̂in + f ′(x̂in)). (4.57)

Since the input-output relation of the one-mode teleportation circuit in the Heisenberg
picture is given by Eq. (4.40), the input-output relation of the elementary circuit for
the one-way quantum computation is

x̂out + i p̂out = −( p̂in + f ′(x̂in))+ i( p̂1 + x̂in). (4.58)

Note that it holds independently of the initial states in mode in and mode 1. In the
ideal case where the resource mode is initially in |p = 0〉 or p-squeezed state with
r → ∞, the additional term p̂1 vanishes, and an ideal operation can be achieved.

4.2.3.4 Controlled-Z Gate with Gain g

Although we usually use the unity-gain controlled-Z gate for the elementary circuit,
we also use a controlled-Z gate with gain g on rare occasions (Fig. 4.15). In this
case, the feed-forward operation should be changed to X̂1(− 1

g sin). The input-output
relationship becomes
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Fig. 4.15 Elementary circuit
for one-way quantum com-
putation with non-unity-gain
controlled-Z gate
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Fig. 4.16 Four-step one-mode teleportation circuit 1

x̂out + i p̂out = −1

g
( p̂in + f ′(x̂in))+ i( p̂1 + gx̂in). (4.59)

Note that it holds independently of the initial states in mode in and mode 1. In the
ideal case where the resource mode is initially in |p = 0〉 or p-squeezed state with
r → ∞, the additional term p̂1 vanishes, and an ideal operation can be achieved.

4.2.4 Multi-Step One-Mode Teleportation Circuit and Cluster
States

In general, an arbitrary quantum computation can be achieved by combining several
elementary gates (Sect. 3.6.1). In this subsection, we show how multi-step quantum
computation can be implemented in one-way quantum computation.

4.2.4.1 Multi-Step One-Mode Teleportation Circuit and Its Output State

Figure 4.16 shows a four-step one-mode teleportation circuit. Although we will show
a four-step case as an example, the following discussion can be easily extended to
the general case.

It is obvious that the output state is given by

|Ψ 〉(out) = D̂4( p̂)F̂ D̂3( p̂)F̂ D̂2( p̂)F̂ D̂1( p̂)F̂ |ψ〉 (4.60)

= F̂ D̂4(x̂)F̂ D̂3(x̂)F̂ D̂2(x̂)F̂ D̂1(x̂)|ψ〉. (4.61)

Note that the subscripts are utilized to discriminate operators. Equation (4.61) can
be transformed into

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Fig. 4.17 Four-step one-mode teleportation circuit 2

F̂ D̂4(x̂)F̂ D̂3(x̂)F̂ D̂2(x̂)F̂ D̂1(x̂) = F̂ D̂4(x̂)F̂ D̂3(x̂)F̂
2 F̂† D̂2(x̂)F̂ D̂1(x̂) (4.62)

= F̂ D̂4(x̂)F̂ F̂2 F̂†2 D̂3(x̂)F̂
2 D̂2(− p̂)D̂1(x̂)

(4.63)

= F̂ F̂3 F̂†3 D̂4(x̂)F̂
3 D̂3(−x̂)D̂2(− p̂)D̂1(x̂)

(4.64)

= F̂4 D̂4( p̂)D̂3(−x̂)D̂2(− p̂)D̂1(x̂). (4.65)

Thus, operators D̂k(x̂) and D̂k( p̂) can be performed by turns. In general, the output
state becomes

F̂ D̂n(x̂) · · · F̂ D̂2(x̂)F̂ D̂1(x̂) =

⎧
⎪⎪⎨
⎪⎪⎩

F̂n D̂n(x̂) · · · D̂2(− p̂)D̂1(x̂), (n = 4m + 1)
F̂n D̂n(− p̂) · · · D̂2(− p̂)D̂1(x̂), (n = 4m + 2)
F̂n D̂n(−x̂) · · · D̂2(− p̂)D̂1(x̂), (n = 4m + 3)

F̂n D̂n( p̂) · · · D̂2(− p̂)D̂1(x̂), (n = 4m)

.

(4.66)

4.2.4.2 Transformation and Cluster State

We consider transformation of Fig. 4.16. By using

ĈZi j X̂k(s) = X̂k(s)Ẑk′(s)ĈZi j , (k, k′) = (i, j), ( j, i) (4.67)

for a controlled-Z operator ĈZi j and position and momentum displacement operators
X̂k(s) and Ẑk′(s), we can transform Fig. 4.16 into Fig. 4.17.

Next, since ĈZi j commutes with both Ẑk(s) and ĈZmn , we can transform Fig. 4.17
into Fig. 4.18.

The procedure in Fig. 4.18 is summarized as follows:

• A resource state generated by combining four zero-eigenstates of momentum oper-
ators (|p = 0〉) via three controlled-Z gates is prepared in advance (modes 1 to
4).
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Fig. 4.18 Four-step one-mode teleportation circuit 3
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Fig. 4.19 Postponement of feed-forward operations. a Postponement of feed-forward operations
1. b Postponement of feed-forward operations 2

• The input state is coupled with the resource state via a controlled-Z gate.
• Measurements and feed-forward operations are performed.
• The output state is given by Eq. (4.61).

The resource state generated by combining zero eigenstates of momentum opera-
tors (|p = 0〉) via controlled-Z gates is called a cluster state. Many shapes of cluster
states can be defined based on the network of controlled-Z gates. In this example,
the cluster state is called the four-mode linear cluster state since four |p = 0〉 are
entangled linearly.

4.2.4.3 Postponement of Feed-Forward Operations

We then consider a change of the order of the feed-forward operations and measure-
ments. For this purpose, we start with the two-step circuit shown in Fig. 4.19a. We
next consider a circuit where the feed-forward operations are removed (Fig. 4.19b).
We then acquire the feed-forward operator so that the output state does not depend
on measurement results.

It is obvious that the output state in Fig. 4.19b is given by

|Ψ 〉(out) = X̂(s1)F̂ D̂2(x̂)X̂(sin)F̂ D̂1(x̂)|ψ〉. (4.68)

Note that it depends on the measurement results sin, s1 since the feed-forward oper-
ations are removed. We omit (x̂) from D̂k(x̂), for simplicity.

In the following, we classify D̂2 into the following two cases: the case where D̂2
is a member of the Clifford group C(1); and the case where D̂2 is not a member of
C(1).
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D̂2 ∈ C(1).

When D̂2 is a member of the Clifford group, F̂ D̂2 is also a member of the Clifford
group. Thus, the operator P̂(sin):

F̂ D̂2 X̂(sin)(F̂ D̂2)
† = P̂(sin) (4.69)

becomes a member of the Pauli group (Sect. 3.4.4). As a result, the output state is
equivalent to

X̂(s1)P̂(sin)F̂ D̂2 F̂ D̂1|ψ〉. (4.70)

It shows that the original operation (F̂ D̂2 F̂ D̂1) before the transformation (Fig. 4.19a)
can be achieved by using the same measurement bases and another feed-forward
operation P̂†(sin)X̂†(s1) in the Pauli group.

Similarly, the output state of the N -step case is given by

X̂(sN−1)F̂ D̂N · · · X̂(sin)F̂ D̂1|ψ〉 = P̂(sin, . . . , sN−1)F̂ D̂N · · · F̂ D̂2 F̂ D̂1|ψ〉.
(4.71)

Therefore, all measurements can be performed simultaneously, where measurement
bases are not changed during transformation of the circuit. After all measurements
have been finished, all feed-forward operations can be performed simultaneously.
Although the feed-forward operations are changed during the transformation of the
circuit, they are still members of the Pauli group. These properties are called the
Gaussian parallelism. We will show an example of it in Sect. 9.2.7.

D̂2 /∈ C(1).

When D̂2 is not a member of the Clifford group, F̂ D̂2 is not a member of the
Clifford group as well. Thus, the operator Û (sin):

F̂ D̂2 X̂(sin)(F̂ D̂2)
† = Û (sin) (4.72)

is not a member of the Pauli group. By using Û (sin), the output state becomes

X̂(s1)Û (sin)F̂ D̂2 F̂ D̂1|ψ〉. (4.73)

It shows that the operation F̂ D̂2 F̂ D̂1 which is the same to that before the transfor-
mation is achieved by using the same measurement bases and different feed-forward
operation Û †(sin)X̂†(s1). However, the feed-forward operation is no longer a mem-
ber of the Pauli group. Although Û (sin) is in the Clifford group if D̂2 is in the group
C3 Eq. (4.19), Û (sin) is not in the Clifford group if D̂2 is not in the group C3.

We consider another transformation of the equation. We assume that F̂ D̂2 is not
a member of the Clifford group. By using V̂ (sin):

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_9
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F̂† X̂†(sin)F̂ D̂2 X̂(sin) = V̂ (sin), (4.74)

the output of the second step is given by

X̂(s1)X̂(sin)F̂ V̂ (sin)F̂ D̂1|ψ〉, (4.75)

where V̂ (sin) is an operator which is not a member of the Clifford group. The revised
feed-forward operator X̂†(sin)X̂†(s1) is a member of the Pauli group in this case.
However, in order to achieve the same operation F̂ D̂2 F̂ D̂1, we have to choose a
different measurement basis which is determined by V̂ (sin) at the second step. It
also depends on the measurement result sin in the first step.

By performing the feed-forward operation in each step, we can determine
measurement basis independently of the other steps. In addition, all feed-forward
operations are members of the Pauli group. Therefore, it is preferred to perform
feed-forward operations in each step when we perform non-Clifford operations.
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Chapter 5
Cluster States and One-Way Quantum
Computation

5.1 Cluster States

5.1.1 Definition by State Vector

Consider an n-vertex weighted and undirected graph without self-loops. Each node is
labeled by integers 1, . . . , n. We assume that the weight of edge between two modes
j and k is real and equal to gjk. We define E to be the set of all edges. The weighted
cluster state associated with this graph is defined to be

|ΨG〉 = ĈZtotal|p = 0〉⊗n, (5.1)

where ĈZtotal is given by

ĈZtotal =
∏

{ j,k}∈E

ĈZ jk(gjk) =
∏

{ j,k}∈E

e
i
�

gjk x̂ j x̂k . (5.2)

It is called an unweighted cluster state if all gjk satisfy gjk = 1. Since all controlled-Z
gates commute, we do not have to specify the order of controlled-Z gates.

In general, a graph is represented by its adjacency matrix A. In this case, A is an
n×n real symmetric matrix with Ajk = gjk. Since the graph does not have self-loops,
all diagonal elements Ajj satisfy Ajj = 0. By using the adjacency matrix, ĈZtotal is
given by

ĈZtotal =
∏

{ j,k}∈G

ĈZjk(gjk) = exp

[
i

2�
x̂T Ax̂

]
, x̂ = (x̂1, . . . , x̂n)

T . (5.3)

5.1.2 Stabilizers and Nullifiers

Since the stabilizer of the zero eigenstate |p = 0〉 of the momentum operator p̂

is given by {X̂(s) = e− i
�

s p̂}, the stabilizer of |p = 0〉⊗n is given by {X̂a(sa) =
© Springer Japan 2015
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e− i
�

sa p̂a }. By performing ĈZtotal on |p = 0〉⊗n , the stabilizer becomes

{ĈZtotal X̂a(sa)Ĉ
†
Ztotal}. (5.4)

By using

ĈZtotal p̂aĈ†
Ztotal = p̂a − (Ax̂)a, (5.5)

we get the stabilizer of the cluster state:

{ĈZtotal X̂a(sa)Ĉ
†
Ztotal} = {e− i

�
sa( p̂a−(Ax̂)a)} = {X̂a(sa)

∏

k

Ẑk(sagak)
}
, (5.6)

where we have utilized Aak = gak.
Although the stabilizer is well formulated above, we sometimes rewrite it as

{ĈZtotal X̂a(sa)Ĉ
†
Ztotal} = {X̂a(sa)

∏

k∈N (a)

Ẑk(sagak)
}
, (5.7)

where N (a) shows the set of vertices which are connected to the vertex a with non-
zero weight (gak �= 0) in the graph. We refer to it as the set of nearest-neighbor
modes of mode a.

We next consider the nullifiers of the cluster state. Since the nullifiers of |p = 0〉⊗n

is { p̂a}, the nullifiers of the cluster state is given by

δ̂a = ĈZtotal p̂aĈ†
Ztotal = p̂a − (Ax̂)a = p̂a −

∑

k

Aakx̂k = p̂a −
∑

k

gakx̂k = p̂a −
∑

k∈N (a)

gakx̂k ,

(5.8)

or equivalently,

1 2 1 2 3 4

1 2 3

4

1

3 4

2

(a) (b)

(c) (d)

Fig. 5.1 Examples of cluster state. a Two-mode cluster state, b four-mode linear cluster state,
c four-mode T-shaped cluster state, d four-mode diamond-shaped cluster state
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δ̂ = p̂ − Ax̂. (5.9)

Equation (5.9) gives n independent nullifiers, each of which commutes with the
others. The cluster state is the simultaneous zero eigenstate of these n nullifiers.

5.1.3 Examples of Cluster States

Figure 5.1 shows several graphs of unweighted cluster states.

5.1.3.1 Two-Mode Cluster State

The simplest cluster state is the two-mode cluster state |Ψ2〉.

|Ψ2〉 = ĈZ12|p = 0〉1|p = 0〉2 = e
i
�

x̂1 x̂2 |p = 0〉1|p = 0〉2. (5.10)

By using

|x〉 = 1√
2π�

∞∫

−∞
e− i xp

� |p〉dp, |p〉 = 1√
2π�

∞∫

−∞
e

i xp
� |x〉dx, (5.11)

we get

|Ψ2〉 = 1√
2π�

∞∫

−∞
da|x1 = a〉|p2 = a〉 = 1√

2π�

∞∫

−∞
db|p1 = b〉|x2 = b〉.

(5.12)

The nullifiers of the two-mode cluster state are given by

p̂1 − x̂2 = 0, p̂2 − x̂1 = 0. (5.13)

They satisfy

( p̂1 − x̂2)|Ψ2〉 = 0, ( p̂2 − x̂1)|Ψ2〉 = 0. (5.14)



100 5 Cluster States and One-Way Quantum Computation

5.1.3.2 Three-Mode Linear Cluster State

The three-mode linear cluster state |Ψ3L〉 is given by

|Ψ3L〉 = ĈZ12ĈZ23|p = 0〉1|p = 0〉2|p = 0〉3 (5.15)

= 1

2π�

∞∫

−∞
da

∞∫

−∞
db|x1 = a〉|p2 = a + b〉|x3 = b〉 (5.16)

= 1√
2π�

∞∫

−∞
da|p1 = a〉|x2 = a〉|p3 = a〉. (5.17)

Its nullifiers are

p̂1 − x̂2 = 0, p̂2 − x̂1 − x̂3 = 0, p̂3 − x̂2 = 0. (5.18)

5.1.3.3 Four-Mode Linear Cluster State

The four-mode linear cluster state |Ψ4L〉 is given by

|Ψ4L〉 = ĈZ12ĈZ23ĈZ34|p = 0〉1|p = 0〉2|p = 0〉3|p = 0〉4 (5.19)

= 1

2π�

∞∫

−∞
db

∞∫

−∞
dce

i
�

bc|p1 = b〉|x2 = b〉|x3 = c〉|p4 = c〉 (5.20)

= 1√
2π�

3

∞∫

−∞
da

∞∫

−∞
dc

∞∫

−∞
dde

i
�

cd |x1 = a〉|p2 = a + c〉|x3 = c〉|x4 = d〉

(5.21)

= 1√
2π�

3

∞∫

−∞
da

∞∫

−∞
db

∞∫

−∞
dde

i
�

ab|x1 = a〉|x2 = b〉|p3 = b + d〉|x4 = d〉.

(5.22)

Its nullifiers are

p̂1 − x̂2 = 0, p̂2 − x̂1 − x̂3 = 0, p̂3 − x̂2 − x̂4 = 0, p̂4 − x̂3 = 0. (5.23)

5.1.3.4 Four-Mode T-Shaped Cluster State

The nullifiers of the four-mode T-shaped cluster state are given by
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p̂1 − x̂2 = 0, p̂2 − x̂1 − x̂3 − x̂4 = 0, p̂3 − x̂2 = 0, p̂4 − x̂2 = 0. (5.24)

5.1.3.5 Four-Mode Diamond-Shaped Cluster State

The nullifiers of the four-mode diamond-shaped cluster state are given by

p̂1 − x̂3 − x̂4 = 0, p̂2 − x̂3 − x̂4 = 0, p̂3 − x̂1 − x̂2 = 0, p̂4 − x̂1 − x̂2 = 0.
(5.25)

5.1.4 Entanglement Criteria for Cluster States

5.1.4.1 General Theory

We consider entanglement criteria for n-mode cluster states. They are directly
acquired as examples of the extended van Loock-Furusawa criteria (Sect. 3.7.4).

Consider an n-mode cluster state which is associated with an undirected and
weighted graph described by an n × n adjacency matrix A. The nullifiers are given
by {δ} = {p̂ − Ax̂}. We assume that i and j are labels of two vertices which are
located next to each other. In general, two nullifiers δi and δ j are reformed as

δ̂i = p̂i − Aijx̂ j −
∑

m

Aimx̂m −
∑

t

Ait x̂t , (5.26)

δ̂ j = p̂ j − Ajix̂i −
∑

n

Ajnx̂n −
∑

t

Ajt x̂t , (5.27)

where m ∈ Ni ∩ Ni ∩ N j \ j , n ∈ N j ∩ Ni ∩ N j \ i , and t ∈ Ni ∩ N j . We
define hs(x̂s, p̂s) and gs(x̂s, p̂s) to be the terms consisting of mode s in δi and
δ j , respectively. Using hs(x̂s, p̂s) and gs(x̂s, p̂s), two nullifiers are given by δ̂i =∑

s∈B hs(x̂s, p̂s) and δ̂ j = ∑s∈B gs(x̂s, p̂s). We apply the necessary condition for
separability shown in Eq. (3.192) to the two nullifiers δi and δ j . If a quantum state is
separable into {Bk}, the inequality

〈
Δ2δ̂i

〉
+
〈
Δ2δ̂ j

〉
≥

l∑

k=1

∣∣∣∣∣∣
∑

s∈Bk

[hs(x̂s, p̂s), gs(x̂s, p̂s)]
∣∣∣∣∣∣

(5.28)

=
{

2�|Aij| i ∈ Bk, j ∈ Bk′

0 i, j ∈ Bk
(5.29)

is satisfied. Here, we have used commutation relations between hs(x̂s, p̂s) and
gs(x̂s, p̂s):

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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[hs(x̂s, p̂s), gs(x̂s, p̂s)] =

⎧
⎪⎨
⎪⎩

i�Aji s = i

−i�Aij s = j

0 s �= i, j

. (5.30)

Note that this inequality holds for any mode set {Bk}. It follows that, if the sum of
variances for a quantum state satisfies

〈
Δ2δ̂i

〉+ 〈Δ2δ̂ j
〉
< 2�|Aij|, two modes i and j

are not separable (i, j ∈ Bk for some k). We can derive the same sufficient condition
for inseparability for each pair of nearest neighbor modes i and j . Therefore, we
finally get the following sufficient condition for full inseparability of the cluster
state.

Full inseparability of cluster state—Consider an n vertex undirected and weighted
graph G with an adjacency matrix A. An n-mode quantum state is fully entangled
in the form of the graph G if it satisfies n − 1 inequalities

〈
Δ2δ̂i

〉+ 〈Δ2δ̂ j
〉
< 2�|Aij|

for j ∈ Ni , where δ̂ = p̂ − Ax̂ represent the nullifiers of the cluster state associated
with G, while N j represents the set of nearest neighbor modes of mode j . Note that
the mode set Ck = {i, j}k for the k-th inequality should be chosen so that |Aij| �= 0
and the union of Ck for k = 1, . . . , n − 1 is equivalent to B = {1, . . . , n}.

By using this statement, we can also acquire the following more severe condition
for full inseparability.

Full inseparability of cluster state—An n-mode quantum state is fully entangled
in the form of the graph G if it satisfies n inequalities

〈
Δ2δ̂a

〉
< � minb∈Na (|Aab|)

for all a ∈ B.

5.1.4.2 Examples

Four-Mode Linear Cluster State

We consider the (unweighted) four-mode linear cluster state. The adjacency matrix
A is given by

A =

⎛
⎜⎜⎝

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞
⎟⎟⎠ . (5.31)

The nullifiers are

δ̂1 = p̂1 − x̂2, δ̂2 = p̂2 − x̂1 − x̂3, δ̂3 = p̂3 − x̂2 − x̂4, δ̂4 = p̂4 − x̂3.

(5.32)

We choose the set of modes Ck as
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C1 = {1, 2}, C2 = {2, 3}, C3 = {3, 4}. (5.33)

A quantum state is fully entangled in the form of the four-mode linear cluster state
if it satisfies

〈Δ2( p̂1 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3)〉 < 2�, (5.34)

〈Δ2( p̂2 − x̂1 − x̂3)〉 + 〈Δ2( p̂3 − x̂2 − x̂4)〉 < 2�, (5.35)

〈Δ2( p̂3 − x̂2 − x̂4)〉 + 〈Δ2( p̂4 − x̂3)〉 < 2�. (5.36)

Four-Mode T-Shaped Cluster State

We consider the (unweighted) four-mode T-shaped cluster state. The adjacency
matrix A is given by

A =

⎛
⎜⎜⎝

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

⎞
⎟⎟⎠ . (5.37)

The nullifiers are

δ̂1 = p̂1 − x̂2, δ̂2 = p̂2 − x̂1 − x̂3 − x̂4, δ̂3 = p̂3 − x̂2, δ̂4 = p̂4 − x̂2.

(5.38)

We choose the set of modes Ck as

C1 = {1, 2}, C2 = {3, 2}, C3 = {4, 2}. (5.39)

A quantum state is fully entangled in the form of the four-mode T-shaped cluster
state if it satisfies

〈Δ2( p̂1 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3 − x̂4)〉 < 2�, (5.40)

〈Δ2( p̂3 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3 − x̂4)〉 < 2�, (5.41)

〈Δ2( p̂4 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3 − x̂4)〉 < 2�. (5.42)



104 5 Cluster States and One-Way Quantum Computation

5.2 Generation of Cluster States

5.2.1 Canonical Cluster States

A straight-forward scheme to build cluster states is the canonical way [1, 2], which
is directly given by the definition of cluster states.

Originally, a cluster state is defined to be the state which is generated by entangling
n copies of |p = 0〉 with a network of CZ gates. Since a |p = 0〉 requires infinite
amount of energy and is an unphysical state, it is approximated by a p-squeezed
state. We define

x̂ (r)a + i p̂(r)a = era x̂ (0)a + ie−ra p̂(0)a , a = 1, . . . , n, (5.43)

as annihilation operators of n squeezed states. Here, x̂ (0)a + i p̂(0)a is the annihilation
operator of the vacuum state in mode a, while ra represents the squeezing parameter
of mode a. An approximate cluster state is acquired by entangling them with the
CZ gate network. We assume that the ideal CZ gate is applicable. As a result, the
annihilation operators of the cluster state is given by

x̂ (c)a + i p̂(c)a = era x̂ (0)a + i
[
e−ra p̂(0)a +

∑

k

Aakerk x̂ (0)k

]
, (5.44)

for a = 1, . . . , n. The state generated by using the above procedure is called a
canonical cluster state. With finite levels of squeezing, the nullifier terms:

δ̂a = p̂(c)a −
∑

k

Aakx̂ (c)k = e−ra p̂(0)a , (5.45)

have non-zero values. To the contrary, they vanish in the limit of ra → ∞, thus an
ideal cluster state is acquirable.

By applying the Bloch-Messiah reduction, an arbitrary two-mode Gaussian
operation, including the CZ gate, is implemented by two single-mode squeezers
sandwiched between two beam splitters [3, 4]. Since concatenation of Gaussian
operations is also a Gaussian operation, the CZ gate network which generate the
cluster state is a member of Gaussian operations on n modes. Thus it can be achieved
by an n-mode beam-splitter network, followed by n single-mode squeezers, and
another n-mode beam-splitter network.

5.2.2 Gaussian Cluster States

5.2.2.1 Generation of Gaussian Cluster States

Shortly after the original proposal of CV cluster states, Peter et al. showed that
an approximate cluster state, called the Gaussian cluster state, can be efficiently



5.2 Generation of Cluster States 105

generated by combining n copies of |p = 0〉 by using a network of beam splitters [2].
The beam splitter network should be carefully chosen so that the nullifiers δ̂a of the
cluster state become zero. As is the case with the canonical scheme, |p = 0〉 is
approximated by a p-squeezed state. In this case, δ̂a consists only of momentum
operators of the initial squeezed states.

We define

â(r) = x̂(r) + i p̂(r) (5.46)

as annihilation operators of n-mode p-squeezed states, where x̂(r) = (x̂ (r)1 , . . . , x̂ (r)n )T

and p̂(r) = ( p̂(r)1 , . . . , p̂(r)n )T are vectors of position and momentum operators,
respectively. For simplicity, we assume that each squeezed state has the same squeez-
ing parameter r , thus x̂(r) = er x̂(0) and p̂(r) = e−r p̂(0), where x̂(0) and p̂(0) are vectors
of position and momentum operators of n-mode vacuum states, respectively. In gen-
eral, a beam splitter network on n-mode quantum state is represented as a linear
transformation of n-mode annihilation operators. Thus the annihilation operators of
the cluster state is given by

x̂(c) + i p̂(c) = U (x̂(r) + i p̂(r)) (5.47)

= 
U x̂(r) − �U p̂(r) + i
(�U x̂(r) + 
U p̂(r)

)
. (5.48)

In order to preserve the commutation relations, the n×n matrix U is a unitary matrix:
UU† = I . The values of nullifiers become

p̂(c) − Ax̂(c) = (�U − A
U )x̂(r) + (
U + A�U )p̂(r). (5.49)

The necessary and sufficient condition that they become zero in the limit of squeezing
parameter r → ∞ is

�U − A
U = O, (5.50)

where O is the n × n zero matrix. In this case, the nullifiers become

δ̂ = p̂(c) − Ax̂(c) = (
U + A�U )p̂(r) → 0, ra → ∞. (5.51)

We define an n × n matrix R and 1 × n row vectors α j to be


U = R =
⎛
⎜⎝

α1
...

αn

⎞
⎟⎠ . (5.52)

By using �U − A
U = O , we get
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U = 
U + i�U = (I + i A)R. (5.53)

Since U is a unitary matrix, the condition

UU† = (I + i A) RRT (I − i A) = (I + i A)S(I − i A) = I, (5.54)

should be satisfied. Here,

S = RRT =
⎛
⎜⎝

α1α
T
1 · · · α1α

T
n

...
. . .

...

αnαT
1 · · · αnαT

n

⎞
⎟⎠ (5.55)

is a symmetric matrix, each member of which corresponds to inner product of α.
Since S, A, and I are real matrices, both real and imaginary parts should be zero,
thus

S + ASA = I, S A − AS = O, (5.56)

should be satisfied. This is the necessary and sufficient condition that the generated
state become identical to the ideal cluster state in the limit of infinite squeezing. From
these two equations, we get (I + A2)S = I :

S + ASA = I and SA − AS = O =⇒ (I + A2)S = I (5.57)

Since A is a real symmetric matrix, A2 becomes a positive semi-definite matrix, thus
I + A2 is a positive definite matrix. Therefore, there exists the inverse matrix of
I + A2, which leads to

(I + A2)S = I ⇐⇒ S = (I + A2)−1. (5.58)

Although the discussion above gives us a matrix S1 = (I + A2)−1 which satisfies
Eq. (5.56), uniqueness of S is not proven. However, if we assume that there exists
another S2 which satisfies Eq. (5.56), we get (I + A2)S2 = I from Eq. (5.57), leading
to S2 = (I+A2)−1. It is a contradiction to the assumption that S1 �= S2. Therefore, the
unitary matrix S which satisfies Eq. (5.56) is uniquely determined by the adjacency
matrix A which specifies the cluster state and Eq. (5.58).

In summary, an approximation of the ideal cluster state can be generated in the
following procedure:

1. Get S = (I + A2)−1 for the adjacency matrix A.
2. Get αk from S, which shows the inner products of row vectors αk .
3. R is determined by αk , which leads to the unitary matrix U = (I + i A)R.
4. Linear transformations of n-mode annihilation operators represented by U is

achieved by at most n(n−1)
2 beam splitters [3].
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In the procedure above, the matrix S is uniquely determined by the matrix A. At the
second step, αk is necessarily acquired from S. However, its uniqueness is not held.
At the third step, R and U are uniquely determined by αk . At the final step, U is
necessarily decomposed into a beam splitter network, though its uniqueness is not
held. Therefore, one necessarily acquire a nonunique unitary matrix U and a beam
splitter network for any adjacency matrix A. It means that any cluster state can be
generated in this scheme with several unitary transformations, or identically, beam
splitter networks.

5.2.2.2 Covariance Matrices

We explore several properties of Gaussian cluster states. Since Gaussian cluster states
are members of n-mode Gaussian states, they are uniquely described by their first-
order moments and covariance matrices. In the procedure above, the initial resource
state for a Gaussian cluster state is an n-mode squeezed state, whose first-order
moments and covariance matrix are given by

〈q̂(r)〉 = 0, Σ(r) = 1

4

(
e2r I O

O e−2r I

)
, (5.59)

where 0 is the 2n-dimensional zero vector, while I and O are the n × n identity
and zero matrices, respectively. Note again that we have assumed that each squeezed
state has the same squeezing parameter r . By applying the unitary transformation
represented by a unitary matrix U on the vector of annihilation operators, the first-
order moments and covariance matrix of the Gaussian cluster state become

〈q̂(c)〉 = 0, (5.60)

Σ(c) = UxxppΣ
(r)U T

xxpp

= 1

4

(
e−2r I + 2S sinh 2r 2AS sinh 2r

2AS sinh 2r e2r I − 2S sinh 2r

)
, (5.61)

where Uxxpp =
(

R −AR
AR R

)
is the transformation matrix represented in xxpp

notation. Since S = (I + A2)−1 is uniquely determined by the adjacency matrix
A, the first-order moments and covariance matrix of the Gaussian cluster state are
also determined uniquely by A. Therefore, the property of Gaussian cluster states are
uniquely determined by the shape of the graph represented by A, and the squeezing
parameter r . It does not depend on how U is chosen, nor how U is decomposed
into a beam splitter network. It follows that all Gaussian cluster states generated by
different beam splitter networks for a specific graph are equivalent to each other.
Thus they can be used in one-way quantum computations as resources without any
discriminations.

Before we finish our discussion in this section, we refer to the covariance matrix
of nullifiers of a Gaussian cluster state. Here, the nullifiers of the Gaussian cluster
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state are given by

δ̂ = p̂(c) − Ax̂(c) = (I + A2)Rp̂(r). (5.62)

We define the covariance matrix of nullifiers to be 〈δ̂δ̂T 〉. By assuming that each
squeezed state has the same squeezing parameter r , we get

〈δ̂δ̂T 〉 = (I + A2)R〈p̂(r)p̂(r)T 〉RT (I + A2)T (5.63)

= 1

4
e−2r (I + A2). (5.64)

Since the covariance matrix of the Gaussian cluster state is uniquely determined by
its adjacency matrix A, and not by its U , nor its decomposition into beam splitter
networks, the covariance matrix of nullifiers is also uniquely determined by A.

We consider a special case where the cluster state is unweighted (Ajk = 0 or
1 for all j and k). In general, each element (An)jk is equivalent to the number of
paths from vertex j to k with the length of n. By defining N (i) to be the set of
nearest neighbor vertices of vertex i , (A2)jk represents the number of elements in
the intersection of two sets N ( j) and N (k), which we describe by MN (i)∩N ( j). As a
result, the covariance matrix of the nullifiers become

〈δ̂δ̂T 〉jk = �

2
e−2r

[
δjk + MN ( j)∩N (k)

]
. (5.65)

The variances of the nullifiers are acquired by choosing its diagonal elements:

〈δ̂2
i 〉 = �

2
e−2r

[
δ j + MN ( j)

]
, (5.66)

where MN ( j) represents the number of nearest modes of mode j .

5.2.3 Examples of Gaussian Cluster States

In this section, we show two examples of Gaussian cluster states: the n-mode linear
cluster state and the n-mode star cluster state.
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5.2.3.1 Linear Cluster States

Consider an unweighted and undirected graph with n vertices shown in Fig. 5.2,
where each vertex is connected linearly. The cluster state associated with this graph
is called an n-mode linear cluster state. By definition, its adjacency matrix A(L ,n) is
an n × n real symmetric matrix with A(L ,n)j, j+1 = A(L ,n)j+1, j = 1 for j = 1, . . . , n − 1,
while the other elements are zero. It gives us n independent nullifiers of the n-mode
linear cluster state:

p̂1 − x̂2 = 0, (5.67)

p̂k − x̂k−1 − x̂k+1 = 0 (k = 2, . . . , n − 1), (5.68)

p̂n − x̂n−1 = 0. (5.69)

The n-mode Gaussian cluster state associated with the adjacency matrix A(L ,n)

can be generated by combining n-mode p-squeezed states by using a beam splitter
network represented by

U (L ,n) = B(L)1,2

(√
R1
)
B(L)2,3

(√
R2
) · · · B(L)n−1,n

(√
Rn−1

)
, (5.70)

where B(L)j,k

(√
R
)

is an n × n identity matrix except for (B(L)j,k )jj = (B(L)j,k )kk = √
R

and (B(L)j,k )jk = (B(L)j,k )kj = i
√

1 − R. Their energy reflectivities Rk are given by

Rk = Fk+1

Fk+2
, (5.71)

where

Fk = 1√
5

⎡
⎣
(

1 + √
5

2

)k

−
(

1 − √
5

2

)k
⎤
⎦ (5.72)

represents the Fibonacci sequence defined by

F0 = 0, F1 = 1, Fk+2 = Fk+1 + Fk . (5.73)

In general, linear transformations of n-mode annihilation operators are achieved by
a beam splitter network consisting of at most n(n − 1)/2 two-mode beam splitters.
To the contrary, n-mode linear cluster state can be generated by using n − 1 beam
splitters as shown in Eq. (5.70). By considering that we need at least n − 1 beam
splitters in order to combine n modes without excess nor deficiency, we find that
an arbitrary n-mode linear cluster state can be generated by using the least beam
splitters.
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Fig. 5.3 n-mode star cluster
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5.2.3.2 Star Cluster States

Consider an unweighted and undirected graph with n vertices shown in Fig. 5.3,
where each vertex except for vertex n is connected to the vertex n. The cluster state
associated with this graph is called an n-mode star cluster state. By definition, its
adjacency matrix A(S,n) is an n × n real symmetric matrix with A(S,n)j,n = A(S,n)n, j = 1
for j = 1, . . . , n − 1, while the other elements are zero. It gives us n independent
nullifiers of the n-mode star cluster state:

p̂k − x̂n = 0 (k = 1, . . . , n − 1), p̂n −
n−1∑

m=1

x̂m = 0. (5.74)

Although a unitary matrix by which the Gaussian star cluster state is generated
can be acquired from the general discussion in Sect. 5.2.2, we can find a solution from
analogy between the n-mode star cluster state and the n-mode GHZ state. Here, the
nullifiers of the n-mode GHZ state are

x̂k − x̂n = 0 (k = 1, . . . , n − 1), p̂n +
n−1∑

m=1

p̂m = 0. (5.75)

Thus, the n-mode star cluster state is acquired by applying Fourier transformations
on through mode 1 to mode n − 1 of the n-mode GHZ state. It is known that an
n-mode GHZ state can be generated by combining n copies of p-squeezed states by
using a beam splitter network described by an n × n unitary matrix

U (G,n) = B(1)1,2

( 1√
2

)
B(1)2,3

( 1√
3

)
· · · B(1)n−1,n

( 1√
n

)
F1 · · · Fn−1, (5.76)

where Fk represents the Fourier transformation on mode k, while B(1)jk (
√

R) represents
a beam splitter on modes j and k with energy reflectivity R. Fk is defined to be the
n × n identity matrix except for (Fk)kk = i , while B(1)jk (

√
R) is defined to be the

n × n identity matrix except for (B(1)jk (
√

R))jj = −(B(1)jk (
√

R))kk = −√
R and

(B(1)jk (
√

R))jk = (B(1)jk (
√

R))kj = √
1 − R. Therefore, an n-mode Gaussian star

cluster state can be generated by combining n copies of p-squeezed states by using
a beam splitter network described by an n × n unitary matrix
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U (S,n) = F1 · · · Fn−1U (G,n). (5.77)

Similar to the case of the n-mode Gaussian linear cluster states, an arbitrary n-mode
Gaussian star cluster state can be generated by using the least beam splitters.

5.3 Input Coupling

In general, quantum computation can be generously considered to be a unitary trans-
formation on an input state. In the context of one-way quantum computation, once
the input state is coupled with a cluster state, it is achieved by succession of single-
mode measurements. The topic of this section is how to handle the input state, or
equivalently, how to start the computation in the one-way scheme.

One idea is to generate the input state from the resource cluster state at the begin-
ning of computation. Since the one-way scheme is a universal model of quantum
computation, an arbitrary input state can be generated by measurements on the cluster
state. In this settings, the input state is embedded in the cluster state at the beginning.

Another situation is when the input state is prepared independently of the cluster
state. In this general case, the quantum computer opens its port for an arbitrary input
state, and works as a unitary gate on it. It is also applied to the case where the total
quantum computation is divided into sub-computations. In this case, the input state
of the succeeding computation is the output of the earlier computation.

In this section, we show three types of input-coupling schemes for one-way quan-
tum computation. The first scheme is a orthodox one which is based on a controlled-
Z gate. It is a natural result of the discussion in Sect. 4.2.4. The main theme in this
section is the other two schemes. One is based on quantum teleportation, while the
other is based on a squeezer. In all schemes, an arbitrary input state can be connected
with a cluster state. After the input coupling, one-way quantum computation can be
achieved by performing measurements on the cluster state.

In the following discussion, we do not impose any condition on input mode in,
thus it can be in an arbitrary state.

5.3.1 κ Representation, η Representation, and θ Representation

In this section, we introduce three types of notations for homodyne measurements:
κ representation, η representation, and θ representation (Fig. 5.4).

5.3.1.1 κ Representation

Consider that the annihilation operator of the mode to be measured is given by x̂ +i p̂.
We perform an operator D̂κ(κ) = ei κ

2�
x̂2

before the homodyne measurement with
the observable of the momentum operator p̂. This is the procedure of the homodyne
measurement in the κ representation. It corresponds to Fig. 4.13, where the operator
D̂ in Fig. 4.13 is given by D̂κ(κ). Since

http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_4
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Fig. 5.4 κ representation, η representation, and θ representation

D̂†
κ(κ)(x̂ + i p̂)D̂κ(κ) = x̂ + i( p̂ + κ x̂), (5.78)

the measurement with the observable p̂ after the operator D̂κ(κ) is applied to the
mode to be measured is equivalent to a measurement with the observable p̂ + κ x̂
without application of the operator.

5.3.1.2 η Representation

Consider that the annihilation operator of the mode to be measured is given by x̂ +i p̂.
We perform an operator D̂η(η) = e−i η

2�
p̂2

before the homodyne measurement with
the observable of the position operator x̂ . This is the procedure of the homodyne
measurement in the η representation. Since

D̂†
η(η)(x̂ + i p̂)D̂η(η) = x̂ + η p̂ + i p̂, (5.79)

the measurement with the observable x̂ after the operator D̂η(η) is applied to the
mode to be measured is equivalent to a measurement with the observable x̂ + η p̂
without application of the operator.

5.3.1.3 Comparison Between κ Representation and η Representation

Although the κ representation is almost equivalent to the η representation, there is a
slight difference in measurement bases which cannot be formulated in these represen-
tations. In the κ representation, a homodyne measurement with the observable p̂ can
be formulated by κ = 0, while that with the observable x̂ cannot be formulated. On
the other hand, in the η representation, a homodyne measurement with the observable
x̂ can be formulated by η = 0, while that with the observable p̂ cannot be formulated.

The common advantage in both representations is that calculations become sim-
pler compared with the θ representation.
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5.3.1.4 θ Representation

Consider that the annihilation operator of the mode to be measured is given by x̂ +i p̂.
We perform the homodyne measurement with the observable of x̂θ = x̂ cos θ +
p̂ sin θ . This is the homodyne measurement in the θ representation.

The advantage of this representation is that all homodyne measurement bases can
be formulated. However, calculations become complicated compared with the other
two representations.

5.3.1.5 κ Representation, η Representation, and θ Representation

The κ representation, η representation, and θ representation are equivalent to each
other except that the observable x̂ cannot be formulated in the κ representation, and
the observable p̂ cannot be formulated in the η representation.

The relationship between the κ representation and the θ representation is given
by

s = p̂ + κ x̂ = 1

sin θ
(x̂ cos θ + p̂ sin θ) = t

sin θ
, s = t

sin θ
, κ = 1

tan θ
.

(5.80)

Similarly, the relationship between the η representation and the θ representation
is given by

s = x̂ + η p̂ = 1

cos θ
(x̂ cos θ + p̂ sin θ) = t

cos θ
, s = t

cos θ
, η = tan θ.

(5.81)

These equations show that the homodyne measurement in the κ representation
and the η representation can be decomposed into a homodyne measurement with a
relative phase θ and an electric gain.

5.3.2 Controlled-Z-Based Input-Coupling Scheme

5.3.2.1 One-Way Quantum Computation Starting with CZ-Based
Input-Coupling Scheme

Although we have already mentioned the essence of the CZ -based scheme in
Sect. 4.2.3, we rewrite it in the context of input coupling, where the measurement
observable is p and we continue one-way quantum computation after the input cou-
pling.

http://dx.doi.org/10.1007/978-4-431-55019-8_4
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Fig. 5.5 One-way quantum computation starting with CZ -based input-coupling scheme 1

Consider a quantum circuit described in Fig. 5.5. The label in shows a mode
of an input state. It can be one mode of a multi-mode quantum state, in general.
The initial state of mode 1 is a zero eigenstate of the momentum operator, or a p-
squeezed state (which is infinitely squeezed in the ideal case). We assume that the
gain of the controlled-Z gate between modes in and 1 is gin1. The first three steps
on modes in and 1 are equivalent to the elementary one-way gate. Here, we assume
that the measurement variable ŝ for mode in is ŝ = D̂† p̂ D̂ = p̂ with D̂ = Î . The
labels of modes n and m show other resources, which are initially zero eigenstates
of momentum operators, or p-squeezed states, as well. Mode n represents a nearest
neighbor mode of mode 1, while mode m represents a nearest neighbor mode of mode
n. Although modes n and m are symbolically described as single modes in Fig. 5.5,
they can be generalized to the case where there are multiple nearest neighbor modes
of mode 1 and mode n, respectively. In addition, other modes are also acceptable
which are located at a distance of more than two from mode 1. We assume that
the gain of the controlled-Z gate between modes 1 and n is g1n , while that between
modes n and m is gnm . As a result, Fig. 5.5 shows the beginning of a one-way quantum
computation, where the information in mode in is first teleported to mode 1, followed
by the coupling between mode 1 and a cluster state consisting of modes n and m
(and the other modes).

We consider a transformation of the circuit described in Fig. 5.5. By using

ĈZ 1n(g)X̂1(−s) = X̂1(−s)Ẑn(−gs)ĈZ 1n(g), (5.82)

we can change the order of the feed-forward operator X̂1 and the controlled-Z
gate ĈZ 1n(g1n) by adding another feed-forward to mode n (Fig. 5.6). It shows the
beginning of a one-way quantum computation, where a cluster state consisting of
modes 1, n, and m (and the other modes) is used as a resource, and the input mode
is coupled with the cluster state using a controlled-Z gate.

The equivalence between Figs. 5.5 and 5.6 gives us the following statement on
the CZ -based input coupling scheme.

5.3.2.2 Summary of CZ-Based Input-Coupling Scheme

Consider a weighted cluster state. We assume that mode 1 of it is the destination of
the input coupling of mode in (Fig. 5.7). We describe the cluster state as
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Fig. 5.6 One-way quantum computation starting with CZ -based input-coupling scheme 2

∏

a∈N (1)

ĈZ1a(ga)|p = 0〉1|ψ〉C , (5.83)

where |ψ〉C represents the cluster state without mode 1. We define |φ〉in,L to be a
k-mode input state, where the label in represents the mode to be coupled, while L
represents the other modes. By performing the input coupling with the CZ -based
scheme (Fig. 5.6), the output state becomes

∏

a∈N (1)

ĈZ in,a(ga)Ŝin(log gin1)F̂in|φ〉in,L |ψ〉C , (5.84)

which is acquired from the equivalence between Figs. 5.5 and 5.6. In the special case
of gin1 = 1, the term of squeezing operation Ŝin(log gin1) vanishes.

5.3.3 Teleportation-Based Input-Coupling Scheme

5.3.3.1 Quantum Teleportation

The core of teleportation-based input coupling scheme is, literally, quantum
teleportation, whose diagram is shown in Fig. 5.8. Mode in represents an input mode,
while modes 1 and 2 represent two resource modes. In the following, we do not
impose any conditions for these three modes, thus they can be in any state.

We define the annihilation operators for modes in, 1, and 2 at (A) as

x̂in + i p̂in, x̂1 + i p̂1, x̂2 + i p̂2. (5.85)

We perform a controlled-Z gate with gain g on mode 1 and mode 2. The annihilation
operators for modes 1 and 2 at (B) become

(
x̂1B + i p̂1B

x̂2B + i p̂2B

)
=
(

x̂1 + i( p̂1 + gx̂2)

x̂2 + i( p̂2 + gx̂1)

)
. (5.86)
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Fig. 5.8 Teleportation-based input-coupling scheme

The input mode in and the resource mode 1 are combined by using a beam split-
ter. We choose the linear transformation matrix to be B(2)in1(

√
R) with the energy

reflectivity R. The linear transformation is given by

(
â′

in
â′

1

)
= B(2)in1(

√
R)

(
âin

â1

)
=
(√

1 − R −√
R√

R
√

1 − R

)(
âin

â1

)
, (5.87)

leading to the annihilation operators of modes in and 1 at (C):

(
x̂inC + i p̂inC

x̂1C + i p̂1C

)
=
(√

1 − Rx̂in − √
Rx̂1B + i(

√
1 − R p̂in − √

R p̂1B)√
Rx̂in + √

1 − Rx̂1B + i(
√

R p̂in + √
1 − R p̂1B)

)
. (5.88)

We perform homodyne measurements on modes in and 1. We utilize the θ rep-
resentation for the measurements on modes in and 1 (Sect. 5.3.1). Therefore, the
measurement observables t̂in, t̂1 on modes in and 1 are

t̂k = x̂k cos θk + p̂k sin θk, k = in, 1. (5.89)

Without using the position operators x̂k for the resource modes k = 1, 2, the
quadrature operators for the output mode k = 2 at (C), x̂2C + i p̂2C = x̂2B + i p̂2B ,
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Fig. 5.9 Decomposition of operation

can be reformulated as
(

x̂2C

p̂2C

)
= Mtele

(
x̂in

p̂in

)
+ MM

(
t̂in
t̂1

)
+
(−1/g 0

0 1

)(
p̂1
p̂2

)
, (5.90)

where matrices Mtele and MM are given by

Mtele = 1

2 sin θ−
√

R(1 − R)

( 1
g 0
0 g

)(
cos θ+ + cos θ− sin θ+ + (1 − 2R) sin θ−

− sin θ+ + (1 − 2R) sin θ− cos θ+ − cos θ−

)
,

(5.91)

MM = 1

sin θ−
√

R(1 − R)

( 1
g 0
0 g

)(−√
1 − R cos θ1 −√

R cos θin√
1 − R sin θ1

√
R sin θin

)
. (5.92)

Here, we have defined θ± = θin ±θ1. Note that the reformulation above holds before
the measurements are carried out.

Equation (5.90) consists of three terms. The first term represents the main opera-
tion on the input mode in, which is determined by the homodyne measurement angles
θk . We cannot choose sin θ− = 0 since denominators of Mtele and MM become zero.
The second term derives from the measurement variables t̂k . The last term consists
of the momentum operators of mode 1 and mode 2 at (A) in Fig. 5.8.

When the measurements on modes in and 1 have been carried out, the quadratures
of the output mode becomes

(
x̂2C

p̂2C

)
= Mtele

(
x̂in

p̂in

)
+ MM

(
tin
t1

)
+
(−1/g 0

0 1

)(
p̂1
p̂2

)
, (5.93)

where tin and t1 represent measurement results of the measurement variables t̂in and
t̂1, respectively. By performing feed-forward operations on mode 2 so that the random
displacements in phase space are perfectly cancelled out, the quadrature operators
of the output mode at (D) become

(
x̂2D

p̂2D

)
= Mtele

(
x̂in

p̂in

)
+
(−1/g 0

0 1

)(
p̂1
p̂2

)
. (5.94)

This is the general form of the input-output relation for Fig. 5.8.
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In the following, we consider a special case with g = 1 and R = 1

2
. Mtele and

MM become

Mtele = 1

sin θ−

(
cos θ+ + cos θ− sin θ+

− sin θ+ cos θ+ − cos θ−

)
, (5.95)

MM =
√

2

sin θ−

(− cos θ1 − cos θin

sin θ1 sin θin

)
. (5.96)

Mtele can be decomposed into

Mtele = R

(
−1

2
θ+
)

S

(
ln tan

1

2
θ−
)

R

(
−1

2
θ+
)

(5.97)

=
(

cos θ cosh r − sinh r cosh r sin θ
− cosh r sin θ cos θ cosh r + sinh r

)
, (5.98)

where we have defined r = ln tan
1

2
θ−, θ = θ+. Two matrices R(θ) and S(r):

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, S(r) =

(
e−r 0
0 er

)
(5.99)

represent a rotation operation and a squeezing operation, respectively. Therefore, the

operation is a rotation with the angle θ = −1

2
θ+, followed by a squeezing operation

with the squeezing parameter r = ln tan
1

2
θ−, and another rotation with the angle

θ = −1

2
θ+, where r ∈ R and 0 ≤ θ < 2π (Fig. 5.9). Note again that these two

parameters are determined by the homodyne measurement angles.

5.3.3.2 κ Representation

We assume that g = 1, R = 1

2
. The operation matrix Mtele can be reformulated in

the κ representation:

Mtele = 1

κin − κ1

(−2κinκ1 −κin − κ1
κin + κ1 2

)
. (5.100)

Note that the measurement with the observable x̂ cannot be formulated in the κ
representation. The denominator κin − κ1 �= 0 corresponds to sin θ− = 0 in the θ
representation.
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5.3.3.3 η, κ Representation

We assume that g = 1, R = 1

2
. We here use the η representation for mode in, while

the κ representation for mode 1. The operation matrix Mtele can be reformulated as

Mtele = 1

1 − κ1ηin

( −2κ1 −(1 + κ1ηin)

1 + κ1ηin 2ηin

)
. (5.101)

Note that the measurements with the observables p̂in and x̂1 cannot be formulated
since we are now using the η representation and the κ representation for modes in
and 1, respectively. The denominator 1 − κ1ηin �= 0 corresponds to sin θ− = 0.

5.3.3.4 Case with p-Squeezed States in Modes 1 and 2

Although the discussion above is independent of the initial states in modes 1 and 2,
we consider a special case where they are in p-squeezed states. In the following, we
use quadrature operators which specify particular quantum states (Sect. 3.2.8).

We describe two p-squeezed-state modes as

x̂k + i p̂k = erk x̂ (0)k + ie−rk p̂(0)k , k = 1, 2. (5.102)

In this case, the quantum state at (B) in Fig. 5.8 is an approximate two-mode cluster
state. The output-mode quadratures in Fig. 5.8 are given by

(
x̂2D

p̂2D

)
= Mtele

(
x̂in

p̂in

)
+
(−1/g 0

0 1

)(
e−r1 p̂(0)1

e−r2 p̂(0)2

)
, (5.103)

where e−rk p̂(0)k represents the squeezing component of the resource mode k. In the
limit of infinite squeezing rk → ∞, the ideal operation:

(
x̂2D

p̂2D

)
= Mtele

(
x̂in

p̂in

)
(5.104)

can be achieved.

5.3.3.5 One-Way Quantum Computation Starting with Teleportation-Based
Input-Coupling Scheme

Next, we consider the teleportation-based input-coupling scheme for one-way quan-
tum computation. It is given by replacing the CZ gate for the input coupling in Fig. 5.5
with the teleportation. The fundamental circuit is described in Fig. 5.10.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Fig. 5.10 One-way quantum computation starting with teleportation-based input-coupling scheme
1

The definition of mode labels is the same as that in Sect. 5.3.2, except that we
have an additional mode labeled by “2”, and mode n represents a nearest neighbor
mode of mode 2. The initial states of modes 1, 2, n,m are zero eigenstates of the
momentum operators, or p-squeezed states (which are infinitely squeezed in the
ideal case). Note again that mode in can be one mode of a multi-mode input state. As
a result, Fig. 5.10 shows the beginning of a one-way quantum computation, where
the information in mode in is first transmitted to mode 2 with Gaussian operations
applied on it through quantum teleportation, followed by coupling between mode 2
and a cluster state consisting of modes n and m (and the other modes).

We exchange the feed-forward and the CZ gate on modes 2 and n by using

ĈZ 2n X̂2 Ẑ2 = X̂2 ẐnĈZ 2n Ẑ2 = X̂2 Ẑ2 ẐnĈZ 2n . (5.105)

We find that Fig. 5.10 is equivalent to Fig. 5.11, which leads to the following statement
on the teleportation-based input coupling scheme.

5.3.3.6 Summary of Teleportation-Based Input-Coupling Scheme

Consider a weighted cluster state. We assume that modes 1 and 2 of it are a resource
and the destination of the input coupling of mode in, respectively (Fig. 5.12).

Fig. 5.11 One-way quantum
computation starting with
teleportation-based input-
coupling scheme 2
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1
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n

m
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gnm

CZ

g2n

CZ

g12

BS2

1/2
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CZ

Fig. 5.12 Teleportation-based input-coupling scheme

We describe the cluster state as

ĈZ12(g12)
∏

a∈N (2)\1

ĈZ2a(g2a)|p = 0〉1|p = 0〉2|ψ〉C , (5.106)

where |ψ〉C represents the cluster state without modes 1 and 2. We define |φ〉in,L

to be a k-mode input state, where the label in represents the mode to be coupled,
while L represents the other modes. By performing the input coupling with the
teleportation-based scheme (Fig. 5.11), the output state becomes

∏

a∈N (2)\1

ĈZ in,a(g2a)M̂tele in|φ〉in,L |ψ〉C , (5.107)

which is acquired from the equivalence between Figs. 5.10 and 5.11.
In many cases, we usually choose g12 = 1 and R = 1

2 , for simplicity. The

operation given by the matrix M̂tele in can be controlled by the measurement bases at
the homodyne detections. By choosing θ− = π

2 , θ+ = 0, we can set it to the identity

operator: M̂tele in = Î .

5.3.4 Squeezer-Based Input-Coupling Scheme

In the teleportation-based input-coupling scheme, two modes of a cluster state is
consumed in order to couple one mode of an input state. This is a requirement
derived from quantum teleportation, where a two-mode entangled state is used as a
resource. One can easily imagine that it is not the minimum configuration.

In this section, we present a simpler input-coupling scheme composed of a one-
mode resource state.
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Fig. 5.13 Squeezer

5.3.4.1 Squeezer

Consider a quantum circuit described in Fig. 5.13, which is usually referred to as a
single-mode squeezer.

Similar to the case of the teleportation-based scheme, mode in represents an input
mode, while mode 1 represents a resource mode. In the following, we do not impose
any conditions for these two modes, thus they can be in any state.

We define the annihilation operators at the beginning as

x̂in + i p̂in, x̂1 + i p̂1. (5.108)

At the first step, these two modes are combined by using a beam splitter. We choose
the linear transformation matrix to be B(2)in1(

√
R) with the energy reflectivity R,

which is identical to the teleportation-based scheme. The quadrature operators are
transformed into
[√

1 − Rx̂in − √
Rx̂1

]
+ i
[√

1 − R p̂in − √
R p̂1

]
,
[√

Rx̂in + √
1 − Rx̂1

]
+ i
[√

R p̂in + √
1 − R p̂1

]
.

(5.109)

Mode in is subject to be measured in the measurement basis |x〉. Thus the mea-
surement variable ŝin is given by

ŝin = √
1 − Rx̂in − √

Rx̂1. (5.110)

Without using the position operator x̂1 for the resource mode k = 1, the quadrature
operators for the output mode k = 1 can be reformulated as

[ 1√
R

x̂in −
√

1 − R

R
ŝin

]
+ i
[√

R p̂in + √
1 − R p̂1

]
. (5.111)

Note that the reformulation above holds before the measurement is carried out. On
the contrary, when the measurement on mode in has been carried out indeed, the
quadratures of the output mode becomes

[ 1√
R

x̂in −
√

1 − R

R
sin

]
+ i
[√

R p̂in + √
1 − R p̂1

]
, (5.112)
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where sin represents the measurement result of the measurement variable ŝin. By
performing the feed-forward operation (displacement operation) based on the mea-
surement result:

X̂1

(√1 − R

R
sin

)
, (5.113)

we get

1√
R

x̂in + i
[√

R p̂in + √
1 − R p̂1

]
. (5.114)

This is the general input-output relationship of the circuit shown in Fig. 5.13.

5.3.4.2 Case with p-Squeezed State in Mode 1

Although the discussion above is independent of the initial state in mode 1, we
consider a special case where mode 1 is in a p-squeezed state. In the following, we
use quadrature operators which specify particular quantum states (Sect. 3.2.8).

We describe the p-squeezed-state mode as

x̂1 + i p̂1 = er1 x̂ (0)1 + ie−r1 p̂(0)1 . (5.115)

The output-mode quadratures in Fig. 5.13 are given by

1√
R

x̂in + i
[√

R p̂in + √
1 − Re−r1 p̂(0)1

]
, (5.116)

where e−r1 p̂(0)1 represents the squeezing component of the resource mode 1. In the
limit of infinite squeezing r1 → ∞, they become

1√
R

x̂in + i
√

R p̂in. (5.117)

It shows a squeezing operation with the squeezing operator Ŝ(r), where r =
− log 1√

R
.

5.3.4.3 Case with Different Measurement Angle

Although we have assumed above that the measurement observable is x̂ , we can
extend the discussion to a general case. When we measure x̂ cos θ + p̂ sin θ at the
homodyne detection, the input-output relationship becomes

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Fig. 5.14 Squeezer-based input-coupling scheme with different measurement angle

Fig. 5.15 One-way quan-
tum computation starting
with squeezer-based input-
coupling scheme 1

in

1

n

m

BS2

R

x

X

 Sqrt[(1 - R)/R]
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g

(
x̂out

p̂out

)
=
(

1√
R

1−R√
R

tan θ

0
√

R

)(
x̂in

p̂in

)
+
(−√

1 − R tan θ p̂1√
1 − R p̂1

)
. (5.118)

Note that the gain of the feed-forward operation should be changed to
√

1−R
R sec θ

(Fig. 5.14).

5.3.4.4 One-Way Quantum Computation Starting with Squeezer-Based
Input-Coupling Scheme

We then consider the squeezer-based input-coupling scheme for one-way quantum
computation. Similar to the teleportation-based case, it is given by replacing the CZ

gate for the input coupling in Fig. 5.5 with the squeezer. The fundamental circuit is
described in Fig. 5.15.

The definition of mode labels is the same as that in Sect. 5.3.2. The initial states of
modes 1, n,m are zero eigenstates of the momentum operators, or p-squeezed states
(which are infinitely squeezed in the ideal case). Note again that mode in can be one
mode of a multi-mode input state. As one can see, Fig. 5.15 shows the beginning of a
one-way quantum computation, where the information in mode in is first transmitted
to mode 1 with a squeezing transformation applied on it. It is then coupled with a
cluster state consisting of modes n and m (and the other modes) by using a CZ gate
with gain g.

Transformations of Fig. 5.15 give us the interpretation of the squeezer-based
scheme. By using

ĈZ1n(g)X̂1(s) = X̂1(s)Ẑn(gs)ĈZ1n(g), (5.119)

it is transformed into Fig. 5.16.
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Fig. 5.16 One-way quantum computation starting with squeezer-based input-coupling scheme 2

Next, we consider an exchange of the CZ gate on modes 1 and n, and the input-
coupling interaction on modes in and 1. In the case of the CZ -based scheme, these
two gates commute because both are CZ gates. In the case of the teleportation-based
scheme, they commute as well because they do not have common modes which they
work on. However, in the case of the squeezer-based scheme, they do not commute.
Here, we use

ĈZ1n(g)B̂
(2)
in1(

√
R) = ĈZin n

(
g

√
R

1 − R

)
B̂(2)in1(

√
R)ĈZ1n

( g√
1 − R

)
, (5.120)

leading to the revised version of the circuit shown in Fig. 5.17. Note that an additional
CZ gate on modes in and n is inserted after the exchanged two gates.

Although we have so far considered exchanges of quantum gates where unitary
operations themselves are preserved, we finally transform the quantum circuit so that
the transformation preserves its input-output relation when we take account of the
measurement on mode in. Consider the CZ gate on mode in and mode n:

⎛
⎜⎜⎝

x̂ ′
in

p̂′
in

x̂ ′
n

p̂′
n

⎞
⎟⎟⎠ = CZ (G)

⎛
⎜⎜⎝

x̂in

p̂in

x̂n

p̂n

⎞
⎟⎟⎠ , CZ (G) =

⎛
⎜⎜⎝

1 0 0 0
0 1 G 0
0 0 1 0
G 0 0 1

⎞
⎟⎟⎠ . (5.121)

It mixes two modes in a way that x̂n and x̂in are added to p̂in and p̂n with gain
G = g

√
R/(1 − R), respectively. Note that the addition of x̂n to p̂in does not affect

the succeeding measurement, since its measurement variable is x̂ . On the other hand,
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Fig. 5.17 One-way quantum computation starting with squeezer-based input-coupling scheme 3



126 5 Cluster States and One-Way Quantum Computation

in

1

n

m

CZ

gnm

CZ

g/Sqrt[1-R]

BS2

R

x

X
 Sqrt[(1 - R)/R]

Z
g/Sqrt[R(1-R)]

Fig. 5.18 One-way quantum computation starting with squeezer-based input-coupling scheme 4

the identical transmission of x̂in to p̂n is achieved by changing the feed-forward gain
from mode in to mode n since x̂in is measured right after the CZ gate. Therefore,
Fig. 5.17 can be transformed into Fig. 5.18 by removing the CZ gate and changing
the feed-forward gain.

It shows the beginning of a one-way quantum computation, where a cluster state
consisting of modes 1, n, and m (and the other modes) is used as a resource, and the
input mode is coupled with the cluster state using a single-mode squeezer.

The equivalence between Figs. 5.15 and 5.18 gives us the following statement on
the squeezer-based input coupling scheme.

5.3.4.5 Summary of Squeezer-Based Input-Coupling Scheme

Consider a weighted cluster state. We assume that mode 1 of it is the destination of
the input coupling of mode in (Fig. 5.19). We describe the cluster state as

∏

a∈N (1)

ĈZ1a

( g√
1 − R

)
|p = 0〉1|ψ〉C , (5.122)

where |ψ〉C represents the cluster state without mode 1. We define |φ〉in,L to be a
k-mode input state, where the label in represents the mode to be coupled, while L
represents the other modes. By performing the input coupling with the squeezer-
based scheme (Fig. 5.18), the output state becomes

∏

a∈N (1)

ĈZ in,a(g)Ŝin(r)|φ〉in,L |ψ〉C , r = − log
1√
R
, (5.123)

or equivalently,

Ŝin(r)
∏

a∈N (1)

ĈZ in,a(ge−r )|φ〉in,L |ψ〉C , r = − log
1√
R
, (5.124)

which is acquired from the equivalence between Figs. 5.15 and 5.18.
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In the case of R = 1, the squeezer-based input-coupling scheme fails, since the
gain of the CZ gate on modes 1 and a ∈ N (1) in Eq. (5.122) becomes infinity. In
the case of R = 0, it fails as well, since the squeezing level r in Eq. (5.123) and
Eq. (5.124) becomes infinity. In the other cases of 0 < R < 1, the input coupling is
achieved successfully

An additional squeezing operation on mode in is applied through the input cou-
pling. It derives from the fact that it is based on the single-mode squeezer. No matter
how we choose the reflectivity R, the level of its squeezing r cannot be set to zero.
In many cases, we usually choose R = 1

2 , for simplicity.

5.3.5 Relation Between Squeezer-Based Input-Coupling Scheme
and Teleportation-Based Input-Coupling Scheme

Before we move onto the next section, we mention that the teleportation-based input-
coupling scheme can be decomposed into the squeezer-based input-coupling, fol-
lowed by an elementary one-way gate. It can be understood by considering a special
case of Fig. 5.15, as shown in Fig. 5.20, where the reflectivity R is R = 1/2, the gain
of the CZ gate is g = √

1 − R, and the number of modes in N (1) is equal to one.
An elementary one-way gate is then performed with the operator D̂ = Î , leading

to the measurement variable p̂ in mode 1. The measurement outcome is utilized
in a feed-forward process to its nearest neighbor mode n. By following the same
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discussion above, we find that it can be transformed into Fig. 5.21, which is nothing
but the schematic of the teleportation-based input coupling scheme.

Although the schematic with the observable p̂ at the second measurement shows
the equivalence between the squeezer-based and the teleportation-based coupling, it
can be extended to D̂ p̂ D̂† with an arbitrary diagonal unitary operator D̂. Especially,
nonlinear measurements other than homodyne detections are also acceptable. On the
other hand, the second measurement in the teleportation-based scheme is restricted
to homodyne detections, because it is based on Bell measurements. Therefore, it
can be considered as a feature of the squeezer-based input coupling scheme, which
cannot be acquired by the teleportation-based input-coupling scheme.

5.4 Reshaping of Cluster States

A sufficiently large cluster state is the essential resource for one-way quantum com-
putation. Once a desired operation is determined, the cluster state is transformed so
that the operation can be carried out through the succeeding measurements. Reshap-
ing of cluster states, which we address in this section, is a tool for transforming
elementary cluster states into another shape of cluster states [5, 6].

In general, reshaping of cluster states can be categorized into two types: combining
two cluster states, and removing unwanted modes in the cluster states. In the former
case, a larger-scale cluster state is generated from smaller-scale cluster states. An
example of its application is a case where a cluster state of appropriate-size for a
computation cannot be prepared directly, although one can generate parts of it. The
total cluster state can be constructed by combining them. It is known that a special-
shaped cluster state of arbitrary size can be generated by combining two-mode cluster
states repeatedly (Chap. 10, [7]). On the other hand of the latter case, a smaller cluster
state specialized for a particular one-way quantum computation is generated from a
larger-scale general cluster state. In this process, cluster modes are removed with or
without preserving mode connections to their nearest neighbors.

In general, the most natural scheme to reshape cluster states is to use CZ gates for
connections, and inversed CZ gates for disconnections (Sect. 5.4.1). To the contrary,
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we will discuss other schemes where only beam splitters, homodyne detections, and
feed-forwards (displacements) are involved.

5.4.1 Reshaping of Cluster States with Controlled-Z Gates

An n-mode cluster state is defined to be the state which is acquired by combining n

copies of |p = 0〉 states using weighted CZ operators ĈZij(gij) = e
i
�

gij x̂i x̂ j . There-
fore, the most natural scheme to reshape cluster states is to use CZ operators for

connections, and inversed CZ operators Ĉ†
Zij(gij) = e− i

�
gij x̂i x̂ j for disconnections.

5.4.2 Erasing (Removal of Unwanted Modes)

The first tool for reshaping of cluster states is erasing of an unwanted mode with
eliminating connections to its nearest neighbors.

Consider an n-mode cluster state. We define x̂ j and p̂ j to be the position and
momentum operators of the cluster-state mode j , respectively, where j = 1, . . . , n
represent the labels of modes. By assuming that each gain of the CZ gate on mode
j and k for generation of the cluster state is given by gjk(=gkj), the nullifiers of the
cluster state becomes

p̂a −
∑

a′∈N (a)

gaa′ x̂a′ = 0, a = 1, . . . , n, (5.125)

where N (a) is the set of nearest neighbor modes of mode a. In the following, we
assume that N (∗) represents the set of nearest neighbors before erasing.

We consider that mode k is to be erased. The erasing of mode k is achieved in the
following procedure:

• Measure mode k with the observable x̂ , leading to a result s.
• Perform the feed-forward operation on each nearest neighbor mode j of mode k,

which is defined as the momentum displacement operator Ẑ j (−gkjs).

We define x̂ ′
m and p̂′

m to be the position and momentum operators of mode m after
reshaping. When m /∈ N (k), they are not changed from x̂m and p̂m . When m ∈ N (k),
the momentum operator becomes p̂′

m = p̂m − gkms, while x̂ ′
m is not changed. As a

result, we acquire the new set of nullifiers:

p̂′
m −

∑

a∈N (m)

gmax̂ ′
a = 0, (m /∈ N (k)),

p̂′
m −

∑

a∈N (m)\k

gmax̂ ′
a = 0, (m ∈ N (k)), (5.126)
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Fig. 5.22 Wire shortening

which shows mode k is successfully erased.

5.4.3 Wire Shortening (Shortening of Connections)

In the mode erasing described in the previous section, connections to nearest neighbor
modes of the erased mode are eliminated. Compared with the erasing of modes,
we address the scheme of wire shortening, where an unwanted mode is removed
with preserving connections to its nearest neighbors. It is achieved by transferring
connections between the mode to be removed and all but one nearest neighbors, to
the remaining nearest neighbor mode.

Wire shortening is considered as an example of the CZ -based input-coupling
scheme, where the input state is also a part of the cluster state. Consider a cluster
state described by

∏

a∈N (1)

ĈZ 1,a(g1a)|φ〉i L |p = 0〉1|ψ〉R . (5.127)

Its graph is shown in Fig. 5.22. Here, |φ〉iL represents the cluster state on the left side
of mode i , where mode i is included. |ψ〉R represents the cluster state on the right
side of mode 1, where mode 1 is excluded. In the following, N (1) is the set of nearest
neighbor modes of mode 1 before wire shortening. Note that mode i is a member
of N (1). We assume that mode i and mode 1 correspond to mode in and mode 1 in
Sect. 5.3.2. By performing transmission of mode i to mode 1, the resulting state is
given by

∏

a∈N (1)\i

ĈZ i,a(g1a)Ŝi (log g1i )F̂i |φ〉i L |ψ〉R . (5.128)

In the case of the unity gain g1i = 1, the additional squeezing operator vanishes.
Note that an inevitable Fourier operator is also applied to mode i . It works as a phase
rotation of the cluster state. However, by performing the wire shortenings twice, the
phase rotation becomes a sign flip. By performing additional wire shortenings twice
(four times in total), the effect of phase rotation is canceled.
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Fig. 5.23 Connection without measurement (before connection)

5.4.4 Connection Without Measurement

From this section, we move on to the second type of cluster reshaping—connections
of cluster states. Here, we show a scheme to connect two cluster states without
measurements.

Consider that there exist two cluster states as shown in Fig. 5.23. We label two
modes to be coupled in each cluster state as A and B. We assume that the nearest
neighbor modes of mode A are ai , while those of mode B are bi . In general, the
number of nearest neighbor modes of mode A or B may be more than one. These
modes are distinguished by the subscript i . We assume that the two cluster states do
not have triangle structures which include mode A or mode B. A subset of nullifiers
of two cluster states is given by

p̂A −
∑

ai ∈N (A)

gai x̂ai , p̂ai − gai x̂A −
∑

k∈N (ai )\A

gk x̂k, (5.129)

p̂B −
∑

bi ∈N (B)

gbi x̂bi , p̂bi − gbi x̂B −
∑

k∈N (bi )\B

gk x̂k, (5.130)

where each g with a subscript represents the corresponding edge weight of the cluster
state. Note that the other nullifiers do not have position nor momentum operators of
modes A and B.

The only procedure to connect these two cluster states is to combine two modes
A and B by using a beam splitter. We choose B(2)AB(

1√
2
) as the linear transformation

of the beam splitter. As a result, the above subset of nullifiers becomes
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Fig. 5.24 Connection without measurement (after connection)

1√
2

p̂A + 1√
2

p̂B −
∑

ai ∈N (A)

gai x̂ai , (5.131)

p̂ai − gai√
2

x̂ A − gai√
2

x̂B −
∑

k∈N (ai )\A

gk x̂k, (5.132)

− 1√
2

p̂A + 1√
2

p̂B −
∑

bi ∈N (B)

gbi x̂bi , (5.133)

p̂bi + gbi√
2

x̂ A − gbi√
2

x̂B −
∑

k∈N (bi )\B

gk x̂k, . (5.134)

Since linear combinations of nullifiers are also nullifiers, we get the following new
nullifiers from Eqs. (5.131) and (5.133):

p̂A − 1√
2

∑

ai ∈N (A)

gai x̂ai + 1√
2

∑

bi ∈N (B)

gbi x̂bi , (5.135)

p̂B − 1√
2

∑

ai ∈N (A)

gai x̂ai − 1√
2

∑

bi ∈N (B)

gbi x̂bi . (5.136)

The set of Eqs. (5.132), (5.134), (5.135), and (5.136) is the nullifier subset of the
new cluster state. Note that the other nullifiers are not changed by the beam splitter
transformation. Therefore, its graph is given by Fig. 5.24.

Compared to the original graph shown in Fig. 5.23, the weight gai between mode
A and its nearest neighbor mode ai is changed to 1√

2
gai . At the same time, mode

ai is also connected to mode B with the same weight 1√
2
gai . In a similar manner,

the weight gbi between mode B and its nearest neighbor mode bi is changed to
1√
2
gbi , while mode bi is connected to mode A with the sign-flipped weight − 1√

2
gbi .

The sign flip originates in the law of conservation of energy at the beam splitter,
thus it is unavoidable. The transformation of edges can be considered that the edges
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Fig. 5.25 Connection with a measurement (before connection)

Fig. 5.26 Connection with a measurement (after connection)

between mode A (or B) and its nearest neighbor modes become shared with the
nearest neighbor modes of mode B (or A).

In this connection scheme, the interaction gains are changed through the con-
nection of cluster states. In addition, the gains between mode A and nearest neigh-
bor modes of mode B are sign flipped. As a consequence of the latter property,
unweighted cluster states cannot be created.

5.4.5 Connection with a Measurement

By adding a single-mode measurement to the cluster connection scheme without
measurement, we get another type of cluster connection schemes (Fig. 5.25).

The additional procedure can be considered as the erasing of mode A. For that
purpose, mode A is measured with the measurement observable x̂ . To complete the
process, the feed-forward operation on each nearest neighbor mode of mode A is
performed. As a result, the graph of the cluster state is transformed to Fig. 5.26.

Although we have so far described the procedure by decomposing it into two
steps: connection without measurement and erasing, it can be directly understood as
an example of the squeezer-based input coupling scheme, where the input state is
another cluster state.
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Fig. 5.27 Connection with two measurements (before connection)

We define two cluster states before connection without measurement, which is
shown in Fig. 5.23, to be

∏

ai ∈N (A)

ĈZ A,ai (gai )|p = 0〉A|ψ〉L , (5.137)

∏

bi ∈N (B)

ĈZ B,bi (gbi )|p = 0〉B |φ〉R . (5.138)

Here, |ψ〉L and |φ〉R represent the cluster states on the left and right sides of mode
A and B, where mode A and B are excluded, respectively. The left side cluster state
including mode A (Eq. (5.137)) corresponds to the cluster state in the squeezer-based
coupling, while mode B in the right side cluster state (Eq. (5.138)) corresponds to
the input mode to be coupled with. By performing the transmission of mode B to
mode A through the squeezer-based coupling, the state becomes

∏

ai ∈N (A)

ĈZ B,ai (
gai√

2
)
∏

bi ∈N (B)

ĈZ B,bi (
gbi√

2
)|p = 0〉B |φ〉R |ψ〉L , (5.139)

which is equivalent to Fig. 5.26. Here, we have used ŜB(r)ĈZ B,bi (g) = ĈZ B,bi (ger )

ŜB(r) and ŜB(r)|p = 0〉B = |p = 0〉B .
Although the interaction gains are changed through the connection of the cluster

states, the signs of gains are not flipped. Therefore, by preparing two cluster states
so that gai = gbi = √

2 and the other gains are equal to 1, an unweighted cluster
state can be created. This is a feature of the connection scheme with a measurement,
which does not hold in the scheme without measurement.

5.4.6 Connection with Two Measurements

The last connection scheme involves two measurements on two cluster states. It can
be considered as an example of the teleportation-based input coupling scheme, where
the input state is another cluster state (Fig. 5.27).

Consider two cluster states, one contains mode i and the other contains mode 1
and mode 2. We assume that mode 1 does not have nearest neighbor modes other
than mode 2. We define these two cluster states as
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Fig. 5.28 Connection with two measurements (after connection)

|φ〉i L , ĈZ12(g12)
∏

a∈N (2)\1

ĈZ2a(g2a)|p = 0〉1|p = 0〉2|ψ〉R . (5.140)

Here, |φ〉i L represents the cluster state on the left side of mode i , where mode i is
included. |ψ〉R represents the cluster state on the right side of mode 2, where mode
1 and 2 are excluded. We assume that modes i , 1, and 2 correspond to modes in, 1,
and 2 in the teleportation-based coupling (Sect. 5.3.3), respectively. By performing
the transmission of mode i to mode 2 through the teleportation-based coupling, the
state becomes

∏

a∈N (2)\1

ĈZ i,a(g2a)M̂tele i |φ〉i L |ψ〉R . (5.141)

By considering a special case of g12 = 1, R = 1
2 , θ− = π

2 , θ+ = 0, the operator

M̂tele i on mode i becomes an identity operator. As a result, the resulting cluster
state is

∏

a∈N (2)\1

ĈZ i,a(g2a)|φ〉i L |ψ〉R . (5.142)

The illustration of the cluster state is shown in Fig. 5.28.
In this connection scheme, the interaction gains are not changed. Therefore,

unweighted cluster states can be created by using two unweighted cluster states.

5.5 Universality of One-Way Quantum Computation

5.5.1 Universality

We have described universality of continuous-variable (CV) quantum computation
in Sect. 3.6.1. An arbitrary quantum computation can be achieved by combining the
following three components:

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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1. arbitrary one-mode Gaussian operation,
2. a two-mode Gaussian operation,
3. a one-mode non-Gaussian operation.

In this section, we briefly summarize how universality can be achieved in one-way
quantum computation.

5.5.2 Arbitrary One-Mode Gaussian Operations

5.5.2.1 Displacement Operations

We take a momentum displacement operator Ẑ(s) = e
i
�

sx̂ for the operator D̂(x̂) in
the elementary circuit for one-way quantum computation (one-mode teleportation
circuit, Sect. 4.2.3). By using Eq. (4.56), the observable is given by

p̂′ = p̂ + f ′(x̂) = p̂ + s. (5.143)

It can be achieved by a homodyne detection with the observable p̂, followed by the
addition of s. By using Eq. (4.58), the output-mode quadratures become

x̂out + i p̂out = −( p̂(in) + s)+ i(x̂ (in)). (5.144)

Note that we have assumed that the resource state is an ideal state |p = 0〉.

5.5.2.2 One-Mode Symplectic Operations with CZ-Based Input-Coupling
Scheme

We consider implementation of one-mode symplectic operations:

(
x̂out

p̂out

)
=
(

a b
c d

)(
x̂ (in)

p̂(in)

)
, ad − bc = 1, (5.145)

where x̂ (in)+ i p̂(in) shows the annihilation operator of an input mode. The condition
ad − bc = 1 derives from the conservation of commutation relation. Therefore, the
degrees of freedom of one-mode symplectic operations is three.

5.5.2.3 One-Step Operation

We use a quadratic phase operator:

D̂(x̂) = e
i

2�
κ x̂2
, (5.146)

http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_4
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for the diagonal operator D̂(x̂). By using Eq. (4.56), the observable is given by

p̂′ = p̂ + f ′(x̂) = p̂ + κ x̂ . (5.147)

It can be achieved by a homodyne detection. By using Eq. (4.58), the quadrature
operators of the output mode become

x̂out + i p̂out = −( p̂(in) + κ x̂ (in))+ i x̂ (in). (5.148)

Note that we have assumed that the resource state is an ideal state |p = 0〉. By using
matrices, it can be formulated as

(
x̂out

p̂out

)
= M(κ)

(
x̂ (in)

p̂(in)

)
=
(−κ −1

1 0

)(
x̂ (in)

p̂(in)

)
=
(

0 −1
1 0

)(
1 0
κ 1

)(
x̂ (in)

p̂(in)

)
.

(5.149)

It shows that F̂ D̂(x̂) is implemented, which corresponds to Eq. (4.53).
Note that the discussion above is based on the κ representation of the homodyne

detection. Thus, a measurement with the observable x̂ cannot be formulated. How-
ever, since the measurement with the observable x̂ in the CZ -based input-coupling
scheme corresponds to the erasing of the mode (Sect. 5.4.2), operations cannot be
implemented. Therefore, we do not have to take account of this case.

5.5.2.4 Multi-Step Operations

By concatenating the operators F̂ D̂k(x̂), we can acquire an arbitrary one-mode sym-
plectic operators.

One Step and Two Steps

The degrees of freedom of the matrices M(κ1) and M(κ2)M(κ1) for one-step and
two-step operations are one and two, respectively. On the other hand, the degrees
of freedom of one-mode symplectic operations is three. Therefore, universality for
one-mode symplectic operations cannot be achieved by using one-step and two-step
operations.

Three Steps

The degrees of freedom of the matrix M(κ3)M(κ2)M(κ1) for a three-step operation is
three. On the other hand, the degrees of freedom of one-mode symplectic operations

http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_4
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is three. Therefore, there is a possibility that universality for one-mode symplectic
operations can be achieved by using three-step operations.

From the equation

M(κ3)M(κ2)M(κ1) =
(−κ3(κ2κ1 − 1)+ κ1 −κ3κ2 + 1

κ2κ1 − 1 κ2

)
=
(

a b
c d

)
, (5.150)

we find that we can implement an arbitrary one-mode symplectic operation with
d �= 0 by choosing

κ1 = 1 + c

d
, κ2 = d, κ3 = 1 − b

d
. (5.151)

When d = 0, we have to choose κ2 = 0, leading to the operations:

(
a b
c d

)
=
(
κ3 + κ1 1

−1 0

)
. (5.152)

Therefore, although we can achieve an arbitrary a ∈ R by choosing κ1 or κ3
appropriately, we cannot set b, c other than b = 1, c = −1.

In summary, we cannot implement the following operations:

{(
a b
c d

) ∣∣∣∣ad − bc = 1, d = 0, b �= 1

}
. (5.153)

Therefore, universality is not achieved.

Four Steps

We solve the equation

M(κ4)M(κ3)M(κ2)M(κ1) (5.154)

=
(
κ4(κ3(κ2κ1 − 1)− κ1)− (κ2κ1 − 1) −κ4(−κ3κ2 + 1)− κ2

−κ3(κ2κ1 − 1)+ κ1 −κ3κ2 + 1

)
=
(

a b
c d

)
.

(5.155)

When κ3 �= 0, we get

κ2 = 1 − d

κ3
, κ3 = c − dκ1, κ4 = 1 − a + bκ1

κ3
. (5.156)

Here, we can choose κ1 so that κ3 �= 0 for all a, b, c, d, ad − bc = 1. Therefore, an
arbitrary one-mode symplectic operation can be achieved.
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In summary, we can implement an arbitrary one-mode symplectic operation by
using a four-step one-mode teleportation circuit with a four-mode linear cluster state
as a resource.

5.5.2.5 One-Mode Symplectic Operations with Teleportation-Based
Input-Coupling Scheme

In experiment, we usually use the teleportation-based input-coupling scheme for one-
way quantum computation. Here, we discuss universality for one-mode symplectic
operations with the teleportation-based input-coupling scheme.

5.5.2.6 Two-Step Operation

In the following, we utilize the κ representation for homodyne measurements. By
using Eq. (5.90), we find that the operation is given by

Mtele(κ1, κ2) = 1

κ1 − κ2

(−2κ1κ2 −κ1 − κ2
κ1 + κ2 2

)
, (5.157)

where we have assumed that R = 1
2 . Since a quantum teleportation involves two

homodyne detections (Bell measurement), the degrees of freedom of the operation
is two.

5.5.2.7 Three-Step Operation

As a next step, we perform an operation achieved by a one-mode teleportation cir-

cuit with D̂ = e
i

2�
κ x̂2

after the operation by the teleportation-based input-coupling
circuit. The total operation is given by

M(κ3)Mtele(κ1, κ2) = 1

κ1 − κ2

(
2κ3κ2κ1 − κ1 − κ2 κ3κ2 + κ3κ1 − 2

−2κ2κ1 −κ2 − κ1

)
, (5.158)

where we have utilized the κ representation for all homodyne measurements.

In the following, we acquire κ1, κ2, and κ3 for

(
a b
c d

)
, ad − bc = 1.

Case with c �= 0 and d �= ±1

κ1 = c

1 + d
, κ2 = −c

1 − d
, κ3 = d − a

c
. (5.159)
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Case with c = 0 (ad = 1,b ∈ R)

• κ1κ2 = 0 should be satisfied.

• When κ1 = 0, we get M(κ3)Mtele(κ1 = 0, κ2) =
(

1 −(κ3κ2 − 2)/κ2
0 1

)
, thus only

d = 1 can be achieved.

• When κ2 = 0, we get M(κ3)Mtele(κ1, κ2 = 0) =
(−1 (κ3κ1 − 2)/κ1

0 −1

)
, thus only

d = −1 can be achieved.
• Therefore, operations with d ∈ R \ 0 other than d = ±1 cannot be achieved.

Case with d = 1

• Since −κ1 + κ2

κ1 − κ2
= 1, we have to choose κ1 = 0.

• Since M(κ3)Mtele(κ1 = 0, κ2) =
(

1 −(κ3κ2 − 2)/κ2
0 1

)
, only c = 0 can be

achieved.
• Therefore, operations with c ∈ R other than c = 0 cannot be achieved.

Case with d = −1

• Since −κ1 + κ2

κ1 − κ2
= −1, we have to choose κ2 = 0.

• Since M(κ3)Mtele(κ1, κ2 = 0) =
(−1 (κ3κ1 − 2)/κ1

0 −1

)
, only c = 0 can be

achieved.
• Therefore, operations with c ∈ R other than c = 0 cannot be achieved.

Therefore, by using the κ representation, we find that the following operation
cannot be implemented:

{
A =

(
a b
c d

)
∈ Sp(2,R)

∣∣∣∣(c = 0 and d �= ±1, 0) or (d = ±1 and c �= 0)

}
.

(5.160)

Note that homodyne measurements with the observables x̂ cannot be formulated
in the κ representation. Thus, we have to consider this case separately.
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Case with Measurement of x̂ Instead of Using κ3

Similar to the case with the CZ -based input-coupling, the measurement with the
observable x̂ in a one-mode teleportation circuit is prohibited since it corresponds to
erasing of a mode.

Case with Measurement of x̂ Instead of Using κ1

In the teleportation-based input coupling, we can choose x̂ as a measurement vari-
able. When we measure x̂ at the first measurement which corresponds to κ1, we
cannot choose the observable x̂ at the second measurement which corresponds to
κ2. This is because sin θ− �= 0 should be satisfied in the teleportation-based input-
coupling scheme. By considering that we cannot choose the observable x̂ at the third
measurement which corresponds to κ3, we find that we can describe all cases of the
second and the third measurements by using the κ representation. The total operation
is given by

M(κ3)M(measurement of x̂, κ2) =
(

2κ2κ3 − 1 κ3
−2κ2 −1

)
. (5.161)

Thus, we find that we can implement operations with d = −1 by choosing κ2 and
κ3 appropriately.

Case with Measurement of x̂ Instead of Using κ2

Lastly, when we measure x̂ at the second measurement which corresponds to κ2, we
cannot choose the observable x̂ at the first measurement which corresponds to κ1.
We find that we can describe all cases of the first and the third measurements by
using the κ representation. The total operation is given by

M(κ3)M(κ1,measurement of x̂) =
(

1 − 2κ1κ3 −κ3
2κ1 1

)
. (5.162)

Thus, we find that we can implement operations with d = 1 by choosing κ1 and κ3
appropriately.

In summary, we find that the following operation cannot be implemented:

{
A =

(
a b
c d

)
∈ Sp(2,R)

∣∣∣∣c = 0 and d �= ±1, 0

}
. (5.163)

Therefore, universality is not achieved.



142 5 Cluster States and One-Way Quantum Computation

5.5.2.8 Four-Step Operation

We consider that we add another one-mode teleportation circuit. The operation is
given by

M(κ4)M(κ3)Mtele(κ1, κ2) = 1

κ1 − κ2(−κ4(2κ3κ2κ1 − κ1 − κ2)+ 2κ2κ1 −κ4(κ3κ2 + κ3κ1 − 2)+ κ2 + κ1
2κ3κ2κ1 − κ1 − κ2 κ3κ2 + κ3κ1 − 2

)
.

(5.164)

In the following, we acquire κ1, κ2, κ3, and κ4 for

(
a b
c d

)
, ad − bc = 1.1

Case with d �= 0

• By choosingκ1 appropriately, we can set 1−c+2dκ1 �= 0, κ1 �= 0, −c+dκ1 �=
0.

• We choose κ2 = (1 + c)κ1

1 − c + 2dκ1
, κ3 = 1 − c + dκ1

κ1
, κ4 = a + (1 − b)κ1

−c + dκ1
.

Case with d = 0 and c �= 1

• c = d = 0 is not satisfied since ad − bc = 1.
• We choose κ1 �= 0.

• We choose κ2 = (1 + c)κ1

1 − c
, κ3 = 1 − c

κ1
, κ4 = a + (1 − b)κ1

−c
.

Case with d = 0 and c = 1

• We choose κ1 = 0, κ2 �= 0, κ3 = 2

κ2
, κ4 = −a.

In summary, we can implement an arbitrary one-mode symplectic operation by
using a teleportation-based input-coupling circuit, followed by two-step one-mode
teleportation circuit. The resource state for this operation is a four-mode linear cluster
state.

1 Although we can use observables x̂ at the first and the second measurements which correspond
to κ1 and κ2, we will omit these cases because universality will be achieved without using these
observables.
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5.5.3 Arbitrary Multi-Mode Gaussian Operations

We consider implementation of a two-mode Gaussian operation. The elementary
circuit is given in Fig. 5.29.

We define

x̂ j + i p̂ j , j = 1, 2, a, b, (5.165)

as the annihilation operator of each mode j . Here, mode a and mode b represent
two input modes, while mode 1 and mode 2 represent two resource modes. The
input-output relationship in the Heisenberg picture is given by

⎛
⎜⎜⎝

x̂ ′
1

p̂′
1

x̂ ′
2

p̂′
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 −1
0 0 0 −1
0 −1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x̂a

p̂a

x̂b

p̂b

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
p̂1
0
p̂2

⎞
⎟⎟⎠ . (5.166)

Note that Eq. (5.166) holds independently of initial states.
We here assume that modes 1 and 2 are initially in |p = 0〉. Since p̂1 = 0 and

p̂2 = 0, Eq. (5.166) represents the ideal operation:

⎛
⎜⎜⎝

x̂ ′
1

p̂′
1

x̂ ′
2

p̂′
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 −1
0 0 0 −1
0 −1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x̂a

p̂a

x̂b

p̂b

⎞
⎟⎟⎠ . (5.167)

The matrix which shows the operation can be decomposed into

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 −1
0 0 0 −1
0 −1 1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ . (5.168)
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Z
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X
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Fig. 5.29 Elementary circuit for two-mode Gaussian operation
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Thus, the corresponding operator is ĈZ ab F̂a F̂b. By combining with implementation
of an arbitrary one-mode Gaussian operations, we can achieve an arbitrary multi-
mode Gaussian operations.

Figure 5.29 can be transformed into Fig. 5.30 by moving the controlled-Z gate on
modes 1 and 2 to the end of the circuit.

Figure 5.30 shows a circuit where a controlled-Z gate is applied to the output
modes of two CZ -based input-coupling circuits. Since a Fourier transformation
is applied to the input mode of a CZ -based input-coupling circuit, the operator
ĈZ ab F̂a F̂b achieved by Fig. 5.29 is consistent with that by Fig. 5.30.

5.5.4 One-Mode Non-Gaussian Operations

5.5.4.1 Operators in One-Mode Teleportation Circuit

Since the order of the operator D̂ in Sect. 4.2.3 can be larger than or equal to three,
it is obvious that one-mode non-Gaussian operation can be implemented in one-way
quantum computation. However, it is not obvious how such measurements can be
implemented in experiments. Recently, it is reported that a cubic phase gate can be
achieved by using a photon counting [5, 8, 9].

5.5.4.2 Photon Counting and Cubic Phase Gate

Consider a circuit for generation of a cubic phase state, which is shown in Fig. 5.31.
The initial states in modes 1 and 2 are |p = 0〉, or p-squeezed states. By combining

these modes with a controlled-Z gate, a two-mode cluster state is generated. A
displacement operator is applied to mode 1, where the amount of displacement is
sufficiently larger than the squeezing parameter of the squeezed states. A photon
counting is performed on mode 1, leading to a measurement result n. The output
state in mode 2 is an approximation of a cubic phase state:

|ψ〉2 � eiη(n)x̂3 |p = 0〉. (5.169)

a

1

2

b

CZ

1

CZ

1

p

p

X
 -1

X
 -1

CZ

1

Fig. 5.30 Equivalent circuit of elementary circuit for two-mode Gaussian operation

http://dx.doi.org/10.1007/978-4-431-55019-8_4
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1

2

CZ

1

X n

Fig. 5.31 Generation of cubic phase state

Here, η(n) is a function of the measurement result n. In order to generate a cubic
phase state eiγ x̂3 |p = 0〉 with γ which is independent of the measurement result,
the random term should be eliminated by using

Ŝ†(r(n))eiη(n)x̂3
Ŝ(r(n)) = eiγ x̂3

, r(n) = −1

3
log

γ

η(n)
. (5.170)

Thus, consider the circuit shown in Fig. 5.32.
Mode in shows an input mode, while mode 2 corresponds to the output mode 2 in

Fig. 5.31. Thus, Fig. 5.32 shows the following procedure. First, a squeezing operator
Ŝ(r(n)) is applied to the input state. Next, a cubic phase operator is applied to the
output state of the previous step via offline scheme (Sect. 4.2.2, Fig. 4.10) by using the
cubic phase state as a resource, which is generated by the circuit shown in Fig. 5.31.
Finally, another squeezing operator Ŝ†(r(n)) is applied to the output state of the
previous step. Up to Fourier transformations, the output state becomes

Ŝ†(r(n))eiη(n)x̂3
Ŝ(r(n))|ψin〉 = eiγ x̂3 |ψin〉, (5.171)

where |ψin〉 represents the input state in mode in.
Since the operator in the offline scheme is a cubic phase operator, the required

feed-forward operations are members of one-mode Gaussian operations. In addition,
squeezing operations are also one-mode Gaussian operations. In general, an arbitrary
one-mode Gaussian operation can be achieved by using a four-mode linear cluster
state as a resource state. Therefore, the circuit shown in Fig. 5.32 can be achieved by
Fig. 5.33a, whose graph representation is given by Fig. 5.33b.

5.6 One-Way Quantum Computation with δ̂ Representation

As the final issue of this chapter, we discuss imperfection in one-way quantum
computation. Although one can consider several origins of errors, we focus only

Fig. 5.32 Cubic phase gate
in

2

S CZ

1

p

S -|

http://dx.doi.org/10.1007/978-4-431-55019-8_4
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p
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Fig. 5.33 Cubic phase gate with cluster state. a Quantum circuit, b graph

(a)

(b)

Fig. 5.34 Abstract diagram of cascaded elementary gates. a Cascaded elementary gates, b converted
version of cascaded elementary gates

on limited levels of resource squeezing, which is dominant in recent experimental
demonstrations of one-way quantum computations.

In all building blocks for one-way quantum computation we have so far discussed,
including the elementary one-mode and two-mode one-way gates, and three types
of input coupling schemes, errors are described by additional momentum operators
of resource modes in the annihilation operators of the output modes. Since an arbi-
trary quantum computation can be constructed by a concatenation of these blocks,
it is obvious that imperfections of the total computation can also be described by
additional momentum operators of the resource modes.

In the discussion above, we have assumed that each resource state is coupled with
the previous output state using a CZ gate after all previous operations are finished. It
is discrepant with one-way quantum computation where the resource is prepared as
a multi-party entangled cluster state. Its discrepancy can be removed by reordering
of the CZ gates.
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Consider one-way quantum computation on an m-mode input state with n-mode
resource states. Although we usually assume that these resources are |p = 0〉 or
p-squeezed vacuum states implicitly, the following discussion does not depend on
their actual states. We define the position and momentum operators of these resource
modes to be x̂ R

j and p̂R
j , respectively, where j = 1, . . . , n. At the first stage, we

assume that the elementary building blocks are just cascaded (Fig. 5.34a). From the
discussion above, the position and momentum operators of the output modes (x̂ O

j and

p̂O
j for j = 1, . . . ,m) can be described by the position and momentum operators of

the input mode operators (x̂ I
j and p̂ I

j for j = 1, . . . ,m) and the momentum operators

of the resource modes ( p̂R
j ):

x̂ O
j = Fj (x̂

I
1 , . . . , x̂ I

m, p̂ I
1 , . . . , p̂ I

m, p̂R
1 , . . . , p̂R

n ), (5.172)

p̂O
j = G j (x̂

I
1 , . . . , x̂ I

m, p̂ I
1 , . . . , p̂ I

m, p̂R
1 , . . . , p̂R

n ). (5.173)

We consider changes to the orders of the feed-forwards and the CZ gates. First,
all CZ operators commute with each other. Next, each original feed-forward is a
displacement in phase space, which is described by displacement operators X̂k(s)
and Ẑk(s). Since X̂k(s) and Ẑk(s) are members of the Pauli group, and ĈZij is a
member of the Clifford group, there exists a Pauli operator P̂ijk which satisfies

ĈZij X̂k(s) = P̂ijkĈZij, (5.174)

where P̂ijk is given by

P̂ijk =
⎧
⎨
⎩

X̂i (s)Ẑ j (s) (i = k)
X̂ j (s)Ẑi (s) ( j = k)
X̂k(s) (else)

. (5.175)

Therefore, we can convert the original quantum circuit (Fig. 5.34a) to a newer one
(Fig. 5.34b) where all n-mode resource states are initially entangled with a network of
CZ gates, leading to a cluster state. After coupling of an input state with the cluster
state, the measurements and the feed-forwards are carried out. In this conversion
processes, we can preserve all feed-forwards in members of the Pauli group.

We define position and momentum operators after the CZ -based couplings of the
resource modes to be x̂C

j and p̂C
j , respectively. They are given by

x̂C
j + i p̂C

j = x̂ R
j + i

⎛
⎝ p̂R

j +
∑

k∈N ( j)

x̂ R
k

⎞
⎠ , (5.176)

where N ( j) represents the set of nearest neighbor modes of mode j . Thus, we can
describe the resource mode operators p̂R

j by means of the cluster mode operators x̂C
j
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and p̂C
j :

p̂R
j = p̂C

j −
∑

k∈N ( j)

x̂C
k . (5.177)

We define δ̂C
j ≡ p̂C

j −∑k∈N ( j) x̂C
k , which corresponds to the nullifiers of the cluster

state. We can replace p̂R
j with δ̂C

j in Eqs. (5.172) and (5.173), leading to

x̂ O
j = Fj (x̂

I
1 , . . . , x̂ I

m, p̂ I
1 , . . . , p̂ I

m, δ̂
C
1 , . . . , δ̂

C
n ), (5.178)

p̂O
j = G j (x̂

I
1 , . . . , x̂ I

m, p̂ I
1 , . . . , p̂ I

m, δ̂
C
1 , . . . , δ̂

C
n ). (5.179)

The important thing is that the additional terms in Eqs. (5.178) and (5.179) are
described not by the original resource modes ( p̂R

j ) but by the cluster modes (x̂C
j

and p̂C
j ). Since the discussion above does not depend on the initial states at (R), the

state at the cluster modes (C) can be in any state. However, in order to achieve an
ideal one-way quantum computation, the cluster state should be chosen so that it
satisfies δ̂C

j = 0, or δ̂C
j → 0 in the limit of infinite squeezing. Note that it does not

necessarily mean that the state at (C) should be prepared as an ideal cluster state or
a canonical cluster state. For example, it can be prepared as a Gaussian cluster state,
which is generated by combining squeezed states on beam splitters. In this case, the
state at (R) is considered to be that acquired by applying the inversed CZ network
operations on the Gaussian cluster state. Since Eqs. (5.178) and (5.179) hold in all
cases, and the Gaussian cluster state satisfies δ̂C

j → 0, an ideal operation is achieved
in the limit of infinite squeezing.

By describing the quadrature operators of the output modes (O) by using those
of the input modes (I ) and the cluster modes (C), we can discuss one-way quantum
computation without referring to the state of the resource mode (R). The common
property of the cluster state is δ̂C

j = 0 or δ̂C
j → 0. Therefore, any state which satisfies

this nullifier condition can be used as a resource for one-way quantum computation
without any discriminations. No matter how a cluster state is generated—for example,
as a canonical cluster state, or as a Gaussian cluster state—the same input output
relations (Eqs. (5.178) and (5.179)) are satisfied. In addition, measurement bases
and feed-forwards for a specific operation do not depend on the schemes of cluster
generations.

The difference of the states at the cluster mode (C) is represented by δ̂C
j . For

example, a canonical cluster state and a Gaussian cluster state have different nullifier
values. The difference of errors in one-way quantum computation is explained by
the difference of δ̂C

j .
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Chapter 6
Experimental Generation of Optical
Continuous-Variable Cluster States

6.1 Theory on Cluster State Generation

6.1.1 Two-Mode Cluster State

6.1.1.1 Experimental Setup

Figure 6.1 shows a schematic of out experimental setup for generation of a two-mode
cluster state.

In the following, we describe theories on generation of the two-mode cluster state
in both cases with and without losses.

6.1.1.2 Without Losses

An approximation of a two-mode cluster state can be generated by combining two
p-squeezed states on a beam splitter where its reflectivity and relative phase are
chosen appropriately (Gaussian cluster state, Sect. 5.2.2). We employ this scheme
for our experimental generation of the two-mode cluster state. In the following,
we formulate its procedure by using quadrature operators which specify particular
quantum states (Sect. 3.2.8).

We assume that the initial states in modes 1 and 2 are vacuum states. We describe
these modes as

x̂
(0)
k + i p̂(0)k , k = 1, 2, (6.1)

where the subscript k denotes the mode number, while the superscripts (0) represent
that these modes are in vacuum states.

As a next step, we apply p-squeezing operators on both modes. We can describe
these two squeezed states as

x̂
(r)
k + i p̂(r)k = erk x̂

(0)
k + ie−rk p̂(0)k , k = 1, 2, (6.2)
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Fig. 6.1 Experimental setup
for generation of two-mode
cluster state, OPO Optical
Parametric Oscillator, HD
Homodyne Detector, LO
Local Oscillator

OPO-A
mode 1

OPO-B
mode 2

1 2

1 2

LO LO

Verification

Generation

HD1 HD2

where rk represents the squeezing parameter for mode k, while the superscripts (r)
represent that these modes are in squeezed states.

In general, an approximation of an N -mode cluster state can be generated by com-
bining N p-squeezed states via an appropriate network of beam splitters (Sect. 5.2.2).
Since an operation defined by a beam splitter network is a member of photon-number-
preserving Gaussian operations, it can be formulated by a linear transformation of
a column vector of the annihilation operators, where the corresponding matrix is a
unitary matrix (Sect. 3.5.8). Note that it is not determined uniquely. In our case of the
two-mode cluster state generation, it can be generated by using a unitary matrix U :

U =
⎛
⎝

1√
2
i 1√

2
1√
2

1√
2
i

⎞
⎠ , (6.3)

leading to a linear transformation of an annihilation operator vector:

(
x̂
(c)
1 + i p̂(c)1

x̂
(c)
2 + i p̂(c)2

)
= U

(
x̂
(r)
1 + i p̂(r)1

x̂
(r)
2 + i p̂(r)2

)
, (6.4)

where the superscripts (c) represent that these modes are in a two-mode cluster state.
We then get

(
x̂
(c)
1 + i p̂(c)1

x̂
(c)
2 + i p̂(c)2

)
=

(− 1√
2

e−r1 p̂(0)1 + 1√
2

er2 x̂
(0)
2

1√
2

er1 x̂
(0)
1 − 1√

2
e−r2 p̂(0)2

)
+ i

(
1√
2

er1 x̂
(0)
1 + 1√

2
e−r2 p̂(0)2

1√
2

e−r1 p̂(0)1 + 1√
2

er2 x̂
(0)
2

)
,

(6.5)

which leads to the values of the nullifiers:

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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{
δ̂1 ≡ p̂(c)1 − x̂

(c)
2 = √

2e−r2 p̂(0)2 (i)

δ̂2 ≡ p̂(c)2 − x̂
(c)
1 = √

2e−r1 p̂(0)1 (ii)
. (6.6)

Importantly, δ̂k becomes zero for each k in the limit of infinite squeezing rl → ∞ for
both l. Therefore, we find that mode 1 and mode 2 are in a two-mode cluster state.

6.1.1.3 With Losses

As a next step, we will describe generation of a two-mode cluster state when an
experimental setup has non-zero losses.

There are several sources of losses, including intra-cavity losses of OPOs, prop-
agation losses, and losses at homodyne detections. However, for simplicity, we use
a model of losses that there are no losses except for homodyne detections.1 It can be
formulated by placing virtual beam splitters just before homodyne detectors.

We assume that the energy loss in mode k (k = 1, 2) is 1−ηk , where ηk represents
the energy efficiency. We define mode kL as the loss mode, which is initially in a
vacuum state, for mode k. The energy loss in mode k is then formulated by combining
mode k and mode kL via a beam splitter B(4)k,kL(

√
ηk). By extracting mode 1 and mode

2 after these beam splitter couplings with the loss modes, we get cluster modes with
losses as

(
x̂
(cl)
1 + i p̂(cl)

1

x̂
(cl)
2 + i p̂(cl)

2

)
=

(√
η1 0

0
√
η2

)(
x̂
(c)
1 + i p̂(c)1

x̂
(c)
2 + i p̂(c)2

)
+

(√
1 − η1 0

0
√

1 − η2

)(
x̂
(0)
1L + i p̂(0)1L

x̂
(0)
2L + i p̂(0)2L

)

=
⎛
⎝−

√
η1
2 e−r1 p̂(0)1 +

√
η1
2 er2 x̂

(0)
2 + √

1 − η1x̂
(0)
1L√

η2
2 er1 x̂

(0)
1 −

√
η2
2 e−r2 p̂(0)2 + √

1 − η2x̂
(0)
2L

⎞
⎠

+ i

⎛
⎝

√
η1
2 er1 x̂

(0)
1 +

√
η1
2 e−r2 p̂(0)2 + √

1 − η1 p̂(0)1L√
η2
2 e−r1 p̂(0)1 +

√
η2
2 er2 x̂

(0)
2 + √

1 − η2 p̂(0)2L

⎞
⎠ , (6.7)

which leads to the values of the cluster nullifiers:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ̂
(l)
1 ≡ p̂(cl)

1 − x̂
(cl)
2 = (

√
η1
2 −

√
η2
2 )e

r1 x̂
(0)
1 + (

√
η1
2 +

√
η2
2 )e

−r2 p̂(0)2

+√
1 − η1 p̂(0)1L − √

1 − η2x̂
(0)
2L (i)

δ̂
(l)
2 ≡ p̂(cl)

2 − x̂
(cl)
1 = (

√
η2
2 −

√
η1
2 )e

r2 x̂
(0)
2 + (

√
η1
2 +

√
η2
2 )e

−r1 p̂(0)1

+√
1 − η2 p̂(0)2L − √

1 − η1x̂
(0)
1L (ii)

. (6.8)

When losses are asymmetrical (η1 �= η2), the nullifier values have the anti-squeezing
components x̂(0)k of the squeezed states. We also find that the nullifier values do not

1 Another useful model is that there are no losses except for generation of squeezed states. It can
be formulated by placing virtual beam splitters just after ideal squeezed-state resources.
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become zero in the limit of infinite squeezing r → ∞ when there are finite losses
(ηk < 1).

On the other hand, when losses are symmetrical (ηk = η), we get

{
δ̂
(l)
1 ≡ p̂(cl)

1 − x̂
(cl)
2 = √

2ηe−r2 p̂(0)2 + √
1 − η p̂(0)1L − √

1 − ηx̂
(0)
2L (i)

δ̂
(l)
2 ≡ p̂(cl)

2 − x̂
(cl)
1 = √

2ηe−r1 p̂(0)1 + √
1 − η p̂(0)2L − √

1 − ηx̂
(0)
1L (ii)

. (6.9)

Therefore, the values of the nullifiers do not have the anti-squeezing components.
However, they do not become zero in the limit of infinite squeezing r → ∞ when
there are finite losses (ηk < 1).

6.1.1.4 Variances of Nullifiers and Effective Squeezing Level

For simplicity, we here assume that the squeezing parameters and losses are sym-
metrical (rk = r, ηk = η). In this case, the variances of the nullifiers are given
by

〈Δ2δ̂(l)k 〉 = �

2

[
2ηe−2r + 2(1 − η)

]
. (6.10)

In a special case where there is no losses (efficiency η = 1), it becomes

〈Δ2δ̂k〉 = �

2
× 2e−2r . (6.11)

We define the effective squeezing parameter r (e) and the effective squeezing level
x(e) as the squeezing parameter and the squeezing level which satisfy

〈Δ2δ̂
(l)
k 〉 = �

2
× 2e−2r (e) = �

2
× 2 × 10− x(e)

10 . (6.12)

That is, they are the squeezing parameter and the squeezing level of a pure (loss-less)
squeezed state which gives us the same variance as the lossy squeezed states.

Although we have defined the effective squeezing level by using the setup of the
two-mode cluster state generation, and by assuming that the squeezing parameters
and losses are symmetrical, we can extend the discussion above to a general case.
That is, we define the effective squeezing parameter r (e) and the effective squeezing
level x(e) as the squeezing parameter and the squeezing level of a pure (loss-less)
squeezed state which gives us the same value as the lossy squeezed states. For ex-
ample, it can be evaluated by a variance of a nullifier, or a logarithmic negativity.

We next consider two operators which are acquired by flipping the signs of the
nullifiers:

δ̂1+ ≡ p̂(c)1 + x̂
(c)
2 , δ̂2+ ≡ p̂(c)2 + x̂

(c)
1 . (6.13)
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When the squeezing levels and losses are symmetrical (ηk = η, rk = r ), the variance
of each operator δ̂k+ becomes

〈Δ2δ̂
(l)
k+〉 = �

2

[
2ηe2r + 2(1 − η)

]
. (6.14)

In a special case where there is no losses (efficiency η = 1), it becomes

〈Δ2δ̂k+〉 = �

2
× 2e2r . (6.15)

We define the effective squeezing parameter r (ae) and the effective squeezing level
x(ae) of anti-squeezing as the squeezing parameter and the squeezing level which
satisfy

〈Δ2δ̂(l)k+〉 = �

2
× 2e2r (ae) = �

2
× 2 × 10

x(ae)
10 . (6.16)

In analysis of experiment, we mainly utilize the effective squeezing parameter
r (e) and effective squeezing level x(e), not r (ae) nor x(ae). This is because input-
output relationships in one-way quantum computation are usually constructed so that
anti-squeezing components of resource modes are perfectly canceled out in output
modes. Therefore, errors in one-way quantum computations originate in squeezing
components of resource modes at the outputs (Sect. 5.6). r (ae) and x(ae) will be used
only in analysis of losses in this chapter.

6.1.1.5 Covariance Matrix

The covariance matrix (Sect. 3.2.6) of the two-mode cluster state with finite losses
can be calculated by using Eq. (6.7). We utilize the xpxp notation for the covariance
matrix (Sect. 3.2.5). We get the covariance matrix V :

V = �

2

⎛
⎜⎜⎝

v11 0 0 v14
0 v22 v23 0
0 v23 v33 0
v14 0 0 v44

⎞
⎟⎟⎠ , (6.17)

where

v11 = 1

2
[η1(e

−2r1 + e2r2 − 2)+ 2], (6.18)

v14 = 1

2
√
η1η2[e2r2 − e−2r1 ], (6.19)

v22 = 1

2
[η1(e

2r1 + e−2r2 − 2)+ 2], (6.20)

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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v23 = 1

2
√
η1η2[e2r1 − e−2r2 ], (6.21)

v33 = 1

2
[η2(e

2r1 + e−2r2 − 2)+ 2], (6.22)

v44 = 1

2
[η2(e

−2r1 + e2r2 − 2)+ 2]. (6.23)

When the efficiencies are symmetrical (ηk = η), it becomes

V = �

2

⎛
⎜⎜⎝

v11 0 0 v14
0 v22 v23 0
0 v23 v22 0
v14 0 0 v11

⎞
⎟⎟⎠ , (6.24)

where

v11 = 1

2
[η(e−2r1 + e2r2 − 2)+ 2], (6.25)

v14 = 1

2
η[e2r2 − e−2r1 ], (6.26)

v22 = 1

2
[η(e2r1 + e−2r2 − 2)+ 2], (6.27)

v23 = 1

2
η[e2r1 − e−2r2 ]. (6.28)

When the squeezing parameters are also symmetrical (rk = r ), it becomes

V = �

2

⎛
⎜⎜⎝

v11 0 0 v14
0 v11 v14 0
0 v14 v11 0
v14 0 0 v11

⎞
⎟⎟⎠ , (6.29)

where

v11 = η(cosh 2r − 1)+ 1, v14 = η sinh 2r. (6.30)

In the special case of η = 1, it becomes

V = �

2

⎛
⎜⎜⎝

cosh 2r 0 0 sinh 2r
0 cosh 2r sinh 2r 0
0 sinh 2r cosh 2r 0

sinh 2r 0 0 cosh 2r

⎞
⎟⎟⎠ . (6.31)
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Table 6.1 Mode correspondence between theory and experiment (generation of two-mode cluster
state)

OPO Mode

OPO-A Mode 1

OPO-B Mode 2

6.1.1.6 Decomposition into Beam Splitter

We then decompose the transformation defined by Eq. (6.3) into a beam splitter
and rotations in phase space. Its decomposition does not determined uniquely. One
solution for this is given by

U = F†
1 B(1)12

( 1√
2

)
F2, (6.32)

where Fk represents the matrix of the Fourier transformation on mode k. It is equiv-
alent to an identity matrix except that

Fk = (
i
)
, F†

k = (−i
)

(6.33)

for the (k, k) entry of the matrix Fk . B(n)i j (
√

R) represents the matrix of the beam
splitter with the energy reflectivity R on mode i and mode j . By extracting the (i, i),
(i, j), ( j, i), and ( j, j) entries of the beam splitter matrices, they are given by

B(1)i j (
√

R) =
(

−√
R

√
T√

T
√

R

)
, B(2)i j (

√
R) =

(√
T −√

R√
R

√
T

)
, (6.34)

B(3)i j (
√

R) =
( √

T
√

R
−√

R
√

T

)
, B(4)i j (

√
R) =

(√
R

√
T√

T −√
R

)
, (6.35)

where T represents the energy transmissivity of the beam splitter, which satisfies
T + R = 1. In this case,

F1 =
(

i
1

)
, F2 =

(
1

i

)
, B(1)12 (

1√
2
) =

(− 1√
2

1√
2

1√
2

1√
2

)
. (6.36)

6.1.1.7 Mode Correspondence Between Theory and Experiment

Squeezed states are experimentally generated by using OPOs. Correspondences be-
tween the modes in theory and the OPOs in experiment are given by Table 6.1.
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OPO-B
mode 2

OPO-A
mode 3

2 3

2 3

2

21

1

OPO-D
mode 1

Verification

Generation

LO LO LO

HD1 HD2 HD3

Fig. 6.2 Experimental setup for generation of three-mode linear cluster state

6.1.2 Three-Mode Linear Cluster State

6.1.2.1 Experimental Setup

Figure 6.2 shows a schematic of our experimental setup for generation of a three-
mode linear cluster state.

In the following, we describe theories on generation of the three-mode linear
cluster state. For simplicity, we assume that there are no propagation losses.

6.1.2.2 Without Losses

An approximation of a three-mode linear cluster state can be generated by combining
three p-squeezed states on two beam splitters where their reflectivities and relative
phases are chosen appropriately (Gaussian cluster state, Sect. 5.2.2). We employ this
scheme for our experimental generation of the three-mode linear cluster state. In the
following, we formulate its procedure by using quadrature operators which specify
particular quantum states (Sect. 3.2.8).

We assume that the initial states in modes 1, 2 and 3 are vacuum states. We describe
these modes as

x̂
(0)
k + i p̂(0)k , k = 1, 2, 3, (6.37)

where the subscript k denotes the mode number, while the superscripts (0) represent
that these modes are in vacuum states.

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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As a next step, we apply p-squeezing operators on these modes. We can describe
the squeezed states as

x̂(r)k + i p̂(r)k = erk x̂(0)k + ie−rk p̂(0)k , k = 1, 2, 3, (6.38)

where rk represents the squeezing parameter for mode k, while the superscripts (r)
represent that these modes are in squeezed states.

An approximation of a three-mode linear cluster state can be generated by com-
bining three p-squeezed states on an appropriate network of beam splitters. For
example, we can generate it by using a unitary matrix U :

U =

⎛
⎜⎜⎝

1√
2

1√
3
i − 1√

6
1√
2
i 1√

3
1√
6
i

0 1√
3
i 2√

6

⎞
⎟⎟⎠ , (6.39)

leading to a linear transformation of an annihilation operator vector:

⎛
⎜⎜⎝
x̂
(c)
1 + i p̂(c)1

x̂
(c)
2 + i p̂(c)2

x̂
(c)
3 + i p̂(c)3

⎞
⎟⎟⎠ = U

⎛
⎜⎜⎝
x̂
(r)
1 + i p̂(r)1

x̂
(r)
2 + i p̂(r)2

x̂
(r)
3 + i p̂(r)3

⎞
⎟⎟⎠ , (6.40)

where the superscripts (c) represent that these modes are in a three-mode linear
cluster state. We then get

⎛
⎜⎜⎝
x̂
(c)
1 + i p̂(c)1

x̂
(c)
2 + i p̂(c)2

x̂(c)3 + i p̂(c)3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1√
2

er1 x̂
(0)
1 − 1√

3
e−r2 p̂(0)2 − 1√

6
er3 x̂

(0)
3

− 1√
2

e−r1 p̂(0)1 + 1√
3

er2 x̂
(0)
2 − 1√

6
e−r3 p̂(0)3

− 1√
3
e−r2 p̂(0)2 + 2√

6
er3 x̂(0)3

⎞
⎟⎟⎠

+ i

⎛
⎜⎜⎝

1√
2

e−r1 p̂(0)1 + 1√
3

er2 x̂(0)2 − 1√
6
e−r3 p̂(0)3

1√
2

er1 x̂(0)1 + 1√
3

e−r2 p̂(0)2 + 1√
6
er3 x̂(0)3

1√
3

er2 x̂
(0)
2 + 2√

6
e−r3 p̂(0)3

⎞
⎟⎟⎠ , (6.41)

which leads to the values of the nullifiers:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δ̂1 ≡ p̂(c)1 − x̂
(c)
2 = √

2e−r1 p̂(0)1 (i)

δ̂2 ≡ p̂(c)2 − x̂
(c)
1 − x̂

(c)
3 = √

3e−r2 p̂(0)2 (ii)

δ̂3 ≡ p̂(c)3 − x̂
(c)
2 = 1√

2
e−r1 p̂(0)1 + 3√

6
e−r3 p̂(0)3 (iii)

. (6.42)
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Table 6.2 Mode
correspondence between
theory and experiment
(generation of three-mode
linear cluster state)

OPO Mode

OPO-A Mode 3

OPO-B Mode 2

OPO-D Mode 1

Importantly, δ̂k becomes zero for each k in the limit of infinite squeezing rl → ∞
for all l. Therefore, we find that modes 1, 2, and 3 are in a three-mode linear cluster
state.

6.1.2.3 Decomposition into Beam Splitters

In general, an arbitrary unitary transformation formulated by a linear transformation
of N -mode annihilation operators can be implemented by at most N (N −1)/2 beam
splitters [1] (Sect. 3.5.8). Thus, the operation formulated as Eq. (6.39) is necessarily
achieved by using at most three beam splitters. However, by decomposing the unitary
matrix U into

U = F1 B(1)12

( 1√
2

)
F1 F2 B(1)23

(√
2

3

)
F2, (6.43)

we can generate the three-mode linear cluster state by using only two beam splitters.

6.1.2.4 Mode Correspondence Between Theory and Experiment

Squeezed states are experimentally generated by using OPOs. Correspondences
between the modes in theory and the OPOs in experiment are given by Table 6.2.

6.1.3 Four-Mode Linear Cluster State

6.1.3.1 Experimental Setup

Figure 6.3 shows a schematic of our experimental setup for generation of a four-mode
linear cluster state.

In the following, we describe theories on generation of the four-mode linear cluster
state. For simplicity, we assume that there are no propagation losses.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Fig. 6.3 Experimental setup for generation of four-mode linear cluster state

6.1.3.2 Without Losses

An approximation of a four-mode linear cluster state can be generated by combining
four p-squeezed states on three beam splitters where their reflectivities and relative
phases are chosen appropriately (Gaussian cluster state, Sect. 5.2.2). We employ this
scheme for our experimental generation of the four-mode linear cluster state. In the
following, we formulate its procedure by using quadrature operators which specify
particular quantum states (Sect. 3.2.8).

We assume that the initial states in modes 1, 2, 3, and 4 are vacuum states. We
describe these modes as

x̂
(0)
k + i p̂(0)k , k = 1, 2, 3, 4, (6.44)

where the subscript k denotes the mode number, while the superscripts (0) represent
that these modes are in vacuum states.

As a next step, we apply p-squeezing operators on these modes. We can describe
the squeezed states as

x̂(r)k + i p̂(r)k = erk x̂(0)k + ie−rk p̂(0)k , k = 1, 2, 3, 4, (6.45)

where rk represents the squeezing parameter for mode k, while the superscripts (r)
represent that these modes are in squeezed states.

An approximation of a four-mode linear cluster state can be generated by combin-
ing four p-squeezed states on an appropriate network of beam splitters. For example,

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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we can generate it by using a unitary matrix U :

U =

⎛
⎜⎜⎜⎜⎝

1√
2

1√
10

− 2√
10

i 0
1√
2
i − 1√

10
i − 2√

10
0

0 − 2√
10

− 1√
10

i − 1√
2
i

0 − 2√
10

i 1√
10

− 1√
2

⎞
⎟⎟⎟⎟⎠
, (6.46)

leading to a linear transformation of an annihilation operator vector:

⎛
⎜⎜⎜⎜⎝

x̂
(c)
1 + i p̂(c)1

x̂
(c)
2 + i p̂(c)2

x̂
(c)
3 + i p̂(c)3

x̂
(c)
4 + i p̂(c)4

⎞
⎟⎟⎟⎟⎠

= U

⎛
⎜⎜⎜⎜⎝

x̂
(r)
1 + i p̂(r)1

x̂
(r)
2 + i p̂(r)2

x̂
(r)
3 + i p̂(r)3

x̂
(r)
4 + i p̂(r)4

⎞
⎟⎟⎟⎟⎠
, (6.47)

where the superscripts (c) represent that these modes are in a four-mode linear cluster
state. We then get

⎛
⎜⎜⎜⎜⎜⎝

x̂
(c)
1 + i p̂(c)1

x̂
(c)
2 + i p̂(c)2

x̂
(c)
3 + i p̂(c)3

x̂
(c)
4 + i p̂(c)4

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

er1 x̂
(0)
1 + 1√

10
er2 x̂

(0)
2 + 2√

10
e−r3 p̂(0)3

− 1√
2

e−r1 p̂(0)1 + 1√
10

e−r2 p̂(0)2 − 2√
10

er3 x̂
(0)
3

− 2√
10

er2 x̂
(0)
2 + 1√

10
e−r3 p̂(0)3 + 1√

2
e−r4 p̂(0)4

2√
10

e−r2 p̂(0)2 + 1√
10

er3 x̂
(0)
3 − 1√

2
er4 x̂

(0)
4

⎞
⎟⎟⎟⎟⎟⎟⎠

+ i

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

e−r1 p̂(0)1 + 1√
10

e−r2 p̂(0)2 − 2√
10

er3 x̂
(0)
3

1√
2

er1 x̂
(0)
1 − 1√

10
er2 x̂

(0)
2 − 2√

10
e−r3 p̂(0)3

− 2√
10

e−r2 p̂(0)2 − 1√
10

er3 x̂
(0)
3 − 1√

2
er4 x̂

(0)
4

− 2√
10

er2 x̂
(0)
2 + 1√

10
e−r3 p̂(0)3 − 1√

2
e−r4 p̂(0)4

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(6.48)

which leads to the values of nullifiers:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ̂1 ≡ p̂(c)1 − x̂
(c)
2 = √

2e−r1 p̂(0)1 (i)

δ̂2 ≡ p̂(c)2 − x̂
(c)
1 − x̂

(c)
3 = − 5√

10
e−r3 p̂(0)3 − 1√

2
e−r4 p̂(0)4 (ii)

δ̂3 ≡ p̂(c)3 − x̂
(c)
2 − x̂

(c)
4 = 1√

2
e−r1 p̂(0)1 − 5√

10
e−r2 p̂(0)2 (iii)

δ̂4 ≡ p̂(c)4 − x̂(c)3 = −√
2e−r4 p̂(0)4 (iv)

. (6.49)

Importantly, δ̂k becomes zero for each k in the limit of infinite squeezing rl → ∞ for
all l. Therefore, we find that modes 1, 2, 3, and 4 are in a four-mode linear cluster state.
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6.1.3.3 Decomposition into Beam Splitters

In general, an arbitrary unitary transformation formulated by a linear transformation
of N -mode annihilation operators can be implemented by at most N (N −1)/2 beam
splitters [1] (Sect. 3.5.8). Thus, the operation formulated as Eq. (6.46) is necessarily
achieved by using at most six beam splitters. However, by decomposing the unitary
matrix U into

U = F4 F†
2 B(4)34

( 1√
2

)
B(3)12

( 1√
2

)
B(3)23

( 2√
5

)
F†

3 F†
4 , (6.50)

we can generate the four-mode linear cluster state by using only three beam splitters.

6.1.3.4 Mode Correspondence Between Theory and Experiment

Squeezed states are experimentally generated by using OPOs. Correspondences be-
tween the modes in theory and the OPOs in experiment are given by Table 6.3.

6.2 Theory on Measurement of Covariance Matrix

We consider a measurement of the covariance matrix of an N -mode quantum state.
We assume that the expectation values 〈x̂i 〉, 〈 p̂i 〉 of quadrature operators x̂i , p̂i are
zero.

Based on mode indices i, j (i �= j), the elements of the covariance matrix can be
categorized into the following three cases:

• 〈x̂2
i 〉, 〈 p̂2

i 〉: variances of quadrature operators.
• 〈x̂i p̂i + p̂i x̂i 〉/2: correlation between quadrature operators of single mode.
• 〈x̂i x̂ j 〉, 〈x̂i p̂ j 〉, 〈 p̂i x̂ j 〉, 〈 p̂i p̂ j 〉: correlations between quadrature operators of two

modes.

They are acquired experimentally in the following procedure.

Table 6.3 Mode
correspondence between
theory and experiment
(generation of four-mode
linear cluster state)

OPO Mode

OPO-A Mode 3

OPO-B Mode 2

OPO-C Mode 1

OPO-D Mode 4

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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6.2.1 Measurement of 〈x̂2
i 〉, 〈 p̂2

i 〉

We can detect x̂i or p̂i via a homodyne measurement on mode i by adjusting the
relative phase between the signal beam and the local oscillator beam to be 0 or 90◦.
By measuring the power of the signal from the homodyne detector using a spectrum
analyzer, we can get 〈x̂2

i 〉 or 〈 p̂2
i 〉.

6.2.2 Measurement of 〈x̂i p̂i + p̂i x̂i〉/2

We can detect (x̂i + p̂i )/
√

2 or (x̂i − p̂i )/
√

2 via a homodyne measurement on mode i
by adjusting the relative phase between the signal beam and the local oscillator beam
to be 45◦ or −45◦. By measuring the power of the signal from the homodyne detector
using a spectrum analyzer, we can get

〈( x̂i + p̂i√
2

)2〉 = 1

2

[
〈x̂2

i 〉 + 〈x̂i p̂i + p̂i x̂i 〉 + 〈 p̂2
i 〉

]
, (6.51)

〈( x̂i − p̂i√
2

)2〉 = 1

2

[
〈x̂2

i 〉 − 〈x̂i p̂i + p̂i x̂i 〉 + 〈 p̂2
i 〉

]
. (6.52)

We can get 〈x̂i p̂i + p̂i x̂i 〉/2 from the difference of these two variables:

〈x̂i p̂i + p̂i x̂i 〉
2

= 1

2

[〈( x̂i + p̂i√
2

)2〉 −
〈( x̂i − p̂i√

2

)2〉]
. (6.53)

6.2.3 Measurement of 〈x̂i x̂ j〉, 〈x̂i p̂ j〉, 〈 p̂i x̂ j〉, 〈 p̂i p̂ j〉

We consider the measurement of 〈x̂i x̂ j 〉, for example. We can detect x̂i and x̂ j via
homodyne measurements on mode i and mode j by adjusting both relative phases
between the signal beams and the local oscillator beams to be 0◦. Addition of these
two signals from the homodyne detectors gives us the measurement result of x̂i + x̂ j .
By measuring the power of the signal using a spectrum analyzer, we can get

〈(x̂i + x̂ j )
2〉 = 〈x̂2

i 〉 + 2〈x̂i x̂ j 〉 + 〈x̂2
j 〉. (6.54)

In a similar manner, we can detect x̂i and −x̂ j via homodyne measurements on mode
i and mode j by adjusting each relative phase between the signal beam and the local
oscillator beam to be 0◦ or 180◦. Addition of these two signals from the homodyne
detectors gives us the measurement result of x̂i − x̂ j . By measuring the power of the
signal using a spectrum analyzer, we can get
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n

Fig. 6.4 From laser to oscillators

〈(x̂i − x̂ j )
2〉 = 〈x̂2

i 〉 − 2〈x̂i x̂ j 〉 + 〈x̂2
j 〉. (6.55)

We can get 〈x̂i x̂ j 〉 from the difference of these two variables:

〈x̂i x̂ j 〉 = 1

4

[
〈(x̂i + x̂ j )

2〉 − 〈(x̂i − x̂ j )
2〉

]
. (6.56)

Similar to the measurement of 〈x̂i x̂ j 〉 which is achieved by homodyne mea-
surements on modes (i, j) with relative phases of (0, 0), (0, 180) degrees, 〈x̂i p̂ j 〉,
〈 p̂i x̂ j 〉, and 〈 p̂i p̂ j 〉 are acquired by homodyne measurements with relative phases
of (0, 90), (0,−90) degrees, (90, 0), (90, 180) degrees, and (90, 90), (90,−90) de-
grees, respectively. In experiment, we acquire only one of 〈x̂i p̂ j 〉 and 〈 p̂ j x̂i 〉, since
〈x̂i p̂ j 〉 = 〈 p̂ j x̂i 〉.

6.3 Experiment Components

6.3.1 From Laser to Oscillators

We use an optical table RS4000 (Newport, 1,500 mm×4,200 mm) with vibration
isolators I-2000 (Newport). The table is covered with a windshield in order to obstruct
the flow of air. It has an effect as well that it keeps out the dust from the optical setup.

Figure 6.4 shows the experimental setup from the laser to oscillators. The laser
resource is a Ti:Sapphire (Ti:S) laser MBR110 (COHERENT) which is pumped by an
Nd:YVO4 laser Verdi-V10 (COHERENT). The wavelength of the Ti:S laser is set to
be 860 nm, while the output power is about 1.8 W. An optical isolator (ISO, FI850-
5SV, Linos) is placed at the output of the laser in order to prevent retroreflection
beams going back to the laser. The beam then passes through an electro-optical
modulator (EOM, PM25, Linos), where phase modulation of 11.2 MHz is applied.
It is utilized to lock all the optical cavities via the Pound-Drever-Hall locking (FM
sideband locking) technique (Sect. 6.4.2).
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Fig. 6.5 Doubler

Fig. 6.6 Mode cleaning cavity

6.3.2 Doubler

A doubler is an optical cavity which generates an optical beam with the wavelength
of 430 nm. It is utilized as a pump beam for generation of a squeezed state by an
OPO.

The schematic of our doubler is shown in Fig. 6.5. It is a bow-tie cavity with the
total length of 500 mm. It consists of two flat mirrors and two concave mirrors with
the radius of curvature of 50 mm. For the fundamental beam with the wavelength of
860 nm, two flat mirrors and one of the concave mirrors have high reflectivities (HR
mirrors), while the energy transmissivity of the other concave mirror is 10 %. The
fundamental beam is injected into the cavity through the 10 %T coupler. The concave
mirror which is HR for 860 nm is specially coated so that it has high transmissivity
for 430 nm beam. Thus, it works as the output coupler of the doubler.

A 3 mm×3 mm×10 mm KNbO3 crystal (VLOC) is located between the two
concave mirrors. It works as a nonlinear crystal for second harmonic generation
(SHG), leading to the frequency-doubled beam with the wavelength of 430 nm. The
phase matching condition is achieved by adjusting temperature of the crystal. For
this purpose, it is placed in a copper crystal holder with a Peltier element. In our
experiment, the phase matching temperature is about 22 ◦C, while the refractive
index is n = 2.278. We acquired about 450 mW frequency-doubled beam from
about 850 mW fundamental beam.

6.3.3 Mode Cleaning Cavity

A mode cleaning cavity (MCC) is utilized to shaping the spatial mode of the fun-
damental beam from the laser. Since the laser beam potentially has higher Gaussian
modes of Gaussian beams, we extract the 00-mode ingredient via the MCC.
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The schematic of our MCC is shown in Fig. 6.6. It is a bow-tie cavity with the
total length of 500 mm. In order for mechanical stability, four mirror mounts are
fixed on an L-shaped angle made of aluminum. The output of the MCC serves as the
following beams:

• Alignment beams for OPOs.
• Local oscillator beams for homodyne measurements.

In experiments in Chap. 7 and later, it also serves as the following beams:

• Input states for two-mode operations.
• Displacement beams.

6.3.4 Optical Parametric Oscillator

An optical parametric oscillator (OPO) is a cavity with which we can generate a
squeezed light.

6.3.4.1 Configuration

Figure 6.7 shows the schematic of our OPO.
It is a bow-tie cavity with the total length of 500 mm. It consists of two flat mirrors

and two concave mirrors with the radius of curvature of 50 mm. For the fundamental
beam with the wavelength of 860 nm, one of the flat mirrors and two concave mirrors
are HR mirrors, while the energy transmissivity of the other flat mirror is 12 %.
The partial transmissivity mirror serves as the output coupler of the squeezed state.
In order to inject the probe beam and the lock beam, the HR flat mirror has a small
amount of transmissivity T = 150 ppm = 0.015 %. On the other hand, the reflectivity
of each concave mirror is set to be R > 99.99 % for the fundamental beam, while it
has high transmissivity for the frequency-doubled beam.

A 1 mm×1 mm×10 mm periodically poled KTiOPO4 (PPKTP) nonlinear crystal
(Raicol Crystals) is located between the two concave mirrors. It is known that the
blue light induced infrared absorption (BLIIRA) of PPKTP crystal is small, thus it
is the standard crystal in our laboratory. By using the same setup as the doubler,
phase matching condition is achieved by adjusting temperature of the crystal. Phase
matching temperature is about 40 ◦C.

6.3.4.2 Beams

The following four beams are injected into an OPO.

http://dx.doi.org/10.1007/978-4-431-55019-8_7
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Fig. 6.7 Optical parametric oscillator

6.3.4.3 Pump Beam

The first beam is the pump beam with the wavelength of 430 nm. It is injected into
the OPO via one of the concave mirrors. The direction of this pump beam becomes
the reference to circling of the other beams.

6.3.4.4 Probe Beam

The second beam is the probe beam with the wavelength of 860 nm. It is injected into
the OPO via the HR flat mirror in the same direction to the pump beam. The output
of this probe beam from the output coupler is utilized to lock relative phases, such as
the phase of the pump beam, and the phases of local oscillator beams in homodyne
detections.

6.3.4.5 Lock Beam

The third beam is the lock beam with the wavelength of 860 nm. It is injected into the
OPO via the HR flat mirror in the opposite direction to the pump beam. It is utilized
to lock the total length of the OPO. In order to avoid interference between the probe
beam and the lock beam, its spatial mode is converted from 00 mode to approximate
01 mode by using a glass plate. However the total length of the OPO with which
the 00 mode beam resonates is different from the length with which the 01 mode
beam resonates. Thus its frequency is shifted in advance by using an acousto-optic
modulator (AOM) so that both the 00 mode beam without frequency shift and the 01
mode beam with frequency shift resonate simultaneously with the same total length
of the OPO.

6.3.4.6 Alignment Beam

The last beam is the alignment beam with the wavelength of 860 nm. It is injected
into the OPO via the 12 %T flat mirror in the opposite direction to the pump beam.
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Different from the other three beams above, which are always utilized during mea-
surements, the alignment beam is used only when we adjust the OPO.

Since the lock beam and the probe beam are injected into the OPO via the HR flat
mirror, it is difficult to build the OPO using these two beams. Thus, we first use the
alignment beam injected via the 12 %T flat mirror in order to build the OPO. After we
have adjusted the OPO so that the alignment beam resonates, we lock the length of
the OPO using the reflected beam of the alignment beam. Since the transmitted beam
propagates in the opposite direction to the probe beam, we can adjust the optical path
of the probe beam. After the adjustment of the probe beam, we can adjust the optical
path of the lock beam because the reflected beam of the probe beam propagates in
the opposite direction to the lock beam. Finally, we inject the alignment beam into
the OPO with the phase matching condition satisfied. By the process of SHG, a beam
with the wavelength of 430 nm is outputted from one of the concave mirrors. Since
it propagates in the opposite direction to the pump beam, we can adjust the optical
path of the pump beam.

6.3.5 Mode of Quantum State

The center of the frequency band of the squeezed state generated by our OPO is
equivalent to that of the laser.

In general, a squeezed state is generated with the frequency band whose center
frequency is equivalent to that of the laser,2 while the bandwidth is equivalent to
that of the OPO. In our experiment, the half width at half maximum (HWHM) of
the bandwidth is about 6 MHz. The frequency band of a cluster state we generate is
equivalent to that of the squeezed state.

To the contrary, we utilize a sideband squeezed state with the frequency band
whose center frequency is ±1 MHz away from the center frequency of the laser,
while the HWHM of the sidebands is 15 kHz. The wave packet of a quantum state is
a 1 MHz sine wave with an envelope of about 70µs time duration. It derives from the
setting of the spectrum analyzer (SA) we use in our experiment: center frequency is
1 MHz, resolution bandwidth is 30 kHz (full width at half maximum, FWHM), and
we use the zero span mode.

The advantage of adopting the sideband as the frequency band is that the experi-
mental setup for one-way quantum computation becomes simpler (Sect. 7.3.3).

2 To be precise, squeezed states are generated at several frequency bands with different center
frequencies corresponding to the frequency comb of the cavity as far as the phase matching condition
(Footnote 2 continued)
is satisfied. However, they will be filtered out by homodyne detections because they detect interfer-
ence between the signal beams and the local oscillator beams with the laser frequency, and because
the detectors are not broadband enough to detect them.

http://dx.doi.org/10.1007/978-4-431-55019-8_7
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6.3.6 Homodyne Measurement

In this thesis, quantum states are measured by homodyne measurements (Sect. 2.4).
the schematic of a homodyne measurement is shown in Fig. 6.8.

A homodyne measurement is achieved in the following procedure. The signal
beam (â) and a local oscillator (LO) beam (α), which is an intense coherent beam,
are combined via a 50:50 beam splitter (half beam splitter, HBS). The outputs (â1, â2)
are converted to photocurrents via photodiodes. The measurement result is acquired
by calculating the difference of these photocurrents.

In experiment, we have to adjust the reflectivity of the beam splitter precisely.
For that purpose, we in advance apply 1 MHz intensity modulation onto the local
oscillator beam, while we shut off the signal beam. The reflectivity is then adjusted
by rotating the beam splitter so that the 1 MHz signal is not detected at the output of
the homodyne detector. The level of this cancellation is evaluated by the power ratio
of the 1 MHz signals between the case where one of the photodiodes is disabled by
shutting off the beam in front of the photodiode, and the case where both photodiodes
are enabled. The typical level is about 40 dB, which is sufficient to measure quantum
states.

6.4 Locking the Cavities and Phases

In this section, we mention experimental techniques to lock total lengths of optical
cavities and relative phases between two beams.

Fig. 6.8 Homodyne measure-
ment

signal beam LO beam

HBS

-

homodyne detector

â α

1â2â

http://dx.doi.org/10.1007/978-4-431-55019-8_2
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Fig. 6.9 FM sideband locking (locking of MCC)

6.4.1 Phase Modulation

The FM sideband locking and the AC locking are achieved by using a phase-
modulated beam. In this subsection, we briefly describe the phase modulation.

The phase modulation with the frequency f is experimentally realized by oscillat-
ing the optical path length of a beam with the same frequency of f . In our laboratory,
we utilize two types of optical setups. One is that the optical path length is oscillated
by using a mirror with a piezo electric transducer (PZT), on which an electrical sig-
nal of a sine wave with the frequency f is applied. Since the length of the PZT is
changed according to the electrical signal, phase modulation can be applied to the
beam. Note that we can neglect distortion of the optical axis caused by the change
of the PZT length because displacement of the PZT is considerably shorter than the
radius of the beam. In this thesis, we utilize the PZT-based phase modulation for the
AC locking.

The other is that the optical path length is oscillated by using an electro-optical
modulator (EOM), on which an electrical signal of a sine wave with the frequency f
is applied. The optical path length is modulated via the process of the Pockels effect:
the electric field produces birefringence of an optical medium, where its refractive
index is changed in proportional to the electric field [2]. In this thesis, we utilize the
EOM-based phase modulation for the FM sideband locking.

In both cases of the PZT-based and the EOM-based phase modulation, it is for-
mulated as

Ein = E0eiωt → Emod = E0ei(ωt+β sinΩt), (6.57)

where β is the modulation depth, while Ω = 2π f is the angular frequency of the
phase modulation. When β is small enough, it can be expanded in the following way:

Emod 
 E0eiωt (1 + iβ sinΩt) = E0eiωt
(

1 + β

2
eiΩt − β

2
e−iΩt

)
. (6.58)

It shows that the sideband signal with angular frequency of ±Ω is generated.
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6.4.2 FM Sideband Locking

Figure 6.9 shows the basic structure of FM sideband locking system for an optical
cavity. A phase-modulated beam passes through the cavity, and then is detected by
a detector. The electrical signal from the detector is sent to a mixer, with which it
is multiplied by the original modulation signal. The output signal of the mixer is
given by

Verr = d|F(L)|2
dL

, (6.59)

where L is the total length of the cavity, while F(L) is the amplitude of the transmitted
beam. Therefore, Verr works as the error signal for locking of the cavity length so
that it is an integer multiple of the wavelength of the laser beam.

6.4.3 DC Locking

We utilize the DC locking system for the purpose of adjusting the relative phase
between two laser beams to be 90 or 270◦ (Fig. 6.10).

We assume that E1 and E2 represent the amplitudes of two laser beams, while θ is
the relative phase between them. These two beams are combined on a beam splitter.
The power of its output is given by
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P = |E1|2 + |E2|2 + 2E1 E2 cos θ. (6.60)

1 % of the interfered beam is picked up by a 1 % transmissivity beam splitter, followed
by converted to an electrical signal via a photo detector. It works as the error signal
for locking of the relative phase between two laser beams to be 90 or 270◦. The
choice of 90 or 270◦ is achieved via the polarity switch in the feedback servo (DC
servo) controller (Fig. 6.11).

6.4.4 AC Locking

We utilize the AC locking system for the purpose of adjusting the relative phase
between two laser beams to be 0◦ or 180◦ (Fig. 6.12).

We assume that E1 and E2 represent the amplitudes of two laser beams, while
θ is the relative phase between them. After one of these beams is phase-modulated,
they are combined on a beam splitter. The power of its output is given by

P = |E1|2 + |E2|2 + 2E1 E2(cos θ + β sin θ sinΩt), (6.61)

where β represents the modulation depth, while Ω is the angular frequency of the
phase modulation. 1 % of the interfered beam is picked up by a 1 % transmissivity
beam splitter, followed by converted to an electrical signal via a photo detector. It is
sent to a mixer, with which it is multiplied by the modulation signal. The output of
the mixer is given by

V = 2E1 E2β sin θ(1 + sin 2Ωt)+ (component of sinΩt). (6.62)

By using a low pass filter (LPF) which filters out all components with angular fre-
quency of Ω and higher, we get the error signal for locking of the relative phase
between two laser beams to be 0◦ or 180◦. The choice of 0◦ or 180◦ is achieved via
the polarity switch in the feedback servo (AC servo) controller (Fig. 6.13).

The same technique can be utilized to lock the phase between a pump beam and
a probe beam in an OPO. It can also be utilized in order to lock the relative phase
between a probe beam and a local oscillator beam at a homodyne detection to be 0◦
or 180◦.

6.4.5 Locking the Relative Phases for Generation of Two-Mode
Cluster State

Figure 6.14 shows arrangement of probe beams and phase modulations for generation
of a two-mode cluster state. By using Fig. 6.14, we can determine how each relative
phase between two beams is locked.
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Phase Modulation

6.4.5.1 Probe Beams and Phase Modulations

Probe beams for OPO-A and OPO-B are phase modulated with the frequency of 210
and 140 kHz, respectively. These phase modulations are achieved via PZTs on their
optical paths.

6.4.5.2 Locking the Parametric Gains

In this thesis, we lock the phase of the pump beam for an OPO so that the parametric
gain has the minimum value. It is achieved by using the AC locking technique with
an error signal which is demodulated from the transmitted probe beam with the
original modulation signal (sine wave with the frequency of 210 kHz for OPO-A,
while 140 kHz for OPO-B).

The relationship between the squeezed state and the phase modulation is described
under each OPO in Fig. 6.14. Since the parametric gain is adjusted so that it has the
minimum value, the probe beam points to the squeezing component of the squeezed
beam, while the modulation signal is orthogonal to the probe beam. We intentionally
choose this arrangement of phases so that the modulation signal is amplified via the
optical parametric process, leading to the high signal-to-noise (S/N) ratio, and thus
stability of locking system.
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Fig. 6.14 Probe beams and
phase modulations for genera-
tion of two-mode cluster state
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6.4.5.3 Fourier Transformations and Beam Splitter

In Fig. 6.14, the relationship of the probe beams in each optical path is described by
arrows in phase space. At the output of each OPO, the probe beam points to the p
axis. Th probe beams from different OPOs are distinguished by colors of arrows.

The Fourier transformation on mode 2 rotates the arrow with 90◦ in a counterclock-

wise direction. At the beam splitter B(1)12

( 1√
2

) = 1√
2

(−1 1
1 1

)
, the phase of the probe

beam from mode 1 to mode 1 is rotated with 180◦ in phase space, which corresponds
to the sign of the (1, 1) entry of the matrix. The inversed Fourier transformation is
then applied to mode 1, which rotates the arrows with 90◦ in a clockwise direction.

6.4.5.4 Locking the Relative Phase on the Beam Splitter for Generation
of Cluster State

As is shown in Fig. 6.14, we lock the relative phase between two probe beams from
OPO-A and OPO-B so that it is 90◦. This locking is achieved by using the DC locking
technique. Since the relative phase between the probe beam and the squeezed state
in each OPO is locked in advance, the relative phase between two squeezed states
from these two OPOs becomes locked indirectly.
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Table 6.4 Phase lockings for generation of two-mode cluster state

Relative phase Technique, demodulation frequency

Parametric gain of OPO-A AC locking, 210 kHz

Parametric gain of OPO-B AC locking, 140 kHz

beam splitter B(1)12 (
1√
2
) DC locking

Homodyne measurement in mode 1 AC locking, x: 210 kHz, p: 140 kHz

Homodyne measurement in mode 2 AC locking, x: 140 kHz, p: 210 kHz

6.4.5.5 Locking the Relative Phase on the Beam Splitter for Homodyne
Detection

We here consider locking of the relative phase between the signal beam and the local
oscillator beam on the half beam splitter for the homodyne detection in mode 1. We
assume that we measure the position component of mode 1 (x̂1). For this purpose,
we adjust the phase of the local oscillator beam so that it points to the x axis in phase
space. Since the probe beam from OPO-A points to the x axis as well, this phase
locking can be achieved by using the AC locking technique with the demodulation
signal with frequency of 210 kHz, which have been utilized to modulate the probe
beam of OPO-A. Whether it is locked to 0◦ or 180◦ is determined by the polarity
switch in the feedback servo (AC servo) controller. In order to measure the momentum
component of mode 1 ( p̂1), we use the AC locking technique with the demodulation
signal with frequency of 140 kHz, which have been utilized to modulate the probe
beam of OPO-B. In a similar manner, we can lock the phase of the local oscillator
beam for the homodyne detection in mode 2.

6.4.5.6 Summary of Phase Locking

Table 6.4 shows phase locking techniques for generation of a two-mode cluster state.

6.4.6 Locking the Relative Phases for Generation of Three-Mode
Linear Cluster State

Figure 6.15 shows arrangement of probe beams and phase modulations for generation
of a three-mode linear cluster state.

The locking system for generation of a three-mode linear cluster state is similar
to that for generation of a two-mode cluster state. In the following, we mention
differences between these two experiments, and additions to the two-mode cluster
state experiment.
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Fig. 6.15 Probe beams and phase modulations for generation of three-mode linear cluster state

6.4.6.1 Probe Beams and Phase Modulations

Probe beams for OPO-A, OPO-B and OPO-C are phase modulated with the frequency
of 210, 140 and 98 kHz, respectively.

Table 6.5 Phase lockings for generation of three-mode linear cluster state

Relative phase Technique, Demodulation frequency

Parametric gain of OPO-A AC locking, 210 kHz

Parametric gain of OPO-B AC locking, 140 kHz

Parametric gain of OPO-D AC locking, 98 kHz

Beam splitter B(1)23 (
√

2/3) DC locking

beam splitter B(1)12 (
1√
2
) AC locking, 210 kHz

Homodyne measurement in mode 1 AC locking, x: 140 kHz, p: 210 kHz

Homodyne measurement in mode 2 AC locking, x: 210 kHz, p: 140 kHz

Homodyne measurement in mode 3 AC locking, x: 140 kHz, p: 210 kHz
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6.4.6.2 Locking the Relative Phase on the Beam Splitter B(1)
12 ( 1√

2
)

One of the two input beams to the beam splitter B(1)12 (
1√
2
) comes from the OPO-

D. The other input beam is an output of the beam splitter B(1)23

(√ 2
3

)
, where two

beams from OPO-A and OPO-B are combined. As is shown in Fig. 6.15, two probe
beams from OPO-A and OPO-D are to be combined parallelly on the beam splitter
of B(1)12 (

1√
2
). This phase locking can be achieved by using the AC locking technique

with the demodulation signal with the frequency of 210 kHz, which have been utilized
to modulate the probe beam of OPO-A.

6.4.6.3 Summary of Phase Locking

Table 6.5 shows phase locking techniques for generation of a three-mode linear clus-
ter state.

6.4.7 Locking the Relative Phases for Generation of Four-Mode
Linear Cluster State

Figure 6.16 shows arrangement of probe beams and phase modulations for generation
of a four-mode linear cluster state.

6.4.7.1 Summary of Phase Locking

Table 6.6 shows phase locking techniques for generation of four-mode linear cluster
state.

6.5 Measurement Results of Two-Mode Cluster State

6.5.1 Preparation

6.5.1.1 Adjustment of Interference Visibilities

Table 6.7 shows adjustment results of interference visibilities.
In this table, “OPO-A” and “OPO-B” show probe beams for the corresponding

OPOs, while “LO-1” and “LO-2” show local oscillator beams for the corresponding
homodyne measurements, respectively. Note that the interferences between “OPO-
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Fig. 6.16 Probe beams and phase modulations for generation of four-mode linear cluster state

Table 6.6 Phase lockings for generation of four-mode linear cluster state

Relative phase Technique, demodulation frequency

Parametric gain of OPO-A AC locking, 210 kHz

Parametric gain of OPO-B AC locking, 140 kHz

Parametric gain of OPO-C AC locking, 98 kHz

Parametric gain of OPO-D AC locking, 98 kHz

Beam splitter B(3)23 (
2√
5
) DC locking

Beam splitter B(3)12 (
1√
2
) AC locking, 140 kHz

Beam splitter B(4)34 (
1√
2
) AC locking, 210 kHz

Homodyne measurement in mode 1 AC locking, x: 210 kHz, p: 140 kHz

Homodyne measurement in mode 2 AC locking, x: 140 kHz, p: 210 kHz

Homodyne measurement in mode 3 AC locking, x: 210 kHz, p: 140 kHz

Homodyne measurement in mode 4 AC locking, x: 140 kHz, p: 210 kHz
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Table 6.7 Interference visibilities for generation of two-mode cluster state

Beam splitter Beams used for adjustment Visibility (%)

Cluster state generation OPO-A, OPO-B 99.1

Homodyne measurement 1 OPO-A, LO-1 97.2

Homodyne measurement 2 OPO-B, LO-2 96.1

A” and “LO-2”, and between “OPO-B” and “LO-1” are adjusted indirectly via the
interference at the beam splitter of cluster state generation.

6.5.1.2 Adjustment of Parametric Gains

Adjustment of the parametric gain for each OPO is achieved by alignment of the pump
beam and temperature control of the nonlinear crystal. Table 6.8 shows adjustment
results of the parametric gains.

The difference between two phase matching temperatures derives from individual
specificity of the nonlinear crystals and temperature control systems.

6.5.1.3 Balance Between Homodyne Detections

The output amplitude of a homodyne detector (Sect. 2.4) depends on the intensity
of the local oscillator and the circuit constant of the detector. In order to measure
quantum correlations between two modes accurately, we have to uniform the gains
of homodyne detectors. The balance between two homodyne detectors is adjusted in
the following two steps.

6.5.1.4 First Step

We apply phase modulation with the frequency of 1 MHz to the probe beam for
OPO-A. Since we have assumed that the probe beam points to the p axis, the phase
modulation points to the x axis. Note that, OPO-A corresponds to mode 1. Thus, we
can consider that the state of mode 1 is a coherent state with amplitude in x̂1. We
rewrite Eq. (6.5) so that it shows the general input-output relationship which does

Table 6.8 Parametric gains for generation of two-mode cluster state

OPO Parametric gain (maximum) Phase matching temperature (◦)

OPO-A 7.9 40.5

OPO-B 8.4 40.2

http://dx.doi.org/10.1007/978-4-431-55019-8_2
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not depend on the specific input state:

(
x̂′

1 + i p̂′
1

x̂′
2 + i p̂′

2

)
=

(− 1√
2

p̂1 + 1√
2
x̂2

1√
2
x̂1 − 1√

2
p̂2

)
+ i

( 1√
2
x̂1 + 1√

2
p̂2

1√
2

p̂1 + 1√
2
x̂2

)
. (6.63)

Since 1√
2
x̂1 appears in p̂′

1 and x̂′
2, we obtain p̂′

1 and −x̂′
2 by adjusting the phases

of local oscillator beams to 90◦ and 180◦. Two outputs of the homodyne detectors
are added by a power adder. We measure the output of the power adder by using
a spectrum analyzer, with which we detect the power of the component with the
frequency of 1 MHz. When two signals from the homodyne detectors are added with
identical gains and same phases, no 1 MHz signal will be detected by the spectrum
analyzer. In order to adjust the power of the signal, step attenuators are placed between
one of the homodyne detectors and the power adder, while the relative phase is
adjusted by changing the length of cables.

Figure 6.17 shows adjustment results. Trace “HD1” shows the measurement result
when the signal from homodyne detector 1 is connected to the power adder, while
that from homodyne detector 2 is not connected. We find intense 1 MHz signal is
detected. Trace “HD1 - HD2” shows the measurement result when the both signals
from two homodyne detectors are connected to the power adder. The 1 MHz signals
are canceled out, and almost no signal is detected.

We mention that the levels at sideband frequency (1.2 MHz, for example) are
different from each other. This is because we carried out the balance adjustment with
pumping OPOs, thus squeezed states are generated. In the trace of “HD1”, variance
of p̂′

1 = 1√
2
x̂1 + 1√

2
p̂2, which is given by 1

2 〈Δ2x̂1〉 + 1
2 〈Δ2 p̂2〉, is detected. In the

trace of “HD1 - HD2”, on the other hand, variance of p̂′
1 − x̂′

2 = √
2 p̂2, which is
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given by 2〈Δ2 p̂2〉, is detected. Since x̂1 and p̂2 show anti-squeezing and squeezing
components, the power in trace “HD1” is larger than that in trace “HD1 - HD2”.

6.5.1.5 Second Step

Although the balance between two homodyne detectors is almost adjusted, there
might exist some error derived from experimental imperfection. Since propagation
efficiency (or equivalently, energy loss) from OPO-A to homodyne detector 1 is
different from that to homodyne detector 2, the powers of coherent states detected
by two homodyne detectors are different from each other. This error is compensated
by uniforming the shot noise level (SNL), which is achieved by adjusting the step
attenuators placed between one of the homodyne detectors and the power adder. In
our experiment, adjustment of up to 0.3 dB is carried out.

6.5.2 Measurement Results and Their Analysis
(P G1 = 7, P G2 = 7)

In this subsection, we show measurement results and analysis of generation of the
two-mode cluster state when both parametric gains are adjusted to 7 (PG1 =
7, PG2 = 7).

6.5.2.1 Measurement Results of Variances

Figure 6.18 shows measurement results of variances which will be utilized in order
to evaluate van Loock-Furusawa entanglement criterion as well as to acquire the
covariance matrix.

Each result is listed in Table 6.9.
In Fig. 6.18 and Table 6.9, all results are normalized by the values which are

acquired by using vacuum states as inputs for all homodyne detections. Therefore,
0 dB in single-mode measurements (such as measurements of x̂1 or (x̂2 + p̂2)/

√
2)

corresponds to the shot noise level (SNL= �

2 ), while 0 dB in two-mode measurements
(such as x̂1 + x̂2) corresponds to 2 × SNL.

6.5.2.2 Entanglement Detection via van Loock-Furusawa Criterion

By using parts of measurement results in Table 6.9, we can evaluate entanglement of
the generated state via van Loock-Furusawa criterion. In the case of the two-mode
cluster state, a sufficient condition of entanglement (Sects. 3.7.4 and 5.1.4) is given
by

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Fig. 6.18 Measurement results of variances (PG1 = 7, PG2 = 7). a x̂1, p̂1, b x̂1 ± p̂1, c x̂2, p̂2,
d x̂2 ± p̂2, e x̂1 ± x̂2, f x̂1 ± p̂2, g p̂1 ± x̂2, h p̂1 ± p̂2
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Table 6.9 Measurement results of variances (PG1 = 7, PG2 = 7)

Measurement Variance (dB) Measurement Variance (dB)

Variable (Relative to Variable (Relative to

vacuum inputs) (vacuum inputs)

x̂1 8.48 ± 0.03 x̂2 8.53 ± 0.03

p̂1 8.59 ± 0.03 p̂2 8.44 ± 0.03

(x̂1 + p̂1)/
√

2 8.55 ± 0.03 (x̂2 + p̂2)/
√

2 8.25 ± 0.03

(x̂1 − p̂1))/
√

2 8.37 ± 0.03 (x̂2 − p̂2)/
√

2 8.49 ± 0.03

x̂1 + x̂2 8.61 ± 0.03 p̂1 + x̂2 11.48 ± 0.03

x̂1 − x̂2 8.55 ± 0.03 p̂1 − x̂2 −5.28 ± 0.03

x̂1 + p̂2 11.40 ± 0.03 p̂1 + p̂2 8.65 ± 0.03

x̂1 − p̂2 −5.52 ± 0.03 p̂1 − p̂2 8.75 ± 0.03

〈Δ2( p̂1 − x̂2)〉 + 〈Δ2( p̂2 − x̂1)〉 < 2�. (6.64)

By using the measurement results of p̂1 − x̂2 and x̂1 − p̂2, we get

〈Δ2( p̂1 − x̂2)〉 = � × 10
−5.28

10 = (0.297 ± 0.002)�, (6.65)

〈Δ2( p̂2 − x̂1)〉 = � × 10
−5.52

10 = (0.281 ± 0.002)�, (6.66)

leading to

〈Δ2( p̂1 − x̂2)〉 + 〈Δ2( p̂2 − x̂1)〉 = (0.577 ± 0.003)� < 2�. (6.67)

Therefore, the inseparability (entanglement) of the generated cluster state is verified.

6.5.2.3 Estimation of Squeezing Levels and Propagation Efficiency
by Variances

We estimate squeezing levels and energy propagation efficiency by using measure-
ment results of nullifiers: p̂1 − x̂2 and p̂2 − x̂1, and operators which are acquired by
changing the signs of the nullifiers: p̂1 + x̂2, p̂2 + x̂1.

For simplicity, we assume that squeezing parameters and energy propagation effi-
ciencies are symmetrical (rk = r, ηk = η). In this case, the variances of p̂1 − x̂2 and
p̂1+x̂2 become identical to those of p̂2−x̂1 and p̂2+x̂1, respectively. Since their ex-
perimental results have different values because of asymmetry of experimental setup,
we use the averaged values −5.40 dB and 11.44 dB in the following discussion. They
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correspond to the effective squeezing level x(e) = 5.40 defined by Eq. (6.12), and
the effective squeezing level of anti-squeezing x(ae) = 11.44 defined by Eq. (6.16).

By using x(e) and x(ae), we can estimate the squeezing parameter r (note that it
is not the effective squeezing parameter) and the energy efficiency η. Since

�

2

[
2ηe−2r + 2(1 − η)

]
= �

2
× 2 × 10− x(e)

10 ,
�

2

[
2ηe2r + 2(1 − η)

]
= �

2
× 2 × 10

x(ae)
10 ,

(6.68)

we acquire

η = 0.75, r = 1.45. (6.69)

We then compare these estimated values with the other experimental parameters.
First, we consider the squeezing level. We have adjusted the parametric gains of both
OPO-A and OPO-B so that they are equal to 7. In general, a parametric gain G+ and
a squeezing level without experimental losses have the following relationship:

G+ = 1

(1 − x)2
, 10− a

10 = e−2r = 1 − 4x

(1 + x)2 + f 2 , f = fm

fopo
, (6.70)

where fm = 1 MHz is the measurement frequency, while fopo = 6.0 MHz is the
bandwidth (HWHM) of an OPO. Therefore, we get the squeezing parameter r =
1.37 for the parametric gain G+ = 7. Next, we consider the energy efficiency.
In our experimental setup, the escape efficiency is about 96 % (derived from the
intra-cavity loss of 0.5 %), the propagation efficiency is about 92 % on average, and
the interference efficiency is about 91 % on average (derived from the imperfect
visibilities). Thus, the total energy efficiency is acquired as the product of these
efficiencies: 80 %. Therefore, the squeezing parameter and the energy efficiency
estimated by these experimental parameters are consistent with those acquired by
x(e) and x(ae).

6.5.2.4 Covariance Matrix

By using all measurement results in Table 6.9, we can acquire all elements of the
covariance matrix (Sect. 6.2). We use the system of units with � = 1

2 , for simplicity.

6.5.2.5 Element of V11

By using the measurement result of x̂1, we get

V11 = 〈Δ2x̂1〉 = �

2
× 10

8.48
10 = 1.76. (6.71)



186 6 Experimental Generation of Optical Continuous-Variable Cluster States

Table 6.10 Variables acquired by covariance matrix (PG1 = 7, PG2 = 7)

Variable Result

Determinant of 1st order principal submatrix: det V1 = V11 1.76 ± 0.01

Determinant of 2nd order principal submatrix: det V2 = det A 3.19 ± 0.03

Determinant of 3rd order principal submatrix: det V3 0.47 ± 0.08

Determinant of 4th order principal submatrix: det V4 = det V 0.06 ± 0.02

Symplectic eigenvalue: ν− 0.46 ± 0.05

Symplectic eigenvalue: ν+ 0.51 ± 0.04

PT symplectic eigenvalue: ν̃− 0.068 ± 0.009

PT symplectic eigenvalue: ν̃+ 3.481 ± 0.009

Logarithmic negativity: EN 1.29 ± 0.12

6.5.2.6 Element of V12

By using the measurement results of (x̂1 ± p̂1)/
√

2, we get

V12 = 1

2

[〈( x̂1 + p̂1√
2

)2〉 −
〈( x̂1 − p̂1√

2

)2〉] = 1

2

[
�

2
× 10

8.55
10 − �

2
× 10

8.37
10

]
= 0.04.

(6.72)

6.5.2.7 Element of V14

By using the measurement results of x̂1 ± p̂2, we get

V14 = 1

4

[
〈(x̂1 + p̂2)

2〉 − 〈(x̂1 − p̂2)
2〉

]
= 1

4

[
� × 10

11.40
10 − � × 10− 5.52

10

]
= 1.69.

(6.73)

As a result, we get the covariance matrix V :

V =

⎛
⎜⎜⎝

1.76 0.04 0.01 1.69
0.04 1.81 1.72 −0.02
0.01 1.72 1.78 −0.05
1.69 −0.02 −0.05 1.75

⎞
⎟⎟⎠ . (6.74)

Note that statistical error in each element is less than ±0.01. Figure 6.19 shows
its graph.
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Fig. 6.19 Covariance matrix (PG1 = 7, PG2 = 7)

6.5.2.8 Variables Acquired by Covariance Matrix

Table 6.10 shows several variables (Sects. 3.2.6 and 3.7.5) which are acquired by the
covariance matrix of the generated two-mode cluster state.

Since all determinants of k-th order principal submatrices are positive: det Vk >

0 (k = 1, . . . , 4), and the symplectic eigenvalue ν− is ν− ≥ �

2 , the symmetric matrix
V certainly shows a covariance matrix of a physical state. In addition to this, since
the PT symplectic eigenvalue ν̃− satisfies ν̃− < �

2 , the physical state is an entangled
state. Note that the logarithmic negativity of experiment (EN = 1.29 ± 0.12) is
smaller than that of the theoretical prediction (EN = 1.43). This is because the
generated state has a large logarithmic negativity and large values in its covariance
matrix. Thus, a tiny difference (about ±0.01) in the covariance matrix leads to a large
difference (about ±0.1) in the logarithmic negativity.

6.5.2.9 Estimation of Squeezing Levels and Propagation Efficiency
by Covariance Matrix

The theoretical prediction of the covariance matrix is given by Eq. (6.17). By per-
forming fitting with fitting parameters of r1, r2, η1, and η2, we can estimate squeezing
parameters and energy efficiencies. We here minimize

f = (Ve11 − Vt11)
2 + (Ve14 − Vt14)

2 + (Ve22 − Vt22)
2 + (Ve23 − Vt23)

2

+ (Ve33 − Vt33)
2 + (Ve44 − Vt44)

2, (6.75)

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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where Ve represents the covariance matrix acquired experimentally, while Vt repre-
sents its theoretical prediction. As a result, we get

η1 = 0.75, η2 = 0.74, r1 = 1.46, r2 = 1.45, (6.76)

which are consistent with the other estimation results. Figure 6.20 shows the theo-
retical covariance matrix with these estimated parameters.

6.5.3 Measurement Results and Their Analysis with Other
Parametric Gains

In Sect. 6.5.2, we have shown measurement results and analysis of generation of
the two-mode cluster state when both parametric gains are adjusted to 7 (PG1 =
7, PG2 = 7). In this subsection, we show experimental results with the other sets
of parametric gains: (PG1, PG2) = (7, 4), (7, 1.5), (7, 1), (4, 1), (1, 1).

We get the following covariance matrices:

V (7,4) =

⎛
⎜⎜⎝

0.93 −0.02 0.05 0.85
−0.02 1.79 1.70 −0.02
0.05 1.70 1.77 −0.03
0.85 −0.02 −0.03 0.92

⎞
⎟⎟⎠ , V (7,1.5) =

⎛
⎜⎜⎝

0.29 0.02 0.03 0.21
0.02 1.86 1.71 −0.03
0.03 1.71 1.85 0.00
0.21 −0.03 0.00 0.28

⎞
⎟⎟⎠ ,

Fig. 6.20 Theoretical covariance matrix with estimated parameters
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V (7,1) =

⎛
⎜⎜⎝

0.16 0.05 0.05 0.09
0.05 1.85 1.59 −0.04
0.05 1.59 1.90 −0.05
0.09 −0.04 −0.05 0.16

⎞
⎟⎟⎠ , V (4,1) =

⎛
⎜⎜⎝

0.17 0.02 0.02 0.08
0.02 1.03 0.80 −0.02
0.02 0.80 1.07 −0.01
0.08 −0.02 −0.01 0.17

⎞
⎟⎟⎠ ,

V (1,1) =

⎛
⎜⎜⎝

0.25 0.00 0.00 0.00
0.00 0.25 0.00 0.00
0.00 0.00 0.25 0.00
0.00 0.00 0.00 0.25

⎞
⎟⎟⎠ , (6.77)

where V (i, j) represents the covariance matrix of (PG1, PG2) = (i, j). Statistical
error in each element is less than ±0.01.

Through Figs. 6.21, 6.22, 6.23, 6.24 and 6.25, we show experimental and theo-
retical covariance matrices. Note that the theoretical values are calculated by using
the parametric gains which are identical to the experimental settings, as well as
propagation efficiencies acquired by fitting in Sect. 6.5.2.

(a) (b)

Fig. 6.21 Covariance matrices (PG1 = 7, PG2 = 4). a Measurement result, b Theoretical
prediction

We discuss changes of covariance matrices depending on the squeezing parame-
ters. In the following, we use Eq. (6.24) as the theoretical values where efficiencies
are symmetrical, while squeezing parameters are asymmetrical, for simplicity. Note
that we can use Eq. (6.24) because η1 is almost the same to η2.

We start from the result with (PG1 = 7, PG2 = 7). By decreasing PG2, the
values of V11 = V44 and V14 = V41 become smaller since decrease of e2r2 is
dominant. On the other hand, V22 = V33 and V23 = V32 have little changes because
their dominant term is e2r1 .

By decreasing PG1 from (PG1 = 7, PG2 = 1), the values of V22 = V33 and
V23 = V32 become smaller since decrease of e2r1 is dominant.



190 6 Experimental Generation of Optical Continuous-Variable Cluster States

(a) (b)

Fig. 6.22 Covariance matrices (PG1 = 7, PG2 = 1.5). a Measurement result, b Theoretical
prediction

(a) (b)

Fig. 6.23 Covariance matrices (PG1 = 7, PG2 = 1). a Measurement result, b Theoretical
prediction

(a) (b)

Fig. 6.24 Covariance matrices (PG1 = 4, PG2 = 1). a Measurement result, b Theoretical
prediction
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(a) (b)

Fig. 6.25 Covariance matrices (PG1 = 1, PG2 = 1). a Measurement result, b Theoretical
prediction

6.6 Measurement Results of Three-Mode Linear
Cluster State

In this section, we show measurement results of our three-mode linear cluster state
generation.

6.6.1 Preparation

We omit the detail of experimental procedure for generation of a three-mode linear
cluster state because it is similar to that of a two-mode cluster state. Interference
visibilities are shown in Table 6.11.

6.6.2 Measurement Results

Figure 6.26 shows measurement results of nullifier variances.
Each result is listed in Table 6.12.
In Fig. 6.26 and Table 6.12, all results are normalized by the values which are

acquired by using vacuum states as inputs for all homodyne detections. Therefore,
0 dB in two-mode measurements corresponds to 2 × SNL, while 0 dB in three-mode
measurements corresponds to 3 × SNL. Values in Table 6.12 correspond to the
effective squeezing level, which we find is larger than 5 dB.
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Table 6.11 Interference visibilities for generation of three-mode linear cluster state

Beam splitter Beams used for adjustment Visibility (%)

Cluster state generation (mode 2 and 3) OPO-A, OPO-B 98.7

Cluster state generation (mode 1 and 2) OPO-A, OPO-D 98.1

Homodyne measurement 1 OPO-B, LO-1 97.7

Homodyne measurement 2 OPO-B, LO-2 98.1

Homodyne measurement 3 OPO-A, LO-3 97.3
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Fig. 6.26 Measurement results of variances. a p̂1 − x̂2, b p̂2 − x̂1 − x̂3, c p̂3 − x̂2

Table 6.12 Measurement results of variances

Measurement variable Variance (dB) (relative to vacuum inputs)

p̂1 − x̂2 −5.33 ± 0.02

p̂2 − x̂1 − x̂3 −5.18 ± 0.02

p̂3 − x̂2 −5.61 ± 0.02

6.6.3 Entanglement Detection Via van Loock-Furusawa Criterion

By using measurement results in Table 6.12, we can evaluate entanglement of the
generated state via van Loock-Furusawa criterion. In the case of the three-mode



6.6 Measurement Results of Three-Mode Linear Cluster State 193

linear cluster state, a sufficient condition of entanglement is given by

〈Δ2( p̂1 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3)〉 < 2�, (6.78)

〈Δ2( p̂3 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3)〉 < 2�. (6.79)

When these two inequalities are satisfied simultaneously, the quantum state is fully
inseparable (Sects. 3.7.4 and 5.1.4). By using Table 6.12, we get

〈Δ2( p̂1 − x̂2)〉 = � × 10
−5.33

10 = (0.293 ± 0.002)�, (6.80)

〈Δ2( p̂2 − x̂1 − x̂3)〉 = 3

2
� × 10

−5.18
10 = (0.455 ± 0.002)�, (6.81)

〈Δ2( p̂3 − x̂2)〉 = � × 10
−5.61

10 = (0.275 ± 0.002)�, (6.82)

leading to

〈Δ2( p̂1 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3)〉 = (0.748 ± 0.002)� < 2�, (6.83)

〈Δ2( p̂3 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3)〉 = (0.730 ± 0.002)� < 2�. (6.84)

Therefore, the full inseparability (entanglement) of the generated cluster state is
verified.

6.7 Measurement Results of Four-Mode Linear Cluster State

In this section, we show measurement results of our four-mode linear cluster state
generation.

6.7.1 Preparation

Interference visibilities and parametric gains are shown in Tables 6.13 and 6.14,
respectively.

6.7.2 Measurement Results

Figure 6.27 shows measurement results of nullifier variances.
Each result is listed in Table 6.15.
Values in Table 6.15 correspond to the effective squeezing level, which we find is

about 5 dB or higher.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Table 6.13 Interference visibilities for generation of four-mode linear cluster state

Beam splitter Beams used for adjustment Visibility (%)

Cluster state generation (mode 2 and 3) OPO-A, OPO-B 98.3

Cluster state generation (mode 1 and 2) OPO-A, OPO-C 97.1

Cluster state generation (mode 3 and 4) OPO-B, OPO-D 95.3

Homodyne measurement 1 OPO-A, LO-1 95.4

Homodyne measurement 2 OPO-A, LO-2 96.7

Homodyne measurement 3 OPO-B, LO-3 95.7

Homodyne measurement 4 OPO-B, LO-4 95.3

Table 6.14 Parametric gains for generation of four-mode linear cluster state

OPO name Mode number Pump power (mW) Parametric gain (G+,G−) Phase matching tem-
perature ◦

OPO-A Mode 3 108 G+=6.8, G−=0.46 38.6

OPO-B Mode 2 102 G+=9.8, G−=0.43 39.9

OPO-C Mode 1 89 G+=3.9, G−=0.47 40.4

OPO-D Mode 4 85 G+=5.6, G−=0.46 41.1

Table 6.15 Measurement results of variances

Measurement variable Variance (dB) (relative to vacuum inputs)

p̂1 − x̂2 −5.60 ± 0.02

p̂2 − x̂1 − x̂3 −4.79 ± 0.02

p̂3 − x̂2 − x̂4 −5.25 ± 0.02

p̂4 − x̂3 −5.51 ± 0.02

6.7.3 Entanglement Detection Via van Loock-Furusawa Criterion

By using measurement results in Table 6.15, we can evaluate entanglement of the
generated state via van Loock-Furusawa criterion. In the case of the four-mode linear
cluster state, a sufficient condition of entanglement is given by

〈Δ2( p̂1 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3)〉 < 2�, (6.85)

〈Δ2( p̂2 − x̂1 − x̂3)〉 + 〈Δ2( p̂3 − x̂2 − x̂4)〉 < 2�, (6.86)

〈Δ2( p̂3 − x̂2 − x̂4)〉 + 〈Δ2( p̂4 − x̂3)〉 < 2�. (6.87)

When these three inequalities are satisfied simultaneously, the quantum state is fully
inseparable (Sects. 3.7.4 and 5.1.4). By using Table 6.15, we get

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Fig. 6.27 Measurement results of variances. a p̂1 − x̂2, b p̂2 − x̂1 − x̂3, c p̂3 − x̂2 − x̂4, d p̂4 − x̂3

〈Δ2( p̂1 − x̂2)〉 = � × 10
−5.60

10 = (0.276 ± 0.002)�, (6.88)

〈Δ2( p̂2 − x̂1 − x̂3)〉 = 3

2
� × 10

−4.79
10 = (0.498 ± 0.002)�, (6.89)

〈Δ2( p̂3 − x̂2 − x̂4)〉 = 3

2
� × 10

−5.25
10 = (0.448 ± 0.002)�, (6.90)

〈Δ2( p̂4 − x̂3)〉 = � × 10
−5.51

10 = (0.281 ± 0.002)�, (6.91)

leading to

〈Δ2( p̂1 − x̂2)〉 + 〈Δ2( p̂2 − x̂1 − x̂3)〉 = (0.774 ± 0.003)� < 2�, (6.92)

〈Δ2( p̂2 − x̂1 − x̂3)〉 + 〈Δ2( p̂3 − x̂2 − x̂4)〉 = (0.946 ± 0.003)� < 2�, (6.93)

〈Δ2( p̂3 − x̂2 − x̂4)〉 + 〈Δ2( p̂4 − x̂3)〉 = (0.729 ± 0.003)� < 2�. (6.94)

Therefore, the full inseparability (entanglement) of the generated cluster state is
verified.
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Chapter 7
Experimental Demonstration of Controlled-Z
Gate for Continuous Variables

7.1 Controlled-Z Gate Experiment

7.1.1 Operation

In the experimental demonstration of a controlled-Z gate for continuous-variable
one-way quantum computation, we utilize a four-partite entangled state, called
the four-mode linear cluster state, as a resource (Sect. 6.1.3). We prepare a two-
mode input state independently of the cluster state. The input coupling with the
cluster is achieved via the teleportation-based input-coupling scheme (Sect. 5.3.3).
The two modes to which the input state is transmitted are equivalent to the output
modes. By changing the relative phases between signal beams and local oscillator
beams in homodyne detections, we can implement Gaussian operations. We choose
the measurement bases so that the operation for each single mode becomes the
Fourier transformation. This is the simplest operation which can be achieved by the
experimental setup we use. The input–output relationship in the Heisenberg picture
is given by

⎛
⎜⎜⎝

x̂ ′
α

p̂′
α

x̂ ′
β

p̂′
β

⎞
⎟⎟⎠ = CZ FαFβ

⎛
⎜⎜⎝

x̂α
p̂α
x̂β
p̂β

⎞
⎟⎟⎠ , (7.1)

where x̂i and p̂i represent quadrature operators of the input mode i , while x̂ ′
i and p̂′

i
represent those of the output mode i . The matrices CZ , Fα , and Fβ :

CZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎠ , Fα =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , Fβ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ (7.2)
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show the controlled-Z gate, the Fourier transformation on mode α, and the Fourier
transformation on mode β, respectively.

7.1.2 Importance of This Experiment

We summarize importance of this experiment.

7.1.2.1 Gaussian Operation on Two-Mode Input State (Common to the Three
Experiments)

This is an experimental demonstration of one-way quantum computation where
Gaussian operations on two-mode input states are implemented. By combining the
experimental demonstration of one-mode Gaussian operations we have reported ear-
lier [1], we can implement an arbitrary multi-mode Gaussian operations in the frame-
work of one-way quantum computation in principle (Sects. 3.6 and 5.5).

This is a common property to the three experiments in this thesis.

7.1.2.2 Nonlocal Gate (Common to the Three Experiments)

This is an experimental demonstration of a nonlocal gate, where target two modes
are located at a distance (Sect. 8.3).

This is a common property to the three experiments in this thesis.

7.1.2.3 Minimum Setup of Two-Mode Gate with Teleportation-Based
Input-Coupling Scheme (Characteristic of This Experiment)

Since two modes of a cluster state are consumed during a teleportation-based input
coupling (Sect. 5.3.3), we need at least four modes of a cluster state to implement a
two-mode operation where a two-mode input state is coupled with the cluster state
via two teleportation-based input couplings. Therefore, this is the minimum setup of
implementing a two-mode gate with teleportation-based input-coupling scheme.

7.1.2.4 Gate Teleportation (Characteristic of This Experiment)

We here describe the resource four-mode linear cluster state as C1–C2–C3–C4.
Up to local phase rotations, it is equivalent to two EPR pairs (C1–C2 and C3–C4)
with a controlled-Z gate interaction between them (C2–C3). In our experiment,
quantum states in modes α and β are transmitted to modes C2 and C3 via quantum
teleportations with EPR states C1–C2 and C3–C4, respectively. As a result, the initial

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_8
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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controlled-Z gate between modes C2 and C3 is teleported to the two input states.
Therefore, we can consider that this is an experimental demonstration of two-mode
gate teleportation (Sects. 4.1.2 and 7.2.8).

7.1.2.5 Elementary Circuit for Multi-Mode Operations with Temporal
Modes (Characteristic of This Experiment)

This is an experimental demonstration of the elementary circuit for multi-mode
Gaussian operations with temporal modes (Sect. 10.6).

7.1.3 Comparison of Three Experiments

In order to compare three experiments in this thesis, we summarize the properties of
this experiment in a common form. It is given in Table 7.1.

7.2 Theory

7.2.1 Abstract Illustration and Abstract Experimental Setup

Figures 7.1 and 7.3 show an abstract illustration and an abstract setup of the
controlled-Z gate experiment.

The abstract illustration shown in Fig. 7.1 gives us a brief explanation of the
experimental procedure, which we summarize in the following.

Table 7.1 Properties of controlled-Z gate in a common form

Item Controlled-Z gate experiment

Main feature Operation does not have excess squeezing.

Resource Four-mode linear cluster state

Input coupling scheme Teleportation-based input-coupling scheme

Excess 3 dB squeezing derived from input coupling Does not exist

Operation experimentally demonstrated CZ FαFβ , fixed

Entanglement verification at the output Van Loock-Furusawa criterion

Logarithmic negativity Not measured

http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_10
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7.2.1.1 Cluster State and Input State

(Figure 7.2a) Blue circles show resource cluster modes, while blue solid lines show
controlled-Z gates. Thus, the resource state is a four-mode linear cluster state. We
define labels of two input modes to be α and β.

7.2.1.2 Input Coupling

(Figure 7.2b) Input modes α and β are coupled with cluster modes 1 and 4 by using
beam splitters, respectively.

7.2.1.3 Homodyne Measurement

(Figure 7.2c) We perform homodyne measurements on modes α, β, 1, and 4, where
measurement variables are x for modes α and β, while p for modes 1 and 4.

Cluster mode

Input mode

Homodyne measurement

CZ-based coupling

Beam splitter coupling

Output mode

Fig. 7.1 Abstract illustration of controlled-Z gate

(a) (b)

(d)(c)

Fig. 7.2 Interpretation of the abstract illustration. a Cluster state and input state, b Input coupling,
c Homodyne measurement, d Output
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LO

HDα

LO

HD1

LO

HDβ

LO

HD4

Input-α Input-β

EOM EOM EOM EOM

Disp.2X Disp.2P Disp.3X Disp.3P

LO

HD2

LO

HD3

four-mode linear cluster state

OPO-2 OPO-3

OPO-1 OPO-4

resource

gate

verification

Fig. 7.3 Abstract experimental setup of controlled-Z gate

7.2.1.4 Output

(Figure 7.2d) The unmeasured modes 2 and 3 correspond to the output modes of the
one-way quantum computation. We have described the operation by the wavy line.
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7.2.2 Four-Mode Linear Cluster State

The procedure for generation of the four-mode linear cluster state is explained in
Sect. 6.1.3.

7.2.3 Input Coupling

We label two input modes as α and β. These two modes are coupled with the cluster
state via the teleportation-based input-coupling schemes (Sect. 5.3.3). In the exper-
imental setup, two beams corresponding to these two input modes are combined
using two beam splitters with other two beams which correspond to two of the four
cluster modes. Transformations of these beam splitters are given by unitary matrices
B(2)α1 (

1√
2
), B(2)β4 (

1√
2
), leading to

(
x̂ (b)α + i p̂(b)α
x̂ (b)1 + i p̂(b)1

)
= 1√

2

(
1 −1
1 1

) (
x̂ (in)α + i p̂(in)α

x̂ (c)1 + i p̂(c)1

)
,

(
x̂ (b)β + i p̂(b)β
x̂ (b)4 + i p̂(b)4

)
= 1√

2

(
1 −1
1 1

) (
x̂ (in)β + i p̂(in)β

x̂ (c)4 + i p̂(c)4

)
, (7.3)

where x̂ (in)k and p̂(in)k represent the quadrature operators of input mode k(= α, β).
As a result, the quadrature operators after the input couplings are given by

x̂ (b)α + i p̂(b)α =
[

1√
2

x̂α − 1

2
x̂1 − 1

2
√

5
x̂2 − 1√

5
p̂3

]
+ i

[
1√
2

p̂α − 1

2
p̂1 − 1

2
√

5
p̂2 + 1√

5
x̂3

]
,

(7.4)

x̂ (b)1 + i p̂(b)1 =
[

1√
2

x̂α + 1

2
x̂1 + 1

2
√

5
x̂2 + 1√

5
p̂3

]
+ i

[
1√
2

p̂α + 1

2
p̂1 + 1

2
√

5
p̂2 − 1√

5
x̂3

]
,

(7.5)

x̂ (c)2 + i p̂(c)2 =
[

− 1√
2

p̂1 + 1√
10

p̂2 − 2√
10

x̂3

]
+ i

[
1√
2

x̂1 − 1√
10

x̂2 − 2√
10

p̂3

]
, (7.6)

x̂ (c)3 + i p̂(c)3 =
[

− 2√
10

x̂2 + 1√
10

p̂3 + 1√
2

p̂4

]
+ i

[
− 2√

10
p̂2 − 1√

10
x̂3 − 1√

2
x̂4

]
, (7.7)

http://dx.doi.org/10.1007/978-4-431-55019-8_6
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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x̂ (b)4 + i p̂(b)4 =
[

1√
2

x̂β + 1√
5

p̂2 + 1

2
√

5
x̂3 − 1

2
x̂4

]
+ i

[
1√
2

p̂β − 1√
5

x̂2 + 1

2
√

5
p̂3 − 1

2
p̂4

]
,

(7.8)

x̂ (b)β + i p̂(b)β =
[

1√
2

x̂β − 1√
5

p̂2 − 1

2
√

5
x̂3 + 1

2
x̂4

]
+ i

[
1√
2

p̂β + 1√
5

x̂2 − 1

2
√

5
p̂3 + 1

2
p̂4

]
,

(7.9)

where we have omitted the superscripts (in) for input modesα, β and (r) for resource
modes 1, 2, 3, and 4. For example, x̂1 represents x̂1 = x̂ (r)1 = er1 x̂ (0)1 .

7.2.4 Measurement

We perform homodyne measurements on modesα, 1, 4, andβ. We utilize η represen-
tation for measurements on modes α and β, while κ representation for measurements
on modes 1 and 4 (Sect. 5.3.1). Therefore, the measurement observables ŝα, ŝβ, ŝ1, ŝ4
for measurements on modes α, 1, 4, and β are

ŝα = x̂ (b)α + ηα p̂(b)α , (7.10)

ŝβ = x̂ (b)β + ηβ p̂(b)β , (7.11)

ŝ1 = κ1 x̂ (b)1 + p̂(b)1 , (7.12)

ŝ4 = κ4 x̂ (b)4 + p̂(b)4 . (7.13)

7.2.5 Feed-Forward and Operation

Without using the position operators x̂ (r)k for squeezed-state modes k = 1, 2, 3, 4,

the quadrature operators x̂ (c)k and p̂(c)k for output modes k = 2, 3 can be reformulated
as

⎛
⎜⎜⎜⎝

x̂ (c)2

p̂(c)2

x̂ (c)3

p̂(c)3

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ + Mdisp

⎛
⎜⎜⎝

ŝα
ŝ1
ŝβ
ŝ4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−δ̂1

δ̂2 − δ̂4

−δ̂4

δ̂3 − δ̂1

⎞
⎟⎟⎠ , (7.14)

http://dx.doi.org/10.1007/978-4-431-55019-8_5
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where

Mop =

⎛
⎜⎜⎜⎜⎝

−2κ1
1−κ1ηα

− 1+κ1ηα
1−κ1ηα

0 0
1+κ1ηα
1−κ1ηα

2ηα
1−κ1ηα

−2κ4
1−κ4ηβ

− 1+κ4ηβ
1−κ4ηβ

0 0 −2κ4
1−κ4ηβ

− 1+κ4ηβ
1−κ4ηβ

−2κ1
1−κ1ηα

− 1+κ1ηα
1−κ1ηα

1+κ4ηβ
1−κ4ηβ

2ηβ
1−κ4ηβ

⎞
⎟⎟⎟⎟⎠
,

Mdisp = √
2

⎛
⎜⎜⎜⎜⎝

κ1
1−κ1ηα

1
1−κ1ηα

0 0
−1

1−κ1ηα

−ηα
1−κ1ηα

κ4
1−κ4ηβ

1
1−κ4ηβ

0 0 κ4
1−κ4ηβ

1
1−κ4ηβ

κ1
1−κ1ηα

1
1−κ1ηα

−1
1−κ4ηβ

−ηβ
1−κ4ηβ

⎞
⎟⎟⎟⎟⎠
. (7.15)

Note that the reformulation above holds before the measurements are carried out.
On the contrary, when the measurements on modes α, 1, 4, and β have been carried
out indeed, the quadratures of the output modes become

⎛
⎜⎜⎜⎝

x̂ (cm)
2

p̂(cm)
2

x̂ (cm)
3

p̂(cm)
3

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ + Mdisp

⎛
⎜⎜⎝

sα
s1
sβ
s4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−δ̂1

δ̂2 − δ̂4

−δ̂4

δ̂3 − δ̂1

⎞
⎟⎟⎠ , (7.16)

where sα , sβ , s1, and s4 represent measurement results of measurement variables ŝα ,
ŝβ , ŝ1, and ŝ4, respectively. δ̂k represents the k-th nullifier of the resource cluster state
(see Eq. (6.49)). By performing feed-forwards (displacement operations) based on
the measurement results:

⎛
⎜⎜⎜⎝

x̂ (out)
2

p̂(out)
2

x̂ (out)
3

p̂(out)
3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x̂ (cm)
2

p̂(cm)
2

x̂ (cm)
3

p̂(cm)
3

⎞
⎟⎟⎟⎠ − Mdisp

⎛
⎜⎜⎝

sα
s1
sβ
s4

⎞
⎟⎟⎠ , (7.17)

we get

⎛
⎜⎜⎜⎝

x̂ (out)
2

p̂(out)
2

x̂ (out)
3

p̂(out)
3

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎝

−δ̂1

δ̂2 − δ̂4

−δ̂4

δ̂3 − δ̂1

⎞
⎟⎟⎠ . (7.18)

This is the input-output relationship which can be achieved by using our experimental
setup. The term of Mop represents the main operation. On the other hand, the term
of δ̂k represents error of the operation, which derives from finite level of resource

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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squeezing. In the limit of infinite squeezing r → ∞, each δ̂k goes to zero, meaning
that the ideal operation is achieved.

We mention that the input-output relationship shown in Eq. (7.18) is formulated by
the δ representation (Sect. 5.6). Therefore, Eq. (7.18) holds no matter how a cluster
state is generated (for example, canonical cluster state or Gaussian cluster state).

7.2.6 Covariance Matrix

We define V (in)
αβ as the covariance matrix of a two-mode input state. We here choose

the xpxp notation for all covariance matrices (Sect. 3.2.5).
Since the two-mode input state and the resource four-mode linear cluster state has

no correlations, the covariance matrix of the output state becomes

V (out)
23 = MopV (in)

αβ MT
op + Vδ, (7.19)

where Vδ represents excess noise derived from the finite level of resource squeezing.
It is given by

Vδ = �

2

⎛
⎜⎜⎝

2e−2r1 0 0 e−2r1

0 5
2 e−2r3 + 1

2 e−2r4 e−2r4 0
0 e−2r4 2e−2r4 0

e−2r1 0 0 1
2 e−2r1 + 5

2 e−2r2

⎞
⎟⎟⎠ . (7.20)

In the special case of identical squeezing parameters ri = r , it becomes

Vδ = �

2

⎛
⎜⎜⎝

2e−2r 0 0 e−2r

0 3e−2r e−2r 0
0 e−2r 2e−2r 0

e−2r 0 0 3e−2r

⎞
⎟⎟⎠ . (7.21)

In the limit of infinite squeezing ri → ∞, Vδ goes to the 4 × 4 zero matrix O ,
meaning that the ideal operation is achieved.

7.2.7 Decomposition of Operation

The matrix Mop can be decomposed into

Mop = CZ

(
Mtele(ηα, κ1) O

O Mtele(ηβ, κ4)

)
, (7.22)

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_3


206 7 Experimental Demonstration of Controlled-Z Gate for Continuous Variables

where

CZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎠ , Mtele(η, κ) =

( −2κ
1−κη − 1+κη

1−κη
1+κη
1−κη

2η
1−κη

)
. (7.23)

Mtele(η, κ) is the matrix representing an operation by a teleportation-based input-
coupling scheme (Sect. 5.3.3), which is a member of one-mode Gaussian opera-
tions. CZ is the matrix of the controlled-Z gate, which is a member of two-mode
Gaussian operations. Therefore, Mop represents operations on two single-modes via
teleportation-based input-couplings, followed by a controlled-Z gate operation.

7.2.8 Interpretation as Gate Teleportation

Consider a quantum circuit shown in Fig. 7.4.
In this figure, modes α and β represent two input modes, while modes 1, 2, 3, and

4 represent resource modes. Each resource mode is initially in the zero eigenstate
of the momentum operator |p = 0〉, or a p-squeezed vacuum state, which is an
approximation of |p = 0〉. On the other hand, modes α and β can be initially

in an arbitrary state. “C Z 1” shows a controlled-Z gate given by ĈZab = e
i x̂a x̂b

� ,
while “BS2 1/2” shows a beam splitter B(2) with the energy reflectivity 1/2. Since
the operator of the beam splitter depends on the order of target modes, we define
that the mode on which “BS2 ” is drawn in the figure corresponds to the mode i
of B(2)i j . All measurements are homodyne measurements, while feed-forwards are

displacement operations X̂(sa, sb)Ẑ(sa, sb), where sa, sb are measurement results.
Therefore, Fig. 7.4 shows two teleportation-based input-couplings, followed by a

α

1

2

3

4

β

CZ

1

CZ

1

BS2

1/2

BS2

1/2

CZ

1

Fig. 7.4 Interpretation as gate teleportation 1
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controlled-Z gate operation. It is obvious that the operation achieved by Fig 7.4 is
identical to Eq. (7.22):

Mop = CZ

(
Mtele O

O Mtele

)
. (7.24)

We then consider transformation of the circuit. The essence of this transformation
is the same to that of the gate teleportation.

In general, a controlled-Z operator does not commute with a displacement oper-
ator. However, by using

ĈZi j Ẑk(s) = Ẑk(s)ĈZi j , ĈZi j X̂k(s) = X̂k(s)Ẑk′(s)ĈZi j , (k, k′) = (i, j), ( j, i),
(7.25)

we can change the order of the controlled-Z operator and the displacement operator
by adding another displacement operator (Fig. 7.5).

Here, the quantum state acquired by entangling four modes 1, 2, 3, and 4 via
three controlled-Z gates is the four-mode linear cluster state. We know that the same
cluster state can be generated by using an appropriate network of three beam splitters
(Fig. 7.6).

Note that we have omitted phase rotations, for simplicity. Figure 7.6 is nothing
but the quantum circuit of this experiment.

In the transformation above, the controlled-Z gate which is originally applied to
the output of the two quantum teleportations is moved to the earlier position, and
then is applied before the two quantum teleportations. Therefore, this experiment can
be considered as a demonstration of a two-mode gate teleportation (Sect. 4.1.2). The
transformation from Figs. 7.5 to 7.6 is an example of generation of the same state
via a different and easier scheme discussed in Sect. 4.1.2. Since the resource state

α

1

2

3

4

β

CZ

1

CZ

1

CZ

1

BS2

1/2

BS2

1/2

Fig. 7.5 Interpretation as gate teleportation 2
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α

1

2

3

4

β

BS3

4/5

BS3

1/2

BS4

1/2

BS2

1/2

BS2

1/2

Fig. 7.6 Interpretation as gate teleportation 3

can be generated deterministically (with success rate of 100 %) in this experiment,
its transformation does not provide the advantage of success probability. However,
we can introduce entanglement distillation, although it is not implemented in this
experiment.

7.2.9 Operation We Implement

Although we have discussed the general operation which can be implemented by
using our experimental setup, we here discuss the operation we implement in the
experiment. In order to focus on the two-mode gate component in the total operation,
we choose the single-mode operation components to be the simplest operations. It is
achieved by

ηα = ηβ = κ1 = κ4 = 0, (7.26)

leading to four measurement variables

ŝα = x̂ (b)α , ŝβ = x̂ (b)β , ŝ1 = p̂(b)1 , ŝ4 = p̂(b)4 . (7.27)

The matrices of the operation and displacement are given by
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Mtele =
(

0 −1
1 0

)
, Mop =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 −1
0 0 0 −1
0 −1 1 0

⎞
⎟⎟⎠ , Mdisp = √

2

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 1
0 0 0 1
0 1 −1 0

⎞
⎟⎟⎠ .

(7.28)

It shows that the single-mode operation components are the Fourier transformations.
The feed-forward operation is given by

⎛
⎜⎜⎜⎝

x̂ (out)
2

p̂(out)
2

x̂ (out)
3

p̂(out)
3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x̂ (cm)
2

p̂(cm)
2

x̂ (cm)
3

p̂(cm)
3

⎞
⎟⎟⎟⎠ − Mdisp

⎛
⎜⎜⎝

sα
s1
sβ
s4

⎞
⎟⎟⎠ , (7.29)

or identically

X̂2(−
√

2s1)Ẑ2(
√

2sα − √
2s4)X̂3(−

√
2s4)Ẑ3(

√
2sβ − √

2s1). (7.30)

7.2.10 Variances of Quadrature Operators

The input–output relationship in this experiment is given by

⎛
⎜⎜⎜⎝

x̂(out)
2

p̂(out)
2

x̂(out)
3

p̂(out)
3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 −1
0 0 0 −1
0 −1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x̂(in)α

p̂(in)α

x̂(in)β

p̂(in)β

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎝

−δ̂1
δ̂2 − δ̂4

−δ̂4
δ̂3 − δ̂1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

− p̂(in)α

x̂(in)α − p̂(in)β

− p̂(in)β

− p̂(in)α + x̂(in)β

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎝

−δ̂1
δ̂2 − δ̂4

−δ̂4
δ̂3 − δ̂1

⎞
⎟⎟⎠ .

(7.31)

We here assume that both two input modes α and β are initially in vacuum states.
Since these two input modes and four squeezed state resources have no correlations
with each other, the variances of quadrature operators for output modes i = 2 and 3
become

〈Δ2 x̂ (out)
i 〉 = �

2

[
1 + 2 × 10− x

10
]
, 〈Δ2 p̂(out)

i 〉 = �

2

[
2 + 3 × 10− x

10
]
, (7.32)

where we have assumed that all squeezed state resources have the identical squeezing
level x .

In the special case of the ideal controlled-Z gate with x → ∞, they become

〈Δ2 x̂ (out)
i 〉 = �

2
, 〈Δ2 p̂(out)

i 〉 = �

2
× 2. (7.33)
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Since the position operators of output modes 2 and 3 become − p̂(in)α and − p̂(in)β , the

variance 〈Δ2 x̂ (out)
i 〉 is identical to that of a vacuum state. On the other hand, because

the momentum operators of output modes become x̂ (in)α − p̂(in)β and − p̂(in)α + x̂ (in)β ,

and because two input modes α and β have no correlations, the variance 〈Δ2 p̂(out)
i 〉

is identical to twice the variance of a vacuum state.
In another special case of vacuum resource states with x = 0, the variances of the

output-mode quadratures become

〈Δ2 x̂ (out)
i 〉 = �

2
× 3, 〈Δ2 p̂(out)

i 〉 = �

2
× 5. (7.34)

In our experiment, we utilize finite-level squeezed states as resources for one-way
quantum computation. As a result, variances of the output modes become between
Eqs. (7.33) and (7.34).

7.2.11 Inseparability Criteria

7.2.11.1 Van Loock-Furusawa Criterion

In order to verify entanglement at the output, we utilize van Loock-Furusawa criterion
(Sect. 3.7.4).

The input-output relationship is given by

⎛
⎜⎜⎜⎝

x̂ (out)
2

p̂(out)
2

x̂ (out)
3

p̂(out)
3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 −1
0 0 0 −1
0 −1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

− p̂(in)α

x̂ (in)α − p̂(in)β

− p̂(in)β

− p̂(in)α + x̂ (in)β

⎞
⎟⎟⎟⎠ . (7.35)

We can guess that x̂ (out)
2 and p̂(out)

3 have positive correlation, while x̂ (out)
3 and p̂(out)

2
have positive correlation. By applying van Loock-Furusawa entanglement criterion,
we get the following sufficient condition for entanglement.

7.2.11.2 Sufficient Condition for Entanglement

If the output state satisfies

〈Δ2(g p̂(out)
2 − x̂ (out)

3 )〉 + 〈Δ2(g p̂(out)
3 − x̂ (out)

2 )〉 < 2g�, (7.36)

for some g > 0, the output state is an entangled state.
We assume that two input modes α and β are in vacuum states. 〈Δ2(g p̂(out)

2 −
x̂ (out)

3 )〉 and 〈Δ2(g p̂(out)
3 − x̂ (out)

2 )〉 are given by

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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〈Δ2(g p̂(out)
2 − x̂ (out)

3 )〉 =〈Δ2(g p̂(out)
3 − x̂ (out)

2 )〉
=�

2

[
g2 + (1 − g)2 + 5

2
g2e−2r + ( − 1√

2
g + √

2
)2

e−2r
]
,

(7.37)

where we have assumed that all squeezed resource states have an identical squeezing
parameter r . By choosing

g = 3

4
, (7.38)

the sufficient condition for entanglement is satisfied with minimum r (� 0). It
becomes

e−2r <
2

5
. (7.39)

Therefore, when the effective squeezing level (Sect. 6.1.1) is higher than −10 log
(2/5)=4.0 dB, the output state becomes an entangled state.

Note that the van Loock-Furusawa criterion gives us only a sufficient condition,
not the necessary and sufficient condition, for entanglement. In other words, dissat-
isfaction of the van Loock-Furusawa criterion does not mean that the output state is
not entangled. Therefore, there exists a possibility that the output state is entangled
even if the effective squeezing level is lower than 4.0 dB.

We negate this possibility by acquiring Simon criterion (Sect. 3.7.5) in the next
subsection.

7.2.11.3 Simon Criterion

We consider Simon criterion (Sect. 3.7.5), which gives us necessary and sufficient
entanglement condition for a two-mode Gaussian state.

We assume that two input modes α and β are in vacuum states, and all squeezed
resource states have an identical squeezing parameter r . In this case, the covariance
matrix of the output state is given by

V (out)
23 = �

2

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1 0 0 1
0 2 1 0
0 1 1 0
1 0 0 2

⎞
⎟⎟⎠ + e−2r

⎛
⎜⎜⎝

2 0 0 1
0 3 1 0
0 1 2 0
1 0 0 3

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (7.40)

By using the Simon criterion, V (out)
23 represents a covariance matrix of an entangled

state if and only if r satisfies

http://dx.doi.org/10.1007/978-4-431-55019-8_6
http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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e−2r <
2

5
, (7.41)

which is identical to the result of van Loock-Furusawa criterion. Since the Simon
criterion gives us the necessary and sufficient condition for entanglement, we find
that the van Loock-Furusawa criterion Eq. (7.36) also gives us the optimum condition
for entanglement.

In this experiment, we will use the van Loock-Furusawa criterion since entangle-
ment can be detected by using the minimum set of measurement results (Sect. 3.7.7).

7.3 Experimental Setup

7.3.1 From Laser to Cluster State Generation

The resource for this experiment is a four-mode linear cluster state. In order to
generate it, we utilize the same experimental setup to that in Chap. 6.

7.3.2 Input States

7.3.2.1 Input States

We utilize vacuum states and coherent states as input states for the controlled-Z gate.
Although a vacuum state is also a coherent state with amplitude of zero, we declare
that the word “coherent state” in this section shows a coherent state with non-zero
amplitude.

7.3.2.2 Preparation of Coherent State

We utilize the 1 MHz sideband of the laser beam as the carrier of quantum states.
A coherent state at 1 MHz sideband can be generated by phase-modulating the laser
beam with the frequency of 1 MHz. In order to enhance interference visibility, we
utilize the output beam of the mode cleaning cavity (MCC). The power of each
input-mode beam is adjusted to 2µW. Phase modulation is achieved by using a
piezo electric transducer (PZT) (Sect. 6.4.1).

7.3.2.3 Preparation of Vacuum State

Since a vacuum state is a coherent state with amplitude of zero, a vacuum state at
1 MHz sideband can be generated by switching off the phase modulation. Equiva-
lently, it can be achieved by shutting off the laser beam.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_6
http://dx.doi.org/10.1007/978-4-431-55019-8_6
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7.3.3 Classical Channels and Displacement Operations

7.3.3.1 Terminologies

In this subsection, we mention feed-forward operations (displacement operations)
given by Eqs. (7.29) and (7.30). Before we move onto the detailed discussion, we
first summarize two terminologies for the feed-forward system.

7.3.3.2 Classical Channel

A classical channel is an electrical circuit which transmits measurement results from
homodyne detectors to output modes.

7.3.3.3 Displacement Beam

Since classical channels transmit electrical signals from detectors, we have to encode
them to optical beams in order to achieve feed-forwards. Displacement beams are
the beams in which electrical signals from the classical channels are encoded.

7.3.3.4 Components

Figure 7.7 shows a basic structure of a feed-forward system.

7.3.3.5 Power Splitter

Electrical signal from a homodyne detector is split into two paths by using a power
splitter. One is utilized to acquire the error signal to lock the relative phase between
the signal beam and a local oscillator beam in the homodyne detection. The other is
transmitted to the classical channel.

Fig. 7.7 Basic structure of a feed-forward system
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7.3.3.6 High Pass Filter

The signal from the power splitter is sent to a high pass filter (HPF). The signal from
the homodyne detector contains not only 1 MHz signal of information but modulation
signals (derived from phase modulation) of at most 210 kHz which are utilized to lock
relative phases. If they are transmitted to the feed-forward target beams, lockings at
the later parts of the feed-forward system are disturbed. Therefore, we have to shut
out the modulation signals by using a HPF. For that purpose, we use two fifth-order
Butterworth filters of cutoff frequency 500 kHz. The modulation signals are reduced
to less than −70 dB.

7.3.3.7 Amplifiers, Phase Shifters, and Step Attenuators

We use two amplifiers to increase the power of electrical signals. The amplifier 2 is
utilized to operate an EOM, while the amplifier 1 works as a phase shifter as well.

As is mentioned in Sect. 6.3.5, we utilize ±1 MHz sidebands away from the center
frequency of the laser as a carrier of quantum information, while HWHM of these
sidebands is 15 kHz. The merit of sideband experiment is that the experimental setup
becomes simpler.

In the strict case, two wave packets from the direct optical path (target beam) and
from the classical channel path should be combined so that they perfectly coincides
with each other. It is also important that these two signals have the same amplitude.
Since the classical channel needs electrical cables, its length potentially becomes
longer than that of the optical path. Typically, the optical length is to be lengthened
by about 10 m with a delay line [2].

On the other hand of the sideband experiment, we can consider that a wave packet
which is acquired by shifting one cycle of its inner sine wave is almost equivalent to
the original one. In our experiment, by adjusting a phase shifter in the amplifier 1,
we can control the timing of these two wave packets so that they are shifted by one
cycle. Note that the classical channel is adjusted only to signals of 1 MHz, and thus
it is not adjusted to signals of frequencies away from 1 MHz.

In order to adjust the amplitude of electrical signal, we use step attenuators, which
enable us to adjust in units of 0.1 dB.

7.3.3.8 Displacement Beam and EOM

The electrical signal transmitted through the classical channel is sent to an EOM,
with which it is encoded in a beam named displacement beam. The EOM is adjusted
so that phase modulation is applied to the beam.

We define that aD and â show the displacement beam and the target beam. By
using a beam splitter with high reflectivity R (�99.5 %), the feed-forward operation
is described as

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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âout = √
Râ + √

1 − RaD . (7.42)

Since R � 1, we can apply the displacement operation of
√

1 − RaD with almost
no information loss of â.

7.3.3.9 Classical Channels in This Experiment

The displacement operation (feed-forward operation) in this experiment is given by
Eqs. (7.29) or (7.30):

X̂2(−
√

2s1)Ẑ2(
√

2sα − √
2s4)X̂3(−

√
2s4)Ẑ3(

√
2sβ − √

2s1). (7.43)

Therefore, we need six paths of classical channels (1, 2x), (α, 2p), (4, 2p), (4, 3x), (β,
3p), and (1, 3p), where parentheses show (mode of homodyne detection, destination
of feed-forward).

Figure 7.8 shows the schematic of classical channels for the controlled-Z gate
experiment.

7.3.4 Locking the Relative Phases

Figure 7.9 shows arrangement of probe beams and phase modulations for the
controlled-Z gate experiment. By using Fig. 7.9, we can determine how each rel-
ative phase between two beams is locked.

gαto2p

g1to2x

g1to3p

g4to3x

g4to2p

gβto3p

Fig. 7.8 Classical channels for controlled-Z gate experiment
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Fig. 7.9 Probe beams and phase modulations for controlled-Z gate experiment

7.3.4.1 Generation of Four-Mode Linear Cluster State

We use the same scheme as Chap. 6 in order to generate a four-mode linear cluster
state.

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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7.3.4.2 Input Coupling

When we use a vacuum state as an input state, we shut off the carrier input-mode
beam. As a result, we do not have to lock the phase of the input beam.

When we use a coherent state as an input state, on the other hand, we use the
input beam, thus we have to lock the relative phase between the input-mode beam
and the probe beams from OPOs. We here take an example where input mode α is
to be set to a coherent state with amplitude in x quadrature. Since phase modulation
is orthogonal to the carrier input beam, we can set the phase of the coherent-state
amplitude to the x quadrature by locking the carrier beam to the p axis. Since the
probe beam from OPO-B points to the p axis at the input coupling beam splitter
for mode α, this phase locking can be achieved by using the AC locking technique
with demodulation signal with the frequency of 140 kHz, which have been utilized
to modulate the probe beam of OPO-B.

7.3.4.3 Displacement Beam

Since displacement beams utilize phase modulations similar to the input beams,
phase lockings of displacement beams can be achieved in a similar way. Note that
the displacement beam Disp2X, for example, should point to the p axis, because
phase modulation is orthogonal to the carrier beam.

7.3.4.4 Summary of Phase Locking

Table 7.2 shows phase locking techniques for the controlled-Z gate experiment.
Parentheses in Table 7.2 show that their phases are not utilized in experiment.

7.3.5 Cancellation

Cancellation refers to procedure to adjust gains and phases of classical channels. In
the following, we take an example of the feed-forward from the homodyne mea-
surement on mode 1 to the position quadrature of mode 2. We define g1to2x as the
corresponding gain.

We measure p̂(b)1 in the homodyne detection on mode 1. Its measurement result

is added to x̂ (c)2 with the gain of g1to2x . By using Eqs. (7.5) and (7.6), we get
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Table 7.2 Phase lockings for controlled-Z gate

Relative phase Technique, demodulation frequency

Parametric gain of OPO-A AC locking, 210 kHz

Parametric gain of OPO-B AC locking, 140 kHz

Parametric gain of OPO-C AC locking, 98 kHz

Parametric gain of OPO-D AC locking, 98 kHz

Beam splitter B(3)23 (
2√
5
) DC locking

Beam splitter B(3)12 (
1√
2
) AC Locking, 140 kHz

Beam splitter B(4)34 (
1√
2
) AC locking, 210 kHz

Input α AC locking, amplitude x : 140 kHz, amplitude p: 210 kHz

Input β AC locking, amplitude x : 210 kHz, amplitude p: 140 kHz

Displacement in mode 2 AC locking, displacement x : 210 kHz, displacement p:
140 kHz

Displacement in mode 3 AC locking, displacement x : 140 KHz, displacement p:
210 kHz

Homodyne measurement in mode α AC locking, x : 210 kHz, (p: 140 kHz)

Homodyne measurement in mode 1 AC locking, (x : 210 kHz), p: 140 kHz

Homodyne measurement in mode 2 AC locking, x : 140 kHz, p: 210 kHz

Homodyne measurement in mode 3 AC locking, x : 210 kHz, p: 140 kHz

Homodyne measurement in mode 4 AC locking, (x : 140 kHz), p: 210 kHz

Homodyne measurement in mode β AC locking, x : 140 kHz, (p: 210 kHz)

x̂ (c)2 + g1to2x p̂(b)1 =
[

− 1√
2

p̂1 + 1√
10

p̂2 − 2√
10

x̂3

]

+ g1to2x

[
1√
2

p̂α + 1

2
p̂1 + 1

2
√

5
p̂2 − 1√

5
x̂3

]
. (7.44)

We apply phase modulation onto the probe beam of OPO-A, leading to a coherent
state with the amplitude in x̂3. With measuring the power of x̂2, we adjust the gain
and phase of the classical channel so that the coherent signal is not observed. Since

− 2√
10

x̂3 + g1to2x

[
− 1√

5
x̂3

]
= 0 ⇐⇒ g1to2x = −√

2, (7.45)

g1to2x can be adjusted to g1to2x = −√
2.

The gains and phases of the other classical channels are also adjusted in a similar
manner.
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Table 7.3 Interference visibilities for controlled-Z gate experiment

Beam splitter Beams used for adjustment Visibility (%)

Beam splitter B(3)23 (
2√
5
) OPO-A, OPO-B 98.7

Beam splitter B(3)12 (
1√
2
) OPO-A, OPO-C 98.9

Beam splitter B(4)34 (
1√
2
) OPO-B, OPO-D 98.0

Input coupling α OPO-A, In-α 98.1

Input coupling β OPO-B, In-β 97.2

Displacement 2x OPO-A, Disp-2X 98.3

Displacement 2p OPO-A, Disp-2P 97.9

Displacement 3x OPO-B, Disp-3X 97.9

Displacement 3p OPO-B, Disp-3P 97.7

Homodyne measurement α OPO-A, LO-α 98.7

Homodyne measurement 1 OPO-A, LO-1 97.9

Homodyne measurement 2 OPO-A, LO-2 97.5

Homodyne measurement 3 OPO-B, LO-3 98.3

Homodyne measurement 4 OPO-B, LO-4 97.0

Homodyne measurement β OPO-B, LO-β 96.7

Table 7.4 Parametric gains for controlled-Z gate experiment

OPO name Parametric gain (G+) Phase matching temperature (degrees)

OPO-A 7.0 40.3

OPO-B 8.1 39.7

OPO-C 4.0 40.2

OPO-D 6.8 40.7

7.4 Preparation for Measurement

7.4.1 Visibilities and Parametric Gains

Interference visibilities and parametric gains are shown in Tables 7.3 and 7.4, respec-
tively.

7.4.2 Adjustment of EOM (Purity)

A displacement operation in our experiment is achieved by using a displacement
beam which is phase-modulated via an EOM. If the purity of the phase modulation
by the EOM is not enough, the displacement signal also transmits to the orthogonal
quadrature via unwanted amplitude modulation. In order to increase the purity of the
phase modulation, we adjust the holding angle of the EOM.
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Fig. 7.10 Adjustment of purity for controlled-Z gate experiment. a Disp-2X, b Disp-2P, c Disp-3X,
d Disp-3P

Table 7.5 Adjustment of
purity for controlled-Z gate
experiment

EOM Purity (dB)

Disp-2X 35.7

Disp-2P 46.3

Disp-3X 31.8

Disp-3P 35.9

In order to explain the procedure of its adjustment, we here take an example of
Disp-2X.

We use two probe beams from OPO-A and OPO-B, while those from OPO-C and
OPO-D are blocked. The relative phases on the first beam splitter B(3)23 (

2√
5
) and on

the Disp-2X beam splitter are locked in the usual schemes (via the DC locking and
AC locking). We impress 1 MHz sine wave signal to the EOM for Disp-2X. If the
purity is perfectly adjusted, we will detect the 1 MHz signal when we measure x in
the homodyne detection for mode 2 (red traces in Fig. 7.10), while we will detect no
1 MHz signal when we measure p in mode 2 (blue traces in Fig. 7.10). We adjust the
holding angle of the EOM so that the 1 MHz signal is minimized when we measure
p in mode 2.

Each purity is listed in Table 7.5.
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7.4.3 Cancellation

Figure 7.11 shows adjustment results of classical channels (cancellation). Red traces
show measurement results when electrical cables for classical channels are discon-
nected, which correspond to classical channel gains of zero. Thus, the 1 MHz signals
are detected which have been initially applied to the probe beams of the OPOs. Blue
traces show measurement results when cancellations have been carried out. We find
that the 1 MHz signals are almost perfectly canceled out.

Each cancellation level is listed in Table 7.6.

7.4.4 Balance Between Homodyne Detectors

The balance between two homodyne detections for modes 2 and 3 is adjusted in
the same way as Chap. 6. We apply phase modulation on the probe beam of OPO-
B, which corresponds to mode 2. Figure 7.12 shows adjustment results. Red trace
labeled by “HD2p” is a measurement result of p2, while blue trace labeled by “HD2p-
HD3x” is a measurement result of subtraction of p2 and x3. By defining g23 as the
gain for x3, we get

p̂(c)2 − g23 x̂ (c)3 = − 1√
10

x̂2 − g23

[
− 2√

10
x̂2

]
= 0 ⇐⇒ g23 = 1

2
, (7.46)

where we have utilized Eqs. (7.6) and (7.7). Thus, g23 can be adjusted to g23 =
1

2
. In order to acquire the balance between two homodyne detections, the signal

from homodyne detection 3 should be amplified with the gain of 2 in amplitude, or
equivalently with the gain of 4 in power. For this purpose, we reduce the amount
of attenuation by 6.0 dB. Figure 7.12 shows that we have achieved cancellation of
46.7 dB.

7.5 Measurement Results and Their Analysis

7.5.1 Power of Output with Vacuum Inputs

In this subsection, we show measurement results of output-mode quadrature vari-
ances when two input modes are in vacuum states. We then estimate effective squeez-
ing level (Sect. 6.1.1).

http://dx.doi.org/10.1007/978-4-431-55019-8_6
http://dx.doi.org/10.1007/978-4-431-55019-8_6
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Fig. 7.11 Adjustment of classical channels (cancellation) for controlled-Z gate experiment. a
g1to2x , b gαto2p , c g4to2p , d g4to3x , e gβto3p , f g1to3p

Table 7.6 Adjustment of
classical channels
(cancellation) for
controlled-Z gate experiment

Feed-forward Cancellation level (dB)

g1to2x 40.5

gαto2p 28.8

g4to2p 29.6

g4to3x 35.8

gβto3p 27.2

g1to3p 29.7
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Fig. 7.12 Balance between homodyne detections

7.5.1.1 Method

We generate four squeezed vacuum states by using four pumped OPOs. Two input-
mode beams are blocked because we will use vacuum states as input states. We lock
all relative phases on beam splitters except for input couplings. We measure both
quadratures x and p in the output-mode homodyne detections for mode 2 and 3. The
signal from the detectors is sent to and analyzed by a spectrum analyzer. The setting
of the spectrum analyzer is listed in the following.

• Center Frequency (CF): 1 MHz.
• Resolution BandWidth (RBW): 30 kHz.
• Video BandWidth (VBW): 300 Hz.
• Sweep Time: 0.2 s.
• Points: 401 points.
• Average: 20 times.
• Span: Zero Span.

7.5.1.2 Measurement Results

Figure 7.13 shows measurement results. Red traces show measurement results when
inputs of homodyne detections are shut off. They correspond to the shot noise level
(SNL). Orange traces show measurement results of output-mode quadrature vari-
ances.

Each result is listed in Table 7.7.
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Fig. 7.13 Measurement results with vacuum inputs. a x̂2, b p̂2 c x̂3 d p̂3

Table 7.7 Measurement
results with vacuum inputs

Measurement variable Result (dB)

〈Δ2 x̂2〉 2.37 ± 0.02

〈Δ2 p̂2〉 4.58 ± 0.02

〈Δ2 x̂3〉 2.25 ± 0.02

〈Δ2 p̂3〉 4.56 ± 0.02

7.5.1.3 Effective Squeezing Level

We estimate the effective squeezing level (Sect. 6.1.1). For simplicity, we assume
that all squeezed states have the identical squeezing level x .

From Eq. 7.32, we get

〈Δ2 x̂i 〉 = �

2

[
1 + 2 × 10− x

10
]
, 〈Δ2 p̂i 〉 = �

2

[
2 + 3 × 10− x

10
]
, (7.47)

for i = 2, 3. When an ideal controlled-Z gate is accessible, or identically x → ∞,
they become 〈Δ2 x̂i 〉 = �

2 , 〈Δ2 p̂i 〉 = �

2 × 2, leading to 0.0 dB and 3.0 dB relative to
the SNL (green lines in Fig. 7.13). When no squeezed resource states are available

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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(x = 0), they become 〈Δ2 x̂i 〉 = �

2 × 3, 〈Δ2 p̂i 〉 = �

2 × 5, leading to 4.8 dB and 7.0
dB relative to the SNL (blue lines in Fig. 7.13).

In experiment, we utilize finite-level squeezed states as resources for the
controlled-Z gate. The larger the squeezing level is, the lower the variances become.
We can estimate the effective squeezing level by using these measurement results.
We get x = 4.9 dB, which is almost the same as the effective squeezing level of the
resource cluster state.

7.5.2 Power of Output with Coherent Inputs

In this subsection, we show measurement results of output-mode quadrature powers
when we use coherent states as input states, which enable us to verify input-output
relationship.

7.5.2.1 Measurement Results of Input States

We measure the power of both input coherent states in modes α and β.
We here take an example of mode α. The beam of mode α is split into two paths

by the input-coupling beam splitter. They are transmitted to homodyne detection
systems for modes α and 1. We can acquire the power of the input state by adding
two measurement results of these homodyne detections.

Figure 7.14 shows measurement results. Red traces show the SNL. Green traces
show measurement results when input-mode beams are blocked. Since the OPOs
generate squeezed vacuum states, these results are larger than the SNL. Blue traces
show measurement results when input-mode beams are also made effective. The
differences between blue traces and green traces correspond to the powers of the
input coherent states.

Each power is listed in Table 7.9.
As a result, we get 21.55 dB for mode α and 21.23 dB for mode β, respectively,

compared to the SNL. All errors are less than ±0.02 dB, including in Table 7.9.

7.5.2.2 Measurement Result of Output Power with Coherent Inputs

Figures 7.15, 7.16, 7.17 and 7.18 show measurement results of output powers with
coherent input states. We have four types of coherent input states: αx , αp, βx , and
βp, and four measurement variables: x2, p2, x3, and p3. Thus, we have 4 × 4 = 16
measurement results. In these figures, red traces show measurement results of SNL,
while green traces show measurement results of output-mode powers.

Each power is listed in Table 7.8. All error bars are less than ±0.02 dB.
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Fig. 7.14 Measurement results of input states. a Input α with HDα, b Input α with HD1,c Input β
with HD β, d Input β with HD4

Table 7.8 Measurement results of quadrature operator powers with coherent-state inputs (dB)

Input mode and phase � Output mode and phase x̂2 p̂2 x̂3 p̂3

Vacuum inputs in both α and β 2.37 4.58 2.25 4.56

Amplitude in x of α 2.75 21.36 2.10 4.88

Amplitude in p of α 20.83 4.60 2.20 21.43

Amplitude in x of β 2.06 4.62 2.63 21.09

Amplitude in p of β 2.36 20.93 20.55 4.87

Table 7.10 shows theoretical predictions. We have here assumed that the resource
squeezing level is 4.9 dB, and the input coherent-state amplitudes are 21.55 dB for
mode α and 21.23 dB for mode β, respectively.

Figure 7.19 shows graphs of Tables 7.8 and 7.10. Note that they are not covariance
matrices.

7.5.2.3 Analysis

We take an example of the coherent state input with amplitude in x of mode α
(InAx). The input-output relationship Eq. (7.35) shows that x̂α is transmitted to p̂2.
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Fig. 7.15 Measurement results of quadrature operator powers with coherent-state input αx . a 2x ,
b 2p, c 3x , d 3p

Corresponding to this transmission, we have obtained 21.36 dB. Since the absolute
value of the matrix element is 1, it is almost the same as the power of the input state
amplitude.1 In a similar manner, we have observed coherent-state signals which
correspond to matrix elements in Eq. (7.35). Experimental results agree well with
theoretical predictions.

The difference between experimental result and theoretical value is 0.2 dB on
average, and 0.8 dB at maximum. We can consider the following two reasons for this
error.

• Cancellation was not perfect since propagation losses and visibilities were not
symmetrical.

• Visibilities had become worse with time.

1 The sign of each matrix element cannot be verified through Table 7.10. Concurrence of signs is
indirectly proven by satisfaction of entanglement criterion.
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Fig. 7.16 Measurement results of quadrature operator powers with coherent-state input αp . a 2x ,
b 2p, c 3x , d 3p

7.5.3 Entanglement at Output (via van Loock–Furusawa Criterion)

In this subsection, we verify entanglement at the output by using the van Loock–
Furusawa criterion.

7.5.3.1 Measurement Results and Analysis

Figure 7.20 shows measurement results of 〈Δ2(g p̂(out)
2 − x̂ (out)

3 )〉 + 〈Δ2(g p̂(out)
3 −

x̂ (out)
2 )〉 with several gains g, where we have used the system of units with � = 1

2
.

Measurement results with 0 dB resources are acquired by using vacuum states,
instead of squeezed states, as resources. Measurement results with squeezed state
resources agree well with theoretical predictions with 4.9 dB squeezing.
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Fig. 7.17 Measurement results of quadrature operator powers with coherent-state input βx . a 2x ,
b 2p, c 3x , d 3p

By choosing g = 0.63, 0.75, 0.89, we get

〈Δ2(g p̂(out)
2 − x̂(out)

3 )〉 + 〈Δ2(g p̂(out)
3 − x̂(out)

2 )〉 = 0.609 ± 0.002 < 0.63 (g = 0.63),
(7.48)

〈Δ2(g p̂(out)
2 − x̂(out)

3 )〉 + 〈Δ2(g p̂(out)
3 − x̂(out)

2 )〉 = 0.689 ± 0.002 < 0.75 (g = 0.75),
(7.49)

〈Δ2(g p̂(out)
2 − x̂(out)

3 )〉 + 〈Δ2(g p̂(out)
3 − x̂(out)

2 )〉 = 0.843 ± 0.003 < 0.89 (g = 0.89),
(7.50)

from which we find that the measured variances are below the entanglement criteria.
Therefore, the output state is entangled.
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Fig. 7.18 Measurement results of quadrature operator powers with coherent-state input βp . a 2x ,
b 2p, c 3x , d 3p

Table 7.9 Measurement results of input states

HD name Cluster only (dB) Coherent + Cluster (dB)

HDα 5.08 18.62

HD1 4.89 18.83

HDβ 5.31 18.48

HD4 5.64 18.41

Table 7.10 Theoretical prediction of quadrature operator powers with coherent-state inputs (dB)

Input mode and phase � Output mode and phase x̂2 p̂2 x̂3 p̂3

Vacuum inputs in both α and β 2.17 4.73 2.25 4.73

Amplitude in x of α 2.17 21.64 2.17 4.73

Amplitude in p of α 21.60 4.73 2.17 21.64

Amplitude in x of β 2.17 4.73 2.17 21.33

Amplitude in p of β 2.17 21.33 21.29 4.73
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(a) (b)

Fig. 7.19 Quadrature operator powers with coherent-state inputs. a and b correspond to α and β,
respectively. a Measurement results. b Theoretical prediction

g

Fig. 7.20 Entanglement at the output
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Chapter 8
Experimental Demonstration of Optimum
Nonlocal Gate for Continuous Variables

8.1 Optimum Nonlocal Gate Experiment

8.1.1 Operation

In the experimental demonstration of an optimum nonlocal gate for continuous-
variable one-way quantum computation, we utilize a bipartite entangled state, called
the two-mode cluster state, as a resource (Sect. 6.1.1). We prepare a two-mode input
state independently of the cluster state. The input coupling with the cluster is achieved
via the squeezer-based input-coupling scheme (Sect. 5.3.4). The two modes to which
the input state is transmitted are equivalent to the output modes. By changing the
relative phases between signal beams and local oscillator beams in homodyne detec-
tions for two input modes, we can implement single-mode Gaussian operations.
We choose these measurement bases so that the operation for each single mode
becomes the 3.0 dB p-squeezing operation. This is the simplest operation which can
be achieved by the experimental setup we use. The input-output relationship in the
Heisenberg picture is given by

⎛
⎜⎜⎝

x̂ ′
α

p̂′
α

x̂ ′
β

p̂′
β

⎞
⎟⎟⎠ = CZ

(1

2

)
SαSβ

⎛
⎜⎜⎝

x̂α
p̂α
x̂β
p̂β

⎞
⎟⎟⎠ = SαSβCZ (1)

⎛
⎜⎜⎝

x̂α
p̂α
x̂β
p̂β

⎞
⎟⎟⎠ , (8.1)

where x̂i and p̂i represent quadrature operators of the input mode i , while x̂ ′
i and p̂′

i
represent those of the output mode i . The matrices CZ (g), Sα , and Sβ :

CZ (g) =

⎛
⎜⎜⎝

1 0 0 0
0 1 g 0
0 0 1 0
g 0 0 1

⎞
⎟⎟⎠ , Sα =

⎛
⎜⎜⎝

√
2 0 0 0

0 1√
2

0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , Sβ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0

√
2 0

0 0 0 1√
2

⎞
⎟⎟⎠ (8.2)

represent the controlled-Z gate with gain g, a 3.0 dB p-squeezing operation on mode
α, and a 3.0 dB p-squeezing operation on mode β, respectively.
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8.1.2 Importance of This Experiment

We summarize importance of this experiment.

8.1.2.1 Gaussian Operation on Two-Mode Input State (Common to the Three
Experiments)

This is an experimental demonstration of one-way quantum computation where
Gaussian operations on two-mode input states are implemented. By combining the
experimental demonstration of one-mode Gaussian operations we have reported ear-
lier [1], we can implement an arbitrary multi-mode Gaussian operations in the frame-
work of one-way quantum computation in principle (Sects. 3.6, 5.5).

This is a common property to the three experiments in this thesis.

8.1.2.2 Nonlocal Gate (Common to the Three Experiments)

This is an experimental demonstration of a nonlocal gate, where target two modes
are located at a distance (Sect. 8.3).

This is a common property to the three experiments in this thesis.

8.1.2.3 Optimum Nonlocal Gate (Characteristic of This Experiment)

This is an experimental demonstration of an optimum nonlocal controlled-Z gate in
the sense that it is implemented using the minimum resource: a bipartite entangled
state shared in advance, and a classical channel in each direction (two channels
in total) (Sect. 8.3.2). It can also be considered as an experimental demonstration of
nonlocal gate with offline scheme (Sect. 4.1.2).

8.1.2.4 Minimum Setup of Two-Mode Gate with Squeezer-Based
Input-Coupling Scheme (Characteristic of This Experiment)

Since one mode of a cluster state is consumed during a squeezer-based input cou-
pling (Sect. 5.3.4), we need at least two modes of a cluster state to implement a
two-mode operation where a two-mode input state is coupled with the cluster state
via two squeezer-based input couplings. Therefore, this is the minimum setup of
implementing a two-mode gate with squeezer-based input-coupling scheme.

8.1.3 Comparison of Three Experiments

In order to compare three experiments in this thesis, we summarize the properties of
this experiment in a common form. It is given in Table. 8.1.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Table 8.1 Properties of optimum nonlocal gate in a common form

Item Optimum nonlocal gate experiment

Main feature Nonlocal gate is implemented with the
minimum resource

Resource Two-mode cluster state

Input coupling scheme Squeezer-based input-coupling scheme

Excess 3 dB squeezing derived from input coupling Exists

Operation experimentally demonstrated CZ (
1
2 )SαSβ , fixed

Entanglement verification at the output Van Loock-Furusawa, PT symplectic
eigenvalue

Logarithmic negativity EN = 0.40 ± 0.01

8.2 Theory

8.2.1 Abstract Illustration and Abstract Experimental Setup

Figures 8.1 and 8.2 show an abstract illustration and an abstract setup of the optimum
nonlocal gate experiment.

The abstract illustration shown in Fig. 8.1 gives us a brief explanation of the
experimental procedure (see Figs. 7.1 and 7.2).

8.2.2 Two-Mode Cluster State

The procedure for generation of the two-mode cluster state is explained in Sect. 6.1.1.

8.2.3 Input Coupling

We label two input modes as α and β. These two modes are coupled with the cluster
state via the squeezer-based input-coupling schemes (Sect. 5.3.4). In the experimen-
tal setup, two beams corresponding to these two input modes are combined using two
beam splitters with other two beams which correspond to two cluster modes. Trans-
formations of these beam splitters are given by unitary matrices B(2)α1 (

1√
2
), B(2)β2 (

1√
2
),

leading to

http://dx.doi.org/10.1007/978-4-431-55019-8_7
http://dx.doi.org/10.1007/978-4-431-55019-8_7
http://dx.doi.org/10.1007/978-4-431-55019-8_6
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Fig. 8.1 Abstract illustration of optimum nonlocal gate
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Fig. 8.2 Abstract experimental setup of optimum nonlocal gate
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(
x̂ (b)α + i p̂(b)α

x̂ (b)1 + i p̂(b)1

)
= 1√

2

(
1 −1
1 1

) (
x̂ (in)
α + i p̂(in)

α

x̂ (c)1 + i p̂(c)1

)
,

(
x̂ (b)β + i p̂(b)β

x̂ (b)2 + i p̂(b)2

)
= 1√

2

(
1 −1
1 1

) (
x̂ (in)
β + i p̂(in)

β

x̂ (c)2 + i p̂(c)2

)
,

(8.3)
where x̂ (in)k and p̂(in)k represent the quadrature operators of input mode k(= α, β).
As a result, the quadrature operators after the input couplings are given by

x̂ (b)α + i p̂(b)α =
[

1√
2

x̂α + 1

2
p̂1 − 1

2
x̂2

]
+ i

[
1√
2

p̂α − 1

2
x̂1 − 1

2
p̂2

]
, (8.4)

x̂ (b)1 + i p̂(b)1 =
[

1√
2

x̂α − 1

2
p̂1 + 1

2
x̂2

]
+ i

[
1√
2

p̂α + 1

2
x̂1 + 1

2
p̂2

]
, (8.5)

x̂ (b)2 + i p̂(b)2 =
[

1√
2

x̂β + 1

2
x̂1 − 1

2
p̂2

]
+ i

[
1√
2

p̂β + 1

2
p̂1 + 1

2
x̂2

]
, (8.6)

x̂ (b)β + i p̂(b)β =
[

1√
2

x̂β − 1

2
x̂1 + 1

2
p̂2

]
+ i

[
1√
2

p̂β − 1

2
p̂1 − 1

2
x̂2

]
, (8.7)

where we have omitted the superscripts (in) for input modesα, β and (r) for resource
modes 1 and 2. For example, x̂1 represents x̂1 = x̂ (r)1 = er1 x̂ (0)1 .

8.2.4 Measurement

We perform homodyne measurements on modesα andβ. The relative phases between
signal beams and local oscillator beams are set to 0 degree. Therefore, the measure-
ment observables ŝα and ŝβ for measurements on modes α and β are

ŝα = x̂ (b)α , ŝβ = x̂ (b)β . (8.8)

8.2.5 Feed-Forward and Operation

Without using the position operators x̂ (r)k for squeezed-state modes k = 1, 2, the

quadrature operators x̂ (b)k and p̂(b)k for output modes k = 1, 2 can be reformulated as

⎛
⎜⎜⎜⎝

x̂ (b)1

p̂(b)1

x̂ (b)2

p̂(b)2

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ + Mdisp

(
ŝα
ŝβ

)
+ 1√

2

⎛
⎜⎜⎝

0
δ̂1
0
δ̂2

⎞
⎟⎟⎠ , (8.9)

where
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Mop =

⎛
⎜⎜⎜⎝

√
2 0 0 0

0 1√
2

1√
2

0

0 0
√

2 0
1√
2

0 0 1√
2

⎞
⎟⎟⎟⎠ , Mdisp =

⎛
⎜⎜⎝

−1 0
0 −1
0 −1

−1 0

⎞
⎟⎟⎠ . (8.10)

Note that the reformulation above holds before the measurements are carried out.
On the contrary, when the measurements on modes α and β have been carried out
indeed, the quadratures of the output modes become

⎛
⎜⎜⎜⎝

x̂ (bm)
1

p̂(bm)
1

x̂ (bm)
2

p̂(bm)
2

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ + Mdisp

(
sα
sβ

)
+ 1√

2

⎛
⎜⎜⎝

0
δ̂1
0
δ̂2

⎞
⎟⎟⎠ , (8.11)

where sα and sβ represent measurement results of measurement variables ŝα and ŝβ ,
respectively. δ̂k represents the k-th nullifier of the resource cluster state (see Eq. 6.6).
By performing feed-forwards (displacement operations) based on the measurement
results:

⎛
⎜⎜⎜⎝

x̂ (out)
1

p̂(out)
1

x̂ (out)
2

p̂(out)
2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x̂ (bm)
1

p̂(bm)
1

x̂ (bm)
2

p̂(bm)
2

⎞
⎟⎟⎟⎠ − Mdisp

(
sα
sβ

)
, (8.12)

or equivalently, by applying displacement operators:

X̂1(sα)Ẑ1(sβ)X̂2(sβ)Ẑ2(sα), (8.13)

we get

⎛
⎜⎜⎜⎝

x̂ (out)
1

p̂(out)
1

x̂ (out)
2

p̂(out)
2

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ + 1√

2

⎛
⎜⎜⎝

0
δ̂1
0
δ̂2

⎞
⎟⎟⎠ . (8.14)

This is the input-output relationship in this experiment. The term of Mop represents
the main operation. On the other hand, the term of δ̂k represents error of the operation,
which derives from finite level of resource squeezing. In the limit of infinite squeezing
r → ∞, each δ̂k goes to zero, meaning that the ideal operation is achieved.

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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8.2.6 Decomposition of Operation

The matrix Mop can be decomposed into

Mop = CZ

(1

2

) (
S O
O S

)
=

(
S O
O S

)
CZ (1), (8.15)

where

CZ (g) =

⎛
⎜⎜⎝

1 0 0 0
0 1 g 0
0 0 1 0
g 0 0 1

⎞
⎟⎟⎠ , S =

(√
2 0

0 1√
2

)
. (8.16)

Here, S is the matrix of the 3.0 dB p-squeezing operation, while CZ (g) represents
the controlled-Z gate with the interaction gain g.

8.2.7 Covariance Matrix

We define V (in)
αβ as the covariance matrix of a two-mode input state. We here choose

the xpxp notation for all covariance matrices (Sect. 3.2.5).
Since the two-mode input state and the resource two-mode cluster state has no

correlations, the covariance matrix of the output state becomes

V (out)
12 = MopV (in)

αβ MT
op + Vδ, (8.17)

where Vδ represents excess noise derived from the finite level of resource squeezing.
It is given by

Vδ = �

2

⎛
⎜⎜⎝

0 0 0 0
0 e−2r2 0 0
0 0 0 0
0 0 0 e−2r1

⎞
⎟⎟⎠ . (8.18)

In the limit of infinite squeezing ri → ∞, Vδ goes to the 4 × 4 zero matrix O ,
meaning that the ideal operation is achieved.

Finally, we assume that two input modes α and β are initially in vacuum states.
The covariance matrix of the output state becomes

http://dx.doi.org/10.1007/978-4-431-55019-8_3
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V (out)
12 = �

2

⎡
⎢⎢⎣

⎛
⎜⎜⎝

2 0 0 1
0 1 1 0
0 1 2 0
1 0 0 1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0 0
0 e−2r2 0 0
0 0 0 0
0 0 0 e−2r1

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (8.19)

8.2.8 Inseparability Criteria

In this experimental demonstration of the optimum nonlocal gate, we verify entan-
glement at the output by using both van Loock-Furusawa criterion (Sect. 3.7.4) and
the inseparable criterion with PT symplectic eigenvalue (3.7.5).

8.2.8.1 Van Loock-Furusawa Criterion

By using the input-output relationship Eq. (8.14), we can guess that x̂ (out)
1 and p̂(out)

2

have positive correlation, while x̂ (out)
2 and p̂(out)

1 have positive correlation. By apply-
ing van Loock-Furusawa entanglement criterion, we get the following sufficient
condition for entanglement.

8.2.8.2 Sufficient Condition for Entanglement

If the output state satisfies

〈Δ2(g p̂(out)
1 − x̂ (out)

2 )〉 + 〈Δ2(g p̂(out)
2 − x̂ (out)

1 )〉 < 2g�, (8.20)

for some g > 0, the output state is an entangled state.
We assume that two input modes α and β are in vacuum states. 〈Δ2(g p̂(out)

1 −
x̂ (out)

2 )〉 and 〈Δ2(g p̂(out)
2 − x̂ (out)

1 )〉 are given by

〈Δ2(g p̂(out)
1 − x̂ (out)

2 )〉 = �

2

[g2

2
+

( g√
2

− √
2
)2 + g2e−2r2

]
, (8.21)

〈Δ2(g p̂(out)
2 − x̂ (out)

1 )〉 = �

2

[g2

2
+

( g√
2

− √
2
)2 + g2e−2r1

]
. (8.22)

By choosing

g = 1, (8.23)

the sufficient condition for entanglement is satisfied with minimum ri (≥ 0). It
becomes

e−2r1 + e−2r2 < 2. (8.24)

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Thus, no matter how little the levels of resource squeezed states are, the output state
becomes an entangled state.

Note that the van Loock-Furusawa criterion gives us only a sufficient condition,
not the necessary and sufficient condition, for entanglement. However, it is obvious
that the output state never becomes an entangled state when squeezed states are not
utilized as resources. Therefore, we find that Eq. (8.20) is the optimum condition for
entanglement.

8.2.8.3 Simon Criterion

We consider Simon criterion (Sect. 3.7.5), which gives us necessary and sufficient
entanglement condition for two-mode Gaussian states.

We assume that two input modes α and β are in vacuum states. By using the
Simon criterion, we find that Eq. (8.19) shows a covariance matrix of an entangled
state if and only if ri satisfies

e−2r1 + e−2r2 < 2, (8.25)

which is identical to the result of van Loock-Furusawa criterion.

8.3 Interpretation as Optimum Nonlocal Gate

8.3.1 Nonlocal Gate

We consider Alice and Bob are located at a distance (Fig. 8.3). Each Alice and Bob
possesses a one-mode quantum state. We consider that a unitary operation should
be applied to these two one-mode quantum states. The quantum gate whose target
modes are located at a distance is called a nonlocal gate [2–7]. Note that these two
modes might be entangled at the beginning, although we have assumed that they are
|ψA〉 and |ψB〉 in Fig. 8.3.

Generation of entanglement can be classified into two cases based on whether
two quantum states to be entangled are located locally or nonlocally [3]. When they
are located locally, an entangling gate on them becomes a member of local unitary
operations, and thus it is considered that it can be easily implemented. A theoretical
solution for this is to use a medium which has the corresponding interaction Hamil-
tonian. When they are located nonlocally, a nonlocal entangling gate is required,
which cannot be achieved directly with an actual device such as a nonlinear medium.

One possible solution for implementation of a nonlocal gate is to combine a local
entangling gate with quantum teleportation. Here, quantum teleportation is a protocol
with which an unknown quantum state can be transmitted from one place to another.
It consists of the following components: (1) a two-mode entangled state shared by

http://dx.doi.org/10.1007/978-4-431-55019-8_3


242 8 Experimental Demonstration of Optimum Nonlocal Gate for Continuous Variables

Entangled
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Bob
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Local operations

Measurement
Local operations

Fig. 8.3 Abstract illustration of nonlocal gate

Alice and Bob in advance; (2) measurements and local unitary operations; and (3)
two channels of classical channels with which measurement results are transmitted
from one party to another. The processes (2) and (3) are called the Local Operations
and Classical Communications (LOCC). By assuming that Bob owns an entangling
gate and that they can transmit any quantum state to each other by using quantum
teleportation, they can entangle their quantum states by the following procedure.
First, Alice transmits her quantum state to Bob via a quantum teleportation. Then,
Bob performs the local entangling gate on his state and the state received from Alice.
Finally, Bob transmits one of two modes to Alice which was initially owned by her.
Note that, two two-mode entangled states and four classical channels are utilized
in total since two quantum teleportations are involved.

The fact is, the procedure above is not the optimum way to implement a nonlocal
gate. Instead, in this section, we show that a nonlocal controlled-Z gate (with addi-
tional local operations) can be implemented by using a two-mode entangled state
shared by Alice and Bob in advance as well as a classical channel in each direction
(two channels in total).

Before we move onto optimality of a nonlocal gate, we mention an example of
its application: distributed quantum computer [8, 9]. It is a device in which total
quantum system to be processed is divided into several subsystems. In each subsys-
tem, local processor performs local operations on their quantum states. Processes
on quantum states over subsystems are carried out via quantum teleportations and
nonlocal entangling gates.

8.3.2 Optimum Nonlocal Gate

The optimum nonlocal gate was first discussed in discrete-variable systems [4]. In
this subsection, we extend it to continuous-variable system.
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8.3.2.1 Theorem

Assume that each Alice and Bob located at a distance possesses a one-mode quantum
state. Assume that they perform a nonlocal controlled-Z gate on these two modes
of the quantum states. One maximally entangled pair (an EPR state or a two-mode
cluster state) shared in advance and one classical channel in each direction (two chan-
nels in total) are necessary and sufficient implements for the nonlocal controlled-Z
gate.

8.3.2.2 Proof of Necessity

We consider that they apply a controlled-Z gate with the operator ĈZ = e
i
�

x̂ A x̂B .
First, we assume that the one-mode quantum state owned by Alice is |p = 0〉A,

while that by Bob is |p = 0〉B . Note that there is no correlation between these two
states. By applying the nonlocal controlled-Z gate, the two-mode state becomes

ĈZ |p = 0〉A|p = 0〉B = 1

2π�
e

i
�

x̂ A x̂B

∞∫

−∞
ds |x = s〉A

∞∫

−∞
dt |x = t〉B (8.26)

= 1

2π�

∞∫

−∞
ds |x = s〉A

∞∫

−∞
dt e

i
�

st |x = t〉B (8.27)

= 1√
2π�

∞∫

−∞
ds |x = s〉A|p = s〉B, (8.28)

which is a maximally entangled state (two-mode cluster state). Since the amount of
entanglement does not increase by local operations and LOCC, Alice and Bob have
to share at least one pair of maximally entangled state in advance.

Next, we assume that the one-mode quantum state owned by Alice is |x = a〉A,
while that by Bob is |p = 0〉B . By applying the nonlocal controlled-Z gate, the
two-mode state becomes

ĈZ |x = a〉A|p = 0〉B = 1√
2π�

e
i
�

x̂ A x̂B |x = a〉A

∞∫

−∞
dt |x = t〉B (8.29)

= 1√
2π�

|x = a〉A

∞∫

−∞
dt e

i
�

at |x = t〉B (8.30)

= |x = a〉A|p = a〉B, (8.31)
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which can be considered as a transmission of a from Alice to Bob. Since local
operations cannot transmit any information, they have to share at least one channel
of classical channel from Alice to Bob.

Finally, we assume that the one-mode quantum state owned by Alice is |p = 0〉A,
while that by Bob is |x = b〉B . By applying the nonlocal controlled-Z gate, the
two-mode state becomes

ĈZ |p = 0〉A|x = b〉B = 1√
2π�

e
i
�

x̂ A x̂B

∞∫

−∞
ds |x = s〉A|x = b〉B (8.32)

= 1√
2π�

∞∫

−∞
ds e

i
�

sb|x = s〉A|x = b〉B (8.33)

= |p = b〉A|x = b〉B, (8.34)

which can be considered as a transmission of b from Bob to Alice. Since local
operations cannot transmit any information, they have to share at least one channel
of classical channel from Bob to Alice.

In summary, Alice and Bob have to share at least one pair of maximally entangled
state as well as one classical channel in each direction (two channels in total).

8.3.2.3 Proof of Sufficiency

It is sufficient to show an example where a nonlocal controlled-Z gate is implemented
by using one maximally entangled pair shared in advance and one classical channel
in each direction. Figure 8.2 does this work.

8.4 Experimental Setup

8.4.1 From Laser to Cluster State Generation

The resource for this experiment is a two-mode cluster state. In order to generate it,
we utilize the same experimental setup to that in Chap. 6.

8.4.2 Input States

Input states for experimental demonstration of the optimum nonlocal gate are vacuum
states and coherent states. We utilize the same experimental setup to that in Sect. 7.3.2.

http://dx.doi.org/10.1007/978-4-431-55019-8_6
http://dx.doi.org/10.1007/978-4-431-55019-8_7


8.4 Experimental Setup 245

gto1p

gto1x

gto2x

gto2p

Fig. 8.4 Classical channels for optimum nonlocal gate experiment

8.4.3 Classical Channels and Displacement Operations

The displacement operation (feed-forward operation) in this experiment is given by
Eq. (8.12), or equivalently, Eq. (8.13):

X̂1(sα)Ẑ1(sβ)X̂2(sβ)Ẑ2(sα). (8.35)

Therefore, we need four paths of classical channels (α, 1x), (α, 2p), (β, 2x), and
(β, 1p), where parentheses show (mode of homodyne detection, destination of feed-
forward).

The schematic of classical channels for the optimum nonlocal gate experiment is
shown in Fig. 8.4. In these four classical channels, (α, 1x) and (β, 2x), which are
shown in red in Fig. 8.4, are local classical channels which work within one parties
(Alice or Bob). On the other hand, (α, 2p) and (β, 1p), which are shown in yellow,
are nonlocal classical channels which transmit measurement results from Alice to
Bob and vise versa.

8.4.4 Locking the Relative Phases

Figure 8.5 shows arrangement of probe beams and phase modulations for the opti-
mum nonlocal gate experiment.

8.4.4.1 Summary of Phase Locking

Table 8.2 shows phase locking techniques for the optimum nonlocal gate experiment.
Parentheses in Table 8.2 show that their phases are not utilized in experiment.
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Fig. 8.5 Probe beams and phase modulations for optimum nonlocal gate experiment

8.4.5 Cancellation

We use the same procedure for adjustment of classical channels (cancellation)
explained in Sect. 7.3.5.

8.5 Preparation for Measurement

8.5.1 Visibilities and Parametric Gains

Interference visibilities and parametric gains are shown in Tables 8.3 and 8.4, respec-
tively.

http://dx.doi.org/10.1007/978-4-431-55019-8_7
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Table 8.2 Phase lockings for optimum nonlocal gate

Relative phase Technique, demodulation frequency

Parametric gain of OPO-A AC locking, 210 kHz

Parametric gain of OPO-B AC locking, 140 kHz

Beam splitter B(1)12 (
1√
2
) DC locking

Input α AC locking, amplitude x : 140 kHz, amplitude p: 210 kHz

Input β AC locking, amplitude x : 210 kHz, amplitude p: 140 kHz

Displacement in mode 1 AC locking, displacement x : 140 kHz, displacement p:
210 kHz

Displacement in mode 2 AC locking, displacement x : 210 kHz, displacement p:
140 kHz

Homodyne measurement in mode α AC locking, x : 210 kHz, (p: 140 kHz)

Homodyne measurement in mode 1 AC locking, x : 210 kHz, p: 140 kHz

Homodyne measurement in mode 2 AC locking, x : 140 kHz, p: 210 kHz

Homodyne measurement in mode β AC locking, x : 140 kHz, (p: 210 kHz)

Table 8.3 Interference visibilities for optimum nonlocal gate experiment

Beam splitter Beams used for adjustment Visibility (%)

Beam splitter B(1)12 (
1√
2
) OPO-A, OPO-B 99.2

Input coupling α OPO-A, In-α 99.2

Input coupling β OPO-B, In-β 97.8

Displacement 1x OPO-A, Disp-1X 98.5

Displacement 1p OPO-A, Disp-1P 97.9

Displacement 2x OPO-B, Disp-2X 96.9

Displacement 2p OPO-B, Disp-2P 96.6

Homodyne measurement α OPO-A, LO-α 98.6

Homodyne measurement 1 OPO-A, LO-1 98.0

Homodyne measurement 2 OPO-B, LO-2 96.9

Homodyne measurement β OPO-B, LO-β 96.3

Table 8.4 Parametric gains for optimum nonlocal gate experiment

OPO name Parametric gain (G+) Phase matching temperature

OPO-A 7.3 40.5◦

OPO-B 7.3 40.0◦

8.5.2 Adjustment of EOM (Purity)

Each purity is listed in Table 8.5.
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Table 8.5 Adjustment of
purity for optimum nonlocal
gate experiment

EOM Purity (dB)

Disp-1X 34.1

Disp-1P 39.4

Disp-2X 30.8

Disp-2P 37.5

Table 8.6 Adjustment of
classical channels
(cancellation) for optimum
nonlocal gate experiment

Feed-forward Cancellation level (dB)

gαto1x 39.1

gαto2p 35.5

gβto2x 39.9

gβto1p 41.3

8.5.3 Cancellation

Each cancellation level is listed in Table 8.6.

8.5.4 Balance Between Homodyne Detections

The balance between two homodyne detections for modes 1 and 2 is adjusted in the
same way as Chap. 6. As a result, we have achieved cancellation of 47.8 dB.

8.6 Measurement Results and Their Analysis

8.6.1 Power of Output with Vacuum Inputs

8.6.1.1 Measurement Results

Figure 8.6 shows measurement results. Red traces show measurement results when
inputs of homodyne detections are shut off. They correspond to the shot noise level
(SNL). Orange traces show measurement results of output-mode quadrature vari-
ances.

Each result is listed in Table 8.7.

8.6.1.2 Effective Squeezing Level

We estimate effective squeezing level (Sect. 6.1.1). For simplicity, we assume that
all squeezed states have identical squeezing level x .

http://dx.doi.org/10.1007/978-4-431-55019-8_6
http://dx.doi.org/10.1007/978-4-431-55019-8_6
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Fig. 8.6 Measurement results with vacuum inputs. a x̂1, b p̂1, c x̂2, d p̂2

Table 8.7 Measurement
results with vacuum inputs

Measurement variable Result (dB)

〈Δx̂1〉 2.98 ± 0.02

〈Δ p̂1〉 1.24 ± 0.02

〈Δx̂2〉 3.12 ± 0.02

〈Δ p̂2〉 1.48 ± 0.02

From Eq. 8.19, we get

〈Δ2 x̂i 〉 = �

2
× 2, 〈Δ2 p̂i 〉 = �

2

[
1 + 10− x

10
]
, (8.36)

for i = 1, 2. Thus, the variance of 〈Δ2 x̂i 〉 is equal to 3.0 dB relative to the SNL, which
does not depend on the level of resource squeezed states (blue lines in Fig. 8.6). On
the other hand, the variance of 〈Δ2 p̂i 〉 depends on the level of resource squeezed
states. In the ideal case of x → ∞, it becomes 〈Δ2 p̂i 〉 = �

2 , which is identical to
the SNL (green lines in Fig. 8.6). When no squeezed resource states are available
(x = 0), it becomes 〈Δ2 p̂i 〉 = �

2 × 2, which is equal to 3.0 dB relative to the SNL
(blue lines in Fig. 8.6).

In experiment, we utilize finite-level squeezed states as resources for the optimum
nonlocal gate. The larger the squeezing level is, the lower the variance becomes.
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Fig. 8.7 Measurement results of input states. a Input α with HD α. b Input β with HD β

Table 8.8 Measurement results of input states

HD name Cluster only (dB) Coherent + Cluster (dB)

HDα 4.35 9.52

HDβ 4.41 10.68

Therefore, we can estimate the effective squeezing level by using their measurement
results. As a result, we get x = 4.3 dB as the effective squeezing level.

8.6.2 Power of Output with Coherent Inputs

8.6.2.1 Measurement Results of Input States

We measure the powers of both input coherent states in modesα andβ. Different from
Chap. 7, we have acquired the powers of the input state by doubling measurement
results of single homodyne detections.

Each power is listed in Table 7.8.
As a result, we get 10.96 dB for mode α, while 12.52 dB for mode β, compared

to the SNL. All statistical errors are less than ±0.02 dB, including in Table 8.8.

8.6.2.2 Measurement Result of Output Power

Table 8.9 shows measurement results of powers of output-mode quadratures with
vacuum or coherent input states. All error bars are less than ±0.02 dB.

Table 8.10 shows theoretical predictions. We have here assumed that the resource
squeezing level is 4.3 dB, and the input coherent-state amplitudes are 10.96 dB for
mode α and 12.52 dB for mode β, respectively.

http://dx.doi.org/10.1007/978-4-431-55019-8_7
http://dx.doi.org/10.1007/978-4-431-55019-8_7
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Table 8.9 Measurement results of quadrature operator powers with coherent-state inputs (dB)

Input mode and phase � Output mode and phase x̂1 p̂1 x̂2 p̂2

Vacuum inputs in both α and β 2.98 1.24 3.12 1.48

Amplitude in x of α 14.59 1.44 3.03 8.88

Amplitude in p of α 3.11 8.95 3.03 1.50

Amplitude in x of β 2.83 10.34 16.08 1.53

Amplitude in p of β 2.83 1.56 3.16 10.31

Table 8.10 Theoretical prediction of quadrature operator powers with coherent-state inputs (dB)

Input mode and phase � Output mode and phase x̂1 p̂1 x̂2 p̂2

Vacuum inputs in both α and β 3.01 1.37 3.01 1.37

Amplitude in x of α 14.34 1.37 3.01 8.85

Amplitude in p of α 3.01 8.85 3.01 1.37

Amplitude in x of β 3.01 10.11 15.75 1.37

Amplitude in p of β 3.01 1.37 3.01 10.11

(a) (b)

Fig. 8.8 Quadrature operator powers with coherent-state inputs. A and B correspond to α and β,
respectively. a Measurement result, b Theoretical prediction

Figure 8.8 shows graphs of Tables 8.9 and 8.10. Note that they are not covariance
matrices.

8.6.2.3 Analysis

We take an example of the coherent state input with amplitude in x of mode α (InAx).
The input-output relationship Eq. (8.14) shows that x̂α is transmitted to x̂1 with the
amplitude gain of

√
2, as well as to p̂2 with the amplitude gain of 1√

2
. As a result, we

acquired 14.59 and 8.88 dB for measurements of x̂1 and p̂2, which are about twice
and a half of the initial power, respectively.
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g

Fig. 8.9 Entanglement at the output

The differences between input and output powers in theoretical values are not
precisely 3.0 dB because the power of the input state is not intense enough to neglect
the variance of a vacuum state and effect of finite level of resource squeezed states.

8.6.3 Entanglement at Output (via van Loock-Furusawa Criterion)

In this subsection, we verify entanglement at the output by using the van Loock-
Furusawa criterion.

8.6.3.1 Measurement Results and Analysis

Figure 8.9 shows measurement results of 〈Δ2(g p̂(out)
1 − x̂ (out)

2 )〉 + 〈Δ2(g p̂(out)
2 −

x̂ (out)
1 )〉 with several gains g, where we have used the system of units with � = 1

2
.

Measurement results with 0 dB resources are acquired by using vacuum states,
instead of squeezed states, as resources. Measurement results with squeezed state
resources agree well with theoretical predictions with 4.3 dB squeezed states.

If a measurement result is less than 2g� = g (� = 1/2) with some gain g, the
output state is entangled. We find that the entanglement criterion is certainly satisfied
with g = 0.71, . . . , 2.0. By choosing the optimum gain g = 1, we get

〈Δ2(g p̂(out)
1 − x̂ (out)

2 )〉 + 〈Δ2(g p̂(out)
2 − x̂ (out)

1 )〉 = 0.673 ± 0.002 < 1 (g = 1).
(8.37)
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Table 8.11 Measurement results of variances

Measurement Variance (dB) Measurement Variance (dB)

Variable (Relative to vacuum inputs) Variable (Relative to vacuum inputs)

x̂1 3.05 ± 0.02 x̂2 2.98 ± 0.02

p̂1 1.05 ± 0.02 p̂2 1.34 ± 0.02

(x̂1 + p̂1)/
√

2 2.27 ± 0.02 (x̂2 + p̂2)/
√

2 2.08 ± 0.02

(x̂1 − p̂1)/
√

2 2.13 ± 0.02 (x̂2 − p̂2)/
√

2 2.36 ± 0.02

x̂1 + x̂2 3.11 ± 0.02 p̂1 + x̂2 3.93 ± 0.02

x̂1 − x̂2 2.76 ± 0.02 p̂1 − x̂2 −1.56 ± 0.02

x̂1 + p̂2 4.36 ± 0.02 p̂1 + p̂2 1.04 ± 0.02

x̂1 − p̂2 −1.54 ± 0.02 p̂1 − p̂2 1.46 ± 0.02

8.6.4 Covariance Matrix and Entanglement at Output (via PT
Symplectic Eigenvalue)

We verify entanglement at the output by using PT symplectic eigenvalue. We here

use the system of units with � = 1

2
.

8.6.4.1 Measurement Results of Variances

Table 8.11 shows measurement results of variances which are utilized to acquire the
covariance matrix of the output state.

As a result, we get the covariance matrix V :

V =

⎛
⎜⎜⎝

0.504 0.007 0.019 0.253
0.007 0.318 0.222 −0.016
0.019 0.222 0.497 −0.014
0.253 −0.016 −0.014 0.340

⎞
⎟⎟⎠ , (8.38)

where the statistical error in each element is less than ±0.002. Figure 8.10 shows its
graph.

8.6.4.2 Variables Acquired by Covariance Matrix

Table 8.12 shows several variables (Sects. 3.2.6, 3.7.5) which are acquired by the
covariance matrix of the output state.

Since all determinants of the k-th order principal submatrices are positive:
det Vk > 0 (k = 1, . . . , 4), and the symplectic eigenvalue ν− is ν− ≥ �

2 ,
the symmetric matrix V certainly shows a covariance matrix of a physical state.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3


254 8 Experimental Demonstration of Optimum Nonlocal Gate for Continuous Variables

Fig. 8.10 Covariance matrix

Table 8.12 Variables acquired by covariance matrix

Variable Result

Determinant of 1st order principal submatrix: det V1 = V11 0.504 ± 0.002

Determinant of 2nd order principal submatrix: det V2 = det A 0.1604 ± 0.0008

Determinant of 3rd order principal submatrix: det V3 0.0548 ± 0.0006

Determinant of 4th order principal submatrix: det V4 = det V 0.0116 ± 0.0002

Symplectic eigenvalue: ν− 0.314 ± 0.002

Symplectic eigenvalue: ν+ 0.343 ± 0.002

PT symplectic eigenvalue: ν̃− 0.167 ± 0.002

PT symplectic eigenvalue: ν̃+ 0.643 ± 0.002

Logarithmic negativity: EN 0.402 ± 0.007

In addition to this, since the PT symplectic eigenvalue ν̃− satisfies ν̃− < �

2 , the
physical state is an entangled state. We get the logarithmic negativity of EN =
0.402 ± 0.007.

We can estimate effective squeezing level (Sect. 6.1.1) from the logarithmic nega-
tivity, leading to x (e) = 4.1 dB. It is almost equivalent to the effective squeezing level
which is estimated by the variances when both input modes are in vacuum states.

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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Chapter 9
Experimental Demonstration of Gain-Tunable
Entangling Gate for Continuous Variables

9.1 Gain-Tunable Entangling Gate Experiment

9.1.1 Operation

In the experimental demonstration of a gain-tunable entangling gate (TZ gate) for
continuous-variable one-way quantum computation, we utilize a three-partite entan-
gled state, called the three-mode linear cluster state, as a resource (Sect. 6.1.2). We
prepare a two-mode input state independently of the cluster state. The input cou-
pling with the cluster is achieved via the squeezer-based input-coupling scheme
(Sect. 5.3.4). The two modes to which the input state is transmitted are equivalent to
the output modes. By changing the relative phases between signal beams and local
oscillator beams in homodyne detections for two input modes, we can implement
single-mode Gaussian operations. We choose these measurement bases so that the
operation for each single mode becomes the 3.0 dB p-squeezing operation. This is
the simplest operation which can be achieved by the experimental setup we use.
The remaining mode 2 is measured by a homodyne detection with relative phase θ ,
which enables us to control the operation on the two-mode input state. The input–
output relationship in the Heisenberg picture is given by

⎛
⎜⎜⎝

x̂ ′
α

p̂′
α

x̂ ′
β

p̂′
β

⎞
⎟⎟⎠ = TZ

(
− g

2

)
SαSβ

⎛
⎜⎜⎝

x̂α
p̂α
x̂β
p̂β

⎞
⎟⎟⎠ , (9.1)

where x̂i and p̂i represent quadrature operators of the input mode i , while x̂ ′
i and p̂′

i
represent those of the output mode i . The matrices TZ (g), Sα , and Sβ :

TZ (g) =

⎛
⎜⎜⎝

1 0 0 0
g 1 g 0
0 0 1 0
g 0 g 1

⎞
⎟⎟⎠ , Sα =

⎛
⎜⎜⎝

√
2 0 0 0

0 1√
2

0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , Sβ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0

√
2 0

0 0 0 1√
2

⎞
⎟⎟⎠ (9.2)
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show the gain-tunable entangling gate (TZ gate), a 3.0 dB p-squeezing operation on
mode α, and a 3.0 dB p-squeezing operation on mode β. Here, g = tan θ . Therefore,
the operation is controlled by the relative phase θ in homodyne detection for mode 2.

9.1.2 Importance of This Experiment

We summarize importance of this experiment.

9.1.2.1 Gaussian Operation on Two-Mode Input State (Common to the Three
Experiments)

This is an experimental demonstration of one-way quantum computation where
Gaussian operations on two-mode input states are implemented. By combining
the experimental demonstration of one-mode Gaussian operations we have reported
earlier [1], we can implement an arbitrary multi-mode Gaussian operations in the
framework of one-way quantum computation in principle (Sects. 3.6 and 5.5).

This is a common property to the three experiments in this thesis.

9.1.2.2 Nonlocal Gate (Common to the Three Experiments)

This is an experimental demonstration of a nonlocal gate, where target two modes
are located at a distance (Sect. 8.3).

This is a common property to the three experiments in this thesis.

9.1.2.3 Gain-Tunable Entangling Gate (Characteristic of this Experiment)

In the input–output relationship, Sα and Sβ show fixed quantum state manipulations
on single-mode systems. On the other hand, TZ (g) becomes a single-mode operation
only when g = 0, while it becomes a quantum state manipulation on two-mode
systems when g �= 0. In addition, the larger the |g| is, the larger the interaction gain
becomes. Therefore, our experimental setup has the ability of the on–off switching
as well as the interaction-gain tuning. The gain g = tan θ is determined by the
relative phase θ in homodyne detection for mode 2, thus it exhibits the characteristic
of one-way quantum computation that operations are determined by measurement
bases.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_8
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Table 9.1 Properties of gain-tunable gate in a common form

Item Gain-tunable gate experiment

Main feature Interaction gain is tunable

Resource Three-mode linear cluster state

Input coupling scheme Squeezer-based input-coupling scheme

Excess 3 dB squeezing derived from input coupling Exists

Operation experimentally demonstrated TZ (− g
2 )SαSβ , tunable

Entanglement verification at the output PT symplectic eigenvalue

Logarithmic negativity EN = 0, . . . , 0.39 ± 0.05

9.1.2.4 Three-Mode Connection Gate (Characteristic of this Experiment)

The core of gain-tunable operation in this experiment is equivalent to that of three-
mode connection gate [2]. Thus, our experiment can be considered as an experimental
demonstration of the three-mode connection gate.

9.1.3 Comparison of Three Experiments

In order to compare three experiments in this thesis, we summarize the properties of
this experiment in a common form. It is given in Table 9.1.

9.2 Theory

9.2.1 Abstract Illustration and Abstract Experimental Setup

Figures 9.1 and 9.2 show an abstract illustration and an abstract setup of the gain-
tunable gate experiment.

The abstract illustration shown in Fig. 9.1 gives us a brief explanation of the
experimental procedure (see Figs. 7.1 and 7.2).

9.2.2 Three-Mode Linear Cluster State

The procedure for generation of the three-mode linear cluster state is explained in
Sect. 6.1.2.

http://dx.doi.org/10.1007/978-4-431-55019-8_7
http://dx.doi.org/10.1007/978-4-431-55019-8_7
http://dx.doi.org/10.1007/978-4-431-55019-8_6
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Cluster mode

Input mode

Homodyne measurement

CZ -based coupling

Beam splitter coupling

Output mode

Fig. 9.1 Abstract illustration of gain-tunable gate

9.2.3 Input Coupling

We label two input modes as α and β. These two modes are coupled with the cluster
state via the squeezer-based input-coupling schemes (Sect. 5.3.4). In the experimen-
tal setup, two beams corresponding to these two input modes are combined using
two beam splitters with other two beams which correspond to two of the three clus-
ter modes. Transformations of these beam splitters are given by unitary matrices
B(2)α1 (

1√
2
), B(2)β3 (

1√
2
), leading to

(
x̂ (b)α + i p̂(b)α
x̂ (b)1 + i p̂(b)1

)
= 1√

2

(
1 −1
1 1

) (
x̂ (in)α + i p̂(in)α

x̂ (c)1 + i p̂(c)1

)
, (9.3)

(
x̂ (b)β + i p̂(b)β
x̂ (b)3 + i p̂(b)3

)
= 1√

2

(
1 −1
1 1

) (
x̂ (in)β + i p̂(in)β

x̂ (c)3 + i p̂(c)3

)
,

where x̂ (in)k and p̂(in)k represent the quadrature operators of input mode k(=α, β). As
a result, the quadrature operators after the input couplings are given by

x̂ (b)α + i p̂(b)α =
[

1√
2

x̂α − 1

2
x̂1 + 1√

6
p̂2 + 1

2
√

3
x̂3

]

+ i

[
1√
2

p̂α − 1

2
p̂1 − 1√

6
x̂2 + 1

2
√

3
p̂3

]
, (9.4)

x̂ (b)1 + i p̂(b)1 =
[

1√
2

x̂α + 1

2
x̂1 − 1√

6
p̂2 − 1

2
√

3
x̂3

]

http://dx.doi.org/10.1007/978-4-431-55019-8_5
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three-mode linear cluster state

resource

gate

verification

OPO-2 OPO-3

OPO-1

LO

HD2

LO

HDβ

Input-α Input-β

EOM EOM

Disp.1X Disp.1P

LO

HD1

LO

HDα

Disp.3P Disp.3X

EOM EOM

LO

HD3

Fig. 9.2 Abstract experimental setup of gain-tunable gate

+ i

[
1√
2

p̂α + 1

2
p̂1 + 1√

6
x̂2 − 1

2
√

3
p̂3

]
, (9.5)

x̂ (c)2 + i p̂(c)2 =
[

− 1√
2

p̂1 + 1√
3

x̂2 − 1√
6

p̂3

]
+ i

[
1√
2

x̂1 + 1√
3

p̂2 + 1√
6

x̂3

]
,

(9.6)
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x̂ (b)3 + i p̂(b)3 =
[

1√
2

x̂β − 1√
6

p̂2 + 1√
3

x̂3

]
+ i

[
1√
2

p̂β + 1√
6

x̂2 + 1√
3

p̂3

]
,

(9.7)

x̂ (b)β + i p̂(b)β =
[

1√
2

x̂β + 1√
6

p̂2 − 1√
3

x̂3

]
+ i

[
1√
2

p̂β − 1√
6

x̂2 − 1√
3

p̂3

]
,

(9.8)

where we have the omitted superscripts (in) for input modesα, β and (r) for resource
modes1 1, 2, and 3. For example, x̂1 represents x̂1 = x̂ (r)1 = er1 x̂ (0)1 .

9.2.4 Measurement

We perform homodyne measurements on modes α, β, and 2. The relative phases
between signal beams and local oscillator beams are set to 0, 0, and θ for modes
α, β, and 2, respectively. We utilize θ representation for measurement on mode 2
(Sect. 5.3.1). Therefore, the measurement observables ŝα, ŝβ, ŝ2 for measurements
on modes α, β, and 2 are

ŝα = x̂ (b)α , ŝβ = x̂ (b)β , ŝ2 = cos θ x̂ (c)2 + sin θ p̂(c)2 . (9.9)

9.2.5 Feed-Forward and Operation

Without using the position operators x̂ (r)k for squeezed-state modes k = 1, 2, 3, the

quadrature operators x̂ (b)k and p̂(b)k for output modes k = 1, 3 can be reformulated as

⎛
⎜⎜⎜⎝

x̂ (b)1

p̂(b)1

x̂ (b)3

p̂(b)3

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ + Mdisp

⎛
⎝

ŝα
ŝβ
ŝ2

⎞
⎠ +

⎛
⎜⎜⎜⎝

0
1√
2
δ̂1 − 1√

2
δ̂2 tan θ

0
1√
2
δ̂3 − 1√

2
δ̂2 tan θ

⎞
⎟⎟⎟⎠ , (9.10)

where

Mop =

⎛
⎜⎜⎜⎝

√
2 0 0 0

− tan θ√
2

1√
2

− tan θ√
2

0

0 0
√

2 0
− tan θ√

2
0 − tan θ√

2
1√
2

⎞
⎟⎟⎟⎠ , Mdisp =

⎛
⎜⎜⎜⎝

−1 0 0
tan θ tan θ 1√

2 cos θ
0 −1 0

tan θ tan θ 1√
2 cos θ

⎞
⎟⎟⎟⎠ . (9.11)

1 Note that all resource modes are initially in p-squeezed states. This condition simplifies theoretical
discussion of one-way quantum computation.

http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Note that the reformulation above holds before the measurements are carried out.
On the contrary, when the measurements on modes α, β, and 2 have been carried out
indeed, the quadratures of the output modes become

⎛
⎜⎜⎜⎝

x̂ (bm)
1

p̂(bm)
1

x̂ (bm)
3

p̂(bm)
3

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ + Mdisp

⎛
⎝

sα
sβ
s2

⎞
⎠ +

⎛
⎜⎜⎜⎝

0
1√
2
δ̂1 − 1√

2
δ̂2 tan θ

0
1√
2
δ̂3 − 1√

2
δ̂2 tan θ

⎞
⎟⎟⎟⎠ , (9.12)

where sα , sβ , and s2 represent measurement results of measurement variables ŝα ,
ŝβ , and ŝ2, respectively. δ̂k represents the kth nullifier of the resource cluster state
(see Eq. (6.42)). By performing feed-forwards (displacement operations) based on
the measurement results:

⎛
⎜⎜⎜⎝

x̂ (out)
1

p̂(out)
1

x̂ (out)
3

p̂(out)
3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x̂ (bm)
1

p̂(bm)
1

x̂ (bm)
3

p̂(bm)
3

⎞
⎟⎟⎟⎠ − Mdisp

⎛
⎝

sα
sβ
s2

⎞
⎠ , (9.13)

or equivalently, by applying displacement operators:

X̂1(sα)Ẑ1

(
− tan θsα − tan θsβ − 1√

2 cos θ
s2

)
X̂3(sβ)Ẑ3

(
− tan θsα − tan θsβ − 1√

2 cos θ
s2

)
,

(9.14)
we get ⎛

⎜⎜⎜⎝

x̂ (out)
1

p̂(out)
1

x̂ (out)
3

p̂(out)
3

⎞
⎟⎟⎟⎠ = Mop

⎛
⎜⎜⎜⎝

x̂ (in)α

p̂(in)α

x̂ (in)β

p̂(in)β

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

0
1√
2
δ̂1 − 1√

2
δ̂2 tan θ

0
1√
2
δ̂3 − 1√

2
δ̂2 tan θ

⎞
⎟⎟⎟⎠ . (9.15)

This is the input–output relationship in this experiment. The term of Mop represents
the main operation. On the other hand, the term of δ̂k represents error of the operation,
which derives from finite level of resource squeezing. In the limit of infinite squeezing
r → ∞, each δ̂k goes to zero, meaning that the ideal operation is achieved.

9.2.6 Decomposition of Operation

The matrix Mop can be decomposed into

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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Mop = TZ

(
−1

2
η
) (

S O
O S

)
= CZ

(
−1

2
η
) (

D(− 1
2η) O

O D(− 1
2η)

)(
S O
O S

)
, η = tan θ,

(9.16)
where

TZ (g) =

⎛
⎜⎜⎝

1 0 0 0
g 1 g 0
0 0 1 0
g 0 g 1

⎞
⎟⎟⎠ , CZ (g) =

⎛
⎜⎜⎝

1 0 0 0
0 1 g 0
0 0 1 0
g 0 0 1

⎞
⎟⎟⎠ , D(g) =

(
1 0
g 1

)
, S =

(√
2 0

0 1√
2

)
.

(9.17)
Here, S is the matrix of a 3.0 dB p-squeezing operation, while D(g) is the matrix
of a quadratic phase gate. They are single-mode operations. The matrix CZ (g) is
a controlled-Z gate with interaction gain g, while TZ (g) is the matrix of the gain-
tunable gate (TZ gate) with interaction gain g. They are two-mode operations.

9.2.7 Squeezer-Based Input Coupling and Gaussian Parallelism

As is clearly shown in Eq. (9.16), the operation can be decomposed into two sub-
operations: single-mode operations S derived from the squeezer-based input coupling
schemes (Sect. 5.3.4) and a two-mode operation TZ (g) derived from the measurement
on mode 2 of the three-mode linear cluster state. In this subsection, we show inter-
pretation of this experiment as a demonstration of one-way quantum computation
which starts with the squeezer-based input-coupling scheme.

The initial states are a three-mode linear cluster state labeled by 1, 2, and 3, and
a two-mode input state labeled by α and β (Figs. 9.3a and 9.4). Although we have
assumed that the cluster state is a canonical cluster state (or the ideal cluster state; they
are generated by combining three p-squeezed states or |p = 0〉 using controlled-Z
gates) in Fig. 9.4 for simplicity, the following discussion can be directly applied to
the case of a Gaussian cluster state (Sect. 5.6).

We perform two instances of squeezer-based input-coupling schemes (Sect. 5.3.4).
Here, a squeezer-based input-coupling is described in Fig. 9.6a.

The input modeα is coupled with the cluster mode 1 with a beam splitter B(2)α1 (
1√
2
)

(Figs. 9.3b and 9.5). Next, the mode α is measured by a homodyne detection with
a measurement variable of x . We then perform a feed-forward operation X̂1(s) on
mode 1 with the amplitude gain of 1 and another feed-forward operation Ẑ2(

√
2s)

on mode 2 with the amplitude gain of
√

2, where s represents the measurement result
of the homodyne detection.

Figures 9.3c and 9.7 show the abstract illustration and the quantum circuit after
the input couplings. Note that the input coupling of mode β is also performed by
using the cluster mode 3.

The output quantum state of the input coupling circuit shown in Fig. 9.6a is equiva-
lent to the output state of the circuit in Fig. 9.6b, where a 3.0 dB p-squeezing operation
(shown by S) is first performed on mode α, and then a controlled-Z gate with the

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Fig. 9.3 Interpretation as demonstration of quantum gate with squeezer-based input-coupling. a
Initial state. b Input coupling. c Measurement and feed-forward. d Intermediate state. e Measurement
and feed-forward. f Output state

Fig. 9.4 Interpretation as
demonstration of quantum
gate with squeezer-based
input-coupling 1

α

1

2

3

β

CZ

1 CZ

1

gain of g = 1√
2

is applied to modes α and 2. Thus, the result of Fig. 9.7 is equivalent
to that of Fig. 9.8 (Fig. 9.3d).

We here consider a quantum circuit shown in Fig. 9.9.
In Fig. 9.9, modes A and B show input modes, while mode 2 shows a resource

mode in |p = 0〉, or a p-squeezed state. First, two pairs of modes (A, 2) and (B, 2) are
coupled with controlled-Z gates with the gains of g. Next, a homodyne measurement
on mode 2 with the relative phase t is performed, leading to a measurement result
s. Finally, feed-forward operations Ẑ A(−sg sec t)Ẑ B(−sg sec t) is carried out with
the measurement result s. The output modes are modes A and B. The input–output
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Fig. 9.7 Interpretation as demonstration of quantum gate with squeezer-based input-coupling 3

relationship in the Heisenberg picture is given by

⎛
⎜⎜⎝

x̂ ′
A

p̂′
A

x̂ ′
B

p̂′
B

⎞
⎟⎟⎠ = TZ (−g2 tan t)

⎛
⎜⎜⎝

x̂ A

p̂A

x̂B

p̂B

⎞
⎟⎟⎠ , (9.18)

which is equivalent to that of the gain-tunable entangling gate (TZ gate).
By applying the operation shown in Fig. 9.9 on the output state of Fig. 9.7 with

g = 1√
2

and t = θ , we get Figs. 9.3e, f and 9.10.

In Fig. 9.10, the measurement on mode 2 is carried out after the feed-forward oper-
ations on mode 2. These measurement and feed-forward operations can be swapped
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Fig. 9.8 Interpretation as demonstration of quantum gate with squeezer-based input-coupling 4
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Fig. 9.10 Interpretation as demonstration of quantum gate with squeezer-based input-coupling 5
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Fig. 9.11 Interpretation as demonstration of quantum gate with squeezer-based input-coupling 6

by changing feed-forward operations on modes 1 and 3 (Fig. 9.11). Note that the
measurement on mode 2 is not changed.

Figure 9.11 is nothing but the quantum circuit of our gain-tunable entangling gate
experiment. The operation achieved by Fig. 9.11 is given by

TZ

(
−g2 tan t

)(
S O
O S

)
= TZ

(
− 1

2
η
) (

S O
O S

)
, η = tan θ, (9.19)
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which is identical to Eq. (9.16).
In Fig. 9.10, the measurement on mode 2 is carried out after both previous mea-

surements and feed-forwards are finished. On the contrary, Fig. 9.11 shows that all
three measurements can be carried out simultaneously, and then all feed-forward
operations can be performed simultaneously. In the transformation of the quantum
circuit, all measurement variables are not changed, although feed-forward operations
are changed to other Pauli group operations (displacement operations). Therefore,
the transformation above can be considered as an example of Gaussian Parallelism
(Sect. 4.2.4).

9.2.8 Covariance Matrix

We define V (in)
αβ as the covariance matrix of a two-mode input state. We here choose

the xpxp notation for all covariance matrices (Sect. 3.2.5).
Since the two-mode input state and the resource three-mode linear cluster state

has no correlations, the covariance matrix of the output state becomes

V (out)
13 = MopV (in)

αβ MT
op + Vδ, (9.20)

where Vδ represents excess noise derived from the finite level of resource squeezing.
It is given by

Vδ = �

2

⎛
⎜⎜⎝

0 0 0 0
0 e−2r1 + 3

2η
2e−2r2 0 1

2 e−2r1 + 3
2η

2e−2r2

0 0 0 0
0 1

2 e−2r1 + 3
2η

2e−2r2 0 1
4 e−2r1 + 3

2η
2e−2r2 + 3

4 e−2r3

⎞
⎟⎟⎠ . (9.21)

In the special case of identical squeezing parameters ri = r , it becomes

Vδ = �

2

⎛
⎜⎜⎝

0 0 0 0
0

(
1 + 3

2η
2
)

e−2r 0
( 1

2 + 3
2η

2
)

e−2r

0 0 0 0
0

( 1
2 + 3

2η
2
)

e−2r 0
(
1 + 3

2η
2
)

e−2r

⎞
⎟⎟⎠ . (9.22)

In the limit of infinite squeezing ri → ∞, Vδ goes to the 4 × 4 zero matrix O ,
meaning that the ideal operation is achieved.

Finally, we assume that two input modes α and β are initially in vacuum states.
The covariance matrix of the output state becomes

http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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V (out)
13 = �

2

⎛
⎜⎜⎝

2 −η 0 −η
−η η2 + 1

2 −η η2

0 −η 2 −η
−η η2 −η η2 + 1

2

⎞
⎟⎟⎠ + Vδ. (9.23)

9.2.9 Inseparability Criteria

In this experimental demonstration of gain-tunable entangling gate, we verify entan-
glement at the output by using the inseparable criterion with PT symplectic eigenvalue
(Sect. 3.7.5).

9.2.9.1 van Loock-Furusawa Criterion, Duan Criterion

van Loock-Furusawa criterion and Duan criterion (Sect. 3.7.4) are not suitable for
verification of entanglement at the output in this experiment. In the following, we
briefly mention the reason of this.

From the covariance matrix of the output state shown in Eq. (9.23), we find that
its (1, 2) and (3, 4) entries have non-zero values when η �= 0 (θ �= 0). Thus each
position operator x̂k of mode k has correlation with the momentum operator p̂k of
the same mode k. This inner correlation derives from the quadratic phage gates D(g)
in Eq. (9.16). Note that this is not the case with the other experiments in this thesis
(Chaps. 7 and 8).

Consider entanglement detection of a two-mode quantum state with correlations
within single modes. In order to acquire the appropriate Duan criterion for this state,
transformations of its covariance matrix into a standard form must be performed.
As a result, the measurement variables have both position and momentum operators
of each mode. Although such measurements can be achieved by controlling relative
phases θ so that θ �= 0, 90, it leads to complication of experimental setup. In addition,
the appropriate measurement angles depend on the level of resource squeezing. The
situation is the same to van Loock-Furusawa criterion. Thus, van Loock-Furusawa
criterion and Duan criterion are not suitable in this experiment.

9.2.9.2 Simon Criterion, PT Symplectic Eigenvalue Criterion

We can get the entanglement criterion for our experiment by using the covariance
matrix of the output state shown in Eq. (9.23). In the following, we show the entan-
glement criterion with its PT symplectic eigenvalue, which is equivalent to the well-
known Simon criterion.

We assume that all resource squeezed states have identical squeezing parameter
r . The one of two PT symplectic eigenvalues is given by

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_7
http://dx.doi.org/10.1007/978-4-431-55019-8_8
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Fig. 9.12 Threshold squeezing level xth (dB) of entanglement for operation with η = tan θ

ν̃− = �

2

√
2η2 + 1 + (3η2 + 2)e−2r −

√
(2 + 3e−2r )2η4 + (6e−4r + 8e−2r + 4)η2 + e−4r .

(9.24)

The inseparability criterion is given by ν̃− <
�

2
, leading to

η �= 0 and
(
10

x
10

)2 = e4r >
6η2 + 3

4η2 . (9.25)

In the case of η = 0, since the input–output relationship given by Eq. (9.16)
shows single-mode operations, the output state is always separable. In the ideal case
of r → ∞, the output state becomes inseparable when η �= 0. In the realistic case
of finite-level squeezing, the output state might not be entangled even when η �= 0.
This is because the covariance matrix of the output state has the additional term Vδ
which shows error in one-way quantum computation.

Consider an operation with η. The output state becomes an entangled state if the
effective squeezing level x (e) (Sect. 6.1.1) satisfies

x (e) > xth, xth = 10 log10

√
6η2 + 3

4η2 . (9.26)

http://dx.doi.org/10.1007/978-4-431-55019-8_6


9.3 Experimental Setup 271

9.3 Experimental Setup

9.3.1 From Laser to Cluster State Generation

The resource for this experiment is a three-mode linear cluster state. In order to
generate it, we utilize the same experimental setup to that in Chap. 6.

9.3.2 Input States

Input states for experimental demonstration of the gain-tunable entangling gate are
vacuum states and coherent states. We utilize the same experimental setup to that in
Sect. 7.3.2.

9.3.3 Classical Channels and Displacement Operations

The displacement operation (feed-forward operation) in this experiment is given by
Eq. (9.13), or equivalently, Eq. (9.14):

X̂1(sα)Ẑ1

(
− tan θsα− tan θsβ − 1√

2 cos θ
s2

)
X̂3(sβ)Ẑ3

(
− tan θsα − tan θsβ − 1√

2 cos θ
s2

)
.

(9.27)
Therefore, we need eight paths of classical channels (α, 1x), (α, 1p), (β, 1p), (2, 1p),
(β, 3x), (α, 3p), (β, 3p), and (2, 3p), where parentheses show (mode of homodyne
detection, destination of feed-forward).

The schematic of classical channels for the gain-tunable entangling gate experi-
ment is shown in Fig. 9.13.

9.3.4 Locking the Relative Phases

Figure 9.14 shows arrangement of probe beams and phase modulations for the gain-
tunable entangling gate experiment.

9.3.4.1 Oblique Locking

The measurement variable in mode 2 is given by x̂ cos θ + p̂ sin θ , where θ is
determined by the gain of the operation η = tan θ . It is achieved by a homodyne
detection with the relative phase θ . Since the local oscillator beam points to an angle
other than 0◦ or 90◦ in phase space, we name the locking of this relative phase as
oblique locking.

http://dx.doi.org/10.1007/978-4-431-55019-8_6
http://dx.doi.org/10.1007/978-4-431-55019-8_7
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Fig. 9.13 Classical channels for gain-tunable entangling gate experiment

In the homodyne detection in mode 2, we can adjust the relative phase θ between
the signal beam and the local oscillator beam so that θ = 0, by using demodulation
signal of 210 kHz (Fig. 9.14 and Table 9.2). Similarly, θ becomes θ = 90 by using
demodulation signal of 140 kHz. We assume that error signals for these lockings are
given by Vx sin φ and −Vp cosφ, and that the phase is locked to the angle φ0 with

Ve(φ0) = 0 and dVe(φ)
dφ

∣∣∣
φ=φ0

> 0, where Ve(φ) shows an error signal. By adding

these two error signals, we get a new signal:

Vx sin φ − Vp cosφ =
√

V 2
x + V 2

p sin(φ − θ), θ = tan−1 Vp

Vx
. (9.28)

Thus, oblique locking with an arbitrary θ can be achieved by using it as the error
signal, where the ratio between Vx and Vp is appropriately adjusted (Fig. 9.15).

9.3.4.2 Summary of Phase Locking

Table 9.2 shows phase locking techniques for the gain-tunable entangling gate exper-
iment. Parentheses in Table 9.2 show that their phases are not utilized in experiment.

9.3.5 Cancellation

In the following, we take two examples of adjustment of classical channels.
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Fig. 9.14 Probe beams and phase modulations for gain-tunable entangling gate experiment
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Fig. 9.15 Oblique locking

Table 9.2 Phase lockings for gain-tunable entangling gate

Relative phase Technique, demodulation frequency

Parametric gain of OPO-A AC locking, 210 kHz

Parametric gain of OPO-B AC locking, 140 kHz

Parametric gain of OPO-D AC locking, 98 kHz

Beam splitter B(1)23 (

√
2
3 ) DC locking

Beam splitter B(1)12 (
1√
2
) AC locking, 210 kHz

Input α AC locking, amplitude x : 210 kHz, amplitude
p: 140 kHz

Input β AC locking, amplitude x : 210 kHz, amplitude
p: 140 kHz

Displacement in mode 1 AC locking, displacement x : 210 kHz, dis-
placement p: 140 kHz

Displacement in mode 3 AC locking, displacement x : 210 kHz, dis-
placement p: 140 kHz

Homodyne measurement in mode α AC locking, x : 140 kHz, (p: 210 kHz)

Homodyne measurement in mode 1 AC locking, x : 140 kHz, p: 210 kHz

Homodyne measurement in mode 2 Oblique (AC) locking, x : 210 kHz, p: 140 kHz

Homodyne measurement in mode 3 AC locking, x : 140 kHz, p: 210 kHz

Homodyne measurement in mode β AC locking, x : 140 kHz, (p: 210 kHz)

9.3.5.1 Adjustment of g2to1 p

We define g2to1p as the gain of classical channel from homodyne 2 to the momentum
operator of mode 1.
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We apply phase modulation onto the probe beam of OPO-B, leading to a coherent
state with amplitude in x̂2. We measure x in the homodyne measurement on mode
2. Its measurement result is added to p1 with the gain of g2to1p. With measuring
the power of p̂1, we adjust the gain and phase of the classical channel so that the
coherent signal is not observed. Since

1√
6

x̂2 + g2to1p

[
1√
3

x̂2

]
= 0 ⇐⇒ g2to1p = − 1√

2
, (9.29)

g2to1p can be adjusted to g2to1p = − 1√
2

.

9.3.5.2 Adjustment of gα to1 p

We define gαto1p as the gain of the classical channel from homodyne α to the momen-
tum operator of mode 1. The gain gαto1p is indirectly adjusted by using g2to1p.

We apply phase modulation onto the probe beam of OPO-A, leading to a coherent
state with amplitude in x̂3. Modes α and 2 are measured by homodyne detections
with the measurement variables x̂α and p̂2. Their measurement results are added
electrically. With measuring the power of the added signal, we adjust the gain and
phase of the classical channel so that the coherent signal is not observed. Since

g2to1p

[
1√
6

x̂3

]
+ gαto1p

[
1

2
√

3
x̂3

]
= 0 ⇐⇒ gαto1p = −√

2g2to1p = 1, (9.30)

gαto1p can be adjusted to gαto1p = 1.

9.3.5.3 Adjustment to the Proper Gains

The gains of classical channels are now adjusted to

gαto1p = 1, g2to1p = − 1√
2
. (9.31)

On the other hand, these gains should be

gαto1p = − tan θ, g2to1p = − 1√
2 cos θ

, (9.32)

where η = tan θ . Thus, gαto1p and g2to1p should be amplified with amplitude gains
of − tan θ and 1

cos θ , respectively. Therefore, we have to adjust these gains in the
following way:



276 9 Experimental Demonstration of Gain-Tunable Entangling Gate . . .

• gαto1p: change the polarity switch in Amplifier 1, and then increase the power
attenuation by −20 log tan θ dB.

• g2to1p: increase the power attenuation by −20 log 1
cos θ dB.

Gains and phases of the other classical channels are also adjusted in a similar
manner.

9.4 Digital Locking System

9.4.1 Background

As is mentioned in Sect. 6.4, locking of relative phase is achieved by using the DC
locking system or the AC locking system. Each feed-back loop contains a servo
controller, called the DC servo or AC servo. In all traditional experiments in our
laboratory, including the experimental demonstrations of the controlled-Z gate and
the optimum nonlocal gate, servo controllers are implemented by using analog cir-
cuits. For example, the controlled-Z gate experiment involves 25 independent servo
controllers to lock relative phases.

Consider a case where a relative-phase locking is dropped because, for example,
the length of a piezo electric transducer (PZT) becomes out of its specifications.
Although feed-back loops work independently of each other, optical beams of feed-
back target are in common. Thus, when a relative-phase locking is dropped, other
phase locking loops may be disturbed. As a result, we have to relock all relative
phases where common optical beams are involved.

A possible solution for this is to use an extensibility of a digital locking system.
In this system, an electrical signal from a detector is first digitized with an analog
to digital converter (ADC). The digitized signal is then processed by a digital filter.
Finally, a feed-back signal is transmitted to a PZT after the filtered signal is converted
to an analog signal with a digital to analog converter (DAC). Cooperation of all feed-
back servos can be implemented by a computer program.

Including the automatic relocking, we can consider that a digital locking system
has the following advantages:

• Automatic relocking system can be easily implemented.
• Sophisticated filter can be easily encoded.
• Cooperation with sample-and-hold system can be easily achieved.
• Cooperation with measurement apparatuses can be easily achieved.
• Control system can be easily updated.
• Control system can be easily duplicated.

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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Table 9.3 Interference visibilities for gain-tunable entangling gate experiment

Beam splitter Beams used for adjustment Visibility (%)

Beam splitter B(1)23 (

√
2
3 ) OPO-A, OPO-B 98.1

Beam splitter B(1)12 (
1√
2
) OPO-B, OPO-D 97.9

Input coupling α OPO-B, In-α 97.4

Input coupling β OPO-A, In-β 96.9

Displacement 1x OPO-B, Disp-1X 97.2

Displacement 1p OPO-B, Disp-1P 98.0

Displacement 3x OPO-A, Disp-3X 97.9

Displacement 3p OPO-A, Disp-3P 98.1

Homodyne measurement α OPO-B, LO-α 97.2

Homodyne measurement 1 OPO-B, LO-1 96.1

Homodyne measurement 2 OPO-B, LO-2 98.1

Homodyne measurement 3 OPO-A, LO-3 97.7

Homodyne measurement β OPO-A, LO-β 95.9

9.5 Digital Locking System in This Experiment

In the experimental demonstration of the gain-tunable entangling gate, we utilize a
digital locking system [3].

The chassis is NI PXI-1033 (National Instruments), which can be controlled by
a personal computer. We utilize five PXI modules: NI PXI-7853R × 4 and NI PXI-
7854R × 1 (National Instruments). Each module has eight analog input ports (up to
750 kHz independent sampling), eight analog output ports (up to 1 MHz independent
update), and 96 digital input/output ports (up to 40 MHz). Feed-back servos and their
controllers are programed on Field Programmable Gate Array (FPGA) modules by
using NI LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench).

For more details, see Ref. [3].

9.6 Preparation for Measurement

9.6.1 Visibilities and Parametric Gains

Interference visibilities and parametric gains are shown in Tables 9.3 and 9.4,
respectively.
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Table 9.4 Parametric gains for gain-tunable entangling gate experiment

OPO name Parametric gain (G+) Phase matching temperature (◦)

OPO-A 5.0 41.3

OPO-B 5.9 40.0

OPO-D 5.8 41.0

Table 9.5 Adjustment of
purity for gain-tunable
entangling gate experiment

EOM Purity (dB)

Disp-1X 32.5

Disp-1P 31.2

Disp-3X 32.8

Disp-3P 28.3

Table 9.6 Adjustment of
classical channels
(cancellation) for
gain-tunable entangling gate
experiment

Feed-forward Cancellation level (dB)

gαto1x 26.5

gαto1p 34.8

gβto1p 38.8

g2to1p 26.3

gβto3x 32.4

gαto3p 34.5

gβto3p 39.3

g2to3p 27.6

9.6.2 Adjustment of EOM (Purity)

Each purity is listed in Table 9.5.

9.6.3 Cancellation

Each cancellation level is listed in Table 9.6.

9.6.4 Balance Between Homodyne Detections

The balance between two homodyne detections for modes 1 and 3 is adjusted in the
same way as Chap. 6. As a result, we have achieved cancellation of 33.6 dB.

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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Table 9.7 Measurement results of input states

HD name Cluster only (dB) Coherent+Cluster (dB)

HDα 1.94 11.11

HD1 1.80 11.56

HDβ 5.46 14.80

HD3 5.37 14.20

9.7 Measurement Results and Their Analysis

In this section, we show measurement results of the gain-tunable entangling gate
experiment. We choose the following entangling gains η:

η = tan θ = 0,
1

5
,

1

2
,

1√
2
, 1,

√
2, 2, (9.33)

which can be achieved by relative phases θ :

θ = 0.0◦, 11.3◦, 26.6◦, 35.3◦, 45.0◦, 54.7◦, 63.4◦, (9.34)

in homodyne detection for mode 2.

9.7.1 Measurement Results with Vacuum and Coherent Inputs

9.7.1.1 Measurement Results of Input States

We measure the powers of both input coherent states in modes α and β (Fig. 9.16).
For this purpose, we utilize the same scheme to Sect. 7.5.2, where two homodyne
detections are engaged in measurement for each input mode.

Each power is listed in Table 9.7.
As a result, we get 13.83 dB for mode α and 16.95 dB for mode β, respectively,

compared to the SNL. All errors are less than ±0.02 dB, including in Table 9.7.

9.7.1.2 Measurement Result of Output States (Values)

In Tables 9.8, 9.9, 9.10, 9.11, 9.12, 9.13 and 9.14, we show measurement results of
powers of the output-mode quadratures with vacuum or coherent input states. We have
a vacuum input case and four cases of coherent input states: αx , αp, βx , and βp. For
measurements of the output states, we have four measurement variables: x2, p2, x3,
and p3. We choose seven operations with interaction gains η = 0, 1

5 ,
1
2 ,

1√
2
, 1,

√
2,

and 2. Thus, we have 5 × 4 × 7 = 140 measurement results in total.

http://dx.doi.org/10.1007/978-4-431-55019-8_7
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Fig. 9.16 Measurement results of input states. a Input α with HD α. b Input α with HD 1. c Input
β with HD β. d Input β with HD 3
Table 9.8 Measurement results (M) and theoretical values (T) with η = 0 (dB, error bars of
measurement results are less than 0.06 dB)

Output

Input x̂1(M) p̂1(M) x̂3(M) p̂3(M) x̂1(T) p̂1(T) x̂3(T) p̂3(T)

Vacuum 2.87 −0.61 2.63 −1.04 3.01 −0.68 3.01 −0.68

Coherent xα 17.44 0.15 3.10 −0.73 17.02 −0.68 3.01 −0.68

Coherent pα 3.55 11.63 2.72 −1.13 3.01 11.12 3.01 −0.68

Coherent xβ 2.81 −0.63 20.75 0.20 3.01 −0.68 20.04 −0.68

Coherent pβ 2.76 −0.65 4.28 14.21 3.01 −0.68 3.01 14.08

Table 9.9 Measurement results and theoretical values with η = 1
5 (dB, error bars of measurement

results are less than 0.05 dB)

Output

Input x̂1(M) p̂1(M) x̂3(M) p̂3(M) x̂1(T) p̂1(T) x̂3(T) p̂3(T)

Vacuum 2.66 −0.47 2.96 −0.50 3.01 −0.38 3.01 −0.38

Coherent xα 17.59 1.18 2.94 1.02 17.02 1.46 3.01 1.46

Coherent pα 4.33 11.83 2.97 −0.35 3.01 11.14 3.01 −0.38

Coherent xβ 2.80 2.19 20.48 3.86 3.01 2.80 20.04 2.80

Coherent pβ 2.74 −0.24 4.20 14.27 3.01 −0.38 3.01 14.09
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In these tables, theoretical values are listed as well. We have here assumed that
the resource squeezing level is 4.5 dB, and the input coherent-state amplitudes are
13.83 dB for mode α and 16.95 dB for mode β, respectively (Figs. 9.15 and 9.16).

9.7.1.3 Measurement Result of Output States (Graphs Categorized
by Operations)

In Figs. 9.17, 9.18, 9.19, 9.20, 9.21, 9.22 and 9.23, we show graphs of measurement
results and theoretical values, where data are categorized by operations. Note that
they are not covariance matrices.

9.7.1.4 Measurement Result of Output States (Graphs Categorized
by Input States)

Figure 9.24 shows graphs of measurement results and theoretical values, where data
are categorized by input states. Note that measurement results and their theoretical
curves are shown in the same colors.

9.7.1.5 Analysis

Case where input states are changed with η = 0
When η = 0 (Fig. 9.17), the operations are two single-mode 3.0 dB p-squeezing

operations (see Eq. (9.11)). Thus, when we use a coherent state with amplitude in x of
input mode α, we detect signal of the coherent state in x of output mode 1, where its
power is increased by about 3.0 dB. On the other hand, when we use a coherent state
with amplitude in p of input mode α, we detect signal of the coherent state in p of
output mode 1, where its power is decreased by about 3.0 dB. The differences between
input and output powers in theoretical values are not precisely 3.0 dB because the
power of the input state is not intense enough to neglect the variance of a vacuum
state. The discussion above can be applied to the set of input mode β and output
mode 3 as well.
Case where operations are changed with vacuum input states

Next, we consider the case where operations are changed with vacuum input states
(Fig. 9.24a). We find from the operation matrix Eq. (9.11) and the diagonal elements
of covariance matrix Eq. (9.23) that the position operators of output modes 1 and 3
do not depend on the interaction gain η which determines the operation. Since they
become

√
2x̂α and

√
2x̂β , the variances become 3.0 dB relative to the SNL. On the

other hand, the variances of momentum operators of modes 1 and 3 increase depend-
ing on the interaction gain η.
Case where input states are changed with operations fixed

We consider the case where input states are changed, while operation is fixed (in
Figs. 9.17, 9.18, 9.19, 9.20, 9.21, 9.22 and 9.23). We have already mentioned the
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(a) (b)

Fig. 9.17 Measurement results and theoretical values with η = 0. a Measurement results. b
Theoretical values
(a) (b)

Fig. 9.18 Measurement results and theoretical values with η = 1
5 . a Measurement results. b

Theoretical values
(a) (b)

Fig. 9.19 Measurement results and theoretical values with η = 1
2 . a Measurement results. b

Theoretical values

case where both input modes are vacuum states. For example, by changing the input
state in mode α from a vacuum state to a coherent state with amplitude in x , powers
of x̂1, p̂1, and p̂3 increase because x̂α is transmitted to these quadratures (Eq. 9.11).
On the other hand, x̂α is not transmitted to x̂3, thus the power of x̂3 is not changed.
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(a) (b)

Fig. 9.20 Measurement results and theoretical values with η = 1√
2

. a Measurement results. b
Theoretical values
(a) (b)

Fig. 9.21 Measurement results and theoretical values with η = 1. a Measurement results. b
Theoretical values
(a) (b)

Fig. 9.22 Measurement results and theoretical values with η = √
2. a Measurement results. b

Theoretical values

Case where operations are changed with input states fixed
Finally, we consider the case where operations are changed, while input states

are fixed (from Fig. 9.24b to e). Behavior of measurement results can be categorized
into the following five cases.
x1 with InAx, x3 with InBx (shown in rufous and red in figures)

Because the coherent-state signals are transmitted to these output-mode quadra-
tures with fixed gains, and because the variances of the quadratures do not depend
on the operations when both input modes are in vacuum states, the powers of these
quadratures become constants.
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(a) (b)

Fig. 9.23 Measurement results and theoretical values with η = 2. a Measurement results. b
Theoretical values

x3 with InAx, x1 and x3 with InAp, x1 with InBx, x1 and x3 with InBp(shown in purple
in figures)

Because the coherent-state signals are not transmitted to these output-mode
quadratures, and because the variances of the quadratures do not depend on the oper-
ations when both input modes are in vacuum states, the powers of these quadratures
become constants.
p3 with InAp, p1 with InBp (shown in blue in figures)

Although the coherent-state signals are not transmitted to these output-mode
quadratures, the variances of the quadratures depend on the operations when both
input modes are in vacuum states. Thus, the variances of these quadratures increase
depending on the interaction gain η.
p1 and p3 with InAx, p1 and p3 with InBx (shown in orange and yellow in figures)

Because the coherent-state signals are transmitted to these output-mode quadra-
tures with operation-dependent gains, and because the variances of the quadratures
depend on the operations when both input modes are in vacuum states, the variances
of these quadratures increase depending on the interaction gain η.
p1 with InAp, p3 with InBp (shown in green and yellow-green in figures)

Although the coherent-state signals are transmitted to these output-mode quadra-
tures with fixed gains, the variances of the quadratures depend on the operations
when both input modes are in vacuum states. Thus, the variances of these quadra-
tures increase slightly depending on the interaction gain η.

In all cases, the experimental results agree well with their theoretical predictions.

9.7.2 Covariance Matrices and Entanglement at Output (Via PT
Symplectic Eigenvalues)

We verify entanglement at the output by using PT symplectic eigenvalues. We here

use the system of units with � = 1

2
.
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(a)

(b) (c)

(e)(d)

Fig. 9.24 Measurement result of output states (graphs categorized by input states). a Vacuum inputs
in both α and β (InVac). b Amplitude in x of α (InAx). c Amplitude in p of α (InAp). d Amplitude
in x of β (InBx). e Amplitude in p of β (InBp)
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9.7.2.1 Measurement Results

The procedure for measurement of covariance matrices is explained in Chap. 6. We
get the following covariance matrices of the output states with vacuum input states.

η: (measurement result), (theoretical value with 4.5 dB resource), (ideal case).
(9.35)

0:
⎛
⎜⎝

0.49 0.00 0.00 0.00
0.00 0.21 0.00 0.04
0.00 0.00 0.50 0.00
0.00 0.04 0.00 0.21

⎞
⎟⎠ ,

⎛
⎜⎝

0.50 0.00 0.00 0.00
0.00 0.21 0.00 0.04
0.00 0.00 0.50 0.00
0.00 0.04 0.00 0.21

⎞
⎟⎠ ,

⎛
⎜⎝

0.50 0.00 0.00 0.00
0.00 0.13 0.00 0.00
0.00 0.00 0.50 0.00
0.00 0.00 0.00 0.13

⎞
⎟⎠ . (9.36)

1

5
:

⎛
⎜⎜⎝

0.49 −0.03 0.00 −0.05
−0.03 0.22 −0.04 0.05
0.00 −0.04 0.50 −0.05

−0.05 0.05 −0.05 0.22

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.05 0.00 −0.05
−0.05 0.23 −0.05 0.06
0.00 −0.05 0.50 −0.05

−0.05 0.06 −0.05 0.23

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.05 0.00 −0.05
−0.05 0.14 −0.05 0.01
0.00 −0.05 0.50 −0.05

−0.05 0.01 −0.05 0.14

⎞
⎟⎟⎠ .

(9.37)

1

2
:

⎛
⎜⎜⎝

0.50 −0.10 0.01 −0.12
−0.10 0.27 −0.11 0.11
0.01 −0.11 0.50 −0.12

−0.12 0.11 −0.12 0.28

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.13 0.00 −0.13
−0.13 0.31 −0.13 0.14
0.00 −0.13 0.50 −0.13

−0.13 0.14 −0.13 0.31

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.13 0.00 −0.13
−0.13 0.19 −0.13 0.06
0.00 −0.13 0.50 −0.13

−0.13 0.06 −0.13 0.19

⎞
⎟⎟⎠ .

(9.38)

1√
2
:

⎛
⎜⎜⎝

0.50 −0.16 0.00 −0.17
−0.16 0.35 −0.15 0.17
0.00 −0.15 0.49 −0.17

−0.17 0.17 −0.17 0.37

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.18 0.00 −0.18
−0.18 0.41 −0.18 0.24
0.00 −0.18 0.50 −0.18

−0.18 0.24 −0.18 0.41

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.18 0.00 −0.18
−0.18 0.25 −0.18 0.13
0.00 −0.18 0.50 −0.18

−0.18 0.13 −0.18 0.25

⎞
⎟⎟⎠ .

(9.39)

1:

⎛
⎜⎜⎝

0.50 −0.24 −0.01 −0.23
−0.24 0.50 −0.21 0.32
−0.01 −0.21 0.49 −0.23
−0.23 0.32 −0.23 0.50

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.25 0.00 −0.25
−0.25 0.60 −0.25 0.43
0.00 −0.25 0.50 −0.25

−0.25 0.43 −0.25 0.60

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.25 0.00 −0.25
−0.25 0.38 −0.25 0.25
0.00 −0.25 0.50 −0.25

−0.25 0.25 −0.25 0.38

⎞
⎟⎟⎠ .

(9.40)

√
2:

⎛
⎜⎜⎝

0.48 −0.32 −0.01 −0.29
−0.32 0.80 −0.30 0.58
−0.01 −0.30 0.47 −0.31
−0.29 0.58 −0.31 0.75

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.35 0.00 −0.35
−0.35 0.98 −0.35 0.81
0.00 −0.35 0.50 −0.35

−0.35 0.81 −0.35 0.98

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.35 0.00 −0.35
−0.35 0.62 −0.35 0.50
0.00 −0.35 0.50 −0.35

−0.35 0.50 −0.35 0.62

⎞
⎟⎟⎠ .

(9.41)

2:

⎛
⎜⎜⎝

0.50 −0.53 0.01 −0.48
−0.53 1.43 −0.44 1.18
0.01 −0.44 0.49 −0.49

−0.48 1.18 −0.49 1.37

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.50 0.00 −0.50
−0.50 1.75 −0.50 1.58
0.00 −0.50 0.50 −0.50

−0.50 1.58 −0.50 1.75

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.50 −0.50 0.00 −0.50
−0.50 1.13 −0.50 1.00
0.00 −0.50 0.50 −0.50

−0.50 1.00 −0.50 1.13

⎞
⎟⎟⎠ .

(9.42)

In these equations, we have listed in the form of “η: measurement result, theoretical
value with 4.5 dB resource squeezed state, ideal case with infinitely squeezed state”.
Error bars of measurement results with η = 2 are less than ±0.02 dB, while those
with the other η are less than ±0.01 dB.

http://dx.doi.org/10.1007/978-4-431-55019-8_6
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(a) (b) (c)

Fig. 9.25 Covariance matrices with η = 0. a Measurement result. b Theory (4.5 dB resource). c
Theory (∞dB resource)
(a) (b) (c)

Fig. 9.26 Covariance matrices with η = 1
5 . a Measurement result. b Theory (4.5 dB resource). c

Theory (∞dB resource)
(a) (b) (c)

Fig. 9.27 Covariance matrices with η = 1
2 . a Measurement result. b Theory (4.5 dB resource). c

Theory (∞dB resource)

In Figs. 9.25, 9.26, 9.27, 9.28, 9.29, 9.30 and 9.31, we show their graphs. Note
that the purple elements have negative values.

9.7.2.2 Analysis

Case where η = 0
When η = 0, the operations are two single-mode 3.0 dB p-squeezing operations

(see Eq. (9.16)).
In the ideal case with infinitely squeezed state resources, the variances of x̂ of the

output modes are given by �

2 × 2 = 1
2 , while the variances of p̂ of the output modes

are given by �

2 ÷ 2 = 1
8 . The other elements of the covariance matrix are equal to

zero.
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Table 9.10 Measurement results and theoretical values with η = 1
2 (dB, error bars of measurement

results are less than 0.05 dB)

Output

Input x̂1(M) p̂1(M) x̂3(M) p̂3(M) x̂1(T) p̂1(T) x̂3(T) p̂3(T)

Vacuum 2.62 0.74 2.91 0.71 3.01 0.93 3.01 0.93

Coherent xα 17.46 5.54 2.91 6.02 17.02 6.29 3.01 6.29

Coherent pα 3.70 11.65 2.91 1.21 3.01 11.24 3.01 0.93

Coherent xβ 2.71 9.50 20.40 9.72 3.01 8.71 20.04 8.71

Coherent pβ 2.66 1.02 4.18 13.74 3.01 0.93 3.01 14.15

Table 9.11 Measurement results and theoretical values with η = 1√
2

(dB, error bars of measure-

ment results are less than 0.05 dB)

Output

Input x̂1(M) p̂1(M) x̂3(M) p̂3(M) x̂1(T) p̂1(T) x̂3(T) p̂3(T)

Vacuum 2.59 1.64 2.81 1.89 3.01 2.10 3.01 2.10

Coherent xα 17.37 8.05 2.87 8.94 17.02 8.84 3.01 8.84

Coherent pα 4.12 11.35 2.83 2.63 3.01 11.37 3.01 2.10

Coherent xβ 2.74 11.54 20.35 12.81 3.01 11.46 20.04 11.46

Coherent pβ 2.68 2.34 3.96 14.16 3.01 2.10 3.01 14.21

(a) (b) (c)

Fig. 9.28 Covariance matrices with η = 1√
2

. a Measurement result. b Theory (4.5 dB resource). c
Theory (∞dB resource)
(a) (b) (c)

Fig. 9.29 Covariance matrices with η = 1. a Measurement result. b Theory (4.5 dB resource). c
Theory (∞dB resource)
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Table 9.12 Measurement results and theoretical values with η = 1 (dB, error bars of measurement
results are less than 0.05 dB)

Output

Input x̂1(M) p̂1(M) x̂3(M) p̂3(M) x̂1(T) p̂1(T) x̂3(T) p̂3(T)

Vacuum 2.60 3.09 2.71 3.64 3.01 3.78 3.01 3.78

Coherent xα 17.14 10.39 2.74 11.75 17.02 11.60 3.01 11.60

Coherent pα 4.09 12.02 2.71 4.02 3.01 11.60 3.01 3.78

Coherent xβ 2.71 14.20 19.99 15.69 3.01 14.34 20.04 14.34

Coherent pβ 2.85 3.81 3.71 14.39 3.01 3.78 3.01 14.34

Table 9.13 Measurement results and theoretical values with η = √
2 (dB, error bars of measure-

ment results are less than 0.05 dB)

Output

Input x̂1(M) p̂1(M) x̂3(M) p̂3(M) x̂1(T) p̂1(T) x̂3(T) p̂3(T)

Vacuum 2.70 4.88 2.63 5.71 3.01 5.93 3.01 5.93

Coherent xα 17.12 13.07 2.91 14.56 17.02 14.48 3.01 14.48

Coherent pα 4.39 11.61 2.95 6.54 3.01 12.04 3.01 5.93

Coherent xβ 2.85 17.48 19.81 18.70 3.01 17.28 20.04 17.28

Coherent pβ 2.61 6.15 3.53 14.65 3.01 5.93 3.01 14.57

Table 9.14 Measurement results and theoretical values with η = 2 (dB, error bars of measurement
results are less than 0.06 dB)

Output

Input x̂1(M) p̂1(M) x̂3(M) p̂3(M) x̂1(T) p̂1(T) x̂3(T) p̂3(T)

Vacuum 2.45 7.69 2.05 8.69 3.01 8.44 3.01 8.44

Coherent xα 16.67 16.19 3.50 17.72 17.02 17.43 3.01 17.43

Coherent pα 4.10 12.07 2.08 9.20 3.01 12.80 3.01 8.44

Coherent xβ 2.78 19.65 18.85 21.43 3.01 20.25 20.04 20.25

Coherent pβ 2.33 8.21 3.35 15.01 3.01 8.44 3.01 15.01

(a) (b) (c)

Fig. 9.30 Covariance matrices with η = √
2. a Measurement result. b Theory (4.5 dB resource). c

Theory (∞dB resource)

In the realistic case with finitely squeezed state resources, V22, V24, V42, and
V44 have additional variances (Eq. 9.23). Measurement results agree with theoretical
predictions with 4.5 dB squeezed state resources.
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(a) (b) (c)

Fig. 9.31 Covariance matrices with η = 2. a Measurement result. b Theory (4.5 dB resource). c
Theory (∞dB resource)

We mention that the matrix elements V24 and V42, which correspond to correlations
between two output modes, have non-zero values. It derives from the fact that the
resource cluster state is a Gaussian cluster state. Note that these elements are equal to
zero if the resource is an ideal cluster state or a canonical cluster state. Although they
have non-zero values when the Gaussian cluster state has a finite squeezing level,
they vanish in the limit of infinite squeezing. This is because the nullifier δ̂ j of the

cluster state is given only by squeezing components e−rk p̂(0)k , and because error of
one-way quantum computation is formulated by δ̂ j (δ representation, Sect. 5.6).
Case where operations are changed

We consider the case where operations are changed (in Figs. 9.25, 9.26, 9.27, 9.28,
9.29, 9.30 and 9.31). Behavior of measurement results can be categorized into the
following five cases.
Variances of x̂1, x̂3 (shown in green in figures)

Because these values do not depend on η in the ideal case, and because errors
derived from cluster imperfection are zero, the measurement results do not depend
on η and they are equivalent to the ideal values.
Variances of p̂1, p̂3 (shown in orange in figures)

Because these values increase depending on the interaction gain η in the ideal
case, and because errors derived from cluster imperfection also increase depending
on η, the measurement results increase depending on η and they are larger than the
ideal values.
Correlation between ( p̂1, p̂3) (shown in yellow in figures)

Because this value increases depending on the interaction gain η in the ideal case,
and because errors derived from cluster imperfection also increase depending on η,
the measurement results increase depending on η and they are larger than the ideal
values.
Correlations between (x̂1, p̂1), (x̂1, p̂3 ), (x̂3, p̂1 ), (x̂3, p̂3 ) (shown in purple in figures)

Because these values are negative and their absolute values increase depending
on the interaction gain η in the ideal case, and because errors derived from cluster
imperfection are zero, the measurement results are negative and their absolute values
increase depending on η, and they are equivalent to the ideal values.
Correlation between (x̂1, x̂3) (shown in light blue in figures)

http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Because this value is zero in the ideal case, and because errors derived from
cluster imperfection are zero as well, the measurement results are zero and they are
equivalent to the ideal values.

In all cases, the experimental results agree well with their theoretical predictions.

9.7.2.3 Variables Acquired by Covariance Matrix

Table 9.15 shows several variables (Sects. 3.2.6 and 3.7.5) which are acquired by
the covariance matrices. Here, det Vk represents the determinant of the kth order
principal submatrix of a covariance matrix V , ν± represent the symplectic eigenval-
ues, ν̃± represent the PT symplectic eigenvalues, and EN represents the logarithmic
negativity.

Since all determinants of the kth order principal submatrices are positive: det Vk >

0 (k = 1, . . . , 4), and the symplectic eigenvalue ν− is ν− ≥ �

2 , each symmetric
matrix V certainly shows a covariance matrix of a physical state.

Figure 9.32 shows the PT symplectic eigenvalues ν̃− with respect to η.

Fig. 9.32 PT symplectic eigenvalues ν̃−

When the PT symplectic eigenvalue ν̃− < �

2 = 1
4 , the output state is an entangled

state. The closer to zero the PT symplectic eigenvalue ν̃− is, the more the output
state is entangled. Table 9.15 and Fig. 9.32 show that the output states with η = 0
and 1

5 are not entangled since ν̃− > 1
4 , while those with η = 1

2 , 1√
2

, 1,
√

2, and 2

are entangled since ν̃− < 1
4 . We also find that the level of entanglement gets larger

depending on the interaction gain η. Figure 9.32 shows that the measurement results
agree well with theoretical predictions where 4.5 dB squeezed state resources are
utilized.

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Chapter 10
Temporal-Mode Cluster States

10.1 Background

In the conventional demonstrations of one-way quantum computations using optical
continuous-variable systems, each quantum mode of a cluster state is distinguished
from the other modes by assigning it to a spatial location of its own [2–5]. Recently,
one-way quantum computation using temporal modes is proposed [1, 6], where
each mode is encoded temporally. In this section, we briefly refer to background of
temporal-mode cluster states.

10.1.1 Temporal-Mode Cluster States

The discovery of beam-splitter based Gaussian cluster state scheme [3] made it easier
to generate cluster states in laboratories (Sect. 1.2). Soon after the original proposal of
Gaussian cluster states, experimental preparations of four-mode cluster states were
reported [4, 5]. However, this traditional scheme was not suitable for large-scale
one-way quantum computation experiments. In one-way quantum computation, we
have to prepare an n-mode cluster state as a resource in order to achieve an n-
step operation. For that purpose, we had to use n squeezed states generated by n
optical parametric oscillators (OPOs). Thus, experimental setup becomes larger in
proportion to the number of operations. Although generations of optical four-mode
cluster states [4, 5] and eight-mode cluster states [7] for continuous variables are
reported so far, we can hardly expect that more-mode cluster state would be generated
with the traditional scheme.

The new scheme [1, 6] for generation of optical cluster states for continuous
variables utilizes a new dimension “time”, which was not utilized in the traditional
scheme. As a reference, we first consider the traditional scheme from this point of
view. In the traditional scheme, each resource squeezed state for a cluster state is
generated simultaneously by using each OPO. These squeezed states are combined
using a network of controlled-Z gates (canonical cluster states) or beam splitters
(Gaussian cluster states) simultaneously. As a result, each mode of the cluster state
exists at the same time.

© Springer Japan 2015
R. Ukai, Multi-Step Multi-Input One-Way Quantum Information
Processing with Spatial and Temporal Modes of Light, Springer Theses,
DOI 10.1007/978-4-431-55019-8_10
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Fig. 10.1 Temporal-mode
canonical cluster state using a
controlled-Z gate

In the new scheme, on the other hand, squeezed beams are first generated by using
a limited number of OPOs. Each squeezed beam is virtually split into a sequence of
squeezed states with some time period T . By choosing T appropriately, two squeezed
states at time t1 and (t1+T ) can be almost orthogonal. A cluster state can be generated
by combining squeezed states at different times. In this scheme, quantum modes of
the cluster state do not exist simultaneously. Instead, although several modes of the
cluster state might exist simultaneously, they are mainly assigned to different times.
Since we can define multiple squeezed states from a squeezed beam, we do not
have to prepare the same number of OPOs as the quantum modes. In principle, it is
sufficient to use single OPO.1

The cluster state generated by assigning each mode to a different time is called
the temporal-mode cluster state.

10.1.2 Temporal-Mode Canonical Cluster State

Based on the idea of the temporal-mode cluster state, the temporal-mode canonical
cluster state is first proposed [6].

Figure 10.1 shows a schematic for generation of a multi-mode linear cluster state.
In this figure, “S” shows an OPO which generates squeezed states periodically.
Each double exponential function shows a quantum mode, which is defined within
the duration T . Each mode is initially in a squeezed state. The n-th squeezed state
generated by the OPO enters the controlled-Z gate. After passing through a delay
line with the duration T , one of the two outputs of the controlled-Z gate goes into
the other input port of the same controlled-Z gate. Since it has been delayed with the
duration T , it is entangled with the (n + 1)-th squeezed state. Temporal-mode linear
canonical cluster state is acquired from the other output port of the controlled-Z gate.
Each mode of the cluster state is outputted with a time interval of T .

It is reported that a controlled-Z gate can be experimentally implemented by using
two squeezed states as resources [8, 9]. Therefore, a linear cluster state of an arbitrary
mode length can be generated by using three OPOs.

1 In reality, we can simplify experimental setup by using several OPOs.
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10.1.3 Temporal-Mode Gaussian Cluster State

Similar to the case of spatial-mode cluster states, it is later proposed that the temporal-
mode Gaussian cluster states, which are the theme in this chapter, can be generated
by combining temporal-mode squeezed states on beams splitters [1]. In order to
couple quantum modes at a different time, delay lines are also involved.

Figure 10.2 shows an experimental setup for generation of a temporal-mode
Gaussian cluster state which can be utilized to implement one-mode quantum oper-
ations. The graph of the cluster state is shown in Fig. 10.3. In this scheme, the cluster
state of an arbitrary mode length can be generated by using only two OPOs and two
beam splitters. Details will be discussed in the succeeding sections.

10.1.4 Unsolved Problems and Contents of this Chapter

Although the original paper [1] proposed schematics for generation of temporal-mode
Gaussian cluster states, there still exist several unsolved problems about temporal-
mode Gaussian cluster states and their application to one-way quantum computation.
They include:

1. why is the schematic of cluster state generation in this form?
2. a half or three fourths of the generated cluster states should be erased before they

are used as resources for one-way quantum computations.

The former is related to theoretical consideration of the temporal-mode Gaussian
cluster state scheme. The latter is an exploration of a theory for experimental demon-
stration of one-way quantum computation where a temporal-mode Gaussian cluster
state is used as a resource. In the ideal case where an infinitely correlated entangled
cluster state can be used, disposal of the half modes does not lead to errors in quan-
tum computation. However, in the realistic case, we cannot utilize the ideal cluster
state. The experimental cluster state is generated by combining squeezed states with
finite squeezing levels. When it is used as a resource for one-way quantum compu-
tation, errors derived from its imperfection will accumulate gradually. We mention
that error is indeed added during erasing of cluster modes. In order to minimize the
effect of errors derived from the finite squeezing levels, quantum computation should
be implemented without involving cluster mode erasings.

Fig. 10.2 Experimental setup
for temporal-mode Gaussian
cluster state



298 10 Temporal-Mode Cluster States

Fig. 10.3 Temporal-mode Gaussian cluster state

In this chapter, we discuss temporal-mode Gaussian cluster states and their appli-
cation to one-way quantum computations, including solutions to the unsolved prob-
lems above. We show that quantum computation using a temporal-mode cluster
state for one-mode operations is equivalent to a repetition of quantum teleporta-
tions (Sect. 10.3.3). Since we can implement one-mode Gaussian operations with
two degrees of freedom by controlling the measurement bases in a quantum tele-
portation (Sect. 5.3.3), we can utilize all modes of the temporal-mode cluster state
in one-way quantum computations without eliminating any of them. For example,
when we implement an arbitrary one-mode Gaussian operation based on the original
proposal, eight modes of the temporal-mode Gaussian cluster state should be used
as a resource. On the contrary, by applying the scheme proposed in this chapter, it
can be achieved by using four modes of the temporal-mode Gaussian cluster state.
Therefore, the new scheme enables us to implement an arbitrary one-mode Gaussian
operation with less errors.

In addition, we show that one-mode non-Gaussian operations and multi-mode
Gaussian operations are also achieved without eliminating resource modes
(Sects. 10.5 and 10.6) by considering concatenation of a one-way quantum compu-
tation circuit with the three-mode linear cluster state, and the quantum computation
circuit of the controlled-Z gate experiment with the four-mode linear cluster state
(Sect. 7). Multi-mode non-Gaussian operation can be achieved by combining these
two components.

Before we move onto the detail, we mention selection of measurement bases. In
the following discussion, we provide the explicit set of measurement bases for all
one-mode Gaussian operations using a temporal-mode Gaussian cluster state. As
for multi-mode Gaussian operations and one-mode non-Gaussian operations, it is
not known how the explicit and optimum set of measurement bases can be chosen
in order to implement a specific operation in the framework of one-way quantum
computation. This thesis is not an exception. That is, in this chapter, we show (1) all
components for universality can be implemented by using temporal-mode Gaussian
cluster state (universality is achieved, it has already been proven by using a different
temporal-mode cluster state in Ref. [1]), and (2) all the degrees of freedom derived
from cluster-state modes in these components can be used for operations. Note that,
since it is not known how a specific operation can be decomposed into a set of
known operations, it is not proven that universal quantum computation could be
achieved by using all degrees of freedom of cluster-state modes. That is, one might
have to remove several modes of a temporal-mode cluster state in order to follow
the decomposition of quantum computation, although the modes to be removed have
abilities to implement some operations.

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_7
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10.2 Nullifiers

We here acquire nullifiers of the two-mode cluster state. The following discussion is
derived from Sects. 3.2.4 and 3.3.4 [10].

10.2.1 EPR State and Two-Mode Cluster State

We start our discussion with a quantum state |p1 = 0〉|p2 = 0〉. The set of its
nullifiers is given by

{ p̂1, p̂2}. (10.1)

By applying a Fourier operator F̂2 on mode 2, the set of nullifiers for the second
quantum state becomes

{ p̂1,−x̂2}. (10.2)

We then apply a beam splitter operator B̂(2)12 (
1√
2
). By using the nullifier transformation

rules

p̂1 → 1√
2

p̂1 + 1√
2

p̂2, x̂2 → − 1√
2

x̂1 + 1√
2

x̂2, (10.3)

for B̂(2)12 (
1√
2
), we get the following set of nullifiers for the third quantum state:

{ 1√
2

p̂1 + 1√
2

p̂2,
1√
2

x̂1 − 1√
2

x̂2

}
. (10.4)

Since an operator which is acquired by multiplying a nullifier by a constant is also a
nullifier, we get the revised set of nullifiers for the third state:

{ p̂1 + p̂2, x̂1 − x̂2}, (10.5)

which represents the Einstein-Podolsky-Rosen state (EPR state) [11, 12]. We apply
another Fourier operator F̂2 on mode 2. By using the nullifier transformation rules

x̂2 → p̂2, p̂2 → −x̂2 (10.6)

for F̂2, we get the set of nullifiers for the fourth quantum state:

{ p̂1 − x̂2, x̂1 − p̂2}. (10.7)

http://dx.doi.org/10.1007/978-4-431-55019-8_3
http://dx.doi.org/10.1007/978-4-431-55019-8_3
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Fig. 10.4 EPR state and two-mode cluster state. a EPR state, b Two-mode cluster state

Since an operator which is acquired by multiplying a nullifier by a constant is also a
nullifier, we get the revised set of nullifiers for the fourth state:

{ p̂1 − x̂2, p̂2 − x̂1}, (10.8)

which represents the two-mode cluster state [2, 3].

10.3 One-Mode Gaussian Operations Using Temporal-Mode
Gaussian Cluster States

In this section, we describe how we can implement one-mode Gaussian opera-
tions using temporal-mode Gaussian cluster states. Although we use ideal quantum
resource states |p = 0〉 in all discussion for simplicity, it can easily be extended to
realistic cases where finitely squeezed states are utilized as resources.

10.3.1 Teleportation-Based Input-Coupling Scheme

Implementation methodology of one-mode Gaussian operations using a temporal-
mode Gaussian cluster state will be given by considering the concatenation of
teleportation-based input-coupling circuits (Sect. 5.3.3) [13]. The schematic of the
teleportation-based input-coupling scheme is shown in Fig. 10.5. Although we have
assumed that modes 1 and 2 are in a two-mode Gaussian cluster state given by
Fig. 10.4b, we can apply discussion in Sect. 5.3.3 to Fig. 10.5 because it becomes
identical to the ideal two-mode cluster state in the limit of infinite squeezing: r → ∞
(Sect. 5.6).

In this figure, mode in shows the input mode, while we assume that modes 1 and
2 are initially in |p = 0〉1|p = 0〉2. From Sect. 5.3.3, the input-output relation of this
quantum circuit is given by

http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Fig. 10.5 Teleportation-based input-coupling scheme

(
x̂out

p̂out

)
= Mtele(θ+, θ−)

(
x̂in

p̂in

)
, (10.9)

where θ± = θin ± θ1, while θin and θ1 represent the measurement bases (the rela-
tive phases between the signal beams and the local oscillator beams for homodyne
measurements in modes in and 1). Here, the matrix Mtele(θ+, θ−) is given by

Mtele(θ+, θ−) = 1

sin θ−

(
cos θ+ + cos θ− sin θ+

− sin θ+ cos θ+ − cos θ−

)
. (10.10)

It can be decomposed into

Mtele(θ+, θ−) = R
(

− 1

2
θ+

)
S
(

ln tan
1

2
θ−

)
R
(

− 1

2
θ+

)
, (10.11)

where

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, S(r) =

(
e−r 0
0 er

)
. (10.12)

10.3.2 Concatenation of Teleportation-Based Input-Coupling
Circuits and Its Operation

10.3.2.1 Concatenation of Teleportation-Based Input-Coupling Circuits

As a next step, we consider concatenation of the teleportation-based input-coupling
circuits. Figure 10.6 shows the circuit consisting of four elementary circuits.

Since the input-output relationship of the teleportation-based input-coupling cir-
cuit is given by Eq. (10.9), we can easily get the input-output relationship of the
four-step circuit:

(
x̂out

p̂out

)
= Mtele(θ+4, θ−4)Mtele(θ+3, θ−3)Mtele(θ+2, θ−2)Mtele(θ+1, θ−1)

(
x̂in

p̂in

)
.

(10.13)
Note that we can determine all {θ+k, θ−k} independently of each other.
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Fig. 10.6 Concatenation of teleportation-based input-coupling circuits

In general, the operation achieved by the n-step teleportation-based input-coupling
circuit can be formulated as a product of Mtele(θ+k, θ−k), where we can determine
all {θ+k, θ−k} independently of each other.

10.3.2.2 Universal One-Mode Gaussian Operations

We consider how we can implement an arbitrary one-mode Gaussian operation by
using the concatenation of teleportation-based input-coupling circuits.2

The basic case is the one-step teleportation-based input-coupling circuit. By con-
sidering that the degree of freedom of one-mode Gaussian operation is three, while
that of the one-step teleportation-based input-coupling circuit is two, we can easily
find that universality cannot be achieved since the one-step circuit does not have
enough degrees of freedom.

The second basic case is the two-step teleportation-based input-coupling circuit.
Since its degree of freedom is four, there is possibility that universality is achieved.
By using Eq. (10.13), we get the input-output relationship of the two-step circuit:

(
x̂out

p̂out

)
= Mtele(θ+2, θ−2)Mtele(θ+1, θ−1)

(
x̂in

p̂in

)
(10.14)

= R
(

− 1

2
θ+2

)
S
(

ln tan
1

2
θ−2

)
R
(

− 1

2
θ+2

)
R
(

− 1

2
θ+1

)

× S
(

ln tan
1

2
θ−1

)
R
(

− 1

2
θ+1

) (
x̂in

p̂in

)
. (10.15)

By taking θ−1 = π

2
, we get S

(
ln tan 1

2θ−1

)
= I , and thus

(
x̂out

p̂out

)
= R

(
− 1

2
θ+2

)
S
(

ln tan
1

2
θ−2

)
R
(

− 1

2
θ+2 − θ+1

) (
x̂in

p̂in

)
. (10.16)

2 To be precise, the operations we here consider are members of the Symplectic group. Although
displacements in phase space are excluded from the Symplectic group, it is known that they can be
implemented by using one-step one-mode teleportation circuit (Sect. 5.5).

http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Fig. 10.7 Gathering all Fourier transformations and beam splitters which are used to generate
two-mode cluster states

First, the angle of the last (left) rotation operator can be determined arbitrarily by
choosing θ+2 appropriately. Next, the squeezing parameter of the squeezing operator
can be determined arbitrarily by choosing θ−2 appropriately. Finally, the angle of
the first (right) rotation operator can also be determined arbitrarily by choosing θ+1
appropriately, after θ+2 has been set. By using the Bloch-Messiah reduction [14] that
an arbitrary one-mode Gaussian operation can be decomposed into

R(θ2)S(r)R(θ1), (10.17)

we find that an arbitrary one-mode Gaussian operation can be implemented by the
two-step teleportation-based input-coupling circuit.

10.3.3 Transformation of Circuit

In this subsection, we consider transformation of the circuit shown in Fig. 10.6 with-
out changing the input-output relation given by Eq. (10.13).

First, all Fourier transformations and beam splitters which are used to generate
two-mode cluster states can be gathered at the beginning of the quantum circuit
(Fig. 10.7).

Next, we change the order of the first feed-forward operations and the beam
splitter for input coupling at the second-step computation. In general, a feed-forward
displacement operator D̂a and a beam splitter operator B̂ab do not commute, where
subscripts represent modes on which the operators work. However, since D̂a is a
member of the Pauli group and B̂ab is a member of the Clifford group [15, 16], there
exists a Pauli operator D̂′

ab which satisfies

B̂ab D̂a B̂†
ab = D̂′

ab, (10.18)
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Fig. 10.8 Changing the order of the first feed-forward operations and the beam splitter for input
coupling at the second-step computation

leading to

B̂ab D̂a = D̂′
ab B̂ab. (10.19)

Therefore, we can change the order of the feed-forward operations and the beam
splitter by adding another feed-forward operation which works on mode 21, without
changing the beam-splitter operation (Fig. 10.8).

Then, we change the order of the new feed-forward operations and the measure-
ments at the second-step computation. By considering that the feed-forward oper-
ations are members of the Pauli group which show displacements in phase space,
and that the measurement variables in the homodyne measurements are linear com-
binations of quadrature operators, we find that the set of the feed-forwards and
the measurements is equivalent to the same homodyne measurements followed by
addition of the previous measurement results to the current measurement results with
appropriate gains. By considering that the current measurement results are used for
the next feed-forwards, it is also equivalent to add another feed-forward from the
previous measurements to mode 22 (Fig. 10.9).

By repeating the procedure above, the quantum circuit can be transformed into
Figs. 10.10 and 10.11.

It can be considered as a one-way quantum computation where the resource is
a quantum state (shown in Fig. 10.12) which is acquired by entangling two-mode
cluster states sequentially by using beam splitters.

Although we have so far discussed by using four-step quantum computation, we
can easily extend its discussion to the general n-step case.



10.3 One-Mode Gaussian Operations Using Temporal-Mode ... 305

10.3.4 Temporal-Mode Gaussian Cluster State Generation

10.3.4.1 Mode Length

In the temporal-mode Gaussian cluster-state scheme, a squeezed beam is virtually
split into a sequence of squeezed states with some time period. We define tc, c, and
n to be the time period, the speed of light, and the refractive index. Within this time
period, the light propagates

l = ctc
n
, (10.20)

which we name the mode length.
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Fig. 10.9 Change the order of the new feed-forward operations and the measurements at the
second-step computation
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Fig. 10.10 Gathering all feed-forwards
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Fig. 10.12 Cluster state 11
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10.3.4.2 Temporal-Mode Gaussian Cluster State Generation

We consider generation of temporal-mode Gaussian cluster states of infinite length
based on Fig. 10.12.

The parts of Fig. 10.4b in Fig. 10.12 show generation of two-mode cluster states
consisting of modes {n1, n2}. As is clearly understood from the quantum circuits, a
two-mode cluster state can be generated by combining |p = 0〉⊗2 on a half beam
splitter. In experiment, |p = 0〉⊗2 are approximated by two p-squeezed states.

We assume that the two-mode cluster state {(n + 1)1, (n + 1)2} is generated after
the two-mode cluster state {n1, n2}. On the latter array of beam splitters in Fig. 10.12,
we find that the mode 2 at time (n −1), or equivalently mode (n −1)2, and the mode
1 at time n, or equivalently mode n1, are combined. Since we cannot combine two
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modes which do not exist simultaneously, we have to adjust the timing so that these
two modes exist simultaneously by using a delay line for mode (n − 1)2. These two
modes can be then combined on the beam splitter after this time delay. Figure 10.13
shows the procedure above.

Figure 10.14 shows where each mode exists at each time. In this figure, we have
assumed that both the lengths of the diagonal lines which correspond to the beam
splitters, and the length of the upper horizontal line are equal to the mode length.
Therefore, the length of the lower path including the delay line is twice the length of
the mode length.

By using this setup, we can generate the temporal-mode Gaussian cluster state of
an arbitrary length.

Although we have assumed in Fig. 10.14 that the lengths of the each diagonal line
for the beam splitters and the upper horizontal line are equivalent to the mode length,
we do not have to follow this assumption in experiment. For example, we can utilize
an experimental setup such as Fig. 10.15, where each line is shortened compared to
the mode length.

Fig. 10.13 Temporal-mode
Gaussian cluster state
generation

Fig. 10.14 Mode location at
each time. a Time 1, b Time
2, c Time 3, d Time 4, e Time
5, f Time 6

(a) (b)

(c) (d)

(e) (f)
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Fig. 10.15 Mode location at each time

10.3.4.3 Equivalence Between the Original Paper and Concatenation
of Teleportation-Based Input-Coupling Circuits

The schematic of Fig. 10.13 is nothing but the generation scheme of the temporal-
mode Gaussian cluster state proposed in Ref. [1] which can be used to implement
one-mode operations. This equivalence between the original paper and the con-
catenation of the teleportation-based input-coupling circuit provides efficient imple-
mentation protocols of one-mode Gaussian operations using the temporal-mode
Gaussian cluster state. That is, since Fig. 10.13 shows generation of the resource
state which is acquired by transformation of the concatenated teleportation-based
input-coupling circuits (Fig. 10.6), the quantum computation using the cluster state
shown in Fig. 10.13 is equivalent to that shown in Fig. 10.6. We have already men-
tioned that the operation achieved by Fig. 10.6 is given by Eq. (10.13), where all the
degrees of freedom of cluster-state modes can be utilized for operations. Therefore,
we do not have to remove a half of the cluster-state modes as proposed in cite [1], but
we can implement one-mode Gaussian operations using all the degrees of freedom
of homodyne measurements for one-way quantum computation.

10.3.5 Nullifiers of the Cluster State

In this subsection, we get the nullifiers of the temporal-mode Gaussian cluster state.
For simplicity, we will ignore the effect of the both ends of the cluster state.

The quantum state acquired by Fig. 10.4b is the two-mode cluster state, whose
nullifiers are given by

{ p̂1 − x̂2, p̂2 − x̂1}. (10.21)

In this subsection, we write the step number explicitly:

{ p̂n1 − x̂n2, p̂n2 − x̂n1}, (10.22)

Fig. 10.16 Graph of the temporal-mode Gaussian cluster state
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where n represents that it is the set of nullifiers of the two-mode cluster state which
is utilized in the n-th teleportation-based input-coupling circuit as a resource. We
then apply beam splitter operators B̂(2)(k−1)2,k1(

1√
2
) sequentially on the series of the

two-mode cluster states. The effect of the beam splitter operator B̂(2)(n−1)2,n1(
1√
2
) on

the set of nullifiers is given by,

x̂n1 → − 1√
2

x̂(n−1)2 + 1√
2

x̂n1, p̂n1 → − 1√
2

p̂(n−1)2 + 1√
2

p̂n1, (10.23)

while that of B̂(2)n2,(n+1)1(
1√
2
) is given by

x̂n2 → 1√
2

x̂n2 + 1√
2

x̂(n+1)1, p̂n2 → 1√
2

p̂n2 + 1√
2

p̂(n+1)1. (10.24)

As a result, we get the new set of nullifiers:

{− p̂(n−1)2 + p̂n1 − x̂n2 − x̂(n+1)1, p̂n2 + p̂(n+1)1 + x̂(n−1)2 − x̂n1}. (10.25)

By replacing n in the second nullifier by n − 1, we get

{− p̂(n−1)2 + p̂n1 − x̂n2 − x̂(n+1)1, p̂(n−1)2 + p̂n1 + x̂(n−2)2 − x̂(n−1)1}. (10.26)

Since linear combinations of the nullifiers are also nullifiers, we get the final form
of the nullifiers by taking the sum and the difference of the nullifiers above:

{2 p̂n1−x̂n2−x̂(n+1)1+x̂(n−2)2−x̂(n−1)1, 2 p̂(n−1)2+x̂(n−2)2−x̂(n−1)1+x̂n2+x̂(n+1)1}.
(10.27)

The graph of the temporal-mode Gaussian cluster state is given by Fig. 10.16,
where yellow lines show positive-weight CZ interactions (the sign is minus in the
nullifier), while blue lines show negative-weight CZ interactions (the sign is positive
in the nullifier).

We have so far defined the suffixes so that the n represents timing of the initial
two-mode cluster state before the time delay. However, we can also define the suffixes
so that it shows timing of the modes of the temporal-mode Gaussian cluster state.
Since mode n1 and mode (n − 1)2 exist simultaneously, we redefine the suffixes as
n1 = T 1, (n − 1)2 = T 2, leading to

{2 p̂T 1 − x̂(T +1)2 − x̂(T +1)1 + x̂(T −1)2 − x̂(T −1)1, (10.28)

2 p̂T 2 + x̂(T −1)2 − x̂(T −1)1 + x̂(T +1)2 + x̂(T +1)1}.

In the following discussion, we will use the original n-based suffixes.
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10.3.6 Implementation of Quantum Computation
with One-by-One Feed-Forward

In this subsection, we propose an experimental setup to implement quantum compu-
tation using the temporal-mode scheme. We assume that each feed-forward operation
is carried out in each step of the teleportation-based input-coupling circuit.

10.3.6.1 Beginning of Input Coupling

First, two-mode cluster states are generated by the left beam splitter. Since the
input mode in should be combined with mode 11, the timing of mode in is
adjusted so that it arrives at the right beam splitter simultaneously with mode 11
(Fig. 10.17).

The square box at the head of mode in is a switch which selectively outputs one
of two inputs: the input mode or the cluster mode. At this step, it is adjusted so that
the input mode is perfectly transmitted to the output port. The displacement system
is set so that it has no effect although it is not shown explicitly in Fig. 10.17.

10.3.6.2 Switching From Input to Cluster Path

Figure 10.18 shows the arrangement of modes when the end of the input mode has
just passed through the switch for input coupling. At this timing, we change the
switch so that the cluster mode is perfectly transmitted to the output port.

Fig. 10.17 Quantum
computation with
one-by-one feed-forward 1

in

Fig. 10.18 Quantum
computation with
one-by-one feed-forward 2

in
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10.3.6.3 Beginning of the First Operation

Figure 10.19 shows the beginning of the first operation when the heads of mode in and
mode 11 have just arrived at the detectors. In the following figures, we assume that
the measurement results are instantaneously transmitted to the displacement system
without any time delay. Therefore, the head of mode 12, or equivalently the end of
mode in, is located at the displacement system.

At this timing, we enable the feed-forward system. The measurement results of
the heads of mode in and mode 11 are feed-forwarded to the head of mode 12.

10.3.6.4 End of the First Operation, Beginning of the Second Operation

Figure 10.20 shows the end of the first operation, or equivalently the beginning of
the second operation. Therefore, the ends of mode in and mode 11, or equivalently
the heads of mode 12 and mode 21, have just arrived at the detectors. In addition,
the end of mode 12 has just passed through the displacement system.

The succeeding operations can be achieved by repeating from Figs. 10.19 to 10.20.

10.3.6.5 Beginning of the Last Operation

In the rest of this subsection, we will discuss the end of the whole quantum compu-
tation. In order to show its procedure, we use an example of a four-step computation.

The end of computation can be discussed by considering the last-step operation.
In our case, we consider the fourth step.

Figure 10.21 shows the beginning of the fourth-step operation. When we imple-
ment the four-step computation, we will not use mode 51, mode 52, and later modes.
Therefore these modes are described by black letters.

10.3.6.6 Switching to Output the Computation Result

Figure 10.22 shows the arrangement of modes when the head of mode 42, which
is the output of the computation, has just arrived at the right beam splitter. At this

Fig. 10.19 Quantum
Computation with
one-by-one feed-forward 3

in
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Fig. 10.20 Quantum
computation with
one-by-one feed-forward 4

timing, we replace the right half beam splitter with a total-reflection mirror. As a
result, mode 42 will not be entangled with mode 51.

10.3.6.7 End of Computation

Figure 10.23 shows the end of the whole computation. At this timing, mode 42 has
just arrived at the detector. If we want to verify the output state, we can use the
existing homodyne measurement system. If we want to use the output quantum state
in the succeeding computation, it can be taken out from the circuit by preparing a
switch in front of the homodyne detection system.

In this way, we can implement quantum computation with one-by-one feed-
forwards.

10.3.7 Implementation of Quantum Computation with Gathered
Feed-Forward

In Sect. 10.3.6, we have proposed an experimental setup to implement quantum com-
putation using the temporal-mode scheme, where each feed-forward operation is

Fig. 10.21 Quantum
computation with
one-by-one feed-forward 5

Fig. 10.22 Quantum
computation with
one-by-one feed-forward 6
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Fig. 10.23 Quantum
computation with
one-by-one feed-forward 7

in

Fig. 10.24 Quantum computation with gathered feed-forward 1

carried out in each step of the teleportation-based input-coupling circuit. In this sub-
section, we propose another experimental setup where all feed-forwards are gathered
at the end of quantum computation. All measurement results are first recorded in a
memory. Feed-forward operations are carried out at a stroke by using the all results.
This procedure is based on Fig. 10.11.

10.3.7.1 Beginning of Input Coupling

Basic structure of an experimental setup with gathered feed-forward (Fig. 10.24) is
similar to that with one-by-one feed-forward. However, there exist several differ-
ences. One is that the feed-forward system working in each step of computation is
removed from the setup. Instead, a switch is inserted which enables us to pick out
the final quantum state from the circuit. During the computation, it is adjusted so
that the input of the switch is transmitted to the right beam splitter. At the end of
the computation, it is changed so that the input of the switch is transmitted to the
feed-forward system specially prepared on the different path.

The input coupling for quantum computation with gathered feed-forward can be
achieved in the same way as that with one-by-one feed-forward.

10.3.7.2 Beginning of the First Operation

Figure 10.25 shows the beginning of the first operation.
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10.3.7.3 End of the First Operation, Beginning of the Second Operation

Figure 10.26 shows the end of the first operation, or equivalently the beginning of
the second operation. The measurement results are stored in a data storage.

All results of the succeeding measurements will also be stored in the data storage.

10.3.7.4 Beginning of the Last Operation

In the rest of this subsection, we will discuss the end of the whole quantum computa-
tion. Figure 10.27 shows the beginning of the last operation, where we have assumed
that we implement a four-step computation.

Similar to the one-by-one feed-forward case, mode 51, mode 52, and later are not
utilized for computation, thus they are described by black letters.

Before the head of mode 42 arrives at the right beam splitter, we have to pick it
out and send it to the feed-forward system specially prepared on the different path.
Although its switching can be done at an arbitrary timing, we choose that it is carried
out at this moment for simplicity.

10.3.7.5 End of the Last Measurement

Figure 10.28 shows the arrangement of modes when the last measurement for the
last operation has just been finished.

in

Fig. 10.25 Quantum computation with gathered feed-forward 2

in

Fig. 10.26 Quantum computation with gathered feed-forward 3
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Fig. 10.27 Quantum computation with gathered feed-forward 4

The ends of mode 41 and 32 have arrived at the detectors. All measurement results
are now stored in the data storage. The end of mode 42 has just passed through the
switch.

10.3.7.6 Feed-Forward

Feed-forward is finally performed on mode 42 (Figs. 10.29, 10.30). It can be achieved
at a stroke by adding all measurement results with appropriate gains in advance.

In this way, we can implement quantum computation with gathered feed-forward.

10.4 One-Mode Gaussian Operations Using Temporal-Mode
Extended EPR States

In Sect. 10.3, we have described how one-mode Gaussian operations can be achieved
by using temporal-mode Gaussian cluster states. The essential resource state was a
two-mode linear cluster state. In this section, we discuss implementation of one-mode
Gaussian operations using temporal-mode extended EPR states, whose essential
resource state is an EPR state. Although almost all theoretical discussion in this
section is the same to that in Sect. 10.3, it is easier to generate the extended EPR states
experimentally than the temporal-mode Gaussian cluster states given in Sect. 10.3.

in

Fig. 10.28 Quantum computation with gathered feed-forward 5
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Fig. 10.29 Quantum computation with gathered feed-forward 6

10.4.1 Elementary Circuit

The elementary circuit for this EPR-based scheme is shown in Fig. 10.31.
It is similar to Fig. 10.5, but the latter Fourier transformation is removed. Although

it is not shown in Fig. 10.31 explicitly, feed-forward operations are changed as well.
We assume that mode in represents the input mode, and mode 1 and 2 are initially

in |p = 0〉1|p = 0〉2. The input-output relationship of this quantum circuit is given by
(

x̂out

p̂out

)
= MteleE (θ+, θ−)

(
x̂in

p̂in

)
, (10.29)

where θ± = θin ± θ1, while θin and θ1 represent the measurement bases for modes
in and 1. Here, MteleE (θ+, θ−) is given by

MteleE (θ+, θ−) = 1

sin θ−

( − sin θ+ cos θ+ − cos θ−
− cos θ+ − cos θ− − sin θ+

)
. (10.30)

Since we have

MteleE (θ+, θ−) =
(

0 1
−1 0

)
Mtele(θ+, θ−) = R

(
− π

2

)
Mtele(θ+, θ−), (10.31)

thus it can be decomposed into

Fig. 10.30 Quantum computation with gathered feed-forward 7
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Fig. 10.31 Elementary circuit

MteleE (θ+, θ−) = R
(

− π

2
− 1

2
θ+

)
S
(

ln tan
1

2
θ−

)
R
(

− 1

2
θ+

)
. (10.32)

10.4.2 Transformation of Concatenated Circuit

10.4.2.1 Concatenation of Elementary Circuits

As a next step, we consider concatenation of the elementary circuits. We here take
an example where four steps of the elementary circuits are concatenated. The total
input-output relationship is given by

(
x̂out

p̂out

)
= MteleE (θ+4, θ−4)MteleE (θ+3, θ−3)MteleE (θ+2, θ−2)MteleE (θ+1, θ−1)

(
x̂in

p̂in

)
,

(10.33)

where we can determine all {θ+k, θ−k} independently of each other.
In general, the operation achieved by the n-step elementary circuits can be for-

mulated as a product of MteleE (θ+k, θ−k), where we can determine all {θ+k, θ−k}
independently of each other.

10.4.2.2 Universal One-Mode Gaussian Operations

We then consider how we can implement an arbitrary one-mode Gaussian operation.
Similar to the case in Sect. 10.3, a one-step circuit does not have enough degrees of
freedom. The operation by a two-step circuit is
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Fig. 10.32 Transformation of EPR-based elementary circuit. a Transformation of circuit, b
Resource state

(
x̂out

p̂out

)
= MteleE (θ+2, θ−2)MteleE (θ+1, θ−1)

(
x̂in

p̂in

)
(10.34)

= R
(

− π

2
− 1

2
θ+2

)
S
(

ln tan
1

2
θ−2

)
R
(

− 1

2
θ+2

)
R
(

− π

2
− 1

2
θ+1

)

(10.35)

× S
(

ln tan
1

2
θ−1

)
R
(

− 1

2
θ+1

)(
x̂in

p̂in

)
.

By taking θ−1 = π

2
, we get S

(
ln tan 1

2θ−1

)
= I , and thus

(
x̂out

p̂out

)
= R

(
− π

2
− 1

2
θ+2

)
S
(

ln tan
1

2
θ−2

)
R
(

− π

2
− 1

2
θ+2 − θ+1

) (
x̂in

p̂in

)
.

(10.36)

Since it is equivalent to Eq. (10.16) except for fixed rotations, we can easily find
that an arbitrary one-mode Gaussian operation can be implemented by the two-step
elementary circuits.

10.4.2.3 Transformation

By following the similar discussion in Sect. 10.3.2, the four-step circuit can be trans-
formed into Fig. 10.32a.

Figure 10.32a can be considered as a measurement-based quantum computation
where a quantum state shown in Fig. 10.32b is utilized as a resource state. The new
resource state is not a member of cluster states since it does not have nullifiers given
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by p̂a − ∑
a′∈N (a) ga′ x̂a′ . However, it is known that it is equivalent to a cluster state

except for local Fourier transformations [17].

10.4.3 Nullifiers of the Extended EPR State

In this subsection, we get the nullifiers of the temporal-mode extended EPR state.
For simplicity, we will ignore the effect of the both ends of the cluster state.

The quantum state acquired by Fig. 10.4a is the EPR state, whose nullifiers are
given by

{x̂1 − x̂2, p̂1 + p̂2}. (10.37)

In this subsection, we write the step number explicitly:

{x̂n1 − x̂n2, p̂n1 + p̂n2}, (10.38)

where n shows that it is the set of nullifiers of the EPR state which is utilized in
the n-th circuit as a resource. We then apply beam splitter operators B̂(2)(k−1)2,k1(

1√
2
)

sequentially on the series of the EPR states. As a result, we get

{x̂(n−1)2 − x̂n1 + x̂n2 + x̂(n+1)1,− p̂(n−1)2 + p̂n1 + p̂n2 + p̂(n+1)1}. (10.39)

This is the nullifiers of the extended EPR state.
We have so far defined the suffixes so that the n represents timing of the initial

EPR state before the time delay. However, we can also define the suffixes so that it
shows timing of the modes of the temporal-mode extended EPR state. Since mode
n1 and mode (n − 1)2 exist simultaneously, we redefine the suffixes as n1 = T 1,
(n − 1)2 = T 2, leading to

{x̂T 2 − x̂T 1 + x̂(T +1)2 + x̂(T +1)1,− p̂T 2 + p̂T 1 + p̂(T +1)2 + p̂(T +1)1}. (10.40)

10.5 One-Mode Non-Gaussian Operation Using
Temporal-Mode Gaussian Cluster State

We have shown that we can implement an arbitrary one-mode Gaussian operation
by means of the temporal-mode cluster scheme, by using all the degrees of freedom
of cluster modes for quantum computation. In this section, we mention one-mode
non-Gaussian operations with temporal-mode Gaussian cluster states.

In Ref. [1], it has already been proposed that one can implement an arbitrary one-
mode operations, including non-Gaussian operations, by using the same temporal-
mode Gaussian cluster state for Gaussian operations. A half modes of the cluster
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state is removed via cluster-mode erasing in advance, leading to a universal resource
for one-mode unitary operations: a linear cluster state.

In this section, on the other hand, we propose a protocol to implement one-mode
non-Gaussian operations, where all the degrees of freedom of cluster modes can be
utilized for quantum computation.3

10.5.1 Elementary Circuit

10.5.1.1 Elementary Circuit

The elementary circuit for one-mode non-Gaussian operations is shown in Fig. 10.33,
where mode in represents the mode of an input state, while the initial states in mode
1, 2, and 3 are zero eigenstates of the momentum operators: |p = 0〉.

Figure 10.33 consists of two parts: a teleportation-based input-coupling circuit
followed by an elementary one-mode one-way gate (one-mode teleportation circuit,

half teleportation circuit). The operator D̂ is given by D̂ = e
i
�

f (x̂), where the order
of a polynomial function f (x) can be more than or equal to three.

The operation by the teleportation-based input-coupling circuit is given by

(
x̂ ′
p̂′

)
= Mtele(θ+, θ−)

(
x̂in

p̂in

)
, (10.41)

Mtele(θ+, θ−) = 1

sin θ−

(
cos θ+ + cos θ− sin θ+

− sin θ+ cos θ+ − cos θ−

)
, (10.42)

where θ± = θin ±θ1 (5.3.3). Here, θin and θ1 are measurement bases (relative phases
between signal beams and local oscillator beams) in homodyne detections [13].

The input-output relationship of the succeeding elementary one-mode teleporta-
tion circuit is given by

x̂out + i p̂out = − p̂′ − f ′(x̂)+ i x̂ ′, (10.43)

in

1

2

3

CZ

1

BS2

1/2

CZ

1

D p

Fig. 10.33 Elementary circuit for one-mode non-Gaussian operation 1

3 Note again that one might have to remove several modes of a temporal-mode cluster state although
the modes to be removed have abilities to implement some operations. See Sect. 10.1.4.

http://dx.doi.org/10.1007/978-4-431-55019-8_5
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Fig. 10.34 Elementary circuit for one-mode non-Gaussian operation 2
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Fig. 10.35 Elementary circuit for one-mode non-Gaussian operation 3

where f ′(x) = d f (x)

dx
is the first derivative of the function f (x) with respect to x

(Eq. 4.58). If the order of f (x) is more than or equal to three, the order of f ′(x) is
at least two. Therefore, non-Gaussian operations can be implemented [16].

10.5.1.2 Transformation of Elementary Circuit

We consider transformation of the elementary circuit shown in Fig. 10.33 without
changing the input-output relation. The revised circuit will be the elementary circuit
for one-mode non-Gaussian operations using the temporal-mode scheme.

We first consider a change of the order of the first feed-forward and the succeeding
controlled-Z (CZ ) gate. Since D̂a is a member of the Pauli group and ĈZab is a
member of the Clifford group, there exists a Pauli group operator D̂′

ab which satisfies

ĈZab D̂aĈ†
Zab = D̂′

ab, (10.44)

leading to
ĈZab D̂a = D̂′

abĈZab. (10.45)

Thus, we can change the order of the feed-forward and the CZ gate by adding another
feed-forward operation which works on mode 3 (Fig. 10.34).

We then note that the quantum state acquired by entangling |p = 0〉⊗3 in mode
1 , 2, and 3 by using two CZ gates is nothing but the three-mode linear cluster state.
Since the same state can be generated by using an appropriate network of beam
splitters (Gaussian cluster state, Sect. 5.2.2, Eq. 6.43), we can replace the two CZ

gates with Fourier operators and beam splitters (Fig. 10.35).

http://dx.doi.org/10.1007/978-4-431-55019-8_4
http://dx.doi.org/10.1007/978-4-431-55019-8_5
http://dx.doi.org/10.1007/978-4-431-55019-8_6
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We use the revised circuit as the elementary circuit for one-mode non-Gaussian
operations using the temporal-mode scheme.

10.5.2 Concatenation of Revised Elementary Circuits

We consider concatenation of the revised elementary circuits. Although we consider
three steps of the elementary circuits as an example in the following discussion
(Fig. 10.36), it can easily be extended to the n-step case in general. In this figure,
the network of beam splitters including Fourier transformations for generation of a
three-mode linear cluster state is abbreviated to “3 mode linear cluster state”.

We transform the concatenated circuit without changing the input-output relation.
First, all beam splitter networks can be gathered at the beginning of the circuit because
they don’t have interaction with the other modes (Fig. 10.37).

Next, we consider a change of the order of the beam splitter for the second input
coupling on mode 13 and 21, and the feed-forward operation next to it (feed-forward
from mode 12 to mode 13). Similar to the previous discussion, since the feed-forward
operator is a member of the Pauli group, while the beam splitter operator is a member
of the Clifford group, we can change the circuit into Fig. 10.38 by adding another
displacement feed-forward on mode 21.

Then, we change the order of this beam splitter and the first feed-forward operators
on mode 12 and 13. It can be achieved by adding another displacement feed-forward
on mode 21 (Fig. 10.39).

Therefore, we can move the beam splitter for the second input coupling to the
front of the first-step measurements and feed-forwards.

In a similar manner, we can move the beam splitter for the third input coupling
(Figs. 10.40 and 10.41).
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In Fig. 10.41, all beam splitters are gathered at the beginning of the circuit. It
can be regarded as a one-way quantum computation where a Gaussian cluster state
shown in Fig. 10.42 is utilized as a resource, and an input quantum state is coupled
with the cluster state via quantum teleportation. A Non-Gaussian operation can be
achieved via the operator D̂ at the third measurement in each step. In addition, all the
degrees of freedom of all cluster modes can be used for operations. Furthermore, an
arbitrary one-mode non-Gaussian operation can be implemented by repeating this
procedure.

In an n-step case, the resource is the state acquired by sequentially entangling
modes 1 and modes 3 of n three-mode linear cluster states using n −1 beam splitters.
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10.5.3 Generation of Temporal-Mode Gaussian Cluster State

Figure 10.43 shows an experimental setup for generation of the temporal-mode
Gaussian cluster state which can be utilized for implementation of one-mode non-
Gaussian operations. In this figure, we have explicitly shown the arrangement of
cluster modes at each time. Note that mode 21 and mode 22 have no interaction in
Fig. 10.43b although they cross each other.
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Fig. 10.42 Concatenation of
revised elementary circuits 7
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10.5.4 Nullifiers of the Cluster State

In this subsection, we get the nullifiers of the temporal-mode Gaussian cluster state.
We will ignore the effect of the both ends of the cluster state.

First, the nullifiers of a three-mode linear cluster state are given by

{ p̂1 − x̂2, p̂2 − x̂1 − x̂3, p̂3 − x̂2}. (10.46)

In this subsection, we write the step number explicitly:

{ p̂n1 − x̂n2, p̂n2 − x̂n1 − x̂n3, p̂n3 − x̂n2}. (10.47)
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(a) (b)

(c) (d)

(e) (f)

Fig. 10.43 Generation of temporal-mode Gaussian cluster state. a Time 1, b, Time 2, c Time 3,
d Time 4, e Time 5, f Time 6

where n shows that it is the set of nullifiers of the three-mode linear cluster state
which is utilized in the n-th step as a resource. We then apply beam splitter operators
B̂(2)(k−1)3,k1(

1√
2
) sequentially on the series of the three-mode linear cluster states. The

effect of the beam splitter operator B̂(2)(k−1)3,k1(
1√
2
) on the set of nullifiers is given by,

x̂n1 → − 1√
2

x̂(n−1)3 + 1√
2

x̂n1, p̂n1 → − 1√
2

p̂(n−1)3 + 1√
2

p̂n1, (10.48)

while that of B̂(2)n3,(n+1)1(
1√
2
) is given by

x̂n3 → 1√
2

x̂n3 + 1√
2

x̂(n+1)1, p̂n3 → 1√
2

p̂n3 + 1√
2

p̂(n+1)1. (10.49)

As a result, we get the new set of nullifiers:

{− p̂(n−1)3 + p̂n1 − √
2x̂n2,

√
2 p̂n2 + x̂(n−1)3 − x̂n1 − x̂n3 − x̂(n+1)1, p̂n3 + p̂(n+1)1 − √

2x̂n2}.
(10.50)

By replacing n in the third nullifier by n − 1, we get

{− p̂(n−1)3 + p̂n1 − √
2x̂n2,

√
2 p̂n2 + x̂(n−1)3 − x̂n1 − x̂n3 − x̂(n+1)1, p̂(n−1)3 + p̂n1 − √

2x̂(n−1)2}.
(10.51)
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Fig. 10.44 Graph of cluster state

By taking linear combinations of nullifiers, we get

{√2 p̂n1 − x̂n2 − x̂(n−1)2,
√

2 p̂n2 + x̂(n−1)3 − x̂n1 − x̂n3 − x̂(n+1)1,
√

2 p̂(n−1)3 + x̂n2 − x̂(n−1)2}.
(10.52)

By replacing n − 1 in the third nullifier by n, we get

{√2 p̂n1 − x̂n2 − x̂(n−1)2,
√

2 p̂n2 + x̂(n−1)3 − x̂n1 − x̂n3 − x̂(n+1)1,
√

2 p̂n3 + x̂(n+1)2 − x̂n2},
(10.53)

which is the final form of the set of nullifiers. The graph of this state is shown in
Fig. 10.44. Three modes {k1, k2, (k − 1)3} shown in the same color are generated
simultaneously.

10.5.5 Using Multi-Mode Linear Cluster State

10.5.5.1 Using Multi-Mode Linear Cluster State

We have so far utilized two-mode and three-mode linear cluster states as initial cluster
resource states for temporal-mode schemes. By increasing the number of modes from
two to three, we can add a one-mode teleportation circuit. As a result, teleportation-
based input-coupling operations with two degrees of freedom as well as a one-mode
non-Gaussian operation can be implemented.

We can easily extend this discussion to the cases where larger multi-mode linear
cluster states are utilized as initial cluster resources for temporal-mode schemes. By
using an N -mode linear cluster state, we can implement teleportation-based input-
coupling operations with two degrees of freedom, as well as one-mode non-Gaussian
operations with n − 2 degrees of freedom. Therefore, non-Gaussian operations can
be implemented more efficiently.

A compensation for this is that we have to prepare N squeezed states in order to
generate an N -mode linear cluster state. It might lead to a larger-scale experimental
setup. However, it is known how an N -mode linear Gaussian cluster state can be
generated, that is, it can be generated by combining N squeezed states on N − 1
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beam splitters sequentially. By using a similar concept of the temporal-mode scheme,
we can also prepare N squeezed states from a squeezed beam by splitting it with
some time period T .

10.5.5.2 Nullifiers of the Cluster State

The nullifiers of an N -mode linear cluster state with N ≥ 4 are given by

{ p̂n1 − x̂n2, p̂n2 − x̂n1 − x̂n3, p̂ni − x̂n(i−1) − x̂n(i+1),

p̂n(N−1) − x̂n(N−2) − x̂nN , p̂nN − x̂n(N−1)}, i = 3, . . . , N − 2. (10.54)

where n shows that it is the set of nullifiers of the N -mode linear cluster state which
is utilized in the n-th operations as a resource. Note that there exists no term with
i when N = 4. We then apply beam splitter operators B̂(2)(k−1)N ,k1(

1√
2
) sequentially

on the series of the N -mode cluster state. The effect of the beam splitter operator
B̂(2)(n−1)N ,n1(

1√
2
) on the set of nullifiers is given by,

x̂n1 → − 1√
2

x̂(n−1)N + 1√
2

x̂n1, p̂n1 → − 1√
2

p̂(n−1)N + 1√
2

p̂n1, (10.55)

while that of B̂(2)nN ,(n+1)1(
1√
2
) is given by

x̂nN → 1√
2

x̂nN + 1√
2

x̂(n+1)1, p̂nN → 1√
2

p̂nN + 1√
2

p̂(n+1)1. (10.56)

As a result, we get the new set of nullifiers:

{
− 1√

2
p̂(n−1)N + 1√

2
p̂n1 − x̂n2, p̂n2 + 1√

2
x̂(n−1)N − 1√

2
x̂n1 − x̂n3,

p̂ni − x̂n(i−1) − x̂n(i+1), p̂n(N−1) − x̂n(N−2) − 1√
2

x̂nN − 1√
2

x̂(n+1)1,

1√
2

p̂nN + 1√
2

p̂(n+1)1 − x̂n(N−1)

}
, i = 3, . . . , N − 2, (10.57)

leading to,
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{
p̂n1 − 1√

2
x̂n2 − 1√

2
x̂(n−1)(N−1), p̂n2 + 1√

2
x̂(n−1)N − 1√

2
x̂n1 − x̂n3,

p̂ni − x̂n(i−1) − x̂n(i+1), p̂n(N−1) − x̂n(N−2) − 1√
2

x̂nN − 1√
2

x̂(n+1)1,

p̂nN − 1√
2

x̂n(N−1) + 1√
2

x̂(n+1)2

}
, i = 3, . . . , N − 2. (10.58)

It shows that modes 1, 2, N − 1, and N of the N -mode linear cluster state have
correlations with the previous or the next cluster state.

The graphs of N = 4 and N = 5 are shown in Figs. 10.45 and 10.46, respectively.
Four modes {k1, k2, k3, (k − 1)4} and five modes {k1, k2, k3, k4, (k − 1)5} shown
in the same color are generated simultaneously.

Fig. 10.45 Cluster state generated from four-mode linear cluster state

Fig. 10.46 Cluster state generated from five-mode linear cluster state
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10.6 Multi-Mode Gaussian Operation Using Temporal-Mode
Gaussian Cluster State

We have shown that we can implement an arbitrary one-mode operation by means
of the temporal-mode cluster scheme by using all the degrees of freedom of cluster
modes for quantum computation. The only missing element for universal quantum
computation is a two-mode Gaussian operation [20].

In this section, we propose a protocol to implement two-mode Gaussian operations
with temporal-mode Gaussian cluster states, where all the degrees of freedom of
cluster modes can be utilized for quantum computation.4 We choose the CZ gate as a
two-mode Gaussian operation. Although the cluster state we propose in this section
is different from that in Ref. [1], the essence is the same.

10.6.1 Elementary Circuit

The elementary circuit for multi-mode Gaussian operations is shown in Fig. 10.47,
where mode in1 and in2 show the modes of a two-mode input state, while the initial
states in mode 1, 2, 3, and 4 are zero eigenstates of momentum operators: |p = 0〉.

Figure 10.47 is nothing but the quantum circuit of the CZ gate where a four-mode
linear cluster state is utilized as a resource for one-way quantum computation, which
we have experimentally demonstrated and reported in Sect. 7 and Ref. [21].

In this circuit, two teleportation-based input-coupling protocols are utilized for
the two-mode input state labeled by in1 and in2. The input-output relationship in the
Heisenberg picture is given by

in1

1
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3

4

in2

F-|

F-|

BS3

4/5

BS3

1/2

BS4

1/2

F-|

F

BS2

1/2

BS2

1/2

Fig. 10.47 Elementary circuit for multi-mode Gaussian operation

4 Note again that one might have to remove several modes of a temporal-mode cluster state although
the modes to be removed have abilities to implement some operations. See Sect. 10.1.4.

http://dx.doi.org/10.1007/978-4-431-55019-8_7
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⎛
⎜⎜⎝

x̂out1
p̂out1
x̂out2
p̂out2

⎞
⎟⎟⎠ = CZ

(
Mtele(θ+1, θ−1) O2

O2 Mtele(θ+2, θ−2)

)
⎛
⎜⎜⎝

x̂in1
p̂in1
x̂in2
p̂in2

⎞
⎟⎟⎠ . (10.59)

We write it as

CZ

(
Mtele(θ+1, θ−1) O2

O2 Mtele(θ+2, θ−2)

)
= CZ12 Mtele12, (10.60)

for simplicity, where the subscripts 12 show that the gate works on mode 1 and
mode 2. Here, θ±1 = θin1 ± θ1, θ±2 = θin2 ± θ4. The matrix CZ :

CZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎠ (10.61)

represents a CZ gate, while

O2 =
(

0 0
0 0

)
(10.62)

is the 2 × 2 zero matrix. Therefore, the operation consists of the following two
parts: two teleportation-based input-coupling circuits; followed by entangling of
their outcomes via the CZ gate. Since the resource for the operation is a four-mode
linear cluster state, and the degrees of freedom of the operation is four, we find that
all the degrees of freedom of cluster modes can be utilized for cluster-based quantum
computation.

10.6.2 Concatenation of Elementary Circuits

We consider concatenation of the elementary circuits.
Although we consider five steps of the elementary circuits as an example in the

following discussion (Fig. 10.36), it can easily be extended to the n-step case in
general.

Figure 10.48 shows an example where we use a three-mode input state. In this
figure, the network of beam splitters including Fourier transformations for generation
of a four-mode linear cluster state is abbreviated to “4 mode linear cluster state”. Each
blue dotted rectangle shows a CZ operation with one-mode Gaussian operations. Two
input modes of the gate are described by red circles, while the output modes by blue
circles. First, the set of operations is applied to mode 1 and mode 2. Second, another
set is applied to mode 2 and mode 3. Third, mode 3 and mode 1. in the fourth step,
the target modes are mode 1 and mode 2 again. Thereafter operations are applied
cyclically. It is obvious that the operation achieved by Fig. 10.48 is



332 10 Temporal-Mode Cluster States

in
2

in
1

in
3

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 51 52 53 54

4
m

od
e

li
ne

ar
cl

us
te

r
st

at
e

B
S2 1/
2

B
S2 1/
2

XXX

B
S2 1/
2

B
S2 1/
2

XXX

B
S2 1/
2

B
S2 1/
2

XXX

B
S2 1/
2

B
S2 1/
2

XXX

B
S2 1/
2

B
S2 1/
2

XXX

3 2

2 3

2 1

1 2

1 3

3 1

3 2

2 3

2 1

1 2

4
m

od
e

li
ne

ar
cl

us
te

r
st

at
e

4
m

od
e

li
ne

ar
cl

us
te

r
st

at
e

4
m

od
e

li
ne

ar
cl

us
te

r
st

at
e

4
m

od
e

li
ne

ar
cl

us
te

r
st

at
e

Fig. 10.48 Concatenation of elementary circuits
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⎛
⎜⎜⎜⎜⎜⎜⎝

x̂out1
p̂out1
x̂out2
p̂out2
x̂out3
p̂out3

⎞
⎟⎟⎟⎟⎟⎟⎠

= CZ23 Mtele23CZ12 Mtele12CZ31 Mtele31CZ23 Mtele23CZ12 Mtele12

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂in1
p̂in1
x̂in2
p̂in2
x̂in3
p̂in3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(10.63)

10.6.3 Transformation of the Concatenated Circuit

By following the same strategy in Sects. 10.3.3 and 10.5.2, we can transform
Fig. 10.48 into 10.49. Although we can gather all the feed-forwards at the end of
the circuit since we only consider Gaussian operations, we omitted this process for
simplicity.

Figure 10.49 shows a one-way quantum computation where a cluster state shown
in Fig. 10.50 is utilized as a resource.
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Fig. 10.49 Transformation of the concatenated circuit
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Fig. 10.50 Cluster state 11
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10.6.4 Generation of Temporal-Mode Gaussian Cluster State

Figure 10.51 shows an experimental setup for generation of the temporal-mode
Gaussian cluster state. Since we have shown generation of the temporal-mode cluster
state which can be used for three-mode Gaussian operations, the length of the delay
line for mode n2 is twice as long as the mode length. In this figure, the arrangement
of modes at each time is also shown. In order to generate a cluster state for N -mode
Gaussian operations, the length of the delay line for mode n2 should be changed to
(N − 1) times as long as the mode length. On the other hand, the length of the delay
line for mode n3 remains the same to the mode length.

10.6.5 Nullifiers and Graph of the Cluster State

Before we conclude this section, we get the nullifiers and the graph of the temporal-
mode Gaussian cluster state. We will ignore the effect of the both ends of the clus-
ter state. Although we have considered the cluster state for three-mode Gaussian
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(a) (b)

(c) (d)

(e) (f)

Fig. 10.51 Generation of temporal-mode Gaussian cluster state which can be utilized for three-
mode Gaussian operations. a Time 1, b Time 2, c Time 3, d Time 4, e Time 5, f Time 6

operations in Fig. 10.50, we will get the general form of the nullifiers of the cluster
state which can be used for N -mode Gaussian operations.

First, the nullifiers of a four-mode linear cluster state is given by

{ p̂n1 − x̂n2, p̂n2 − x̂n1 − x̂n3, p̂n3 − x̂n2 − x̂n4, p̂n4 − x̂n3}. (10.64)

We then apply beam splitter operators B̂(2)(k−1)3,k1(
1√
2
) and B̂(2)(k−N+1)2,k4(

1√
2
) sequen-

tially. Since modes on which these operators work are different from each other, the
order of beam splitters do not affect the final state. As a result, we get the set of
nullifiers:

{(
− 1√

2
p̂(n−1)3 + 1√

2
p̂n1

)
−

( 1√
2

x̂n2 + 1√
2

x̂(n+N−1)4

)
,

( 1√
2

p̂n2 + 1√
2

p̂(n+N−1)4

)
−

(
− 1√

2
x̂(n−1)3 + 1√

2
x̂n1

)
−

( 1√
2

x̂n3 + 1√
2

x̂(n+1)1

)
,

( 1√
2

p̂n3 + 1√
2

p̂(n+1)1

)
−

( 1√
2

x̂n2 + 1√
2

x̂(n+N−1)4

)
−

(
− 1√

2
x̂(n−N+1)2 + 1√

2
x̂n4

)
,

(
− 1√

2
p̂(n−N+1)2 + 1√

2
p̂n4

)
−

( 1√
2

x̂n3 + 1√
2

x̂(n+1)1

)}
. (10.65)

By taking linear combinations of these nullifiers, we get the final form of nullifiers:
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{
2 p̂n1 − x̂n2 − x̂(n+N−1)4 − x̂(n−1)2 − x̂(n+N−2)4 + x̂(n−N )2 − x̂(n−1)4,

2 p̂n2 + x̂(n−1)3 − x̂n1 − x̂n3 − x̂(n+1)1 + x̂(n+N−1)3 + x̂(n+N )1,

2 p̂n3 − x̂n2 − x̂(n+N−1)4 + x̂(n−N+1)2 − x̂n4 + x̂(n+1)2 + x̂(n+N )4,

2 p̂n4 − x̂n3 − x̂(n+1)1 + x̂(n−N )3 − x̂(n−N+1)1 − x̂(n−N+1)3 − x̂(n−N+2)1

}
.

(10.66)

Although we can draw the graph of the cluster state by directly using the set of
nullifiers above, it might not be the best plan since each mode is entangled with
others in a complex form. Instead, we draw a graph of the cluster state by gathering
several modes which are used for quantum computation as a set. We name this form
of graph as a macro-node graph, while we name the original form as a micro-node
graph.

First, we consider macro nodes by using an example of Fig. 10.48, where opera-
tions on a three-mode input state are implemented. The procedure is summarized in
the following:

• First, operations on mode in1 are carried out by using mode 11 and 12, while those
on mode in2 by using mode 13 and 14.

• Second, operations on mode in2 are carried out by using mode 21 and 22, while
those on mode in3 by using mode 23 and 24.

• Third, operations on mode in3 are carried out by using mode 31 and 32, while
those on mode in1 by using mode 33 and 34.

• Fourth, operations on mode in1 are carried out by using mode 41 and 42, while
those on mode in2 by using mode 43 and 44.

• Finally, operations on mode in2 are carried out by using mode 51 and 52, while
those on mode in3 by using mode 53 and 54.

In these cyclical operations, four modes {n3, n4, (n + 1)1, (n + 1)2} are utilized in
a set for operations on one of the input modes. The same goes for the case of an
N -mode input computation. In the following, we define a macro node M(n) as

M(n) = {n3, n4, (n + 1)1, (n + 1)2}. (10.67)

Next, we consider macro-node connections from macro-node M(n). The nullifier
2 p̂n3 − x̂n2 − x̂(n+N−1)4 + x̂(n−N+1)2 − x̂n4 + x̂(n+1)2 + x̂(n+N )4 gives us connections
from micro-node n3. The other micro nodes (x̂n2, . . . , x̂(n+N )4) in this nullifier belong
to

M(n − 1),M(n + N − 1),M(n − N ),M(n),M(n),M(n + N ). (10.68)

In a similar manner, the nullifier 2 p̂n4 −· · · shows that the micro nodes to which the
micro node n4 is connected belong to

M(n),M(n),M(n − N ),M(n − N ),M(n − N + 1),M(n − N + 1). (10.69)
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The nullifier 2 p̂(n+1)1 − · · · shows that the micro nodes to which the micro node
(n + 1)1 is connected belong to

M(n),M(n + N ),M(n − 1),M(n + N − 1),M(n − N ),M(n). (10.70)

The nullifier 2 p̂(n+1)2 − · · · shows that the micro nodes to which the micro node
(n + 1)2 is connected belong to

M(n),M(n),M(n + 1),M(n + 1),M(n + N ),M(n + N ). (10.71)

Since micro nodes n3, n4, (n + 1)1, and (n + 1)2 belong to macro node M(n), we
find M(n) is connected to

M(n−N ),M(n−(N −1)),M(n−1),M(n),M(n+1),M(n+(N −1)),M(n+N ).
(10.72)

It shows that a macro node is connected to macro nodes which are located at distances
of ±1,±(N − 1) and ±N .

Figure 10.52 shows the graph of the cluster state in the macro-node representation
which can be used for six-mode Gaussian operations.

In this figure, each green circle corresponds to a macro node. Blue lines show
connections from macro node M(n) to macro nodes M(n − 1) and M(n + 1). Since
Fig. 10.52 shows a cluster state for six-mode operations, it has a spiral structure
consisting of six macro nodes. This structure is derived from the original strategy
that CZ gate are applied cyclically. Horizontal purple thick lines show connections
from macro node M(n) to macro nodes M(n − N ) and M(n + N ), while purple thin
lines show connections from macro node M(n) to macro nodes M(n − (N − 1))
and M(n + (N − 1)). Each mode of an input state is transmitted horizontally as
operations are carried out.

Fig. 10.52 Graph of cluster state which can be used for six-mode Gaussian operations (in macro-
node representation)
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10.7 Multi-Mode Non-Gaussian Operation

We have so far shown the following three protocols for one-way quantum computa-
tions using temporal-mode Gaussian cluster states:

1. One-mode Gaussian operations where the two-mode cluster state is the elemen-
tary resource.

2. One-mode non-Gaussian operations where the three-mode linear cluster state is
the elementary resource.

3. Multi-mode Gaussian operations where the four-mode linear cluster state is the
elementary resource.

By combining these procedures, we can implement multi-mode non-Gaussian oper-
ations which correspond to universal quantum computation. Since 1 is a part of 2 or
3, it is sufficient to choose 2 and 3 as elementary components. Furthermore, we can
easily merge these two components into one component. That is, by only using a six-
mode linear cluster state as the elementary resource, we can implement multi-mode
non-Gaussian operations.
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Chapter 11
Summary

11.1 Conclusions

In this thesis, we have demonstrated three one-way quantum computation protocols
over two-mode input states.

In Chap. 7, we have experimentally demonstrated a unity-gain controlled-Z gate
for optical continuous-variable one-way quantum computation. We have utilized a
four-mode linear Gaussian cluster state as a resource for the experiment. It can also
be considered as an experimental demonstration of gate teleportations [2, 3] on a
two-mode system.

In Chap. 8, we have experimentally demonstrated an optimum nonlocal
controlled-Z gate for optical continuous variables. It has been achieved by using a
bipartite entangled state called a two-mode Gaussian cluster state, shared in advance,
and one classical channel in each direction. They are the minimum requirements for
a nonlocal controlled-Z gate.

In Chap. 9, We have experimentally demonstrated a gain-tunable entangling gate
for optical continuous-variable one-way quantum computation, where a three-mode
linear Gaussian cluster state is utilized as a resource state. In contrast to the other
two experiments where the operations were fixed, this gate had the ability of on-
off switching of two-mode interactions, as well as interaction-gain tuning. Control
of the operation was precisely achieved by adjusting the relative phase in a homo-
dyne detection, which represents the feature of one-way quantum computation: the
selection of measurement bases determines the quantum operations.

In all the experimental demonstrations presented in this thesis, the general input-
output relations have been verified by appropriate transmission of input coherent-
state signals. The genuine quantum character of these gates became manifest and
was verified through the existence of entanglement at the output modes. We have
utilized the generalized van Loock-Furusawa entanglement criteria (Sect. 3.7.4), as
well as the logarithmic negativities of the output states.

In this thesis, one-way quantum computation using temporal-mode cluster states
was also studied [4, 5]. We showed that quantum computation using a temporal-
mode cluster state for one-mode operations is equivalent to a repetition of quantum
teleportations (Sect. 10.3.3). Since we can implement one-mode Gaussian operations
with two DOF by controlling the measurement basis in a quantum teleportation
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(Sect. 5.3.3), we can utilize all modes of the temporal-mode cluster state in one-way
quantum computations without eliminating any of them. In addition, we showed
that non-Gaussian operations and multi-mode Gaussian operations are also achieved
without eliminating resource modes (Sects. 10.5 and 10.6) by considering repetitions
of a one-way quantum computation circuit with the three-mode linear cluster state,
and the quantum computation circuit of the controlled-Z gate experiment (Sect. 7).

11.2 Future Prospects

We have previously reported one-mode Gaussian operation experiments using a four-
mode linear Gaussian cluster state as a resource in Ref. [1]. By combining the two-
mode gate experiments in this thesis with the one-mode gate experiments in Ref. [1],
we now have all the tools required to implement an arbitrary multi-mode Gaussian
operation in a framework of one-way quantum computation. Our gates can be directly
incorporated into a large-scale multi-mode one-way quantum computation.

The only missing element for an arbitrary multi-mode unitary operation is a non-
Gaussian operation. In our laboratory, considerable efforts are now being devoted to
the implementation of non-Gaussian operations [6–8]. Experimental generations of
non-Gaussian states and experimental quantum teleportations of non-Gaussian states
will lead to non-Gaussian operations in the near future.

We next consider the number of operations we have implemented. In our exper-
iments in this thesis, up to four-mode entangled states were utilized as resources
for one-way quantum computations. It shows that a four-step operation has been
experimentally demonstrated. As a promising scheme for many-step operations,
temporal-mode cluster states have been proposed. Recently, we have experimen-
tally generated ultra-large-scale entangled states where more than 10,000 modes are
entangled (extended EPR state, Sect. 10.4) [9].

Although we can generate ultra-large-scale entangled states in continuous vari-
ables, we lack an appropriate algorithm that can efficiently utilize such ultra-large-
scale but finitely correlated entangled states. In Chap. 10, we have proposed how to
duplicate the number of operations when we implement quantum computation using
temporal-mode cluster states. However, our proposal is not yet sufficient to fully
utilize the ultra-large-scale entangled states we have created. The vast unfulfilled
potential of the ultra-large-scale entangled states will no doubt be explored by more
sophisticated quantum computation algorithms.
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Appendix A
Photos And Schematic

A.1 Photos

Figure A.1 shows photos of our optical table and classical channels

Fig. A.1 Photos; a Optical table. b Classical channels

A.2 Schematic of Optical Table

Figure A.2 shows the schematic of our optical table for the controlled-Z gate exper-
iment
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Appendix B
Programs

B.1 Ray Tracer

This is a program with a graphical user interface for calculations of waist positions
and waist sizes of 00-mode Gaussian beams based on ABCD matrices.

This program shows beam sizes of multiple 00-mode Gaussian beams at each
position when we place multiple optical objects such as lenses on their propagation
paths.

The main features of this program are listed below.

• Calculate the visibility and mode match of two beams.
• Place a lens automatically at an appropriate position so that the beam has the

desired waist size.
• Place two lenses automatically at appropriate positions so that the beam has the

desired waist size and the desired waist position.
• Design a cavity by imposing the condition that the initial waist size is equivalent

to the last waist size.

B.2 Quantum Computation Builder

This is a program with a graphical user interface for calculations of multi-mode
Gaussian operations in the Heisenberg picture.

It is an example of classical simulations of Gaussian operations described in
Sect. 3.6.2. This program generates a Mathematica (Wolfram Research) code, which
is processed by a Mathematica macro programed by S. Yokoyama.

The main features of this program are listed below.
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Fig. B.1 Program “Ray Tracer”

Fig. B.2 Program “Quantum Computation Builder”

• Simulate major Gaussian operations (such as squeezing operations and controlled-
Z gates) as well as homodyne measurements and displacement operations based
on measurement results.
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• Calculate feed-forward gains for Gaussian operations so that the output-mode
quadratures do not have anti-squeezing components of resource modes.

• Calculate input-output relationships in the Heisenberg picture.
• Evaluate entanglement criteria for the two-mode output states.
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